
Lubor Kollar, Dejan Sarka, Steve Kass
Kalen Delaney–Series Editor

Itzik Ben-Gan

Inside Microsoft®
SQL Server® 2008:

T-SQL Querying

Foreword by César Galindo-Legaria, PhD
Manager, Query Optimization Team, Microsoft SQL Server

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by Itzik Ben-Gan

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2009920791

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 4 3 2 1 0 9

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation offi ce or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Excel, MS, MSDN, PivotTable, SQL Server, Visual Basic, Visual C#, Visual Studio and Windows
are either registered trademarks or trademarks of the Microsoft group of companies. Other product and company names
mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fi ctitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ken Jones
Developmental Editor: Sally Stickney
Project Editor: Denise Bankaitis
Editorial Production: S4Carlisle Publishing Services
Technical Reviewers: Steve Kass and Umachandar Jayachandran; Technical Review services provided by Content
Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X15-45856

A02L626034.indd ii 2/28/2009 1:31:28 AM

To my parents, Mila & Gabi

—Itzik Ben-Gan

A03D626034.indd iii 2/17/2009 2:00:56 AM

A03D626034.indd iv 2/17/2009 2:00:56 AM

 v

Table of Contents

Foreword .xiii

Acknowledgments . xv

Introduction .xix

 1 Logical Query Processing. .1

Logical Query Processing Phases . 2

Logical Query Processing Phases in Brief . 3

Sample Query Based on Customers/Orders Scenario . 5

Logical Query Processing Phase Details. 7

Step 1: The FROM Phase. 7

Step 2: The WHERE Phase. 11

Step 3: The GROUP BY Phase . 12

Step 4: The HAVING Phase . 13

Step 5: The SELECT Phase . 14

Step 6: The Presentation ORDER BY Phase . 16

Further Aspects of Logical Query Processing . 20

Table Operators . 20

OVER Clause . 29

Set Operators . 31

Conclusion . 33

 2 Set Theory and Predicate Logic . 35

An Example of English-to-Mathematics Translation . 35

Well-Defi nedness . 37

Equality, Identity, and Sameness . 39

Mathematical Conventions . 39

Numbers . 41

Context . 41

Functions, Parameters, and Variables. 43

Instructions and Algorithms. 43

Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

A04T626034.indd v 2/20/2009 6:16:01 PM

vi Table of Contents

Set Theory . 44

Notation for Sets . 45

Well-Defi nedness of Sets . 46

Domains of Discourse . 46

Faithfulness . 49

Russell’s Paradox . 52

Ordered Pairs, Tuples, and Cartesian Products. 53

The Empty Set(s). 54

The Characteristic Function of a Set . 55

Cardinality . 56

Order . 57

Set Operators . 61

Set Partitions. 63

Generalizations of Set Theory . 64

Predicate Logic . 65

Logic-Like Features of Programming Languages . 65

Propositions and Predicates. 66

The Law of Excluded Middle . 68

And, Or, and Not . 68

Logical Equivalence . 70

Logical Implication. 70

Quantifi cation. 72

Alternatives and Generalizations. 73

Relations . 75

The Refl exive, Symmetric, and Transitive Properties 75

A Practical Application . 77

Conclusion . 81

 3 The Relational Model . 83

Introduction to the Relational Model . 83

Relations, Tuples and Types . 84

The Relational Model: A Quick Summary . 89

Relational Algebra and Relational Calculus . 90

Basic Operators . 90

Relational Algebra . 91

Relational Calculus. 102

T-SQL Support . 103

Data Integrity . 104

Declarative Constraints . 105

Other Means of Enforcing Integrity . 109

A04T626034.indd vi 2/20/2009 6:16:01 PM

 Table of Contents vii

Normalization and Other Design Topics . 111

Normal Forms Dealing with Functional Dependencies. 112

Higher Normal Forms . 119

Denormalization. 122

Generalization and Specialization. 124

Conclusion . 126

 4 Query Tuning. 127

Sample Data for This Chapter . 127

Tuning Methodology. 131

Analyze Waits at the Instance Level . 134

Correlate Waits with Queues . 143

Determine Course of Action . 145

Drill Down to the Database/File Level . 145

Drill Down to the Process Level . 148

Tune Indexes and Queries . 169

Tools for Query Tuning . 171

Cached Query Execution Plans . 171

Clearing the Cache. 171

Dynamic Management Objects. 172

STATISTICS IO . 172

Measuring the Run Time of Queries. 173

Analyzing Execution Plans . 174

Hints . 185

Traces/Profi ler. 186

Database Engine Tuning Advisor. 187

Data Collection and Management Data Warehouse. 187

Using SMO to Clone Statistics . 187

Index Tuning . 187

Table and Index Structures . 188

Index Access Methods. 197

Analysis of Indexing Strategies . 244

Fragmentation . 256

Partitioning . 258

Preparing Sample Data . 259

Data Preparation . 259

TABLESAMPLE. 265

An Examination of Set-Based vs. Iterative/Procedural
Approaches and a Tuning Exercise . 268

Conclusion . 276

A04T626034.indd vii 2/20/2009 6:16:01 PM

viii Table of Contents

 5 Algorithms and Complexity. 277

Do You Have a Quarter? . 278

How Algorithms Scale . 279

An Example of Quadratic Scaling . 280

An Algorithm with Linear Complexity . 280

Exponential and Superexponential Complexity . 281

Sublinear Complexity . 282

Constant Complexity. 283

Technical Defi nitions of Complexity . 283

Comparing Complexities . 285

Classic Algorithms and Algorithmic Strategies . 286

Algorithms for Sorting . 287

String Searching . 289

A Practical Application . 290

Identifying Trends in Measurement Data . 291

The Algorithmic Complexity of LISLP . 291

Solving the Longest Increasing Subsequence Length
Problem in T-SQL . 292

Conclusion . 295

 6 Subqueries, Table Expressions, and Ranking Functions 297

Subqueries. 298

Self-Contained Subqueries. 298

Correlated Subqueries. 302

Misbehaving Subqueries. 314

Uncommon Predicates . 316

Table Expressions . 318

Derived Tables . 318

Common Table Expressions . 321

Analytical Ranking Functions . 330

Row Number. 332

Rank and Dense Rank . 352

Tile Number . 354

Auxiliary Table of Numbers . 359

Missing and Existing Ranges (Also Known as Gaps and Islands) 363

Missing Ranges (Gaps). 366

Existing Ranges (Islands) . 375

Conclusion . 387

A04T626034.indd viii 2/20/2009 6:16:01 PM

 Table of Contents ix

 7 Joins and Set Operations . 389

Joins . 389

Old Style vs. New Style . 389

Fundamental Join Types . 390

Further Examples of Joins. 402

Sliding Total of Previous Year. 417

Join Algorithms . 421

Separating Elements . 429

Set Operations . 435

UNION . 436

EXCEPT. 437

INTERSECT. 439

Precedence of Set Operations .440

Using INTO with Set Operations . 441

Circumventing Unsupported Logical Phases. 441

Conclusion . 443

 8 Aggregating and Pivoting Data . 445

OVER Clause . 445

Tiebreakers .448

Running Aggregations . 451

Cumulative Aggregations . 453

Sliding Aggregations . 457

Year-to-Date (YTD) . 459

Pivoting . 460

Pivoting Attributes. 460

Relational Division . 465

Aggregating Data . 466

Unpivoting. 470

Custom Aggregations . 473

Custom Aggregations Using Pivoting . 474

User Defi ned Aggregates (UDA) . 476

Specialized Solutions . 487

Histograms . 499

Grouping Factor . 503

Grouping Sets . 506

Sample Data . 507

The GROUPING SETS Subclause . 508

A04T626034.indd ix 2/20/2009 6:16:01 PM

x Table of Contents

The CUBE Subclause . 511

The ROLLUP Subclause . 512

Grouping Sets Algebra . 514

The GROUPING_ID Function . 518

Materialize Grouping Sets . 521

Sorting . 524

Conclusion . 525

 9 TOP and APPLY . 527

SELECT TOP . 527

TOP and Determinism. 529

TOP and Input Expressions. 530

TOP and Modifi cations . 531

TOP on Steroids . 534

APPLY . 535

Solutions to Common Problems Using TOP and APPLY 537

TOP n for Each Group . 537

Matching Current and Previous Occurrences . 543

Paging . 547

Random Rows. 552

Median. 554

Logical Transformations . 556

Conclusion . 559

 10 Data Modifi cation . 561

Inserting Data . 561

Enhanced VALUES Clause . 561

SELECT INTO . 563

BULK Rowset Provider. 565

Minimally Logged Operations . 567

INSERT EXEC . 590

Sequence Mechanisms . 595

GUIDs .600

Deleting Data . 601

TRUNCATE vs. DELETE. 601

Removing Rows with Duplicate Data . 601

DELETE Using Joins . 603

A04T626034.indd x 2/20/2009 6:16:01 PM

 Table of Contents xi

Updating Data . 606

UPDATE Using Joins. 606

Updating Large Value Types . 610

SELECT and UPDATE Statement Assignments . 611

Merging Data . 616

MERGE Fundamentals . 617

Adding a Predicate . 621

Multiple WHEN Clauses . 623

WHEN NOT MATCHED BY SOURCE . 624

MERGE Values. 626

MERGE and Triggers . 627

OUTPUT Clause. 628

INSERT with OUTPUT. 629

DELETE with OUTPUT . 630

UPDATE with OUTPUT. 632

MERGE with OUTPUT . 634

Composable DML . 636

Conclusion . 638

 11 Querying Partitioned Tables . 639

Partitioning in SQL Server. 639

Partitioned Views . 639

Partitioned Tables .640

Conclusion . 657

 12 Graphs, Trees, Hierarchies, and Recursive Queries. 659

Terminology . 659

Graphs . 659

Trees . 660

Hierarchies. 661

Scenarios . 661

Employee Organizational Chart . 661

Bill of Materials (BOM) . 663

Road System . 666

Iteration/Recursion . 670

Subordinates . 671

Ancestors. 681

A04T626034.indd xi 2/24/2009 1:42:17 AM

xii Table of Contents

Subgraph/Subtree with Path Enumeration . 685

Sorting . 688

Cycles . 691

Materialized Path . 694

Maintaining Data . 695

Querying . 701

Materialized Path with the HIERARCHYID Data Type . 706

Maintaining Data . 708

Querying . 715

Further Aspects of Working with HIERARCHYID 719

Nested Sets . 730

Assigning Left and Right Values . 731

Querying . 737

Transitive Closure . 740

Directed Acyclic Graph . 740

Conclusion . 755

Appendix A: Logic Puzzles . 757

Index . 779

Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

A04T626034.indd xii 2/20/2009 6:16:01 PM

 xiii

Foreword

I had met Itzik Ben-Gan briefl y a couple of times and knew of his reputation, so I was looking
forward to his afternoon session on avoiding cursors in SQL programming at PASS. I was lucky
to get there early, as the large room fi lled up quickly. Itzik took a couple of SQL programming
problems and diced them up in the most skillful and entertaining way, showing the elegance
and effi ciency of set-oriented thinking. The audience loved it—and so did I, except I had
a different angle. Having worked on the internals of SQL Server, I could see Itzik touch the
product nerves in his demos, and I admired how he turned features into beautiful solutions.
After the session, I asked one of the attendees what had been his main takeaway, curious
about which of the many techniques would have stood out for him. He looked at me, mildly
surprised, and just said, “The man is a genius!” That pretty much sums it up.

This question of cursors is more fundamental than it may appear at fi rst. It points to a deep
 dichotomy of tremendous practical importance. Most of us were taught to program by chopping
up a task into smaller steps that, when executed in sequence, perform a desired computation. But
if you approach SQL programming this way, you will get only mediocre results. Your code will be
much larger and harder to maintain. It will be less effi cient, less fl exible, and less tunable. Using
SQL effectively is not about an incremental extension of your procedural programming skills
or about a specifi c collection of tricks. Writing SQL well requires approaching problems with a
 different mind-set—one that is declarative and set oriented, not procedural. This is the dichotomy.

Inside Microsoft SQL Server 2008: T-SQL Querying puts together all the ingredients you need
to understand this declarative and set-oriented way of thinking and become a profi cient
SQL programmer, thus making an important contribution to the SQL Server development
 community. Its chapters on formal foundations help you understand the basis for the language
philosophy and get a sense for its potential. The language itself is covered thoroughly, from
the basic operations to the most advanced features, all of them explained in the context of
real problem solving. The many examples show you what good SQL looks like, and they cover
common patterns you are likely to fi nd when writing applications. A comprehensive chapter on
query tuning explains in detail the factors that impact performance in the system, how to go
about identifying issues, and how to address them effectively.

Itzik assembled a strong team of collaborators to write this book. Coming from different
backgrounds, all of them share a deep expertise in SQL, a passion for database technology,
 extensive teaching experience, and a recognized track record of contributions to the SQL
Server community. Steve Kass is known for his depth of understanding and clarity of thought.
Dejan Sarka contributes an extensive knowledge of the relational model and a breadth of
database technologies. As for Lubor Kollar, I’ve had the pleasure of working with him on the
defi nition, design, and implementation of the Query Processing engine of SQL Server for
over a decade, and I deeply respect his insight. They make an outstanding team of guides
who can help you improve your skills.

A05F626034.indd xiii 2/18/2009 1:43:47 AM

xiv Foreword

SQL is a very powerful language, but I believe only a minority of developers really know
how to get the most out of it. Using SQL well can mean code that is 10 times more effi cient,
more scalable, and more maintainable. Inside Microsoft SQL Server 2008: T-SQL Querying tells
you how.

César Galindo-Legaria, PhD

Manager of the Query Optimization Team, Microsoft SQL Server

A05F626034.indd xiv 2/18/2009 1:43:47 AM

 xv

Acknowledgments

Several people contributed to the T-SQL querying and T-SQL programming books, and I’d
like to acknowledge their contributions. Some were involved directly in writing or editing the
books, while others were involved indirectly by providing advice, support, and inspiration.

To the coauthors of Inside Microsoft SQL Server 2008: T-SQL Querying—Lubor Kollar,
Dejan Sarka, and Steve Kass—and to the coauthors of Inside Microsoft SQL Server 2008:
T-SQL Programming—Dejan Sarka, Roger Wolter, Greg Low, Ed Katibah, and Isaac Kunen—it
is a great honor to work with you. It is simply amazing to see the level of mastery that you
have over your areas of expertise, and it is pure joy to read your texts. Thanks for agreeing to
be part of this project.

To Lubor, besides directly contributing to the books, you provide support, advice, and
 friendship and are a great source of inspiration. I always look forward to spending time with
you—hiking, drinking, and talking about SQL and other things.

To Dejko, your knowledge of the relational model is admirable. Whenever we spend time
together, I learn new things and discover new depths. I like the fact that you don’t take things
for granted and don’t follow blindly words of those who are considered experts in the fi eld.
You have a healthy mind of your own and see things that very few are capable of seeing. I’d
like to thank you for agreeing to contribute texts to the books. I’d also like to thank you for
your friendship; I always enjoy spending time with you. We need to do the beer list thing
again some time. It’s been almost 10 years!

To the technical editor of the books, Steve Kass, your unique mix of strengths in mathematics,
SQL, and English are truly extraordinary. I know that editing both books and also writing
your own chapters took their toll. Therefore, I’d like you to know how much I appreciate
your work. I know you won’t like my saying this, but it is quite interesting to see a genius at
work. It kept reminding me of Domingo Montoya’s work on the sword he prepared for the
 six-fi ngered man from William Goldman’s The Princess Bride.

To Umachandar Jayachandran (UC), many thanks for helping out by editing some of the
chapters. Your mastery of T-SQL is remarkable, and I’m so glad you could join the project in
any capacity. I’d also like to thank Bob Beauchemin for reviewing the chapter on Spatial Data.

To Cesar Galindo-Legaria, I feel honored that you agreed to write the foreword for the
T-SQL querying book. The way you and your team designed SQL Server’s optimizer is simply
a marvel. I’m constantly trying to fi gure out and interpret what the optimizer does, and
 whenever I manage to understand a piece of the puzzle, I fi nd it astonishing what a piece of
software is capable of. Your depth of knowledge, your pleasant ways, and your humility are
an inspiration.

A06A626034.indd xv 2/18/2009 10:43:50 PM

xvi Acknowledgments

To the team at Microsoft Press: Ken Jones, the product planner: I appreciate the personal
manner in which you handle things and always look forward to Guinness sessions with you.
I think that you have an impossible job trying to make everyone happy and keep projects
moving, but somehow you still manage to do it.

To Sally Stickney, the development editor, thanks for kicking the project off the ground. I know
that the T-SQL querying book was your last project at Microsoft Press before you started your
new chosen path in life and am hopeful that it left a good impression on you. I wish you luck
and happiness in your new calling.

To Denise Bankaitis, the project editor, you of all people at Microsoft Press probably spent
most time working on the books. Thanks for your elegant project management and for
 making sure things kept fl owing. It was a pleasure to work with you.

I’d also like to thank DeAnn Montoya, the project manager for the vendor editorial team,
S4Carlisle Publishing Services, and Becka McKay, the copy editor. I know you spent countless
hours going over our texts, and I appreciate it a lot.

To Solid Quality Mentors, being part of this amazing company and group of people is by far the
best thing that happened to me in my career. It’s as if all I did in my professional life led me to this
place where I can fulfi ll my calling, which is teaching people about SQL. To Fernando Guerrero,
Brian Moran, and Douglas McDowell: the company grew and matured because of your efforts, and
you have a lot to be proud of. Being part of this company, I feel a part of something meaningful
and that I’m among family and friends—among people whom I both respect and trust.

I’d like to thank my friends and colleagues from the company: Ron Talmage, Andrew J. Kelly,
Eladio Rincón, Dejan Sarka, Herbert Albert, Fritz Lechnitz, Gianluca Hotz, Erik Veerman,
Jay Hackney, Daniel A. Seara, Davide Mauri, Andrea Benedetti, Miguel Egea, Adolfo Wiernik,
Javier Loria, Rushabh Mehta, Greg Low, Peter Myers, Randy Dyess, and many others. I’d like
to thank Jeanne Reeves for making many of my classes possible and all the back-offi ce team
for their support. I’d also like to thank Kathy Blomstrom for managing our writing projects
and for your excellent edits.

I’d like to thank the members of the SQL Server development team who are working on T-SQL
and its optimization: Michael Wang, Michael Rys, Eric Hanson, Umachandar Jayachandran
(UC), Tobias Thernström, Jim Hogg, Isaac Kunen, Krzysztof Kozielczyk, Cesar Galindo-Legaria,
Craig Freedman, Conor Cunningham, and many others. For better or worse, what you develop
is what we have to work with, and so far the results are outstanding! Still, until we get a full
implementation of the OVER clause, you know I won’t stop bothering you. ;-)

I’d like to thank Dubi Lebel and Assaf Fraenkel from Microsoft Israel and also Ami Levin, who
helps me run the Israeli SQL Server users group.

A06A626034.indd xvi 2/18/2009 10:43:50 PM

 Acknowledgments xvii

To the team at SQL Server Magazine: Megan Bearly, Sheila Molnar, Mary Waterloo,
Michele Crockett, Mike Otey, Lavon Peters, and Anne Grubb: Being part of this magazine is a
great privilege. Congratulations on the 10th anniversary of the magazine! I can’t believe that
10 years passed so quickly, but that’s what happens when you have fun.

To my fellow SQL Server MVPs: Erland Sommarskog, Alejandro Mesa, Aaron Bertrand,
Tibor Karaszi, Steve Kass, Dejan Sarka, Roy Harvey, Tony Rogerson, Marcello Poletti (Marc),
Paul Randall, Bob Beauchemin, Adam Machanic, Simon Sabin, Tom Moreau, Hugo Kornelis,
David Portas, David Guzman, and many others: Your contribution to the SQL Server community
is remarkable. Much of what I know today is thanks to our discussions and exchange of ideas.

To my fellow SQL Server MCTs: Tibor Karaszi, Chris Randall, Ted Malone, and others: We go a
long way back, and I’m glad to see that you’re all still around in the SQL teaching community.
We all share the same passion for teaching. Of anyone, you best understand the kind of
 fulfi llment that teaching can bestow.

To my students: Without you, my work would be meaningless. Teaching is what I like to do
best, and the purpose of pretty much everything else that I do with SQL—including writing
these books—is to support my teaching. Your questions make me do a lot of research, and
therefore I owe much of my knowledge to you.

To my parents, Emilia and Gabriel Ben-Gan, and to my siblings, Ina Aviram and Michael Ben-Gan,
thanks for your continuous support. The fact that most of us ended up being teachers is probably
not by chance, but for me to fulfi ll my calling, I end up traveling a lot. I miss you all when I’m
away, and I always look forward to our family reunions when I’m back.

To Lilach, you’re the one who needs to put up with me all the time and listen to my SQL ideas
that you probably couldn’t care less about. It’s brainwashing, you see—at some point you
will start asking for more, and before you know it, you will even start reading my books. Not
 because I will force you but because you will want to, of course. That’s the plan at least. Thanks
for giving meaning to what I do and for supporting me through some rough times of writing.

A06A626034.indd xvii 2/18/2009 10:43:50 PM

A06A626034.indd xviii 2/18/2009 10:43:50 PM

 xix

Introduction

This book and its sequel—Inside Microsoft SQL Server 2008: T-SQL Programming—cover
advanced T-SQL querying, query tuning, and programming in Microsoft SQL Server 2008.
They are designed for experienced programmers and DBAs who need to write and optimize
code in SQL Server 2008. For brevity, I’ll refer to the books as T-SQL Querying and T-SQL
Programming, or just as these books.

Those who read the SQL Server 2005 edition of the books will fi nd plenty of new materials
covering new subjects, new features, and enhancements in SQL Server 2008, plus revisions
and new insights about the existing subjects.

These books focus on practical common problems, discussing several approaches to
 tackle each. You will be introduced to many polished techniques that will enhance
your toolbox and coding vocabulary, allowing you to provide effi cient solutions in a
natural manner.

These books unveil the power of set-based querying and explain why it’s usually superior to
procedural programming with cursors and the like. At the same time, they teach you how to
identify the few scenarios where cursor-based solutions are superior to set-based ones.

This book—T-SQL Querying—focuses on set-based querying and query tuning, and
I recommend that you read it fi rst. The second book—T-SQL Programming—focuses on
 procedural programming and assumes that you read the fi rst book or have suffi cient
 querying background.

T-SQL Querying starts with fi ve chapters that lay the foundation of logical and physical query
processing required to gain the most from the rest of the chapters in both books.

The fi rst chapter covers logical query processing. It describes in detail the logical phases
 involved in processing queries, the unique aspects of SQL querying, and the special mind-set
you need to adopt to program in a relational, set-oriented environment.

The second chapter covers set theory and predicate logic—the strong mathematical
 foundations upon which the relational model is built. Understanding these foundations
will give you better insights into the model and the language. This chapter was written
by Steve Kass, who was also the main technical editor of these books. Steve has a unique
 combination of strengths in mathematics, computer science, SQL, and English that make him
the ideal author for this subject.

A07I626034.indd xix 2/25/2009 10:44:11 AM

xx Introduction

The third chapter covers the relational model. Understanding the relational model is
 essential for good database design and helps in writing good code. The chapter defi nes
relations and tuples and operators of relational algebra. Then it shows the relational model
from a different perspective called relational calculus. This is more of a business-oriented
 perspective, as the logical model is described in terms of predicates and propositions.
Data integrity is crucial for transactional systems; therefore, the chapter spends time
 discussing all kinds of constraints. Finally, the chapter introduces normalization—the
formal process of improving database design. This chapter was written by Dejan Sarka.
Dejan is one of the people with the deepest understanding of the relational model
that I know.

The fourth chapter covers query tuning. It introduces a query tuning methodology we
 developed in our company (Solid Quality Mentors) and have been applying in production
systems. The chapter also covers working with indexes and analyzing execution plans. This
chapter provides the important background knowledge required for the rest of the chapters
in both books, which as a practice discuss working with indexes and analyzing execution
plans. These are important aspects of querying and query tuning.

The fi fth chapter covers complexity and algorithms and was also written by Steve Kass. This
chapter particularly focuses on some of the algorithms used often by the SQL Server engine.
It gives attention to considering worst-case behavior as well as average case complexity.
By understanding the complexity of algorithms used by the engine, you can anticipate, for
 example, how the performance of certain queries will degrade when more data is added
to the tables involved. Gaining a better understanding of how the engine processes your
 queries equips you with better tools to tune them.

The chapters that follow delve into advanced querying and query tuning, addressing both
logical and physical aspects of your code. These chapters cover the following subjects:
 subqueries, table expressions, and ranking functions; joins and set operations; aggregating
and pivoting data; TOP and APPLY; data modifi cation; querying partitioned tables; and
graphs, trees, hierarchies, and recursive queries.

The chapter covering querying partitioned tables was written by Lubor Kollar. Lubor led
the development of partitioned tables and indexes when fi rst introduced in the product,
and many of the features that we have today are thanks to his efforts. These days
Lubor works with customers who have, among other things, large implementations
of partitioned tables and indexes as part of his role in the SQL Server Customer Advisory
Team (SQL CAT).

Appendix A covers logic puzzles. Here you have a chance to practice logical puzzles to
 improve your logic skills. SQL querying essentially deals with logic. I fi nd it important to
 practice pure logic to improve your query problem-solving capabilities. I also fi nd these
 puzzles fun and challenging, and you can practice them with the entire family. These puzzles

A07I626034.indd xx 2/25/2009 10:44:11 AM

 Introduction xxi

are a compilation of the logic puzzles that I covered in my T-SQL column in SQL Server
Magazine. I’d like to thank SQL Server Magazine for allowing me to share these puzzles with
the book’s readers.

The second book—T-SQL Programming—focuses on programmatic T-SQL constructs
and expands its coverage to treatment of XML and XQuery and the CLR integration.
The book’s chapters cover the following subjects: views; user-defi ned functions; stored
 procedures; triggers; transactions and concurrency; exception handling; temporary tables
and table variables; cursors; dynamic SQL; working with date and time; CLR user-defi ned
types; temporal support in the relational model; XML and XQuery (including coverage
of open schema); spatial data; change data capture, change tracking, and auditing;
and Service Broker.

The chapters covering CLR user-defi ned types, temporal support in the relational model,
and XML and XQuery were written by Dejan Sarka. As I mentioned, Dejan is extremely
 knowledgeable in the relational model and has very interesting insights into the model
itself and the way the constructs that he covers in his chapters fi t in the model when
used sensibly.

The chapter about spatial data was written by Ed Katibah and Isaac Kunen. Ed and Isaac
are with the SQL Server development team and led the efforts to implement spatial data
 support in SQL Server 2008. It is a great privilege to have this chapter written by the
 designers of the feature. Spatial data support is new to SQL Server 2008 and brings new
data types, methods, and indices. This chapter is not intended as an exhaustive treatise
on spatial data or as an encyclopedia of every spatial method that SQL Server now
 supports. Instead, this chapter will introduce core spatial concepts and provide the reader
with key programming constructs necessary to successfully navigate this new feature
to SQL Server.

The chapter about change data capture, change tracking, and auditing was written by Greg
Low. Greg is a SQL Server MVP and the managing director of SolidQ Australia. Greg has
many years of experience working with SQL Server—teaching, speaking, and writing about
it—and is highly regarded in the SQL Server community. The technologies that are the focus
of this chapter track access and changes to data and are new in SQL Server 2008. At fi rst
glance, these technologies can appear to be either overlapping or contradictory, and the
best-use cases for each might be far from obvious. This chapter explores each technology,
 discusses the capabilities and limitations of each, and explains how each is intended
to be used.

The last chapter, which covers Service Broker (SSB), was written by Roger Wolter. Roger is
the program manager with the SQL Server development team and led the initial efforts to
 introduce SSB in SQL Server. Again, there’s nothing like having the designer of a component
explain it in his own words. The “sleeper” feature of SQL Server 2005 is now in production in

A07I626034.indd xxi 2/25/2009 10:44:11 AM

xxii Introduction

a wide variety of applications. This chapter covers the architecture of SSB and how to use SSB
to build a variety of reliable asynchronous database applications. The SQL 2008 edition adds
coverage of the new features added to SSB for the SQL Server 2008 release and includes
 lessons learned and best practices from SSB applications deployed since the SQL Server 2005
release. The major new features are Queue Priorities, External Activation, and a new SSB
 troubleshooting application that incorporates lessons the SSB team learned from customers
who have already deployed applications.

Hardware and Software Requirements

To practice all the material in these books and run all code samples, it is
 recommended that you use Microsoft SQL Server 2008 Developer or Enterprise Edition
and Microsoft Visual Studio 2008 Professional or Database Edition. If you have a
 subscription to MSDN, you can download SQL Server 2008 and Visual Studio 2008 from
http://msdn.microsoft.com. Otherwise, you can download a 180-day free SQL Server 2008
trial software from http://www.microsoft.com/sqlserver/2008/en/us/trial-software.aspx and
a 90-day free Visual Studio 2008 trial software from http://msdn.microsoft.com/
en-us/vstudio/aa700831.aspx.

You can fi nd system requirements for SQL Server 2008 at
http://msdn.microsoft.com/en-us/ library/ms143506.aspx and for Visual Studio 2008 at
http://msdn.microsoft.com/en-us/vs2008/products/bb894726.aspx.

Companion Content and Sample Database

These books feature a companion Web site that makes available to you all the code used in
the books, the errata, additional resources, and more. The companion Web site is
http://www.insidetsql.com.

For each of these books the companion Web site provides a compressed fi le with the book’s
source code, a script fi le to create the books’ sample database, and additional fi les that are
required to run some of the code samples.

After downloading the source code, run the script fi le TSQLFundamentals2008.sql to
create the sample database InsideTSQL2008, which is used in many of the books’ code
samples. The data model of the InsideTSQL2008 database is provided in Figure I-1 for
your convenience.

A07I626034.indd xxii 2/25/2009 10:44:11 AM

 Introduction xxiii

Production.Products

productidPK

I2
FK2,I3
FK1,I1

productname
supplierid
categoryid
unitprice
discontinued

HR.Employees

empidPK

I1

I2

FK1

lastname
firstname
title
titleofcourtesy
birthdate
hiredate
address
city
region
postalcode
country
phone
mgrid

Sales.Shippers

shipperidPK

companyname
phone

Sales.Orders

orderidPK

FK2,I1
FK1,I2
I3

I4
FK3,I5

I6

custid
empid
orderdate
requireddate
shippeddate
shipperid
freight
shipname
shipaddress
shipcity
shipregion
shippostalcode
shipcountry

I1
I4
I3

Sales.Customers

custidPK

companyname
contactname
contacttitle
address
city
region
postalcode
country
phone
fax

I2

Production.Suppliers

supplieridPK

I1

I2

companyname
contactname
contacttitle
address
city
region
postalcode
country
phone
fax

Production.Categories

categoryidPK

I1 categoryname
description

Sales.OrderDetails

orderid
productid

PK,FK2,I1
PK,FK1,I2

Sales.OrderTotalsByYear

orderyear
qty

Sales.OrderValues

orderid
custid
empid
shipperid
orderdate
val

Sales.CustOrders

custid
ordermonth
qty

unitprice
qty
discount

FIGURE I-1 Data model of the TSQLFundamentals2008 database

Find Additional Content Online

As new or updated material becomes available that complements your books, it will be
 posted online on the Microsoft Press Online Windows Server and Client Web site. The type
of material you might fi nd includes updates to books content, articles, links to companion
 content, errata, sample chapters, and more. This Web site is available at http://microsoftpresssrv
.libredigital.com/serverclient/ and is updated periodically.

A07I626034.indd xxiii 2/25/2009 10:44:11 AM

xxiv Introduction

Support for These Books

Every effort has been made to ensure the accuracy of these books and the contents of
the companion Web site. As corrections or changes are collected, they will be added to a
Microsoft Knowledge Base article.

Microsoft Press provides support for books at the following Web site:

http://www.microsoft.com/learning/support/books

Questions and Comments

If you have comments, questions, or ideas regarding the books or questions that are not
 answered by visiting the sites above, please send them to me via e-mail to

itzik@SolidQ.com

or via postal mail to

Microsoft Press

Attn: Inside Microsoft SQL Server 2008: T-SQL Querying and Inside Microsoft SQL Server 2008:
T-SQL Programming Editor

One Microsoft Way

Redmond, WA 98052-6399.

Please note that Microsoft software product support is not offered through the above
addresses.

A07I626034.indd xxiv 2/25/2009 10:44:11 AM

 1

Chapter 1

Logical Query Processing

 Observing true experts in different fi elds, you fi nd a common practice that they all
 share—mastering the basics. One way or another, all professions deal with problem solving.
All solutions to problems, complex as they may be, involve applying a mix of fundamental
techniques. If you want to master a profession, you need to build your knowledge upon
strong foundations. Put a lot of effort into perfecting your techniques, master the basics, and
you’ll be able to solve any problem.

 This book is about Transact-SQL (T-SQL) querying—learning key techniques and applying
them to solve problems. I can’t think of a better way to start the book than with a chapter
on the fundamentals of logical query processing. I fi nd this chapter the most important in
the book—not just because it covers the essentials of query processing but also because SQL
programming is conceptually very different than any other sort of programming.

 Transact-SQL is the Microsoft SQL Server dialect of, or extension to, the ANSI and ISO SQL
standards. Throughout the book, I’ll use the terms SQL and T-SQL interchangeably. When
discussing aspects of the language that originated from ANSI SQL and are relevant to most
dialects, I’ll typically use the term SQL. When discussing aspects of the language with the
implementation of SQL Server in mind, I’ll typically use the term T-SQL. Note that the formal
language name is Transact-SQL, although it’s commonly called T-SQL. Most programmers,
 including myself, feel more comfortable calling it T-SQL, so I made a conscious choice to use
the term T-SQL throughout the book.

Origin of SQL Pronunciation

 Many English-speaking database professionals pronounce SQL as sequel, although the
correct pronunciation of the language is S-Q-L (“ess kyoo ell”). One can make educated
guesses about the reasoning behind the incorrect pronunciation. My guess is that there
are both historical and linguistic reasons.

 As for historical reasons, in the 1970s, IBM developed a language named SEQUEL, which
was an acronym for Structured English QUEry Language. The language was designed to
 manipulate data stored in a database system named System R, which was based on Dr. Edgar
F. Codd’s model for relational database management systems (RDBMS). The acronym
SEQUEL was later shortened to SQL because of a trademark dispute. ANSI adopted SQL as a
standard in 1986, and ISO did so in 1987. ANSI declared that the offi cial pronunciation of the
language is “ess kyoo ell,” but it seems that this fact is not common knowledge.

 As for linguistic reasons, the sequel pronunciation is simply more fl uent, mainly for
English speakers. I often use it myself for this reason.

C01626034.indd 1 2/20/2009 11:16:21 AM

2 Inside Microsoft SQL Server 2008: T-SQL Querying

 More Info The coverage of SQL history in this chapter is based on an article from Wikipedia,
the free encyclopedia, and can be found at http://en.wikipedia.org/wiki/SQL.

 SQL programming has many unique aspects, such as thinking in sets, the logical processing order
of query elements, and three-valued logic. Trying to program in SQL without this knowledge
is a straight path to lengthy, poor-performing code that is diffi cult to maintain. This chapter’s
 purpose is to help you understand SQL the way its designers envisioned it. You need to create
strong roots upon which all the rest will be built. Where relevant, I’ll explicitly indicate elements
that are specifi c to T-SQL.

 Throughout the book, I’ll cover complex problems and advanced techniques. But in this chapter,
as mentioned, I’ll deal only with the fundamentals of querying. Throughout the book, I’ll also focus
on performance. But in this chapter, I’ll deal only with the logical aspects of query processing. I ask
you to make an effort while reading this chapter not to think about performance at all. You’ll fi nd
plenty of performance coverage later in the book. Some of the logical query processing phases
that I’ll describe in this chapter might seem very ineffi cient. But keep in mind that in practice, the
actual physical processing of a query might be very different than the logical one.

 The component in SQL Server in charge of generating the actual work plan (execution plan)
for a query is the query optimizer. The optimizer determines in which order to access the
tables, which access methods and indexes to use, which join algorithms to apply, and so on.
The optimizer generates multiple valid execution plans and chooses the one with the lowest
cost. The phases in the logical processing of a query have a very specifi c order. In contrast,
the optimizer can often make shortcuts in the physical execution plan that it generates. Of
course, it will make shortcuts only if the result set is guaranteed to be the correct one—in
other words, the same result set you would get by following the logical processing phases.
For example, to use an index, the optimizer can decide to apply a fi lter much sooner than
dictated by logical processing.

 For the aforementioned reasons, it’s important to make a clear distinction between logical
and physical processing of a query.

 Without further ado, let’s delve into logical query processing phases.

Logical Query Processing Phases

 This section introduces the phases involved in the logical processing of a query. I’ll fi rst briefl y
describe each step. Then, in the following sections, I’ll describe the steps in much more detail
and apply them to a sample query. You can use this section as a quick reference whenever
you need to recall the order and general meaning of the different phases.

C01626034.indd 2 2/20/2009 11:16:21 AM

 Chapter 1 Logical Query Processing 3

Listing 1-1 contains a general form of a query, along with step numbers assigned according
to the order in which the different clauses are logically processed.

LISTING 1-1 Logical query processing step numbers

(5) SELECT (5-2) DISTINCT (5-3) TOP(<top_specification>) (5-1) <select_list>

(1) FROM (1-J) <left_table> <join_type> JOIN <right_table> ON <on_predicate>

 | (1-A) <left_table> <apply_type> APPLY <right_table_expression> AS <alias>

 | (1-P) <left_table> PIVOT(<pivot_specification>) AS <alias>

 | (1-U) <left_table> UNPIVOT(<unpivot_specification>) AS <alias>

(2) WHERE <where_predicate>

(3) GROUP BY <group_by_specification>

(4) HAVING <having_predicate>

(6) ORDER BY <order_by_list>;

Figure 1-1 contains a fl ow diagram representing logical query processing phases in detail.
Throughout the chapter I’ll refer to the step numbers that appear in the diagram.

The fi rst noticeable aspect of SQL that is different from other programming languages is the
order in which the code is processed. In most programming languages, the code is processed
in the order in which it is written. In SQL, the fi rst clause that is processed is the FROM clause,
while the SELECT clause, which appears fi rst, is processed almost last.

Each step generates a virtual table that is used as the input to the following step. These
 virtual tables are not available to the caller (client application or outer query). Only the table
generated by the fi nal step is returned to the caller. If a certain clause is not specifi ed in a
query, the corresponding step is simply skipped. The following section briefl y describes the
different logical steps.

Logical Query Processing Phases in Brief

Don’t worry too much if the description of the steps doesn’t seem to make much sense
for now. These are provided as a reference. Sections that come after the scenario example
will cover the steps in much more detail.

■ (1) FROM The FROM phase identifi es the query’s source tables and processes table
operators. Each table operator applies a series of subphases. For example, the phases
involved in a join are (1-J1) Cartesian Product, (1-J2) ON Filter, (1-J3) Add Outer Rows.
The FROM phase generates virtual table VT1.

■ (1-J1) Cartesian Product This phase performs a Cartesian product (cross join) between
the two tables involved in the table operator, generating VT1-J1.

■ (1-J2) ON Filter This phase fi lters the rows from VT1-J1 based on the predicate that
appears in the ON clause (<on_predicate>). Only rows for which the predicate evaluates
to TRUE are inserted into VT1-J2.

(5) SELECT (5-2) DISTINCT (5-3) TOP(<top_specification>) (5-1) <select_list>

(1) FROM (1-J) <left_table> <join_type> JOIN <right_table> ON <on_predicate>

 | (1-A) <left_table> <apply_type> APPLY <right_table_expression> AS <alias>

 | (1-P) <left_table> PIVOT(<pivot_specification>) AS <alias>

 | (1-U) <left_table> UNPIVOT(<unpivot_specification>) AS <alias>

(2) WHERE <where_predicate>

(3) GROUP BY <group_by_specification>

(4) HAVING <having_predicate>

(6) ORDER BY <order_by_list>;

C01626034.indd 3 2/20/2009 11:16:21 AM

4 Inside Microsoft SQL Server 2008: T-SQL Querying

Start

1
Entering FROM

1-J1
Cartesian Product

1-A1
Apply Table
Expression

1-J2
ON Filter

1-J3
Add Outer Rows

1-A2
Add Outer Rows

1-P1
Group

1-U1
Generate Copies

1-U2
Extract Element

1-U3
Remove NULLs

1-P2
Spread

1-P3
Aggregate

First
Table Operator

Exist?

Another
Table Operator

Exists?

WHERE
Exists? 2

WHERE

GROUP BY
Exists? 3

GROUP BY

HAVING
Exists?

DISTINCT
Exists?

4
HAVING

5
Entering SELECT

TOP Exists?

ORDER BY
Exists? 6

ORDER BY

CursorSet

End

5-1
Evaluate

Expressions

5-2
DISTINCT

5-3
TOP

 Operator
Type?

No

No

No

No

No

No

UNPIVOT

Yes

Yes

Yes

Yes

Yes

Yes

Yes

PIVOTJOIN

CR
O

SS

O
U

TE
R

O
U

TE
R

IN
N

ER

APPLY

No

No

Yes

CR
O

SS

FIGURE 1-1 Logical query processing fl ow diagram

C01626034.indd 4 2/20/2009 11:16:21 AM

 Chapter 1 Logical Query Processing 5

■ (1-J3) Add Outer Rows If OUTER JOIN is specifi ed (as opposed to CROSS JOIN or
INNER JOIN), rows from the preserved table or tables for which a match was not found
are added to the rows from VT1-J2 as outer rows, generating VT1-J3.

■ (2) WHERE This phase fi lters the rows from VT1 based on the predicate that appears in
the WHERE clause (<where_predicate>). Only rows for which the predicate evaluates to
TRUE are inserted into VT2.

■ (3) GROUP BY This phase arranges the rows from VT2 in groups based on the column
list specifi ed in the GROUP BY clause, generating VT3. Ultimately, there will be one
 result row per group.

■ (4) HAVING This phase fi lters the groups from VT3 based on the predicate that
 appears in the HAVING clause (<having_predicate>). Only groups for which the
 predicate evaluates to TRUE are inserted into VT4.

■ (5) SELECT This phase processes the elements in the SELECT clause, generating VT5.

■ (5-1) Evaluate Expressions This phase evaluates the expressions in the SELECT list,
generating VT5-1.

■ (5-2) DISTINCT This phase removes duplicate rows from VT5-1, generating VT5-2.

■ (5-3) TOP This phase fi lters the specifi ed top number or percentage of rows from
VT5-2 based on the logical ordering defi ned by the ORDER BY clause, generating the
table VT5-3.

■ (6) ORDER BY This phase sorts the rows from VT5-3 according to the column list
specifi ed in the ORDER BY clause, generating the cursor VC6.

Sample Query Based on Customers/Orders Scenario

 To describe the logical processing phases in detail, I’ll walk you through a sample query. First
run the following code to create the dbo.Customers and dbo.Orders tables, populate them
with sample data, and query them to show their contents:

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.Orders') IS NOT NULL DROP TABLE dbo.Orders;

IF OBJECT_ID('dbo.Customers') IS NOT NULL DROP TABLE dbo.Customers;

GO

CREATE TABLE dbo.Customers

(

 customerid CHAR(5) NOT NULL PRIMARY KEY,

 city VARCHAR(10) NOT NULL

);

C01626034.indd 5 2/20/2009 11:16:22 AM

6 Inside Microsoft SQL Server 2008: T-SQL Querying

CREATE TABLE dbo.Orders

(

 orderid INT NOT NULL PRIMARY KEY,

 customerid CHAR(5) NULL REFERENCES Customers(customerid)

);

GO

INSERT INTO dbo.Customers(customerid, city) VALUES('FISSA', 'Madrid');

INSERT INTO dbo.Customers(customerid, city) VALUES('FRNDO', 'Madrid');

INSERT INTO dbo.Customers(customerid, city) VALUES('KRLOS', 'Madrid');

INSERT INTO dbo.Customers(customerid, city) VALUES('MRPHS', 'Zion');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(1, 'FRNDO');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(2, 'FRNDO');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(3, 'KRLOS');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(4, 'KRLOS');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(5, 'KRLOS');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(6, 'MRPHS');

INSERT INTO dbo.Orders(orderid, customerid) VALUES(7, NULL);

SELECT * FROM dbo.Customers;

SELECT * FROM dbo.Orders;

 This code generates the following output:

customerid city

---------- ----------

FISSA Madrid

FRNDO Madrid

KRLOS Madrid

MRPHS Zion

orderid customerid

----------- ----------

1 FRNDO

2 FRNDO

3 KRLOS

4 KRLOS

5 KRLOS

6 MRPHS

7 NULL

 I’ll use the query shown in Listing 1-2 as my example. The query returns customers from
Madrid who placed fewer than three orders (including zero orders), along with their order
counts. The result is sorted by order count, from smallest to largest.

LISTING 1-2 Query: Madrid customers with fewer than three orders

SELECT C.customerid, COUNT(O.orderid) AS numorders

FROM dbo.Customers AS C

 LEFT OUTER JOIN dbo.Orders AS O

 ON C.customerid = O.customerid

WHERE C.city = 'Madrid'

GROUP BY C.customerid

HAVING COUNT(O.orderid) < 3

ORDER BY numorders;

SELECT C.customerid, COUNT(O.orderid) AS numorders

FROM dbo.Customers AS C

 LEFT OUTER JOIN dbo.Orders AS O

 ON C.customerid = O.customerid

WHERE C.city = 'Madrid'

GROUP BY C.customerid

HAVING COUNT(O.orderid) < 3

ORDER BY numorders;

C01626034.indd 6 2/20/2009 11:16:22 AM

 Chapter 1 Logical Query Processing 7

 This query returns the following output:

customerid numorders

---------- -----------

FISSA 0

FRNDO 2

 Both FISSA and FRNDO are customers from Madrid who placed fewer than three orders. Examine
the query and try to read it while following the steps and phases described in Listing 1-1, Figure 1-1,
and the section “Logical Query Processing Phases in Brief.” If this is your fi rst time thinking of a
query in such terms, you might be confused. The following section should help you understand the
nitty-gritty details.

Logical Query Processing Phase Details

 This section describes the logical query processing phases in detail by applying them to the
given sample query.

Step 1: The FROM Phase

 The FROM phase identifi es the table or tables that need to be queried, and if table operators
are specifi ed, this phase processes those operators from left to right. Each table operator
 operates on one or two input tables and returns an output table. The result of a table
 operator is used as the left input to the next table operator—if one exists—and as the input
to the next logical query processing phase otherwise. Each table operator has its own set
of processing subphases. For example, the subphases involved in a join are (1-J1) Cartesian
Product, (1-J2) ON Filter, (1-J3) Add Outer Rows. Here I will provide a description of the
 subphases involved in a join; later in the chapter, under “Table Operators,” I’ll describe the
other table operators. The FROM phase generates virtual table VT1.

Step 1-J1: Perform Cartesian Product (Cross Join)

 This is the fi rst of three subphases that are applicable to a join table operator. This subphase
performs a Cartesian product (a cross join, or an unrestricted join) between the two tables
 involved in the join and, as a result, generates virtual table VT1-J1. This table contains one
row for every possible choice of a row from the left table and a row from the right table.
If the left table contains n rows and the right table contains m rows, VT1-J1 will contain
n×m rows. The columns in VT1-J1 are qualifi ed (prefi xed) with their source table names (or
table aliases, if you specifi ed them in the query). In the subsequent steps (step 1-J2 and on),
a reference to a column name that is ambiguous (appears in more than one input table)
must be table-qualifi ed (for example, C.customerid). Specifying the table qualifi er for column
names that appear in only one of the inputs is optional (for example, O.orderid or just
orderid).

C01626034.indd 7 2/20/2009 11:16:22 AM

8 Inside Microsoft SQL Server 2008: T-SQL Querying

 Apply step 1-J1 to the sample query (shown in Listing 1-2):

FROM dbo.Customers AS C ... JOIN dbo.Orders AS O

As a result, you get the virtual table VT1-J1 (shown in Table 1-1) with 28 rows (4×7).

TABLE 1-1 Virtual Table VT1-J1 Returned from Step 1-J1

 C.customerid C.city O.orderid O.customerid

 FISSA Madrid 1 FRNDO

 FISSA Madrid 2 FRNDO

 FISSA Madrid 3 KRLOS

 FISSA Madrid 4 KRLOS

 FISSA Madrid 5 KRLOS

 FISSA Madrid 6 MRPHS

 FISSA Madrid 7 NULL

 FRNDO Madrid 1 FRNDO

 FRNDO Madrid 2 FRNDO

 FRNDO Madrid 3 KRLOS

 FRNDO Madrid 4 KRLOS

 FRNDO Madrid 5 KRLOS

 FRNDO Madrid 6 MRPHS

 FRNDO Madrid 7 NULL

 KRLOS Madrid 1 FRNDO

 KRLOS Madrid 2 FRNDO

 KRLOS Madrid 3 KRLOS

 KRLOS Madrid 4 KRLOS

 KRLOS Madrid 5 KRLOS

 KRLOS Madrid 6 MRPHS

 KRLOS Madrid 7 NULL

 MRPHS Zion 1 FRNDO

 MRPHS Zion 2 FRNDO

 MRPHS Zion 3 KRLOS

 MRPHS Zion 4 KRLOS

 MRPHS Zion 5 KRLOS

 MRPHS Zion 6 MRPHS

 MRPHS Zion 7 NULL

Step 1-J2: Apply ON Filter (Join Condition)

 The ON fi lter is the fi rst of three possible fi lters (ON, WHERE, and HAVING) that can be
specifi ed in a query. The predicate in the ON fi lter is applied to all rows in the virtual table
returned by the previous step (VT1-J1). Only rows for which the <on_predicate> is TRUE
 become part of the virtual table returned by this step (VT1-J2).

C.customerid C.city O.orderid O.customerid

C01626034.indd 8 2/20/2009 11:16:22 AM

 Chapter 1 Logical Query Processing 9

Three-Valued Logic

 Allow me to digress a bit to cover some important aspects of SQL related to this
step. The possible values of a predicate (logical expression) in SQL are TRUE, FALSE,
and UNKNOWN. This is referred to as three-valued logic and is unique to SQL.
Logical expressions in most programming languages can be only TRUE or FALSE. The
UNKNOWN logical value in SQL typically occurs in a logical expression that involves a
NULL (for example, the logical value of each of these three expressions is UNKNOWN:
NULL > 42; NULL = NULL; X + NULL > Y). The mark NULL represents a missing value.
When comparing a missing value to another value (even another NULL), the logical
 result is always UNKNOWN.

 Dealing with UNKNOWN logical results and NULLs can be very confusing. While NOT
TRUE is FALSE, and NOT FALSE is TRUE, the opposite of UNKNOWN (NOT UNKNOWN)
is still UNKNOWN.

 UNKNOWN logical results and NULLs are treated inconsistently in different elements of
the language. For example, all query fi lters (ON, WHERE, and HAVING) treat UNKNOWN
like FALSE. A row for which a fi lter is UNKNOWN is eliminated from the result set. On
the other hand, an UNKNOWN value in a CHECK constraint is actually treated like TRUE.
Suppose you have a CHECK constraint in a table to require that the salary column be
greater than zero. A row entered into the table with a NULL salary is accepted because
(NULL > 0) is UNKNOWN and treated like TRUE in the CHECK constraint.

 A comparison between two NULLs in a fi lter yields UNKNOWN, which, as I mentioned
earlier, is treated like FALSE—as if one NULL is different than another.

 On the other hand, for UNIQUE constraints, set operators (such as UNION and EXCEPT),
and sorting or grouping operations, NULLs are treated as equal:

■ You cannot insert into a table two rows with a NULL in a column that has a
UNIQUE constraint defi ned on it. T-SQL violates the standard on this point.

■ A GROUP BY clause groups all NULLs into one group.

■ An ORDER BY clause sorts all NULLs together.

■ Set operators treat NULLs as equal when comparing rows from the two sets.

 In short, to spare yourself some grief it’s a good idea to be aware of the way UNKNOWN
logical results and NULLs are treated in the different elements of the language.

 Apply step 1-J2 to the sample query:

ON C.customerid = O.customerid

 The fi rst column of Table 1-2 shows the value of the logical expression in the ON fi lter for the
rows from VT1-J1.

C01626034.indd 9 2/20/2009 11:16:22 AM

10 Inside Microsoft SQL Server 2008: T-SQL Querying

 TABLE 1-2 Logical value of ON Predicate for Rows from VT1-J1

Logical Value C.customerid C.city O.orderid O.customerid

FALSE FISSA Madrid 1 FRNDO

FALSE FISSA Madrid 2 FRNDO

FALSE FISSA Madrid 3 KRLOS

FALSE FISSA Madrid 4 KRLOS

FALSE FISSA Madrid 5 KRLOS

FALSE FISSA Madrid 6 MRPHS

UNKNOWN FISSA Madrid 7 NULL

TRUE FRNDO Madrid 1 FRNDO

TRUE FRNDO Madrid 2 FRNDO

FALSE FRNDO Madrid 3 KRLOS

FALSE FRNDO Madrid 4 KRLOS

FALSE FRNDO Madrid 5 KRLOS

FALSE FRNDO Madrid 6 MRPHS

UNKNOWN FRNDO Madrid 7 NULL

FALSE KRLOS Madrid 1 FRNDO

FALSE KRLOS Madrid 2 FRNDO

TRUE KRLOS Madrid 3 KRLOS

TRUE KRLOS Madrid 4 KRLOS

TRUE KRLOS Madrid 5 KRLOS

FALSE KRLOS Madrid 6 MRPHS

UNKNOWN KRLOS Madrid 7 NULL

FALSE MRPHS Zion 1 FRNDO

FALSE MRPHS Zion 2 FRNDO

FALSE MRPHS Zion 3 KRLOS

FALSE MRPHS Zion 4 KRLOS

FALSE MRPHS Zion 5 KRLOS

TRUE MRPHS Zion 6 MRPHS

UNKNOWN MRPHS Zion 7 NULL

 Only rows for which the <on_predicate> is TRUE are inserted into VT1-J2, shown in Table 1-3.

TABLE 1-3 Virtual Table VT1-J2 Returned from Step 1-J2

 Logical Value C.customerid C.city O.orderid O.customerid

 TRUE FRNDO Madrid 1 FRNDO

 TRUE FRNDO Madrid 2 FRNDO

 TRUE KRLOS Madrid 3 KRLOS

 TRUE KRLOS Madrid 4 KRLOS

 TRUE KRLOS Madrid 5 KRLOS

 TRUE MRPHS Zion 6 MRPHS

Logical Value C.customerid C.city O.orderid O.customerid

Logical Value C.customerid C.city O.orderid O.customerid

C01626034.indd 10 2/20/2009 11:16:22 AM

 Chapter 1 Logical Query Processing 11

Step 1-J3: Add Outer Rows

This step occurs only for an outer join. For an outer join, you mark one or both input tables
as preserved by specifying the type of outer join (LEFT, RIGHT, or FULL). Marking a table
as preserved means that you want all of its rows returned, even when fi ltered out by the
<on_predicate>. A left outer join marks the left table as preserved, a right outer join marks
the right one, and a full outer join marks both. Step 1-J3 returns the rows from VT1-J2, plus
rows from the preserved table(s) for which a match was not found in step 1-J2. These added
rows are referred to as outer rows. NULLs are assigned to the attributes (column values) of
the nonpreserved table in the outer rows. As a result, virtual table VT1-J3 is generated.

In our example, the preserved table is Customers:

Customers AS C LEFT OUTER JOIN Orders AS O

Only customer FISSA did not yield any matching orders (and thus wasn’t part of VT1-J2). Therefore,
a row for FISSA is added to VT1-J2, with NULLs for the Orders attributes. The result is virtual table
VT1-J3 (shown in Table 1-4). Because the FROM clause of the sample query has no more table
 operators, the virtual table VT1-J3 is also the virtual table VT1 returned from the FROM phase.

TABLE 1-4 Virtual Table VT1-J3 (also VT1) Returned from Step 1-J3

 C.customerid C.city O.orderid O.customerid

 FRNDO Madrid 1 FRNDO

 FRNDO Madrid 2 FRNDO

 KRLOS Madrid 3 KRLOS

 KRLOS Madrid 4 KRLOS

 KRLOS Madrid 5 KRLOS

 MRPHS Zion 6 MRPHS

 FISSA Madrid NULL NULL

 Note If multiple table operators appear in the FROM clause, they are processed from left to
right. The result of each table operator is provided as the left input to the next table operator.
The fi nal virtual table will be used as the input for the next step.

Step 2: The WHERE Phase

The WHERE fi lter is applied to all rows in the virtual table returned by the previous step. Those
rows for which <where_predicate> is TRUE make up the virtual table returned by this step (VT2).

 Caution Because the data is not yet grouped, you cannot use aggregates here—for example, you
cannot write WHERE orderdate = MAX(orderdate). Also, you cannot refer to column aliases created
by the SELECT list because the SELECT list was not processed yet—for example, you cannot write
SELECT YEAR(orderdate) AS orderyear . . . WHERE orderyear > 2008.

C.customerid C.city O.orderid O.customerid

C01626034.indd 11 2/20/2009 11:16:22 AM

12 Inside Microsoft SQL Server 2008: T-SQL Querying

 Apply the fi lter in the sample query:

WHERE C.city = 'Madrid'

 The row for customer MRPHS from VT1 is removed because the city is not Madrid, and virtual
table VT2, which is shown in Table 1-5, is generated.

 TABLE 1-5 Virtual Table VT2 Returned from Step 2

 C.customerid C.city O.orderid O.customerid

 FRNDO Madrid 1 FRNDO

 FRNDO Madrid 2 FRNDO

 KRLOS Madrid 3 KRLOS

 KRLOS Madrid 4 KRLOS

 KRLOS Madrid 5 KRLOS

 FISSA Madrid NULL NULL

 A confusing aspect of queries containing an OUTER JOIN clause is whether to specify a logical
expression in the ON fi lter or in the WHERE fi lter. The main difference between the two is that
ON is applied before adding outer rows (step 1-J3), while WHERE is applied afterwards. An
elimination of a row from the preserved table by the ON fi lter is not fi nal because step 1-J3 will
add it back; an elimination of a row by the WHERE fi lter, by contrast, is fi nal. Bearing this in
mind should help you make the right choice.

 For example, suppose you want to return certain customers and their orders from the Customers
and Orders tables. The customers you want to return are only Madrid customers—both those
who placed orders and those who did not. An outer join is designed exactly for such a request.
You perform a left outer join between Customers and Orders, marking the Customers table as
the preserved table. To be able to return customers who placed no orders, you must specify the
correlation between Customers and Orders in the ON clause (ON C.customerid = O.customerid).
Customers with no orders are eliminated in step 1-J2 but added back in step 1-J3 as outer rows.
However, because you want to return only Madrid customers you must specify the city fi lter in
the WHERE clause (WHERE C.city = ‘Madrid’). Specifying the city fi lter in the ON clause would
cause non-Madrid customers to be added back to the result set by step 1-J3.

 Tip This logical difference between the ON and WHERE clauses exists only when using an outer
join. When you use an inner join, it doesn’t matter where you specify your logical expressions
because step 1-J3 is skipped. The fi lters are applied one after the other with no intermediate step
between them.

Step 3: The GROUP BY Phase

The GROUP BY phase associates rows from the table returned by the previous step to groups
according to the <group_by_specifi cation>. I will discuss this specifi cation in detail in Chapter 8,

C.customerid C.city O.orderid O.customerid

C01626034.indd 12 2/20/2009 11:16:23 AM

 Chapter 1 Logical Query Processing 13

“Aggregating and Pivoting Data,” but for now, assume that it specifi es a single list of attributes
to group by. This list is called the grouping set.

 In this phase, the rows from the table returned by the previous step are arranged in groups.
Each unique combination of values of the attributes that belong to the grouping set identifi es
a group. Each base row from the previous step is associated to one and only one group. Virtual
table VT3 consists of the rows of VT2 arranged in groups (the raw information) along with the
group identifi ers (the groups information).

 Apply step 3 to the sample query:

GROUP BY C.customerid

 You get the virtual table VT3 shown in Table 1-6.

 TABLE 1-6 Virtual Table VT3 Returned from Step 3

 Groups Raw

 C.customerid C.customerid C.city O.orderid O.customerid

 FRNDO FRNDO

FRNDO

Madrid

Madrid

1

2

FRNDO

FRNDO

 KRLOS KRLOS

KRLOS

KRLOS

Madrid

Madrid

Madrid

3

4

5

KRLOS

KRLOS

KRLOS

 FISSA FISSA Madrid NULL NULL

 Eventually, a query that contains a GROUP BY clause will generate one row per group (unless
 fi ltered out). Consequently, when GROUP BY is specifi ed in a query, all subsequent steps (HAVING,
SELECT, and so on) can specify only expressions that have a scalar (singular) value per group. These
expressions can include columns or expressions from the GROUP BY list—such as C.customerid in
the sample query here—or aggregate functions, such as COUNT(O.orderid).

 Examine VT3 in Table 1-6 and think what the query should return for customer FRNDO’s
group if the SELECT list you specifi ed had been SELECT C.customerid, O.orderid. There are two
different orderid values in the group; therefore, the answer is not a scalar. SQL doesn’t allow
such a request. On the other hand, if you specify SELECT C.customerid, COUNT(O.orderid) AS
numorders, the answer for FRNDO is a scalar: it’s 2.

 This phase considers NULLs as equal. That is, all NULLs are grouped into one group, just like a
known value.

Step 4: The HAVING Phase

 The HAVING fi lter is applied to the groups in the table returned by the previous step. Only
groups for which the <having_predicate> is TRUE become part of the virtual table returned
by this step (VT4). The HAVING fi lter is the only fi lter that applies to the grouped data.

Groups Raw

C.customerid C.customerid C.city O.orderid O.customerid

C01626034.indd 13 2/20/2009 11:16:23 AM

14 Inside Microsoft SQL Server 2008: T-SQL Querying

 Apply this step to the sample query:

HAVING COUNT(O.orderid) < 3

 The group for KRLOS is removed because it contains three orders. Virtual table VT4, which is
shown in Table 1-7, is generated.

 TABLE 1-7 Virtual Table VT4 Returned from Step 4

 C.customerid C.customerid C.city O.orderid O.customerid

 FRNDO FRNDO

FRNDO

Madrid

Madrid

1

2

FRNDO

FRNDO

 FISSA FISSA Madrid NULL NULL

 Note It is important to specify COUNT(O.orderid) here and not COUNT(*). Because the join is an
outer one, outer rows were added for customers with no orders. COUNT(*) would have added
outer rows to the count, undesirably producing a count of one order for FISSA. COUNT(O.orderid)
correctly counts the number of orders for each customer, producing the desired value 0 for FISSA.
Remember that COUNT(<expression>) ignores NULLs just like any other aggregate function.

 Note An aggregate function does not accept a subquery as an input—for example, HAVING
SUM((SELECT . . .)) > 10.

Step 5: The SELECT Phase

Though specifi ed fi rst in the query, the SELECT clause is processed only at the fi fth step. The
SELECT phase constructs the table that will eventually be returned to the caller. This phase
involves three subphases: (5-1) Evaluate Expressions, (5-2) Apply DISTINCT Clause, (5-3) Apply
TOP Option.

Step 5-1: Evaluate Expressions

The expressions in the SELECT list can return base columns and manipulations of base
 columns from the virtual table returned by the previous step. Remember that if the query is
an aggregate query, after step 3 you can refer to base columns from the previous step only
if they are part of the groups section (GROUP BY list). If you refer to columns from the raw
section, they must be aggregated. Base columns selected from the previous step maintain
their column names unless you alias them (for example, col1 AS c1). Expressions that are not
base columns should be aliased to have a column name in the result table—for example,
YEAR(orderdate) AS orderyear.

C.customerid C.customerid C.city O.orderid O.customerid

C01626034.indd 14 2/20/2009 11:16:23 AM

 Chapter 1 Logical Query Processing 15

Important Aliases created by the SELECT list cannot be used by earlier steps—for example, in
the WHERE phase. In fact, expression aliases cannot even be used by other expressions within
the same SELECT list. The reasoning behind this limitation is another unique aspect of SQL; many
operations are all-at-once operations. For example, in the following SELECT list, the logical order
in which the expressions are evaluated should not matter and is not guaranteed: SELECT c1 +
1 AS e1, c2 + 1 AS e2. Therefore, the following SELECT list is not supported: SELECT c1 + 1 AS
e1, e1 + 1 AS e2. You’re allowed to use column aliases only in steps following the SELECT phase,
such as the ORDER BY phase—for example, SELECT YEAR(orderdate) AS orderyear . . . ORDER BY
 orderyear.

 The concept of an all-at-once operation can be hard to grasp. For example, in most programming
environments, to swap values between variables you use a temporary variable. However, to swap
table column values in SQL, you can use:

UPDATE dbo.T1 SET c1 = c2, c2 = c1;

 Logically, you should assume that the whole operation takes place at once. It is as if the table is
not modifi ed until the whole operation fi nishes and then the result replaces the source. For similar
reasons, the following UPDATE would update all of T1’s rows, adding to c1 the maximum c1 value
from T1 when the update started:

UPDATE dbo.T1 SET c1 = c1 + (SELECT MAX(c1) FROM dbo.T1);

 Don’t be concerned that the maximum c1 value might keep changing as the operation proceeds;
it does not because the operation occurs all at once.

 Apply this step to the sample query:

SELECT C.customerid, COUNT(O.orderid) AS numorders

 You get the virtual table VT5-1, which is shown in Table 1-8. Because no other subphases
(DISTINCT and TOP) of the SELECT phase are applied in the sample query, the virtual table
VT5-1 returned by this subphase is also the virtual table VT5 returned by the SELECT phase.

 TABLE 1-8 Virtual Table VT5-1 (also VT5) Returned from Step 5

 C.customerid numorders

 FRNDO 2

 FISSA 0

Step 5-2: Apply the DISTINCT Clause

 If a DISTINCT clause is specifi ed in the query, duplicate rows are removed from the virtual
table returned by the previous step, and virtual table VT5-2 is generated.

 Note SQL deviates from the relational model by allowing a table to have duplicate rows (when
a primary key or unique constraint is not enforced) and a query to return duplicate rows in the
result. A relation in the relational model represents a set from set theory, and a set (as opposed
to a multiset) has no duplicates. Using the DISTINCT clause you can ensure that a query returns
unique rows and in this sense conform to the relational model.

C.customerid numorders

C01626034.indd 15 2/20/2009 11:16:23 AM

16 Inside Microsoft SQL Server 2008: T-SQL Querying

 Step 5-2 is skipped in our example because DISTINCT is not specifi ed in the sample query.
In our particular example, it would remove no rows.

Step 5-3: Apply the TOP Option

 The TOP option is a feature specifi c to T-SQL that allows you to specify a number or percentage
of rows (rounded up) to return. The specifi ed number of rows is selected based on the query’s
ORDER BY clause. Traditionally, and according to the ANSI SQL standard, ORDER BY is supposed
to serve a presentation purpose. However, when the TOP option is specifi ed, the ORDER BY
clause also serves a logical purpose— answering the question “top according to what order?”
Table VT5-3 is generated.

 As mentioned, this step relies on the query’s ORDER BY clause to determine which rows are
 considered the “fi rst” requested number of rows. If an ORDER BY clause with a unique ORDER
BY list is specifi ed in a query, the result is deterministic. That is, only one correct result is possible,
containing the fi rst requested number of rows based on the specifi ed order. Similarly, when an
ORDER BY clause is specifi ed with a non-unique ORDER BY list but the TOP option is specifi ed
WITH TIES, the result is also deterministic. SQL Server inspects the last row that was returned
and returns all other rows from the table that have the same sort values as the last row.

 However, when a non-unique ORDER BY list is specifi ed without the WITH TIES option, or
ORDER BY is not specifi ed at all, a TOP query is nondeterministic. That is, the rows returned
are the ones that SQL Server happened to access fi rst, and there might be different results
that are considered correct. If you want to guarantee determinism, a TOP query must have
either a unique ORDER BY list or the WITH TIES option.

 Step 5-3 is skipped in our example because TOP is not specifi ed.

Step 6: The Presentation ORDER BY Phase

 The rows from the previous step are sorted according to the column list specifi ed in the
ORDER BY clause, returning the cursor VC6. The ORDER BY clause is the only step where
 column aliases created in the SELECT phase can be reused.

 If DISTINCT is specifi ed, the expressions in the ORDER BY clause have access only to the
 virtual table returned by the previous step (VT5). If DISTINCT is not specifi ed expressions in
the ORDER BY clause can access both the input and the output virtual tables of the SELECT
phase. That is, in the ORDER BY clause you can specify any expression that would have been
allowed in the SELECT clause. Namely, you can sort by expressions that you don’t end up
 returning in the fi nal result set.

 There is a reason for not allowing access to expressions you’re not returning if DISTINCT
is specifi ed. When adding expressions to the SELECT list, DISTINCT can potentially change
the number of rows returned. Without DISTINCT, of course, changes in the SELECT list don’t
 affect the number of rows returned.

C01626034.indd 16 2/20/2009 11:16:23 AM

 Chapter 1 Logical Query Processing 17

 In our example, because DISTINCT is not specifi ed, the ORDER BY clause has access to both
VT4, shown in Table 1-7, and VT5, shown in Table 1-8.

 In the ORDER BY clause, you can also specify ordinal positions of result columns from the
SELECT list. For example, the following query sorts the orders fi rst by customerid and then by
orderid:

SELECT orderid, customerid FROM dbo.Orders ORDER BY 2, 1;

 However, this practice is not recommended because you might make changes to the SELECT
list and forget to revise the ORDER BY list accordingly. Also, when the query strings are long,
it’s hard to fi gure out which item in the ORDER BY list corresponds to which item in the
SELECT list.

 Important This step is different than all other steps in the sense that it doesn’t return a valid
table; instead, it returns a cursor. Remember that SQL is based on set theory. A set doesn’t have
a predetermined order to its rows: It’s a logical collection of members, and the order of the
 members shouldn’t matter. A query with a presentation ORDER BY clause returns an object with
rows organized in a particular order. ANSI calls such an object a cursor. Understanding this step is
one of the most fundamental steps to correctly understanding SQL.

 When describing the contents of a table, most people (including me) routinely depict the
rows in a certain order. However, a table represents a set (or multiset if duplicates exist), and
a set has no order, so such depiction can cause some confusion by implying a certain order.
Figure 1-2 shows an example for depicting the content of tables in a more correct way that
doesn’t imply order.

Customers
(Customerid, city)

(FRNDO, Madrid)

(KRLOS, Madrid)

(MRPHS, Zion)

(FISSA, Madrid)

(6, MRPHS)

(2, FRNDO) (7, NULL)

(4, KRLOS) (1, FRNDO)

(3, KRLOS)

(5, KRLOS)

Orders
(orderid, customerid)

FIGURE 1-2 Customers and Orders sets

 Note Although SQL doesn’t assume any given order to a table’s rows, it does maintain ordinal
positions for columns based on creation order. Specifying SELECT * (although a bad practice for
several reasons that I’ll describe later in the book) guarantees the columns would be returned in
creation order. In this respect SQL deviates from the relational model.

C01626034.indd 17 2/20/2009 11:16:23 AM

18 Inside Microsoft SQL Server 2008: T-SQL Querying

 Because this step doesn’t return a table (it returns a cursor), a query with a presentation
ORDER BY clause cannot be used to defi ne a table expression—that is, a view, an inline
 table-valued function, a derived table, or a common table expression (CTE). Rather, the result
must be returned to the client application that can consume cursor records one at a time, in
order. For example, the following derived table query is invalid and produces an error:

SELECT *

FROM (SELECT orderid, customerid

 FROM dbo.Orders

 ORDER BY orderid DESC) AS D;

 Similarly, the following view is invalid:

CREATE VIEW dbo.VSortedOrders

AS

SELECT orderid, customerid

FROM dbo.Orders

ORDER BY orderid DESC;

GO

 In SQL, no query with an ORDER BY clause is allowed in a table expression. In T-SQL, there is an
exception to this rule—when the TOP option is also specifi ed. This exception has to do with a
problematic aspect of the design of the TOP option that causes a lot of confusion. The TOP
option is logically processed as part of the SELECT phase (step 5-3), before the Presentation
ORDER BY phase (step 6). Its purpose is to fi lter the requested number or percentage of
rows based on a logical defi nition of order. Unfortunately, the TOP option is not designed
with its own ORDER BY clause; rather, its logical ordering is based on the same ORDER BY
clause that is normally used for presentation purposes. This fact makes the TOP option
 restricted in the sense that you cannot defi ne one order for the TOP option and another
for presentation. Also, things can get quite confusing when you try to fi gure out the nature
of the result of a TOP query. Is it a table (no guaranteed order) or a cursor? Because no
standard defi nes TOP, it’s a matter of what the SQL Server developers envisioned. When a
TOP query is specifi ed as the outermost query rather than defi ning a table expression, the
ORDER BY clause serves two different purposes. One is to defi ne logical precedence among
rows for the TOP option in step 5-3, and the other is to defi ne presentation order in step 6
in the result cursor. Consider the following query as an example:

SELECT TOP (3) orderid, customerid

FROM dbo.Orders

ORDER BY orderid DESC;

 You’re guaranteed to get the three rows with the highest order IDs, and you’re also
 guaranteed to get them sorted in the output based on orderid descending. Here’s the
output of this query:

orderid customerid

----------- ----------

11077 RATTC

11076 BONAP

11075 RICSU

C01626034.indd 18 2/20/2009 11:16:23 AM

 Chapter 1 Logical Query Processing 19

 However, if a TOP query with an ORDER BY clause is used to defi ne a table expression,
it’s supposed to represent a table with no guaranteed order. Therefore, in such a case
the ORDER BY clause is only guaranteed to defi ne logical order for the TOP option,
while presentation order is not guaranteed. For example, the following query does not
 guarantee presentation order:

SELECT *

FROM (SELECT TOP (3) orderid, customerid

 FROM dbo.Orders

 ORDER BY orderid DESC) AS D;

 Of course, SQL Server has no reason to change the order of the rows in the output if it scans
them in index order or sorts them to fi lter the requested number of rows, but the point
I’m trying to make is that in this case presentation order in the output is not guaranteed.
Programmers who don’t understand this point—or the difference between a table and a
cursor—try to exploit the TOP option in absurd ways, for example, by trying to create a
sorted view:

CREATE VIEW dbo.VSortedOrders

AS

SELECT TOP (100) PERCENT orderid, customerid

FROM dbo.Orders

ORDER BY orderid DESC;

GO

 A view is supposed to represent a table, and a table has no guaranteed order. SQL Server allows
the use of the ORDER BY clause in a view when TOP is also specifi ed, but because the query is
used to defi ne a table expression, the only guarantee that you get is that the ORDER BY clause will
serve the logical meaning for TOP; you don’t get a guarantee for presentation order. Therefore,
if you run the following code, you’re not guaranteed to get the rows in the output sorted by
 orderid descending:

SELECT orderid, customerid FROM dbo.VSortedOrders;

 So remember, don’t assume any particular order for a table’s rows. Conversely, don’t specify
an ORDER BY clause unless you really need the rows sorted or need to describe the ordering
for a TOP option. Sorting has a cost—SQL Server needs to perform an ordered index scan
or apply a sort operator.

 The ORDER BY clause considers NULLs as equal. That is, NULLs are sorted together. ANSI
leaves the question of whether NULLs are sorted lower or higher than known values up to
implementations, which must be consistent. T-SQL sorts NULLs as lower than known values
(fi rst).

 Apply this step to the sample query:

ORDER BY numorders

C01626034.indd 19 2/20/2009 11:16:23 AM

20 Inside Microsoft SQL Server 2008: T-SQL Querying

 You get the cursor VC6 shown in Table 1-9.

 TABLE 1-9 Cursor VC6 Returned from Step 6

 C.customerid numorders

 FISSA 0

 FRNDO 2

Further Aspects of Logical Query Processing

 This section covers further aspects of logical query processing, including table operators
(JOIN, APPLY, PIVOT, and UNPIVOT), the OVER clause, and set operators (UNION, EXCEPT,
and INTERSECT). Note that I could say much more about these language elements besides
their logical query processing aspects, but that’s the focus of this chapter. Also, if a language
element described in this section is completely new to you (for example, PIVOT, UNPIVOT,
or APPLY), it might be a bit hard to fully comprehend its meaning at this point. Later in the
book I’ll conduct more detailed discussions including uses, performance aspects, and so on.
You can then return to this chapter and read about the logical query processing aspects of
that language element again to better comprehend its meaning.

Table Operators

 SQL Server 2008 supports four types of table operators in the FROM clause of a query: JOIN,
APPLY, PIVOT, and UNPIVOT.

 Note APPLY, PIVOT, and UNPIVOT are not ANSI operators; rather, they are extensions specifi c to
T-SQL.

 I covered the logical processing phases involved with joins earlier and will also discuss joins in
more detail in Chapter 7, “Joins and Set Operations.” Here I’ll briefl y describe the other three
operators and the way they fi t in the logical query processing model.

Table operators get one or two tables as inputs. Call them left input and right input based
on their position in respect to the table operator keyword (JOIN, APPLY, PIVOT, UNPIVOT).
Just like joins, all table operators get a virtual table as their left input. The fi rst table operator
that appears in the FROM clause gets a table expression as the left input and returns a virtual
 table as a result. A table expression can stand for many things: a real table, a temporary
table, a table variable, a derived table, a CTE, a view, or a table-valued function.

 More Info For details on table expressions, please refer to Chapter 6, “Subqueries, Table
Expressions, and Ranking Functions.”

C.customerid numorders

C01626034.indd 20 2/20/2009 11:16:23 AM

 Chapter 1 Logical Query Processing 21

 The second table operator that appears in the FROM clause gets as its left input the virtual
table returned from the previous table operation.

 Each table operator involves a different set of steps. For convenience and clarity, I’ll prefi x the
step numbers with the initial of the table operator (J for JOIN, A for APPLY, P for PIVOT, and U
for UNPIVOT).

 Following are the four table operators along with their elements:

(J) <left_table_expression>

 {CROSS | INNER | OUTER} JOIN <right_table_expression>

 ON <on_predicate>

(A) <left_table_expression>

 {CROSS | OUTER} APPLY <right_table_expression>

(P) <left_table_expression>

 PIVOT (<aggregate_func(<aggregation_element>)> FOR

 <spreading_element> IN(<target_col_list>))

 AS <result_table_alias>

(U) <left_table_expression>

 UNPIVOT (<target_values_col> FOR

 <target_names_col> IN(<source_col_list>))

 AS <result_table_alias>

 As a reminder, a join involves a subset (depending on the join type) of the following steps:

 1. J1: Apply Cartesian Product

 2. J2: Apply ON Filter

 3. J3: Add Outer Rows

APPLY

 The APPLY operator (depending on the apply type) involves one or both of the following two
steps:

 1. A1: Apply Right Table Expression to Left Table Rows

 2. A2: Add Outer Rows

 The APPLY operator applies the right table expression to every row from the left input. The
right table expression can refer to the left input’s columns. The right input is evaluated once for
each row from the left. This step unifi es the sets produced by matching each left row with the
corresponding rows from the right table expression, and this step returns the combined result.

 Step A1 is applied in both CROSS APPLY and OUTER APPLY. Step A2 is applied only for OUTER
APPLY. CROSS APPLY doesn’t return an outer (left) row if the inner (right) table expression
returns an empty set for it. OUTER APPLY will return such a row, with NULLs as placeholders
for the inner table expression’s attributes.

C01626034.indd 21 2/20/2009 11:16:23 AM

22 Inside Microsoft SQL Server 2008: T-SQL Querying

 For example, the following query returns the two orders with the highest order IDs for each
customer:

SELECT C.customerid, C.city, A.orderid

FROM dbo.Customers AS C

 CROSS APPLY

 (SELECT TOP (2) O.orderid, O.customerid

 FROM dbo.Orders AS O

 WHERE O.customerid = C.customerid

 ORDER BY orderid DESC) AS A;

 This query generates the following output:

customerid city orderid

---------- ---------- -----------

FRNDO Madrid 2

FRNDO Madrid 1

KRLOS Madrid 5

KRLOS Madrid 4

MRPHS Zion 6

 Notice that FISSA is missing from the output because the table expression A returned an
empty set for it. If you also want to return customers who placed no orders, use OUTER
APPLY as follows:

SELECT C.customerid, C.city, A.orderid

FROM dbo.Customers AS C

 OUTER APPLY

 (SELECT TOP (2) O.orderid, O.customerid

 FROM dbo.Orders AS O

 WHERE O.customerid = C.customerid

 ORDER BY orderid DESC) AS A;

 This query generates the following output:

customerid city orderid

---------- ---------- -----------

FISSA Madrid NULL

FRNDO Madrid 2

FRNDO Madrid 1

KRLOS Madrid 5

KRLOS Madrid 4

MRPHS Zion 6

 More Info For more details on the APPLY operator, refer to Chapter 9, “TOP and APPLY.”

PIVOT

 The PIVOT operator allows you to rotate, or pivot, data between columns and rows, performing
aggregations along the way.

C01626034.indd 22 2/20/2009 11:16:23 AM

 Chapter 1 Logical Query Processing 23

 Suppose you wanted to query the Sales.OrderValues view in the InsideTSQL2008 sample
 database (see the book’s introduction for details on the sample database) and return the total
value of orders handled by each employee for each order year. You want the output to have a
row for each employee, a column for each order year, and the total value in the intersection of
each employee and year. The following PIVOT query allows you to achieve this:

USE InsideTSQL2008;

SELECT *

FROM (SELECT empid, YEAR(orderdate) AS orderyear, val

 FROM Sales.OrderValues) AS OV

 PIVOT(SUM(val) FOR orderyear IN([2006],[2007],[2008])) AS P;

 This query generates the following output:

empid 2006 2007 2008

----------- ---------- ---------- ----------

3 18223.96 108026.17 76562.75

6 16642.61 43126.38 14144.16

9 9894.52 26310.39 41103.17

7 15232.16 60471.19 48864.89

1 35764.52 93148.11 63195.02

4 49945.12 128809.81 54135.94

2 21757.06 70444.14 74336.56

5 18383.92 30716.48 19691.90

8 22240.12 56032.63 48589.54

 Don’t get distracted by the subquery that generates the derived table OV. As far as you’re
concerned, the PIVOT operator gets a table expression called OV as its left input, with a row
for each order, with the employee ID (empid), order year (orderyear), and order value (val).
The PIVOT operator involves the following three logical phases:

 1. P1: Grouping

 2. P2: Spreading

 3. P3: Aggregating

 The fi rst phase (P1) is tricky. You can see in the query that the PIVOT operator refers to two
of the columns from OV as input arguments (val and orderyear). The fi rst phase implicitly
groups the rows from OV based on all columns that weren’t mentioned in PIVOT’s inputs, as
though a hidden GROUP BY were there. In our case, only the empid column wasn’t mentioned
anywhere in PIVOT’s input arguments. So you get a group for each employee.

 Note PIVOT’s implicit grouping phase doesn’t affect any explicit GROUP BY clause in a query.
The PIVOT operation will yield a virtual result table for input to the next logical phase, be it
 another table operation or the WHERE phase. And as I described earlier in the chapter, a GROUP
BY phase might follow the WHERE phase. So when both PIVOT and GROUP BY appear in a query,
you get two separate grouping phases—one as the fi rst phase of PIVOT (P1) and a later one as
the query’s GROUP BY phase.

C01626034.indd 23 2/20/2009 11:16:23 AM

24 Inside Microsoft SQL Server 2008: T-SQL Querying

 PIVOT’s second phase (P2) spreads values of <spreading_col> to their corresponding target
columns. Logically, it uses the following CASE expression for each target column specifi ed in
the IN clause:

CASE WHEN <spreading_col> = <target_col_element> THEN <expression> END

 In this situation, the following three expressions are logically applied:

CASE WHEN orderyear = 2006 THEN val END,

CASE WHEN orderyear = 2007 THEN val END,

CASE WHEN orderyear = 2008 THEN val END

 Note A CASE expression with no ELSE clause has an implicit ELSE NULL.

 For each target column, the CASE expression will return the value (val column) only if the
source row had the corresponding order year; otherwise, the CASE expression will return NULL.

 PIVOT’s third phase (P3) applies the specifi ed aggregate function on top of each CASE expression,
generating the result columns. In our case, the expressions logically become the following:

SUM(CASE WHEN orderyear = 2006 THEN val END) AS [2006],

SUM(CASE WHEN orderyear = 2007 THEN val END) AS [2007],

SUM(CASE WHEN orderyear = 2008 THEN val END) AS [2008]

 In summary, the previous PIVOT query is logically equivalent to the following query:

SELECT empid,

 SUM(CASE WHEN orderyear = 2006 THEN val END) AS [2006],

 SUM(CASE WHEN orderyear = 2007 THEN val END) AS [2007],

 SUM(CASE WHEN orderyear = 2008 THEN val END) AS [2008]

FROM (SELECT empid, YEAR(orderdate) AS orderyear, val

 FROM Sales.OrderValues) AS OV

GROUP BY empid;

 More Info For more details on the PIVOT operator, refer to Chapter 8.

UNPIVOT

 UNPIVOT is the inverse of PIVOT, rotating data from columns to rows.

 Before I demonstrate UNPIVOT’s logical phases, fi rst run the following code, which creates
and populates the dbo.EmpYearValues table and queries it to present its content:

SELECT *

INTO dbo.EmpYearValues

FROM (SELECT empid, YEAR(orderdate) AS orderyear, val

 FROM Sales.OrderValues) AS OV

 PIVOT(SUM(val) FOR orderyear IN([2006],[2007],[2008])) AS P;

C01626034.indd 24 2/20/2009 11:16:23 AM

 Chapter 1 Logical Query Processing 25

UPDATE dbo.EmpYearValues

 SET [2006] = NULL

WHERE empid IN(1, 2);

SELECT * FROM dbo.EmpYearValues;

 This code returns the following output:

empid 2006 2007 2008

----------- ---------- ---------- ----------

3 18223.96 108026.17 76562.75

6 16642.61 43126.38 14144.16

9 9894.52 26310.39 41103.17

7 15232.16 60471.19 48864.89

1 NULL 93148.11 63195.02

4 49945.12 128809.81 54135.94

2 NULL 70444.14 74336.56

5 18383.92 30716.48 19691.90

8 22240.12 56032.63 48589.54

 I’ll use the following query as an example to describe the logical processing phases involved
with the UNPIVOT operator:

SELECT empid, orderyear, val

FROM dbo.EmpYearValues

 UNPIVOT(val FOR orderyear IN([2006],[2007],[2008])) AS U;

 This query unpivots (or splits) the employee yearly values from each source row to a separate
row per order year, generating the following output:

empid orderyear val

----------- ---------- -----------

3 2006 18223.96

3 2007 108026.17

3 2008 76562.75

6 2006 16642.61

6 2007 43126.38

6 2008 14144.16

9 2006 9894.52

9 2007 26310.39

9 2008 41103.17

7 2006 15232.16

7 2007 60471.19

7 2008 48864.89

1 2007 93148.11

1 2008 63195.02

4 2006 49945.12

4 2007 128809.81

4 2008 54135.94

2 2007 70444.14

2 2008 74336.56

5 2006 18383.92

5 2007 30716.48

5 2008 19691.90

8 2006 22240.12

8 2007 56032.63

8 2008 48589.54

C01626034.indd 25 2/20/2009 11:16:23 AM

26 Inside Microsoft SQL Server 2008: T-SQL Querying

 The following three logical processing phases are involved in an UNPIVOT operation:

 1. U1: Generating Copies

 2. U2: Extracting Elements

 3. U3: Removing Rows with NULLs

 The fi rst step (U1) generates copies of the rows from the left table expression provided to
UNPIVOT as an input (EmpYearValues, in our case). This step generates a copy for each column
that is unpivoted (appears in the IN clause of the UNPIVOT operator). Because there are three
column names in the IN clause, three copies are produced from each source row. The resulting
virtual table will contain a new column holding the source column names as character strings.
The name of this column will be the one specifi ed right before the IN clause (orderyear, in our
case). The virtual table returned from the fi rst step in our example is shown in Table 1-10.

 TABLE 1-10 Virtual Table Returned from UNPIVOT’s First Step

 empid 2006 2007 2008 orderyear

 3 18223.96 108026.17 76562.75 2006

 3 18223.96 108026.17 76562.75 2007

 3 18223.96 108026.17 76562. 75 2008

 6 16642.61 43126.38 14144.16 2006

 6 16642.61 43126.38 14144.16 2007

 6 16642.61 43126.38 14144.16 2008

 9 9894.52 26310.39 41103.17 2006

 9 9894.52 26310.39 41103.17 2007

 9 9894.52 26310.39 41103.17 2008

 7 15232.16 60471.19 48864.89 2006

 7 15232.16 60471.19 48864.89 2007

 7 15232.16 60471.19 48864.89 2008

 1 NULL 93148.11 63195.02 2006

 1 NULL 93148.11 63195.02 2007

 1 NULL 93148.11 63195.02 2008

 4 49945.12 128809.81 54135.94 2006

 4 49945.12 128809.81 54135.94 2007

 4 49945.12 128809.81 54135.94 2008

 2 NULL 70444.14 74336.56 2006

 2 NULL 70444.14 74336.56 2007

 2 NULL 70444.14 74336.56 2008

 5 18383.92 30716.48 19691.90 2006

 5 18383.92 30716.48 19691.90 2007

 5 18383.92 30716.48 19691.90 2008

empid 2006 2007 2008 orderyear

C01626034.indd 26 2/20/2009 11:16:24 AM

 Chapter 1 Logical Query Processing 27

TABLE 1-10 Virtual Table Returned from UNPIVOT’s First Step

empid 2006 2007 2008 orderyear

8 22240.12 56032.63 48589.54 2006

8 22240.12 56032.63 48589.54 2007

8 22240.12 56032.63 48589.54 2008

The second step (U2) extracts the value from the source column corresponding to the unpivoted
element that the current copy of the row represents. The name of the target column that will
hold the values is specifi ed right before the FOR clause (val in our case). The target column will
contain the value from the source column corresponding to the current row’s order year from
the virtual table. The virtual table returned from this step in our example is shown in Table 1-11.

TABLE 1-11 Virtual Table Returned from UNPIVOT’s Second Step

empid val orderyear

3 18223.96 2006

3 108026.17 2007

3 76562.75 2008

6 16642.61 2006

6 43126.38 2007

6 14144.16 2008

9 9894.52 2006

9 26310.39 2007

9 41103.17 2008

7 15232.16 2006

7 60471.19 2007

7 48864.89 2008

1 NULL 2006

1 93148.11 2007

1 63195.02 2008

4 49945.12 2006

4 128809.81 2007

4 54135.94 2008

2 NULL 2006

2 70444.14 2007

2 74336.56 2008

5 18383.92 2006

5 30716.48 2007

5 19691.90 2008

8 22240.12 2006

8 56032.63 2007

8 48589.54 2008

empid 2006 2007 2008 orderyear

empid val orderyear

C01626034.indd 27 2/20/2009 11:16:24 AM

28 Inside Microsoft SQL Server 2008: T-SQL Querying

 UNPIVOT’s third and fi nal step (U3) is to remove rows with NULLs in the result value column
(val, in our case). The virtual table returned from this step in our example is shown in
Table 1-12.

 TABLE 1-12 Virtual Table Returned from UNPIVOT’s Third Step

 empid val orderyear

 3 18223.96 2006

 3 108026.17 2007

 3 76562.75 2008

 6 16642.61 2006

 6 43126.38 2007

 6 14144.16 2008

 9 9894.52 2006

 9 26310.39 2007

 9 41103.17 2008

 7 15232.16 2006

 7 60471.19 2007

 7 48864.89 2008

 1 93148.11 2007

 1 63195.02 2008

 4 49945.12 2006

 4 128809.81 2007

 4 54135.94 2008

 2 70444.14 2007

 2 74336.56 2008

 5 18383.92 2006

 5 30716.48 2007

 5 19691.90 2008

 8 22240.12 2006

 8 56032.63 2007

8 48589.54 2008

 When you’re done experimenting with the UNPIVOT operator, drop the EmpYearValues
table:

DROP TABLE dbo.EmpYearValues;

 More Info For more details on the UNPIVOT operator, refer to Chapter 8.

empid val orderyear

C01626034.indd 28 2/20/2009 11:16:24 AM

 Chapter 1 Logical Query Processing 29

OVER Clause

The OVER clause allows you to request window-based calculations. You can use this clause
with aggregate functions (both built-in and custom common language runtime [CLR]-based
 aggregates), and it is a required element for the four analytical ranking functions (ROW_NUMBER,
RANK, DENSE_RANK, and NTILE). The OVER clause defi nes the window of rows over which the
aggregate or ranking function is calculated.

 I won’t discuss applications of windows-based calculations here, nor will I go into detail about
exactly how these functions work; I’ll only explain the phases in which the OVER clause is
 applicable. I’ll cover the OVER clause in more detail in Chapters 6 and 8.

 The OVER clause is applicable only in one of two phases: the SELECT phase (5) and the ORDER
BY phase (6). This clause has access to whichever virtual table is provided to that phase as input.
Listing 1-3 highlights the logical processing phases in which the OVER clause can be used.

LISTING 1-3 OVER clause in logical query processing

(5) SELECT (5-2) DISTINCT (5-3) TOP(<top_specification>) (5-1) <select_list>

(1) FROM (1-J) <left_table> <join_type> JOIN <right_table> ON <on_predicate>

 | (1-A) <left_table> <apply_type> APPLY <right_table_expression> AS <alias>

 | (1-P) <left_table> PIVOT(<pivot_specification>) AS <alias>

 | (1-U) <left_table> UNPIVOT(<unpivot_specification>) AS <alias>

(2) WHERE <where_predicate>

(3) GROUP BY <group_by_specification>

(4) HAVING <having_predicate>

(6) ORDER BY <order_by_list>;

 You specify the OVER clause following the function to which it applies in either the select_list
or the order_by_list.

 Even though I didn’t really explain in detail how the OVER clause works, I’d like to demonstrate
its use in both phases where it’s applicable. In the following example, an OVER clause is used
with the COUNT aggregate function in the SELECT list:

USE InsideTSQL2008;

SELECT orderid, custid,

 COUNT(*) OVER(PARTITION BY custid) AS numorders

FROM Sales.Orders

WHERE shipcountry = N'Spain';

 This query produces the following output:

orderid custid numorders

----------- ----------- -----------

10326 8 3

10801 8 3

10970 8 3

(5) SELECT (5-2) DISTINCT (5-3) TOP(<top_specification>) (5-1) <select_list>

(1) FROM (1-J) <left_table> <join_type> JOIN <right_table> ON <on_predicate>

 | (1-A) <left_table> <apply_type> APPLY <right_table_expression> AS <alias>

 | (1-P) <left_table> PIVOT(<pivot_specification>) AS <alias>

 | (1-U) <left_table> UNPIVOT(<unpivot_specification>) AS <alias>

(2) WHERE <where_predicate>

(3) GROUP BY <group_by_specification>

(4) HAVING <having_predicate>

(6) ORDER BY <order_by_list>;

C01626034.indd 29 2/20/2009 11:16:24 AM

30 Inside Microsoft SQL Server 2008: T-SQL Querying

10928 29 5

10568 29 5

10887 29 5

10366 29 5

10426 29 5

10550 30 10

10303 30 10

10888 30 10

10911 30 10

10629 30 10

10872 30 10

10874 30 10

10948 30 10

11009 30 10

11037 30 10

11013 69 5

10917 69 5

10306 69 5

10281 69 5

10282 69 5

 The PARTITION BY clause defi nes the window for the calculation. The COUNT(*) function
counts the number of rows in the virtual table provided to the SELECT phase as input, where
the custid value is equal to the one in the current row. Remember that the virtual table
 provided to the SELECT phase as input has already undergone WHERE fi ltering—that is, only
customers from Spain have been fi ltered.

