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  xiii

Foreword

I had met Itzik Ben-Gan briefl y a couple of times and knew of his reputation, so I was looking 
forward to his afternoon session on avoiding cursors in SQL programming at PASS. I was lucky 
to get there early, as the large room fi lled up quickly. Itzik took a couple of SQL programming 
problems and diced them up in the most skillful and entertaining way, showing the elegance 
and effi ciency of set-oriented thinking. The audience loved it—and so did I, except I had 
a different angle. Having worked on the internals of SQL Server, I could see Itzik touch the 
product nerves in his demos, and I admired how he turned features into beautiful solutions. 
After the session, I asked one of the attendees what had been his main takeaway, curious 
about which of the many techniques would have stood out for him. He looked at me, mildly 
surprised, and just said, “The man is a genius!” That pretty much sums it up.

This question of cursors is more fundamental than it may appear at fi rst. It points to a deep 
 dichotomy of tremendous practical importance. Most of us were taught to program by chopping 
up a task into smaller steps that, when executed in sequence, perform a desired computation. But 
if you approach SQL programming this way, you will get only mediocre results. Your code will be 
much larger and harder to maintain. It will be less effi cient, less fl exible, and less tunable. Using 
SQL effectively is not about an incremental extension of your procedural programming skills 
or about a specifi c collection of tricks. Writing SQL well requires approaching problems with a 
 different mind-set—one that is declarative and set oriented, not procedural. This is the dichotomy.

Inside Microsoft SQL Server 2008: T-SQL Querying puts together all the ingredients you need 
to  understand this declarative and set-oriented way of thinking and become a profi cient 
SQL  programmer, thus making an important contribution to the SQL Server development 
 community. Its chapters on formal foundations help you understand the basis for the language 
philosophy and get a sense for its potential. The language itself is covered thoroughly, from 
the basic operations to the most advanced features, all of them explained in the context of 
real problem solving. The many examples show you what good SQL looks like, and they cover 
common patterns you are likely to fi nd when writing applications. A comprehensive chapter on 
query tuning explains in detail the factors that impact performance in the system, how to go 
about identifying issues, and how to address them effectively.

Itzik assembled a strong team of collaborators to write this book. Coming from different 
backgrounds, all of them share a deep expertise in SQL, a passion for database technology, 
 extensive teaching experience, and a recognized track record of contributions to the SQL 
Server community. Steve Kass is known for his depth of understanding and clarity of thought. 
Dejan Sarka contributes an extensive knowledge of the relational model and a breadth of 
database technologies. As for Lubor Kollar, I’ve had the pleasure of working with him on the 
defi nition, design, and implementation of the Query Processing engine of SQL Server for 
over a decade, and I deeply respect his insight. They make an outstanding team of guides 
who can help you improve your skills.
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xiv Foreword

SQL is a very powerful language, but I believe only a minority of developers really know 
how to get the most out of it. Using SQL well can mean code that is 10 times more effi cient, 
more scalable, and more maintainable. Inside Microsoft SQL Server 2008: T-SQL Querying tells 
you how.

César Galindo-Legaria, PhD

Manager of the Query Optimization Team, Microsoft SQL Server
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  xix

Introduction

This book and its sequel—Inside Microsoft SQL Server 2008: T-SQL Programming—cover 
advanced T-SQL querying, query tuning, and programming in Microsoft SQL Server 2008. 
They are designed for experienced programmers and DBAs who need to write and optimize 
code in SQL Server 2008. For brevity, I’ll refer to the books as T-SQL Querying and T-SQL 
Programming, or just as these books.

Those who read the SQL Server 2005 edition of the books will fi nd plenty of new materials 
covering new subjects, new features, and enhancements in SQL Server 2008, plus revisions 
and new insights about the existing subjects.

These books focus on practical common problems, discussing several approaches to 
 tackle each. You will be introduced to many polished techniques that will enhance 
your toolbox and coding vocabulary, allowing you to provide effi cient solutions in a 
natural manner.

These books unveil the power of set-based querying and explain why it’s usually superior to 
procedural programming with cursors and the like. At the same time, they teach you how to 
identify the few scenarios where cursor-based solutions are superior to set-based ones.

This book—T-SQL Querying—focuses on set-based querying and query tuning, and 
I  recommend that you read it fi rst. The second book—T-SQL Programming—focuses on 
 procedural  programming and assumes that you read the fi rst book or have suffi cient 
 querying background.

T-SQL Querying starts with fi ve chapters that lay the foundation of logical and physical query 
processing required to gain the most from the rest of the chapters in both books.

The fi rst chapter covers logical query processing. It describes in detail the logical phases 
 involved in processing queries, the unique aspects of SQL querying, and the special mind-set 
you need to adopt to program in a relational, set-oriented environment.

The second chapter covers set theory and predicate logic—the strong mathematical 
 foundations upon which the relational model is built. Understanding these foundations 
will give you  better insights into the model and the language. This chapter was written 
by Steve Kass, who was also the main technical editor of these books. Steve has a unique 
 combination of strengths in  mathematics, computer science, SQL, and English that make him 
the ideal  author for this subject. 
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The third chapter covers the relational model. Understanding the relational model is 
 essential for good database design and helps in writing good code. The chapter defi nes 
relations and tuples and operators of relational algebra. Then it shows the relational model 
from a  different perspective called relational calculus. This is more of a  business-oriented 
 perspective, as the logical model is described in terms of predicates and propositions. 
Data integrity is crucial for transactional systems; therefore, the chapter spends time 
 discussing all kinds of constraints. Finally, the chapter introduces normalization—the 
formal process of  improving database design. This chapter was written by Dejan Sarka. 
Dejan is one of the people with the deepest understanding of the relational model 
that I know.

The fourth chapter covers query tuning. It introduces a query tuning methodology we 
 developed in our company (Solid Quality Mentors) and have been applying in production 
systems. The chapter also covers working with indexes and analyzing execution plans. This 
chapter provides the important background knowledge required for the rest of the chapters 
in both books, which as a practice discuss working with indexes and analyzing execution 
plans. These are important aspects of querying and query tuning.

The fi fth chapter covers complexity and algorithms and was also written by Steve Kass. This 
chapter particularly focuses on some of the algorithms used often by the SQL Server engine. 
It gives attention to considering worst-case behavior as well as average case complexity. 
By understanding the complexity of algorithms used by the engine, you can anticipate, for 
 example, how the performance of certain queries will degrade when more data is added 
to the tables involved. Gaining a better understanding of how the engine processes your 
 queries equips you with better tools to tune them.

The chapters that follow delve into advanced querying and query tuning, addressing both 
logical and physical aspects of your code. These chapters cover the following subjects: 
 subqueries, table expressions, and ranking functions; joins and set operations;  aggregating 
and pivoting data; TOP and APPLY; data modifi cation; querying partitioned tables; and 
graphs, trees, hierarchies, and recursive queries.

The chapter covering querying partitioned tables was written by Lubor Kollar. Lubor led 
the development of partitioned tables and indexes when fi rst introduced in the product, 
and many of the features that we have today are thanks to his efforts. These days 
Lubor works with customers who have, among other things, large implementations 
of partitioned tables and indexes as part of his role in the SQL Server Customer Advisory 
Team (SQL CAT).

Appendix A covers logic puzzles. Here you have a chance to practice logical puzzles to 
 improve your logic skills. SQL querying essentially deals with logic. I fi nd it important to 
 practice pure logic to improve your query problem-solving capabilities. I also fi nd these 
 puzzles fun and challenging, and you can practice them with the entire family. These puzzles 
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are a compilation of the logic puzzles that I covered in my T-SQL column in SQL Server 
Magazine. I’d like to thank SQL Server Magazine for allowing me to share these puzzles with 
the book’s readers.

The second book—T-SQL Programming—focuses on programmatic T-SQL constructs 
and expands its coverage to treatment of XML and XQuery and the CLR integration. 
The book’s chapters cover the following subjects: views; user-defi ned functions; stored 
 procedures;  triggers; transactions and concurrency; exception handling; temporary tables 
and table  variables; cursors; dynamic SQL; working with date and time; CLR user-defi ned 
types;  temporal support in the relational model; XML and XQuery (including  coverage 
of open schema); spatial data; change data capture, change tracking, and auditing; 
and Service Broker.

The chapters covering CLR user-defi ned types, temporal support in the relational model, 
and XML and XQuery were written by Dejan Sarka. As I mentioned, Dejan is extremely 
 knowledgeable in the relational model and has very interesting insights into the model 
itself and the way the constructs that he covers in his chapters fi t in the model when 
used sensibly. 

The chapter about spatial data was written by Ed Katibah and Isaac Kunen. Ed and Isaac 
are with the SQL Server development team and led the efforts to implement spatial data 
 support in SQL Server 2008. It is a great privilege to have this chapter written by the 
 designers of the feature. Spatial data support is new to SQL Server 2008 and brings new 
data types, methods, and indices. This chapter is not intended as an exhaustive  treatise 
on spatial data or as an encyclopedia of every spatial method that SQL Server now 
 supports. Instead, this chapter will introduce core spatial concepts and provide the reader 
with key  programming constructs necessary to successfully navigate this new feature 
to SQL Server.

The chapter about change data capture, change tracking, and auditing was written by Greg 
Low. Greg is a SQL Server MVP and the managing director of SolidQ Australia. Greg has 
many years of experience working with SQL Server—teaching, speaking, and writing about 
it—and is highly regarded in the SQL Server community. The technologies that are the  focus 
of this chapter track access and changes to data and are new in SQL Server 2008. At fi rst 
glance, these technologies can appear to be either overlapping or contradictory, and the 
best-use cases for each might be far from obvious. This chapter explores each  technology, 
 discusses the capabilities and limitations of each, and explains how each is intended 
to be used.

The last chapter, which covers Service Broker (SSB), was written by Roger Wolter. Roger is 
the program manager with the SQL Server development team and led the initial efforts to 
 introduce SSB in SQL Server. Again, there’s nothing like having the designer of a component 
explain it in his own words. The “sleeper” feature of SQL Server 2005 is now in production in 
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a wide variety of applications. This chapter covers the architecture of SSB and how to use SSB 
to build a variety of reliable asynchronous database applications. The SQL 2008  edition adds 
coverage of the new features added to SSB for the SQL Server 2008 release and includes 
 lessons learned and best practices from SSB applications deployed since the SQL Server 2005 
release. The major new features are Queue Priorities, External Activation, and a new SSB 
 troubleshooting application that incorporates lessons the SSB team learned from customers 
who have already deployed applications. 

Hardware and Software Requirements

To practice all the material in these books and run all code samples, it is 
 recommended that you use Microsoft SQL Server 2008 Developer or Enterprise Edition 
and Microsoft Visual Studio 2008 Professional or Database Edition. If you have a 
 subscription to MSDN, you can download SQL Server 2008 and Visual Studio 2008 from 
http://msdn.microsoft.com. Otherwise, you can download a 180-day free SQL Server 2008 
trial software from http://www.microsoft.com/sqlserver/2008/en/us/trial-software.aspx and 
a 90-day free Visual Studio 2008 trial software from http://msdn.microsoft.com/
en-us/vstudio/aa700831.aspx.

You can fi nd system requirements for SQL Server 2008 at 
http://msdn.microsoft.com/en-us/ library/ms143506.aspx and for Visual Studio 2008 at 
http://msdn.microsoft.com/en-us/vs2008/products/bb894726.aspx.

Companion Content and Sample Database

These books feature a companion Web site that makes available to you all the code used in 
the books, the errata, additional resources, and more. The companion Web site is 
http://www.insidetsql.com. 

For each of these books the companion Web site provides a compressed fi le with the book’s 
source code, a script fi le to create the books’ sample database, and additional fi les that are 
required to run some of the code samples. 

After downloading the source code, run the script fi le TSQLFundamentals2008.sql to 
create the sample database InsideTSQL2008, which is used in many of the books’ code 
samples. The data model of the InsideTSQL2008 database is provided in Figure I-1 for 
your convenience.
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FIGURE I-1 Data model of the TSQLFundamentals2008 database

Find Additional Content Online

As new or updated material becomes available that complements your books, it will be 
 posted online on the Microsoft Press Online Windows Server and Client Web site. The type 
of  material you might fi nd includes updates to books content, articles, links to companion 
 content,  errata, sample chapters, and more.  This Web site is available at http://microsoftpresssrv
.libredigital.com/serverclient/ and is updated periodically.
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Support for These Books

Every effort has been made to ensure the accuracy of these books and the contents of 
the companion Web site. As corrections or changes are collected, they will be added to a 
Microsoft Knowledge Base article. 

Microsoft Press provides support for books at the following Web site:

http://www.microsoft.com/learning/support/books

Questions and Comments

If you have comments, questions, or ideas regarding the books or questions that are not 
 answered by visiting the sites above, please send them to me via e-mail to

itzik@SolidQ.com

or via postal mail to

Microsoft Press

Attn: Inside Microsoft SQL Server 2008: T-SQL Querying and Inside Microsoft SQL Server 2008: 
T-SQL Programming Editor

One Microsoft Way

Redmond, WA 98052-6399.

Please note that Microsoft software product support is not offered through the above 
addresses.
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Chapter 1

Logical Query Processing

 Observing true experts in different fi elds, you fi nd a common practice that they all 
 share—mastering the basics. One way or another, all professions deal with problem solving. 
All solutions to problems, complex as they may be, involve applying a mix of fundamental 
techniques. If you want to master a profession, you need to build your knowledge upon 
strong foundations. Put a lot of effort into perfecting your techniques, master the basics, and 
you’ll be able to solve any problem. 

 This book is about Transact-SQL (T-SQL) querying—learning key techniques and applying 
them to solve problems. I can’t think of a better way to start the book than with a chapter 
on the fundamentals of logical query processing. I fi nd this chapter the most important in 
the book—not just because it covers the essentials of query processing but also because SQL 
programming is conceptually very different than any other sort of programming.  

 Transact-SQL is the Microsoft SQL Server dialect of, or extension to, the ANSI and ISO SQL 
standards. Throughout the book, I’ll use the terms SQL and T-SQL interchangeably. When 
discussing aspects of the language that originated from ANSI SQL and are relevant to most 
dialects, I’ll typically use the term SQL. When discussing aspects of the language with the 
implementation of SQL Server in mind, I’ll typically use the term T-SQL. Note that the formal 
language name is Transact-SQL, although it’s commonly called T-SQL. Most programmers, 
 including myself, feel more comfortable calling it T-SQL, so I made a conscious choice to use 
the term T-SQL throughout the book. 

Origin of SQL Pronunciation

 Many English-speaking database professionals pronounce SQL as sequel, although the 
correct pronunciation of the language is S-Q-L (“ess kyoo ell”). One can make educated 
guesses about the reasoning behind the incorrect pronunciation. My guess is that there 
are both historical and linguistic reasons. 

 As for historical reasons, in the 1970s, IBM developed a language named SEQUEL, which 
was an acronym for Structured English QUEry Language. The language was designed to 
 manipulate data stored in a database system named System R, which was based on Dr. Edgar 
F. Codd’s model for relational database management systems (RDBMS). The  acronym 
SEQUEL was later shortened to SQL because of a trademark  dispute. ANSI adopted SQL as a 
standard in 1986, and ISO did so in 1987. ANSI  declared that the offi cial pronunciation of the 
language is “ess kyoo ell,” but it seems that this fact is not common knowledge. 

 As for linguistic reasons, the sequel pronunciation is simply more fl uent, mainly for 
English speakers. I often use it myself for this reason. 
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2 Inside Microsoft SQL Server 2008: T-SQL Querying

 More Info The coverage of SQL history in this chapter is based on an article from Wikipedia, 
the free encyclopedia, and can be found at http://en.wikipedia.org/wiki/SQL. 

 SQL programming has many unique aspects, such as thinking in sets, the logical  processing order 
of query elements, and three-valued logic. Trying to program in SQL without this knowledge 
is a straight path to lengthy, poor-performing code that is diffi cult to maintain. This chapter’s 
 purpose is to help you understand SQL the way its designers envisioned it. You need to create 
strong roots upon which all the rest will be built. Where relevant, I’ll explicitly indicate  elements 
that are specifi c to T-SQL. 

 Throughout the book, I’ll cover complex problems and advanced techniques. But in this chapter, 
as mentioned, I’ll deal only with the fundamentals of querying. Throughout the book, I’ll also  focus 
on performance. But in this chapter, I’ll deal only with the logical aspects of query processing. I ask 
you to make an effort while reading this chapter not to think about performance at all. You’ll fi nd 
plenty of performance coverage later in the book. Some of the logical query processing phases 
that I’ll describe in this chapter might seem very ineffi cient. But keep in mind that in practice, the 
actual physical processing of a query might be very  different than the logical one.  

 The component in SQL Server in charge of generating the actual work plan (execution plan) 
for a query is the query optimizer. The optimizer determines in which order to access the 
tables, which access methods and indexes to use, which join algorithms to apply, and so on. 
The optimizer generates multiple valid execution plans and chooses the one with the lowest 
cost. The phases in the logical processing of a query have a very specifi c order. In contrast, 
the optimizer can often make shortcuts in the physical execution plan that it generates. Of 
course, it will make shortcuts only if the result set is guaranteed to be the correct one—in 
other words, the same result set you would get by following the logical processing phases. 
For example, to use an index, the optimizer can decide to apply a fi lter much sooner than 
dictated by logical processing. 

 For the aforementioned reasons, it’s important to make a clear distinction between logical 
and physical processing of a query. 

 Without further ado, let’s delve into logical query processing phases. 

Logical Query Processing Phases

 This section introduces the phases involved in the logical processing of a query. I’ll fi rst briefl y 
describe each step. Then, in the following sections, I’ll describe the steps in much more detail 
and apply them to a sample query. You can use this section as a quick reference whenever 
you need to recall the order and general meaning of the different phases. 
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 Chapter 1 Logical Query Processing 3

Listing 1-1 contains a general form of a query, along with step numbers assigned according 
to the order in which the different clauses are logically processed. 

LISTING 1-1 Logical query processing step numbers

(5) SELECT (5-2) DISTINCT (5-3) TOP(<top_specification>) (5-1) <select_list>

(1) FROM (1-J) <left_table> <join_type> JOIN <right_table> ON <on_predicate>

       | (1-A) <left_table> <apply_type> APPLY <right_table_expression> AS <alias>

       | (1-P) <left_table> PIVOT(<pivot_specification>) AS <alias>

       | (1-U) <left_table> UNPIVOT(<unpivot_specification>) AS <alias>

(2) WHERE <where_predicate>

(3) GROUP BY <group_by_specification>

(4) HAVING <having_predicate>

(6) ORDER BY <order_by_list>;

Figure 1-1 contains a fl ow diagram representing logical query processing phases in detail. 
Throughout the chapter I’ll refer to the step numbers that appear in the diagram. 

The fi rst noticeable aspect of SQL that is different from other programming languages is the 
order in which the code is processed. In most programming languages, the code is processed 
in the order in which it is written. In SQL, the fi rst clause that is processed is the FROM clause, 
while the SELECT clause, which appears fi rst, is processed almost last. 

Each step generates a virtual table that is used as the input to the following step. These 
 virtual tables are not available to the caller (client application or outer query). Only the table 
generated by the fi nal step is returned to the caller. If a certain clause is not specifi ed in a 
query, the corresponding step is simply skipped. The following section briefl y describes the 
different logical steps.  

Logical Query Processing Phases in Brief

Don’t worry too much if the description of the steps doesn’t seem to make much sense 
for now. These are provided as a reference. Sections that come after the scenario example 
will cover the steps in much more detail. 

■  (1) FROM The FROM phase identifi es the query’s source tables and processes table 
operators. Each table operator applies a series of subphases. For example, the phases 
involved in a join are (1-J1) Cartesian Product, (1-J2) ON Filter, (1-J3) Add Outer Rows. 
The FROM phase generates virtual table VT1. 

■  (1-J1) Cartesian Product This phase performs a Cartesian product (cross join) between 
the two tables involved in the table operator, generating VT1-J1. 

■  (1-J2) ON Filter This phase fi lters the rows from VT1-J1 based on the predicate that 
appears in the ON clause (<on_predicate>). Only rows for which the predicate evaluates 
to TRUE are inserted into VT1-J2. 

(5) SELECT (5-2) DISTINCT (5-3) TOP(<top_specification>) (5-1) <select_list>

(1) FROM (1-J) <left_table> <join_type> JOIN <right_table> ON <on_predicate>

       | (1-A) <left_table> <apply_type> APPLY <right_table_expression> AS <alias>

       | (1-P) <left_table> PIVOT(<pivot_specification>) AS <alias>

       | (1-U) <left_table> UNPIVOT(<unpivot_specification>) AS <alias>

(2) WHERE <where_predicate>

(3) GROUP BY <group_by_specification>

(4) HAVING <having_predicate>

(6) ORDER BY <order_by_list>;
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FIGURE 1-1 Logical query processing fl ow diagram
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 Chapter 1 Logical Query Processing 5

■  (1-J3) Add Outer Rows If OUTER JOIN is specifi ed (as opposed to CROSS JOIN or 
INNER JOIN), rows from the preserved table or tables for which a match was not found 
are added to the rows from VT1-J2 as outer rows, generating VT1-J3.  

■  (2) WHERE This phase fi lters the rows from VT1 based on the predicate that appears in 
the WHERE clause (<where_predicate>). Only rows for which the predicate evaluates to 
TRUE are inserted into VT2.  

■  (3) GROUP BY This phase arranges the rows from VT2 in groups based on the column 
list specifi ed in the GROUP BY clause, generating VT3. Ultimately, there will be one 
 result row per group. 

■  (4) HAVING This phase fi lters the groups from VT3 based on the predicate that 
 appears in the HAVING clause (<having_predicate>). Only groups for which the 
 predicate evaluates to TRUE are inserted into VT4. 

■  (5) SELECT This phase processes the elements in the SELECT clause, generating VT5.  

■  (5-1) Evaluate Expressions This phase evaluates the expressions in the SELECT list, 
generating VT5-1. 

■  (5-2) DISTINCT This phase removes duplicate rows from VT5-1, generating VT5-2.  

■  (5-3) TOP This phase fi lters the specifi ed top number or percentage of rows from 
VT5-2 based on the logical ordering defi ned by the ORDER BY clause, generating the 
table VT5-3. 

■  (6) ORDER BY This phase sorts the rows from VT5-3 according to the column list 
specifi ed in the ORDER BY clause, generating the cursor VC6. 

Sample Query Based on Customers/Orders Scenario

 To describe the logical processing phases in detail, I’ll walk you through a sample query. First 
run the following code to create the dbo.Customers and dbo.Orders tables, populate them 
with sample data, and query them to show their contents: 

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.Orders') IS NOT NULL DROP TABLE dbo.Orders;

IF OBJECT_ID('dbo.Customers') IS NOT NULL DROP TABLE dbo.Customers;

GO

CREATE TABLE dbo.Customers

(

  customerid  CHAR(5)     NOT NULL PRIMARY KEY,

  city        VARCHAR(10) NOT NULL

);
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6 Inside Microsoft SQL Server 2008: T-SQL Querying

CREATE TABLE dbo.Orders

(

  orderid    INT     NOT NULL PRIMARY KEY,

  customerid CHAR(5)     NULL REFERENCES Customers(customerid)

);

GO

INSERT INTO dbo.Customers(customerid, city) VALUES('FISSA', 'Madrid');

INSERT INTO dbo.Customers(customerid, city) VALUES('FRNDO', 'Madrid');

INSERT INTO dbo.Customers(customerid, city) VALUES('KRLOS', 'Madrid');

INSERT INTO dbo.Customers(customerid, city) VALUES('MRPHS', 'Zion');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(1, 'FRNDO');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(2, 'FRNDO');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(3, 'KRLOS');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(4, 'KRLOS');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(5, 'KRLOS');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(6, 'MRPHS');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(7, NULL);

SELECT * FROM dbo.Customers;

SELECT * FROM dbo.Orders;

 This code generates the following output: 

customerid city

---------- ----------

FISSA      Madrid

FRNDO      Madrid

KRLOS      Madrid

MRPHS      Zion

orderid     customerid

----------- ----------

1           FRNDO

2           FRNDO

3           KRLOS

4           KRLOS

5           KRLOS

6           MRPHS

7           NULL

 I’ll use the query shown in Listing 1-2 as my example. The query returns customers from 
Madrid who placed fewer than three orders (including zero orders), along with their order 
counts. The result is sorted by order count, from smallest to largest.  

LISTING 1-2 Query: Madrid customers with fewer than three orders

SELECT C.customerid, COUNT(O.orderid) AS numorders 

FROM dbo.Customers AS C 

  LEFT OUTER JOIN dbo.Orders AS O 

    ON C.customerid = O.customerid 

WHERE C.city = 'Madrid' 

GROUP BY C.customerid 

HAVING COUNT(O.orderid) < 3 

ORDER BY numorders;

SELECT C.customerid, COUNT(O.orderid) AS numorders

FROM dbo.Customers AS C

  LEFT OUTER JOIN dbo.Orders AS O 

    ON C.customerid = O.customerid

WHERE C.city = 'Madrid'

GROUP BY C.customerid 

HAVING COUNT(O.orderid) < 3 

ORDER BY numorders;
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 Chapter 1 Logical Query Processing 7

 This query returns the following output: 

customerid numorders

---------- -----------

FISSA      0

FRNDO      2

 Both FISSA and FRNDO are customers from Madrid who placed fewer than three orders. Examine 
the query and try to read it while following the steps and phases described in Listing 1-1, Figure 1-1, 
and the section “Logical Query Processing Phases in Brief.” If this is your fi rst time thinking of a 
query in such terms, you might be confused. The following section should help you understand the 
nitty-gritty details. 

Logical Query Processing Phase Details

 This section describes the logical query processing phases in detail by applying them to the 
given sample query. 

Step 1: The FROM Phase

 The FROM phase identifi es the table or tables that need to be queried, and if table  operators 
are specifi ed, this phase processes those operators from left to right. Each table  operator 
 operates on one or two input tables and returns an output table. The result of a table 
 operator is used as the left input to the next table operator—if one exists—and as the input 
to the next logical query processing phase otherwise. Each table operator has its own set 
of processing subphases. For example, the subphases involved in a join are (1-J1) Cartesian 
Product, (1-J2) ON Filter, (1-J3) Add Outer Rows. Here I will provide a description of the 
 subphases involved in a join; later in the chapter, under “Table Operators,” I’ll describe the 
other table operators. The FROM phase generates virtual table VT1.  

Step 1-J1: Perform Cartesian Product (Cross Join)

 This is the fi rst of three subphases that are applicable to a join table operator. This subphase 
performs a Cartesian product (a cross join, or an unrestricted join) between the two tables 
 involved in the join and, as a result, generates virtual table VT1-J1. This table contains one 
row for every possible choice of a row from the left table and a row from the right table. 
If the left table contains n rows and the right table contains m rows, VT1-J1 will contain 
n×m rows. The columns in VT1-J1 are qualifi ed (prefi xed) with their source table names (or 
table aliases, if you specifi ed them in the query). In the subsequent steps (step 1-J2 and on), 
a  reference to a column name that is ambiguous (appears in more than one input table) 
must be table-qualifi ed (for example, C.customerid). Specifying the table qualifi er for  column 
names that appear in only one of the inputs is optional (for example, O.orderid or just 
orderid). 
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8 Inside Microsoft SQL Server 2008: T-SQL Querying

 Apply step 1-J1 to the sample query (shown in Listing 1-2): 

FROM dbo.Customers AS C ... JOIN dbo.Orders AS O

As a result, you get the virtual table VT1-J1 (shown in Table 1-1) with 28 rows (4×7). 

TABLE 1-1 Virtual Table VT1-J1 Returned from Step 1-J1

 C.customerid C.city O.orderid O.customerid

 FISSA Madrid 1 FRNDO

 FISSA Madrid 2 FRNDO

 FISSA Madrid 3 KRLOS

 FISSA Madrid 4 KRLOS

 FISSA Madrid 5 KRLOS

 FISSA Madrid 6 MRPHS

 FISSA Madrid 7 NULL

 FRNDO Madrid 1 FRNDO

 FRNDO Madrid 2 FRNDO

 FRNDO Madrid 3 KRLOS

 FRNDO Madrid 4 KRLOS

 FRNDO Madrid 5 KRLOS

 FRNDO Madrid 6 MRPHS

 FRNDO Madrid 7 NULL

 KRLOS Madrid 1 FRNDO

 KRLOS Madrid 2 FRNDO

 KRLOS Madrid 3 KRLOS

 KRLOS Madrid 4 KRLOS

 KRLOS Madrid 5 KRLOS

 KRLOS Madrid 6 MRPHS

 KRLOS Madrid 7 NULL

 MRPHS Zion 1 FRNDO

 MRPHS Zion 2 FRNDO

 MRPHS Zion 3 KRLOS

 MRPHS Zion 4 KRLOS

 MRPHS Zion 5 KRLOS

 MRPHS Zion 6 MRPHS

 MRPHS Zion 7 NULL

Step 1-J2: Apply ON Filter (Join Condition)

 The ON fi lter is the fi rst of three possible fi lters (ON, WHERE, and HAVING) that can be 
specifi ed in a query. The predicate in the ON fi lter is applied to all rows in the virtual table 
returned by the previous step (VT1-J1). Only rows for which the <on_predicate> is TRUE 
 become part of the virtual table returned by this step (VT1-J2). 

C.customerid C.city O.orderid O.customerid
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 Chapter 1 Logical Query Processing 9

Three-Valued Logic

 Allow me to digress a bit to cover some important aspects of SQL related to this 
step. The possible values of a predicate (logical expression) in SQL are TRUE, FALSE, 
and UNKNOWN. This is referred to as three-valued logic and is unique to SQL. 
Logical  expressions in most programming languages can be only TRUE or FALSE. The 
UNKNOWN logical value in SQL typically occurs in a logical expression that involves a 
NULL (for example, the logical value of each of these three expressions is UNKNOWN: 
NULL > 42; NULL = NULL; X + NULL > Y ). The mark NULL represents a missing value. 
When comparing a missing value to  another value (even another NULL), the logical 
 result is always UNKNOWN.  

 Dealing with UNKNOWN logical results and NULLs can be very confusing. While NOT 
TRUE is FALSE, and NOT FALSE is TRUE, the opposite of UNKNOWN (NOT UNKNOWN) 
is still UNKNOWN. 

 UNKNOWN logical results and NULLs are treated inconsistently in different elements of 
the language. For example, all query fi lters (ON, WHERE, and HAVING) treat UNKNOWN 
like FALSE. A row for which a fi lter is UNKNOWN is eliminated from the result set. On 
the other hand, an UNKNOWN value in a CHECK constraint is actually treated like TRUE. 
Suppose you have a CHECK constraint in a table to require that the salary column be 
greater than zero. A row entered into the table with a NULL salary is accepted because 
(NULL > 0) is UNKNOWN and treated like TRUE in the CHECK constraint. 

 A comparison between two NULLs in a fi lter yields UNKNOWN, which, as I mentioned 
earlier, is treated like FALSE—as if one NULL is different than another.  

 On the other hand, for UNIQUE constraints, set operators (such as UNION and EXCEPT), 
and sorting or grouping operations, NULLs are treated as equal: 

■  You cannot insert into a table two rows with a NULL in a column that has a 
UNIQUE constraint defi ned on it. T-SQL violates the standard on this point. 

■  A GROUP BY clause groups all NULLs into one group. 

■  An ORDER BY clause sorts all NULLs together.  

■  Set operators treat NULLs as equal when comparing rows from the two sets. 

 In short, to spare yourself some grief it’s a good idea to be aware of the way UNKNOWN 
logical results and NULLs are treated in the different elements of the language. 

 Apply step 1-J2 to the sample query: 

ON C.customerid = O.customerid

 The fi rst column of Table 1-2 shows the value of the logical expression in the ON fi lter for the 
rows from VT1-J1. 
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 TABLE 1-2 Logical value of ON Predicate for Rows from VT1-J1

Logical Value C.customerid C.city O.orderid O.customerid

FALSE FISSA Madrid 1 FRNDO

FALSE FISSA Madrid 2 FRNDO

FALSE FISSA Madrid 3 KRLOS

FALSE FISSA Madrid 4 KRLOS

FALSE FISSA Madrid 5 KRLOS

FALSE FISSA Madrid 6 MRPHS

UNKNOWN FISSA Madrid 7 NULL

TRUE FRNDO Madrid 1 FRNDO

TRUE FRNDO Madrid 2 FRNDO

FALSE FRNDO Madrid 3 KRLOS

FALSE FRNDO Madrid 4 KRLOS

FALSE FRNDO Madrid 5 KRLOS

FALSE FRNDO Madrid 6 MRPHS

UNKNOWN FRNDO Madrid 7 NULL

FALSE KRLOS Madrid 1 FRNDO

FALSE KRLOS Madrid 2 FRNDO

TRUE KRLOS Madrid 3 KRLOS

TRUE KRLOS Madrid 4 KRLOS

TRUE KRLOS Madrid 5 KRLOS

FALSE KRLOS Madrid 6 MRPHS

UNKNOWN KRLOS Madrid 7 NULL

FALSE MRPHS Zion 1 FRNDO

FALSE MRPHS Zion 2 FRNDO

FALSE MRPHS Zion 3 KRLOS

FALSE MRPHS Zion 4 KRLOS

FALSE MRPHS Zion 5 KRLOS

TRUE MRPHS Zion 6 MRPHS

UNKNOWN MRPHS Zion 7 NULL

 Only rows for which the <on_predicate> is TRUE are inserted into VT1-J2, shown in Table 1-3. 

TABLE 1-3 Virtual Table VT1-J2 Returned from Step 1-J2

 Logical Value C.customerid C.city O.orderid O.customerid

 TRUE FRNDO Madrid 1 FRNDO

 TRUE FRNDO Madrid 2 FRNDO

 TRUE KRLOS Madrid 3 KRLOS

 TRUE KRLOS Madrid 4 KRLOS

 TRUE KRLOS Madrid 5 KRLOS

 TRUE MRPHS Zion 6 MRPHS

Logical Value C.customerid C.city O.orderid O.customerid

Logical Value C.customerid C.city O.orderid O.customerid
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Step 1-J3: Add Outer Rows

This step occurs only for an outer join. For an outer join, you mark one or both input tables 
as preserved by specifying the type of outer join (LEFT, RIGHT, or FULL). Marking a table 
as preserved means that you want all of its rows returned, even when fi ltered out by the 
<on_predicate>. A left outer join marks the left table as preserved, a right outer join marks 
the right one, and a full outer join marks both. Step 1-J3 returns the rows from VT1-J2, plus 
rows from the preserved table(s) for which a match was not found in step 1-J2. These added 
rows are referred to as outer rows. NULLs are assigned to the attributes (column values) of 
the nonpreserved table in the outer rows. As a result, virtual table VT1-J3 is generated. 

In our example, the preserved table is Customers: 

Customers AS C LEFT OUTER JOIN Orders AS O

Only customer FISSA did not yield any matching orders (and thus wasn’t part of VT1-J2). Therefore, 
a row for FISSA is added to VT1-J2, with NULLs for the Orders attributes. The result is virtual table 
VT1-J3 (shown in Table 1-4). Because the FROM clause of the sample query has no more table 
 operators, the virtual table VT1-J3 is also the virtual table VT1 returned from the FROM phase.  

TABLE 1-4 Virtual Table VT1-J3 (also VT1) Returned from Step 1-J3

 C.customerid C.city O.orderid O.customerid

 FRNDO Madrid 1 FRNDO

 FRNDO Madrid 2 FRNDO

 KRLOS Madrid 3 KRLOS

 KRLOS Madrid 4 KRLOS

 KRLOS Madrid 5 KRLOS

 MRPHS Zion 6 MRPHS

 FISSA Madrid NULL NULL

 Note If multiple table operators appear in the FROM clause, they are processed from left to 
right. The result of each table operator is provided as the left input to the next table operator. 
The fi nal virtual table will be used as the input for the next step. 

Step 2: The WHERE Phase

The WHERE fi lter is applied to all rows in the virtual table returned by the previous step. Those 
rows for which <where_predicate> is TRUE make up the virtual table returned by this step (VT2). 

 Caution Because the data is not yet grouped, you cannot use aggregates here—for example, you 
cannot write WHERE orderdate = MAX(orderdate). Also, you cannot refer to column aliases  created 
by the SELECT list because the SELECT list was not processed yet—for example, you cannot write 
SELECT YEAR(orderdate) AS orderyear . . . WHERE orderyear > 2008. 

C.customerid C.city O.orderid O.customerid
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 Apply the fi lter in the sample query: 

WHERE C.city = 'Madrid'

 The row for customer MRPHS from VT1 is removed because the city is not Madrid, and virtual 
table VT2, which is shown in Table 1-5, is generated. 

 TABLE 1-5 Virtual Table VT2 Returned from Step 2

 C.customerid C.city O.orderid O.customerid

 FRNDO Madrid 1 FRNDO

 FRNDO Madrid 2 FRNDO

 KRLOS Madrid 3 KRLOS

 KRLOS Madrid 4 KRLOS

 KRLOS Madrid 5 KRLOS

 FISSA Madrid NULL NULL

 A confusing aspect of queries containing an OUTER JOIN clause is whether to specify a logical 
expression in the ON fi lter or in the WHERE fi lter. The main difference between the two is that 
ON is applied before adding outer rows (step 1-J3), while WHERE is applied afterwards. An 
elimination of a row from the preserved table by the ON fi lter is not fi nal because step 1-J3 will 
add it back; an elimination of a row by the WHERE fi lter, by contrast, is fi nal. Bearing this in 
mind should help you make the right choice.  

 For example, suppose you want to return certain customers and their orders from the Customers 
and Orders tables. The customers you want to return are only Madrid customers—both those 
who placed orders and those who did not. An outer join is designed exactly for such a request. 
You perform a left outer join between Customers and Orders, marking the Customers table as 
the preserved table. To be able to return customers who placed no orders, you must specify the 
correlation between Customers and Orders in the ON clause (ON C.customerid = O.customerid). 
Customers with no orders are eliminated in step 1-J2 but added back in step 1-J3 as outer rows. 
However, because you want to return only Madrid customers you must specify the city fi lter in 
the WHERE clause (WHERE C.city = ‘Madrid’). Specifying the city fi lter in the ON clause would 
cause non-Madrid customers to be added back to the result set by step 1-J3. 

 Tip This logical difference between the ON and WHERE clauses exists only when  using an outer 
join. When you use an inner join, it doesn’t matter where you specify your  logical expressions 
because step 1-J3 is skipped. The fi lters are applied one after the other with no intermediate step 
between them.  

Step 3: The GROUP BY Phase

The GROUP BY phase associates rows from the table returned by the previous step to groups 
according to the <group_by_specifi cation>. I will discuss this specifi cation in detail in Chapter 8, 

C.customerid C.city O.orderid O.customerid
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“Aggregating and Pivoting Data,” but for now, assume that it specifi es a single list of attributes 
to group by. This list is called the grouping set. 

 In this phase, the rows from the table returned by the previous step are arranged in groups. 
Each unique combination of values of the attributes that belong to the grouping set identifi es 
a group. Each base row from the previous step is associated to one and only one group. Virtual 
table VT3 consists of the rows of VT2 arranged in groups (the raw information) along with the 
group identifi ers (the groups information).  

 Apply step 3 to the sample query: 

GROUP BY C.customerid

 You get the virtual table VT3 shown in Table 1-6. 

 TABLE 1-6 Virtual Table VT3 Returned from Step 3

 Groups Raw

 C.customerid C.customerid C.city O.orderid O.customerid

 FRNDO FRNDO

FRNDO

Madrid

Madrid

1

2

FRNDO

FRNDO

 KRLOS KRLOS

KRLOS

KRLOS

Madrid

Madrid

Madrid

3

4

5

KRLOS

KRLOS

KRLOS

 FISSA FISSA Madrid NULL NULL

 Eventually, a query that contains a GROUP BY clause will generate one row per group (unless 
 fi ltered out). Consequently, when GROUP BY is specifi ed in a query, all subsequent steps (HAVING, 
SELECT, and so on) can specify only expressions that have a scalar (singular) value per group. These 
expressions can include columns or expressions from the GROUP BY list—such as C.customerid in 
the sample query here—or aggregate functions, such as COUNT(O.orderid).  

 Examine VT3 in Table 1-6 and think what the query should return for customer FRNDO’s 
group if the SELECT list you specifi ed had been SELECT C.customerid, O.orderid. There are two 
different orderid values in the group; therefore, the answer is not a scalar. SQL doesn’t allow 
such a request. On the other hand, if you specify SELECT C.customerid, COUNT(O.orderid) AS 
numorders, the answer for FRNDO is a scalar: it’s 2. 

 This phase considers NULLs as equal. That is, all NULLs are grouped into one group, just like a 
known value. 

Step 4: The HAVING Phase

 The HAVING fi lter is applied to the groups in the table returned by the previous step. Only 
groups for which the <having_predicate> is TRUE become part of the virtual table returned 
by this step (VT4). The HAVING fi lter is the only fi lter that applies to the grouped data. 

Groups Raw

C.customerid C.customerid C.city O.orderid O.customerid
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 Apply this step to the sample query: 

HAVING COUNT(O.orderid) < 3

 The group for KRLOS is removed because it contains three orders. Virtual table VT4, which is 
shown in Table 1-7, is generated. 

 TABLE 1-7 Virtual Table VT4 Returned from Step 4

 C.customerid C.customerid C.city O.orderid O.customerid

 FRNDO FRNDO 

FRNDO

Madrid

Madrid

1

2

FRNDO

FRNDO

 FISSA FISSA Madrid NULL NULL

  Note It is important to specify COUNT(O.orderid) here and not COUNT(*). Because the join is an 
outer one, outer rows were added for customers with no orders. COUNT(*) would have added 
outer rows to the count, undesirably producing a count of one order for FISSA. COUNT(O.orderid) 
correctly counts the number of orders for each customer, producing the desired value 0 for FISSA. 
Remember that COUNT(<expression>) ignores NULLs just like any other aggregate function. 

  Note An aggregate function does not accept a subquery as an input—for example, HAVING 
SUM((SELECT . . .)) > 10. 

Step 5: The SELECT Phase

Though specifi ed fi rst in the query, the SELECT clause is processed only at the fi fth step. The 
SELECT phase constructs the table that will eventually be returned to the caller. This phase 
involves three subphases: (5-1) Evaluate Expressions, (5-2) Apply DISTINCT Clause, (5-3) Apply 
TOP Option. 

Step 5-1: Evaluate Expressions

The expressions in the SELECT list can return base columns and manipulations of base 
 columns from the virtual table returned by the previous step. Remember that if the query is 
an aggregate query, after step 3 you can refer to base columns from the previous step only 
if they are part of the groups section (GROUP BY list). If you refer to columns from the raw 
section, they must be aggregated. Base columns selected from the previous step maintain 
their column names unless you alias them (for example, col1 AS c1). Expressions that are not 
base columns should be aliased to have a column name in the result table—for example, 
YEAR(orderdate) AS orderyear. 

C.customerid C.customerid C.city O.orderid O.customerid
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Important Aliases created by the SELECT list cannot be used by earlier steps—for example, in 
the WHERE phase. In fact, expression aliases cannot even be used by other expressions within 
the same SELECT list. The reasoning behind this limitation is another unique aspect of SQL; many 
operations are all-at-once operations. For example, in the following SELECT list, the logical order 
in which the expressions are evaluated should not matter and is not guaranteed: SELECT c1 + 
1 AS e1, c2 + 1 AS e2. Therefore, the  following SELECT list is not supported: SELECT c1 + 1 AS 
e1, e1 + 1 AS e2. You’re allowed to use column aliases only in steps following the SELECT phase, 
such as the ORDER BY phase—for example, SELECT YEAR(orderdate) AS orderyear . . . ORDER BY 
 orderyear. 

 The concept of an all-at-once operation can be hard to grasp. For example, in most programming 
environments, to swap values between variables you use a temporary variable. However, to swap 
table column values in SQL, you can use: 

UPDATE dbo.T1 SET c1 = c2, c2 = c1;

 Logically, you should assume that the whole operation takes place at once. It is as if the table is 
not modifi ed until the whole operation fi nishes and then the result replaces the source. For similar 
reasons, the following UPDATE would update all of T1’s rows, adding to c1 the maximum c1 value 
from T1 when the update started: 

UPDATE dbo.T1 SET c1 = c1 + (SELECT MAX(c1) FROM dbo.T1);

 Don’t be concerned that the maximum c1 value might keep changing as the operation proceeds; 
it does not because the operation occurs all at once. 

 Apply this step to the sample query: 

SELECT C.customerid, COUNT(O.orderid) AS numorders

 You get the virtual table VT5-1, which is shown in Table 1-8. Because no other subphases 
(DISTINCT and TOP) of the SELECT phase are applied in the sample query, the virtual table 
VT5-1 returned by this subphase is also the virtual table VT5 returned by the SELECT phase.  

 TABLE 1-8 Virtual Table VT5-1 (also VT5) Returned from Step 5

 C.customerid numorders

 FRNDO 2

 FISSA 0

Step 5-2: Apply the DISTINCT Clause

 If a DISTINCT clause is specifi ed in the query, duplicate rows are removed from the virtual 
table returned by the previous step, and virtual table VT5-2 is generated.  

 Note SQL deviates from the relational model by allowing a table to have duplicate rows (when 
a primary key or unique constraint is not enforced) and a query to return duplicate rows in the 
result. A relation in the relational model represents a set from set theory, and a set (as opposed 
to a multiset) has no duplicates. Using the DISTINCT clause you can ensure that a query returns 
unique rows and in this sense conform to the relational model. 

C.customerid numorders
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 Step 5-2 is skipped in our example because DISTINCT is not specifi ed in the sample query. 
In our particular example, it would remove no rows. 

Step 5-3: Apply the TOP Option

 The TOP option is a feature specifi c to T-SQL that allows you to specify a number or percentage 
of rows (rounded up) to return. The specifi ed number of rows is selected based on the query’s 
ORDER BY clause. Traditionally, and according to the ANSI SQL standard, ORDER BY is supposed 
to serve a presentation purpose. However, when the TOP option is specifi ed, the ORDER BY 
clause also serves a logical purpose— answering the question “top according to what order?” 
Table VT5-3 is generated. 

 As mentioned, this step relies on the query’s ORDER BY clause to determine which rows are 
 considered the “fi rst” requested number of rows. If an ORDER BY clause with a unique ORDER 
BY list is specifi ed in a query, the result is deterministic. That is, only one correct result is possible, 
containing the fi rst requested number of rows based on the specifi ed order. Similarly, when an 
ORDER BY clause is specifi ed with a non-unique ORDER BY list but the TOP option is specifi ed 
WITH TIES, the result is also deterministic. SQL Server inspects the last row that was returned 
and returns all other rows from the table that have the same sort values as the last row. 

 However, when a non-unique ORDER BY list is specifi ed without the WITH TIES option, or 
ORDER BY is not specifi ed at all, a TOP query is nondeterministic. That is, the rows returned 
are the ones that SQL Server happened to access fi rst, and there might be different results 
that are considered correct. If you want to guarantee determinism, a TOP query must have 
either a unique ORDER BY list or the WITH TIES option.  

 Step 5-3 is skipped in our example because TOP is not specifi ed. 

Step 6: The Presentation ORDER BY Phase

 The rows from the previous step are sorted according to the column list specifi ed in the 
ORDER BY clause, returning the cursor VC6. The ORDER BY clause is the only step where 
 column aliases created in the SELECT phase can be reused. 

 If DISTINCT is specifi ed, the expressions in the ORDER BY clause have access only to the 
 virtual table returned by the previous step (VT5). If DISTINCT is not specifi ed expressions in 
the ORDER BY clause can access both the input and the output virtual tables of the SELECT 
phase. That is, in the ORDER BY clause you can specify any expression that would have been 
allowed in the SELECT clause. Namely, you can sort by expressions that you don’t end up 
 returning in the fi nal result set.  

 There is a reason for not allowing access to expressions you’re not returning if DISTINCT 
is specifi ed. When adding expressions to the SELECT list, DISTINCT can potentially change 
the number of rows returned. Without DISTINCT, of course, changes in the SELECT list don’t 
 affect the number of rows returned.  
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 In our example, because DISTINCT is not specifi ed, the ORDER BY clause has access to both 
VT4, shown in Table 1-7, and VT5, shown in Table 1-8. 

 In the ORDER BY clause, you can also specify ordinal positions of result columns from the 
SELECT list. For example, the following query sorts the orders fi rst by customerid and then by 
orderid: 

SELECT orderid, customerid FROM dbo.Orders ORDER BY 2, 1;

 However, this practice is not recommended because you might make changes to the SELECT 
list and forget to revise the ORDER BY list accordingly. Also, when the query strings are long, 
it’s hard to fi gure out which item in the ORDER BY list corresponds to which item in the 
SELECT list. 

 Important This step is different than all other steps in the sense that it doesn’t  return a valid 
table; instead, it returns a cursor. Remember that SQL is based on set theory. A set doesn’t have 
a predetermined order to its rows: It’s a logical collection of  members, and the order of the 
 members shouldn’t matter. A query with a presentation ORDER BY clause returns an object with 
rows organized in a particular order. ANSI calls such an object a cursor. Understanding this step is 
one of the most fundamental steps to correctly understanding SQL.  

 When describing the contents of a table, most people (including me) routinely depict the 
rows in a certain order. However, a table represents a set (or multiset if duplicates exist), and 
a set has no order, so such depiction can cause some confusion by implying a certain order. 
Figure 1-2 shows an example for depicting the content of tables in a more correct way that 
doesn’t imply order. 

Customers
(Customerid, city)

(FRNDO, Madrid)

(KRLOS, Madrid)

(MRPHS, Zion)

(FISSA, Madrid)

(6, MRPHS)

(2, FRNDO) (7, NULL)

(4, KRLOS) (1, FRNDO)

(3, KRLOS)

(5, KRLOS)

Orders
(orderid, customerid)

FIGURE 1-2 Customers and Orders sets

 Note Although SQL doesn’t assume any given order to a table’s rows, it does maintain ordinal 
positions for columns based on creation order. Specifying SELECT * (although a bad practice for 
several reasons that I’ll describe later in the book) guarantees the columns would be returned in 
creation order. In this respect SQL deviates from the  relational model.    
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 Because this step doesn’t return a table (it returns a cursor), a query with a presentation 
ORDER BY clause cannot be used to defi ne a table expression—that is, a view, an inline 
 table-valued function, a derived table, or a common table expression (CTE). Rather, the result 
must be returned to the client application that can consume cursor records one at a time, in 
order. For example, the following derived table query is invalid and produces an error: 

SELECT * 

FROM (SELECT orderid, customerid 

      FROM dbo.Orders 

      ORDER BY orderid DESC) AS D;

  Similarly, the following view is invalid: 

CREATE VIEW dbo.VSortedOrders 

AS 

 

SELECT orderid, customerid 

FROM dbo.Orders 

ORDER BY orderid DESC;

GO

 In SQL, no query with an ORDER BY clause is allowed in a table expression. In T-SQL, there is an 
exception to this rule—when the TOP option is also specifi ed. This exception has to do with a 
problematic aspect of the design of the TOP option that causes a lot of  confusion. The TOP 
option is logically processed as part of the SELECT phase (step 5-3), before the Presentation 
ORDER BY phase (step 6). Its purpose is to fi lter the requested number or percentage of 
rows based on a logical defi nition of order. Unfortunately, the TOP  option is not designed 
with its own ORDER BY clause; rather, its logical ordering is based on the same ORDER BY 
clause that is normally used for presentation purposes. This fact makes the TOP option 
 restricted in the sense that you cannot defi ne one order for the TOP  option and another 
for presentation. Also, things can get quite confusing when you try to fi gure out the nature 
of the result of a TOP query. Is it a table (no guaranteed  order) or a cursor? Because no 
standard defi nes TOP, it’s a matter of what the SQL Server  developers envisioned. When a 
TOP query is specifi ed as the outermost query rather than defi ning a table expression, the 
ORDER BY clause serves two different purposes. One is to  defi ne logical precedence among 
rows for the TOP option in step 5-3, and the other is to  defi ne presentation order in step 6 
in the result cursor. Consider the following query as an example: 

SELECT TOP (3) orderid, customerid

FROM dbo.Orders

ORDER BY orderid DESC;

 You’re guaranteed to get the three rows with the highest order IDs, and you’re also 
 guaranteed to get them sorted in the output based on orderid descending. Here’s the 
output of this query: 

orderid     customerid

----------- ----------

11077       RATTC

11076       BONAP

11075       RICSU
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 However, if a TOP query with an ORDER BY clause is used to defi ne a table expression, 
it’s supposed to represent a table with no guaranteed order. Therefore, in such a case 
the ORDER BY clause is only guaranteed to defi ne logical order for the TOP option, 
while  presentation order is not guaranteed. For example, the following query does not 
 guarantee presentation order: 

SELECT *

FROM (SELECT TOP (3) orderid, customerid

      FROM dbo.Orders

      ORDER BY orderid DESC) AS D;

 Of course, SQL Server has no reason to change the order of the rows in the output if it scans 
them in index order or sorts them to fi lter the requested number of rows, but the point 
I’m trying to make is that in this case presentation order in the output is not guaranteed. 
Programmers who don’t understand this point—or the difference between a table and a 
cursor—try to exploit the TOP option in absurd ways, for example, by trying to create a 
sorted view: 

CREATE VIEW dbo.VSortedOrders 

AS 

 

SELECT TOP (100) PERCENT orderid, customerid 

FROM dbo.Orders 

ORDER BY orderid DESC;

GO

 A view is supposed to represent a table, and a table has no guaranteed order. SQL Server allows 
the use of the ORDER BY clause in a view when TOP is also specifi ed, but because the query is 
used to defi ne a table expression, the only guarantee that you get is that the ORDER BY clause will 
serve the logical meaning for TOP; you don’t get a guarantee for presentation order. Therefore, 
if you run the following code, you’re not guaranteed to get the rows in the output sorted by 
 orderid descending: 

SELECT orderid, customerid FROM dbo.VSortedOrders;

 So remember, don’t assume any particular order for a table’s rows. Conversely, don’t specify 
an ORDER BY clause unless you really need the rows sorted or need to describe the ordering 
for a TOP option. Sorting has a cost—SQL Server needs to perform an ordered index scan 
or apply a sort operator. 

 The ORDER BY clause considers NULLs as equal. That is, NULLs are sorted together. ANSI 
leaves the question of whether NULLs are sorted lower or higher than known values up to 
implementations, which must be consistent. T-SQL sorts NULLs as lower than known values 
(fi rst). 

 Apply this step to the sample query: 

ORDER BY numorders
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 You get the cursor VC6 shown in Table 1-9. 

 TABLE 1-9 Cursor VC6 Returned from Step 6

 C.customerid numorders

 FISSA 0

 FRNDO 2

Further Aspects of Logical Query Processing

 This section covers further aspects of logical query processing, including table operators 
(JOIN, APPLY, PIVOT, and UNPIVOT), the OVER clause, and set operators (UNION, EXCEPT, 
and INTERSECT). Note that I could say much more about these language elements besides 
their logical query processing aspects, but that’s the focus of this chapter. Also, if a language 
element described in this section is completely new to you (for example, PIVOT, UNPIVOT, 
or APPLY), it might be a bit hard to fully comprehend its meaning at this point. Later in the 
book I’ll conduct more detailed discussions including uses, performance aspects, and so on. 
You can then return to this chapter and read about the logical query processing aspects of 
that language element again to better comprehend its meaning.

Table Operators

 SQL Server 2008 supports four types of table operators in the FROM clause of a query: JOIN, 
APPLY, PIVOT, and UNPIVOT. 

 Note APPLY, PIVOT, and UNPIVOT are not ANSI operators; rather, they are extensions specifi c to 
T-SQL. 

 I covered the logical processing phases involved with joins earlier and will also discuss joins in 
more detail in Chapter 7, “Joins and Set Operations.” Here I’ll briefl y describe the other three 
operators and the way they fi t in the logical query processing model.  

Table operators get one or two tables as inputs. Call them left input and right input based 
on their position in respect to the table operator keyword (JOIN, APPLY, PIVOT, UNPIVOT). 
Just like joins, all table operators get a virtual table as their left input. The fi rst table operator 
that appears in the FROM clause gets a table expression as the left input and returns a  virtual 
 table as a result. A table expression can stand for many things: a real table, a temporary 
table, a table variable, a derived table, a CTE, a view, or a table-valued function.

 More Info For details on table expressions, please refer to Chapter 6, “Subqueries, Table 
Expressions, and Ranking Functions.” 

C.customerid numorders
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 The second table operator that appears in the FROM clause gets as its left input the virtual 
table returned from the previous table operation. 

 Each table operator involves a different set of steps. For convenience and clarity, I’ll prefi x the 
step numbers with the initial of the table operator (J for JOIN, A for APPLY, P for PIVOT, and U 
for UNPIVOT). 

 Following are the four table operators along with their elements: 

(J) <left_table_expression> 

      {CROSS | INNER | OUTER} JOIN <right_table_expression> 

       ON <on_predicate>  

(A) <left_table_expression> 

      {CROSS | OUTER} APPLY <right_table_expression>  

(P) <left_table_expression> 

      PIVOT (<aggregate_func(<aggregation_element>)> FOR 

        <spreading_element> IN(<target_col_list>)) 

        AS <result_table_alias>  

(U) <left_table_expression> 

      UNPIVOT (<target_values_col> FOR 

        <target_names_col> IN(<source_col_list>)) 

        AS <result_table_alias>

 As a reminder, a join involves a subset (depending on the join type) of the following steps: 

 1.  J1: Apply Cartesian Product 

 2.  J2: Apply ON Filter 

 3.  J3: Add Outer Rows 

APPLY

 The APPLY operator (depending on the apply type) involves one or both of the following two 
steps: 

 1.  A1: Apply Right Table Expression to Left Table Rows 

 2.  A2: Add Outer Rows 

 The APPLY operator applies the right table expression to every row from the left input. The 
right table expression can refer to the left input’s columns. The right input is evaluated once for 
each row from the left. This step unifi es the sets produced by matching each left row with the 
corresponding rows from the right table expression, and this step returns the combined result. 

 Step A1 is applied in both CROSS APPLY and OUTER APPLY. Step A2 is applied only for OUTER 
APPLY. CROSS APPLY doesn’t return an outer (left) row if the inner (right) table expression 
returns an empty set for it. OUTER APPLY will return such a row, with NULLs as placeholders 
for the inner table expression’s attributes. 
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 For example, the following query returns the two orders with the highest order IDs for each 
customer: 

SELECT C.customerid, C.city, A.orderid 

FROM dbo.Customers AS C 

  CROSS APPLY 

    (SELECT TOP (2) O.orderid, O.customerid 

     FROM dbo.Orders AS O 

     WHERE O.customerid = C.customerid 

     ORDER BY orderid DESC) AS A;

 This query generates the following output: 

customerid city       orderid

---------- ---------- -----------

FRNDO      Madrid     2

FRNDO      Madrid     1

KRLOS      Madrid     5

KRLOS      Madrid     4

MRPHS      Zion       6

 Notice that FISSA is missing from the output because the table expression A returned an 
empty set for it. If you also want to return customers who placed no orders, use OUTER 
APPLY as follows: 

SELECT C.customerid, C.city, A.orderid 

FROM dbo.Customers AS C 

  OUTER APPLY 

    (SELECT TOP (2) O.orderid, O.customerid 

     FROM dbo.Orders AS O 

     WHERE O.customerid = C.customerid 

     ORDER BY orderid DESC) AS A;

 This query generates the following output: 

customerid city       orderid

---------- ---------- -----------

FISSA      Madrid     NULL

FRNDO      Madrid     2

FRNDO      Madrid     1

KRLOS      Madrid     5

KRLOS      Madrid     4

MRPHS      Zion       6

 More Info For more details on the APPLY operator, refer to Chapter 9, “TOP and APPLY.” 

PIVOT

 The PIVOT operator allows you to rotate, or pivot, data between columns and rows, performing 
aggregations along the way. 
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 Suppose you wanted to query the Sales.OrderValues view in the InsideTSQL2008 sample 
 database (see the book’s introduction for details on the sample database) and return the total 
value of orders handled by each employee for each order year. You want the output to have a 
row for each employee, a column for each order year, and the total value in the intersection of 
each employee and year. The following PIVOT query allows you to achieve this: 

USE InsideTSQL2008;

SELECT *

FROM (SELECT empid, YEAR(orderdate) AS orderyear, val

      FROM Sales.OrderValues) AS OV

  PIVOT(SUM(val) FOR orderyear IN([2006],[2007],[2008])) AS P;

 This query generates the following output:

empid       2006       2007       2008

----------- ---------- ---------- ----------

3           18223.96   108026.17  76562.75

6           16642.61   43126.38   14144.16

9           9894.52    26310.39   41103.17

7           15232.16   60471.19   48864.89

1           35764.52   93148.11   63195.02

4           49945.12   128809.81  54135.94

2           21757.06   70444.14   74336.56

5           18383.92   30716.48   19691.90

8           22240.12   56032.63   48589.54 

 Don’t get distracted by the subquery that generates the derived table OV. As far as you’re 
concerned, the PIVOT operator gets a table expression called OV as its left input, with a row 
for each order, with the employee ID (empid), order year (orderyear), and order value (val).
The PIVOT operator involves the following three logical phases: 

 1.  P1: Grouping 

  2. P2: Spreading 

 3.  P3: Aggregating  

 The fi rst phase (P1) is tricky. You can see in the query that the PIVOT operator refers to two 
of the columns from OV as input arguments (val and orderyear). The fi rst phase implicitly 
groups the rows from OV based on all columns that weren’t mentioned in PIVOT’s inputs, as 
though a hidden GROUP BY were there. In our case, only the empid column wasn’t mentioned 
anywhere in PIVOT’s input arguments. So you get a group for each employee. 

 Note PIVOT’s implicit grouping phase doesn’t affect any explicit GROUP BY clause in a query. 
The PIVOT operation will yield a virtual result table for input to the next logical phase, be it 
 another table operation or the WHERE phase. And as I described earlier in the chapter, a GROUP 
BY phase might follow the WHERE phase. So when both PIVOT and GROUP BY appear in a query, 
you get two separate grouping phases—one as the fi rst phase of PIVOT (P1) and a later one as 
the query’s GROUP BY phase. 
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 PIVOT’s second phase (P2) spreads values of <spreading_col> to their corresponding target 
columns. Logically, it uses the following CASE expression for each target column specifi ed in 
the IN clause: 

CASE WHEN <spreading_col> = <target_col_element> THEN <expression> END

 In this situation, the following three expressions are logically applied: 

CASE WHEN orderyear = 2006 THEN val END,

CASE WHEN orderyear = 2007 THEN val END,

CASE WHEN orderyear = 2008 THEN val END

 Note A CASE expression with no ELSE clause has an implicit ELSE NULL. 

 For each target column, the CASE expression will return the value (val column) only if the 
source row had the corresponding order year; otherwise, the CASE expression will return NULL. 

 PIVOT’s third phase (P3) applies the specifi ed aggregate function on top of each CASE expression, 
generating the result columns. In our case, the expressions logically become the following:  

SUM(CASE WHEN orderyear = 2006 THEN val END) AS [2006],

SUM(CASE WHEN orderyear = 2007 THEN val END) AS [2007],

SUM(CASE WHEN orderyear = 2008 THEN val END) AS [2008]

 In summary, the previous PIVOT query is logically equivalent to the following query: 

SELECT empid, 

  SUM(CASE WHEN orderyear = 2006 THEN val END) AS [2006],

  SUM(CASE WHEN orderyear = 2007 THEN val END) AS [2007],

  SUM(CASE WHEN orderyear = 2008 THEN val END) AS [2008]

FROM (SELECT empid, YEAR(orderdate) AS orderyear, val

      FROM Sales.OrderValues) AS OV

GROUP BY empid;

 More Info For more details on the PIVOT operator, refer to Chapter 8. 

UNPIVOT

 UNPIVOT is the inverse of PIVOT, rotating data from columns to rows. 

 Before I demonstrate UNPIVOT’s logical phases, fi rst run the following code, which creates 
and populates the dbo.EmpYearValues table and queries it to present its content: 

SELECT *

INTO dbo.EmpYearValues

FROM (SELECT empid, YEAR(orderdate) AS orderyear, val

      FROM Sales.OrderValues) AS OV

  PIVOT(SUM(val) FOR orderyear IN([2006],[2007],[2008])) AS P;
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UPDATE dbo.EmpYearValues

  SET [2006] = NULL

WHERE empid IN(1, 2);

SELECT * FROM dbo.EmpYearValues;

 This code returns the following output: 

empid       2006       2007       2008

----------- ---------- ---------- ----------

3           18223.96   108026.17  76562.75

6           16642.61   43126.38   14144.16

9           9894.52    26310.39   41103.17

7           15232.16   60471.19   48864.89

1           NULL       93148.11   63195.02

4           49945.12   128809.81  54135.94

2           NULL       70444.14   74336.56

5           18383.92   30716.48   19691.90

8           22240.12   56032.63   48589.54

 I’ll use the following query as an example to describe the logical processing phases involved 
with the UNPIVOT operator: 

SELECT empid, orderyear, val

FROM dbo.EmpYearValues

  UNPIVOT(val FOR orderyear IN([2006],[2007],[2008])) AS U;

 This query unpivots (or splits) the employee yearly values from each source row to a separate 
row per order year, generating the following output: 

empid       orderyear  val

----------- ---------- -----------

3           2006       18223.96

3           2007       108026.17

3           2008       76562.75

6           2006       16642.61

6           2007       43126.38

6           2008       14144.16

9           2006       9894.52

9           2007       26310.39

9           2008       41103.17

7           2006       15232.16

7           2007       60471.19

7           2008       48864.89

1           2007       93148.11

1           2008       63195.02

4           2006       49945.12

4           2007       128809.81

4           2008       54135.94

2           2007       70444.14

2           2008       74336.56

5           2006       18383.92

5           2007       30716.48

5           2008       19691.90

8           2006       22240.12

8           2007       56032.63

8           2008       48589.54
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 The following three logical processing phases are involved in an UNPIVOT operation: 

 1.  U1: Generating Copies 

 2.  U2: Extracting Elements 

  3. U3: Removing Rows with NULLs 

 The fi rst step (U1) generates copies of the rows from the left table expression provided to 
UNPIVOT as an input (EmpYearValues, in our case). This step generates a copy for each  column 
that is unpivoted (appears in the IN clause of the UNPIVOT operator). Because there are three 
column names in the IN clause, three copies are produced from each source row. The  resulting 
virtual table will contain a new column holding the source column names as  character strings. 
The name of this column will be the one specifi ed right before the IN clause (orderyear, in our 
case). The virtual table returned from the fi rst step in our example is shown in Table 1-10. 

 TABLE 1-10 Virtual Table Returned from UNPIVOT’s First Step

 empid 2006 2007 2008 orderyear

 3 18223.96 108026.17 76562.75 2006

 3 18223.96 108026.17 76562.75 2007

 3 18223.96 108026.17 76562. 75 2008

 6 16642.61 43126.38 14144.16 2006

 6 16642.61 43126.38 14144.16 2007

 6 16642.61 43126.38 14144.16 2008

 9 9894.52 26310.39 41103.17 2006

 9 9894.52 26310.39 41103.17 2007

 9 9894.52 26310.39 41103.17 2008

 7 15232.16 60471.19 48864.89 2006

 7 15232.16 60471.19 48864.89 2007

 7 15232.16 60471.19 48864.89 2008

 1 NULL 93148.11 63195.02 2006

 1 NULL 93148.11 63195.02 2007

 1 NULL 93148.11 63195.02 2008

 4 49945.12 128809.81 54135.94 2006

 4 49945.12 128809.81 54135.94 2007

 4 49945.12 128809.81 54135.94 2008

 2 NULL 70444.14 74336.56 2006

 2 NULL 70444.14 74336.56 2007

 2 NULL 70444.14 74336.56 2008

 5 18383.92 30716.48 19691.90 2006

 5 18383.92 30716.48 19691.90 2007

 5 18383.92 30716.48 19691.90 2008

empid 2006 2007 2008 orderyear
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TABLE 1-10 Virtual Table Returned from UNPIVOT’s First Step

empid 2006 2007 2008 orderyear

8 22240.12 56032.63 48589.54 2006

8 22240.12 56032.63 48589.54 2007

8 22240.12 56032.63 48589.54 2008

The second step (U2) extracts the value from the source column corresponding to the  unpivoted 
element that the current copy of the row represents. The name of the target  column that will 
hold the values is specifi ed right before the FOR clause (val in our case). The target column will 
contain the value from the source column corresponding to the  current row’s order year from 
the virtual table. The virtual table returned from this step in our example is shown in Table 1-11. 

TABLE 1-11 Virtual Table Returned from UNPIVOT’s Second Step

empid val orderyear

3 18223.96 2006

3 108026.17 2007

3 76562.75 2008

6 16642.61 2006

6 43126.38 2007

6 14144.16 2008

9 9894.52 2006

9 26310.39 2007

9 41103.17 2008

7 15232.16 2006

7 60471.19 2007

7 48864.89 2008

1 NULL 2006

1 93148.11 2007

1 63195.02 2008

4 49945.12 2006

4 128809.81 2007

4 54135.94 2008

2 NULL 2006

2 70444.14 2007

2 74336.56 2008

5 18383.92 2006

5 30716.48 2007

5 19691.90 2008

8 22240.12 2006

8 56032.63 2007

8 48589.54 2008

empid 2006 2007 2008 orderyear

empid val orderyear
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 UNPIVOT’s third and fi nal step (U3) is to remove rows with NULLs in the result value  column 
(val, in our case). The virtual table returned from this step in our example is shown in 
Table 1-12. 

 TABLE 1-12 Virtual Table Returned from UNPIVOT’s Third Step

 empid val orderyear

 3 18223.96 2006

 3 108026.17 2007

 3 76562.75 2008

 6 16642.61 2006

 6 43126.38 2007

 6 14144.16 2008

 9 9894.52 2006

 9 26310.39 2007

 9 41103.17 2008

 7 15232.16 2006

 7 60471.19 2007

 7 48864.89 2008

 1 93148.11 2007

 1 63195.02 2008

 4 49945.12 2006

 4 128809.81 2007

 4 54135.94 2008

 2 70444.14 2007

 2 74336.56 2008

 5 18383.92 2006

 5 30716.48 2007

 5 19691.90 2008

 8 22240.12 2006

 8 56032.63 2007

8 48589.54 2008

 When you’re done experimenting with the UNPIVOT operator, drop the EmpYearValues 
table: 

DROP TABLE dbo.EmpYearValues;

 More Info For more details on the UNPIVOT operator, refer to Chapter 8. 

empid val orderyear
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OVER Clause

The OVER clause allows you to request window-based calculations. You can use this clause 
with aggregate functions (both built-in and custom common language runtime [CLR]-based 
 aggregates), and it is a required element for the four analytical ranking functions (ROW_NUMBER, 
RANK, DENSE_RANK, and NTILE). The OVER clause defi nes the window of rows over which the 
aggregate or ranking function is calculated. 

 I won’t discuss applications of windows-based calculations here, nor will I go into detail about 
exactly how these functions work; I’ll only explain the phases in which the OVER clause is 
 applicable. I’ll cover the OVER clause in more detail in Chapters 6 and 8. 

 The OVER clause is applicable only in one of two phases: the SELECT phase (5) and the ORDER 
BY phase (6). This clause has access to whichever virtual table is provided to that phase as input. 
Listing 1-3 highlights the logical processing phases in which the OVER clause can be used. 

LISTING 1-3 OVER clause in logical query processing

(5) SELECT (5-2) DISTINCT (5-3) TOP(<top_specification>) (5-1) <select_list>

(1) FROM (1-J) <left_table> <join_type> JOIN <right_table> ON <on_predicate>

       | (1-A) <left_table> <apply_type> APPLY <right_table_expression> AS <alias>

       | (1-P) <left_table> PIVOT(<pivot_specification>) AS <alias>

       | (1-U) <left_table> UNPIVOT(<unpivot_specification>) AS <alias>

(2) WHERE <where_predicate>

(3) GROUP BY <group_by_specification>

(4) HAVING <having_predicate>

(6) ORDER BY <order_by_list>;

 You specify the OVER clause following the function to which it applies in either the select_list 
or the order_by_list. 

 Even though I didn’t really explain in detail how the OVER clause works, I’d like to demonstrate 
its use in both phases where it’s applicable. In the following example, an OVER clause is used 
with the COUNT aggregate function in the SELECT list: 

USE InsideTSQL2008;

SELECT orderid, custid,

  COUNT(*) OVER(PARTITION BY custid) AS numorders

FROM Sales.Orders

WHERE shipcountry = N'Spain';

 This query produces the following output: 

orderid     custid      numorders

----------- ----------- -----------

10326       8           3

10801       8           3

10970       8           3

(5) SELECT (5-2) DISTINCT (5-3) TOP(<top_specification>) (5-1) <select_list>

(1) FROM (1-J) <left_table> <join_type> JOIN <right_table> ON <on_predicate>

       | (1-A) <left_table> <apply_type> APPLY <right_table_expression> AS <alias>

       | (1-P) <left_table> PIVOT(<pivot_specification>) AS <alias>

       | (1-U) <left_table> UNPIVOT(<unpivot_specification>) AS <alias>

(2) WHERE <where_predicate>

(3) GROUP BY <group_by_specification>

(4) HAVING <having_predicate>

(6) ORDER BY <order_by_list>;
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10928       29          5

10568       29          5

10887       29          5

10366       29          5

10426       29          5

10550       30          10

10303       30          10

10888       30          10

10911       30          10

10629       30          10

10872       30          10

10874       30          10

10948       30          10

11009       30          10

11037       30          10

11013       69          5

10917       69          5

10306       69          5

10281       69          5

10282       69          5

 The PARTITION BY clause defi nes the window for the calculation. The COUNT(*) function 
counts the number of rows in the virtual table provided to the SELECT phase as input, where 
the custid value is equal to the one in the current row. Remember that the virtual table 
 provided to the SELECT phase as input has already undergone WHERE fi ltering—that is, only 
customers from Spain have been fi ltered. 

 You can also use the OVER clause in the ORDER BY list. For example, the following query sorts 
the rows according to the total number of output rows for the customer (in descending order): 

SELECT orderid, custid,

  COUNT(*) OVER(PARTITION BY custid) AS numorders

FROM Sales.Orders

WHERE shipcountry = N'Spain'

ORDER BY COUNT(*) OVER(PARTITION BY custid) DESC;

 This query generates the following output: 

orderid     custid      numorders

----------- ----------- -----------

10550       30          10

10303       30          10

10888       30          10

10911       30          10

10629       30          10

10872       30          10

10874       30          10

10948       30          10

11009       30          10

11037       30          10

11013       69          5

10917       69          5

10306       69          5
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10281       69          5

10282       69          5

10928       29          5

10568       29          5

10887       29          5

10366       29          5

10426       29          5

10326       8           3

10801       8           3

10970       8           3

 More Info For details on using the OVER clause with aggregate functions, please refer to 
Chapter 8. For details on using the OVER clause with analytical ranking functions, please refer to 
Chapter 6.  

Set Operators

SQL Server 2008 supports four set operators: UNION ALL, UNION, EXCEPT, and INTERSECT. 
These SQL operators correspond to operators defi ned in mathematical set theory. 
Listing 1-4 contains a general form of a query applying a set operator, along with numbers 
assigned  according to the order in which the different elements of the code are logically 
processed. 

LISTING 1-4 General form of a query applying a set operator 

(1) query1

(2) <set_operator>

(1) query2

(3) [ORDER BY <order_by_list>]

 Set operators compare complete rows between the two inputs. UNION ALL returns one result 
set with all rows from both inputs. UNION returns one result set with the distinct rows from 
both inputs (no duplicates). EXCEPT returns distinct rows that appear in the fi rst input but 
not in the second. INTERSECT returns the distinct rows that appear in both inputs. I could say 
much more about these set operators, but here I’d just like to focus on the logical processing 
steps involved in a set operation. 

 An ORDER BY clause is not allowed in the individual queries because the queries are supposed 
to return sets (unordered). You are allowed to specify an ORDER BY clause at the end of the 
query, and it will apply to the result of the set operation.  

In terms of logical processing, each input query is fi rst processed separately with all its relevant 
phases. The set operator is then applied, and if an ORDER BY clause is specifi ed, it is applied to 
the result set. 

(1) query1

(2) <set_operator>

(1) query2

(3) [ORDER BY <order_by_list>]
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 Take the following query as an example: 

USE InsideTSQL2008;

SELECT region, city

FROM Sales.Customers

WHERE country = N'USA'

INTERSECT

SELECT region, city

FROM HR.Employees

WHERE country = N'USA'

ORDER BY region, city;

 This query generates the following output: 

country         region          city

--------------- --------------- ---------------

USA             WA              Kirkland

USA             WA              Seattle

 First, each input query is processed separately following all the relevant logical processing 
phases. The fi rst query returns locations (region, city) of customers from the United States. 
The second query returns locations of employees from the United States. The set operator 
INTERSECT returns distinct rows that appear in both inputs—in our case, locations that are 
both customer locations and employee locations. Finally, the ORDER BY clause sorts the rows 
by region and city. 

 As another example for logical processing phases of a set operation, the following query 
 returns customers that have made no orders: 

SELECT custid FROM Sales.Customers

EXCEPT

SELECT custid FROM Sales.Orders;

 The fi rst query returns the set of customer IDs from Customers, and the second query returns 
the set of customer IDs from Orders. The set operation returns the set of rows from the fi rst 
set that do not appear in the second set. Remember that a set has no duplicates; the EXCEPT 
set operator returns distinct occurrences of rows from the fi rst set that do not appear in the 
second set. 

 The result set’s column names are determined by the set operator’s fi rst input. Columns in 
corresponding positions must match in their data types or be implicitly convertible. Finally, 
an interesting aspect of set operations is that they treat NULLs as equal.

 More Info You can fi nd a more detailed discussion about set operators in Chapter 7. 
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Conclusion

 Understanding logical query processing phases and the unique aspects of SQL is important 
to get into the special mind set required to program in SQL. By being familiar with those 
aspects of the language, you can produce effi cient solutions and explain your choices. 
Remember, the idea is to master the basics. 
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Chapter 2

Set Theory and Predicate Logic
 Steve Kass 

 This chapter contains a brief introduction to two cornerstones of mathematics: set theory 
and predicate logic, which are intimately connected to the world of databases. Database 
tables represent sets of facts, and database queries produce result sets based on query 
predicates.  

 The objects of study in logic are propositions—statements of fact that are either true or 
false—and propositional functions, which are open statements with one or more unspecifi ed 
values. Database tables hold representations of statements of fact, and query predicates are 
propositional functions. 

 Later in this book, you’ll use logical set-based thinking to write a T-SQL SELECT query to 
return the following result set: “all customers for whom every employee from the USA has 
handled at least one order.”  

 Your query won’t tell the Microsoft SQL Server engine how to produce the desired result; 
instead, it will simply describe the result, in sharp contrast to how you’d use a procedural 
 programming language, such as C# or Fortran, to produce the same result. The more you 
understand about set theory and logic, the easier SQL will be for you. 

An Example of English-to-Mathematics Translation 

 I’ll begin this chapter by describing “all customers for whom every employee from the USA 
has handled at least one order” not in SQL, as you will see in Chapter 6, “Subqueries, Table 
Expressions, and Ranking Functions,” but in the mathematical language of set theory. Turning 
English into mathematics, by the way, is much harder than doing mathematics or speaking 
English, and this example will highlight some of the mathematical ideas that are particularly 
useful to SQL programmers. Some of the set theory notation in this section will be defi ned 
later. Don’t worry if it’s unfamiliar. 

 First of all, let’s give the result set we’re after a name. 

Defi nition of the set S (in English)

 Let S be the set of all customers for whom every employee from the USA has handled 
at least one order. 
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 By naming this set of customers (even by referring to it as a set, so that we can talk about 
having named it!), we’ve made an implicit assumption that the description has a clear 
 meaning—it describes something unambiguously. 

 The defi nition mentions customers, employees, and orders, and to talk about these categories 
of things mathematically, we should think of them as sets and name them: Let Customers, 
Employees, and Orders be the sets of customers, employees, and orders, respectively. 
To  describe S mathematically, we don’t have to understand what these terms mean; we only 
have to name them. 

 One meaningful term in the description doesn’t represent a kind of thing: handled. Again, we 
don’t need to know what it means from a business point of view for an employee to handle 
an order for a customer, but we do need to understand that, given appropriate details, has 
handled is either true or false. We also have to be clear what details it’s true or false about. 
If we dissect how handled is used in the description, we see that it has to do with three 
 details: an employee, an order, and a customer. 

 It’s especially useful to be able to write down the handled fact in a particular case. Given a 
particular employee e, a particular order o, and a particular customer c, this fact (employee 
e handled order o for customer c) is either true or false. In other words, it’s a predicate. Using 
function notation, write handled(e,o,c) to represent the truth value of “employee e handled 
order o for customer c.” Depending on the values of e, o, and c, handled(e,o,c) has a truth 
value: it’s true or it’s false. 

 Note You might have interpreted handled as involving only two details: an employee and an 
 order, ending up with handled(e,o) for “employee e handled order o.” That’s not wrong, and in 
fact it might be the best way to begin if we were designing a database to support queries to 
 return S. To defi ne S mathematically, however, the three-detail notion is closer to what defi nes 
S as a set of customers: whether a particular customer c is in the set S. It’s harder to express S 
mathematically with the two-detail interpretation. 

 The last element in the description we need notation for is from the USA. Being from the 
USA or not is a property of employees, and we’ll write fromUSA(e) to represent the truth 
value of  “employee e is from the USA.” To make things a bit simpler to write down at fi rst, let 
USAEmployees be the set of employees from the USA or, mathematically, let USAEmployees 
= {e∈Employees : fromUSA(e)}. 

 Now that we’ve named everything we might need, we turn to the question of describing 
membership in S in terms of the objects we’ve defi ned. 

 Question In terms of the sets Customers, USAEmployees, and Orders and the function 
handled(e,o,c), when is a particular customer c in S? 

  Answer The customer c is in S if and only if for every (employee) e in the set USAEmployees, 
there is at least one (order) o in the set Orders for which handled(e,o,c). 
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 Using mathematical notation only, here’s what we get: 

Defi nition of the Set S (in Mathematics)

 Let USAEmployees = {e ∈ Employees : fromUSA(e)}. Then defi ne the set 

 S = {c�Customers : �e�USAEmployees (�o�Orders : (handled(e,o,c)))} 

 At the end of this chapter, we’ll revisit this set. 

Well-Defi nedness

 In nonmathematical language, we describe something as well-defi ned if it has a distinct 
boundary or outline. In mathematics, well-defi ned has a different meaning. Mathematicians 
call something well-defi ned if it’s defi ned unambiguously. Read the following terms and 
 descriptions and decide which terms are defi ned unambiguously. 

 Provinces The set of Canadian provinces 

 Numerator The numerator of the number 0.2 written as a fraction 

 Low Temp The lowest temperature ever recorded in Russia 

 Big Number The largest number that can be described with fewer than 20 words 

 Contact List The name and a phone number for each of this book’s authors, alphabetized 
by author’s last name 

 Shortest Book The book in the Library of Congress that has the fewest pages 

 Square x2 

 Letter The letter B  

 Let’s see if we agree on which of these are well-defi ned.  

 Provinces This is a well-defi ned set: One way of denoting this set is {Alberta, British 
Columbia, Manitoba, New Brunswick, Newfoundland and Labrador, Nova Scotia, 
Ontario, Prince Edward Island, Quebec, Saskatchewan}. 

 Numerator This number isn’t well-defi ned because we have many ways to write 0.2 as a 
fraction, and they don’t all have the same numerator. 

 Low Temp This is well-defi ned, even though we might not know the value. 

 Big Number Although this may appear to be a valid defi nition, it’s not. Consider the  number 
“N plus one, where N is the largest number that can be described with fewer than 
20 words.” This is a variation on the Berry Paradox.  
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 Contact List This isn’t well-defi ned if any of the authors has more than one phone number 
because it doesn’t specify how we choose phone numbers for the list.  

 Shortest Book  Although the minimum number of pages is well-defi ned (assuming a 
 standard procedure for counting pages), more than one book might have the minimum 
number of pages. As a result, we can’t be sure there is a single shortest book. 

 Square We don’t know the value of x, so x2 isn’t a well-defi ned number. On the other hand, 
it is a well-defi ned algebraic expression.  

 Letter This defi nes a particular letter of the English alphabet but not a specifi c example of 
that letter in, say, a copy of this book. 

 These simple examples offer a number of lessons, but I’ll mention just one in particular: 
English can easily mislead. For example, two words that indicate uniqueness—the defi nite 
article the and the superlative shortest—were used to describe something that wasn’t in fact 
unique.  

 Later in this chapter, I’ll be more specifi c about the notion of well-defi nedness as it applies 
to sets. 

Defi nitions

 The elements of mathematical language, like English words, have meanings—at least most 
of them do. The defi nition of an English word is typically a written record of a preexisting 
meaning. In mathematics, however, an object’s defi nition typically establishes its meaning. 
Defi nitions in mathematics come in several forms; here are a few examples of defi nitions. 
These particular defi nitions aren’t needed elsewhere in the chapter; they’re only here for 
illustration. 

Sample Defi nitions

 For any real number x, let �x� be the unique integer in the half-open interval [x,x+1]. 
The function x��x� is called the greatest integer function. 

 Let T be the set of continuous bijective involutions on the unit interval. 

 Let S = {(n,n+1) : n is a positive integer} 

 An integer n is prime if n > 1 and n has no integer divisors d between 2 and n – 1. 

 The Fibonacci sequence is the sequence of integers Fi defi ned recursively as follows: 
F1 = F2 = 1; Fn = Fn–1 + Fn–2, for n > 2. 
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Undefi ned Terms

Any mathematical framework—set theory, logic, geometry, and so on—begins with some 
undefi ned terms and unproven axioms—usually these are simple objects or accepted notions, 
such as point or set, or that two numbers equal to the same number are themselves equal. 

Equality, Identity, and Sameness

One of the most frequently used symbols in mathematics is the equal sign (=). Informally, it’s 
the symbol for is, as in one plus one is two. The equal sign is used in mathematics in many 
ways to represent some notion of equality, sameness, or nondistinctness. Roughly speaking 
(which is all we can do without a major detour into deep questions of philosophy), it’s safe to 
substitute one mathematical quantity for another one if the two are equal.  

Don’t assume, however, that x=y means that x and y are identical in every possible way. Although 
no one would dispute that alligator=alligator, we can still distinguish the two. A  molecule of 
 pigment in one of them is certainly not also in the other, and I can point to one of them, let’s 
say the one on the left, and describe it as this alligator, and you know that the other one is a 
 different alligator. If you have the slightest inkling that someone might be  using the equal sign 
imprecisely, a good question to ask is “equal as what?” The two  alligators in alligator=alligator 
are equal as animal names or equal as words and probably equal as  character strings (though 
not if one of them ends up hyphenated when this book is printed). The two alligators are 
 decidedly not, on the other hand, equal as arrangements of pigment molecules. 

While it might seem unnecessary to spend even this short amount of time splitting hairs, as it 
were, we’ll see some practical implications later. 

Mathematical Conventions 

Every now and then in my beginning programming classes, a student—usually a good one—
will name variables with an extra dose of creativity, and I’ll be confronted with something 
I call the penguin dialect of programming, as shown in Listing 2-1.  

LISTING 2-1 Bubble sort, written in the penguin dialect

for(int penguin = 0; penguin < tiger-1; ++penguin) {
  for(int Betty = 0; Betty < tiger-penguin-1; ++Betty) {
    if (abba[Betty+1] < abba[Betty]) {
      int Whoops = abba[Betty];
      abba[Betty] = abba[Betty+1];
      abba[Betty+1] = Whoops;
    }
  }
}

for(int penguin = 0; penguin < tiger-1; ++penguin) {
  for(int Betty = 0; Betty < tiger-penguin-1; ++Betty) {
    if (abba[Betty+1] < abba[Betty]) {
      int Whoops = abba[Betty];
      abba[Betty] = abba[Betty+1];
      abba[Betty+1] = Whoops;
    }
  }
}
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 In contrast, a textbook author might express the same algorithm this way, in what I call the ijk 
dialect, as shown in Listing 2-2. 

LISTING 2-2 Bubble sort, written in the ijk dialect

for(int i = 0; i < n-1; ++i) {
  for(int j = 0; j < n-i-1; ++j) {
    if (a[j+1] < a[j]) {
      int t = a[j];
      a[j] = a[j+1];
      a[j+1] = t;
    }
  }
} 

Yet another category of programmer might create this version of the algorithm. Making no 
 attempt to hide my own personal bias, I call this the usefulNames dialect, as shown in Listing 2-3. 

LISTING 2-3 Bubble sort, written in the usefulNames dialect

for(int passNo = 0; passNo < arrSize-1; ++passNo) {
  for(int position = 0; position < arrSize-passNo-1; ++position) {
    if (arr[position+1] < arr[position]) {
      int temp = arr[position];
      arr[position] = arr[position+1];
      arr[position+1] = temp;
    }
  }
}

 The creative student chose names such as penguin and Betty in part because she wasn’t 
yet familiar with the naming conventions of programming and in part because  experience 
hadn’t yet taught her the importance of conventions. The author of the second version 
chose the names i and j because she was accustomed to an accepted system of naming 
 conventions: the ijk dialect. The third author, I would venture, understands the importance of 
naming  conventions and knows from experience how those conventions affect the ability to 
 understand and develop correct code. 

The ijk dialect rose to prominence in mathematics for good reasons. Formulas are easier 
to fi t on a page (not to mention the back of an envelope or a napkin) if notation is concise. 
Conciseness was important, too, in the early days of computing, when statements had to fi t 
on 80-column punch cards .

 I won’t abandon the venerable conventions of mathematics, but I’ll try to be aware of 
the barrier to understanding they can create. Where appropriate, I’ll point out some of 
the  specifi c conventions, which may be useful if you decide to delve more deeply into the 
 subjects of this chapter.  

for(int i = 0; i < n-1; ++i) {
  for(int j = 0; j < n-i-1; ++j) {
    if (a[j+1] < a[j]) {
      int t = a[j];
      a[j] = a[j+1];
      a[j+1] = t;
    }
  }
}

for(int passNo = 0; passNo < arrSize-1; ++passNo) {
  for(int position = 0; position < arrSize-passNo-1; ++position) {
    if (arr[position+1] < arr[position]) {
      int temp = arr[position];
      arr[position] = arr[position+1];
      arr[position+1] = temp;
    }
  }
}
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Numbers

 There are many kinds of numbers in theoretical mathematics, but in most practical settings, 
numbers mean real numbers, from the familiar number line, which, like the x-axis of coordinate 
geometry, extends forever in both directions from zero. Numbers to the left of zero are negative; 
numbers to the right are positive. 

 The real number system is fundamentally intuitive because it corresponds to familiar concepts 
from geometry: length, line, point, ray. In fact, the real numbers are important because they 
are the numbers with which we express things that we can measure. They also provide the basis 
for nearly all kinds of calculation or computation, through the operations of arithmetic. 

 Real numbers and arithmetic “play well together,” you might say. If we add some numbers 
in one order—for example, we add 3.4 and 18—and then we add 30.1 to the result, we get 
the same answer as if we started by adding 18 and 30.1. The nice properties real numbers 
have with respect to arithmetic are taught in school: the associative law, the distributive laws, 
the commutative law, and so on. 

 Other important properties of the real numbers are a little less familiar but include these: 
Given two positive real numbers x and y, with x the smaller, there’s a whole number n for 
which y lies between nx and (n+1)x. For any two real numbers x and y, again with x the smaller, 
there is another real number (in fact infi nitely many) strictly between x and y. 

 Like most programming languages, T-SQL provides a data type intended to represent real 
numbers. In fact, it provides two: REAL and FLOAT. However, neither these types nor SQL 
Server’s other number types (some of which are termed exact types) are faithful representations 
of the real number system from mathematics. 

 Hold onto that thought. We’ll come back to it. 

Context

 The correct interpretation of language depends on context. In some cases, the context for 
interpreting a word is adjacent, as is the context for interpreting the word “fl oor”  differently 
in the following two sentences: “This will fl oor you” and “The fl oor is dirty.” In other cases, 
the context is more general, as in the context for interpreting the remark “Watch the  batter!” 
 differently when at an baseball game and when in a cooking class. Every natural language 
depends on context to clarify meaning, and it’s a fact of life we tend to accommodate 
 naturally, for the most part.  

 Mathematical expressions depend on context also, but we don’t grow to learn the details and 
implications of mathematical context as naturally as we do for our native tongue. Table 2-1 
presents a few examples from arithmetic and algebra where the same expression can have 
more than one interpretation, depending on the context. 
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 TABLE 2-1 Expressions and Possible Meanings in Different Contexts 

 Expression Possible Meaning A Context for This Meaning

 c(a+b) The application of the function c to the 
argument a+b

The symbol c has been defi ned as 
a  function.

 c(a+b) The product of the numbers c and a+b The symbol c has been defi ned as 
a  number.

 b = A–1 The reciprocal of A: b = 1/A The symbol A represents a number.

 b = A–1 The inverse function of A: if A(x) = y, b 
satisfi es the equation b(y) = x 

The symbol A represents a function.

 iy The product of i and y The symbol i was defi ned as an integer. 

 iy An imaginary number The surrounding discussion is about 
 complex numbers.

 It’s possible to defi ne a system of notation far less dependent on context than the familiar 
language of mathematics. Such a system would be cumbersome to learn and use, however, 
because reusing symbols to mean different things in different contexts provides economy 
and convenience. 

Dates

 The importance of context is not restricted to the interpretation of expressions. The interpretation 
of individual literal values can depend on context as well. 

The concept of a calendar date is a good example of this. There’s no one “right” way to denote 
calendar dates, but to communicate, we have to denote them. A character string that represents 
a specifi c value is called a literal. Table 2-2 presents some literal date values and the meanings 
they would have in some of SQL Server’s supported languages. 

TABLE 2-2 Date Literals with Culture-Dependent Meanings 

Date literal Possible meaning

A language where this 

is the meaning

3 listopad 2008 The 3rd day of the 11th month of the year 2008 Polish

3 listopad 2008 The 3rd day of the 10th month of the year 2008 Croatian

13-12-09 The 12th day of the 13th month of the year 2009 US English

13-12-09 The 13th day of the 12th month of the year 2009 German

13-12-09 The 9th day of the 12th month of the year 2013 Swedish

 Depending on the server’s two-year date cutoff setting, which provides yet additional context 
for the interpretation of dates, the date literal string 13-12-09 could be interpreted with the 
year 1909 or 1913, depending on language. 

 Fortunately, you can specify dates in culture-independent ways, and one that works well 
for SQL Server is the string YYYYMMDD. (In code, be sure to surround it with quotes, as in 
‘20071112’, so that it isn’t interpreted as an integer!) 

Expression Possible Meaning A Context for This Meaning

Date literal Possible meaning

A language where this

is the meaning
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Alphabetical Order

 Later in this chapter, I’ll discuss the notion of order in more detail. At this point, I’ll simply 
mention that alphabetical order is another notion that depends on context. In a Spanish 
dictionary from the early twentieth century, you’ll fi nd the word llama after the word lobo 
because Spanish traditionally considered the word llama to begin with the letter (yes, letter, 
not letters) ll, which comes after the letter l. In an English dictionary, llama begins with l; thus, 
llama appears before lobo.  

Functions, Parameters, and Variables

 I’ll assume you’re familiar with the language of mathematical functions, such as f(x)=x2, and 
I’ll address any tricky concepts when they arise. The word parameter is worth a few remarks. 
This term may mean a number of things: in the function defi nition f(x) = x2, x is a placeholder 
(or more precisely, a formal parameter or free variable). If we apply the defi nition of the same 
function and write f(9) = 81, the number 9 is also called a parameter (an actual parameter). 
Roughly speaking, a parameter is a placeholder for a value, a value that fi lls such a placeholder, 
or a value that might be a different value. In this chapter, the term parameter will mean formal 
parameter or placeholder. 

 Ideally, for every parameter in an expression, a well-defi ned set of values can be substituted 
in its place. This set is called the parameter’s domain. If the domain of x in the expression 
f(x) = x2 is the set of real numbers, we can also call x a real-valued parameter. An expression 
with a  parameter, such as x2, is called a parameterized expression. 

Note Parameter domains often go unstated. They may be implied by conventions  mathematicians 
follow when they choose symbols and names: the names x, y, s, and t are typically used for 
 real-valued parameters; z, and sometimes w, are good choices for complex-valued parameters; p, q, 
and r are typical rational-valued parameter names; and letters near the middle of the alphabet, 
 including i, j, k, m, and n, more often than not represent integer-valued parameters. 

 In programming languages, domains correspond to types, and parameters correspond to 
 variables. In T-SQL, a variable’s type must be specifi ed. 

 To set the stage for what comes later, consider the real-valued parameter x in the parameterized, 
real-valued expression x2. Despite being named real valued, neither x nor x2 has any value at all, 
at least not until x is specifi ed. If we supply a value—for example, 3—for x, the expression x2 then 
has a value, which in this case is 9. Supplying the value 3 for the parameter x is informally called 
plugging 3 in for x or, formally, binding x to the value 3. We can be sure an expression represents 
a specifi c value when all of its parameters have been bound. 

Instructions and Algorithms

 The topics of this chapter, set theory and logic, are mathematical frameworks for describing 
things and facts, respectively, both of which are most easily considered static. While a computer 
program—source code—is static, the execution of a program is dynamic. If the program is 
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 useful, the execution is almost certainly nondeterministic. In most programming languages, the 
code describes the process of execution. 

 A rigorous mathematical treatment of program code is more straightforward than one of 
 program execution. At the least, the mathematical tools for describing execution are further 
 removed from the mathematical foundations of set theory and logic. The beauty of SQL, 
though, is that its code can describe results directly, without having to express algorithms and 
describe the process of execution. Not surprisingly, the inspiration that led to SQL was set theory. 

Set Theory

 Itzik Ben-Gan is one of this book’s authors. That’s a fact, and database systems like SQL 
Server 2008 help us identify facts and separate them from fi ction. Here are some other facts 
about who is and who isn’t one of this book’s authors: Dejan Sarka is one; Bill Gates is not. 

 In the language of sets, we can describe the set of authors of this book, and we can use the 
language of set theory to express facts. 

 If we name the set of authors of this book A, we can write A = {Itzik Ben-Gan, Lubor Kollar, 
Dejan Sarka, Steve Kass}. We call A a set, and we call the four authors elements, or members, 
of A. The statement that Itzik is one of the book’s authors can be expressed as Itzik�A. 

 Note As we’ll soon see, there should always be some universal context for a given set’s  elements 
and its nonelements. For the preceding set A, the context might be people, and we could 
 describe the set A of people, not just the set A, to be the authors of this book. We won’t always 
allude to or specify this universal context, but wherever we see or say set, we should be prepared 
to answer set of what? 

Defi nition of the Set Membership Operator

 The symbol � is the set membership operator. If A is a set and x is a potential member 
of A, we write x�A to mean that x is a member of A, and we write x�A to mean that x 
is not a member of A. 

 Note For given values of x and A three scenarios are possible: 

 x is an element of A In this scenario, x�A is true, and x�A is false. For example, this  scenario 
would hold if x were the number -12 and A were the set of even integers. 

 x is not an element of A x�A is false, and x�A is true. For example, this scenario would hold if x 
were the state of Maine and A were the set of Canadian provinces as of the year 2008. 

 The expressions x�A and x�A are (both) not valid propositions For example, this scenario 
would hold if x were the state of Maine and A were the set of ingredients in coq au vin. 
In this case, A is a set of some food ingredients, and Maine is not a food ingredient. This 
scenario would also hold if A were not a set. 
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Set theory is the fundamental underpinning of mathematics, and the fundamental concept 
of set theory is the notion of membership. 

Notation for Sets

 Braces, like I used earlier when I wrote A = {Itzik Ben-Gan, Lubor Kollar, Dejan Sarka, Steve 
Kass}, are standard notation in mathematics for sets. Put some things between braces, and 
you have a set. You can even put nothing between the braces, like this: {}, and it’s a set, 
known for obvious reasons as the empty set. 

Enumeration

 If we list a set’s elements—separated by commas and between braces—we’ve enumerated 
the elements of the set. Enumeration of elements is a simple way to denote a set if the set 
doesn’t contain many elements. If the set is large but the elements have a pattern, we can 
describe the set using an ellipsis (. . .). If we need to and the intent is clear, we can use more 
than one ellipsis and (in a pinch) semicolons to separate sublisted groups of elements in 
 patterns, as shown in Table 2-3. 

 TABLE 2-3 Sets Described Using Enumeration 

 Set (notation) Set (English)

 {1,2,3,4, . . .} The positive integers

 {0, –1, 1, –2, 2, –3, 3, –4, 4, . . .} The integers

 {. . ., –3, –2, –1, 0, 1, 2, 3, . . .} The integers

 {A, B, C, . . ., Z} The letters of the English alphabet

 {A, B, C, . . ., Z, a, b, c, . . ., z} Uppercase and lowercase English letters

 {0; 0.0, 0.1, 0.2, . . ., 0.9; 0.01, 0.02, . . ., 0.99; . . .} The decimal numbers at least 0 but less than 1

Set-Builder Notation

 Set-builder notation also uses braces, but it avoids listing every element explicitly without 
 resorting to ellipses. Set-builder notation has two common variations. In one, the elements 
of a set are described as those elements from another set that satisfy a condition. Here is 
how you could write the set E of positive even integers with this kind of set-builder  notation: 
E = {n�	 : n>0 and (n/2)�	}. In the other variation, set-builder notation describes the 
 elements of a set as those “built” from the elements of another set by a formula. Here is a 
way to do that for the same set E: E = {2n : n�	+}. 

 Note In the defi nition of the set E, / is the division operator of arithmetic, which is the inverse of 
multiplication. In particular, 1/2 equals one-half. In T-SQL and many strongly typed programming 
languages, 1/2 equals zero because integer division yields the integer result of truncating the 
quotient towards zero. 

Set (notation) Set (English)
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 The symbol 	 is standard mathematical notation for the set of integers, as is 	+ for the 
 positive integers. 

Well-Defi nedness of Sets

 The word set is usually left undefi ned, but particular sets, such as the set of this book’s 
 authors, are defi ned as needed. One way to be sure S is well-defi ned is to verify the following 
two conditions: 

■  There is a universal set U or domain of discourse for S, whether explicitly stated or 
 understood from context. The set U contains precisely the elements of S together with 
the nonelements of S. 

■  The defi nition of S is suffi cient to answer the question “Is x an element of S?” for any 
element x in U. 

 Not all authors insist on the fi rst requirement, but it’s extremely useful. It’s also appropriate to 
the context of learning about a typed programming language (T-SQL) and the fundamentals 
of databases, where universal sets are important. 

Domains of Discourse

 Recall the earlier example from this chapter where we represented the statement “employee 
e handled order o for customer c” as handled(e,o,c). Given a particular employee e, order o, 
and customer c, the statement, or equivalently the expression handled(e,o,c), has a truth value 
of either true or false. These two values, true and false, were the only possible values of the 
expression handled(e,o,c). 

 On the other hand, I used this example without any indication of what possible values the 
input variables e, o, and c could equal. What are the possible ways in which the variable e can 
represent “a particular employee,” o can represent “a particular order,” and c can represent 
“a particular customer”? 

 At fi rst, you might think this is a needlessly picky question. As long as o is an order, what’s 
the problem? But if I’m charged with writing the code to implement the evaluation of 
handled(e,o,c), I need to know the possible values of the variable o. Without knowing, I can’t 
be sure my implementation is valid. The architect whose model required an implementation 
of handled() also has to know to be able to validate the model. 

 Without a well-defi ned domain for the variable e, representing “all possible employees,” we’ll 
never be able to validate a model that uses the notion of employee, let alone that tries to 
represent notions such as handled. Notions like that of employee are central to the effective 
use of databases. Let me give you a concrete example of where you might fi nd domains of 
discourse in the business world and why careful attention to them is important: forms. 
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Domains and Bad Data

At some point in your life you’ve had to fi ll out a form with details like your name, your date 
of birth, your address, and so on—phone number, e-mail, citizenship—the list is endless. 
Whether it was a paper form or something you fi lled out online, your answers had to fi t. (Even 
if you could “attach additional pages as needed,” your answers had to fi t in the envelope or 
mailbox!) Furthermore, if the information you provided was destined for a well-designed 
 database, the information had to fi t not only the form but also (after interpretation by a data 
entry clerk, a software interface, or another intermediary) the constraints of the database 
design. 

 For this example, suppose that the forms we’re thinking about are receipts from individual sales 
and that these forms have a place for, among other things, the date of the sale and the tax 
paid on the sale. Down the road, these forms are entered into a database, and the data may be 
used to generate a report—perhaps a report of tax receipts by month. To produce the report, 
the sales data has to be partitioned, or grouped, into months, according to the sale date, and 
the tax receipts have to be added up for each month. However the data is  represented, we 
have to be able to fi gure out a month and a number from each receipt. 

 Because you’re reading this book, it’s probably safe to assume that you’ve had to think about 
this kind of process. You’ve probably had to get your hands dirty in it. More likely than not, 
you’ve also had the experience of seeing or worrying about information that looks like the 
information in Table 2-4. 

 TABLE 2-4 Sale Dates and Tax Received for Some Sales

 Receipt Number Sale Date Tax Collected Customer Name

 1 Jul 3 $1.24 Mark Hassall

 2 Sunday, 10/3 exempt Torstonen

 3 Sunday, 10/3 Carole Poland $2.56

 6 10/12/2007 N/A CAROLE POLAND

 10-13-2007 $3.00 POLAND

 11 10-13-2007 $1.24 Yao-Chiang

 11 Febuary ‘07 Did not provide

 12 February 11 $18.24 katrin

 I3 Feb 13 3.10 FRNDO

 14 2/13/07 .41 Jim Wickam (sp?)

 #17 14 Feb 2.25 Sittichai

 18 Carole Poland 5 blank

 Not even the most talented programmer can write procedures to report tax receipts by month 
from data like this—well, not procedures that produce correct reports. The requirement is 
 incompatible with the data, and one or the other has to be bent. 

Receipt Number Sale Date Tax Collected Customer Name
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 Let’s assume the data is bent into shape, and instead of the unmanageable information in 
Table 2-4, the data appears as shown in Table 2-5. 

TABLE 2-5 Sale Dates and Tax Received for Some Sales

Receipt Number Sale Date Tax Collected Customer Name

1 7/3/2007 1.24 Mark Hassall

2 10/3/2007 exempt Torsten Arndt

3 10/3/2007 2.56 Yao-Qiang Cheng

6 10/12/2007 0 Carole Poland

7 10/13/2007 3.00 Carole Poland

11 10/13/2007 1.24 Yao-Qiang Cheng

11 2/25/2007 NULL

12 2/15/2007 18.24 Katrin Gulbis

13 2/29/2007 3.10 Nkenge McLin

14 3/13/2007 0.41 Jim Wickham

17 3/16/2007 2.25 Sittichai Tuntisangaroon

18 3/12/2007 5 blank

 If you looked closely, you may have noticed something strange about receipt 13’s sale date. 
In the row containing 13 in the Receipt Number column, the Sale Date column contains 
2/29/2007, which doesn’t represent a date. The Sale Date column still contains strings, not 
dates. While most of the values this time do represent dates, not all of them do. Whether 
we use strings, numbers, or another data type, we need a column that holds faithful, 
 unambiguous representations of dates. 

 Note Wish as we might, someone, if not us, has to accommodate the receipt that has an 
 illegible or missing date. Recognizing the value of a column to hold faithful, unambiguous 
 representations of dates—when they existed, which might not be always—those responsible for 
SQL provided for nullable column declarations. I won’t have too much to say about NULL, I’m 
afraid. The mathematics becomes much harder—some might say intractable—if you attempt to 
accommodate NULLs. 

 Dates and literal date strings aren’t the same, literal date strings and strings aren’t the same, 
and the interpretation of literal date strings isn’t invariant from culture to culture, epoch to 
epoch, or system to system. 

 The best we can do is document and defi ne categories (such as dates), identify one or more 
faithful representations of them (such as date strings in a particular format), and understand and 
record as much as we can about the representations and concepts, their cultural interpretations, 
and what universe of potential values serves as the domain of discourse for a category. 

 The data in Tables 2-4 and 2-5 contain other properties that will make it hard to create a tax report. 
I won’t say anything about them, but I encourage you to think about why, mathematically, they 
cause problems. 

Receipt Number Sale Date Tax Collected Customer Name
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Domains and Modeling

 Now return to this chapter’s fi rst example. As a mathematical object, fromUSA is a  function. 
It takes one input value (an employee e) and yields (more precisely, associates to that value) 
a unique output from the set {true, false} of logical truth values. In mathematics,  function 
doesn’t belong to a well-defi ned category, nor does the more specifi c functions of one 
 variable that return truth values as output. To work with functions mathematically, we need to 
be precise about the function’s domain. 

 Because notions such as employee simply fail to admit a well-defi ned universal set of any 
reasonable description, we choose properties or surrogates that work. We may not be able 
to describe “all employees,” but we can decide that employees, when we need to refer to 
them in questions or assertions of fact, must be identifi ed unambiguously by a specifi c 
group of properties (such as the combination of name, phone number, and birth date) or 
by an  identifi er of some kind. We can then defi ne the universal domain of employees as the 
 universe of such identifi ers. 

 Once we specify a domain for employees (or values that represent employees), we can be 
precise about what kind of mathematical object handled is: a Boolean-valued function of one 
variable, with domain the set of employee identifi ers. 

 Whether we choose to represent an object by a surrogate, as we might represent an order by 
an order number, or by one or more properties, as we might represent a person by birth date 
and some DNA measurements, we expect the surrogate to represent the object faithfully. 

Faithfulness

 As you know by now, we may think about concepts, but in practice, we must work with 
 representations of concepts. As best we can, we choose representations of concepts that 
don’t mislead us or to be more precise, that don’t require us to sacrifi ce our ability to answer 
questions. 

Defi nition of a Faithful Representation

 Let X and S be sets, and let 
 be a collection of functions. (Think of X as your objects 
of interest; think of S as the strings, numbers, or other objects you hope to use to 
 represent elements of X. Think of 
 as the tools you need to answer questions about 
elements of X for some larger purpose.) 

 In addition, let � : X � S be a function that associates to each x� X a representation 
�(x) in S. The function � is called a representation of X, and it is faithful for 
 if there 
is a collection of functions 
� that refer to S instead of X, and to �(x) instead of x, but 
that correctly perform every calculation that was possible in 
 before the substitution 
of S for X and �(x) for x. 
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 Informally, a representation is a naming scheme, and a faithful representation is a naming 
scheme that works. A naming scheme for things can work if the names alone allow you to 
keep track of what you need to keep track of. 

 Suppose X is the set of US dollar-denominated bills manufactured by the United States 
Bureau of Engraving and Printing (BEP). If you were a shop owner, you might need to answer 
just one or two kinds of questions about elements of X: how much is a particular bill worth, 
and how many of each denomination are “here” (where “here” might refer to a customer’s 
hand or your cash drawer). 

 Note Another question you might think of is “Is this bill genuine, as opposed to counterfeit?” 
That’s not a question about elements of X, however, because X is the set of dollar-denominated 
bills manufactured by the United States Bureau of Engraving and Printing. That agency doesn’t 
manufacture counterfeit bills! 

 A system that represented bills in X as strings such as $1, $10, $2, and so on would serve your 
purposes, as long as the strings correctly refl ected the bill’s face value. This way to represent 
the elements of X would be faithful to your needs. This same system of representing the bills 
in X might not be faithful to the needs of a bank, however. You can imagine that a bank’s 
theft-insurance contract might require it to keep track of the individual large-denomination 
bills it handled. Fortunately, the BEP prints identifying numbers on each bill it prints, and 
those numbers are unique1 within each denomination and series of issue; representing bills 
by their series of issue, serial number, and denomination would work for the bank’s purpose 
because it fully distinguishes every individual element of X from every other. 

 A representation can still be faithful even if it doesn’t refl ect everything directly. We’ll see this 
in the next example. 

 Let C be the set of automobiles manufactured in North America since 1980.  

 One can imagine the need to keep track of many things about cars, but consider just two: the 
year of manufacture and the amount of gasoline in the car’s tank at a particular moment in time. 
Each can be thought of as a function on the set C: let year_made(c) be the year in which car c 
was made, and let gas_level(c) be the function of time that gives us the amount of gasoline in the 
tank of car c at time t, where t is between the time the car rolled off the assembly line and now. 
For actual calculations with numbers, though we’ll do none here, we would also indicate the 
units of measurement, which might be US gallons for an amount of gasoline and coordinated 
universal time (or UTC) for a moment in time. 

 These two functions, year_made and gas_level, are well-defi ned functions of a car. For a 
 particular car c, the meaning of year_made(c) is well-defi ned. For a given car c, gas_level(c) is 

1 This is true by design and, let’s assume, in practice. In theory, however, the BEP presses can malfunction, and bills 
could be printed with nonunique, illegible, or multiple serial numbers.
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also well-defi ned. It may be impossible in 2009 to discover the exact value of “the amount of 
gasoline in this car at midnight on April 9, 2004,” but that phrase unambiguously describes a 
value nonetheless. 

 Many representations for the set C are faithful for the functions year_made and gas_level. 
The VIN, or vehicle identifi cation number, which by law (most) vehicles must have, is one. 
Another is the car’s owner and license plate number. While neither would make gas_level easy 
to calculate, the point is that they would not make it impossible. On the other hand, we couldn’t 
use a  representation that failed to distinguish every car from every other, as we could for bills. 

 Note that the representation (owner, license plate number) doesn’t refl ect the identity of 
each car directly, in the sense that we can’t discover the representation details by studying a 
car. This indirectness of representation doesn’t translate to unfaithfulness, however. 

No REAL Faithfulness

 Earlier in this chapter, I asked you to hold onto a thought, and we’ll return to it now. I said 
earlier that the data types SQL Server provides for numbers don’t faithfully represent the real 
number system of mathematics. We can now be precise. Here’s a simple demonstration in 
code that the REAL type doesn’t represent real number faithfully: 

DECLARE @a REAL = 0.001;

DECLARE @b REAL = 9876543;

DECLARE @c REAL = 1234567;

SELECT

  @a * (@b * @c) as [a(bc)],

  (@a * @b) * @c as [(ab)c]

 This code produces the following result:  

a(bc)         (ab)c

------------- -------------

1.219325E+10  1.219326E+10

 Notice that the two result values, which are the results of multiplying the same three 
 numbers in different orders, are slightly different. In other words, while in the “real” real 
numbers and arithmetic, a(bc) = (ab)c, it’s not true for SQL Server’s representation of the 
real numbers and arithmetic. This is no slight against SQL Server, and the result conforms to 
the important IEEE standard for fl oating-point arithmetic. But computer representations of 
 numbers aren’t faithful to arithmetic, and while they suit most needs, they don’t answer all 
questions with the “correct” mathematical answers. 

 To the extent that degrees of faithfulness exist, SQL Server represents mathematical sets and 
their operations with a considerable degree of faithfulness, more than it (or most any other 
programming language) does for numbers and arithmetic. 

DECLARE @a REAL = 0.001;

DECLARE @b REAL = 9876543;

DECLARE @c REAL = 1234567;

SELECT

  @a * (@b * @c) as [a(bc)],

  (@a * @b) * @c as [(ab)c]

C02626034.indd   51 2/20/2009   7:42:21 PM



52 Inside Microsoft SQL Server 2008: T-SQL Querying

Russell’s Paradox

 In about 1901, Bertrand Russell discovered that the informal notion of set in mathematics 
was logically fl awed. The informal notion of set takes as axioms (fundamental propositions) 
that any collection of things is a set and that any criterion can serve to defi ne  membership 
in a set. Russell showed that these axioms were inconsistent because they lead to a 
contradiction. 

 Note Russell’s discovery doesn’t mean the axioms of set theory are false, only that they are 
 incapable of serving to found a consistent mathematical theory.  

 Russell reasoned as follows: Let U be the set of all sets. Since U is a set and at the same 
time every set is an element of U, then U�U. Recognizing that the property U�U was 
 curious, Russell considered the collection of all curious sets—sets that contain themselves as 
 elements. Call this set of all curious sets C; we can express C as {x�U : x�x}. Similarly, consider 
everything else (the set of noncurious sets) NC. Every set is either curious (in which case x�x), 
or it’s not curious (in which case x�x). Thus, NC = {x � U : x � x}. 

 No contradiction so far—sets are either curious or they aren’t. But Russell wondered which 
kind of set NC was. Is NC a curious set, or is it a noncurious set? Because there are only two 
possibilities, we can explore each one. 

 Let’s explore the possibility fi rst that NC is a curious set. If so, it belongs to the set of all 
 curious sets, which we’ve called C. In other words, NC� C. But at the same time, if NC is a 
 curious set, it contains itself as an element (that’s what curious means), so NC� NC. This can’t 
be; NC can’t be an element of both C and NC because no set can be both curious and not 
curious. This possibility led to a contradiction. 

 Now let’s explore the possibility that NC is not a curious set. It’s the only  possibility left, 
by the way. Reasoning much as before, if NC is not a curious set, it doesn’t  contain itself 
 (otherwise, it would be curious). Therefore, NC�  NC. But if NC is not an  element of NC, it’s 
not noncurious, which makes it curious. This possibility also led to a contradiction. 

 Russell’s argument has become known as Russell’s Paradox. By itself, it’s not really a paradox 
at all; it’s a valid demonstration that the informal approach to sets (nowadays called naïve 
set theory) is inconsistent. What does remains something of a paradox is whether a correct 
 theoretical foundation for mathematics exists.  

 For us, Russell’s Paradox underlines the importance of working within a well-defi ned 
 universal set. 
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Ordered Pairs, Tuples, and Cartesian Products

 An important concept in mathematics—and one that is central to database programming—is 
that of an ordered pair (a,b). To include ordered pairs in a rigorous treatment of mathematics, 
there must be a universal set of ordered pairs. This is the Cartesian product. 

Ordered Pairs and k-Tuples

 We will consider ordered pair to be a new undefi ned term, like set. Recall that a particular set 
is defi ned by its members and nonmembers; a particular ordered pair is defi ned by its fi rst 
part and its second part. We also accept without defi nition the term tuple, or k-tuple, for an 
object that, like an ordered pair, has parts but where there are k parts. An ordered pair is a 
tuple—in particular, a 2-tuple; (x,y,z,w) is also a tuple—and, in particular, a 4-tuple.  

Notation and Defi nitions for Ordered Pairs and Tuples

 If s and t are elements of some domains, (s,t) is called the ordered pair with fi rst part 
(or coordinate) s and second part (or coordinate) t. Two ordered pairs (s,t) and (x,y) with 
matching domains are equal if their corresponding parts are equal: s=x and t=y. 

 If s, t, . . ., r are (k-many) elements of some domains, (s,t,. . .,r) is called an ordered k-tuple. 
Reference to the parts of (s,t,. . .,r) and equality for k-tuples follow the analogues for 
 ordered pairs. 

 Subscript notation is used for the parts of ordered pairs and tuples, when the tuple 
 itself is represented by a single symbol. It’s especially convenient when all the parts 
have a common domain. If r is a k-tuple of real numbers and j is an integer between 
1 and k, rj is a real number and denotes the jth part of r. 

 The most familiar example of ordered pairs in mathematics, and perhaps the original one, is 
the usual notation for points in the coordinate plane: (x,y), where x and y are real numbers. 
The seventeenth-century mathematician René Descartes used this notation, which is now 
called the Cartesian coordinate system in his honor.  

 Naming the points in the plane (x,y) works. In the sense we described earlier, this notation 
faithfully represents the essence of points. Thus, nothing is lost by saying “the point (x,y)” 
 instead of “the point represented by (x,y).” 

 The set of all points in the plane is P = {(x,y) : x� and y�}. A more compact way to write 
the set P is ×, which mathematicians understand to mean the same thing and which is 
called the Cartesian product of  and . 
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The Cartesian Product

 A Cartesian product is the domain of discourse for ordered pairs or tuples. Here’s the general 
defi nition. 

Defi nition of Cartesian Product

 Let S and T be sets. The Cartesian product of S and T, denoted S×  T, is the set {(s,t) : s�S 
and t�T}. If no confusion arises, the terms S-coordinate and T-coordinate can be used in 
place of fi rst coordinate and second coordinate, respectively, for the parts of elements 
of S×T. The sets S and T are called factors (and if needed, the fi rst and second factors, 
respectively) of S×  T. 

 Cartesian products with more than two factors are defi ned analogously as sets of tuples, 
with no distinction made between, for example, (A×B)×C, which contains elements of 
the form ((a,b),c), and A×B×C, which contains elements of the form (a,b,c).  

 Note In the defi nitions for ordered pairs, equality of ordered pairs was defi ned as  coordinate-wise 
equality on the coordinate parts. Any operation defi ned on a Cartesian product’s factors can 
 similarly be “lifted,” or imparted to the elements of S×T. When this is done, the operation is said 
to be a coordinate-wise operation. In the Cartesian plane, for example, a “coordinate-wise +” 
 operation combines the points (x,y) and (s,t) to obtain (x+s,y+t). With the exception of the 
=  operator, don’t assume a familiar symbol represents a coordinate-wise operation on ordered 
pairs (or tuples). For example, although |s| means the absolute value of the number s, |(s,t)| does 
not represent (|s|,|t|). 

 The Cartesian product is not commutative: A×B and B×A are not the same when A and B are 
different.  

The Empty Set(s)

 The empty set contains no elements, but what is its universe? If imagining a set of all sets 
gets us into trouble, a set of all possible elements can only be worse because sets can 
be elements of sets. As we’ve seen before, using the word the doesn’t make something 
unique. The empty set of integers is the set whose elements are (there are none) and whose 
 nonelements comprise all integers. On the other hand, the empty set of English words is the 
set whose elements are (there are none) and whose nonelements comprise all English words. 

 How many empty sets are there? Perhaps my insistence that sets have well-defi ned domains 
has backfi red and buried us in empty sets! Fortunately, we can declare the question invalid. 
Our framework only defi nes equality of things and questions such as “how many?” within 
some universal set U, and no universal set contains “all the empty sets.” We do want to know 
how to interpret any sentence containing the phrase “the empty set,” and that we can know.  
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Defi nition of the Symbol �
 The symbol � represents the empty set. When the domain of discourse is the universe 
U, � represents the subset of U for which x�� is false for every x in U. 

 Note One attempt to resolve Russell’s Paradox is to create a tower of universal sets, where the 
depth of set-within-set-within-set-within-set. . . nesting is controlled. The nth universal set can 
only contain elements from the previous universal set, and this prevents any universal set from 
containing itself. 

The Characteristic Function of a Set

 Set theory, functions, and logic are intimately connected, and one connection among them is 
the notion of the characteristic function of a set. 

Defi nition of the Characteristic Function of a Set

 If S is a set with universe U, the characteristic function of S, denoted 1S, is the function 
of U, whose value is 1 for elements in S and 0 for elements not in S.2 As a consequence, 
the statements x � S and 1S(x) = 1 are logically equivalent and interchangeable. 
Similarly, the statement x � S is logically equivalent to the statement 1S(x) = 0. 

 The characteristic function of a set S completely characterizes S. Its domain is the universe U, 
and the elements of S are precisely the elements x of U for which 1S(x)= 1. As a result, we 
can defi ne a set by specifying its characteristic function, and this turns out to be particularly 
 useful in some cases. 

 We now have several ways to describe a set: by description, by enumeration or set-builder 
notation, by condition, and by characteristic function. For a moment, assume that the 
 domain of discourse is the integers. Here are four defi nitions of the same subset of the 
integers. 

 Description S is the set of positive even integers. 

 Enumeration and Set Builder S = {2, 4, 6, 8, 10, . . .}, or S = {2k : k�	+} 

 Condition S = {n : n>0 and n is an integer multiple of 2} 

 Characteristic Function S is the set whose characteristic function is f(n), where f(n) is  defi ned 
for integers n as follows: If n is negative, odd, or zero, f(n) = 0; otherwise, f(n) = 1. 

2 Another common notation for the characteristic function of S is XS, using the Greek letter chi.
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Cardinality

 Informally, the cardinality of a set is the number of elements in the set. For example, the 
 cardinality of {134, −11, 33} is three because there are three elements in the set. Similarly, 
the cardinality of {} is zero, and the cardinality of {Itzik, Lubor, Dejan, Steve} is four. We have 
 several ways to express the cardinality of a set in words: 

 The cardinality of S is four. 

 The set S has cardinality four. 

 S contains four elements. 

 Earlier in this chapter, we were careful to point out that sets and depictions of sets are 
 different things. We also noted that it’s important to know what the universe is. These 
 details are still important. As sets of integers, {1+1, 5−2, 2+1}, {2, 3, 3}, and {3, 2} all denote 
the same set: the set containing the two integers 2 and 3, which has cardinality two. As sets 
of  arithmetic expressions, however, they aren’t the same; the fi rst contains three elements 
 (because it contains three different expressions), whereas the second and third each contain 
two elements. 

 Mathematicians use the shorthand notation |S| for the cardinality of the set S. It’s identical to 
the notation for the absolute value, and context clears up the meaning: if S is a number, |S| is 
the absolute value of S, and if S is a set, |S| is the cardinality of S.  

Formal and Constructive Defi nitions of Cardinality

 Most formal defi nitions of cardinality use the idea of a one-to-one correspondence. If the 
elements of S can be put into one-to-one correspondence, or matched up, with the integers 
from 1 up to k, S is said to be fi nite and have cardinality k. This works in part because of the 
rather obvious (but nontrivial to prove) fact that the elements of a set can be matched up 
with the integers from 1 to k for at most one value of k. The formal defi nition of cardinality in 
terms of correspondence lends itself to an effective treatment of infi nite sets. 

 For fi nite sets, we can give a constructive defi nition of cardinality in terms of characteristic 
functions. Recall that every set S is characterized by a function 1S (the characteristic function 
or membership function or S), where 1S(x) is defi ned and equal to either 0 or 1 for each x in 
the universe for S. 

 Defi nition: Let S be a fi nite set with universe U. The cardinality of S is defi ned to be the sum 
of the values 1S(x). In other words, |S| := ∑ x�U 1S(x) 

 A number of useful results about cardinality follow from this defi nition and earlier results 
about characteristic functions. 
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A Simple Result about Cardinality

 The cardinality of the empty set is zero: |�| = 0. Recall that 1�(x) always equals zero. 
Therefore, |�| is a sum of zeros and equals zero. 

Order

 If I asked you to put the numbers 12.4, 5.2, 16.0, and 0.7 into numerical order, you’d list them 
this way: 0.7, 5.2, 12.4, 16.0. Similarly, if I asked you to alphabetize the names Itzik, Steve, 
Dejan, and Lubor, you’d list them in the following order: Dejan, Itzik, Lubor, Steve. In each 
case, you can do this because given two different names (or numbers), it’s always the case 
that one of them precedes the other, and you know the rule. 

 A set of values can be put into order when we have an appropriate notion of is less than, 
comes before, or precedes. In this section, we’ll investigate notions of precedence, and in 
 particular, we’ll identify what properties allow us to use a given defi nition of precedence 
to put things in order. Mathematically, precedes (for a given universe, such as numbers or 
names) is a Boolean-valued function of two variables, where the domain of each variable is 
the given universe. 

Numerical Order

 When we talk about numerical order, precedes means is less than, and x is less than y is 
 usually written as x<y. With regard to real numbers, everyone agrees on the meaning of <. 
We say x<y if and only if y–x is a positive number. 

 Note The astute reader might catch the fact that this defi nition of < is problematic because 
we haven’t defi ned the term positive. In fact, we haven’t defi ned a lot of things, such as what the 
number 5.2 means, for example. Fortunately, as long as you and I agree on the rules of  arithmetic 
and simple notions like positive, we’ll be fi ne. A thorough development of the real number 
 system is well beyond the scope of this chapter. 

Alphabetical Order

 When we talk about alphabetical order, the meaning of precedes is culture dependent. 
In most programming languages, the precedes operator for strings is denoted <, just like 
it is for numbers. And in most programming languages and cultures, alphabetical order 
would provide that Dejan < Itzik, Itzik < Lubor, and Lubor < Steve. However, there’s often no 
 consensus among cultures about alphabetical order, and it’s often not obvious what cultural 
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rules the < operator is using. In T-SQL, you can sometimes apply cultural rules explicitly by 
specifying a collation, as I’ve done in the following example: 

DECLARE @Names TABLE (

  name VARCHAR(20)

);

INSERT INTO @Names VALUES

  ('DeSzmetch'),('DESZMETCH'),('DESZMETCK'),('DesZmetch'),('deszmetch');

SELECT

  name,

  RANK() OVER (ORDER BY name COLLATE Latin1_General_BIN) AS [Lat...BIN],

  RANK() OVER (ORDER BY name COLLATE Traditional_Spanish_CI_AS) AS [Tra...CI_AS],

  RANK() OVER (ORDER BY name COLLATE Latin1_General_CS_AS) AS [Lat...CS_AS],

  RANK() OVER (ORDER BY name COLLATE Latin1_General_CI_AS) AS [Lat...CI_AS],

  RANK() OVER (ORDER BY name COLLATE Hungarian_CI_AS) AS [Hun..._CI_AS]

FROM @Names

ORDER BY name COLLATE Latin1_General_BIN;

This is the output: 

name       Lat...BIN   Tra...CI_AS Lat...CS_AS Lat...CI_AS Hun..._CI_AS

---------- ----------- ----------- ----------- ----------- ------------

DESZMETCH  1           2           4           1           2

DESZMETCK  2           1           5           5           5

DeSzmetch  3           2           3           1           2

DesZmetch  4           2           2           1           1

deszmetch  5           2           1           1           2

As you can see from the output, there’s no single correct way to rank the names DeSzmetch, 
DESZMETCH, DESZMETCK, DesZmetch, and deszmetch in alphabetical order. 

Note in particular that alphabetical order doesn’t necessarily order strings in a character-by-
character fashion. In the language of T-SQL, understand that you cannot expect these two 
ORDER BY clauses to produce the same results, even though for some collations they will: 

ORDER BY string;

ORDER BY

  SUBSTRING(string,1,1),

  SUBSTRING(string,2,1),

  ...

Trichotomy

Given two real numbers x and y, x is either less than, equal to, or greater than y. This 
 fundamental property of the real numbers, that exactly one of x<y, x=y, and x>y is always 
true, is known as the law of trichotomy. 

DECLARE @Names TABLE (

  name VARCHAR(20)

);

INSERT INTO @Names VALUES

  ('DeSzmetch'),('DESZMETCH'),('DESZMETCK'),('DesZmetch'),('deszmetch');

SELECT

  name,

  RANK() OVER (ORDER BY name COLLATE Latin1_General_BIN) AS [Lat...BIN],

  RANK() OVER (ORDER BY name COLLATE Traditional_Spanish_CI_AS) AS [Tra...CI_AS],

  RANK() OVER (ORDER BY name COLLATE Latin1_General_CS_AS) AS [Lat...CS_AS],

  RANK() OVER (ORDER BY name COLLATE Latin1_General_CI_AS) AS [Lat...CI_AS],

  RANK() OVER (ORDER BY name COLLATE Hungarian_CI_AS) AS [Hun..._CI_AS]

FROM @Names

ORDER BY name COLLATE Latin1_General_BIN;
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Induced Order

The comparison operator < is what allows us to put real numbers into order—to sort them. 
Another way to say this is to say that the usual ordering of the real numbers is the ordering 
induced by the < operator. 

By this point, you should be suspicious every time I use the word the, and I used it in the 
 previous sentence in the ordering. Not every comparison operator on a set of things induces 
a well-defi ned ordering, or an ordering at all, but less-than for numbers does. 

A Trichotomous > That Doesn’t Induce an Ordering

In the game rock-paper-scissors, the rules say that rock beats scissors, paper beats rock, 
and scissors beat paper. The idea of beats is a comparison, so we could defi ne the > 
operator on the set {rock, paper, scissors} to mean beats, according to the game’s 
rules. It shouldn’t take you long to realize that it’s not possible to order rock, paper, 
and  scissors from “best to worst” according to the > operator. In this case, then, “the 
 ordering induced by the > operator” is not well-defi ned. 

The < operator for real numbers induces what mathematicians call a total order. To induce 
a total order, a comparison operator not only has to be trichotomous but also has to be 
 antisymmetric and transitive. We’ll take a look at these properties later. 

Ordinal Numbers

Earlier, I defi ned cardinality for fi nite sets. In particular, I observed that cardinality was 
 well-defi ned. The question “The set S contains how many elements?” asks for a well-defi ned 
answer, which might be “The set S contains 10 elements.” Notice how this question about 
cardinality and the sentence that answered it follow the pattern illustrated in Table 2-6. 

TABLE 2-6 A Question Answered by a Cardinal Number 

 Description Sentence

 Question sentence The set S contains how many elements?

 Question-word identifi ed The set S contains how many elements?

 Question-word replaced by a fi ll-in-the-blank The set S contains              elements?

 Blank fi lled in to produce the answer sentence The set S contains 47 elements.

 Mathematical version of the question Solve for n: |S| = n.

Given a set S, the question in this case (“The set S contains how many elements?”) has a 
 well-defi ned right answer. That’s because the cardinality function, which answers “how many 
elements” questions about sets, is a well-defi ned function. Numbers that answer a how many 
question are called cardinal numbers in mathematics because they express the cardinality of 
a set. The fi nite cardinal numbers are exactly the nonnegative integers, by the way, although 

Description Sentence
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there are many different infi nite cardinal numbers. Infi nite sets are not all infi nite in the 
same way, one could say. Unfortunately, we won’t have a chance to look into that fascinating 
 corner of mathematics here. 

 Table 2-7 offers the same analysis of a similar question and its answer. 

TABLE 2-7 A Question Answered by an Ordinal Number 

Description Sentence

Question sentence The number x appears in the list L in what position?

Question-word identifi ed The number x appears in the list L in what position?

Question-word replaced by a fi ll-in-the-blank The number x appears in the list L in          position?

Blank fi lled in to produce the answer sentence The number x appears in the list L in the 47th 
 position.

Mathematical version of the question None (explanation to follow).

 In the answer I gave, the number 47 (or the word 47th) is an ordinal number. In  mathematics, 
an ordinal number is a number that can represent a position in order (as opposed to a 
 cardinality). In the fi nite realm, the ordinal numbers and the cardinal numbers are the same, 
but we still have a reason to look at them separately. 

Whichth One?

 An easier way to ask for the position of x in the list L is this:  

 Whichth number in L is x? 

 The only problem is this: whichth isn’t a word. But what a useful word it (and whenth) 
would be! If a new acquaintance mentioned that she had six siblings, you could ask 
whichth oldest she was. You could ask some one whenth they arrived at work this 
 morning, if you wanted to fi nd out if they arrived fi rst, second, third, or so on, as 
 opposed to what time they arrived. Or in whichth place their daughter’s team fi nished 
in the soccer league this season.

 You can ask these questions directly in Chinese, it turns out, because (roughly  speaking) 
there’s a word for th: 第. Just as you can fi nd out how many of something there are by 
asking “how many” (几个?) there are, you can fi nd out the position of something by 
 asking whichth (第几个?) one it is. It’s amazing that English has no word for whichth. 

 Notice that I didn’t give a mathematical version of the ordinal number question, nor have 
I defi ned a notation for the ordinal number representing x’s position in L. The cardinal  number 
question about S had a simple answer |S|. One reason we have no “ordinality”  function is 
that the notion isn’t well-defi ned. While x may indeed appear in the 47th position of the list 
L, it may also appear in the 46th position. Other values of x may not appear in the list at all. 
Cardinality is well-defi ned but not “ordinality,” at least not in a way that’s simply analogous. 

Description Sentence
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 SQL, however, provides functions for both cardinality (COUNT) and ordinal position (ROW_
NUMBER, RANK, and DENSE_RANK). If the elements of L are ordered by their xCol value, and 
@x is one of the values in the column xCol, all of @x’s position(s) in L can be retrieved with 
this query: 

WITH T AS (

  SELECT

    ROW_NUMBER() OVER (ORDER BY xCol) as rn,

    xCol

  FROM L

)

  SELECT rn

  FROM T

  WHERE xCol = @x

 The two rank functions answer a more precise question, and that question, unlike the question 
“What is the row number of x?,” is well-defi ned.  

Set Operators

 Arithmetic operators such as +, ≥, and – are surely familiar to you. Some of them, like +, 
 combine numbers and give a numerical result as in the expression 4+11 (which equals 15). 
Others, like ≥, express relationships. When these operators appear between numbers, the 
resulting expression yields a truth value, not another number. For example, ≥ expresses the 
relationship “greater than or equal to.” The value of the expression 5≥5 is true, and –8≥–5 is 
false. 

 The algebra of sets includes its own collection of useful operators. Like the operators of 
 arithmetic, some of the set operators combine two sets and yield a set, while others express 
relationships and yield a truth value. I’ll defi ne the most important set operators in this 
 section, and because the notation for these operators isn’t universal, as it is for the operators 
of arithmetic, I’ll mention alternate notations or defi nitions when they exist. 

Defi nition of Subset

 Let A and B be sets with the same universe U. The set A is called a subset of B (denoted 
A�B) if every element of A is an element of B. Either of the following can also be used 
as the defi nition: 

 A�B if and only if 1A(x) � 1B(x). 

 A�B if and only if for every x�U, (x�A�x�B). 

 Note The subset relation is sometimes denoted as �, but for some authors, A�B means 
something different: that A is a proper subset of B (a subset of B that is not equal to B).  
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 The following results follow from the defi nition of subset: 

■  The empty set is a subset of any set: For any set S, ��S. This follows easily from the 
fact that 1�(x) = 0 for all x�U.  

■  If A�B, then |A| ≤ |B|. From earlier results about characteristic functions, the terms in 
the sum for |B| are each less than or equal to the corresponding term in the sum for |A|. 
Note that conversely, |A| ≤ |B| does not imply that A�B. 

Defi nition of Set Complement

 Let S be a set with universe U. The complement of S, denoted SC, is the set containing 
those elements of U that are not elements of S. Either of the following properties of the 
complement of S can also be used as the defi nition: 

 The characteristic function of SC is the function f(x) = 1 – 1S(x).  

 SC = {x�U : x�S}. 

 Note The complement of S is sometimes denoted as S’ or S–.  

 Several results follow from the defi nition of the complement: 

■  Every element of U is an element of S or an element of SC but not both. 

■  The complement of the complement of S is S: (SC)C = S. 

■  The complement of the entire domain of discourse U is the empty set: UC=�, and the 
complement of the empty set is the entire domain of discourse U: �C=U. 

Union and Intersection

 Given two sets with the same universe, we may need to consider the single set of elements 
contained in either set. This is the union of the sets. Similarly, we may wish to consider the set 
of elements contained in both sets. This is the intersection of the sets.  

Defi nitions of Union and Intersection

 Let A and B be sets with the same universe U.  

 The union of A and B, denoted A�B, is the set containing those elements of U that are 
either elements of A or elements of B (or elements of both). Either of the following can 
also be used as the defi nition: 

 1A�B(x)= max(1A(x),1B(x)). 

 A�B = {x�U : x�A or x�B}. 
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 Let A and B be sets with the same universe U.  

 The intersection of A and B, denoted A�B, is the set containing those elements of U 
that are both elements of A and elements of B. Either of the following can also be used 
as the defi nition: 

 1A�B(x)= min(1A(x),1B(x)). 

 A�B = {x�U : x�A and x�B}. 

Set Difference

 Sometimes, we may wish to consider those elements of a set that are not elements of a 
 second set. The set difference operator gives us the result. 

Defi nition of Set Difference

 Let A and B be sets with the same universe U.  

 The set difference of A and B, denoted A�B, is the set containing those elements of U 
that both elements of A and non-elements of B. Either of the following are equivalent 
and can be used as the defi nition: 

 1A�B(x)= max(0,1A(x)-1B(x)). 

 A�B = A�Bc. 

 A�B = {x�U : x�A and x�B}. 

Set Partitions

 Given a set S with universal set U, and an element x� U, x is either in S or SC, but not both. 
The two sets S and SC are said to partition U, and {S,SC} is called a partition of U. Note that 
the word partition is used both as a verb and as a noun. More generally, a collection of sets 
 partitions S if every element of S is in exactly one of the sets. 

Defi nition of Set Partition

 Let S be a set, and let A1, A2, . . ., Ak be subsets of S. The sets A1, A2, . . ., Ak partition S, 
and {A1, A2, . . ., Ak} is a partition of S, if the following two conditions hold: 

 The union of the sets Ai is S. 

 The sets Ai and Aj are disjoint whenever i≠j. 

 Sets with the latter property are called pairwise disjoint.  

C02626034.indd   63 2/20/2009   7:42:22 PM



64 Inside Microsoft SQL Server 2008: T-SQL Querying

 If {A1, A2, . . ., Ak} is a partition of S, the answer to “In which Ai is the element x?” is 
 well-defi ned. 

 We’ve already seen one example of a partition: Given a set S with universe U, the sets S and 
SC partition U. 

Generalizations of Set Theory

 An understanding of basic set theory is a great help, but it’s important to recognize its 
 limitations in describing the world, and in the case of this book, T-SQL querying. I’ve already 
addressed some of the ways in which mathematics fails to represent the world precisely, but 
one generalization of set theory is particularly relevant to databases. 

Multiset Theory

 It’s a mathematical fact that the sets {2, 8, 4, –4}, {–4, 8, 4, 2}, and {2, 4, 2, 8, –4, 8, 2, 4, –4} are 
equal, but you would probably agree that the last set listed “contains three twos.” Of course, 
a set S of numbers can’t “contain three twos.” It can either contain a two or not contain a 
two. If it contains a two, 1S(2) = 1. If it doesn’t, 1S(2) = 0, and nothing else is possible. 

 It’s possible to accommodate the idea of “multiple membership” in set theory, except that it 
would no longer be set theory, it would be multiset theory, sometimes known as the theory 
of bags. The simplest way to begin developing a theory of multisets is by generalizing the 
 characteristic function.  

The Multiplicity Function of a Bag

 If B is a bag (or multiset) with universe U, the multiplicity function of B, denoted MB, is 
the function on U that tells how many copies of an element B contains.  

 Many defi nitions from set theory extend almost unchanged to bag theory if the  characteristic 
function is replaced by the multiplicity function. For example, the multiplicity function of 
an  intersection can be taken to be the minimum of the multiplicity functions. Other notions 
are far more problematic. It’s not clear how to defi ne a multiset’s complement, for example. 
Should universal sets contain an unlimited number of each of their elements, and should 
the complement of any fi nite multiset be infi nite? Because set cardinalities have more than 
one “size” of infi nity, which size should be used for multisets? 

 The problems with multiset theory often lead database theoreticians to outlaw  duplicate 
rows within a table—for example, by requiring primary key constraints. It’s harder to 
 prevent result sets from containing duplicates, however. This would require changing the 
 meaning of SELECT to what is now written as SELECT DISTINCT, and this would create other 
 complications, particularly with aggregates. T-SQL, like most SQL dialects, supports multisets 
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in most places but not everywhere. T-SQL, for example, doesn’t support EXCEPT ALL and 
INTERSECT ALL, only EXCEPT DISTINCT and INTERSECT DISTINCT. 

Predicate Logic

 Predicate logic is a mathematical framework for representing and manipulating expressions 
that are true or false: facts and falsehoods. 

Logic-Like Features of Programming Languages

 T-SQL, like many programming languages, incorporates true-false expressions and logical 
operators in several places, not all of which are, strictly speaking, related to predicate logic.  

 Note A true-false expression is called a Boolean expression (after the logician George Boole). 
Boolean logic begins with the study of Boolean expressions. 

The Keyword IF in Control-of-Flow Statements

 Although the focus of this book is on T-SQL’s query language, and SQL’s central (or at least 
most interesting) paradigm is set based, “regular” programming based on decision and rep-
etition is also implemented. For example, many of this book’s code samples begin with a 
conditional statement to delete an object if it already exists. You encountered this statement 
in Chapter 1, “Logical Query Processing”: 

IF OBJECT_ID('dbo.Orders') IS NOT NULL DROP TABLE dbo.Orders;

 This is a valid T-SQL statement, and it conforms to the syntax SQL Server Books Online gives 
for an IF. . .ELSE statement: 

IF Boolean_expression { sql_statement | statement_block }
[ELSE { sql_statement | statement_block } ]

 The Boolean expression is OBJECT_ID(‘dbo.Orders’) IS NOT NULL, and the sql_statement is 
DROP TABLE dbo.Orders. 

 The way in which a program implements decision making or repetition is often referred to as 
the program’s logic. Formal logic, however, isn’t about what happens when a program runs, 
nor is it about the way in which programs implement algorithms to solve problems.  

 In particular, the expression if <this> then <that> in formal logic bears nothing more than a 
superfi cial resemblance to the statement IF <this> THEN <that> in a programming language. 
The former is a sentence that in its entirety is either true or false; the latter is an instruction to 
produce behavior that depends on whether <this> (not the entire statement) is true or false. 
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 While formal logic might not have anything to say about an IF statement in SQL, it has 
 plenty to say about one particular element of an IF statement: the part that SQL Server Books 
Online calls the Boolean_expression and that I called <this> in the preceding paragraph. 
Boolean expressions appear in other control-of-fl ow structures, such as SQL’s WHILE loop. 
Additionally, logic provides a framework that allows us to validate programs—to determine 
whether they in fact express the desired intent and produce the correct control-of-fl ow. 

Propositions and Predicates

 Propositions and predicates are types of Boolean expressions: expressions that evaluate to 
one of the two truth values in Boolean logic: True or False. 

Defi nitions of Proposition and Predicate

 A proposition is a statement that is either true or false. A predicate is a proposition 
that contains one or more variables or parameters; in other words, a predicate is a 
 parameterized proposition. Both propositions and predicates are Boolean expressions. 

 For example, “12 + 7 = 21” is a proposition (it happens to be false). “It is raining” is also a 
proposition, although its truth value depends on context and interpretation. “It is raining” 
answers the question “Is it raining?” For the question to have an answer of yes or no, context 
must provide the answers to “Where?” and “When?”, and the interpretation of “raining” must 
be specifi c enough to yield a clear yes or no answer.  

 Note In fact, the truth value of “12 + 7 = 21” also depends on context and interpretation. It 
depends on the interpretation of the symbols 12, +, 7, =, and 21. If this statement were made in 
the context of a lecture on octal arithmetic, the interpretations of 12 and 21 would be ten and 
seventeen, respectively, and the statement would be true. Alternatively, if 12 + 7 = 21 were part 
of a logic puzzle about an alternate universe where mathematical symbols were interpreted 
 differently, the truth value might be different. 

 Don’t forget the importance of context. I’ve seen plenty of unwelcome T-SQL surprises from 
propositions like (OrderDate > ‘12/01/04’). In the United States, ‘12/01/04’ represents December 
1, 2004, but in most of the rest of the world, it represents January 4, 2012. If you need to express 
the 2004 date in a context-free way, this is one option: ‘2004-12-01T00:00:00.000’. 

 Some propositions, while clearly true or false, may depend on more than one fact. For  example, 
“Panama and Norway are members of the United Nations” is true because Panama is a  member 
of the United Nations and Norway is a member of the United Nations. The proposition “Either 
the earth travels around the sun or the sun travels around the earth” is true because the earth 
travels around the sun. 
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 Other propositions assert the existence or universality of facts in a collection. For example, 
“Every order has been shipped” asserts many facts at once. “Someone is logged into the 
 system” asserts the existence of at least one fact. Database programming languages such as 
SQL are well equipped to handle these kinds of statements, though some can be expressed 
more  directly than others. As a tool, formal logic helps us express assertions like these precisely, 
 construct SQL statements to evaluate them, and build confi dence in our code’s correctness. 

Boolean Expressions in T-SQL

 Boolean expressions appear in the syntax of several T-SQL statements. Most important, 
Boolean expressions follow the keywords WHERE, ON, and HAVING to help fi lter a query’s 
result set and in CHECK constraints to provide data integrity. Boolean expressions also follow 
the keywords IF and WHILE to control program fl ow and repetition, and they appear in the 
CASE WHEN expression. 

Proposition or Predicate?

 I defi ned a proposition as a statement that has a specifi c truth value. The expression x<3 
 contains a variable and has no fi xed truth value and is therefore a predicate, not a proposition. 
On the other hand, the expression x<3+x also contains a variable, but it does have a fi xed truth 
value, or at least it seems to in the context of real numbers. Unlike for x<3, the truth of x<3+x 
doesn’t depend on the value of x. Does this make x<3+x a proposition? 

 The name doesn’t really matter. It’s more important to understand what things mean, not 
what to call them. When we say that x<3+x is true, we mean that it’s true for all x-values. 
We could also consider whether x<3 is true for all x-values, and our conclusion would be 
that it’s not. In the same sense that x<3+x is true, then x<3 is false, but we aren’t usually so 
quick to assign a single truth value to the expression x<3. New terms are sometimes used to 
 distinguish situations like this: x<3+x might be called an identity, and x<3 might be called an 
equation or inequality. These words can be useful, but they aren’t easy to defi ne rigorously. 

 No matter how we name expressions, recognizing things that are implied or hidden—such 
as for all x-values—is useful and sometimes crucial. Perhaps the most ubiquitous example 
of something hidden or implied is a dependence on time. As I type this sentence, I can 
say truthfully that George W. Bush is the president of the United States. As you read the 
 sentence, however, my assertion is not true. There is a hidden dependence on time, and an 
understanding that adds “right now” to the proposition.  

Creating Propositions from Predicates

 It’s important to understand that any predicate with one variable x can be transformed into a 
proposition by preceding it with “For every x in the universe of discourse, . . .” The process of 
taking the open sentence P(x) and turning it into “For every x in the domain of discourse, P(x) 

C02626034.indd   67 2/20/2009   7:42:22 PM



68 Inside Microsoft SQL Server 2008: T-SQL Querying

is true” is called universal quantifi cation. Although there’s an x in “For every x in the domain 
of discourse, P(x) is true,” the truth value of the sentence doesn’t depend on a value of x. 
In fact, you can’t even plug in a value of x. 

 Universal quantifi cation is one of three important ways to create a proposition from an 
open sentence. Another is existential quantifi cation, preceding the proposition with “There 
 exists at least one value of x in the domain of discourse for which.” The following  quantifi ed 
 statement is true: “There exists at least one real number x for which x < 3.” 

 A third way to create a proposition out of an open sentence is to provide a specifi c value for 
the variable. If P(x) is the statement x<3, then P(2.5) is the statement “2.5<3”, and is true. P(8), 
however, is false. 

Ways to Give a Truth Value to a Predicate 

 Let P(x) be a predicate, and let U be the universe of discourse for values of x. Also let z 
be a particular element of U. Then each of the following is a proposition: 

■  P(x) is true for every x�U. This is notated as: �x�U, P(x). 

■  P(x) is true for at least one x�U. This is notated as: �x�U such that P(x). 

■  P(z)  

 The formalism doesn’t prevent mathematicians and others from asserting the truth of 
 something like x<x+3. But when a mathematician asserts the truth of x<x+3, it’s understood 
that she means �x�U, x<x+3. 

 It’s also common practice not to specify the quantifi er in the case of if-then statements. If 
the universe of discourse is the set of integers, the statement “If n is positive, then n2 > n” is 
 understood to mean this: For all integers n, (n is positive � n2 > n). 

The Law of Excluded Middle

 The law of excluded middle requires that every well-formed proposition is either true or 
false—that there are two truth values and no more. The word middle means some middle 
ground on the true-false scale that is neither true nor false. We take the law of excluded 
middle as a principle of logic. 

 The law of excluded middle is what allows mathematicians to prove theorems with the 
 technique known as proof by contradiction.  

And, Or, and Not

 If P and Q are propositions, they can be combined using logical operators to form  other 
 propositions. For example, the logical expression P∧Q (spoken as P and Q) is also a 
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 proposition, and its truth value depends on the truth values of P and Q. This operator, 
logical and, is one of four basic logical operators. 

Defi nitions of the Basic Logical Operators

Let P and Q be propositions. The three most basic logical operators are defi ned in Table 2-8.

TABLE 2-8 Defi nitions of Logical Operators

Operator Notation Meaning True if and Only if: Alternate Name

Not ¬P Not P P is false. Negation

And P∧Q P and Q Both P and Q are true. Conjunction

Or P∨Q P or Q (or both) At least one of P and Q 
is true.

Disjunction

 Note that conjunction and disjunction are commutative operators: the positions of P and Q 
can be interchanged without changing the truth value. 

What Not Is Not

 Combining and transforming mathematical sentences with logical operators is important, 
and generally straightforward. However, as is often the case in life, what seems simplest is 
what causes the most trouble because we tend to be less careful about it. Applying the 
 logical operator not, or negating propositions, is not something to do lightly. All too often, it 
seems right (but isn’t) to negate a proposition by negating everything in sight or by using an 
invalid generalization. Here’s one example: the negation of the proposition x<3 is x � 3. On 
the other hand, the negation of –1<x<3 is not –1�x�3. (What is the correct negation?) 

When And Means Or

 In English and other natural languages, the words and and or are used in a wide variety of 
situations. In some of these situations they have meanings that seem to contradict their 
meanings as logical operators. Because of this, you should never be hasty when you attempt 
to express a real-world notion logically. 

 In the WHERE clause of a query, combining conditions with AND serves to make the number 
of rows in the result set smaller. However, the English and often corresponds not to the AND 
of a query’s WHERE clause but to the logical operator OR or the set operator UNION. 

 Consider the following English request:  

 Please bring me the latest invoices for customer 45 and customer 17.  

 This doesn’t translate into the query predicate custid=45 AND custid=17. Instead, it probably 
translates into the query predicate custid=45 OR custid=17. On the other hand, this English 
request doesn’t follow the same pattern:  

 Please bring me the latest recipes for ham and eggs. 

Operator Notation Meaning True if and Only if: Alternate Name

C02626034.indd   69 2/20/2009   7:42:22 PM



70 Inside Microsoft SQL Server 2008: T-SQL Querying

Exclusive Or

 In English, when or doesn’t mean and, it still doesn’t always mean the same thing as logical 
or. Logical or means one or the other or possibly both. Sometimes the English word means 
one or the other but not both, which in a mathematical discussion is distinguished by the 
name exclusive or. An example of this can be found on many restaurant menus in the phrase 
“includes soup or salad.”  

Logical Equivalence

 Two value expressions of any kind are considered equal if they have the same value: 3+3 
equals 6. Expressions that contain variables are considered equal if they are equal for any 
particular variable values: Regardless of what x, y, and z happen to be, {x,y,z} = {a,x,y,z} � 
{b,x,y,z}. Predicates, which are logical propositions containing variables, are said to be logically 
equivalent if they have the same truth value for any particular values of their variables. Several 
different symbols are used to represent logical equivalence and some very similar notions. 
I won’t get into any of the subtleties, and from among the possible symbols, which include 
�, �, and �, I’ll use the last one, the bidirectional double arrow. 

DeMorgan’s Laws

 Logical expressions can be rewritten as equivalent logical expressions in a number of ways. 
Two of the most useful and important identities provide ways to rewrite negations, and they 
are called DeMorgan’s Laws, after Augustus DeMorgan. 

Statement of DeMorgan’s Laws

 Let P and Q be propositions. Then the following equivalences hold: 

 ¬(P�Q) � (¬P)�(¬Q). 

 ¬(P�Q) � (¬P)�(¬Q). 

Logical Implication

 Mathematical logic was developed largely as an attempt to justify the way in which 
 mathematicians prove theorems through inference and deduction. One of the most 
 important rules of inference is called modus ponens. Modus ponens is the rule of inference 
that allows us to infer the truth of one proposition Q from the truth of another proposition P 
when it’s known that P implies Q. An argument using modus ponens might go like this: “The 
law is clear: if you drive faster than 55 miles per hour on this highway, you have broken the 
law. You were driving faster than 55 miles per hour, therefore you have broken the law.” 
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 Logical inference isn’t the focus of this chapter, but we will take a moment to consider 
 propositions that take the form of logical implication. 

If P, Then Q

 Suppose P and Q are valid logical propositions. Then if P, then Q is a valid logical proposition. 
The proposition if P, then Q is denoted P�Q, and its truth value depends on the truth values 
of P and Q as follows. 

Defi nition of P�Q
 The proposition P�Q, read P implies Q or if P, then Q, is true when either P is false or 
Q is true (or both). The proposition P�Q is false when P is true and Q is false. More 
 concisely, (P�Q) � (¬P�Q). 

 There is more than one way to express an implication in words, and in mathematical logic, 
the following expressions are taken to have the precise meanings shown:  

  1. P unless Q means (¬Q)�P. 

  2. P only if Q means P�Q. 

  3. P, if Q means Q�P. 

 Note that unlike the logical operators � and�, the operator � is not commutative. The truth 
values of P�Q and Q�P are not necessarily the same. 

The Contrapositive

 The defi nition (P�Q) � (¬ P � Q), together with DeMorgan’s law for negating  conjunctions, 
yields the following fact: (P�Q) � (¬Q�¬P). The implication If not Q, then not P is called the 
contrapositive of If P then Q. In mathematics, it’s often easier to discover rules of  inference 
that validate the contrapositive form of an implication, and doing so is called proof by 
contrapositive. 

Vacuous Truths

 According to the defi nition of logical implication, the statement P→Q holds except when P 
is true and Q is false. In particular, it holds whenever P is false, regardless of the truth value 
of Q. As a result, some if-then statements are logically true but may sound false or seem 
 puzzling. For example, these propositions are both true: 

 If 1=0, the moon is made of cheese. 

 If the real number x is negative and positive, then x equals 11. 
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 In both propositions, the if part of the implication is false, so the entire if-then statement 
is true. Because implications fi gure prominently in logical inference, we’re accustomed to 
 encountering implications in a context where the if part is true, and the implication allows 
the then part to be deduced. This isn’t the case in the preceding statements. No inference is 
possible, and the statements provide no information about the truth value of the then part. 

 An implication P→Q is called vacuously true if P is false. Similarly, the quantifi ed statement 
�x�U (P(x)�Q(x)) is called vacuously true if P(x) is false for all values of x in its domain of 
discourse. The reason for this terminology is simple: the statement �x�U (P(x)�Q(x)) asserts 
that Q(x) holds whenever P(x) holds. If P(x) never holds, the statement asserts nothing at all. 

Quantifi cation

 Statements that assert either the universality or the existence of some fact over a universe of 
discourse are called quantifi ed statements. Here’s an example of each kind. The words in  italic 
are the ones that indicate quantifi cation. 

 Universally quantifi ed statement The Philharmonic has performed every Haydn symphony. 

 Existentially quantifi ed statement The Philharmonic Orchestra has performed a Haydn 
symphony. 

Negating Quantifi ed Statements

 The ability to negate quantifi ed statements is a valuable skill for programmers, especially 
SQL programmers. As Itzik shows later in this book, some problems are easier to solve when 
analyzed using reverse logic. Instead of fi nding all the answers to a question, fi nd everything 
that isn’t not an answer.  

 Earlier in the chapter, I warned you that to negate a proposition, you can’t simply  negate 
everything in sight. The logical opposite of an advertising claim that “all our books 
are discounted” is not “all our books are not discounted,” nor is it “none of our books are 
 discounted,” nor is it “all our nonbooks are discounted.” The actual logical opposite—which 
expresses simply that the claim is false—is “it is not true that all our books are discounted,” or 
equivalently, “at least one of our books is not discounted.” While we might also say this more 
simply as “not all our books are discounted,” this use of “not all” invites misinterpretation or 
at least mistranslation when translated into a computer program. 

 Two general principles concern the negation of quantifi ed statements. Universally quantifi ed 
statements are false if there is one exception to the universal claim they make. Existentially 
quantifi ed statements are false if there are no examples of the existence they claim. 

 Generally, universal statements may be hard to prove (because their validity must be verifi ed 
universally) but easy to disprove (because one exception violates the universality). On the 
other hand, existential statements may be easy to prove (only one valid example is enough) 
but hard to disprove (because everything must be proven invalid). 
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 Here are the rules for negating quantifi ed propositions, using notation. Recall that � means 
for all, and � means there exists. 

Rules for negating quantifi ed predicates

 Let P(x) and Q(x) be predicates, where U is the domain for x. 

 ¬(�x�U, P(x)) � �x�U for which ¬ P(x) 

 �x�U, P(x) � ¬(�x�U for which ¬ P(x)) 

 ¬(�x�U for which P(x)) � �x�U, ¬P(x) 

 �x�U for which P(x) � ¬(�x�U, ¬P(x)) 

 These rules generalize DeMorgan’s Laws. If U={a,b,c,…}, to say that P(x) is true for all 
 elements of U is to say that P(a), P(b), P(c), … are all true, or equivalently, that the  conjunction 
P(a)�P(b)�P(c)�. . . is true. Similarly, to say that there exists at least one value x in U for 
which P(x) is true is to say that either P(a) or P(b) or P(c) or … is true, or equivalently, that 
P(a)�P(b)�P(c)�. . . is true. 

Multiple Quantifi cation

 This chapter’s fi rst example contained two quantifi ers. The membership condition for the set 
S was �e�USAEmployees (�o�Orders : (handled(e,o,c))), hence the condition for c not to be a 
member of S was this: ¬(�e�USAEmployees (�o�Orders : (handled(e,o,c)))). 

 The rules for negating quantifi ed propositions allow us to rewrite this condition as follows: 

 ¬(�e�USAEmployees (�o�Orders : (handled(e,o,c)))) 

 � �e�USAEmployees for which ¬(�o�Orders : (handled(e,o,c))) 

 � �e�USAEmployees for which (�o�Orders, ¬handled(e,o,c)) 

 Each version gives the condition for not returning a particular customer c, and the last one 
can be expressed in English this way: There is some employee e from the USA for whom we 
can say this about every order o of the company: it is not the case that o was handled by 
 employee e for customer c. 

Alternatives and Generalizations

 There a number of alternatives and generalizations to predicate logic. Some model true-false 
statements differently, and others handle more general notions of truth. In this section, I’ll 
briefl y mention one alternative framework and two generalizations to predicate logic.  
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Boolean Algebra

 It’s possible—and for many purposes very useful—to place logic into a framework where 
the truth values True and False are associated with the numbers 1 and 0, respectively. In fact, 
SQL Server’s integer data type BIT is often used for logical calculations. SQL Server provides 
several integer operators, &, ~, ,̂ and |, that apply calculations bitwise, or separately on the 
individual bits that make up the integer’s internal representation. Loosely, these four operators 
 correspond to and, not, exclusive or, and or, respectively. As you might guess, T-SQL’s ^ operator 
is easily confused with the operator �, which is used in logic to mean and. In addition (no pun 
intended), the bitwise operator & is easily confused with arithmetic’s + operator. 

Three-Valued Logic

 In the real world, not every important question can be answered. In this very brief treatment 
of three-valued logic, we’ll see what happens if we abandon the law of excluded middle and 
allow a third truth value in addition to the Boolean values True and False. 

 T-SQL supports Boolean values only for predicates in SQL statements, not as persisted data 
in a table. However, T-SQL, like most database query languages, supports three truth values: 
True, False, and UNKNOWN. 

 To some extent, a third truth value representing UNKNOWN can be accommodated in 
propositional logic. Recall the law of excluded middle. It states that for any proposition P, 
the proposition (P is true or P is false) holds. The law of excluded middle doesn’t address the 
discoverability of P’s truth value; it only asserts that P has one. In the real world, however, the 
discoverability of truth matters, and the need for a third truth value comes up in the context 
of missing information.  

 Missing information can cause havoc in a business setting. Suppose you fi nd an empty folder 
among your customer fi les; you know a customer fi le should be there, but the fi le is missing, 
and you have no way to identify the missing customer. 

 All at once, it becomes impossible to answer a multitude of questions: How many  customers 
are in arrears? Is Maria Cameron already a customer (assuming she isn’t found in any of the 
nonmissing fi les)? These questions have an answer, but until the missing fi le is found, the 
 answer will remain unknown. Accommodating UNKNOWN as a truth value in predicate logic 
is much more complicated than in propositional logic. The following example suggests that 
at best, the waters are murky when UNKNOWN is in the picture. 

 Recall that set theory and logic were linked via the idea of the characteristic function of a 
set. If the truth value of propositions can be unknown, the truth value of set membership 
can also be unknown, and a third value (a value other than 0 or 1) is needed for 1S(x). Before 
long, however, you’ll fi nd yourself needing to distinguish “the value is defi nitely unknown” 
from “we don’t know whether the value is true, false, or unknown.”  

C02626034.indd   74 2/20/2009   7:42:23 PM



 Chapter 2 Set Theory and Predicate Logic 75

Fuzzy Logic

 If you thought three-valued logic was a signifi cant departure from the world of True and 
False, fuzzy logic is a further departure. The premise of fuzzy logic is that absolute truths or 
falsehoods aren’t all we care about or know. We may decide to include a fact in our model 
that we are relatively certain of, but not absolutely so. In fuzzy logic, the discrete values False 
and True are replaced by the continuum of numbers from zero to one. A zero is an absolute 
falsehood, a one is an absolute truth, and in between are the shades of gray.  

 A system can operate according to a threshold. You might only want to consider facts that 
are 99.5 percent likely to be true. Someone else might be willing to deal with 90 percent 
 likelihood. Creating a rigorous mathematical framework for fuzzy logic is a serious challenge. 

Relations

 Operators such as = and <, which compare two elements of the same kind and yield a truth 
value as a result, are called relations. A relation ~ on elements of a set U can be considered 
as the set {(u,v) � U×U : u~u} of pairs of elements that satisfy the relation. Alternatively, ~ can 
be considered as a predicate with two variables, each of which has U as its domain. 

The Refl exive, Symmetric, and Transitive Properties

 The defi nition of > in the earlier rock-scissors-paper example wasn’t typical. Most directional 
or bidirectional comparison operators in mathematics, such as <, ≥, and =, are transitive. 
Here’s a precise defi nition of the transitive property and some other useful properties a 
 relation can have. 

Properties of Relations

 Let ~ be a relation on the universal set U. In other words, let u ~ v have a  well-defi ned 
truth value whenever u and v are elements of U. The relation ~ is said to be  refl exive, 
 irrefl exive, symmetric, antisymmetric, or transitive according to the following 
defi nitions: 

■  Refl exive The relation ~ is refl exive if x~x is true for every x in U. 

■  Irrefl exive The relation ~ is irrefl exive if x~x is false for every x in U. 

■  Symmetric The relation ~ is symmetric if x~y and y~x always have the same 
truth value, when x and y are elements of U. 

■  Antisymmetric The relation ~ is antisymmetric if x~y and y~x always have 
the opposite truth value, when x and y are elements of U. 

■  Transitive The relation ~ is transitive if whenever x~y and y~z are true, x~z is 
also true, when x, y, and z are elements of U. 
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 Although the names might suggest otherwise, it’s not the case that every relation is either 
refl exive or irrefl exive (or either symmetric or antisymmetric). An example of a relation that is 
neither refl exive nor irrefl exive is the relation “is the reverse of” on words. There are words w 
for which w is the reverse of w, such as radar, but there are also words for which w is not the 
reverse of w, like sonar. 

Not All < Operators Were Created Equal

Just as it was important to know a set’s universe U, it’s important to know a relation’s 
 universe—it’s part of what defi nes the relation. The symbol < can appear between numbers 
or strings in SQL, but the relation < between numbers is not the same thing as the relation < 
between strings. If you aren’t careful, as the following T-SQL example shows, you can run into 
trouble or at least what looks like trouble: 

DECLARE @x VARCHAR(10);

DECLARE @y INT;

DECLARE @z VARCHAR(10);

SET @x =  '1000';

SET @y =  '2000';

SET @z = '+3000';

SELECT

  CASE WHEN @x < @y THEN 'TRUE' ELSE 'FALSE' END AS [x<y?],

  CASE WHEN @y < @z THEN 'TRUE' ELSE 'FALSE' END AS [y<z?], 

  CASE WHEN @x < @z THEN 'TRUE' ELSE 'FALSE' END AS [x<z?]

This produces the following output, which appears to contradict the transitivity of the T-SQL 
operator <. 

x<y?  y<z?  x<z?

----- ----- -----

TRUE  TRUE  FALSE

There’s no contradiction because technically “the T-SQL operator <” is ambiguous. The code 
sample has two different less than operators: the < operator for numbers, which we might 
call <n, and the < operator for strings, which we might call <s . The rules of T-SQL require 
that the expression <string> < <number> be evaluated as CAST(<string> AS <number>) < 
<number>. 

This T-SQL batch shows what’s going on:  

DECLARE @x VARCHAR(10);

DECLARE @y INT;

DECLARE @z VARCHAR(10);

SET @x =  '1000';

SET @y =  '2000';

SET @z = '+3000';

DECLARE @x VARCHAR(10);

DECLARE @y INT;

DECLARE @z VARCHAR(10);

SET @x =  '1000';

SET @y =  '2000';

SET @z = '+3000';

SELECT

  CASE WHEN @x < @y THEN 'TRUE' ELSE 'FALSE' END AS [x<y?],

  CASE WHEN @y < @z THEN 'TRUE' ELSE 'FALSE' END AS [y<z?],

  CASE WHEN @x < @z THEN 'TRUE' ELSE 'FALSE' END AS [x<z?]

DECLARE @x VARCHAR(10);

DECLARE @y INT;

DECLARE @z VARCHAR(10);

SET @x =  '1000';

SET @y =  '2000';

SET @z = '+3000';
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SELECT

  CASE WHEN @x < @y THEN 'TRUE' ELSE 'FALSE' END AS [CAST(x)<y?],

  CASE WHEN @y < @z THEN 'TRUE' ELSE 'FALSE' END AS [y<CAST(z)?], 

  CASE WHEN @x < @z THEN 'TRUE' ELSE 'FALSE' END AS [x<z?],

  CASE WHEN CAST(@x AS INT) < CAST(@z AS INT)

       THEN 'TRUE' ELSE 'FALSE' END AS [CAST(x)<CAST(z)?]

A Practical Application

At the beginning of this chapter, we considered a set S—the set of all customers for whom 
every employee from the USA has handled at least one order. We’ll fi nish the chapter by 
 considering the set S once again, from a different perspective, and turn the result into a 
 query. I’ll also show you how to represent the characteristic function of a set in SQL. 

Run the following T-SQL batch to set the database context for this section’s queries: 

USE InsideTSQL2008;

GO

In set-builder notation, we were able to write S in this way: 

 S = {c�Customers : �e�USAEmployees (�o�Orders : (handled(e,o,c)))} 

 Consider the overall form of this defi nition in the following way: S is the set of customers for 
which something is true for every USA employee. If just a few employees are from the USA, 
let’s say e1, e2 , and e3, we can write the for every USA employee part as for employee e1 , for 
employee e2 , and for employee e3.  

 Still assuming there are only these three USA employees, this would be true: S is the set of 
customers c for which the following three conditions hold: 

  1. Employee e1 handled an order for customer c. 

 2. Employee e2 handled an order for customer c. 

  3. Employee e3 handled an order for customer c. 

 Equivalently, S is the set of customers c in all three of the following sets: 

  1. The set C1 of customers for whom employee e1 handled an order 

  2. The set C2 of customers for whom employee e2 handled an order 

  3. The set C3 of customers for whom employee e3 handled an order 

Do you see where this is leading? The set S can be written as an intersection of three sets: 
S = C1 � C2 � C3.  

SELECT

  CASE WHEN @x < @y THEN 'TRUE' ELSE 'FALSE' END AS [CAST(x)<y?],

  CASE WHEN @y < @z THEN 'TRUE' ELSE 'FALSE' END AS [y<CAST(z)?],

  CASE WHEN @x < @z THEN 'TRUE' ELSE 'FALSE' END AS [x<z?],

  CASE WHEN CAST(@x AS INT) < CAST(@z AS INT)

       THEN 'TRUE' ELSE 'FALSE' END AS [CAST(x)<CAST(z)?]

USE InsideTSQL2008;

GO
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 From this, we can express 1S, the characteristic function of S: 1S = min(1C1 ,1C2, 1C3). We can 
generalize this to the case in which we have any number of USA employees: in general, 
1S = min(1C(e)), where C(e) is the set of customers for whom employee e handled an order. 

 For an employee e, the function 1C(e) is easy to describe. It’s a characteristic function for a set 
of customers, so it has a value of 0 or 1 for each customer. Its value for a particular customer 
c is 0 if employee e never handled an order for customer c and 1 otherwise (if employee e did 
handle an order for customer c). 

 Here’s how to express the characteristic function 1C(e) in SQL, if the empid value of employee 
e is @empid. The following query’s result set is the set of ordered pairs (c, 1C(e)(c)), one pair 
for each customer: 

SELECT

  custid,

  CASE WHEN custid IN (

      SELECT custid

      FROM Sales.Orders AS O

      WHERE O.empid = @empid

    ) THEN 1 ELSE 0 END AS charfun

FROM Sales.Customers AS C

 The result set of this query contains one row for each customer, and the charfun value in that 
row is the value of the characteristic function of the set of customers served by the employee 
whose ID is @empid on the customer in the row: 1C(e)(c). 

 If for each customer c we want to fi nd the minimum value of 1C(e)(c) for all USA employees, 
we fi rst want a virtual table that contains for each customer a row for each characteristic 
function. We can do this by replacing @empid with the column value empid from the table 
HR.Employees. Then we can group by customer and fi nd the minimum among the characteristic 
function values. Here’s the query: 

WITH TheseEmployees AS (

  SELECT empid

  FROM HR.Employees

  WHERE country = 'USA'

), CustomerCharacteristicFunctions AS (

  SELECT

    custid, 

    CASE WHEN custid IN (

        SELECT custid

        FROM Sales.Orders AS O

        WHERE O.empid = E.empid

      ) THEN 1 ELSE 0 END AS charfun

  FROM Sales.Customers AS C

  CROSS JOIN TheseEmployees AS E

) 

  SELECT

    custid, MIN(charfun) as mincharfun

  FROM CustomerCharacteristicFunctions

  GROUP BY custid

  ORDER BY custid;

WITH TheseEmployees AS (

  SELECT empid

  FROM HR.Employees

  WHERE country = 'USA'

), CustomerCharacteristicFunctions AS (

  SELECT

    custid,

    CASE WHEN custid IN (

        SELECT custid

        FROM Sales.Orders AS O

        WHERE O.empid = E.empid

      ) THEN 1 ELSE 0 END AS charfun

  FROM Sales.Customers AS C

  CROSS JOIN TheseEmployees AS E

) 

  SELECT

    custid, MIN(charfun) as mincharfun

  FROM CustomerCharacteristicFunctions

  GROUP BY custid

  ORDER BY custid;
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This query produces the following result (abbreviated): 

custid      mincharfun

----------- -----------

1           0

2           0

3           0

4           0

5           1

6           0

7           0

8           0

9           1

...

   

When the minimum value of 1C(e)(c) for all USA employees equals 1, customer c is in the set S. 
This observation leads us to the query in Listing 2-4, which produces the list of customers for 
whom every employee from the USA has handled at least one order. Listing 2-4 also includes 
the code to create and drop a supporting index for this query. 

LISTING 2-4 Query to fi nd customers who were served by every USA employee

CREATE INDEX sk_custid_empid ON Sales.Orders(custid,empid);

GO

WITH TheseEmployees AS (

  SELECT empid

  FROM HR.Employees

  WHERE country = 'USA'

), CharacteristicFunctions AS (

  SELECT

    custid, 

    CASE WHEN custid IN (

        SELECT custid

        FROM Sales.Orders AS O

        WHERE O.empid = E.empid

      ) THEN 1 ELSE 0 END AS charfun

  FROM Sales.Customers AS C

  CROSS JOIN TheseEmployees AS E

) 

  SELECT

    custid 

  FROM CharacteristicFunctions

  GROUP BY custid

  HAVING MIN(charfun) = 1

  ORDER BY custid;

GO

DROP INDEX Sales.Orders.sk_custid_empid;

CREATE INDEX sk_custid_empid ON Sales.Orders(custid,empid);

GO

WITH TheseEmployees AS (

  SELECT empid

  FROM HR.Employees

  WHERE country = 'USA'

), CharacteristicFunctions AS (

  SELECT

    custid,

    CASE WHEN custid IN (

        SELECT custid

        FROM Sales.Orders AS O

        WHERE O.empid = E.empid

      ) THEN 1 ELSE 0 END AS charfun

  FROM Sales.Customers AS C

  CROSS JOIN TheseEmployees AS E

) 

  SELECT

    custid 

  FROM CharacteristicFunctions

  GROUP BY custid

  HAVING MIN(charfun) = 1

  ORDER BY custid;

GO

DROP INDEX Sales.Orders.sk_custid_empid;
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 This query produces the following result, which correctly lists the customers in S: 

Custid

-----------

5

9

20

24

34

35

37

38

39

41

46

47

48

51

55

63

65

71

80

83

84

87

89

 The query plan, shown in Figure 2-1, is surprisingly effi cient. The warning symbol on the 
Nested Loops operator signals a join without a join predicate. This warning always appears 
when there is a CROSS JOIN operator in the query, and it’s nothing to be alarmed about. 

FIGURE 2-1 Execution plan for the query in Listing 2-4 based on characteristic functions

 Whether this approach leads to effi cient queries depends on the details of the problem and 
the characteristics of the actual data. However, we can’t deny that this is a fl exible query. 
By changing the HAVING predicate, the query can easily be modifi ed to answer similar 
 questions. Here is one example: To obtain those customers for whom at least one USA 
 employee, but not every one of them, has handled at least one order, use the same query 
with a different HAVING clause: HAVING MAX(charfun) = 1 AND MIN(charfun) = 0.  
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Conclusion

 This chapter contained a brief introduction to two foundations of modern mathematics 
and computer science: set theory and predicate logic. Set theory and logic are particularly 
 important to understanding SQL and relational databases. Along the way, you learned some 
specifi c techniques, such as how to negate quantifi ed predicates, and some alternate ways 
to characterize sets and express logical propositions. One particular tool, the characteristic 
 function of a set, provided a valuable and fl exible key programming technique. 
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Chapter 3

 The Relational Model 

 Databases are central to information systems—they are the heart of applications. The 
 structure of a database, called a data model (or schema, also database design), specifi es a 
database. One of the most important models used for modern databases is the relational 
model. Although it is not the only data model, it is probably the most important one. The 
 relational model is used mainly for transactional databases—where an enterprise’s data is 
fi rst stored—as opposed to warehouse databases, which serve as a repository for  historical 
data. Compared to other contemporary data models, the relational model is particularly 
useful for transactional databases because data integrity can be declared and enforced by 
the model. Data integrity is the conformance of data to business rules. If your data is wrong 
the fi rst time it enters your enterprise, it has a negative impact on your complete business. 
For example, analytical systems would not help you improve your operations because of 
the common concept garbage in – garbage out. Another advantage to the relational model 
is that it is mathematically defi ned. Therefore, when modeling, you are not guided by best 
practices only; you can evaluate your design and fi rmly ascertain whether it is good or bad. 

 Relational database management systems (RDBMS), including Microsoft SQL Server, store data 
in relational format. Although the physical implementation varies by vendor, the  relational 
model provides a consistent user perception of the data for all RDBMS. In this chapter, I’ll 
 introduce the main concepts of the relational model. This knowledge will help you understand 
later chapters when you explore advanced queries.  

Introduction to the Relational Model

 The relational model was conceived in the 1960s by Edgar F. Codd, who worked for IBM. It is 
a simple yet rigorously defi ned conceptualization of how users perceive and work with data. 
It addresses the three major aspects of data processing in the following way, according to An 
Introduction to Database Systems, 8th edition by C. J. Date (Addison-Wesley, 2003): 

■  Structural The data is perceived by the user as tables and nothing but tables.  

■  Manipulative Users manipulate the data with an open-ended set of relational 
 operators. The operators constitute the relational algebra. 

■  Integrity The tables must satisfy defi ned integrity constraints. 

 The structural aspect can also be expressed by the Information Principle, which states that all 
information in a relational database is expressed in one (and only one) way as explicit values 
in columns within rows of a table. 

 In the relational model, a table is called a relation, and a row is called a tuple. In the next 
 section, I’ll introduce relations and tuples in more detail. 
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Relations, Tuples and Types

 A relation is the mathematical object that represents what database practitioners call a table. 
The elements of a particular relation, like the rows of a table, represent instances of some 
real-world entity, like person, place, thing, or event. The relation is the set of these elements, 
which are—mathematically—tuples. I’ll start by defi ning a tuple: A tuple is the set of its 
 attributes, each of which is represented by three things: the attribute’s name, the attribute’s 
type, and the attribute’s value. 

 Note The relational model uses more general notions of relation and tuple than those 
 introduced in Chapter 2, “Set Theory and Predicate Logic.” In Chapter 2, you learned about 
ordered tuples, which had well-defi ned positional parts: fi rst, second, and so on. Here, tuples 
still have well-defi ned parts, but those parts are unordered, and they are identifi ed by attribute 
names instead of ordinal positions. In Chapter 2, a relation was a set of ordered pairs from a 
Cartesian product. Here, a relation is a set of unordered tuples that have the same heading. The 
notions used in the relational model are more abstract, and making them mathematically precise 
is never intuitive. 

 The set of attribute names and types of a tuple, taken together, are called the heading of 
a tuple. You can think of the heading of a tuple as a form to be fi lled out; the form has 
 attribute names with blank spaces for values to be fi lled in. A tuple is a fi lled-in copy of a 
heading form. Tuple properties include the following: 

■  Every attribute of a tuple contains exactly one value of the appropriate type for each 
of its attribute names. Again thinking of a tuple as a fi lled-in copy of a heading form, 
there is exactly one value in each blank space (and it is of the appropriate type for the 
particular attribute).  

■  The attributes have no ordering ( just as the elements of a set have no ordering). 
Consequently, every attribute must have a distinct name because you cannot refer 
to an attribute using its position in a tuple. In terms of forms, the way in which the 
 attribute names are arranged on the heading form is irrelevant; only the names of the 
attributes matter, and, consequently, those names must be distinct. 

■  A subset of a tuple is a tuple (with fewer attributes). Again using the form analogy, one 
section of a form, viewed by itself, is still a form, but it may have fewer items. 

 Although it is possible to defi ne operators from relational algebra on tuples, you do not 
 manipulate individual tuples in a relational database. Operations are performed only on sets 
of tuples, that is, on relations. Tuples not only make up relations but also help defi ne them. 
A  relation consists of a set of tuples with the same heading, and we can call the  heading 
of these tuples the relation’s heading and vice versa. Similarly, we can think of relations 
as  having attributes. Relations with different headings are different types of relations. The 
data types of attributes, as opposed to the heading types of relations, are sometimes called 
 domains in the relational model to avoid overusing the word type. 
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 Just as the contents of a database table might change, a relation should be able to contain 
different sets of tuples at different times. The relations of the relational model are  actually 
variables—sometimes called relational variables, or relvars, and the value of a relational 
 variable of some type is a set of tuples of that type. We won’t always distinguish relations 
from relational variables of the same type, following common practice in other areas of 
mathematics. We often write “n is an integer” when we should more correctly write “n is an 
integer variable,” for example. The fact that a relation is a set of tuples has the following 
 important consequences: 

■  As is the case for tuples, the attributes of a relation have no ordering. 

■  Every attribute of a relation has one strongly defi ned data type. Every tuple of a 
 relation contains exactly one value of this type for each attribute.  

■  A projection of a relation is a relation, where a projection is an operation that selects a 
specifi c subset of attributes from a relation (and from all of its tuples). Projection is one 
of the most important operators in relational algebra. 

■  A relation has no duplicate tuples. This is a consequence of the fact that a relation is a 
set, and sets contain distinct elements. Because a relation’s tuples are distinct, they can 
be distinguished by some or all of their attribute values. A minimal subset of attributes 
that for any value of the relvar suffi ces to distinguish tuples is called a key. 

■  The order of tuples is insignifi cant. Again, this comes from set theory: the elements of 
a set are not ordered. This means that in a relation, terms such as fi rst, next, prior, last, 
and nth tuple are undefi ned. 

 I’ve now used the term type multiple times, tacitly assuming that you understand what a type 
is. Here’s a somewhat formal defi nition of a type: A type, which is also called a data type or 
a  domain, is a fi nite set of values, such as a fi nite set of integers. Although in mathematics, 
 universal sets (for example, the integers) can be infi nite, in a computer system, you always hit a 
limitation. Therefore, a set of possible values of a type is fi nite. Every value has exactly one most 
specifi c type. When I say “most specifi c,” I consider the possibility of type inheritance ( although 
type inheritance is not implemented in SQL Server yet). For example, the value 3 can be 
 considered a real number, an integer, or a natural number; natural number is the most specifi c 
type for it. In short, you can safely say that every value in a relational database has one type only. 

 A type consists of the following: 

■  A name 

■  One or more named possible representations: 

❏  One is physically stored. 

❏  At least one is declared to the users. 

■  A set of operators permissible on the type’s values 

■  Type constraints 
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 Every variable and every attribute has an explicit type, every operator returns a  result 
of some explicit type, every parameter of every operator has an explicit type, and  every 
 expression is implicitly of some type. Physical storage is not exposed to users; it is  system 
 dependent. A type constrains possible values in different ways: with explicit  constraints 
and with operators defi ned. For example, for integer type, you can defi ne the  operators 
Plus, Minus, and Multiply. The operator Divide is not defi ned as an integer for all pairs of 
 integers because the result can fall out of the integer domain. The natural numbers are the 
 integers with a constraint—the number must be positive (or, according to some  authors, 
 nonnegative). Operators and constraints are interleaved. Notice that the Minus  operator is 
not defi ned within the natural numbers, even though it was for the integers. 

 For a type to be useful, it has to implement at least two operators: a mutator operator, 
which allows updating variables and attributes of the type, and a selector operator, which 
 allows retrieving values of the type. Other operators can be defi ned by the creator of a 
type as  appropriate to the intended use of the type. Note that a type can have multiple 
 presentations and thus can have multiple selector operators. For example, a point in a plane 
can be represented in Cartesian or polar coordinate systems. 

 An important concept is whether a type is scalar or nonscalar. A nonscalar type has a set 
of user-visible and directly accessible components; a scalar type does not. Scalar types are 
also called atomic or encapsulated types. This description is somewhat vague. Is it clear 
whether a point in the coordinate plane is scalar? Both Cartesian and polar presentations 
have  user-visible components. However, if you operate on only whole points and never on 
the  individual coordinates, an individual point is indivisible and is therefore scalar. What 
about the type car? It defi nitely has user-visible components; still, you normally treat it as 
 indivisible and therefore scalar. Let me try to give a precise defi nition. A value is  scalar as 
long as you operate on it only with operators defi ned for its type. Operators might  retrieve 
or  update a single coordinate of a point, but as long as those operators are  defi ned on 
points (as  opposed to numbers), a point is still scalar. A collection of points stored in a string 
is  nonscalar if you need to operate with points retrieved from the string. If you use this 
 collection as a string and operate on it with string operators only, then this value is  scalar. 
How about a  collection of points that defi nes a polygon? If you defi ne a polygon type 
 explicitly, this is a  scalar type. If you operate with points that defi ne corners of the polygon 
through operations  defi ned on the polygon type, values of this type are still scalar. Note 
that this refl ects the real world. Sometimes you treat a value as a scalar of some type and 
 sometimes as a collection of components where each component has its own type. For 
 example, you drive a car as if it is a scalar value. When you take your car to a mechanic, 
 however, the mechanic may treat your car as a nonscalar collection of components. 

 In relations, only scalar (or atomic) attributes are allowed. This doesn’t mean that points in a 
plane cannot be attribute values of a relation; however, the values of the attribute have to be 
stored using the most specifi c type for the points—in other words, the point type and not 
as a string of coordinates. Which is the most specifi c type of a value? That depends on the 
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intended use. If you are developing a human-resources application, a picture of an  employee 
can probably be treated as scalar value of some binary type, and you would model a Subjects 
relation using a single attribute Picture. If you are developing a face-recognition application 
and need to analyze the picture using some vector graphics, you would model a Subjects 
relation using an associated Pictures relation that has its own, more detailed  attributes (or, 
 alternatively, a Subjects relation with detailed attributes of a picture instead of a single 
Picture attribute). 

 At any rate, the relational model is not limited to using a few specifi c types; it supports all 
 possible types. Some of the most common types are supplied by an RDBMS. These are called 
system types. In addition, an RDBMS should allow you to extend the set of system types 
with user-defi ned types. SQL Server allows the creation of user-defi ned types in versions 2005 
and later. 

The Meaning of Relations

 As I already mentioned, each relation represents some real-world entity, such as a person, 
place, thing, or event. An entity is a thing that can be distinctly identifi ed and is of business 
interest. The term entity class can be used instead of entity for a kind of thing (like “ person”) 
as opposed to a specifi c example or representation (like “Steve Kass,” which represents a 
 specifi c person). Each representation of an entity can be uniquely identifi ed, a fact that 
makes it possible to use a relation to represent an entity. Each representation of an entity 
plays an important role in the application or system it is represented in. This is the concept of 
 abstraction: in a database, you only have entity classes (and attributes of those entities) that 
have a reason to be there. Each representation of an entity can be described by one or more 
attributes. Relationships are associations between entities. A relation is a subset of the cross 
products of the entity sets involved in the relationship. Attributes give some information 
about entities that is of interest for the application. 

 The previous paragraph defi nes the meaning of relations in terms of entities and the 
 relationships among them, as defi ned by Peter Chen in his famous paper “The Entity-Relationship 
Model—Toward a Unifi ed View of Data,” referenced by most data-modeling books. The 
entity-relationship (ER) approach is also the most widely used approach to relational database 
modeling—fi nd entities, relationships, and their attributes. However, there is another approach 
to understanding what relations mean. I actually prefer the second approach because it is more 
natural. In this approach, you describe relations in terms of propositions and predicates. 

 In Chapter 2, you learned the defi nition of propositions and predicates. What does this 
 defi nition have to do with a relation? In natural language we make assertions about 
 entities of interest by statements of fact—or, in logic, by propositions. For example, this is 
a  proposition: The employee with ID number 17 is named Fernando, works in department 
D1, and was hired on July 19th, 2003. Generalized forms of propositions are predicates. For 
example, this is a predicate: The employee with ID number (Emp#) is named (Name), works 
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in department (Dept#), and was hired on (Hiredate). The four terms in parentheses are 
 placeholders or parameters that correspond to the four values in the preceding proposition. 
When you substitute parameters with specifi c values, a predicate reduces to an individual 
proposition. Here are the values for the parameters that reduce the predicate above to the 
proposition that precedes it: 

 (17; Fernando; D1; July 19th, 2003) 

 You can see that the parameters form a tuple. I wanted you to see that tuples in a  relation 
actually represent propositions. Just as tuples represent propositions, relation headers 
 represent the predicates for those propositions. I like this approach because it is very close to 
natural language. Just describe a business problem, fi nd predicates, and write them down—
you have your data model. Of course, you need a tool that converts predicates to relations. 
This natural language approach to modeling is called object-role modeling. It is  described 
in Information Modeling and Relational Databases, 2nd edition by Terry Halpin and Tony 
Morgan (Morgan Kaufmann, 2008). 

 But this is not a modeling book. You just need to understand what relations mean. You can 
think of them as containers of real-world entities or as predicates and propositions from 
natural language. Note that for the predicates I’ve mentioned so far, there are no constraints 
on the tuple values that turn them into propositions, except that they must be values of the 
attribute types. I will deal with constraints shortly; for now, let me offer an informal, generic 
statement of the kind of rule you enforce with constraints: A proposition that evaluates false 
for the relation predicate (header) cannot be a part of the relation at any time. 

Views (and Other Virtual Relations)

 Views are an important part of a relational database. Also, an important part of queries in an 
application are temporary relations (or rowsets in SQL Server terminology). A view is a virtual 
relation; it is actually a stored query that is evaluated at run time when needed. A database 
user, application developer, or application should not be able to distinguish a view from a 
 table. This is an important principle—the principle of interchangeability, which states that 
there should be no distinction between actual (sometimes called base) relations and virtual 
relations. This principle provides logical data independence in a relational database. Logical 
data independence can help you a lot with two problems: growth and  restructuring. If a  table 
in a database grows too large, resulting in poor performance, you can  subdivide it  manually 
into several new tables, then unite those tables into a view whose name is the  original table 
name. The new tables can even be in separate databases or on separate  servers. If you need 
to restructure a table and cannot change an application that uses it, you can  create a view 
that returns the original structure to the application. An application uses a view without 
knowing it is a virtual relation. However, views cannot provide total data independence. If 
you cannot hide all the changes of a table’s structure from an application with a view, you 
have to change the application as well. For example, you might need to add an attribute that 
has to be inserted by end users manually. 
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 This concept of interchangeability can be extended further to table expressions—queries 
that return relations inside outer queries. You probably already know about derived tables 
and common table expressions; you’ll learn how to use them effi ciently in Chapter 6, 
“Subqueries, Table Expressions, and Ranking Functions.” 

Naming Conventions

 Naming conventions help you make more intuitive designs and write clearer code. Your 
choice of convention is not as important as choosing a convention and using it consistently; 
I do not want to force a particular one on you. Conventions are a matter of history, taste, 
system limitations, and so on. Database designers tend to get really passionate about naming 
conventions. 

 I like the predicate-and-propositions approach to the meaning of relations. For example, 
I am repeating the proposition I already mentioned: “The employee with ID number 17 is 
named Fernando, works in department D1, and was hired on July 19th, 2003.” I suggest 
that you should always be able to re-create the predicates and the propositions. A tuple 
that represents this proposition is written in a relation with values only, like (17, Fernando, 
D1, 2003-07-19). It is easy to recreate this proposition if its predicate, i.e. table  structure, 
has meaningful names for table itself and for columns, like Employees(EmployeeId, 
EmployeeName, DepartmentId, HireDate). However, if the table and the columns would 
be named Table1(column1, column2, column3, column4). In short, you should be able to 
read your  database. This makes it simpler to determine whether your  database serves your 
 business problem well and whether your data is in accordance with business rules. It also 
makes it much simpler to familiarize a new programmer with the database  design and makes 
the task of data interchange with other systems easier. 

 The only naming convention I really do not like for a relational database is the one called 
Hungarian notation, in which you use prefi xes to denote object types. Hungarian notation 
uses names like tblEmployees for an employee table and vwCustomerOrders for a customer 
orders view; such names contradict the principle of interchangeability, which is one of the 
most important principles in the relational model. 

The Relational Model: A Quick Summary

 The relational model is background independent, which means it does not depend on any 
specifi c presumption. I will return to this fact multiple times. To begin, let me state  explicitly 
that the relational model is not type dependent. There are no prescribed “relational” types, 
and there are no “beyond relational” types. The relational model allows any type at all. 
In fact, it is completely valid to defi ne a relation with a single attribute of a quite complex 
type; this would be a typed relation. However, system-supplied types are usually easier to use 
because database developers already know how to use them and, of course, don’t have to 
develop them from scratch. 

C03626034.indd   89 2/17/2009   4:42:17 PM



90 Inside Microsoft SQL Server 2008: T-SQL Querying

 To summarize, the relational model consists of the following components: 

■  An open-ended collection of scalar types 

■  A way to defi ne types—in other words, a type generator 

■  A way to defi ne relation types—in other words, a relation type generator 

■  A way to generate relational variables and assign values (sets) to them 

■  Relational algebra: an open-ended collection of relational operators 

 Tables represent relations, and all information in a relational database is stored in tables. 
A relation represents an entity from the real world. In addition, tuples of a relation represent 
propositions, and a relation header represents a predicate. 

 The relational model is not dependent on naming conventions, either. Again, it is  background 
independent. This means it is your responsibility to use a naming convention descriptive 
enough to make it possible to re-create predicates and propositions from your database. 

Relational Algebra and Relational Calculus

 To manipulate relations (relational variables), you need some operators. Relations and  operators 
on relations form what is called relational algebra. The collection of relational  operators is open 
ended, but some operators are considered basic. Although the basic  operators are  somewhat 
intuitive, I’ll introduce them for the sake of completeness. 

Basic Operators

 As for simple types, we need at least two operators on relation types: one to store a set 
of  tuples in a relational variable and one to retrieve a variable’s value. These correspond 
to the familiar notions of assignment and evaluation. The relational selector operator 
( corresponding to evaluation) returns a table from a relational variable, and the relational 
 assignment operator assigns a table value to a relational variable.  

A set of basic Boolean operators on relations and tuples is obviously needed as well: 

■  = (equals) 

■  � (not equals) 

■  � (subset of) 

■  � (superset of) 

■  � (element of) 

■  =� (is empty) 
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 The fi rst four operators listed here accept two relations as parameters. The fi fth one checks 
whether a tuple is a member of a relation—in other words, it accepts a tuple as the left 
 parameter and a relation as the right parameter. Finally, the last operator in the list accepts 
a single relation as a parameter and checks whether it is empty. If you wish, you can defi ne 
additional operators for convenience, such as proper subset of (to mean subset of and not 
equal to) and proper superset of (superset of and not equal to). I want to mention one other 
specifi c operator that helps greatly with the tabular presentation of a relation—the Order By 
<attribute_1,attribute_2,. . .,attribute_n> operator. 

 The Order By operator does not return an unordered result; thus, it does not return a set or 
relation, which are unordered. You can think of the return value of the Order By  operator 
as a sorted table. Sorting is not predefi ned for relations and tuples, however; therefore, 
 supporting the Order By operator for a particular relation requires that at least one attribute 
of the relation support ordering and the following operators:

■  > (greater than) 

■  � (greater than or equal to) 

■  � (less than or equal to) 

■  < (less than) 

 The table returned by the Order By operator is sorted according to values of one or more 
 attributes, all of which must be of data types that support the listed type operators. 

Relational Algebra

 Relational algebra is a collection of operators that accept relations as input parameters and 
return relations. The fact that the result of any relational operation is a relation is referred 
as the relational closure property of the relational algebra. Codd originally defi ned eight 
 relational operators—four of them are based on traditional set operators, and four of them 
are special relational operators. These eight are Restrict, Project, Product, Union, Intersect, 
Minus, Join, and Divide. 

 Relational algebra is not closed; you can defi ne additional operators as long as they  respect 
the relational closure property. I’ll introduce a handful of useful operators in  addition to 
Codd’s original eight. Of course, because the collection of relational operators is  open ended, 
my list is not complete. I deliberately selected the operators that I fi nd most useful and that 
are used in the Transact-SQL language later in this book. 

Codd’s Eight Original Operators

 The Restrict operator fi lters tuples of a relation. The result of this operator is a relation with 
fewer tuples than (or the same number as) the original relation. The heading type of the 
 relation returned is the same as the heading type of the original relation. The restriction 
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is based on a Boolean expression (called the restriction expression) comparing values of 
 attributes to literals, variables, other attributes, or expressions. The Restrict operator’s  output 
relation contains exactly those tuples from the original relation for which the restriction 
 expression evaluates to True.  

 The Restrict operator fi lters a relation horizontally; in contrast, the Project operator fi lters a 
relation vertically. The Project operator is much simpler: in addition to a relation, the Project 
operator takes, as input, a list of attributes needed for the resulting relation. Note that the 
proper projection should include unique tuples only; otherwise, the result is not a relation. 
Nevertheless, RDBMS do not enforce this rule because it is more practical to allow a multiset 
(or a bag) as the result to send it directly to a client application or to store it temporarily. 

 Figure 3-1 shows the Restrict and the Project operators graphically. Imagine that the right 
rectangle showing the Project operator represents the relation Employees, with attributes ID, 
Name, HireDate, DepartmentID, and BirthDate. The Project operator returns a relation with 
ID, HireDate, and DepartmentID as its attributes, and these attributes are indicated by the 
darker shading in the fi gure.  

Restrict Project

FIGURE 3-1 The Restrict and Project operators

 The Product operator is based on the Cartesian product from mathematics. You already 
know from Chapter 2 that the Cartesian product of two sets is a set of ordered pairs (x,y), 
where x comes from the fi rst set and y from the second set. However, in the relational model, 
tuples are not ordered, and the Product operator should respect the relational  closure 
 property and return a set of unordered tuples, not a set of ordered pairs. Thus, in relational 
algebra, the Product operator is generalized. Instead of returning ordered pairs (x,y) of 
tuples (where x is a tuple from the fi rst input to Product and y a tuple from the second), the 
Product operator returns tuples that are the union of the original two tuples. Union is used 
here in its set theory sense—it means that the fi nal tuple has as its attributes the union of the 
 attributes of the two original tuples. Union of course means distinct union, and therefore, if 
an attribute appears in both input relations, only one occurrence is preserved in the output 
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of the Product operator. What happens if the two original relations include an attribute with 
the same name and you want to preserve both of them? Clearly, the Product operator is not 
complete; we need an additional operator that allows the renaming of an attribute. Such 
an operator is not a part of Codd’s original algebra, so I will introduce after this section that 
deals with the original eight operators. 

 The Union relational operator is based on the set Union operator. However, the relational 
Union operator again differs from its mathematical counterpart because of the closure 
 property of relational algebra. Because the result must be a relation and a relation can have 
tuples of only one heading type, the relational union must either be restricted to input 
 relations of the same type or implicitly project each input relation onto the  attributes that 
are common to both input relations. Figure 3-2 shows the Product and the Union  operators. 
For the Union operator, a projection on each of the two relations is used to limit the union to 
attributes that the relations have in common only. The result of Union has the same heading 
type as both inputs (or their projections onto the common attributes) and contains distinct 
tuples. 

a a

y

y

y

x

x

x

a

b

b

c

c

x

Product Union

yb

c

FIGURE 3-2 The Product and Union operators

 The relational Intersect operator is, analogously to the relational Union operator, based 
on the set theory Intersect operator, and like Union has the restriction that the operands 
( relations) be of the same type or that an implicit projection is preapplied to the  operands. 
The result is the set of distinct tuples that appear in both input relations (or in their 
 projections onto the common attributes). 

 Another relational operator, the Minus (or Difference) operator, is based on the equivalent 
operator of set theory, again with an understood projection to make the operands have the 
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same type. The result of the relational Minus operator is a relation that includes only tuples 
from the left operand that do not appear in the right operand. Figure 3-3 shows the Intersect 
and the Minus operators. 

Intersect Minus

FIGURE 3-3 The Intersect and Minus operators

 There are many varieties of the Join relational operator; however, the most important one 
is the Natural Join operator, which is illustrated in Figure 3-4. The Natural Join needs two 
relations with at least one attribute in common; the result is a relation with tuples for which 
the attributes in common have equal values. These common attributes come from only one 
of the joined relations and with the union of other attributes from both relations. Union is 
here again used in set theory sense, meaning a union of distinct attributes from the  original 
relations. Like the Product operator, the Join operator would be much more useful with 
an operator that would allow renaming an attribute. As mentioned, Figure 3-4 shows the 
Natural Join operator. Imagine that the left input relation is the Employees relation with 
 employee ID number and Department ID number attributes and that the right input relation 
is the Departments relation with Department ID number and Department Name attributes. 
The Natural Join operator uses the Department ID number common attribute to match the 
 employees with their departments based on equality of the Department ID number. Note 
that in the resulting relation, the Department ID number appears only once. In addition, the 
result contains only tuples arising from a match based on Department ID numbers in both 
input relations. Finally, also note that a single department (y2 in Figure 3-4) is matched with 
more than one employee. 

 Not all joins are natural joins, and not all joins are based on the equality operator. General 
joins ( joins that don’t necessarily use the equality operator as the matching condition for 
tuples) are called � (theta) joins. If the operator for matching tuples is the equality operator, 
then the join is called equi-join. A natural join is just a special case of equi-join. 
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FIGURE 3-4 The Natural Join operator

 Probably the most poorly understood relational operator is the Divide operator. A divisor 
relation is used to partition a dividend relation and produce a quotient relation. The quotient 
relation is made up of those values of one column from the dividend table for which the 
 second column contains all of the values in the divisor. 

 Although this is a theoretical chapter, I am going to use code to explain the Divide  operator 
and a problem you can meet if you divide with an empty set, a zero divide problem. I’ll use 
an example that you saw in Chapter 2 and that you’ll see again in Chapter 6. The problem, 
which refers to the InsideTSQL2008 database, asks you to return all customers for whom  every 
 employee from the USA has handled at least one order. In this case, you divide the set of all 
 orders by the set of all employees from the USA, and you expect the set of  matching  customers 
back. T-SQL has no Divide operator. To show the problem, I’ll  rephrase the problem as it 
 appears in Chapter 6: 

Return customers 

for whom you cannot find 

  any employee

  from the USA

  for whom you cannot find 

    any order 

    placed for the subject customer 

    and by the subject employee

 The query for this problem is quite intuitive: 

USE InsideTSQL2008;

SELECT custid FROM Sales.Customers AS C

WHERE NOT EXISTS

  (SELECT * FROM HR.Employees AS E

   WHERE country = N'USA'

     AND NOT EXISTS

       (SELECT * FROM Sales.Orders AS O

        WHERE O.custid = C.custid

          AND O.empid = E.empid));

 This query returns 23 rows, which means there are 23 customers for whom every employee 
from the USA has handled at least one order. Let’s ask the same question with a different 
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country: How many customers are there for whom every employee from Israel has handled 
at least one order? Here is the same query with one changed parameter: 

SELECT custid FROM Sales.Customers AS C

WHERE NOT EXISTS

  (SELECT * FROM HR.Employees AS E

   WHERE country = N'IL'

     AND NOT EXISTS

       (SELECT * FROM Sales.Orders AS O

        WHERE O.custid = C.custid

          AND O.empid = E.empid));

 This query returns 91 rows, representing all customers. This might not be the result you 
expected, given that there are no employees from Israel in the HR.Employees table. This is 
the way the Divide operator was defi ned originally. Because the HR.Employees table has no 
employee from Israel, the condition that a customer was served by all employees from Israel 
is true for every customer (it is vacuously true). In other words, every customer was served 
by every employee from Israel. However, something else is also true: every customer was 
served by no employees from Israel. Note that there is no preferred truth here; the one you 
take depends on the problem you are solving. Do we have something like Russell’s  Paradox 
here (which you remember from Chapter 2)? Not really. The problem is that we did not 
think through the possibility of having no employees from Israel. If the original question’s 
“ customers . . . for whom . . . at least one order” was intended to mean there were in fact some 
orders, we can answer the question by simply adding a condition to the predicate  requiring 
to return customers served by all employees from Israel if there is at least one employee 
from Israel: 

Return customers 

for whom you cannot find 

  any employee 

  from Israel 

  for whom you cannot find 

    any order 

    placed for the subject customer 

    and by the subject employee

  if there is at least one employee from Israel

 The query now looks like this: 

SELECT custid FROM Sales.Customers AS C

WHERE

 NOT EXISTS

  (SELECT * FROM HR.Employees AS E

   WHERE country = N'IL' 

     AND NOT EXISTS

       (SELECT * FROM Sales.Orders AS O

        WHERE O.custid = C.custid

          AND O.empid = E.empid))

 AND EXISTS

  (SELECT * FROM HR.Employees AS E

   WHERE country = N'IL');
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 This query returns zero rows, as you might have expected when you originally posed the 
question. The formula for the Divide operator includes three relations: 

 a Divide By b Per c, 

 where a is the dividend, b is the divisor, and c is the mediator relation. Let relation a have 
 attributes A and relation b attributes B. The Divide operator returns a relation that includes 
of all tuples from divisor such that a tuple {A, B} appears in the mediator relation for all tuples 
from divisor relation. In the examples I have shown, the dividend is the Customers relation, 
the divisor is the relation that includes employees from a specifi c country (USA or Israel on 
 examples), and the mediator is the Orders relation. However, in order to avoid the zero  divide 
problem, I used a fourth temporary relation (SELECT * FROM HR.Employees AS E WHERE 
country = N’IL’). You can express the predicate requiring to return  customers served by all 
 employees from the USA if there is at least one employee from the USA in yet  another way, 
that is, by  fi nding distinct customers (represented with custid) from orders served by  employees 
from the USA having the number of distinct USA employees that served a  customer equal to 
the total number of employees from the USA (again, as you’ll fi nd in Chapter 6): 

SELECT custid

FROM Sales.Orders

WHERE empid IN

  (SELECT empid FROM HR.Employees

   WHERE country = N'USA')

GROUP BY custid

HAVING COUNT(DISTINCT empid) =

  (SELECT COUNT(*) FROM HR.Employees

   WHERE country = N'USA');

 This query returns the result for the second version of the division for both USA and Israel 
employees and is also much shorter. To conclude the eight original relational  algebra 
 operators, Figure 3-5 shows the extended Divide operator (with mediator relation) 
graphically. 
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FIGURE 3-5 The extended Divide operator

C03626034.indd   97 2/17/2009   4:42:17 PM



98 Inside Microsoft SQL Server 2008: T-SQL Querying

Additional Relational Algebra Operators

 As I already stated, relational algebra has an open-ended set of operators; I’m focusing on 
some of the most useful ones. 

 I already pointed out how the Rename operator is useful. Without it, any nonunary 
 operators—operators that accept more than one relation as parameters—would be very 
limited. The Rename operator assigns an alias to an attribute or to a relation in a query. Note 
that it is practical to have aliases for relations as well as for attributes because a single query 
can refer to the same relation more than once. 

 A language that supports relational algebra is said to be relationally complete; however, this 
doesn’t mean that it is computationally complete as well. I haven’t yet introduced an  operator 
that would return a computed attribute in the resulting relation. The Extend  operator is the 
operator that adds a named expression (which evaluates to a scalar value) to the  resulting 
 relation. Note that this expression is not limited to computations between  attributes of a 
 single tuple only; the expression can also work on multiple tuples if it aggregates  multiple 
 input values to a single output value. Figure 3-6 shows the Rename and the Extend 
 operators, with aliased and added attributes in darker color with pattern. 
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Rename Extend

FIGURE 3-6 The Rename and Extend operators

 The Extend operator does horizontal, or tuple-wise, computations. We need an  operator 
for vertical, or attribute-wise, computations as well. The operator that does vertical 
 computations is the Summarize operator (shown in Figure 3-7); it combines a projection on 
attributes over which the vertical computation is made with an extension of the resulting 
 relation to include aggregate computations. 

 Semi joins are joins that return tuples from one relation based on the existence of related 
tuples in the other relation. A left Semijoin operator (shown in Figure 3-8) returns tuples from 
the left relation, and a right Semijoin operator returns tuples from the right relation. 
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FIGURE 3-7 The Summarize operator
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FIGURE 3-8 The (left) Semijoin operator

 Graph theory is one of the most powerful theories in mathematics. It was developed by 
Leonhard Euler when he was studying a famous historical mathematical problem called The 
Seven Bridges of Königsberg. Here’s a short description of the problem from Wikipedia: 

 The city of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides of 
the Pregel River, and included two large islands which were connected to each other 
and the mainland by seven bridges. 

 The problem was to fi nd a walk through the city that would cross each bridge once 
and only once.  

 In graph theory, a graph is a set of items (called nodes or vertices) and connections (called 
edges) between pairs of items. The nodes are abstract static items, and the edges can 
 represent associations or relationships between nodes. A road system, for example, can be 
represented with a graph: cities are nodes, and roads are edges. Trees and hierarchies are 
special cases of graphs. In a relation, we commonly model a graph with the adjacency list 
model. In this model, we consider the graph’s edges as directed edges from one vertex to 
another, and we represent these directed edges as tuples. The nodes connected by an edge 
(which can be viewed as adjacent by virtue of the edge connecting them) are represented 
by attributes of the edge tuple. Only nodes with a connection are represented. The problem 
with the adjacency list model comes when you have to query it. For example, if you need to 
fi nd all possible paths from city A to city B in the road system, your query must involve some 
kind of loop. (The loop can be hidden in a recursive common table expression, but it’s still 
a loop.) To make such queries faster and simpler, we can use a new relational operator, the 
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TClose operator. This unary operator returns the transitive closure of the original relation. The 
result is a relation with the same heading type as the original relation, but it includes tuples 
for all pairs of nodes with unbroken paths between them. Querying such a resulting relation 
is much simpler. You’ll learn more about graphs, trees, hierarchies, and also how to compute 
the transitive closure of a graph in Chapter 12, “Graphs, Trees, Hierarchies, and Recursive 
Queries.” For now, just look at the graphical representation of the operator in Figure 3-9.  
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FIGURE 3-9 The (left) TClose operator

 For the sake of completeness, I’ll add two more well-known operators that deal with  relations 
with temporal data: Unpack and Pack. Although this book does not deal with temporal 
 problems, many books do, such as Inside Microsoft SQL Server 2008: T-SQL Programming by 
Itzik Ben-gan et al. (Microsoft Press, 2009). 

 Imagine that each tuple in a relation has an attribute representing the time interval for which 
the tuple is valid. Pretend that you have a time-interval type in your type collection, either 
system defi ned or user defi ned. A tuple with such a validity interval might look like this: 

 {A, d4:d6} 

 Without explicitly defi ning the header of this tuple, let’s say the proposition here says that 
supplier A is under contract (is a valid supplier) during the period from the point in time d4 to 
the point in time d6 and that points in time are discrete: d1, d2, d3, and so on, like  calendar 
days, for example. You could also have additional tuples for the same supplier, like so: 

 {A, d5:d7} 

 {A, d8:d8} 
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 Here, the three tuples for supplier A have overlapping and abutting validity intervals. How 
can you fi nd the number of distinct time points supplier A was under a contract? How 
can you combine tuples with adjacent and overlapping intervals into a single tuple that 
 represents that supplier A was under contract continuously for one longer interval without 
interruptions? 

 Let’s defi ne the Unpack operator as a unary relational operator that returns a relation with 
all distinct valid time points projected over a set of input operators, the way the Summarize 
operator projects over input attributes. However, Unpack is doing the opposite of Summarize 
in terms of tuples returned; the relation returned is exploded to include tuples for all distinct 
valid time points. In the case of propositions from the example, the only input attribute for 
which time points can be unpacked is the supplier. The Pack operator does the opposite: it 
returns a relation with input attributes for which intervals are packed and intervals that are 
a union of all intervals from the source tuples for the same input attributes that overlap or 
meet. Note that union here is not a relational Union operator; it is an interval union, defi ned 
only for intervals that overlap or meet. Figure 3-10 shows the Unpack and Pack operators 
graphically. 
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FIGURE 3-10 The Unpack and Pack operators

Primitive Relational Algebra Operators

 Maybe you’ve already noticed that many of the relational operators defi ned so far can be 
expressed with other relational operators. In fact, most of the operators mentioned so far 
are just shortcuts that make relational expressions simpler and shorter. In fact, even Codd’s 
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 original eight operators are not all primitive; some can be expressed with others. An RDBMS 
Query Optimizer component can utilize this fact when optimizing a query; it can rewrite a 
query to its logical equivalent using different operators, which might be implemented with 
faster physical operators than other relational operators in a specifi c RDBMS. For example, 
you might notice that sometimes SQL Server uses the Merge Join physical operator when you 
use the Union logical (relational) operator. 

 Note also that the relational operators that are based on set operators differ from the 
 original set operators. 

Relational Calculus

 Relational algebra provides an open-ended set of relational operators. You use them to 
 construct the desired relation that results from a query; you are prescribing a system of 
how to get the resulting relation. Relational algebra is prescriptive. Relational calculus is an 
 alternative way to obtain a desired resulting relation from a system. With relational calculus, 
you describe the resulting relation. Therefore, relational calculus is descriptive. 

 How do you describe the resulting relation you need? Once again we use predicates. You 
 describe the resulting relation with a constrained predicate. For example, when I described 
the Divide relational operator, I tacitly used relational calculus to introduce the problem: 
Return all customers for whom every employee from the USA has handled at least one order. 
The more detailed description is the following: 

Return customers 

for whom you cannot find 

  any employee 

  from the USA 

  for whom you cannot find 

    any order 

    placed for the subject customer 

    and by the subject employee

 Relational calculus exists in two fl avors: tuple calculus and domain calculus. In tuple calculus, you 
specify a query’s result by describing tuple membership conditions for the resulting relation. In 
domain calculus, you specify the resulting relation by constraining the domains of attributes. 
Although there is a strict mathematical difference between tuple calculus and domain  calculus, 
for the purposes of this book we can treat that difference as a nuance. The difference was 
 important in the past because different languages—languages that were  serious competitors to 
SQL—evolved based on tuple and domain calculus. For tuple calculus, QUEL (Query Language) 
was developed; domain calculus was supported by QBE (Query by Example) language.  

 To explain the difference between relational algebra and relational calculus, let me give 
an example. Imagine two relations: Customers with attributes CustomerId, CustomerName, 
and City and Orders with attributes OrderId, CustomerId, and OrderDate. The query you are 
 solving is “Get the CustomerId and CustomerName attribute values of the distinct customers 
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from Paris that have placed at least one order.” A prescriptive, algebraic formulation of the 
query could be the following: 

  1. Join Customers and Orders over CustomerId. 

  2. Restrict the result to tuples for City Paris. 

  3. Summarize the result over CustomerId and CustomerName to get distinct customers. 

  4. Project the result over CustomerId and CustomerName. 

 A descriptive, calculus formulation of the query would be the following: 

 Return CustomerId and CustomerName for customers from Paris for which exists some order. 

 The description of a query’s result is very similar in tuple and domain calculus. In both cases, 
it includes a description of the resulting header (also called a proto-tuple) and a  description 
of constraints in terms of a predicate that uses a quantifi ed expression. In the example, 
CustomerId and CustomerName defi ne the proto-tuple, the header of the resulting  relation. 
The predicate in the example uses an existentially quantifi ed statement “for customers from 
Paris for which exists some order.” The word exists indicates quantifi cation. You create the 
predicate by combining logical  expressions using the standard logical operators ¬ (Not), � 
(And), and � (Or). In addition, quantifi ed  expressions are necessary for relational calculus. 
Therefore, the existential quantifi er � (Exists) and the universal quantifi er � (For all) are an 
indispensable part of relational calculus. 

 SQL allows you to express the desired result of a query in nearly human language. It supports 
both logical operators and quantifi ers. Itzik has pointed out many times in this book that 
some problems are easier to solve when rephrased with a different predicate or are analyzed 
using reverse logic. Now you can see that what this often means is that you are actually using 
relational calculus. 

 Relational calculus and relational algebra are equivalent; they both have the same expressivity. 
Therefore, it is really up to you to select the most suitable way for expressing the desired  resulting 
relation; how you express a query (using relational algebra or relational calculus) and how you 
understand the meaning of a relation (entity or predicate and propositions) are similar. 

T-SQL Support

 I mentioned that SQL is not the only language used for manipulating relations. In fact, the 
 relational model is not language dependent; this is another aspect of background  independence 
of the relational model. SQL is just one possible language. However, there is an existing ANSI 
standard for SQL. And while it’s not perfect, SQL is the most widely used contemporary  language 
for manipulating relations. Transact-SQL (T-SQL) is SQL Server’s  dialect of standard SQL. 

 T-SQL supports most of the operators of relational algebra. You manipulate relations with 
Data Manipulation Language (DML) statements, namely, SELECT, INSERT, UPDATE, DELETE, 
and MERGE. The Product operator is expressed with CROSS JOIN. The Restrict operator 
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is  supported in the WHERE and HAVING clauses and implicitly in the ON clause of a JOIN 
 operation if the join is not a CROSS JOIN, as other joins fi lter the result of a CROSS JOIN. The 
Project operator is supported in the SELECT part of a query, where you list attributes explicitly. 
The Union, Intersect, and Minus relational operators have counterparts in the T-SQL UNION, 
INTERSECT, and EXCEPT operators. All kinds of Join operators—theta joins, equi-joins, semi 
joins, and natural joins—are supported with the JOIN operator. The Rename operator is 
 expressed in T-SQL with the AS clause, which can appear in a query’s SELECT list for renaming 
attributes and in a query’s FROM part for renaming relations. The Extend operator is expressed 
in the SELECT list, which can include named calculated expressions in addition to original 
 attributes. The Summarize operator translates to the T-SQL GROUP BY clause. The Divide, 
TClose, Unpack, and Pack relational operators have no directly equivalent T-SQL operators. 

 Relational calculus is supported by the SELECT part of a query, where you describe the 
 proto-tuple, and in the WHERE and HAVING clauses, where you constrain the resulting 
 relation with a predicate. Of course, T-SQL supports all standard logical operators: ¬ (Not), � 
(And), and � (Or) and both the existential quantifi er � (Exists) and the universal quantifi er � 
(For all) in expressions that constrain the resulting relation. 

 Given all of this information, we can say that T-SQL is relationally complete. 

Data Integrity

 I already mentioned that data integrity is crucial for a relational database. Actually, data 
 integrity rules are an important part of a relational database. An RDBMS has to enforce the 
rules. By making the rules part of a database, you inform the system what those rules are. 
With declarative constraints, how they are enforced is up to the system; with procedural 
code, you defi ne how to implement them. In both cases, you express constraints in terms of 
predicates. 

 Relation headers—physical table and view defi nitions including attribute type defi nitions, 
together with declarative and procedural constraints—form a database schema. Now we can 
summarize what exactly a database schema is. A database schema represents  constrained 
predicates that describe a business scenario. You can get the constrained predicates from 
 relation headers and constraints defi ned in the database. A database predicate can be 
 defi ned as an aggregation of all relation and constraint predicates. Data integrity rules can 
be expressed with a single rule: there must be no value in a database at any time that would 
violate its constrained predicate. 

 Constraints can be classifi ed into basic constraints that defi ne entity, referential, and domain 
integrity and business rules. Basic integrity rules are expressible with declarative constraints. 
Most business rules need programmatic code in SQL Server. Business rules can be anything, 
such as cardinality or frequency rules (how many tuples can exist in a relation at any time), 
data derivation rules (how you calculate state from events), subset rules (a relation can have 
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a subset of tuples from another relation only), inclusion rules (a period when a supplier has 
supplied a product must be included in a period when the supplier had valid contract), 
 process rules (which event should happen fi rst), and much more. It is up to the database and 
application designer to decide where to implement the rules. I strongly advocate having at 
least declarative constraints in your relational database. After all, if you do not use them, why 
do you use an RDBMS? 

 Constraints can be classifi ed in other ways as well. For example, they can be classifi ed 
 according to which kind of object they constrain: type, attribute, relation, and database 
 constraints. They can also be classifi ed as immediate or deferred, based on when they are 
 enforced: immediately or at the end of the current transaction. Note that according to the 
rule that “there must be no value in a database at any time that would violate its constrained 
predicate,” only immediate constraints should work inside a relational database. This means 
that constraints must be enforced at a single DML statement boundary, not at the end of 
a transaction or even later. A single DML statement is treated in an RDBMS as an atomic 
 operation even if it modifi es multiple rows; therefore, during the statement execution you 
could get rows that violate some constraint but never after the statement is fi nished. Note 
that immediate constraints only cannot guarantee that a database would refl ect a valid state 
of affairs in real-world environment at all times. For example, although transferring money 
from one account to another is intended as an atomic operation, it involves two updates in 
a database. Both updates must fi nish successfully, or none should be performed. Therefore, 
we clearly need some other means to make databases consistent with the real world at any 
time. This can be done with transactions. A transaction is a logical unit of work that extends 
a statement-level notion of atomicity. Although transactions play an important role in an 
RDBMS, I am not going to explain them more in detail here; to learn more about them, 
please refer to Inside Microsoft SQL Server 2008: T-SQL Programming. 

 ANSI standard SQL allows deferred constraints. SQL Server does not implement them. 
However, they can be implemented in procedural code for advanced checks and searches 
for incorrect data. Correctness is a stricter term than consistency; an RDBMS can enforce data 
consistency but not correctness. Consistency means that data is in accordance with business 
rules declared and known to the system; correctness is defi ned outside the system by users 
of the system. 

Declarative Constraints

 Because declarative constraints are the most important way of implementing business rules 
in a relational database, I’ll discuss them in more detail than other constraints. 

Entity Integrity

 Tables in a database are physical representation of relations, and the rows of a table  represent 
tuples; relations consist of unique tuples. This is what entity integrity is about—uniquely 
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 identifying rows in a table. You must have a combination of columns (which physically 
 represent attributes) that uniquely identify a row. The minimal set of columns that still uniquely 
identify each row is called a key. Each table can have multiple unique column combinations—
in other words, multiple candidate keys. It is up to you to select one of them as your primary 
 reference for each row and call it the primary key. SQL Server has two constraints for entity 
integrity: the Unique constraint for candidate keys and the Primary Key constraint for primary 
keys. You can have multiple Unique constraints and one Primary Key constraint per table. 

 You know that every table should have a key. You also know that SQL Server does not 
 enforce this; you can create a table without a Primary Key or Unique constraint. The reason 
for this is purely practical. Imagine you need to import data from a text fi le. If you had a key 
defi ned, you would have to cleanse the data in your text fi le before the import. Cleansing 
text fi les is much less practical than cleansing data in a SQL Server table. Nevertheless, in 
production, all your tables should have a key defi ned for each table. 

 Each key has two required and two desired properties (D. Sarka, 2008). Uniqueness and 
applicability are required; stability and minimality are desired. Uniqueness means the key 
identifi es each tuple uniquely. Applicability means the key has to be applicable for all tuples 
in a relation, it has to be known, and it should not consist of attributes that are meaningless 
for some tuples. (See the section “Generalization and Specialization” later in this chapter.) 
Stability means the key should not change, if possible. Minimality means the key should 
consist of the fewest columns possible and the fewest bytes possible. Nevertheless, because 
of physical problems, you should search for keys with all four properties. To track changes 
for an entity over time, such as in data warehousing scenarios, stability becomes a necessary 
property. And minimal keys provide the best performance. 

 There is an old debate about keys and which are better: natural or surrogate. A natural key is 
a subset of the attributes that defi ne an entity. A surrogate key is a key the designer creates 
and adds to the attributes of an entity; typically it is a sequential number. Personally, I avoid 
participating in this old debate. You cannot strictly distinguish between natural and surrogate 
keys. Is a Social Security ID (SSID) a natural or surrogate key? Somebody could add it to the 
attributes of Person entity. Let me try to express a defi nition of a natural key: a key is natural 
if the attribute it represents is used for identifi cation independently of the database. If you 
have something unique, applicable, stable, and short in your table, use it. If you don’t, add 
a sequential number for the primary reference, and you will have all required and desired 
 properties for your primary key. 

 If a key is applicable, its values must be known. SQL Server enforces this rule by  prohibiting 
columns that allow NULLs from participating in Primary Key constraints; however, it  allows 
nullable columns in Unique constraints. I’ll come back to NULL, which is the marker for 
 something unknown, later in this chapter. For now, I’ll simply advise you not to use nullable 
columns for keys. 
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Referential Integrity

 A foreign key is a set of columns whose values match some key of another table—in other words, 
a copy of a key from another relation. Foreign keys denote associations between  relations; they 
are the glue that keeps relations in a database together. The rule foreign keys enforce can be 
 expressed briefl y: There must be no unmatched foreign keys in a database at any time. Foreign 
keys maintain references between relations—in other words, they enforce referential integrity. 

 The foreign key rule can be maintained during update and delete operations in  different ways. 
In SQL Server, four possibilities exist for enforcing the foreign key rule, and each  possibility 
consists of two pairs of rules. One pair of rules deals with the primary (parent) table, and one 
pair deals with the secondary (child) table. The pair of rules for the child table is immutable; 
the rules are always the same for all four possibilities of implementing a foreign key: 

■  You cannot insert a row in the child table if it has no related row in the parent table. 

■  You cannot update the foreign key columns in the child table in a way that would leave 
them without a related row in the parent table. 

 The two rules for the parent table differ with each of the four possible implementations. The 
four standard possibilities and the implementation of the two rules for the parent table are 
the following: 

■  No Action implementation 

❏  You cannot delete a row in the parent table if it has related rows in the child table. 

❏  You cannot update the key columns in the parent table if they have related rows 
in the child table that would become orphaned. 

■  Cascade implementation 

❏  If you delete a row in the parent table, you have to delete all related rows in the 
child table. 

❏  If you update a primary key in the parent table, you have to update foreign keys 
in all related child tables to the same new value. 

■  Set Null implementation 

❏  If you delete a row in the parent table, you have to set to unknown (NULL) all 
 foreign keys of related rows in the child table. 

❏  If you update a primary key in the parent table, you have to set to unknown 
(NULL) all foreign keys of related rows in the child table. 

■  Set Default implementation 

❏  If you delete a row in the parent table, you have to set to a predefi ned default 
value all foreign keys of related rows in the child table. 

❏  If you update a primary key in the parent table, you have to set to a predefi ned 
default value all foreign keys of related rows in the child table. 
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 In short, whatever you do, never leave rows in the child table orphaned. You would  normally 
use the No Action implementation. You should use the Cascade implementation for  deletes 
only in case you want to implement a strong relationship between the parent and the 
child table. In such a relationship the child table rows make no sense without parent rows. 
A  classical example is orders and order line items: order line items cannot exist without an 
 order. If you delete an order, you should delete all of its line items as well. I do not like to use 
Cascade updates. Cascade updates indicate that your key in the parent table is not stable, 
and stability is one of the desired properties of a key. The Set Null and Set Default rules 
are useful for maintaining history of the child table; for example, an order with  unknown 
 customer gives you information that something was ordered and when it was ordered 
but not who ordered it. Nevertheless, today history is commonly maintained in a data 
 warehouse, and you usually do not need these rules. 

 A foreign key constraint must reference a key in the parent table. The parent table can be 
the same as the child table; a foreign key can refer to the table itself. This is how you can 
 represent graphs, trees, and hierarchies using the adjacency list model. 

Domain Integrity

 Domain integrity limits the domain of possible values of an attribute. Of course, an attribute’s 
type already constrains the possible values of the attribute. Another standard way to limit the 
domain of an attribute in a relational database is with a check constraint. 

 A check constraint is a logical expression that returns true, false, or unknown—it is  another 
predicate. An RDBMS enforces it whenever a tuple is inserted or updated. The tuple’s 
 attribute values replace the predicate’s parameters, making the predicate a proposition. 
A tuple is rejected if the proposition evaluates to false. The syntax of a check constraint 
 expression is similar to the syntax of expressions in a WHERE clause. 

 Check constraints can be as simple as checking a range of values. However, what do you do 
when you don’t know the allowed range in advance—when you have to maintain the values 
to the allowed range dynamically? What do you do when the list of possible values is very 
long or even infi nite? A check constraint expression would consist of an enormous list of 
values connected with logical OR operators, and you would have to change the  constraint 
whenever the list of possible values changed. In such a case, it’s simpler to use lookup  tables. 
You connect the attribute(s) you are constraining to a lookup table with a foreign key. 
Therefore, foreign key constraints can serve as domain integrity mechanisms as well.  

 All the constraints I’ve mentioned—keys, foreign keys, and check constraints—play an 
 important role in query optimization. They give information to an RDBMS, and this helps 
fi nd an optimal execution plan. Keys give information that you’re searching for a single value; 
this value is unique. Therefore, the search is very narrow, and the system can use an index 
seek. Foreign keys give information that a parent row always exists, which helps to fi nd the 
most effi cient join algorithm. Check constraints give information about range, which means 
(for example) that searching for a value that is out of range returns zero rows, and the system 
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doesn’t even have to read the data to return the correct result set. You’ll learn more about 
query tuning in Chapter 4, “Query Tuning.” 

Other Means of Enforcing Integrity

 As I’ve already mentioned, explicit constraints are not the only means of enforcing data 
 integrity. Data types are constraints as well; they constrain with type-defi ned constraints and 
with sets of operations allowed. An attribute is constrained with its data type. You can also 
defi ne whether a column of a table allows NULLs. Finally, the defi nitions of tables constrain 
as well: if you don’t have a place to insert a value, you cannot insert it. I will explain this a bit 
more in the normalization section of this chapter. 

 You cannot implement all business rules by using declarative means. Some constraints are 
too complex, and some span a database boundary. A foreign key, for example, is limited 
to associating tables in the same database only. Some constraints have to be implemented 
programmatically. You can put your constraining code in a client application, in the middle 
tier, in the data access layer, in stored procedures in a database, or anywhere you have some 
code. However, if you want your RDBMS to enforce complex constraints automatically, you 
have to use triggers. 

 Triggers are special stored procedures that an RDBMS executes, or fi res, automatically. You 
can use Data Modifi cation Language (DML) triggers to enforce data modifi cation rules and 
Data Defi nition Language (DDL) triggers to enforce schema modifi cation rules. Triggers can 
fi re before or after the statement that is modifying the state of a database. SQL Server 2008 
supports two kinds of DML triggers: INSTEAD OF and AFTER triggers; only one kind of DDL 
trigger is supported: the AFTER. INSTEAD OF triggers are not actually ANSI-standard BEFORE 
triggers; they do fi re before the statement, but they also intercept the statement, and then 
you can do whatever you want in the body of the trigger. If you want the statement to 
 execute, you have to write it explicitly in the body of the trigger.  

 In theory, you should always be able to use a view instead of a base relation. However, not all 
views are updatable. For example, a view can summarize some attributes of a base table; an 
RDBMS doesn’t know how to distribute a value from a single row from a view over multiple 
base rows. INSTEAD OF triggers are especially meant for making views updatable. 

 SQL Server 2008 also has a built-in XML system type. The XML type enforces some  integrity 
rules by itself: it allows well-formed XML only. In addition, you can validate XML values 
against a predefi ned schema from a schema collection you create inside a SQL Server 
 database. Details of triggers and XML validations are beyond scope of this chapter; for more, 
please refer to Inside Microsoft SQL Server 2008: T-SQL Programming. 

 You can also use some elements of a database that don’t really enforce data integrity but 
 instead help users insert correct values. Defaults can help insert a value when it is not 
 explicitly listed in the INSERT statement. SQL Server 2008 has also a Timestamp type; SQL 
Server inserts and updates values of this type automatically and guarantees that values in 
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columns of this type are unique across a database. The IDENTITY property of a column can 
help you insert sequential numbers. 

 One important thing you need to know is the order in which the system enforces  constraints. You 
probably noticed that I switched from discussing a general (and theoretical)  implementation to 
a SQL Server 2008–specifi c implementation. The details of constraints are quite system specifi c, 
and it seems more appropriate to switch to the system that this book is about—namely, Microsoft 
SQL Server 2008. Therefore, the order of execution in SQL Server is as follows: 

  1. Schema is checked (whether an update is valid for the table schema). 

  2. Data types are checked.  

  3. INSTEAD OF triggers fi re instead of the actual statement. 

  4. Default constraints are applied. 

  5.  Nullability is checked. 

  6. Primary Key and Unique constraints are checked. 

  7. Foreign Key and Check constraints are enforced. 

  8. Statement is executed. 

  9. AFTER triggers fi re. 

 What this order tells you is that declarative constraints are enforced before the actual 
 statement, and they prevent improper updates, while AFTER triggers fi re after the statement, 
and you have to roll back an improper modifi cation discovered by the statement’s AFTER 
trigger. This means that using declarative constraints is more effi cient than using AFTER 
 triggers, and you should opt for using declarative constraints whenever possible. Don’t forget 
another advantage in using declarative constraints: they can help in query optimization. 

The Good, the Bad, and the . . . Unknown!

 The last question I want to touch on regarding data integrity is whether you should allow 
NULLs in your database. In an ideal world, your database should represent true propositions 
only; if something is NULL and you do not know what that NULL means, you cannot say it is 
true. Therefore, from a strict point of view, you should not allow any NULLs. 

 However, in the real world, you always have some missing information, at least temporarily. 
In addition, you really can experience Russell’s Paradox, as described in Chapter 2. In addition 
to the theoretical description, I’d like to offer an example I found in Fermat’s Last Theorem 
by Simon Singh (HarperPerennial, 2005), showing Russell’s Paradox in real life. This is the 
 problem of the meticulous librarian. 

 This library has two kinds of catalogs (of whatever you want); some list themselves in 
 references, and some don’t. The librarian wants to make two new catalogs: one that lists all 
catalogs that do list themselves and one that lists all catalogs that do not list themselves. 
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The problem is with the latter catalog: should it list itself? If it does list itself, by defi nition 
it should not be listed. If it does not list itself, by defi nition it should be listed. Imagine you 
have to insert these two catalogs in a database, and in a table describing catalogs, you have 
an attribute that is a fl ag showing whether a catalog lists itself. What would you insert in this 
attribute for the catalog that lists all catalogs that do not list themselves? I think that NULL is 
quite all right, showing that you cannot have anything meaningful there. 

 Of course, in real life, you will encounter missing information because of many reasons other 
than Russell’s Paradox. Nevertheless, you have to fi nd a way to deal with missing information. 

 ANSI standard prescribes and SQL Server implements NULLs for denoting missing values. 
Note that NULL is not a value; it is just a marker. NULL doesn’t even have the privilege to be 
equal to itself. Some authors (Date, Pascal) strictly forbid NULLs, others explicitly allow them 
(Codd), and others (Halpin) do not discuss them—they just show how to model and use 
them. Which is correct? 

 If NULLs were not allowed, you’d still have to implement some special values  denoting 
 missing information. The advantage of this approach is that you could use standard 
Boolean operators in your queries, and there would be no need for special operators that 
handle NULLs. The disadvantage is that there is no single, standard, special value accepted 
 worldwide. In addition, a single special value would not be suffi cient; we would actually 
need one for each data type. Using NULLs means using a standard that is already accepted; 
 however, it also means introducing three-valued logic, where not true is not the same as false. 
Three-valued logic makes queries more complicated. 

 After considering many pros and cons, my personal conclusion is that NULLs are here to stay, 
and they are implemented by all major RDBMS; therefore, I prefer using them to  inventing 
special values. You’ll learn a lot about writing effi cient three-valued logic queries in this 
book. Nevertheless, some NULLs can be avoided—namely, NULLs that are there because 
an attribute is not applicable for a particular tuple of a relation. This is a matter of design. A 
good schema constrains—in other words, excludes—NULLs that represent “not applicable.” 
Therefore, the time has come to defi ne a good schema! 

Normalization and Other Design Topics

 I need to clarify something immediately. This is not a modeling book; it is a practical book 
with a couple of introductory chapters that explain the theory behind the practice. The 
theory helps you understand why some things in SQL Server are implemented as they 
are  implemented. This book will help you better understand what you are doing when 
you  create and maintain a relational database as well as help you fi nd different ways of 
 expressing queries, fi nd more optimized queries, and so on. Therefore, I won’t talk about 
how to model; I‘ll talk about what you need to achieve with your models.  

 Many modeling books are on the market; I don’t need to advertise them. I will mention a 
couple of books I really like just to make this chapter more complete. Personally, I prefer the 
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object-role modeling (ORM) approach, and Information Modeling and Relational Databases, 
2nd edition by Terry Halpin and Tony Morgan (Morgan Kauffman, 2008) is the bible of ORM. 
For the most popular modeling approach, the ER approach, I like Data Modeling Essentials, 
3rd edition by Graeme Simsion and Graham Witt (Morgan Kauffman, 2004), where you can 
fi nd a lot on the modeling process and fi nding information about business rules. Finally, if 
you are developer and you already use Unifi ed Modeling Language (UML) for modeling, 
Database Design for Smarties: Using UML for Data Modeling by Robert J. Muller (Morgan 
Kauffman, 1999) could be a good resource for you. 

 What you need to achieve in order to create a good relational model is mathematically 
 described with normalization and specialization. Because normalization is more complex, I’ll 
spend more time on it, although both parts are important for a good design. But before I 
start with normalization, let me repeat a very simple yet important sentence about good 
 design: A relational database is well designed if you can reconstruct the predicates (and 
propositions) used to describe the business problem. 

Normal Forms Dealing with Functional Dependencies

 Tables are normalized when they represent propositions about entities of one type—in other 
words, when they represent a single set. This means that entities do not overlap in tables 
and that tables are orthogonal or normal in mathematical terms. When a table meets a 
 certain prescribed set of conditions, it is said to be in a particular normal form. A database is 
 normalized when all tables are normalized. You can create fully normalized database models 
with ORM or with the ER approach.  

 Normalization is a redesign process to unbundle the entities. The process involves 
 decomposition but not decomposition that leads to a loss of information. After the 
 normalization process, all the original information must be obtainable with queries that 
 involve relational operators such as Join and others. The normalization is achieved by 
 applying a sequence of rules to create what are called normal forms. The goal is to  eliminate 
redundancy and incompleteness. Note that the latter is often overlooked; however, 
 normalization eliminates incompleteness in addition to eliminating redundancy. 

 Many normal forms are defi ned. The most important ones are fi rst, second, third, 
 Boyce-Codd, fourth, and fi fth normal forms. If a database is in fi fth normal form, it is 
said to be fully normalized. If a database is not fully normalized, you can experience data 
 manipulation anomalies. 

 I’ll start with the fi rst four normal forms, which deal with functional dependencies. 
A  dependent variable is functionally dependent on an independent one when exactly one 
 value of the dependent variable exists for each value of independent variable. This means 
that if we know the value of the independent variable, we know the value of the  dependent 
variable as well. In a relation, nonkey attributes are functionally dependent on keys; if 
you know the key value, you can fi nd the nonkey attribute value. This is what functional 
 dependency in a relation means. 
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First Normal Form

Imagine a real-world scenario with customers that order products. Customers, orders, and 
products are entities you discovered when you got the description of the business scenario. 
Initially, you model everything in a single table called Orders. Table 3-1 shows an imaginary 
Orders table. Columns that are part of the key are shaded (OrderId only in this example).  

TABLE 3-1 A Table Before 1NF 

 OrderId CustomerId CustomerName OrderDate Items

 1 1 Company ABC 2008-10-22 Ap Apples q=5, Ch Cherries q=10

 2 1 Company ABC 2008-10-24 Ba Bananas q=12

 3 2 Company ABC 2008-09-15 Ap Apples q=3, Ba Bananas q=3

 This design is, of course, problematic. Some possible data manipulation anomalies are the 
following: 

■  Insert 

❏  How do you insert a customer without an order? (By the way, can you see the 
 incompleteness problem?) 

■  Update 

❏  If item Ba is renamed, how do you perform an update? You can easily miss some 
row you should update. This occurs because of redundancy. 

■  Delete 

❏  If order 3 is deleted, the data for customer 2 is lost. This is also a problem of 
incompleteness. 

■  Select 

❏  How do you calculate the total quantity of bananas? This is the problem with a 
nonscalar column. The Items column is a collection. 

 The fi rst normal form (1NF) says that a table is in fi rst normal form if all columns are atomic. 
No multivalued columns are allowed. Note that the 1NF defi nition simply states that a table 
must represent a relation.  

 Decomposition has to start with the Items column. You need a single row per item in an 
 order, and every atomic piece of data of a single item (ProductId, ProductName, Quantity) 
must get its own column. However, after the decomposition, you get multiple rows for a 
single order. OrderId by itself cannot be the key anymore. The new key is composed of 
the OrderId and ProductId columns. If you allow multiple products on a single order—for 
 example, each time with a different discount—you would not be able to use the ProductId 
as a part of the key. You would probably add ItemId attribute and use it as a part of the new 
key. A decomposed table in 1NF would look like Table 3-2. 

OrderId CustomerId CustomerName OrderDate Items
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 TABLE 3-2 A Table in 1NF 

OrderId CustomerId CustomerName OrderDate ItemID ProductId Quantity

Product

Name

1 1 Company ABC 2008-10-22 1 Ap 5 Apples

1 1 Company ABC 2008-10-22 2 Ch 10 Cherries

2 1 Company ABC 2008-10-24 1 Ba 12 Bananas

3 2 XYZ 2008-09-15 1 Ap 3 Apples

3 2 XYZ 2008-09-15 2 Ba 3 Bananas

 Before I start with 2NF, let me point out one common misconception with 1NF. You’ll  often 
read about repeating group of columns. Take, for example, the Employees table design 
shown in Figure 3-11. 

Employees

EmployeeId

EmployeeName
Child1Name
Child2Name
Child3Name

PK

FIGURE 3-11 The Employees table

 You probably feel uncomfortable with this table. It has a repeating group of columns with a 
similar name—ChildXName. Child1Name means the name of the oldest child, Child2Name 
means the name of the second oldest, and Child3Name means the name of the third  oldest 
(disregarding twins). Of course, the question is, what if an employee has more than three 
children? You’d probably create a new table. You might think that you are normalizing the 
Employees table.  

 You know that the relational model does not depend on names. Let’s rename the table and 
all of the columns and get a table shown in Figure 3-12. 

Orders

OrdersId

CustomerID
OrderDate
DueDate
ShipDate

PK

FIGURE 3-12 The Orders table (the Employees table renamed)

 You probably feel more comfortable with this design, and this table seems perfectly 
 normalized. The Employees table was in 1NF as well, but the problem is that a constraint 
is built into both tables. The fi rst constraint says we have employees with three (or at most 
three if the columns allow NULLs) children; the second constraint says an order has three 

OrderId CustomerId CustomerName OrderDate ItemID ProductId Quantity

Product

Name
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dates. Of course, the fi rst constraint makes no sense in real world, and the fi rst design was 
bad anyway. However, it was normalized. Remember that you can constrain with the data 
model itself with table design. Often a repeating group of columns with similar names really 
represents a hidden collection; however, don’t decompose such groups automatically. Check 
the business rules—the constrained predicates—fi rst.  

Second Normal Form

After achieving 1NF, as you saw in Table 3-2, you still have many updating anomalies: 

■ Insert 

❏ How do you insert a customer without an order? (Incompleteness) 

■ Update 

❏ If a customer changes the order date for an order, how do you perform the 
 update? (Redundancy) 

■ Delete 

❏ If you delete order 3, the data for customer 2 is lost. (Incompleteness) 

To achieve second normal form (2NF), a table must be in 1NF (do you see the linear 
 progression?), and every nonkey column must be functionally dependent on the entire key. This 
means that no nonkey column can depend on a part of the key only. In Table 3-2, you need 
OrderId only to get CustomerId and OrderDate; you don’t need ItemId, which is also part of 
the key. For the normal forms beyond 1NF, decomposition means creating new tables, not 
just new rows like in 1NF. To achieve 2NF, you need to decompose the table into two tables, 
like Tables 3-3 and 3-4 show. 

TABLE 3-3 The Orders Table in 2NF 

 OrderId CustomerId CustomerName OrderDate

 1 1 Company ABC 2008-10-22

 2 1 Company ABC 2008-10-24

 3 2 XYZ 2008-09-15

TABLE 3-4 The OrderDetails Table in 2NF 

OrderId ItemId ProductId Quantity ProductName

1 1 Ap 5 Apples

1 2 Ch 10 Cherries

2 1 Ba 12 Bananas

3 1 Ap 3 Apples

3 2 Ba 3 Bananas

OrderId CustomerId CustomerName OrderDate

OrderId ItemId ProductId Quantity ProductName
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 You make the split so that you leave attributes that depend on OrderId only in the Orders 
table, and you introduce a new table, OrderDetails, with the other attributes. 2NF deals with 
the relationship between columns that are part of a key and other columns that are not part 
of a key. 

To gain nonloss decomposition, you have to be able to join the two new tables back to 
 produce the original table. Therefore, you need some common value in both tables. Of 
course, this is the OrderId column from the Orders table, which is, as you already know, the 
foreign key column in the OrderDetails table.  

Third Normal Form

With 2NF, we’ve resolved the order date update anomaly because of redundancy. However, 
many issues remain: 

■ Insert 

❏ How do you insert a customer without an order? (Incompleteness) 

■ Update 

❏ If a customer or a product is renamed, how do you perform the update? 
(Redundancy) 

■ Delete 

❏ If you delete order 3, the data for customer 2 is lost. (Incompleteness) 

To achieve third normal form (3NF), a table must be in 2NF, and every nonkey column must 
be nontransitively dependent on every key. In other words, nonkey columns must be  mutually 
independent. For example, in Table 3-3, from OrderId, you can fi nd CustomerId, and from 
CustomerId, you can transitively fi nd the CustomerName value. Try to fi nd a similar problem 
in Table 3-4 (of course, ProductId and ProductName are not mutually independent). 

To achieve 3NF, you must create new tables for dependencies between nonkey columns, as 
shown in Tables 3-5 through 3-8. 

TABLE 3-5 The Customers Table in 3NF 

 CustomerId CustomerName

 1 Company ABC

 2 XYZ

 TABLE 3-6 The Orders Table in 3NF 

OrderId CustomerId OrderDate

1 1 2008-10-22

2 1 2008-10-24

3 2 2008-09-15

CustomerId CustomerName

OrderId CustomerId OrderDate
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TABLE 3-7 The OrderDetails Table in 3NF 

 OrderId ItemId ProductId Quantity

 1 1 Ap 5

 1 2 Ch 10

 2 1 Ba 12

 3 1 Ap 3

 3 2 Ba 3

TABLE 3-8 The Products Table in 3NF 

 ProductId ProductName

 Ap Apples

 Ch Cherries

 Ba Bananas

 When you reach 3NF, you usually get rid of all data manipulation anomalies. Usually when 
you normalize up to 3NF, the result satisfi es BCNF, 4NF, and 5NF as well. Higher normal 
forms violations are rare. To make this overview complete, however, I’ll describe the higher 
normal forms and give a couple of practical tips on how to recognize the possibility of 
 violating them. 

Boyce-Codd Normal Form

 The fi rst question you might ask yourself is why the next NF is not called 4NF. The fact is that 
Mr. Codd actually wanted to replace 3NF with the one we now know as Boyce-Codd normal 
form (BCNF). Because it is stricter than 3NF, 3NF did not disappear, and consequently we 
have somewhat inconsistent numbering. 

I’ll show how you can violate BCNF. Imagine for a moment we have the Orders table,  without 
the OrderId column and with a single order per customer per day allowed. Also, each 
 order has a standard ship time, and therefore OrderDate gives you the expected DueDate. 
Table 3-9 shows this example. To make the dependency clear, the DueDate is always a day 
after the OrderDate. 

 TABLE 3-9 The Imaginary Orders Table  

CustomerId OrderDate DueDate OtherOrderColumns

1 2008-10-22 2008-10-23 . . .

1 2008-10-24 2008-10-25 . . .

2 2008-09-15 2008-09-16 . . .

This table has two composite candidate keys: {CustomerId, OrderDate} and {CustomerId, 
DueDate}. The candidate keys overlap on the CustomerId column (which is shaded with 

OrderId ItemId ProductId Quantity

ProductId ProductName

CustomerId OrderDate DueDate OtherOrderColumns
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a  darker color to show that it is used twice). It is in 3NF because all nonkey columns 
 intransitively depend on each key. However, a specifi c data manipulation anomaly is possible: 

■  Update 

❏  If a customer changes OrderDate, you should not forget to update the DueDate 
as well. (Redundancy) 

 You can violate BCNF only in the rare situation that a table has more than one  composite 
candidate key and the candidate keys overlap. It would be possible to decompose the 
Table 3-9 into two new tables based on two candidate keys, for the sake of brevity in short 
 notation, showing table headings only: 

 OrdersOrderDate {CustomerId, OrderDate, OtherOrderColumns} 

 OrdersDueDate {CustomerId, DueDate, OtherOrderColumns} 

 However, your common sense tells you this decomposition is not something you’d want in 
your model. In addition, there is some hidden redundancy among the two new tables—other 
nonkey columns repeat. It is not possible to solve this problem with normalization rules only. 
(You already know that common sense can help you.) I’ll return to this problem with a formal 
solution later when I describe the Principle of Orthogonal Design. 

 I did not defi ne BCNF yet. BCNF says that every determinant must be a key. The  independent 
part of a functional dependency is called the determinant. A key attribute must be a 
 determinant—it must not be determined. In Table 3-9, OrderDate determined DueDate and 
vice versa, and both are key attributes (precisely, part of some key). In other words, to achieve 
BCNF, you must have no functional dependencies between key attributes. 

 You can achieve BCNF without decomposition by using common sense. Tables 3-10 and 3-11 
show the two possibilities to achieve BCNF in Table 3-9. 

 TABLE 3-10 The Orders Table in BCNF: First Solution 

 CustomerId OrderDate StandardShippingTimeDays OtherOrderColumns

 1 2008-10-22 1 . . .

 1 2008-10-24 1 . . .

 2 2008-09-15 1 . . .

 TABLE 3-11 The Orders Table in BCNF: Second Solution 

 OrderId CustomerId OrderDate DueDate OtherOrderColumns

 1 1 2008-10-22 2008-10-23 . . .

 2 1 2008-10-24 2008-10-25 . . .

 3 2 2008-09-15 2008-09-16 . . .

 Note that the solution shown in Table 3-11 does not defi ne pairs (CustomerId, OrderDate) 
and (CustomerId, DueDate) as keys anymore. Therefore, it is not really a solution if the two 

CustomerId OrderDate StandardShippingTimeDays OtherOrderColumns

OrderId CustomerId OrderDate DueDate OtherOrderColumns
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pairs still determine orders. However, I introduced it here because it is closer to  real-world 
scenarios; a customer can submit more than one order per day.  

Higher Normal Forms

Higher normal forms, namely, the fourth and the fi fth normal forms, do not deal with 
 functional dependencies; they deal with multivalued and join dependencies. I’ll now 
 introduce the fourth and the fi fth normal forms. 

Fourth Normal Form

 As I mentioned earlier, violations of fourth and fi fth normal forms are very rare, and they can 
usually be avoided with common sense. To begin with, violations can occur only in a table 
that consists of columns that together compose a key, with no nonkey column, and with at 
least three key columns. The following examples of 4NF and 5NF violations, as well as the 
 solutions, are based on examples in Practical Issues in Database Management by Fabian 
Pascal (Addison-Wesley, 2000). 

 Let me start by describing an example of a business problem. A fi ctitious company works 
on projects. Employees are assigned to these projects. Each employee has a set of skills. If 
an employee is assigned to a project, that employee performs all activities that he or she 
can perform. Table 3-12 shows this example. Although not shown here, imagine there are 
 separate Employees, Projects, and Activities tables in the database. 

TABLE 3-12 The Employees-Projects-Activities Table  

 Employee Project Activity

 1 Proj 111 ABC

 1 Proj 111 DEF

 1 Proj 222 ABC

 1 Proj 222 DEF

 2 Proj 111 ABC

 2 Proj 111 XYZ

 You‘ll notice some redundancy. The following data manipulation anomalies are possible: 

■ Insert 

❏ How do you assign an employee to a project if the employee has no skills yet? 
(Incompleteness) 

■ Update 

❏ If an employee is reassigned from one project to another, how do you manage to 
update all rows needed? (Redundancy) 

Employee Project Activity
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■  Delete 

❏  If you delete all project assignments for an employee, information regarding the 
skills of this employee is lost. (Incompleteness) 

 The information about projects and activities repeats for each employee. We could avoid this 
problem if we allow multivalued columns, as shown in Table 3-13. 

 TABLE 3-13 The Employees-Projects-Activities Table with Multivalued Columns 

 Employee Project Activity

 1 Proj 111

Proj 222

ABC

DEF

 2 Proj 111 ABC

XYZ

 This situation indicates that there is something called multivalued dependency between 
employees and projects and activities. Multivalued dependencies are a generalization of 
functional dependencies. Fourth normal form (4NF) says that there must be no nontrivial 
multivalued dependencies that are not functional dependencies. To achieve this, you have to 
decompose Table 3-12, as shown in Tables 3-14 and 3-15. 

 TABLE 3-14 The Employees-Projects Table  

 Employee Project

 1 Proj 111

 1 Proj 222

 2 Proj 111

 TABLE 3-15 The Employees-Activities Table  

 Employee Activity

 1 ABC

 1 DEF

 2 ABC

 2 XYZ

Fifth Normal Form

 I’ll now change the business problem description slightly. If an employee is assigned to 
a project, that employee doesn’t have to perform all activities that he or she has skills to 
 perform on this project; in fact, a project might not need some of the activities the assigned 
employees has skills to perform. However, if a project includes an activity, an employee is 
 assigned to a project, and the employee assigned performs the aforementioned activity, the 
employee must perform that activity on that project. An example is shown in Table 3-16. 

Employee Project Activity

Employee Project

Employee Activity
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TABLE 3-16 The Employees-Projects-Activities Table  

Employee Project Activity

1 Proj 111 ABC

1 Proj 111 DEF

1 Proj 222 ABC

2 Proj 111 ABC

2 Proj 111 XYZ

 Without decomposition, the possible data manipulation anomalies are similar to the 
 anomalies mentioned in the 4NF section. After decomposition in two tables, as you saw 
in Tables 3-14 and 3-15, you try to join the decomposed tables to get back the original 
Table 3-16. What happens is that you get an additional, spurious tuple:  

{1, Proj 222, DEF} 

With the decomposition of Table 3-16 into two tables that are actually projections of the 
original table, you got a spurious row if you joined the two new tables. The problem lies 
in the fact that the original table violated so-called join dependency constraint. A  relation 
 satisfi es join dependency if every legal value of relation is equal to the join of its  projections. 
Join dependencies are a generalization of multivalued dependencies. To solve the  problem, 
you need decomposition to three tables. In addition to the Employees-Projects and 
 Employees-Activities tables, you need also a Projects-Activities table, as shown in Table 3-17. 

TABLE 3-17 The Projects-Activities Table  

 Project Activity

 Proj 111 ABC

 Proj 111 DEF

 Proj 222 ABC

 Proj 111 XYZ

 If there is no join dependency violation, a table is in 5NF. A more formal defi nition says that 
every nontrivial join dependency in the table is implied by the keys of the table. 

 Finally, let me return to that common sense I mentioned a couple of times. What  happens 
if a project includes an activity, an employee is assigned to a project, and the  assigned 
 employee performs the aforementioned activity, but the employee does not have to 
 perform that  activity on that project? Then you need four tables, which is a design that you 
would  probably create initially. You need the Employees-Projects table, which shows which 
 employees are assigned to which project; the Employees-Activities table, which shows which 
activities employees can perform; the Projects-Activities table, which shows which  activities 
are needed in which project; and, fi nally, the Employees-Projects-Activities table, which 
shows which activity is performed by which employee on which project. 

Employee Project Activity

Project Activity
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Additional Normal Forms

 Before introducing fourth and fi fth normal forms, let me briefl y mention domain-key normal 
form (DKNF). In DKNF, all constraints come from domains (types) and keys (candidate keys 
and foreign keys). A table in DKNF is free of violating entity, referential, and domain  integrity 
rules, as described previously. It is in fi fth normal form as well and thus fully normalized. 
However, DKNF is a more theoretical than practical normal form. To achieve it, you would 
have to create many, many different types. This is a nearly impossible mission, especially if 
your types need to be widely accepted and your type constraints need to be agreed on. In 
addition, users of your types (the database and other developers) would have to learn a lot 
just to start using your types. 

 C. J. Date also proposed sixth normal form—a normal form that solves possible temporal 
data anomalies. However, to solve temporal data problems, I would also have to introduce 
the Interval data type, implement the Pack and Unpack operators, and solve some other 
problems as well. Refer to Inside Microsoft SQL Server 2008: T-SQL Programming to fi nd a 
deeper discussion of temporal data and suggested solutions for temporal problems.  

Denormalization

 You should always try to reach at least 3NF when designing a database. However, 
 sometimes you have to turn the process around and, after fully normalizing a database, start 
 denormalizing it. The two main reasons for denormalization are performance and history, 
as explained in Designing Database Solutions by Using Microsoft SQL Server 2005 by Dejan 
Sarka, Andy Leonard, Javier Loria, and Adolfo Wiernik (Microsoft Press, 2007). 

 A classic business question is, how much of a product is currently in stock? You can  calculate 
quantities on stock by summarizing shipments and subtracting deliveries. States and  levels 
can always be calculated from events. However, this question could be very frequent. 
Therefore, it makes sense to aggregate events to levels and states and maintain these 
 aggregates with every new event. In addition, you could speed joins by replicating a foreign 
key from the fi rst child table to the second one. This way queries might involve fewer tables 
to join. In both cases, you denormalized to improve performance. 

 Imagine another example. An invoicing application uses a fully normalized database design. 
A customer’s address is stored in the Customers table only. If a customer moves, you  update 
that customer’s address with the new one. Let’s say that after the update, the customer 
asks you to reprint an old invoice. Now you have a problem because you didn’t store the 
old address. You can solve this problem by maintaining a copy of the customer address on 
the invoice date in the Invoices table. (I should mention that this might not be treated as 
 denormalization—you probably just missed that InvoiceAddress attribute when analyzing the 
business problem!) Figure 3-13 shows the fully normalized Invoices database. 
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Employees
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 FIGURE 3-13 Normalized Version of Invoices Database

 You can denormalize in multiple places. For example, you might transfer the EmployeeId 
column to the Invoices table to avoid a join to the Customers table when you are analyzing 
invoices over employees only. You could include the CustomerName and CustomerAddress 
columns in the Invoices table to maintain history. You could maintain aggregates, such as 
stock level per warehouse (in a separate table), total stock level per product, year-to-date sales 
per customers, and more. Figure 3-14 shows a denormalized version of the invoices database. 
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FK2
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FIGURE 3-14 The denormalized version of the invoices database

 Remember to denormalize very deliberately. After denormalization, you introduce 
 possible update anomalies back to the database. You have to maintain redundant data 
in  user-defi ned transactions. If you insert a new event, for example, take care to update 
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the  level or the state derived from events in the same transaction. Triggers are especially 
 useful for maintaining denormalized data. With triggers, which are automatically part of a 
 transaction, you transfer the burden of maintaining the denormalized data on your RDBMS. 

Generalization and Specialization

 Let’s return to the NULLs problem. Remember that you can have NULLs when an attribute 
is not applicable for some tuples. You can eliminate the need to use NULLs in this way by 
means of specialization by introducing subtypes. The problem could also be turned around; 
remember the decomposition for resolving BCNF violation earlier in this chapter: 

 OrdersOrderDate {CustomerId, OrderDate, OtherOrderColumns} 

 OrdersDueDate {CustomerId, DueDate, OtherOrderColumns} 

 These two relations have many attributes in common, and this is a kind of redundancy. You 
can solve this redundancy by means of generalization by introducing supertypes. 

 Two entities are of distinct, or primitive, types if they have no attributes in common. Some 
 relations can have both common and distinct attributes. If they have a common  identifi er 
(that is, a common primary identifi cation schema or a common primary key), we can talk 
about a special supertype/subtype relationship. Supertypes and subtypes are helpful for 
representing different levels of generalization or specialization. In a business problem 
 description, the verb is (or explicitly is a kind of ) leads to a supertype/subtype relationship. 
For example, a customer is a partner, and a supplier is a partner as well. Obviously, customers 
and suppliers have something in common. 

 In the preceding example, partners are a supertype of customers and suppliers. If you start 
with subtypes and fi nd a supertype, you’re using a bottom-up approach. The  top-down 
 approach is the opposite. Whether you generalize or specialize, the same problem arises: 
where to stop? This question can be answered easily with the top-down approach. Stop 
 specializing (in other words, stop introducing) subtypes when there are no additional 
 interesting attributes for another level of subtypes. The opposite technique is more 
 problematic; after all, you could fi nish with just a few entities, such as subjects, objects, and 
events. One possible stopping condition is when you reach abstract objects, or objects that 
do not exist in the real world. Abstract objects are not part of a relational database. However, 
sometimes it is practical to introduce a supertype just to share a common identifi cation 
schema even between disjoint entities. From experience, I suggest a practical approach 
that works quite well for me: stop when you have a problem naming the supertype (when 
you reach names like thing). If you cannot name it immediately, you are probably trying to 
 generalize disjoint entities.  

 Here is some additional practical advice for generalization and specialization. If you have a 
table with few known values and many NULLs in some column, it’s probably a candidate for 
specialization. Check whether those NULLs represent unknown values or attributes that are 
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nonapplicable for the rows in which they appear. You can get rid of NULLs for attributes that 
are not applicable if you introduce subtypes. For the bottom-up approach, tables that have 
many columns with similar or even the same names probably need a supertype table. Note 
that you are again dependent on a good naming convention. 

 Figure 3-15 shows entities that need generalization.  

CustomersOriginal

CustomerId

CompanyName
Address
DiscountCode

PK

SuppliersOriginal

SupplierId

CompanyName
Address
URL

PK

FIGURE 3-15 Before generalization

 Let me mention a big issue with generalization. What if your system with the design 
from Figure 3-15 is already in production with a lot of data already inserted? In that case, 
 generalization is not that simple. Not only do you have to introduce a generalized model like 
the one shown in Figure 3-16, but you also have to take care of the data. You need to merge 
and de-duplicate customers and suppliers in the case of a customer who is also a supplier. 

Customers

PartnerId

DiscountCode

PK,FK1

Partners

PartnerId

CompanyName
Address

PK
Suppliers

PartnerId

URL

PK,FK1

FIGURE 3-16 After generalization

 I gave you a lot of practical advice on how to fi nd supertypes and subtypes. I also mentioned 
a formal rule regarding when to stop specializing: when you no longer have any attributes 
to add to a subtype. However, to make this topic consistent with the rest of this theoretical 
chapter, we need a formal defi nition for when you have to stop generalizing. 

Principle of Orthogonal Design

 You fi nd the most general supertypes when no two relations are be defi ned in such a way that 
they can represent the same facts. A more formal defi nition says that your database should 
be in accordance with the Principle of Orthogonal Design, as stated in An Introduction to 
Database Systems, 8th edition by C. J. Date (Addison-Wesley, 2003): 

 Let A and B be distinct base relvars. Then there must not exist nonloss 
decompositions of A and B into A1, A2, . . ., Am and B1, B2, . . ., Bn (respectively) such 
that some projection Ai in set A1, A2, . . ., Am and some projection Bj in set B1, B2, . . ., Bn 
have overlapping meanings. 
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 Let me fi nish this topic with couple of words of explanation. The term relvar is used here for 
 relation, which is probably the correct term, as a relation is actually a relational variable. The 
term orthogonal means that relations must have mutually independent meanings, and this is 
 exactly what we wanted for primitive types. You might notice that the principle is just  formalized 
common sense. While normalization reduces redundancy within relations,  generalization 
(or orthogonal design) reduces redundancy across relations. Finally, specialization reduces 
the need to use the NULL value for an attribute that is not applicable. Note also that the 
Principle of Orthogonal Design also prevents unnecessary horizontal decompositions based on 
 nonoverlapping restrictions of the original relation, as you would again get some projections of 
the new decomposed relations with overlapping meanings. The implication of the orthogonal 
design is that even if relations A and B have the same heading type, the following must hold: 

 A Union B : is a disjoint union 

 A Intersect B : is empty 

 A Minus B : is equal to A 

 You can use these equations for checking whether you have relations with non-overlapping 
meaning. 

Conclusion

 This chapter was an introduction to the relational model. Basic terms such as type, tuple, 
 relation, and attribute were explained. The meaning of a relation should be now clear to you, 
and you should recognize that you can treat a relation like a business entity or  understand 
it like a predicate with propositions. You can also use this dual approach when  manipulating 
 relations; you can be prescriptive, by using relational algebra, or descriptive, by using 
 relational calculus. The importance of data integrity and the means to maintain data  integrity 
were emphasized. Namely, constraints were explained comprehensively. The  problem of 
NULLs was discussed. The chapter concluded with a set of formal rules and principles for 
achieving a good design, including normalization and orthogonal design. Many times a 
good naming convention was pointed out as crucial for a good design. All the theoretical 
 knowledge found in this chapter and Chapter 2 should help you understand the advanced 
queries you’ll encounter in the following chapters. 
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Chapter 4

Query Tuning

 This chapter lays the foundation of query tuning knowledge required for both this book 
and Inside Microsoft SQL Server 2008: T-SQL Programming. (For brevity, I’ll refer to the 
programming book as Inside T-SQL Programming and to both this book and Inside T-SQL 
Programming as “these books.”) Here you will be introduced to a tuning methodology, 
 acquire tools for query tuning, learn how to analyze execution plans and perform index 
 tuning, and learn the signifi cance of preparing good sample data and the importance of 
 using set-based solutions. 

 When building the table of contents for this book, I faced quite a dilemma with regard to 
the query tuning chapter, a dilemma that I’ve also faced when teaching advanced T-SQL—
should this material appear early or late? On one hand, the chapter provides  important 
background information that is required for the rest of the book; on the other hand, some 
techniques used for query tuning involve advanced queries—sort of a  chicken-and-egg 
quandary. I decided to incorporate the chapter early in the book, but I wrote it as an 
 independent unit that can be used as a reference. My recommendation is that you read 
this chapter before the rest of the book, and when a query uses  techniques that you’re not 
 familiar with yet, just focus on the conceptual elements  described in the text. Some  queries 
will use techniques that are described later in the book (for example,  pivoting, running 
 aggregations, the OVER clause, CUBE, CTEs, and so on) or in Inside T-SQL Programming 
(for example, temporary tables, cursors, routines, CLR integration,  compilations, and so 
on). Don’t be concerned if the techniques are not clear. Feel free, though, to jump to the 
relevant  chapter if you’re curious about a certain technique. When you fi nish reading these 
books, I suggest that you return to this chapter and revisit any queries that were not clear 
at fi rst to make sure you fully understand their mechanics. 

 Credits go to the mentors within the company I work for—Solid Quality Mentors—for their 
contribution to this chapter, especially to Andrew J. Kelly and Eladio Rincón. 

Sample Data for This Chapter

 Throughout the chapter, I will use the Performance database and its tables in my examples. 
Run the code in Listing 4-1 to create the database and its tables and populate them with 
sample data. Note that it will take a few minutes for the code to fi nish. 
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LISTING 4-1 Creation script for sample database and tables

SET NOCOUNT ON;

USE master;

IF DB_ID('Performance') IS NULL

  CREATE DATABASE Performance;

GO

USE Performance;

GO

-- Creating and Populating the Nums Auxiliary Table

SET NOCOUNT ON;

IF OBJECT_ID('dbo.Nums', 'U') IS NOT NULL

  DROP TABLE dbo.Nums;

CREATE TABLE dbo.Nums(n INT NOT NULL PRIMARY KEY);

DECLARE @max AS INT, @rc AS INT;

SET @max = 1000000;

SET @rc = 1;

INSERT INTO dbo.Nums(n) VALUES(1);

WHILE @rc * 2 <= @max

BEGIN

  INSERT INTO dbo.Nums(n) SELECT n + @rc FROM dbo.Nums;

  SET @rc = @rc * 2;

END

INSERT INTO dbo.Nums(n)

  SELECT n + @rc FROM dbo.Nums WHERE n + @rc <= @max;

GO

-- Drop Data Tables if Exist

IF OBJECT_ID('dbo.EmpOrders', 'V') IS NOT NULL

  DROP VIEW dbo.EmpOrders;

GO

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL

  DROP TABLE dbo.Orders;

GO

IF OBJECT_ID('dbo.Customers', 'U') IS NOT NULL

  DROP TABLE dbo.Customers;

GO

IF OBJECT_ID('dbo.Employees', 'U') IS NOT NULL

  DROP TABLE dbo.Employees;

GO

IF OBJECT_ID('dbo.Shippers', 'U') IS NOT NULL

  DROP TABLE dbo.Shippers;

GO

-- Data Distribution Settings

DECLARE

  @numorders   AS INT,

  @numcusts    AS INT,

  @numemps     AS INT,

  @numshippers AS INT,

  @numyears    AS INT,

  @startdate   AS DATETIME;

SET NOCOUNT ON;

USE master;

IF DB_ID('Performance') IS NULL

  CREATE DATABASE Performance;

GO

USE Performance;

GO

-- Creating and Populating the Nums Auxiliary Table

SET NOCOUNT ON;

IF OBJECT_ID('dbo.Nums', 'U') IS NOT NULL

  DROP TABLE dbo.Nums;

CREATE TABLE dbo.Nums(n INT NOT NULL PRIMARY KEY);

DECLARE @max AS INT, @rc AS INT;

SET @max = 1000000;

SET @rc = 1;

INSERT INTO dbo.Nums(n) VALUES(1);

WHILE @rc * 2 <= @max

BEGIN

  INSERT INTO dbo.Nums(n) SELECT n + @rc FROM dbo.Nums;

  SET @rc = @rc * 2;

END

INSERT INTO dbo.Nums(n)

  SELECT n + @rc FROM dbo.Nums WHERE n + @rc <= @max;

GO

-- Drop Data Tables if Exist

IF OBJECT_ID('dbo.EmpOrders', 'V') IS NOT NULL

  DROP VIEW dbo.EmpOrders;

GO

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL

  DROP TABLE dbo.Orders;

GO

IF OBJECT_ID('dbo.Customers', 'U') IS NOT NULL

  DROP TABLE dbo.Customers;

GO

IF OBJECT_ID('dbo.Employees', 'U') IS NOT NULL

  DROP TABLE dbo.Employees;

GO

IF OBJECT_ID('dbo.Shippers', 'U') IS NOT NULL

  DROP TABLE dbo.Shippers;

GO

-- Data Distribution Settings

DECLARE

  @numorders   AS INT,

  @numcusts    AS INT,

  @numemps     AS INT,

  @numshippers AS INT,

  @numyears    AS INT,

  @startdate   AS DATETIME;
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SELECT

  @numorders   =   1000000,

  @numcusts    =     20000,

  @numemps     =       500,

  @numshippers =         5,

  @numyears    =         4,

  @startdate   = '20050101';

-- Creating and Populating the Customers Table

CREATE TABLE dbo.Customers

(

  custid   CHAR(11)     NOT NULL,

  custname NVARCHAR(50) NOT NULL

);

INSERT INTO dbo.Customers(custid, custname)

  SELECT

    'C' + RIGHT('000000000' + CAST(n AS VARCHAR(10)), 10) AS custid,

    N'Cust_' + CAST(n AS VARCHAR(10)) AS custname

  FROM dbo.Nums

  WHERE n <= @numcusts;

ALTER TABLE dbo.Customers ADD

  CONSTRAINT PK_Customers PRIMARY KEY(custid);

-- Creating and Populating the Employees Table

CREATE TABLE dbo.Employees

(

  empid     INT          NOT NULL,

  firstname NVARCHAR(25) NOT NULL,

  lastname  NVARCHAR(25) NOT NULL

);

INSERT INTO dbo.Employees(empid, firstname, lastname)

  SELECT n AS empid,

    N'Fname_' + CAST(n AS NVARCHAR(10)) AS firstname,

    N'Lname_' + CAST(n AS NVARCHAR(10)) AS lastname

  FROM dbo.Nums

  WHERE n <= @numemps;

ALTER TABLE dbo.Employees ADD

  CONSTRAINT PK_Employees PRIMARY KEY(empid);

-- Creating and Populating the Shippers Table

CREATE TABLE dbo.Shippers

(

  shipperid   VARCHAR(5)   NOT NULL,

  shippername NVARCHAR(50) NOT NULL

);

INSERT INTO dbo.Shippers(shipperid, shippername)

  SELECT shipperid, N'Shipper_' + shipperid AS shippername

  FROM (SELECT CHAR(ASCII('A') - 2 + 2 * n) AS shipperid

        FROM dbo.Nums

        WHERE n <= @numshippers) AS D;

SELECT

  @numorders   =   1000000,

  @numcusts    =     20000,

  @numemps     =       500,

  @numshippers =         5,

  @numyears    =         4,

  @startdate   = '20050101';

-- Creating and Populating the Customers Table

CREATE TABLE dbo.Customers

(

  custid   CHAR(11)     NOT NULL,

  custname NVARCHAR(50) NOT NULL

);

INSERT INTO dbo.Customers(custid, custname)

  SELECT

    'C' + RIGHT('000000000' + CAST(n AS VARCHAR(10)), 10) AS custid,

    N'Cust_' + CAST(n AS VARCHAR(10)) AS custname

  FROM dbo.Nums

  WHERE n <= @numcusts;

ALTER TABLE dbo.Customers ADD

  CONSTRAINT PK_Customers PRIMARY KEY(custid);

-- Creating and Populating the Employees Table

CREATE TABLE dbo.Employees

(

  empid     INT          NOT NULL,

  firstname NVARCHAR(25) NOT NULL,

  lastname  NVARCHAR(25) NOT NULL

);

INSERT INTO dbo.Employees(empid, firstname, lastname)

  SELECT n AS empid,

    N'Fname_' + CAST(n AS NVARCHAR(10)) AS firstname,

    N'Lname_' + CAST(n AS NVARCHAR(10)) AS lastname

  FROM dbo.Nums

  WHERE n <= @numemps;

ALTER TABLE dbo.Employees ADD

  CONSTRAINT PK_Employees PRIMARY KEY(empid);

-- Creating and Populating the Shippers Table

CREATE TABLE dbo.Shippers

(

  shipperid   VARCHAR(5)   NOT NULL,

  shippername NVARCHAR(50) NOT NULL

);

INSERT INTO dbo.Shippers(shipperid, shippername)

  SELECT shipperid, N'Shipper_' + shipperid AS shippername

  FROM (SELECT CHAR(ASCII('A') - 2 + 2 * n) AS shipperid

        FROM dbo.Nums

        WHERE n <= @numshippers) AS D;
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ALTER TABLE dbo.Shippers ADD

  CONSTRAINT PK_Shippers PRIMARY KEY(shipperid);

-- Creating and Populating the Orders Table

CREATE TABLE dbo.Orders

(

  orderid   INT        NOT NULL,

  custid    CHAR(11)   NOT NULL,

  empid     INT        NOT NULL,

  shipperid VARCHAR(5) NOT NULL,

  orderdate DATETIME   NOT NULL,

  filler    CHAR(155)  NOT NULL DEFAULT('a')

);

INSERT INTO dbo.Orders(orderid, custid, empid, shipperid, orderdate)

  SELECT n AS orderid,

    'C' + RIGHT('000000000'

            + CAST(

                1 + ABS(CHECKSUM(NEWID())) % @numcusts

                AS VARCHAR(10)), 10) AS custid,

    1 + ABS(CHECKSUM(NEWID())) % @numemps AS empid,

    CHAR(ASCII('A') - 2

           + 2 * (1 + ABS(CHECKSUM(NEWID())) % @numshippers)) AS shipperid,

      DATEADD(day, n / (@numorders / (@numyears * 365.25)), @startdate)

        -- late arrival with earlier date

        - CASE WHEN n % 10 = 0

            THEN 1 + ABS(CHECKSUM(NEWID())) % 30

            ELSE 0 

          END AS orderdate

  FROM dbo.Nums

  WHERE n <= @numorders

  ORDER BY CHECKSUM(NEWID());

CREATE CLUSTERED INDEX idx_cl_od ON dbo.Orders(orderdate);

CREATE NONCLUSTERED INDEX idx_nc_sid_od_i_cid

  ON dbo.Orders(shipperid, orderdate)

  INCLUDE(custid);

CREATE UNIQUE INDEX idx_unc_od_oid_i_cid_eid

  ON dbo.Orders(orderdate, orderid)

  INCLUDE(custid, empid);

ALTER TABLE dbo.Orders ADD

  CONSTRAINT PK_Orders PRIMARY KEY NONCLUSTERED(orderid),

  CONSTRAINT FK_Orders_Customers

    FOREIGN KEY(custid)    REFERENCES dbo.Customers(custid),

  CONSTRAINT FK_Orders_Employees

    FOREIGN KEY(empid)     REFERENCES dbo.Employees(empid),

  CONSTRAINT FK_Orders_Shippers

    FOREIGN KEY(shipperid) REFERENCES dbo.Shippers(shipperid);

GO

ALTER TABLE dbo.Shippers ADD

  CONSTRAINT PK_Shippers PRIMARY KEY(shipperid);

-- Creating and Populating the Orders Table

CREATE TABLE dbo.Orders

(

  orderid   INT        NOT NULL,

  custid    CHAR(11)   NOT NULL,

  empid     INT        NOT NULL,

  shipperid VARCHAR(5) NOT NULL,

  orderdate DATETIME   NOT NULL,

  filler    CHAR(155)  NOT NULL DEFAULT('a')

);

INSERT INTO dbo.Orders(orderid, custid, empid, shipperid, orderdate)

  SELECT n AS orderid,

    'C' + RIGHT('000000000'

            + CAST(

                1 + ABS(CHECKSUM(NEWID())) % @numcusts

                AS VARCHAR(10)), 10) AS custid,

    1 + ABS(CHECKSUM(NEWID())) % @numemps AS empid,

    CHAR(ASCII('A') - 2

           + 2 * (1 + ABS(CHECKSUM(NEWID())) % @numshippers)) AS shipperid,

      DATEADD(day, n / (@numorders / (@numyears * 365.25)), @startdate)

        -- late arrival with earlier date

        - CASE WHEN n % 10 = 0

            THEN 1 + ABS(CHECKSUM(NEWID())) % 30

            ELSE 0 

          END AS orderdate

  FROM dbo.Nums

  WHERE n <= @numorders

  ORDER BY CHECKSUM(NEWID());

CREATE CLUSTERED INDEX idx_cl_od ON dbo.Orders(orderdate);

CREATE NONCLUSTERED INDEX idx_nc_sid_od_i_cid

  ON dbo.Orders(shipperid, orderdate)

  INCLUDE(custid);

CREATE UNIQUE INDEX idx_unc_od_oid_i_cid_eid

  ON dbo.Orders(orderdate, orderid)

  INCLUDE(custid, empid);

ALTER TABLE dbo.Orders ADD

  CONSTRAINT PK_Orders PRIMARY KEY NONCLUSTERED(orderid),

  CONSTRAINT FK_Orders_Customers

    FOREIGN KEY(custid)    REFERENCES dbo.Customers(custid),

  CONSTRAINT FK_Orders_Employees

    FOREIGN KEY(empid)     REFERENCES dbo.Employees(empid),

  CONSTRAINT FK_Orders_Shippers

    FOREIGN KEY(shipperid) REFERENCES dbo.Shippers(shipperid);

GO

C04626034.indd   130 2/13/2009   1:55:59 AM



 Chapter 4 Query Tuning 131

 The Orders table is the main data table, and it’s populated with 1,000,000 orders spanning 
four years beginning in 2005. The Customers table is populated with 20,000 customers, the 
Employees table with 500 employees, and the Shippers table with fi ve shippers. Note that I 
distributed the order dates, customer IDs, employee IDs, and shipper IDs in the Orders table 
with random functions. You might not get the same numbers of rows that I’ll be getting in 
my examples back from the queries, but statistically they should be fairly close. 

 The Nums table is an auxiliary table of numbers, containing only one column, called n, 
 populated with integers in the range 1 through 1,000,000. 

 The code in Listing 4-1 creates the following indexes on the Orders table: 

■  idx_cl_od Clustered index on orderdate  

■  PK_Orders Unique nonclustered index on orderid, created implicitly by the primary key 

■  idx_nc_sid_od_i_cid Nonclustered index on shipperid, orderdate, with included column 
custid  

■  idx_unc_od_oid_i_cid_eid Unique nonclustered index on orderdate, orderid, with 
 included columns custid, empid 

   Index structures and their properties will be explained later in the “Index Tuning” section. 

Tuning Methodology

 This section describes a tuning methodology that should help you detect performance 
bottlenecks in your system. I will briefl y discuss general performance bottlenecks, but keep in 
mind that the focus of this chapter—and this book—is query tuning.  

 So, when your system suffers from performance problems, how do you start to solve the 
problems? 

 The answer to this question reminds me of a programmer and an IT manager at a company I 
worked for years ago. The programmer had to fi nish writing a component and deploy it, but 
his code had a bug he couldn’t fi nd. He produced a printout of the code (which was  pretty 
thick) and went to the IT manager, who was in a meeting. The IT manager was  extremely 
good at detecting bugs, which is why the programmer sought him. The IT manager took 
the thick printout, opened it, and immediately pointed to a certain line of code. “Here’s your 
bug,” he said. “Now go.” After the meeting was over, the programmer asked the IT manager 
how he found the bug so fast. The IT manager replied, “I knew that anywhere I pointed there 
would be a bug.” 

 You can point anywhere in the database and fi nd room for tuning. But is it worth it? For 
example, would it be worthwhile to tune the concurrency aspects of the system if blocking 
contributes only to 1 percent of the waits in the system as a whole? It’s important to follow 
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a path or methodology that leads you through a series of steps to the main problem areas 
or bottlenecks in the system—those that contribute to most of the waits. This section will 
 introduce such a methodology.  

 Before you continue, drop the existing clustered index from the Orders table: 

USE Performance; 

GO 

DROP INDEX dbo.Orders.idx_cl_od;

 Suppose your system suffers from performance problems as a whole—users complain that 
“everything is slow.” Listing 4-2 contains a sampling of queries that run regularly in your 
system.  

LISTING 4-2 Sample queries

SET NOCOUNT ON;

USE Performance;

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderid = 3;

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderid = 5;

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderid = 7;

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate = '20080212';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate = '20080118';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate = '20080828';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20080101'

  AND orderdate < '20080201';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20080401'

  AND orderdate < '20080501';

GO

SET NOCOUNT ON;

USE Performance;

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderid = 3;

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderid = 5;

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderid = 7;

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate = '20080212';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate = '20080118';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate = '20080828';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20080101'

  AND orderdate < '20080201';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20080401'

  AND orderdate < '20080501';

GO
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SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20080201'

  AND orderdate < '20090301';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20080501'

  AND orderdate < '20080601';

GO

Restart your SQL Server instance and then run the code in Listing 4-2 several times (try 10). 
SQL Server will internally record performance information you will rely on later. Restarting 
your instance will reset some of the counters. 

When dealing with performance problems, database professionals tend to focus on the 
technical aspects of the system, such as resource queues, resource utilization, and so on. 
However, users perceive performance problems simply as waits—they make a request and 
have to wait to get the results back. A response that takes longer than three seconds to 
 arrive after an interactive request is typically perceived by users as a performance problem. 
They don’t really care how many commands wait on average on each disk spindle or what 
the cache hit ratio is, and they don’t care about blocking, CPU utilization, average page life 
expectancy in cache, and so on. They care about waits, and that’s where performance tuning 
should start. 

The tuning methodology I recommend applies a top-down approach. It starts by investigating 
waits at the instance level and then drills down through a series of steps until the processes/
components that generate the bulk of the waits in the system are identifi ed. Once you identify 
the offending processes, you can focus on tuning them. Following are the main steps of the 
methodology: 

 1. Analyze waits at the instance level 

  2. Correlate waits with queues 

  3. Determine a course of action 

  4. Drill down to the database/fi le level 

  5. Drill down to the process level 

  6. Tune indexes/queries 

 In the following sections I cover in detail each step in the tuning methodology. I describe 
some of the objects that you need to query to get performance information. In some cases 
I give recommendations to automate the collection of certain performance data  using 
your own manual scheduled jobs. Where relevant I explain how the data can be  analyzed 
 graphically using graphs that you manually create in tools like Microsoft Offi ce Excel. 

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20080201'

  AND orderdate < '20090301';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20080501'

  AND orderdate < '20080601';

GO
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Note that SQL Server 2008 introduces a component called the data collector that  collects 
 different sets of data ( performance and other) from different sources and stores it in a 
 relational data  warehouse known as the management data warehouse. The data collector 
installs three  system data  collection sets that collect disk usage, server activity, and query 
 statistics information. The new data collection platform helps you automate the collection of 
performance and other  information and also analyze it graphically with preconfi gured reports. 
The system data  collection sets are already confi gured to query many of the objects that I will 
describe in the following sections. So naturally, if you’re relying on the data collector to collect 
such data, you won’t necessarily need to confi gure your own manual jobs. Please refer to SQL 
Server Books Online under “System Data Collection Sets” for specifi cs about the information 
collected by those collection sets, the objects that are queried, and even the specifi c queries 
used to query those objects. 

Analyze Waits at the Instance Level

 The fi rst step in the tuning methodology is to identify at the instance level which types of waits 
contribute most to the waits in the system. This is done by querying a dynamic  management 
view (DMV) called sys.dm_os_wait_stats. This DMV contains more than 400 wait types, most 
of which are documented in SQL Server Books Online with at least a short  description. If you 
think about it, this is a manageable number that is convenient to work with as a starting point. 
Some other performance tools give you too much information to start with and create a 
 situation in which you can’t see the forest for the trees.  

 Run the following query to return the waits in your system sorted by type: 

SELECT 

  wait_type, 

  waiting_tasks_count, 

  wait_time_ms, 

  max_wait_time_ms, 

  signal_wait_time_ms 

FROM sys.dm_os_wait_stats 

ORDER BY wait_type;

 Here’s an abbreviated version of the results I got when I ran this query on my system: 

wait_type              waiting  wait   max   signal

                       _tasks   _time  _wait _wait

                       _count   _ms    _time _time

                                       _ms   _ms

---------------------- ------- ------- ----- -------

...

ASYNC_IO_COMPLETION    3       1710    658   0

ASYNC_NETWORK_IO       288785  176144  959   21377

AUDIT_GROUPCACHE_LOCK  0       0       0     0

...

CXPACKET               50281   195552  3482  20132

CXROWSET_SYNC          0       0       0     0
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DAC_INIT               1       1       1     0

...

IO_COMPLETION          652     40492   1598  165

IO_RETRY               0       0       0     0

IOAFF_RANGE_QUEUE      0       0       0     0

...

LCK_M_S                24      25429   9065  9

LCK_M_SCH_M            18      166     34    5

LCK_M_SCH_S            1       654     654   0

...

PAGELATCH_SH           448     269     142   64

PAGELATCH_UP           15      14      4     7

PARALLEL_BACKUP_QUEUE  0       0       0     0

...

WRITELOG               5325    28738   309   2453

XACT_OWN_TRANSACTION   0       0       0     0

XACT_RECLAIM_SESSION   0       0       0     0

...

 Note Of course, you shouldn’t draw conclusions about production systems from the output that 
I got. Needless to say, my personal computer or your test computer or personal test  environment 
won’t necessarily refl ect a real production environment. I’m just using this output for  illustration 
purposes. I’ll mention later which types of waits are typically predominant in production 
 environments. 

 The DMV accumulates values since the server was last restarted. If you want to reset its 
 values, run the following code (but don’t run it now): 

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);

 The DMV sys.dm_os_wait_stats contains the following attributes:  

■  wait_type 

■  waiting_tasks_count The number of waits on this wait type 

■  wait_time_ms The total wait time for this wait type in milliseconds (including 
signal_wait_time_ms) 

■  max_wait_time_ms 

■  signal_wait_time_ms The difference between the time the waiting thread was signaled 
and when it started running 

 The meaning of most attributes should be simple enough to understand, except for the last 
one, perhaps. A thread enters a wait state when the resource it is waiting for is not available. 
Once the resource becomes available, the waiting thread is signaled. However, the CPU might 
be busy at this point serving other threads. The attribute signal_wait_time_ms indicates the 
time it took from the moment the thread is signaled that the resource is available until the 
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thread gets CPU time and starts using the resource. As you can imagine, high values in this 
attribute typically indicate CPU problems.  

 Among the various types of waits, you will fi nd ones related to locks, latches, I/O (including 
I/O latches), parallelism, the transaction log, memory, compilations, OLEDB (linked servers 
and other OLEDB components), and so on. Typically, you will want to ignore some types of 
waits—for example, sleep wait types that occur when a thread is suspended doing nothing, 
queue wait types that occur when a worker is idle waiting for a task to be assigned, or wait 
types described specifi cally in SQL Server Books Online as not indicating a problem, such as 
CLR_AUTO_EVENT, REQUEST_FOR_DEADLOCK_SEARCH, and others. Make sure you fi lter out 
irrelevant waits so that they do not skew your calculations. 

 In many cases you’ll fi nd I/O-related waits are among the most common types of waits 
(for example, IOLATCH waits), for several reasons. I/O is typically the most expensive resource 
involved with data-manipulation activities. Also, when queries or indexes are not designed 
and tuned well, the result is typically excessive I/O. Also, when customers think of “strong” 
computers, they usually focus their attention on CPU and memory, and they don’t always pay 
adequate attention to the I/O subsystem. Database systems need strong I/O subsystems.  

 High values in network-related waits (for example, ASYNC_NETWORK_IO) may indicate a 
network problem, though they may also indicate that the client is not consuming the data 
sent to it by SQL Server fast enough.  

 Some systems don’t necessarily access large portions of data; instead, these systems  involve 
processes that access small portions of data very frequently. Such is typically the case with 
online transaction processing (OLTP) environments, which have stored procedures and  queries 
that access small portions of data but are invoked very frequently. In such  environments, 
 compilations and recompilations of the code might be the main cause of a bottleneck, in which 
case you will likely see high values in signal waits (related to CPU). Lots of use of ad-hoc queries 
instead of stored procedures and prepared statements may lead to  fl ooding the memory with 
ad-hoc plans, in which case you will typically see high values in the CMEMTHREAD wait type, 
which occurs when a task is waiting on a thread-safe memory object.  

 You may also have issues with parallel query plans that use too many threads. This may  result 
in long waits of threads that wait for other threads to fi nish their work (CXPACKET wait) 
 before they can continue; the system as a whole might not provide optimal  throughput. 
Such systems may benefi t from lowering the max degree of parallelism. Note, though, 
that  sometimes the CXPACKET wait type is only a symptom caused by other reasons—for 
 example, excessive I/O resulting from lack of important indexes—in which case you will also 
see high values in I/O-related waits.  

 OLTP systems also involve a lot of data modifi cation in small portions, and the transaction 
log often becomes a bottleneck in such environments. When SQL Server cannot write fast 
enough to the log, you typically see high values in the WRITELOG wait type.  
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 The tempdb database can also be a serious bottleneck because all temporary tables, whether 
created implicitly by an execution plan or explicitly, are created in tempdb. SQL Server also uses 
tempdb’s space to perform other activities. Performance problems in tempdb may cause high 
values in I/O-related waits and others. High values in latch waits (for example, PAGE_LATCH_UP) 
may indicate contention on internal structures such as IAM, GAM, SGAM, and PFS pages. The 
cause might be frequent allocations of pages for temporary tables, heavy inserts to heaps, and 
other causes. Improper fi le layout may lead to such contention.  

 The OLEDB wait type represents waits related to linked servers, BULK INSERT, Full Text, and 
others. However, note that an OLEDB call cannot yield; therefore, the wait state starts when 
the call starts and ends when the call ends. This means that high values in this wait type don’t 
necessarily indicate a performance problem.  

 Occasionally, you also fi nd systems with concurrency-related (blocking) problems, in which 
case lock waits (LCK) will be high.  

 I gave a few examples for performance problems and the common types of waits that are 
associated with them. This coverage is not complete and is provided just to give you a sense 
of how wait stats information can be analyzed. 

Isolating Top Waits

 Let’s get back to the wait information that you receive from the DMV. You probably won’t 
fi nd it convenient to browse all wait types and try to manually fi gure out which are the most 
 substantial. You want to isolate the top waits—those that in total accumulate to some  threshold 
percentage of the total waits in the system. You can use a number like 80 percent because 
 typically a small number of wait types contributes to the bulk of the waits in the system. 

 The following query isolates the top waits that accumulate in total to 80 percent of the wait 
time in the system, returning no fewer than fi ve waits:  

WITH Waits AS

(

  SELECT

    wait_type,

    wait_time_ms / 1000. AS wait_time_s,

    100. * wait_time_ms / SUM(wait_time_ms) OVER() AS pct,

    ROW_NUMBER() OVER(ORDER BY wait_time_ms DESC) AS rn,

    100. * signal_wait_time_ms / wait_time_ms as signal_pct

  FROM sys.dm_os_wait_stats

  WHERE wait_time_ms > 0

    AND wait_type NOT LIKE N'%SLEEP%'

    AND wait_type NOT LIKE N'%IDLE%'

    AND wait_type NOT LIKE N'%QUEUE%'    

    AND wait_type NOT IN(  N'CLR_AUTO_EVENT'

                         , N'REQUEST_FOR_DEADLOCK_SEARCH'

                         , N'SQLTRACE_BUFFER_FLUSH'

                         /* filter out additional irrelevant waits */ )

)
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SELECT

  W1.wait_type, 

  CAST(W1.wait_time_s AS NUMERIC(12, 2)) AS wait_time_s,

  CAST(W1.pct AS NUMERIC(5, 2)) AS pct,

  CAST(SUM(W2.pct) AS NUMERIC(5, 2)) AS running_pct,

  CAST(W1.signal_pct AS NUMERIC(5, 2)) AS signal_pct

FROM Waits AS W1

  JOIN Waits AS W2

    ON W2.rn <= W1.rn

GROUP BY W1.rn, W1.wait_type, W1.wait_time_s, W1.pct, W1.signal_pct

HAVING SUM(W2.pct) - W1.pct < 80 -- percentage threshold

    OR W1.rn <= 5

ORDER BY W1.rn;

 This query generates (on my system) the following output: 

wait_type         wait_time_s  pct    running_pct  signal_pct

----------------- ------------ ------ ------------ -----------

PAGEIOLATCH_SH    2305.85      34.50  34.50        1.68

CXPACKET          1630.89      24.40  58.89        18.22

ASYNC_NETWORK_IO  1572.81      23.53  82.42        10.86

PAGEIOLATCH_EX    368.67       5.52   87.94        0.78

WRITELOG          160.28       2.40   90.34        11.53

 This query uses techniques to calculate running aggregates, which I’ll explain later in the 
book. Remember, focus for now on the concepts rather than on the techniques used to 
achieve them. This query returns the top waits that accumulate to 80 percent of the waits in 
the system, after fi ltering out irrelevant wait types. Of course, you can adjust the threshold 
and fi lter out other irrelevant waits to your analysis. To see at least n rows in the output (let’s 
say n = 5), the expression OR W1.rn <= 5 is specifi ed in the HAVING clause. With each wait 
type, the query returns the following:  

■  The total wait time in seconds that processes waited on that wait type since the system 
was last restarted or the counters were cleared 

■  The percentage of the wait time of this type out of the total 

■  The running percentage from the top-most wait type until the current one 

■  The percentage of the signal wait time out of the wait time (remember that wait_time_ms 
includes signal_wait_time_ms) 

Note In the sys.dm_os_wait_stats DMV, wait_time_ms represents the total wait time of all 
 processes that waited on this type, even if multiple processes were waiting concurrently. Still, 
these numbers would typically give you a good sense of the main problem areas in the system. 

 Examining the top waits, you can identify several potential problem areas: read-related I/O, 
parallelism, and network. Waits related to write-related I/O and writes to the transaction log 
also appear in the output, but those seem minor compared to the others. With this information 
in hand, you are ready for the next step. 
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Collecting Wait Information

 I also fi nd it handy to collect wait information in a table and update it at regular intervals 
(for example, once an hour). By doing this, you can analyze the distribution of waits during 
the day and identify peak periods. Note that if you enabled data collection and the system 
 collection set “Server Activity”, wait-stats information is automatically collected for you in the 
management data warehouse. You can then analyze waits over time via the report Server 
Activity History (found in SQL Server Management Studio by right-clicking Data Collection 
under Management in Object Explorer and choosing Reports). In this section I describe what 
you need to defi ne in case you’re not using the data collector to collect wait stats. 

 Run the following code to create the WaitStats table: 

USE Performance;

IF OBJECT_ID('dbo.WaitStats', 'U') IS NOT NULL DROP TABLE dbo.WaitStats;

CREATE TABLE dbo.WaitStats

(

  dt                  DATETIME     NOT NULL DEFAULT (CURRENT_TIMESTAMP),

  wait_type           NVARCHAR(60) NOT NULL,

  waiting_tasks_count BIGINT       NOT NULL,

  wait_time_ms        BIGINT       NOT NULL,

  max_wait_time_ms    BIGINT       NOT NULL,

  signal_wait_time_ms BIGINT       NOT NULL

);

CREATE UNIQUE CLUSTERED INDEX idx_dt_type ON dbo.WaitStats(dt, wait_type);

CREATE INDEX idx_type_dt ON dbo.WaitStats(wait_type, dt);

 Defi ne a job that runs on regular intervals and uses the following code to load the current 
data from the DMV: 

INSERT INTO Performance.dbo.WaitStats

    (wait_type, waiting_tasks_count, wait_time_ms,

     max_wait_time_ms, signal_wait_time_ms)

  SELECT

    wait_type, waiting_tasks_count, wait_time_ms,

    max_wait_time_ms, signal_wait_time_ms

  FROM sys.dm_os_wait_stats

  WHERE wait_type NOT IN (N'MISCELLANEOUS');

 Remember that the wait information in the DMV is cumulative. To get the waits that took place 
within each interval, you need to apply a self-join between two instances of the table—one 
representing the current samples and the other representing the previous samples. The join 
condition will match each current row to the row representing the previous sampling for the 
same wait type. Then you can subtract the cumulative wait time of the previous sampling from 
the current, thus producing the wait time during the interval. The following code creates the 
IntervalWaits function, which implements this logic: 

IF OBJECT_ID('dbo.IntervalWaits', 'IF') IS NOT NULL

  DROP FUNCTION dbo.IntervalWaits;

GO
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CREATE FUNCTION dbo.IntervalWaits

  (@fromdt AS DATETIME, @todt AS DATETIME)

RETURNS TABLE

AS

RETURN

  WITH Waits AS

  (

    SELECT dt, wait_type, wait_time_ms,

      ROW_NUMBER() OVER(PARTITION BY wait_type

                        ORDER BY dt) AS rn

    FROM dbo.WaitStats

  )

  SELECT Prv.wait_type, Prv.dt AS start_time,

    CAST((Cur.wait_time_ms - Prv.wait_time_ms)

           / 1000. AS NUMERIC(12, 2)) AS interval_wait_s

  FROM Waits AS Cur

    JOIN Waits AS Prv

      ON Cur.wait_type = Prv.wait_type

      AND Cur.rn = Prv.rn + 1

      AND Prv.dt >= @fromdt

      AND Prv.dt < DATEADD(day, 1, @todt)

GO

 The function accepts the date boundaries of a period that you want to analyze. For example, 
the following query returns the interval waits for the period ‘20090212’ through ‘20090213’ 
(inclusive), sorted by the totals for each wait type in descending order, wait type, and start time: 

SELECT wait_type, start_time, interval_wait_s

FROM dbo.IntervalWaits('20090212', '20090213') AS F

ORDER BY SUM(interval_wait_s) OVER(PARTITION BY wait_type) DESC,

  wait_type, start_time;

 I fi nd Microsoft Offi ce Excel PivotTables or Analysis Services cubes extremely handy in 
 analyzing such information graphically. These tools allow you to easily see the  distribution 
of waits graphically. For example, suppose you want to analyze the waits over the 
 period ‘20090212’ through ‘20090213’ using Excel PivotTables. Prepare the following 
IntervalWaitsSample view, which will be used as the external source data for the PivotTable: 

IF OBJECT_ID('dbo.IntervalWaitsSample', 'V') IS NOT NULL

  DROP VIEW dbo.IntervalWaitsSample;

GO

CREATE VIEW dbo.IntervalWaitsSample

AS

SELECT wait_type, start_time, interval_wait_s

FROM dbo.IntervalWaits('20090212', '20090215') AS F;

GO

 Create a PivotTable and pivot chart in Excel and specify the IntervalWaitsSample view as the 
PivotTable’s external source data. Figure 4-1 shows what the PivotTable looks like with my 
sample data, after fi ltering only the top waits. 
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FIGURE 4-1 PivotTable in Excel

 Figure 4-2 has a pivot chart, showing graphically the distribution of the PAGEIOLATCH_SH 
wait type over the input period. 

FIGURE 4-2 Pivot chart 1 in Excel
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 The PAGEIOLATCH_SH wait type indicates waits on I/O for read operations. You can clearly 
see that, in our case, dramatic peaks occur every day around noon. 

 Figure 4-3 has a pivot chart showing graphically the distribution of all top wait types. 

FIGURE 4-3 Pivot chart 2 in Excel

 Again, you can see that most waits occur around noon daily. 

 As an example of how handy the analysis of interval waits can be, in one of my tuning  projects 
I found high peaks of I/O latches every four hours that lasted for quite a while ( almost the 
whole four hours) and then dropped. Naturally, in such a case you look for  activities that run 
on a scheduled basis. Sure enough, the “criminal” was isolated: a  scheduled job that invoked 
the sp_updatestats stored procedure against every database every four hours and ran for 
 almost four hours. This stored procedure is used to update statistics  globally at the database 
level. Statistics are histograms maintained for columns that the  optimizer uses to determine 
selectivity of queries, density of joins, and so on. Apparently, in this case some years prior a 
query didn’t perform well because of a lack of up-to-date statistics on a particular indexed 
column. The customer got a recommendation back then to refresh statistics, and running the 
stored procedure seemed to solve the problem. Since then, the customer had been running 
sp_updatestats globally every four hours. 

 Note that SQL Server automatically creates and updates statistics. Typically, the automatic 
maintenance of statistics is suffi cient, and you should intervene manually only in special  cases. 
And if you do intervene manually, do not use sp_updatestats globally! The sp_updatestats 
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stored procedure is useful mainly to refresh statistics globally after an upgrade of the  product 
or after attaching a database from an earlier version of the product or service pack level. 

 Ironically, when we found the problem, the query that was the trigger for creating the job 
was not even used anymore in the system. We simply removed the job and let SQL Server use 
its automatic maintenance of statistics. Naturally, the graph of I/O latches simply  fl attened, 
and the performance problem vanished.  

Correlate Waits with Queues

 After you identify the top waits at the instance level, you should correlate them with queues 
to identify the problematic resources. You mainly use Performance Monitor counters for 
this task. For example, if you identifi ed I/O-related waits in the previous step, you would 
check the different I/O queues, cache hit ratios, and memory counters. Fewer than two I/O 
 commands should be waiting on an I/O queue on average per spindle (disk). Cache hit ratios 
should be as high as possible. 

 As for memory, it is tightly related to I/O because the more memory you have, the more 
time pages (data and execution plans) can remain in cache, reducing the need for  physical 
I/O. However, if you have I/O issues, how do you know if adding memory will really help? 
You need to be familiar with the tools that would help you make the right choice. For 
 example, the  counter SQL Server:Buffer Manager – Page life expectancy will tell you how 
many seconds on  average a page is expected to remain in cache without reference. Low 
 values indicate that  adding memory will allow pages to remain longer in cache, while 
high values indicate that  adding memory won’t help you much in this respect. The actual 
 numbers depend on your  expectations and the frequency with which you run queries that 
rely on the same data/ execution plans. Typically, numbers greater than several hundred 
 indicate a good state of memory. 

 But let’s say that you have very low values in the counter. Does this mean that you have to add 
memory? Adding memory in such a case would probably help, but some queries lack important 
indexes on the source tables and end up performing excessive I/O that could be avoided with 
a better index design. With less I/O and less memory pressure, the problem can be eliminated 
without investing in hardware. Of course, if you continue your analysis and realize that your 
 indexes and queries are tuned well, you would then consider hardware upgrades. 

 Similarly, if you identifi ed other types of waits as the top ones, you would check the relevant 
queues and resource utilization. For example, if the waits involve compilations/recompilations, 
you would check the compilations/recompilations, CPU utilization, context switching counters, 
and so on.  

 SQL Server 2008 collects important performance counters (both generic operating  system 
counters and SQL Server instance counters) as part of the “Server Activity” collection set 
(assuming it’s enabled). If you prefer to collect such information yourself, you can use the 
Windows Performance Monitor/System Monitor. SQL Server 2008 also provides you with 
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a DMV called sys.dm_os_performance_counters containing all the SQL Server instance 
 object-related counters that you can fi nd in Performance Monitor. Unfortunately, this DMV 
doesn’t give you the more generic operating system counters, such as CPU utilization, I/O 
queues, and so on. You have to analyze those externally.  

For example, when I ran the following query on my system, I got the output shown 
(in  abbreviated form) in Table 4-1: 

SELECT 

  object_name, 

  counter_name, 

  instance_name, 

  cntr_value, 

  cntr_type 

FROM sys.dm_os_performance_counters;

TABLE 4-1 Contents of sys.dm_os_performance_counters in Abbreviated Form

object_name counter_name instance_name cntr_value cntr_type

MSSQL$SQL08:Buffer 
Manager 

Buffer cache hit ratio  153 537003264

MSSQL$SQL08:Buffer 
Manager 

Buffer cache hit ratio 
base 

 153 1073939712

MSSQL$SQL08:Buffer 
Manager 

Page lookups/sec  36230931 272696576

MSSQL$SQL08:Buffer 
Manager 

Free list stalls/sec  0 272696576

MSSQL$SQL08:Buffer 
Manager 

Free pages  164 65792

MSSQL$SQL08:Buffer 
Manager 

Total pages  69472 65792

MSSQL$SQL08:Buffer 
Manager 

Target pages  187769 65792

MSSQL$SQL08:Buffer 
Manager 

Database pages  58627 65792

MSSQL$SQL08:Buffer 
Manager 

Reserved pages  0 65792

MSSQL$SQL08:Buffer 
Manager 

Stolen pages  10681 65792

. . .

 You might fi nd the ability to query these performance counters in SQL Server useful  because 
you can use query manipulation to analyze the data. As with wait information, you can 
 collect performance counters in a table on regular intervals and then use queries and tools 
such as PivotTables to analyze the data over time. 

object_name counter_name instance_name cntr_value cntr_type
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Determine Course of Action

 The next step—after you have identifi ed the main types of waits and resources involved—
represents a junction in the tuning process. Based on your discoveries thus far, you will 
 determine a course of action for further investigation. In our case, we need to identify the 
causes of I/O, parallelism, network-related waits, and transaction log–related waits ( minor); 
we will then continue with a route based on our fi ndings. But if the previous steps had 
 identifi ed blocking problems, compilation/recompilation problems, or others, you would 
need to proceed with a completely different course of action.  

 The I/O-related waits (including I/O latches and write log waits) require us at this point to drill 
down to the database level. I explain how this is done in the next section. 

 As I mentioned earlier, the parallelism waits (CXPACKET) occur in parallel query plans when 
threads wait for an exchange packet from other threads before they can continue work. High 
values in this wait type might indicate that CPU resources are not utilized optimally, especially 
in OLTP environments where many requests run simultaneously. The problem may be  mitigated 
by lowering the maximum degree of parallelism in the server. Note that even when queries 
are restricted to use only one CPU, it doesn’t mean that SQL Server cannot  utilize more than 
one CPU; rather, a single query will not be processed with a parallel query plan. High values in 
the CXPACKET wait type can also be caused by using  hyperthreading. Note that high values in 
CXPACKET wait type do not always represent a direct cause of a problem; instead, they can be 
a symptom, in which case you will typically see high values in other wait types (for example, I/O 
latches). Also, it is quite natural in parallel query plans for threads to wait for other threads to 
fi nish work. So even when you have high values in this wait type, you won’t always be able to 
improve the system’s throughput by lowering the  maximum degree of parallelism. 

 High values in network waits might indicate network bandwidth problems, but they may 
also indicate other problems. For example, the client application may have been  written 
 ineffi ciently and can’t consume the data fast enough from the moment it made the  request. 
This can happen, for example, when the client uses server-side cursors and in between 
each fetch of a row it does a lot of processing. Also, some things that seem obvious to 
most  programmers are not necessarily obvious to everyone. This might surprise you, but 
 occasionally we fi nd applications that do not do any fi ltering in the database as part of 
their queries—instead, they do the fi ltering in the application. This, of course, can put an 
 enormous load on the network. 

 I discuss some of the other performance problems later in these books. 

Drill Down to the Database/File Level

 The next step in our tuning process is to drill down to the database/fi le level. You want to 
is olate the databases that involve most of the cost. Within the database, you want to drill 
down to the fi le type (data/log) because the course of action you take depends on the fi le 
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type. One of the tools that allows you to analyze I/O information at the database/fi le level is a 
 dynamic management function (DMF) called sys.dm_io_virtual_fi le_stats. The function accepts 
a database ID and fi le ID as inputs and returns I/O information about the input  database fi le. 
You specify NULLs in both to request information about all databases and all fi les.  

 The function returns the following attributes:  

■  database_id 

■  fi le_id 

■  sample_ms (the number of milliseconds since the instance of SQL Server has started 
and can be used to compare different outputs from this function) 

■  num_of_reads 

■  num_of_bytes_read 

■  io_stall_read_ms (the total time, in milliseconds, that the users waited for reads issued 
on the fi le) 

■  num_of_writes 

■  num_of_bytes_written 

■  io_stall_write_ms 

■  io_stall (the total time, in milliseconds, that users waited for I/O to be completed on 
the fi le) 

■  size_on_disk_bytes (in bytes) 

■  fi le_handle (the Microsoft Windows fi le handle for this fi le) 

 Note The measurements are reset when SQL Server starts, and they indicate only physical I/O 
against the fi les and not logical I/O. 

 At this point, we want to fi gure out which databases involve most of the I/O and I/O stalls in 
the system and, within the database, which fi le type (data/log). The following query will give 
you this information, sorted in descending order by the I/O stalls: 

WITH DBIO AS

(

  SELECT

    DB_NAME(IVFS.database_id) AS db,

    MF.type_desc,

    SUM(IVFS.num_of_bytes_read + IVFS.num_of_bytes_written) AS io_bytes,

    SUM(IVFS.io_stall) AS io_stall_ms

  FROM sys.dm_io_virtual_file_stats(NULL, NULL) AS IVFS

    JOIN sys.master_files AS MF

      ON IVFS.database_id = MF.database_id

      AND IVFS.file_id = MF.file_id

  GROUP BY DB_NAME(IVFS.database_id), MF.type_desc

)

C04626034.indd   146 2/13/2009   1:56:00 AM



 Chapter 4 Query Tuning 147

SELECT db, type_desc, 

  CAST(1. * io_bytes / (1024 * 1024) AS NUMERIC(12, 2)) AS io_mb,

  CAST(io_stall_ms / 1000. AS NUMERIC(12, 2)) AS io_stall_s,

  CAST(100. * io_stall_ms / SUM(io_stall_ms) OVER()

       AS NUMERIC(10, 2)) AS io_stall_pct,

  ROW_NUMBER() OVER(ORDER BY io_stall_ms DESC) AS rn

FROM DBIO

ORDER BY io_stall_ms DESC;

 This query generates (on my system) the following output: 

db                  type_desc  io_mb     io_stall_s  io_stall_pct  rn

------------------- ---------- --------- ----------- ------------- ---

Performance         ROWS       26002.09  14364.84    86.77         1

MDW                 ROWS       1495.23   834.43      5.04          2

AdventureWorks2008  ROWS       99.82     311.11      1.88          3

Performance         LOG        121.43    275.64      1.66          4

MDW                 LOG        625.91    177.80      1.07          5

tempdb              ROWS       107.40    147.05      0.89          6

Northwind           ROWS       38.39     117.32      0.71          7

msdb                LOG        64.63     104.98      0.63          8

master              ROWS       58.13     100.44      0.61          9

msdb                ROWS       149.90    89.24       0.54          10

Generic             LOG        1.05      12.25       0.07          11

model               ROWS       8.52      3.66        0.02          12

tempdb              LOG        7.34      3.54        0.02          13

pubs                ROWS       4.57      2.64        0.02          14

InsideTSQL2008      ROWS       4.50      2.35        0.01          15

Generic             ROWS       4.32      1.74        0.01          16

master              LOG        1.07      1.61        0.01          17

AdventureWorks2008  LOG        0.23      1.59        0.01          18

Northwind           LOG        0.07      1.30        0.01          19

InsideTSQL2008      LOG        0.12      1.09        0.01          20

pubs                LOG        0.41      0.96        0.01          21

model               LOG        0.56      0.40        0.00          22

 The output shows the database name, fi le type, total I/O (reads and writes) in megabytes, 
I/O stalls in seconds, I/O stalls in percent of the total for the whole system, and a row 
 number indicating a position in the sorted list based on I/O stalls. Of course, if you want, 
you can  calculate a percentage and row number based on I/O as opposed to I/O stalls, and 
you can also use running aggregation techniques to calculate a running percentage, as I 
 demonstrated earlier. You might also be interested in a separation between the reads and 
writes for your analysis. In this output, you can clearly identify the main element  involving 
most of the system’s I/O stalls—the data portion of Performance, which scores big time 
(86  percent of the stalls), and the data portion of MDW, which also incurs a large percent 
(5  percent of the stalls). I enabled the data collector in my system and the three system 
 collection sets, which store the information in this management data warehouse. By  default, 
the  collection frequency is 60 seconds. Behind, with about 1 to 2 percent each, are the 
data  portions of AdventureWorks2008 and tempdb and the log portions of Performance 
and MDW. Obviously, you should focus on these elements, paying special attention to data 
 activity against the Performance database. 
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 Regarding the bulk of our problem—I/O against the data portion of the Performance 
 database—you now need to drill down to the process level to identify the processes that 
 involve most of the waits. 

 If high waits are associated with the transaction log, you can identify the problematic 
 databases by using the sys.dm_io_virtual_fi le_stats DMF. This wasn’t a signifi cant issue in 
any of the databases in my system, but let’s assume it was. You fi rst need to check whether 
the log is confi gured adequately, that is, whether it is placed on its own disk drive with no 
 interference and, if so, whether the disk drive is fast enough. If the log happens to be placed 
on a slow disk drive, you might want to consider dedicating a faster disk for it. Once the 
 logging activity exceeds the throughput of the disk drive, you start getting waits and stalls. 
You might be happy dedicating a faster disk drive for the log, but then again, you might 
not have the budget, or you might have already assigned the fastest disk you could for it. 
Keep in mind that the transaction log is written sequentially, so striping it over multiple disk 
drives won’t help, unless you also have activities that read from the log (such as backups 
and  transactional replication). You might also be able to optimize the processes that cause 
 intensive logging by reducing their amount of logging. I’ll elaborate on minimally logged 
operations in Chapter 10, “Data Modifi cation.” 

 As for tempdb, many activities—both explicit and implicit—might cause tension in tempdb to 
the point where it can become a serious bottleneck in the system. The tempdb database is used 
by SQL Server to store explicitly created temporary tables and table variables and  implicitly 
 created worktables. It is also used as a temporary storage area for many other  internal  activities. 
Several features that rely on row versioning keep their version store in tempdb, including 
snapshot isolations, triggers, online index operations, and multiple  active result sets (MARS). 
Typically you’ll have a lot of room for optimizing tempdb, and you should defi nitely give that 
option adequate attention. I’ll elaborate on tempdb and on row  versioning in Inside T-SQL 
Programming in the chapters that cover temporary tables, triggers, and transactions. 

 Note that two system collection sets collect I/O-related information (if enabled). The “Server 
Activity” collection set collects some I/O-related performance counters and queries the 
sys.dm_io_virtual_fi le_stats DMV. The “Disk Usage” collection set collects information about 
data and log fi les from the catalog views sys.database_fi les, sys.partitions, sys. allocation_
units, and sys.internal_tables and the command DBCC SQLPERF (LOGSPACE). You also get 
 preconfi gured reports called Server Activity History and Disk Usage Summary (in Object 
Explorer, right-click Data Collection under Management and choose Reports), allowing you to 
graphically analyze I/O information stored in the management data warehouse. 

 For our demonstration, let’s focus on solving the I/O problems related to the data portion of 
the Performance database. 

Drill Down to the Process Level

 Now that you know which databases (in our case, one) involve most of the performance 
problem, you want to drill down to the process level, namely, identify the processes (stored 
procedures, queries, and so on) that need to be tuned. For this task, you will fi nd SQL Server’s 
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built-in tracing capabilities extremely powerful. You need to trace a workload representing 
the typical activities in the system against the databases you need to focus on, analyze the 
trace data, and isolate the processes that need to be tuned.  

 Before I talk about the specifi c trace you need to create for such tuning purposes, I’d fi rst like 
to point out a few important tips regarding working with traces in SQL Server in general. 

 Traces have an impact on the performance of the system, and you should put effort into 
reducing their impact. My good friend Brian Moran once compared the problematic aspect 
of measuring performance to the Heisenberg Uncertainty Principle in quantum mechanics. 
The principle was formulated by Werner Heisenberg in 1927. Very loosely speaking, when 
you measure something, a factor of uncertainty is caused by your measurement. The more 
precise the measure of something’s position, the more uncertainty there is regarding its 
momentum (loosely, velocity and direction). So the more precisely you know one thing, the 
less precisely you can know some parallel quantity. On the scale of atoms and  elementary 
particles, the effect of the uncertainty principle is very important. There’s no proof to 
 support the uncertainty principal, but the theory is mathematically sound and supported by 
experimentation. 

 Going back to our traces, you don’t want your tracing activity to cause a performance 
 problem itself. You can’t avoid its effect altogether—that’s impossible—but you can  defi nitely 
do much to reduce it by following some important guidelines: 

■  Don’t trace with the SQL Server Profi ler GUI; instead, use the T-SQL code that defi nes 
the trace. When you trace with Profi ler, you’re actually running two traces—one that 
directs the output to the target fi le and one that streams the trace information to 
the client running Profi ler. You can defi ne the trace graphically with Profi ler and then 
script the trace defi nition to T-SQL code using the menu item File | Export | Script Trace 
Defi nition | For SQL Server 2005 - 2008. You can then make slight revisions to the 
code depending on your needs. I like to encapsulate the code in a stored procedure 
that  accepts as arguments elements that I want to make variable—for example, the 
 database ID I use as a fi lter in the trace defi nition. 

■  Do not trace directly to a table, as this will have a signifi cant performance impact. 
Tracing to a fi le on a local disk is the fastest option (tracing to a network share is bad as 
well). You can later load the trace data to a table for analysis using the fn_trace_gettable 
function, using a BULK operation such as SELECT INTO. 

■  Tracing can produce enormous amount of data and excessive I/O activity. Make sure 
the target trace fi le does not reside on disk drives that contain database fi les (such as 
data, log, and tempdb). Ideally, dedicate a separate disk drive for the target trace fi les. 

■  Be selective in your choices of event classes and data columns—only trace what you 
need, removing all default and unnecessary ones. Of course, don’t be too selective; 
make sure that all relevant event classes and data columns are included. Be aware 
that if you trace individual statement event classes (for example, SP:StmtCompleted, 
SQL:StmtCompleted), those tend to produce large amounts of trace data because each 
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individual statement within a procedure/batch produces a trace event. Unless you really 
need to trace the individual statements, consider tracing at the procedure/batch level 
(for example, SP:Completed, SQL:BatchCompleted). 

■  Use the trace fi ltering capabilities to fi lter only the relevant events. For example, when 
tuning a particular database, make sure you fi lter events only for the relevant database ID. 

 With these important guidelines in mind, let’s proceed to the trace that we need for our 
 tuning purposes. 

Trace Performance Workload

 You now need to defi ne a trace that will help you identify processes that need to be tuned in 
the Performance database. When faced with such a need, DBAs tend to trace slow-running 
processes by fi ltering events where the Duration data column is greater than or equal to 
some value (say, 3,000 milliseconds). Though such a trace can be very interesting, it won’t 
necessarily reveal all important queries that should be tuned. Think of the following: You 
have a query that runs for about 30 seconds a couple of times a day and another query that 
runs for a about half a second 40,000 times a day. Which would you say is more important to 
tune? Obviously, the latter is more important, but if you fi lter only events that run for at least 
three seconds, you’ll fi lter out the more important query to tune. 

 In short, for our purposes you don’t want to fi lter based on Duration at all. Of course, this 
means that you might get enormous amounts of trace data, so make sure you follow the 
guidelines I suggested earlier. You do want to fi lter only the databases that are relevant to 
your tuning process. 

 As for event classes, if most activities in your system are invoked by stored procedures and 
each stored procedure invokes a small or limited number of activities, trace the SP:Completed 
event class. You will then be able to aggregate the data by the procedure. Similarly, if 
most of the activities are invoked by batches with a small number of activities, trace the 
SQL:BatchCompleted event class. However, if each procedure invokes many activities, you 
want to trace the SP:StmtCompleted event class to capture each individual statement  invoked 
from each stored procedure. If you have activities that are submitted as ad-hoc batches 
(as in our case), trace the SQL:StmtCompleted event class. Remember, though, that  tracing 
 individual statement event classes can produce a lot of trace information and have an 
 impact on the traced SQL Server instance. As much as possible, try to limit such tracing to 
short periods to collect a representative workload. Finally, if you have activities submitted 
as  remote procedure calls, trace the RPC:Completed event class. Notice that all event classes 
are Completed ones as opposed to the respective Starting event classes. Only the Completed 
event classes carry performance information such as Duration, CPU, Reads, and Writes 
 because, naturally, these values are unknown when the respective event starts. 

 As for data columns, you mainly need the TextData column that will carry the actual T-SQL 
code and the relevant performance-related counters—for example, the Duration column. 
Remember that users perceive waits as the performance problem, and Duration stands for 
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the elapsed time it took the event to run. If you’re specifi cally targeting I/O-related problems, 
you may want to analyze the Reads and Writes columns. I also like to trace the RowCounts 
data column, especially when looking for network-related problems. Queries returning the 
result set to the client with large numbers in this counter would indicate potential pressure 
on the network. Other than that, you might want additional data columns based on your 
needs. For example, if you later want to analyze the data by host, application, login, and so 
on, make sure you also include the corresponding data columns. 

 You can defi ne a trace following these guidelines and then script its defi nition to T-SQL code. 
I did so and encapsulated the code in a stored procedure called PerfworkloadTraceStart.  

 The stored procedure accepts a database ID and fi le name as input parameters. It defi nes a 
trace using the specifi ed database ID as a fi lter and the given fi le name as the target for the 
trace data; it starts the trace and returns the newly generated trace ID via an output parameter. 
Run the following code to create the PerfworkloadTraceStart stored procedure: 

SET NOCOUNT ON;

USE master;

GO

IF OBJECT_ID('dbo.PerfworkloadTraceStart', 'P') IS NOT NULL

  DROP PROC dbo.PerfworkloadTraceStart;

GO

CREATE PROC dbo.PerfworkloadTraceStart

  @dbid      AS INT,

  @tracefile AS NVARCHAR(245),

  @traceid   AS INT OUTPUT

AS

-- Create a Queue

DECLARE @rc          AS INT;

DECLARE @maxfilesize AS BIGINT;

SET @maxfilesize = 5;

EXEC @rc = sp_trace_create @traceid OUTPUT, 0, @tracefile, @maxfilesize, NULL 

IF (@rc != 0) GOTO error;

-- Set the events

DECLARE @on AS BIT;

SET @on = 1;

-- RPC:Completed

exec sp_trace_setevent @traceid, 10, 15, @on;

exec sp_trace_setevent @traceid, 10, 8, @on;

exec sp_trace_setevent @traceid, 10, 16, @on;

exec sp_trace_setevent @traceid, 10, 48, @on;

exec sp_trace_setevent @traceid, 10, 1, @on;

exec sp_trace_setevent @traceid, 10, 17, @on;

exec sp_trace_setevent @traceid, 10, 10, @on;

exec sp_trace_setevent @traceid, 10, 18, @on;

exec sp_trace_setevent @traceid, 10, 11, @on;
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exec sp_trace_setevent @traceid, 10, 12, @on;

exec sp_trace_setevent @traceid, 10, 13, @on;

exec sp_trace_setevent @traceid, 10, 6, @on;

exec sp_trace_setevent @traceid, 10, 14, @on;

-- SP:Completed

exec sp_trace_setevent @traceid, 43, 15, @on;

exec sp_trace_setevent @traceid, 43, 8, @on;

exec sp_trace_setevent @traceid, 43, 48, @on;

exec sp_trace_setevent @traceid, 43, 1, @on;

exec sp_trace_setevent @traceid, 43, 10, @on;

exec sp_trace_setevent @traceid, 43, 11, @on;

exec sp_trace_setevent @traceid, 43, 12, @on;

exec sp_trace_setevent @traceid, 43, 13, @on;

exec sp_trace_setevent @traceid, 43, 6, @on;

exec sp_trace_setevent @traceid, 43, 14, @on;

-- SP:StmtCompleted

exec sp_trace_setevent @traceid, 45, 8, @on;

exec sp_trace_setevent @traceid, 45, 16, @on;

exec sp_trace_setevent @traceid, 45, 48, @on;

exec sp_trace_setevent @traceid, 45, 1, @on;

exec sp_trace_setevent @traceid, 45, 17, @on;

exec sp_trace_setevent @traceid, 45, 10, @on;

exec sp_trace_setevent @traceid, 45, 18, @on;

exec sp_trace_setevent @traceid, 45, 11, @on;

exec sp_trace_setevent @traceid, 45, 12, @on;

exec sp_trace_setevent @traceid, 45, 13, @on;

exec sp_trace_setevent @traceid, 45, 6, @on;

exec sp_trace_setevent @traceid, 45, 14, @on;

exec sp_trace_setevent @traceid, 45, 15, @on;

-- SQL:BatchCompleted

exec sp_trace_setevent @traceid, 12, 15, @on;

exec sp_trace_setevent @traceid, 12, 8, @on;

exec sp_trace_setevent @traceid, 12, 16, @on;

exec sp_trace_setevent @traceid, 12, 48, @on;

exec sp_trace_setevent @traceid, 12, 1, @on;

exec sp_trace_setevent @traceid, 12, 17, @on;

exec sp_trace_setevent @traceid, 12, 6, @on;

exec sp_trace_setevent @traceid, 12, 10, @on;

exec sp_trace_setevent @traceid, 12, 14, @on;

exec sp_trace_setevent @traceid, 12, 18, @on;

exec sp_trace_setevent @traceid, 12, 11, @on;

exec sp_trace_setevent @traceid, 12, 12, @on;

exec sp_trace_setevent @traceid, 12, 13, @on;

-- SQL:StmtCompleted

exec sp_trace_setevent @traceid, 41, 15, @on;

exec sp_trace_setevent @traceid, 41, 8, @on;

exec sp_trace_setevent @traceid, 41, 16, @on;

exec sp_trace_setevent @traceid, 41, 48, @on;

exec sp_trace_setevent @traceid, 41, 1, @on;

exec sp_trace_setevent @traceid, 41, 17, @on;

exec sp_trace_setevent @traceid, 41, 10, @on;

exec sp_trace_setevent @traceid, 41, 18, @on;

exec sp_trace_setevent @traceid, 41, 11, @on;
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exec sp_trace_setevent @traceid, 41, 12, @on;

exec sp_trace_setevent @traceid, 41, 13, @on;

exec sp_trace_setevent @traceid, 41, 6, @on;

exec sp_trace_setevent @traceid, 41, 14, @on;

-- Set the Filters

-- Application name filter

EXEC sp_trace_setfilter @traceid, 10, 0, 7, N'SQL Server Profiler%';

-- Database ID filter

EXEC sp_trace_setfilter @traceid, 3, 0, 0, @dbid;

-- Set the trace status to start

EXEC sp_trace_setstatus @traceid, 1;

-- Print trace id and file name for future references

PRINT 'Trace ID: ' + CAST(@traceid AS VARCHAR(10))

  + ', Trace File: ''' + @tracefile + '.trc''';

GOTO finish;

error: 

PRINT 'Error Code: ' + CAST(@rc AS VARCHAR(10));

finish: 

GO

 Note that for demonstration purposes I included both proc/batch-level and  statement-level 
event classes, even though in my case it would have been enough to trace just the 
SQL:StmtCompleted event class. In practice, you should include only the event classes that 
you need. 

 Run the following code to start the trace, fi ltering events against the Performance database 
and sending the trace data to the fi le ‘c:\temp\Perfworkload 20090212.trc’: 

DECLARE @dbid AS INT, @traceid AS INT; 

SET @dbid = DB_ID('Performance'); 

 

EXEC master.dbo.PerfworkloadTraceStart 

  @dbid      = @dbid, 

  @tracefile = 'c:\temp\Perfworkload 20090212', 

  @traceid   = @traceid OUTPUT;

 If you were to assume that the newly generated trace ID is 2, you would get the following 
output: 

Trace ID: 2, Trace File: 'c:\temp\perfworkload 20090212.trc'

 You need to keep the trace ID aside, as you will use it later to stop the trace and close it. 

 Next, run the sample queries from Listing 4-2 several times. When done, stop the trace and 
close it by running the following code (assuming the trace ID is 2): 

EXEC sp_trace_setstatus 2, 0; 

EXEC sp_trace_setstatus 2, 2;
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 Of course, you should specify the actual trace ID you got for your trace. If you lost the scrap 
of paper you wrote the trace ID on, query the sys.traces view to get information about all 
running traces. 

 When tracing a workload in a production environment for tuning purposes, make sure you 
trace a suffi ciently representative one. In some cases, this might mean tracing for only a 
 couple of hours, while in other cases it can be a matter of days. 

 The next step is to load the trace data to a table and analyze it. Of course, you can open it 
with Profi ler and examine it there; however, typically such traces generate a lot of data, and 
you can’t do much with Profi ler to analyze the data. In our case, we have a small number of 
sample queries. Figure 4-4 shows what the trace data looks like when loaded in Profi ler.  

FIGURE 4-4 Performance workload trace data

 Examining the trace data, you can clearly see some long-running queries that generate 
a lot of I/O. These queries use range fi lters based on the orderdate column and seem to 
 consistently incur about 25,000 reads. The Orders table currently contains 1,000,000 rows 
and resides on about 25,000 pages. This tells you that these queries are causing full table 
scans to acquire the data and are probably missing an important index on the orderdate 
 column. The missing index is probably the main cause of the excessive I/O in the system. 
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 Also, you can fi nd some queries that return a very large number of rows in the result 
set—several thousand and, in some cases, hundreds of thousands of rows. You should 
check whether fi lters and further manipulation are applied in the server when  possible 
rather than bringing everything to the client through the network and performing 
 fi ltering and further manipulation there. These queries are probably the main cause of 
the network  issues in the system. 

 Of course, such graphical analysis with Profi ler is feasible only with tiny traces such as the one 
we’re using for demonstration purposes. In production environments, it’s just not realistic; 
you need to load the trace data to a table and use queries to analyze the data. 

Analyze Trace Data

 As I mentioned earlier, you use the fn_trace_gettable function to return the trace data in 
 table format. Run the following code to load the trace data from our fi le to the Workload 
table: 

USE Performance;

IF OBJECT_ID('dbo.Workload', 'U') IS NOT NULL DROP TABLE dbo.Workload;

GO

SELECT CAST(TextData AS NVARCHAR(MAX)) AS tsql_code,

  Duration AS duration

INTO dbo.Workload

FROM sys.fn_trace_gettable('c:\temp\Perfworkload 20090212.trc', NULL) AS T

WHERE Duration > 0

  AND EventClass IN(41, 45);

 Note that this code loads only the TextData (T-SQL code) and Duration data columns to focus 
particularly on query run time. Typically, you would want to also load other data columns 
that are relevant to your analysis—for example, the I/O and CPU counters, row counts, host 
name, application name, and so on. Also, because in this case I want to analyze individual 
statements, I’m fi ltering event classes 41 (SQL:StmtCompleted) and 45 (SP:StmtCompleted). 

 Remember that it is important to aggregate the performance information by the query 
or T-SQL statement to fi gure out the overall performance impact of each query with its 
 multiple invocations. The following code attempts to do just that, and it generates the 
output shown in abbreviated form in Table 4-2:  

SELECT 

  tsql_code, 

  SUM(duration) AS total_duration 

FROM dbo.Workload 

GROUP BY tsql_code;
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 TABLE 4-2 Aggregated Duration by Query in Abbreviated Form

tsql_code duration

SELECT orderid, custid, empid, shipperid, orderdate, filler  FROM dbo.Orders  

WHERE orderdate = '20080118';  
1326071

SELECT orderid, custid, empid, shipperid, orderdate, filler  FROM dbo.Orders  

WHERE orderdate = '20080212';  
1519084

SELECT orderid, custid, empid, shipperid, orderdate, filler  FROM dbo.Orders  

WHERE orderdate = '20080828';  
1083055

SELECT orderid, custid, empid, shipperid, orderdate, filler  FROM dbo.Orders  

WHERE orderdate >= '20080101'    AND orderdate < '20080201';  
7998453

SELECT orderid, custid, empid, shipperid, orderdate, filler  FROM dbo.Orders  

WHERE orderdate >= '20080201'    AND orderdate < '20090301';  
65186723

. . . 

 But we have a problem. You can see in the aggregated data that some queries that are  logically 
the same or follow the same pattern ended up in different groups. That’s  because they 
 happened to be using different values in their fi lters. Only query strings that are  completely 
identical were grouped together. As an aside, you wouldn’t be facing this  problem had you 
used stored procedures, each invoking an individual query or a very small number of queries. 
Remember that in such a case you would have traced the SP:Completed event class, and then 
you would have received aggregated data by the procedure. But that’s not the case here. 

A simple but not very accurate way to deal with the problem is to extract a substring of the 
query strings and aggregate by that substring. Typically, the left portion of query strings that 
follow the same pattern is the same, while somewhere to the right you have the  arguments 
that are used in the fi lter. You can apply trial and error, playing with the length of the 
 substring that you will extract; with luck, the substring will be long enough to allow  grouping 
queries following the same pattern together and small enough to distinguish queries of 
 different patterns from each other. This approach, as you can see, is tricky and would not 
guarantee accurate results. Essentially, you pick a number that seems reasonable, close your 
eyes, and hope for the best. 

For example, the following query aggregates the trace data by a query prefi x of 100  characters 
and generates the output shown in Table 4-3: 

SELECT 

  SUBSTRING(tsql_code, 1, 100) AS tsql_code, 

  SUM(duration) AS total_duration 

FROM dbo.Workload 

GROUP BY SUBSTRING(tsql_code, 1, 100);

tsql_code duration
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TABLE 4-3 Aggregated Duration by Query Prefi x

tsql_code total_duration

SELECT orderid, custid, empid, shipperid, orderdate, filler  

FROM dbo.Orders  WHERE orderdate = '200
3928210

SELECT orderid, custid, empid, shipperid, orderdate, filler  

FROM dbo.Orders  WHERE orderdate >= '20
89089077

SELECT orderid, custid, empid, shipperid, orderdate, filler  

FROM dbo.Orders  WHERE orderid = 5;  
2000

SELECT orderid, custid, empid, shipperid, orderdate, filler  

FROM dbo.Orders  WHERE orderid = 7;  
1000

In our case, this prefi x length did the trick for some queries, but it wasn’t very successful 
with others. With more realistic trace data, you won’t have the privilege of looking at a tiny 
 number of queries and being able to play with the numbers so easily. But the general idea is 
that you adjust the prefi x length by applying trial and error. 

The following code uses a prefi x length of 94 and generates the output shown in Table 4-4: 

SELECT 

  SUBSTRING(tsql_code, 1, 94) AS tsql_code, 

  SUM(duration) AS total_duration 

FROM dbo.Workload 

GROUP BY SUBSTRING(tsql_code, 1, 94);

TABLE 4-4 Aggregated Duration by Query Prefi x, Adjusted

tsql_code total_duration

SELECT orderid, custid, empid, shipperid, orderdate, filler  

FROM dbo.Orders  WHERE orderdate 
93017287

SELECT orderid, custid, empid, shipperid, orderdate, filler  

FROM dbo.Orders  WHERE orderdate 
93017287

Now you end up with overgrouping. In short, fi nding the right prefi x length is a tricky 
 process, and its accuracy and reliability are questionable. 

A much more accurate approach is to parse the query strings and produce a query signature 
for each. A query signature is a query template that is the same for queries following the 
same pattern. After creating these, you can then aggregate the data by query signatures 
instead of by the query strings themselves. SQL Server 2008 provides you with the sp_get_
query_template stored procedure, which parses an input query string and returns the query 
template and the defi nition of the arguments via output parameters.  

For example, the following code invokes the stored procedure, providing a sample query 
string as input: 

DECLARE @my_templatetext AS NVARCHAR(MAX); 

DECLARE @my_parameters   AS NVARCHAR(MAX); 

tsql_code total_duration

tsql_code total_duration
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EXEC sp_get_query_template  

  N'SELECT * FROM dbo.T1 WHERE col1 = 3 AND col2 > 78', 

  @my_templatetext OUTPUT, 

  @my_parameters OUTPUT; 

 

SELECT @my_templatetext AS querysig, @my_parameters AS params;

 This code generates the following output: 

querysig                                                params

------------------------------------------------------- --------------

select * from dbo . T1 where col1 = @0 and col2 > @1    @0 int,@1 int

 The problem with this stored procedure is that you need to use a cursor to invoke it against 
every query string from the trace data, and this can take quite a while with large traces. The 
stored procedure also (by design) returns an error in some cases (see SQL Server Books Online 
for details), which could compromise its value. It would be much more convenient to have this 
logic implemented as a function, allowing you to invoke it directly against the table containing 
the trace data. Fortunately, such a function exists; it was written by Stuart Ozer, who is with the 
Microsoft SQL Server Customer Advisory Team (SQL CAT). I would like to thank him for allowing 
me to share the code with the readers of this book. Here’s the function’s defi nition: 

IF OBJECT_ID('dbo.SQLSig', 'FN') IS NOT NULL 

  DROP FUNCTION dbo.SQLSig; 

GO 

 

CREATE FUNCTION dbo.SQLSig  

  (@p1 NTEXT, @parselength INT = 4000) 

RETURNS NVARCHAR(4000) 

 

-- 

-- This function is provided "AS IS" with no warranties, 

-- and confers no rights.  

--Use of included script samples are subject to the terms specified at 

-- http://www.microsoft.com/info/cpyright.htm 

--  

-- Strips query strings 

AS 

BEGIN  

  DECLARE @pos AS INT; 

  DECLARE @mode AS CHAR(10); 

  DECLARE @maxlength AS INT; 

  DECLARE @p2 AS NCHAR(4000); 

  DECLARE @currchar AS CHAR(1), @nextchar AS CHAR(1); 

  DECLARE @p2len AS INT; 

 

  SET @maxlength = LEN(RTRIM(SUBSTRING(@p1,1,4000))); 

  SET @maxlength = CASE WHEN @maxlength > @parselength  

                     THEN @parselength ELSE @maxlength END; 

  SET @pos = 1; 

  SET @p2 = ''; 

  SET @p2len = 0; 

  SET @currchar = ''; 

  set @nextchar = ''; 

  SET @mode = 'command'; 
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  WHILE (@pos <= @maxlength) 

  BEGIN 

    SET @currchar = SUBSTRING(@p1,@pos,1); 

    SET @nextchar = SUBSTRING(@p1,@pos+1,1); 

    IF @mode = 'command' 

    BEGIN 

      SET @p2 = LEFT(@p2,@p2len) + @currchar; 

      SET @p2len = @p2len + 1 ; 

      IF @currchar IN (',','(',' ','=','<','>','!') 

        AND @nextchar BETWEEN '0' AND '9' 

      BEGIN 

        SET @mode = 'number'; 

        SET @p2 = LEFT(@p2,@p2len) + '#'; 

        SET @p2len = @p2len + 1; 

      END  

      IF @currchar = '''' 

      BEGIN 

        SET @mode = 'literal'; 

        SET @p2 = LEFT(@p2,@p2len) + '#'''; 

        SET @p2len = @p2len + 2; 

      END 

    END 

    ELSE IF @mode = 'number' AND @nextchar IN (',',')',' ','=','<','>','!') 

      SET @mode= 'command'; 

    ELSE IF @mode = 'literal' AND @currchar = '''' 

      SET @mode= 'command'; 

 

    SET @pos = @pos + 1; 

  END 

  RETURN @p2; 

END 

GO

 The function accepts as inputs a query string and the length of the code you want to parse. 
The function returns the query signature of the input query, with all parameters replaced 
by a number sign (#). Note that this is a fairly simple function and might need to be tailored 
to particular situations. Run the following code to test the function: 

SELECT dbo.SQLSig 

  (N'SELECT * FROM dbo.T1 WHERE col1 = 3 AND col2 > 78', 4000);

 You get the following output: 

SELECT * FROM dbo.T1 WHERE col1 = # AND col2 > #

 Of course, you could now use the function and aggregate the trace data by query signature. 
However, keep in mind that although T-SQL is very effi cient with data manipulation, it is slow 
in processing iterative/procedural logic. This is a classic example where a common language 
run-time (CLR) implementation of the function makes more sense. The CLR is much faster 
than T-SQL for iterative/procedural logic and string manipulation. SQL Server 2008 allows 
you to develop .NET routines based on the CLR. 
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 Listing 4-3 has the defi nition of a CLR-based, user-defi ned function called RegexReplace 
 using C# code.  

LISTING 4-3 RegexReplace functions 

using Microsoft.SqlServer.Server;

using System.Data.SqlTypes;

using System.Text.RegularExpressions;

public partial class RegExp

{

  [SqlFunction(IsDeterministic = true, DataAccess = DataAccessKind.None)]

  public static SqlString RegexReplace(

    SqlString input, SqlString pattern, SqlString replacement)

  {

    return (SqlString)Regex.Replace(

      input.Value, pattern.Value, replacement.Value);

  }

}

The function merely calls the Replace method of the Regex object, exposing  replacement 
and parsing capabilities based on regular expressions. The function exposes generic 
 pattern-based string replacement capabilities using regular expressions. 

Note I didn’t bother checking for NULL inputs in the CLR code because T-SQL allows you to 
specify the option RETURNS NULL ON NULL INPUT when you register the functions, as I will 
demonstrate later. This option means that when a NULL input is provided, SQL Server doesn’t 
invoke the function at all; rather, it simply returns a NULL output. 

If you’re familiar with developing CLR routines in SQL Server, deploy these functions in the 
Performance database. If you’re not, just follow these steps: 

 1. Create a new Microsoft Visual C# Class Library project in Microsoft Visual Studio 2008 
(File | New | Project. . . | Visual C# | Class Library). 

 2. In the New Project dialog box, name the project and solution RegExp, specify C:\ as 
the location, and confi rm. 

 3. Rename the fi le Class1.cs to RegExp.cs and within it paste the code from Listing 4-3, 
overriding its current content. 

  4. Build the assembly by choosing the Build | Build RegExp menu item. A fi le named 
C:\RegExp\RegExp\bin\Debug\RegExp.dll containing the assembly is created. 

  5. At this point, you go back to SQL Server Management Studio (SSMS) and apply a 
couple of additional steps to deploy the assembly in the Performance database 

using Microsoft.SqlServer.Server;

using System.Data.SqlTypes;

using System.Text.RegularExpressions;

public partial class RegExp

{

  [SqlFunction(IsDeterministic = true, DataAccess = DataAccessKind.None)]

  public static SqlString RegexReplace(

    SqlString input, SqlString pattern, SqlString replacement)

  {

    return (SqlString)Regex.Replace(

      input.Value, pattern.Value, replacement.Value);

  }

}
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and then register the RegexReplace function. But fi rst, you need to enable CLR in SQL 
Server (which is disabled by default) by running the following code: 

EXEC sp_configure 'clr enabled', 1; 

RECONFIGURE;

  6. Load the intermediate language (IL) code from the .dll fi le into the Performance 
 database by running the following code:  

USE Performance; 

CREATE ASSEMBLY RegExp 

FROM 'C:\RegExp\RegExp\bin\Debug\RegExp.dll';

  7. Register the RegexReplace function by running the following code: 

CREATE FUNCTION dbo.RegexReplace( 

  @input       AS NVARCHAR(MAX), 

  @pattern     AS NVARCHAR(MAX), 

  @replacement AS NVARCHAR(MAX)) 

RETURNS NVARCHAR(MAX) 

WITH RETURNS NULL ON NULL INPUT  

EXTERNAL NAME RegExp.RegExp.RegexReplace; 

GO

 You’re done. At this point, you can start using the function like you do any other user-defi ned 
function.  

 You can now use the RegexReplace function to produce a query signature for query strings 
by using a regular expression that has the right parsing logic. For example, the following 
code shows how to use the function in a query against the Workload table to produce query 
signatures for the query strings stored in the tsql_code attribute: 

SELECT  

  dbo.RegexReplace(tsql_code, 

    N'([\s,(=<>!](?![^\]]+[\]]))(?:(?:(?:(?#    expression coming 

     )(?:([N])?('')(?:[^'']|'''')*(''))(?#      character 

     )|(?:0x[\da-fA-F]*)(?#                     binary 

     )|(?:[-+]?(?:(?:[\d]*\.[\d]*|[\d]+)(?#     precise number 

     )(?:[eE]?[\d]*)))(?#                       imprecise number 

     )|(?:[~]?[-+]?(?:[\d]+))(?#                integer 

     ))(?:[\s]?[\+\-\*\/\%\&\|\^][\s]?)?)+(?#   operators 

     ))', 

    N'$1$2$3#$4') AS sig, 

  duration 

FROM dbo.Workload;

 This regular expression covers cases that the T-SQL function overlooks, and it can be easily 
enhanced to support more cases if you need it to. In case you’re curious, producing query 
signatures with the RegexReplace function is faster than producing them with the T-SQL 
 function by a factor of 10.  
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 This query generates the output shown in Table 4-5 in abbreviated form. 

TABLE 4-5 Trace Data with Query Signatures in Abbreviated Form

sig duration

. . .

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 

WHERE orderdate = '#'; 
162009

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 

WHERE orderdate = '#'; 
125007

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 

WHERE orderdate = '#'; 
100005

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 

WHERE orderdate >= '#' AND orderdate < '#'; 
793045

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 

WHERE orderdate >= '#' AND orderdate < '#'; 
835047

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 

WHERE orderdate >= '#' AND orderdate < '#'; 
6507372

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 

WHERE orderdate >= '#' AND orderdate < '#'; 
732041

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 

WHERE orderdate = '#'; 
143008

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 

WHERE orderdate = '#'; 
181010

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders 

WHERE orderdate = '#'; 
102005

. . .

 As you can see, you get back query signatures, which you can use to aggregate the trace 
data. Keep in mind, though, that query strings can get lengthy, and grouping the data by 
lengthy strings is slow and expensive. Instead, you might prefer to generate an integer 
checksum for each query string by using the T-SQL CHECKSUM function. For example, the 
following query generates a checksum value for each query string from the Workload table: 

SELECT

  CHECKSUM(dbo.RegexReplace(tsql_code,

    N'([\s,(=<>!](?![^\]]+[\]]))(?:(?:(?:(?#    expression coming

     )(?:([N])?('')(?:[^'']|'''')*(''))(?#      character

     )|(?:0x[\da-fA-F]*)(?#                     binary

     )|(?:[-+]?(?:(?:[\d]*\.[\d]*|[\d]+)(?#     precise number

     )(?:[eE]?[\d]*)))(?#                       imprecise number

     )|(?:[~]?[-+]?(?:[\d]+))(?#                integer

     ))(?:[\s]?[\+\-\*\/\%\&\|\^][\s]?)?)+(?#   operators

     ))',

    N'$1$2$3#$4')) AS cs,

  duration

FROM dbo.Workload;

sig duration
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This query generates the following output, shown here in abbreviated form: 

cs          duration

----------- --------------------

-184235228  162009

-184235228  125007

-184235228  100005

368623506   793045

368623506   835047

368623506   6507372

368623506   732041

-184235228  143008

-184235228  181010

-184235228  102005

...

Use the following code to add to the Workload table a computed persisted column called cs 
that calculates the checksum of the query signatures and create a clustered index on the cs 
column: 

ALTER TABLE dbo.Workload ADD cs AS CHECKSUM(dbo.RegexReplace(tsql_code,

    N'([\s,(=<>!](?![^\]]+[\]]))(?:(?:(?:(?#    expression coming

     )(?:([N])?('')(?:[^'']|'''')*(''))(?#      character

     )|(?:0x[\da-fA-F]*)(?#                     binary

     )|(?:[-+]?(?:(?:[\d]*\.[\d]*|[\d]+)(?#     precise number

     )(?:[eE]?[\d]*)))(?#                       imprecise number

     )|(?:[~]?[-+]?(?:[\d]+))(?#                integer

     ))(?:[\s]?[\+\-\*\/\%\&\|\^][\s]?)?)+(?#   operators

     ))',

    N'$1$2$3#$4')) PERSISTED;

CREATE CLUSTERED INDEX idx_cl_cs ON dbo.Workload(cs);

Run the following code to return the new contents of the Workload table, shown in abbreviated 
form in Table 4-6: 

SELECT tsql_code, duration, cs 

FROM dbo.Workload

TABLE 4-6 Contents of Table Workload

tsql_code duration cs

. . .

SELECT orderid, custid, empid, shipperid, orderdate, filler 

FROM dbo.Orders WHERE orderdate = '20080118'; 
128007 -184235228

SELECT orderid, custid, empid, shipperid, orderdate, filler 

FROM dbo.Orders WHERE orderdate = '20080828'; 
102005 -184235228

SELECT orderid, custid, empid, shipperid, orderdate, filler 

FROM dbo.Orders WHERE orderdate = '20080212'; 
187010 -184235228

SELECT orderid, custid, empid, shipperid, orderdate, filler 

FROM dbo.Orders WHERE orderdate = '20080118'; 
119006 -184235228

tsql_code duration cs
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TABLE 4-6 Contents of Table Workload

tsql_code duration cs

SELECT orderid, custid, empid, shipperid, orderdate, filler 

FROM dbo.Orders WHERE orderdate = '20080828'; 
118006 -184235228

SELECT orderid, custid, empid, shipperid, orderdate, filler 

FROM dbo.Orders WHERE orderdate >= '20080101' 

AND orderdate < '20080201'; 

923052 368623506

SELECT orderid, custid, empid, shipperid, orderdate, filler 

FROM dbo.Orders WHERE orderdate >= '20080401' 

AND orderdate < '20080501'; 

879050 368623506

SELECT orderid, custid, empid, shipperid, orderdate, filler 

FROM dbo.Orders WHERE orderdate >= '20080201' 

AND orderdate < '20090301'; 

6340362 368623506

SELECT orderid, custid, empid, shipperid, orderdate, filler 

FROM dbo.Orders WHERE orderdate >= '20080501' 

AND orderdate < '20080601'; 

745042 368623506

SELECT orderid, custid, empid, shipperid, orderdate, filler 

FROM dbo.Orders WHERE orderdate >= '20080101' 

AND orderdate < '20080201'; 

812046 368623506

. . .

 At this point, you want to aggregate the data by the query signature checksum. It would also be 
very useful to get running aggregates of the percentage of each signature’s duration of the total 
duration. This information can help you easily isolate the query patterns that you need to tune. 
Remember that typical production workloads can contain a large number of query signatures. It 
would make sense to populate a temporary table with the aggregate data and index it and then 
run a query against the temporary table to calculate the running aggregates. 

 Run the following code to populate the temporary table #AggQueries with the total duration 
per signature checksum, including the percentage of the total, and a row number based on 
the duration in descending order: 

IF OBJECT_ID('tempdb..#AggQueries', 'U') IS NOT NULL DROP TABLE #AggQueries; 

SELECT cs, SUM(duration) AS total_duration, 

  100. * SUM(duration) / SUM(SUM(duration)) OVER() AS pct, 

  ROW_NUMBER() OVER(ORDER BY SUM(duration) DESC) AS rn 

INTO #AggQueries 

FROM dbo.Workload 

GROUP BY cs; 

 

CREATE CLUSTERED INDEX idx_cl_cs ON #AggQueries(cs);

 Run the following code to return the contents of the temporary table: 

SELECT cs, total_duration, pct, rn 

FROM #AggQueries 

ORDER BY rn;

tsql_code duration cs
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 This code generates the following output: 

cs          total_duration  pct                 rn

----------- --------------- ------------------- ---

368623506   89089077        95.773814372342239  1

-184235228  3928210         4.222960524729406   2

-1872968693 3000            0.003225102928353   3

 Use the following query to return the running aggregates of the percentages, fi ltering only 
those rows where the running percentage accumulates to a certain threshold that you specify: 

SELECT AQ1.cs,

  CAST(AQ1.total_duration / 1000000.

    AS NUMERIC(12, 2)) AS total_s, 

  CAST(SUM(AQ2.total_duration) / 1000000.

    AS NUMERIC(12, 2)) AS running_total_s, 

  CAST(AQ1.pct AS NUMERIC(12, 2)) AS pct, 

  CAST(SUM(AQ2.pct) AS NUMERIC(12, 2)) AS run_pct, 

  AQ1.rn

FROM #AggQueries AS AQ1

  JOIN #AggQueries AS AQ2

    ON AQ2.rn <= AQ1.rn

GROUP BY AQ1.cs, AQ1.total_duration, AQ1.pct, AQ1.rn

HAVING SUM(AQ2.pct) - AQ1.pct <= 80 -- percentage threshold

--  OR AQ1.rn <= 5

ORDER BY AQ1.rn;

 In our case, if you use 80 percent as the threshold, you get only one row. For demonstration 
purposes, I uncommented the part of the expression in the HAVING clause and got the 
following output from the query: 

cs          total_s  running_total_s  pct    run_pct  rn

----------- -------- ---------------- ------ -------- ---

368623506   89.09    89.09            95.77  95.77    1

-184235228  3.93     93.02            4.22   100.00   2

-1872968693 0.00     93.02            0.00   100.00   3

 You can see at the top that one query pattern accounts for 95.77 percent of the total 
 duration. Based on my experience, a handful of query patterns typically cause most of the 
performance problems in a given system. 

 To get back the actual queries that you need to tune, you should join the result table 
 returned from the preceding query with the Workload table, based on a match in the 
 checksum value (cs column), like so: 

WITH RunningTotals AS 

( 

  SELECT AQ1.cs, 

    CAST(AQ1.total_duration / 1000. 

      AS DECIMAL(12, 2)) AS total_s,  

    CAST(SUM(AQ2.total_duration) / 1000. 

      AS DECIMAL(12, 2)) AS running_total_s,  
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    CAST(AQ1.pct AS DECIMAL(12, 2)) AS pct,  

    CAST(SUM(AQ2.pct) AS DECIMAL(12, 2)) AS run_pct,  

    AQ1.rn 

  FROM #AggQueries AS AQ1 

    JOIN #AggQueries AS AQ2 

      ON AQ2.rn <= AQ1.rn 

  GROUP BY AQ1.cs, AQ1.total_duration, AQ1.pct, AQ1.rn 

  HAVING SUM(AQ2.pct) - AQ1.pct <= 90 -- percentage threshold 

--  OR AQ1.rn <= 5 

) 

SELECT RT.rn, RT.pct, W.tsql_code 

FROM RunningTotals AS RT 

  JOIN dbo.Workload AS W 

    ON W.cs = RT.cs 

ORDER BY RT.rn;

 You will get the output shown in abbreviated form in Table 4-7. 

TABLE 4-7 Top Slow Queries in Abbreviated Form

rn pct tsql_code

1 95.77 SELECT orderid, custid, empid, shipperid, orderdate, filler 

FROM dbo.Orders WHERE orderdate >= '20080101' AND orderdate < '20080201'; 

1 95.77 SELECT orderid, custid, empid, shipperid, orderdate, filler 

FROM dbo.Orders WHERE orderdate >= '20080401' AND orderdate < '20080501'; 

1 95.77 SELECT orderid, custid, empid, shipperid, orderdate, filler 

FROM dbo.Orders WHERE orderdate >= '20080201' AND orderdate < '20090301'; 

. . .

 Of course, with a more realistic workload you might get a large number of queries back, 
but you’re really interested in the query pattern that you need to tune. So instead of joining 
back to the Workload table, use the APPLY operator to return only one row for each query 
 signature with the query pattern and a single sample per pattern out of the actual queries 
like so: 

WITH RunningTotals AS

(

  SELECT AQ1.cs,

    CAST(AQ1.total_duration / 1000000.

      AS NUMERIC(12, 2)) AS total_s, 

    CAST(SUM(AQ2.total_duration) / 1000000.

      AS NUMERIC(12, 2)) AS running_total_s, 

    CAST(AQ1.pct AS NUMERIC(12, 2)) AS pct, 

    CAST(SUM(AQ2.pct) AS NUMERIC(12, 2)) AS run_pct, 

    AQ1.rn

  FROM #AggQueries AS AQ1

    JOIN #AggQueries AS AQ2

      ON AQ2.rn <= AQ1.rn

  GROUP BY AQ1.cs, AQ1.total_duration, AQ1.pct, AQ1.rn

  HAVING SUM(AQ2.pct) - AQ1.pct <= 80 -- percentage threshold

)

rn pct tsql_code
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SELECT RT.rn, RT.pct, S.sig, S.tsql_code AS sample_query

FROM RunningTotals AS RT

  CROSS APPLY

    (SELECT TOP(1) tsql_code, dbo.RegexReplace(tsql_code,

       N'([\s,(=<>!](?![^\]]+[\]]))(?:(?:(?:(?#    expression coming

        )(?:([N])?('')(?:[^'']|'''')*(''))(?#      character

        )|(?:0x[\da-fA-F]*)(?#                     binary

        )|(?:[-+]?(?:(?:[\d]*\.[\d]*|[\d]+)(?#     precise number

        )(?:[eE]?[\d]*)))(?#                       imprecise number

        )|(?:[~]?[-+]?(?:[\d]+))(?#                integer

        ))(?:[\s]?[\+\-\*\/\%\&\|\^][\s]?)?)+(?#   operators

        ))',

       N'$1$2$3#$4') AS sig

     FROM dbo.Workload AS W

     WHERE W.cs = RT.cs) AS S

ORDER BY RT.rn;

You will get the output shown in Table 4-8. 

 TABLE 4-8 Signature and Sample of the Top Slow Queries

rn pct sig sample_query

1 95.77 SELECT orderid, custid, empid, 

shipperid, orderdate, filler  

FROM dbo.Orders  

WHERE orderdate >= '#'    

AND orderdate < '#';  

SELECT orderid, custid, empid, 

shipperid, orderdate, filler  

FROM dbo.Orders  

WHERE orderdate >= '20080101'    

AND orderdate < '20080201';  

Now you can focus your tuning efforts on the query patterns that you got back—in our case, 
only one. Of course, in a similar manner you can identify the query patterns that generate 
the largest result sets, most of the I/O, and so on. 

Query Statistics

SQL Server 2008 provides a DMV called sys.dm_exec_query_stats that aggregates query 
 performance information for queries whose plans are in cache. Unlike the trace approach, 
this DMV won’t report any information for queries whose plans are not in cache (for example, 
when procedures or queries use the RECOMPILE option). However, for queries whose plans 
are in cache, you get very interesting performance information that is aggregated since the 
query plan was cached. Needless to say, if the plan is removed from cache, this information is 
gone. Note, though, that if you enable the system collection set “Query Statistics,” it collects 
information from this DMV on regular intervals based on the collection frequency defi ned 
for it and stores the information in the management data warehouse. You can also analyze 
this information graphically with the preconfi gured report Query Statistics History. (In Object 
Explorer, right-click Data Collection under Management and choose Reports.) Of course, if 
you want, you can also create your own jobs to collect information from this DMV with your 
own queries. 

rn pct sig sample_query

C04626034.indd   167 2/20/2009   10:03:10 PM



168 Inside Microsoft SQL Server 2008: T-SQL Querying

 The information that this view provides for each cached query plan includes, among other 
things, the following: 

■  A SQL handle that you can provide as input to the function sys.dm_exec_sql_text to get 
the text of the parent query or batch of the current query. You also get the start and end 
offsets of the query that the current row represents so that you can extract it from the 
full parent query or batch text. Note that the offsets are zero based and are specifi ed in 
bytes, although the text is Unicode (meaning two bytes of storage per character). 

■  A plan handle that you can provide as input to the function sys.dm_exec_query_plan to 
get the XML form of the plan. 

■  Creation time and last execution time. 

■  Execution count. 

■  Performance information including worker (CPU) time, physical reads, logical reads, 
CLR time, and elapsed time. For each performance counter, you get the total for all 
 invocations of the plan, last, minimum and maximum.  

■  A binary query hash and a binary plan hash. The former allows you to identify queries 
with the same query signature, similar to the checksum value I suggested creating 
 earlier for traced data. The latter allows you to identify similar query execution plans. 
Note that the query hash and plan hash values (query_hash and query_plan_hash 
 attributes) were  introduced in SQL Server 2008, while all other attributes were also 
available in SQL Server 2005. 

 For example, the following code identifi es the fi ve query patterns in the Performance  database 
with the highest total duration and returns the output shown in Table 4-9 in my system: 

SELECT TOP (5)

  MAX(query) AS sample_query,

  SUM(execution_count) AS cnt,

  SUM(total_worker_time) AS cpu,

  SUM(total_physical_reads) AS reads,

  SUM(total_logical_reads) AS logical_reads,

  SUM(total_elapsed_time) AS duration

FROM (SELECT 

        QS.*,

        SUBSTRING(ST.text, (QS.statement_start_offset/2) + 1,

           ((CASE statement_end_offset 

              WHEN -1 THEN DATALENGTH(ST.text)

              ELSE QS.statement_end_offset END 

                  - QS.statement_start_offset)/2) + 1

        ) AS query

      FROM sys.dm_exec_query_stats AS QS

        CROSS APPLY sys.dm_exec_sql_text(QS.sql_handle) AS ST

        CROSS APPLY sys.dm_exec_plan_attributes(QS.plan_handle) AS PA

      WHERE PA.attribute = 'dbid'

        AND PA.value = DB_ID('Performance')) AS D

GROUP BY query_hash

ORDER BY duration DESC;
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TABLE 4-9 Top Slow Queries Based on Query Stats

sample_query cnt cpu reads

logical_

reads duration

SELECT orderid, custid, empid, 

shipperid, orderdate, filler 

FROM dbo.Orders 

WHERE orderdate >= '20080501' 

AND orderdate < '20080601'; 

665 1926343195 47873 16606308 2786190354

SELECT orderid, custid, empid, 

shipperid, orderdate, filler 

FROM dbo.Orders 

WHERE orderdate = '20080828'; 

501 129140379 1920 376180 195947201

select dbo.SQLSig

(N'select * from t1 

where col1 = ' + 

cast(n as nvarchar(11)), 4000) 

from dbo.nums where n <= 25000;

4 31001772 1 120 31179782

INSERT INTO Performance.dbo.WaitStats 

(wait_type, waiting_tasks_count, wait_

time_ms, max_wait_time_ms, signal_wait_

time_ms) 

SELECT DISTINCT RTRIM(wait_type) 

AS wait_type, waiting_tasks_count, 

wait_time_ms, max_wait_time_ms, signal_

wait_time_ms FROM sys.dm_os_wait_stats; 

62 996056 400 158352 25149438

SELECT [orderid],[custid],[empid],

[shipperid],[orderdate],[filler] FROM 

[dbo].[Orders] WHERE [orderid]=@1

504 121006 360 2016 14790845

Of course, you could use techniques I showed earlier to calculate running percents and fi lter 
query patterns based on those. 

Tune Indexes and Queries

Now that you know which patterns you need to tune, you can start with a more focused 
query-tuning process. The process might involve index tuning or query code revisions, and 
we will practice it thoroughly throughout the book. Or you might realize that the queries 
are already tuned pretty well, in which case you would need to inspect other aspects of the 
 system (for example, hardware, database layout, and so on). 

In our case, the tuning process is fairly simple. You need to create a clustered index on the 
orderdate column: 

CREATE CLUSTERED INDEX idx_cl_od ON dbo.Orders(orderdate);

Later in the chapter, I’ll cover index tuning and explain why a clustered index is adequate for 
query patterns such as the ones that our tuning process isolated. 

sample_query cnt cpu reads

logical_

reads duration
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 To see the effect of adding the index, run the following code to start a new trace: 

DECLARE @dbid AS INT, @traceid AS INT; 

SET @dbid = DB_ID('Performance'); 

 

EXEC dbo.PerfworkloadTraceStart 

  @dbid      = @dbid, 

  @tracefile = 'c:\temp\Perfworkload 20090212 – Tuned', 

  @traceid   = @traceid OUTPUT;

 When I ran this code, I got the following output showing that the trace ID generated is 2: 

Trace ID: 2, Trace File: 'c:\temp\Perfworkload 20090212 – Tuned.trc'

 Run the sample queries from Listing 4-2 again and then stop the trace: 

EXEC sp_trace_setstatus 2, 0; 

EXEC sp_trace_setstatus 2, 2;

 Figure 4-5 shows the trace data loaded with Profi ler. 

FIGURE 4-5 Performance workload trace data after adding index

 You can see that the duration and I/O involved with the query pattern we tuned are greatly 
reduced. Still, some queries generate a lot of network traffi c. With those, you might want 
to check whether some of the processing of their result sets could be achieved at the server 
side, thus reducing the amount of data submitted through the network.  
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Tools for Query Tuning

 This section provides an overview of the query-tuning tools that will be used throughout 
these books, and it will focus on analyzing execution plans. 

Cached Query Execution Plans

 SQL Server 2008 provides several objects that you can query to analyze the behavior of 
cached query execution plans: 

■  The sys.dm_exec_cached_plans DMV contains information about the cached query 
 execution plans, with a row per each cached plan. 

■  The sys.dm_exec_plan_attributes DMF contains one row per attribute associated with 
the plan, whose handle is provided as input to the DMF.  

■  The sys.dm_exec_sql_text DMF returns the text associated with the query, whose  handle 
is provided as input to the DMF.  

■  The sys.dm_exec_query_plan DMF provides the XML form of the execution plan of the 
query, whose handle is provided as input to the DMF. 

 SQL Server 2008 also provides you with a compatibility view called sys.syscacheobjects that 
exposes cached query plan information the way it did in previous versions of SQL Server. 

Clearing the Cache

 When analyzing query performance, you sometimes need to clear the cache. SQL Server 
provides you with tools to clear both data and execution plans from the cache. To clear data 
from the cache globally, use the following command: 

DBCC DROPCLEANBUFFERS;

 To clear execution plans from the cache globally, use the following command: 

DBCC FREEPROCCACHE;

 To clear execution plans of a particular database, use the following command: 

DBCC FLUSHPROCINDB(<db_id>);

 Note that the DBCC FLUSHPROCINDB command is undocumented. 

 To clear execution plans of a particular cache store, use the following command: 

DBCC FREESYSTEMCACHE(<cachestore>);

 You can specify the following values as input: ‘ALL’, pool_name, ‘Object Plans’, ‘SQL Plans’, 
‘Bound Trees’. Note that the last three options are undocumented. The ‘ALL’ option indicates 
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that you want to clear all supported caches. The pool_name value indicates the name of a 
Resource Governor pool cache that you want to clear. For the undocumented options, specify 
‘Object Plans’ to clear object plans (plans for stored procedures, triggers, and user-defi ned 
functions). Specify ‘SQL Plans’ to clear plans for ad-hoc statements, including prepared 
 statements. Specify ‘Bound Trees’ to clear plans for views, constraints, and defaults.  

 Caution Consider carefully before using these commands in production environments. 
Obviously, clearing the cache has a performance impact on the system. After clearing the data 
cache, SQL Server needs to physically read pages accessed for the fi rst time from disk. After 
clearing execution plans from the cache, SQL Server needs to generate new execution plans for 
queries. Also, be sure that you are aware of the impact of clearing the cache even when doing so 
in development or test environments. 

Dynamic Management Objects

 SQL Server 2005 introduced for the fi rst time support for dynamic management objects, 
 including DMVs and DMFs. SQL Server 2008 added new objects and in some cases added 
new attributes to existing objects. These contain extremely useful information about the 
server that you can use to monitor SQL Server, diagnose problems, and tune performance. 
Much of the information provided by these views and functions has never before been 
 available. Studying them in detail is time very well spent. In these books, I make use of the 
ones that are relevant to my discussions, but I urge you to take a close look at others as well. 
You can fi nd information about them in SQL Server Books Online. 

STATISTICS IO

 STATISTICS IO is a session option used extensively throughout these books. It returns 
 I/O-related information about the statements that you run. To demonstrate its use, fi rst 
clear the data cache: 

DBCC DROPCLEANBUFFERS;

 Then run the following code to turn the session option on and invoke a query: 

SET STATISTICS IO ON; 

 

SELECT orderid, custid, empid, shipperid, orderdate, filler 

FROM dbo.Orders 

WHERE orderdate >= '20060101' 

  AND orderdate < '20060201';

 You should get output similar to the following: 

Table 'Orders'. Scan count 1, logical reads 536, physical reads 3, read-ahead reads 548, lob 

logical reads 0, lob physical reads 0, lob read-ahead reads 0.
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 The output tells you how many times the table was accessed in the plan (Scan count); how 
many reads from cache were involved (logical reads); how many reads from disk were involved 
( physical reads and read-ahead reads); and similarly, how many logical and physical reads  related 
to large objects were involved (lob logical reads, lob physical reads, lob read-ahead reads). 

 Run the following code to turn the session option off: 

 SET STATISTICS IO OFF;  

Measuring the Run Time of Queries

 STATISTICS TIME is a session option that returns the net CPU and elapsed clock time  information 
about the statements that you run. It returns this information for both the time it took to parse 
and compile the query and the time it took to execute it. To demonstrate the use of this session 
option, fi rst clear both the data and execution plans from cache: 

DBCC DROPCLEANBUFFERS; 

DBCC FREEPROCCACHE;

 Run the following code to turn the session option on: 

SET STATISTICS TIME ON;

 Then invoke the following query: 

SELECT orderid, custid, empid, shipperid, orderdate, filler 

FROM dbo.Orders 

WHERE orderdate >= '20060101' 

  AND orderdate < '20060201';

 You will get output similar to the following: 

SQL Server parse and compile time: 

   CPU time = 0 ms, elapsed time = 64 ms.

SQL Server parse and compile time: 

   CPU time = 0 ms, elapsed time = 1 ms.

 SQL Server Execution Times:

   CPU time = 31 ms,  elapsed time = 711 ms.

 The output tells you the net CPU time and elapsed clock time for parsing and compiling the 
query and also the time it took to execute it. Run the following code to turn the option off: 

SET STATISTICS TIME OFF;

 This tool is convenient when you want to analyze the performance of an individual query 
interactively. When you run benchmarks in batch mode, the way to measure the run time of 
queries is different. Store the value of the SYSDATETIME function in a variable directly before 
the query. Directly after the query, issue an INSERT statement into the table where you collect 
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performance information, subtracting the value stored in the variable from the current value of 
SYSDATETIME. Note that SYSDATETIME returns a DATETIME2 value, which has an accuracy level 
of 100 nanoseconds; however, the actual accuracy of the function depends on the computer 
hardware and version of Windows your SQL Server instance is running on. That’s because the 
SYSDATETIME function internally invokes the GetSystemTimeAsFileTime() Windows API, which 
is hardware and operating system dependent. When measuring the time statistics of queries 
for which the accuracy level of this function is insuffi cient, run the queries repeatedly in a loop 
and divide run time for the entire loop by the number of iterations. 

Analyzing Execution Plans

 An execution plan is the “work plan” the optimizer generates to determine how to process a 
given query. The plan contains operators that are generally applied in a specifi c order. Some 
operators can be applied while their preceding operator is still in progress. Some operators 
might be applied more than once. Also, some branches of the plan are invoked in parallel if 
the optimizer chose a parallel plan. In the plan, the optimizer determines the order in which 
to  access the tables involved in the query, which indexes to use and which access methods to 
use to apply to them, which join algorithms to use, and so on. In fact, for a given query the 
 optimizer considers multiple execution plans, and it chooses the plan with the lowest cost 
out of the ones that were generated. Note that SQL Server might not generate all possible 
 execution plans for a given query. If it always did, the optimization process could take too 
long. SQL Server will calculate thresholds for the optimization process based on the sizes of 
the  tables involved in the query, among other things. One threshold is time based. SQL Server 
won’t spend longer than the time threshold on optimization. Another threshold is cost based. 
That is, if a plan is found with a lower cost than the cost threshold, it is considered “good 
enough,” in which case optimization stops and that plan is used. 

 Throughout these books, I’ll frequently analyze execution plans of queries. This section and 
the one that follows (“Index Tuning”) should give you the background required to follow 
and understand the discussions involving plan analysis. Note that the purpose of this  section 
is not to familiarize you with all possible operators; instead, it is to familiarize you with the 
 techniques to analyze plans. The “Index Tuning” section will familiarize you with  index-related 
operators, and later in the book I’ll elaborate on additional operators—for example, 
 join-related operators will be described in Chapter 7, “Joins and Set Operations.”  

Graphical Execution Plans

 Graphical execution plans are used extensively throughout these books. SSMS allows you 
both to get an estimated execution plan (by pressing Ctrl+L) and to include an actual one 
(by pressing Ctrl+M) along with the output of the query you run. Note that both will  typically 
give you the same plan; remember that an execution plan is generated before the query is 
run. However, when you request an estimated plan, the query is not run at all. Obviously, 
some measures can be collected only at run time (for example, the actual number of rows 
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 returned from each operator and the number of executions of the operator). In the  estimated 
plan, you will see estimations for measures that can be collected only at run time, while the 
actual plan will show the actuals and also some of the same estimates. 

 To demonstrate a graphical execution plan analysis, I will use the following query: 

SELECT custid, empid, shipperid, COUNT(*) AS numorders

FROM dbo.Orders

WHERE orderdate >= '20080201'

  AND orderdate < '20080301'

GROUP BY CUBE(custid, empid, shipperid);

 The query returns aggregated counts of orders for all possible grouping sets that can be 
 defi ned based on the attributes custid, empid, and shipperid. I’ll discuss the CUBE subclause of 
the GROUP BY clause in detail in Chapter 8, “Aggregating and Pivoting Data.” 

 Note I did some graphical manipulation on the execution plans that appear in this chapter to fi t 
images in the printed pages and for clarity.  

 As an example, if you request an estimated execution plan for the preceding query, you will 
get the plan shown in Figure 4-6. 

FIGURE 4-6 Estimated execution plan example
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 Notice that when you place your mouse pointer over an arrow that goes out of an  operator 
(for example, the one going out of the second Stream Aggregate operator), you get an 
 estimated number of rows. By the way, a nice aspect of the arrows representing data fl ow is 
that their thickness is proportional to the number of rows returned by the source operator. 
You want to keep an eye especially on thick arrows, as these might indicate a performance 
issue. 

 Next, turn on the Include Actual Execution Plan option and run the query. You will get both 
the output of the query and the actual plan, as shown in Figure 4-7. 

FIGURE 4-7 Actual execution plan example

 Notice that now you get the actual number of rows returned by the source operator. 

 When you get elaborated plans like this one that do not fi t in one screen, you can use a really 
cool zooming feature. Press the plus sign (+) button that appears at the bottom right  corner 
of the execution plan pane, and you will get a rectangle that allows you to navigate to a 
 desired place in the plan, as shown in Figure 4-8. 

 Figure 4-9 shows the full execution plan for our query—that’s after some graphical 
 manipulation for clarity and to make it fi t in one screen. 
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FIGURE 4-8 Zooming feature in graphical showplan

FIGURE 4-9 Execution plan for CUBE query
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 I shifted the position of some of the operators and added arrows to denote the original fl ow. 
Also, I included the full object names where relevant. In the original plan, object names are 
truncated if they are long. 

 A plan is a tree of operators. Data fl ows from a child operator to a parent operator. The tree 
order of graphical plans that you get in SSMS is expressed from right to left and from top to 
bottom. That’s typically the order in which you should analyze a plan to fi gure out the fl ow of 
activity. In our case, the Clustered Index Seek operator is the fi rst operator that starts the fl ow, 
yielding its output to the next operator in the tree—Table Spool (Eager Spool)—and so on. 

 Notice the cost percentage associated with each operator. This value is the percentage of the 
operator’s cost out of the total cost of the query, as estimated by the optimizer. You want 
to keep an eye especially on operators that involve high-percentage values and focus your 
 tuning efforts on those operators. When you place your mouse pointer over an operator, you 
will get a yellow information box. One of the measures you will fi nd there is called Estimated 
Subtree Cost. This value represents the cumulative estimated cost of the subtree, starting 
with the current operator (all operators in all branches leading to the current operator). The 
 subtree cost associated with the root operator (topmost, leftmost) represents the estimated 
cost of the whole query, as shown in Figure 4-10. 

FIGURE 4-10 Subtree cost

 Note that you shouldn’t expect a direct correlation between a query’s subtree cost and 
its actual run time. The query cost value is used by the optimizer to compare with other 
query plans. Given two query plans that the optimizer generates, it tries to come up with a 
 lower-cost value for the plan that is supposed to run faster.  

 Another nice feature of graphical execution plans is that you can easily compare the costs 
of multiple queries. You can use this feature to compare the costs of different queries 
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that  produce the same result. For example, suppose you want to compare the costs of the 
 following queries: 

SELECT custid, orderid, orderdate, empid, filler

FROM dbo.Orders AS O1

WHERE orderid =

  (SELECT TOP (1) O2.orderid

   FROM dbo.Orders AS O2

   WHERE O2.custid = O1.custid

   ORDER BY O2.orderdate DESC, O2.orderid DESC);

SELECT custid, orderid, orderdate, empid, filler

FROM dbo.Orders

WHERE orderid IN

(

  SELECT

    (SELECT TOP (1) O.orderid

     FROM dbo.Orders AS O

     WHERE O.custid = C.custid

     ORDER BY O.orderdate DESC, O.orderid DESC) AS oid

  FROM dbo.Customers AS C

);

SELECT A.*

FROM dbo.Customers AS C

  CROSS APPLY

    (SELECT TOP (1) 

       O.custid, O.orderid, O.orderdate, O.empid, O.filler

     FROM dbo.Orders AS O

     WHERE O.custid = C.custid

     ORDER BY O.orderdate DESC, O.orderid DESC) AS A;

WITH C AS

(

  SELECT custid, orderid, orderdate, empid, filler,

    ROW_NUMBER() OVER(PARTITION BY custid

                      ORDER BY orderdate DESC, orderid DESC) AS n

  FROM dbo.Orders

)

SELECT custid, orderid, orderdate, empid, filler

FROM C

WHERE n = 1;

 You highlight the queries that you want to compare and request a graphical execution plan 
(estimated or actual, as needed). In our case, you get the plans shown in Figure 4-11. 

 At the top of each plan, you get the percentage of the estimated cost of the query out of the 
whole batch. For example, in our case, you get 37% for Query 1, 19% for Query 2, 30% for 
Query 3, and 14% for Query 4.  

 When you place your mouse pointer over an operator, you get a yellow ToolTip box with 
 information about the operator, as shown in Figure 4-12. 

C04626034.indd   179 2/13/2009   1:56:03 AM



180 Inside Microsoft SQL Server 2008: T-SQL Querying

FIGURE 4-11 Comparing costs of execution plans

FIGURE 4-12 Operator information ToolTip box
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 The information box gives you the following information: 

■  The operator’s name and a short description of its function. 

■  Physical Operation The physical operation that will take place in the engine.  

■  Logical Operation The logical operation according to Microsoft’s conceptual model 
of query processing. For example, for a join operator you get the join algorithm used 
as the physical operation (Nested Loops, Merge, Hash) and the logical join type used 
as the logical operation (Inner Join, Outer Join, Semi Join, and so on). When no  logical 
 operation is associated with the operator, this measure will have the same value as 
shown in the physical operation.  

■  Actual Number of Rows The actual number of rows returned from the operator 
(shown only for actual plans).  

■  Estimated I/O Cost, and Estimated CPU Cost The estimated part of the operator’s 
cost associated with that particular resource (I/O or CPU). These measures help you 
identify whether the operator is I/O or CPU intensive. For example, you can see that the 
current Sort operator is mainly I/O bound.  

■  Estimated Number of Executions and Number of Executions The number of times 
this operator is estimated to be executed and the number of times this operator was 
executed in practice. These measures are important because they can help you identify 
suboptimal choices made by the optimizer when you fi nd big differences between the 
two. These measures were available in the graphical execution plans provided by SQL 
Server 2000 Query Analyzer but were not provided by SSMS 2005. Fortunately, they 
were added back in SSMS 2008. 

■  Estimated Operator Cost The cost associated with the particular operator.  

■  Estimated Subtree Cost As described earlier, the cumulative cost associated with the 
whole subtree up to the current node.  

■  Estimated Number of Rows The number of rows estimated to be returned from 
this operator. In some cases, you can identify costing problems related to insuffi cient 
 statistics or to other reasons by observing a discrepancy between the actual number of 
rows and the estimated number.  

■  Estimated Row Size You might wonder why an actual value for this number is not 
shown in the actual query plan. The reason is that you might have dynamic-length 
 attribute types in your table with rows that vary in size.  

■  Actual Rebinds and Actual Rewinds These measures are relevant only to certain 
 operators (Nonclustered Index Spool, Remote Query, Row Count Spool, Sort, Table Spool, 
Table-valued Function, and in some cases Assert and Filter). Also, with those operators, 
these measures are applicable only when they appear as the inner side of a Nested Loops 
join; otherwise, Rebinds will show 1, and Rewinds will show 0. These measures refer to the 
number of times that an internal Init method is called. The sum of the number of rebinds 
and rewinds should be equal to the number of rows  processed on the outer side of the join. 
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A rebind means that one or more of the  correlated  parameters of the join changed and the 
inner side must be reevaluated. A rewind means that none of the correlated  parameters 
changed and that the prior inner result set might be reused.  

■  Bottom part of the information box Shows other aspects related to the operator, 
such as the associated object name, output, arguments, and so on. 

 You can get more detailed coverage of the properties of an operator in the Properties 
 window (by pressing F4), as shown in Figure 4-13. 

 Coverage of graphical execution plans continues in the “Index Tuning” section when I discuss 
index access methods. 

FIGURE 4-13 Properties window 

Textual Showplans

 SQL Server gives you tools in the form of SET options to get an execution plan as text. Note, 
though, that those SET options are scheduled for deprecation in a future version of SQL 
Server and are provided in SQL Server 2008 for backward compatibility. You should start 
 getting used to using the SET options that provide the plan information in XML form instead; 
I’ll describe those options in the next section. For the sake of completeness I will describe 
the textual showplan options as well. For example, if you turn the SHOWPLAN_TEXT  session 
 option on, when you run a query, SQL Server doesn’t process it. Rather, it just generates 
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an execution plan and returns it as text. To demonstrate this session option, turn it on by 
 running the following code: 

SET SHOWPLAN_TEXT ON;

Then invoke the query in Listing 4-4: 

LISTING 4-4 Sample query to test showplan options

SELECT orderid, custid, empid, shipperid, orderdate, filler 

FROM dbo.Orders 

WHERE orderid = 280885;

You will get the following output: 

|--Nested Loops(Inner Join, OUTER REFERENCES:([Uniq1002],

   [Performance].[dbo].[Orders].[orderdate]))

  |--Index Seek(OBJECT:([Performance].[dbo].[Orders].[PK_Orders]),

     SEEK:([Performance].[dbo].[Orders].[orderid]=[@1]) ORDERED FORWARD)

  |--Clustered Index Seek(OBJECT:([Performance].[dbo].[Orders].[idx_cl_od]),

     SEEK:([Performance].[dbo].[Orders].[orderdate]=

           [Performance].[dbo].[Orders].[orderdate]

     AND [Uniq1002]=[Uniq1002]) LOOKUP ORDERED FORWARD)

To analyze the plan, you “read” or “follow” branches in inner levels before outer ones 
( bottom to top) and branches that appear in the same level from top to bottom. As you can 
see, you get only the operator names and their basic arguments. Run the following code to 
turn the session option off: 

SET SHOWPLAN_TEXT OFF;

If you want more detailed information about the plan that is similar to what the graphical 
execution plan gives you, use the SHOWPLAN_ALL session option for an estimated plan and 
the STATISTICS PROFILE session option for the actual one. SHOWPLAN_ALL will produce 
a table result, with the information provided by SHOWPLAN_TEXT, and also the following 
measures: StmtText, StmtId, NodeId, Parent, PhysicalOp, LogicalOp, Argument, Defi nedValues, 
EstimateRows, EstimateIO, EstimateCPU, AvgRowSize, TotalSubtreeCost, OutputList, 
Warnings, Type, Parallel, and EstimateExecutions. 

 To test this session option, turn it on: 

SET SHOWPLAN_ALL ON;

 Run the query in Listing 4-4 and examine the result. When you’re done, turn it off: 

SET SHOWPLAN_ALL OFF;

The STATISTICS PROFILE option produces an actual plan. The query runs, and its output is 
produced. You also get the output returned by SHOWPLAN_ALL. In addition, you get the 

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders 

WHERE orderid = 280885;
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 attributes Rows and Executes, which hold actual values as opposed to estimated ones. To test 
this session option, turn it on: 

SET STATISTICS PROFILE ON;

 Run the query in Listing 4-4 and examine the result. When you’re done, turn it off: 

SET STATISTICS PROFILE OFF;

XML Showplans

 If you want to develop your own code that parses and analyzes execution plan information or if 
you want to analyze execution plan information sent to you by a customer or a colleague, you will 
fi nd the information returned by the textual showplan options very hard to work with. SQL Server 
2008 provides two session options that allow you to get estimated and actual  execution plan 
information in XML format; XML data is much more convenient for an application code to parse 
and work with. Also, when clicking an XML value produced by one of the XML  showplan options 
in SSMS 2008 or when opening a fi le with an XML showplan saved with a .sqlplan  extension, 
SSMS parses the information and presents it as a graphical execution plan. The SHOWPLAN_
XML session option will produce an XML value with the estimated plan information, and the 
STATISTICS XML session option will produce a value with actual plan information .

 To test SHOWPLAN_XML, turn it on by running the following code: 

SET SHOWPLAN_XML ON;

 Then run the query in Listing 4-4. You will get the XML form of the estimated execution plan. 

 To have SSMS parse and present the XML information graphically, simply click the XML value. 
Figure 4-14 shows an example of graphical depiction of the XML showplan.  

FIGURE 4-14 XML plan example
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 Run the following code to turn the session option off: 

SET SHOWPLAN_XML OFF;

 As I mentioned earlier, to get an XML value with information about the actual execution plan, 
use the STATISTICS XML session option as follows: 

SET STATISTICS XML ON; 

GO 

SELECT orderid, custid, empid, shipperid, orderdate, filler 

FROM dbo.Orders 

WHERE orderid = 280885; 

GO 

SET STATISTICS XML OFF;

 If you want customers or colleagues to send you an estimated or actual showplan, instruct 
them to save the XML value in a fi le with the extension .sqlplan, and when you open this fi le 
in SSMS, it automatically parses and presents it graphically. 

 Note also that the XML showplans provide the richest form of execution plan information. 
Some attributes of the plan appear only in this form and not in the textual or graphical 
forms, including information about missing indexes, whether the plan is trivial, the actual 
 degree of parallelism used by the query, actual memory grant, and more. 

Hints

 Hints allow you to override the default behavior of SQL Server in different respects, and SQL 
Server will comply with your request when technically possible. The term hint is a misnomer 
because it’s not a kind gesture that SQL Server might or might not comply with; rather, you’re 
forcing SQL Server to apply a certain behavior when it’s technically possible. Syntactically, 
there are three types of hints: join hints, query hints, and table hints. Join hints are specifi ed 
between the keyword representing the join type and the JOIN keyword (for example, INNER 
MERGE JOIN). Query hints are specifi ed in an OPTION clause following the query itself (for 
example, SELECT . . . OPTION (OPTIMIZE FOR (@od = ‘99991231’)). Table hints are specifi ed 
right after a table name or alias in a WITH clause (for example, FROM dbo.Orders WITH (index 
= idx_unc_od_oid_i_cid_eid)). 

 Hints can be classifi ed in different categories based on their functionality, including 
 index hints, join hints, parallelism, locking, compilation, and others. Keep in mind that 
 performance-related hints, such as forcing the usage of a certain index, make that  particular 
aspect of the optimization static. When data distribution in the queried tables changes, the 
optimizer doesn’t consult statistics to determine whether it is worthwhile to use the  index 
 because you forced it to always use it. You lose the benefi t in cost-based optimization that 
SQL Server’s optimizer gives you. Make sure that you use performance-related hints in 
 production code only after exhausting all other means, including query revisions, ensuring 
that statistics are up to date, have a suffi cient sampling rate, and so on. 
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 I consider the USE PLAN query hint to be the ultimate hint. This hint allows you to provide 
an XML value holding complete execution plan information to force the optimizer to use the 
plan that you provided. You can use the SHOWPLAN_XML or STATISTICS XML session options 
to generate an XML plan in a controlled environment and then specify the XML value under 
the USE PLAN hint like so:  

 <query> OPTION(USE PLAN N'<xml_plan_goes_here>'); 

 As an example, run the following code to produce an XML showplan for a query in a 
 controlled environment: 

SET SHOWPLAN_XML ON; 

GO 

SELECT orderid, custid, empid, shipperid, orderdate 

FROM dbo.Orders 

WHERE orderid >= 2147483647; 

GO 

SET SHOWPLAN_XML OFF;

 Then run the query, providing the XML plan value in the USE PLAN hint like so: 

DECLARE @oid AS INT; 

SET @oid = 1000000; 

 

SELECT orderid, custid, empid, shipperid, orderdate 

FROM dbo.Orders 

WHERE orderid >= @oid 

OPTION (USE PLAN N'<xml_plan_goes_here>');

 SQL Server 2008 also supports a plan guide feature that allows you to associate an XML plan 
or other hints to a query when you cannot or do not want to change the query’s text directly 
by adding hints. You use the stored procedure sp_create_plan_guide to produce a plan guide 
for a query. You can fi nd more details about this in SQL Server Books Online. I will use hints 
in several occasions in these books and explain them in context. 

Traces/Profi ler

 The tracing capabilities of SQL Server give you extremely powerful tools for tuning and for 
other purposes as well. One of the great benefi ts tracing has over other external tools is that 
you get information about events that took place within the server in various  components. 
Tracing allows you to troubleshoot performance problems, application  behavior,  deadlocks, 
audit information, and so much more. I demonstrated using traces for  collecting  performance 
workload data earlier in the book. Make sure you go over the guidelines for tracing that 
I provided earlier. I’ll also demonstrate tracing to troubleshoot deadlocks in Inside T-SQL 
Programming.  
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Database Engine Tuning Advisor

 The Database Engine Tuning Advisor (DTA) is a tool that can give you physical design 
 recommendations (indexes, partitioning) based on an analysis of a workload that you give 
it as input. The input can be a trace fi le or table, a script fi le containing T-SQL queries, or 
an XML input fi le. One benefi t of DTA is that it uses SQL Server’s optimizer to make cost 
 estimations—the same optimizer that generates execution plans for your queries. DTA 
 generates statistics and hypothetical indexes, which it uses in its cost estimations. SQL Server 
2008 introduces support for fi ltered indexes that I’ll discuss later in the chapter. Besides 
 providing recommendations for regular indexes, indexed views, and partitioning, DTA in SQL 
Server 2008 also provides recommendations for fi ltered indexes, among other  enhancements. 
Note that you can run DTA in batch mode by using the dta.exe command-line utility. 

Data Collection and Management Data Warehouse

 As I mentioned earlier in the chapter, SQL Server 2008 introduces a data collection platform 
that enables you to collect performance and other information and store it in a management 
data warehouse for later analysis. One of the main components of the data collection platform 
is the data collector, which collects data from a variety of sources that are defi ned as data 
 collection targets and stores it in the management data warehouse. The data collector installs 
three system data collection sets that collect performance-related information including disk 
usage, server activity, and query statistics information. Object Explorer in SSMS has a folder 
called Management through which you can confi gure the management data warehouse, 
 enable data collection and the system collection sets, and analyze the collected performance 
information using predefi ned reports. 

Using SMO to Clone Statistics

 Query performance problems can evolve because of inaccurate selectivity estimates made 
by the optimizer based on the existing distribution statistics (histograms). However, you 
can’t  always duplicate the production data in your test environment to try to reproduce 
the  problems. In such a case you will probably fi nd it convenient to be able to clone the 
 production statistics into your test environment without cloning the data. You can achieve 
this by using the scripting capabilities of the SQL Server Management Objects (SMO) API, 
specifi cally, the ScriptingOptions.OptimizerData property. 

Index Tuning

 This section covers index tuning, which is an important facet of query tuning. Indexes are 
sorting and searching structures. They reduce the need for I/O when looking for data and for 
sorting when certain elements in the plan need or can benefi t from sorted data. While some 
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aspects of tuning can improve performance by a modest percentage, index tuning can often 
improve query performance by orders of magnitude. Hence, if you’re in charge of tuning, 
learning about indexes in depth is time well spent.  

 I’ll start by describing table and index structures that are relevant for our discussions. Then 
I’ll describe index access methods used by the optimizer and conclude the section with an 
analysis of indexing strategies. 

Table and Index Structures

 Before delving into index access methods, you need to familiarize yourself with table and 
index structures. This section describes pages and extents, heaps, clustered indexes, and 
 nonclustered indexes. 

Pages and Extents

 A page is an 8-KB unit where SQL Server stores data. It can contain table or index data,  bitmaps 
for allocation, free space information, and so on. A page is the smallest I/O unit that SQL Server 
can read or write. In older versions of SQL Server (prior to 2005) a row could not span  multiple 
pages and was limited to 8,060 bytes gross (aside from large object data). The  limitation was 
because of the page size (8,192 bytes), which was reduced by the header size (96 bytes), a 
pointer to the row maintained at the end of the page (2 bytes), and a few additional bytes 
 reserved for future use. Starting with SQL Server 2005, a feature called row-overfl ow data 
 relaxes the limitation on row size for columns of types VARCHAR, NVARCHAR, VARBINARY, 
SQL_VARIANT, or CLR user-defi ned types. When the row exceeds 8,060 bytes, values of such 
types can be moved to what are known as row overfl ow pages, and a 24-byte pointer to the 
off-row data is maintained in the original page. This way, a row can end up spanning multiple 
pages. In-row data is still limited to 8,060 bytes. A value of one of the aforementioned types 
can be moved to row-overfl ow pages provided that the value size doesn’t exceed 8,000 bytes. 
If the size exceeds 8,000 bytes, the value is stored internally as a large object, and a 16-byte 
pointer to the large object value is maintained in the original row.  

 Keep in mind that a page is the smallest I/O unit that SQL Server can read or write. Even if 
SQL Server needs to access a single row, it has to load the whole page to the cache and read 
it from there. Queries that involve primarily data manipulation are typically bound mainly 
by their I/O cost. Of course, a physical read of a page is much more expensive than a logical 
read of a page that already resides in cache. It’s hard to come up with a number that would 
 represent the  performance ratio between them because several factors are involved in the 
cost of a read,  including the type of access method used, the fragmentation level of the 
data, and other  factors. Therefore, I strongly advise against relying on any number as a rule 
of thumb. 

C04626034.indd   188 2/13/2009   1:56:04 AM



 Chapter 4 Query Tuning 189

 Extents are units of eight contiguous pages. When a table or index needs more space for 
data, SQL Server allocates a full extent to the object. The single exception applies to small 
objects: if the object is smaller than 64 KB, SQL Server typically allocates an  individual page 
when more space is needed, not a full extent. That page can reside within a mixed  extent 
whose eight pages belong to different objects. Some activities of data deletion—for 
 example, dropping a table and truncating a table—deallocate full extents. Such  activities 
are minimally logged; therefore, they are very fast compared to the fully logged DELETE 
statement. Also, some read activities—such as read-ahead reads, which are  typically 
 applied for large table or index scans—can read data at the extent level, or even bigger 
blocks. The most  expensive part of an I/O operation is the movement of the disk arm, while 
the actual  magnetic read or write operation is much less expensive; therefore, reading a 
page can take almost as long as reading a full extent.  

Table Organization

 A table can be organized in one of two ways—either as a heap or as a B-tree. Technically 
the table is organized as a B-tree when you create a clustered index on the table and as a 
heap when you don’t. Because a table must be organized in one of these two ways—heap or 
B-tree—the table organization is known as HOBT. Regardless of how the table is  organized, 
it can have zero or more nonclustered indexes defi ned on it. Nonclustered indexes are 
 always organized as B-trees. The HOBT, as well as the nonclustered indexes, can be made 
of one or more units called partitions. Technically, the HOBT and each of the nonclustered 
indexes can be partitioned differently. Each partition of each HOBT and nonclustered index 
stores data in collections of pages known as allocation units. The three types of allocation 
units are known as IN_ROW_DATA, ROW_OVERFLOW_DATA, and LOB_DATA. IN_ROW_DATA 
holds all  fi xed-length columns and also variable-length columns as long as the row size 
does not  exceed the 8,060-byte limit. ROW_OVERFLOW_DATA holds VARCHAR, NVARCHAR, 
VARBINARY, SQL_VARIANT, or CLR user-defi ned typed data that does not exceed 8,000 
bytes but was moved from the original row because it exceeded the 8,060-row size limit. 
LOB_DATA holds large object values (VARCHAR(MAX), NVARCHAR(MAX), VARBINARY(MAX) 
that exceed 8,000 bytes, XML, or CLR UDTs). The system view sys.system_internals_ allocation_
units holds the anchors pointing to the page collections stored in the allocation units. In the 
following sections I describe the heap, clustered index, and nonclustered index structures. 
For simplicity’s sake, I’ll assume that the data is nonpartitioned; but if it is partitioned, the 
 description is still applicable to a single partition. 

Heap

 A heap is a table that has no clustered index. The structure is called a heap because the data 
is not organized in any order; rather, it is laid out as a bunch of extents. Figure 4-15 illustrates 
how our Orders table might look like when organized as a heap.
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- - -

Extent Alloc Status Slot  1  @0x3632C0C2
(1:0)        – (1:168)     = NOT ALLOCATED
(1:176)    – (1:184)     =         ALLOCATED
(1:192)    – (1:256)     = NOT ALLOCATED
(1:264)    – (1:288)     =         ALLOCATED
(1:296)    – (1:328)     = NOT ALLOCATED
(1:336)    – (1:22624) =         ALLOCATED

Single  Page  Allocation  @0x3632C08E
Slot  0 =   (1:174)   Slot 1  =   (1:41)   - - -

1:174

1:26610

Pointer to
first IAM
1:26610

Pointer to
first IAM
1:47120 1:73 1:89 1:114

1:41

1:176 1:177 1:178

1:184 1:185 1:86 1:91

1:179 1:180 1:181 1:182 1:183

1:264 1:265 1:266 1:267 1:268 1:269 1:270 1:271

1:80 1:109 1:120

fillerorderdateshipperidempidcustidorderid

a
a
a

a
a
a

20040516
20040523 
20040622

20040901
20041005
20051114

C
G
I

I
E
I

167
146
300

135
86
271

C0000004736
C0000014160
C0000019321

C0000004708
C0000019120
C0000001686

343505
347736
386520

416891
440317
717441

FIGURE 4-15 Heap

 The only structure that keeps track of the data belonging to a heap is a bitmap page (or a 
series of pages if needed) called the Index Allocation Map (IAM). This bitmap has  pointers to 
the fi rst eight pages allocated from mixed extents and a representative bit for each  extent 
in a range of 4 GB in the fi le. The bit is 0 if the extent it represents does not belong to the 
 object owning the IAM page and 1 if it does. If one IAM is not enough to cover all the 
 object’s data, SQL Server will maintain a chain of IAM pages. SQL Server uses IAM pages to 
move through the object’s data when the object needs to be scanned. SQL Server loads the 
object’s fi rst IAM page and then directs the disk arm sequentially to fetch the extents by their 
fi le order. As long as there’s no fi le system fragmentation of the data fi les, the scan is done in 
a sequential manner on disk. 

 As you can see in Figure 4-15, SQL Server maintains internal pointers to the fi rst IAM page 
and the fi rst data page of a heap. Those pointers can be found in the system view 
sys.system_internals_allocation_units. 
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 Because a heap doesn’t maintain the data in any particular order, new rows that are added 
to the table can go anywhere. SQL Server uses bitmap pages called Page Free Space (PFS) to 
keep track of free space in pages so that it can quickly fi nd a page with enough free space to 
accommodate a new row or allocate a new one if no such page exists.  

 When a row expands as a result of an update to a variable-length column and the page has 
no room for the row to expand, SQL Server moves the expanded row to a page with enough 
space to accommodate it and leaves behind what’s known as a forwarding pointer that points 
to the new location of the row. The purpose of forwarding pointers is to avoid the need to 
modify pointers to the row from nonclustered indexes when data rows move.  

 I didn’t yet explain a concept called a page split (because page splits can happen only in 
B-trees), but suffi ce to say for now that heaps do not incur page splits. The relevance of this 
fact will become apparent later in the chapter. 

Clustered Index

 All indexes in SQL Server are structured as B-trees, which are a special case of balanced trees. 
The defi nition of a balanced tree (adopted from www.nist.gov) is “a tree where no leaf is 
much farther away from the root than any other leaf.”  