 You can also use the OVER clause in the ORDER BY list. For example, the following query sorts
the rows according to the total number of output rows for the customer (in descending order):

SELECT orderid, custid,

 COUNT(*) OVER(PARTITION BY custid) AS numorders

FROM Sales.Orders

WHERE shipcountry = N'Spain'

ORDER BY COUNT(*) OVER(PARTITION BY custid) DESC;

 This query generates the following output:

orderid custid numorders

----------- ----------- -----------

10550 30 10

10303 30 10

10888 30 10

10911 30 10

10629 30 10

10872 30 10

10874 30 10

10948 30 10

11009 30 10

11037 30 10

11013 69 5

10917 69 5

10306 69 5

C01626034.indd 30 2/20/2009 11:16:24 AM

 Chapter 1 Logical Query Processing 31

10281 69 5

10282 69 5

10928 29 5

10568 29 5

10887 29 5

10366 29 5

10426 29 5

10326 8 3

10801 8 3

10970 8 3

 More Info For details on using the OVER clause with aggregate functions, please refer to
Chapter 8. For details on using the OVER clause with analytical ranking functions, please refer to
Chapter 6.

Set Operators

SQL Server 2008 supports four set operators: UNION ALL, UNION, EXCEPT, and INTERSECT.
These SQL operators correspond to operators defi ned in mathematical set theory.
Listing 1-4 contains a general form of a query applying a set operator, along with numbers
assigned according to the order in which the different elements of the code are logically
processed.

LISTING 1-4 General form of a query applying a set operator

(1) query1

(2) <set_operator>

(1) query2

(3) [ORDER BY <order_by_list>]

 Set operators compare complete rows between the two inputs. UNION ALL returns one result
set with all rows from both inputs. UNION returns one result set with the distinct rows from
both inputs (no duplicates). EXCEPT returns distinct rows that appear in the fi rst input but
not in the second. INTERSECT returns the distinct rows that appear in both inputs. I could say
much more about these set operators, but here I’d just like to focus on the logical processing
steps involved in a set operation.

 An ORDER BY clause is not allowed in the individual queries because the queries are supposed
to return sets (unordered). You are allowed to specify an ORDER BY clause at the end of the
query, and it will apply to the result of the set operation.

In terms of logical processing, each input query is fi rst processed separately with all its relevant
phases. The set operator is then applied, and if an ORDER BY clause is specifi ed, it is applied to
the result set.

(1) query1

(2) <set_operator>

(1) query2

(3) [ORDER BY <order_by_list>]

C01626034.indd 31 2/20/2009 11:16:24 AM

32 Inside Microsoft SQL Server 2008: T-SQL Querying

 Take the following query as an example:

USE InsideTSQL2008;

SELECT region, city

FROM Sales.Customers

WHERE country = N'USA'

INTERSECT

SELECT region, city

FROM HR.Employees

WHERE country = N'USA'

ORDER BY region, city;

 This query generates the following output:

country region city

--------------- --------------- ---------------

USA WA Kirkland

USA WA Seattle

 First, each input query is processed separately following all the relevant logical processing
phases. The fi rst query returns locations (region, city) of customers from the United States.
The second query returns locations of employees from the United States. The set operator
INTERSECT returns distinct rows that appear in both inputs—in our case, locations that are
both customer locations and employee locations. Finally, the ORDER BY clause sorts the rows
by region and city.

 As another example for logical processing phases of a set operation, the following query
 returns customers that have made no orders:

SELECT custid FROM Sales.Customers

EXCEPT

SELECT custid FROM Sales.Orders;

 The fi rst query returns the set of customer IDs from Customers, and the second query returns
the set of customer IDs from Orders. The set operation returns the set of rows from the fi rst
set that do not appear in the second set. Remember that a set has no duplicates; the EXCEPT
set operator returns distinct occurrences of rows from the fi rst set that do not appear in the
second set.

 The result set’s column names are determined by the set operator’s fi rst input. Columns in
corresponding positions must match in their data types or be implicitly convertible. Finally,
an interesting aspect of set operations is that they treat NULLs as equal.

 More Info You can fi nd a more detailed discussion about set operators in Chapter 7.

C01626034.indd 32 2/20/2009 11:16:24 AM

 Chapter 1 Logical Query Processing 33

Conclusion

 Understanding logical query processing phases and the unique aspects of SQL is important
to get into the special mind set required to program in SQL. By being familiar with those
aspects of the language, you can produce effi cient solutions and explain your choices.
Remember, the idea is to master the basics.

C01626034.indd 33 2/20/2009 11:16:25 AM

C01626034.indd 34 2/20/2009 11:16:25 AM

 35

Chapter 2

Set Theory and Predicate Logic
 Steve Kass

 This chapter contains a brief introduction to two cornerstones of mathematics: set theory
and predicate logic, which are intimately connected to the world of databases. Database
tables represent sets of facts, and database queries produce result sets based on query
predicates.

 The objects of study in logic are propositions—statements of fact that are either true or
false—and propositional functions, which are open statements with one or more unspecifi ed
values. Database tables hold representations of statements of fact, and query predicates are
propositional functions.

 Later in this book, you’ll use logical set-based thinking to write a T-SQL SELECT query to
return the following result set: “all customers for whom every employee from the USA has
handled at least one order.”

 Your query won’t tell the Microsoft SQL Server engine how to produce the desired result;
instead, it will simply describe the result, in sharp contrast to how you’d use a procedural
 programming language, such as C# or Fortran, to produce the same result. The more you
understand about set theory and logic, the easier SQL will be for you.

An Example of English-to-Mathematics Translation

 I’ll begin this chapter by describing “all customers for whom every employee from the USA
has handled at least one order” not in SQL, as you will see in Chapter 6, “Subqueries, Table
Expressions, and Ranking Functions,” but in the mathematical language of set theory. Turning
English into mathematics, by the way, is much harder than doing mathematics or speaking
English, and this example will highlight some of the mathematical ideas that are particularly
useful to SQL programmers. Some of the set theory notation in this section will be defi ned
later. Don’t worry if it’s unfamiliar.

 First of all, let’s give the result set we’re after a name.

Defi nition of the set S (in English)

 Let S be the set of all customers for whom every employee from the USA has handled
at least one order.

C02626034.indd 35 2/20/2009 7:42:20 PM

36 Inside Microsoft SQL Server 2008: T-SQL Querying

 By naming this set of customers (even by referring to it as a set, so that we can talk about
having named it!), we’ve made an implicit assumption that the description has a clear
 meaning—it describes something unambiguously.

 The defi nition mentions customers, employees, and orders, and to talk about these categories
of things mathematically, we should think of them as sets and name them: Let Customers,
Employees, and Orders be the sets of customers, employees, and orders, respectively.
To describe S mathematically, we don’t have to understand what these terms mean; we only
have to name them.

 One meaningful term in the description doesn’t represent a kind of thing: handled. Again, we
don’t need to know what it means from a business point of view for an employee to handle
an order for a customer, but we do need to understand that, given appropriate details, has
handled is either true or false. We also have to be clear what details it’s true or false about.
If we dissect how handled is used in the description, we see that it has to do with three
 details: an employee, an order, and a customer.

 It’s especially useful to be able to write down the handled fact in a particular case. Given a
particular employee e, a particular order o, and a particular customer c, this fact (employee
e handled order o for customer c) is either true or false. In other words, it’s a predicate. Using
function notation, write handled(e,o,c) to represent the truth value of “employee e handled
order o for customer c.” Depending on the values of e, o, and c, handled(e,o,c) has a truth
value: it’s true or it’s false.

 Note You might have interpreted handled as involving only two details: an employee and an
 order, ending up with handled(e,o) for “employee e handled order o.” That’s not wrong, and in
fact it might be the best way to begin if we were designing a database to support queries to
 return S. To defi ne S mathematically, however, the three-detail notion is closer to what defi nes
S as a set of customers: whether a particular customer c is in the set S. It’s harder to express S
mathematically with the two-detail interpretation.

 The last element in the description we need notation for is from the USA. Being from the
USA or not is a property of employees, and we’ll write fromUSA(e) to represent the truth
value of “employee e is from the USA.” To make things a bit simpler to write down at fi rst, let
USAEmployees be the set of employees from the USA or, mathematically, let USAEmployees
= {e∈Employees : fromUSA(e)}.

 Now that we’ve named everything we might need, we turn to the question of describing
membership in S in terms of the objects we’ve defi ned.

 Question In terms of the sets Customers, USAEmployees, and Orders and the function
handled(e,o,c), when is a particular customer c in S?

 Answer The customer c is in S if and only if for every (employee) e in the set USAEmployees,
there is at least one (order) o in the set Orders for which handled(e,o,c).

C02626034.indd 36 2/20/2009 7:42:20 PM

 Chapter 2 Set Theory and Predicate Logic 37

 Using mathematical notation only, here’s what we get:

Defi nition of the Set S (in Mathematics)

 Let USAEmployees = {e ∈ Employees : fromUSA(e)}. Then defi ne the set

 S = {c�Customers : �e�USAEmployees (�o�Orders : (handled(e,o,c)))}

 At the end of this chapter, we’ll revisit this set.

Well-Defi nedness

 In nonmathematical language, we describe something as well-defi ned if it has a distinct
boundary or outline. In mathematics, well-defi ned has a different meaning. Mathematicians
call something well-defi ned if it’s defi ned unambiguously. Read the following terms and
 descriptions and decide which terms are defi ned unambiguously.

 Provinces The set of Canadian provinces

 Numerator The numerator of the number 0.2 written as a fraction

 Low Temp The lowest temperature ever recorded in Russia

 Big Number The largest number that can be described with fewer than 20 words

 Contact List The name and a phone number for each of this book’s authors, alphabetized
by author’s last name

 Shortest Book The book in the Library of Congress that has the fewest pages

 Square x2

 Letter The letter B

 Let’s see if we agree on which of these are well-defi ned.

 Provinces This is a well-defi ned set: One way of denoting this set is {Alberta, British
Columbia, Manitoba, New Brunswick, Newfoundland and Labrador, Nova Scotia,
Ontario, Prince Edward Island, Quebec, Saskatchewan}.

 Numerator This number isn’t well-defi ned because we have many ways to write 0.2 as a
fraction, and they don’t all have the same numerator.

 Low Temp This is well-defi ned, even though we might not know the value.

 Big Number Although this may appear to be a valid defi nition, it’s not. Consider the number
“N plus one, where N is the largest number that can be described with fewer than
20 words.” This is a variation on the Berry Paradox.

C02626034.indd 37 2/20/2009 7:42:20 PM

38 Inside Microsoft SQL Server 2008: T-SQL Querying

 Contact List This isn’t well-defi ned if any of the authors has more than one phone number
because it doesn’t specify how we choose phone numbers for the list.

 Shortest Book Although the minimum number of pages is well-defi ned (assuming a
 standard procedure for counting pages), more than one book might have the minimum
number of pages. As a result, we can’t be sure there is a single shortest book.

 Square We don’t know the value of x, so x2 isn’t a well-defi ned number. On the other hand,
it is a well-defi ned algebraic expression.

 Letter This defi nes a particular letter of the English alphabet but not a specifi c example of
that letter in, say, a copy of this book.

 These simple examples offer a number of lessons, but I’ll mention just one in particular:
English can easily mislead. For example, two words that indicate uniqueness—the defi nite
article the and the superlative shortest—were used to describe something that wasn’t in fact
unique.

 Later in this chapter, I’ll be more specifi c about the notion of well-defi nedness as it applies
to sets.

Defi nitions

 The elements of mathematical language, like English words, have meanings—at least most
of them do. The defi nition of an English word is typically a written record of a preexisting
meaning. In mathematics, however, an object’s defi nition typically establishes its meaning.
Defi nitions in mathematics come in several forms; here are a few examples of defi nitions.
These particular defi nitions aren’t needed elsewhere in the chapter; they’re only here for
illustration.

Sample Defi nitions

 For any real number x, let �x� be the unique integer in the half-open interval [x,x+1].
The function x��x� is called the greatest integer function.

 Let T be the set of continuous bijective involutions on the unit interval.

 Let S = {(n,n+1) : n is a positive integer}

 An integer n is prime if n > 1 and n has no integer divisors d between 2 and n – 1.

 The Fibonacci sequence is the sequence of integers Fi defi ned recursively as follows:
F1 = F2 = 1; Fn = Fn–1 + Fn–2, for n > 2.

C02626034.indd 38 2/20/2009 7:42:20 PM

 Chapter 2 Set Theory and Predicate Logic 39

Undefi ned Terms

Any mathematical framework—set theory, logic, geometry, and so on—begins with some
undefi ned terms and unproven axioms—usually these are simple objects or accepted notions,
such as point or set, or that two numbers equal to the same number are themselves equal.

Equality, Identity, and Sameness

One of the most frequently used symbols in mathematics is the equal sign (=). Informally, it’s
the symbol for is, as in one plus one is two. The equal sign is used in mathematics in many
ways to represent some notion of equality, sameness, or nondistinctness. Roughly speaking
(which is all we can do without a major detour into deep questions of philosophy), it’s safe to
substitute one mathematical quantity for another one if the two are equal.

Don’t assume, however, that x=y means that x and y are identical in every possible way. Although
no one would dispute that alligator=alligator, we can still distinguish the two. A molecule of
 pigment in one of them is certainly not also in the other, and I can point to one of them, let’s
say the one on the left, and describe it as this alligator, and you know that the other one is a
 different alligator. If you have the slightest inkling that someone might be using the equal sign
imprecisely, a good question to ask is “equal as what?” The two alligators in alligator=alligator
are equal as animal names or equal as words and probably equal as character strings (though
not if one of them ends up hyphenated when this book is printed). The two alligators are
 decidedly not, on the other hand, equal as arrangements of pigment molecules.

While it might seem unnecessary to spend even this short amount of time splitting hairs, as it
were, we’ll see some practical implications later.

Mathematical Conventions

Every now and then in my beginning programming classes, a student—usually a good one—
will name variables with an extra dose of creativity, and I’ll be confronted with something
I call the penguin dialect of programming, as shown in Listing 2-1.

LISTING 2-1 Bubble sort, written in the penguin dialect

for(int penguin = 0; penguin < tiger-1; ++penguin) {
 for(int Betty = 0; Betty < tiger-penguin-1; ++Betty) {
 if (abba[Betty+1] < abba[Betty]) {
 int Whoops = abba[Betty];
 abba[Betty] = abba[Betty+1];
 abba[Betty+1] = Whoops;
 }
 }
}

for(int penguin = 0; penguin < tiger-1; ++penguin) {
 for(int Betty = 0; Betty < tiger-penguin-1; ++Betty) {
 if (abba[Betty+1] < abba[Betty]) {
 int Whoops = abba[Betty];
 abba[Betty] = abba[Betty+1];
 abba[Betty+1] = Whoops;
 }
 }
}

C02626034.indd 39 2/20/2009 7:42:20 PM

40 Inside Microsoft SQL Server 2008: T-SQL Querying

 In contrast, a textbook author might express the same algorithm this way, in what I call the ijk
dialect, as shown in Listing 2-2.

LISTING 2-2 Bubble sort, written in the ijk dialect

for(int i = 0; i < n-1; ++i) {
 for(int j = 0; j < n-i-1; ++j) {
 if (a[j+1] < a[j]) {
 int t = a[j];
 a[j] = a[j+1];
 a[j+1] = t;
 }
 }
}

Yet another category of programmer might create this version of the algorithm. Making no
 attempt to hide my own personal bias, I call this the usefulNames dialect, as shown in Listing 2-3.

LISTING 2-3 Bubble sort, written in the usefulNames dialect

for(int passNo = 0; passNo < arrSize-1; ++passNo) {
 for(int position = 0; position < arrSize-passNo-1; ++position) {
 if (arr[position+1] < arr[position]) {
 int temp = arr[position];
 arr[position] = arr[position+1];
 arr[position+1] = temp;
 }
 }
}

 The creative student chose names such as penguin and Betty in part because she wasn’t
yet familiar with the naming conventions of programming and in part because experience
hadn’t yet taught her the importance of conventions. The author of the second version
chose the names i and j because she was accustomed to an accepted system of naming
 conventions: the ijk dialect. The third author, I would venture, understands the importance of
naming conventions and knows from experience how those conventions affect the ability to
 understand and develop correct code.

The ijk dialect rose to prominence in mathematics for good reasons. Formulas are easier
to fi t on a page (not to mention the back of an envelope or a napkin) if notation is concise.
Conciseness was important, too, in the early days of computing, when statements had to fi t
on 80-column punch cards .

 I won’t abandon the venerable conventions of mathematics, but I’ll try to be aware of
the barrier to understanding they can create. Where appropriate, I’ll point out some of
the specifi c conventions, which may be useful if you decide to delve more deeply into the
 subjects of this chapter.

for(int i = 0; i < n-1; ++i) {
 for(int j = 0; j < n-i-1; ++j) {
 if (a[j+1] < a[j]) {
 int t = a[j];
 a[j] = a[j+1];
 a[j+1] = t;
 }
 }
}

for(int passNo = 0; passNo < arrSize-1; ++passNo) {
 for(int position = 0; position < arrSize-passNo-1; ++position) {
 if (arr[position+1] < arr[position]) {
 int temp = arr[position];
 arr[position] = arr[position+1];
 arr[position+1] = temp;
 }
 }
}

C02626034.indd 40 2/20/2009 7:42:21 PM

 Chapter 2 Set Theory and Predicate Logic 41

Numbers

 There are many kinds of numbers in theoretical mathematics, but in most practical settings,
numbers mean real numbers, from the familiar number line, which, like the x-axis of coordinate
geometry, extends forever in both directions from zero. Numbers to the left of zero are negative;
numbers to the right are positive.

 The real number system is fundamentally intuitive because it corresponds to familiar concepts
from geometry: length, line, point, ray. In fact, the real numbers are important because they
are the numbers with which we express things that we can measure. They also provide the basis
for nearly all kinds of calculation or computation, through the operations of arithmetic.

 Real numbers and arithmetic “play well together,” you might say. If we add some numbers
in one order—for example, we add 3.4 and 18—and then we add 30.1 to the result, we get
the same answer as if we started by adding 18 and 30.1. The nice properties real numbers
have with respect to arithmetic are taught in school: the associative law, the distributive laws,
the commutative law, and so on.

 Other important properties of the real numbers are a little less familiar but include these:
Given two positive real numbers x and y, with x the smaller, there’s a whole number n for
which y lies between nx and (n+1)x. For any two real numbers x and y, again with x the smaller,
there is another real number (in fact infi nitely many) strictly between x and y.

 Like most programming languages, T-SQL provides a data type intended to represent real
numbers. In fact, it provides two: REAL and FLOAT. However, neither these types nor SQL
Server’s other number types (some of which are termed exact types) are faithful representations
of the real number system from mathematics.

 Hold onto that thought. We’ll come back to it.

Context

 The correct interpretation of language depends on context. In some cases, the context for
interpreting a word is adjacent, as is the context for interpreting the word “fl oor” differently
in the following two sentences: “This will fl oor you” and “The fl oor is dirty.” In other cases,
the context is more general, as in the context for interpreting the remark “Watch the batter!”
 differently when at an baseball game and when in a cooking class. Every natural language
depends on context to clarify meaning, and it’s a fact of life we tend to accommodate
 naturally, for the most part.

 Mathematical expressions depend on context also, but we don’t grow to learn the details and
implications of mathematical context as naturally as we do for our native tongue. Table 2-1
presents a few examples from arithmetic and algebra where the same expression can have
more than one interpretation, depending on the context.

C02626034.indd 41 2/20/2009 7:42:21 PM

42 Inside Microsoft SQL Server 2008: T-SQL Querying

 TABLE 2-1 Expressions and Possible Meanings in Different Contexts

 Expression Possible Meaning A Context for This Meaning

 c(a+b) The application of the function c to the
argument a+b

The symbol c has been defi ned as
a function.

 c(a+b) The product of the numbers c and a+b The symbol c has been defi ned as
a number.

 b = A–1 The reciprocal of A: b = 1/A The symbol A represents a number.

 b = A–1 The inverse function of A: if A(x) = y, b
satisfi es the equation b(y) = x

The symbol A represents a function.

 iy The product of i and y The symbol i was defi ned as an integer.

 iy An imaginary number The surrounding discussion is about
 complex numbers.

 It’s possible to defi ne a system of notation far less dependent on context than the familiar
language of mathematics. Such a system would be cumbersome to learn and use, however,
because reusing symbols to mean different things in different contexts provides economy
and convenience.

Dates

 The importance of context is not restricted to the interpretation of expressions. The interpretation
of individual literal values can depend on context as well.

The concept of a calendar date is a good example of this. There’s no one “right” way to denote
calendar dates, but to communicate, we have to denote them. A character string that represents
a specifi c value is called a literal. Table 2-2 presents some literal date values and the meanings
they would have in some of SQL Server’s supported languages.

TABLE 2-2 Date Literals with Culture-Dependent Meanings

Date literal Possible meaning

A language where this

is the meaning

3 listopad 2008 The 3rd day of the 11th month of the year 2008 Polish

3 listopad 2008 The 3rd day of the 10th month of the year 2008 Croatian

13-12-09 The 12th day of the 13th month of the year 2009 US English

13-12-09 The 13th day of the 12th month of the year 2009 German

13-12-09 The 9th day of the 12th month of the year 2013 Swedish

 Depending on the server’s two-year date cutoff setting, which provides yet additional context
for the interpretation of dates, the date literal string 13-12-09 could be interpreted with the
year 1909 or 1913, depending on language.

 Fortunately, you can specify dates in culture-independent ways, and one that works well
for SQL Server is the string YYYYMMDD. (In code, be sure to surround it with quotes, as in
‘20071112’, so that it isn’t interpreted as an integer!)

Expression Possible Meaning A Context for This Meaning

Date literal Possible meaning

A language where this

is the meaning

C02626034.indd 42 2/20/2009 7:42:21 PM

 Chapter 2 Set Theory and Predicate Logic 43

Alphabetical Order

 Later in this chapter, I’ll discuss the notion of order in more detail. At this point, I’ll simply
mention that alphabetical order is another notion that depends on context. In a Spanish
dictionary from the early twentieth century, you’ll fi nd the word llama after the word lobo
because Spanish traditionally considered the word llama to begin with the letter (yes, letter,
not letters) ll, which comes after the letter l. In an English dictionary, llama begins with l; thus,
llama appears before lobo.

Functions, Parameters, and Variables

 I’ll assume you’re familiar with the language of mathematical functions, such as f(x)=x2, and
I’ll address any tricky concepts when they arise. The word parameter is worth a few remarks.
This term may mean a number of things: in the function defi nition f(x) = x2, x is a placeholder
(or more precisely, a formal parameter or free variable). If we apply the defi nition of the same
function and write f(9) = 81, the number 9 is also called a parameter (an actual parameter).
Roughly speaking, a parameter is a placeholder for a value, a value that fi lls such a placeholder,
or a value that might be a different value. In this chapter, the term parameter will mean formal
parameter or placeholder.

 Ideally, for every parameter in an expression, a well-defi ned set of values can be substituted
in its place. This set is called the parameter’s domain. If the domain of x in the expression
f(x) = x2 is the set of real numbers, we can also call x a real-valued parameter. An expression
with a parameter, such as x2, is called a parameterized expression.

Note Parameter domains often go unstated. They may be implied by conventions mathematicians
follow when they choose symbols and names: the names x, y, s, and t are typically used for
 real-valued parameters; z, and sometimes w, are good choices for complex-valued parameters; p, q,
and r are typical rational-valued parameter names; and letters near the middle of the alphabet,
 including i, j, k, m, and n, more often than not represent integer-valued parameters.

 In programming languages, domains correspond to types, and parameters correspond to
 variables. In T-SQL, a variable’s type must be specifi ed.

 To set the stage for what comes later, consider the real-valued parameter x in the parameterized,
real-valued expression x2. Despite being named real valued, neither x nor x2 has any value at all,
at least not until x is specifi ed. If we supply a value—for example, 3—for x, the expression x2 then
has a value, which in this case is 9. Supplying the value 3 for the parameter x is informally called
plugging 3 in for x or, formally, binding x to the value 3. We can be sure an expression represents
a specifi c value when all of its parameters have been bound.

Instructions and Algorithms

 The topics of this chapter, set theory and logic, are mathematical frameworks for describing
things and facts, respectively, both of which are most easily considered static. While a computer
program—source code—is static, the execution of a program is dynamic. If the program is

C02626034.indd 43 2/20/2009 7:42:21 PM

44 Inside Microsoft SQL Server 2008: T-SQL Querying

 useful, the execution is almost certainly nondeterministic. In most programming languages, the
code describes the process of execution.

 A rigorous mathematical treatment of program code is more straightforward than one of
 program execution. At the least, the mathematical tools for describing execution are further
 removed from the mathematical foundations of set theory and logic. The beauty of SQL,
though, is that its code can describe results directly, without having to express algorithms and
describe the process of execution. Not surprisingly, the inspiration that led to SQL was set theory.

Set Theory

 Itzik Ben-Gan is one of this book’s authors. That’s a fact, and database systems like SQL
Server 2008 help us identify facts and separate them from fi ction. Here are some other facts
about who is and who isn’t one of this book’s authors: Dejan Sarka is one; Bill Gates is not.

 In the language of sets, we can describe the set of authors of this book, and we can use the
language of set theory to express facts.

 If we name the set of authors of this book A, we can write A = {Itzik Ben-Gan, Lubor Kollar,
Dejan Sarka, Steve Kass}. We call A a set, and we call the four authors elements, or members,
of A. The statement that Itzik is one of the book’s authors can be expressed as Itzik�A.

 Note As we’ll soon see, there should always be some universal context for a given set’s elements
and its nonelements. For the preceding set A, the context might be people, and we could
 describe the set A of people, not just the set A, to be the authors of this book. We won’t always
allude to or specify this universal context, but wherever we see or say set, we should be prepared
to answer set of what?

Defi nition of the Set Membership Operator

 The symbol � is the set membership operator. If A is a set and x is a potential member
of A, we write x�A to mean that x is a member of A, and we write x�A to mean that x
is not a member of A.

 Note For given values of x and A three scenarios are possible:

 x is an element of A In this scenario, x�A is true, and x�A is false. For example, this scenario
would hold if x were the number -12 and A were the set of even integers.

 x is not an element of A x�A is false, and x�A is true. For example, this scenario would hold if x
were the state of Maine and A were the set of Canadian provinces as of the year 2008.

 The expressions x�A and x�A are (both) not valid propositions For example, this scenario
would hold if x were the state of Maine and A were the set of ingredients in coq au vin.
In this case, A is a set of some food ingredients, and Maine is not a food ingredient. This
scenario would also hold if A were not a set.

C02626034.indd 44 2/20/2009 7:42:21 PM

 Chapter 2 Set Theory and Predicate Logic 45

Set theory is the fundamental underpinning of mathematics, and the fundamental concept
of set theory is the notion of membership.

Notation for Sets

 Braces, like I used earlier when I wrote A = {Itzik Ben-Gan, Lubor Kollar, Dejan Sarka, Steve
Kass}, are standard notation in mathematics for sets. Put some things between braces, and
you have a set. You can even put nothing between the braces, like this: {}, and it’s a set,
known for obvious reasons as the empty set.

Enumeration

 If we list a set’s elements—separated by commas and between braces—we’ve enumerated
the elements of the set. Enumeration of elements is a simple way to denote a set if the set
doesn’t contain many elements. If the set is large but the elements have a pattern, we can
describe the set using an ellipsis (. . .). If we need to and the intent is clear, we can use more
than one ellipsis and (in a pinch) semicolons to separate sublisted groups of elements in
 patterns, as shown in Table 2-3.

 TABLE 2-3 Sets Described Using Enumeration

 Set (notation) Set (English)

 {1,2,3,4, . . .} The positive integers

 {0, –1, 1, –2, 2, –3, 3, –4, 4, . . .} The integers

 {. . ., –3, –2, –1, 0, 1, 2, 3, . . .} The integers

 {A, B, C, . . ., Z} The letters of the English alphabet

 {A, B, C, . . ., Z, a, b, c, . . ., z} Uppercase and lowercase English letters

 {0; 0.0, 0.1, 0.2, . . ., 0.9; 0.01, 0.02, . . ., 0.99; . . .} The decimal numbers at least 0 but less than 1

Set-Builder Notation

 Set-builder notation also uses braces, but it avoids listing every element explicitly without
 resorting to ellipses. Set-builder notation has two common variations. In one, the elements
of a set are described as those elements from another set that satisfy a condition. Here is
how you could write the set E of positive even integers with this kind of set-builder notation:
E = {n�	 : n>0 and (n/2)�	}. In the other variation, set-builder notation describes the
 elements of a set as those “built” from the elements of another set by a formula. Here is a
way to do that for the same set E: E = {2n : n�	+}.

 Note In the defi nition of the set E, / is the division operator of arithmetic, which is the inverse of
multiplication. In particular, 1/2 equals one-half. In T-SQL and many strongly typed programming
languages, 1/2 equals zero because integer division yields the integer result of truncating the
quotient towards zero.

Set (notation) Set (English)

C02626034.indd 45 2/20/2009 7:42:21 PM

46 Inside Microsoft SQL Server 2008: T-SQL Querying

 The symbol 	 is standard mathematical notation for the set of integers, as is 	+ for the
 positive integers.

Well-Defi nedness of Sets

 The word set is usually left undefi ned, but particular sets, such as the set of this book’s
 authors, are defi ned as needed. One way to be sure S is well-defi ned is to verify the following
two conditions:

■ There is a universal set U or domain of discourse for S, whether explicitly stated or
 understood from context. The set U contains precisely the elements of S together with
the nonelements of S.

■ The defi nition of S is suffi cient to answer the question “Is x an element of S?” for any
element x in U.

 Not all authors insist on the fi rst requirement, but it’s extremely useful. It’s also appropriate to
the context of learning about a typed programming language (T-SQL) and the fundamentals
of databases, where universal sets are important.

Domains of Discourse

 Recall the earlier example from this chapter where we represented the statement “employee
e handled order o for customer c” as handled(e,o,c). Given a particular employee e, order o,
and customer c, the statement, or equivalently the expression handled(e,o,c), has a truth value
of either true or false. These two values, true and false, were the only possible values of the
expression handled(e,o,c).

 On the other hand, I used this example without any indication of what possible values the
input variables e, o, and c could equal. What are the possible ways in which the variable e can
represent “a particular employee,” o can represent “a particular order,” and c can represent
“a particular customer”?

 At fi rst, you might think this is a needlessly picky question. As long as o is an order, what’s
the problem? But if I’m charged with writing the code to implement the evaluation of
handled(e,o,c), I need to know the possible values of the variable o. Without knowing, I can’t
be sure my implementation is valid. The architect whose model required an implementation
of handled() also has to know to be able to validate the model.

 Without a well-defi ned domain for the variable e, representing “all possible employees,” we’ll
never be able to validate a model that uses the notion of employee, let alone that tries to
represent notions such as handled. Notions like that of employee are central to the effective
use of databases. Let me give you a concrete example of where you might fi nd domains of
discourse in the business world and why careful attention to them is important: forms.

C02626034.indd 46 2/20/2009 7:42:21 PM

 Chapter 2 Set Theory and Predicate Logic 47

Domains and Bad Data

At some point in your life you’ve had to fi ll out a form with details like your name, your date
of birth, your address, and so on—phone number, e-mail, citizenship—the list is endless.
Whether it was a paper form or something you fi lled out online, your answers had to fi t. (Even
if you could “attach additional pages as needed,” your answers had to fi t in the envelope or
mailbox!) Furthermore, if the information you provided was destined for a well-designed
 database, the information had to fi t not only the form but also (after interpretation by a data
entry clerk, a software interface, or another intermediary) the constraints of the database
design.

 For this example, suppose that the forms we’re thinking about are receipts from individual sales
and that these forms have a place for, among other things, the date of the sale and the tax
paid on the sale. Down the road, these forms are entered into a database, and the data may be
used to generate a report—perhaps a report of tax receipts by month. To produce the report,
the sales data has to be partitioned, or grouped, into months, according to the sale date, and
the tax receipts have to be added up for each month. However the data is represented, we
have to be able to fi gure out a month and a number from each receipt.

 Because you’re reading this book, it’s probably safe to assume that you’ve had to think about
this kind of process. You’ve probably had to get your hands dirty in it. More likely than not,
you’ve also had the experience of seeing or worrying about information that looks like the
information in Table 2-4.

 TABLE 2-4 Sale Dates and Tax Received for Some Sales

 Receipt Number Sale Date Tax Collected Customer Name

 1 Jul 3 $1.24 Mark Hassall

 2 Sunday, 10/3 exempt Torstonen

 3 Sunday, 10/3 Carole Poland $2.56

 6 10/12/2007 N/A CAROLE POLAND

 10-13-2007 $3.00 POLAND

 11 10-13-2007 $1.24 Yao-Chiang

 11 Febuary ‘07 Did not provide

 12 February 11 $18.24 katrin

 I3 Feb 13 3.10 FRNDO

 14 2/13/07 .41 Jim Wickam (sp?)

 #17 14 Feb 2.25 Sittichai

 18 Carole Poland 5 blank

 Not even the most talented programmer can write procedures to report tax receipts by month
from data like this—well, not procedures that produce correct reports. The requirement is
 incompatible with the data, and one or the other has to be bent.

Receipt Number Sale Date Tax Collected Customer Name

C02626034.indd 47 2/20/2009 7:42:21 PM

48 Inside Microsoft SQL Server 2008: T-SQL Querying

 Let’s assume the data is bent into shape, and instead of the unmanageable information in
Table 2-4, the data appears as shown in Table 2-5.

TABLE 2-5 Sale Dates and Tax Received for Some Sales

Receipt Number Sale Date Tax Collected Customer Name

1 7/3/2007 1.24 Mark Hassall

2 10/3/2007 exempt Torsten Arndt

3 10/3/2007 2.56 Yao-Qiang Cheng

6 10/12/2007 0 Carole Poland

7 10/13/2007 3.00 Carole Poland

11 10/13/2007 1.24 Yao-Qiang Cheng

11 2/25/2007 NULL

12 2/15/2007 18.24 Katrin Gulbis

13 2/29/2007 3.10 Nkenge McLin

14 3/13/2007 0.41 Jim Wickham

17 3/16/2007 2.25 Sittichai Tuntisangaroon

18 3/12/2007 5 blank

 If you looked closely, you may have noticed something strange about receipt 13’s sale date.
In the row containing 13 in the Receipt Number column, the Sale Date column contains
2/29/2007, which doesn’t represent a date. The Sale Date column still contains strings, not
dates. While most of the values this time do represent dates, not all of them do. Whether
we use strings, numbers, or another data type, we need a column that holds faithful,
 unambiguous representations of dates.

 Note Wish as we might, someone, if not us, has to accommodate the receipt that has an
 illegible or missing date. Recognizing the value of a column to hold faithful, unambiguous
 representations of dates—when they existed, which might not be always—those responsible for
SQL provided for nullable column declarations. I won’t have too much to say about NULL, I’m
afraid. The mathematics becomes much harder—some might say intractable—if you attempt to
accommodate NULLs.

 Dates and literal date strings aren’t the same, literal date strings and strings aren’t the same,
and the interpretation of literal date strings isn’t invariant from culture to culture, epoch to
epoch, or system to system.

 The best we can do is document and defi ne categories (such as dates), identify one or more
faithful representations of them (such as date strings in a particular format), and understand and
record as much as we can about the representations and concepts, their cultural interpretations,
and what universe of potential values serves as the domain of discourse for a category.

 The data in Tables 2-4 and 2-5 contain other properties that will make it hard to create a tax report.
I won’t say anything about them, but I encourage you to think about why, mathematically, they
cause problems.

Receipt Number Sale Date Tax Collected Customer Name

C02626034.indd 48 2/20/2009 7:42:21 PM

 Chapter 2 Set Theory and Predicate Logic 49

Domains and Modeling

 Now return to this chapter’s fi rst example. As a mathematical object, fromUSA is a function.
It takes one input value (an employee e) and yields (more precisely, associates to that value)
a unique output from the set {true, false} of logical truth values. In mathematics, function
doesn’t belong to a well-defi ned category, nor does the more specifi c functions of one
 variable that return truth values as output. To work with functions mathematically, we need to
be precise about the function’s domain.

 Because notions such as employee simply fail to admit a well-defi ned universal set of any
reasonable description, we choose properties or surrogates that work. We may not be able
to describe “all employees,” but we can decide that employees, when we need to refer to
them in questions or assertions of fact, must be identifi ed unambiguously by a specifi c
group of properties (such as the combination of name, phone number, and birth date) or
by an identifi er of some kind. We can then defi ne the universal domain of employees as the
 universe of such identifi ers.

 Once we specify a domain for employees (or values that represent employees), we can be
precise about what kind of mathematical object handled is: a Boolean-valued function of one
variable, with domain the set of employee identifi ers.

 Whether we choose to represent an object by a surrogate, as we might represent an order by
an order number, or by one or more properties, as we might represent a person by birth date
and some DNA measurements, we expect the surrogate to represent the object faithfully.

Faithfulness

 As you know by now, we may think about concepts, but in practice, we must work with
 representations of concepts. As best we can, we choose representations of concepts that
don’t mislead us or to be more precise, that don’t require us to sacrifi ce our ability to answer
questions.

Defi nition of a Faithful Representation

 Let X and S be sets, and let
 be a collection of functions. (Think of X as your objects
of interest; think of S as the strings, numbers, or other objects you hope to use to
 represent elements of X. Think of
 as the tools you need to answer questions about
elements of X for some larger purpose.)

 In addition, let � : X � S be a function that associates to each x� X a representation
�(x) in S. The function � is called a representation of X, and it is faithful for
 if there
is a collection of functions
� that refer to S instead of X, and to �(x) instead of x, but
that correctly perform every calculation that was possible in
 before the substitution
of S for X and �(x) for x.

C02626034.indd 49 2/20/2009 7:42:21 PM

50 Inside Microsoft SQL Server 2008: T-SQL Querying

 Informally, a representation is a naming scheme, and a faithful representation is a naming
scheme that works. A naming scheme for things can work if the names alone allow you to
keep track of what you need to keep track of.

 Suppose X is the set of US dollar-denominated bills manufactured by the United States
Bureau of Engraving and Printing (BEP). If you were a shop owner, you might need to answer
just one or two kinds of questions about elements of X: how much is a particular bill worth,
and how many of each denomination are “here” (where “here” might refer to a customer’s
hand or your cash drawer).

 Note Another question you might think of is “Is this bill genuine, as opposed to counterfeit?”
That’s not a question about elements of X, however, because X is the set of dollar-denominated
bills manufactured by the United States Bureau of Engraving and Printing. That agency doesn’t
manufacture counterfeit bills!

 A system that represented bills in X as strings such as $1, $10, $2, and so on would serve your
purposes, as long as the strings correctly refl ected the bill’s face value. This way to represent
the elements of X would be faithful to your needs. This same system of representing the bills
in X might not be faithful to the needs of a bank, however. You can imagine that a bank’s
theft-insurance contract might require it to keep track of the individual large-denomination
bills it handled. Fortunately, the BEP prints identifying numbers on each bill it prints, and
those numbers are unique1 within each denomination and series of issue; representing bills
by their series of issue, serial number, and denomination would work for the bank’s purpose
because it fully distinguishes every individual element of X from every other.

 A representation can still be faithful even if it doesn’t refl ect everything directly. We’ll see this
in the next example.

 Let C be the set of automobiles manufactured in North America since 1980.

 One can imagine the need to keep track of many things about cars, but consider just two: the
year of manufacture and the amount of gasoline in the car’s tank at a particular moment in time.
Each can be thought of as a function on the set C: let year_made(c) be the year in which car c
was made, and let gas_level(c) be the function of time that gives us the amount of gasoline in the
tank of car c at time t, where t is between the time the car rolled off the assembly line and now.
For actual calculations with numbers, though we’ll do none here, we would also indicate the
units of measurement, which might be US gallons for an amount of gasoline and coordinated
universal time (or UTC) for a moment in time.

 These two functions, year_made and gas_level, are well-defi ned functions of a car. For a
 particular car c, the meaning of year_made(c) is well-defi ned. For a given car c, gas_level(c) is

1 This is true by design and, let’s assume, in practice. In theory, however, the BEP presses can malfunction, and bills
could be printed with nonunique, illegible, or multiple serial numbers.

C02626034.indd 50 2/20/2009 7:42:21 PM

 Chapter 2 Set Theory and Predicate Logic 51

also well-defi ned. It may be impossible in 2009 to discover the exact value of “the amount of
gasoline in this car at midnight on April 9, 2004,” but that phrase unambiguously describes a
value nonetheless.

 Many representations for the set C are faithful for the functions year_made and gas_level.
The VIN, or vehicle identifi cation number, which by law (most) vehicles must have, is one.
Another is the car’s owner and license plate number. While neither would make gas_level easy
to calculate, the point is that they would not make it impossible. On the other hand, we couldn’t
use a representation that failed to distinguish every car from every other, as we could for bills.

 Note that the representation (owner, license plate number) doesn’t refl ect the identity of
each car directly, in the sense that we can’t discover the representation details by studying a
car. This indirectness of representation doesn’t translate to unfaithfulness, however.

No REAL Faithfulness

 Earlier in this chapter, I asked you to hold onto a thought, and we’ll return to it now. I said
earlier that the data types SQL Server provides for numbers don’t faithfully represent the real
number system of mathematics. We can now be precise. Here’s a simple demonstration in
code that the REAL type doesn’t represent real number faithfully:

DECLARE @a REAL = 0.001;

DECLARE @b REAL = 9876543;

DECLARE @c REAL = 1234567;

SELECT

 @a * (@b * @c) as [a(bc)],

 (@a * @b) * @c as [(ab)c]

 This code produces the following result:

a(bc) (ab)c

------------- -------------

1.219325E+10 1.219326E+10

 Notice that the two result values, which are the results of multiplying the same three
 numbers in different orders, are slightly different. In other words, while in the “real” real
numbers and arithmetic, a(bc) = (ab)c, it’s not true for SQL Server’s representation of the
real numbers and arithmetic. This is no slight against SQL Server, and the result conforms to
the important IEEE standard for fl oating-point arithmetic. But computer representations of
 numbers aren’t faithful to arithmetic, and while they suit most needs, they don’t answer all
questions with the “correct” mathematical answers.

 To the extent that degrees of faithfulness exist, SQL Server represents mathematical sets and
their operations with a considerable degree of faithfulness, more than it (or most any other
programming language) does for numbers and arithmetic.

DECLARE @a REAL = 0.001;

DECLARE @b REAL = 9876543;

DECLARE @c REAL = 1234567;

SELECT

 @a * (@b * @c) as [a(bc)],

 (@a * @b) * @c as [(ab)c]

C02626034.indd 51 2/20/2009 7:42:21 PM

52 Inside Microsoft SQL Server 2008: T-SQL Querying

Russell’s Paradox

 In about 1901, Bertrand Russell discovered that the informal notion of set in mathematics
was logically fl awed. The informal notion of set takes as axioms (fundamental propositions)
that any collection of things is a set and that any criterion can serve to defi ne membership
in a set. Russell showed that these axioms were inconsistent because they lead to a
contradiction.

 Note Russell’s discovery doesn’t mean the axioms of set theory are false, only that they are
 incapable of serving to found a consistent mathematical theory.

 Russell reasoned as follows: Let U be the set of all sets. Since U is a set and at the same
time every set is an element of U, then U�U. Recognizing that the property U�U was
 curious, Russell considered the collection of all curious sets—sets that contain themselves as
 elements. Call this set of all curious sets C; we can express C as {x�U : x�x}. Similarly, consider
everything else (the set of noncurious sets) NC. Every set is either curious (in which case x�x),
or it’s not curious (in which case x�x). Thus, NC = {x � U : x � x}.

 No contradiction so far—sets are either curious or they aren’t. But Russell wondered which
kind of set NC was. Is NC a curious set, or is it a noncurious set? Because there are only two
possibilities, we can explore each one.

 Let’s explore the possibility fi rst that NC is a curious set. If so, it belongs to the set of all
 curious sets, which we’ve called C. In other words, NC� C. But at the same time, if NC is a
 curious set, it contains itself as an element (that’s what curious means), so NC� NC. This can’t
be; NC can’t be an element of both C and NC because no set can be both curious and not
curious. This possibility led to a contradiction.

 Now let’s explore the possibility that NC is not a curious set. It’s the only possibility left,
by the way. Reasoning much as before, if NC is not a curious set, it doesn’t contain itself
 (otherwise, it would be curious). Therefore, NC� NC. But if NC is not an element of NC, it’s
not noncurious, which makes it curious. This possibility also led to a contradiction.

 Russell’s argument has become known as Russell’s Paradox. By itself, it’s not really a paradox
at all; it’s a valid demonstration that the informal approach to sets (nowadays called naïve
set theory) is inconsistent. What does remains something of a paradox is whether a correct
 theoretical foundation for mathematics exists.

 For us, Russell’s Paradox underlines the importance of working within a well-defi ned
 universal set.

C02626034.indd 52 2/20/2009 7:42:21 PM

 Chapter 2 Set Theory and Predicate Logic 53

Ordered Pairs, Tuples, and Cartesian Products

 An important concept in mathematics—and one that is central to database programming—is
that of an ordered pair (a,b). To include ordered pairs in a rigorous treatment of mathematics,
there must be a universal set of ordered pairs. This is the Cartesian product.

Ordered Pairs and k-Tuples

 We will consider ordered pair to be a new undefi ned term, like set. Recall that a particular set
is defi ned by its members and nonmembers; a particular ordered pair is defi ned by its fi rst
part and its second part. We also accept without defi nition the term tuple, or k-tuple, for an
object that, like an ordered pair, has parts but where there are k parts. An ordered pair is a
tuple—in particular, a 2-tuple; (x,y,z,w) is also a tuple—and, in particular, a 4-tuple.

Notation and Defi nitions for Ordered Pairs and Tuples

 If s and t are elements of some domains, (s,t) is called the ordered pair with fi rst part
(or coordinate) s and second part (or coordinate) t. Two ordered pairs (s,t) and (x,y) with
matching domains are equal if their corresponding parts are equal: s=x and t=y.

 If s, t, . . ., r are (k-many) elements of some domains, (s,t,. . .,r) is called an ordered k-tuple.
Reference to the parts of (s,t,. . .,r) and equality for k-tuples follow the analogues for
 ordered pairs.

 Subscript notation is used for the parts of ordered pairs and tuples, when the tuple
 itself is represented by a single symbol. It’s especially convenient when all the parts
have a common domain. If r is a k-tuple of real numbers and j is an integer between
1 and k, rj is a real number and denotes the jth part of r.

 The most familiar example of ordered pairs in mathematics, and perhaps the original one, is
the usual notation for points in the coordinate plane: (x,y), where x and y are real numbers.
The seventeenth-century mathematician René Descartes used this notation, which is now
called the Cartesian coordinate system in his honor.

 Naming the points in the plane (x,y) works. In the sense we described earlier, this notation
faithfully represents the essence of points. Thus, nothing is lost by saying “the point (x,y)”
 instead of “the point represented by (x,y).”

 The set of all points in the plane is P = {(x,y) : x� and y�}. A more compact way to write
the set P is ×, which mathematicians understand to mean the same thing and which is
called the Cartesian product of and .

C02626034.indd 53 2/20/2009 7:42:21 PM

54 Inside Microsoft SQL Server 2008: T-SQL Querying

The Cartesian Product

 A Cartesian product is the domain of discourse for ordered pairs or tuples. Here’s the general
defi nition.

Defi nition of Cartesian Product

 Let S and T be sets. The Cartesian product of S and T, denoted S× T, is the set {(s,t) : s�S
and t�T}. If no confusion arises, the terms S-coordinate and T-coordinate can be used in
place of fi rst coordinate and second coordinate, respectively, for the parts of elements
of S×T. The sets S and T are called factors (and if needed, the fi rst and second factors,
respectively) of S× T.

 Cartesian products with more than two factors are defi ned analogously as sets of tuples,
with no distinction made between, for example, (A×B)×C, which contains elements of
the form ((a,b),c), and A×B×C, which contains elements of the form (a,b,c).

 Note In the defi nitions for ordered pairs, equality of ordered pairs was defi ned as coordinate-wise
equality on the coordinate parts. Any operation defi ned on a Cartesian product’s factors can
 similarly be “lifted,” or imparted to the elements of S×T. When this is done, the operation is said
to be a coordinate-wise operation. In the Cartesian plane, for example, a “coordinate-wise +”
 operation combines the points (x,y) and (s,t) to obtain (x+s,y+t). With the exception of the
= operator, don’t assume a familiar symbol represents a coordinate-wise operation on ordered
pairs (or tuples). For example, although |s| means the absolute value of the number s, |(s,t)| does
not represent (|s|,|t|).

 The Cartesian product is not commutative: A×B and B×A are not the same when A and B are
different.

The Empty Set(s)

 The empty set contains no elements, but what is its universe? If imagining a set of all sets
gets us into trouble, a set of all possible elements can only be worse because sets can
be elements of sets. As we’ve seen before, using the word the doesn’t make something
unique. The empty set of integers is the set whose elements are (there are none) and whose
 nonelements comprise all integers. On the other hand, the empty set of English words is the
set whose elements are (there are none) and whose nonelements comprise all English words.

 How many empty sets are there? Perhaps my insistence that sets have well-defi ned domains
has backfi red and buried us in empty sets! Fortunately, we can declare the question invalid.
Our framework only defi nes equality of things and questions such as “how many?” within
some universal set U, and no universal set contains “all the empty sets.” We do want to know
how to interpret any sentence containing the phrase “the empty set,” and that we can know.

C02626034.indd 54 2/20/2009 7:42:22 PM

 Chapter 2 Set Theory and Predicate Logic 55

Defi nition of the Symbol �
 The symbol � represents the empty set. When the domain of discourse is the universe
U, � represents the subset of U for which x�� is false for every x in U.

 Note One attempt to resolve Russell’s Paradox is to create a tower of universal sets, where the
depth of set-within-set-within-set-within-set. . . nesting is controlled. The nth universal set can
only contain elements from the previous universal set, and this prevents any universal set from
containing itself.

The Characteristic Function of a Set

 Set theory, functions, and logic are intimately connected, and one connection among them is
the notion of the characteristic function of a set.

Defi nition of the Characteristic Function of a Set

 If S is a set with universe U, the characteristic function of S, denoted 1S, is the function
of U, whose value is 1 for elements in S and 0 for elements not in S.2 As a consequence,
the statements x � S and 1S(x) = 1 are logically equivalent and interchangeable.
Similarly, the statement x � S is logically equivalent to the statement 1S(x) = 0.

 The characteristic function of a set S completely characterizes S. Its domain is the universe U,
and the elements of S are precisely the elements x of U for which 1S(x)= 1. As a result, we
can defi ne a set by specifying its characteristic function, and this turns out to be particularly
 useful in some cases.

 We now have several ways to describe a set: by description, by enumeration or set-builder
notation, by condition, and by characteristic function. For a moment, assume that the
 domain of discourse is the integers. Here are four defi nitions of the same subset of the
integers.

 Description S is the set of positive even integers.

 Enumeration and Set Builder S = {2, 4, 6, 8, 10, . . .}, or S = {2k : k�	+}

 Condition S = {n : n>0 and n is an integer multiple of 2}

 Characteristic Function S is the set whose characteristic function is f(n), where f(n) is defi ned
for integers n as follows: If n is negative, odd, or zero, f(n) = 0; otherwise, f(n) = 1.

2 Another common notation for the characteristic function of S is XS, using the Greek letter chi.

C02626034.indd 55 2/20/2009 7:42:22 PM

56 Inside Microsoft SQL Server 2008: T-SQL Querying

Cardinality

 Informally, the cardinality of a set is the number of elements in the set. For example, the
 cardinality of {134, −11, 33} is three because there are three elements in the set. Similarly,
the cardinality of {} is zero, and the cardinality of {Itzik, Lubor, Dejan, Steve} is four. We have
 several ways to express the cardinality of a set in words:

 The cardinality of S is four.

 The set S has cardinality four.

 S contains four elements.

 Earlier in this chapter, we were careful to point out that sets and depictions of sets are
 different things. We also noted that it’s important to know what the universe is. These
 details are still important. As sets of integers, {1+1, 5−2, 2+1}, {2, 3, 3}, and {3, 2} all denote
the same set: the set containing the two integers 2 and 3, which has cardinality two. As sets
of arithmetic expressions, however, they aren’t the same; the fi rst contains three elements
 (because it contains three different expressions), whereas the second and third each contain
two elements.

 Mathematicians use the shorthand notation |S| for the cardinality of the set S. It’s identical to
the notation for the absolute value, and context clears up the meaning: if S is a number, |S| is
the absolute value of S, and if S is a set, |S| is the cardinality of S.

Formal and Constructive Defi nitions of Cardinality

 Most formal defi nitions of cardinality use the idea of a one-to-one correspondence. If the
elements of S can be put into one-to-one correspondence, or matched up, with the integers
from 1 up to k, S is said to be fi nite and have cardinality k. This works in part because of the
rather obvious (but nontrivial to prove) fact that the elements of a set can be matched up
with the integers from 1 to k for at most one value of k. The formal defi nition of cardinality in
terms of correspondence lends itself to an effective treatment of infi nite sets.

 For fi nite sets, we can give a constructive defi nition of cardinality in terms of characteristic
functions. Recall that every set S is characterized by a function 1S (the characteristic function
or membership function or S), where 1S(x) is defi ned and equal to either 0 or 1 for each x in
the universe for S.

 Defi nition: Let S be a fi nite set with universe U. The cardinality of S is defi ned to be the sum
of the values 1S(x). In other words, |S| := ∑ x�U 1S(x)

 A number of useful results about cardinality follow from this defi nition and earlier results
about characteristic functions.

C02626034.indd 56 2/20/2009 7:42:22 PM

 Chapter 2 Set Theory and Predicate Logic 57

A Simple Result about Cardinality

 The cardinality of the empty set is zero: |�| = 0. Recall that 1�(x) always equals zero.
Therefore, |�| is a sum of zeros and equals zero.

Order

 If I asked you to put the numbers 12.4, 5.2, 16.0, and 0.7 into numerical order, you’d list them
this way: 0.7, 5.2, 12.4, 16.0. Similarly, if I asked you to alphabetize the names Itzik, Steve,
Dejan, and Lubor, you’d list them in the following order: Dejan, Itzik, Lubor, Steve. In each
case, you can do this because given two different names (or numbers), it’s always the case
that one of them precedes the other, and you know the rule.

 A set of values can be put into order when we have an appropriate notion of is less than,
comes before, or precedes. In this section, we’ll investigate notions of precedence, and in
 particular, we’ll identify what properties allow us to use a given defi nition of precedence
to put things in order. Mathematically, precedes (for a given universe, such as numbers or
names) is a Boolean-valued function of two variables, where the domain of each variable is
the given universe.

Numerical Order

 When we talk about numerical order, precedes means is less than, and x is less than y is
 usually written as x<y. With regard to real numbers, everyone agrees on the meaning of <.
We say x<y if and only if y–x is a positive number.

 Note The astute reader might catch the fact that this defi nition of < is problematic because
we haven’t defi ned the term positive. In fact, we haven’t defi ned a lot of things, such as what the
number 5.2 means, for example. Fortunately, as long as you and I agree on the rules of arithmetic
and simple notions like positive, we’ll be fi ne. A thorough development of the real number
 system is well beyond the scope of this chapter.

Alphabetical Order

 When we talk about alphabetical order, the meaning of precedes is culture dependent.
In most programming languages, the precedes operator for strings is denoted <, just like
it is for numbers. And in most programming languages and cultures, alphabetical order
would provide that Dejan < Itzik, Itzik < Lubor, and Lubor < Steve. However, there’s often no
 consensus among cultures about alphabetical order, and it’s often not obvious what cultural

C02626034.indd 57 2/20/2009 7:42:22 PM

58 Inside Microsoft SQL Server 2008: T-SQL Querying

rules the < operator is using. In T-SQL, you can sometimes apply cultural rules explicitly by
specifying a collation, as I’ve done in the following example:

DECLARE @Names TABLE (

 name VARCHAR(20)

);

INSERT INTO @Names VALUES

 ('DeSzmetch'),('DESZMETCH'),('DESZMETCK'),('DesZmetch'),('deszmetch');

SELECT

 name,

 RANK() OVER (ORDER BY name COLLATE Latin1_General_BIN) AS [Lat...BIN],

 RANK() OVER (ORDER BY name COLLATE Traditional_Spanish_CI_AS) AS [Tra...CI_AS],

 RANK() OVER (ORDER BY name COLLATE Latin1_General_CS_AS) AS [Lat...CS_AS],

 RANK() OVER (ORDER BY name COLLATE Latin1_General_CI_AS) AS [Lat...CI_AS],

 RANK() OVER (ORDER BY name COLLATE Hungarian_CI_AS) AS [Hun..._CI_AS]

FROM @Names

ORDER BY name COLLATE Latin1_General_BIN;

This is the output:

name Lat...BIN Tra...CI_AS Lat...CS_AS Lat...CI_AS Hun..._CI_AS

---------- ----------- ----------- ----------- ----------- ------------

DESZMETCH 1 2 4 1 2

DESZMETCK 2 1 5 5 5

DeSzmetch 3 2 3 1 2

DesZmetch 4 2 2 1 1

deszmetch 5 2 1 1 2

As you can see from the output, there’s no single correct way to rank the names DeSzmetch,
DESZMETCH, DESZMETCK, DesZmetch, and deszmetch in alphabetical order.

Note in particular that alphabetical order doesn’t necessarily order strings in a character-by-
character fashion. In the language of T-SQL, understand that you cannot expect these two
ORDER BY clauses to produce the same results, even though for some collations they will:

ORDER BY string;

ORDER BY

 SUBSTRING(string,1,1),

 SUBSTRING(string,2,1),

 ...

Trichotomy

Given two real numbers x and y, x is either less than, equal to, or greater than y. This
 fundamental property of the real numbers, that exactly one of x<y, x=y, and x>y is always
true, is known as the law of trichotomy.

DECLARE @Names TABLE (

 name VARCHAR(20)

);

INSERT INTO @Names VALUES

 ('DeSzmetch'),('DESZMETCH'),('DESZMETCK'),('DesZmetch'),('deszmetch');

SELECT

 name,

 RANK() OVER (ORDER BY name COLLATE Latin1_General_BIN) AS [Lat...BIN],

 RANK() OVER (ORDER BY name COLLATE Traditional_Spanish_CI_AS) AS [Tra...CI_AS],

 RANK() OVER (ORDER BY name COLLATE Latin1_General_CS_AS) AS [Lat...CS_AS],

 RANK() OVER (ORDER BY name COLLATE Latin1_General_CI_AS) AS [Lat...CI_AS],

 RANK() OVER (ORDER BY name COLLATE Hungarian_CI_AS) AS [Hun..._CI_AS]

FROM @Names

ORDER BY name COLLATE Latin1_General_BIN;

C02626034.indd 58 2/20/2009 7:42:22 PM

 Chapter 2 Set Theory and Predicate Logic 59

Induced Order

The comparison operator < is what allows us to put real numbers into order—to sort them.
Another way to say this is to say that the usual ordering of the real numbers is the ordering
induced by the < operator.

By this point, you should be suspicious every time I use the word the, and I used it in the
 previous sentence in the ordering. Not every comparison operator on a set of things induces
a well-defi ned ordering, or an ordering at all, but less-than for numbers does.

A Trichotomous > That Doesn’t Induce an Ordering

In the game rock-paper-scissors, the rules say that rock beats scissors, paper beats rock,
and scissors beat paper. The idea of beats is a comparison, so we could defi ne the >
operator on the set {rock, paper, scissors} to mean beats, according to the game’s
rules. It shouldn’t take you long to realize that it’s not possible to order rock, paper,
and scissors from “best to worst” according to the > operator. In this case, then, “the
 ordering induced by the > operator” is not well-defi ned.

The < operator for real numbers induces what mathematicians call a total order. To induce
a total order, a comparison operator not only has to be trichotomous but also has to be
 antisymmetric and transitive. We’ll take a look at these properties later.

Ordinal Numbers

Earlier, I defi ned cardinality for fi nite sets. In particular, I observed that cardinality was
 well-defi ned. The question “The set S contains how many elements?” asks for a well-defi ned
answer, which might be “The set S contains 10 elements.” Notice how this question about
cardinality and the sentence that answered it follow the pattern illustrated in Table 2-6.

TABLE 2-6 A Question Answered by a Cardinal Number

 Description Sentence

 Question sentence The set S contains how many elements?

 Question-word identifi ed The set S contains how many elements?

 Question-word replaced by a fi ll-in-the-blank The set S contains elements?

 Blank fi lled in to produce the answer sentence The set S contains 47 elements.

 Mathematical version of the question Solve for n: |S| = n.

Given a set S, the question in this case (“The set S contains how many elements?”) has a
 well-defi ned right answer. That’s because the cardinality function, which answers “how many
elements” questions about sets, is a well-defi ned function. Numbers that answer a how many
question are called cardinal numbers in mathematics because they express the cardinality of
a set. The fi nite cardinal numbers are exactly the nonnegative integers, by the way, although

Description Sentence

C02626034.indd 59 2/20/2009 7:42:22 PM

60 Inside Microsoft SQL Server 2008: T-SQL Querying

there are many different infi nite cardinal numbers. Infi nite sets are not all infi nite in the
same way, one could say. Unfortunately, we won’t have a chance to look into that fascinating
 corner of mathematics here.

 Table 2-7 offers the same analysis of a similar question and its answer.

TABLE 2-7 A Question Answered by an Ordinal Number

Description Sentence

Question sentence The number x appears in the list L in what position?

Question-word identifi ed The number x appears in the list L in what position?

Question-word replaced by a fi ll-in-the-blank The number x appears in the list L in position?

Blank fi lled in to produce the answer sentence The number x appears in the list L in the 47th
 position.

Mathematical version of the question None (explanation to follow).

 In the answer I gave, the number 47 (or the word 47th) is an ordinal number. In mathematics,
an ordinal number is a number that can represent a position in order (as opposed to a
 cardinality). In the fi nite realm, the ordinal numbers and the cardinal numbers are the same,
but we still have a reason to look at them separately.

Whichth One?

 An easier way to ask for the position of x in the list L is this:

 Whichth number in L is x?

 The only problem is this: whichth isn’t a word. But what a useful word it (and whenth)
would be! If a new acquaintance mentioned that she had six siblings, you could ask
whichth oldest she was. You could ask some one whenth they arrived at work this
 morning, if you wanted to fi nd out if they arrived fi rst, second, third, or so on, as
 opposed to what time they arrived. Or in whichth place their daughter’s team fi nished
in the soccer league this season.

 You can ask these questions directly in Chinese, it turns out, because (roughly speaking)
there’s a word for th: 第. Just as you can fi nd out how many of something there are by
asking “how many” (几个?) there are, you can fi nd out the position of something by
 asking whichth (第几个?) one it is. It’s amazing that English has no word for whichth.

 Notice that I didn’t give a mathematical version of the ordinal number question, nor have
I defi ned a notation for the ordinal number representing x’s position in L. The cardinal number
question about S had a simple answer |S|. One reason we have no “ordinality” function is
that the notion isn’t well-defi ned. While x may indeed appear in the 47th position of the list
L, it may also appear in the 46th position. Other values of x may not appear in the list at all.
Cardinality is well-defi ned but not “ordinality,” at least not in a way that’s simply analogous.

Description Sentence

C02626034.indd 60 2/20/2009 7:42:22 PM

 Chapter 2 Set Theory and Predicate Logic 61

 SQL, however, provides functions for both cardinality (COUNT) and ordinal position (ROW_
NUMBER, RANK, and DENSE_RANK). If the elements of L are ordered by their xCol value, and
@x is one of the values in the column xCol, all of @x’s position(s) in L can be retrieved with
this query:

WITH T AS (

 SELECT

 ROW_NUMBER() OVER (ORDER BY xCol) as rn,

 xCol

 FROM L

)

 SELECT rn

 FROM T

 WHERE xCol = @x

 The two rank functions answer a more precise question, and that question, unlike the question
“What is the row number of x?,” is well-defi ned.

Set Operators

 Arithmetic operators such as +, ≥, and – are surely familiar to you. Some of them, like +,
 combine numbers and give a numerical result as in the expression 4+11 (which equals 15).
Others, like ≥, express relationships. When these operators appear between numbers, the
resulting expression yields a truth value, not another number. For example, ≥ expresses the
relationship “greater than or equal to.” The value of the expression 5≥5 is true, and –8≥–5 is
false.

 The algebra of sets includes its own collection of useful operators. Like the operators of
 arithmetic, some of the set operators combine two sets and yield a set, while others express
relationships and yield a truth value. I’ll defi ne the most important set operators in this
 section, and because the notation for these operators isn’t universal, as it is for the operators
of arithmetic, I’ll mention alternate notations or defi nitions when they exist.

Defi nition of Subset

 Let A and B be sets with the same universe U. The set A is called a subset of B (denoted
A�B) if every element of A is an element of B. Either of the following can also be used
as the defi nition:

 A�B if and only if 1A(x) � 1B(x).

 A�B if and only if for every x�U, (x�A�x�B).

 Note The subset relation is sometimes denoted as �, but for some authors, A�B means
something different: that A is a proper subset of B (a subset of B that is not equal to B).

C02626034.indd 61 2/20/2009 7:42:22 PM

62 Inside Microsoft SQL Server 2008: T-SQL Querying

 The following results follow from the defi nition of subset:

■ The empty set is a subset of any set: For any set S, ��S. This follows easily from the
fact that 1�(x) = 0 for all x�U.

■ If A�B, then |A| ≤ |B|. From earlier results about characteristic functions, the terms in
the sum for |B| are each less than or equal to the corresponding term in the sum for |A|.
Note that conversely, |A| ≤ |B| does not imply that A�B.

Defi nition of Set Complement

 Let S be a set with universe U. The complement of S, denoted SC, is the set containing
those elements of U that are not elements of S. Either of the following properties of the
complement of S can also be used as the defi nition:

 The characteristic function of SC is the function f(x) = 1 – 1S(x).

 SC = {x�U : x�S}.

 Note The complement of S is sometimes denoted as S’ or S–.

 Several results follow from the defi nition of the complement:

■ Every element of U is an element of S or an element of SC but not both.

■ The complement of the complement of S is S: (SC)C = S.

■ The complement of the entire domain of discourse U is the empty set: UC=�, and the
complement of the empty set is the entire domain of discourse U: �C=U.

Union and Intersection

 Given two sets with the same universe, we may need to consider the single set of elements
contained in either set. This is the union of the sets. Similarly, we may wish to consider the set
of elements contained in both sets. This is the intersection of the sets.

Defi nitions of Union and Intersection

 Let A and B be sets with the same universe U.

 The union of A and B, denoted A�B, is the set containing those elements of U that are
either elements of A or elements of B (or elements of both). Either of the following can
also be used as the defi nition:

 1A�B(x)= max(1A(x),1B(x)).

 A�B = {x�U : x�A or x�B}.

C02626034.indd 62 2/20/2009 7:42:22 PM

 Chapter 2 Set Theory and Predicate Logic 63

 Let A and B be sets with the same universe U.

 The intersection of A and B, denoted A�B, is the set containing those elements of U
that are both elements of A and elements of B. Either of the following can also be used
as the defi nition:

 1A�B(x)= min(1A(x),1B(x)).

 A�B = {x�U : x�A and x�B}.

Set Difference

 Sometimes, we may wish to consider those elements of a set that are not elements of a
 second set. The set difference operator gives us the result.

Defi nition of Set Difference

 Let A and B be sets with the same universe U.

 The set difference of A and B, denoted A�B, is the set containing those elements of U
that both elements of A and non-elements of B. Either of the following are equivalent
and can be used as the defi nition:

 1A�B(x)= max(0,1A(x)-1B(x)).

 A�B = A�Bc.

 A�B = {x�U : x�A and x�B}.

Set Partitions

 Given a set S with universal set U, and an element x� U, x is either in S or SC, but not both.
The two sets S and SC are said to partition U, and {S,SC} is called a partition of U. Note that
the word partition is used both as a verb and as a noun. More generally, a collection of sets
 partitions S if every element of S is in exactly one of the sets.

Defi nition of Set Partition

 Let S be a set, and let A1, A2, . . ., Ak be subsets of S. The sets A1, A2, . . ., Ak partition S,
and {A1, A2, . . ., Ak} is a partition of S, if the following two conditions hold:

 The union of the sets Ai is S.

 The sets Ai and Aj are disjoint whenever i≠j.

 Sets with the latter property are called pairwise disjoint.

C02626034.indd 63 2/20/2009 7:42:22 PM

64 Inside Microsoft SQL Server 2008: T-SQL Querying

 If {A1, A2, . . ., Ak} is a partition of S, the answer to “In which Ai is the element x?” is
 well-defi ned.

 We’ve already seen one example of a partition: Given a set S with universe U, the sets S and
SC partition U.

Generalizations of Set Theory

 An understanding of basic set theory is a great help, but it’s important to recognize its
 limitations in describing the world, and in the case of this book, T-SQL querying. I’ve already
addressed some of the ways in which mathematics fails to represent the world precisely, but
one generalization of set theory is particularly relevant to databases.

Multiset Theory

 It’s a mathematical fact that the sets {2, 8, 4, –4}, {–4, 8, 4, 2}, and {2, 4, 2, 8, –4, 8, 2, 4, –4} are
equal, but you would probably agree that the last set listed “contains three twos.” Of course,
a set S of numbers can’t “contain three twos.” It can either contain a two or not contain a
two. If it contains a two, 1S(2) = 1. If it doesn’t, 1S(2) = 0, and nothing else is possible.

 It’s possible to accommodate the idea of “multiple membership” in set theory, except that it
would no longer be set theory, it would be multiset theory, sometimes known as the theory
of bags. The simplest way to begin developing a theory of multisets is by generalizing the
 characteristic function.

The Multiplicity Function of a Bag

 If B is a bag (or multiset) with universe U, the multiplicity function of B, denoted MB, is
the function on U that tells how many copies of an element B contains.

 Many defi nitions from set theory extend almost unchanged to bag theory if the characteristic
function is replaced by the multiplicity function. For example, the multiplicity function of
an intersection can be taken to be the minimum of the multiplicity functions. Other notions
are far more problematic. It’s not clear how to defi ne a multiset’s complement, for example.
Should universal sets contain an unlimited number of each of their elements, and should
the complement of any fi nite multiset be infi nite? Because set cardinalities have more than
one “size” of infi nity, which size should be used for multisets?

 The problems with multiset theory often lead database theoreticians to outlaw duplicate
rows within a table—for example, by requiring primary key constraints. It’s harder to
 prevent result sets from containing duplicates, however. This would require changing the
 meaning of SELECT to what is now written as SELECT DISTINCT, and this would create other
 complications, particularly with aggregates. T-SQL, like most SQL dialects, supports multisets

C02626034.indd 64 2/20/2009 7:42:22 PM

 Chapter 2 Set Theory and Predicate Logic 65

in most places but not everywhere. T-SQL, for example, doesn’t support EXCEPT ALL and
INTERSECT ALL, only EXCEPT DISTINCT and INTERSECT DISTINCT.

Predicate Logic

 Predicate logic is a mathematical framework for representing and manipulating expressions
that are true or false: facts and falsehoods.

Logic-Like Features of Programming Languages

 T-SQL, like many programming languages, incorporates true-false expressions and logical
operators in several places, not all of which are, strictly speaking, related to predicate logic.

 Note A true-false expression is called a Boolean expression (after the logician George Boole).
Boolean logic begins with the study of Boolean expressions.

The Keyword IF in Control-of-Flow Statements

 Although the focus of this book is on T-SQL’s query language, and SQL’s central (or at least
most interesting) paradigm is set based, “regular” programming based on decision and rep-
etition is also implemented. For example, many of this book’s code samples begin with a
conditional statement to delete an object if it already exists. You encountered this statement
in Chapter 1, “Logical Query Processing”:

IF OBJECT_ID('dbo.Orders') IS NOT NULL DROP TABLE dbo.Orders;

 This is a valid T-SQL statement, and it conforms to the syntax SQL Server Books Online gives
for an IF. . .ELSE statement:

IF Boolean_expression { sql_statement | statement_block }
[ELSE { sql_statement | statement_block }]

 The Boolean expression is OBJECT_ID(‘dbo.Orders’) IS NOT NULL, and the sql_statement is
DROP TABLE dbo.Orders.

 The way in which a program implements decision making or repetition is often referred to as
the program’s logic. Formal logic, however, isn’t about what happens when a program runs,
nor is it about the way in which programs implement algorithms to solve problems.

 In particular, the expression if <this> then <that> in formal logic bears nothing more than a
superfi cial resemblance to the statement IF <this> THEN <that> in a programming language.
The former is a sentence that in its entirety is either true or false; the latter is an instruction to
produce behavior that depends on whether <this> (not the entire statement) is true or false.

C02626034.indd 65 2/20/2009 7:42:22 PM

66 Inside Microsoft SQL Server 2008: T-SQL Querying

 While formal logic might not have anything to say about an IF statement in SQL, it has
 plenty to say about one particular element of an IF statement: the part that SQL Server Books
Online calls the Boolean_expression and that I called <this> in the preceding paragraph.
Boolean expressions appear in other control-of-fl ow structures, such as SQL’s WHILE loop.
Additionally, logic provides a framework that allows us to validate programs—to determine
whether they in fact express the desired intent and produce the correct control-of-fl ow.

Propositions and Predicates

 Propositions and predicates are types of Boolean expressions: expressions that evaluate to
one of the two truth values in Boolean logic: True or False.

Defi nitions of Proposition and Predicate

 A proposition is a statement that is either true or false. A predicate is a proposition
that contains one or more variables or parameters; in other words, a predicate is a
 parameterized proposition. Both propositions and predicates are Boolean expressions.

 For example, “12 + 7 = 21” is a proposition (it happens to be false). “It is raining” is also a
proposition, although its truth value depends on context and interpretation. “It is raining”
answers the question “Is it raining?” For the question to have an answer of yes or no, context
must provide the answers to “Where?” and “When?”, and the interpretation of “raining” must
be specifi c enough to yield a clear yes or no answer.

 Note In fact, the truth value of “12 + 7 = 21” also depends on context and interpretation. It
depends on the interpretation of the symbols 12, +, 7, =, and 21. If this statement were made in
the context of a lecture on octal arithmetic, the interpretations of 12 and 21 would be ten and
seventeen, respectively, and the statement would be true. Alternatively, if 12 + 7 = 21 were part
of a logic puzzle about an alternate universe where mathematical symbols were interpreted
 differently, the truth value might be different.

 Don’t forget the importance of context. I’ve seen plenty of unwelcome T-SQL surprises from
propositions like (OrderDate > ‘12/01/04’). In the United States, ‘12/01/04’ represents December
1, 2004, but in most of the rest of the world, it represents January 4, 2012. If you need to express
the 2004 date in a context-free way, this is one option: ‘2004-12-01T00:00:00.000’.

 Some propositions, while clearly true or false, may depend on more than one fact. For example,
“Panama and Norway are members of the United Nations” is true because Panama is a member
of the United Nations and Norway is a member of the United Nations. The proposition “Either
the earth travels around the sun or the sun travels around the earth” is true because the earth
travels around the sun.

C02626034.indd 66 2/20/2009 7:42:22 PM

 Chapter 2 Set Theory and Predicate Logic 67

 Other propositions assert the existence or universality of facts in a collection. For example,
“Every order has been shipped” asserts many facts at once. “Someone is logged into the
 system” asserts the existence of at least one fact. Database programming languages such as
SQL are well equipped to handle these kinds of statements, though some can be expressed
more directly than others. As a tool, formal logic helps us express assertions like these precisely,
 construct SQL statements to evaluate them, and build confi dence in our code’s correctness.

Boolean Expressions in T-SQL

 Boolean expressions appear in the syntax of several T-SQL statements. Most important,
Boolean expressions follow the keywords WHERE, ON, and HAVING to help fi lter a query’s
result set and in CHECK constraints to provide data integrity. Boolean expressions also follow
the keywords IF and WHILE to control program fl ow and repetition, and they appear in the
CASE WHEN expression.

Proposition or Predicate?

 I defi ned a proposition as a statement that has a specifi c truth value. The expression x<3
 contains a variable and has no fi xed truth value and is therefore a predicate, not a proposition.
On the other hand, the expression x<3+x also contains a variable, but it does have a fi xed truth
value, or at least it seems to in the context of real numbers. Unlike for x<3, the truth of x<3+x
doesn’t depend on the value of x. Does this make x<3+x a proposition?

 The name doesn’t really matter. It’s more important to understand what things mean, not
what to call them. When we say that x<3+x is true, we mean that it’s true for all x-values.
We could also consider whether x<3 is true for all x-values, and our conclusion would be
that it’s not. In the same sense that x<3+x is true, then x<3 is false, but we aren’t usually so
quick to assign a single truth value to the expression x<3. New terms are sometimes used to
 distinguish situations like this: x<3+x might be called an identity, and x<3 might be called an
equation or inequality. These words can be useful, but they aren’t easy to defi ne rigorously.

 No matter how we name expressions, recognizing things that are implied or hidden—such
as for all x-values—is useful and sometimes crucial. Perhaps the most ubiquitous example
of something hidden or implied is a dependence on time. As I type this sentence, I can
say truthfully that George W. Bush is the president of the United States. As you read the
 sentence, however, my assertion is not true. There is a hidden dependence on time, and an
understanding that adds “right now” to the proposition.

Creating Propositions from Predicates

 It’s important to understand that any predicate with one variable x can be transformed into a
proposition by preceding it with “For every x in the universe of discourse, . . .” The process of
taking the open sentence P(x) and turning it into “For every x in the domain of discourse, P(x)

C02626034.indd 67 2/20/2009 7:42:22 PM

68 Inside Microsoft SQL Server 2008: T-SQL Querying

is true” is called universal quantifi cation. Although there’s an x in “For every x in the domain
of discourse, P(x) is true,” the truth value of the sentence doesn’t depend on a value of x.
In fact, you can’t even plug in a value of x.

 Universal quantifi cation is one of three important ways to create a proposition from an
open sentence. Another is existential quantifi cation, preceding the proposition with “There
 exists at least one value of x in the domain of discourse for which.” The following quantifi ed
 statement is true: “There exists at least one real number x for which x < 3.”

 A third way to create a proposition out of an open sentence is to provide a specifi c value for
the variable. If P(x) is the statement x<3, then P(2.5) is the statement “2.5<3”, and is true. P(8),
however, is false.

Ways to Give a Truth Value to a Predicate

 Let P(x) be a predicate, and let U be the universe of discourse for values of x. Also let z
be a particular element of U. Then each of the following is a proposition:

■ P(x) is true for every x�U. This is notated as: �x�U, P(x).

■ P(x) is true for at least one x�U. This is notated as: �x�U such that P(x).

■ P(z)

 The formalism doesn’t prevent mathematicians and others from asserting the truth of
 something like x<x+3. But when a mathematician asserts the truth of x<x+3, it’s understood
that she means �x�U, x<x+3.

 It’s also common practice not to specify the quantifi er in the case of if-then statements. If
the universe of discourse is the set of integers, the statement “If n is positive, then n2 > n” is
 understood to mean this: For all integers n, (n is positive � n2 > n).

The Law of Excluded Middle

 The law of excluded middle requires that every well-formed proposition is either true or
false—that there are two truth values and no more. The word middle means some middle
ground on the true-false scale that is neither true nor false. We take the law of excluded
middle as a principle of logic.

 The law of excluded middle is what allows mathematicians to prove theorems with the
 technique known as proof by contradiction.

And, Or, and Not

 If P and Q are propositions, they can be combined using logical operators to form other
 propositions. For example, the logical expression P∧Q (spoken as P and Q) is also a

C02626034.indd 68 2/20/2009 7:42:22 PM

 Chapter 2 Set Theory and Predicate Logic 69

 proposition, and its truth value depends on the truth values of P and Q. This operator,
logical and, is one of four basic logical operators.

Defi nitions of the Basic Logical Operators

Let P and Q be propositions. The three most basic logical operators are defi ned in Table 2-8.

TABLE 2-8 Defi nitions of Logical Operators

Operator Notation Meaning True if and Only if: Alternate Name

Not ¬P Not P P is false. Negation

And P∧Q P and Q Both P and Q are true. Conjunction

Or P∨Q P or Q (or both) At least one of P and Q
is true.

Disjunction

 Note that conjunction and disjunction are commutative operators: the positions of P and Q
can be interchanged without changing the truth value.

What Not Is Not

 Combining and transforming mathematical sentences with logical operators is important,
and generally straightforward. However, as is often the case in life, what seems simplest is
what causes the most trouble because we tend to be less careful about it. Applying the
 logical operator not, or negating propositions, is not something to do lightly. All too often, it
seems right (but isn’t) to negate a proposition by negating everything in sight or by using an
invalid generalization. Here’s one example: the negation of the proposition x<3 is x � 3. On
the other hand, the negation of –1<x<3 is not –1�x�3. (What is the correct negation?)

When And Means Or

 In English and other natural languages, the words and and or are used in a wide variety of
situations. In some of these situations they have meanings that seem to contradict their
meanings as logical operators. Because of this, you should never be hasty when you attempt
to express a real-world notion logically.

 In the WHERE clause of a query, combining conditions with AND serves to make the number
of rows in the result set smaller. However, the English and often corresponds not to the AND
of a query’s WHERE clause but to the logical operator OR or the set operator UNION.

 Consider the following English request:

 Please bring me the latest invoices for customer 45 and customer 17.

 This doesn’t translate into the query predicate custid=45 AND custid=17. Instead, it probably
translates into the query predicate custid=45 OR custid=17. On the other hand, this English
request doesn’t follow the same pattern:

 Please bring me the latest recipes for ham and eggs.

Operator Notation Meaning True if and Only if: Alternate Name

C02626034.indd 69 2/20/2009 7:42:22 PM

70 Inside Microsoft SQL Server 2008: T-SQL Querying

Exclusive Or

 In English, when or doesn’t mean and, it still doesn’t always mean the same thing as logical
or. Logical or means one or the other or possibly both. Sometimes the English word means
one or the other but not both, which in a mathematical discussion is distinguished by the
name exclusive or. An example of this can be found on many restaurant menus in the phrase
“includes soup or salad.”

Logical Equivalence

 Two value expressions of any kind are considered equal if they have the same value: 3+3
equals 6. Expressions that contain variables are considered equal if they are equal for any
particular variable values: Regardless of what x, y, and z happen to be, {x,y,z} = {a,x,y,z} �
{b,x,y,z}. Predicates, which are logical propositions containing variables, are said to be logically
equivalent if they have the same truth value for any particular values of their variables. Several
different symbols are used to represent logical equivalence and some very similar notions.
I won’t get into any of the subtleties, and from among the possible symbols, which include
�, �, and �, I’ll use the last one, the bidirectional double arrow.

DeMorgan’s Laws

 Logical expressions can be rewritten as equivalent logical expressions in a number of ways.
Two of the most useful and important identities provide ways to rewrite negations, and they
are called DeMorgan’s Laws, after Augustus DeMorgan.

Statement of DeMorgan’s Laws

 Let P and Q be propositions. Then the following equivalences hold:

 ¬(P�Q) � (¬P)�(¬Q).

 ¬(P�Q) � (¬P)�(¬Q).

Logical Implication

 Mathematical logic was developed largely as an attempt to justify the way in which
 mathematicians prove theorems through inference and deduction. One of the most
 important rules of inference is called modus ponens. Modus ponens is the rule of inference
that allows us to infer the truth of one proposition Q from the truth of another proposition P
when it’s known that P implies Q. An argument using modus ponens might go like this: “The
law is clear: if you drive faster than 55 miles per hour on this highway, you have broken the
law. You were driving faster than 55 miles per hour, therefore you have broken the law.”

C02626034.indd 70 2/20/2009 7:42:22 PM

 Chapter 2 Set Theory and Predicate Logic 71

 Logical inference isn’t the focus of this chapter, but we will take a moment to consider
 propositions that take the form of logical implication.

If P, Then Q

 Suppose P and Q are valid logical propositions. Then if P, then Q is a valid logical proposition.
The proposition if P, then Q is denoted P�Q, and its truth value depends on the truth values
of P and Q as follows.

Defi nition of P�Q
 The proposition P�Q, read P implies Q or if P, then Q, is true when either P is false or
Q is true (or both). The proposition P�Q is false when P is true and Q is false. More
 concisely, (P�Q) � (¬P�Q).

 There is more than one way to express an implication in words, and in mathematical logic,
the following expressions are taken to have the precise meanings shown:

 1. P unless Q means (¬Q)�P.

 2. P only if Q means P�Q.

 3. P, if Q means Q�P.

 Note that unlike the logical operators � and�, the operator � is not commutative. The truth
values of P�Q and Q�P are not necessarily the same.

The Contrapositive

 The defi nition (P�Q) � (¬ P � Q), together with DeMorgan’s law for negating conjunctions,
yields the following fact: (P�Q) � (¬Q�¬P). The implication If not Q, then not P is called the
contrapositive of If P then Q. In mathematics, it’s often easier to discover rules of inference
that validate the contrapositive form of an implication, and doing so is called proof by
contrapositive.

Vacuous Truths

 According to the defi nition of logical implication, the statement P→Q holds except when P
is true and Q is false. In particular, it holds whenever P is false, regardless of the truth value
of Q. As a result, some if-then statements are logically true but may sound false or seem
 puzzling. For example, these propositions are both true:

 If 1=0, the moon is made of cheese.

 If the real number x is negative and positive, then x equals 11.

C02626034.indd 71 2/20/2009 7:42:23 PM

72 Inside Microsoft SQL Server 2008: T-SQL Querying

 In both propositions, the if part of the implication is false, so the entire if-then statement
is true. Because implications fi gure prominently in logical inference, we’re accustomed to
 encountering implications in a context where the if part is true, and the implication allows
the then part to be deduced. This isn’t the case in the preceding statements. No inference is
possible, and the statements provide no information about the truth value of the then part.

 An implication P→Q is called vacuously true if P is false. Similarly, the quantifi ed statement
�x�U (P(x)�Q(x)) is called vacuously true if P(x) is false for all values of x in its domain of
discourse. The reason for this terminology is simple: the statement �x�U (P(x)�Q(x)) asserts
that Q(x) holds whenever P(x) holds. If P(x) never holds, the statement asserts nothing at all.

Quantifi cation

 Statements that assert either the universality or the existence of some fact over a universe of
discourse are called quantifi ed statements. Here’s an example of each kind. The words in italic
are the ones that indicate quantifi cation.

 Universally quantifi ed statement The Philharmonic has performed every Haydn symphony.

 Existentially quantifi ed statement The Philharmonic Orchestra has performed a Haydn
symphony.

Negating Quantifi ed Statements

 The ability to negate quantifi ed statements is a valuable skill for programmers, especially
SQL programmers. As Itzik shows later in this book, some problems are easier to solve when
analyzed using reverse logic. Instead of fi nding all the answers to a question, fi nd everything
that isn’t not an answer.

 Earlier in the chapter, I warned you that to negate a proposition, you can’t simply negate
everything in sight. The logical opposite of an advertising claim that “all our books
are discounted” is not “all our books are not discounted,” nor is it “none of our books are
 discounted,” nor is it “all our nonbooks are discounted.” The actual logical opposite—which
expresses simply that the claim is false—is “it is not true that all our books are discounted,” or
equivalently, “at least one of our books is not discounted.” While we might also say this more
simply as “not all our books are discounted,” this use of “not all” invites misinterpretation or
at least mistranslation when translated into a computer program.

 Two general principles concern the negation of quantifi ed statements. Universally quantifi ed
statements are false if there is one exception to the universal claim they make. Existentially
quantifi ed statements are false if there are no examples of the existence they claim.

 Generally, universal statements may be hard to prove (because their validity must be verifi ed
universally) but easy to disprove (because one exception violates the universality). On the
other hand, existential statements may be easy to prove (only one valid example is enough)
but hard to disprove (because everything must be proven invalid).

C02626034.indd 72 2/20/2009 7:42:23 PM

 Chapter 2 Set Theory and Predicate Logic 73

 Here are the rules for negating quantifi ed propositions, using notation. Recall that � means
for all, and � means there exists.

Rules for negating quantifi ed predicates

 Let P(x) and Q(x) be predicates, where U is the domain for x.

 ¬(�x�U, P(x)) � �x�U for which ¬ P(x)

 �x�U, P(x) � ¬(�x�U for which ¬ P(x))

 ¬(�x�U for which P(x)) � �x�U, ¬P(x)

 �x�U for which P(x) � ¬(�x�U, ¬P(x))

 These rules generalize DeMorgan’s Laws. If U={a,b,c,…}, to say that P(x) is true for all
 elements of U is to say that P(a), P(b), P(c), … are all true, or equivalently, that the conjunction
P(a)�P(b)�P(c)�. . . is true. Similarly, to say that there exists at least one value x in U for
which P(x) is true is to say that either P(a) or P(b) or P(c) or … is true, or equivalently, that
P(a)�P(b)�P(c)�. . . is true.

Multiple Quantifi cation

 This chapter’s fi rst example contained two quantifi ers. The membership condition for the set
S was �e�USAEmployees (�o�Orders : (handled(e,o,c))), hence the condition for c not to be a
member of S was this: ¬(�e�USAEmployees (�o�Orders : (handled(e,o,c)))).

 The rules for negating quantifi ed propositions allow us to rewrite this condition as follows:

 ¬(�e�USAEmployees (�o�Orders : (handled(e,o,c))))

 � �e�USAEmployees for which ¬(�o�Orders : (handled(e,o,c)))

 � �e�USAEmployees for which (�o�Orders, ¬handled(e,o,c))

 Each version gives the condition for not returning a particular customer c, and the last one
can be expressed in English this way: There is some employee e from the USA for whom we
can say this about every order o of the company: it is not the case that o was handled by
 employee e for customer c.

Alternatives and Generalizations

 There a number of alternatives and generalizations to predicate logic. Some model true-false
statements differently, and others handle more general notions of truth. In this section, I’ll
briefl y mention one alternative framework and two generalizations to predicate logic.

C02626034.indd 73 2/20/2009 7:42:23 PM

74 Inside Microsoft SQL Server 2008: T-SQL Querying

Boolean Algebra

 It’s possible—and for many purposes very useful—to place logic into a framework where
the truth values True and False are associated with the numbers 1 and 0, respectively. In fact,
SQL Server’s integer data type BIT is often used for logical calculations. SQL Server provides
several integer operators, &, ~, ,̂ and |, that apply calculations bitwise, or separately on the
individual bits that make up the integer’s internal representation. Loosely, these four operators
 correspond to and, not, exclusive or, and or, respectively. As you might guess, T-SQL’s ^ operator
is easily confused with the operator �, which is used in logic to mean and. In addition (no pun
intended), the bitwise operator & is easily confused with arithmetic’s + operator.

Three-Valued Logic

 In the real world, not every important question can be answered. In this very brief treatment
of three-valued logic, we’ll see what happens if we abandon the law of excluded middle and
allow a third truth value in addition to the Boolean values True and False.

 T-SQL supports Boolean values only for predicates in SQL statements, not as persisted data
in a table. However, T-SQL, like most database query languages, supports three truth values:
True, False, and UNKNOWN.

 To some extent, a third truth value representing UNKNOWN can be accommodated in
propositional logic. Recall the law of excluded middle. It states that for any proposition P,
the proposition (P is true or P is false) holds. The law of excluded middle doesn’t address the
discoverability of P’s truth value; it only asserts that P has one. In the real world, however, the
discoverability of truth matters, and the need for a third truth value comes up in the context
of missing information.

 Missing information can cause havoc in a business setting. Suppose you fi nd an empty folder
among your customer fi les; you know a customer fi le should be there, but the fi le is missing,
and you have no way to identify the missing customer.

 All at once, it becomes impossible to answer a multitude of questions: How many customers
are in arrears? Is Maria Cameron already a customer (assuming she isn’t found in any of the
nonmissing fi les)? These questions have an answer, but until the missing fi le is found, the
 answer will remain unknown. Accommodating UNKNOWN as a truth value in predicate logic
is much more complicated than in propositional logic. The following example suggests that
at best, the waters are murky when UNKNOWN is in the picture.

 Recall that set theory and logic were linked via the idea of the characteristic function of a
set. If the truth value of propositions can be unknown, the truth value of set membership
can also be unknown, and a third value (a value other than 0 or 1) is needed for 1S(x). Before
long, however, you’ll fi nd yourself needing to distinguish “the value is defi nitely unknown”
from “we don’t know whether the value is true, false, or unknown.”

C02626034.indd 74 2/20/2009 7:42:23 PM

 Chapter 2 Set Theory and Predicate Logic 75

Fuzzy Logic

 If you thought three-valued logic was a signifi cant departure from the world of True and
False, fuzzy logic is a further departure. The premise of fuzzy logic is that absolute truths or
falsehoods aren’t all we care about or know. We may decide to include a fact in our model
that we are relatively certain of, but not absolutely so. In fuzzy logic, the discrete values False
and True are replaced by the continuum of numbers from zero to one. A zero is an absolute
falsehood, a one is an absolute truth, and in between are the shades of gray.

 A system can operate according to a threshold. You might only want to consider facts that
are 99.5 percent likely to be true. Someone else might be willing to deal with 90 percent
 likelihood. Creating a rigorous mathematical framework for fuzzy logic is a serious challenge.

Relations

 Operators such as = and <, which compare two elements of the same kind and yield a truth
value as a result, are called relations. A relation ~ on elements of a set U can be considered
as the set {(u,v) � U×U : u~u} of pairs of elements that satisfy the relation. Alternatively, ~ can
be considered as a predicate with two variables, each of which has U as its domain.

The Refl exive, Symmetric, and Transitive Properties

 The defi nition of > in the earlier rock-scissors-paper example wasn’t typical. Most directional
or bidirectional comparison operators in mathematics, such as <, ≥, and =, are transitive.
Here’s a precise defi nition of the transitive property and some other useful properties a
 relation can have.

Properties of Relations

 Let ~ be a relation on the universal set U. In other words, let u ~ v have a well-defi ned
truth value whenever u and v are elements of U. The relation ~ is said to be refl exive,
 irrefl exive, symmetric, antisymmetric, or transitive according to the following
defi nitions:

■ Refl exive The relation ~ is refl exive if x~x is true for every x in U.

■ Irrefl exive The relation ~ is irrefl exive if x~x is false for every x in U.

■ Symmetric The relation ~ is symmetric if x~y and y~x always have the same
truth value, when x and y are elements of U.

■ Antisymmetric The relation ~ is antisymmetric if x~y and y~x always have
the opposite truth value, when x and y are elements of U.

■ Transitive The relation ~ is transitive if whenever x~y and y~z are true, x~z is
also true, when x, y, and z are elements of U.

C02626034.indd 75 2/20/2009 7:42:23 PM

76 Inside Microsoft SQL Server 2008: T-SQL Querying

 Although the names might suggest otherwise, it’s not the case that every relation is either
refl exive or irrefl exive (or either symmetric or antisymmetric). An example of a relation that is
neither refl exive nor irrefl exive is the relation “is the reverse of” on words. There are words w
for which w is the reverse of w, such as radar, but there are also words for which w is not the
reverse of w, like sonar.

Not All < Operators Were Created Equal

Just as it was important to know a set’s universe U, it’s important to know a relation’s
 universe—it’s part of what defi nes the relation. The symbol < can appear between numbers
or strings in SQL, but the relation < between numbers is not the same thing as the relation <
between strings. If you aren’t careful, as the following T-SQL example shows, you can run into
trouble or at least what looks like trouble:

DECLARE @x VARCHAR(10);

DECLARE @y INT;

DECLARE @z VARCHAR(10);

SET @x = '1000';

SET @y = '2000';

SET @z = '+3000';

SELECT

 CASE WHEN @x < @y THEN 'TRUE' ELSE 'FALSE' END AS [x<y?],

 CASE WHEN @y < @z THEN 'TRUE' ELSE 'FALSE' END AS [y<z?],

 CASE WHEN @x < @z THEN 'TRUE' ELSE 'FALSE' END AS [x<z?]

This produces the following output, which appears to contradict the transitivity of the T-SQL
operator <.

x<y? y<z? x<z?

----- ----- -----

TRUE TRUE FALSE

There’s no contradiction because technically “the T-SQL operator <” is ambiguous. The code
sample has two different less than operators: the < operator for numbers, which we might
call <n, and the < operator for strings, which we might call <s . The rules of T-SQL require
that the expression <string> < <number> be evaluated as CAST(<string> AS <number>) <
<number>.