 More Info If you’re interested in the theoretical algorithmic background for  balanced trees, 
please refer to http://www.nist.gov/dads/HTML/balancedtree.html and to The Art of Computer 
Programming, Volume 3: Sorting and Searching (2nd Edition) by Donald E. Knuth ( Addison-Wesley 
Professional, 1998). 

 A clustered index is structured as a balanced tree, and it maintains the entire table’s data in its 
leaf level. The clustered index is not a copy of the data; rather, it is the data. I’ll describe the 
structure of a clustered index in SQL Server through the illustration shown in Figure 4-16. 

 The fi gure shows an illustration of how the Orders table might look when organized in a 
clustered index where the orderdate column is defi ned as the index’s key column. Throughout 
these books, I’ll refer to a table that has a clustered index as a clustered table. As you can see 
in the fi gure, the full data rows of the Orders table are stored in the index leaf level. The data 
rows are organized in the leaf in a sorted fashion based on the index key columns (orderdate 
in our case). A doubly linked list maintains this logical order, but note that depending on 
the fragmentation level of the index, the fi le order of the pages might not match the logical 
 order maintained by the linked list. 

 Also notice that with each leaf row, the index maintains a value called an uniquifi er ( abbreviated 
to unq in the illustration). This value enumerates rows that have the same key value, and it is 
used together with the key value to uniquely identify rows when the index’s key columns are 
not unique. Later, when discussing nonclustered indexes, I’ll elaborate on the reasoning behind 
this architecture and the need to uniquely identify a row in a clustered index.  
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od unq page# od unq page#

od unq page

od unq morecols od unq morecolsod unq morecols

20021202    NULL
20021203    NULL

- - -

- - -

- - -

- - - - - -
20021203          1

20021207          1
20021207          5
20021208   NULL

20021210
20021210
20021210

20021210
20021210
20021210

20021210
20021210
20021210

od unq morecols

- - -- - -
20061231     573  - - -
20061231     574  - - -
20061231     575  - - -

20061231     536  - - -
20061231     537  - - -
20061231     538  - - -

od unq morecols

20061231     613  - - -
20061231     614  - - -
20061231     615  - - -

20061231     576  - - -
20061231     577  - - -
20061231     578  - - -

20021208
20021208
20021208

20030118
20030118
20030118

20030118       258  1:47585
20030206       210  1:47187

20061116       603  1:36836
20061205       540  1:36837
20061225       367  1.36838

custid   

C0000015545
C0000011129
C0000011129

C0000010921
C0000012275
C0000003426

138     1:47505
178     1:47506
218     1:47507

- - -
20030206
20030206
20030206

20030118
20030118
20030118

od

20021208
20021210

NULL

NULL NULL 1:47184

NULL

Pointer to
first IAM

1:1791

Pointer to
first

1:47120

Pointer to
root

1:47186

Extent Alloc Status Slot 1 80x3642C0C2

1:1791

1:47186

1:47184

1:47120 1:47121 1:47122 1:41478 1:41479

1:47185 1:36838

(1:0)         – (1:22064) = NOT ALLOCATED
(1:22072) – (1:24256) = NOT ALLOCATED
(1:24264) –                 = NOT ALLOCATED
(1:24272) – (1:32344) =          ALLOCATED
(1:32352) –                 = NOT ALLOCATED

1:47120
1:471211
1:471221

- - -

- - -

20061225       367  1:41380
20061225       407  1:41381
20061225       447  1:41382

20051231       496  1:41477
20051231       536  1:41478
20051231       576  1:41479

Single  Page  Allocation  @0x3642C08E
Slot 0 = (0:0) Slot 1 = (0:0)   - - -

orderdate   

- - -

20061231
20061231
20061231

20061231
20061231
20061231

unq

576
577
578

613
614
615

orderid   

999716
999717
999718

999757
999758
999759

morecols   

. . .

. . .

. . .

. . .

. . .

. . .

- - -
- - -
- - -

- - -
- - -
- - -

- - -
- - -
- - -

- - -
- - -
- - -

- - -
- - -
- - -

- - -
- - -
- - -

1
5
3

6

1
5

7
8
9

7

5
6

unq

258
298
338

90
130
170

page#

1:47508
1:47509
1:47510

1:47829
1:47830
1:47831

FIGURE 4-16 Clustered table/index

 The rest of the discussion in this section is relevant to both clustered and nonclustered 
 indexes unless explicitly stated otherwise. When SQL Server needs to perform ordered scan 
(or ordered partial scan) operations in the leaf level of the index, it does so by following the 
linked list. Note that in addition to the linked list, SQL Server also maintains an IAM page 
(or pages) to map the data stored in the index by fi le order. SQL Server may use the IAM 
pages when it needs to perform unordered scans of the index’s leaf level. This type of scan 
based on IAM pages is known as an allocation order scan. A scan that is done in index order 
is known as an index order scan. The performance difference between the two types of scans 
depends on the level of fragmentation in the index. Remember that the most expensive part 
of an I/O operation is the movement of the disk arm (that’s at least the case with traditional 
disk drives that have moving parts, as opposed to solid-state disks). An index order scan in an 
index with no fragmentation at all performs similarly to an allocation ordered scan, while an 
index order scan will be substantially slower in an index with a high level of fragmentation.  

 Fragmentation (known as logical scan fragmentation) evolves mainly because of splits of 
pages at the leaf level of the index. A split of a leaf page occurs when a row needs to be 
inserted into the page (because of the insert of a new row or an update of an existing row) 
and the target page does not have room to accommodate the row. Remember that an  index 
maintains the data in an ordered fashion based on index key order. A row must enter a 
 certain page based on its key value. If the target page is full, SQL Server will split the page. 
That is, it will allocate a new page, then move half the rows from the original page to the new 
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one, then insert the new row either to the original or to the new page based on its key value, 
and then adjust the linked list to refl ect the right logical order of the pages. The new page is 
not guaranteed to come right after the one that split—it could be somewhere later in the fi le, 
and it could also be somewhere earlier in the fi le. Logical scan fragmentation is measured as 
the percentage of the out-of-order pages in the leaf level of the index with respect to the total 
number of pages. An out-of-order page is a page that appears logically after a certain page 
 according to the linked list but before it in the fi le. 

 Note one exception to the rule that an insert to a full index leaf page will cause a split: When 
the inserted row has a higher key than the highest key in the index, the rightmost index leaf 
page is not split. Instead, a new empty page is allocated, and the new row is inserted into 
that page. This architecture is designed to avoid costly splits and empty space that will not be 
 reclaimed in ever-increasing indexes. 

 On top of the leaf level of the index, the index maintains additional levels, each summarizing the 
level below it. Each row in a nonleaf index page points to a whole page in the level below it. The 
row contains two elements: the key column value of the fi rst row in the pointed index page and 
a 6-byte pointer to that page. The pointer holds the fi le number in the database and the page 
number in the fi le. When SQL Server builds an index, it starts from the leaf level and adds levels 
on top. It stops as soon as a level contains a single page, also known as the root page. 

 SQL Server always starts with the root page when it needs to navigate to a particular key 
at the leaf, using an access method called an index seek, which I’ll elaborate on later in the 
chapter. The seek operation will jump from the root to the relevant page in the next level, 
and it will continue jumping from one level to the next until it reaches the page containing 
the sought key at the leaf. Remember that all leaf pages are the same distance from the root, 
meaning that a seek operation will cost as many page reads as the number of levels in the 
index. The I/O pattern of these reads is random I/O, as opposed to sequential I/O, because 
naturally the pages read by a seek operation will seldom reside next to each other. 

 In terms of our performance estimations, it is important to know the number of levels in 
an index because that number will be the cost of a seek operation in terms of page reads, 
and some execution plans invoke multiple seek operations repeatedly (for example, a 
Nested Loops join operator). For an existing index, you can get this number by invoking the 
INDEXPROPERTY function with the IndexDepth property. But for an index that you haven’t 
created yet, you need to be familiar with the calculations that allow you to estimate the 
 number of levels that the index will contain. 

 The operands and steps required for calculating the number of levels in an index (call it L) 
are as follows (remember that these calculations apply to clustered and nonclustered indexes 
 unless explicitly stated otherwise): 

■  The number of rows in the table (call it num_rows) This is 1,000,000 in our case.  

■  The average gross leaf row size (call it leaf_row_size) In a clustered index, this 
is  actually the data row size. By “gross,” I mean that you need to take the internal 
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 overhead of the row and the 2-byte pointer stored at the end of the page—pointing to 
the row. The row overhead typically involves a few bytes. In our Orders table, the gross 
average data row size is roughly 200 bytes.  

■  The average leaf page density (call it page_density) This value is the average 
 percentage of population of leaf pages. Reasons for pages not being completely full 
include data deletion, page splits caused by insertion of rows to full pages, having 
very large rows, and explicit requests not to populate the pages in full by specifying a 
 fi llfactor value when rebuilding indexes. In our case, we created a clustered index on 
the Orders table after populating it with the data, we did not add rows after creating 
the clustered index, and we did not specify a fi llfactor value. Therefore, page_density in 
our case is close to 100 percent. 

■  The number of rows that fi t in a leaf page (call it rows_per_leaf_page) The formula 
to calculate this value is (page_size - header_size) * page_density / leaf_row_size. Note 
that if you have a good estimation of page_density, you don’t need to fl oor this value 
because the fact that a row cannot span pages (with the aforementioned exceptions) 
is already accounted for in the page_density value. In such a case, you want to use the 
 result number as is even if it’s not an integer. On the other hand, if you just estimate 
that page_density will be close to 100 percent, as it is in our case, omit the page_ density 
operand from the calculation and fl oor the result. In our case, rows_per_leaf_page 
amount to fl oor((8192 - 96) / 200) = 40. 

■  The number of pages maintained in the leaf (call it num_leaf_pages) This is a 
 simple formula: num_rows / rows_per_leaf_page. In our case, it amounts to 1,000,000 / 
40 = 25,000. 

■  The average gross nonleaf row size (call it non_leaf_row_size) A nonleaf row 
 contains the key columns of the index (in our case, only orderdate, which is 8 bytes); 
the 4-byte uniquifi er (which exists only in a clustered index that is not unique); the 
page pointer, which is 6 bytes; a few additional bytes of internal overhead, which total 
5 bytes in our case; and the row offset pointer at the end of the page, which is 2 bytes. 
In our case, the gross nonleaf row size is 25 bytes.  

■  The number of rows that can fi t in a nonleaf page (call it rows_per_non_

leaf_page) The formula to calculate this value is similar to calculating rows_per_leaf_
page. For the sake of simplicity, I’ll ignore the nonleaf page density factor and  calculate 
the value as fl oor((page_size - header_size) / non_leaf_row_size), which in our case 
amounts to fl oor((8192 - 96) / 25) = 323.  

■  The number of levels above the leaf (call it L-1) This value is calculated with the 
 following formula: ceiling(logrows_per_non_leaf_page(num_leaf_pages)). In our case, L-1 
amounts to ceiling(log323(25000)) = 2. Obviously, you simply need to add 1 to get L, 
which in our case is 3.  

 This exercise leads me to a very important point that I will rely on in my performance 
 discussions. You can play with the formula and see that with up to about several thousand 

C04626034.indd   194 2/13/2009   1:56:04 AM



 Chapter 4 Query Tuning 195

rows, our index will have two levels. Three levels would have up to about 4,000,000 rows, 
and four levels would have up to about 4,000,000,000 rows. With nonclustered indexes, the 
formulas are identical—it’s just that you can fi t more rows in each leaf page, as I will describe 
later. So with nonclustered indexes, the upper bound for each number of levels covers even 
more rows in the table. The point is that in our table all indexes have three levels, which is the 
cost you have to consider in your performance estimation when measuring the cost of a seek 
operation. And in general, with small tables most indexes will typically have up to two levels, 
and with large tables, they will typically have three or four levels, unless the total size of the 
index keys is large. Keep these numbers in mind for our later discussions. 

Nonclustered Index on a Heap

 A nonclustered index is also structured as a B-tree and in many respects is similar to a 
 clustered index. The only difference is that a leaf row in a nonclustered index contains 
only the index key columns and a row locator value pointing to a particular data row. The 
 content of the row locator depends on whether the table is a heap or a clustered table. This 
section describes nonclustered indexes on a heap, and the following section will describe 
 nonclustered indexes on a clustered table. 

 Figure 4-17 illustrates the nonclustered index created by our primary key constraint (PK_Orders) 
defi ning the orderid column as the key column.  

Pointer to
first IAM
1:26612

Pointer to
first

1:22632

Pointer to
root

1:22698

- - -

Extent Alloc Status Slot  1  @0x3623C0C2
(1:0)            – (1:22624) = NOT ALLOCATED
(1:22632)    – (1:22696) =         ALLOCATED
(1:22704)    – (1:22752) = NOT ALLOCATED
(1:22760)    – (1:24256) =         ALLOCATED
(1:24264)    –                 = NOT ALLOCATED

Single  Page  Allocation  @0x3623C08E
Slot  0 =   (0:0)   Slot 1  =   (0:0)   - - -

orderid RID

1    1:11957:24
2    1:26981:11
3    1:16562:  6

537    1:14604:17
538    1:10245:39
539    1:  5741:26

- - -

orderid page#

1:22632
540          1:22633

1079          1:22634

333642          1:23315
334181          1:23316
334720          1:23317

- - -

orderid page#

NULL          1:22696
335259       1:22697
670517       1:22699

orderid page#

670517          1:23940
671056          1:23941
671595          1:23942

998768          1:24557
999307          1:24558
999846          1:24559

- - -

- - -

orderid page#

335259          1:23318
335789          1:23319
336337          1:23320

668900          1:23937
669439          1:23938
669978          1:23939

- - -

1079    1:  3904:36
1080    1:  1538:16
1081    1:17288:19

1615    1:21032:34
1616    1:14145:  1
1617    1:   2485:13

orderid RIDorderid RID

540    1:13801:  1
541    1:17158:11
542    1:21259:35

1076    1:25295:29
1076    1:    866:39
1076    1:11295:34

- - -

orderid RID

- - -

999307    1:26079:13
999308    1:  2502:10
999309    1:15567:17

999843    1:  7935:32
999844    1:10799:10
999845    1:  7257:34

orderid RID

- - -

999846    1:12458:16
999847    1: 16214: 1
999848    1:12695:12

999998    1: 14715:13
999999    1:14402:   0

1000000    1: 25185:  9

999846     1:12458:16
999847     1:16214:  1
999848     1:12695:12

999998     1:14715:13
999999     1:14402:  0

1000000     1:25185:  9

1:26612

1:22698

1:22696 1:22697 1:22699

1:245591:245581:226341:226331:22632

orderid page#

NULL
335259
670517

orderid RID

1:22696
1:22697
1:22699

NULL

FIGURE 4-17 Nonclustered index on a heap
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 The row locator used by a nonclustered index leaf row to point to a data row is an 8-byte 
physical pointer called RID. It consists of the fi le number in the database, the target page 
number in the fi le, and the row number in the target page (zero based). When looking for 
a particular data row through the index, SQL Server has to follow the seek operation with 
a RID lookup operation, which translates to reading the page that contains the data row. 
Therefore, the cost of a RID lookup is one page read. For a single lookup or a very small 
number of lookups, the cost is not high, but for a large number of lookups, the cost can be 
very high because SQL Server ends up reading one whole page per sought row. For range 
queries that use a nonclustered index and a series of lookups—one per qualifying key—the 
cumulative cost of the lookup operations typically makes up the bulk of the cost of the query. 
I’ll  demonstrate this point in the “Index Access Methods” section. As for the cost of a seek 
operation, remember that the formulas I provided earlier are just as relevant to nonclustered 
indexes. It’s just that the leaf_row_size is smaller, and therefore the rows_per_leaf_page will be 
higher. But the formulas are the same. 

Nonclustered Index on a Clustered Table

 Nonclustered indexes created on a clustered table are architected differently than on a heap. 
The only difference is that the row locator in a nonclustered index created on a  clustered 
 table is a value called a clustering key, as opposed to being an RID. The  clustering key 
 consists of the values of the clustered index keys from the pointed row and the  uniquifi er 
(if present). The idea is to point to a row “logically” as opposed to “physically.” This 
 architecture was designed mainly for OLTP systems, where clustered indexes often suffer 
from many page splits upon data insertions and updates. If nonclustered indexes pointed to 
RIDs of rows, all pointers to the data rows that moved would have to be changed to refl ect 
their new RIDs—and that’s true for all relevant pointers in all nonclustered indexes. Instead, 
SQL Server maintains logical pointers that don’t change when data rows move. 

 Figure 4-18 illustrates what the PK_Orders nonclustered index might look like; the index 
is  defi ned with the orderid as the key column, and the Orders table has a clustered index 
 defi ned with the orderdate as the key column. 

 A seek operation looking for a particular key in the nonclustered index (some orderid value) 
will end up reaching the relevant leaf row and have access to the row locator. The row 
 locator in this case is the clustering key of the pointed row. To actually grab the pointed 
row, a lookup operation will need to perform a whole seek within the clustered index based 
on the acquired clustering key. This type of lookup is known as a key lookup, as opposed to 
a RID lookup. I will demonstrate this access method later in the chapter. The cost of each 
lookup operation here (in terms of the number of page reads) is as high as the number of 
levels in the clustered index (3 in our case). That’s compared to a single page read for a RID 
lookup when the table is a heap. Of course, with range queries that use a nonclustered index 
and a series of lookups, the ratio between the number of logical reads in a heap case and a 
 clustered table case will be close to 1:L, where L is the number of levels in the clustered  index. 
Before you worry too much about this point and remove all clustered indexes from your
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Pointer to
first IAM

1:1790

1:1790

orderid page#

orderid page#

 orderid row locator

NULL 1:42016
 218994 1:42017
 437978 1:42019
 656966 1:42020
 875952 1:42021

NULL 1:42016
 218994 1:42017
 437978 1:42019
 656966 1:42020
 875952 1:42021

999883 20061231, 393
999884 20061231, 394
999885 20061231, 395

 999998 20061231, 308
 999999 20061231, 309
 1000000 20061211, 646

Pointer to
first

1:41952

Pointer to
root

1:42018

1:42018

1:42016

1:41952 1:41953 1:41954 1:44855 1:44856

1:42017 1:42021

NULL 1:41952
 360 1:41953
 713 1:41954
...
 217938 1:42635
 218290 1:42636
 218642 1:42637

orderid page#

218994 1:42638
219346 1:42639
219698 1:42640
...
436992 1:43257
437274 1:43258
437626 1:43259

orderid page#

875952 1:44504
876304 1:44505
876656 1:44506
...
999178 1:44854
999531 1:44855
999883 1:44856

orderid page#

orderid row locator
 360 20021223,  48
 361 20030101, 564
 362 20030101, 565
...
 710 20021226, 6
 711 20030102,  5
 712 20030102,  6

orderid row locator
 713 20030102, 7
 714 20030102, 8
 715 20030102, 9
...
 1062 20030102, 258
 1063 20030102, 259
 1064 20030102, 260

orderid row locator
999531 20061231, 139
999532 20061231, 140
999533 20061231, 141
...
999880 20061204, 677
999881 20061231, 391
999882 20061231, 392

  orderid row locator
 999883 20061231, 393
 999884 20061231, 394
 999885 20061231, 395
...
 999998 20061231, 308
 999999 20061231, 309
1000000 20061211,  646

Single Page Allocation @ 0x35C6C08E
Slot 0 = (0:0) Slot 1 = (0:0)...

Extent Alloc Status Slot 1 @0x35C6C0C2
(1:0)         – (1:41944) = NOT ALLOCATED
(1:41952) – (1:42016) =         ALLOCATED
(1:42024) – (1:42072) = NOT ALLOCATED
(1:42080) – (1:44856) =         ALLOCATED
(1:44864) – (1:57104) = NOT ALLOCATED

orderid row locator
 1 20030101, 171
 2 20030101, 172
 2 20030101, 173
...
 357 20030101, 579
 358 20030101, 580
 359 20030101, 581

FIGURE 4-18 Nonclustered index on a clustered table

tables, keep in mind that with all lookups going through the clustered index, the nonleaf 
levels of the clustered index will typically reside in cache. Typically, most of the physical 
reads in the clustered index will be against the leaf level. Therefore, the additional cost of 
lookups against a clustered table compared to a heap is usually a small portion of the total 
query cost. Now that the background information about table and index structures has been 
 covered, the next section will describe index access methods.  

Index Access Methods

 This section provides a technical description of the various index access methods; it is 
designed to be used as a reference for discussions in these books involving analysis of 
execution plans. Later in this chapter, I’ll describe an analysis of indexing strategies that 
 demonstrates how you can put this knowledge into action. 

 If you want to follow the examples in this section, rerun the code in Listing 4-1 to re-create the 
sample tables in our Performance database along with all the indexes. I’ll be  discussing some 
 access methods to use against the Orders table, both when it’s structured as a heap and when 
it’s  structured as a clustered table. Therefore, I’d also suggest that you run the code in Listing 4-1 
against another database (say, Performance2), after renaming the  database name in the script 
 accordingly and commenting out the statement that creates the clustered index on Orders. 
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When I discuss an access method involving a clustered table, run the code against the Performance 
 database. When the discussion is about heaps, run it against Performance2. Also remember that 
Listing 4-1 uses randomization to populate the customer IDs, employee IDs shipper IDs, and order 
dates in the Orders table. This means that your results will probably slightly differ from mine.  

Table Scan/Unordered Clustered Index Scan

 A table scan or an unordered clustered index scan involves a scan of all data pages belonging 
to the table. The following query against the Orders table structured as a heap would require 
a table scan: 

SELECT orderid, custid, empid, shipperid, orderdate 

FROM dbo.Orders;

 Figure 4-19 shows the graphical execution plan produced by the relational engine’s  optimizer 
for this query, and Figure 4-20 shows an illustration of the way this access method is 
 processed by the storage engine. 

FIGURE 4-19 Table scan (execution plan)

Pointer to
first IAM IAM

Heap

Allocation Order Scan

FIGURE 4-20 Table scan
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 An instruction of the optimizer in the execution plan to perform a table scan can be  carried 
out by the storage engine only in one way—using an allocation order scan. That is, SQL Server 
uses the table’s IAM pages to scan the extents belonging to the table by their fi le  order. As long 
as there’s no fi le system fragmentation, the activity is done as a sequential  activity in the disk 
drives. The number of logical reads should be similar to the number of pages the table consumes 
(around 25,000 in our case). Note that in such scans SQL Server typically uses a very effi cient 
read-ahead strategy that can read the data in larger chunks than 8 KB. When I ran this query on 
my system, I got the following performance measures from STATISTICS IO, STATISTICS TIME:  

■  Logical reads 24391 

■  Physical reads 3 

■  Read-ahead reads 24368 

■  CPU time 951 ms 

■  Elapsed time 23935 ms 

■  Estimated subtree cost 19.1699 

 Of course, the run times I got are not an indication of the run times you would get in an average 
production system. But I wanted to show them for illustration and comparison purposes. 

 If the table has a clustered index, the access method that will be applied will be an  unordered 
clustered index scan (that is, a Clustered Index Scan operator, with the property Ordered: False). 
Figure 4-21 shows the execution plan that the optimizer will produce for this query. Notice that 
the Ordered property of the Clustered Index Scan operator indicates False. Figure 4-22 shows 
an illustration of the two ways that the storage engine can carry out this access method.  

FIGURE 4-21 Unordered clustered index scan (execution plan)
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Clustered
Index

Clustered
Index

Pointer to
first IAM

Pointer to
first leaf page

IAM

Index Order Scan

Allocation Order Scan

FIGURE 4-22 Unordered clustered index scan

 The fact that the Ordered property of the Clustered Index Scan operator indicates False 
means that as far as the relational engine is concerned, the data does not need to be  returned 
from the operator ordered. This doesn’t mean that it is a problem if it is returned ordered; 
instead, it means that any order would be fi ne. This leaves the storage engine with some 
 maneuvering space in the sense that it is free to choose between two types of scans: an index 
order scan (scan of the leaf of the index following the linked list) and an  allocation order scan 
(scan based on IAM pages). The factors that the storage engine takes into  consideration when 
choosing which type of scan to employ include performance and data consistency. I’ll provide 
more  details about the storage engine’s decision-making process after I describe ordered 
 index scans (Clustered Index Scan and Index Scan operators with the property Ordered: True). 

 Here are the performance measures I got for this query:

■  Logical reads 25081 

■  Physical reads 5 

■  Read-ahead reads 25073 

■  CPU time 889 ms 
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■  Elapsed time 24025 ms 

■  Estimated subtree cost 19.6218 

Unordered Covering Nonclustered Index Scan

 An unordered covering nonclustered index scan is similar in concept to an unordered  clustered 
index scan. The concept of a covering index means that a nonclustered index contains all 
 columns specifi ed in a query. In other words, a covering index is not an index with special 
properties; rather, it becomes a covering index with respect to a particular query. SQL Server 
can fi nd all the data it needs to satisfy the query by accessing solely the index data, without 
the need to access the full data rows. Other than that, the access method is the same as an 
unordered clustered index scan, only, obviously, the leaf level of the covering nonclustered 
 index contains fewer pages than the leaf of the clustered index because the row size is 
 smaller and more rows fi t in each page. I explained earlier how to calculate the number of 
pages in the leaf level of an index (clustered or nonclustered). 

 As an example for this access method, the following query requests all orderid values from 
the Orders table: 

SELECT orderid 

FROM dbo.Orders;

 Our Orders table has a nonclustered index on the orderid column (PK_Orders), meaning that 
all the table’s order IDs reside in the index’s leaf level. The index covers our query. Figure 4-23 
shows the graphical execution plan you would get for this query, and Figure 4-24 illustrates 
the two ways in which the storage engine can process it.

FIGURE 4-23 Unordered covering nonclustered index scan (execution plan)
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Index Order Scan
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FIGURE 4-24 Unordered covering nonclustered index scan

 The leaf level of the PK_Orders index contains fewer than 3,000 pages, compared to the 
25,000 data pages in the table. Here are the performance measures I got for this query: 

■  Logical reads 2850 

■  Physical reads 2 

■  Read-ahead reads 2580 

■  CPU time 327 ms 

■  Elapsed time 16649 ms 

■  Estimated subtree cost 3.20773 

Ordered Clustered Index Scan

 An ordered clustered index scan is a full scan of the leaf level of the clustered index 
 guaranteeing that the data will be returned to the next operator in index order. For example, 
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the following query, which requests all orders sorted by orderdate, will get such an access 
method in its plan: 

SELECT orderid, custid, empid, shipperid, orderdate 

FROM dbo.Orders 

ORDER BY orderdate;

 You can fi nd the execution plan for this query in Figure 4-25 and an illustration of how the 
storage engine carries out this access method in Figure 4-26.

FIGURE 4-25 Ordered clustered index scan (execution plan)

Clustered
Index

Pointer to
first leaf page

FIGURE 4-26 Ordered clustered index scan
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 Notice in the plan that the Ordered property is True. This indicates that the data needs to be 
returned from the operator ordered. When the operator has the property Ordered: True, the 
scan can be carried out by the storage engine only in one way—by using an index order scan 
(scan based on index linked list), as shown in Figure 4-26. Unlike an allocation order scan, the 
performance of an index order scan depends on the fragmentation level of the index. With 
no fragmentation at all, the performance of an index order scan should be very close to the 
performance of an allocation order scan because both will end up reading the data in fi le order 
sequentially. However, as the fragmentation level grows higher, the performance difference will 
be more substantial, in favor of the allocation order scan, of course. The natural deductions are 
that you shouldn’t request the data sorted if you don’t need it sorted, to allow the potential for 
using an allocation order scan, and that you should resolve fragmentation issues in indexes that 
incur large index order scans. I’ll elaborate on fragmentation and its treatment later. Here are the 
performance measures that I got for this query: 

■  Logical reads 25081 

■  Physical reads 5 

■  Read-ahead reads 25073 

■  CPU time 983 ms 

■  Elapsed time 25192 ms 

■  Estimated subtree cost 19.6218 

 Note that the optimizer is not limited to ordered-forward activities. Remember that the 
linked list is a doubly linked list, where each page contains both a next and a previous pointer. 
Had you requested a descending sort order, you would have still gotten an ordered index 
scan, only ordered backward (from tail to head) instead of ordered forward (from head to 
tail). SQL Server also supports descending indexes, but these are not needed in simple cases 
like getting descending sort orders. Rather, descending indexes are valuable when you create 
an index on multiple key columns that have opposite directions in their sort requirements—
for example, sorting by col1, col2 DESC.  

Ordered Covering Nonclustered Index Scan

 An ordered covering nonclustered index scan is similar in concept to an ordered clustered 
 index scan, with the former performing the access method in a nonclustered index—typically 
when covering a query. The cost is, of course, lower than a clustered index scan because 
fewer pages are involved. For example, the PK_Orders index on our clustered Orders table 
happens to cover the following query, even though it might not seem so at fi rst glance: 

SELECT orderid, orderdate 

FROM dbo.Orders 

ORDER BY orderid;
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 Keep in mind that on a clustered table, nonclustered indexes will use clustering keys as row 
locators. In our case, the clustering keys contain the orderdate values, which can be used 
for covering purposes as well. Also, the fi rst (and, in our case, the only) key column in the 
 nonclustered index is the orderid column, which is the column specifi ed in the ORDER BY 
clause of the query; therefore, an ordered index scan is a natural access method for the 
 optimizer to choose. 

 Figure 4-27 shows the query’s execution plan, and Figure 4-28 illustrates the way the storage 
engine processes the access method. 

FIGURE 4-27 Ordered covering nonclustered index scan (execution plan 1)

Nonclustered
Index

Pointer to
first leaf page

FIGURE 4-28 Ordered covering nonclustered index scan

 Notice in the plan that the Ordered property of the Index Scan operator in the yellow 
 information box shows True. 
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 Here are the performance measures that I got for this query: 

■  Logical reads 2850 

■  Physical reads 2 

■  Read-ahead reads 2850 

■  CPU time 592 ms 

■  Elapsed time 18153 ms 

■  Estimated subtree cost 3.20733 

 An ordered index scan is used not only when you explicitly request the data sorted but also 
when the plan uses an operator that can benefi t from sorted input data. This can be the 
case when processing GROUP BY, DISTINCT, joins, and other requests. This can also happen 
in less obvious cases. For example, check out the execution plan shown in Figure 4-29 for 
the following query: 

SELECT orderid, custid, empid, orderdate 

FROM dbo.Orders AS O1 

WHERE orderid =  

  (SELECT MAX(orderid) 

   FROM dbo.Orders AS O2 

   WHERE O2.orderdate = O1.orderdate);

FIGURE 4-29 Ordered covering nonclustered index scan (execution plan 2)
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 The Segment operator arranges the data in groups and emits a group at a time to the next 
operator (Top in our case). Our query requests the orders with the maximum orderid per 
 orderdate. Fortunately, we have a covering index for the task (idx_unc_od_oid_i_cid_eid), with 
the key columns being (orderdate, orderid) and included nonkey columns being (custid, empid). 
I’ll elaborate on included nonkey columns later in the chapter. The important point for our 
discussion is that the segment operator organizes the data by groups of orderdate values and 
emits the data, a group at a time, where the last row in each group is the maximum orderid 
in the group; because orderid is the second key column right after orderdate. Therefore, the 
plan doesn’t need to sort the data; rather, the plan just collects it with an ordered scan from 
the covering index, which is already sorted by orderdate and orderid. The Top operator has a 
simple task of just collecting the last row (TOP 1 descending), which is the row of interest for 
the group. The number of rows reported by the Top operator is 1491, which is the number of 
unique groups (orderdate values), each of which got a single row from the operator. Because 
our nonclustered index covers the query by including in its leaf level all other columns that are 
mentioned in the query (custid, empid), there’s no need to look up the data rows; the query is 
satisfi ed by the index data alone. Here are the performance measures I got for this query: 

■  Logical reads 4717 

■  Physical reads 8 

■  Read-ahead reads 4696 

■  CPU time 468 ms 

■  Elapsed time 2157 ms 

■  Estimated subtree cost 4.68121 

 The number of logical reads that you see is similar to the number of pages that the leaf level 
of the index holds. 

The Storage Engine’s Treatment of Scans

 This section is applicable to all versions of SQL Server from 7.0 through to 2008. 

 Before I continue the coverage of additional index access methods, I’m going to explain 
the way the storage engine treats the relational engine’s instructions to perform scans. The 
 relational engine is like the brains of SQL Server; it includes the optimizer that is in charge of 
producing execution plans for queries. The storage engine is like the muscles of SQL Server; 
it needs to carry out the instructions provided to it by the relational engine in the execution 
plan and perform the actual row operations. Sometimes the optimizer’s instructions leave the 
storage engine with some room for maneuvering, and then the storage engine determines 
the best of several possible options based on factors such as performance and consistency.  

 When the plan shows a Table Scan operator, the storage engine has only one option—to use an 
allocation order scan. When the plan shows an Index Scan operator (clustered or  nonclustered) 
with the property Ordered: True, the storage engine can use only an index order scan.  
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Allocation Order Scans vs. Index Order Scans  When the plan shows an Index Scan  operator 
with Ordered: False, the relational engine doesn’t care in what order the rows are returned. 
In this case there are two options to scan the data—allocation order scan and index order 
scan. It is up to the storage engine to determine which to employ. Unfortunately, the storage 
 engine’s actual choice is not indicated in the execution plan, or anywhere else. I will explain 
the storage engine’s decision-making process, but it’s important to understand that what the 
plan shows is the relational engine’s instructions and not what the storage engine did. 

 The performance of an allocation order scan is not affected by logical fragmentation in the 
index because it’s done in fi le order anyway. However, the performance of an index  order scan 
is affected by fragmentation—the higher the fragmentation, the slower the scan. Therefore, 
as far as performance is concerned, the storage engine considers the allocation  order scan 
the preferable option. The exception is when the index is very small (up to 64 pages), the cost 
of interpreting IAM pages becomes signifi cant with respect to the rest of the work, in which 
case the storage engine considers the index order scan to be preferable. Small tables aside, in 
terms of performance the allocation order scan is considered preferable. 

 However, performance is not the only aspect that the storage engine needs to take into 
 consideration; it also needs to account for data consistency expectations based on the 
 effective isolation level. When there’s more than one option to carry out a request, the 
 storage engine opts for the fastest option that meets the consistency requirements.  

 In certain circumstances, scans can end up returning multiple occurrences of rows or even 
skip rows. Allocation order scans are more prone to such behavior than index order scans. I’ll 
fi rst describe how such a phenomenon can happen with allocation order scans and in which 
circumstances. Then I’ll explain how it can happen with index order scans. 

Allocation Order Scans  Figure 4-30 demonstrate in three steps how an allocation order 
scan can return multiple occurrences of rows.  

 Step 1 shows an allocation order scan in progress, reading the leaf pages of some index in 
fi le order (not index order). Two pages were already read (keys 50, 60, 70, 80, 10, 20, 30, 40). 
At this point, before the third page of the index is read, someone inserts a row into the table 
with key 25.  

 Step 2 shows a split that took place in the page that was the target for the insert since it was 
full. As a result of the split, a new page was allocated—in our case later in the fi le at a point that 
the scan did not yet reach. Half the rows from the original page move to the new page (keys 
30, 40), and the new row with key 25 was added to the original page because of its key value. 

 Step 3 shows the continuation of the scan: reading the remaining two pages (keys 90, 100, 
110, 120, 30, 40) including the one that was added because of the split. Notice that the rows 
with keys 30 and 40 were read a second time.  
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Allocation Order Scan:  Getting Multiple Occurrences of Rows

Step 1:

Output: 50, 60, 70, 80, 10, 20, 30, 40
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allocation  order  scan

allocation  order  scan

Step 3:

Output: 50, 60, 70, 80, 10, 20, 30, 40, 90, 100,  110, 120, 30, 40

Step 2:

Output: 50, 60, 70, 80, 10, 20, 30, 40 insert 25

split
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50
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80

10
20
25

90
100
110
120

30
40

FIGURE 4-30 Allocation order scan: getting multiple occurrences of rows

 Of course, in a very similar fashion, depending on how far the scan reaches by the point this 
split happens and where the new page is allocated, the scan might end up skipping rows. 
Figure 4-31 demonstrates how this can happen in three steps. 

 Step 1 shows an allocation order scan in progress that manages to read one page (keys 50, 
60, 70, 80) before the insert takes place.  
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Allocation Order Scan:  Skipping Rows
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FIGURE 4-31 Allocation order scan: skipping rows

 Step 2 shows the split of the target page, only this time the new page is allocated earlier in 
the fi le at a point that the scan already passed. Like in the previous split example, the rows 
with keys 30 and 40 move to the new page, and the new row with key 25 is added to the 
original page. 
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 Step 3 shows the continuation of the scan: reading the remaining two pages (keys 10, 20, 25, 
90, 100, 110, 120). As you can see, the rows with keys 30 and 40 were completely skipped. 

 In short, an allocation order scan can return multiple occurrences of rows and skip rows 
 resulting from splits that take place during the scan. A split can take place because of an 
insert of a new row, an update of an index key causing the row to move, or an update of a 
variable-length column causing the row to expand. Remember that splits only take place in 
indexes; heaps do not incur splits. Therefore, such phenomena cannot happen in heaps. 

 An index order scan is safer in the sense that it won’t read multiple occurrences of the same 
row or skip rows because of splits. Remember that an index order scan follows the index 
linked list in order. If a page that the scan hasn’t yet reached splits, the scan ends up reading 
both pages; therefore, it won’t skip rows. If a page that the scan already passed splits, the 
scan doesn’t read the new one; therefore, it won’t return multiple occurrences of rows.  

 The storage engine is well aware of the fact that allocation order scans are prone to such 
inconsistent reads because of splits, while index order scans aren’t. It will carry out an Index 
Scan Ordered: False with an allocation order scan in one of two categories of cases that I will 
refer to as the unsafe and safe categories.  

 The unsafe category is when the scan can actually return multiple occurrences of rows or 
skip rows because of splits. The storage engine opts for this option when the index size is 
greater than 64 pages and the request is running under the read uncommitted isolation level 
(for example, when you specify NOLOCK in the query). Most people’s perception of read 
 uncommitted is simply that the query does not request a shared lock and therefore that it 
can read uncommitted changes (dirty reads). This perception is true, but unfortunately most 
people don’t realize that in the eyes of the storage engine, read uncommitted is also an 
 indication that pretty much all bets are off in terms of consistency. In other words, it will opt 
for the faster option even at the cost of returning multiple occurrences of rows or  skipping 
rows. When the query is running under the default read committed isolation level or  higher, 
the storage engine will opt for an index order scan to prevent such phenomena from 
 happening because of splits. To recap, the storage engine employs allocation order scans of 
the unsafe category when all of the following are true: 

■  The index size is greater than 64 pages. 

■  The plan shows Index Scan, Ordered: False. 

■  The query is running under the read uncommitted isolation level. 

■  Changes are allowed to the data. 

 In terms of the safe category, the storage engine also opts for allocation order scans with 
higher isolation levels than read uncommitted when it knows that it is safe to do so without 
sacrifi cing the consistency of the read (at least as far as splits are concerned). For example, 
when you run the query using the TABLOCK hint, the storage engine knows that no one 
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can change the data while the read is in progress. Therefore, it is safe to use an allocation 
order scan. Of course this comes at the cost of requests for modifi cations being blocked 
 during the read. Another example where the storage engine knows that it is safe to employ 
an  allocation order scan is when the index resides in a read-only fi legroup or database. To 
 summarize, the storage engine will use an allocation order scan of the safe category when 
the index size is greater than 64 pages and the data is read-only (because of the TABLOCK 
hint, read-only fi legroup, or database). 

 Keep in mind that logical fragmentation has an impact on the performance of index order 
scans but not on that of allocation order scans. And based on the preceding information, you 
should realize that the storage engine will sometimes use index order scans to process an 
Index Scan operator with the Ordered: False property. 

 The next section will demonstrate both unsafe and safe allocation order scans.  

 Run the following code to create a table called T1: 

SET NOCOUNT ON;

USE tempdb;

GO

-- Create table T1

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

  cl_col UNIQUEIDENTIFIER NOT NULL DEFAULT(NEWID()),

  filler CHAR(2000) NOT NULL DEFAULT('a')

);

GO

CREATE UNIQUE CLUSTERED INDEX idx_cl_col ON dbo.T1(cl_col);

GO

 A unique clustered index is created on cl_col, which will be populated with random GUIDs 
by the default expression NEWID(). Populating the clustered index key with random 
GUIDs should cause a high level of splits, which in turn should cause a high level of logical 
 fragmentation in the index. 

 Run the following code to insert rows into the table using an infi nite loop and stop it after a 
few seconds (say 5, to allow more than 64 pages in the table): 

SET NOCOUNT ON;

USE tempdb;

TRUNCATE TABLE dbo.T1;

WHILE 1 = 1

  INSERT INTO dbo.T1 DEFAULT VALUES;
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 Run the following code to check the fragmentation level of the index: 

SELECT avg_fragmentation_in_percent FROM sys.dm_db_index_physical_stats

( 

  DB_ID('tempdb'),

  OBJECT_ID('dbo.T1'),

  1,

  NULL,

  NULL

);

 When I ran this code in my system, I got more than 98 percent fragmentation, which of 
course is very high. If you need more evidence to support the fact that the order of the 
pages in the linked list is different from their order in the fi le, you can use the undocumented 
DBCC IND command, which gives you the B-tree layout of the index: 

DBCC IND('tempdb', 'dbo.T1', 0);

 I prepared the following piece of code to spare you from having to browse through the 
 output of DBCC IND in attempt to fi gure out the index leaf layout: 

 CREATE TABLE #DBCCIND

(

  PageFID INT,

  PagePID INT,

  IAMFID INT,

  IAMPID INT,

  ObjectID INT,

  IndexID INT,

  PartitionNumber INT,

  PartitionID BIGINT,

  iam_chain_type VARCHAR(100),

  PageType INT,

  IndexLevel INT,

  NextPageFID INT,

  NextPagePID INT,

  PrevPageFID INT,

  PrevPagePID INT

);

INSERT INTO #DBCCIND

  EXEC ('DBCC IND(''tempdb'', ''dbo.T1'', 0)');

CREATE CLUSTERED INDEX idx_cl_prevpage ON #DBCCIND(PrevPageFID, PrevPagePID);

WITH LinkedList

AS

(

  SELECT 1 AS RowNum, PageFID, PagePID

  FROM #DBCCIND

  WHERE IndexID = 1

    AND IndexLevel = 0

    AND PrevPageFID = 0

    AND PrevPagePID = 0
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  UNION ALL

  SELECT PrevLevel.RowNum + 1,

    CurLevel.PageFID, CurLevel.PagePID

  FROM LinkedList AS PrevLevel

    JOIN #DBCCIND AS CurLevel

      ON CurLevel.PrevPageFID = PrevLevel.PageFID

      AND CurLevel.PrevPagePID = PrevLevel.PagePID

)

SELECT

  CAST(PageFID AS VARCHAR(MAX)) + ':'

  + CAST(PagePID AS VARCHAR(MAX)) + ' ' AS [text()]

FROM LinkedList

ORDER BY RowNum

FOR XML PATH('')

OPTION (MAXRECURSION 0);

DROP TABLE #DBCCIND; 

 The code stores the output of DBCC IND in a temp table, then it uses a recursive query to 
follow the linked list from head to tail, and then it uses a technique using the FOR XML PATH 
option to concatenate the addresses of the leaf pages into a single string in linked list order. 
I got the following output on my system, shown here in abbreviated form: 

1:3672 1:1245 1:1460 1:670 1:3046 1:1994 1:1856 1:386 1:2903 1:1167 1:2785 1:663. . .

 It’s easy to observe logical fragmentation here. For example, page 1:3672 points to the page 
1:1245, which is earlier in the fi le.  

 Next, run the following code to query T1: 

SELECT SUBSTRING(CAST(cl_col AS BINARY(16)), 11, 6) AS segment1, *

FROM dbo.T1;

 The last 6 bytes of a UNIQUEIDENTIFIER value represent the fi rst segment that determines 
ordering; therefore, I extracted that segment with the SUBSTRING function so that it would 
be easy to see whether the rows are returned in index order. The execution plan of this query 
indicates a Clustered Index Scan, Ordered: False. However, because the environment is not 
read-only and the isolation is the default read committed, the storage engine uses an index 
order scan. This query returns the rows in the output in index order. For example, here’s the 
output that I got on my system, shown in abbreviated form: 

segment1         cl_col                                 filler

---------------- -------------------------------------- -------

0x0001EDAA3379   870FE202-4216-4BD2-9CF0-0001EDAA3379   a

0x000403806831   6F247C4D-A317-450F-B596-000403806831   a

0x0009A1FB7D6A   5EA6CC99-948C-4A10-8C37-0009A1FB7D6A   a

0x000B6712B99C   1D545D02-6887-4F8A-A95F-000B6712B99C   a

0x0021719D7298   38B2E138-E6F4-4B32-8E7D-0021719D7298   a

0x002BD242E426   1A22523F-0046-4A83-AD4A-002BD242E426   a

0x002FAFA27D1B   890693F4-0E5A-4120-8D8F-002FAFA27D1B   a
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0x006F682B4B92   2F1F94D1-0597-4755-87D8-006F682B4B92   a

0x007141F248CC   D0125167-03DC-4790-8EF9-007141F248CC   a

0x007980632C84   368F5CE4-413C-46B9-9AB3-007980632C84   a

...

 Query the table again, this time with the NOLOCK hint: 

SELECT SUBSTRING(CAST(cl_col AS BINARY(16)), 11, 6) AS segment1, *

FROM dbo.T1 WITH (NOLOCK);

 This time the storage engine employs an allocation order scan of the unsafe category. Here’s 
the output I got from this code on my system: 

segment1         cl_col                                 filler

---------------- -------------------------------------- -------

0x014764C5D8EE   4F3B1F56-E906-4604-BEFD-014764C5D8EE   a

0x01562FB6BA4F   F806B778-4B95-4C83-8CD1-01562FB6BA4F   a

0x01602D85E409   10812BEE-00C9-46E4-86E0-01602D85E409   a

0x656D2B798163   361A0DB6-BDF6-4B93-8D02-656D2B798163   a

0x65A8EB2A6C4E   CFCCCBB7-8BBD-4BED-9F6E-65A8EB2A6C4E   a

0x65AF86168CA8   007CC2B4-3B4A-416F-ACCA-65AF86168CA8   a

0x4A4BA14669E8   DE40A86F-B83A-4BC8-BC42-4A4BA14669E8   a

0xF27FCD39F328   71DFA3CA-3C15-40B5-8393-F27FCD39F328   a

0xF2871A254745   5483FEAC-52CC-4554-B1C4-F2871A254745   a

0x7BB93E98B826   36690994-2ED8-4DB6-98E4-7BB93E98B826   a

...

 Notice that this time the rows are not returned in index order. If splits occur while such a read is 
in progress, the read might end up returning multiple occurrences of rows and skipping rows. 

 As an example for an allocation order scan of the safe category, run the query with the 
TABLOCK hint: 

SELECT SUBSTRING(CAST(cl_col AS BINARY(16)), 11, 6) AS segment1, *

FROM dbo.T1 WITH (TABLOCK);

Here, even though the code is running under the read committed isolation, the storage 
 engine knows that it is safe to use an allocation order scan because no one can change the 
data during the read. I got the following output back from this query:

segment1         cl_col                                 filler

---------------- -------------------------------------- -------

0x014764C5D8EE   4F3B1F56-E906-4604-BEFD-014764C5D8EE   a

0x01562FB6BA4F   F806B778-4B95-4C83-8CD1-01562FB6BA4F   a

0x01602D85E409   10812BEE-00C9-46E4-86E0-01602D85E409   a

0x656D2B798163   361A0DB6-BDF6-4B93-8D02-656D2B798163   a

0x65A8EB2A6C4E   CFCCCBB7-8BBD-4BED-9F6E-65A8EB2A6C4E   a

0x65AF86168CA8   007CC2B4-3B4A-416F-ACCA-65AF86168CA8   a

0x4A4BA14669E8   DE40A86F-B83A-4BC8-BC42-4A4BA14669E8   a

0xF27FCD39F328   71DFA3CA-3C15-40B5-8393-F27FCD39F328   a

0xF2871A254745   5483FEAC-52CC-4554-B1C4-F2871A254745   a

0x7BB93E98B826   36690994-2ED8-4DB6-98E4-7BB93E98B826   a

...
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 Next I’ll demonstrate how an unsafe allocation order scan can return multiple occurrences of 
rows. Open two connections (call them Connection 1 and Connection 2). Run the following 
code in Connection 1 to insert rows into T1 in an infi nite loop, causing frequent splits: 

SET NOCOUNT ON;

USE tempdb;

TRUNCATE TABLE dbo.T1;

WHILE 1 = 1

  INSERT INTO dbo.T1 DEFAULT VALUES;

 Run the following code in Connection 2 to read the data in a loop while Connection 1 is 
 inserting data: 

SET NOCOUNT ON;

USE tempdb;

WHILE 1 = 1

BEGIN

  SELECT * INTO #T1 FROM dbo.T1 WITH(NOLOCK);

  IF EXISTS(

    SELECT cl_col

    FROM #T1 

    GROUP BY cl_col 

    HAVING COUNT(*) > 1) BREAK;

  DROP TABLE #T1;

END

SELECT cl_col, COUNT(*) AS cnt

FROM #T1 

GROUP BY cl_col

HAVING COUNT(*) > 1;

DROP TABLE #T1;

 The SELECT statement uses the NOLOCK hint, and the plan shows Clustered Index Scan, 
Ordered: False, meaning that the storage engine will likely use an allocation order scan of the 
unsafe category. The SELECT INTO statement stores the output in a temporary table so that 
it will be easy to prove that rows were read multiple times. In each iteration of the loop, after 
reading the data into the temp table, the code checks for multiple occurrences of the same 
GUID in the temp table. This can happen only if the same row was read more than once. If 
duplicates are found, the code breaks from the loop and returns the GUIDs that appear more 
than once in the temp table. When I ran this code, after a few seconds I got the following 
output in Connection 2 showing all the GUIDs that were read more than once: 

cl_col                                 cnt

-------------------------------------- -----------

8DB22EB6-A2CF-4390-9402-CC4A7D92A174   2

B26AE864-EC15-481A-938C-9CC31288CE13   2
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DD564EEE-C669-44A3-AB5B-46D010F6F9CF   2

EFB70510-C818-49AE-A889-46D0158A3BAD   2

48AA6FF8-D4BF-4628-8AFD-61ABC6361C65   2

59B1FBB5-0571-4EF2-9A96-EBAC9E51CF78   2

C21F5696-7B9C-4B8A-BB16-61A8F0F84CD8   2

E9BFB860-F720-493C-AF15-EBAC959BEA0D   2

DF75BFDA-772B-48CE-B048-CC494D57C489   2

DACE0814-9D15-4077-AB59-9CC0831DE9F2   2

5362C689-AC26-495E-8C4B-B442EF28BA9F   2

 At this point you can stop the code in Connection 1. 

 If you want, you can rerun the test without the NOLOCK hint and see that the code in 
Connection 2 doesn’t stop because duplicate GUIDs are not found. 

 Next I’ll demonstrate an unsafe allocation order scan that skips rows. Run the following code 
to create the tables T1 and Sequence: 

-- Create table T1

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

  cl_col UNIQUEIDENTIFIER NOT NULL DEFAULT(NEWID()),

  seq_val INT NOT NULL,

  filler CHAR(2000) NOT NULL DEFAULT('a')

);

CREATE UNIQUE CLUSTERED INDEX idx_cl_col ON dbo.T1(cl_col);

-- Create table Sequence 

IF OBJECT_ID('dbo.Sequence', 'U') IS NOT NULL DROP TABLE dbo.Sequence;

CREATE TABLE dbo.Sequence(val INT NOT NULL);

INSERT INTO dbo.Sequence(val) VALUES(0);

 The table T1 is similar to the one used in the previous demonstration, but this one has an 
additional column called seq_val that will be populated with sequential integers. The table 
Sequence holds the last used sequence value (populated initially with 0), which will be 
 incremented by 1 before each insert to T1. To prove that a scan skipped rows, you simply 
need to show that the output of the scan has gaps between contiguous values in the seq_val 
 column. To demonstrate this behavior, open two connections (again, call them Connection 1 
and Connection 2). Run the following code from Connection 1 to insert rows into T1 in an 
 infi nite loop, incrementing the sequence value by 1 in each iteration: 

SET NOCOUNT ON;

USE tempdb;

UPDATE dbo.Sequence SET val = 0;

TRUNCATE TABLE dbo.T1;
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DECLARE @nextval AS INT;

WHILE 1 = 1

BEGIN

  UPDATE dbo.Sequence SET @nextval = val = val + 1;

  INSERT INTO dbo.T1(seq_val) VALUES(@nextval);

END

 Run the following code in Connection 2 while the inserts are running in Connection 1: 

SET NOCOUNT ON;

USE tempdb;

DECLARE @max AS INT;

WHILE 1 = 1

BEGIN

  SET @max = (SELECT MAX(seq_val) FROM dbo.T1);

  SELECT * INTO #T1 FROM dbo.T1 WITH(NOLOCK);

  CREATE NONCLUSTERED INDEX idx_seq_val ON #T1(seq_val);

  IF EXISTS(

    SELECT *

    FROM (SELECT seq_val AS cur, 

            (SELECT MIN(seq_val)

             FROM #T1 AS N

             WHERE N.seq_val > C.seq_val) AS nxt

          FROM #T1 AS C

          WHERE seq_val <= @max) AS D

    WHERE nxt - cur > 1) BREAK;

  DROP TABLE #T1;

END

SELECT *

FROM (SELECT seq_val AS cur, 

        (SELECT MIN(seq_val)

         FROM #T1 AS N

         WHERE N.seq_val > C.seq_val) AS nxt

      FROM #T1 AS C      

      WHERE seq_val <= @max) AS D

WHERE nxt - cur > 1;

DROP TABLE #T1;

 This code runs an infi nite loop that in each iteration reads the data using NOLOCK into a 
temp table and breaks from the loop as soon as contiguous values with a gap between them 
are found in the seq_val column. The code then presents the pairs of contiguous values that 
have a gap between them. After a few seconds I got the following output in Connection 2, 
shown here in abbreviated form: 

cur         nxt

----------- -----------

53          55

620         622

792         794

C04626034.indd   218 2/13/2009   1:56:06 AM



 Chapter 4 Query Tuning 219

803         805

838         840

1202        1204

1600        1602

1643        1645

1647        1649

1788        1791

. . .

 You can stop the code in Connection 1. 

 You can run the test again without the NOLOCK hint, in which case the storage engine will 
use an index order scan. The code in Connection 2 should not break from the loop because 
gaps won’t be found. 

Index Order Scans  If you think that index order scans are safe from phenomena such as 
 returning multiple occurrences of rows or skipping rows, think again. It is true that index 
 order scans are safe from such phenomena because of page splits, but page splits are not 
the only reason for data to move around in the index leaf. Another cause of movement in 
the leaf is update of an index key. If an index key is modifi ed after the row was read by an 
index order scan and the row is moved to a point in the leaf that the scan hasn’t reached yet, 
the scan will read the row a second time. Similarly, if an index key is modifi ed before the row 
is read by an index order scan and the row is moved to a point in the leaf that the scan has 
 already passed, the scan will never reach that row. 

 For example, suppose you have an Employees table that currently has four employee rows 
(employee A with a salary of 2000, employee B with a salary of 4000, employee C with a 
 salary of 3000, and employee D with a salary of 1000). A clustered index is on the  salary 
column. Figure 4-32 shows in three steps how an index order scan can return multiple 
 occurrences of the same row because of an update that takes place during the read.  

 You issue a query against the table and the storage engine uses an index order scan. 
Remember that an index order scan is always used when the plan shows Index Scan: Ordered: 
True (for example, when the query has an ORDER BY clause), but also when the Ordered 
property is False, the environment is read-write, and the isolation is not read uncommitted.  

 Step 1 shows that the scan already read the fi rst page in the leaf level and returned the rows 
for employees D, A, and C. If the query is running under read uncommitted, no shared locks 
are acquired on the rows. If the query is running under read committed, shared locks are 
acquired, but they are released as soon as the query is done with the resource (for example, 
a row or page), even though the query hasn’t fi nished yet. This means that at the point in 
time that the scan is done with the page, in both isolations no locks are held on the rows that 
were read. 

 Step 2 shows an update of the row for employee D, increasing the salary from 1000 to 5000. 
The row moves to the second page in the leaf level because of the index key change. 
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Index Order Scan:  Getting Multiple Occurrences of Rows
Step 1:

D 1000
A 2000
C 3000

B 4000

index order
scan

Output: D 1000, A 2000, C 3000

Step 3:

Output: D 1000, A 2000, C 3000, B 4000, D 5000

Step 2:

D 1000
A 2000
C 3000

B  4000
D 5000

B 4000
D 5000

index order
scan

Output: D 1000, A 2000, C 3000

update

index order scan

A 2000
C 3000

FIGURE 4-32 Index order scan: getting multiple occurrences of rows

 Step 3 shows the continuation of the scan, reading the second page in the leaf of the  index, 
returning the rows for employees B and D. Note that employee D was returned a  second time. 
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The fi rst time, the row was returned with salary 1000 and the second time with  salary 5000. 
Note that this phenomenon cannot happen in higher isolation levels than read committed 
 because higher isolations keep shared locks until the end of the transaction. This  phenomenon 
cannot happen also under the two isolation levels that are based on row  versioning—read 
 committed snapshot and snapshot. 

 Similarly, an index order scan can skip rows. Figure 4-33 shows how this can happen in 
three steps. 

A 2000
C 3000

B 4000
D 5000

index order
scan

Output A 2000, C 3000

D 1000
A 2000
C 3000

B 4000
D 5000

index order
scan

Output A 2000, C 3000

update

Index Order Scan: Skipping Rows

D 1000
A 2000
C 3000

B 4000

Output A 2000, C 3000, B 4000
index order scan

Step 3:

Step 2:

Step 1:

FIGURE 4-33 Index order scan: skipping rows
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 Employee D starts with salary 5000 this time, and its row resides in the second index leaf 
page. Step 1 shows that the scan already read the fi rst page in the leaf level and returned the 
rows for employees A and C.  

 Step 2 shows an update of the row for employee D, decreasing the salary from 5000 to 1000. 
The row moves to the fi rst page in the leaf level because of the index key change. 

 Step 3 shows the continuation of the scan, reading the second page in the leaf of the index, 
returning the rows for employee B. Note that the row for employee D was not returned at 
all—neither with the salary 5000 nor with 1000. Note that this phenomenon can  happen in 
read uncommitted, read committed, and even repeatable read because the update was done 
to a row that was not yet read. This phenomenon cannot happen in serializable  isolation level 
or in the snapshot-based isolations. 

 To see both phenomena with your own eyes, you can run a simple test. First, execute the 
 following code to create and populate the Employees table: 

USE tempdb;

IF OBJECT_ID('dbo.Employees', 'U') IS NOT NULL  DROP TABLE dbo.Employees;

CREATE TABLE dbo.Employees

(

  empid VARCHAR(10) NOT NULL,

  salary MONEY NOT NULL,

  filler CHAR(2500) NOT NULL DEFAULT('a')

);

CREATE CLUSTERED INDEX idx_cl_salary ON dbo.Employees(salary);

ALTER TABLE dbo.Employees

  ADD CONSTRAINT PK_Employees PRIMARY KEY NONCLUSTERED(empid);

INSERT INTO dbo.Employees(empid, salary) VALUES

  ('D', 1000.00),('A', 2000.00),('C', 3000.00),('B', 4000.00);

 Open two connections. Run the following code in Connection 1 to run an infi nite loop that 
in each iteration updates the salary of employee D from its current value to 6000 minus its 
 current value (switching between the values 1000 and 5000): 

SET NOCOUNT ON;

USE tempdb;

WHILE 1=1

  UPDATE dbo.Employees

    SET salary = 6000.00 - salary

  WHERE empid = 'D';

 This code causes the row for employee D to keep moving between the two index leaf pages. 
Run the following code in Connection 2: 

SET NOCOUNT ON;

USE tempdb;
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WHILE 1 = 1

BEGIN

  SELECT * INTO #Employees FROM dbo.Employees;

  IF @@rowcount <> 4 BREAK; -- use =3 for skipping, =5 for multi occur

  DROP TABLE #Employees;

END

SELECT * FROM #Employees;

DROP TABLE #Employees;

 The code runs an infi nite loop that reads the contents of the Employees table into a temp 
table. Because the code doesn’t specify the NOLOCK hint and the environment is  read-write, 
the storage engine uses an index order scan. The code breaks from the loop when the 
 number of rows read is different than the expected number (four). In case the scan reads the 
same row twice, this code returns fi ve rows in the output: 

empid      salary                filler

---------- --------------------- ------

D          1000.00               a

A          2000.00               a

C          3000.00               a

B          4000.00               a

D          5000.00               a

 In cases where the scan skips a row, this code returns three rows in the output: 

empid      salary                filler

---------- --------------------- ------

A          2000.00               a

C          3000.00               a

B          4000.00               a

 You can change the fi lter to = 3 to wait for a case where the row is skipped, and you can 
change it to = 5 to wait for a case where the row is read twice.  

 I hope this section gave you a better understanding of how the storage engine handles scans 
and, most important, the implications of running your code under the read uncommitted 
 isolation level. The next sections continue the coverage of index access methods. 

Nonclustered Index Seek + Ordered Partial Scan + Lookups

 The access method nonclustered index seek + ordered partial scan + lookups is typically 
used for small-range queries (including a point query) using a nonclustered index scan that 
doesn’t cover the query. To demonstrate this access method, I will use the following query: 

USE Performance;

SELECT orderid, custid, empid, shipperid, orderdate 

FROM dbo.Orders 

WHERE orderid BETWEEN 101 AND 120;
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 We don’t have a covering index because the fi rst key column is the fi ltered column orderid, 
but we do have a noncovering one—the PK_Orders index. If the query is selective enough, 
the optimizer would use the index. Selectivity is defi ned as the percentage of the number 
of rows returned by the query out of the total number of rows in the table. The term high 
 selectivity refers to a small percentage, while low selectivity refers to a large percentage. Our 
access method fi rst performs a seek within the index to fi nd the fi rst key in the sought range 
(orderid = 101). The second part of the access method is an ordered partial scan in the leaf 
level from the fi rst key in the range until the last (orderid = 120). The third and last part 
 involves lookups of the corresponding data row for each key. Note that the third part doesn’t 
have to wait for the second part to fi nish. For each key found in the range, SQL Server can 
 already apply a lookup. Remember that a lookup in a heap (a RID lookup) translates to a 
 single page read, while a lookup in a clustered table (a key lookup) translates to as many 
reads as the number of levels in the clustered index (three in our case). 

 It is vital for making performance estimations to understand that with this access method, 
the part involving the lookups typically incurs most of the query’s cost; this is because it 
 involves most of the I/O activity. Remember that the lookup translates to a whole page read 
or one whole seek within the clustered index per sought row, and the lookups are always 
random I/O (as opposed to sequential ones). 

 To estimate the I/O cost of such a query, you can typically focus on the cost of the lookups. If 
you want to make more accurate estimations, also taking into consideration the seek within 
the index and the ordered partial scan, feel free to do so, but these parts will be negligible 
as the range grows larger. The I/O cost of a seek operation is three reads in our case (the 
 number of levels in the index). The I/O cost of the ordered partial scan depends on the 
 number of rows in the range (20 in our case) and the number of rows that fi t in an index 
page (more than 300 in our case). For our query, no additional read is actually involved for 
the partial scan because all the keys in the range we are after reside in the leaf page that the 
seek reached, or they might span an additional page if the fi rst key appears close to the end 
of the page. The I/O cost of the lookup operations will be the number of rows in the range 
(20 in our case), multiplied by one if the table is a heap or multiplied by the number of levels 
in the clustered index (3 in our case) if the table is clustered. So you should expect around 
23 logical reads in total if you run the query against a heap and around 63 logical reads if 
you run it against a clustered table. Remember that the nonleaf levels of the clustered index 
typically reside in cache because of all the lookup operations going through it; you shouldn’t 
concern yourself too much with the seemingly higher cost of the query in the clustered table 
scenario.

 Figure 4-34 shows the execution plan for the query over a heap, and Figure 4-35 shows an 
illustration of the access method. 
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FIGURE 4-34 Nonclustered index seek + ordered partial scan + lookups against a heap (execution plan)

Nonclustered
Index

Pointer to
root

Heap

FIGURE 4-35 Nonclustered index seek + ordered partial scan + lookups against a heap
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 Note that in the execution plan you won’t explicitly see the partial scan part of the access 
method; rather, it’s hidden in the Index Seek operator. You can deduce it from the Seek 
Predicates shown in the information box for the operator and from the fact that it shows True 
in the Ordered property. 

 Here are the performance measures I got for the query: 

■  Logical reads 23 

■  Physical reads 22 

■  CPU time 0 ms 

■  Elapsed time 437 ms 

■  Estimated subtree cost 0.0681393 

 Figure 4-36 shows the execution plan of the query over a clustered table, and Figure 4-37 
shows an illustration of the access method. 

FIGURE 4-36 Nonclustered index seek + ordered partial scan + lookups against a clustered table 
(execution plan)
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Nonclustered
Index

Clustered
Index

Pointer to
root

FIGURE 4-37 Nonclustered index seek + ordered partial scan + lookups against a clustered table

 Here are the performance measures I got for the query in this case: 

■  Logical reads 63 

■  Physical reads 7 

■  CPU time 0 ms 

■  Elapsed time 189 ms 

■  Estimated subtree cost 0.0681399 

 Notice that the graphical execution plans distinguish between a RID lookup and a key 
 lookup. The latter is a seek within the clustered index.  
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 This access method is effi cient only when the query is very selective (a point query or a small 
range). Feel free to play with the range in the fi lter, increasing it gradually, and see how 
 dramatically the cost increases as the range grows larger. That will happen up to the point at 
which the optimizer fi gures that it would simply be more effi cient to apply a table scan rather 
than using the index. I’ll demonstrate such an exercise later in the chapter, in the section 
“Analysis of Indexing Strategies.” 

Unordered Nonclustered Index Scan + Lookups

 The optimizer typically uses the unordered nonclustered index scan + lookups access method 
when the following conditions are in place:  

■  The query is selective enough. 

■  The optimal index for a query does not cover it. 

■  The index doesn’t maintain the sought keys in order. 

 For example, such is the case when you fi lter a column that is not the fi rst key column in the 
index. The access method will involve an unordered full scan of the leaf level of the index, 
followed by a series of lookups. As I mentioned, the query must be selective enough to 
 justify this access method; otherwise, with too many lookups it will be more expensive than 
simply scanning the whole table. To fi gure out the selectivity of the query, SQL Server needs 
statistics on the fi ltered column (a histogram with the distribution of values). If such statistics 
do not exist, SQL Server creates them, provided that the database property AUTO_CREATE_
STATISTICS is turned on. 

 For example, the following query uses such an access method against the index idx_nc_sid_
od_i_cid, created on the key columns (shipperid, orderdate) and the included column (custid); 
what’s important about this index is that the custid column appears in the index leaf rows but 
not as the fi rst key column: 

SELECT orderid, custid, empid, shipperid, orderdate 

FROM dbo.Orders 

WHERE custid = 'C0000000001';

 Figure 4-38 shows the execution plan for the query over a heap, and Figure 4-39 illustrates 
the access method. 

 The Parallelism operators indicate that the plan is a parallel query plan utilizing multiple 
threads to process the query. The Repartition Streams operator produces multiple streams of 
records, while the Gather Streams operator consumes multiple input streams and produces a 
single output stream. 
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FIGURE 4-38 Unordered nonclustered index scan + lookups against a heap (execution plan)
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FIGURE 4-39 Unordered nonclustered index scan + lookups against a heap

 The I/O cost of this query involves the cost of the unordered scan of the leaf of the index 
(see the section “The Storage Engine’s Treatment of Scans” for details about how scans are 
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 processed) plus the cost of the lookups (random I/O). In terms of logical reads, the scan 
will cost as many page reads as the number of pages in the leaf of the index. As described 
 earlier, the cost of the lookups is the number of qualifying rows multiplied by 1 in a heap 
and  multiplied by the number of levels in the clustered index (3 in our case) if the table is 
 clustered. Here are the measures I got for this query against a heap:

■  Logical reads 4460 

■  Physical reads 94 

■  Read-ahead reads 4706 

■  CPU time 141 ms 

■  Elapsed time 2105 ms 

■  Estimated subtree cost 4.31519 

 Figure 4-40 shows the execution plan for the query over a clustered table, and Figure 4-41 
illustrates the access method. 

FIGURE 4-40 Unordered nonclustered index scan + lookups against a clustered table (execution plan 1)
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FIGURE 4-41 Unordered nonclustered index scan + lookups against a clustered table

 Here are the measures I got for this query against a clustered table: 

■  Logical reads 4262 

■  Physical reads 70 

■  Read-ahead reads 4099 

■  CPU time 202 ms 

■  Elapsed time 2732 ms 

■  Estimated subtree cost 4.68131 

 As you can see in Figure 4-40, in this case SQL Server decided not to use a parallel query plan. 

 Remember that SQL Server needs statistics on the custid column to determine the selectivity of 
the query. The following query will tell you which statistics SQL Server created automatically 
on the Orders table: 

SELECT name 

FROM sys.stats 

WHERE object_id = OBJECT_ID('dbo.Orders') 

  AND auto_created = 1;
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 You should get statistics with a name similar to _WA_Sys_00000002_7A672E12, which SQL 
Server created automatically for this purpose. 

 You may have noticed in both Figure 4-38 and Figure 4-40 that SSMS indicates a  missing 
 index, with an estimated impact (improvement) of more than 99 percent. When the  optimizer 
optimized this query, it looked for what it considers to be an optimal index, and because it 
did not fi nd it, it reported the missing index. The XML showplan of the query  reports missing 
index information in the MissingIndexes attribute; SSMS parses this  information and displays 
it graphically. Similar information was also available in the XML showplan in SQL Server 2005, 
but SSMS 2005 did not present it graphically as part of the graphical execution plan the 
way SSMS 2008 does. If you right-click the missing index information and choose Missing 
Index Detail, SSMS opens a new query window with the CREATE INDEX statement for the 
 recommended index. In our case, you get the following code: 

/*

Missing Index Details from SQLQuery1.sql - DOJO\SQL08.Performance (DOJO\Gandalf (51))

The Query Processor estimates that implementing the following index could improve the query 

cost by 99.9174%.

*/

/*

USE [Performance]

GO

CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]

ON [dbo].[Orders] ([custid])

INCLUDE ([orderid],[empid],[shipperid],[orderdate])

GO

*/

 SQL Server also records such missing index information internally and exposes it through the 
dynamic management objects sys.dm_db_missing_index_details, sys.dm_db_missing_ index_
group_stats, sys.dm_db_missing_index_groups, and sys.dm_db_missing_index_columns. Query 
those objects to get missing index information that was collected since SQL Server was last 
restarted. 

 Let’s return to the access method that is the focus of this section. A similar access method 
can be used when you apply pattern-matching fi lters with the LIKE predicate, even when 
the pattern starts with a wildcard. SQL Server internally maintains cardinality information on 
substrings within string columns. Therefore, it can estimate the selectivity of a query for such 
fi lters. 

 To demonstrate this capability, SQL Server will be able to estimate the selectivity of the 
 following query, which produces the plan shown in Figure 4-42: 

SELECT orderid, custid, empid, shipperid, orderdate 

FROM dbo.Orders 

WHERE custid LIKE '%9999';
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FIGURE 4-42 Unordered nonclustered index scan + lookups against a clustered table (execution plan 2)

 Here are the performance measures that I got for this query: 

■  Logical reads 4634 

■  Physical reads 90 

■  Read-ahead reads 4819 

■  CPU time 811 ms 

■  Elapsed time 2667 ms 

■  Estimated subtree cost 4.13886 

Clustered Index Seek + Ordered Partial Scan

 The optimizer typically uses the access method clustered index seek + ordered partial scan 
for range queries where you fi lter based on the fi rst key columns of the clustered index. 
This access method fi rst performs a seek operation to the fi rst key in the range, and then it 
 applies an ordered partial scan at the leaf level from the fi rst key in the range until the last. 
The main benefi t of this method is that no lookups are involved. Remember that lookups are 
very expensive with large ranges. The performance ratio between this access method—which 
doesn’t involve lookups—and one that uses a nonclustered index and lookups becomes 
larger and larger as the range grows. 

 The following query, which looks for all orders placed on a given orderdate, uses the access 
method, which is the focus of this discussion:  

SELECT orderid, custid, empid, shipperid, orderdate 

FROM dbo.Orders 

WHERE orderdate = '20080212';

 Note that even though the fi lter uses an equality operator, it is in essence a range query 
because there are multiple qualifying rows. Either way, a point query can be considered a 
special case of a range query. The I/O cost of this access method will involve the cost of the 
seek operation (3 random reads in our case) and the cost of the ordered partial scan within 
the leaf (in our case, 19 page reads). In total, you get 22 logical reads. Note that the ordered 

C04626034.indd   233 2/13/2009   1:56:07 AM



234 Inside Microsoft SQL Server 2008: T-SQL Querying

scan typically incurs the bulk of the cost of the query because it involves most of the I/O. 
Remember that with index order scans, logical index fragmentation plays a crucial role. 
When fragmentation is at a minimum (as in our case), physical reads are close to sequential. 
However, as the fragmentation level grows higher, the disk arm has to move frantically to and 
fro, degrading the performance of the scan. 

 Figure 4-43 shows the execution plan for the query, and Figure 4-44 illustrates the access method. 

FIGURE 4-43 Clustered index seek + ordered partial scan (execution plan)
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FIGURE 4-44 Clustered index seek + ordered partial scan
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 Here are the performance measures I got for this query: 

■  Logical reads 22 

■  Physical reads 3 

■  Read-ahead reads 19 

■  CPU time 0 ms 

■  Elapsed time 148 ms 

■  Estimated subtree cost 0.0160197 

 Note that this plan is trivial for the optimizer to generate. That is, the plan is not dependent 
on the selectivity of the query. Rather, it will always be used regardless of the size of the 
sought range, unless, of course, you have an even better index for the query to begin with. 

Covering Nonclustered Index Seek + Ordered Partial Scan

 The access method covering nonclustered index seek + ordered partial scan is almost  identical 
to the previously described access method. The only difference is that the former uses a 
covering nonclustered index instead of the clustered index. Of course, to use this method 
the fi ltered columns must be the fi rst key columns in the index. The benefi t of this access 
method over the previous one lies in the fact that a nonclustered index leaf page naturally 
can fi t more rows than a clustered index one; therefore, the bulk cost of the plan, which is 
the  partial scan cost of the leaf, is lower. The cost is lower because fewer pages need to be 
scanned for the same size of the range. Of course, here as well, index fragmentation plays an 
important performance role because the partial scan is ordered. 

 As an example, the following query looking for a range of orderdate values for a given 
 shipperid uses this access method against the covering index idx_nc_sid_od_i_cid, created on 
the key list (shipperid, orderdate) and included list (custid): 

SELECT shipperid, orderdate, custid 

FROM dbo.Orders 

WHERE shipperid = 'C' 

  AND orderdate >= '20080101' 

  AND orderdate < '20090101';

 Note To have the partial scan read the minimum required pages, the fi rst index key columns 
must be shipperid, orderdate, in that order. If you swap their order, the partial scan will end up 
also scanning rows that meet the date range also for other shippers, requiring more I/O. 

 Figure 4-45 shows the execution plan for the query, and Figure 4-46 illustrates the access 
method. 
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FIGURE 4-45 Covering nonclustered index seek + ordered partial scan (execution plan)
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FIGURE 4-46 Covering nonclustered index seek + ordered partial scan

 Here are the performance measures I got for this query: 

■  Logical reads 211 

■  CPU time 16 ms 

■  Elapsed time 1195 ms 

■  Estimated subtree cost 0.207487 
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 Note that this plan is also a trivial plan that is not based on the query’s selectivity. 

 Remember, the main benefi t of this access method is that no lookups are involved because 
the index covers the query. Also, you read fewer pages than in a similar access method 
against a clustered index. 

 Also note that when you create covering indexes, the index columns serve two  different 
functions. Columns that you fi lter or sort by are required as key columns that will be 
 maintained in all levels of the balanced tree, and they also determine the sort order at the 
leaf. Other index columns might be required only for covering purposes. If you include all 
index columns in the index’s key column list, bear the cost in mind. SQL Server needs to keep 
the tree balanced, and it will have to apply physical movement of data and  adjustments 
in the tree when you modify key column values in the table. That’s just a waste with 
 columns that are required only for covering purposes and not for fi ltering or sorting. 

 To tackle this need, SQL Server supports the concept of included nonkey columns in the 
 index. When you create an index, you separately specify which columns will make the key 
list and which will be included just for covering purposes—only at the leaf level of the index. 

 For example, our last query relied only on shipperid and orderdate for fi ltering and  sorting 
purposes, while it relied on custid only for covering purposes. Therefore, the index that 
was defi ned to support this query (idx_nc_sid_od_i_cid) specifi ed the custid attribute in the 
INCLUDE clause. Here’s the original index defi nition:  

CREATE NONCLUSTERED INDEX idx_nc_sid_od_i_cid 

  ON dbo.Orders(shipperid, orderdate) 

  INCLUDE(custid);

 Recall that earlier I discussed the following query: 

SELECT orderid, custid, empid, shipperid, orderdate

FROM dbo.Orders

WHERE custid = 'C0000000001';

 The plan that the optimizer created for it was an unordered nonclustered index scan + lookups 
since no better index was in place. The optimizer reported a missing index, and the index it 
recommended was on custid as the key and all other columns as included columns. Run the 
following code to create such an index: 

CREATE INDEX idx_nc_cid_i_oid_eid_sid_od

  ON dbo.Orders(custid)

  INCLUDE(orderid, empid, shipperid, orderdate);

 Run the query and notice how this time the number of logical reads drops to 3! Remember 
that without the index the number of logical reads was more than 4,000. 

 Run the following code to remove the index: 

DROP INDEX dbo.Orders.idx_nc_cid_i_oid_eid_sid_od;
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 Run the query again and notice how the number of logical reads goes back to over 4,000. 

 Note that the key list is limited to 16 columns and 900 bytes. An added bonus with included 
 nonkey columns is that they are not bound by the same limitations. In fact, they can even include 
large objects such as variable-length columns defi ned with the MAX specifi er and XML columns. 

Index Intersection

 So far, I’ve focused mainly on the performance benefi t you get from indexes when reading 
data. Keep in mind, though, that indexes incur a cost when you modify data. Any change 
of data (deletes, inserts, updates) must be refl ected in the indexes that hold a copy of that 
data, and it might cause page splits and adjustments in the balanced trees, which can be 
very  expensive. Therefore, you cannot freely create as many indexes as you like, especially 
in  systems that involve intensive modifi cations, such as OLTP environments. You want to 
 prioritize and pick the more important indexes. This is especially a problem with covering 
 indexes because different queries can benefi t from completely different covering indexes, and 
you might end up with a very large number of indexes that your queries could benefi t from. 

 Fortunately, the problem is somewhat reduced because the optimizer supports a technique 
called index intersection, where it intersects data obtained from two indexes and, if required, then 
 intersects the result with data obtained from another index and so on. For example, the optimizer 
will use index intersection for the following query, producing the plan shown in Figure 4-47:  

SELECT orderid, custid 

FROM dbo.Orders 

WHERE shipperid = 'A';

FIGURE 4-47 Execution plan with index intersection

 I will elaborate on join operators in Chapter 7. The optimal index here would be one where 
shipperid is defi ned as the key column and orderid and custid are defi ned as included  nonkey 
columns but no such index is on the table. Rather, the index idx_nc_sid_od_i_cid defi nes the 
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shipperid as the key column and also contains the custid column, and the index PK_Orders 
contains the orderid column. The optimizer used the access method nonclustered index seek 
+ ordered partial scan to obtain the relevant data from idx_nc_sid_od_i_cid, and it used an 
unordered nonclustered index scan to obtain the relevant data from PK_Orders. It then inter-
sected the two sets based on the row locator values; naturally, row locator values pointing to 
the same rows will be matched. You can think of index intersection as an internal join based 
on a match in row locator values. 

 Here are the performance measures that I got for this query: 

■  Scan count 6 

■  Logical reads 3771 

■  Physical reads 84 

■  Read-ahead reads 672 

■  CPU time 1248 ms 

■  Elapsed time 4357 ms 

■  Estimated subtree cost 13.0864 

Filtered Indexes and Statistics

 SQL Server 2008 introduces support for fi ltered indexes and statistics. A fi ltered index is an index 
on a subset of rows defi ned based on a predicate. Filtered indexes are cheaper to create and 
to maintain compared to nonfi ltered ones because only modifi cations to the relevant  subset of 
rows need to be refl ected in the index. Also, fi ltered distribution  statistics (histograms)— whether 
created on the fi rst index key column or otherwise—are more  accurate than  nonfi ltered 
 statistics. That’s because the maximum number of steps in a  histogram is limited, and with 
 fi ltered statistics that number is used to represent a smaller set of rows. 

 I’ll provide several scenarios in which you may fi nd fi ltered indexes useful. The fi rst scenario 
 involves queries that fi lter data based on a column that has a large percentage of NULLs. When 
 fi ltering rows based on a predicate in the form <column> <operator> <value>, the fi lter  eliminates 
rows with a NULL in that column. The optimizer is well aware of this fact. Therefore, if you create 
an index on this column excluding rows where the column is NULL, the optimizer will still consider 
using the index for such predicates. The following example demonstrates this capability. 

 Run the following code to create an index on the Sales.SalesOrderHeader table in the 
AdventureWorks2008 database with CurrencyRateID as the key and a fi lter based on the 
predicate CurrencyRateID IS NOT NULL: 

USE AdventureWorks2008;

CREATE NONCLUSTERED INDEX idx_currate_notnull

  ON Sales.SalesOrderHeader(CurrencyRateID)

  WHERE CurrencyRateID IS NOT NULL;
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 Run the following query and notice in its execution plan (shown in Figure 4-48) that the 
 index was used: 

SELECT *

FROM Sales.SalesOrderHeader

WHERE CurrencyRateID = 4;

FIGURE 4-48 Execution plan with fi ltered index idx_currate_notnull

 Another scenario for using fi ltered indexes is to support queries that use a range fi lter against 
a certain column, and the ranges requested by users are typical. For example, suppose that 
when users query orders and fi lter the orders based on a range of freight values, they tend to 
be  interested in cases where the freight is worth more than $5,000. In such a case, it makes 
sense to create the following fi ltered index where the Freight attribute is greater than or 
equal to $5,000: 

CREATE NONCLUSTERED INDEX idx_freight_5000_or_more

  ON Sales.SalesOrderHeader(Freight)

  WHERE Freight >= $5000.00;

 The optimizer would then consider using the index even when the query fi lter is after 
a  subinterval of the index fi lter. For example, run the following query and notice in its 
 execution plan (shown in Figure 4-49) that the index is used: 

SELECT *

FROM Sales.SalesOrderHeader

WHERE Freight BETWEEN $5500.00 AND $6000.00;

FIGURE 4-49 Execution plan with fi ltered index idx_freight_5000_or_more

 Filtered indexes support the INCLUDE clause. For example, run the following code to create 
an index on the Sales.SalesOrderHeader table, with the attribute OrderDate as the key, the 
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attributes SalesOrderID, CustomerID, TotalDue as included columns, and a fi lter based on the 
predicate TerritoryID = 5: 

CREATE NONCLUSTERED INDEX idx_territory5_orderdate

  ON Sales.SalesOrderHeader(OrderDate)

  INCLUDE(SalesOrderID, CustomerID, TotalDue)

  WHERE TerritoryID = 5;

 This index covers the following query: 

SELECT SalesOrderID, CustomerID, OrderDate, TotalDue

FROM Sales.SalesOrderHeader

WHERE TerritoryID = 5;

 The plan for this query is shown in Figure 4-50. 

FIGURE 4-50 Execution plan 1 with fi ltered index idx_territory5_orderdate

 All index rows are needed by the query because the query’s fi lter is based on the same 
predicate as the index fi lter; therefore, the optimizer chooses a full scan of the index. If your 
query asks to further fi lter the rows based on a range of order dates, the optimizer would 
use a seek followed by a partial scan in the index. The following query demonstrates such a 
request, and its plan is shown in Figure 4-51: 

SELECT SalesOrderID, CustomerID, OrderDate, TotalDue

FROM Sales.SalesOrderHeader

WHERE TerritoryID = 5

  AND OrderDate >= '20040101';

FIGURE 4-51 Execution plan 2 with fi ltered index idx_territory5_orderdate

 SQL Server automatically creates distribution statistics on the fi rst index key column. 
Naturally, when creating fi ltered indexes you also get fi ltered statistics. SQL Server also allows 
you to create fi ltered statistics manually, as the following example shows: 

CREATE STATISTICS stats_territory4_orderdate

  ON Sales.SalesOrderHeader(OrderDate)

  WHERE TerritoryID = 4;

 You can also use fi ltered indexes to solve a common request related to enforcing data  integrity. 
The UNIQUE constraint supported by SQL Server treats two NULLs as equal for the purposes 
of enforcing uniqueness. This means that if you defi ne a UNIQUE constraint on a NULLable 
column, you are allowed only one row with a NULL in that column. In some cases, though, you 
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might need to enforce the uniqueness only of nonNULL values but allow  multiple NULLs. ANSI 
SQL does support such a kind of UNIQUE constraint, but SQL Server never implemented it. 
Now, with fi ltered indexes, it’s quite easy to handle this need. Simply  create a unique fi ltered 
index based on a predicate in the form WHERE <column> IS NOT NULL. As an example, run the 
 following code to create a table called T1 with such a fi ltered index on the column col1: 

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1(col1 INT NULL, col2 VARCHAR(10) NOT NULL);

GO

CREATE UNIQUE NONCLUSTERED INDEX idx_col1_notnull

  ON dbo.T1(col1)

  WHERE col1 IS NOT NULL;

 Run following code twice in an attempt to insert two rows with the same non-NULL col1 value: 

INSERT INTO dbo.T1(col1, col2)

  VALUES(1, 'a');

 The second run of this code will fail with the following error: 

Msg 2601, Level 14, State 1, Line 1

Cannot insert duplicate key row in object 'dbo.T1' with unique index 'idx_col1_notnull'.

The statement has been terminated.

 Run the following code twice in an attempt to insert two rows with NULL col1 value: 

INSERT INTO dbo.T1(col1, col2)

  VALUES(NULL, 'a');

 And this time both rows are inserted. 

 When you’re done experimenting with fi ltered indexes, run the following code for cleanup: 

DROP INDEX Sales.SalesOrderHeader.idx_currate_notnull;

DROP INDEX Sales.SalesOrderHeader.idx_freight_5000_or_more;

DROP INDEX Sales.SalesOrderHeader.idx_territory5_orderdate;

DROP STATISTICS Sales.SalesOrderHeader.stats_territory4_orderdate;

DROP TABLE dbo.T1;

Indexed Views

 This section briefl y describes and demonstrates the concept of indexed views for the sake 
of completeness. I won’t conduct a lengthy discussion on the subject here. I’ll provide a bit 
more details in Inside T-SQL Programming. 

 SQL Server allows you to create indexes on views—not just on tables. Normally, a view is 
a virtual object, and a query against it ultimately queries the underlying tables. However, 
when you create a clustered index on a view, you materialize all of the view’s contents within 
the clustered index on disk. After creating a clustered index, you can also create multiple 
 nonclustered indexes on the view as well. The data in the indexes on the view will be kept in 
sync with the changes in the underlying tables as with any other index. 
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 Indexed views are benefi cial mainly in reducing I/O costs and expensive processing of data. 
Such costs are especially apparent in aggregation queries that scan large volumes of data 
and produce small result sets and in expensive join queries. 

 For example, the following code creates an indexed view that is designed to tune aggregate  queries 
that group orders by empid and YEAR(orderdate), returning the count of orders for each group: 

USE Performance;

IF OBJECT_ID('dbo.EmpOrders', 'V') IS NOT NULL 

  DROP VIEW dbo.EmpOrders; 

GO 

CREATE VIEW dbo.EmpOrders 

  WITH SCHEMABINDING 

AS 

 

SELECT empid, YEAR(orderdate) AS orderyear, COUNT_BIG(*) AS numorders 

FROM dbo.Orders 

GROUP BY empid, YEAR(orderdate); 

GO 

 

CREATE UNIQUE CLUSTERED INDEX idx_ucl_eid_oy 

  ON dbo.EmpOrders(empid, orderyear);

 Query the view, and you will get the execution plan shown in Figure 4-52, showing that the 
clustered index on the view was scanned: 

SELECT empid, orderyear, numorders 

FROM dbo.EmpOrders;

FIGURE 4-52 Execution plan for query against indexed view
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 The view contains a very small number of rows (around a couple of thousand) compared 
to the number of rows in the table (a million). The leaf of the index contains only about 
10  pages. Hence, the I/O cost of the plan would be about 10 page reads. 

 Here are the performance measures I got for this query: 

■  Logical reads 10 

■  CPU time 0 ms 

■  Elapsed time 144 ms 

■  Estimated subtree cost 0.0111556 

 Interestingly, if you work with an Enterprise (or Developer) edition of SQL Server, the  optimizer 
will consider using indexes on the view even when querying the underlying tables directly. For 
example, the following query produces a similar plan to the one shown in Figure 4-52, with 
the same query cost: 

SELECT empid, YEAR(orderdate) AS orderyear, COUNT_BIG(*) AS numorders 

FROM dbo.Orders 

GROUP BY empid, YEAR(orderdate);

 If you’re not working with an Enterprise edition, you have to query the view directly and also 
specify that you do not want the optimizer to expand its optimization choices beyond the 
scope of the view. You do so by specifying the NOEXPAND table hint: FROM <view_name> 
WITH (NOEXPAND). 

Analysis of Indexing Strategies

 Recall the earlier discussion about the tuning methodology. When you perform index  tuning, 
you do so with respect to the query patterns that incur the highest cumulative costs in the 
system. For a given query pattern, you can build an index optimization scale that would 
help you make the right design choices. I will demonstrate this process through an example. 
To follow the demonstrations, before you continue, drop the view created earlier and all 
the indexes on the Orders table except for the clustered index. Alternatively, you can rerun 
the code in Listing 4-1 after commenting or removing all index and primary key creation 
 statements on Orders, keeping only the clustered index. 

 In our example, suppose that you need to tune the following query pattern: 

SELECT orderid, custid, empid, shipperid, orderdate 

FROM dbo.Orders 

WHERE orderid >= value;

 Remember that the effi ciency of some access methods depends on the selectivity of the 
query, while the effi ciency of others doesn’t. For access methods that depend on selectivity, 
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assume that the query pattern is typically fairly selective (around 0.1 percent selectivity, or 
around 1000 qualifying rows). Use the following query in your tuning process when aiming at 
such selectivity: 

SELECT orderid, custid, empid, shipperid, orderdate 

FROM dbo.Orders 

WHERE orderid >= 999001;

 I’ll progress in the index optimization scale from the worst-case scenario to the best, using 
this query as a reference, but I’ll also describe what would happen when the selectivity of the 
query changes. 

Table Scan (Unordered Clustered Index Scan)

 The worst-case scenario for our query pattern with fairly high selectivity is when you have 
no good index. You will get the execution plan shown in Figure 4-53, using a table scan 
( unordered clustered index scan). 

FIGURE 4-53 Execution plan with table scan (unordered clustered index scan)

 Even though you’re after a fairly small number of rows (1,000 in our case), the whole table is 
scanned. I got the following performance measures for this query: 

■  Logical reads 25175 

■  CPU time 249 ms 

■  Elapsed time 8605 

■  Estimated subtree cost 19.3423 

 This plan is trivial and not dependent on selectivity—that is, you get the same plan  regardless 
of the selectivity of the query. 

Unordered Covering Nonclustered Index Scan

 The next step in the optimization scale would be to create a covering nonclustered index 
where the fi ltered column (orderid) is not the fi rst index column: 

CREATE NONCLUSTERED INDEX idx_nc_od_i_oid_cid_eid_sid 

  ON dbo.Orders(orderdate) 

  INCLUDE(orderid, custid, empid, shipperid);
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 This index yields an access method that uses a full unordered scan of the leaf of the index, as 
shown in Figure 4-54. 

FIGURE 4-54 Execution plan with unordered covering nonclustered index scan

 The row size in the covering index is about a fi fth of the size of a full data row, and this will 
be refl ected in the query’s cost and run time. Here are the performance measures I got for 
this query: 

■  Logical reads 5142 

■  CPU time 140 ms 

■  Elapsed time 2543 ms 

■  Estimated subtree cost 4.58245 

 As with the previous plan, this plan is also trivial and not dependent on selectivity. 

 Note The run times you will get for your queries will vary based on what portion of the 
data is cached. If you want to make credible performance comparisons in terms of run times, 
make sure that the caching environment in both cases refl ects what you would have in your 
 production  environment. That is, if you expect most pages to reside in cache in your production 
 environment (warm cache), run each query twice and measure the run time of the second run. 
If you expect most pages not to reside in cache (cold cache), in your tests clear the cache before 
you run each query. 

 Before you proceed, drop the index that you just created: 

DROP INDEX dbo.Orders.idx_nc_od_i_oid_cid_eid_sid;

Unordered Nonclustered Index Scan + Lookups

 The next step in our index optimization scale is to create a smaller nonclustered index that 
doesn’t cover the query and that contains the fi ltered column (orderid), but not as the fi rst 
key column: 

CREATE NONCLUSTERED INDEX idx_nc_od_i_oid 

  ON dbo.Orders(orderdate) 

  INCLUDE(orderid);

C04626034.indd   246 2/13/2009   1:56:08 AM



 Chapter 4 Query Tuning 247

You get an unordered nonclustered index scan + lookups, as shown in Figure 4-55. 

FIGURE 4-55 Execution plan with unordered nonclustered index scan + lookups

 Note that the effi ciency of this plan compared to the previous one depends on the  selectivity 
of the query. As the selectivity of the query gets lower (low selectivity means a high 
 percentage of rows), the more substantial the cost is of the lookups here. In our case, the 
query is fairly selective, so this plan is more effi cient than the previous two; however, with low 
selectivity, this plan will be less effi cient than the previous two.  

 Here are the performance measures that I got for this query:  

■  Logical reads 6501 

■  CPU time 109 ms 

■  Elapsed time 1534 ms 

■  Estimated subtree cost 5.23753 

 Note that even though the number of logical reads and the query cost seem higher than 
in the previous plan, you can see that the run times are lower. Remember that the lookup 
 operations here traverse the clustered index, and the nonleaf levels of the clustered index are 
most likely to reside in cache. 

 Before you continue, drop the new index: 

DROP INDEX dbo.Orders.idx_nc_od_i_oid;

Nonclustered Index Seek + Ordered Partial Scan + Lookups

 You can get the next level of optimization in the scale by creating a nonclustered  noncovering 
index on orderid: 

CREATE UNIQUE NONCLUSTERED INDEX idx_unc_oid 

  ON dbo.Orders(orderid);

 This index yields a nonclustered index seek + ordered partial scan + lookups, as shown in 
Figure 4-56. 
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FIGURE 4-56 Execution plan with nonclustered index seek + ordered partial scan + lookups

 Instead of performing the full index scan as the previous plan did, this plan performs a 
seek to the fi rst key in the sought range, followed by an ordered partial scan of only the 
 relevant range. Still, you get as many lookups as previously, which in our case amounts to a 
big chunk of the query cost. As the range grows larger, the contribution of the lookups to 
the query’s cost becomes more substantial, and the costs of these two plans grows closer 
and closer.  

 Here are the performance measures for this query: 

■  Logical reads 3976 

■  CPU time 0 ms 

■  Elapsed time 545 ms 

■  Estimated subtree cost 3.22853 

Determining the Selectivity Point

 Allow me to digress a bit to expand on a subject I started discussing earlier—plans 
that are dependent on the selectivity of the query. The effi ciency of the last plan is 
 dependent on selectivity because you get one whole lookup per sought row. At some 
selectivity point, the optimizer would realize that a table scan is more effi cient than 
 using this plan. You might fi nd it surprising, but that selectivity point is a pretty small 
percentage. Even if you have no clue about how to calculate this point, you can  practice 
a trial-and-error approach, where you apply a binary algorithm, shifting the selectivity 
point to the left or right based on the plan that you get. You can invoke a range query, 
where you start with 50 percent selectivity by invoking the following query: 

SELECT orderid, custid, empid, shipperid, orderdate 

FROM dbo.Orders 

WHERE orderid >= 500001;

 Examine the estimated execution plan (no need for actual here) and determine whether 
to proceed in the next step to the left or to the right of this point, based on whether 
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you got a table scan (clustered index scan) or an index seek. With the median key, you 
get the plan shown in Figure 4-57, showing a table scan. 

FIGURE 4-57 Estimated plan showing a table scan

 This tells you that 50 percent is not selective enough to justify using the  nonclustered 
index. So you go to the right, to the middle point between 50 percent and a 100  percent. 
Following this logic, you would end up using the following keys: 750001, 875001, 937501, 
968751, 984376, 992189, and 996095. The last key yields a plan where the nonclustered 
index is used. So now you go to the left, to the point between the keys 992189 and 
996095, which is 994142. You will fi nd that the nonclustered index is still used, so you 
keep on going left, to the point between the keys 992189 and 994142. You continue this 
process, going left or right according to your fi ndings, until you reach the fi rst selectivity 
point where the nonclustered index is used. You will fi nd that this point is the key 993347, 
producing the plan shown in Figure 4-58. 

FIGURE 4-58 Estimated plan showing the index is used

 You can now calculate the selectivity, which is the number of qualifying rows (6,654) 
 divided by the number of rows in the table (1,000,000), which amounts to 0.6654 percent.  

 In our query pattern’s case, with this selectivity or higher (lower percentage), the 
 optimizer uses the nonclustered index, while with a lower selectivity, it opts for a table 
scan. As you can see, in our query pattern’s case, the selectivity point is even lower 
than 1 percent. Some database professionals might fi nd this number surprisingly small, 
but if you make performance estimations like the ones we did earlier, you will fi nd it 
 reasonable. Don’t forget that page reads are the only factor that you should take into 
consideration. You should also consider the access pattern (random/sequential) and  other 
factors as well. Remember that random I/O is much more expensive than  sequential I/O. 
Lookups use random I/O, while a table scan can potentially use sequential I/O. 
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 Before you proceed, drop the index used in the previous step: 

DROP INDEX dbo.Orders.idx_unc_oid;

Clustered Index Seek + Ordered Partial Scan

 You can get the next level of optimization by creating a clustered index on the orderid 
 column. Because a clustered index is already on the Orders table, drop it fi rst and then create 
the desired one: 

DROP INDEX dbo.Orders.idx_cl_od; 

CREATE UNIQUE CLUSTERED INDEX idx_cl_oid ON dbo.Orders(orderid);

 You will get a trivial plan that uses a seek to the fi rst key matching the fi lter, followed by an 
ordered partial scan of the sought range, as shown in Figure 4-59. 

FIGURE 4-59 Execution plan with clustered index seek + ordered partial scan

 The main benefi t of this plan is that no lookups are involved. As the selectivity of the query 
goes lower, this plan becomes more and more effi cient compared to a plan that does apply 
lookups. The I/O cost involved with this plan is the cost of the seek (3 in our case), plus the 
number of pages that hold the data rows in the fi ltered range (25 in our case). For the most 
part, the main cost of such a plan is typically the cost of the ordered partial scan, unless the 
range is really tiny (for example, a point query). Remember that the performance of an index 
order scan depends to a great extent on the fragmentation level of the index. Here are the 
performance measures that I got for this query: 

■  Logical reads 28 

■  CPU time 0 ms 

■  Elapsed time 236 ms 

■  Estimated subtree cost 0.130601 

 Before proceeding to the next step, restore the original clustered index: 

DROP INDEX dbo.Orders.idx_cl_oid; 

CREATE  CLUSTERED INDEX idx_cl_od ON dbo.Orders(orderdate);
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Covering Nonclustered Index Seek + Ordered Partial Scan

 The optimal level in our scale is a nonclustered covering index defi ned with the orderid 
 column as the key and all the other columns as included nonkey columns: 

CREATE UNIQUE NONCLUSTERED INDEX idx_unc_oid_i_od_cid_eid_sid 

  ON dbo.Orders(orderid) 

  INCLUDE(orderdate, custid, empid, shipperid);

 The plan’s logic is similar to the previous one, except that here the ordered partial scan ends 
up reading fewer pages. That, of course, is because more rows fi t in a leaf page of this index 
than data rows do in a clustered index page. You get the plan shown in Figure 4-60. 

FIGURE 4-60 Execution plan with covering nonclustered index seek + ordered partial scan

 And here are the performance measures I got for this query: 

■  Logical reads 9 

■  CPU time 0 ms 

■  Elapsed time 230 ms 

■  Estimated subtree cost 0.0080857 

 Again, this is a trivial plan. And the performance of the ordered partial scan varies depending 
on the fragmentation level of the index. As you can see, the cost of the query dropped from 
19.621100 in the lowest level in the scale to 0.008086 and the elapsed time from more than 
8 seconds to 230 milliseconds. Such a drop in run time is common when tuning indexes in an 
environment with poor index design. 

 When done, drop the last index you created: 

DROP INDEX dbo.Orders.idx_unc_oid_i_od_cid_eid_sid;

Summary of Analysis of Indexing Strategy

 Remember that the effi ciency of several plans in our index optimization scale was based 
on the selectivity of the query. If the selectivity of a query you’re tuning varies  signifi cantly 
 between invocations of the query, make sure that in your tuning process you take this 
into account. For example, you can prepare tables and graphs with the performance 
 measurements versus selectivity and analyze such data before you make your index design 
choices. Table 4-10 shows a summary of logical reads versus selectivity of the different levels 
in the scale for the sample query pattern under discussion against the sample Orders table. 
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 TABLE 4-10 Logical Reads vs. Selectivity for Each Access Method

 Access 

Method 1 1,000 10,000 100,000 200,000 500,000 1,000,000 Rows

 0.0001% 0.1% 1% 10% 20% 50% 100% Selectivity

 Table Scan/
Unordered 
Clustered 
Index Scan

25,391 25,391 25,391 25,383 25,355 25,271 25,081

 Unordered 
Covering 
Nonclustered 
Index Scan

5,158 5,158 5,158 5,158 5,158 5,150 5,096

 Unordered 
Nonclustered 
Index Scan + 
Lookups

2,857 5,963 33,990 312,009 618,250 1,536,956 3,065,577

 Nonclustered 
Index Seek + 
Ordered 
Partial Scan + 
Lookups

6 3,078 31,131 312,613 621,680 1,554,822 3,069,871

 Clustered 
Index Seek + 
Ordered 
Partial Scan

4 28 249 2,447 4,890 12,220 24,434

 Covering 
Nonclustered 
Index Seek + 
Ordered 
Partial Scan

4 9 54 512 1,021 2,546 5,089

 Note To apply a certain execution plan in a case where the optimizer would normally opt for 
another plan that is more effi cient, I had to use a table hint to force using the relevant index. 

 Of course, logical reads shouldn’t be the only indication you rely on. Remember that 
 different I/O patterns have different performance and that physical reads are much more 
 expensive than logical reads. But when you see a signifi cant difference in logical reads 
 between two options, it is usually a good indication of which option is faster. Figure 4-61 has 
a graphical depiction of the information from Table 4-10. 

 You can observe many interesting things when analyzing the graph. For example, you 
can clearly see which plans are based on selectivity and which aren’t. You can also see the 
 selectivity point at which one plan becomes better than another. 

Access

Method 1 1,000 10,000 100,000 200,000 500,000 1,000,000 Rows

0.0001% 0.1% 1% 10% 20% 50% 100% Selectivity
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FIGURE 4-61 Graph of logical reads versus selectivity

 Similarly, Table 4-11 shows summary performance statistics of the query cost versus 
selectivity. 

 Figure 4-62 shows a graph based on the data in Table 4-11. 

FIGURE 4-62 Graph of subtree cost versus selectivity
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 You can observe a striking resemblance between the two graphs. When you think about it, 
this makes sense because most of the cost involved with our query pattern is because of I/O. 
Naturally, in plans where a more substantial portion of the cost is related to CPU, you will get 
different results. 

 Of course, you also want to generate similar statistics and graphs for the actual run times of the 
queries in your benchmarks. At the end of the day, run time is what the user cares about.  

 I also fi nd it valuable to visualize performance information in another graphical way, as 
shown in Figure 4-63. 
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FIGURE 4-63 Index optimization scale

 You might fi nd it easier with this illustration to identify plans that are based on selectivity 
versus plans that aren’t (represented as a dot) and also to make comparisons between the 
performance of the different levels of optimization in the scale. 
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 Note For simplicity’s sake, all statistics and graphs shown in this section were collected against 
the Performance database I used in this chapter, where the level of fragmentation of indexes 
was minimal. When you conduct benchmarks and performance tests, make sure you introduce 
the appropriate levels of fragmentation in the indexes in your test system so that they refl ect the 
fragmentation levels of the indexes in your production system adequately. The performance of 
index order scans might vary signifi cantly based on the level of fragmentation of your  indexes. 
Remember that the storage engine uses index order scans to carry out requests from the 
 relational engine to process full ordered index scans, partial ordered index scans, and in some 
cases also unordered index scans. (See the section “The Storage Engine’s Treatment of Scans” 
earlier in the chapter for details.) Similarly, you also need to examine the average page densities 
in your production system and introduce similar page densities in the test system. 

 Besides having the ability to design good indexes, it is also important to be able to identify 
which indexes are used more heavily and which are rarely or never used. You don’t want to 
keep indexes that are rarely used because they do have negative performance effects on 
modifi cations.  

 SQL Server collects index usage information in the background and enables you to query 
this information through dynamic management objects. You get a DMF called dm_db_index_ 
operational_stats and a DMV called dm_db_index_usage_stats. The dm_db_index_operational_
stats DMF gives you low-level I/O, locking, latching, and access method activity information. 
You provide the function with database ID, object ID, index ID (or 0 for a heap), and  partition 
ID. You can also request information about multiple entities by specifying a NULL in the 
 relevant argument. For example, to get information about all objects, indexes, and partitions 
in the Performance database, you would invoke the function as follows: 

SELECT *  

FROM sys.dm_db_index_operational_stats( 

  DB_ID('Performance'), null, null, null);

 The dm_db_index_usage_stats DMV gives you usage counts of the different index operations: 

SELECT * 

FROM sys.dm_db_index_usage_stats;

 These dynamic management objects make the analysis of index usage simple and accurate. 

Fragmentation

 I referred to index fragmentation on multiple occasions in this chapter. When I  mentioned 
fragmentation, I referred to a type known as logical scan fragmentation or average 
 fragmentation in percent or external fragmentation. As I mentioned earlier, this type refl ects the 
percentage of out-of-order pages in the index in terms of their fi le order versus their  logical 
order in the linked list. Remember that this fragmentation can have a substantial  impact on 
 ordered scan operations in indexes. It has no effect on operations that do not rely on the 
 index’s linked list—for example, seek operations, lookups, allocation order scans, and so on. 
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You want to minimize the fragmentation level of indexes for queries with a substantial portion 
of their cost involved with ordered scans. You do so by rebuilding or reorganizing indexes.  

 Another type of fragmentation that you typically care about is what I referred to as average 
page density. Some database professionals refer to this type of fragmentation as internal 
fragmentation, but to avoid confusion I consciously didn’t use this term earlier. Although 
 logical scan fragmentation is never a good thing, average page density has two facets. A 
low percentage (low level of page population) has a negative impact on queries that read 
data because they end up reading more pages than they could potentially if the pages 
were  better populated. The positive impact of having some free space in index pages is that 
 insertions of rows to such pages would not cause page splits, which are very  expensive. As 
you can guess, free space in index pages is bad in systems that involve mostly reads (for 
 example, data warehouses) and good for systems that involve many inserts (for  example, 
OLTP systems). You might even want to introduce some free space in index pages by 
 specifying a fi llfactor value when you rebuild your indexes. 

 To determine whether you need to rebuild or reorganize your indexes, you need  information 
about both types of fragmentation. You can get this information by querying the DMF 
dm_db_index_physical_stats. For example, the following query will return fragmentation 
 information about the indexes in the Performance database: 

SELECT * 

FROM sys.dm_db_index_physical_stats( 

  DB_ID('Performance'), NULL, NULL, NULL, 'SAMPLED');

 The fragmentation types I mentioned show up in the attributes avg_fragmentation_in_ 
percent and avg_page_space_used_in_percent, and as you can see, the attribute names are 
self-explanatory.  

 As I mentioned earlier, to treat both types of fragmentation you need to rebuild or 
 reorganize the index. Rebuilding an index has the optimal defragmentation effect. The 
 operation makes its best attempt to rebuild the index such that the fi le order of the pages is 
as close as possible to their order in the linked list and to make the pages as contiguous as 
possible. Also, remember that you can specify a fi llfactor to introduce some free space in the 
index leaf pages. Note that if your computer has multiple CPUs and SQL Server uses  parallel 
index rebuilds (Enterprise edition only), the operation will fi nish faster than with a single 
thread but is likely to result in more logical fragmentation. You can restrict the  operation 
to a single CPU with the MAXDOP hint—this way, at the cost of a longer index rebuild, you 
will likely get less fragmentation. Also, SQL Server needs space for sorting in the fi legroup 
where the index resides. If the fi legroup fi les have only a little free space, some logical 
 fragmentation in the index at the end of the operation is likely. To minimize fragmentation, 
ensure that you have suffi cient free space in the fi les or use the option SORT_IN_TEMPDB to 
request that the index rebuild use space from the tempdb database for sorting.  

 By default, index rebuilds are offl ine operations. Rebuilding a clustered index acquires an 
exclusive lock for the whole duration of the operation, meaning that other processes can 
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neither read nor write to the table. Rebuilding a nonclustered index acquires a shared lock, 
meaning that writes are blocked against the table, and obviously, the index cannot be used 
during the operation. SQL Server Enterprise supports online index operations by request (you 
need to specify ON in the option ONLINE) that allow you to create, rebuild, and drop indexes 
online. In addition, these operations allow users to interact with the data while the  operation 
is in progress. Online index operations use row-versioning technology. When an index is 
rebuilt online, SQL Server actually maintains two indexes behind the scenes, and when the 
operation is done, the new one overrides the old one. 

 For example, the following code rebuilds the idx_cl_od index on the Orders table online: 

ALTER INDEX idx_cl_od ON dbo.Orders REBUILD WITH (ONLINE = ON);

 Note that online index operations need suffi cient space in the database and overall are 
 slower than offl ine operations. If you can spare a maintenance window for the activity to 
work offl ine, you had better do so. Even when you do perform the operations online, they 
have a performance impact on the system while they are running, so it’s best to run them 
during off-peak hours.  

 Instead of rebuilding an index, you can also reorganize it. Reorganizing an index involves 
a bubble sort algorithm to sort the index pages in the fi le according to their order in the 
 index’s linked list. The operation does not attempt to make the pages more contiguous 
( reduce gaps). As you can guess, the defragmentation level that you get from this operation 
is not as optimal as fully rebuilding an index. Also, this operation performs more logging 
than an index rebuild overall and therefore is typically slower. 

 So why use this type of defragmentation? First, in non-Enterprise editions of SQL Server 
it is the only online defragmentation utility. The operation grabs short-term locks on a 
pair of pages at a time to determine whether they are in the correct order, and if they are 
not, it swaps them. Second, an index rebuild must run as a single transaction, and if it’s 
aborted while in process, the whole activity is rolled back. This is unlike an index reorganize 
 operation, which can be interrupted as it operates on a pair of pages at a time. When you 
later run the reorganize activity again, it will pick up where it left off earlier.  

 Here’s how you reorganize the idx_cl_od index: 

ALTER INDEX idx_cl_od ON dbo.Orders REORGANIZE;

Partitioning

 SQL Server supports native partitioning of tables and indexes. Partitioning your objects means 
that they are internally split into multiple physical units that together make the object (table or 
index). Partitioning is virtually unavoidable in medium to large environments. By  partitioning your 
objects, you improve the manageability and maintainability of your system, and you improve 
the performance of activities such as purging historic data, data loads, and others. Partitioning 
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in SQL Server is native—that is, you have built-in tools to partition the tables and indexes, 
while,  logically, to the applications and users they appear as whole units. You need to know 
some  important  details about querying and query tuning when your tables and indexes are 
 partitioned. Chapter 11, “Querying Partitioned Tables,” covers the  subject in detail. 

Preparing Sample Data

 When conducting performance tests, it is vital that the sample data you use be well  prepared 
so that it refl ects the production system as closely as possible, especially with respect to the 
factors you are trying to tune. Typically, it’s not realistic to just copy all the data from the 
 production tables, at least not with the big ones. However, you should make your best effort 
to have an adequate representation that refl ects similar data distribution, density of keys, 
cardinality, and so on. You also want your queries against the test system to have similar 
selectivity to the queries against the production system. Performance tests can be skewed 
when the sample data does not adequately represent the production data. 

 In this section, I’ll provide an example of skewed performance testing results resulting from 
inadequate sample data. I’ll also discuss the TABLESAMPLE option. 

Data Preparation

 When I prepared the sample data for this chapter’s demonstrations, I didn’t need to  refl ect 
a specifi c production system, so preparing sample data was fairly simple. I needed it mainly 
for the “Tuning Methodology” and “Index Tuning” sections. I could express most of my 
points through simple random distribution of the different attributes that were relevant 
to our  discussions. But our main data table, Orders, does not accurately refl ect an average 
 production Orders table. For example, I produced a fairly even distribution of values in the 
different attributes, while typically in production systems, different attributes have different 
types of distribution (some uniform, some standard). Some customers place many orders, 
and others place few. Some customers are also more active during certain periods of time 
and less active during others. Depending on your tuning needs, you might or might not need 
to refl ect such things in your sample data, but you defi nitely need to consider them and 
 decide whether they do matter. 

 When you need large tables with sample data, the easiest thing to do is to generate some 
small table and duplicate its content (save the key columns) many times. This can be fi ne if, 
for example, you want to test the performance of a user-defi ned function invoked against 
every row or a cursor manipulation iterating through many rows. But such sample data 
in some cases can yield completely different performance than what you would get with 
sample data that more adequately refl ects your production data. To demonstrate this, I’ll 
walk you through an example that I cover in much more depth in Inside T-SQL Programming. 
I often give this exercise in class and ask students to prepare a large amount of sample data 
without giving any hints. 
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 The exercise has to do with a table called Sessions, which you create and populate by running 
the following code: 

SET NOCOUNT ON;

USE Performance;

IF OBJECT_ID('dbo.Sessions', 'U') IS NOT NULL DROP TABLE dbo.Sessions;

CREATE TABLE dbo.Sessions

(

  keycol    INT         NOT NULL IDENTITY,

  app       VARCHAR(10) NOT NULL,

  usr       VARCHAR(10) NOT NULL,

  host      VARCHAR(10) NOT NULL,

  starttime DATETIME    NOT NULL,

  endtime   DATETIME    NOT NULL,

  CONSTRAINT PK_Sessions PRIMARY KEY(keycol),

  CHECK(endtime > starttime)

);

GO

INSERT INTO dbo.Sessions VALUES

  ('app1', 'user1', 'host1', '20090212 08:30', '20090212 10:30'),

  ('app1', 'user2', 'host1', '20090212 08:30', '20090212 08:45'),

  ('app1', 'user3', 'host2', '20090212 09:00', '20090212 09:30'),

  ('app1', 'user4', 'host2', '20090212 09:15', '20090212 10:30'),

  ('app1', 'user5', 'host3', '20090212 09:15', '20090212 09:30'),

  ('app1', 'user6', 'host3', '20090212 10:30', '20090212 14:30'),

  ('app1', 'user7', 'host4', '20090212 10:45', '20090212 11:30'),

  ('app1', 'user8', 'host4', '20090212 11:00', '20090212 12:30'),

  ('app2', 'user8', 'host1', '20090212 08:30', '20090212 08:45'),

  ('app2', 'user7', 'host1', '20090212 09:00', '20090212 09:30'),

  ('app2', 'user6', 'host2', '20090212 11:45', '20090212 12:00'),

  ('app2', 'user5', 'host2', '20090212 12:30', '20090212 14:00'),

  ('app2', 'user4', 'host3', '20090212 12:45', '20090212 13:30'),

  ('app2', 'user3', 'host3', '20090212 13:00', '20090212 14:00'),

  ('app2', 'user2', 'host4', '20090212 14:00', '20090212 16:30'),

  ('app2', 'user1', 'host4', '20090212 15:30', '20090212 17:00');

CREATE INDEX idx_nc_app_st_et ON dbo.Sessions(app, starttime, endtime);

 The Sessions table contains information about user sessions against different applications. The 
request is to calculate the maximum number of concurrent sessions per application—that is, the 
maximum number of sessions that were active at any point in time against each application. 

 The following query, followed by its output, produces the requested information: 

SELECT app, MAX(concurrent) AS mx

FROM (SELECT app,

        (SELECT COUNT(*)

         FROM dbo.Sessions AS S

         WHERE T.app = S.app

           AND T.ts >= S.starttime

           AND T.ts < S.endtime) AS concurrent

      FROM (SELECT app, starttime AS ts FROM dbo.Sessions) AS T) AS C

GROUP BY app;
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app        mx

---------- -----------

app1       4

app2       3

 The derived table T contains the application name (app) and session start time (starttime as 
ts) pairs. For each row of T, a subquery counts the number of sessions that were active for the 
application T.app at time T.ts. The outer query then groups the data by app and returns the 
maximum count for each group. SQL Server’s optimizer generates the execution plan shown 
in Figure 4-64 for this query. 

FIGURE 4-64 Execution plan for query against the Sessions table

 The script that creates the Sessions table also creates the covering index idx_nc_app_st_et 
based on the key list (app, starttime, endtime), which is the optimal index for this query. In the 
plan, this index is fully scanned (Index Scan operator) to return all rows. As rows are streamed 
out from the Index Scan operator, a Nested Loops operator invokes a series of activities 
(Clustered Index Scan, followed by Stream Aggregate) to calculate the count of active  sessions 
for each row. Because the Sessions table is so tiny (only one page of data), the optimizer 
simply decides to scan the whole table (unordered clustered index scan) to calculate each 
count. With a larger data set, instead of scanning the table, the plan would perform a seek 
and ordered partial scan of the covering index to obtain each count. Finally, another Stream 
Aggregate operator groups the data by app to calculate the maximum count for each group. 

 Now that you’re familiar with the problem, suppose you were asked to prepare sample data 
with 1,000,000 rows in the source table (call it BigSessions) such that it would  represent a 
 realistic environment. Ideally, you should be thinking about realistic distribution of  session 
start times, session duration, and so on. However, people often take the most obvious 
 approach, which is to duplicate the data from the small source table many times; in our case, 
such an approach would drastically skew the performance compared to a more realistic 
 representation of production environments. 

 Now run the following code to generate the BigSessions table by duplicating the data from 
the Sessions table many times. You will get 1,000,000 rows in the BigSessions table: 

IF OBJECT_ID('dbo.BigSessions', 'U') IS NOT NULL DROP TABLE dbo.BigSessions;

SELECT ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS keycol,

  app, usr, host, starttime, endtime

INTO dbo.BigSessions

FROM dbo.Sessions AS S

  CROSS JOIN Nums

WHERE n <= 62500;
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CREATE UNIQUE CLUSTERED INDEX idx_ucl_keycol

  ON dbo.BigSessions(keycol);

CREATE INDEX idx_nc_app_st_et

  ON dbo.BigSessions(app, starttime, endtime);

 Run the following query against BigSessions: 

SELECT app, MAX(concurrent) AS mx

FROM (SELECT app,

        (SELECT COUNT(*)

         FROM dbo.BigSessions AS S

         WHERE T.app = S.app

           AND T.ts >= S.starttime

           AND T.ts < S.endtime) AS concurrent

      FROM (SELECT app, starttime AS ts FROM dbo.BigSessions) AS T) AS C

GROUP BY app;

Note that this is the same query as before (but against a different table). The query will fi nish 
in a few seconds, and you will get the execution plan shown in Figure 4-65. 

FIGURE 4-65 Execution plan for query against the BigSessions table with inadequate sample data
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 Here are the performance measures I got for this query: 

■  Logical reads 212102 

■  CPU time 3463 ms 

■  Elapsed time 4064 ms 

■  Estimated subtree cost 113.904 

 At fi rst glance it might seem like the lower branch of the plan is executed once for each of the 
rows returned from the Index Scan operator. The Index Scan operator returns 1,000,000 rows. 
The lower branch of the plan seems to do quite signifi cant work per outer row— scanning 
all rows with the same app value as in the outer row and starttime smaller than or equal to 
the one in the outer row. Given such a plan and such a large number of rows  involved, it is 
quite inconceivable that the query would fi nish in a matter of only four  seconds. The fact that 
there’s a performance skew here because of bad sample data is elusive. The derived table 
T has only 14 distinct rows (with app, ts values). Observe in Figure 4-65 that the Number of 
Executions property of the Index Seek operator is 14. The optimizer is smart enough to realize 
that it can reuse the information obtained for one row for all other rows with the same app 
and ts values. Therefore, it invoked the Index Scan operator that scans the relevant range of 
rows and the Stream Aggregate operator that counts them only 14 times!  

 Observe the Table Spool operator as well, which represents a temporary table holding the 
session count for each distinct combination of app and starttime values. Notice the  number 
of rebinds (14) and the number of rewinds (999,986). Remember that a rebind means 
that one or more correlated parameters of the join operator changed and that the inner 
side must be reevaluated. That happens 14 times, once for each distinct pair of app and 
starttime— meaning that the actual count activity preceding the operator took place only 
14 times. A  rewind means that none of the correlated parameters changed and that the prior 
inner result set can be reused; this happened 999,986 times (1,000,000 – 14 = 999,986).  

 That’s why the query fi nished in only a few seconds. A production environment might have 
only a few applications, but so few distinct start times would be unlikely. Naturally, with more 
realistic data distribution for our scenario, the count activity will take place many more times 
than 14, and you will get a much slower query. It was a mistake to prepare the sample data 
by simply copying the rows from the small Sessions table many times. The distribution of 
 values in the different columns should represent production environments more realistically.  

 Run the following code to populate BigSessions with more adequate sample data: 

IF OBJECT_ID('dbo.BigSessions', 'U') IS NOT NULL DROP TABLE dbo.BigSessions;

SELECT

  ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS keycol,

  D.*,

  DATEADD(

    second,
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    1 + ABS(CHECKSUM(NEWID())) % (20*60),

    starttime) AS endtime

INTO dbo.BigSessions

FROM

(

  SELECT 

    'app' + CAST(1 + ABS(CHECKSUM(NEWID())) % 10 AS VARCHAR(10)) AS app,

    'user1' AS usr,

    'host1' AS host,

    DATEADD(

      second,

      1 + ABS(CHECKSUM(NEWID())) % (30*24*60*60),

      '20090101') AS starttime

  FROM dbo.Nums

  WHERE n <= 1000000

) AS D;

CREATE UNIQUE CLUSTERED INDEX idx_ucl_keycol

  ON dbo.BigSessions(keycol);

CREATE INDEX idx_nc_app_st_et

  ON dbo.BigSessions(app, starttime, endtime);

 I populated the table with sessions that start at random times over a period of one month 
and last up to 20 minutes. I also distributed 10 different application names randomly. Now 
request an estimated execution plan for the original query, and you will get the plan shown 
in Figure 4-66. 

FIGURE 4-66 Estimated execution plan for query against the BigSessions table with adequate sample data
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 The cost of the query is now 52,727. Trust me: You don’t want to run it to see how long it 
 really takes. Or, if you like, you can start running it and come back the next day hoping that it 
fi nished. 

 Now that the sample data is more realistic, you can see that the set-based solution presented 
in this section is slow—unlike what you might be led to believe when using inadequate 
 sample data. In short, you can see how vital it is to put some thought into preparing good 
sample data. Of course, the tuning process only starts now; you might want to consider 
query revisions, cursor-based solutions, revisiting the model, and so on. But here I wanted 
to focus the discussion on bad sample data. I’ll conduct a more thorough tuning discussion 
 related to the problem at hand in Inside T-SQL Programming. 

TABLESAMPLE

 SQL Server supports a feature that allows you to sample data from an existing table. The tool 
is a clause called TABLESAMPLE that you specify after the table name in the FROM clause 
along with some options. Here’s an example for using TABLESAMPLE to request 1,000 rows 
from the Orders table in the Performance database:  

SELECT * 

FROM dbo.Orders TABLESAMPLE (1000 ROWS);

 Note that if you run this query you probably won’t get exactly 1,000 rows. I’ll explain why 
shortly. 

 You can specify TABLESAMPLE on a table-by-table basis. Following the TABLESAMPLE 
keyword, you can optionally specify the sampling method to use. Currently, SQL Server 
supports only the SYSTEM method, which is also the default if no method is specifi ed. In 
the future, we might see additional algorithms. Per ANSI, the SYSTEM keyword  represents 
an implementation-dependent sampling method. This means you will fi nd different 
 algorithms implemented in different products when using the SYSTEM method. In SQL 
Server, the SYSTEM method implements the same sampling algorithm used to sample 
 pages to generate distribution statistics. 

 You can use either the ROWS or the PERCENT keyword to specify how many rows you 
would like to get back. Based on your inputs, SQL Server calculates random values to 
 fi gure out whether a page should be returned. Note that the decision of whether to read 
a  portion of data is done at the page level. This fact, along with the fashion in which SQL 
Server  determines whether to pick a page based on a random factor, means that you won’t 
 necessarily get the exact number of rows that you asked for; rather, you’ll get a fairly close 
value. The more rows you request, the more likely you are to get a result set size close to 
what you requested. 
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 Here’s an example for using the TABLESAMPLE clause in a query against the Orders table, 
requesting 1,000 rows: 

SELECT * 

FROM dbo.Orders TABLESAMPLE SYSTEM (1000 ROWS);

 I ran this query three times and got a different number of rows every time: 880, 1200, and 
920.  

 An important benefi t you get with the SYSTEM sampling method is that only the chosen 
pages (those that SQL Server picked) are scanned. So even if you query a huge table, you 
will get the results pretty fast—as long as you specify a fairly small number of rows. As I 
 mentioned earlier, you can also specify a percentage of rows. Here’s an example requesting 
0.1 percent, which is equivalent to 1,000 rows in our table: 

SELECT * 

FROM dbo.Orders TABLESAMPLE (0.1 PERCENT);

 When you use the ROWS option, SQL Server internally fi rst converts the specifi ed number 
of rows to a percentage. Remember that you are not guaranteed to get the exact  number 
of rows that you requested; rather, you’ll get a close value determined by the number of 
pages that were picked and the number of rows on those pages (which may vary).  

 To make it more likely that you’ll get the exact number of rows you are after, specify a higher 
number of rows in the TABLESAMPLE clause and use the TOP option to limit the upper bound 
that you will get, like so: 

SELECT TOP (1000) * 

FROM dbo.Orders TABLESAMPLE (2000 ROWS);

 There’s still a chance that you will get fewer rows than the number you requested, but you’re 
guaranteed not to get more. By specifying a higher value in the TABLESAMPLE clause, you 
increase the likelihood of getting the number of rows you are after. 

 If you need to get repeatable results, use a clause called REPEATABLE, which was designed 
for this purpose, providing it with the same seed in all invocations. For example, running the 
following query multiple times yields the same result, provided that the data in the table has 
not changed: 

SELECT * 

FROM dbo.Orders TABLESAMPLE (1000 ROWS) REPEATABLE(42);

 Note that with small tables you might not get any rows at all. For example, run the following 
query multiple times, requesting a single row from the Production.ProductCostHistory table 
in the AdventureWorks2008 database:  

SELECT * 

FROM AdventureWorks2008.Production.ProductCostHistory TABLESAMPLE (1 ROWS);
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 You only occasionally get any rows back. I witnessed a very interesting discussion in a 
 technical SQL Server forum. Someone presented such a query and wanted to know why 
he didn’t get any rows back. Steve Kass, a friend and coauthor of mine and the ingenious 
 technical editor of these books, provided the following illuminating answer and kindly 
 allowed me to quote him here:  

 “As documented in Books Online (“Limiting Results Sets by Using TABLESAMPLE”), 
the sampling algorithm can only return full data pages. Each page is selected or 
skipped with probability [desired number of rows]/[rows in table]. 

 The Production.ProductCostHistory table fi ts on 3 data pages. Two of those pages 
contain 179 rows, and one contains 37 rows. When you sample for 10 rows (1/40 
of the table), each of the 3 pages is returned with probability 1/40 and skipped 
with probability 39/40. The chance that no rows are returned is about (39/40)^3, 
or about 93%. When rows are returned, about 2/3 of the time you will see 179 
rows, and about 1/3 of the time you will see 37 rows. Very rarely, you will see 
more rows, if two or more pages are returned, but this is very unlikely.  

 As BOL suggests, SYSTEM sampling (which is the only choice) is not recommended 
for small tables. I would add that if the table fi ts on N data pages, you should not 
try to sample fewer than 1/N-th of the rows, or that you should never try to sample 
fewer rows than fi t on at least 2 or 3 data pages. 

 If you were to sample roughly two data pages worth of rows, say 263 rows, the 
chance of seeing no rows would be about 3.7%. The larger (more data pages) the 
table, the smaller the chance of seeing no rows when at least a couple of pages 
worth are requested. For example, if you request 300 rows from a 1,000,000-row 
table that fi ts on 10,000 data pages, only in 5% of trials would you see no rows, 
even though the request is for far less than 1% of the rows. 

 By choosing the REPEATABLE option, you will get the same sample each time. For 
most seeds, this will be an empty sample in your case. With other seeds, it will 
contain 37, 179, 216, 358, or 395 rows, depending on which pages were selected, 
with the larger numbers of rows returned for very few choices of seed. 

 That said, I agree that the consequences of returning only full data pages results in 
very confusing behavior!” 

 With small tables, you might want to consider other sampling methods. You don’t care too 
much about scanning the whole table because you consider these techniques against small 
tables anyway. For example, the following query will scan the whole table, but it guarantees 
that you get a single random row: 

SELECT TOP(1) * 

FROM AdventureWorks2008.Production.ProductCostHistory 

ORDER BY CHECKSUM(NEWID());
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 Note that other database platforms, such as DB2, implement additional algorithms—for 
 example, the Bernoulli sampling algorithm. You can implement it in SQL Server by using the 
following query, provided by Steve Kass: 

SELECT * 

FROM AdventureWorks2008.Production.ProductCostHistory

WHERE ABS((ProductID%ProductID)+CHECKSUM(NEWID()))/POWER(2.,31) < 0.01

 The constant 0.01 is the desired probability (in this case, 1 percent) of choosing a row. The 
 expression ProductID%ProductID was included to make the WHERE clause correlated and 
force its evaluation on each row of ProductCostHistory. Without it, the value of the WHERE 
condition would be calculated just once, and either the entire table would be returned or no 
rows would be returned. Note that this technique requires a full table scan and can take a 
while with large tables. You can test it against our Orders table and see for yourself. 

An Examination of Set-Based vs. Iterative/Procedural 
Approaches and a Tuning Exercise

 Thus far in the chapter, I focused mainly on index tuning for given queries. However, in large 
part, query tuning involves query revisions. That is, with different queries or different T-SQL 
code you can sometimes get substantially different plans, with widely varying costs and run 
times. In a perfect world, the ideal optimizer would always fi gure out exactly what you are 
trying to achieve, and for any form of query or T-SQL code that attempts to achieve the same 
thing, you would get the same plan—and only the best plan, of course. But alas, we’re not 
there yet. You still have many performance improvements to gain merely from  changing the 
way you write your code. This will be demonstrated thoroughly throughout these books. Here, 
I’ll demonstrate a typical tuning process based on code revisions by following an example. 

 Note that set-based queries are typically superior to solutions based on iterative/ procedural 
logic—such as ones using cursors, loops, and the like. Besides the fact that set-based 
 solutions usually require much less code, they also usually involve less overhead than cursors. 
A lot of overhead is incurred with the record-by-record manipulation of cursors. You can 
make simple benchmarks to observe the performance differences. Run a query that simply 
selects all rows from a big table, discarding the results in the graphical tool so that the time 
it takes to display the output won’t be taken into consideration. Also run cursor code that 
simply scans all table rows one at a time. Even if you use the fastest available cursor—FAST_
FORWARD (forward only, read only)—you will fi nd that the set-based query runs dozens of 
times faster. You can express the cost of processing n rows in a table using a set-based query 
as n and then processing the same number of rows with a cursor that can be expressed as 
n + n×o, where o represents the overhead associated with a single row manipulation with 
the cursor. Besides the overhead involved with a cursor, you’ll also have an issue with the 
 execution plans. When using a cursor, you apply a very rigid physical approach to accessing 
the data because your code focuses a lot on how to achieve the result. A set-based query, on 
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the other hand, focuses logically on what you want to achieve rather than how to achieve it. 
Typically, set-based queries leave the optimizer with much more room for maneuvering and 
leeway to do what it is good at—optimization.  

 That’s the rule of thumb. However, I’m typically very careful with adopting rules of thumb, 
especially with regard to query tuning—because optimization is such a dynamic world, and 
there are always exceptions. In fact, as far as query tuning is concerned, my main rule of 
thumb is to be careful about adopting rules of thumb. 

 You will encounter cases where it is very hard to beat cursor code, and you need to be able to 
identify them; but these cases are the minority. I’ll discuss the subject at length in Chapter 8, 
“Cursors,” of Inside T-SQL Programming. 

 To demonstrate a tuning process based on code revisions, I’ll use our Orders and Shippers 
tables. The request is to return shippers that used to be active but do not have any activity 
as of 2004. That is, a qualifying shipper is one for whom you cannot fi nd an order on or after 
2004. You don’t care about shippers who have made no orders at all. 

 Before you start working, remove all indexes from the Orders table and make sure that 
you have only the clustered index defi ned on the orderdate column and the primary key 
( nonclustered) defi ned on the orderid column. 

 If you rerun the code in Listing 4-1, make sure that for the Orders table, you keep only the 
following index and primary key defi nitions: 

CREATE CLUSTERED INDEX idx_cl_od ON dbo.Orders(orderdate); 

ALTER TABLE dbo.Orders ADD 

  CONSTRAINT PK_Orders PRIMARY KEY NONCLUSTERED(orderid);

 Next, run the following code to add a few shippers to the Shippers table and a few orders to 
the Orders table: 

INSERT INTO dbo.Shippers(shipperid, shippername) VALUES

  ('B', 'Shipper_B'),

  ('D', 'Shipper_D'),

  ('F', 'Shipper_F'),

  ('H', 'Shipper_H'),

  ('X', 'Shipper_X'),

  ('Y', 'Shipper_Y'),

  ('Z', 'Shipper_Z');

INSERT INTO dbo.Orders(orderid, custid, empid, shipperid, orderdate) VALUES

  (1000001, 'C0000000001', 1, 'B', '20030101'),

  (1000002, 'C0000000001', 1, 'D', '20030101'),

  (1000003, 'C0000000001', 1, 'F', '20030101'),

  (1000004, 'C0000000001', 1, 'H', '20030101');

 You’re supposed to get the shipper IDs B, D, F, and H in the result. These are the only  shippers 
that were active at some point but not as of 2004. 
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 In terms of index tuning, it’s sometimes hard to fi gure out what the optimal indexes are  without 
having an existing query to tune. But in our case, index tuning is rather simple and possible 
without having the solution code fi rst. Obviously, you will want to search for the  maximum 
 orderdate value for each shipperid, so naturally the optimal index would be a nonclustered 
 covering index defi ned with shipperid and orderdate as the key columns, in that order: 

CREATE NONCLUSTERED INDEX idx_nc_sid_od 

  ON dbo.Orders(shipperid, orderdate);

 I suggest that at this point you try to come up with the best-performing solution that you 
can and then compare it with the solutions that I will demonstrate. 

 As the fi rst solution, I’ll start with the following cursor-based code: 

DECLARE

  @sid     AS VARCHAR(5),

  @od      AS DATETIME,

  @prevsid AS VARCHAR(5),

  @prevod  AS DATETIME;

DECLARE ShipOrdersCursor CURSOR FAST_FORWARD FOR

  SELECT shipperid, orderdate

  FROM dbo.Orders

  ORDER BY shipperid, orderdate;

OPEN ShipOrdersCursor;

FETCH NEXT FROM ShipOrdersCursor INTO @sid, @od;

SELECT @prevsid = @sid, @prevod = @od;

WHILE @@fetch_status = 0

BEGIN

  IF @prevsid <> @sid AND @prevod < '20040101' PRINT @prevsid;

  SELECT @prevsid = @sid, @prevod = @od;

  FETCH NEXT FROM ShipOrdersCursor INTO @sid, @od;

END

IF @prevod < '20040101' PRINT @prevsid;

CLOSE ShipOrdersCursor;

DEALLOCATE ShipOrdersCursor;

 This code implements a straightforward data-aggregation algorithm based on sorting. The 
cursor is defi ned on a query that sorts the data by shipperid and orderdate, and it scans the 
records in a forward-only, read-only manner—the fastest scan you can get with a cursor. For 
each shipper, the code inspects the last row found—which happens to hold the maximum 
 orderdate for that shipper—and if that date is earlier than ‘20040101’, the code emits the 
shipperid value. This code ran on my computer for 28 seconds. Imagine the run time in a 
larger Orders table that contains millions of rows. 
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 The next solution (call it set-based solution 1) is a natural GROUP BY query that many 
 programmers would come up with: 

SELECT shipperid 

FROM dbo.Orders 

GROUP BY shipperid 

HAVING MAX(orderdate) < '20040101';

 You just say what you want rather than spending most of your code describing how to get 
it. The query groups the data by shipperid, and it returns only shippers with a maximum 
 orderdate that is earlier than ‘20040101’. 

 This query ran for about one second on my computer. The optimizer produced the execution 
plan shown in Figure 4-67 for this query. 

FIGURE 4-67 Execution plan for set-based solution 1

 The plan shows that our covering index was fully scanned in order. The maximum orderdate 
was isolated for each shipperid by the Stream Aggregate operator. Then the fi lter operator 
fi ltered only shippers for whom the maximum orderdate was before ‘20040101’. 

 Here are the vital performance measures I got for this query: 

■  Logical reads 2736 

■  CPU time 562 ms 

■  Elapsed time 1224 ms 
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 Note that you might get slightly different performance measures. At this point, you need to 
ask yourself if you’re happy with the result and, if you’re not, whether you have potential for 
optimization at all.  

 Of course, this solution is a big improvement over the cursor-based one in terms of both 
 performance and code readability and maintenance. However, a run time of close to one 
second for such a query might not be satisfactory. Keep in mind that an Orders table in some 
production environments can contain far more than one million rows. 

 If you determine that you want to tune the solution further, you now need to fi gure out 
whether you have potential for optimization. Remember that in the execution plan for the 
last query, the leaf level of the index was fully scanned to obtain the latest orderdate for each 
shipper. That scan required 2,736 page reads. Our Shippers table contains 12 shippers. Your 
gut feeling should tell you that you must be able to fi nd a way to obtain the data with far 
fewer reads. In our index, the rows are sorted by shipperid and orderdate. This means that 
in some groups of rows—a group for each shipperid—the last row in each group contains 
the latest orderdate that you want to inspect. Alas, the optimizer currently doesn’t have 
the logic within it to “zigzag” between the levels of the index, jumping from one shipper’s 
 latest  orderdate to the next. If it did, the query would have incurred substantially less I/O. By 
the way, such zigzagging logic can be benefi cial for other types of requests—for example, 
 requests involving fi lters on a nonfi rst index column and others as well. But I won’t digress.  

 Of course, if you request the latest orderdate for a particular shipper, the optimizer can use a 
seek directly to the last shipper’s row in the index. Such a seek would cost three reads in our 
case. Then the optimizer can apply a TOP operator going one step backward, returning the 
desired value—the latest orderdate for the given shipper—to a Stream Aggregate operator. 

 The following query demonstrates acquiring the latest orderdate for a particular shipper, 
 producing the execution plan shown in Figure 4-68: 

SELECT MAX(orderdate) FROM dbo.Orders WHERE shipperid = 'A';

FIGURE 4-68 Execution plan for a query handling a particular shipper

 This plan incurs only three logical reads. Now, if you do the math for 12 shippers, you will 
realize that you can potentially obtain the desired result with substantially less I/O than 2,736 
reads. Of course, you could scan the Shippers rows with a cursor and then invoke such a 
query for each shipper, but it would be counterproductive and a bit ironic to beat a cursor 
solution with a set-based solution that you then beat with another cursor.  
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 Realizing that what you’re after is invoking a seek operation for each shipper, you might 
come up with the following attempt as a step toward the solution (prior to fi ltering): 

SELECT shipperid,

  (SELECT MAX(orderdate)

   FROM dbo.Orders AS O

   WHERE O.shipperid = S.shipperid) AS maxod

FROM dbo.Shippers AS S;

 You query the Shippers table, and for each shipper, a subquery acquires the latest orderdate 
value (aliased as maxod).  

 But strangely enough, you get the plan shown in Figure 4-69, which looks surprisingly similar 
to the previous one in the sense that a full ordered scan of the index on the Orders table is 
used to calculate the MAX aggregate. 

FIGURE 4-69 Execution plan for query with subquery and MAX

 You may have expected the optimizer to fi rst scan the 12 shippers from the Shippers table 
and then use a loop that for each shipper applies a seek operation in the index to pull the 
max orderdate for that shipper. Of course, without access to the optimizer’s code it would be 
hard to tell why you didn’t get the plan you expected. Fortunately, I got an explanation from 
Cesar Galindo-Legaria, who does have such access. It appears that this query fell victim to an 
attempt the optimizer made to improve the query performance, while in practice it ended 
up hurting it. The optimizer unnested the correlated subquery, converting it internally to a 
join. The reason that the optimizer applies such rearrangements is that the join form tends 
to be optimized better (enables better cardinality estimates and navigational strategies from 
both sides). However, the join form prevents the special scalar aggregate optimization over 
an index that we want to see here. The reason that the optimizer doesn’t reintroduce the 
 correlation (that would allow the scalar aggregate optimization) is that the exploration space 
explodes easily. As a result the current plan is far from ideal. This query incurred 2,736  logical 
reads against the Orders table and ran for close to one second on my computer. It seems 
that the optimizer got too sophisticated this time.  
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 The situation seems to be evolving into a battle of wits with the optimizer—not a battle to 
the death, of course; there won’t be any iocane powder involved here, just I/O. The optimizer 
pulls a trick on you; now pull your best trick. One attempt before considering a complete 
rewrite of the solution is to use a logically equivalent query but with the TOP option instead 
of MAX. The reasoning behind trying this trick is that from observations of many plans, it 
 appears that the optimizer does not unnest subqueries when you use TOP.  

 You issue the following query, close your eyes, and hope for the best: 

SELECT shipperid,

  (SELECT TOP (1) orderdate

   FROM dbo.Orders AS O

   WHERE O.shipperid = S.shipperid

   ORDER BY orderdate DESC) AS maxod

FROM dbo.Shippers AS S;

 And when you open your eyes, voilà! You see the plan you wished for, as shown in Figure 4-70. 

FIGURE 4-70 Execution plan for query with subquery and TOP

 The Shippers table is scanned, and for each of the 12 shippers, a Nested Loops operator 
invokes a similar activity to the one you got when invoking a query for a particular shipper. 
This plan incurs only 2 logical reads against Shippers and 36 logical reads against Orders. 
The net CPU time is not even measurable with STATISTICS TIME (shows up as 0), and I got 
about 100 milliseconds of elapsed time. You can now slightly revise the code to have the 
subquery in the WHERE clause and fi lter only the shippers with a maximum order date that is 
before 2004, like so (call it set-based solution 2): 

SELECT shipperid

FROM dbo.Shippers AS S

WHERE

  (SELECT TOP (1) orderdate

   FROM dbo.Orders AS O

   WHERE O.shipperid = S.shipperid

   ORDER BY orderdate DESC) < '20040101';

 The plan is very similar to the one you got prior to fi ltering, but with an additional fi lter 
 operator, as you can see in Figure 4-71. 
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FIGURE 4-71 Execution plan for set-based solution 2

 Once you get over the excitement of outwitting the optimizer, you start having some 
 troubling thoughts. Why is it that the optimizer doesn’t unnest subqueries when using 
TOP? In some cases it makes sense not to unnest—when there’s the possibility that the 
nested and unnested forms would yield different results. But there are cases, like in our 
query, where both forms would yield the same results. The SQL Server developers know 
that many programmers and DBAs use the TOP option as a way to force the optimizer 
not to unnest subqueries and therefore are reluctant to change this optimizer’s  behavior. 
But it’s hard to say how long the developers would keep restraining the optimizer in 
this  manner. What if in a future version of SQL Server or perhaps a future service pack 
the  developers won’t restrain the optimizer anymore? Then SQL Server could internally 
 translate our TOP query to the logically equivalent MAX or MIN version, and then you 
would get the ineffi cient plan for the aforementioned reasons. 

 And if this is not confusing enough, see what happens if you make slight revisions (logically 
meaningless ones, mind you) to the MAX version of the solution: 

SELECT shipperid

FROM dbo.Shippers AS S

WHERE

  (SELECT DISTINCT MAX(orderdate)

   FROM dbo.Orders AS O

   WHERE O.shipperid = S.shipperid) < '20040101';

SELECT shipperid

FROM dbo.Shippers AS S

WHERE

  (SELECT TOP (1) MAX(orderdate)

   FROM dbo.Orders AS O

   WHERE O.shipperid = S.shipperid) < '20040101';

 In both cases you get the more effi cient plan that fi rst scans the 12 shippers and in a loop 
pulls the maximum order date with a seek against the index on the Orders table. 

 In short, I’d be reluctant to rely on any of the preceding variations just because of the big 
 impact that the slight revisions have on the way the query is optimized. In this sense I’d 
 consider the optimization of this general form of the solution unstable. I’d keep looking for 
alternatives that are more stable.  
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 If you look hard enough, you will fi nd this one (call it set-based solution 3): 

SELECT shipperid 

FROM dbo.Shippers AS S 

WHERE NOT EXISTS 

  (SELECT * FROM dbo.Orders AS O 

   WHERE O.shipperid = S.shipperid 

     AND O.orderdate >= '20040101') 

  AND EXISTS 

  (SELECT * FROM dbo.Orders AS O 

   WHERE O.shipperid = S.shipperid);

 This solution is natural and in fact is quite a literal translation of the English phrasing of the request. 
You query the Shippers table and fi lter shippers for whom you cannot fi nd an order on or past 
‘20040101’ and for whom you can fi nd at least one order. You get the plan shown in Figure 4-72. 

FIGURE 4-72 Execution plan for set-based solution 3

 The Shippers table is scanned, yielding 12 rows. For each shipper, a Nested Loops  operator 
invokes a seek against our covering index to check whether an orderdate of ‘20040101’ or 
later exists for the shipper. If the answer is no, another seek operation is invoked against 
the index to check whether an order exists at all. The I/O cost against the Orders table is 
59 reads—slightly higher than the previous solution. However, in terms of simplicity and 
 naturalness, this solution wins big time! Therefore, I would stick to it. 

 As you probably realize, index tuning alone is not enough; you can do much with the way 
you write your queries. Being a Matrix fan, I’d like to believe that it’s not the spoon that 
bends; it’s only your mind.  

Conclusion

 This chapter covered a tuning methodology, index tuning, the importance of sample data, and 
query tuning by query revisions. So much is involved in tuning, and knowledge of the  product’s 
architecture and internals plays a big role in doing it well. But knowledge is not enough. I hope 
this chapter gave you the tools and guidance that will allow you to put your knowledge into 
action as you progress in these books—and, of course, in your production environments.  

C04626034.indd   276 2/13/2009   1:56:10 AM



  277

Chapter 5

Algorithms and Complexity
 Steve Kass 

 This chapter contains a brief introduction to a central topic in computer science: algorithms 
and complexity. In theory, modern computers can solve nearly any problem that can be 
expressed precisely. In practice, however, we encounter two considerable obstacles: No 
 computer can solve problems without valid strategies or methods for solving them, and 
valid problem-solving strategies and methods are useful only if they yield answers within a 
 reasonable amount of time. 

 Strategies and methods for solving particular problems, given arbitrary input, are called 
 algorithms. The computational complexity of a problem-solving algorithm measures the way 
in which the resources needed to execute the algorithm depend on the input for which the 
problem is to be solved. 

 Some algorithms require—for correctness, effi ciency, or both—data to be organized in 
a particular way. A data structure is a scheme for organizing data to support  effi cient 
 algorithms, and most algorithms assume—either implicitly or explicitly—particular 
data structures. 

 In some respects, database programmers need to know considerably less about algorithms 
and complexity than other programmers, such as systems programmers. Recall that SQL 
is a  fourth-generation, declarative programming language. An SQL program describes the 
 desired result, and the RDBMS implementation analyzes the description and then chooses 
and  implements an effi cient algorithm to produce the result. The mere fact that correct 
 implementations of SQL exist is remarkable; the fact, that there exist astoundingly good 
 implementations, like Microsoft’s, is nothing short of miraculous. The modern RDBMS is not 
only a testament to its creators; it’s also a testament to the foundations of computer science, 
which provided the mathematical framework for conceiving, developing, and validating such 
a complex system. 

 Many excellent books on algorithms and complexity are available, and they typically  include 
a catalog of important algorithms and analyses of their complexity. In this chapter, I will 
 instead describe some real-world problems that serve as good analogies to get you  thinking 
about some of algorithms Microsoft SQL Server implements. These problems, which for 
small input are hand solvable, demonstrate some fundamental patterns of complexity, 
and they  illustrate in a concrete way several factors that affect the running time and space 
 requirements of important algorithms. 
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Do You Have a Quarter?

 Many of you probably have a change jar somewhere—a container full of coins. From time 
to time, you might dig into your change jar to fi nd a quarter,1 and the process of doing so is 
probably second nature. Partly because it’s so familiar, the process of retrieving a quarter from 
a change jar will be a useful example for the discussion of algorithms and complexity. While a 
coin isn’t exactly data, retrieving a quarter is much like executing this T-SQL SELECT query:  

SELECT TOP (1) Coin

FROM ChangeJar

WHERE Denomination = 0.25

ORDER BY (SELECT NULL);

How to Retrieve a Quarter from a Coin Jar

 I’m sure you know more than one algorithm for executing this task—to retrieve a quarter 
from a coin jar. Most of the time, you look into the jar, spot a quarter at the top, and pull it 
out. Every now and then, however, there’s no quarter at the top, and you have to dig deeper. 
When this happens, you might shake the jar or stick your hand into it and mix the coins up, 
expecting to fi nd a quarter at the top again after the mixing. If you still can’t fi nd a  quarter, 
you might empty the coins onto your kitchen counter and spread them out so that you 
can hunt through your coins more quickly than you can when they’re all in the jar. This last 
 strategy, of course, requires you have a kitchen counter (or other fl at surface) nearby that you 
can clear off before emptying the coins onto it. If you try to do this right before suppertime, 
you might have to wait a little while or abandon the strategy. 

 You can see from this example that how—and how quickly—you can fi nd a quarter in a coin 
jar depends on many things: what’s in the jar, how the jar’s contents are distributed, how 
you go about looking, and what other tools (like a table) are at your disposal, just to name a 
few. More obscure factors, too, can affect both your strategy and its effi ciency: how bright 
the room lights are, how big your hands are compared to the size of the jar’s mouth, how 
full the jar is (because shaking a full jar doesn’t do a good job of mixing up its contents), and 
 whether someone else is also retrieving a quarter from of the same jar (or preparing dinner) 
at the same time as you. How many other factors can you think of? 

 The various strategies for retrieving a quarter, as well as the factors that affect how well each 
strategy works, all have analogs both in the abstract study of algorithms and complexity 
and in the practical matter of executing queries in a SQL Server database. For example, the 
kitchen counter corresponds to both the abstract notion of space and the real SQL Server 
data cache. Shaking the coin jar corresponds to randomizing the distribution of values in the 
algorithm’s input or changing the SQL Server statistics for an index or table. 

1 A quarter is the largest commonly circulating US coin, and it is worth 25 cents, or one-quarter dollar. If digging for 
quarters isn’t something you do often enough to have a “feel” for it, use an analogous scenario, with any common 
coin instead of quarters. 
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Sometimes the Jar Has No Quarters

 Just because you need a quarter doesn’t mean you have a quarter, and it’s certainly possible 
your jar is full of pennies, nickels, and dimes—and perhaps a few buttons and some pocket 
lint—but no quarters. If you run into this situation too often, you might consider rethinking 
your coin storage strategy and devise a system that will let you know right away that you’ve 
run out of quarters. For example, you might replace your change jar with two jars: one for 
quarters and one for everything else. You won’t be able to empty your pockets as quickly 
because you’ll have to separate the quarters from the rest of the change, but when you go 
looking for change, you’ll know right away whether you have any quarters. 

 Note If you’re like me, the two-jar solution won’t really work. After a long day, I’d throw 
all my change, quarters included, into the nonquarters jar. Integrity constraints like CHECK 
( denomination <> 0.25) are one reason an RDBMS is better than a room full of jars! 

 I’ve described two coin storage setups: a one-jar setup, which optimizes the task of storing 
coins, and a two-jar setup, which optimizes the task of retrieving single quarters (whether 
this task is successful or not). The abstract analog in this case is the idea of a data structure, 
and the practical analog is the design of a database—choosing how to represent real-world 
information using database tables and how to arrange the information in tables with indexes. 
To analyze and design computer programs that are effective and effi cient, it’s important 
(and rewarding) to understand the complex and beautiful interplay between data structures, 
 algorithms, and complexity. If you enjoy it, I can guarantee it will never bore you. 

 Pay close attention to day-to-day problem-solving tasks like digging for change. If you do, 
you’ll develop insight into the algorithms and complexity of more abstract problem-solving 
tasks like those that come up in database management.  

How Algorithms Scale

 The jargon of database management uses the word scale in phrases such as scale out, scale up, 
and scalable solution. To talk about how a system or algorithm scales is to talk about how the 
system or algorithm is affected by changes (usually increases) in the amount of input data. 

 A naïve expectation about scaling is to expect this behavior: if there’s twice as much data, it 
will take twice as long to process the data. While some systems and algorithms behave that 
way, many don’t. Some tasks take the same amount of time regardless of the amount of 
data. For these tasks, if there’s twice as much data, it will take no longer to process the data. 
An example is the task of retrieving a quarter from a jar of quarters. No matter how full the 
jar is, it takes one simple step to retrieve a quarter from the jar (or, if the jar is empty, to fail 
at the task). For other tasks, it might take four times as long to process twice as much data. 
For some kinds of tasks, twice as much data might take so much longer to process that you’d 
never live to see the result! 
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An Example of Quadratic Scaling

 One of my fi rst encounters with a real-world scaling problem and with naïve  expectations 
about scaling took place in 1969 in my eighth-grade metalworking class. One of the  projects 
was to build a 5-by-7-inch folder out of sheet metal, hinged at the top. I wanted to build a 
folder twice as big (10-by-14 inch) so that I could use it for standard notebook paper. Shop 
class students had to pay for the materials they used, and for this project, that meant three 
pieces of metal (two pieces of sheet metal for the front and back of the folder and one 
length of hinged metal for the shorter side) and a few rivets or screws. The teacher agreed to 
let me build a double-sized folder, as long as I paid double for the materials. Of course my 
folder needed more than twice as much metal. 

 Let’s do the actual calculation, assuming the fl at metal cost $0.01/square inch and the hinge 
cost $0.10/inch, ignoring the cost of the rivets and screws. The details for several different 
sizes of notebook, including the two sizes mentioned here, are shown in Table 5-1. 

TABLE 5-1 Cost of Materials for Metal Folders 

 Folder size 5” by 7” 10” by 14” 50” by 70” 100” by 140”

 Sheet metal required 70 sq. in. 280 sq. in. 7,000 sq. in 28,000 sq. in.

 Cost of sheet metal $0.70 $2.80 $70.00 $280.00

 Length of hinge required 5 inches 10 inches 50 inches 100 inches

 Cost of hinge $0.50 $1.00 $5.00 $10.00

 Total cost of materials $1.20 $3.80 $75.00 $290.00

 The cost of materials for my double-sized 10-by-14-inch folder was about 3.17 times the cost 
of materials for the 5-by-7-inch folder. Note that doubling the dimensions doesn’t always 
increase the cost of materials by a factor of 3.17. The materials for a 100-by-140-inch folder 
cost about 3.87 times as much as for a 50-by-70-inch folder.  

The relationship between notebook size and materials cost in this example is called quadratic. 
We’ll see why a bit later in the chapter. 

An Algorithm with Linear Complexity

Recall that the way in which an algorithm’s cost depends on its input size is called the 
 algorithm’s complexity. When an algorithm’s complexity agrees with the naïve expectation 
(twice the input requires twice the cost), the algorithm is said to have linear complexity  because 
the graph of cost as a function of input size in this case is (or more precisely,  approaches) a 
straight line. 

One algorithm with linear complexity is the algorithm for fi nding the largest number in 
an unordered list as follows: allocate a variable to keep track of one number, initialize that 
 variable to the value of the fi rst item in the list, and then inspect the remaining items in 
the list one by one, overwriting the value of the variable each time a larger value is found 

Folder size 5” by 7” 10” by 14” 50” by 70” 100” by 140”
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in the list. Of course, if the numbers in the list are in order, you can fi nd the largest number 
in the list much more quickly: just look at the end of the list, where the largest number must 
be. The trade-off is that you must maintain the ordering of the list. 

Exponential and Superexponential Complexity

 As the input size grows, some algorithms become more expensive at a truly astonishing rate. 
Unfortunately, for many important problems the only known algorithms exhibit exponential 
or superexponential complexity, and these problems are effectively unsolvable for all but the 
very smallest inputs. 

 One problem with superexponential complexity is the minimum bin packing problem, where 
the goal is to pack a collection of items into the fewest possible number of bins of fi xed capacity. 

The Minimum Bin Packing Problem

 Given a collection of n items with weights w1, w2, . . . , wn and an unlimited supply of 
empty bins, each with capacity C, where C is no smaller than the weight of the  heaviest 
item, what is the smallest number of bins into which the items can be distributed 
 without exceeding the bin capacity? 

 All known algorithms for solving the bin packing problem effectively consider every 
possible arrangement of the items, and this requires a number of computational steps 
that grows exponentially with the number of items n.  

 Fortunately, there are effi cient ways to solve the bin packing problem approximately 
that will require no more than 1¼ times the optimal number of bins. 

The Factorial Function

 As I pointed out in the sidebar, all known algorithms for solving the bin packing  problem 
 effectively consider every possible arrangement of the n input items. How many  arrangements 
is that? For a small number of items, it’s easy to list all the arrangements and count them. 
Three items, A, B, and C, can be arranged in six ways: ABC, ACB, BAC, BCA, CAB, and CBA. Four 
items can be arranged in 24 ways—there are six ways to arrange the items A, B, and C, and 
for each one, there are four different places to “drop in” item D. For example, you can drop 
item D into the arrangement BAC in these four ways: DBAC, BDAC, BADC, and BACD. Increasing 
the number of items from three to four therefore quadrupled (multiplied by four) the number 
of arrangements—from 6 to 24. In the same way, increasing the number of items from four to 
fi ve will quintuple the number of arrangements—from 24 to 120.  

 There’s a simple mathematical pattern to these numbers 6, 24, and 120: 6 = 3×2×1, 
24 = 4×3×2×1, and 120 = 5×4×3×2×1. The pattern continues, and the number of  arrangements 
of n items is the product of the integers 1 through n. The notation n!, called the factorial 
 function of n or n factorial, represents the product of the integers from 1 through n. 

C05626034.indd   281 2/18/2009   11:36:39 PM



282 Inside Microsoft SQL Server 2008: T-SQL Querying

 Because there are n! arrangements to consider, it takes at least n! computational steps to 
solve the minimum bin packing problem for n input items. Later in this chapter, you’ll see 
why the growth rate of n! as a function of n is called superexponential, and you’ll also 
see why problems like this one are considered unsolvable. 

Sublinear Complexity

 By necessity, if you want to determine something about data, you have to inspect the data. 
For example, to determine the lowest salary among an organization’s employees, you need 
to inspect each employee’s salary. This suggests that there are never algorithms that can 
 handle n items in less than n operations or that n is the most effi cient complexity  possible. 
An algorithm that handles input size n with complexity better than n is called a sublinear 
 algorithm. Are there any algorithms with sublinear complexity?  

 Yes, there are. We saw one such algorithm earlier. The quarter-retrieval problem can be solved 
in a single operation, regardless of the number of coins, if the coins are organized in two 
jars—one for quarters and one for other coins. At fi rst, you might consider this strategy for 
 achieving  sublinear performance to be a bit of a cheat. After all, it takes at least n steps to 
 organize n coins, so even if the retrieval of a quarter can be accomplished in one step, the  entire 
workload of organizing n coins, then retrieving a quarter, takes at least n steps. However, you 
need to organize the coins only once. Once you’ve organized the coins into two jars, you can 
retrieve quarters repeatedly using the fast algorithm (take a coin from the quarters jar). 

 If you can solve a problem in sublinear time, it must be the case that you don’t need to 
 inspect all the data to solve the problem. Later in this chapter, we’ll see examples of  problems 
that can be answered without looking at all the data. In some cases, it’s obvious this is 
 possible; in other cases, it’s not, and the algorithms are surprisingly clever. 

Binary Search

 When data is well maintained, many tasks are easier to solve. For example, the binding of 
this book maintains the book’s pages in order. Page 50 comes right before page 51 and so 
on. If I asked you to turn to page 273, you could do so relatively quickly—not immediately 
in a single step but quickly—and probably in a dozen or fewer steps. If the book were twice 
as long, it’s unlikely it would take more than one extra step to fi nd a given page. Chances are 
you would use a variation on binary search. The binary search algorithm allows you to fi nd a 
target value in an ordered list of n items in log2 n time as follows. Go to the middle item of 
the list. If the target item equals this item, you’re done. If not, compare the target item with 
the middle item to decide which half of the list you need to search. Next, inspect the middle 
item of the half you’re searching and repeat the strategy. Each inspection narrows your 
search to half as many items as the previous step, so the number of items you have to inspect 
equals the number of times you can divide n by 2 and get a result greater than 1. You can do 
this log2 n times (give or take one). 
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Constant Complexity

 An algorithm is said to have constant complexity if it can be executed in a number of steps 
that’s independent of the input size. The algorithm to fi nd a quarter in a jar of quarters is an 
example of an algorithm with constant complexity. The algorithm that answers the question 
“Are there any customers?” by scanning a Customers table also has constant complexity. 

Technical Defi nitions of Complexity

 Most algorithms require some fi xed overhead costs regardless of input. For example, an 
 algorithm to count the number of rows in a table might require overhead to allocate space for 
and initialize an integer variable to be incremented for each row. When the input is large, fi xed 
overhead is likely to be insignifi cant relative to the total execution cost. Comparing  execution 
costs for large inputs provides more insight into the essence of an algorithm’s computational 
complexity. In the metal notebook example, doubling the size of a large notebook increased 
the cost of materials by a factor of about 3.87, and you can check that doubling the size of 
an extremely large notebook increases the cost of materials by a factor of almost exactly 4.0. 
The relationship between hinge length (in inches) and materials cost (in dollars) for notebooks 
having the same proportions as a 5-by-7-inch notebook can be  expressed mathematically as 
MaterialsCost(h) = 0.1h+0.028h2. This cost function is a  quadratic polynomial. 

 Complexity is often expressed by the relationship between input size and cost for inputs large 
enough that fi xed overhead costs don’t matter. Technically, this is the asymptotic  complexity. 
For large values of h in the preceding example, the quadratic term 0.028h2  dominates the 
cost, and doubling the input size approximately quadruples the cost. The  single expression 
h2 characterizes this doubling-quadrupling behavior, and the cost in this case is said to have 
asymptotic order h2. 

Big Oh and related notations

 Complexity is often expressed using Big Oh notation. In Big Oh notation—which uses not 
only the big oh symbol O but also big theta (�), little oh (o), big omega (�), and others—the 
asymptotic cost in the previous example can be expressed this way: MaterialsCost(n) � �(n2), 
or “the cost function is in big theta of n-squared.” You can also say the cost “is n-squared” or 
“grows like n-squared.” 

 For many algorithms that depend on more than the size of the input, it may be possible 
to express the minimum and maximum possible costs as functions of the input size. These 
are called the best-case complexity and worst-case complexity, respectively. It may also be 
 possible to determine lower and upper bounds on complexity. Big Oh notation is useful in 
describing these various properties of complexity as well as other asymptotic properties of 
an  algorithm’s complexity. 
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 I won’t defi ne the Big Oh notations here; the defi nitions are quite technical. However, I will 
point out that you’re more likely to hear someone mention Big Oh than Big Theta, which 
I used earlier. If you hear students of computer science refer to Big Oh, they are almost 
 certainly talking about algorithmic complexity, but they could mean Big Anything because 
the meanings of the various notations are frequently confused. 

 The Big Oh family of notations are generally attributed to the late-nineteenth- and 
 early-twentieth-century number theorists Landau and Bachmann. Although they look like 
real-valued functions, the expressions �(n2), O(n), o(log n), and so on are not real-valued 
functions. Instead, they are sets of functions, whence the preceding language “in �(n2)”. 

 Unfortunately, this notation is used in a number of confusing (some might say careless, 
 sloppy, or wrong) ways. In particular, f = O(g) is commonly written to mean not that f equals 
O(g) but that f equals some element of O(g). 

 Note The abuse of notation here is similar to that used when describing indefi nite integrals in 
calculus. Neither side of the expression �x3dx = ¼x4 + C is a function. 

 Despite a few shortcomings, Big Oh notation is useful because it captures important aspects 
of the relationship between input size and cost. For example every function in �(n2) exhibits 
the “twice the input, four times the cost” behavior once n is large enough. The  complexity 
class �(n2) also contains all quadratic polynomials, and every function in �(n2) is called 
 quadratically complex. 

 Big Oh notation also makes it possible to describe cost “functions” that aren’t in fact 
 deterministic functions. In the coin jar example, the time required to fi nd a quarter wasn’t a 
well-defi ned function of the number of coins in the jar. The time depended in part on the 
number of coins in the jar but also on other features of the input, such as the  proportion 
of quarters and how the quarters were distributed in the jar, to name two. Although 
QuarterRetrievalTime(n) isn’t a function, we know that the time required to retrieve a quarter 
(or fail to retrieve a quarter, if there are no quarters) is at worst proportional to n. In Big Oh 
notation, this is easy to say: QuarterRetrievalTime(n) = O(n). 

Polynomial and Nonpolynomial Complexity

 As we saw earlier, the cost functions 0.028n2 and n2 are both in the complexity class �(n2) 
because they both exhibit the “twice the input, four times the cost” behavior for large  inputs. 
On the other hand, the behavior of the cost function n3 is “twice the input, eight times 
the cost,” and n3 is not in the class �(n2). In general, if the asymptotic behavior of a cost 
 function C(n) is “twice the input, k times the cost” for some positive constant k, C(n) is in the 
 complexity class �(np), where p = log2 k. The complexity classes �(np) for different values 
of p are distinct, but if C(n) is in �(np) for any value of p ≥ 0, C(n) is said to have polynomial 
 complexity. The class of functions with polynomial complexity is called P. Many real-world 
problems have complexity np—typically for p-values between 0 and 4.  
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The cost function for the minimum bin packing problem, n!, and, unfortunately, the 
cost  functions for quite a few important real-world problems, have nonpolynomial  complexity 
 because they grow too quickly to belong in P. Functions with nonpolynomial complexity  include 
2n (which is the number of subsets of an n-element set), 3n (the number of ways to assign a truth 
value of True, False, or Unknown to each of n propositions), n! (the number of arrangements of 
n items), 2n×n (the number of distinct binary relations on an n-element set), and nn (the number 
of ways to match the elements of one n-element set to the elements of another). 

 If an algorithm has polynomial complexity, it’s generally possible to accommodate an 
 increase in input size with additional resources. On the other hand, if an algorithm has 
 nonpolynomial complexity, it’s generally impossible to use it for all but very small inputs, 
and scaling may be out of the question. Problems for which the only known algorithms have 
nonpolynomial complexity are called intractable. They aren’t unsolvable because there are 
algorithms to solve them, but for all practical purposes, they might as well be unsolvable—for 
large input, the algorithms won’t come up with a solution in anyone’s lifetime. 

Comparing Complexities

 The central processing unit (CPU) of a typical computer today can execute a few billion2 
 low-level instructions per second. Higher-level operations like those expressed as  statements 
in a language like C# or Fortran require multiple machine instructions, and a reasonable 
benchmark to use for comparing complexities is a million steps per second. The sidebar 
“Sorting a Million Numbers” describes a quick test that affi rms this benchmark. 

Sorting a Million Numbers

 In Chapter 6, “Subqueries, Table Expressions, and Ranking Functions,” you’ll fi nd 
the code to create Nums, a million-row table of integers. The query below sorts the 
1,000,000 integers in Nums according to the value of REVERSE(n), for which there’s 
no supporting index. This query took 21 seconds to execute on my single-core home 
 computer. You don’t have to jump to Chapter 6 and fi nd the defi nition of Nums. You 
can use any million-row table you might have handy. Select one column and order it by 
an expression that isn’t indexed.  

USE InsideTSQL2008;

GO

SELECT n

FROM dbo.Nums

ORDER BY REVERSE(n);

2 In this book, billion means 109. In the UK and Australia, the word billion (or a linguistic cognate) historically 
 described the larger number 1012. If confusion is possible, it’s safe to describe 109 as a thousand million.

USE InsideTSQL2008;

GO

SELECT n

FROM dbo.Nums

ORDER BY REVERSE(n);
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 According to the estimated (nonparallel) execution plan for this query, 97 percent of 
the cost goes to the Sort operator. The complexity of SQL Server’s sorting algorithm is 
n log2 n. For n=1,000,000, n log2 n microseconds is about 19.9 seconds, which is very 
close to 97 percent of the actual elapsed time.  

 Note Before running the query, I selected the option Discard Results after Query 
Executes in Management Studio for both text and grid results. You can fi nd it by  choosing 
Query Options from the shortcut menu of the query editor. This way, the elapsed time 
 corresponded to the time it took to sort the results, not the time it took to present them. 

 Using this benchmark, Table 5-2 compares the running time of algorithms that take log n, n, 
n log n, n2, n3, and 2n steps to process input of size n for various values of n from 10 to 1010 
(10 billion). Times well below a millisecond are denoted by negligible, and other times are 
rounded and expressed in the most meaningful units. 

TABLE 5-2 Running Times for Various Input Sizes and Complexities 

 Complexity n = 10 n = 20 n = 100 n = 1000 n = 106 n = 109 n = 1010

 log n negligible negligible negligible negligible negligible negligible negligible

 n negligible negligible negligible 1 ms 1 second 15 min. 3 hours

 n log n negligible negligible 1 ms 10 ms 20 secs. 8 hours 4 days

 n2 negligible negligible 10 ms 1 second 12 days 310
centuries

3 million 
years

 n3 1 ms 8 ms 1 second 20 min. 310
centuries

forever forever*

 2n 1 ms 15 min. forever* forever forever forever forever

 Lest you think forever is an exaggeration, the two entries marked with an asterisk—not the 
longest times in the table—are each about 40 billion billion years, and yes, that’s 40 billion 
billion, not just 40 billion. 

 What may be more surprising than the things that take forever is how much longer it takes to 
use an n2 algorithm than an n log n algorithm for large n. 

Classic Algorithms and Algorithmic Strategies

 Before the middle of the twentieth century, computing technology wasn’t powerful enough 
to handle what we consider fundamental computational tasks today—searching and 
 sorting, network optimization, data compression, encryption, and so on—at least not on 
a large scale. Consequently, few people had put their energy into fi nding algorithms for 
these tasks. 

Complexity n = 10 n = 20 n = 100 n = 1000 n = 106 n = 109 n = 1010
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 In this section we’ll look at a few algorithms and strategies that are now considered classic, 
although in many cases they were developed within the last 50 years. You can fi nd many 
 excellent books and online sources that describe and analyze these and other algorithms 
in detail. One of my favorites is Introduction to Algorithms, Second Edition, by Cormen, 
Leiserson, Rivest (for whom the R in RSA encryption stands), and Stein. 

Algorithms for Sorting

 Arranging data in a prescribed order is a fundamental data processing task: alphabetizing 
a list of names, arranging books on a shelf or in a bookstore or library, listing businesses 
by their proximity to a consumer, or numbering search results by relevance—these are all 
 examples of sorting. Often, data needs to be sorted for it to be searched effi ciently. 

 In this section, I’ll describe several important sorting algorithms for the general problem of 
putting items into a specifi ed order. Some are valid for data stored in an array, and some are 
valid for data stored in a (linked) list, and some work in either case.  

Arrays and Lists

 An array is a data structure that allows single-step access to any item given its current 
ordinal position. In other words, if you need to inspect the 328th item, you can access it 
directly, without having to start at the fi rst item and move 327 steps forward. This kind 
of access to the items is called random access. If an array is named A, the item in ordinal 
position j is usually called A[j]. 

 A list is a data structure that, like an array, keeps data in order but where items can 
be accessed only from the beginning (or from either the beginning or the end). This 
kind of access is called sequential access. If a list is called L, the fi rst element of the list 
is  usually called the head item of the list, and the last item is called the tail item. If x is 
one of the items in L, the item before x is called its predecessor, and the item after L is 
called its successor. There’s no standard notation for the item in ordinal position j of a 
list L  because it can’t be accessed directly. 

 While arrays are optimized for random access, lists are typically optimized for inserting 
and deleting data. If the 219th item of a 1,000-item array is deleted, the last 781 items 
must be moved: the item that was 220th must be moved to the 219th position, the 
221st to the 220th position, and so on. If an item is deleted from a list, its predecessor 
can simply consider its successor to come next.  

 Note It’s also possible to store data in order and suffer the worst aspects of both arrays and 
lists. Magnetic tape drives are like lists in that they only allow sequential access, but they are 
like arrays in that they are nonoptimized for inserting and deleting information. Sorting data on 
magnetic tape drives is called external sorting and requires algorithms different from those 
 described here.  

C05626034.indd   287 2/18/2009   11:36:40 PM



288 Inside Microsoft SQL Server 2008: T-SQL Querying

Quadratic Sorting Algorithms

 When you arrange a handful of playing cards or alphabetize a few dozen folders in a fi le cabinet, 
you’re probably applying a quadratic sorting algorithm like insertion sort or selection sort. 

Insertion sort To sort a list of items with insertion sort, begin with the second item. If it 
belongs before the fi rst item, exchange it with the fi rst item. Then look at the third item and 
move it up zero, one, or two slots so that the fi rst three items are in order. Look at the fourth 
item and move it up zero, one, two, or three slots so the fi rst four items are in order. Proceed 
in this manner until you have looked at the last item and moved it into the correct place. 
If insertion sort is used for an array and newly considered items must frequently be moved 
many slots up, a great deal of data movement may be needed.

 Insertion sort has worst-case complexity O(n2). On the other hand, if the data is already in 
 order (and, trust me, this often happens), insertion sort is linear. Insertion sort is relatively 
easy to implement correctly, and when n is small, it’s a good choice. 

Selection sort Selection sort resembles insertion sort, but it’s better than insertion sort for 
data in an array because data is swapped into position instead of squeezed into  position. 
To sort a list of items with selection sort, fi rst scan the items to fi nd the one that should be 
placed fi rst. Swap that item with the fi rst item. Then scan items 2 through n to fi nd the one 
belonging fi rst (of those n-1 items). Swap it with the second item. Continue in this manner 
until you have scanned the fi nal two items, found which one goes before the other, and 
swapped them if needed.

 An important aspect of these sorts is that you can be specifi c about what is true if you quit 
 before you fi nish the process. If you carry out insertion sort only through the 10th item, you 
can be sure that the fi rst 10 items are in order. They may not, however, be the 10 items that 
ultimately belong in the fi rst 10 positions. If you quit selection sort after the 10th item, you 
can be sure that the fi rst 10 items are in order and that they are the 10 items that  ultimately 
belong in the fi rst 10 positions. If you think about the sorts this way, you might conclude 
that selection sort is better. However, if you think about it, you’ll  realize that  handling each 
 successive item in insertion sort gets more diffi cult and that handling each  successive item in 
 selection sort gets less diffi cult. If there are many items, it will take you longer to handle the 
fi rst 10 with selection sort. It’s no surprise, then, that you get more accomplished. 

O(n log n) Sorting Algorithms

 The two most commonly used sorting algorithms have complexity O(n log n). Both of them 
rely on a valuable strategy for solving large problems: divide and conquer, and they are most 
 easily implemented using recursion. 

 Merge sort It’s easy to describe merge sort, though you wouldn’t likely use it to sort 
cards or fi les by hand. To sort the items in a list or array with merge sort, fi rst check to see 
if you have only one item. If so, you’re done sorting! Otherwise, see if you have only two 
items. If so, compare the two items and swap them if necessary. Otherwise, you have more 

C05626034.indd   288 2/18/2009   11:36:40 PM



 Chapter 5 Algorithms and Complexity 289

than two items to sort, and you must do three things: sort the fi rst half of the items (using 
merge sort), sort the second half of the items, and merge the two (now sorted) halves into 
a single list that is in order. Merging two sorted lists to obtain a single sorted list takes only 
O(n) time when there are a total of n items. However, each item participates in roughly log 
n merge operations, so the complexity of the entire sorting algorithm is O(n log n). Merge 
sort is  reliably fast because its best-case, worst-case, and average-case complexities are all 
the same. The downside of merge sort is that simple implementations require space for the 
merge operation. 

 Quick sort Quick sort, like merge sort, is easiest to describe and implement recursively. 
Here’s how it works: To sort the items in a list or array with quick sort, begin by setting aside 
the fi rst item of the list. Its value is called the pivot. Then divide the remaining items from 
the second item to the last item into two separate lists—one to the left of the pivot item 
and containing the items that come before the pivot and the other to the right of the pivot 
item and containing items that come after the pivot value. Then sort each of these two lists 
(using quick sort). That’s it. One advantage to quick sort is that it can easily be implemented 
with very modest space requirements. On the other hand, it has a worst-case complexity of 
O(n2), which ironically occurs when the list is already sorted! Fortunately, if the algorithm is 
modifi ed slightly, and the pivot item is chosen at random, the worst-case scenario is not the 
already-sorted scenario, and quick sort is very unlikely to be slow.  

Faster Sorting Algorithms

 Comparison-based swapping sorts are sorts that rearrange elements only by swapping, 
and the decision to swap or not swap elements is made by comparing the elements. 
 Comparison-based swapping sorts cannot have complexity better than O(n log n). However, 
there are other ways to sort items. 

Ultra sort Ultra sort requires a staging area that will receive the data as it’s scanned, and 
the preparation of the staging area depends on the type of data to be sorted. Suppose 
you’re sorting numbers from 1 to 1,000. First allocate and initialize to zero an array A 
 containing 1,000 items: A[1], A[2], through A[1000]. This setup takes O(1) time. Now scan 
the data to be sorted. When you encounter a 17, increment the value of A[17]. When you 
 encounter a 36, increment A[36], and so on. When you’ve gone through the entire list, you 
have an array A that recorded the number of 1s, of 2s, and so on in your original list. To 
 return the original list in sorted order, step through the array A. When you get to A[63], for 
example, and fi nd that it equals 3, return 63 to the user 3 times. Then go to A[64]. This sort 
required O(n) time and O(1) space. Unfortunately, if you were sorting integers, the size of 
your O(1) space would be about 16 billion bytes, and while 16 billion is technically O(1), it’s 
the dominant term, and quick sort or merge sort will probably be an improvement.

String Searching

 Another common data processing task is to fi nd a string within a longer string, for example, 
to fi nd a particular word in a word processing document. If I want to fi nd the word particular 
in the previous sentence, how long does it take? 
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 Not long, if I mean I want to fi nd it “as a word” and not as consecutive letters ignoring 
 spaces, for example. However, suppose I want to fi nd a particular computer virus signature 
on my hard drive. Is there a quick way to do it? 

Searching for a Virus Signature in a Gigabyte BLOB

 Suppose 0x0001000100010001000100010001000100010001 is a dangerous virus 
 signature and you need to fi nd it if it exists as a substring of gigabyte BLOB (Binary Large 
Object). Surprisingly, there is an algorithm to search for it that will inspect  considerably 
fewer than all the bytes of the BLOB. Here is the procedure: 

Algorithm to search for 0x0001000100010001000100010001000100010001

  1. Inspect the 20th byte of the BLOB, which would be the last byte of the signature 
if the signature appeared at the beginning of the BLOB. If the 20th byte is not 
0x00 or 0x01, the virus signature cannot begin at any one of the fi rst 20 bytes of 
the BLOB. As a  result, the leftmost position where the virus signature can begin 
is the 21st byte.  

  2. Inspect the 40th byte, which is where the virus signature would end if it began at 
the 21st byte. If that byte is not 0x00 or 0x01, proceed to the next step. 

  3. Inspect the 60th byte and so on.  

 Once in a while, you will inspect a byte that is 0x00 or 0x01, and you’ll have to follow 
 different rules that don’t let you jump ahead by 20 bytes, but you can still rule out 
many starting points if the byte you inspect is preceded closely by a byte that isn’t 
0x00 or 0x01. It’s quite likely that you have to inspect only one or two bytes out of 
 every 20 in your BLOB, and you’ll often determine that the virus signature is absent 
 after inspecting only 5 to 10 percent of the BLOB bytes.  

 This clever algorithm was described by Boyer and Moore in 1977 and provides an 
 example of a sublinear complexity algorithm that requires no preorganization of the data. 

A Practical Application

 In the fi nal section of this chapter, I’ll describe a real-world process control problem 
I  encountered about 10 years ago and was able to solve with an effi cient algorithm that had 
only recently been published in a mathematics journal. This real-world problem concerns the 
identifi cation of a trend marker in a series of measurements of toxin levels. In the  following 
description, I’ve simplifi ed the scenario but not the algorithm, which eventually received 
 governmental certifi cation and was used for environmental monitoring. 

Algorithm to search for 0x0001000100010001000100010001000100010001
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Identifying Trends in Measurement Data

 The ongoing debate about global warming underlines the fact that there is no simple 
 criterion for identifying an increasing trend in a series of measurements. Many industries use 
statistical process control (SPC) software to identify trends, and these software programs can 
be confi gured to identify many different kinds of patterns called trend markers in a  series 
of measurements. A simple trend marker is a record high measurement: a measurement 
higher than any previously recorded value. Another trend marker is the occurrence of seven 
 consecutive above-average measurements. Yet another is the occurrence of two consecutive 
measurements at or above the 98th percentile of all previous measurements. A number of 
commercial SPC programs include these trend markers. 

Increasing Subsequences

 One useful trend marker not typically included in commercial software packages is an  increasing 
subsequence of a particular length. Here’s an example of a sequence of  measurements that 
includes a length-four increasing subsequence. The four numbers in bold form an increasing 
subsequence—increasing because they increase from left to right and subsequence because 
the values come from the original sequence. 

 3.894, 4.184, 3.939, 4.050, 3.940, 4.140, 3.914, 4.156, 4.143, 4.035, 4.097 

 The subsequence identifi ed in bold isn’t the only increasing subsequence of length four, nor 
is it the longest increasing subsequence in the original sequence. 

 The problem we’ll solve in T-SQL is that of fi nding the length of the longest increasing 
subsequence. 

Longest Increasing Subsequence Length Problem (LISLP)

 Input: A sequence X of n numbers: x1, x2, . . ., xn. 

 Output: The largest integer k for which there is a length-k increasing subsequence of X. 

The Algorithmic Complexity of LISLP

 One way to solve this problem is to enumerate all the subsequences of X and check each 
one to see if its values form an increasing sequence. If X is a very short sequence, this works 
 reasonably well. For example, if X contains 6 elements, there are only 57 subsequences of 
length at least two. (Note that a subsequence can’t really be increasing if it doesn’t contain at 
least two items.) 
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How Many Subsequences Are There?

 Unfortunately, the number of subsequences of X grows exponentially with the length of X. If 
X contains not six but 26 elements, there are more than 67 million subsequences. If X  contains 
60 elements, there are more than a billion billion. A billion billion  nanoseconds is about 
31 years. Don’t try enumerating this many subsequences at home! If the  sequence X contains n 
items, there’s a subsequence of X for every subset of the set of item  positions {1, 2, 3, . . ., n}, or 
2n subsequences in all. There are n one-item subsequences and one  zero-item subsequence, 
leaving us with 2n − (n+1) subsequences of length at least two. Although in practice you might 
not need to consider all these subsequences—for example, as soon as you fi nd one increasing 
subsequence, you can skip all the unchecked  subsequences of the same length—enumerating 
subsequences is not the way to solve LISLP. 

An Algorithm for LISLP with �(n log n) Complexity

 The algorithmic complexity of enumerating all subsequences of a length-n sequence is �(2n), 
which, as we’ve seen, makes the problem impossible to solve in practice for inputs of even 
modest size. Fortunately, not long before I encountered this problem, so had two  talented 
mathematics, David Aldous and Persi Diaconis. Better yet, they had published their  fi ndings in 
the Bulletin of the American Mathematical Society in 1999: “Longest  increasing  subsequences: 
from patience sorting to the Baik-Deift-Johansson theorem.” Aldous and Diaconis described 
an O(n log n) algorithm to solve the problem.

 Algorithms with �(n log n) complexity are practical to use, but it helps if they are also simple 
to implement. This one turns out to be.  

Finding the Length of the Longest Increasing Subsequence

 Let X = (x1, x2, . . ., xn) be a sequence of n real numbers. The length of the longest increasing 
subsequence of X is the length of the list L generated by the following procedure. 

 1.  Let k = 1, and let L be an empty list of numbers. 

 2.  While k ≤ n: 

 3.  Inspect L for numbers greater than or equal to ak. If one exists, replace the fi rst (and 
smallest) of them with ak. Otherwise (when ak is greater than every number in L), insert 
ak into the list L. Increase k by 1. 

Solving the Longest Increasing Subsequence 
Length Problem in T-SQL

 Execute the code in Listing 5-1 to create the tables Locations and Readings and fi ll them with 
sample data. 

Finding the Length of the Longest Increasing Subsequence
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LISTING 5-1 Creating and populating the Locations and Readings tables

USE tempdb;

GO

IF OBJECT_ID('dbo.Locations') IS NOT NULL 

  DROP TABLE dbo.Locations;

CREATE TABLE dbo.Locations (

  ID INT NOT NULL PRIMARY KEY,

  name VARCHAR(12) NOT NULL

);

INSERT INTO dbo.Locations VALUES (1, 'Uptown'), (2, 'Midtown');

IF OBJECT_ID('dbo.Readings') IS NOT NULL 

  DROP TABLE dbo.Readings;

CREATE TABLE dbo.Readings (

  locID INT REFERENCES dbo.Locations(ID),

  readingNum INT,

  ppb DECIMAL(6,3),

  PRIMARY KEY (locID,readingNum)

);

INSERT INTO dbo.Readings VALUES

  (1,1,3.968), (1,2,3.773), (1,3,3.994), (1,4,3.889),

  (1,5,4.015), (1,6,4.002), (1,7,4.043), (1,8,3.932),

  (1,9,4.072), (1,10,4.088), (1,11,3.952), (1,12,3.992),

  (1,13,3.980), (1,14,4.062), (1,15,4.074), (2,1,3.894),

  (2,2,4.184), (2,3,3.939), (2,4,4.050), (2,5,3.940),

  (2,6,4.140), (2,7,3.914), (2,8,4.156), (2,9,4.143),

  (2,10,4.035), (2,11,4.097), (2,12,4.086), (2,13,4.093),

  (2,14,3.932), (2,15,4.046);

GO

The pseudocode described how to implement the algorithm for a single sequence X, and the 
Readings table contains two sequences of readings, one for each of two locations. Therefore, 
with the code in Listing 5-2, we’ll create a user-defi ned function dbo.LISL that returns the 
 longest increasing subsequence length for a single sequence, given a location ID as input. 

LISTING 5-2 Code to create the user-defi ned function LISL

IF OBJECT_ID('dbo.LISL') IS NOT NULL DROP FUNCTION dbo.LISL;

CREATE FUNCTION dbo.LISL(@locID INT)

RETURNS INT AS BEGIN

  DECLARE @Solitaire TABLE (

    pos int IDENTITY(1,1) PRIMARY KEY,

    ppb decimal(6,3),

    UNIQUE (ppb,pos)

  );

USE tempdb;

GO

IF OBJECT_ID('dbo.Locations') IS NOT NULL 

  DROP TABLE dbo.Locations;

CREATE TABLE dbo.Locations (

  ID INT NOT NULL PRIMARY KEY,

  name VARCHAR(12) NOT NULL

);

INSERT INTO dbo.Locations VALUES (1, 'Uptown'), (2, 'Midtown');

IF OBJECT_ID('dbo.Readings') IS NOT NULL 

  DROP TABLE dbo.Readings;

CREATE TABLE dbo.Readings (

  locID INT REFERENCES dbo.Locations(ID),

  readingNum INT,

  ppb DECIMAL(6,3),

  PRIMARY KEY (locID,readingNum)

);

INSERT INTO dbo.Readings VALUES

  (1,1,3.968), (1,2,3.773), (1,3,3.994), (1,4,3.889),

  (1,5,4.015), (1,6,4.002), (1,7,4.043), (1,8,3.932),

  (1,9,4.072), (1,10,4.088), (1,11,3.952), (1,12,3.992),

  (1,13,3.980), (1,14,4.062), (1,15,4.074), (2,1,3.894),

  (2,2,4.184), (2,3,3.939), (2,4,4.050), (2,5,3.940),

  (2,6,4.140), (2,7,3.914), (2,8,4.156), (2,9,4.143),

  (2,10,4.035), (2,11,4.097), (2,12,4.086), (2,13,4.093),

  (2,14,3.932), (2,15,4.046);

GO

IF OBJECT_ID('dbo.LISL') IS NOT NULL DROP FUNCTION dbo.LISL;

CREATE FUNCTION dbo.LISL(@locID INT)

RETURNS INT AS BEGIN

  DECLARE @Solitaire TABLE (

    pos int IDENTITY(1,1) PRIMARY KEY,

    ppb decimal(6,3),

    UNIQUE (ppb,pos)

  );
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  DECLARE C CURSOR FAST_FORWARD

  FOR

    SELECT ppb

    FROM dbo.Readings

    WHERE locID = @locID

    ORDER BY readingNum;

  DECLARE @ppb decimal(6,3);

  OPEN C;

  FETCH NEXT FROM C INTO @ppb;

  IF @@fetch_status <> 0 RETURN 0;

  INSERT INTO @Solitaire VALUES (@ppb);

  WHILE @@fetch_status = 0 BEGIN

    WITH T(pos) AS (

      SELECT MIN(pos)

      FROM @Solitaire

      WHERE ppb >= @ppb

    )

    MERGE INTO @Solitaire AS S

    USING T

    ON T.pos = S.pos

    WHEN MATCHED THEN

      UPDATE SET ppb = @ppb

    WHEN NOT MATCHED BY TARGET THEN

      INSERT (ppb) VALUES (@ppb);

    FETCH NEXT FROM C INTO @ppb;

  END;

  CLOSE C;

  DEALLOCATE C;

  RETURN (SELECT COUNT(*) FROM @Solitaire);

END;

GO

 Listing 5-2 includes a MERGE statement, which is a new feature of SQL Server 2008. You’ll 
learn about MERGE in detail in Chapter 10, “Data Modifi cation.” Otherwise, there’s not much 
to explain in the listing, which follows the pseudocode closely. I will point out that I’ve given 
the name @Solitaire to the table that represents L because Diaconis and Aldous describe 
the algorithm for LISLP in terms of a game of Solitaire (which is known as Patience in some 
English-speaking countries).  

 Finally, let’s use this function (shown in Listing 5-3) to solve LISLP for our sample data.

  DECLARE C CURSOR FAST_FORWARD

  FOR

    SELECT ppb

    FROM dbo.Readings

    WHERE locID = @locID

    ORDER BY readingNum;

  DECLARE @ppb decimal(6,3);

  OPEN C;

  FETCH NEXT FROM C INTO @ppb;

  IF @@fetch_status <> 0 RETURN 0;

  INSERT INTO @Solitaire VALUES (@ppb);

  WHILE @@fetch_status = 0 BEGIN

    WITH T(pos) AS (

      SELECT MIN(pos)

      FROM @Solitaire

      WHERE ppb >= @ppb

    )

    MERGE INTO @Solitaire AS S

    USING T

    ON T.pos = S.pos

    WHEN MATCHED THEN

      UPDATE SET ppb = @ppb

    WHEN NOT MATCHED BY TARGET THEN

      INSERT (ppb) VALUES (@ppb);

    FETCH NEXT FROM C INTO @ppb;

  END;

  CLOSE C;

  DEALLOCATE C;

  RETURN (SELECT COUNT(*) FROM @Solitaire);

END;

GO
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LISTING 5-3 Query to fi nd the longest increasing subsequence length

SELECT

  name, dbo.LISL(ID) AS LISL

FROM dbo.Locations;

This query returns the following results: 

name         LISL

------------ -----------

Uptown       7

Midtown      6

Can you fi nd increasing subsequences of length 7 and 6 for the Uptown and Midtown data, 
respectively? And can you convince yourself that these are the longest? 

Conclusion

This chapter surveyed some key concepts about algorithms and complexity. A close look at 
complexity dispelled the idea that the answer to every problem is better hardware! After 
briefl y surveying a few algorithms that are particularly important to the SQL Server engine, 
the chapter ended with a practical example. 

SELECT

  name, dbo.LISL(ID) AS LISL

FROM dbo.Locations;
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Chapter 6

Subqueries, Table Expressions, 
and Ranking Functions

 This chapter covers subqueries, which are queries within queries, and ranking calculations. 
Subqueries can be scalar, multivalued, or table valued. You can use a scalar subquery where a 
single value is expected. For example, the following query returns the order with the maximum 
order ID: 

USE InsideTSQL2008;

SELECT orderid, custid

FROM Sales.Orders

WHERE orderid = (SELECT MAX(orderid) FROM Sales.Orders);

 The scalar subquery in bold is in charge of returning the maximum order ID. This subquery is 
self-contained, meaning that it has no dependency on the outer query.  

 A subquery that has a dependency on the outer query is known as a correlated subquery. For 
example, the following query returns the order with the maximum order ID for each customer: 

SELECT orderid, custid

FROM Sales.Orders AS O1

WHERE orderid = (SELECT MAX(O2.orderid)

                 FROM Sales.Orders AS O2

                 WHERE O2.custid = O1.custid);

 The correlated subquery in bold is in charge of returning the maximum order ID for the 
 current customer in the outer table. 

 You can use a multivalued subquery where multiple values are expected. For example, the 
 following query returns customers who placed orders: 

SELECT custid, companyname

FROM Sales.Customers

WHERE custid IN (SELECT custid FROM Sales.Orders);

 The multivalued subquery in bold is in charge of returning customer IDs of customers who 
placed orders. Like scalar subqueries, multivalued subqueries can be correlated. 

 You can use a table-valued subquery, or table expression, where a table is expected. For 
 example, the following query returns the maximum order ID for each order year: 

SELECT orderyear, MAX(orderid) AS max_orderid

FROM (SELECT orderid, YEAR(orderdate) AS orderyear

      FROM Sales.Orders) AS D

GROUP BY orderyear;
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 The table expression D in bold assigns the alias orderyear to the expression YEAR(orderdate) 
and returns the order ID and order year for each order. 

 I’ll refer to scalar and multivalued subqueries just as subqueries and to subqueries that are 
used where a table is expected as table expressions. In this chapter, I’ll cover two kinds of 
table expressions: derived tables and common table expressions (CTE). 

 In the last part of the chapter, I’ll cover ranking functions, including row number, rank, dense 
rank, and tile.  

 Because this book is intended for experienced programmers, I assume that you’re already 
familiar with subqueries and table expressions. I’ll go over their defi nitions briefl y and focus 
on their applications and on problem solving. 

Subqueries

 Subqueries can be characterized in two main ways. One is by the expected number of values 
(either scalar or multivalued), and another is by the subquery’s dependency on the outer 
query (either self-contained or correlated). Both scalar and multivalued subqueries can be 
either self-contained or correlated. 

Self-Contained Subqueries

 As mentioned, a self-contained subquery is a subquery that can be run independently of the 
outer query. Self-contained subqueries are very convenient to debug, of course, compared to 
correlated subqueries. 

 Scalar subqueries can appear anywhere in the query where an expression resulting in a scalar 
value is expected, while multivalued subqueries can appear anywhere in the query where 
a collection of multiple values is expected. 

 A scalar subquery is valid when it returns a single value and also when it returns no values—
in which case, the value of the subquery is NULL. However, if a scalar subquery returns 
more than one value, a run-time error will occur. 

 For example, run the following code three times: once as shown, a second time with LIKE 
N’Kollar’ in place of LIKE N’Davis’, and a third time with LIKE N’D%’ : 

SELECT orderid FROM Sales.Orders

WHERE empid = 

  (SELECT empid FROM HR.Employees

   -- also try with N'Kollar' and N'D%'

   WHERE lastname LIKE N'Davis');

 With N’Davis’, the subquery returns a single value (1) and the outer query returns all orders 
with employee ID 1. 
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 With N’Kollar’, the subquery returns no values and is therefore NULL. The outer query obviously 
doesn’t fi nd any orders for which empid = NULL and therefore returns an empty set. Note that 
the query doesn’t break (fail)—it’s a valid query. 

 With N’D%’, the subquery returns two values (1, 9), and because the outer query expects a 
scalar, it breaks at run time and generates the following error : 

Msg 512, Level 16, State 1, Line 1 

Subquery returned more than 1 value. This is not permitted when the subquery follows =, 

!=, <, <= , >, >= or when the subquery is used as an expression.

 Logically, a self-contained subquery can be evaluated just once for the whole outer query. 
Physically, the optimizer can consider many different ways to achieve the same thing, so you 
shouldn’t think in such strict terms.  

 Now that we’ve covered the essentials, let’s move on to more sophisticated problems involving 
self-contained subqueries. 

 I’ll start with a problem belonging to a group of problems called relational division. Relational 
division problems have many nuances and many practical applications. Logically, it’s like 
dividing one set by another, producing a result set. For example, from the InsideTSQL2008 
database, return all customers for whom every employee from the USA has handled at least 
one order. In this case, you’re dividing the set of all orders by the set of all employees from 
the USA, and you expect the set of matching customers back. Filtering here is not that simple 
because for each customer you need to inspect multiple rows to fi gure out whether you have 
a match. 

 Here I’ll show a technique using GROUP BY and DISTINCT COUNT to solve relational division 
problems. I’ll show you other techniques later in the book. 

 If you knew ahead of time the list of all employee IDs for USA employees, you could write the 
following query to solve the problem: 

SELECT custid

FROM Sales.Orders

WHERE empid IN(1, 2, 3, 4, 8)

GROUP BY custid

HAVING COUNT(DISTINCT empid) = 5;

 This query generates the following output: 

custid

-----------

5

9

20

24

34

35

37

38
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39

41

46

47

48

51

55

63

65

71

80

83

84

87

89

 This query fi nds all orders with one of the fi ve U.S. employee IDs, groups those orders by custid, 
and returns customer IDs that have (all) fi ve distinct empid values in their group of orders.  

 To make the solution more dynamic and accommodate lists of employee IDs that are 
 unknown ahead of time and also large lists even when known, you can use subqueries 
 instead of literals: 

SELECT custid

FROM Sales.Orders

WHERE empid IN

  (SELECT empid FROM HR.Employees

   WHERE country = N'USA')

GROUP BY custid

HAVING COUNT(DISTINCT empid) =

  (SELECT COUNT(*) FROM HR.Employees

   WHERE country = N'USA');

 Another problem involving self-contained subqueries is returning all orders placed on the 
last actual order date of the month. Note that the last actual order date of the month might 
be different than the last date of the month—for example, if a company doesn’t place orders 
on weekends. So the last actual order date of the month has to be queried from the data. 
Here’s the solution query: 

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderdate IN

  (SELECT MAX(orderdate)

   FROM Sales.Orders

   GROUP BY YEAR(orderdate), MONTH(orderdate));

 This query produces the following output: 

orderid     custid      empid       orderdate

----------- ----------- ----------- -----------------------

10269       89          5           2006-07-31 00:00:00.000

10294       65          4           2006-08-30 00:00:00.000
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10317       48          6           2006-09-30 00:00:00.000

10343       44          4           2006-10-31 00:00:00.000

10368       20          2           2006-11-29 00:00:00.000

10399       83          8           2006-12-31 00:00:00.000

10432       75          3           2007-01-31 00:00:00.000

10460       24          8           2007-02-28 00:00:00.000

10461       46          1           2007-02-28 00:00:00.000

10490       35          7           2007-03-31 00:00:00.000

10491       28          8           2007-03-31 00:00:00.000

10522       44          4           2007-04-30 00:00:00.000

10553       87          2           2007-05-30 00:00:00.000

10554       56          4           2007-05-30 00:00:00.000

10583       87          2           2007-06-30 00:00:00.000

10584       7           4           2007-06-30 00:00:00.000

10616       32          1           2007-07-31 00:00:00.000

10617       32          4           2007-07-31 00:00:00.000

10650       21          5           2007-08-29 00:00:00.000

10686       59          2           2007-09-30 00:00:00.000

10687       37          9           2007-09-30 00:00:00.000

10725       21          4           2007-10-31 00:00:00.000

10758       68          3           2007-11-28 00:00:00.000

10759       2           3           2007-11-28 00:00:00.000

10806       84          3           2007-12-31 00:00:00.000

10807       27          4           2007-12-31 00:00:00.000

10861       89          4           2008-01-30 00:00:00.000

10862       44          8           2008-01-30 00:00:00.000

10914       62          6           2008-02-27 00:00:00.000

10915       80          2           2008-02-27 00:00:00.000

10916       64          1           2008-02-27 00:00:00.000

10987       19          8           2008-03-31 00:00:00.000

10988       65          3           2008-03-31 00:00:00.000

10989       61          2           2008-03-31 00:00:00.000

11060       27          2           2008-04-30 00:00:00.000

11061       32          4           2008-04-30 00:00:00.000

11062       66          4           2008-04-30 00:00:00.000

11063       37          3           2008-04-30 00:00:00.000

11074       73          7           2008-05-06 00:00:00.000

11075       68          8           2008-05-06 00:00:00.000

11076       9           4           2008-05-06 00:00:00.000

11077       65          1           2008-05-06 00:00:00.000

 The self-contained subquery returns the following list of values representing the last actual 
order date of each month: 

2007-01-31 00:00:00.000

2008-01-30 00:00:00.000

2007-02-28 00:00:00.000

2008-02-27 00:00:00.000

2007-03-31 00:00:00.000

2008-03-31 00:00:00.000

2007-04-30 00:00:00.000

2008-04-30 00:00:00.000

2007-05-30 00:00:00.000

2008-05-06 00:00:00.000

2007-06-30 00:00:00.000
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2006-07-31 00:00:00.000

2007-07-31 00:00:00.000

2006-08-30 00:00:00.000

2007-08-29 00:00:00.000

2006-09-30 00:00:00.000

2007-09-30 00:00:00.000

2006-10-31 00:00:00.000

2007-10-31 00:00:00.000

2006-11-29 00:00:00.000

2007-11-28 00:00:00.000

2006-12-31 00:00:00.000

2007-12-31 00:00:00.000

 The subquery achieves this result by grouping the orders by order year and month and 
 returning the MAX(orderdate) for each group. The outer query returns all orders with an 
 orderdate that appears in the list returned by the subquery. 