This T-SQL batch shows what’s going on:

DECLARE @x VARCHAR(10);

DECLARE @y INT;

DECLARE @z VARCHAR(10);

SET @x = '1000';

SET @y = '2000';

SET @z = '+3000';

DECLARE @x VARCHAR(10);

DECLARE @y INT;

DECLARE @z VARCHAR(10);

SET @x = '1000';

SET @y = '2000';

SET @z = '+3000';

SELECT

 CASE WHEN @x < @y THEN 'TRUE' ELSE 'FALSE' END AS [x<y?],

 CASE WHEN @y < @z THEN 'TRUE' ELSE 'FALSE' END AS [y<z?],

 CASE WHEN @x < @z THEN 'TRUE' ELSE 'FALSE' END AS [x<z?]

DECLARE @x VARCHAR(10);

DECLARE @y INT;

DECLARE @z VARCHAR(10);

SET @x = '1000';

SET @y = '2000';

SET @z = '+3000';

C02626034.indd 76 2/20/2009 7:42:23 PM

 Chapter 2 Set Theory and Predicate Logic 77

SELECT

 CASE WHEN @x < @y THEN 'TRUE' ELSE 'FALSE' END AS [CAST(x)<y?],

 CASE WHEN @y < @z THEN 'TRUE' ELSE 'FALSE' END AS [y<CAST(z)?],

 CASE WHEN @x < @z THEN 'TRUE' ELSE 'FALSE' END AS [x<z?],

 CASE WHEN CAST(@x AS INT) < CAST(@z AS INT)

 THEN 'TRUE' ELSE 'FALSE' END AS [CAST(x)<CAST(z)?]

A Practical Application

At the beginning of this chapter, we considered a set S—the set of all customers for whom
every employee from the USA has handled at least one order. We’ll fi nish the chapter by
 considering the set S once again, from a different perspective, and turn the result into a
 query. I’ll also show you how to represent the characteristic function of a set in SQL.

Run the following T-SQL batch to set the database context for this section’s queries:

USE InsideTSQL2008;

GO

In set-builder notation, we were able to write S in this way:

 S = {c�Customers : �e�USAEmployees (�o�Orders : (handled(e,o,c)))}

 Consider the overall form of this defi nition in the following way: S is the set of customers for
which something is true for every USA employee. If just a few employees are from the USA,
let’s say e1, e2 , and e3, we can write the for every USA employee part as for employee e1 , for
employee e2 , and for employee e3.

 Still assuming there are only these three USA employees, this would be true: S is the set of
customers c for which the following three conditions hold:

 1. Employee e1 handled an order for customer c.

 2. Employee e2 handled an order for customer c.

 3. Employee e3 handled an order for customer c.

 Equivalently, S is the set of customers c in all three of the following sets:

 1. The set C1 of customers for whom employee e1 handled an order

 2. The set C2 of customers for whom employee e2 handled an order

 3. The set C3 of customers for whom employee e3 handled an order

Do you see where this is leading? The set S can be written as an intersection of three sets:
S = C1 � C2 � C3.

SELECT

 CASE WHEN @x < @y THEN 'TRUE' ELSE 'FALSE' END AS [CAST(x)<y?],

 CASE WHEN @y < @z THEN 'TRUE' ELSE 'FALSE' END AS [y<CAST(z)?],

 CASE WHEN @x < @z THEN 'TRUE' ELSE 'FALSE' END AS [x<z?],

 CASE WHEN CAST(@x AS INT) < CAST(@z AS INT)

 THEN 'TRUE' ELSE 'FALSE' END AS [CAST(x)<CAST(z)?]

USE InsideTSQL2008;

GO

C02626034.indd 77 2/20/2009 7:42:23 PM

78 Inside Microsoft SQL Server 2008: T-SQL Querying

 From this, we can express 1S, the characteristic function of S: 1S = min(1C1 ,1C2, 1C3). We can
generalize this to the case in which we have any number of USA employees: in general,
1S = min(1C(e)), where C(e) is the set of customers for whom employee e handled an order.

 For an employee e, the function 1C(e) is easy to describe. It’s a characteristic function for a set
of customers, so it has a value of 0 or 1 for each customer. Its value for a particular customer
c is 0 if employee e never handled an order for customer c and 1 otherwise (if employee e did
handle an order for customer c).

 Here’s how to express the characteristic function 1C(e) in SQL, if the empid value of employee
e is @empid. The following query’s result set is the set of ordered pairs (c, 1C(e)(c)), one pair
for each customer:

SELECT

 custid,

 CASE WHEN custid IN (

 SELECT custid

 FROM Sales.Orders AS O

 WHERE O.empid = @empid

) THEN 1 ELSE 0 END AS charfun

FROM Sales.Customers AS C

 The result set of this query contains one row for each customer, and the charfun value in that
row is the value of the characteristic function of the set of customers served by the employee
whose ID is @empid on the customer in the row: 1C(e)(c).

 If for each customer c we want to fi nd the minimum value of 1C(e)(c) for all USA employees,
we fi rst want a virtual table that contains for each customer a row for each characteristic
function. We can do this by replacing @empid with the column value empid from the table
HR.Employees. Then we can group by customer and fi nd the minimum among the characteristic
function values. Here’s the query:

WITH TheseEmployees AS (

 SELECT empid

 FROM HR.Employees

 WHERE country = 'USA'

), CustomerCharacteristicFunctions AS (

 SELECT

 custid,

 CASE WHEN custid IN (

 SELECT custid

 FROM Sales.Orders AS O

 WHERE O.empid = E.empid

) THEN 1 ELSE 0 END AS charfun

 FROM Sales.Customers AS C

 CROSS JOIN TheseEmployees AS E

)

 SELECT

 custid, MIN(charfun) as mincharfun

 FROM CustomerCharacteristicFunctions

 GROUP BY custid

 ORDER BY custid;

WITH TheseEmployees AS (

 SELECT empid

 FROM HR.Employees

 WHERE country = 'USA'

), CustomerCharacteristicFunctions AS (

 SELECT

 custid,

 CASE WHEN custid IN (

 SELECT custid

 FROM Sales.Orders AS O

 WHERE O.empid = E.empid

) THEN 1 ELSE 0 END AS charfun

 FROM Sales.Customers AS C

 CROSS JOIN TheseEmployees AS E

)

 SELECT

 custid, MIN(charfun) as mincharfun

 FROM CustomerCharacteristicFunctions

 GROUP BY custid

 ORDER BY custid;

C02626034.indd 78 2/20/2009 7:42:23 PM

 Chapter 2 Set Theory and Predicate Logic 79

This query produces the following result (abbreviated):

custid mincharfun

----------- -----------

1 0

2 0

3 0

4 0

5 1

6 0

7 0

8 0

9 1

...

When the minimum value of 1C(e)(c) for all USA employees equals 1, customer c is in the set S.
This observation leads us to the query in Listing 2-4, which produces the list of customers for
whom every employee from the USA has handled at least one order. Listing 2-4 also includes
the code to create and drop a supporting index for this query.

LISTING 2-4 Query to fi nd customers who were served by every USA employee

CREATE INDEX sk_custid_empid ON Sales.Orders(custid,empid);

GO

WITH TheseEmployees AS (

 SELECT empid

 FROM HR.Employees

 WHERE country = 'USA'

), CharacteristicFunctions AS (

 SELECT

 custid,

 CASE WHEN custid IN (

 SELECT custid

 FROM Sales.Orders AS O

 WHERE O.empid = E.empid

) THEN 1 ELSE 0 END AS charfun

 FROM Sales.Customers AS C

 CROSS JOIN TheseEmployees AS E

)

 SELECT

 custid

 FROM CharacteristicFunctions

 GROUP BY custid

 HAVING MIN(charfun) = 1

 ORDER BY custid;

GO

DROP INDEX Sales.Orders.sk_custid_empid;

CREATE INDEX sk_custid_empid ON Sales.Orders(custid,empid);

GO

WITH TheseEmployees AS (

 SELECT empid

 FROM HR.Employees

 WHERE country = 'USA'

), CharacteristicFunctions AS (

 SELECT

 custid,

 CASE WHEN custid IN (

 SELECT custid

 FROM Sales.Orders AS O

 WHERE O.empid = E.empid

) THEN 1 ELSE 0 END AS charfun

 FROM Sales.Customers AS C

 CROSS JOIN TheseEmployees AS E

)

 SELECT

 custid

 FROM CharacteristicFunctions

 GROUP BY custid

 HAVING MIN(charfun) = 1

 ORDER BY custid;

GO

DROP INDEX Sales.Orders.sk_custid_empid;

C02626034.indd 79 2/20/2009 7:42:23 PM

80 Inside Microsoft SQL Server 2008: T-SQL Querying

 This query produces the following result, which correctly lists the customers in S:

Custid

5

9

20

24

34

35

37

38

39

41

46

47

48

51

55

63

65

71

80

83

84

87

89

 The query plan, shown in Figure 2-1, is surprisingly effi cient. The warning symbol on the
Nested Loops operator signals a join without a join predicate. This warning always appears
when there is a CROSS JOIN operator in the query, and it’s nothing to be alarmed about.

FIGURE 2-1 Execution plan for the query in Listing 2-4 based on characteristic functions

 Whether this approach leads to effi cient queries depends on the details of the problem and
the characteristics of the actual data. However, we can’t deny that this is a fl exible query.
By changing the HAVING predicate, the query can easily be modifi ed to answer similar
 questions. Here is one example: To obtain those customers for whom at least one USA
 employee, but not every one of them, has handled at least one order, use the same query
with a different HAVING clause: HAVING MAX(charfun) = 1 AND MIN(charfun) = 0.

C02626034.indd 80 2/20/2009 7:42:23 PM

 Chapter 2 Set Theory and Predicate Logic 81

Conclusion

 This chapter contained a brief introduction to two foundations of modern mathematics
and computer science: set theory and predicate logic. Set theory and logic are particularly
 important to understanding SQL and relational databases. Along the way, you learned some
specifi c techniques, such as how to negate quantifi ed predicates, and some alternate ways
to characterize sets and express logical propositions. One particular tool, the characteristic
 function of a set, provided a valuable and fl exible key programming technique.

C02626034.indd 81 2/20/2009 7:42:23 PM

C02626034.indd 82 2/20/2009 7:42:23 PM

 83

Chapter 3

 The Relational Model

 Databases are central to information systems—they are the heart of applications. The
 structure of a database, called a data model (or schema, also database design), specifi es a
database. One of the most important models used for modern databases is the relational
model. Although it is not the only data model, it is probably the most important one. The
 relational model is used mainly for transactional databases—where an enterprise’s data is
fi rst stored—as opposed to warehouse databases, which serve as a repository for historical
data. Compared to other contemporary data models, the relational model is particularly
useful for transactional databases because data integrity can be declared and enforced by
the model. Data integrity is the conformance of data to business rules. If your data is wrong
the fi rst time it enters your enterprise, it has a negative impact on your complete business.
For example, analytical systems would not help you improve your operations because of
the common concept garbage in – garbage out. Another advantage to the relational model
is that it is mathematically defi ned. Therefore, when modeling, you are not guided by best
practices only; you can evaluate your design and fi rmly ascertain whether it is good or bad.

 Relational database management systems (RDBMS), including Microsoft SQL Server, store data
in relational format. Although the physical implementation varies by vendor, the relational
model provides a consistent user perception of the data for all RDBMS. In this chapter, I’ll
 introduce the main concepts of the relational model. This knowledge will help you understand
later chapters when you explore advanced queries.

Introduction to the Relational Model

 The relational model was conceived in the 1960s by Edgar F. Codd, who worked for IBM. It is
a simple yet rigorously defi ned conceptualization of how users perceive and work with data.
It addresses the three major aspects of data processing in the following way, according to An
Introduction to Database Systems, 8th edition by C. J. Date (Addison-Wesley, 2003):

■ Structural The data is perceived by the user as tables and nothing but tables.

■ Manipulative Users manipulate the data with an open-ended set of relational
 operators. The operators constitute the relational algebra.

■ Integrity The tables must satisfy defi ned integrity constraints.

 The structural aspect can also be expressed by the Information Principle, which states that all
information in a relational database is expressed in one (and only one) way as explicit values
in columns within rows of a table.

 In the relational model, a table is called a relation, and a row is called a tuple. In the next
 section, I’ll introduce relations and tuples in more detail.

C03626034.indd 83 2/17/2009 4:42:16 PM

84 Inside Microsoft SQL Server 2008: T-SQL Querying

Relations, Tuples and Types

 A relation is the mathematical object that represents what database practitioners call a table.
The elements of a particular relation, like the rows of a table, represent instances of some
real-world entity, like person, place, thing, or event. The relation is the set of these elements,
which are—mathematically—tuples. I’ll start by defi ning a tuple: A tuple is the set of its
 attributes, each of which is represented by three things: the attribute’s name, the attribute’s
type, and the attribute’s value.

 Note The relational model uses more general notions of relation and tuple than those
 introduced in Chapter 2, “Set Theory and Predicate Logic.” In Chapter 2, you learned about
ordered tuples, which had well-defi ned positional parts: fi rst, second, and so on. Here, tuples
still have well-defi ned parts, but those parts are unordered, and they are identifi ed by attribute
names instead of ordinal positions. In Chapter 2, a relation was a set of ordered pairs from a
Cartesian product. Here, a relation is a set of unordered tuples that have the same heading. The
notions used in the relational model are more abstract, and making them mathematically precise
is never intuitive.

 The set of attribute names and types of a tuple, taken together, are called the heading of
a tuple. You can think of the heading of a tuple as a form to be fi lled out; the form has
 attribute names with blank spaces for values to be fi lled in. A tuple is a fi lled-in copy of a
heading form. Tuple properties include the following:

■ Every attribute of a tuple contains exactly one value of the appropriate type for each
of its attribute names. Again thinking of a tuple as a fi lled-in copy of a heading form,
there is exactly one value in each blank space (and it is of the appropriate type for the
particular attribute).

■ The attributes have no ordering (just as the elements of a set have no ordering).
Consequently, every attribute must have a distinct name because you cannot refer
to an attribute using its position in a tuple. In terms of forms, the way in which the
 attribute names are arranged on the heading form is irrelevant; only the names of the
attributes matter, and, consequently, those names must be distinct.

■ A subset of a tuple is a tuple (with fewer attributes). Again using the form analogy, one
section of a form, viewed by itself, is still a form, but it may have fewer items.

 Although it is possible to defi ne operators from relational algebra on tuples, you do not
 manipulate individual tuples in a relational database. Operations are performed only on sets
of tuples, that is, on relations. Tuples not only make up relations but also help defi ne them.
A relation consists of a set of tuples with the same heading, and we can call the heading
of these tuples the relation’s heading and vice versa. Similarly, we can think of relations
as having attributes. Relations with different headings are different types of relations. The
data types of attributes, as opposed to the heading types of relations, are sometimes called
 domains in the relational model to avoid overusing the word type.

C03626034.indd 84 2/17/2009 4:42:16 PM

 Chapter 3 The Relational Model 85

 Just as the contents of a database table might change, a relation should be able to contain
different sets of tuples at different times. The relations of the relational model are actually
variables—sometimes called relational variables, or relvars, and the value of a relational
 variable of some type is a set of tuples of that type. We won’t always distinguish relations
from relational variables of the same type, following common practice in other areas of
mathematics. We often write “n is an integer” when we should more correctly write “n is an
integer variable,” for example. The fact that a relation is a set of tuples has the following
 important consequences:

■ As is the case for tuples, the attributes of a relation have no ordering.

■ Every attribute of a relation has one strongly defi ned data type. Every tuple of a
 relation contains exactly one value of this type for each attribute.

■ A projection of a relation is a relation, where a projection is an operation that selects a
specifi c subset of attributes from a relation (and from all of its tuples). Projection is one
of the most important operators in relational algebra.

■ A relation has no duplicate tuples. This is a consequence of the fact that a relation is a
set, and sets contain distinct elements. Because a relation’s tuples are distinct, they can
be distinguished by some or all of their attribute values. A minimal subset of attributes
that for any value of the relvar suffi ces to distinguish tuples is called a key.

■ The order of tuples is insignifi cant. Again, this comes from set theory: the elements of
a set are not ordered. This means that in a relation, terms such as fi rst, next, prior, last,
and nth tuple are undefi ned.

 I’ve now used the term type multiple times, tacitly assuming that you understand what a type
is. Here’s a somewhat formal defi nition of a type: A type, which is also called a data type or
a domain, is a fi nite set of values, such as a fi nite set of integers. Although in mathematics,
 universal sets (for example, the integers) can be infi nite, in a computer system, you always hit a
limitation. Therefore, a set of possible values of a type is fi nite. Every value has exactly one most
specifi c type. When I say “most specifi c,” I consider the possibility of type inheritance (although
type inheritance is not implemented in SQL Server yet). For example, the value 3 can be
 considered a real number, an integer, or a natural number; natural number is the most specifi c
type for it. In short, you can safely say that every value in a relational database has one type only.

 A type consists of the following:

■ A name

■ One or more named possible representations:

❏ One is physically stored.

❏ At least one is declared to the users.

■ A set of operators permissible on the type’s values

■ Type constraints

C03626034.indd 85 2/17/2009 4:42:17 PM

86 Inside Microsoft SQL Server 2008: T-SQL Querying

 Every variable and every attribute has an explicit type, every operator returns a result
of some explicit type, every parameter of every operator has an explicit type, and every
 expression is implicitly of some type. Physical storage is not exposed to users; it is system
 dependent. A type constrains possible values in different ways: with explicit constraints
and with operators defi ned. For example, for integer type, you can defi ne the operators
Plus, Minus, and Multiply. The operator Divide is not defi ned as an integer for all pairs of
 integers because the result can fall out of the integer domain. The natural numbers are the
 integers with a constraint—the number must be positive (or, according to some authors,
 nonnegative). Operators and constraints are interleaved. Notice that the Minus operator is
not defi ned within the natural numbers, even though it was for the integers.

 For a type to be useful, it has to implement at least two operators: a mutator operator,
which allows updating variables and attributes of the type, and a selector operator, which
 allows retrieving values of the type. Other operators can be defi ned by the creator of a
type as appropriate to the intended use of the type. Note that a type can have multiple
 presentations and thus can have multiple selector operators. For example, a point in a plane
can be represented in Cartesian or polar coordinate systems.

 An important concept is whether a type is scalar or nonscalar. A nonscalar type has a set
of user-visible and directly accessible components; a scalar type does not. Scalar types are
also called atomic or encapsulated types. This description is somewhat vague. Is it clear
whether a point in the coordinate plane is scalar? Both Cartesian and polar presentations
have user-visible components. However, if you operate on only whole points and never on
the individual coordinates, an individual point is indivisible and is therefore scalar. What
about the type car? It defi nitely has user-visible components; still, you normally treat it as
 indivisible and therefore scalar. Let me try to give a precise defi nition. A value is scalar as
long as you operate on it only with operators defi ned for its type. Operators might retrieve
or update a single coordinate of a point, but as long as those operators are defi ned on
points (as opposed to numbers), a point is still scalar. A collection of points stored in a string
is nonscalar if you need to operate with points retrieved from the string. If you use this
 collection as a string and operate on it with string operators only, then this value is scalar.
How about a collection of points that defi nes a polygon? If you defi ne a polygon type
 explicitly, this is a scalar type. If you operate with points that defi ne corners of the polygon
through operations defi ned on the polygon type, values of this type are still scalar. Note
that this refl ects the real world. Sometimes you treat a value as a scalar of some type and
 sometimes as a collection of components where each component has its own type. For
 example, you drive a car as if it is a scalar value. When you take your car to a mechanic,
 however, the mechanic may treat your car as a nonscalar collection of components.

 In relations, only scalar (or atomic) attributes are allowed. This doesn’t mean that points in a
plane cannot be attribute values of a relation; however, the values of the attribute have to be
stored using the most specifi c type for the points—in other words, the point type and not
as a string of coordinates. Which is the most specifi c type of a value? That depends on the

C03626034.indd 86 2/17/2009 4:42:17 PM

 Chapter 3 The Relational Model 87

intended use. If you are developing a human-resources application, a picture of an employee
can probably be treated as scalar value of some binary type, and you would model a Subjects
relation using a single attribute Picture. If you are developing a face-recognition application
and need to analyze the picture using some vector graphics, you would model a Subjects
relation using an associated Pictures relation that has its own, more detailed attributes (or,
 alternatively, a Subjects relation with detailed attributes of a picture instead of a single
Picture attribute).

 At any rate, the relational model is not limited to using a few specifi c types; it supports all
 possible types. Some of the most common types are supplied by an RDBMS. These are called
system types. In addition, an RDBMS should allow you to extend the set of system types
with user-defi ned types. SQL Server allows the creation of user-defi ned types in versions 2005
and later.

The Meaning of Relations

 As I already mentioned, each relation represents some real-world entity, such as a person,
place, thing, or event. An entity is a thing that can be distinctly identifi ed and is of business
interest. The term entity class can be used instead of entity for a kind of thing (like “ person”)
as opposed to a specifi c example or representation (like “Steve Kass,” which represents a
 specifi c person). Each representation of an entity can be uniquely identifi ed, a fact that
makes it possible to use a relation to represent an entity. Each representation of an entity
plays an important role in the application or system it is represented in. This is the concept of
 abstraction: in a database, you only have entity classes (and attributes of those entities) that
have a reason to be there. Each representation of an entity can be described by one or more
attributes. Relationships are associations between entities. A relation is a subset of the cross
products of the entity sets involved in the relationship. Attributes give some information
about entities that is of interest for the application.

 The previous paragraph defi nes the meaning of relations in terms of entities and the
 relationships among them, as defi ned by Peter Chen in his famous paper “The Entity-Relationship
Model—Toward a Unifi ed View of Data,” referenced by most data-modeling books. The
entity-relationship (ER) approach is also the most widely used approach to relational database
modeling—fi nd entities, relationships, and their attributes. However, there is another approach
to understanding what relations mean. I actually prefer the second approach because it is more
natural. In this approach, you describe relations in terms of propositions and predicates.

 In Chapter 2, you learned the defi nition of propositions and predicates. What does this
 defi nition have to do with a relation? In natural language we make assertions about
 entities of interest by statements of fact—or, in logic, by propositions. For example, this is
a proposition: The employee with ID number 17 is named Fernando, works in department
D1, and was hired on July 19th, 2003. Generalized forms of propositions are predicates. For
example, this is a predicate: The employee with ID number (Emp#) is named (Name), works

C03626034.indd 87 2/17/2009 4:42:17 PM

88 Inside Microsoft SQL Server 2008: T-SQL Querying

in department (Dept#), and was hired on (Hiredate). The four terms in parentheses are
 placeholders or parameters that correspond to the four values in the preceding proposition.
When you substitute parameters with specifi c values, a predicate reduces to an individual
proposition. Here are the values for the parameters that reduce the predicate above to the
proposition that precedes it:

 (17; Fernando; D1; July 19th, 2003)

 You can see that the parameters form a tuple. I wanted you to see that tuples in a relation
actually represent propositions. Just as tuples represent propositions, relation headers
 represent the predicates for those propositions. I like this approach because it is very close to
natural language. Just describe a business problem, fi nd predicates, and write them down—
you have your data model. Of course, you need a tool that converts predicates to relations.
This natural language approach to modeling is called object-role modeling. It is described
in Information Modeling and Relational Databases, 2nd edition by Terry Halpin and Tony
Morgan (Morgan Kaufmann, 2008).

 But this is not a modeling book. You just need to understand what relations mean. You can
think of them as containers of real-world entities or as predicates and propositions from
natural language. Note that for the predicates I’ve mentioned so far, there are no constraints
on the tuple values that turn them into propositions, except that they must be values of the
attribute types. I will deal with constraints shortly; for now, let me offer an informal, generic
statement of the kind of rule you enforce with constraints: A proposition that evaluates false
for the relation predicate (header) cannot be a part of the relation at any time.

Views (and Other Virtual Relations)

 Views are an important part of a relational database. Also, an important part of queries in an
application are temporary relations (or rowsets in SQL Server terminology). A view is a virtual
relation; it is actually a stored query that is evaluated at run time when needed. A database
user, application developer, or application should not be able to distinguish a view from a
 table. This is an important principle—the principle of interchangeability, which states that
there should be no distinction between actual (sometimes called base) relations and virtual
relations. This principle provides logical data independence in a relational database. Logical
data independence can help you a lot with two problems: growth and restructuring. If a table
in a database grows too large, resulting in poor performance, you can subdivide it manually
into several new tables, then unite those tables into a view whose name is the original table
name. The new tables can even be in separate databases or on separate servers. If you need
to restructure a table and cannot change an application that uses it, you can create a view
that returns the original structure to the application. An application uses a view without
knowing it is a virtual relation. However, views cannot provide total data independence. If
you cannot hide all the changes of a table’s structure from an application with a view, you
have to change the application as well. For example, you might need to add an attribute that
has to be inserted by end users manually.

C03626034.indd 88 2/17/2009 4:42:17 PM

 Chapter 3 The Relational Model 89

 This concept of interchangeability can be extended further to table expressions—queries
that return relations inside outer queries. You probably already know about derived tables
and common table expressions; you’ll learn how to use them effi ciently in Chapter 6,
“Subqueries, Table Expressions, and Ranking Functions.”

Naming Conventions

 Naming conventions help you make more intuitive designs and write clearer code. Your
choice of convention is not as important as choosing a convention and using it consistently;
I do not want to force a particular one on you. Conventions are a matter of history, taste,
system limitations, and so on. Database designers tend to get really passionate about naming
conventions.

 I like the predicate-and-propositions approach to the meaning of relations. For example,
I am repeating the proposition I already mentioned: “The employee with ID number 17 is
named Fernando, works in department D1, and was hired on July 19th, 2003.” I suggest
that you should always be able to re-create the predicates and the propositions. A tuple
that represents this proposition is written in a relation with values only, like (17, Fernando,
D1, 2003-07-19). It is easy to recreate this proposition if its predicate, i.e. table structure,
has meaningful names for table itself and for columns, like Employees(EmployeeId,
EmployeeName, DepartmentId, HireDate). However, if the table and the columns would
be named Table1(column1, column2, column3, column4). In short, you should be able to
read your database. This makes it simpler to determine whether your database serves your
 business problem well and whether your data is in accordance with business rules. It also
makes it much simpler to familiarize a new programmer with the database design and makes
the task of data interchange with other systems easier.

 The only naming convention I really do not like for a relational database is the one called
Hungarian notation, in which you use prefi xes to denote object types. Hungarian notation
uses names like tblEmployees for an employee table and vwCustomerOrders for a customer
orders view; such names contradict the principle of interchangeability, which is one of the
most important principles in the relational model.

The Relational Model: A Quick Summary

 The relational model is background independent, which means it does not depend on any
specifi c presumption. I will return to this fact multiple times. To begin, let me state explicitly
that the relational model is not type dependent. There are no prescribed “relational” types,
and there are no “beyond relational” types. The relational model allows any type at all.
In fact, it is completely valid to defi ne a relation with a single attribute of a quite complex
type; this would be a typed relation. However, system-supplied types are usually easier to use
because database developers already know how to use them and, of course, don’t have to
develop them from scratch.

C03626034.indd 89 2/17/2009 4:42:17 PM

90 Inside Microsoft SQL Server 2008: T-SQL Querying

 To summarize, the relational model consists of the following components:

■ An open-ended collection of scalar types

■ A way to defi ne types—in other words, a type generator

■ A way to defi ne relation types—in other words, a relation type generator

■ A way to generate relational variables and assign values (sets) to them

■ Relational algebra: an open-ended collection of relational operators

 Tables represent relations, and all information in a relational database is stored in tables.
A relation represents an entity from the real world. In addition, tuples of a relation represent
propositions, and a relation header represents a predicate.

 The relational model is not dependent on naming conventions, either. Again, it is background
independent. This means it is your responsibility to use a naming convention descriptive
enough to make it possible to re-create predicates and propositions from your database.

Relational Algebra and Relational Calculus

 To manipulate relations (relational variables), you need some operators. Relations and operators
on relations form what is called relational algebra. The collection of relational operators is open
ended, but some operators are considered basic. Although the basic operators are somewhat
intuitive, I’ll introduce them for the sake of completeness.

Basic Operators

 As for simple types, we need at least two operators on relation types: one to store a set
of tuples in a relational variable and one to retrieve a variable’s value. These correspond
to the familiar notions of assignment and evaluation. The relational selector operator
(corresponding to evaluation) returns a table from a relational variable, and the relational
 assignment operator assigns a table value to a relational variable.

A set of basic Boolean operators on relations and tuples is obviously needed as well:

■ = (equals)

■ � (not equals)

■ � (subset of)

■ � (superset of)

■ � (element of)

■ =� (is empty)

C03626034.indd 90 2/17/2009 4:42:17 PM

 Chapter 3 The Relational Model 91

 The fi rst four operators listed here accept two relations as parameters. The fi fth one checks
whether a tuple is a member of a relation—in other words, it accepts a tuple as the left
 parameter and a relation as the right parameter. Finally, the last operator in the list accepts
a single relation as a parameter and checks whether it is empty. If you wish, you can defi ne
additional operators for convenience, such as proper subset of (to mean subset of and not
equal to) and proper superset of (superset of and not equal to). I want to mention one other
specifi c operator that helps greatly with the tabular presentation of a relation—the Order By
<attribute_1,attribute_2,. . .,attribute_n> operator.

 The Order By operator does not return an unordered result; thus, it does not return a set or
relation, which are unordered. You can think of the return value of the Order By operator
as a sorted table. Sorting is not predefi ned for relations and tuples, however; therefore,
 supporting the Order By operator for a particular relation requires that at least one attribute
of the relation support ordering and the following operators:

■ > (greater than)

■ � (greater than or equal to)

■ � (less than or equal to)

■ < (less than)

 The table returned by the Order By operator is sorted according to values of one or more
 attributes, all of which must be of data types that support the listed type operators.

Relational Algebra

 Relational algebra is a collection of operators that accept relations as input parameters and
return relations. The fact that the result of any relational operation is a relation is referred
as the relational closure property of the relational algebra. Codd originally defi ned eight
 relational operators—four of them are based on traditional set operators, and four of them
are special relational operators. These eight are Restrict, Project, Product, Union, Intersect,
Minus, Join, and Divide.

 Relational algebra is not closed; you can defi ne additional operators as long as they respect
the relational closure property. I’ll introduce a handful of useful operators in addition to
Codd’s original eight. Of course, because the collection of relational operators is open ended,
my list is not complete. I deliberately selected the operators that I fi nd most useful and that
are used in the Transact-SQL language later in this book.

Codd’s Eight Original Operators

 The Restrict operator fi lters tuples of a relation. The result of this operator is a relation with
fewer tuples than (or the same number as) the original relation. The heading type of the
 relation returned is the same as the heading type of the original relation. The restriction

C03626034.indd 91 2/17/2009 4:42:17 PM

92 Inside Microsoft SQL Server 2008: T-SQL Querying

is based on a Boolean expression (called the restriction expression) comparing values of
 attributes to literals, variables, other attributes, or expressions. The Restrict operator’s output
relation contains exactly those tuples from the original relation for which the restriction
 expression evaluates to True.

 The Restrict operator fi lters a relation horizontally; in contrast, the Project operator fi lters a
relation vertically. The Project operator is much simpler: in addition to a relation, the Project
operator takes, as input, a list of attributes needed for the resulting relation. Note that the
proper projection should include unique tuples only; otherwise, the result is not a relation.
Nevertheless, RDBMS do not enforce this rule because it is more practical to allow a multiset
(or a bag) as the result to send it directly to a client application or to store it temporarily.

 Figure 3-1 shows the Restrict and the Project operators graphically. Imagine that the right
rectangle showing the Project operator represents the relation Employees, with attributes ID,
Name, HireDate, DepartmentID, and BirthDate. The Project operator returns a relation with
ID, HireDate, and DepartmentID as its attributes, and these attributes are indicated by the
darker shading in the fi gure.

Restrict Project

FIGURE 3-1 The Restrict and Project operators

 The Product operator is based on the Cartesian product from mathematics. You already
know from Chapter 2 that the Cartesian product of two sets is a set of ordered pairs (x,y),
where x comes from the fi rst set and y from the second set. However, in the relational model,
tuples are not ordered, and the Product operator should respect the relational closure
 property and return a set of unordered tuples, not a set of ordered pairs. Thus, in relational
algebra, the Product operator is generalized. Instead of returning ordered pairs (x,y) of
tuples (where x is a tuple from the fi rst input to Product and y a tuple from the second), the
Product operator returns tuples that are the union of the original two tuples. Union is used
here in its set theory sense—it means that the fi nal tuple has as its attributes the union of the
 attributes of the two original tuples. Union of course means distinct union, and therefore, if
an attribute appears in both input relations, only one occurrence is preserved in the output

C03626034.indd 92 2/17/2009 4:42:17 PM

 Chapter 3 The Relational Model 93

of the Product operator. What happens if the two original relations include an attribute with
the same name and you want to preserve both of them? Clearly, the Product operator is not
complete; we need an additional operator that allows the renaming of an attribute. Such
an operator is not a part of Codd’s original algebra, so I will introduce after this section that
deals with the original eight operators.

 The Union relational operator is based on the set Union operator. However, the relational
Union operator again differs from its mathematical counterpart because of the closure
 property of relational algebra. Because the result must be a relation and a relation can have
tuples of only one heading type, the relational union must either be restricted to input
 relations of the same type or implicitly project each input relation onto the attributes that
are common to both input relations. Figure 3-2 shows the Product and the Union operators.
For the Union operator, a projection on each of the two relations is used to limit the union to
attributes that the relations have in common only. The result of Union has the same heading
type as both inputs (or their projections onto the common attributes) and contains distinct
tuples.

a a

y

y

y

x

x

x

a

b

b

c

c

x

Product Union

yb

c

FIGURE 3-2 The Product and Union operators

 The relational Intersect operator is, analogously to the relational Union operator, based
on the set theory Intersect operator, and like Union has the restriction that the operands
(relations) be of the same type or that an implicit projection is preapplied to the operands.
The result is the set of distinct tuples that appear in both input relations (or in their
 projections onto the common attributes).

 Another relational operator, the Minus (or Difference) operator, is based on the equivalent
operator of set theory, again with an understood projection to make the operands have the

C03626034.indd 93 2/17/2009 4:42:17 PM

94 Inside Microsoft SQL Server 2008: T-SQL Querying

same type. The result of the relational Minus operator is a relation that includes only tuples
from the left operand that do not appear in the right operand. Figure 3-3 shows the Intersect
and the Minus operators.

Intersect Minus

FIGURE 3-3 The Intersect and Minus operators

 There are many varieties of the Join relational operator; however, the most important one
is the Natural Join operator, which is illustrated in Figure 3-4. The Natural Join needs two
relations with at least one attribute in common; the result is a relation with tuples for which
the attributes in common have equal values. These common attributes come from only one
of the joined relations and with the union of other attributes from both relations. Union is
here again used in set theory sense, meaning a union of distinct attributes from the original
relations. Like the Product operator, the Join operator would be much more useful with
an operator that would allow renaming an attribute. As mentioned, Figure 3-4 shows the
Natural Join operator. Imagine that the left input relation is the Employees relation with
 employee ID number and Department ID number attributes and that the right input relation
is the Departments relation with Department ID number and Department Name attributes.
The Natural Join operator uses the Department ID number common attribute to match the
 employees with their departments based on equality of the Department ID number. Note
that in the resulting relation, the Department ID number appears only once. In addition, the
result contains only tuples arising from a match based on Department ID numbers in both
input relations. Finally, also note that a single department (y2 in Figure 3-4) is matched with
more than one employee.

 Not all joins are natural joins, and not all joins are based on the equality operator. General
joins (joins that don’t necessarily use the equality operator as the matching condition for
tuples) are called � (theta) joins. If the operator for matching tuples is the equality operator,
then the join is called equi-join. A natural join is just a special case of equi-join.

C03626034.indd 94 2/17/2009 4:42:17 PM

 Chapter 3 The Relational Model 95

x1

x2

x3

x1

x2

x3

y1

y2

y3

y1

y2

y3

y1

y2

y3

y4

z1

z2

z3

z4

z1

z2

z3

Natural Join

FIGURE 3-4 The Natural Join operator

 Probably the most poorly understood relational operator is the Divide operator. A divisor
relation is used to partition a dividend relation and produce a quotient relation. The quotient
relation is made up of those values of one column from the dividend table for which the
 second column contains all of the values in the divisor.

 Although this is a theoretical chapter, I am going to use code to explain the Divide operator
and a problem you can meet if you divide with an empty set, a zero divide problem. I’ll use
an example that you saw in Chapter 2 and that you’ll see again in Chapter 6. The problem,
which refers to the InsideTSQL2008 database, asks you to return all customers for whom every
 employee from the USA has handled at least one order. In this case, you divide the set of all
 orders by the set of all employees from the USA, and you expect the set of matching customers
back. T-SQL has no Divide operator. To show the problem, I’ll rephrase the problem as it
 appears in Chapter 6:

Return customers

for whom you cannot find

 any employee

 from the USA

 for whom you cannot find

 any order

 placed for the subject customer

 and by the subject employee

 The query for this problem is quite intuitive:

USE InsideTSQL2008;

SELECT custid FROM Sales.Customers AS C

WHERE NOT EXISTS

 (SELECT * FROM HR.Employees AS E

 WHERE country = N'USA'

 AND NOT EXISTS

 (SELECT * FROM Sales.Orders AS O

 WHERE O.custid = C.custid

 AND O.empid = E.empid));

 This query returns 23 rows, which means there are 23 customers for whom every employee
from the USA has handled at least one order. Let’s ask the same question with a different

C03626034.indd 95 2/17/2009 4:42:17 PM

96 Inside Microsoft SQL Server 2008: T-SQL Querying

country: How many customers are there for whom every employee from Israel has handled
at least one order? Here is the same query with one changed parameter:

SELECT custid FROM Sales.Customers AS C

WHERE NOT EXISTS

 (SELECT * FROM HR.Employees AS E

 WHERE country = N'IL'

 AND NOT EXISTS

 (SELECT * FROM Sales.Orders AS O

 WHERE O.custid = C.custid

 AND O.empid = E.empid));

 This query returns 91 rows, representing all customers. This might not be the result you
expected, given that there are no employees from Israel in the HR.Employees table. This is
the way the Divide operator was defi ned originally. Because the HR.Employees table has no
employee from Israel, the condition that a customer was served by all employees from Israel
is true for every customer (it is vacuously true). In other words, every customer was served
by every employee from Israel. However, something else is also true: every customer was
served by no employees from Israel. Note that there is no preferred truth here; the one you
take depends on the problem you are solving. Do we have something like Russell’s Paradox
here (which you remember from Chapter 2)? Not really. The problem is that we did not
think through the possibility of having no employees from Israel. If the original question’s
“ customers . . . for whom . . . at least one order” was intended to mean there were in fact some
orders, we can answer the question by simply adding a condition to the predicate requiring
to return customers served by all employees from Israel if there is at least one employee
from Israel:

Return customers

for whom you cannot find

 any employee

 from Israel

 for whom you cannot find

 any order

 placed for the subject customer

 and by the subject employee

 if there is at least one employee from Israel

 The query now looks like this:

SELECT custid FROM Sales.Customers AS C

WHERE

 NOT EXISTS

 (SELECT * FROM HR.Employees AS E

 WHERE country = N'IL'

 AND NOT EXISTS

 (SELECT * FROM Sales.Orders AS O

 WHERE O.custid = C.custid

 AND O.empid = E.empid))

 AND EXISTS

 (SELECT * FROM HR.Employees AS E

 WHERE country = N'IL');

C03626034.indd 96 2/17/2009 4:42:17 PM

 Chapter 3 The Relational Model 97

 This query returns zero rows, as you might have expected when you originally posed the
question. The formula for the Divide operator includes three relations:

 a Divide By b Per c,

 where a is the dividend, b is the divisor, and c is the mediator relation. Let relation a have
 attributes A and relation b attributes B. The Divide operator returns a relation that includes
of all tuples from divisor such that a tuple {A, B} appears in the mediator relation for all tuples
from divisor relation. In the examples I have shown, the dividend is the Customers relation,
the divisor is the relation that includes employees from a specifi c country (USA or Israel on
 examples), and the mediator is the Orders relation. However, in order to avoid the zero divide
problem, I used a fourth temporary relation (SELECT * FROM HR.Employees AS E WHERE
country = N’IL’). You can express the predicate requiring to return customers served by all
 employees from the USA if there is at least one employee from the USA in yet another way,
that is, by fi nding distinct customers (represented with custid) from orders served by employees
from the USA having the number of distinct USA employees that served a customer equal to
the total number of employees from the USA (again, as you’ll fi nd in Chapter 6):

SELECT custid

FROM Sales.Orders

WHERE empid IN

 (SELECT empid FROM HR.Employees

 WHERE country = N'USA')

GROUP BY custid

HAVING COUNT(DISTINCT empid) =

 (SELECT COUNT(*) FROM HR.Employees

 WHERE country = N'USA');

 This query returns the result for the second version of the division for both USA and Israel
employees and is also much shorter. To conclude the eight original relational algebra
 operators, Figure 3-5 shows the extended Divide operator (with mediator relation)
graphically.

a

b

c

a

a

a

b

b

x

y

z

x

z

x

z

a

Divide

FIGURE 3-5 The extended Divide operator

C03626034.indd 97 2/17/2009 4:42:17 PM

98 Inside Microsoft SQL Server 2008: T-SQL Querying

Additional Relational Algebra Operators

 As I already stated, relational algebra has an open-ended set of operators; I’m focusing on
some of the most useful ones.

 I already pointed out how the Rename operator is useful. Without it, any nonunary
 operators—operators that accept more than one relation as parameters—would be very
limited. The Rename operator assigns an alias to an attribute or to a relation in a query. Note
that it is practical to have aliases for relations as well as for attributes because a single query
can refer to the same relation more than once.

 A language that supports relational algebra is said to be relationally complete; however, this
doesn’t mean that it is computationally complete as well. I haven’t yet introduced an operator
that would return a computed attribute in the resulting relation. The Extend operator is the
operator that adds a named expression (which evaluates to a scalar value) to the resulting
 relation. Note that this expression is not limited to computations between attributes of a
 single tuple only; the expression can also work on multiple tuples if it aggregates multiple
 input values to a single output value. Figure 3-6 shows the Rename and the Extend
 operators, with aliased and added attributes in darker color with pattern.

A

x1

x1

x2

B

y1

y2

y1

A

x1

x1

x2

C

y1

y2

y1

Rename Extend

FIGURE 3-6 The Rename and Extend operators

 The Extend operator does horizontal, or tuple-wise, computations. We need an operator
for vertical, or attribute-wise, computations as well. The operator that does vertical
 computations is the Summarize operator (shown in Figure 3-7); it combines a projection on
attributes over which the vertical computation is made with an extension of the resulting
 relation to include aggregate computations.

 Semi joins are joins that return tuples from one relation based on the existence of related
tuples in the other relation. A left Semijoin operator (shown in Figure 3-8) returns tuples from
the left relation, and a right Semijoin operator returns tuples from the right relation.

C03626034.indd 98 2/17/2009 4:42:17 PM

 Chapter 3 The Relational Model 99

x1

x1

x2

x2

x1

x2

f (z1,z2)

f (z3,z4)

y1

y2

y1

y2

Summarize

z1

z2

z3

z4

FIGURE 3-7 The Summarize operator

x1

x2

x3

x4

y1

y2

y3

y4

y1

y2

y3

Semijoin

z1

z2

z3

x1

x2

x3

y1

y2

y3

FIGURE 3-8 The (left) Semijoin operator

 Graph theory is one of the most powerful theories in mathematics. It was developed by
Leonhard Euler when he was studying a famous historical mathematical problem called The
Seven Bridges of Königsberg. Here’s a short description of the problem from Wikipedia:

 The city of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides of
the Pregel River, and included two large islands which were connected to each other
and the mainland by seven bridges.

 The problem was to fi nd a walk through the city that would cross each bridge once
and only once.

 In graph theory, a graph is a set of items (called nodes or vertices) and connections (called
edges) between pairs of items. The nodes are abstract static items, and the edges can
 represent associations or relationships between nodes. A road system, for example, can be
represented with a graph: cities are nodes, and roads are edges. Trees and hierarchies are
special cases of graphs. In a relation, we commonly model a graph with the adjacency list
model. In this model, we consider the graph’s edges as directed edges from one vertex to
another, and we represent these directed edges as tuples. The nodes connected by an edge
(which can be viewed as adjacent by virtue of the edge connecting them) are represented
by attributes of the edge tuple. Only nodes with a connection are represented. The problem
with the adjacency list model comes when you have to query it. For example, if you need to
fi nd all possible paths from city A to city B in the road system, your query must involve some
kind of loop. (The loop can be hidden in a recursive common table expression, but it’s still
a loop.) To make such queries faster and simpler, we can use a new relational operator, the

C03626034.indd 99 2/17/2009 4:42:17 PM

100 Inside Microsoft SQL Server 2008: T-SQL Querying

TClose operator. This unary operator returns the transitive closure of the original relation. The
result is a relation with the same heading type as the original relation, but it includes tuples
for all pairs of nodes with unbroken paths between them. Querying such a resulting relation
is much simpler. You’ll learn more about graphs, trees, hierarchies, and also how to compute
the transitive closure of a graph in Chapter 12, “Graphs, Trees, Hierarchies, and Recursive
Queries.” For now, just look at the graphical representation of the operator in Figure 3-9.

a

b

b

c

c

e

a

b

d e

c

f

c

c

d

e

f

f

TClose

a

b

b

c

c

e

a

b

a

b

c

c

d

e

f

f

e

e

f

f

FIGURE 3-9 The (left) TClose operator

 For the sake of completeness, I’ll add two more well-known operators that deal with relations
with temporal data: Unpack and Pack. Although this book does not deal with temporal
 problems, many books do, such as Inside Microsoft SQL Server 2008: T-SQL Programming by
Itzik Ben-gan et al. (Microsoft Press, 2009).

 Imagine that each tuple in a relation has an attribute representing the time interval for which
the tuple is valid. Pretend that you have a time-interval type in your type collection, either
system defi ned or user defi ned. A tuple with such a validity interval might look like this:

 {A, d4:d6}

 Without explicitly defi ning the header of this tuple, let’s say the proposition here says that
supplier A is under contract (is a valid supplier) during the period from the point in time d4 to
the point in time d6 and that points in time are discrete: d1, d2, d3, and so on, like calendar
days, for example. You could also have additional tuples for the same supplier, like so:

 {A, d5:d7}

 {A, d8:d8}

C03626034.indd 100 2/17/2009 4:42:17 PM

 Chapter 3 The Relational Model 101

 Here, the three tuples for supplier A have overlapping and abutting validity intervals. How
can you fi nd the number of distinct time points supplier A was under a contract? How
can you combine tuples with adjacent and overlapping intervals into a single tuple that
 represents that supplier A was under contract continuously for one longer interval without
interruptions?

 Let’s defi ne the Unpack operator as a unary relational operator that returns a relation with
all distinct valid time points projected over a set of input operators, the way the Summarize
operator projects over input attributes. However, Unpack is doing the opposite of Summarize
in terms of tuples returned; the relation returned is exploded to include tuples for all distinct
valid time points. In the case of propositions from the example, the only input attribute for
which time points can be unpacked is the supplier. The Pack operator does the opposite: it
returns a relation with input attributes for which intervals are packed and intervals that are
a union of all intervals from the source tuples for the same input attributes that overlap or
meet. Note that union here is not a relational Union operator; it is an interval union, defi ned
only for intervals that overlap or meet. Figure 3-10 shows the Unpack and Pack operators
graphically.

a

a

a

b

b

d4 : d6

d5 : d7

d8 : d8

d2 : d4

d7 : d7

Unpack Pack

a

a

a

b

b

d4 : d6

d5 : d7

d8 : d8

d2 : d4

d7 : d7

a

b

b

d4 : d8

d2 : d4

d7 : d7

a

a

a

a

a

b

b

b

b

d4 : d4

d5 : d5

d6 : d6

d7 : d7

d8 : d8

d2 : d2

d3 : d3

d4 : d4

d7 : d7

FIGURE 3-10 The Unpack and Pack operators

Primitive Relational Algebra Operators

 Maybe you’ve already noticed that many of the relational operators defi ned so far can be
expressed with other relational operators. In fact, most of the operators mentioned so far
are just shortcuts that make relational expressions simpler and shorter. In fact, even Codd’s

C03626034.indd 101 2/17/2009 4:42:17 PM

102 Inside Microsoft SQL Server 2008: T-SQL Querying

 original eight operators are not all primitive; some can be expressed with others. An RDBMS
Query Optimizer component can utilize this fact when optimizing a query; it can rewrite a
query to its logical equivalent using different operators, which might be implemented with
faster physical operators than other relational operators in a specifi c RDBMS. For example,
you might notice that sometimes SQL Server uses the Merge Join physical operator when you
use the Union logical (relational) operator.

 Note also that the relational operators that are based on set operators differ from the
 original set operators.

Relational Calculus

 Relational algebra provides an open-ended set of relational operators. You use them to
 construct the desired relation that results from a query; you are prescribing a system of
how to get the resulting relation. Relational algebra is prescriptive. Relational calculus is an
 alternative way to obtain a desired resulting relation from a system. With relational calculus,
you describe the resulting relation. Therefore, relational calculus is descriptive.

 How do you describe the resulting relation you need? Once again we use predicates. You
 describe the resulting relation with a constrained predicate. For example, when I described
the Divide relational operator, I tacitly used relational calculus to introduce the problem:
Return all customers for whom every employee from the USA has handled at least one order.
The more detailed description is the following:

Return customers

for whom you cannot find

 any employee

 from the USA

 for whom you cannot find

 any order

 placed for the subject customer

 and by the subject employee

 Relational calculus exists in two fl avors: tuple calculus and domain calculus. In tuple calculus, you
specify a query’s result by describing tuple membership conditions for the resulting relation. In
domain calculus, you specify the resulting relation by constraining the domains of attributes.
Although there is a strict mathematical difference between tuple calculus and domain calculus,
for the purposes of this book we can treat that difference as a nuance. The difference was
 important in the past because different languages—languages that were serious competitors to
SQL—evolved based on tuple and domain calculus. For tuple calculus, QUEL (Query Language)
was developed; domain calculus was supported by QBE (Query by Example) language.

 To explain the difference between relational algebra and relational calculus, let me give
an example. Imagine two relations: Customers with attributes CustomerId, CustomerName,
and City and Orders with attributes OrderId, CustomerId, and OrderDate. The query you are
 solving is “Get the CustomerId and CustomerName attribute values of the distinct customers

C03626034.indd 102 2/17/2009 4:42:17 PM

 Chapter 3 The Relational Model 103

from Paris that have placed at least one order.” A prescriptive, algebraic formulation of the
query could be the following:

 1. Join Customers and Orders over CustomerId.

 2. Restrict the result to tuples for City Paris.

 3. Summarize the result over CustomerId and CustomerName to get distinct customers.

 4. Project the result over CustomerId and CustomerName.

 A descriptive, calculus formulation of the query would be the following:

 Return CustomerId and CustomerName for customers from Paris for which exists some order.

 The description of a query’s result is very similar in tuple and domain calculus. In both cases,
it includes a description of the resulting header (also called a proto-tuple) and a description
of constraints in terms of a predicate that uses a quantifi ed expression. In the example,
CustomerId and CustomerName defi ne the proto-tuple, the header of the resulting relation.
The predicate in the example uses an existentially quantifi ed statement “for customers from
Paris for which exists some order.” The word exists indicates quantifi cation. You create the
predicate by combining logical expressions using the standard logical operators ¬ (Not), �
(And), and � (Or). In addition, quantifi ed expressions are necessary for relational calculus.
Therefore, the existential quantifi er � (Exists) and the universal quantifi er � (For all) are an
indispensable part of relational calculus.

 SQL allows you to express the desired result of a query in nearly human language. It supports
both logical operators and quantifi ers. Itzik has pointed out many times in this book that
some problems are easier to solve when rephrased with a different predicate or are analyzed
using reverse logic. Now you can see that what this often means is that you are actually using
relational calculus.

 Relational calculus and relational algebra are equivalent; they both have the same expressivity.
Therefore, it is really up to you to select the most suitable way for expressing the desired resulting
relation; how you express a query (using relational algebra or relational calculus) and how you
understand the meaning of a relation (entity or predicate and propositions) are similar.

T-SQL Support

 I mentioned that SQL is not the only language used for manipulating relations. In fact, the
 relational model is not language dependent; this is another aspect of background independence
of the relational model. SQL is just one possible language. However, there is an existing ANSI
standard for SQL. And while it’s not perfect, SQL is the most widely used contemporary language
for manipulating relations. Transact-SQL (T-SQL) is SQL Server’s dialect of standard SQL.

 T-SQL supports most of the operators of relational algebra. You manipulate relations with
Data Manipulation Language (DML) statements, namely, SELECT, INSERT, UPDATE, DELETE,
and MERGE. The Product operator is expressed with CROSS JOIN. The Restrict operator

C03626034.indd 103 2/17/2009 4:42:17 PM

104 Inside Microsoft SQL Server 2008: T-SQL Querying

is supported in the WHERE and HAVING clauses and implicitly in the ON clause of a JOIN
 operation if the join is not a CROSS JOIN, as other joins fi lter the result of a CROSS JOIN. The
Project operator is supported in the SELECT part of a query, where you list attributes explicitly.
The Union, Intersect, and Minus relational operators have counterparts in the T-SQL UNION,
INTERSECT, and EXCEPT operators. All kinds of Join operators—theta joins, equi-joins, semi
joins, and natural joins—are supported with the JOIN operator. The Rename operator is
 expressed in T-SQL with the AS clause, which can appear in a query’s SELECT list for renaming
attributes and in a query’s FROM part for renaming relations. The Extend operator is expressed
in the SELECT list, which can include named calculated expressions in addition to original
 attributes. The Summarize operator translates to the T-SQL GROUP BY clause. The Divide,
TClose, Unpack, and Pack relational operators have no directly equivalent T-SQL operators.

 Relational calculus is supported by the SELECT part of a query, where you describe the
 proto-tuple, and in the WHERE and HAVING clauses, where you constrain the resulting
 relation with a predicate. Of course, T-SQL supports all standard logical operators: ¬ (Not), �
(And), and � (Or) and both the existential quantifi er � (Exists) and the universal quantifi er �
(For all) in expressions that constrain the resulting relation.

 Given all of this information, we can say that T-SQL is relationally complete.

Data Integrity

 I already mentioned that data integrity is crucial for a relational database. Actually, data
 integrity rules are an important part of a relational database. An RDBMS has to enforce the
rules. By making the rules part of a database, you inform the system what those rules are.
With declarative constraints, how they are enforced is up to the system; with procedural
code, you defi ne how to implement them. In both cases, you express constraints in terms of
predicates.

 Relation headers—physical table and view defi nitions including attribute type defi nitions,
together with declarative and procedural constraints—form a database schema. Now we can
summarize what exactly a database schema is. A database schema represents constrained
predicates that describe a business scenario. You can get the constrained predicates from
 relation headers and constraints defi ned in the database. A database predicate can be
 defi ned as an aggregation of all relation and constraint predicates. Data integrity rules can
be expressed with a single rule: there must be no value in a database at any time that would
violate its constrained predicate.

 Constraints can be classifi ed into basic constraints that defi ne entity, referential, and domain
integrity and business rules. Basic integrity rules are expressible with declarative constraints.
Most business rules need programmatic code in SQL Server. Business rules can be anything,
such as cardinality or frequency rules (how many tuples can exist in a relation at any time),
data derivation rules (how you calculate state from events), subset rules (a relation can have

C03626034.indd 104 2/17/2009 4:42:17 PM

 Chapter 3 The Relational Model 105

a subset of tuples from another relation only), inclusion rules (a period when a supplier has
supplied a product must be included in a period when the supplier had valid contract),
 process rules (which event should happen fi rst), and much more. It is up to the database and
application designer to decide where to implement the rules. I strongly advocate having at
least declarative constraints in your relational database. After all, if you do not use them, why
do you use an RDBMS?

 Constraints can be classifi ed in other ways as well. For example, they can be classifi ed
 according to which kind of object they constrain: type, attribute, relation, and database
 constraints. They can also be classifi ed as immediate or deferred, based on when they are
 enforced: immediately or at the end of the current transaction. Note that according to the
rule that “there must be no value in a database at any time that would violate its constrained
predicate,” only immediate constraints should work inside a relational database. This means
that constraints must be enforced at a single DML statement boundary, not at the end of
a transaction or even later. A single DML statement is treated in an RDBMS as an atomic
 operation even if it modifi es multiple rows; therefore, during the statement execution you
could get rows that violate some constraint but never after the statement is fi nished. Note
that immediate constraints only cannot guarantee that a database would refl ect a valid state
of affairs in real-world environment at all times. For example, although transferring money
from one account to another is intended as an atomic operation, it involves two updates in
a database. Both updates must fi nish successfully, or none should be performed. Therefore,
we clearly need some other means to make databases consistent with the real world at any
time. This can be done with transactions. A transaction is a logical unit of work that extends
a statement-level notion of atomicity. Although transactions play an important role in an
RDBMS, I am not going to explain them more in detail here; to learn more about them,
please refer to Inside Microsoft SQL Server 2008: T-SQL Programming.

 ANSI standard SQL allows deferred constraints. SQL Server does not implement them.
However, they can be implemented in procedural code for advanced checks and searches
for incorrect data. Correctness is a stricter term than consistency; an RDBMS can enforce data
consistency but not correctness. Consistency means that data is in accordance with business
rules declared and known to the system; correctness is defi ned outside the system by users
of the system.

Declarative Constraints

 Because declarative constraints are the most important way of implementing business rules
in a relational database, I’ll discuss them in more detail than other constraints.

Entity Integrity

 Tables in a database are physical representation of relations, and the rows of a table represent
tuples; relations consist of unique tuples. This is what entity integrity is about—uniquely

C03626034.indd 105 2/17/2009 4:42:17 PM

106 Inside Microsoft SQL Server 2008: T-SQL Querying

 identifying rows in a table. You must have a combination of columns (which physically
 represent attributes) that uniquely identify a row. The minimal set of columns that still uniquely
identify each row is called a key. Each table can have multiple unique column combinations—
in other words, multiple candidate keys. It is up to you to select one of them as your primary
 reference for each row and call it the primary key. SQL Server has two constraints for entity
integrity: the Unique constraint for candidate keys and the Primary Key constraint for primary
keys. You can have multiple Unique constraints and one Primary Key constraint per table.

 You know that every table should have a key. You also know that SQL Server does not
 enforce this; you can create a table without a Primary Key or Unique constraint. The reason
for this is purely practical. Imagine you need to import data from a text fi le. If you had a key
defi ned, you would have to cleanse the data in your text fi le before the import. Cleansing
text fi les is much less practical than cleansing data in a SQL Server table. Nevertheless, in
production, all your tables should have a key defi ned for each table.

 Each key has two required and two desired properties (D. Sarka, 2008). Uniqueness and
applicability are required; stability and minimality are desired. Uniqueness means the key
identifi es each tuple uniquely. Applicability means the key has to be applicable for all tuples
in a relation, it has to be known, and it should not consist of attributes that are meaningless
for some tuples. (See the section “Generalization and Specialization” later in this chapter.)
Stability means the key should not change, if possible. Minimality means the key should
consist of the fewest columns possible and the fewest bytes possible. Nevertheless, because
of physical problems, you should search for keys with all four properties. To track changes
for an entity over time, such as in data warehousing scenarios, stability becomes a necessary
property. And minimal keys provide the best performance.

 There is an old debate about keys and which are better: natural or surrogate. A natural key is
a subset of the attributes that defi ne an entity. A surrogate key is a key the designer creates
and adds to the attributes of an entity; typically it is a sequential number. Personally, I avoid
participating in this old debate. You cannot strictly distinguish between natural and surrogate
keys. Is a Social Security ID (SSID) a natural or surrogate key? Somebody could add it to the
attributes of Person entity. Let me try to express a defi nition of a natural key: a key is natural
if the attribute it represents is used for identifi cation independently of the database. If you
have something unique, applicable, stable, and short in your table, use it. If you don’t, add
a sequential number for the primary reference, and you will have all required and desired
 properties for your primary key.

 If a key is applicable, its values must be known. SQL Server enforces this rule by prohibiting
columns that allow NULLs from participating in Primary Key constraints; however, it allows
nullable columns in Unique constraints. I’ll come back to NULL, which is the marker for
 something unknown, later in this chapter. For now, I’ll simply advise you not to use nullable
columns for keys.

C03626034.indd 106 2/17/2009 4:42:17 PM

 Chapter 3 The Relational Model 107

Referential Integrity

 A foreign key is a set of columns whose values match some key of another table—in other words,
a copy of a key from another relation. Foreign keys denote associations between relations; they
are the glue that keeps relations in a database together. The rule foreign keys enforce can be
 expressed briefl y: There must be no unmatched foreign keys in a database at any time. Foreign
keys maintain references between relations—in other words, they enforce referential integrity.

 The foreign key rule can be maintained during update and delete operations in different ways.
In SQL Server, four possibilities exist for enforcing the foreign key rule, and each possibility
consists of two pairs of rules. One pair of rules deals with the primary (parent) table, and one
pair deals with the secondary (child) table. The pair of rules for the child table is immutable;
the rules are always the same for all four possibilities of implementing a foreign key:

■ You cannot insert a row in the child table if it has no related row in the parent table.

■ You cannot update the foreign key columns in the child table in a way that would leave
them without a related row in the parent table.

 The two rules for the parent table differ with each of the four possible implementations. The
four standard possibilities and the implementation of the two rules for the parent table are
the following:

■ No Action implementation

❏ You cannot delete a row in the parent table if it has related rows in the child table.

❏ You cannot update the key columns in the parent table if they have related rows
in the child table that would become orphaned.

■ Cascade implementation

❏ If you delete a row in the parent table, you have to delete all related rows in the
child table.

❏ If you update a primary key in the parent table, you have to update foreign keys
in all related child tables to the same new value.

■ Set Null implementation

❏ If you delete a row in the parent table, you have to set to unknown (NULL) all
 foreign keys of related rows in the child table.

❏ If you update a primary key in the parent table, you have to set to unknown
(NULL) all foreign keys of related rows in the child table.

■ Set Default implementation

❏ If you delete a row in the parent table, you have to set to a predefi ned default
value all foreign keys of related rows in the child table.

❏ If you update a primary key in the parent table, you have to set to a predefi ned
default value all foreign keys of related rows in the child table.

C03626034.indd 107 2/17/2009 4:42:17 PM

108 Inside Microsoft SQL Server 2008: T-SQL Querying

 In short, whatever you do, never leave rows in the child table orphaned. You would normally
use the No Action implementation. You should use the Cascade implementation for deletes
only in case you want to implement a strong relationship between the parent and the
child table. In such a relationship the child table rows make no sense without parent rows.
A classical example is orders and order line items: order line items cannot exist without an
 order. If you delete an order, you should delete all of its line items as well. I do not like to use
Cascade updates. Cascade updates indicate that your key in the parent table is not stable,
and stability is one of the desired properties of a key. The Set Null and Set Default rules
are useful for maintaining history of the child table; for example, an order with unknown
 customer gives you information that something was ordered and when it was ordered
but not who ordered it. Nevertheless, today history is commonly maintained in a data
 warehouse, and you usually do not need these rules.

 A foreign key constraint must reference a key in the parent table. The parent table can be
the same as the child table; a foreign key can refer to the table itself. This is how you can
 represent graphs, trees, and hierarchies using the adjacency list model.

Domain Integrity

 Domain integrity limits the domain of possible values of an attribute. Of course, an attribute’s
type already constrains the possible values of the attribute. Another standard way to limit the
domain of an attribute in a relational database is with a check constraint.

 A check constraint is a logical expression that returns true, false, or unknown—it is another
predicate. An RDBMS enforces it whenever a tuple is inserted or updated. The tuple’s
 attribute values replace the predicate’s parameters, making the predicate a proposition.
A tuple is rejected if the proposition evaluates to false. The syntax of a check constraint
 expression is similar to the syntax of expressions in a WHERE clause.

 Check constraints can be as simple as checking a range of values. However, what do you do
when you don’t know the allowed range in advance—when you have to maintain the values
to the allowed range dynamically? What do you do when the list of possible values is very
long or even infi nite? A check constraint expression would consist of an enormous list of
values connected with logical OR operators, and you would have to change the constraint
whenever the list of possible values changed. In such a case, it’s simpler to use lookup tables.
You connect the attribute(s) you are constraining to a lookup table with a foreign key.
Therefore, foreign key constraints can serve as domain integrity mechanisms as well.

 All the constraints I’ve mentioned—keys, foreign keys, and check constraints—play an
 important role in query optimization. They give information to an RDBMS, and this helps
fi nd an optimal execution plan. Keys give information that you’re searching for a single value;
this value is unique. Therefore, the search is very narrow, and the system can use an index
seek. Foreign keys give information that a parent row always exists, which helps to fi nd the
most effi cient join algorithm. Check constraints give information about range, which means
(for example) that searching for a value that is out of range returns zero rows, and the system

C03626034.indd 108 2/17/2009 4:42:17 PM

 Chapter 3 The Relational Model 109

doesn’t even have to read the data to return the correct result set. You’ll learn more about
query tuning in Chapter 4, “Query Tuning.”

Other Means of Enforcing Integrity

 As I’ve already mentioned, explicit constraints are not the only means of enforcing data
 integrity. Data types are constraints as well; they constrain with type-defi ned constraints and
with sets of operations allowed. An attribute is constrained with its data type. You can also
defi ne whether a column of a table allows NULLs. Finally, the defi nitions of tables constrain
as well: if you don’t have a place to insert a value, you cannot insert it. I will explain this a bit
more in the normalization section of this chapter.

 You cannot implement all business rules by using declarative means. Some constraints are
too complex, and some span a database boundary. A foreign key, for example, is limited
to associating tables in the same database only. Some constraints have to be implemented
programmatically. You can put your constraining code in a client application, in the middle
tier, in the data access layer, in stored procedures in a database, or anywhere you have some
code. However, if you want your RDBMS to enforce complex constraints automatically, you
have to use triggers.

 Triggers are special stored procedures that an RDBMS executes, or fi res, automatically. You
can use Data Modifi cation Language (DML) triggers to enforce data modifi cation rules and
Data Defi nition Language (DDL) triggers to enforce schema modifi cation rules. Triggers can
fi re before or after the statement that is modifying the state of a database. SQL Server 2008
supports two kinds of DML triggers: INSTEAD OF and AFTER triggers; only one kind of DDL
trigger is supported: the AFTER. INSTEAD OF triggers are not actually ANSI-standard BEFORE
triggers; they do fi re before the statement, but they also intercept the statement, and then
you can do whatever you want in the body of the trigger. If you want the statement to
 execute, you have to write it explicitly in the body of the trigger.

 In theory, you should always be able to use a view instead of a base relation. However, not all
views are updatable. For example, a view can summarize some attributes of a base table; an
RDBMS doesn’t know how to distribute a value from a single row from a view over multiple
base rows. INSTEAD OF triggers are especially meant for making views updatable.

 SQL Server 2008 also has a built-in XML system type. The XML type enforces some integrity
rules by itself: it allows well-formed XML only. In addition, you can validate XML values
against a predefi ned schema from a schema collection you create inside a SQL Server
 database. Details of triggers and XML validations are beyond scope of this chapter; for more,
please refer to Inside Microsoft SQL Server 2008: T-SQL Programming.

 You can also use some elements of a database that don’t really enforce data integrity but
 instead help users insert correct values. Defaults can help insert a value when it is not
 explicitly listed in the INSERT statement. SQL Server 2008 has also a Timestamp type; SQL
Server inserts and updates values of this type automatically and guarantees that values in

C03626034.indd 109 2/17/2009 4:42:17 PM

110 Inside Microsoft SQL Server 2008: T-SQL Querying

columns of this type are unique across a database. The IDENTITY property of a column can
help you insert sequential numbers.

 One important thing you need to know is the order in which the system enforces constraints. You
probably noticed that I switched from discussing a general (and theoretical) implementation to
a SQL Server 2008–specifi c implementation. The details of constraints are quite system specifi c,
and it seems more appropriate to switch to the system that this book is about—namely, Microsoft
SQL Server 2008. Therefore, the order of execution in SQL Server is as follows:

 1. Schema is checked (whether an update is valid for the table schema).

 2. Data types are checked.

 3. INSTEAD OF triggers fi re instead of the actual statement.

 4. Default constraints are applied.

 5. Nullability is checked.

 6. Primary Key and Unique constraints are checked.

 7. Foreign Key and Check constraints are enforced.

 8. Statement is executed.

 9. AFTER triggers fi re.

 What this order tells you is that declarative constraints are enforced before the actual
 statement, and they prevent improper updates, while AFTER triggers fi re after the statement,
and you have to roll back an improper modifi cation discovered by the statement’s AFTER
trigger. This means that using declarative constraints is more effi cient than using AFTER
 triggers, and you should opt for using declarative constraints whenever possible. Don’t forget
another advantage in using declarative constraints: they can help in query optimization.

The Good, the Bad, and the . . . Unknown!

 The last question I want to touch on regarding data integrity is whether you should allow
NULLs in your database. In an ideal world, your database should represent true propositions
only; if something is NULL and you do not know what that NULL means, you cannot say it is
true. Therefore, from a strict point of view, you should not allow any NULLs.

 However, in the real world, you always have some missing information, at least temporarily.
In addition, you really can experience Russell’s Paradox, as described in Chapter 2. In addition
to the theoretical description, I’d like to offer an example I found in Fermat’s Last Theorem
by Simon Singh (HarperPerennial, 2005), showing Russell’s Paradox in real life. This is the
 problem of the meticulous librarian.

 This library has two kinds of catalogs (of whatever you want); some list themselves in
 references, and some don’t. The librarian wants to make two new catalogs: one that lists all
catalogs that do list themselves and one that lists all catalogs that do not list themselves.

C03626034.indd 110 2/17/2009 4:42:17 PM

 Chapter 3 The Relational Model 111

The problem is with the latter catalog: should it list itself? If it does list itself, by defi nition
it should not be listed. If it does not list itself, by defi nition it should be listed. Imagine you
have to insert these two catalogs in a database, and in a table describing catalogs, you have
an attribute that is a fl ag showing whether a catalog lists itself. What would you insert in this
attribute for the catalog that lists all catalogs that do not list themselves? I think that NULL is
quite all right, showing that you cannot have anything meaningful there.

 Of course, in real life, you will encounter missing information because of many reasons other
than Russell’s Paradox. Nevertheless, you have to fi nd a way to deal with missing information.

 ANSI standard prescribes and SQL Server implements NULLs for denoting missing values.
Note that NULL is not a value; it is just a marker. NULL doesn’t even have the privilege to be
equal to itself. Some authors (Date, Pascal) strictly forbid NULLs, others explicitly allow them
(Codd), and others (Halpin) do not discuss them—they just show how to model and use
them. Which is correct?

 If NULLs were not allowed, you’d still have to implement some special values denoting
 missing information. The advantage of this approach is that you could use standard
Boolean operators in your queries, and there would be no need for special operators that
handle NULLs. The disadvantage is that there is no single, standard, special value accepted
 worldwide. In addition, a single special value would not be suffi cient; we would actually
need one for each data type. Using NULLs means using a standard that is already accepted;
 however, it also means introducing three-valued logic, where not true is not the same as false.
Three-valued logic makes queries more complicated.

 After considering many pros and cons, my personal conclusion is that NULLs are here to stay,
and they are implemented by all major RDBMS; therefore, I prefer using them to inventing
special values. You’ll learn a lot about writing effi cient three-valued logic queries in this
book. Nevertheless, some NULLs can be avoided—namely, NULLs that are there because
an attribute is not applicable for a particular tuple of a relation. This is a matter of design. A
good schema constrains—in other words, excludes—NULLs that represent “not applicable.”
Therefore, the time has come to defi ne a good schema!

Normalization and Other Design Topics

 I need to clarify something immediately. This is not a modeling book; it is a practical book
with a couple of introductory chapters that explain the theory behind the practice. The
theory helps you understand why some things in SQL Server are implemented as they
are implemented. This book will help you better understand what you are doing when
you create and maintain a relational database as well as help you fi nd different ways of
 expressing queries, fi nd more optimized queries, and so on. Therefore, I won’t talk about
how to model; I‘ll talk about what you need to achieve with your models.

 Many modeling books are on the market; I don’t need to advertise them. I will mention a
couple of books I really like just to make this chapter more complete. Personally, I prefer the

C03626034.indd 111 2/17/2009 4:42:17 PM

112 Inside Microsoft SQL Server 2008: T-SQL Querying

object-role modeling (ORM) approach, and Information Modeling and Relational Databases,
2nd edition by Terry Halpin and Tony Morgan (Morgan Kauffman, 2008) is the bible of ORM.
For the most popular modeling approach, the ER approach, I like Data Modeling Essentials,
3rd edition by Graeme Simsion and Graham Witt (Morgan Kauffman, 2004), where you can
fi nd a lot on the modeling process and fi nding information about business rules. Finally, if
you are developer and you already use Unifi ed Modeling Language (UML) for modeling,
Database Design for Smarties: Using UML for Data Modeling by Robert J. Muller (Morgan
Kauffman, 1999) could be a good resource for you.

 What you need to achieve in order to create a good relational model is mathematically
 described with normalization and specialization. Because normalization is more complex, I’ll
spend more time on it, although both parts are important for a good design. But before I
start with normalization, let me repeat a very simple yet important sentence about good
 design: A relational database is well designed if you can reconstruct the predicates (and
propositions) used to describe the business problem.

Normal Forms Dealing with Functional Dependencies

 Tables are normalized when they represent propositions about entities of one type—in other
words, when they represent a single set. This means that entities do not overlap in tables
and that tables are orthogonal or normal in mathematical terms. When a table meets a
 certain prescribed set of conditions, it is said to be in a particular normal form. A database is
 normalized when all tables are normalized. You can create fully normalized database models
with ORM or with the ER approach.

 Normalization is a redesign process to unbundle the entities. The process involves
 decomposition but not decomposition that leads to a loss of information. After the
 normalization process, all the original information must be obtainable with queries that
 involve relational operators such as Join and others. The normalization is achieved by
 applying a sequence of rules to create what are called normal forms. The goal is to eliminate
redundancy and incompleteness. Note that the latter is often overlooked; however,
 normalization eliminates incompleteness in addition to eliminating redundancy.

 Many normal forms are defi ned. The most important ones are fi rst, second, third,
 Boyce-Codd, fourth, and fi fth normal forms. If a database is in fi fth normal form, it is
said to be fully normalized. If a database is not fully normalized, you can experience data
 manipulation anomalies.

 I’ll start with the fi rst four normal forms, which deal with functional dependencies.
A dependent variable is functionally dependent on an independent one when exactly one
 value of the dependent variable exists for each value of independent variable. This means
that if we know the value of the independent variable, we know the value of the dependent
variable as well. In a relation, nonkey attributes are functionally dependent on keys; if
you know the key value, you can fi nd the nonkey attribute value. This is what functional
 dependency in a relation means.

C03626034.indd 112 2/17/2009 4:42:17 PM

 Chapter 3 The Relational Model 113

First Normal Form

Imagine a real-world scenario with customers that order products. Customers, orders, and
products are entities you discovered when you got the description of the business scenario.
Initially, you model everything in a single table called Orders. Table 3-1 shows an imaginary
Orders table. Columns that are part of the key are shaded (OrderId only in this example).

TABLE 3-1 A Table Before 1NF

 OrderId CustomerId CustomerName OrderDate Items

 1 1 Company ABC 2008-10-22 Ap Apples q=5, Ch Cherries q=10

 2 1 Company ABC 2008-10-24 Ba Bananas q=12

 3 2 Company ABC 2008-09-15 Ap Apples q=3, Ba Bananas q=3

 This design is, of course, problematic. Some possible data manipulation anomalies are the
following:

■ Insert

❏ How do you insert a customer without an order? (By the way, can you see the
 incompleteness problem?)

■ Update

❏ If item Ba is renamed, how do you perform an update? You can easily miss some
row you should update. This occurs because of redundancy.

■ Delete

❏ If order 3 is deleted, the data for customer 2 is lost. This is also a problem of
incompleteness.

■ Select

❏ How do you calculate the total quantity of bananas? This is the problem with a
nonscalar column. The Items column is a collection.

 The fi rst normal form (1NF) says that a table is in fi rst normal form if all columns are atomic.
No multivalued columns are allowed. Note that the 1NF defi nition simply states that a table
must represent a relation.

 Decomposition has to start with the Items column. You need a single row per item in an
 order, and every atomic piece of data of a single item (ProductId, ProductName, Quantity)
must get its own column. However, after the decomposition, you get multiple rows for a
single order. OrderId by itself cannot be the key anymore. The new key is composed of
the OrderId and ProductId columns. If you allow multiple products on a single order—for
 example, each time with a different discount—you would not be able to use the ProductId
as a part of the key. You would probably add ItemId attribute and use it as a part of the new
key. A decomposed table in 1NF would look like Table 3-2.

OrderId CustomerId CustomerName OrderDate Items

C03626034.indd 113 2/17/2009 4:42:17 PM

114 Inside Microsoft SQL Server 2008: T-SQL Querying

 TABLE 3-2 A Table in 1NF

OrderId CustomerId CustomerName OrderDate ItemID ProductId Quantity

Product

Name

1 1 Company ABC 2008-10-22 1 Ap 5 Apples

1 1 Company ABC 2008-10-22 2 Ch 10 Cherries

2 1 Company ABC 2008-10-24 1 Ba 12 Bananas

3 2 XYZ 2008-09-15 1 Ap 3 Apples

3 2 XYZ 2008-09-15 2 Ba 3 Bananas

 Before I start with 2NF, let me point out one common misconception with 1NF. You’ll often
read about repeating group of columns. Take, for example, the Employees table design
shown in Figure 3-11.

Employees

EmployeeId

EmployeeName
Child1Name
Child2Name
Child3Name

PK

FIGURE 3-11 The Employees table

 You probably feel uncomfortable with this table. It has a repeating group of columns with a
similar name—ChildXName. Child1Name means the name of the oldest child, Child2Name
means the name of the second oldest, and Child3Name means the name of the third oldest
(disregarding twins). Of course, the question is, what if an employee has more than three
children? You’d probably create a new table. You might think that you are normalizing the
Employees table.

 You know that the relational model does not depend on names. Let’s rename the table and
all of the columns and get a table shown in Figure 3-12.

Orders

OrdersId

CustomerID
OrderDate
DueDate
ShipDate

PK

FIGURE 3-12 The Orders table (the Employees table renamed)

 You probably feel more comfortable with this design, and this table seems perfectly
 normalized. The Employees table was in 1NF as well, but the problem is that a constraint
is built into both tables. The fi rst constraint says we have employees with three (or at most
three if the columns allow NULLs) children; the second constraint says an order has three

OrderId CustomerId CustomerName OrderDate ItemID ProductId Quantity

Product

Name

C03626034.indd 114 2/17/2009 4:42:18 PM

 Chapter 3 The Relational Model 115

dates. Of course, the fi rst constraint makes no sense in real world, and the fi rst design was
bad anyway. However, it was normalized. Remember that you can constrain with the data
model itself with table design. Often a repeating group of columns with similar names really
represents a hidden collection; however, don’t decompose such groups automatically. Check
the business rules—the constrained predicates—fi rst.

Second Normal Form

After achieving 1NF, as you saw in Table 3-2, you still have many updating anomalies:

■ Insert

❏ How do you insert a customer without an order? (Incompleteness)

■ Update

❏ If a customer changes the order date for an order, how do you perform the
 update? (Redundancy)

■ Delete

❏ If you delete order 3, the data for customer 2 is lost. (Incompleteness)

To achieve second normal form (2NF), a table must be in 1NF (do you see the linear
 progression?), and every nonkey column must be functionally dependent on the entire key. This
means that no nonkey column can depend on a part of the key only. In Table 3-2, you need
OrderId only to get CustomerId and OrderDate; you don’t need ItemId, which is also part of
the key. For the normal forms beyond 1NF, decomposition means creating new tables, not
just new rows like in 1NF. To achieve 2NF, you need to decompose the table into two tables,
like Tables 3-3 and 3-4 show.

TABLE 3-3 The Orders Table in 2NF

 OrderId CustomerId CustomerName OrderDate

 1 1 Company ABC 2008-10-22

 2 1 Company ABC 2008-10-24

 3 2 XYZ 2008-09-15

TABLE 3-4 The OrderDetails Table in 2NF

OrderId ItemId ProductId Quantity ProductName

1 1 Ap 5 Apples

1 2 Ch 10 Cherries

2 1 Ba 12 Bananas

3 1 Ap 3 Apples

3 2 Ba 3 Bananas

OrderId CustomerId CustomerName OrderDate

OrderId ItemId ProductId Quantity ProductName

C03626034.indd 115 2/17/2009 4:42:18 PM

116 Inside Microsoft SQL Server 2008: T-SQL Querying

 You make the split so that you leave attributes that depend on OrderId only in the Orders
table, and you introduce a new table, OrderDetails, with the other attributes. 2NF deals with
the relationship between columns that are part of a key and other columns that are not part
of a key.

To gain nonloss decomposition, you have to be able to join the two new tables back to
 produce the original table. Therefore, you need some common value in both tables. Of
course, this is the OrderId column from the Orders table, which is, as you already know, the
foreign key column in the OrderDetails table.

Third Normal Form

With 2NF, we’ve resolved the order date update anomaly because of redundancy. However,
many issues remain:

■ Insert

❏ How do you insert a customer without an order? (Incompleteness)

■ Update

❏ If a customer or a product is renamed, how do you perform the update?
(Redundancy)

■ Delete

❏ If you delete order 3, the data for customer 2 is lost. (Incompleteness)

To achieve third normal form (3NF), a table must be in 2NF, and every nonkey column must
be nontransitively dependent on every key. In other words, nonkey columns must be mutually
independent. For example, in Table 3-3, from OrderId, you can fi nd CustomerId, and from
CustomerId, you can transitively fi nd the CustomerName value. Try to fi nd a similar problem
in Table 3-4 (of course, ProductId and ProductName are not mutually independent).

To achieve 3NF, you must create new tables for dependencies between nonkey columns, as
shown in Tables 3-5 through 3-8.

TABLE 3-5 The Customers Table in 3NF

 CustomerId CustomerName

 1 Company ABC

 2 XYZ

 TABLE 3-6 The Orders Table in 3NF

OrderId CustomerId OrderDate

1 1 2008-10-22

2 1 2008-10-24

3 2 2008-09-15

CustomerId CustomerName

OrderId CustomerId OrderDate

C03626034.indd 116 2/17/2009 4:42:18 PM

 Chapter 3 The Relational Model 117

TABLE 3-7 The OrderDetails Table in 3NF

 OrderId ItemId ProductId Quantity

 1 1 Ap 5

 1 2 Ch 10

 2 1 Ba 12

 3 1 Ap 3

 3 2 Ba 3

TABLE 3-8 The Products Table in 3NF

 ProductId ProductName

 Ap Apples

 Ch Cherries

 Ba Bananas

 When you reach 3NF, you usually get rid of all data manipulation anomalies. Usually when
you normalize up to 3NF, the result satisfi es BCNF, 4NF, and 5NF as well. Higher normal
forms violations are rare. To make this overview complete, however, I’ll describe the higher
normal forms and give a couple of practical tips on how to recognize the possibility of
 violating them.

Boyce-Codd Normal Form

 The fi rst question you might ask yourself is why the next NF is not called 4NF. The fact is that
Mr. Codd actually wanted to replace 3NF with the one we now know as Boyce-Codd normal
form (BCNF). Because it is stricter than 3NF, 3NF did not disappear, and consequently we
have somewhat inconsistent numbering.

I’ll show how you can violate BCNF. Imagine for a moment we have the Orders table, without
the OrderId column and with a single order per customer per day allowed. Also, each
 order has a standard ship time, and therefore OrderDate gives you the expected DueDate.
Table 3-9 shows this example. To make the dependency clear, the DueDate is always a day
after the OrderDate.

 TABLE 3-9 The Imaginary Orders Table

CustomerId OrderDate DueDate OtherOrderColumns

1 2008-10-22 2008-10-23 . . .

1 2008-10-24 2008-10-25 . . .

2 2008-09-15 2008-09-16 . . .

This table has two composite candidate keys: {CustomerId, OrderDate} and {CustomerId,
DueDate}. The candidate keys overlap on the CustomerId column (which is shaded with

OrderId ItemId ProductId Quantity

ProductId ProductName

CustomerId OrderDate DueDate OtherOrderColumns

C03626034.indd 117 2/17/2009 4:42:18 PM

118 Inside Microsoft SQL Server 2008: T-SQL Querying

a darker color to show that it is used twice). It is in 3NF because all nonkey columns
 intransitively depend on each key. However, a specifi c data manipulation anomaly is possible:

■ Update

❏ If a customer changes OrderDate, you should not forget to update the DueDate
as well. (Redundancy)

 You can violate BCNF only in the rare situation that a table has more than one composite
candidate key and the candidate keys overlap. It would be possible to decompose the
Table 3-9 into two new tables based on two candidate keys, for the sake of brevity in short
 notation, showing table headings only:

 OrdersOrderDate {CustomerId, OrderDate, OtherOrderColumns}

 OrdersDueDate {CustomerId, DueDate, OtherOrderColumns}

 However, your common sense tells you this decomposition is not something you’d want in
your model. In addition, there is some hidden redundancy among the two new tables—other
nonkey columns repeat. It is not possible to solve this problem with normalization rules only.
(You already know that common sense can help you.) I’ll return to this problem with a formal
solution later when I describe the Principle of Orthogonal Design.

 I did not defi ne BCNF yet. BCNF says that every determinant must be a key. The independent
part of a functional dependency is called the determinant. A key attribute must be a
 determinant—it must not be determined. In Table 3-9, OrderDate determined DueDate and
vice versa, and both are key attributes (precisely, part of some key). In other words, to achieve
BCNF, you must have no functional dependencies between key attributes.

 You can achieve BCNF without decomposition by using common sense. Tables 3-10 and 3-11
show the two possibilities to achieve BCNF in Table 3-9.

 TABLE 3-10 The Orders Table in BCNF: First Solution

 CustomerId OrderDate StandardShippingTimeDays OtherOrderColumns

 1 2008-10-22 1 . . .

 1 2008-10-24 1 . . .

 2 2008-09-15 1 . . .

 TABLE 3-11 The Orders Table in BCNF: Second Solution

 OrderId CustomerId OrderDate DueDate OtherOrderColumns

 1 1 2008-10-22 2008-10-23 . . .

 2 1 2008-10-24 2008-10-25 . . .

 3 2 2008-09-15 2008-09-16 . . .

 Note that the solution shown in Table 3-11 does not defi ne pairs (CustomerId, OrderDate)
and (CustomerId, DueDate) as keys anymore. Therefore, it is not really a solution if the two

CustomerId OrderDate StandardShippingTimeDays OtherOrderColumns

OrderId CustomerId OrderDate DueDate OtherOrderColumns

C03626034.indd 118 2/17/2009 4:42:18 PM

 Chapter 3 The Relational Model 119

pairs still determine orders. However, I introduced it here because it is closer to real-world
scenarios; a customer can submit more than one order per day.

Higher Normal Forms

Higher normal forms, namely, the fourth and the fi fth normal forms, do not deal with
 functional dependencies; they deal with multivalued and join dependencies. I’ll now
 introduce the fourth and the fi fth normal forms.

Fourth Normal Form

 As I mentioned earlier, violations of fourth and fi fth normal forms are very rare, and they can
usually be avoided with common sense. To begin with, violations can occur only in a table
that consists of columns that together compose a key, with no nonkey column, and with at
least three key columns. The following examples of 4NF and 5NF violations, as well as the
 solutions, are based on examples in Practical Issues in Database Management by Fabian
Pascal (Addison-Wesley, 2000).

 Let me start by describing an example of a business problem. A fi ctitious company works
on projects. Employees are assigned to these projects. Each employee has a set of skills. If
an employee is assigned to a project, that employee performs all activities that he or she
can perform. Table 3-12 shows this example. Although not shown here, imagine there are
 separate Employees, Projects, and Activities tables in the database.

TABLE 3-12 The Employees-Projects-Activities Table

 Employee Project Activity

 1 Proj 111 ABC

 1 Proj 111 DEF

 1 Proj 222 ABC

 1 Proj 222 DEF

 2 Proj 111 ABC

 2 Proj 111 XYZ

 You‘ll notice some redundancy. The following data manipulation anomalies are possible:

■ Insert

❏ How do you assign an employee to a project if the employee has no skills yet?
(Incompleteness)

■ Update

❏ If an employee is reassigned from one project to another, how do you manage to
update all rows needed? (Redundancy)

Employee Project Activity

C03626034.indd 119 2/17/2009 4:42:18 PM

120 Inside Microsoft SQL Server 2008: T-SQL Querying

■ Delete

❏ If you delete all project assignments for an employee, information regarding the
skills of this employee is lost. (Incompleteness)

 The information about projects and activities repeats for each employee. We could avoid this
problem if we allow multivalued columns, as shown in Table 3-13.

 TABLE 3-13 The Employees-Projects-Activities Table with Multivalued Columns

 Employee Project Activity

 1 Proj 111

Proj 222

ABC

DEF

 2 Proj 111 ABC

XYZ

 This situation indicates that there is something called multivalued dependency between
employees and projects and activities. Multivalued dependencies are a generalization of
functional dependencies. Fourth normal form (4NF) says that there must be no nontrivial
multivalued dependencies that are not functional dependencies. To achieve this, you have to
decompose Table 3-12, as shown in Tables 3-14 and 3-15.

 TABLE 3-14 The Employees-Projects Table

 Employee Project

 1 Proj 111

 1 Proj 222

 2 Proj 111

 TABLE 3-15 The Employees-Activities Table

 Employee Activity

 1 ABC

 1 DEF

 2 ABC

 2 XYZ

Fifth Normal Form

 I’ll now change the business problem description slightly. If an employee is assigned to
a project, that employee doesn’t have to perform all activities that he or she has skills to
 perform on this project; in fact, a project might not need some of the activities the assigned
employees has skills to perform. However, if a project includes an activity, an employee is
 assigned to a project, and the employee assigned performs the aforementioned activity, the
employee must perform that activity on that project. An example is shown in Table 3-16.

Employee Project Activity

Employee Project

Employee Activity

C03626034.indd 120 2/17/2009 4:42:18 PM

 Chapter 3 The Relational Model 121

TABLE 3-16 The Employees-Projects-Activities Table

Employee Project Activity

1 Proj 111 ABC

1 Proj 111 DEF

1 Proj 222 ABC

2 Proj 111 ABC

2 Proj 111 XYZ

 Without decomposition, the possible data manipulation anomalies are similar to the
 anomalies mentioned in the 4NF section. After decomposition in two tables, as you saw
in Tables 3-14 and 3-15, you try to join the decomposed tables to get back the original
Table 3-16. What happens is that you get an additional, spurious tuple:

{1, Proj 222, DEF}

With the decomposition of Table 3-16 into two tables that are actually projections of the
original table, you got a spurious row if you joined the two new tables. The problem lies
in the fact that the original table violated so-called join dependency constraint. A relation
 satisfi es join dependency if every legal value of relation is equal to the join of its projections.
Join dependencies are a generalization of multivalued dependencies. To solve the problem,
you need decomposition to three tables. In addition to the Employees-Projects and
 Employees-Activities tables, you need also a Projects-Activities table, as shown in Table 3-17.

TABLE 3-17 The Projects-Activities Table

 Project Activity

 Proj 111 ABC

 Proj 111 DEF

 Proj 222 ABC

 Proj 111 XYZ

 If there is no join dependency violation, a table is in 5NF. A more formal defi nition says that
every nontrivial join dependency in the table is implied by the keys of the table.

 Finally, let me return to that common sense I mentioned a couple of times. What happens
if a project includes an activity, an employee is assigned to a project, and the assigned
 employee performs the aforementioned activity, but the employee does not have to
 perform that activity on that project? Then you need four tables, which is a design that you
would probably create initially. You need the Employees-Projects table, which shows which
 employees are assigned to which project; the Employees-Activities table, which shows which
activities employees can perform; the Projects-Activities table, which shows which activities
are needed in which project; and, fi nally, the Employees-Projects-Activities table, which
shows which activity is performed by which employee on which project.

Employee Project Activity

Project Activity

C03626034.indd 121 2/17/2009 4:42:18 PM

122 Inside Microsoft SQL Server 2008: T-SQL Querying

Additional Normal Forms

 Before introducing fourth and fi fth normal forms, let me briefl y mention domain-key normal
form (DKNF). In DKNF, all constraints come from domains (types) and keys (candidate keys
and foreign keys). A table in DKNF is free of violating entity, referential, and domain integrity
rules, as described previously. It is in fi fth normal form as well and thus fully normalized.
However, DKNF is a more theoretical than practical normal form. To achieve it, you would
have to create many, many different types. This is a nearly impossible mission, especially if
your types need to be widely accepted and your type constraints need to be agreed on. In
addition, users of your types (the database and other developers) would have to learn a lot
just to start using your types.

 C. J. Date also proposed sixth normal form—a normal form that solves possible temporal
data anomalies. However, to solve temporal data problems, I would also have to introduce
the Interval data type, implement the Pack and Unpack operators, and solve some other
problems as well. Refer to Inside Microsoft SQL Server 2008: T-SQL Programming to fi nd a
deeper discussion of temporal data and suggested solutions for temporal problems.

Denormalization

 You should always try to reach at least 3NF when designing a database. However,
 sometimes you have to turn the process around and, after fully normalizing a database, start
 denormalizing it. The two main reasons for denormalization are performance and history,
as explained in Designing Database Solutions by Using Microsoft SQL Server 2005 by Dejan
Sarka, Andy Leonard, Javier Loria, and Adolfo Wiernik (Microsoft Press, 2007).

 A classic business question is, how much of a product is currently in stock? You can calculate
quantities on stock by summarizing shipments and subtracting deliveries. States and levels
can always be calculated from events. However, this question could be very frequent.
Therefore, it makes sense to aggregate events to levels and states and maintain these
 aggregates with every new event. In addition, you could speed joins by replicating a foreign
key from the fi rst child table to the second one. This way queries might involve fewer tables
to join. In both cases, you denormalized to improve performance.

 Imagine another example. An invoicing application uses a fully normalized database design.
A customer’s address is stored in the Customers table only. If a customer moves, you update
that customer’s address with the new one. Let’s say that after the update, the customer
asks you to reprint an old invoice. Now you have a problem because you didn’t store the
old address. You can solve this problem by maintaining a copy of the customer address on
the invoice date in the Invoices table. (I should mention that this might not be treated as
 denormalization—you probably just missed that InvoiceAddress attribute when analyzing the
business problem!) Figure 3-13 shows the fully normalized Invoices database.

C03626034.indd 122 2/17/2009 4:42:18 PM

 Chapter 3 The Relational Model 123

Employees

EmployeeId

EmployeeName

PK

Warehouses

WarehouseId

WarehouseName

PK

Customers

CustomerId

CustomerName
Address
CityId
EmployeeId

PK

FK1

Products

ProductId

ProductName
Price

PK

Invoices

Invoiceld

Customerld
InvoiceDate

PK

FK1

InvoiceDetails

InvoiceId
ItemId

PK,FK1
PK

ProductId
Quantity
Discount
WarehouseId

FK2

FK3

 FIGURE 3-13 Normalized Version of Invoices Database

 You can denormalize in multiple places. For example, you might transfer the EmployeeId
column to the Invoices table to avoid a join to the Customers table when you are analyzing
invoices over employees only. You could include the CustomerName and CustomerAddress
columns in the Invoices table to maintain history. You could maintain aggregates, such as
stock level per warehouse (in a separate table), total stock level per product, year-to-date sales
per customers, and more. Figure 3-14 shows a denormalized version of the invoices database.

Employees

EmployeeId

EmployeeName

PK

Warehouses

WarehouseId

WarehouseName

PK

ProductsInWarehouses

WarehouseId
ProductId

QualityInStock

PK,FK1
PK,FK2

Customers

CustomerId

CustomerName
CustomerAddress
CityId
EmployeeId
YTDSales

PK

FK1

Products

ProductId

ProductName
Price
TotalInStock

PK

Invoices

Invoiceld

Customerld
InvoiceDate
EmployeeId
CustomerName
CustomerAddress

PK

FK1

InvoiceDetails

InvoiceId
ItemId

PK,FK1
PK

ProductId
Quantity
Discount
WarehouseId

FK2

FK3

FIGURE 3-14 The denormalized version of the invoices database

 Remember to denormalize very deliberately. After denormalization, you introduce
 possible update anomalies back to the database. You have to maintain redundant data
in user-defi ned transactions. If you insert a new event, for example, take care to update

C03626034.indd 123 2/17/2009 4:42:18 PM

124 Inside Microsoft SQL Server 2008: T-SQL Querying

the level or the state derived from events in the same transaction. Triggers are especially
 useful for maintaining denormalized data. With triggers, which are automatically part of a
 transaction, you transfer the burden of maintaining the denormalized data on your RDBMS.

Generalization and Specialization

 Let’s return to the NULLs problem. Remember that you can have NULLs when an attribute
is not applicable for some tuples. You can eliminate the need to use NULLs in this way by
means of specialization by introducing subtypes. The problem could also be turned around;
remember the decomposition for resolving BCNF violation earlier in this chapter:

 OrdersOrderDate {CustomerId, OrderDate, OtherOrderColumns}

 OrdersDueDate {CustomerId, DueDate, OtherOrderColumns}

 These two relations have many attributes in common, and this is a kind of redundancy. You
can solve this redundancy by means of generalization by introducing supertypes.

 Two entities are of distinct, or primitive, types if they have no attributes in common. Some
 relations can have both common and distinct attributes. If they have a common identifi er
(that is, a common primary identifi cation schema or a common primary key), we can talk
about a special supertype/subtype relationship. Supertypes and subtypes are helpful for
representing different levels of generalization or specialization. In a business problem
 description, the verb is (or explicitly is a kind of) leads to a supertype/subtype relationship.
For example, a customer is a partner, and a supplier is a partner as well. Obviously, customers
and suppliers have something in common.

 In the preceding example, partners are a supertype of customers and suppliers. If you start
with subtypes and fi nd a supertype, you’re using a bottom-up approach. The top-down
 approach is the opposite. Whether you generalize or specialize, the same problem arises:
where to stop? This question can be answered easily with the top-down approach. Stop
 specializing (in other words, stop introducing) subtypes when there are no additional
 interesting attributes for another level of subtypes. The opposite technique is more
 problematic; after all, you could fi nish with just a few entities, such as subjects, objects, and
events. One possible stopping condition is when you reach abstract objects, or objects that
do not exist in the real world. Abstract objects are not part of a relational database. However,
sometimes it is practical to introduce a supertype just to share a common identifi cation
schema even between disjoint entities. From experience, I suggest a practical approach
that works quite well for me: stop when you have a problem naming the supertype (when
you reach names like thing). If you cannot name it immediately, you are probably trying to
 generalize disjoint entities.

 Here is some additional practical advice for generalization and specialization. If you have a
table with few known values and many NULLs in some column, it’s probably a candidate for
specialization. Check whether those NULLs represent unknown values or attributes that are

C03626034.indd 124 2/17/2009 4:42:18 PM

 Chapter 3 The Relational Model 125

nonapplicable for the rows in which they appear. You can get rid of NULLs for attributes that
are not applicable if you introduce subtypes. For the bottom-up approach, tables that have
many columns with similar or even the same names probably need a supertype table. Note
that you are again dependent on a good naming convention.

 Figure 3-15 shows entities that need generalization.

CustomersOriginal

CustomerId

CompanyName
Address
DiscountCode

PK

SuppliersOriginal

SupplierId

CompanyName
Address
URL

PK

FIGURE 3-15 Before generalization

 Let me mention a big issue with generalization. What if your system with the design
from Figure 3-15 is already in production with a lot of data already inserted? In that case,
 generalization is not that simple. Not only do you have to introduce a generalized model like
the one shown in Figure 3-16, but you also have to take care of the data. You need to merge
and de-duplicate customers and suppliers in the case of a customer who is also a supplier.

Customers

PartnerId

DiscountCode

PK,FK1

Partners

PartnerId

CompanyName
Address

PK
Suppliers

PartnerId

URL

PK,FK1

FIGURE 3-16 After generalization

 I gave you a lot of practical advice on how to fi nd supertypes and subtypes. I also mentioned
a formal rule regarding when to stop specializing: when you no longer have any attributes
to add to a subtype. However, to make this topic consistent with the rest of this theoretical
chapter, we need a formal defi nition for when you have to stop generalizing.

Principle of Orthogonal Design

 You fi nd the most general supertypes when no two relations are be defi ned in such a way that
they can represent the same facts. A more formal defi nition says that your database should
be in accordance with the Principle of Orthogonal Design, as stated in An Introduction to
Database Systems, 8th edition by C. J. Date (Addison-Wesley, 2003):

 Let A and B be distinct base relvars. Then there must not exist nonloss
decompositions of A and B into A1, A2, . . ., Am and B1, B2, . . ., Bn (respectively) such
that some projection Ai in set A1, A2, . . ., Am and some projection Bj in set B1, B2, . . ., Bn
have overlapping meanings.

C03626034.indd 125 2/17/2009 4:42:18 PM

126 Inside Microsoft SQL Server 2008: T-SQL Querying

 Let me fi nish this topic with couple of words of explanation. The term relvar is used here for
 relation, which is probably the correct term, as a relation is actually a relational variable. The
term orthogonal means that relations must have mutually independent meanings, and this is
 exactly what we wanted for primitive types. You might notice that the principle is just formalized
common sense. While normalization reduces redundancy within relations, generalization
(or orthogonal design) reduces redundancy across relations. Finally, specialization reduces
the need to use the NULL value for an attribute that is not applicable. Note also that the
Principle of Orthogonal Design also prevents unnecessary horizontal decompositions based on
 nonoverlapping restrictions of the original relation, as you would again get some projections of
the new decomposed relations with overlapping meanings. The implication of the orthogonal
design is that even if relations A and B have the same heading type, the following must hold:

 A Union B : is a disjoint union

 A Intersect B : is empty

 A Minus B : is equal to A

 You can use these equations for checking whether you have relations with non-overlapping
meaning.

Conclusion

 This chapter was an introduction to the relational model. Basic terms such as type, tuple,
 relation, and attribute were explained. The meaning of a relation should be now clear to you,
and you should recognize that you can treat a relation like a business entity or understand
it like a predicate with propositions. You can also use this dual approach when manipulating
 relations; you can be prescriptive, by using relational algebra, or descriptive, by using
 relational calculus. The importance of data integrity and the means to maintain data integrity
were emphasized. Namely, constraints were explained comprehensively. The problem of
NULLs was discussed. The chapter concluded with a set of formal rules and principles for
achieving a good design, including normalization and orthogonal design. Many times a
good naming convention was pointed out as crucial for a good design. All the theoretical
 knowledge found in this chapter and Chapter 2 should help you understand the advanced
queries you’ll encounter in the following chapters.

C03626034.indd 126 2/17/2009 4:42:18 PM

 127

Chapter 4

Query Tuning

 This chapter lays the foundation of query tuning knowledge required for both this book
and Inside Microsoft SQL Server 2008: T-SQL Programming. (For brevity, I’ll refer to the
programming book as Inside T-SQL Programming and to both this book and Inside T-SQL
Programming as “these books.”) Here you will be introduced to a tuning methodology,
 acquire tools for query tuning, learn how to analyze execution plans and perform index
 tuning, and learn the signifi cance of preparing good sample data and the importance of
 using set-based solutions.

 When building the table of contents for this book, I faced quite a dilemma with regard to
the query tuning chapter, a dilemma that I’ve also faced when teaching advanced T-SQL—
should this material appear early or late? On one hand, the chapter provides important
background information that is required for the rest of the book; on the other hand, some
techniques used for query tuning involve advanced queries—sort of a chicken-and-egg
quandary. I decided to incorporate the chapter early in the book, but I wrote it as an
 independent unit that can be used as a reference. My recommendation is that you read
this chapter before the rest of the book, and when a query uses techniques that you’re not
 familiar with yet, just focus on the conceptual elements described in the text. Some queries
will use techniques that are described later in the book (for example, pivoting, running
 aggregations, the OVER clause, CUBE, CTEs, and so on) or in Inside T-SQL Programming
(for example, temporary tables, cursors, routines, CLR integration, compilations, and so
on). Don’t be concerned if the techniques are not clear. Feel free, though, to jump to the
relevant chapter if you’re curious about a certain technique. When you fi nish reading these
books, I suggest that you return to this chapter and revisit any queries that were not clear
at fi rst to make sure you fully understand their mechanics.

 Credits go to the mentors within the company I work for—Solid Quality Mentors—for their
contribution to this chapter, especially to Andrew J. Kelly and Eladio Rincón.

Sample Data for This Chapter

 Throughout the chapter, I will use the Performance database and its tables in my examples.
Run the code in Listing 4-1 to create the database and its tables and populate them with
sample data. Note that it will take a few minutes for the code to fi nish.

C04626034.indd 127 2/13/2009 1:55:59 AM

128 Inside Microsoft SQL Server 2008: T-SQL Querying

LISTING 4-1 Creation script for sample database and tables

SET NOCOUNT ON;

USE master;

IF DB_ID('Performance') IS NULL

 CREATE DATABASE Performance;

GO

USE Performance;

GO

-- Creating and Populating the Nums Auxiliary Table

SET NOCOUNT ON;

IF OBJECT_ID('dbo.Nums', 'U') IS NOT NULL

 DROP TABLE dbo.Nums;

CREATE TABLE dbo.Nums(n INT NOT NULL PRIMARY KEY);

DECLARE @max AS INT, @rc AS INT;

SET @max = 1000000;

SET @rc = 1;

INSERT INTO dbo.Nums(n) VALUES(1);

WHILE @rc * 2 <= @max

BEGIN

 INSERT INTO dbo.Nums(n) SELECT n + @rc FROM dbo.Nums;

 SET @rc = @rc * 2;

END

INSERT INTO dbo.Nums(n)

 SELECT n + @rc FROM dbo.Nums WHERE n + @rc <= @max;

GO

-- Drop Data Tables if Exist

IF OBJECT_ID('dbo.EmpOrders', 'V') IS NOT NULL

 DROP VIEW dbo.EmpOrders;

GO

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL

 DROP TABLE dbo.Orders;

GO

IF OBJECT_ID('dbo.Customers', 'U') IS NOT NULL

 DROP TABLE dbo.Customers;

GO

IF OBJECT_ID('dbo.Employees', 'U') IS NOT NULL

 DROP TABLE dbo.Employees;

GO

IF OBJECT_ID('dbo.Shippers', 'U') IS NOT NULL

 DROP TABLE dbo.Shippers;

GO

-- Data Distribution Settings

DECLARE

 @numorders AS INT,

 @numcusts AS INT,

 @numemps AS INT,

 @numshippers AS INT,

 @numyears AS INT,

 @startdate AS DATETIME;

SET NOCOUNT ON;

USE master;

IF DB_ID('Performance') IS NULL

 CREATE DATABASE Performance;

GO

USE Performance;

GO

-- Creating and Populating the Nums Auxiliary Table

SET NOCOUNT ON;

IF OBJECT_ID('dbo.Nums', 'U') IS NOT NULL

 DROP TABLE dbo.Nums;

CREATE TABLE dbo.Nums(n INT NOT NULL PRIMARY KEY);

DECLARE @max AS INT, @rc AS INT;

SET @max = 1000000;

SET @rc = 1;

INSERT INTO dbo.Nums(n) VALUES(1);

WHILE @rc * 2 <= @max

BEGIN

 INSERT INTO dbo.Nums(n) SELECT n + @rc FROM dbo.Nums;

 SET @rc = @rc * 2;

END

INSERT INTO dbo.Nums(n)

 SELECT n + @rc FROM dbo.Nums WHERE n + @rc <= @max;

GO

-- Drop Data Tables if Exist

IF OBJECT_ID('dbo.EmpOrders', 'V') IS NOT NULL

 DROP VIEW dbo.EmpOrders;

GO

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL

 DROP TABLE dbo.Orders;

GO

IF OBJECT_ID('dbo.Customers', 'U') IS NOT NULL

 DROP TABLE dbo.Customers;

GO

IF OBJECT_ID('dbo.Employees', 'U') IS NOT NULL

 DROP TABLE dbo.Employees;

GO

IF OBJECT_ID('dbo.Shippers', 'U') IS NOT NULL

 DROP TABLE dbo.Shippers;

GO

-- Data Distribution Settings

DECLARE

 @numorders AS INT,

 @numcusts AS INT,

 @numemps AS INT,

 @numshippers AS INT,

 @numyears AS INT,

 @startdate AS DATETIME;

C04626034.indd 128 2/13/2009 1:55:59 AM

 Chapter 4 Query Tuning 129

SELECT

 @numorders = 1000000,

 @numcusts = 20000,

 @numemps = 500,

 @numshippers = 5,

 @numyears = 4,

 @startdate = '20050101';

-- Creating and Populating the Customers Table

CREATE TABLE dbo.Customers

(

 custid CHAR(11) NOT NULL,

 custname NVARCHAR(50) NOT NULL

);

INSERT INTO dbo.Customers(custid, custname)

 SELECT

 'C' + RIGHT('000000000' + CAST(n AS VARCHAR(10)), 10) AS custid,

 N'Cust_' + CAST(n AS VARCHAR(10)) AS custname

 FROM dbo.Nums

 WHERE n <= @numcusts;

ALTER TABLE dbo.Customers ADD

 CONSTRAINT PK_Customers PRIMARY KEY(custid);

-- Creating and Populating the Employees Table

CREATE TABLE dbo.Employees

(

 empid INT NOT NULL,

 firstname NVARCHAR(25) NOT NULL,

 lastname NVARCHAR(25) NOT NULL

);

INSERT INTO dbo.Employees(empid, firstname, lastname)

 SELECT n AS empid,

 N'Fname_' + CAST(n AS NVARCHAR(10)) AS firstname,

 N'Lname_' + CAST(n AS NVARCHAR(10)) AS lastname

 FROM dbo.Nums

 WHERE n <= @numemps;

ALTER TABLE dbo.Employees ADD

 CONSTRAINT PK_Employees PRIMARY KEY(empid);

-- Creating and Populating the Shippers Table

CREATE TABLE dbo.Shippers

(

 shipperid VARCHAR(5) NOT NULL,

 shippername NVARCHAR(50) NOT NULL

);

INSERT INTO dbo.Shippers(shipperid, shippername)

 SELECT shipperid, N'Shipper_' + shipperid AS shippername

 FROM (SELECT CHAR(ASCII('A') - 2 + 2 * n) AS shipperid

 FROM dbo.Nums

 WHERE n <= @numshippers) AS D;

SELECT

 @numorders = 1000000,

 @numcusts = 20000,

 @numemps = 500,

 @numshippers = 5,

 @numyears = 4,

 @startdate = '20050101';

-- Creating and Populating the Customers Table

CREATE TABLE dbo.Customers

(

 custid CHAR(11) NOT NULL,

 custname NVARCHAR(50) NOT NULL

);

INSERT INTO dbo.Customers(custid, custname)

 SELECT

 'C' + RIGHT('000000000' + CAST(n AS VARCHAR(10)), 10) AS custid,

 N'Cust_' + CAST(n AS VARCHAR(10)) AS custname

 FROM dbo.Nums

 WHERE n <= @numcusts;

ALTER TABLE dbo.Customers ADD

 CONSTRAINT PK_Customers PRIMARY KEY(custid);

-- Creating and Populating the Employees Table

CREATE TABLE dbo.Employees

(

 empid INT NOT NULL,

 firstname NVARCHAR(25) NOT NULL,

 lastname NVARCHAR(25) NOT NULL

);

INSERT INTO dbo.Employees(empid, firstname, lastname)

 SELECT n AS empid,

 N'Fname_' + CAST(n AS NVARCHAR(10)) AS firstname,

 N'Lname_' + CAST(n AS NVARCHAR(10)) AS lastname

 FROM dbo.Nums

 WHERE n <= @numemps;

ALTER TABLE dbo.Employees ADD

 CONSTRAINT PK_Employees PRIMARY KEY(empid);

-- Creating and Populating the Shippers Table

CREATE TABLE dbo.Shippers

(

 shipperid VARCHAR(5) NOT NULL,

 shippername NVARCHAR(50) NOT NULL

);

INSERT INTO dbo.Shippers(shipperid, shippername)

 SELECT shipperid, N'Shipper_' + shipperid AS shippername

 FROM (SELECT CHAR(ASCII('A') - 2 + 2 * n) AS shipperid

 FROM dbo.Nums

 WHERE n <= @numshippers) AS D;

C04626034.indd 129 2/13/2009 1:55:59 AM

130 Inside Microsoft SQL Server 2008: T-SQL Querying

ALTER TABLE dbo.Shippers ADD

 CONSTRAINT PK_Shippers PRIMARY KEY(shipperid);

-- Creating and Populating the Orders Table

CREATE TABLE dbo.Orders

(

 orderid INT NOT NULL,

 custid CHAR(11) NOT NULL,

 empid INT NOT NULL,

 shipperid VARCHAR(5) NOT NULL,

 orderdate DATETIME NOT NULL,

 filler CHAR(155) NOT NULL DEFAULT('a')

);

INSERT INTO dbo.Orders(orderid, custid, empid, shipperid, orderdate)

 SELECT n AS orderid,

 'C' + RIGHT('000000000'

 + CAST(

 1 + ABS(CHECKSUM(NEWID())) % @numcusts

 AS VARCHAR(10)), 10) AS custid,

 1 + ABS(CHECKSUM(NEWID())) % @numemps AS empid,

 CHAR(ASCII('A') - 2

 + 2 * (1 + ABS(CHECKSUM(NEWID())) % @numshippers)) AS shipperid,

 DATEADD(day, n / (@numorders / (@numyears * 365.25)), @startdate)

 -- late arrival with earlier date

 - CASE WHEN n % 10 = 0

 THEN 1 + ABS(CHECKSUM(NEWID())) % 30

 ELSE 0

 END AS orderdate

 FROM dbo.Nums

 WHERE n <= @numorders

 ORDER BY CHECKSUM(NEWID());

CREATE CLUSTERED INDEX idx_cl_od ON dbo.Orders(orderdate);

CREATE NONCLUSTERED INDEX idx_nc_sid_od_i_cid

 ON dbo.Orders(shipperid, orderdate)

 INCLUDE(custid);

CREATE UNIQUE INDEX idx_unc_od_oid_i_cid_eid

 ON dbo.Orders(orderdate, orderid)

 INCLUDE(custid, empid);

ALTER TABLE dbo.Orders ADD

 CONSTRAINT PK_Orders PRIMARY KEY NONCLUSTERED(orderid),

 CONSTRAINT FK_Orders_Customers

 FOREIGN KEY(custid) REFERENCES dbo.Customers(custid),

 CONSTRAINT FK_Orders_Employees

 FOREIGN KEY(empid) REFERENCES dbo.Employees(empid),

 CONSTRAINT FK_Orders_Shippers

 FOREIGN KEY(shipperid) REFERENCES dbo.Shippers(shipperid);

GO

ALTER TABLE dbo.Shippers ADD

 CONSTRAINT PK_Shippers PRIMARY KEY(shipperid);

-- Creating and Populating the Orders Table

CREATE TABLE dbo.Orders

(

 orderid INT NOT NULL,

 custid CHAR(11) NOT NULL,

 empid INT NOT NULL,

 shipperid VARCHAR(5) NOT NULL,

 orderdate DATETIME NOT NULL,

 filler CHAR(155) NOT NULL DEFAULT('a')

);

INSERT INTO dbo.Orders(orderid, custid, empid, shipperid, orderdate)

 SELECT n AS orderid,

 'C' + RIGHT('000000000'

 + CAST(

 1 + ABS(CHECKSUM(NEWID())) % @numcusts

 AS VARCHAR(10)), 10) AS custid,

 1 + ABS(CHECKSUM(NEWID())) % @numemps AS empid,

 CHAR(ASCII('A') - 2

 + 2 * (1 + ABS(CHECKSUM(NEWID())) % @numshippers)) AS shipperid,

 DATEADD(day, n / (@numorders / (@numyears * 365.25)), @startdate)

 -- late arrival with earlier date

 - CASE WHEN n % 10 = 0

 THEN 1 + ABS(CHECKSUM(NEWID())) % 30

 ELSE 0

 END AS orderdate

 FROM dbo.Nums

 WHERE n <= @numorders

 ORDER BY CHECKSUM(NEWID());

CREATE CLUSTERED INDEX idx_cl_od ON dbo.Orders(orderdate);

CREATE NONCLUSTERED INDEX idx_nc_sid_od_i_cid

 ON dbo.Orders(shipperid, orderdate)

 INCLUDE(custid);

CREATE UNIQUE INDEX idx_unc_od_oid_i_cid_eid

 ON dbo.Orders(orderdate, orderid)

 INCLUDE(custid, empid);

ALTER TABLE dbo.Orders ADD

 CONSTRAINT PK_Orders PRIMARY KEY NONCLUSTERED(orderid),

 CONSTRAINT FK_Orders_Customers

 FOREIGN KEY(custid) REFERENCES dbo.Customers(custid),

 CONSTRAINT FK_Orders_Employees

 FOREIGN KEY(empid) REFERENCES dbo.Employees(empid),

 CONSTRAINT FK_Orders_Shippers

 FOREIGN KEY(shipperid) REFERENCES dbo.Shippers(shipperid);

GO

C04626034.indd 130 2/13/2009 1:55:59 AM

 Chapter 4 Query Tuning 131

 The Orders table is the main data table, and it’s populated with 1,000,000 orders spanning
four years beginning in 2005. The Customers table is populated with 20,000 customers, the
Employees table with 500 employees, and the Shippers table with fi ve shippers. Note that I
distributed the order dates, customer IDs, employee IDs, and shipper IDs in the Orders table
with random functions. You might not get the same numbers of rows that I’ll be getting in
my examples back from the queries, but statistically they should be fairly close.

 The Nums table is an auxiliary table of numbers, containing only one column, called n,
 populated with integers in the range 1 through 1,000,000.

 The code in Listing 4-1 creates the following indexes on the Orders table:

■ idx_cl_od Clustered index on orderdate

■ PK_Orders Unique nonclustered index on orderid, created implicitly by the primary key

■ idx_nc_sid_od_i_cid Nonclustered index on shipperid, orderdate, with included column
custid

■ idx_unc_od_oid_i_cid_eid Unique nonclustered index on orderdate, orderid, with
 included columns custid, empid

 Index structures and their properties will be explained later in the “Index Tuning” section.

Tuning Methodology

 This section describes a tuning methodology that should help you detect performance
bottlenecks in your system. I will briefl y discuss general performance bottlenecks, but keep in
mind that the focus of this chapter—and this book—is query tuning.

 So, when your system suffers from performance problems, how do you start to solve the
problems?

 The answer to this question reminds me of a programmer and an IT manager at a company I
worked for years ago. The programmer had to fi nish writing a component and deploy it, but
his code had a bug he couldn’t fi nd. He produced a printout of the code (which was pretty
thick) and went to the IT manager, who was in a meeting. The IT manager was extremely
good at detecting bugs, which is why the programmer sought him. The IT manager took
the thick printout, opened it, and immediately pointed to a certain line of code. “Here’s your
bug,” he said. “Now go.” After the meeting was over, the programmer asked the IT manager
how he found the bug so fast. The IT manager replied, “I knew that anywhere I pointed there
would be a bug.”

 You can point anywhere in the database and fi nd room for tuning. But is it worth it? For
example, would it be worthwhile to tune the concurrency aspects of the system if blocking
contributes only to 1 percent of the waits in the system as a whole? It’s important to follow

C04626034.indd 131 2/13/2009 1:55:59 AM

132 Inside Microsoft SQL Server 2008: T-SQL Querying

a path or methodology that leads you through a series of steps to the main problem areas
or bottlenecks in the system—those that contribute to most of the waits. This section will
 introduce such a methodology.

 Before you continue, drop the existing clustered index from the Orders table:

USE Performance;

GO

DROP INDEX dbo.Orders.idx_cl_od;

 Suppose your system suffers from performance problems as a whole—users complain that
“everything is slow.” Listing 4-2 contains a sampling of queries that run regularly in your
system.

LISTING 4-2 Sample queries

SET NOCOUNT ON;

USE Performance;

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderid = 3;

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderid = 5;

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderid = 7;

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate = '20080212';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate = '20080118';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate = '20080828';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20080101'

 AND orderdate < '20080201';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20080401'

 AND orderdate < '20080501';

GO

SET NOCOUNT ON;

USE Performance;

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderid = 3;

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderid = 5;

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderid = 7;

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate = '20080212';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate = '20080118';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate = '20080828';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20080101'

 AND orderdate < '20080201';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20080401'

 AND orderdate < '20080501';

GO

C04626034.indd 132 2/13/2009 1:55:59 AM

 Chapter 4 Query Tuning 133

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20080201'

 AND orderdate < '20090301';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20080501'

 AND orderdate < '20080601';

GO

Restart your SQL Server instance and then run the code in Listing 4-2 several times (try 10).
SQL Server will internally record performance information you will rely on later. Restarting
your instance will reset some of the counters.

When dealing with performance problems, database professionals tend to focus on the
technical aspects of the system, such as resource queues, resource utilization, and so on.
However, users perceive performance problems simply as waits—they make a request and
have to wait to get the results back. A response that takes longer than three seconds to
 arrive after an interactive request is typically perceived by users as a performance problem.
They don’t really care how many commands wait on average on each disk spindle or what
the cache hit ratio is, and they don’t care about blocking, CPU utilization, average page life
expectancy in cache, and so on. They care about waits, and that’s where performance tuning
should start.

The tuning methodology I recommend applies a top-down approach. It starts by investigating
waits at the instance level and then drills down through a series of steps until the processes/
components that generate the bulk of the waits in the system are identifi ed. Once you identify
the offending processes, you can focus on tuning them. Following are the main steps of the
methodology:

 1. Analyze waits at the instance level

 2. Correlate waits with queues

 3. Determine a course of action

 4. Drill down to the database/fi le level

 5. Drill down to the process level

 6. Tune indexes/queries

 In the following sections I cover in detail each step in the tuning methodology. I describe
some of the objects that you need to query to get performance information. In some cases
I give recommendations to automate the collection of certain performance data using
your own manual scheduled jobs. Where relevant I explain how the data can be analyzed
 graphically using graphs that you manually create in tools like Microsoft Offi ce Excel.

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20080201'

 AND orderdate < '20090301';

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20080501'

 AND orderdate < '20080601';

GO

C04626034.indd 133 2/13/2009 1:55:59 AM

134 Inside Microsoft SQL Server 2008: T-SQL Querying

Note that SQL Server 2008 introduces a component called the data collector that collects
 different sets of data (performance and other) from different sources and stores it in a
 relational data warehouse known as the management data warehouse. The data collector
installs three system data collection sets that collect disk usage, server activity, and query
 statistics information. The new data collection platform helps you automate the collection of
performance and other information and also analyze it graphically with preconfi gured reports.
The system data collection sets are already confi gured to query many of the objects that I will
describe in the following sections. So naturally, if you’re relying on the data collector to collect
such data, you won’t necessarily need to confi gure your own manual jobs. Please refer to SQL
Server Books Online under “System Data Collection Sets” for specifi cs about the information
collected by those collection sets, the objects that are queried, and even the specifi c queries
used to query those objects.

Analyze Waits at the Instance Level

 The fi rst step in the tuning methodology is to identify at the instance level which types of waits
contribute most to the waits in the system. This is done by querying a dynamic management
view (DMV) called sys.dm_os_wait_stats. This DMV contains more than 400 wait types, most
of which are documented in SQL Server Books Online with at least a short description. If you
think about it, this is a manageable number that is convenient to work with as a starting point.
Some other performance tools give you too much information to start with and create a
 situation in which you can’t see the forest for the trees.

 Run the following query to return the waits in your system sorted by type:

SELECT

 wait_type,

 waiting_tasks_count,

 wait_time_ms,

 max_wait_time_ms,

 signal_wait_time_ms

FROM sys.dm_os_wait_stats

ORDER BY wait_type;

 Here’s an abbreviated version of the results I got when I ran this query on my system:

wait_type waiting wait max signal

 _tasks _time _wait _wait

 _count _ms _time _time

 _ms _ms

---------------------- ------- ------- ----- -------

...

ASYNC_IO_COMPLETION 3 1710 658 0

ASYNC_NETWORK_IO 288785 176144 959 21377

AUDIT_GROUPCACHE_LOCK 0 0 0 0

...

CXPACKET 50281 195552 3482 20132

CXROWSET_SYNC 0 0 0 0

C04626034.indd 134 2/13/2009 1:55:59 AM

 Chapter 4 Query Tuning 135

DAC_INIT 1 1 1 0

...

IO_COMPLETION 652 40492 1598 165

IO_RETRY 0 0 0 0

IOAFF_RANGE_QUEUE 0 0 0 0

...

LCK_M_S 24 25429 9065 9

LCK_M_SCH_M 18 166 34 5

LCK_M_SCH_S 1 654 654 0

...

PAGELATCH_SH 448 269 142 64

PAGELATCH_UP 15 14 4 7

PARALLEL_BACKUP_QUEUE 0 0 0 0

...

WRITELOG 5325 28738 309 2453

XACT_OWN_TRANSACTION 0 0 0 0

XACT_RECLAIM_SESSION 0 0 0 0

...

 Note Of course, you shouldn’t draw conclusions about production systems from the output that
I got. Needless to say, my personal computer or your test computer or personal test environment
won’t necessarily refl ect a real production environment. I’m just using this output for illustration
purposes. I’ll mention later which types of waits are typically predominant in production
 environments.

 The DMV accumulates values since the server was last restarted. If you want to reset its
 values, run the following code (but don’t run it now):

DBCC SQLPERF('sys.dm_os_wait_stats', CLEAR);

 The DMV sys.dm_os_wait_stats contains the following attributes:

■ wait_type

■ waiting_tasks_count The number of waits on this wait type

■ wait_time_ms The total wait time for this wait type in milliseconds (including
signal_wait_time_ms)

■ max_wait_time_ms

■ signal_wait_time_ms The difference between the time the waiting thread was signaled
and when it started running

 The meaning of most attributes should be simple enough to understand, except for the last
one, perhaps. A thread enters a wait state when the resource it is waiting for is not available.
Once the resource becomes available, the waiting thread is signaled. However, the CPU might
be busy at this point serving other threads. The attribute signal_wait_time_ms indicates the
time it took from the moment the thread is signaled that the resource is available until the

C04626034.indd 135 2/13/2009 1:55:59 AM

136 Inside Microsoft SQL Server 2008: T-SQL Querying

thread gets CPU time and starts using the resource. As you can imagine, high values in this
attribute typically indicate CPU problems.

 Among the various types of waits, you will fi nd ones related to locks, latches, I/O (including
I/O latches), parallelism, the transaction log, memory, compilations, OLEDB (linked servers
and other OLEDB components), and so on. Typically, you will want to ignore some types of
waits—for example, sleep wait types that occur when a thread is suspended doing nothing,
queue wait types that occur when a worker is idle waiting for a task to be assigned, or wait
types described specifi cally in SQL Server Books Online as not indicating a problem, such as
CLR_AUTO_EVENT, REQUEST_FOR_DEADLOCK_SEARCH, and others. Make sure you fi lter out
irrelevant waits so that they do not skew your calculations.

 In many cases you’ll fi nd I/O-related waits are among the most common types of waits
(for example, IOLATCH waits), for several reasons. I/O is typically the most expensive resource
involved with data-manipulation activities. Also, when queries or indexes are not designed
and tuned well, the result is typically excessive I/O. Also, when customers think of “strong”
computers, they usually focus their attention on CPU and memory, and they don’t always pay
adequate attention to the I/O subsystem. Database systems need strong I/O subsystems.

 High values in network-related waits (for example, ASYNC_NETWORK_IO) may indicate a
network problem, though they may also indicate that the client is not consuming the data
sent to it by SQL Server fast enough.

 Some systems don’t necessarily access large portions of data; instead, these systems involve
processes that access small portions of data very frequently. Such is typically the case with
online transaction processing (OLTP) environments, which have stored procedures and queries
that access small portions of data but are invoked very frequently. In such environments,
 compilations and recompilations of the code might be the main cause of a bottleneck, in which
case you will likely see high values in signal waits (related to CPU). Lots of use of ad-hoc queries
instead of stored procedures and prepared statements may lead to fl ooding the memory with
ad-hoc plans, in which case you will typically see high values in the CMEMTHREAD wait type,
which occurs when a task is waiting on a thread-safe memory object.

 You may also have issues with parallel query plans that use too many threads. This may result
in long waits of threads that wait for other threads to fi nish their work (CXPACKET wait)
 before they can continue; the system as a whole might not provide optimal throughput.
Such systems may benefi t from lowering the max degree of parallelism. Note, though,
that sometimes the CXPACKET wait type is only a symptom caused by other reasons—for
 example, excessive I/O resulting from lack of important indexes—in which case you will also
see high values in I/O-related waits.

 OLTP systems also involve a lot of data modifi cation in small portions, and the transaction
log often becomes a bottleneck in such environments. When SQL Server cannot write fast
enough to the log, you typically see high values in the WRITELOG wait type.

C04626034.indd 136 2/13/2009 1:55:59 AM

 Chapter 4 Query Tuning 137

 The tempdb database can also be a serious bottleneck because all temporary tables, whether
created implicitly by an execution plan or explicitly, are created in tempdb. SQL Server also uses
tempdb’s space to perform other activities. Performance problems in tempdb may cause high
values in I/O-related waits and others. High values in latch waits (for example, PAGE_LATCH_UP)
may indicate contention on internal structures such as IAM, GAM, SGAM, and PFS pages. The
cause might be frequent allocations of pages for temporary tables, heavy inserts to heaps, and
other causes. Improper fi le layout may lead to such contention.

 The OLEDB wait type represents waits related to linked servers, BULK INSERT, Full Text, and
others. However, note that an OLEDB call cannot yield; therefore, the wait state starts when
the call starts and ends when the call ends. This means that high values in this wait type don’t
necessarily indicate a performance problem.

 Occasionally, you also fi nd systems with concurrency-related (blocking) problems, in which
case lock waits (LCK) will be high.

 I gave a few examples for performance problems and the common types of waits that are
associated with them. This coverage is not complete and is provided just to give you a sense
of how wait stats information can be analyzed.

Isolating Top Waits

 Let’s get back to the wait information that you receive from the DMV. You probably won’t
fi nd it convenient to browse all wait types and try to manually fi gure out which are the most
 substantial. You want to isolate the top waits—those that in total accumulate to some threshold
percentage of the total waits in the system. You can use a number like 80 percent because
 typically a small number of wait types contributes to the bulk of the waits in the system.

 The following query isolates the top waits that accumulate in total to 80 percent of the wait
time in the system, returning no fewer than fi ve waits:

WITH Waits AS

(

 SELECT

 wait_type,

 wait_time_ms / 1000. AS wait_time_s,

 100. * wait_time_ms / SUM(wait_time_ms) OVER() AS pct,

 ROW_NUMBER() OVER(ORDER BY wait_time_ms DESC) AS rn,

 100. * signal_wait_time_ms / wait_time_ms as signal_pct

 FROM sys.dm_os_wait_stats

 WHERE wait_time_ms > 0

 AND wait_type NOT LIKE N'%SLEEP%'

 AND wait_type NOT LIKE N'%IDLE%'

 AND wait_type NOT LIKE N'%QUEUE%'

 AND wait_type NOT IN(N'CLR_AUTO_EVENT'

 , N'REQUEST_FOR_DEADLOCK_SEARCH'

 , N'SQLTRACE_BUFFER_FLUSH'

 /* filter out additional irrelevant waits */)

)

C04626034.indd 137 2/13/2009 1:55:59 AM

138 Inside Microsoft SQL Server 2008: T-SQL Querying

SELECT

 W1.wait_type,

 CAST(W1.wait_time_s AS NUMERIC(12, 2)) AS wait_time_s,

 CAST(W1.pct AS NUMERIC(5, 2)) AS pct,

 CAST(SUM(W2.pct) AS NUMERIC(5, 2)) AS running_pct,

 CAST(W1.signal_pct AS NUMERIC(5, 2)) AS signal_pct

FROM Waits AS W1

 JOIN Waits AS W2

 ON W2.rn <= W1.rn

GROUP BY W1.rn, W1.wait_type, W1.wait_time_s, W1.pct, W1.signal_pct

HAVING SUM(W2.pct) - W1.pct < 80 -- percentage threshold

 OR W1.rn <= 5

ORDER BY W1.rn;

 This query generates (on my system) the following output:

wait_type wait_time_s pct running_pct signal_pct

----------------- ------------ ------ ------------ -----------

PAGEIOLATCH_SH 2305.85 34.50 34.50 1.68

CXPACKET 1630.89 24.40 58.89 18.22

ASYNC_NETWORK_IO 1572.81 23.53 82.42 10.86

PAGEIOLATCH_EX 368.67 5.52 87.94 0.78

WRITELOG 160.28 2.40 90.34 11.53

 This query uses techniques to calculate running aggregates, which I’ll explain later in the
book. Remember, focus for now on the concepts rather than on the techniques used to
achieve them. This query returns the top waits that accumulate to 80 percent of the waits in
the system, after fi ltering out irrelevant wait types. Of course, you can adjust the threshold
and fi lter out other irrelevant waits to your analysis. To see at least n rows in the output (let’s
say n = 5), the expression OR W1.rn <= 5 is specifi ed in the HAVING clause. With each wait
type, the query returns the following:

■ The total wait time in seconds that processes waited on that wait type since the system
was last restarted or the counters were cleared

■ The percentage of the wait time of this type out of the total

■ The running percentage from the top-most wait type until the current one

■ The percentage of the signal wait time out of the wait time (remember that wait_time_ms
includes signal_wait_time_ms)

Note In the sys.dm_os_wait_stats DMV, wait_time_ms represents the total wait time of all
 processes that waited on this type, even if multiple processes were waiting concurrently. Still,
these numbers would typically give you a good sense of the main problem areas in the system.

 Examining the top waits, you can identify several potential problem areas: read-related I/O,
parallelism, and network. Waits related to write-related I/O and writes to the transaction log
also appear in the output, but those seem minor compared to the others. With this information
in hand, you are ready for the next step.

C04626034.indd 138 2/13/2009 1:55:59 AM

 Chapter 4 Query Tuning 139

Collecting Wait Information

 I also fi nd it handy to collect wait information in a table and update it at regular intervals
(for example, once an hour). By doing this, you can analyze the distribution of waits during
the day and identify peak periods. Note that if you enabled data collection and the system
 collection set “Server Activity”, wait-stats information is automatically collected for you in the
management data warehouse. You can then analyze waits over time via the report Server
Activity History (found in SQL Server Management Studio by right-clicking Data Collection
under Management in Object Explorer and choosing Reports). In this section I describe what
you need to defi ne in case you’re not using the data collector to collect wait stats.

 Run the following code to create the WaitStats table:

USE Performance;

IF OBJECT_ID('dbo.WaitStats', 'U') IS NOT NULL DROP TABLE dbo.WaitStats;

CREATE TABLE dbo.WaitStats

(

 dt DATETIME NOT NULL DEFAULT (CURRENT_TIMESTAMP),

 wait_type NVARCHAR(60) NOT NULL,

 waiting_tasks_count BIGINT NOT NULL,

 wait_time_ms BIGINT NOT NULL,

 max_wait_time_ms BIGINT NOT NULL,

 signal_wait_time_ms BIGINT NOT NULL

);

CREATE UNIQUE CLUSTERED INDEX idx_dt_type ON dbo.WaitStats(dt, wait_type);

CREATE INDEX idx_type_dt ON dbo.WaitStats(wait_type, dt);

 Defi ne a job that runs on regular intervals and uses the following code to load the current
data from the DMV:

INSERT INTO Performance.dbo.WaitStats

 (wait_type, waiting_tasks_count, wait_time_ms,

 max_wait_time_ms, signal_wait_time_ms)

 SELECT

 wait_type, waiting_tasks_count, wait_time_ms,

 max_wait_time_ms, signal_wait_time_ms

 FROM sys.dm_os_wait_stats

 WHERE wait_type NOT IN (N'MISCELLANEOUS');

 Remember that the wait information in the DMV is cumulative. To get the waits that took place
within each interval, you need to apply a self-join between two instances of the table—one
representing the current samples and the other representing the previous samples. The join
condition will match each current row to the row representing the previous sampling for the
same wait type. Then you can subtract the cumulative wait time of the previous sampling from
the current, thus producing the wait time during the interval. The following code creates the
IntervalWaits function, which implements this logic:

IF OBJECT_ID('dbo.IntervalWaits', 'IF') IS NOT NULL

 DROP FUNCTION dbo.IntervalWaits;

GO

C04626034.indd 139 2/13/2009 1:55:59 AM

140 Inside Microsoft SQL Server 2008: T-SQL Querying

CREATE FUNCTION dbo.IntervalWaits

 (@fromdt AS DATETIME, @todt AS DATETIME)

RETURNS TABLE

AS

RETURN

 WITH Waits AS

 (

 SELECT dt, wait_type, wait_time_ms,

 ROW_NUMBER() OVER(PARTITION BY wait_type

 ORDER BY dt) AS rn

 FROM dbo.WaitStats

)

 SELECT Prv.wait_type, Prv.dt AS start_time,

 CAST((Cur.wait_time_ms - Prv.wait_time_ms)

 / 1000. AS NUMERIC(12, 2)) AS interval_wait_s

 FROM Waits AS Cur

 JOIN Waits AS Prv

 ON Cur.wait_type = Prv.wait_type

 AND Cur.rn = Prv.rn + 1

 AND Prv.dt >= @fromdt

 AND Prv.dt < DATEADD(day, 1, @todt)

GO

 The function accepts the date boundaries of a period that you want to analyze. For example,
the following query returns the interval waits for the period ‘20090212’ through ‘20090213’
(inclusive), sorted by the totals for each wait type in descending order, wait type, and start time:

SELECT wait_type, start_time, interval_wait_s

FROM dbo.IntervalWaits('20090212', '20090213') AS F

ORDER BY SUM(interval_wait_s) OVER(PARTITION BY wait_type) DESC,

 wait_type, start_time;

 I fi nd Microsoft Offi ce Excel PivotTables or Analysis Services cubes extremely handy in
 analyzing such information graphically. These tools allow you to easily see the distribution
of waits graphically. For example, suppose you want to analyze the waits over the
 period ‘20090212’ through ‘20090213’ using Excel PivotTables. Prepare the following
IntervalWaitsSample view, which will be used as the external source data for the PivotTable:

IF OBJECT_ID('dbo.IntervalWaitsSample', 'V') IS NOT NULL

 DROP VIEW dbo.IntervalWaitsSample;

GO

CREATE VIEW dbo.IntervalWaitsSample

AS

SELECT wait_type, start_time, interval_wait_s

FROM dbo.IntervalWaits('20090212', '20090215') AS F;

GO

 Create a PivotTable and pivot chart in Excel and specify the IntervalWaitsSample view as the
PivotTable’s external source data. Figure 4-1 shows what the PivotTable looks like with my
sample data, after fi ltering only the top waits.

C04626034.indd 140 2/13/2009 1:55:59 AM

 Chapter 4 Query Tuning 141

FIGURE 4-1 PivotTable in Excel

 Figure 4-2 has a pivot chart, showing graphically the distribution of the PAGEIOLATCH_SH
wait type over the input period.

FIGURE 4-2 Pivot chart 1 in Excel

C04626034.indd 141 2/13/2009 1:56:00 AM

142 Inside Microsoft SQL Server 2008: T-SQL Querying

 The PAGEIOLATCH_SH wait type indicates waits on I/O for read operations. You can clearly
see that, in our case, dramatic peaks occur every day around noon.

 Figure 4-3 has a pivot chart showing graphically the distribution of all top wait types.

FIGURE 4-3 Pivot chart 2 in Excel

 Again, you can see that most waits occur around noon daily.

 As an example of how handy the analysis of interval waits can be, in one of my tuning projects
I found high peaks of I/O latches every four hours that lasted for quite a while (almost the
whole four hours) and then dropped. Naturally, in such a case you look for activities that run
on a scheduled basis. Sure enough, the “criminal” was isolated: a scheduled job that invoked
the sp_updatestats stored procedure against every database every four hours and ran for
 almost four hours. This stored procedure is used to update statistics globally at the database
level. Statistics are histograms maintained for columns that the optimizer uses to determine
selectivity of queries, density of joins, and so on. Apparently, in this case some years prior a
query didn’t perform well because of a lack of up-to-date statistics on a particular indexed
column. The customer got a recommendation back then to refresh statistics, and running the
stored procedure seemed to solve the problem. Since then, the customer had been running
sp_updatestats globally every four hours.

 Note that SQL Server automatically creates and updates statistics. Typically, the automatic
maintenance of statistics is suffi cient, and you should intervene manually only in special cases.
And if you do intervene manually, do not use sp_updatestats globally! The sp_updatestats

C04626034.indd 142 2/13/2009 1:56:00 AM

 Chapter 4 Query Tuning 143

stored procedure is useful mainly to refresh statistics globally after an upgrade of the product
or after attaching a database from an earlier version of the product or service pack level.

 Ironically, when we found the problem, the query that was the trigger for creating the job
was not even used anymore in the system. We simply removed the job and let SQL Server use
its automatic maintenance of statistics. Naturally, the graph of I/O latches simply fl attened,
and the performance problem vanished.

Correlate Waits with Queues

 After you identify the top waits at the instance level, you should correlate them with queues
to identify the problematic resources. You mainly use Performance Monitor counters for
this task. For example, if you identifi ed I/O-related waits in the previous step, you would
check the different I/O queues, cache hit ratios, and memory counters. Fewer than two I/O
 commands should be waiting on an I/O queue on average per spindle (disk). Cache hit ratios
should be as high as possible.

 As for memory, it is tightly related to I/O because the more memory you have, the more
time pages (data and execution plans) can remain in cache, reducing the need for physical
I/O. However, if you have I/O issues, how do you know if adding memory will really help?
You need to be familiar with the tools that would help you make the right choice. For
 example, the counter SQL Server:Buffer Manager – Page life expectancy will tell you how
many seconds on average a page is expected to remain in cache without reference. Low
 values indicate that adding memory will allow pages to remain longer in cache, while
high values indicate that adding memory won’t help you much in this respect. The actual
 numbers depend on your expectations and the frequency with which you run queries that
rely on the same data/ execution plans. Typically, numbers greater than several hundred
 indicate a good state of memory.

 But let’s say that you have very low values in the counter. Does this mean that you have to add
memory? Adding memory in such a case would probably help, but some queries lack important
indexes on the source tables and end up performing excessive I/O that could be avoided with
a better index design. With less I/O and less memory pressure, the problem can be eliminated
without investing in hardware. Of course, if you continue your analysis and realize that your
 indexes and queries are tuned well, you would then consider hardware upgrades.

 Similarly, if you identifi ed other types of waits as the top ones, you would check the relevant
queues and resource utilization. For example, if the waits involve compilations/recompilations,
you would check the compilations/recompilations, CPU utilization, context switching counters,
and so on.

 SQL Server 2008 collects important performance counters (both generic operating system
counters and SQL Server instance counters) as part of the “Server Activity” collection set
(assuming it’s enabled). If you prefer to collect such information yourself, you can use the
Windows Performance Monitor/System Monitor. SQL Server 2008 also provides you with

C04626034.indd 143 2/13/2009 1:56:00 AM

144 Inside Microsoft SQL Server 2008: T-SQL Querying

a DMV called sys.dm_os_performance_counters containing all the SQL Server instance
 object-related counters that you can fi nd in Performance Monitor. Unfortunately, this DMV
doesn’t give you the more generic operating system counters, such as CPU utilization, I/O
queues, and so on. You have to analyze those externally.

For example, when I ran the following query on my system, I got the output shown
(in abbreviated form) in Table 4-1:

SELECT

 object_name,

 counter_name,

 instance_name,

 cntr_value,

 cntr_type

FROM sys.dm_os_performance_counters;

TABLE 4-1 Contents of sys.dm_os_performance_counters in Abbreviated Form

object_name counter_name instance_name cntr_value cntr_type

MSSQL$SQL08:Buffer
Manager

Buffer cache hit ratio 153 537003264

MSSQL$SQL08:Buffer
Manager

Buffer cache hit ratio
base

 153 1073939712

MSSQL$SQL08:Buffer
Manager

Page lookups/sec 36230931 272696576

MSSQL$SQL08:Buffer
Manager

Free list stalls/sec 0 272696576

MSSQL$SQL08:Buffer
Manager

Free pages 164 65792

MSSQL$SQL08:Buffer
Manager

Total pages 69472 65792

MSSQL$SQL08:Buffer
Manager

Target pages 187769 65792

MSSQL$SQL08:Buffer
Manager

Database pages 58627 65792

MSSQL$SQL08:Buffer
Manager

Reserved pages 0 65792

MSSQL$SQL08:Buffer
Manager

Stolen pages 10681 65792

. . .

 You might fi nd the ability to query these performance counters in SQL Server useful because
you can use query manipulation to analyze the data. As with wait information, you can
 collect performance counters in a table on regular intervals and then use queries and tools
such as PivotTables to analyze the data over time.

object_name counter_name instance_name cntr_value cntr_type

C04626034.indd 144 2/13/2009 1:56:00 AM

 Chapter 4 Query Tuning 145

Determine Course of Action

 The next step—after you have identifi ed the main types of waits and resources involved—
represents a junction in the tuning process. Based on your discoveries thus far, you will
 determine a course of action for further investigation. In our case, we need to identify the
causes of I/O, parallelism, network-related waits, and transaction log–related waits (minor);
we will then continue with a route based on our fi ndings. But if the previous steps had
 identifi ed blocking problems, compilation/recompilation problems, or others, you would
need to proceed with a completely different course of action.

 The I/O-related waits (including I/O latches and write log waits) require us at this point to drill
down to the database level. I explain how this is done in the next section.

 As I mentioned earlier, the parallelism waits (CXPACKET) occur in parallel query plans when
threads wait for an exchange packet from other threads before they can continue work. High
values in this wait type might indicate that CPU resources are not utilized optimally, especially
in OLTP environments where many requests run simultaneously. The problem may be mitigated
by lowering the maximum degree of parallelism in the server. Note that even when queries
are restricted to use only one CPU, it doesn’t mean that SQL Server cannot utilize more than
one CPU; rather, a single query will not be processed with a parallel query plan. High values in
the CXPACKET wait type can also be caused by using hyperthreading. Note that high values in
CXPACKET wait type do not always represent a direct cause of a problem; instead, they can be
a symptom, in which case you will typically see high values in other wait types (for example, I/O
latches). Also, it is quite natural in parallel query plans for threads to wait for other threads to
fi nish work. So even when you have high values in this wait type, you won’t always be able to
improve the system’s throughput by lowering the maximum degree of parallelism.

 High values in network waits might indicate network bandwidth problems, but they may
also indicate other problems. For example, the client application may have been written
 ineffi ciently and can’t consume the data fast enough from the moment it made the request.
This can happen, for example, when the client uses server-side cursors and in between
each fetch of a row it does a lot of processing. Also, some things that seem obvious to
most programmers are not necessarily obvious to everyone. This might surprise you, but
 occasionally we fi nd applications that do not do any fi ltering in the database as part of
their queries—instead, they do the fi ltering in the application. This, of course, can put an
 enormous load on the network.

 I discuss some of the other performance problems later in these books.

Drill Down to the Database/File Level

 The next step in our tuning process is to drill down to the database/fi le level. You want to
is olate the databases that involve most of the cost. Within the database, you want to drill
down to the fi le type (data/log) because the course of action you take depends on the fi le

C04626034.indd 145 2/13/2009 1:56:00 AM

146 Inside Microsoft SQL Server 2008: T-SQL Querying

type. One of the tools that allows you to analyze I/O information at the database/fi le level is a
 dynamic management function (DMF) called sys.dm_io_virtual_fi le_stats. The function accepts
a database ID and fi le ID as inputs and returns I/O information about the input database fi le.
You specify NULLs in both to request information about all databases and all fi les.

 The function returns the following attributes:

■ database_id

■ fi le_id

■ sample_ms (the number of milliseconds since the instance of SQL Server has started
and can be used to compare different outputs from this function)

■ num_of_reads

■ num_of_bytes_read

■ io_stall_read_ms (the total time, in milliseconds, that the users waited for reads issued
on the fi le)

■ num_of_writes

■ num_of_bytes_written

■ io_stall_write_ms

■ io_stall (the total time, in milliseconds, that users waited for I/O to be completed on
the fi le)

■ size_on_disk_bytes (in bytes)

■ fi le_handle (the Microsoft Windows fi le handle for this fi le)

 Note The measurements are reset when SQL Server starts, and they indicate only physical I/O
against the fi les and not logical I/O.

 At this point, we want to fi gure out which databases involve most of the I/O and I/O stalls in
the system and, within the database, which fi le type (data/log). The following query will give
you this information, sorted in descending order by the I/O stalls:

WITH DBIO AS

(

 SELECT

 DB_NAME(IVFS.database_id) AS db,

 MF.type_desc,

 SUM(IVFS.num_of_bytes_read + IVFS.num_of_bytes_written) AS io_bytes,

 SUM(IVFS.io_stall) AS io_stall_ms

 FROM sys.dm_io_virtual_file_stats(NULL, NULL) AS IVFS

 JOIN sys.master_files AS MF

 ON IVFS.database_id = MF.database_id

 AND IVFS.file_id = MF.file_id

 GROUP BY DB_NAME(IVFS.database_id), MF.type_desc

)

C04626034.indd 146 2/13/2009 1:56:00 AM

 Chapter 4 Query Tuning 147

SELECT db, type_desc,

 CAST(1. * io_bytes / (1024 * 1024) AS NUMERIC(12, 2)) AS io_mb,

 CAST(io_stall_ms / 1000. AS NUMERIC(12, 2)) AS io_stall_s,

 CAST(100. * io_stall_ms / SUM(io_stall_ms) OVER()

 AS NUMERIC(10, 2)) AS io_stall_pct,

 ROW_NUMBER() OVER(ORDER BY io_stall_ms DESC) AS rn

FROM DBIO

ORDER BY io_stall_ms DESC;

 This query generates (on my system) the following output:

db type_desc io_mb io_stall_s io_stall_pct rn

------------------- ---------- --------- ----------- ------------- ---

Performance ROWS 26002.09 14364.84 86.77 1

MDW ROWS 1495.23 834.43 5.04 2

AdventureWorks2008 ROWS 99.82 311.11 1.88 3

Performance LOG 121.43 275.64 1.66 4

MDW LOG 625.91 177.80 1.07 5

tempdb ROWS 107.40 147.05 0.89 6

Northwind ROWS 38.39 117.32 0.71 7

msdb LOG 64.63 104.98 0.63 8

master ROWS 58.13 100.44 0.61 9

msdb ROWS 149.90 89.24 0.54 10

Generic LOG 1.05 12.25 0.07 11

model ROWS 8.52 3.66 0.02 12

tempdb LOG 7.34 3.54 0.02 13

pubs ROWS 4.57 2.64 0.02 14

InsideTSQL2008 ROWS 4.50 2.35 0.01 15

Generic ROWS 4.32 1.74 0.01 16

master LOG 1.07 1.61 0.01 17

AdventureWorks2008 LOG 0.23 1.59 0.01 18

Northwind LOG 0.07 1.30 0.01 19

InsideTSQL2008 LOG 0.12 1.09 0.01 20

pubs LOG 0.41 0.96 0.01 21

model LOG 0.56 0.40 0.00 22

 The output shows the database name, fi le type, total I/O (reads and writes) in megabytes,
I/O stalls in seconds, I/O stalls in percent of the total for the whole system, and a row
 number indicating a position in the sorted list based on I/O stalls. Of course, if you want,
you can calculate a percentage and row number based on I/O as opposed to I/O stalls, and
you can also use running aggregation techniques to calculate a running percentage, as I
 demonstrated earlier. You might also be interested in a separation between the reads and
writes for your analysis. In this output, you can clearly identify the main element involving
most of the system’s I/O stalls—the data portion of Performance, which scores big time
(86 percent of the stalls), and the data portion of MDW, which also incurs a large percent
(5 percent of the stalls). I enabled the data collector in my system and the three system
 collection sets, which store the information in this management data warehouse. By default,
the collection frequency is 60 seconds. Behind, with about 1 to 2 percent each, are the
data portions of AdventureWorks2008 and tempdb and the log portions of Performance
and MDW. Obviously, you should focus on these elements, paying special attention to data
 activity against the Performance database.

C04626034.indd 147 2/13/2009 1:56:00 AM

148 Inside Microsoft SQL Server 2008: T-SQL Querying

 Regarding the bulk of our problem—I/O against the data portion of the Performance
 database—you now need to drill down to the process level to identify the processes that
 involve most of the waits.

 If high waits are associated with the transaction log, you can identify the problematic
 databases by using the sys.dm_io_virtual_fi le_stats DMF. This wasn’t a signifi cant issue in
any of the databases in my system, but let’s assume it was. You fi rst need to check whether
the log is confi gured adequately, that is, whether it is placed on its own disk drive with no
 interference and, if so, whether the disk drive is fast enough. If the log happens to be placed
on a slow disk drive, you might want to consider dedicating a faster disk for it. Once the
 logging activity exceeds the throughput of the disk drive, you start getting waits and stalls.
You might be happy dedicating a faster disk drive for the log, but then again, you might
not have the budget, or you might have already assigned the fastest disk you could for it.
Keep in mind that the transaction log is written sequentially, so striping it over multiple disk
drives won’t help, unless you also have activities that read from the log (such as backups
and transactional replication). You might also be able to optimize the processes that cause
 intensive logging by reducing their amount of logging. I’ll elaborate on minimally logged
operations in Chapter 10, “Data Modifi cation.”

 As for tempdb, many activities—both explicit and implicit—might cause tension in tempdb to
the point where it can become a serious bottleneck in the system. The tempdb database is used
by SQL Server to store explicitly created temporary tables and table variables and implicitly
 created worktables. It is also used as a temporary storage area for many other internal activities.
Several features that rely on row versioning keep their version store in tempdb, including
snapshot isolations, triggers, online index operations, and multiple active result sets (MARS).
Typically you’ll have a lot of room for optimizing tempdb, and you should defi nitely give that
option adequate attention. I’ll elaborate on tempdb and on row versioning in Inside T-SQL
Programming in the chapters that cover temporary tables, triggers, and transactions.

 Note that two system collection sets collect I/O-related information (if enabled). The “Server
Activity” collection set collects some I/O-related performance counters and queries the
sys.dm_io_virtual_fi le_stats DMV. The “Disk Usage” collection set collects information about
data and log fi les from the catalog views sys.database_fi les, sys.partitions, sys. allocation_
units, and sys.internal_tables and the command DBCC SQLPERF (LOGSPACE). You also get
 preconfi gured reports called Server Activity History and Disk Usage Summary (in Object
Explorer, right-click Data Collection under Management and choose Reports), allowing you to
graphically analyze I/O information stored in the management data warehouse.

 For our demonstration, let’s focus on solving the I/O problems related to the data portion of
the Performance database.

Drill Down to the Process Level

 Now that you know which databases (in our case, one) involve most of the performance
problem, you want to drill down to the process level, namely, identify the processes (stored
procedures, queries, and so on) that need to be tuned. For this task, you will fi nd SQL Server’s

C04626034.indd 148 2/13/2009 1:56:00 AM

 Chapter 4 Query Tuning 149

built-in tracing capabilities extremely powerful. You need to trace a workload representing
the typical activities in the system against the databases you need to focus on, analyze the
trace data, and isolate the processes that need to be tuned.

 Before I talk about the specifi c trace you need to create for such tuning purposes, I’d fi rst like
to point out a few important tips regarding working with traces in SQL Server in general.

 Traces have an impact on the performance of the system, and you should put effort into
reducing their impact. My good friend Brian Moran once compared the problematic aspect
of measuring performance to the Heisenberg Uncertainty Principle in quantum mechanics.
The principle was formulated by Werner Heisenberg in 1927. Very loosely speaking, when
you measure something, a factor of uncertainty is caused by your measurement. The more
precise the measure of something’s position, the more uncertainty there is regarding its
momentum (loosely, velocity and direction). So the more precisely you know one thing, the
less precisely you can know some parallel quantity. On the scale of atoms and elementary
particles, the effect of the uncertainty principle is very important. There’s no proof to
 support the uncertainty principal, but the theory is mathematically sound and supported by
experimentation.

 Going back to our traces, you don’t want your tracing activity to cause a performance
 problem itself. You can’t avoid its effect altogether—that’s impossible—but you can defi nitely
do much to reduce it by following some important guidelines:

■ Don’t trace with the SQL Server Profi ler GUI; instead, use the T-SQL code that defi nes
the trace. When you trace with Profi ler, you’re actually running two traces—one that
directs the output to the target fi le and one that streams the trace information to
the client running Profi ler. You can defi ne the trace graphically with Profi ler and then
script the trace defi nition to T-SQL code using the menu item File | Export | Script Trace
Defi nition | For SQL Server 2005 - 2008. You can then make slight revisions to the
code depending on your needs. I like to encapsulate the code in a stored procedure
that accepts as arguments elements that I want to make variable—for example, the
 database ID I use as a fi lter in the trace defi nition.

■ Do not trace directly to a table, as this will have a signifi cant performance impact.
Tracing to a fi le on a local disk is the fastest option (tracing to a network share is bad as
well). You can later load the trace data to a table for analysis using the fn_trace_gettable
function, using a BULK operation such as SELECT INTO.

■ Tracing can produce enormous amount of data and excessive I/O activity. Make sure
the target trace fi le does not reside on disk drives that contain database fi les (such as
data, log, and tempdb). Ideally, dedicate a separate disk drive for the target trace fi les.

■ Be selective in your choices of event classes and data columns—only trace what you
need, removing all default and unnecessary ones. Of course, don’t be too selective;
make sure that all relevant event classes and data columns are included. Be aware
that if you trace individual statement event classes (for example, SP:StmtCompleted,
SQL:StmtCompleted), those tend to produce large amounts of trace data because each

C04626034.indd 149 2/13/2009 1:56:00 AM

150 Inside Microsoft SQL Server 2008: T-SQL Querying

individual statement within a procedure/batch produces a trace event. Unless you really
need to trace the individual statements, consider tracing at the procedure/batch level
(for example, SP:Completed, SQL:BatchCompleted).

■ Use the trace fi ltering capabilities to fi lter only the relevant events. For example, when
tuning a particular database, make sure you fi lter events only for the relevant database ID.

 With these important guidelines in mind, let’s proceed to the trace that we need for our
 tuning purposes.

Trace Performance Workload

 You now need to defi ne a trace that will help you identify processes that need to be tuned in
the Performance database. When faced with such a need, DBAs tend to trace slow-running
processes by fi ltering events where the Duration data column is greater than or equal to
some value (say, 3,000 milliseconds). Though such a trace can be very interesting, it won’t
necessarily reveal all important queries that should be tuned. Think of the following: You
have a query that runs for about 30 seconds a couple of times a day and another query that
runs for a about half a second 40,000 times a day. Which would you say is more important to
tune? Obviously, the latter is more important, but if you fi lter only events that run for at least
three seconds, you’ll fi lter out the more important query to tune.

 In short, for our purposes you don’t want to fi lter based on Duration at all. Of course, this
means that you might get enormous amounts of trace data, so make sure you follow the
guidelines I suggested earlier. You do want to fi lter only the databases that are relevant to
your tuning process.

 As for event classes, if most activities in your system are invoked by stored procedures and
each stored procedure invokes a small or limited number of activities, trace the SP:Completed
event class. You will then be able to aggregate the data by the procedure. Similarly, if
most of the activities are invoked by batches with a small number of activities, trace the
SQL:BatchCompleted event class. However, if each procedure invokes many activities, you
want to trace the SP:StmtCompleted event class to capture each individual statement invoked
from each stored procedure. If you have activities that are submitted as ad-hoc batches
(as in our case), trace the SQL:StmtCompleted event class. Remember, though, that tracing
 individual statement event classes can produce a lot of trace information and have an
 impact on the traced SQL Server instance. As much as possible, try to limit such tracing to
short periods to collect a representative workload. Finally, if you have activities submitted
as remote procedure calls, trace the RPC:Completed event class. Notice that all event classes
are Completed ones as opposed to the respective Starting event classes. Only the Completed
event classes carry performance information such as Duration, CPU, Reads, and Writes
 because, naturally, these values are unknown when the respective event starts.

 As for data columns, you mainly need the TextData column that will carry the actual T-SQL
code and the relevant performance-related counters—for example, the Duration column.
Remember that users perceive waits as the performance problem, and Duration stands for

C04626034.indd 150 2/13/2009 1:56:00 AM

 Chapter 4 Query Tuning 151

the elapsed time it took the event to run. If you’re specifi cally targeting I/O-related problems,
you may want to analyze the Reads and Writes columns. I also like to trace the RowCounts
data column, especially when looking for network-related problems. Queries returning the
result set to the client with large numbers in this counter would indicate potential pressure
on the network. Other than that, you might want additional data columns based on your
needs. For example, if you later want to analyze the data by host, application, login, and so
on, make sure you also include the corresponding data columns.

 You can defi ne a trace following these guidelines and then script its defi nition to T-SQL code.
I did so and encapsulated the code in a stored procedure called PerfworkloadTraceStart.

 The stored procedure accepts a database ID and fi le name as input parameters. It defi nes a
trace using the specifi ed database ID as a fi lter and the given fi le name as the target for the
trace data; it starts the trace and returns the newly generated trace ID via an output parameter.
Run the following code to create the PerfworkloadTraceStart stored procedure:

SET NOCOUNT ON;

USE master;

GO

IF OBJECT_ID('dbo.PerfworkloadTraceStart', 'P') IS NOT NULL

 DROP PROC dbo.PerfworkloadTraceStart;

GO

CREATE PROC dbo.PerfworkloadTraceStart

 @dbid AS INT,

 @tracefile AS NVARCHAR(245),

 @traceid AS INT OUTPUT

AS

-- Create a Queue

DECLARE @rc AS INT;

DECLARE @maxfilesize AS BIGINT;

SET @maxfilesize = 5;

EXEC @rc = sp_trace_create @traceid OUTPUT, 0, @tracefile, @maxfilesize, NULL

IF (@rc != 0) GOTO error;

-- Set the events

DECLARE @on AS BIT;

SET @on = 1;

-- RPC:Completed

exec sp_trace_setevent @traceid, 10, 15, @on;

exec sp_trace_setevent @traceid, 10, 8, @on;

exec sp_trace_setevent @traceid, 10, 16, @on;

exec sp_trace_setevent @traceid, 10, 48, @on;

exec sp_trace_setevent @traceid, 10, 1, @on;

exec sp_trace_setevent @traceid, 10, 17, @on;

exec sp_trace_setevent @traceid, 10, 10, @on;

exec sp_trace_setevent @traceid, 10, 18, @on;

exec sp_trace_setevent @traceid, 10, 11, @on;

C04626034.indd 151 2/13/2009 1:56:00 AM

152 Inside Microsoft SQL Server 2008: T-SQL Querying

exec sp_trace_setevent @traceid, 10, 12, @on;

exec sp_trace_setevent @traceid, 10, 13, @on;

exec sp_trace_setevent @traceid, 10, 6, @on;

exec sp_trace_setevent @traceid, 10, 14, @on;

-- SP:Completed

exec sp_trace_setevent @traceid, 43, 15, @on;

exec sp_trace_setevent @traceid, 43, 8, @on;

exec sp_trace_setevent @traceid, 43, 48, @on;

exec sp_trace_setevent @traceid, 43, 1, @on;

exec sp_trace_setevent @traceid, 43, 10, @on;

exec sp_trace_setevent @traceid, 43, 11, @on;

exec sp_trace_setevent @traceid, 43, 12, @on;

exec sp_trace_setevent @traceid, 43, 13, @on;

exec sp_trace_setevent @traceid, 43, 6, @on;

exec sp_trace_setevent @traceid, 43, 14, @on;

-- SP:StmtCompleted

exec sp_trace_setevent @traceid, 45, 8, @on;

exec sp_trace_setevent @traceid, 45, 16, @on;

exec sp_trace_setevent @traceid, 45, 48, @on;

exec sp_trace_setevent @traceid, 45, 1, @on;

exec sp_trace_setevent @traceid, 45, 17, @on;

exec sp_trace_setevent @traceid, 45, 10, @on;

exec sp_trace_setevent @traceid, 45, 18, @on;

exec sp_trace_setevent @traceid, 45, 11, @on;

exec sp_trace_setevent @traceid, 45, 12, @on;

exec sp_trace_setevent @traceid, 45, 13, @on;

exec sp_trace_setevent @traceid, 45, 6, @on;

exec sp_trace_setevent @traceid, 45, 14, @on;

exec sp_trace_setevent @traceid, 45, 15, @on;

-- SQL:BatchCompleted

exec sp_trace_setevent @traceid, 12, 15, @on;

exec sp_trace_setevent @traceid, 12, 8, @on;

exec sp_trace_setevent @traceid, 12, 16, @on;

exec sp_trace_setevent @traceid, 12, 48, @on;

exec sp_trace_setevent @traceid, 12, 1, @on;

exec sp_trace_setevent @traceid, 12, 17, @on;

exec sp_trace_setevent @traceid, 12, 6, @on;

exec sp_trace_setevent @traceid, 12, 10, @on;

exec sp_trace_setevent @traceid, 12, 14, @on;

exec sp_trace_setevent @traceid, 12, 18, @on;

exec sp_trace_setevent @traceid, 12, 11, @on;

exec sp_trace_setevent @traceid, 12, 12, @on;

exec sp_trace_setevent @traceid, 12, 13, @on;

-- SQL:StmtCompleted

exec sp_trace_setevent @traceid, 41, 15, @on;

exec sp_trace_setevent @traceid, 41, 8, @on;

exec sp_trace_setevent @traceid, 41, 16, @on;

exec sp_trace_setevent @traceid, 41, 48, @on;

exec sp_trace_setevent @traceid, 41, 1, @on;

exec sp_trace_setevent @traceid, 41, 17, @on;

exec sp_trace_setevent @traceid, 41, 10, @on;

exec sp_trace_setevent @traceid, 41, 18, @on;

exec sp_trace_setevent @traceid, 41, 11, @on;

C04626034.indd 152 2/13/2009 1:56:00 AM

 Chapter 4 Query Tuning 153

exec sp_trace_setevent @traceid, 41, 12, @on;

exec sp_trace_setevent @traceid, 41, 13, @on;

exec sp_trace_setevent @traceid, 41, 6, @on;

exec sp_trace_setevent @traceid, 41, 14, @on;

-- Set the Filters

-- Application name filter

EXEC sp_trace_setfilter @traceid, 10, 0, 7, N'SQL Server Profiler%';

-- Database ID filter

EXEC sp_trace_setfilter @traceid, 3, 0, 0, @dbid;

-- Set the trace status to start

EXEC sp_trace_setstatus @traceid, 1;

-- Print trace id and file name for future references

PRINT 'Trace ID: ' + CAST(@traceid AS VARCHAR(10))

 + ', Trace File: ''' + @tracefile + '.trc''';

GOTO finish;

error:

PRINT 'Error Code: ' + CAST(@rc AS VARCHAR(10));

finish:

GO

 Note that for demonstration purposes I included both proc/batch-level and statement-level
event classes, even though in my case it would have been enough to trace just the
SQL:StmtCompleted event class. In practice, you should include only the event classes that
you need.

 Run the following code to start the trace, fi ltering events against the Performance database
and sending the trace data to the fi le ‘c:\temp\Perfworkload 20090212.trc’:

DECLARE @dbid AS INT, @traceid AS INT;

SET @dbid = DB_ID('Performance');

EXEC master.dbo.PerfworkloadTraceStart

 @dbid = @dbid,

 @tracefile = 'c:\temp\Perfworkload 20090212',

 @traceid = @traceid OUTPUT;

 If you were to assume that the newly generated trace ID is 2, you would get the following
output:

Trace ID: 2, Trace File: 'c:\temp\perfworkload 20090212.trc'

 You need to keep the trace ID aside, as you will use it later to stop the trace and close it.

 Next, run the sample queries from Listing 4-2 several times. When done, stop the trace and
close it by running the following code (assuming the trace ID is 2):

EXEC sp_trace_setstatus 2, 0;

EXEC sp_trace_setstatus 2, 2;

C04626034.indd 153 2/13/2009 1:56:00 AM

154 Inside Microsoft SQL Server 2008: T-SQL Querying

 Of course, you should specify the actual trace ID you got for your trace. If you lost the scrap
of paper you wrote the trace ID on, query the sys.traces view to get information about all
running traces.

 When tracing a workload in a production environment for tuning purposes, make sure you
trace a suffi ciently representative one. In some cases, this might mean tracing for only a
 couple of hours, while in other cases it can be a matter of days.

 The next step is to load the trace data to a table and analyze it. Of course, you can open it
with Profi ler and examine it there; however, typically such traces generate a lot of data, and
you can’t do much with Profi ler to analyze the data. In our case, we have a small number of
sample queries. Figure 4-4 shows what the trace data looks like when loaded in Profi ler.

FIGURE 4-4 Performance workload trace data

 Examining the trace data, you can clearly see some long-running queries that generate
a lot of I/O. These queries use range fi lters based on the orderdate column and seem to
 consistently incur about 25,000 reads. The Orders table currently contains 1,000,000 rows
and resides on about 25,000 pages. This tells you that these queries are causing full table
scans to acquire the data and are probably missing an important index on the orderdate
 column. The missing index is probably the main cause of the excessive I/O in the system.

C04626034.indd 154 2/13/2009 1:56:01 AM

 Chapter 4 Query Tuning 155

 Also, you can fi nd some queries that return a very large number of rows in the result
set—several thousand and, in some cases, hundreds of thousands of rows. You should
check whether fi lters and further manipulation are applied in the server when possible
rather than bringing everything to the client through the network and performing
 fi ltering and further manipulation there. These queries are probably the main cause of
the network issues in the system.

 Of course, such graphical analysis with Profi ler is feasible only with tiny traces such as the one
we’re using for demonstration purposes. In production environments, it’s just not realistic;
you need to load the trace data to a table and use queries to analyze the data.

Analyze Trace Data

 As I mentioned earlier, you use the fn_trace_gettable function to return the trace data in
 table format. Run the following code to load the trace data from our fi le to the Workload
table:

USE Performance;

IF OBJECT_ID('dbo.Workload', 'U') IS NOT NULL DROP TABLE dbo.Workload;

GO

SELECT CAST(TextData AS NVARCHAR(MAX)) AS tsql_code,

 Duration AS duration

INTO dbo.Workload

FROM sys.fn_trace_gettable('c:\temp\Perfworkload 20090212.trc', NULL) AS T

WHERE Duration > 0

 AND EventClass IN(41, 45);

 Note that this code loads only the TextData (T-SQL code) and Duration data columns to focus
particularly on query run time. Typically, you would want to also load other data columns
that are relevant to your analysis—for example, the I/O and CPU counters, row counts, host
name, application name, and so on. Also, because in this case I want to analyze individual
statements, I’m fi ltering event classes 41 (SQL:StmtCompleted) and 45 (SP:StmtCompleted).

 Remember that it is important to aggregate the performance information by the query
or T-SQL statement to fi gure out the overall performance impact of each query with its
 multiple invocations. The following code attempts to do just that, and it generates the
output shown in abbreviated form in Table 4-2:

SELECT

 tsql_code,

 SUM(duration) AS total_duration

FROM dbo.Workload

GROUP BY tsql_code;

C04626034.indd 155 2/13/2009 1:56:01 AM

156 Inside Microsoft SQL Server 2008: T-SQL Querying

 TABLE 4-2 Aggregated Duration by Query in Abbreviated Form

tsql_code duration

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders

WHERE orderdate = '20080118';
1326071

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders

WHERE orderdate = '20080212';
1519084

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders

WHERE orderdate = '20080828';
1083055

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders

WHERE orderdate >= '20080101' AND orderdate < '20080201';
7998453

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders

WHERE orderdate >= '20080201' AND orderdate < '20090301';
65186723

. . .

 But we have a problem. You can see in the aggregated data that some queries that are logically
the same or follow the same pattern ended up in different groups. That’s because they
 happened to be using different values in their fi lters. Only query strings that are completely
identical were grouped together. As an aside, you wouldn’t be facing this problem had you
used stored procedures, each invoking an individual query or a very small number of queries.
Remember that in such a case you would have traced the SP:Completed event class, and then
you would have received aggregated data by the procedure. But that’s not the case here.

A simple but not very accurate way to deal with the problem is to extract a substring of the
query strings and aggregate by that substring. Typically, the left portion of query strings that
follow the same pattern is the same, while somewhere to the right you have the arguments
that are used in the fi lter. You can apply trial and error, playing with the length of the
 substring that you will extract; with luck, the substring will be long enough to allow grouping
queries following the same pattern together and small enough to distinguish queries of
 different patterns from each other. This approach, as you can see, is tricky and would not
guarantee accurate results. Essentially, you pick a number that seems reasonable, close your
eyes, and hope for the best.

For example, the following query aggregates the trace data by a query prefi x of 100 characters
and generates the output shown in Table 4-3:

SELECT

 SUBSTRING(tsql_code, 1, 100) AS tsql_code,

 SUM(duration) AS total_duration

FROM dbo.Workload

GROUP BY SUBSTRING(tsql_code, 1, 100);

tsql_code duration

C04626034.indd 156 2/13/2009 1:56:01 AM

 Chapter 4 Query Tuning 157

TABLE 4-3 Aggregated Duration by Query Prefi x

tsql_code total_duration

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate = '200
3928210

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate >= '20
89089077

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderid = 5;
2000

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderid = 7;
1000

In our case, this prefi x length did the trick for some queries, but it wasn’t very successful
with others. With more realistic trace data, you won’t have the privilege of looking at a tiny
 number of queries and being able to play with the numbers so easily. But the general idea is
that you adjust the prefi x length by applying trial and error.

The following code uses a prefi x length of 94 and generates the output shown in Table 4-4:

SELECT

 SUBSTRING(tsql_code, 1, 94) AS tsql_code,

 SUM(duration) AS total_duration

FROM dbo.Workload

GROUP BY SUBSTRING(tsql_code, 1, 94);

TABLE 4-4 Aggregated Duration by Query Prefi x, Adjusted

tsql_code total_duration

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate
93017287

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate
93017287

Now you end up with overgrouping. In short, fi nding the right prefi x length is a tricky
 process, and its accuracy and reliability are questionable.

A much more accurate approach is to parse the query strings and produce a query signature
for each. A query signature is a query template that is the same for queries following the
same pattern. After creating these, you can then aggregate the data by query signatures
instead of by the query strings themselves. SQL Server 2008 provides you with the sp_get_
query_template stored procedure, which parses an input query string and returns the query
template and the defi nition of the arguments via output parameters.

For example, the following code invokes the stored procedure, providing a sample query
string as input:

DECLARE @my_templatetext AS NVARCHAR(MAX);

DECLARE @my_parameters AS NVARCHAR(MAX);

tsql_code total_duration

tsql_code total_duration

C04626034.indd 157 2/13/2009 1:56:01 AM

158 Inside Microsoft SQL Server 2008: T-SQL Querying

EXEC sp_get_query_template

 N'SELECT * FROM dbo.T1 WHERE col1 = 3 AND col2 > 78',

 @my_templatetext OUTPUT,

 @my_parameters OUTPUT;

SELECT @my_templatetext AS querysig, @my_parameters AS params;

 This code generates the following output:

querysig params

--- --------------

select * from dbo . T1 where col1 = @0 and col2 > @1 @0 int,@1 int

 The problem with this stored procedure is that you need to use a cursor to invoke it against
every query string from the trace data, and this can take quite a while with large traces. The
stored procedure also (by design) returns an error in some cases (see SQL Server Books Online
for details), which could compromise its value. It would be much more convenient to have this
logic implemented as a function, allowing you to invoke it directly against the table containing
the trace data. Fortunately, such a function exists; it was written by Stuart Ozer, who is with the
Microsoft SQL Server Customer Advisory Team (SQL CAT). I would like to thank him for allowing
me to share the code with the readers of this book. Here’s the function’s defi nition:

IF OBJECT_ID('dbo.SQLSig', 'FN') IS NOT NULL

 DROP FUNCTION dbo.SQLSig;

GO

CREATE FUNCTION dbo.SQLSig

 (@p1 NTEXT, @parselength INT = 4000)

RETURNS NVARCHAR(4000)

--

-- This function is provided "AS IS" with no warranties,

-- and confers no rights.

--Use of included script samples are subject to the terms specified at

-- http://www.microsoft.com/info/cpyright.htm

--

-- Strips query strings

AS

BEGIN

 DECLARE @pos AS INT;

 DECLARE @mode AS CHAR(10);

 DECLARE @maxlength AS INT;

 DECLARE @p2 AS NCHAR(4000);

 DECLARE @currchar AS CHAR(1), @nextchar AS CHAR(1);

 DECLARE @p2len AS INT;

 SET @maxlength = LEN(RTRIM(SUBSTRING(@p1,1,4000)));

 SET @maxlength = CASE WHEN @maxlength > @parselength

 THEN @parselength ELSE @maxlength END;

 SET @pos = 1;

 SET @p2 = '';

 SET @p2len = 0;

 SET @currchar = '';

 set @nextchar = '';

 SET @mode = 'command';

C04626034.indd 158 2/13/2009 1:56:01 AM

 Chapter 4 Query Tuning 159

 WHILE (@pos <= @maxlength)

 BEGIN

 SET @currchar = SUBSTRING(@p1,@pos,1);

 SET @nextchar = SUBSTRING(@p1,@pos+1,1);

 IF @mode = 'command'

 BEGIN

 SET @p2 = LEFT(@p2,@p2len) + @currchar;

 SET @p2len = @p2len + 1 ;

 IF @currchar IN (',','(',' ','=','<','>','!')

 AND @nextchar BETWEEN '0' AND '9'

 BEGIN

 SET @mode = 'number';

 SET @p2 = LEFT(@p2,@p2len) + '#';

 SET @p2len = @p2len + 1;

 END

 IF @currchar = ''''

 BEGIN

 SET @mode = 'literal';

 SET @p2 = LEFT(@p2,@p2len) + '#''';

 SET @p2len = @p2len + 2;

 END

 END

 ELSE IF @mode = 'number' AND @nextchar IN (',',')',' ','=','<','>','!')

 SET @mode= 'command';

 ELSE IF @mode = 'literal' AND @currchar = ''''

 SET @mode= 'command';

 SET @pos = @pos + 1;

 END

 RETURN @p2;

END

GO

 The function accepts as inputs a query string and the length of the code you want to parse.
The function returns the query signature of the input query, with all parameters replaced
by a number sign (#). Note that this is a fairly simple function and might need to be tailored
to particular situations. Run the following code to test the function:

SELECT dbo.SQLSig

 (N'SELECT * FROM dbo.T1 WHERE col1 = 3 AND col2 > 78', 4000);

 You get the following output:

SELECT * FROM dbo.T1 WHERE col1 = # AND col2 > #

 Of course, you could now use the function and aggregate the trace data by query signature.
However, keep in mind that although T-SQL is very effi cient with data manipulation, it is slow
in processing iterative/procedural logic. This is a classic example where a common language
run-time (CLR) implementation of the function makes more sense. The CLR is much faster
than T-SQL for iterative/procedural logic and string manipulation. SQL Server 2008 allows
you to develop .NET routines based on the CLR.

C04626034.indd 159 2/13/2009 1:56:01 AM

160 Inside Microsoft SQL Server 2008: T-SQL Querying

 Listing 4-3 has the defi nition of a CLR-based, user-defi ned function called RegexReplace
 using C# code.

LISTING 4-3 RegexReplace functions

using Microsoft.SqlServer.Server;

using System.Data.SqlTypes;

using System.Text.RegularExpressions;

public partial class RegExp

{

 [SqlFunction(IsDeterministic = true, DataAccess = DataAccessKind.None)]

 public static SqlString RegexReplace(

 SqlString input, SqlString pattern, SqlString replacement)

 {

 return (SqlString)Regex.Replace(

 input.Value, pattern.Value, replacement.Value);

 }

}

The function merely calls the Replace method of the Regex object, exposing replacement
and parsing capabilities based on regular expressions. The function exposes generic
 pattern-based string replacement capabilities using regular expressions.

Note I didn’t bother checking for NULL inputs in the CLR code because T-SQL allows you to
specify the option RETURNS NULL ON NULL INPUT when you register the functions, as I will
demonstrate later. This option means that when a NULL input is provided, SQL Server doesn’t
invoke the function at all; rather, it simply returns a NULL output.

If you’re familiar with developing CLR routines in SQL Server, deploy these functions in the
Performance database. If you’re not, just follow these steps:

 1. Create a new Microsoft Visual C# Class Library project in Microsoft Visual Studio 2008
(File | New | Project. . . | Visual C# | Class Library).

 2. In the New Project dialog box, name the project and solution RegExp, specify C:\ as
the location, and confi rm.

 3. Rename the fi le Class1.cs to RegExp.cs and within it paste the code from Listing 4-3,
overriding its current content.

 4. Build the assembly by choosing the Build | Build RegExp menu item. A fi le named
C:\RegExp\RegExp\bin\Debug\RegExp.dll containing the assembly is created.

 5. At this point, you go back to SQL Server Management Studio (SSMS) and apply a
couple of additional steps to deploy the assembly in the Performance database

using Microsoft.SqlServer.Server;

using System.Data.SqlTypes;

using System.Text.RegularExpressions;

public partial class RegExp

{

 [SqlFunction(IsDeterministic = true, DataAccess = DataAccessKind.None)]

 public static SqlString RegexReplace(

 SqlString input, SqlString pattern, SqlString replacement)

 {

 return (SqlString)Regex.Replace(

 input.Value, pattern.Value, replacement.Value);

 }

}

C04626034.indd 160 2/13/2009 1:56:01 AM

 Chapter 4 Query Tuning 161

and then register the RegexReplace function. But fi rst, you need to enable CLR in SQL
Server (which is disabled by default) by running the following code:

EXEC sp_configure 'clr enabled', 1;

RECONFIGURE;

 6. Load the intermediate language (IL) code from the .dll fi le into the Performance
 database by running the following code:

USE Performance;

CREATE ASSEMBLY RegExp

FROM 'C:\RegExp\RegExp\bin\Debug\RegExp.dll';

 7. Register the RegexReplace function by running the following code:

CREATE FUNCTION dbo.RegexReplace(

 @input AS NVARCHAR(MAX),

 @pattern AS NVARCHAR(MAX),

 @replacement AS NVARCHAR(MAX))

RETURNS NVARCHAR(MAX)

WITH RETURNS NULL ON NULL INPUT

EXTERNAL NAME RegExp.RegExp.RegexReplace;

GO

 You’re done. At this point, you can start using the function like you do any other user-defi ned
function.

 You can now use the RegexReplace function to produce a query signature for query strings
by using a regular expression that has the right parsing logic. For example, the following
code shows how to use the function in a query against the Workload table to produce query
signatures for the query strings stored in the tsql_code attribute:

SELECT

 dbo.RegexReplace(tsql_code,

 N'([\s,(=<>!](?![^\]]+[\]]))(?:(?:(?:(?# expression coming

)(?:([N])?('')(?:[^'']|'''')*(''))(?# character

)|(?:0x[\da-fA-F]*)(?# binary

)|(?:[-+]?(?:(?:[\d]*\.[\d]*|[\d]+)(?# precise number

)(?:[eE]?[\d]*)))(?# imprecise number

)|(?:[~]?[-+]?(?:[\d]+))(?# integer

))(?:[\s]?[\+\-*\/\%\&\|\^][\s]?)?)+(?# operators

))',

 N'$1$2$3#$4') AS sig,

 duration

FROM dbo.Workload;

 This regular expression covers cases that the T-SQL function overlooks, and it can be easily
enhanced to support more cases if you need it to. In case you’re curious, producing query
signatures with the RegexReplace function is faster than producing them with the T-SQL
 function by a factor of 10.

C04626034.indd 161 2/13/2009 1:56:01 AM

162 Inside Microsoft SQL Server 2008: T-SQL Querying

 This query generates the output shown in Table 4-5 in abbreviated form.

TABLE 4-5 Trace Data with Query Signatures in Abbreviated Form

sig duration

. . .

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders

WHERE orderdate = '#';
162009

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders

WHERE orderdate = '#';
125007

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders

WHERE orderdate = '#';
100005

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders

WHERE orderdate >= '#' AND orderdate < '#';
793045

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders

WHERE orderdate >= '#' AND orderdate < '#';
835047

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders

WHERE orderdate >= '#' AND orderdate < '#';
6507372

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders

WHERE orderdate >= '#' AND orderdate < '#';
732041

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders

WHERE orderdate = '#';
143008

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders

WHERE orderdate = '#';
181010

SELECT orderid, custid, empid, shipperid, orderdate, filler FROM dbo.Orders

WHERE orderdate = '#';
102005

. . .

 As you can see, you get back query signatures, which you can use to aggregate the trace
data. Keep in mind, though, that query strings can get lengthy, and grouping the data by
lengthy strings is slow and expensive. Instead, you might prefer to generate an integer
checksum for each query string by using the T-SQL CHECKSUM function. For example, the
following query generates a checksum value for each query string from the Workload table:

SELECT

 CHECKSUM(dbo.RegexReplace(tsql_code,

 N'([\s,(=<>!](?![^\]]+[\]]))(?:(?:(?:(?# expression coming

)(?:([N])?('')(?:[^'']|'''')*(''))(?# character

)|(?:0x[\da-fA-F]*)(?# binary

)|(?:[-+]?(?:(?:[\d]*\.[\d]*|[\d]+)(?# precise number

)(?:[eE]?[\d]*)))(?# imprecise number

)|(?:[~]?[-+]?(?:[\d]+))(?# integer

))(?:[\s]?[\+\-*\/\%\&\|\^][\s]?)?)+(?# operators

))',

 N'$1$2$3#$4')) AS cs,

 duration

FROM dbo.Workload;

sig duration

C04626034.indd 162 2/13/2009 1:56:01 AM

 Chapter 4 Query Tuning 163

This query generates the following output, shown here in abbreviated form:

cs duration

----------- --------------------

-184235228 162009

-184235228 125007

-184235228 100005

368623506 793045

368623506 835047

368623506 6507372

368623506 732041

-184235228 143008

-184235228 181010

-184235228 102005

...

Use the following code to add to the Workload table a computed persisted column called cs
that calculates the checksum of the query signatures and create a clustered index on the cs
column:

ALTER TABLE dbo.Workload ADD cs AS CHECKSUM(dbo.RegexReplace(tsql_code,

 N'([\s,(=<>!](?![^\]]+[\]]))(?:(?:(?:(?# expression coming

)(?:([N])?('')(?:[^'']|'''')*(''))(?# character

)|(?:0x[\da-fA-F]*)(?# binary

)|(?:[-+]?(?:(?:[\d]*\.[\d]*|[\d]+)(?# precise number

)(?:[eE]?[\d]*)))(?# imprecise number

)|(?:[~]?[-+]?(?:[\d]+))(?# integer

))(?:[\s]?[\+\-*\/\%\&\|\^][\s]?)?)+(?# operators

))',

 N'$1$2$3#$4')) PERSISTED;

CREATE CLUSTERED INDEX idx_cl_cs ON dbo.Workload(cs);

Run the following code to return the new contents of the Workload table, shown in abbreviated
form in Table 4-6:

SELECT tsql_code, duration, cs

FROM dbo.Workload

TABLE 4-6 Contents of Table Workload

tsql_code duration cs

. . .

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate = '20080118';
128007 -184235228

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate = '20080828';
102005 -184235228

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate = '20080212';
187010 -184235228

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate = '20080118';
119006 -184235228

tsql_code duration cs

C04626034.indd 163 2/13/2009 1:56:01 AM

164 Inside Microsoft SQL Server 2008: T-SQL Querying

TABLE 4-6 Contents of Table Workload

tsql_code duration cs

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate = '20080828';
118006 -184235228

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate >= '20080101'

AND orderdate < '20080201';

923052 368623506

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate >= '20080401'

AND orderdate < '20080501';

879050 368623506

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate >= '20080201'

AND orderdate < '20090301';

6340362 368623506

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate >= '20080501'

AND orderdate < '20080601';

745042 368623506

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate >= '20080101'

AND orderdate < '20080201';

812046 368623506

. . .

 At this point, you want to aggregate the data by the query signature checksum. It would also be
very useful to get running aggregates of the percentage of each signature’s duration of the total
duration. This information can help you easily isolate the query patterns that you need to tune.
Remember that typical production workloads can contain a large number of query signatures. It
would make sense to populate a temporary table with the aggregate data and index it and then
run a query against the temporary table to calculate the running aggregates.

 Run the following code to populate the temporary table #AggQueries with the total duration
per signature checksum, including the percentage of the total, and a row number based on
the duration in descending order:

IF OBJECT_ID('tempdb..#AggQueries', 'U') IS NOT NULL DROP TABLE #AggQueries;

SELECT cs, SUM(duration) AS total_duration,

 100. * SUM(duration) / SUM(SUM(duration)) OVER() AS pct,

 ROW_NUMBER() OVER(ORDER BY SUM(duration) DESC) AS rn

INTO #AggQueries

FROM dbo.Workload

GROUP BY cs;

CREATE CLUSTERED INDEX idx_cl_cs ON #AggQueries(cs);

 Run the following code to return the contents of the temporary table:

SELECT cs, total_duration, pct, rn

FROM #AggQueries

ORDER BY rn;

tsql_code duration cs

C04626034.indd 164 2/13/2009 1:56:02 AM

 Chapter 4 Query Tuning 165

 This code generates the following output:

cs total_duration pct rn

----------- --------------- ------------------- ---

368623506 89089077 95.773814372342239 1

-184235228 3928210 4.222960524729406 2

-1872968693 3000 0.003225102928353 3

 Use the following query to return the running aggregates of the percentages, fi ltering only
those rows where the running percentage accumulates to a certain threshold that you specify:

SELECT AQ1.cs,

 CAST(AQ1.total_duration / 1000000.

 AS NUMERIC(12, 2)) AS total_s,

 CAST(SUM(AQ2.total_duration) / 1000000.

 AS NUMERIC(12, 2)) AS running_total_s,

 CAST(AQ1.pct AS NUMERIC(12, 2)) AS pct,

 CAST(SUM(AQ2.pct) AS NUMERIC(12, 2)) AS run_pct,

 AQ1.rn

FROM #AggQueries AS AQ1

 JOIN #AggQueries AS AQ2

 ON AQ2.rn <= AQ1.rn

GROUP BY AQ1.cs, AQ1.total_duration, AQ1.pct, AQ1.rn

HAVING SUM(AQ2.pct) - AQ1.pct <= 80 -- percentage threshold

-- OR AQ1.rn <= 5

ORDER BY AQ1.rn;

 In our case, if you use 80 percent as the threshold, you get only one row. For demonstration
purposes, I uncommented the part of the expression in the HAVING clause and got the
following output from the query:

cs total_s running_total_s pct run_pct rn

----------- -------- ---------------- ------ -------- ---

368623506 89.09 89.09 95.77 95.77 1

-184235228 3.93 93.02 4.22 100.00 2

-1872968693 0.00 93.02 0.00 100.00 3

 You can see at the top that one query pattern accounts for 95.77 percent of the total
 duration. Based on my experience, a handful of query patterns typically cause most of the
performance problems in a given system.

 To get back the actual queries that you need to tune, you should join the result table
 returned from the preceding query with the Workload table, based on a match in the
 checksum value (cs column), like so:

WITH RunningTotals AS

(

 SELECT AQ1.cs,

 CAST(AQ1.total_duration / 1000.

 AS DECIMAL(12, 2)) AS total_s,

 CAST(SUM(AQ2.total_duration) / 1000.