Correlated Subqueries

 Correlated subqueries are subqueries that have references to columns from the outer query. 
Logically, the subquery is evaluated once for each row of the outer query. Again, physically, 
it’s a much more dynamic process and varies from case to case, with no single physical way 
to process a correlated subquery. 

Isolating One Row Per Group and Applying a Tiebreaker

 I’ll start dealing with correlated subqueries through a problem that introduces a very 
 important concept in SQL querying—a tiebreaker. I’ll refer to this concept throughout the 
book. A tiebreaker is an attribute or attribute list that allows you to uniquely rank elements. 
For example, suppose you need the most recent order for each employee. You are  supposed 
to return only one order for each employee, but the attributes empid and orderdate do not 
necessarily identify a unique order. You need to introduce a tiebreaker to be able to  identify 
a unique most recent order for each employee. For example, out of the multiple orders 
with the maximum orderdate for an employee, you could decide to return the one with the 
 maximum orderid. In this case, MAX(orderid) is your tiebreaker. Or you could  decide to return 
the row with the maximum requireddate and, if you still have multiple rows, return the one 
with the maximum orderid. In this case, your tiebreaker is MAX(requireddate), MAX(orderid). 
A  tiebreaker is not necessarily limited to a single attribute. 

 Before moving on to the solutions, run the following code to create indexes that support the 
physical processing of the queries that will follow: 

CREATE UNIQUE INDEX idx_eid_od_oid 

  ON Sales.Orders(empid, orderdate, orderid);

CREATE UNIQUE INDEX idx_eid_od_rd_oid 

  ON Sales.Orders(empid, orderdate, requireddate, orderid);
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 I’ll explain the indexing guidelines after presenting the solution queries. 

 Let’s start with the basic request to return the orders with the maximum orderdate for each 
employee. Here you can get multiple rows for each employee because an employee can have 
multiple orders with the same order date. 

 You might be tempted to use the following solution, which includes a self-contained subquery 
similar to the one used to return orders on the last actual order date of the month: 

SELECT orderid, custid, empid, orderdate, requireddate 

FROM Sales.Orders

WHERE orderdate IN

  (SELECT MAX(orderdate) FROM Sales.Orders

   GROUP BY empid);

 However, this solution is incorrect. The result set includes the correct orders (the ones with 
the maximum orderdate for each employee). But you also get any order for employee A with 
an orderdate that happens to be the maximum for employee B, even though it’s not also the 
maximum for employee A. This wasn’t an issue with the previous problem because an order 
date in month A can’t be equal to the maximum order date of a different month B. 

 In our case, the subquery must be correlated to the outer query, matching the inner empid to 
the one in the outer row: 

SELECT orderid, custid, empid, orderdate, requireddate 

FROM Sales.Orders AS O1

WHERE orderdate =

  (SELECT MAX(orderdate)

   FROM Sales.Orders AS O2

   WHERE O2.empid = O1.empid);

 This query generates the correct results, as the following output shows: 

orderid     custid      empid       orderdate               requireddate

----------- ----------- ----------- ----------------------- -----------------------

11077       65          1           2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

11070       44          2           2008-05-05 00:00:00.000 2008-06-02 00:00:00.000

11073       58          2           2008-05-05 00:00:00.000 2008-06-02 00:00:00.000

11063       37          3           2008-04-30 00:00:00.000 2008-05-28 00:00:00.000

11076       9           4           2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

11043       74          5           2008-04-22 00:00:00.000 2008-05-20 00:00:00.000

11045       10          6           2008-04-23 00:00:00.000 2008-05-21 00:00:00.000

11074       73          7           2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

11075       68          8           2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

11058       6           9           2008-04-29 00:00:00.000 2008-05-27 00:00:00.000

 The output contains one example of multiple orders for an employee, in the case of 
 employee 2. If you want to return only one row for each employee, you have to introduce 
a tiebreaker. For example, out of the multiple rows with the maximum orderdate, return the 
one with the maximum orderid. You can achieve this by adding another subquery that keeps 
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the order only if orderid is equal to the maximum among the orders with the same empid 
and orderdate as in the outer row: 

SELECT orderid, custid, empid, orderdate, requireddate 

FROM Sales.Orders AS O1

WHERE orderdate =

  (SELECT MAX(orderdate)

   FROM Sales.Orders AS O2

   WHERE O2.empid = O1.empid)

  AND orderid =

  (SELECT MAX(orderid)

   FROM Sales.Orders AS O2

   WHERE O2.empid = O1.empid

     AND O2.orderdate = O1.orderdate);

 Of the two orders for employee 2, only the one with the maximum orderid remains, as the 
following output shows: 

orderid     custid      empid       orderdate               requireddate

----------- ----------- ----------- ----------------------- -----------------------

11077       65          1           2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

11073       58          2           2008-05-05 00:00:00.000 2008-06-02 00:00:00.000

11063       37          3           2008-04-30 00:00:00.000 2008-05-28 00:00:00.000

11076       9           4           2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

11043       74          5           2008-04-22 00:00:00.000 2008-05-20 00:00:00.000

11045       10          6           2008-04-23 00:00:00.000 2008-05-21 00:00:00.000

11074       73          7           2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

11075       68          8           2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

11058       6           9           2008-04-29 00:00:00.000 2008-05-27 00:00:00.000

 Instead of using two separate subqueries for the sort column (orderdate) and the tiebreaker 
(orderid), you can use nested subqueries: 

SELECT orderid, custid, empid, orderdate, requireddate 

FROM Sales.Orders AS O1

WHERE orderid = 

  (SELECT MAX(orderid)

   FROM Sales.Orders AS O2

   WHERE O2.empid = O1.empid

     AND O2.orderdate = 

       (SELECT MAX(orderdate)

        FROM Sales.Orders AS O3

        WHERE O3.empid = O1.empid));

 I compared the performance of the two and found it very similar. I fi nd the nested approach 
more complex, so as long as there’s no compelling performance benefi t, I’d rather stick to 
the simpler approach. Simpler is easier to understand and maintain, and therefore less prone 
to errors.  

 Going back to the simpler approach, for each tiebreaker attribute you have, you need to 
add a subquery. Each such subquery must be correlated by the group column, sort column, 
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and all preceding tiebreaker attributes. So, to use MAX(requireddate), MAX(orderid) as the 
 tiebreaker, you would write the following query: 

SELECT orderid, custid, empid, orderdate, requireddate 

FROM Sales.Orders AS O1

WHERE orderdate =

  (SELECT MAX(orderdate)

   FROM Sales.Orders AS O2

   WHERE O2.empid = O1.empid)

  AND requireddate =

  (SELECT MAX(requireddate)

   FROM Sales.Orders AS O2

   WHERE O2.empid = O1.empid

     AND O2.orderdate = O1.orderdate)

  AND orderid =

  (SELECT MAX(orderid)

   FROM Sales.Orders AS O2

   WHERE O2.empid = O1.empid

     AND O2.orderdate = O1.orderdate

     AND O2.requireddate = O1.requireddate);

 The indexing guideline for the preceding tiebreaker queries is to create an index on (group_cols, 
sort_cols, tiebreaker_cols). For example, when the tiebreaker is MAX(orderid), you want an  index 
on (empid, orderdate, orderid). When the tiebreaker is MAX(requireddate), MAX(orderid), you 
want an index on (empid, orderdate, requireddate, orderid). Such an index would allow  retrieving 
the relevant sort value or tiebreaker value for an employee using a seek operation within 
the index. 

 When you’re done testing the tiebreaker solutions, run the following code to drop the indexes 
that were created just for these examples: 

DROP INDEX Sales.Orders.idx_eid_od_oid;

DROP INDEX Sales.Orders.idx_eid_od_rd_oid;

 I presented here only one approach using ANSI-correlated subqueries to solving the problem 
of isolating one row per group using a tiebreaker. This approach is neither the most effi cient 
nor the simplest. You will fi nd other solutions to tiebreaker problems in Chapter 8, “Aggregating 
and Pivoting Data,” in the “Tiebreakers” section, and in Chapter 9, “TOP and APPLY,” in the 
“TOP n for Each Group” section. 

EXISTS

 EXISTS is a powerful predicate that allows you to effi ciently check whether any rows result from 
a given query. The input to EXISTS is a subquery, which is typically but not necessarily correlated, 
and the predicate returns TRUE or FALSE, depending on whether the subquery returns at least one 
row or none. Unlike other predicates and logical expressions, EXISTS cannot return UNKNOWN. 
Either the input subquery returns rows or it doesn’t. If the subquery’s fi lter returns UNKNOWN for 
a certain row, the row is not returned. Remember that in a fi lter, UNKNOWN is treated like FALSE. 
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In other words, when the input subquery has a fi lter, EXISTS will return TRUE only if the fi lter is 
TRUE for at least one row. The reason I’m stressing this subtle point will become apparent shortly. 

 First, let’s look at an example that will demonstrate the use of EXISTS. The following query 
returns all customers from Spain who made orders: 

SELECT custid, companyname

FROM Sales.Customers AS C

WHERE country = N'Spain'

  AND EXISTS

    (SELECT * FROM Sales.Orders AS O

     WHERE O.custid = C.custid);

 This query generates the following output: 

custid      companyname

----------- ----------------------------------------

8           Customer QUHWH

29          Customer MDLWA

30          Customer KSLQF

69          Customer SIUIH

 The outer query returns customers from Spain for whom the EXISTS predicate fi nds at least 
one order row in the Orders table with the same custid as in the outer customer row.

 Tip The use of the asterisk (*) here is perfectly safe, even though in general it’s not a good 
 practice. The optimizer ignores the SELECT list specifi ed in the subquery because EXISTS cares 
only about the existence of rows and not about any specifi c attributes. Some resolution  overhead 
may be involved in expanding the * to check column permissions, but this cost is likely so 
 negligible that you will hardly ever notice it. 

 Examine the execution plan produced for this query, as shown in Figure 6-1. 

FIGURE 6-1 Execution plan for an EXISTS query

 The plan scans the Customers table and fi lters customers from Spain. For each matching 
customer, the plan performs a seek within the index on Orders.custid to check whether the 
Orders table contains an order with that customer’s custid. The index on the fi ltered column 
in the subquery (Orders.custid in our case) is very helpful here because it provides direct 
 access to the rows of the Orders table with a given custid value. 
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EXISTS vs. IN  Programmers frequently wonder whether a query with the EXISTS predicate 
is more effi cient than a logically equivalent query with the IN predicate. For example, the last 
query could be written using an IN predicate with a self-contained subquery as follows:  

SELECT custid, companyname

FROM Sales.Customers AS C

WHERE country = N'Spain'

  AND custid IN(SELECT custid FROM Sales.Orders);

 The optimizer often generates identical plans for two queries when they are truly logically 
equivalent, and this case qualifi es. The plan generated for the last query using IN is identical 
to the one shown in Figure 6-1, which was generated for the query using EXISTS. 

 If you’re always thinking of the implications of three-valued logic, you might see the difference 
between IN and EXISTS. Unlike EXISTS, IN can in fact produce an UNKNOWN logical result when 
the input list contains a NULL. For example, a IN(b, c, NULL) is UNKNOWN. However, because 
UNKNOWN is treated like FALSE in a fi lter, the result of a query with the IN predicate is the same 
as with the EXISTS predicate, and the optimizer is aware of that, hence the identical plans. 

NOT EXISTS vs. NOT IN  The logical difference between EXISTS and IN does show up if we 
compare NOT EXISTS and NOT IN, when the input list of NOT IN might contain a NULL. 

 For example, suppose you need to return customers from Spain who made no orders. Here’s 
the solution using the NOT EXISTS predicate: 

SELECT custid, companyname

FROM Sales.Customers AS C

WHERE country = N'Spain'

  AND NOT EXISTS

    (SELECT * FROM Sales.Orders AS O

     WHERE O.custid = C.custid);

 This query generates the following output: 

custid      companyname

----------- ----------------------------------------

22          Customer DTDMN

 Even if the Orders table has a NULL custid, it is of no concern to us. You get all customers 
from Spain for which SQL Server cannot fi nd even one row in the Orders table with the same 
custid. The plan generated for this query is shown in Figure 6-2. 

FIGURE 6-2 Execution plan for a NOT EXISTS query
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 The plan scans the Customers table and fi lters customers from Spain. For each matching customer, 
the plan performs a seek within the index on Orders.custid. The Top operator appears because 
it’s only necessary to see whether you have at least one matching order for the customer—that’s 
the short-circuiting capability of EXISTS in action. This use of Top is particularly effi cient when the 
Orders.custid column has a high density (that is, a large number of duplicates). The seek takes 
place only once for each customer, and regardless of the number of orders the customer has, only 
one row is scanned at the leaf level (the bottom level of the index) to look for a match, as opposed 
to all matching rows. 

 In this case, the following solution using the NOT IN predicate does yield the same output. It 
seems to have the same meaning, but we’ll see later that it does not.  

SELECT custid, companyname

FROM Sales.Customers AS C

WHERE country = N'Spain'

  AND custid NOT IN(SELECT custid FROM Sales.Orders);

If you examine the execution plan, shown in Figure 6-3, you will fi nd that it’s different from 
the one generated for the NOT EXISTS query.  

FIGURE 6-3 Execution plan for a NOT IN query

 The beginning of this plan has some additional operations compared to the previous plan—
steps needed to look for NULL custids. Why is this plan different than the one generated for 
the NOT EXISTS query? And why would SQL Server care particularly about the existence of 
NULLs in Orders.custid? 

 The discrepancy between the plans doesn’t affect the result because no row in the Orders 
table has a NULL custid. However, because the custid column allows NULLs, the optimizer 
must take this fact into consideration. Let’s see what happens if we add a row with a NULL 
custid to the Orders table: 
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INSERT INTO Sales.Orders

  (custid, empid, orderdate, requireddate, shippeddate, shipperid,

   freight, shipname, shipaddress, shipcity, shipregion,

   shippostalcode, shipcountry)

  VALUES(NULL, 1, '20090212', '20090212',

         '20090212', 1, 123.00, N'abc', N'abc', N'abc',

         N'abc', N'abc', N'abc');

 Now rerun both the NOT EXISTS and NOT IN queries. You will fi nd that the NOT EXISTS 
query still returns the same output as before, while the NOT IN query now returns an empty 
set. In fact, when the Orders.custid column has a NULL, the NOT IN query always returns an 
empty set. This is because the predicate val IN(val1, val2, . . ., NULL) can never return FALSE; 
rather, it can return only TRUE or UNKNOWN. As a result, val NOT IN(val1, val2, . . ., NULL) 
can return only NOT TRUE or NOT UNKNOWN, neither of which is TRUE. 

 For example, suppose the customer list in this query is (a, b, NULL). Customer a appears 
in the list, and therefore the predicate a IN(a, b, NULL) returns TRUE. The predicate a NOT 
IN(a, b, NULL) returns NOT TRUE, or FALSE, and customer a is not returned by the query. 
Customer c, on the other hand, does not appear in the list (a, b, NULL), but the logical  result 
of c IN(a, b, NULL) is UNKNOWN because of the NULL. The predicate c NOT IN(a, b, NULL) 
therefore returns NOT UNKNOWN, which equals UNKNOWN, and customer c is not returned 
by the query, either, even though c does not appear in the customer list. Whether or not 
a  customer appears in the customer list, the customer is not returned by the query if the 
list contains NULL. You realize that when NULLs are potentially involved (such as when the 
 queried  column allows NULLs), NOT EXISTS and NOT IN are not logically equivalent. This 
explains the discrepancy between the plans and the potential difference in results. To make 
the NOT IN query logically equivalent to the NOT EXISTS query, declare the column as NOT 
NULL (if  appropriate) or add a fi lter to the subquery to exclude NULLs: 

SELECT custid, companyname

FROM Sales.Customers AS C

WHERE country = N'Spain'

  AND custid NOT IN(SELECT custid FROM Sales.Orders

                    WHERE custid IS NOT NULL);

 This query generates the same result as the NOT EXISTS query, as well as the same plan. 

 When you’re done testing the queries, make sure you remove the row with the NULL custid: 

DELETE FROM Sales.Orders WHERE custid IS NULL;

DBCC CHECKIDENT('Sales.Orders', RESEED, 11077);

Minimum Missing Value  To put your knowledge of the EXISTS predicate into action, try to 
solve the following problem. First create and populate the table T1 by running the code in 
Listing 6-1. 
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LISTING 6-1 Creating and populating the table T1

USE tempdb;

GO

IF OBJECT_ID('dbo.T1') IS NOT NULL

  DROP TABLE dbo.T1;

GO

CREATE TABLE dbo.T1

(

  keycol  INT         NOT NULL PRIMARY KEY CHECK(keycol > 0),

  datacol VARCHAR(10) NOT NULL

);

INSERT INTO dbo.T1(keycol, datacol) VALUES

  (3, 'a'),

  (4, 'b'),

  (6, 'c'),

  (7, 'd');

 Notice that keycol must be positive. Your task is to write a query that returns the lowest 
 missing key, assuming that key values start at 1. For example, the table is currently populated 
with the keys 3, 4, 6, and 7, so your query should return the value 1. If you insert two more 
rows, with the keys 1 and 2, your query should return 5. 

 Here’s a suggested CASE expression (incomplete) that I used in my solution: 

SELECT

  CASE

    WHEN NOT EXISTS(SELECT * FROM dbo.T1 WHERE keycol = 1) THEN 1

    ELSE (...subquery returning minimum missing value...)

  END;

 If 1 doesn’t exist in the table, the CASE expression returns 1; otherwise, it returns the result of 
a subquery returning the minimum missing value. 

 Here’s the subquery that I used to return the minimum missing value: 

SELECT MIN(A.keycol) + 1 as missing

FROM dbo.T1 AS A

WHERE NOT EXISTS

  (SELECT * FROM dbo.T1 AS B

   WHERE B.keycol = A.keycol + 1);

 The NOT EXISTS predicate returns TRUE only for values in T1 that are right before a gap 
(4 and 7 in our case). A value is right before a gap if the value plus one does not exist in the 
same table. The outer T1 table has the alias A, and the inner T1 table has the alias B. You 
could use the expression B.keycol – 1 = A.keycol in the subquery’s fi lter, although it might 
be a bit confusing to use such an expression when looking for a value in B that is greater 
than the value in A by one. If you think about it, for B.keycol to be greater than A.keycol by 
one, B.keycol minus one must be equal to A.keycol. If this logic confuses you, you can use 
B.keycol = A.keycol + 1 instead, as I did. When all points before gaps are isolated, the outer 

USE tempdb;

GO

IF OBJECT_ID('dbo.T1') IS NOT NULL

  DROP TABLE dbo.T1;

GO

CREATE TABLE dbo.T1

(

  keycol  INT         NOT NULL PRIMARY KEY CHECK(keycol > 0),

  datacol VARCHAR(10) NOT NULL

);

INSERT INTO dbo.T1(keycol, datacol) VALUES

  (3, 'a'),

  (4, 'b'),

  (6, 'c'),

  (7, 'd');
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query returns the minimum plus one, which is the fi rst missing value in the fi rst gap. Make a 
mental note of the technique to identify a point before a gap—it’s a very handy fundamental 
technique. 

 Now you can incorporate the query returning the minimum missing value in the CASE 
expression:  

SELECT

  CASE

    WHEN NOT EXISTS(SELECT * FROM dbo.T1 WHERE keycol = 1) THEN 1

    ELSE (SELECT MIN(A.keycol) + 1

          FROM dbo.T1 AS A

          WHERE NOT EXISTS

            (SELECT * FROM dbo.T1 AS B

             WHERE B.keycol = A.keycol + 1))

  END;

 If you run this query with the sample data inserted by Listing 6-1, you should get 1 as the 
 result. If you then insert two more rows, with the keys 1 and 2 (as shown in the following 
code), and rerun the query, you should get 5 as the result. 

INSERT INTO dbo.T1(keycol, datacol) VALUES(1, 'e'),(2, 'f');

 Here is an example of how you might use the CASE expression for the minimum missing key in 
an INSERT . . . SELECT statement, perhaps in a scenario where you needed to reuse deleted keys: 

INSERT INTO dbo.T1(keycol, datacol)

  SELECT 

    CASE

      WHEN NOT EXISTS(SELECT * FROM dbo.T1 WHERE keycol = 1) THEN 1

      ELSE (SELECT MIN(A.keycol) + 1

            FROM dbo.T1 AS A

            WHERE NOT EXISTS

              (SELECT * FROM dbo.T1 AS B

               WHERE B.keycol = A.keycol + 1))

    END,

    'g';

 Query the T1 table after running this INSERT: 

SELECT * FROM dbo.T1;

 Notice in the following output that the insert generated the key value 5, which was the minimum 
missing key: 

keycol      datacol

----------- ----------

1           e

2           f

3           a

4           b

5           g

6           c

7           d
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 Note Multiple processes running such code simultaneously might get the same key. You can 
overcome this issue by introducing error-handling code that traps a duplicate key error and 
then retries. There are other, more effi cient techniques to reuse deleted keys, but they are 
more  complex and require you to maintain a table with ranges of missing values. Also note 
that  reusing deleted keys is not often a good idea, for reasons beyond concurrency. Here I just 
 wanted to give you a chance to practice with the EXISTS predicate.  

 Note that you can merge the two cases where 1 does exist in the table and where 1 doesn’t 
instead of using a CASE expression. The solution requires some tricky logical manipulation: 

SELECT COALESCE(MIN(A.keycol) + 1, 1)

FROM dbo.T1 AS A

WHERE

  NOT EXISTS(

    SELECT * FROM dbo.T1 AS B

    WHERE B.keycol= A.keycol + 1)

  AND EXISTS(

    SELECT * FROM dbo.T1

    WHERE keycol = 1);

 The query has both logical expressions from the CASE expression in the WHERE clause. 
It  returns the minimum missing value if 1 does exist in the table (that is, when the second 
EXISTS predicate is TRUE). If 1 doesn’t exist in the table (that is, the second EXISTS predicate is 
FALSE), the fi lter generates an empty set, and the expression MIN(keycol) + 1 yields a NULL. 
The value of the COALESCE expression is then 1. 

 Even though this solution achieves the request with a single query, I personally like the original 
solution better. This solution is a bit tricky and isn’t as intuitive as the previous one, and simplicity 
and readability of code goes a long way. 

Reverse Logic Applied to Relational Division Problems  Our minds are usually accustomed 
to thinking in positive terms. However, positive thinking in some cases can get you only so 
far. In many fi elds, including SQL programming, negative thinking or reverse logic can give 
you new insight or be used as another tool to solve problems. Applying reverse logic can in 
some cases lead to simpler or more effi cient solutions than applying a positive approach. It’s 
another tool in your toolbox. 

 Euclid, for example, was very fond of applying reverse logic in his mathematical proofs (proof 
by way of negation). He used reverse logic to prove that there are infi nitely many prime 
 numbers. By contradicting a certain assumption and thereby creating a paradox, you prove 
that the assumption’s opposite must be true. 

 Before I demonstrate an application of reverse logic in SQL, I’d like to deliver the idea 
through an ancient puzzle. Two guards stand in front of two doors. One door leads to gold 
and treasures, and the other leads to sudden death, but you don’t know which is which. One 
of the guards always tells the truth and the other always lies, but you don’t know which is 
the liar is and which is sincere (even though the guards do). Obviously, you want to enter the 
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door that leads to the gold and not to sudden death. You have but one opportunity to ask 
one of the guards a question. What will the question be? 

 Any question that you ask applying positive thinking will not give you 100 percent assurance 
of picking the door that leads to the gold. However, applying reverse logic can give you that 
assurance. 

 Ask either guard, “If I ask the other guard where the door is that leads to the gold, which 
door would he point to?” 

 If you asked the sincere guard, he would point at the door that leads to sudden death, knowing 
that the other is a liar. If you asked the liar, he’d also point at the door that leads to sudden death, 
knowing that the other guard is sincere and would point to the door that leads to the gold. All 
you would have to do is enter the door that was not pointed at. 

 Reverse logic is sometimes a handy tool in solving problems with SQL. An example of where 
you can apply reverse logic is in solving relational division problems. At the beginning of 
the chapter, I discussed the following problem: from the InsideTSQL2008 database, return 
all customers with orders handled by all employees from the USA. The example I offered for 
solving the problem used positive thinking. To apply reverse logic, you fi rst need to be able 
to phrase the request in a negative way. Instead of saying, “Return customers for whom all 
USA employees handled orders,” you can say, “Return customers for whom no USA employee 
handled no order.” Remember that two negatives produce a positive. If for customer A you 
cannot fi nd even one USA employee who did not handle any orders, all USA employees must 
have handled orders for customer A. 

 When you phrase the request in a negative way, the translation to SQL is intuitive using 
 correlated subqueries: 

USE InsideTSQL2008;

SELECT custid FROM Sales.Customers AS C

WHERE NOT EXISTS

  (SELECT * FROM HR.Employees AS E

   WHERE country = N'USA'

     AND NOT EXISTS

       (SELECT * FROM Sales.Orders AS O

        WHERE O.custid = C.custid

          AND O.empid = E.empid));

 When you “read” the query, it really sounds like the English phrasing of the request: 

Return customers 

for whom you cannot find 

  any employee 

  from the USA 

  for whom you cannot find 

    any order 

    placed for the subject customer 

    and by the subject employee
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 You get the same 23 customers back as those returned by the query applying the  positive 
 approach. Notice, though, that the negative solution gives you access to all the customer 
 attributes, while the positive solution gives you access only to the customer IDs. To access other 
customer attributes, you need to add a join between the result set and the Customers table. 

 When comparing the performance of the solutions in this case, the solution applying the 
positive approach performs better. In other cases, the negative approach might yield better 
performance. You now have another tool that you can use when solving problems. 

 Another example where you can apply this kind of reverse logic is in a CHECK constraint that 
needs to ensure that a character string column (call it sn for serial number) allows only digits. 
Using positive logic, the constraint’s predicate can ensure that all characters are digits like so: 

CHECK (sn LIKE REPLICATE('[0-9]', LEN(sn)))

 The expression replicates the string ‘[0-9]’ representing a single character that must be a digit 
as many times as the number of characters in the column sn. This means that for a lengthy 
string in the sn column, the pattern will be quite long. A more economical way to express 
the same idea is to use reverse logic. Another way to say that all characters must be digits is 
to say that no character can be something that is not a digit. This translates to the following 
predicate in the constraint: 

CHECK (sn NOT LIKE '%[^0-9]%')

 This pattern is much more economical compared with the one that applies positive logic, 
 especially when dealing with long sn values. 

 Note that both CHECK constraints provided here would allow an empty string as a serial 
number. If you do not want to allow empty strings, you need to add logic to the constraint. 

Misbehaving Subqueries

 I’ve occasionally seen a very tricky programming error involving subqueries, and I’ve even 
had the misfortune to introduce into production code myself. I’ll fi rst describe the bug and 
then make recommendations for how you can avoid it. To demonstrate the bug, I use a table 
called Sales.MyShippers that you create and populate in the InsideTSQL2008 database by 
running the following code: 

IF OBJECT_ID('Sales.MyShippers', 'U') IS NOT NULL

  DROP TABLE Sales.MyShippers;

CREATE TABLE Sales.MyShippers

(

  shipper_id  INT          NOT NULL,

  companyname NVARCHAR(40) NOT NULL,

  phone       NVARCHAR(24) NOT NULL,

  CONSTRAINT PK_MyShippers PRIMARY KEY(shipper_id)

);
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INSERT INTO Sales.MyShippers(shipper_id, companyname, phone)

  VALUES(1, N'Shipper GVSUA', N'(503) 555-0137'),

        (2, N'Shipper ETYNR', N'(425) 555-0136'),

        (3, N'Shipper ZHISN', N'(415) 555-0138');

 Suppose that you are asked to return the shippers from the Sales.MyShippers table that did 
not ship orders (in the Sales.Orders table) to customer 43. Examining the data, shipper 1 
(Shipper GVSUA) is the only one that qualifi es. The following query is supposed to return the 
desired result: 

SELECT shipper_id, companyname

FROM Sales.MyShippers

WHERE shipper_id NOT IN

  (SELECT shipper_id FROM Sales.Orders

   WHERE custid = 43);

 Surprisingly, this query returns an empty set. Can you tell why? Can you identify the elusive 
bug in my code? 

 Well, apparently the column in the Orders table holding the shipper ID is called shipperid 
(no underscore) and not shipper_id. The Orders table has no shipper_id column. Realizing this, 
you’d probably expect the query to have failed because of the invalid column name. Sure 
enough, if you run only the part that was supposed to be a self-contained subquery, it does 
fail: Invalid column name ‘shipper_id’. However, in the context of the outer query,  apparently 
the subquery is valid! The name resolution process works from the inner nesting level 
 outward. The query processor fi rst looked for a shipper_id column in the Orders table, which 
is referenced in the current level. Not having found such a column name, it looked for one in 
the MyShippers table—the outer level—and found it. Unintentionally, the subquery became 
correlated, as if it were written as the following illustrative code: 

SELECT shipper_id, companyname

FROM Sales.MyShippers AS S

WHERE shipper_id NOT IN

  (SELECT S.shipper_id FROM Sales.Orders AS O

   WHERE O.custid = 43);

 Logically, the query doesn’t make much sense, of course; nevertheless, it is technically valid. 

 You can now understand why you got an empty set back. Unless you have no order for 
 customer 43 in the Orders table, shipper some_val is obviously always found in the set 
(SELECT some_val FROM Sales.Orders WHERE custid = 43). And the NOT IN predicate always 
yields FALSE. This buggy query logically became a nonexistence query equivalent to the 
 following illustrative code: 

SELECT shipper_id, companyname

FROM Sales.MyShippers

WHERE NOT EXISTS

  (SELECT * FROM Sales.Orders

   WHERE custid = 43);

C06626034.indd   315 2/13/2009   2:22:35 AM



316 Inside Microsoft SQL Server 2008: T-SQL Querying

 To fi x the problem, of course, you should use the correct name for the column from Orders 
that holds the shipper ID—shippperid: 

SELECT shipper_id, companyname

FROM Sales.MyShippers AS S

WHERE shipper_id NOT IN

  (SELECT shipperid FROM Sales.Orders AS O

   WHERE custid = 43);

 This generates the following expected result: 

shipper_id  companyname

----------- ----------------------------------------

1           Shipper GVSUA

 However, to avoid such bugs in the future, it’s a good practice to always include the table 
name or alias for all attributes in a subquery, even when the subquery is self-contained. Had 
I aliased the shipper_id column in the subquery (as shown in the following code), a name 
resolution error would have been generated, and the bug would have been detected: 

SELECT shipper_id, companyname

FROM Sales.MyShippers AS S

WHERE shipper_id NOT IN

  (SELECT O.shipper_id FROM Sales.Orders AS O

   WHERE O.custid = 43); 

 

Msg 207, Level 16, State 1, Line 4 

Invalid column name 'shipper_id'.

 Finally, correcting the bug, here’s how the solution query should look: 

SELECT shipper_id, companyname

FROM Sales.MyShippers AS S

WHERE shipper_id NOT IN

  (SELECT O.shipperid FROM Sales.Orders AS O

   WHERE O.custid = 43);

 When you’re done, run the following code for cleanup: 

IF OBJECT_ID('Sales.MyShippers', 'U') IS NOT NULL

  DROP TABLE Sales.MyShippers;

Uncommon Predicates

 In addition to IN and EXISTS, SQL has three more predicates, but they are rarely used: ANY, 
SOME, and ALL. You can consider them to be generalizations of the IN predicate. (ANY and 
SOME are synonyms with no logical difference between them.) 

 An IN predicate is translated to a series of equality predicates separated by OR operators—
for example, v IN(x, y, z) is translated to v = x OR v = y OR v = z. ANY (or SOME) allows you to 
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specify the comparison you want in each predicate, not limiting you to the equality operator. 
For example, v < ANY(x, y, z) is translated to v < x OR v < y OR v < z. 

 ALL is similar, but it’s translated to a series of logical expressions separated by AND operators. 
For example, v <> ALL(x, y, z) is translated to v <> x AND v <> y AND v <> z. 

 Note IN allows as input either a list of literals or a subquery returning a single column. ANY/SOME 
and ALL support only a subquery as input. If you have the need to use these uncommon predicates 
with a list of literals as input, you must convert the list to a subquery. So, instead of v <> ANY(x, y, z), 
you would use v <> ANY(SELECT x UNION ALL SELECT y UNION ALL SELECT z) or v <> ANY(SELECT i 
FROM(VALUES(x),(y),(z)) AS D(i)). 

 To demonstrate the use of these uncommon predicates, let’s suppose you are asked to 
 return, for each employee, the order with the minimum orderid. Here’s how you can achieve 
this with the ANY operator: 

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders AS O1

WHERE NOT orderid >

  ANY(SELECT orderid

      FROM Sales.Orders AS O2

      WHERE O2.empid = O1.empid);

 This query generates the following output: 

orderid     custid      empid       orderdate

----------- ----------- ----------- -----------------------

10248       85          5           2006-07-04 00:00:00.000

10249       79          6           2006-07-05 00:00:00.000

10250       34          4           2006-07-08 00:00:00.000

10251       84          3           2006-07-08 00:00:00.000

10255       68          9           2006-07-12 00:00:00.000

10258       20          1           2006-07-17 00:00:00.000

10262       65          8           2006-07-22 00:00:00.000

10265       7           2           2006-07-25 00:00:00.000

10289       11          7           2006-08-26 00:00:00.000

 A row has the minimum orderid for an employee if it is not the case that orderid is less than 
or equal to some orderid for the same employee. 

 You can also write a query using ALL to achieve the same thing: 

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders AS O1

WHERE orderid <=

  ALL(SELECT orderid

      FROM Sales.Orders AS O2

      WHERE O2.empid = O1.empid);

 A row has the minimum orderid for an employee if its orderid is less than or equal to all 
 orderids for the same employee. 
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 None of the preceding solutions falls into the category of intuitive solutions, and maybe this 
explains why these predicates are not commonly used. The natural way to write the solution 
query would probably be as follows: 

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders AS O1

WHERE orderid =

  (SELECT MIN(orderid)

   FROM Sales.Orders AS O2

   WHERE O2.empid = O1.empid);

Table Expressions

 So far, I’ve covered scalar and multivalued subqueries. This section deals with table subqueries, 
which are known as table expressions. In this chapter, I’ll discuss derived tables and common 
table expressions (CTE).

 More Info For information about the two other types of table expressions—views and inline 
table-valued functions—please refer to Inside Microsoft SQL Server 2008: T-SQL Programming 
(Microsoft Press, 2009). 

Derived Tables

 A derived table is a table expression—that is, a virtual result table derived from a query 
 expression. A derived table appears in the FROM clause of a query like any other table. The 
scope of existence of a derived table is the outer query’s scope only. 

 The general form in which a derived table is used is as follows: 

FROM (derived_table_query) AS derived_table_alias

Note A derived table is completely virtual. It’s not physically materialized, nor does the 
 optimizer generate a separate plan for it. The outer query and the inner one are merged, and 
one plan is generated. You shouldn’t have any special concerns regarding performance when 
using derived tables. Merely using derived tables neither degrades nor improves performance. 
Their use is more a matter of simplifi cation and clarity of code. 

 A derived table must be a valid table; therefore, it must follow several rules: 

■  All columns must have names. 

■  The column names must be unique. 

■  ORDER BY is not allowed (unless TOP is also specifi ed). 
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 Note Unlike scalar and multivalued subqueries, derived tables cannot be correlated; they must 
be self-contained. The exception to this rule occurs when using the APPLY operator, which I’ll 
cover in Chapter 9. 

Result Column Aliases

 One use of derived tables is to enable the reuse of column aliases when expressions are so 
long you’d rather not repeat them. For simplicity’s sake, I’ll demonstrate column alias reuse 
with short expressions. 

 Remember from Chapter 1, “Logical Query Processing,” that aliases created in the query’s 
SELECT list cannot be used in most of the query elements. This is because the SELECT clause 
is logically processed almost last, just before the ORDER BY clause. For this reason, the 
 following illustrative query fails: 

SELECT

  YEAR(orderdate) AS orderyear,

  COUNT(DISTINCT custid) AS numcusts

FROM Sales.Orders

GROUP BY orderyear;

 The GROUP BY clause is logically processed before the SELECT clause, so at the GROUP BY 
phase, the orderyear alias has not yet been created. 

 By using a derived table that contains only the SELECT and FROM elements of the original 
query, you can create aliases and make them available to the outer query in any element. 

 There are two formats of aliasing the derived table’s result columns. One is inline column 
aliasing: 

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

FROM (SELECT YEAR(orderdate) AS orderyear, custid

      FROM Sales.Orders) AS D

GROUP BY orderyear;

 And the other is external column aliasing following the derived table’s alias: 

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

FROM (SELECT YEAR(orderdate), custid

      FROM Sales.Orders) AS D(orderyear, custid)

GROUP BY orderyear;

 I typically use inline column aliasing because I fi nd it more convenient to work with in 
most cases. You don’t have to specify aliases for base columns, and it’s more convenient to 
troubleshoot. When you highlight and run only the derived table query, the result set you 
get includes all result column names. Also, it’s clear which column alias belongs to which 
expression. 
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 The external column aliasing format lacks all the aforementioned benefi ts. One case where 
you may fi nd it convenient to work with is when the query defi ning the table expression is 
pretty much a done deal in terms of development, and you want to focus your attention on 
the name of the table and its attributes.  

Using Arguments

 Even though a derived table query cannot be correlated (except with APPLY), it can refer to 
variables defi ned in the same batch. For example, the following code returns for each year 
the number of customers handled by employee 3: 

DECLARE @empid AS INT = 3; -- use separate DECLARE and SET prior to 2008

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

FROM (SELECT YEAR(orderdate) AS orderyear, custid

      FROM Sales.Orders

      WHERE empid = @empid) AS D

GROUP BY orderyear;

 Note SQL Server 2008 introduces the ability to declare and initialize a variable in the same 
statement. Use separate DECLARE and SET statements prior to SQL Server 2008. 

 This code generates the following output: 

orderyear   numcusts

----------- -----------

2006        16

2007        46

2008        30

Nesting

 One aspect of working with derived tables that I fi nd problematic is the fact that if you want 
to refer to one derived table in another, they must be nested. This is because the derived 
 table is defi ned in the FROM clause of the outer query, as opposed to being defi ned before 
the outer query. Nesting is a problematic aspect of programming in general, as it tends to 
complicate the code and make it harder to follow. Logical processing in a case of nested 
 derived tables starts at the innermost level and proceeds outward. 

 The following query returns the order year and the number of customers for years with more 
than 70 active customers: 

SELECT orderyear, numcusts

FROM (SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

      FROM (SELECT YEAR(orderdate) AS orderyear, custid

            FROM Sales.Orders) AS D1

      GROUP BY orderyear) AS D2

WHERE numcusts > 70;
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 This query generates the following output: 

orderyear   numcusts

----------- -----------

2007        86

2008        81

 Although one reason for using table expressions is in an attempt to simplify your code by not 
repeating expressions, the nesting aspect of derived tables ends up complicating the code. 

Multiple References

 Out of all the types of table expressions available in T-SQL, derived tables are the only type 
to suffer from a certain limitation related to multiple references. Because a derived table is 
defi ned in the FROM clause of the outer query and not before it, you can’t refer to the same 
derived table multiple times in the same query. For example, suppose you want to compare 
each year’s number of active customers to the previous year’s. You want to join two instances 
of a derived table that contains the yearly aggregates. In such a case, unfortunately, you 
have to create two derived tables, each repeating the same derived table query: 

SELECT Cur.orderyear, 

  Cur.numcusts AS curnumcusts, Prv.numcusts AS prvnumcusts,

  Cur.numcusts - Prv.numcusts AS growth

FROM (SELECT YEAR(orderdate) AS orderyear,

        COUNT(DISTINCT custid) AS numcusts

      FROM Sales.Orders

      GROUP BY YEAR(orderdate)) AS Cur

  LEFT OUTER JOIN

     (SELECT YEAR(orderdate) AS orderyear,

        COUNT(DISTINCT custid) AS numcusts

      FROM Sales.Orders

      GROUP BY YEAR(orderdate)) AS Prv

    ON Cur.orderyear = Prv.orderyear + 1;

 This query generates the following output: 

orderyear   curnumcusts prvnumcusts growth

----------- ----------- ----------- -----------

2006        67          NULL        NULL

2007        86          67          19

2008        81          86          -5

Common Table Expressions

 A common table expression (CTE) is another type of table expression supported by SQL 
Server. In many aspects, you will fi nd CTEs very similar to derived tables. However, CTEs have 
several important advantages, which I’ll describe in this section. 
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 Remember that a derived table appears in its entirety in the FROM clause of an outer query. 
A CTE, however, is defi ned fi rst using a WITH statement, and then an outer query referring to 
the CTE’s name follows the CTE’s defi nition: 

WITH cte_name 

AS 

( 

  cte_query 

) 

outer_query_referring_to_cte_name

 Note Because the WITH keyword is used in T-SQL for other purposes as well, to avoid ambiguity, 
the statement preceding the CTE’s WITH clause must be terminated with a semicolon. The use of 
a semicolon to terminate statements is supported by ANSI. It’s a good practice, and you should 
start getting used to it even where T-SQL currently doesn’t require it.  

 A CTE’s scope of existence is the outer query’s scope. It’s not visible to other statements in 
the same batch. 

 The same rules I mentioned for the validity of a derived table’s query expression apply to the 
CTE’s as well. That is, the query must generate a valid table, so all columns must have names, 
all column names must be unique, and ORDER BY is not allowed (unless TOP is also specifi ed).  

 Next, I’ll go over aspects of CTEs, demonstrating their syntax and capabilities, and compare 
them to derived tables. 

Result Column Aliases

 Just as you can with derived tables, you can provide aliases to result columns either inline in 
the CTE’s query or externally in parentheses following the CTE’s name. The following code 
illustrates the fi rst method: 

WITH C AS

(

  SELECT YEAR(orderdate) AS orderyear, custid

  FROM Sales.Orders

)

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

FROM C

GROUP BY orderyear;

 The next bit of code illustrates how to provide aliases externally in parentheses following the 
CTE’s name: 

WITH C(orderyear, custid) AS

(

  SELECT YEAR(orderdate), custid

  FROM Sales.Orders

)
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SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

FROM C

GROUP BY orderyear;

Using Arguments

 Another similarity between CTEs and derived tables is that CTEs can refer to variables declared 
in the same batch: 

DECLARE @empid AS INT = 3;

WITH C AS

(

  SELECT YEAR(orderdate) AS orderyear, custid

  FROM Sales.Orders

  WHERE empid = @empid

)

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

FROM C

GROUP BY orderyear;

Multiple CTEs

 Unlike derived tables, CTEs cannot be nested directly. That is, you cannot defi ne a CTE within 
another CTE. However, you can defi ne multiple CTEs using the same WITH statement, each of 
which can refer to the preceding CTEs. The outer query has access to all the CTEs. Using this 
capability, you can achieve the same result you would by nesting derived tables, but with 
CTEs the code won’t be as complex as with derived tables—it will be much more modular. 
For example, the following WITH statement defi nes two CTEs: 

WITH C1 AS

(

  SELECT YEAR(orderdate) AS orderyear, custid

  FROM Sales.Orders

),

C2 AS

(

  SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

  FROM C1

  GROUP BY orderyear

)

SELECT orderyear, numcusts

FROM C2

WHERE numcusts > 70;

 C1 returns order years and customer IDs for each order, generating the orderyear alias for the 
order year. C2 groups the rows returned from C1 by orderyear and calculates the count of 
distinct custids (number of active customers). Finally, the outer query returns only order years 
with more than 70 active customers. 
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Multiple References

 Besides the fact that CTEs are much more modular than derived tables, they have another 
 advantage over derived tables—you can refer to the same CTE name multiple times in the 
outer query. You don’t need to repeat the same CTE defi nition like you do with derived tables. 
For example, the following code demonstrates a CTE solution for the request to compare each 
year’s number of active customers to the previous year’s number: 

WITH YearlyCount AS

(

  SELECT YEAR(orderdate) AS orderyear,

    COUNT(DISTINCT custid) AS numcusts

  FROM Sales.Orders

  GROUP BY YEAR(orderdate)

)

SELECT Cur.orderyear, 

  Cur.numcusts AS curnumcusts, Prv.numcusts AS prvnumcusts,

  Cur.numcusts - Prv.numcusts AS growth

FROM YearlyCount AS Cur

  LEFT OUTER JOIN YearlyCount AS Prv

    ON Cur.orderyear = Prv.orderyear + 1;

You can see that the outer query refers to the YearlyCount CTE twice—once representing the 
current year (Cur) and once representing the previous year (Prv). 

Note that like derived tables, CTEs are virtual; SQL Server internally rearranges the query so that 
the underlying objects are accessed directly. The plan that you get for this query is the same as 
the one you get when using derived tables. Both references to the CTE name will be expanded, 
meaning that the base table will be accessed twice and aggregated twice. With a large  number 
of rows in the underlying table, you may want to consider using temporary tables or table 
variables, especially in a case where the result set of the query is so small (a row per year). With 
a temporary table the base table will be scanned once, and the data will be aggregated once. 
The join will then take place between two instances of the small temporary table. 

Modifying Data

You can modify data through CTEs. To demonstrate this capability, fi rst run the code in 
Listing 6-2 to create and populate the Sales.CustomersDups table with sample data. 

LISTING 6-2 Creating and populating the CustomersDups table

IF OBJECT_ID('Sales.CustomersDups') IS NOT NULL

  DROP TABLE Sales.CustomersDups;

GO

SELECT

  custid, companyname, contactname, contacttitle, address,

  city, region, postalcode, country, phone, fax

INTO Sales.CustomersDups

FROM Sales.Customers CROSS JOIN (VALUES(1),(2),(3)) AS Nums(n);

IF OBJECT_ID('Sales.CustomersDups') IS NOT NULL

  DROP TABLE Sales.CustomersDups;

GO

SELECT

  custid, companyname, contactname, contacttitle, address,

  city, region, postalcode, country, phone, fax

INTO Sales.CustomersDups

FROM Sales.Customers CROSS JOIN (VALUES(1),(2),(3)) AS Nums(n);
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 The code in Listing 6-2 creates a table of customers with duplicate occurrences of each  customer. 
The following code demonstrates how you can remove duplicate customers using a CTE:  

WITH CustsDupsRN AS

(

  SELECT *,

    ROW_NUMBER() OVER(PARTITION BY custid ORDER BY (SELECT 0)) AS rn

  FROM Sales.CustomersDups

)

DELETE FROM CustsDupsRN

WHERE rn > 1;

 The CTE CustsDupsRN assigns row numbers (rn column) to number the duplicate rows for 
each customer. I’ll provide more details about the ROW_NUMBER function later in the chapter; 
for now it suffi ces to say that the duplicate rows for each customer are assigned row numbers 
beginning with the number 1. The DELETE statement then simply deletes all rows where rn is 
greater than 1. After this code is run, the CustomersDups table contains only unique rows. At 
this point, you can create a primary key or a unique constraint on the custid column to avoid 
duplicates in the future. 

 Note that SQL Server also supports modifying data through derived tables. I have to say, 
though, that I fi nd the syntax to be unintuitive. You need to defi ne the derived table and alias it 
in a FROM clause, and direct the modifi cation against the derived table alias in a separate clause. 
For example, the following code uses a derived table to handle the task of deleting duplicates: 

DELETE FROM CustsDupsRN

FROM ( SELECT *,

         ROW_NUMBER() OVER(PARTITION BY custid ORDER BY (SELECT 0)) AS rn

       FROM Sales.CustomersDups ) AS CustsDupsRN

WHERE rn > 1;

CTEs in View and Inline Function Defi nitions

 CTEs can be used in container objects such as views and inline UDFs. Views and inline UDFs 
provide encapsulation, which is important for modular programming. Also, I mentioned earlier 
that CTEs cannot be nested directly. However, you can nest CTEs indirectly by encapsulating 
a CTE in a container object and querying the container object from an outer CTE. 

 Using CTEs in views or inline UDFs is very trivial. The following example creates a view returning 
a yearly count of customers: 

IF OBJECT_ID('dbo.YearCustCount') IS NOT NULL

  DROP VIEW dbo.YearCustCount;

GO

CREATE VIEW dbo.YearCustCount

AS

WITH CYearCustCount AS

(

  SELECT YEAR(orderdate) AS orderyear,

    COUNT(DISTINCT custid) AS numcusts
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  FROM Sales.Orders

  GROUP BY YEAR(orderdate)

)

SELECT * FROM CYearCustCount;

GO

 Note that in this particular case the CTE is superfl uous, and you could defi ne the view based 
on the underlying query directly. The purpose of this example is only to demonstrate the 
syntax. 

 Query the view, as shown in the following code: 

SELECT * FROM dbo.YearCustCount;

 You get the following output: 

orderyear   numcusts

----------- -----------

2006        67

2007        86

2008        81

 If you want to pass an input argument to the container object—for example, return the yearly 
count of customers for the given employee—you’d create an inline UDF as follows: 

IF OBJECT_ID('dbo.EmpYearCustCnt') IS NOT NULL

  DROP FUNCTION dbo.EmpYearCustCnt;

GO

CREATE FUNCTION dbo.EmpYearCustCnt(@empid AS INT) RETURNS TABLE

AS

RETURN

  WITH CEmpYearCustCnt AS

  (

    SELECT YEAR(orderdate) AS orderyear,

      COUNT(DISTINCT custid) AS numcusts

    FROM Sales.Orders

    WHERE empid = @empid

    GROUP BY YEAR(orderdate)

  )

  SELECT * FROM CEmpYearCustCnt;

GO

 Query the UDF providing employee ID 3 as input:  

SELECT * FROM dbo.EmpYearCustCnt(3) AS T;

 You get the following output: 

orderyear   numcusts

----------- -----------

2006        67

2007        86

2008        81
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Recursive CTEs

 SQL Server supports recursive querying capabilities through CTEs. The types of tasks and 
activities that can benefi t from recursive queries include manipulation of graphs, trees, 
 hierarchies, and many others. Here I’ll just introduce you to recursive CTEs. For more 
 information and detailed applications, you can fi nd extensive coverage in Chapter 12, 
“Graphs, Trees, Hierarchies, and Recursive Queries.” 

 I’ll describe a recursive CTE using an example. You’re given an input empid (for example, 
 employee 5) from the HR.Employees table in the InsideTSQL2008 database. You’re supposed to 
return the input employee and subordinate employees in all levels, based on the hierarchical 
relationships maintained by the empid and mgrid attributes. The attributes you need to return 
for each employee include empid, mgrid, fi rstname, and lastname.  

 Before I demonstrate and explain the recursive CTE’s code, I’ll create the following covering 
index, which is optimal for the task: 

CREATE UNIQUE INDEX idx_mgr_emp_i_fname_lname

  ON HR.Employees(mgrid, empid)

  INCLUDE(firstname, lastname);

 This index will allow fetching direct subordinates of each manager by using a single seek 
plus a partial scan. Note the included columns (fi rstname and lastname) that were added for 
 coverage purposes. 

 Here’s the recursive CTE code that will return the desired result: 

WITH Emps AS

(

  SELECT empid, mgrid, firstname, lastname

  FROM HR.Employees

  WHERE empid = 5

  UNION ALL

  SELECT Emp.empid, Emp.mgrid, Emp.firstname, Emp.lastname

  FROM Emps AS Mgr

    JOIN HR.Employees AS Emp

      ON Emp.mgrid = Mgr.empid

)

SELECT * FROM Emps;

 This code generates the following output: 

empid       mgrid       firstname  lastname

----------- ----------- ---------- --------------------

5           2           Sven       Buck

6           5           Paul       Suurs

7           5           Russell    King

9           5           Zoya       Dolgopyatova
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 A recursive CTE contains a minimum of two queries (also known as members). The fi rst query 
that appears in the preceding CTE’s body is known as the anchor member. The anchor member 
is merely a query that returns a valid table and is used as the basis or anchor for the recursion. In 
our case, the anchor member simply returns the row for the input root employee (employee 5). 
The second query that appears in the preceding CTE’s body is known as the recursive member. 
What makes the query a recursive member is a recursive reference to the CTE’s name—Emps. 
Note that this reference is not the same as the reference to the CTE’s name in the outer query. 
The reference in the outer query gets the fi nal result table returned by the CTE, and it involves 
no recursion. However, the inner reference is made before the CTE’s result table is fi nalized, and 
it is the key element that triggers the recursion. This inner reference to the CTE’s name stands 
for “the previous result set,” loosely speaking. In the fi rst invocation of the recursive member, the 
reference to the CTE’s name represents the result set returned from the anchor member. In our 
case, the recursive member returns subordinates of the employees returned in the previous result 
set—in other words, the next level of employees. 

 The recursion has no explicit termination check; instead, recursion stops as soon as the 
 recursive member returns an empty set. Because the fi rst invocation of the recursive 
 member yielded a nonempty set (employees 6, 7, and 9), it is invoked again. The second 
time the  recursive member is invoked, the reference to the CTE’s name represents the  result 
set  returned by the previous invocation of the recursive member (employees 6, 7, and 9). 
Because these employees have no subordinates, the second invocation of the recursive 
 member yields an empty set, and recursion stops. 

 The reference to the CTE’s name in the outer query stands for the unifi ed (concatenated) 
results sets of the invocation of the anchor member and all the invocations of the recursive 
member. 

 If you run the same code providing employee 2 as input instead of employee 5, you get the 
following result: 

empid       mgrid       firstname  lastname

----------- ----------- ---------- --------------------

2           1           Don        Funk

3           2           Judy       Lew

5           2           Sven       Buck

6           5           Paul       Suurs

7           5           Russell    King

9           5           Zoya       Dolgopyatova

4           3           Yael       Peled

8           3           Maria      Cameron

 Here, the anchor member returns the row for employee 2. The fi rst invocation of the 
 recursive member returns direct subordinates of employee 2: employees 3 and 5. The  second 
invocation of the recursive member returns direct subordinates of employees 3 and 5: 
 employees 4, 8, 6, 7, and 9. The third invocation of the recursive member returns an empty 
set, and recursion stops. The outer query returns the unifi ed result sets with the rows for 
employees: 2, 3, 5, 4, 8, 6, 7, and 9. 
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 If you suspect that your data might accidentally contain cycles or that you might have a  logical 
bug in your code, you can specify the MAXRECURSION hint as a safety measure to limit the 
 number of invocations of the recursive member. You specify the hint right after the outer query: 

WITH cte_name AS (cte_body) outer_query OPTION(MAXRECURSION n);

 In this line of code, n is the limit for the number of recursive iterations. As soon as the limit is 
exceeded, the query breaks, and an error is generated. Note that MAXRECURSION is set to 
100 by default. If you want to remove this limit, specify MAXRECURSION 0. This setting can 
be specifi ed at the query level only; you can’t set a session, database, or server-level option 
to change the default. 

 To understand how SQL Server processes the recursive CTE, examine the execution plan in 
Figure 6-4, which was produced for the earlier query returning subordinates of employee 5. 

FIGURE 6-4 Execution plan for recursive CTE

 As you can see in the plan, the result set of the anchor member (the row for employee 5) is 
retrieved using a clustered index seek operation (on the empid column). The Compute Scalar 
operator calculates an iteration counter, which is set to 0 initially (at the fi rst occurrence of 
Compute Scalar in the plan) and incremented by one with each iteration of the recursive 
member (the second occurrence of Compute Scalar in the plan). 

 The anchor query is executed, and its result set is spooled (Table Spool operator in the plan). 
Then the recursive query is executed (using the spooled results for the recursive reference to 
the CTE). Any results are spooled and the recursive query is executed again using the newly 
spooled results for the recursive reference (and so on). 

 You‘ll also notice later in the plan that a temporary index is created (indicated by the Index 
Spool operator). The index is created on the iteration counter plus the attributes retrieved 
(empid, mgrid, fi rstname, lastname). 

 The interim set of each invocation of the recursive member is retrieved using index seek 
operations in the covering index I created for the query. The Nested Loops operator  invokes 
a seek for each manager returned and spooled in the previous level to fetch its direct 
subordinates. 
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 The Assert operator checks whether the iteration counter exceeds 100 (the default 
MAXRECURSION limit). This is the operator in charge of breaking the query in case the 
 number of recursive member invocations exceeds the MAXRECURSION limit. 

 The Concatenation operator concatenates (unifi es) all interim result sets. 

 When you’re done testing and experimenting with the recursive CTE, drop the index created 
for this purpose: 

DROP INDEX HR.Employees.idx_mgr_emp_i_fname_lname;

Analytical Ranking Functions

 SQL Server supports four analytical ranking functions: ROW_NUMBER, RANK, DENSE_RANK, 
and NTILE. These functions provide a simple and highly effi cient way to produce ranking 
calculations. I will also demonstrate alternative solutions to producing ranking values  without 
the built-in ranking functions. Of course, you can feel free to skip the coverage of the 
 alternative solutions, but I’d recommend spending the time to learn those for several reasons. 
A lot of existing legacy code out there in production systems makes use of those techniques. 
Also, some of those techniques are quite convoluted, and some have poor performance, so 
by being familiar with them you gain a greater appreciation for the simplicity and effi ciency 
of the built-in functions. Also, trying to solve these problems without using the built-in 
 ranking functions provides good exercise in querying logic. And fi nally, you may fi nd the 
techniques used in those solutions handy for solving other types of querying problems.  

 ROW_NUMBER is by far my favorite feature in SQL Server. Even though it might not seem 
that signifi cant on the surface compared to other features, it has an amazing number of 
practical applications that extend far beyond classic ranking and scoring calculations. 
I have been able to optimize many solutions by using the ROW_NUMBER function, as I will 
 demonstrate throughout the book.  

 Even though the other ranking functions are technically calculated similarly to ROW_NUMBER 
underneath the covers, they have fewer practical applications.  

 I’ll fi rst describe the ROW_NUMBER function and alternative techniques to calculate row numbers. 
I’ll present a benchmark I did comparing the performance of the different techniques. I’ll then 
cover the other ranking calculations.  

 In my examples, I’ll use a Sales table, which you should create and populate by running the 
following code: 

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.Sales') IS NOT NULL

  DROP TABLE dbo.Sales;

GO
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CREATE TABLE dbo.Sales

(

  empid VARCHAR(10) NOT NULL PRIMARY KEY,

  mgrid VARCHAR(10) NOT NULL,

  qty   INT         NOT NULL

);

INSERT INTO dbo.Sales(empid, mgrid, qty) VALUES

  ('A', 'Z', 300),

  ('B', 'X', 100),

  ('C', 'X', 200),

  ('D', 'Y', 200),

  ('E', 'Z', 250),

  ('F', 'Z', 300),

  ('G', 'X', 100),

  ('H', 'Y', 150),

  ('I', 'X', 250),

  ('J', 'Z', 100),

  ('K', 'Y', 200);

CREATE INDEX idx_qty_empid ON dbo.Sales(qty, empid);

CREATE INDEX idx_mgrid_qty_empid ON dbo.Sales(mgrid, qty, empid);

 Ranking functions can appear only in the SELECT and ORDER BY clauses of a query. The 
 general form of a ranking function is as follows: 

ranking_function OVER([PARTITION BY col_list] ORDER BY col_list)

 Ranking functions are calculated in the context of a window of rows that is defi ned by an OVER 
clause—hence, these functions are known as window functions. This clause is not specifi c to 
ranking calculations—it is applicable to other types of calculations that are based on a window 
defi nition as well, such as aggregates. The concept that the OVER clause represents is profound, 
and in my eyes this clause is the single most powerful feature in the standard SQL language. 
First, it enables expressions to break the traditional boundaries of being restricted to the 
 “current row” and allows them access to a whole window of rows. Second, it allows the  defi ning 
of logical ordering in the window for the purposes of the calculation without breaking any 
aspects of sets. That is, while a set has no order, an operation or calculation on the set can be 
defi ned based on logical ordering. The sources for the operation, as well as the result, are still 
valid sets with no guaranteed order. This is the part that I fi nd most profound—it bridges the 
gap between cursors and sets. This gap represents one of the toughest problems for database 
developers—to stop thinking in terms of individual rows and in certain order and start thinking 
in terms of sets as a whole and in no order. 

 The optional PARTITION BY clause allows you to request that the ranking values will be 
 calculated for each partition (or group) of rows separately. For example, if you specify mgrid 
in the PARTITION BY clause, the ranking values will be calculated independently for each 
manager’s rows. In the ORDER BY clause you defi ne the logical order for the calculation—
that is, the logical order of assignment of the ranking values. 
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 The optimal index for ranking calculations (regardless of the method you use) is one created 
on partitioning_columns, sort_columns, and (as included columns, not key columns) covered_
columns. I created optimal indexes on the Sales table for several ranking calculation requests. 

Row Number

Row numbers are sequential integers assigned to rows of a query’s result set based on a 
specifi ed logical ordering. In the following sections, I’ll describe the tools and techniques to 
calculate row numbers. 

The ROW_NUMBER Function

The ROW_NUMBER function assigns sequential integers to rows of a query’s result set based 
on a specifi ed order, optionally within partitions. For example, the following query returns 
employee sales rows and assigns row numbers in order of qty: 

SELECT empid, qty, 

  ROW_NUMBER() OVER(ORDER BY qty) AS rownum 

FROM dbo.Sales 

ORDER BY qty;

This code returns the output shown in Table 6-1. 

 TABLE 6-1 Row Numbers Based on qty Ordering 

 empid qty rownum

 B 100 1

 G 100 2

 J 100 3

 H 150 4

 C 200 5

 D 200 6

 K 200 7

 E 250 8

 I 250 9

 A 300 10

 F 300 11

 To understand the effi ciency of the ranking functions, examine the execution plan shown in 
Figure 6-5, which was generated for this query.  

FIGURE 6-5 Execution plan for ROW_NUMBER

empid qty rownum
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 To calculate ranking values, the optimizer needs the data to be sorted fi rst on the partitioning 
column or columns and then on the ordering column or columns. 

 If you have an index that already maintains the data in the required order, the leaf level of 
the index is simply scanned in an ordered fashion (as in our case). Otherwise, the data will be 
scanned and then sorted with a sort operator. The Sequence Project operator is the operator 
in charge of calculating the ranking values. For each input row, it needs two fl ags: 

  1. Is the row the fi rst in the partition? If it is, the Sequence Project operator will reset the 
ranking value. 

  2. Is the sorting value in this row different from the previous one? If it is, the Sequence 
Project operator will increment the ranking value as dictated by the specifi c ranking 
function.  

 For all ranking functions, a Segment operator produces the fi rst fl ag value.  

 The Segment operator basically determines grouping boundaries. It keeps one row in  memory 
and compares it with the next. If they are different, it emits one value. If they are the same, it 
emits a different value.  

 To generate the fi rst fl ag, which indicates whether the row is the fi rst in the partition, the 
Segment operator compares the PARTITON BY column values of the current and previous rows. 
Obviously, it emits “true” for the fi rst row read. From the second row on, its output depends on 
whether the PARTITION BY column value changed. In our example, I didn’t specify a PARTITION 
BY clause, so the whole table is treated as one partition. In this case, Segment will emit “true” 
for the fi rst row and “false” for all others. 

 For the second fl ag ( “Is the value different than the previous value?”), the operator that will 
calculate it depends on which ranking function you requested. For ROW_NUMBER, the  ranking 
value must be incremented for each row regardless of whether the sort value changes. So in 
our case, we don’t need an additional operator. In other cases (for example, with the RANK and 
DENSE_RANK functions), another Segment operator is used to tell the Sequence Project operator 
whether the sort value changed to determine whether to increment the ranking value. 

 The brilliance of this plan and the techniques the optimizer uses to calculate ranking values 
might not be apparent yet. For now, suffi ce to say that the data is scanned only once, and 
if it’s not already sorted within an index, it is also sorted. This is much faster than any other 
technique to calculate ranking values, as I will demonstrate in detail shortly. 

Determinism  As you probably noticed in the output of the previous query, row  numbers 
keep incrementing regardless of whether the sort value changes. Row numbers must be 
unique within the partition. This means that for a nonunique ORDER BY list, the query is 
 nondeterministic. That is, different result sets are correct, not just one. For example, in Table 6-1 
you can see that employees B, G, and J, all having a quantity of 100, got the row numbers 1, 2, 
and 3, respectively. However, the result would also be valid if these three employees  received 
the row numbers 1, 2, and 3 in a different order. 
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 For some applications determinism is mandatory. To guarantee determinism, you simply need 
to add a tiebreaker that makes the values of partitioning column(s) + ordering column(s) unique. 

 For example, the following query demonstrates both a nondeterministic row number based 
on the qty column alone and also a deterministic one based on the order of qty, empid: 

SELECT empid, qty, 

  ROW_NUMBER() OVER(ORDER BY qty)        AS nd_rownum, 

  ROW_NUMBER() OVER(ORDER BY qty, empid) AS d_rownum 

FROM dbo.Sales 

ORDER BY qty, empid;

 This query generates the following output: 

empid      qty         nd_rownum            d_rownum

---------- ----------- -------------------- --------------------

B          100         1                    1

G          100         2                    2

J          100         3                    3

H          150         4                    4

C          200         5                    5

D          200         6                    6

K          200         7                    7

E          250         8                    8

I          250         9                    9

A          300         10                   10

F          300         11                   11

 Tip The ORDER BY clause is mandatory in ranking functions. Sometimes, though, you may need 
to apply a ranking calculation in no particular order and would like to avoid the cost associated 
with scanning an index in order or sorting the data. Unfortunately, you cannot specify ORDER BY 
<const>. However, apparently SQL Server does allow specifying ORDER BY (SELECT <const>)—for 
example, ROW_NUMBER() OVER(ORDER BY (SELECT 0)). The optimizer is smart enough in this case 
to realize that order doesn’t matter. As an alternative, you can also order by a previously declared 
variable: OVER(ORDER BY @v). Here as well, the optimizer recognizes that order doesn’t matter. 

Partitioning  As I mentioned earlier, you can also calculate ranking values within partitions 
(groups of rows). The following example calculates row numbers based on the order of qty 
and empid for each manager separately: 

SELECT mgrid, empid, qty, 

  ROW_NUMBER() OVER(PARTITION BY mgrid ORDER BY qty, empid) AS rownum 

FROM dbo.Sales 

ORDER BY mgrid, qty, empid;

 This query generates the following output: 

mgrid      empid      qty         rownum

---------- ---------- ----------- --------------------

X          B          100         1

X          G          100         2

X          C          200         3

X          I          250         4
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Y          H          150         1

Y          D          200         2

Y          K          200         3

Z          J          100         1

Z          E          250         2

Z          A          300         3

Z          F          300         4

Using Subqueries to Calculate Row Numbers

 Several alternative techniques for calculating ranking values without ranking functions are 
 available, and all of them suffer from some limitation. Keep in mind that you can also calculate 
ranking values at the client. Whatever way you choose, your client will iterate through the  records 
in the record set returned from SQL Server. The client can simply request the rows sorted and, 
in a loop, increment a counter. Of course, if you need the ranking values for further server-side 
 manipulation before results are sent to the client, client-side ranking is not an option.  

 I’ll start with a technique that is based on subqueries. Unfortunately, it is usually the slowest 
of all. 

Unique Sort Column  Calculating row numbers using a subquery is reasonably simple, given 
a unique partitioning + sort column(s) combination. As I will describe later, solutions without 
this unique combination also exist, but they are substantially more complex. 

 All ranking value calculations can be achieved by counting rows. To calculate row numbers, 
you can employ the following fundamental technique. You simply use a subquery to count 
the number of rows with a smaller or equal sort value. This count corresponds to the  desired 
row number. For example, the following query produces row numbers based on empid 
ordering: 

SELECT empid, 

  (SELECT COUNT(*) 

   FROM dbo.Sales AS S2 

   WHERE S2.empid <= S1.empid) AS rownum 

FROM dbo.Sales AS S1 

ORDER BY empid;

 This query generates the following output: 

empid      rownum

---------- -----------

A          1

B          2

C          3

D          4

E          5

F          6

G          7

H          8

I          9

J          10

K          11
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 Note The solutions presented in this chapter for calculating ranking values using subqueries 
assume that the columns involved are defi ned as NOT NULL, as is the case with the Sales table 
used in my examples. Note that in cases where the columns allow NULLs, the solutions based on 
subqueries won’t return the same results as the built-in ranking functions. For ordering purposes 
ranking functions will consider NULL to be ranked fi rst (lowest). If you count lower-ranking rows 
with the predicate S2.ranking_column < S1.ranking_column, you’ll miss the NULLs. In a similar 
manner you will fi nd differences between the way ranking functions and subqueries treat NULLs 
for partitioning and for other purposes as well. Of course, when NULLs can appear in the data, 
you can add logic to your solutions so that the treatment of NULLs will be the same as with the 
ranking functions if that’s what you need. 

 This technique to calculate row numbers, though fairly simple, is extremely slow. To 
 understand why, examine the execution plan shown in Figure 6-6 created for the query. 

FIGURE 6-6 Execution plan for query calculating row numbers using a subquery

 An index on the sort column (empid) happens to be the Sales table’s clustered index. The 
 table is fi rst fully scanned (as indicated by the Clustered Index Scan operator) to return all 
rows. For each row returned from the initial full scan, the Nested Loops operator invokes 
the activity that generates the row number by counting rows. Each row number calculation 
 involves a seek operation within the clustered index, followed by a partial scan operation 
(from the head of the leaf level’s linked list to the last point where S2.empid is smaller than or 
equal to S1.empid). 

 Note that two different operators use the clustered index—fi rst, a full scan to return all rows; 
second, a seek followed by a partial scan for each outer row to achieve the count. 

 Remember that the primary factor affecting the performance of queries that do data 
 manipulation is usually I/O. An estimate of the number of rows accessed here will show how 
ineffi cient this execution plan is. To calculate rownum for the fi rst row of the table, SQL Server 
needs to scan 1 row in the index. For the second row, it needs to scan 2 rows. For the third 
row, it needs to scan 3 rows, and so on, and for the nth row of the table, it needs to scan n 
rows. For a table with n rows, having an index based on the sort column in place, the total 
number of rows scanned (besides the initial scan of the data) is 1 + 2 + 3 + . . . + n. You may 
not grasp immediately the large number of rows that are going to be scanned. To give you a 
sense, for a table with 100,000 rows, you’re looking at 100,000 + 5,000,050,000 rows that are 
going to be scanned in total.  
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 As an aside, a story is told about the mathematician Gauss. When he was a child, he and 
his classmates got an assignment from their teacher to fi nd the sum of all the integers 
from 1 through 100. Gauss gave the answer almost instantly. When the teacher asked 
him how he came up with the answer so fast, he said that he added the fi rst and the last 
 values (1 + 100 = 101) and then multiplied that total by half the number of integers (50), 
which is the number of pairs. Sure enough, the result of fi rst_val + last_val is equal to the 
 second_val + next_to_last val and so on. In short, the formula for the sum of the fi rst n 
 positive  integers is (n + n2) / 2. That’s the number of rows that need to be scanned in total 
to  calculate row numbers using this technique when an index is based on the sort column. 
You’re looking at an n2 graph of I/O cost and run time based on the number of rows in the 
table. You can play with the numbers in the formula and see that the cost gets humongous 
pretty quickly. 

 If you think about it, this technique calculates a running count aggregate, which happens 
to also have a special meaning for us—a row number. You can use the same technique to 
 calculate other running aggregates, like running totals and running averages, by simply 
 using other aggregate functions operating on the applicable attribute. Therefore, using this 
 technique to calculate running aggregates has n2 complexity. Unfortunately, unlike in the row 
number’s case—for which we have a much faster built-in function—SQL Server 2008 doesn’t 
support certain elements of the standard OVER clause that would allow faster  calculation of 
running aggregates. 

Nonunique Sort Column and Tiebreaker  When the sort column is not unique, you can 
make it unique by introducing a tiebreaker to allow a solution that keeps a reasonable level 
of simplicity. Let sortcol be the sort column and let tiebreaker be the tiebreaker column. 
To count rows with the same or smaller values of the sort list (sortcol, tiebreaker), use the 
 following expression in the subquery:  

inner_sortcol < outer_sortcol 

OR ( inner_sortcol = outer_sortcol 

     AND inner_tiebreaker <= outer_tiebreaker )

 Note that operator precedence dictates that AND will be evaluated prior to OR, so if you 
omit the parentheses here, you get a logically equivalent expression. But I recommend using 
parentheses for clarity, manageability, and readability. 

 The following query produces row numbers based on qty and empid ordering: 

SELECT empid, qty, 

  (SELECT COUNT(*) 

   FROM dbo.Sales AS S2 

   WHERE S2.qty < S1.qty 

      OR (S2.qty = S1.qty AND S2.empid <= S1.empid)) AS rownum 

FROM dbo.Sales AS S1 

ORDER BY qty, empid;
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 This query generates the following output: 

empid      qty         rownum

---------- ----------- -----------

B          100         1

G          100         2

J          100         3

H          150         4

C          200         5

D          200         6

K          200         7

E          250         8

I          250         9

A          300         10

F          300         11

Nonunique Sort Column Without a Tiebreaker  The problem becomes substantially more 
complex when you want to calculate row numbers with subqueries according to a nonunique 
sort column and using no tiebreaker. This is an excellent challenge if you want to test your 
T-SQL querying skills. For example, given the table T2, which you create and populate by 
 running the following code, let’s say you are supposed to produce row numbers based on 
col1 ordering: 

IF OBJECT_ID('dbo.T2') IS NOT NULL

  DROP TABLE dbo.T2;

GO

CREATE TABLE dbo.T2(col1 VARCHAR(5));

INSERT INTO dbo.T2(col1) VALUES

  ('A'),('A'),('A'),('B'),('B'),('C'),('C'),('C'),('C'),('C');

 In the solution for this problem, I’ll make fi rst use of a very important fundamental technique—
generating copies of rows using an auxiliary table of numbers.  

 I’ll explain the concept of the auxiliary table of numbers and how to create one later in 
the chapter in the section “Auxiliary Table of Numbers.” For now, simply run the code from 
that section in Listing 6-3, which creates the Nums table and populates it with the 1,000,000 
integers in the range 1 ≤ n ≤ 1,000,000.  

 As mentioned, in the solution to our challenge I’m going to use a fundamental technique to 
generate copies of rows. For example, given a table T2, say you want to generate fi ve copies of 
each row. To achieve this, you can use the Nums table as follows: 

SELECT ... FROM dbo.T2 CROSS JOIN dbo.Nums WHERE n <= 5;

 I will provide more details on the technique to generate copies and its uses in Chapter 7. 

 Going back to our original problem, you’re supposed to generate row numbers for the rows 
of T2, based on col1 order. The fi rst step in the solution is “collapsing” the rows by grouping 
them by col1. For each group, you return the number of occurrences (a count of rows in the 
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group). You also return, using a subquery, the number of rows in the base table that have a 
smaller sort value. Here’s the query that accomplishes the fi rst step: 

SELECT col1, COUNT(*) AS cnt,

  (SELECT COUNT(*) FROM dbo.T2 AS B

   WHERE B.col1 < A.col1) AS smaller

FROM dbo.T2 AS A

GROUP BY col1;

 This query returns the following output: 

col1  cnt         smaller

----- ----------- -----------

A     3           0

B     2           3

C     5           5

 For example, A appears three times, and 0 rows have a col1 value smaller than A. B appears 
two times, and three rows have a col1 value smaller than B. And so on. 

 The next step is to expand the number of rows or create sequentially numbered copies of each 
row. You achieve this by creating a table expression out of the previous query and joining it to  
the Nums table as follows, based on n <= cnt: 

WITH C AS

(

  SELECT col1, COUNT(*) AS cnt,

    (SELECT COUNT(*) FROM dbo.T2 AS B

     WHERE B.col1 < A.col1) AS smaller

  FROM dbo.T2 AS A

  GROUP BY col1

)

SELECT col1, cnt, smaller, n

FROM C CROSS JOIN Nums

WHERE n <= cnt;

 This query generates the following output: 

col1  dups        smaller     n

----- ----------- ----------- -----------

A     3           0           1

A     3           0           2

A     3           0           3

B     2           3           1

B     2           3           2

C     5           5           1

C     5           5           2

C     5           5           3

C     5           5           4

C     5           5           5

C06626034.indd   339 2/13/2009   2:22:36 AM



340 Inside Microsoft SQL Server 2008: T-SQL Querying

 Now look carefully at the output and see whether you can fi gure out how to produce the 
row numbers. 

 The row number can be expressed as the number of rows with a smaller sort value, plus the 
row number within the same sort value group—in other words, n + smaller. The following 
query is the fi nal solution: 

WITH C AS

(

  SELECT col1, COUNT(*) AS cnt,

    (SELECT COUNT(*) FROM dbo.T2 AS B

     WHERE B.col1 < A.col1) AS smaller

  FROM dbo.T2 AS A

  GROUP BY col1

)

SELECT n + smaller AS rownum, col1

FROM C

  CROSS JOIN Nums

WHERE n <= cnt;

 This query generates the following output: 

rownum      col1

----------- -----

4           B

5           B

6           C

7           C

8           C

9           C

10          C

1           A

2           A

3           A

 Note that this technique won’t generalize in the case T2 has additional columns. This is yet 
another example of how powerful the ranking functions are. 

Partitioning  Partitioning is achieved by simply adding a correlation in the subquery based 
on a match between the partitioning column or columns in the inner and outer tables. 
For example, the following query against the Sales table calculates row numbers that are 
 partitioned by mgrid, ordered by qty, and use empid as a tiebreaker: 

SELECT mgrid, empid, qty, 

  (SELECT COUNT(*) 

   FROM dbo.Sales AS S2 

   WHERE S2.mgrid = S1.mgrid 

     AND (S2.qty < S1.qty 

          OR (S2.qty = S1.qty AND S2.empid <= S1.empid))) AS rownum 

FROM dbo.Sales AS S1 

ORDER BY mgrid, qty, empid;
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 This query generates the following output: 

mgrid      empid      qty         rownum

---------- ---------- ----------- -----------

X          B          100         1

X          G          100         2

X          C          200         3

X          I          250         4

Y          H          150         1

Y          D          200         2

Y          K          200         3

Z          J          100         1

Z          E          250         2

Z          A          300         3

Z          F          300         4

 Note As I mentioned earlier, the technique using subqueries to calculate row numbers has n2 
complexity. However, for a fairly small number of rows (in the area of dozens), it’s pretty fast. The 
performance problem has more to do with the partition size than with the table’s size. If you  create 
the recommended index based on partitioning_cols, sort_cols, tiebreaker_cols, the number of rows 
scanned within the index is equivalent to the row number generated. The row number is reset 
(starts from 1) with every new partition. So even for very large tables, when the partition size is fairly 
small and you have a proper index in place, the solution is pretty fast. If you have p partitions and 
r rows in each partition, the number of rows scanned in total is p * r + p * (r + r2) / 2. For example, if 
you have 100,000 partitions and 10 rows in each partition, you get 6,500,000 rows scanned in total. 
Though this number might seem large, it’s nowhere near the number you get without  partitioning. 
And as long as the partition size remains constant, the graph of query cost compared with the 
 number of rows in the table is linear. 

Cursor-Based Solution

 You can use a cursor to calculate row numbers. A cursor-based solution for any of the 
aforementioned variations is pretty straightforward. You create a fast-forward (read-only, 
forward-only) cursor based on a query that orders the data by partitioning_cols, sort_cols, 
tiebreaker_cols. As you fetch rows from the cursor, you simply increment a counter, resetting 
it every time a new partition is detected. You can store the result rows along with the row 
numbers in a temporary table or a table variable. 

 For example, the following code uses a cursor to calculate row numbers based on the order 
of qty and empid: 

DECLARE @SalesRN TABLE(empid VARCHAR(5), qty INT, rn INT); 

DECLARE @empid AS VARCHAR(5), @qty AS INT, @rn AS INT; 

 

BEGIN TRAN 

 

DECLARE rncursor CURSOR FAST_FORWARD FOR 

  SELECT empid, qty FROM dbo.Sales ORDER BY qty, empid; 

OPEN rncursor; 
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SET @rn = 0; 

 

FETCH NEXT FROM rncursor INTO @empid, @qty; 

WHILE @@FETCH_STATUS = 0 

BEGIN 

  SET @rn = @rn + 1; 

  INSERT INTO @SalesRN(empid, qty, rn) VALUES(@empid, @qty, @rn); 

  FETCH NEXT FROM rncursor INTO @empid, @qty; 

END 

 

CLOSE rncursor; 

DEALLOCATE rncursor; 

 

COMMIT TRAN 

 

SELECT empid, qty, rn FROM @SalesRN;

 This code generates the following output: 

empid qty         rn

----- ----------- -----------

B     100         1

G     100         2

J     100         3

H     150         4

C     200         5

D     200         6

K     200         7

E     250         8

I     250         9

A     300         10

F     300         11

 Generally, you should avoid working with cursors because they have a lot of overhead that 
is a drag on performance. However, in this case, unless the partition size is really tiny, the 
 cursor-based solution performs much better than the subquery-based solution because it 
scans the data only once. This means that as the table grows larger, the cursor-based  solution 
has a linear performance degradation, as opposed to the n2 one that the subquery-based 
 solution has. Still, the cursor-based solution is signifi cantly slower than using the ROW_NUMBER 
function. 

IDENTITY-Based Solution

 Another solution to calculating row numbers is to rely on the IDENTITY function or IDENTITY 
column property. Before you proceed, though, you should be aware that when you use the 
IDENTITY function, you cannot guarantee the order of assignment of IDENTITY values. You 
can, however, guarantee the order of assignment by using an IDENTITY column instead of 
the IDENTITY function: fi rst create a table with an IDENTITY column and then load the data 
using an INSERT SELECT statement with an ORDER BY clause.  
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 More Info You can fi nd a detailed discussion of IDENTITY and ORDER BY in Knowledge 
Base article 273586 (http://support.microsoft.com/default.aspx?scid=kb;en-us;273586), which 
I  recommend that you read. You can also fi nd information on the subject in the following blog 
entry by Conor Cunningham: http://blogs.msdn.com/sqltips/archive/2005/07/20/441053.aspx.  

Nonpartitioned  Using the IDENTITY function in a SELECT INTO statement is by far the fastest 
way to calculate row numbers without the ROW_NUMBER function. The fi rst reason for this is 
that you scan the data only once, without the overhead involved with cursor manipulation. The 
second reason is that SELECT INTO is a minimally logged operation when the database recovery 
model is not FULL. However, keep in mind that you can trust it only when you don’t care about 
the order of assignment of the row numbers. Note that SQL Server 2008 can also perform 
minimally logged INSERT SELECT statements provided that certain requirements are met. I will 
elaborate on this in Chapter 10, “Data Modifi cation.” 

 As an example, the following code demonstrates how to use the IDENTITY function to create 
and populate a temporary table with row numbers, in no particular order: 

SELECT empid, qty, IDENTITY(int, 1, 1) AS rn 

INTO #SalesRN FROM dbo.Sales; 

 

SELECT * FROM #SalesRN; 

 

DROP TABLE #SalesRN;

 This technique is handy when you need to generate integer identifi ers to distinguish rows for 
some processing need.  

 Don’t let the fact that you can technically specify an ORDER BY clause in the SELECT INTO 
query mislead you. There’s no guarantee that in the execution plan the assignment of 
IDENTITY values will take place after the sort.  

 As mentioned earlier, when you do care about the order of assignment of the IDENTITY values—
in other words, when the row numbers should be based on a given order—fi rst create the table 
and then load the data. Prior to SQL Server 2008 this technique was not as fast as the SELECT 
INTO approach because INSERT SELECT was always fully logged; however, it was still much faster 
than the other techniques that did not utilize the ROW_NUMBER function. 

 Here’s an example for calculating row numbers based on the order of qty and empid: 

CREATE TABLE #SalesRN(empid VARCHAR(5), qty INT, rn INT IDENTITY); 

 

INSERT INTO #SalesRN(empid, qty) 

  SELECT empid, qty FROM dbo.Sales ORDER BY qty, empid; 

 

SELECT * FROM #SalesRN; 

 

DROP TABLE #SalesRN;

C06626034.indd   343 2/13/2009   2:22:36 AM



344 Inside Microsoft SQL Server 2008: T-SQL Querying

Partitioned  Using the IDENTITY approach to create partitioned row numbers requires an 
additional step. As with the nonpartitioned solution, you insert the data into a table with an 
IDENTITY column, only this time it is sorted by partitioning_cols, sort_cols, tiebreaker_cols. 

 The additional step is a query that calculates the row number within the partition using the 
following formula: general_row_number – min_row_number_within_partition + 1. The minimum 
row number within the partition can be obtained by either a correlated subquery or a join. 

 For example, the following code generates row numbers partitioned by mgrid, sorted by qty 
and empid. The code presents both the subquery approach and the join approach to obtaining 
the minimum row number within the partition: 

CREATE TABLE #SalesRN 

  (mgrid VARCHAR(5), empid VARCHAR(5), qty INT, rn INT IDENTITY); 

CREATE UNIQUE CLUSTERED INDEX idx_mgrid_rn ON #SalesRN(mgrid, rn); 

 

INSERT INTO #SalesRN(mgrid, empid, qty) 

  SELECT mgrid, empid, qty FROM dbo.Sales ORDER BY mgrid, qty, empid; 

 

-- Option 1 – using a subquery 

SELECT mgrid, empid, qty, 

  rn - (SELECT MIN(rn) FROM #SalesRN AS S2 

        WHERE S2.mgrid = S1.mgrid) + 1 AS rn 

FROM #SalesRN AS S1; 

 

-- Option 2 – using a join 

SELECT S.mgrid, empid, qty, rn - minrn + 1 AS rn 

FROM #SalesRN AS S 

  JOIN (SELECT mgrid, MIN(rn) AS minrn 

        FROM #SalesRN 

        GROUP BY mgrid) AS M 

    ON S.mgrid = M.mgrid; 

 

DROP TABLE #SalesRN;

Performance Comparisons

 I presented four different techniques to calculate row numbers server-side. The fi rst uses the 
ROW_NUMBER function, the second is based on Subqueries, the third is based on Cursors, 
and the fourth is based on IDENTITY.  

 I ran a benchmark on my laptop to compare the performance of the different techniques. Even 
though my laptop is not exactly the best model for a production server, you can get a good 
sense of the performance differences between the techniques. The benchmark populates a 
table with increasing numbers of rows, starting with 10,000 and progressing up to 100,000 in 
steps of 10,000 rows. The benchmark calculates row numbers using all four techniques, with 
the Discard Results option turned on in SQL Server Management Studio (SSMS) to remove 
the effect of printing the output. The benchmark records the run times in microseconds in the 
RNBenchmark table: 
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-- Change Tools|Options setting to Discard Query Results

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.RNBenchmark') IS NOT NULL

  DROP TABLE dbo.RNBenchmark;

GO

IF OBJECT_ID('dbo.RNTechniques') IS NOT NULL

  DROP TABLE dbo.RNTechniques;

GO

IF OBJECT_ID('dbo.SalesBM') IS NOT NULL

  DROP TABLE dbo.SalesBM;

GO

IF OBJECT_ID('dbo.SalesBMIdentity') IS NOT NULL

  DROP TABLE dbo.SalesBMIdentity;

GO

IF OBJECT_ID('dbo.SalesBMCursor') IS NOT NULL

  DROP TABLE dbo.SalesBMCursor;

GO

CREATE TABLE dbo.RNTechniques

(

  tid INT NOT NULL PRIMARY KEY,

  technique VARCHAR(25) NOT NULL

);

INSERT INTO RNTechniques(tid, technique) VALUES

  (1, 'Subquery'),(2, 'IDENTITY'),(3, 'Cursor'),(4, 'ROW_NUMBER');

GO

CREATE TABLE dbo.RNBenchmark

(

  tid        INT    NOT NULL REFERENCES dbo.RNTechniques(tid),

  numrows    INT    NOT NULL,

  runtimemcs BIGINT NOT NULL,

  PRIMARY KEY(tid, numrows)

);

GO

CREATE TABLE dbo.SalesBM

(

  empid INT NOT NULL IDENTITY PRIMARY KEY,

  qty   INT NOT NULL

);

CREATE INDEX idx_qty_empid ON dbo.SalesBM(qty, empid);

GO

CREATE TABLE dbo.SalesBMIdentity(empid INT, qty INT, rn INT IDENTITY);

GO

CREATE TABLE dbo.SalesBMCursor(empid INT, qty INT, rn INT);

GO

DECLARE

  @maxnumrows    AS INT,

  @steprows      AS INT,

  @curnumrows    AS INT,

  @dt            AS DATETIME2; -- use DATETIME prior to 2008
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SET @maxnumrows    = 100000;

SET @steprows      = 10000;

SET @curnumrows    = 10000;

WHILE @curnumrows <= @maxnumrows

BEGIN

  TRUNCATE TABLE dbo.SalesBM;

  INSERT INTO dbo.SalesBM(qty)

    SELECT CAST(1+999.9999999999*RAND(CHECKSUM(NEWID())) AS INT)

    FROM dbo.Nums

    WHERE n <= @curnumrows;

  -- 'Subquery'

  

  DBCC FREEPROCCACHE WITH NO_INFOMSGS;

  DBCC DROPCLEANBUFFERS WITH NO_INFOMSGS;

  SET @dt = SYSDATETIME(); -- use GETDATE() prior to 2008

  SELECT empid, qty,

    (SELECT COUNT(*)

     FROM dbo.SalesBM AS S2

     WHERE S2.qty < S1.qty

         OR (S2.qty = S1.qty AND S2.empid <= S1.empid)) AS rn

  FROM dbo.SalesBM AS S1

  ORDER BY qty, empid;

  INSERT INTO dbo.RNBenchmark(tid, numrows, runtimemcs)

    VALUES(1, @curnumrows, DATEDIFF(mcs, @dt, SYSDATETIME()));

                                    -- Use ms prior to 2008

  -- 'IDENTITY'

  

  TRUNCATE TABLE dbo.SalesBMIdentity;

  DBCC FREEPROCCACHE WITH NO_INFOMSGS;

  DBCC DROPCLEANBUFFERS WITH NO_INFOMSGS;

  SET @dt = SYSDATETIME();

  INSERT INTO dbo.SalesBMIdentity(empid, qty)

    SELECT empid, qty FROM dbo.SalesBM ORDER BY qty, empid;

  SELECT empid, qty, rn FROM dbo.SalesBMIdentity;

  INSERT INTO dbo.RNBenchmark(tid, numrows, runtimemcs)

    VALUES(2, @curnumrows, DATEDIFF(mcs, @dt, SYSDATETIME()));

  -- 'Cursor'

  TRUNCATE TABLE dbo.SalesBMCursor;

  DBCC FREEPROCCACHE WITH NO_INFOMSGS;

  DBCC DROPCLEANBUFFERS WITH NO_INFOMSGS;

  SET @dt = SYSDATETIME();
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  DECLARE @empid AS INT, @qty AS INT, @rn AS INT;

  BEGIN TRAN

  DECLARE rncursor CURSOR FAST_FORWARD FOR

    SELECT empid, qty FROM dbo.SalesBM ORDER BY qty, empid;

  OPEN rncursor;

  SET @rn = 0;

  FETCH NEXT FROM rncursor INTO @empid, @qty;

  WHILE @@fetch_status = 0

  BEGIN

    SET @rn = @rn + 1;

    INSERT INTO dbo.SalesBMCursor(empid, qty, rn)

      VALUES(@empid, @qty, @rn);

    FETCH NEXT FROM rncursor INTO @empid, @qty;

  END

  CLOSE rncursor;

  DEALLOCATE rncursor;

  COMMIT TRAN

  SELECT empid, qty, rn FROM dbo.SalesBMCursor;

  INSERT INTO dbo.RNBenchmark(tid, numrows, runtimemcs)

    VALUES(3, @curnumrows, DATEDIFF(mcs, @dt, SYSDATETIME()));

  -- 'ROW_NUMBER'

  DBCC FREEPROCCACHE WITH NO_INFOMSGS;

  DBCC DROPCLEANBUFFERS WITH NO_INFOMSGS;

  SET @dt = SYSDATETIME();

  SELECT empid, qty, ROW_NUMBER() OVER(ORDER BY qty, empid) AS rn

  FROM dbo.SalesBM;

  INSERT INTO dbo.RNBenchmark(tid, numrows, runtimemcs)

    VALUES(4, @curnumrows, DATEDIFF(mcs, @dt, SYSDATETIME()));

  SET @curnumrows = @curnumrows + @steprows;

END

 The following query returns the benchmark’s results in a conveniently readable format: 

SELECT numrows,

  [Subquery], [IDENTITY], [Cursor], [ROW_NUMBER]

FROM (SELECT technique, numrows, runtimems

      FROM dbo.RNBenchmark AS B

        JOIN dbo.RNTechniques AS T

          ON B.tid = T.tid) AS D

PIVOT(MAX(runtimems) FOR technique IN(

  [Subquery], [IDENTITY], [Cursor], [ROW_NUMBER])) AS P

ORDER BY numrows;
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 Note This code uses several features that are new in SQL Server 2008: the DATETIME2 data type, 
the mcs (microsecond) date part, and the SYSDATETIME function. Inline comments in the code 
in the fi rst occurrence of each new feature indicate the alternatives that you should use prior to 
SQL Server 2008. 

 This query returned the following benchmark results on my system: 

numrows  Subquery  IDENTITY  Cursor  ROW_NUMBER

-------- --------- --------- ------- -----------

10000    8590000   110000    420000  7000

20000    30336000  203000    766000  29000

30000    69403000  250000    1196000 43000

40000    118593000 483000    1596000 29000

50000    184886000 466000    1970000 72000

60000    267536000 686000    2510000 43000

70000    359833000 703000    2723000 49000

80000    475443000 1150000   3410000 57000

90000    612066000 1120000   3613000 66000

100000   770236000 1146000   3956000 71000

 The query uses a pivoting technique that I’ll describe in Chapter 8, so don’t try to squeeze your 
brains if you’re not familiar with it. For our discussion, the important thing is the benchmark’s 
results. You can immediately see that the subquery-based technique is dramatically slower than 
all the rest, and I explained why earlier. You will also notice that the ROW_NUMBER function 
is dramatically faster than all the rest. I wanted to present a graph with all results, but the run 
times when the subquery-based technique was used were so great that the lines for the other 
solutions were simply fl at. So I decided to present two separate graphs. Figure 6-7 shows the 
graph of run times for the IDENTITY-based, cursor-based, and ROW_NUMBER function–based 
techniques. Figure 6-8 shows the graph for the subquery-based technique. 

FIGURE 6-7 Row numbers benchmark graph I
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FIGURE 6-8 Row numbers benchmark graph II

 You can see in Figure 6-7 that all three techniques have a fairly linear performance graph, 
while Figure 6-8 shows a beautifully curved n2 graph. 

 Note In part, the ROW_NUMBER function is so fast because it doesn’t return the results 
 anywhere. The cursor and identity solutions leave the results in a table for use; therefore, they 
generate considerable I/O. Of course, if you need to materialize the result set even when using 
the ROW_NUMBER function, you need to consider the added I/O cost. As an exercise, you can 
run an altered benchmark where you materialize the result set with the row numbers in all tests. 

 The obvious conclusion is that you should always use the built-in ROW_NUMBER function, and, 
similarly, you should use the other ranking functions if you need the other types of ranking 
calculations. And if you have legacy code that uses the alternative techniques, by revising it to 
use the built-in functions, you can gain dramatic performance improvements, not to mention 
making the code signifi cantly simpler.  

Paging

 As I mentioned earlier, row numbers have many practical applications that I’ll  demonstrate 
throughout the book. Here I’d like to show one example where I use row numbers to achieve 
paging—accessing rows of a result set in chunks. Paging is a common need in  applications, 
allowing the user to navigate through chunks or portions of a result set. Paging with 
row numbers is also a handy technique. This example will also allow me to demonstrate 
 additional optimization techniques that the optimizer applies when using the ROW_NUMBER 
function.  
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Ad Hoc Paging  Ad hoc paging is a request for a single page, where the input is the page 
number and page size (the number of rows in a page). When the user needs a particular 
single page and won’t request additional pages, you implement a different solution than the 
one you would for multiple page requests. First you have to realize that you cannot access 
page n without physically accessing pages 1 through n–1. Bearing this in mind, the following 
code returns a page of rows from the Sales table ordered by qty and empid, given the page 
size and page number as inputs: 

DECLARE @pagesize AS INT, @pagenum AS INT; 

SET @pagesize = 5; 

SET @pagenum = 2; 

 

WITH SalesRN AS 

( 

  SELECT ROW_NUMBER() OVER(ORDER BY qty, empid) AS rownum, 

    empid, mgrid, qty 

  FROM dbo.Sales 

) 

SELECT rownum, empid, mgrid, qty 

FROM SalesRN 

WHERE rownum > @pagesize * (@pagenum-1) 

  AND rownum <= @pagesize * @pagenum 

ORDER BY rownum;

 This code generates the following output: 

rownum               empid      mgrid      qty

-------------------- ---------- ---------- -----------

6                    D          Y          200

7                    K          Y          200

8                    E          Z          250

9                    I          X          250

10                   A          Z          300

 The CTE called SalesRN assigns row numbers to the sales rows based on the order of qty and 
empid. The outer query fi lters only the target page’s rows using a formula based on the input 
page size and page number. 

 You might be concerned that the query appears to calculate row numbers for all rows and then 
fi lter only the requested page’s rows. This might seem to require a full table scan. With very 
large tables this, of course, would be a serious performance issue. However, before getting 
concerned, examine the execution plan for this query, which is shown in Figure 6-9. 

FIGURE 6-9 Execution plan for the ad hoc paging solution
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 The fi gure shows only the left part of the plan starting with the Sequence Project, which 
 assigns the row numbers. If you look at the properties of the Top operator, you can see that 
the plan scans only the fi rst 10 rows of the table. Because the code requests the second page 
of fi ve rows, only the fi rst two pages are scanned. Then the Filter operator fi lters only the 
 second page (rows 6 through 10). 

 Another way to demonstrate that the whole table is not scanned is by populating the table 
with a large number of rows and running the query with the SET STATISTICS IO option turned 
on. You will notice by the number of reads reported that when you request page n, regardless 
of the size of the table, only the fi rst n pages of rows are scanned.  

 This solution can perform well even when you have multiple page requests that usually “move 
forward”—that is, page 1 is requested, then page 2, then page 3, and so on, as long as a small 
number of pages is requested and you have an index to support the requests. When the fi rst 
page of rows is requested, the relevant data/index pages are physically scanned and loaded 
into cache (if they’re not there already). When the second page of rows is requested, the data 
pages for the fi rst request already reside in cache, and only the data pages for the second 
page of rows need to be physically scanned. This requires mostly logical reads (reads from 
cache), and physical reads are needed only for the requested page. Logical reads are much 
faster than physical reads, but keep in mind that they also have a cost that accumulates. 

Multipage Access  Another solution for paging typically performs better overall than the 
previous solution when you have multiple page requests that do not move forward, if the 
result set is not very large. First, materialize all pages in a table along with row numbers and 
create a clustered index on the row number column:  

SELECT ROW_NUMBER() OVER(ORDER BY qty, empid) AS rownum, 

  empid, mgrid, qty 

INTO #SalesRN 

FROM dbo.Sales; 

 

CREATE UNIQUE CLUSTERED INDEX idx_rn ON #SalesRN(rownum);

 Now you can satisfy any page request with a query like the following: 

DECLARE @pagesize AS INT, @pagenum AS INT; 

SET @pagesize = 5; 

SET @pagenum = 2; 

 

SELECT rownum, empid, mgrid, qty 

FROM #SalesRN 

WHERE rownum BETWEEN @pagesize * (@pagenum-1) + 1 

                 AND @pagesize * @pagenum 

ORDER BY rownum;

 The execution plan for this query is shown in Figure 6-10 (abbreviated by removing the 
 operators that calculate boundaries up to the Merge Interval operator to focus on the actual 
data access). 
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FIGURE 6-10 Execution plan for multipaging solution

 This is a very effi cient plan that performs a seek within the index to reach the low boundary row 
(row number 6 in this case), followed by a partial scan (not visible in the plan), until it reaches 
the high boundary row (row number 10). Only the rows of the requested page of results are 
scanned within the index. 

 If your application design is such that it disconnects after each request, obviously the temporary 
table will be gone as soon as the creating session disconnects. In such a case, you might want to 
create a permanent table that is logically temporary. You can achieve this by naming the table 
some_name<some_identifi er>—for example, T<guid> (Global Unique Identifi er). 

 You also need to develop a garbage-collection (cleanup) process that gets rid of tables 
that the application didn’t have a chance to drop explicitly in cases where it terminated in a 
 disorderly way. 

 In cases where you need to support large result sets or a high level of concurrency, you will 
have scalability issues related to tempdb resources. You can develop a partitioned solution 
that materializes only a certain number of pages and not all of them—for example, 1,000 
rows at a time. Typically, users don’t request more than the fi rst few pages anyway. If a user 
ends up requesting pages beyond the fi rst batch, you can materialize the next partition (that 
is, the next 1,000 rows). 

 When you don’t care about materializing the result set in a temporary table for multipage 
access, you might want to consider using a table variable to hold the fi rst batch of pages 
(for example, 1,000 rows). Table variables don’t involve recompilations, and they suffer less 
from logging and locking issues. The optimizer doesn’t maintain distribution statistics for 
table variables, so you should be very cautious and selective in choosing the cases to use 
them for. But when all you need to do is store a small result set and scan it entirely anyway, 
this technique is fi ne.  

 Once you’re done using this table, you can drop it: 

DROP TABLE #SalesRN;

Rank and Dense Rank

 Rank and dense rank are calculations similar to row number. But unlike row number, which 
has a large variety of practical applications, rank and dense rank are typically used for 
 ranking and scoring applications. 
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RANK and DENSE_RANK Functions

 SQL Server provides you with built-in RANK and DENSE_RANK functions that are similar to 
the ROW_NUMBER function. The difference between these functions and ROW_NUMBER is 
that, as I described earlier, ROW_NUMBER is not deterministic when the ORDER BY list is not 
unique. RANK and DENSE_RANK are always deterministic—that is, the same ranking values are 
assigned to rows with the same sort values. The difference between RANK and DENSE_RANK 
is that RANK might have gaps in the ranking values but allows you to know how many rows 
have lower sort values. DENSE_RANK values have no gaps. 

 For example, the following query returns both rank and dense rank values for the sales rows 
based on an ordering by quantity: 

SELECT empid, qty, 

  RANK() OVER(ORDER BY qty) AS rnk, 

  DENSE_RANK() OVER(ORDER BY qty) AS drnk 

FROM dbo.Sales 

ORDER BY qty;

 This query generates the following output: 

empid      qty         rnk                  drnk

---------- ----------- -------------------- --------------------

B          100         1                    1

G          100         1                    1

J          100         1                    1

H          150         4                    2

C          200         5                    3

D          200         5                    3

K          200         5                    3

E          250         8                    4

I          250         8                    4

A          300         10                   5

F          300         10                   5

 Here’s a short quiz: what’s the difference between the results of ROW_NUMBER, RANK, and 
DENSE_RANK given a unique ORDER BY list? 

 For the answer, run the following code: 

SELECT REVERSE('!ecnereffid oN');

Solutions Based on Subqueries

 Subquery-based solutions to rank and dense rank calculations are very similar to subquery-based 
solutions to row number calculations. To calculate rank, use a subquery that counts the  number 
of rows with a smaller sort value and add one. To calculate dense rank, use a  subquery that 
counts the distinct number of smaller sort values and add one: 

SELECT empid, qty, 

  (SELECT COUNT(*) FROM dbo.Sales AS S2 

   WHERE S2.qty < S1.qty) + 1 AS rnk, 
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  (SELECT COUNT(DISTINCT qty) FROM dbo.Sales AS S2 

   WHERE S2.qty < S1.qty) + 1 AS drnk 

FROM dbo.Sales AS S1 

ORDER BY qty;

 Of course, you can add a correlation to return partitioned calculations just like you did with 
row numbers.  

Tile Number

 With tile numbers you can distribute rows into a specifi ed number of tiles (or groups). The 
tiles are numbered 1 and on. Each row is assigned with the tile number to which it belongs. 
Tile number is based on row number calculation—namely, it is based on a requested order 
and can optionally be partitioned. Based on the number of rows in the table (or partition), 
the number of requested tiles, and the row number, you can determine the tile number for 
each row. For example, given a table with 10 rows, supposed you request to calculate tile 
numbers for the rows, arranging the rows in two tiles, based on the order of column c. The 
value of the tile number would be 1 for the fi rst 5 rows in column c order and 2 for the 6th 
through 10th rows. 

 Typically, tile number calculations are used for analytical purposes that require you to 
 arrange items in equally sized groups. Don’t confuse tiling with paging. With paging, the 
page size is known, and the number of pages is the result of dividing the number of rows 
in the set by the page size. With tiling, the number of tiles is known, and the tile size is the 
 result of dividing the number of rows in the set by the requested number of tiles. 

 The task of tiling has more than one solution, and the SQL Server built-in NTILE function 
 implements a specifi c solution. I will describe the built-in NTILE function and then cover other 
solutions. 

The Built-in NTILE Function

 SQL Server supports a built-in function called NTILE to calculate tile numbers for rows in 
a  result set of a query. Unlike the other ranking functions, the NTILE function accepts an 
input—the requested number of tiles. Because tile number calculations are based on row 
numbers, NTILE has exactly the same issues regarding determinism that I described in the 
row numbers section. 

 For example, the following query calculates tile numbers for the rows from the Sales table, 
producing three tiles, based on the order of qty and empid: 

SELECT empid, qty, 

  NTILE(3) OVER(ORDER BY qty, empid) AS tile 

FROM dbo.Sales 

ORDER BY qty, empid;
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 This query generates the following output: 

empid      qty         tile

---------- ----------- --------------------

B          100         1

G          100         1

J          100         1

H          150         1

C          200         2

D          200         2

K          200         2

E          250         2

I          250         3

A          300         3

F          300         3

 Note that when the number of tiles (num_tiles) does not evenly divide the count of rows in 
the table (cnt), the fi rst r tiles (where r is cnt % num_tiles) get one more row than the  others. 
In other words, the remainder is assigned to the fi rst tiles fi rst. In our example, the table 
has 11 rows, and 3 tiles were requested. The base tile size is 11 / 3 = 3 (integer division). 
The remainder is 11 % 3 = 2. The % (modulo) operator provides the integer remainder  after 
dividing the fi rst integer by the second one. So the fi rst 2 tiles get an additional row  beyond 
the base tile size and end up with 4 rows.  

 As a more meaningful example, suppose you need to split the sales rows into three  categories 
based on quantities: low, medium, and high. You want each category to have about the same 
number of rows. You can calculate NTILE(3) values based on qty order (using empid as a 
 tiebreaker just to ensure deterministic and reproducible results) and use a CASE expression to 
convert the tile numbers to more meaningful descriptions: 

SELECT empid, qty, 

  CASE NTILE(3) OVER(ORDER BY qty, empid) 

    WHEN 1 THEN 'low' 

    WHEN 2 THEN 'medium' 

    WHEN 3 THEN 'high' 

  END AS lvl 

FROM dbo.Sales 

ORDER BY qty, empid;

 This query generates the following output: 

empid      qty         lvl

---------- ----------- ------

B          100         low

G          100         low

J          100         low

H          150         low

C          200         medium

D          200         medium

K          200         medium

E          250         medium

I          250         high

A          300         high

F          300         high
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 To calculate the range of quantities corresponding to each category, simply group the data 
by the tile number, returning the minimum and maximum sort values for each group: 

WITH Tiles AS 

( 

  SELECT empid, qty, 

    NTILE(3) OVER(ORDER BY qty, empid) AS tile 

  FROM dbo.Sales 

) 

SELECT tile, MIN(qty) AS lb, MAX(qty) AS hb 

FROM Tiles 

GROUP BY tile 

ORDER BY tile;

 You get the following output: 

tile                 lb          hb

-------------------- ----------- -----------

1                    100         150

2                    200         250

3                    250         300

Other Solutions to Tile Number

 The formula you use to calculate tile number depends on what exactly you want to do with 
the remainder in case the number of rows in the table doesn’t divide evenly by the  number of 
tiles. You might want to use the built-in NTILE function’s approach: Just assign the  remainder 
to the fi rst tiles, one to each until it’s all consumed. Another approach, which is probably more 
correct statistically, is to more evenly distribute the remainder among the tiles instead of 
 putting them into the initial tiles only. When you need the former approach, you can  simply 
use the built-in NTILE function. For the sake of completeness, I’ll also provide a  solution 
based on subqueries. If you need the latter approach, you have to develop your own solution 
 because this case has no built-in function. 

 I’ll start with the second approach, calculating tile numbers with even distribution. You need 
two inputs to calculate the tile number for a row: the row number and the tile size. You 
 already know how to calculate row numbers. To calculate the tile size, you divide the number 
of rows in the table by the requested number of tiles. The formula that calculates the target 
tile number is 

 (row_number – 1) / tile_size + 1

 The trick that allows you to distribute the remainder evenly is to use a decimal calculation 
when calculating the tile_size value instead of an integer one. That is, instead of using an 
integer calculation of the tile size (num_rows/num_tiles), which truncates the fraction, use 
1.*numrows/numtiles, which returns a more accurate decimal result. Finally, to get rid of the 
fraction in the tile number, convert the result back to an integer value.  
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 Here’s the complete query that produces tile numbers using the even-distribution approach: 

DECLARE @numtiles AS INT;

SET @numtiles = 3;

WITH D1 AS

(

  SELECT empid, qty,

    ROW_NUMBER() OVER(ORDER BY qty, empid) AS rn,

    (SELECT COUNT(*) FROM dbo.Sales) AS numrows

  FROM dbo.Sales AS S1

),

D2 AS

(

  SELECT empid, qty, rn,

    1.*numrows/@numtiles AS tilesize

  FROM D1

)

SELECT empid, qty, 

  CAST((rn - 1) / tilesize + 1 AS INT) AS tile

FROM D2

ORDER BY qty, empid;

 This query generates the following output: 

empid      qty         tile

---------- ----------- -----------

B          100         1

G          100         1

J          100         1

H          150         1

C          200         2

D          200         2

K          200         2

E          250         2

I          250         3

A          300         3

F          300         3

 With three tiles, you can’t see the even distribution of the remaining rows. If you run this code 
using nine tiles as input, you get the following output, where the even distribution is clearer: 

empid      qty         tile

---------- ----------- -----------

B          100         1

G          100         1

J          100         2

H          150         3

C          200         4

D          200         5

K          200         5

E          250         6

I          250         7

A          300         8

F          300         9
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 You can see in the result that the fi rst tile contains two rows, the next three tiles contain one 
row each, the next tile contains two rows, and the last four tiles contain one row each. You 
can experiment with the input number of tiles to get a clearer picture of the even-distribution 
algorithm. 

 For a challenge, see if you can come up with a solution to calculating tile numbers implementing 
the same logic as the built-in NTILE function without using ranking functions.  

 To get the same result as the built-in NTILE function, where the remainder is distributed to the 
lowest-numbered tiles, you need a formula different from the one used with even  distribution 
of remaining rows. First, the calculations involve only integers. The inputs you need for the 
formula in this case include the row number, tile size, and remainder (number of rows in 
the table % number of requested tiles). These inputs are used in calculating tile number with 
 non-even distribution. 

 The formula for the target tile number is as follows: 

if row_number <= (tilesize + 1) * remainder then 

  tile_number = (row_number – 1) / (tile_size + 1) + 1 

else 

  tile_number = (row_number – remainder – 1) / tile_size + 1

 Translated to T-SQL, the query looks like this: 

DECLARE @numtiles AS INT;

SET @numtiles = 9;

WITH D1 AS

(

  SELECT empid, qty,

    (SELECT COUNT(*) FROM dbo.Sales AS S2

      WHERE S2.qty < S1.qty

        OR S2.qty = S1.qty

            AND S2.empid <= S1.empid) AS rn,

    (SELECT COUNT(*) FROM dbo.Sales) AS numrows

  FROM dbo.Sales AS S1

),

D2 AS

(

  SELECT empid, qty, rn,

    numrows/@numtiles AS tilesize,

    numrows%@numtiles AS remainder

  FROM D1

)

SELECT empid, qty, 

  CASE 

    WHEN rn <= (tilesize+1) * remainder

      THEN (rn-1) / (tilesize+1) + 1

    ELSE (rn - remainder - 1) / tilesize + 1

  END AS tile

FROM D2

ORDER BY qty, empid;
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This query generates the following output: 

empid      qty         tile

---------- ----------- -----------

B          100         1

G          100         1

J          100         2

H          150         2

C          200         3

D          200         4

K          200         5

E          250         6

I          250         7

A          300         8

F          300         9

 The output is the same as the one you would get using the built-in NTILE function; the fi rst 
tiles get an additional row until the remainder is consumed.  

Auxiliary Table of Numbers

An auxiliary table of numbers is a very powerful tool that I often use in my solutions. So 
I  decided to dedicate a section in this chapter to it. In this section, I’ll simply describe the 
concept and the methods used to generate such a table. I’ll refer to this auxiliary table 
throughout the book and demonstrate many of its applications. 

An auxiliary table of numbers (call it Nums) is simply a table that contains the integers 
 between 1 and n for some (typically large) value of n. I recommend that you create a 
 permanent Nums table and populate it with as many values as you might need for your 
solutions. 

 The code in Listing 6-3 demonstrates how to create such a table containing 1,000,000 rows. 
Of course, you might want a different number of rows, depending on your needs.  

LISTING 6-3 Creating and populating auxiliary table of numbers

SET NOCOUNT ON;

USE InsideTSQL2008;

IF OBJECT_ID('dbo.Nums') IS NOT NULL DROP TABLE dbo.Nums;

CREATE TABLE dbo.Nums(n INT NOT NULL PRIMARY KEY);

DECLARE @max AS INT, @rc AS INT;

SET @max = 1000000;

SET @rc = 1;

INSERT INTO Nums VALUES(1);

WHILE @rc * 2 <= @max

SET NOCOUNT ON;

USE InsideTSQL2008;

IF OBJECT_ID('dbo.Nums') IS NOT NULL DROP TABLE dbo.Nums;

CREATE TABLE dbo.Nums(n INT NOT NULL PRIMARY KEY);

DECLARE @max AS INT, @rc AS INT;

SET @max = 1000000;

SET @rc = 1;

INSERT INTO Nums VALUES(1);

WHILE @rc * 2 <= @max
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BEGIN

  INSERT INTO dbo.Nums SELECT n + @rc FROM dbo.Nums;

  SET @rc = @rc * 2;

END

INSERT INTO dbo.Nums 

  SELECT n + @rc FROM dbo.Nums WHERE n + @rc <= @max;

 Tip Because a Nums table has so many practical uses, you’ll probably end up needing to 
 access it from various databases. To avoid the need to refer to it using the fully qualifi ed name 
InsideTSQL2008.dbo.Nums, you can create a synonym in the model database pointing to Nums 
in InsideTSQL2008 like this: 

 USE model;

CREATE SYNONYM dbo.Nums FOR InsideTSQL2008.dbo.Nums;  

Creating the synonym in model makes it available in all newly created databases from that point 
on, including tempdb after SQL Server is restarted. For existing databases, you just need to 
 explicitly run the CREATE SYNONYM command once. 

In practice, it doesn’t really matter how you populate the Nums table because you run this process 
only once. Nevertheless, I used an optimized process that populates the table in a very fast manner. 
The process demonstrates the technique of creating Nums with a multiplying INSERT loop. 

The code keeps track of the number of rows already inserted into the table in a variable 
called @rc. It fi rst inserts into Nums the row where n = 1. It then enters a loop while @rc * 2 
<= @max (@max is the desired number of rows). In each iteration, the process inserts into 
Nums the result of a query that selects all rows from Nums after adding @rc to each n value. 
This technique doubles the number of rows in Nums in each iteration—that is, fi rst {1} is 
 inserted, then {2}, then {3, 4}, then {5, 6, 7, 8}, then {9, 10, 11, 12, 13, 14, 15, 16}, and so on. 

 As soon as the table is populated with more than half the target number of rows, the loop 
ends. Another INSERT statement after the loop inserts the remaining rows using the same 
INSERT statement as within the loop, but this time with a fi lter to ensure that only values 
<= @max will be inserted. 

 The main reason that this process runs fast is that it minimizes writes to the transaction log 
 compared to other available solutions. This is achieved by minimizing the number of INSERT 
 statements (the number of INSERT statements is CEILING(LOG2(@max)) + 1). This code  populated 
the Nums table with 1,000,000 rows in 11 seconds on my laptop. As an exercise, you can try 
 populating the Nums table using a simple loop of individual inserts and see how long it takes.  

 Whenever you need the fi rst @n numbers from Nums, simply query it, specifying WHERE 
n <= @n as the fi lter. An index on the n column ensures that the query scans only the 
 required rows and no others. 

 If you’re not allowed to add permanent tables in the database, you can create a table-valued 
UDF with a parameter for the number of rows needed. You use the same logic as used in the 
preceding example to generate the required number of values. 

BEGIN

  INSERT INTO dbo.Nums SELECT n + @rc FROM dbo.Nums;

  SET @rc = @rc * 2;

END

INSERT INTO dbo.Nums

  SELECT n + @rc FROM dbo.Nums WHERE n + @rc <= @max;
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 You can use CTEs and the ROW_NUMBER function to create extremely effi cient solutions that 
generate a table of numbers on the fl y. 

 I’ll start with a naive solution that is fairly slow (about 22 seconds, with results discarded). The 
following solution uses a simple recursive CTE, where the anchor member generates a row 
with n = 1, and the recursive member adds a row in each iteration with n = prev n + 1: 

DECLARE @n AS BIGINT; 

SET @n = 1000000; 

 

WITH Nums AS 

( 

  SELECT 1 AS n 

  UNION ALL 

  SELECT n + 1 FROM Nums WHERE n < @n 

) 

SELECT n FROM Nums 

OPTION(MAXRECURSION 0);

 Note If you’re running the code to test it, remember to turn on the Discard Results After 
Execution option in SSMS; otherwise, you will get an output with a million rows. 

 You have to use a hint that removes the default recursion limit of 100. This solution runs for 
about 22 seconds. 

 You can optimize the solution signifi cantly by using a CTE (call it Base) that generates as many 
rows as the square root of the target number of rows. Take the cross join of two instances of 
Base to get the target number of rows and, fi nally, generate row numbers for the result to 
serve as the sequence of numbers.  

 Here’s the code that implements this approach: 

DECLARE @n AS BIGINT = 1000000;

WITH Base AS

(

  SELECT 1 AS n

  UNION ALL

  SELECT n + 1 FROM Base WHERE n < CEILING(SQRT(@n))

),

Nums AS

(

  SELECT ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS n

  FROM Base AS B1

    CROSS JOIN Base AS B2

)

SELECT n FROM Nums WHERE n <= @n

OPTION(MAXRECURSION 0);

 This solution runs for only 0.9 seconds (results discarded). 
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 Next, I’ll describe the third approach to generate Nums. You start with a CTE that has only two 
rows and multiply the number of rows with each following CTE by cross-joining two instances of 
the previous CTE. With n levels of CTEs (0-based), you reach POWER(2, POWER(2, n)) rows (read as 
“2 in the power of (2 in the power of n)”). For example, with 5 levels, you get 4,294,967,296 rows.  

 Another CTE generates row numbers, and fi nally the outer query fi lters the desired number 
of values (where row number column <= input). Remember that when you fi lter a row  number 
<= some value, SQL Server doesn’t bother to generate row numbers beyond that point. So 
you shouldn’t be concerned about performance. It’s not the case that your code will really 
generate more than four billion rows every time and then fi lter. 

 Here’s the code that implements this approach: 

DECLARE @n AS BIGINT = 1000000;

WITH

L0   AS(SELECT 1 AS c UNION ALL SELECT 1),

L1   AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B),

L2   AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B),

L3   AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B),

L4   AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B),

L5   AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B),

Nums AS(SELECT ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS n FROM L5)

SELECT n FROM Nums WHERE n <= @n;

 It runs for about 0.6 seconds to generate a sequence of 1,000,000 numbers. 

 As I mentioned earlier, you can wrap the logic in a UDF. The value of this solution is that it 
does not use recursion, and therefore does not need to explicitly increase the MAXRECURSION 
limit with a hint. Such a hint cannot be specifi ed in a UDF defi nition, but this is of no concern 
in our case. The following code encapsulates the last solution’s logic in a UDF: 

IF OBJECT_ID('dbo.GetNums') IS NOT NULL

  DROP FUNCTION dbo.GetNums;

GO

CREATE FUNCTION dbo.GetNums(@n AS BIGINT) RETURNS TABLE

AS

RETURN

  WITH

  L0   AS(SELECT 1 AS c UNION ALL SELECT 1),

  L1   AS(SELECT 1 AS c FROM L0 AS A, L0 AS B),

  L2   AS(SELECT 1 AS c FROM L1 AS A, L1 AS B),

  L3   AS(SELECT 1 AS c FROM L2 AS A, L2 AS B),

  L4   AS(SELECT 1 AS c FROM L3 AS A, L3 AS B),

  L5   AS(SELECT 1 AS c FROM L4 AS A, L4 AS B),

  Nums AS(SELECT ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS n FROM L5)

  SELECT n FROM Nums WHERE n <= @n;

GO

 To test the function, run the following code, which returns an auxiliary table with 10 
numbers:  

SELECT * FROM dbo.GetNums(10) AS Nums;
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Missing and Existing Ranges (Also Known as Gaps 
and Islands)

To put your knowledge of subqueries, table expressions, and ranking calculations into action, 
I’ll provide a couple of problems that have many applications in production environments. I’ll 
present a generic form of the problem, though, so you can focus on the techniques and not 
the data.  

The problems at hand deal with a sequence of values that has gaps within it. The sequence 
can be numeric (for example, keys such as order IDs) or temporal (for example, order dates). 
Also, the sequence can have unique values (for example, keys), or it can have duplicate values 
(for example, order dates). The fi rst challenge is to identify the ranges of missing values in the 
sequence (gaps), and the second challenge is to identify ranges of existing values (islands). 
These problems manifest in production systems in many forms—for example, availability 
or nonavailability reports, periods of activity or inactivity, identifying ranges of missing or 
 existing keys, and others. 

Use the following code to create and populate a table named NumSeq representing a 
 numeric sequence with unique values:  

SET NOCOUNT ON;

USE tempdb;

-- dbo.NumSeq (numeric sequence with unique values, interval: 1)

IF OBJECT_ID('dbo.NumSeq', 'U') IS NOT NULL DROP TABLE dbo.NumSeq;

CREATE TABLE dbo.NumSeq

(

  seqval INT NOT NULL

    CONSTRAINT PK_NumSeq PRIMARY KEY

);

INSERT INTO dbo.NumSeq(seqval) VALUES

  (2),(3),(11),(12),(13),(27),(33),(34),(35),(42);

 Table 6-2 shows the gaps in the sequence in NumSeq, and Table 6-3 shows the islands. 

TABLE 6-2 Gaps in NumSeq 

start_range end_range

4 10

14 26

28 32

36 41

start_range end_range
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 TABLE 6-3 Islands in NumSeq 

start_range end_range

2 3

11 13

27 27

33 35

42 42

 You can use the small NumSeq table to ensure that you get the correct results when working 
on the logical aspects of your solutions. To test the performance  aspects, you need a bigger 
sequence. Use the following code to create and  populate a table called BigNumSeq that has 
a big numeric sequence with unique values: 

-- dbo.BigNumSeq (big numeric sequence with unique values, interval: 1)

IF OBJECT_ID('dbo.BigNumSeq', 'U') IS NOT NULL DROP TABLE dbo.BigNumSeq;

CREATE TABLE dbo.BigNumSeq

(

  seqval INT NOT NULL

    CONSTRAINT PK_BigNumSeq PRIMARY KEY

);

-- Populate table with values in the range 1 through to 10,000,000

-- with a gap every 1000 (total 9,999 gaps, 10,000 islands)

WITH

L0   AS(SELECT 1 AS c UNION ALL SELECT 1),

L1   AS(SELECT 1 AS c FROM L0 AS A, L0 AS B),

L2   AS(SELECT 1 AS c FROM L1 AS A, L1 AS B),

L3   AS(SELECT 1 AS c FROM L2 AS A, L2 AS B),

L4   AS(SELECT 1 AS c FROM L3 AS A, L3 AS B),

L5   AS(SELECT 1 AS c FROM L4 AS A, L4 AS B),

Nums AS(SELECT ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS n FROM L5)

INSERT INTO dbo.BigNumSeq WITH(TABLOCK) (seqval)

  SELECT n

  FROM Nums

  WHERE n <= 10000000

    AND n % 1000 <> 0;

 The seqval column in the BigNumSeq table is populated with integer values in the range 1 
through to 10,000,000, with 9,999 gaps, 10,000 islands. 

 Your solutions will likely need certain revisions if you want to apply them to temporal 
 sequences. Use the following code to create and populate a table called TempSeq that 
 represents a  temporal sequence with unique values, with a fi xed interval of four hours: 

-- dbo.TempSeq (temporal sequence with unique values, interval: 4 hours)

IF OBJECT_ID('dbo.TempSeq', 'U') IS NOT NULL DROP TABLE dbo.TempSeq;

CREATE TABLE dbo.TempSeq

(

  seqval DATETIME NOT NULL

    CONSTRAINT PK_TempSeq PRIMARY KEY

);

start_range end_range
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INSERT INTO dbo.TempSeq(seqval) VALUES

  ('20090212 00:00'),

  ('20090212 04:00'),

  ('20090212 12:00'),

  ('20090212 16:00'),

  ('20090212 20:00'),

  ('20090213 08:00'),

  ('20090213 20:00'),

  ('20090214 00:00'),

  ('20090214 04:00'),

  ('20090214 12:00');

The sequence values could represent, for example, a timestamp recorded by a process every 
fi xed interval of time reporting that it’s online. And then the gaps information would represent 
nonavailability of the process, while the islands info would represent availability of the process.

Table 6-4 shows the gaps in TempSeq, and Table 6-5 shows the islands. 

TABLE 6-4 Gaps in TempSeq 

start_range end_range

2009-02-12 08:00:00.000 2009-02-12 08:00:00.000

2009-02-13 00:00:00.000 2009-02-13 04:00:00.000

2009-02-13 12:00:00.000 2009-02-13 16:00:00.000

2009-02-14 08:00:00.000 2009-02-14 08:00:00.000

TABLE 6-5 Islands in TempSeq 

start_range end_range

2009-02-12 00:00:00.000 2009-02-12 04:00:00.000

2009-02-12 12:00:00.000 2009-02-12 20:00:00.000

2009-02-13 08:00:00.000 2009-02-13 08:00:00.000

2009-02-13 20:00:00.000 2009-02-14 04:00:00.000

2009-02-14 12:00:00.000 2009-02-14 12:00:00.000

You may also need to handle sequences that contain duplicate values. Run the following 
code to create and populate a table called NumSeqDups that represents a numeric sequence 
with duplicate values: 

-- dbo.NumSeqDups (numeric sequence with duplicates, interval: 1)

IF OBJECT_ID('dbo.NumSeqDups', 'U') IS NOT NULL DROP TABLE dbo.NumSeqDups;

CREATE TABLE dbo.NumSeqDups

(

  seqval INT NOT NULL

);

CREATE CLUSTERED INDEX idx_seqval ON dbo.NumSeqDups(seqval);

INSERT INTO dbo.NumSeqDups(seqval) VALUES

  (2),(2),(2),(3),(11),(12),(12),(13),(27),(27),(27),(27),

  (33),(34),(34),(35),(35),(35),(42),(42);

start_range end_range

start_range end_range
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Missing Ranges (Gaps)

 You can take several approaches to solve the gaps problem. I will present four  different 
 solutions and discuss both their logical and their performance aspects. I’ll always start by 
 presenting a solution for a unique numeric sequence and then explain how to handle the 
other variations. So unless I explicitly say otherwise, the discussion is about the unique 
 numeric sequence stored in the NumSeq table. 

Gaps, Solution 1: Using Subqueries

 One approach to solving the gaps problem can be described by the following steps: 

  1.  Find the points before the gaps and add one interval to each. 

  2.  For each starting point of a gap, fi nd the next existing value in the sequence and 
 subtract one interval. 

 Having the logical aspects of the steps resolved, you can start coding. You will fi nd in 
the preceding logical steps that the chapter covered all the fundamental techniques that are 
mentioned—namely, fi nding points before gaps and fi nding the next existing value. 

 The following query returns the points before the gaps (in the sequence stored in 
NumSeq): 

SELECT seqval

FROM dbo.NumSeq AS A

WHERE NOT EXISTS(SELECT *

                FROM dbo.NumSeq AS B

                WHERE B.seqval = A.seqval + 1);

 This query generated the following output: 

seqval

-----------

3

13

27

35

42

 Remember that a point before a gap is a value after which the next consecutive value doesn’t 
exist. 

 Notice in the output that the last row is of no interest to us because the gap it precedes is 
the gap to infi nity. The following query returns the starting points of the gaps. It achieves this 
by adding one to the points before the gaps to get the fi rst values in the gaps, fi ltering out 
the point before infi nity. 

C06626034.indd   366 2/13/2009   2:22:37 AM



 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 367

SELECT

  seqval + 1 AS start_range

FROM dbo.NumSeq AS A

WHERE NOT EXISTS(SELECT *

                FROM dbo.NumSeq AS B

                WHERE B.seqval = A.seqval + 1)

  AND seqval < (SELECT MAX(seqval) FROM dbo.NumSeq);

 This query generates the following output: 

start_range

-----------

4

14

28

36

 Finally, for each starting point in the gap, you use a subquery to return the next value in the 
sequence minus 1—in other words, the end of the gap: 

SELECT

  seqval + 1 AS start_range,

  (SELECT MIN(B.seqval)

   FROM dbo.NumSeq AS B

   WHERE B.seqval > A.seqval) - 1 AS end_range

FROM dbo.NumSeq AS A

WHERE NOT EXISTS(SELECT *

                FROM dbo.NumSeq AS B

                WHERE B.seqval = A.seqval + 1)

  AND seqval < (SELECT MAX(seqval) FROM dbo.NumSeq);

 To test the performance of this solution, run it against the BigNumSeq table: 

SELECT

  seqval + 1 AS start_range,

  (SELECT MIN(B.seqval)

   FROM dbo.BigNumSeq AS B

   WHERE B.seqval > A.seqval) - 1 AS end_range

FROM dbo.BigNumSeq AS A

WHERE NOT EXISTS(SELECT *

                 FROM dbo.BigNumSeq AS B

                 WHERE B.seqval = A.seqval + 1)

  AND seqval < (SELECT MAX(seqval) FROM dbo.BigNumSeq);

 On my system, this solution ran for 8 seconds and incurred 62,262 logical reads. This is 
the fastest of all solutions I tested for the gaps problem. To understand why it performs 
so well (compared to others), examine this query’s execution plan, which is shown in 
Figure 6-11. 
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FIGURE 6-11 Query plan for gaps, solution 1

 The key to the good performance of this solution is the way the optimizer decided to handle 
the “point before a gap” part represented in our query by the NOT EXISTS predicate. The 
 optimizer identifi ed this part logically as an anti-semi join and processed it with a merge join 
operator between two ordered scans of the index on seqval (one complete and another  almost 
complete). These two scans incurred a little more than 32,000 reads, with the  physical part 
probably being sequential. For almost 10,000,000 rows, this is far more effi cient than  doing 
a seek operation per each row. Next, only for the fi ltered points identifi ed as points before 
gaps, the optimizer uses an index seek operation to fetch the next sequence value. Because 
our  sequence has close to 10,000 such points and 3 levels in the index, this activity amounts to 
about 30,000 reads, with the physical part being random. All in all, the number of logical reads 
is a little more than 62,000 reads. Note that the number of seek operations depends on the 
number of gaps in the sequence. Therefore, the performance of this solution varies based on 
the number of gaps. 

 To apply this solution to a temporal sequence, instead of using + 1 or –1, simply use the 
DATEADD function with the appropriate interval, like so: 

SELECT

  DATEADD(hour, 4, seqval) AS start_range,

  DATEADD(hour, -4,

    (SELECT MIN(B.seqval)

     FROM dbo.TempSeq AS B

     WHERE B.seqval > A.seqval)) AS end_range
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FROM dbo.TempSeq AS A

WHERE NOT EXISTS(SELECT *

                FROM dbo.TempSeq AS B

                WHERE B.seqval = DATEADD(hour, 4, A.seqval))

  AND seqval < (SELECT MAX(seqval) FROM dbo.TempSeq);

 You have a couple of options for dealing with a nonunique sequence. One is to replace the 
reference in the outer query to the original table with a reference to a derived table that has 
only distinct values, like so: 

SELECT

  seqval + 1 AS start_range,

  (SELECT MIN(B.seqval)

   FROM dbo.NumSeqDups AS B

   WHERE B.seqval > A.seqval) - 1 AS end_range

FROM (SELECT DISTINCT seqval FROM dbo.NumSeqDups) AS A

WHERE NOT EXISTS(SELECT *

                 FROM dbo.NumSeqDups AS B

                 WHERE B.seqval = A.seqval + 1)

  AND seqval < (SELECT MAX(seqval) FROM dbo.NumSeqDups);

 Another is to simply use a DISTINCT clause in the SELECT list: 

SELECT DISTINCT

  seqval + 1 AS start_range,

  (SELECT MIN(B.seqval)

   FROM dbo.NumSeqDups AS B

   WHERE B.seqval > A.seqval) - 1 AS end_range

FROM dbo.NumSeqDups AS A

WHERE NOT EXISTS(SELECT *

                 FROM dbo.NumSeqDups AS B

                 WHERE B.seqval = A.seqval + 1)

  AND seqval < (SELECT MAX(seqval) FROM dbo.NumSeqDups);

Gaps, Solution 2: Using Subqueries

 The second approach to solving the gaps problem is one I fi nd to be simpler and more intuitive 
than the previous. It implements the following steps:  

  1.  To each existing value, match the next existing value, generating current, next pairs. 

  2.  Keep only pairs where next minus current is greater than one interval. 

  3.  With the remaining pairs, add one interval to the current and subtract one interval 
from the next. 

 This approach relies on the fact that adjacent values with a difference greater than one interval 
represent the boundaries of a gap. Identifying a gap based on identifi cation of the next existing 
value is another useful fundamental technique.  
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 To translate the preceding steps to T-SQL, the following query simply returns the next value 
for each current value: 

SELECT

  seqval AS cur,

  (SELECT MIN(B.seqval)

   FROM dbo.NumSeq AS B

   WHERE B.seqval > A.seqval) AS nxt

FROM dbo.NumSeq AS A;

 This query generates the following output: 

cur         nxt

----------- -----------

2           3

3           11

11          12

12          13

13          27

27          33

33          34

34          35

35          42

42          NULL

 Finally, you create a derived table out of the previous step’s query, and you keep only pairs 
where nxt – cur is greater than one. You add one to cur to get the actual start of the gap 
and subtract one from nxt to get the actual end of the gap: 

SELECT cur + 1 AS start_range, nxt - 1 AS end_range

FROM (SELECT

        seqval AS cur,

        (SELECT MIN(B.seqval)

         FROM dbo.NumSeq AS B

         WHERE B.seqval > A.seqval) AS nxt

      FROM dbo.NumSeq AS A) AS D

WHERE nxt - cur > 1;

 Note that this solution got rid of the point before infi nity with no special treatment because 
the nxt value for it was NULL. 

 Run this solution against BigNumSeq to test its performance: 

SELECT cur + 1 AS start_range, nxt - 1 AS end_range

FROM (SELECT

        seqval AS cur,

        (SELECT MIN(B.seqval)

         FROM dbo.BigNumSeq AS B

         WHERE B.seqval > A.seqval) AS nxt

      FROM dbo.BigNumSeq AS A) AS D

WHERE nxt - cur > 1;

 The plan for this query is shown in Figure 6-12.
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FIGURE 6-12 Query plan for gaps, solution 2

 This solution is signifi cantly slower than the previous one. It ran on my system for 48 seconds 
and incurred 31,875,478 logical reads. The reason for the large number of reads becomes 
apparent when you examine the plan. The plan shows a full scan of the index to retrieve all 
sequence values (close to 10,000,000 of them), and per each row, an index seek operation is 
used to return the next value. With a cost of 3 reads per seek (for the 3 levels of the index), 
you get about 30,000,000 reads for all seeks. 

 To apply the solution to a temporal sequence, use the DATEADD function to add or subtract 
an interval, and the DATEDIFF function to calculate the difference between cur and nxt: 

SELECT 

  DATEADD(hour, 4, cur) AS start_range,

  DATEADD(hour, -4, nxt) AS end_range

FROM (SELECT

        seqval AS cur,

        (SELECT MIN(B.seqval)

         FROM dbo.TempSeq AS B

         WHERE B.seqval > A.seqval) AS nxt

      FROM dbo.TempSeq AS A) AS D

WHERE DATEDIFF(hour, cur, nxt) > 4;

 For a sequence with duplicates, again, one approach is to query a derived table that has only 
distinct values, like so: 

SELECT cur + 1 AS start_range, nxt - 1 AS end_range

FROM (SELECT

        seqval AS cur,

        (SELECT MIN(B.seqval)

         FROM dbo.NumSeqDups AS B

         WHERE B.seqval > A.seqval) AS nxt

      FROM (SELECT DISTINCT seqval FROM dbo.NumSeqDups) AS A) AS D

WHERE nxt - cur > 1;

 Or simply add a DISTINCT clause to the SELECT list: 

SELECT DISTINCT cur + 1 AS start_range, nxt - 1 AS end_range

FROM (SELECT

        seqval AS cur,

        (SELECT MIN(B.seqval)
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         FROM dbo.NumSeqDups AS B

         WHERE B.seqval > A.seqval) AS nxt

      FROM dbo.NumSeqDups AS A) AS D

WHERE nxt - cur > 1;

Gaps, Solution 3: Using Ranking Functions

 The third solution is similar to the second, but it uses a different method to pair current and 
next values. It defi nes a CTE that assigns row numbers to rows based on seqval ordering. The 
outer query then joins two instances, matching current and next values based on an offset of 
1 between their row numbers. Here’s the complete solution: 

WITH C AS

(

  SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

  FROM dbo.NumSeq

)

SELECT Cur.seqval + 1 AS start_range, Nxt.seqval - 1 AS end_range

FROM C AS Cur

  JOIN C AS Nxt

    ON Nxt.rownum = Cur.rownum + 1

WHERE Nxt.seqval - Cur.seqval > 1;

 Run the solution against the big sequence to test its performance: 

WITH C AS

(

  SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

  FROM dbo.BigNumSeq

)

SELECT Cur.seqval + 1 AS start_range, Nxt.seqval - 1 AS end_range

FROM C AS Cur

  JOIN C AS Nxt

    ON Nxt.rownum = Cur.rownum + 1

WHERE Nxt.seqval - Cur.seqval > 1;

 The plan for this query is shown in Figure 6-13. 

FIGURE 6-13 Query plan for gaps, solution 3
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 This solution performs better than the previous. It ran on my system for 24 seconds and 
 incurred 32,246 logical reads. It performs two ordered scans of the index on seqval, to return 
the current and next values and their row numbers, and then uses a merge join operator to 
match current with next values. The merge operator turns out to be quite expensive here. 
It is handled as a many-to-many join, even though you and I know that in practice it’s a 
 one-to-one join. 

 As in the previous solution, to apply this solution to a temporal sequence, use the DATEADD 
function to add or subtract an interval and use the DATEDIFF function to calculate the 
 difference between cur and nxt: 

WITH C AS

(

  SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

  FROM dbo.TempSeq

)

SELECT

  DATEADD(hour, 4, Cur.seqval) AS start_range,

  DATEADD(hour, -4, Nxt.Seqval) AS end_range

FROM C AS Cur

  JOIN C AS Nxt

    ON Nxt.rownum = Cur.rownum + 1

WHERE DATEDIFF(hour, Cur.seqval, Nxt.seqval) > 4;

 For a sequence with duplicates, one option is as usual to use a derived table with the distinct 
sequence values, like so: 

WITH C AS

(

  SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

  FROM (SELECT DISTINCT seqval FROM dbo.NumSeqDups) AS D

)

SELECT Cur.seqval + 1 AS start_range, Nxt.seqval - 1 AS end_range

FROM C AS Cur

  JOIN C AS Nxt

    ON Nxt.rownum = Cur.rownum + 1

WHERE Nxt.seqval - Cur.seqval > 1;

 Another option is to use row numbers to number the occurrences of each unique value and 
fi lter only occurrences with the row number 1. The rest is the same as in the original solution. 
Here’s the complete solution query: 

WITH C1 AS

(

  SELECT seqval, ROW_NUMBER() OVER(PARTITION BY seqval

                                   ORDER BY (SELECT 0)) AS dupnum

  FROM dbo.NumSeqDups

),

C2 AS

(

  SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

  FROM C1

  WHERE dupnum = 1

)
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SELECT Cur.seqval + 1 AS start_range, Nxt.seqval - 1 AS end_range

FROM C2 AS Cur

  JOIN C2 AS Nxt

    ON Nxt.rownum = Cur.rownum + 1

WHERE Nxt.seqval - Cur.seqval > 1;

Gaps, Solution 4: Using Cursors

 I also wrote a solution based on cursors because I was curious about its performance. On the 
one hand, the cursor can achieve the task using a single ordered scan of the index; on the  other 
hand, a lot of overhead is associated with the record-by-record manipulation of the  cursor. You 
pay overhead per each row that is processed with the cursor that you don’t  normally pay for 
set-based manipulation. 

 The cursor solution is quite straightforward: The cursor scans the sequence values once in 
order and compares each current value with the previous. If the difference between them is 
greater than one interval, the pair represents a gap. Here’s the complete solution’s code: 

SET NOCOUNT ON;

DECLARE @seqval AS INT, @prvseqval AS INT;

DECLARE @Gaps TABLE(start_range INT, end_range INT);

DECLARE C CURSOR FAST_FORWARD FOR

  SELECT seqval FROM dbo.BigNumSeq ORDER BY seqval;

OPEN C;

FETCH NEXT FROM C INTO @prvseqval;

IF @@FETCH_STATUS = 0 FETCH NEXT FROM C INTO @seqval;

WHILE @@FETCH_STATUS = 0

BEGIN

  IF @seqval - @prvseqval > 1

    INSERT INTO @Gaps(start_range, end_range)

      VALUES(@prvseqval + 1, @seqval - 1);

  SET @prvseqval = @seqval;

  FETCH NEXT FROM C INTO @seqval;

END

CLOSE C;

DEALLOCATE C;

SELECT start_range, end_range FROM @Gaps;

 As expected, the cursor solution was very slow. It ran for 250 seconds on my system even 
though it incurred only 16,123 logical reads. 
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Returning Individual Missing Values

 Before I move on to covering the solutions to the islands problem, I want to address a special 
case of the missing values problem. If you need to return the list of individual missing values 
as opposed to missing ranges, using the Nums table the task is very simple: 

SELECT n FROM dbo.Nums

WHERE n BETWEEN (SELECT MIN(seqval) FROM dbo.NumSeq)

            AND (SELECT MAX(seqval) FROM dbo.NumSeq)

  AND n NOT IN(SELECT seqval FROM dbo.NumSeq);

Existing Ranges (Islands)

 As with the gaps problem, you can take several approaches to solve the islands problem. I’ll 
describe four solutions here. 

Islands, Solution 1: Using Subqueries and Ranking Calculations

 The fi rst solution to the islands problem is quite straightforward. It involves the following steps: 

  1.  Identify points after gaps and assign them row numbers—these points are starting 
points of islands. 

  2.  Identify points before gaps and assign with row numbers—these points are ending 
points of islands. 

  3.  Match starting and ending points of islands based on equality between their row 
numbers. 

 Here’s the solution code for the unique numeric sequence: 

WITH StartingPoints AS

(

  SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

  FROM dbo.NumSeq AS A

  WHERE NOT EXISTS

    (SELECT *

     FROM dbo.NumSeq AS B

     WHERE B.seqval = A.seqval - 1)

),

EndingPoints AS

(

  SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

  FROM dbo.NumSeq AS A

  WHERE NOT EXISTS

    (SELECT *

     FROM dbo.NumSeq AS B

     WHERE B.seqval = A.seqval + 1)

)

SELECT S.seqval AS start_range, E.seqval AS end_range

FROM StartingPoints AS S

  JOIN EndingPoints AS E

    ON E.rownum = S.rownum;
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 To test the performance of this solution, run the code against the BigNumSeq table: 

WITH StartingPoints AS

(

  SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

  FROM dbo.BigNumSeq AS A

  WHERE NOT EXISTS

    (SELECT *

     FROM dbo.BigNumSeq AS B

     WHERE B.seqval = A.seqval - 1)

),

EndingPoints AS

(

  SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

  FROM dbo.BigNumSeq AS A

  WHERE NOT EXISTS

    (SELECT *

     FROM dbo.BigNumSeq AS B

     WHERE B.seqval = A.seqval + 1)

)

SELECT S.seqval AS start_range, E.seqval AS end_range

FROM StartingPoints AS S

  JOIN EndingPoints AS E

    ON E.rownum = S.rownum;

 The plan for this query is shown in Figure 6-14. 

FIGURE 6-14 Query plan for islands, solution 1
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 The plan shows two merge joins, each between the results of two ordered scans of the index 
on seqval. Each such merge join is used to process a logical anti-semi join that fi lters points 
before or after gaps. Each such merge join fi lters as many rows as the number of islands 
(10,000 in our case). Finally, another merge join is used to pair starting and ending points. 
Even though the last merge is many-to-many and can potentially be slow, it’s pretty fast 
 because it handles only a small number of islands in our case. This solution ran on my system 
for 17 seconds and incurred 64,492 logical reads. 

 To apply the solution to a temporal sequence, simply use the DATEADD function as usual to 
add an interval to the sequence value: 

WITH StartingPoints AS

(

  SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

  FROM dbo.TempSeq AS A

  WHERE NOT EXISTS

    (SELECT *

     FROM dbo.TempSeq AS B

     WHERE B.seqval = DATEADD(hour, -4, A.seqval))

),

EndingPoints AS

(

  SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

  FROM dbo.TempSeq AS A

  WHERE NOT EXISTS

    (SELECT *

     FROM dbo.TempSeq AS B

     WHERE B.seqval = DATEADD(hour, 4, A.seqval))

)

SELECT S.seqval AS start_range, E.seqval AS end_range

FROM StartingPoints AS S

  JOIN EndingPoints AS E

    ON E.rownum = S.rownum;

 To apply the solution to a sequence with duplicates, query a derived table with the distinct 
values: 

WITH StartingPoints AS

(

  SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

  FROM (SELECT DISTINCT seqval FROM dbo.NumSeqDups) AS A

  WHERE NOT EXISTS

    (SELECT *

     FROM dbo.NumSeqDups AS B

     WHERE B.seqval = A.seqval - 1)

),

EndingPoints AS

(

  SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

  FROM (SELECT DISTINCT seqval FROM dbo.NumSeqDups) AS A

  WHERE NOT EXISTS

    (SELECT *

     FROM dbo.NumSeqDups AS B

     WHERE B.seqval = A.seqval + 1)

)
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SELECT S.seqval AS start_range, E.seqval AS end_range

FROM StartingPoints AS S

  JOIN EndingPoints AS E

    ON E.rownum = S.rownum;

Islands, Solution 2: Using Group Identifi er Based on Subqueries

 The second solution to the islands problem involves a concept I haven’t discussed yet—a grouping 
factor, or group identifi er. You basically need to group data by a factor that does not exist in the 
data as a base attribute. In our case, you need to calculate some x value for all members of the fi rst 
subset of consecutive values {2, 3}, some y value for the second {11, 12, 13}, some z value for the 
third {27}, and so on. When you have this grouping factor available, you can group the data by this 
factor and return the minimum and maximum col1 values in each group. 

 One approach to calculating this grouping factor brings me to another technique: calculating the 
min or max value of a group of consecutive values. Take the group {11, 12, 13} as an example. 
If you can manage to calculate for each of the members the max value in the group (13), you can 
use it as your grouping factor. 

 The logic behind the technique to calculating the maximum within a group of consecutive 
values is: return the minimum value that is greater than or equal to the current, after which 
there’s a gap. Here’s the translation to T-SQL: 

SELECT seqval,

  (SELECT MIN(B.seqval)

   FROM dbo.NumSeq AS B

   WHERE B.seqval >= A.seqval

     AND NOT EXISTS

       (SELECT *

        FROM dbo.NumSeq AS C

        WHERE C.seqval = B.seqval + 1)) AS grp

FROM dbo.NumSeq AS A;

 This code generates the following output: 

seqval      grp

----------- -----------

2           3

3           3

11          13

12          13

13          13

27          27

33          35

34          35

35          35

42          42

 The rest is really easy: create a CTE table out of the previous step’s query, group the data by 
the grouping factor, and return the minimum and maximum values for each group: 
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WITH D AS

(

  SELECT seqval,

    (SELECT MIN(B.seqval)

     FROM dbo.NumSeq AS B

     WHERE B.seqval >= A.seqval

       AND NOT EXISTS

         (SELECT *

          FROM dbo.NumSeq AS C

          WHERE C.seqval = B.seqval + 1)) AS grp

  FROM dbo.NumSeq AS A

)

SELECT MIN(seqval) AS start_range, MAX(seqval) AS end_range

FROM D

GROUP BY grp;

 This solution solves the problem, but I’m not sure I’d qualify it as a very simple and intuitive 
solution with satisfactory performance. To test its performance, you can run it against the 
BigNumSeq table: 

WITH D AS

(

  SELECT seqval,

    (SELECT MIN(B.seqval)

     FROM dbo.BigNumSeq AS B

     WHERE B.seqval >= A.seqval

       AND NOT EXISTS

         (SELECT *

          FROM dbo.BigNumSeq AS C

          WHERE C.seqval = B.seqval + 1)) AS grp

  FROM dbo.BigNumSeq AS A

)

SELECT MIN(seqval) AS start_range, MAX(seqval) AS end_range

FROM D

GROUP BY grp;

 The execution plan for this query is shown in Figure 6-15.

FIGURE 6-15 Query plan for islands, solution 2
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 This solution is so slow that after 10 minutes I simply canceled it. The cause for the poor 
 performance can be identifi ed in the query’s execution plan. The index on seqval is fully 
scanned to retrieve all rows from the instance of the table named A. Recall that the table 
has almost 10,000,000 rows. For each of those rows a nested loops operator invokes quite 
 expensive activity—a merge join implementing a logical anti-semi join to identify all points 
before a gap. This merge join happens between the results of a full and a partial scan of the 
index on seqval. Then the minimum of those points is returned. 

 To apply this solution to a temporal sequence, use the DATEADD function to add an interval 
to the sequence value: 

WITH D AS

(

  SELECT seqval,

    (SELECT MIN(B.seqval)

     FROM dbo.TempSeq AS B

     WHERE B.seqval >= A.seqval

       AND NOT EXISTS

         (SELECT *

          FROM dbo.TempSeq AS C

          WHERE C.seqval = DATEADD(hour, 4, B.seqval))) AS grp

  FROM dbo.TempSeq AS A

)

SELECT MIN(seqval) AS start_range, MAX(seqval) AS end_range

FROM D

GROUP BY grp;

 For a sequence with duplicates, the solution actually works as is because the GROUP BY 
 operation eliminates the duplicates: 

WITH D AS

(

  SELECT seqval,

    (SELECT MIN(B.seqval)

     FROM dbo.NumSeqDups AS B

     WHERE B.seqval >= A.seqval

       AND NOT EXISTS

         (SELECT *

          FROM dbo.NumSeqDups AS C

          WHERE C.seqval = B.seqval + 1)) AS grp

  FROM dbo.NumSeqDups AS A

)

SELECT MIN(seqval) AS start_range, MAX(seqval) AS end_range

FROM D

GROUP BY grp;

Islands, Solution 3: Using Group Identifi er Based on Ranking Calculations

 The third solution to the islands problem is also based on the concept of a group identifi er, 
but it calculates it using a dramatically simpler and faster technique. The solution is based 
on a certain relationship that can be identifi ed between the sequence with the gaps and a 
sequence of row numbers. To explain the technique, fi rst run the following query calculating 
row numbers based on seqval order:  
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SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

FROM dbo.NumSeq;

 This query generates the following output: 

seqval      rownum

----------- --------------------

2           1

3           2

11          3

12          4

13          5

27          6

33          7

34          8

35          9

42          10

 See if you can identify a relationship between the way the seqval values increment and the 
way row numbers do. 

 Because both sequences keep incrementing by the same interval within an island, their 
 difference remains constant within an island. As soon as you get to a new island, the  difference 
between them increases because seqval increments by more than 1, while the row number 
increments by 1. Run the following query to produce this difference: 

SELECT seqval, seqval - ROW_NUMBER() OVER(ORDER BY seqval) AS diff

FROM dbo.NumSeq;

 You get the following output: 

seqval      diff

----------- --------------------

2           1

3           1

11          8

12          8

13          8

27          21

33          26

34          26

35          26

42          32

 As you can see, this difference is the same for all members of the same island and different 
for other islands. Now, simply replace in the previous solution the CTE table query with the 
preceding query to get the desired result: 

WITH D AS

(

  SELECT seqval, seqval - ROW_NUMBER() OVER(ORDER BY seqval) AS grp

  FROM dbo.NumSeq

)
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SELECT MIN(seqval) AS start_range, MAX(seqval) AS end_range

FROM D

GROUP BY grp;

 The performance of this solution is very good. Run it against the BigNumSeq table: 

WITH D AS

(

  SELECT seqval, seqval - ROW_NUMBER() OVER(ORDER BY seqval) AS grp

  FROM dbo.BigNumSeq

)

SELECT MIN(seqval) AS start_range, MAX(seqval) AS end_range

FROM D

GROUP BY grp;

 The execution plan for this query is shown in Figure 6-16. 

FIGURE 6-16 Query plan for islands, solution 3

 The execution plan explains the effi ciency of this solution. The index is scanned only once 
to retrieve the sequence values and also to calculate the row numbers. The rows are then 
grouped by the difference between the two, and the minimum and maximum seqval  values 
are calculated for each group. This code ran for about 10 seconds on my system and  incurred 
16,123 logical reads. This is the fastest solution to the islands problem out of the ones 
I present here. 

 Applying the solution to a temporal sequence is not as trivial as in the previous cases. Here, 
the temporal sequence and the row numbers sequence have different data types and also 
different intervals. The trick to applying the effi cient technique in this case is to realize that 
instead of calculating the difference between the two sequences, you can subtract from 
each of the temporal sequence values as many temporal intervals as the row number. As a 
result, all members of the same island get a constant date and time value, which is different 
than it is for other islands. The sequence in the TempSeq table has an interval of four hours; 
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 therefore, to produce the group identifi er in this case, you need to subtract from seqval row 
number times four hours, like so: 

WITH D AS

(

  SELECT seqval, DATEADD(hour, -4 * ROW_NUMBER() OVER(ORDER BY seqval), seqval) AS grp

  FROM dbo.TempSeq

)

SELECT MIN(seqval) AS start_range, MAX(seqval) AS end_range

FROM D

GROUP BY grp;

 For a sequence with duplicates, the trick is simply not to increment the ranking value for 
 duplicate values. To achieve this, use the DENSE_RANK function instead of ROW_NUMBER, 
like so: 

WITH D AS

(

  SELECT seqval, seqval - DENSE_RANK() OVER(ORDER BY seqval) AS grp

  FROM dbo.NumSeqDups

)

SELECT MIN(seqval) AS start_range, MAX(seqval) AS end_range

FROM D

GROUP BY grp;

Islands, Solution 4: Using Cursors

 Of course, coverage of solutions to the islands problem cannot be considered complete without 
a cursor-based solution. The logic of the solution is straightforward: scan the sequence values in 
order, and as soon as the current value is greater than the previous by more than one interval, 
you know that the previous value closes the last island, and the new value opens a new one. 
Here’s the code implementing this logic: 

SET NOCOUNT ON;

DECLARE @seqval AS INT, @prvseqval AS INT, @first AS INT;

DECLARE @Islands TABLE(start_range INT, end_range INT);

DECLARE C CURSOR FAST_FORWARD FOR

  SELECT seqval FROM dbo.BigNumSeq ORDER BY seqval;

OPEN C;

FETCH NEXT FROM C INTO @seqval;

SET @first = @seqval;

SET @prvseqval = @seqval;

WHILE @@FETCH_STATUS = 0

BEGIN

  IF @seqval - @prvseqval > 1

  BEGIN

    INSERT INTO @Islands(start_range, end_range)
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      VALUES(@first, @prvseqval);

    SET @first = @seqval;

  END

  

  SET @prvseqval = @seqval;

  FETCH NEXT FROM C INTO @seqval;

END

IF @first IS NOT NULL

  INSERT INTO @Islands(start_range, end_range)

    VALUES(@first, @prvseqval);

  

CLOSE C;

DEALLOCATE C;

SELECT start_range, end_range FROM @Islands;

 Because of the high overhead of the record-by-record manipulation of the cursor, it ran for 
about 217 seconds against BigNumSeq on my system even though it incurred only 16,123 
logical reads. 

A Variation of the Islands Problem

 In this section I’ll describe a variation of the islands problem and a solution based on the 
group identifi er concept.  

 The problem at hand involves a table (call it T3) with two columns of interest—one column 
represents a sequence of keys (call it id), and another column represents a status value (call it 
val). Run the following code to create a table called T3 and populate it with sample data: 

USE tempdb;

IF OBJECT_ID('dbo.T3') IS NOT NULL DROP TABLE dbo.T3;

CREATE TABLE dbo.T3

(

  id  INT         NOT NULL PRIMARY KEY,

  val VARCHAR(10) NOT NULL

);

GO

INSERT INTO dbo.T3(id, val) VALUES

  (2, 'a'),

  (3, 'a'),

  (5, 'a'),

  (7, 'b'),

  (11, 'b'),

  (13, 'a'),

  (17, 'a'),

  (19, 'a'),

  (23, 'c'),

  (29, 'c'),

  (31, 'a'),

  (37, 'a'),
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  (41, 'a'),

  (43, 'a'),

  (47, 'c'),

  (53, 'c'),

  (59, 'c');

This kind of data can represent, for example, the status of a product in various stations in an 
assembly line. 

The challenge is to identify the ranges of IDs for each contiguous segment with the same status 
value. With the given sample data your solution should produce the output shown in Table 6-6. 

TABLE 6-6 Desired Result of Solution to a Variation of the Islands Problem  

mn mx val

2 5 a

7 11 b

13 19 a

23 29 c

31 43 a

47 59 c

The key to solving the problem is to calculate two row numbers—one based on id ordering 
and the other based on val, id ordering, like so: 

SELECT id, val,

  ROW_NUMBER() OVER(ORDER BY id) AS rn_id,

  ROW_NUMBER() OVER(ORDER BY val, id) AS rn_val_id

FROM dbo.T3

ORDER BY id;

This query generates the following output: 

id          val        rn_id                rn_val_id

----------- ---------- -------------------- --------------------

2           a          1                    1

3           a          2                    2

5           a          3                    3

7           b          4                    11

11          b          5                    12

13          a          6                    4

17          a          7                    5

19          a          8                    6

23          c          9                    13

29          c          10                   14

31          a          11                   7

37          a          12                   8

41          a          13                   9

43          a          14                   10

47          c          15                   15

53          c          16                   16

59          c          17                   17

mn mx val
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 Naturally, both types of row numbers increment the same way within a contiguous segment 
of a status value. When jumping to the next segment with the same status, the row number 
based on val, id ordering increases by 1, while the row number based on only id ordering 
increases by more than 1. This means that the difference between the two row numbers is 
constant in a segment and different from those in other segments of the same status value. 
Run the following query to obtain this difference:  

SELECT id, val,

  ROW_NUMBER() OVER(ORDER BY id)

    - ROW_NUMBER() OVER(ORDER BY val, id) AS diff

FROM dbo.T3

ORDER BY id;

 Notice in the output that the combination of val and diff is unique per segment: 

id          val        diff

----------- ---------- --------------------

2           a          0

3           a          0

5           a          0

7           b          -7

11          b          -7

13          a          2

17          a          2

19          a          2

23          c          -4

29          c          -4

31          a          4

37          a          4

41          a          4

43          a          4

47          c          0

53          c          0

59          c          0

 What’s left is simply to group the data by the status value and the difference between the 
row numbers and return for each group the minimum and maximum ids, and the status 
value, as the following query shows: 

WITH C AS

(

  SELECT id, val,

    ROW_NUMBER() OVER(ORDER BY id)

      - ROW_NUMBER() OVER(ORDER BY val, id) AS grp

  FROM dbo.T3

)

SELECT MIN(id) AS mn, MAX(id) AS mx, val

FROM C

GROUP BY val, grp

ORDER BY mn;
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Conclusion

 This chapter covered many subjects, all related to subqueries. I discussed scalar and list 
subqueries, self-contained and correlated subqueries, table expressions, and ranking 
calculations. 

 It’s important to make mental notes of the fundamental techniques that I point out here 
and throughout the book, such as generating copies using an auxiliary table of  numbers, 
 introducing a tiebreaker, fi nding points before gaps, returning the next or previous value, 
 calculating a grouping factor, and so on. This builds your T-SQL vocabulary and enhances 
your skills. As you progress with this approach, you’ll see that it becomes easier and easier 
to  identify fundamental elements in a problem. Having already resolved and  polished 
key  techniques separately in a focused manner, you will use them naturally to solve 
problems. 
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Chapter 7

 Joins and Set Operations 

 This chapter covers joins and set operations—their logical aspects as well as their physical 
performance aspects. I’ll demonstrate practical applications for each type of join and set 
 operation. I have used the ANSI SQL terminology to categorize the elements of the  language 
that I’ll cover here. Joins (CROSS, INNER, OUTER) refer to horizontal operations (loosely 
speaking) between tables, while set operations (UNION, EXCEPT, INTERSECT) refer to vertical 
operations between tables.  

Joins

 Joins are operations that allow you to match rows between tables. I informally call these 
operations horizontal because the virtual table resulting from a join operation between two 
tables contains all columns from both tables. 

 I’ll fi rst describe the different syntaxes for joins supported by the standard, and I’ll also 
briefl y mention legacy proprietary elements in T-SQL. I’ll then describe the fundamental join 
types and their applications followed by further examples of joins. I’ll also include a focused 
 discussion on the internal processing of joins—namely, join algorithms. 

 You’ll have a couple of chances to practice what you’ve learned by trying to solve a problem 
that encompasses previously discussed aspects of joins. 

Old Style vs. New Style

 T-SQL supports two different syntaxes for joins. A lot of confusion surrounds the two. When 
do you use each? Which performs better? Which is standard, and which is proprietary? Will 
the older syntax be deprecated soon? And so on. I hope this chapter will clear the fog. 

 I’ll start by saying that the ANSI standard supports two different syntaxes for joins, and 
 neither syntax is in the process of deprecation yet. The join elements of the older standard 
are a complete part of the newer. This means that you can use either one without worrying 
that it will not be supported by Microsoft SQL Server sometime soon. SQL Server will not 
 remove support for implemented features that were not deprecated by the standard. 

 The older of the two syntaxes was introduced in ANSI SQL-89. What distinguishes it from the 
newer syntax is the use of commas to separate table names that appear in the FROM clause 
and the absence of the JOIN keyword and the ON clause: 

FROM T1, T2 

WHERE where_predicate
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 The ANSI SQL-89 syntax had support only for cross and inner join types. It did not have 
 support for outer joins. 

 The newer syntax was introduced in ANSI SQL-92, and what distinguishes it from the older 
 syntax is the removal of the commas and the introduction of the JOIN keyword and the ON 
clause: 

FROM T1 <join_type> JOIN T2 ON <on_predicate> 

WHERE where_predicate

 ANSI SQL-92 introduced support for outer joins, and this drove the need for a separation of 
fi lters—the ON fi lter and the WHERE fi lter. I’ll explain this in detail in the outer joins section. 

 Some people think that the comma-based syntax for joins in general is not standard, which is not 
true. Part of the confusion has to do with the fact that in the past, T-SQL supported a proprietary 
syntax for outer joins that was based on commas before SQL Server added  support for the ANSI 
SQL-92 syntax. In particular, I’m talking about the old-style  proprietary outer join syntax, using 
*= and =* for left outer and right outer joins, respectively. In  addition to not being standard, this 
syntax was problematic in the sense that in some cases the  meaning of the query was ambiguous. 
SQL Server deprecated this syntax, and it is supported only under a backward-compatibility fl ag. 
In short, with cross and inner joins both the comma-based and JOIN keyword-based syntaxes are 
standard, while with outer joins only the JOIN keyword–based syntax is standard.  

 In the following section, I’ll discuss both syntaxes and explain why I recommend that you stick to 
the ANSI SQL-92 join syntax even though the old-style syntax for cross and inner joins is standard. 

Fundamental Join Types

 As I describe the different fundamental join types—cross, inner, and outer—keep in mind 
the phases in logical query processing that I described in detail in Chapter 1, “Logical Query 
Processing.” In particular, keep in mind the logical phases involved in join processing. 

 Each fundamental join type takes place only between two tables. Even if you have more than 
two tables in the FROM clause, the three logical query processing subphases of joins take 
place between two tables at a time. Each join results in a virtual table, which in turn is joined 
with the next table in the FROM clause. This process continues until all table operators in the 
FROM clause are processed. 

 The fundamental join types differ in the logical subphases that they apply. Cross join  applies 
only the fi rst (Cartesian product), inner join applies the fi rst and the second (Cartesian  product 
and ON fi lter), and outer join applies all three (Cartesian product, ON fi lter, add outer rows).  

CROSS

 A cross join performs a Cartesian product between two tables. In other words, it returns 
a row for each possible combination of a row from the left table and a row from the right 
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table. If the left table has n rows and the right table has m rows, a cross join returns a table 
with n × m rows. 

 Before I demonstrate practical applications of cross joins, I’ll start with a very simple example—a 
plain cross.  

 The following query produces all possible pairs of employees from the Employees table in 
the InsideTSQL2008 database: 

USE InsideTSQL2008;

SELECT E1.firstname, E1.lastname AS emp1,

  E2.firstname, E2.lastname AS emp2

FROM HR.Employees AS E1

  CROSS JOIN HR.Employees AS E2;

 Because the Employees table contains nine rows, the result set contains 81 rows. 

 Here’s the ANSI SQL-89 syntax you would use for the same task: 

SELECT E1.firstname, E1.lastname AS emp1,

  E2.firstname, E2.lastname AS emp2

FROM HR.Employees AS E1, HR.Employees AS E2;

 The optimizer produces the same plan for both the ANSI SQL-92 and the ANSI SQL-89 
syntaxes, so you shouldn’t have any concerns about performance. For reasons that I will 
explain later in the chapter, I recommend that you stick to the ANSI SQL-92 syntax. Now let’s 
look at more sophisticated uses of cross joins. 

 In Chapter 6, “Subqueries, Table Expressions, and Ranking Functions,” I presented a fundamental 
technique to generate copies of rows. Recall that I used an auxiliary table of numbers (Nums) as 
follows to generate the requested number of copies of each row: 

SELECT . . . 

FROM T1 CROSS JOIN Nums 

WHERE n <= <num_of_copies>

 The preceding technique generates in the result set as many copies of each row in T1 
as num_of_copies. As a practical example, suppose you need to fi ll an Orders table with 
sample data for testing. You have a Customers table with sample customer information 
and an Employees table with  sample employee information. You want to generate, for each 
 combination of a customer and an employee, an order for each day in January 2009. 

 I will demonstrate this technique in the InsideTSQL2008 database. The Customers table 
 contains 91 rows, the Employees table contains 9 rows, and for each customer-employee 
combination, you need an order for each day in January 2009—that is, for 31 days. The result 
set should contain 25,389 rows (91 × 9 × 31 = 25,389). Naturally, you want to store the result 
set in a target table and generate an order ID for each order. 
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 You already have tables with customers and employees, but a table is missing—you need a 
table to represent the days. You probably guessed already that the Nums table will assume 
the role of the missing table: 

SELECT custid, empid,

  DATEADD(day, n-1, '20090101') AS orderdate

FROM Sales.Customers

  CROSS JOIN HR.Employees

  CROSS JOIN dbo.Nums

WHERE n <= 31;

 You cross Customers, Employees, and Nums, fi ltering the fi rst 31 values of n from the Nums 
table for the 31 days of the month. In the SELECT list, you calculate the specifi c target dates 
by adding n – 1 days to the fi rst date of the month, January 1, 2009. 

 The last missing element is the order ID. But you can easily generate it using the ROW_NUMBER 
function.   

 In practice, you’d probably want to encapsulate this logic in a stored procedure that accepts 
the date range as input. Instead of using a literal for the number of days in the fi lter, you use 
the following expression:  

DATEDIFF(day, @fromdate, @todate) + 1

 Similarly, the DATEADD function in the SELECT list will refer to @fromdate instead of a literal 
base date:  

DATEADD(day, n-1, @fromdate) AS orderdate

 Here’s the code that you need to generate the test data and populate a target table: 

IF OBJECT_ID('dbo.MyOrders') IS NOT NULL  DROP TABLE dbo.MyOrders;

GO

DECLARE

  @fromdate AS DATE = '20090101',

  @todate   AS DATE = '20090131';

WITH Orders

AS

( 

  SELECT custid, empid,

    DATEADD(day, n-1, @fromdate) AS orderdate

  FROM Sales.Customers

    CROSS JOIN HR.Employees

    CROSS JOIN dbo.Nums

  WHERE n <= DATEDIFF(day, @fromdate, @todate) + 1

)

SELECT ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS orderid,

  custid, empid, orderdate

INTO dbo.MyOrders

FROM Orders;
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Note the use of the expression (SELECT 0) in the ORDER BY clause of the ROW_NUMBER 
function indicating that the order of assignment of row numbers doesn’t matter. If order 
matters, specify the appropriate attributes that you need—for example, orderdate—in case 
you want the row numbers to be assigned based on order date ordering. 

When you’re done experimenting with this code, don’t forget to drop the MyOrders table: 

DROP TABLE dbo.MyOrders;

Another application of cross joins allows you to improve performance of queries that 
 apply  calculations between row attributes and aggregates over rows. To demonstrate this 
 fundamental technique, I’ll use a table called MyOrderValues that you create and populate 
by running the following code in the InsideTSQL2008 database: 

IF OBJECT_ID('dbo.MyOrderValues', 'U') IS NOT NULL  DROP TABLE dbo.MyOrderValues;

GO

SELECT *

INTO dbo.MyOrderValues

FROM Sales.OrderValues;

ALTER TABLE dbo.MyOrderValues

  ADD CONSTRAINT PK_MyOrderValues PRIMARY KEY(orderid);

CREATE INDEX idx_val ON dbo.MyOrderValues(val);

The task at hand is to calculate for each order that order’s percentage of total value and the 
difference between the order value and the average value for all orders. The intuitive way for 
programmers to write calculations between row attributes and aggregates over rows is to 
use subqueries. The query in Listing 7-1 demonstrates the subquery approach. 

LISTING 7-1 Query obtaining aggregates with subqueries

SELECT orderid, custid, val,

  CAST(val / (SELECT SUM(val) FROM dbo.MyOrderValues) * 100.

       AS NUMERIC(5, 2)) AS pct,

  CAST(val - (SELECT AVG(val) FROM dbo.MyOrderValues)

       AS NUMERIC(12, 2)) AS diff

FROM dbo.MyOrderValues;

This query generates the following output: 

orderid     custid      val        pct       diff

----------- ----------- ---------- --------- -------------

10248       85          440.00     0.03      -1085.05

10249       79          1863.40    0.15      338.35

10250       34          1552.60    0.12      27.55

10251       84          654.06     0.05      -870.99

SELECT orderid, custid, val,

  CAST(val / (SELECT SUM(val) FROM dbo.MyOrderValues) * 100.

       AS NUMERIC(5, 2)) AS pct,

  CAST(val - (SELECT AVG(val) FROM dbo.MyOrderValues)

       AS NUMERIC(12, 2)) AS diff

FROM dbo.MyOrderValues;
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10252       76          3597.90    0.28      2072.85

10253       34          1444.80    0.11      -80.25

10254       14          556.62     0.04      -968.43

10255       68          2490.50    0.20      965.45

10256       88          517.80     0.04      -1007.25

10257       35          1119.90    0.09      -405.15

. . .

(830 row(s) affected)

 Examine this query’s execution plan, which is shown in Figure 7-1. 

FIGURE 7-1 Execution plan for query in Listing 7-1

 Notice that the index I created on the val column is scanned twice—once to calculate the 
sum and once to calculate the average. In other words, provided that you have an index 
on the aggregated column, the index is scanned once for each subquery that returns an 
 aggregate. If you don’t have an index containing the aggregated column, matters are even 
worse: you’ll get a table scan for each subquery. 

 This query can be optimized using a cross join. You can calculate all needed aggregates in 
one query that requires only a single index or table scan. Such a query produces a single 
 result row with all aggregates. You create a CTE defi ned by this query and cross it with the 
base table. Now you have access to both attributes and aggregates. The solution query is 
shown in Listing 7-2, and it produces the more optimal plan shown in Figure 7-2. 
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LISTING 7-2 Query obtaining aggregates with a cross join

WITH Aggs AS

(

  SELECT SUM(val) AS sumval, AVG(val) AS avgval

  FROM dbo.MyOrderValues

)

SELECT orderid, custid, val,

  CAST(val / sumval * 100. AS NUMERIC(5, 2)) AS pct,

  CAST(val - avgval AS NUMERIC(12, 2)) AS diff

FROM dbo.MyOrderValues

  CROSS JOIN Aggs;

FIGURE 7-2 Execution plan for the query in Listing 7-2

As you can see in the plan, the index on the val column is scanned only once, and both 
 aggregates are calculated with the same scan.  

In Chapter 8, “Aggregating and Pivoting Data,” I’ll demonstrate how to use the new OVER 
clause to tackle similar problems. 

When you’re done experimenting with this technique, run the following code for cleanup: 

IF OBJECT_ID('dbo.MyOrderValues', 'U') IS NOT NULL  DROP TABLE dbo.MyOrderValues;

INNER

Inner joins are used to match rows between two tables based on some criterion. Out of the 
fi rst three logical query processing phases, inner joins apply the fi rst two—namely, Cartesian 
product and ON fi lter. Neither phase adds outer rows. Consequently, if an INNER JOIN query 
contains both an ON clause and a WHERE clause, logically they are applied one after the 
other. With one exception, there’s no difference between specifying a logical expression in 
the ON clause or in the WHERE clause of an INNER JOIN because no intermediate step adds 
outer rows between the two. 

WITH Aggs AS

(

  SELECT SUM(val) AS sumval, AVG(val) AS avgval

  FROM dbo.MyOrderValues

)

SELECT orderid, custid, val,

  CAST(val / sumval * 100. AS NUMERIC(5, 2)) AS pct,

  CAST(val - avgval AS NUMERIC(12, 2)) AS diff

FROM dbo.MyOrderValues

  CROSS JOIN Aggs;
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 The one exception is when you specify GROUP BY ALL. Remember that GROUP BY ALL adds 
back groups that were fi ltered out by the WHERE clause, but it does not add back groups 
that were fi ltered out by the ON clause. Remember also that this is a nonstandard legacy 
 feature that you should avoid using. 

 For performance, when not using the GROUP BY ALL option, you typically get the same plan 
regardless of where you place the fi lter expression. That’s because the optimizer is aware that 
there’s no difference. I’m always cautious when saying such things related to optimization 
choices because the process is so dynamic. 

 For the two supported join syntaxes, using the ANSI SQL-92 syntax, you have more  fl exibility 
in choosing which clause you will use to specify a fi lter expression. Because logically it 
makes no difference where you place your fi lters, and typically there’s also no performance 
 difference, your guideline should be natural and intuitive writing. Write in a way that feels 
more natural to you and to the programmers who need to maintain your code. For example, 
to me a fi lter that matches attributes between the tables should appear in the ON clause, 
while a fi lter on an attribute from only one table should appear in the WHERE clause. I’ll use 
the following query to return orders placed by U.S. customers: 

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C

  JOIN Sales.Orders AS O

    ON C.custid = O.custid

WHERE country = N'USA';

 Using the ANSI SQL-89 syntax, you have no choice but to specify all fi lter expressions in the 
WHERE clause: 

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C, Sales.Orders AS O

WHERE C.custid = O.custid

  AND country = N'USA';

 Remember that the discussion here is about inner joins; with outer joins, there are logical 
differences between specifying a fi lter expression in the ON clause and specifying it in the 
WHERE clause. 

 Note the risk in using the ANSI SQL-89 syntax for inner joins: If you forget to specify the join 
condition, unintentionally you get a cross join, as demonstrated in the following code: 

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C, Sales.Orders AS O;

 In SQL Server Management Studio (SSMS), the query plan for a cross join includes a join 
operator marked with a yellow warning symbol, and the pop-up details will say “No Join 
Predicate” in the Warnings section. This warning is designed to alert you that you might have 
forgotten to specify a join predicate.  
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 However, if you explicitly specify INNER JOIN when you write an inner join query, an ON 
clause is required. If you forget to specify any join condition, the parser traps the error, and 
the query is not run: 

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C JOIN Sales.Orders AS O;

Msg 102, Level 15, State 1, Line 2 

Incorrect syntax near ';'.

 The parser fi nds a semicolon after Sales.Orders AS O, even though it expects something else (an 
ON clause or other options), so it generates an error saying that there’s incorrect syntax near ‘;’. 

 Note If you have a composite join (a join based on multiple attributes), and you specify at least 
one expression but forget the others, neither syntax will trap the error. Similarly, other logical 
 errors won’t be trapped—for example, if you mistakenly type ON C.orderid = C.orderid. 

 The ANSI SQL-89 syntax is more prone to mistakes such as forgetting to specify a join 
 condition. You list all table names in the FROM clause separated by commas, and you AND all 
join predicates in the WHERE clause—for example, FROM T1, T2, T3, T4 WHERE <predicate1> 
AND <predicate2> AND <predicate3>. Therefore, it’s easier not to notice that you forgot one 
of them. With the ANSI SQL-92 syntax it’s harder not to notice that you missed  something even 
before the parser catches the error. That’s because you normally express each join  predicate 
immediately after the right table in the  join—for example, T1 JOIN T2 ON  <predicate1> JOIN 
T3 ON <predicate2> JOIN T4 ON <predicate3>. 

 Let’s go back to cross joins. You might think that when you intend to write a cross join,  using the 
comma syntax is perfectly fi ne. However, I’d recommend sticking to the ANSI SQL-92 syntax for 
several reasons. One reason is for the sake of consistency. Things can especially get  awkward 
when you start mixings different syntaxes in the same query. Another reason is that when 
other programmers (or even you!) review your code after a while, how will they be able to tell 
whether you intended to write a cross join or intended to write an inner join and forgot the join 
 predicate? In short, it’s a best practice to use the ANSI SQL-92 syntax with all types of joins. 

OUTER

 Outer joins are used to return matching rows from both tables based on some criterion, 
 together with unmatched rows from the “preserved” table or tables.  

 You identify preserved tables with the LEFT, RIGHT, or FULL keywords. LEFT marks the left 
table as preserved, RIGHT marks the right table, and FULL marks both. 

 Outer joins apply all three logical query processing phases—namely, Cartesian product, ON 
fi lter, and adding outer rows. Outer rows added for rows from the preserved table with no 
match have NULLs for the attributes of the nonpreserved table. 

C07626034.indd   397 2/13/2009   2:02:21 AM



398 Inside Microsoft SQL Server 2008: T-SQL Querying

 The following query returns customers with their order IDs ( just as an inner join with the 
same ON clause would ), but it also returns a row for each customer with no orders because 
the keyword LEFT identifi es the Customers table as preserved: 

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C

  LEFT OUTER JOIN Sales.Orders AS O

    ON C.custid = O.custid;

 The keyword OUTER is optional because the mention of any of the keywords LEFT, RIGHT, or 
FULL implies an outer join. However, unlike inner joins, where most programmers typically 
don’t specify the optional INNER keyword, most programmers (including me) typically do 
specify the OUTER keyword. I guess it feels more natural. 

 As I mentioned earlier, SQL Server 2008 supports the nonstandard proprietary syntax for  outer 
joins only under a backward-compatibility fl ag. If you still have legacy code with the  proprietary 
outer join syntax, it’s important to change it to use the standard syntax. Besides the fact that 
the old syntax is nonstandard, it’s also ambiguous in some cases, as I will  demonstrate shortly. 
Also, starting with SQL Server 2008, only two backward-compatibility modes are  supported. To 
work with the proprietary outer join syntax you need to set the  database  compatibility mode to 
80 (SQL Server 2000). SQL Server 2008 is the last version that still  supports this mode. The next 
major release of SQL Server will support only modes 100 (SQL Server 2008) and 90 (SQL Server 
2005). This means that as of the next version of SQL Server, you won’t be able to run such 
 legacy code—not even under a backward- compatibility fl ag. 

 To demonstrate code with the proprietary outer join syntax, change the InsideTSQL2008 
 database’s compatibility mode to 80 (SQL Server 2000): 

ALTER DATABASE InsideTSQL2008 SET COMPATIBILITY_LEVEL = 80;

 Note Changing the compatibility mode of a database to an earlier version will prevent you from 
using some of the newer language elements (for example, PIVOT, UNPIVOT, and so on). I’m just 
changing the compatibility mode to demonstrate the code. Once I’m done, I’ll instruct you to 
turn it back to 100 (SQL Server 2008). 

 The old-style outer join was indicated in the WHERE clause, not the FROM clause. Instead of =, it 
used *= to represent a left outer join and =* to represent a right outer join. There was no  support 
for a full outer join. For example, the following query returns customers with their  order IDs and 
customers with no orders: 

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C, Sales.Orders AS O

WHERE C.custid *= O.custid;
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 This syntax is very problematic because of the lack of separation between an ON fi lter and a 
WHERE fi lter. For example, if you want to return only customers with no orders, using ANSI 
syntax it’s very simple: 

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C

  LEFT OUTER JOIN Sales.Orders AS O

    ON C.custid = O.custid

WHERE O.custid IS NULL;

 You get customers 22 and 57 back. The query initially applies the fi rst three steps in logical 
query processing, yielding an intermediate virtual table containing customers with their orders 
(inner rows) and also customers with no orders (outer rows). For the outer rows, the attributes 
from the Orders table are NULL. The WHERE fi lter is subsequently applied to this  intermediate 
result. Only the rows with a NULL in the join column from the nonpreserved side, which 
 represent the customers with no orders, satisfy the condition in the WHERE clause.  

 If you attempt to write the query using the old-style syntax, you get surprising results: 

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C, Sales.Orders AS O

WHERE C.custid *= O.custid

  AND O.custid IS NULL;

 The query returns all 91 customers. Because there’s no distinction between an ON clause 
and a WHERE clause, I specifi ed both expressions in the WHERE clause separated by the 
logical operator AND. You have no control over which part of the fi lter takes place before 
adding the outer rows and which part takes place afterwards. That’s at the sole  discretion of 
SQL Server. By looking at the result, you can guess what SQL Server did. Logically, it applied 
the whole expression before adding outer rows. Obviously, there’s no row in the Cartesian 
 product for which both the predicate C.custid = O.custid and the predicate O.custid IS 
NULL are TRUE. So the second phase in logical query processing yields an empty set. The 
third phase adds outer rows for rows from the preserved table (Customers) with no match. 
Because none of the rows matched the join condition, all customers are added back as outer 
rows. That’s why this query returned all 91 customers. 

 Important Keep in mind that I demonstrated the older proprietary syntax just to make 
you aware of its issues in case you still have legacy code using it. It is of course strongly 
 recommended that you refrain from using it and revise all code that does use it to the ANSI 
 syntax. In short, don’t try this at home! 

 When you’re done experimenting with the old-style syntax, change the database’s 
 compatibility level back to 100 (SQL Server 2008): 

ALTER DATABASE InsideTSQL2008 SET COMPATIBILITY_LEVEL = 100;
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 In the previous chapter, I provided a solution using subqueries for the minimum missing 
value problem. As a reminder, you begin with the table T1, which you create and populate by 
running the following code: 

USE tempdb;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

  keycol  INT         NOT NULL PRIMARY KEY,

  datacol VARCHAR(10) NOT NULL

);

GO

INSERT INTO dbo.T1(keycol, datacol) VALUES

  (1, 'e'),

  (2, 'f'),

  (3, 'a'),

  (4, 'b'),

  (6, 'c'),

  (7, 'd');

 Your task is to fi nd the minimum missing key (in this case, 5) assuming the key starts at 1. 
I provided the following solution based on subqueries: 

SELECT MIN(A.keycol) + 1

FROM dbo.T1 AS A

WHERE NOT EXISTS

  (SELECT * FROM dbo.T1 AS B

   WHERE B.keycol = A.keycol + 1);

 Remember that I provided a CASE expression that returns the value 1 if it is missing; 
 otherwise, it returns the result of the preceding query. You can solve the same problem—
returning the minimum missing key when 1 exists in the table—by using the following outer 
join query between two instances of T1: 

SELECT MIN(A.keycol) + 1

FROM dbo.T1 AS A

  LEFT OUTER JOIN dbo.T1 AS B

    ON B.keycol = A.keycol + 1

WHERE B.keycol IS NULL;

 The fi rst step in the solution is applying the left outer join between two instances of T1, 
called A and B, based on the join condition B.keycol = A.keycol + 1. This step involves the 
fi rst three logical query processing phases I described in Chapter 1 (Cartesian product, ON 
fi lter, and adding outer rows). For now, ignore the WHERE fi lter and the SELECT clause. The 
join condition matches each row in A with a row from B whose key value is 1 greater than A’s 
key value. Because it’s an outer join, rows from A that have no match in B are added as outer 
rows, producing the virtual table shown in Table 7-1. 

 Note that the outer rows represent the points before the gaps because the next key value is 
missing. The second step in the solution is to isolate only the points before the gaps; the WHERE 
clause fi lters only rows where B.keycol is NULL, producing the virtual table shown in Table 7-2. 
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TABLE 7-1 Output of Step 1 in Minimum Missing Value Solution

A.keycol A.datacol B.keycol B.datacol

1 e 2 f

2 f 3 a

3 a 4 b

4 b NULL NULL

6 c 7 d

7 d NULL NULL

TABLE 7-2 Output of Step 2 in Minimum Missing Value Solution

A.keycol A.datacol B.keycol B.datacol

4 b NULL NULL

7 d NULL NULL

Finally, the last step in the solution isolates the minimum A.keycol value, which is the minimum 
key value before a gap, and adds 1. The result is the requested minimum missing value. 

The optimizer generates very similar plans for both queries, with identical costs. So you can 
use the solution that you feel more comfortable with. Some people feel more comfortable 
with joins, while others are more comfortable with subqueries, very much like some people 
feel more comfortable with 1-based offsets, while others are more comfortable with 0-based 
offsets. Some people are subquery-type people, and some are join-type people, and I guess 
I qualify as a subquery type. To me, the solution based on subqueries seems more intuitive. 

Nonsupported Join Types

ANSI SQL supports a couple of join types that are not supported by T-SQL—natural join and 
union join. I haven’t found practical applications for a union join, so I won’t bother to describe 
or demonstrate it in this book. 

A natural join is an inner join where the join condition is implicitly based on equating columns 
that share the same names in both tables. The syntax for a natural join, not surprisingly, is 
NATURAL JOIN. For example, the following two queries are logically equivalent, but only the 
second is recognized by SQL Server:  

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C NATURAL JOIN Sales.Orders AS O;

and 

USE InsideTSQL2008;

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C

  JOIN Sales.Orders AS O

    ON O.custid = O.custid;

A.keycol A.datacol B.keycol B.datacol

A.keycol A.datacol B.keycol B.datacol
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Further Examples of Joins

 So far, I have demonstrated fundamental join types. You can categorize joins in ways other 
than by their fundamental type. In this section, I’ll describe self joins, non-equi-joins, queries 
with multiple joins, and semi joins. 

Self Joins

 A self join is simply a join between two instances of the same table. I’ve already shown 
 examples of self joins without classifying them explicitly as such. 

 Here’s a simple example of a self join between two instances of the Employees table, one 
representing employees (E) and the other representing managers (M): 

SELECT E.firstname, E.lastname AS emp,

  M.firstname, M.lastname AS mgr

FROM HR.Employees AS E

  LEFT OUTER JOIN HR.Employees AS M

    ON E.mgrid = M.empid;

 The query produces the following output, where the employees’ names are returned along 
with their managers’ names: 

firstname    emp                  firstname    mgr

------------ -------------------- ------------ --------------------

Sara         Davis                NULL         NULL

Don          Funk                 Sara         Davis

Judy         Lew                  Don          Funk

Yael         Peled                Judy         Lew

Sven         Buck                 Don          Funk

Paul         Suurs                Sven         Buck

Russell      King                 Sven         Buck

Maria        Cameron              Judy         Lew

Zoya         Dolgopyatova         Sven         Buck

 I used a left outer join to include Sara—the CEO—in the result. She has a NULL in the mgrid 
column because she has no manager. 

Note When joining two instances of the same table, you must alias at least one of the tables. 
This provides a unique name or alias to each instance to prevent ambiguity in the result column 
names and in the column names in the intermediate virtual tables. 

 Equi-joins are joins with a join condition based on an equality operator. Non-equi-joins have 
operators other than equality in their join condition. 

 For example, suppose that you need to generate all pairs of two different employees from an 
Employees table. Assume that currently the table contains employee IDs A, B, and C. A cross 
join would generate the following nine pairs: 

 A, A 

 A, B 
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 A, C 

 B, A 

 B, B 

 B, C 

 C, A 

 C, B 

 C, C 

 Obviously, a “self” pair (x, x) that has the same employee ID twice is not a pair of two different 
employees. Also, for each pair (x, y), you will fi nd its “mirror” pair (y, x) in the result. You need 
to return only one of the two. To take care of both issues, you can specify a join condition 
that fi lters pairs where the key from the left table is smaller than the key from the right table. 
Pairs where the same employee appears twice are removed. Also, one of the mirror pairs (x, y)  
and (y, x) is removed because only one has a left key smaller than the right key. 

 The following query returns the required result, without mirror pairs and without self pairs: 

SELECT E1.empid, E1.lastname, E1.firstname,

  E2.empid, E2.lastname, E2.firstname

FROM HR.Employees AS E1

  JOIN HR.Employees AS E2

    ON E1.empid < E2.empid;

 If you need to produce unique triples, simply join to a third instance of the table and have 
the join predicate verify that the key of the second instance is smaller than the key of the 
third instance. In a similar manner you can add a fourth instance, a fi fth instance, and so on.  

 You can also calculate row numbers using a non-equi-join. Of course, when you need to 
 calculate row numbers, the most effi cient way to do it is with the ROW_NUMBER function. I’ll 
explain how to calculate row numbers with a non-equi-join for illustration purposes and also 
because the fundamental technique that I will use is applicable to other types of calculations—
for example, running aggregates, which have no built-in functions. For example, the following 
query calculates row numbers for orders from the Orders table, based on increasing orderid: 

SELECT O1.orderid, O1.custid, O1.empid, COUNT(*) AS rn

FROM Sales.Orders AS O1

  JOIN Sales.Orders AS O2

    ON O2.orderid <= O1.orderid

GROUP BY O1.orderid, O1.custid, O1.empid;

 You can fi nd similarities between this solution and the solution I showed in the previous 
chapter using subqueries. The join condition here contains the same logical expression 
I used in a subquery before. After applying the fi rst two phases in logical query  processing 
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(Cartesian product and ON fi lter), each order from O1 is matched with all orders from O2 
that have a smaller or equal orderid. This means that a row from O1 with a target row  number 
n is matched with n rows from O2. Each row from O1 is duplicated in the result of the join 
n times. If this is confusing, bear with me as I try to demonstrate this logic with an example. 
Say you have orders with the following IDs (in order): x, y, and z. The result of the join is the 
following: 

 x, x 

 y, x 

 y, y 

 z, x 

 z, y 

 z, z 

 The join created duplicates out of each row from O1—as many as the target row number. 
The next step is to collapse each group of rows back to one row, returning the count of rows 
as the row number: 

 x, 1 

 y, 2 

 z, 3 

 Note that you must include in the GROUP BY clause all attributes from O1 that you want 
to return. Remember that in an aggregate query, an attribute that you want to return in 
the SELECT list must appear in the GROUP BY clause. This query suffers from the same N2 
 performance issues I described with the subquery solution. This query also demonstrates 
an expand-collapse technique, where the join achieves the expansion of the number of rows 
by generating copies, and the grouping achieves the collapsing of the rows allowing you to 
 calculate aggregates. 

 Being a subquery-type person, I fi nd the subquery technique more appealing because 
it’s so much more intuitive to me. I fi nd the expand-collapse technique to be artifi cial and 
nonintuitive. 

 Remember that in both solutions to generating row numbers you used an aggregate 
 function—a count of rows. You can use very similar logic to calculate other aggregates, 
 either with a subquery or with a join (the expand-collapse technique). I will elaborate on 
this technique in Chapter 8 in the “Running Aggregations” section, where I’ll also describe 
 scenarios in which I’d still consider using the expand-collapse technique even though I fi nd it 
less intuitive than the subquery technique. 
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Multiple Joins

A query with multiple joins involves three or more tables. In this section, I’ll describe both 
physical and logical aspects of multi-join queries. 

Controlling the Physical Join Evaluation Order  In a multi-join query with no outer joins, 
you can rearrange the order in which the tables are specifi ed without affecting the result. 
The optimizer is aware of that and determines the order in which it accesses the tables based 
on cost estimates. In the query’s execution plan, you might fi nd that the optimizer chose to 
 access the tables in a different order than the one you specifi ed in the query. 

For example, the query in Listing 7-3 returns customer company name and supplier company 
name where the supplier supplied products to the customer: 

LISTING 7-3 Multi-join query

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

  JOIN Sales.Orders AS O

    ON O.custid = C.custid

  JOIN Sales.OrderDetails AS OD

    ON OD.orderid = O.orderid

  JOIN Production.Products AS P

    ON P.productid = OD.productid

  JOIN Production.Suppliers AS S

    ON S.supplierid = P.supplierid;

Examine the execution plan shown in Figure 7-3, and you will fi nd that the tables are 
 accessed physically in a different order than the logical order specifi ed in the query. 

FIGURE 7-3 Execution plan for the query in Listing 7-3 

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

  JOIN Sales.Orders AS O

    ON O.custid = C.custid

  JOIN Sales.OrderDetails AS OD

    ON OD.orderid = O.orderid

  JOIN Production.Products AS P

    ON P.productid = OD.productid

  JOIN Production.Suppliers AS S

    ON S.supplierid = P.supplierid;
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 If you suspect that a plan that accesses the tables in a different order than the one chosen 
by the optimizer will be more effi cient, you can force the order of join processing by using 
one of two options. You can use the FORCE ORDER hint as shown in Listing 7-4, forcing the 
 optimizer to process the joins physically in the same order as the logical one: 

LISTING 7-4 Multi-join query with the FORCE ORDER hint

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

  JOIN Sales.Orders AS O

    ON O.custid = C.custid

  JOIN Sales.OrderDetails AS OD

    ON OD.orderid = O.orderid

  JOIN Production.Products AS P

    ON P.productid = OD.productid

  JOIN Production.Suppliers AS S

    ON S.supplierid = P.supplierid

OPTION (FORCE ORDER);

This query generates the execution plan shown in Figure 7-4, where you can see that tables 
are accessed in the order they appear in the query. 

FIGURE 7-4 Execution plan for the query in Listing 7-4 

Another option to force the order of join processing is to execute the statement SET FORCEPLAN 
ON. This will affect all queries in the session. 

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

  JOIN Sales.Orders AS O

    ON O.custid = C.custid

  JOIN Sales.OrderDetails AS OD

    ON OD.orderid = O.orderid

  JOIN Production.Products AS P

    ON P.productid = OD.productid

  JOIN Production.Suppliers AS S

    ON S.supplierid = P.supplierid

OPTION (FORCE ORDER);
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Hints

 Note that in general, using hints to override the optimizer’s choice of plan should be 
the last resort when dealing with performance issues. A hint is not a kind gesture: 
you’re forcing the optimizer to use a particular route in optimization. If you introduce 
a hint in production code, that aspect of the plan becomes static (for example, the join 
ordering, the use of a particular index, or the use of a certain join algorithm). Hints 
prevent the optimizer from making dynamic choices to accommodate changes in data 
volume and distribution.  

 There are, nonetheless, several reasons the optimizer might not produce an optimal 
plan, and when this occurs, a hint can improve performance. 

 First, the optimizer doesn’t necessarily generate all possible execution plans for a query. 
If it did, the optimization phase could simply take too long. The optimizer calculates a 
threshold for optimization based on the input table sizes, and it stops optimizing when 
that threshold is reached, yielding the plan with the lowest cost among the ones it did 
generate. This means that you won’t necessarily get the optimal plan. 

 Second, optimization in many cases is based on data selectivity and density  information, 
especially with regard to the choice of indexes and access methods. If statistics are not up 
to date or aren’t based on a suffi cient sample size, the optimizer might make  inaccurate 
estimates. 

 Third, the key distribution histograms that SQL Server maintains for indexed columns 
(and, in some cases, nonindexed ones as well) have at most 200 steps. With many join 
 conditions and fi lters, the difference between the selectivity or density information that 
the optimizer estimates and the actual information can be substantial in some cases, 
leading to ineffi cient plans. Each selectivity or join density estimate has some level of 
inaccuracy; the more tables you have in the query and the more join  conditions and 
fi lters, the more inaccurate the estimates are likely to become. And inaccurate  estimates 
can lead to suboptimal choices. One way to check whether the estimates are  inaccurate 
is to compare the estimated and the actual number of rows coming out of the  various 
 operators in the execution plan. 

 Keep in mind, though, that while you’re never guaranteed to get the optimal plan, the 
optimizer generally does well, and you should do everything in your power to help it 
succeed. To do this and avoid hints in production code, for example, make sure that 
statistics are up to date, increase the sampling rate if needed, and in some cases revise 
the query to help the optimizer make better choices. Use a hint only as a last resort if 
all other means fail. And if you do end up using a hint, revisit the code from time to 
time after doing more research or opening a support case with Microsoft. 
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Controlling the Logical Join Evaluation Order  In some cases you might want to be able to 
control the logical order of join processing beyond the observable order in which the tables 
are specifi ed in the FROM clause. For example, consider the previous request to return all 
pairs of customer company name and supplier company name, where the supplier  supplied 
products to the customer. Suppose you were also asked to return customers that made 
no orders. By intuition, you’d probably make the following attempt, using a left outer join 
 between Customers and Orders: 

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

  LEFT OUTER JOIN Sales.Orders AS O

    ON O.custid = C.custid

  JOIN Sales.OrderDetails AS OD

    ON OD.orderid = O.orderid

  JOIN Production.Products AS P

    ON P.productid = OD.productid

  JOIN Production.Suppliers AS S

    ON S.supplierid = P.supplierid;

 The previous query returned 1,236 pairs of customer-supplier, and you expected this query 
to return 1,238 rows (because two customers made no orders). However, this query returns 
the same result set as the previous one without the outer customers. Remember that the fi rst 
join takes place only between the fi rst two tables (Customers and Orders), applying the fi rst 
three phases of logical query processing, and results in a virtual table. The resulting virtual 
table is then joined with the third table (OrderDetails) and so on. 

 The fi rst join did, at the logical level, generate outer rows for customers with no orders, but 
the orderid in those outer rows was NULL, of course. The second join—between the result 
virtual table and OrderDetails—removed those outer rows because an equi-join will never 
fi nd a match based on a comparison to a NULL. In fact, in terms of physical  processing, 
the optimizer realizes that the second join nullifi es the outer part of the outer joins, and 
 therefore it doesn’t even bother to process it as an outer join. If you look at the plan for this 
query, you can see that the plan processed this join as an inner join. In general, when a left 
outer join is followed by an inner join or a right outer join and the join predicate compares 
attributes from the nonpreserved part of the join with attributes from the right table, the left 
outer join gets nullifi ed. 