 AS DECIMAL(12, 2)) AS running_total_s,

C04626034.indd 165 2/13/2009 1:56:02 AM

166 Inside Microsoft SQL Server 2008: T-SQL Querying

 CAST(AQ1.pct AS DECIMAL(12, 2)) AS pct,

 CAST(SUM(AQ2.pct) AS DECIMAL(12, 2)) AS run_pct,

 AQ1.rn

 FROM #AggQueries AS AQ1

 JOIN #AggQueries AS AQ2

 ON AQ2.rn <= AQ1.rn

 GROUP BY AQ1.cs, AQ1.total_duration, AQ1.pct, AQ1.rn

 HAVING SUM(AQ2.pct) - AQ1.pct <= 90 -- percentage threshold

-- OR AQ1.rn <= 5

)

SELECT RT.rn, RT.pct, W.tsql_code

FROM RunningTotals AS RT

 JOIN dbo.Workload AS W

 ON W.cs = RT.cs

ORDER BY RT.rn;

 You will get the output shown in abbreviated form in Table 4-7.

TABLE 4-7 Top Slow Queries in Abbreviated Form

rn pct tsql_code

1 95.77 SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate >= '20080101' AND orderdate < '20080201';

1 95.77 SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate >= '20080401' AND orderdate < '20080501';

1 95.77 SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders WHERE orderdate >= '20080201' AND orderdate < '20090301';

. . .

 Of course, with a more realistic workload you might get a large number of queries back,
but you’re really interested in the query pattern that you need to tune. So instead of joining
back to the Workload table, use the APPLY operator to return only one row for each query
 signature with the query pattern and a single sample per pattern out of the actual queries
like so:

WITH RunningTotals AS

(

 SELECT AQ1.cs,

 CAST(AQ1.total_duration / 1000000.

 AS NUMERIC(12, 2)) AS total_s,

 CAST(SUM(AQ2.total_duration) / 1000000.

 AS NUMERIC(12, 2)) AS running_total_s,

 CAST(AQ1.pct AS NUMERIC(12, 2)) AS pct,

 CAST(SUM(AQ2.pct) AS NUMERIC(12, 2)) AS run_pct,

 AQ1.rn

 FROM #AggQueries AS AQ1

 JOIN #AggQueries AS AQ2

 ON AQ2.rn <= AQ1.rn

 GROUP BY AQ1.cs, AQ1.total_duration, AQ1.pct, AQ1.rn

 HAVING SUM(AQ2.pct) - AQ1.pct <= 80 -- percentage threshold

)

rn pct tsql_code

C04626034.indd 166 2/13/2009 1:56:02 AM

 Chapter 4 Query Tuning 167

SELECT RT.rn, RT.pct, S.sig, S.tsql_code AS sample_query

FROM RunningTotals AS RT

 CROSS APPLY

 (SELECT TOP(1) tsql_code, dbo.RegexReplace(tsql_code,

 N'([\s,(=<>!](?![^\]]+[\]]))(?:(?:(?:(?# expression coming

)(?:([N])?('')(?:[^'']|'''')*(''))(?# character

)|(?:0x[\da-fA-F]*)(?# binary

)|(?:[-+]?(?:(?:[\d]*\.[\d]*|[\d]+)(?# precise number

)(?:[eE]?[\d]*)))(?# imprecise number

)|(?:[~]?[-+]?(?:[\d]+))(?# integer

))(?:[\s]?[\+\-*\/\%\&\|\^][\s]?)?)+(?# operators

))',

 N'$1$2$3#$4') AS sig

 FROM dbo.Workload AS W

 WHERE W.cs = RT.cs) AS S

ORDER BY RT.rn;

You will get the output shown in Table 4-8.

 TABLE 4-8 Signature and Sample of the Top Slow Queries

rn pct sig sample_query

1 95.77 SELECT orderid, custid, empid,

shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '#'

AND orderdate < '#';

SELECT orderid, custid, empid,

shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20080101'

AND orderdate < '20080201';

Now you can focus your tuning efforts on the query patterns that you got back—in our case,
only one. Of course, in a similar manner you can identify the query patterns that generate
the largest result sets, most of the I/O, and so on.

Query Statistics

SQL Server 2008 provides a DMV called sys.dm_exec_query_stats that aggregates query
 performance information for queries whose plans are in cache. Unlike the trace approach,
this DMV won’t report any information for queries whose plans are not in cache (for example,
when procedures or queries use the RECOMPILE option). However, for queries whose plans
are in cache, you get very interesting performance information that is aggregated since the
query plan was cached. Needless to say, if the plan is removed from cache, this information is
gone. Note, though, that if you enable the system collection set “Query Statistics,” it collects
information from this DMV on regular intervals based on the collection frequency defi ned
for it and stores the information in the management data warehouse. You can also analyze
this information graphically with the preconfi gured report Query Statistics History. (In Object
Explorer, right-click Data Collection under Management and choose Reports.) Of course, if
you want, you can also create your own jobs to collect information from this DMV with your
own queries.

rn pct sig sample_query

C04626034.indd 167 2/20/2009 10:03:10 PM

168 Inside Microsoft SQL Server 2008: T-SQL Querying

 The information that this view provides for each cached query plan includes, among other
things, the following:

■ A SQL handle that you can provide as input to the function sys.dm_exec_sql_text to get
the text of the parent query or batch of the current query. You also get the start and end
offsets of the query that the current row represents so that you can extract it from the
full parent query or batch text. Note that the offsets are zero based and are specifi ed in
bytes, although the text is Unicode (meaning two bytes of storage per character).

■ A plan handle that you can provide as input to the function sys.dm_exec_query_plan to
get the XML form of the plan.

■ Creation time and last execution time.

■ Execution count.

■ Performance information including worker (CPU) time, physical reads, logical reads,
CLR time, and elapsed time. For each performance counter, you get the total for all
 invocations of the plan, last, minimum and maximum.

■ A binary query hash and a binary plan hash. The former allows you to identify queries
with the same query signature, similar to the checksum value I suggested creating
 earlier for traced data. The latter allows you to identify similar query execution plans.
Note that the query hash and plan hash values (query_hash and query_plan_hash
 attributes) were introduced in SQL Server 2008, while all other attributes were also
available in SQL Server 2005.

 For example, the following code identifi es the fi ve query patterns in the Performance database
with the highest total duration and returns the output shown in Table 4-9 in my system:

SELECT TOP (5)

 MAX(query) AS sample_query,

 SUM(execution_count) AS cnt,

 SUM(total_worker_time) AS cpu,

 SUM(total_physical_reads) AS reads,

 SUM(total_logical_reads) AS logical_reads,

 SUM(total_elapsed_time) AS duration

FROM (SELECT

 QS.*,

 SUBSTRING(ST.text, (QS.statement_start_offset/2) + 1,

 ((CASE statement_end_offset

 WHEN -1 THEN DATALENGTH(ST.text)

 ELSE QS.statement_end_offset END

 - QS.statement_start_offset)/2) + 1

) AS query

 FROM sys.dm_exec_query_stats AS QS

 CROSS APPLY sys.dm_exec_sql_text(QS.sql_handle) AS ST

 CROSS APPLY sys.dm_exec_plan_attributes(QS.plan_handle) AS PA

 WHERE PA.attribute = 'dbid'

 AND PA.value = DB_ID('Performance')) AS D

GROUP BY query_hash

ORDER BY duration DESC;

C04626034.indd 168 2/13/2009 1:56:02 AM

 Chapter 4 Query Tuning 169

TABLE 4-9 Top Slow Queries Based on Query Stats

sample_query cnt cpu reads

logical_

reads duration

SELECT orderid, custid, empid,

shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20080501'

AND orderdate < '20080601';

665 1926343195 47873 16606308 2786190354

SELECT orderid, custid, empid,

shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate = '20080828';

501 129140379 1920 376180 195947201

select dbo.SQLSig

(N'select * from t1

where col1 = ' +

cast(n as nvarchar(11)), 4000)

from dbo.nums where n <= 25000;

4 31001772 1 120 31179782

INSERT INTO Performance.dbo.WaitStats

(wait_type, waiting_tasks_count, wait_

time_ms, max_wait_time_ms, signal_wait_

time_ms)

SELECT DISTINCT RTRIM(wait_type)

AS wait_type, waiting_tasks_count,

wait_time_ms, max_wait_time_ms, signal_

wait_time_ms FROM sys.dm_os_wait_stats;

62 996056 400 158352 25149438

SELECT [orderid],[custid],[empid],

[shipperid],[orderdate],[filler] FROM

[dbo].[Orders] WHERE [orderid]=@1

504 121006 360 2016 14790845

Of course, you could use techniques I showed earlier to calculate running percents and fi lter
query patterns based on those.

Tune Indexes and Queries

Now that you know which patterns you need to tune, you can start with a more focused
query-tuning process. The process might involve index tuning or query code revisions, and
we will practice it thoroughly throughout the book. Or you might realize that the queries
are already tuned pretty well, in which case you would need to inspect other aspects of the
 system (for example, hardware, database layout, and so on).

In our case, the tuning process is fairly simple. You need to create a clustered index on the
orderdate column:

CREATE CLUSTERED INDEX idx_cl_od ON dbo.Orders(orderdate);

Later in the chapter, I’ll cover index tuning and explain why a clustered index is adequate for
query patterns such as the ones that our tuning process isolated.

sample_query cnt cpu reads

logical_

reads duration

C04626034.indd 169 2/13/2009 1:56:02 AM

170 Inside Microsoft SQL Server 2008: T-SQL Querying

 To see the effect of adding the index, run the following code to start a new trace:

DECLARE @dbid AS INT, @traceid AS INT;

SET @dbid = DB_ID('Performance');

EXEC dbo.PerfworkloadTraceStart

 @dbid = @dbid,

 @tracefile = 'c:\temp\Perfworkload 20090212 – Tuned',

 @traceid = @traceid OUTPUT;

 When I ran this code, I got the following output showing that the trace ID generated is 2:

Trace ID: 2, Trace File: 'c:\temp\Perfworkload 20090212 – Tuned.trc'

 Run the sample queries from Listing 4-2 again and then stop the trace:

EXEC sp_trace_setstatus 2, 0;

EXEC sp_trace_setstatus 2, 2;

 Figure 4-5 shows the trace data loaded with Profi ler.

FIGURE 4-5 Performance workload trace data after adding index

 You can see that the duration and I/O involved with the query pattern we tuned are greatly
reduced. Still, some queries generate a lot of network traffi c. With those, you might want
to check whether some of the processing of their result sets could be achieved at the server
side, thus reducing the amount of data submitted through the network.

C04626034.indd 170 2/13/2009 1:56:02 AM

 Chapter 4 Query Tuning 171

Tools for Query Tuning

 This section provides an overview of the query-tuning tools that will be used throughout
these books, and it will focus on analyzing execution plans.

Cached Query Execution Plans

 SQL Server 2008 provides several objects that you can query to analyze the behavior of
cached query execution plans:

■ The sys.dm_exec_cached_plans DMV contains information about the cached query
 execution plans, with a row per each cached plan.

■ The sys.dm_exec_plan_attributes DMF contains one row per attribute associated with
the plan, whose handle is provided as input to the DMF.

■ The sys.dm_exec_sql_text DMF returns the text associated with the query, whose handle
is provided as input to the DMF.

■ The sys.dm_exec_query_plan DMF provides the XML form of the execution plan of the
query, whose handle is provided as input to the DMF.

 SQL Server 2008 also provides you with a compatibility view called sys.syscacheobjects that
exposes cached query plan information the way it did in previous versions of SQL Server.

Clearing the Cache

 When analyzing query performance, you sometimes need to clear the cache. SQL Server
provides you with tools to clear both data and execution plans from the cache. To clear data
from the cache globally, use the following command:

DBCC DROPCLEANBUFFERS;

 To clear execution plans from the cache globally, use the following command:

DBCC FREEPROCCACHE;

 To clear execution plans of a particular database, use the following command:

DBCC FLUSHPROCINDB(<db_id>);

 Note that the DBCC FLUSHPROCINDB command is undocumented.

 To clear execution plans of a particular cache store, use the following command:

DBCC FREESYSTEMCACHE(<cachestore>);

 You can specify the following values as input: ‘ALL’, pool_name, ‘Object Plans’, ‘SQL Plans’,
‘Bound Trees’. Note that the last three options are undocumented. The ‘ALL’ option indicates

C04626034.indd 171 2/13/2009 1:56:02 AM

172 Inside Microsoft SQL Server 2008: T-SQL Querying

that you want to clear all supported caches. The pool_name value indicates the name of a
Resource Governor pool cache that you want to clear. For the undocumented options, specify
‘Object Plans’ to clear object plans (plans for stored procedures, triggers, and user-defi ned
functions). Specify ‘SQL Plans’ to clear plans for ad-hoc statements, including prepared
 statements. Specify ‘Bound Trees’ to clear plans for views, constraints, and defaults.

 Caution Consider carefully before using these commands in production environments.
Obviously, clearing the cache has a performance impact on the system. After clearing the data
cache, SQL Server needs to physically read pages accessed for the fi rst time from disk. After
clearing execution plans from the cache, SQL Server needs to generate new execution plans for
queries. Also, be sure that you are aware of the impact of clearing the cache even when doing so
in development or test environments.

Dynamic Management Objects

 SQL Server 2005 introduced for the fi rst time support for dynamic management objects,
 including DMVs and DMFs. SQL Server 2008 added new objects and in some cases added
new attributes to existing objects. These contain extremely useful information about the
server that you can use to monitor SQL Server, diagnose problems, and tune performance.
Much of the information provided by these views and functions has never before been
 available. Studying them in detail is time very well spent. In these books, I make use of the
ones that are relevant to my discussions, but I urge you to take a close look at others as well.
You can fi nd information about them in SQL Server Books Online.

STATISTICS IO

 STATISTICS IO is a session option used extensively throughout these books. It returns
 I/O-related information about the statements that you run. To demonstrate its use, fi rst
clear the data cache:

DBCC DROPCLEANBUFFERS;

 Then run the following code to turn the session option on and invoke a query:

SET STATISTICS IO ON;

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20060101'

 AND orderdate < '20060201';

 You should get output similar to the following:

Table 'Orders'. Scan count 1, logical reads 536, physical reads 3, read-ahead reads 548, lob

logical reads 0, lob physical reads 0, lob read-ahead reads 0.

C04626034.indd 172 2/13/2009 1:56:02 AM

 Chapter 4 Query Tuning 173

 The output tells you how many times the table was accessed in the plan (Scan count); how
many reads from cache were involved (logical reads); how many reads from disk were involved
(physical reads and read-ahead reads); and similarly, how many logical and physical reads related
to large objects were involved (lob logical reads, lob physical reads, lob read-ahead reads).

 Run the following code to turn the session option off:

 SET STATISTICS IO OFF;

Measuring the Run Time of Queries

 STATISTICS TIME is a session option that returns the net CPU and elapsed clock time information
about the statements that you run. It returns this information for both the time it took to parse
and compile the query and the time it took to execute it. To demonstrate the use of this session
option, fi rst clear both the data and execution plans from cache:

DBCC DROPCLEANBUFFERS;

DBCC FREEPROCCACHE;

 Run the following code to turn the session option on:

SET STATISTICS TIME ON;

 Then invoke the following query:

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderdate >= '20060101'

 AND orderdate < '20060201';

 You will get output similar to the following:

SQL Server parse and compile time:

 CPU time = 0 ms, elapsed time = 64 ms.

SQL Server parse and compile time:

 CPU time = 0 ms, elapsed time = 1 ms.

 SQL Server Execution Times:

 CPU time = 31 ms, elapsed time = 711 ms.

 The output tells you the net CPU time and elapsed clock time for parsing and compiling the
query and also the time it took to execute it. Run the following code to turn the option off:

SET STATISTICS TIME OFF;

 This tool is convenient when you want to analyze the performance of an individual query
interactively. When you run benchmarks in batch mode, the way to measure the run time of
queries is different. Store the value of the SYSDATETIME function in a variable directly before
the query. Directly after the query, issue an INSERT statement into the table where you collect

C04626034.indd 173 2/13/2009 1:56:03 AM

174 Inside Microsoft SQL Server 2008: T-SQL Querying

performance information, subtracting the value stored in the variable from the current value of
SYSDATETIME. Note that SYSDATETIME returns a DATETIME2 value, which has an accuracy level
of 100 nanoseconds; however, the actual accuracy of the function depends on the computer
hardware and version of Windows your SQL Server instance is running on. That’s because the
SYSDATETIME function internally invokes the GetSystemTimeAsFileTime() Windows API, which
is hardware and operating system dependent. When measuring the time statistics of queries
for which the accuracy level of this function is insuffi cient, run the queries repeatedly in a loop
and divide run time for the entire loop by the number of iterations.

Analyzing Execution Plans

 An execution plan is the “work plan” the optimizer generates to determine how to process a
given query. The plan contains operators that are generally applied in a specifi c order. Some
operators can be applied while their preceding operator is still in progress. Some operators
might be applied more than once. Also, some branches of the plan are invoked in parallel if
the optimizer chose a parallel plan. In the plan, the optimizer determines the order in which
to access the tables involved in the query, which indexes to use and which access methods to
use to apply to them, which join algorithms to use, and so on. In fact, for a given query the
 optimizer considers multiple execution plans, and it chooses the plan with the lowest cost
out of the ones that were generated. Note that SQL Server might not generate all possible
 execution plans for a given query. If it always did, the optimization process could take too
long. SQL Server will calculate thresholds for the optimization process based on the sizes of
the tables involved in the query, among other things. One threshold is time based. SQL Server
won’t spend longer than the time threshold on optimization. Another threshold is cost based.
That is, if a plan is found with a lower cost than the cost threshold, it is considered “good
enough,” in which case optimization stops and that plan is used.

 Throughout these books, I’ll frequently analyze execution plans of queries. This section and
the one that follows (“Index Tuning”) should give you the background required to follow
and understand the discussions involving plan analysis. Note that the purpose of this section
is not to familiarize you with all possible operators; instead, it is to familiarize you with the
 techniques to analyze plans. The “Index Tuning” section will familiarize you with index-related
operators, and later in the book I’ll elaborate on additional operators—for example,
 join-related operators will be described in Chapter 7, “Joins and Set Operations.”

Graphical Execution Plans

 Graphical execution plans are used extensively throughout these books. SSMS allows you
both to get an estimated execution plan (by pressing Ctrl+L) and to include an actual one
(by pressing Ctrl+M) along with the output of the query you run. Note that both will typically
give you the same plan; remember that an execution plan is generated before the query is
run. However, when you request an estimated plan, the query is not run at all. Obviously,
some measures can be collected only at run time (for example, the actual number of rows

C04626034.indd 174 2/13/2009 1:56:03 AM

 Chapter 4 Query Tuning 175

 returned from each operator and the number of executions of the operator). In the estimated
plan, you will see estimations for measures that can be collected only at run time, while the
actual plan will show the actuals and also some of the same estimates.

 To demonstrate a graphical execution plan analysis, I will use the following query:

SELECT custid, empid, shipperid, COUNT(*) AS numorders

FROM dbo.Orders

WHERE orderdate >= '20080201'

 AND orderdate < '20080301'

GROUP BY CUBE(custid, empid, shipperid);

 The query returns aggregated counts of orders for all possible grouping sets that can be
 defi ned based on the attributes custid, empid, and shipperid. I’ll discuss the CUBE subclause of
the GROUP BY clause in detail in Chapter 8, “Aggregating and Pivoting Data.”

 Note I did some graphical manipulation on the execution plans that appear in this chapter to fi t
images in the printed pages and for clarity.

 As an example, if you request an estimated execution plan for the preceding query, you will
get the plan shown in Figure 4-6.

FIGURE 4-6 Estimated execution plan example

C04626034.indd 175 2/13/2009 1:56:03 AM

176 Inside Microsoft SQL Server 2008: T-SQL Querying

 Notice that when you place your mouse pointer over an arrow that goes out of an operator
(for example, the one going out of the second Stream Aggregate operator), you get an
 estimated number of rows. By the way, a nice aspect of the arrows representing data fl ow is
that their thickness is proportional to the number of rows returned by the source operator.
You want to keep an eye especially on thick arrows, as these might indicate a performance
issue.

 Next, turn on the Include Actual Execution Plan option and run the query. You will get both
the output of the query and the actual plan, as shown in Figure 4-7.

FIGURE 4-7 Actual execution plan example

 Notice that now you get the actual number of rows returned by the source operator.

 When you get elaborated plans like this one that do not fi t in one screen, you can use a really
cool zooming feature. Press the plus sign (+) button that appears at the bottom right corner
of the execution plan pane, and you will get a rectangle that allows you to navigate to a
 desired place in the plan, as shown in Figure 4-8.

 Figure 4-9 shows the full execution plan for our query—that’s after some graphical
 manipulation for clarity and to make it fi t in one screen.

C04626034.indd 176 2/13/2009 1:56:03 AM

 Chapter 4 Query Tuning 177

FIGURE 4-8 Zooming feature in graphical showplan

FIGURE 4-9 Execution plan for CUBE query

C04626034.indd 177 2/13/2009 1:56:03 AM

178 Inside Microsoft SQL Server 2008: T-SQL Querying

 I shifted the position of some of the operators and added arrows to denote the original fl ow.
Also, I included the full object names where relevant. In the original plan, object names are
truncated if they are long.

 A plan is a tree of operators. Data fl ows from a child operator to a parent operator. The tree
order of graphical plans that you get in SSMS is expressed from right to left and from top to
bottom. That’s typically the order in which you should analyze a plan to fi gure out the fl ow of
activity. In our case, the Clustered Index Seek operator is the fi rst operator that starts the fl ow,
yielding its output to the next operator in the tree—Table Spool (Eager Spool)—and so on.

 Notice the cost percentage associated with each operator. This value is the percentage of the
operator’s cost out of the total cost of the query, as estimated by the optimizer. You want
to keep an eye especially on operators that involve high-percentage values and focus your
 tuning efforts on those operators. When you place your mouse pointer over an operator, you
will get a yellow information box. One of the measures you will fi nd there is called Estimated
Subtree Cost. This value represents the cumulative estimated cost of the subtree, starting
with the current operator (all operators in all branches leading to the current operator). The
 subtree cost associated with the root operator (topmost, leftmost) represents the estimated
cost of the whole query, as shown in Figure 4-10.

FIGURE 4-10 Subtree cost

 Note that you shouldn’t expect a direct correlation between a query’s subtree cost and
its actual run time. The query cost value is used by the optimizer to compare with other
query plans. Given two query plans that the optimizer generates, it tries to come up with a
 lower-cost value for the plan that is supposed to run faster.

 Another nice feature of graphical execution plans is that you can easily compare the costs
of multiple queries. You can use this feature to compare the costs of different queries

C04626034.indd 178 2/13/2009 1:56:03 AM

 Chapter 4 Query Tuning 179

that produce the same result. For example, suppose you want to compare the costs of the
 following queries:

SELECT custid, orderid, orderdate, empid, filler

FROM dbo.Orders AS O1

WHERE orderid =

 (SELECT TOP (1) O2.orderid

 FROM dbo.Orders AS O2

 WHERE O2.custid = O1.custid

 ORDER BY O2.orderdate DESC, O2.orderid DESC);

SELECT custid, orderid, orderdate, empid, filler

FROM dbo.Orders

WHERE orderid IN

(

 SELECT

 (SELECT TOP (1) O.orderid

 FROM dbo.Orders AS O

 WHERE O.custid = C.custid

 ORDER BY O.orderdate DESC, O.orderid DESC) AS oid

 FROM dbo.Customers AS C

);

SELECT A.*

FROM dbo.Customers AS C

 CROSS APPLY

 (SELECT TOP (1)

 O.custid, O.orderid, O.orderdate, O.empid, O.filler

 FROM dbo.Orders AS O

 WHERE O.custid = C.custid

 ORDER BY O.orderdate DESC, O.orderid DESC) AS A;

WITH C AS

(

 SELECT custid, orderid, orderdate, empid, filler,

 ROW_NUMBER() OVER(PARTITION BY custid

 ORDER BY orderdate DESC, orderid DESC) AS n

 FROM dbo.Orders

)

SELECT custid, orderid, orderdate, empid, filler

FROM C

WHERE n = 1;

 You highlight the queries that you want to compare and request a graphical execution plan
(estimated or actual, as needed). In our case, you get the plans shown in Figure 4-11.

 At the top of each plan, you get the percentage of the estimated cost of the query out of the
whole batch. For example, in our case, you get 37% for Query 1, 19% for Query 2, 30% for
Query 3, and 14% for Query 4.

 When you place your mouse pointer over an operator, you get a yellow ToolTip box with
 information about the operator, as shown in Figure 4-12.

C04626034.indd 179 2/13/2009 1:56:03 AM

180 Inside Microsoft SQL Server 2008: T-SQL Querying

FIGURE 4-11 Comparing costs of execution plans

FIGURE 4-12 Operator information ToolTip box

C04626034.indd 180 2/13/2009 1:56:03 AM

 Chapter 4 Query Tuning 181

 The information box gives you the following information:

■ The operator’s name and a short description of its function.

■ Physical Operation The physical operation that will take place in the engine.

■ Logical Operation The logical operation according to Microsoft’s conceptual model
of query processing. For example, for a join operator you get the join algorithm used
as the physical operation (Nested Loops, Merge, Hash) and the logical join type used
as the logical operation (Inner Join, Outer Join, Semi Join, and so on). When no logical
 operation is associated with the operator, this measure will have the same value as
shown in the physical operation.

■ Actual Number of Rows The actual number of rows returned from the operator
(shown only for actual plans).

■ Estimated I/O Cost, and Estimated CPU Cost The estimated part of the operator’s
cost associated with that particular resource (I/O or CPU). These measures help you
identify whether the operator is I/O or CPU intensive. For example, you can see that the
current Sort operator is mainly I/O bound.

■ Estimated Number of Executions and Number of Executions The number of times
this operator is estimated to be executed and the number of times this operator was
executed in practice. These measures are important because they can help you identify
suboptimal choices made by the optimizer when you fi nd big differences between the
two. These measures were available in the graphical execution plans provided by SQL
Server 2000 Query Analyzer but were not provided by SSMS 2005. Fortunately, they
were added back in SSMS 2008.

■ Estimated Operator Cost The cost associated with the particular operator.

■ Estimated Subtree Cost As described earlier, the cumulative cost associated with the
whole subtree up to the current node.

■ Estimated Number of Rows The number of rows estimated to be returned from
this operator. In some cases, you can identify costing problems related to insuffi cient
 statistics or to other reasons by observing a discrepancy between the actual number of
rows and the estimated number.

■ Estimated Row Size You might wonder why an actual value for this number is not
shown in the actual query plan. The reason is that you might have dynamic-length
 attribute types in your table with rows that vary in size.

■ Actual Rebinds and Actual Rewinds These measures are relevant only to certain
 operators (Nonclustered Index Spool, Remote Query, Row Count Spool, Sort, Table Spool,
Table-valued Function, and in some cases Assert and Filter). Also, with those operators,
these measures are applicable only when they appear as the inner side of a Nested Loops
join; otherwise, Rebinds will show 1, and Rewinds will show 0. These measures refer to the
number of times that an internal Init method is called. The sum of the number of rebinds
and rewinds should be equal to the number of rows processed on the outer side of the join.

C04626034.indd 181 2/13/2009 1:56:03 AM

182 Inside Microsoft SQL Server 2008: T-SQL Querying

A rebind means that one or more of the correlated parameters of the join changed and the
inner side must be reevaluated. A rewind means that none of the correlated parameters
changed and that the prior inner result set might be reused.

■ Bottom part of the information box Shows other aspects related to the operator,
such as the associated object name, output, arguments, and so on.

 You can get more detailed coverage of the properties of an operator in the Properties
 window (by pressing F4), as shown in Figure 4-13.

 Coverage of graphical execution plans continues in the “Index Tuning” section when I discuss
index access methods.

FIGURE 4-13 Properties window

Textual Showplans

 SQL Server gives you tools in the form of SET options to get an execution plan as text. Note,
though, that those SET options are scheduled for deprecation in a future version of SQL
Server and are provided in SQL Server 2008 for backward compatibility. You should start
 getting used to using the SET options that provide the plan information in XML form instead;
I’ll describe those options in the next section. For the sake of completeness I will describe
the textual showplan options as well. For example, if you turn the SHOWPLAN_TEXT session
 option on, when you run a query, SQL Server doesn’t process it. Rather, it just generates

C04626034.indd 182 2/13/2009 1:56:03 AM

 Chapter 4 Query Tuning 183

an execution plan and returns it as text. To demonstrate this session option, turn it on by
 running the following code:

SET SHOWPLAN_TEXT ON;

Then invoke the query in Listing 4-4:

LISTING 4-4 Sample query to test showplan options

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderid = 280885;

You will get the following output:

|--Nested Loops(Inner Join, OUTER REFERENCES:([Uniq1002],

 [Performance].[dbo].[Orders].[orderdate]))

 |--Index Seek(OBJECT:([Performance].[dbo].[Orders].[PK_Orders]),

 SEEK:([Performance].[dbo].[Orders].[orderid]=[@1]) ORDERED FORWARD)

 |--Clustered Index Seek(OBJECT:([Performance].[dbo].[Orders].[idx_cl_od]),

 SEEK:([Performance].[dbo].[Orders].[orderdate]=

 [Performance].[dbo].[Orders].[orderdate]

 AND [Uniq1002]=[Uniq1002]) LOOKUP ORDERED FORWARD)

To analyze the plan, you “read” or “follow” branches in inner levels before outer ones
(bottom to top) and branches that appear in the same level from top to bottom. As you can
see, you get only the operator names and their basic arguments. Run the following code to
turn the session option off:

SET SHOWPLAN_TEXT OFF;

If you want more detailed information about the plan that is similar to what the graphical
execution plan gives you, use the SHOWPLAN_ALL session option for an estimated plan and
the STATISTICS PROFILE session option for the actual one. SHOWPLAN_ALL will produce
a table result, with the information provided by SHOWPLAN_TEXT, and also the following
measures: StmtText, StmtId, NodeId, Parent, PhysicalOp, LogicalOp, Argument, Defi nedValues,
EstimateRows, EstimateIO, EstimateCPU, AvgRowSize, TotalSubtreeCost, OutputList,
Warnings, Type, Parallel, and EstimateExecutions.

 To test this session option, turn it on:

SET SHOWPLAN_ALL ON;

 Run the query in Listing 4-4 and examine the result. When you’re done, turn it off:

SET SHOWPLAN_ALL OFF;

The STATISTICS PROFILE option produces an actual plan. The query runs, and its output is
produced. You also get the output returned by SHOWPLAN_ALL. In addition, you get the

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderid = 280885;

C04626034.indd 183 2/13/2009 1:56:03 AM

184 Inside Microsoft SQL Server 2008: T-SQL Querying

 attributes Rows and Executes, which hold actual values as opposed to estimated ones. To test
this session option, turn it on:

SET STATISTICS PROFILE ON;

 Run the query in Listing 4-4 and examine the result. When you’re done, turn it off:

SET STATISTICS PROFILE OFF;

XML Showplans

 If you want to develop your own code that parses and analyzes execution plan information or if
you want to analyze execution plan information sent to you by a customer or a colleague, you will
fi nd the information returned by the textual showplan options very hard to work with. SQL Server
2008 provides two session options that allow you to get estimated and actual execution plan
information in XML format; XML data is much more convenient for an application code to parse
and work with. Also, when clicking an XML value produced by one of the XML showplan options
in SSMS 2008 or when opening a fi le with an XML showplan saved with a .sqlplan extension,
SSMS parses the information and presents it as a graphical execution plan. The SHOWPLAN_
XML session option will produce an XML value with the estimated plan information, and the
STATISTICS XML session option will produce a value with actual plan information .

 To test SHOWPLAN_XML, turn it on by running the following code:

SET SHOWPLAN_XML ON;

 Then run the query in Listing 4-4. You will get the XML form of the estimated execution plan.

 To have SSMS parse and present the XML information graphically, simply click the XML value.
Figure 4-14 shows an example of graphical depiction of the XML showplan.

FIGURE 4-14 XML plan example

C04626034.indd 184 2/13/2009 1:56:03 AM

 Chapter 4 Query Tuning 185

 Run the following code to turn the session option off:

SET SHOWPLAN_XML OFF;

 As I mentioned earlier, to get an XML value with information about the actual execution plan,
use the STATISTICS XML session option as follows:

SET STATISTICS XML ON;

GO

SELECT orderid, custid, empid, shipperid, orderdate, filler

FROM dbo.Orders

WHERE orderid = 280885;

GO

SET STATISTICS XML OFF;

 If you want customers or colleagues to send you an estimated or actual showplan, instruct
them to save the XML value in a fi le with the extension .sqlplan, and when you open this fi le
in SSMS, it automatically parses and presents it graphically.

 Note also that the XML showplans provide the richest form of execution plan information.
Some attributes of the plan appear only in this form and not in the textual or graphical
forms, including information about missing indexes, whether the plan is trivial, the actual
 degree of parallelism used by the query, actual memory grant, and more.

Hints

 Hints allow you to override the default behavior of SQL Server in different respects, and SQL
Server will comply with your request when technically possible. The term hint is a misnomer
because it’s not a kind gesture that SQL Server might or might not comply with; rather, you’re
forcing SQL Server to apply a certain behavior when it’s technically possible. Syntactically,
there are three types of hints: join hints, query hints, and table hints. Join hints are specifi ed
between the keyword representing the join type and the JOIN keyword (for example, INNER
MERGE JOIN). Query hints are specifi ed in an OPTION clause following the query itself (for
example, SELECT . . . OPTION (OPTIMIZE FOR (@od = ‘99991231’)). Table hints are specifi ed
right after a table name or alias in a WITH clause (for example, FROM dbo.Orders WITH (index
= idx_unc_od_oid_i_cid_eid)).

 Hints can be classifi ed in different categories based on their functionality, including
 index hints, join hints, parallelism, locking, compilation, and others. Keep in mind that
 performance-related hints, such as forcing the usage of a certain index, make that particular
aspect of the optimization static. When data distribution in the queried tables changes, the
optimizer doesn’t consult statistics to determine whether it is worthwhile to use the index
 because you forced it to always use it. You lose the benefi t in cost-based optimization that
SQL Server’s optimizer gives you. Make sure that you use performance-related hints in
 production code only after exhausting all other means, including query revisions, ensuring
that statistics are up to date, have a suffi cient sampling rate, and so on.

C04626034.indd 185 2/13/2009 1:56:04 AM

186 Inside Microsoft SQL Server 2008: T-SQL Querying

 I consider the USE PLAN query hint to be the ultimate hint. This hint allows you to provide
an XML value holding complete execution plan information to force the optimizer to use the
plan that you provided. You can use the SHOWPLAN_XML or STATISTICS XML session options
to generate an XML plan in a controlled environment and then specify the XML value under
the USE PLAN hint like so:

 <query> OPTION(USE PLAN N'<xml_plan_goes_here>');

 As an example, run the following code to produce an XML showplan for a query in a
 controlled environment:

SET SHOWPLAN_XML ON;

GO

SELECT orderid, custid, empid, shipperid, orderdate

FROM dbo.Orders

WHERE orderid >= 2147483647;

GO

SET SHOWPLAN_XML OFF;

 Then run the query, providing the XML plan value in the USE PLAN hint like so:

DECLARE @oid AS INT;

SET @oid = 1000000;

SELECT orderid, custid, empid, shipperid, orderdate

FROM dbo.Orders

WHERE orderid >= @oid

OPTION (USE PLAN N'<xml_plan_goes_here>');

 SQL Server 2008 also supports a plan guide feature that allows you to associate an XML plan
or other hints to a query when you cannot or do not want to change the query’s text directly
by adding hints. You use the stored procedure sp_create_plan_guide to produce a plan guide
for a query. You can fi nd more details about this in SQL Server Books Online. I will use hints
in several occasions in these books and explain them in context.

Traces/Profi ler

 The tracing capabilities of SQL Server give you extremely powerful tools for tuning and for
other purposes as well. One of the great benefi ts tracing has over other external tools is that
you get information about events that took place within the server in various components.
Tracing allows you to troubleshoot performance problems, application behavior, deadlocks,
audit information, and so much more. I demonstrated using traces for collecting performance
workload data earlier in the book. Make sure you go over the guidelines for tracing that
I provided earlier. I’ll also demonstrate tracing to troubleshoot deadlocks in Inside T-SQL
Programming.

C04626034.indd 186 2/13/2009 1:56:04 AM

 Chapter 4 Query Tuning 187

Database Engine Tuning Advisor

 The Database Engine Tuning Advisor (DTA) is a tool that can give you physical design
 recommendations (indexes, partitioning) based on an analysis of a workload that you give
it as input. The input can be a trace fi le or table, a script fi le containing T-SQL queries, or
an XML input fi le. One benefi t of DTA is that it uses SQL Server’s optimizer to make cost
 estimations—the same optimizer that generates execution plans for your queries. DTA
 generates statistics and hypothetical indexes, which it uses in its cost estimations. SQL Server
2008 introduces support for fi ltered indexes that I’ll discuss later in the chapter. Besides
 providing recommendations for regular indexes, indexed views, and partitioning, DTA in SQL
Server 2008 also provides recommendations for fi ltered indexes, among other enhancements.
Note that you can run DTA in batch mode by using the dta.exe command-line utility.

Data Collection and Management Data Warehouse

 As I mentioned earlier in the chapter, SQL Server 2008 introduces a data collection platform
that enables you to collect performance and other information and store it in a management
data warehouse for later analysis. One of the main components of the data collection platform
is the data collector, which collects data from a variety of sources that are defi ned as data
 collection targets and stores it in the management data warehouse. The data collector installs
three system data collection sets that collect performance-related information including disk
usage, server activity, and query statistics information. Object Explorer in SSMS has a folder
called Management through which you can confi gure the management data warehouse,
 enable data collection and the system collection sets, and analyze the collected performance
information using predefi ned reports.

Using SMO to Clone Statistics

 Query performance problems can evolve because of inaccurate selectivity estimates made
by the optimizer based on the existing distribution statistics (histograms). However, you
can’t always duplicate the production data in your test environment to try to reproduce
the problems. In such a case you will probably fi nd it convenient to be able to clone the
 production statistics into your test environment without cloning the data. You can achieve
this by using the scripting capabilities of the SQL Server Management Objects (SMO) API,
specifi cally, the ScriptingOptions.OptimizerData property.

Index Tuning

 This section covers index tuning, which is an important facet of query tuning. Indexes are
sorting and searching structures. They reduce the need for I/O when looking for data and for
sorting when certain elements in the plan need or can benefi t from sorted data. While some

C04626034.indd 187 2/13/2009 1:56:04 AM

188 Inside Microsoft SQL Server 2008: T-SQL Querying

aspects of tuning can improve performance by a modest percentage, index tuning can often
improve query performance by orders of magnitude. Hence, if you’re in charge of tuning,
learning about indexes in depth is time well spent.

 I’ll start by describing table and index structures that are relevant for our discussions. Then
I’ll describe index access methods used by the optimizer and conclude the section with an
analysis of indexing strategies.

Table and Index Structures

 Before delving into index access methods, you need to familiarize yourself with table and
index structures. This section describes pages and extents, heaps, clustered indexes, and
 nonclustered indexes.

Pages and Extents

 A page is an 8-KB unit where SQL Server stores data. It can contain table or index data, bitmaps
for allocation, free space information, and so on. A page is the smallest I/O unit that SQL Server
can read or write. In older versions of SQL Server (prior to 2005) a row could not span multiple
pages and was limited to 8,060 bytes gross (aside from large object data). The limitation was
because of the page size (8,192 bytes), which was reduced by the header size (96 bytes), a
pointer to the row maintained at the end of the page (2 bytes), and a few additional bytes
 reserved for future use. Starting with SQL Server 2005, a feature called row-overfl ow data
 relaxes the limitation on row size for columns of types VARCHAR, NVARCHAR, VARBINARY,
SQL_VARIANT, or CLR user-defi ned types. When the row exceeds 8,060 bytes, values of such
types can be moved to what are known as row overfl ow pages, and a 24-byte pointer to the
off-row data is maintained in the original page. This way, a row can end up spanning multiple
pages. In-row data is still limited to 8,060 bytes. A value of one of the aforementioned types
can be moved to row-overfl ow pages provided that the value size doesn’t exceed 8,000 bytes.
If the size exceeds 8,000 bytes, the value is stored internally as a large object, and a 16-byte
pointer to the large object value is maintained in the original row.

 Keep in mind that a page is the smallest I/O unit that SQL Server can read or write. Even if
SQL Server needs to access a single row, it has to load the whole page to the cache and read
it from there. Queries that involve primarily data manipulation are typically bound mainly
by their I/O cost. Of course, a physical read of a page is much more expensive than a logical
read of a page that already resides in cache. It’s hard to come up with a number that would
 represent the performance ratio between them because several factors are involved in the
cost of a read, including the type of access method used, the fragmentation level of the
data, and other factors. Therefore, I strongly advise against relying on any number as a rule
of thumb.

C04626034.indd 188 2/13/2009 1:56:04 AM

 Chapter 4 Query Tuning 189

 Extents are units of eight contiguous pages. When a table or index needs more space for
data, SQL Server allocates a full extent to the object. The single exception applies to small
objects: if the object is smaller than 64 KB, SQL Server typically allocates an individual page
when more space is needed, not a full extent. That page can reside within a mixed extent
whose eight pages belong to different objects. Some activities of data deletion—for
 example, dropping a table and truncating a table—deallocate full extents. Such activities
are minimally logged; therefore, they are very fast compared to the fully logged DELETE
statement. Also, some read activities—such as read-ahead reads, which are typically
 applied for large table or index scans—can read data at the extent level, or even bigger
blocks. The most expensive part of an I/O operation is the movement of the disk arm, while
the actual magnetic read or write operation is much less expensive; therefore, reading a
page can take almost as long as reading a full extent.

Table Organization

 A table can be organized in one of two ways—either as a heap or as a B-tree. Technically
the table is organized as a B-tree when you create a clustered index on the table and as a
heap when you don’t. Because a table must be organized in one of these two ways—heap or
B-tree—the table organization is known as HOBT. Regardless of how the table is organized,
it can have zero or more nonclustered indexes defi ned on it. Nonclustered indexes are
 always organized as B-trees. The HOBT, as well as the nonclustered indexes, can be made
of one or more units called partitions. Technically, the HOBT and each of the nonclustered
indexes can be partitioned differently. Each partition of each HOBT and nonclustered index
stores data in collections of pages known as allocation units. The three types of allocation
units are known as IN_ROW_DATA, ROW_OVERFLOW_DATA, and LOB_DATA. IN_ROW_DATA
holds all fi xed-length columns and also variable-length columns as long as the row size
does not exceed the 8,060-byte limit. ROW_OVERFLOW_DATA holds VARCHAR, NVARCHAR,
VARBINARY, SQL_VARIANT, or CLR user-defi ned typed data that does not exceed 8,000
bytes but was moved from the original row because it exceeded the 8,060-row size limit.
LOB_DATA holds large object values (VARCHAR(MAX), NVARCHAR(MAX), VARBINARY(MAX)
that exceed 8,000 bytes, XML, or CLR UDTs). The system view sys.system_internals_ allocation_
units holds the anchors pointing to the page collections stored in the allocation units. In the
following sections I describe the heap, clustered index, and nonclustered index structures.
For simplicity’s sake, I’ll assume that the data is nonpartitioned; but if it is partitioned, the
 description is still applicable to a single partition.

Heap

 A heap is a table that has no clustered index. The structure is called a heap because the data
is not organized in any order; rather, it is laid out as a bunch of extents. Figure 4-15 illustrates
how our Orders table might look like when organized as a heap.

C04626034.indd 189 2/13/2009 1:56:04 AM

190 Inside Microsoft SQL Server 2008: T-SQL Querying

- - -

Extent Alloc Status Slot 1 @0x3632C0C2
(1:0) – (1:168) = NOT ALLOCATED
(1:176) – (1:184) = ALLOCATED
(1:192) – (1:256) = NOT ALLOCATED
(1:264) – (1:288) = ALLOCATED
(1:296) – (1:328) = NOT ALLOCATED
(1:336) – (1:22624) = ALLOCATED

Single Page Allocation @0x3632C08E
Slot 0 = (1:174) Slot 1 = (1:41) - - -

1:174

1:26610

Pointer to
first IAM
1:26610

Pointer to
first IAM
1:47120 1:73 1:89 1:114

1:41

1:176 1:177 1:178

1:184 1:185 1:86 1:91

1:179 1:180 1:181 1:182 1:183

1:264 1:265 1:266 1:267 1:268 1:269 1:270 1:271

1:80 1:109 1:120

fillerorderdateshipperidempidcustidorderid

a
a
a

a
a
a

20040516
20040523
20040622

20040901
20041005
20051114

C
G
I

I
E
I

167
146
300

135
86
271

C0000004736
C0000014160
C0000019321

C0000004708
C0000019120
C0000001686

343505
347736
386520

416891
440317
717441

FIGURE 4-15 Heap

 The only structure that keeps track of the data belonging to a heap is a bitmap page (or a
series of pages if needed) called the Index Allocation Map (IAM). This bitmap has pointers to
the fi rst eight pages allocated from mixed extents and a representative bit for each extent
in a range of 4 GB in the fi le. The bit is 0 if the extent it represents does not belong to the
 object owning the IAM page and 1 if it does. If one IAM is not enough to cover all the
 object’s data, SQL Server will maintain a chain of IAM pages. SQL Server uses IAM pages to
move through the object’s data when the object needs to be scanned. SQL Server loads the
object’s fi rst IAM page and then directs the disk arm sequentially to fetch the extents by their
fi le order. As long as there’s no fi le system fragmentation of the data fi les, the scan is done in
a sequential manner on disk.

 As you can see in Figure 4-15, SQL Server maintains internal pointers to the fi rst IAM page
and the fi rst data page of a heap. Those pointers can be found in the system view
sys.system_internals_allocation_units.

C04626034.indd 190 2/13/2009 1:56:04 AM

 Chapter 4 Query Tuning 191

 Because a heap doesn’t maintain the data in any particular order, new rows that are added
to the table can go anywhere. SQL Server uses bitmap pages called Page Free Space (PFS) to
keep track of free space in pages so that it can quickly fi nd a page with enough free space to
accommodate a new row or allocate a new one if no such page exists.

 When a row expands as a result of an update to a variable-length column and the page has
no room for the row to expand, SQL Server moves the expanded row to a page with enough
space to accommodate it and leaves behind what’s known as a forwarding pointer that points
to the new location of the row. The purpose of forwarding pointers is to avoid the need to
modify pointers to the row from nonclustered indexes when data rows move.

 I didn’t yet explain a concept called a page split (because page splits can happen only in
B-trees), but suffi ce to say for now that heaps do not incur page splits. The relevance of this
fact will become apparent later in the chapter.

Clustered Index

 All indexes in SQL Server are structured as B-trees, which are a special case of balanced trees.
The defi nition of a balanced tree (adopted from www.nist.gov) is “a tree where no leaf is
much farther away from the root than any other leaf.”

 More Info If you’re interested in the theoretical algorithmic background for balanced trees,
please refer to http://www.nist.gov/dads/HTML/balancedtree.html and to The Art of Computer
Programming, Volume 3: Sorting and Searching (2nd Edition) by Donald E. Knuth (Addison-Wesley
Professional, 1998).

 A clustered index is structured as a balanced tree, and it maintains the entire table’s data in its
leaf level. The clustered index is not a copy of the data; rather, it is the data. I’ll describe the
structure of a clustered index in SQL Server through the illustration shown in Figure 4-16.

 The fi gure shows an illustration of how the Orders table might look when organized in a
clustered index where the orderdate column is defi ned as the index’s key column. Throughout
these books, I’ll refer to a table that has a clustered index as a clustered table. As you can see
in the fi gure, the full data rows of the Orders table are stored in the index leaf level. The data
rows are organized in the leaf in a sorted fashion based on the index key columns (orderdate
in our case). A doubly linked list maintains this logical order, but note that depending on
the fragmentation level of the index, the fi le order of the pages might not match the logical
 order maintained by the linked list.

 Also notice that with each leaf row, the index maintains a value called an uniquifi er (abbreviated
to unq in the illustration). This value enumerates rows that have the same key value, and it is
used together with the key value to uniquely identify rows when the index’s key columns are
not unique. Later, when discussing nonclustered indexes, I’ll elaborate on the reasoning behind
this architecture and the need to uniquely identify a row in a clustered index.

C04626034.indd 191 2/13/2009 1:56:04 AM

192 Inside Microsoft SQL Server 2008: T-SQL Querying

od unq page# od unq page#

od unq page

od unq morecols od unq morecolsod unq morecols

20021202 NULL
20021203 NULL

- - -

- - -

- - -

- - - - - -
20021203 1

20021207 1
20021207 5
20021208 NULL

20021210
20021210
20021210

20021210
20021210
20021210

20021210
20021210
20021210

od unq morecols

- - -- - -
20061231 573 - - -
20061231 574 - - -
20061231 575 - - -

20061231 536 - - -
20061231 537 - - -
20061231 538 - - -

od unq morecols

20061231 613 - - -
20061231 614 - - -
20061231 615 - - -

20061231 576 - - -
20061231 577 - - -
20061231 578 - - -

20021208
20021208
20021208

20030118
20030118
20030118

20030118 258 1:47585
20030206 210 1:47187

20061116 603 1:36836
20061205 540 1:36837
20061225 367 1.36838

custid

C0000015545
C0000011129
C0000011129

C0000010921
C0000012275
C0000003426

138 1:47505
178 1:47506
218 1:47507

- - -
20030206
20030206
20030206

20030118
20030118
20030118

od

20021208
20021210

NULL

NULL NULL 1:47184

NULL

Pointer to
first IAM

1:1791

Pointer to
first

1:47120

Pointer to
root

1:47186

Extent Alloc Status Slot 1 80x3642C0C2

1:1791

1:47186

1:47184

1:47120 1:47121 1:47122 1:41478 1:41479

1:47185 1:36838

(1:0) – (1:22064) = NOT ALLOCATED
(1:22072) – (1:24256) = NOT ALLOCATED
(1:24264) – = NOT ALLOCATED
(1:24272) – (1:32344) = ALLOCATED
(1:32352) – = NOT ALLOCATED

1:47120
1:471211
1:471221

- - -

- - -

20061225 367 1:41380
20061225 407 1:41381
20061225 447 1:41382

20051231 496 1:41477
20051231 536 1:41478
20051231 576 1:41479

Single Page Allocation @0x3642C08E
Slot 0 = (0:0) Slot 1 = (0:0) - - -

orderdate

- - -

20061231
20061231
20061231

20061231
20061231
20061231

unq

576
577
578

613
614
615

orderid

999716
999717
999718

999757
999758
999759

morecols

. . .

. . .

. . .

. . .

. . .

. . .

- - -
- - -
- - -

- - -
- - -
- - -

- - -
- - -
- - -

- - -
- - -
- - -

- - -
- - -
- - -

- - -
- - -
- - -

1
5
3

6

1
5

7
8
9

7

5
6

unq

258
298
338

90
130
170

page#

1:47508
1:47509
1:47510

1:47829
1:47830
1:47831

FIGURE 4-16 Clustered table/index

 The rest of the discussion in this section is relevant to both clustered and nonclustered
 indexes unless explicitly stated otherwise. When SQL Server needs to perform ordered scan
(or ordered partial scan) operations in the leaf level of the index, it does so by following the
linked list. Note that in addition to the linked list, SQL Server also maintains an IAM page
(or pages) to map the data stored in the index by fi le order. SQL Server may use the IAM
pages when it needs to perform unordered scans of the index’s leaf level. This type of scan
based on IAM pages is known as an allocation order scan. A scan that is done in index order
is known as an index order scan. The performance difference between the two types of scans
depends on the level of fragmentation in the index. Remember that the most expensive part
of an I/O operation is the movement of the disk arm (that’s at least the case with traditional
disk drives that have moving parts, as opposed to solid-state disks). An index order scan in an
index with no fragmentation at all performs similarly to an allocation ordered scan, while an
index order scan will be substantially slower in an index with a high level of fragmentation.

 Fragmentation (known as logical scan fragmentation) evolves mainly because of splits of
pages at the leaf level of the index. A split of a leaf page occurs when a row needs to be
inserted into the page (because of the insert of a new row or an update of an existing row)
and the target page does not have room to accommodate the row. Remember that an index
maintains the data in an ordered fashion based on index key order. A row must enter a
 certain page based on its key value. If the target page is full, SQL Server will split the page.
That is, it will allocate a new page, then move half the rows from the original page to the new

C04626034.indd 192 2/13/2009 1:56:04 AM

 Chapter 4 Query Tuning 193

one, then insert the new row either to the original or to the new page based on its key value,
and then adjust the linked list to refl ect the right logical order of the pages. The new page is
not guaranteed to come right after the one that split—it could be somewhere later in the fi le,
and it could also be somewhere earlier in the fi le. Logical scan fragmentation is measured as
the percentage of the out-of-order pages in the leaf level of the index with respect to the total
number of pages. An out-of-order page is a page that appears logically after a certain page
 according to the linked list but before it in the fi le.

 Note one exception to the rule that an insert to a full index leaf page will cause a split: When
the inserted row has a higher key than the highest key in the index, the rightmost index leaf
page is not split. Instead, a new empty page is allocated, and the new row is inserted into
that page. This architecture is designed to avoid costly splits and empty space that will not be
 reclaimed in ever-increasing indexes.

 On top of the leaf level of the index, the index maintains additional levels, each summarizing the
level below it. Each row in a nonleaf index page points to a whole page in the level below it. The
row contains two elements: the key column value of the fi rst row in the pointed index page and
a 6-byte pointer to that page. The pointer holds the fi le number in the database and the page
number in the fi le. When SQL Server builds an index, it starts from the leaf level and adds levels
on top. It stops as soon as a level contains a single page, also known as the root page.

 SQL Server always starts with the root page when it needs to navigate to a particular key
at the leaf, using an access method called an index seek, which I’ll elaborate on later in the
chapter. The seek operation will jump from the root to the relevant page in the next level,
and it will continue jumping from one level to the next until it reaches the page containing
the sought key at the leaf. Remember that all leaf pages are the same distance from the root,
meaning that a seek operation will cost as many page reads as the number of levels in the
index. The I/O pattern of these reads is random I/O, as opposed to sequential I/O, because
naturally the pages read by a seek operation will seldom reside next to each other.

 In terms of our performance estimations, it is important to know the number of levels in
an index because that number will be the cost of a seek operation in terms of page reads,
and some execution plans invoke multiple seek operations repeatedly (for example, a
Nested Loops join operator). For an existing index, you can get this number by invoking the
INDEXPROPERTY function with the IndexDepth property. But for an index that you haven’t
created yet, you need to be familiar with the calculations that allow you to estimate the
 number of levels that the index will contain.

 The operands and steps required for calculating the number of levels in an index (call it L)
are as follows (remember that these calculations apply to clustered and nonclustered indexes
 unless explicitly stated otherwise):

■ The number of rows in the table (call it num_rows) This is 1,000,000 in our case.

■ The average gross leaf row size (call it leaf_row_size) In a clustered index, this
is actually the data row size. By “gross,” I mean that you need to take the internal

C04626034.indd 193 2/13/2009 1:56:04 AM

194 Inside Microsoft SQL Server 2008: T-SQL Querying

 overhead of the row and the 2-byte pointer stored at the end of the page—pointing to
the row. The row overhead typically involves a few bytes. In our Orders table, the gross
average data row size is roughly 200 bytes.

■ The average leaf page density (call it page_density) This value is the average
 percentage of population of leaf pages. Reasons for pages not being completely full
include data deletion, page splits caused by insertion of rows to full pages, having
very large rows, and explicit requests not to populate the pages in full by specifying a
 fi llfactor value when rebuilding indexes. In our case, we created a clustered index on
the Orders table after populating it with the data, we did not add rows after creating
the clustered index, and we did not specify a fi llfactor value. Therefore, page_density in
our case is close to 100 percent.

■ The number of rows that fi t in a leaf page (call it rows_per_leaf_page) The formula
to calculate this value is (page_size - header_size) * page_density / leaf_row_size. Note
that if you have a good estimation of page_density, you don’t need to fl oor this value
because the fact that a row cannot span pages (with the aforementioned exceptions)
is already accounted for in the page_density value. In such a case, you want to use the
 result number as is even if it’s not an integer. On the other hand, if you just estimate
that page_density will be close to 100 percent, as it is in our case, omit the page_ density
operand from the calculation and fl oor the result. In our case, rows_per_leaf_page
amount to fl oor((8192 - 96) / 200) = 40.

■ The number of pages maintained in the leaf (call it num_leaf_pages) This is a
 simple formula: num_rows / rows_per_leaf_page. In our case, it amounts to 1,000,000 /
40 = 25,000.

■ The average gross nonleaf row size (call it non_leaf_row_size) A nonleaf row
 contains the key columns of the index (in our case, only orderdate, which is 8 bytes);
the 4-byte uniquifi er (which exists only in a clustered index that is not unique); the
page pointer, which is 6 bytes; a few additional bytes of internal overhead, which total
5 bytes in our case; and the row offset pointer at the end of the page, which is 2 bytes.
In our case, the gross nonleaf row size is 25 bytes.

■ The number of rows that can fi t in a nonleaf page (call it rows_per_non_

leaf_page) The formula to calculate this value is similar to calculating rows_per_leaf_
page. For the sake of simplicity, I’ll ignore the nonleaf page density factor and calculate
the value as fl oor((page_size - header_size) / non_leaf_row_size), which in our case
amounts to fl oor((8192 - 96) / 25) = 323.

■ The number of levels above the leaf (call it L-1) This value is calculated with the
 following formula: ceiling(logrows_per_non_leaf_page(num_leaf_pages)). In our case, L-1
amounts to ceiling(log323(25000)) = 2. Obviously, you simply need to add 1 to get L,
which in our case is 3.

 This exercise leads me to a very important point that I will rely on in my performance
 discussions. You can play with the formula and see that with up to about several thousand

C04626034.indd 194 2/13/2009 1:56:04 AM

 Chapter 4 Query Tuning 195

rows, our index will have two levels. Three levels would have up to about 4,000,000 rows,
and four levels would have up to about 4,000,000,000 rows. With nonclustered indexes, the
formulas are identical—it’s just that you can fi t more rows in each leaf page, as I will describe
later. So with nonclustered indexes, the upper bound for each number of levels covers even
more rows in the table. The point is that in our table all indexes have three levels, which is the
cost you have to consider in your performance estimation when measuring the cost of a seek
operation. And in general, with small tables most indexes will typically have up to two levels,
and with large tables, they will typically have three or four levels, unless the total size of the
index keys is large. Keep these numbers in mind for our later discussions.

Nonclustered Index on a Heap

 A nonclustered index is also structured as a B-tree and in many respects is similar to a
 clustered index. The only difference is that a leaf row in a nonclustered index contains
only the index key columns and a row locator value pointing to a particular data row. The
 content of the row locator depends on whether the table is a heap or a clustered table. This
section describes nonclustered indexes on a heap, and the following section will describe
 nonclustered indexes on a clustered table.

 Figure 4-17 illustrates the nonclustered index created by our primary key constraint (PK_Orders)
defi ning the orderid column as the key column.

Pointer to
first IAM
1:26612

Pointer to
first

1:22632

Pointer to
root

1:22698

- - -

Extent Alloc Status Slot 1 @0x3623C0C2
(1:0) – (1:22624) = NOT ALLOCATED
(1:22632) – (1:22696) = ALLOCATED
(1:22704) – (1:22752) = NOT ALLOCATED
(1:22760) – (1:24256) = ALLOCATED
(1:24264) – = NOT ALLOCATED

Single Page Allocation @0x3623C08E
Slot 0 = (0:0) Slot 1 = (0:0) - - -

orderid RID

1 1:11957:24
2 1:26981:11
3 1:16562: 6

537 1:14604:17
538 1:10245:39
539 1: 5741:26

- - -

orderid page#

1:22632
540 1:22633

1079 1:22634

333642 1:23315
334181 1:23316
334720 1:23317

- - -

orderid page#

NULL 1:22696
335259 1:22697
670517 1:22699

orderid page#

670517 1:23940
671056 1:23941
671595 1:23942

998768 1:24557
999307 1:24558
999846 1:24559

- - -

- - -

orderid page#

335259 1:23318
335789 1:23319
336337 1:23320

668900 1:23937
669439 1:23938
669978 1:23939

- - -

1079 1: 3904:36
1080 1: 1538:16
1081 1:17288:19

1615 1:21032:34
1616 1:14145: 1
1617 1: 2485:13

orderid RIDorderid RID

540 1:13801: 1
541 1:17158:11
542 1:21259:35

1076 1:25295:29
1076 1: 866:39
1076 1:11295:34

- - -

orderid RID

- - -

999307 1:26079:13
999308 1: 2502:10
999309 1:15567:17

999843 1: 7935:32
999844 1:10799:10
999845 1: 7257:34

orderid RID

- - -

999846 1:12458:16
999847 1: 16214: 1
999848 1:12695:12

999998 1: 14715:13
999999 1:14402: 0

1000000 1: 25185: 9

999846 1:12458:16
999847 1:16214: 1
999848 1:12695:12

999998 1:14715:13
999999 1:14402: 0

1000000 1:25185: 9

1:26612

1:22698

1:22696 1:22697 1:22699

1:245591:245581:226341:226331:22632

orderid page#

NULL
335259
670517

orderid RID

1:22696
1:22697
1:22699

NULL

FIGURE 4-17 Nonclustered index on a heap

C04626034.indd 195 2/13/2009 1:56:05 AM

196 Inside Microsoft SQL Server 2008: T-SQL Querying

 The row locator used by a nonclustered index leaf row to point to a data row is an 8-byte
physical pointer called RID. It consists of the fi le number in the database, the target page
number in the fi le, and the row number in the target page (zero based). When looking for
a particular data row through the index, SQL Server has to follow the seek operation with
a RID lookup operation, which translates to reading the page that contains the data row.
Therefore, the cost of a RID lookup is one page read. For a single lookup or a very small
number of lookups, the cost is not high, but for a large number of lookups, the cost can be
very high because SQL Server ends up reading one whole page per sought row. For range
queries that use a nonclustered index and a series of lookups—one per qualifying key—the
cumulative cost of the lookup operations typically makes up the bulk of the cost of the query.
I’ll demonstrate this point in the “Index Access Methods” section. As for the cost of a seek
operation, remember that the formulas I provided earlier are just as relevant to nonclustered
indexes. It’s just that the leaf_row_size is smaller, and therefore the rows_per_leaf_page will be
higher. But the formulas are the same.

Nonclustered Index on a Clustered Table

 Nonclustered indexes created on a clustered table are architected differently than on a heap.
The only difference is that the row locator in a nonclustered index created on a clustered
 table is a value called a clustering key, as opposed to being an RID. The clustering key
 consists of the values of the clustered index keys from the pointed row and the uniquifi er
(if present). The idea is to point to a row “logically” as opposed to “physically.” This
 architecture was designed mainly for OLTP systems, where clustered indexes often suffer
from many page splits upon data insertions and updates. If nonclustered indexes pointed to
RIDs of rows, all pointers to the data rows that moved would have to be changed to refl ect
their new RIDs—and that’s true for all relevant pointers in all nonclustered indexes. Instead,
SQL Server maintains logical pointers that don’t change when data rows move.

 Figure 4-18 illustrates what the PK_Orders nonclustered index might look like; the index
is defi ned with the orderid as the key column, and the Orders table has a clustered index
 defi ned with the orderdate as the key column.

 A seek operation looking for a particular key in the nonclustered index (some orderid value)
will end up reaching the relevant leaf row and have access to the row locator. The row
 locator in this case is the clustering key of the pointed row. To actually grab the pointed
row, a lookup operation will need to perform a whole seek within the clustered index based
on the acquired clustering key. This type of lookup is known as a key lookup, as opposed to
a RID lookup. I will demonstrate this access method later in the chapter. The cost of each
lookup operation here (in terms of the number of page reads) is as high as the number of
levels in the clustered index (3 in our case). That’s compared to a single page read for a RID
lookup when the table is a heap. Of course, with range queries that use a nonclustered index
and a series of lookups, the ratio between the number of logical reads in a heap case and a
 clustered table case will be close to 1:L, where L is the number of levels in the clustered index.
Before you worry too much about this point and remove all clustered indexes from your

C04626034.indd 196 2/13/2009 1:56:05 AM

 Chapter 4 Query Tuning 197

Pointer to
first IAM

1:1790

1:1790

orderid page#

orderid page#

 orderid row locator

NULL 1:42016
 218994 1:42017
 437978 1:42019
 656966 1:42020
 875952 1:42021

NULL 1:42016
 218994 1:42017
 437978 1:42019
 656966 1:42020
 875952 1:42021

999883 20061231, 393
999884 20061231, 394
999885 20061231, 395

 999998 20061231, 308
 999999 20061231, 309
 1000000 20061211, 646

Pointer to
first

1:41952

Pointer to
root

1:42018

1:42018

1:42016

1:41952 1:41953 1:41954 1:44855 1:44856

1:42017 1:42021

NULL 1:41952
 360 1:41953
 713 1:41954
...
 217938 1:42635
 218290 1:42636
 218642 1:42637

orderid page#

218994 1:42638
219346 1:42639
219698 1:42640
...
436992 1:43257
437274 1:43258
437626 1:43259

orderid page#

875952 1:44504
876304 1:44505
876656 1:44506
...
999178 1:44854
999531 1:44855
999883 1:44856

orderid page#

orderid row locator
 360 20021223, 48
 361 20030101, 564
 362 20030101, 565
...
 710 20021226, 6
 711 20030102, 5
 712 20030102, 6

orderid row locator
 713 20030102, 7
 714 20030102, 8
 715 20030102, 9
...
 1062 20030102, 258
 1063 20030102, 259
 1064 20030102, 260

orderid row locator
999531 20061231, 139
999532 20061231, 140
999533 20061231, 141
...
999880 20061204, 677
999881 20061231, 391
999882 20061231, 392

 orderid row locator
 999883 20061231, 393
 999884 20061231, 394
 999885 20061231, 395
...
 999998 20061231, 308
 999999 20061231, 309
1000000 20061211, 646

Single Page Allocation @ 0x35C6C08E
Slot 0 = (0:0) Slot 1 = (0:0)...

Extent Alloc Status Slot 1 @0x35C6C0C2
(1:0) – (1:41944) = NOT ALLOCATED
(1:41952) – (1:42016) = ALLOCATED
(1:42024) – (1:42072) = NOT ALLOCATED
(1:42080) – (1:44856) = ALLOCATED
(1:44864) – (1:57104) = NOT ALLOCATED

orderid row locator
 1 20030101, 171
 2 20030101, 172
 2 20030101, 173
...
 357 20030101, 579
 358 20030101, 580
 359 20030101, 581

FIGURE 4-18 Nonclustered index on a clustered table

tables, keep in mind that with all lookups going through the clustered index, the nonleaf
levels of the clustered index will typically reside in cache. Typically, most of the physical
reads in the clustered index will be against the leaf level. Therefore, the additional cost of
lookups against a clustered table compared to a heap is usually a small portion of the total
query cost. Now that the background information about table and index structures has been
 covered, the next section will describe index access methods.

Index Access Methods

 This section provides a technical description of the various index access methods; it is
designed to be used as a reference for discussions in these books involving analysis of
execution plans. Later in this chapter, I’ll describe an analysis of indexing strategies that
 demonstrates how you can put this knowledge into action.

 If you want to follow the examples in this section, rerun the code in Listing 4-1 to re-create the
sample tables in our Performance database along with all the indexes. I’ll be discussing some
 access methods to use against the Orders table, both when it’s structured as a heap and when
it’s structured as a clustered table. Therefore, I’d also suggest that you run the code in Listing 4-1
against another database (say, Performance2), after renaming the database name in the script
 accordingly and commenting out the statement that creates the clustered index on Orders.

C04626034.indd 197 2/13/2009 1:56:05 AM

198 Inside Microsoft SQL Server 2008: T-SQL Querying

When I discuss an access method involving a clustered table, run the code against the Performance
 database. When the discussion is about heaps, run it against Performance2. Also remember that
Listing 4-1 uses randomization to populate the customer IDs, employee IDs shipper IDs, and order
dates in the Orders table. This means that your results will probably slightly differ from mine.

Table Scan/Unordered Clustered Index Scan

 A table scan or an unordered clustered index scan involves a scan of all data pages belonging
to the table. The following query against the Orders table structured as a heap would require
a table scan:

SELECT orderid, custid, empid, shipperid, orderdate

FROM dbo.Orders;

 Figure 4-19 shows the graphical execution plan produced by the relational engine’s optimizer
for this query, and Figure 4-20 shows an illustration of the way this access method is
 processed by the storage engine.

FIGURE 4-19 Table scan (execution plan)

Pointer to
first IAM IAM

Heap

Allocation Order Scan

FIGURE 4-20 Table scan

C04626034.indd 198 2/13/2009 1:56:05 AM

 Chapter 4 Query Tuning 199

 An instruction of the optimizer in the execution plan to perform a table scan can be carried
out by the storage engine only in one way—using an allocation order scan. That is, SQL Server
uses the table’s IAM pages to scan the extents belonging to the table by their fi le order. As long
as there’s no fi le system fragmentation, the activity is done as a sequential activity in the disk
drives. The number of logical reads should be similar to the number of pages the table consumes
(around 25,000 in our case). Note that in such scans SQL Server typically uses a very effi cient
read-ahead strategy that can read the data in larger chunks than 8 KB. When I ran this query on
my system, I got the following performance measures from STATISTICS IO, STATISTICS TIME:

■ Logical reads 24391

■ Physical reads 3

■ Read-ahead reads 24368

■ CPU time 951 ms

■ Elapsed time 23935 ms

■ Estimated subtree cost 19.1699

 Of course, the run times I got are not an indication of the run times you would get in an average
production system. But I wanted to show them for illustration and comparison purposes.

 If the table has a clustered index, the access method that will be applied will be an unordered
clustered index scan (that is, a Clustered Index Scan operator, with the property Ordered: False).
Figure 4-21 shows the execution plan that the optimizer will produce for this query. Notice that
the Ordered property of the Clustered Index Scan operator indicates False. Figure 4-22 shows
an illustration of the two ways that the storage engine can carry out this access method.

FIGURE 4-21 Unordered clustered index scan (execution plan)

C04626034.indd 199 2/13/2009 1:56:05 AM

200 Inside Microsoft SQL Server 2008: T-SQL Querying

Clustered
Index

Clustered
Index

Pointer to
first IAM

Pointer to
first leaf page

IAM

Index Order Scan

Allocation Order Scan

FIGURE 4-22 Unordered clustered index scan

 The fact that the Ordered property of the Clustered Index Scan operator indicates False
means that as far as the relational engine is concerned, the data does not need to be returned
from the operator ordered. This doesn’t mean that it is a problem if it is returned ordered;
instead, it means that any order would be fi ne. This leaves the storage engine with some
 maneuvering space in the sense that it is free to choose between two types of scans: an index
order scan (scan of the leaf of the index following the linked list) and an allocation order scan
(scan based on IAM pages). The factors that the storage engine takes into consideration when
choosing which type of scan to employ include performance and data consistency. I’ll provide
more details about the storage engine’s decision-making process after I describe ordered
 index scans (Clustered Index Scan and Index Scan operators with the property Ordered: True).

 Here are the performance measures I got for this query:

■ Logical reads 25081

■ Physical reads 5

■ Read-ahead reads 25073

■ CPU time 889 ms

C04626034.indd 200 2/13/2009 1:56:05 AM

 Chapter 4 Query Tuning 201

■ Elapsed time 24025 ms

■ Estimated subtree cost 19.6218

Unordered Covering Nonclustered Index Scan

 An unordered covering nonclustered index scan is similar in concept to an unordered clustered
index scan. The concept of a covering index means that a nonclustered index contains all
 columns specifi ed in a query. In other words, a covering index is not an index with special
properties; rather, it becomes a covering index with respect to a particular query. SQL Server
can fi nd all the data it needs to satisfy the query by accessing solely the index data, without
the need to access the full data rows. Other than that, the access method is the same as an
unordered clustered index scan, only, obviously, the leaf level of the covering nonclustered
 index contains fewer pages than the leaf of the clustered index because the row size is
 smaller and more rows fi t in each page. I explained earlier how to calculate the number of
pages in the leaf level of an index (clustered or nonclustered).

 As an example for this access method, the following query requests all orderid values from
the Orders table:

SELECT orderid

FROM dbo.Orders;

 Our Orders table has a nonclustered index on the orderid column (PK_Orders), meaning that
all the table’s order IDs reside in the index’s leaf level. The index covers our query. Figure 4-23
shows the graphical execution plan you would get for this query, and Figure 4-24 illustrates
the two ways in which the storage engine can process it.

FIGURE 4-23 Unordered covering nonclustered index scan (execution plan)

C04626034.indd 201 2/13/2009 1:56:05 AM

202 Inside Microsoft SQL Server 2008: T-SQL Querying

Nonclustered
Index

Nonclustered
Index

Pointer to
first IAM

Pointer to
first leaf page

IAM

Index Order Scan

Allocation Order Scan

FIGURE 4-24 Unordered covering nonclustered index scan

 The leaf level of the PK_Orders index contains fewer than 3,000 pages, compared to the
25,000 data pages in the table. Here are the performance measures I got for this query:

■ Logical reads 2850

■ Physical reads 2

■ Read-ahead reads 2580

■ CPU time 327 ms

■ Elapsed time 16649 ms

■ Estimated subtree cost 3.20773

Ordered Clustered Index Scan

 An ordered clustered index scan is a full scan of the leaf level of the clustered index
 guaranteeing that the data will be returned to the next operator in index order. For example,

C04626034.indd 202 2/13/2009 1:56:05 AM

 Chapter 4 Query Tuning 203

the following query, which requests all orders sorted by orderdate, will get such an access
method in its plan:

SELECT orderid, custid, empid, shipperid, orderdate

FROM dbo.Orders

ORDER BY orderdate;

 You can fi nd the execution plan for this query in Figure 4-25 and an illustration of how the
storage engine carries out this access method in Figure 4-26.

FIGURE 4-25 Ordered clustered index scan (execution plan)

Clustered
Index

Pointer to
first leaf page

FIGURE 4-26 Ordered clustered index scan

C04626034.indd 203 2/13/2009 1:56:05 AM

204 Inside Microsoft SQL Server 2008: T-SQL Querying

 Notice in the plan that the Ordered property is True. This indicates that the data needs to be
returned from the operator ordered. When the operator has the property Ordered: True, the
scan can be carried out by the storage engine only in one way—by using an index order scan
(scan based on index linked list), as shown in Figure 4-26. Unlike an allocation order scan, the
performance of an index order scan depends on the fragmentation level of the index. With
no fragmentation at all, the performance of an index order scan should be very close to the
performance of an allocation order scan because both will end up reading the data in fi le order
sequentially. However, as the fragmentation level grows higher, the performance difference will
be more substantial, in favor of the allocation order scan, of course. The natural deductions are
that you shouldn’t request the data sorted if you don’t need it sorted, to allow the potential for
using an allocation order scan, and that you should resolve fragmentation issues in indexes that
incur large index order scans. I’ll elaborate on fragmentation and its treatment later. Here are the
performance measures that I got for this query:

■ Logical reads 25081

■ Physical reads 5

■ Read-ahead reads 25073

■ CPU time 983 ms

■ Elapsed time 25192 ms

■ Estimated subtree cost 19.6218

 Note that the optimizer is not limited to ordered-forward activities. Remember that the
linked list is a doubly linked list, where each page contains both a next and a previous pointer.
Had you requested a descending sort order, you would have still gotten an ordered index
scan, only ordered backward (from tail to head) instead of ordered forward (from head to
tail). SQL Server also supports descending indexes, but these are not needed in simple cases
like getting descending sort orders. Rather, descending indexes are valuable when you create
an index on multiple key columns that have opposite directions in their sort requirements—
for example, sorting by col1, col2 DESC.

Ordered Covering Nonclustered Index Scan

 An ordered covering nonclustered index scan is similar in concept to an ordered clustered
 index scan, with the former performing the access method in a nonclustered index—typically
when covering a query. The cost is, of course, lower than a clustered index scan because
fewer pages are involved. For example, the PK_Orders index on our clustered Orders table
happens to cover the following query, even though it might not seem so at fi rst glance:

SELECT orderid, orderdate

FROM dbo.Orders

ORDER BY orderid;

C04626034.indd 204 2/13/2009 1:56:05 AM

 Chapter 4 Query Tuning 205

 Keep in mind that on a clustered table, nonclustered indexes will use clustering keys as row
locators. In our case, the clustering keys contain the orderdate values, which can be used
for covering purposes as well. Also, the fi rst (and, in our case, the only) key column in the
 nonclustered index is the orderid column, which is the column specifi ed in the ORDER BY
clause of the query; therefore, an ordered index scan is a natural access method for the
 optimizer to choose.

 Figure 4-27 shows the query’s execution plan, and Figure 4-28 illustrates the way the storage
engine processes the access method.

FIGURE 4-27 Ordered covering nonclustered index scan (execution plan 1)

Nonclustered
Index

Pointer to
first leaf page

FIGURE 4-28 Ordered covering nonclustered index scan

 Notice in the plan that the Ordered property of the Index Scan operator in the yellow
 information box shows True.

C04626034.indd 205 2/13/2009 1:56:05 AM

206 Inside Microsoft SQL Server 2008: T-SQL Querying

 Here are the performance measures that I got for this query:

■ Logical reads 2850

■ Physical reads 2

■ Read-ahead reads 2850

■ CPU time 592 ms

■ Elapsed time 18153 ms

■ Estimated subtree cost 3.20733

 An ordered index scan is used not only when you explicitly request the data sorted but also
when the plan uses an operator that can benefi t from sorted input data. This can be the
case when processing GROUP BY, DISTINCT, joins, and other requests. This can also happen
in less obvious cases. For example, check out the execution plan shown in Figure 4-29 for
the following query:

SELECT orderid, custid, empid, orderdate

FROM dbo.Orders AS O1

WHERE orderid =

 (SELECT MAX(orderid)

 FROM dbo.Orders AS O2

 WHERE O2.orderdate = O1.orderdate);

FIGURE 4-29 Ordered covering nonclustered index scan (execution plan 2)

C04626034.indd 206 2/13/2009 1:56:05 AM

 Chapter 4 Query Tuning 207

 The Segment operator arranges the data in groups and emits a group at a time to the next
operator (Top in our case). Our query requests the orders with the maximum orderid per
 orderdate. Fortunately, we have a covering index for the task (idx_unc_od_oid_i_cid_eid), with
the key columns being (orderdate, orderid) and included nonkey columns being (custid, empid).
I’ll elaborate on included nonkey columns later in the chapter. The important point for our
discussion is that the segment operator organizes the data by groups of orderdate values and
emits the data, a group at a time, where the last row in each group is the maximum orderid
in the group; because orderid is the second key column right after orderdate. Therefore, the
plan doesn’t need to sort the data; rather, the plan just collects it with an ordered scan from
the covering index, which is already sorted by orderdate and orderid. The Top operator has a
simple task of just collecting the last row (TOP 1 descending), which is the row of interest for
the group. The number of rows reported by the Top operator is 1491, which is the number of
unique groups (orderdate values), each of which got a single row from the operator. Because
our nonclustered index covers the query by including in its leaf level all other columns that are
mentioned in the query (custid, empid), there’s no need to look up the data rows; the query is
satisfi ed by the index data alone. Here are the performance measures I got for this query:

■ Logical reads 4717

■ Physical reads 8

■ Read-ahead reads 4696

■ CPU time 468 ms

■ Elapsed time 2157 ms

■ Estimated subtree cost 4.68121

 The number of logical reads that you see is similar to the number of pages that the leaf level
of the index holds.

The Storage Engine’s Treatment of Scans

 This section is applicable to all versions of SQL Server from 7.0 through to 2008.

 Before I continue the coverage of additional index access methods, I’m going to explain
the way the storage engine treats the relational engine’s instructions to perform scans. The
 relational engine is like the brains of SQL Server; it includes the optimizer that is in charge of
producing execution plans for queries. The storage engine is like the muscles of SQL Server;
it needs to carry out the instructions provided to it by the relational engine in the execution
plan and perform the actual row operations. Sometimes the optimizer’s instructions leave the
storage engine with some room for maneuvering, and then the storage engine determines
the best of several possible options based on factors such as performance and consistency.

 When the plan shows a Table Scan operator, the storage engine has only one option—to use an
allocation order scan. When the plan shows an Index Scan operator (clustered or nonclustered)
with the property Ordered: True, the storage engine can use only an index order scan.

C04626034.indd 207 2/13/2009 1:56:05 AM

208 Inside Microsoft SQL Server 2008: T-SQL Querying

Allocation Order Scans vs. Index Order Scans When the plan shows an Index Scan operator
with Ordered: False, the relational engine doesn’t care in what order the rows are returned.
In this case there are two options to scan the data—allocation order scan and index order
scan. It is up to the storage engine to determine which to employ. Unfortunately, the storage
 engine’s actual choice is not indicated in the execution plan, or anywhere else. I will explain
the storage engine’s decision-making process, but it’s important to understand that what the
plan shows is the relational engine’s instructions and not what the storage engine did.

 The performance of an allocation order scan is not affected by logical fragmentation in the
index because it’s done in fi le order anyway. However, the performance of an index order scan
is affected by fragmentation—the higher the fragmentation, the slower the scan. Therefore,
as far as performance is concerned, the storage engine considers the allocation order scan
the preferable option. The exception is when the index is very small (up to 64 pages), the cost
of interpreting IAM pages becomes signifi cant with respect to the rest of the work, in which
case the storage engine considers the index order scan to be preferable. Small tables aside, in
terms of performance the allocation order scan is considered preferable.

 However, performance is not the only aspect that the storage engine needs to take into
 consideration; it also needs to account for data consistency expectations based on the
 effective isolation level. When there’s more than one option to carry out a request, the
 storage engine opts for the fastest option that meets the consistency requirements.

 In certain circumstances, scans can end up returning multiple occurrences of rows or even
skip rows. Allocation order scans are more prone to such behavior than index order scans. I’ll
fi rst describe how such a phenomenon can happen with allocation order scans and in which
circumstances. Then I’ll explain how it can happen with index order scans.

Allocation Order Scans Figure 4-30 demonstrate in three steps how an allocation order
scan can return multiple occurrences of rows.

 Step 1 shows an allocation order scan in progress, reading the leaf pages of some index in
fi le order (not index order). Two pages were already read (keys 50, 60, 70, 80, 10, 20, 30, 40).
At this point, before the third page of the index is read, someone inserts a row into the table
with key 25.

 Step 2 shows a split that took place in the page that was the target for the insert since it was
full. As a result of the split, a new page was allocated—in our case later in the fi le at a point that
the scan did not yet reach. Half the rows from the original page move to the new page (keys
30, 40), and the new row with key 25 was added to the original page because of its key value.

 Step 3 shows the continuation of the scan: reading the remaining two pages (keys 90, 100,
110, 120, 30, 40) including the one that was added because of the split. Notice that the rows
with keys 30 and 40 were read a second time.

C04626034.indd 208 2/13/2009 1:56:05 AM

 Chapter 4 Query Tuning 209

Allocation Order Scan: Getting Multiple Occurrences of Rows

Step 1:

Output: 50, 60, 70, 80, 10, 20, 30, 40

50 10 90
60
70
80

20
30
40

100
110
120

allocation order scan

allocation order scan

Step 3:

Output: 50, 60, 70, 80, 10, 20, 30, 40, 90, 100, 110, 120, 30, 40

Step 2:

Output: 50, 60, 70, 80, 10, 20, 30, 40 insert 25

split

50
60
70
80

10
20
25

90
100
110
120

30
40

allocation order scan

50
60
70
80

10
20
25

90
100
110
120

30
40

FIGURE 4-30 Allocation order scan: getting multiple occurrences of rows

 Of course, in a very similar fashion, depending on how far the scan reaches by the point this
split happens and where the new page is allocated, the scan might end up skipping rows.
Figure 4-31 demonstrates how this can happen in three steps.

 Step 1 shows an allocation order scan in progress that manages to read one page (keys 50,
60, 70, 80) before the insert takes place.

C04626034.indd 209 2/13/2009 1:56:05 AM

210 Inside Microsoft SQL Server 2008: T-SQL Querying

Allocation Order Scan: Skipping Rows

Step 1:

Output: 50, 60, 70, 80

50
60
70
80

10
20
30
40

90
100
110
120

allocation
order scan

Output: 50, 60, 70, 80

allocation
order scan

Step 3:

Output: 50, 60, 70, 80, 10, 20, 25, 90, 100, 110, 120,

allocation order scan

Step 2:

insert 25

split

30
40

50
60
70
80

90
100
110
120

10
20
25

30
40

50
60
70
80

90
100
110
120

10
20
25

FIGURE 4-31 Allocation order scan: skipping rows

 Step 2 shows the split of the target page, only this time the new page is allocated earlier in
the fi le at a point that the scan already passed. Like in the previous split example, the rows
with keys 30 and 40 move to the new page, and the new row with key 25 is added to the
original page.

C04626034.indd 210 2/13/2009 1:56:05 AM

 Chapter 4 Query Tuning 211

 Step 3 shows the continuation of the scan: reading the remaining two pages (keys 10, 20, 25,
90, 100, 110, 120). As you can see, the rows with keys 30 and 40 were completely skipped.

 In short, an allocation order scan can return multiple occurrences of rows and skip rows
 resulting from splits that take place during the scan. A split can take place because of an
insert of a new row, an update of an index key causing the row to move, or an update of a
variable-length column causing the row to expand. Remember that splits only take place in
indexes; heaps do not incur splits. Therefore, such phenomena cannot happen in heaps.

 An index order scan is safer in the sense that it won’t read multiple occurrences of the same
row or skip rows because of splits. Remember that an index order scan follows the index
linked list in order. If a page that the scan hasn’t yet reached splits, the scan ends up reading
both pages; therefore, it won’t skip rows. If a page that the scan already passed splits, the
scan doesn’t read the new one; therefore, it won’t return multiple occurrences of rows.

 The storage engine is well aware of the fact that allocation order scans are prone to such
inconsistent reads because of splits, while index order scans aren’t. It will carry out an Index
Scan Ordered: False with an allocation order scan in one of two categories of cases that I will
refer to as the unsafe and safe categories.

 The unsafe category is when the scan can actually return multiple occurrences of rows or
skip rows because of splits. The storage engine opts for this option when the index size is
greater than 64 pages and the request is running under the read uncommitted isolation level
(for example, when you specify NOLOCK in the query). Most people’s perception of read
 uncommitted is simply that the query does not request a shared lock and therefore that it
can read uncommitted changes (dirty reads). This perception is true, but unfortunately most
people don’t realize that in the eyes of the storage engine, read uncommitted is also an
 indication that pretty much all bets are off in terms of consistency. In other words, it will opt
for the faster option even at the cost of returning multiple occurrences of rows or skipping
rows. When the query is running under the default read committed isolation level or higher,
the storage engine will opt for an index order scan to prevent such phenomena from
 happening because of splits. To recap, the storage engine employs allocation order scans of
the unsafe category when all of the following are true:

■ The index size is greater than 64 pages.

■ The plan shows Index Scan, Ordered: False.

■ The query is running under the read uncommitted isolation level.

■ Changes are allowed to the data.

 In terms of the safe category, the storage engine also opts for allocation order scans with
higher isolation levels than read uncommitted when it knows that it is safe to do so without
sacrifi cing the consistency of the read (at least as far as splits are concerned). For example,
when you run the query using the TABLOCK hint, the storage engine knows that no one

C04626034.indd 211 2/13/2009 1:56:06 AM

212 Inside Microsoft SQL Server 2008: T-SQL Querying

can change the data while the read is in progress. Therefore, it is safe to use an allocation
order scan. Of course this comes at the cost of requests for modifi cations being blocked
 during the read. Another example where the storage engine knows that it is safe to employ
an allocation order scan is when the index resides in a read-only fi legroup or database. To
 summarize, the storage engine will use an allocation order scan of the safe category when
the index size is greater than 64 pages and the data is read-only (because of the TABLOCK
hint, read-only fi legroup, or database).

 Keep in mind that logical fragmentation has an impact on the performance of index order
scans but not on that of allocation order scans. And based on the preceding information, you
should realize that the storage engine will sometimes use index order scans to process an
Index Scan operator with the Ordered: False property.

 The next section will demonstrate both unsafe and safe allocation order scans.

 Run the following code to create a table called T1:

SET NOCOUNT ON;

USE tempdb;

GO

-- Create table T1

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

 cl_col UNIQUEIDENTIFIER NOT NULL DEFAULT(NEWID()),

 filler CHAR(2000) NOT NULL DEFAULT('a')

);

GO

CREATE UNIQUE CLUSTERED INDEX idx_cl_col ON dbo.T1(cl_col);

GO

 A unique clustered index is created on cl_col, which will be populated with random GUIDs
by the default expression NEWID(). Populating the clustered index key with random
GUIDs should cause a high level of splits, which in turn should cause a high level of logical
 fragmentation in the index.

 Run the following code to insert rows into the table using an infi nite loop and stop it after a
few seconds (say 5, to allow more than 64 pages in the table):

SET NOCOUNT ON;

USE tempdb;

TRUNCATE TABLE dbo.T1;

WHILE 1 = 1

 INSERT INTO dbo.T1 DEFAULT VALUES;

C04626034.indd 212 2/13/2009 1:56:06 AM

 Chapter 4 Query Tuning 213

 Run the following code to check the fragmentation level of the index:

SELECT avg_fragmentation_in_percent FROM sys.dm_db_index_physical_stats

(

 DB_ID('tempdb'),

 OBJECT_ID('dbo.T1'),

 1,

 NULL,

 NULL

);

 When I ran this code in my system, I got more than 98 percent fragmentation, which of
course is very high. If you need more evidence to support the fact that the order of the
pages in the linked list is different from their order in the fi le, you can use the undocumented
DBCC IND command, which gives you the B-tree layout of the index:

DBCC IND('tempdb', 'dbo.T1', 0);

 I prepared the following piece of code to spare you from having to browse through the
 output of DBCC IND in attempt to fi gure out the index leaf layout:

 CREATE TABLE #DBCCIND

(

 PageFID INT,

 PagePID INT,

 IAMFID INT,

 IAMPID INT,

 ObjectID INT,

 IndexID INT,

 PartitionNumber INT,

 PartitionID BIGINT,

 iam_chain_type VARCHAR(100),

 PageType INT,

 IndexLevel INT,

 NextPageFID INT,

 NextPagePID INT,

 PrevPageFID INT,

 PrevPagePID INT

);

INSERT INTO #DBCCIND

 EXEC ('DBCC IND(''tempdb'', ''dbo.T1'', 0)');

CREATE CLUSTERED INDEX idx_cl_prevpage ON #DBCCIND(PrevPageFID, PrevPagePID);

WITH LinkedList

AS

(

 SELECT 1 AS RowNum, PageFID, PagePID

 FROM #DBCCIND

 WHERE IndexID = 1

 AND IndexLevel = 0

 AND PrevPageFID = 0

 AND PrevPagePID = 0

C04626034.indd 213 2/13/2009 1:56:06 AM

214 Inside Microsoft SQL Server 2008: T-SQL Querying

 UNION ALL

 SELECT PrevLevel.RowNum + 1,

 CurLevel.PageFID, CurLevel.PagePID

 FROM LinkedList AS PrevLevel

 JOIN #DBCCIND AS CurLevel

 ON CurLevel.PrevPageFID = PrevLevel.PageFID

 AND CurLevel.PrevPagePID = PrevLevel.PagePID

)

SELECT

 CAST(PageFID AS VARCHAR(MAX)) + ':'

 + CAST(PagePID AS VARCHAR(MAX)) + ' ' AS [text()]

FROM LinkedList

ORDER BY RowNum

FOR XML PATH('')

OPTION (MAXRECURSION 0);

DROP TABLE #DBCCIND;

 The code stores the output of DBCC IND in a temp table, then it uses a recursive query to
follow the linked list from head to tail, and then it uses a technique using the FOR XML PATH
option to concatenate the addresses of the leaf pages into a single string in linked list order.
I got the following output on my system, shown here in abbreviated form:

1:3672 1:1245 1:1460 1:670 1:3046 1:1994 1:1856 1:386 1:2903 1:1167 1:2785 1:663. . .

 It’s easy to observe logical fragmentation here. For example, page 1:3672 points to the page
1:1245, which is earlier in the fi le.

 Next, run the following code to query T1:

SELECT SUBSTRING(CAST(cl_col AS BINARY(16)), 11, 6) AS segment1, *

FROM dbo.T1;

 The last 6 bytes of a UNIQUEIDENTIFIER value represent the fi rst segment that determines
ordering; therefore, I extracted that segment with the SUBSTRING function so that it would
be easy to see whether the rows are returned in index order. The execution plan of this query
indicates a Clustered Index Scan, Ordered: False. However, because the environment is not
read-only and the isolation is the default read committed, the storage engine uses an index
order scan. This query returns the rows in the output in index order. For example, here’s the
output that I got on my system, shown in abbreviated form:

segment1 cl_col filler

---------------- -------------------------------------- -------

0x0001EDAA3379 870FE202-4216-4BD2-9CF0-0001EDAA3379 a

0x000403806831 6F247C4D-A317-450F-B596-000403806831 a

0x0009A1FB7D6A 5EA6CC99-948C-4A10-8C37-0009A1FB7D6A a

0x000B6712B99C 1D545D02-6887-4F8A-A95F-000B6712B99C a

0x0021719D7298 38B2E138-E6F4-4B32-8E7D-0021719D7298 a

0x002BD242E426 1A22523F-0046-4A83-AD4A-002BD242E426 a

0x002FAFA27D1B 890693F4-0E5A-4120-8D8F-002FAFA27D1B a

C04626034.indd 214 2/13/2009 1:56:06 AM

 Chapter 4 Query Tuning 215

0x006F682B4B92 2F1F94D1-0597-4755-87D8-006F682B4B92 a

0x007141F248CC D0125167-03DC-4790-8EF9-007141F248CC a

0x007980632C84 368F5CE4-413C-46B9-9AB3-007980632C84 a

...

 Query the table again, this time with the NOLOCK hint:

SELECT SUBSTRING(CAST(cl_col AS BINARY(16)), 11, 6) AS segment1, *

FROM dbo.T1 WITH (NOLOCK);

 This time the storage engine employs an allocation order scan of the unsafe category. Here’s
the output I got from this code on my system:

segment1 cl_col filler

---------------- -------------------------------------- -------

0x014764C5D8EE 4F3B1F56-E906-4604-BEFD-014764C5D8EE a

0x01562FB6BA4F F806B778-4B95-4C83-8CD1-01562FB6BA4F a

0x01602D85E409 10812BEE-00C9-46E4-86E0-01602D85E409 a

0x656D2B798163 361A0DB6-BDF6-4B93-8D02-656D2B798163 a

0x65A8EB2A6C4E CFCCCBB7-8BBD-4BED-9F6E-65A8EB2A6C4E a

0x65AF86168CA8 007CC2B4-3B4A-416F-ACCA-65AF86168CA8 a

0x4A4BA14669E8 DE40A86F-B83A-4BC8-BC42-4A4BA14669E8 a

0xF27FCD39F328 71DFA3CA-3C15-40B5-8393-F27FCD39F328 a

0xF2871A254745 5483FEAC-52CC-4554-B1C4-F2871A254745 a

0x7BB93E98B826 36690994-2ED8-4DB6-98E4-7BB93E98B826 a

...

 Notice that this time the rows are not returned in index order. If splits occur while such a read is
in progress, the read might end up returning multiple occurrences of rows and skipping rows.

 As an example for an allocation order scan of the safe category, run the query with the
TABLOCK hint:

SELECT SUBSTRING(CAST(cl_col AS BINARY(16)), 11, 6) AS segment1, *

FROM dbo.T1 WITH (TABLOCK);

Here, even though the code is running under the read committed isolation, the storage
 engine knows that it is safe to use an allocation order scan because no one can change the
data during the read. I got the following output back from this query:

segment1 cl_col filler

---------------- -------------------------------------- -------

0x014764C5D8EE 4F3B1F56-E906-4604-BEFD-014764C5D8EE a

0x01562FB6BA4F F806B778-4B95-4C83-8CD1-01562FB6BA4F a

0x01602D85E409 10812BEE-00C9-46E4-86E0-01602D85E409 a

0x656D2B798163 361A0DB6-BDF6-4B93-8D02-656D2B798163 a

0x65A8EB2A6C4E CFCCCBB7-8BBD-4BED-9F6E-65A8EB2A6C4E a

0x65AF86168CA8 007CC2B4-3B4A-416F-ACCA-65AF86168CA8 a

0x4A4BA14669E8 DE40A86F-B83A-4BC8-BC42-4A4BA14669E8 a

0xF27FCD39F328 71DFA3CA-3C15-40B5-8393-F27FCD39F328 a

0xF2871A254745 5483FEAC-52CC-4554-B1C4-F2871A254745 a

0x7BB93E98B826 36690994-2ED8-4DB6-98E4-7BB93E98B826 a

...

C04626034.indd 215 2/13/2009 1:56:06 AM

216 Inside Microsoft SQL Server 2008: T-SQL Querying

 Next I’ll demonstrate how an unsafe allocation order scan can return multiple occurrences of
rows. Open two connections (call them Connection 1 and Connection 2). Run the following
code in Connection 1 to insert rows into T1 in an infi nite loop, causing frequent splits:

SET NOCOUNT ON;

USE tempdb;

TRUNCATE TABLE dbo.T1;

WHILE 1 = 1

 INSERT INTO dbo.T1 DEFAULT VALUES;

 Run the following code in Connection 2 to read the data in a loop while Connection 1 is
 inserting data:

SET NOCOUNT ON;

USE tempdb;

WHILE 1 = 1

BEGIN

 SELECT * INTO #T1 FROM dbo.T1 WITH(NOLOCK);

 IF EXISTS(

 SELECT cl_col

 FROM #T1

 GROUP BY cl_col

 HAVING COUNT(*) > 1) BREAK;

 DROP TABLE #T1;

END

SELECT cl_col, COUNT(*) AS cnt

FROM #T1

GROUP BY cl_col

HAVING COUNT(*) > 1;

DROP TABLE #T1;

 The SELECT statement uses the NOLOCK hint, and the plan shows Clustered Index Scan,
Ordered: False, meaning that the storage engine will likely use an allocation order scan of the
unsafe category. The SELECT INTO statement stores the output in a temporary table so that
it will be easy to prove that rows were read multiple times. In each iteration of the loop, after
reading the data into the temp table, the code checks for multiple occurrences of the same
GUID in the temp table. This can happen only if the same row was read more than once. If
duplicates are found, the code breaks from the loop and returns the GUIDs that appear more
than once in the temp table. When I ran this code, after a few seconds I got the following
output in Connection 2 showing all the GUIDs that were read more than once:

cl_col cnt

-------------------------------------- -----------

8DB22EB6-A2CF-4390-9402-CC4A7D92A174 2

B26AE864-EC15-481A-938C-9CC31288CE13 2

C04626034.indd 216 2/13/2009 1:56:06 AM

 Chapter 4 Query Tuning 217

DD564EEE-C669-44A3-AB5B-46D010F6F9CF 2

EFB70510-C818-49AE-A889-46D0158A3BAD 2

48AA6FF8-D4BF-4628-8AFD-61ABC6361C65 2

59B1FBB5-0571-4EF2-9A96-EBAC9E51CF78 2

C21F5696-7B9C-4B8A-BB16-61A8F0F84CD8 2

E9BFB860-F720-493C-AF15-EBAC959BEA0D 2

DF75BFDA-772B-48CE-B048-CC494D57C489 2

DACE0814-9D15-4077-AB59-9CC0831DE9F2 2

5362C689-AC26-495E-8C4B-B442EF28BA9F 2

 At this point you can stop the code in Connection 1.

 If you want, you can rerun the test without the NOLOCK hint and see that the code in
Connection 2 doesn’t stop because duplicate GUIDs are not found.

 Next I’ll demonstrate an unsafe allocation order scan that skips rows. Run the following code
to create the tables T1 and Sequence:

-- Create table T1

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

 cl_col UNIQUEIDENTIFIER NOT NULL DEFAULT(NEWID()),

 seq_val INT NOT NULL,

 filler CHAR(2000) NOT NULL DEFAULT('a')

);

CREATE UNIQUE CLUSTERED INDEX idx_cl_col ON dbo.T1(cl_col);

-- Create table Sequence

IF OBJECT_ID('dbo.Sequence', 'U') IS NOT NULL DROP TABLE dbo.Sequence;

CREATE TABLE dbo.Sequence(val INT NOT NULL);

INSERT INTO dbo.Sequence(val) VALUES(0);

 The table T1 is similar to the one used in the previous demonstration, but this one has an
additional column called seq_val that will be populated with sequential integers. The table
Sequence holds the last used sequence value (populated initially with 0), which will be
 incremented by 1 before each insert to T1. To prove that a scan skipped rows, you simply
need to show that the output of the scan has gaps between contiguous values in the seq_val
 column. To demonstrate this behavior, open two connections (again, call them Connection 1
and Connection 2). Run the following code from Connection 1 to insert rows into T1 in an
 infi nite loop, incrementing the sequence value by 1 in each iteration:

SET NOCOUNT ON;

USE tempdb;

UPDATE dbo.Sequence SET val = 0;

TRUNCATE TABLE dbo.T1;

C04626034.indd 217 2/13/2009 1:56:06 AM

218 Inside Microsoft SQL Server 2008: T-SQL Querying

DECLARE @nextval AS INT;

WHILE 1 = 1

BEGIN

 UPDATE dbo.Sequence SET @nextval = val = val + 1;

 INSERT INTO dbo.T1(seq_val) VALUES(@nextval);

END

 Run the following code in Connection 2 while the inserts are running in Connection 1:

SET NOCOUNT ON;

USE tempdb;

DECLARE @max AS INT;

WHILE 1 = 1

BEGIN

 SET @max = (SELECT MAX(seq_val) FROM dbo.T1);

 SELECT * INTO #T1 FROM dbo.T1 WITH(NOLOCK);

 CREATE NONCLUSTERED INDEX idx_seq_val ON #T1(seq_val);

 IF EXISTS(

 SELECT *

 FROM (SELECT seq_val AS cur,

 (SELECT MIN(seq_val)

 FROM #T1 AS N

 WHERE N.seq_val > C.seq_val) AS nxt

 FROM #T1 AS C

 WHERE seq_val <= @max) AS D

 WHERE nxt - cur > 1) BREAK;

 DROP TABLE #T1;

END

SELECT *

FROM (SELECT seq_val AS cur,

 (SELECT MIN(seq_val)

 FROM #T1 AS N

 WHERE N.seq_val > C.seq_val) AS nxt

 FROM #T1 AS C

 WHERE seq_val <= @max) AS D

WHERE nxt - cur > 1;

DROP TABLE #T1;

 This code runs an infi nite loop that in each iteration reads the data using NOLOCK into a
temp table and breaks from the loop as soon as contiguous values with a gap between them
are found in the seq_val column. The code then presents the pairs of contiguous values that
have a gap between them. After a few seconds I got the following output in Connection 2,
shown here in abbreviated form:

cur nxt

----------- -----------

53 55

620 622

792 794

C04626034.indd 218 2/13/2009 1:56:06 AM

 Chapter 4 Query Tuning 219

803 805

838 840

1202 1204

1600 1602

1643 1645

1647 1649

1788 1791

. . .

 You can stop the code in Connection 1.

 You can run the test again without the NOLOCK hint, in which case the storage engine will
use an index order scan. The code in Connection 2 should not break from the loop because
gaps won’t be found.

Index Order Scans If you think that index order scans are safe from phenomena such as
 returning multiple occurrences of rows or skipping rows, think again. It is true that index
 order scans are safe from such phenomena because of page splits, but page splits are not
the only reason for data to move around in the index leaf. Another cause of movement in
the leaf is update of an index key. If an index key is modifi ed after the row was read by an
index order scan and the row is moved to a point in the leaf that the scan hasn’t reached yet,
the scan will read the row a second time. Similarly, if an index key is modifi ed before the row
is read by an index order scan and the row is moved to a point in the leaf that the scan has
 already passed, the scan will never reach that row.

 For example, suppose you have an Employees table that currently has four employee rows
(employee A with a salary of 2000, employee B with a salary of 4000, employee C with a
 salary of 3000, and employee D with a salary of 1000). A clustered index is on the salary
column. Figure 4-32 shows in three steps how an index order scan can return multiple
 occurrences of the same row because of an update that takes place during the read.

 You issue a query against the table and the storage engine uses an index order scan.
Remember that an index order scan is always used when the plan shows Index Scan: Ordered:
True (for example, when the query has an ORDER BY clause), but also when the Ordered
property is False, the environment is read-write, and the isolation is not read uncommitted.

 Step 1 shows that the scan already read the fi rst page in the leaf level and returned the rows
for employees D, A, and C. If the query is running under read uncommitted, no shared locks
are acquired on the rows. If the query is running under read committed, shared locks are
acquired, but they are released as soon as the query is done with the resource (for example,
a row or page), even though the query hasn’t fi nished yet. This means that at the point in
time that the scan is done with the page, in both isolations no locks are held on the rows that
were read.

 Step 2 shows an update of the row for employee D, increasing the salary from 1000 to 5000.
The row moves to the second page in the leaf level because of the index key change.

C04626034.indd 219 2/13/2009 1:56:06 AM

220 Inside Microsoft SQL Server 2008: T-SQL Querying

Index Order Scan: Getting Multiple Occurrences of Rows
Step 1:

D 1000
A 2000
C 3000

B 4000

index order
scan

Output: D 1000, A 2000, C 3000

Step 3:

Output: D 1000, A 2000, C 3000, B 4000, D 5000

Step 2:

D 1000
A 2000
C 3000

B 4000
D 5000

B 4000
D 5000

index order
scan

Output: D 1000, A 2000, C 3000

update

index order scan

A 2000
C 3000

FIGURE 4-32 Index order scan: getting multiple occurrences of rows

 Step 3 shows the continuation of the scan, reading the second page in the leaf of the index,
returning the rows for employees B and D. Note that employee D was returned a second time.

C04626034.indd 220 2/13/2009 1:56:06 AM

 Chapter 4 Query Tuning 221

The fi rst time, the row was returned with salary 1000 and the second time with salary 5000.
Note that this phenomenon cannot happen in higher isolation levels than read committed
 because higher isolations keep shared locks until the end of the transaction. This phenomenon
cannot happen also under the two isolation levels that are based on row versioning—read
 committed snapshot and snapshot.

 Similarly, an index order scan can skip rows. Figure 4-33 shows how this can happen in
three steps.

A 2000
C 3000

B 4000
D 5000

index order
scan

Output A 2000, C 3000

D 1000
A 2000
C 3000

B 4000
D 5000

index order
scan

Output A 2000, C 3000

update

Index Order Scan: Skipping Rows

D 1000
A 2000
C 3000

B 4000

Output A 2000, C 3000, B 4000
index order scan

Step 3:

Step 2:

Step 1:

FIGURE 4-33 Index order scan: skipping rows

C04626034.indd 221 2/13/2009 1:56:06 AM

222 Inside Microsoft SQL Server 2008: T-SQL Querying

 Employee D starts with salary 5000 this time, and its row resides in the second index leaf
page. Step 1 shows that the scan already read the fi rst page in the leaf level and returned the
rows for employees A and C.

 Step 2 shows an update of the row for employee D, decreasing the salary from 5000 to 1000.
The row moves to the fi rst page in the leaf level because of the index key change.

 Step 3 shows the continuation of the scan, reading the second page in the leaf of the index,
returning the rows for employee B. Note that the row for employee D was not returned at
all—neither with the salary 5000 nor with 1000. Note that this phenomenon can happen in
read uncommitted, read committed, and even repeatable read because the update was done
to a row that was not yet read. This phenomenon cannot happen in serializable isolation level
or in the snapshot-based isolations.

 To see both phenomena with your own eyes, you can run a simple test. First, execute the
 following code to create and populate the Employees table:

USE tempdb;

IF OBJECT_ID('dbo.Employees', 'U') IS NOT NULL DROP TABLE dbo.Employees;

CREATE TABLE dbo.Employees

(

 empid VARCHAR(10) NOT NULL,

 salary MONEY NOT NULL,

 filler CHAR(2500) NOT NULL DEFAULT('a')

);

CREATE CLUSTERED INDEX idx_cl_salary ON dbo.Employees(salary);

ALTER TABLE dbo.Employees

 ADD CONSTRAINT PK_Employees PRIMARY KEY NONCLUSTERED(empid);

INSERT INTO dbo.Employees(empid, salary) VALUES

 ('D', 1000.00),('A', 2000.00),('C', 3000.00),('B', 4000.00);

 Open two connections. Run the following code in Connection 1 to run an infi nite loop that
in each iteration updates the salary of employee D from its current value to 6000 minus its
 current value (switching between the values 1000 and 5000):

SET NOCOUNT ON;

USE tempdb;

WHILE 1=1

 UPDATE dbo.Employees

 SET salary = 6000.00 - salary

 WHERE empid = 'D';

 This code causes the row for employee D to keep moving between the two index leaf pages.
Run the following code in Connection 2:

SET NOCOUNT ON;

USE tempdb;

C04626034.indd 222 2/13/2009 1:56:06 AM

 Chapter 4 Query Tuning 223

WHILE 1 = 1

BEGIN

 SELECT * INTO #Employees FROM dbo.Employees;

 IF @@rowcount <> 4 BREAK; -- use =3 for skipping, =5 for multi occur

 DROP TABLE #Employees;

END

SELECT * FROM #Employees;

DROP TABLE #Employees;

 The code runs an infi nite loop that reads the contents of the Employees table into a temp
table. Because the code doesn’t specify the NOLOCK hint and the environment is read-write,
the storage engine uses an index order scan. The code breaks from the loop when the
 number of rows read is different than the expected number (four). In case the scan reads the
same row twice, this code returns fi ve rows in the output:

empid salary filler

---------- --------------------- ------

D 1000.00 a

A 2000.00 a

C 3000.00 a

B 4000.00 a

D 5000.00 a

 In cases where the scan skips a row, this code returns three rows in the output:

empid salary filler

---------- --------------------- ------

A 2000.00 a

C 3000.00 a

B 4000.00 a

 You can change the fi lter to = 3 to wait for a case where the row is skipped, and you can
change it to = 5 to wait for a case where the row is read twice.

 I hope this section gave you a better understanding of how the storage engine handles scans
and, most important, the implications of running your code under the read uncommitted
 isolation level. The next sections continue the coverage of index access methods.

Nonclustered Index Seek + Ordered Partial Scan + Lookups

 The access method nonclustered index seek + ordered partial scan + lookups is typically
used for small-range queries (including a point query) using a nonclustered index scan that
doesn’t cover the query. To demonstrate this access method, I will use the following query:

USE Performance;

SELECT orderid, custid, empid, shipperid, orderdate

FROM dbo.Orders

WHERE orderid BETWEEN 101 AND 120;

C04626034.indd 223 2/13/2009 1:56:06 AM

224 Inside Microsoft SQL Server 2008: T-SQL Querying

 We don’t have a covering index because the fi rst key column is the fi ltered column orderid,
but we do have a noncovering one—the PK_Orders index. If the query is selective enough,
the optimizer would use the index. Selectivity is defi ned as the percentage of the number
of rows returned by the query out of the total number of rows in the table. The term high
 selectivity refers to a small percentage, while low selectivity refers to a large percentage. Our
access method fi rst performs a seek within the index to fi nd the fi rst key in the sought range
(orderid = 101). The second part of the access method is an ordered partial scan in the leaf
level from the fi rst key in the range until the last (orderid = 120). The third and last part
 involves lookups of the corresponding data row for each key. Note that the third part doesn’t
have to wait for the second part to fi nish. For each key found in the range, SQL Server can
 already apply a lookup. Remember that a lookup in a heap (a RID lookup) translates to a
 single page read, while a lookup in a clustered table (a key lookup) translates to as many
reads as the number of levels in the clustered index (three in our case).

 It is vital for making performance estimations to understand that with this access method,
the part involving the lookups typically incurs most of the query’s cost; this is because it
 involves most of the I/O activity. Remember that the lookup translates to a whole page read
or one whole seek within the clustered index per sought row, and the lookups are always
random I/O (as opposed to sequential ones).

 To estimate the I/O cost of such a query, you can typically focus on the cost of the lookups. If
you want to make more accurate estimations, also taking into consideration the seek within
the index and the ordered partial scan, feel free to do so, but these parts will be negligible
as the range grows larger. The I/O cost of a seek operation is three reads in our case (the
 number of levels in the index). The I/O cost of the ordered partial scan depends on the
 number of rows in the range (20 in our case) and the number of rows that fi t in an index
page (more than 300 in our case). For our query, no additional read is actually involved for
the partial scan because all the keys in the range we are after reside in the leaf page that the
seek reached, or they might span an additional page if the fi rst key appears close to the end
of the page. The I/O cost of the lookup operations will be the number of rows in the range
(20 in our case), multiplied by one if the table is a heap or multiplied by the number of levels
in the clustered index (3 in our case) if the table is clustered. So you should expect around
23 logical reads in total if you run the query against a heap and around 63 logical reads if
you run it against a clustered table. Remember that the nonleaf levels of the clustered index
typically reside in cache because of all the lookup operations going through it; you shouldn’t
concern yourself too much with the seemingly higher cost of the query in the clustered table
scenario.

 Figure 4-34 shows the execution plan for the query over a heap, and Figure 4-35 shows an
illustration of the access method.

C04626034.indd 224 2/13/2009 1:56:06 AM

 Chapter 4 Query Tuning 225

FIGURE 4-34 Nonclustered index seek + ordered partial scan + lookups against a heap (execution plan)

Nonclustered
Index

Pointer to
root

Heap

FIGURE 4-35 Nonclustered index seek + ordered partial scan + lookups against a heap

C04626034.indd 225 2/13/2009 1:56:06 AM

226 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note that in the execution plan you won’t explicitly see the partial scan part of the access
method; rather, it’s hidden in the Index Seek operator. You can deduce it from the Seek
Predicates shown in the information box for the operator and from the fact that it shows True
in the Ordered property.

 Here are the performance measures I got for the query:

■ Logical reads 23

■ Physical reads 22

■ CPU time 0 ms

■ Elapsed time 437 ms

■ Estimated subtree cost 0.0681393

 Figure 4-36 shows the execution plan of the query over a clustered table, and Figure 4-37
shows an illustration of the access method.

FIGURE 4-36 Nonclustered index seek + ordered partial scan + lookups against a clustered table
(execution plan)

C04626034.indd 226 2/13/2009 1:56:06 AM

 Chapter 4 Query Tuning 227

Nonclustered
Index

Clustered
Index

Pointer to
root

FIGURE 4-37 Nonclustered index seek + ordered partial scan + lookups against a clustered table

 Here are the performance measures I got for the query in this case:

■ Logical reads 63

■ Physical reads 7

■ CPU time 0 ms

■ Elapsed time 189 ms

■ Estimated subtree cost 0.0681399

 Notice that the graphical execution plans distinguish between a RID lookup and a key
 lookup. The latter is a seek within the clustered index.

C04626034.indd 227 2/13/2009 1:56:06 AM

228 Inside Microsoft SQL Server 2008: T-SQL Querying

 This access method is effi cient only when the query is very selective (a point query or a small
range). Feel free to play with the range in the fi lter, increasing it gradually, and see how
 dramatically the cost increases as the range grows larger. That will happen up to the point at
which the optimizer fi gures that it would simply be more effi cient to apply a table scan rather
than using the index. I’ll demonstrate such an exercise later in the chapter, in the section
“Analysis of Indexing Strategies.”

Unordered Nonclustered Index Scan + Lookups

 The optimizer typically uses the unordered nonclustered index scan + lookups access method
when the following conditions are in place:

■ The query is selective enough.

■ The optimal index for a query does not cover it.

■ The index doesn’t maintain the sought keys in order.

 For example, such is the case when you fi lter a column that is not the fi rst key column in the
index. The access method will involve an unordered full scan of the leaf level of the index,
followed by a series of lookups. As I mentioned, the query must be selective enough to
 justify this access method; otherwise, with too many lookups it will be more expensive than
simply scanning the whole table. To fi gure out the selectivity of the query, SQL Server needs
statistics on the fi ltered column (a histogram with the distribution of values). If such statistics
do not exist, SQL Server creates them, provided that the database property AUTO_CREATE_
STATISTICS is turned on.

 For example, the following query uses such an access method against the index idx_nc_sid_
od_i_cid, created on the key columns (shipperid, orderdate) and the included column (custid);
what’s important about this index is that the custid column appears in the index leaf rows but
not as the fi rst key column:

SELECT orderid, custid, empid, shipperid, orderdate

FROM dbo.Orders

WHERE custid = 'C0000000001';

 Figure 4-38 shows the execution plan for the query over a heap, and Figure 4-39 illustrates
the access method.

 The Parallelism operators indicate that the plan is a parallel query plan utilizing multiple
threads to process the query. The Repartition Streams operator produces multiple streams of
records, while the Gather Streams operator consumes multiple input streams and produces a
single output stream.

C04626034.indd 228 2/13/2009 1:56:06 AM

 Chapter 4 Query Tuning 229

FIGURE 4-38 Unordered nonclustered index scan + lookups against a heap (execution plan)

Nonclustered
Index

Heap

FIGURE 4-39 Unordered nonclustered index scan + lookups against a heap

 The I/O cost of this query involves the cost of the unordered scan of the leaf of the index
(see the section “The Storage Engine’s Treatment of Scans” for details about how scans are

C04626034.indd 229 2/13/2009 1:56:07 AM

230 Inside Microsoft SQL Server 2008: T-SQL Querying

 processed) plus the cost of the lookups (random I/O). In terms of logical reads, the scan
will cost as many page reads as the number of pages in the leaf of the index. As described
 earlier, the cost of the lookups is the number of qualifying rows multiplied by 1 in a heap
and multiplied by the number of levels in the clustered index (3 in our case) if the table is
 clustered. Here are the measures I got for this query against a heap:

■ Logical reads 4460

■ Physical reads 94

■ Read-ahead reads 4706

■ CPU time 141 ms

■ Elapsed time 2105 ms

■ Estimated subtree cost 4.31519

 Figure 4-40 shows the execution plan for the query over a clustered table, and Figure 4-41
illustrates the access method.

FIGURE 4-40 Unordered nonclustered index scan + lookups against a clustered table (execution plan 1)

C04626034.indd 230 2/13/2009 1:56:07 AM

 Chapter 4 Query Tuning 231

Nonclustered
Index

Clustered
Index

FIGURE 4-41 Unordered nonclustered index scan + lookups against a clustered table

 Here are the measures I got for this query against a clustered table:

■ Logical reads 4262

■ Physical reads 70

■ Read-ahead reads 4099

■ CPU time 202 ms

■ Elapsed time 2732 ms

■ Estimated subtree cost 4.68131

 As you can see in Figure 4-40, in this case SQL Server decided not to use a parallel query plan.

 Remember that SQL Server needs statistics on the custid column to determine the selectivity of
the query. The following query will tell you which statistics SQL Server created automatically
on the Orders table:

SELECT name

FROM sys.stats

WHERE object_id = OBJECT_ID('dbo.Orders')

 AND auto_created = 1;

C04626034.indd 231 2/13/2009 1:56:07 AM

232 Inside Microsoft SQL Server 2008: T-SQL Querying

 You should get statistics with a name similar to _WA_Sys_00000002_7A672E12, which SQL
Server created automatically for this purpose.

 You may have noticed in both Figure 4-38 and Figure 4-40 that SSMS indicates a missing
 index, with an estimated impact (improvement) of more than 99 percent. When the optimizer
optimized this query, it looked for what it considers to be an optimal index, and because it
did not fi nd it, it reported the missing index. The XML showplan of the query reports missing
index information in the MissingIndexes attribute; SSMS parses this information and displays
it graphically. Similar information was also available in the XML showplan in SQL Server 2005,
but SSMS 2005 did not present it graphically as part of the graphical execution plan the
way SSMS 2008 does. If you right-click the missing index information and choose Missing
Index Detail, SSMS opens a new query window with the CREATE INDEX statement for the
 recommended index. In our case, you get the following code:

/*

Missing Index Details from SQLQuery1.sql - DOJO\SQL08.Performance (DOJO\Gandalf (51))

The Query Processor estimates that implementing the following index could improve the query

cost by 99.9174%.

*/

/*

USE [Performance]

GO

CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]

ON [dbo].[Orders] ([custid])

INCLUDE ([orderid],[empid],[shipperid],[orderdate])

GO

*/

 SQL Server also records such missing index information internally and exposes it through the
dynamic management objects sys.dm_db_missing_index_details, sys.dm_db_missing_ index_
group_stats, sys.dm_db_missing_index_groups, and sys.dm_db_missing_index_columns. Query
those objects to get missing index information that was collected since SQL Server was last
restarted.

 Let’s return to the access method that is the focus of this section. A similar access method
can be used when you apply pattern-matching fi lters with the LIKE predicate, even when
the pattern starts with a wildcard. SQL Server internally maintains cardinality information on
substrings within string columns. Therefore, it can estimate the selectivity of a query for such
fi lters.

 To demonstrate this capability, SQL Server will be able to estimate the selectivity of the
 following query, which produces the plan shown in Figure 4-42:

SELECT orderid, custid, empid, shipperid, orderdate

FROM dbo.Orders

WHERE custid LIKE '%9999';

C04626034.indd 232 2/13/2009 1:56:07 AM

 Chapter 4 Query Tuning 233

FIGURE 4-42 Unordered nonclustered index scan + lookups against a clustered table (execution plan 2)

 Here are the performance measures that I got for this query:

■ Logical reads 4634

■ Physical reads 90

■ Read-ahead reads 4819

■ CPU time 811 ms

■ Elapsed time 2667 ms

■ Estimated subtree cost 4.13886

Clustered Index Seek + Ordered Partial Scan

 The optimizer typically uses the access method clustered index seek + ordered partial scan
for range queries where you fi lter based on the fi rst key columns of the clustered index.
This access method fi rst performs a seek operation to the fi rst key in the range, and then it
 applies an ordered partial scan at the leaf level from the fi rst key in the range until the last.
The main benefi t of this method is that no lookups are involved. Remember that lookups are
very expensive with large ranges. The performance ratio between this access method—which
doesn’t involve lookups—and one that uses a nonclustered index and lookups becomes
larger and larger as the range grows.

 The following query, which looks for all orders placed on a given orderdate, uses the access
method, which is the focus of this discussion:

SELECT orderid, custid, empid, shipperid, orderdate

FROM dbo.Orders

WHERE orderdate = '20080212';

 Note that even though the fi lter uses an equality operator, it is in essence a range query
because there are multiple qualifying rows. Either way, a point query can be considered a
special case of a range query. The I/O cost of this access method will involve the cost of the
seek operation (3 random reads in our case) and the cost of the ordered partial scan within
the leaf (in our case, 19 page reads). In total, you get 22 logical reads. Note that the ordered

C04626034.indd 233 2/13/2009 1:56:07 AM

234 Inside Microsoft SQL Server 2008: T-SQL Querying

scan typically incurs the bulk of the cost of the query because it involves most of the I/O.
Remember that with index order scans, logical index fragmentation plays a crucial role.
When fragmentation is at a minimum (as in our case), physical reads are close to sequential.
However, as the fragmentation level grows higher, the disk arm has to move frantically to and
fro, degrading the performance of the scan.

 Figure 4-43 shows the execution plan for the query, and Figure 4-44 illustrates the access method.

FIGURE 4-43 Clustered index seek + ordered partial scan (execution plan)

Clustered
Index

Pointer to
root

FIGURE 4-44 Clustered index seek + ordered partial scan

C04626034.indd 234 2/13/2009 1:56:07 AM

 Chapter 4 Query Tuning 235

 Here are the performance measures I got for this query:

■ Logical reads 22

■ Physical reads 3

■ Read-ahead reads 19

■ CPU time 0 ms

■ Elapsed time 148 ms

■ Estimated subtree cost 0.0160197

 Note that this plan is trivial for the optimizer to generate. That is, the plan is not dependent
on the selectivity of the query. Rather, it will always be used regardless of the size of the
sought range, unless, of course, you have an even better index for the query to begin with.

Covering Nonclustered Index Seek + Ordered Partial Scan

 The access method covering nonclustered index seek + ordered partial scan is almost identical
to the previously described access method. The only difference is that the former uses a
covering nonclustered index instead of the clustered index. Of course, to use this method
the fi ltered columns must be the fi rst key columns in the index. The benefi t of this access
method over the previous one lies in the fact that a nonclustered index leaf page naturally
can fi t more rows than a clustered index one; therefore, the bulk cost of the plan, which is
the partial scan cost of the leaf, is lower. The cost is lower because fewer pages need to be
scanned for the same size of the range. Of course, here as well, index fragmentation plays an
important performance role because the partial scan is ordered.

 As an example, the following query looking for a range of orderdate values for a given
 shipperid uses this access method against the covering index idx_nc_sid_od_i_cid, created on
the key list (shipperid, orderdate) and included list (custid):

SELECT shipperid, orderdate, custid

FROM dbo.Orders

WHERE shipperid = 'C'

 AND orderdate >= '20080101'

 AND orderdate < '20090101';

 Note To have the partial scan read the minimum required pages, the fi rst index key columns
must be shipperid, orderdate, in that order. If you swap their order, the partial scan will end up
also scanning rows that meet the date range also for other shippers, requiring more I/O.

 Figure 4-45 shows the execution plan for the query, and Figure 4-46 illustrates the access
method.

C04626034.indd 235 2/13/2009 1:56:07 AM

236 Inside Microsoft SQL Server 2008: T-SQL Querying

FIGURE 4-45 Covering nonclustered index seek + ordered partial scan (execution plan)

Nonclustered
Index

Pointer to
root

FIGURE 4-46 Covering nonclustered index seek + ordered partial scan

 Here are the performance measures I got for this query:

■ Logical reads 211

■ CPU time 16 ms

■ Elapsed time 1195 ms

■ Estimated subtree cost 0.207487

C04626034.indd 236 2/13/2009 1:56:07 AM

 Chapter 4 Query Tuning 237

 Note that this plan is also a trivial plan that is not based on the query’s selectivity.

 Remember, the main benefi t of this access method is that no lookups are involved because
the index covers the query. Also, you read fewer pages than in a similar access method
against a clustered index.

 Also note that when you create covering indexes, the index columns serve two different
functions. Columns that you fi lter or sort by are required as key columns that will be
 maintained in all levels of the balanced tree, and they also determine the sort order at the
leaf. Other index columns might be required only for covering purposes. If you include all
index columns in the index’s key column list, bear the cost in mind. SQL Server needs to keep
the tree balanced, and it will have to apply physical movement of data and adjustments
in the tree when you modify key column values in the table. That’s just a waste with
 columns that are required only for covering purposes and not for fi ltering or sorting.

 To tackle this need, SQL Server supports the concept of included nonkey columns in the
 index. When you create an index, you separately specify which columns will make the key
list and which will be included just for covering purposes—only at the leaf level of the index.

 For example, our last query relied only on shipperid and orderdate for fi ltering and sorting
purposes, while it relied on custid only for covering purposes. Therefore, the index that
was defi ned to support this query (idx_nc_sid_od_i_cid) specifi ed the custid attribute in the
INCLUDE clause. Here’s the original index defi nition:

CREATE NONCLUSTERED INDEX idx_nc_sid_od_i_cid

 ON dbo.Orders(shipperid, orderdate)

 INCLUDE(custid);

 Recall that earlier I discussed the following query:

SELECT orderid, custid, empid, shipperid, orderdate

FROM dbo.Orders

WHERE custid = 'C0000000001';

 The plan that the optimizer created for it was an unordered nonclustered index scan + lookups
since no better index was in place. The optimizer reported a missing index, and the index it
recommended was on custid as the key and all other columns as included columns. Run the
following code to create such an index:

CREATE INDEX idx_nc_cid_i_oid_eid_sid_od

 ON dbo.Orders(custid)

 INCLUDE(orderid, empid, shipperid, orderdate);

 Run the query and notice how this time the number of logical reads drops to 3! Remember
that without the index the number of logical reads was more than 4,000.

 Run the following code to remove the index:

DROP INDEX dbo.Orders.idx_nc_cid_i_oid_eid_sid_od;

C04626034.indd 237 2/13/2009 1:56:07 AM

238 Inside Microsoft SQL Server 2008: T-SQL Querying

 Run the query again and notice how the number of logical reads goes back to over 4,000.

 Note that the key list is limited to 16 columns and 900 bytes. An added bonus with included
 nonkey columns is that they are not bound by the same limitations. In fact, they can even include
large objects such as variable-length columns defi ned with the MAX specifi er and XML columns.

Index Intersection

 So far, I’ve focused mainly on the performance benefi t you get from indexes when reading
data. Keep in mind, though, that indexes incur a cost when you modify data. Any change
of data (deletes, inserts, updates) must be refl ected in the indexes that hold a copy of that
data, and it might cause page splits and adjustments in the balanced trees, which can be
very expensive. Therefore, you cannot freely create as many indexes as you like, especially
in systems that involve intensive modifi cations, such as OLTP environments. You want to
 prioritize and pick the more important indexes. This is especially a problem with covering
 indexes because different queries can benefi t from completely different covering indexes, and
you might end up with a very large number of indexes that your queries could benefi t from.

 Fortunately, the problem is somewhat reduced because the optimizer supports a technique
called index intersection, where it intersects data obtained from two indexes and, if required, then
 intersects the result with data obtained from another index and so on. For example, the optimizer
will use index intersection for the following query, producing the plan shown in Figure 4-47:

SELECT orderid, custid

FROM dbo.Orders

WHERE shipperid = 'A';

FIGURE 4-47 Execution plan with index intersection

 I will elaborate on join operators in Chapter 7. The optimal index here would be one where
shipperid is defi ned as the key column and orderid and custid are defi ned as included nonkey
columns but no such index is on the table. Rather, the index idx_nc_sid_od_i_cid defi nes the

C04626034.indd 238 2/13/2009 1:56:07 AM

 Chapter 4 Query Tuning 239

shipperid as the key column and also contains the custid column, and the index PK_Orders
contains the orderid column. The optimizer used the access method nonclustered index seek
+ ordered partial scan to obtain the relevant data from idx_nc_sid_od_i_cid, and it used an
unordered nonclustered index scan to obtain the relevant data from PK_Orders. It then inter-
sected the two sets based on the row locator values; naturally, row locator values pointing to
the same rows will be matched. You can think of index intersection as an internal join based
on a match in row locator values.

 Here are the performance measures that I got for this query:

■ Scan count 6

■ Logical reads 3771

■ Physical reads 84

■ Read-ahead reads 672

■ CPU time 1248 ms

■ Elapsed time 4357 ms

■ Estimated subtree cost 13.0864

Filtered Indexes and Statistics

 SQL Server 2008 introduces support for fi ltered indexes and statistics. A fi ltered index is an index
on a subset of rows defi ned based on a predicate. Filtered indexes are cheaper to create and
to maintain compared to nonfi ltered ones because only modifi cations to the relevant subset of
rows need to be refl ected in the index. Also, fi ltered distribution statistics (histograms)— whether
created on the fi rst index key column or otherwise—are more accurate than nonfi ltered
 statistics. That’s because the maximum number of steps in a histogram is limited, and with
 fi ltered statistics that number is used to represent a smaller set of rows.

 I’ll provide several scenarios in which you may fi nd fi ltered indexes useful. The fi rst scenario
 involves queries that fi lter data based on a column that has a large percentage of NULLs. When
 fi ltering rows based on a predicate in the form <column> <operator> <value>, the fi lter eliminates
rows with a NULL in that column. The optimizer is well aware of this fact. Therefore, if you create
an index on this column excluding rows where the column is NULL, the optimizer will still consider
using the index for such predicates. The following example demonstrates this capability.

 Run the following code to create an index on the Sales.SalesOrderHeader table in the
AdventureWorks2008 database with CurrencyRateID as the key and a fi lter based on the
predicate CurrencyRateID IS NOT NULL:

USE AdventureWorks2008;

CREATE NONCLUSTERED INDEX idx_currate_notnull

 ON Sales.SalesOrderHeader(CurrencyRateID)

 WHERE CurrencyRateID IS NOT NULL;

C04626034.indd 239 2/13/2009 1:56:07 AM

240 Inside Microsoft SQL Server 2008: T-SQL Querying

 Run the following query and notice in its execution plan (shown in Figure 4-48) that the
 index was used:

SELECT *

FROM Sales.SalesOrderHeader

WHERE CurrencyRateID = 4;

FIGURE 4-48 Execution plan with fi ltered index idx_currate_notnull

 Another scenario for using fi ltered indexes is to support queries that use a range fi lter against
a certain column, and the ranges requested by users are typical. For example, suppose that
when users query orders and fi lter the orders based on a range of freight values, they tend to
be interested in cases where the freight is worth more than $5,000. In such a case, it makes
sense to create the following fi ltered index where the Freight attribute is greater than or
equal to $5,000:

CREATE NONCLUSTERED INDEX idx_freight_5000_or_more

 ON Sales.SalesOrderHeader(Freight)

 WHERE Freight >= $5000.00;

 The optimizer would then consider using the index even when the query fi lter is after
a subinterval of the index fi lter. For example, run the following query and notice in its
 execution plan (shown in Figure 4-49) that the index is used:

SELECT *

FROM Sales.SalesOrderHeader

WHERE Freight BETWEEN $5500.00 AND $6000.00;

FIGURE 4-49 Execution plan with fi ltered index idx_freight_5000_or_more

 Filtered indexes support the INCLUDE clause. For example, run the following code to create
an index on the Sales.SalesOrderHeader table, with the attribute OrderDate as the key, the

C04626034.indd 240 2/13/2009 1:56:07 AM

 Chapter 4 Query Tuning 241

attributes SalesOrderID, CustomerID, TotalDue as included columns, and a fi lter based on the
predicate TerritoryID = 5:

CREATE NONCLUSTERED INDEX idx_territory5_orderdate

 ON Sales.SalesOrderHeader(OrderDate)

 INCLUDE(SalesOrderID, CustomerID, TotalDue)

 WHERE TerritoryID = 5;

 This index covers the following query:

SELECT SalesOrderID, CustomerID, OrderDate, TotalDue

FROM Sales.SalesOrderHeader

WHERE TerritoryID = 5;

 The plan for this query is shown in Figure 4-50.

FIGURE 4-50 Execution plan 1 with fi ltered index idx_territory5_orderdate

 All index rows are needed by the query because the query’s fi lter is based on the same
predicate as the index fi lter; therefore, the optimizer chooses a full scan of the index. If your
query asks to further fi lter the rows based on a range of order dates, the optimizer would
use a seek followed by a partial scan in the index. The following query demonstrates such a
request, and its plan is shown in Figure 4-51:

SELECT SalesOrderID, CustomerID, OrderDate, TotalDue

FROM Sales.SalesOrderHeader

WHERE TerritoryID = 5

 AND OrderDate >= '20040101';

FIGURE 4-51 Execution plan 2 with fi ltered index idx_territory5_orderdate

 SQL Server automatically creates distribution statistics on the fi rst index key column.
Naturally, when creating fi ltered indexes you also get fi ltered statistics. SQL Server also allows
you to create fi ltered statistics manually, as the following example shows:

CREATE STATISTICS stats_territory4_orderdate

 ON Sales.SalesOrderHeader(OrderDate)

 WHERE TerritoryID = 4;

 You can also use fi ltered indexes to solve a common request related to enforcing data integrity.
The UNIQUE constraint supported by SQL Server treats two NULLs as equal for the purposes
of enforcing uniqueness. This means that if you defi ne a UNIQUE constraint on a NULLable
column, you are allowed only one row with a NULL in that column. In some cases, though, you

C04626034.indd 241 2/13/2009 1:56:07 AM

242 Inside Microsoft SQL Server 2008: T-SQL Querying

might need to enforce the uniqueness only of nonNULL values but allow multiple NULLs. ANSI
SQL does support such a kind of UNIQUE constraint, but SQL Server never implemented it.
Now, with fi ltered indexes, it’s quite easy to handle this need. Simply create a unique fi ltered
index based on a predicate in the form WHERE <column> IS NOT NULL. As an example, run the
 following code to create a table called T1 with such a fi ltered index on the column col1:

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1(col1 INT NULL, col2 VARCHAR(10) NOT NULL);

GO

CREATE UNIQUE NONCLUSTERED INDEX idx_col1_notnull

 ON dbo.T1(col1)

 WHERE col1 IS NOT NULL;

 Run following code twice in an attempt to insert two rows with the same non-NULL col1 value:

INSERT INTO dbo.T1(col1, col2)

 VALUES(1, 'a');

 The second run of this code will fail with the following error:

Msg 2601, Level 14, State 1, Line 1

Cannot insert duplicate key row in object 'dbo.T1' with unique index 'idx_col1_notnull'.

The statement has been terminated.

 Run the following code twice in an attempt to insert two rows with NULL col1 value:

INSERT INTO dbo.T1(col1, col2)

 VALUES(NULL, 'a');

 And this time both rows are inserted.

 When you’re done experimenting with fi ltered indexes, run the following code for cleanup:

DROP INDEX Sales.SalesOrderHeader.idx_currate_notnull;

DROP INDEX Sales.SalesOrderHeader.idx_freight_5000_or_more;

DROP INDEX Sales.SalesOrderHeader.idx_territory5_orderdate;

DROP STATISTICS Sales.SalesOrderHeader.stats_territory4_orderdate;

DROP TABLE dbo.T1;

Indexed Views

 This section briefl y describes and demonstrates the concept of indexed views for the sake
of completeness. I won’t conduct a lengthy discussion on the subject here. I’ll provide a bit
more details in Inside T-SQL Programming.

 SQL Server allows you to create indexes on views—not just on tables. Normally, a view is
a virtual object, and a query against it ultimately queries the underlying tables. However,
when you create a clustered index on a view, you materialize all of the view’s contents within
the clustered index on disk. After creating a clustered index, you can also create multiple
 nonclustered indexes on the view as well. The data in the indexes on the view will be kept in
sync with the changes in the underlying tables as with any other index.

C04626034.indd 242 2/13/2009 1:56:07 AM

 Chapter 4 Query Tuning 243

 Indexed views are benefi cial mainly in reducing I/O costs and expensive processing of data.
Such costs are especially apparent in aggregation queries that scan large volumes of data
and produce small result sets and in expensive join queries.

 For example, the following code creates an indexed view that is designed to tune aggregate queries
that group orders by empid and YEAR(orderdate), returning the count of orders for each group:

USE Performance;

IF OBJECT_ID('dbo.EmpOrders', 'V') IS NOT NULL

 DROP VIEW dbo.EmpOrders;

GO

CREATE VIEW dbo.EmpOrders

 WITH SCHEMABINDING

AS

SELECT empid, YEAR(orderdate) AS orderyear, COUNT_BIG(*) AS numorders

FROM dbo.Orders

GROUP BY empid, YEAR(orderdate);

GO

CREATE UNIQUE CLUSTERED INDEX idx_ucl_eid_oy

 ON dbo.EmpOrders(empid, orderyear);

 Query the view, and you will get the execution plan shown in Figure 4-52, showing that the
clustered index on the view was scanned:

SELECT empid, orderyear, numorders

FROM dbo.EmpOrders;

FIGURE 4-52 Execution plan for query against indexed view

C04626034.indd 243 2/13/2009 1:56:08 AM

244 Inside Microsoft SQL Server 2008: T-SQL Querying

 The view contains a very small number of rows (around a couple of thousand) compared
to the number of rows in the table (a million). The leaf of the index contains only about
10 pages. Hence, the I/O cost of the plan would be about 10 page reads.

 Here are the performance measures I got for this query:

■ Logical reads 10

■ CPU time 0 ms

■ Elapsed time 144 ms

■ Estimated subtree cost 0.0111556

 Interestingly, if you work with an Enterprise (or Developer) edition of SQL Server, the optimizer
will consider using indexes on the view even when querying the underlying tables directly. For
example, the following query produces a similar plan to the one shown in Figure 4-52, with
the same query cost:

SELECT empid, YEAR(orderdate) AS orderyear, COUNT_BIG(*) AS numorders

FROM dbo.Orders

GROUP BY empid, YEAR(orderdate);

 If you’re not working with an Enterprise edition, you have to query the view directly and also
specify that you do not want the optimizer to expand its optimization choices beyond the
scope of the view. You do so by specifying the NOEXPAND table hint: FROM <view_name>
WITH (NOEXPAND).

Analysis of Indexing Strategies

 Recall the earlier discussion about the tuning methodology. When you perform index tuning,
you do so with respect to the query patterns that incur the highest cumulative costs in the
system. For a given query pattern, you can build an index optimization scale that would
help you make the right design choices. I will demonstrate this process through an example.
To follow the demonstrations, before you continue, drop the view created earlier and all
the indexes on the Orders table except for the clustered index. Alternatively, you can rerun
the code in Listing 4-1 after commenting or removing all index and primary key creation
 statements on Orders, keeping only the clustered index.

 In our example, suppose that you need to tune the following query pattern:

SELECT orderid, custid, empid, shipperid, orderdate

FROM dbo.Orders

WHERE orderid >= value;

 Remember that the effi ciency of some access methods depends on the selectivity of the
query, while the effi ciency of others doesn’t. For access methods that depend on selectivity,

C04626034.indd 244 2/13/2009 1:56:08 AM

 Chapter 4 Query Tuning 245

assume that the query pattern is typically fairly selective (around 0.1 percent selectivity, or
around 1000 qualifying rows). Use the following query in your tuning process when aiming at
such selectivity:

SELECT orderid, custid, empid, shipperid, orderdate

FROM dbo.Orders

WHERE orderid >= 999001;

 I’ll progress in the index optimization scale from the worst-case scenario to the best, using
this query as a reference, but I’ll also describe what would happen when the selectivity of the
query changes.

Table Scan (Unordered Clustered Index Scan)

 The worst-case scenario for our query pattern with fairly high selectivity is when you have
no good index. You will get the execution plan shown in Figure 4-53, using a table scan
(unordered clustered index scan).

FIGURE 4-53 Execution plan with table scan (unordered clustered index scan)

 Even though you’re after a fairly small number of rows (1,000 in our case), the whole table is
scanned. I got the following performance measures for this query:

■ Logical reads 25175

■ CPU time 249 ms

■ Elapsed time 8605

■ Estimated subtree cost 19.3423

 This plan is trivial and not dependent on selectivity—that is, you get the same plan regardless
of the selectivity of the query.

Unordered Covering Nonclustered Index Scan

 The next step in the optimization scale would be to create a covering nonclustered index
where the fi ltered column (orderid) is not the fi rst index column:

CREATE NONCLUSTERED INDEX idx_nc_od_i_oid_cid_eid_sid

 ON dbo.Orders(orderdate)

 INCLUDE(orderid, custid, empid, shipperid);

C04626034.indd 245 2/13/2009 1:56:08 AM

246 Inside Microsoft SQL Server 2008: T-SQL Querying

 This index yields an access method that uses a full unordered scan of the leaf of the index, as
shown in Figure 4-54.

FIGURE 4-54 Execution plan with unordered covering nonclustered index scan

 The row size in the covering index is about a fi fth of the size of a full data row, and this will
be refl ected in the query’s cost and run time. Here are the performance measures I got for
this query:

■ Logical reads 5142

■ CPU time 140 ms

■ Elapsed time 2543 ms

■ Estimated subtree cost 4.58245

 As with the previous plan, this plan is also trivial and not dependent on selectivity.

 Note The run times you will get for your queries will vary based on what portion of the
data is cached. If you want to make credible performance comparisons in terms of run times,
make sure that the caching environment in both cases refl ects what you would have in your
 production environment. That is, if you expect most pages to reside in cache in your production
 environment (warm cache), run each query twice and measure the run time of the second run.
If you expect most pages not to reside in cache (cold cache), in your tests clear the cache before
you run each query.

 Before you proceed, drop the index that you just created:

DROP INDEX dbo.Orders.idx_nc_od_i_oid_cid_eid_sid;

Unordered Nonclustered Index Scan + Lookups

 The next step in our index optimization scale is to create a smaller nonclustered index that
doesn’t cover the query and that contains the fi ltered column (orderid), but not as the fi rst
key column:

CREATE NONCLUSTERED INDEX idx_nc_od_i_oid

 ON dbo.Orders(orderdate)

 INCLUDE(orderid);

C04626034.indd 246 2/13/2009 1:56:08 AM

 Chapter 4 Query Tuning 247

You get an unordered nonclustered index scan + lookups, as shown in Figure 4-55.

FIGURE 4-55 Execution plan with unordered nonclustered index scan + lookups

 Note that the effi ciency of this plan compared to the previous one depends on the selectivity
of the query. As the selectivity of the query gets lower (low selectivity means a high
 percentage of rows), the more substantial the cost is of the lookups here. In our case, the
query is fairly selective, so this plan is more effi cient than the previous two; however, with low
selectivity, this plan will be less effi cient than the previous two.

 Here are the performance measures that I got for this query:

■ Logical reads 6501

■ CPU time 109 ms

■ Elapsed time 1534 ms

■ Estimated subtree cost 5.23753

 Note that even though the number of logical reads and the query cost seem higher than
in the previous plan, you can see that the run times are lower. Remember that the lookup
 operations here traverse the clustered index, and the nonleaf levels of the clustered index are
most likely to reside in cache.

 Before you continue, drop the new index:

DROP INDEX dbo.Orders.idx_nc_od_i_oid;

Nonclustered Index Seek + Ordered Partial Scan + Lookups

 You can get the next level of optimization in the scale by creating a nonclustered noncovering
index on orderid:

CREATE UNIQUE NONCLUSTERED INDEX idx_unc_oid

 ON dbo.Orders(orderid);

 This index yields a nonclustered index seek + ordered partial scan + lookups, as shown in
Figure 4-56.

C04626034.indd 247 2/13/2009 1:56:08 AM

248 Inside Microsoft SQL Server 2008: T-SQL Querying

FIGURE 4-56 Execution plan with nonclustered index seek + ordered partial scan + lookups

 Instead of performing the full index scan as the previous plan did, this plan performs a
seek to the fi rst key in the sought range, followed by an ordered partial scan of only the
 relevant range. Still, you get as many lookups as previously, which in our case amounts to a
big chunk of the query cost. As the range grows larger, the contribution of the lookups to
the query’s cost becomes more substantial, and the costs of these two plans grows closer
and closer.

 Here are the performance measures for this query:

■ Logical reads 3976

■ CPU time 0 ms

■ Elapsed time 545 ms

■ Estimated subtree cost 3.22853

Determining the Selectivity Point

 Allow me to digress a bit to expand on a subject I started discussing earlier—plans
that are dependent on the selectivity of the query. The effi ciency of the last plan is
 dependent on selectivity because you get one whole lookup per sought row. At some
selectivity point, the optimizer would realize that a table scan is more effi cient than
 using this plan. You might fi nd it surprising, but that selectivity point is a pretty small
percentage. Even if you have no clue about how to calculate this point, you can practice
a trial-and-error approach, where you apply a binary algorithm, shifting the selectivity
point to the left or right based on the plan that you get. You can invoke a range query,
where you start with 50 percent selectivity by invoking the following query:

SELECT orderid, custid, empid, shipperid, orderdate

FROM dbo.Orders

WHERE orderid >= 500001;

 Examine the estimated execution plan (no need for actual here) and determine whether
to proceed in the next step to the left or to the right of this point, based on whether

C04626034.indd 248 2/13/2009 1:56:08 AM

 Chapter 4 Query Tuning 249

you got a table scan (clustered index scan) or an index seek. With the median key, you
get the plan shown in Figure 4-57, showing a table scan.

FIGURE 4-57 Estimated plan showing a table scan

 This tells you that 50 percent is not selective enough to justify using the nonclustered
index. So you go to the right, to the middle point between 50 percent and a 100 percent.
Following this logic, you would end up using the following keys: 750001, 875001, 937501,
968751, 984376, 992189, and 996095. The last key yields a plan where the nonclustered
index is used. So now you go to the left, to the point between the keys 992189 and
996095, which is 994142. You will fi nd that the nonclustered index is still used, so you
keep on going left, to the point between the keys 992189 and 994142. You continue this
process, going left or right according to your fi ndings, until you reach the fi rst selectivity
point where the nonclustered index is used. You will fi nd that this point is the key 993347,
producing the plan shown in Figure 4-58.

FIGURE 4-58 Estimated plan showing the index is used

 You can now calculate the selectivity, which is the number of qualifying rows (6,654)
 divided by the number of rows in the table (1,000,000), which amounts to 0.6654 percent.

 In our query pattern’s case, with this selectivity or higher (lower percentage), the
 optimizer uses the nonclustered index, while with a lower selectivity, it opts for a table
scan. As you can see, in our query pattern’s case, the selectivity point is even lower
than 1 percent. Some database professionals might fi nd this number surprisingly small,
but if you make performance estimations like the ones we did earlier, you will fi nd it
 reasonable. Don’t forget that page reads are the only factor that you should take into
consideration. You should also consider the access pattern (random/sequential) and other
factors as well. Remember that random I/O is much more expensive than sequential I/O.
Lookups use random I/O, while a table scan can potentially use sequential I/O.

C04626034.indd 249 2/13/2009 1:56:08 AM

250 Inside Microsoft SQL Server 2008: T-SQL Querying

 Before you proceed, drop the index used in the previous step:

DROP INDEX dbo.Orders.idx_unc_oid;

Clustered Index Seek + Ordered Partial Scan

 You can get the next level of optimization by creating a clustered index on the orderid
 column. Because a clustered index is already on the Orders table, drop it fi rst and then create
the desired one:

DROP INDEX dbo.Orders.idx_cl_od;

CREATE UNIQUE CLUSTERED INDEX idx_cl_oid ON dbo.Orders(orderid);

 You will get a trivial plan that uses a seek to the fi rst key matching the fi lter, followed by an
ordered partial scan of the sought range, as shown in Figure 4-59.

FIGURE 4-59 Execution plan with clustered index seek + ordered partial scan

 The main benefi t of this plan is that no lookups are involved. As the selectivity of the query
goes lower, this plan becomes more and more effi cient compared to a plan that does apply
lookups. The I/O cost involved with this plan is the cost of the seek (3 in our case), plus the
number of pages that hold the data rows in the fi ltered range (25 in our case). For the most
part, the main cost of such a plan is typically the cost of the ordered partial scan, unless the
range is really tiny (for example, a point query). Remember that the performance of an index
order scan depends to a great extent on the fragmentation level of the index. Here are the
performance measures that I got for this query:

■ Logical reads 28

■ CPU time 0 ms

■ Elapsed time 236 ms

■ Estimated subtree cost 0.130601

 Before proceeding to the next step, restore the original clustered index:

DROP INDEX dbo.Orders.idx_cl_oid;

CREATE CLUSTERED INDEX idx_cl_od ON dbo.Orders(orderdate);

C04626034.indd 250 2/13/2009 1:56:08 AM

 Chapter 4 Query Tuning 251

Covering Nonclustered Index Seek + Ordered Partial Scan

 The optimal level in our scale is a nonclustered covering index defi ned with the orderid
 column as the key and all the other columns as included nonkey columns:

CREATE UNIQUE NONCLUSTERED INDEX idx_unc_oid_i_od_cid_eid_sid

 ON dbo.Orders(orderid)

 INCLUDE(orderdate, custid, empid, shipperid);

 The plan’s logic is similar to the previous one, except that here the ordered partial scan ends
up reading fewer pages. That, of course, is because more rows fi t in a leaf page of this index
than data rows do in a clustered index page. You get the plan shown in Figure 4-60.

FIGURE 4-60 Execution plan with covering nonclustered index seek + ordered partial scan

 And here are the performance measures I got for this query:

■ Logical reads 9

■ CPU time 0 ms

■ Elapsed time 230 ms

■ Estimated subtree cost 0.0080857

 Again, this is a trivial plan. And the performance of the ordered partial scan varies depending
on the fragmentation level of the index. As you can see, the cost of the query dropped from
19.621100 in the lowest level in the scale to 0.008086 and the elapsed time from more than
8 seconds to 230 milliseconds. Such a drop in run time is common when tuning indexes in an
environment with poor index design.

 When done, drop the last index you created:

DROP INDEX dbo.Orders.idx_unc_oid_i_od_cid_eid_sid;

Summary of Analysis of Indexing Strategy

 Remember that the effi ciency of several plans in our index optimization scale was based
on the selectivity of the query. If the selectivity of a query you’re tuning varies signifi cantly
 between invocations of the query, make sure that in your tuning process you take this
into account. For example, you can prepare tables and graphs with the performance
 measurements versus selectivity and analyze such data before you make your index design
choices. Table 4-10 shows a summary of logical reads versus selectivity of the different levels
in the scale for the sample query pattern under discussion against the sample Orders table.

C04626034.indd 251 2/13/2009 1:56:08 AM

252 Inside Microsoft SQL Server 2008: T-SQL Querying

 TABLE 4-10 Logical Reads vs. Selectivity for Each Access Method

 Access

Method 1 1,000 10,000 100,000 200,000 500,000 1,000,000 Rows

 0.0001% 0.1% 1% 10% 20% 50% 100% Selectivity

 Table Scan/
Unordered
Clustered
Index Scan

25,391 25,391 25,391 25,383 25,355 25,271 25,081

 Unordered
Covering
Nonclustered
Index Scan

5,158 5,158 5,158 5,158 5,158 5,150 5,096

 Unordered
Nonclustered
Index Scan +
Lookups

2,857 5,963 33,990 312,009 618,250 1,536,956 3,065,577

 Nonclustered
Index Seek +
Ordered
Partial Scan +
Lookups

6 3,078 31,131 312,613 621,680 1,554,822 3,069,871

 Clustered
Index Seek +
Ordered
Partial Scan

4 28 249 2,447 4,890 12,220 24,434

 Covering
Nonclustered
Index Seek +
Ordered
Partial Scan

4 9 54 512 1,021 2,546 5,089

 Note To apply a certain execution plan in a case where the optimizer would normally opt for
another plan that is more effi cient, I had to use a table hint to force using the relevant index.

 Of course, logical reads shouldn’t be the only indication you rely on. Remember that
 different I/O patterns have different performance and that physical reads are much more
 expensive than logical reads. But when you see a signifi cant difference in logical reads
 between two options, it is usually a good indication of which option is faster. Figure 4-61 has
a graphical depiction of the information from Table 4-10.

 You can observe many interesting things when analyzing the graph. For example, you
can clearly see which plans are based on selectivity and which aren’t. You can also see the
 selectivity point at which one plan becomes better than another.

Access

Method 1 1,000 10,000 100,000 200,000 500,000 1,000,000 Rows

0.0001% 0.1% 1% 10% 20% 50% 100% Selectivity

C04626034.indd 252 2/13/2009 1:56:08 AM

 Chapter 4 Query Tuning 253

FIGURE 4-61 Graph of logical reads versus selectivity

 Similarly, Table 4-11 shows summary performance statistics of the query cost versus
selectivity.

 Figure 4-62 shows a graph based on the data in Table 4-11.

FIGURE 4-62 Graph of subtree cost versus selectivity

C04626034.indd 253 2/13/2009 1:56:08 AM

254 Inside Microsoft SQL Server 2008: T-SQL Querying

T
A

B
L
E
 4

-1
1

E
st

im
a
te

d
 S

u
b

tr
e

e
 C

o
st

s
v
s.

 S
e

le
c
ti

v
it

y
 f

o
r

E
a
c
h

 A
c
c
e

ss
 M

e
th

o
d

A
cc

e
ss

M
e
th

o
d

1
1

,0
0

0
1
0

,0
0

0
1
0

0
,0

0
0

2
0

0
,0

0
0

5
0

0
,0

0
0

1
,0

0
0

,0
0

0
R

o
w

s

0
.0

0
0
1
%

0
.1

%
1
%

1
0

%
2

0
%

5
0

%
1
0

0
%

S
e
le

c
ti

v
it

y

Ta
b

le
 S

ca
n/

U
no

rd
er

ed

C
lu

st
er

ed

In
d

ex
 S

ca
n

19
.3

42
3

19
.3

42
3

19
.3

42
3

19
.3

42
3

19
.3

42
3

19
.3

42
3

19
.6

21
8

U
no

rd
er

ed

C
ov

er
in

g

N
o

nc
lu

st
er

ed

In
d

ex
 S

ca
n

4.
58

24
5

4.
58

24
5

4.
58

24
5

4.
58

24
5

4.
58

24
5

4.
58

24
5

4.
86

40
2

U
no

rd
er

ed

N
o

nc
lu

st
er

ed

In
d

ex
 S

ca
n

+

Lo
o

ku
p

s

3.
69

10
1

5.
23

75
3

32
.0

46
7

96
.3

64
7

11
3.

06
1

16
0.

82
5

24
4.

09
6

N
o

nc
lu

st
er

ed

In
d

ex
 S

ee
k

+

O
rd

er
ed

Pa

rt
ia

l S
ca

n
+

Lo

o
ku

p
s

0.
00

65
70

4
3.

22
85

3
27

.4
12

6
97

.1
21

11
9.

37
1

18
2.

76
3

28
9.

65
6

C
lu

st
er

ed

In
d

ex
 S

ee
k

+

O
rd

er
ed

Pa

rt
ia

l S
ca

n

0.
13

06
01

0.
13

06
01

0.
13

06
01

0.
13

06
01

0.
13

06
01

0.
13

06
01

19
.1

69
9

C
ov

er
in

g

N
o

nc
lu

st
er

ed

In
d

ex
 S

ee
k

+

O
rd

er
ed

Pa

rt
ia

l S
ca

n

0.
00

80
85

7
0.

00
80

85
7

0.
00

80
85

7
0.

00
80

85
7

0.
00

80
85

7
0.

00
80

85
7

4.
86

32
8

A
cc

e
ss

M
e
th

o
d

1
1

,0
0

0
1
0

,0
0

0
1
0

0
,0

0
0

2
0

0
,0

0
0

5
0

0
,0

0
0

1
,0

0
0

,0
0

0
R

o
w

s

0
.0

0
0
1
%

0
.1

%
1
%

1
0

%
2

0
%

5
0

%
1
0

0
%

S
e
le

c
ti

v
it

y

C04626034.indd 254 2/13/2009 1:56:08 AM

 Chapter 4 Query Tuning 255

 You can observe a striking resemblance between the two graphs. When you think about it,
this makes sense because most of the cost involved with our query pattern is because of I/O.
Naturally, in plans where a more substantial portion of the cost is related to CPU, you will get
different results.

 Of course, you also want to generate similar statistics and graphs for the actual run times of the
queries in your benchmarks. At the end of the day, run time is what the user cares about.

 I also fi nd it valuable to visualize performance information in another graphical way, as
shown in Figure 4-63.

Ta
ble

 S
ca

n/U
no

rd
er

ed
 C

lus
ter

ed

Ind
ex

 S
ca

n

Uno
rd

er
ed

 C
ov

er
ing

Non
clu

ste
re

d I
nd

ex
 S

ca
n

Uno
rd

er
ed

 N
on

clu
ste

re
d I

nd
ex

 S
ca

n

+ Lo
ok

up
s

Non
clu

ste
re

d I
nd

ex
 S

ee
k +

 O
rd

er
ed

Par
tia

l S
ca

n +
 Lo

ok
up

s

Clus
ter

ed
 In

de
x S

ee
k +

 O
rd

er
ed

Par
tia

l S
ca

n

Cov
er

ing
 N

on
clu

ste
re

d I
nd

ex
 S

ee
k +

Ord
er

ed
 P

ar
tia

l S
ca

n

Low
Selectivity

100%

High
Selectivity

0%

slow

fast

FIGURE 4-63 Index optimization scale

 You might fi nd it easier with this illustration to identify plans that are based on selectivity
versus plans that aren’t (represented as a dot) and also to make comparisons between the
performance of the different levels of optimization in the scale.

C04626034.indd 255 2/13/2009 1:56:09 AM

256 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note For simplicity’s sake, all statistics and graphs shown in this section were collected against
the Performance database I used in this chapter, where the level of fragmentation of indexes
was minimal. When you conduct benchmarks and performance tests, make sure you introduce
the appropriate levels of fragmentation in the indexes in your test system so that they refl ect the
fragmentation levels of the indexes in your production system adequately. The performance of
index order scans might vary signifi cantly based on the level of fragmentation of your indexes.
Remember that the storage engine uses index order scans to carry out requests from the
 relational engine to process full ordered index scans, partial ordered index scans, and in some
cases also unordered index scans. (See the section “The Storage Engine’s Treatment of Scans”
earlier in the chapter for details.) Similarly, you also need to examine the average page densities
in your production system and introduce similar page densities in the test system.

 Besides having the ability to design good indexes, it is also important to be able to identify
which indexes are used more heavily and which are rarely or never used. You don’t want to
keep indexes that are rarely used because they do have negative performance effects on
modifi cations.

 SQL Server collects index usage information in the background and enables you to query
this information through dynamic management objects. You get a DMF called dm_db_index_
operational_stats and a DMV called dm_db_index_usage_stats. The dm_db_index_operational_
stats DMF gives you low-level I/O, locking, latching, and access method activity information.
You provide the function with database ID, object ID, index ID (or 0 for a heap), and partition
ID. You can also request information about multiple entities by specifying a NULL in the
 relevant argument. For example, to get information about all objects, indexes, and partitions
in the Performance database, you would invoke the function as follows:

SELECT *

FROM sys.dm_db_index_operational_stats(

 DB_ID('Performance'), null, null, null);

 The dm_db_index_usage_stats DMV gives you usage counts of the different index operations:

SELECT *

FROM sys.dm_db_index_usage_stats;

 These dynamic management objects make the analysis of index usage simple and accurate.

Fragmentation

 I referred to index fragmentation on multiple occasions in this chapter. When I mentioned
fragmentation, I referred to a type known as logical scan fragmentation or average
 fragmentation in percent or external fragmentation. As I mentioned earlier, this type refl ects the
percentage of out-of-order pages in the index in terms of their fi le order versus their logical
order in the linked list. Remember that this fragmentation can have a substantial impact on
 ordered scan operations in indexes. It has no effect on operations that do not rely on the
 index’s linked list—for example, seek operations, lookups, allocation order scans, and so on.

C04626034.indd 256 2/13/2009 1:56:09 AM

 Chapter 4 Query Tuning 257

You want to minimize the fragmentation level of indexes for queries with a substantial portion
of their cost involved with ordered scans. You do so by rebuilding or reorganizing indexes.

 Another type of fragmentation that you typically care about is what I referred to as average
page density. Some database professionals refer to this type of fragmentation as internal
fragmentation, but to avoid confusion I consciously didn’t use this term earlier. Although
 logical scan fragmentation is never a good thing, average page density has two facets. A
low percentage (low level of page population) has a negative impact on queries that read
data because they end up reading more pages than they could potentially if the pages
were better populated. The positive impact of having some free space in index pages is that
 insertions of rows to such pages would not cause page splits, which are very expensive. As
you can guess, free space in index pages is bad in systems that involve mostly reads (for
 example, data warehouses) and good for systems that involve many inserts (for example,
OLTP systems). You might even want to introduce some free space in index pages by
 specifying a fi llfactor value when you rebuild your indexes.

 To determine whether you need to rebuild or reorganize your indexes, you need information
about both types of fragmentation. You can get this information by querying the DMF
dm_db_index_physical_stats. For example, the following query will return fragmentation
 information about the indexes in the Performance database:

SELECT *

FROM sys.dm_db_index_physical_stats(

 DB_ID('Performance'), NULL, NULL, NULL, 'SAMPLED');

 The fragmentation types I mentioned show up in the attributes avg_fragmentation_in_
percent and avg_page_space_used_in_percent, and as you can see, the attribute names are
self-explanatory.

 As I mentioned earlier, to treat both types of fragmentation you need to rebuild or
 reorganize the index. Rebuilding an index has the optimal defragmentation effect. The
 operation makes its best attempt to rebuild the index such that the fi le order of the pages is
as close as possible to their order in the linked list and to make the pages as contiguous as
possible. Also, remember that you can specify a fi llfactor to introduce some free space in the
index leaf pages. Note that if your computer has multiple CPUs and SQL Server uses parallel
index rebuilds (Enterprise edition only), the operation will fi nish faster than with a single
thread but is likely to result in more logical fragmentation. You can restrict the operation
to a single CPU with the MAXDOP hint—this way, at the cost of a longer index rebuild, you
will likely get less fragmentation. Also, SQL Server needs space for sorting in the fi legroup
where the index resides. If the fi legroup fi les have only a little free space, some logical
 fragmentation in the index at the end of the operation is likely. To minimize fragmentation,
ensure that you have suffi cient free space in the fi les or use the option SORT_IN_TEMPDB to
request that the index rebuild use space from the tempdb database for sorting.

 By default, index rebuilds are offl ine operations. Rebuilding a clustered index acquires an
exclusive lock for the whole duration of the operation, meaning that other processes can

C04626034.indd 257 2/13/2009 1:56:09 AM

258 Inside Microsoft SQL Server 2008: T-SQL Querying

neither read nor write to the table. Rebuilding a nonclustered index acquires a shared lock,
meaning that writes are blocked against the table, and obviously, the index cannot be used
during the operation. SQL Server Enterprise supports online index operations by request (you
need to specify ON in the option ONLINE) that allow you to create, rebuild, and drop indexes
online. In addition, these operations allow users to interact with the data while the operation
is in progress. Online index operations use row-versioning technology. When an index is
rebuilt online, SQL Server actually maintains two indexes behind the scenes, and when the
operation is done, the new one overrides the old one.

 For example, the following code rebuilds the idx_cl_od index on the Orders table online:

ALTER INDEX idx_cl_od ON dbo.Orders REBUILD WITH (ONLINE = ON);

 Note that online index operations need suffi cient space in the database and overall are
 slower than offl ine operations. If you can spare a maintenance window for the activity to
work offl ine, you had better do so. Even when you do perform the operations online, they
have a performance impact on the system while they are running, so it’s best to run them
during off-peak hours.

 Instead of rebuilding an index, you can also reorganize it. Reorganizing an index involves
a bubble sort algorithm to sort the index pages in the fi le according to their order in the
 index’s linked list. The operation does not attempt to make the pages more contiguous
(reduce gaps). As you can guess, the defragmentation level that you get from this operation
is not as optimal as fully rebuilding an index. Also, this operation performs more logging
than an index rebuild overall and therefore is typically slower.

 So why use this type of defragmentation? First, in non-Enterprise editions of SQL Server
it is the only online defragmentation utility. The operation grabs short-term locks on a
pair of pages at a time to determine whether they are in the correct order, and if they are
not, it swaps them. Second, an index rebuild must run as a single transaction, and if it’s
aborted while in process, the whole activity is rolled back. This is unlike an index reorganize
 operation, which can be interrupted as it operates on a pair of pages at a time. When you
later run the reorganize activity again, it will pick up where it left off earlier.

 Here’s how you reorganize the idx_cl_od index:

ALTER INDEX idx_cl_od ON dbo.Orders REORGANIZE;

Partitioning

 SQL Server supports native partitioning of tables and indexes. Partitioning your objects means
that they are internally split into multiple physical units that together make the object (table or
index). Partitioning is virtually unavoidable in medium to large environments. By partitioning your
objects, you improve the manageability and maintainability of your system, and you improve
the performance of activities such as purging historic data, data loads, and others. Partitioning

C04626034.indd 258 2/13/2009 1:56:09 AM

 Chapter 4 Query Tuning 259

in SQL Server is native—that is, you have built-in tools to partition the tables and indexes,
while, logically, to the applications and users they appear as whole units. You need to know
some important details about querying and query tuning when your tables and indexes are
 partitioned. Chapter 11, “Querying Partitioned Tables,” covers the subject in detail.

Preparing Sample Data

 When conducting performance tests, it is vital that the sample data you use be well prepared
so that it refl ects the production system as closely as possible, especially with respect to the
factors you are trying to tune. Typically, it’s not realistic to just copy all the data from the
 production tables, at least not with the big ones. However, you should make your best effort
to have an adequate representation that refl ects similar data distribution, density of keys,
cardinality, and so on. You also want your queries against the test system to have similar
selectivity to the queries against the production system. Performance tests can be skewed
when the sample data does not adequately represent the production data.

 In this section, I’ll provide an example of skewed performance testing results resulting from
inadequate sample data. I’ll also discuss the TABLESAMPLE option.

Data Preparation

 When I prepared the sample data for this chapter’s demonstrations, I didn’t need to refl ect
a specifi c production system, so preparing sample data was fairly simple. I needed it mainly
for the “Tuning Methodology” and “Index Tuning” sections. I could express most of my
points through simple random distribution of the different attributes that were relevant
to our discussions. But our main data table, Orders, does not accurately refl ect an average
 production Orders table. For example, I produced a fairly even distribution of values in the
different attributes, while typically in production systems, different attributes have different
types of distribution (some uniform, some standard). Some customers place many orders,
and others place few. Some customers are also more active during certain periods of time
and less active during others. Depending on your tuning needs, you might or might not need
to refl ect such things in your sample data, but you defi nitely need to consider them and
 decide whether they do matter.

 When you need large tables with sample data, the easiest thing to do is to generate some
small table and duplicate its content (save the key columns) many times. This can be fi ne if,
for example, you want to test the performance of a user-defi ned function invoked against
every row or a cursor manipulation iterating through many rows. But such sample data
in some cases can yield completely different performance than what you would get with
sample data that more adequately refl ects your production data. To demonstrate this, I’ll
walk you through an example that I cover in much more depth in Inside T-SQL Programming.
I often give this exercise in class and ask students to prepare a large amount of sample data
without giving any hints.

C04626034.indd 259 2/13/2009 1:56:09 AM

260 Inside Microsoft SQL Server 2008: T-SQL Querying

 The exercise has to do with a table called Sessions, which you create and populate by running
the following code:

SET NOCOUNT ON;

USE Performance;

IF OBJECT_ID('dbo.Sessions', 'U') IS NOT NULL DROP TABLE dbo.Sessions;

CREATE TABLE dbo.Sessions

(

 keycol INT NOT NULL IDENTITY,

 app VARCHAR(10) NOT NULL,

 usr VARCHAR(10) NOT NULL,

 host VARCHAR(10) NOT NULL,

 starttime DATETIME NOT NULL,

 endtime DATETIME NOT NULL,

 CONSTRAINT PK_Sessions PRIMARY KEY(keycol),

 CHECK(endtime > starttime)

);

GO

INSERT INTO dbo.Sessions VALUES

 ('app1', 'user1', 'host1', '20090212 08:30', '20090212 10:30'),

 ('app1', 'user2', 'host1', '20090212 08:30', '20090212 08:45'),

 ('app1', 'user3', 'host2', '20090212 09:00', '20090212 09:30'),

 ('app1', 'user4', 'host2', '20090212 09:15', '20090212 10:30'),

 ('app1', 'user5', 'host3', '20090212 09:15', '20090212 09:30'),

 ('app1', 'user6', 'host3', '20090212 10:30', '20090212 14:30'),

 ('app1', 'user7', 'host4', '20090212 10:45', '20090212 11:30'),

 ('app1', 'user8', 'host4', '20090212 11:00', '20090212 12:30'),

 ('app2', 'user8', 'host1', '20090212 08:30', '20090212 08:45'),

 ('app2', 'user7', 'host1', '20090212 09:00', '20090212 09:30'),

 ('app2', 'user6', 'host2', '20090212 11:45', '20090212 12:00'),

 ('app2', 'user5', 'host2', '20090212 12:30', '20090212 14:00'),

 ('app2', 'user4', 'host3', '20090212 12:45', '20090212 13:30'),

 ('app2', 'user3', 'host3', '20090212 13:00', '20090212 14:00'),

 ('app2', 'user2', 'host4', '20090212 14:00', '20090212 16:30'),

 ('app2', 'user1', 'host4', '20090212 15:30', '20090212 17:00');

CREATE INDEX idx_nc_app_st_et ON dbo.Sessions(app, starttime, endtime);

 The Sessions table contains information about user sessions against different applications. The
request is to calculate the maximum number of concurrent sessions per application—that is, the
maximum number of sessions that were active at any point in time against each application.

 The following query, followed by its output, produces the requested information:

SELECT app, MAX(concurrent) AS mx

FROM (SELECT app,

 (SELECT COUNT(*)

 FROM dbo.Sessions AS S

 WHERE T.app = S.app

 AND T.ts >= S.starttime

 AND T.ts < S.endtime) AS concurrent

 FROM (SELECT app, starttime AS ts FROM dbo.Sessions) AS T) AS C

GROUP BY app;

C04626034.indd 260 2/13/2009 1:56:09 AM

 Chapter 4 Query Tuning 261

app mx

---------- -----------

app1 4

app2 3

 The derived table T contains the application name (app) and session start time (starttime as
ts) pairs. For each row of T, a subquery counts the number of sessions that were active for the
application T.app at time T.ts. The outer query then groups the data by app and returns the
maximum count for each group. SQL Server’s optimizer generates the execution plan shown
in Figure 4-64 for this query.

FIGURE 4-64 Execution plan for query against the Sessions table

 The script that creates the Sessions table also creates the covering index idx_nc_app_st_et
based on the key list (app, starttime, endtime), which is the optimal index for this query. In the
plan, this index is fully scanned (Index Scan operator) to return all rows. As rows are streamed
out from the Index Scan operator, a Nested Loops operator invokes a series of activities
(Clustered Index Scan, followed by Stream Aggregate) to calculate the count of active sessions
for each row. Because the Sessions table is so tiny (only one page of data), the optimizer
simply decides to scan the whole table (unordered clustered index scan) to calculate each
count. With a larger data set, instead of scanning the table, the plan would perform a seek
and ordered partial scan of the covering index to obtain each count. Finally, another Stream
Aggregate operator groups the data by app to calculate the maximum count for each group.

 Now that you’re familiar with the problem, suppose you were asked to prepare sample data
with 1,000,000 rows in the source table (call it BigSessions) such that it would represent a
 realistic environment. Ideally, you should be thinking about realistic distribution of session
start times, session duration, and so on. However, people often take the most obvious
 approach, which is to duplicate the data from the small source table many times; in our case,
such an approach would drastically skew the performance compared to a more realistic
 representation of production environments.

 Now run the following code to generate the BigSessions table by duplicating the data from
the Sessions table many times. You will get 1,000,000 rows in the BigSessions table:

IF OBJECT_ID('dbo.BigSessions', 'U') IS NOT NULL DROP TABLE dbo.BigSessions;

SELECT ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS keycol,

 app, usr, host, starttime, endtime

INTO dbo.BigSessions

FROM dbo.Sessions AS S

 CROSS JOIN Nums

WHERE n <= 62500;

C04626034.indd 261 2/13/2009 1:56:09 AM

262 Inside Microsoft SQL Server 2008: T-SQL Querying

CREATE UNIQUE CLUSTERED INDEX idx_ucl_keycol

 ON dbo.BigSessions(keycol);

CREATE INDEX idx_nc_app_st_et

 ON dbo.BigSessions(app, starttime, endtime);

 Run the following query against BigSessions:

SELECT app, MAX(concurrent) AS mx

FROM (SELECT app,

 (SELECT COUNT(*)

 FROM dbo.BigSessions AS S

 WHERE T.app = S.app

 AND T.ts >= S.starttime

 AND T.ts < S.endtime) AS concurrent

 FROM (SELECT app, starttime AS ts FROM dbo.BigSessions) AS T) AS C

GROUP BY app;

Note that this is the same query as before (but against a different table). The query will fi nish
in a few seconds, and you will get the execution plan shown in Figure 4-65.

FIGURE 4-65 Execution plan for query against the BigSessions table with inadequate sample data

C04626034.indd 262 2/13/2009 1:56:09 AM

 Chapter 4 Query Tuning 263

 Here are the performance measures I got for this query:

■ Logical reads 212102

■ CPU time 3463 ms

■ Elapsed time 4064 ms

■ Estimated subtree cost 113.904

 At fi rst glance it might seem like the lower branch of the plan is executed once for each of the
rows returned from the Index Scan operator. The Index Scan operator returns 1,000,000 rows.
The lower branch of the plan seems to do quite signifi cant work per outer row— scanning
all rows with the same app value as in the outer row and starttime smaller than or equal to
the one in the outer row. Given such a plan and such a large number of rows involved, it is
quite inconceivable that the query would fi nish in a matter of only four seconds. The fact that
there’s a performance skew here because of bad sample data is elusive. The derived table
T has only 14 distinct rows (with app, ts values). Observe in Figure 4-65 that the Number of
Executions property of the Index Seek operator is 14. The optimizer is smart enough to realize
that it can reuse the information obtained for one row for all other rows with the same app
and ts values. Therefore, it invoked the Index Scan operator that scans the relevant range of
rows and the Stream Aggregate operator that counts them only 14 times!

 Observe the Table Spool operator as well, which represents a temporary table holding the
session count for each distinct combination of app and starttime values. Notice the number
of rebinds (14) and the number of rewinds (999,986). Remember that a rebind means
that one or more correlated parameters of the join operator changed and that the inner
side must be reevaluated. That happens 14 times, once for each distinct pair of app and
starttime— meaning that the actual count activity preceding the operator took place only
14 times. A rewind means that none of the correlated parameters changed and that the prior
inner result set can be reused; this happened 999,986 times (1,000,000 – 14 = 999,986).

 That’s why the query fi nished in only a few seconds. A production environment might have
only a few applications, but so few distinct start times would be unlikely. Naturally, with more
realistic data distribution for our scenario, the count activity will take place many more times
than 14, and you will get a much slower query. It was a mistake to prepare the sample data
by simply copying the rows from the small Sessions table many times. The distribution of
 values in the different columns should represent production environments more realistically.

 Run the following code to populate BigSessions with more adequate sample data:

IF OBJECT_ID('dbo.BigSessions', 'U') IS NOT NULL DROP TABLE dbo.BigSessions;

SELECT

 ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS keycol,

 D.*,

 DATEADD(

 second,

C04626034.indd 263 2/13/2009 1:56:09 AM

264 Inside Microsoft SQL Server 2008: T-SQL Querying

 1 + ABS(CHECKSUM(NEWID())) % (20*60),

 starttime) AS endtime

INTO dbo.BigSessions

FROM

(

 SELECT

 'app' + CAST(1 + ABS(CHECKSUM(NEWID())) % 10 AS VARCHAR(10)) AS app,

 'user1' AS usr,

 'host1' AS host,

 DATEADD(

 second,

 1 + ABS(CHECKSUM(NEWID())) % (30*24*60*60),

 '20090101') AS starttime

 FROM dbo.Nums

 WHERE n <= 1000000

) AS D;

CREATE UNIQUE CLUSTERED INDEX idx_ucl_keycol

 ON dbo.BigSessions(keycol);

CREATE INDEX idx_nc_app_st_et

 ON dbo.BigSessions(app, starttime, endtime);

 I populated the table with sessions that start at random times over a period of one month
and last up to 20 minutes. I also distributed 10 different application names randomly. Now
request an estimated execution plan for the original query, and you will get the plan shown
in Figure 4-66.

FIGURE 4-66 Estimated execution plan for query against the BigSessions table with adequate sample data

C04626034.indd 264 2/13/2009 1:56:09 AM

 Chapter 4 Query Tuning 265

 The cost of the query is now 52,727. Trust me: You don’t want to run it to see how long it
 really takes. Or, if you like, you can start running it and come back the next day hoping that it
fi nished.

 Now that the sample data is more realistic, you can see that the set-based solution presented
in this section is slow—unlike what you might be led to believe when using inadequate
 sample data. In short, you can see how vital it is to put some thought into preparing good
sample data. Of course, the tuning process only starts now; you might want to consider
query revisions, cursor-based solutions, revisiting the model, and so on. But here I wanted
to focus the discussion on bad sample data. I’ll conduct a more thorough tuning discussion
 related to the problem at hand in Inside T-SQL Programming.

TABLESAMPLE

 SQL Server supports a feature that allows you to sample data from an existing table. The tool
is a clause called TABLESAMPLE that you specify after the table name in the FROM clause
along with some options. Here’s an example for using TABLESAMPLE to request 1,000 rows
from the Orders table in the Performance database:

SELECT *

FROM dbo.Orders TABLESAMPLE (1000 ROWS);

 Note that if you run this query you probably won’t get exactly 1,000 rows. I’ll explain why
shortly.

 You can specify TABLESAMPLE on a table-by-table basis. Following the TABLESAMPLE
keyword, you can optionally specify the sampling method to use. Currently, SQL Server
supports only the SYSTEM method, which is also the default if no method is specifi ed. In
the future, we might see additional algorithms. Per ANSI, the SYSTEM keyword represents
an implementation-dependent sampling method. This means you will fi nd different
 algorithms implemented in different products when using the SYSTEM method. In SQL
Server, the SYSTEM method implements the same sampling algorithm used to sample
 pages to generate distribution statistics.

 You can use either the ROWS or the PERCENT keyword to specify how many rows you
would like to get back. Based on your inputs, SQL Server calculates random values to
 fi gure out whether a page should be returned. Note that the decision of whether to read
a portion of data is done at the page level. This fact, along with the fashion in which SQL
Server determines whether to pick a page based on a random factor, means that you won’t
 necessarily get the exact number of rows that you asked for; rather, you’ll get a fairly close
value. The more rows you request, the more likely you are to get a result set size close to
what you requested.

C04626034.indd 265 2/13/2009 1:56:09 AM

266 Inside Microsoft SQL Server 2008: T-SQL Querying

 Here’s an example for using the TABLESAMPLE clause in a query against the Orders table,
requesting 1,000 rows:

SELECT *

FROM dbo.Orders TABLESAMPLE SYSTEM (1000 ROWS);

 I ran this query three times and got a different number of rows every time: 880, 1200, and
920.

 An important benefi t you get with the SYSTEM sampling method is that only the chosen
pages (those that SQL Server picked) are scanned. So even if you query a huge table, you
will get the results pretty fast—as long as you specify a fairly small number of rows. As I
 mentioned earlier, you can also specify a percentage of rows. Here’s an example requesting
0.1 percent, which is equivalent to 1,000 rows in our table:

SELECT *

FROM dbo.Orders TABLESAMPLE (0.1 PERCENT);

 When you use the ROWS option, SQL Server internally fi rst converts the specifi ed number
of rows to a percentage. Remember that you are not guaranteed to get the exact number
of rows that you requested; rather, you’ll get a close value determined by the number of
pages that were picked and the number of rows on those pages (which may vary).

 To make it more likely that you’ll get the exact number of rows you are after, specify a higher
number of rows in the TABLESAMPLE clause and use the TOP option to limit the upper bound
that you will get, like so:

SELECT TOP (1000) *

FROM dbo.Orders TABLESAMPLE (2000 ROWS);

 There’s still a chance that you will get fewer rows than the number you requested, but you’re
guaranteed not to get more. By specifying a higher value in the TABLESAMPLE clause, you
increase the likelihood of getting the number of rows you are after.

 If you need to get repeatable results, use a clause called REPEATABLE, which was designed
for this purpose, providing it with the same seed in all invocations. For example, running the
following query multiple times yields the same result, provided that the data in the table has
not changed:

SELECT *

FROM dbo.Orders TABLESAMPLE (1000 ROWS) REPEATABLE(42);

 Note that with small tables you might not get any rows at all. For example, run the following
query multiple times, requesting a single row from the Production.ProductCostHistory table
in the AdventureWorks2008 database:

SELECT *

FROM AdventureWorks2008.Production.ProductCostHistory TABLESAMPLE (1 ROWS);

C04626034.indd 266 2/13/2009 1:56:09 AM

 Chapter 4 Query Tuning 267

 You only occasionally get any rows back. I witnessed a very interesting discussion in a
 technical SQL Server forum. Someone presented such a query and wanted to know why
he didn’t get any rows back. Steve Kass, a friend and coauthor of mine and the ingenious
 technical editor of these books, provided the following illuminating answer and kindly
 allowed me to quote him here:

 “As documented in Books Online (“Limiting Results Sets by Using TABLESAMPLE”),
the sampling algorithm can only return full data pages. Each page is selected or
skipped with probability [desired number of rows]/[rows in table].

 The Production.ProductCostHistory table fi ts on 3 data pages. Two of those pages
contain 179 rows, and one contains 37 rows. When you sample for 10 rows (1/40
of the table), each of the 3 pages is returned with probability 1/40 and skipped
with probability 39/40. The chance that no rows are returned is about (39/40)^3,
or about 93%. When rows are returned, about 2/3 of the time you will see 179
rows, and about 1/3 of the time you will see 37 rows. Very rarely, you will see
more rows, if two or more pages are returned, but this is very unlikely.

 As BOL suggests, SYSTEM sampling (which is the only choice) is not recommended
for small tables. I would add that if the table fi ts on N data pages, you should not
try to sample fewer than 1/N-th of the rows, or that you should never try to sample
fewer rows than fi t on at least 2 or 3 data pages.

 If you were to sample roughly two data pages worth of rows, say 263 rows, the
chance of seeing no rows would be about 3.7%. The larger (more data pages) the
table, the smaller the chance of seeing no rows when at least a couple of pages
worth are requested. For example, if you request 300 rows from a 1,000,000-row
table that fi ts on 10,000 data pages, only in 5% of trials would you see no rows,
even though the request is for far less than 1% of the rows.

 By choosing the REPEATABLE option, you will get the same sample each time. For
most seeds, this will be an empty sample in your case. With other seeds, it will
contain 37, 179, 216, 358, or 395 rows, depending on which pages were selected,
with the larger numbers of rows returned for very few choices of seed.

 That said, I agree that the consequences of returning only full data pages results in
very confusing behavior!”

 With small tables, you might want to consider other sampling methods. You don’t care too
much about scanning the whole table because you consider these techniques against small
tables anyway. For example, the following query will scan the whole table, but it guarantees
that you get a single random row:

SELECT TOP(1) *

FROM AdventureWorks2008.Production.ProductCostHistory

ORDER BY CHECKSUM(NEWID());

C04626034.indd 267 2/13/2009 1:56:10 AM

268 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note that other database platforms, such as DB2, implement additional algorithms—for
 example, the Bernoulli sampling algorithm. You can implement it in SQL Server by using the
following query, provided by Steve Kass:

SELECT *

FROM AdventureWorks2008.Production.ProductCostHistory

WHERE ABS((ProductID%ProductID)+CHECKSUM(NEWID()))/POWER(2.,31) < 0.01

 The constant 0.01 is the desired probability (in this case, 1 percent) of choosing a row. The
 expression ProductID%ProductID was included to make the WHERE clause correlated and
force its evaluation on each row of ProductCostHistory. Without it, the value of the WHERE
condition would be calculated just once, and either the entire table would be returned or no
rows would be returned. Note that this technique requires a full table scan and can take a
while with large tables. You can test it against our Orders table and see for yourself.

An Examination of Set-Based vs. Iterative/Procedural
Approaches and a Tuning Exercise

 Thus far in the chapter, I focused mainly on index tuning for given queries. However, in large
part, query tuning involves query revisions. That is, with different queries or different T-SQL
code you can sometimes get substantially different plans, with widely varying costs and run
times. In a perfect world, the ideal optimizer would always fi gure out exactly what you are
trying to achieve, and for any form of query or T-SQL code that attempts to achieve the same
thing, you would get the same plan—and only the best plan, of course. But alas, we’re not
there yet. You still have many performance improvements to gain merely from changing the
way you write your code. This will be demonstrated thoroughly throughout these books. Here,
I’ll demonstrate a typical tuning process based on code revisions by following an example.

 Note that set-based queries are typically superior to solutions based on iterative/ procedural
logic—such as ones using cursors, loops, and the like. Besides the fact that set-based
 solutions usually require much less code, they also usually involve less overhead than cursors.
A lot of overhead is incurred with the record-by-record manipulation of cursors. You can
make simple benchmarks to observe the performance differences. Run a query that simply
selects all rows from a big table, discarding the results in the graphical tool so that the time
it takes to display the output won’t be taken into consideration. Also run cursor code that
simply scans all table rows one at a time. Even if you use the fastest available cursor—FAST_
FORWARD (forward only, read only)—you will fi nd that the set-based query runs dozens of
times faster. You can express the cost of processing n rows in a table using a set-based query
as n and then processing the same number of rows with a cursor that can be expressed as
n + n×o, where o represents the overhead associated with a single row manipulation with
the cursor. Besides the overhead involved with a cursor, you’ll also have an issue with the
 execution plans. When using a cursor, you apply a very rigid physical approach to accessing
the data because your code focuses a lot on how to achieve the result. A set-based query, on

C04626034.indd 268 2/13/2009 1:56:10 AM

 Chapter 4 Query Tuning 269

the other hand, focuses logically on what you want to achieve rather than how to achieve it.
Typically, set-based queries leave the optimizer with much more room for maneuvering and
leeway to do what it is good at—optimization.

 That’s the rule of thumb. However, I’m typically very careful with adopting rules of thumb,
especially with regard to query tuning—because optimization is such a dynamic world, and
there are always exceptions. In fact, as far as query tuning is concerned, my main rule of
thumb is to be careful about adopting rules of thumb.

 You will encounter cases where it is very hard to beat cursor code, and you need to be able to
identify them; but these cases are the minority. I’ll discuss the subject at length in Chapter 8,
“Cursors,” of Inside T-SQL Programming.

 To demonstrate a tuning process based on code revisions, I’ll use our Orders and Shippers
tables. The request is to return shippers that used to be active but do not have any activity
as of 2004. That is, a qualifying shipper is one for whom you cannot fi nd an order on or after
2004. You don’t care about shippers who have made no orders at all.

 Before you start working, remove all indexes from the Orders table and make sure that
you have only the clustered index defi ned on the orderdate column and the primary key
(nonclustered) defi ned on the orderid column.

 If you rerun the code in Listing 4-1, make sure that for the Orders table, you keep only the
following index and primary key defi nitions:

CREATE CLUSTERED INDEX idx_cl_od ON dbo.Orders(orderdate);

ALTER TABLE dbo.Orders ADD

 CONSTRAINT PK_Orders PRIMARY KEY NONCLUSTERED(orderid);

 Next, run the following code to add a few shippers to the Shippers table and a few orders to
the Orders table:

INSERT INTO dbo.Shippers(shipperid, shippername) VALUES

 ('B', 'Shipper_B'),

 ('D', 'Shipper_D'),

 ('F', 'Shipper_F'),

 ('H', 'Shipper_H'),

 ('X', 'Shipper_X'),

 ('Y', 'Shipper_Y'),

 ('Z', 'Shipper_Z');

INSERT INTO dbo.Orders(orderid, custid, empid, shipperid, orderdate) VALUES

 (1000001, 'C0000000001', 1, 'B', '20030101'),

 (1000002, 'C0000000001', 1, 'D', '20030101'),

 (1000003, 'C0000000001', 1, 'F', '20030101'),

 (1000004, 'C0000000001', 1, 'H', '20030101');

 You’re supposed to get the shipper IDs B, D, F, and H in the result. These are the only shippers
that were active at some point but not as of 2004.

C04626034.indd 269 2/13/2009 1:56:10 AM

270 Inside Microsoft SQL Server 2008: T-SQL Querying

 In terms of index tuning, it’s sometimes hard to fi gure out what the optimal indexes are without
having an existing query to tune. But in our case, index tuning is rather simple and possible
without having the solution code fi rst. Obviously, you will want to search for the maximum
 orderdate value for each shipperid, so naturally the optimal index would be a nonclustered
 covering index defi ned with shipperid and orderdate as the key columns, in that order:

CREATE NONCLUSTERED INDEX idx_nc_sid_od

 ON dbo.Orders(shipperid, orderdate);

 I suggest that at this point you try to come up with the best-performing solution that you
can and then compare it with the solutions that I will demonstrate.