 You have several ways to make sure that those outer customers will not disappear. One 
technique is to use a left outer join in all joins, even though logically you want inner joins 
 between Orders, OrderDetails, Products, and Suppliers: 

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

  LEFT OUTER JOIN Sales.Orders AS O

    ON O.custid = C.custid

  LEFT OUTER JOIN Sales.OrderDetails AS OD

    ON OD.orderid = O.orderid
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  LEFT OUTER JOIN Production.Products AS P

    ON P.productid = OD.productid

  LEFT OUTER JOIN Production.Suppliers AS S

    ON S.supplierid = P.supplierid;

 The left outer joins keep the outer customers in the intermediate virtual tables. This query 
correctly produces 1,238 rows, including the two customers that made no orders. However, 
if you had orders with no related order details, order details with no related products, or 
 products with no related suppliers, this query would have produced incorrect results. That is, 
you would have received result rows that were unmatched by several join conditions when 
you wanted only the unmatched rows from the fi rst join condition. Also, remember that 
the optimizer cannot apply join ordering optimization with outer joins—those have to be 
 processed in specifi ed order, so this technique might hurt optimization. 

 Another option is to make sure the join with the Customers table is logically last. This can 
be achieved by using inner joins between all other tables and fi nally a right outer join with 
Customers: 

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Orders AS O

  JOIN Sales.OrderDetails AS OD

    ON OD.orderid = O.orderid

  JOIN Production.Products AS P

    ON P.productid = OD.productid

  JOIN Production.Suppliers AS S

    ON S.supplierid = P.supplierid

  RIGHT OUTER JOIN Sales.Customers AS C

    ON O.custid = C.custid;

 This scenario was fairly simple, but in cases where you mix different types of joins—not 
to mention other table operators (APPLY, PIVOT, UNPIVOT)—it might not be that simple. 
Furthermore, using left outer joins all along the way is very artifi cial. It’s more intuitive to 
think of the query as a single left outer join, where the left table is the Customers table and 
the right table is the result of inner joins between all the other tables. Both ANSI SQL and 
T-SQL allow you to control the logical order of join processing: 

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

  LEFT OUTER JOIN 

    (     Sales.Orders AS O

     JOIN Sales.OrderDetails AS OD

       ON OD.orderid = O.orderid

     JOIN Production.Products AS P

       ON P.productid = OD.productid

     JOIN Production.Suppliers AS S

       ON S.supplierid = P.supplierid)

    ON O.custid = C.custid;

 Technically, the parentheses are ignored here, but I recommend you use them because they 
will help you write the query correctly. Using parentheses caused you to change another 
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aspect of the query, which is the one that the language really uses to determine the logical 
order of processing. If you haven’t guessed yet, it’s the ON clause order. Specifying the ON 
clause ON O.custid = C.custid last causes the other joins to be logically processed fi rst; the 
left outer join occurs logically between Customers and the inner join of the rest of the tables. 
You could write the query without parentheses, and it would mean the same thing: 

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

  LEFT OUTER JOIN 

          Sales.Orders AS O

     JOIN Sales.OrderDetails AS OD

       ON OD.orderid = O.orderid

     JOIN Production.Products AS P

       ON P.productid = OD.productid

     JOIN Production.Suppliers AS S

       ON S.supplierid = P.supplierid

    ON O.custid = C.custid;

 Other variations that specify the ON clause that refers to C.custid last include the following two: 

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

  LEFT OUTER JOIN Sales.Orders AS O

  JOIN Production.Products AS P

  JOIN Sales.OrderDetails AS OD

    ON P.productid = OD.productid

    ON OD.orderid = O.orderid

  JOIN Production.Suppliers AS S

    ON S.supplierid = P.supplierid

    ON O.custid = C.custid;

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

  LEFT OUTER JOIN Sales.Orders AS O

  JOIN Sales.OrderDetails AS OD

  JOIN Production.Products AS P

  JOIN Production.Suppliers AS S

    ON S.supplierid = P.supplierid

    ON P.productid = OD.productid

    ON OD.orderid = O.orderid

    ON O.custid = C.custid;

 The obvious disadvantage to not using parentheses is a decrease in the readability and clarity 
of code. Without parentheses, the queries are far from intuitive. But we have another issue, too. 

 It’s important to note that you cannot play with the ON clause’s order any way you’d like. 
There’s a certain relationship that must be maintained between the order of the specifi ed 
tables and the order of the specifi ed ON clauses for the query to be valid. The relationship 
is called a chiastic relationship. A chiastic relationship is neither unique to SQL nor unique to 
 computer science; rather, it appears in many fi elds, including poetry, linguistics, mathematics, 
and  others. In an ordered series of items, this relationship correlates the fi rst item with the last, 
the  second with the next to last, and so on. For example, palindromes such as “never odd or 
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even” have a chiastic relationship between the letters. As an example of a chiastic relationship 
in  mathematics, recall the arithmetic sequence I described in the last chapter: 1, 2, 3, . . ., n. To 
 calculate the sum of the elements, you make n/2 pairs based on a chiastic relationship (1 + n, 2 
+ n – 1, 3 + n – 2, and so on). The sum of each pair is always 1 + n; therefore, the total sum of 
the  arithmetic sequence is (1 + n) * n / 2 = (n + n2) / 2.

Similarly, the relationship between the tables specifi ed in the FROM clause and the ON 
clauses must be chiastic for the query to be valid. That is, the fi rst ON clause can refer only 
to the two tables immediately above it. The second ON clause can refer to the previously 
referenced tables and to an additional one right above them and so on. Figure 7-5 illustrates 
the chiastic relationship maintained in the last query. The code in the fi gure was slightly 
 rearranged for readability. 

SELECT DISTINCT

C.companyname AS customer,

S.companyname AS supplier

Sales.Customers        AS C LEFT OUTER JOIN

Sales.Orders JOIN

FROM

JOIN

JOIN

JOIN

Sales.OrderDetails

Production.Products

Production.Suppliers

=  P.supplierid

ON  P.productid

ON OD.OrderID

ON  O.custid

= OD.productid

=  O.orderid

=  C.custid;

AS OD

AS O

AS P

AS S

ON  S.supplierid

FIGURE 7-5 Chiastic relationship in a multi-join query

 Without using parentheses, the queries are not very readable, and you need to be aware of 
the chiastic relationship in order to write a valid query. Conversely, if you do use  parentheses, 
the queries are more readable and intuitive, and you don’t need to concern yourself with 
 chiastic relationships because parentheses force you to write correctly. 

Bushy Plans  Besides impacting logical join ordering, the ability to change the order of the 
ON clauses reliably affects optimization in ways that the optimizer alone does not consider. To 
demonstrate this capability, fi rst run the following code to create the tables T1, T2, T3, and T4: 

USE tempdb;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

IF OBJECT_ID('dbo.T2', 'U') IS NOT NULL DROP TABLE dbo.T2;

IF OBJECT_ID('dbo.T3', 'U') IS NOT NULL DROP TABLE dbo.T3;

IF OBJECT_ID('dbo.T4', 'U') IS NOT NULL DROP TABLE dbo.T4;

GO
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CREATE TABLE dbo.T1(a INT, b INT, c INT, v1 INT);

CREATE TABLE dbo.T2(b INT, v2 INT);

CREATE TABLE dbo.T3(c INT, v3 INT);

CREATE TABLE dbo.T4(d INT, c INT, v4 INT);

GO

 When you write joins in a traditional manner—namely, each joined table is immediately 
 followed by the join predicate (for example, T1 JOIN T2 ON <predicate1> JOIN T3 ON 
<predicate2> JOIN T4 ON <predicate3>)—the optimizer considers only certain plan tree 
 layouts. The normal layout is always going to have a join between two base inputs (base 
meaning not a result of a join), then a join between the result of a previous join and another 
base input, and so on. The optimizer can rearrange the order in which the tables are  accessed 
and can determine whether the base input will be the outer or the inner input of the join, 
but the optimizer will always consider this kind of tree layout. For example, consider the 
 following query and examine its execution plan, shown in Figure 7-6: 

SELECT *

FROM dbo.T1

  JOIN dbo.T2

    ON T2.b = T1.b

  JOIN dbo.T3

    ON T3.c = T1.c

  JOIN dbo.T4

    ON T4.c = T3.c;

FIGURE 7-6 Query plan for four-table join 

 This particular tree layout is known as a right deep tree, where the result of each join is used 
as the inner input to the next join. A left deep tree would be one where the result of each 
join is used as the outer input to the next join. Notice that besides one join that naturally has 
to take place between two base inputs, all other joins take place between a base input and 
a result of a join. None of the joins takes place between two results of joins. Unless explicitly 
 instructed, the optimizer does not consider what the members of the SQL Server engine 

C07626034.indd   412 2/13/2009   2:02:22 AM



 Chapter 7 Joins and Set Operations 413

team refer to as a bushy tree layout. A bushy plan is one where a join operates on two results 
of joins as opposed to always having at least one base input. Because the optimizer normally 
does not consider such plans unless instructed, in some cases you might be able to gain 
 performance improvements by forcing a bushy plan. One example that comes to mind is 
when each of two different joins can gain signifi cant fi ltering because of the join itself, and it 
would make sense to perform each of those joins fi rst and then join their results. 

 To force a bushy plan you need to rearrange the ON clauses and use the FORCE ORDER hint. 
For example, the following query forces a join between T1 and T2 and between T3 and T4 
and then a join between their results: 

SELECT *

FROM dbo.T1

  JOIN dbo.T2

    ON T2.b = T1.b

  JOIN dbo.T3

  JOIN dbo.T4

    ON T4.c = T3.c

    ON T3.c = T1.c

OPTION(FORCE ORDER);

 You might fi nd this query a bit hard to follow. As I mentioned earlier, you can improve the 
clarity of the code by using parentheses and indentation as the following query shows:  

SELECT *

FROM   (dbo.T1 JOIN dbo.T2 ON T2.b = T1.b)

  JOIN (dbo.T3 JOIN dbo.T4 ON T4.c = T3.c)

    ON T3.c = T1.c

OPTION(FORCE ORDER);

 Now it’s much easier to see the “bushy” layout that is forced. Figure 7-7 shows the graphical 
execution plan for this query.  

FIGURE 7-7 Bushy plan
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 Another way to get bushy plans is to use table expressions like so: 

WITH J1 AS

(

  SELECT T1.a AS T1a, T1.b AS T1b, T1.c, T1.v1, T2.b AS T2b, T2.v2

  FROM dbo.T1 JOIN dbo.T2

    ON T2.b = T1.b

),

J2 AS

(

  SELECT T3.c AS T3c, T3.v3, T4.d, T4.c AS T4c, T4.v4

  FROM dbo.T3 JOIN dbo.T4

    ON T4.c = T3.c

)

SELECT *

FROM J1 JOIN J2

  ON J2.T3c = J1.c

OPTION(FORCE ORDER);

 Compared to the previous options, this technique requires more code because you need to 
express the SELECT lists of the queries defi ning the table expressions. 

 This optimization technique is interesting to experiment with because the optimizer doesn’t 
consider it normally. 

 When you’re done, run the following code for cleanup: 

USE tempdb;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

IF OBJECT_ID('dbo.T2', 'U') IS NOT NULL DROP TABLE dbo.T2;

IF OBJECT_ID('dbo.T3', 'U') IS NOT NULL DROP TABLE dbo.T3;

IF OBJECT_ID('dbo.T4', 'U') IS NOT NULL DROP TABLE dbo.T4;

Semi Joins

 Semi joins are joins that return rows from one table based on the existence of related rows in 
the other table. If you return attributes from the left table, the join is called a left semi join. If 
you return attributes from the right table, it’s called a right semi join. 

 You can achieve a semi join in several ways: using inner joins, the EXISTS or IN predicate with 
subqueries, and the INTERSECT set operation (which I’ll demonstrate later in the chapter). 
Using an inner join, you select attributes from only one of the tables. If that table is in the 
one side of a one-to-many join, you also apply DISTINCT. For example, the following query 
returns customers from Spain that made orders: 

USE InsideTSQL2008;

SELECT DISTINCT C.custid, C.companyname

FROM Sales.Customers AS C
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  JOIN Sales.Orders AS O

    ON O.custid = C.custid

WHERE country = N'Spain';

 You can also use the EXISTS predicate as follows: 

SELECT custid, companyname

FROM Sales.Customers AS C

WHERE country = N'Spain'

  AND EXISTS

    (SELECT * FROM Sales.Orders AS O

     WHERE O.custid = C.custid);

 If you’re wondering about the performance difference between the two, in this case the 
 optimizer generates an identical plan for both. This plan is shown in Figure 7-8. 

FIGURE 7-8 Execution plan for a left semi join

 When the optimizer identifi es the join as a semi join, this is typically a good sign. The 
 optimizer knows that per each row from one side, it needs to check only whether at least one 
matching row exists in the other side as opposed to actually processing all matching rows.  

 The inverse of a semi join is an anti-semi join, where you’re looking for rows in one table 
based on their nonexistence in the other. You can achieve an anti-semi join (left or right) 
 using an outer join, fi ltering only outer rows, using the NOT EXISTS or NOT IN predicates 
with subqueries, and with the EXCEPT set operation. For example, the following query returns 
customers from Spain that made no orders. The anti-semi join is achieved using an outer join: 

SELECT C.custid, C.companyname

FROM Sales.Customers AS C
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  LEFT OUTER JOIN Sales.Orders AS O

    ON O.custid = C.custid

WHERE country = N'Spain'

  AND O.custid IS NULL;

 You can also use the NOT EXISTS predicate as follows: 

SELECT custid, companyname

FROM Sales.Customers AS C

WHERE country = N'Spain'

  AND NOT EXISTS

    (SELECT * FROM Sales.Orders AS O

     WHERE O.custid = C.custid);

 As you can see in the execution plans shown in Figure 7-9 for the two query variations, the 
solution using the NOT EXISTS predicate is estimated to perform better. 

FIGURE 7-9 Execution plan for a left anti-semi join

 The plan for the outer join solution shows that all orders for customers from Spain were  actually 
processed. Let c equal the number of customers from Spain and o equal the average number of 
orders per customer. You get c × o orders accessed. Then only the outer rows are fi ltered. 

 The plan for the NOT EXISTS solution is more effi cient. Like the plan for the LEFT OUTER 
JOIN solution, this plan performs a seek within the index on Orders.custid for each customer. 
However, the NOT EXISTS plan checks only whether a row with that customer ID was found 
(shown by the TOP operator), while the plan for the outer join actually scans all index rows 
for each customer. Note that the tables in our sample database are very small. With more 
realistic table sizes the optimizer may come up with different plans, so make sure you don’t 
draw any conclusions from this example alone.  
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Sliding Total of Previous Year

 The following exercise demonstrates a mix of several join types and categories: inner and 
outer joins, self joins, and non-equi-join joins. First create and populate the MonthlyOrders 
table by running the following code: 

IF OBJECT_ID('dbo.MonthlyOrders') IS NOT NULL

  DROP TABLE dbo.MonthlyOrders;

GO

SELECT 

  DATEADD(month, DATEDIFF(month, '19000101', orderdate), '19000101')

    AS ordermonth,

  SUM(val) AS val

INTO dbo.MonthlyOrders

FROM Sales.OrderValues

GROUP BY DATEADD(month, DATEDIFF(month, '19000101', orderdate), '19000101');

CREATE UNIQUE CLUSTERED INDEX idx_ordermonth ON dbo.MonthlyOrders(ordermonth);

SELECT * FROM dbo.MonthlyOrders ORDER BY ordermonth;

 The SELECT statement at the end of the script produces the following output: 

ordermonth                val

------------------------- ---------

2006-07-01 00:00:00.000   27861.90

2006-08-01 00:00:00.000   25485.28

2006-09-01 00:00:00.000   26381.40

2006-10-01 00:00:00.000   37515.73

2006-11-01 00:00:00.000   45600.05

2006-12-01 00:00:00.000   45239.63

2007-01-01 00:00:00.000   61258.08

2007-02-01 00:00:00.000   38483.64

2007-03-01 00:00:00.000   38547.23

2007-04-01 00:00:00.000   53032.95

2007-05-01 00:00:00.000   53781.30

2007-06-01 00:00:00.000   36362.82

2007-07-01 00:00:00.000   51020.86

2007-08-01 00:00:00.000   47287.68

2007-09-01 00:00:00.000   55629.27

2007-10-01 00:00:00.000   66749.23

2007-11-01 00:00:00.000   43533.80

2007-12-01 00:00:00.000   71398.44

2008-01-01 00:00:00.000   94222.12

2008-02-01 00:00:00.000   99415.29

2008-03-01 00:00:00.000   104854.18

2008-04-01 00:00:00.000   123798.70

2008-05-01 00:00:00.000   18333.64

 Notice that I used the DATETIME data type for the ordermonth column. A valid date must 
 include a day portion, so I just used the fi rst of the month. When I need to present data, I’ll 
get rid of the day portion. Storing the order month in a DATETIME data type allows more 
fl exible manipulations using date-and-time-related functions. 
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 The request is to return, for each month, a sliding total of the previous year. In other words, for 
each month n, return the total number of orders from month n minus 11 through month n. 

 First I’ll demonstrate a solution that assumes that the sequence of months has no gaps. Later 
I’ll provide a solution that works correctly even when some months are missing. Here I won’t 
address performance aspects of the solution; instead, I’ll focus on its logical aspects. The 
purpose of this exercise is to practice with different join types and techniques shown in this 
chapter. In Chapter 8, you will fi nd a focused discussion on running aggregates, including 
performance issues. 

 The following query returns the sliding total of the previous year for each month: 

SELECT 

  CONVERT(CHAR(6), DATEADD(month, -11, O1.ordermonth), 112) AS frommonth,

  CONVERT(CHAR(6), O1.ordermonth, 112) AS tomonth,

  SUM(O2.val) AS totalval,

  COUNT(*) AS nummonths

FROM dbo.MonthlyOrders AS O1

  JOIN dbo.MonthlyOrders AS O2

    ON O2.ordermonth BETWEEN DATEADD(month, -11, O1.ordermonth)

                         AND O1.ordermonth

GROUP BY O1.ordermonth

ORDER BY O1.ordermonth;

 This query generates the following output: 

frommonth   tomonth   totalval      nummonths

----------- --------- ------------- -----------

200508      200607    27861.90      1

200509      200608    53347.18      2

200510      200609    79728.58      3

200511      200610    117244.31     4

200512      200611    162844.36     5

200601      200612    208083.99     6

200602      200701    269342.07     7

200603      200702    307825.71     8

200604      200703    346372.94     9

200605      200704    399405.89     10

200606      200705    453187.19     11

200607      200706    489550.01     12

200608      200707    512708.97     12

200609      200708    534511.37     12

200610      200709    563759.24     12

200611      200710    592992.74     12

200612      200711    590926.49     12

200701      200712    617085.30     12

200702      200801    650049.34     12

200703      200802    710980.99     12

200704      200803    777287.94     12

200705      200804    848053.69     12

200706      200805    812606.03     12
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 The query joins two instances of MonthlyOrders: O1 and O2. The left instance (O1) represents 
the upper boundary point of the month range, and the right instance (O2) represents all 
months in the range tomonth – 11 through to tomonth. This means that each row in O1 fi nds 
up to 12 matches, one for each month. The logic here is similar to the expand technique I 
mentioned earlier. Now that each upper boundary point has been duplicated up to 12 times, 
once for each qualifying month from O2, you want to collapse the group back to a single 
row, returning the total value of orders for each group. 

 To note that some ranges do not cover a whole year, the query returns also the count of 
months involved in the aggregation. If you want to return only groups representing complete 
years, you can simply add a fi lter in the HAVING clause, ensuring that the number of rows 
(months) in the group is equal to 12, like so: 

SELECT 

  CONVERT(CHAR(6), DATEADD(month, -11, O1.ordermonth), 112) AS frommonth,

  CONVERT(CHAR(6), O1.ordermonth, 112) AS tomonth,

  SUM(O2.val) AS totalval

FROM dbo.MonthlyOrders AS O1

  JOIN dbo.MonthlyOrders AS O2

    ON O2.ordermonth BETWEEN DATEADD(month, -11, O1.ordermonth)

                         AND O1.ordermonth

GROUP BY O1.ordermonth

HAVING COUNT(*) = 12

ORDER BY O1.ordermonth;

 This query generates the following output: 

frommonth   tomonth   totalval

----------- --------- -------------

200607      200706    489550.01

200608      200707    512708.97

200609      200708    534511.37

200610      200709    563759.24

200611      200710    592992.74

200612      200711    590926.49

200701      200712    617085.30

200702      200801    650049.34

200703      200802    710980.99

200704      200803    777287.94

200705      200804    848053.69

200706      200805    812606.03

 This solution assumes that the sequence of months has no gaps. If you don’t have such 
 assurance, you can use an auxiliary table that contains all month ranges that you need to cover 
and perform an outer join between the auxiliary table and MonthlyOrders. You can use the 
Nums table to produce the month ranges. Here’s the complete solution code demonstrating 
the technique applied for a given tomonth range and number of months trailing: 

DECLARE

  @firsttomonth   AS DATE = '20061201',

  @lasttomonth    AS DATE = '20081201',

  @monthstrailing AS INT  = 11;
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WITH Months AS

(

  SELECT

    DATEADD(month, n-1-@monthstrailing, @firsttomonth) AS frommonth,

    DATEADD(month, n-1, @firsttomonth)                  AS tomonth

  FROM dbo.Nums

  WHERE n <= DATEDIFF(month, @firsttomonth, @lasttomonth) + 1

)

SELECT

  CONVERT(CHAR(6), frommonth, 112) AS frommonth,

  CONVERT(CHAR(6), tomonth, 112) AS tomonth,

  COUNT(O.ordermonth) AS nummonths,

  SUM(O.val) AS totalval

FROM Months M

  LEFT OUTER JOIN

    dbo.MonthlyOrders AS O

      ON O.ordermonth BETWEEN M.frommonth AND M.tomonth

GROUP BY frommonth, tomonth

ORDER BY frommonth;

 This query generates the following output: 

frommonth   tomonth   nummonths   totalval

----------- --------- ----------- -------------

200601      200612    6           208083.99

200602      200701    7           269342.07

200603      200702    8           307825.71

200604      200703    9           346372.94

200605      200704    10          399405.89

200606      200705    11          453187.19

200607      200706    12          489550.01

200608      200707    12          512708.97

200609      200708    12          534511.37

200610      200709    12          563759.24

200611      200710    12          592992.74

200612      200711    12          590926.49

200701      200712    12          617085.30

200702      200801    12          650049.34

200703      200802    12          710980.99

200704      200803    12          777287.94

200705      200804    12          848053.69

200706      200805    12          812606.03

200707      200806    11          776243.21

200708      200807    10          725222.35

200709      200808    9           677934.67

200710      200809    8           622305.40

200711      200810    7           555556.17

200712      200811    6           512022.37

200801      200812    5           440623.93

 To clean up, drop the MonthlyOrders table: 

DROP TABLE dbo.MonthlyOrders;
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Join Algorithms

 Join algorithms are the physical strategies SQL Server can use to process joins. SQL Server 
supports three join algorithms: nested loops, merge, and hash. In the query execution plan, 
the join algorithm appears under the join operator’s Physical Operation property and the 
logical join type under Logical Operation. 

 The following sections describe the different join algorithms. In my examples I will use 
the Performance database that was used in Chapter 4, “Query Tuning.” The code to  create 
and  populate this sample database is provided in Chapter 4, Listing 4-1. In addition, run 
the following code to create a couple of indexes used in the plans for the queries that I’ll 
demonstrate: 

USE Performance;

CREATE INDEX idx_nc_cn_i_cid 

  ON dbo.Customers(custname) INCLUDE(custid);

CREATE INDEX idx_nc_cid_od_i_oid_eid_sid

  ON dbo.Orders(custid, orderdate)

  INCLUDE(orderid, empid, shipperid);

Nested Loops

 A nested loops join operator receives one set of rows from its outer input (the upper input in 
the graphical query plan). These outer input rows are typically the rows of one of the joined 
tables, after some sorting or fi ltering, if the optimizer decides such processing is possible 
and effi cient when done before joining the tables and matching rows. Then for each such 
row of the outer input, using a loop, this operator applies some access method to obtain the 
 matching rows from the inner input of the join (the lower input in the plan).  

 A nested loops join algorithm can be used with both equi-joins and non-equi-joins, while 
the other algorithms require at least one equi-join predicate. For logical join types, a nested 
loops join can be used with cross, inner, left outer, left semi and anti-semi joins, and cross 
and outer apply. A nested loops join algorithm cannot be used with full and right outer joins 
and right semi and anti-semi joins. Nested loops usually works best with small inputs (not 
necessarily small tables). 

 For each row of the outer input, matching rows are sought from the inner input. Ideally, these 
matching rows will be found in a small number of effi cient searches. The number of searches 
is smallest when the smaller input is the outer one, and the searches are most  effi cient when 
the join condition is selective and there’s a useful index on the inner input’s join column. 
With this in mind, the following scale describes the optimization you will get for different 
indexing options on the inner table’s join column, from worst to best. The access method 
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in  parentheses occurs once for each row in the join’s outer input; this access fi nds matching 
rows in the join’s inner input: 

■  No index (table scan) 

■  Nonclustered noncovering index (when selective enough, seek + partial ordered scan + 
lookups) 

■  Clustered index (seek + partial scan) 

■  Nonclustered covering (seek + partial scan) 

 The following query, which produces the plan shown in Figure 7-10, is an example of a query 
for which the optimizer chooses the nested loops operator: 

SELECT C.custid, C.custname, O.orderid, O.empid, O.shipperid, O.orderdate

FROM dbo.Customers AS C

  JOIN dbo.Orders AS O

    ON O.custid = C.custid

WHERE C.custname LIKE 'Cust[_]1000%'

  AND O.orderdate >= '20080101'

  AND O.orderdate < '20080401';

FIGURE 7-10 Execution plan that includes a nested loops operator

 Regarding the smaller side of the join, which is usually used as the outer input (Customers in 
our case), an index to support its fi lter is not that crucial, but it can prevent the need for a full 
table scan. So I created a covering index with the key being the fi ltered column (custname) 
and the custid as an included column for coverage purposes.  

 For the bigger side of the join, which is usually chosen as the inner input of a nested loops 
join (Orders in our case), you can sometimes arrange one index that supports both the join 
and additional fi lters against that table. For example, in our case the join column is custid, 
and there’s an additional range fi lter on orderdate. In this case the optimal index is one 
 defi ned on the keylist (custid, orderdate) with the rest of the columns from the table defi ned 
as included columns (orderid, empid, shipperid).  

 The plan performs a seek and partial scan in the covering index on the Customers table to  retrieve 
the qualifying customers. For each one of those customers, the plan performs a seek and  partial 
scan in the covering index on the Orders side. The seek predicate contains both the  equality 
 condition between the inner and outer tables’ custid columns as well as the range fi lter on 
 orderdate. With a nested loops join, what you see in this plan is pretty much as good as it can get. 
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 Important With regard to joins and indexing, remember that joins are often based on foreign 
key/primary key relationships. Although an index (to enforce uniqueness) is automatically  created 
when a primary key is declared, a foreign key declaration doesn’t automatically create an index. 
Remember that for nested loops, typically an index on the join column in the larger table is 
 preferable. So it’s your responsibility to create that index explicitly. 

Merge

 A merge join is a join algorithm that requires both inputs to be sorted based on the join 
column(s). If an input is already sorted in an index (for example, a clustered index or, even 
better, a covering nonclustered index), the plan can perform an index order scan. In such 
a case, the merge join can be pretty effi cient even with large table sizes. If an input is not 
already sorted, the optimizer may decide to apply a sort operation. This typically happens 
when the input is small because sorting a large number of rows can be quite expensive.  

 A merge join can be applied either as a one-to-many join or as a many-to-many join. When 
the optimizer can be certain of the uniqueness of the join column(s) in one of the sides, it 
can utilize a one-to-many merge join. With a one-to-many join, SQL Server scans both sides 
only once in an ordered fashion and merges the rows while scanning both inputs. It scans the 
fi rst row from both sides. As long as the end of the inputs is not reached, it checks whether 
the rows match. If they do, it returns a result row and reads another row in the many side. 
If they don’t, it reads the next row from the side with the lower value. For example, in a 
join  between T1 that has the values x, y, z in the join column and T2 with the values x, x, y, 
y, y, y, z, z, z, the merge join reads T1(x), T2(x, x, y), T1(y), T2(y, y, y, z), T1(z), T2(z, z, <end>), 
T1(<end>). 

 Things become more complicated and expensive when you have a many-to-many join, 
where the optimizer might still use a merge join operator with rewind logic. In that case, it 
needs to use a worktable to save rows from one input aside to be able to reuse them when 
duplicate matching rows exist in the other side. 

 A merge join requires at least one of the join predicates to be an equi-join predicate (with 
the exception of a full outer join). As for logical join types, a merge join algorithm cannot 
be used with a cross join. It can be used with inner, outer, and semi joins.  Cross joins have 
an  exception in which a merge join can be used when it’s an inner join disguised as a cross 
join (for example, T1 CROSS JOIN T2 ON T1.keycol = T2.keycol). Merge can work well with 
 medium- to large-sized inputs provided that they are presorted. 

 For example, the following query joins Customers and Orders on equal custid values: 

SELECT C.custid, C.custname, O.orderid, O.empid, O.shipperid, O.orderdate

FROM dbo.Customers AS C

 JOIN dbo.Orders AS O

    ON O.custid = C.custid;
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 Both tables have covering indexes on custid (clustered index on Customers and covering non-
clustered index on Orders), so it’s quite a natural choice for the optimizer to go for a merge 
join in this case. The plan for this query is shown in Figure 7-11.  

FIGURE 7-11 Execution plan for a merge join

 As mentioned, in some cases the optimizer might decide to use a merge join even when one 
of the inputs is not presorted by an index, especially if that input is fairly small. In such a case, 
you will see that the unsorted input is scanned and then sorted, as in the execution plan shown 
in Figure 7-12 for the following query:  

SELECT C.custid, C.custname, O.orderid, O.empid, O.shipperid, O.orderdate

FROM dbo.Customers AS C

  JOIN dbo.Orders AS O

    ON O.custid = C.custid

WHERE O.orderdate >= '20080101'

  AND O.orderdate < '20080102';

FIGURE 7-12 Execution plan for a merge join with sort

 The rows in the Customers table are already sorted based on the join column (custid) in the 
table’s clustered index. As for the Orders table, even if you have a covering index on custid, 
fully scanning it would mean scanning about 1,000,000 rows. The optimizer estimates the 
selectivity of the fi lter on the orderdate column and realizes that the fi lter is highly selective. 
Therefore it decides to use the clustered index on orderdate to scan the applicable orders 
(estimated about 1,000 rows) and sort by custid to enable the merge join.  

 A word of caution here: If the optimizer makes a bad selectivity estimate—especially when 
the estimate is for a small number of rows (for example, 1,000 rows)—but in practice you 
get a very large number of rows (for example, 2,000,000 rows), the sort operation ends 
up being very expensive. You can identify the problem by inspecting the actual execution 
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plan:  compare the Estimated and Actual numbers of rows in the arrow going into the sort 
 operator. In such a case you should try to determine the cause of the inaccurate selectivity 
estimate and fi x it, if possible. 

Hash

 The hash join algorithm is effi cient mainly in processing queries that involve medium to large 
input sizes, especially in data warehouses. A hash join algorithm builds and uses a searching 
 structure called a hash table, which is an alternative searching structure to a balanced tree. 
SQL Server does not allow us to explicitly create hash indexes, only B-trees, but it does use 
hash tables internally as part of processing of joins, aggregates, and so on.  

 The optimizer usually uses the smaller input of the two as the input for building the hash 
table; hence, this input is known as the build input. The reasoning behind using the smaller 
input as the build input is that the hash table is created in memory (unless there’s not enough 
memory and it spills to disk). It distributes the rows (relevant attributes for query) from the 
build input into buckets, based on a hash function applied to the join column values. The hash 
function is chosen to create a predetermined number of buckets of fairly equal size. Once the 
optimizer fi nishes building the hash table based on the build input, it scans, or probes, the 
other input (known as the probe input); applies the hash function to the join column value; 
and, based on the result, knows which bucket in the hash table to scan to look for matches. 

 As an analogy, say you have a garage with a large number of tools and items. If you don’t 
organize them in a particular manner, every time you look for an item you need to scan all of 
them. This is similar to a table scan. Of course, you want to organize the items in groups and 
shelves by some criteria—for example, by functionality, size, color, and so on. You’d probably 
choose a criterion that would result in fairly equal-sized, manageable groups. 

 The criterion you would use is analogous to the hash function, and a shelf or group of items 
is analogous to the hash bucket. Once the items in the garage are organized, every time you 
need to look for one, apply the same criterion you used to organize the items, go directly to 
the relevant shelf, and scan that shelf. 

 A hash join requires at least one of the join predicates to be an equi-join predicate. As for  logical 
join types, a hash join algorithm does not support cross joins. It does support inner, outer, 
and semi joins of all types. Regarding cross joins, like with the merge join algorithm there’s an 
 exception in which a hash join algorithm can be used: when it’s an inner join disguised as a cross 
join (for example, T1 CROSS JOIN T2 ON T1.keycol = T2.keycol). 

 Note that while in certain scenarios hash joins are the preferable option, sometimes—
usually in OLTP type scenarios—SQL Server uses hash joins for lack of existing indexes to 
 support other join algorithms that would have been more effi cient. Occasionally, you do see 
 execution plans where the optimizer decides that it’s worthwhile to create a temporary index 
(an Index Spool operator). But in many cases, when no B-tree is in place, it’s more expensive 
to create a temporary index as part of the plan, use it, and drop it than it is to create a hash 
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table and use it. What I’m trying to say is that in some cases, the use of a hash join  algorithm 
is due to lack of existing indexes. But as I said, hash joins can be the optimal  option, 
 especially in data warehouse types of scenarios.  

 To demonstrate a hash join, fi rst run the following code to drop the two indexes created 
 earlier on the Customers and Orders tables: 

DROP INDEX dbo.Customers.idx_nc_cn_i_cid;

DROP INDEX dbo.Orders.idx_nc_cid_od_i_oid_eid_sid;

 Next, run the following query: 

SELECT C.custid, C.custname, O.orderid, O.empid, O.shipperid, O.orderdate

FROM dbo.Customers AS C

  JOIN dbo.Orders AS O

    ON O.custid = C.custid

WHERE C.custname LIKE 'Cust[_]1000%'

  AND O.orderdate >= '20080101'

  AND O.orderdate < '20080401';

 You will see the Hash Match operator in the execution plan generated for the query, as 
shown in Figure 7-13: 

FIGURE 7-13 Execution plan for a hash join

 As you can see, the smaller side (Customers) was chosen as the build input (upper input in 
the plan). The Customers table was fully scanned because no index supported the query’s 
fi lter on the attribute custname. The bigger side (Orders) was chosen as the probe input. 
Because the fi ltered column orderdate is the clustered index key for Orders, a seek followed 
by a range scan in the leaf of the index can obtain the qualifying orders. Those qualifying 
rows are used as the probe input for the hash join. 

Bitmap Filters in Star Schema Joins  Bitmap fi lters are used in parallel query plans to fi lter 
data based on a bitmap created by the Bitmap operator. A bitmap is an in-memory  compact 
representation of a set of values. A bitmap fi lter can use a bitmap representing a set of  values 
obtained by one operator in the plan tree to fi lter rows as part of another operator in the tree. 
Using a bitmap fi lter is effi cient when the set of values represented by the bitmap is small. 

 Bitmap fi lters were supported prior to SQL Server 2008. However, SQL Server 2008 introduces 
optimized bitmap fi lters. While regular bitmap fi lters can be introduced in the query plan only 
after optimization, optimized bitmap fi lters can be introduced dynamically by the  optimizer 
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during optimization. Optimized bitmap fi lters can be especially effi cient in optimizing data 
warehouse types of queries, such as star schema joins. The bitmaps in this case would be 
 compact representations of applicable join keys obtained from dimension tables. With regular 
bitmap fi lters, all rows from the fact table are processed before the joins with the dimension 
tables eliminate the non-qualifying rows. With optimized bitmap fi lters, the non-qualifying 
rows from the fact table are eliminated immediately as part of the table/index scan operator. 
If applicable, more than one bitmap fi lter can be applied. 

 The query optimizer can use regular bitmap fi lters in both merge and hash joins. Optimized 
bitmap fi lters can be used in hash joins only. The bitmaps are created on the build input (the 
dimension tables) and applied to the probe input (the fact table). If the join column is an 
integer, the fi ltering of the rows from the fact table can be done in-row while scanning the 
data. Otherwise, the fi ltering is done by a parallelism operator. 

 The following query demonstrates using hash joins and bitmap fi ltering:  

SELECT C.custname, E.lastname, E.firstname,

  O.orderid, O.orderdate, O.custid, O.empid, O.shipperid

FROM dbo.Orders AS O

  JOIN dbo.Customers AS C

    ON O.custid = C.custid

  JOIN dbo.Employees AS E

    ON O.empid = E.empid

WHERE C.custname LIKE 'Cust[_]100%'

  AND E.lastname LIKE 'Lname[_]100%';

 The execution plan produced for this query is shown in Figure 7-14. 

FIGURE 7-14 Execution plan with optimized bitmap fi lters 
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 Each Bitmap operator creates a bitmap from the dimension table rows returned by a fi lter. 
The bitmap represents the set of join keys for these rows. Then when the fact table (Orders 
in our case) is scanned, rows that don’t satisfy the dimension table fi lter condition can be 
 identifi ed and excluded based on their join key. You can tell that a fi lter is an optimized 
 bitmap fi lter when its name starts with Opt_, as in Opt_Bitmap1008.  

 If you’re trying to reproduce a plan with bitmap fi lters and can’t manage to do so, consider the 
following. Bitmap fi lters are used only in parallel execution plans. Parallel plans are considered 
only if you have more than one processor and the execution plan cost is greater than 5.  

 Tip If you want to be able to produce plans with bitmap fi lters on a computer with a single 
processor for practice purposes, you can start the SQL Server service with the undocumented –P 
switch. Using this switch you can specify how many user mode schedulers (UMSs) you want SQL 
Server to start with. Normally it starts with one UMS per CPU. 

Forcing a Join Strategy

 You can force the optimizer to use a particular join algorithm, provided that it’s  technically 
supported for the given query. You do so by specifying a hint between the keyword or 
 keywords representing the join type (for example, INNER, LEFT OUTER) and the JOIN 
 keyword. For example, the following query forces a nested loops join: 

SELECT C.custid, C.custname, O.orderid, O.empid, O.shipperid, O.orderdate

FROM dbo.Customers AS C

  INNER LOOP JOIN dbo.Orders AS O

    ON O.custid = C.custid;

 Note With inner joins, when forcing a join algorithm, the keyword INNER is not optional. With 
outer joins, the OUTER keyword is still optional. For example, you can use LEFT LOOP JOIN or 
LEFT OUTER LOOP JOIN. 

 In some cases you may want to prevent the optimizer from using a certain join algorithm 
rather than forcing it to use a specifi c one. Unfortunately, you cannot do this at the individual 
join level, but you can do it at the whole query level using a table hint where you specify the 
algorithms you allow. As long as only one join is in the query, the hint impacts only that join. 
However, bear in mind that when the query has multiple joins, the hint impacts all of the  
joins. For example, the following query restricts the optimizer to use either nested loops or 
hash join algorithms, preventing it from using merge:  

SELECT C.custid, C.custname, O.orderid, O.empid, O.shipperid, O.orderdate

FROM dbo.Customers AS C

  JOIN dbo.Orders AS O

    ON O.custid = C.custid

OPTION(LOOP JOIN, HASH JOIN);
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Note Keep in mind the discussion earlier in the chapter regarding using hints to override 
the  optimizer’s choices. Limit the use of hints and try to exhaust all other means before you 
 introduce such a hint in production code. 

 For more information about join algorithms, please refer to Craig Freedman’s excellent blog 
entries on the subject. You can fi nd Craig’s blog at http://blogs.msdn.com/craigfr/. 

Separating Elements

At this point, you have a chance to put your knowledge of joins and the key techniques 
you learned so far into action. Here I’ll present a generic form of a problem that has many 
 practical applications in production. Create and populate a table called Arrays by running the 
following code: 

USE tempdb;

IF OBJECT_ID('dbo.Arrays') IS NOT NULL  DROP TABLE dbo.Arrays;

CREATE TABLE dbo.Arrays

(

  arrid VARCHAR(10)   NOT NULL PRIMARY KEY,

  array VARCHAR(8000) NOT NULL

)

GO

INSERT INTO Arrays(arrid, array) VALUES

  ('A', '20,223,2544,25567,14'),

  ('B', '30,-23433,28'),

  ('C', '12,10,8099,12,1200,13,12,14,10,9'),

  ('D', '-4,-6,-45678,-2');

The table contains arrays of elements separated by commas. Your task is to write a query that 
generates the result shown in Table 7-3. 

 TABLE 7-3 Arrays Split to Elements

 arid pos element

 A 1 20

 A 2 223

 A 3 2544

 A 4 25567

 A 5 14

 B 1 30

 B 2 -23433

arid pos element
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 TABLE 7-3 Arrays Split to Elements

 arid pos element

 B 3 28

 C 1 12

 C 2 10

 C 3 8099

 C 4 12

 C 5 1200

 C 6 13

 C 7 12

 C 8 14

 C 9 10

 C 10 9

 D 1 -4

 D 2 -6

 D 3 -45678

 D 4 -2

 The request is to split the arrays. The result set should have a row for each array element, 
 including the array ID, the element’s position within the array, and the element value. The 
solution is presented in the following paragraphs. 

 Before you even start coding, it’s always a good idea to identify the steps in the solution 
and resolve them logically. It’s often a good starting point to think in terms of the number 
of rows in the target and consider how that is related to the number of rows in the source. 
Obviously, here you need to generate multiple rows in the result from each row in Arrays. In 
other words, as the fi rst step, you need to generate copies. 

 You already know that to generate copies, you can join the Arrays table with an auxiliary 
 table of numbers. Here the join is not a simple cross join and a fi lter on a fi xed number of 
rows. The number of copies here should equal the number of elements in the array. Each 
element is identifi ed by a preceding comma (except for the fi rst element, which we must not 
forget). So the join condition can be based on the existence of a comma in the nth character 
position in the array, where n comes from the Nums table. 

 Obviously, you wouldn’t want to check characters beyond the length of the array, so you can 
limit n to the array’s length. The following query implements the fi rst step of the solution: 

SELECT arrid, array, n

FROM dbo.Arrays

  JOIN dbo.Nums

    ON n <= DATALENGTH(array)

    AND SUBSTRING(array, n, 1) = ',';

arid pos element
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 Note The array column is of a regular character type in our case. When working with a Unicode 
type, make sure that you divide the result of the DATALENGTH function by 2. 

 This query generates the following output: 

arrid      array                               n

---------- ----------------------------------- -----------

A          20,223,2544,25567,14                3

A          20,223,2544,25567,14                7

A          20,223,2544,25567,14                12

A          20,223,2544,25567,14                18

B          30,-23433,28                        3

B          30,-23433,28                        10

C          12,10,8099,12,1200,13,12,14,10,9    3

C          12,10,8099,12,1200,13,12,14,10,9    6

C          12,10,8099,12,1200,13,12,14,10,9    11

C          12,10,8099,12,1200,13,12,14,10,9    14

C          12,10,8099,12,1200,13,12,14,10,9    19

C          12,10,8099,12,1200,13,12,14,10,9    22

C          12,10,8099,12,1200,13,12,14,10,9    25

C          12,10,8099,12,1200,13,12,14,10,9    28

C          12,10,8099,12,1200,13,12,14,10,9    31

D          -4,-6,-45678,-2                     3

D          -4,-6,-45678,-2                     6

D          -4,-6,-45678,-2                     13

 You have almost generated the correct number of duplicates for each array, along with the 
n value representing the matching comma’s position. You have one fewer copy than the 
 desired number of copies for each array. For example, array A has fi ve elements, but you have 
only four rows. The reason that a row is missing for each array is that no comma precedes the 
fi rst element in the array. To fi x this small problem, concatenate a comma with the array to 
specify the fi rst input of the SUBSTRING function: 

SELECT arrid, array, n

FROM dbo.Arrays

  JOIN dbo.Nums

    ON n <= DATALENGTH(array) + 1

    AND SUBSTRING(',' + array, n, 1) = ',';

 Note that because you added a comma in front of the original string, the string is now one 
character longer. Therefore, the fi lter in the ON clause needs to fi lter n values from Nums 
that are smaller than or equal to the length of the original array plus one. As you can see in 
the following output, each array now produces an additional row in the result with n = 1: 

arrid      array                               n

---------- ----------------------------------- -----------

A          20,223,2544,25567,14                1

A          20,223,2544,25567,14                4

A          20,223,2544,25567,14                8

A          20,223,2544,25567,14                13

A          20,223,2544,25567,14                19
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B          30,-23433,28                        1

B          30,-23433,28                        4

B          30,-23433,28                        11

C          12,10,8099,12,1200,13,12,14,10,9    1

C          12,10,8099,12,1200,13,12,14,10,9    4

C          12,10,8099,12,1200,13,12,14,10,9    7

C          12,10,8099,12,1200,13,12,14,10,9    12

C          12,10,8099,12,1200,13,12,14,10,9    15

C          12,10,8099,12,1200,13,12,14,10,9    20

C          12,10,8099,12,1200,13,12,14,10,9    23

C          12,10,8099,12,1200,13,12,14,10,9    26

C          12,10,8099,12,1200,13,12,14,10,9    29

C          12,10,8099,12,1200,13,12,14,10,9    32

D          -4,-6,-45678,-2                     1

D          -4,-6,-45678,-2                     4

D          -4,-6,-45678,-2                     7

D          -4,-6,-45678,-2                     14

 Also, because all characters in ‘,’ + array appear one character further to the right than they 
do in the original array, all n values are greater than before by one. That’s actually even 
 better for us because now n represents the starting position of the corresponding element 
within the original array. 

 The third step is to extract from each row the element starting at the nth character. You 
know where the element starts—at the nth character—but you need to fi gure out its length. 
The length of the element is the position of the next comma minus the element’s starting 
position (n). You can use the CHARINDEX function to fi nd the position of the next comma. 
You will need to provide the function with the value n as the third argument to tell it to 
start looking for the comma at or after the nth character and not from the beginning of the 
string. Just keep in mind that you’ll face a very similar problem here to the one that caused 
you to get one fewer copy than the number of elements. Here, there’s no comma after the 
last element. Just as you added a comma before the fi rst element earlier, you can now add 
one at the end. The following query shows the third step in the solution: 

SELECT arrid, 

  SUBSTRING(array, n, CHARINDEX(',', array + ',', n) - n) AS element

FROM dbo.Arrays

  JOIN dbo.Nums

    ON n <= DATALENGTH(array) + 1

    AND SUBSTRING(',' + array, n, 1) = ',';

 This query generates the following output: 

arrid      element

---------- -----------

A          20

A          223

A          2544

A          25567

A          14

B          30

B          -23433

B          28
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C          12

C          10

C          8099

C          12

C          1200

C          13

C          12

C          14

C          10

C          9

D          -4

D          -6

D          -45678

D          -2

 Note that the element result column is currently a character string. You might want to 
 convert it to a more appropriate data type (for example, an integer in this case). 

 Finally, the last step in the solution is to calculate the position of each element within the 
 array. A simple way to achieve this is to use the ROW_NUMBER function, partitioned by arrid, 
ordered by n, like so: 

SELECT arrid,

  ROW_NUMBER() OVER(PARTITION BY arrid ORDER BY n) AS pos,

  CAST(SUBSTRING(array, n, CHARINDEX(',', array + ',', n) - n)

       AS INT) AS element

FROM dbo.Arrays

  JOIN dbo.Nums

    ON n <= DATALENGTH(array) + 1

    AND SUBSTRING(',' + array, n, 1) = ',';

 But if you feel that this is too easy and you were shortchanged of a challenge, you can try 
and calculate the position without the ROW_NUMBER function. With this restriction, this 
step is very tricky. You fi rst need to fi gure out what determines the position of an element 
within an array. The position is the number of commas in the original array before the nth 
character (in the fi rst n – 1 characters), plus one. Once you fi gure this out, you need to come 
up with an expression that will calculate this. You want to avoid writing a T-SQL user-defi ned 
function, which would slow the query down. If you come up with an inline expression that 
uses only built-in functions, you will get a very fast solution. To phrase the problem more 
technically, you need to take the fi rst n – 1 characters (LEFT(array, n – 1)) and count the 
number of commas within that substring. The problem is that most string functions have 
no notion of repetitions or multiple occurrences of a substring within a string. There is one 
built-in function, though, that does—REPLACE. This function replaces each occurrence of 
a certain substring (call it oldsubstr) within a string (call it str) with another substring (call it 
newsubstr). You invoke the function with the aforementioned arguments in the following 
order: REPLACE(str, oldsubstr, newsubstr). Here’s an interesting way we can use the REPLACE 
function: REPLACE(LEFT(array, n – 1), ‘,’, ”). Here str is the fi rst n – 1 characters within the 
 array (LEFT(array, n – 1)), oldsubstr is a comma, and newsubstr is an empty string. We replace 
each occurrence of a comma within the substring with an empty string. Now, what can you 
say about the difference in length between the original substring (n – 1) and the new one? 
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The new one will obviously be (n – 1) – num_commas, where num_commas is the number of 
commas in str. In other words, (n – 1) – ( (n – 1) – num_commas ) will give you the number 
of commas. Add one, and you have the position of the element within the array. Use the 
DATALENGTH function to return the number of characters in str after removing the commas. 
Here’s the complete expression that calculates pos: 

(n – 1) - DATALENGTH(REPLACE(LEFT(array, n - 1), ',', '')) + 1 AS pos

 Using the REPLACE function to count occurrences of a string within a string is a trick that can 
come in handy. 

 The following query shows the fi nal solution to the problem, including the position calculation:  

SELECT arrid,

  (n - 1) - DATALENGTH(REPLACE(LEFT(array, n - 1), ',', '')) + 1 AS pos,

  CAST(SUBSTRING(array, n, CHARINDEX(',', array + ',', n) - n)

       AS INT) AS element

FROM dbo.Arrays

  JOIN dbo.Nums

    ON n <= DATALENGTH(array) + 1

    AND SUBSTRING(',' + array, n, 1) = ',';

 Another solution to the problem involves using a recursive CTE to separate elements. It’s not 
as effi cient as the previous one, but it does not require an auxiliary table of numbers. Here’s 
the solution’s code:  

WITH Split AS

(

  SELECT arrid, 1 AS pos, 1 AS startpos,

    CHARINDEX(',', array + ',') - 1 AS endpos

  FROM dbo.Arrays

  WHERE DATALENGTH(array) > 0

  UNION ALL

  SELECT Prv.arrid, Prv.pos + 1, Prv.endpos + 2,

    CHARINDEX(',', Cur.array + ',', Prv.endpos + 2) - 1

  FROM Split AS Prv

    JOIN dbo.Arrays AS Cur

      ON Cur.arrid = Prv.arrid

      AND CHARINDEX(',', Cur.array + ',', Prv.endpos + 2) > 0

)

SELECT A.arrid, pos,

  CAST(SUBSTRING(array, startpos, endpos-startpos+1) AS INT) AS element

FROM dbo.Arrays AS A

  JOIN Split AS S

    ON S.arrid = A.arrid

ORDER BY arrid, pos;

 The CTE calculates the start and end position of each element. The anchor member  calculates 
the values for the fi rst element within each array. The recursive member calculates the values 
of the next elements, terminating when no “next” elements are found. The pos column is 
initialized with the constant 1 and incremented by 1 in each iteration. The outer query joins 

C07626034.indd   434 2/13/2009   2:02:23 AM



 Chapter 7 Joins and Set Operations 435

the Arrays table with the CTE, and it extracts the individual elements of the arrays based on 
the start and end positions calculated by the CTE. As mentioned, this solution is slower than the 
previous one, but it has the advantage of not requiring an auxiliary table of numbers. 

 I once posted this puzzle in a private SQL trainer’s forum. One of the trainers posted the 
 following very witty solution that one of his colleagues came up with: 

SELECT CAST(arrid AS VARCHAR(10)) AS arrid,

    REPLACE(array, ',',

      CHAR(13)+CHAR(10) + CAST(arrid AS VARCHAR(10))+SPACE(10)) AS value

FROM dbo.Arrays;

 First examine the solution to see whether you can fi gure it out and then run it with Results to 
Text output mode. You will get the following output, which seems correct: 

arrid      value

---------- -------------

A          20

A          223

A          2544

A          25567

A          14

B          30

B          -23433

B          28

C          12

C          10

C          8099

C          12

C          1200

C          13

C          12

C          14

C          10

C          9

D          -4

D          -6

D          -45678

D          -2

 This solution replaces each comma with a new line (CHAR(13)+CHAR(10)) + array id + 10 
spaces. It seems correct when you run it in text mode, but it isn’t. If you run it in grid output 
mode, you will see that the output really contains only one row for each array. 

Set Operations

 You can think of joins as horizontal operations between tables, generating a virtual table that 
contains columns from both tables. This section covers vertical operations between tables, 
 including UNION, EXCEPT, and INTERSECT. Any mention of set operations in this section 
 refers to these vertical operations. 
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 A set operation operates on two input tables, each resulting from a query specifi cation. For 
simplicity’s sake, I’ll just use the term inputs in this section to describe the input tables of the 
set operations. 

 UNION returns the unifi ed set of rows from both inputs, EXCEPT returns the rows that appear 
in the fi rst input but not the second, and INTERSECT returns rows that are common to both 
inputs. 

 ANSI SQL:1999 defi nes native operators for all three set operations, each with two nuances: 
one optionally followed by DISTINCT (the default) and one followed by ALL. SQL Server 
 supports two nuances of the UNION set operation (UNION and UNION ALL) and only one 
nuance of the EXCEPT and INTERSECT set operations. Currently, SQL Server does not support 
the optional use of DISTINCT for set operations. This is not a functional limitation because 
DISTINCT is implied when you don’t specify ALL. I will provide alternative techniques to 
achieve the set operations that are missing in the product. 

 Like joins, these set operations always operate on only two inputs, generating a virtual table 
as the result. You might feel comfortable calling the input tables left and right, as with joins, 
or you might feel more comfortable referring to them as the fi rst and second input tables. 

 Before I describe each set operation in detail, let’s deal with a few technicalities regarding 
how set operations work. 

 The two inputs must have the same number of columns, and corresponding columns must 
have the same data type or at least be implicitly convertible. The column names of the result 
are determined by the fi rst input. 

 An ORDER BY clause is not allowed in the individual table expressions. All other logical 
 processing phases ( joins, fi ltering, grouping, and so on) are supported on the individual 
queries. 

 Conversely, ORDER BY is the only logical processing phase supported directly on the fi nal 
 result of a set operation. If you specify an ORDER BY clause at the end of the query, it is 
 applied to the fi nal result set. None of the other logical processing phases is allowed directly 
on the result of a set operation. I will provide alternatives later in the chapter. 

 Set operations work on complete rows from the two input tables. Note that when  comparing 
rows between the inputs, set operations treat NULLs as equal, just like identical known 
 values. In this regard, set operations are not like query fi lters (ON, WHERE, HAVING), which as 
you recall do not treat NULLs as equal. 

UNION

 UNION generates a result set combining the rows from both inputs. The following sections 
describe the differences between UNION (implicit DISTINCT) and UNION ALL. 
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UNION DISTINCT

 Specifying UNION without the ALL option combines the rows from both inputs and applies a 
DISTINCT on top (in other words, removes duplicate rows). 

 For example, the following query returns all occurrences of country, region, city that appear in 
either the Employees table or the Customers table, with duplicate rows removed: 

USE InsideTSQL2008;

SELECT country, region, city FROM HR.Employees

UNION

SELECT country, region, city FROM Sales.Customers;

 The query returns 71 unique rows. 

UNION ALL

 You can think of UNION ALL as UNION without duplicate removal. That is, you get one result 
set containing all rows from both inputs, including duplicates. For example, the following 
query returns all occurrences of country, region, city from both tables: 

SELECT country, region, city FROM HR.Employees

UNION ALL

SELECT country, region, city FROM Sales.Customers;

 Because the Employees table has 9 rows and the Customers table has 91 rows, you get a 
 result set with 100 rows. 

EXCEPT

 EXCEPT allows you to identify rows that appear in the fi rst input but not in the second. 

EXCEPT DISTINCT

 EXCEPT DISTINCT returns distinct rows that appear in the fi rst input but not in the second input. 
To achieve EXCEPT, programmers sometimes use the NOT EXISTS predicate, or an outer join 
fi ltering only outer rows, as I demonstrated earlier in the “Semi Joins” section. However, those 
solutions treat two NULLs as different from each other. For example, (UK, NULL, London) will not 
be considered equal to (UK, NULL, London). If both tables contain such a row, input1 EXCEPT 
input2 is not supposed to return it, yet the NOT EXISTS and outer join solutions will as typically 
written, unless you add logic that treats two NULLs as equal. As mentioned, the built-in set 
operations treat NULLs as equal. The following code uses the built-in EXCEPT set operation to 
return distinct cities that appear in Employees but not in Customers: 

SELECT country, region, city FROM HR.Employees

EXCEPT

SELECT country, region, city FROM Sales.Customers;
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 Note that of the three set operations, only EXCEPT is asymmetrical. That is, input1 EXCEPT 
input2 is not the same as input2 EXCEPT input1. 

 For example, the query just shown returned the two cities that appear in Employees but not in 
Customers. The following query returns 66 cities that appear in Customers but not in Employees:  

SELECT country, region, city FROM Sales.Customers

EXCEPT

SELECT country, region, city FROM HR.Employees;

EXCEPT ALL

 EXCEPT ALL is trickier than EXCEPT DISTINCT and has not yet been implemented in SQL Server. 
Besides caring about the existence of a row, it also cares about the number of occurrences of 
each row. Say you request the result of input1 EXCEPT ALL input2. If a row appears n times in 
 input1 and m times in input2 (both n and m will be >= 0), it will appear MAX(0, n – m) times in the 
output. That is, if n is greater than m, the row will appear n – m times in the result;  otherwise, it 
won’t appear in the result at all. 

 Even though you don’t have a native operator for EXCEPT ALL in SQL Server 2008, you can easily 
generate the logical equivalent using EXCEPT and the ROW_NUMBER function. Here’s the solution: 

WITH EXCEPT_ALL

AS

(

  SELECT

    ROW_NUMBER() 

      OVER(PARTITION BY country, region, city

           ORDER     BY (SELECT 0) As rn,

    country, region, city

    FROM HR.Employees

  EXCEPT

  SELECT

    ROW_NUMBER() 

      OVER(PARTITION BY country, region, city

           ORDER     BY (SELECT 0) As rn,

    country, region, city

  FROM Sales.Customers

)

SELECT country, region, city

FROM EXCEPT_ALL;

 To understand the solution, I suggest that you fi rst highlight sections (queries) within it and 
run them separately. This allows you to examine the intermediate result sets and get a better 
idea of what the following paragraph tries to explain.  

 The code fi rst assigns row numbers to the rows of each of the inputs, partitioned by the 
whole attribute list. The row numbers will number the duplicate rows within the input. For 
example, a row that appears fi ve times in Employees and three times in Customers will get 
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row numbers 1 through 5 in the fi rst input, and row numbers 1 through 3 in the second 
 input. You then apply input1 EXCEPT input2 and get rows (including the rn attribute) that 
appear in input1 but not in input2. If row R appears fi ve times in input1 and three times in 
input2, you get the following result: 

 {(R, 1), (R, 2), (R, 3), (R, 4), (R, 5)} 

 EXCEPT 

 {(R, 1), (R, 2), (R, 3)} 

 And this produces the following result: 

 {(R, 4), (R, 5)} 

 In other words, R appears in the result exactly the number of times mandated by EXCEPT 
ALL. I encapsulated this logic in a CTE to return only the original attribute list without the row 
number, which is what EXCEPT ALL would do. 

INTERSECT

 INTERSECT returns rows that appear in both inputs. 

 To achieve INTERSECT, programmers sometimes use the EXISTS predicate or an inner join, 
as I demonstrated earlier in the “Semi Joins” section. However, as I explained earlier, those 
 solutions as typically written treat two NULLs as different from each other, and set operations 
are supposed to treat them as equal. You need to add logic to those solutions to treat two 
NULLs as equal. 

 SQL Server provides a built-in INTERSECT operator, but only the nuance with the implicit 
DISTINCT. 

INTERSECT DISTINCT

 The INTERSECT DISTINCT set operation returns only distinct rows that appear in both 
 inputs. For example, the following query returns cities that appear in both Employees and 
Customers:  

SELECT country, region, city FROM HR.Employees

INTERSECT

SELECT country, region, city FROM Sales.Customers;

INTERSECT ALL

 Like EXCEPT ALL, INTERSECT ALL also considers multiple occurrences of rows. If a row R 
 appears n times in one input table and m times in the other, it should appear MIN(n, m) 
times in the result. 

C07626034.indd   439 2/13/2009   2:02:23 AM



440 Inside Microsoft SQL Server 2008: T-SQL Querying

 The solution to INTERSECT ALL in SQL Server 2008 is similar to the one for EXCEPT ALL 
 except for one obvious difference—the use of the INTERSECT operator instead of EXCEPT: 

WITH INTERSECT_ALL

AS

(

  SELECT

    ROW_NUMBER() 

      OVER(PARTITION BY country, region, city

           ORDER     BY (SELECT 0) AS rn,

    country, region, city

  FROM HR.Employees

  INTERSECT

  SELECT

    ROW_NUMBER() 

      OVER(PARTITION BY country, region, city

           ORDER     BY (SELECT 0) AS rn,

    country, region, city

    FROM Sales.Customers

)

SELECT country, region, city

FROM INTERSECT_ALL;

Precedence of Set Operations

 The INTERSECT set operation has a higher precedence than the others. In a query that mixes 
multiple set operations, INTERSECT is evaluated fi rst. Other than that, set operations are evaluated 
from left to right. The exception is that parentheses are always fi rst in precedence, so by using 
parentheses you have full control of the logical order of evaluation of set operations. 

 For example, in the following query INTERSECT is evaluated fi rst even though it appears second:  

SELECT country, region, city FROM Production.Suppliers

EXCEPT

SELECT country, region, city FROM HR.Employees

INTERSECT

SELECT country, region, city FROM Sales.Customers;

 The meaning of the query is: return supplier cities that do not appear in the intersection of 
employee cities and customer cities. 

 However, if you use parentheses, you can change the evaluation order: 

(SELECT country, region, city FROM Production.Suppliers

 EXCEPT

 SELECT country, region, city FROM HR.Employees)

INTERSECT

SELECT country, region, city FROM Sales.Customers;

 This query means: return supplier cities that are not employee cities and are also customer cities. 
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Using INTO with Set Operations

 If you want to write a SELECT INTO statement where you use set operations, specify the INTO 
clause just before the FROM clause of the fi rst input. For example, here’s how you populate a 
temporary table #T with the result of one of the previous queries: 

SELECT country, region, city INTO #T FROM Production.Suppliers

EXCEPT

SELECT country, region, city FROM HR.Employees

INTERSECT

SELECT country, region, city FROM Sales.Customers;

Circumventing Unsupported Logical Phases

 As I mentioned earlier, logical processing phases other than sorting ( joins, fi ltering, grouping, 
TOP, and so on) are not allowed directly on the result of a set operation. This limitation can 
easily be circumvented by using a derived table or a CTE like so: 

SELECT DISTINCT TOP . . . 

FROM (<set operation query>) AS D 

  JOIN | PIVOT | UNPIVOT | APPLY . . . 

WHERE . . . 

GROUP BY . . . 

HAVING . . . 

ORDER BY . . .

 For example, the following query tells you how many cities in each country are covered by 
customers or employees: 

SELECT country, COUNT(*) AS numcities

FROM (SELECT country, region, city FROM HR.Employees

      UNION

      SELECT country, region, city FROM Sales.Customers) AS U

GROUP BY country;

 This query generates the following output: 

country         numcities

--------------- -----------

Argentina       1

Austria         2

Belgium         2

Brazil          4

Canada          3

Denmark         2

Finland         2

France          9

Germany         11

Ireland         1

Italy           3

Mexico          1
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Norway          1

Poland          1

Portugal        1

Spain           3

Sweden          2

Switzerland     2

UK              2

USA             14

Venezuela       4

 In a similar manner, you can circumvent the limitations on the individual queries used as inputs 
to the set operation. Each input can be written as a simple SELECT query from a derived table 
or a CTE, where you use the disallowed elements in the derived table or CTE expression.  

 For example, the following query returns the two most recent orders for employees 3 and 5: 

SELECT empid, orderid, orderdate

FROM (SELECT TOP (2) empid, orderid, orderdate

      FROM Sales.Orders

      WHERE empid = 3

      ORDER BY orderdate DESC, orderid DESC) AS D1

UNION ALL

SELECT empid, orderid, orderdate

FROM (SELECT TOP (2) empid, orderid, orderdate

      FROM Sales.Orders

      WHERE empid = 5

      ORDER BY orderdate DESC, orderid DESC) AS D2;

 This query generates the following output: 

empid       orderid     orderdate

----------- ----------- -----------------------

3           11063       2008-04-30 00:00:00.000

3           11057       2008-04-29 00:00:00.000

5           11043       2008-04-22 00:00:00.000

5           10954       2008-03-17 00:00:00.000

 As for the limitation on sorting the individual inputs, suppose you need to sort each input 
independently. For example, you want to return orders placed by customer 1 and also orders 
handled by employee 3. As for sorting the rows in the output, you want customer 1’s orders 
to appear fi rst, sorted by orderid descending, and then orders handled by employee 3, sorted 
by orderdate ascending. To achieve this, you create a column (sortcol) with the constant 1 for 
the fi rst input (customer 1) and 2 for the second (employee 3). Create a derived table (call it 
U) out of the UNION ALL between the two. In the outer query, fi rst sort by sortcol, and then 
by a CASE expression for each set. The CASE expression will return the relevant value based 
on the source set; otherwise, it returns a NULL, which won’t affect sorting. Here’s the solution 
query followed by its output (abbreviated): 

SELECT empid, custid, orderid, orderdate

FROM (SELECT 1 AS sortcol, custid, empid, orderid, orderdate
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      FROM Sales.Orders

      WHERE custid = 1

      UNION ALL

      SELECT 2 AS sortcol, custid, empid, orderid, orderdate

      FROM Sales.Orders

      WHERE empid = 3) AS U

ORDER BY sortcol,

  CASE WHEN sortcol = 1 THEN orderid END,

  CASE WHEN sortcol = 2 THEN orderdate END DESC;

empid       custid      orderid     orderdate

----------- ----------- ----------- -----------------------

6           1           10643       2007-08-25 00:00:00.000

4           1           10692       2007-10-03 00:00:00.000

4           1           10702       2007-10-13 00:00:00.000

1           1           10835       2008-01-15 00:00:00.000

1           1           10952       2008-03-16 00:00:00.000

3           1           11011       2008-04-09 00:00:00.000

3           37          11063       2008-04-30 00:00:00.000

3           53          11057       2008-04-29 00:00:00.000

3           34          11052       2008-04-27 00:00:00.000

3           31          11049       2008-04-24 00:00:00.000

3           14          11041       2008-04-22 00:00:00.000

3           63          11021       2008-04-14 00:00:00.000

. . .

Conclusion

 I covered many aspects of joins and set operations and demonstrated new querying 
 techniques that you might fi nd handy.  

 Remember that the comma-based syntax for cross and inner joins is part of standard SQL 
and is fully supported by SQL Server. However, when you intend to write an inner join but 
you forget to specify the join predicate in the WHERE clause, you get a Cartesian product. 
For this reason and for consistency’s sake, I recommended that you stick to the ANSI SQL-92 
join syntax with the JOIN keyword.  

 SQL Server has native operators for the UNION, UNION ALL, EXCEPT, and INTERSECT set 
 operations. It also provides other tools that allow simple solutions for achieving EXCEPT ALL 
and INTERSECT ALL. 
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Chapter 8

 Aggregating and Pivoting Data 

 This chapter covers various data-aggregation techniques, including using the OVER clause 
with aggregate functions, tiebreakers, running aggregates, pivoting, unpivoting, custom 
 aggregations, histograms, grouping factors, and grouping sets. 

 In my solutions in this chapter, I’ll reuse techniques that I introduced earlier. I’ll also introduce 
new techniques for you to familiarize yourself with. 

 Logic will naturally be an integral element in the solutions. Remember that at the heart of 
every querying problem lies a logical puzzle. 

OVER Clause

 The OVER clause allows you to request window-based calculations—that is, calculations 
performed over a whole window of rows. In Chapter 6, “Subqueries, Table Expressions, 
and Ranking Functions,” I described in detail how you use the OVER clause with analytical 
 ranking functions. Microsoft SQL Server also supports the OVER clause with scalar aggregate 
 functions; however, currently you can provide only the PARTITION BY clause. Future versions 
of SQL Server will most likely also support the other ANSI elements of aggregate window 
functions, including the ORDER BY and ROWS clauses. 

 The purpose of using the OVER clause with scalar aggregates is to calculate, for each row, an 
aggregate based on a window of values that extends beyond that row—and to do all this 
without using a GROUP BY clause in the query. In other words, the OVER clause allows you to 
add aggregate calculations to the results of an ungrouped query. This capability provides an 
alternative to requesting aggregates with subqueries in case you need to include both base 
row attributes and aggregates in your results. 

 Remember that in Chapter 7, “Joins and Set Operations,” I presented a problem in which 
you were required to calculate two aggregates for each order row: the percentage the row 
 contributed to the total value of all orders and the difference between the row’s order value 
and the average value over all orders. In my examples I used a table called MyOrderValues 
that you create and populate by running the following code: 

SET NOCOUNT ON;

USE InsideTSQL2008;

IF OBJECT_ID('dbo.MyOrderValues', 'U') IS NOT NULL

  DROP TABLE dbo.MyOrderValues;

GO
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SELECT *

INTO dbo.MyOrderValues

FROM Sales.OrderValues;

ALTER TABLE dbo.MyOrderValues

  ADD CONSTRAINT PK_MyOrderValues PRIMARY KEY(orderid);

CREATE INDEX idx_val ON dbo.MyOrderValues(val);

 I showed the following optimized query in which I used a cross join between the base table 
and a derived table of aggregates instead of using multiple subqueries: 

SELECT orderid, custid, val,

  CAST(val / sumval * 100. AS NUMERIC(5, 2)) AS pct,

  CAST(val - avgval AS NUMERIC(12, 2)) AS diff

FROM dbo.MyOrderValues

  CROSS JOIN (SELECT SUM(val) AS sumval, AVG(val) AS avgval

              FROM dbo.MyOrderValues) AS Aggs;

 This query produces the following output: 

orderid  custid  val       pct   diff

-------- ------- --------- ----- -------------

10248    85      440.00    0.03  -1085.05

10249    79      1863.40   0.15  338.35

10250    34      1552.60   0.12  27.55

10251    84      654.06    0.05  -870.99

10252    76      3597.90   0.28  2072.85

10253    34      1444.80   0.11  -80.25

10254    14      556.62    0.04  -968.43

10255    68      2490.50   0.20  965.45

10256    88      517.80    0.04  -1007.25

...

 The motivation for calculating the two aggregates in a single derived table instead of as 
two separate subqueries stemmed from the fact that each subquery accessed the base table 
 separately, while the derived table calculated the aggregates using a single scan of the data. 
SQL Server’s query optimizer didn’t use the fact that the two subqueries aggregated the 
same data into the same groups. 

 When you specify multiple aggregates with identical OVER clauses in the same SELECT list, 
however, the aggregates refer to the same window, as with a derived table, and SQL Server’s 
query optimizer evaluates them all with one scan of the source data. Here’s how you use the 
OVER clause to answer the same request: 

SELECT orderid, custid, val,

  CAST(val / SUM(val) OVER() * 100. AS NUMERIC(5, 2)) AS pct,

  CAST(val - AVG(val) OVER() AS NUMERIC(12, 2)) AS diff

FROM dbo.MyOrderValues;
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 Note In Chapter 6, I described the PARTITION BY clause, which is used with window functions, 
including aggregate window functions. This clause is optional. When not specifi ed, the aggregate 
is based on the whole input rather than being calculated per partition. 

 Here, because I didn’t specify a PARTITION BY clause, the aggregates were calculated based 
on the whole input. Logically, SUM(val) OVER() is equivalent here to the subquery (SELECT 
SUM(val) FROM dbo.MyOrderValues). Physically, it’s a different story. As an exercise, you 
can compare the execution plans of the following two queries, each requesting a different 
 number of aggregates using the same OVER clause: 

SELECT orderid, custid, val,

  SUM(val) OVER() AS sumval

FROM dbo.MyOrderValues;

SELECT orderid, custid, val,

  SUM(val)   OVER() AS sumval,

  COUNT(val) OVER() AS cntval,

  AVG(val)   OVER() AS avgval,

  MIN(val)   OVER() AS minval,

  MAX(val)   OVER() AS maxval

FROM dbo.MyOrderValues;

 You’ll fi nd the two plans nearly identical, with the only difference being that the single 
Stream Aggregate operator calculates a different number of aggregates. The query costs are 
identical. On the other hand, compare the execution plans of the following two queries, each 
requesting a different number of aggregates using subqueries: 

SELECT orderid, custid, val,

  (SELECT SUM(val) FROM dbo.MyOrderValues) AS sumval

FROM dbo.MyOrderValues;

SELECT orderid, custid, val,

  (SELECT SUM(val)   FROM dbo.MyOrderValues) AS sumval,

  (SELECT COUNT(val) FROM dbo.MyOrderValues) AS cntval,

  (SELECT AVG(val)   FROM dbo.MyOrderValues) AS avgval,

  (SELECT MIN(val)   FROM dbo.MyOrderValues) AS minval,

  (SELECT MAX(val)   FROM dbo.MyOrderValues) AS maxval

FROM dbo.MyOrderValues;

 You’ll fi nd that they have different plans, with the latter being more expensive because it 
 rescans the source data for each aggregate. 

 Another benefi t of the OVER clause is that it allows for shorter and simpler code. This is 
 especially apparent when you need to calculate partitioned aggregates. Using OVER, you 
simply specify a PARTITION BY clause. Using subqueries, you have to correlate the inner 
 query to the outer, making the query longer and more complex. 
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 As an example of using the PARTITION BY clause, the following query calculates the  percentage 
of the order value out of the customer total and the difference from the customer average: 

SELECT orderid, custid, val,

  CAST(val / SUM(val) OVER(PARTITION BY custid) * 100.

    AS NUMERIC(5, 2)) AS pct,

  CAST(val - AVG(val) OVER(PARTITION BY custid) AS NUMERIC(12, 2)) AS diff

FROM dbo.MyOrderValues

ORDER BY custid;

This query generates the following output:

orderid  custid  val     pct    diff

-------- ------- ------- ------ ------------

10643    1       814.50  19.06  102.33

10692    1       878.00  20.55  165.83

10702    1       330.00  7.72   -382.17

10835    1       845.80  19.79  133.63

10952    1       471.20  11.03  -240.97

11011    1       933.50  21.85  221.33

10926    2       514.40  36.67  163.66

10759    2       320.00  22.81  -30.74

10625    2       479.75  34.20  129.01

10308    2       88.80   6.33   -261.94

...

 In short, the OVER clause allows for more concise and faster-running queries. 

 When you’re done, run the following code for cleanup: 

IF OBJECT_ID('dbo.MyOrderValues', 'U') IS NOT NULL

  DROP TABLE dbo.MyOrderValues;

Tiebreakers

 In this section, I want to introduce a new technique based on aggregates to solve  tiebreaker 
problems, which I started discussing in Chapter 6. I’ll use the same example as I used 
there—returning the most recent order for each employee—using different  combinations 
of tiebreaker attributes that uniquely identify an order for each employee. Keep in 
mind that the  performance of the solutions that use subqueries depends very strongly 
on  indexing. That is, you need an  index on the partitioning column, sort column, and 
 tiebreaker attributes. But in practice, you don’t always have the option of adding as many 
indexes as you like. The subquery-based  solutions will greatly suffer in performance from 
a lack of appropriate indexes. Using  aggregation techniques, you’ll see that the solution 
yields reasonable performance even when an optimal index is not in place—in fact, even 
when no good index is in place. 

 Let’s start by using MAX(orderid) as the tiebreaker. To recap, you’re after the most recent 
 order for each employee, and if there’s a tie for most recent, choose the order with the 
 largest ID. For each employee’s most recent order, you’re supposed to return the columns 
empid,  orderdate, orderid, custid, and requireddate. 
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 The aggregate technique to solve the problem applies the following logical idea, given here 
in pseudocode: 

SELECT empid, MAX(orderdate, orderid, custid, requireddate) 

FROM Sales.Orders 

GROUP BY empid;

 This idea can’t be expressed directly in T-SQL, so don’t try to run this query. The idea here is to 
select for each empid, the row with largest orderdate (most recent), then largest orderid—the 
tiebreaker—among orders with the most recent orderdate. Because the combination  empid, 
orderdate, orderid is already unique, there will be no further ties to break, and the other 
 attributes (custid and requireddate) are simply returned from the selected row. Because a MAX 
of more than one attribute does not exist in T-SQL, you must mimic it somehow. One way is 
by merging the attributes into a single input to the MAX function, then extracting back the 
individual elements in an outer query. 

 The question is this: What technique should you use to merge the attributes? The trick 
is to convert each attribute to a fi xed-width string and concatenate the strings. You 
must  convert the attributes to strings in a way that doesn’t change the sorting order. 
When  dealing  exclusively with nonnegative numbers, you can get by with an arithmetic 
 calculation instead of concatenation. For example, say you have the numbers m and n, 
each with a valid range of 1 through 999. To merge m and n, use the following formula: 
m*1000 + n AS r. You can easily extract the individual pieces later: r divided by 1000 is 
m, and r modulo 1000 is n. However, in many cases you may have nonnumeric data to 
 concatenate, so arithmetic wouldn’t be possible. You might want to consider converting 
all values to fi xed-width character strings (CHAR(n) or NCHAR(n)) or to fi xed-width binary 
strings (BINARY(n)). 

 Here’s an example of returning the most recent order for each employee, where 
MAX(orderid) is the tiebreaker, using binary concatenation: 

SELECT empid,

  CAST(SUBSTRING(binstr, 1,  8) AS DATETIME) AS orderdate,

  CAST(SUBSTRING(binstr, 9,  4) AS INT)      AS orderid,

  CAST(SUBSTRING(binstr, 13, 4) AS INT)      AS custid,

  CAST(SUBSTRING(binstr, 17, 8) AS DATETIME) AS requireddate

FROM (SELECT empid, 

        MAX(CAST(orderdate        AS BINARY(8))

              + CAST(orderid      AS BINARY(4))

              + CAST(custid       AS BINARY(4))

              + CAST(requireddate AS BINARY(8))) AS binstr

      FROM Sales.Orders

      GROUP BY empid) AS D;

 The derived table D contains the maximum concatenated string for each employee. Notice 
that each value was converted to the appropriate fi xed-size string before concatenation 
based on its data type (DATETIME—8 bytes, INT—4 bytes, and so on).  
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 Note When you convert numbers to binary strings, only nonnegative values preserve their 
 original sort order. As for DATETIME values, as long as they are not earlier than the base date 
January 1st, 1900, when converted to binary, the values preserve the original sort behavior. 
Values of the new DATE data type, however, do not preserve their sort behavior when converted 
to binary. As for character strings, converting them to binary values changes their sort order 
to one like a binary collation would defi ne. Also note that preserving the original sort order is 
required only up to the point where uniqueness of a row per group is guaranteed (orderdate + 
orderid in our case). 

 The outer query uses SUBSTRING to extract the individual elements, and it converts them 
back to their original data types. 

 The real benefi t in this solution is that it scans the data only once regardless of whether you 
have a good index. If you do, you’ll probably get an ordered scan of the index and a sort-based 
aggregate (a stream aggregate). If you don’t have a good index—as is the case here—you’ll 
probably get a hash-based aggregate, as you can see in Figure 8-1.

FIGURE 8-1 Execution plan for a tiebreaker query

 Things get trickier when the sort columns and tiebreaker attributes have different sort  directions 
within them. For example, suppose the tiebreaker was MIN(orderid). In that case, you would 
need to apply MAX to orderdate and MIN to orderid. There is a logical solution when the 
 attribute with the opposite direction is numeric. Say you need to calculate the MIN value of a 
nonnegative integer column n, using only MAX, and you need to use binary concatenation. You 
can get the minimum by using <maxint> - MAX(<maxint> - n). 

 The following query incorporates this logical technique: 

SELECT empid,

  CAST(SUBSTRING(binstr, 1, 8) AS DATETIME)         AS orderdate,

  2147483647 - CAST(SUBSTRING(binstr, 9, 4) AS INT) AS orderid,

  CAST(SUBSTRING(binstr, 13, 4) AS INT)             AS custid,

  CAST(SUBSTRING(binstr, 17, 8) AS DATETIME)        AS requireddate

FROM (SELECT empid, 

        MAX(CAST(orderdate                AS BINARY(8))

              + CAST(2147483647 - orderid AS BINARY(4))

              + CAST(custid               AS BINARY(4))

              + CAST(requireddate         AS BINARY(8))) AS binstr

      FROM Sales.Orders

      GROUP BY empid) AS D;

 Another technique to calculate the minimum by using the MAX function is based on bitwise 
manipulation and works with nonnegative integers. The minimum value of a column n is 
equal to ~MAX(~n), where ~ is the bitwise NOT operator. 
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 The following query incorporates this technique: 

SELECT empid,

  CAST(SUBSTRING(binstr, 1, 8) AS DATETIME)  AS orderdate,

  ~CAST(SUBSTRING(binstr, 9, 4) AS INT)      AS orderid,

  CAST(SUBSTRING(binstr, 13, 4) AS INT)      AS custid,

  CAST(SUBSTRING(binstr, 17, 8) AS DATETIME) AS requireddate

FROM (SELECT empid, 

        MAX(CAST(orderdate        AS BINARY(8))

              + CAST(~orderid     AS BINARY(4))

              + CAST(custid       AS BINARY(4))

              + CAST(requireddate AS BINARY(8))) AS binstr

      FROM Sales.Orders

      GROUP BY empid) AS D;

 Of course, you can play with the tiebreakers you’re using in any way you like. For example, the 
following query returns the most recent order for each employee, using MAX(requireddate), 
MAX(orderid) as the tiebreaker: 

SELECT empid,

  CAST(SUBSTRING(binstr, 1, 8)   AS DATETIME) AS orderdate,

  CAST(SUBSTRING(binstr, 9, 8)   AS DATETIME) AS requireddate,

  CAST(SUBSTRING(binstr, 17, 4)  AS INT)      AS orderid,

  CAST(SUBSTRING(binstr, 21, 4)  AS INT)      AS custid  

FROM (SELECT empid, 

        MAX(CAST(orderdate        AS BINARY(8))

              + CAST(requireddate AS BINARY(8))

              + CAST(orderid      AS BINARY(4))

              + CAST(custid       AS BINARY(4))

              ) AS binstr

      FROM Sales.Orders

      GROUP BY empid) AS D;

Running Aggregations

 Running aggregations are aggregations of data over a sequence (typically temporal). Running 
aggregate problems have many variations, and I’ll describe several important ones here. 

 In my examples, I’ll use a summary table called EmpOrders that contains one row for 
each employee and month, with the total quantity of orders made by that employee in 
that month. Run the following code to create the EmpOrders table and populate it with 
sample data: 

USE tempdb;

IF OBJECT_ID('dbo.EmpOrders') IS NOT NULL DROP TABLE dbo.EmpOrders;

CREATE TABLE dbo.EmpOrders

(

  empid    INT  NOT NULL,

  ordmonth DATE NOT NULL,
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  qty      INT  NOT NULL,

  PRIMARY KEY(empid, ordmonth)

);

GO

INSERT INTO dbo.EmpOrders(empid, ordmonth, qty)

  SELECT O.empid, 

    DATEADD(month, DATEDIFF(month, 0, O.orderdate), 0) AS ordmonth,

    SUM(qty) AS qty

  FROM InsideTSQL2008.Sales.Orders AS O

    JOIN InsideTSQL2008.Sales.OrderDetails AS OD

      ON O.orderid = OD.orderid

  GROUP BY empid,

    DATEADD(month, DATEDIFF(month, 0, O.orderdate), 0);

 Tip I will represent each month by its start date stored as a DATE. This allows fl exible  manipulation 
of the data using date-related functions. Of course, I’ll ignore the day part of the value in my 
 calculations. 

 Run the following query to get the contents of the EmpOrders table: 

SELECT empid, CONVERT(VARCHAR(7), ordmonth, 121) AS ordmonth, qty

FROM dbo.EmpOrders

ORDER BY empid, ordmonth;

 This query generates the following output, shown here in abbreviated form: 

empid       ordmonth qty

----------- -------- -----------

1           2006-07  121

1           2006-08  247

1           2006-09  255

1           2006-10  143

1           2006-11  318

1           2006-12  536

1           2007-01  304

1           2007-02  168

1           2007-03  275

1           2007-04  20

...

2           2006-07  50

2           2006-08  94

2           2006-09  137

2           2006-10  248

2           2006-11  237

2           2006-12  319

2           2007-01  230

2           2007-02  36

2           2007-03  151

2           2007-04  468

...

 I’ll discuss three types of running aggregation problems: cumulative, sliding, and 
 year-to-date (YTD). 
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Cumulative Aggregations

 Cumulative aggregations accumulate data from the fi rst element within the sequence up 
to the current point. For example, imagine the following request: for each employee and 
month, return the total quantity and average monthly quantity from the beginning of the 
employee’s activity through the month in question.  

 Recall the techniques for calculating row numbers without using the built-in ROW_NUMBER 
function; using these techniques, you scan the same rows we need here to calculate the 
 total quantities. The difference is that for row numbers you used the aggregate COUNT, and 
here you’ll use the aggregates SUM and AVG. I demonstrated two set-based solutions to 
 calculate row numbers without the ROW_NUMBER function—one using subqueries and one 
using joins. In the solution using joins, I applied what I called an expand-collapse  technique. 
To me, the  subquery solution is much more intuitive than the join solution, with its  artifi cial 
 expand-collapse technique. So, when there’s no performance difference, I’d rather use 
 subqueries. Typically, you won’t see a performance difference when only one aggregate is 
 involved because the plans would be similar. However, when you request multiple aggregates, 
the subquery solution might result in a plan that scans the data separately for each aggregate. 
Compare this to the plan for the join solution, which typically calculates all aggregates during a 
single scan of the source data. 

 So my choice is usually simple—use a subquery for one aggregate and use a join for  multiple 
aggregates. The following query applies the expand-collapse approach to produce the 
 desired result: 

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

  O1.qty AS qtythismonth, SUM(O2.qty) AS totalqty,

  CAST(AVG(1.*O2.qty) AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

  JOIN dbo.EmpOrders AS O2

    ON O2.empid = O1.empid

    AND O2.ordmonth <= O1.ordmonth

GROUP BY O1.empid, O1.ordmonth, O1.qty

ORDER BY O1.empid, O1.ordmonth;

 This query generates the following output, shown here in abbreviated form: 

empid       ordmonth qtythismonth totalqty    avgqty

----------- -------- ------------ ----------- ----------

1           2006-07  121          121         121.00

1           2006-08  247          368         184.00

1           2006-09  255          623         207.67

1           2006-10  143          766         191.50

1           2006-11  318          1084        216.80

1           2006-12  536          1620        270.00

1           2007-01  304          1924        274.86

1           2007-02  168          2092        261.50

1           2007-03  275          2367        263.00

1           2007-04  20           2387        238.70

...
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2           2006-07  50           50          50.00

2           2006-08  94           144         72.00

2           2006-09  137          281         93.67

2           2006-10  248          529         132.25

2           2006-11  237          766         153.20

2           2006-12  319          1085        180.83

2           2007-01  230          1315        187.86

2           2007-02  36           1351        168.88

2           2007-03  151          1502        166.89

2           2007-04  468          1970        197.00

...

 Now let’s say that you are asked to return only one aggregate (say, total quantity). You can 
safely use the subquery approach: 

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

  O1.qty AS qtythismonth,

  (SELECT SUM(O2.qty) 

   FROM dbo.EmpOrders AS O2

   WHERE O2.empid = O1.empid

     AND O2.ordmonth <= O1.ordmonth) AS totalqty

FROM dbo.EmpOrders AS O1

GROUP BY O1.empid, O1.ordmonth, O1.qty;

 As was the case for calculating row numbers based on subqueries or joins, when  calculating 
running aggregates based on similar techniques, the N2 performance issues I discussed 
 before apply once again. Because running aggregates typically are calculated on a fairly 
small number of rows per group, you won’t be adversely affected by performance issues, 
 assuming you have appropriate indexes (keyed on grouping columns, then sort columns, and 
including covering columns). 

 Let p be the number of partitions involved (employees in our case), let n be the average 
 number of rows per partition (months in our case), and let a be the number of aggregates 
 involved. The total number of rows scanned using the join approach can be expressed as 
pn + p(n+n2)/2 and as pn + ap(n+n2)/2 using the subquery approach because with  subqueries 
the optimizer uses a separate scan per subquery. It’s important to note that the N2 complexity 
is relevant to the partition size and not the table size. If the number of rows in the table grows 
by a factor of f but the partition size doesn’t change, the run time increases by a factor of f 
as well. If, on the other hand, the average partition size grows by a factor of f, the run time 
increases by a factor of f2. With small partitions (say, up to several dozen rows), this set-based 
solution provides reasonable performance. With large partitions, a  cursor  solution would be 
faster despite the overhead associated with row-by-row manipulation  because a cursor scans 
the rows only once, and the per-row overhead is constant. 

 Note ANSI SQL provides support for running aggregates by means of aggregate window 
functions. SQL Server 2005 introduced the OVER clause for aggregate functions only with the 
PARTITION BY clause, and unfortunately SQL Server 2008 didn’t enhance the OVER clause  further. 
Further enhancements are currently planned for the next major release of SQL Server—SQL
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Server 11. Per ANSI SQL—and I hope in future versions of SQL Server—you could provide a 
 solution relying exclusively on window functions, like so:  

SELECT empid, CONVERT(VARCHAR(7), ordmonth, 121) AS ordmonth, qty, 

  SUM(O2.qty) OVER(PARTITION BY empid

                   ORDER BY ordmonth

                   ROWS BETWEEN UNBOUNDED PRECEDING

                            AND CURRENT ROW) AS totalqty, 

  CAST(AVG(1.*O2.qty) OVER(PARTITION BY empid

                           ORDER BY ordmonth

                           ROWS BETWEEN UNBOUNDED PRECEDING

                                    AND CURRENT ROW) 

  AS NUMERIC(12, 2)) AS avgqty 

FROM dbo.EmpOrders;

 When this code is fi nally supported in SQL Server, you can expect dramatic performance 
 improvements and obviously much simpler queries. Being familiar with the way ranking  calculations 
based on the OVER clause are currently optimized, you should expect running  aggregates based on 
the OVER clause to be optimized similarly. That is, given a good index to support the request, you 
should expect the plan to involve a single ordered scan of the data. Then the total number of rows 
scanned would simply be the number of rows in the table (pn). 

 You might also be requested to fi lter the data—for example, return monthly aggregates for 
each employee only for months before the employee reached a certain target. Typically, you’ll 
have a target for each employee stored in a Targets table that you’ll need to join to. To make 
this example simple, I’ll assume that all employees have the same target total  quantity—1,000. 
In practice, you’ll use the target attribute from the Targets table. Because you need to fi lter 
an aggregate, not an attribute, you must specify the fi lter expression (in this case, 
SUM(O2.qty) < 1000) in the HAVING clause, not the WHERE clause. The solution is as follows: 

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

  O1.qty AS qtythismonth, SUM(O2.qty) AS totalqty,

  CAST(AVG(1.*O2.qty) AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

  JOIN dbo.EmpOrders AS O2

    ON O2.empid = O1.empid

    AND O2.ordmonth <= O1.ordmonth

GROUP BY O1.empid, O1.ordmonth, O1.qty

HAVING SUM(O2.qty) < 1000

ORDER BY O1.empid, O1.ordmonth;

 This query generates the following output, shown here in abbreviated form: 

empid       ordmonth qtythismonth totalqty    avgqty

----------- -------- ------------ ----------- ----------

1           2006-07  121          121         121.00

1           2006-08  247          368         184.00

1           2006-09  255          623         207.67

1           2006-10  143          766         191.50

2           2006-07  50           50          50.00

2           2006-08  94           144         72.00

2           2006-09  137          281         93.67

2           2006-10  248          529         132.25
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2           2006-11  237          766         153.20

3           2006-07  182          182         182.00

3           2006-08  228          410         205.00

3           2006-09  75           485         161.67

3           2006-10  151          636         159.00

3           2006-11  204          840         168.00

3           2006-12  100          940         156.67

...

 Things get a bit tricky if you also need to include the rows for those months in which the 
 employees reached their target. If you specify SUM(O2.qty) <= 1000 (that is, write <= instead 
of <), you still won’t get the row in which the employee reached the target unless the total 
through that month is exactly 1,000. But remember that you have access to both the cumulative 
total and the current month’s quantity, and using these two values together, you can solve this 
problem. If you change the HAVING fi lter to SUM(O2.qty) – O1.qty < 1000, you get the months 
in which the employee’s total quantity, excluding the current month’s orders, had not reached the 
target. In particular, the fi rst month in which an employee reached or exceeded the target satisfi es 
this new criterion, and that month will appear in the results. The complete solution follows: 

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

  O1.qty AS qtythismonth, SUM(O2.qty) AS totalqty,

  CAST(AVG(1.*O2.qty) AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

  JOIN dbo.EmpOrders AS O2

    ON O2.empid = O1.empid

    AND O2.ordmonth <= O1.ordmonth

GROUP BY O1.empid, O1.ordmonth, O1.qty

HAVING SUM(O2.qty) - O1.qty < 1000

ORDER BY O1.empid, O1.ordmonth;

 This query generates the following output, shown here in abbreviated form: 

empid       ordmonth qtythismonth totalqty    avgqty

----------- -------- ------------ ----------- ----------

1           2006-07  121          121         121.00

1           2006-08  247          368         184.00

1           2006-09  255          623         207.67

1           2006-10  143          766         191.50

1           2006-11  318          1084        216.80

2           2006-07  50           50          50.00

2           2006-08  94           144         72.00

2           2006-09  137          281         93.67

2           2006-10  248          529         132.25

2           2006-11  237          766         153.20

2           2006-12  319          1085        180.83

3           2006-07  182          182         182.00

3           2006-08  228          410         205.00

3           2006-09  75           485         161.67

3           2006-10  151          636         159.00

3           2006-11  204          840         168.00

3           2006-12  100          940         156.67

3           2007-01  364          1304        186.29

...
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 Note You might have another solution in mind that seems like a plausible and simpler 
 alternative—to leave the SUM condition alone but change the join condition to O2.ordmonth < 
O1.ordmonth. This way, the query would select rows where the total through the previous month 
did not meet the target. However, in the end, this solution is not any easier (the AVG is hard to 
generate, for example); what’s worse is that you might come up with a solution that does not 
work for employees who reach the target in their fi rst month. 

 Tip If you want to return no fewer than a certain number of rows per partition, simply add the 
criterion OR COUNT(*) <= <min_num_of_rows> to the HAVING clause. This technique works well 
in our case since the base table contains one row per result row/group.  

 Suppose you’re interested in seeing results only for the specifi c month in which the  employee 
reached the target of 1,000, without seeing results for preceding months. What’s true for 
only those rows in the output of the last query? You’re looking for rows where the total 
 quantity is greater than or equal to 1,000. Simply add this criterion to the HAVING fi lter. 
Here’s the query followed by its output: 

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

  O1.qty AS qtythismonth, SUM(O2.qty) AS totalqty,

  CAST(AVG(1.*O2.qty) AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

  JOIN dbo.EmpOrders AS O2

    ON O2.empid = O1.empid

    AND O2.ordmonth <= O1.ordmonth

GROUP BY O1.empid, O1.ordmonth, O1.qty

HAVING SUM(O2.qty) - O1.qty < 1000

  AND SUM(O2.qty) >= 1000

ORDER BY O1.empid, O1.ordmonth;

empid       ordmonth qtythismonth totalqty    avgqty

----------- -------- ------------ ----------- ----------

1           2006-11  318          1084        216.80

2           2006-12  319          1085        180.83

3           2007-01  364          1304        186.29

4           2006-10  613          1439        359.75

5           2007-05  247          1213        173.29

6           2007-01  64           1027        171.17

7           2007-03  191          1069        152.71

8           2007-01  305          1228        175.43

9           2007-06  161          1007        125.88

Sliding Aggregations

 Sliding aggregates are calculated over a sliding window in a sequence (again, typically  temporal), 
as opposed to being calculated from the beginning of the sequence until the current point. 
A moving average—such as the employee’s average quantity over the last three months—is one 
example of a sliding aggregate.  
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 Note Without clarifi cation, expressions such as “last three months” are ambiguous. The last 
three months could mean the previous three months (not including this month), or it could mean 
the previous two months along with this month. When you get a problem like this, be sure you 
know precisely what window of time you are using for aggregation—for a particular row, exactly 
when does the window begin and end? 

 In our example, the window of time is this: greater than the point in time starting three months 
ago and smaller than or equal to the current point in time. Note that this defi nition works well 
even in cases where you track fi ner time granularities than a month (including day, hour,  minute, 
second, millisecond, microsecond, and nanosecond). This defi nition also addresses implicit 
 conversion  issues resulting from the accuracy level supported by SQL Server for the DATETIME 
data type—3.33 milliseconds. To avoid implicit conversion issues, it’s wiser to use > and <= 
predicates than the BETWEEN predicate. 

 The main difference between the solution for cumulative aggregates and the solution for sliding 
aggregates is in the join condition (or in the subquery’s fi lter in the case of the alternate solution 
using subqueries). Instead of using O2.ordmonth <= O1.current_month, you use O2.ordmonth > 
three_months_before_current AND O2.ordmonth <= O1.current_month. In T-SQL, this translates 
to the following query: 

SELECT O1.empid, 

  CONVERT(VARCHAR(7), O1.ordmonth, 121) AS tomonth,

  O1.qty AS qtythismonth,

  SUM(O2.qty) AS totalqty,

  CAST(AVG(1.*O2.qty) AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

  JOIN dbo.EmpOrders AS O2

    ON O2.empid = O1.empid

    AND (O2.ordmonth > DATEADD(month, -3, O1.ordmonth)

         AND O2.ordmonth <=  O1.ordmonth)

GROUP BY O1.empid, O1.ordmonth, O1.qty

ORDER BY O1.empid, O1.ordmonth;

 This query generates the following output, shown here in abbreviated form: 

empid       tomonth qtythismonth totalqty    avgqty

----------- ------- ------------ ----------- ----------

1           2006-07 121          121         121.00

1           2006-08 247          368         184.00

1           2006-09 255          623         207.67

1           2006-10 143          645         215.00

1           2006-11 318          716         238.67

1           2006-12 536          997         332.33

1           2007-01 304          1158        386.00

1           2007-02 168          1008        336.00

1           2007-03 275          747         249.00

1           2007-04 20           463         154.33

...

2           2006-07 50           50          50.00

2           2006-08 94           144         72.00

2           2006-09 137          281         93.67

2           2006-10 248          479         159.67

2           2006-11 237          622         207.33
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2           2006-12 319          804         268.00

2           2007-01 230          786         262.00

2           2007-02 36           585         195.00

2           2007-03 151          417         139.00

2           2007-04 468          655         218.33

...

 Note that this solution includes aggregates for three-month periods that don’t include three 
months of actual data. If you want to return only periods with three full months  accumulated, 
without the fi rst two periods that do not cover three months, you can add the criterion 
MIN(O2.ordmonth) = DATEADD(month, –2, O1.ordmonth) to the HAVING fi lter. 

 Note Per ANSI SQL, you can use the ORDER BY and ROWS subclauses of the OVER clause—which 
are currently missing in SQL Server—to address sliding aggregates. You would use the following 
query to return the desired result for the last sliding aggregates request (assuming the data has 
exactly one row per month): 

SELECT empid, CONVERT(VARCHAR(7), ordmonth, 121) AS ordmonth, 

  qty AS qtythismonth, 

  SUM(O2.qty) OVER(PARTITION BY empid

                   ORDER BY ordmonth 

                   ROWS BETWEEN 2 PRECEDING

                            AND CURRENT ROW) AS totalqty, 

  CAST(AVG(1.*O2.qty) OVER(PARTITION BY empid

                           ORDER BY ordmonth 

                           ROWS BETWEEN 2 PRECEDING

                                    AND CURRENT ROW) 

    AS NUMERIC(12, 2)) AS avgqty 

FROM dbo.EmpOrders;

Year-to-Date (YTD)

 YTD aggregates accumulate values from the beginning of a period based on some date and 
time unit (say, a year) until the current point. The calculation is very similar to the  sliding 
 aggregates solution. The only difference is the lower bound provided in the query’s  fi lter, 
which is the calculation of the beginning of the year. For example, the following query 
 returns YTD aggregates for each employee and month: 

SELECT O1.empid, 

  CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

  O1.qty AS qtythismonth,

  SUM(O2.qty) AS totalqty,

  CAST(AVG(1.*O2.qty) AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

  JOIN dbo.EmpOrders AS O2

    ON O2.empid = O1.empid

    AND (O2.ordmonth >= CAST(CAST(YEAR(O1.ordmonth) AS CHAR(4))

                               + '0101' AS DATETIME)

         AND O2.ordmonth <= O1.ordmonth)

GROUP BY O1.empid, O1.ordmonth, O1.qty

ORDER BY O1.empid, O1.ordmonth;
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 This query generates the following output, shown here in abbreviated form: 

empid       ordmonth qtythismonth totalqty    avgqty

----------- -------- ------------ ----------- ----------

1           2006-07  121          121         121.00

1           2006-08  247          368         184.00

1           2006-09  255          623         207.67

1           2006-10  143          766         191.50

1           2006-11  318          1084        216.80

1           2006-12  536          1620        270.00

1           2007-01  304          304         304.00

1           2007-02  168          472         236.00

1           2007-03  275          747         249.00

1           2007-04  20           767         191.75

...

2           2006-07  50           50          50.00

2           2006-08  94           144         72.00

2           2006-09  137          281         93.67

2           2006-10  248          529         132.25

2           2006-11  237          766         153.20

2           2006-12  319          1085        180.83

2           2007-01  230          230         230.00

2           2007-02  36           266         133.00

2           2007-03  151          417         139.00

2           2007-04  468          885         221.25

...

Pivoting

 Pivoting is a technique that allows you to rotate rows to columns, possibly performing 
 aggregations along the way. The number of applications for pivoting is simply astounding. 
In this section, I’ll present a few, including pivoting attributes in an open schema environment, 
solving relational division problems, and formatting aggregated data. Later in the chapter 
and also in later chapters in the book, I’ll show additional applications.  

Pivoting Attributes

 I’ll use open schema as the scenario for pivoting attributes. Open schema is a design problem 
describing an environment that needs to deal with frequent schema changes. The relational 
model and SQL were conceived to handle frequent changes and requests for data via SQL’s 
data manipulation language (DML). However, SQL’s data defi nition language (DDL) was not 
conceived to support frequent schema changes. Whenever you need to add new entities, 
you must create new tables; whenever existing entities change their structures, you must add, 
alter, or drop columns. Such changes usually require downtime of the affected objects, and 
they also bring about substantial revisions to the application. 

 You can choose from several ways to model an open schema environment, each of which 
has advantages and disadvantages. One of those models is known as Entity Attribute 
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Value (EAV) and also as the narrow representation of data. In this model, you store all data 
in a single table, where each attribute value resides in its own row along with the entity or 
 object ID and the attribute name or ID. You represent the attribute values using the data 
type SQL_VARIANT to accommodate multiple attribute types in a single column. 

 In my examples, I’ll use the OpenSchema table, which you can create and populate by running 
the following code: 

USE tempdb;

IF OBJECT_ID('dbo.OpenSchema') IS NOT NULL DROP TABLE dbo.OpenSchema;

CREATE TABLE dbo.OpenSchema

(

  objectid  INT          NOT NULL,

  attribute NVARCHAR(30) NOT NULL,

  value     SQL_VARIANT  NOT NULL, 

  PRIMARY KEY (objectid, attribute)

);

GO

INSERT INTO dbo.OpenSchema(objectid, attribute, value) VALUES

  (1, N'attr1', CAST(CAST('ABC'      AS VARCHAR(10))   AS SQL_VARIANT)),

  (1, N'attr2', CAST(CAST(10         AS INT)           AS SQL_VARIANT)),

  (1, N'attr3', CAST(CAST('20070101' AS SMALLDATETIME) AS SQL_VARIANT)),

  (2, N'attr2', CAST(CAST(12         AS INT)           AS SQL_VARIANT)),

  (2, N'attr3', CAST(CAST('20090101' AS SMALLDATETIME) AS SQL_VARIANT)),

  (2, N'attr4', CAST(CAST('Y'        AS CHAR(1))       AS SQL_VARIANT)),

  (2, N'attr5', CAST(CAST(13.7       AS NUMERIC(9,3))  AS SQL_VARIANT)),

  (3, N'attr1', CAST(CAST('XYZ'      AS VARCHAR(10))   AS SQL_VARIANT)),

  (3, N'attr2', CAST(CAST(20         AS INT)           AS SQL_VARIANT)),

  (3, N'attr3', CAST(CAST('20080101' AS SMALLDATETIME) AS SQL_VARIANT));

-- show the contents of the table

SELECT * FROM dbo.OpenSchema;

 This generates the following output: 

objectid    attribute  value

----------- ---------- ------------------------

1           attr1      ABC

1           attr2      10

1           attr3      2007-01-01 00:00:00.000

2           attr2      12

2           attr3      2009-01-01 00:00:00.000

2           attr4      Y

2           attr5      13.700

3           attr1      XYZ

3           attr2      20

3           attr3      2008-01-01 00:00:00.000

 Representing data this way allows logical schema changes to be implemented without adding, 
altering, or dropping tables and columns—you use DML INSERTs, UPDATEs, and DELETEs  instead. 
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Of course, other aspects of working with the data (such as enforcing integrity, tuning, and 
 querying) become more complex and expensive with such a representation. As mentioned, there 
are other approaches to dealing with open schema environments—for example, storing the data 
in XML format, using a wide representation of data, using CLR types, and others. However, when 
you weigh the advantages and disadvantages of each representation, you might fi nd the EAV 
approach demonstrated here more favorable in some scenarios. 

 Keep in mind that this representation of the data requires very complex queries even for simple 
requests because different attributes of the same entity instance are spread over multiple rows. 
Before you query such data, you might want to rotate it to a traditional form with one column 
for each attribute—perhaps store the result in a temporary table, index it, query it, and then 
get rid of the temporary table. To rotate the data from its open schema form into a traditional 
form, you need to use a pivoting technique. 

 In the following section, I’ll describe the steps involved in solving pivoting problems. I’d like 
to point out that to understand the steps of the solution, it can be very helpful if you think 
about query logical processing phases, which I described in detail in Chapter 1, “Logical 
Query Processing.” I discussed the query processing phases involved with the native PIVOT 
table operator, but those phases apply just as well to the standard solution that does not use 
this proprietary operator. Moreover, in the standard solution the phases are more apparent in 
the code, while using the PIVOT operator they are implicit.  

 The fi rst step you might want to try when solving pivoting problems is to fi gure out how the 
number of rows in the result correlates to the number of rows in the source data. Here, you 
need to create a single result row out of the multiple base rows for each object. In SQL, this 
translates to grouping rows. So our fi rst logical processing phase in pivoting is a grouping 
phase, and the associated element (the element you need to group by) is the objectid column. 

 As the next step in a pivoting problem, you can think in terms of the result columns. You 
need a result column for each unique attribute. Because the data contains fi ve unique 
 attributes  (attr1, attr2, attr3, attr4, and attr5), you need fi ve expressions in the SELECT list. 
Each  expression is supposed to extract, out of the rows belonging to the grouped object, the 
value corresponding to a specifi c attribute. You can think of this logical phase as a spreading 
phase—you need to spread the values, or shift them, from the source column (value in our 
case) to the corresponding target column. As for the element that dictates where to spread 
the values, or the spread by element, in our case it is the attribute column. This spreading 
 activity can be done with the following CASE expression, which in this example is applied to 
the attribute attr2: 

CASE WHEN attribute = 'attr2' THEN value END

 Remember that with no ELSE clause, CASE assumes an implicit ELSE NULL. The CASE 
 expression just shown yields NULL for rows where attribute does not equal attr2 and yields 
value when  attribute does equal attr2. This means that among the rows with a given value of 
 objectid (say, 1), the CASE expression would yield several NULLs and, at most, one known value 

C08626034.indd   462 2/13/2009   2:04:49 AM



 Chapter 8 Aggregating and Pivoting Data 463

(10 in our example), which represents the value of the target attribute (attr2 in our example) for 
the given objectid.  

 The third phase in pivoting attributes is to extract the known value (if it exists) out of the set of 
NULLs and the known value. You have to use an aggregate for this purpose because, as you’ll 
recall, the query involves grouping. The trick to extracting the one known value is to use MAX 
or MIN. Both ignore NULLs and will return the one non-NULL value present because both the 
minimum and the maximum of a set containing one value is that value. So our third logical 
processing phase in pivoting is an aggregation phase. The aggregation element is the value 
column, and the aggregate function is MAX. Using the previous expression implementing the 
second phase with attr2, here’s the revised expression including the aggregation as well: 

MAX(CASE WHEN attribute = 'attr2' THEN value END) AS attr2

 Here’s the complete query that pivots the attributes from OpenSchema:  

SELECT objectid,

  MAX(CASE WHEN attribute = 'attr1' THEN value END) AS attr1,

  MAX(CASE WHEN attribute = 'attr2' THEN value END) AS attr2,

  MAX(CASE WHEN attribute = 'attr3' THEN value END) AS attr3,

  MAX(CASE WHEN attribute = 'attr4' THEN value END) AS attr4,

  MAX(CASE WHEN attribute = 'attr5' THEN value END) AS attr5

FROM dbo.OpenSchema

GROUP BY objectid;

 This query generates the following output: 

objectid    attr1      attr2      attr3                    attr4      attr5

----------- ---------- ---------- ------------------------ ---------- ----------

1           ABC        10         2007-01-01 00:00:00.000  NULL       NULL

2           NULL       12         2009-01-01 00:00:00.000  Y          13.700

3           XYZ        20         2008-01-01 00:00:00.000  NULL       NULL

 Note To write this query, you have to know the names of the attributes. If you don’t, you’ll need 
to construct the query string dynamically. I’ll provide an example later in the chapter. 

 This technique for pivoting data is very effi cient because it scans the base table only once. 

 SQL Server supports a native specialized table operator for pivoting called PIVOT. This operator 
does not provide any special advantages over the technique I just showed, except that it allows 
for shorter code. It doesn’t support dynamic pivoting, and underneath the covers, it applies 
very similar logic to the one I presented in the last solution. So you probably won’t even fi nd 
noticeable performance differences. At any rate, here’s how you would pivot the OpenSchema 
data using the PIVOT operator: 

SELECT objectid, attr1, attr2, attr3, attr4, attr5

FROM dbo.OpenSchema

  PIVOT(MAX(value) FOR attribute

    IN([attr1],[attr2],[attr3],[attr4],[attr5])) AS P;
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 Within this solution, you can identify all the elements I used in the previous solution. The 
 inputs to the PIVOT operator are as follows: 

■  The aggregate function applied to the aggregation element. In our case, it’s MAX(value), 
which extracts the single non-NULL value corresponding to the target attribute. In other 
cases, you might have more than one non-NULL value per group and want a different 
aggregate (for example, SUM or AVG).  

■  Following the FOR keyword, the name of the spread by element (attribute, in our case). 
This is the source column holding the values that become the target column names. 

■  The list of actual target column names in parentheses following the keyword IN. 

 As you can see, in the parentheses of the PIVOT operator, you specify the aggregate  function 
and aggregation element and the spread by element and spreading values but not the group 
by elements. This is a problematic aspect of the syntax of the PIVOT operator—the  grouping 
 elements are implicitly derived from what was not specifi ed. The grouping elements are the list 
of all columns from the input table to the PIVOT operator that were not mentioned as  either 
the aggregation or the spreading elements. In our case, objectid is the only column left. If you 
 unintentionally query the base table directly, you might end up with undesired  grouping. If new 
columns will be added to the table in the future, those columns will be  implicitly added to 
PIVOT’s grouping list. Therefore, it is strongly recommended that you  apply the PIVOT operator 
not to the base table directly but rather to a table expression (derived table or CTE) that  includes 
only the elements relevant to the pivoting activity. This way, you can  control  exactly which 
 columns remain besides the aggregation and spreading elements. Future  column  additions 
to the table won’t have any impact on what PIVOT ends up operating on. The following query 
 demonstrates applying this approach to our previous query, using a  derived table: 

SELECT objectid, attr1, attr2, attr3, attr4, attr5

FROM (SELECT objectid, attribute, value FROM dbo.OpenSchema) AS D

  PIVOT(MAX(value) FOR attribute

    IN([attr1],[attr2],[attr3],[attr4],[attr5])) AS P;

 Tip The input to the aggregate function must be a base column from the PIVOT operator’s input 
table with no manipulation—it cannot be an expression (for example: SUM(qty * price)). If you 
want to provide the aggregate function with an expression as input, have the PIVOT  operator 
 operate on a derived table or CTE (as suggested for other reasons as well), and in the derived 
table query assign the expression with a column alias (qty * price AS value). Then, as far as the 
PIVOT operator is concerned, that alias is the name of a base column in its input table, so it is 
valid to use that column name as input to PIVOT’s aggregate function (SUM(value)). 

 Also, you cannot spread attributes from more than one column (the column that appears  after 
the FOR keyword). If you need to pivot more than one column’s attributes (say, empid and 
YEAR(orderdate)), you can use a similar approach to the previous suggestion: in the derived 
table or CTE used as the input to the PIVOT operator, concatenate the values from all  columns 
you want to use as the spreading elements and assign the expression with a column alias 
(CAST(empid AS VARCHAR(10)) + ‘_’ + CAST(YEAR(orderdate) AS CHAR(4)) AS emp_year). Then, 
in the outer query, specify that column after PIVOT’s FOR keyword (FOR emp_year IN([1_2007], 
[1_2008], [1_2009], [2_2007], . . .)). 
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Relational Division

 You can also use pivoting to solve relational division problems when the number of elements 
in the divisor set is fairly small. In my examples, I’ll use the OrderDetails table, which you 
 create and populate by running the following code: 

USE tempdb;

IF OBJECT_ID('dbo.OrderDetails') IS NOT NULL

  DROP TABLE dbo.OrderDetails;

CREATE TABLE dbo.OrderDetails

(

  orderid   VARCHAR(10) NOT NULL,

  productid INT         NOT NULL,

  PRIMARY KEY(orderid, productid)

  /* other colums */

);

GO

INSERT INTO dbo.OrderDetails(orderid, productid) VALUES

  ('A', 1),

  ('A', 2),

  ('A', 3),

  ('A', 4),

  ('B', 2),

  ('B', 3),

  ('B', 4),

  ('C', 3),

  ('C', 4),

  ('D', 4);

 A classic relational division problem is to return orders that contain a certain basket of 
products—say, products 2, 3, and 4. You use a pivoting technique to rotate only the relevant 
products into separate columns for each order. Instead of returning an actual attribute value, 
you produce a 1 if the product exists in the order and a 0 otherwise. Create a derived table 
out of the pivot query, and in the outer query fi lter only orders that contain a 1 in all product 
columns. Here’s the full query, which correctly returns orders A and B: 

SELECT orderid

FROM (SELECT

        orderid,

        MAX(CASE WHEN productid = 2 THEN 1 END) AS P2,

        MAX(CASE WHEN productid = 3 THEN 1 END) AS P3,

        MAX(CASE WHEN productid = 4 THEN 1 END) AS P4

      FROM dbo.OrderDetails

      GROUP BY orderid) AS P

WHERE P2 = 1 AND P3 = 1 AND P4 = 1;
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 If you run only the derived table query, you get the following output with the pivoted products 
for each order: 

orderid    P2          P3          P4

---------- ----------- ----------- -----------

A          1           1           1

B          1           1           1

C          NULL        1           1

D          NULL        NULL        1

 To answer the request at hand using the new PIVOT operator, use the following query: 

SELECT orderid 

FROM (SELECT orderid, productid FROM dbo.OrderDetails) AS D

  PIVOT(MAX(productid) FOR productid IN([2],[3],[4])) AS P

WHERE [2] = 2 AND [3] = 3 AND [4] = 4;

 The aggregate function must accept a column as input, so I provided the productid itself. This 
means that if the product exists within an order, the corresponding value will contain the 
 actual productid and not 1. That’s why the fi lter looks a bit different here. 

 Note that you can make both queries more intuitive and similar to each other in their logic 
by using the COUNT aggregate instead of MAX. This way, both queries would produce a 1 
where the product exists and a 0 where it doesn’t (instead of NULL). Here’s what the query 
that does not use the PIVOT operator looks like: 

SELECT orderid

FROM (SELECT

        orderid,

        COUNT(CASE WHEN productid = 2 THEN productid END) AS P2,

        COUNT(CASE WHEN productid = 3 THEN productid END) AS P3,

        COUNT(CASE WHEN productid = 4 THEN productid END) AS P4

      FROM dbo.OrderDetails

      GROUP BY orderid) AS P

WHERE P2 = 1 AND P3 = 1 AND P4 = 1;

 And here’s the query you would use based on the PIVOT operator: 

SELECT orderid 

FROM (SELECT orderid, productid FROM dbo.OrderDetails) AS D

  PIVOT(COUNT(productid) FOR productid IN([2],[3],[4])) AS P

WHERE [2] = 1 AND [3] = 1 AND [4] = 1;

Aggregating Data

 You can also use a pivoting technique to format aggregated data, typically for  reporting 
 purposes. In my examples, I’ll use the Orders table, which you create and populate by 
 running the code in Listing 8-1. 
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LISTING 8-1 Creating and populating the Orders table

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

CREATE TABLE dbo.Orders

(

  orderid   INT        NOT NULL,

  orderdate DATETIME   NOT NULL,

  empid     INT        NOT NULL,

  custid    VARCHAR(5) NOT NULL,

  qty       INT        NOT NULL,

  CONSTRAINT PK_Orders PRIMARY KEY(orderid)

);

GO

INSERT INTO dbo.Orders

  (orderid, orderdate, empid, custid, qty)

VALUES

  (30001, '20060802', 3, 'A', 10),

  (10001, '20061224', 1, 'A', 12),

  (10005, '20061224', 1, 'B', 20),

  (40001, '20070109', 4, 'A', 40),

  (10006, '20070118', 1, 'C', 14),

  (20001, '20070212', 2, 'B', 12),

  (40005, '20080212', 4, 'A', 10),

  (20002, '20080216', 2, 'C', 20),

  (30003, '20080418', 3, 'B', 15),

  (30004, '20060418', 3, 'C', 22),

  (30007, '20060907', 3, 'D', 30);

-- show the contents of the table

SELECT * FROM dbo.Orders;

 This generates the following output: 

orderid     orderdate               empid       custid qty

----------- ----------------------- ----------- ------ -----------

10001       2006-12-24 00:00:00.000 1           A      12

10005       2006-12-24 00:00:00.000 1           B      20

10006       2007-01-18 00:00:00.000 1           C      14

20001       2007-02-12 00:00:00.000 2           B      12

20002       2008-02-16 00:00:00.000 2           C      20

30001       2006-08-02 00:00:00.000 3           A      10

30003       2008-04-18 00:00:00.000 3           B      15

30004       2006-04-18 00:00:00.000 3           C      22

30007       2006-09-07 00:00:00.000 3           D      30

40001       2007-01-09 00:00:00.000 4           A      40

40005       2008-02-12 00:00:00.000 4           A      10

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

CREATE TABLE dbo.Orders

(

  orderid   INT        NOT NULL,

  orderdate DATETIME   NOT NULL,

  empid     INT        NOT NULL,

  custid    VARCHAR(5) NOT NULL,

  qty       INT        NOT NULL,

  CONSTRAINT PK_Orders PRIMARY KEY(orderid)

);

GO

INSERT INTO dbo.Orders

  (orderid, orderdate, empid, custid, qty)

VALUES

  (30001, '20060802', 3, 'A', 10),

  (10001, '20061224', 1, 'A', 12),

  (10005, '20061224', 1, 'B', 20),

  (40001, '20070109', 4, 'A', 40),

  (10006, '20070118', 1, 'C', 14),

  (20001, '20070212', 2, 'B', 12),

  (40005, '20080212', 4, 'A', 10),

  (20002, '20080216', 2, 'C', 20),

  (30003, '20080418', 3, 'B', 15),

  (30004, '20060418', 3, 'C', 22),

  (30007, '20060907', 3, 'D', 30);

-- show the contents of the table

SELECT * FROM dbo.Orders;
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 Suppose you want to return a row for each customer, with the total yearly quantities in a 
 different column for each year. As with all pivoting problems, it boils down to identifying the 
grouping, spreading, and aggregation elements. In this case, the grouping element is the custid 
column, the spreading element is the expression YEAR(orderdate), and the  aggregate  function 
and element is SUM(qty). What remains is simply to use the solution templates I  provided 
 previously. Here’s the solution that does not use the PIVOT operator, followed by its output: 

SELECT custid,

  SUM(CASE WHEN orderyear = 2006 THEN qty END) AS [2006],

  SUM(CASE WHEN orderyear = 2007 THEN qty END) AS [2007],

  SUM(CASE WHEN orderyear = 2008 THEN qty END) AS [2008]

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

      FROM dbo.Orders) AS D

GROUP BY custid;

custid 2006        2007        2008

------ ----------- ----------- -----------

A      22          40          10

B      20          12          15

C      22          14          20

D      30          NULL        NULL

 Here you can see the use of a derived table to isolate only the relevant elements for the 
 pivoting activity (custid, orderyear, qty). 

 One of the main issues with this pivoting solution is that you might end up with lengthy query 
strings when the number of elements you need to rotate is large. It’s not a problem in this 
case because we are dealing with order years, and there usually aren’t that many, but it could 
be a problem in other cases when the spreading column has a large number of values. In an 
effort to shorten the query string, you can use a matrix table that contains a column and a row 
for each attribute that you need to rotate (orderyear, in this case). Only column values in the 
intersections of corresponding rows and columns contain the value 1, and the other column 
values are populated with a NULL or a 0, depending on your needs. Run the following code 
to create and populate the Matrix table:  

USE tempdb;

GO

IF OBJECTPROPERTY(OBJECT_ID('dbo.Matrix'), 'IsUserTable') = 1

  DROP TABLE dbo.Matrix;

GO

CREATE TABLE dbo.Matrix

(

  orderyear INT NOT NULL PRIMARY KEY,

  y2006 INT NULL,

  y2007 INT NULL,

  y2008 INT NULL

);

INSERT INTO dbo.Matrix(orderyear, y2006) VALUES(2006, 1);

INSERT INTO dbo.Matrix(orderyear, y2007) VALUES(2007, 1);

INSERT INTO dbo.Matrix(orderyear, y2008) VALUES(2008, 1);
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-- show the contents of the table

SELECT * FROM dbo.Matrix;

 This generates the following output: 

orderyear   y2006       y2007       y2008

----------- ----------- ----------- -----------

2006        1           NULL        NULL

2007        NULL        1           NULL

2008        NULL        NULL        1

 You join the base table (or table expression) with the Matrix table based on a match in orderyear. 
This means that each row from the base table will be matched with one row from Matrix—the 
one with the same orderyear. In that row, only the corresponding orderyear’s column value will 
contain a 1. So you can substitute the expression 

SUM(CASE WHEN orderyear = <some_year> THEN qty END) AS [<some_year>]

 with the logically equivalent expression 

SUM(qty*y<some_year>) AS [<some_year>]

 Here’s what the full query looks like: 

SELECT custid,

  SUM(qty*y2006) AS [2006],

  SUM(qty*y2007) AS [2007],

  SUM(qty*y2008) AS [2008]

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

      FROM dbo.Orders) AS D

  JOIN dbo.Matrix AS M ON D.orderyear = M.orderyear

GROUP BY custid;

 If you need the number of orders instead of the sum of qty, in the original solution you produce 
a 1 instead of the qty column for each order and use the COUNT aggregate function, like so: 

SELECT custid,

  COUNT(CASE WHEN orderyear = 2006 THEN 1 END) AS [2006],

  COUNT(CASE WHEN orderyear = 2007 THEN 1 END) AS [2007],

  COUNT(CASE WHEN orderyear = 2008 THEN 1 END) AS [2008]

FROM (SELECT custid, YEAR(orderdate) AS orderyear

      FROM dbo.Orders) AS D

GROUP BY custid;

 This code generates the following output: 

custid 2006        2007        2008

------ ----------- ----------- -----------

A      2           1           1

B      1           1           1

C      1           1           1

D      1           0           0
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 With the Matrix table, simply specify the column corresponding to the target year: 

SELECT custid,

  COUNT(y2006) AS [2006],

  COUNT(y2007) AS [2007],

  COUNT(y2008) AS [2008]

FROM (SELECT custid, YEAR(orderdate) AS orderyear

      FROM dbo.Orders) AS D

  JOIN dbo.Matrix AS M ON D.orderyear = M.orderyear

GROUP BY custid;

 Of course, using the PIVOT operator, the query strings are pretty much as short as they can 
get. You don’t explicitly specify the CASE expressions: those are constructed behind the scenes 
for you (you can actually see them by looking at the properties of the aggregate operator in 
the plan). In short, you don’t need to use the Matrix table approach with the PIVOT operator. 
Here’s the query using the PIVOT operator to calculate total yearly quantities per customer: 

SELECT *

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

      FROM dbo.Orders) AS D

  PIVOT(SUM(qty) FOR orderyear IN([2006],[2007],[2008])) AS P;

 And here’s a query that counts the orders: 

SELECT *

FROM (SELECT custid, YEAR(orderdate) AS orderyear

      FROM dbo.Orders) AS D

  PIVOT(COUNT(orderyear) FOR orderyear IN([2006],[2007],[2008])) AS P;

 Remember that static queries performing pivoting require you to know ahead of time the list 
of attributes you’re going to rotate. For dynamic pivoting, you need to construct the query 
string dynamically.  

Unpivoting

 Unpivoting is the opposite of pivoting—namely, rotating columns to rows. Unpivoting is  usually 
used to normalize data, but it has other applications as well. 

 Note Unpivoting is not an exact inverse of pivoting—it won’t necessarily allow you to regenerate 
source rows that were pivoted. However, for the sake of simplicity, think of it as the opposite of pivoting. 

 In my examples, I’ll use the PvtCustOrders table, which you create and populate by running 
the following code: 

USE tempdb;

IF OBJECT_ID('dbo.PvtCustOrders') IS NOT NULL

  DROP TABLE dbo.PvtCustOrders;

GO

C08626034.indd   470 2/13/2009   2:04:50 AM



 Chapter 8 Aggregating and Pivoting Data 471

SELECT custid, 

  COALESCE([2006], 0) AS [2006],

  COALESCE([2007], 0) AS [2007],

  COALESCE([2008], 0) AS [2008]

INTO dbo.PvtCustOrders

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

      FROM dbo.Orders) AS D

  PIVOT(SUM(qty) FOR orderyear IN([2006],[2007],[2008])) AS P;

UPDATE dbo.PvtCustOrders

  SET [2007] = NULL, [2008] = NULL

WHERE custid = 'D';

-- Show the contents of the table

SELECT * FROM dbo.PvtCustOrders;

 This generates the following output: 

custid 2006        2007        2008

------ ----------- ----------- -----------

A      22          40          10

B      20          12          15

C      22          14          20

D      30          NULL        NULL

 The goal in this case is to generate a result row for each customer and year, containing the 
customer ID (custid), order year (orderyear), and quantity (qty). 

 I’ll start with a solution that does not use the native UNPIVOT operator. Here as well, try to 
think in terms of logical query processing as described in Chapter 1.  

 The fi rst step in the solution is to generate three copies of each base row—one for each year. 
You can achieve this by performing a cross join between the base table and a virtual auxiliary 
table that has one row per year. The SELECT list can then return custid and orderyear and also 
calculate the target year’s qty with the following CASE expression: 

CASE orderyear 

  WHEN 2006 THEN [2006] 

  WHEN 2007 THEN [2007] 

  WHEN 2008 THEN [2008] 

END AS qty

 You achieve unpivoting this way, but you also get rows corresponding to NULL values in the 
source table (for example, for customer D in years 2007 and 2008). To eliminate those rows, 
create a derived table out of the solution query and, in the outer query, eliminate the rows 
with the NULL in the qty column. 

 Note In practice, you’d typically store a 0 and not a NULL as the quantity for a customer with 
no orders in a certain year; the order quantity is known to be zero and not unknown. However, 
I used NULLs here to demonstrate the treatment of NULLs, which is a very common need in 
 unpivoting problems. 
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 Here’s the complete solution, followed by its output: 

SELECT custid, orderyear, qty

FROM (SELECT custid, orderyear,

        CASE orderyear

          WHEN 2006 THEN [2006]

          WHEN 2007 THEN [2007]

          WHEN 2008 THEN [2008]

        END AS qty

      FROM dbo.PvtCustOrders

        CROSS JOIN

          (SELECT 2006 AS orderyear

           UNION ALL SELECT 2007

           UNION ALL SELECT 2008) AS OrderYears) AS D

WHERE qty IS NOT NULL;

custid orderyear   qty

------ ----------- -----------

A      2006        22

A      2007        40

A      2008        10

B      2006        20

B      2007        12

B      2008        15

C      2006        22

C      2007        14

C      2008        20

D      2006        30

D      2007        0

D      2008        0

 As of SQL Server 2008, you can replace the current defi nition of the derived table D with a 
table value constructor based on the VALUES clause, like so: 

SELECT custid, orderyear, qty

FROM (SELECT custid, orderyear,

        CASE orderyear

          WHEN 2006 THEN [2006]

          WHEN 2007 THEN [2007]

          WHEN 2008 THEN [2008]

        END AS qty

      FROM dbo.PvtCustOrders

        CROSS JOIN

          (VALUES(2006),(2007),(2008)) AS OrderYears(orderyear)) AS D

WHERE qty IS NOT NULL;

 Either way, using the native proprietary UNPIVOT table operator is dramatically simpler, as 
the following query shows: 

SELECT custid, orderyear, qty

FROM dbo.PvtCustOrders

  UNPIVOT(qty FOR orderyear IN([2006],[2007],[2008])) AS U;

 Unlike the PIVOT operator, I fi nd the UNPIVOT operator simple and intuitive, and  obviously 
it requires signifi cantly less code than the alternative solutions. UNPIVOT’s fi rst input is the 
 target column name to hold the source column values (qty). Then, following the FOR  keyword, 
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you specify the target column name to hold the source column names (orderyear). Finally, 
in the parentheses of the IN clause, you specify the source column names that you want to 
 unpivot ([2006],[2007],[2008]). 

 Tip All source attributes that are unpivoted must share the same data type. If you want to 
 unpivot attributes defi ned with different data types, create a derived table or CTE where you fi rst 
convert all those attributes to SQL_VARIANT. The target column that will hold unpivoted  values 
will also be defi ned as SQL_VARIANT, and within that column, the values will preserve their 
 original types. 

 Note Like PIVOT, UNPIVOT requires a static list of column names to be rotated. Also, the 
UNPIVOT operator applies a logical phase that removes NULL rows. However, unlike in the other 
solutions where the removal of NULL rows is an optional phase, with the UNPIVOT operator it is 
not optional. 

Custom Aggregations

 Custom aggregations are aggregations that are not provided as built-in aggregate 
 functions—for example, concatenating strings, calculating products, performing bitwise 
 manipulations, calculating medians, and others. In this section, I’ll provide solutions to several 
custom aggregate requests. Some techniques that I’ll cover are generic, in the sense that you 
can use similar logic for other aggregate requests; other techniques are specifi c to one kind 
of aggregate request. 

 More Info One of the generic custom aggregate techniques uses cursors. For details about 
 cursors, including handling of custom aggregates with cursors, please refer to Inside Microsoft 
SQL Server 2008: T-SQL Programming (Microsoft Press, 2009). 

 In my examples, I’ll use the generic Groups table, which you create and populate by running 
the following code: 

USE tempdb;

IF OBJECT_ID('dbo.Groups') IS NOT NULL DROP TABLE dbo.Groups;

CREATE TABLE dbo.Groups

(

  groupid  VARCHAR(10) NOT NULL,

  memberid INT         NOT NULL,

  string   VARCHAR(10) NOT NULL,

  val      INT         NOT NULL,

  PRIMARY KEY (groupid, memberid)

);

GO
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INSERT INTO dbo.Groups(groupid, memberid, string, val) VALUES

  ('a', 3, 'stra1', 6),

  ('a', 9, 'stra2', 7),

  ('b', 2, 'strb1', 3),

  ('b', 4, 'strb2', 7),

  ('b', 5, 'strb3', 3),

  ('b', 9, 'strb4', 11),

  ('c', 3, 'strc1', 8),

  ('c', 7, 'strc2', 10),

  ('c', 9, 'strc3', 12);

-- Show the contents of the table

SELECT * FROM dbo.Groups;

 This generates the following output: 

groupid    memberid    string     val

---------- ----------- ---------- -----------

a          3           stra1      6

a          9           stra2      7

b          2           strb1      3

b          4           strb2      7

b          5           strb3      3

b          9           strb4      11

c          3           strc1      8

c          7           strc2      10

c          9           strc3      12

 The Groups table has a column representing the group (groupid), a column representing 
a unique identifi er within the group (memberid), and some value columns (string and val) 
that need to be aggregated. I like to use such a generic form of data because it allows you 
to  focus on the techniques and not on the data. Note that this is merely a generic form of 
a  table containing data that you want to aggregate. For example, it could represent a Sales 
table where groupid stands for empid, val stands for qty, and so on. 

Custom Aggregations Using Pivoting

 One technique for solving custom aggregate problems is pivoting. You pivot the values that 
need to participate in the aggregate calculation; when they all appear in the same result 
row, you perform the calculation as a linear one across the columns. With a large number of 
elements you’ll end up with very lengthy query strings; therefore, this pivoting technique is 
limited to situations where each group has a small number of elements. Note that unless you 
have a sequencing column within the group, you need to calculate row numbers that will 
be used to identify the position of elements within the group. For example, if you need to 
 concatenate all values from the string column per group, what do you specify as the  pivoted 
attribute list (the spreading values)? The values in the memberid column are not known 
ahead of time, plus they differ in each group. Row numbers representing positions within the 
group solve this problem.  
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String Concatenation Using Pivoting

 As the fi rst example, the following query calculates an aggregate string concatenation over 
the column string for each group with a pivoting technique: 

SELECT groupid,

    [1]

  + COALESCE(',' + [2], '')

  + COALESCE(',' + [3], '')

  + COALESCE(',' + [4], '') AS string

FROM (SELECT groupid, string,

        ROW_NUMBER() OVER(PARTITION BY groupid ORDER BY memberid) AS rn

      FROM dbo.Groups AS A) AS D

  PIVOT(MAX(string) FOR rn IN([1],[2],[3],[4])) AS P;

 This query generates the following output: 

groupid    string

---------- -------------------------

a          stra1,stra2

b          strb1,strb2,strb3,strb4

c          strc1,strc2,strc3

 The query that generates the derived table D calculates a row number within the group 
based on memberid order. The outer query pivots the values based on the row numbers, and 
it performs linear concatenation. I’m assuming here that each group has at most four rows, 
so I specifi ed four row numbers. You need as many row numbers as the maximum number of 
elements you anticipate.  

 The COALESCE function is used to replace a NULL representing a nonexistent element with 
an empty string so as not to cause the result to become NULL. You don’t need the COALESCE 
function with the fi rst element ([1]) because at least one element must exist in the group; 
otherwise, the group won’t appear in the table. 

Aggregate Product Using Pivoting

 In a similar manner, you can calculate the product of the values in the val column for each group: 

SELECT groupid,

    [1]

  * COALESCE([2], 1)

  * COALESCE([3], 1)

  * COALESCE([4], 1) AS product

FROM (SELECT groupid, val,

        ROW_NUMBER() OVER(PARTITION BY groupid ORDER BY memberid) AS rn

      FROM dbo.Groups AS A) AS D

  PIVOT(MAX(val) FOR rn IN([1],[2],[3],[4])) AS P;

 This query generates the following output: 

groupid    product

---------- -----------

a          42

b          693

c          960
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 The need for an aggregate product is common in fi nancial applications—for example, to 
 calculate compound interest rates.  

User Defi ned Aggregates (UDA)

 SQL Server allows you to create your own user-defi ned aggregates (UDAs). You write UDAs 
in a .NET language of your choice (for example, C# or Visual Basic), and you use them in 
T-SQL. This book is dedicated to T-SQL and not to the common language runtime (CLR), so 
I won’t explain CLR UDAs at great length. Rather, I’ll provide you with a couple of examples 
with step-by-step instructions and, of course, the T-SQL interfaces involved. Examples are 
 provided in both C# and Visual Basic. 

CLR Code in a Database

 This section discusses .NET common language runtime (CLR) integration in SQL Server; 
therefore, it’s appropriate to spend a couple of words explaining the reasoning behind 
CLR integration in a database. It is also important to identify the scenarios where using 
CLR objects is more appropriate than using T-SQL. 

 Developing in .NET languages such as C# and Visual Basic gives you an incredibly rich 
programming model. The .NET Framework includes literally thousands of prepared 
classes, and it is up to you to make astute use of them. .NET languages are not just 
data oriented like SQL, so you are not as limited. For example, regular expressions are 
extremely useful for validating data, and they are fully supported in .NET. SQL languages 
are set oriented and slow to perform row-oriented (row-by-row or one-row-at-a-time) 
operations. Sometimes you need row-oriented operations inside the database;  moving 
away from cursors to CLR code should improve the performance. Another benefi t of 
CLR code is that it can be much faster than T-SQL code for operations such as string 
 manipulation and iterations and in computationally intensive calculations.  

 SQL Server 2005 introduced CLR integration, and SQL Server 2008 enhances this 
 integration in a number of ways. Later in this section I’ll describe the enhancements 
that are applicable to UDAs. Although SQL Server supported programmatic extensions 
even before CLR integration was introduced, CLR integration in .NET code is superior in 
a number of ways. 

 For example, you could add functionality to earlier versions of SQL Server (before 2005) 
using extended stored procedures. However, such procedures can compromise the 
 integrity of SQL Server processes because their memory and thread management is not 
integrated well enough with SQL Server’s resource management. .NET code is managed 
by the CLR inside SQL Server, and because the CLR itself is managed by SQL Server, it is 
much safer to use than extended procedure code.  
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 T-SQL—a set-oriented language—was designed to deal mainly with data and is optimized 
for data manipulation. You should not rush to translate all your T-SQL code to CLR code. 
T-SQL is still SQL Server’s primary language. Data access can be achieved through T-SQL 
only. If an operation can be expressed as a set-oriented one, you should program it in T-SQL.  

 You need to make another important decision before you start using CLR code inside 
SQL Server. You need to decide where your CLR code is going to run—at the server or 
at the client. CLR code is typically faster and more fl exible than T-SQL for computations, 
and thus it extends the opportunities for server-side computations. However, the server 
side is typically a single working box, and load balancing at the data tier is still in its 
infancy. Therefore, you should consider whether it would be more sensible to process 
those computations at the client side. 

 With CLR code, you can write stored procedures, triggers, user-defi ned functions, 
 user-defi ned types, and user-defi ned aggregate functions. The last two objects can’t 
be written with declarative T-SQL; rather, they can be written only with CLR code. 
A user- defi ned type (UDT) is the most complex CLR object type and demands extensive 
coverage. 

 More Info For details about programming CLR UDTs, as well as programming CLR  routines, 
please refer to Inside Microsoft SQL Server 2008: T-SQL Programming. 

 Let’s start with a concrete implementation of two UDAs. The steps involved in creating a 
 CLR-based UDA are as follows: 

 1.  Defi ne the UDA as a class in a .NET language. 

 2.  Compile the class you defi ned to build a CLR assembly. 

 3.  Register the assembly in SQL Server using the CREATE ASSEMBLY command in T-SQL. 

 4.  Use the CREATE AGGREGATE command in T-SQL to create the UDA that references the 
registered assembly. 

 Note You can register an assembly and create a CLR object from Microsoft Visual Studio 2008 
directly, using the project deployment option (from the Build menu item, choose the Deploy 
option). Direct deployment from Visual Studio is supported only with the Professional edition or 
higher; if you’re using the Standard edition, your only option is explicit deployment in SQL Server.  

 This section will provide examples for creating aggregate string concatenation and aggregate 
product functions in both C# and Visual Basic. You can fi nd the code for the C# classes in 
Listing 8-2 and the code for the Visual Basic classes in Listing 8-3. You’ll be provided with the 
requirements for a CLR UDA alongside the development of a UDA. 
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LISTING 8-2 C# code for UDAs

using System;

using System.Data;

using Microsoft.SqlServer.Server;

using System.Data.SqlTypes;

using System.IO;

using System.Text;

using System.Runtime.InteropServices;

[Serializable]

[SqlUserDefinedAggregate(

   Format.UserDefined,              // use user defined serialization 

   IsInvariantToNulls = true,       // NULLs don't matter

   IsInvariantToDuplicates = false, // duplicates matter

   IsInvariantToOrder = false,      // order matters

   IsNullIfEmpty = false,           // do not yield a NULL for a set of zero strings

   MaxByteSize = -1)                // max size unlimited

]

public struct StringConcat : IBinarySerialize

{

  private StringBuilder sb;

  public void Init()

  {

    this.sb = new StringBuilder();

  }

  //two arguments

  public void Accumulate(SqlString v, SqlString separator)

  {

    if (v.IsNull)

    {

      return; // ignore NULLs approach

    }

    this.sb.Append(v.Value).Append(separator.Value);

  }

  public void Merge(StringConcat other)

  {

    this.sb.Append(other.sb);

  }

  public SqlString Terminate()

  {

    string output = string.Empty;

    if (this.sb != null && this.sb.Length > 0)

    {

      // remove last separator

      output = this.sb.ToString(0, this.sb.Length - 1);

    }

    return new SqlString(output);

  }

using System;

using System.Data;

using Microsoft.SqlServer.Server;

using System.Data.SqlTypes;

using System.IO;

using System.Text;

using System.Runtime.InteropServices;

[Serializable]

[SqlUserDefinedAggregate(

   Format.UserDefined,              // use user defined serialization 

   IsInvariantToNulls = true,       // NULLs don't matter

   IsInvariantToDuplicates = false, // duplicates matter

   IsInvariantToOrder = false,      // order matters

   IsNullIfEmpty = false,           // do not yield a NULL for a set of zero strings

   MaxByteSize = -1)                // max size unlimited

]

public struct StringConcat : IBinarySerialize

{

  private StringBuilder sb;

  public void Init()

  {

    this.sb = new StringBuilder();

  }

  //two arguments

  public void Accumulate(SqlString v, SqlString separator)

  {

    if (v.IsNull)

    {

      return; // ignore NULLs approach

    }

    this.sb.Append(v.Value).Append(separator.Value);

  }

  public void Merge(StringConcat other)

  {

    this.sb.Append(other.sb);

  }

  public SqlString Terminate()

  {

    string output = string.Empty;

    if (this.sb != null && this.sb.Length > 0)

    {

      // remove last separator

      output = this.sb.ToString(0, this.sb.Length - 1);

    }

    return new SqlString(output);

  }
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  public void Read(BinaryReader r)

  {

    sb = new StringBuilder(r.ReadString());

  }

  public void Write(BinaryWriter w)

  {

    w.Write(this.sb.ToString());

  }

} // end StringConcat

[Serializable]

[StructLayout(LayoutKind.Sequential)]

[SqlUserDefinedAggregate(

   Format.Native,                   // use native serialization 

   IsInvariantToNulls = true,       // NULLs don't matter

   IsInvariantToDuplicates = false, // duplicates matter

   IsInvariantToOrder = false)]     // order matters

public class Product

{

  private SqlInt64 si;

  public void Init()

  {

    si = 1;

  }

  public void Accumulate(SqlInt64 v)

  {

    if (v.IsNull || si.IsNull)  // NULL input = NULL output approach

    {

      si = SqlInt64.Null;

      return;

    }

    if (v == 0 || si == 0)      // to prevent an exception in next if

    {

      si = 0;

      return;

    }

    // stop before we reach max v

    if (Math.Abs(v.Value) <= SqlInt64.MaxValue / Math.Abs(si.Value))

    {

      si = si * v;

    }

    else

    {

      si = 0;                 // if we reach too big v, return 0

    }

  }

  public void Merge(Product Group)

  {

    Accumulate(Group.Terminate());

  }

  public void Read(BinaryReader r)

  {

    sb = new StringBuilder(r.ReadString());

  }

  public void Write(BinaryWriter w)

  {

    w.Write(this.sb.ToString());

  }

} // end StringConcat

[Serializable]

[StructLayout(LayoutKind.Sequential)]

[SqlUserDefinedAggregate(

   Format.Native,                   // use native serialization 

   IsInvariantToNulls = true,       // NULLs don't matter

   IsInvariantToDuplicates = false, // duplicates matter

   IsInvariantToOrder = false)]     // order matters

public class Product

{

  private SqlInt64 si;

  public void Init()

  {

    si = 1;

  }

  public void Accumulate(SqlInt64 v)

  {

    if (v.IsNull || si.IsNull)  // NULL input = NULL output approach

    {

      si = SqlInt64.Null;

      return;

    }

    if (v == 0 || si == 0)      // to prevent an exception in next if

    {

      si = 0;

      return;

    }

    // stop before we reach max v

    if (Math.Abs(v.Value) <= SqlInt64.MaxValue / Math.Abs(si.Value))

    {

      si = si * v;

    }

    else

    {

      si = 0;                 // if we reach too big v, return 0

    }

  }

  public void Merge(Product Group)

  {

    Accumulate(Group.Terminate());

  }
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  public SqlInt64 Terminate()

  {

    return (si);

  }

} // end Product

LISTING 8-3 Visual Basic code for UDAs

Imports System

Imports System.Data

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Imports System.Text

Imports System.IO

Imports System.Runtime.InteropServices

<Serializable(), _

 SqlUserDefinedAggregate( _

               Format.UserDefined, _

               IsInvariantToDuplicates:=False, _

               IsInvariantToNulls:=True, _

               IsInvariantToOrder:=False, _

               IsNullIfEmpty:=False, _

               MaxByteSize:=-1)> _

Public Structure StringConcat

  Implements IBinarySerialize

  Private sb As StringBuilder

  Public Sub Init()

    Me.sb = New StringBuilder()

  End Sub

  Public Sub Accumulate(ByVal v As SqlString, ByVal separator As SqlString)

    If v.IsNull Then

      Return

    End If

    Me.sb.Append(v.Value).Append(separator.Value)

  End Sub

  Public Sub Merge(ByVal other As StringConcat)

    Me.sb.Append(other.sb)

  End Sub

  Public Function Terminate() As SqlString

    Dim output As String = String.Empty

    If Not (Me.sb Is Nothing) AndAlso Me.sb.Length > 0 Then

      output = Me.sb.ToString(0, Me.sb.Length - 1)

    End If

    Return New SqlString(output)

  End Function

  public SqlInt64 Terminate()

  {

    return (si);

  }

} // end Product

Imports System

Imports System.Data

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Imports System.Text

Imports System.IO

Imports System.Runtime.InteropServices

<Serializable(), _

 SqlUserDefinedAggregate( _

               Format.UserDefined, _

               IsInvariantToDuplicates:=False, _

               IsInvariantToNulls:=True, _

               IsInvariantToOrder:=False, _

               IsNullIfEmpty:=False, _

               MaxByteSize:=-1)> _

Public Structure StringConcat

  Implements IBinarySerialize

  Private sb As StringBuilder

  Public Sub Init()

    Me.sb = New StringBuilder()

  End Sub

  Public Sub Accumulate(ByVal v As SqlString, ByVal separator As SqlString)

    If v.IsNull Then

      Return

    End If

    Me.sb.Append(v.Value).Append(separator.Value)

  End Sub

  Public Sub Merge(ByVal other As StringConcat)

    Me.sb.Append(other.sb)

  End Sub

  Public Function Terminate() As SqlString

    Dim output As String = String.Empty

    If Not (Me.sb Is Nothing) AndAlso Me.sb.Length > 0 Then

      output = Me.sb.ToString(0, Me.sb.Length - 1)

    End If

    Return New SqlString(output)

  End Function
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  Public Sub Read(ByVal r As BinaryReader) _

    Implements IBinarySerialize.Read

    sb = New StringBuilder(r.ReadString())

  End Sub

  Public Sub Write(ByVal w As BinaryWriter) _

    Implements IBinarySerialize.Write

    w.Write(Me.sb.ToString())

  End Sub

End Structure

<Serializable(), _

 StructLayout(LayoutKind.Sequential), _

 SqlUserDefinedAggregate( _

               Format.Native, _

               IsInvariantToOrder:=False, _

               IsInvariantToNulls:=True, _

               IsInvariantToDuplicates:=False)> _

Public Class Product

  Private si As SqlInt64

  Public Sub Init()

    si = 1

  End Sub

  Public Sub Accumulate(ByVal v As SqlInt64)

    If v.IsNull = True Or si.IsNull = True Then

      si = SqlInt64.Null

      Return

    End If

    If v = 0 Or si = 0 Then

      si = 0

      Return

    End If

    If (Math.Abs(v.Value) <= SqlInt64.MaxValue / Math.Abs(si.Value)) _

      Then

      si = si * v

    Else

      si = 0

    End If

  End Sub

  Public Sub Merge(ByVal Group As Product)

    Accumulate(Group.Terminate())

  End Sub

  Public Function Terminate() As SqlInt64

    If si.IsNull = True Then

      Return SqlInt64.Null

    Else

      Return si

    End If

  End Function

End Class

  Public Sub Read(ByVal r As BinaryReader) _

    Implements IBinarySerialize.Read

    sb = New StringBuilder(r.ReadString())

  End Sub

  Public Sub Write(ByVal w As BinaryWriter) _

    Implements IBinarySerialize.Write

    w.Write(Me.sb.ToString())

  End Sub

End Structure

<Serializable(), _

 StructLayout(LayoutKind.Sequential), _

 SqlUserDefinedAggregate( _

               Format.Native, _

               IsInvariantToOrder:=False, _

               IsInvariantToNulls:=True, _

               IsInvariantToDuplicates:=False)> _

Public Class Product

  Private si As SqlInt64

  Public Sub Init()

    si = 1

  End Sub

  Public Sub Accumulate(ByVal v As SqlInt64)

    If v.IsNull = True Or si.IsNull = True Then

      si = SqlInt64.Null

      Return

    End If

    If v = 0 Or si = 0 Then

      si = 0

      Return

    End If

    If (Math.Abs(v.Value) <= SqlInt64.MaxValue / Math.Abs(si.Value)) _

      Then

      si = si * v

    Else

      si = 0

    End If

  End Sub

  Public Sub Merge(ByVal Group As Product)

    Accumulate(Group.Terminate())

  End Sub

  Public Function Terminate() As SqlInt64

    If si.IsNull = True Then

      Return SqlInt64.Null

    Else

      Return si

    End If

  End Function

End Class
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 Use the following step-by-step instructions to create and deploy the assemblies in Visual 
Studio 2008. 

 Creating and Deploying an Assembly in Visual Studio 2008 

 1. In Visual Studio 2008, create a new C# or Visual Basic project based on your language 
preference. Use the Database folder and the SQL Server Project template. 

 Note This template is not available in Visual Studio 2008, Standard edition. If you’re working 
with the Standard edition, use the Class Library template and manually write all the code. 

 2. In the New Project dialog box, specify the following information: 

❏ Name UDAs 

❏ Location C:\ 

❏ Solution Name UDAs 

When you’re done entering the information, confi rm that it is correct. 

 3. At this point, you’ll be requested to specify a database reference. Create a new 
 database reference to the tempdb database in the SQL Server instance you’re  working 
with and choose it. The database reference you choose tells Visual Studio where to 
 deploy the UDAs that you develop. 

 4. After confi rming the choice of database reference, in the Solution Explorer window, 
right-click the UDAs project, select the menu items Add and Aggregate, and then 
choose the Aggregate template. If you’re using C#, rename the class Aggregate1.cs to 
UDAClasses.cs. If you’re using Visual Basic, rename Aggregate1.vb to UDAClasses.vb. 
Confi rm. 

 5. Examine the code of the template. You’ll fi nd that a UDA is implemented as a structure 
(struct in C#, Structure in Visual Basic). It can be implemented as a class as well. The 
fi rst block of code in the template includes namespaces that are used in the assembly 
(lines of code starting with using in C# and with Imports in Visual Basic). Add three 
more statements to include the following namespaces: System.Text, System.IO, and 
System.Runtime.InteropServices. (You can copy those from Listing 8-2 or Listing 8-3.) 
You’ll use the StringBuilder class from the System.Text namespace, the BinaryReader 
and BinaryWriter classes from the System.IO namespace, and the StructLayout attribute 
from the System.Runtime.InteropServices namespace (in the second UDA). 

  6. Rename the default name of the UDA—which is currently the same name as the name 
of the class (UDAClasses)—to StringConcat. 

  7. You’ll fi nd four methods that are already provided by the template. These are the methods 
that every UDA must implement. However, if you use the Class Library template for your 

Creating and Deploying an Assembly in Visual Studio 2008
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project, you have to write them manually. Using the Aggregate template, all you have to 
do is fi ll them with your code. Following is a description of the four methods: 

❏  Init This method is used to initialize the computation. It is invoked once for each 
group that the query processor is aggregating. 

❏  Accumulate The name of the method gives you a hint at its purpose— 
accumulating the aggregate values, of course. This method is invoked once for 
each value (that is, for every single row) in the group that is being aggregated. 
It uses input parameters, and the parameters have to be of the data types 
 corresponding to the native SQL Server data types of the columns you are going 
to aggregate. The data type of the input can also be a CLR UDT. In SQL Server 
2005, UDAs  supported no more than one input parameter. In SQL Server 2008, 
UDAs support multiple input parameters. 

❏  Merge Notice that this method uses an input parameter with the type that is the 
aggregate class. The method is used to merge multiple partial computations of 
an aggregation. 

❏  Terminate This method fi nishes the aggregation and returns the result. 

  8. Add an internal (private) variable—sb—to the class just before the Init method. You 
can do so by simply copying the code that declares it from Listing 8-2 or Listing 8-3, 
depending on your choice of language. The variable sb is of type StringBuilder and will 
hold the intermediate aggregate value.  

  9. Override the current code for the four methods with the code implementing them from 
Listing 8-2 or Listing 8-3. Keep in mind the following points for each method: 

❏  In the Init method, you initialize sb with an empty string. 

❏  The Accumulate method accepts two input parameters (new in SQL Server 
2008)—v and separator. The parameter v represents the value to be concatenated, 
and the parameter separator is obviously the separator. If v is NULL, it is simply 
ignored, similar to the way built-in aggregates handle NULLs. If v is not NULL, the 
value in v and a separator are appended to sb.  

❏  In the Merge method, you are simply adding a partial aggregation to the current 
one. You do so by calling the Accumulate method of the current aggregation and 
adding the termination (fi nal value) of the other partial aggregation. The  input 
of the Merge function refers to the class name, which you revised earlier to 
StringConcat.  

❏  The Terminate method is very simple as well; it just returns the string representation 
of the aggregated value minus the superfl uous separator at the end. 

  10. Delete the last two rows of the code in the class from the template; these are a 
 placeholder for a member fi eld. You already defi ned the member fi eld you need at the 
beginning of the UDA. 
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  11. Next, go back to the top of the UDA, right after the inclusion of the namespaces. 
You’ll fi nd attribute names that you want to include. Attributes help Visual Studio in 
 deployment, and they help SQL Server to optimize the usage of the UDA. UDAs have 
to include the Serializable attribute. Serialization in .NET means saving the values 
of the fi elds of a class persistently. UDAs need serialization for intermediate results. 
The format of the serialization can be native, meaning they are left to SQL Server or 
 defi ned by the user. Serialization can be native if you use only .NET value types; it has 
to be  user  defi ned if you use .NET reference types. Unfortunately, the string type is 
a  reference type in .NET. Therefore, you have to prepare your own serialization. You 
have to  implement the IBinarySerialize interface, which defi nes just two methods: Read 
and Write. The implementation of these methods in our UDA is very simple. The Read 
method uses the ReadString method of the StringBuilder class. The Write method uses 
the default ToString method. The ToString method is inherited by all .NET classes from 
the topmost class, called System.Object.  

 Continue implementing the UDA by following these steps: 

 11.1.  Specify that you are going to implement the IBinarySerialize interface in the 
structure. If you’re using C#, you do so by adding a colon and the name of the 
interface right after the name of the structure (the UDA name). If you’re using 
Visual Basic, you do so by adding Implements IBinarySerialize after the name of 
the structure. 

 11.2.  Copy the Read and Write methods from Listing 8-2 or Listing 8-3 to the end of 
your UDA. 

 11.3.  Change the Format.Native property of the SqlUserDefi nedAggregate attribute 
to Format.UserDefi ned. In SQL Server 2005, with user-defi ned serialization, 
your aggregate was limited to 8,000 bytes only. You had to specify how many 
bytes your UDA could return at maximum with the MaxByteSize property of 
the SqlUserDefi nedAggregate attribute. SQL Server 2008 lifts this restriction and 
 supports unlimited size (or more accurately, the maximum size supported by 
large object types like VARCHAR(MAX), which is currently 2 GB). A value of –1 in 
the MaxByteSize property indicates unlimited size. 

 12.  You’ll fi nd some other interesting properties of the SqlUserDefi nedAggregate attribute 
in Listings 8-2 and 8-3. Let’s explore them: 

❏  IsInvariantToDuplicates This is an optional property. For example, the MAX 
 aggregate is invariant to duplicates, while SUM is not.  

❏  IsInvariantToNulls This is another optional property. It specifi es whether the 
 aggregate is invariant to NULLs.  

❏  IsInvariantToOrder This property is reserved for future use. It is currently ignored 
by the query processor. Therefore, order is currently not guaranteed. If you want 
to concatenate elements in a certain order, you have to implement your own 
sorting logic either in the Accumulate or the Terminate methods. This naturally 
incurs extra cost and unfortunately cannot benefi t from index ordering. 

C08626034.indd   484 2/13/2009   2:04:51 AM



 Chapter 8 Aggregating and Pivoting Data 485

❏  IsNullIfEmpty This property indicates whether the aggregate returns a NULL if 
no values have been accumulated. 

  13. Add the aforementioned properties to your UDA by copying them from Listing 8-2 or 
Listing 8-3. Your fi rst UDA is now complete! 

  14. Listings 8-2 and 8-3 also have the code to implement a product UDA (Product). Copy 
the complete code implementing Product to your script. Note that this UDA involves 
 handling of big integers only. Because the UDA internally deals only with value types, it 
can use native serialization. Native serialization requires that the StructLayoutAttribute be 
specifi ed as StructLayout.LayoutKind.Sequential if the UDA is defi ned in a class and not 
a structure. Otherwise, the UDA implements the same four methods as your  previous 
UDA. An additional check in the Accumulate method prevents out-of-range values. 

  15. Save all fi les by choosing the File menu item and then choosing Save All. 

  16. Create the assembly fi le in the project folder by building the solution. You do this by 
choosing the Build menu item and then choosing Build Solution. 

  17. Deploy the assembly in SQL Server.  

 Note To automatically deploy the solution in SQL Server, you normally choose the 
Build menu item and then choose Deploy Solution. However, at the time of this writing, 
 automatic deployment in Visual Studio 2008 with Service Pack 1 fails if you use any of 
the new UDA features in SQL Server 2008 (multiple input parameters or the unlimited 
 maximum size). Therefore, I’ll provide instructions here to do explicit deployment. 

  18. Explicit deployment of the UDAs in SQL Server involves running the CREATE ASSEMBLY 
command to import the intermediate language code from the assembly fi le into 
the target database (tempdb in our case) and the CREATE AGGREGATE command to 
 register each aggregate. If you used C# to defi ne the UDAs, run the following code 
while connected to the tempdb database:  

CREATE ASSEMBLY UDAs

  FROM ‘C:\UDAs\UDAs\bin\Debug\UDAs.dll’;

CREATE AGGREGATE dbo.StringConcat

(

  @value     AS NVARCHAR(MAX),

  @separator AS NCHAR(1)

)

RETURNS NVARCHAR(MAX)

EXTERNAL NAME UDAs.StringConcat;

CREATE AGGREGATE dbo.Product

(

  @value     AS BIGINT

)

RETURNS BIGINT

EXTERNAL NAME UDAs.Product;
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 If you used Visual Basic, run the following code: 

CREATE ASSEMBLY UDAs

  FROM ‘C:\UDAs\UDAs\bin\UDAs.dll’;

CREATE AGGREGATE dbo.StringConcat

(

  @value     AS NVARCHAR(MAX),

  @separator AS NCHAR(1)

)

RETURNS NVARCHAR(MAX)

EXTERNAL NAME UDAs.[UDAs.StringConcat];

CREATE AGGREGATE dbo.Product

(

  @value     AS BIGINT

)

RETURNS BIGINT

EXTERNAL NAME UDAs.[UDAs.Product];

 The assembly should be cataloged at this point, and both UDAs should be created.  

 You can check whether the deployment was successful by browsing the sys.assemblies and 
sys.assembly_modules catalog views, which are in the tempdb database in our case. Run the 
following code to query those views: 

SELECT * FROM sys.assemblies;

SELECT * FROM sys.assembly_modules;

 Note that to run user-defi ned assemblies in SQL Server, you need to enable the server 
 confi guration option ‘clr enabled’ (which is disabled by default). You do so by running the 
 following code:  

EXEC sp_configure 'clr enabled', 1;

RECONFIGURE WITH OVERRIDE;

 This requirement is applicable only if you want to run user-defi ned assemblies; this option is 
not required to be turned on if you want to run system-supplied assemblies. 

 That’s basically it. You use UDAs just like you use any built-in aggregate function—and that’s 
one of their great advantages compared to other solutions to custom aggregates. To test the 
new functions, run the following code, and you’ll get the same results returned by the other 
solutions to custom aggregates I presented earlier: 

SELECT groupid, dbo.StringConcat(string, N',') AS string

FROM dbo.Groups

GROUP BY groupid;

SELECT groupid, dbo.Product(val) AS product

FROM dbo.Groups

GROUP BY groupid;
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 Note that the StringConcat function expects a non-NULL separator as input and will fail if 
provided with a NULL. Of course, you can add logic to the function’s defi nition to use some 
default separator when a NULL is specifi ed. 

Specialized Solutions

 Another type of solution for custom aggregates is developing a specialized, optimized 
 solution for each aggregate. The advantage is usually the improved performance of the 
 solution. The disadvantage is that you probably won’t be able to use similar logic for other 
aggregate calculations. 

Specialized Solution for Aggregate String Concatenation

 A specialized solution for aggregate string concatenation uses the PATH mode of the FOR 
XML query option. This beautiful (and extremely fast) technique was devised by Michael Rys, 
a program manager with the Microsoft SQL Server development team, and Eugene Kogan, 
a technical lead on the Microsoft SQL Server Engine team. The PATH mode provides an 
easier way to mix elements and attributes than the EXPLICIT directive. Here’s the specialized 
 solution for aggregate string concatenation: 

SELECT groupid,

  STUFF((SELECT ',' + string AS [text()]

         FROM dbo.Groups AS G2

         WHERE G2.groupid = G1.groupid

         ORDER BY memberid

         FOR XML PATH('')), 1, 1, '') AS string

FROM dbo.Groups AS G1

GROUP BY groupid;

 The subquery basically returns an ordered path of all strings within the current group. 
Because an empty string is provided to the PATH clause as input, a wrapper element is not 
generated. An expression with no alias (for example, ‘,’ + string) or one aliased as [text()] is 
inlined, and its contents are inserted as a text node. The purpose of the STUFF function is 
simply to remove the fi rst comma (by substituting it with an empty string). 

Dynamic Pivoting  Now that you are familiar with a fast, specialized solution to string 
 concatenation, you can put it to use to achieve dynamic pivoting. Recall from the “Pivoting” 
section that the static solutions for pivoting in SQL Server require you to explicitly list the 
spreading values (the values in the spreading element). Consider the following static query, 
which I covered earlier in the “Pivoting” section: 

SELECT *

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

      FROM dbo.Orders) AS D

  PIVOT(SUM(qty) FOR orderyear IN([2006],[2007],[2008])) AS P;
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 Note that this query is against the dbo.Orders table that you created and populated  earlier 
by running the code in Listing 8-1. Here you have to explicitly list the order years in the 
IN clause. If you want to make this solution more dynamic, query the distinct order years 
from the table and use the FOR XML PATH technique to construct the comma-separated 
list of years. You can use the QUOTENAME function to convert the integer years to Unicode 
 character strings and add brackets around them. Also, using QUOTENAME is critical to 
 prevent SQL Injection if this technique is used for a nonnumeric spreading column. The query 
that produces the comma-separated list of years looks like this: 

SELECT

  STUFF(

    (SELECT N',' + QUOTENAME(orderyear) AS [text()]

     FROM (SELECT DISTINCT YEAR(orderdate) AS orderyear

           FROM dbo.Orders) AS Years

     ORDER BY orderyear

     FOR XML PATH('')), 1, 1, '');

 Note that this useful technique has some limitations, though not serious ones, because 
it’s  XML based. For example, characters that have special meaning in XML, like ‘<’, will be 
 converted to codes (like &lt;), yielding the wrong pivot statement. 

 What’s left is to construct the whole query string, store it in a variable and use the sp_executesql 
stored procedure to execute it dynamically, like so: 

DECLARE @sql AS NVARCHAR(1000);

SET @sql = N'SELECT *

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

      FROM dbo.Orders) AS D

  PIVOT(SUM(qty) FOR orderyear IN(' +

STUFF(

  (SELECT N',' + QUOTENAME(orderyear) AS [text()]

   FROM (SELECT DISTINCT YEAR(orderdate) AS orderyear

         FROM dbo.Orders) AS Years

   ORDER BY orderyear

   FOR XML PATH('')), 1, 1, '') + N')) AS P;';

EXEC sp_executesql @stmt = @sql;

Specialized Solution for Aggregate Product

 Keep in mind that to calculate an aggregate product, you have to scan all values in the 
group. So the performance potential your solution can reach is to achieve the calculation by 
 scanning the data only once, using a set-based query. In the case of an aggregate product, 
this can be achieved using mathematical manipulation based on logarithms. I’ll rely on the 
following logarithmic equations: 

 Equation 1: loga(b) = x if and only if  ax = b  
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 Equation 2: loga(v1 * v2 * . . . * vn) = loga(v1) + loga(v2) + . . . + loga(vn)  

 Basically, what you’re going to do here is a transformation of calculations. You have support 
in T-SQL for the LOG, POWER, and SUM functions. Using those, you can generate the missing 
product. Group the data by the groupid column, as you would with any built-in aggregate. 
The expression SUM(LOG10(val)) corresponds to the right side of Equation 2, where the base 
a is equal to 10 in our case, because you used the LOG10 function. To get the product of the 
elements, all you have left to do is raise the base (10) to the power of the right side of the 
equation. In other words, the expression POWER(10., SUM(LOG10(val))) gives you the product 
of elements within the group. Here’s what the full query looks like: 

SELECT groupid, POWER(10., SUM(LOG10(val))) AS product

FROM dbo.Groups

GROUP BY groupid;

 This is the fi nal solution if you’re dealing only with positive values. However, the logarithm 
function is undefi ned for zero and negative numbers. You can use pivoting techniques to 
identify and deal with zeros and negatives as follows: 

SELECT groupid,

  CASE

    WHEN MAX(CASE WHEN val = 0 THEN 1 END) = 1 THEN 0

    ELSE 

      CASE WHEN COUNT(CASE WHEN val < 0 THEN 1 END) % 2 = 0

        THEN 1 ELSE -1

      END * POWER(10., SUM(LOG10(NULLIF(ABS(val), 0))))

  END AS product

FROM dbo.Groups

GROUP BY groupid;

 The outer CASE expression fi rst uses a pivoting technique to check whether a 0 value 
 appears in the group, in which case it returns a 0 as the result. The ELSE clause invokes 
 another CASE expression, which also uses a pivoting technique to count the number of 
 negative values in the group. If that number is even, it produces a +1; if it’s odd, it produces 
a –1. The purpose of this calculation is to determine the numerical sign of the result. The sign 
(–1 or +1) is then multiplied by the product of the absolute values of the numbers in the 
group to give the  desired product. 

 Note that NULLIF is used here to substitute zeros with NULLs. You might expect this part 
of the expression not to be evaluated at all if a zero is found. But remember that the 
 optimizer can consider many different physical plans to execute your query. As a result, you 
can’t be certain of the actual order in which parts of an expression will be evaluated. By 
substituting zeros with NULLs, you ensure that you’ll never get a domain error if the LOG10 
function ends up being invoked with a zero as an input. This use of NULLIF, together with 
the use of ABS, allows this solution to accommodate inputs of any sign (negative, zero, 
and positive). 
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 You could also use a pure mathematical approach to handle zeros and negative values using 
the following query: 

SELECT groupid,

  CAST(ROUND(EXP(SUM(LOG(ABS(NULLIF(val,0)))))*

    (1-SUM(1-SIGN(val))%4)*(1-SUM(1-SQUARE(SIGN(val)))),0) AS INT)

 AS product

FROM dbo.Groups

GROUP BY groupid;

 This example shows that you should never lose hope when searching for an effi cient solution. 
If you invest the time and think outside the box, in most cases you’ll fi nd a solution. 

Specialized Solutions for Aggregate Bitwise Operations

 In this section, I’ll introduce specialized solutions for aggregating the T-SQL bitwise 
 operations—bitwise OR (|), bitwise AND (&), and bitwise XOR (̂ ). I’ll assume that you’re 
 familiar with the basics of bitwise operators and their uses and provide only a brief  overview. 
If you’re not, please refer fi rst to the section “Bitwise Operators” in SQL Server Books Online. 

 Bitwise operations are operations performed on the individual bits of integer data. Each bit has two 
possible values, 1 and 0. Integers can be used to store bitmaps, or strings of bits, and in fact they are 
used internally by SQL Server to store metadata information—for example, properties of  indexes 
(clustered, unique, and so on) and properties of databases (readonly, restrict access,  autoshrink, and 
so on). You might also choose to store bitmaps yourself to represent sets of binary attributes—for 
example, a set of permissions where each bit represents a different permission.  

 Some experts advise against using such a design because it violates 1NF (fi rst normal form, 
which requires attributes to be atomic). You might well prefer to design your data in a more 
normalized form, where attributes like this are stored in separate columns. I don’t want to 
get into a debate about which design is better. Here I’ll assume a given design that does 
store bitmaps with sets of fl ags, and I’ll assume that you need to perform aggregate bitwise 
 activities on these bitmaps. I just want to introduce the techniques for cases where you do 
fi nd the need to use them. 

 Bitwise OR (|) is usually used to construct bitmaps or to generate a result bitmap that 
 accumulates all bits that are turned on. In the result of bitwise OR, bits are turned on (that is, 
have value 1) if they are turned on in at least one of the separate bitmaps. 

 Bitwise AND (&) is usually used to check whether a certain bit (or a set of bits) is turned on by 
ANDing the source bitmap and a mask. It’s also used to accumulate only bits that are turned 
on in all bitmaps. It generates a result bit that is turned on if that bit is turned on in all the 
individual bitmaps. 

 Bitwise XOR (̂ ) is usually used to calculate parity or as part of a scheme to encrypt data. For 
each bit position, the result bit is turned on if it is on in an odd number of the individual bitmaps.  
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 Note Bitwise XOR is the only bitwise operator that is reversible. That’s why it’s used for parity 
calculations and encryption. 

 Aggregate versions of the bitwise operators are not provided in SQL Server, and I’ll  provide 
solutions here to perform aggregate bitwise operations. I’ll use the same Groups table 
that I used in my other custom aggregate examples. Assume that the integer column val 
represents a bitmap. To see the bit representation of each integer, fi rst create the function 
DecToBase by running the following code: 

IF OBJECT_ID('dbo.DecToBase') IS NOT NULL

  DROP FUNCTION dbo.DecToBase;

GO

CREATE FUNCTION dbo.DecToBase(@val AS BIGINT, @base AS INT)

  RETURNS VARCHAR(63)

AS

BEGIN

  DECLARE @r AS VARCHAR(63), @alldigits AS VARCHAR(36);

  SET @alldigits = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ';

  SET @r = '';

  WHILE @val > 0

  BEGIN

    SET @r = SUBSTRING(@alldigits, @val % @base + 1, 1) + @r;

    SET @val = @val / @base;

  END

  RETURN @r;

END

GO

 The function accepts two inputs: a 64-bit integer holding the source bitmap and a base in 
which you want to represent the data. Use the following query to return the bit representation 
of the integers in the val column of Groups:  

SELECT groupid, val, 

  RIGHT(REPLICATE('0', 32) + CAST(dbo.DecToBase(val, 2) AS VARCHAR(64)),

        32) AS binval

FROM dbo.Groups;

 This code generates the following output (only the 10 rightmost digits of binval are shown): 

groupid    val         binval

---------- ----------- ---------

a          6           00000110

a          7           00000111

b          3           00000011

b          7           00000111

b          3           00000011

b          11          00001011

c          8           00001000

c          10          00001010

c          12          00001100
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 The binval column shows the val column in base 2 representation, with leading zeros to  create 
a string with a fi xed number of digits. Of course, you can adjust the number of  leading zeros 
according to your needs, which I did to produce the outputs I’ll show. To avoid  distracting 
you from the techniques I want to focus on, however, the code for that  adjustment is not in 
my code samples. 

Aggregate Bitwise OR  Without further ado, let’s start with calculating an aggregate  bitwise 
OR. To give tangible context to the problem, imagine that you’re maintaining  application 
 security in the database. The groupid column represents a user, and the val  column  represents 
a bitmap with permission states (either 1 for granted or 0 for not granted) of a role the user is a 
member of. You’re after the effective permissions bitmap for each user (group), which should be 
calculated as the aggregate bitwise OR between all bitmaps of roles the user is a member of. 

 The main aspect of a bitwise OR operation that I’ll rely on in my solutions is the fact that it’s 
equivalent to the arithmetic sum of the values represented by each distinct bit value that is 
turned on in the individual bitmaps. Within an integer, a bit represents the value 2(bit_pos-1). 
For example, the bit value of the third bit is 22 = 4. Take, for example, the bitmaps for user 
c: 8 (1000), 10 (1010), and 12 (1100). The bitmap 8 has only one bit turned on—the bit value 
 representing 8; 10 has the bits representing 8 and 2 turned on; and 12 has the 8 and 4 bits 
turned on. The distinct bits turned on in any of the integers 8, 10, and 12 are the 2, 4, and 
8 bits, so the aggregate bitwise OR of 8, 10, and 12 is equal to 2 + 4 + 8 = 14 (1110). 

 The following solution relies on the aforementioned logic by extracting the individual bit 
 values that are turned on in any of the participating bitmaps. The extraction is achieved 
 using the expression MAX(val & <bitval>). The query then performs an arithmetic sum of the 
 individual bit values: 

SELECT groupid,

    MAX(val & 1)

  + MAX(val & 2)

  + MAX(val & 4)

  + MAX(val & 8)

-- ...

  + MAX(val & 1073741824) AS agg_or

FROM dbo.Groups

GROUP BY groupid;

 This query generates the following output: 

groupid    agg_or      binval

---------- ----------- --------

a          7           00000111

b          15          00001111

c          14          00001110

 Note that I added a third column (binval) to the output showing the 10 rightmost digits of 
the binary representation of the result value. I’ll continue to do so with the rest of the queries 
that apply aggregate bitwise operations.  
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 Similarly, you can use SUM(DISTINCT val & <bitval>) instead of MAX(val & <bitval>) because 
the only possible results are <bitval> and 0: 

SELECT groupid,

    SUM(DISTINCT val & 1)

  + SUM(DISTINCT val & 2)

  + SUM(DISTINCT val & 4)

  + SUM(DISTINCT val & 8)

-- ...

  + SUM(DISTINCT val & 1073741824) AS agg_or

FROM dbo.Groups

GROUP BY groupid;

 Both solutions suffer from the same limitation—lengthy query strings—because of 
the need for a different expression for each bit value. In an effort to shorten the  query 
strings, you can use an auxiliary table. You join the Groups table with an  auxiliary table 
that  contains all relevant bit values, using val & bitval = bitval as the join  condition. 
The result of the join will include all bit values that are turned on in any of the  bitmaps. 
You can then fi nd SUM(DISTINCT <bitval>) for each group. You can easily  generate 
the  auxiliary table of bit values from the Nums table used earlier. Filter as many 
 numbers as the bits that you might need and raise 2 to the power n–1. Here’s the 
complete solution: 

SELECT groupid, SUM(DISTINCT bitval) AS agg_or

FROM dbo.Groups

  JOIN (SELECT POWER(2, n-1) AS bitval

        FROM dbo.Nums

        WHERE n <= 31) AS Bits

    ON val & bitval = bitval

GROUP BY groupid;

Aggregate Bitwise AND  In a similar manner, you can calculate an aggregate bitwise 
AND. In the permissions scenario, an aggregate bitwise AND represents the most restrictive 
 permission set. Just keep in mind that a bit value should be added to the arithmetic sum only 
if it’s turned on in all bitmaps. So fi rst group the data by groupid and bitval and fi lter only the 
groups where MIN(val & bitval) > 0, meaning that the bit value was turned on in all  bitmaps. 
In an outer query, group the data by groupid and perform the arithmetic sum of the bit 
 values from the inner query: 

SELECT groupid, SUM(bitval) AS agg_and

FROM (SELECT groupid, bitval

      FROM dbo.Groups,

        (SELECT POWER(2, n-1) AS bitval

         FROM dbo.Nums

         WHERE n <= 31) AS Bits

      GROUP BY groupid, bitval

      HAVING MIN(val & bitval) > 0) AS D

GROUP BY groupid;
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 This query generates the following output: 

groupid    agg_and     binval

---------- ----------- --------

a          6           00000110

b          3           00000011

c          8           00001000

Aggregate Bitwise XOR  To calculate an aggregate bitwise XOR operation, fi lter only the 
groupid, bitval groups that have an odd number of bits turned on, as shown in the following 
code, which illustrates an aggregate bitwise XOR using Nums: 

SELECT groupid, SUM(bitval) AS agg_xor

FROM (SELECT groupid, bitval

      FROM dbo.Groups,

        (SELECT POWER(2, n-1) AS bitval

         FROM dbo.Nums

         WHERE n <= 31) AS Bits

      GROUP BY groupid, bitval

      HAVING SUM(SIGN(val & bitval)) % 2 = 1) AS D

GROUP BY groupid;

 This query produces the following output: 

groupid    agg_xor     binval

---------- ----------- --------

a          1           00000001

b          12          00001100

c          14          00001110

Median

 As another example of a specialized custom aggregate solution, I’ll use the statistical median 
calculation. Suppose that you need to calculate the median of the val column for each group. 
There are two different defi nitions of median. Here we will return the middle value in case we 
have an odd number of elements and the average of the two middle values in case we have 
an even number of elements. 

 The following code shows a technique for calculating the median: 

WITH Tiles AS

(

  SELECT groupid, val,

    NTILE(2) OVER(PARTITION BY groupid ORDER BY val) AS tile

  FROM dbo.Groups

),

GroupedTiles AS

(

  SELECT groupid, tile, COUNT(*) AS cnt,

    CASE WHEN tile = 1 THEN MAX(val) ELSE MIN(val) END AS val

  FROM Tiles

  GROUP BY groupid, tile

)
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SELECT groupid,

  CASE WHEN MIN(cnt) = MAX(cnt) THEN AVG(1.*val)

       ELSE MIN(val) END AS median

FROM GroupedTiles

GROUP BY groupid;

 This code generates the following output: 

groupid    median

---------- ----------

a          6.500000

b          5.000000

c          10.000000

 The Tiles CTE calculates the NTILE(2) value within the group, based on val order. When you 
have an even number of elements, the fi rst half of the values gets tile number 1, and the 
 second half gets tile number 2. In an even case, the median is supposed to be the average 
of the highest value within the fi rst tile and the lowest in the second. When you have an 
odd number of elements, remember that an additional row is added to the fi rst group. This 
means that the highest value in the fi rst tile is the median. 

 The second CTE (GroupedTiles) groups the data by group and tile number, returning the row 
count for each group and tile as well as the val column, which for the fi rst tile is the maximum 
value within the tile and for the second tile is the minimum value within the tile. 

 The outer query groups the two rows in each group (one representing each tile). A CASE 
 expression in the SELECT list determines what to return based on the parity of the group’s 
row count. When the group has an even number of rows (that is, the group’s two tiles have 
the same row count), you get the average of the maximum in the fi rst tile and the minimum 
in the second. When the group has an odd number of elements (that is, the group’s two tiles 
have different row counts), you get the minimum of the two values, which happens to be the 
maximum within the fi rst tile, which, in turn, happens to be the median. 

 Using the ROW_NUMBER function, you can come up with additional solutions to fi nding the 
median that are more elegant and somewhat simpler. Here’s the fi rst example: 

WITH RN AS

(

  SELECT groupid, val,

    ROW_NUMBER()

      OVER(PARTITION BY groupid ORDER BY val, memberid) AS rna,

    ROW_NUMBER()

      OVER(PARTITION BY groupid ORDER BY val DESC, memberid DESC) AS rnd

  FROM dbo.Groups

)

SELECT groupid, AVG(1.*val) AS median

FROM RN

WHERE ABS(rna - rnd) <= 1

GROUP BY groupid;
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 The idea is to calculate two row numbers for each row: one based on val, memberid (the 
 tiebreaker) in ascending order (rna) and the other based on the same attributes in  descending 
order (rnd). Two sequences sorted in opposite directions have an interesting mathematical 
 relationship that you can use to your advantage. The absolute difference between the two 
is smaller than or equal to 1 only for the elements that need to participate in the median 
 calculation. Take, for example, a group with an odd number of elements; ABS(rna – rnd) is equal 
to 0 only for the middle row. For all other rows, it is greater than 1. Given an even  number of 
elements, the difference is 1 for the two middle rows and greater than 1 for all others. 

 The reason for using memberid as a tiebreaker is to guarantee determinism of the row 
 number calculations. Because you’re calculating two different row numbers, you want to 
make sure that a value that appears at the nth position from the beginning in ascending 
 order appears at the nth position from the end in descending order. 

 Once the values that need to participate in the median calculation are isolated, you just need 
to group them by groupid and calculate the average per group. 

 You can avoid the need to calculate two separate row numbers by deriving the second from 
the fi rst. The descending row numbers can be calculated by subtracting the ascending row 
numbers from the count of rows in the group and adding one. For example, in a group of four 
elements, the row that got an ascending row number 1 would get the descending row number 
4–1+1 = 4. Ascending row number 2 would get the descending row number 4–2+1 = 3 and 
so on. Deriving the descending row number from the ascending one eliminates the need for a 
tiebreaker. You’re not dealing with two separate calculations; therefore, nondeterminism is not 
an issue anymore. 

 So the calculation rna – rnd becomes the following: rn – (cnt-rn+1) = 2*rn – cnt – 1. Here’s a 
query that implements this logic: 

WITH RN AS

(

  SELECT groupid, val,

    ROW_NUMBER() OVER(PARTITION BY groupid ORDER BY val) AS rn,

    COUNT(*) OVER(PARTITION BY groupid) AS cnt

  FROM dbo.Groups

)

SELECT groupid, AVG(1.*val) AS median

FROM RN

WHERE ABS(2*rn - cnt - 1) <= 1

GROUP BY groupid;

 Here’s another way to fi gure out which rows participate in the median calculation based on 
the row number and the count of rows in the group: rn IN((cnt+1)/2, (cnt+2)/2). For an odd 
number of elements, both expressions yield the middle row number. For example, if you 
have 7 rows, both (7+1)/2 and (7+2)/2 equal 4. For an even number of elements, the fi rst 
 expression yields the row number just before the middle point, and the second yields the 
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row number just after it. If you have 8 rows, (8+1)/2 yields 4, and (8+2)/2 yields 5. Here’s the 
query that implements this logic: 

WITH RN AS

(

  SELECT groupid, val,

    ROW_NUMBER() OVER(PARTITION BY groupid ORDER BY val) AS rn,

    COUNT(*) OVER(PARTITION BY groupid) AS cnt

  FROM dbo.Groups

)

SELECT groupid, AVG(1.*val) AS median

FROM RN

WHERE rn IN((cnt+1)/2, (cnt+2)/2)

GROUP BY groupid;

Mode

 The last specialized solution of a custom aggregate that I’ll cover is for the mode of a 
 distribution. The mode is the most frequently occurring value. As an example of mode 
 calculation, consider a request to return for each customer the ID of the employee who 
handled the most orders for that customer, according to the Sales.Orders table in the 
InsideTSQL2008 database. In case of ties, you need to determine what you want to do. One 
option is to return all tied employees; another option is to use a tiebreaker to determine 
which to return—for example, the one with the higher employee ID. 

 The fi rst solution that I’ll present is based on ranking calculations. I’ll fi rst describe a solution 
that applies a tiebreaker, and then I’ll explain the required revisions for the solution to return 
all ties.  

 You group the rows by customer ID and employee ID. You calculate a count of orders per 
group, plus a row number partitioned by customer ID, based on the order of count  descending 
and employee ID descending. The rows with the employee ID that is the mode—with the 
higher employee ID used as a tiebreaker—have row number 1. What’s left is to defi ne a table 
 expression based on the query and in the outer query fi lter only the rows where the row 
 number is equal to 1, like so: 

USE InsideTSQL2008;

WITH C AS

(

  SELECT custid, empid, COUNT(*) AS cnt,

    ROW_NUMBER() OVER(PARTITION BY custid

                      ORDER BY COUNT(*) DESC, empid DESC) AS rn

  FROM Sales.Orders

  GROUP BY custid, empid

)

SELECT custid, empid, cnt

FROM C

WHERE rn = 1;
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 This query generates the following output, shown here in abbreviated form: 

custid      empid       cnt

----------- ----------- -----------

1           4           2

2           3           2

3           3           3

4           4           4

5           3           6

6           9           3

7           4           3

8           4           2

9           4           4

10          3           4

11          6           2

12          8           2

...

 If you want to return all ties, simply use the RANK function instead of ROW_NUMBER and 
calculate it based on count ordering alone (without the employee ID tiebreaker), like so: 

WITH C AS

(

  SELECT custid, empid, COUNT(*) AS cnt,

    RANK() OVER(PARTITION BY custid

                ORDER BY COUNT(*) DESC) AS rn

  FROM Sales.Orders

  GROUP BY custid, empid

)

SELECT custid, empid, cnt

FROM C

WHERE rn = 1;

 This time, as you can see in the following output, ties are returned: 

custid      empid       cnt

----------- ----------- -----------

1           1           2

1           4           2

2           3           2

3           3           3

4           4           4

5           3           6

6           9           3

7           4           3

8           4           2

9           4           4

10          3           4

11          6           2

11          4           2

11          3           2

12          8           2

...
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 In case you do want to apply a tiebreaker, you can use another solution that is very 
 effi cient. It is based on the concatenation technique that I presented earlier in the chapter. 
Write a query that groups the data by customer ID and employee ID, and for each group, 
 concatenate the count of rows and the employee ID to a single value (call it binval). Defi ne 
a table expression based on this query. Have the outer query group the data by customer 
ID and calculate for each customer the maximum binval. This maximum value contains the 
max count and within it the maximum employee ID. What’s left is to extract the count and 
 employee ID from the binary value by using the SUBSTRING function and convert the values 
to the original types. Here’s the complete solution query: 

SELECT custid,

  CAST(SUBSTRING(MAX(binval), 5, 4) AS INT) AS empid,

  CAST(SUBSTRING(MAX(binval), 1, 4) AS INT) AS cnt  

FROM (SELECT custid, 

        CAST(COUNT(*) AS BINARY(4)) + CAST(empid AS BINARY(4)) AS binval

      FROM Sales.Orders

      GROUP BY custid, empid) AS D

GROUP BY custid;

 As an exercise, you can test the solutions against a table with a large number of rows. You 
will see that this solution is very fast. 

Histograms

 Histograms are powerful analytical tools that express the distribution of items. For example, 
suppose you need to fi gure out from the order information in the Sales.OrderValues view how 
many small, medium, and large orders you have, based on the order values. In other words, 
you need a histogram with three steps. The extreme values (the minimum and  maximum 
 values) are what defi nes values as small, medium, or large. Suppose for the sake of simplicity 
that the  minimum order value is 10 and the maximum is 40. Take the difference between the 
two extremes (40 – 10 = 30) and divide it by the number of steps (3) to get the step size. In this 
case, it’s 30 divided by 3, which is 10. So the boundaries of step 1 (small) would be 10 and 20; 
for step 2 (medium), they would be 20 and 30; and for step 3 (large), they would be 30 and 40. 

 To generalize this, let mn = MIN(val) and mx = MAX(val) and let stepsize = (mx – mn) / 
@numsteps. Given a step number n, the lower bound of the step (lb) is mn + (n – 1) * stepsize 
and the higher bound (hb) is mn + n * stepsize. Something is tricky here. What predicate do 
you use to bracket the elements that belong in a specifi c step? You can’t use val BETWEEN 
lb and hb because a value that is equal to hb appears in this step and also in the next step, 
where it equals the lower bound. Remember that the same calculation yielded the higher 
bound of one step and the lower bound of the next step. One approach to deal with this 
problem is to increase each of the lower bounds besides the fi rst by one so that they exceed 
the previous step’s higher bounds. With integers, this is a fi ne solution, but with another 
data type (such as NUMERIC in our case) it doesn’t work because there are potential values 
 between adjacent steps but not within either one—between the cracks, so to speak. 
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 What I like to do to solve the problem is keep the same value in both bounds, and instead 
of using BETWEEN, I use val >= lb and val < hb. This technique has its own issues, but I fi nd 
it easier to deal with than the previous technique. The issue here is that the item with the 
highest quantity (40, in our simplifi ed example) is left out of the histogram. To solve this, 
I add a very small number to the maximum value before calculating the step size:  stepsize 
= ((1E0*mx + 0.0000000001) – mn) / @numsteps. This technique allows the item with 
the  highest value to be included, and the effect on the histogram is otherwise negligible. 
I  multiplied mx by the fl oat value 1E0 to protect against the loss of the upper data point 
when val is typed as MONEY or SMALLMONEY. 

 So you need the following ingredients to generate the lower and higher bounds of the 
 histogram’s steps: @numsteps (given as input), step number (the n column from the Nums 
auxiliary table), mn, and stepsize, which I described earlier.  

 Here’s the T-SQL code required to produce the step number, lower bound, and higher bound 
for each step of the histogram: 

USE InsideTSQL2008;

DECLARE @numsteps AS INT;

SET @numsteps = 3;

SELECT n AS step,

  mn + (n - 1) * stepsize AS lb,

  mn + n * stepsize AS hb

FROM dbo.Nums

  CROSS JOIN 

    (SELECT MIN(val) AS mn,

       ((1E0*MAX(val) + 0.0000000001) - MIN(val))

       / @numsteps AS stepsize

     FROM Sales.OrderValues) AS D

WHERE n < = @numsteps;

 This code generates the following output: 

step        lb                     hb

----------- ---------------------- ----------------------

1           12.5                   5470.83333333337

2           5470.83333333337       10929.1666666667

3           10929.1666666667       16387.5000000001

 You might want to encapsulate this code in a user-defi ned function to simplify the queries 
that return the actual histograms, like so: 

IF OBJECT_ID('dbo.HistSteps') IS NOT NULL

  DROP FUNCTION dbo.HistSteps;

GO

CREATE FUNCTION dbo.HistSteps(@numsteps AS INT) RETURNS TABLE

AS

RETURN

  SELECT n AS step,

    mn + (n - 1) * stepsize AS lb,

    mn + n * stepsize AS hb
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  FROM dbo.Nums

    CROSS JOIN

      (SELECT MIN(val) AS mn,

         ((1E0*MAX(val) + 0.0000000001) - MIN(val))

         / @numsteps AS stepsize

       FROM Sales.OrderValues) AS D

  WHERE n < = @numsteps;

GO

 To test the function, run the following query, which will give you a three-row histogram steps 
table:  

SELECT * FROM dbo.HistSteps(3) AS S;

 To return the actual histogram, simply join the steps table and the OrderValues view on the 
predicate I described earlier (val >= lb AND val < hb), group the data by step number, and 
return the step number and row count: 

SELECT step, COUNT(*) AS numorders

FROM dbo.HistSteps(3) AS S

  JOIN Sales.OrderValues AS O

    ON val >= lb AND val < hb

GROUP BY step;

 This query generates the following histogram: 

step        numorders

----------- -----------

1           803

2           21

3           6

 You can see that there are 803 small orders, 21 medium orders, and 6 large order. To return a 
histogram with 10 steps, simply provide 10 as the input to the HistSteps function: 

SELECT step, COUNT(*) AS numorders

FROM dbo.HistSteps(10) AS S

  JOIN Sales.OrderValues AS O

    ON val >= lb AND val < hb

GROUP BY step;

 This query generates the following output: 

step        numorders

----------- -----------

1           578

2           172

3           46

4           14

5           3

6           6

7           8

8           1

10          2
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 Note that because you’re using an inner join, empty steps are not returned like in the case of 
step 9. To return empty steps also, you can use the following outer join query: 

SELECT step, COUNT(val) AS numorders

FROM dbo.HistSteps(10) AS S

  LEFT OUTER JOIN Sales.OrderValues AS O

    ON val >= lb AND val < hb

GROUP BY step;

 As you can see in the output of this query, empty steps are included this time: 

step        numorders

----------- -----------

1           578

2           172

3           46

4           14

5           3

6           6

7           8

8           1

9           0

10          2

 Note Notice that COUNT(val) is used here and not COUNT(*). COUNT(*) would incorrectly 
return 1 for empty steps because the group has an outer row. You have to provide the COUNT 
function an attribute from the nonpreserved side (Orders) to get the correct count. 

 There’s another alternative to taking care of the issue with the step boundaries and the 
predicate used to identify a match. You can simply check whether the step number is 1, in 
which case you subtract 1 from the lower bound. Then, in the query generating the actual 
histogram, you use the predicate val > lb AND val <= hb. 

 Another approach is to check whether the step is the last, and if it is, add 1 to the higher 
bound. Then use the predicate val >= lb AND val < hb. 

 Here’s the revised function implementing the latter approach: 

ALTER FUNCTION dbo.HistSteps(@numsteps AS INT) RETURNS TABLE

AS

RETURN

  SELECT n AS step,

    mn + (n - 1) * stepsize AS lb,

    mn + n * stepsize + CASE WHEN n = @numsteps THEN 1 ELSE 0 END AS hb

  FROM dbo.Nums

    CROSS JOIN

      (SELECT MIN(val) AS mn,

         (1E0*MAX(val) - MIN(val)) / @numsteps AS stepsize

    FROM Sales.OrderValues) AS D

  WHERE n < = @numsteps;

GO
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 And the following query generates the actual histogram: 

SELECT step, COUNT(val) AS numorders

FROM dbo.HistSteps(3) AS S

  LEFT OUTER JOIN Sales.OrderValues AS O

    ON val >= lb AND val < hb

GROUP BY step;

Grouping Factor

 In earlier chapters, Chapter 6 in particular, I described a concept called a grouping factor. I used 
it in a problem to isolate islands, or ranges of consecutive elements in a sequence. Recall that 
the grouping factor is the factor you end up using in your GROUP BY clause to identify the 
group. In the earlier problem, I demonstrated two techniques to calculate the grouping factor. 
One method was calculating the maximum value within the group ( specifi cally, the smallest 
value that is both greater than or equal to the current value and  followed by a gap). The other 
method used row numbers. 

 Because this chapter covers aggregates, it is appropriate to revisit this very practical problem. 
In my examples here, I’ll use the Stocks table, which you create and populate by running the 
following code: 

USE tempdb;

IF OBJECT_ID('Stocks') IS NOT NULL DROP TABLE Stocks;

CREATE TABLE dbo.Stocks

(

  dt    DATE NOT NULL PRIMARY KEY,

  price INT  NOT NULL

);

GO

INSERT INTO dbo.Stocks(dt, price) VALUES

  ('20090801', 13),

  ('20090802', 14),

  ('20090803', 17),

  ('20090804', 40),

  ('20090805', 40),

  ('20090806', 52),

  ('20090807', 56),

  ('20090808', 60),

  ('20090809', 70),

  ('20090810', 30),

  ('20090811', 29),

  ('20090812', 29),

  ('20090813', 40),

  ('20090814', 45),

  ('20090815', 60),

  ('20090816', 60),
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  ('20090817', 55),

  ('20090818', 60),

  ('20090819', 60),

  ('20090820', 15),

  ('20090821', 20),

  ('20090822', 30),

  ('20090823', 40),

  ('20090824', 20),

  ('20090825', 60),

  ('20090826', 60),

  ('20090827', 70),

  ('20090828', 70),

  ('20090829', 40),

  ('20090830', 30),

  ('20090831', 10);

CREATE UNIQUE INDEX idx_price_dt ON Stocks(price, dt);

 The Stocks table contains daily stock prices.  

 Note Stock prices are rarely restricted to integers, and there is usually more than one stock, but 
I’ll use integers and a single stock for simplifi cation purposes. Also, stock markets usually don’t have 
activity on Saturdays; because I want to demonstrate a technique over a sequence with no gaps, 
I introduced rows for Saturdays as well, with the same value that was stored in the preceding Friday. 

 The request is to isolate consecutive periods where the stock price was greater than or equal 
to 50. Figure 8-2 has a graphical depiction of the stock prices over time, and the arrows 
 represent the periods you’re supposed to return. 
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FIGURE 8-2 Periods in which stock values were greater than or equal to 50
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 For each such period, you need to return the starting date, ending date, duration in days, 
and the peak (maximum) price. 

 Let’s start with a solution that does not use row numbers. The fi rst step here is to fi lter 
only the rows where the price is greater than or equal to 50. Unlike the traditional problem 
where you really have gaps in the data, here the gaps appear only after fi ltering. The whole 
 sequence still appears in the Stocks table. You can use this fact to your advantage. Of course, 
you could take the long route of calculating the maximum date within the group (the fi rst 
date that is both later than or equal to the current date and followed by a gap). However, a 
much simpler and faster technique to calculate the grouping factor would be to return the 
fi rst date that is greater than the current, on which the stock’s price is less than 50. Here, you 
still get the same grouping factor for all elements of the same target group, yet you need 
only one nesting level of subqueries instead of two. 

 Here’s the query: 

SELECT MIN(dt) AS startrange, MAX(dt) AS endrange,

  DATEDIFF(day, MIN(dt), MAX(dt)) + 1 AS numdays,

  MAX(price) AS maxprice

FROM (SELECT dt, price,

        (SELECT MIN(dt)

         FROM dbo.Stocks AS S2

         WHERE S2.dt > S1.dt

          AND price < 50) AS grp

      FROM dbo.Stocks AS S1

      WHERE price >= 50) AS D

GROUP BY grp;

 This query generates the following output, which is the desired result: 

startrange endrange   numdays     maxprice

---------- ---------- ----------- -----------

2009-08-06 2009-08-09 4           70

2009-08-15 2009-08-19 5           60

2009-08-25 2009-08-28 4           70

 Of course, post fi ltering, you could consider the problem as a classic islands problem in a 
temporal sequence scenario and address it with the very effi cient technique that uses the 
ROW_NUMBER function, as I described in Chapter 6: 

SELECT MIN(dt) AS startrange, MAX(dt) AS endrange,

  DATEDIFF(day, MIN(dt), MAX(dt)) + 1 AS numdays,

  MAX(price) AS maxprice

FROM (SELECT dt, price,

        DATEADD(day, -1 * ROW_NUMBER() OVER(ORDER BY dt), dt) AS grp

      FROM dbo.Stocks AS S1

      WHERE price >= 50) AS D

GROUP BY grp;
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Grouping Sets

 A grouping set is simply a set of attributes that you group by, such as in a query that has the 
following GROUP BY clause: 

GROUP BY custid, empid, YEAR(orderdate)

 You defi ne a single grouping set—(custid, empid, YEAR(orderdate)). Traditionally, aggre-
gate queries defi ne a single grouping set, as demonstrated in the previous example. SQL 
Server supports features that allow you to defi ne multiple grouping sets in the same query 
and  return a single result set with aggregates calculated for the different grouping sets. 
The  ability to defi ne multiple grouping sets in the same query was available prior to SQL 
Server 2008 in the form of options called WITH CUBE and WITH ROLLUP and a helper 
 function called GROUPING. However, those options were neither standard nor fl exible 
enough. SQL Server 2008 introduces several new features that allow you to defi ne multiple 
grouping sets in the same query. The new features include the GROUPING SETS, CUBE, and 
ROLLUP subclauses of the GROUP BY clause (not to be confused with the older WITH CUBE 
and WITH ROLLUP options) and the helper function GROUPING_ID. These new features are 
 ISO  compliant and substantially more fl exible than the older, nonstandard ones.  

 Before I provide the technicalities of the grouping sets–related features, I’d like to explain the 
motivation for using those and the kind of problems that they solve. If you’re interested only 
in the technicalities, feel free to skip this section. 

 Consider a data warehouse with a large volume of sales data. Users of this data warehouse 
 frequently need to analyze aggregated views of the data by various dimensions, such as 
 customer, employee, product, time, and so on. When a user such as a sales manager starts the 
analysis process, the user asks for some initial aggregated view of the data—for example, the 
total quantities for each customer and year. This request translates in more technical terms to a 
request to aggregate data for the grouping set (custid, YEAR(orderdate)). The user then  analyzes 
the data, and based on the fi ndings the user makes the next request—say, to return total 
quantities for each year and month. This is a request to aggregate data for a new grouping 
set—(YEAR(orderdate), MONTH(orderdate)). In this manner the user keeps asking for different 
aggregated views of the data—in other words, to aggregate data for different grouping sets. 