 As the fi rst solution, I’ll start with the following cursor-based code:

DECLARE

 @sid AS VARCHAR(5),

 @od AS DATETIME,

 @prevsid AS VARCHAR(5),

 @prevod AS DATETIME;

DECLARE ShipOrdersCursor CURSOR FAST_FORWARD FOR

 SELECT shipperid, orderdate

 FROM dbo.Orders

 ORDER BY shipperid, orderdate;

OPEN ShipOrdersCursor;

FETCH NEXT FROM ShipOrdersCursor INTO @sid, @od;

SELECT @prevsid = @sid, @prevod = @od;

WHILE @@fetch_status = 0

BEGIN

 IF @prevsid <> @sid AND @prevod < '20040101' PRINT @prevsid;

 SELECT @prevsid = @sid, @prevod = @od;

 FETCH NEXT FROM ShipOrdersCursor INTO @sid, @od;

END

IF @prevod < '20040101' PRINT @prevsid;

CLOSE ShipOrdersCursor;

DEALLOCATE ShipOrdersCursor;

 This code implements a straightforward data-aggregation algorithm based on sorting. The
cursor is defi ned on a query that sorts the data by shipperid and orderdate, and it scans the
records in a forward-only, read-only manner—the fastest scan you can get with a cursor. For
each shipper, the code inspects the last row found—which happens to hold the maximum
 orderdate for that shipper—and if that date is earlier than ‘20040101’, the code emits the
shipperid value. This code ran on my computer for 28 seconds. Imagine the run time in a
larger Orders table that contains millions of rows.

C04626034.indd 270 2/13/2009 1:56:10 AM

 Chapter 4 Query Tuning 271

 The next solution (call it set-based solution 1) is a natural GROUP BY query that many
 programmers would come up with:

SELECT shipperid

FROM dbo.Orders

GROUP BY shipperid

HAVING MAX(orderdate) < '20040101';

 You just say what you want rather than spending most of your code describing how to get
it. The query groups the data by shipperid, and it returns only shippers with a maximum
 orderdate that is earlier than ‘20040101’.

 This query ran for about one second on my computer. The optimizer produced the execution
plan shown in Figure 4-67 for this query.

FIGURE 4-67 Execution plan for set-based solution 1

 The plan shows that our covering index was fully scanned in order. The maximum orderdate
was isolated for each shipperid by the Stream Aggregate operator. Then the fi lter operator
fi ltered only shippers for whom the maximum orderdate was before ‘20040101’.

 Here are the vital performance measures I got for this query:

■ Logical reads 2736

■ CPU time 562 ms

■ Elapsed time 1224 ms

C04626034.indd 271 2/13/2009 1:56:10 AM

272 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note that you might get slightly different performance measures. At this point, you need to
ask yourself if you’re happy with the result and, if you’re not, whether you have potential for
optimization at all.

 Of course, this solution is a big improvement over the cursor-based one in terms of both
 performance and code readability and maintenance. However, a run time of close to one
second for such a query might not be satisfactory. Keep in mind that an Orders table in some
production environments can contain far more than one million rows.

 If you determine that you want to tune the solution further, you now need to fi gure out
whether you have potential for optimization. Remember that in the execution plan for the
last query, the leaf level of the index was fully scanned to obtain the latest orderdate for each
shipper. That scan required 2,736 page reads. Our Shippers table contains 12 shippers. Your
gut feeling should tell you that you must be able to fi nd a way to obtain the data with far
fewer reads. In our index, the rows are sorted by shipperid and orderdate. This means that
in some groups of rows—a group for each shipperid—the last row in each group contains
the latest orderdate that you want to inspect. Alas, the optimizer currently doesn’t have
the logic within it to “zigzag” between the levels of the index, jumping from one shipper’s
 latest orderdate to the next. If it did, the query would have incurred substantially less I/O. By
the way, such zigzagging logic can be benefi cial for other types of requests—for example,
 requests involving fi lters on a nonfi rst index column and others as well. But I won’t digress.

 Of course, if you request the latest orderdate for a particular shipper, the optimizer can use a
seek directly to the last shipper’s row in the index. Such a seek would cost three reads in our
case. Then the optimizer can apply a TOP operator going one step backward, returning the
desired value—the latest orderdate for the given shipper—to a Stream Aggregate operator.

 The following query demonstrates acquiring the latest orderdate for a particular shipper,
 producing the execution plan shown in Figure 4-68:

SELECT MAX(orderdate) FROM dbo.Orders WHERE shipperid = 'A';

FIGURE 4-68 Execution plan for a query handling a particular shipper

 This plan incurs only three logical reads. Now, if you do the math for 12 shippers, you will
realize that you can potentially obtain the desired result with substantially less I/O than 2,736
reads. Of course, you could scan the Shippers rows with a cursor and then invoke such a
query for each shipper, but it would be counterproductive and a bit ironic to beat a cursor
solution with a set-based solution that you then beat with another cursor.

C04626034.indd 272 2/13/2009 1:56:10 AM

 Chapter 4 Query Tuning 273

 Realizing that what you’re after is invoking a seek operation for each shipper, you might
come up with the following attempt as a step toward the solution (prior to fi ltering):

SELECT shipperid,

 (SELECT MAX(orderdate)

 FROM dbo.Orders AS O

 WHERE O.shipperid = S.shipperid) AS maxod

FROM dbo.Shippers AS S;

 You query the Shippers table, and for each shipper, a subquery acquires the latest orderdate
value (aliased as maxod).

 But strangely enough, you get the plan shown in Figure 4-69, which looks surprisingly similar
to the previous one in the sense that a full ordered scan of the index on the Orders table is
used to calculate the MAX aggregate.

FIGURE 4-69 Execution plan for query with subquery and MAX

 You may have expected the optimizer to fi rst scan the 12 shippers from the Shippers table
and then use a loop that for each shipper applies a seek operation in the index to pull the
max orderdate for that shipper. Of course, without access to the optimizer’s code it would be
hard to tell why you didn’t get the plan you expected. Fortunately, I got an explanation from
Cesar Galindo-Legaria, who does have such access. It appears that this query fell victim to an
attempt the optimizer made to improve the query performance, while in practice it ended
up hurting it. The optimizer unnested the correlated subquery, converting it internally to a
join. The reason that the optimizer applies such rearrangements is that the join form tends
to be optimized better (enables better cardinality estimates and navigational strategies from
both sides). However, the join form prevents the special scalar aggregate optimization over
an index that we want to see here. The reason that the optimizer doesn’t reintroduce the
 correlation (that would allow the scalar aggregate optimization) is that the exploration space
explodes easily. As a result the current plan is far from ideal. This query incurred 2,736 logical
reads against the Orders table and ran for close to one second on my computer. It seems
that the optimizer got too sophisticated this time.

C04626034.indd 273 2/24/2009 4:26:43 AM

274 Inside Microsoft SQL Server 2008: T-SQL Querying

 The situation seems to be evolving into a battle of wits with the optimizer—not a battle to
the death, of course; there won’t be any iocane powder involved here, just I/O. The optimizer
pulls a trick on you; now pull your best trick. One attempt before considering a complete
rewrite of the solution is to use a logically equivalent query but with the TOP option instead
of MAX. The reasoning behind trying this trick is that from observations of many plans, it
 appears that the optimizer does not unnest subqueries when you use TOP.

 You issue the following query, close your eyes, and hope for the best:

SELECT shipperid,

 (SELECT TOP (1) orderdate

 FROM dbo.Orders AS O

 WHERE O.shipperid = S.shipperid

 ORDER BY orderdate DESC) AS maxod

FROM dbo.Shippers AS S;

 And when you open your eyes, voilà! You see the plan you wished for, as shown in Figure 4-70.

FIGURE 4-70 Execution plan for query with subquery and TOP

 The Shippers table is scanned, and for each of the 12 shippers, a Nested Loops operator
invokes a similar activity to the one you got when invoking a query for a particular shipper.
This plan incurs only 2 logical reads against Shippers and 36 logical reads against Orders.
The net CPU time is not even measurable with STATISTICS TIME (shows up as 0), and I got
about 100 milliseconds of elapsed time. You can now slightly revise the code to have the
subquery in the WHERE clause and fi lter only the shippers with a maximum order date that is
before 2004, like so (call it set-based solution 2):

SELECT shipperid

FROM dbo.Shippers AS S

WHERE

 (SELECT TOP (1) orderdate

 FROM dbo.Orders AS O

 WHERE O.shipperid = S.shipperid

 ORDER BY orderdate DESC) < '20040101';

 The plan is very similar to the one you got prior to fi ltering, but with an additional fi lter
 operator, as you can see in Figure 4-71.

C04626034.indd 274 2/13/2009 1:56:10 AM

 Chapter 4 Query Tuning 275

FIGURE 4-71 Execution plan for set-based solution 2

 Once you get over the excitement of outwitting the optimizer, you start having some
 troubling thoughts. Why is it that the optimizer doesn’t unnest subqueries when using
TOP? In some cases it makes sense not to unnest—when there’s the possibility that the
nested and unnested forms would yield different results. But there are cases, like in our
query, where both forms would yield the same results. The SQL Server developers know
that many programmers and DBAs use the TOP option as a way to force the optimizer
not to unnest subqueries and therefore are reluctant to change this optimizer’s behavior.
But it’s hard to say how long the developers would keep restraining the optimizer in
this manner. What if in a future version of SQL Server or perhaps a future service pack
the developers won’t restrain the optimizer anymore? Then SQL Server could internally
 translate our TOP query to the logically equivalent MAX or MIN version, and then you
would get the ineffi cient plan for the aforementioned reasons.

 And if this is not confusing enough, see what happens if you make slight revisions (logically
meaningless ones, mind you) to the MAX version of the solution:

SELECT shipperid

FROM dbo.Shippers AS S

WHERE

 (SELECT DISTINCT MAX(orderdate)

 FROM dbo.Orders AS O

 WHERE O.shipperid = S.shipperid) < '20040101';

SELECT shipperid

FROM dbo.Shippers AS S

WHERE

 (SELECT TOP (1) MAX(orderdate)

 FROM dbo.Orders AS O

 WHERE O.shipperid = S.shipperid) < '20040101';

 In both cases you get the more effi cient plan that fi rst scans the 12 shippers and in a loop
pulls the maximum order date with a seek against the index on the Orders table.

 In short, I’d be reluctant to rely on any of the preceding variations just because of the big
 impact that the slight revisions have on the way the query is optimized. In this sense I’d
 consider the optimization of this general form of the solution unstable. I’d keep looking for
alternatives that are more stable.

C04626034.indd 275 2/13/2009 1:56:10 AM

276 Inside Microsoft SQL Server 2008: T-SQL Querying

 If you look hard enough, you will fi nd this one (call it set-based solution 3):

SELECT shipperid

FROM dbo.Shippers AS S

WHERE NOT EXISTS

 (SELECT * FROM dbo.Orders AS O

 WHERE O.shipperid = S.shipperid

 AND O.orderdate >= '20040101')

 AND EXISTS

 (SELECT * FROM dbo.Orders AS O

 WHERE O.shipperid = S.shipperid);

 This solution is natural and in fact is quite a literal translation of the English phrasing of the request.
You query the Shippers table and fi lter shippers for whom you cannot fi nd an order on or past
‘20040101’ and for whom you can fi nd at least one order. You get the plan shown in Figure 4-72.

FIGURE 4-72 Execution plan for set-based solution 3

 The Shippers table is scanned, yielding 12 rows. For each shipper, a Nested Loops operator
invokes a seek against our covering index to check whether an orderdate of ‘20040101’ or
later exists for the shipper. If the answer is no, another seek operation is invoked against
the index to check whether an order exists at all. The I/O cost against the Orders table is
59 reads—slightly higher than the previous solution. However, in terms of simplicity and
 naturalness, this solution wins big time! Therefore, I would stick to it.

 As you probably realize, index tuning alone is not enough; you can do much with the way
you write your queries. Being a Matrix fan, I’d like to believe that it’s not the spoon that
bends; it’s only your mind.

Conclusion

 This chapter covered a tuning methodology, index tuning, the importance of sample data, and
query tuning by query revisions. So much is involved in tuning, and knowledge of the product’s
architecture and internals plays a big role in doing it well. But knowledge is not enough. I hope
this chapter gave you the tools and guidance that will allow you to put your knowledge into
action as you progress in these books—and, of course, in your production environments.

C04626034.indd 276 2/13/2009 1:56:10 AM

 277

Chapter 5

Algorithms and Complexity
 Steve Kass

 This chapter contains a brief introduction to a central topic in computer science: algorithms
and complexity. In theory, modern computers can solve nearly any problem that can be
expressed precisely. In practice, however, we encounter two considerable obstacles: No
 computer can solve problems without valid strategies or methods for solving them, and
valid problem-solving strategies and methods are useful only if they yield answers within a
 reasonable amount of time.

 Strategies and methods for solving particular problems, given arbitrary input, are called
 algorithms. The computational complexity of a problem-solving algorithm measures the way
in which the resources needed to execute the algorithm depend on the input for which the
problem is to be solved.

 Some algorithms require—for correctness, effi ciency, or both—data to be organized in
a particular way. A data structure is a scheme for organizing data to support effi cient
 algorithms, and most algorithms assume—either implicitly or explicitly—particular
data structures.

 In some respects, database programmers need to know considerably less about algorithms
and complexity than other programmers, such as systems programmers. Recall that SQL
is a fourth-generation, declarative programming language. An SQL program describes the
 desired result, and the RDBMS implementation analyzes the description and then chooses
and implements an effi cient algorithm to produce the result. The mere fact that correct
 implementations of SQL exist is remarkable; the fact, that there exist astoundingly good
 implementations, like Microsoft’s, is nothing short of miraculous. The modern RDBMS is not
only a testament to its creators; it’s also a testament to the foundations of computer science,
which provided the mathematical framework for conceiving, developing, and validating such
a complex system.

 Many excellent books on algorithms and complexity are available, and they typically include
a catalog of important algorithms and analyses of their complexity. In this chapter, I will
 instead describe some real-world problems that serve as good analogies to get you thinking
about some of algorithms Microsoft SQL Server implements. These problems, which for
small input are hand solvable, demonstrate some fundamental patterns of complexity,
and they illustrate in a concrete way several factors that affect the running time and space
 requirements of important algorithms.

C05626034.indd 277 2/18/2009 11:36:39 PM

278 Inside Microsoft SQL Server 2008: T-SQL Querying

Do You Have a Quarter?

 Many of you probably have a change jar somewhere—a container full of coins. From time
to time, you might dig into your change jar to fi nd a quarter,1 and the process of doing so is
probably second nature. Partly because it’s so familiar, the process of retrieving a quarter from
a change jar will be a useful example for the discussion of algorithms and complexity. While a
coin isn’t exactly data, retrieving a quarter is much like executing this T-SQL SELECT query:

SELECT TOP (1) Coin

FROM ChangeJar

WHERE Denomination = 0.25

ORDER BY (SELECT NULL);

How to Retrieve a Quarter from a Coin Jar

 I’m sure you know more than one algorithm for executing this task—to retrieve a quarter
from a coin jar. Most of the time, you look into the jar, spot a quarter at the top, and pull it
out. Every now and then, however, there’s no quarter at the top, and you have to dig deeper.
When this happens, you might shake the jar or stick your hand into it and mix the coins up,
expecting to fi nd a quarter at the top again after the mixing. If you still can’t fi nd a quarter,
you might empty the coins onto your kitchen counter and spread them out so that you
can hunt through your coins more quickly than you can when they’re all in the jar. This last
 strategy, of course, requires you have a kitchen counter (or other fl at surface) nearby that you
can clear off before emptying the coins onto it. If you try to do this right before suppertime,
you might have to wait a little while or abandon the strategy.

 You can see from this example that how—and how quickly—you can fi nd a quarter in a coin
jar depends on many things: what’s in the jar, how the jar’s contents are distributed, how
you go about looking, and what other tools (like a table) are at your disposal, just to name a
few. More obscure factors, too, can affect both your strategy and its effi ciency: how bright
the room lights are, how big your hands are compared to the size of the jar’s mouth, how
full the jar is (because shaking a full jar doesn’t do a good job of mixing up its contents), and
 whether someone else is also retrieving a quarter from of the same jar (or preparing dinner)
at the same time as you. How many other factors can you think of?

 The various strategies for retrieving a quarter, as well as the factors that affect how well each
strategy works, all have analogs both in the abstract study of algorithms and complexity
and in the practical matter of executing queries in a SQL Server database. For example, the
kitchen counter corresponds to both the abstract notion of space and the real SQL Server
data cache. Shaking the coin jar corresponds to randomizing the distribution of values in the
algorithm’s input or changing the SQL Server statistics for an index or table.

1 A quarter is the largest commonly circulating US coin, and it is worth 25 cents, or one-quarter dollar. If digging for
quarters isn’t something you do often enough to have a “feel” for it, use an analogous scenario, with any common
coin instead of quarters.

C05626034.indd 278 2/18/2009 11:36:39 PM

 Chapter 5 Algorithms and Complexity 279

Sometimes the Jar Has No Quarters

 Just because you need a quarter doesn’t mean you have a quarter, and it’s certainly possible
your jar is full of pennies, nickels, and dimes—and perhaps a few buttons and some pocket
lint—but no quarters. If you run into this situation too often, you might consider rethinking
your coin storage strategy and devise a system that will let you know right away that you’ve
run out of quarters. For example, you might replace your change jar with two jars: one for
quarters and one for everything else. You won’t be able to empty your pockets as quickly
because you’ll have to separate the quarters from the rest of the change, but when you go
looking for change, you’ll know right away whether you have any quarters.

 Note If you’re like me, the two-jar solution won’t really work. After a long day, I’d throw
all my change, quarters included, into the nonquarters jar. Integrity constraints like CHECK
(denomination <> 0.25) are one reason an RDBMS is better than a room full of jars!

 I’ve described two coin storage setups: a one-jar setup, which optimizes the task of storing
coins, and a two-jar setup, which optimizes the task of retrieving single quarters (whether
this task is successful or not). The abstract analog in this case is the idea of a data structure,
and the practical analog is the design of a database—choosing how to represent real-world
information using database tables and how to arrange the information in tables with indexes.
To analyze and design computer programs that are effective and effi cient, it’s important
(and rewarding) to understand the complex and beautiful interplay between data structures,
 algorithms, and complexity. If you enjoy it, I can guarantee it will never bore you.

 Pay close attention to day-to-day problem-solving tasks like digging for change. If you do,
you’ll develop insight into the algorithms and complexity of more abstract problem-solving
tasks like those that come up in database management.

How Algorithms Scale

 The jargon of database management uses the word scale in phrases such as scale out, scale up,
and scalable solution. To talk about how a system or algorithm scales is to talk about how the
system or algorithm is affected by changes (usually increases) in the amount of input data.

 A naïve expectation about scaling is to expect this behavior: if there’s twice as much data, it
will take twice as long to process the data. While some systems and algorithms behave that
way, many don’t. Some tasks take the same amount of time regardless of the amount of
data. For these tasks, if there’s twice as much data, it will take no longer to process the data.
An example is the task of retrieving a quarter from a jar of quarters. No matter how full the
jar is, it takes one simple step to retrieve a quarter from the jar (or, if the jar is empty, to fail
at the task). For other tasks, it might take four times as long to process twice as much data.
For some kinds of tasks, twice as much data might take so much longer to process that you’d
never live to see the result!

C05626034.indd 279 2/18/2009 11:36:39 PM

280 Inside Microsoft SQL Server 2008: T-SQL Querying

An Example of Quadratic Scaling

 One of my fi rst encounters with a real-world scaling problem and with naïve expectations
about scaling took place in 1969 in my eighth-grade metalworking class. One of the projects
was to build a 5-by-7-inch folder out of sheet metal, hinged at the top. I wanted to build a
folder twice as big (10-by-14 inch) so that I could use it for standard notebook paper. Shop
class students had to pay for the materials they used, and for this project, that meant three
pieces of metal (two pieces of sheet metal for the front and back of the folder and one
length of hinged metal for the shorter side) and a few rivets or screws. The teacher agreed to
let me build a double-sized folder, as long as I paid double for the materials. Of course my
folder needed more than twice as much metal.

 Let’s do the actual calculation, assuming the fl at metal cost $0.01/square inch and the hinge
cost $0.10/inch, ignoring the cost of the rivets and screws. The details for several different
sizes of notebook, including the two sizes mentioned here, are shown in Table 5-1.

TABLE 5-1 Cost of Materials for Metal Folders

 Folder size 5” by 7” 10” by 14” 50” by 70” 100” by 140”

 Sheet metal required 70 sq. in. 280 sq. in. 7,000 sq. in 28,000 sq. in.

 Cost of sheet metal $0.70 $2.80 $70.00 $280.00

 Length of hinge required 5 inches 10 inches 50 inches 100 inches

 Cost of hinge $0.50 $1.00 $5.00 $10.00

 Total cost of materials $1.20 $3.80 $75.00 $290.00

 The cost of materials for my double-sized 10-by-14-inch folder was about 3.17 times the cost
of materials for the 5-by-7-inch folder. Note that doubling the dimensions doesn’t always
increase the cost of materials by a factor of 3.17. The materials for a 100-by-140-inch folder
cost about 3.87 times as much as for a 50-by-70-inch folder.

The relationship between notebook size and materials cost in this example is called quadratic.
We’ll see why a bit later in the chapter.

An Algorithm with Linear Complexity

Recall that the way in which an algorithm’s cost depends on its input size is called the
 algorithm’s complexity. When an algorithm’s complexity agrees with the naïve expectation
(twice the input requires twice the cost), the algorithm is said to have linear complexity because
the graph of cost as a function of input size in this case is (or more precisely, approaches) a
straight line.

One algorithm with linear complexity is the algorithm for fi nding the largest number in
an unordered list as follows: allocate a variable to keep track of one number, initialize that
 variable to the value of the fi rst item in the list, and then inspect the remaining items in
the list one by one, overwriting the value of the variable each time a larger value is found

Folder size 5” by 7” 10” by 14” 50” by 70” 100” by 140”

C05626034.indd 280 2/18/2009 11:36:39 PM

 Chapter 5 Algorithms and Complexity 281

in the list. Of course, if the numbers in the list are in order, you can fi nd the largest number
in the list much more quickly: just look at the end of the list, where the largest number must
be. The trade-off is that you must maintain the ordering of the list.

Exponential and Superexponential Complexity

 As the input size grows, some algorithms become more expensive at a truly astonishing rate.
Unfortunately, for many important problems the only known algorithms exhibit exponential
or superexponential complexity, and these problems are effectively unsolvable for all but the
very smallest inputs.

 One problem with superexponential complexity is the minimum bin packing problem, where
the goal is to pack a collection of items into the fewest possible number of bins of fi xed capacity.

The Minimum Bin Packing Problem

 Given a collection of n items with weights w1, w2, . . . , wn and an unlimited supply of
empty bins, each with capacity C, where C is no smaller than the weight of the heaviest
item, what is the smallest number of bins into which the items can be distributed
 without exceeding the bin capacity?

 All known algorithms for solving the bin packing problem effectively consider every
possible arrangement of the items, and this requires a number of computational steps
that grows exponentially with the number of items n.

 Fortunately, there are effi cient ways to solve the bin packing problem approximately
that will require no more than 1¼ times the optimal number of bins.

The Factorial Function

 As I pointed out in the sidebar, all known algorithms for solving the bin packing problem
 effectively consider every possible arrangement of the n input items. How many arrangements
is that? For a small number of items, it’s easy to list all the arrangements and count them.
Three items, A, B, and C, can be arranged in six ways: ABC, ACB, BAC, BCA, CAB, and CBA. Four
items can be arranged in 24 ways—there are six ways to arrange the items A, B, and C, and
for each one, there are four different places to “drop in” item D. For example, you can drop
item D into the arrangement BAC in these four ways: DBAC, BDAC, BADC, and BACD. Increasing
the number of items from three to four therefore quadrupled (multiplied by four) the number
of arrangements—from 6 to 24. In the same way, increasing the number of items from four to
fi ve will quintuple the number of arrangements—from 24 to 120.

 There’s a simple mathematical pattern to these numbers 6, 24, and 120: 6 = 3×2×1,
24 = 4×3×2×1, and 120 = 5×4×3×2×1. The pattern continues, and the number of arrangements
of n items is the product of the integers 1 through n. The notation n!, called the factorial
 function of n or n factorial, represents the product of the integers from 1 through n.

C05626034.indd 281 2/18/2009 11:36:39 PM

282 Inside Microsoft SQL Server 2008: T-SQL Querying

 Because there are n! arrangements to consider, it takes at least n! computational steps to
solve the minimum bin packing problem for n input items. Later in this chapter, you’ll see
why the growth rate of n! as a function of n is called superexponential, and you’ll also
see why problems like this one are considered unsolvable.

Sublinear Complexity

 By necessity, if you want to determine something about data, you have to inspect the data.
For example, to determine the lowest salary among an organization’s employees, you need
to inspect each employee’s salary. This suggests that there are never algorithms that can
 handle n items in less than n operations or that n is the most effi cient complexity possible.
An algorithm that handles input size n with complexity better than n is called a sublinear
 algorithm. Are there any algorithms with sublinear complexity?

 Yes, there are. We saw one such algorithm earlier. The quarter-retrieval problem can be solved
in a single operation, regardless of the number of coins, if the coins are organized in two
jars—one for quarters and one for other coins. At fi rst, you might consider this strategy for
 achieving sublinear performance to be a bit of a cheat. After all, it takes at least n steps to
 organize n coins, so even if the retrieval of a quarter can be accomplished in one step, the entire
workload of organizing n coins, then retrieving a quarter, takes at least n steps. However, you
need to organize the coins only once. Once you’ve organized the coins into two jars, you can
retrieve quarters repeatedly using the fast algorithm (take a coin from the quarters jar).

 If you can solve a problem in sublinear time, it must be the case that you don’t need to
 inspect all the data to solve the problem. Later in this chapter, we’ll see examples of problems
that can be answered without looking at all the data. In some cases, it’s obvious this is
 possible; in other cases, it’s not, and the algorithms are surprisingly clever.

Binary Search

 When data is well maintained, many tasks are easier to solve. For example, the binding of
this book maintains the book’s pages in order. Page 50 comes right before page 51 and so
on. If I asked you to turn to page 273, you could do so relatively quickly—not immediately
in a single step but quickly—and probably in a dozen or fewer steps. If the book were twice
as long, it’s unlikely it would take more than one extra step to fi nd a given page. Chances are
you would use a variation on binary search. The binary search algorithm allows you to fi nd a
target value in an ordered list of n items in log2 n time as follows. Go to the middle item of
the list. If the target item equals this item, you’re done. If not, compare the target item with
the middle item to decide which half of the list you need to search. Next, inspect the middle
item of the half you’re searching and repeat the strategy. Each inspection narrows your
search to half as many items as the previous step, so the number of items you have to inspect
equals the number of times you can divide n by 2 and get a result greater than 1. You can do
this log2 n times (give or take one).

C05626034.indd 282 2/18/2009 11:36:39 PM

 Chapter 5 Algorithms and Complexity 283

Constant Complexity

 An algorithm is said to have constant complexity if it can be executed in a number of steps
that’s independent of the input size. The algorithm to fi nd a quarter in a jar of quarters is an
example of an algorithm with constant complexity. The algorithm that answers the question
“Are there any customers?” by scanning a Customers table also has constant complexity.

Technical Defi nitions of Complexity

 Most algorithms require some fi xed overhead costs regardless of input. For example, an
 algorithm to count the number of rows in a table might require overhead to allocate space for
and initialize an integer variable to be incremented for each row. When the input is large, fi xed
overhead is likely to be insignifi cant relative to the total execution cost. Comparing execution
costs for large inputs provides more insight into the essence of an algorithm’s computational
complexity. In the metal notebook example, doubling the size of a large notebook increased
the cost of materials by a factor of about 3.87, and you can check that doubling the size of
an extremely large notebook increases the cost of materials by a factor of almost exactly 4.0.
The relationship between hinge length (in inches) and materials cost (in dollars) for notebooks
having the same proportions as a 5-by-7-inch notebook can be expressed mathematically as
MaterialsCost(h) = 0.1h+0.028h2. This cost function is a quadratic polynomial.

 Complexity is often expressed by the relationship between input size and cost for inputs large
enough that fi xed overhead costs don’t matter. Technically, this is the asymptotic complexity.
For large values of h in the preceding example, the quadratic term 0.028h2 dominates the
cost, and doubling the input size approximately quadruples the cost. The single expression
h2 characterizes this doubling-quadrupling behavior, and the cost in this case is said to have
asymptotic order h2.

Big Oh and related notations

 Complexity is often expressed using Big Oh notation. In Big Oh notation—which uses not
only the big oh symbol O but also big theta (�), little oh (o), big omega (�), and others—the
asymptotic cost in the previous example can be expressed this way: MaterialsCost(n) � �(n2),
or “the cost function is in big theta of n-squared.” You can also say the cost “is n-squared” or
“grows like n-squared.”

 For many algorithms that depend on more than the size of the input, it may be possible
to express the minimum and maximum possible costs as functions of the input size. These
are called the best-case complexity and worst-case complexity, respectively. It may also be
 possible to determine lower and upper bounds on complexity. Big Oh notation is useful in
describing these various properties of complexity as well as other asymptotic properties of
an algorithm’s complexity.

C05626034.indd 283 2/18/2009 11:36:39 PM

284 Inside Microsoft SQL Server 2008: T-SQL Querying

 I won’t defi ne the Big Oh notations here; the defi nitions are quite technical. However, I will
point out that you’re more likely to hear someone mention Big Oh than Big Theta, which
I used earlier. If you hear students of computer science refer to Big Oh, they are almost
 certainly talking about algorithmic complexity, but they could mean Big Anything because
the meanings of the various notations are frequently confused.

 The Big Oh family of notations are generally attributed to the late-nineteenth- and
 early-twentieth-century number theorists Landau and Bachmann. Although they look like
real-valued functions, the expressions �(n2), O(n), o(log n), and so on are not real-valued
functions. Instead, they are sets of functions, whence the preceding language “in �(n2)”.

 Unfortunately, this notation is used in a number of confusing (some might say careless,
 sloppy, or wrong) ways. In particular, f = O(g) is commonly written to mean not that f equals
O(g) but that f equals some element of O(g).

 Note The abuse of notation here is similar to that used when describing indefi nite integrals in
calculus. Neither side of the expression �x3dx = ¼x4 + C is a function.

 Despite a few shortcomings, Big Oh notation is useful because it captures important aspects
of the relationship between input size and cost. For example every function in �(n2) exhibits
the “twice the input, four times the cost” behavior once n is large enough. The complexity
class �(n2) also contains all quadratic polynomials, and every function in �(n2) is called
 quadratically complex.

 Big Oh notation also makes it possible to describe cost “functions” that aren’t in fact
 deterministic functions. In the coin jar example, the time required to fi nd a quarter wasn’t a
well-defi ned function of the number of coins in the jar. The time depended in part on the
number of coins in the jar but also on other features of the input, such as the proportion
of quarters and how the quarters were distributed in the jar, to name two. Although
QuarterRetrievalTime(n) isn’t a function, we know that the time required to retrieve a quarter
(or fail to retrieve a quarter, if there are no quarters) is at worst proportional to n. In Big Oh
notation, this is easy to say: QuarterRetrievalTime(n) = O(n).

Polynomial and Nonpolynomial Complexity

 As we saw earlier, the cost functions 0.028n2 and n2 are both in the complexity class �(n2)
because they both exhibit the “twice the input, four times the cost” behavior for large inputs.
On the other hand, the behavior of the cost function n3 is “twice the input, eight times
the cost,” and n3 is not in the class �(n2). In general, if the asymptotic behavior of a cost
 function C(n) is “twice the input, k times the cost” for some positive constant k, C(n) is in the
 complexity class �(np), where p = log2 k. The complexity classes �(np) for different values
of p are distinct, but if C(n) is in �(np) for any value of p ≥ 0, C(n) is said to have polynomial
 complexity. The class of functions with polynomial complexity is called P. Many real-world
problems have complexity np—typically for p-values between 0 and 4.

C05626034.indd 284 2/18/2009 11:36:39 PM

 Chapter 5 Algorithms and Complexity 285

The cost function for the minimum bin packing problem, n!, and, unfortunately, the
cost functions for quite a few important real-world problems, have nonpolynomial complexity
 because they grow too quickly to belong in P. Functions with nonpolynomial complexity include
2n (which is the number of subsets of an n-element set), 3n (the number of ways to assign a truth
value of True, False, or Unknown to each of n propositions), n! (the number of arrangements of
n items), 2n×n (the number of distinct binary relations on an n-element set), and nn (the number
of ways to match the elements of one n-element set to the elements of another).

 If an algorithm has polynomial complexity, it’s generally possible to accommodate an
 increase in input size with additional resources. On the other hand, if an algorithm has
 nonpolynomial complexity, it’s generally impossible to use it for all but very small inputs,
and scaling may be out of the question. Problems for which the only known algorithms have
nonpolynomial complexity are called intractable. They aren’t unsolvable because there are
algorithms to solve them, but for all practical purposes, they might as well be unsolvable—for
large input, the algorithms won’t come up with a solution in anyone’s lifetime.

Comparing Complexities

 The central processing unit (CPU) of a typical computer today can execute a few billion2
 low-level instructions per second. Higher-level operations like those expressed as statements
in a language like C# or Fortran require multiple machine instructions, and a reasonable
benchmark to use for comparing complexities is a million steps per second. The sidebar
“Sorting a Million Numbers” describes a quick test that affi rms this benchmark.

Sorting a Million Numbers

 In Chapter 6, “Subqueries, Table Expressions, and Ranking Functions,” you’ll fi nd
the code to create Nums, a million-row table of integers. The query below sorts the
1,000,000 integers in Nums according to the value of REVERSE(n), for which there’s
no supporting index. This query took 21 seconds to execute on my single-core home
 computer. You don’t have to jump to Chapter 6 and fi nd the defi nition of Nums. You
can use any million-row table you might have handy. Select one column and order it by
an expression that isn’t indexed.

USE InsideTSQL2008;

GO

SELECT n

FROM dbo.Nums

ORDER BY REVERSE(n);

2 In this book, billion means 109. In the UK and Australia, the word billion (or a linguistic cognate) historically
 described the larger number 1012. If confusion is possible, it’s safe to describe 109 as a thousand million.

USE InsideTSQL2008;

GO

SELECT n

FROM dbo.Nums

ORDER BY REVERSE(n);

C05626034.indd 285 2/18/2009 11:36:39 PM

286 Inside Microsoft SQL Server 2008: T-SQL Querying

 According to the estimated (nonparallel) execution plan for this query, 97 percent of
the cost goes to the Sort operator. The complexity of SQL Server’s sorting algorithm is
n log2 n. For n=1,000,000, n log2 n microseconds is about 19.9 seconds, which is very
close to 97 percent of the actual elapsed time.

 Note Before running the query, I selected the option Discard Results after Query
Executes in Management Studio for both text and grid results. You can fi nd it by choosing
Query Options from the shortcut menu of the query editor. This way, the elapsed time
 corresponded to the time it took to sort the results, not the time it took to present them.

 Using this benchmark, Table 5-2 compares the running time of algorithms that take log n, n,
n log n, n2, n3, and 2n steps to process input of size n for various values of n from 10 to 1010
(10 billion). Times well below a millisecond are denoted by negligible, and other times are
rounded and expressed in the most meaningful units.

TABLE 5-2 Running Times for Various Input Sizes and Complexities

 Complexity n = 10 n = 20 n = 100 n = 1000 n = 106 n = 109 n = 1010

 log n negligible negligible negligible negligible negligible negligible negligible

 n negligible negligible negligible 1 ms 1 second 15 min. 3 hours

 n log n negligible negligible 1 ms 10 ms 20 secs. 8 hours 4 days

 n2 negligible negligible 10 ms 1 second 12 days 310
centuries

3 million
years

 n3 1 ms 8 ms 1 second 20 min. 310
centuries

forever forever*

 2n 1 ms 15 min. forever* forever forever forever forever

 Lest you think forever is an exaggeration, the two entries marked with an asterisk—not the
longest times in the table—are each about 40 billion billion years, and yes, that’s 40 billion
billion, not just 40 billion.

 What may be more surprising than the things that take forever is how much longer it takes to
use an n2 algorithm than an n log n algorithm for large n.

Classic Algorithms and Algorithmic Strategies

 Before the middle of the twentieth century, computing technology wasn’t powerful enough
to handle what we consider fundamental computational tasks today—searching and
 sorting, network optimization, data compression, encryption, and so on—at least not on
a large scale. Consequently, few people had put their energy into fi nding algorithms for
these tasks.

Complexity n = 10 n = 20 n = 100 n = 1000 n = 106 n = 109 n = 1010

C05626034.indd 286 2/18/2009 11:36:39 PM

 Chapter 5 Algorithms and Complexity 287

 In this section we’ll look at a few algorithms and strategies that are now considered classic,
although in many cases they were developed within the last 50 years. You can fi nd many
 excellent books and online sources that describe and analyze these and other algorithms
in detail. One of my favorites is Introduction to Algorithms, Second Edition, by Cormen,
Leiserson, Rivest (for whom the R in RSA encryption stands), and Stein.

Algorithms for Sorting

 Arranging data in a prescribed order is a fundamental data processing task: alphabetizing
a list of names, arranging books on a shelf or in a bookstore or library, listing businesses
by their proximity to a consumer, or numbering search results by relevance—these are all
 examples of sorting. Often, data needs to be sorted for it to be searched effi ciently.

 In this section, I’ll describe several important sorting algorithms for the general problem of
putting items into a specifi ed order. Some are valid for data stored in an array, and some are
valid for data stored in a (linked) list, and some work in either case.

Arrays and Lists

 An array is a data structure that allows single-step access to any item given its current
ordinal position. In other words, if you need to inspect the 328th item, you can access it
directly, without having to start at the fi rst item and move 327 steps forward. This kind
of access to the items is called random access. If an array is named A, the item in ordinal
position j is usually called A[j].

 A list is a data structure that, like an array, keeps data in order but where items can
be accessed only from the beginning (or from either the beginning or the end). This
kind of access is called sequential access. If a list is called L, the fi rst element of the list
is usually called the head item of the list, and the last item is called the tail item. If x is
one of the items in L, the item before x is called its predecessor, and the item after L is
called its successor. There’s no standard notation for the item in ordinal position j of a
list L because it can’t be accessed directly.

 While arrays are optimized for random access, lists are typically optimized for inserting
and deleting data. If the 219th item of a 1,000-item array is deleted, the last 781 items
must be moved: the item that was 220th must be moved to the 219th position, the
221st to the 220th position, and so on. If an item is deleted from a list, its predecessor
can simply consider its successor to come next.

 Note It’s also possible to store data in order and suffer the worst aspects of both arrays and
lists. Magnetic tape drives are like lists in that they only allow sequential access, but they are
like arrays in that they are nonoptimized for inserting and deleting information. Sorting data on
magnetic tape drives is called external sorting and requires algorithms different from those
 described here.

C05626034.indd 287 2/18/2009 11:36:40 PM

288 Inside Microsoft SQL Server 2008: T-SQL Querying

Quadratic Sorting Algorithms

 When you arrange a handful of playing cards or alphabetize a few dozen folders in a fi le cabinet,
you’re probably applying a quadratic sorting algorithm like insertion sort or selection sort.

Insertion sort To sort a list of items with insertion sort, begin with the second item. If it
belongs before the fi rst item, exchange it with the fi rst item. Then look at the third item and
move it up zero, one, or two slots so that the fi rst three items are in order. Look at the fourth
item and move it up zero, one, two, or three slots so the fi rst four items are in order. Proceed
in this manner until you have looked at the last item and moved it into the correct place.
If insertion sort is used for an array and newly considered items must frequently be moved
many slots up, a great deal of data movement may be needed.

 Insertion sort has worst-case complexity O(n2). On the other hand, if the data is already in
 order (and, trust me, this often happens), insertion sort is linear. Insertion sort is relatively
easy to implement correctly, and when n is small, it’s a good choice.

Selection sort Selection sort resembles insertion sort, but it’s better than insertion sort for
data in an array because data is swapped into position instead of squeezed into position.
To sort a list of items with selection sort, fi rst scan the items to fi nd the one that should be
placed fi rst. Swap that item with the fi rst item. Then scan items 2 through n to fi nd the one
belonging fi rst (of those n-1 items). Swap it with the second item. Continue in this manner
until you have scanned the fi nal two items, found which one goes before the other, and
swapped them if needed.

 An important aspect of these sorts is that you can be specifi c about what is true if you quit
 before you fi nish the process. If you carry out insertion sort only through the 10th item, you
can be sure that the fi rst 10 items are in order. They may not, however, be the 10 items that
ultimately belong in the fi rst 10 positions. If you quit selection sort after the 10th item, you
can be sure that the fi rst 10 items are in order and that they are the 10 items that ultimately
belong in the fi rst 10 positions. If you think about the sorts this way, you might conclude
that selection sort is better. However, if you think about it, you’ll realize that handling each
 successive item in insertion sort gets more diffi cult and that handling each successive item in
 selection sort gets less diffi cult. If there are many items, it will take you longer to handle the
fi rst 10 with selection sort. It’s no surprise, then, that you get more accomplished.

O(n log n) Sorting Algorithms

 The two most commonly used sorting algorithms have complexity O(n log n). Both of them
rely on a valuable strategy for solving large problems: divide and conquer, and they are most
 easily implemented using recursion.

 Merge sort It’s easy to describe merge sort, though you wouldn’t likely use it to sort
cards or fi les by hand. To sort the items in a list or array with merge sort, fi rst check to see
if you have only one item. If so, you’re done sorting! Otherwise, see if you have only two
items. If so, compare the two items and swap them if necessary. Otherwise, you have more

C05626034.indd 288 2/18/2009 11:36:40 PM

 Chapter 5 Algorithms and Complexity 289

than two items to sort, and you must do three things: sort the fi rst half of the items (using
merge sort), sort the second half of the items, and merge the two (now sorted) halves into
a single list that is in order. Merging two sorted lists to obtain a single sorted list takes only
O(n) time when there are a total of n items. However, each item participates in roughly log
n merge operations, so the complexity of the entire sorting algorithm is O(n log n). Merge
sort is reliably fast because its best-case, worst-case, and average-case complexities are all
the same. The downside of merge sort is that simple implementations require space for the
merge operation.

 Quick sort Quick sort, like merge sort, is easiest to describe and implement recursively.
Here’s how it works: To sort the items in a list or array with quick sort, begin by setting aside
the fi rst item of the list. Its value is called the pivot. Then divide the remaining items from
the second item to the last item into two separate lists—one to the left of the pivot item
and containing the items that come before the pivot and the other to the right of the pivot
item and containing items that come after the pivot value. Then sort each of these two lists
(using quick sort). That’s it. One advantage to quick sort is that it can easily be implemented
with very modest space requirements. On the other hand, it has a worst-case complexity of
O(n2), which ironically occurs when the list is already sorted! Fortunately, if the algorithm is
modifi ed slightly, and the pivot item is chosen at random, the worst-case scenario is not the
already-sorted scenario, and quick sort is very unlikely to be slow.

Faster Sorting Algorithms

 Comparison-based swapping sorts are sorts that rearrange elements only by swapping,
and the decision to swap or not swap elements is made by comparing the elements.
 Comparison-based swapping sorts cannot have complexity better than O(n log n). However,
there are other ways to sort items.

Ultra sort Ultra sort requires a staging area that will receive the data as it’s scanned, and
the preparation of the staging area depends on the type of data to be sorted. Suppose
you’re sorting numbers from 1 to 1,000. First allocate and initialize to zero an array A
 containing 1,000 items: A[1], A[2], through A[1000]. This setup takes O(1) time. Now scan
the data to be sorted. When you encounter a 17, increment the value of A[17]. When you
 encounter a 36, increment A[36], and so on. When you’ve gone through the entire list, you
have an array A that recorded the number of 1s, of 2s, and so on in your original list. To
 return the original list in sorted order, step through the array A. When you get to A[63], for
example, and fi nd that it equals 3, return 63 to the user 3 times. Then go to A[64]. This sort
required O(n) time and O(1) space. Unfortunately, if you were sorting integers, the size of
your O(1) space would be about 16 billion bytes, and while 16 billion is technically O(1), it’s
the dominant term, and quick sort or merge sort will probably be an improvement.

String Searching

 Another common data processing task is to fi nd a string within a longer string, for example,
to fi nd a particular word in a word processing document. If I want to fi nd the word particular
in the previous sentence, how long does it take?

C05626034.indd 289 2/18/2009 11:36:40 PM

290 Inside Microsoft SQL Server 2008: T-SQL Querying

 Not long, if I mean I want to fi nd it “as a word” and not as consecutive letters ignoring
 spaces, for example. However, suppose I want to fi nd a particular computer virus signature
on my hard drive. Is there a quick way to do it?

Searching for a Virus Signature in a Gigabyte BLOB

 Suppose 0x0001000100010001000100010001000100010001 is a dangerous virus
 signature and you need to fi nd it if it exists as a substring of gigabyte BLOB (Binary Large
Object). Surprisingly, there is an algorithm to search for it that will inspect considerably
fewer than all the bytes of the BLOB. Here is the procedure:

Algorithm to search for 0x0001000100010001000100010001000100010001

 1. Inspect the 20th byte of the BLOB, which would be the last byte of the signature
if the signature appeared at the beginning of the BLOB. If the 20th byte is not
0x00 or 0x01, the virus signature cannot begin at any one of the fi rst 20 bytes of
the BLOB. As a result, the leftmost position where the virus signature can begin
is the 21st byte.

 2. Inspect the 40th byte, which is where the virus signature would end if it began at
the 21st byte. If that byte is not 0x00 or 0x01, proceed to the next step.

 3. Inspect the 60th byte and so on.

 Once in a while, you will inspect a byte that is 0x00 or 0x01, and you’ll have to follow
 different rules that don’t let you jump ahead by 20 bytes, but you can still rule out
many starting points if the byte you inspect is preceded closely by a byte that isn’t
0x00 or 0x01. It’s quite likely that you have to inspect only one or two bytes out of
 every 20 in your BLOB, and you’ll often determine that the virus signature is absent
 after inspecting only 5 to 10 percent of the BLOB bytes.

 This clever algorithm was described by Boyer and Moore in 1977 and provides an
 example of a sublinear complexity algorithm that requires no preorganization of the data.

A Practical Application

 In the fi nal section of this chapter, I’ll describe a real-world process control problem
I encountered about 10 years ago and was able to solve with an effi cient algorithm that had
only recently been published in a mathematics journal. This real-world problem concerns the
identifi cation of a trend marker in a series of measurements of toxin levels. In the following
description, I’ve simplifi ed the scenario but not the algorithm, which eventually received
 governmental certifi cation and was used for environmental monitoring.

Algorithm to search for 0x0001000100010001000100010001000100010001

C05626034.indd 290 2/18/2009 11:36:40 PM

 Chapter 5 Algorithms and Complexity 291

Identifying Trends in Measurement Data

 The ongoing debate about global warming underlines the fact that there is no simple
 criterion for identifying an increasing trend in a series of measurements. Many industries use
statistical process control (SPC) software to identify trends, and these software programs can
be confi gured to identify many different kinds of patterns called trend markers in a series
of measurements. A simple trend marker is a record high measurement: a measurement
higher than any previously recorded value. Another trend marker is the occurrence of seven
 consecutive above-average measurements. Yet another is the occurrence of two consecutive
measurements at or above the 98th percentile of all previous measurements. A number of
commercial SPC programs include these trend markers.

Increasing Subsequences

 One useful trend marker not typically included in commercial software packages is an increasing
subsequence of a particular length. Here’s an example of a sequence of measurements that
includes a length-four increasing subsequence. The four numbers in bold form an increasing
subsequence—increasing because they increase from left to right and subsequence because
the values come from the original sequence.

 3.894, 4.184, 3.939, 4.050, 3.940, 4.140, 3.914, 4.156, 4.143, 4.035, 4.097

 The subsequence identifi ed in bold isn’t the only increasing subsequence of length four, nor
is it the longest increasing subsequence in the original sequence.

 The problem we’ll solve in T-SQL is that of fi nding the length of the longest increasing
subsequence.

Longest Increasing Subsequence Length Problem (LISLP)

 Input: A sequence X of n numbers: x1, x2, . . ., xn.

 Output: The largest integer k for which there is a length-k increasing subsequence of X.

The Algorithmic Complexity of LISLP

 One way to solve this problem is to enumerate all the subsequences of X and check each
one to see if its values form an increasing sequence. If X is a very short sequence, this works
 reasonably well. For example, if X contains 6 elements, there are only 57 subsequences of
length at least two. (Note that a subsequence can’t really be increasing if it doesn’t contain at
least two items.)

C05626034.indd 291 2/18/2009 11:36:40 PM

292 Inside Microsoft SQL Server 2008: T-SQL Querying

How Many Subsequences Are There?

 Unfortunately, the number of subsequences of X grows exponentially with the length of X. If
X contains not six but 26 elements, there are more than 67 million subsequences. If X contains
60 elements, there are more than a billion billion. A billion billion nanoseconds is about
31 years. Don’t try enumerating this many subsequences at home! If the sequence X contains n
items, there’s a subsequence of X for every subset of the set of item positions {1, 2, 3, . . ., n}, or
2n subsequences in all. There are n one-item subsequences and one zero-item subsequence,
leaving us with 2n − (n+1) subsequences of length at least two. Although in practice you might
not need to consider all these subsequences—for example, as soon as you fi nd one increasing
subsequence, you can skip all the unchecked subsequences of the same length—enumerating
subsequences is not the way to solve LISLP.

An Algorithm for LISLP with �(n log n) Complexity

 The algorithmic complexity of enumerating all subsequences of a length-n sequence is �(2n),
which, as we’ve seen, makes the problem impossible to solve in practice for inputs of even
modest size. Fortunately, not long before I encountered this problem, so had two talented
mathematics, David Aldous and Persi Diaconis. Better yet, they had published their fi ndings in
the Bulletin of the American Mathematical Society in 1999: “Longest increasing subsequences:
from patience sorting to the Baik-Deift-Johansson theorem.” Aldous and Diaconis described
an O(n log n) algorithm to solve the problem.

 Algorithms with �(n log n) complexity are practical to use, but it helps if they are also simple
to implement. This one turns out to be.

Finding the Length of the Longest Increasing Subsequence

 Let X = (x1, x2, . . ., xn) be a sequence of n real numbers. The length of the longest increasing
subsequence of X is the length of the list L generated by the following procedure.

 1. Let k = 1, and let L be an empty list of numbers.

 2. While k ≤ n:

 3. Inspect L for numbers greater than or equal to ak. If one exists, replace the fi rst (and
smallest) of them with ak. Otherwise (when ak is greater than every number in L), insert
ak into the list L. Increase k by 1.

Solving the Longest Increasing Subsequence
Length Problem in T-SQL

 Execute the code in Listing 5-1 to create the tables Locations and Readings and fi ll them with
sample data.

Finding the Length of the Longest Increasing Subsequence

C05626034.indd 292 2/18/2009 11:36:40 PM

 Chapter 5 Algorithms and Complexity 293

LISTING 5-1 Creating and populating the Locations and Readings tables

USE tempdb;

GO

IF OBJECT_ID('dbo.Locations') IS NOT NULL

 DROP TABLE dbo.Locations;

CREATE TABLE dbo.Locations (

 ID INT NOT NULL PRIMARY KEY,

 name VARCHAR(12) NOT NULL

);

INSERT INTO dbo.Locations VALUES (1, 'Uptown'), (2, 'Midtown');

IF OBJECT_ID('dbo.Readings') IS NOT NULL

 DROP TABLE dbo.Readings;

CREATE TABLE dbo.Readings (

 locID INT REFERENCES dbo.Locations(ID),

 readingNum INT,

 ppb DECIMAL(6,3),

 PRIMARY KEY (locID,readingNum)

);

INSERT INTO dbo.Readings VALUES

 (1,1,3.968), (1,2,3.773), (1,3,3.994), (1,4,3.889),

 (1,5,4.015), (1,6,4.002), (1,7,4.043), (1,8,3.932),

 (1,9,4.072), (1,10,4.088), (1,11,3.952), (1,12,3.992),

 (1,13,3.980), (1,14,4.062), (1,15,4.074), (2,1,3.894),

 (2,2,4.184), (2,3,3.939), (2,4,4.050), (2,5,3.940),

 (2,6,4.140), (2,7,3.914), (2,8,4.156), (2,9,4.143),

 (2,10,4.035), (2,11,4.097), (2,12,4.086), (2,13,4.093),

 (2,14,3.932), (2,15,4.046);

GO

The pseudocode described how to implement the algorithm for a single sequence X, and the
Readings table contains two sequences of readings, one for each of two locations. Therefore,
with the code in Listing 5-2, we’ll create a user-defi ned function dbo.LISL that returns the
 longest increasing subsequence length for a single sequence, given a location ID as input.

LISTING 5-2 Code to create the user-defi ned function LISL

IF OBJECT_ID('dbo.LISL') IS NOT NULL DROP FUNCTION dbo.LISL;

CREATE FUNCTION dbo.LISL(@locID INT)

RETURNS INT AS BEGIN

 DECLARE @Solitaire TABLE (

 pos int IDENTITY(1,1) PRIMARY KEY,

 ppb decimal(6,3),

 UNIQUE (ppb,pos)

);

USE tempdb;

GO

IF OBJECT_ID('dbo.Locations') IS NOT NULL

 DROP TABLE dbo.Locations;

CREATE TABLE dbo.Locations (

 ID INT NOT NULL PRIMARY KEY,

 name VARCHAR(12) NOT NULL

);

INSERT INTO dbo.Locations VALUES (1, 'Uptown'), (2, 'Midtown');

IF OBJECT_ID('dbo.Readings') IS NOT NULL

 DROP TABLE dbo.Readings;

CREATE TABLE dbo.Readings (

 locID INT REFERENCES dbo.Locations(ID),

 readingNum INT,

 ppb DECIMAL(6,3),

 PRIMARY KEY (locID,readingNum)

);

INSERT INTO dbo.Readings VALUES

 (1,1,3.968), (1,2,3.773), (1,3,3.994), (1,4,3.889),

 (1,5,4.015), (1,6,4.002), (1,7,4.043), (1,8,3.932),

 (1,9,4.072), (1,10,4.088), (1,11,3.952), (1,12,3.992),

 (1,13,3.980), (1,14,4.062), (1,15,4.074), (2,1,3.894),

 (2,2,4.184), (2,3,3.939), (2,4,4.050), (2,5,3.940),

 (2,6,4.140), (2,7,3.914), (2,8,4.156), (2,9,4.143),

 (2,10,4.035), (2,11,4.097), (2,12,4.086), (2,13,4.093),

 (2,14,3.932), (2,15,4.046);

GO

IF OBJECT_ID('dbo.LISL') IS NOT NULL DROP FUNCTION dbo.LISL;

CREATE FUNCTION dbo.LISL(@locID INT)

RETURNS INT AS BEGIN

 DECLARE @Solitaire TABLE (

 pos int IDENTITY(1,1) PRIMARY KEY,

 ppb decimal(6,3),

 UNIQUE (ppb,pos)

);

C05626034.indd 293 2/18/2009 11:36:40 PM

294 Inside Microsoft SQL Server 2008: T-SQL Querying

 DECLARE C CURSOR FAST_FORWARD

 FOR

 SELECT ppb

 FROM dbo.Readings

 WHERE locID = @locID

 ORDER BY readingNum;

 DECLARE @ppb decimal(6,3);

 OPEN C;

 FETCH NEXT FROM C INTO @ppb;

 IF @@fetch_status <> 0 RETURN 0;

 INSERT INTO @Solitaire VALUES (@ppb);

 WHILE @@fetch_status = 0 BEGIN

 WITH T(pos) AS (

 SELECT MIN(pos)

 FROM @Solitaire

 WHERE ppb >= @ppb

)

 MERGE INTO @Solitaire AS S

 USING T

 ON T.pos = S.pos

 WHEN MATCHED THEN

 UPDATE SET ppb = @ppb

 WHEN NOT MATCHED BY TARGET THEN

 INSERT (ppb) VALUES (@ppb);

 FETCH NEXT FROM C INTO @ppb;

 END;

 CLOSE C;

 DEALLOCATE C;

 RETURN (SELECT COUNT(*) FROM @Solitaire);

END;

GO

 Listing 5-2 includes a MERGE statement, which is a new feature of SQL Server 2008. You’ll
learn about MERGE in detail in Chapter 10, “Data Modifi cation.” Otherwise, there’s not much
to explain in the listing, which follows the pseudocode closely. I will point out that I’ve given
the name @Solitaire to the table that represents L because Diaconis and Aldous describe
the algorithm for LISLP in terms of a game of Solitaire (which is known as Patience in some
English-speaking countries).

 Finally, let’s use this function (shown in Listing 5-3) to solve LISLP for our sample data.

 DECLARE C CURSOR FAST_FORWARD

 FOR

 SELECT ppb

 FROM dbo.Readings

 WHERE locID = @locID

 ORDER BY readingNum;

 DECLARE @ppb decimal(6,3);

 OPEN C;

 FETCH NEXT FROM C INTO @ppb;

 IF @@fetch_status <> 0 RETURN 0;

 INSERT INTO @Solitaire VALUES (@ppb);

 WHILE @@fetch_status = 0 BEGIN

 WITH T(pos) AS (

 SELECT MIN(pos)

 FROM @Solitaire

 WHERE ppb >= @ppb

)

 MERGE INTO @Solitaire AS S

 USING T

 ON T.pos = S.pos

 WHEN MATCHED THEN

 UPDATE SET ppb = @ppb

 WHEN NOT MATCHED BY TARGET THEN

 INSERT (ppb) VALUES (@ppb);

 FETCH NEXT FROM C INTO @ppb;

 END;

 CLOSE C;

 DEALLOCATE C;

 RETURN (SELECT COUNT(*) FROM @Solitaire);

END;

GO

C05626034.indd 294 2/18/2009 11:36:40 PM

 Chapter 5 Algorithms and Complexity 295

LISTING 5-3 Query to fi nd the longest increasing subsequence length

SELECT

 name, dbo.LISL(ID) AS LISL

FROM dbo.Locations;

This query returns the following results:

name LISL

------------ -----------

Uptown 7

Midtown 6

Can you fi nd increasing subsequences of length 7 and 6 for the Uptown and Midtown data,
respectively? And can you convince yourself that these are the longest?

Conclusion

This chapter surveyed some key concepts about algorithms and complexity. A close look at
complexity dispelled the idea that the answer to every problem is better hardware! After
briefl y surveying a few algorithms that are particularly important to the SQL Server engine,
the chapter ended with a practical example.

SELECT

 name, dbo.LISL(ID) AS LISL

FROM dbo.Locations;

C05626034.indd 295 2/18/2009 11:36:40 PM

C05626034.indd 296 2/18/2009 11:36:40 PM

 297

Chapter 6

Subqueries, Table Expressions,
and Ranking Functions

 This chapter covers subqueries, which are queries within queries, and ranking calculations.
Subqueries can be scalar, multivalued, or table valued. You can use a scalar subquery where a
single value is expected. For example, the following query returns the order with the maximum
order ID:

USE InsideTSQL2008;

SELECT orderid, custid

FROM Sales.Orders

WHERE orderid = (SELECT MAX(orderid) FROM Sales.Orders);

 The scalar subquery in bold is in charge of returning the maximum order ID. This subquery is
self-contained, meaning that it has no dependency on the outer query.

 A subquery that has a dependency on the outer query is known as a correlated subquery. For
example, the following query returns the order with the maximum order ID for each customer:

SELECT orderid, custid

FROM Sales.Orders AS O1

WHERE orderid = (SELECT MAX(O2.orderid)

 FROM Sales.Orders AS O2

 WHERE O2.custid = O1.custid);

 The correlated subquery in bold is in charge of returning the maximum order ID for the
 current customer in the outer table.

 You can use a multivalued subquery where multiple values are expected. For example, the
 following query returns customers who placed orders:

SELECT custid, companyname

FROM Sales.Customers

WHERE custid IN (SELECT custid FROM Sales.Orders);

 The multivalued subquery in bold is in charge of returning customer IDs of customers who
placed orders. Like scalar subqueries, multivalued subqueries can be correlated.

 You can use a table-valued subquery, or table expression, where a table is expected. For
 example, the following query returns the maximum order ID for each order year:

SELECT orderyear, MAX(orderid) AS max_orderid

FROM (SELECT orderid, YEAR(orderdate) AS orderyear

 FROM Sales.Orders) AS D

GROUP BY orderyear;

C06626034.indd 297 2/13/2009 2:22:35 AM

298 Inside Microsoft SQL Server 2008: T-SQL Querying

 The table expression D in bold assigns the alias orderyear to the expression YEAR(orderdate)
and returns the order ID and order year for each order.

 I’ll refer to scalar and multivalued subqueries just as subqueries and to subqueries that are
used where a table is expected as table expressions. In this chapter, I’ll cover two kinds of
table expressions: derived tables and common table expressions (CTE).

 In the last part of the chapter, I’ll cover ranking functions, including row number, rank, dense
rank, and tile.

 Because this book is intended for experienced programmers, I assume that you’re already
familiar with subqueries and table expressions. I’ll go over their defi nitions briefl y and focus
on their applications and on problem solving.

Subqueries

 Subqueries can be characterized in two main ways. One is by the expected number of values
(either scalar or multivalued), and another is by the subquery’s dependency on the outer
query (either self-contained or correlated). Both scalar and multivalued subqueries can be
either self-contained or correlated.

Self-Contained Subqueries

 As mentioned, a self-contained subquery is a subquery that can be run independently of the
outer query. Self-contained subqueries are very convenient to debug, of course, compared to
correlated subqueries.

 Scalar subqueries can appear anywhere in the query where an expression resulting in a scalar
value is expected, while multivalued subqueries can appear anywhere in the query where
a collection of multiple values is expected.

 A scalar subquery is valid when it returns a single value and also when it returns no values—
in which case, the value of the subquery is NULL. However, if a scalar subquery returns
more than one value, a run-time error will occur.

 For example, run the following code three times: once as shown, a second time with LIKE
N’Kollar’ in place of LIKE N’Davis’, and a third time with LIKE N’D%’ :

SELECT orderid FROM Sales.Orders

WHERE empid =

 (SELECT empid FROM HR.Employees

 -- also try with N'Kollar' and N'D%'

 WHERE lastname LIKE N'Davis');

 With N’Davis’, the subquery returns a single value (1) and the outer query returns all orders
with employee ID 1.

C06626034.indd 298 2/13/2009 2:22:35 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 299

 With N’Kollar’, the subquery returns no values and is therefore NULL. The outer query obviously
doesn’t fi nd any orders for which empid = NULL and therefore returns an empty set. Note that
the query doesn’t break (fail)—it’s a valid query.

 With N’D%’, the subquery returns two values (1, 9), and because the outer query expects a
scalar, it breaks at run time and generates the following error :

Msg 512, Level 16, State 1, Line 1

Subquery returned more than 1 value. This is not permitted when the subquery follows =,

!=, <, <= , >, >= or when the subquery is used as an expression.

 Logically, a self-contained subquery can be evaluated just once for the whole outer query.
Physically, the optimizer can consider many different ways to achieve the same thing, so you
shouldn’t think in such strict terms.

 Now that we’ve covered the essentials, let’s move on to more sophisticated problems involving
self-contained subqueries.

 I’ll start with a problem belonging to a group of problems called relational division. Relational
division problems have many nuances and many practical applications. Logically, it’s like
dividing one set by another, producing a result set. For example, from the InsideTSQL2008
database, return all customers for whom every employee from the USA has handled at least
one order. In this case, you’re dividing the set of all orders by the set of all employees from
the USA, and you expect the set of matching customers back. Filtering here is not that simple
because for each customer you need to inspect multiple rows to fi gure out whether you have
a match.

 Here I’ll show a technique using GROUP BY and DISTINCT COUNT to solve relational division
problems. I’ll show you other techniques later in the book.

 If you knew ahead of time the list of all employee IDs for USA employees, you could write the
following query to solve the problem:

SELECT custid

FROM Sales.Orders

WHERE empid IN(1, 2, 3, 4, 8)

GROUP BY custid

HAVING COUNT(DISTINCT empid) = 5;

 This query generates the following output:

custid

5

9

20

24

34

35

37

38

C06626034.indd 299 2/13/2009 2:22:35 AM

300 Inside Microsoft SQL Server 2008: T-SQL Querying

39

41

46

47

48

51

55

63

65

71

80

83

84

87

89

 This query fi nds all orders with one of the fi ve U.S. employee IDs, groups those orders by custid,
and returns customer IDs that have (all) fi ve distinct empid values in their group of orders.

 To make the solution more dynamic and accommodate lists of employee IDs that are
 unknown ahead of time and also large lists even when known, you can use subqueries
 instead of literals:

SELECT custid

FROM Sales.Orders

WHERE empid IN

 (SELECT empid FROM HR.Employees

 WHERE country = N'USA')

GROUP BY custid

HAVING COUNT(DISTINCT empid) =

 (SELECT COUNT(*) FROM HR.Employees

 WHERE country = N'USA');

 Another problem involving self-contained subqueries is returning all orders placed on the
last actual order date of the month. Note that the last actual order date of the month might
be different than the last date of the month—for example, if a company doesn’t place orders
on weekends. So the last actual order date of the month has to be queried from the data.
Here’s the solution query:

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders

WHERE orderdate IN

 (SELECT MAX(orderdate)

 FROM Sales.Orders

 GROUP BY YEAR(orderdate), MONTH(orderdate));

 This query produces the following output:

orderid custid empid orderdate

----------- ----------- ----------- -----------------------

10269 89 5 2006-07-31 00:00:00.000

10294 65 4 2006-08-30 00:00:00.000

C06626034.indd 300 2/13/2009 2:22:35 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 301

10317 48 6 2006-09-30 00:00:00.000

10343 44 4 2006-10-31 00:00:00.000

10368 20 2 2006-11-29 00:00:00.000

10399 83 8 2006-12-31 00:00:00.000

10432 75 3 2007-01-31 00:00:00.000

10460 24 8 2007-02-28 00:00:00.000

10461 46 1 2007-02-28 00:00:00.000

10490 35 7 2007-03-31 00:00:00.000

10491 28 8 2007-03-31 00:00:00.000

10522 44 4 2007-04-30 00:00:00.000

10553 87 2 2007-05-30 00:00:00.000

10554 56 4 2007-05-30 00:00:00.000

10583 87 2 2007-06-30 00:00:00.000

10584 7 4 2007-06-30 00:00:00.000

10616 32 1 2007-07-31 00:00:00.000

10617 32 4 2007-07-31 00:00:00.000

10650 21 5 2007-08-29 00:00:00.000

10686 59 2 2007-09-30 00:00:00.000

10687 37 9 2007-09-30 00:00:00.000

10725 21 4 2007-10-31 00:00:00.000

10758 68 3 2007-11-28 00:00:00.000

10759 2 3 2007-11-28 00:00:00.000

10806 84 3 2007-12-31 00:00:00.000

10807 27 4 2007-12-31 00:00:00.000

10861 89 4 2008-01-30 00:00:00.000

10862 44 8 2008-01-30 00:00:00.000

10914 62 6 2008-02-27 00:00:00.000

10915 80 2 2008-02-27 00:00:00.000

10916 64 1 2008-02-27 00:00:00.000

10987 19 8 2008-03-31 00:00:00.000

10988 65 3 2008-03-31 00:00:00.000

10989 61 2 2008-03-31 00:00:00.000

11060 27 2 2008-04-30 00:00:00.000

11061 32 4 2008-04-30 00:00:00.000

11062 66 4 2008-04-30 00:00:00.000

11063 37 3 2008-04-30 00:00:00.000

11074 73 7 2008-05-06 00:00:00.000

11075 68 8 2008-05-06 00:00:00.000

11076 9 4 2008-05-06 00:00:00.000

11077 65 1 2008-05-06 00:00:00.000

 The self-contained subquery returns the following list of values representing the last actual
order date of each month:

2007-01-31 00:00:00.000

2008-01-30 00:00:00.000

2007-02-28 00:00:00.000

2008-02-27 00:00:00.000

2007-03-31 00:00:00.000

2008-03-31 00:00:00.000

2007-04-30 00:00:00.000

2008-04-30 00:00:00.000

2007-05-30 00:00:00.000

2008-05-06 00:00:00.000

2007-06-30 00:00:00.000

C06626034.indd 301 2/13/2009 2:22:35 AM

302 Inside Microsoft SQL Server 2008: T-SQL Querying

2006-07-31 00:00:00.000

2007-07-31 00:00:00.000

2006-08-30 00:00:00.000

2007-08-29 00:00:00.000

2006-09-30 00:00:00.000

2007-09-30 00:00:00.000

2006-10-31 00:00:00.000

2007-10-31 00:00:00.000

2006-11-29 00:00:00.000

2007-11-28 00:00:00.000

2006-12-31 00:00:00.000

2007-12-31 00:00:00.000

 The subquery achieves this result by grouping the orders by order year and month and
 returning the MAX(orderdate) for each group. The outer query returns all orders with an
 orderdate that appears in the list returned by the subquery.

Correlated Subqueries

 Correlated subqueries are subqueries that have references to columns from the outer query.
Logically, the subquery is evaluated once for each row of the outer query. Again, physically,
it’s a much more dynamic process and varies from case to case, with no single physical way
to process a correlated subquery.

Isolating One Row Per Group and Applying a Tiebreaker

 I’ll start dealing with correlated subqueries through a problem that introduces a very
 important concept in SQL querying—a tiebreaker. I’ll refer to this concept throughout the
book. A tiebreaker is an attribute or attribute list that allows you to uniquely rank elements.
For example, suppose you need the most recent order for each employee. You are supposed
to return only one order for each employee, but the attributes empid and orderdate do not
necessarily identify a unique order. You need to introduce a tiebreaker to be able to identify
a unique most recent order for each employee. For example, out of the multiple orders
with the maximum orderdate for an employee, you could decide to return the one with the
 maximum orderid. In this case, MAX(orderid) is your tiebreaker. Or you could decide to return
the row with the maximum requireddate and, if you still have multiple rows, return the one
with the maximum orderid. In this case, your tiebreaker is MAX(requireddate), MAX(orderid).
A tiebreaker is not necessarily limited to a single attribute.

 Before moving on to the solutions, run the following code to create indexes that support the
physical processing of the queries that will follow:

CREATE UNIQUE INDEX idx_eid_od_oid

 ON Sales.Orders(empid, orderdate, orderid);

CREATE UNIQUE INDEX idx_eid_od_rd_oid

 ON Sales.Orders(empid, orderdate, requireddate, orderid);

C06626034.indd 302 2/13/2009 2:22:35 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 303

 I’ll explain the indexing guidelines after presenting the solution queries.

 Let’s start with the basic request to return the orders with the maximum orderdate for each
employee. Here you can get multiple rows for each employee because an employee can have
multiple orders with the same order date.

 You might be tempted to use the following solution, which includes a self-contained subquery
similar to the one used to return orders on the last actual order date of the month:

SELECT orderid, custid, empid, orderdate, requireddate

FROM Sales.Orders

WHERE orderdate IN

 (SELECT MAX(orderdate) FROM Sales.Orders

 GROUP BY empid);

 However, this solution is incorrect. The result set includes the correct orders (the ones with
the maximum orderdate for each employee). But you also get any order for employee A with
an orderdate that happens to be the maximum for employee B, even though it’s not also the
maximum for employee A. This wasn’t an issue with the previous problem because an order
date in month A can’t be equal to the maximum order date of a different month B.

 In our case, the subquery must be correlated to the outer query, matching the inner empid to
the one in the outer row:

SELECT orderid, custid, empid, orderdate, requireddate

FROM Sales.Orders AS O1

WHERE orderdate =

 (SELECT MAX(orderdate)

 FROM Sales.Orders AS O2

 WHERE O2.empid = O1.empid);

 This query generates the correct results, as the following output shows:

orderid custid empid orderdate requireddate

----------- ----------- ----------- ----------------------- -----------------------

11077 65 1 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

11070 44 2 2008-05-05 00:00:00.000 2008-06-02 00:00:00.000

11073 58 2 2008-05-05 00:00:00.000 2008-06-02 00:00:00.000

11063 37 3 2008-04-30 00:00:00.000 2008-05-28 00:00:00.000

11076 9 4 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

11043 74 5 2008-04-22 00:00:00.000 2008-05-20 00:00:00.000

11045 10 6 2008-04-23 00:00:00.000 2008-05-21 00:00:00.000

11074 73 7 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

11075 68 8 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

11058 6 9 2008-04-29 00:00:00.000 2008-05-27 00:00:00.000

 The output contains one example of multiple orders for an employee, in the case of
 employee 2. If you want to return only one row for each employee, you have to introduce
a tiebreaker. For example, out of the multiple rows with the maximum orderdate, return the
one with the maximum orderid. You can achieve this by adding another subquery that keeps

C06626034.indd 303 2/13/2009 2:22:35 AM

304 Inside Microsoft SQL Server 2008: T-SQL Querying

the order only if orderid is equal to the maximum among the orders with the same empid
and orderdate as in the outer row:

SELECT orderid, custid, empid, orderdate, requireddate

FROM Sales.Orders AS O1

WHERE orderdate =

 (SELECT MAX(orderdate)

 FROM Sales.Orders AS O2

 WHERE O2.empid = O1.empid)

 AND orderid =

 (SELECT MAX(orderid)

 FROM Sales.Orders AS O2

 WHERE O2.empid = O1.empid

 AND O2.orderdate = O1.orderdate);

 Of the two orders for employee 2, only the one with the maximum orderid remains, as the
following output shows:

orderid custid empid orderdate requireddate

----------- ----------- ----------- ----------------------- -----------------------

11077 65 1 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

11073 58 2 2008-05-05 00:00:00.000 2008-06-02 00:00:00.000

11063 37 3 2008-04-30 00:00:00.000 2008-05-28 00:00:00.000

11076 9 4 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

11043 74 5 2008-04-22 00:00:00.000 2008-05-20 00:00:00.000

11045 10 6 2008-04-23 00:00:00.000 2008-05-21 00:00:00.000

11074 73 7 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

11075 68 8 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

11058 6 9 2008-04-29 00:00:00.000 2008-05-27 00:00:00.000

 Instead of using two separate subqueries for the sort column (orderdate) and the tiebreaker
(orderid), you can use nested subqueries:

SELECT orderid, custid, empid, orderdate, requireddate

FROM Sales.Orders AS O1

WHERE orderid =

 (SELECT MAX(orderid)

 FROM Sales.Orders AS O2

 WHERE O2.empid = O1.empid

 AND O2.orderdate =

 (SELECT MAX(orderdate)

 FROM Sales.Orders AS O3

 WHERE O3.empid = O1.empid));

 I compared the performance of the two and found it very similar. I fi nd the nested approach
more complex, so as long as there’s no compelling performance benefi t, I’d rather stick to
the simpler approach. Simpler is easier to understand and maintain, and therefore less prone
to errors.

 Going back to the simpler approach, for each tiebreaker attribute you have, you need to
add a subquery. Each such subquery must be correlated by the group column, sort column,

C06626034.indd 304 2/13/2009 2:22:35 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 305

and all preceding tiebreaker attributes. So, to use MAX(requireddate), MAX(orderid) as the
 tiebreaker, you would write the following query:

SELECT orderid, custid, empid, orderdate, requireddate

FROM Sales.Orders AS O1

WHERE orderdate =

 (SELECT MAX(orderdate)

 FROM Sales.Orders AS O2

 WHERE O2.empid = O1.empid)

 AND requireddate =

 (SELECT MAX(requireddate)

 FROM Sales.Orders AS O2

 WHERE O2.empid = O1.empid

 AND O2.orderdate = O1.orderdate)

 AND orderid =

 (SELECT MAX(orderid)

 FROM Sales.Orders AS O2

 WHERE O2.empid = O1.empid

 AND O2.orderdate = O1.orderdate

 AND O2.requireddate = O1.requireddate);

 The indexing guideline for the preceding tiebreaker queries is to create an index on (group_cols,
sort_cols, tiebreaker_cols). For example, when the tiebreaker is MAX(orderid), you want an index
on (empid, orderdate, orderid). When the tiebreaker is MAX(requireddate), MAX(orderid), you
want an index on (empid, orderdate, requireddate, orderid). Such an index would allow retrieving
the relevant sort value or tiebreaker value for an employee using a seek operation within
the index.

 When you’re done testing the tiebreaker solutions, run the following code to drop the indexes
that were created just for these examples:

DROP INDEX Sales.Orders.idx_eid_od_oid;

DROP INDEX Sales.Orders.idx_eid_od_rd_oid;

 I presented here only one approach using ANSI-correlated subqueries to solving the problem
of isolating one row per group using a tiebreaker. This approach is neither the most effi cient
nor the simplest. You will fi nd other solutions to tiebreaker problems in Chapter 8, “Aggregating
and Pivoting Data,” in the “Tiebreakers” section, and in Chapter 9, “TOP and APPLY,” in the
“TOP n for Each Group” section.

EXISTS

 EXISTS is a powerful predicate that allows you to effi ciently check whether any rows result from
a given query. The input to EXISTS is a subquery, which is typically but not necessarily correlated,
and the predicate returns TRUE or FALSE, depending on whether the subquery returns at least one
row or none. Unlike other predicates and logical expressions, EXISTS cannot return UNKNOWN.
Either the input subquery returns rows or it doesn’t. If the subquery’s fi lter returns UNKNOWN for
a certain row, the row is not returned. Remember that in a fi lter, UNKNOWN is treated like FALSE.

C06626034.indd 305 2/13/2009 2:22:35 AM

306 Inside Microsoft SQL Server 2008: T-SQL Querying

In other words, when the input subquery has a fi lter, EXISTS will return TRUE only if the fi lter is
TRUE for at least one row. The reason I’m stressing this subtle point will become apparent shortly.

 First, let’s look at an example that will demonstrate the use of EXISTS. The following query
returns all customers from Spain who made orders:

SELECT custid, companyname

FROM Sales.Customers AS C

WHERE country = N'Spain'

 AND EXISTS

 (SELECT * FROM Sales.Orders AS O

 WHERE O.custid = C.custid);

 This query generates the following output:

custid companyname

----------- --

8 Customer QUHWH

29 Customer MDLWA

30 Customer KSLQF

69 Customer SIUIH

 The outer query returns customers from Spain for whom the EXISTS predicate fi nds at least
one order row in the Orders table with the same custid as in the outer customer row.

 Tip The use of the asterisk (*) here is perfectly safe, even though in general it’s not a good
 practice. The optimizer ignores the SELECT list specifi ed in the subquery because EXISTS cares
only about the existence of rows and not about any specifi c attributes. Some resolution overhead
may be involved in expanding the * to check column permissions, but this cost is likely so
 negligible that you will hardly ever notice it.

 Examine the execution plan produced for this query, as shown in Figure 6-1.

FIGURE 6-1 Execution plan for an EXISTS query

 The plan scans the Customers table and fi lters customers from Spain. For each matching
customer, the plan performs a seek within the index on Orders.custid to check whether the
Orders table contains an order with that customer’s custid. The index on the fi ltered column
in the subquery (Orders.custid in our case) is very helpful here because it provides direct
 access to the rows of the Orders table with a given custid value.

C06626034.indd 306 2/13/2009 2:22:35 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 307

EXISTS vs. IN Programmers frequently wonder whether a query with the EXISTS predicate
is more effi cient than a logically equivalent query with the IN predicate. For example, the last
query could be written using an IN predicate with a self-contained subquery as follows:

SELECT custid, companyname

FROM Sales.Customers AS C

WHERE country = N'Spain'

 AND custid IN(SELECT custid FROM Sales.Orders);

 The optimizer often generates identical plans for two queries when they are truly logically
equivalent, and this case qualifi es. The plan generated for the last query using IN is identical
to the one shown in Figure 6-1, which was generated for the query using EXISTS.

 If you’re always thinking of the implications of three-valued logic, you might see the difference
between IN and EXISTS. Unlike EXISTS, IN can in fact produce an UNKNOWN logical result when
the input list contains a NULL. For example, a IN(b, c, NULL) is UNKNOWN. However, because
UNKNOWN is treated like FALSE in a fi lter, the result of a query with the IN predicate is the same
as with the EXISTS predicate, and the optimizer is aware of that, hence the identical plans.

NOT EXISTS vs. NOT IN The logical difference between EXISTS and IN does show up if we
compare NOT EXISTS and NOT IN, when the input list of NOT IN might contain a NULL.

 For example, suppose you need to return customers from Spain who made no orders. Here’s
the solution using the NOT EXISTS predicate:

SELECT custid, companyname

FROM Sales.Customers AS C

WHERE country = N'Spain'

 AND NOT EXISTS

 (SELECT * FROM Sales.Orders AS O

 WHERE O.custid = C.custid);

 This query generates the following output:

custid companyname

----------- --

22 Customer DTDMN

 Even if the Orders table has a NULL custid, it is of no concern to us. You get all customers
from Spain for which SQL Server cannot fi nd even one row in the Orders table with the same
custid. The plan generated for this query is shown in Figure 6-2.

FIGURE 6-2 Execution plan for a NOT EXISTS query

C06626034.indd 307 2/13/2009 2:22:35 AM

308 Inside Microsoft SQL Server 2008: T-SQL Querying

 The plan scans the Customers table and fi lters customers from Spain. For each matching customer,
the plan performs a seek within the index on Orders.custid. The Top operator appears because
it’s only necessary to see whether you have at least one matching order for the customer—that’s
the short-circuiting capability of EXISTS in action. This use of Top is particularly effi cient when the
Orders.custid column has a high density (that is, a large number of duplicates). The seek takes
place only once for each customer, and regardless of the number of orders the customer has, only
one row is scanned at the leaf level (the bottom level of the index) to look for a match, as opposed
to all matching rows.

 In this case, the following solution using the NOT IN predicate does yield the same output. It
seems to have the same meaning, but we’ll see later that it does not.

SELECT custid, companyname

FROM Sales.Customers AS C

WHERE country = N'Spain'

 AND custid NOT IN(SELECT custid FROM Sales.Orders);

If you examine the execution plan, shown in Figure 6-3, you will fi nd that it’s different from
the one generated for the NOT EXISTS query.

FIGURE 6-3 Execution plan for a NOT IN query

 The beginning of this plan has some additional operations compared to the previous plan—
steps needed to look for NULL custids. Why is this plan different than the one generated for
the NOT EXISTS query? And why would SQL Server care particularly about the existence of
NULLs in Orders.custid?

 The discrepancy between the plans doesn’t affect the result because no row in the Orders
table has a NULL custid. However, because the custid column allows NULLs, the optimizer
must take this fact into consideration. Let’s see what happens if we add a row with a NULL
custid to the Orders table:

C06626034.indd 308 2/13/2009 2:22:35 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 309

INSERT INTO Sales.Orders

 (custid, empid, orderdate, requireddate, shippeddate, shipperid,

 freight, shipname, shipaddress, shipcity, shipregion,

 shippostalcode, shipcountry)

 VALUES(NULL, 1, '20090212', '20090212',

 '20090212', 1, 123.00, N'abc', N'abc', N'abc',

 N'abc', N'abc', N'abc');

 Now rerun both the NOT EXISTS and NOT IN queries. You will fi nd that the NOT EXISTS
query still returns the same output as before, while the NOT IN query now returns an empty
set. In fact, when the Orders.custid column has a NULL, the NOT IN query always returns an
empty set. This is because the predicate val IN(val1, val2, . . ., NULL) can never return FALSE;
rather, it can return only TRUE or UNKNOWN. As a result, val NOT IN(val1, val2, . . ., NULL)
can return only NOT TRUE or NOT UNKNOWN, neither of which is TRUE.

 For example, suppose the customer list in this query is (a, b, NULL). Customer a appears
in the list, and therefore the predicate a IN(a, b, NULL) returns TRUE. The predicate a NOT
IN(a, b, NULL) returns NOT TRUE, or FALSE, and customer a is not returned by the query.
Customer c, on the other hand, does not appear in the list (a, b, NULL), but the logical result
of c IN(a, b, NULL) is UNKNOWN because of the NULL. The predicate c NOT IN(a, b, NULL)
therefore returns NOT UNKNOWN, which equals UNKNOWN, and customer c is not returned
by the query, either, even though c does not appear in the customer list. Whether or not
a customer appears in the customer list, the customer is not returned by the query if the
list contains NULL. You realize that when NULLs are potentially involved (such as when the
 queried column allows NULLs), NOT EXISTS and NOT IN are not logically equivalent. This
explains the discrepancy between the plans and the potential difference in results. To make
the NOT IN query logically equivalent to the NOT EXISTS query, declare the column as NOT
NULL (if appropriate) or add a fi lter to the subquery to exclude NULLs:

SELECT custid, companyname

FROM Sales.Customers AS C

WHERE country = N'Spain'

 AND custid NOT IN(SELECT custid FROM Sales.Orders

 WHERE custid IS NOT NULL);

 This query generates the same result as the NOT EXISTS query, as well as the same plan.

 When you’re done testing the queries, make sure you remove the row with the NULL custid:

DELETE FROM Sales.Orders WHERE custid IS NULL;

DBCC CHECKIDENT('Sales.Orders', RESEED, 11077);

Minimum Missing Value To put your knowledge of the EXISTS predicate into action, try to
solve the following problem. First create and populate the table T1 by running the code in
Listing 6-1.

C06626034.indd 309 2/13/2009 2:22:35 AM

310 Inside Microsoft SQL Server 2008: T-SQL Querying

LISTING 6-1 Creating and populating the table T1

USE tempdb;

GO

IF OBJECT_ID('dbo.T1') IS NOT NULL

 DROP TABLE dbo.T1;

GO

CREATE TABLE dbo.T1

(

 keycol INT NOT NULL PRIMARY KEY CHECK(keycol > 0),

 datacol VARCHAR(10) NOT NULL

);

INSERT INTO dbo.T1(keycol, datacol) VALUES

 (3, 'a'),

 (4, 'b'),

 (6, 'c'),

 (7, 'd');

 Notice that keycol must be positive. Your task is to write a query that returns the lowest
 missing key, assuming that key values start at 1. For example, the table is currently populated
with the keys 3, 4, 6, and 7, so your query should return the value 1. If you insert two more
rows, with the keys 1 and 2, your query should return 5.

 Here’s a suggested CASE expression (incomplete) that I used in my solution:

SELECT

 CASE

 WHEN NOT EXISTS(SELECT * FROM dbo.T1 WHERE keycol = 1) THEN 1

 ELSE (...subquery returning minimum missing value...)

 END;

 If 1 doesn’t exist in the table, the CASE expression returns 1; otherwise, it returns the result of
a subquery returning the minimum missing value.

 Here’s the subquery that I used to return the minimum missing value:

SELECT MIN(A.keycol) + 1 as missing

FROM dbo.T1 AS A

WHERE NOT EXISTS

 (SELECT * FROM dbo.T1 AS B

 WHERE B.keycol = A.keycol + 1);

 The NOT EXISTS predicate returns TRUE only for values in T1 that are right before a gap
(4 and 7 in our case). A value is right before a gap if the value plus one does not exist in the
same table. The outer T1 table has the alias A, and the inner T1 table has the alias B. You
could use the expression B.keycol – 1 = A.keycol in the subquery’s fi lter, although it might
be a bit confusing to use such an expression when looking for a value in B that is greater
than the value in A by one. If you think about it, for B.keycol to be greater than A.keycol by
one, B.keycol minus one must be equal to A.keycol. If this logic confuses you, you can use
B.keycol = A.keycol + 1 instead, as I did. When all points before gaps are isolated, the outer

USE tempdb;

GO

IF OBJECT_ID('dbo.T1') IS NOT NULL

 DROP TABLE dbo.T1;

GO

CREATE TABLE dbo.T1

(

 keycol INT NOT NULL PRIMARY KEY CHECK(keycol > 0),

 datacol VARCHAR(10) NOT NULL

);

INSERT INTO dbo.T1(keycol, datacol) VALUES

 (3, 'a'),

 (4, 'b'),

 (6, 'c'),

 (7, 'd');

C06626034.indd 310 2/13/2009 2:22:35 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 311

query returns the minimum plus one, which is the fi rst missing value in the fi rst gap. Make a
mental note of the technique to identify a point before a gap—it’s a very handy fundamental
technique.

 Now you can incorporate the query returning the minimum missing value in the CASE
expression:

SELECT

 CASE

 WHEN NOT EXISTS(SELECT * FROM dbo.T1 WHERE keycol = 1) THEN 1

 ELSE (SELECT MIN(A.keycol) + 1

 FROM dbo.T1 AS A

 WHERE NOT EXISTS

 (SELECT * FROM dbo.T1 AS B

 WHERE B.keycol = A.keycol + 1))

 END;

 If you run this query with the sample data inserted by Listing 6-1, you should get 1 as the
 result. If you then insert two more rows, with the keys 1 and 2 (as shown in the following
code), and rerun the query, you should get 5 as the result.

INSERT INTO dbo.T1(keycol, datacol) VALUES(1, 'e'),(2, 'f');

 Here is an example of how you might use the CASE expression for the minimum missing key in
an INSERT . . . SELECT statement, perhaps in a scenario where you needed to reuse deleted keys:

INSERT INTO dbo.T1(keycol, datacol)

 SELECT

 CASE

 WHEN NOT EXISTS(SELECT * FROM dbo.T1 WHERE keycol = 1) THEN 1

 ELSE (SELECT MIN(A.keycol) + 1

 FROM dbo.T1 AS A

 WHERE NOT EXISTS

 (SELECT * FROM dbo.T1 AS B

 WHERE B.keycol = A.keycol + 1))

 END,

 'g';

 Query the T1 table after running this INSERT:

SELECT * FROM dbo.T1;

 Notice in the following output that the insert generated the key value 5, which was the minimum
missing key:

keycol datacol

----------- ----------

1 e

2 f

3 a

4 b

5 g

6 c

7 d

C06626034.indd 311 2/13/2009 2:22:35 AM

312 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note Multiple processes running such code simultaneously might get the same key. You can
overcome this issue by introducing error-handling code that traps a duplicate key error and
then retries. There are other, more effi cient techniques to reuse deleted keys, but they are
more complex and require you to maintain a table with ranges of missing values. Also note
that reusing deleted keys is not often a good idea, for reasons beyond concurrency. Here I just
 wanted to give you a chance to practice with the EXISTS predicate.

 Note that you can merge the two cases where 1 does exist in the table and where 1 doesn’t
instead of using a CASE expression. The solution requires some tricky logical manipulation:

SELECT COALESCE(MIN(A.keycol) + 1, 1)

FROM dbo.T1 AS A

WHERE

 NOT EXISTS(

 SELECT * FROM dbo.T1 AS B

 WHERE B.keycol= A.keycol + 1)

 AND EXISTS(

 SELECT * FROM dbo.T1

 WHERE keycol = 1);

 The query has both logical expressions from the CASE expression in the WHERE clause.
It returns the minimum missing value if 1 does exist in the table (that is, when the second
EXISTS predicate is TRUE). If 1 doesn’t exist in the table (that is, the second EXISTS predicate is
FALSE), the fi lter generates an empty set, and the expression MIN(keycol) + 1 yields a NULL.
The value of the COALESCE expression is then 1.

 Even though this solution achieves the request with a single query, I personally like the original
solution better. This solution is a bit tricky and isn’t as intuitive as the previous one, and simplicity
and readability of code goes a long way.

Reverse Logic Applied to Relational Division Problems Our minds are usually accustomed
to thinking in positive terms. However, positive thinking in some cases can get you only so
far. In many fi elds, including SQL programming, negative thinking or reverse logic can give
you new insight or be used as another tool to solve problems. Applying reverse logic can in
some cases lead to simpler or more effi cient solutions than applying a positive approach. It’s
another tool in your toolbox.

 Euclid, for example, was very fond of applying reverse logic in his mathematical proofs (proof
by way of negation). He used reverse logic to prove that there are infi nitely many prime
 numbers. By contradicting a certain assumption and thereby creating a paradox, you prove
that the assumption’s opposite must be true.

 Before I demonstrate an application of reverse logic in SQL, I’d like to deliver the idea
through an ancient puzzle. Two guards stand in front of two doors. One door leads to gold
and treasures, and the other leads to sudden death, but you don’t know which is which. One
of the guards always tells the truth and the other always lies, but you don’t know which is
the liar is and which is sincere (even though the guards do). Obviously, you want to enter the

C06626034.indd 312 2/13/2009 2:22:35 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 313

door that leads to the gold and not to sudden death. You have but one opportunity to ask
one of the guards a question. What will the question be?

 Any question that you ask applying positive thinking will not give you 100 percent assurance
of picking the door that leads to the gold. However, applying reverse logic can give you that
assurance.

 Ask either guard, “If I ask the other guard where the door is that leads to the gold, which
door would he point to?”

 If you asked the sincere guard, he would point at the door that leads to sudden death, knowing
that the other is a liar. If you asked the liar, he’d also point at the door that leads to sudden death,
knowing that the other guard is sincere and would point to the door that leads to the gold. All
you would have to do is enter the door that was not pointed at.

 Reverse logic is sometimes a handy tool in solving problems with SQL. An example of where
you can apply reverse logic is in solving relational division problems. At the beginning of
the chapter, I discussed the following problem: from the InsideTSQL2008 database, return
all customers with orders handled by all employees from the USA. The example I offered for
solving the problem used positive thinking. To apply reverse logic, you fi rst need to be able
to phrase the request in a negative way. Instead of saying, “Return customers for whom all
USA employees handled orders,” you can say, “Return customers for whom no USA employee
handled no order.” Remember that two negatives produce a positive. If for customer A you
cannot fi nd even one USA employee who did not handle any orders, all USA employees must
have handled orders for customer A.

 When you phrase the request in a negative way, the translation to SQL is intuitive using
 correlated subqueries:

USE InsideTSQL2008;

SELECT custid FROM Sales.Customers AS C

WHERE NOT EXISTS

 (SELECT * FROM HR.Employees AS E

 WHERE country = N'USA'

 AND NOT EXISTS

 (SELECT * FROM Sales.Orders AS O

 WHERE O.custid = C.custid

 AND O.empid = E.empid));

 When you “read” the query, it really sounds like the English phrasing of the request:

Return customers

for whom you cannot find

 any employee

 from the USA

 for whom you cannot find

 any order

 placed for the subject customer

 and by the subject employee

C06626034.indd 313 2/13/2009 2:22:35 AM

314 Inside Microsoft SQL Server 2008: T-SQL Querying

 You get the same 23 customers back as those returned by the query applying the positive
 approach. Notice, though, that the negative solution gives you access to all the customer
 attributes, while the positive solution gives you access only to the customer IDs. To access other
customer attributes, you need to add a join between the result set and the Customers table.

 When comparing the performance of the solutions in this case, the solution applying the
positive approach performs better. In other cases, the negative approach might yield better
performance. You now have another tool that you can use when solving problems.

 Another example where you can apply this kind of reverse logic is in a CHECK constraint that
needs to ensure that a character string column (call it sn for serial number) allows only digits.
Using positive logic, the constraint’s predicate can ensure that all characters are digits like so:

CHECK (sn LIKE REPLICATE('[0-9]', LEN(sn)))

 The expression replicates the string ‘[0-9]’ representing a single character that must be a digit
as many times as the number of characters in the column sn. This means that for a lengthy
string in the sn column, the pattern will be quite long. A more economical way to express
the same idea is to use reverse logic. Another way to say that all characters must be digits is
to say that no character can be something that is not a digit. This translates to the following
predicate in the constraint:

CHECK (sn NOT LIKE '%[^0-9]%')

 This pattern is much more economical compared with the one that applies positive logic,
 especially when dealing with long sn values.

 Note that both CHECK constraints provided here would allow an empty string as a serial
number. If you do not want to allow empty strings, you need to add logic to the constraint.

Misbehaving Subqueries

 I’ve occasionally seen a very tricky programming error involving subqueries, and I’ve even
had the misfortune to introduce into production code myself. I’ll fi rst describe the bug and
then make recommendations for how you can avoid it. To demonstrate the bug, I use a table
called Sales.MyShippers that you create and populate in the InsideTSQL2008 database by
running the following code:

IF OBJECT_ID('Sales.MyShippers', 'U') IS NOT NULL

 DROP TABLE Sales.MyShippers;

CREATE TABLE Sales.MyShippers

(

 shipper_id INT NOT NULL,

 companyname NVARCHAR(40) NOT NULL,

 phone NVARCHAR(24) NOT NULL,

 CONSTRAINT PK_MyShippers PRIMARY KEY(shipper_id)

);

C06626034.indd 314 2/13/2009 2:22:35 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 315

INSERT INTO Sales.MyShippers(shipper_id, companyname, phone)

 VALUES(1, N'Shipper GVSUA', N'(503) 555-0137'),

 (2, N'Shipper ETYNR', N'(425) 555-0136'),

 (3, N'Shipper ZHISN', N'(415) 555-0138');

 Suppose that you are asked to return the shippers from the Sales.MyShippers table that did
not ship orders (in the Sales.Orders table) to customer 43. Examining the data, shipper 1
(Shipper GVSUA) is the only one that qualifi es. The following query is supposed to return the
desired result:

SELECT shipper_id, companyname

FROM Sales.MyShippers

WHERE shipper_id NOT IN

 (SELECT shipper_id FROM Sales.Orders

 WHERE custid = 43);

 Surprisingly, this query returns an empty set. Can you tell why? Can you identify the elusive
bug in my code?