 To address such analysis needs of your system’s users, you could develop an application that 
generates a different GROUP BY query for each user request. Each query would need to 
scan all applicable base data and process the aggregates. With large volumes of data, this 
 approach is very ineffi cient, and the response time will probably be unreasonable.  

 To provide fast response time, you need to preprocess aggregates for all grouping sets that 
users might ask for and store those in the data warehouse. For example, you could do this 
 every night. When the user requests aggregates for a certain grouping set, the aggregates will 
be readily available. The problem is that given n dimensions, 2n possible grouping sets can be 
constructed from those dimensions. For example, with 10 dimensions you get 1,024 grouping 
sets. If you actually run a separate GROUP BY query for each, it will take a very long time to 
process all aggregates, and you might not have a suffi cient processing window for this. 
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 This is where the new grouping features come into the picture. They allow you to calculate 
aggregates for multiple grouping sets without rescanning the base data separately for each. 
Instead, SQL Server scans the data the minimum number of times that the optimizer fi gures 
is optimal, calculates the base aggregates, and on top of the base aggregates calculates the 
super aggregates (aggregates of aggregates). 

 Note that the product Microsoft SQL Server Analysis Services (SSAS, or just AS)  specializes 
in preprocessing aggregates for multiple grouping sets and storing them in a  specialized 
 multidimensional database. It provides very fast response time to user requests, which are made 
with a language called Multidimensional Expressions (MDX). The  recommended  approach 
to handling needs for dynamic analysis of aggregated data is to implement an Analysis 
Services solution. However, some organizations don’t need the scale and  sophistication levels 
 provided by Analysis Services and would rather get the most they can from their relational data 
 warehouse with T-SQL. For those organizations, the new grouping features provided by SQL 
Server can come in very handy. 

 The following sections describe the technicalities of the grouping sets–related features 
 supported by SQL Server 2008. 

Sample Data

 In my examples I will use the Orders table that you create and populate in tempdb by 
 running the code provided earlier in Listing 8-1. This code is provided here again for your 
convenience: 

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

GO

CREATE TABLE dbo.Orders

(

  orderid   INT        NOT NULL,

  orderdate DATETIME   NOT NULL,

  empid     INT        NOT NULL,

  custid    VARCHAR(5) NOT NULL,

  qty       INT        NOT NULL,

  CONSTRAINT PK_Orders PRIMARY KEY(orderid)

);

GO

INSERT INTO dbo.Orders

  (orderid, orderdate, empid, custid, qty)

VALUES

  (30001, '20060802', 3, 'A', 10),

  (10001, '20061224', 1, 'A', 12),

  (10005, '20061224', 1, 'B', 20),

  (40001, '20070109', 4, 'A', 40),

  (10006, '20070118', 1, 'C', 14),
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  (20001, '20070212', 2, 'B', 12),

  (40005, '20080212', 4, 'A', 10),

  (20002, '20080216', 2, 'C', 20),

  (30003, '20080418', 3, 'B', 15),

  (30004, '20060418', 3, 'C', 22),

  (30007, '20060907', 3, 'D', 30);

The GROUPING SETS Subclause

 SQL Server 2008 allows you to defi ne multiple grouping sets in the same query by using 
the new GROUPING SETS subclause of the GROUP BY clause. Within the outermost pair of 
parentheses, you specify a list of grouping sets separated by commas. Each grouping set is 
expressed by a pair of parentheses containing the set’s elements separated by commas. For 
example, the following query defi nes four grouping sets: 

SELECT custid, empid, YEAR(orderdate) AS orderyear, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY GROUPING SETS

(

  ( custid, empid, YEAR(orderdate) ),

  ( custid, YEAR(orderdate)        ),

  ( empid, YEAR(orderdate)         ),

  ()

);

 The fi rst grouping set is (custid, empid, YEAR(orderdate)), the second is (custid, YEAR(orderdate)), 
the third is (empid, YEAR(orderdate)), and the fourth is the empty grouping set (), which is used 
to calculate grand totals. This query generates the following output: 

custid empid       orderyear   qty

------ ----------- ----------- -----------

A      1           2006        12

B      1           2006        20

NULL   1           2006        32

C      1           2007        14

NULL   1           2007        14

B      2           2007        12

NULL   2           2007        12

C      2           2008        20

NULL   2           2008        20

A      3           2006        10

C      3           2006        22

D      3           2006        30

NULL   3           2006        62

B      3           2008        15

NULL   3           2008        15

A      4           2007        40

NULL   4           2007        40

A      4           2008        10

NULL   4           2008        10

NULL   NULL        NULL        205

A      NULL        2006        22

B      NULL        2006        20
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C      NULL        2006        22

D      NULL        2006        30

A      NULL        2007        40

B      NULL        2007        12

C      NULL        2007        14

A      NULL        2008        10

B      NULL        2008        15

C      NULL        2008        20

 Note To specify a single-element grouping set, the parentheses are optional. (A one-element 
grouping set means the same as a simple group by item.) If you simply list elements directly 
within the outer pair of parentheses of the GROUPING SETS clause itself, as opposed to listing 
them within an inner pair of parentheses, you get a separate grouping set made of each element. 
For example, GROUPING SETS( a, b, c ) defi nes three grouping sets: one with the element a, 
one with b and one with c. GROUPING SETS( (a, b, c) ) defi nes a single grouping set made of the 
 elements a, b, c. 

 As you can see in the output of the query, NULLs are used as placeholders in inapplicable 
attributes. You could also think of these NULLs as indicating that the row represents an 
 aggregate over all values of that column. This way, SQL Server can combine rows associated 
with different grouping sets to one result set. So, for example, in rows associated with the 
grouping set (custid, YEAR(orderdate)), the empid column is NULL. In rows associated with the 
empty grouping set, the columns empid, custid, and orderyear are NULLs and so on. 

 Compared to a query that unifi es the result sets of four GROUP BY queries, our query that 
uses the GROUPING SETS subclause requires much less code. It has a performance advantage 
as well. Examine the execution plan of this query shown in Figure 8-3. 

FIGURE 8-3 Execution plan of query with GROUPING SETS subclause 

 Observe that even though the query defi nes four grouping sets, the execution plan shows 
only two scans of the data. In particular, observe that the fi rst branch of the plan shows two 
Stream Aggregate operators. The Sort operator sorts the data by empid, YEAR(orderdate), 
custid. Based on this sorting, the fi rst Stream Aggregate operator calculates the  aggregates 
for the grouping set (custid, empid, YEAR(orderdate)); the second Stream Aggregate  operates 
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on the results of the fi rst and calculates the aggregates for the grouping set (empid, 
YEAR(orderdate)) and the empty grouping set. The second branch of the plan sorts the data 
by YEAR(orderdate), custid to allow the Stream Aggregate operator that follows to calculate 
aggregates for the grouping set (custid, YEAR(orderdate)). 

 Following is a query that is logically equivalent to the previous one, except that this one  actually 
invokes four GROUP BY queries—one for each grouping set—and unifi es their  result sets: 

SELECT custid, empid, YEAR(orderdate) AS orderyear, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY custid, empid, YEAR(orderdate)

UNION ALL

SELECT custid, NULL AS empid, YEAR(orderdate) AS orderyear, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY custid, YEAR(orderdate)

UNION ALL

SELECT NULL AS custid, empid, YEAR(orderdate) AS orderyear, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY empid, YEAR(orderdate)

UNION ALL

SELECT NULL AS custid, NULL AS empid, NULL AS orderyear, SUM(qty) AS qty

FROM dbo.Orders;

 The execution plan for this query is shown in Figure 8-4. You can see that the data is scanned 
four times.

FIGURE 8-4 Execution plan of code unifying four GROUP BY queries 

 SQL Server 2008 allows you to defi ne up to 4,096 grouping sets in a single query. 
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The CUBE Subclause

 SQL Server 2008 also introduces the CUBE subclause of the GROUP BY clause (not to be 
 confused with the older WITH CUBE option). The CUBE subclause is merely an abbreviated 
way to express a large number of grouping sets without actually listing them in a GROUPING 
SETS subclause. CUBE accepts a list of elements as input and defi nes all possible grouping sets 
out of those, including the empty grouping set. In set theory, this is called the power set of a 
set. The power set of a set V is the set of all subsets of V. Given n elements, CUBE  produces 
2n grouping sets. For example, CUBE(a, b, c) is equivalent to GROUPING SETS( (a, b, c), (a, b), 
(a, c), (b, c), (a), (b), (c), () ). 

 The following query uses the CUBE option to defi ne all four grouping sets that can be made 
of the elements custid and empid: 

SELECT custid, empid, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY CUBE(custid, empid);

 This query generates the following output: 

custid empid       qty

------ ----------- -----------

A      1           12

B      1           20

C      1           14

NULL   1           46

B      2           12

C      2           20

NULL   2           32

A      3           10

B      3           15

C      3           22

D      3           30

NULL   3           77

A      4           50

NULL   4           50

NULL   NULL        205

A      NULL        72

B      NULL        47

C      NULL        56

D      NULL        30

 The following query using the GROUPING SETS subclause is equivalent to the previous query: 

SELECT custid, empid, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY GROUPING SETS

  ( 

    ( custid, empid ),

    ( custid        ),

    ( empid         ),

    ()

  );
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 Note that each of the elements in the list you provide to CUBE as input can be made of either a 
single attribute or multiple attributes. The previous CUBE expression used two  single-attribute 
elements. To defi ne a multi-attribute element, simply list the element’s  attributes in parentheses. 
As an example, the expression CUBE( x, y, z ) has three single- attribute  elements and defi nes 
eight grouping sets: (x, y, z), (x, y), (x, z), (y, z), (x), (y), (z), (). The expression CUBE( (x, y), z ) has 
one two-attribute element and one single-attribute  element and defi nes four grouping sets: 
(x, y, z), (x, y), (z), ().  

 Prior to SQL Server 2008, you could achieve something similar to what the CUBE subclause 
gives you by using a WITH CUBE option that you specifi ed after the GROUP BY clause, like so: 

SELECT custid, empid, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY custid, empid

WITH CUBE;

 This is an equivalent to our previous CUBE query, but it has two drawbacks. First, it’s not 
standard, while the new CUBE subclause is. Second, when you specify the WITH CUBE option, 
you cannot defi ne additional grouping sets beyond the ones defi ned by CUBE, while you can 
with the new CUBE subclause.  

The ROLLUP Subclause

 The new ROLLUP subclause of the GROUP BY clause is similar to the CUBE subclause. It also 
 allows defi ning multiple grouping sets in an abbreviated way. However, while CUBE defi nes 
all possible grouping sets that can be made of the input elements (the power set), ROLLUP 
 defi nes only a subset of those. ROLLUP assumes a hierarchy between the input elements. For 
example, ROLLUP(a, b, c) assumes a hierarchy between the elements a, b, and c. When there is 
a  hierarchy, not all possible grouping sets that can be made of the input elements make sense 
in terms of having business value. Consider, for example, the hierarchy country, region, city. You 
can see the business value in the grouping sets (country, region, city), (country, region), (country), 
and (). But as grouping sets, (city), (region), (region, city) and (country, city) have no business 
 value. For example, the grouping set (city) has no business value because different cities can 
have the same name, and a business typically needs totals by city, not by city name. When 
the input elements represent a hierarchy, ROLLUP produces only the grouping sets that make 
 business sense for the hierarchy. Given n elements, ROLLUP will produce n + 1 grouping sets. 

 The following query shows an example of using the ROLLUP subclause: 

SELECT

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  DAY(orderdate) AS orderday,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate));
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 Out of the three input elements, ROLLUP defi nes four (3 + 1) grouping sets—(YEAR(orderdate), 
MONTH(orderdate), DAY(orderdate)), (YEAR(orderdate), MONTH(orderdate)), (YEAR(orderdate)), 
and (). This query generates the following output: 

orderyear   ordermonth  orderday    qty

----------- ----------- ----------- -----------

2006        4           18          22

2006        4           NULL        22

2006        8           2           10

2006        8           NULL        10

2006        9           7           30

2006        9           NULL        30

2006        12          24          32

2006        12          NULL        32

2006        NULL        NULL        94

2007        1           9           40

2007        1           18          14

2007        1           NULL        54

2007        2           12          12

2007        2           NULL        12

2007        NULL        NULL        66

2008        2           12          10

2008        2           16          20

2008        2           NULL        30

2008        4           18          15

2008        4           NULL        15

2008        NULL        NULL        45

NULL        NULL        NULL        205

 This query is equivalent to the following query that uses the GROUPING SETS subclause to 
defi ne the aforementioned grouping sets explicitly: 

SELECT

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  DAY(orderdate) AS orderday,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  GROUPING SETS

  (

    ( YEAR(orderdate), MONTH(orderdate), DAY(orderdate) ),

    ( YEAR(orderdate), MONTH(orderdate)                 ),

    ( YEAR(orderdate)                                   ),

    ()

  );

 Like with CUBE, each of the elements in the list you provide to ROLLUP as input can be made of 
either a single attribute or multiple attributes. As an example, the expression ROLLUP( x, y, z ) 
defi nes four grouping sets: (x, y, z), (x, y), (x), (). The expression ROLLUP( (x, y), z ) defi nes three 
grouping sets: (x, y, z), (x, y), ().  
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 Similar to the WITH CUBE option that I described earlier, previous versions of SQL Server  prior 
to SQL Server 2008 supported a WITH ROLLUP option. Following is a query that is equivalent 
to the previous ROLLUP query, except that it uses the older WITH ROLLUP option: 

SELECT

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  DAY(orderdate) AS orderday,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY YEAR(orderdate), MONTH(orderdate), DAY(orderdate)

WITH ROLLUP;

 Like the WITH CUBE option, the WITH ROLLUP option is nonstandard and doesn’t allow you 
to defi ne further grouping sets in the same query. 

Grouping Sets Algebra

 One beautiful thing about the design of the grouping sets–related features implemented in 
SQL Server 2008 is that they support a whole algebra of operations that can help you defi ne 
a large number of grouping sets using minimal coding. You have support for operations that 
you can think of as multiplication, division, and addition. 

Multiplication

 Multiplication means producing a Cartesian product of grouping sets. You perform 
 multiplication by separating GROUPING SETS subclauses (or the abbreviated CUBE and 
ROLLUP subclauses) by commas. For example, if A represents a set of attributes a1, a2, . . ., 
an, and B represents a set of attributes b1, b2, . . ., bn, and so on, the product GROUPING 
SETS( (A), (B), (C) ), GROUPING SETS( (D), (E) ) is equal to GROUPING SETS ( (A, D), (A, E), 
(B, D), (B, E), (C, D), (C, E) ). 

 Consider the following query and try to fi gure out which grouping sets it defi nes: 

SELECT custid, empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  DAY(orderdate) AS orderday,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  CUBE(custid, empid),

  ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate));

 First, expand the CUBE and ROLLUP subclauses to the corresponding GROUPING SETS 
 subclauses, and you get the following query: 

SELECT custid, empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  SUM(qty) AS qty
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FROM dbo.Orders

GROUP BY

  GROUPING SETS

  ( 

    ( custid, empid ),

    ( custid        ),

    ( empid         ),

    ()

  ),

  GROUPING SETS

  (

    ( YEAR(orderdate), MONTH(orderdate), DAY(orderdate) ),

    ( YEAR(orderdate), MONTH(orderdate)                 ),

    ( YEAR(orderdate)                                   ),

    ()

  );

 Now apply the multiplication between the GROUPING SETS subclauses, and you get the 
 following query: 

SELECT custid, empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  GROUPING SETS

  (

    ( custid, empid, YEAR(orderdate), MONTH(orderdate), DAY(orderdate) ),

    ( custid, empid, YEAR(orderdate), MONTH(orderdate)                 ),

    ( custid, empid, YEAR(orderdate)                                   ),

    ( custid, empid                                                    ),

    ( custid, YEAR(orderdate), MONTH(orderdate), DAY(orderdate)        ),

    ( custid, YEAR(orderdate), MONTH(orderdate)                        ),

    ( custid, YEAR(orderdate)                                          ),

    ( custid                                                           ),

    ( empid, YEAR(orderdate), MONTH(orderdate), DAY(orderdate)         ),

    ( empid, YEAR(orderdate), MONTH(orderdate)                         ),

    ( empid, YEAR(orderdate)                                           ),

    ( empid                                                            ),

    ( YEAR(orderdate), MONTH(orderdate), DAY(orderdate)                ),

    ( YEAR(orderdate), MONTH(orderdate)                                ),

    ( YEAR(orderdate)                                                  ),

    ()

  );

Division

 When multiple grouping sets in an existing GROUPING SETS subclause share common 
 elements, you can separate the common elements to another GROUPING SETS subclause 
and multiply the two. The concept is similar to arithmetic division, where you divide operands 
of an expression by a common element and pull it outside the parentheses. For example, 
(5×3 + 5×7) can be expressed as (5)×(3 + 7). Based on this logic, you can sometimes reduce 
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the amount of code needed to defi ne multiple grouping sets. For example, see if you can 
 reduce the code in the following query while preserving the same grouping sets: 

SELECT

  custid, 

  empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  GROUPING SETS

  ( 

    ( custid, empid, YEAR(orderdate), MONTH(orderdate) ),

    ( custid, empid, YEAR(orderdate)                   ),

    ( custid,        YEAR(orderdate), MONTH(orderdate) ),

    ( custid,        YEAR(orderdate)                   ),

    ( empid,         YEAR(orderdate), MONTH(orderdate) ),

    ( empid,         YEAR(orderdate)                   )

  );

 Because YEAR(orderdate) is a common element to all grouping sets, you can move it to 
 another GROUPING SETS subclause and multiply the two, like so: 

SELECT

  custid, 

  empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  GROUPING SETS

  (

    ( YEAR(orderdate)                 ) 

  ),

  GROUPING SETS

  ( 

    ( custid, empid, MONTH(orderdate) ),

    ( custid, empid                   ),

    ( custid,        MONTH(orderdate) ),

    ( custid                          ),

    ( empid,         MONTH(orderdate) ),

    ( empid                           )

  );

 Note that when a GROUPING SETS subclause contains only one grouping set, it is equivalent 
to listing the grouping set’s elements directly in the GROUP BY clause. Hence, the previous 
query is logically equivalent to the following: 

SELECT

  custid, 

  empid,

  YEAR(orderdate) AS orderyear,
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  MONTH(orderdate) AS ordermonth,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  YEAR(orderdate), 

  GROUPING SETS

  ( 

    ( custid, empid, MONTH(orderdate) ),

    ( custid, empid                   ),

    ( custid,        MONTH(orderdate) ),

    ( custid                          ),

    ( empid,         MONTH(orderdate) ),

    ( empid                           )

  );

 You can reduce this form even further. Notice in the remaining GROUPING SETS subclause 
that three subsets of elements appear once with MONTH(orderdate) and once without. 
Hence, you can reduce this form to a multiplication between a GROUPING SETS subclause 
containing those three and another containing two grouping sets, (MONTH(orderdate)) and 
the empty grouping set, like so: 

SELECT

  custid, 

  empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  YEAR(orderdate),

  GROUPING SETS

  ( 

    ( custid, empid ),

    ( custid        ),

    ( empid         )

  ),

  GROUPING SETS

  (

    ( MONTH(orderdate) ),

    ()               

  );

Addition

 Recall that when you separate GROUPING SETS, CUBE, and ROLLUP subclauses by  commas, 
you get a Cartesian product between the sets of grouping sets that each represents. But 
what if you have an existing GROUPING SETS subclause and you just want to add—not 
multiply—the grouping sets that are defi ned by a CUBE or ROLLUP subclause? This can 
be achieved by specifying the CUBE or ROLLUP subclause (or multiple ones) within the 
 parentheses of the GROUPING SETS subclause. 
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 For example, the following query demonstrates adding the grouping sets defi ned by a 
ROLLUP subclause to the grouping sets defi ned by the hosting GROUPING SETS subclause: 

SELECT

  custid, 

  empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  GROUPING SETS

  ( 

    ( custid, empid ),

    ( custid        ),

    ( empid         ),

    ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate))

  );

 This query is a logical equivalent of the following query: 

SELECT

  custid, 

  empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  GROUPING SETS

  ( 

    ( custid, empid ),

    ( custid        ),

    ( empid         ),

    ( YEAR(orderdate), MONTH(orderdate), DAY(orderdate) ),

    ( YEAR(orderdate), MONTH(orderdate)                 ),

    ( YEAR(orderdate)                                   ),

    ()

  );

 Unfortunately, there is no built-in option to do subtraction. For example, you can’t somehow 
express the idea of CUBE( a, b, c, d ) minus GROUPING SETS ( (a, c), (b, d), () ). Of course, you can 
achieve this with the EXCEPT set operation and other techniques but not as a direct  algebraic 
operation on grouping sets–related subclauses. 

The GROUPING_ID Function

 In your applications you may need to be able to identify the grouping set with which each  result 
row of your query is associated. Relying on the NULL placeholders may lead to  convoluted 
code, not to mention the fact that if a column is defi ned in the table as allowing NULLs, a NULL 
in the result will be ambiguous. SQL Server 2008 introduces a very convenient tool for this 
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 purpose in the form of a function called GROUPING_ID. This function accepts a list of  attributes 
as input and constructs an integer bitmap where each bit represents the  corresponding 
 attribute (the rightmost bit represents the rightmost input attribute). The bit is 0 when the 
 corresponding attribute is a member of the grouping set and 1 otherwise.  

 You provide the function with all attributes that participate in any grouping set as input, and 
you will get a unique integer representing each grouping set. So, for example, the expression 
GROUPING_ID( a, b, c, d ) would return 0 ( 0×8 + 0×4 + 0×2 + 0×1 ) for rows associated with 
the grouping set ( a, b, c, d ), 1 ( 0×8 + 0×4 + 0×2 + 1×1 ) for the grouping set ( a, b, c ), 2 
( 0×8 + 0×4 + 1×2 + 0×1 ) for the grouping set ( a, b, d ), 3 ( 0×8 + 0×4 + 1×2 + 1×1 ) for the 
grouping set ( a, b ), and so on. 

 The following query demonstrate the use of the GROUPING_ID function: 

SELECT 

  GROUPING_ID(

    custid, empid,

    YEAR(orderdate), MONTH(orderdate), DAY(orderdate) ) AS grp_id,

  custid, empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  DAY(orderdate) AS orderday,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  CUBE(custid, empid),

  ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate));

 This query generates the following output: 

grp_id  custid empid  orderyear  ordermonth  orderday  qty

------- ------ ------ ---------- ----------- --------- ----

0       C      3      2006       4           18        22

16      NULL   3      2006       4           18        22

0       A      3      2006       8           2         10

24      NULL   NULL   2006       4           18        22

25      NULL   NULL   2006       4           NULL      22

16      NULL   3      2006       8           2         10

24      NULL   NULL   2006       8           2         10

25      NULL   NULL   2006       8           NULL      10

0       D      3      2006       9           7         30

16      NULL   3      2006       9           7         30

...

 For example, the grp_id value 25 represents the grouping set ( YEAR(orderdate), 
MONTH(orderdate) ). These attributes are represented by the second (value 2) and third 
(value 4) bits. However, remember that the bits representing members that participate in the 
grouping set are turned off. The bits representing the members that do not participate in the 
grouping set are turned on. In our case, those are the fi rst (1), fourth (8), and fi fth (16) bits 
representing the attributes DAY(orderdate), empid and custid, respectively. The sum of the 
values of the bits that are turned on is 1 + 8 + 16 = 25. 
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 The following query helps you see which bits are turned on or off in each integer bitmap 
generated by the GROUPING_ID function with fi ve input elements: 

SELECT

  GROUPING_ID(e, d, c, b, a) as n,

  COALESCE(e, 1) as [16],

  COALESCE(d, 1) as [8],

  COALESCE(c, 1) as [4],

  COALESCE(b, 1) as [2],

  COALESCE(a, 1) as [1]

FROM (VALUES(0, 0, 0, 0, 0)) AS D(a, b, c, d, e)

GROUP BY CUBE (a, b, c, d, e)

ORDER BY n;

 This query generates the following output: 

n           16          8           4           2           1

----------- ----------- ----------- ----------- ----------- -----------

0           0           0           0           0           0

1           0           0           0           0           1

2           0           0           0           1           0

3           0           0           0           1           1

4           0           0           1           0           0

5           0           0           1           0           1

6           0           0           1           1           0

7           0           0           1           1           1

8           0           1           0           0           0

9           0           1           0           0           1

10          0           1           0           1           0

11          0           1           0           1           1

12          0           1           1           0           0

13          0           1           1           0           1

14          0           1           1           1           0

15          0           1           1           1           1

16          1           0           0           0           0

17          1           0           0           0           1

18          1           0           0           1           0

19          1           0           0           1           1

20          1           0           1           0           0

21          1           0           1           0           1

22          1           0           1           1           0

23          1           0           1           1           1

24          1           1           0           0           0

25          1           1           0           0           1

26          1           1           0           1           0

27          1           1           0           1           1

28          1           1           1           0           0

29          1           1           1           0           1

30          1           1           1           1           0

31          1           1           1           1           1

 Remember—when the bit is off, the corresponding member is part of the grouping set. 

 As mentioned, the GROUPING_ID function was introduced in SQL Server 2008. You could 
 produce a similar integer bitmap prior to SQL Server 2008, but it involved more work. You 
could use a function called GROUPING that accepts a single attribute as input and returns 0 if 
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the attribute is a member of the grouping set and 1 otherwise. You could construct the  integer 
bitmap by multiplying the GROUPING value of each attribute by a different power of 2 and 
summing all values. Here’s an example of implementing this logic in a query that uses the older 
WITH CUBE option: 

SELECT

  GROUPING(custid)          * 4 +

  GROUPING(empid)           * 2 +

  GROUPING(YEAR(orderdate)) * 1 AS grp_id,

  custid, empid, YEAR(orderdate) AS orderyear,

  SUM(qty) AS totalqty

FROM dbo.Orders

GROUP BY custid, empid, YEAR(orderdate)

WITH CUBE;

 This query generates the following output: 

grp_id      custid empid       orderyear   totalqty

----------- ------ ----------- ----------- -----------

0           A      1           2006        12

0           B      1           2006        20

4           NULL   1           2006        32

0           A      3           2006        10

0           C      3           2006        22

0           D      3           2006        30

4           NULL   3           2006        62

6           NULL   NULL        2006        94

0           C      1           2007        14

4           NULL   1           2007        14

...

Materialize Grouping Sets

 Recall that before I started describing the technicalities of the grouping sets–related features, 
I explained that one of their uses is to preprocess aggregates for multiple grouping sets 
and store those in the data warehouse for fast retrieval. The following code demonstrates 
 materializing aggregates for multiple grouping sets, including an integer identifi er of the 
grouping set calculated with the GROUPING_ID function in a table called MyGroupingSets: 

USE tempdb;

IF OBJECT_ID('dbo.MyGroupingSets', 'U') IS NOT NULL  DROP TABLE dbo.MyGroupingSets;

GO

SELECT 

  GROUPING_ID(

    custid, empid,

    YEAR(orderdate), MONTH(orderdate), DAY(orderdate) ) AS grp_id,

  custid, empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  DAY(orderdate) AS orderday,

  SUM(qty) AS qty

INTO dbo.MyGroupingSets
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FROM dbo.Orders

GROUP BY

  CUBE(custid, empid),

  ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate));

CREATE UNIQUE CLUSTERED INDEX idx_cl_grp_id_grp_attributes

  ON dbo.MyGroupingSets(grp_id, custid, empid, orderyear, ordermonth, orderday);

 The index created on the table MyGroupingSets is defi ned on the grp_id column as the fi rst 
key to allow effi cient retrieval of all rows associated with a single grouping set. For example, 
consider the following query, which asks for all rows associated with the grouping set ( custid, 
YEAR(orderdate), MONTH(orderdate) ): 

SELECT *

FROM dbo.MyGroupingSets

WHERE grp_id = 9;

 This query generates the following output: 

grp_id      custid empid       orderyear   ordermonth  orderday    qty

----------- ------ ----------- ----------- ----------- ----------- -----------

9           A      NULL        2006        8           NULL        10

9           A      NULL        2006        12          NULL        12

9           A      NULL        2007        1           NULL        40

9           A      NULL        2008        2           NULL        10

9           B      NULL        2006        12          NULL        20

9           B      NULL        2007        2           NULL        12

9           B      NULL        2008        4           NULL        15

9           C      NULL        2006        4           NULL        22

9           C      NULL        2007        1           NULL        14

9           C      NULL        2008        2           NULL        20

9           D      NULL        2006        9           NULL        30

 Figure 8-5 shows the plan for this query. 

FIGURE 8-5 Execution plan of query that fi lters a single grouping set 

 This plan is very effi cient. It scans only the rows that are associated with the requested 
grouping set because they reside in a consecutive section in the leaf of the clustered index. 

 Provided that you are using aggregates that are additive measures, like SUM, COUNT, and 
AVG, you can apply incremental updates to the stored aggregates with only the delta of 
 additions since you last processed those aggregates. You can achieve this by using the new 
MERGE statement that was introduced in SQL Server 2008. Here I’m just going to show the 
code to demonstrate how this is done. For details about the MERGE statement, please refer 
to Chapter 10, “Data Modifi cation.” 
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 Run the following code to simulate another day’s worth of order activity (April 19, 2008): 

INSERT INTO dbo.Orders

  (orderid, orderdate, empid, custid, qty)

VALUES

  (50001, '20080419', 1, 'A', 10),

  (50002, '20080419', 1, 'B', 30),

  (50003, '20080419', 2, 'A', 20),

  (50004, '20080419', 2, 'B',  5),

  (50005, '20080419', 3, 'A', 15)

 Then run the following code to incrementally update the stored aggregates with the new 
day’s worth of data: 

WITH LastDay AS

(

  SELECT 

    GROUPING_ID(

      custid, empid,

      YEAR(orderdate), MONTH(orderdate), DAY(orderdate) ) AS grp_id,

    custid, empid,

    YEAR(orderdate) AS orderyear,

    MONTH(orderdate) AS ordermonth,

    DAY(orderdate) AS orderday,

    SUM(qty) AS qty

  FROM dbo.Orders

  WHERE orderdate = '20080419'

  GROUP BY

    CUBE(custid, empid),

    ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate))

)

MERGE INTO dbo.MyGroupingSets AS TGT

USING LastDay AS SRC

  ON     (TGT.grp_id    = SRC.grp_id)

     AND (TGT.orderyear  = SRC.orderyear

          OR (TGT.orderyear IS NULL AND SRC.orderyear IS NULL))

     AND (TGT.ordermonth = SRC.ordermonth

          OR (TGT.ordermonth IS NULL AND SRC.ordermonth IS NULL))

     AND (TGT.orderday   = SRC.orderday

          OR (TGT.orderday IS NULL AND SRC.orderday IS NULL))

     AND (TGT.custid   = SRC.custid

          OR (TGT.custid IS NULL AND SRC.custid IS NULL))

     AND (TGT.empid    = SRC.empid

          OR (TGT.empid IS NULL AND SRC.empid IS NULL))

WHEN MATCHED THEN

  UPDATE SET

    TGT.qty += SRC.qty

WHEN NOT MATCHED THEN

  INSERT (grp_id, custid, empid, orderyear, ordermonth, orderday)

  VALUES (SRC.grp_id, SRC.custid, SRC.empid, SRC.orderyear, SRC.ordermonth, SRC.orderday);

 The code in the CTE LastDay calculates aggregates for the same grouping sets as in the  original 
query but fi lters only the last day’s worth of data. The MERGE statement then  increments the 
quantities of groups that already exist in the target by adding the new  quantities and inserts 
the groups that don’t exist in the target. 
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Sorting

 Consider a request to calculate the total quantity aggregate for all grouping sets in the 
 hierarchy order year > order month > order day. You can achieve this, of course, by simply 
using the ROLLUP subclause. However, a tricky part of the request is that you need to sort 
the rows in the output in a hierarchical manner, that is, days of a month, followed by the 
month total, months of a year followed by the yearly total, and fi nally the grand total. This 
can be achieved with the help of the GROUPING function as follows: 

SELECT 

  YEAR(orderdate)  AS orderyear,

  MONTH(orderdate) AS ordermonth,

  DAY(orderdate)   AS orderday,

  SUM(qty)         AS totalqty

FROM dbo.Orders

GROUP BY

  ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate))

ORDER BY

  GROUPING(YEAR(orderdate)) , YEAR(orderdate),

  GROUPING(MONTH(orderdate)), MONTH(orderdate),

  GROUPING(DAY(orderdate))  , DAY(orderdate);

 Remember that the GROUPING function returns 0 when the element is a member of a 
grouping set (representing detail) and 1 when the element isn’t (representing an  aggregate). 
Because we want to present detail before aggregates, the GROUPING function is very 
 convenient. We want to fi rst see the detail of years and at the end the grand total. Within 
the detail of years, we want to sort by year. Within each year, we want to fi rst see the detail 
of months and then the year total. Within the detail of months, we want to sort by month. 
Within the month we want to sort by the detail of days and then month total. Within the 
 detail of days, we want to sort by day. 

 This query generates the following output: 

orderyear   ordermonth  orderday    totalqty

----------- ----------- ----------- -----------

2006        4           18          22

2006        4           NULL        22

2006        8           2           10

2006        8           NULL        10

2006        9           7           30

2006        9           NULL        30

2006        12          24          32

2006        12          NULL        32

2006        NULL        NULL        94

2007        1           9           40

2007        1           18          14

2007        1           NULL        54

2007        2           12          12

2007        2           NULL        12

2007        NULL        NULL        66
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2008        2           12          10

2008        2           16          20

2008        2           NULL        30

2008        4           18          15

2008        4           19          80

2008        4           NULL        95

2008        NULL        NULL        125

NULL        NULL        NULL        285

Conclusion

 This chapter covered various solutions to data-aggregation problems that reused fundamental 
querying techniques I introduced earlier in the book. It also introduced new techniques, such 
as dealing with tiebreakers by using concatenation, calculating a minimum using the MAX 
function, pivoting, unpivoting, calculating custom aggregates by using specialized techniques, 
and more. This chapter also covered the new grouping sets features in SQL Server 2008 
and showed how you can use those to effi ciently address the need for dynamic analysis of 
aggregates. 

 As you probably noticed, data-aggregation techniques involve a lot of logical manipulation. 
If you’re looking for ways to improve your logic, you can practice pure logical puzzles, which 
have a lot in common with querying problems in terms of the thought processes involved. 
You can fi nd pure logic puzzles in Appendix A. 
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Chapter 9

 TOP and APPLY 

 This chapter covers two query elements that might seem unrelated. One element is the TOP 
option, which allows you to limit the number of rows affected by a query. The other is the 
APPLY table operator, which allows you to apply a table expression to each row of another 
table expression—basically creating a correlated join. I decided to cover both elements in the 
same chapter because I fi nd that quite often you can use them together to solve querying 
problems. 

 I’ll fi rst describe the fundamentals of TOP and APPLY and then follow with solutions to 
 common problems using these elements. 

SELECT TOP

 In a SELECT query or table expression, TOP is used with an ORDER BY clause to limit the 
result to rows that come fi rst in the ORDER BY ordering. You can specify the quantity 
of rows you want in one of two ways: as an exact number of rows, from TOP (0) to TOP 
(9223372036854775807) (the largest BIGINT value), or as a percentage of rows, from TOP 
(0E0) PERCENT to TOP (100E0) PERCENT, using a FLOAT value. SQL Server supports any 
 self-contained expression, not just constants, with TOP.  

 To make it clear which rows are the “top” rows affected by a TOP query, you must indicate an 
ordering of the rows. Just as you can’t tell top from bottom unless you know which way is up, 
you won’t know which rows TOP affects unless you specify an ORDER BY clause. You should 
think of TOP and ORDER BY together as a logical fi lter rather than a sorting mechanism. 
That’s why a query with both a TOP clause and an ORDER BY clause is allowed to defi ne a 
table expression. Recall from Chapter 1, “Logical Query Processing,” that when a TOP query is 
the outermost query, the ORDER BY clause serves two purposes—to defi ne logical  ordering 
for TOP and to defi ne presentation ordering in the result cursor. However, when a TOP query 
is used to defi ne a table expression, the ORDER BY clause serves only one purpose—to  defi ne 
logical ordering for TOP. Hence, the result can qualify as a relational table. The existing 
 design of the TOP option can be quite confusing. Later in this chapter I’ll describe a design 
that I think wouldn’t have been confusing, and I’ll show how you can provide an alternative 
that isn’t confusing. 

 Note Interestingly, you can specify the TOP option in a query without an ORDER BY clause, but 
the logical meaning of TOP in such a query is not completely defi ned. I’ll explain this aspect of 
TOP shortly.  
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 Let’s start with a basic example. The following query returns the three most recent orders: 

USE InsideTSQL2008;

SELECT TOP (3) orderid, custid, orderdate

FROM Sales.Orders

ORDER BY orderdate DESC, orderid DESC;

 This query generates the following output: 

orderid     custid      orderdate

----------- ----------- -----------------------

11077       65          2008-05-06 00:00:00.000

11076       9           2008-05-06 00:00:00.000

11075       68          2008-05-06 00:00:00.000

 Sorting fi rst by orderdate DESC guarantees that you get the most recent orders. Because 
 orderdate is not unique, I added orderid DESC to the ORDER BY list as a tiebreaker. Among orders 
with the same orderdate, the tiebreaker gives precedence to orders with higher  orderid values. 

 Note Notice the usage of parentheses here for the input expression to the TOP option. 
Because SQL Server supports any self-contained expression as input, the expression must reside 
within parentheses. For purposes of backward compatibility, SQL Server still supports SELECT 
TOP  queries that use a constant without parentheses. However, it’s good practice to put TOP 
 constants in parentheses to conform to the current requirements. 

 As an example of the PERCENT option, the following query returns the most recent 1  percent 
of orders: 

SELECT TOP (1) PERCENT orderid, custid, orderdate

FROM Sales.Orders

ORDER BY orderdate DESC, orderid DESC;

 This query generates the following output: 

orderid     custid      orderdate

----------- ----------- -----------------------

11077       65          2008-05-06 00:00:00.000

11076       9           2008-05-06 00:00:00.000

11075       68          2008-05-06 00:00:00.000

11074       73          2008-05-06 00:00:00.000

11073       58          2008-05-05 00:00:00.000

11072       20          2008-05-05 00:00:00.000

11071       46          2008-05-05 00:00:00.000

11070       44          2008-05-05 00:00:00.000

11069       80          2008-05-04 00:00:00.000

 The Orders table has 830 rows, and 1 percent of 830 is 8.3. Because only whole rows can 
be returned and 8.3 were requested, the actual number of rows returned is 9. When TOP . . . 
PERCENT is used and the specifi ed percent includes a fractional row, the exact number of 
rows requested is rounded up. 
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TOP and Determinism

 As I mentioned earlier, a TOP query doesn’t require an ORDER BY clause. However, such a 
query is nondeterministic. That is, running the same query twice against the same data might 
yield different result sets, and both would be correct. The following query returns three 
 orders, with no rule governing which three are returned: 

SELECT TOP (3) orderid, custid, orderdate

FROM Sales.Orders;

 When I ran this query, I got the following output: 

orderid     custid      orderdate

----------- ----------- -----------------------

10248       85          2006-07-04 00:00:00.000

10249       79          2006-07-05 00:00:00.000

10250       34          2006-07-08 00:00:00.000

 But you might get a different output. SQL Server will return the fi rst three rows it happened 
to access fi rst.  

 Note I can think of very few reasons to use SELECT TOP without ORDER BY, and I don’t 
 recommend it. One reason is to serve as a quick reminder of the structure or column names of 
a table or to fi nd out if the table contains any data at all. Another reason is to create an empty 
table with the same structure as another table or query. In this case, you can use SELECT TOP (0) 
<column list> INTO <table name> FROM . . . . Obviously, you don’t need an ORDER BY clause to 
indicate “which zero rows” you want to select! 

 A TOP query can be nondeterministic even when an ORDER BY clause is specifi ed if the 
ORDER BY list is nonunique. For example, the following query returns the fi rst three orders in 
order of increasing custid:  

SELECT TOP (3) orderid, custid, orderdate

FROM Sales.Orders

ORDER BY custid;

 This query generates the following output: 

orderid     custid      orderdate

----------- ----------- -----------------------

10643       1           2007-08-25 00:00:00.000

10692       1           2007-10-03 00:00:00.000

10702       1           2007-10-13 00:00:00.000

 You are guaranteed to get the orders with the lowest custid values. However, because the 
custid column is not unique, you cannot guarantee which rows among the ones with the 
same custid values will be returned in case of ties. Again, you will get the ones that SQL 

C09626034.indd   529 2/20/2009   8:24:20 PM



530 Inside Microsoft SQL Server 2008: T-SQL Querying

Server happens to access fi rst. One way to guarantee determinism is to add a tiebreaker 
that makes the ORDER BY list unique—for example, the primary key: 

SELECT TOP (3) orderid, custid, orderdate

FROM Sales.Orders

ORDER BY custid, orderid;

 Another way to guarantee determinism is to use the WITH TIES option. When you use WITH 
TIES, the query generates a result set including any additional rows that have the same values 
in the sort column or columns as the last row returned. For example, consider the following 
query:  

SELECT TOP (3) WITH TIES orderid, custid, orderdate

FROM Sales.Orders

ORDER BY custid;

 This query specifi es TOP (3), yet it returns the following six rows: 

orderid     custid      orderdate

----------- ----------- -----------------------

10643       1           2007-08-25 00:00:00.000

10692       1           2007-10-03 00:00:00.000

10702       1           2007-10-13 00:00:00.000

10835       1           2008-01-15 00:00:00.000

10952       1           2008-03-16 00:00:00.000

11011       1           2008-04-09 00:00:00.000

Three additional orders are returned because they have the same custid value (1) as the third row.

 Note Some applications must guarantee determinism. For example, if you’re using the TOP 
 option to implement paging, you don’t want the same row to end up on two successive 
pages just because the query was nondeterministic. Remember that you can always add the 
 primary key as a tiebreaker to guarantee determinism in case the ORDER BY list is not 
unique.  

TOP and Input Expressions

 As the input to TOP, SQL Server supports any self-contained expression yielding a scalar 
result. An expression that is independent of the outer query can be used—a variable or 
parameter, an arithmetic expression, or even the result of a subquery. For example, the 
 following query returns the @n most recent orders, where @n is a variable: 

DECLARE @n AS INT = 2;

SELECT TOP (@n) orderid, orderdate, custid, empid

FROM Sales.Orders

ORDER BY orderdate DESC, orderid DESC;
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 The following query shows the use of a subquery as the input to TOP. As always, the input to 
TOP specifi es the number of rows the query returns—for this example, the number of rows 
returned is the monthly average number of orders. The ORDER BY clause in this example 
specifi es that the rows returned are the most recent ones, where orderid is the tiebreaker 
(higher ID wins):  

SELECT TOP (SELECT COUNT(*)/(DATEDIFF(month,

              MIN(orderdate), MAX(orderdate))+1)

            FROM Sales.Orders)

  orderid, orderdate, custid, empid

FROM Sales.Orders

ORDER BY orderdate DESC, orderid DESC;

 The average number of monthly orders is the count of orders divided by one more than the 
difference in months between the maximum and minimum order dates. Because 830  orders 
in the table were placed during a period of 23 months, the output has the most recent 
36 orders. 

TOP and Modifi cations

 SQL Server provides a TOP option for data modifi cation statements (INSERT, UPDATE, and 
DELETE).  

 Note Before SQL Server 2005, the SET ROWCOUNT option provided the same capability as 
some of TOP’s newer features. SET ROWCOUNT accepted a variable as input, and it affected 
both data modifi cation statements and SELECT statements. Microsoft no longer recommends 
SET ROWCOUNT as a way to affect INSERT, UPDATE, and DELETE statements—in fact, SET 
ROWCOUNT enters a deprecation process, and in the next planned release of SQL Server (SQL 
Server 11), it will not affect data modifi cation statements at all. Use TOP to limit the number of 
rows affected by data modifi cation statements.  

 SQL Server supports the TOP option with modifi cation statements, allowing you to limit the 
number or percentage of affected rows. A TOP specifi cation can follow the keyword DELETE, 
UPDATE, or INSERT. 

 An ORDER BY clause is not supported with modifi cation statements, even when using TOP, so 
none of them can rely on logical ordering. SQL Server simply affects the specifi ed number of 
rows that it happens to access fi rst. 

 In the following statement, SQL Server does not guarantee which rows will be inserted from 
the source table:

INSERT TOP (10) INTO target_table 

  SELECT col1, col2, col3 

  FROM source_table;
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 Note Although you cannot use ORDER BY with INSERT TOP, you can guarantee which rows will 
be inserted if you specify TOP and ORDER BY in the SELECT statement, like so: 

INSERT INTO target_table

  SELECT TOP (10) col1, col2, col3

  FROM source_table

  ORDER BY col1;

 An INSERT TOP is handy when you want to load a subset of rows from a large table or result 
set into a target table and you don’t care which subset will be chosen; instead, you care only 
about the number of rows. 

 Note Although ORDER BY cannot be used with UPDATE TOP and DELETE TOP, you can 
 overcome the limitation by creating a CTE from a SELECT TOP query that has an ORDER BY clause 
and then issue your UPDATE or DELETE against the CTE: 

WITH CTE_DEL AS 

( 

  SELECT TOP (10) * FROM some_table ORDER BY col1 

)   

DELETE FROM CTE_DEL;  

 

WITH CTE_UPD AS 

( 

  SELECT TOP (10) * FROM some_table ORDER BY col1 

)   

UPDATE CTE_UPD SET col2 += 1;

 One such situation is when you need to insert or modify large volumes of data and, for 
practical reasons, you split it into batches, modifying one subset of the data at a time. For 
example, purging historic data might involve deleting millions of rows of data. Unless the 
 target table is partitioned and you can simply drop a partition, the purging process requires 
a DELETE statement. Deleting such a large set of rows in a single transaction has several 
 drawbacks. A DELETE statement is fully logged, and it will require enough space in the 
 transaction log to accommodate the whole transaction. During the delete operation (which 
can take a long time), no part of the log from the oldest open transaction up to the  current 
point can be overwritten. Furthermore, if the transaction breaks in the middle for some 
 reason, all the activity that took place to that point will be rolled back, and this will take a 
while. Finally, when many rows are deleted at once, SQL Server might escalate the individual 
locks held on the deleted rows to an exclusive table lock, preventing both read and write 
 access to the target table until the DELETE is completed.  

 It makes sense to break the single large DELETE transaction into several smaller ones—
small enough to avoid lock escalation (typically, a few thousand rows per transaction) and 
to allow recycling of the transaction log. You can easily verify that the number you chose 
doesn’t cause lock escalation by testing a DELETE with the TOP option while monitoring Lock 
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Escalation events with Profi ler. Splitting the large DELETE also allows overwriting the inactive 
section of the log. 

 To demonstrate purging data in multiple transactions, run the following code, which creates 
the LargeOrders table and populates it with sample data: 

IF OBJECT_ID('dbo.LargeOrders') IS NOT NULL

  DROP TABLE dbo.LargeOrders;

GO

SELECT ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS orderid,

  O1.custid, O1.empid, O1.orderdate, O1.requireddate,

  O1.shippeddate, O1.shipperid, O1.freight, O1.shipname, O1.shipaddress,

  O1.shipcity, O1.shipregion, O1.shippostalcode, O1.shipcountry

INTO dbo.LargeOrders

FROM Sales.Orders AS O1

  CROSS JOIN Sales.Orders AS O2;

CREATE UNIQUE CLUSTERED INDEX idx_od_oid

  ON dbo.LargeOrders(orderdate, orderid);

 To split a large DELETE, use the following solution: 

WHILE 1 = 1

BEGIN

  DELETE TOP (5000) FROM dbo.LargeOrders

  WHERE orderdate < '20070101';

  

  IF @@rowcount < 5000 BREAK;

END

 The code sets the TOP option to 5,000, limiting the number of rows affected by the 
 statement to 5,000. An endless loop attempts to delete 5,000 rows in each iteration, where 
each  5,000-row deletion resides in a separate transaction. The loop breaks as soon as the last 
batch is handled (that is, when the number of affected rows is less than 5,000). 

 In a similar manner, you can split large updates into batches, as long as the attribute that 
you are changing is also the attribute that you fi lter by. For example, say you need to change 
the value of custid from 55 to 123 wherever it appears in the LargeOrders table. Here’s the 
 solution you would use with UPDATE TOP: 

WHILE 1 = 1

BEGIN

  UPDATE TOP (5000) dbo.LargeOrders

    SET custid = 123

  WHERE custid = 55;

  IF @@rowcount < 5000 BREAK;

END

 If, however, you need to fi lter one attribute and modify another, you won’t be able to use 
this solution. Rather, you will need to implement paging logic, which I’ll describe later in this 
chapter. 
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TOP on Steroids

 Earlier I talked about TOP’s confusing design. This confusion stems from the fact that the same 
ORDER BY clause that was traditionally designed for presentation purposes also serves the 
logical fi ltering purpose for TOP. What I believe would have been a simpler design would have 
been to designate the TOP option with its own ORDER BY clause, unrelated to the  traditional 
presentation ORDER BY clause. This way, there would be no confusion as to whether the query 
returns a relational table result because this aspect depends solely on whether a  presentation 
ORDER BY clause was specifi ed. Also, such a design would have allowed defi ning logical 
 ordering for TOP that is different than presentation ordering. The OVER clause that is used 
for other purposes in SQL (for example, ranking calculations) fi ts TOP’s needs like a glove. In 
fact, it would have also allowed accommodating a concept of partitioned TOP (applying TOP 
per partition). Had such a design been implemented, you would have been able to express a 
 request for the three most recent orders for each employee, like so: 

SELECT 

  TOP (3) OVER(PARTITION BY empid 

               ORDER BY orderdate DESC, orderid DESC)

  empid, orderid, orderdate, custid

FROM Sales.Orders;

 Alas, SQL Server doesn’t support such syntax. However, you can get quite close by defi ning a 
row number based on the same OVER clause specifi cation and then fi ltering any number of 
rows that you want per partition based on the row number, like so: 

WITH C AS

(

  SELECT 

    ROW_NUMBER() OVER(PARTITION BY empid

                      ORDER BY orderdate DESC, orderid DESC) AS rownum,

    empid, orderid, orderdate, custid

  FROM Sales.Orders

)

SELECT *

FROM C

WHERE rownum <= 3;

 And in fact, as I mentioned earlier, modifi cations with TOP don’t allow you to control  logical 
ordering. Because you can modify data through table expressions, you can control which 
rows will be modifi ed by using row numbers. For example, the following code deletes the 
1,000 least recent orders for each employee: 

WITH C AS

(

  SELECT 

    ROW_NUMBER() OVER(PARTITION BY empid

                      ORDER BY orderdate, orderid) AS rownum,

    empid, orderid, orderdate, custid

  FROM dbo.LargeOrders

)

DELETE FROM C

WHERE rownum <= 1000;
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 When you’re done experimenting with the batch modifi cations, drop the LargeOrders table: 

IF OBJECT_ID('dbo.LargeOrders', 'U') IS NOT NULL

  DROP TABLE dbo.LargeOrders;

APPLY

 The APPLY table operator applies the right-hand table expression to every row of the  left-hand 
table expression. Unlike a join, where the order in which each of the table  expressions is 
 evaluated is unimportant, APPLY must logically evaluate the left table  expression fi rst. This 
logical evaluation order of the inputs allows the right table expression to be correlated with 
the left one. The concept can probably be made clearer with an example. 

 Run the following code to create an inline table-valued function called GetTopProducts: 

IF OBJECT_ID('dbo.GetTopProducts') IS NOT NULL

  DROP FUNCTION dbo.GetTopProducts;

GO

CREATE FUNCTION dbo.GetTopProducts

  (@supid AS INT, @catid INT, @n AS INT)

  RETURNS TABLE

AS

RETURN

  SELECT TOP (@n) WITH TIES productid, productname, unitprice

  FROM Production.Products

  WHERE supplierid = @supid

    AND categoryid = @catid

  ORDER BY unitprice DESC;

GO

 The function accepts three inputs: a supplier ID (@supid), a category ID (@catid), and a 
 requested number of products (@n). The function returns the requested number of products 
of the given category, supplied by the given supplier, with the highest unit prices. The query 
uses the TOP option WITH TIES to ensure a deterministic result set by including all products 
that have the same unit price as the least expensive product returned. 

 The following query uses the APPLY operator in conjunction with GetTopProducts to return, 
for each supplier, the two most expensive beverages. The category ID for beverages is 1, 
so 1 is supplied for the parameter @catid:  

SELECT S.supplierid, S.companyname, P.productid, P.productname, P.unitprice

FROM Production.Suppliers AS S

  CROSS APPLY dbo.GetTopProducts(S.supplierid, 1, 2) AS P;

 This query generates the following output: 

supplierid  companyname     productid   productname    unitprice

----------- --------------- ----------- -------------- ----------

20          Supplier CIYNM  43          Product ZZZHR  46.00

23          Supplier ELCRN  76          Product JYGFE  18.00

7           Supplier GQRCV  70          Product TOONT  15.00

18          Supplier LVJUA  38          Product QDOMO  263.50

C09626034.indd   535 2/20/2009   8:24:20 PM



536 Inside Microsoft SQL Server 2008: T-SQL Querying

18          Supplier LVJUA  39          Product LSOFL  18.00

12          Supplier AARON  75          Product BWRLG  7.75

1           Supplier SWRXU  2           Product RECZE  19.00

1           Supplier SWRXU  1           Product HHYDP  18.00

16          Supplier UHZRG  35          Product NEVTJ  18.00

16          Supplier UHZRG  67          Product XLXQF  14.00

16          Supplier UHZRG  34          Product SWNJY  14.00

10          Supplier UNAHG  24          Product QOGNU  4.50

 There are two forms of the APPLY operator: CROSS APPLY and OUTER APPLY. The  operators 
CROSS APPLY and OUTER APPLY behave like correlated versions of INNER JOIN and LEFT OUTER 
JOIN, respectively. Recall that rows from an inner join’s left input table won’t  automatically 
appear in the result set; the join condition might never be true for a  particular left input row. 
Similarly, rows from a CROSS APPLY’s left input table won’t automatically  appear in the result set; 
the right table expression could be empty for a particular (left input) row. Such is the case here, 
for example, for suppliers that don’t supply beverages. To include results for those suppliers as 
well, use the OUTER APPLY operator instead of CROSS APPLY, as the following query shows: 

SELECT S.supplierid, S.companyname, P.productid, P.productname, P.unitprice

FROM Production.Suppliers AS S

  OUTER APPLY dbo.GetTopProducts(S.supplierid, 1, 2) AS P;

 This query returns 33 rows. The result set with OUTER APPLY includes left rows for which the 
right table expression yielded an empty set, and for these rows the right table expression’s 
attributes are NULL. 

 A nice side effect resulted from the technology added to SQL Server’s engine to support 
the APPLY operator. You are now allowed to pass a column reference parameter from an 
outer query to a table-valued function. As an example of this capability, the following query 
 returns, for each supplier, the lower of the two most expensive beverage prices (assuming 
there are at least two): 

SELECT supplierid, companyname,

  (SELECT MIN(P.unitprice)

   FROM dbo.GetTopProducts(S.supplierid, 1, 2) AS P) AS price

FROM Production.Suppliers AS S;

 This query generates the following output: 

supplierid  companyname     price

----------- --------------- -------

8           Supplier BWGYE  NULL

20          Supplier CIYNM  46.00

23          Supplier ELCRN  18.00

5           Supplier EQPNC  NULL

25          Supplier ERVYZ  NULL

22          Supplier FNUXM  NULL

7           Supplier GQRCV  15.00

19          Supplier JDNUG  NULL

24          Supplier JNNES  NULL

14          Supplier KEREV  NULL

18          Supplier LVJUA  18.00
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15          Supplier NZLIF  NULL

28          Supplier OAVQT  NULL

29          Supplier OGLRK  NULL

4           Supplier QOVFD  NULL

9           Supplier QQYEU  NULL

6           Supplier QWUSF  NULL

17          Supplier QZGUF  NULL

3           Supplier STUAZ  NULL

12          Supplier AARON  7.75

1           Supplier SWRXU  18.00

13          Supplier TEGSC  NULL

16          Supplier UHZRG  14.00

10          Supplier UNAHG  4.50

2           Supplier VHQZD  NULL

21          Supplier XOXZA  NULL

11          Supplier ZPYVS  NULL

27          Supplier ZRYDZ  NULL

26          Supplier ZWZDM  NULL

Solutions to Common Problems Using TOP and APPLY

 Now that I’ve covered the fundamentals of TOP and APPLY, I’ll present common problems 
and solutions that use TOP and APPLY. 

TOP n for Each Group

 In Chapter 6, “Subqueries, Table Expressions, and Ranking Functions,” and Chapter 8, 
“Aggregating and Pivoting Data,” I discussed a problem involving tiebreakers in which you 
were asked to return the most recent order for each employee. This problem is actually 
a special case of a more generic problem in which you are after the top n rows for each 
group—for example, returning the three most recent orders for each employee. Again, 
 orders with higher orderdate values have precedence, but you need to introduce a tiebreaker 
to determine precedence in case of ties. Here I’ll use the maximum orderid as the tiebreaker. 
I’ll present solutions to this class of problems using TOP and APPLY. You will fi nd that these 
solutions are dramatically simpler than the ones I presented previously, and in some cases 
they are substantially faster. Indexing guidelines, though, remain the same. That is, you want 
an index with the key list being the partitioning columns (empid), sort columns (orderdate), 
tiebreaker columns (orderid), and, for covering purposes, the other columns mentioned in the 
query as the included column list (custid and requireddate).  

 Before going over the different solutions, run the following code to create the desired 
 indexes on the Orders and OrderDetails tables that participate in my examples: 

CREATE UNIQUE INDEX idx_eid_od_oid_i_cid_rd 

  ON Sales.Orders(empid, orderdate, orderid)

     INCLUDE(custid, requireddate);

CREATE UNIQUE INDEX idx_oid_qtyd_pid

  ON Sales.OrderDetails(orderid, qty DESC, productid);
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 The fi rst solution that I’ll present will fi nd the most recent order for each employee. The 
 solution queries the Orders table, fi ltering only orders that have an orderid value equal to the 
result of a subquery. The subquery returns the orderid value of the most recent order for the 
current employee by using a simple TOP (1) logic. Listing 9-1 contains the solution query. 

LISTING 9-1 Solution 1 to the Single Most Recent Order for Each Employee problem

SELECT empid, orderid, custid, orderdate, requireddate 

FROM Sales.Orders AS O1

WHERE orderid =

  (SELECT TOP (1) orderid

   FROM Sales.Orders AS O2

   WHERE O2.empid = O1.empid

   ORDER BY orderdate DESC, orderid DESC);

The query in Listing 9-1 generates the following output: 

empid  orderid  custid  orderdate               requireddate

------ -------- ------- ----------------------- -----------------------

5      11043    74      2008-04-22 00:00:00.000 2008-05-20 00:00:00.000

6      11045    10      2008-04-23 00:00:00.000 2008-05-21 00:00:00.000

9      11058    6       2008-04-29 00:00:00.000 2008-05-27 00:00:00.000

3      11063    37      2008-04-30 00:00:00.000 2008-05-28 00:00:00.000

2      11073    58      2008-05-05 00:00:00.000 2008-06-02 00:00:00.000

7      11074    73      2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

8      11075    68      2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

4      11076    9       2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

1      11077    65      2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

Figure 9-1 shows the execution plan for the query in Listing 9-1. 

FIGURE 9-1 Execution plan for the query in Listing 9-1

This solution has several advantages over the solutions I presented earlier in the book. 
Compared to the ANSI subqueries solution I presented in Chapter 6, this one is much simpler, 
especially when you have multiple sort/tiebreaker columns: You simply extend the ORDER 
BY list in the subquery to include the additional columns. Compared to the solution based 
on aggregations I presented in Chapter 8, this solution may be slower, but it is substantially 
simpler. 

SELECT empid, orderid, custid, orderdate, requireddate 

FROM Sales.Orders AS O1

WHERE orderid =

  (SELECT TOP (1) orderid

   FROM Sales.Orders AS O2

   WHERE O2.empid = O1.empid

   ORDER BY orderdate DESC, orderid DESC);
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Examine the query’s execution plan in Figure 9-1. The Index Scan operator shows that the 
covering index idx_eid_od_oid_i_cid_rd is scanned once. The bottom branch of the Nested 
Loops operator represents the work done for each row of the Index Scan. Here you see 
that for each row of the Index Scan, an Index Seek and a Top operation take place to fi nd 
the  given employee’s most recent order. Remember that the index leaf level holds the data 
sorted by empid, orderdate, orderid, in that order; this means that the last row within each 
group of rows per employee represents the sought row. The Index Seek operation reaches 
the end of the group of rows for the current employee, and the Top operator goes one step 
backward to return the key of the most recent order. A fi lter operator then keeps only orders 
where the outer orderid value matches the one returned by the subquery. 

The I/O cost of this query is 1,786 logical reads, and this number breaks down as follows: 
The full scan of the covering index requires six logical reads because the index spans six data 
pages, each of the 830 index seeks requires at least two logical reads because the index has 
two  levels, and some of the index seeks require three logical reads in all because the seek 
might lead to the beginning of one data page and the most recent orderid might be at the 
end of the  preceding page. 

Realizing that a separate seek operation within the index was invoked for each outer order, 
you can fi gure out that you have room for optimization here. The performance potential is 
to invoke only a single seek per employee, not per order, because ultimately you are after 
the most recent order for each employee. I’ll describe how to achieve such optimization 
shortly. But before that, I’d like to point out another advantage of this solution over the ones 
I presented earlier in the book. Previous solutions were limited to returning only a single 
order per employee. This solution, however, can be easily extended to support any number 
of orders per employee by converting the equality operator to an IN predicate. The solution 
query is shown in Listing 9-2. 

LISTING 9-2 Solution 1 to the Three Most Recent Orders for Each Employee problem

SELECT empid, orderid, custid, orderdate, requireddate 

FROM Sales.Orders AS O1

WHERE orderid IN

  (SELECT TOP (3) orderid

   FROM Sales.Orders AS O2

   WHERE O2.empid = O1.empid

   ORDER BY orderdate DESC, orderid DESC);

Now let’s go to the optimization technique. Remember that you are attempting to give the 
optimizer a hint that you want one index seek operation per employee, not one per order. 
You can achieve this by querying the Employees table and retrieving the most recent orderid 
for each employee. Create a derived table out of this query against Employees and join the 
derived table to the Orders table on matching orderid values. Listing 9-3 has the solution 
query, generating the execution plan shown in Figure 9-2. 

SELECT empid, orderid, custid, orderdate, requireddate 

FROM Sales.Orders AS O1

WHERE orderid IN

  (SELECT TOP (3) orderid

   FROM Sales.Orders AS O2

   WHERE O2.empid = O1.empid

   ORDER BY orderdate DESC, orderid DESC);
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LISTING 9-3 Solution 2 to the Single Most Recent Order for Each Employee problem

SELECT O.empid, O.orderid, custid, O.orderdate, O.requireddate 

FROM (SELECT E.empid,

        (SELECT TOP (1) orderid

         FROM Sales.Orders AS O2

         WHERE O2.empid = E.empid

         ORDER BY orderdate DESC, orderid DESC) AS toporder

      FROM HR.Employees AS E) AS EO

  JOIN Sales.Orders AS O

    ON O.orderid = EO.toporder;

FIGURE 9-2 Execution plan for the query in Listing 9-3 

You can see in the plan that one of the indexes on the Employees table is scanned to  access 
the empids. The next operator that appears in the plan (Nested Loops) drives a seek in the 
 index on Orders to retrieve the ID of the employee’s most recent order. With nine  employees, 
only nine seek operations will be performed, compared to the previous 830 that were 
driven by the number of orders. Finally, another Nested Loops operator drives one seek per 
 employee in the clustered index on Orders.orderid to look up the attributes of the order 
based on the  orderid value. If the index on orderid wasn’t clustered, you would have seen 
an additional lookup to access the full data row. The I/O cost of this query is only 36 logical 
reads against the Orders table and two reads against the Employees table. 

An attempt to regenerate the same success when you’re after more than one order per 
employee is disappointing. Because you cannot return more than one key in the SELECT list 
using a subquery, you might attempt to do something similar in a join condition between 
Employees and Orders. The solution query is shown in Listing 9-4. 

LISTING 9-4 Solution 2 to the Three Most Recent Orders for Each Employee problem

SELECT O1.empid, O1.orderid, O1.custid, O1.orderdate, O1.requireddate 

FROM HR.Employees AS E

   JOIN Sales.Orders AS O1

     ON orderid IN

       (SELECT TOP (3) orderid

        FROM Sales.Orders AS O2

        WHERE O2.empid = E.empid

        ORDER BY orderdate DESC, orderid DESC);

SELECT O.empid, O.orderid, custid, O.orderdate, O.requireddate

FROM (SELECT E.empid,

        (SELECT TOP (1) orderid

         FROM Sales.Orders AS O2

         WHERE O2.empid = E.empid

         ORDER BY orderdate DESC, orderid DESC) AS toporder

      FROM HR.Employees AS E) AS EO

  JOIN Sales.Orders AS O

    ON O.orderid = EO.toporder;

SELECT O1.empid, O1.orderid, O1.custid, O1.orderdate, O1.requireddate 

FROM HR.Employees AS E

   JOIN Sales.Orders AS O1

     ON orderid IN

       (SELECT TOP (3) orderid

        FROM Sales.Orders AS O2

        WHERE O2.empid = E.empid

        ORDER BY orderdate DESC, orderid DESC);
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However, this solution yields the poor plan shown in Figure 9-3, generating 15,944 logical 
reads against the Orders table and two logical reads against the Employees table. In this 
case, you’re better off using the solution I showed earlier that supports returning multiple 
orders per employee. 

FIGURE 9-3 Execution plan for the query in Listing 9-4

 Another solution to the problem involves using the APPLY operator. This solution 
 outperforms all others thus far, and it also supports returning multiple orders per employee. 
You apply to the Employees table a table expression that returns, for a given row of the 
Employees table, the n most recent orders for the employee in that row. Listing 9-5 has the 
solution query, generating the execution plan shown in Figure 9-4. 

LISTING 9-5 Solution 3 to the Three Most Recent Orders for Each Employee problem

SELECT E.empid, A.orderid, A.custid, A.orderdate, A.requireddate 

FROM HR.Employees AS E

  CROSS APPLY

    (SELECT TOP (3) orderid, custid, orderdate, requireddate 

     FROM Sales.Orders AS O

     WHERE O.empid = E.empid

     ORDER BY orderdate DESC, orderid DESC) AS A;

FIGURE 9-4 Execution plan for the query in Listing 9-5

 The plan scans an index on the Employees table for the empid values. Each empid value 
drives a single seek within the covering index on Orders to return the requested most recent 
three orders for that employee. The interesting part here is that you don’t get only the keys 

SELECT E.empid, A.orderid, A.custid, A.orderdate, A.requireddate

FROM HR.Employees AS E

  CROSS APPLY

    (SELECT TOP (3) orderid, custid, orderdate, requireddate 

     FROM Sales.Orders AS O

     WHERE O.empid = E.empid

     ORDER BY orderdate DESC, orderid DESC) AS A;
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of the rows found; rather, this plan allows for returning multiple attributes. So you don’t need 
any additional activities to return the nonkey attributes. The I/O cost of this query is only 
18 logical reads against the Orders table and two reads against the Employees table.  

 Surprisingly, one solution can be even faster than the one using the APPLY operator in  certain 
circumstances, which I’ll describe shortly. The solution uses the ROW_NUMBER function. You 
calculate the row number of each order, partitioned by empid and based on orderdate DESC, 
orderid DESC order. Then, in an outer query, you fi lter only results with a row number less 
than or equal to 3. The optimal index for this solution is similar to the covering index  created 
earlier, but with the orderdate and orderid columns defi ned in descending order: 

CREATE UNIQUE INDEX idx_eid_odD_oidD_i_cid_rd 

  ON Sales.Orders(empid, orderdate DESC, orderid DESC)

     INCLUDE(custid, requireddate);

 Listing 9-6 has the solution query, generating the execution plan shown in Figure 9-5. 

LISTING 9-6 Solution 4 to the Three Most Recent Orders for Each Employee problem

SELECT orderid, custid, orderdate, requireddate

FROM (SELECT orderid, custid, orderdate, requireddate,

        ROW_NUMBER() OVER(PARTITION BY empid

                          ORDER BY orderdate DESC, orderid DESC) AS rownum

      FROM Sales.Orders) AS D

WHERE rownum <= 3;

FIGURE 9-5 Execution plan for the query in Listing 9-6

 I already described the execution plans generated for ranking functions in Chapter 6, and this 
plan is very similar. The I/O cost here is only six logical reads caused by the single full scan 
of the covering index. Note that to calculate the row numbers here, the index must be fully 
scanned. With large tables, when you’re seeking a small percentage of rows per group, the 
APPLY operator will be faster because the total cost of the multiple seek operations—one per 
group—is lower than a full scan of the covering index. 

 The last two solutions that use the APPLY operator and the ROW_NUMBER function have 
an important advantage over the other solutions that I’ve shown. The other solutions are 
 supported only when the table at hand has a single column key because they rely on a 
 subquery returning a scalar. The last two solutions, on the other hand, are just as applicable 
with composite keys. For example, say you were after the top three order details for each 
order, with precedence determined by qty DESC and where productid ASC is used as the 
 tiebreaker ordering. The OrderDetails table has a composite primary key, (orderid, productid), 

SELECT orderid, custid, orderdate, requireddate

FROM (SELECT orderid, custid, orderdate, requireddate,

        ROW_NUMBER() OVER(PARTITION BY empid

                          ORDER BY orderdate DESC, orderid DESC) AS rownum

      FROM Sales.Orders) AS D

WHERE rownum <= 3;
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so you can’t return a key for this table from a subquery. On the other hand, the APPLY  operator 
doesn’t rely on having a single-column key. It cares only about the correlation of the inner 
OrderDetails table to the outer Orders table based on orderid match and on a sort based on 
qty DESC and productid ASC: 

SELECT D.orderid, D.productid, D.qty

FROM Sales.Orders AS O

  CROSS APPLY

    (SELECT TOP (3) OD.orderid, OD.productid, OD.qty

     FROM Sales.OrderDetails AS OD

     WHERE OD.orderid = O.orderid

     ORDER BY qty DESC, productid) AS D;

 Similarly, the ROW_NUMBER–based solution doesn’t rely on having a single-column key. It 
simply calculates row numbers partitioned by orderid, sorted by qty DESC and productid ASC: 

SELECT orderid, productid, qty

FROM (SELECT ROW_NUMBER() OVER(PARTITION BY orderid 

                               ORDER BY qty DESC, productid) AS rownum,

        orderid, productid, qty

      FROM Sales.OrderDetails) AS D

WHERE rownum <= 3;

Matching Current and Previous Occurrences

 Matching current and previous occurrences is yet another problem for which you can use 
the TOP option. The problem is matching to each “current” row, a row from the same table 
that is considered the “previous” row based on some ordering criteria—typically, time-based 
criteria. Such a request serves the need to make calculations involving measurements from 
both a “current” row and a “previous” row. Examples for such requests are calculating trends, 
differences, ratios, and so on. When you need to include only one value from the previous 
row for your calculation, use a simple TOP (1) subquery to get that value. But when you need 
multiple measurements from the previous row, it makes more sense in terms of performance 
to use a join rather than multiple subqueries. 

 Suppose you need to match each employee’s order with her previous order, using orderdate 
to determine the previous order and using orderid as a tiebreaker. Once the employee’s 
orders are matched, you can request calculations involving attributes from both sides—for 
example, calculating differences between the current and previous order dates, required 
dates, and so on. For brevity’s sake, I won’t show the actual calculations of differences; rather, 
I’ll just focus on the matching techniques. One solution is to join two instances of the Orders 
table: one representing the current rows (C) and the other representing the previous row (P). 
The join condition will match P.orderid with the orderid representing the previous order, 
which you return from a TOP (1) subquery. You use a LEFT OUTER join to keep the “fi rst” 
 order for each employee. An inner join would eliminate such orders because a match would 
not be found for them. Listing 9-7 has the solution query to the matching problem. 
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LISTING 9-7 Query Solution 1 to the Matching Current and Previous Occurrences problem

SELECT C.empid,

  C.orderid AS curorderid, P.orderid AS prvorderid,

  C.orderdate AS curorderdate, P.orderdate AS prvorderdate,

  C.requireddate AS curreqdate, P.requireddate AS prvreqdate

FROM Sales.Orders AS C

  LEFT OUTER JOIN Sales.Orders AS P

    ON P.orderid =

       (SELECT TOP (1) orderid

        FROM Sales.Orders AS O

        WHERE O.empid = C.empid

          AND (O.orderdate < C.orderdate

               OR (O.orderdate = C.orderdate

                   AND O.orderid < C.orderid))

        ORDER BY orderdate DESC, orderid DESC)

ORDER BY C.empid, C.orderdate, C.orderid;

 The subquery’s fi lter is a bit tricky because precedence is determined by two attributes: 
 orderdate (ordering column) and orderid (tiebreaker). Had the request been for precedence 
based on a single column—say, orderid alone—the fi lter would have been much simpler—
O.orderid < C.orderid. Because two attributes are involved, “previous” rows are identifi ed with 
a logical expression that says inner_sort_col < outer_sort_col or (inner_sort_col = outer_sort_col 
and inner_tiebreaker < outer_tiebreaker). 

This query generates the execution plan shown in Figure 9-6, with an I/O cost of 4,844 
 logical reads. 

FIGURE 9-6 Execution plan for the query in Listing 9-7

The plan fi rst scans the covering index I created earlier on the key list (empid, orderdate, 
orderid), with the covered columns (custid, requireddate) specifi ed as included columns. This 
scan’s purpose is to return the “current” rows. For each current row, a Nested Loops  operator 
initiates an Index Seek operation in the same index, driven by the subquery to fetch the key 
(orderid) of the “previous” row. For each returned previous orderid, another Nested Loops 
operator retrieves the requested list of attributes of the previous row. You realize that one 
of the two seek operations is superfl uous and that there’s potential for a revised query that 
would issue only one seek per current order. 

SELECT C.empid,

  C.orderid AS curorderid, P.orderid AS prvorderid,

  C.orderdate AS curorderdate, P.orderdate AS prvorderdate,

  C.requireddate AS curreqdate, P.requireddate AS prvreqdate

FROM Sales.Orders AS C

  LEFT OUTER JOIN Sales.Orders AS P

    ON P.orderid =

       (SELECT TOP (1) orderid

        FROM Sales.Orders AS O

        WHERE O.empid = C.empid

          AND (O.orderdate < C.orderdate

               OR (O.orderdate = C.orderdate

                   AND O.orderid < C.orderid))

        ORDER BY orderdate DESC, orderid DESC)

ORDER BY C.empid, C.orderdate, C.orderid;
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You can try various query revisions that might improve performance. Listing 9-8 has an 
 example of a query revision that generates the plan shown in Figure 9-7. 

LISTING 9-8 Query Solution 2 to the Matching Current and Previous Occurrences problem

SELECT C.empid,

  C.orderid AS curorderid, P.orderid AS prvorderid,

  C.orderdate AS curorderdate, P.orderdate AS prvorderdate,

  C.requireddate AS curreqdate, P.requireddate AS prvreqdate

FROM (SELECT empid, orderid, orderdate, requireddate,

        (SELECT TOP (1) orderid

         FROM Sales.Orders AS O2

         WHERE O2.empid = O1.empid

           AND (O2.orderdate < O1.orderdate

                OR O2.orderdate = O1.orderdate

                   AND O2.orderid < O1.orderid)

         ORDER BY orderdate DESC, orderid DESC) AS prvorderid

      FROM Sales.Orders AS O1) AS C

  LEFT OUTER JOIN Sales.Orders AS P

    ON C.prvorderid = P.orderid

ORDER BY C.empid, C.orderdate, C.orderid;

FIGURE 9-7 Execution plan for the query in Listing 9-8

This plan incurs an I/O cost of 3,223 logical reads, but it also involves a sort operation. The 
solution creates a derived table called C that contains current orders, with an additional 
column (prvorderid) holding the orderid of the previous order as obtained by a correlated 
subquery. The outer query then joins C with another instance of Orders, aliased as P, which 
supplies the full list of attributes from the previous order. The lower I/O cost is mainly the 
result of the Merge join algorithm that the plan uses. In the graphical query plan, the upper 
input to the Merge Join operator is the result of an ordered scan of the clustered index on 
orderid, representing the “previous” orders, and this is the nonpreserved side of the outer 
join. The lower input is the result of scanning the covering index and fetching each previous 
orderid with a seek operation followed by a Top 1.  

SELECT C.empid,

  C.orderid AS curorderid, P.orderid AS prvorderid,

  C.orderdate AS curorderdate, P.orderdate AS prvorderdate,

  C.requireddate AS curreqdate, P.requireddate AS prvreqdate

FROM (SELECT empid, orderid, orderdate, requireddate,

        (SELECT TOP (1) orderid

         FROM Sales.Orders AS O2

         WHERE O2.empid = O1.empid

           AND (O2.orderdate < O1.orderdate

                OR O2.orderdate = O1.orderdate

                   AND O2.orderid < O1.orderid)

         ORDER BY orderdate DESC, orderid DESC) AS prvorderid

      FROM Sales.Orders AS O1) AS C

  LEFT OUTER JOIN Sales.Orders AS P

    ON C.prvorderid = P.orderid

ORDER BY C.empid, C.orderdate, C.orderid;
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 A merge join turned out to be cost effective here because the rows of the Orders table were 
presorted on the clustered index key column orderid and it was not too much work to sort 
the other input in preparation for the merge. In larger production systems, circumstances 
will most likely be different. With a much larger number of rows and a different clustered 
 index—on a column that frequently appears in range queries, perhaps—you shouldn’t 
 expect to see the same query plan. 

This is where the APPLY operator comes in handy. It often leads to simple and effi cient plans 
that perform well even with large volumes of data. Using the APPLY operator in this case 
leads to a plan that scans the data once to get the current orders and performs a single index 
seek for each current order to fetch from the covering index all the attributes of the previous 
order at once. 

Listing 9-9 has the solution query, which generates the plan shown in Figure 9-8, with an I/O 
cost of 3,202 logical reads and no sorting involved. 

LISTING 9-9 Query Solution 3 to the Matching Current and Previous Occurrences problem

SELECT C.empid,

  C.orderid AS curorderid, P.orderid AS prvorderid,

  C.orderdate AS curorderdate, P.orderdate AS prvorderdate,

  C.requireddate AS curreqdate, P.requireddate AS prvreqdate

FROM Sales.Orders AS C

  OUTER APPLY

    (SELECT TOP (1) orderid, orderdate, requireddate

     FROM Sales.Orders AS O

     WHERE O.empid = C.empid

       AND (O.orderdate < C.orderdate

            OR (O.orderdate = C.orderdate

               AND O.orderid < C.orderid))

     ORDER BY orderdate DESC, orderid DESC) AS P

ORDER BY C.empid, C.orderdate, C.orderid;

FIGURE 9-8 Execution plan for the query in Listing 9-9

 But a more effi cient solution is based on the ROW_NUMBER function. You can create a CTE 
that calculates row numbers for orders partitioned by empid and based on orderdate,  orderid 
ordering. Join two instances of the CTE, one representing the current orders and the other 
representing the previous orders. The join condition will be based on matching empid  values 
and row numbers that differ by one. Listing 9-10 has the solution query, generating the 
 execution plan shown in Figure 9-9. 

SELECT C.empid,

  C.orderid AS curorderid, P.orderid AS prvorderid,

  C.orderdate AS curorderdate, P.orderdate AS prvorderdate,

  C.requireddate AS curreqdate, P.requireddate AS prvreqdate

FROM Sales.Orders AS C

  OUTER APPLY

    (SELECT TOP (1) orderid, orderdate, requireddate

     FROM Sales.Orders AS O

     WHERE O.empid = C.empid

       AND (O.orderdate < C.orderdate

            OR (O.orderdate = C.orderdate

               AND O.orderid < C.orderid))

     ORDER BY orderdate DESC, orderid DESC) AS P

ORDER BY C.empid, C.orderdate, C.orderid;
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LISTING 9-10 Query Solution 4 to the Matching Current and Previous Occurrences problem

WITH OrdersRN AS

(

  SELECT empid, orderid, orderdate, requireddate,

    ROW_NUMBER() OVER(PARTITION BY empid

                      ORDER BY orderdate, orderid) AS rn

  FROM Sales.Orders

)

SELECT C.empid,

  C.orderid AS curorderid, P.orderid AS prvorderid,

  C.orderdate AS curorderdate, P.orderdate AS prvorderdate,

  C.requireddate AS curreqdate, P.requireddate AS prvreqdate

FROM OrdersRN AS C

  LEFT OUTER JOIN OrdersRN AS P

    ON C.empid = P.empid

    AND C.rn = P.rn + 1

ORDER BY C.empid, C.orderdate, C.orderid;

FIGURE 9-9 Execution plan for the query in Listing 9-10

Because the plan scans the covering index only twice to access the order attributes and 
 calculate the row numbers, it incurs a total I/O cost of 12 logical reads, leaving all other 
 solutions lagging far behind in terms of I/O cost. 

 To clean up, run the following code, which drops indexes used for the solutions presented here:

DROP INDEX Sales.Orders.idx_eid_od_oid_i_cid_rd;

DROP INDEX Sales.Orders.idx_eid_odD_oidD_i_cid_rd;

DROP INDEX Sales.OrderDetails.idx_oid_qtyd_pid;

Paging

I started talking about paging in Chapter 6, where I presented solutions based on row 
 numbers. As a reminder, you’re looking to return rows from the result set of a query in pages 
or chunks, allowing the user to navigate through the pages. In my examples, I used the 
Orders table in the InsideTSQL2008 database. 

WITH OrdersRN AS

(

  SELECT empid, orderid, orderdate, requireddate,

    ROW_NUMBER() OVER(PARTITION BY empid

                      ORDER BY orderdate, orderid) AS rn

  FROM Sales.Orders

)

SELECT C.empid,

  C.orderid AS curorderid, P.orderid AS prvorderid,

  C.orderdate AS curorderdate, P.orderdate AS prvorderdate,

  C.requireddate AS curreqdate, P.requireddate AS prvreqdate

FROM OrdersRN AS C

  LEFT OUTER JOIN OrdersRN AS P

    ON C.empid = P.empid

    AND C.rn = P.rn + 1

ORDER BY C.empid, C.orderdate, C.orderid;
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 In production environments, paging typically involves dynamic fi lters and sorting based on 
user requests. To focus on the paging techniques, I’ll assume no fi lters here and a desired 
 order of orderdate with orderid as a tiebreaker. 

 The optimal index for the paging solutions that I’ll present follows similar guidelines to other 
TOP solutions I presented—that is, an index on the sort column or columns and the  tiebreaker 
column or columns. If you can afford to, make the index a covering index,  either by making it 
the table’s clustered index or, if it is nonclustered, by including the other  columns mentioned 
in the query. Remember from Chapter 4, “Query Tuning,” that an  index can contain nonkey 
columns, which are specifi ed in the INCLUDE clause of the CREATE INDEX command. The 
nonkey columns of an index appear only in the leaf level of the  index. If you cannot afford a 
covering index, at least make sure that you create one on the sort+tiebreaker columns. The 
plans will be less effi cient than with a covering one because lookups will be involved to obtain 
the data row, but at least you won’t get a table scan for each page request. 

 For sorting by orderdate and orderid and to cover the columns custid and empid, create the 
following index: 

CREATE INDEX idx_od_oid_i_cid_eid

  ON Sales.Orders(orderdate, orderid) INCLUDE(custid, empid);

 The solution I’ll present here supports paging through consecutive pages. That is, you 
 request the fi rst page and then proceed to the next. You might also want to provide 
the  option to  request a previous page. It is strongly recommended to implement the 
fi rst, next, and  previous page requests as stored procedures for both performance and 
 encapsulation  reasons. This way you can get effi cient plan reuse, and you can always alter 
the  implementation of the stored procedures if you fi nd more effi cient techniques, without 
 affecting the users of the stored procedures. 

First Page

 Implementing the stored procedure that returns the fi rst page is really simple because you 
don’t need an anchor to mark the starting point. You simply return the number of rows 
 requested from the top, like so: 

CREATE PROC dbo.GetFirstPage

  @n AS INT = 10

AS

SELECT TOP (@n) orderid, orderdate, custid, empid

FROM Sales.Orders

ORDER BY orderdate, orderid;

GO

 Note In this example, ORDER BY has two purposes: to specify which rows TOP should fi lter and 
to control the order of rows in the result set for presentation purposes. 
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 Having an index on the sort columns, especially if it’s a covering one like I created for this 
purpose, allows for an optimal plan where only the relevant page of rows is scanned within 
the index in order. You can see this by running the following stored procedure and  examining 
the plan shown in Figure 9-10: 

EXEC dbo.GetFirstPage;

FIGURE 9-10 Execution plan for stored procedure dbo.GetFirstPage

 Rows are scanned within the index, starting with the head of the linked list and moving 
 forward in an ordered fashion. The Top operator stops the scan as soon as the requested 
number of rows is accessed. 

Next Page

 The request for a “next” page has to rely on some anchor row that marks where the page 
should start. This anchor should be provided to the stored procedure as input. The  anchor 
could be the sort column values of the last row on the previous page because, as you 
might remember, for determinism purposes the sort values must be unique. In the client 
 application, you already retrieved the previous page. So you can simply set aside the sort 
column values from the last row in the previous page. When you get a request for the next 
page, you can provide those as an input to the stored procedure. 

 Bearing in mind that, in practice, fi lters and sorting are usually dynamic, you can’t rely on any 
particular number or type of columns as input parameters. So a smarter design, which would 
accommodate later enhancement of the procedure to support dynamic execution, would be 
to provide the primary key as input and not the sort column values. The client application 
would set aside the primary key value from the last row it retrieved and use it as input to the 
next invocation of the stored procedure. 

 Here’s the implementation of the GetNextPage stored procedure: 

CREATE PROC dbo.GetNextPage

  @anchor AS INT, -- key of last row in prev page

  @n AS INT = 10

AS

SELECT TOP (@n) O.orderid, O.orderdate, O.custid, O.empid

FROM Sales.Orders AS O

  JOIN Sales.Orders AS A

    ON A.orderid = @anchor

    AND (O.orderdate > A.orderdate

         OR (O.orderdate = A.orderdate

             AND O.orderid > A.orderid))

ORDER BY O.orderdate, O.orderid;

GO
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 The procedure joins the two instances of the orders table: one called O, representing the 
next page, and one called A, representing the anchor. The join condition fi rst fi lters the 
 anchor instance with the input key, and then it fi lters the instance representing the next page 
so that only rows following the anchor will be returned. The columns orderdate and orderid 
determine precedence both in terms of the logical expression in the ON clause that fi lters 
rows following the anchor and in terms of the ORDER BY clause that TOP relies on. To test 
the stored procedure, fi rst execute it with the orderid from the last row returned from the 
fi rst page (10257) as the anchor. Then execute it again with the orderid of the last row in the 
 second page (10267) as the anchor: 

EXEC dbo.GetNextPage @anchor = 10257;

EXEC dbo.GetNextPage @anchor = 10267;

 Remember that the client application iterates through the rows it got back from SQL Server, 
so naturally it can pick up the key from the last row and use it as input to the next invocation 
of the stored procedure. 

 Both procedure calls yield the same execution plan, which is shown in Figure 9-11.

FIGURE 9-11 Execution plan for the stored procedure GetNextPage

 You will see a single seek operation within the clustered index to fetch the anchor row, 
 followed by an ordered scan within the covering index to fetch the next page of rows. That’s 
not a very effi cient plan. Ideally, the optimizer would have performed a seek within the 
 covering index to the fi rst row from the desired page of orders, then it would have  followed 
with a partial ordered scan to grab the rest of the rows in the desired page of  orders, 
 physically accessing only the relevant rows. The reason for getting an ineffi cient plan is 
 because the fi lter has an OR operator between the expression O.orderdate > A.orderdate and 
the expression O.orderdate = A.orderdate AND O.orderid > A.orderid. SQL Server’s  optimizer 
tends to produce better plans for predicates that use AND logic instead of OR logic for 
 reasons that I’ll describe later in the chapter under the section “Logical Transformations.” For 
our GetNextPage procedure, here’s the optimized implementation that transforms the OR 
logic to AND logic: 

ALTER PROC dbo.GetNextPage

  @anchor AS INT, -- key of last row in prev page

  @n AS INT = 10

AS

SELECT TOP (@n) O.orderid, O.orderdate, O.custid, O.empid
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FROM Sales.Orders AS O

  JOIN Sales.Orders AS A

    ON A.orderid = @anchor

    AND (O.orderdate >= A.orderdate

         AND (O.orderdate > A.orderdate

              OR O.orderid > A.orderid))

ORDER BY O.orderdate, O.orderid;

GO

 Notice that the AND expression within the parentheses is logically equivalent to the previous OR 
expression. (I just implemented the techniques described in the section “Logical Transformations” 
later in the chapter.) To show that the AND implementation is really optimized better, run the 
following code and examine the execution plan shown in Figure 9-12: 

EXEC dbo.GetNextPage @anchor = 10257;

FIGURE 9-12 Execution plan for the stored procedure GetNextPage—second version

 Now you get the desired plan. You see a single seek operation within the clustered index 
to fetch the anchor row, followed by a seek within the covering index and a partial ordered 
scan, physically accessing only the relevant rows in the desired page of orders. 

Previous Page

 You can use two approaches to dealing with requests for previous pages. One is to locally 
cache pages already retrieved to the client. This means that you need to develop a caching 
mechanism in the client. A simpler approach is to implement another stored procedure that 
works like the GetNextPage procedure in reverse. The anchor parameter will be the key of the 
fi rst row after the page you want. The comparisons within the procedure will use < instead of >, 
and the TOP clause will use an ORDER BY list that defi nes the opposite sorting direction. If these 
were the only changes, you would get the correct page but in reverse order from normal. To 
fi x the ordering of the result set, encapsulate the query as a derived table and apply SELECT . . . 
ORDER BY to this derived table, with the desired ordering. 

 Here’s the implementation of the GetPrevPage procedure: 

CREATE PROC dbo.GetPrevPage

  @anchor AS INT, -- key of first row in next page

  @n AS INT = 10

AS

SELECT orderid, orderdate, custid, empid
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FROM (SELECT TOP (@n) O.orderid, O.orderdate, O.custid, O.empid

      FROM Sales.Orders AS O

        JOIN Sales.Orders AS A

          ON A.orderid = @anchor

          AND (O.orderdate <= A.orderdate

               AND (O.orderdate < A.orderdate

                    OR O.orderid < A.orderid))

      ORDER BY O.orderdate DESC, O.orderid DESC) AS D

ORDER BY orderdate, orderid;

GO

 To test the procedure, run it with orderid values from the fi rst rows on the pages you 
already got: 

EXEC dbo.GetPrevPage @anchor = 10268;

EXEC dbo.GetPrevPage @anchor = 10258;

 Examine the execution plan shown in Figure 9-13, produced for the execution of the 
GetPrevPage procedure. 

FIGURE 9-13 Execution plan for the previous page

 You will fi nd an almost identical plan to the one produced for the GetNextPage  procedure, 
with an additional Sort operator, which is a result of the extra ORDER BY clause in the 
GetPrevPage procedure. 

 When you’re fi nished, drop the covered index created for the paging solutions: 

DROP INDEX Sales.Orders.idx_od_oid_i_cid_eid;

Random Rows

 This section covers another class of problems that you can solve with the TOP option— 
returning rows in a random fashion. Dealing with randomness in T-SQL is quite tricky. 
Typical requests for randomness involve returning a random row from a table, sorting rows 
in  random order, and the like. The fi rst attempt you might make when asked to return a 
 random row might be to use the RAND function as follows: 

SELECT TOP (1) orderid, orderdate, custid, empid

FROM Sales.Orders

ORDER BY RAND();
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 However, if you try running this query several times, you will probably be  disappointed 
to fi nd that you’re not really getting a random row. RAND as well as most other 
 nondeterministic functions (for example, GETDATE) are invoked once per query, not once per 
row. So you end up getting the same value of RAND for every row, and the ORDER BY clause 
does not affect the ordering of the query’s result set. 

 Tip You might be surprised to fi nd that the RAND function—when given an integer seed as 
input—is not really nondeterministic; rather, it’s sort of a hash function. Given the same seed, 
RAND(<seed>) always yields the same result. For example, run the following code multiple times: 

SELECT RAND (5);

 You will always get back 0.713666525097956. And if that’s not enough, when you don’t specify 
a seed, SQL Server doesn’t really choose a random seed. Rather, the new seed is based on the 
 previous invocation of RAND. Hence, running the following code multiple times will always yield 
the same two results (0.713666525097956 and 0.454560299686459): 

SELECT RAND(5);

SELECT RAND();

 The most important use of RAND(<seed>) is probably to create reproducible sample data 
 because you can seed it once and then call it repeatedly without a seed to get a well-distributed 
sequence of values. 

 If you’re seeking a random value, you will have much better success with the following expression: 

SELECT CHECKSUM(NEWID());

 And for a random value in the range 1 through @n, use this: 

SELECT ABS(CHECKSUM(NEWID())) % @n + 1;

 Note The NEWID function appears to have good distribution properties; however, I haven’t yet 
found any documentation from Microsoft that specifi es that this is guaranteed or supported. 

 An interesting behavior of the NEWID function is that unlike other nondeterministic  functions, 
NEWID is evaluated separately for each row if you invoke it in a query. Bearing this in mind, you 
can get a random row by using the preceding expression in the ORDER BY clause as follows: 

SELECT TOP (1) orderid, orderdate, custid, empid

FROM Sales.Orders

ORDER BY CHECKSUM(NEWID());

 This gives me an opportunity to present another example for using the new functionality of 
TOP, which allows you to specify a self-contained expression as an input. The following query 
also returns a random row: 

SELECT TOP (1) orderid, orderdate, custid, empid

FROM (SELECT TOP (100e0*(CHECKSUM(NEWID()) + 2147483649)/4294967296e0) PERCENT

        orderid, orderdate, custid, empid
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      FROM Sales.Orders

      ORDER BY orderid) AS D

ORDER BY orderid DESC;

 CHECKSUM returns an integer between –2147483648 and 2147483647. Adding 2147483649 
and then dividing by the fl oat value 4294967296e0 yields a random number in the range 
0 through 1 (excluding 0). Multiplying this random number by 100 returns a random fl oat 
value greater than 0 and less than or equal to 100. Remember that the TOP PERCENT option 
accepts a fl oat percentage in the range 0 through 100, and it rounds up the number of 
returned rows. A percentage greater than 0 guarantees that at least one row will be returned. 
The query creating the derived table D thus returns a random number of rows from the 
table based on orderid (primary key) sort. The outer query then simply returns the last row 
from the derived table—that is, the one with the greatest orderid values. This solution is not 
necessarily more effi cient than the previous one I presented, but it was a good opportunity 
to show how you can use TOP’s ability to accept an expression as input. 

 With the new APPLY operator, you can now answer other randomness requests easily and 
 effi ciently, without the need to explicitly apply iterative logic. For example, the following 
query returns three random orders for each employee: 

SELECT orderid, custid, empid, orderdate, requireddate 

FROM HR.Employees AS E

  CROSS APPLY

    (SELECT TOP (3) orderid, custid, orderdate, requireddate 

     FROM Sales.Orders AS O

     WHERE O.empid = E.empid

     ORDER BY CHECKSUM(NEWID())) AS A;

Median

 In the “Custom Aggregations” section in Chapter 8, I discussed techniques to calculate the 
median value for each group based on ranking calculations. Here, for the sake of the exercise, 
I’ll present techniques relying on TOP. First run the following code to create the Groups table 
that I used in my previous solutions to obtain a median: 

USE tempdb;

IF OBJECT_ID('dbo.Groups') IS NOT NULL DROP TABLE dbo.Groups;

CREATE TABLE dbo.Groups

(

  groupid  VARCHAR(10) NOT NULL,

  memberid INT         NOT NULL,

  string   VARCHAR(10) NOT NULL,

  val      INT         NOT NULL,

  PRIMARY KEY (groupid, memberid)

);

GO
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INSERT INTO dbo.Groups(groupid, memberid, string, val) VALUES

  ('a', 3, 'stra1', 6),

  ('a', 9, 'stra2', 7),

  ('b', 2, 'strb1', 3),

  ('b', 4, 'strb2', 7),

  ('b', 5, 'strb3', 3),

  ('b', 9, 'strb4', 11),

  ('c', 3, 'strc1', 8),

  ('c', 7, 'strc2', 10),

  ('c', 9, 'strc3', 12);

 Remember that median is the middle value (assuming a sorted list) when the group has an 
odd number of elements, and it’s the average of the two middle values when it has an even 
number. 

 It’s always a good idea to handle each case separately and then try to fi gure out whether 
the solutions can be merged. So fi rst assume an odd number of elements. You can use a 
TOP (50) PERCENT query to access the fi rst half of the elements, including the middle one. 
Remember that the PERCENT option rounds up. Then simply query the maximum value from 
the  returned result set. 

 Now handle the even case. The same query you use to get the middle value from an odd 
number of rows will produce the largest value of the fi rst half of an even number of rows. 
You can then write a similar query to return the smallest value of the second half. Sum the 
two values, divide by two, and you have the median in the even case. 

 Now try to fi gure out whether the two solutions can be merged. Interestingly, running 
the solution for the even case against an odd number of elements yields the correct result 
 because both subqueries used in the even case solution end up returning the same row 
when you have an odd number of rows. The average of two values that are equal is obviously 
the same value. 

 Here’s what the solution looks like when you want to return the median of the val column for 
the whole table: 

SELECT

  ((SELECT MAX(val)

    FROM (SELECT TOP (50) PERCENT val

          FROM dbo.Groups

          ORDER BY val) AS M1)

   +

   (SELECT MIN(val)

    FROM (SELECT TOP (50) PERCENT val

          FROM dbo.Groups

          ORDER BY val DESC) AS M2))

  /2. AS median;

 To return the median for each group, you need to apply the preceding logic in a correlated 
subquery against a table that holds one row per group. In our example we don’t have such 
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a table, so you can create a virtual one by selecting the distinct groupid values from the 
 existing table, like so: 

SELECT groupid,

  ((SELECT MAX(val)

    FROM (SELECT TOP (50) PERCENT val

          FROM dbo.Groups AS H1

          WHERE H1.groupid = G.groupid

          ORDER BY val) AS M1)

   +

   (SELECT MIN(val)

    FROM (SELECT TOP (50) PERCENT val

          FROM dbo.Groups AS H2

          WHERE H2.groupid = G.groupid

          ORDER BY val DESC) AS M2))

  /2. AS median

FROM (SELECT DISTINCT groupid FROM dbo.Groups) AS G;

Logical Transformations

 In several solutions I’ve presented, I used logical expressions with an OR operator to deal 
with precedence based on multiple attributes. Such was the case in the recent solutions for 
paging, matching current and previous occurrences, and other problems. I used OR logic 
 because this is how human minds are accustomed to thinking. The logical expressions using 
OR logic are fairly intuitive for the purpose of determining precedence and identifying rows 
that follow a certain anchor. 

 However, because of the way SQL Server’s optimizer works, OR logic is problematic in terms 
of performance, especially when some of the fi ltered columns are not indexed. For example, 
consider a fi lter such as col1 = 5 OR col2 = 10. If you have individual indexes on col1 and 
col2, the optimizer can fi lter the rows in each index and then perform an index intersection 
between the two. However, if you have an index on only one of the columns, even when the 
fi lter is very selective, the index is useless. SQL Server would still need to scan the whole table 
to see whether rows that didn’t match the fi rst fi lter qualify for the second condition. 

 On the other hand, AND logic has much better performance potential. With each  expression, 
you narrow down the result set. Rows fi ltered by one index are already a superset of the rows 
you’ll end up returning. So potentially you can use an index on any of the fi ltered  columns to your 
 advantage. Whether it is worthwhile to use the existing index is a matter of  selectivity, but the 
 potential is there. For example, consider the fi lter col1 = 5 AND col2 = 10. The  optimal index here 
is a composite one created on both columns. However, if you have an index on only one of them 
and it’s selective enough, that’s suffi cient already. SQL Server can fi lter the data through that 
 index and then look up the rows and examine whether they also meet the second condition. 

 In this chapter, the logical expressions I used in my solutions used OR logic to identify rows 
following a given anchor. For example, say you’re looking at the row with an orderid of 
11075 and you’re supposed to identify the rows that follow, where precedence is based on 
 orderdate and orderid is the tiebreaker. The orderdate of the anchor is ‘20080506’. A query 
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returning the rows that come after this anchor row is very selective. I used the following logic 
to fi lter these rows: 

orderdate > '20080506' OR (orderdate = '20080506' AND orderid > 11075)

 Say that you could afford creating only one index, on orderdate. Such an index is not 
 suffi cient in the eyes of the optimizer to fi lter the relevant rows because the logical  expression 
referring to orderdate is followed by an OR operator, with the right side of the  operator 
 referring to other columns (orderid, in this case). Such a fi lter would yield a table scan. You can 
perform a logical transformation here and end up with an equivalent  expression that uses 
AND logic. Here’s the transformed expression: 

orderdate >= '20080506' AND (orderdate > '20080506' OR orderid > 11075)

 Instead of specifying orderdate > ‘20080506’, you specify orderdate >= ‘20080506’. Now you 
can use an AND operator and request either rows where the orderdate is greater than the 
 anchor’s orderdate (meaning the orderdate is not equal to the anchor’s orderdate, in which 
case you don’t care about the value of orderid) or rows where the orderid is greater than 
the anchor’s  orderid (meaning the orderdate is equal to the anchor’s orderdate). The logical 
 expressions are equivalent. However, the transformed one has the form orderdate_ comparison 
AND   other_logical_expression—meaning that now an index on orderdate alone can be 
 considered. To put these words into action, fi rst create a table called MyOrders containing 
the same data as the Orders table and an index only on orderdate: 

IF OBJECT_ID('dbo.MyOrders') IS NOT NULL

  DROP TABLE dbo.MyOrders;

GO

SELECT * INTO dbo.MyOrders FROM Sales.Orders

CREATE INDEX idx_dt ON dbo.MyOrders(orderdate);

 Next, run the query in Listing 9-11, which uses OR logic, and examine the plan shown in 
Figure 9-14. 

LISTING 9-11 Query using OR logic

SELECT orderid, orderdate, custid, empid

FROM dbo.MyOrders

WHERE orderdate > '20080506'

   OR (orderdate = '20080506' AND orderid > 11075);

FIGURE 9-14 Execution plan for the query in Listing 9-11

 You will see a table scan, which in the case of this table costs 20 logical reads. Of course, with 
more realistic table sizes you will see substantially more I/O. 

SELECT orderid, orderdate, custid, empid

FROM dbo.MyOrders

WHERE orderdate > '20080506'

   OR (orderdate = '20080506' AND orderid > 11075);
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 Next, run the query in Listing 9-12, which uses AND logic, and examine the plan shown in 
Figure 9-15. 

LISTING 9-12 Query using AND logic

SELECT orderid, orderdate, custid, empid

FROM dbo.MyOrders

WHERE orderdate >= '20080506'

  AND (orderdate > '20080506' OR orderid > 11075);

FIGURE 9-15 Execution plan for the query in Listing 9-12

You will see that the index on orderdate is used. The I/O cost of this query is six logical reads. 
Creating an index on both columns (orderdate, orderid) is even better: 

CREATE INDEX idx_dt_oid ON dbo.MyOrders(orderdate, orderid);

Run the query in Listing 9-11, which uses the OR logic. You will see in the plan, shown in 
Figure 9-16, that the new index is used. The I/O cost for this plan is six logical reads. 

FIGURE 9-16 Execution plan for the query in Listing 9-11, with the new index in place

 Run the query in Listing 9-12, which uses the AND logic. You will see the plan shown in 
Figure 9-17, which might seem similar, but it yields even a lower I/O cost of only four logical reads. 

FIGURE 9-17 Execution plan for the query in Listing 9-12, with the new index in place

SELECT orderid, orderdate, custid, empid

FROM dbo.MyOrders

WHERE orderdate >= '20080506'

  AND (orderdate > '20080506' OR orderid > 11075);
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 The conclusion is, of course, that SQL Server can optimize AND logic better than OR logic. 
All the solutions I presented in this chapter would be better off in terms of performance if 
you transformed their OR logic to AND logic. Similarly, you might be able to achieve such 
 transformations with other logical expressions. 

 Another conclusion is that it’s better to have an index on all columns determining 
 precedence. The problem is that in production environments you can’t always afford it. 

Note When discussing subjects that involve logic, I like to use small tables such as those 
in InsideTSQL2008, with simple and recognizable data. With such tables, the differences in 
 logical reads that you see when testing your solutions are small. In real performance tests and 
 benchmarks, you should use more realistic table sizes as your test data, such as the test data I 
used in Chapter 4. For example, if you use the GetNextPage procedure, which returns the next 
page of orders, you see very small I/O differences between OR logic and the AND logic, as I’ll 
present shortly. But when I tested the solution against an Orders table with about a million rows, 
the OR implementation costs more than 1,000 logical reads, while the AND implementation 
costs only 11 logical reads, physically accessing only the relevant page of orders. 

 When you’re done, don’t forget to get rid of the MyOrders table created for these examples: 

IF OBJECT_ID('dbo.MyOrders') IS NOT NULL 

  DROP TABLE dbo.MyOrders;

Conclusion

 As you probably realized from this chapter, TOP and APPLY are two features that  complement 
each other in many ways. Remember that the SET ROWCOUNT option is a legacy feature and 
is supported in SQL Server only for purposes of backward compatibility. It is a good idea to 
replace all references to SET ROWCOUNT with the TOP option. Compared to the alternatives, 
the APPLY operator allows for very simple and fast queries whenever you need to apply a 
table expression to each row of an outer query. 

C09626034.indd   559 2/20/2009   8:24:22 PM



C09626034.indd   560 2/20/2009   8:24:22 PM



  561

Chapter 10

 Data Modifi cation 

 This chapter covers different facets of data modifi cation. I’ll discuss aspects of inserting, 
 deleting, updating, and merging data, as well as the OUTPUT clause for data  modifi cation 
statements. I’ll also cover new features related to data modifi cation in Microsoft SQL 
Server 2008, which include an enhanced VALUES clause, minimally logged inserts, the MERGE 
statement, and a new feature I call composable DML.  

Inserting Data

 In this section, I’ll cover several subjects related to inserting data, including the enhanced 
VALUES clause, the SELECT INTO statement, the BULK rowset provider, minimally logged 
 inserts, the INSERT EXEC statement, and sequence mechanisms. 

Enhanced VALUES Clause

 Traditionally the VALUES clause was used in SQL Server to insert a single row into a table. SQL 
Server 2008 enhances the VALUES clause in two ways—you can now use the VALUES clause 
in an INSERT statement to insert multiple rows into a table, and you can also use the VALUES 
clause to defi ne a virtual derived table. Because the VALUES clause can be used to construct 
a virtual table, it is also known as a table value constructor. Each row specifi cation within the 
clause is called a row value constructor. 

 To demonstrate using the enhanced VALUES clause, fi rst create the Customers table in the 
tempdb database by running the following code: 

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.Customers', 'U') IS NOT NULL DROP TABLE dbo.Customers;

CREATE TABLE dbo.Customers

(

  custid      INT         NOT NULL,

  companyname VARCHAR(25) NOT NULL,

  phone       VARCHAR(20) NOT NULL,

  address     VARCHAR(50) NOT NULL,

  CONSTRAINT PK_Customers PRIMARY KEY(custid)

);
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 Run the following code to insert fi ve rows into the Customers table: 

INSERT INTO dbo.Customers(custid, companyname, phone, address)

  VALUES

    (1, 'cust 1', '(111) 111-1111', 'address 1'),

    (2, 'cust 2', '(222) 222-2222', 'address 2'),

    (3, 'cust 3', '(333) 333-3333', 'address 3'),

    (4, 'cust 4', '(444) 444-4444', 'address 4'),

    (5, 'cust 5', '(555) 555-5555', 'address 5');

 As you can see, each pair of parentheses encloses a single row. The individual rows are 
 separated by commas.  

 Compared to writing a separate INSERT VALUES statement per row, the enhanced INSERT 
VALUES statement for multiple rows has an obvious advantage in terms of the brevity of 
code. Also, such a statement is executed as an atomic operation, and therefore if any row 
fails to enter the target table, the whole operation fails. However, for now the INSERT VALUES 
clause is internally algebrized like an INSERT SELECT statement that unifi es individual rows 
using the UNION ALL set operation. For example, the previous INSERT VALUES statement 
is processed like this statement: 

INSERT INTO dbo.Customers(custid, companyname, phone, address)

            SELECT 1, 'cust 1', '(111) 111-1111', 'address 1'

  UNION ALL SELECT 2, 'cust 2', '(222) 222-2222', 'address 2'

  UNION ALL SELECT 3, 'cust 3', '(333) 333-3333', 'address 3'

  UNION ALL SELECT 4, 'cust 4', '(444) 444-4444', 'address 4'

  UNION ALL SELECT 5, 'cust 5', '(555) 555-5555', 'address 5';

 Therefore, you shouldn’t expect the INSERT VALUES statement to give you any performance 
benefi ts compared to the alternative method. If you care about conforming to the ANSI 
SQL standard, though, you should use the INSERT VALUES clause, which is standard. The 
 alternative—using UNION ALL—relies on a proprietary aspect of T-SQL that allows a SELECT 
statement without a FROM clause. 

 You can also use the VALUES clause to defi ne a derived table, as the following query shows: 

SELECT *

FROM

  (VALUES

     (1, 'cust 1', '(111) 111-1111', 'address 1'),

     (2, 'cust 2', '(222) 222-2222', 'address 2'),

     (3, 'cust 3', '(333) 333-3333', 'address 3'),

     (4, 'cust 4', '(444) 444-4444', 'address 4'),

     (5, 'cust 5', '(555) 555-5555', 'address 5')

  ) AS C(custid, companyname, phone, address);

 This query generates the following output: 

custid      companyname phone          address

----------- ----------- -------------- ---------

1           cust 1      (111) 111-1111 address 1

2           cust 2      (222) 222-2222 address 2
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3           cust 3      (333) 333-3333 address 3

4           cust 4      (444) 444-4444 address 4

5           cust 5      (555) 555-5555 address 5

 Unfortunately, SQL Server 2008 does not support defi ning a CTE by a VALUES clause.  

SELECT INTO

 The SELECT INTO statement creates a new table from the result set of a query. For example, 
the following statement creates the temporary table #MyShippers and populates it with all 
rows from the Sales.Shippers table in the InsideTSQL2008 database: 

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('tempdb..#MyShippers') IS NOT NULL DROP TABLE #MyShippers;

SELECT shipperid, companyname, phone

INTO #MyShippers

FROM InsideTSQL2008.Sales.Shippers;

 The columns of the new table inherit their names, data types, nullability, and IDENTITY 
 property from the query’s result set. SELECT INTO doesn’t copy constraints, indexes, or 
 triggers from the query’s source. If you need the results in a table with the same indexes, 
constraints, and triggers as the source, you have to add them afterward. 

 SELECT INTO is a bulk operation. (See the “Minimally Logged Operations” section later in the 
chapter for details.) If the recovery model of the destination database is not FULL, the SELECT 
INTO is done with minimal logging, which can be substantially faster than full logging. 

 Unlike some other database platforms, in SQL Server both DDL and DML are transactional. 
Remember that the SELECT INTO statement both creates the target table (DDL) and  populates 
it with the result set produced by the query (DML). It is quite obvious that the data that is 
inserted into the target table is exclusively locked until the SELECT INTO transaction fi nishes; 
however, you need to keep in mind that metadata describing the defi nition of the table and 
its columns in system tables is also exclusively locked for the duration of the transaction. If the 
SELECT INTO statement deals with a large result set, it may take it some time to fi nish;  during 
that time both the data and the metadata are exclusively locked. If, from another  transaction, 
you try to obtain confl icting locks on the metadata that is exclusively locked by the SELECT 
INTO transaction, even unintentionally (for example, a full scan of sys.objects or sys.columns), 
your transaction will be blocked. To avoid such blocking, you may want to consider  creating the 
target table in one transaction and inserting the data into the table using an INSERT SELECT 
statement in another transaction. Prior to SQL Server 2008, an INSERT SELECT  statement was 
always fully logged and therefore slower than a minimally logged SELECT INTO statement. 
However, SQL Server 2008 introduces support for minimally logged INSERT SELECT statements. 
I’ll provide more details about minimally logged operations later in the chapter. 
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 If you need a quick and dirty empty copy of some table, SELECT INTO allows you to obtain 
such a copy very simply. You don’t have to script the CREATE TABLE statement and change 
the table’s name—you just need to issue the following statement: 

SELECT * INTO target_table FROM source_table WHERE 1 = 2;

 The optimizer is smart enough to realize that no source row will satisfy the fi lter 1 = 2. 
Therefore, SQL Server doesn’t bother to physically access the source data; rather, it  creates the 
target table based on the schema of the source. Here’s an example that creates a table called 
MyOrders in tempdb, based on the schema of the Sales.Orders table in InsideTSQL2008: 

IF OBJECT_ID('dbo.MyOrders') IS NOT NULL DROP TABLE dbo.MyOrders;

SELECT *

INTO dbo.MyOrders

FROM InsideTSQL2008.Sales.Orders

WHERE 1 = 2;

 Keep in mind that if a source column has the IDENTITY property, the target has it as well. 
For example, the orderid column in the Orders table has the IDENTITY property. If you don’t 
want the IDENTITY property to be copied to the target column, simply apply any type of 
 manipulation to the source column. For example, you can use the expression orderid + 0 AS 
orderid as follows: 

IF OBJECT_ID('dbo.MyOrders') IS NOT NULL DROP TABLE dbo.MyOrders;

SELECT orderid+0 AS orderid, custid, empid, orderdate,

  requireddate, shippeddate, shipperid, freight, shipname, 

  shipaddress, shipcity, shipregion, shippostalcode, shipcountry

INTO dbo.MyOrders

FROM InsideTSQL2008.Sales.Orders

WHERE 1 = 2;

 In this case, the orderid column in the target MyOrders table doesn’t have the IDENTITY 
property. 

Tip Suppose you want to insert the result set of a stored procedure or a dynamic batch into a 
new table, but you don’t know what table structure you need to create. You can use a SELECT 
INTO statement, specifying OPENQUERY in the FROM clause, referring to your own server as if it 
were a linked server: 

EXEC sp_serveroption <your_server>, 'data access', true;

  SELECT * INTO <target_table>

  FROM OPENQUERY(<your_server>, 

    'EXEC {<proc_name> | (<dynamic_batch>)}') AS O;
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BULK Rowset Provider

 SQL Server supports the BULK rowset provider, which allows you to use the BULK engine 
to load fi le data as a rowset or as a single large object (LOB) value. You specify BULK as the 
provider in the OPENROWSET function, along with other options that are relevant to your 
request. 

 For example, the following code returns the data from a fi le called shippers.txt as a row set, 
based on the format fi le shippers.fmt:  

SELECT shipperid, companyname, phone

FROM OPENROWSET(BULK 'c:\temp\shippers.txt',

                FORMATFILE = 'c:\temp\shippers.fmt') AS S;

 This code generates the following output: 

shipperid  companyname    phone

---------- -------------- ---------------

1          Shipper GVSUA  (503) 555-0137

2          Shipper ETYNR  (425) 555-0136

3          Shipper ZHISN  (415) 555-0138

 More Info You can download the fi les used in this section’s examples from 
http://www.insidetsql.com as part of the book’s source code download. For more information, 
see the Introduction. 

 The format fi le is the same format fi le you’re familiar with when working with bcp.exe or 
BULK INSERT. In fact, you can generate it either manually or by using bcp.exe as you have 
used it thus far. Besides FORMATFILE, you can also specify other read-related bulk options: 
CODEPAGE, ERRORFILE, FIRSTROW, LASTROW, MAXERRORS, and ROWS_PER_BATCH. 

 You can also use the BULK provider to specify a fi le source for an INSERT statement. This 
way, you can effi ciently utilize the BULK engine. In such an INSERT statement, you can 
control insert options using table hints, including KEEPIDENTITY, KEEPDEFAULTS, IGNORE_
CONSTRAINTS, IGNORE_TRIGGERS, and TABLOCK. To demonstrate inserting a rowset into a 
table using the BULK provider, fi rst run the following code, which creates the Shippers table 
in the tempdb database: 

USE tempdb;

IF OBJECT_ID('dbo.Shippers') IS NOT NULL DROP TABLE dbo.Shippers;

CREATE TABLE dbo.Shippers

(

  shipperid   INT          NOT NULL PRIMARY KEY,

  companyname NVARCHAR(40) NOT NULL,

  phone       NVARCHAR(24) NOT NULL

);
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 The following code is an example of inserting the contents of a fi le called shippers.txt into 
the target table Shippers, using shippers.fmt as the format fi le: 

INSERT INTO dbo.Shippers WITH (TABLOCK) (shipperid, companyname, phone)

  SELECT shipperid, companyname, phone

  FROM OPENROWSET(BULK 'c:\temp\shippers.txt',

                  FORMATFILE = 'c:\temp\shippers.fmt') AS S;

The hint TABLOCK tells SQL Server to take a table lock during the insert operation,  minimizing 
lock overhead. In the case of an INSERT SELECT FROM OPENROWSET(BULK . . .) statement, the 
TABLOCK hint has special meaning. It tells SQL Server to obtain a bulk  update table-level lock 
that will allow an optimized BULK operation while also allowing other  sessions to obtain a 
bulk update table-level lock as well. This way multiple processes can run such optimized bulk 
inserts in parallel.  

If you’re asking yourself why use the INSERT SELECT FROM OPENROWSET(BULK . . .) 
 statement rather than the BULK INSERT statement or the bcp.exe tool, the fi rst statement 
has an  advantage. Unlike the BULK INSERT command or the bcp.exe tool, the INSERT SELECT 
FROM OPENROWSET(BULK . . .) statement allows you to apply usual query manipulation on 
the source. This means that you can use table operators like joins, APPLY, PIVOT, UNPIVOT, 
fi lter data with the WHERE clause, group data with the GROUP BY clause, and so on.  

The BULK rowset provider can also be used to insert the content of a fi le as a scalar LOB 
value in an INSERT, UPDATE, or MERGE statement. You use the OPENROWSET function 
and specify the BULK option, the source fi lename, and one of three options for the type of 
data: SINGLE_CLOB for regular character data, SINGLE_NCLOB for Unicode data, and SINGLE_
BLOB for binary data.

Note When you want to load XML data from a fi le, you use either SINGLE_CLOB or SINGLE_
NCLOB, depending on whether the XML fi le contains regular character data or Unicode data. 

To demonstrate using the BULK rowset provider to insert fi le content as a scalar LOB value, 
fi rst create the CustomerData table by running the code in Listing 10-1. 

LISTING 10-1 Creating the CustomerData table

IF OBJECT_ID('dbo.CustomerData') IS NOT NULL DROP TABLE dbo.CustomerData;

CREATE TABLE dbo.CustomerData

(

  custid      INT            NOT NULL PRIMARY KEY,

  txt_data    VARCHAR(MAX)   NULL,

  ntxt_data   NVARCHAR(MAX)  NULL,

  binary_data VARBINARY(MAX) NULL,

  xml_data    XML            NULL

);

IF OBJECT_ID('dbo.CustomerData') IS NOT NULL DROP TABLE dbo.CustomerData;

CREATE TABLE dbo.CustomerData

(

  custid      INT            NOT NULL PRIMARY KEY,

  txt_data    VARCHAR(MAX)   NULL,

  ntxt_data   NVARCHAR(MAX)  NULL,

  binary_data VARBINARY(MAX) NULL,

  xml_data    XML            NULL

);
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 As an example, the following INSERT statement inserts a new customer into the 
CustomerData table, with custid 101, and an XML value read from the fi le xmlfi le101.xml into 
the xml_data column:  

INSERT INTO dbo.CustomerData(custid, xml_data)

  VALUES(

    101,

    (SELECT xml_data FROM OPENROWSET(

      BULK 'c:\temp\xmlfile101.xml', SINGLE_CLOB) AS F(xml_data)));

 Similarly, the following UPDATE statement reads the three fi les textfi le101.txt, unicodefi le101.txt, 
and binaryfi le101.jpg and updates customer 101’s columns: txt_data, ntxt_data, and  
binary_data, respectively: 

UPDATE dbo.CustomerData

  SET txt_data  = (SELECT txt_data FROM OPENROWSET(

    BULK 'c:\temp\textfile101.txt', SINGLE_CLOB) AS F(txt_data)),

  ntxt_data  = (SELECT ntxt_data FROM OPENROWSET(

    BULK 'c:\temp\unicodefile101.txt', SINGLE_NCLOB) AS F(ntxt_data)),

  binary_data  = (SELECT binary_data FROM OPENROWSET(

    BULK 'c:\temp\binaryfile101.jpg', SINGLE_BLOB) AS F(binary_data))

WHERE custid = 101;

 Run the following code to examine the row in CustomerData for customer 101: 

SELECT * FROM dbo.CustomerData WHERE custid = 101;

 You get the following output, shown here in abbreviated form and in three parts because of 
the length of the output row: 

custid  txt_data                                           

------- ---------------------------------------------------

101     This file contains character data for customer 101 

custid  ntxt_data                                        

------- -------------------------------------------------

101     This file contains Unicode data for customer 101 

custid  binary_data           xml_data

------- --------------------- ---------------

101     0xFFD8FFE000104A46... <ShowPlanXML...

Minimally Logged Operations

 SQL Server can perform minimal logging with certain kinds of operations. An operation 
done with minimal logging can run substantially faster than when done with full logging. 
One reason for the big difference is that writes to the transaction log are done sequentially, 
so in many cases writes to the log become the bottleneck of the operation. The following 
 operations can benefi t from minimal logging: SELECT INTO, index operations, operations on 
large object values, BULK INSERT, bcp.exe, INSERT SELECT FROM OPENROWSET(BULK . . .), 
and, new to SQL Server 2008, regular INSERT SELECT. 
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 More Info For more information on Bulk Import/Export, see Sunil Agarwal’s blog posts on the 
subject: http://blogs.msdn.com/sqlserverstorageengine/archive/tags/Bulk+Import_2F00_Export/
default.aspx. 

 SQL Server has certain requirements for minimal logging. First of all, the recovery model 
of the target database cannot be FULL; rather, minimal logging is possible only if the 
 recovery model is SIMPLE or BULK_LOGGED. As far as SELECT INTO is concerned, that’s the 
only requirement. All other insert methods (BULK INSERT, bcp.exe, INSERT SELECT FROM 
OPENROWSET(BULK . . .), and INSERT SELECT) have additional requirements. Besides the 
 requirement that the target database have a non-FULL recovery model, there are two 
 requirements on the target table: it must not be marked for replication, and one of the 
 following must be true: 

 The target is a heap, and you specify TABLOCK. The target can be empty or nonempty, and 
no trace fl ag is required. 

 The target is an empty B-tree, and you specify TABLOCK. No trace fl ag is required. 

 The target is an empty B-tree, and trace fl ag 610 is on. The TABLOCK option is not required. 
This case is new in SQL Server 2008. 

 The target is a nonempty B-tree, and trace fl ag 610 is on—minimal logging will apply to new 
key ranges that allocate and populate new pages. The TABLOCK option is not required. This 
case is also new in SQL Server 2008. 

 Note that while a database backup is running, minimal logging is disabled temporarily. 
The backup does not prevent the operation from running—it just causes it to perform full 
logging.  

 For now this list of requirements might be a bit overwhelming. I provide it here for reference 
purposes. I’ll provide more details and examples shortly and also show you how to analyze 
the logging behavior yourself.  

 As mentioned, regular INSERT SELECT statements in SQL Server 2008 can also benefi t from 
minimal logging. Note, however, that some aspects of optimized bulk imports do not  apply 
to INSERT SELECT but do apply to the other bulk import methods (BULK INSERT, bcp.exe, and 
INSERT SELECT FROM OPENROWSET(BULK . . .)). I’ll collectively call the last three methods 
the other methods. The other methods support a table-level bulk update lock that reduces 
lock overhead while still allowing parallel bulk imports from multiple processes. The INSERT 
SELECT statement supports the TABLOCK option, but it results in an exclusive table lock that 
only one process can hold at a time. The other methods also support defi ning a batch size 
that indicates after every how many rows to commit, while INSERT SELECT doesn’t support 
this option. You will fi nd other such differences between the other methods and INSERT 
SELECT; for details please consult SQL Server Books Online. 
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Analyzing Logging Behavior

 This section describes tools and techniques that you can use to analyze logging behavior. 
You can use these tools to do your own research and fi gure out how SQL Server handles 
 certain insert scenarios when those scenarios are not documented or when you are in doubt. 

 One of the main tools I use to analyze logging behavior is the undocumented fn_dblog 
 function. This function accepts two inputs indicating the from log sequence number and the to 
log sequence number, and it returns all log records in the requested range from the  transaction 
log of the database where the function is queried. To get all records from the transaction log, 
specify NULL in both inputs. 

 To check how much logging was involved in processing an insert operation against a  certain 
table, you can aggregate measures from the function’s result set before and after the 
 operation and calculate the difference between the before and after values. The general 
form of the code may look like this: 

CHECKPOINT;

GO

DECLARE @numrecords AS INT, @size AS BIGINT, @dt AS DATETIME;

SELECT 

  @numrecords = COUNT(*),

  @size       = COALESCE(SUM([Log Record Length]), 0),

  @dt         = CURRENT_TIMESTAMP

FROM fn_dblog(NULL, NULL) AS D

WHERE AllocUnitName = '<table_name>' OR AllocUnitName LIKE '<table_name>.%';

-- <operation>

SELECT 

  COUNT(*) - @numrecords AS numrecords,

  CAST((COALESCE(SUM([Log Record Length]), 0) - @size)

    / 1024. / 1024. AS NUMERIC(12, 2)) AS size_mb,

  CAST(DATEDIFF(millisecond, @dt, CURRENT_TIMESTAMP)/1000. AS DECIMAL(12,3))

    AS duration_sec

FROM fn_dblog(NULL, NULL) AS D

WHERE AllocUnitName = '<table_name>' OR AllocUnitName LIKE '<table_name>.%';

 The code fi rst applies a checkpoint to fl ush dirty pages from cache to disk, allowing truncation of 
the inactive portion of the log. The code then aggregates measures of the log records  associated 
with the table of interest before the insert operation. The code then applies the insert operation. 
Finally, the code calculates the difference between the before and after values. 

 You may also be interested in the distribution of log records based on their lengths. To 
achieve this you can produce a histogram with as many steps as you would like to analyze. 
The following code demonstrates how to produce a histogram with 10 steps: 

DECLARE @numsteps AS INT = 10;

DECLARE @log AS TABLE(id INT IDENTITY, size INT, PRIMARY KEY(size, id));
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INSERT INTO @log(size)

  SELECT [Log Record Length]

  FROM fn_dblog(null, null) AS D

  WHERE AllocUnitName = '<table_name>' OR AllocUnitName LIKE '<table_name>.%';

WITH Args AS

(

  SELECT MIN(size) AS mn, MAX(size) AS mx,

    1E0*(MAX(size) - MIN(size)) / @numsteps AS stepsize

  FROM @log

),

Steps AS

(

  SELECT n,

    mn + (n-1)*stepsize - CASE WHEN n = 1 THEN 1 ELSE 0 END AS lb,

    mn + n*stepsize AS hb

  FROM Nums

    CROSS JOIN Args

  WHERE n <= @numsteps

)

SELECT n, lb, hb, COUNT(size) AS numrecords

FROM Steps

  LEFT OUTER JOIN @log

    ON size > lb AND size <= hb

GROUP BY n, lb, hb

ORDER BY n;

 I also fi nd it very useful to analyze the actual log records involved in logging the operation to 
fi gure out what was logged and not just how much logging was done. The following query 
gives you aggregated information with a breakdown by average log record length in units of 
100 bytes, log operation, and log context: 

SELECT Operation, Context,

  AVG([Log Record Length]) AS AvgLen, COUNT(*) AS Cnt

FROM fn_dblog(null, null) AS D

WHERE AllocUnitName = '<table_name>' OR AllocUnitName LIKE '<table_name>.%'

GROUP BY Operation, Context, ROUND([Log Record Length], -2)

ORDER BY AvgLen, Operation, Context;

 The rounding of log record lengths to units of 100 bytes is achieved by specifying –2 as the 
second argument to the ROUND function. If you need to round to units of 1,000, specify –3. 
As an alternative, you may prefer to get a logarithmic breakdown (10s, 100s, 1,000s). To achieve 
this, use the length of the string holding the log record length as the grouped  expression, 
like so: 

SELECT Operation, Context,

  '1'+REPLICATE('0',-1+LEN([Log Record Length]))+'s' AS [Log Entry Sizes],

  AVG([Log Record Length]) AS AvgLen, COUNT(*) AS Cnt

FROM fn_dblog(null, null) AS D

WHERE AllocUnitName = '<table_name>' OR AllocUnitName LIKE '<table_name>.%'

GROUP BY Operation, Context, LEN([Log Record Length])

ORDER BY AvgLen, Operation, Context;
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Testing Insert Scenarios

This section demonstrates tests of different insert scenarios and the logging behavior involved. 
I will demonstrate some scenarios using the SELECT INTO and INSERT SELECT statements, but 
of course you can apply similar analysis with other scenarios that you’re interested in. 

All tests will be run in a sample database called testdb that you create and use by running 
the following code: 

USE master;

IF DB_ID('testdb') IS NULL CREATE DATABASE testdb;

GO

USE testdb;

Scenario 1: SELECT INTO, FULL Recovery  The fi rst scenario demonstrates using the SELECT 
INTO statement in a database set to the FULL recovery model. Run the following code to set 
the recovery model of the testdb database to FULL and back up the database to get out of 
log truncate mode: 

ALTER DATABASE testdb SET RECOVERY FULL;

BACKUP DATABASE testdb TO DISK = 'c:\temp\testdb.bak' WITH INIT;

 Next, run the code in Listing 10-2 to use the SELECT INTO statement to create a table called T1 
and populate it with 100,000 rows, each of which is more than 2,000 bytes long (~200 MB total). 

LISTING 10-2 Script with SELECT INTO

USE testdb;

-- Preparation

-- Replace this code with your preparation code

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CHECKPOINT;

GO

-- Collect values prior to operation

DECLARE @numrecords AS INT, @size AS BIGINT, @dt AS DATETIME;

SELECT 

  @numrecords = COUNT(*),

  @size       = COALESCE(SUM([Log Record Length]), 0),

  @dt         = CURRENT_TIMESTAMP

FROM fn_dblog(NULL, NULL) AS D

WHERE AllocUnitName = 'dbo.T1' OR AllocUnitName LIKE 'dbo.T1.%';

-- Operation

-- Replace this code with your operation code

SELECT n, CAST('a' AS CHAR(2000)) AS filler

INTO dbo.T1

FROM dbo.Nums

WHERE n <= 100000;

USE testdb;

-- Preparation

-- Replace this code with your preparation code

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CHECKPOINT;

GO

-- Collect values prior to operation

DECLARE @numrecords AS INT, @size AS BIGINT, @dt AS DATETIME;

SELECT

  @numrecords = COUNT(*),

  @size       = COALESCE(SUM([Log Record Length]), 0),

  @dt         = CURRENT_TIMESTAMP

FROM fn_dblog(NULL, NULL) AS D

WHERE AllocUnitName = 'dbo.T1' OR AllocUnitName LIKE 'dbo.T1.%';

-- Operation

-- Replace this code with your operation code

SELECT n, CAST('a' AS CHAR(2000)) AS filler

INTO dbo.T1

FROM dbo.Nums

WHERE n <= 100000;
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-- Calculate delta of values for operation

SELECT 

  COUNT(*) - @numrecords AS numrecords,

  CAST((COALESCE(SUM([Log Record Length]), 0) - @size)

    / 1024. / 1024. AS NUMERIC(12, 2)) AS size_mb,

  CAST(DATEDIFF(millisecond, @dt, CURRENT_TIMESTAMP)/1000. AS DECIMAL(12,3))

    AS duration_sec

FROM fn_dblog(NULL, NULL) AS D

WHERE AllocUnitName = 'dbo.T1' OR AllocUnitName LIKE 'dbo.T1.%';

-- Generate histogram

DECLARE @numsteps AS INT = 10;

DECLARE @log AS TABLE(id INT IDENTITY, size INT, PRIMARY KEY(size, id));

INSERT INTO @log(size)

  SELECT [Log Record Length]

  FROM fn_dblog(null, null) AS D

  WHERE AllocUnitName = 'dbo.T1' OR AllocUnitName LIKE 'dbo.T1.%';

WITH Args AS

(

  SELECT MIN(size) AS mn, MAX(size) AS mx,

    1E0*(MAX(size) - MIN(size)) / @numsteps AS stepsize

  FROM @log

),

Steps AS

(

  SELECT n,

    mn + (n-1)*stepsize - CASE WHEN n = 1 THEN 1 ELSE 0 END AS lb,

    mn + n*stepsize AS hb

  FROM Nums

    CROSS JOIN Args

  WHERE n <= @numsteps

)

SELECT n, lb, hb, COUNT(size) AS numrecords

FROM Steps

  LEFT OUTER JOIN @log

    ON size > lb AND size <= hb

GROUP BY n, lb, hb

ORDER BY n;

-- Get breakdown of log record types

SELECT Operation, Context,

  AVG([Log Record Length]) AS AvgLen, COUNT(*) AS Cnt

FROM fn_dblog(null, null) AS D

WHERE AllocUnitName = 'dbo.T1' OR AllocUnitName LIKE 'dbo.T1.%'

GROUP BY Operation, Context, ROUND([Log Record Length], -2)

ORDER BY AvgLen, Operation, Context;

 The code in Listing 10-2 uses as its source table the Nums table described in Chapter 6, 
“Subqueries, Table Expressions, and Ranking Functions,” under the section “Auxiliary Table 
of Numbers.” The code uses the tools described earlier to calculate how much logging was 

-- Calculate delta of values for operation

SELECT

  COUNT(*) - @numrecords AS numrecords,

  CAST((COALESCE(SUM([Log Record Length]), 0) - @size)

    / 1024. / 1024. AS NUMERIC(12, 2)) AS size_mb,

  CAST(DATEDIFF(millisecond, @dt, CURRENT_TIMESTAMP)/1000. AS DECIMAL(12,3))

    AS duration_sec

FROM fn_dblog(NULL, NULL) AS D

WHERE AllocUnitName = 'dbo.T1' OR AllocUnitName LIKE 'dbo.T1.%';

-- Generate histogram

DECLARE @numsteps AS INT = 10;

DECLARE @log AS TABLE(id INT IDENTITY, size INT, PRIMARY KEY(size, id));

INSERT INTO @log(size)

  SELECT [Log Record Length]

  FROM fn_dblog(null, null) AS D

  WHERE AllocUnitName = 'dbo.T1' OR AllocUnitName LIKE 'dbo.T1.%';

WITH Args AS

(

  SELECT MIN(size) AS mn, MAX(size) AS mx,

    1E0*(MAX(size) - MIN(size)) / @numsteps AS stepsize

  FROM @log

),

Steps AS

(

  SELECT n,

    mn + (n-1)*stepsize - CASE WHEN n = 1 THEN 1 ELSE 0 END AS lb,

    mn + n*stepsize AS hb

  FROM Nums

    CROSS JOIN Args

  WHERE n <= @numsteps

)

SELECT n, lb, hb, COUNT(size) AS numrecords

FROM Steps

  LEFT OUTER JOIN @log

    ON size > lb AND size <= hb

GROUP BY n, lb, hb

ORDER BY n;

-- Get breakdown of log record types

SELECT Operation, Context,

  AVG([Log Record Length]) AS AvgLen, COUNT(*) AS Cnt

FROM fn_dblog(null, null) AS D

WHERE AllocUnitName = 'dbo.T1' OR AllocUnitName LIKE 'dbo.T1.%'

GROUP BY Operation, Context, ROUND([Log Record Length], -2)

ORDER BY AvgLen, Operation, Context;
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involved, to produce a histogram showing the distribution of the log record lengths, and to 
show a breakdown of the log records by length, operation, and context. You can use the code 
in Listing 10-2 as a template to investigate the logging behavior of other kinds of  activities. 
Simply replace the sections marked with the comments -- Preparation and -- Operation with 
the applicable preparation and operation code that you want to test. 

 The code in Listing 10-2 produced the following results on my system: 

numrecords  size_mb  duration_sec

----------- -------- ------------

34522       197.95   24.000

n           lb                     hb                     numrecords

----------- ---------------------- ---------------------- -----------

1           59                     881.6                  9522

2           881.6                  1703.2                 0

3           1703.2                 2524.8                 0

4           2524.8                 3346.4                 0

5           3346.4                 4168                   0

6           4168                   4989.6                 0

7           4989.6                 5811.2                 0

8           5811.2                 6632.8                 0

9           6632.8                 7454.4                 0

10          7454.4                 8276                   25000

Operation        Context   AvgLen      Cnt

---------------- --------- ----------- -----------

LOP_SET_BITS     LCX_GAM   60          3147

LOP_SET_BITS     LCX_IAM   60          3147

LOP_FORMAT_PAGE  LCX_HEAP  84          1

LOP_FORMAT_PAGE  LCX_IAM   84          1

LOP_MODIFY_ROW   LCX_IAM   88          1

LOP_MODIFY_ROW   LCX_PFS   88          3225

LOP_FORMAT_PAGE  LCX_HEAP  8276        25000

 From these outputs you can learn that SQL Server applied full logging, amounting in total to 
about 200 MB. The histogram shows the distribution of the log records based on their size 
in 10 steps. Each row in the histogram has the step number (n), low boundary point of the 
step (lb), high boundary point of step (hb), and number of log records matching this step. 
You can learn from this histogram that there were 9,522 log records with lengths in the range 
59 bytes to 881.6 bytes and 25,000 records in the range 7,454.4 bytes to 8,276 bytes.  

 The breakdown of the log operations shows 25,000 log records with the log operation (LOP) 
LOP_FORMAT_PAGE and log context (LCX) LCX_HEAP, meaning that 25,000 heap pages were 
allocated and populated during the SELECT INTO operation and that the data populated in 
those pages was fully logged. From the log operation LOP_SET_BITS with the contexts 
LCX_GAM and LCX_IAM and the operation LOP_MODIFY_ROW with the context LCK_PFS, 
you learn that some logging is also taking place for modifi cations of GAM, IAM, and PFS 
pages ( allocation bitmaps and page free space bitmaps). 
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 From this test you learn that a SELECT INTO statement running in a database that is set to the 
FULL recovery model is fully logged. In fact, when the recovery model of the database is set 
to FULL, all insert methods perform full logging. 

In the following scenarios, I will show the results from Listing 10-2 under a variety of  different 
circumstances: with a different database recovery model in place, with a trace fl ag turned 
on, or with changes to the sections of the code identifi ed with the comments -- Preparation 
and -- Operation. The parts of Listing 10-2 that produce the logging information will stay the 
same, so in those scenarios where I change the code, I won’t provide the entire listing—I’ll 
just provide the new Preparation and Operation code. When I do, I will assume that you are 
still running the full Listing 10-2 with replacement versions of these two sections.

Scenario 2: SELECT INTO, Non-FULL Recovery  To test the SELECT INTO statement in a 
 database with a non-FULL recovery model, fi rst change the recovery model to SIMPLE by 
running the following code: 

ALTER DATABASE testdb SET RECOVERY SIMPLE;

 Next, run the code in Listing 10-2 again. I got the following outputs when running the code 
on my system: 

numrecords  size_mb  duration_sec

----------- -------- ------------

9521        0.63     10.000

n           lb                     hb                     numrecords

----------- ---------------------- ---------------------- -----------

1           59                     63.2                   6272

2           63.2                   66.4                   0

3           66.4                   69.6                   0

4           69.6                   72.8                   22

5           72.8                   76                     0

6           76                     79.2                   0

7           79.2                   82.4                   1

8           82.4                   85.6                   1

9           85.6                   88.8                   3137

10          88.8                   92                     88

Operation        Context  AvgLen      Cnt

---------------- -------- ----------- -----------

LOP_SET_BITS     LCX_GAM  60          3147

LOP_SET_BITS     LCX_IAM  60          3147

LOP_FORMAT_PAGE  LCX_IAM  84          1

LOP_MODIFY_ROW   LCX_IAM  88          1

LOP_MODIFY_ROW   LCX_PFS  88          3225

 As you can see, this time the actual contents of the inserted data were not logged. Instead, 
there was only minimal logging of changes to GAM, IAM, and PFS pages (allocation bitmaps 
and page free space bitmaps). In total, the logging amounted to less than 1 MB. 
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 From this test you learn that a SELECT INTO statement running in a database that is set to a 
non-FULL recovery model is minimally logged. 

 As mentioned, when the database recovery model is set to FULL, you get full logging 
 regardless of the insert method. For the subsequent scenarios, the testdb database will 
 remain in SIMPLE recovery model. 

Scenario 3: INSERT SELECT, Empty Heap, TABLOCK  This scenario involves an INSERT 
SELECT statement against an empty heap using the TABLOCK table hint. Recall that prior 
to SQL Server 2008, regular INSERT SELECT statements always performed full logging, but 
in SQL Server 2008, they can be done with minimal logging, similar to other bulk import 
methods. 

 In order to test this scenario, replace the Preparation and Operation sections of Listing 10-2 
with this code:  

-- Preparation

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

  n INT NOT NULL,

  filler CHAR(2000) NOT NULL

);

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

  SELECT n, CAST('a' AS CHAR(2000)) AS filler

  FROM dbo.Nums

  WHERE n <= 100000;

 I got the following results on my system from this test: 

numrecords  size_mb  duration_sec

----------- -------- ------------

9521        0.63     9.000

n           lb                     hb                     numrecords

----------- ---------------------- ---------------------- -----------

1           59                     63.2                   6272

2           63.2                   66.4                   0

3           66.4                   69.6                   0

4           69.6                   72.8                   22

5           72.8                   76                     0

6           76                     79.2                   0

7           79.2                   82.4                   1

8           82.4                   85.6                   1

9           85.6                   88.8                   3137

10          88.8                   92                     88
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Operation        Context  AvgLen      Cnt

---------------- -------- ----------- -----------

LOP_SET_BITS     LCX_GAM  60          3147

LOP_SET_BITS     LCX_IAM  60          3147

LOP_FORMAT_PAGE  LCX_IAM  84          1

LOP_MODIFY_ROW   LCX_IAM  88          1

LOP_MODIFY_ROW   LCX_PFS  88          3225

 As you can learn from these results, you also get minimal logging in this scenario. 

Scenario 4: INSERT SELECT, Nonempty Heap, TABLOCK  This scenario is similar to 
Scenario 3, except that this time the target heap is not empty. Use the following code for the 
Preparation and Operation sections this time: 

-- Preparation

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

  SELECT n, CAST('a' AS CHAR(2000)) AS filler

  FROM dbo.Nums

  WHERE n BETWEEN 100001 AND 200000;

 I got the following logging results for this test on my system: 

numrecords  size_mb  duration_sec

----------- -------- ------------

9518        0.63     8.000

n           lb                     hb                     numrecords

----------- ---------------------- ---------------------- -----------

1           59                     63.2                   6272

2           63.2                   66.4                   0

3           66.4                   69.6                   0

4           69.6                   72.8                   22

5           72.8                   76                     0

6           76                     79.2                   0

7           79.2                   82.4                   0

8           82.4                   85.6                   0

9           85.6                   88.8                   3136

10          88.8                   92                     88

Operation       Context  AvgLen      Cnt

--------------- -------- ----------- -----------

LOP_SET_BITS    LCX_GAM  60          3147

LOP_SET_BITS    LCX_IAM  60          3147

LOP_MODIFY_ROW  LCX_PFS  88          3224

 As you can see, even when the target heap is nonempty, you still get minimal logging. 
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Scenario 5: INSERT SELECT, Empty Heap, Without TABLOCK  This scenario is similar to 
Scenario 3, except that in this case you do not specify the TABLOCK table hint. The following 
code provides the Preparation and Operation parts of this test: 

-- Preparation

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

  n INT NOT NULL,

  filler CHAR(2000) NOT NULL

);

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 (n, filler)

  SELECT n, CAST('a' AS CHAR(2000)) AS filler

  FROM dbo.Nums

  WHERE n <= 100000;

 This test generates the following results on my system: 

numrecords  size_mb  duration_sec

----------- -------- ------------

159384      204.46   12.000

n           lb                     hb                     numrecords

----------- ---------------------- ---------------------- -----------

1           59                     264.4                  59384

2           264.4                  468.8                  0

3           468.8                  673.2                  0

4           673.2                  877.6                  0

5           877.6                  1082                   0

6           1082                   1286.4                 0

7           1286.4                 1490.8                 0

8           1490.8                 1695.2                 0

9           1695.2                 1899.6                 0

10          1899.6                 2104                   100000

Operation        Context   AvgLen      Cnt

---------------- --------- ----------- -----------

LOP_SET_BITS     LCX_GAM   60          3125

LOP_SET_BITS     LCX_IAM   60          3125

LOP_MODIFY_ROW   LCX_PFS   80          28125

LOP_FORMAT_PAGE  LCX_HEAP  84          25000

LOP_FORMAT_PAGE  LCX_IAM   84          1

LOP_MODIFY_ROW   LCX_IAM   88          8

LOP_INSERT_ROWS  LCX_HEAP  2096        100000

 The simple fact that this time you didn’t specify the TABLOCK hint caused the operation 
to be fully logged. The 100,000 INSERT statements, each of which inserted a row of over 

C10626034.indd   577 2/20/2009   5:47:34 PM



578 Inside Microsoft SQL Server 2008: T-SQL Querying

2,000 bytes, were logged individually. Further logging was due to the page allocations that 
took place (25,000 of those) and to the updates of the GAM, IAM, and PFS pages. 

 As you can guess, when the target heap is not empty, you also get full logging when not 
specifying TABLOCK. 

Scenario 6: INSERT SELECT, Empty B-Tree, TABLOCK  This scenario involves an INSERT 
SELECT statement against an empty B-tree (as opposed to a heap) using the TABLOCK hint. 
The following code shows the Preparation and Operation parts of this test: 

-- Preparation

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

  n INT NOT NULL,

  filler CHAR(2000) NOT NULL

);

CREATE UNIQUE CLUSTERED INDEX idx_n ON dbo.T1(n);

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

  SELECT n, CAST('a' AS CHAR(2000)) AS filler

  FROM dbo.Nums

  WHERE n <= 200000

    AND n % 2 = 0

  ORDER BY n;

 The INSERT SELECT statement fi lters the 100,000 rows with even values of n smaller than or 
equal to 200,000 from the Nums table. Later I’ll insert odd numbers to show what happens 
when you insert rows into existing pages as opposed to allocating new ones. Also notice that 
the INSERT SELECT statement has an ORDER BY clause that ensures that the data is inserted 
in the target B-tree order. Note that in this particular example the ORDER BY clause might 
not have mattered in terms of optimization because the Nums table has a clustered index on 
the column n; however, in other cases where the source data is not preordered, specifying an 
ORDER BY clause could help optimizing the operation. 

 I got the following results on my system for this test: 

numrecords  size_mb  duration_sec

----------- -------- ------------

9868        0.66     8.000

n           lb                     hb                     numrecords

----------- ---------------------- ---------------------- -----------

1           59                     63.2                   6394

2           63.2                   66.4                   0

3           66.4                   69.6                   0

C10626034.indd   578 2/20/2009   5:47:34 PM



 Chapter 10 Data Modifi cation 579

4           69.6                   72.8                   6

5           72.8                   76                     0

6           76                     79.2                   0

7           79.2                   82.4                   264

8           82.4                   85.6                   1

9           85.6                   88.8                   3173

10          88.8                   92                     30

Operation        Context  AvgLen      Cnt

---------------- -------- ----------- -----------

LOP_SET_BITS     LCX_GAM  60          3200

LOP_SET_BITS     LCX_IAM  60          3200

LOP_FORMAT_PAGE  LCX_IAM  84          1

LOP_MODIFY_ROW   LCX_PFS  87          3459

LOP_MODIFY_ROW   LCX_IAM  88          8

 As you can see, an INSERT SELECT against an empty B-tree using the TABLOCK option 
 performs minimal logging. 

 In the next few scenarios, we will learn how trace fl ag 610 affects logging, and in what 
 follows, we’ll use the abbreviation TF-610 for this trace fl ag. 

Scenario 7: INSERT SELECT, Nonempty B-Tree, TABLOCK, TF-610 Off, New Key Range  This 
scenario is similar to Scenario 6, except that the target B-tree already contains data. TF-610 is 
off. The following code contains the Preparation and Operation sections for this test:  

-- Preparation

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

  SELECT n, CAST('a' AS CHAR(2000)) AS filler

  FROM dbo.Nums

  WHERE n BETWEEN 200001 AND 300000

  ORDER BY n;

 Notice that the key range for the inserted rows is new (between 200,001 and 300,000). In 
other words, the inserted rows do not enter existing pages; instead, they populate newly 
 allocated pages. The following output shows the logging information that I got on my 
 system for this test: 

numrecords  size_mb  duration_sec

----------- -------- ------------

209969      208.91   11.000

n           lb                     hb                     numrecords

----------- ---------------------- ---------------------- -----------

1           59                     555.2                  109876

2           555.2                  1050.4                 0

3           1050.4                 1545.6                 0

4           1545.6                 2040.8                 0

5           2040.8                 2536                   100000

6           2536                   3031.2                 0
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7           3031.2                 3526.4                 0

8           3526.4                 4021.6                 0

9           4021.6                 4516.8                 1

10          4516.8                 5012                   92

Operation          Context             AvgLen      Cnt

------------------ ------------------- ----------- -----------

LOP_DELETE_SPLIT   LCX_CLUSTERED       60          1

LOP_DELETE_SPLIT   LCX_INDEX_INTERIOR  60          92

LOP_SET_BITS       LCX_GAM             60          3137

LOP_SET_BITS       LCX_IAM             60          3137

LOP_MODIFY_ROW     LCX_PFS             80          28230

LOP_FORMAT_PAGE    LCX_HEAP            84          25001

LOP_FORMAT_PAGE    LCX_INDEX_INTERIOR  84          92

LOP_INSERT_ROWS    LCX_INDEX_INTERIOR  84          25093

LOP_MODIFY_HEADER  LCX_HEAP            84          25001

LOP_MODIFY_HEADER  LCX_INDEX_INTERIOR  84          92

LOP_INSERT_ROWS    LCX_CLUSTERED       2096        100000

LOP_INSERT_ROWS    LCX_CLUSTERED       4096        1

LOP_INSERT_ROWS    LCX_INDEX_INTERIOR  5012        92

 As you can see, in this scenario the operation was fully logged. In addition to the log records 
for each INSERT statement, there are log records for page allocations (including leaf and 
nonleaf pages), log records for each insertion into a nonleaf page, and log records for the 
updates of the GAM, IAM, and PFS bitmaps. 

Scenario 8: INSERT SELECT, Nonempty B-Tree, TABLOCK, TF-610 On, New Key Range  This 
scenario is similar to Scenario 7, except that this time you turn on TF-610. This trace fl ag is 
available in SQL Server 2008 to enable minimal logging against a B-tree even when not using 
the TABLOCK hint and for new key ranges that allocate and populate new pages even when 
the target is nonempty. 

 Turn this trace fl ag on for your SQL Server 2008 instance by running the following code: 

DBCC TRACEON(610, -1);

DBCC TRACESTATUS;

 You can also turn this trace fl ag on whenever SQL Server starts by specifying -T610 as a the 
service startup parameter. 

 Now, with the trace fl ag turned on, the following code provides the Preparation and 
Operation parts of this test: 

-- Preparation

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

  n INT NOT NULL,

  filler CHAR(2000) NOT NULL

);

CREATE UNIQUE CLUSTERED INDEX idx_n ON dbo.T1(n);
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INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

  SELECT n, CAST('a' AS CHAR(2000)) AS filler

  FROM dbo.Nums

  WHERE n <= 200000

    AND n % 2 = 0

  ORDER BY n;

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

  SELECT n, CAST('a' AS CHAR(2000)) AS filler

  FROM dbo.Nums

  WHERE n BETWEEN 200001 AND 300000

  ORDER BY n;

 I got the following logging information on my system for this test: 

numrecords  size_mb  duration_sec

----------- -------- ------------

135131      10.94    15.000

n           lb                     hb                     numrecords

----------- ---------------------- ---------------------- -----------

1           59                     555.2                  135036

2           555.2                  1050.4                 0

3           1050.4                 1545.6                 0

4           1545.6                 2040.8                 0

5           2040.8                 2536                   2

6           2536                   3031.2                 0

7           3031.2                 3526.4                 0

8           3526.4                 4021.6                 0

9           4021.6                 4516.8                 1

10          4516.8                 5012                   92

Operation          Context                  AvgLen      Cnt

------------------ ------------------------ ----------- -----------

LOP_DELETE_SPLIT   LCX_CLUSTERED            60          1

LOP_DELETE_SPLIT   LCX_INDEX_INTERIOR       60          92

LOP_SET_BITS       LCX_GAM                  60          3142

LOP_SET_BITS       LCX_IAM                  60          3142

LOP_MODIFY_HEADER  LCX_BULK_OPERATION_PAGE  76          25093

LOP_FORMAT_PAGE    LCX_BULK_OPERATION_PAGE  84          25120

LOP_FORMAT_PAGE    LCX_INDEX_INTERIOR       84          92

LOP_INSERT_ROWS    LCX_INDEX_INTERIOR       84          25093

LOP_MODIFY_HEADER  LCX_HEAP                 84          50002

LOP_MODIFY_HEADER  LCX_INDEX_INTERIOR       84          92

LOP_MODIFY_ROW     LCX_PFS                  88          3167

LOP_INSERT_ROWS    LCX_CLUSTERED            2096        2

LOP_INSERT_ROWS    LCX_CLUSTERED            4096        1

LOP_INSERT_ROWS    LCX_INDEX_INTERIOR       5012        92

 As you can see, this scenario produced minimal logging. A bit more logging is involved here 
(~10 MB) compared to what was needed for an empty B-tree (~1 MB) because more changes 
are required to balance the tree. 
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 When you want to turn trace fl ag 610 off, run the following code: 

DBCC TRACEOFF(610, -1);

DBCC TRACESTATUS;

Scenario 9: INSERT SELECT, Nonempty B-Tree, TABLOCK, Merged Key Range  This 
 scenario is similar to Scenario 7, except that here the new keys are such that the new rows are 
merged into existing pages. In this scenario, regardless of whether TF-610 is on or off, rows 
inserted into existing pages will be fully logged.  

 The following code provides the Preparation and Operation sections you need to  demonstrate 
the full logging involved with inserts into existing pages: 

-- Preparation

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

  n INT NOT NULL,

  filler CHAR(2000) NOT NULL

);

CREATE UNIQUE CLUSTERED INDEX idx_n ON dbo.T1(n);

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

  SELECT n, CAST('a' AS CHAR(2000)) AS filler

  FROM dbo.Nums

  WHERE n <= 200000

    AND n % 2 = 0

  ORDER BY n;

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

  SELECT n, CAST('a' AS CHAR(2000)) AS filler

  FROM dbo.Nums

  WHERE n <= 200000

    AND n % 2 = 1

  ORDER BY n;

 Before the INSERT SELECT statement in the Operation section is executed, there are already 
100,000 rows in table T1, and the primary key values in those rows are the even numbers up 
to 200,000. The INSERT SELECT statement inserts 100,000 new rows using as primary keys 
the odd numbers from dbo.Nums that are smaller than 200,000. I got the following logging 
information on my system for this test both when TF-610 was turned off and when it was 
turned on: 

numrecords  size_mb  duration_sec

----------- -------- ------------

284972      309.94   24.000
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n           lb                     hb                     numrecords

----------- ---------------------- ---------------------- -----------

1           59                     555.2                  159891

2           555.2                  1050.4                 0

3           1050.4                 1545.6                 0

4           1545.6                 2040.8                 0

5           2040.8                 2536                   100000

6           2536                   3031.2                 0

7           3031.2                 3526.4                 0

8           3526.4                 4021.6                 0

9           4021.6                 4516.8                 25001

10          4516.8                 5012                   80

Operation          Context             AvgLen      Cnt

------------------ ------------------- ----------- -----------

LOP_DELETE_SPLIT   LCX_CLUSTERED       60          25001

LOP_DELETE_SPLIT   LCX_INDEX_INTERIOR  60          80

LOP_SET_BITS       LCX_GAM             60          3136

LOP_SET_BITS       LCX_IAM             60          3136

LOP_MODIFY_ROW     LCX_PFS             80          28217

LOP_FORMAT_PAGE    LCX_HEAP            84          25001

LOP_FORMAT_PAGE    LCX_INDEX_INTERIOR  84          80

LOP_INSERT_ROWS    LCX_INDEX_INTERIOR  84          25081

LOP_MODIFY_HEADER  LCX_HEAP            84          50002

LOP_MODIFY_HEADER  LCX_INDEX_INTERIOR  84          160

LOP_INSERT_ROWS    LCX_CLUSTERED       2096        100000

LOP_INSERT_ROWS    LCX_CLUSTERED       4096        25001

LOP_INSERT_ROWS    LCX_INDEX_INTERIOR  5012        80

 You can see that in addition to the full logging of the 100,000 inserted rows (each with 
~2,000 bytes), signifi cant logging also occurred because of page splits that caused rows to 
move (25,001 times ~4,000 bytes). The total amount of logging was more than 300 MB. 

 Remember that only new key ranges that allocate and populate new pages will be minimally 
logged when TF-610 is on. Of course the rows you insert could cover both existing and new 
key ranges. When that’s the case, rows destined for existing pages will be fully logged and 
rows destined for new pages minimally logged when trace fl ag 610 is on.  

Scenario 10: INSERT SELECT, Empty B-Tree, Without TABLOCK, TF-610 Off  This scenario is 
similar to Scenario 6 except that here you do not specify the TABLOCK option. Remember that 
in this scenario TF-610 is off. Use the following Preparation and Operation parts for this test: 

-- Preparation

DBCC TRACEOFF(610, -1);

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

  n INT NOT NULL,

  filler CHAR(2000) NOT NULL

);

CREATE UNIQUE CLUSTERED INDEX idx_n ON dbo.T1(n);
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CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 (n, filler)

  SELECT n, CAST('a' AS CHAR(2000)) AS filler

  FROM dbo.Nums

  WHERE n <= 200000

    AND n % 2 = 0

  ORDER BY n;

 I got the following logging information on my system for this test: 

numrecords  size_mb  duration_sec

----------- -------- ------------

209967      209.20   11.000

n           lb                     hb                     numrecords

----------- ---------------------- ---------------------- -----------

1           59                     555.2                  109876

2           555.2                  1050.4                 0

3           1050.4                 1545.6                 0

4           1545.6                 2040.8                 0

5           2040.8                 2536                   100000

6           2536                   3031.2                 0

7           3031.2                 3526.4                 0

8           3526.4                 4021.6                 0

9           4021.6                 4516.8                 0

10          4516.8                 5012                   91

Operation          Context             AvgLen      Cnt

------------------ ------------------- ----------- -----------

LOP_DELETE_SPLIT   LCX_INDEX_INTERIOR  60          91

LOP_SET_BITS       LCX_GAM             60          3136

LOP_SET_BITS       LCX_IAM             60          3136

LOP_MODIFY_ROW     LCX_PFS             80          28229

LOP_FORMAT_PAGE    LCX_HEAP            84          25000

LOP_FORMAT_PAGE    LCX_IAM             84          1

LOP_FORMAT_PAGE    LCX_INDEX_INTERIOR  84          93

LOP_INSERT_ROWS    LCX_INDEX_INTERIOR  84          25092

LOP_MODIFY_HEADER  LCX_HEAP            84          24999

LOP_MODIFY_HEADER  LCX_INDEX_INTERIOR  84          91

LOP_MODIFY_ROW     LCX_IAM             88          8

LOP_INSERT_ROWS    LCX_CLUSTERED       2099        100000

LOP_INSERT_ROWS    LCX_INDEX_INTERIOR  5012        91

 As you can see, this scenario involves full logging because the TABLOCK option wasn’t used 
and trace fl ag 610 was off. 

Scenario 11: INSERT SELECT, Empty B-Tree, Without TABLOCK, TF-610 On  This scenario 
is similar to Scenario 10 except that here you run it when TF-610 is on. The following code 
 contains the Preparation and Operation Parts for this test: 

-- Preparation

DBCC TRACEON(610, -1);
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IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

  n INT NOT NULL,

  filler CHAR(2000) NOT NULL

);

CREATE UNIQUE CLUSTERED INDEX idx_n ON dbo.T1(n);

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 (n, filler)

  SELECT n, CAST('a' AS CHAR(2000)) AS filler

  FROM dbo.Nums

  WHERE n <= 200000

    AND n % 2 = 0

  ORDER BY n;

 I got the following logging information on my system for this test: 

numrecords  size_mb  duration_sec

----------- -------- ------------

135160      10.94    18.000

n           lb                     hb                     numrecords

----------- ---------------------- ---------------------- -----------

1           59                     555.2                  135065

2           555.2                  1050.4                 0

3           1050.4                 1545.6                 0

4           1545.6                 2040.8                 0

5           2040.8                 2536                   4

6           2536                   3031.2                 0

7           3031.2                 3526.4                 0

8           3526.4                 4021.6                 0

9           4021.6                 4516.8                 0

10          4516.8                 5012                   91

Operation          Context                  AvgLen      Cnt

------------------ ------------------------ ----------- -----------

LOP_DELETE_SPLIT   LCX_INDEX_INTERIOR       60          91

LOP_SET_BITS       LCX_GAM                  60          3144

LOP_SET_BITS       LCX_IAM                  60          3144

LOP_MODIFY_HEADER  LCX_BULK_OPERATION_PAGE  76          25092

LOP_FORMAT_PAGE    LCX_BULK_OPERATION_PAGE  84          25127

LOP_FORMAT_PAGE    LCX_HEAP                 84          1

LOP_FORMAT_PAGE    LCX_IAM                  84          1

LOP_FORMAT_PAGE    LCX_INDEX_INTERIOR       84          93

LOP_INSERT_ROWS    LCX_INDEX_INTERIOR       84          25092

LOP_MODIFY_HEADER  LCX_HEAP                 84          49998

LOP_MODIFY_HEADER  LCX_INDEX_INTERIOR       84          91

LOP_MODIFY_ROW     LCX_IAM                  88          8

LOP_MODIFY_ROW     LCX_PFS                  88          3183

LOP_INSERT_ROWS    LCX_CLUSTERED            2112        4

LOP_INSERT_ROWS    LCX_INDEX_INTERIOR       5012        91
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 As you can see, this time there was minimal logging; compared to the previous scenario, you 
only had to turn on TF-610 to allow minimal logging. 

Scenario 12: INSERT SELECT, Nonempty B-Tree, without TABLOCK, TF-610 Off, New 

 Key Range  This scenario is similar to Scenario 7 except that here you don’t specify the 
TABLOCK hint. Note that when TF-610 is not turned on and the TABLOCK hint isn’t  specifi ed, 
you get full logging regardless of whether the target table is empty. Use the following 
Preparation and Operation parts to test this scenario: 

-- Preparation

DBCC TRACEOFF(610, -1);

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

  n INT NOT NULL,

  filler CHAR(2000) NOT NULL

);

CREATE UNIQUE CLUSTERED INDEX idx_n ON dbo.T1(n);

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

  SELECT n, CAST('a' AS CHAR(2000)) AS filler

  FROM dbo.Nums

  WHERE n <= 200000

    AND n % 2 = 0

  ORDER BY n;

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 (n, filler)

  SELECT n, CAST('a' AS CHAR(2000)) AS filler

  FROM dbo.Nums

  WHERE n BETWEEN 200001 AND 300000

  ORDER BY n;

 Here’s the logging information I got for this test on my system: 

numrecords  size_mb  duration_sec

----------- -------- ------------

209969      209.21   9.000

n           lb                     hb                     numrecords

----------- ---------------------- ---------------------- -----------

1           59                     555.2                  109876

2           555.2                  1050.4                 0

3           1050.4                 1545.6                 0

4           1545.6                 2040.8                 0

5           2040.8                 2536                   100000

6           2536                   3031.2                 0

7           3031.2                 3526.4                 0
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8           3526.4                 4021.6                 0

9           4021.6                 4516.8                 0

10          4516.8                 5012                   93

Operation          Context             AvgLen      Cnt

------------------ ------------------- ----------- -----------

LOP_DELETE_SPLIT   LCX_INDEX_INTERIOR  60          93

LOP_SET_BITS       LCX_GAM             60          3137

LOP_SET_BITS       LCX_IAM             60          3137

LOP_MODIFY_ROW     LCX_PFS             80          28230

LOP_FORMAT_PAGE    LCX_HEAP            84          25000

LOP_FORMAT_PAGE    LCX_INDEX_INTERIOR  84          93

LOP_INSERT_ROWS    LCX_INDEX_INTERIOR  84          25093

LOP_MODIFY_HEADER  LCX_HEAP            84          25000

LOP_MODIFY_HEADER  LCX_INDEX_INTERIOR  84          93

LOP_INSERT_ROWS    LCX_CLUSTERED       2099        100000

LOP_INSERT_ROWS    LCX_INDEX_INTERIOR  5012        93

 As you can see, full logging took place. 

Scenario 13: INSERT SELECT, Nonempty B-Tree, without TABLOCK, TF-610 On, New 

 Key Range  This scenario is identical to Scenario 12 except that this time TF-610 is on. It is 
also the same as Scenario 8 without the TABLOCK option. Use the following Preparation and 
Operation parts to test this scenario: 

-- Preparation

DBCC TRACEON(610, -1);

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

  n INT NOT NULL,

  filler CHAR(2000) NOT NULL

);

CREATE UNIQUE CLUSTERED INDEX idx_n ON dbo.T1(n);

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

  SELECT n, CAST('a' AS CHAR(2000)) AS filler

  FROM dbo.Nums

  WHERE n <= 200000

    AND n % 2 = 0

  ORDER BY n;

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1(n, filler)

  SELECT n, CAST('a' AS CHAR(2000)) AS filler

  FROM dbo.Nums

  WHERE n BETWEEN 200001 AND 300000

  ORDER BY n;
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 I got the following logging information for this test on my system: 

numrecords  size_mb  duration_sec

----------- -------- ------------

135131      10.94    16.000

n           lb                     hb                     numrecords

----------- ---------------------- ---------------------- -----------

1           59                     555.2                  135038

2           555.2                  1050.4                 0

3           1050.4                 1545.6                 0

4           1545.6                 2040.8                 0

5           2040.8                 2536                   0

6           2536                   3031.2                 0

7           3031.2                 3526.4                 0

8           3526.4                 4021.6                 0

9           4021.6                 4516.8                 0

10          4516.8                 5012                   93

Operation          Context                  AvgLen      Cnt

------------------ ------------------------ ----------- -----------

LOP_DELETE_SPLIT   LCX_INDEX_INTERIOR       60          93

LOP_SET_BITS       LCX_GAM                  60          3143

LOP_SET_BITS       LCX_IAM                  60          3143

LOP_MODIFY_HEADER  LCX_BULK_OPERATION_PAGE  76          25093

LOP_FORMAT_PAGE    LCX_BULK_OPERATION_PAGE  84          25120

LOP_FORMAT_PAGE    LCX_INDEX_INTERIOR       84          93

LOP_INSERT_ROWS    LCX_INDEX_INTERIOR       84          25093

LOP_MODIFY_HEADER  LCX_HEAP                 84          50000

LOP_MODIFY_HEADER  LCX_INDEX_INTERIOR       84          93

LOP_MODIFY_ROW     LCX_PFS                  88          3167

LOP_INSERT_ROWS    LCX_INDEX_INTERIOR       5012        93

 As you can see, this time the test generated minimal logging. So even when the TABLOCK 
hint isn’t specifi ed, turning TF-610 on will provide minimal logging of rows  inserted into new 
key ranges. 

Scenario 14: INSERT SELECT, Nonempty B-Tree, without TABLOCK, Merged Key Range  The 
last scenario is similar to Scenario 9 but without the TABLOCK option. Whenever you  insert 
rows into existing pages of a B-tree, you get full logging—regardless of whether you use 
TABLOCK and regardless of whether TF-610 is on or off. To test this scenario, use the  following 
Preparation and Operation parts: 

-- Preparation

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

  n INT NOT NULL,

  filler CHAR(2000) NOT NULL

);

CREATE UNIQUE CLUSTERED INDEX idx_n ON dbo.T1(n);
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INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

  SELECT n, CAST('a' AS CHAR(2000)) AS filler

  FROM dbo.Nums

  WHERE n <= 200000

    AND n % 2 = 0

  ORDER BY n;

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1(n, filler)

  SELECT n, CAST('a' AS CHAR(2000)) AS filler

  FROM dbo.Nums

  WHERE n <= 200000

    AND n % 2 = 1

 Both when TF-610 was on and when it was off, I got the following logging information 
 indicating full logging: 

numrecords  size_mb  duration_sec

----------- -------- ------------

284385      309.67   12.000

n           lb                     hb                     numrecords

----------- ---------------------- ---------------------- -----------

1           59                     463.6                  159384

2           463.6                  867.2                  0

3           867.2                  1270.8                 0

4           1270.8                 1674.4                 0

5           1674.4                 2078                   0

6           2078                   2481.6                 100000

7           2481.6                 2885.2                 0

8           2885.2                 3288.8                 0

9           3288.8                 3692.4                 0

10          3692.4                 4096                   25001

Operation          Context             AvgLen      Cnt

------------------ ------------------- ----------- -----------

LOP_DELETE_SPLIT   LCX_CLUSTERED       60          25001

LOP_SET_BITS       LCX_GAM             60          3126

LOP_SET_BITS       LCX_IAM             60          3126

LOP_MODIFY_ROW     LCX_PFS             80          28127

LOP_FORMAT_PAGE    LCX_HEAP            84          25001

LOP_INSERT_ROWS    LCX_INDEX_INTERIOR  84          25001

LOP_MODIFY_HEADER  LCX_HEAP            84          50002

LOP_INSERT_ROWS    LCX_CLUSTERED       2097        100000

LOP_INSERT_ROWS    LCX_CLUSTERED       4096        25001

 Remember that you can have a mixed case with some key ranges that are new and with 
some rows destined for existing pages. For rows with key ranges that are new, you get 
 minimal logging when TF-610 is on regardless of whether the TABLOCK hint is used. For rows 
inserted into existing pages, you always get full logging. 
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Summary of Minimal Logging

 This section summarizes the requirements for minimal logging. 

 The SELECT INTO statement has one requirement to be processed with minimal logging—
the database recovery model should be set to a non-FULL recovery model (SIMPLE or 
BULK_LOGGED). Note that if you’re populating a temporary table, what matters is tempdb’s 
recovery model, which is SIMPLE and can’t be changed.  

 You can summarize the requirements for minimal logging for the other insert methods (BULK 
INSERT, bcp.exe, INSERT SELECT FROM OPENROWSET(BULK . . .), and regular INSERT SELECT) 
with the following logical expression: 

   non-FULL recovery model

AND not replicated

AND (

        (Heap AND TABLOCK)

     OR (B-tree AND empty AND TABLOCK)

     OR (B-tree AND empty AND TF-610)

     OR (B-tree AND nonempty AND TF-610 AND new key-range)

    )

 SQL Server 2008 introduces support for minimal logging with the regular INSERT SELECT 
statement. The INSERT SELECT method is sometimes preferable to SELECT INTO because it 
does not involve locks on metadata, and it gives you control over the schema of the target 
table that you create.  

 SQL Server 2008 also introduces support for minimal logging when inserting data into a 
 nonempty B-tree (clustered or nonclustered index). Minimal logging is used when  inserting 
new key ranges that allocate and populate new pages while TF-610 is on regardless of 
whether the TABLOCK hint is specifi ed. For those new key ranges, SQL Server internally takes 
key-range locks to ensure that other processes don’t run confl icting activities. 

 I demonstrated only a sample of the possible insert scenarios just to give you a sense of how 
you can do your own research. Using the tools I provided here, you can fi gure out for yourself 
what kind of logging you get for the scenarios that are of interest to you. 

 Unfortunately, the INSERT EXEC and MERGE statements currently do not support minimal 
logging. 

INSERT EXEC

 The INSERT EXEC statement allows you to direct a table result set returned from a stored 
procedure or dynamic batch to an existing table: 

INSERT INTO <target_table> EXEC {<proc_name> | (<dynamic_batch>)};
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 This statement is very handy when you need to set aside the result set of a stored procedure 
or dynamic batch for further processing at the server, as opposed to just returning the result 
set back to the client. 

 I’ll demonstrate practical uses of the INSERT EXEC statement through an example. Recall 
the discussion about paging techniques in Chapter 9, “TOP and APPLY.” I provided a stored 
procedure called GetFirstPage, which returns the fi rst page of orders based on orderdate, 
orderid ordering. I also provided a stored procedure called GetNextPage, which returns 
the next page of orders based on an input key (@anchor) representing the last row in the 
 previous page. In this section, I will use slightly revised forms of the stored procedures, which 
I’ll call GetFirstRows and GetNextRows. Run the following code to create both procedures: 

USE InsideTSQL2008;

GO

-- Index for paging problem

IF INDEXPROPERTY(OBJECT_ID('Sales.Orders'),

     'idx_od_oid_i_cid_eid', 'IndexID') IS NOT NULL

  DROP INDEX Sales.Orders.idx_od_oid_i_cid_eid;

GO

CREATE INDEX idx_od_oid_i_cid_eid

  ON Sales.Orders(orderdate, orderid, custid, empid);

GO

-- First Rows

IF OBJECT_ID('dbo.GetFirstRows') IS NOT NULL

  DROP PROC dbo.GetFirstRows;

GO

CREATE PROC dbo.GetFirstRows

  @n AS INT = 10 -- num rows

AS

SELECT TOP(@n) ROW_NUMBER() OVER(ORDER BY orderdate, orderid) AS rownum,

  orderid, orderdate, custid, empid

FROM Sales.Orders

ORDER BY orderdate, orderid;

GO

-- Next Rows

IF OBJECT_ID('dbo.GetNextRows') IS NOT NULL

  DROP PROC dbo.GetNextRows;

GO

CREATE PROC dbo.GetNextRows

  @anchor_rownum  AS INT = 0, -- row number of last row in prev page

  @anchor_key     AS INT,     -- key of last row in prev page,

  @n              AS INT = 10 -- num rows

AS

SELECT TOP(@n)

  @anchor_rownum

    + ROW_NUMBER() OVER(ORDER BY O.orderdate, O.orderid) AS rownum,

  O.orderid, O.orderdate, O.custid, O.empid

FROM Sales.Orders AS O

  JOIN Sales.Orders AS A
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    ON A.orderid = @anchor_key

    AND (O.orderdate >= A.orderdate

         AND (O.orderdate > A.orderdate

              OR O.orderid > A.orderid))

ORDER BY O.orderdate, O.orderid;

GO

 The stored procedure GetFirstRows returns the fi rst @n rows of Orders, based on orderdate 
and orderid ordering. In addition to the columns that GetFirstPage returned, GetFirstRows (as 
well as GetNextRows) also returns rownum, a column representing the global logical position 
of the row in the full Orders table under the aforementioned ordering. Because GetFirstRows 
returns the fi rst page of rows, rownum is just the row number within the result set. 

 The stored procedure GetNextRows returns the @n rows following an anchor row, whose 
key is provided as input (@anchor_key). For a row in the result set of GetNextRows, rownum 
equals the anchor’s global row number (@anchor_rownum) plus the result row’s logical 
 position within the qualifying set. If you don’t want the stored procedure to return a global 
row number—rather, just the row number within the qualifying set—don’t specify a value 
in the input parameter. In such a case, the default 0 is used as the anchor row number, and 
the minimum row number assigned is 1.  

 Suppose you want to allow the user to request any range of rows without limiting the 
 solution to forward-only paging. You also want to avoid rescanning large portions of data 
from the Orders table. You need to develop some caching mechanism where you set aside 
a copy of the rows you already scanned, along with row numbers representing their global 
logical position throughout the pages. Upon a request for a range of rows (a page), you fi rst 
check whether rows are missing from the cache. In such a case, you insert the missing rows 
into the cache. You then query the cache to return the requested page. Here’s an example of 
how you can implement a server-side solution of such a mechanism.  

 Run the following code to create the #CachedPages temporary table: 

IF OBJECT_ID('tempdb..#CachedPages') IS NOT NULL

  DROP TABLE #CachedPages;

GO

CREATE TABLE #CachedPages

(

  rownum     INT      NOT NULL PRIMARY KEY,

  orderid    INT      NOT NULL UNIQUE,

  orderdate  DATETIME NOT NULL,

  custid     INT      NOT NULL,

  empid      INT      NOT NULL

);

 The caching logic is encapsulated in the stored procedure GetPage, which you create by 
 running the following code: 

IF OBJECT_ID('dbo.GetPage') IS NOT NULL

  DROP PROC dbo.GetPage;

GO
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CREATE PROC dbo.GetPage

  @from_rownum AS INT,       -- row number of first row in requested page

  @to_rownum   AS INT,       -- row number of last row in requested page

  @rc          AS INT OUTPUT -- number of rows returned

AS

SET NOCOUNT ON;

DECLARE

  @last_key    AS INT, -- key of last row in #CachedPages

  @last_rownum AS INT, -- row number of last row in #CachedPages

  @numrows     AS INT; -- number of missing rows in #CachedPages

-- Get anchor values from last cached row

SELECT @last_rownum = rownum, @last_key = orderid

FROM (SELECT TOP(1) rownum, orderid

      FROM #CachedPages ORDER BY rownum DESC) AS D;

-- If temporary table is empty insert first rows to #CachedPages

IF @last_rownum IS NULL

  INSERT INTO #CachedPages

    EXEC dbo.GetFirstRows

      @n = @to_rownum;

ELSE

BEGIN

  SET @numrows = @to_rownum - @last_rownum;

  IF @numrows > 0

    INSERT INTO #CachedPages

      EXEC dbo.GetNextRows

        @anchor_rownum = @last_rownum,

        @anchor_key    = @last_key,

        @n             = @numrows;

END

-- Return requested page

SELECT *

FROM #CachedPages

WHERE rownum BETWEEN @from_rownum AND @to_rownum

ORDER BY rownum;

SET @rc = @@rowcount;

GO

 The stored procedure accepts the row numbers representing the fi rst row in the  requested 
page (@from_rownum) and the last (@to_rownum) as inputs. Besides returning the  requested 
page of rows, the stored procedure also returns an output parameter holding the number 
of rows returned (@rc). You can inspect the output parameter to determine whether you’ve 
reached the last page. 

 The stored procedure’s code fi rst queries the #CachedPages temporary table to store in the 
local variables @last_rownum and @last_key the row number and key of the last cached row, 
respectively. If the temporary table is empty (@last_rownum IS NULL), the code invokes the 
GetFirstRows procedure with an INSERT EXEC statement to populate #CachedPages with the 
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fi rst rows up to the requested high boundary row number. If the temporary table already 
contains rows, the code checks whether rows from the requested page are missing from 
it (@to_rownum - @last_rownum > 0). In such a case, the code invokes the GetNextRows 
 procedure to insert all missing rows up to the requested high boundary row number to the 
temporary table. 

 Finally, the code queries the #CachedPages temporary table to return the requested range of 
rows, and it stores the number of returned rows in the output parameter @rc. 

 To get the fi rst page of rows, assuming a page size of 10, run the following code: 

DECLARE @rc AS INT;

EXEC dbo.GetPage

  @from_rownum = 1,

  @to_rownum   = 10,

  @rc          = @rc OUTPUT;

IF @rc = 0

  PRINT 'No more pages.'

ELSE IF @rc < 10

  PRINT 'Reached last page.';

 You get back the fi rst 10 rows based on orderdate and orderid ordering. Notice in the code 
that you can inspect the output parameter to determine whether there are no more pages 
(@rc = 0) or whether you’ve reached the last page (@rc < 10). 

 Query the #CachedPages temporary table, and you can see that 10 rows were cached: 

SELECT * FROM #CachedPages;

 Further requests for rows that were already cached will be satisfi ed from #CachedPages 
 without the need to access the Orders table. Querying #CachedPages is very effi cient 
 because the table contains a clustered index on the rownum column. Only the requested 
rows are physically accessed. 

 If you now run the preceding code specifying row numbers 21 to 30 as inputs, the GetPage 
procedure adds rows 11 through 30 to the temporary table and returns rows 21 through 30. 
Subsequent requests for rows up to row 30 will be satisfi ed solely from the temporary table.  

 Once you’re done experimenting with this paging technique, run the following code for 
cleanup: 

IF OBJECT_ID('tempdb..#CachedPages') IS NOT NULL

  DROP TABLE #CachedPages;

GO

IF INDEXPROPERTY(OBJECT_ID('Sales.Orders'),

     'idx_od_oid_i_cid_eid', 'IndexID') IS NOT NULL

  DROP INDEX Sales.Orders.idx_od_oid_i_cid_eid;

GO
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IF OBJECT_ID('dbo.GetFirstRows') IS NOT NULL

  DROP PROC dbo.GetFirstRows;

GO

IF OBJECT_ID('dbo.GetNextRows') IS NOT NULL

  DROP PROC dbo.GetNextRows;

GO

IF OBJECT_ID('dbo.GetPage') IS NOT NULL

  DROP PROC dbo.GetPage;

GO

Sequence Mechanisms

 Sequence mechanisms produce numbers that you usually use as keys. SQL Server provides 
a sequencing mechanism via the IDENTITY column property. The IDENTITY property has 
several characteristics that might cause you to look for an alternative sequencing  mechanism. 
In this section, I’ll describe some of these characteristics and alternative mechanisms to 
 generate keys—some that use built-in features, such as globally unique identifi ers (GUIDs), 
and some that you can develop yourself.  

Identity Columns

 The IDENTITY property can be convenient when you want SQL Server to generate single 
 column keys in a table. To guarantee uniqueness, create a PRIMARY KEY or UNIQUE 
 constraint on the identity column. Upon INSERT, SQL Server increments the table’s identity 
value and stores it in the new row. 

 However, several aspects of the IDENTITY property might make it an impractical sequencing 
mechanism for some applications. 

 One aspect is that the IDENTITY property is table dependent. It’s not an independent 
 sequencing mechanism that assigns new values that you can then use in any manner you 
like. Imagine that you need to generate sequence values that will be used as keys that cannot 
confl ict across tables. 

 Another aspect is that an identity value is generated when an INSERT statement is issued, not 
before. In some cases you might need to generate the new sequence value and then use it in 
an INSERT statement and not the other way around. 

 Another aspect of the IDENTITY property that can be considered a limitation in some cases 
is that identity values are assigned in an asynchronous manner. This means that  multiple 
 sessions issuing multirow inserts might end up getting nonsequential identity values. 
Moreover, the assignment of a new identity value is not part of the transaction in which 
the INSERT was issued. The identity resource is internally locked momentarily when the 
value is incremented but not for the duration of the transaction. These facts have several 
 implications. SQL Server increments the table’s identity value regardless of whether the 
 insert succeeds or fails and whether the transaction hosting the insert succeeds or fails. You 
might end up with gaps in the sequence that were not generated by deletions. Some  systems 
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 cannot allow missing values that cannot be accounted for (for example, some invoicing 
 systems). Try telling the Internal Revenue Service that some of the missing invoice IDs in your 
system are a result of the nonblocking manner in which identity values are managed. 

Custom Sequences

 I’ll suggest a couple of solutions to the problem of maintaining a custom sequencing 
 mechanism. I’ll show solutions with both blocking and nonblocking sequence  mechanisms. 
With a blocking sequence mechanism, the sequence resource is locked for the  duration 
of the transaction. This prevents gaps from occurring in the sequence values. With a 
 nonblocking sequence mechanism, the sequence resource is not locked for the duration of 
the transaction. This mechanism gives better performance than the blocking one, but gaps in 
the sequence values are possible.  

Blocking Sequences  You need a blocking sequence mechanism when you must  account 
for all values in the sequence. The classic scenario for such a sequence is generating  invoice 
numbers. The way to guarantee that no gaps occur is to lock the sequence resource when 
you need to increment it and release the lock only when the transaction is fi nished. If 
you think about it, that’s exactly how exclusive locks behave when you modify data in a 
 transaction—that is, a lock is acquired to modify data, and it’s released when the  transaction 
is fi nished (committed or rolled back). To maintain such a sequence, create a table with a 
 single row and a single column holding the last sequence value used. Initially, populate it 
with a zero if you want the fi rst value in the sequence to be 1: 

USE tempdb;

IF OBJECT_ID('dbo.Sequence') IS NOT NULL DROP TABLE dbo.Sequence;

CREATE TABLE dbo.Sequence(val INT);

GO

INSERT INTO dbo.Sequence VALUES(0);

 Now that the sequence table is in place, I’ll describe how you get a single sequence value or 
a block of consecutive sequence values at once. 

Single Sequence Value  To get a single sequence value, you increment the sequence 
value by 1 and return the resulting value. You can achieve this by beginning a transaction, 
 modifying the sequence value, and then retrieving it. Or you can both increment and retrieve 
the new sequence value in a single atomic operation using a specialized UPDATE syntax. Run 
the following code to create a stored procedure that uses the specialized T-SQL UPDATE 
 syntax, increments the sequence value, and returns the new value as an output parameter: 

IF OBJECT_ID('dbo.GetSequence') IS NOT NULL

  DROP PROC dbo.GetSequence;

GO

CREATE PROC dbo.GetSequence

  @val AS INT OUTPUT

AS
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UPDATE dbo.Sequence

  SET @val = val = val + 1;

GO

 The assignment SET @val = val = val + 1 is equivalent to SET val = val + 1, @val = val + 1. 
Note that SQL Server fi rst locks the row exclusively and then increments val, retrieves it, and 
releases the lock only when the transaction is completed. 

 Whenever you need a new sequence value, use the following code: 

DECLARE @key AS INT;

EXEC dbo.GetSequence @val = @key OUTPUT;

SELECT @key;

 To reset the sequence—for example, when the sequence value is about to overfl ow—set its 
value to zero: 

UPDATE dbo.Sequence SET val = 0;

Block of Sequence Values  If you want a mechanism to allocate a block of sequence values 
all at once, you need to slightly alter the stored procedure’s implementation as follows: 

ALTER PROC dbo.GetSequence

  @val AS INT OUTPUT,

  @n   AS INT = 1

AS

UPDATE dbo.Sequence

  SET @val = val = val + @n;

SET @val = @val - @n + 1;

GO

 In the additional argument (@n), you specify the block size (how many sequence values you 
need). The stored procedure increments the current sequence value by @n and returns the 
fi rst value in the block via the @val output parameter. This procedure allocates the block 
of sequence values from @val to @val + @n – 1. 

 The following code provides an example of acquiring and using a whole block of sequence values: 

DECLARE @firstkey AS INT, @rc AS INT;

IF OBJECT_ID('tempdb..#CustsStage') IS NOT NULL DROP TABLE #CustsStage;

SELECT custid, ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS rownum

INTO #CustsStage

FROM InsideTSQL2008.Sales.Customers

WHERE country = N'UK';

SET @rc = @@rowcount;

EXEC dbo.GetSequence @val = @firstkey OUTPUT, @n = @rc;

SELECT custid, @firstkey + rownum - 1 AS keycol

FROM #CustsStage;
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 This example generates surrogate keys for UK customers. This code uses a SELECT INTO 
statement to insert UK customers into a temporary table called #CustsStage, along with 
row numbers (attribute rownum) calculated in no particular order. The code then stores 
the number of affected rows (@@rowcount) in the variable @rc. Next, the code invokes the 
GetSequence procedure to request a block of a size @rc of new sequence values. The stored 
procedure stores the fi rst sequence value from the block in the variable @fi rstkey through 
the output parameter @val. Next, the code queries the #CustsStage table and calculates the 
surrogate customer key using the expression @fi rstkey + rownum – 1.  

Nonblocking Sequences  The blocking sequencing mechanism doesn’t allow gaps, but it 
might cause concurrency problems. Remember that you must exclusively lock the sequence 
to increment it, and then you must maintain the lock until the transaction fi nishes. The 
 longer the transaction is, the longer you lock the sequence. Obviously, this solution can cause 
queues of processes waiting for the sequence resource to be released. But there’s not much 
you can do if you want to maintain a blocking sequence. 

 However, in some cases you might not care about having gaps. For example, suppose 
that all you need is a key generator that guarantees that you don’t generate the same key 
twice. Say that you need those keys to uniquely identify rows across tables. You don’t want 
the sequence resource to be locked for the duration of the transaction. Rather, you want 
the  sequence to be locked for a fraction of a second while incrementing it, just to prevent 
 multiple processes from getting the same value. In other words, you need a nonblocking 
 sequence, one that works much faster than the blocking one, allowing better concurrency.  

 One option that would address these requirements is to use built-in functions that SQL 
Server provides you to generate GUIDs. I’ll discuss this option shortly. However, GUIDs are 
long (16 bytes). You might prefer to use integer sequence values, which are substantially 
smaller (4 bytes). To achieve such a nonblocking sequencing mechanism, you create a table 
(Sequence) with an identity column as follows:  

USE tempdb;

IF OBJECT_ID('dbo.Sequence') IS NOT NULL DROP TABLE dbo.Sequence;

CREATE TABLE dbo.Sequence(val INT IDENTITY);

 Create the following GetSequence procedure to generate a new sequence value and return it 
through the @val output parameter: 

IF OBJECT_ID('dbo.GetSequence') IS NOT NULL

  DROP PROC dbo.GetSequence;

GO

CREATE PROC dbo.GetSequence

  @val AS INT OUTPUT

AS

BEGIN TRAN

  SAVE TRAN S1;

  INSERT INTO dbo.Sequence DEFAULT VALUES;
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  SET @val = SCOPE_IDENTITY();

  ROLLBACK TRAN S1;

COMMIT TRAN

GO

 The procedure opens a transaction just for the sake of creating a save point called S1. It 
 inserts a new row to Sequence, which generates a new identity value in the table and stores 
it in the @val output parameter. The procedure then rolls back the INSERT. But a rollback 
doesn’t undo a variable assignment, nor does it undo incrementing the identity value. Plus, 
the identity resource is not locked for the duration of an outer transaction; rather, it’s locked 
only for a fraction of a second to increment. This behavior of the IDENTITY property is crucial 
for maintaining a nonblocking sequence. 

 Note As of this writing, I haven’t found any offi cial documentation from Microsoft that 
 describes this behavior of the IDENTITY property. 

 Rolling back to a save point ensures that the rollback does not have any effect on an  external 
transaction. The rollback prevents the Sequence table from growing. In fact, it will never 
 contain any committed rows from calls to GetSequence.  

 Whenever you need the next sequence value, run the GetSequence, just like you did with the 
blocking sequence:  

DECLARE @key AS INT;

EXEC dbo.GetSequence @val = @key OUTPUT;

SELECT @key;

 This time, however, the sequence does not block if you increment it within an  external 
 transaction. One drawback to this sequence solution is that it can generate only one 
 sequence value at a time.  

 If you want to reset the sequence value, you can truncate the table, which resets the identity 
value: 

TRUNCATE TABLE dbo.Sequence;

 You can further optimize this sequencing mechanism by avoiding the rollback to undo the 
insertion. The stored procedure simply inserts a new row into the table and returns the newly 
generated identity value, like so: 

IF OBJECT_ID('dbo.GetSequence') IS NOT NULL

  DROP PROC dbo.GetSequence;

GO

CREATE PROC dbo.GetSequence

  @val AS INT OUTPUT

AS
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INSERT INTO dbo.Sequence DEFAULT VALUES;

SET @val = SCOPE_IDENTITY();

GO

 As before, use the stored procedure to get new sequence values: 

DECLARE @key AS INT;

EXEC dbo.GetSequence @val = @key OUTPUT;

SELECT @key;

 The only problem is that the Sequence table keeps growing as new sequence values are 
 generated. You need to run a job on scheduled basis that periodically clears the table. Be 
careful, though, with the technique that you use to clear the table. If you use a DELETE 
 statement, it will take time to fi nish because it’s a fully logged operation, and it might also 
cause lock escalation. If you use the minimally logged TRUNCATE TABLE statement, it will 
be fast, but the identity value will be reseeded. To use the fast TRUNCATE TABLE statement 
while preserving the seed before the emptying of the table, you need to do the following: 

  1. Open a transaction. 

  2. Lock the table. 

  3. Set aside the current identity value plus one. 

  4. Truncate the table. 

  5. Reseed the identity value to the value you kept aside. 

  6. Commit the transaction and release the lock. 

 Here’s how the code might look: 

BEGIN TRAN

  DECLARE @val AS INT;

  SELECT TOP (1) @val = val FROM dbo.Sequence WITH (TABLOCKX); -- lock table

  SET @val = IDENT_CURRENT('dbo.Sequence') + 1;

  TRUNCATE TABLE dbo.Sequence;

  DBCC CHECKIDENT('dbo.Sequence', RESEED, @val);  

COMMIT

 Run this code in a job on scheduled basis—say once a day—and you will get a faster 
 sequencing mechanism, while the Sequence table won’t get too large. 

GUIDs

 SQL Server provides you with the NEWID function, which generates a new GUID every time it 
is invoked. The function returns a 16-byte value typed as UNIQUEIDENTIFIER. If you need an 
automatic mechanism that assigns unique keys in a table or even across different tables, you 
can create a UNIQUEIDENTIFIER column with the default value NEWID(). The downside of a 
UNIQUEIDENTIFIER column used as a key is that it’s pretty big—16 bytes. This, of course, has 
an impact on index sizes, join performance, and so on. 
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 Note that the NEWID function does not guarantee that a newly generated GUID will be 
 greater than any previously generated one in the same computer. If you need such a  guarantee, 
use the NEWSEQUENTIALID function. Note that this function guarantees that a new value is 
greater than any previously generated one only on the same computer, not across computers. 

Deleting Data

 In this section, I’ll cover different aspects of deleting data, including TRUNCATE versus 
DELETE, removing rows with duplicate data, DELETE using joins, and large DELETEs.  

TRUNCATE vs. DELETE

 If you need to remove all rows from a table, use TRUNCATE TABLE and not DELETE without 
a WHERE clause. DELETE is always fully logged, and with large tables it can take a while to 
complete. TRUNCATE TABLE is always minimally logged regardless of the recovery model 
of the database, and therefore it is always signifi cantly faster than DELETE. Note, though, 
that TRUNCATE TABLE does not fi re any DELETE triggers on the table. To give you a sense of 
the difference, using TRUNCATE TABLE to clear a table with millions of rows can take a  matter 
of seconds, while clearing the table with DELETE can take hours. 

 Tip SQL Server rejects DROP TABLE attempts if a schema-bound object is pointing to the target 
table. It rejects both DROP TABLE and TRUNCATE TABLE attempts if a foreign key is pointing to 
the target table. This limitation applies even when the foreign table is empty and even when the 
foreign key is disabled. If you want to prevent accidental TRUNCATE TABLE and DROP TABLE 
 attempts against sensitive production tables, simply create dummy tables with foreign keys 
pointing to them and disable the foreign keys. 

 In addition to the substantial performance difference between TRUNCATE TABLE and DELETE, 
each also handles the IDENTITY property differently: TRUNCATE TABLE resets the IDENTITY 
property to its original seed, while DELETE doesn’t. 

Removing Rows with Duplicate Data

 Duplicate data can arise for various reasons. Users might enter duplicate data by mistake, 
or an import process might be invoked accidentally more than once and so on. If you don’t 
enforce data integrity with constraints such as primary keys and unique constraints or 
with other mechanisms, you may end up with duplicate data in your database. Of course, 
the best practice is to enforce uniqueness with constraints where the data is supposed to 
be unique. But sometimes you don’t have control over the system, and sometimes you 
 intentionally don’t want to enforce uniqueness in special cases, such as a staging table in a 
data  warehouse. Regardless of how you end up with duplicate data in your table, this section 
will provide you with a solution to remove rows with duplicate data. 
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 To demonstrate techniques to remove rows with duplicate data, fi rst create and populate the 
OrdersDups table in the tempdb database by running the following code:  

USE tempdb;

IF OBJECT_ID('dbo.OrdersDups') IS NOT NULL DROP TABLE dbo.OrdersDups;

GO

SELECT orderid, custid, empid, orderdate

INTO dbo.OrdersDups

FROM InsideTSQL2008.Sales.Orders

  CROSS JOIN dbo.Nums

WHERE n <= 3;

 OrdersDups contains three copies of each order, and the task at hand is to remove rows with 
duplicate data, keeping only one occurrence of each unique orderid value. I suggest two 
techniques for handling the task. The factor that determines which technique is most effi cient 
is the percentage of rows that need to be removed out of the total number of rows in the 
table. With a small percentage, you’re better off deleting the relevant rows directly from the 
table using a fully logged DELETE statement. However, with a large percentage, you might 
be better off copying the rows you need to keep to another table using a minimally logged 
operation, dropping the original table, renaming the new one to the original table name, and 
re-creating all constraints, indexes, and triggers. 

 Here’s the code that implements the solution I recommend when a small percentage of rows 
needs to be removed: 

WITH Dups AS

(

  SELECT orderid, custid, empid, orderdate,

    ROW_NUMBER() OVER(PARTITION BY orderid ORDER BY (SELECT 0)) AS rn

  FROM dbo.OrdersDups

)

DELETE FROM Dups

WHERE rn > 1;

 The query defi ning the CTE Dups assigns row numbers to the rows from OrdersDups 
 partitioned by orderid, in no particular order. Rows with the same orderid value are numbered 
starting at 1. Here I’m making the assumption that you don’t care which of the duplicates you 
wish to keep. Of course, if you do have some preference when the rows are not completely 
identical copies, you can specify the applicable attributes in the ORDER BY clause of the 
ROW_NUMBER function. The outer DELETE statement against the CTE deletes all rows with a 
row number greater than 1, leaving a single row in the table for each unique orderid value. 

 My friend and colleague Javier Loria showed me another cool technique. You calculate both 
a row number and a rank for each row partitioned by orderid and then delete all rows where 
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the two are different. For only one occurrence of each unique orderid value will the two be 
the same. The code looks like this: 

WITH Dups AS

(

  SELECT orderid, custid, empid, orderdate,

    ROW_NUMBER() OVER(PARTITION BY orderid ORDER BY (SELECT 0)) AS rn,

    RANK() OVER(PARTITION BY orderid ORDER BY (SELECT 0)) AS rnk

  FROM dbo.OrdersDups

)

DELETE FROM Dups

WHERE rn <> rnk;

 For a scenario with a large percentage of rows that need to be deleted, the solutions that 
 apply a fully logged DELETE statement might end up being very slow. In this case, you might 
be better off copying the unique rows to a new table using a minimally logged operation, 
then dropping the original table and renaming the new table. Here’s the code implementing 
this solution: 

WITH Dups AS

(

  SELECT orderid, custid, empid, orderdate,

    ROW_NUMBER() OVER(PARTITION BY orderid ORDER BY (SELECT 0)) AS rn

  FROM dbo.OrdersDups

)

SELECT orderid, custid, empid, orderdate

INTO dbo.OrdersDupsTmp

FROM Dups

WHERE rn = 1;

DROP TABLE dbo.OrdersDups;

EXEC sp_rename 'dbo.OrdersDupsTmp', 'OrdersDups';

 Here as before, the solution assigns row numbers to the copies of each unique orderid value, 
except that here the solution fi lters the rows where the row number is equal to 1, and copies 
those rows to another table using the minimally logged SELECT INTO statement (assuming 
the recovery model of the database is not set to FULL). The solution then drops the original 
table and renames the new table to the original table name. At this point you can re-create 
any constraints, indexes, and triggers if needed. 

DELETE Using Joins

 T-SQL supports a proprietary syntax for DELETE and UPDATE based on joins. Here I’ll cover 
DELETEs based on joins. Later, in the UPDATE section, I’ll cover UPDATEs based on joins. 

 Note This syntax is not standard, and you should avoid it unless it has a compelling benefi t over 
the standard syntax using subqueries.  
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 I’ll fi rst describe the syntax and then show examples where it provides functionality not 
 available with subqueries. 

 You write a DELETE based on a join in a similar manner to writing a SELECT based on a join. 
You substitute the SELECT clause with a DELETE FROM <target_table>, where <target_table> 
is the table from which you want to delete rows. Note that you should specify the table alias 
if one was provided. 

 Some people feel more comfortable using joins than using subqueries and hence prefer to 
also express DELETE statements that require access to other tables with joins rather than 
 subqueries . 

 As an example of how a SELECT join query and a DELETE join statement are similar, fi rst look 
at this query, which returns order details for orders placed on or after May 6, 2008: 

USE InsideTSQL2008;

SELECT OD.*

FROM Sales.OrderDetails AS OD

  JOIN Sales.Orders AS O

    ON OD.orderid = O.orderid

WHERE O.orderdate >= '20080506';

 If you want to delete order details for orders placed on or after May 6, 2008, simply replace 
SELECT OD.* in the preceding query with DELETE FROM OD: 

BEGIN TRAN

DELETE FROM OD

FROM Sales.OrderDetails AS OD

  JOIN Sales.Orders AS O

    ON OD.orderid = O.orderid

WHERE O.orderdate >= '20080506';

ROLLBACK TRAN

 In some of my examples I use a transaction and roll back the modifi cation so that you can 
try out the examples without permanently modifying the sample tables. This particular 
 nonstandard DELETE query can be rewritten as a standard one using a subquery: 

BEGIN TRAN

DELETE FROM Sales.OrderDetails

WHERE EXISTS

  (SELECT *

   FROM Sales.Orders AS O

   WHERE O.orderid = Sales.OrderDetails.orderid

     AND O.orderdate >= '20080506');

ROLLBACK TRAN
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 In this case, the nonstandard DELETE has no advantage over the standard one—either in 
performance or in simplicity—so I don’t see any point in using it. However, you will fi nd 
cases in which it is hard to get by without using the proprietary syntax. For example,  suppose 
you need to delete from a table variable and you must refer to the table variable from a 
 subquery. T-SQL doesn’t support qualifying a column name with a table variable name. 

 The following code declares a table variable called @MyOD and populates it with some 
 order details, identifi ed by (orderid, productid). The code then attempts to delete all rows 
from @MyOD with keys that already appear in the OrderDetails table: 

DECLARE @MyOD TABLE

(

  orderid   INT NOT NULL,

  productid INT NOT NULL,

  PRIMARY KEY(orderid, productid)

);

INSERT INTO @MyOD VALUES(10001, 14);

INSERT INTO @MyOD VALUES(10001, 51);

INSERT INTO @MyOD VALUES(10001, 65);

INSERT INTO @MyOD VALUES(10248, 11);

INSERT INTO @MyOD VALUES(10248, 42);

DELETE FROM @MyOD

WHERE EXISTS

  (SELECT * FROM Sales.OrderDetails AS OD

   WHERE OD.orderid = @MyOD.orderid

     AND OD.productid = @MyOD.productid);

 This code fails with the following error: 

Msg 137, Level 15, State 2, Line 17 

Must declare the scalar variable "@MyOD".

 Essentially, the reason for the failure is that T-SQL doesn’t support qualifying a column name 
with a table variable name. Moreover, T-SQL doesn’t allow you to alias the target table 
 directly; rather, it requires you to do so via a second FROM clause, like so: 

DELETE FROM MyOD

FROM @MyOD AS MyOD

WHERE EXISTS

  (SELECT * FROM Sales.OrderDetails AS OD

   WHERE OD.orderid = MyOD.orderid

     AND OD.productid = MyOD.productid);

 Note If you want to test this code, make sure you run it right after declaring and populating the 
table variable in the same batch. Otherwise, you will get an error saying that the variable 
@MyOD was not declared. Like any other variable, the scope of a table variable is the local batch. 
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 Another solution is to use a join instead of the subquery, where you can also alias tables: 

DELETE FROM MyOD

FROM @MyOD AS MyOD

  JOIN Sales.OrderDetails AS OD

    ON OD.orderid = MyOD.orderid

   AND OD.productid = MyOD.productid;

 You can also use a CTE as an alternative to aliasing the table variable, allowing a simpler solution: 

WITH MyOD AS (SELECT * FROM @MyOD)

DELETE FROM MyOD

WHERE EXISTS

  (SELECT * FROM Sales.OrderDetails AS OD

   WHERE OD.orderid = MyOD.orderid

     AND OD.productid = MyOD.productid);

 CTEs are extremely useful in other scenarios where you need to modify data in one table 
based on data that you inspect in another. It allows you to simplify your code and, in many 
cases, avoid relying on modifi cation statements that use joins.  

 In SQL Server 2008 you can also handle such tasks using the new MERGE statement. I’ll 
 describe this statement later in the chapter. 

Updating Data

 This section covers several aspects of updating data, including UPDATEs using joins, updating 
large values types, and SELECT and UPDATE statements that perform assignments to variables. 

UPDATE Using Joins

 Earlier in this chapter, I mentioned that T-SQL supports a nonstandard syntax for modifying 
data based on a join, and I showed DELETE examples. Here I’ll cover UPDATEs based on joins, 
focusing on cases where the nonstandard syntax has advantages over the supported standard 
syntax using subqueries. I’ll also show how you can use CTEs to update data based on joins.  

 I’ll start with one of the cases where an UPDATE based on a join has a performance advantages 
over an UPDATE using subqueries. Suppose you wanted to update the shipping information 
for orders placed by USA customers, overwriting the shipcountry, shipregion, and shipcity 
 attributes with the customer’s country, region, and city attributes from the Customers table. 
You could use one subquery for each of the new attribute values plus one in the WHERE clause 
to fi lter orders placed by USA customers as follows: 

USE InsideTSQL2008;

BEGIN TRAN

  UPDATE Sales.Orders

    SET shipcountry = (SELECT C.country FROM Sales.Customers AS C

                       WHERE C.custid = Sales.Orders.custid),
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        shipregion =  (SELECT C.region FROM Sales.Customers AS C

                       WHERE C.custid = Sales.Orders.custid),

        shipcity =    (SELECT C.city FROM Sales.Customers AS C

                       WHERE C.custid = Sales.Orders.custid)

  WHERE custid IN

    (SELECT custid FROM Sales.Customers WHERE country = N'USA');

ROLLBACK TRAN

 Again, I’m rolling back the transaction so that the change does not take effect in the 
InsideTSQL2008 database. Though standard, this technique is very slow. Each such  subquery 
involves separate access to return the requested attribute from the Customers table. 
I  wanted to provide a fi gure with the graphical execution plan for this UPDATE, but it’s just 
too big! Request a graphical execution plan in SSMS to see for yourself. 

 You can write an UPDATE based on a join to perform the same task as follows: 

BEGIN TRAN

  UPDATE O

    SET shipcountry = C.country,

        shipregion = C.region,

        shipcity = C.city

  FROM Sales.Orders AS O

    JOIN Sales.Customers AS C

      ON O.custid = C.custid

  WHERE C.country = N'USA';

ROLLBACK TRAN

 This code is shorter and simpler, and the optimizer generates a more effi cient plan for it, as you 
will notice if you request the graphical execution plan in SSMS. You will fi nd in the  execution 
plan that the Customers table is scanned only once, and through that scan, the  query 
 processor accesses all the customer attributes it needs. This plan reports half the  estimated 
execution cost of the previous one. In practice, if you compare the two solutions against larger 
tables, you will fi nd that the performance difference is substantially higher. Alas, the UPDATE 
with a join technique is nonstandard. 

 Earlier in the chapter I introduced the enhanced VALUES clause in SQL Server 2008, which 
implements one aspect of the standard row value constructors. Other aspects of the  standard 
row value constructors have not yet been implemented in SQL Server. One of those aspects 
allows you to simplify queries like the one just shown. This syntax allows you to  specify 
 vectors of attributes and expressions and eliminates the need to issue a subquery for each 
attribute separately. The following example shows this syntax: 

UPDATE Sales.Orders 

  SET (shipcountry, shipregion, shipcity) = 

    (SELECT country, region, city

     FROM Sales.Customers AS C 

     WHERE C.custid = Sales.Orders.custid)

WHERE custid IN

  (SELECT custid FROM Sales.Customers WHERE country = 'USA');
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 Such support would allow for simple standard solutions and naturally also lend itself to 
 better optimization.  

 Another option to handle the task at hand is to use a CTE. By using a CTE, you can come 
up with a simple solution that is easy to troubleshoot and maintain, yielding an effi cient 
plan very similar to the one that uses a join UPDATE. Simply create a CTE out of a join SELECT 
and then UPDATE the target table through the CTE, like so: 

BEGIN TRAN;

WITH UPD_CTE AS

(

  SELECT

    O.shipcountry AS set_country, C.country AS get_country,

    O.shipregion  AS set_region,  C.region  AS get_region,

    O.shipcity    AS set_city,    C.city    AS get_city

  FROM Sales.Orders AS O

    JOIN Sales.Customers AS C

      ON O.custid = C.custid

  WHERE C.country = 'USA'

)

UPDATE UPD_CTE

  SET set_country = get_country,

      set_region  = get_region,

      set_city    = get_city;

ROLLBACK TRAN

 Note Even though CTEs are defi ned by ANSI SQL, the DELETE and UPDATE syntax against CTEs 
implemented in SQL Server is not standard. 

 This UPDATE generates an identical plan to the one generated for the UPDATE based on a join.  

 In SQL Server 2008 you can handle such tasks using a MERGE statement that you also express 
using join semantics. I’ll discuss MERGE and provide examples later in this chapter. 

 You should be aware of another issue when using the join-based UPDATE. When you modify 
the table on the “one” side of a one-to-many join, you might end up with a  nondeterministic 
update. To demonstrate the problem, run the following code, which creates the tables 
Customers and Orders and populates them with sample data: 

USE tempdb;

GO

IF OBJECT_ID('dbo.Orders') IS NOT NULL

  DROP TABLE dbo.Orders;

IF OBJECT_ID('dbo.Customers') IS NOT NULL

  DROP TABLE dbo.Customers;

GO
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CREATE TABLE dbo.Customers

(

  custid VARCHAR(5) NOT NULL PRIMARY KEY,

  qty    INT        NULL

);

INSERT INTO dbo.Customers(custid) VALUES('A'),('B');

CREATE TABLE dbo.Orders

(

  orderid INT        NOT NULL PRIMARY KEY,

  custid  VARCHAR(5) NOT NULL REFERENCES dbo.Customers,

  qty     INT        NOT NULL

);

INSERT INTO dbo.Orders(orderid, custid, qty) VALUES

  (1, 'A', 20),

  (2, 'A', 10),

  (3, 'A', 30),

  (4, 'B', 35),

  (5, 'B', 45),

  (6, 'B', 15);

 Customers and Orders have a one-to-many relationship. Notice that each row in Customers 
currently has three related rows in Orders. Now, examine the following UPDATE and see if 
you can guess how Customers would look after the UPDATE: 

UPDATE C

  SET qty = O.qty

FROM dbo.Customers AS C

  JOIN dbo.Orders AS O

    ON C.custid = O.custid;

 The truth is that the UPDATE is nondeterministic. You can’t guarantee which of the values 
from the related Orders rows is used to update the qty value in Customers. Remember that 
you cannot assume or rely on any physical order of the data. For example, run the following 
query against Customers after running the preceding UPDATE: 

SELECT custid, qty FROM dbo.Customers;

 You might get the following output: 

custid qty

------ -----------

A      20

B      35

 But you might just as easily get the following output: 

custid qty

------ -----------

A      10

B      45
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 It is interesting to note that if you attempt such an update with the MERGE statement, 
where the same target row is modifi ed more than once, SQL Server raises an error, and the 
 statement fails to execute. The MERGE statement doesn’t allow such a nondeterministic 
 update like the join UPDATE allows. 

 When you’re done experimenting with nondeterministic UPDATEs, run the following code to 
drop Orders and Customers: 

IF OBJECT_ID('dbo.Orders') IS NOT NULL

  DROP TABLE dbo.Orders;

IF OBJECT_ID('dbo.Customers') IS NOT NULL

  DROP TABLE dbo.Customers;

Updating Large Value Types

 This section covers updates of large value types (VARCHAR(MAX), NVARCHAR(MAX), and 
VARBINARY(MAX)) using the WRITE method. In my examples I’ll use the CustomerData table 
that you create by running the code provided earlier in the chapter in Listing 10-1. Then run 
the following code to insert a row into the table: 

INSERT INTO dbo.CustomerData(custid, txt_data)

  VALUES(102, 'Customer 102 text data');

 To update a column of a large value type, you can use a regular UPDATE statement  setting 
the column to a result of an expression. For example, if you want to modify a certain  section 
within, such as the txt_data column value for customer 102, you could set the column to 
the result of an expression using the STUFF function. However, an update using regular 
data  manipulation would result in overwriting the entire string using full logging, which is 
 ineffi cient with large values. Instead, the UPDATE statement supports a WRITE method for 
large value types. The WRITE method allows you to modify only a section within the string 
and not overwrite the whole thing. Plus, when the database recovery model is not set to 
FULL, some of the updates using the WRITE method can benefi t from minimal logging. Those 
include inserting or appending new data. 

 Logically, the WRITE method is similar to the STUFF function. It accepts three arguments: 
@expression, @offset, and @length. The @expression argument replaces @length units 
( characters/bytes) starting from @offset position in the target value. 

 Note The @offset argument is zero based. 

 For example, the following code operates on the txt_data column value for customer 102. 
It replaces the string ‘102’ located at offset 9 (zero based) with the string ‘one hundred and 
two’, resulting in the string ‘Customer one hundred and two text data’: 

UPDATE dbo.CustomerData

  SET txt_data.WRITE('one hundred and two', 9, 3)

WHERE custid = 102;
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 Note If the target LOB is NULL, an update that uses WRITE will fail. 

 If @expression is NULL, @length is ignored, and the value is truncated at the @offset  position. 
For example, the following code truncates the string at the 28th position, resulting in the 
string ‘Customer one hundred and two’: 

UPDATE dbo.CustomerData

  SET txt_data.WRITE(NULL, 28, 0)

WHERE custid = 102;

 If @length is NULL, the string is truncated at the @offset position, and @expression is 
 appended at the end. For example, the following code truncates the string at the ninth 
 position and appends ‘102’ at the end, resulting in the string ‘Customer 102’: 

UPDATE dbo.CustomerData

  SET txt_data.WRITE('102', 9, NULL)

WHERE custid = 102;

 If @offset is NULL and @length is 0, @expression is simply appended at the end. For  example, 
the following code appends the string ‘ is discontinued’ at the end, resulting in the string 
‘Customer 102 is discontinued’: 

UPDATE dbo.CustomerData

  SET txt_data.WRITE(' is discontinued', NULL, 0)

WHERE custid = 102;

 If @expression is an empty string, no data is inserted; rather, you just remove a substring at 
the @offset position in the size of @length. For example, the following code removes four 
characters at the ninth position: 

UPDATE dbo.CustomerData

  SET txt_data.WRITE('', 9, 4)

WHERE custid = 102;

 If you query the data at this point, you get the string ‘Customer is discontinued’: 

SELECT txt_data FROM dbo.CustomerData WHERE custid = 102;

SELECT and UPDATE Statement Assignments

 This section covers statements that assign values to variables and that, in the case of UPDATE, 
can modify data at the same time. Such assignments have some tricky issues that you might 
want to be aware of. Being familiar with the way assignments work in T-SQL is important for 
 programming correctly—that is, programming what you intended to. 
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Assignment SELECT

 I’ll start with assignment SELECT statements. T-SQL supports assigning values to variables 
 using a SELECT statement, but the ANSI form of assignment, which is also supported by 
T-SQL, is to use a SET statement. So, as a rule, unless you have a compelling reason to do 
 otherwise, it’s a good practice to stick to using SET. I’ll describe cases where you might want to 
use SELECT because it has advantages over SET in those cases. However, as I will demonstrate 
shortly, you should be aware that when using SELECT, your code is more prone to errors.  

 As an example of the way an assignment SELECT works, suppose you need to assign the 
 employee ID whose last name matches a given pattern (@pattern) to the @empid variable. 
You assume that only one employee will match the pattern. The following code, which uses 
an assignment SELECT, doesn’t accomplish the requirement: 

USE InsideTSQL2008;

DECLARE @empid AS INT, @pattern AS NVARCHAR(100);

SET @pattern = N'Davis'; -- Try also N'Ben-Gan', N'D%';

SET @empid = 999;

SELECT @empid = empid

FROM HR.Employees

WHERE lastname LIKE @pattern;

SELECT @empid;

 Given N’Davis’ as the input pattern, you get the employee ID 1 in the @empid variable. In 
this case, only one employee matched the fi lter. However, if you’re given a pattern that does 
not apply to any existing last name in the Employees table (for example, N’Ben-Gan’), the 
assignment doesn’t take place even once. The content of the @empid variable remains as it 
was before the assignment—999. (This value is used for demonstration purposes.) If you’re 
given a pattern that matches more than one last name (for example, N’D%’), this code issues 
multiple assignments, overwriting the previous value in @empid with each assignment. The 
fi nal value of @empid is the employee ID from the qualifying row that SQL Server happened 
to access last. 

 A much safer way to assign the qualifying employee ID to the @empid variable is to use a SET 
statement as follows: 

DECLARE @empid AS INT, @pattern AS NVARCHAR(100);

SET @pattern = N'Davis'; -- Try also N'Ben-Gan', N'D%';

SET @empid = 999;

SET @empid = (SELECT empid

              FROM HR.Employees

              WHERE lastname LIKE @pattern);

SELECT @empid;

C10626034.indd   612 2/20/2009   5:47:36 PM



 Chapter 10 Data Modifi cation 613

 If only one employee qualifi es, you get the employee ID in the @empid variable. If no employee 
qualifi es, the subquery sets @empid to NULL. When you get a NULL, you know that you had no 
matches. If multiple employees qualify, you get an error saying that the subquery returned more 
than one value. In such a case, you will realize that something is wrong with your assumptions or 
with the design of your code. But the problem will surface as opposed to eluding you. 

 When you understand how an assignment SELECT works, you can use it to your advantage. 
For example, a SET statement can assign only one variable at a time. An assignment SELECT 
can assign values to multiple variables within the same statement. With well-designed code, 
this capability can give you performance benefi ts. For example, the following code assigns 
the fi rst name and last name of a given employee to variables: 

DECLARE @firstname AS NVARCHAR(10), @lastname AS NVARCHAR(20);

SELECT @firstname = NULL, @lastname = NULL;

SELECT @firstname = firstname, @lastname = lastname

FROM HR.Employees

WHERE empid = 3;

SELECT @firstname, @lastname;

 Notice that this code uses the primary key to fi lter an employee, meaning that you cannot get 
more than one row back. The code also initializes the @fi rstname and @lastname variables with 
NULLs. If no employee qualifi es, the variables simply retain the NULLs. This type of assignment 
is especially useful in triggers when you want to read attributes from the special tables inserted 
and deleted into your own variables, after you verify that only one row was affected.  

 Technically, you could rely on the fact that an assignment SELECT performs multiple 
 assignments when multiple rows qualify. For example, you could do aggregate calculations, 
such as concatenating all order IDs for a given customer:  

DECLARE @Orders AS VARCHAR(8000), @custid AS INT;

SET @custid = 1;

SET @Orders = '';

SELECT @Orders = @Orders + CAST(orderid AS VARCHAR(10)) + ';'

FROM Sales.Orders

WHERE custid = @custid;

SELECT @Orders;

 However, this code is far from being standard, and the ability to apply such an assignment 
SELECT with multiple rows is not offi cially documented. This type of assignment is also often 
used with an ORDER BY clause, assuming that the order of concatenation is guaranteed, like so:  

DECLARE @Orders AS VARCHAR(8000), @custid AS INT;

SET @custid = 1;

SET @Orders = '';
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SELECT @Orders = @Orders + CAST(orderid AS VARCHAR(10)) + ';'

FROM Sales.Orders

WHERE custid = @custid

ORDER BY orderdate, orderid;

SELECT @Orders;

 But again, no offi cial documentation defi nes the behavior of such multirow assignment 
SELECT statements, let alone ones that include an ORDER BY clause. I did stumble across 
the following blog by Microsoft’s Conor Cunningham, in which he indicates that this 
 undocumented technique does guarantee concatenation order: http://blogs.msdn.com/ 
sqltips/archive/2005/07/20/441053.aspx. 

 However, I have to stress that I feel very awkward about this technique, and I’m reluctant to 
trust it to always work, including in future versions of the product. You have enough supported 
and guaranteed techniques to choose from for such calculations, many of which I covered in 
Chapter 8, “Aggregating and Pivoting Data.” 

Assignment UPDATE

 T-SQL also supports a nonstandard UPDATE syntax that can assign values to variables in 
 addition to modifying data. To demonstrate the technique, fi rst run the following code, 
which creates the table T1 and populates it with sample data: 

USE tempdb;

IF OBJECT_ID('dbo.T1') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

  col1 INT        NOT NULL,

  col2 VARCHAR(5) NOT NULL

);

GO

INSERT INTO dbo.T1(col1, col2) VALUES

  (0, 'A'),

  (0, 'B'),

  (0, 'C'),

  (0, 'C'),

  (0, 'C'),

  (0, 'B'),

  (0, 'A'),

  (0, 'A'),

  (0, 'C'),

  (0, 'C');

 Currently, the T1 table has no primary key, and there’s no way to uniquely identify the rows. 
Suppose that you wanted to assign unique integers to col1 and then make it the primary 
key. You can use the following assignment UPDATE to achieve this task: 

DECLARE @i AS INT;

SET @i = 0;

UPDATE dbo.T1 SET @i = col1 = @i + 1;

SELECT * FROM dbo.T1;

C10626034.indd   614 2/20/2009   5:47:36 PM



 Chapter 10 Data Modifi cation 615

 This code declares the variable @i and initializes it with 0. The UPDATE statement then scans 
the data and, for each row, sets the current col1 value to @i + 1 and then sets @i’s value to 
col1’s new value. Logically, the SET clause is equivalent to SET col1 = @i + 1, @i = @i + 1. 
However, in such an UPDATE statement, you have no way to control the order in which the 
rows in T1 are scanned and modifi ed. For example, when I queried the table after applying 
the preceding assignment UPDATE, I got the following output: 

col1        col2

----------- -----

1           A

2           B

3           C

4           C

5           C

6           B

7           A

8           A

9           C

10          C

 But keep in mind that the UPDATE statement’s assignment of col1 values might be different. 
As long as you don’t care about the order in which the data is scanned and modifi ed, you 
might be happy with this technique. It is very fast because it scans the data only once. 

 SQL Server supports another technique to achieve this task that is much more elegant and 
that allows you to specify the logical ordering of the resulting row numbers. This technique 
involves issuing an UPDATE through a CTE that calculates row numbers based on any desired 
order, like so: 

WITH T1RN AS

(

  SELECT col1, ROW_NUMBER() OVER(ORDER BY col2) AS rownum

  FROM dbo.T1

)

UPDATE T1RN SET col1 = rownum;

SELECT * FROM dbo.T1;

 This code generates the following output: 

col1        col2

----------- -----

1           A

4           B

6           C

7           C

8           C

5           B

2           A

3           A

9           C

10          C
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 Recall that if you want to assign the row numbers in no particular order and would rather not 
pay for any costs associated with ordering, you can specify ORDER BY (SELECT 0). By now, 
you have probably fi gured out why my favorite features in SQL Server are the ROW_NUMBER 
function and CTEs. 

Merging Data

 SQL Server 2008 introduces support for the MERGE statement. This statement allows you 
to identify a source and a target table and modify the target with data from the source, 
 applying different modifi cation actions (INSERT, UPDATE, DELETE) based on conditional logic. 
SQL Server implements the standard MERGE statement with a couple of extensions that are 
not part of the standard.  

 The MERGE statement has many uses both in OLTP and in data warehouse environments. 
For example, in an OLTP environment you can use it to merge data you get from an external 
source into an existing target table. In a data warehouse environment you can use it to apply 
incremental updates to aggregated data, process slowly changing dimensions, and so on.  

In the following sections I’ll cover the details of the MERGE statement and how to use it. 
In the examples I provide, I’ll use two tables, Customers and CustomersStage, that you will 
 create in tempdb and populate with initial sample data by running the code in Listing 10-3. 

LISTING 10-3 Script creating and populating the Customers and CustomersStage tables

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.Customers', 'U') IS NOT NULL

  DROP TABLE dbo.Customers;

GO

CREATE TABLE dbo.Customers

(

  custid       INT         NOT NULL,

  companyname  VARCHAR(25) NOT NULL,

  phone        VARCHAR(20) NOT NULL,

  address      VARCHAR(50) NOT NULL,

  inactive     BIT         NOT NULL DEFAULT (0),

  CONSTRAINT PK_Customers PRIMARY KEY(custid)

);

INSERT INTO dbo.Customers(custid, companyname, phone, address)

  VALUES

  (1, 'cust 1', '(111) 111-1111', 'address 1'),

  (2, 'cust 2', '(222) 222-2222', 'address 2'),

  (3, 'cust 3', '(333) 333-3333', 'address 3'),

  (4, 'cust 4', '(444) 444-4444', 'address 4'),

  (5, 'cust 5', '(555) 555-5555', 'address 5');

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.Customers', 'U') IS NOT NULL

  DROP TABLE dbo.Customers;

GO

CREATE TABLE dbo.Customers

(

  custid       INT         NOT NULL,

  companyname  VARCHAR(25) NOT NULL,

  phone        VARCHAR(20) NOT NULL,

  address      VARCHAR(50) NOT NULL,

  inactive     BIT         NOT NULL DEFAULT (0),

  CONSTRAINT PK_Customers PRIMARY KEY(custid)

);

INSERT INTO dbo.Customers(custid, companyname, phone, address)

  VALUES

  (1, 'cust 1', '(111) 111-1111', 'address 1'),

  (2, 'cust 2', '(222) 222-2222', 'address 2'),

  (3, 'cust 3', '(333) 333-3333', 'address 3'),

  (4, 'cust 4', '(444) 444-4444', 'address 4'),

  (5, 'cust 5', '(555) 555-5555', 'address 5');
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IF OBJECT_ID('dbo.CustomersStage', 'U') IS NOT NULL

  DROP TABLE dbo.CustomersStage;

GO

CREATE TABLE dbo.CustomersStage

(

  custid      INT         NOT NULL,

  companyname VARCHAR(25) NOT NULL,

  phone       VARCHAR(20) NOT NULL,

  address     VARCHAR(50) NOT NULL,

  CONSTRAINT PK_CustomersStage PRIMARY KEY(custid)

);

INSERT INTO dbo.CustomersStage(custid, companyname, phone, address)

  VALUES

  (2, 'AAAAA', '(222) 222-2222', 'address 2'),

  (3, 'cust 3', '(333) 333-3333', 'address 3'),

  (5, 'BBBBB', 'CCCCC', 'DDDDD'),

  (6, 'cust 6 (new)', '(666) 666-6666', 'address 6'),

  (7, 'cust 7 (new)', '(777) 777-7777', 'address 7');

GO

SELECT * FROM dbo.Customers;

SELECT * FROM dbo.CustomersStage;

The queries against the Customers and CustomersStage tables generate the following output: 

custid  companyname  phone           address    inactive

------- ------------ --------------- ---------- ------------

1       cust 1       (111) 111-1111  address 1  0

2       cust 2       (222) 222-2222  address 2  0

3       cust 3       (333) 333-3333  address 3  0

4       cust 4       (444) 444-4444  address 4  0

5       cust 5       (555) 555-5555  address 5  0

custid  companyname  phone           address

------- ------------ --------------- ----------

2       AAAAA        (222) 222-2222  address 2

3       cust 3       (333) 333-3333  address 3

5       BBBBB        CCCCC           DDDDD

6       cust 6 (new) (666) 666-6666  address 6

7       cust 7 (new) (777) 777-7777  address 7

MERGE Fundamentals

The MERGE statement is expressed using join semantics. Two tables are involved, but in 
a MERGE statement one table is identifi ed as the target and one as the source. A MERGE 
 predicate determines what it means for a source row to match a target row. You can specify 
which action to take when a source row matches a target row and which action to take when 
a source row doesn’t match a target row. The T-SQL MERGE statement even allows you to 
 specify which action to take when a target row matches no source row—but I’m getting ahead 

IF OBJECT_ID('dbo.CustomersStage', 'U') IS NOT NULL

  DROP TABLE dbo.CustomersStage;

GO

CREATE TABLE dbo.CustomersStage

(

  custid      INT         NOT NULL,

  companyname VARCHAR(25) NOT NULL,

  phone       VARCHAR(20) NOT NULL,

  address     VARCHAR(50) NOT NULL,

  CONSTRAINT PK_CustomersStage PRIMARY KEY(custid)

);

INSERT INTO dbo.CustomersStage(custid, companyname, phone, address)

  VALUES

  (2, 'AAAAA', '(222) 222-2222', 'address 2'),

  (3, 'cust 3', '(333) 333-3333', 'address 3'),

  (5, 'BBBBB', 'CCCCC', 'DDDDD'),

  (6, 'cust 6 (new)', '(666) 666-6666', 'address 6'),

  (7, 'cust 7 (new)', '(777) 777-7777', 'address 7');

GO

SELECT * FROM dbo.Customers;

SELECT * FROM dbo.CustomersStage;
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of myself. I’ll start with the basic form of a MERGE statement, and in subsequent sections I’ll 
cover the more advanced options. A basic MERGE statement has the following general form: 

MERGE [INTO] <target>

USING <source>

  ON <predicate>

WHEN MATCHED THEN <action>

WHEN NOT MATCHED [BY TARGET] THEN <action>;

 In the MERGE INTO clause you identify the target for the operation. The target can be a 
table or a view. In the USING clause you identify the source for the operation. Think of the 
USING clause in similar terms to a FROM clause in a SELECT query. You can specify a table, 
a table expression (view, derived table, CTE), or a table function (for example, OPENROWSET, 
OPENXML). You can use table operators such as JOIN, APPLY, PIVOT, and UNPIVOT to specify 
the source in the USING clause. 

 In the ON clause you specify the merge predicate that defi nes matches and nonmatches. 
In the WHEN MATCHED THEN clause you specify an action to take place when the MERGE 
predicate is TRUE, that is, when a source row is matched by a target row. The actions that 
are supported by this clause are UPDATE and DELETE. In the WHEN NOT MATCHED [BY 
TARGET] THEN clause you specify an action to take place when the MERGE predicate is FALSE 
or UNKNOWN, that is, when a source row isn’t matched by a target row. The only action 
 supported by this clause is INSERT. 

 If this is the fi rst time that you’ve seen the MERGE statement, the technical details 
are  probably confusing. An example should make things clearer. The following code 
 demonstrates how to merge the contents of the CustomersStage table into the Customers 
table, updating existing customers and adding new ones: 

SET NOCOUNT OFF;

BEGIN TRAN

MERGE INTO dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

  ON TGT.custid = SRC.custid

WHEN MATCHED THEN

  UPDATE SET

    TGT.companyname = SRC.companyname,

    TGT.phone = SRC.phone,

    TGT.address = SRC.address

WHEN NOT MATCHED THEN 

  INSERT (custid, companyname, phone, address)

  VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address);

SELECT * FROM dbo.Customers;

ROLLBACK TRAN

 I run the code within a transaction and then roll the transaction back for test purposes so 
that after each example the Customers table is returned to its original form. I also run the 
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examples with the NOCOUNT option set to OFF so that you get a message indicating how 
many rows were affected. 

 This MERGE statement identifi es the Customers table as the target and the CustomersStage 
table as the source. The MERGE predicate indicates that a source row is matched by a target 
row if the source custid and the target custid values are equal. 

 When a source row is matched by a target row, the nonkey attributes of the target row are 
overwritten with those from the source row using an UPDATE action. Notice that the syntax 
of the UPDATE action is very similar to that of a regular UPDATE statement except that you 
don’t need to indicate the name of the target table because you already identifi ed it earlier 
in the merge statement’s INTO clause. 

 When a source row isn’t matched by a target row, a new row is inserted into the target based 
on the attributes of the source row using an INSERT action. Again, the syntax of the INSERT 
 action is very similar to that of a regular INSERT statement except that you don’t need to 
 indicate the name of the target table because you already identifi ed it earlier in the INTO clause. 

 When the preceding MERGE statement completes, you get a message indicating that fi ve rows 
were affected, and the query against the Customers table generates the following output: 

custid  companyname   phone           address    inactive

------- ------------- --------------- ---------- ------------

1       cust 1        (111) 111-1111  address 1  0

2       AAAAA         (222) 222-2222  address 2  0

3       cust 3        (333) 333-3333  address 3  0

4       cust 4        (444) 444-4444  address 4  0

5       BBBBB         CCCCC           DDDDD      0

6       cust 6 (new)  (666) 666-6666  address 6  0

7       cust 7 (new)  (777) 777-7777  address 7  0

 The fi ve affected rows include three rows that were updated (customers 2, 3, and 5) and two 
that were inserted (customers 6 and 7). 

 The MERGE statement is similar to a join not only semantically but also in terms of its physical 
processing. When both the WHEN MATCHED and the WHEN NOT MATCHED clauses appear 
in the statement, it is processed as a one-sided outer join. For example, Figure 10-1 shows the 
plan for the preceding MERGE statement, showing that it was processed as a left outer join. 

FIGURE 10-1 MERGE processed with left outer join
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 The MERGE statement doesn’t require you to specify both the WHEN MATCHED and the 
WHEN NOT MATCHED clauses; instead, it supports having only one clause. For example, 
the following code demonstrates using only the WHEN MATCHED clause to update existing 
 customers without adding new ones: 

BEGIN TRAN

MERGE INTO dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

  ON TGT.custid = SRC.custid

WHEN MATCHED THEN

  UPDATE SET

    TGT.companyname = SRC.companyname,

    TGT.phone = SRC.phone,

    TGT.address = SRC.address;

ROLLBACK TRAN

Figure 10-2 shows the execution plan SQL Server generated for this statement.  

FIGURE 10-2 MERGE processed with inner join

 As you can see, the statement was processed using an inner join. Later I will show you cases 
where a MERGE statement is processed as a full outer join. 

 Returning to the original task—updating existing customers and adding new ones—the 
 alternative prior to SQL Server 2008 was to issue separate UPDATE and INSERT statements, 
like so: 

BEGIN TRAN

UPDATE TGT

  SET TGT.companyname = SRC.companyname,

      TGT.phone = SRC.phone,

      TGT.address = SRC.address

FROM dbo.Customers AS TGT

  JOIN dbo.CustomersStage AS SRC

    ON TGT.custid = SRC.custid;
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INSERT INTO dbo.Customers (custid, companyname, phone, address)

  SELECT custid, companyname, phone, address

  FROM dbo.CustomersStage AS SRC

  WHERE NOT EXISTS

    (SELECT * FROM dbo.Customers AS TGT

     WHERE TGT.custid = SRC.custid);

ROLLBACK TRAN

 The advantages of using the MERGE statement are that you don’t need to access the data 
twice, plus the MERGE statement is processed as an atomic operation without the need 
for explicit transactions. Unfortunately though, my tests show that the MERGE statement is 
 processed with full logging. Recall that in SQL Server 2008 the INSERT SELECT statement can 
be processed with minimal logging in certain cases. 

 Earlier in the chapter I covered nondeterministic UPDATE statements. A MERGE statement 
is safer in the sense that if a target row is modifi ed more than once, the statement fails at 
run time. This usually happens when the target table is the “one” side in a one-to-many 
relationship. 

Adding a Predicate

 The various WHEN clauses of the MERGE statement support specifying the AND operator 
followed by an additional predicate. In the case of the WHEN MATCHED clause, you can 
specify WHEN MATCHED AND <predicate> THEN <action>. Only when both the original ON 
predicate and the additional predicate following the AND operator are TRUE does the action 
following the THEN clause take place. 

 Here’s an example of where this capability might be handy. Consider again the task to update 
existing customers and add new ones. You want to update a target customer row only if at 
least one of the nonkey attributes in the source row is different. If the source and target rows 
are identical, you don’t want to apply the update. Avoiding an update in such a case would 
improve performance and also prevent triggers from including the rows in the inserted and 
deleted tables. 

 Following is the revised MERGE statement including the additional predicate that ensures 
that at least one nonkey attribute is different to apply the UPDATE action: 

BEGIN TRAN

MERGE dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

  ON TGT.custid = SRC.custid

WHEN MATCHED AND 

       (   TGT.companyname <> SRC.companyname

        OR TGT.phone       <> SRC.phone

        OR TGT.address     <> SRC.address) THEN

  UPDATE SET

    TGT.companyname = SRC.companyname,
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    TGT.phone = SRC.phone,

    TGT.address = SRC.address

WHEN NOT MATCHED THEN 

  INSERT (custid, companyname, phone, address)

  VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address);

SELECT * FROM dbo.Customers;

ROLLBACK TRAN

 This time, the Messages pane should indicate that four rows were affected and not fi ve. The 
row for customer 3 was not updated because the source and the target rows were identical. 

 The query against the Customers table generates the following output showing the new data 
for the updated customers 2 and 5 and the new customers 6 and 7: 

custid  companyname   phone           address    inactive

------- ------------- --------------- ---------- ------------

1       cust 1        (111) 111-1111  address 1  0

2       AAAAA         (222) 222-2222  address 2  0

3       cust 3        (333) 333-3333  address 3  0

4       cust 4        (444) 444-4444  address 4  0

5       BBBBB         CCCCC           DDDDD      0

6       cust 6 (new)  (666) 666-6666  address 6  0

7       cust 7 (new)  (777) 777-7777  address 7  0

 Note that I used the <> operator to check whether the source and target values are  different. 
Remember that according to the three-valued logic in SQL, an expression can return TRUE, 
FALSE, and UNKNOWN. I didn’t worry about the UNKNOWN case because you get it only 
when one of the values is NULL, and I defi ned all columns in both cases as NOT NULL. 
However, if the attributes do allow NULLs, you need to enhance the expressions to check for 
cases where one is NULL and the other isn’t. Your code would look like this: 

BEGIN TRAN

MERGE dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

  ON TGT.custid = SRC.custid

WHEN MATCHED AND 

   (   (    TGT.companyname <> SRC.companyname

         OR (TGT.companyname IS NOT NULL AND SRC.companyname IS NULL)

         OR (TGT.companyname IS NULL AND SRC.companyname IS NOT NULL) )

    OR (    TGT.phone <> SRC.phone

         OR (TGT.phone IS NOT NULL AND SRC.phone IS NULL)

         OR (TGT.phone IS NULL AND SRC.phone IS NOT NULL) )

    OR (    TGT.address <> SRC.address

         OR (TGT.address IS NOT NULL AND SRC.address IS NULL)

         OR (TGT.address IS NULL AND SRC.address IS NOT NULL) ) )

  THEN UPDATE SET

    TGT.companyname = SRC.companyname,

    TGT.phone = SRC.phone,

    TGT.address = SRC.address

C10626034.indd   622 2/20/2009   5:47:36 PM



 Chapter 10 Data Modifi cation 623

WHEN NOT MATCHED THEN 

  INSERT (custid, companyname, phone, address)

  VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address);

SELECT * FROM dbo.Customers;

ROLLBACK TRAN

 In a similar manner you can specify an additional predicate in the WHEN NOT MATCHED 
clause. The complete clause would be WHEN NOT MATCHED [BY TARGET] AND <predicate>. 

 It is interesting to note that ANSI SQL supports operators that apply two-valued logic when 
comparing values, treating two NULLs as equal to each other and a NULL and non-NULL values 
as different from one another. Those operators are IS NOT DISTINCT FROM (a  two-valued-logic 
alternative to equality) and IS DISTINCT FROM (a two-valued-logic alternative to  inequality). 
These operators would simplify the WHEN MATCHED clause of the preceding code, but they 
have not yet been implemented in SQL Server. Steve Kass posted a feature enhancement 
 request to add such support in SQL Server at the following URL: http://connect.microsoft.com/
SQLServer/feedback/ViewFeedback.aspx?FeedbackID=286422. 

Multiple WHEN Clauses

 The MERGE statement supports up to two WHEN MATCHED clauses. When you use two 
WHEN MATCHED clauses, the fi rst must include an additional predicate, while the second can 
be specifi ed either with or without an additional predicate. When two clauses are specifi ed, 
the MERGE statement applies the action in the fi rst only when both the ON predicate is TRUE 
and the additional predicate in the fi rst clause is TRUE. If the ON predicate is TRUE but the 
additional predicate in the fi rst clause is FALSE or UNKNOWN, the second clause is evaluated. 

 As an example where multiple WHEN MATCHED clauses could be useful, consider the  following 
requirement. When the custid value in the source exists in the target, you need to update the 
target row only if at least one of the nonkey attributes changed. But if the source and target 
rows are identical, that’s actually a signal that you need to delete the target row. When the 
source custid value doesn’t appear in the target, as before you need to insert the row. You can 
implement the update or delete part by using two WHEN MATCHED clauses, like so: 

BEGIN TRAN

MERGE dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

  ON TGT.custid = SRC.custid

WHEN MATCHED AND 

       (   TGT.companyname <> SRC.companyname

        OR TGT.phone       <> SRC.phone

        OR TGT.address     <> SRC.address) THEN

  UPDATE SET

    TGT.companyname = SRC.companyname,

    TGT.phone = SRC.phone,

    TGT.address = SRC.address

C10626034.indd   623 2/20/2009   5:47:36 PM



624 Inside Microsoft SQL Server 2008: T-SQL Querying

WHEN MATCHED THEN

  DELETE

WHEN NOT MATCHED THEN 

  INSERT (custid, companyname, phone, address)

  VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address);

  

SELECT * FROM dbo.Customers;

ROLLBACK TRAN

 The Messages pane should indicate fi ve affected rows (two updated, one deleted, and 
two inserted). The query against the Customers table generates the following output: 

custid  companyname   phone           address    inactive

------- ------------- --------------- ---------- ------------

1       cust 1        (111) 111-1111  address 1  0

2       AAAAA         (222) 222-2222  address 2  0

4       cust 4        (444) 444-4444  address 4  0

5       BBBBB         CCCCC           DDDDD      0

6       cust 6 (new)  (666) 666-6666  address 6  0

7       cust 7 (new)  (777) 777-7777  address 7  0

 Customers 2 and 5 were updated, customer 3 was deleted, and customers 6 and 7 were added. 

 Unlike the WHEN MATCHED clause, the MERGE statement supports only one WHEN NOT 
MATCHED [BY TARGET] clause. 

WHEN NOT MATCHED BY SOURCE

 The WHEN MATCHED clause allows you to specify an action to take when a source row is 
matched by a target row, and the WHEN NOT MATCHED [BY TARGET] clause allows you to  specify 
an action to take when a source row is not matched by a target row. The MERGE  statement in 
T-SQL supports a third clause called WHEN NOT MATCHED BY SOURCE, which allows you to 
 indicate an action to take against a target row that is not matched by any source row.  

 As an example of using this third clause, let’s say that when a target row in our Customers 
table isn’t matched by a source row in our CustomersStage table, you need to set the inactive 
attribute of the target row to 1. Here’s the previous MERGE statement with this added logic: 

BEGIN TRAN

MERGE dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

  ON TGT.custid = SRC.custid

WHEN MATCHED AND 

       (   TGT.companyname <> SRC.companyname

        OR TGT.phone       <> SRC.phone

        OR TGT.address     <> SRC.address) THEN

  UPDATE SET

    TGT.companyname = SRC.companyname,

    TGT.phone = SRC.phone,

    TGT.address = SRC.address
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WHEN MATCHED THEN

  DELETE

WHEN NOT MATCHED THEN 

  INSERT (custid, companyname, phone, address)

  VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address)

WHEN NOT MATCHED BY SOURCE THEN

  UPDATE SET

    inactive = 1;

  

SELECT * FROM dbo.Customers;

ROLLBACK TRAN

 The code updates existing customers that changed, deletes existing customers that did 
not change, adds missing customers, and discontinues target customers that are missing in 
the source. In total, seven rows were modifi ed this time. Customers 2 and 5 were updated, 
 customer 3 was deleted, customers 6 and 7 were added, and customers 1 and 4 became 
 inactive. The query against the Customers table generates the following output: 

custid  companyname   phone           address    inactive

------- ------------- --------------- ---------- ------------

1       cust 1        (111) 111-1111  address 1  1

2       AAAAA         (222) 222-2222  address 2  0

4       cust 4        (444) 444-4444  address 4  1

5       BBBBB         CCCCC           DDDDD      0

6       cust 6 (new)  (666) 666-6666  address 6  0

7       cust 7 (new)  (777) 777-7777  address 7  0

 Because all three clauses are involved this time, SQL Server processes this MERGE statement 
using a full outer join, as you can see in Figure 10-3. 

FIGURE 10-3 MERGE processed with full outer join

 Similarly to the WHEN MATCHED clause, the WHEN NOT MATCHED BY SOURCE clause 
 supports the DELETE and UPDATE actions. Another similarity is that you can specify up to 
two WHEN NOT MATCHED BY SOURCE clauses, following rules similar to those for using two 
WHEN MATCHED clauses. 
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MERGE Values

 A common task involving merging data is the need to write a stored procedure that updates 
or adds a new row (such as a customer). That is, the procedure accepts the attributes of a 
customer and updates the target row if the customer already exists and inserts a row if the 
customer doesn’t exist. Of course, you may need to apply additional logic such as updating 
the target customer if it already exists and at least one of the nonkey attributes changed. 

 Prior to SQL Server 2008 you could handle the task in different ways, but all of them were quite 
tricky to implement. One way is to use IF EXISTS to determine whether to apply an UPDATE or 
an INSERT. Another way is apply an UPDATE fi rst and, if the value of the @@rowcount  function 
equals 0, issue an INSERT. Either way, there is an opportunity for another transaction to 
 introduce a new row in between the activities (the IF EXISTS and the INSERT or the check of the 
@@rowcount value and the INSERT). To address the problem you may  consider  performing all 
activities in one transaction using the serializable isolation level, but this approach can turn out 
to be very ineffi cient because it is likely to result in many  deadlocks. Other approaches  exist, 
but the point remains that addressing this task is not trivial. 

 In SQL Server 2008 you can simply use the MERGE statement to implement this task. Recall 
that the MERGE statement supports specifying a derived table as input. You can defi ne a 
 derived table based on a row value constructor (the enhanced VALUES clause described 
 earlier in the chapter), where the row is made of the procedure’s input parameters. Run the 
following code to implement such a stored procedure called AddCust: 

IF OBJECT_ID('dbo.AddCust', 'P') IS NOT NULL DROP PROC dbo.AddCust;

GO

CREATE PROC dbo.AddCust

  @custid       INT,

  @companyname  VARCHAR(25),

  @phone        VARCHAR(20),

  @address      VARCHAR(50)

AS

MERGE dbo.Customers AS TGT

USING (VALUES(@custid, @companyname, @phone, @address))

       AS SRC(custid, companyname, phone, address)

  ON TGT.custid = SRC.custid

WHEN MATCHED AND 

       (   TGT.companyname <> SRC.companyname

        OR TGT.phone       <> SRC.phone

        OR TGT.address     <> SRC.address) THEN

  UPDATE SET

    TGT.companyname = SRC.companyname,

    TGT.phone = SRC.phone,

    TGT.address = SRC.address

WHEN NOT MATCHED THEN 

  INSERT (custid, companyname, phone, address)

  VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address);

GO
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 Run the following code to test the procedure: 

BEGIN TRAN

EXEC dbo.AddCust

  @custid       = 8,

  @companyname  = 'cust 8 (new)',

  @phone        = '(888) 888-8888',

  @address      = 'address 8';

SELECT * FROM dbo.Customers;

ROLLBACK TRAN

 The query against the Customers table generates the following output showing the new 
 customer 8: 

custid  companyname   phone           address    inactive

------- ------------- --------------- ---------- ------------

1       cust 1        (111) 111-1111  address 1  0

2       cust 2        (222) 222-2222  address 2  0

3       cust 3        (333) 333-3333  address 3  0

4       cust 4        (444) 444-4444  address 4  0

5       cust 5        (555) 555-5555  address 5  0

8       cust 8 (new)  (888) 888-8888  address 8  0

MERGE and Triggers

 SQL Server doesn’t support MERGE triggers. However, if INSERT, UPDATE, and DELETE 
 triggers are defi ned on the target table, the MERGE statement causes those to fi re if the 
 corresponding actions take place. You get only one occurrence of each trigger to fi re even 
if the MERGE statement ends up invoking more than one occurrence of the same action. As 
usual, you can access all rows modifi ed by the triggering actions via the inserted and deleted 
tables within the trigger. 

 To demonstrate trigger behavior for a MERGE statement, create INSERT, UPDATE, and DELETE 
triggers on the Customers table by running the following code: 

CREATE TRIGGER trg_Customers_INSERT ON dbo.Customers AFTER INSERT

AS

PRINT 'INSERT detected.';

GO

CREATE TRIGGER trg_Customers_UPDATE ON dbo.Customers AFTER UPDATE

AS

PRINT 'UPDATE detected.';

GO

CREATE TRIGGER trg_Customers_DELETE ON dbo.Customers AFTER DELETE

AS

PRINT 'DELETE detected.';

GO
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 The trigger simply prints the action that was detected. Run the following MERGE statement 
that involves all actions and even an action that appears twice in the statement: 

BEGIN TRAN

MERGE dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

  ON TGT.custid = SRC.custid

WHEN MATCHED AND 

       (   TGT.companyname <> SRC.companyname

        OR TGT.phone       <> SRC.phone

        OR TGT.address     <> SRC.address) THEN

  UPDATE SET

    TGT.companyname = SRC.companyname,

    TGT.phone = SRC.phone,

    TGT.address = SRC.address

WHEN MATCHED THEN

  DELETE

WHEN NOT MATCHED THEN 

  INSERT (custid, companyname, phone, address)

  VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address)

WHEN NOT MATCHED BY SOURCE THEN

  UPDATE SET

    inactive = 1;

ROLLBACK TRAN

 This code generates the following output: 

INSERT detected.

UPDATE detected.

DELETE detected.

(7 row(s) affected)

 Notice that even though the UPDATE action was activated by two different clauses, only one 
occurrence of the UPDATE trigger was invoked for all updated rows. This is in accord with the 
fact that in SQL Server a trigger fi res for each statement. 

OUTPUT Clause

 SQL Server supports returning output from a data modifi cation statement via the OUTPUT 
clause. The OUTPUT clause is supported for INSERT, DELETE, UPDATE, and MERGE 
 statements. In the OUTPUT clause, you can refer to the special tables inserted and deleted. 
These special tables contain the rows affected by the data modifi cation statement—in their 
new (after-modifi cation) and old (before-modifi cation) versions, respectively. You use the 
inserted and deleted tables here much like you do in triggers. With INSERTs, you refer to 
the inserted table to identify attributes from the new rows. With DELETEs, you refer to the 
 deleted table to identify attributes from the old rows. With UPDATEs, you refer to the deleted 
table to identify the attributes from the updated rows before the change, and you refer to 
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the inserted table to identify the attributes from the updated rows after the change. With the 
MERGE statement you refer to the relevant tables depending on the actions that you invoke. 
The output can be directed to the caller (client application), a table, or even both.  

 The feature is probably best explained through examples. In the following sections I’ll give 
examples for each kind of modifi cation statement. Then I’ll cover a new feature in SQL 
Server 2008 called composable DML that is related to the OUTPUT clause.  

INSERT with OUTPUT

 An example of an INSERT statement in which the OUTPUT clause can be very handy is when 
you issue a multirow INSERT into a table with an identity column and want to capture the 
new identity values. With single-row INSERTs, this isn’t a problem: The SCOPE_IDENTITY 
 function provides the last identity value generated by your session in the current scope. 
But for a multirow INSERT statement, how do you fi nd the new identity values? You use the 
OUTPUT clause to return the new identity values or insert them into a table. 

 To demonstrate this technique, fi rst run the following code, which creates the CustomersDim 
table: 

USE tempdb;

IF OBJECT_ID('dbo.CustomersDim') IS NOT NULL DROP TABLE dbo.CustomersDim;

CREATE TABLE dbo.CustomersDim

(

  keycol  INT NOT NULL IDENTITY PRIMARY KEY,

  custid  INT NOT NULL,

  companyname NVARCHAR(40) NOT NULL,

  /* ... other columns ... */

);

 Imagine that this table represents a customer dimension in your data warehouse. You now 
need to insert into the CustomersDim table the UK customers from the Sales.Customers table 
in the InsideTSQL2008 database. Notice that the target has an identity column called keycol 
that contains surrogate keys for customers. I won’t get into the reasoning behind the common 
use of surrogate keys in dimension tables in data warehouses (as opposed to relying on natural 
keys only); that’s not the focus of my discussion here. I just want to demonstrate a technique 
that uses the OUTPUT clause. Suppose that after each insert you need to do some processing 
of the newly added customers and identify which surrogate key was assigned to each customer.  

 The following code declares a table variable (@NewCusts), issues an INSERT statement 
 inserting UK customers into CustomersDim and directing the new custid and keycol values 
into @NewCusts, and queries the table variable: 

DECLARE @NewCusts TABLE

(

  custid INT NOT NULL PRIMARY KEY,

  keycol INT NOT NULL UNIQUE

);
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INSERT INTO dbo.CustomersDim(custid, companyname)

    OUTPUT inserted.custid, inserted.keycol

    INTO @NewCusts

    -- OUTPUT inserted.custid, inserted.keycol

  SELECT custid, companyname

  FROM InsideTSQL2008.Sales.Customers

  WHERE country = N'UK';

SELECT custid, keycol FROM @NewCusts;

 This code generates the following output, where you can see the new identity values in the 
column keycol: 

custid      keycol

----------- -----------

4           1

11          2

16          3

19          4

38          5

53          6

72          7

 Notice the commented second OUTPUT clause in the code, which isn’t followed by an INTO 
clause. Uncomment it if you also want to send the output to the caller; you will have two 
OUTPUT clauses in the INSERT statement. 

DELETE with OUTPUT

 In Chapter 9, I described a technique to delete large volumes of data from an existing table 
in batches to avoid log explosion and lock escalation problems. Here I will show how you 
can use the new OUTPUT clause to archive the data that you purge. To demonstrate the 
 technique, fi rst run the following code, which creates the LargeOrders table and populates 
it with more than two million orders placed in years 2004 through 2008: 

USE tempdb;

IF OBJECT_ID('dbo.LargeOrders') IS NOT NULL DROP TABLE dbo.LargeOrders;

CREATE TABLE dbo.LargeOrders

(

  orderid   INT       NOT NULL

    CONSTRAINT PK_LargeOrders PRIMARY KEY NONCLUSTERED,

  custid    INT       NOT NULL,

  empid     INT       NOT NULL,

  orderdate DATE      NOT NULL,

  filler    CHAR(200) NOT NULL DEFAULT ('a')

)

GO

CREATE UNIQUE CLUSTERED INDEX idx_od_oid

  ON dbo.LargeOrders(orderdate, orderid);

GO
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INSERT INTO dbo.LargeOrders WITH (TABLOCK)(orderid, custid, empid, orderdate)

  SELECT ROW_NUMBER() OVER(ORDER BY (SELECT 0)),

    custid, empid, DATEADD(day, n-1, '20040101')

  FROM InsideTSQL2008.Sales.Customers AS C

    CROSS JOIN InsideTSQL2008.HR.Employees AS E

    CROSS JOIN dbo.Nums

  WHERE n <= DATEDIFF(day, '20000401', '20081231') + 1;

 Warning It should take the code a few minutes to run, and it will require about a gigabyte 
of space in your tempdb database. Also, the code refers to the Nums auxiliary table, which 
I  covered in Chapter 6. 

 Remember, you use the following technique to delete all rows with an orderdate older than 
2006 in batches of 5,000 rows (but don’t run it yet): 

WHILE 1 = 1

BEGIN

  DELETE TOP (5000) FROM dbo.LargeOrders WHERE orderdate < '20060101';

  IF @@rowcount < 5000 BREAK;

END

 Suppose you wanted to enhance the solution that purges historic data in batches by also 
archiving the data that you purge. Run the following code to create the OrdersArchive table, 
where you will store the archived orders: 

IF OBJECT_ID('dbo.Archive') IS NOT NULL DROP TABLE dbo.Archive;

CREATE TABLE dbo.Archive

(

  orderid    INT       NOT NULL PRIMARY KEY NONCLUSTERED,

  custid     INT       NOT NULL,

  empid      INT       NOT NULL,

  orderdate  DATE      NOT NULL,

  filler     CHAR(200) NOT NULL

);

GO

CREATE UNIQUE CLUSTERED INDEX idx_od_oid

  ON dbo.Archive(orderdate, orderid);

 Using the OUTPUT clause, you can direct the deleted rows from each batch into the 
OrdersArchive table. Here is the enhanced solution, which purges orders with an orderdate 
before 2006 in batches and also archives them: 

WHILE 1 = 1

BEGIN

  DELETE TOP(5000) FROM dbo.LargeOrders

    OUTPUT deleted.orderid, deleted.custid, deleted.empid, 

           deleted.orderdate, deleted.filler

      INTO dbo.Archive(orderid, custid, empid, orderdate, filler)

  WHERE orderdate < '20060101';

  IF @@rowcount < 5000 BREAK;

END
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 Note It should take this code a few minutes to run. 

 The OrdersArchive table now holds archived orders placed before 2006. 

 Note When using the OUTPUT clause to direct the output to a table, the table cannot have 
enabled triggers or CHECK constraints, nor can it participate on either side of a foreign key 
 constraint. If the target table doesn’t meet these requirements, you can direct the output to a 
staging table and then copy the rows from there to the target table. 

 Using the OUTPUT clause has important benefi ts when you want to archive data that you 
 delete. Without the OUTPUT clause, you need to fi rst query the data to archive it and then 
delete it. This technique is slower and more complex. To guarantee that new rows matching 
the fi lter (also known as phantoms) are not added between the SELECT and the DELETE, you 
must lock the data you archive using a serializable isolation level. With the OUTPUT clause, 
you not only get better performance, but you don’t need to worry about phantoms because 
you are guaranteed to get exactly what you deleted back from the OUTPUT clause. 

UPDATE with OUTPUT

 As with the INSERT and DELETE statements, UPDATE statements also support an OUTPUT 
clause, allowing you to return output when you update data. Remember that with an 
UPDATE statement there are both new and old versions of rows, so you can refer to both the 
deleted and the inserted tables. UPDATEs with the OUTPUT clause have many interesting 
 applications. I will give an example of managing a simple message or event queue without 
using Service Broker. 

 To demonstrate managing a queue, run the following code, which creates the Messages 
table:  

USE tempdb;

IF OBJECT_ID('dbo.Messages') IS NOT NULL DROP TABLE dbo.Messages;

CREATE TABLE dbo.Messages

(

  msgid  INT          NOT NULL IDENTITY ,

  msgts  DATETIME     NOT NULL DEFAULT(CURRENT_TIMESTAMP),

  msg    VARCHAR(MAX) NOT NULL,

  status VARCHAR(20)  NOT NULL DEFAULT('new'),

  CONSTRAINT PK_Messages 

    PRIMARY KEY NONCLUSTERED(msgid),

  CONSTRAINT UNQ_Messages_status_msgid 

    UNIQUE CLUSTERED(status, msgid),

  CONSTRAINT CHK_Messages_status

    CHECK (status IN('new', 'open', 'done'))

);

C10626034.indd   632 2/20/2009   5:47:37 PM



 Chapter 10 Data Modifi cation 633

 For each message, you store a message ID, an entry date, message text, and a status code 
indicating whether the message has yet to be processed (‘new’), is being processed (‘open’), or 
has already been processed (‘done’). 

 The following code simulates a session that generates messages by using a loop that inserts 
a message with random text every second for fi ve minutes. The status of newly inserted 
 messages is ‘new’ because the status column was assigned with the default value ‘new’. Run 
this code from multiple sessions at the same time:  

SET NOCOUNT ON;

USE tempdb;

GO

DECLARE @msg AS VARCHAR(MAX);

DECLARE @now AS DATETIME = CURRENT_TIMESTAMP;

WHILE 1=1 AND DATEDIFF(second,@now,CURRENT_TIMESTAMP) < 300

BEGIN

  SET @msg = 'msg' + RIGHT('000000000'

    + CAST(1 + ABS(CHECKSUM(NEWID())) AS VARCHAR(10)), 10);

  INSERT INTO dbo.Messages(msg) VALUES(@msg);

  WAITFOR DELAY '00:00:01';

END

 Of course, you can play with the delay period as you wish. 

 The following code simulates a session that processes messages repeatedly using these steps:  

  1. Lock @n available new messages using an UPDATE TOP (@n) statement with the 
READPAST hint to skip locked rows and change their status to ‘open’. The integer @n is 
a confi gurable input that determines the maximum number of messages to process in 
each iteration. 

  2. Store the attributes of the messages in the @Msgs table variable using the OUTPUT 
clause.  

  3. Process the messages.  

  4. Set the status of the messages to ‘done’ by joining the Messages table and the @Msgs 
table variable.  

  5. If no new message was found in the Messages table, wait for one second. 

SET NOCOUNT ON;

USE tempdb;

GO

DECLARE @Msgs TABLE(msgid INT, msgts DATETIME, msg VARCHAR(MAX));

DECLARE @n AS INT;

SET @n = 3;

WHILE 1 = 1

BEGIN

  UPDATE TOP(@n) dbo.Messages WITH(READPAST) SET status = 'open'
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    OUTPUT inserted.msgid, inserted.msgts, inserted.msg INTO @Msgs

    OUTPUT inserted.msgid, inserted.msgts, inserted.msg

  WHERE status = 'new';

  IF @@rowcount > 0

  BEGIN

    PRINT 'Processing messages...';

    /* ...process messages here... */

    

    WITH UPD_CTE AS

    (

      SELECT M.status

      FROM dbo.Messages AS M

        JOIN @Msgs AS N

          ON M.msgid = N.msgid

    )

    UPDATE UPD_CTE

      SET status = 'done';

/*

    -- Alternatively you can delete the processed messages:

    DELETE FROM M

    FROM dbo.Messages AS M

     JOIN @Msgs AS N

       ON M.msgid = N.msgid;

*/

    DELETE FROM @Msgs;

  END

  ELSE

  BEGIN

    PRINT 'No messages to process.';

    WAITFOR DELAY '00:00:01';

  END

END

 You can run this code from multiple sessions at the same time. You can increase the 
 number of sessions that run this code based on the processing throughput that you need to 
accommodate. 

 Note that for demonstration purposes only, I included in the fi rst UPDATE statement a 
 second OUTPUT clause, which returns the messages back to the caller. 

 When you’re done, stop the executing code in the various sessions and run the following 
code for cleanup: 

IF OBJECT_ID('dbo.Messages') IS NOT NULL DROP TABLE dbo.Messages;

MERGE with OUTPUT

 The MERGE statement also supports the OUTPUT clause, but with MERGE things are a bit 
trickier than with the other modifi cation statements. One MERGE statement can involve 
 multiple modifi cation actions. You may need to be able to tell whether an output row was 
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generated by an INSERT, DELETE, or UPDATE action. For this purpose SQL Server provides 
you with the $action function, which returns a character string indicating the action that 
 generated the output row: ‘INSERT’, ‘DELETE’, or ‘UPDATE’. 

 To demonstrate using the OUTPUT clause and the $action function with the MERGE 
 statement, fi rst create and populate the Customers and CustomersStage tables by running 
the code provided earlier in Listing 10-3.  

 The following code demonstrates one of the merge scenarios discussed earlier—update 
 existing customers and add new customers—except that this MERGE statement also contains 
an OUTPUT clause showing the action and the deleted and inserted values: 

BEGIN TRAN

MERGE INTO dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

  ON TGT.custid = SRC.custid

WHEN MATCHED THEN

  UPDATE SET

    TGT.companyname = SRC.companyname,

    TGT.phone = SRC.phone,

    TGT.address = SRC.address

WHEN NOT MATCHED THEN 

  INSERT (custid, companyname, phone, address)

  VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address)

OUTPUT $action AS action, 

  inserted.custid,

  deleted.companyname AS Dcompanyname,

  deleted.phone AS Dphone,

  deleted.address AS Daddress,

  inserted.companyname AS Icompanyname,

  inserted.phone AS Iphone,

  inserted.address AS Iaddress;

ROLLBACK TRAN

 This code generates the following output, which is shown here in two parts to fi t on the page: 

action  custid  Dcompanyname  Dphone          Daddress  

------- ------- ------------- --------------- -----------

UPDATE  2       cust 2        (222) 222-2222  address 2 

UPDATE  3       cust 3        (333) 333-3333  address 3 

UPDATE  5       cust 5        (555) 555-5555  address 5 

INSERT  6       NULL          NULL            NULL      

INSERT  7       NULL          NULL            NULL      

action  custid  Icompanyname  Iphone          Iaddress

------- ------- ------------- --------------- ----------

UPDATE  2       AAAAA         (222) 222-2222  address 2

UPDATE  3       cust 3        (333) 333-3333  address 3

UPDATE  5       BBBBB         CCCCC           DDDDD

INSERT  6       cust 6 (new)  (666) 666-6666  address 6

INSERT  7       cust 7 (new)  (777) 777-7777  address 7
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 As you can see, three rows were updated, and for those you get both deleted (old) and 
 inserted (new) values. Two rows were inserted, and for those you get only inserted values; 
deleted values are NULLs. 

Composable DML

 Consider situations where you need to modify data, but you need to generate output rows 
only for a subset of the modifi ed rows. For example, you may need to audit only rows that 
meet certain criteria.  

 One way to achieve this is to output all modifi ed rows into a staging table and then copy 
the relevant subset of rows to the fi nal target table. But of course this approach can be very 
 ineffi cient, especially when the subset that you actually need to keep is a small percentage of 
the modifi ed rows. 

 SQL Server 2008 provides an answer to this need with a feature called composable DML. 
Composable DML allows you to use a data modifi cation statement (INSERT, DELETE, UPDATE, 
MERGE) as a table expression in the FROM clause of an outer INSERT SELECT statement, 
so long as the data modifi cation statement contains an OUTPUT clause. The outer INSERT 
SELECT statement can fi lter the relevant subset of rows from the output and insert them into 
a target table. The general form of this feature looks like this: 

INSERT INTO <target_table>

  SELECT ...

  FROM (<modification_with_output>) AS D

  WHERE <where_predicate>;

 As an example of using this feature, suppose that in the last shown MERGE statement, which 
updates existing customers and adds new ones, you need to audit information only for new 
customers. Run the following code to create the CustomersAudit table: 

IF OBJECT_ID('dbo.CustomersAudit', 'U') IS NOT NULL

  DROP TABLE dbo.CustomersAudit;

CREATE TABLE dbo.CustomersAudit

(

  audit_lsn  INT NOT NULL IDENTITY,

  login_name SYSNAME NOT NULL DEFAULT (SUSER_SNAME()),

  post_time  DATETIME NOT NULL DEFAULT (CURRENT_TIMESTAMP),

  custid       INT         NOT NULL,

  companyname  VARCHAR(25) NOT NULL,

  phone        VARCHAR(20) NOT NULL,

  address      VARCHAR(50) NOT NULL,

  CONSTRAINT PK_CustomersAudit PRIMARY KEY(audit_lsn)

);
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 The following code demonstrates how to handle this request: 

BEGIN TRAN

INSERT INTO dbo.CustomersAudit(custid, companyname, phone, address)

  SELECT custid, Icompanyname, Iphone, Iaddress

  FROM (MERGE INTO dbo.Customers AS TGT

        USING dbo.CustomersStage AS SRC

          ON TGT.custid = SRC.custid

        WHEN MATCHED THEN

          UPDATE SET

            TGT.companyname = SRC.companyname,

            TGT.phone = SRC.phone,

            TGT.address = SRC.address

        WHEN NOT MATCHED THEN 

          INSERT (custid, companyname, phone, address)

          VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address)

        OUTPUT $action AS action, 

          inserted.custid,

          inserted.companyname AS Icompanyname,

          inserted.phone AS Iphone,

          inserted.address AS Iaddress) AS D

  WHERE action = 'INSERT';

  

SELECT * FROM dbo.CustomersAudit;

ROLLBACK TRAN

 The MERGE statement invokes an UPDATE action to update existing customers and an 
INSERT action to add new ones. The OUTPUT clause returns the action that generated 
the output rows and inserted attributes. The outer INSERT SELECT statement fi lters only 
output rows where the action is equal to ‘INSERT’ and stores those in the audit table. The 
 subsequent SELECT statement returns the contents of the audit table, and that statement 
generates the following output, which is shown here in two parts to fi t on the page: 

audit_lsn login_name    post_time

--------- ------------- -----------------------

1         DOJO\Gandalf  2009-02-12 12:59:17.957

2         DOJO\Gandalf  2009-02-12 12:59:17.957

audit_lsn custid  companyname   phone           address

--------- ------- ------------- --------------- ----------

1         6       cust 6 (new)  (666) 666-6666  address 6

2         7       cust 7 (new)  (777) 777-7777  address 7

 For now, composable DML is implemented in a very basic form. You can use this feature only 
in an INSERT SELECT statement. You can specify a WHERE fi lter, but you cannot apply any 
further manipulations like joins or other table operators, grouping, and so on. I hope that in 
the future this feature will be enhanced. 
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 Finally, this feature has restrictions very similar to those for the OUTPUT clause. The target 
table can be a permanent table, temporary table, or table variable. The target cannot do the 
following: 

■  Be a table expression, such as a view. 

■  Have triggers. 

■  Participate in primary key–foreign key relationships. 

■  Participate in merge replication or updatable subscriptions for transactional replication. 

Conclusion

 Data modifi cations involve many challenges. You need to be familiar with SQL Server’s 
 architecture and internals if you want to design systems that can cope with large volumes of 
data and large-scale modifi cations. Many challenging logical problems are related to data 
modifi cations, such as maintaining your own custom sequence, deleting rows with duplicate 
data, and assigning unique values to existing rows. In this chapter, I covered performance 
aspects of data modifi cations as well as logical ones. I also introduced the new features in 
SQL Server 2008 including the enhanced VALUES clause, minimal logging enhancements, the 
MERGE statement, and composable DML. 
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Chapter 11

Querying Partitioned Tables

 The primary reasons to consider table partitioning in SQL Server are manageability and data 
availability. By splitting a large table into several smaller partitions you can perform some of 
the most time-consuming and resource-demanding tasks—including backups, consistency 
checks using DBCC commands, and index maintenance—one partition at a time. Partitioning 
enables you to move large chunks of data into and out of a partitioned table with minimal 
impact on concurrent operations on the table, requiring only a very brief period of exclusive 
table access.  

 Database architects often carefully design partitioning to achieve manageability and 
 availability goals only to fi nd a negative impact on workload performance that is 
 unacceptable to end users. This chapter explains how partitioning affects query plans and, 
consequently, query performance. You will learn how to write effi cient queries against 
 partitioned objects and how to analyze the query plans and execution information. 

 For information about creating partitioned tables and indexes, see SQL Server Books Online. 

Partitioning in SQL Server

 It is hard to say exactly when partitioning was introduced in the SQL Server relational engine 
for the fi rst time. Clever programmers can create a UNION ALL view over several SELECTs, 
each from one table. The tables can be, for example, daily customer transactions, and a new 
table is introduced and included in the view defi nition every day. Most people believe the 
fi rst true partitioning was introduced by supporting partitioned tables and indexes without 
the need to use views in Microsoft SQL Server 2005. This may be true because the keyword 
PARTITION found its way into T-SQL syntax for the very fi rst time in SQL Server 2005. 

Partitioned Views

 There are two orthogonal classifi cations of partitioned views. The fi rst is guided by the  physical 
placement of the component tables: If all tables constituting a partitioned view are located in 
a single instance of SQL Server, we refer to the view as a local partitioned view. If the tables are 
located across two or more instances, we call it a distributed partitioned view.  

 The second classifi cation concerns updatability. A partitioned view (distributed or local) may 
be updatable or not updatable. An updatable partitioned view has a single column  constraint 
on each participating table that makes it possible to decide for every single row which table 
it belongs to. This constraint must be contained in a primary key in all tables as well. Please 
consult the “Create View” section of SQL Server Books Online for detailed  conditions for 
 creating partitioned or updatable partitioned views.  
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 In most updatable partitioned views the constraints are defi ned such that each inserted 
row satisfi es the constraint on one and only one participating table. It is possible to defi ne 
constraints with “holes” in the domain of the partitioning column when some partitioning 
column  values  violate all constraints. If that is the case, you will see following error message 
if you are  inserting a new row or updating an existing one and the resulting partitioning 
 column value violates constraints in all participating tables: 

Msg 4457, Level 16, State 1, Line 1

The attempted insert or update of the partitioned view failed because the value of the 

partitioning column does not belong to any of the partitions.

The statement has been terminated.

Comparing Partitioned Views and Partitioned Tables

 Partitioned views and partitioned tables have several signifi cant differences. Data Defi nition 
Language (DDL) differences and the need to manage more objects with partitioned views are 
obvious—all participating tables must have coordinated constraints and primary keys. Less 
obvious is the fact that all partitions of a partitioned table must reside in the same database, 
while in the case of partitioned views the participating tables may reside not only in  different 
databases but also on different servers and on separate machines. Probably the least-known 
discrepancies are in query compilation, optimization, and execution. During query  compilation 
and optimization, each branch of a partitioned view is processed separately. This is required 
because the tables may reside in different databases and they may have different  statistics 
and indexes. Therefore, each branch may have a different query plan as well. While this may 
be advantageous in some cases, in most cases the compilation cost is too high,  especially 
when the number of partitions is large. A partitioned view with dozens of partitions takes 
 signifi cantly longer to compile and optimize compared to similar partitioned tables. When 
SQL Server is compiling a query with a partitioned table, SQL Server knows the table is 
 partitioned and that each partition has exactly the same attributes, including indexes and 
 statistics, as the rest of the partitions. Therefore, the compilation is performed only once, and 
the same plan is used for all partitions of the table. 

 Partitioned tables and indexes are supported only in the SQL Server Enterprise and Developer 
editions. Partitioned views are available in all editions. 

 The rest of this chapter concerns partitioned tables and indexes. 

Partitioned Tables

 We will start with query plans for simple queries to explain how partitioned tables appear 
in SQL Server 2005 and SQL Server 2008 query plans. Then we will take a look at specifi cs 
of statistics on partitioned tables and indexes. Later, we will examine partition elimination. 
Because partitioned tables are usually introduced in large databases on multi-CPU computers, 
we will talk about how parallelism and table partitioning work together. 
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Query Plans for Partitioned Tables

Query plans involving partitioned tables in SQL Server 2005 and in SQL Server 2008 are 
 substantially different. I will use a modifi cation of the TPC-H table LINEITEM to illustrate the 
differences. TPC-H is a decision support performance benchmark defi ned by the Transaction 
Processing Performance Council (TPC). For more information about TPC and its benchmarks, 
see www.tpc.org. I use the following partition function and partition scheme defi nitions as a 
basis for a partitioned version of the LINEITEM table: 

CREATE PARTITION FUNCTION PF2009 (SMALLDATETIME)

AS RANGE RIGHT FOR VALUES ('20090101','20090201','20090301','20090401','20090501','20090601',

'20090701','20090801','20090901','20091001','20091101','20091201','20100101');

CREATE PARTITION SCHEME PSYEAR AS PARTITION PF2009 ALL TO ([PRIMARY]);

 Next is the defi nition of our partitioned version of the LINEITEM table: 

CREATE TABLE LINEITEMPART  

(   L_ORDERKEY               INT           NOT NULL,

   L_PARTKEY                INT           NOT NULL,

   L_SUPPKEY                INT           NOT NULL,

   L_LINENUMBER            INT           NOT NULL,

   L_QUANTITY               MONEY         NOT NULL,

   L_EXTENDEDPRICE  MONEY         NOT NULL,

   L_DISCOUNT               MONEY         NOT NULL,

   L_TAX                    MONEY         NOT NULL,

   L_RETURNFLAG             CHAR(1)       NOT NULL,

   L_LINESTATUS             CHAR(1)       NOT NULL,

   L_SHIPDATE               SMALLDATETIME NOT NULL,

   L_COMMITDATE             SMALLDATETIME NOT NULL,

   L_RECEIPTDATE            SMALLDATETIME NOT NULL,

   L_SHIPINSTRUCT           CHAR(25)      NOT NULL,

   L_SHIPMODE               CHAR(10)      NOT NULL,

   L_COMMENT                VARCHAR(44)   NOT NULL)

 ON PSYEAR (L_SHIPDATE);

 In TPC-H the values in columns L_SHIPDATE, L_COMMITDATE, and L_RECEIPTDATE are 
spread over seven years, but in the following script, which generates data and populates 
LINEITEMPART, I have modifi ed the year values so that all dates are within the year 2009. 

/***

1. Get the TPC-H data generator tool DBGEN from www.tpc.org (warning: the site contains 

   only the source and make files; you have to use your own C compiler to build

   the executable dbgen.exe using instructions at http://www.tpc.org/tpch/default.asp

2. Execute dgben with the following parameters to generate the table data:

   dbgen -vf -s 1 -T L

   One of the files generated is lineitem.tbl, and it contains 6+ million rows

3. Create a staging table named LINEITEM in your database, using the same definition 

   as LINEITEMPART but without partitioning

/***

1. Get the TPC-H data generator tool DBGEN from www.tpc.org (warning: the site contains 

   only the source and make files; you have to use your own C compiler to build

   the executable dbgen.exe using instructions at http://www.tpc.org/tpch/default.asp

2. Execute dgben with the following parameters to generate the table data:

   dbgen -vf -s 1 -T L

   One of the files generated is lineitem.tbl, and it contains 6+ million rows

3. Create a staging table named LINEITEM in your database, using the same definition

   as LINEITEMPART but without partitioning
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4. Load the data into the staging table using the following bcp command 

   bcp <dbname>..LINEITEM in "lineitem.tbl"  -c -b 1000 -a 65535 -t”|” -r”|\n” -T

5. Perform the following insert to transform the dates to the year 2009 

   and at the same time copy data into your partitioned table

***/

INSERT INTO LINEITEMPART SELECT 

 L_ORDERKEY                ,

 L_PARTKEY                 ,

 L_SUPPKEY                 ,

 L_LINENUMBER              ,

 L_QUANTITY           ,

 L_EXTENDEDPRICE      ,

 L_DISCOUNT           ,

 L_TAX                ,

 L_RETURNFLAG          ,

 L_LINESTATUS          ,

 DATEADD (YY,2009-DATEPART(YY,L_SHIPDATE),L_SHIPDATE),

 DATEADD (YY,2009-DATEPART(YY,L_COMMITDATE),L_COMMITDATE),

 DATEADD (YY,2009-DATEPART(YY,L_RECEIPTDATE),L_RECEIPTDATE),

 L_SHIPINSTRUCT      ,

 L_SHIPMODE        ,

 L_COMMENT FROM LINEITEM

 Because I ran dbgen.exe with a 1-GB scale factor, the LINEITEMPART table has 6,001,215 rows. 
Later in the chapter I will introduce a clustered index on the table, but let’s work with the heap 
to explain query plans for the simplest scans in both SQL Server 2005 and SQL Server 2008. 
Following the best practices for a sliding window scenario, the table has 14 partitions  holding 
12 months of data with the fi rst and last partitions empty. A partition function with empty fi rst 
and last partitions makes it effi cient to remove the oldest partition and introduce a new one. 

Tip If you are using the sliding window type of partitioning (adding a new partition to one end 
of the partition function intervals and removing one from the opposite end), keep the fi rst and 
last partitions empty. 

Figure 11-1 shows the query plan for SELECT * FROM LINEITEMPART in SQL Server 2005. 

FIGURE 11-1 Execution plan for simple SELECT from partitioned table in SQL Server 2005

4. Load the data into the staging table using the following bcp command 

   bcp <dbname>..LINEITEM in "lineitem.tbl"  -c -b 1000 -a 65535 -t”|” -r”|\n” -T

5. Perform the following insert to transform the dates to the year 2009 

   and at the same time copy data into your partitioned table

***/

INSERT INTO LINEITEMPART SELECT

 L_ORDERKEY                ,

 L_PARTKEY                 ,

 L_SUPPKEY                 ,

 L_LINENUMBER              ,

 L_QUANTITY           ,

 L_EXTENDEDPRICE      ,

 L_DISCOUNT           ,

 L_TAX                ,

 L_RETURNFLAG          ,

 L_LINESTATUS          ,

 DATEADD (YY,2009-DATEPART(YY,L_SHIPDATE),L_SHIPDATE),

 DATEADD (YY,2009-DATEPART(YY,L_COMMITDATE),L_COMMITDATE),

 DATEADD (YY,2009-DATEPART(YY,L_RECEIPTDATE),L_RECEIPTDATE),

 L_SHIPINSTRUCT      ,

 L_SHIPMODE        ,

 L_COMMENT FROM LINEITEM
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 If you rest the cursor on the Constant Scan operator, you will see 14 values, as shown in 
Figure 11-2. The constants enumerate the visited partitions. Each partition is then accessed 
by Table Scan, as shown in Figure 11-3. The internally generated variable PtnIds1004 is 
 assigned values 1, 2, 3. . ., 14 in the Constant Scan, and then each value is used as a parameter 
for the Table Scan operator. 

FIGURE 11-2 Constant Scan enumerating partitions in SQL Server 2005

FIGURE 11-3 Table Scan for one partition in SQL Server 2005

 The preceding SQL Server showplan of a simple SELECT statement suggests that the lower 
levels of the engine (Storage Engine) perform scans and seeks knowing nothing about 
the partitioning above. They access each partition as if it is a new table after the Query 
Processor has translated a single partitioned table access into a join of a list of enumerated 
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 constants and parameterized table scans. Figure 11-4 shows the plan for the same statement 
against the same database in SQL Server 2008. Compared with the SQL Server 2005 plan in 
Figure 11-1, this plan is missing the Constant Scan enumerating partitions and the Nested 
Loops that performs the scan one partition after another. 

FIGURE 11-4 Execution plan for simple SELECT from partitioned table in SQL Server 2008

 The Table Scan properties are shown in Figure 11-5. Instead of the Partition ID we have only 
a True/False value for the Partitioned attribute. Observe that from the Estimated Execution 
Plan in SQL Server 2008, we cannot determine how many partitions the table has. 

FIGURE 11-5 Table Scan for a partitioned table in SQL Server 2008 in the Estimated Execution Plan

 We only know the table is partitioned. The apparent advantage of SQL Server 2005 Estimated 
Execution Plans disappears as soon as we have to work with hundreds of partitions or access 
several partitioned tables in a single query. The Actual Execution Plan in SQL Server 2008 
does contain an Actual Partition Count attribute for every partitioned table scan and for 
 every partitioned index scan or seek, as you can see in Figure 11-6. 

 Before we start talking about statistics on partitioned tables and examining various examples 
of partition elimination, let’s create a partitioned clustered index on our LINEITEMPART table: 

CREATE CLUSTERED INDEX L_IDX_SHIPDATE ON LINEITEMPART (L_SHIPDATE);
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FIGURE 11-6 Table Scan for partitioned table in SQL Server 2008 in Actual Execution Plan

 Notice that we didn’t indicate the use of a partition key or partition scheme in the CREATE 
CLUSTERED INDEX statement. The resulting index will still be partitioned using the same  partition 
scheme and partition column as the original table. This behavior is by design. Even before SQL 
Server introduced partitioning in SQL Server 2005, if no fi legroup is  specifi ed by the CREATE 
INDEX statement’s ON <fi legroup> clause, SQL Server creates the  index in the same fi legroup 
where the table resides. The ON <fi legroup> clause is generalized for partitioning to allow not 
only ON <fi legroup> but also ON <partition_scheme_name ( column_name )> in SQL Server 
2005. The concept of inheriting the same physical location is preserved by using the same 
 partitioning scheme and column if none is specifi ed explicitly. 

Statistics on Partitioned Tables

 In most cases creating and maintaining statistics on partitioned tables is the same as if the 
tables were not partitioned. All CREATE, UPDATE, and DROP statistics commands can be 
 executed the same way they are executed against nonpartitioned tables. In some sense 
table and index partitioning is ignored when creating, updating, and using statistics. Rows 
participate in creating and maintaining statistics regardless of partition boundaries. In two 
cases the context of statistics on partitioned tables require special attention: the ALTER 
TABLE SWITCH command and statistics created by the CREATE INDEX statement on an index 
 partitioned on nonleading column. 

 ALTER TABLE SWITCH is a powerful data manipulation command introduced in SQL 
Server 2005. It can be used to switch whole partitions of data in or out of a partitioned table. 
One way to explain the effect of ALTER TABLE SWITCH is to visualize each table as a pointer 
from its metadata description in the catalog to the physical location where the rows are 
stored. Similarly, for each index the pointer is to the root of the index tree. For partitioned 
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tables and indexes each partition may reside in a different physical location. Therefore, there 
is a separate pointer to each table and index partition within the metadata describing the 
 partitioned table and index. ALTER TABLE SWITCH command works with two partitioned or 
nonpartitioned  tables. One table (or partition, if the table is partitioned) is the source, and 
the other is the  target of the operation. The SWITCH command causes the toggling of the 
 pointers between the source and target tables. After the command is complete, the source 
table and index pointers will point to the original target table and indexes and vice versa. 
This is shown in Figure 11-7, for the statement ALTER TABLE T SWITCH TO PT PARTITION 2, 
where T is a nonpartitioned table T with index I, and PT is a partitioned table PT with 
 index PI. No data movement is  involved when performing the SWITCH command. Therefore, 
the  execution time is the same (usually milliseconds) regardless of the size of data volume 
 involved. This is the major  advantage of the ALTER TABLE SWITCH command.  

Pl Pll l

T T
PT PT

FIGURE 11-7 Changing metadata pointers

 SQL Server requires the target partition or nonpartitioned table to be empty before the 
 command is performed. Several more conditions must be met for the SWITCH command 
to work. For example, all indexes on the table must be aligned—meaning they must be 
 partitioned the same way as the heap or clustered index. And if the target is a partitioned 
table, there must be an implicit (a partition of a partitioned table) or explicit (column 
 constraint) constraint on the source to ensure that all data in the source correctly belongs 
to the target partition. You can fi nd a complete list of all SWITCH restrictions in SQL Server 
Books Online under “Transferring Data Effi ciently by Using Partition Switching.”  

 Almost all uses of the SWITCH command fall into one of two categories: 

  1. The source is a nonpartitioned table containing data that will fi ll a partition of the 
 partitioned table (the target). This is also known as “switching data into a partitioned 
table.” 

  2. The source is a partition of a table containing “old” data, and the target is an empty 
 nonpartitioned table. This is the case of “switching data out of a partitioned table.”  
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 From the perspective of statistics maintenance, SWITCH IN is equivalent to inserting 
data (usually a large amount) into the table, and SWITCH OUT is equivalent to deleting 
data. Therefore, SQL Server treats the statistics the same way as if INSERT or DELETE has 
been  performed on the table. You can investigate the column rowmodctr for the heap or 
 clustered index (indid 0 or 1) in the sysindexes system table before and after you perform 
the switch. You’ll notice that the rowmodctr increases by the number of rows switched in 
or out. Consequently, if you have auto-update statistics ON for the table, statistics will be 
 automatically updated when they are needed to generate a plan for a query if any of the 
 following conditions is satisfi ed: 

  1. The table size has increased from 0 rows to more than 0 rows. 

  2. The number of rows in the table when original statistics were gathered was 500 or 
less, and one or more SWITCH commands cumulatively added or removed more than 
500 rows. 

  3. The table had more than 500 rows when the statistics were originally gathered, and the 
rowmodctr has changed by more than 500 plus 20 percent of the number of rows in 
the table. 

 Note You can control this setting in several ways: the ALTER DATABASE option AUTO_UPDATE_
STATISTICS, sp_autostats, and the NORECOMPUTE option on CREATE STATISTICS and UPDATE 
STATISTICS. 

 If the partitioned table is large, it may take signifi cant time to update the statistics, and the 
fi rst query that needs the statistics will be affected by this time increase unless you have set 
your auto-statistics update to be performed asynchronously (the ALTER DATABASE option 
AUTO_UPDATE_STATISTICS_ASYNC). The SWITCH commands are usually performed in  regular 
intervals, and often it is the only way rows are added and removed from the partitioned 
table. If SWITCH operations are routine, then it may be better to turn auto-update statistics 
OFF for the table and run a manual update as an integral part of the process of inserting and 
deleting large amounts of rows. 

 Tip If you add or remove large amounts of rows from your table periodically in separate time 
windows, you should consider updating statistics for the affected table at the end of the data 
change. 

 Now let’s talk about statistics created by the CREATE INDEX statement on an index partitioned 
on a column that is not the leading column of the index key. To understand the problem 
we fi rst need to understand the history of the relationship between indexes and statistics in 
SQL Server. SQL Server in releases prior to 7.0 created statistics only as a by-product of index 
 creation. When an index is created, SQL Server must read the table, order all index key values, 
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and build the index tree. When statistics with FULLSCAN are created, reading the whole table 
or index and sorting the columns on which the statistics are built represent the  majority of 
the work. But this all happens when creating an index; therefore, the additional cost to  create 
 statistics with FULLSCAN is minimal. Thus when any index or unique constraint is  created, 
SQL Server creates statistics with FULLSCAN for the index or constraint, and this logic still 
 exists in SQL Server 2008. SQL Server 7.0 is the fi rst release introducing CREATE STATISTICS, 
 auto-create, and auto-update statistics commands and options. The CREATE STATISTICS 
 equivalent of the by-product of CREATE INDEX described earlier would require a scan of the 
whole table or index, perform sort, and build statistics. This could be a very costly operation; 
therefore, SQL Server by default creates statistics on large tables using sampling. The default 
may be  overwritten in CREATE or UPDATE STATISTICS  commands, but it cannot be changed for 
 auto-created and auto-updated statistics.  

 The problem with statistics on partitioned indexes is specifi c to a case when the  partitioning 
column is not the leading column of the index key. For example, to effi ciently join our table 
LINEITEMPART with a table of all suppliers, we need to create an index with the  leading 
 column L_SUPPKEY on LINEITEMPART. If we need to perform a SWITCH on the table as 
well, all our indexes must be partitioned on the same column—in our case, L_SHIPDATE. 
Therefore, the new index satisfying these conditions could be defi ned as  follows:

CREATE INDEX L_IDX_SUPPKEY ON LINEITEMPART (L_SUPPKEY) ON PSYEAR (L_SHIPDATE);

 Because our index is partitioned on L_SHIPDATE, the same value of L_SUPPKEY may  appear 
in more than one partition if the supplier shipped goods we track in different months. SQL 
Server is creating partitioned indexes on partitioned tables by creating a separate  index 
tree for each of the partitions. Therefore, we will have a completely sorted sequence of 
L_SUPPKEY in each of the partitions, but the same supplier—and thus the same value of 
L_SUPPKEY—may appear in more than one partition. In the specifi c case where an index 
is partitioned on one column, but another column is the leading key of the index, SQL 
Server 2005 and SQL Server 2008 cannot create correct histograms during index creation. 
This may be fi xed in the upcoming service packs or releases of SQL Server. 

 Tip Whenever you build or rebuild a partitioned index that is partitioned on a column that is 
not the leading column of the index, you should run update statistics on the index immediately 
after you build or rebuild this index.  

 The following query against metadata tables identifi es all partitioned indexes in a database that 
are partitioned on a column different from the leading column of the index key. 

SELECT OBJECT_NAME(IX.object_id) AS table_name, IX.name AS index_name

FROM sys.index_columns AS IC

  JOIN sys.indexes AS IX

    ON IC.object_id = IX.object_id AND IC.index_id = ix.index_id

WHERE IC.partition_ordinal = 1 AND IC.key_ordinal <> 1;
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Partition Elimination

Partition elimination is a technique to avoid accessing partitions that cannot contain any 
rows contributing to the result. Most frequently this is accomplished by a WHERE clause 
 using predicates that restrict the values of the partitioning column. Nested Loops joins have 
a  similar  effect, with an equality join predicate on the partitioning column . The outer row 
 contains the partitioning column value because we are joining on it. The value determines 
single partition where we seek for the match for the outer row.

Let’s investigate the query plan for the SELECT query in Listing 11-1. 

LISTING 11-1 SELECT query with simple predicate on its partitioning column

SELECT * FROM LINEITEMPART WHERE L_SHIPDATE = '20090301'; 

Because we specify the value of L_SHIPDATE in an equality predicate in the WHERE clause, 
and L_SHIPDATE is the partitioning column, we know that all  resulting rows reside in 
a single  partition. Figure 11-8 illustrates this query’s executionplan, which is the same 
for both SQL Server 2005 and SQL Server 2008. But the interpretation is very different. 
Because we don’t see the partition enumerating Constant Scan in the SQL Server 2005 
plan (as you saw  earlier in Figure 11-1), we know we are accessing only a single  partition 
if this is SQL Server 2005 plan. However, in SQL Server 2008, partition-enumerating 
Constant Scans are not displayed  graphically. Therefore, we cannot tell by looking only at 
Figure 11-8 whether the partition  elimination happened. For this we have to investigate 
the  properties of the Clustered Index Seek operator in the SQL Server Management Studio 
(SSMS) window.  

FIGURE 11-8 Query plan for index seek into partitioned table with equal predicate 
on the partitioning column

If you right-click the Clustered Index Seek icon in the SQL Server 2008 query plan, a  dialog 
box pops up with several actions (for example, Zoom In, Zoom Out); the last action is 
Properties. Choose Properties, and the properties of the Clustered Index Seek operator are 
displayed in a separate Properties window in Management Studio. After expanding  several 
levels under the Seek Predicates in the Properties Window, the Properties dialog box shown 
in Figure 11-9 opens.  

SELECT * FROM LINEITEMPART WHERE L_SHIPDATE = '20090301'; 
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FIGURE 11-9 Clustered Index Seek operator properties

 Tip You can expand all the nodes below a selected expandable node by typing *. 

 Figure 11-9 shows two Range Columns ([1] and [2]) and two corresponding Range 
Expressions. The fi rst Range Column is generated by SQL Server to perform partition 
 elimination. We recognize it by its internally generated PtnId1000 name. The second Range 
Column is generated for the predicate L_SHIPDATE= ‘20090301’ in the query. The fi rst 
Range Expression is not shown completely in Figure 11-9, but it can be seen in a separate 
 pop-up window, and its content is shown in Listing 11-2. The second Range Expression 
is Scalar Operator(CONVERT_IMPLICIT(smalldatetime,[@1],0)) and it represents the value 
of  constant ‘20090301’ converted to the smalldatetime type. Observe that both Range 
Expressions are referring to [@1] instead of the constant ‘20090301’. This is because the 
query was auto- parameterized by SQL Server, and its query plan can be used for any other 
constant in the place of ‘20090301’.  

 Evaluating the fi rst Range Expression for Range Column PtnId1000 generates the correct 
 partition number, and only this partition is accessed by the Clustered Index Seek operator. 
The second Range Expression is used to seek the partition of the clustered index for all rows 
with the correct values of L_SHIPDATE. If the query uses a parameter value instead of the 
constant ‘20090301’, the query plan will be exactly the same, except that instead of [@1], you 
will see the parameter name. 
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LISTING 11-2 First Scalar Operator Range Expression from Index Seek in Figure 11-9

Scalar Operator(RangePartitionNew(CONVERT_IMPLICIT(smalldatetime,[@1],0),(1),'2009-01-01

00:00:00.000','2009-02-01 00:00:00.000','2009-03-01 00:00:00.000','2009-04-01

00:00:00.000','2009-05-01 00:00:00.000','2009-06-01 00:00:00.000','2009-07-01

00:00:00.000','2009-08-01 00:00:00.000','2009-09-01 00:00:00.000','2009-10-01

00:00:00.000','2009-11-01 00:00:00.000','2009-12-01 00:00:00.000','2010-01-01 

00:00:00.000'))

Listing 11-3 contains a query in which we use the BETWEEN predicate on the partitioning 
column. 

LISTING 11-3 A SELECT query that uses the BETWEEN predicate

SELECT * FROM LINEITEMPART WHERE L_SHIPDATE BETWEEN '20090301' AND '20090531';

In this case, the SQL Server 2005 and SQL Server 2008 query plans are different. Let’s fi rst 
look at the SQL Server 2005 plan, shown in Figure 11-10.  

FIGURE 11-10 SQL Server 2005 plan for the query in Listing 11-3

Because this query is accessing more than one partition, we see again the Constant Scan 
 enumerating the accessed partitions in the query plan. Figure 11-11 shows the properties of the 
Constant Scan operator, which can be displayed by resting the cursor on the operator in SSMS. 

FIGURE 11-11 Properties for the Constant Scan operator in Figure 11-10

Scalar Operator(RangePartitionNew(CONVERT_IMPLICIT(smalldatetime,[@1],0),(1),'2009-01-01

00:00:00.000','2009-02-01 00:00:00.000','2009-03-01 00:00:00.000','2009-04-01

00:00:00.000','2009-05-01 00:00:00.000','2009-06-01 00:00:00.000','2009-07-01

00:00:00.000','2009-08-01 00:00:00.000','2009-09-01 00:00:00.000','2009-10-01

00:00:00.000','2009-11-01 00:00:00.000','2009-12-01 00:00:00.000','2010-01-01 

00:00:00.000'))

SELECT * FROM LINEITEMPART WHERE L_SHIPDATE BETWEEN '20090301' AND '20090531';
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 The Values list shows that partition numbers 4, 5, and 6 are accessed to get the result of the 
query.  

 In SQL Server 2008, the plan for the query in Listing 11-3 looks exactly the same as the plan 
in Figure 11-8. Deeper investigation of the properties of the Clustered Index Seek  reveals 
the difference: For the BETWEEN query we will see two different Range Expressions for 
Range Column PtnId1000. One is called “Start,” and the other is called “End.” The Range 
Expressions are, respectively ,

Scalar Operator(RangePartitionNew(CONVERT_IMPLICIT(smalldatetime,[@1],0),(1),'2009-01-01

00:00:00.000','2009-02-01 00:00:00.000','2009-03-01 00:00:00.000','2009-04-01

00:00:00.000','2009-05-01 00:00:00.000','2009-06-01 00:00:00.000','2009-07-01

00:00:00.000','2009-08-01 00:00:00.000','2009-09-01 00:00:00.000','2009-10-01

00:00:00.000','2009-11-01 00:00:00.000','2009-12-01 00:00:00.000','2010-01-01 

00:00:00.000'))

Scalar Operator(RangePartitionNew(CONVERT_IMPLICIT(smalldatetime,[@2],0),(1),'2009-01-01

00:00:00.000','2009-02-01 00:00:00.000','2009-03-01 00:00:00.000','2009-04-01

00:00:00.000','2009-05-01 00:00:00.000','2009-06-01 00:00:00.000','2009-07-01

00:00:00.000','2009-08-01 00:00:00.000','2009-09-01 00:00:00.000','2009-10-01

00:00:00.000','2009-11-01 00:00:00.000','2009-12-01 00:00:00.000','2010-01-01 

00:00:00.000'))

 As in the case of the equality predicate, the query is auto-parameterized (the auto-generated 
parameter [@1] replaces the Start constant ‘20090301’ and [@2] replaces the End constant 
‘20090531’). Therefore, the execution plan may be reused for various values of the range 
constants.  

Partitioning and Parallelism

 Partitioning is usually introduced for large tables processed on big multi-CPU servers. 
Therefore, it is important to pay attention to parallelism of queries against partitioned tables. 
When investigating parallelism, we should fi rst determine whether a parallel query plan is 
generated at all. Subsequently we can evaluate execution effi ciency of the query from the 
point of view of parallelism.  

 In this section I will explain how to recognize what parts of a query plan are parallel, what 
special considerations we should have in the context of partitioning and parallelism, and 
how to investigate execution effi ciency for parallel query plans. I will also give the  details 
of one substantial change in parallel plan processing for partitioned tables between 
SQL Server 2005 and SQL Server 2008.  

 Take a look back at the query plan in Figure 11-10 for our BETWEEN query in SQL 
Server 2005. It has four parallel operators as well as two operators without parallelism 
(Constant Scan and SELECT). The parallel operators are indicated by a round yellow icon 
with two  arrows at the base of the operator icon. A parallel query plan has at least one 
Parallelism  operator. Figure 11-10 shows two kinds of Parallelism operators: Gather Streams 
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on the left and Distribute Streams after the Constant Scan operator. The Distribute Streams 
 operator creates multiple streams from a single input data stream. The Gather Streams 
 operator  merges several input streams into single output. There is one more type of 
Parallelism  operator that does not occur in our example. It is called Redistribute Streams, 
and it has  multiple input and multiple output data streams.  

 Parallel execution of SQL Server query plan is performed by distributing single stream of rows 
into several streams, each processed by a separate thread. The distribution can be  initiated 
either by a parallel scan or parallel seek operator, or by the afore mentioned Distribute 
Streams Parallelism operator. The effectiveness of parallel processing is then determined by 
how equally the work is distributed into the parallel streams. In some cases, the Gather and 
Redistribute Streams operators must preserve order, and this may introduce stalling because 
they can produce a new row only when they have received at least one row or end-of-stream 
indication from all input streams.  

 SQL Server considers query parallelism only if there is more than one processor (multiple CPUs, 
cores, hyperthreading, or any combination of these) available to SQL Server. Query Optimizer 
then decides for each individual query whether to generate a parallel plan. For low-cost 
 queries, the overhead of parallelism may be bigger than the gain. Therefore, parallelism is not 
considered for queries with estimated cost less than 5. (You may see parallel query plans with 
an estimated cost lower than 5 if the parallelism is what caused the plan’s cost to drop below 5.)  

 The degree of parallelism of a query with a parallel plan in SQL Server is the maximum 
number of active threads executing the query. The number of worker threads required for 
parallel  query is usually much higher because every Parallelism operator creates a thread 
boundary—each input stream and output stream is assigned a separate worker thread. The 
degree of  parallelism restricts the number of active worker threads at any point of single query 
execution. 

 The same parallel query plan may be executed with different degrees of parallelism. 
SQL Server decides at the time of query startup what degree of parallelism to use. This is 
 affected by the available resources at that moment. Therefore, the same query with a single 
 parallel query plan may be executed with different degrees of parallelism at different times. 
You can use either the Degree of Parallelism Event in the SQL Server’s Performance Event 
profi ler  category or the Actual Execution Plan captured in SSMS or profi ler to monitor the 
actual  degree of parallelism for a particular instance of query execution.  

 You can use sp_confi gure with the ‘max degree or parallelism’ option to lower the maximum 
considered by SQL Server for the whole instance. An individual query can include the clause 
OPTION (MAXDOP  <value>) to change the maximum for its own execution. 

 The query in Listing 11-4 demonstrates a major discrepancy in parallel query execution for 
partitioned tables between SQL Server 2005 and SQL Server 2008. As a by-product of the 
 explanation, we will learn how to investigate the effi ciency of parallelism. 
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LISTING 11-4 Query to investigate parallel execution

SELECT  COUNT(*) FROM LINEITEMPART WHERE L_SHIPDATE BETWEEN '20090301' AND '20090531';

First let’s look at the SQL Server 2005 query plan. Because we want to know what was 
happening during the execution, we have to turn on Include Actual Execution Plan in 
Management Studio and run the query. The result is the plan shown in Figure 11-12. The 
 actual plan looks the same as the estimated plan, but it contains additional information from 
the execution inside the properties of individual operators and connecting edges. 

FIGURE 11-12 SQL Server 2005 Actual Execution Plan for the query in Listing 11-4

Let’s go over the plan in Figure 11-12 in the order of execution from right to left. By now 
we know that the Constant Scan enumerates the partitions the query has to access in 
SQL Server 2005. It produces three constant values—IDs for partitions 4, 5, and 6. We are 
running the query with degree of parallelism 8; therefore, the Distribute Streams Parallelism 
operator has threads ready to accept values on the output. But there are only three values 
on  input, and while they end up on three different threads, the remaining fi ve threads are 
empty. Therefore, the query executes only three (and not eight) concurrent seek loops into 
the LINITEMPART.L_IDX_SHIPDATE clustered index. The Nested Loops join is ready to be 
 performed concurrently on eight threads, but only three have input values, so the  remaining 
fi ve threads stay idle. Figure 11-13 displays the properties of the edge exiting from the 
Nested Loops join.  

Note The Properties window in Figure 11-13 incorrectly enumerates threads. Thread 0 is 
not used. 

SELECT  COUNT(*) FROM LINEITEMPART WHERE L_SHIPDATE BETWEEN '20090301' AND '20090531';
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FIGURE 11-13 SQL Server 2005 Actual Number of Rows generated from the Nested Loops join

 Following the Nested Loops join is a parallel Stream Aggregate operator, which we also call 
Partial Aggregation. Because we are performing COUNT(*), this operator is prepared to count 
the rows in each of the eight streams. Only three streams have any rows and return a nonzero 
number. The remaining fi ve will return no rows without doing any work except to check for 
the end of stream. The next Gather Streams Parallelism operator merges the eight streams, 
where fi ve are empty and the remaining three have one Partial Aggregate value, into a 
single stream that fl ows into another Stream Aggregate operator called Global Aggregation 
 because it is producing a fi nal count from partial counts generated earlier by the Parallel 
Partial Aggregations.  

 Let’s turn our attention to the SQL Server 2008 plan for the same query in Listing 11-4 
against the same table LINEITEMPART. The Actual Execution Plan is shown in Figure 11-14.  

FIGURE 11-14 SQL Server 2008 Actual Execution Plan for the query in Listing 11-4

 The plan is similar to the SQL Server 2005 plan shown in Figure 11-12. It performs partial 
 aggregation on eight streams and then performs global aggregation. But if we investigate 
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the properties of the edge exiting the Clustered Index Seek operator, we see a very different 
row distribution compared to the SQL Server 2005 row distribution. Figure 11-15 shows that 
each of the eight threads from Thread 1 to Thread 8 has processed some rows. Therefore, the 
SQL Server 2008 query plan is executing more effi ciently. 

FIGURE 11-15 SQL Server 2008 Actual Number of Rows generated from the Nested Loops join

 Let’s summarize and generalize our investigation of parallel plans on partitioned tables in 
SQL Server 2005 and 2008.  

 In SQL Server 2005, for queries that access partitioned table or index, the parallelism is driven 
by the partitions. Each individual table or index partition is processed by a separate single 
thread. Therefore, if there are fewer partitions than degree of parallelism, some of the  parallel 
threads will end up idle. That was the case with accessing only three partitions on an  eight-core 
machine. On the other hand, if there are more partitions, some will be processed only after 
one of the previous partitions has been handled. But at most, one thread is always  active on 
one  partition at a time. There is a signifi cant exception to this rule: If SQL Server 2005 knows 
at compile time that only a single partition of partitioned table is accessed, a fully parallel plan 
is considered and potentially generated exactly as if accessing a nonpartitioned table. The at 
 compile time exception is important when designing your queries using parameters in SQL 
Server 2005. For example, if instead of the existing WHERE clause in the query in Listing 11-4  

WHERE L_SHIPDATE BETWEEN '20090301' AND '20090531' 

 we access only a single month, and therefore a single partition: 

WHERE L_SHIPDATE BETWEEN '20090301' AND '20090331'
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 the SQL Server 2005 query plan will look exactly like the SQL Server 2008 plan in Figure 11-14, 
and all threads (eight in our case) will be used during query execution. But if we use  parameters 
instead of the constants  

WHERE L_SHIPDATE BETWEEN @date1 AND @date2

 SQL Server has to generate the Constant Scan with Nested Loop plan, because we don’t know 
at compile time whether only one partition or more than one partition is accessed. If, for 
 example, the value ‘20090301’ is then substituted for @date1 and ‘20090331’ is substituted 
for @date2, the query will still be executed on a single thread instead of eight threads, as 
were used when the query was written without parameters! 

 The preceding problems with parallelism on partitioned tables were addressed when 
 developing SQL Server 2008 by implementing a round-robin strategy when assigning 
threads to partitions. Therefore, the same query plan is used for one or many partitions and 
the  assignment of threads is adjusted at query startup time.  

Conclusion

 When we write queries accessing partitioned tables, we should fi rst pay attention to all the 
 normal pitfalls surrounding query plan selection. In addition, partitioned tables bring  further 
challenges in the area of partition elimination, statistics, and parallelism. When writing 
 queries against partitioned tables, pay special attention to partition elimination (for example, 
ask whether your query provides enough information so that only some partitions will be 
 accessed) and how parallelism works across multiple partitions. We have learned that the 
best way to investigate any issue affecting query execution is to analyze the Actual Execution 
Plans that contain information about query execution.  
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Chapter 12

 Graphs, Trees, Hierarchies, 
and Recursive Queries 

 This chapter covers treatment of specialized data structures called graphs, trees, and 
 hierarchies in Microsoft SQL Server using T-SQL. Of the three, probably the most commonly 
used among T-SQL programmers is the hierarchy, and this term is sometimes used even 
when the data structure involved is not really a hierarchy. I’ll start with a terminology section 
describing each data structure to clear the confusion. 

 Treatment (representation, maintenance, and manipulation) of graphs, trees, and hierarchies in 
an RDBMS is far from trivial. I’ll discuss two main approaches, one based on iterative/ recursive 
logic and another based on materializing extra information in the database that describes 
the data structure.  

 This chapter also covers the HIERARCHYID data type introduced in SQL Server 2008, which is 
designed to help in maintaining and querying graphs.  

Terminology

 Note The explanations in this section are based on defi nitions from the National Institute 
of Standards and Technology (NIST). I made some revisions and added some narrative to the 
 original defi nitions to make them less formal and keep them relevant to the subject area (T-SQL).  

 For more complete and formal defi nitions of graphs, trees, and related terms, please refer to 
http://www.nist.gov/dads/.  

Graphs

 A graph is a set of items connected by edges. Each item is called a vertex or node. An edge is 
a connection between two vertices of a graph. 

 A graph is a catchall term for a data structure, and many scenarios can be represented 
as graphs—for example, employee organizational charts, bills of materials (BOMs), road 
 systems, and so on. To narrow down the type of graph to a more specifi c case, you need to 
identify its properties: 

 Directed/Undirected   In a directed graph (also known as a digraph), the two vertices of an 
edge have a direction or order. For example, in a BOM graph for coffee shop products, 
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Latte contains Milk and not the other way around. The graph has an edge (containment 
relationship) for the pair of vertices/items (Latte, Milk) but has no edge for the pair 
(Milk, Latte).  

 In an undirected graph, each edge simply connects two vertices, with no particular 
 order. For example, a road system graph could have a road between Los Angeles 
and San Francisco. The edge (road) between the vertices (cities) Los Angeles and San 
Francisco can be expressed as either of the following: {Los Angeles, San Francisco} or 
{San Francisco, Los Angeles}.  

 Acyclic   An acyclic graph is a graph with no cycle—that is, no path that starts and ends at 
the same vertex—for example, employee organizational charts and BOMs. A directed 
acyclic graph is also known as a DAG.  

 If the graph has paths that start and end at the same vertex—as there usually are in 
road systems—the graph is not acyclic. 

 Connected   A connected graph is a graph where there’s a path between every pair of 
 vertices—for example, employee organizational charts. 

Trees

 A tree is a special kind of graph—a connected, acyclic graph. 

 A rooted tree is accessed beginning at the root node. Each node is either a leaf or an  internal 
node. An internal node has one or more child nodes and is called the parent of its child 
nodes. All children of the same node are siblings. Contrary to the appearance in a physical 
tree, the root is usually depicted at the top of the structure, and the leaves are depicted at 
the bottom, as illustrated in Figure 12-1. 

parent

child

leaf
node siblings

internal
node

root

FIGURE 12-1 A tree
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 A forest is a collection of one or more trees—for example, forum discussions can be  represented 
as a forest where each thread is a tree. 

Hierarchies

 Some scenarios can be described as hierarchies and modeled as directed acyclic graphs—for 
example, inheritance among types/classes in object-oriented programming and reports-to 
relationships in an employee organizational chart. In the former, the edges of the graph 
locate the inheritance. Classes can inherit methods and properties from other classes (and 
possibly from multiple classes). In the latter, the edges represent the reports-to relationship 
between employees. Note the acyclic, directed nature of these scenarios. The management 
chain of responsibility in a company cannot go around in circles, for example. 

Scenarios

 Throughout the chapter, I will use three scenarios: Employee Organizational Chart (tree, 
 hierarchy); Bill Of Materials, or BOM (DAG); and Road System (undirected cyclic graph). Note 
what distinguishes a (directed) tree from a DAG. All trees are DAGs, but not all DAGs are 
trees. In a tree, an item can have at most one parent; in some management hierarchies, an 
employee can have more than one manager. 

Employee Organizational Chart

 The employee organizational chart that I will use is depicted graphically in Figure 12-2. 

David
1

Eitan
2

Seraph
4

Jiru
5

Steve
6

Lilach
8

Rita
9

Sean
10

Emilia
12

Michael
13

Didi
14

Gabriel
11

Aaron
7

Ina
3

FIGURE 12-2 Employee organizational chart

 To create the Employees table and populate it with sample data, run the code in Listing 12-1. 
The contents of the Employees table are shown in Table 12-1. 
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LISTING 12-1 Data defi nition language and sample data for the Employees table

SET NOCOUNT ON; 

USE tempdb; 

GO 

IF OBJECT_ID('dbo.Employees') IS NOT NULL 

  DROP TABLE dbo.Employees; 

GO 

CREATE TABLE dbo.Employees 

( 

  empid   INT         NOT NULL PRIMARY KEY, 

  mgrid   INT         NULL     REFERENCES dbo.Employees, 

  empname VARCHAR(25) NOT NULL, 

  salary  MONEY       NOT NULL, 

  CHECK (empid <> mgrid) 

); 

 

INSERT INTO dbo.Employees(empid, mgrid, empname, salary) VALUES

  (1,  NULL, 'David'  , $10000.00),

  (2,  1,    'Eitan'  ,  $7000.00),

  (3,  1,    'Ina'    ,  $7500.00),

  (4,  2,    'Seraph' ,  $5000.00),

  (5,  2,    'Jiru'   ,  $5500.00),

  (6,  2,    'Steve'  ,  $4500.00),

  (7,  3,    'Aaron'  ,  $5000.00),

  (8,  5,    'Lilach' ,  $3500.00),

  (9,  7,    'Rita'   ,  $3000.00),

  (10, 5,    'Sean'   ,  $3000.00),

  (11, 7,    'Gabriel',  $3000.00),

  (12, 9,    'Emilia' ,  $2000.00),

  (13, 9,    'Michael',  $2000.00),

  (14, 9,    'Didi'   ,  $1500.00); 

CREATE UNIQUE INDEX idx_unc_mgrid_empid ON dbo.Employees(mgrid, empid);

 TABLE 12-1 Contents of Employees Table

 empid mgrid empname salary

 1 NULL David 10000.0000

 2 1 Eitan 7000.0000

 3 1 Ina 7500.0000

 4 2 Seraph 5000.0000

 5 2 Jiru 5500.0000

 6 2 Steve 4500.0000

 7 3 Aaron 5000.0000

 8 5 Lilach 3500.0000

 9 7 Rita 3000.0000

 10 5 Sean 3000.0000

SET NOCOUNT ON; 

USE tempdb;

GO 

IF OBJECT_ID('dbo.Employees') IS NOT NULL 

  DROP TABLE dbo.Employees; 

GO 

CREATE TABLE dbo.Employees

( 

  empid   INT         NOT NULL PRIMARY KEY, 

  mgrid   INT         NULL     REFERENCES dbo.Employees,

  empname VARCHAR(25) NOT NULL,

  salary  MONEY       NOT NULL,

  CHECK (empid <> mgrid) 

); 

INSERT INTO dbo.Employees(empid, mgrid, empname, salary) VALUES

  (1,  NULL, 'David'  , $10000.00),

  (2,  1,    'Eitan'  ,  $7000.00),

  (3,  1,    'Ina'    ,  $7500.00),

  (4,  2,    'Seraph' ,  $5000.00),

  (5,  2,    'Jiru'   ,  $5500.00),

  (6,  2,    'Steve'  ,  $4500.00),

  (7,  3,    'Aaron'  ,  $5000.00),

  (8,  5,    'Lilach' ,  $3500.00),

  (9,  7,    'Rita'   ,  $3000.00),

  (10, 5,    'Sean'   ,  $3000.00),

  (11, 7,    'Gabriel',  $3000.00),

  (12, 9,    'Emilia' ,  $2000.00),

  (13, 9,    'Michael',  $2000.00),

  (14, 9,    'Didi'   ,  $1500.00); 

CREATE UNIQUE INDEX idx_unc_mgrid_empid ON dbo.Employees(mgrid, empid);

empid mgrid empname salary
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TABLE 12-1 Contents of Employees Table

empid mgrid empname salary

 11 7 Gabriel 3000.0000

 12 9 Emilia 2000.0000

 13 9 Michael 2000.0000

 14 9 Didi 1500.0000

 The Employees table represents a management hierarchy as an adjacency list, where the 
manager and employee represent the parent and child nodes, respectively.  

Bill of Materials (BOM)

 I will use a BOM of coffee shop products, which is depicted graphically in Figure 12-3. 
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FIGURE 12-3 Bill of Materials (BOM)

 To create the Parts and BOM tables and populate them with sample data, run the code in 
Listing 12-2. The contents of the Parts and BOM tables are shown in Tables 12-2 and 12-3. 

 Notice that the fi rst scenario (employee organizational chart) requires only one table because 
it is modeled as a tree; both an edge (manager, employee) and a vertex (employee) can be 
represented by the same row. The BOM scenario requires two tables because it is modeled as 
a DAG, where multiple paths can lead to each node; an edge (assembly, part) is represented 
by a row in the BOM table, and a vertex (part) is represented by a row in the Parts table.  

empid mgrid empname salary
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LISTING 12-2 Data defi nition language and sample data for the Parts and BOM tables

SET NOCOUNT ON; 

USE tempdb; 

GO 

IF OBJECT_ID('dbo.BOM') IS NOT NULL 

  DROP TABLE dbo.BOM; 

GO 

IF OBJECT_ID('dbo.Parts') IS NOT NULL 

  DROP TABLE dbo.Parts; 

GO 

CREATE TABLE dbo.Parts 

( 

  partid   INT         NOT NULL PRIMARY KEY, 

  partname VARCHAR(25) NOT NULL 

); 

 

INSERT INTO dbo.Parts(partid, partname) VALUES

  ( 1, 'Black Tea'      ),

  ( 2, 'White Tea'      ),

  ( 3, 'Latte'          ),

  ( 4, 'Espresso'       ),

  ( 5, 'Double Espresso'),

  ( 6, 'Cup Cover'      ),

  ( 7, 'Regular Cup'    ),

  ( 8, 'Stirrer'        ),

  ( 9, 'Espresso Cup'   ),

  (10, 'Tea Shot'       ),

  (11, 'Milk'           ),

  (12, 'Coffee Shot'    ),

  (13, 'Tea Leaves'     ),

  (14, 'Water'          ),

  (15, 'Sugar Bag'      ),

  (16, 'Ground Coffee'  ),

  (17, 'Coffee Beans'   );

 

CREATE TABLE dbo.BOM 

( 

  partid     INT           NOT NULL REFERENCES dbo.Parts, 

  assemblyid INT           NULL     REFERENCES dbo.Parts, 

  unit       VARCHAR(3)    NOT NULL, 

  qty        DECIMAL(8, 2) NOT NULL, 

  UNIQUE(partid, assemblyid), 

  CHECK (partid <> assemblyid) 

);  

INSERT INTO dbo.BOM(partid, assemblyid, unit, qty) VALUES

  ( 1, NULL, 'EA',   1.00),

  ( 2, NULL, 'EA',   1.00),

  ( 3, NULL, 'EA',   1.00),

  ( 4, NULL, 'EA',   1.00),

  ( 5, NULL, 'EA',   1.00),

  ( 6,    1, 'EA',   1.00),

  ( 7,    1, 'EA',   1.00),

SET NOCOUNT ON; 

USE tempdb;

GO 

IF OBJECT_ID('dbo.BOM') IS NOT NULL 

  DROP TABLE dbo.BOM; 

GO 

IF OBJECT_ID('dbo.Parts') IS NOT NULL

  DROP TABLE dbo.Parts;

GO 

CREATE TABLE dbo.Parts

( 

  partid   INT         NOT NULL PRIMARY KEY, 

  partname VARCHAR(25) NOT NULL

); 

INSERT INTO dbo.Parts(partid, partname) VALUES

  ( 1, 'Black Tea'      ),

  ( 2, 'White Tea'      ),

  ( 3, 'Latte'          ),

  ( 4, 'Espresso'       ),

  ( 5, 'Double Espresso'),

  ( 6, 'Cup Cover'      ),

  ( 7, 'Regular Cup'    ),

  ( 8, 'Stirrer'        ),

  ( 9, 'Espresso Cup'   ),

  (10, 'Tea Shot'       ),

  (11, 'Milk'           ),

  (12, 'Coffee Shot'    ),

  (13, 'Tea Leaves'     ),

  (14, 'Water'          ),

  (15, 'Sugar Bag'      ),

  (16, 'Ground Coffee'  ),

  (17, 'Coffee Beans'   );

CREATE TABLE dbo.BOM

( 

  partid     INT           NOT NULL REFERENCES dbo.Parts, 

  assemblyid INT           NULL     REFERENCES dbo.Parts, 

  unit       VARCHAR(3)    NOT NULL,

  qty        DECIMAL(8, 2) NOT NULL,

  UNIQUE(partid, assemblyid), 

  CHECK (partid <> assemblyid) 

); 

INSERT INTO dbo.BOM(partid, assemblyid, unit, qty) VALUES

  ( 1, NULL, 'EA',   1.00),

  ( 2, NULL, 'EA',   1.00),

  ( 3, NULL, 'EA',   1.00),

  ( 4, NULL, 'EA',   1.00),

  ( 5, NULL, 'EA',   1.00),

  ( 6,    1, 'EA',   1.00),

  ( 7,    1, 'EA',   1.00),
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  (10,    1, 'EA',   1.00),

  (14,    1, 'mL', 230.00),

  ( 6,    2, 'EA',   1.00),

  ( 7,    2, 'EA',   1.00),

  (10,    2, 'EA',   1.00),

  (14,    2, 'mL', 205.00),

  (11,    2, 'mL',  25.00),

  ( 6,    3, 'EA',   1.00),

  ( 7,    3, 'EA',   1.00),

  (11,    3, 'mL', 225.00),

  (12,    3, 'EA',   1.00),

  ( 9,    4, 'EA',   1.00),

  (12,    4, 'EA',   1.00),

  ( 9,    5, 'EA',   1.00),

  (12,    5, 'EA',   2.00),

  (13,   10, 'g' ,   5.00),

  (14,   10, 'mL',  20.00),

  (14,   12, 'mL',  20.00),

  (16,   12, 'g' ,  15.00),

  (17,   16, 'g' ,  15.00);

TABLE 12-2 Contents of Parts Table

partid partname

1 Black Tea

2 White Tea

3 Latte

4 Espresso

5 Double Espresso

6 Cup Cover

7 Regular Cup

8 Stirrer

9 Espresso Cup

10 Tea Shot

11 Milk

12 Coffee Shot

13 Tea Leaves

14 Water

15 Sugar Bag

16 Ground Coffee

17 Coffee Beans

  (10,    1, 'EA',   1.00),

  (14,    1, 'mL', 230.00),

  ( 6,    2, 'EA',   1.00),

  ( 7,    2, 'EA',   1.00),

  (10,    2, 'EA',   1.00),

  (14,    2, 'mL', 205.00),

  (11,    2, 'mL',  25.00),

  ( 6,    3, 'EA',   1.00),

  ( 7,    3, 'EA',   1.00),

  (11,    3, 'mL', 225.00),

  (12,    3, 'EA',   1.00),

  ( 9,    4, 'EA',   1.00),

  (12,    4, 'EA',   1.00),

  ( 9,    5, 'EA',   1.00),

  (12,    5, 'EA',   2.00),

  (13,   10, 'g' ,   5.00),

  (14,   10, 'mL',  20.00),

  (14,   12, 'mL',  20.00),

  (16,   12, 'g' ,  15.00),

  (17,   16, 'g' ,  15.00);

partid partname
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TABLE 12-3 Contents of BOM Table

partid assemblyid unit qty

 1 NULL EA 1.00

 2 NULL EA 1.00

 3 NULL EA 1.00

 4 NULL EA 1.00

 5 NULL EA 1.00

 6 1 EA 1.00

 7 1 EA 1.00

 10 1 EA 1.00

 14 1 mL 230.00

 6 2 EA 1.00

 7 2 EA 1.00

 10 2 EA 1.00

 14 2 mL 205.00

 11 2 mL 25.00

 6 3 EA 1.00

 7 3 EA 1.00

 11 3 mL 225.00

 12 3 EA 1.00

 9 4 EA 1.00

 12 4 EA 1.00

 9 5 EA 1.00

 12 5 EA 2.00

 13 10 g 5.00

 14 10 mL 20.00

 14 12 mL 20.00

 16 12 g 15.00

 17 16 g 15.00

 BOM represents a directed acyclic graph (DAG). It holds the parent and child node IDs in the 
assemblyid and partid attributes, respectively. BOM also represents a weighted graph, where 
a weight/number is associated with each edge. In our case, that weight is the qty attribute 
that holds the quantity of the part within the assembly (assembly of sub parts). The unit 
 attribute holds the unit of the qty (EA for each, g for gram, mL for milliliter, and so on). 

Road System

The Road System scenario that I will use is that of several major cities in the United States, 
and it is depicted graphically in Figure 12-4. In this scenario, I’ve chosen an International Air 
Transport Association (IATA) code to identify each city. 

partid assemblyid unit qty
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FIGURE 12-4 Road system

To create the Cities and Roads tables and populate them with sample data, run the code in 
Listing 12-3. The contents of the Cities and Roads tables are shown in Tables 12-4 and 12-5. 

LISTING 12-3 Data defi nition language and sample data for the Cities and Roads tables

SET NOCOUNT ON; 

USE tempdb; 

GO 

IF OBJECT_ID('dbo.Roads') IS NOT NULL 

  DROP TABLE dbo.Roads; 

GO 

IF OBJECT_ID('dbo.Cities') IS NOT NULL 

  DROP TABLE dbo.Cities; 

GO 

CREATE TABLE dbo.Cities 

( 

  cityid  CHAR(3)     NOT NULL PRIMARY KEY, 

  city    VARCHAR(30) NOT NULL, 

  region  VARCHAR(30) NULL, 

  country VARCHAR(30) NOT NULL 

); 

INSERT INTO dbo.Cities(cityid, city, region, country) VALUES

  ('ATL', 'Atlanta', 'GA', 'USA'),

  ('ORD', 'Chicago', 'IL', 'USA'),

  ('DEN', 'Denver', 'CO', 'USA'),

  ('IAH', 'Houston', 'TX', 'USA'),

  ('MCI', 'Kansas City', 'KS', 'USA'),

SET NOCOUNT ON; 

USE tempdb;

GO 

IF OBJECT_ID('dbo.Roads') IS NOT NULL

  DROP TABLE dbo.Roads;

GO 

IF OBJECT_ID('dbo.Cities') IS NOT NULL 

  DROP TABLE dbo.Cities; 

GO 

CREATE TABLE dbo.Cities

( 

  cityid  CHAR(3)     NOT NULL PRIMARY KEY, 

  city    VARCHAR(30) NOT NULL,

  region  VARCHAR(30) NULL, 

  country VARCHAR(30) NOT NULL 

); 

INSERT INTO dbo.Cities(cityid, city, region, country) VALUES

  ('ATL', 'Atlanta', 'GA', 'USA'),

  ('ORD', 'Chicago', 'IL', 'USA'),

  ('DEN', 'Denver', 'CO', 'USA'),

  ('IAH', 'Houston', 'TX', 'USA'),

  ('MCI', 'Kansas City', 'KS', 'USA'),
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  ('LAX', 'Los Angeles', 'CA', 'USA'),

  ('MIA', 'Miami', 'FL', 'USA'),

  ('MSP', 'Minneapolis', 'MN', 'USA'),

  ('JFK', 'New York', 'NY', 'USA'),

  ('SEA', 'Seattle', 'WA', 'USA'),

  ('SFO', 'San Francisco', 'CA', 'USA'),

  ('ANC', 'Anchorage', 'AK', 'USA'),

  ('FAI', 'Fairbanks', 'AK', 'USA'); 

CREATE TABLE dbo.Roads 

( 

  city1       CHAR(3) NOT NULL REFERENCES dbo.Cities, 

  city2       CHAR(3) NOT NULL REFERENCES dbo.Cities, 

  distance INT     NOT NULL, 

  PRIMARY KEY(city1, city2), 

  CHECK(city1 < city2), 

  CHECK(distance > 0) 

); 

 

INSERT INTO dbo.Roads(city1, city2, distance) VALUES

  ('ANC', 'FAI',  359),

  ('ATL', 'ORD',  715),

  ('ATL', 'IAH',  800),

  ('ATL', 'MCI',  805),

  ('ATL', 'MIA',  665),

  ('ATL', 'JFK',  865),

  ('DEN', 'IAH', 1120),

  ('DEN', 'MCI',  600),

  ('DEN', 'LAX', 1025),

  ('DEN', 'MSP',  915),

  ('DEN', 'SEA', 1335),

  ('DEN', 'SFO', 1270),

  ('IAH', 'MCI',  795),

  ('IAH', 'LAX', 1550),

  ('IAH', 'MIA', 1190),

  ('JFK', 'ORD',  795),

  ('LAX', 'SFO',  385),

  ('MCI', 'ORD',  525),

  ('MCI', 'MSP',  440),

  ('MSP', 'ORD',  410),

  ('MSP', 'SEA', 2015),

  ('SEA', 'SFO',  815);

 TABLE 12-4 Contents of Cities Table

 cityid city region country

 ANC Anchorage AK USA

 ATL Atlanta GA USA

 DEN Denver CO USA

  ('LAX', 'Los Angeles', 'CA', 'USA'),

  ('MIA', 'Miami', 'FL', 'USA'),

  ('MSP', 'Minneapolis', 'MN', 'USA'),

  ('JFK', 'New York', 'NY', 'USA'),

  ('SEA', 'Seattle', 'WA', 'USA'),

  ('SFO', 'San Francisco', 'CA', 'USA'),

  ('ANC', 'Anchorage', 'AK', 'USA'),

  ('FAI', 'Fairbanks', 'AK', 'USA');

CREATE TABLE dbo.Roads

( 

  city1       CHAR(3) NOT NULL REFERENCES dbo.Cities,

  city2       CHAR(3) NOT NULL REFERENCES dbo.Cities,

  distance INT     NOT NULL,

  PRIMARY KEY(city1, city2),

  CHECK(city1 < city2),

  CHECK(distance > 0) 

); 

INSERT INTO dbo.Roads(city1, city2, distance) VALUES

  ('ANC', 'FAI',  359),

  ('ATL', 'ORD',  715),

  ('ATL', 'IAH',  800),

  ('ATL', 'MCI',  805),

  ('ATL', 'MIA',  665),

  ('ATL', 'JFK',  865),

  ('DEN', 'IAH', 1120),

  ('DEN', 'MCI',  600),

  ('DEN', 'LAX', 1025),

  ('DEN', 'MSP',  915),

  ('DEN', 'SEA', 1335),

  ('DEN', 'SFO', 1270),

  ('IAH', 'MCI',  795),

  ('IAH', 'LAX', 1550),

  ('IAH', 'MIA', 1190),

  ('JFK', 'ORD',  795),

  ('LAX', 'SFO',  385),

  ('MCI', 'ORD',  525),

  ('MCI', 'MSP',  440),

  ('MSP', 'ORD',  410),

  ('MSP', 'SEA', 2015),

  ('SEA', 'SFO',  815);

cityid city region country

C12626034.indd   668 2/20/2009   8:20:32 PM



 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 669

 TABLE 12-4 Contents of Cities Table

 cityid city region country

 FAI Fairbanks AK USA

 IAH Houston TX USA

 JFK New York NY USA

 LAX Los Angeles CA USA

 MCI Kansas City KS USA

 MIA Miami FL USA

 MSP Minneapolis MN USA

 ORD Chicago IL USA

 SEA Seattle WA USA

 SFO San Francisco CA USA

TABLE 12-5 Contents of Roads Table

 city1 city2 distance

 ANC FAI 359

 ATL IAH 800

 ATL JFK 865

 ATL MCI 805

 ATL MIA 665

 ATL ORD 715

 DEN IAH 1120

 DEN LAX 1025

 DEN MCI 600

 DEN MSP 915

 DEN SEA 1335

 DEN SFO 1270

 IAH LAX 1550

 IAH MCI 795

 IAH MIA 1190

 JFK ORD 795

 LAX SFO 385

 MCI MSP 440

 MCI ORD 525

 MSP ORD 410

 MSP SEA 2015

 SEA SFO 815

cityid city region country

city1 city2 distance
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 The Roads table represents an undirected cyclic weighted graph. Each edge (road) is 
 represented by a row in the table. The attributes city1 and city2 are two city IDs  representing 
the nodes of the edge. The weight in this case is the distance attribute, which holds the 
 distance between the cities in miles. Note that the Roads table has a CHECK constraint 
(city1 < city2) as part of its schema defi nition to reject attempts to enter the same edge 
twice (for example, {SEA, SFO} and {SFO, SEA}). 

 Having all the scenarios and sample data in place, let’s go over the approaches to  treatment 
of graphs, trees, and hierarchies. I’ll cover three main approaches: iterative/recursive, 
 materialized path, and nested sets. 

Iteration/Recursion

 Iterative approaches apply some form of loops or recursion. Many iterative algorithms 
 traverse graphs. Some traverse graphs a node at a time and are usually implemented with 
cursors, but these are typically very slow. I will focus on algorithms that traverse graphs one 
level at a time using a combination of iterative or recursive logic and set-based queries. Given 
a set of nodes U, the next level of subordinates refers to the set V, which consists of the direct 
subordinates (children) of the nodes in U. In my experience, implementations of  iterative 
 algorithms that traverse a graph one level at a time perform much better than the ones that 
traverse a graph one node at a time.  

 Using iterative solutions has several advantages over the other methods. First, you don’t 
need to materialize any extra information describing the graph to the database besides the 
node IDs in the edges. In other words, you don’t need to redesign your tables. The solutions 
traverse the graph by relying solely on the stored edge information—for example, (mgrid, 
empid), (assemblyid, partid), (city1, city2), and so on. 

 Second, most of the solutions that apply to trees also apply to the more generic digraphs. 
In other words, most solutions that apply to graphs where only one path can lead to a given 
node also apply to graphs where multiple paths may lead to a given node. 

 Finally, most of the solutions that I will describe in this section support a virtually unlimited 
number of levels. 

 I will use two main tools to implement solutions in my examples: user-defi ned functions 
(UDFs) with loops and recursive common table expressions (CTEs). The core algorithms are 
similar in both versions. 

 In my solutions, I focused on UDFs and CTEs, but note that in some cases when performance 
of a UDF or CTE is not satisfactory, you might get better performance by implementing a 
 solution with a stored procedure. Stored procedures give you more control—for example, 
you can materialize and index interim sets in temporary tables. However, I used UDFs and 
CTEs because I wanted to focus on the algorithms and the clarity of the solutions. 
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Subordinates

 Let’s start with a classical request to return subordinates; for example, return all subordinates 
of a given employee. More technically, you’re after a subgraph/subtree of a given root in a 
digraph. The iterative algorithm is very simple: 

 Input: @root  

 Algorithm: 

 - set @lvl = 0; insert into table @Subs row for @root 

 - while there were rows in the previous level of employees: 

 - set @lvl = @lvl + 1; insert into table @Subs rows for the next level (mgrid in (empid values in 
previous level)) 

 - return @Subs 

 Run the following code to create the Subordinates1 function, which implements this  algorithm 
as a UDF: 

--------------------------------------------------------------------- 

-- Function: Subordinates1, Descendants 

-- 

-- Input   : @root INT: Manager id 

-- 

-- Output  : @Subs Table: id and level of subordinates of 

--                        input manager (empid = @root) in all levels 

-- 

-- Process : * Insert into @Subs row of input manager 

--           * In a loop, while previous insert loaded more than 0 rows 

--             insert into @Subs next level of subordinates 

--------------------------------------------------------------------- 

USE tempdb; 

GO 

IF OBJECT_ID('dbo.Subordinates1') IS NOT NULL 

  DROP FUNCTION dbo.Subordinates1; 

GO 

CREATE FUNCTION dbo.Subordinates1(@root AS INT) RETURNS @Subs TABLE 

( 

  empid INT NOT NULL PRIMARY KEY NONCLUSTERED, 

  lvl   INT NOT NULL, 

  UNIQUE CLUSTERED(lvl, empid)  -- Index will be used to filter level 

) 

AS 

BEGIN 

  DECLARE @lvl AS INT = 0;      -- Initialize level counter with 0 

 

  -- Insert root node into @Subs 

  INSERT INTO @Subs(empid, lvl) 

    SELECT empid, @lvl FROM dbo.Employees WHERE empid = @root; 

 

  WHILE @@rowcount > 0          -- while previous level had rows 
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  BEGIN 

    SET @lvl = @lvl + 1;        -- Increment level counter 

 

    -- Insert next level of subordinates to @Subs 

    INSERT INTO @Subs(empid, lvl) 

      SELECT C.empid, @lvl 

      FROM @Subs AS P           -- P = Parent 

        JOIN dbo.Employees AS C -- C = Child 

          ON P.lvl = @lvl - 1   -- Filter parents from previous level 

          AND C.mgrid = P.empid; 

  END 

 

  RETURN; 

END 

GO

 The function accepts the @root input parameter, which is the ID of the requested subtree’s 
root employee. The function returns the @Subs table variable, with all subordinates of 
 employee with ID = @root in all levels. Besides containing the employee attributes, @Subs 
also has a column called lvl that keeps track of the level in the subtree (0 for the subtree’s 
root and increasing from there by 1 in each iteration).  

 The function’s code keeps track of the current level being handled in the @lvl local variable, 
which is initialized with zero.  

 The function’s code fi rst inserts into @Subs the row from Employees where empid = @root.  

 Then in a loop, while the last insert affects more than zero rows, the code increments the 
@lvl variable’s value by one and inserts into @Subs the next level of employees—in other 
words, direct subordinates of the managers inserted in the previous level. 

 To insert the next level of employees into @Subs, the query in the loop joins @Subs 
( representing managers) with Employees (representing subordinates).  

 The lvl column is important because it allows you to isolate the managers that were  inserted 
into @Subs in the last iteration. To return only subordinates of the previously inserted 
 managers, the join condition fi lters from @Subs only rows where the lvl column is equal to 
the previous level (@lvl – 1). 

 To test the function, run the following code, which returns the subordinates of employee 3: 

SELECT empid, lvl FROM dbo.Subordinates1(3) AS S;

 This code generates the following output: 

empid       lvl

----------- -----------

3           0

7           1

9           2

11          2

12          3

13          3

14          3
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 You can verify that the output is correct by examining Figure 12-2 and following the subtree 
of the root employee (ID = 3). 

 To get other attributes of the employees besides just the employee ID, you can either rewrite 
the function and add those attributes to the @Subs table or simply join the function with the 
Employees table, like so: 

SELECT E.empid, E.empname, S.lvl 

FROM dbo.Subordinates1(3) AS S 

  JOIN dbo.Employees AS E 

    ON E.empid = S.empid;

 You get the following output: 

empid       empname                   lvl

----------- ------------------------- -----------

3           Ina                       0

7           Aaron                     1

9           Rita                      2

11          Gabriel                   2

12          Emilia                    3

13          Michael                   3

14          Didi                      3

 To limit the result set to leaf employees under the given root, simply add a fi lter with a NOT 
EXISTS predicate to select only employees that are not managers of other employees: 

SELECT empid  

FROM dbo.Subordinates1(3) AS P 

WHERE NOT EXISTS 

  (SELECT * FROM dbo.Employees AS C 

   WHERE c.mgrid = P.empid);

 This query returns employee IDs 11, 12, 13, and 14. 

 So far, you’ve seen a UDF implementation of a subtree under a given root, which contains a 
WHILE loop. The following code has the CTE solution, which contains no explicit loop: 

DECLARE @root AS INT = 3; 

 

WITH Subs 

AS 

( 

  -- Anchor member returns root node 

  SELECT empid, empname, 0 AS lvl  

  FROM dbo.Employees 

  WHERE empid = @root 

 

  UNION ALL 

 

  -- Recursive member returns next level of children 

  SELECT C.empid, C.empname, P.lvl + 1 

  FROM Subs AS P 

    JOIN dbo.Employees AS C 

      ON C.mgrid = P.empid 

) 

SELECT * FROM Subs;
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 This code generates the following output: 

empid       empname                   lvl

----------- ------------------------- -----------

3           Ina                       0

7           Aaron                     1

9           Rita                      2

11          Gabriel                   2

12          Emilia                    3

13          Michael                   3

14          Didi                      3

 The solution applies very similar logic to the UDF implementation. It’s simpler in the sense that 
you don’t need to explicitly defi ne the returned table or to fi lter the previous level’s managers. 

 The fi rst query in the CTE’s body returns the row from Employees for the given root  employee. 
It also returns zero as the level of the root employee. In a recursive CTE, a query that doesn’t 
have any recursive references is known as an anchor member. 

 The second query in the CTE’s body (following the UNION ALL set operation) has a  recursive 
reference to the CTE’s name. This makes it a recursive member, and it is treated in a special 
manner. The recursive reference to the CTE’s name (Subs) represents the result set returned 
previously. The recursive member query joins the previous result set, which represents 
the managers in the previous level, with the Employees table to return the next level of 
 employees. The recursive query also calculates the level value as the employee’s manager 
level plus one. The fi rst time that the recursive member is invoked, Subs stands for the result 
set returned by the anchor member (root employee). There’s no explicit termination check 
for the recursive member; rather, it is invoked repeatedly until it returns an empty set. Thus, 
the fi rst time it is invoked, it returns direct subordinates of the subtree’s root employee. The 
second time it is invoked, Subs represents the result set of the fi rst invocation of the  recursive 
member (fi rst level of subordinates), so it returns the second level of subordinates. The 
 recursive member is invoked repeatedly until there are no more subordinates, in which case 
it returns an empty set and recursion stops. 

 The reference to the CTE name in the outer query represents the UNION ALL of all the result 
sets returned by the invocation of the anchor member and all the invocations of the recursive 
member. 

 As I mentioned earlier, using iterative logic to return a subgraph of a digraph where multiple 
paths might exist to a node is similar to returning a subtree. Run the following code to create 
the PartsExplosion function: 

--------------------------------------------------------------------- 

-- Function: PartsExplosion, Parts Explosion 

-- 

-- Input   : @root INT: assembly id 

-- 

-- Output  : @PartsExplosion Table: 

--              id and level of contained parts of input part 

--              in all levels 

-- 
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-- Process : * Insert into @PartsExplosion row of input root part 

--           * In a loop, while previous insert loaded more than 0 rows 

--             insert into @PartsExplosion next level of parts 

--------------------------------------------------------------------- 

USE tempdb; 

GO 

IF OBJECT_ID('dbo.PartsExplosion') IS NOT NULL 

  DROP FUNCTION dbo.PartsExplosion; 

GO 

CREATE FUNCTION dbo.PartsExplosion(@root AS INT) 

  RETURNS @PartsExplosion Table 

( 

  partid INT           NOT NULL, 

  qty    DECIMAL(8, 2) NOT NULL, 

  unit   VARCHAR(3)    NOT NULL, 

  lvl    INT           NOT NULL, 

  n      INT           NOT NULL IDENTITY, -- surrogate key 

  UNIQUE CLUSTERED(lvl, n)  -- Index will be used to filter lvl 

) 

AS 

BEGIN 

  DECLARE @lvl AS INT = 0;       -- Initialize level counter with 0 

 

  -- Insert root node to @PartsExplosion 

  INSERT INTO @PartsExplosion(partid, qty, unit, lvl) 

    SELECT partid, qty, unit, @lvl 

    FROM dbo.BOM 

    WHERE partid = @root; 

 

  WHILE @@rowcount > 0           -- while previous level had rows 

  BEGIN 

    SET @lvl = @lvl + 1;         -- Increment level counter 

 

    -- Insert next level of subordinates to @PartsExplosion 

    INSERT INTO @PartsExplosion(partid, qty, unit, lvl) 

      SELECT C.partid, P.qty * C.qty, C.unit, @lvl 

      FROM @PartsExplosion AS P  -- P = Parent 

        JOIN dbo.BOM AS C        -- C = Child 

          ON P.lvl = @lvl - 1    -- Filter parents from previous level 

          AND C.assemblyid = P.partid; 

  END 

 

  RETURN; 

END 

GO

 The function accepts a part ID representing an assembly in a BOM, and it returns the parts 
explosion (the direct and indirect subitems) of the assembly. The implementation of the 
PartsExplosion function is similar to the implementation of the function Subordinates1. The 
row for the root part is inserted into the @PartsExplosion table variable (the function’s 
 output parameter). And then in a loop, while the previous insert found more than zero rows, 
the next level parts are inserted into @PartsExplosion. A small addition here is specifi c to a 
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BOM: calculating the quantity. The root part’s quantity is simply the one stored in the part’s 
row. The contained (child) part’s quantity is the quantity of its containing (parent) item 
 multiplied by its own quantity. 

 Run the following code to test the function, returning the part explosion of partid 2 (White Tea):  

SELECT P.partid, P.partname, PE.qty, PE.unit, PE.lvl 

FROM dbo.PartsExplosion(2) AS PE 

  JOIN dbo.Parts AS P 

    ON P.partid = PE.partid;

 This code generates the following output: 

partid  partname     qty     unit lvl

------- ------------ ------- ---- ----

2       White Tea    1.00    EA   0

6       Cup Cover    1.00    EA   1

7       Regular Cup  1.00    EA   1

10      Tea Shot     1.00    EA   1

14      Water        205.00  mL   1

11      Milk         25.00   mL   1

13      Tea Leaves   5.00    g    2

14      Water        20.00   mL   2

 You can check the correctness of this output by examining Figure 12-3. 

 Following is the CTE solution for the parts explosion, which, again, is similar to the subtree 
solution with the addition of the quantity calculation: 

DECLARE @root AS INT = 2; 

 

WITH PartsExplosion 

AS 

( 

  -- Anchor member returns root part 

  SELECT partid, qty, unit, 0 AS lvl 

  FROM dbo.BOM 

  WHERE partid = @root 

 

  UNION ALL 

 

  -- Recursive member returns next level of parts 

  SELECT C.partid, CAST(P.qty * C.qty AS DECIMAL(8, 2)), 

    C.unit, P.lvl + 1 

  FROM PartsExplosion AS P 

    JOIN dbo.BOM AS C 

      ON C.assemblyid = P.partid 

) 

SELECT P.partid, P.partname, PE.qty, PE.unit, PE.lvl 

FROM PartsExplosion AS PE 

  JOIN dbo.Parts AS P 

    ON P.partid = PE.partid;

 A parts explosion might contain more than one occurrence of the same part because 
 different parts in the assembly might contain the same subpart. For example, you can 
 notice in the result of the explosion of partid 2 that water appears twice because white 
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tea  contains 205 milliliters of water directly, and it also contains a tea shot, which in turn 
 contains 20  milliliters of water. You might want to aggregate the result set by part and unit 
as follows: 

SELECT P.partid, P.partname, PES.qty, PES.unit 

FROM (SELECT partid, unit, SUM(qty) AS qty 

      FROM dbo.PartsExplosion(2) AS PE 

      GROUP BY partid, unit) AS PES 

  JOIN dbo.Parts AS P 

    ON P.partid = PES.partid;

 You get the following output: 

partid  partname     qty     unit

------- ------------ ------- ----

2       White Tea    1.00    EA

6       Cup Cover    1.00    EA

7       Regular Cup  1.00    EA

10      Tea Shot     1.00    EA

13      Tea Leaves   5.00    g

11      Milk         25.00   mL

14      Water        225.00  mL

 I won’t get into issues with grouping of parts that might contain different units of  measurements 
here. Obviously, you’ll need to deal with those by applying conversion factors. 

 As another example, the following code explodes part 5 (Double Espresso):  

SELECT P.partid, P.partname, PES.qty, PES.unit 

FROM (SELECT partid, unit, SUM(qty) AS qty 

      FROM dbo.PartsExplosion(5) AS PE 

      GROUP BY partid, unit) AS PES 

  JOIN dbo.Parts AS P 

    ON P.partid = PES.partid;

 This code generates the following output: 

partid  partname         qty     unit

------- ---------------- ------- ----

5       Double Espresso  1.00    EA

9       Espresso Cup     1.00    EA

12      Coffee Shot      2.00    EA

16      Ground Coffee    30.00   g

17      Coffee Beans     450.00  g

14      Water            40.00   mL

 Going back to returning a subtree of a given employee, in some cases you might need to 
limit the number of returned levels. To achieve this, you need to make a minor addition 
to the original algorithm: 

 Input: @root, @maxlevels (besides root) 

 Algorithm: 

 - set @lvl = 0; insert into table @Subs row for @root 
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 - while there were rows in the previous level, and @lvl < @maxlevels: 

 - set @lvl = @lvl + 1; insert into table @Subs rows for the next level (mgrid in (empid values in 
previous level)) 

 - return @Subs 

 Run the following code to create the Subordinates2 function, which is a revision of Subordinates1 
that also supports a level limit: 

--------------------------------------------------------------------- 

-- Function: Subordinates2, 

--           Descendants with optional level limit 

-- 

-- Input   : @root      INT: Manager id 

--           @maxlevels INT: Max number of levels to return  

-- 

-- Output  : @Subs TABLE: id and level of subordinates of 

--                        input manager in all levels <= @maxlevels 

-- 

-- Process : * Insert into @Subs row of input manager 

--           * In a loop, while previous insert loaded more than 0 rows 

--             and previous level is smaller than @maxlevels 

--             insert into @Subs next level of subordinates 

--------------------------------------------------------------------- 

USE tempdb; 

GO 

IF OBJECT_ID('dbo.Subordinates2') IS NOT NULL 

  DROP FUNCTION dbo.Subordinates2; 

GO 

CREATE FUNCTION dbo.Subordinates2 

  (@root AS INT, @maxlevels AS INT = NULL) RETURNS @Subs TABLE 

( 

  empid INT NOT NULL PRIMARY KEY NONCLUSTERED, 

  lvl   INT NOT NULL, 

  UNIQUE CLUSTERED(lvl, empid)  -- Index will be used to filter level 

) 

AS 

BEGIN 

  DECLARE @lvl AS INT = 0;      -- Initialize level counter with 0 

  -- If input @maxlevels is NULL, set it to maximum integer 

  -- to virtually have no limit on levels 

  SET @maxlevels = COALESCE(@maxlevels, 2147483647); 

 

  -- Insert root node to @Subs 

  INSERT INTO @Subs(empid, lvl) 

    SELECT empid, @lvl FROM dbo.Employees WHERE empid = @root; 

 

  WHILE @@rowcount > 0          -- while previous level had rows 

    AND @lvl < @maxlevels       -- and previous level < @maxlevels 

  BEGIN 

    SET @lvl = @lvl + 1;        -- Increment level counter 
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    -- Insert next level of subordinates to @Subs 

    INSERT INTO @Subs(empid, lvl) 

      SELECT C.empid, @lvl 

      FROM @Subs AS P           -- P = Parent 

        JOIN dbo.Employees AS C -- C = Child 

          ON P.lvl = @lvl - 1   -- Filter parents from previous level 

          AND C.mgrid = P.empid; 

  END 

 

  RETURN; 

END 

GO

 In addition to the original input, Subordinates2 also accepts the @maxlevels input that  indicates 
the maximum number of requested levels under @root to return. For no limit on levels, a NULL 
should be specifi ed in @maxlevels. Notice that if @maxlevels is NULL, the function substitutes 
the NULL with the maximum possible integer value to practically have no limit. 

 The loop’s condition, besides checking that the previous insert affected more than zero 
rows, also checks that the @lvl variable is smaller than @maxlevels. Except for these minor 
 revisions, the function’s implementation is the same as Subordinates1. 

 To test the function, run the following code that requests the subordinates of employee 3 in 
all levels (@maxlevels is NULL): 

SELECT empid, lvl 

FROM dbo.Subordinates2(3, NULL) AS S;

 You get the following output: 

empid       lvl

----------- -----------

3           0

7           1

9           2

11          2

12          3

13          3

14          3

 To get only two levels of subordinates under employee 3, run the following code: 

SELECT empid, lvl 

FROM dbo.Subordinates2(3, 2) AS S;

 This code generates the following output: 

empid       lvl

----------- -----------

3           0

7           1

9           2

11          2
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 To get only the second-level employees under employee 3, add a fi lter on the level: 

SELECT empid 

FROM dbo.Subordinates2(3, 2) AS S 

WHERE lvl = 2;

 You get the following output: 

empid

-----------

9

11

 Caution To limit levels using a CTE, you might be tempted to use the hint called MAXRECURSION, 
which raises an error and aborts when the number of invocations of the recursive member exceeds 
the input. However, MAXRECURSION was designed as a safety measure to avoid infi nite recursion 
in cases of problems in the data or bugs in the code. When not specifi ed, MAXRECURSION defaults 
to 100. You can specify MAXRECURSION 0 to have no limit, but be aware of the implications. 

 To test this approach, run the following code: 

DECLARE @root AS INT = 3; 

 

WITH Subs 

AS 

( 

  SELECT empid, empname, 0 AS lvl  

  FROM dbo.Employees 

  WHERE empid = @root 

 

  UNION ALL 

 

  SELECT C.empid, C.empname, P.lvl + 1 

  FROM Subs AS P 

    JOIN dbo.Employees AS C 

      ON C.mgrid = P.empid 

) 

SELECT * FROM Subs 

OPTION (MAXRECURSION 2);

 This is the same subtree CTE shown earlier, with the addition of the MAXRECURSION hint, 
 limiting recursive invocations to 2. This code generates the following output, including an error 
message: 

empid       empname                   lvl

----------- ------------------------- -----------

3           Ina                       0

7           Aaron                     1

9           Rita                      2

11          Gabriel                   2

Msg 530, Level 16, State 1, Line 4

The statement terminated. The maximum recursion 2 has been exhausted before 

    statement completion.
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 The code breaks as soon as the recursive member is invoked the third time. There are two 
 reasons not to use the MAXRECURSION hint to logically limit the number of levels. First, an error 
is generated even though there’s no logical error here. Second, SQL Server does not guarantee 
to return any result set if an error is generated. In this particular case, a result set was returned, 
but this is not guaranteed to happen in other cases. 

 To logically limit the number of levels, simply fi lter the level column in the outer query, as in 
the following code: 

DECLARE @root AS INT = 3, @maxlevels AS INT = 2; 

WITH Subs 

AS 

( 

  SELECT empid, empname, 0 AS lvl  

  FROM dbo.Employees 

  WHERE empid = @root 

 

  UNION ALL 

 

  SELECT C.empid, C.empname, P.lvl + 1 

  FROM Subs AS P 

    JOIN dbo.Employees AS C 

      ON C.mgrid = P.empid 

) 

SELECT * FROM Subs

WHERE lvl <= @maxlevels;

 It is interesting to note that in terms of optimization, SQL Server expands the defi nition 
of the CTE and applies the fi lter as part of the processing of the inner queries. This means 
that it doesn’t bother to fi rst process all levels and then fi lter the applicable ones; instead, it 
 processes only the requested number of levels. 

Ancestors

 Requests for ancestors of a given node are also common—for example, returning the 
chain of management for a given employee. Not surprisingly, the algorithms for returning 
 ancestors using iterative logic are similar to those for returning subordinates. Simply put, 
 instead of traversing the graph starting with a given node and proceeding “downward” to 
child nodes, you start with a given node and proceed “upward” to parent nodes. 

 Run the following code to create the Managers function: 

--------------------------------------------------------------------- 

-- Function: Managers, Ancestors with optional level limit 

-- 

-- Input   : @empid INT : Employee id 

--           @maxlevels : Max number of levels to return  

-- 
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-- Output  : @Mgrs Table: id and level of managers of 

--                        input employee in all levels <= @maxlevels 

-- 

-- Process : * In a loop, while current manager is not null 

--             and previous level is smaller than @maxlevels 

--             insert into @Mgrs current manager, 

--             and get next level manager 

--------------------------------------------------------------------- 

USE tempdb; 

GO 

IF OBJECT_ID('dbo.Managers') IS NOT NULL 

  DROP FUNCTION dbo.Managers; 

GO 

CREATE FUNCTION dbo.Managers 

  (@empid AS INT, @maxlevels AS INT = NULL) RETURNS @Mgrs TABLE 

( 

  empid INT NOT NULL PRIMARY KEY, 

  lvl   INT NOT NULL 

) 

AS 

BEGIN 

  IF NOT EXISTS(SELECT * FROM dbo.Employees WHERE empid = @empid) 

    RETURN;   

 

  DECLARE @lvl AS INT = 0;      -- Initialize level counter with 0 

  -- If input @maxlevels is NULL, set it to maximum integer 

  -- to virtually have no limit on levels 

  SET @maxlevels = COALESCE(@maxlevels, 2147483647); 

 

  WHILE @empid IS NOT NULL      -- while current employee has a manager 

    AND @lvl <= @maxlevels      -- and previous level <= @maxlevels 

  BEGIN 

    -- Insert current manager to @Mgrs 

    INSERT INTO @Mgrs(empid, lvl) VALUES(@empid, @lvl); 

    SET @lvl = @lvl + 1;        -- Increment level counter 

    -- Get next level manager 

    SET @empid = (SELECT mgrid FROM dbo.Employees 

                  WHERE empid = @empid); 

  END 

 

  RETURN; 

END 

GO

 The function accepts an input employee ID (@empid) and, optionally, a level limit 
(@ maxlevels), and it returns managers up to the requested number of levels from the  input 
employee (if a limit was specifi ed). The function fi rst checks whether the input node ID 
 exists and then breaks if it doesn’t. It then initializes the @lvl counter to zero, and it assigns 
the maximum possible integer to the @maxlevels variable if a NULL was specifi ed in it to 
 practically have no level limit. 

 The function then enters a loop that iterates as long as @empid is not NULL (because NULL 
 represents the root’s manager ID) and the current level is smaller than or equal to the 
 requested number of levels. The loop’s body inserts the current employee ID along with the 
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level counter into the @Mgrs output table variable, increments the level counter, and assigns 
the current employee’s manager’s ID to the @empid variable. 

 I should point out a couple of differences between this function and the subordinates  function. 
This function uses a scalar subquery to get the manager ID in the next level, unlike the 
 subordinates function, which used a join to get the next level of subordinates. The  reason for 
the difference is that a given employee can have only one manager, while a manager can have 
multiple subordinates. Also, this function uses the expression @lvl <= @maxlevels to limit the 
number of levels, while the subordinates function used the expression @lvl < @maxlevels. The 
reason for the discrepancy is that this function doesn’t have a separate INSERT statement to get 
the root employee and a separate one to get the next level of employees; rather, it has only one 
INSERT statement in the loop. Consequently, the @lvl counter here is  incremented  after the 
INSERT, while in the subordinates function it was incremented before the INSERT. 

 To test the function, run the following code: 

SELECT empid, lvl 

FROM dbo.Managers(8, NULL) AS M;

 This code returns managers in all levels of employee 8 and generates the following output: 

empid       lvl

----------- -----------

1           3

2           2

5           1

8           0

 The CTE solution to returning ancestors is almost identical to the CTE solution returning 
a subtree. The minor difference is that here the recursive member treats the CTE as the child 
part of the join and the Employees table as the parent part, while in the subtree solution the 
roles were opposite. Run the following code to get the management chain of employee 8: 

DECLARE @empid AS INT = 8; 

 

WITH Mgrs 

AS 

( 

  SELECT empid, mgrid, empname, 0 AS lvl  

  FROM dbo.Employees 

  WHERE empid = @empid 

 

  UNION ALL 

 

  SELECT P.empid, P.mgrid, P.empname, C.lvl + 1 

  FROM Mgrs AS C 

    JOIN dbo.Employees AS P 

      ON C.mgrid = P.empid 

) 

SELECT * FROM Mgrs;
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 This code generates the following output: 

empid  mgrid  empname  lvl

------ ------ -------- ----

8      5      Lilach   0

5      2      Jiru     1

2      1      Eitan    2

1      NULL   David    3

 To get only two levels of managers of employee 8 using the Managers function, run the 
 following code:  

SELECT empid, lvl 

FROM dbo.Managers(8, 2) AS M;

 You get the following output: 

empid       lvl

----------- -----------

2           2

5           1

8           0

 And to return only the second-level manager, simply add a fi lter in the outer query, returning 
employee ID 2: 

SELECT empid 

FROM dbo.Managers(8, 2) AS M 

WHERE lvl = 2;

 To return two levels of managers for employee 8 with a CTE, simply add a fi lter on the lvl 
 attribute in the outer query, like so: 

DECLARE @empid AS INT = 8, @maxlevels AS INT = 2; 

WITH Mgrs 

AS 

( 

  SELECT empid, mgrid, empname, 0 AS lvl  

  FROM dbo.Employees 

  WHERE empid = @empid 

 

  UNION ALL 

 

  SELECT P.empid, P.mgrid, P.empname, C.lvl + 1 

  FROM Mgrs AS C 

    JOIN dbo.Employees AS P 

      ON C.mgrid = P.empid 

) 

SELECT * FROM Mgrs

WHERE lvl <= @maxlevels;
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Subgraph/Subtree with Path Enumeration

 In the subgraph/subtree solutions, you might also want to generate for each node an 
 enumerated path consisting of all node IDs in the path to that node, using some  separator 
(such as ‘.’). For example, the enumerated path for employee 8 in the Organization 
Chart  scenario is ‘.1.2.5.8.’ because employee 5 is the manager of employee 8, employee 2 
is the manager of 5, employee 1 is the manager of 2, and employee 1 is the root employee. 

 The enumerated path has many uses—for example, to sort the nodes from the hierarchy in 
the output, to detect cycles, and other uses that I’ll describe later in the “Materialized Path” 
section. Fortunately, you can make minor additions to the solutions I provided for returning a 
subgraph/subtree to calculate the enumerated path without any additional I/O. 

 The algorithm starts with the subtree’s root node and in a loop or recursive call returns the 
next level. For the root node, the path is simply ‘.’ + node id + ‘.’. For successive level nodes, 
the path is parent’s path + node id + ‘.’. 

 Run the following code to create the Subordinates3 function, which is the same as 
Subordinates2 except for the addition of the enumerated path calculation: 

--------------------------------------------------------------------- 

-- Function: Subordinates3, 

--           Descendants with optional level limit 

--           and path enumeration 

-- 

-- Input   : @root      INT: Manager id 

--           @maxlevels INT: Max number of levels to return  

-- 

-- Output  : @Subs TABLE: id, level and materialized ancestors path 

--                        of subordinates of input manager 

--                        in all levels <= @maxlevels 

-- 

-- Process : * Insert into @Subs row of input manager 

--           * In a loop, while previous insert loaded more than 0 rows 

--             and previous level is smaller than @maxlevels: 

--             - insert into @Subs next level of subordinates 

--             - calculate a materialized ancestors path for each 

--               by concatenating current node id to parent's path 

--------------------------------------------------------------------- 

USE tempdb; 

GO 

IF OBJECT_ID('dbo.Subordinates3') IS NOT NULL 

  DROP FUNCTION dbo.Subordinates3; 

GO 

CREATE FUNCTION dbo.Subordinates3 

  (@root AS INT, @maxlevels AS INT = NULL) RETURNS @Subs TABLE 

( 

  empid INT          NOT NULL PRIMARY KEY NONCLUSTERED, 

  lvl   INT          NOT NULL, 

  path  VARCHAR(900) NOT NULL 

  UNIQUE CLUSTERED(lvl, empid)  -- Index will be used to filter level 

) 
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AS 

BEGIN 

  DECLARE @lvl AS INT = 0;      -- Initialize level counter with 0 

  -- If input @maxlevels is NULL, set it to maximum integer 

  -- to virtually have no limit on levels 

  SET @maxlevels = COALESCE(@maxlevels, 2147483647); 

 

  -- Insert root node to @Subs 

  INSERT INTO @Subs(empid, lvl, path) 

    SELECT empid, @lvl, '.' + CAST(empid AS VARCHAR(10)) + '.'     

    FROM dbo.Employees WHERE empid = @root; 

 

  WHILE @@rowcount > 0          -- while previous level had rows 

    AND @lvl < @maxlevels       -- and previous level < @maxlevels 

  BEGIN 

    SET @lvl = @lvl + 1;        -- Increment level counter 

 

    -- Insert next level of subordinates to @Subs 

    INSERT INTO @Subs(empid, lvl, path) 

      SELECT C.empid, @lvl, 

        P.path + CAST(C.empid AS VARCHAR(10)) + '.' 

      FROM @Subs AS P           -- P = Parent 

        JOIN dbo.Employees AS C -- C = Child 

          ON P.lvl = @lvl - 1   -- Filter parents from previous level 

          AND C.mgrid = P.empid; 

  END 

 

  RETURN; 

END 

GO

 Run the following code to returns all subordinates of employee 1 and their paths: 

SELECT empid, lvl, path 

FROM dbo.Subordinates3(1, NULL) AS S;

 This code generates the following output: 

empid       lvl         path

----------- ----------- ------------------

1           0           .1.

2           1           .1.2.

3           1           .1.3.

4           2           .1.2.4.

5           2           .1.2.5.

6           2           .1.2.6.

7           2           .1.3.7.

8           3           .1.2.5.8.

9           3           .1.3.7.9.

10          3           .1.2.5.10.

11          3           .1.3.7.11.

12          4           .1.3.7.9.12.

13          4           .1.3.7.9.13.

14          4           .1.3.7.9.14.
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 With both the lvl and path values, you can easily return output that graphically shows the 
hierarchical relationships of the employees in the subtree: 

SELECT E.empid, REPLICATE(' | ', lvl) + empname AS empname 

FROM dbo.Subordinates3(1, NULL) AS S 

  JOIN dbo.Employees AS E 

    ON E.empid = S.empid 

ORDER BY path;

 The query joins the subtree returned from the Subordinates3 function with the Employees 
table based on employee ID match. From the function, you get the lvl and path values, and 
from the table, you get other employee attributes of interest, such as the employee name. 
You generate indentation before the employee name by replicating a string (in this case, ‘ | ‘) 
lvl times and concatenating the employee name to it. Sorting the employees by the path 
column produces a correct hierarchical sort, which requires a child node to  appear  later than 
its parent node—or, in other words, that a child node will have a higher sort value than its 
parent node. By defi nition, a child’s path is greater than a parent’s path because it is prefi xed 
with the parent’s path. Following is the output of this query: 

empid       empname

----------- ------------------------

1           David

2            | Eitan

4            |  | Seraph

5            |  | Jiru

10           |  |  | Sean

8            |  |  | Lilach

6            |  | Steve

3            | Ina

7            |  | Aaron

11           |  |  | Gabriel

9            |  |  | Rita

12           |  |  |  | Emilia

13           |  |  |  | Michael

14           |  |  |  | Didi

 Similarly, you can add path calculation to the subtree CTE, like so: 

DECLARE @root AS INT = 1; 

 

WITH Subs 

AS 

( 

  SELECT empid, empname, 0 AS lvl, 

    -- Path of root = '.' + empid + '.' 

    CAST('.' + CAST(empid AS VARCHAR(10)) + '.' 

         AS VARCHAR(MAX)) AS path 

  FROM dbo.Employees 

  WHERE empid = @root 

 

  UNION ALL 
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  SELECT C.empid, C.empname, P.lvl + 1, 

    -- Path of child = parent's path + child empid + '.' 

    CAST(P.path + CAST(C.empid AS VARCHAR(10)) + '.' 

         AS VARCHAR(MAX)) 

  FROM Subs AS P 

    JOIN dbo.Employees AS C 

      ON C.mgrid = P.empid 

) 

SELECT empid, REPLICATE(' | ', lvl) + empname AS empname 

FROM Subs 

ORDER BY path;

 Note Corresponding columns between an anchor member and a recursive member of a CTE 
must match in both data type and size. That’s why I converted the path strings in both to the 
same data type and size: VARCHAR(MAX). 

Sorting

 Sorting is a presentation request and usually is used by the client rather than the server. 
This means that you might want the sorting of hierarchies to take place on the client. In this 
 section, however, I’ll present server-side sorting techniques with T-SQL that you can use when 
you prefer to handle sorting on the server. 

 A topological sort of a DAG is defi ned as one that provides a child with a higher sort value 
than its parent. Occasionally, I will refer to a topological sort informally as correct  hierarchical 
sort. More than one way of ordering the items in a DAG may qualify as correct. You might or 
might not care about the order among siblings. If the order among siblings doesn’t  matter 
to you, you can achieve sorting by constructing an enumerated path for each node, as 
 described in the previous section, and sort the nodes by that path. 

 Remember that the enumerated path is a character string made of the IDs of the ancestors 
leading to the node, using some separator. This means that siblings are sorted by their node 
IDs. Because the path is character based, you get character-based sorting of IDs, which might 
be different than the integer sorting. For example, employee ID 11 sorts lower than its sibling 
with ID 9 (‘.1.3.7.11.’ < ‘.1.3.7.9.’), even though 9 < 11. You can guarantee that sorting by the 
enumerated path produces a correct hierarchical sort, but it doesn’t guarantee the order of 
siblings. If you need such a guarantee, you need a different solution. 

 For optimal sorting fl exibility, you might want to guarantee the following: 

  1. A correct topological sort—that is, a sort in which a child has a higher sort value than 
its parent’s. 

  2. Siblings are sorted in a requested order (for example, by empname or by salary). 

  3. Integer sort values are generated, as opposed to lengthy strings. 
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 In the enumerated path solution, requirement 1 is met. Requirement 2 is not met because 
the path is made of node IDs and is character based; comparison and sorting among 
 characters is based on collation properties, yielding different comparison and sorting 
 behavior than with integers. Requirement 3 is not met because the solution orders the results 
by the path, which is lengthy compared to an integer value. To meet all three requirements, 
we can still make use of a path for each node, but with several differences: 

■  Instead of node IDs, the path is constructed from values that represent a position (row 
number) among nodes based on a requested order (for example, empname or salary). 

■  Instead of using a character string with varying lengths for each level in the path, use a 
binary string with a fi xed length for each level. 

■  Once the binary paths are constructed, calculate integer values representing path order 
(row numbers) and ultimately use those to sort the hierarchy. 

 The core algorithm to traverse the subtree is maintained, but the paths are constructed 
 differently, based on the binary representation of row numbers. The implementation uses 
CTEs and the ROW_NUMBER function. 

 Run the following code to return the subtree of employee 1, with siblings sorted by  empname 
with indentation: 

DECLARE @root AS INT = 1; 

 

WITH Subs 

AS 

( 

  SELECT empid, empname, 0 AS lvl, 

    -- Path of root is 1 (binary) 

    CAST(1 AS VARBINARY(MAX)) AS sort_path 

  FROM dbo.Employees 

  WHERE empid = @root 

 

  UNION ALL 

 

  SELECT C.empid, C.empname, P.lvl + 1, 

    -- Path of child = parent's path + child row number (binary) 

    P.sort_path + CAST( 

      ROW_NUMBER() OVER(PARTITION BY C.mgrid 

                        ORDER BY C.empname) -- sort col(s) 

      AS BINARY(4)) 

  FROM Subs AS P 

    JOIN dbo.Employees AS C 

      ON C.mgrid = P.empid 

) 

SELECT empid, ROW_NUMBER() OVER(ORDER BY sort_path) AS sortval, 

  REPLICATE(' | ', lvl) + empname AS empname 

FROM Subs 

ORDER BY sortval;
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 This code generates the following output: 

empid  sortval  empname

------ -------- --------------------

1      1        David

2      2         | Eitan

5      3         |  | Jiru

8      4         |  |  | Lilach

10     5         |  |  | Sean

4      6         |  | Seraph

6      7         |  | Steve

3      8         | Ina

7      9         |  | Aaron

11     10        |  |  | Gabriel

9      11        |  |  | Rita

14     12        |  |  |  | Didi

12     13        |  |  |  | Emilia

13     14        |  |  |  | Michael

 The anchor member query returns the root, with 1 as the binary path. The recursive  member 
query calculates the row number of an employee among siblings based on empname 
 ordering and concatenates that row number converted to binary(4) to the parent’s path. 

 The outer query simply calculates row numbers to generate the sort values based on the 
binary path order, and it sorts the subtree by those sort values, adding indentation based on 
the calculated level. 

 If you want siblings sorted in a different way, you need to change only the ORDER BY list 
of the ROW_NUMBER function in the recursive member query. The following code has the 
 revision that sorts siblings by salary:  

DECLARE @root AS INT = 1; 

 

WITH Subs 

AS 

( 

  SELECT empid, empname, salary, 0 AS lvl, 

    -- Path of root = 1 (binary) 

    CAST(1 AS VARBINARY(MAX)) AS sort_path 

  FROM dbo.Employees 

  WHERE empid = @root 

 

  UNION ALL 

 

  SELECT C.empid, C.empname, C.salary, P.lvl + 1, 

    -- Path of child = parent's path + child row number (binary) 

    P.sort_path + CAST( 

      ROW_NUMBER() OVER(PARTITION BY C.mgrid 

                        ORDER BY C.salary) -- sort col(s) 

      AS BINARY(4)) 

  FROM Subs AS P 

    JOIN dbo.Employees AS C 

      ON C.mgrid = P.empid 

) 
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SELECT empid, salary, ROW_NUMBER() OVER(ORDER BY sort_path) AS sortval, 

  REPLICATE(' | ', lvl) + empname AS empname 

FROM Subs 

ORDER BY sortval;

 This code generates the following output: 

empid  salary    sortval  empname

------ --------- -------- ---------------------

1      10000.00  1        David

2      7000.00   2         | Eitan

6      4500.00   3         |  | Steve

4      5000.00   4         |  | Seraph

5      5500.00   5         |  | Jiru

10     3000.00   6         |  |  | Sean

8      3500.00   7         |  |  | Lilach

3      7500.00   8         | Ina

7      5000.00   9         |  | Aaron

9      3000.00   10        |  |  | Rita

14     1500.00   11        |  |  |  | Didi

12     2000.00   12        |  |  |  | Emilia

13     2000.00   13        |  |  |  | Michael

11     3000.00   14        |  |  | Gabriel

 Note If you need to sort siblings by a single integer sort column (for example, by empid), 
you can construct the binary sort path from the sort column values themselves instead of row 
 numbers based on that column. 

Cycles

 Cycles in graphs are paths that begin and end at the same node. In some scenarios, cycles are 
natural (for example, road systems). If you have a cycle in what’s supposed to be an acyclic 
graph, it might indicate a problem in your data. Either way, you need a way to identify them. If a 
cycle indicates a problem in the data, you need to identify the problem and fi x it. If cycles are 
natural, you don’t want to endlessly keep returning to the same point while traversing the graph.  

 Cycle detection with T-SQL can be a very complex and expensive task. However, I’ll show 
you a fairly simple technique to detect cycles with reasonable performance, relying on path 
 enumeration, which I discussed earlier. For demonstration purposes, I’ll use this technique 
to detect cycles in the tree represented by the Employees table, but you can apply this 
 technique to forests as well and also to more generic graphs, as I will demonstrate later.  

 Suppose that Didi (empid 14) is unhappy with her location in the company’s management 
 hierarchy. Didi also happens to be the database administrator and has full access to the Employees 
table. Didi runs the following code, making her the manager of the CEO and  introducing a cycle: 

UPDATE dbo.Employees SET mgrid = 14 WHERE empid = 1;

C12626034.indd   691 2/20/2009   8:20:34 PM



692 Inside Microsoft SQL Server 2008: T-SQL Querying

 The Employees table currently contains the following cycle of employee IDs:

1  3  7  9  14  1 

 As a baseline, I’ll use one of the solutions I covered earlier, which constructs an enumerated 
path. In my examples, I’ll use a CTE solution, but of course you can apply the same logic to 
the UDF solution that uses loops. 

 Simply put, a cycle is detected when you follow a path leading to a given node if its  parent’s 
path already contains the child node ID. You can keep track of cycles by  maintaining a 
cycle column, which contain 0 if no cycle is detected and 1 if one is detected. In the  anchor 
 member of the solution CTE, the cycle column value is simply the constant 0 because 
 obviously the root level has no cycle. In the recursive member’s query, use a LIKE  predicate 
to check whether the parent’s path contains the child node ID. Return 1 if it does and 0 
 otherwise. Note the importance of the dots at both the beginning and end of both the 
path and the pattern—without the dots, you get an unwanted match for employee ID n 
(for  example n = 3) if the path contains employee ID nm (for example m = 15, nm = 315). 
The following code returns a subtree with an enumerated path calculation and has the 
 addition of the cycle column calculation:  

DECLARE @root AS INT = 1; 

 

WITH Subs 

AS 

( 

  SELECT empid, empname, 0 AS lvl, 

    CAST('.' + CAST(empid AS VARCHAR(10)) + '.' 

         AS VARCHAR(MAX)) AS path, 

    -- Obviously root has no cycle 

    0 AS cycle 

  FROM dbo.Employees 

  WHERE empid = @root 

 

  UNION ALL 

 

  SELECT C.empid, C.empname, P.lvl + 1, 

    CAST(P.path + CAST(C.empid AS VARCHAR(10)) + '.' 

         AS VARCHAR(MAX)), 

    -- Cycle detected if parent's path contains child's id 

    CASE WHEN P.path LIKE '%.' + CAST(C.empid AS VARCHAR(10)) + '.%' 

      THEN 1 ELSE 0 END 

  FROM Subs AS P 

    JOIN dbo.Employees AS C 

      ON C.mgrid = P.empid 

) 

SELECT empid, empname, cycle, path 

FROM Subs;

 If you run this code, it always breaks after 100 levels (the default MAXRECURSION value) 
 because cycles are detected but not avoided. You need to avoid cycles—in other words, 
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don’t pursue paths for which cycles are detected. To achieve this, simply add a fi lter to the 
recursive member that returns a child only if its parent’s cycle value is 0, like so: 

DECLARE @root AS INT = 1; 

 

WITH Subs 

AS 

( 

  SELECT empid, empname, 0 AS lvl, 

    CAST('.' + CAST(empid AS VARCHAR(10)) + '.' 

         AS VARCHAR(MAX)) AS path, 

    -- Obviously root has no cycle 

    0 AS cycle 

  FROM dbo.Employees 

  WHERE empid = @root 

 

  UNION ALL 

 

  SELECT C.empid, C.empname, P.lvl + 1, 

    CAST(P.path + CAST(C.empid AS VARCHAR(10)) + '.' 

         AS VARCHAR(MAX)), 

    -- Cycle detected if parent's path contains child's id 

    CASE WHEN P.path LIKE '%.' + CAST(C.empid AS VARCHAR(10)) + '.%' 

      THEN 1 ELSE 0 END 

  FROM Subs AS P 

    JOIN dbo.Employees AS C 

      ON C.mgrid = P.empid 

      AND P.cycle = 0 -- do not pursue branch for parent with cycle 

) 

SELECT empid, empname, cycle, path 

FROM Subs;

 This code generates the following output: 

empid  empname  cycle  path

------ -------- ------ -----------------

1      David    0      .1.

2      Eitan    0      .1.2.

3      Ina      0      .1.3.

7      Aaron    0      .1.3.7.

9      Rita     0      .1.3.7.9.

11     Gabriel  0      .1.3.7.11.

12     Emilia   0      .1.3.7.9.12.

13     Michael  0      .1.3.7.9.13.

14     Didi     0      .1.3.7.9.14.

1      David    1      .1.3.7.9.14.1.

4      Seraph   0      .1.2.4.

5      Jiru     0      .1.2.5.

6      Steve    0      .1.2.6.

8      Lilach   0      .1.2.5.8.

10     Sean     0      .1.2.5.10.

 Notice in the output that the second time employee 1 was reached, a cycle was detected for 
it, and the path was not pursued any further. In a cyclic graph, that’s all the logic you usually 
need to add. In our case, the cycle indicates a problem with the data that needs to be fi xed. 
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To isolate only the cyclic path (in our case, .1.3.7.9.14.1.), simply add the fi lter cycle = 1 to the 
outer query, like so: 

DECLARE @root AS INT = 1; 

 

WITH Subs 

AS 

( 

  SELECT empid, empname, 0 AS lvl, 

    CAST('.' + CAST(empid AS VARCHAR(10)) + '.' 

         AS VARCHAR(MAX)) AS path, 

    -- Obviously root has no cycle 

    0 AS cycle 

  FROM dbo.Employees 

  WHERE empid = @root 

 

  UNION ALL 

 

  SELECT C.empid, C.empname, P.lvl + 1, 

    CAST(P.path + CAST(C.empid AS VARCHAR(10)) + '.' 

         AS VARCHAR(MAX)), 

    -- Cycle detected if parent's path contains child's id 

    CASE WHEN P.path LIKE '%.' + CAST(C.empid AS VARCHAR(10)) + '.%' 

      THEN 1 ELSE 0 END 

  FROM Subs AS P 

    JOIN dbo.Employees AS C 

      ON C.mgrid = P.empid 

      AND P.cycle = 0 

) 

SELECT path FROM Subs WHERE cycle = 1;

 Now that the cyclic path has been identifi ed, you can fi x the data by running the following code: 

UPDATE dbo.Employees SET mgrid = NULL WHERE empid = 1;

 Didi will probably fi nd herself unemployed. 

Materialized Path

 So far I presented solutions where paths were computed when the code was executed. 
In the materialized path solution, the paths are stored so that they need not be computed 
 repeatedly. You basically store an enumerated path and a level for each node of the tree in 
two additional columns. The solution works optimally with trees and forests.  

 This approach has two main advantages over the iterative/recursive approach. Queries are 
simpler and set based (without relying on recursive CTEs). Also, queries typically perform 
much faster because they can rely on indexing of the path. 

 However, now that you have two additional attributes in the table, you need to keep them 
in sync with the tree as it undergoes changes. The cost of modifi cations determines whether 
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it’s reasonable to synchronize the path and level values with every change in the tree. For 
example, what is the effect of adding a new leaf to the tree? I like to refer to the effect of 
such a modifi cation informally as the shake effect. Fortunately, as I will elaborate on shortly, 
the shake effect of adding new leaves is minor. Also, the effect of dropping or moving a small 
subtree is typically not very signifi cant. 

 The enumerated path can get lengthy when the tree is deep—in other words, when there 
are many levels of managers. SQL Server limits the size of index keys to 900 bytes. To achieve 
the performance benefi ts of an index on the path column, you must limit the size of that 
 column to 900 bytes. Before you become concerned by this fact, try thinking in practical 
terms: 900 bytes is enough for trees with hundreds of levels. Will your tree ever reach more 
than  hundreds of levels? I’ll admit that I never had to model a hierarchy with hundreds of 
 levels. In short, apply common sense and think in practical terms. 

Maintaining Data

 First run the following code to create the Employees table with the new lvl and path columns: 

SET NOCOUNT ON; 

USE tempdb; 

GO 

IF OBJECT_ID('dbo.Employees') IS NOT NULL 

  DROP TABLE dbo.Employees; 

GO 

CREATE TABLE dbo.Employees 

( 

  empid   INT          NOT NULL PRIMARY KEY NONCLUSTERED, 

  mgrid   INT          NULL     REFERENCES dbo.Employees, 

  empname VARCHAR(25)  NOT NULL, 

  salary  MONEY        NOT NULL, 

  lvl     INT          NOT NULL, 

  path    VARCHAR(900) NOT NULL UNIQUE CLUSTERED 

); 

CREATE UNIQUE INDEX idx_unc_mgrid_empid ON dbo.Employees(mgrid, empid); 

GO

 To handle modifi cations in a tree, it’s recommended that you use stored procedures that also 
take care of the lvl and path values. Alternatively, you can use triggers, and their logic will be 
very similar to that in the following stored procedures. 

Adding Employees Who Manage No One (Leaves)

 Let’s start with handling inserts. The logic of the insert procedure is simple. If the new 
 employee is a root employee (that is, the manager ID is NULL), its level is 0, and its path is 
‘.’ + employee id + ‘.’. Otherwise, its level is the parent’s level plus 1, and its path is parent 
path + employee id + ‘.’. As you can fi gure out, the shake effect here is minor. You don’t need 
to make any changes to other employees, and to calculate the new employee’s lvl and path 
values, you need only to query the employee’s parent. 
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 Run the following code to create the AddEmp stored procedure and populate the Employees 
table with sample data: 

--------------------------------------------------------------------- 

-- Stored Procedure: AddEmp, 

--   Inserts new employee who manages no one into the table 

--------------------------------------------------------------------- 

USE tempdb; 

GO 

IF OBJECT_ID('dbo.AddEmp') IS NOT NULL 

  DROP PROC dbo.AddEmp; 

GO 

CREATE PROC dbo.AddEmp 

  @empid   INT, 

  @mgrid   INT, 

  @empname VARCHAR(25), 

  @salary  MONEY 

AS 

 

SET NOCOUNT ON; 

 

-- Handle case where the new employee has no manager (root) 

IF @mgrid IS NULL 

  INSERT INTO dbo.Employees(empid, mgrid, empname, salary, lvl, path) 

    VALUES(@empid, @mgrid, @empname, @salary, 

      0, '.' + CAST(@empid AS VARCHAR(10)) + '.'); 

-- Handle subordinate case (non-root) 

ELSE 

  INSERT INTO dbo.Employees(empid, mgrid, empname, salary, lvl, path) 

    SELECT @empid, @mgrid, @empname, @salary,  

      lvl + 1, path + CAST(@empid AS VARCHAR(10)) + '.' 

    FROM dbo.Employees 

    WHERE empid = @mgrid; 

GO

EXEC dbo.AddEmp 

  @empid = 1, @mgrid = NULL, @empname = 'David', @salary = $10000.00; 

EXEC dbo.AddEmp 

  @empid = 2, @mgrid = 1, @empname = 'Eitan', @salary = $7000.00; 

EXEC dbo.AddEmp 

  @empid = 3, @mgrid = 1, @empname = 'Ina', @salary = $7500.00; 

EXEC dbo.AddEmp 

  @empid = 4, @mgrid = 2, @empname = 'Seraph', @salary = $5000.00; 

EXEC dbo.AddEmp 

  @empid = 5, @mgrid = 2, @empname = 'Jiru', @salary = $5500.00; 

EXEC dbo.AddEmp 

  @empid = 6, @mgrid = 2, @empname = 'Steve', @salary = $4500.00; 

EXEC dbo.AddEmp 

  @empid = 7, @mgrid = 3, @empname = 'Aaron', @salary = $5000.00; 

EXEC dbo.AddEmp 

  @empid = 8, @mgrid = 5, @empname = 'Lilach', @salary = $3500.00; 

EXEC dbo.AddEmp 

  @empid = 9, @mgrid = 7, @empname = 'Rita', @salary = $3000.00; 

EXEC dbo.AddEmp 

  @empid = 10, @mgrid = 5, @empname = 'Sean', @salary = $3000.00; 
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EXEC dbo.AddEmp 

  @empid = 11, @mgrid = 7, @empname = 'Gabriel', @salary = $3000.00; 

EXEC dbo.AddEmp 

  @empid = 12, @mgrid = 9, @empname = 'Emilia', @salary = $2000.00; 

EXEC dbo.AddEmp 

  @empid = 13, @mgrid = 9, @empname = 'Michael', @salary = $2000.00; 

EXEC dbo.AddEmp 

  @empid = 14, @mgrid = 9, @empname = 'Didi', @salary = $1500.00;

 Run the following query to examine the resulting contents of Employees:  

SELECT empid, mgrid, empname, salary, lvl, path 

FROM dbo.Employees 

ORDER BY path;

 You get the following output: 

empid  mgrid  empname  salary    lvl  path

------ ------ -------- --------- ---- --------------

1      NULL   David    10000.00  0    .1.

2      1      Eitan    7000.00   1    .1.2.

4      2      Seraph   5000.00   2    .1.2.4.

5      2      Jiru     5500.00   2    .1.2.5.

10     5      Sean     3000.00   3    .1.2.5.10.

8      5      Lilach   3500.00   3    .1.2.5.8.

6      2      Steve    4500.00   2    .1.2.6.

3      1      Ina      7500.00   1    .1.3.

7      3      Aaron    5000.00   2    .1.3.7.

11     7      Gabriel  3000.00   3    .1.3.7.11.

9      7      Rita     3000.00   3    .1.3.7.9.

12     9      Emilia   2000.00   4    .1.3.7.9.12.

13     9      Michael  2000.00   4    .1.3.7.9.13.

14     9      Didi     1500.00   4    .1.3.7.9.14.

Moving a Subtree

 Moving a subtree is a bit tricky. A change in someone’s manager affects the row for that 
 employee and for all of his or her subordinates. The inputs are the root of the subtree and 
the new parent (manager) of that root. The level and path values of all employees in the 
 subtree are going to be affected. So you need to be able to isolate that subtree and also 
fi gure out how to revise the level and path values of all the subtree’s members. To isolate 
the affected subtree, you join the row for the root (R) with the Employees table (E) based 
on E.path LIKE R.path + ‘%’. To calculate the revisions in level and path, you need access to 
the rows of both the old manager of the root (OM) and the new one (NM). The new level 
value for all nodes is their current level value plus the difference in levels between the new 
 manager’s level and the old manager’s level. For example, if you move a subtree to a new 
location so that the difference in levels between the new manager and the old one is 2, you 
need to add 2 to the level value of all employees in the affected subtree. Similarly, to amend 
the path value of all nodes in the subtree, you need to remove the prefi x containing the 
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root’s old manager’s path and substitute it with the new manager’s path. This can be achieved 
simply by using the STUFF function.  

 Run the following code to create the MoveSubtree stored procedure, which implements the 
logic I just described: 

--------------------------------------------------------------------- 

-- Stored Procedure: MoveSubtree, 

--   Moves a whole subtree of a given root to a new location 

--   under a given manager 

--------------------------------------------------------------------- 

USE tempdb; 

GO 

IF OBJECT_ID('dbo.MoveSubtree') IS NOT NULL 

  DROP PROC dbo.MoveSubtree; 

GO 

CREATE PROC dbo.MoveSubtree 

  @root  INT, 

  @mgrid INT 

AS 

 

SET NOCOUNT ON; 

 

BEGIN TRAN; 

  -- Update level and path of all employees in the subtree (E) 

  -- Set level =  

  --   current level + new manager's level - old manager's level 

  -- Set path =  

  --   in current path remove old manager's path  

  --   and substitute with new manager's path 

  UPDATE E 

    SET lvl  = E.lvl + NM.lvl - OM.lvl, 

        path = STUFF(E.path, 1, LEN(OM.path), NM.path) 

  FROM dbo.Employees AS E          -- E = Employees    (subtree) 

    JOIN dbo.Employees AS R        -- R = Root         (one row) 

      ON R.empid = @root 

      AND E.path LIKE R.path + '%' 

    JOIN dbo.Employees AS OM       -- OM = Old Manager (one row) 

      ON OM.empid = R.mgrid 

    JOIN dbo.Employees AS NM       -- NM = New Manager (one row) 

      ON NM.empid = @mgrid; 

   

  -- Update root's new manager 

  UPDATE dbo.Employees SET mgrid = @mgrid WHERE empid = @root; 

COMMIT TRAN; 

GO

 The implementation of this stored procedure is simplistic and is provided for  demonstration 
 purposes. Good behavior is not guaranteed for invalid parameter choices. To make this  procedure 
more robust, you should also check the inputs to make sure that attempts to make someone 
his or her own manager or to generate cycles are rejected. For example, this can be achieved by 
using an EXISTS predicate with a SELECT statement that fi rst generates a result set with the new 
paths and making sure that the employees’ IDs do not appear in their managers’ paths.  
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 To test the procedure, fi rst examine the tree before moving the subtree:  

SELECT empid, REPLICATE(' | ', lvl) + empname AS empname, lvl, path 

FROM dbo.Employees 

ORDER BY path;

 You get the following output: 

empid       empname             lvl  path

----------- ------------------- ---- -------------

1           David               0    .1.

2            | Eitan            1    .1.2.

4            |  | Seraph        2    .1.2.4.

5            |  | Jiru          2    .1.2.5.

10           |  |  | Sean       3    .1.2.5.10.

8            |  |  | Lilach     3    .1.2.5.8.

6            |  | Steve         2    .1.2.6.

3            | Ina              1    .1.3.

7            |  | Aaron         2    .1.3.7.

11           |  |  | Gabriel    3    .1.3.7.11.

9            |  |  | Rita       3    .1.3.7.9.

12           |  |  |  | Emilia  4    .1.3.7.9.12.

13           |  |  |  | Michael 4    .1.3.7.9.13.

14           |  |  |  | Didi    4    .1.3.7.9.14.

 Then run the following code to move Aaron’s subtree under Sean:  

BEGIN TRAN; 

 

  EXEC dbo.MoveSubtree 

  @root  = 7, 

  @mgrid = 10; 

 

  -- After moving subtree 

  SELECT empid, REPLICATE(' | ', lvl) + empname AS empname, lvl, path 

  FROM dbo.Employees 

  ORDER BY path; 

 

ROLLBACK TRAN; -- rollback used in order not to apply the change

 Note The change is rolled back for demonstration only, so the data is the same at the start of 
each test script. 

 Examine the result tree to verify that the subtree moved correctly: 

empid       empname                   lvl  path

----------- ------------------------- ---- ------------------

1           David                     0    .1.

2            | Eitan                  1    .1.2.

4            |  | Seraph              2    .1.2.4.

5            |  | Jiru                2    .1.2.5.

10           |  |  | Sean             3    .1.2.5.10.

7            |  |  |  | Aaron         4    .1.2.5.10.7.

11           |  |  |  |  | Gabriel    5    .1.2.5.10.7.11.
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9            |  |  |  |  | Rita       5    .1.2.5.10.7.9.

12           |  |  |  |  |  | Emilia  6    .1.2.5.10.7.9.12.

13           |  |  |  |  |  | Michael 6    .1.2.5.10.7.9.13.

14           |  |  |  |  |  | Didi    6    .1.2.5.10.7.9.14.

8            |  |  | Lilach           3    .1.2.5.8.

6            |  | Steve               2    .1.2.6.

3            | Ina                    1    .1.3.

Removing a Subtree

 Removing a subtree is a simple task. You just delete all employees whose path value has the 
subtree’s root path as a prefi x. 

 To test this solution, fi rst examine the current state of the tree by running the following query: 

SELECT empid, REPLICATE(' | ', lvl) + empname AS empname, lvl, path 

FROM dbo.Employees 

ORDER BY path;

 You get the following output: 

empid       empname             lvl  path

----------- ------------------- ---- ------------

1           David               0    .1.

2            | Eitan            1    .1.2.

4            |  | Seraph        2    .1.2.4.

5            |  | Jiru          2    .1.2.5.

10           |  |  | Sean       3    .1.2.5.10.

8            |  |  | Lilach     3    .1.2.5.8.

6            |  | Steve         2    .1.2.6.

3            | Ina              1    .1.3.

7            |  | Aaron         2    .1.3.7.

11           |  |  | Gabriel    3    .1.3.7.11.

9            |  |  | Rita       3    .1.3.7.9.

12           |  |  |  | Emilia  4    .1.3.7.9.12.

13           |  |  |  | Michael 4    .1.3.7.9.13.

14           |  |  |  | Didi    4    .1.3.7.9.14.

 Issue the following code, which fi rst removes Aaron and his subordinates and then displays 
the resulting tree: 

BEGIN TRAN; 

 

  DELETE FROM dbo.Employees 

  WHERE path LIKE  

    (SELECT M.path + '%' 

     FROM dbo.Employees as M 

     WHERE M.empid = 7); 

 

  -- After deleting subtree 

  SELECT empid, REPLICATE(' | ', lvl) + empname AS empname, lvl, path 

  FROM dbo.Employees 

  ORDER BY path; 

 

ROLLBACK TRAN; -- rollback used in order not to apply the change
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 You get the following output: 

empid       empname         lvl  path

----------- --------------- ---- -----------

1           David           0    .1.

2            | Eitan        1    .1.2.

4            |  | Seraph    2    .1.2.4.

5            |  | Jiru      2    .1.2.5.

10           |  |  | Sean   3    .1.2.5.10.

8            |  |  | Lilach 3    .1.2.5.8.

6            |  | Steve     2    .1.2.6.

3            | Ina          1    .1.3.

Querying

 Querying data in the materialized path solution is simple and elegant. For subtree-related 
requests, the optimizer can always use a clustered or covering index that you create on 
the path column. If you create a nonclustered, noncovering index on the path column, the 
 optimizer can still use it if the query is selective enough.  

 Let’s review typical requests from a tree. For each request, I’ll provide a sample query  followed 
by its output. 

 Return the subtree with a given root:  

SELECT REPLICATE(' | ', E.lvl - M.lvl) + E.empname 

FROM dbo.Employees AS E 

  JOIN dbo.Employees AS M 

    ON M.empid = 3 -- root 

    AND E.path LIKE M.path + '%' 

ORDER BY E.path;

Ina

 | Aaron

 |  | Gabriel

 |  | Rita

 |  |  | Emilia

 |  |  | Michael

 |  |  | Didi

 The query joins two instances of Employees. One represents the managers (M) and is 
 fi ltered by the given root employee. The other represents the employees in the subtree (E). 
The subtree is identifi ed using the following logical expression in the join condition, E.path 
LIKE M.path + ‘%’, which identifi es a subordinate if it contains the root’s path as a prefi x. 
Indentation is achieved by replicating a string (‘ | ‘) as many times as the employee’s level 
within the subtree. The output is sorted by the path of the employee. 

 This query generates the execution plan shown in Figure 12-5. 
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FIGURE 12-5 Execution plan for custom materialized path subtree query

 The fi rst Index Seek operator in the plan and the associated Key Lookup are in charge of 
retrieving the row for the fi ltered employee (empid 3). The second Index Seek operator in 
the plan performs a range scan in the index on the path attribute to retrieve the requested 
subtree of employees. Because the path attribute represents topological sorting, an index on 
path ensures that all members of the same subtree are stored continguously in the leaf level 
of the index. Therefore, a request for a subtree is processed with a simple range scan in the 
index, touching only the nodes that are in fact members of the requested subtree. 

 To exclude the subtree’s root (top-level manager) from the output, simply add an underscore 
before the percent sign in the LIKE pattern: 

SELECT REPLICATE(' | ', E.lvl - M.lvl - 1) + E.empname 

FROM dbo.Employees AS E 

  JOIN dbo.Employees AS M 

    ON M.empid = 3 

    AND E.path LIKE M.path + '_%' 

ORDER BY E.path;

Aaron

 | Gabriel

 | Rita

 |  | Emilia

 |  | Michael

 |  | Didi

 With the additional underscore in the LIKE condition, an employee is returned only if its path 
starts with the root’s path and has at least one subsequent character. 

 To return leaf nodes under a given root (including the root itself if it is a leaf), add a NOT 
EXISTS predicate to identify only employees that are not managers of another employee: 

SELECT E.empid, E.empname 

FROM dbo.Employees AS E 

  JOIN dbo.Employees AS M 

    ON M.empid = 3 

    AND E.path LIKE M.path + '%' 
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WHERE NOT EXISTS 

  (SELECT *  

   FROM dbo.Employees AS E2 

   WHERE E2.mgrid = E.empid);

empid       empname

----------- --------

11          Gabriel

12          Emilia

13          Michael

14          Didi

 To return a subtree with a given root, limiting the number of levels under the root, add a 
 fi lter in the join condition that limits the level difference between the employee and the root: 

SELECT REPLICATE(' | ', E.lvl - M.lvl) + E.empname 

FROM dbo.Employees AS E 

  JOIN dbo.Employees AS M 

    ON M.empid = 3 

    AND E.path LIKE M.path + '%' 

    AND E.lvl - M.lvl <= 2 

ORDER BY E.path;

Ina

 | Aaron

 |  | Gabriel

 |  | Rita

 To return only the nodes exactly n levels under a given root, use an equal to operator (=) to 
identify the specifi c level difference instead of a less than or equal to (<=) operator: 

SELECT E.empid, E.empname 

FROM dbo.Employees AS E 

  JOIN dbo.Employees AS M 

    ON M.empid = 3 

    AND E.path LIKE M.path + '%' 

    AND E.lvl - M.lvl = 2;

empid       empname

----------- --------

11          Gabriel

9           Rita

 To return management chain of a given node, you use a query similar to the subtree query, 
with one small difference: you fi lter a specifi c employee ID, as opposed to fi ltering a specifi c 
manager ID: 

SELECT REPLICATE(' | ', M.lvl) + M.empname 

FROM dbo.Employees AS E 

  JOIN dbo.Employees AS M 

    ON E.empid = 14 

    AND E.path LIKE M.path + '%' 

ORDER BY E.path;
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David

 | Ina

 |  | Aaron

 |  |  | Rita

 |  |  |  | Didi

 You get all managers whose paths are a prefi x of the given employee’s path. 

 Note that requesting a subtree and requesting the ancestors have an important difference 
in performance, even though they look very similar. For each query, either M.path or E.path 
is a constant. If M.path is constant, E.path LIKE M.path + ‘%’ uses an index because it asks 
for all paths with a given prefi x. If E.path is constant, it does not use an index because it asks 
for all prefi xes of a given path. The subtree query can seek within an index to the fi rst path 
that meets the fi lter, and it can scan to the right until it gets to the last path that meets the 
fi lter. In other words, only the relevant paths in the index are accessed. While in the  ancestors 
query, ALL paths must be scanned to check whether they match the fi lter. In large tables, 
this translates to a slow query. To handle ancestor requests more effi ciently, you can create 
a function that accepts an employee ID as input, splits its path, and returns a table with the 
path’s node IDs in separate rows. You can join this table with the tree and use index seek 
operations for the specifi c employee IDs in the path. The split function uses an auxiliary 
table of numbers, which I covered in Chapter 6, “Subqueries, Table Expressions, and Ranking 
Functions,” under the section “Auxiliary Table of Numbers.” If you currently don’t have a 
Nums table in tempdb, fi rst create it by running the following code: 

SET NOCOUNT ON; 

USE tempdb; 

GO 

IF OBJECT_ID('dbo.Nums') IS NOT NULL 

  DROP TABLE dbo.Nums; 

GO 

CREATE TABLE Nums(n INT NOT NULL PRIMARY KEY); 

DECLARE @max AS INT = 1000000, @rc AS INT = 1; 

INSERT INTO Nums VALUES(1); 

WHILE @rc * 2 <= @max 

BEGIN 

  INSERT INTO dbo.Nums SELECT n + @rc FROM dbo.Nums; 

  SET @rc = @rc * 2; 

END 

 

INSERT INTO dbo.Nums  

  SELECT n + @rc FROM dbo.Nums WHERE n + @rc <= @max;

 Run the following code to create the SplitPath function: 

USE tempdb; 

GO 

IF OBJECT_ID('dbo.SplitPath') IS NOT NULL 

  DROP FUNCTION dbo.SplitPath; 

GO 

CREATE FUNCTION dbo.SplitPath(@empid AS INT) RETURNS TABLE 

AS 
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RETURN 

  SELECT

    ROW_NUMBER() OVER(ORDER BY n) AS pos,

    CAST(SUBSTRING(path, n + 1,

           CHARINDEX('.', path, n + 1) - n - 1) AS INT) AS empid

  FROM dbo.Employees

    JOIN dbo.Nums

      ON empid = @empid

      AND n < LEN(path)

      AND SUBSTRING(path, n, 1) = '.';

GO

 You can fi nd details on the logic behind the split technique that the function implements in 
Chapter 6 under the section “Separating Elements.” 

 To test the function, run the following code, which splits employee 14’s path:  

SELECT pos, empid FROM dbo.SplitPath(14);

 This code generates the following output: 

pos  empid

---- ------

1    1

2    3

3    7

4    9

5    14

 To get the management chain of a given employee, simply join the table returned by the 
function with the Employees table: 

SELECT REPLICATE(' | ', lvl) + empname 

FROM dbo.SplitPath(14) AS SP 

  JOIN dbo.Employees AS E 

    ON E.empid = SP.empid 

ORDER BY path;

 When presenting information from a tree or a subtree, a common need is to present the 
nodes in topological sort order (parent before child). Because the path column already gives 
you topological sorting, you can simply sort the rows by path. Having an index on the path 
column means that the optimizer can satisfy the request with an index order scan as opposed 
to needing to apply a sort operation. As shown earlier, indentation of nodes can be achieved 
by replicating a string lvl times. For example, the following query presents the employees in 
topological sort order: 

SELECT REPLICATE(' | ', lvl) + empname

FROM dbo.Employees

ORDER BY path;
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 This code generates the following output: 

David

 | Eitan

 |  | Seraph

 |  | Jiru

 |  |  | Sean

 |  |  | Lilach

 |  | Steve

 | Ina

 |  | Aaron

 |  |  | Gabriel

 |  |  | Rita

 |  |  |  | Emilia

 |  |  |  | Michael

 |  |  |  | Didi

 The execution plan for this query is shown in Figure 12-6. Notice that the clustered index 
 created on the path column is scanned in an ordered fashion. 

FIGURE 12-6 Execution plan for custom materialized path sorting query

Materialized Path with the HIERARCHYID Data Type

 SQL Server 2008 introduces a CLR-based data type called HIERARCHYID that you can use 
to represent graphs. This type provides a built-in implementation for the materialized path 
model. Like the custom materialized path model, it works ideally for trees. As with the 
 custom model, the HIERARCHYID values provide topological ordering, positioning a node 
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in a certain place in the tree with respect to other nodes. Besides providing topological 
sorting, the HIERARCHYID paths position each node under a certain path of ancestors and 
in a certain place with respect to siblings. The HIERARCHYID paths differ from the custom 
model’s paths in two main ways. First, the custom model’s paths are made of the actual node 
IDs, while the HIERARCHYID paths are made of internally generated values. Second, the 
 custom model’s path is character based, while the HIERARCHYID paths are binary. One of 
the major benefi ts I’ve found with the HIERARCHYID type paths is that they tend to be much 
more economical compared to the custom model’s paths. The encoding of the paths in the 
HIERARCHYID data type cannot exceed 892 bytes, but this limit shouldn’t present a  problem 
for most trees. Also, you typically want to index the paths, and index keys are limited to 
900 bytes anyway. 

 The HIERARCHYID type provides the following set of methods and properties that 
help you maintain and query the tree: GetLevel, GetRoot, GetAncestor, GetDescendant, 
GetReparentedValue, IsDescendantOf, ToString, Parse, Read, and Write. I will describe the 
methods and properties in context of tasks where they need to be used. 

 Note I should mention several points about working with the HIERARCHYID type in terms of 
case sensitivity: 

❏  As a T-SQL type identifi er, HIERARCHYID is always case insensitive, like any T-SQL keyword. 

❏  The method names associated with this type, like GetAncestor(), are always case sensitive, 
like any CLR identifi er, whether they are static methods or not.  

❏  HIERARCHYID/hierarchyid, when used to identify the CLR class of a static method, as 
in hierarchyid::GetRoot(), is case sensitive or case insensitive according to the current 
 database context. When the current database is case sensitive, lowercase must be used to 
identify the CLR class of a static method.  

❏  I’ve chosen to write the T-SQL type as HIERARCHYID for typographical reasons, but 
 lowercase hierarchyid is the most portable choice for code. 

 In my examples I will use an employee organizational chart to demonstrate working with the 
HIERARCHYID type. Run the following code to create the Employees table, along with a few 
indexes to support typical queries:  

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.Employees') IS NOT NULL

  DROP TABLE dbo.Employees;

GO

CREATE TABLE dbo.Employees

(

  empid   INT NOT NULL,

  hid     HIERARCHYID NOT NULL,

  lvl AS hid.GetLevel() PERSISTED,

  empname VARCHAR(25) NOT NULL,

  salary  MONEY       NOT NULL

);
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CREATE UNIQUE CLUSTERED INDEX idx_depth_first ON dbo.Employees(hid);

CREATE UNIQUE INDEX idx_breadth_first ON dbo.Employees(lvl, hid);

CREATE UNIQUE INDEX idx_empid ON dbo.Employees(empid);

 In addition to the hid column that holds the path, the table has a computed persisted column 
based on the GetLevel method applied to the hid column. As its name implies, the method 
returns the level of the node in the tree—in other words, the distance from the root. 

 Besides the obvious index on the empid attribute that supports queries requesting a 
 particular employee, the code creates two other indexes. First, a clustered index is created 
on the hid column. Because HIERARCHYID provides topological sorting, an index on the hid 
column stores all members of the same subtree close to each other. Such an index allows 
effi cient processing of requests that need to traverse the tree in a depth-fi rst manner—for 
example, a request for a whole subtree of employees. Second, an index is created on lvl and 
hid, in that order. This index supports effi cient processing of requests that need to traverse 
the tree in a breadth-fi rst manner—for example, returning a whole level of employees. 

 Notice that the Employees table does not include an attribute for the manager ID. With the 
HIERARCHYID type you can easily address requests that would normally require such an 
attribute. 

Maintaining Data

 Whenever you need to apply changes to the tree, such as adding new leaf nodes or  moving 
a subtree, you want to make sure that you produce new HIERARCHYID values or adjust 
existing ones correctly. The HIERARCHYID type’s methods and properties can help you 
in such tasks. Also, it’s important to note that the type itself does not enforce the validity 
of your tree—that’s your  responsibility. For example, if you do not enforce uniqueness of 
the HIERARCHYID values with a constraint, the type itself won’t reject attempts to insert 
 multiple rows with the same HIERARCHYID value. Also, it is your responsibility to develop 
a process that prevents  concurrent sessions that perform tree maintenance tasks from 
 producing confl icting (the same) HIERARCHYID values for different nodes. I will explain 
how this can be achieved. 

 I will demonstrate techniques for adding employees who manage no one (leaf nodes) 
and for moving a subtree. I’ll leave other tasks—such as dropping a subtree and changing 
a  manager—as exercises because those apply similar techniques to the ones I will cover. 

Adding Employees

 The task of adding a new employee who manages no one requires you to produce a 
HIERARCHYID value for the new node that positions it correctly within the tree and then 
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insert the new employee row into the table. Run the following code to create a stored 
 procedure called AddEmp that implements this task: 

--------------------------------------------------------------------- 

-- Stored Procedure: AddEmp, 

--   Inserts new employee who manages no one into the table 

--------------------------------------------------------------------- 

IF OBJECT_ID('dbo.AddEmp', 'P') IS NOT NULL

  DROP PROC dbo.AddEmp;

GO

CREATE PROC dbo.AddEmp

  @empid   AS INT,

  @mgrid   AS INT,

  @empname AS VARCHAR(25),

  @salary  AS MONEY

AS

DECLARE

  @hid            AS HIERARCHYID,

  @mgr_hid        AS HIERARCHYID,

  @last_child_hid AS HIERARCHYID;

BEGIN TRAN

  IF @mgrid IS NULL

    SET @hid = hierarchyid::GetRoot();

  ELSE

  BEGIN

    SET @mgr_hid = (SELECT hid FROM dbo.Employees WITH (UPDLOCK)

                    WHERE empid = @mgrid);

    SET @last_child_hid =

      (SELECT MAX(hid) FROM dbo.Employees

       WHERE hid.GetAncestor(1) = @mgr_hid);

    SET @hid = @mgr_hid.GetDescendant(@last_child_hid, NULL);

  END

  INSERT INTO dbo.Employees(empid, hid, empname, salary)

    VALUES(@empid, @hid, @empname, @salary);

  

COMMIT TRAN

GO

 The procedure accepts as inputs all attributes of the new employee (employee ID,  manager ID, 
employee name, and salary). It then applies logic to generate the HIERARCHYID value of 
the new employee and store it in the variable @hid. Finally, the procedure uses the new 
HIERARCHYID value, @hid, in the new row it inserts into the Employees table.  

 The procedure’s code fi rst checks whether the input employee is the root employee 
( manager ID is NULL). In such a case, the code calculates the employee’s path with the static 
method hierarchyid::GetRoot. As you can imagine, the purpose of this method is to  produce 
the path for the tree’s root node. In terms of the binary value that actually represents the 
path, this method simply returns an empty binary string (0x). You could, if you wanted, 
 replace the static method call with the constant 0x, but with the method call the code is 
clearer and more self-explanatory. 
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 The next section of the procedure’s code (the ELSE block of the IF statement) handles an 
 input employee that is not the root employee. To calculate a path for an employee that is not 
the root employee, you can invoke the GetDescendant method applied to the HIERARCHYID 
value of the employee’s manager. The code retrieves the manager’s HIERARCHYID value into 
the @mgr_hid variable and later applies to it the GetDescendant method.  

 The GetDescendant method accepts two input HIERARCHYID values and returns a 
HIERARCHYID value that is positioned under the node it is applied to and between the input 
left and right nodes. If both inputs are NULL, the method simply generates a value below the 
parent node. If the left input is not NULL, the method generates a value greater than the left 
input. If the right input is not NULL, the method generates a value less than the right input. 
Note that the method has no knowledge of other values in your tree; all it cares about is 
the value to which it is applied and the two input values. If you call the method twice and in 
both cases apply it to the same value with the same inputs, you get the same output back. 
It is your responsibility to prevent such confl icts. A simple technique to achieve this is to run 
the code in a transaction (as in the AddEmp procedure) and specify the UPDLOCK hint in the 
query that retrieves the manager’s path. Remember that an update lock can be held by only 
one process on the same resource at a time. This hint allows only one session to request a 
new HIERARCHYID value under the same manager. This simple technique will guarantee that 
distinct HIERARCHYID values are generated by each process. 

 You need to be specifi c about where to position the new node with respect to other  siblings 
under the same manager. For example, the inputs to the stored procedure could be the IDs 
of two employees between which you want to position the new employee, and the stored 
procedure could retrieve their HIERARCHYID values and provide those as the left and right 
values to the GetDescendant method. I decided for this implementation that I simply wanted 
to position the new employee right after the last under the target manager. This strategy, 
coupled with the use of the UPDLOCK described earlier, is always safe in the sense that 
HIERARCHYID values of employees will never confl ict. If you choose to implement a solution 
that allows specifying the left and right employees, the responsibility to prevent confl icts is 
now yours and not the procedure’s; that is, you will need to ensure that you never call the 
procedure more than once with the same left and right employees. To apply my chosen 
strategy, immediately after a query that retrieves the path of the target manager, another 
query retrieves the maximum path among the existing subordinates of the manager, and 
the result is stored in the @last_child_hid variable. The method GetAncestor helps identify 
direct subordinates of the target manager. The method is applied to a HIERARCHYID value 
of a node, and it returns the HIERARCHYID value of an ancestor that is n levels up, where 
n is  provided as input. For n=1, you get the node’s parent. So all employees for whom 
GetAncestor(1) returns the path of the manager are direct subordinates of the manager. 

 Once you have the path of the manager stored in the @hid variable and the path of the 
manager’s last direct subordinate is stored in the variable @last_child_hid, you can generate 
the input employee’s path with the expression @hid.GetDescendant(@last_child_hid, NULL). 
Once the path for the input employee is generated, you can insert the employee’s row into 
the Employees table and commit the transaction. Committing the transaction releases the 
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update lock held on the manager’s row, allowing those who want to add other subordinates 
under that manager to generate new HIERARCHYID values. 

 Run the following code to populate the Employees table with sample data: 

EXEC dbo.AddEmp @empid =  1, @mgrid = NULL, @empname = 'David'  , @salary = $10000.00;

EXEC dbo.AddEmp @empid =  2, @mgrid =    1, @empname = 'Eitan'  , @salary = $7000.00;

EXEC dbo.AddEmp @empid =  3, @mgrid =    1, @empname = 'Ina'    , @salary = $7500.00;

EXEC dbo.AddEmp @empid =  4, @mgrid =    2, @empname = 'Seraph' , @salary = $5000.00;

EXEC dbo.AddEmp @empid =  5, @mgrid =    2, @empname = 'Jiru'   , @salary = $5500.00;

EXEC dbo.AddEmp @empid =  6, @mgrid =    2, @empname = 'Steve'  , @salary = $4500.00;

EXEC dbo.AddEmp @empid =  7, @mgrid =    3, @empname = 'Aaron'  , @salary = $5000.00;

EXEC dbo.AddEmp @empid =  8, @mgrid =    5, @empname = 'Lilach' , @salary = $3500.00;

EXEC dbo.AddEmp @empid =  9, @mgrid =    7, @empname = 'Rita'   , @salary = $3000.00;

EXEC dbo.AddEmp @empid = 10, @mgrid =    5, @empname = 'Sean'   , @salary = $3000.00;

EXEC dbo.AddEmp @empid = 11, @mgrid =    7, @empname = 'Gabriel', @salary = $3000.00;

EXEC dbo.AddEmp @empid = 12, @mgrid =    9, @empname = 'Emilia' , @salary = $2000.00;

EXEC dbo.AddEmp @empid = 13, @mgrid =    9, @empname = 'Michael', @salary = $2000.00;

EXEC dbo.AddEmp @empid = 14, @mgrid =    9, @empname = 'Didi'   , @salary = $1500.00;

 Run the following query to present the contents of the Employees table: 

SELECT hid, hid.ToString() AS path, lvl, empid, empname, salary

FROM dbo.Employees

ORDER BY hid;

 The ToString method returns a canonical representation of the path, using slashes to separate 
the values at each level. This query generates the following output: 

hid       path       lvl    empid  empname  salary

--------- ---------- ------ ------ -------- ---------

0x        /          0      1      David    10000.00

0x58      /1/        1      2      Eitan    7000.00

0x5AC0    /1/1/      2      4      Seraph   5000.00

0x5B40    /1/2/      2      5      Jiru     5500.00

0x5B56    /1/2/1/    3      8      Lilach   3500.00

0x5B5A    /1/2/2/    3      10     Sean     3000.00

0x5BC0    /1/3/      2      6      Steve    4500.00

0x68      /2/        1      3      Ina      7500.00

0x6AC0    /2/1/      2      7      Aaron    5000.00

0x6AD6    /2/1/1/    3      9      Rita     3000.00

0x6AD6B0  /2/1/1/1/  4      12     Emilia   2000.00

0x6AD6D0  /2/1/1/2/  4      13     Michael  2000.00

0x6AD6F0  /2/1/1/3/  4      14     Didi     1500.00

0x6ADA    /2/1/2/    3      11     Gabriel  3000.00

 This output gives you a sense of the logic that the GetDescendant method applies to 
 calculate the values. The root (empty binary string) is represented by the canonical path /. 
The fi rst child under a node obtains its HIERARCHYID from a call to GetDescendant with two 
NULL inputs. The result is the parent’s canonical path plus 1/. So the path of the fi rst child of 
the root becomes /1/.  

 If you add someone to the right of an existing child and under that child’s parent, the new 
child’s hid is obtained by a call to GetDescendant with the existing child’s hid as left input and 
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NULL as right input. The new path value is like the existing child’s value but with a rightmost 
number that is greater by one. So, for example, the value under / and to the right of /1/ 
would be /2/. Similarly, the value under /1/ and to the right of /1/1/ would be /1/2/. 

 If you add someone under a certain parent and to the left of an existing child, the left input 
to GetDescendant is NULL, and the new path value will be like the existing child’s but with a 
rightmost number that is less by one. So, for example, the value under /1/ and to the left of 
/1/1/ would be /1/0/. Similarly, the value under /1/ and to the left of /1/0/ would be /1/-1/. 

 If you add someone under a certain parent and provide two of that parent’s existing 
 children’s hid values as inputs to GetDescendant, the resulting path matches the existing 
children’s paths except for the last number. If the last numbers in the existing children’s 
paths aren’t consecutive, the last number of the new child’s path will be one greater than 
that of the left child. For example, when the method is applied to the parent /1/1/ and 
the input children are /1/1/1/ and /1/1/4/, you get /1/1/2/. If the last path numbers of 
the  input children are consecutive, you get the last number of the left child, followed 
by .1 (read “dot one”). For example, when the method is applied to the parent /1/1/ and the 
 input children’s paths are /1/1/1/ and /1/1/2/, you get /1/1/1.1/. Similarly, when the method 
is applied to the parent /1/2.1/3/4/5/ and the input children are /1/2.1/3/4/5/2.1.3.4/ and 
/1/2.1/3/4/5/2.1.3.5/, you get /1/2.1/3/4/5/2.1.3.4.1/. I could go on, but at this point you 
probably get the general idea and realize that the paths are simpler if you add new nodes 
either to the right of the last child or to the left of the fi rst child. 

 Later in the chapter, in the section “Normalizing HIERARCHYID Values,” I’ll provide details as 
to how you can normalize paths. 

Moving a Subtree

 The HIERARCHYID type supports a method called GetReparentedValue that helps in 
 calculating new paths when you need to move a whole subtree to a new location in the tree. 
The method is applied to the HIERARCHYID value of a node that you want to reparent, but it 
doesn’t perform the actual reparenting. It simply returns a new value that you can then use 
to overwrite the existing path. The method accepts two inputs (call them @old_root and 
@new_root) and returns a new value with the target node’s path where the @new_root  prefi x 
replaces the @old_root prefi x. It’s as simple as that.  

 Note When you call GetReparentedValue on a HIERARCHYID h, the path of @old_root must be a 
prefi x of h’s path. If it is not, you’ll get an exception of type HierarchyIdException. 

 For example, if you apply the GetReparentedValue method to a HIERARCHYID whose 
 canonical path is /1/1/2/3/2/, providing /1/1/ as the old root and /2/1/4/ as the new root, 
you get a HIERARCHYID whose canonical path is /2/1/4/2/3/2/. By the way, you can cast a 
canonical path representation to the HIERARCHYID data type by using the CAST function 
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or the static method hierarchyid::Parse. With this in mind, you can test the aforementioned 
 example by using the GetReparentedValue with constants, like so: 

SELECT

  CAST('/1/1/2/3/2/' AS HIERARCHYID).GetReparentedValue('/1/1/', '/2/1/4/').ToString();

 You get the path /2/1/4/2/3/2/ as output. 

 With this in mind, consider the task to create a stored procedure called MoveSubtree that 
accepts two inputs called @empid and @new_mgrid. The stored procedure’s purpose is 
to move the subtree of employee @empid under @new_mgrid. The stored procedure can 
 implement the task in three steps: 

  1. Store the existing paths of the employees represented by @new_mgrid and @empid in 
variables (call them @new_mgr_hid and @old_root, respectively). 

  2. Apply the GetDescendant method to @new_mgr_hid, providing the maximum among 
the new manager’s existing subordinates (or NULL if there are none) as left input, to get 
a new path under the target manager for employee @empid. Store the new path in a 
variable (call it @new_root). 

  3. Update the hid value of all descendants of the employee represented by @empid 
( including itself) to hid.GetReparentedValue(@old_root, @new_root). To identify all 
 descendants of a node you can check the value of the method IsDescendantOf on each 
hid in the table. This method returns 1 when the node it is applied to is a descendant of 
the input node and 0 otherwise. 

 Run the following code to create the MoveSubtree stored procedure, which implements the 
preceding steps: 

--------------------------------------------------------------------- 

-- Stored Procedure: MoveSubtree, 

--   Moves a whole subtree of a given root to a new location 

--   under a given manager 

--------------------------------------------------------------------- 

IF OBJECT_ID('dbo.MoveSubtree') IS NOT NULL

  DROP PROC dbo.MoveSubtree;

GO

CREATE PROC dbo.MoveSubtree

  @empid    AS INT,

  @new_mgrid AS INT

AS

DECLARE 

  @old_root AS HIERARCHYID,

  @new_root AS HIERARCHYID,

  @new_mgr_hid AS HIERARCHYID;

BEGIN TRAN

  SET @new_mgr_hid = (SELECT hid FROM dbo.Employees WITH (UPDLOCK)

                      WHERE empid = @new_mgrid);

  SET @old_root = (SELECT hid FROM dbo.Employees

                   WHERE empid = @empid);
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  -- First, get a new hid for the subtree root employee that moves

  SET @new_root = @new_mgr_hid.GetDescendant

    ((SELECT MAX(hid)

      FROM dbo.Employees

      WHERE hid.GetAncestor(1) = @new_mgr_hid),

     NULL);

  -- Next, reparent all descendants of employee that moves

  UPDATE dbo.Employees

    SET hid = hid.GetReparentedValue(@old_root, @new_root)

  WHERE hid.IsDescendantOf(@old_root) = 1;

COMMIT TRAN

GO

 Notice that the code uses an explicit transaction, and as the fi rst step when querying the 
target manager’s row, the statement obtains an update lock on that row. Much like in 
the AddEmp procedure discussed earlier, this technique guarantees that only one subtree 
is moved under a given target manager at a time, which prevents confl icts in the newly 
 generated HIERARCHYID values. 

 To test the MoveSubtree procedure run the following code, moving the subtree of employee 5 
(Jiru) under employee 9 (Rita): 

SELECT empid, REPLICATE(' | ', lvl) + empname AS empname, hid.ToString() AS path

FROM dbo.Employees

ORDER BY hid;

BEGIN TRAN

  EXEC dbo.MoveSubtree

    @empid    = 5,

    @new_mgrid = 9;

  SELECT empid, REPLICATE(' | ', lvl) + empname AS empname, hid.ToString() AS path

  FROM dbo.Employees

  ORDER BY hid;

ROLLBACK TRAN

 The code presents the before and after states of the data, and because this is just a 
 demonstration, it runs the activity in a transaction so that the changes won’t be committed. 
Following are the outputs of this code showing that the subtree was moved correctly: 

empid       empname                path        

----------- ---------------------- ------------

1           David                  /           

2            | Eitan               /1/         

4            |  | Seraph           /1/1/       

5            |  | Jiru             /1/2/       

8            |  |  | Lilach        /1/2/1/     

10           |  |  | Sean          /1/2/2/     

6            |  | Steve            /1/3/       

3            | Ina                 /2/         
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7            |  | Aaron            /2/1/       

9            |  |  | Rita          /2/1/1/     

12           |  |  |  | Emilia     /2/1/1/1/   

13           |  |  |  | Michael    /2/1/1/2/   

14           |  |  |  | Didi       /2/1/1/3/   

11           |  |  | Gabriel       /2/1/2/     

empid       empname                path        

----------- ---------------------- ------------

1           David                  /           

2            | Eitan               /1/         

4            |  | Seraph           /1/1/       

6            |  | Steve            /1/3/       

3            | Ina                 /2/         

7            |  | Aaron            /2/1/       

9            |  |  | Rita          /2/1/1/     

12           |  |  |  | Emilia     /2/1/1/1/   

13           |  |  |  | Michael    /2/1/1/2/   

14           |  |  |  | Didi       /2/1/1/3/   

5            |  |  |  | Jiru       /2/1/1/4/   

8            |  |  |  |  | Lilach  /2/1/1/4/1/ 

10           |  |  |  |  | Sean    /2/1/1/4/2/ 

11           |  |  | Gabriel       /2/1/2/     

Querying

 As with the custom materialized path solution, querying data in the built-in materialized 
path solution that is based on the HIERARCHYID data type is simple and elegant. With the 
 depth-fi rst and breadth-fi rst indexes in place, you can enable SQL Server’s optimizer to 
 handle certain types of requests effi ciently.  

 I won’t cover all possible requests against the tree here because there are so many. Instead, 
I’ll show a sample of the common ones. As I did before, I’ll provide a sample query for each 
request followed by its output. 

Subtree

 Return the subtree of employee 3, limiting the number of levels under the input employee to 3: 

SELECT E.empid, E.empname

FROM dbo.Employees AS M

  JOIN dbo.Employees AS E

    ON M.empid = 3

    AND E.hid.IsDescendantOf(M.hid) = 1

WHERE E.lvl - M.lvl <= 3;

 The query uses the IsDescendantOf method. Recall that this method returns 1 if the node 
to which it is applied is a descendant of the input node and 0 otherwise. The query joins 
two instances of the Employees table: one representing the input manager (M) and one 
 representing the subordinates (E). The predicate in the ON clause fi lters only one row 
from the instance M—the one for employee 3—and returns all employees from E that are 
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 descendants of the employee in M. The predicate in the WHERE clause fi lters only employees 
that are up to three levels below the employee in M. 

 This query generates the following output: 

empid       empname

----------- -------------------------

3           Ina

7           Aaron

9           Rita

12          Emilia

13          Michael

14          Didi

11          Gabriel

 The execution plan of this query is shown in Figure 12-7. 

FIGURE 12-7 Execution plan for HIERARCHYID subtree query

 The fi rst Index Seek operator in the plan (the top one) is responsible for returning the row 
for employee 3 from the index on the empid column. A Compute Scalar operator (the 
 second one) then calculates the boundary points of the HIERARCHYID values at the edges 
of the  requested subtree. Recall that because the HIERARCHYID values give you topological 
 sorting, an index on the hid column arranges all members of the same subtree together. The 
 second Index Seek operator in the plan (the bottom one) performs a range scan between the 
 boundary points in the index on hid, which retrieves the members of the requested subtree. 
This plan is pretty much as good as it can get for this kind of request because SQL Server 
ends up scanning only the members of the applicable subtree. 

Path

 Next, I’ll explain how to handle a request to return all managers in the path leading to a 
 certain employee. You can implement a solution that is very similar to the one used to handle 
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the subtree request. Instead of fi ltering the row representing the one manager (from an 
 instance M of Employees) and then returning the attributes of all qualifying subordinates 
(from an instance E), you fi lter the row representing the one employee and then return the 
attributes of all qualifying managers. For example, the following query returns all managers 
of employee 14, direct or indirect: 

SELECT M.empid, M.empname

FROM dbo.Employees AS M

  JOIN dbo.Employees AS E

    ON E.empid = 14

    AND E.hid.IsDescendantOf(M.hid) = 1;

 This query generates the following output: 

empid       empname

----------- -------------------------

1           David

3           Ina

7           Aaron

9           Rita

14          Didi

 Although this query is very similar to the one that implemented the subtree request, it 
 cannot be optimized as effi ciently. That’s because members of the same path do not reside 
close to each other in the index. 

Direct Subordinates

 Next, I’ll describe how to handle a request to get direct subordinates of an employee. 
To handle this request you can use a similar join form as in the previous queries. Filter the 
one row representing the employee whose subordinates you want from an instance (M) of 
the Employees table and return all employees (from another instance, E) whose parent is the 
employee fi ltered from M. A node’s parent is its ancestor one level up, and the GetAncestor 
method with input value 1 returns the parent HIERARCHYID. As an example of fi nding direct 
subordinates, the following query returns direct subordinates of employee 2: 

SELECT E.empid, E.empname

FROM dbo.Employees AS M

  JOIN dbo.Employees AS E

    ON M.empid = 2

    AND E.hid.GetAncestor(1) = M.hid;

 This code generates the following output: 

empid       empname

----------- -------------------------

4           Seraph

5           Jiru

6           Steve
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Leaf Nodes

 You can also use the GetAncestor method with input value 1 to identify leaf nodes. Leaf 
nodes, or employees who manage no one, are employees that do not appear as the parent 
of other employees. This logic can be implemented with a NOT EXISTS predicate, like so: 

SELECT empid, empname

FROM dbo.Employees AS M

WHERE NOT EXISTS

  (SELECT * FROM dbo.Employees AS E

   WHERE E.hid.GetAncestor(1) = M.hid);

 This code generates the following output: 

empid       empname

----------- -------------------------

4           Seraph

8           Lilach

10          Sean

6           Steve

12          Emilia

13          Michael

14          Didi

11          Gabriel

Presentation

 Finally, to present the hierarchy of employees so that a subordinate appears under and to the 
right of its manager, use the following query: 

SELECT REPLICATE(' | ', lvl) + empname AS empname, hid.ToString() AS path

FROM dbo.Employees

ORDER BY hid;

 Recall that the HIERARCHYID data type gives you topological sorting, so all you need to 
do to get the desired presentation ordering is to order by the hid attribute. Indentation is 
achieved by replicating a string lvl times. This query generates the following output: 

empname               path      

--------------------- ----------

David                 /         

 | Eitan              /1/       

 |  | Seraph          /1/1/     

 |  | Jiru            /1/2/     

 |  |  | Lilach       /1/2/1/   

 |  |  | Sean         /1/2/2/   

 |  | Steve           /1/3/     

 | Ina                /2/       

 |  | Aaron           /2/1/     

 |  |  | Rita         /2/1/1/   

 |  |  |  | Emilia    /2/1/1/1/ 

 |  |  |  | Michael   /2/1/1/2/ 

 |  |  |  | Didi      /2/1/1/3/ 

 |  |  | Gabriel      /2/1/2/   
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 The execution plan of this query is shown in Figure 12-8. 

FIGURE 12-8 Execution plan for HIERARCHYID sorting query

 You can see that the optimizer effi ciently processed the request with an ordered scan of the 
index on the hid column. 

Further Aspects of Working with HIERARCHYID

 This section covers further aspects of working with the HIERARCHYID data type. I’ll  explain 
the circumstances in which paths can get lengthy and provide you with a solution to 
 normalize them. I’ll show you how to convert a representation of a tree as an adjacency list to 
one that is based on the HIERARCHYID data type. Finally, I’ll show you how you can use the 
HIERARCHYID data type to sort separated lists of values.  

Normalizing HIERARCHYID Values

 When you use the HIERARCHYID data type to represent trees, in certain cases the paths can 
become long. With very deep trees this is natural because the HIERARCHYID value represents 
a path of all nodes leading to the current node, starting with the root. However, in certain 
cases, even when the tree is not very deep, the path can become long. First I’ll explain the 
circumstances in which this can happen, and then I’ll provide a solution to normalizing the 
values, making them shorter. Note that in this section, the word normalizing does not refer to 
database normalization. 
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 HIERARCHYID values can become long when you keep adding new nodes between  existing 
nodes whose canonical paths have consecutive last numbers. For example, say you have 
nodes with canonical paths /1/ and /2/ and you add a node between them. You get a new 
value whose canonical path is /1.1/. Now add a value between /1.1/ and /2/, and you get 
/1.2/. Now add a value between /1.1/ and /1.2/, and you get /1.1.1/. As you see, if you keep 
adding nodes between existing nodes in this manner, you can get lengthy paths (which 
 represent lengthy HIERARCHYID values) even when the tree is not deep.  

 If order among siblings is not important, you can always make sure to add new child nodes 
after the last existing child or before the fi rst one; this way, the paths are more economical. 
But when order among siblings matters, you can’t control this. If you must frequently add 
new nodes between existing ones, you may end up with very long HIERARCHYID values. In 
such a case, you can periodically run a procedure, which I will provide here, that normalizes 
the HIERARCHYID values for the whole graph, making them shorter. 

 Run the following code to create a new version of the AddEmp stored procedure: 

--------------------------------------------------------------------- 

-- Stored Procedure: AddEmp, 

--   Inserts new employee who manages no one into the table 

--------------------------------------------------------------------- 

IF OBJECT_ID('dbo.AddEmp', 'P') IS NOT NULL

  DROP PROC dbo.AddEmp;

GO

CREATE PROC dbo.AddEmp

  @empid      AS INT,

  @mgrid      AS INT,

  @leftempid  AS INT,

  @rightempid AS INT,  

  @empname    AS VARCHAR(25) ,

  @salary     AS MONEY = 1000

AS

DECLARE @hid AS HIERARCHYID;

IF @mgrid IS NULL

  SET @hid = hierarchyid::GetRoot();

ELSE

  SET @hid = (SELECT hid FROM dbo.Employees WHERE empid = @mgrid).GetDescendant

    ( (SELECT hid FROM dbo.Employees WHERE empid = @leftempid),

      (SELECT hid FROM dbo.Employees WHERE empid = @rightempid) );

INSERT INTO dbo.Employees(empid, hid, empname, salary)

  VALUES(@empid, @hid, @empname, @salary);

GO

 This version accepts the IDs of the two child employees between which you want to add the 
new one.  
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 Next, run the following code, which truncates the Employees table and populates it with data 
in such a manner that lengthy paths are produced: 

TRUNCATE TABLE dbo.Employees;

EXEC dbo.AddEmp @empid =  1, @mgrid = NULL, @leftempid = NULL, @rightempid = NULL, 

     @empname = 'A';

EXEC dbo.AddEmp @empid =  2, @mgrid =    1, @leftempid = NULL, @rightempid = NULL, 

     @empname = 'B';

EXEC dbo.AddEmp @empid =  3, @mgrid =    1, @leftempid =    2, @rightempid = NULL, 

     @empname = 'C';

EXEC dbo.AddEmp @empid =  4, @mgrid =    1, @leftempid =    2, @rightempid =    3, 

     @empname = 'D';

EXEC dbo.AddEmp @empid =  5, @mgrid =    1, @leftempid =    4, @rightempid =    3, 

     @empname = 'E';

EXEC dbo.AddEmp @empid =  6, @mgrid =    1, @leftempid =    4, @rightempid =    5, 

     @empname = 'F';

EXEC dbo.AddEmp @empid =  7, @mgrid =    1, @leftempid =    6, @rightempid =    5, 

     @empname = 'G';

EXEC dbo.AddEmp @empid =  8, @mgrid =    1, @leftempid =    6, @rightempid =    7, 

     @empname = 'H';

EXEC dbo.AddEmp @empid =  9, @mgrid =    8, @leftempid = NULL, @rightempid = NULL, 

     @empname = 'I';

EXEC dbo.AddEmp @empid = 10, @mgrid =    8, @leftempid =    9, @rightempid = NULL, 

     @empname = 'J';

EXEC dbo.AddEmp @empid = 11, @mgrid =    8, @leftempid =    9, @rightempid =   10, 

     @empname = 'K';

EXEC dbo.AddEmp @empid = 12, @mgrid =    8, @leftempid =   11, @rightempid =   10, 

     @empname = 'J';

EXEC dbo.AddEmp @empid = 13, @mgrid =    8, @leftempid =   11, @rightempid =   12, 

     @empname = 'L';

EXEC dbo.AddEmp @empid = 14, @mgrid =    8, @leftempid =   13, @rightempid =   12, 

     @empname = 'M';

EXEC dbo.AddEmp @empid = 15, @mgrid =    8, @leftempid =   13, @rightempid =   14, 

     @empname = 'N';

EXEC dbo.AddEmp @empid = 16, @mgrid =    8, @leftempid =   15, @rightempid =   14, 

     @empname = 'O';

EXEC dbo.AddEmp @empid = 17, @mgrid =    8, @leftempid =   15, @rightempid =   16, 

     @empname = 'P';

EXEC dbo.AddEmp @empid = 18, @mgrid =    8, @leftempid =   17, @rightempid =   16, 

     @empname = 'Q';

EXEC dbo.AddEmp @empid = 19, @mgrid =    8, @leftempid =   17, @rightempid =   18, 

     @empname = 'E';

EXEC dbo.AddEmp @empid = 20, @mgrid =    8, @leftempid =   19, @rightempid =   18, 

     @empname = 'S';

EXEC dbo.AddEmp @empid = 21, @mgrid =    8, @leftempid =   19, @rightempid =   20, 

     @empname = 'T';

 Then run the following code to show the current HIERARCHYID values and their canonical paths: 

SELECT

  empid,

  REPLICATE(' | ', lvl) + empname AS emp, 

  hid,

  hid.ToString() AS path

FROM dbo.Employees

ORDER BY hid;
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 You get the following output: 

empid  emp      hid               path                   

------ -------- ----------------- -----------------------

1      A        0x                /                      

2       | B     0x58              /1/                    

4       | D     0x62C0            /1.1/                  

6       | F     0x6316            /1.1.1/                

8       | H     0x6318B0          /1.1.1.1/              

9       |  | I  0x6318B580        /1.1.1.1/1/            

11      |  | K  0x6318B62C        /1.1.1.1/1.1/          

13      |  | L  0x6318B63160      /1.1.1.1/1.1.1/        

15      |  | N  0x6318B6318B      /1.1.1.1/1.1.1.1/      

17      |  | P  0x6318B6318C58    /1.1.1.1/1.1.1.1.1/    

19      |  | E  0x6318B6318C62C0  /1.1.1.1/1.1.1.1.1.1/  

21      |  | T  0x6318B6318C6316  /1.1.1.1/1.1.1.1.1.1.1/

20      |  | S  0x6318B6318C6340  /1.1.1.1/1.1.1.1.1.2/  

18      |  | Q  0x6318B6318C68    /1.1.1.1/1.1.1.1.2/    

16      |  | O  0x6318B6318D      /1.1.1.1/1.1.1.2/      

14      |  | M  0x6318B631A0      /1.1.1.1/1.1.2/        

12      |  | J  0x6318B634        /1.1.1.1/1.2/          

10      |  | J  0x6318B680        /1.1.1.1/2/            

7       | G     0x631A            /1.1.2/                

5       | E     0x6340            /1.2/                  

3       | C     0x68              /2/                    

 As you can see, even though the tree is only three levels deep, some of the HIERARCHYID 
values became quite long because of the insertion order of children.  

 The solution that normalizes the values involves the following steps: 

  1. Defi ne a CTE called EmpsRN that calculates for each node a row number, partitioned by 
parent and ordered by current hid value. 

  2. Defi ne a recursive CTE called EmpPaths that iterates through the levels of the tree, 
starting with the root node and proceeding to the next level of children in each 
 iteration. Use this CTE to construct a new canonical path for the nodes. The root should 
be assigned the path /, and for each node in the next level the path is obtained by 
 concatenating the parent’s path, the current node’s row number from the previous 
step, and another / character. 

  3. Join the Employees table with the EmpPaths CTE and update the existing hid values 
with new ones converted from the canonical paths generated in the previous step. 

 Here’s the code that performs this normalization process: 

WITH EmpsRN AS

(

  SELECT 

    empid,

    hid,

    ROW_NUMBER() OVER(PARTITION BY hid.GetAncestor(1) ORDER BY hid) AS rownum

  FROM dbo.Employees

),
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EmpPaths AS

(

  SELECT empid, hid, CAST('/' AS VARCHAR(900)) AS path

  FROM dbo.Employees

  WHERE hid = hierarchyid::GetRoot()

  

  UNION ALL

  

  SELECT C.empid, C.hid, 

    CAST(P.path + CAST(C.rownum AS VARCHAR(20)) + '/' AS VARCHAR(900))

  FROM EmpPaths AS P

    JOIN EmpsRN AS C

      ON C.hid.GetAncestor(1) = P.hid

)

UPDATE E

  SET hid = CAST(EP.path AS HIERARCHYID)

FROM dbo.Employees AS E

  JOIN EmpPaths AS EP

    ON E.empid = EP.empid;

 Now query the data after normalization: 

SELECT

  empid,

  REPLICATE(' | ', lvl) + empname AS emp, 

  hid,

  hid.ToString() AS path

FROM dbo.Employees

ORDER BY hid;

 As you can see in the output, you get nice compact paths: 

empid       emp      hid     path   

----------- -------- ------- -------

1           A        0x      /      

2            | B     0x58    /1/    

4            | D     0x68    /2/    

6            | F     0x78    /3/    

8            | H     0x84    /4/    

9            |  | I  0x8560  /4/1/  

11           |  | K  0x85A0  /4/2/  

13           |  | L  0x85E0  /4/3/  

15           |  | N  0x8610  /4/4/  

17           |  | P  0x8630  /4/5/  

19           |  | E  0x8650  /4/6/  

21           |  | T  0x8670  /4/7/  

20           |  | S  0x8688  /4/8/  

18           |  | Q  0x8698  /4/9/  

16           |  | O  0x86A8  /4/10/ 

14           |  | M  0x86B8  /4/11/ 

12           |  | J  0x86C8  /4/12/ 

10           |  | J  0x86D8  /4/13/ 

7            | G     0x8C    /5/    

5            | E     0x94    /6/    

3            | C     0x9C    /7/    

C12626034.indd   723 2/20/2009   8:20:36 PM



724 Inside Microsoft SQL Server 2008: T-SQL Querying

Convert Parent-Child Representation to HIERARCHYID

 This section explains how to convert an existing representation of a tree that is based on an 
adjacency list (parent-child relationships) to one that is based on the HIERARCHYID data type. 

 Run the following code to create and populate the EmployeesOld table that implements an 
adjacency list representation of an employee tree: 

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.EmployeesOld') IS NOT NULL

  DROP TABLE dbo.EmployeesOld;

GO

IF OBJECT_ID('dbo.EmployeesNew') IS NOT NULL

  DROP TABLE dbo.EmployeesNew;

GO

CREATE TABLE dbo.EmployeesOld

(

  empid   INT          PRIMARY KEY,

  mgrid   INT          NULL REFERENCES dbo.EmployeesOld,

  empname VARCHAR(25)  NOT NULL,

  salary  MONEY        NOT NULL

);

CREATE UNIQUE INDEX idx_unc_mgrid_empid ON dbo.EmployeesOld(mgrid, empid);

INSERT INTO dbo.EmployeesOld(empid, mgrid, empname, salary) VALUES

  (1,  NULL, 'David',  $10000.00),

  (2,  1,    'Eitan',   $7000.00),

  (3,  1,    'Ina',     $7500.00),

  (4,  2,    'Seraph',  $5000.00),

  (5,  2,    'Jiru',    $5500.00),

  (6,  2,    'Steve',   $4500.00),

  (7,  3,    'Aaron',   $5000.00),

  (8,  5,    'Lilach',  $3500.00),

  (9,  7,    'Rita',    $3000.00),

  (10, 5,    'Sean',    $3000.00),

  (11, 7,    'Gabriel', $3000.00),

  (12, 9,    'Emilia' , $2000.00),

  (13, 9,    'Michael', $2000.00),

  (14, 9,    'Didi',    $1500.00);

 Run the following code to create the target EmployeesNew table that will represent the 
 employee tree using HIERARCHYID values: 

CREATE TABLE dbo.EmployeesNew

(

  empid   INT NOT NULL PRIMARY KEY,

  hid     HIERARCHYID NOT NULL,

  lvl AS hid.GetLevel() PERSISTED,

  empname VARCHAR(25) NOT NULL,

  salary  MONEY       NOT NULL

);

 The task is now to query the EmployeesOld table that contains the source data, calculate 
HIERARCHYID values for the employees, and populate the target EmployeesNew table. 
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This task can be achieved in a similar manner to normalizing existing HIERARCHYID values 
as  described earlier. You apply the following steps: 

  1. Defi ne a CTE called EmpsRN that calculates for each node a row number partitioned 
by mgrid, ordered by the attributes that you want to dictate order among siblings—for 
example, empid. 

  2. Defi ne a recursive CTE called EmpPaths that iterates through the levels of the tree,  starting 
with the root node and proceeding to the next level of children in each  iteration. Use this 
CTE to construct a new canonical path for the nodes. The root should be assigned the path /, 
and for each node in the next level the path is obtained by  concatenating the  parent’s path, 
the current node’s row number from the previous step, and another / character. 

  3. Insert into the target table EmployeesNew the employee rows along with their newly 
generated HIERARCHYID values from the EmpPaths CTE. 

 Here’s the code that performs this conversion process: 

WITH EmpsRN

AS

(

  SELECT empid, mgrid, empname, salary,

    ROW_NUMBER() OVER(PARTITION BY mgrid ORDER BY empid) AS rn

  FROM dbo.EmployeesOld

),

EmpPaths AS

(

  SELECT empid, mgrid, empname, salary,

    CAST('/' AS VARCHAR(900)) AS cpath

  FROM dbo.EmployeesOld

  WHERE mgrid IS NULL

  

  UNION ALL

  

  SELECT C.empid, C.mgrid, C.empname, C.salary,

    CAST(cpath + CAST(C.rn AS VARCHAR(20)) + '/' AS VARCHAR(900))

  FROM EmpPaths AS P

    JOIN EmpsRN AS C

      ON C.mgrid = P.empid

)

INSERT INTO dbo.EmployeesNew(empid, empname, salary, hid)

  SELECT empid, empname, salary,

    CAST(cpath AS HIERARCHYID) AS hid

  FROM EmpPaths;

 Run the following code to present the contents of the EmployeesNew table after the 
conversion: 

SELECT REPLICATE(' | ', lvl) + empname AS empname, hid.ToString() AS path

FROM dbo.EmployeesNew

ORDER BY hid;
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 You get the following output: 

empname               path      

--------------------- ----------

David                 /         

 | Eitan              /1/       

 |  | Seraph          /1/1/     

 |  | Jiru            /1/2/     

 |  |  | Lilach       /1/2/1/   

 |  |  | Sean         /1/2/2/   

 |  | Steve           /1/3/     

 | Ina                /2/       

 |  | Aaron           /2/1/     

 |  |  | Rita         /2/1/1/   

 |  |  |  | Emilia    /2/1/1/1/ 

 |  |  |  | Michael   /2/1/1/2/ 

 |  |  |  | Didi      /2/1/1/3/ 

 |  |  | Gabriel      /2/1/2/   

Sorting Separated Lists of Values

 Some applications store information about arrays and lists of numbers in the form of 
 character strings with separated lists of values. I won’t get into a discussion here regarding 
whether such representation of data is really appropriate. Instead, I’ll address a certain need 
involving such representation. Sometimes you don’t have control over the design of certain 
systems, and you need to provide solutions to requests using the existing design. 

 The request at hand involves sorting such lists, but based on the numeric values of the 
 elements and not by their character representation. For example, consider the lists ‘13,41,17’ 
and ‘13,41,3’. If you sort the lists based on the character representation of the elements, 
the former would be returned before the latter because the character ‘1’ is considered 
smaller than the character ‘3’. You want the second string to sort before the fi rst because the 
 number 3 is smaller than the number 17. 

 A special case of the problem is sorting IP addresses represented as character strings. In this 
special case you have an assurance that each string always has exactly four elements, and the 
length of each element never exceeds three digits. I’ll fi rst cover this special case and then 
discuss the more generic one. 

 Run the following code to create the IPs table and populate it with some sample IP addresses: 

USE tempdb;

IF OBJECT_ID('dbo.IPs', 'U') IS NOT NULL DROP TABLE dbo.IPs;

-- Creation script for table IPs

CREATE TABLE dbo.IPs

(

  ip varchar(15) NOT NULL,

  CONSTRAINT PK_IPs PRIMARY KEY(ip),

  -- CHECK constraint that validates IPs
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  CONSTRAINT CHK_IP_valid CHECK

  (

      -- 3 periods and no empty octets

      ip LIKE '_%._%._%._%'

    AND

      -- not 4 periods or more

      ip NOT LIKE '%.%.%.%.%'

    AND

      -- no characters other than digits and periods

      ip NOT LIKE '%[^0-9.]%'

    AND

      -- not more than 3 digits per octet

      ip NOT LIKE '%[0-9][0-9][0-9][0-9]%'

    AND

      -- NOT 300 - 999

      ip NOT LIKE '%[3-9][0-9][0-9]%'

    AND

      -- NOT 260 - 299

      ip NOT LIKE '%2[6-9][0-9]%'

    AND

      -- NOT 256 - 259

      ip NOT LIKE '%25[6-9]%'

  )

);

GO

-- Sample data

INSERT INTO dbo.IPs(ip) VALUES

  ('131.107.2.201'),

  ('131.33.2.201'),

  ('131.33.2.202'),

  ('3.107.2.4'),

  ('3.107.3.169'),

  ('3.107.104.172'),

  ('22.107.202.123'),

  ('22.20.2.77'),

  ('22.156.9.91'),

  ('22.156.89.32');

 I’ll fi rst describe one of the solutions that I had for this need prior to SQL Server 2008.  

 An IP address must be one of 81 (34) possible patterns in terms of the number of digits in 
each octet (assuming we are talking about IPv4). You can write a query that produces all 
possible patterns that a LIKE predicate would recognize, representing each digit with an 
 underscore. You can use an auxiliary table of numbers (call it Nums with a column n) that has 
three numbers for the three possible octet lengths. By joining four instances of the Nums 
table, you get the 81 possible variations of the four octet sizes. You can then easily construct 
the LIKE patterns representing the IP addresses and, using the numbers from the Nums table, 
calculate the starting position and length of each octet. 

 Run the following code to create and query the view IPPatterns, which implements this logic: 

IF OBJECT_ID('dbo.IPPatterns') IS NOT NULL DROP VIEW dbo.IPPatterns;

GO

CREATE VIEW dbo.IPPatterns

AS
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SELECT

  REPLICATE('_', N1.n) + '.' + REPLICATE('_', N2.n) + '.'

    + REPLICATE('_', N3.n) + '.' + REPLICATE('_', N4.n) AS pattern,

  N1.n AS l1, N2.n AS l2, N3.n AS l3, N4.n AS l4,

  1 AS s1, N1.n+2 AS s2, N1.n+N2.n+3 AS s3, N1.n+N2.n+N3.n+4 AS s4

FROM dbo.Nums AS N1, dbo.Nums AS N2, dbo.Nums AS N3, dbo.Nums AS N4

WHERE N1.n <= 3 AND N2.n <= 3 AND N3.n <= 3 AND N4.n <= 3;

GO

SELECT * FROM dbo.IPPatterns;

 When you query the view you get the possible IP patterns and the starting position and 
length of each pattern, as shown here in abbreviated form: 

pattern         l1  l2  l3  l4  s1  s2  s3  s4

--------------- --- --- --- --- --- --- --- ---

_._._._         1   1   1   1   1   3   5   7

_._._.__        1   1   1   2   1   3   5   7

_._._.___       1   1   1   3   1   3   5   7

_._.__._        1   1   2   1   1   3   5   8

_._.__.__       1   1   2   2   1   3   5   8

_._.__.___      1   1   2   3   1   3   5   8

_._.___._       1   1   3   1   1   3   5   9

_._.___.__      1   1   3   2   1   3   5   9

_._.___.___     1   1   3   3   1   3   5   9

_.__._._        1   2   1   1   1   3   6   8

_.__._.__       1   2   1   2   1   3   6   8

_.__._.___      1   2   1   3   1   3   6   8

_.__.__._       1   2   2   1   1   3   6   9

_.__.__.__      1   2   2   2   1   3   6   9

_.__.__.___     1   2   2   3   1   3   6   9

_.__.___._      1   2   3   1   1   3   6   10

_.__.___.__     1   2   3   2   1   3   6   10

_.__.___.___    1   2   3   3   1   3   6   10

_.___._._       1   3   1   1   1   3   7   9

_.___._.__      1   3   1   2   1   3   7   9

...

 Of course, you can implement similar logic to create the possible patterns for IP addresses of IPv6. 

 Now you can write a query that joins the IPs table with the IPPatterns view based on a match 
between the IP address and the IP pattern. This way you identify the IP pattern for each IP 
address, along with the measures indicating the starting position and length of each octet. 
You can then specify four expressions in the ORDER BY clause that apply the SUBSTRING 
function to extract the octets and cast the character string representation of the octet to a 
numeric one. Here’s what the query looks like: 

SELECT ip

FROM dbo.IPs

  JOIN dbo.IPPatterns

    ON ip LIKE pattern

ORDER BY
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  CAST(SUBSTRING(ip, s1, l1) AS TINYINT),

  CAST(SUBSTRING(ip, s2, l2) AS TINYINT),

  CAST(SUBSTRING(ip, s3, l3) AS TINYINT),

  CAST(SUBSTRING(ip, s4, l4) AS TINYINT);

 This query generates the following output: 

ip

---------------

3.107.2.4

3.107.3.169

3.107.104.172

22.20.2.77

22.107.202.123

22.156.9.91

22.156.89.32

131.33.2.201

131.33.2.202

131.107.2.201

 The problem with this solution is that it’s not very effi cient, and it doesn’t work in the more 
generic cases of lists where you have an unknown number of elements. 

 Interestingly, the canonical representation of HIERARCHYID values in SQL Server 2008 is 
also a separated list of numbers. Within a level you can have values separated by dots, and 
 between levels the values are separated by slashes. With this in mind, you can handle the 
task at hand by concatenating a slash before and after the IP address, then sorting the rows 
after converting the result to the HIERARCHYID data type, like so: 

SELECT ip

FROM dbo.IPs

ORDER BY CAST('/' + ip + '/' AS HIERARCHYID);

 This solution works just as well with the more generic case of the problem. To demonstrate 
this, fi rst create and populate the table T1 by running the following code: 

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

  id  INT          NOT NULL IDENTITY PRIMARY KEY,

  val VARCHAR(500) NOT NULL

);

GO

INSERT INTO dbo.T1(val) VALUES

  ('100'),

  ('7,4,250'),

  ('22,40,5,60,4,100,300,478,19710212'),

  ('22,40,5,60,4,99,300,478,19710212'),

  ('22,40,5,60,4,99,300,478,9999999'),

  ('10,30,40,50,20,30,40'),
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  ('7,4,250'),

  ('-1'),

  ('-2'),

  ('-11'),

  ('-22'),

  ('-123'),

  ('-321'),

  ('22,40,5,60,4,-100,300,478,19710212'),

  ('22,40,5,60,4,-99,300,478,19710212');

 As you can see, the lists in the table have varying numbers of elements. Note that because 
the separator used in these lists is a comma, you need to replace the separators by slashes or 
dots before converting to the HIERARCHYID data type. Here’s the solution query that sorts 
the lists by the numeric values of the elements:  

SELECT id, val

FROM dbo.T1

ORDER BY CAST('/' + REPLACE(val, ',', '/') + '/' AS HIERARCHYID);

 This query generates the following output: 

id          val

----------- ------------------------------------

13          -321

12          -123

11          -22

10          -11

9           -2

8           -1

7           7,4,250

2           7,4,250

6           10,30,40,50,20,30,40

14          22,40,5,60,4,-100,300,478,19710212

15          22,40,5,60,4,-99,300,478,19710212

5           22,40,5,60,4,99,300,478,9999999

4           22,40,5,60,4,99,300,478,19710212

3           22,40,5,60,4,100,300,478,19710212

1           100

 Note that you can create a computed persisted column in the table based on this  expression 
and index that column. Such an index can support a request to sort the data without the 
need for an explicit sort operation in the query’s execution plan. 

Nested Sets

 The nested sets solution is one of the most beautiful solutions I’ve seen for modeling trees. 

 More Info Joe Celko has extensive coverage of the Nested Sets model in his writings. You can 
fi nd Joe Celko’s coverage of nested sets in his book Joe Celko’s Trees and Hierarchies in SQL for 
Smarties (Morgan-Kaufmann, 2004). 

C12626034.indd   730 2/20/2009   8:20:37 PM



 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 731

 The main advantages of the nested sets solution are simple and fast queries, which I’ll 
 describe later, and no level limit. Unfortunately, however, with large data sets the solution’s 
practicality is usually limited to static trees. For dynamic environments, the solution is limited 
to small trees (or forests of small trees). 

 Instead of representing a tree as an adjacency list (parent-child relationship), this  solution 
models the tree relationships as nested sets. A parent is represented in the nested sets 
model as a containing set, and a child is represented as a contained set. Set containment 
 relationships are represented with two integer values assigned to each set: left and right. 
For all sets, a set’s left value is smaller than all contained sets’ left values, and a set’s right 
value is higher than all contained sets’ right values. Naturally, this containment relationship 
is transitive in terms of n-level relationships (ancestor/descendant). The queries are based 
on these nested sets relationships. Logically, it’s as if a set spreads two arms around all its 
contained sets. 

Assigning Left and Right Values

 Figure 12-9 provides a graphical visualization of the Employees hierarchy with the left and 
right values assigned to each employee. 
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FIGURE 12-9 Employees hierarchy as nested sets

 The curved line that walks the tree represents the order of assignment of the left and right 
values. Note that the model allows you to choose in which order you assign values to  siblings. 
In this particular case, I chose to traverse siblings by employee name order. 

 You start with the root, traversing the tree counterclockwise. Every time you enter 
a node, you increment a counter and set it as the node’s left value. Every time you leave a 
node, you increment the counter and set it as the node’s right value. This algorithm can be 
 implemented to the letter as an iterative or recursive routine that assigns each node with left 
and right values. However, such an implementation requires traversing the tree one node at 
a time, which can be very slow. I’ll show an algorithm that traverses the tree one level at a 
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time, which is faster. The core algorithm is based on logic I discussed earlier in the chapter, 
traversing the tree one level at a time and calculating binary sort paths. To understand this 
algorithm, examine Figure 12-10.  
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FIGURE 12-10 The nested sets model

 The fi gure illustrates each employee as spreading two arms around its subordinates. Left and 
right values can now be assigned to the different arms by simply incrementing a counter 
from left to right. Keep this illustration in mind—it’s the key to understanding the solution 
that I will present. 

 Again, the baseline is the original algorithm that traverses a subtree one level at a time and 
constructs a binary sort path based on a desired ordering of siblings (for example, empname, 
empid).  

 Note For good performance, you should create an index on the parent ID and sort columns—for 
example, (mgrid, empname, empid). 

 Instead of generating one row for each node (as was the case in the earlier solutions for 
generating sort values based on a binary path), you generate two rows by cross-joining each 
level with an auxiliary table that has two numbers: n=1 represents the left arm, and n=2 
 represents the right arm. The binary paths are still constructed from row numbers, but in this 
case the arm number is taken into consideration in addition to the other sort elements (for 
example, empname, empid, n). The query that returns the next level of subordinates returns 
the subordinates of the left arm only—again, cross-joined with two numbers (n=1, n=2) to 
generate two arms for each node. 

 The following code is the CTE implementation of this algorithm. The purpose of this code is 
to generate two binary sort paths for each employee that are later used to calculate left and 
right values. Before you run this code, make sure you have the original Employees table in 
the tempdb database. If you don’t, rerun the code in Listing 12-1 fi rst:  

USE tempdb; 

GO 

-- Create index to speed sorting siblings by empname, empid 

CREATE UNIQUE INDEX idx_unc_mgrid_empname_empid 

  ON dbo.Employees(mgrid, empname, empid); 

GO 

 

DECLARE @root AS INT = 1; 
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-- CTE with two numbers: 1 and 2 

WITH TwoNums 

AS 

( 

  SELECT n FROM(VALUES(1),(2)) AS D(n) 

), 

-- CTE with two binary sort paths for each node: 

--   One smaller than descendants sort paths 

--   One greater than descendants sort paths 

SortPath 

AS 

( 

  SELECT empid, 0 AS lvl, n, 

    CAST(n AS VARBINARY(MAX)) AS sort_path 

  FROM dbo.Employees CROSS JOIN TwoNums 

  WHERE empid = @root 

 

  UNION ALL 

 

  SELECT C.empid, P.lvl + 1, TN.n,  

    P.sort_path + CAST( 

      (-1+ROW_NUMBER() OVER(PARTITION BY C.mgrid 

                        -- *** determines order of siblings *** 

                        ORDER BY C.empname, C.empid))/2*2+TN.n 

      AS BINARY(4)) 

  FROM SortPath AS P 

    JOIN dbo.Employees AS C 

      ON P.n = 1 

      AND C.mgrid = P.empid 

    CROSS JOIN TwoNums AS TN 

) 

SELECT * FROM SortPath 

ORDER BY sort_path;

 This code generates the following output: 

empid  lvl  n  sort_path

------ ---- -- -------------------------------------------

1      0    1  0x00000001

2      1    1  0x0000000100000001

5      2    1  0x000000010000000100000001

8      3    1  0x00000001000000010000000100000001

8      3    2  0x00000001000000010000000100000002

10     3    1  0x00000001000000010000000100000003

10     3    2  0x00000001000000010000000100000004

5      2    2  0x000000010000000100000002

4      2    1  0x000000010000000100000003

4      2    2  0x000000010000000100000004

6      2    1  0x000000010000000100000005

6      2    2  0x000000010000000100000006

2      1    2  0x0000000100000002

3      1    1  0x0000000100000003

7      2    1  0x000000010000000300000001

11     3    1  0x00000001000000030000000100000001

11     3    2  0x00000001000000030000000100000002

9      3    1  0x00000001000000030000000100000003
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14     4    1  0x0000000100000003000000010000000300000001

14     4    2  0x0000000100000003000000010000000300000002

12     4    1  0x0000000100000003000000010000000300000003

12     4    2  0x0000000100000003000000010000000300000004

13     4    1  0x0000000100000003000000010000000300000005

13     4    2  0x0000000100000003000000010000000300000006

9      3    2  0x00000001000000030000000100000004

7      2    2  0x000000010000000300000002

3      1    2  0x0000000100000004

1      0    2  0x00000002

 TwoNums is the auxiliary table with two numbers representing the two arms. Of course, if 
you wanted to, you could use a real Nums table instead of generating a virtual one. 

 Two sort paths are generated for each node. The left one is represented by n=1, and the right 
one is represented by n=2. Notice that for a given node, the left sort path is smaller than all 
left sort paths of subordinates, and the right sort path is greater than all right sort paths of 
subordinates. The sort paths are used to generate the left and right values in Figure 12-10. 
You need to generate left and right integer values to represent the nested sets  relationships 
between the employees. To assign the integer values to the arms (sortval), simply use 
the ROW_NUMBER function based on sort_path order. Finally, to return one row for each 
 employee containing the left and right integer values, group the rows by employee and level 
and return the MIN(sortval) as the left value and MAX(sortval) as the right value. Here’s the 
complete solution to generate left and right values, followed by its output: 

DECLARE @root AS INT = 1; 

 

-- CTE with two numbers: 1 and 2 

WITH TwoNums 

AS 

( 

  SELECT n FROM(VALUES(1),(2)) AS D(n)

), 

-- CTE with two binary sort paths for each node: 

--   One smaller than descendants sort paths 

--   One greater than descendants sort paths 

SortPath 

AS 

( 

  SELECT empid, 0 AS lvl, n, 

    CAST(n AS VARBINARY(MAX)) AS sort_path 

  FROM dbo.Employees CROSS JOIN TwoNums 

  WHERE empid = @root 

 

  UNION ALL 

 

  SELECT C.empid, P.lvl + 1, TN.n,  

    P.sort_path + CAST( 

      (-1+ROW_NUMBER() OVER(PARTITION BY C.mgrid 

                        -- *** determines order of siblings *** 

                        ORDER BY C.empname, C.empid))/2*2+TN.n 

      AS BINARY(4)) 
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  FROM SortPath AS P 

    JOIN dbo.Employees AS C 

      ON P.n = 1 

      AND C.mgrid = P.empid 

    CROSS JOIN TwoNums AS TN 

), 

-- CTE with Row Numbers Representing sort_path Order 

Sort 

AS 

( 

  SELECT empid, lvl, 

    ROW_NUMBER() OVER(ORDER BY sort_path) AS sortval 

  FROM SortPath 

), 

-- CTE with Left and Right Values Representing 

-- Nested Sets Relationships 

NestedSets 

AS 

( 

  SELECT empid, lvl, MIN(sortval) AS lft, MAX(sortval) AS rgt 

  FROM Sort 

  GROUP BY empid, lvl 

) 

SELECT * FROM NestedSets 

ORDER BY lft; 

empid  lvl  lft  rgt

------ ---- ---- ----

1      0    1    28

2      1    2    13

5      2    3    8

8      3    4    5

10     3    6    7

4      2    9    10

6      2    11   12

3      1    14   27

7      2    15   26

11     3    16   17

9      3    18   25

14     4    19   20

12     4    21   22

13     4    23   24

 In the opening paragraph of the “Nested Sets” section, I mentioned that this solution is not 
 adequate for large dynamic trees (trees that incur frequent changes). Suppose you stored 
left and right values in two additional columns in the Employees table. Note that you won’t 
need the mgrid column in the table anymore because the two additional columns with 
the left and right values are suffi cient to answer requests for subordinates, ancestors, and 
so on. Consider the shake effect of adding a node to the tree. For example, take a look 
at Figures 12-9 and 12-10 and try to fi gure out the effect of adding a new subordinate to 
Steve. Steve has left and right values of 11 and 12, respectively. The new node should get 
left and right  values of 12 and 13, respectively. Steve’s right value—and in fact all left and 
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right values in the tree that were greater than or equal to 12—should be increased by two. 
On average, at least half the nodes in the tree must be updated every time a new node is 
inserted. As you can see here, the shake effect is very dramatic. That’s why the nested sets 
solution is adequate for a large tree only if it’s static or if you need to run queries against a 
static snapshot of the tree periodically. 

 Nested sets can provide reasonably good performance with dynamic trees that are small (or 
forests of small trees)—for example, when maintaining forum discussions where each thread 
is a small independent tree in a forest. You can implement a solution that  synchronizes 
the left and right values of the tree with every change. You can achieve this by using 
stored  procedures or even triggers, as long as the cost of modifi cation is small enough to 
be  bearable. I won’t even get into variations of the nested sets model that maintain gaps 
 between the values (that is, leave room to insert new leaves without as much work) because 
they are all ultimately limited. 

 To generate a table of employees (EmployeesNS) with the employee ID, employee name, 
salary, level, left, and right values, join the outer query of the CTE solution and use a SELECT 
INTO statement. Run the following code to create this as the EmployeesNS table with siblings 
ordered by empname, empid: 

SET NOCOUNT ON; 

USE tempdb; 

GO 

 

DECLARE @root AS INT = 1; 

 

WITH TwoNums 

AS 

( 

  SELECT n FROM(VALUES(1),(2)) AS D(n)

), 

SortPath 

AS 

( 

  SELECT empid, 0 AS lvl, n, 

    CAST(n AS VARBINARY(MAX)) AS sort_path 

  FROM dbo.Employees CROSS JOIN TwoNums 

  WHERE empid = @root 

 

  UNION ALL 

 

  SELECT C.empid, P.lvl + 1, TN.n,  

    P.sort_path + CAST( 

      ROW_NUMBER() OVER(PARTITION BY C.mgrid 

                        -- *** determines order of siblings *** 

                        ORDER BY C.empname, C.empid, TN.n) 

      AS BINARY(4)) 

  FROM SortPath AS P 

    JOIN dbo.Employees AS C 

      ON P.n = 1 
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      AND C.mgrid = P.empid 

    CROSS JOIN TwoNums AS TN 

), 

Sort 

AS 

( 

  SELECT empid, lvl, 

    ROW_NUMBER() OVER(ORDER BY sort_path) AS sortval 

  FROM SortPath 

), 

NestedSets 

AS 

( 

  SELECT empid, lvl, MIN(sortval) AS lft, MAX(sortval) AS rgt 

  FROM Sort 

  GROUP BY empid, lvl 

) 

SELECT E.empid, E.empname, E.salary, NS.lvl, NS.lft, NS.rgt 

INTO dbo.EmployeesNS 

FROM NestedSets AS NS 

  JOIN dbo.Employees AS E 

    ON E.empid = NS.empid; 

 

ALTER TABLE dbo.EmployeesNS ADD PRIMARY KEY NONCLUSTERED(empid); 

CREATE UNIQUE CLUSTERED INDEX idx_unc_lft_rgt ON dbo.EmployeesNS(lft, rgt); 

GO

Querying

 The EmployeesNS table models a tree of employees as nested sets. Querying is simple, 
 elegant, and fast with the index on left and right values. 

 In the following section, I’ll present common requests against a tree and the query solution 
for each, followed by the output of the query. 

 Return the subtree of a given root: 

SELECT C.empid, REPLICATE(' | ', C.lvl - P.lvl) + C.empname AS empname 

FROM dbo.EmployeesNS AS P 

  JOIN dbo.EmployeesNS AS C 

    ON P.empid = 3 

    AND C.lft >= P.lft AND C.rgt <= P.rgt 

ORDER BY C.lft;

empid       empname

----------- ------------------

3           Ina

7            | Aaron

11           |  | Gabriel

9            |  | Rita

14           |  |  | Didi

12           |  |  | Emilia

13           |  |  | Michael

C12626034.indd   737 2/20/2009   8:20:37 PM



738 Inside Microsoft SQL Server 2008: T-SQL Querying

 The query joins two instances of EmployeesNS. One represents the parent (P) and is fi ltered 
by the given root. The other represents the child (C). The two are joined based on the child’s 
left being greater than or equal to the parent’s left and the child’s right being smaller than or 
equal to the parent’s right. Indentation of the output is achieved by replicating a string (‘ | ‘) 
child level minus parent level times. The output is sorted by the child’s left value, which by 
defi nition represents correct hierarchical sorting, and the desired sort of siblings. This  subtree 
query is used as the baseline for most of the following queries. 

 If you want to exclude the subtree’s root node from the output, simply use greater than (>) 
and less than (<) operators instead of greater than or equal to (>=) and less than or equal to 
(<=) operators. To the subtree query, add a fi lter in the join condition that returns only nodes 
where the child’s level minus the parent’s level is smaller than or equal to the requested 
 number of levels under the root. 

 Return the subtree of a given root, limiting two levels of subordinates under the root: 

SELECT C.empid, REPLICATE(' | ', C.lvl - P.lvl) + C.empname AS empname 

FROM dbo.EmployeesNS AS P 

  JOIN dbo.EmployeesNS AS C 

    ON P.empid = 3 

    AND C.lft >= P.lft AND C.rgt <= P.rgt 

    AND C.lvl - P.lvl <= 2 

ORDER BY C.lft;

empid       empname

----------- ---------------

3           Ina

7            | Aaron

11           |  | Gabriel

9            |  | Rita

 Return leaf nodes under a given root: 

SELECT C.empid, C.empname 

FROM dbo.EmployeesNS AS P 

  JOIN dbo.EmployeesNS AS C 

    ON P.empid = 3 

    AND C.lft >= P.lft AND C.rgt <= P.rgt 

WHERE C.rgt - C.lft = 1;

empid       empname

----------- ---------

11          Gabriel

14          Didi

12          Emilia

13          Michael

 A leaf node is a node for which the right value is greater than the left value by 1 
(no  subordinates). Add this fi lter to the subtree query’s WHERE clause. As you can see, the 
nested sets solution allows for dramatically faster identifi cation of leaf nodes than other 
 solutions using a NOT EXISTS predicate. 
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 Return the count of subordinates of each node: 

SELECT empid, (rgt - lft - 1) / 2 AS cnt, 

  REPLICATE(' | ', lvl) + empname AS empname 

FROM dbo.EmployeesNS 

ORDER BY lft;

empid  cnt  empname

------ ---- -------------------

1      13   David

2      5     | Eitan

5      2     |  | Jiru

8      0     |  |  | Lilach

10     0     |  |  | Sean

4      0     |  | Seraph

6      0     |  | Steve

3      6     | Ina

7      5     |  | Aaron

11     0     |  |  | Gabriel

9      3     |  |  | Rita

14     0     |  |  |  | Didi

12     0     |  |  |  | Emilia

13     0     |  |  |  | Michael

 Because each node accounts for exactly two lft and rgt values and in our implementation no 
gaps exist, you can calculate the count of subordinates by accessing the subtree’s root alone. 
The count is (rgt – lft – 1) / 2. 

 Return all ancestors of a given node: 

SELECT P.empid, P.empname, P.lvl 

FROM dbo.EmployeesNS AS P 

  JOIN dbo.EmployeesNS AS C 

    ON C.empid = 14 

    AND C.lft >= P.lft AND C.rgt <= P.rgt;

empid  empname  lvl

------ -------- ----

1      David    0

3      Ina      1

7      Aaron    2

9      Rita     3

14     Didi     4

 The ancestors query is almost identical to the subtree query. The nested sets relationships 
remain the same. The only difference is that here you fi lter a specifi c child node ID, while in 
the subtree query you fi ltered a specifi c parent node ID. 

 When you’re done querying the EmployeesNS table, run the following code for cleanup: 

DROP TABLE dbo.EmployeesNS;
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Transitive Closure

 The transitive closure of a directed graph G is the graph with the same vertices as G and 
with an edge connecting each pair of nodes that are connected by a path (not  necessarily 
containing just one edge) in G. The transitive closure helps answer a number of  questions 
 immediately, without the need to explore paths in the graph. For example, is David a 
 manager of Aaron (directly or indirectly)? If the transitive closure of the Employees graph 
contains an edge from David to Aaron, he is. Does Double Espresso contain water? Can I 
drive from Los Angeles to New York? If the input graph contains the edges (a, b) and (b, c), a 
and c have a transitive relationship. The transitive closure contains the edges (a, b), (b, c), and 
also (a, c). If David is the direct manager of Ina and Ina is the direct manager of Aaron, David 
transitively is a manager of Aaron, or Aaron transitively is a subordinate of David. 

 Problems related to transitive closure deal with specialized cases of transitive relationships. 
An example is the “shortest path” problem, where you’re trying to determine the  shortest path 
 between two nodes. For example, what’s the shortest path between Los Angeles and New York? 

 In this section, I will describe iterative/recursive solutions for transitive closure and shortest 
path problems.  

 Note The performance of some of the solutions that I will show (specifi cally those that 
use recursive CTEs) degrades exponentially as the input graph grows. I’ll present them for 
 demonstration purposes because they are fairly simple and natural. They are adequate for fairly 
small graphs. Some effi cient  algorithms for transitive closure–related problems (for  example, 
Floyd’s and Warshall’s algorithms) can be implemented as “level at a time” ( breadth-fi rst) 
 iterations. For details on those, please refer to http://www.nist.gov/dads/. I’ll show effi cient 
 solutions provided by Steve Kass that can be applied to larger graphs. 

Directed Acyclic Graph

 The fi rst problem that I will discuss is generating a transitive closure of a directed  acyclic graph 
(DAG). Later I’ll show you how to deal with undirected and cyclic graphs as well. Whether the 
graph is directed or undirected doesn’t really complicate the solution  signifi cantly, but dealing 
with cyclic graphs does. The input DAG that I will use in my example is the BOM I used earlier 
in the chapter, which you create by running the code in Listing 12-2.  

 The code that generates the transitive closure of BOM is somewhat similar to solutions for the 
subgraph problem (that is, the parts explosion). Specifi cally, you traverse the graph one level 
at a time (or, more accurately, you are using breadth-fi rst search techniques). However, instead 
of returning only a root node here, the anchor member returns all fi rst-level  relationships 
in BOM. In most graphs, this simply means all existing source/target pairs. In our case, this 
means all assembly/part pairs where the assembly is not NULL. The recursive member joins 
the CTE representing the previous level or parent (P) with BOM representing the next level or 
child (C). It returns the original product ID (P) as the source and the child product ID (C) as the 
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target. The outer query returns the distinct assembly/part pairs. Keep in mind that  multiple 
paths may lead to a part in BOM, but you need to return each unique pair only once. 

 Run the following code to generate the transitive closure of BOM: 

WITH BOMTC 

AS 

( 

  -- Return all first-level containment relationships 

  SELECT assemblyid, partid 

  FROM dbo.BOM 

  WHERE assemblyid IS NOT NULL 

 

  UNION ALL 

 

  -- Return next-level containment relationships 

  SELECT P.assemblyid, C.partid 

  FROM BOMTC AS P 

    JOIN dbo.BOM AS C 

      ON C.assemblyid = P.partid 

) 

-- Return distinct pairs that have 

-- transitive containment relationships 

SELECT DISTINCT assemblyid, partid 

FROM BOMTC;

 This code generates the following output: 

assemblyid  partid

----------- -----------

1           6

1           7

1           10

1           13

1           14

2           6

2           7

2           10

2           11

2           13

2           14

3           6

3           7

3           11

3           12

3           14

3           16

3           17

4           9

4           12

4           14

4           16

4           17

5           9

5           12

5           14

C12626034.indd   741 2/20/2009   8:20:37 PM



742 Inside Microsoft SQL Server 2008: T-SQL Querying

5           16

5           17

10          13

10          14

12          14

12          16

12          17

16          17

 This solution eliminates duplicate edges found in the BOMTC by applying a DISTINCT clause 
in the outer query. A more effi cient solution would be to avoid getting duplicates altogether 
by using a NOT EXISTS predicate in the query that runs repeatedly; such a predicate would 
fi lter newly found edges that do not appear in the set of edges that were already found. 
However, such an implementation can’t use a CTE because the recursive member in the CTE 
has access only to the immediate previous level, as opposed to all  previous levels obtained 
thus far. Instead, you can use a UDF that invokes the query that runs repeatedly in a loop and 
inserts each obtained level of nodes into a table variable. Run the following code to create 
the BOMTC UDF, which implements this logic: 

IF OBJECT_ID('dbo.BOMTC') IS NOT NULL 

  DROP FUNCTION dbo.BOMTC; 

GO 

 

CREATE FUNCTION BOMTC() RETURNS @BOMTC TABLE 

( 

  assemblyid INT NOT NULL, 

  partid     INT NOT NULL, 

  PRIMARY KEY (assemblyid, partid) 

) 

AS 

BEGIN 

  INSERT INTO @BOMTC(assemblyid, partid) 

    SELECT assemblyid, partid 

    FROM dbo.BOM 

    WHERE assemblyid IS NOT NULL 

 

  WHILE @@rowcount > 0 

    INSERT INTO @BOMTC 

    SELECT P.assemblyid, C.partid 

    FROM @BOMTC AS P 

      JOIN dbo.BOM AS C 

        ON C.assemblyid = P.partid 

    WHERE NOT EXISTS 

      (SELECT * FROM @BOMTC AS P2 

       WHERE P2.assemblyid = P.assemblyid 

       AND P2.partid = C.partid); 

 

  RETURN; 

END 

GO

 Query the function to get the transitive closure of BOM: 

SELECT assemblyid, partid FROM BOMTC();
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 If you want to return all paths in BOM, along with the distance in levels between the parts, 
you use a similar algorithm with a few additions and revisions. You calculate the distance 
the same way you calculated the level value in the subgraph/subtree solutions. That is, 
the  anchor assigns a constant distance of 1 for the fi rst level, and the recursive member 
 simply adds one in each iteration. Also, the path calculation is similar to the one used in 
the  subgraph/subtree solutions. The anchor generates a path made of ‘.’ + source_id + ‘.’ + 
 target_id + ‘.’. The recursive member generates it as parent’s path + target_id + ‘.’. Finally, the 
outer query simply returns all paths (without applying DISTINCT in this case). 

 Run the following code to generate all possible paths in BOM and their distances: 

WITH BOMPaths 

AS 

( 

  SELECT assemblyid, partid, 

    1 AS distance, -- distance in first level is 1 

    -- path in first level is .assemblyid.partid. 

    '.' + CAST(assemblyid AS VARCHAR(MAX)) + 

    '.' + CAST(partid     AS VARCHAR(MAX)) + '.' AS path 

  FROM dbo.BOM 

  WHERE assemblyid IS NOT NULL 

 

  UNION ALL 

 

  SELECT P.assemblyid, C.partid, 

    -- distance in next level is parent's distance + 1 

    P.distance + 1, 

    -- path in next level is parent_path.child_partid. 

    P.path + CAST(C.partid AS VARCHAR(MAX)) + '.' 

  FROM BOMPaths AS P 

    JOIN dbo.BOM AS C 

      ON C.assemblyid = P.partid 

) 

-- Return all paths 

SELECT * FROM BOMPaths;

 You get the following output: 

assemblyid  partid      distance    path

----------- ----------- ----------- ----------------

1           6           1           .1.6.

2           6           1           .2.6.

3           6           1           .3.6.

1           7           1           .1.7.

2           7           1           .2.7.

3           7           1           .3.7.

4           9           1           .4.9.

5           9           1           .5.9.

1           10          1           .1.10.

2           10          1           .2.10.

2           11          1           .2.11.

3           11          1           .3.11.

3           12          1           .3.12.

4           12          1           .4.12.

5           12          1           .5.12.
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10          13          1           .10.13.

1           14          1           .1.14.

2           14          1           .2.14.

10          14          1           .10.14.

12          14          1           .12.14.

12          16          1           .12.16.

16          17          1           .16.17.

12          17          2           .12.16.17.

5           14          2           .5.12.14.

5           16          2           .5.12.16.

5           17          3           .5.12.16.17.

4           14          2           .4.12.14.

4           16          2           .4.12.16.

4           17          3           .4.12.16.17.

3           14          2           .3.12.14.

3           16          2           .3.12.16.

3           17          3           .3.12.16.17.

2           13          2           .2.10.13.

2           14          2           .2.10.14.

1           13          2           .1.10.13.

1           14          2           .1.10.14.

 To isolate only the shortest paths, add a second CTE (BOMMinDist) that groups all paths by 
assembly and part, returning the minimum distance for each group. In the outer query, join 
the fi rst CTE (BOMPaths) with BOMMinDist, based on assembly, part, and distance match to 
return the actual paths. 

 Run the following code to produce the shortest paths in BOM: 

WITH BOMPaths -- All paths 

AS 

( 

  SELECT assemblyid, partid, 

    1 AS distance, 

    '.' + CAST(assemblyid AS VARCHAR(MAX)) + 

    '.' + CAST(partid     AS VARCHAR(MAX)) + '.' AS path 

  FROM dbo.BOM 

  WHERE assemblyid IS NOT NULL 

 

  UNION ALL 

 

  SELECT P.assemblyid, C.partid, 

    P.distance + 1, 

    P.path + CAST(C.partid AS VARCHAR(MAX)) + '.' 

  FROM BOMPaths AS P 

    JOIN dbo.BOM AS C 

      ON C.assemblyid = P.partid 

), 

BOMMinDist AS -- Minimum distance for each pair 

( 

  SELECT assemblyid, partid, MIN(distance) AS mindist 

  FROM BOMPaths 

  GROUP BY assemblyid, partid 

) 
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-- Shortest path for each pair 

SELECT BP.* 

FROM BOMMinDist AS BMD 

  JOIN BOMPaths AS BP 

    ON BMD.assemblyid = BP.assemblyid 

    AND BMD.partid = BP.partid 

    AND BMD.mindist = BP.distance;

 This code generates the following output: 

assemblyid  partid      distance    path

----------- ----------- ----------- ------------------

1           6           1           .1.6.

2           6           1           .2.6.

3           6           1           .3.6.

1           7           1           .1.7.

2           7           1           .2.7.

3           7           1           .3.7.

4           9           1           .4.9.

5           9           1           .5.9.

1           10          1           .1.10.

2           10          1           .2.10.

2           11          1           .2.11.

3           11          1           .3.11.

3           12          1           .3.12.

4           12          1           .4.12.

5           12          1           .5.12.

10          13          1           .10.13.

1           14          1           .1.14.

2           14          1           .2.14.

10          14          1           .10.14.

12          14          1           .12.14.

12          16          1           .12.16.

16          17          1           .16.17.

12          17          2           .12.16.17.

5           14          2           .5.12.14.

5           16          2           .5.12.16.

5           17          3           .5.12.16.17.

4           14          2           .4.12.14.

4           16          2           .4.12.16.

4           17          3           .4.12.16.17.

3           14          2           .3.12.14.

3           16          2           .3.12.16.

3           17          3           .3.12.16.17.

2           13          2           .2.10.13.

1           13          2           .1.10.13.

Undirected Cyclic Graph

 Even though transitive closure is defi ned for a directed graph, you can also defi ne and 
 generate it for undirected graphs where each edge represents a two-way relationship. In 
my examples, I will use the Roads graph, which you create and populate by running the 
code in Listing 12-3. To see a visual representation of Roads, examine Figure 12-4. To apply 

C12626034.indd   745 2/20/2009   8:20:38 PM



746 Inside Microsoft SQL Server 2008: T-SQL Querying

the  transitive closure and shortest path solutions to Roads, fi rst convert it to a digraph by 
 generating two directed edges from each existing edge:  

SELECT city1 AS from_city, city2 AS to_city FROM dbo.Roads 

UNION ALL 

SELECT city2, city1 FROM dbo.Roads

 For example, the edge (JFK, ATL) in the undirected graph appears as two edges, (JFK, ATL) 
and (ATL, JFK), in the digraph. The former represents the road from New York to Atlanta, and 
the latter represents the road from Atlanta to New York. 

 Because Roads is a cyclic graph, you also need to use the cycle-detection logic I described 
earlier in the chapter to avoid traversing cyclic paths. Armed with the techniques to generate 
a digraph out of an undirected graph and to detect cycles, you have all the tools you need to 
produce the transitive closure of roads. 

 Run the following code to generate the transitive closure of Roads: 

WITH Roads2 -- Two rows for each pair (from-->to, to-->from) 

AS 

( 

  SELECT city1 AS from_city, city2 AS to_city FROM dbo.Roads 

  UNION ALL 

  SELECT city2, city1 FROM dbo.Roads 

), 

RoadPaths AS 

( 

  -- Return all first-level reachability pairs 

  SELECT from_city, to_city, 

    -- path is needed to identify cycles 

    CAST('.' + from_city + '.' + to_city + '.' AS VARCHAR(MAX)) AS path 

  FROM Roads2 

 

  UNION ALL 

 

  -- Return next-level reachability pairs 

  SELECT F.from_city, T.to_city, 

    CAST(F.path + T.to_city + '.' AS VARCHAR(MAX)) 

  FROM RoadPaths AS F 

    JOIN Roads2 AS T 

      -- if to_city appears in from_city's path, cycle detected 

      ON CASE WHEN F.path LIKE '%.' + T.to_city + '.%' 

              THEN 1 ELSE 0 END = 0 

      AND F.to_city = T.from_city 

) 

-- Return Transitive Closure of Roads 

SELECT DISTINCT from_city, to_city 

FROM RoadPaths;
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 The Roads2 CTE creates the digraph out of Roads. The RoadPaths CTE returns all possible 
source/target pairs (this has a big performance penalty), and it avoids returning and pursuing 
a path for which a cycle is detected. The outer query returns all distinct source/target pairs: 

from to   from to   from to   from to   from to

---- ---- ---- ---- ---- ---- ---- ---- ---- ----

ANC  FAI  IAH  LAX  LAX  SEA  MSP  JFK  SEA  ORD

ATL  DEN  IAH  MCI  LAX  SFO  MSP  LAX  SEA  SFO

ATL  IAH  IAH  MIA  MCI  ATL  MSP  MCI  SFO  ATL

ATL  JFK  IAH  MSP  MCI  DEN  MSP  MIA  SFO  DEN

ATL  LAX  IAH  ORD  MCI  IAH  MSP  ORD  SFO  IAH

ATL  MCI  IAH  SEA  MCI  JFK  MSP  SEA  SFO  JFK

ATL  MIA  IAH  SFO  MCI  LAX  MSP  SFO  SFO  LAX

ATL  MSP  JFK  ATL  MCI  MIA  ORD  ATL  SFO  MCI

ATL  ORD  JFK  DEN  MCI  MSP  ORD  DEN  SFO  MIA

ATL  SEA  JFK  IAH  MCI  ORD  ORD  IAH  SFO  MSP

ATL  SFO  JFK  LAX  MCI  SEA  ORD  JFK  SFO  ORD

DEN  ATL  JFK  MCI  MCI  SFO  ORD  LAX  SFO  SEA

DEN  IAH  JFK  MIA  MIA  ATL  ORD  MCI

DEN  JFK  JFK  MSP  MIA  DEN  ORD  MIA

DEN  LAX  JFK  ORD  MIA  IAH  ORD  MSP

DEN  MCI  JFK  SEA  MIA  JFK  ORD  SEA

DEN  MIA  JFK  SFO  MIA  LAX  ORD  SFO

DEN  MSP  LAX  ATL  MIA  MCI  SEA  ATL

DEN  ORD  LAX  DEN  MIA  MSP  SEA  DEN

DEN  SEA  LAX  IAH  MIA  ORD  SEA  IAH

DEN  SFO  LAX  JFK  MIA  SEA  SEA  JFK

FAI  ANC  LAX  MCI  MIA  SFO  SEA  LAX

IAH  ATL  LAX  MIA  MSP  ATL  SEA  MCI

IAH  DEN  LAX  MSP  MSP  DEN  SEA  MIA

IAH  JFK  LAX  ORD  MSP  IAH  SEA  MSP

 Here as well, you can use loops instead of a recursive CTE to optimize the solution, as 
 demonstrated earlier with the BOM scenario. Run the following code to create the RoadsTC 
UDF, which returns the transitive closure of Roads using loops: 

IF OBJECT_ID('dbo.RoadsTC') IS NOT NULL 

  DROP FUNCTION dbo.RoadsTC; 

GO 

 

CREATE FUNCTION dbo.RoadsTC() RETURNS @RoadsTC TABLE ( 

  from_city VARCHAR(3) NOT NULL, 

  to_city   VARCHAR(3) NOT NULL, 

  PRIMARY KEY (from_city, to_city) 

) 

AS 

BEGIN 

  DECLARE @added as INT; 

 

  INSERT INTO @RoadsTC(from_city, to_city) 

    SELECT city1, city2 FROM dbo.Roads; 

 

  SET @added = @@rowcount; 

 

  INSERT INTO @RoadsTC 

    SELECT city2, city1 FROM dbo.Roads 
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  SET @added = @added + @@rowcount; 

 

  WHILE @added > 0 BEGIN 

 

    INSERT INTO @RoadsTC 

      SELECT DISTINCT TC.from_city, R.city2 

      FROM @RoadsTC AS TC 

        JOIN dbo.Roads AS R 

          ON R.city1 = TC.to_city 

      WHERE NOT EXISTS 

        (SELECT * FROM @RoadsTC AS TC2 

         WHERE TC2.from_city = TC.from_city 

           AND TC2.to_city = R.city2) 

        AND TC.from_city <> R.city2; 

 

    SET @added = @@rowcount; 

 

    INSERT INTO @RoadsTC 

      SELECT DISTINCT TC.from_city, R.city1 

      FROM @RoadsTC AS TC 

        JOIN dbo.Roads AS R 

          ON R.city2 = TC.to_city 

      WHERE NOT EXISTS 

        (SELECT * FROM @RoadsTC AS TC2 

         WHERE TC2.from_city = TC.from_city 

           AND TC2.to_city = R.city1) 

        AND TC.from_city <> R.city1; 

 

    SET @added = @added + @@rowcount; 

  END 

  RETURN; 

END 

GO 

 

-- Use the RoadsTC UDF 

SELECT * FROM dbo.RoadsTC(); 

GO

 Run the following query to get the transitive closure of Roads: 

SELECT * FROM dbo.RoadsTC();

 To return all paths and distances, use similar logic to the one used in the digraph solution in 
the previous section. The difference here is that the distance is not just a level counter—it is 
the sum of the distances along the route from one city to the other. 

 Run the following code to return all paths and distances in Roads: 

WITH Roads2 

AS 

( 

  SELECT city1 AS from_city, city2 AS to_city, distance FROM dbo.Roads 

  UNION ALL 

  SELECT city2, city1, distance FROM dbo.Roads 

), 
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RoadPaths AS 

( 

  SELECT from_city, to_city, distance, 

    CAST('.' + from_city + '.' + to_city + '.' AS VARCHAR(MAX)) AS path 

  FROM Roads2 

 

  UNION ALL 

 

  SELECT F.from_city, T.to_city, F.distance + T.distance, 

    CAST(F.path + T.to_city + '.' AS VARCHAR(MAX)) 

  FROM RoadPaths AS F 

    JOIN Roads2 AS T 

      ON CASE WHEN F.path LIKE '%.' + T.to_city + '.%' 

              THEN 1 ELSE 0 END = 0 

      AND F.to_city = T.from_city 

) 

-- Return all paths and distances 

SELECT * FROM RoadPaths;

 Finally, to return shortest paths in Roads, use the same logic as the digraph shortest paths 
solution. Run the following code to return shortest paths in Roads: 

WITH Roads2 

AS 

( 

  SELECT city1 AS from_city, city2 AS to_city, distance FROM dbo.Roads 

  UNION ALL 

  SELECT city2, city1, distance FROM dbo.Roads 

), 

RoadPaths AS 

( 

  SELECT from_city, to_city, distance, 

    CAST('.' + from_city + '.' + to_city + '.' AS VARCHAR(MAX)) AS path 

  FROM Roads2 

 

  UNION ALL 

 

  SELECT F.from_city, T.to_city, F.distance + T.distance, 

    CAST(F.path + T.to_city + '.' AS VARCHAR(MAX)) 

  FROM RoadPaths AS F 

    JOIN Roads2 AS T 

      ON CASE WHEN F.path LIKE '%.' + T.to_city + '.%' 

              THEN 1 ELSE 0 END = 0 

      AND F.to_city = T.from_city 

), 

RoadsMinDist -- Min distance for each pair in TC 

AS 

( 

  SELECT from_city, to_city, MIN(distance) AS mindist 

  FROM RoadPaths 

  GROUP BY from_city, to_city 

) 

-- Return shortest paths and distances 

SELECT RP.* 

FROM RoadsMinDist AS RMD 
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  JOIN RoadPaths AS RP 

    ON RMD.from_city = RP.from_city 

    AND RMD.to_city = RP.to_city 

    AND RMD.mindist = RP.distance;

 You get the following output: 

from_city to_city distance    path

--------- ------- ----------- ------------------------

ANC       FAI     359         .ANC.FAI.

ATL       IAH     800         .ATL.IAH.

ATL       JFK     865         .ATL.JFK.

ATL       MCI     805         .ATL.MCI.

ATL       MIA     665         .ATL.MIA.

ATL       ORD     715         .ATL.ORD.

DEN       IAH     1120        .DEN.IAH.

DEN       LAX     1025        .DEN.LAX.

DEN       MCI     600         .DEN.MCI.

DEN       MSP     915         .DEN.MSP.

DEN       SEA     1335        .DEN.SEA.

DEN       SFO     1270        .DEN.SFO.

IAH       LAX     1550        .IAH.LAX.

IAH       MCI     795         .IAH.MCI.

IAH       MIA     1190        .IAH.MIA.

JFK       ORD     795         .JFK.ORD.

LAX       SFO     385         .LAX.SFO.

MCI       MSP     440         .MCI.MSP.

MCI       ORD     525         .MCI.ORD.

MSP       ORD     410         .MSP.ORD.

MSP       SEA     2015        .MSP.SEA.

SEA       SFO     815         .SEA.SFO.

FAI       ANC     359         .FAI.ANC.

IAH       ATL     800         .IAH.ATL.

JFK       ATL     865         .JFK.ATL.

MCI       ATL     805         .MCI.ATL.

MIA       ATL     665         .MIA.ATL.

ORD       ATL     715         .ORD.ATL.

IAH       DEN     1120        .IAH.DEN.

LAX       DEN     1025        .LAX.DEN.

MCI       DEN     600         .MCI.DEN.

MSP       DEN     915         .MSP.DEN.

SEA       DEN     1335        .SEA.DEN.

SFO       DEN     1270        .SFO.DEN.

LAX       IAH     1550        .LAX.IAH.

MCI       IAH     795         .MCI.IAH.

MIA       IAH     1190        .MIA.IAH.

ORD       JFK     795         .ORD.JFK.

SFO       LAX     385         .SFO.LAX.

MSP       MCI     440         .MSP.MCI.

ORD       MCI     525         .ORD.MCI.

ORD       MSP     410         .ORD.MSP.

SEA       MSP     2015        .SEA.MSP.

SFO       SEA     815         .SFO.SEA.

SEA       ORD     2425        .SEA.MSP.ORD.

SEA       JFK     3220        .SEA.MSP.ORD.JFK.

ORD       SEA     2425        .ORD.MSP.SEA.

ORD       DEN     1125        .ORD.MCI.DEN.
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ORD       IAH     1320        .ORD.MCI.IAH.

ORD       LAX     2150        .ORD.MCI.DEN.LAX.

ORD       SFO     2395        .ORD.MCI.DEN.SFO.

MSP       IAH     1235        .MSP.MCI.IAH.

SFO       IAH     1935        .SFO.LAX.IAH.

SFO       MIA     3125        .SFO.LAX.IAH.MIA.

MIA       LAX     2740        .MIA.IAH.LAX.

MIA       SFO     3125        .MIA.IAH.LAX.SFO.

LAX       MIA     2740        .LAX.IAH.MIA.

LAX       ATL     2350        .LAX.IAH.ATL.

SFO       MCI     1870        .SFO.DEN.MCI.

SFO       MSP     2185        .SFO.DEN.MSP.

SFO       ORD     2395        .SFO.DEN.MCI.ORD.

SFO       ATL     2675        .SFO.DEN.MCI.ATL.

SFO       JFK     3190        .SFO.DEN.MCI.ORD.JFK.

SEA       IAH     2455        .SEA.DEN.IAH.

SEA       MCI     1935        .SEA.DEN.MCI.

SEA       ATL     2740        .SEA.DEN.MCI.ATL.

SEA       MIA     3405        .SEA.DEN.MCI.ATL.MIA.

MSP       LAX     1940        .MSP.DEN.LAX.

MSP       SFO     2185        .MSP.DEN.SFO.

MCI       LAX     1625        .MCI.DEN.LAX.

MCI       SEA     1935        .MCI.DEN.SEA.

MCI       SFO     1870        .MCI.DEN.SFO.

LAX       MCI     1625        .LAX.DEN.MCI.

LAX       MSP     1940        .LAX.DEN.MSP.

LAX       ORD     2150        .LAX.DEN.MCI.ORD.

LAX       JFK     2945        .LAX.DEN.MCI.ORD.JFK.

IAH       SEA     2455        .IAH.DEN.SEA.

ORD       MIA     1380        .ORD.ATL.MIA.

MIA       JFK     1530        .MIA.ATL.JFK.

MIA       MCI     1470        .MIA.ATL.MCI.

MIA       ORD     1380        .MIA.ATL.ORD.

MIA       MSP     1790        .MIA.ATL.ORD.MSP.

MIA       DEN     2070        .MIA.ATL.MCI.DEN.

MIA       SEA     3405        .MIA.ATL.MCI.DEN.SEA.

MCI       MIA     1470        .MCI.ATL.MIA.

JFK       IAH     1665        .JFK.ATL.IAH.

JFK       MIA     1530        .JFK.ATL.MIA.

IAH       JFK     1665        .IAH.ATL.JFK.

SEA       LAX     1200        .SEA.SFO.LAX.

MSP       ATL     1125        .MSP.ORD.ATL.

MSP       JFK     1205        .MSP.ORD.JFK.

MSP       MIA     1790        .MSP.ORD.ATL.MIA.

MCI       JFK     1320        .MCI.ORD.JFK.

LAX       SEA     1200        .LAX.SFO.SEA.

JFK       MCI     1320        .JFK.ORD.MCI.

JFK       MSP     1205        .JFK.ORD.MSP.

JFK       SEA     3220        .JFK.ORD.MSP.SEA.

JFK       DEN     1920        .JFK.ORD.MCI.DEN.

JFK       LAX     2945        .JFK.ORD.MCI.DEN.LAX.

JFK       SFO     3190        .JFK.ORD.MCI.DEN.SFO.

IAH       MSP     1235        .IAH.MCI.MSP.

IAH       ORD     1320        .IAH.MCI.ORD.

IAH       SFO     1935        .IAH.LAX.SFO.

DEN       ORD     1125        .DEN.MCI.ORD.

DEN       ATL     1405        .DEN.MCI.ATL.
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DEN       MIA     2070        .DEN.MCI.ATL.MIA.

DEN       JFK     1920        .DEN.MCI.ORD.JFK.

ATL       MSP     1125        .ATL.ORD.MSP.

ATL       DEN     1405        .ATL.MCI.DEN.

ATL       SEA     2740        .ATL.MCI.DEN.SEA.

ATL       SFO     2675        .ATL.MCI.DEN.SFO.

ATL       LAX     2350        .ATL.IAH.LAX.

 To satisfy multiple requests for the shortest paths between two cities, you might want to 
 materialize the result set in a table and index it, like so: 

WITH Roads2 

AS 

( 

  SELECT city1 AS from_city, city2 AS to_city, distance FROM dbo.Roads 

  UNION ALL 

  SELECT city2, city1, distance FROM dbo.Roads 

), 

RoadPaths AS 

( 

  SELECT from_city, to_city, distance, 

    CAST('.' + from_city + '.' + to_city + '.' AS VARCHAR(MAX)) AS path 

  FROM Roads2 

 

  UNION ALL 

 

  SELECT F.from_city, T.to_city, F.distance + T.distance, 

    CAST(F.path + T.to_city + '.' AS VARCHAR(MAX)) 

  FROM RoadPaths AS F 

    JOIN Roads2 AS T 

      ON CASE WHEN F.path LIKE '%.' + T.to_city + '.%' 

              THEN 1 ELSE 0 END = 0 

      AND F.to_city = T.from_city 

), 

RoadsMinDist 

AS 

( 

  SELECT from_city, to_city, MIN(distance) AS mindist 

  FROM RoadPaths 

  GROUP BY from_city, to_city 

) 

SELECT RP.* 

INTO dbo.RoadPaths 

FROM RoadsMinDist AS RMD 

  JOIN RoadPaths AS RP 

    ON RMD.from_city = RP.from_city 

    AND RMD.to_city = RP.to_city 

    AND RMD.mindist = RP.distance; 

 

CREATE UNIQUE CLUSTERED INDEX idx_uc_from_city_to_city 

  ON dbo.RoadPaths(from_city, to_city);

 Once the result set is materialized and indexed, a request for the shortest path between two 
cities can be satisfi ed instantly. This is practical and advisable when information changes 
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 infrequently. As is often the case, there is a trade-off between up to date and fast. The 
 following query requests the shortest path between Los Angeles and New York: 

SELECT * FROM dbo.RoadPaths  

WHERE from_city = 'LAX' AND to_city = 'JFK';

 This query generates the following output: 

from_city to_city distance    path

--------- ------- ----------- ----------------------

LAX       JFK     2945        .LAX.DEN.MCI.ORD.JFK.

 A more effi cient solution to the shortest paths problem uses loops instead of  recursive 
CTEs. It is more effi cient for reasons similar to the ones described earlier; that is, in each 
iteration of the loop you have access to all previously spooled data and not just to the 
 immediate  previous level. You create a function called RoadsTC that returns a table 
 variable called @RoadsTC. The table variable has the attributes from_city, to_city, distance, 
and route, which are self-explanatory. The function’s code fi rst inserts into @RoadsTC a 
row for each (city1, city2) and (city2, city1) pair from the table Roads. The code then  enters 
a loop that iterates as long as the previous iteration inserted rows to @RoadsTC. In each 
iteration of the loop the code inserts new routes that extend the existing routes in 
@RoadsTC. New routes are added only if the source and destination do not appear already 
in @RoadsTC with the same or shorter distance. Run the following code to create the 
RoadsTC function: 

IF OBJECT_ID('dbo.RoadsTC') IS NOT NULL 

  DROP FUNCTION dbo.RoadsTC; 

GO 

CREATE FUNCTION dbo.RoadsTC() RETURNS @RoadsTC TABLE 

( 

  uniquifier INT          NOT NULL IDENTITY, 

  from_city  VARCHAR(3)   NOT NULL, 

  to_city    VARCHAR(3)   NOT NULL, 

  distance   INT          NOT NULL, 

  route      VARCHAR(MAX) NOT NULL, 

  PRIMARY KEY (from_city, to_city, uniquifier) 

) 

AS 

BEGIN 

  DECLARE @added AS INT; 

 

  INSERT INTO @RoadsTC 

    SELECT city1 AS from_city, city2 AS to_city, distance, 

      '.' + city1 + '.' + city2 + '.' 

    FROM dbo.Roads; 

 

  SET @added = @@rowcount; 

 

  INSERT INTO @RoadsTC 

    SELECT city2, city1, distance, '.' + city2 + '.' + city1 + '.' 

    FROM dbo.Roads; 
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  SET @added = @added + @@rowcount; 

 

  WHILE @added > 0 BEGIN 

    INSERT INTO @RoadsTC 

      SELECT DISTINCT TC.from_city, R.city2, 

        TC.distance + R.distance, TC.route + city2 + '.' 

      FROM @RoadsTC AS TC 

        JOIN dbo.Roads AS R 

          ON R.city1 = TC.to_city 

      WHERE NOT EXISTS 

        (SELECT * FROM @RoadsTC AS TC2 

         WHERE TC2.from_city = TC.from_city 

           AND TC2.to_city = R.city2 

           AND TC2.distance <= TC.distance + R.distance) 

        AND TC.from_city <> R.city2; 

 

    SET @added = @@rowcount; 

 

    INSERT INTO @RoadsTC 

      SELECT DISTINCT TC.from_city, R.city1, 

        TC.distance + R.distance, TC.route + city1 + '.' 

      FROM @RoadsTC AS TC 

        JOIN dbo.Roads AS R 

          ON R.city2 = TC.to_city 

      WHERE NOT EXISTS 

        (SELECT * FROM @RoadsTC AS TC2 

         WHERE TC2.from_city = TC.from_city 

           AND TC2.to_city = R.city1 

           AND TC2.distance <= TC.distance + R.distance) 

        AND TC.from_city <> R.city1; 

 

    SET @added = @added + @@rowcount; 

  END 

  RETURN; 

END 

GO

 The function might return more than one row for the same source and target cities. To return 
shortest paths and distances, use the following query:  

SELECT from_city, to_city, distance, route 

FROM (SELECT from_city, to_city, distance, route, 

        RANK() OVER (PARTITION BY from_city, to_city 

                     ORDER BY distance) AS rk 

      FROM dbo.RoadsTC()) AS RTC 

WHERE rk = 1;

 The derived table query assigns a rank value (rk) to each row, based on from_city, to_city 
partitioning and distance ordering. This means that shortest paths are assigned with the rank 
value 1. The outer query fi lters only shortest paths (rk = 1). 

 When you’re done querying the RoadPaths table, don’t forget to drop it: 

DROP TABLE dbo.RoadPaths;
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Conclusion

 This chapter covered the treatment of graphs, trees, and hierarchies. I presented iterative/ 
recursive solutions for graphs and also solutions in which you materialize information 
 describing a tree. The main advantage of the iterative/recursive solutions is that you don’t 
need to materialize and maintain any additional attributes—the graph manipulation is based 
on the stored edge attributes. The materialized path solution materializes an enumerated 
path and possibly also the level for each node in the tree. You can either maintain your 
own custom materialized path or use SQL Server 2008’s built-in HIERARCHYID data type. 
In the materialized path solution, the maintenance of the additional information is not very 
 expensive, and you benefi t from simple and fast set-based queries. The nested sets solution 
materializes left and right values representing set containment relationships and possibly the 
level in the tree. This is probably the most elegant solution of those I presented, and it also 
allows simple and fast queries. However, maintaining the materialized information is very 
 expensive, so typically this solution is practical for either static trees or small dynamic trees. 

 In the last section, I presented solutions to transitive closure and shortest path problems. 

 Because this chapter concludes the book, I feel I should also add some closing words. 

 If you ask me what’s the most important thing I hope you carry from this book, I’d say that it 
is giving special attention to fundamentals. Do not underestimate or take them lightly. Spend 
time on identifying, focusing on, and perfecting fundamental techniques. When you are 
faced with a tough problem, solutions will fl ow naturally. 

 “Matters of great concern should be treated lightly.”  

 “Matters of small concern should be treated seriously.”  

 — Hagakure, The Book of the Samurai by Yamamoto Tsunetomo  

 The meaning of these sayings is not what appears on the surface. The book goes on to 
explain, 

 “Among one’s affairs there should not be more than two or three matters of what one 
could call great concern. If these are deliberated upon during ordinary times, they can be 
understood. Thinking about things previously and then handling them lightly when the time 
comes is what this is all about. To face an event and solve it lightly is diffi cult if you are not 
resolved beforehand, and there will always be uncertainty in hitting your mark. However, if the 
foundation is laid previously, you can think of the saying, ‘Matters of great concern should be 
treated lightly,’ as your own basis for action.”
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Appendix A

 Logic Puzzles 

 Logic is at the heart of querying problems. SQL is logic, and each query problem in essence is a 
logic puzzle. The toughest part of solving a querying problem is usually fi guring out its logical 
aspects. You can improve your SQL problem-solving capabilities by practicing pure logic puzzles.  

 A while back, I provided a couple of logic puzzles in my T-SQL column in SQL Server 
Magazine (www.sqlmag.com). I wanted to show the strong relationship between SQL and 
logic. Originally, I planned on providing only those couple of puzzles. But the puzzles raised 
so much interest with readers—interestingly, even more than the T-SQL puzzles—that for a 
while we published a new logic puzzle every month. I’d like to thank SQL Server Magazine, 
which kindly allowed me to share the puzzles from my column with the book’s readers. The 
puzzles you will see here are a compilation from my column. 

 I’d also like to thank Gabriel Ben-Gan, Dejan Sarka, Adi Dafni (Didi), Adam Machanic, Marcello 
Poletti (Marc), Clifford Jensen, Ron Talmage, and Nicolay Tchernitsky, who originally 
 introduced some of the puzzles to me. 

Puzzles

 The following section introduces logic puzzles. You can fi nd the puzzle solutions in the 
 section that follows this one. 

 Someone once said, “A puzzle is its own reward.” Enjoy! 

Puzzle 1: Remainders

 Find the smallest integer (n) that yields a remainder of i – 1 when divided by i, for any i in 
the range 2 through 10. That is, n % 2 = 1, n % 3 = 2, n % 4 = 3, . . ., n% 9 = 8, n % 10 = 9, in 
which the percent sign (%) signifi es the T-SQL modulo operator. 

Puzzle 2: Round Manhole Covers

 Why are manhole (maintenance hole) covers typically round? You might fi nd this a strange 
topic for a puzzle, but the answer lies purely in logic. 
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Puzzle 3: Shaking Hands

 My wife and I were at a party recently with four other married couples. All the people who 
didn’t know each other shook hands. Of course, each person knew his or her spouse. I asked 
each of the nine other people at the party how many hands they shook and received all 
 possible answers ranging from 0 through 8. Each person shook a different number of hands. 
What was my wife’s answer?  

Puzzle 4: Then There Were Five?

 This puzzle involves a mix of logic and English. Can you think of a sentence that contains 
the word “and” fi ve times consecutively (“and and and and and”)? The sentence must make 
sense. In other words, I’m not aiming for a sentence such as “Five times and is and and and 
and and.” Rather, the sentence should make sense without such silly tricks. 

Puzzle 5: Arranging Soldiers in a Row

 A commander decides to discipline his platoon after they misbehave and also check their 
logic. He gives them these orders: 

  1. You will enter a room one by one. 

  2. At the entrance to the room I will place a hat on your head. The hat will have either a 
circle or a square sign. You will not know what your sign is, but you will be able to see 
the signs on the hats of all those that have already entered the room. 

  3. Don’t remove your hat or in any way check what the sign on your hat is. 

  4. Arrange yourselves in a row, with all soldiers with a circle on their hats on the left and 
all soldiers with a square on their hats on the right. 

  5. Don’t communicate with each other verbally or by any other means; rely solely on your 
sight and logic to form a row in compliance with these instructions (all circles to the left 
and all squares to the right). 

 Assume you’re one of the soldiers who entered the room. Your commander placed the hat 
on your head. You’re facing none, one, or several soldiers arranged in a row. You don’t know 
what sign is on your hat, but you can see the signs of the others. What logic should you 
 follow to comply with your commander’s instructions? 

Puzzle 6: Crossing the Tunnel

 Four people—let’s call them persons A, B, C, and D—need to cross a dark tunnel. Only 
two people at a time can cross the tunnel, and because the tunnel is very dark, a fl ashlight 
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is mandatory. Person A can cross the tunnel in 1 minute, person B can cross in 2 minutes, 
person C can cross in 4 minutes, and person D can make it in 5 minutes. The group has 
one fl ashlight, containing batteries that last only 12 minutes. What strategy will enable 
all  members of the group to cross to the other side in 12 minutes, before the fl ashlight’s 
 batteries run down? 

Puzzle 7: Escaping a Cave

 While hiking a mountain, you enter a cave. Suddenly, rocks fall and block the cave’s entrance. 
You turn on your fl ashlight and start walking deeper into the cave. After a while, you fi nd 
another opening. Unfortunately, the opening gives way to a sheer rock wall 60 feet above 
a climbable surface. You fi gure that 10 feet is the greatest distance you could jump down 
 without sustaining serious injuries (also taking your own height into consideration). 

 You look around the cave and fi nd that the ceiling is very high—40 feet above the fl oor. 
After a while, you fi nd a 40-foot rope hanging from ceiling to fl oor. A few minutes later, you 
fi nd another 40-foot rope hanging from ceiling to fl oor. You have your hiking knife with you. 
Can you think of a plan that will let you get out of the cave and down the climbable surface 
without jumping down more than 10 feet? 

Puzzle 8: Free Tuna

 You go to the grocery store and grab eight cans of tuna from the shelf. You go to the cash 
register to pay. Because he’s in a good mood, the store owner hands you three plastic bags 
and says, “If you can arrange the eight cans in these three plastic bags so that each bag 
 contains an odd number of cans, you can have them for free.” Can you think of a way to get 
that free tuna? 

Puzzle 9: Naming an Heir

 A mighty king had three sons and wanted to declare the wisest of them as his heir. He  decided 
to give them a logic puzzle to test their wisdom. He placed the sons in a triangular room, 
each in a different corner, and placed a hat on each son’s head. The king said, “You need 
to  determine the color of your hat. You can’t take your hat off to look at it, and you can’t 
 communicate in any way. The hat on your head is either green or red. At least one of you is 
wearing a green hat. I’ll be waiting outside the door and will ring a bell every fi ve minutes. You 
can’t leave the room until you know the color of your hat. If you know the answer, you must 
wait for the next bell and then come tell me the answer.” At the third bell, one of the sons 
opened the door and told the king the answer. The king said, “You’re correct, and I’m naming 
you my heir. However, I’m disappointed in you. You still have much to learn.” What was that 
son’s answer, and why was the king disappointed? 
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Puzzle 10: The Next Element in a Series

 Given the following series of elements, can you determine the next element? 

 1, 11, 21, 1211, 111221, 312211, ? 

Puzzle 11: Same Birthday

 What’s the probability that in a group of 23 randomly chosen people, at least 2 of them will 
have the same birthday? 

Puzzle 12: Catching a Train

 Two trains race toward each other on a railway segment that’s 100 miles long. The trains are 
traveling at 100 mph. A mosquito fl ying at 200 mph fl ies from one train toward the other, 
and as soon as it arrives at the other train, it fl ips its direction and fl ies back toward the fi rst 
train. The mosquito continues bouncing back and forth between the trains until the trains 
crash. What’s the total distance that the mosquito covers until the moment of the crash? 

Puzzle 13: Prisoners and Switches

 A prison warden meets with 23 new prisoners when they arrive. He tells them, “You may 
meet today and plan your strategy for the challenge I’m about to propose. But after today, 
you’ll be in isolated cells and will have no communication with one another. In the prison is 
a switch room, which contains two switches labeled A and B, each of which can be in either 
the On or Off position. The switches aren’t connected to anything. I’m not telling you the 
 switches’ present positions. After today, from time to time, whenever I feel so inclined, I’ll 
 select one prisoner at random and escort him to the switch room. This prisoner will select 
one of the two switches and reverse its position. He must move exactly one of the switches: 
He can’t move both switches, and he can’t move no switch at all. Then, I’ll lead the prisoner 
back to his cell. No one else will enter the switch room until I lead the next prisoner there, 
and I’ll instruct him to do the same thing. I’m going to choose prisoners at random. I might 
choose the same prisoner three times in a row, or I might jump around and come back. 
However, given enough time, everyone will eventually visit the switch room as many times 
as everyone else. At any time, if you’re 100 percent certain, any one of you can declare to 
me, ‘We have now all visited the switch room.’ If that person is correct, I’ll set you all free. If 
that person is wrong, and somebody hasn’t yet visited the switch room, I’ll feed you all to the 
 alligators.” What strategy can the prisoners use to obtain freedom? 

Puzzle 14: Probabilities in China

 Is it possible to prove statistically that at least two people in China must have the same 
 number of hairs on their heads? Try to stick to pure probability and not to assumptions such 
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as, “There must be many bald people in China.” Also, is it possible to prove statistically that at 
least two people in China are missing exactly the same set of teeth (for example, the upper 
left bicuspid, the lower inner incisor, and the two lower wisdom teeth)? Again, try to stick to 
pure probability and not to assumptions such as, “There must be many old people with no 
teeth, or people with no missing teeth.” 

Puzzle 15: Two Mathematicians

 Two mathematicians (let’s call them M and N) who were once good friends meet after a long 
time to have a drink together. M asks, “Are you married? Any kids? Do you still live in that old 
apartment building?” N replies, “Yes, I’m married with three kids, and we live in a house now.” 
M asks, “How old are your kids?” N replies, “Let me answer with a riddle: The product of the 
ages of my kids is 36. Now, see that bus over there? The sum of my kids’ ages is equal to that 
bus number.” M thinks for a moment, then says, “I don’t have suffi cient information to solve 
the puzzle.” N replies, “Oh, yes, you’re right, I forgot to mention that one of my kids was born 
before we bought the house.” Soon after N provides this last bit of information, M solves the 
puzzle and tells N the correct ages of the kids. Can you fi gure out the solution? Also, how 
would the solution change if N’s additional piece of information was that one of his kids was 
born after he bought the house? 

Puzzle 16: Crazy Sequence

 This puzzle requires that you determine the next number in the following sequence: 

 0, 

 1, 

 2, 

 26012189435657951002049032270810436111915218750169457857275418378508356311569
47382240678577958130457082619920575892247259536641565162052015873791984587740
83252910524469038881188412376434119195104550534665861624327194019711390984553
67272785370993456298555867193697740700037004307837589974206767840169672078462
8062922903210716166986726054898844551425719398549944893959449606404513236214
02659861930732493697704776060676806701764916694030348199618814556251955925669
18830825514942947596537274845624628824234526597789737740896466553992435928786
21251596748322097602950569669992728467056374713753301924831358707612541268341
5860129447566011455420749589952563543068288634631084965650682771552996256790
84523570255218622235813001670083452344323682193579318470195651072978180435417
38905607274280485839959197290217266122912984205160675790362323376994539641914
75175567557695392233803056825308599977441675784352815913461340394604901269542
0288383471013637338244845066600933484844407119312925376946573543373757247722
30181534032647177531984537341478674327048457983786618703257405938924215709695
99463055752106320326349320922073832092335630992326750440170176057202601082928
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8042335606643089888710297380797578013056049576342838683057190662205291174822
51053669775660302957404338798347151855260280533386635713910104633641976909739
74322859942198370469791099563033896046758898657957111765666700391567481531159
4398004362539939973120306649060132531130471902889849185620376666916446879112
52491937544258458950003115616829743046411425380748972817233759553806617198014
04677935614793635266265683339509760000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000, 

 ? 

Puzzle 17: Minimum Number of Weights

 Can you determine the minimum number of weights required to measure any integer weight 
in the range 1 through 100 pounds using a scale? Also, can you generalize your answer for a 
range 1 through n pounds? 

Puzzle 18: Counting Triangles

 Can you fi gure out how many triangles Figure A-1 contains? Can you think of a methodical 
approach or formula to calculate this number? 

FIGURE A-1 The counting triangles puzzle

Puzzle 19: Counterfeit Coins

 Suppose you have 10 stacks of coins, with 10 coins in each stack. One stack consists of 
10 counterfeit coins, and the other 9 stacks each consist of 10 legitimate coins. Each legitimate 
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coin weighs exactly 1 gram. Each counterfeit coin weighs exactly 0.9 grams. You have a digital 
scale that’s graduated in tenths of grams. Using the scale to take only one reading,  determine 
which stack has the 10 counterfeit coins. You can weigh any number of coins from any  number 
of stacks, but must you weigh them all together. (In other words, you can take only one 
 reading from the scale.) 

Puzzle 20: Too Clever by Half

 A chicken and a half lay an egg and a half in a day and a half. How many eggs would one 
chicken lay in three days?  

 A builder and a half build a house and a half in a year and a half using a tool and a half. How 
many houses would one builder build in nine years? Can you generalize your calculation to 
solve both equations? 

Puzzle 21: A Cat, a String, and the Earth

 This puzzle is quite simple, but I like it because it’s so counterintuitive. Suppose you lay a string 
on the ground all around the earth right over the equator. The length of the string would 
be equal to the earth’s equatorial circumference—40,075.02 kilometers. Suppose you add 
1  meter to the string and suspend the string directly above the equator, with an even distance 
from the ground all the way around. Would a cat be able to pass from one hemisphere to 
 another below the string? 

Puzzle 22: Josephus Problem

 The Josephus problem is an ancient puzzle that involves a group of 41 men standing in a 
circle. Going around the circle, every second standing man is executed (one skipped, one 
executed) until only one man is left standing. Assuming that the positions are numbered 
1 through 41, which position should Josephus (one of the men) choose if he could so that he 
would be the only one to remain standing? Can you generalize the solution for n men? Write 
a T-SQL solution that returns the position based on the input number of men @n. 

Puzzle 23: Shipping Algebra

 The combined age of a ship and its boiler is 42. The ship is twice as old as the boiler was 
when the ship was as old as the boiler is now. How old are the ship and its boiler? 
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Puzzle 24: Equilateral Triangles Puzzle

 Examine the drawing in Figure A-2. 

E

D

F C

S

a

A

B

FIGURE A-2 The equilateral triangles puzzle

 The triangle ABC is an equilateral triangle with an area S and a side length a. The line CF is a 
continuation of the line AC, AD is a continuation of BA, and BE is a continuation of CB. The 
length of all continuation segments (CF, AD, and BE) is a—the same as the length of triangle 
ABC’s sides. The puzzle is to calculate the area of the triangle DEF. 

Puzzle Solutions

 This section contains solutions to the logic puzzles. 

Puzzle 1: Remainders

 When solving such a problem, try fi rst to relax the limitations and simplify the problem. Then 
add complexity layers. For example, fi rst ignore the requirement to fi nd the minimum  integer 
n that qualifi es. Try to fi nd a solution for any integer n that would yield the remainder i – 1 
for any i value. Obviously, if you multiply all i values (2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 ×10) and 
subtract 1, the result meets the puzzle’s requirement (except for the requirement to fi nd 
the minimum n). You can express the same result as the product of the prime factors of the 
 various i values: (2 × 3 × [2 × 2] × 5 × [2 × 3] × 7 × [2 × 2 × 2] × [3 × 3] × [2 × 5]) – 1. Next, 
tackle the minimum requirement. Of course, you’ll have to keep at least one occurrence of 
each prime number (2, 3, 5, 7). The distinct prime factors already cover the i values: 2, 3, 6, 5, 
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7, and 10. You’ll need to add occurrences of some of the prime numbers to also cover 4, 8, 
and 9. It’s suffi cient to have 3 occurrences of 2 to get 4 and 8, and it’s also suffi cient to keep 
2 occurrences of 3 to get 9. So, the minimum integer n that qualifi es can be expressed as 
2 × 2 × 2 × 3 × 3 × 5 × 7 – 1 = 2519.  

Puzzle 2: Round Manhole Covers

 Manhole covers are typically made round as a safety measure. Any way you turn the round 
cover, it cannot fall into the round manhole because of its geometrical properties. With other 
geometrical shapes (rectangle, square, and so on), if you turn the cover in a certain way, it 
can fall into the manhole and endanger the people working there. 

Puzzle 3: Shaking Hands

 Let’s start with the person who shook eight hands (call that person P8). All those who shook 
the hand of P8 (including myself and excluding the spouse of P8) shook at least one hand. 
Therefore, the spouse of P8 must be the person who shook zero hands (call that person P0). 
Now, take P8 and P0 out of the equation. You know that the remaining six people shook a 
known number of hands (exactly one) from the being-excluded couple. So you subtract one 
from the answers of all remaining individuals. Simply imagine that you’re now facing the 
same puzzle, but with four couples and with the seven individuals besides me replying to my 
question with the answers 0 through 6. 

 You’ll quickly conclude that the fi ve couples, including me and my wife, shook hands in the 
following chiastic manner: 8/0, 7/1, 6/2, 5/3, 4/4. Because I asked nine individuals how many 
hands they shook and I got nine unique answers, my wife and I must be the couple who 
shook four hands each. Hence, my wife shook four hands. 

Puzzle 4: Then There Were Five?

 I’ve seen several versions of solutions to this puzzle, but they’re essentially all the same. 
Here’s one with a bit of SQL in it: Given the fi lter expression col1 = 1 and col2 = 3, there are 
spaces between 1 and and and and and col2. Another version of the solution refers to a 
 restaurant sign that says “fi sh and chips,” and the owner wants to replace the spaces between 
fi sh and and and and and chips with hyphens. 

Puzzle 5: Arranging Soldiers in a Row

 The key to the solution is that each soldier can put himself between the correct pair of 
(placed up to then) soldiers without knowing what’s on his hat. Assuming you’re one of the 
soldiers, here’s the logic you would follow:  

■  If you enter the room fi rst, simply position yourself somewhere in the room so that the 
next soldier can see the sign on your hat.  
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■  If you’re not the fi rst one in the room, look at the hats of the soldiers that are already 
there. If all soldiers have the same sign, stand to the right of the rightmost one in case 
that sign is a circle and to the left of the leftmost one in case the sign is a square.  

■  If some soldiers have a circle and some have a square, squeeze yourself between the 
two with the different signs. 

Puzzle 6: Crossing the Tunnel

 Most people try to solve this puzzle by letting person A walk from start to end with each 
of the others, then walk back alone to pair with the next person. Intuition says that this 
 approach must be the fastest because person A is the fastest. But if you calculate the total 
time it takes all four people to get to the end, you get 13 minutes. Of course, the pace is 
dictated by the slowest in the pair. Person A would need to go from start to end three times: 
with B (2 minutes), C (4 minutes), and D (5 minutes). These walks amount to 11 minutes, 
plus the two times that person A needs to walk back alone (1 minute per walk), and you 
get 13. The trick to solving the puzzle is to fi gure out that you can save most time by letting 
the two slowest people walk together. Here’s the strategy that gets all the people across in 
12 minutes:  

■  Persons A and B walk fi rst from start to end (2 minutes)  

■  Person A walks back (1 minute)  

■  Persons C and D walk from start to end (5 minutes)  

■  Person B walks back (2 minutes)  

■  Persons A and B walk from start to end (2 minutes) 

Puzzle 7: Escaping a Cave

 First, climb one of the ropes and cut it at the halfway point. You now have 20 feet of rope in 
your hand, you’re hanging on to the 20-foot rope anchored to the ceiling, and you’re 20 feet 
above the fl oor. Make a knot at the edge of the hanging rope to form a small loop. (For the 
purpose of simplifi cation, we’ll assume that knots don’t affect the length of the rope.) Slide 
the 20-foot rope through the loop to its middle point (the 10-foot mark). Now, you have a 
20-foot rope hanging from the ceiling, plus another 10-foot segment (20 feet, doubled up), 
amounting to 30 feet in total. You can now shimmy down the rope, and when you reach the 
end of the doubled-up segment, let go of one end of it and let it slide through the loop as 
you jump down. You now have a 20-foot rope in hand. 

 Next, carrying this 20-foot rope, climb the second rope and cut it when you’re 10 feet from 
the ceiling (or 30 feet above the fl oor). Tie the resulting 30-foot rope to the end of your 
20-foot rope to form a 50-foot rope. Again, make a loop at the end of the hanging 10-foot 
rope and slide the 50-foot rope through the loop to its middle point. In total, you have 
35 feet of rope made by the two segments (10 feet of hanging rope plus 25 feet made by the 
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doubled-up 50-foot rope). You can now shimmy down the rope, and when you get to the 
end of the rope (5 feet above the fl oor), hold one of its ends and jump down. You now have 
a rope that’s 50 feet in length, and you can use it to get down from the cave to the climbable 
surface. 

Puzzle 8: Free Tuna

 Obviously, you can‘t divide the eight tuna cans into three separate plastic bags so that each 
holds an odd number of cans. However, nothing in the puzzle dictates the arrangement of 
the bags around the tuna cans. The sum of three odd numbers x+y+z, where each number is 
considered only once, naturally amounts to an odd number. However, taking one of the odd 
numbers into consideration twice allows for an arrangement in which one of the elements is 
even (say, y)—for example, (x+(y))+(z) = 8. The use of parentheses is intentional—each pair 
of parentheses represents a plastic bag. For example, let x equal 1, y equal 2, and z equal 5: 
You place 1 tuna can in plastic bag A, 2 tuna cans in plastic bag B, and 5 tuna cans in plastic 
bag C. Then, place plastic bag A in plastic bag B. You end up with 1 tuna can in bag A, 3 in 
B (x+y), and 5 in C. 

 As an aside, if you like trying to solve open puzzles, the tuna cans puzzle reminds me of 
a mathematical conjecture that so far hasn’t been proven. The conjecture, which is called 
Goldbach’s conjecture, is named after its creator. The original conjecture says: Every integer 
greater than fi ve can be expressed as the sum of three prime numbers. Euler simplifi ed the 
conjecture to this form: Every even number greater than two can be expressed as the sum of 
two prime numbers.  

Puzzle 9: Naming an Heir

 That son’s answer was green, based on the following logical deduction:  

■  If there were two red hats and one green hat, the son with the green hat would have 
realized it immediately (by seeing both his brothers wearing red hats) and approached 
the king at the fi rst bell ring. Because this didn’t happen, there is—at most—one red 
hat among the sons.  

■  If there was one red hat and two green hats, each of the two sons wearing green hats 
should have seen his brothers wearing one red and one green hat; therefore, both 
these brothers could have deduced that they were wearing green hats (because no one 
approached the king after the fi rst bell, and there’s at most one red hat in such a case) 
and thus approached the king at the second bell.  

■  The son who ultimately fi gured out the answer reasoned that his brothers weren’t 
stupid, so if no one approached the king at the second bell, they must all be wearing 
green hats. Of course, this tells you that he saw both his brothers wearing green hats. 
So, he approached the king at the third bell to say that he was wearing a green hat.  
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 Why was the king disappointed in his son? The answer involves true wisdom. The son should 
have reasoned that any setting in which (at minimum) one of the hats is green and not all 
of them are green is an unfair contest. If at least one hat is green and not all hats are green, 
 different sons can fi gure out their own hat color at different points in time. 

 For example, if two of the hats are red, the son who wears a green hat can fi gure out the 
 answer immediately and approach the king at the fi rst bell, while the other two must wait to 
see whether someone approaches the king at the fi rst bell (in which case it will be too late 
for them). Similarly, if one of the hats is red, the two sons wearing green hats can know the 
 answer after the fi rst bell and approach the king at the second bell, while the son with the 
red hat must wait to see whether someone approaches the king at the second bell (in which 
case it’s too late for him). 

 If the king had favored one of the sons, he would have named that son his heir without a 
contest. Because he wanted to put their wisdom to test, you would expect the contest to be 
fair. The only way for the contest to be fair while having a minimum of one green hat is to 
have three green hats. The king expected one of his sons to approach him at the fi rst bell 
with this logic. 

Puzzle 10: The Next Element in a Series

 Each element describes the previous element by counting the number of consecutive 
 occurrences of each digit from left to right. For example, to describe the element 1, you would 
say that there’s one occurrence of the digit 1, or “1 1,” resulting in 11. To describe 11, you would 
say that there are two occurrences of the digit 1, or “2 1s,” resulting in 21. The description of 
21 is “1 2, (then) 1 1,” resulting in 1211. The description of 1211 is “1 1, 1 2, 2 1s,” resulting in 
111221. Following this logic, the next few elements are 312211, 13112221, and 1112213211. 

Puzzle 11: Same Birthday

 The answer to this puzzle might seem strange. Most people intuitively assume that the 
 probability is very low. However, the probability that two people in a group of 23 have the 
same birthday happens to be greater than 50 percent (about 50.7 percent). For 60 or more 
people, it’s greater than 99 percent (disregarding variations in the distribution and assuming 
that the 365 possible birthdays are equally likely). The tricky part of the puzzle is that you need 
to determine the probability that any two people share the same birthday—not a specifi c two. 
For the exact solution and some interesting information about the birthday paradox, check 
out the Wikipedia entry at http://en.wikipedia.org/wiki/Birthday_paradox. 

Puzzle 12: Catching a Train

 Some people try to solve the puzzle by doing infi nity-related calculations—that is, attempting 
to calculate the distance the mosquito covers in each leg from one train to the other before 
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turning around. However, a solution based on time and speed is much simpler, although 
I should constrain the term simpler to most mere mortals (and not to mathematicians who 
might fi nd infi nity-related calculations to be a natural way of thinking). Naturally, the trains 
will meet halfway in a half hour. The mosquito’s speed is 200 mph, so in a half hour, the total 
distance it covers is 100 miles. 

Puzzle 13: Prisoners and Switches

 The solution is to put one prisoner in charge of counting and notifying the warden when the 
count is complete. We’ll call him Charles. Charles should follow these instructions each time 
he enters the room:  

■  Toggle switch A.  

■  If you just turned the switch Off and you also turned the switch Off on your previous 
visit to the room, increment the count of prisoners who visited the room.  

 The prisoners who aren’t in charge of counting should follow these instructions:  

■  If switch A is Off and you have never switched it to On yourself but you have  previously 
seen it On, turn switch A to the On state.  

■  In any other case, toggle switch B.  

 The logic is that the only prisoner who can turn switch A to Off is Charles. The other prisoners 
can turn switch A to On, but each can do so only once and only after seeing it in the On state 
previously. This means two things: First, when a prisoner who isn’t in charge (say his name 
is Paul) and who has seen switch A On at some time in the past sees that switch A is Off, he 
knows that Charles visited the room before him and was the one who turned it Off. (Paul saw 
the switch On in the past, but it is now Off, and Charles is the only prisoner who ever turns 
the switch to Off). Paul will then turn switch A to On. Second, Paul knows that switch A will 
remain On until Charles subsequently turns it off knowing that another prisoner (not Charles 
himself) turned it on, and Charles will count that prisoner (Paul) in his tally.  

Puzzle 14: Probabilities in China

 The answer to the fi rst puzzle is yes. China has more than a billion people, and a human 
head has fewer than a billion hairs. Because there are fewer hairs on a human head than 
people in China, it’s impossible for every person in China to have a different number of hairs. 
Therefore, at least one number must occur twice; in other words, at least two people in China 
have the same number of hairs on their heads. 

 The answer to the second puzzle is no. It can’t be proven that at least two people in China are 
missing the same set of teeth. Humans have as many as 32 teeth. You can represent any set of 
(missing) teeth from these 32 with a 32-bit bitmap, using a 0 to represent missing and a 1 to 
represent not missing. The number of distinct 32-bit bitmaps is 232, or more than 4 billion. 
Because the number of subsets of human teeth is greater than the number of people in China, 
it’s possible that all Chinese people are missing a different set of teeth. 
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Puzzle 15: Two Mathematicians

 A good way to start solving this puzzle is to fi rst list all groups of three integers whose 
 product is 36, then calculate each group’s sum: 

 1 + 1 + 36 = 38 

 1 + 2 + 18 = 21 

 1 + 3 + 12 = 16 

 1 + 4 + 9 = 14 

 1 + 6 + 6 = 13 

 2 + 2 + 9 = 13 

 2 + 3 + 6 = 11 

 3 + 3 + 4 = 10 

 M knows the sum of the kids’ ages (equal to the number of the bus N pointed to). Notice 
that all sums arise in one way except for the sum 13, which arises from two different groups 
of three integers. Had the bus number been something other than 13, M would have 
 immediately known the answer. Because M said that he doesn’t have suffi cient information 
to solve the puzzle, the bus number must have been 13. Now, the question remains, which of 
the two age variations is the correct one? Notice that in both cases (1, 6, 6 and 2, 2, 9), there 
are twins. The additional piece of information N provided was, “One of my kids was born 
before we bought the house.” The implication is that one of the kids is older than the other 
two, so of the two variations, the correct one is 2, 2, 9. Now, how would the solution change 
if N’s additional piece of information had been that one of his kids was born after he bought 
the house? In this case, one of the kids is younger than the other two, so the correct answer 
would be 1, 6, 6. Interestingly, you can solve this puzzle with a T-SQL query, like so: 

WITH

  L0 AS(SELECT 0 AS c UNION ALL SELECT 0),

  L1 AS(SELECT 0 AS c FROM L0 AS a CROSS JOIN L0 AS b),

  L2 AS(SELECT 0 AS c FROM L1 AS a CROSS JOIN L1 AS b),

  L3 AS(SELECT TOP(36) 0 AS c FROM L2 AS a CROSS JOIN L2 AS b),

Nums AS(SELECT ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS n

        FROM L3),

Divisors AS

(

  SELECT C1.n AS age1, C2.n AS age2, C3.n AS age3,

    COUNT(*) OVER(PARTITION BY C1.n + C2.n + C3.n) AS cnt

  FROM Nums AS C1 

    CROSS JOIN Nums AS C2

    CROSS JOIN Nums AS C3

  WHERE C1.n * C2.n * C3.n = 36

    AND C1.n <= C2.n AND C2.n <= C3.n

)
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SELECT age1, age2, age3

FROM Divisors

WHERE cnt > 1

  AND age3 > age2; -- One born before others (before house);

 To solve the version where N’s additional piece of information is that one of his kids was born 
after he bought the house, change the last predicate in the outer query’s fi lter to age1 < age2. 

Puzzle 16: Crazy Sequence

 Let n be the zero-based position of the number in the sequence (0, 1, 2, 3, …). The given 
numbers are what you get if you begin with the number n, then take the factorial n times in 
sequence—that is, 0, 1!, 2!!, 3!!!, and so on. The lengthy last number in the sequence is 3!!!, 
so the next number in the sequence is 4!!!!. It is probably prudent not to include the actual 
number in this space because it wouldn’t leave space for anything else. 

Puzzle 17: Minimum Number of Weights

 The puzzle doesn’t restrict you to placing the item you’re weighing on one side of the scale 
and the weights on the other. Therefore, you can place weights on both sides. To simplify 
the solution’s explanation, fi rst assume that there was a restriction to place the item you’re 
weighing on one side of the scale and the weights on the other. 

 Given a set of weights, to measure some item’s weight (call it w), you need to use a subset 
of the weights you have—that is, each weight from your set of weights will be either used 
or not used to weigh the item. So any w in the range 1 through n must be representable 
with a binary system, where each bit represents a different weight from your set of weights, 
and only the bits of the participating weights will be turned on. The best strategy is to use 
the positional values of binary representation. For example, to represent any integer in 
the range 1 through 100, you need 7 bits (1, 2, 4, 8, 16, 32, and 64). Notice that you get a 
 geometric  sequence (also known as a geometric progression) with a common ratio 2 (1 × 20, 
1 × 21, 1 × 22, 1 × 23, and so on). To use any set of weights, their total weight must be at least 
the largest weight you need. The simplifi ed formula for the sum of the geometric sequence 
in our case is 2num_weights – 1, and this sum must be greater than or equal to n. Hence, the 
 minimum number of weights required is ceiling(log2(n+1)). 

 Next, remove the restriction to place weights only on one side of the scale. Now each weight 
from your set of weights can assume one of three roles: fi rst, placed on the same side of the 
scale as the item you’re weighing (a negative value); second, placed on the other side of the 
scale (a positive value); and third, not used (a 0 value). If you think about it, just like you can 
represent numbers using a binary system where each bit represents a different power of 2, 
you can represent numbers using a ternary system where each trit (ternary digit)  represents 
a different power of 3. A ternary system where each trit can be –1, 0, and +1 is known as a 
balanced ternary system. As an example, in this system the number 150 is represented as 
1 × (0) + 3 × (–1) + 9 × (–1) + 27 × (0) + 81 × (–1) + 243 × (+1). Though very cumbersome, 
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such a  system provides the optimal solution in terms of the number of weights required to 
weigh any object. With a set of weights that are consecutive powers of 3 starting with 1 and 
on (1, 3, 9, 27, 81, . . .) whose sum is s, you can express any number in the range –s through 
s. In our case, only the positive numbers are relevant. So in order to be able to weigh any 
w in the range 1 through n, you need the sum of the values represented by the trits to be 
greater than or equal to n. This time, the common ratio of our geometric sequence is 3. The 
 simplifi ed sum of the geometric sequence is (3num_weights – 1) ÷ 2. To represent any integer in 
the range 1 through n, the minimum number of weights required is ceiling(log3(2×n+1)). 

Puzzle 18: Counting Triangles

 To follow the explanation of this puzzle’s solution, examine Figure A-3, in which the points in 
the diagram are marked with letters. 

A

J

L

I

F

G

D

B C

E

H

K

FIGURE A-3 The counting triangles puzzle solution

 To fi nd a methodical approach for solving the puzzle, you must identify a repeating pattern 
in the diagram. Note that the diagram contains a repeating pattern of fl oors or levels. Each 
fl oor except the top one consists of two lines crossing each other as well as a ceiling. 

 To create a formula for counting the triangles, you must determine the effect of adding each 
fl oor. You can start by drawing only the outermost triangle (ABC). So far, your count is 1. Add 
the ceiling of the fi rst fl oor (DE), and the triangle ADE adds 1 to the count. Next, add the 
lines crossing each other within the fi rst fl oor (DC, BE). The new triangles formed as a result 
of adding these two lines include 4 one-celled triangles (DBF, FBC, EFC, DFE), 4  two-celled 
 triangles (DBC, BCE, CED, EDB) and 2 three-celled triangles (ABE, ADC), thus adding 10 
new triangles to the count. So adding the fi rst fl oor (including the ceiling and the two lines 
 crossing each other) adds 11 to the original count of 1.  
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 Add another fl oor by marking the lines GH, DH, and GE. This adds 11 new triangles (the fi rst 
fl oor is also added), plus 2 new four-celled triangles (GBE, HDC). In other words, the fi rst fl oor 
adds 11 to the count, and every additional fl oor beyond the fi rst adds 13 to the count.  

 Although the top fl oor doesn’t have a ceiling (no line exists between points J and K), you can 
imagine the fl oor as if there were a ceiling (namely, add 13 to the count), then subtract the 
triangles that are eliminated by removing the fl oor. Four triangles are eliminated (AJK, JLK, 
JGK, JHK). So the total number of triangles you get is 1 + 11 + 13 + 13 – 4 = 34.  

 The general formula for n fl oors when the top fl oor has no ceiling is 1 + 11 + [(n – 1) × 13] – 4. 
If you simplify the formula by expanding the parentheses (1 + 11 + (n × 13) – 13 – 4), you get 
(n × 13) – 5. So for 3 fl oors you get (3 × 13) – 5 = 34. Now you can easily calculate the number 
of triangles for any given number of fl oors.  

Puzzle 19: Counterfeit Coins

 Take 1 coin from stack 1, 2 coins from stack 2, and so on. Weigh the stack of 55 coins. If all the 
coins were legitimate, the scale would show 55 grams. If stack 3 is the stack of counterfeit coins, 
the scale will show 54.7 grams because the pile of coins you weighed contains 3 counterfeit 
coins and is therefore 0.3 grams light. More generally, if stack n is the stack of counterfeit coins 
and w is the weight the scale shows, n = (55.0 – w)/0.1. 

Puzzle 20: Too Clever by Half

 The intuitive yet incorrect answer to the chicken-and-eggs puzzle is that one chicken lays 
three eggs in three days, while the correct answer is that one chicken lays two eggs in three 
days. Our brain plays a trick on us and makes us think that if a chicken and a half lay an egg 
and a half in a day and a half, one chicken lays one egg in one day. But if you express the 
 relationship between chickens, days, and eggs mathematically, you get this equation:  

 3/2 chickens × 3/2 days = 3/2 eggs × k chicken-days per egg 

 For the purposes of solving this puzzle, the factor k chicken-days per egg can be ignored. 
Under reasonable assumptions—that the number of eggs is directly proportional to the 
number of chickens and directly proportional to the number of days and that the same 
number of chicken-days is required for every egg—k will be a constant, and I can safely 
 manipulate the equation without writing down the factor k chicken-days per egg. 

 Reducing the number of chickens from 3/2 to 1 is achieved by dividing the original number 
by 3/2. For the equation to be true, you also need to divide the number of eggs (3/2) by 3/2, 
giving you this equation: 

 1 chicken × 3/2 days = 1 egg  
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 Reducing the number of days from 3/2 to 1 has a similar effect on the number of eggs; 
namely, you need to divide 1 (egg) by 3/2, giving you this equation:  

 1 chicken × 1 day = 2/3 egg  

 If you increase the number of days from 1 to 3, the effect on the number of eggs is a factor 
of 3 as well:  

 1 chicken × 3 days = 2 eggs  

 So the correct answer to the puzzle is that one chicken lays two eggs in three days. 

 In a very similar manner, you can express the relationship between builders, houses, years, 
and tools with the following equation:  

 3/2 builders × 3/2 years × 3/2 tools = 3/2 house  

 To reduce the number of builders, years, and tools to one each, you need to divide the 
 number of houses by 3/2 three times; in other words, by (3/2)3:  

 1 builder × 1 year × 1 tool = 3/2 ÷ 3/2 ÷ 3/2 ÷ 3/2 houses  

 This gives you the following equation: 

 1 builder × 1 year × 1 tool = 4/9 house  

 Thus, one builder with one tool will build four houses in nine years.  

 To generalization the equation, you need to divide the right side of the equation by 3/2 n 
times for n elements in the left side of the equation. Or, if you want to express the calculation 
as a multiplication instead of division, multiply by (2/3)n. For example, take our last equation:  

 3/2 builders × 3/2 years × 3/2 tools = 3/2 houses  

 The left side of the equation contains three elements; therefore, you get this equation: 

 1 builder × 1 year × 1 tool = 3/2 × (2/3)3 houses  

 This is equal to: 

 1 builder × 1 year × 1 tool = 4/9 house  

Puzzle 21: A Cat, a String, and the Earth

 As I said, although this puzzle is quite simple, I like it because it’s so counterintuitive. 
It  probably seems inconceivable that adding only 1 meter to such a large circumference 
would make any noticeable difference in the radius, let alone allow a cat to pass below 
the string in the space that was added. But if you do the math, you realize that the actual 
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 circumference has no  signifi cance in determining how the radius would be affected when 
 extending the  circumference. Instead, only the addition is signifi cant. The circumference 
can be  expressed as C = 2πr (2 times π times the radius). Hence, the original radius can 
be  expressed as  roriginal = C/(2π). Adding 1 meter to the existing circumference would change 
the equation to C + 1 = 2πrnew. Isolating rnew , you get rnew = (C + 1)/(2π). Expanding the 
 parentheses, you get rnew = C/(2π) + 1/(2π). Because the original radius was C/(2π), the new 
radius is 1/(2π) greater, which is about 16 centimeters (a bit more than 6 inches) greater. 
That’s enough for a cat to go under and move from one hemisphere to the other. 

Puzzle 22: Josephus Problem

 An easy way to fi nd a generic solution to this puzzle with any number of men is to fi rst solve 
it with very small numbers of men (1, 2, 3, and so on) and to look for a pattern in the results. 
If you solve the puzzle for small numbers, you get the results shown in Table A-1, where n is 
the number of men and p is the position of the only man left.  

 TABLE A-1 Results of the Josephus Problem 

 n p

 1 1

 2 1

 3 3

 4 1

 5 3

 6 5

 7 7

 8 1

 9 3

 10 5

 11 7

 12 9

 13 11

 14 13

 15 15

 16 1

 The pattern you can identify is that p is an increasing sequence of odd integers that restarts 
from 1 when n is a power of 2. You express n as 2a + b, where b >= 0 and b < 2a. That is, a 
is the highest power of 2 such that 2a is smaller than n, and b is n minus 2a. Then, p can be 
expressed as 2b + 1. For example, for n = 41, express n as 25 + 9. Since b = 9 and p = 2b + 1, 
you get p = 19.  

n p
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 Of course, this is just an observation of a pattern based on the cases that were tested. To 
 ensure that the pattern holds for all cases, you need a mathematical proof. You can fi nd one 
at http://en.wikipedia.org/wiki/Josephus_problem. The following T-SQL statement calculates 
and returns p for a given @n:  

DECLARE @n AS INT = 41;

SELECT 2 * (@n - POWER(2, CAST(LOG(@n)/LOG(2) AS INT))) + 1 AS p;

Puzzle 23: Shipping Algebra

 Here’s the algebra I used in my solution to the problem: 

 Let s = current age of ship, b = current age of boiler, and y = years passed since the age of 
the ship was equal to the current age of the boiler. You can translate the statements in the 
puzzle to the following three equations: 

  1. s + b = 42 

  2. s = 2 × (b – y) 

  3. s – y = b 

 From equations 2 and 3 you get the following equation: 

 s = 2 × (b – s + b) 

 This gives us equation 4: 

  4. 3 × s = 4 × b 

 From equations 1 and 4 you get the following equation: 

 3 × s = 4 × (42 – s) 

 When you solve the equation for s, you get 24. And now that the age of the ship is known, 
you can solve equation 1 for b: 

 b = 42 – 24 = 18 

 The solution is that the ship’s current age is 24 and the boiler’s current age is 18. 

Puzzle 24: Equilateral Triangles Puzzle

 You can solve this puzzle in many ways. I provided this puzzle not because it is tough but 
rather the contrary—it is pretty simple. However, some of the solutions are simply  beautiful. 
I’ll fi rst provide an ordinary solution and then a more creative one. To explain the fi rst 
 solution, examine the drawing in Figure A-4.
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FIGURE A-4 Solution 1 to the equilateral triangles puzzle

 The segment h1 has the same length as the altitude of the triangle ABC, and the segment h2 
has the same length as the altitude of the triangle CEF. G is the point where h1 intersects CA, 
and H is the point where h2 intersects the same line. It is fairly easy to prove that H is the same 
point as A but not really necessary for our purposes. The triangles GBC and HEC are similar 
because they have two corresponding angles that are equal (both have a right angle and 
share another angle). |CE| is twice |CB|; therefore |HE| (which is |h2|) is twice |GB| (which is |h1|). 
The area of a triangle is ½bh (half base times altitude). Because the bases FC and CH of the 
 triangles CEF and ABC have equal lengths but |h2| is twice |h1|, the area of CEF is twice the area 
of ABC. In other words, the area of CEF (as well as DEB and DAF, which are congruent to CEF) is 
2S. Therefore, the area of the triangle DEF is 3 × 2S + S = 7S. 

 The second solution is more creative. Examine the drawing in Figure A-5. 

 You draw the lines EG and GF parallel to CF and EC, respectively, to form the parallelogram 
CEGF. Next, draw the lines BG, BH, and CE. We know that |FC| = |CB| = |BE| = |EG| = |GH| = 
|HF| = |HB| = |a|. Triangles ABC, CHF, and BGH are congruent because corresponding sides 
and the angle between them are equal. This means that |HC| = |BG| = |a|. This means that 
the four triangles BEG, BGH, CBH, and CHF enclosed by the parallelogram and ABC are 
 congruent; therefore, the area of the parallelogram is 4S. The triangle CEF has exactly half 
the area of the parallelogram; therefore, the triangle’s area is 2S. Therefore, the area of the 
triangle DEF is 3 × 2S + S = 7S. 
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A
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S
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CF
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FIGURE A-5 Solution 2 to the equilateral triangles puzzle

Conclusion

 I hope that you fi nd logic puzzles challenging, fun, and a great tool to improve your logic and 
SQL. And if you’re still looking for a reason to practice them, here’s one: 

 “Crime is common. Logic is rare. Therefore it is upon the logic rather than upon the 
crime that you should dwell.” 

 —Sir Arthur Conan Doyle, 1859–1930, The Adventures of Sherlock Holmes, 
“The Adventure of the Copper Beeches” 
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join logical processing order, 409
join syntax, 389–90
nonsupported joins, 401
NULL values, 111
ORDER BY clause, 16
outer joins, 399
OVER clause subclauses, 459
relations, 103
semicolon termination, 322
set operations, 436
two-valued logic, 623

anti-semi joins, 415–16
antisymmetric relation properties, 75–76
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Cartesian Product phase, 3, 7–8
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Clustered Index Seek operator. 

See index seek; clustered indexes
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COUNT(val), 502
covering indexes, 201
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CREATE ASSEMBLY command, 485
CREATE CLUSTERED INDEX statement, 645
CREATE INDEX command, 548, 647–48
CREATE STATISTICS command, 645, 647
CREATE SYNONYM command, 360
CROSS APPLY operator, 21, 536
Cross Join phase. See Cartesian Product phase
cross joins, 7, 390–95. See also 

Cartesian Product phase
CTEs (common table expressions). See 

common table expressions (CTEs)
CUBE subclass, 506
CUBE subclause, 511–12
cumulative aggregation, 453–57
cursors, 17

custom aggregations, 473
gaps solution, 374
islands solution, 383–84
query tuning, 268–76
row number calculation, 341–42
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782 custom aggregation

custom aggregation, 473–99
pivoting, 474–99

custom sequences, 596–600
CustomerData sample table, 567
Customers sample table, 306, 308

cross joins, 390–95
hash joins, 425–26
merge joins, 424–25
MERGE statement, 616–17
multiple joins, 408–11
triggers, 627
UPDATE statement, 607

CustomersDim sample table, 629
CustomersStage sample table, 616–17
CXPACKET wait, 136, 145
cycles, iteration/recursion, 691–94

D
Dafni, Adi, 757
DAG (directed acyclic graph). 

See directed acyclic graph (DAG)
data

aggregation. See aggregation
bad, domains and, 47–48
collection, 187
deletion, 601–06
duplicate, removal, 601–03
insertion, 561–601
integrity, 104–11. See also constraints
large value type updates, 610–11
maintenance, materialized path, 

695–701
merging, 616–28
model, 83
modifi cation, CTEs, 324–25
modifi cation, TOP option, 531–33
OUTPUT clause, 628–38
preparation, sample, 259–65
processing, 83
schema, 83
structure, 277, 279
temporal, 122
trend identifi cation, 291
type. See types
updating, 606–16

data collector, 187
data defi nition language (DDL), 460

partitioned views and tables, 640
triggers, 109

data integrity
domain, 108–09
enforcing, 109–11
entity, 105–06
referential, 106–08

Data Manipulation Language (DML), 460
composable, 636–38
constraints, 105

relations, 103–04
triggers, 109

Data Modeling Essentials (Simsion and Witt), 
111–12

database
data integrity. See data integrity
FULL recovery model, 571–74
generalization, 124–25
I/O analysis, 145–48
ID, 256
non-FULL recovery mode, 574–75
NULL values, 110–11
relational model. See relational database model
schema, 104
specialization, 124–25

Database Design for Smarties (Muller), 112
Database Engine Tuning Advisor, 187
DATE type, 48

binary string conversion, 450
date values, 42
Date, C. J., 83, 122, 125
DATEADD function, 368, 373, 392
DATEDIFF function, 373
DATETIME type, 417

accuracy level, 458
binary string conversion, 450

DBCC DROPCLEANBUFFERS, 118
DBCC FLUSHPROCINDB, 171
DBCC FREEPROCCACHE, 171
DBCC FREESYSTEMCACHE, 171–72
DBCC IND, 213–14
dbo.Customers table, 5–7
dbo.EmpYearValues table, 24–28
dbo.Orders table, 5–7
DDL (data defi nition language). 

See data defi nition language (DDL)
DecToBase function, 491
defi nitions, 38–39

cardinality, 56
Cartesian products, 54
characteristic function of a set, 55
complexity, 283
logical operators, 69
ordered pairs and tuples, 53
propositions and predicates, 66
set complement, 62
set difference, 63
set partition, 63
subsets, 61
undefi ned terms, 39
union and intersect, 62–63

defragmentation utilities, 258
Degree of Parallelism event, 653
DELETE statement, 103–04, 601

OUTPUT clause, 630–32
TOP option, 531–33

DELETE trigger, 627–28
DeMorgan, Augustus, 70
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DeMorgans laws, 70
denormalization, 122–24
DENSE_RANK function, 352–54, 383
derived tables, 318–19

arguments, 320–21
column aliases, 319–20
multiple references, 321
nesting, 320–21

Designing Database Solutions 
(Sarka, Leonard, Loria, and Wiernik), 122

determinism, 333–34
RANK and DENSE_RANK functions, 353
TOP option, 529–30

Diaconis, Persi, 292
Difference operator, 93–94
direct subordinates, 717–18
directed acyclic graph (DAG), 666

transitive closure, 740–45
directed graphs, 659–60
Discard Results option, 344
Disk Usage collection set, 148
Disk Usage Summary report, 148
DISTINCT clause, 15–16, 369, 

371, 742–43
DISTINCT COUNT, 299
DISTINCT phase, 5
DISTINCT predicate, 414
Distribute Streams Parallelism operator, 652–57
Divide operator, 95–97
dividend relation, 95–97
divisor relation, 95–97
dm_db_index_operational_stats, 256
dm_db_index_usage_stats, 256
dm_db_index_physical_stats, 257
DMFs (Dynamic Management Functions). 

See specifi c DMFs
DML (Data Manipulation Language). 

See Data Manipulation Language (DML)
DMOs (Dynamic Management Objects), 172. 

See also specifi c DMOs
DMVs (Dynamic Management Views). 

See specifi c DMVs
domain integrity, 108–09
domain-key normal form, 122
domains, 84

bad data, 47–48
calculus, 102–03
check constraint, 108–09
modeling, 49

DROP statistics command, 645
DROP TABLE statement, 601
dta.exe command-line utility, 187
Dynamic Management Functions (DMFs). 

See specifi c DMFs
Dynamic Management Objects (DMOs), 172. 

See also specifi c DMOs
Dynamic Management Views (DMVs). 

See specifi c DMVs
dynamic pivoting, 487–88

E
edges, 99–100
Element Of operator, 90–91
elements, separating, 429–35
ellipsis, 45
employee organization chart example, 661–63
Employees sample table, 661–63

cross joins, 390–95
self joins, 402–04
TOP n, 539–42

EmpOrders sample table, 451–52
empty sets, 54–55, 315
encapsulated types, 86
English-to-mathematics translation, 35–44
entity

defi ned, 87
primitive, 124

Entity Attribute Value (EAV), 460–61
entity integrity, 105–06
enumeration, sets, 45
equality, 39
Equals operator, 90–91
equi-joins, 94, 402–03
errors

composite joins, 397
duplicate key, 312
ORDER BY table expressions, 18–19
partitioned views updates, 640
subqueries, 314–16

Estimated Execution Plan, 644
Estimated Subtree Cost, 178
Evaluate Expressions phase, 5
EXCEPT DISTINCT operation, 437–38
EXCEPT operation, 31–32, 435–39
excluded middle, law of, 68
exclusive locks, 257–58
Exclusive or, 70
execution plan, 2

analysis, 174–85
cached, 169–71
graphical, 174–85

EXISTS predicate
asterisk use, 306
correlated subqueries, 305–14
minimum missing values, 309–12
semi joins, 414–16
vs. IN predicate, 307

expand-collapse technique, 404
exponential complexity, 134–35
expressions

logical transformations, 556–59
TOP option, 530–31

Extend operator, 98
T-SQL support, 103–04

extents, 188–89
external column aliasing, 319–20
external fragmentation, 256–57
external sorting, 287
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784 factorial function

F
factorial function, 281–82
faithfulness, 49–51
FALSE values, 9
FAST_FORWARD cursor, 268–69
Fermats Last Theorem, 110
fi fth normal form, 120
fi llfactor, 194, 257
fi ltering

bitmap fi lters, 426–28
indexes, statistics and, 239–42

fi lters, 8. See also specifi c fi lters
fi rst normal form, 113–15

bitwise operations, 490
fi rst page request, 548–49
FLOAT data type, 41
fn_dblog function, 569
fn_trace_gettable function, 149, 155
FOR keyword, 464
FOR XML PATH option, 214
FOR XML query option, 487–88
FORCE ORDER hint, 406

bushy plans, 413
foreign keys, 106–08

nested loops, 423
forests, 661
format fi le, 565
Format.Native property, 484
Format.UserDefi ned property, 484
forwarding pointers, 191
fourth normal form, 119–20
fragmentation, 256–58

logical index, 233–34
logical scan, 192–93

Freedman, Craig, 429
FROM clause

derived tables, 318
MERGE statement, 618
TABLESAMPLE, 265

FROM phase, 3, 7
FULL keyword, 397–401
FULL recovery model, 571–74
FULLSCAN, 647–48
functional dependencies

multivalued dependency, 120
normal forms, 112

functions, 43. See also specifi c functions
aggregate. See aggregate functions
aggregate window, 454
analytical ranking, 330–32
inline defi nitions, CTEs, 325–26

fuzzy logic, 75

G
Galindo-Legaria, Cesar, 273
gaps, 363–86
Gather Stream operator, 653–57

generalization
database, 124–25
relational database model, 124–26

GetAncestor method, 717–18
GetDescendant method, 711–12
GetFirstRows, 591–94
GetLevel method, 708
GetNextPage, 549–51
GetNextRows, 591–94
GetPrevPage, 551–52
GetReparentedValue, 712–14
GetSequence procedure, 598
GetTopProducts sample table, 535
Global Aggregation operator, 655
globally unique identifi ers (GUIDs), 600–01

random, 212
temporary tables, 216

graph theory, 99–100
graphical execution plans, 174–85
graphs, 659–60. See also specifi c graphs
GROUP BY ALL, inner joins, 395–97
GROUP BY clause

derived tables, 319
grouping sets, 506–07
relational division, 299
self joins, 404
subclasses, 506

GROUP BY phase, 5, 12–13
grouping factor, 503–05
GROUPING function, 524
grouping sets, 12–13, 506–07

algebra, 514–18
CUBE subclause, 511–12
GROUPING SETS subclause, 508–10
GROUPING_ID function, 518–21
materialize, 521–23
PIVOT operator, 23
ROLLUP subclause, 512–14
sample data, 507
sorting, 524

GROUPING SETS subclass, 506
GROUPING SETS subclause, 508–10

addition, 517–18
division, 515–17
multiplication, 514–15

GROUPING_ID function, 506, 518–21
Groups sample table, 473–74

median, 554
GUIDs (globally unique identifi ers). 

See globally unique identifi ers (GUIDs)

H
Halpin, Terry, 88, 111–12
hash algorithm, 428
Hash Match operator, 426
hash tables, 425–28
HAVING clause, 80

cumulative aggregations, 455–57
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HAVING phase, 5, 13–14
heaps, 189–91

INSERT SELECT statement scenarios, 575–78
Heisenberg Uncertainty Principle, 149
Heisenberg, Werner, 149
hierarchies, 99–100, 661
HIERARCHYID data type, 719

list sorting, 726–30
materialized path, 706–14
normalizing, 719–23
parent-child conversion, 724–26

hints, 185–86
joins, 407–14

histograms, 499–503
HOBT, 189
Hungarian notation, 89

I
I/O subsystem

AND logic costs, 558–59
current and previous occurrence matching, 545
OR logic costs, 558–59
performance analysis, 145–48
query costs, 224, 229
reads, index seek cost, 193
STATISTICS IO option, 172–73
TOP n costs, 539, 542
wait analysis, 136–37, 143, 145

IBinarySerialize interface, 484
identity, 39
IDENTITY function, 342–44
IDENTITY property

inserting values, 110
SELECT INTO statement, 564
sequence mechanisms, 595–96

IF EXISTS, 626
IF keyword, 65–66
if.then statements, 70–72
ijk dialect, 40
IN predicate

vs. EXISTS predicate, 307
IN_ROW_DATA allocation units, 189
Include Actual Execution Plan, 654
INCLUDE clause, 548

fi ltered indexes, 240–41
included nonkey columns, 237
increasing subsequences, 291
Index Allocation Map (IAM) pages, 

190–91
allocation order scans, 192

index ID, 256
index keys

updates, 219–23
index order scans, 204, 208
Index Scan operator, 205

allocation order scans, 208–12
index order scans, 219

index scans, 544
allocation order scans, 192, 208–19
APPLY operator, 546
index order scans, 204, 208
ordered clustered index, 202–04
ordered covering nonclustered index scan, 

204–07
Storage Engine, 207–23, 256
strategy analysis, 244–56
unordered clustered index, 198–201, 245
unordered covering index scan, 245–46
unordered covering nonclustered index, 201–02

index seek, 193, 544
clustered index seek + ordered partial scan, 

233–38, 250
covering nonclustered index seek + ordered partial 

scan, 251
nonclustered index seek + ordered 

partial scan + lookups, 223–28, 247–50
partion elimination, 649–50
subtree removal, 700–01
TOP n, 539
unordered nonclustered index scan + lookups, 

228–33, 246–47
Index Seek operator, 223–26
indexed views, 242–44
indexes

access methods, 197–239. 
See also index scans; index seek

clustered. See clustered indexes
costs, 238
covering, 201
covering index seek + ordered partial scan, 251
fi ltered, statistics and, 239–42
fragmentation, 192–93, 256–58
index seek + ordered partial scan + lookups, 247–50
intersection, 238–39
joins and, 421–23
level calculations, 193–95
nonclustered index seek + ordered 

partial scan + lookups method, 223–28
on a clustered table, 196–97
on a heap, 195–96
ordered covering scan, 204–07
pages and extents, 188–89
partitioning, 258–59
performance monitoring, 256
rebuilding, 257–58
rebuilds, 648
reorganizing, 251
strategy analysis, 244–56
tuning, 169–70, 188–97. See index tuning
unordered covering scan, 201–02, 245–46
unordered index scan + lookups, 246–47
unordered nonclustered index scan + lookups, 

228–33
INDEXPROPERTY function, 193
induced order, 59
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786 Information Modeling and Relational Databases

Information Modeling and Relational Databases 
(Halpin and Morgan), 88, 111–12

Information Principle, 83
Init method, 482–83
inline column aliasing, 319–20
inline function defi nitions, CTEs, 325–26
inner joins, 395–97

sliding total sample, 417–20
strategy forcing, 428–29

input expressions
TOP option, 530–31

INSERT EXEC statement, 590–94
INSERT loop, 360
INSERT SELECT FROM OPENROWSET 

statement, 566
minimal logging, 567–68

INSERT SELECT statement
CASE expression, 310–12
minimal logging, 567–68
minimal logging summary, 590
TABLOCK hint, heap, B-tree, TF-610, key range 

scenarios, 575–89
INSERT statement, 103–04

auxiliary table of numbers, 360–62
MERGE statement, 617–21
OUTPUT clause, 629–30
TOP option, 531–33

INSERT TOP, 532
INSERT trigger, 627–28
INSERT VALUES statement, 562
insertion sort, 288
Inside Microsoft SQL Server 2008, 105, 109, 

122, 127, 318
INSTEAD OF triggers, 109
instructions, 43–44
integrity

domain, 108–09
entity, 105–06
referential, 106–08

interchangeability, principle of, 88
internal fragmentation, 257
INTERSECT operation, 435–36, 439–40

precedence, 440
Intersect operator, 93, 31–32

T-SQL support, 103–04
intersect, set, 62–63
IntervalWaits function, 139–40
INTO clause, 441
intractable problems, 285
IP address, 704–30
irrefl exive relation properties, 75–76
IsDescendantOf method, 715–16
IsInvariantToDuplicates property, 

484–85
IsInvariantToNulls property, 484–85
IsInvariantToOrder property, 484–85
islands, 363–86

variation, 384–86
IsNullIfEmpty property, 484–85

isolation levels, 211–12
iteration/recursion, 670

ancestors, 681–84
cycles, 691–94
sorting, 688–91
subgraph/subtree with path enumeration, 

685–88
subordinates, 671–81

iterative/procedural query tuning vs. set-based 
approaches, 268–76

J
Jensen, Clifford, 757
join hints, 185–86
JOIN keyword, 185, 428–29
Join operator, 94

T-SQL support, 103–04
joins, 389

algorithims, 421–29
anti-semi, 415–16
composite, 397
cross, 390–95
DELETE statement, 603–06
dependency constraints, 121
equi-, 94, 402–03
hash, 428
hints, 407–14
inner, 395–97
logical evaluation order, 408–11
logical processing phase, 390
many-to-many, 423
merge, 423–25
multiple, 405–06
nested loops, 422–23
nonsupported, 401
old vs. new style, 389–403
outer, 397–401
self, 402–04
semi, 98
semi joins, 414–16
theta, 94
UPDATE statement, 606–10

K
Kass, Steve, 35, 267–68, 277
Kelly, Andrew J., 127
key lookups, 196–97
key-range, INSERT SELECT statement scenarios, 

579–89
keys. See also foreign keys; primary keys

Boyce-Codd normal form, 117–19
duplicate, 312
entity integrity, 105–06
fi rst normal form, 113–15
natural vs. surrogate, 106
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 Merge Interval operator 787

NULL values, 106
second normal form, 115–16
third normal form, 116–17
uniqueness and applicability, 106

Kogan, Eugene, 487
k-tuples, 53

L
L_SUPPKEY, 648
large object (LOB) data, 565–67
large value type updates, 610–11
LargeOrders sample table, 533, 630
LastDay CTE, 523
latch waits, 137
law of excluded middle, 68
LCK waits, 137
leaf level, 191–95

split pages, 192–93
leaf nodes, 718, 738–39
leaf_row_size, 193
left input, 20–21

APPLY operator, 21–22
LEFT keyword, 397–401
LEFT OUTER join, 543
left semi joins, 414–16
Leonard, Andy, 122
LIKE condition, 702
LIKE predicate, 232, 727
linear complexity, 133–34
LINEITEM sample table, 641–45
LINEITEMPART sample table, 641–45
lists, 287
LOB_DATA allocation units, 189
locks

exclusive, 257–58
index rebuilds, 257–58
shared, 219, 257–58
wait analysis, 137

LOG function, 489–90
logging

analysis, 569–71
minimally logged operations, 567–90
testing insert scenarios, 571–89

logic. See also fuzzy logic; predicate logic
puzzles, 757–77
three-valued, 9, 74
two-valued, 623

logical equivalence, 70
logical index fragmentation, 233–34

allocation order scans, 208–19
logical operators, 68–70. See also 

specifi c operators
logical query processing, 1–2

OVER clause, 29–31
phases, 2–5, 7–20. See also specifi c phases
phases, joins and, 390

sample query, 5–7
set operators, 31–32
table operators, 20–28

logical reads, 251–52
logical scan fragmentation, 192–93, 256–57
logical transformations, 556–59
longest increasing subsequence length problem 

(LISLP), 291–95
lookups

cost, 196
key, 196–97
RID, 196

Loria, Javier, 122

M
Machanic, Adam, 757
magnetic tape storage, 287
Management data warehouse, 187
manual partitioning, 88
materialize grouping sets, 521–23
materialized path, 694–95

data maintenance, 695–701
querying, 701–06

materialized path, HIERARCHYID data type, 
706–08

data maintenance, 708–14
querying, 715–19

mathematics
context, 41–43
conventions, 39–40
defi nitions, 38–39
equality, identity, and sameness, 39
functions, parameters, and values, 43
graph theory, 99–100
grouping sets algebra, 514–18
instructions and algorithms, 43–44
median, 494–97, 554–56
mode, 497–99
numbers, 41
relational algebra and calculus, 90–104
set S, 35–37
well-defi nedness, 37–38

Matrix sample table, 468–69
MAX(order date), 302
MAX(ordered), 302–05

tiebreaker, 448–51
MAX(requireddate), 302–05
MaxByteSize property, 484
MAXDOP hint, 257
MAXRECURSION hint, 329–30, 680–81
MDX (Multidimensional Expressions), 507
median, 494–97

TOP option, 554–56
memory, wait analysis, 143
merge algorithm, 423–25
Merge Interval operator, 351
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788 MERGE INTO clause

MERGE INTO clause, 618
Merge method, 482–83
MERGE predicate, 617–18
MERGE statement, 103–04, 294, 617–21

multiple WHEN clauses, 623–24
OUTPUT clause, 634–36
predicate addition, 621–23
triggers, 627–28
values, 626–27

Messages sample table, 632
metadata table queries, 648
Microsoft SQL Server Customer 

Advisory Team, 158
minimally logged operations, 567–90
minimum missing values

EXISTS predicate, 309–12
outer joins, 400–01

Minus operator, 93–94
T-SQL support, 103–04

missing values
EXISTS predicate, 309–12
outer joins, 400–01

mode, 497–99
modeling, 111–12

domains, 49
Object-Role Modeling (ORM), 111–12
relational databases, 88

modifi cations
TOP option, 531–33

modus ponens, 70
MonthlyOrders sample table, 417–20
Moran, Brian, 149
Morgan, Tony, 88, 111–12
Muller, Robert J., 112
Multidimensional Expressions (MDX), 507
multipage access, 351–52
multiple joins, 405–06
multiple references

common table expressions, 324
table expressions, 321

multiset theory, 64–119
multivalued dependencies, 120
multivalued subqueries, 297–98
mutator operators, 86
MyGroupingSets sample table, 521–22
MyOrders sample table, 557

N
naming conventions, 49–51. See also notation

Hungarian notation, 89
relational database model, 89

National Institute of Standards and Technology 
(NIST), 659

Natural Join operator, 94
natural keys, 106
natural numbers, 86

nave set theory, 52
nested loop algorithm, 422–23
Nested Loops operator, 544

parallel query plans, 654–57
partition elimination, 649

nested sets
left and right value assignment, 731–36
querying, 737–39

nesting, derived tables, 320–21
network waits, 145
NEWID function, 553, 601
NEWSEQUENTIALID function, 601
next page request, 549–51
next pointers, 204
NIST (National Institute of Standards 

and Technology), 659
No Action implementation, 107–08
NOCOUNT option, 618–19
nodes, 99–100
NOEXPAND hint, 244
NOLOCK hint

allocation order, 215–19
index order scan, 223

non_leaf_row_size, 194
nonblocking sequences, 598–600
non-equi-join joins

sliding total sample, 417–20
non-FULL recovery mode, 574–75
nonpolynomial complexity, 284–85
nonscalar types, 86–87
nonunique sort column method

with tiebreaker, 337–38
without tiebreaker, 338–40

NORECOMPUTE option, 647
normal forms

additional, 122
Boyce-Codd, 117–19
domain-key, 122
fi fth, 120
fi rst, 113–15
fourth, 119–20
functional dependencies, 112
higher, 119–22
second, 115–16
sixth, 122
third, 116–17

normalization, 111–22. 
See also normal forms

normalizing
HIERARCHYID data type, 719–23

Not Equals operator, 90–91
NOT EXISTS predicate, 742

semi joins, 415–16
vs. NOT IN predicate, 307–09

NOT IN predicate
semi joins, 415–16
vs. NOT EXISTS predicate, 307–09

Not operator, 68–70
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notation
Big Oh, 283–84
cardinality, 56
Hungarian, 89
ordered pairs and tuples, 53
set theory, 45–46
set-builder, 45–46
sets, 45–46
shorthand, 56

NP switch, 428
NTILE function, 354–59
NULL values, 9, 48

@expression, @length, and 
@value arguments, 611

aggregate product specialized solution, 489
COALESCE function, 475
EXCEPT DISTINCT operation, 437
fi ltered indexes, 239
GROUP BY phase, 13
GROUPING SETS subclause, 509
GROUPING_ID function, 518–21
HIERARCHYID data type, 710
in databases, 110–11
IN predicate, 307
INTERSECT operation, 439
key constraints, 106
multiple joins, 408
NOT EXISTS and NOT in predicate, 

307–09
ORDER BY clause, 19–20
outer joins, 399
pivoting, 462–63
ranking functions, 336
row removal, UNPIVOT operator, 28
set operations, 32
specialization, 124–25
UNIQUE constraint, 241–42
UNPIVOT operator, 471

NULLIF, 489
num_leaf_pages, 194
num_rows, 193
numbers

cardinal, 59–60
mathematics and, 41
natural, 86
ordinal, 59–60
whichth, 60–61

numerical order, 57
Nums sample table, 131, 359–62

cross joins, 390–95
missing values, returning, 

375–83
NumSeq table, 363–64
NVARCHAR data type, 188–89
NVARCHAR(MAX) data type, 189
NVARCHAR(MAX) type

updating, 610–11

O
O(n log n)

LISLP problem, 292
sorting algorithms, 288–89

object ID, 256
Object-Role Modeling (ORM), 88, 111–12
order

trichotomy, 58–59
offl ine index rebuilding, 257–58
OLEDB wait, 137
OLTP (online transaction processing). 

See online transaction processing (OLTP)
ON clause

bushy plans, 413
inner joins, 395–97
MERGE statement, 618
multiple joins, 409–11

ON fi lter, 3
OUTER JOIN clause, 12

ON fi lter phase, 8–10
online index rebuilding, 257–58
online transaction processing (OLTP)

MERGE statement, 616
wait analysis, 136

open schema, 460–62
OPENROWSET function, 565
OpenSchema sample table, 461–62
operators. See also specifi c operators

Boolean, 90–91
Codds, 91–97
cost percentages, 178
mutator, 86
relational algebra, 98–102
relations. See relations
relations and tuples, 90–91
selector, 86
set, 31–32
table, 20–28
ToolTip information, 179–85
type, 86

optimization. See also query optimizer
indexing strategies analysis, 244–56
nested loops, 421–22
partitioned views and partitioned tables, 640

optimized bitmap fi lters, 426–28
optimizer. See query optimizer
OPTION clause, 185
Or operator, 68–70

IN predicate, 316–17
logical transformations, 556–59

order, 57
alphabetical, 57–58
induced, 59
numerical, 57
sets, 57–61
total, 59
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ORDER BY clause, 205
cross joins, 393
derived tables, 318–19
ranking function, 331, 334
TOP option, 16, 527, 534–35

ORDER BY list, 353
ORDER BY operation, 91, 436
ORDER BY phase, 5, 16–20

OVER clause, 30–31
Order property, 208–12

index order scans, 219
OrderDetails sample table, 465

TOP n, 537–38
OrderDups sample table, 602–03
ordered pairs, 53–54
Ordered property, 204–05

allocation order vs. index order scans, 
207–08

Orders sample table, 131, 269–76, 
306–07, 507

data aggregation, 466–68
hash joins, 425–26
merge joins, 424–25
multiple joins, 408–11
TOP n, 537–38

OrdersArchive sample table, 631
ordinal numbers, 59–60
ORM (Object-Role Modeling), 88, 

111–12
orthogonal design, 125–26
OUTER APPLY operator, 21, 536
OUTER JOIN clause, 12
outer joins, 11, 397–401

fi lters, 12
sliding total sample, 417–20

OUTER keyword, 398
OVER clause, 29–31

aggregation, 445–70
ranking functions, 331
subcaluses, 459

Ozer, Stuart, 158

P
Pack operator, 100–01
Page Free Space (PFS) pages, 191
page splits, 191

allocation order scans, 208–12
page_density, 194
PAGEIOLATCH_SH wait, 142
pages, 188–89
paging

multipage access, 351–52
row numbers, 349–52
TOP option, 547–52

parallel queries, 228–31
parallel query plans, 136

wait analysis, 145
Parallelism operators, 228, 652–57

parallelism, partitioning and, 652–57
parameters, 43
parent-child representation conversion, 

724–26
parentheses, 322, 528

chiastic relationships, 410–11
Partial Aggregation operator, 655
PARTITION BY clause, 30

OVER clause, 447–48
ranking functions, 331–32
Segment operator, 333

partition ID, 256
partitioned row numbers, 344
partitioned tables, 639–40

partition elimination, 649–52
query plans, 641–45
statistics, 645–48
vs. partitioned views, 640

partitioned views, 639–40
partitioning. See also partitioned tables

manual, 88
parallelism, 652–57
partitioned views, 639–40
ranking functions, 334
subqueries, 340–41

partitions sets, 63–64
Parts sample table, 663–66
Pascal, Fabian, 119
path enumeration, 685–88
PATH mode, 487–88
path queries, 716–17
penguin dialect, 39–40
PERCENT keyword, 265
PERCENT option, 528, 555
performance

row number calculation, 344–49
selectivity and query cost, 253–55
tracing effects on, 149–50
tuning methodology, 131–34
workload tracing, 150–55

performance counters, 143–44
Performance sample database, 127–31

join algorithms, 421
performance testing

data preparation, 259–65
TABLESAMPLE, 265–68

PerfWorkloadTraceStart procedure, 151
physical query processing, 2
PIVOT operator, 22–24, 463–64, 466, 470

phases, 23–24
pivoting, 460

aggregate product, 475
attributes, 460–64
custom aggregation, 474–99
data aggregation, 466–70
dynamic, 487–88
relational division, 465–66
string concatenation, 475
unpivoting, 470–73
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PivotTables
wait analysis, 140–42

plan guides, 124
plan handles, 168
plan hash, 168
point queries, 233–34
Poletti, Marcello, 757
polynomial complexity, 284–85
pool cache, 171–72
POWER function, 489–90
Practical Issues in Database Management 

(Pascal), 119
precedence

set operations, 440
predicate logic, 35, 65

alternatives, 73–75
DeMorgans laws, 70
generalizations, 73–75
implications, 70–72
law of excluded middle, 68
logical equivalence, 70
operators, 68–70
predicates. See predicates
programming languages, 65–66
propositions, 66–68
quantifi cation, 72–73
relations, 75–80

predicates, 66–68
MERGE statement additions, 621–23
proposition creation from, 67–68
quantifi ed, negating, 73
relations and, 87–88
truth value, 68
uncommon, subqueries, 316–18

preserved tables, 11
previous page request, 551–52
previous pointers, 204
primary keys, 105–06

nested loops, 423
primitive entities, 124
principle of interchangeability, 88
process-level analysis, 148–50

performance workload tracing, 150–55
query statistics, 167–69
trace data analysis, 155–67

product aggregate specialized solution, 
488–90

Product operator, 92–93
T-SQL support, 103–04

Profi ler, 186
programming languages

dialects, 40
fourth-generation, 277
predicate logic, 65–66

Project operator, 92
proof by contradiction, 68
proof by contrapositive, 71
propositional functions, 35

propositions, 66–68
creation from predicates, 67–68
relations and, 87–88

proto-tuple, 103
PvtCustOrders sample table, 470

Q
quadratic scaling, 280
quadratic sorting algorithms, 288
quantifi cation

multiple, 73
predicate logic, 72–73

quantifi ed statements, 72
multiple, 73
negating, 72–73

queries. See also query optimizer; query plan; 
query tuning

ad hoc, 136
aggregation, 156–67
compilation, 640
cost and performance statistics, 253–55
cost percentages, 178–79
execution plan. See execution plan
fi lters. See specifi c fi lters
HIERARCHYID data type, 715–19
materialized path, 701–06
nested sets, 737–39
ORDER BY clause, 31
parallel, 228–31
partitioned tables. See partitioned tables
path, 716–17
plan guides, 124
point, 233–34
processing. See logical query processing; physical 

query processing
range, 233–34
recursive, CTEs, 327–30
run time measurement, 173–74
S set sample application, 77–80
sample, 5–7
selectivity vs. query cost, 253–55
set operations. See set operations
set-based, 268–76
signature, 157–67
statistics, 167–69
subqueries. See subqueries
wait analysis. See wait analysis

query hash, 168
query hints, 185–86
query optimizer, 2

bitmap fi lter, 427
Database Engine Tuning Advisor, 187
hash table, 425–28
hints, 185–86
join hints, 407–14
join strategy forcing, 428–29
joins, 412–13

Z02I626034.indd   791 2/21/2009   2:01:58 AM



792 query optimizer

query optimizer (continued)
logical transformations, 556–59
merge joins, 423–25
paging, 350–52
relational algebra operators, 101–02
scan order, 273–76
semi joins, 415

query plans
parallel, 136, 145
parallelism, 652–57
partitioned tables, 641–45

query processing. See logical query processing; 
physical query processing

Query Statistics History report, 167
query tuning, 127

course of action determination, 145
database/fi le level analysis, 145–48
index tuning, 187–259. See also index tuning
indexes and queries, 169–70
methodology, 131–34
process level analysis, 148–69
sample data, 127–31
set-based vs. iterative/procedural approaches, 268–76
tools, 171–87
wait analysis, 134–43
wait correlation with queues, 143–44

queues, wait correlation, 143–44
quick sort, 289
QUOTENAME function, 488
quotient relation, 95–97

R
RAND function, 552–54
random vs. sequential, 193
Range Expression, 650–52
ranges, 108–09

missing and existing, 363–86
queries, 233–34

RANK function, 352–54
mode, 498

ranking functions, 60–61
analytical. See analytical ranking functions
gaps solution, 372–73
NULL values, 336

RDBMS (relational database management systems), 
1, 83. See also relational database model

read committed isolation level, 219
Read method, 484
read uncommitted isolation, 219
READPAST hint, 633
real numbers, 41, 51
recursion. See iteration/recursion
recursive common table expressions, 327–30
Recursive Member, 328–30
Redistribute Streams operator, 653–57
references, multiple

common table expressions, 324
table expressions, 321

referential integrity, 106–08
refl exive relation properties, 75–76
RegexReplace function, 160–61
relational algebra, 90–104

operators, 98–102
T-SQL support, 103–04

relational calculus, 90–104
T-SQL support, 103–04

relational database management systems (RDBMS), 
1, 83

relational database management systems (RDMBS), 83. 
See also relational database model

relational database model, 83
algebra and calculus, 90–104
data integrity, 104–11
denormalization, 122–24
generalization and specialization, 124–26
naming conventions, 89
normalization, 111–22
relations, tuples and types, 84–89
summary, 89–90
views, 88–89

relational division, 312–14
pivoting, 465–66

relations
attributes, 85–87
divisor, dividend, and quotient, 95–97
operators, 90–91
properties of, 75–76
propositions and predicates, 87–88
relational database model, 84–89
universe, 76
virtual, 88–89

relvar, 126
Rename operator, 98

T-SQL support, 103–04
Repartition Streams operator, 228
REPEATTABLE clause, 266
REPLACE function, 433–34
representation, faithful, 49–51
Resource Governor, 171–72
Restrict operator, 91–92

T-SQL support, 103–04
restriction expression, 91–92
Results to Text output mode, 435
reverse logic, 72

relational division problems, 312–14
RID lookup operation, 196
right input, 20–21

APPLY operator, 21–22
RIGHT keyword

outer joins, 397–401
right semi joins, 414–16
Rincon, Eladio, 127
RNBenchmark table, 344–48
Road System example, 666–70
Roads sample table, 666–70
ROLLUP subclass, 506
ROLLUP subclause, 512–14
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root pages, 193
roots node, 738–39
ROUND function, 570
row number calculation

benchmarks, 348–49
cursors, 341–42
IDENTITY-based, 342–44
nonpartitioned, 343
partitioned, 344
performance considerations, 344–49
subqueries, 335–41

row numbers
benchmarks, 348–49
calculation. See row numbers calculation
paging, 349–52

row overfl ow pages, 188
ROW_NUMBER function, 330–52, 433–34

benchmarks, 348–49
cross joins, 392–93
current and previous occurrence matching, 546–47
median, 495
TOP n, 542

ROW_OVERFLOW_DATA allocation units, 189
ROWMODCTR, 647
rows

anchor, 549–50, 592
copy generation, 26–27
current and previous occurrence matching, 543–47
duplicate, 15
duplicate data removal, 601–03
foreign key, 106–08
grouping, 23
index levels, 193–95
keys, 105–06
NULL values removal, 28
pivoting. See pivoting
random, TOP option, 552–54
removal, 28
set operations, 31–32
size limits, 188–89
TOP option, 16
value constructors, 607–08

ROWS keyword, 265
ROWS option, 266
rows_per_leaf_page, 194
rows_per_non_leaf_page, 194
rowsets, 88
RPCCompleted event class, 150
running aggregation, 451–52
Russell, Bertrand, 52
Russell’s Paradox, 52, 96, 110–11
Rys, Michael, 487

S
S set, 46

sample application, 77–80
Sales sample table, 330–31
Sales.MyShippers sample table, 314–16

Sales.Orders sample table, 497
SalesRN CTE, 350
sameness, 39
sample data. See also specifi c sample tables

grouping sets, 507
Performance database, 127–31
preparation, 259–65
TABLESAMPLE, 265–68

Sarka, Dejan, 44, 122, 757
Scalar operator, 650
scalar subqueries, 297–98
scalar types, 86–87
scale, algorithms, 279–82
SCOPE_IDENTITY function, 629
second normal form, 115–16
Segment operator, 207, 333
SELECT clause, 331
SELECT INTO statement, 216, 563–64

FULL recovery model, 571–74
minimal logging, 567–68
non-FULL recovery mode, 574–75

SELECT list
aliases, 14–15
asterisk use, 306
bushy plans, 414
column order, 17
DATEADD function, 392
derived tables, 319
DISTINCT clause, 16, 369, 371
pivoting, 462
self joins, 404
unpivot operator, 471

SELECT phase, 5, 14–16
ORDER BY clause, 29–30

SELECT query, 278
partition elimination, 649–52
TOP option, 527–35

SELECT statement, 103–04
assignments, 611–14
NOLOCK hint, 216
showplan, 643–45

SELECT TOP, 528–29
SELECT_INTO statement, 343–44
selection sort, 288
selectivity, 224, 251

logical reads and, 251–52
performance statistics and query cost, 253–55
point determination, 248–49
vs. logical reads, 252
vs. query cost, 253–55

selector operators, 86
self joins, 402–04
self-contained subqueries, 297–302
semi joins, 98, 414–16
semicolons, 322
Semijoin operator, 98
SEQUEL, 1
sequence mechanisms

custom sequences, 596–600
IDENTITY property, 595–96
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Sequence Project operator, 333
sequential access, 287
Serializable attribute, 484
Server Activity collections, 148
Server Activity History report, 139
Server Actual History report, 148
server instance

partitioned view, 639
wait analysis, 134–37

Server Management Objects (SMO), 187
Server Management Studio (SMSS)

cross joins, 396–97
Discard Results option, 329–44

Sessions sample table, 260–65
Set Default implementation, 107–08
SET FORCEPLAN ON statement, 406
Set Null implementation, 107–08
set operations, 31–32, 435–36

EXCEPT, 437–39
INTERSECT, 439–40
INTO clause, 441
NULL values, 32
precedence, 440
UNION, 436–37
unsupported logical phrases, circumventing, 

441–42
set operators, 31–32, 56–63
set S. See S set
SET STATISTICS IO option, 351
set theory, 35, 44. See also sets

domains of discourse, 46–49
faithfulness, 49–51
generalizations, 64–65
multiset theory, 64–65
nave, 52
notation, 45–46
ordered pairs, tuples, and Cartesian products, 53–54
Russell’s Paradox, 52
set membership operator defi nition, 44–45
set U, 46
empty sets, 54–55

set-based query tuning vs. iterative/procedural 
approaches, 268–76

sets. See also set operations; set operators; set theory
cardinality, 56–57
characteristic function, 77–80
characteristic function defi nition, 55
complement, 62
difference, 63
empty, 54–55, 315
enumeration, 45
membership operator defi nition, 44–45
nested. See nested sets
notation, 45–46
operators. See set operators
order, 57–61
partitions, 63–64
set-builder notation, 45–46

subsets, 61–62
union and intersection, 62–63
universe. See U set
well-defi nedness, 46

shared locks, 219, 257–58
Shippers sample table, 269–76, 566
SHOWPLAN_XML option, 186
SIMPLE recovery model, 575
Simsion, Graeme, 111–12
Singh, Simon, 110
single sequence values, 596–97
SINGLE_BLOB type, 566
SINGLE_CLOB type, 566
SINGLE_NCLOB type, 566
sixth normal form, 122
sliding aggregation, 457–59
sliding total, previous year, example, 417–20
sliding window scenario, 642
SMO (Server Management Objects), 187
SMSS (Server Management Studio). See Server 

Management Studio (SMSS)
Solid Quality Mentors, 127
SOME predicate, 316–18
Sort operator, 286, 509–10
SORT_IN_TEMP_DB option, 257
sorting

algorithms, 285–86
external, 287
grouping sets, 524
HIERARCHYID data type, 726–30
insertion and selection, 288
iteration/recursion, 688–91
O(n log N) algorithms, 288–89
quadratic algorithms, 288
quick sort, 289
running time comparsions, 285–86
swapping, 289
ultra sort, 289

source code, 43–44
sp_autostats, 647
sp_confi gure, 653
sp_create_plan_guide, 124
sp_get_query_template procedure, 157
sp_updatestats, 142–43
specialization

database, 124–25
relational database model, 124–26

specialized solutions, 487–99
bitwise operations, 490–94
product, 488–90
string concatenation, 487–88

spread by element, 464
spreading, PIVOT operator, 24
SPStmtCompleted event class, 150
SQL

pronunciation origin, 1
relations, 103

SQL handle, 168
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SQL Server 2005
partitioning, 641–45
query plans, parallelism, 654–57
showplan, 649–52

SQL Server 2008
CLR database code, 476–77
constraints, order of enforcement, 110
data collection and Management 

data warehouse, 187
hash joins, 425–26
hints, 185
partitioning, 639–57
query plans, parallelism, 654–57
showplan, 649–52
Timestamp type, 109–10
tracing, 149–50
triggers support, 109
XML type, 109

SQL Server Magazine, 757
SQL_VARIANT data type, 188–89, 461

UNPIVOT operator, 473
SQLBatchCompleted event class, 150
SQLStmtCompleted event class, 150
SqlUserDefi nedAggregate attribute, 

484–85
statistics

automatic maintenance, 142–43
cloning, 187
fi ltered indexes, 239–42
partitioned tables, 645–48
queries, 167–69

statistics cloning, 187
STATISTCS IO, 172–73
STATISTICS IO option, 172–73
STATISTICS TIME option, 173–74
STATISTICS XML option
Storage Engine, 207–23
stored procedures, 109
Stream Aggregate operator, 509–10, 655
string concatenation, 449

aggregate specialized solution, 487–88
pivoting, 475

StringBuilder class, 484
StringConcat function, 487
strings, searching, 289–90
StructLayoutAttribute, 485
STUFF function, 610–11
subgraph/subtree, with path enumeration, 

685–88
sublinear complexity, 282
subordinates

direct, 717–18
iteration/recursion, 671–81

subqueries, 297–98
aggregate functions, 14
correlated. See correlated subqueries
gaps solution 1, 366–69

gaps solution 2, 369–71
misbehaving, 314–16
multivalued, 297–98
partitioning, 340–41
RANK and DENSE_RANK functions, 352–54
row number calculation, 335–41
scalar, 297–98
self joins, 404
self-contained, 297–302
table-valued, 297–98
uncommon predicates, 316–18

subsequences, increasing, 291
Subset Of operator, 90–91
subsets, 61–62
SUBSTRING function, 214, 431

mode, 499
subtrees

cost, 178
moving, 697–99, 712–14
querying, 715–17
removal, 700–01

subtypes, 124
SUM aggregate, 453–57
SUM function, 489–90
SUM(qty) function, 468
superexponential complexity, 134–35
Superset Of operator, 90–91
supertypes, 124
surrogate keys, 106
swapping algorithms, 289
SWITCH command, 645–46
SWITCH OUT command, 647
symmetric relation properties, 75–76
syntax, joins, 389–90
sys.assemblies, 486
sys.assembly_modules, 486
sys.dm_db_missing_index_columns, 232
sys.dm_db_missing_index_details, 232
sys.dm_db_missing_index_group_stats, 232
sys.dm_db_missing_index_groups, 232
sys.dm_exec_cached_plans, 171
sys.dm_exec_plan_attributes, 171
sys.dm_exec_query_plan, 168, 171
sys.dm_exec_query_stats, 167–69
sys.dm_exec_sql_text, 168, 171
sys.dm_io_virtual fi le_stats, 145–48
sys.dm_os_performance_counters, 

143–44
sys.dm_os_wait_stats, 134–37
sys.syscacheobjects, 171
sys.system_internals_allocation_units, 

189–90
SYSDATETIME function, 173–74
SYSTEM keyword, 265
SYSTEM method, 265–66
system types, 87
System.Object class, 484
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T
table expressions, 318

common (CTEs), 321–30. See also common table 
expressions (CTEs)

derived tables, 318–21
interchangeability, 89
left and right input, 20–21
ORDER BY clause, 18–20
TOP option, 18–20

table hints, 185–86
table operators, 20–28. See also specifi c operators

processing order, 11
table scan, 198–201, 245, 557
Table Scan operator, 643–45
Table Spool operator, 263
tables

aliases, 606
auxiliary table of numbers, 359–62
clustered, nonclustered indexes, 196–97
constraints, 109–10
derived. See derived tables
foreign key, 106–08
heaps, 189–91
joins. See table joins
key, 105–06
metadata query, 648
normalization. See normal forms; normalization
organization, 189
parent and child relations, 106–08
partitioned. See partitioned tables
partitioning, 258–59
pivoting. See pivoting
preserved, 11

TABLESAMPLE, 265–68
table-valued subqueries, 297–98
TABLOCK hint, 211–12, 215, 566, 568

INSERT statement heap, B-tree, TF-610, key range 
scenarios, 575–89

minimal logging summary, 590
Talmage, Ron, 757
Tchernitsky, Nicolay, 757
TClose operator, 99–100
temp db database, 137, 148
temporal data, 122
TempSeq table, 364–65
Terminate method, 482–83
testing, insert scenarios, 571–89
TF-610, INSERT SELECT statement scenarios, 579–89
theta joins, 94
third normal form, 116–17
three-valued logic, 9, 74
tiebreaker, 302–06

aggregation, 448–51
determinism, 334
median, 496
mode, 498–99
nonunique sort column method, 337–38
TOP option, 529–30

tile number functions, 354–59
Tiles CTE, 495
TOP n for each group, 537–43
Top operator, 207, 308
TOP option, 16, 527

determinism, 529–30
input expressions, 530–31
matching current and previous occurrences, 

543–47
median, 554–56
modifi cations, 531–33
on steroids, 534–35
paging, 547–52
random rows, 552–54
table expressions, 18–20
TOP n for each group, 537–43

TOP PERCENT option, 554
TOP phase, 5
ToString method, 484, 711
total order, 59
TPC-H benchmark, 641–45
tracing, 149–50, 186

data analysis, 155–67
performance workload, 150–55

transaction log, wait analysis, 136, 148
transactions, 105
Transact-SQL. See T-SQL
transitive closure, 99–100, 740

directed acyclic graphs, 740–45
undirected cyclic graphs, 745–54

transitive relation properties, 75–76
translation, English to mathematics, 35–44
tree diagrams, 99–100
trees, 660–61. See also subtrees

left and right values assignment, 731–36
trend identifi cation, 291
trend marker practical application, 290–92
trichotomy, 58–59
triggers, 109

denormalization, 123–24
MERGE statement, 627–28

TRUE values, 9
true/false expressions. See Boolean expressions
TRUNCATE TABLE statement, 600–01
truth value, 68
T-SQL, 1–2

Boolean expressions, 67
cycle detection, 691
HIERARCHYID data type, 707
joins logical processing order, 409
joins, nonsupported, 401
LISLP problem solution, 292–95
MAX attribute, 449
relational algebra and calculus support, 

103–04
semicolon termination, 322
statement assignments, 611
UPDATE syntax, 596
vs. CLR, function implementation, 159
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 WHEN NOT MATCHED THEN clause 797

tuples, 53–54
attributes, 84
calculus, 102–03
header, 103
heading, 84
operators, 90–91
properties, 84
relational database nodel, 84–89
sets. See relations

two-valued logic, 623
types

atomic, 86
constraints, 109
defi ned, 85
encapsulated, 86
operators, 86, 90–91
relational database model, 84–89
scalar vs. nonscalar, 86–87
subtypes and supertypes, 124
system, 87
user-defi ned, 87
vs. domains, 84

U
U set, 46

empty sets, 54–55
UDAs (user-defi ned aggregates), 476–82
ultra sort, 289
undefi ned terms, 39
undirected cyclic graphs, 745–54
undirected cyclic weighted graphs, 670
undirected graphs, 659–60
UNION ALL operation, 437
UNION ALL operator, 31–32
UNION DISTINCT operation, 437
UNION operation, 31–32, 435–37
Union operator, 92–93

T-SQL support, 103–04
union, set, 62–63
UNIQUE constraint

NULL values, 241–42
unique sort column method, 335–37
UNIQUEIDENTIFIER value, 600
uniquifi er, 191, 196
UNKNOWN values, 9, 74

EXISTS predicate, 305–06
IN predicate, 307

Unpack operator, 100–01
UNPIVOT operator, 24–28, 471–73

phases, 25–28
unpivoting, 470–73
UPDATE statement, 103–04

assignments, 614–16
joins, 606–10
MERGE statement, 617–21
OUTPUT clause, 632–34
TOP option, 531–33

UPDATE STATISTICS command, 645, 647
UPDATE trigger, 627–28
updating data, 606–16
updating, partitioned views, 

639–40
UPDLOCK hint, 710
USE PLAN hint, 122–24
user-defi ned aggregates (UDAs), 476–82
user-defi ned functions

auxiliary table of numbers, 362
inline, CTEs, 325–26

user-defi ned types, 87
USING clause

MERGE statement, 618

V
vacuous truths, 71–72
values, 43
VALUES clause, 472–73, 561–84
VARBINARY data type, 188–89
VARBINARY(MAX) data type, 189

updating, 610–11
VARCHAR data type, 188–89
VARCHAR(MAX) data type, 189, 484, 688

updating, 610–11
variables

functional dependencies, 112
types, 86

vertices, 99–100
views, 88–89

common table expressions, 325–26
compatibility, 171
indexed, 242–44
updatable, 109

Visual Studio 2008, assembly creation and 
deployment, 482–87

W
wait analysis

instance level, 134–37
top wait isolation, 137–38
wait information collection, 139–43

weighted graphs, 666
well-defi nedness, 37–38

sets, 46
WHEN clause, 623–24
WHEN MATCHED clause, 624

MERGE statement, 621
multiple, 623–24

WHEN MATCHED THEN clause, 618–20
WHEN NOT MATCHED BY SOURCE 

clause, 624
WHEN NOT MATCHED clause

MERGE statement, 623, 624
WHEN NOT MATCHED THEN clause

MERGE statement, 618–20
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798 WHERE clause

WHERE clause
inner joins, 395–97
outer joins, 399–401

WHERE fi lter, 399. See also WHERE phase
OUTER JOIN clause, 12

WHERE phase, 5, 11–12
whichth number, 60–61
Wiernik, Adolfo, 122
window-based calculations, 29, 445
WITH clause, table hints, 185
WITH CUBE option, 506, 511–12
WITH keyword, CTEs, 322
WITH ROLLUP option, 506, 514
WITH statement, multiple CTEs, 323
WITH TIES option, 16

TOP option, 530

Witt, Graham, 111–12
WRITE method, 484, 610–11
WRITELOG wait, 136

X
XML

showplans, 185–86
triggers and validations, 109

Y
YEAR(orderdate), 468
year-to-date aggregation, 459–60
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