 Well, apparently the column in the Orders table holding the shipper ID is called shipperid
(no underscore) and not shipper_id. The Orders table has no shipper_id column. Realizing this,
you’d probably expect the query to have failed because of the invalid column name. Sure
enough, if you run only the part that was supposed to be a self-contained subquery, it does
fail: Invalid column name ‘shipper_id’. However, in the context of the outer query, apparently
the subquery is valid! The name resolution process works from the inner nesting level
 outward. The query processor fi rst looked for a shipper_id column in the Orders table, which
is referenced in the current level. Not having found such a column name, it looked for one in
the MyShippers table—the outer level—and found it. Unintentionally, the subquery became
correlated, as if it were written as the following illustrative code:

SELECT shipper_id, companyname

FROM Sales.MyShippers AS S

WHERE shipper_id NOT IN

 (SELECT S.shipper_id FROM Sales.Orders AS O

 WHERE O.custid = 43);

 Logically, the query doesn’t make much sense, of course; nevertheless, it is technically valid.

 You can now understand why you got an empty set back. Unless you have no order for
 customer 43 in the Orders table, shipper some_val is obviously always found in the set
(SELECT some_val FROM Sales.Orders WHERE custid = 43). And the NOT IN predicate always
yields FALSE. This buggy query logically became a nonexistence query equivalent to the
 following illustrative code:

SELECT shipper_id, companyname

FROM Sales.MyShippers

WHERE NOT EXISTS

 (SELECT * FROM Sales.Orders

 WHERE custid = 43);

C06626034.indd 315 2/13/2009 2:22:35 AM

316 Inside Microsoft SQL Server 2008: T-SQL Querying

 To fi x the problem, of course, you should use the correct name for the column from Orders
that holds the shipper ID—shippperid:

SELECT shipper_id, companyname

FROM Sales.MyShippers AS S

WHERE shipper_id NOT IN

 (SELECT shipperid FROM Sales.Orders AS O

 WHERE custid = 43);

 This generates the following expected result:

shipper_id companyname

----------- --

1 Shipper GVSUA

 However, to avoid such bugs in the future, it’s a good practice to always include the table
name or alias for all attributes in a subquery, even when the subquery is self-contained. Had
I aliased the shipper_id column in the subquery (as shown in the following code), a name
resolution error would have been generated, and the bug would have been detected:

SELECT shipper_id, companyname

FROM Sales.MyShippers AS S

WHERE shipper_id NOT IN

 (SELECT O.shipper_id FROM Sales.Orders AS O

 WHERE O.custid = 43);

Msg 207, Level 16, State 1, Line 4

Invalid column name 'shipper_id'.

 Finally, correcting the bug, here’s how the solution query should look:

SELECT shipper_id, companyname

FROM Sales.MyShippers AS S

WHERE shipper_id NOT IN

 (SELECT O.shipperid FROM Sales.Orders AS O

 WHERE O.custid = 43);

 When you’re done, run the following code for cleanup:

IF OBJECT_ID('Sales.MyShippers', 'U') IS NOT NULL

 DROP TABLE Sales.MyShippers;

Uncommon Predicates

 In addition to IN and EXISTS, SQL has three more predicates, but they are rarely used: ANY,
SOME, and ALL. You can consider them to be generalizations of the IN predicate. (ANY and
SOME are synonyms with no logical difference between them.)

 An IN predicate is translated to a series of equality predicates separated by OR operators—
for example, v IN(x, y, z) is translated to v = x OR v = y OR v = z. ANY (or SOME) allows you to

C06626034.indd 316 2/13/2009 2:22:35 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 317

specify the comparison you want in each predicate, not limiting you to the equality operator.
For example, v < ANY(x, y, z) is translated to v < x OR v < y OR v < z.

 ALL is similar, but it’s translated to a series of logical expressions separated by AND operators.
For example, v <> ALL(x, y, z) is translated to v <> x AND v <> y AND v <> z.

 Note IN allows as input either a list of literals or a subquery returning a single column. ANY/SOME
and ALL support only a subquery as input. If you have the need to use these uncommon predicates
with a list of literals as input, you must convert the list to a subquery. So, instead of v <> ANY(x, y, z),
you would use v <> ANY(SELECT x UNION ALL SELECT y UNION ALL SELECT z) or v <> ANY(SELECT i
FROM(VALUES(x),(y),(z)) AS D(i)).

 To demonstrate the use of these uncommon predicates, let’s suppose you are asked to
 return, for each employee, the order with the minimum orderid. Here’s how you can achieve
this with the ANY operator:

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders AS O1

WHERE NOT orderid >

 ANY(SELECT orderid

 FROM Sales.Orders AS O2

 WHERE O2.empid = O1.empid);

 This query generates the following output:

orderid custid empid orderdate

----------- ----------- ----------- -----------------------

10248 85 5 2006-07-04 00:00:00.000

10249 79 6 2006-07-05 00:00:00.000

10250 34 4 2006-07-08 00:00:00.000

10251 84 3 2006-07-08 00:00:00.000

10255 68 9 2006-07-12 00:00:00.000

10258 20 1 2006-07-17 00:00:00.000

10262 65 8 2006-07-22 00:00:00.000

10265 7 2 2006-07-25 00:00:00.000

10289 11 7 2006-08-26 00:00:00.000

 A row has the minimum orderid for an employee if it is not the case that orderid is less than
or equal to some orderid for the same employee.

 You can also write a query using ALL to achieve the same thing:

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders AS O1

WHERE orderid <=

 ALL(SELECT orderid

 FROM Sales.Orders AS O2

 WHERE O2.empid = O1.empid);

 A row has the minimum orderid for an employee if its orderid is less than or equal to all
 orderids for the same employee.

C06626034.indd 317 2/13/2009 2:22:35 AM

318 Inside Microsoft SQL Server 2008: T-SQL Querying

 None of the preceding solutions falls into the category of intuitive solutions, and maybe this
explains why these predicates are not commonly used. The natural way to write the solution
query would probably be as follows:

SELECT orderid, custid, empid, orderdate

FROM Sales.Orders AS O1

WHERE orderid =

 (SELECT MIN(orderid)

 FROM Sales.Orders AS O2

 WHERE O2.empid = O1.empid);

Table Expressions

 So far, I’ve covered scalar and multivalued subqueries. This section deals with table subqueries,
which are known as table expressions. In this chapter, I’ll discuss derived tables and common
table expressions (CTE).

 More Info For information about the two other types of table expressions—views and inline
table-valued functions—please refer to Inside Microsoft SQL Server 2008: T-SQL Programming
(Microsoft Press, 2009).

Derived Tables

 A derived table is a table expression—that is, a virtual result table derived from a query
 expression. A derived table appears in the FROM clause of a query like any other table. The
scope of existence of a derived table is the outer query’s scope only.

 The general form in which a derived table is used is as follows:

FROM (derived_table_query) AS derived_table_alias

Note A derived table is completely virtual. It’s not physically materialized, nor does the
 optimizer generate a separate plan for it. The outer query and the inner one are merged, and
one plan is generated. You shouldn’t have any special concerns regarding performance when
using derived tables. Merely using derived tables neither degrades nor improves performance.
Their use is more a matter of simplifi cation and clarity of code.

 A derived table must be a valid table; therefore, it must follow several rules:

■ All columns must have names.

■ The column names must be unique.

■ ORDER BY is not allowed (unless TOP is also specifi ed).

C06626034.indd 318 2/13/2009 2:22:35 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 319

 Note Unlike scalar and multivalued subqueries, derived tables cannot be correlated; they must
be self-contained. The exception to this rule occurs when using the APPLY operator, which I’ll
cover in Chapter 9.

Result Column Aliases

 One use of derived tables is to enable the reuse of column aliases when expressions are so
long you’d rather not repeat them. For simplicity’s sake, I’ll demonstrate column alias reuse
with short expressions.

 Remember from Chapter 1, “Logical Query Processing,” that aliases created in the query’s
SELECT list cannot be used in most of the query elements. This is because the SELECT clause
is logically processed almost last, just before the ORDER BY clause. For this reason, the
 following illustrative query fails:

SELECT

 YEAR(orderdate) AS orderyear,

 COUNT(DISTINCT custid) AS numcusts

FROM Sales.Orders

GROUP BY orderyear;

 The GROUP BY clause is logically processed before the SELECT clause, so at the GROUP BY
phase, the orderyear alias has not yet been created.

 By using a derived table that contains only the SELECT and FROM elements of the original
query, you can create aliases and make them available to the outer query in any element.

 There are two formats of aliasing the derived table’s result columns. One is inline column
aliasing:

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

FROM (SELECT YEAR(orderdate) AS orderyear, custid

 FROM Sales.Orders) AS D

GROUP BY orderyear;

 And the other is external column aliasing following the derived table’s alias:

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

FROM (SELECT YEAR(orderdate), custid

 FROM Sales.Orders) AS D(orderyear, custid)

GROUP BY orderyear;

 I typically use inline column aliasing because I fi nd it more convenient to work with in
most cases. You don’t have to specify aliases for base columns, and it’s more convenient to
troubleshoot. When you highlight and run only the derived table query, the result set you
get includes all result column names. Also, it’s clear which column alias belongs to which
expression.

C06626034.indd 319 2/13/2009 2:22:35 AM

320 Inside Microsoft SQL Server 2008: T-SQL Querying

 The external column aliasing format lacks all the aforementioned benefi ts. One case where
you may fi nd it convenient to work with is when the query defi ning the table expression is
pretty much a done deal in terms of development, and you want to focus your attention on
the name of the table and its attributes.

Using Arguments

 Even though a derived table query cannot be correlated (except with APPLY), it can refer to
variables defi ned in the same batch. For example, the following code returns for each year
the number of customers handled by employee 3:

DECLARE @empid AS INT = 3; -- use separate DECLARE and SET prior to 2008

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

FROM (SELECT YEAR(orderdate) AS orderyear, custid

 FROM Sales.Orders

 WHERE empid = @empid) AS D

GROUP BY orderyear;

 Note SQL Server 2008 introduces the ability to declare and initialize a variable in the same
statement. Use separate DECLARE and SET statements prior to SQL Server 2008.

 This code generates the following output:

orderyear numcusts

----------- -----------

2006 16

2007 46

2008 30

Nesting

 One aspect of working with derived tables that I fi nd problematic is the fact that if you want
to refer to one derived table in another, they must be nested. This is because the derived
 table is defi ned in the FROM clause of the outer query, as opposed to being defi ned before
the outer query. Nesting is a problematic aspect of programming in general, as it tends to
complicate the code and make it harder to follow. Logical processing in a case of nested
 derived tables starts at the innermost level and proceeds outward.

 The following query returns the order year and the number of customers for years with more
than 70 active customers:

SELECT orderyear, numcusts

FROM (SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

 FROM (SELECT YEAR(orderdate) AS orderyear, custid

 FROM Sales.Orders) AS D1

 GROUP BY orderyear) AS D2

WHERE numcusts > 70;

C06626034.indd 320 2/13/2009 2:22:35 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 321

 This query generates the following output:

orderyear numcusts

----------- -----------

2007 86

2008 81

 Although one reason for using table expressions is in an attempt to simplify your code by not
repeating expressions, the nesting aspect of derived tables ends up complicating the code.

Multiple References

 Out of all the types of table expressions available in T-SQL, derived tables are the only type
to suffer from a certain limitation related to multiple references. Because a derived table is
defi ned in the FROM clause of the outer query and not before it, you can’t refer to the same
derived table multiple times in the same query. For example, suppose you want to compare
each year’s number of active customers to the previous year’s. You want to join two instances
of a derived table that contains the yearly aggregates. In such a case, unfortunately, you
have to create two derived tables, each repeating the same derived table query:

SELECT Cur.orderyear,

 Cur.numcusts AS curnumcusts, Prv.numcusts AS prvnumcusts,

 Cur.numcusts - Prv.numcusts AS growth

FROM (SELECT YEAR(orderdate) AS orderyear,

 COUNT(DISTINCT custid) AS numcusts

 FROM Sales.Orders

 GROUP BY YEAR(orderdate)) AS Cur

 LEFT OUTER JOIN

 (SELECT YEAR(orderdate) AS orderyear,

 COUNT(DISTINCT custid) AS numcusts

 FROM Sales.Orders

 GROUP BY YEAR(orderdate)) AS Prv

 ON Cur.orderyear = Prv.orderyear + 1;

 This query generates the following output:

orderyear curnumcusts prvnumcusts growth

----------- ----------- ----------- -----------

2006 67 NULL NULL

2007 86 67 19

2008 81 86 -5

Common Table Expressions

 A common table expression (CTE) is another type of table expression supported by SQL
Server. In many aspects, you will fi nd CTEs very similar to derived tables. However, CTEs have
several important advantages, which I’ll describe in this section.

C06626034.indd 321 2/13/2009 2:22:36 AM

322 Inside Microsoft SQL Server 2008: T-SQL Querying

 Remember that a derived table appears in its entirety in the FROM clause of an outer query.
A CTE, however, is defi ned fi rst using a WITH statement, and then an outer query referring to
the CTE’s name follows the CTE’s defi nition:

WITH cte_name

AS

(

 cte_query

)

outer_query_referring_to_cte_name

 Note Because the WITH keyword is used in T-SQL for other purposes as well, to avoid ambiguity,
the statement preceding the CTE’s WITH clause must be terminated with a semicolon. The use of
a semicolon to terminate statements is supported by ANSI. It’s a good practice, and you should
start getting used to it even where T-SQL currently doesn’t require it.

 A CTE’s scope of existence is the outer query’s scope. It’s not visible to other statements in
the same batch.

 The same rules I mentioned for the validity of a derived table’s query expression apply to the
CTE’s as well. That is, the query must generate a valid table, so all columns must have names,
all column names must be unique, and ORDER BY is not allowed (unless TOP is also specifi ed).

 Next, I’ll go over aspects of CTEs, demonstrating their syntax and capabilities, and compare
them to derived tables.

Result Column Aliases

 Just as you can with derived tables, you can provide aliases to result columns either inline in
the CTE’s query or externally in parentheses following the CTE’s name. The following code
illustrates the fi rst method:

WITH C AS

(

 SELECT YEAR(orderdate) AS orderyear, custid

 FROM Sales.Orders

)

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

FROM C

GROUP BY orderyear;

 The next bit of code illustrates how to provide aliases externally in parentheses following the
CTE’s name:

WITH C(orderyear, custid) AS

(

 SELECT YEAR(orderdate), custid

 FROM Sales.Orders

)

C06626034.indd 322 2/13/2009 2:22:36 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 323

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

FROM C

GROUP BY orderyear;

Using Arguments

 Another similarity between CTEs and derived tables is that CTEs can refer to variables declared
in the same batch:

DECLARE @empid AS INT = 3;

WITH C AS

(

 SELECT YEAR(orderdate) AS orderyear, custid

 FROM Sales.Orders

 WHERE empid = @empid

)

SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

FROM C

GROUP BY orderyear;

Multiple CTEs

 Unlike derived tables, CTEs cannot be nested directly. That is, you cannot defi ne a CTE within
another CTE. However, you can defi ne multiple CTEs using the same WITH statement, each of
which can refer to the preceding CTEs. The outer query has access to all the CTEs. Using this
capability, you can achieve the same result you would by nesting derived tables, but with
CTEs the code won’t be as complex as with derived tables—it will be much more modular.
For example, the following WITH statement defi nes two CTEs:

WITH C1 AS

(

 SELECT YEAR(orderdate) AS orderyear, custid

 FROM Sales.Orders

),

C2 AS

(

 SELECT orderyear, COUNT(DISTINCT custid) AS numcusts

 FROM C1

 GROUP BY orderyear

)

SELECT orderyear, numcusts

FROM C2

WHERE numcusts > 70;

 C1 returns order years and customer IDs for each order, generating the orderyear alias for the
order year. C2 groups the rows returned from C1 by orderyear and calculates the count of
distinct custids (number of active customers). Finally, the outer query returns only order years
with more than 70 active customers.

C06626034.indd 323 2/13/2009 2:22:36 AM

324 Inside Microsoft SQL Server 2008: T-SQL Querying

Multiple References

 Besides the fact that CTEs are much more modular than derived tables, they have another
 advantage over derived tables—you can refer to the same CTE name multiple times in the
outer query. You don’t need to repeat the same CTE defi nition like you do with derived tables.
For example, the following code demonstrates a CTE solution for the request to compare each
year’s number of active customers to the previous year’s number:

WITH YearlyCount AS

(

 SELECT YEAR(orderdate) AS orderyear,

 COUNT(DISTINCT custid) AS numcusts

 FROM Sales.Orders

 GROUP BY YEAR(orderdate)

)

SELECT Cur.orderyear,

 Cur.numcusts AS curnumcusts, Prv.numcusts AS prvnumcusts,

 Cur.numcusts - Prv.numcusts AS growth

FROM YearlyCount AS Cur

 LEFT OUTER JOIN YearlyCount AS Prv

 ON Cur.orderyear = Prv.orderyear + 1;

You can see that the outer query refers to the YearlyCount CTE twice—once representing the
current year (Cur) and once representing the previous year (Prv).

Note that like derived tables, CTEs are virtual; SQL Server internally rearranges the query so that
the underlying objects are accessed directly. The plan that you get for this query is the same as
the one you get when using derived tables. Both references to the CTE name will be expanded,
meaning that the base table will be accessed twice and aggregated twice. With a large number
of rows in the underlying table, you may want to consider using temporary tables or table
variables, especially in a case where the result set of the query is so small (a row per year). With
a temporary table the base table will be scanned once, and the data will be aggregated once.
The join will then take place between two instances of the small temporary table.

Modifying Data

You can modify data through CTEs. To demonstrate this capability, fi rst run the code in
Listing 6-2 to create and populate the Sales.CustomersDups table with sample data.

LISTING 6-2 Creating and populating the CustomersDups table

IF OBJECT_ID('Sales.CustomersDups') IS NOT NULL

 DROP TABLE Sales.CustomersDups;

GO

SELECT

 custid, companyname, contactname, contacttitle, address,

 city, region, postalcode, country, phone, fax

INTO Sales.CustomersDups

FROM Sales.Customers CROSS JOIN (VALUES(1),(2),(3)) AS Nums(n);

IF OBJECT_ID('Sales.CustomersDups') IS NOT NULL

 DROP TABLE Sales.CustomersDups;

GO

SELECT

 custid, companyname, contactname, contacttitle, address,

 city, region, postalcode, country, phone, fax

INTO Sales.CustomersDups

FROM Sales.Customers CROSS JOIN (VALUES(1),(2),(3)) AS Nums(n);

C06626034.indd 324 2/13/2009 2:22:36 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 325

 The code in Listing 6-2 creates a table of customers with duplicate occurrences of each customer.
The following code demonstrates how you can remove duplicate customers using a CTE:

WITH CustsDupsRN AS

(

 SELECT *,

 ROW_NUMBER() OVER(PARTITION BY custid ORDER BY (SELECT 0)) AS rn

 FROM Sales.CustomersDups

)

DELETE FROM CustsDupsRN

WHERE rn > 1;

 The CTE CustsDupsRN assigns row numbers (rn column) to number the duplicate rows for
each customer. I’ll provide more details about the ROW_NUMBER function later in the chapter;
for now it suffi ces to say that the duplicate rows for each customer are assigned row numbers
beginning with the number 1. The DELETE statement then simply deletes all rows where rn is
greater than 1. After this code is run, the CustomersDups table contains only unique rows. At
this point, you can create a primary key or a unique constraint on the custid column to avoid
duplicates in the future.

 Note that SQL Server also supports modifying data through derived tables. I have to say,
though, that I fi nd the syntax to be unintuitive. You need to defi ne the derived table and alias it
in a FROM clause, and direct the modifi cation against the derived table alias in a separate clause.
For example, the following code uses a derived table to handle the task of deleting duplicates:

DELETE FROM CustsDupsRN

FROM (SELECT *,

 ROW_NUMBER() OVER(PARTITION BY custid ORDER BY (SELECT 0)) AS rn

 FROM Sales.CustomersDups) AS CustsDupsRN

WHERE rn > 1;

CTEs in View and Inline Function Defi nitions

 CTEs can be used in container objects such as views and inline UDFs. Views and inline UDFs
provide encapsulation, which is important for modular programming. Also, I mentioned earlier
that CTEs cannot be nested directly. However, you can nest CTEs indirectly by encapsulating
a CTE in a container object and querying the container object from an outer CTE.

 Using CTEs in views or inline UDFs is very trivial. The following example creates a view returning
a yearly count of customers:

IF OBJECT_ID('dbo.YearCustCount') IS NOT NULL

 DROP VIEW dbo.YearCustCount;

GO

CREATE VIEW dbo.YearCustCount

AS

WITH CYearCustCount AS

(

 SELECT YEAR(orderdate) AS orderyear,

 COUNT(DISTINCT custid) AS numcusts

C06626034.indd 325 2/13/2009 2:22:36 AM

326 Inside Microsoft SQL Server 2008: T-SQL Querying

 FROM Sales.Orders

 GROUP BY YEAR(orderdate)

)

SELECT * FROM CYearCustCount;

GO

 Note that in this particular case the CTE is superfl uous, and you could defi ne the view based
on the underlying query directly. The purpose of this example is only to demonstrate the
syntax.

 Query the view, as shown in the following code:

SELECT * FROM dbo.YearCustCount;

 You get the following output:

orderyear numcusts

----------- -----------

2006 67

2007 86

2008 81

 If you want to pass an input argument to the container object—for example, return the yearly
count of customers for the given employee—you’d create an inline UDF as follows:

IF OBJECT_ID('dbo.EmpYearCustCnt') IS NOT NULL

 DROP FUNCTION dbo.EmpYearCustCnt;

GO

CREATE FUNCTION dbo.EmpYearCustCnt(@empid AS INT) RETURNS TABLE

AS

RETURN

 WITH CEmpYearCustCnt AS

 (

 SELECT YEAR(orderdate) AS orderyear,

 COUNT(DISTINCT custid) AS numcusts

 FROM Sales.Orders

 WHERE empid = @empid

 GROUP BY YEAR(orderdate)

)

 SELECT * FROM CEmpYearCustCnt;

GO

 Query the UDF providing employee ID 3 as input:

SELECT * FROM dbo.EmpYearCustCnt(3) AS T;

 You get the following output:

orderyear numcusts

----------- -----------

2006 67

2007 86

2008 81

C06626034.indd 326 2/13/2009 2:22:36 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 327

Recursive CTEs

 SQL Server supports recursive querying capabilities through CTEs. The types of tasks and
activities that can benefi t from recursive queries include manipulation of graphs, trees,
 hierarchies, and many others. Here I’ll just introduce you to recursive CTEs. For more
 information and detailed applications, you can fi nd extensive coverage in Chapter 12,
“Graphs, Trees, Hierarchies, and Recursive Queries.”

 I’ll describe a recursive CTE using an example. You’re given an input empid (for example,
 employee 5) from the HR.Employees table in the InsideTSQL2008 database. You’re supposed to
return the input employee and subordinate employees in all levels, based on the hierarchical
relationships maintained by the empid and mgrid attributes. The attributes you need to return
for each employee include empid, mgrid, fi rstname, and lastname.

 Before I demonstrate and explain the recursive CTE’s code, I’ll create the following covering
index, which is optimal for the task:

CREATE UNIQUE INDEX idx_mgr_emp_i_fname_lname

 ON HR.Employees(mgrid, empid)

 INCLUDE(firstname, lastname);

 This index will allow fetching direct subordinates of each manager by using a single seek
plus a partial scan. Note the included columns (fi rstname and lastname) that were added for
 coverage purposes.

 Here’s the recursive CTE code that will return the desired result:

WITH Emps AS

(

 SELECT empid, mgrid, firstname, lastname

 FROM HR.Employees

 WHERE empid = 5

 UNION ALL

 SELECT Emp.empid, Emp.mgrid, Emp.firstname, Emp.lastname

 FROM Emps AS Mgr

 JOIN HR.Employees AS Emp

 ON Emp.mgrid = Mgr.empid

)

SELECT * FROM Emps;

 This code generates the following output:

empid mgrid firstname lastname

----------- ----------- ---------- --------------------

5 2 Sven Buck

6 5 Paul Suurs

7 5 Russell King

9 5 Zoya Dolgopyatova

C06626034.indd 327 2/13/2009 2:22:36 AM

328 Inside Microsoft SQL Server 2008: T-SQL Querying

 A recursive CTE contains a minimum of two queries (also known as members). The fi rst query
that appears in the preceding CTE’s body is known as the anchor member. The anchor member
is merely a query that returns a valid table and is used as the basis or anchor for the recursion. In
our case, the anchor member simply returns the row for the input root employee (employee 5).
The second query that appears in the preceding CTE’s body is known as the recursive member.
What makes the query a recursive member is a recursive reference to the CTE’s name—Emps.
Note that this reference is not the same as the reference to the CTE’s name in the outer query.
The reference in the outer query gets the fi nal result table returned by the CTE, and it involves
no recursion. However, the inner reference is made before the CTE’s result table is fi nalized, and
it is the key element that triggers the recursion. This inner reference to the CTE’s name stands
for “the previous result set,” loosely speaking. In the fi rst invocation of the recursive member, the
reference to the CTE’s name represents the result set returned from the anchor member. In our
case, the recursive member returns subordinates of the employees returned in the previous result
set—in other words, the next level of employees.

 The recursion has no explicit termination check; instead, recursion stops as soon as the
 recursive member returns an empty set. Because the fi rst invocation of the recursive
 member yielded a nonempty set (employees 6, 7, and 9), it is invoked again. The second
time the recursive member is invoked, the reference to the CTE’s name represents the result
set returned by the previous invocation of the recursive member (employees 6, 7, and 9).
Because these employees have no subordinates, the second invocation of the recursive
 member yields an empty set, and recursion stops.

 The reference to the CTE’s name in the outer query stands for the unifi ed (concatenated)
results sets of the invocation of the anchor member and all the invocations of the recursive
member.

 If you run the same code providing employee 2 as input instead of employee 5, you get the
following result:

empid mgrid firstname lastname

----------- ----------- ---------- --------------------

2 1 Don Funk

3 2 Judy Lew

5 2 Sven Buck

6 5 Paul Suurs

7 5 Russell King

9 5 Zoya Dolgopyatova

4 3 Yael Peled

8 3 Maria Cameron

 Here, the anchor member returns the row for employee 2. The fi rst invocation of the
 recursive member returns direct subordinates of employee 2: employees 3 and 5. The second
invocation of the recursive member returns direct subordinates of employees 3 and 5:
 employees 4, 8, 6, 7, and 9. The third invocation of the recursive member returns an empty
set, and recursion stops. The outer query returns the unifi ed result sets with the rows for
employees: 2, 3, 5, 4, 8, 6, 7, and 9.

C06626034.indd 328 2/13/2009 2:22:36 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 329

 If you suspect that your data might accidentally contain cycles or that you might have a logical
bug in your code, you can specify the MAXRECURSION hint as a safety measure to limit the
 number of invocations of the recursive member. You specify the hint right after the outer query:

WITH cte_name AS (cte_body) outer_query OPTION(MAXRECURSION n);

 In this line of code, n is the limit for the number of recursive iterations. As soon as the limit is
exceeded, the query breaks, and an error is generated. Note that MAXRECURSION is set to
100 by default. If you want to remove this limit, specify MAXRECURSION 0. This setting can
be specifi ed at the query level only; you can’t set a session, database, or server-level option
to change the default.

 To understand how SQL Server processes the recursive CTE, examine the execution plan in
Figure 6-4, which was produced for the earlier query returning subordinates of employee 5.

FIGURE 6-4 Execution plan for recursive CTE

 As you can see in the plan, the result set of the anchor member (the row for employee 5) is
retrieved using a clustered index seek operation (on the empid column). The Compute Scalar
operator calculates an iteration counter, which is set to 0 initially (at the fi rst occurrence of
Compute Scalar in the plan) and incremented by one with each iteration of the recursive
member (the second occurrence of Compute Scalar in the plan).

 The anchor query is executed, and its result set is spooled (Table Spool operator in the plan).
Then the recursive query is executed (using the spooled results for the recursive reference to
the CTE). Any results are spooled and the recursive query is executed again using the newly
spooled results for the recursive reference (and so on).

 You‘ll also notice later in the plan that a temporary index is created (indicated by the Index
Spool operator). The index is created on the iteration counter plus the attributes retrieved
(empid, mgrid, fi rstname, lastname).

 The interim set of each invocation of the recursive member is retrieved using index seek
operations in the covering index I created for the query. The Nested Loops operator invokes
a seek for each manager returned and spooled in the previous level to fetch its direct
subordinates.

C06626034.indd 329 2/13/2009 2:22:36 AM

330 Inside Microsoft SQL Server 2008: T-SQL Querying

 The Assert operator checks whether the iteration counter exceeds 100 (the default
MAXRECURSION limit). This is the operator in charge of breaking the query in case the
 number of recursive member invocations exceeds the MAXRECURSION limit.

 The Concatenation operator concatenates (unifi es) all interim result sets.

 When you’re done testing and experimenting with the recursive CTE, drop the index created
for this purpose:

DROP INDEX HR.Employees.idx_mgr_emp_i_fname_lname;

Analytical Ranking Functions

 SQL Server supports four analytical ranking functions: ROW_NUMBER, RANK, DENSE_RANK,
and NTILE. These functions provide a simple and highly effi cient way to produce ranking
calculations. I will also demonstrate alternative solutions to producing ranking values without
the built-in ranking functions. Of course, you can feel free to skip the coverage of the
 alternative solutions, but I’d recommend spending the time to learn those for several reasons.
A lot of existing legacy code out there in production systems makes use of those techniques.
Also, some of those techniques are quite convoluted, and some have poor performance, so
by being familiar with them you gain a greater appreciation for the simplicity and effi ciency
of the built-in functions. Also, trying to solve these problems without using the built-in
 ranking functions provides good exercise in querying logic. And fi nally, you may fi nd the
techniques used in those solutions handy for solving other types of querying problems.

 ROW_NUMBER is by far my favorite feature in SQL Server. Even though it might not seem
that signifi cant on the surface compared to other features, it has an amazing number of
practical applications that extend far beyond classic ranking and scoring calculations.
I have been able to optimize many solutions by using the ROW_NUMBER function, as I will
 demonstrate throughout the book.

 Even though the other ranking functions are technically calculated similarly to ROW_NUMBER
underneath the covers, they have fewer practical applications.

 I’ll fi rst describe the ROW_NUMBER function and alternative techniques to calculate row numbers.
I’ll present a benchmark I did comparing the performance of the different techniques. I’ll then
cover the other ranking calculations.

 In my examples, I’ll use a Sales table, which you should create and populate by running the
following code:

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.Sales') IS NOT NULL

 DROP TABLE dbo.Sales;

GO

C06626034.indd 330 2/13/2009 2:22:36 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 331

CREATE TABLE dbo.Sales

(

 empid VARCHAR(10) NOT NULL PRIMARY KEY,

 mgrid VARCHAR(10) NOT NULL,

 qty INT NOT NULL

);

INSERT INTO dbo.Sales(empid, mgrid, qty) VALUES

 ('A', 'Z', 300),

 ('B', 'X', 100),

 ('C', 'X', 200),

 ('D', 'Y', 200),

 ('E', 'Z', 250),

 ('F', 'Z', 300),

 ('G', 'X', 100),

 ('H', 'Y', 150),

 ('I', 'X', 250),

 ('J', 'Z', 100),

 ('K', 'Y', 200);

CREATE INDEX idx_qty_empid ON dbo.Sales(qty, empid);

CREATE INDEX idx_mgrid_qty_empid ON dbo.Sales(mgrid, qty, empid);

 Ranking functions can appear only in the SELECT and ORDER BY clauses of a query. The
 general form of a ranking function is as follows:

ranking_function OVER([PARTITION BY col_list] ORDER BY col_list)

 Ranking functions are calculated in the context of a window of rows that is defi ned by an OVER
clause—hence, these functions are known as window functions. This clause is not specifi c to
ranking calculations—it is applicable to other types of calculations that are based on a window
defi nition as well, such as aggregates. The concept that the OVER clause represents is profound,
and in my eyes this clause is the single most powerful feature in the standard SQL language.
First, it enables expressions to break the traditional boundaries of being restricted to the
 “current row” and allows them access to a whole window of rows. Second, it allows the defi ning
of logical ordering in the window for the purposes of the calculation without breaking any
aspects of sets. That is, while a set has no order, an operation or calculation on the set can be
defi ned based on logical ordering. The sources for the operation, as well as the result, are still
valid sets with no guaranteed order. This is the part that I fi nd most profound—it bridges the
gap between cursors and sets. This gap represents one of the toughest problems for database
developers—to stop thinking in terms of individual rows and in certain order and start thinking
in terms of sets as a whole and in no order.

 The optional PARTITION BY clause allows you to request that the ranking values will be
 calculated for each partition (or group) of rows separately. For example, if you specify mgrid
in the PARTITION BY clause, the ranking values will be calculated independently for each
manager’s rows. In the ORDER BY clause you defi ne the logical order for the calculation—
that is, the logical order of assignment of the ranking values.

C06626034.indd 331 2/13/2009 2:22:36 AM

332 Inside Microsoft SQL Server 2008: T-SQL Querying

 The optimal index for ranking calculations (regardless of the method you use) is one created
on partitioning_columns, sort_columns, and (as included columns, not key columns) covered_
columns. I created optimal indexes on the Sales table for several ranking calculation requests.

Row Number

Row numbers are sequential integers assigned to rows of a query’s result set based on a
specifi ed logical ordering. In the following sections, I’ll describe the tools and techniques to
calculate row numbers.

The ROW_NUMBER Function

The ROW_NUMBER function assigns sequential integers to rows of a query’s result set based
on a specifi ed order, optionally within partitions. For example, the following query returns
employee sales rows and assigns row numbers in order of qty:

SELECT empid, qty,

 ROW_NUMBER() OVER(ORDER BY qty) AS rownum

FROM dbo.Sales

ORDER BY qty;

This code returns the output shown in Table 6-1.

 TABLE 6-1 Row Numbers Based on qty Ordering

 empid qty rownum

 B 100 1

 G 100 2

 J 100 3

 H 150 4

 C 200 5

 D 200 6

 K 200 7

 E 250 8

 I 250 9

 A 300 10

 F 300 11

 To understand the effi ciency of the ranking functions, examine the execution plan shown in
Figure 6-5, which was generated for this query.

FIGURE 6-5 Execution plan for ROW_NUMBER

empid qty rownum

C06626034.indd 332 2/13/2009 2:22:36 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 333

 To calculate ranking values, the optimizer needs the data to be sorted fi rst on the partitioning
column or columns and then on the ordering column or columns.

 If you have an index that already maintains the data in the required order, the leaf level of
the index is simply scanned in an ordered fashion (as in our case). Otherwise, the data will be
scanned and then sorted with a sort operator. The Sequence Project operator is the operator
in charge of calculating the ranking values. For each input row, it needs two fl ags:

 1. Is the row the fi rst in the partition? If it is, the Sequence Project operator will reset the
ranking value.

 2. Is the sorting value in this row different from the previous one? If it is, the Sequence
Project operator will increment the ranking value as dictated by the specifi c ranking
function.

 For all ranking functions, a Segment operator produces the fi rst fl ag value.

 The Segment operator basically determines grouping boundaries. It keeps one row in memory
and compares it with the next. If they are different, it emits one value. If they are the same, it
emits a different value.

 To generate the fi rst fl ag, which indicates whether the row is the fi rst in the partition, the
Segment operator compares the PARTITON BY column values of the current and previous rows.
Obviously, it emits “true” for the fi rst row read. From the second row on, its output depends on
whether the PARTITION BY column value changed. In our example, I didn’t specify a PARTITION
BY clause, so the whole table is treated as one partition. In this case, Segment will emit “true”
for the fi rst row and “false” for all others.

 For the second fl ag (“Is the value different than the previous value?”), the operator that will
calculate it depends on which ranking function you requested. For ROW_NUMBER, the ranking
value must be incremented for each row regardless of whether the sort value changes. So in
our case, we don’t need an additional operator. In other cases (for example, with the RANK and
DENSE_RANK functions), another Segment operator is used to tell the Sequence Project operator
whether the sort value changed to determine whether to increment the ranking value.

 The brilliance of this plan and the techniques the optimizer uses to calculate ranking values
might not be apparent yet. For now, suffi ce to say that the data is scanned only once, and
if it’s not already sorted within an index, it is also sorted. This is much faster than any other
technique to calculate ranking values, as I will demonstrate in detail shortly.

Determinism As you probably noticed in the output of the previous query, row numbers
keep incrementing regardless of whether the sort value changes. Row numbers must be
unique within the partition. This means that for a nonunique ORDER BY list, the query is
 nondeterministic. That is, different result sets are correct, not just one. For example, in Table 6-1
you can see that employees B, G, and J, all having a quantity of 100, got the row numbers 1, 2,
and 3, respectively. However, the result would also be valid if these three employees received
the row numbers 1, 2, and 3 in a different order.

C06626034.indd 333 2/13/2009 2:22:36 AM

334 Inside Microsoft SQL Server 2008: T-SQL Querying

 For some applications determinism is mandatory. To guarantee determinism, you simply need
to add a tiebreaker that makes the values of partitioning column(s) + ordering column(s) unique.

 For example, the following query demonstrates both a nondeterministic row number based
on the qty column alone and also a deterministic one based on the order of qty, empid:

SELECT empid, qty,

 ROW_NUMBER() OVER(ORDER BY qty) AS nd_rownum,

 ROW_NUMBER() OVER(ORDER BY qty, empid) AS d_rownum

FROM dbo.Sales

ORDER BY qty, empid;

 This query generates the following output:

empid qty nd_rownum d_rownum

---------- ----------- -------------------- --------------------

B 100 1 1

G 100 2 2

J 100 3 3

H 150 4 4

C 200 5 5

D 200 6 6

K 200 7 7

E 250 8 8

I 250 9 9

A 300 10 10

F 300 11 11

 Tip The ORDER BY clause is mandatory in ranking functions. Sometimes, though, you may need
to apply a ranking calculation in no particular order and would like to avoid the cost associated
with scanning an index in order or sorting the data. Unfortunately, you cannot specify ORDER BY
<const>. However, apparently SQL Server does allow specifying ORDER BY (SELECT <const>)—for
example, ROW_NUMBER() OVER(ORDER BY (SELECT 0)). The optimizer is smart enough in this case
to realize that order doesn’t matter. As an alternative, you can also order by a previously declared
variable: OVER(ORDER BY @v). Here as well, the optimizer recognizes that order doesn’t matter.

Partitioning As I mentioned earlier, you can also calculate ranking values within partitions
(groups of rows). The following example calculates row numbers based on the order of qty
and empid for each manager separately:

SELECT mgrid, empid, qty,

 ROW_NUMBER() OVER(PARTITION BY mgrid ORDER BY qty, empid) AS rownum

FROM dbo.Sales

ORDER BY mgrid, qty, empid;

 This query generates the following output:

mgrid empid qty rownum

---------- ---------- ----------- --------------------

X B 100 1

X G 100 2

X C 200 3

X I 250 4

C06626034.indd 334 2/13/2009 2:22:36 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 335

Y H 150 1

Y D 200 2

Y K 200 3

Z J 100 1

Z E 250 2

Z A 300 3

Z F 300 4

Using Subqueries to Calculate Row Numbers

 Several alternative techniques for calculating ranking values without ranking functions are
 available, and all of them suffer from some limitation. Keep in mind that you can also calculate
ranking values at the client. Whatever way you choose, your client will iterate through the records
in the record set returned from SQL Server. The client can simply request the rows sorted and,
in a loop, increment a counter. Of course, if you need the ranking values for further server-side
 manipulation before results are sent to the client, client-side ranking is not an option.

 I’ll start with a technique that is based on subqueries. Unfortunately, it is usually the slowest
of all.

Unique Sort Column Calculating row numbers using a subquery is reasonably simple, given
a unique partitioning + sort column(s) combination. As I will describe later, solutions without
this unique combination also exist, but they are substantially more complex.

 All ranking value calculations can be achieved by counting rows. To calculate row numbers,
you can employ the following fundamental technique. You simply use a subquery to count
the number of rows with a smaller or equal sort value. This count corresponds to the desired
row number. For example, the following query produces row numbers based on empid
ordering:

SELECT empid,

 (SELECT COUNT(*)

 FROM dbo.Sales AS S2

 WHERE S2.empid <= S1.empid) AS rownum

FROM dbo.Sales AS S1

ORDER BY empid;

 This query generates the following output:

empid rownum

---------- -----------

A 1

B 2

C 3

D 4

E 5

F 6

G 7

H 8

I 9

J 10

K 11

C06626034.indd 335 2/13/2009 2:22:36 AM

336 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note The solutions presented in this chapter for calculating ranking values using subqueries
assume that the columns involved are defi ned as NOT NULL, as is the case with the Sales table
used in my examples. Note that in cases where the columns allow NULLs, the solutions based on
subqueries won’t return the same results as the built-in ranking functions. For ordering purposes
ranking functions will consider NULL to be ranked fi rst (lowest). If you count lower-ranking rows
with the predicate S2.ranking_column < S1.ranking_column, you’ll miss the NULLs. In a similar
manner you will fi nd differences between the way ranking functions and subqueries treat NULLs
for partitioning and for other purposes as well. Of course, when NULLs can appear in the data,
you can add logic to your solutions so that the treatment of NULLs will be the same as with the
ranking functions if that’s what you need.

 This technique to calculate row numbers, though fairly simple, is extremely slow. To
 understand why, examine the execution plan shown in Figure 6-6 created for the query.

FIGURE 6-6 Execution plan for query calculating row numbers using a subquery

 An index on the sort column (empid) happens to be the Sales table’s clustered index. The
 table is fi rst fully scanned (as indicated by the Clustered Index Scan operator) to return all
rows. For each row returned from the initial full scan, the Nested Loops operator invokes
the activity that generates the row number by counting rows. Each row number calculation
 involves a seek operation within the clustered index, followed by a partial scan operation
(from the head of the leaf level’s linked list to the last point where S2.empid is smaller than or
equal to S1.empid).

 Note that two different operators use the clustered index—fi rst, a full scan to return all rows;
second, a seek followed by a partial scan for each outer row to achieve the count.

 Remember that the primary factor affecting the performance of queries that do data
 manipulation is usually I/O. An estimate of the number of rows accessed here will show how
ineffi cient this execution plan is. To calculate rownum for the fi rst row of the table, SQL Server
needs to scan 1 row in the index. For the second row, it needs to scan 2 rows. For the third
row, it needs to scan 3 rows, and so on, and for the nth row of the table, it needs to scan n
rows. For a table with n rows, having an index based on the sort column in place, the total
number of rows scanned (besides the initial scan of the data) is 1 + 2 + 3 + . . . + n. You may
not grasp immediately the large number of rows that are going to be scanned. To give you a
sense, for a table with 100,000 rows, you’re looking at 100,000 + 5,000,050,000 rows that are
going to be scanned in total.

C06626034.indd 336 2/13/2009 2:22:36 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 337

 As an aside, a story is told about the mathematician Gauss. When he was a child, he and
his classmates got an assignment from their teacher to fi nd the sum of all the integers
from 1 through 100. Gauss gave the answer almost instantly. When the teacher asked
him how he came up with the answer so fast, he said that he added the fi rst and the last
 values (1 + 100 = 101) and then multiplied that total by half the number of integers (50),
which is the number of pairs. Sure enough, the result of fi rst_val + last_val is equal to the
 second_val + next_to_last val and so on. In short, the formula for the sum of the fi rst n
 positive integers is (n + n2) / 2. That’s the number of rows that need to be scanned in total
to calculate row numbers using this technique when an index is based on the sort column.
You’re looking at an n2 graph of I/O cost and run time based on the number of rows in the
table. You can play with the numbers in the formula and see that the cost gets humongous
pretty quickly.

 If you think about it, this technique calculates a running count aggregate, which happens
to also have a special meaning for us—a row number. You can use the same technique to
 calculate other running aggregates, like running totals and running averages, by simply
 using other aggregate functions operating on the applicable attribute. Therefore, using this
 technique to calculate running aggregates has n2 complexity. Unfortunately, unlike in the row
number’s case—for which we have a much faster built-in function—SQL Server 2008 doesn’t
support certain elements of the standard OVER clause that would allow faster calculation of
running aggregates.

Nonunique Sort Column and Tiebreaker When the sort column is not unique, you can
make it unique by introducing a tiebreaker to allow a solution that keeps a reasonable level
of simplicity. Let sortcol be the sort column and let tiebreaker be the tiebreaker column.
To count rows with the same or smaller values of the sort list (sortcol, tiebreaker), use the
 following expression in the subquery:

inner_sortcol < outer_sortcol

OR (inner_sortcol = outer_sortcol

 AND inner_tiebreaker <= outer_tiebreaker)

 Note that operator precedence dictates that AND will be evaluated prior to OR, so if you
omit the parentheses here, you get a logically equivalent expression. But I recommend using
parentheses for clarity, manageability, and readability.

 The following query produces row numbers based on qty and empid ordering:

SELECT empid, qty,

 (SELECT COUNT(*)

 FROM dbo.Sales AS S2

 WHERE S2.qty < S1.qty

 OR (S2.qty = S1.qty AND S2.empid <= S1.empid)) AS rownum

FROM dbo.Sales AS S1

ORDER BY qty, empid;

C06626034.indd 337 2/13/2009 2:22:36 AM

338 Inside Microsoft SQL Server 2008: T-SQL Querying

 This query generates the following output:

empid qty rownum

---------- ----------- -----------

B 100 1

G 100 2

J 100 3

H 150 4

C 200 5

D 200 6

K 200 7

E 250 8

I 250 9

A 300 10

F 300 11

Nonunique Sort Column Without a Tiebreaker The problem becomes substantially more
complex when you want to calculate row numbers with subqueries according to a nonunique
sort column and using no tiebreaker. This is an excellent challenge if you want to test your
T-SQL querying skills. For example, given the table T2, which you create and populate by
 running the following code, let’s say you are supposed to produce row numbers based on
col1 ordering:

IF OBJECT_ID('dbo.T2') IS NOT NULL

 DROP TABLE dbo.T2;

GO

CREATE TABLE dbo.T2(col1 VARCHAR(5));

INSERT INTO dbo.T2(col1) VALUES

 ('A'),('A'),('A'),('B'),('B'),('C'),('C'),('C'),('C'),('C');

 In the solution for this problem, I’ll make fi rst use of a very important fundamental technique—
generating copies of rows using an auxiliary table of numbers.

 I’ll explain the concept of the auxiliary table of numbers and how to create one later in
the chapter in the section “Auxiliary Table of Numbers.” For now, simply run the code from
that section in Listing 6-3, which creates the Nums table and populates it with the 1,000,000
integers in the range 1 ≤ n ≤ 1,000,000.

 As mentioned, in the solution to our challenge I’m going to use a fundamental technique to
generate copies of rows. For example, given a table T2, say you want to generate fi ve copies of
each row. To achieve this, you can use the Nums table as follows:

SELECT ... FROM dbo.T2 CROSS JOIN dbo.Nums WHERE n <= 5;

 I will provide more details on the technique to generate copies and its uses in Chapter 7.

 Going back to our original problem, you’re supposed to generate row numbers for the rows
of T2, based on col1 order. The fi rst step in the solution is “collapsing” the rows by grouping
them by col1. For each group, you return the number of occurrences (a count of rows in the

C06626034.indd 338 2/13/2009 2:22:36 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 339

group). You also return, using a subquery, the number of rows in the base table that have a
smaller sort value. Here’s the query that accomplishes the fi rst step:

SELECT col1, COUNT(*) AS cnt,

 (SELECT COUNT(*) FROM dbo.T2 AS B

 WHERE B.col1 < A.col1) AS smaller

FROM dbo.T2 AS A

GROUP BY col1;

 This query returns the following output:

col1 cnt smaller

----- ----------- -----------

A 3 0

B 2 3

C 5 5

 For example, A appears three times, and 0 rows have a col1 value smaller than A. B appears
two times, and three rows have a col1 value smaller than B. And so on.

 The next step is to expand the number of rows or create sequentially numbered copies of each
row. You achieve this by creating a table expression out of the previous query and joining it to
the Nums table as follows, based on n <= cnt:

WITH C AS

(

 SELECT col1, COUNT(*) AS cnt,

 (SELECT COUNT(*) FROM dbo.T2 AS B

 WHERE B.col1 < A.col1) AS smaller

 FROM dbo.T2 AS A

 GROUP BY col1

)

SELECT col1, cnt, smaller, n

FROM C CROSS JOIN Nums

WHERE n <= cnt;

 This query generates the following output:

col1 dups smaller n

----- ----------- ----------- -----------

A 3 0 1

A 3 0 2

A 3 0 3

B 2 3 1

B 2 3 2

C 5 5 1

C 5 5 2

C 5 5 3

C 5 5 4

C 5 5 5

C06626034.indd 339 2/13/2009 2:22:36 AM

340 Inside Microsoft SQL Server 2008: T-SQL Querying

 Now look carefully at the output and see whether you can fi gure out how to produce the
row numbers.

 The row number can be expressed as the number of rows with a smaller sort value, plus the
row number within the same sort value group—in other words, n + smaller. The following
query is the fi nal solution:

WITH C AS

(

 SELECT col1, COUNT(*) AS cnt,

 (SELECT COUNT(*) FROM dbo.T2 AS B

 WHERE B.col1 < A.col1) AS smaller

 FROM dbo.T2 AS A

 GROUP BY col1

)

SELECT n + smaller AS rownum, col1

FROM C

 CROSS JOIN Nums

WHERE n <= cnt;

 This query generates the following output:

rownum col1

----------- -----

4 B

5 B

6 C

7 C

8 C

9 C

10 C

1 A

2 A

3 A

 Note that this technique won’t generalize in the case T2 has additional columns. This is yet
another example of how powerful the ranking functions are.

Partitioning Partitioning is achieved by simply adding a correlation in the subquery based
on a match between the partitioning column or columns in the inner and outer tables.
For example, the following query against the Sales table calculates row numbers that are
 partitioned by mgrid, ordered by qty, and use empid as a tiebreaker:

SELECT mgrid, empid, qty,

 (SELECT COUNT(*)

 FROM dbo.Sales AS S2

 WHERE S2.mgrid = S1.mgrid

 AND (S2.qty < S1.qty

 OR (S2.qty = S1.qty AND S2.empid <= S1.empid))) AS rownum

FROM dbo.Sales AS S1

ORDER BY mgrid, qty, empid;

C06626034.indd 340 2/13/2009 2:22:36 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 341

 This query generates the following output:

mgrid empid qty rownum

---------- ---------- ----------- -----------

X B 100 1

X G 100 2

X C 200 3

X I 250 4

Y H 150 1

Y D 200 2

Y K 200 3

Z J 100 1

Z E 250 2

Z A 300 3

Z F 300 4

 Note As I mentioned earlier, the technique using subqueries to calculate row numbers has n2
complexity. However, for a fairly small number of rows (in the area of dozens), it’s pretty fast. The
performance problem has more to do with the partition size than with the table’s size. If you create
the recommended index based on partitioning_cols, sort_cols, tiebreaker_cols, the number of rows
scanned within the index is equivalent to the row number generated. The row number is reset
(starts from 1) with every new partition. So even for very large tables, when the partition size is fairly
small and you have a proper index in place, the solution is pretty fast. If you have p partitions and
r rows in each partition, the number of rows scanned in total is p * r + p * (r + r2) / 2. For example, if
you have 100,000 partitions and 10 rows in each partition, you get 6,500,000 rows scanned in total.
Though this number might seem large, it’s nowhere near the number you get without partitioning.
And as long as the partition size remains constant, the graph of query cost compared with the
 number of rows in the table is linear.

Cursor-Based Solution

 You can use a cursor to calculate row numbers. A cursor-based solution for any of the
aforementioned variations is pretty straightforward. You create a fast-forward (read-only,
forward-only) cursor based on a query that orders the data by partitioning_cols, sort_cols,
tiebreaker_cols. As you fetch rows from the cursor, you simply increment a counter, resetting
it every time a new partition is detected. You can store the result rows along with the row
numbers in a temporary table or a table variable.

 For example, the following code uses a cursor to calculate row numbers based on the order
of qty and empid:

DECLARE @SalesRN TABLE(empid VARCHAR(5), qty INT, rn INT);

DECLARE @empid AS VARCHAR(5), @qty AS INT, @rn AS INT;

BEGIN TRAN

DECLARE rncursor CURSOR FAST_FORWARD FOR

 SELECT empid, qty FROM dbo.Sales ORDER BY qty, empid;

OPEN rncursor;

C06626034.indd 341 2/13/2009 2:22:36 AM

342 Inside Microsoft SQL Server 2008: T-SQL Querying

SET @rn = 0;

FETCH NEXT FROM rncursor INTO @empid, @qty;

WHILE @@FETCH_STATUS = 0

BEGIN

 SET @rn = @rn + 1;

 INSERT INTO @SalesRN(empid, qty, rn) VALUES(@empid, @qty, @rn);

 FETCH NEXT FROM rncursor INTO @empid, @qty;

END

CLOSE rncursor;

DEALLOCATE rncursor;

COMMIT TRAN

SELECT empid, qty, rn FROM @SalesRN;

 This code generates the following output:

empid qty rn

----- ----------- -----------

B 100 1

G 100 2

J 100 3

H 150 4

C 200 5

D 200 6

K 200 7

E 250 8

I 250 9

A 300 10

F 300 11

 Generally, you should avoid working with cursors because they have a lot of overhead that
is a drag on performance. However, in this case, unless the partition size is really tiny, the
 cursor-based solution performs much better than the subquery-based solution because it
scans the data only once. This means that as the table grows larger, the cursor-based solution
has a linear performance degradation, as opposed to the n2 one that the subquery-based
 solution has. Still, the cursor-based solution is signifi cantly slower than using the ROW_NUMBER
function.

IDENTITY-Based Solution

 Another solution to calculating row numbers is to rely on the IDENTITY function or IDENTITY
column property. Before you proceed, though, you should be aware that when you use the
IDENTITY function, you cannot guarantee the order of assignment of IDENTITY values. You
can, however, guarantee the order of assignment by using an IDENTITY column instead of
the IDENTITY function: fi rst create a table with an IDENTITY column and then load the data
using an INSERT SELECT statement with an ORDER BY clause.

C06626034.indd 342 2/13/2009 2:22:36 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 343

 More Info You can fi nd a detailed discussion of IDENTITY and ORDER BY in Knowledge
Base article 273586 (http://support.microsoft.com/default.aspx?scid=kb;en-us;273586), which
I recommend that you read. You can also fi nd information on the subject in the following blog
entry by Conor Cunningham: http://blogs.msdn.com/sqltips/archive/2005/07/20/441053.aspx.

Nonpartitioned Using the IDENTITY function in a SELECT INTO statement is by far the fastest
way to calculate row numbers without the ROW_NUMBER function. The fi rst reason for this is
that you scan the data only once, without the overhead involved with cursor manipulation. The
second reason is that SELECT INTO is a minimally logged operation when the database recovery
model is not FULL. However, keep in mind that you can trust it only when you don’t care about
the order of assignment of the row numbers. Note that SQL Server 2008 can also perform
minimally logged INSERT SELECT statements provided that certain requirements are met. I will
elaborate on this in Chapter 10, “Data Modifi cation.”

 As an example, the following code demonstrates how to use the IDENTITY function to create
and populate a temporary table with row numbers, in no particular order:

SELECT empid, qty, IDENTITY(int, 1, 1) AS rn

INTO #SalesRN FROM dbo.Sales;

SELECT * FROM #SalesRN;

DROP TABLE #SalesRN;

 This technique is handy when you need to generate integer identifi ers to distinguish rows for
some processing need.

 Don’t let the fact that you can technically specify an ORDER BY clause in the SELECT INTO
query mislead you. There’s no guarantee that in the execution plan the assignment of
IDENTITY values will take place after the sort.

 As mentioned earlier, when you do care about the order of assignment of the IDENTITY values—
in other words, when the row numbers should be based on a given order—fi rst create the table
and then load the data. Prior to SQL Server 2008 this technique was not as fast as the SELECT
INTO approach because INSERT SELECT was always fully logged; however, it was still much faster
than the other techniques that did not utilize the ROW_NUMBER function.

 Here’s an example for calculating row numbers based on the order of qty and empid:

CREATE TABLE #SalesRN(empid VARCHAR(5), qty INT, rn INT IDENTITY);

INSERT INTO #SalesRN(empid, qty)

 SELECT empid, qty FROM dbo.Sales ORDER BY qty, empid;

SELECT * FROM #SalesRN;

DROP TABLE #SalesRN;

C06626034.indd 343 2/13/2009 2:22:36 AM

344 Inside Microsoft SQL Server 2008: T-SQL Querying

Partitioned Using the IDENTITY approach to create partitioned row numbers requires an
additional step. As with the nonpartitioned solution, you insert the data into a table with an
IDENTITY column, only this time it is sorted by partitioning_cols, sort_cols, tiebreaker_cols.

 The additional step is a query that calculates the row number within the partition using the
following formula: general_row_number – min_row_number_within_partition + 1. The minimum
row number within the partition can be obtained by either a correlated subquery or a join.

 For example, the following code generates row numbers partitioned by mgrid, sorted by qty
and empid. The code presents both the subquery approach and the join approach to obtaining
the minimum row number within the partition:

CREATE TABLE #SalesRN

 (mgrid VARCHAR(5), empid VARCHAR(5), qty INT, rn INT IDENTITY);

CREATE UNIQUE CLUSTERED INDEX idx_mgrid_rn ON #SalesRN(mgrid, rn);

INSERT INTO #SalesRN(mgrid, empid, qty)

 SELECT mgrid, empid, qty FROM dbo.Sales ORDER BY mgrid, qty, empid;

-- Option 1 – using a subquery

SELECT mgrid, empid, qty,

 rn - (SELECT MIN(rn) FROM #SalesRN AS S2

 WHERE S2.mgrid = S1.mgrid) + 1 AS rn

FROM #SalesRN AS S1;

-- Option 2 – using a join

SELECT S.mgrid, empid, qty, rn - minrn + 1 AS rn

FROM #SalesRN AS S

 JOIN (SELECT mgrid, MIN(rn) AS minrn

 FROM #SalesRN

 GROUP BY mgrid) AS M

 ON S.mgrid = M.mgrid;

DROP TABLE #SalesRN;

Performance Comparisons

 I presented four different techniques to calculate row numbers server-side. The fi rst uses the
ROW_NUMBER function, the second is based on Subqueries, the third is based on Cursors,
and the fourth is based on IDENTITY.

 I ran a benchmark on my laptop to compare the performance of the different techniques. Even
though my laptop is not exactly the best model for a production server, you can get a good
sense of the performance differences between the techniques. The benchmark populates a
table with increasing numbers of rows, starting with 10,000 and progressing up to 100,000 in
steps of 10,000 rows. The benchmark calculates row numbers using all four techniques, with
the Discard Results option turned on in SQL Server Management Studio (SSMS) to remove
the effect of printing the output. The benchmark records the run times in microseconds in the
RNBenchmark table:

C06626034.indd 344 2/13/2009 2:22:36 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 345

-- Change Tools|Options setting to Discard Query Results

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.RNBenchmark') IS NOT NULL

 DROP TABLE dbo.RNBenchmark;

GO

IF OBJECT_ID('dbo.RNTechniques') IS NOT NULL

 DROP TABLE dbo.RNTechniques;

GO

IF OBJECT_ID('dbo.SalesBM') IS NOT NULL

 DROP TABLE dbo.SalesBM;

GO

IF OBJECT_ID('dbo.SalesBMIdentity') IS NOT NULL

 DROP TABLE dbo.SalesBMIdentity;

GO

IF OBJECT_ID('dbo.SalesBMCursor') IS NOT NULL

 DROP TABLE dbo.SalesBMCursor;

GO

CREATE TABLE dbo.RNTechniques

(

 tid INT NOT NULL PRIMARY KEY,

 technique VARCHAR(25) NOT NULL

);

INSERT INTO RNTechniques(tid, technique) VALUES

 (1, 'Subquery'),(2, 'IDENTITY'),(3, 'Cursor'),(4, 'ROW_NUMBER');

GO

CREATE TABLE dbo.RNBenchmark

(

 tid INT NOT NULL REFERENCES dbo.RNTechniques(tid),

 numrows INT NOT NULL,

 runtimemcs BIGINT NOT NULL,

 PRIMARY KEY(tid, numrows)

);

GO

CREATE TABLE dbo.SalesBM

(

 empid INT NOT NULL IDENTITY PRIMARY KEY,

 qty INT NOT NULL

);

CREATE INDEX idx_qty_empid ON dbo.SalesBM(qty, empid);

GO

CREATE TABLE dbo.SalesBMIdentity(empid INT, qty INT, rn INT IDENTITY);

GO

CREATE TABLE dbo.SalesBMCursor(empid INT, qty INT, rn INT);

GO

DECLARE

 @maxnumrows AS INT,

 @steprows AS INT,

 @curnumrows AS INT,

 @dt AS DATETIME2; -- use DATETIME prior to 2008

C06626034.indd 345 2/13/2009 2:22:36 AM

346 Inside Microsoft SQL Server 2008: T-SQL Querying

SET @maxnumrows = 100000;

SET @steprows = 10000;

SET @curnumrows = 10000;

WHILE @curnumrows <= @maxnumrows

BEGIN

 TRUNCATE TABLE dbo.SalesBM;

 INSERT INTO dbo.SalesBM(qty)

 SELECT CAST(1+999.9999999999*RAND(CHECKSUM(NEWID())) AS INT)

 FROM dbo.Nums

 WHERE n <= @curnumrows;

 -- 'Subquery'

 DBCC FREEPROCCACHE WITH NO_INFOMSGS;

 DBCC DROPCLEANBUFFERS WITH NO_INFOMSGS;

 SET @dt = SYSDATETIME(); -- use GETDATE() prior to 2008

 SELECT empid, qty,

 (SELECT COUNT(*)

 FROM dbo.SalesBM AS S2

 WHERE S2.qty < S1.qty

 OR (S2.qty = S1.qty AND S2.empid <= S1.empid)) AS rn

 FROM dbo.SalesBM AS S1

 ORDER BY qty, empid;

 INSERT INTO dbo.RNBenchmark(tid, numrows, runtimemcs)

 VALUES(1, @curnumrows, DATEDIFF(mcs, @dt, SYSDATETIME()));

 -- Use ms prior to 2008

 -- 'IDENTITY'

 TRUNCATE TABLE dbo.SalesBMIdentity;

 DBCC FREEPROCCACHE WITH NO_INFOMSGS;

 DBCC DROPCLEANBUFFERS WITH NO_INFOMSGS;

 SET @dt = SYSDATETIME();

 INSERT INTO dbo.SalesBMIdentity(empid, qty)

 SELECT empid, qty FROM dbo.SalesBM ORDER BY qty, empid;

 SELECT empid, qty, rn FROM dbo.SalesBMIdentity;

 INSERT INTO dbo.RNBenchmark(tid, numrows, runtimemcs)

 VALUES(2, @curnumrows, DATEDIFF(mcs, @dt, SYSDATETIME()));

 -- 'Cursor'

 TRUNCATE TABLE dbo.SalesBMCursor;

 DBCC FREEPROCCACHE WITH NO_INFOMSGS;

 DBCC DROPCLEANBUFFERS WITH NO_INFOMSGS;

 SET @dt = SYSDATETIME();

C06626034.indd 346 2/13/2009 2:22:36 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 347

 DECLARE @empid AS INT, @qty AS INT, @rn AS INT;

 BEGIN TRAN

 DECLARE rncursor CURSOR FAST_FORWARD FOR

 SELECT empid, qty FROM dbo.SalesBM ORDER BY qty, empid;

 OPEN rncursor;

 SET @rn = 0;

 FETCH NEXT FROM rncursor INTO @empid, @qty;

 WHILE @@fetch_status = 0

 BEGIN

 SET @rn = @rn + 1;

 INSERT INTO dbo.SalesBMCursor(empid, qty, rn)

 VALUES(@empid, @qty, @rn);

 FETCH NEXT FROM rncursor INTO @empid, @qty;

 END

 CLOSE rncursor;

 DEALLOCATE rncursor;

 COMMIT TRAN

 SELECT empid, qty, rn FROM dbo.SalesBMCursor;

 INSERT INTO dbo.RNBenchmark(tid, numrows, runtimemcs)

 VALUES(3, @curnumrows, DATEDIFF(mcs, @dt, SYSDATETIME()));

 -- 'ROW_NUMBER'

 DBCC FREEPROCCACHE WITH NO_INFOMSGS;

 DBCC DROPCLEANBUFFERS WITH NO_INFOMSGS;

 SET @dt = SYSDATETIME();

 SELECT empid, qty, ROW_NUMBER() OVER(ORDER BY qty, empid) AS rn

 FROM dbo.SalesBM;

 INSERT INTO dbo.RNBenchmark(tid, numrows, runtimemcs)

 VALUES(4, @curnumrows, DATEDIFF(mcs, @dt, SYSDATETIME()));

 SET @curnumrows = @curnumrows + @steprows;

END

 The following query returns the benchmark’s results in a conveniently readable format:

SELECT numrows,

 [Subquery], [IDENTITY], [Cursor], [ROW_NUMBER]

FROM (SELECT technique, numrows, runtimems

 FROM dbo.RNBenchmark AS B

 JOIN dbo.RNTechniques AS T

 ON B.tid = T.tid) AS D

PIVOT(MAX(runtimems) FOR technique IN(

 [Subquery], [IDENTITY], [Cursor], [ROW_NUMBER])) AS P

ORDER BY numrows;

C06626034.indd 347 2/13/2009 2:22:36 AM

348 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note This code uses several features that are new in SQL Server 2008: the DATETIME2 data type,
the mcs (microsecond) date part, and the SYSDATETIME function. Inline comments in the code
in the fi rst occurrence of each new feature indicate the alternatives that you should use prior to
SQL Server 2008.

 This query returned the following benchmark results on my system:

numrows Subquery IDENTITY Cursor ROW_NUMBER

-------- --------- --------- ------- -----------

10000 8590000 110000 420000 7000

20000 30336000 203000 766000 29000

30000 69403000 250000 1196000 43000

40000 118593000 483000 1596000 29000

50000 184886000 466000 1970000 72000

60000 267536000 686000 2510000 43000

70000 359833000 703000 2723000 49000

80000 475443000 1150000 3410000 57000

90000 612066000 1120000 3613000 66000

100000 770236000 1146000 3956000 71000

 The query uses a pivoting technique that I’ll describe in Chapter 8, so don’t try to squeeze your
brains if you’re not familiar with it. For our discussion, the important thing is the benchmark’s
results. You can immediately see that the subquery-based technique is dramatically slower than
all the rest, and I explained why earlier. You will also notice that the ROW_NUMBER function
is dramatically faster than all the rest. I wanted to present a graph with all results, but the run
times when the subquery-based technique was used were so great that the lines for the other
solutions were simply fl at. So I decided to present two separate graphs. Figure 6-7 shows the
graph of run times for the IDENTITY-based, cursor-based, and ROW_NUMBER function–based
techniques. Figure 6-8 shows the graph for the subquery-based technique.

FIGURE 6-7 Row numbers benchmark graph I

C06626034.indd 348 2/13/2009 2:22:36 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 349

FIGURE 6-8 Row numbers benchmark graph II

 You can see in Figure 6-7 that all three techniques have a fairly linear performance graph,
while Figure 6-8 shows a beautifully curved n2 graph.

 Note In part, the ROW_NUMBER function is so fast because it doesn’t return the results
 anywhere. The cursor and identity solutions leave the results in a table for use; therefore, they
generate considerable I/O. Of course, if you need to materialize the result set even when using
the ROW_NUMBER function, you need to consider the added I/O cost. As an exercise, you can
run an altered benchmark where you materialize the result set with the row numbers in all tests.

 The obvious conclusion is that you should always use the built-in ROW_NUMBER function, and,
similarly, you should use the other ranking functions if you need the other types of ranking
calculations. And if you have legacy code that uses the alternative techniques, by revising it to
use the built-in functions, you can gain dramatic performance improvements, not to mention
making the code signifi cantly simpler.

Paging

 As I mentioned earlier, row numbers have many practical applications that I’ll demonstrate
throughout the book. Here I’d like to show one example where I use row numbers to achieve
paging—accessing rows of a result set in chunks. Paging is a common need in applications,
allowing the user to navigate through chunks or portions of a result set. Paging with
row numbers is also a handy technique. This example will also allow me to demonstrate
 additional optimization techniques that the optimizer applies when using the ROW_NUMBER
function.

C06626034.indd 349 2/13/2009 2:22:36 AM

350 Inside Microsoft SQL Server 2008: T-SQL Querying

Ad Hoc Paging Ad hoc paging is a request for a single page, where the input is the page
number and page size (the number of rows in a page). When the user needs a particular
single page and won’t request additional pages, you implement a different solution than the
one you would for multiple page requests. First you have to realize that you cannot access
page n without physically accessing pages 1 through n–1. Bearing this in mind, the following
code returns a page of rows from the Sales table ordered by qty and empid, given the page
size and page number as inputs:

DECLARE @pagesize AS INT, @pagenum AS INT;

SET @pagesize = 5;

SET @pagenum = 2;

WITH SalesRN AS

(

 SELECT ROW_NUMBER() OVER(ORDER BY qty, empid) AS rownum,

 empid, mgrid, qty

 FROM dbo.Sales

)

SELECT rownum, empid, mgrid, qty

FROM SalesRN

WHERE rownum > @pagesize * (@pagenum-1)

 AND rownum <= @pagesize * @pagenum

ORDER BY rownum;

 This code generates the following output:

rownum empid mgrid qty

-------------------- ---------- ---------- -----------

6 D Y 200

7 K Y 200

8 E Z 250

9 I X 250

10 A Z 300

 The CTE called SalesRN assigns row numbers to the sales rows based on the order of qty and
empid. The outer query fi lters only the target page’s rows using a formula based on the input
page size and page number.

 You might be concerned that the query appears to calculate row numbers for all rows and then
fi lter only the requested page’s rows. This might seem to require a full table scan. With very
large tables this, of course, would be a serious performance issue. However, before getting
concerned, examine the execution plan for this query, which is shown in Figure 6-9.

FIGURE 6-9 Execution plan for the ad hoc paging solution

C06626034.indd 350 2/13/2009 2:22:37 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 351

 The fi gure shows only the left part of the plan starting with the Sequence Project, which
 assigns the row numbers. If you look at the properties of the Top operator, you can see that
the plan scans only the fi rst 10 rows of the table. Because the code requests the second page
of fi ve rows, only the fi rst two pages are scanned. Then the Filter operator fi lters only the
 second page (rows 6 through 10).

 Another way to demonstrate that the whole table is not scanned is by populating the table
with a large number of rows and running the query with the SET STATISTICS IO option turned
on. You will notice by the number of reads reported that when you request page n, regardless
of the size of the table, only the fi rst n pages of rows are scanned.

 This solution can perform well even when you have multiple page requests that usually “move
forward”—that is, page 1 is requested, then page 2, then page 3, and so on, as long as a small
number of pages is requested and you have an index to support the requests. When the fi rst
page of rows is requested, the relevant data/index pages are physically scanned and loaded
into cache (if they’re not there already). When the second page of rows is requested, the data
pages for the fi rst request already reside in cache, and only the data pages for the second
page of rows need to be physically scanned. This requires mostly logical reads (reads from
cache), and physical reads are needed only for the requested page. Logical reads are much
faster than physical reads, but keep in mind that they also have a cost that accumulates.

Multipage Access Another solution for paging typically performs better overall than the
previous solution when you have multiple page requests that do not move forward, if the
result set is not very large. First, materialize all pages in a table along with row numbers and
create a clustered index on the row number column:

SELECT ROW_NUMBER() OVER(ORDER BY qty, empid) AS rownum,

 empid, mgrid, qty

INTO #SalesRN

FROM dbo.Sales;

CREATE UNIQUE CLUSTERED INDEX idx_rn ON #SalesRN(rownum);

 Now you can satisfy any page request with a query like the following:

DECLARE @pagesize AS INT, @pagenum AS INT;

SET @pagesize = 5;

SET @pagenum = 2;

SELECT rownum, empid, mgrid, qty

FROM #SalesRN

WHERE rownum BETWEEN @pagesize * (@pagenum-1) + 1

 AND @pagesize * @pagenum

ORDER BY rownum;

 The execution plan for this query is shown in Figure 6-10 (abbreviated by removing the
 operators that calculate boundaries up to the Merge Interval operator to focus on the actual
data access).

C06626034.indd 351 2/13/2009 2:22:37 AM

352 Inside Microsoft SQL Server 2008: T-SQL Querying

FIGURE 6-10 Execution plan for multipaging solution

 This is a very effi cient plan that performs a seek within the index to reach the low boundary row
(row number 6 in this case), followed by a partial scan (not visible in the plan), until it reaches
the high boundary row (row number 10). Only the rows of the requested page of results are
scanned within the index.

 If your application design is such that it disconnects after each request, obviously the temporary
table will be gone as soon as the creating session disconnects. In such a case, you might want to
create a permanent table that is logically temporary. You can achieve this by naming the table
some_name<some_identifi er>—for example, T<guid> (Global Unique Identifi er).

 You also need to develop a garbage-collection (cleanup) process that gets rid of tables
that the application didn’t have a chance to drop explicitly in cases where it terminated in a
 disorderly way.

 In cases where you need to support large result sets or a high level of concurrency, you will
have scalability issues related to tempdb resources. You can develop a partitioned solution
that materializes only a certain number of pages and not all of them—for example, 1,000
rows at a time. Typically, users don’t request more than the fi rst few pages anyway. If a user
ends up requesting pages beyond the fi rst batch, you can materialize the next partition (that
is, the next 1,000 rows).

 When you don’t care about materializing the result set in a temporary table for multipage
access, you might want to consider using a table variable to hold the fi rst batch of pages
(for example, 1,000 rows). Table variables don’t involve recompilations, and they suffer less
from logging and locking issues. The optimizer doesn’t maintain distribution statistics for
table variables, so you should be very cautious and selective in choosing the cases to use
them for. But when all you need to do is store a small result set and scan it entirely anyway,
this technique is fi ne.

 Once you’re done using this table, you can drop it:

DROP TABLE #SalesRN;

Rank and Dense Rank

 Rank and dense rank are calculations similar to row number. But unlike row number, which
has a large variety of practical applications, rank and dense rank are typically used for
 ranking and scoring applications.

C06626034.indd 352 2/13/2009 2:22:37 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 353

RANK and DENSE_RANK Functions

 SQL Server provides you with built-in RANK and DENSE_RANK functions that are similar to
the ROW_NUMBER function. The difference between these functions and ROW_NUMBER is
that, as I described earlier, ROW_NUMBER is not deterministic when the ORDER BY list is not
unique. RANK and DENSE_RANK are always deterministic—that is, the same ranking values are
assigned to rows with the same sort values. The difference between RANK and DENSE_RANK
is that RANK might have gaps in the ranking values but allows you to know how many rows
have lower sort values. DENSE_RANK values have no gaps.

 For example, the following query returns both rank and dense rank values for the sales rows
based on an ordering by quantity:

SELECT empid, qty,

 RANK() OVER(ORDER BY qty) AS rnk,

 DENSE_RANK() OVER(ORDER BY qty) AS drnk

FROM dbo.Sales

ORDER BY qty;

 This query generates the following output:

empid qty rnk drnk

---------- ----------- -------------------- --------------------

B 100 1 1

G 100 1 1

J 100 1 1

H 150 4 2

C 200 5 3

D 200 5 3

K 200 5 3

E 250 8 4

I 250 8 4

A 300 10 5

F 300 10 5

 Here’s a short quiz: what’s the difference between the results of ROW_NUMBER, RANK, and
DENSE_RANK given a unique ORDER BY list?

 For the answer, run the following code:

SELECT REVERSE('!ecnereffid oN');

Solutions Based on Subqueries

 Subquery-based solutions to rank and dense rank calculations are very similar to subquery-based
solutions to row number calculations. To calculate rank, use a subquery that counts the number
of rows with a smaller sort value and add one. To calculate dense rank, use a subquery that
counts the distinct number of smaller sort values and add one:

SELECT empid, qty,

 (SELECT COUNT(*) FROM dbo.Sales AS S2

 WHERE S2.qty < S1.qty) + 1 AS rnk,

C06626034.indd 353 2/13/2009 2:22:37 AM

354 Inside Microsoft SQL Server 2008: T-SQL Querying

 (SELECT COUNT(DISTINCT qty) FROM dbo.Sales AS S2

 WHERE S2.qty < S1.qty) + 1 AS drnk

FROM dbo.Sales AS S1

ORDER BY qty;

 Of course, you can add a correlation to return partitioned calculations just like you did with
row numbers.

Tile Number

 With tile numbers you can distribute rows into a specifi ed number of tiles (or groups). The
tiles are numbered 1 and on. Each row is assigned with the tile number to which it belongs.
Tile number is based on row number calculation—namely, it is based on a requested order
and can optionally be partitioned. Based on the number of rows in the table (or partition),
the number of requested tiles, and the row number, you can determine the tile number for
each row. For example, given a table with 10 rows, supposed you request to calculate tile
numbers for the rows, arranging the rows in two tiles, based on the order of column c. The
value of the tile number would be 1 for the fi rst 5 rows in column c order and 2 for the 6th
through 10th rows.

 Typically, tile number calculations are used for analytical purposes that require you to
 arrange items in equally sized groups. Don’t confuse tiling with paging. With paging, the
page size is known, and the number of pages is the result of dividing the number of rows
in the set by the page size. With tiling, the number of tiles is known, and the tile size is the
 result of dividing the number of rows in the set by the requested number of tiles.

 The task of tiling has more than one solution, and the SQL Server built-in NTILE function
 implements a specifi c solution. I will describe the built-in NTILE function and then cover other
solutions.

The Built-in NTILE Function

 SQL Server supports a built-in function called NTILE to calculate tile numbers for rows in
a result set of a query. Unlike the other ranking functions, the NTILE function accepts an
input—the requested number of tiles. Because tile number calculations are based on row
numbers, NTILE has exactly the same issues regarding determinism that I described in the
row numbers section.

 For example, the following query calculates tile numbers for the rows from the Sales table,
producing three tiles, based on the order of qty and empid:

SELECT empid, qty,

 NTILE(3) OVER(ORDER BY qty, empid) AS tile

FROM dbo.Sales

ORDER BY qty, empid;

C06626034.indd 354 2/13/2009 2:22:37 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 355

 This query generates the following output:

empid qty tile

---------- ----------- --------------------

B 100 1

G 100 1

J 100 1

H 150 1

C 200 2

D 200 2

K 200 2

E 250 2

I 250 3

A 300 3

F 300 3

 Note that when the number of tiles (num_tiles) does not evenly divide the count of rows in
the table (cnt), the fi rst r tiles (where r is cnt % num_tiles) get one more row than the others.
In other words, the remainder is assigned to the fi rst tiles fi rst. In our example, the table
has 11 rows, and 3 tiles were requested. The base tile size is 11 / 3 = 3 (integer division).
The remainder is 11 % 3 = 2. The % (modulo) operator provides the integer remainder after
dividing the fi rst integer by the second one. So the fi rst 2 tiles get an additional row beyond
the base tile size and end up with 4 rows.

 As a more meaningful example, suppose you need to split the sales rows into three categories
based on quantities: low, medium, and high. You want each category to have about the same
number of rows. You can calculate NTILE(3) values based on qty order (using empid as a
 tiebreaker just to ensure deterministic and reproducible results) and use a CASE expression to
convert the tile numbers to more meaningful descriptions:

SELECT empid, qty,

 CASE NTILE(3) OVER(ORDER BY qty, empid)

 WHEN 1 THEN 'low'

 WHEN 2 THEN 'medium'

 WHEN 3 THEN 'high'

 END AS lvl

FROM dbo.Sales

ORDER BY qty, empid;

 This query generates the following output:

empid qty lvl

---------- ----------- ------

B 100 low

G 100 low

J 100 low

H 150 low

C 200 medium

D 200 medium

K 200 medium

E 250 medium

I 250 high

A 300 high

F 300 high

C06626034.indd 355 2/13/2009 2:22:37 AM

356 Inside Microsoft SQL Server 2008: T-SQL Querying

 To calculate the range of quantities corresponding to each category, simply group the data
by the tile number, returning the minimum and maximum sort values for each group:

WITH Tiles AS

(

 SELECT empid, qty,

 NTILE(3) OVER(ORDER BY qty, empid) AS tile

 FROM dbo.Sales

)

SELECT tile, MIN(qty) AS lb, MAX(qty) AS hb

FROM Tiles

GROUP BY tile

ORDER BY tile;

 You get the following output:

tile lb hb

-------------------- ----------- -----------

1 100 150

2 200 250

3 250 300

Other Solutions to Tile Number

 The formula you use to calculate tile number depends on what exactly you want to do with
the remainder in case the number of rows in the table doesn’t divide evenly by the number of
tiles. You might want to use the built-in NTILE function’s approach: Just assign the remainder
to the fi rst tiles, one to each until it’s all consumed. Another approach, which is probably more
correct statistically, is to more evenly distribute the remainder among the tiles instead of
 putting them into the initial tiles only. When you need the former approach, you can simply
use the built-in NTILE function. For the sake of completeness, I’ll also provide a solution
based on subqueries. If you need the latter approach, you have to develop your own solution
 because this case has no built-in function.

 I’ll start with the second approach, calculating tile numbers with even distribution. You need
two inputs to calculate the tile number for a row: the row number and the tile size. You
 already know how to calculate row numbers. To calculate the tile size, you divide the number
of rows in the table by the requested number of tiles. The formula that calculates the target
tile number is

 (row_number – 1) / tile_size + 1

 The trick that allows you to distribute the remainder evenly is to use a decimal calculation
when calculating the tile_size value instead of an integer one. That is, instead of using an
integer calculation of the tile size (num_rows/num_tiles), which truncates the fraction, use
1.*numrows/numtiles, which returns a more accurate decimal result. Finally, to get rid of the
fraction in the tile number, convert the result back to an integer value.

C06626034.indd 356 2/13/2009 2:22:37 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 357

 Here’s the complete query that produces tile numbers using the even-distribution approach:

DECLARE @numtiles AS INT;

SET @numtiles = 3;

WITH D1 AS

(

 SELECT empid, qty,

 ROW_NUMBER() OVER(ORDER BY qty, empid) AS rn,

 (SELECT COUNT(*) FROM dbo.Sales) AS numrows

 FROM dbo.Sales AS S1

),

D2 AS

(

 SELECT empid, qty, rn,

 1.*numrows/@numtiles AS tilesize

 FROM D1

)

SELECT empid, qty,

 CAST((rn - 1) / tilesize + 1 AS INT) AS tile

FROM D2

ORDER BY qty, empid;

 This query generates the following output:

empid qty tile

---------- ----------- -----------

B 100 1

G 100 1

J 100 1

H 150 1

C 200 2

D 200 2

K 200 2

E 250 2

I 250 3

A 300 3

F 300 3

 With three tiles, you can’t see the even distribution of the remaining rows. If you run this code
using nine tiles as input, you get the following output, where the even distribution is clearer:

empid qty tile

---------- ----------- -----------

B 100 1

G 100 1

J 100 2

H 150 3

C 200 4

D 200 5

K 200 5

E 250 6

I 250 7

A 300 8

F 300 9

C06626034.indd 357 2/13/2009 2:22:37 AM

358 Inside Microsoft SQL Server 2008: T-SQL Querying

 You can see in the result that the fi rst tile contains two rows, the next three tiles contain one
row each, the next tile contains two rows, and the last four tiles contain one row each. You
can experiment with the input number of tiles to get a clearer picture of the even-distribution
algorithm.

 For a challenge, see if you can come up with a solution to calculating tile numbers implementing
the same logic as the built-in NTILE function without using ranking functions.

 To get the same result as the built-in NTILE function, where the remainder is distributed to the
lowest-numbered tiles, you need a formula different from the one used with even distribution
of remaining rows. First, the calculations involve only integers. The inputs you need for the
formula in this case include the row number, tile size, and remainder (number of rows in
the table % number of requested tiles). These inputs are used in calculating tile number with
 non-even distribution.

 The formula for the target tile number is as follows:

if row_number <= (tilesize + 1) * remainder then

 tile_number = (row_number – 1) / (tile_size + 1) + 1

else

 tile_number = (row_number – remainder – 1) / tile_size + 1

 Translated to T-SQL, the query looks like this:

DECLARE @numtiles AS INT;

SET @numtiles = 9;

WITH D1 AS

(

 SELECT empid, qty,

 (SELECT COUNT(*) FROM dbo.Sales AS S2

 WHERE S2.qty < S1.qty

 OR S2.qty = S1.qty

 AND S2.empid <= S1.empid) AS rn,

 (SELECT COUNT(*) FROM dbo.Sales) AS numrows

 FROM dbo.Sales AS S1

),

D2 AS

(

 SELECT empid, qty, rn,

 numrows/@numtiles AS tilesize,

 numrows%@numtiles AS remainder

 FROM D1

)

SELECT empid, qty,

 CASE

 WHEN rn <= (tilesize+1) * remainder

 THEN (rn-1) / (tilesize+1) + 1

 ELSE (rn - remainder - 1) / tilesize + 1

 END AS tile

FROM D2

ORDER BY qty, empid;

C06626034.indd 358 2/13/2009 2:22:37 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 359

This query generates the following output:

empid qty tile

---------- ----------- -----------

B 100 1

G 100 1

J 100 2

H 150 2

C 200 3

D 200 4

K 200 5

E 250 6

I 250 7

A 300 8

F 300 9

 The output is the same as the one you would get using the built-in NTILE function; the fi rst
tiles get an additional row until the remainder is consumed.

Auxiliary Table of Numbers

An auxiliary table of numbers is a very powerful tool that I often use in my solutions. So
I decided to dedicate a section in this chapter to it. In this section, I’ll simply describe the
concept and the methods used to generate such a table. I’ll refer to this auxiliary table
throughout the book and demonstrate many of its applications.

An auxiliary table of numbers (call it Nums) is simply a table that contains the integers
 between 1 and n for some (typically large) value of n. I recommend that you create a
 permanent Nums table and populate it with as many values as you might need for your
solutions.

 The code in Listing 6-3 demonstrates how to create such a table containing 1,000,000 rows.
Of course, you might want a different number of rows, depending on your needs.

LISTING 6-3 Creating and populating auxiliary table of numbers

SET NOCOUNT ON;

USE InsideTSQL2008;

IF OBJECT_ID('dbo.Nums') IS NOT NULL DROP TABLE dbo.Nums;

CREATE TABLE dbo.Nums(n INT NOT NULL PRIMARY KEY);

DECLARE @max AS INT, @rc AS INT;

SET @max = 1000000;

SET @rc = 1;

INSERT INTO Nums VALUES(1);

WHILE @rc * 2 <= @max

SET NOCOUNT ON;

USE InsideTSQL2008;

IF OBJECT_ID('dbo.Nums') IS NOT NULL DROP TABLE dbo.Nums;

CREATE TABLE dbo.Nums(n INT NOT NULL PRIMARY KEY);

DECLARE @max AS INT, @rc AS INT;

SET @max = 1000000;

SET @rc = 1;

INSERT INTO Nums VALUES(1);

WHILE @rc * 2 <= @max

C06626034.indd 359 2/13/2009 2:22:37 AM

360 Inside Microsoft SQL Server 2008: T-SQL Querying

BEGIN

 INSERT INTO dbo.Nums SELECT n + @rc FROM dbo.Nums;

 SET @rc = @rc * 2;

END

INSERT INTO dbo.Nums

 SELECT n + @rc FROM dbo.Nums WHERE n + @rc <= @max;

 Tip Because a Nums table has so many practical uses, you’ll probably end up needing to
 access it from various databases. To avoid the need to refer to it using the fully qualifi ed name
InsideTSQL2008.dbo.Nums, you can create a synonym in the model database pointing to Nums
in InsideTSQL2008 like this:

 USE model;

CREATE SYNONYM dbo.Nums FOR InsideTSQL2008.dbo.Nums;

Creating the synonym in model makes it available in all newly created databases from that point
on, including tempdb after SQL Server is restarted. For existing databases, you just need to
 explicitly run the CREATE SYNONYM command once.

In practice, it doesn’t really matter how you populate the Nums table because you run this process
only once. Nevertheless, I used an optimized process that populates the table in a very fast manner.
The process demonstrates the technique of creating Nums with a multiplying INSERT loop.

The code keeps track of the number of rows already inserted into the table in a variable
called @rc. It fi rst inserts into Nums the row where n = 1. It then enters a loop while @rc * 2
<= @max (@max is the desired number of rows). In each iteration, the process inserts into
Nums the result of a query that selects all rows from Nums after adding @rc to each n value.
This technique doubles the number of rows in Nums in each iteration—that is, fi rst {1} is
 inserted, then {2}, then {3, 4}, then {5, 6, 7, 8}, then {9, 10, 11, 12, 13, 14, 15, 16}, and so on.

 As soon as the table is populated with more than half the target number of rows, the loop
ends. Another INSERT statement after the loop inserts the remaining rows using the same
INSERT statement as within the loop, but this time with a fi lter to ensure that only values
<= @max will be inserted.

 The main reason that this process runs fast is that it minimizes writes to the transaction log
 compared to other available solutions. This is achieved by minimizing the number of INSERT
 statements (the number of INSERT statements is CEILING(LOG2(@max)) + 1). This code populated
the Nums table with 1,000,000 rows in 11 seconds on my laptop. As an exercise, you can try
 populating the Nums table using a simple loop of individual inserts and see how long it takes.

 Whenever you need the fi rst @n numbers from Nums, simply query it, specifying WHERE
n <= @n as the fi lter. An index on the n column ensures that the query scans only the
 required rows and no others.

 If you’re not allowed to add permanent tables in the database, you can create a table-valued
UDF with a parameter for the number of rows needed. You use the same logic as used in the
preceding example to generate the required number of values.

BEGIN

 INSERT INTO dbo.Nums SELECT n + @rc FROM dbo.Nums;

 SET @rc = @rc * 2;

END

INSERT INTO dbo.Nums

 SELECT n + @rc FROM dbo.Nums WHERE n + @rc <= @max;

C06626034.indd 360 2/13/2009 2:22:37 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 361

 You can use CTEs and the ROW_NUMBER function to create extremely effi cient solutions that
generate a table of numbers on the fl y.

 I’ll start with a naive solution that is fairly slow (about 22 seconds, with results discarded). The
following solution uses a simple recursive CTE, where the anchor member generates a row
with n = 1, and the recursive member adds a row in each iteration with n = prev n + 1:

DECLARE @n AS BIGINT;

SET @n = 1000000;

WITH Nums AS

(

 SELECT 1 AS n

 UNION ALL

 SELECT n + 1 FROM Nums WHERE n < @n

)

SELECT n FROM Nums

OPTION(MAXRECURSION 0);

 Note If you’re running the code to test it, remember to turn on the Discard Results After
Execution option in SSMS; otherwise, you will get an output with a million rows.

 You have to use a hint that removes the default recursion limit of 100. This solution runs for
about 22 seconds.

 You can optimize the solution signifi cantly by using a CTE (call it Base) that generates as many
rows as the square root of the target number of rows. Take the cross join of two instances of
Base to get the target number of rows and, fi nally, generate row numbers for the result to
serve as the sequence of numbers.

 Here’s the code that implements this approach:

DECLARE @n AS BIGINT = 1000000;

WITH Base AS

(

 SELECT 1 AS n

 UNION ALL

 SELECT n + 1 FROM Base WHERE n < CEILING(SQRT(@n))

),

Nums AS

(

 SELECT ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS n

 FROM Base AS B1

 CROSS JOIN Base AS B2

)

SELECT n FROM Nums WHERE n <= @n

OPTION(MAXRECURSION 0);

 This solution runs for only 0.9 seconds (results discarded).

C06626034.indd 361 2/13/2009 2:22:37 AM

362 Inside Microsoft SQL Server 2008: T-SQL Querying

 Next, I’ll describe the third approach to generate Nums. You start with a CTE that has only two
rows and multiply the number of rows with each following CTE by cross-joining two instances of
the previous CTE. With n levels of CTEs (0-based), you reach POWER(2, POWER(2, n)) rows (read as
“2 in the power of (2 in the power of n)”). For example, with 5 levels, you get 4,294,967,296 rows.

 Another CTE generates row numbers, and fi nally the outer query fi lters the desired number
of values (where row number column <= input). Remember that when you fi lter a row number
<= some value, SQL Server doesn’t bother to generate row numbers beyond that point. So
you shouldn’t be concerned about performance. It’s not the case that your code will really
generate more than four billion rows every time and then fi lter.

 Here’s the code that implements this approach:

DECLARE @n AS BIGINT = 1000000;

WITH

L0 AS(SELECT 1 AS c UNION ALL SELECT 1),

L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B),

L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B),

L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B),

L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B),

L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B),

Nums AS(SELECT ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS n FROM L5)

SELECT n FROM Nums WHERE n <= @n;

 It runs for about 0.6 seconds to generate a sequence of 1,000,000 numbers.

 As I mentioned earlier, you can wrap the logic in a UDF. The value of this solution is that it
does not use recursion, and therefore does not need to explicitly increase the MAXRECURSION
limit with a hint. Such a hint cannot be specifi ed in a UDF defi nition, but this is of no concern
in our case. The following code encapsulates the last solution’s logic in a UDF:

IF OBJECT_ID('dbo.GetNums') IS NOT NULL

 DROP FUNCTION dbo.GetNums;

GO

CREATE FUNCTION dbo.GetNums(@n AS BIGINT) RETURNS TABLE

AS

RETURN

 WITH

 L0 AS(SELECT 1 AS c UNION ALL SELECT 1),

 L1 AS(SELECT 1 AS c FROM L0 AS A, L0 AS B),

 L2 AS(SELECT 1 AS c FROM L1 AS A, L1 AS B),

 L3 AS(SELECT 1 AS c FROM L2 AS A, L2 AS B),

 L4 AS(SELECT 1 AS c FROM L3 AS A, L3 AS B),

 L5 AS(SELECT 1 AS c FROM L4 AS A, L4 AS B),

 Nums AS(SELECT ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS n FROM L5)

 SELECT n FROM Nums WHERE n <= @n;

GO

 To test the function, run the following code, which returns an auxiliary table with 10
numbers:

SELECT * FROM dbo.GetNums(10) AS Nums;

C06626034.indd 362 2/13/2009 2:22:37 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 363

Missing and Existing Ranges (Also Known as Gaps
and Islands)

To put your knowledge of subqueries, table expressions, and ranking calculations into action,
I’ll provide a couple of problems that have many applications in production environments. I’ll
present a generic form of the problem, though, so you can focus on the techniques and not
the data.

The problems at hand deal with a sequence of values that has gaps within it. The sequence
can be numeric (for example, keys such as order IDs) or temporal (for example, order dates).
Also, the sequence can have unique values (for example, keys), or it can have duplicate values
(for example, order dates). The fi rst challenge is to identify the ranges of missing values in the
sequence (gaps), and the second challenge is to identify ranges of existing values (islands).
These problems manifest in production systems in many forms—for example, availability
or nonavailability reports, periods of activity or inactivity, identifying ranges of missing or
 existing keys, and others.

Use the following code to create and populate a table named NumSeq representing a
 numeric sequence with unique values:

SET NOCOUNT ON;

USE tempdb;

-- dbo.NumSeq (numeric sequence with unique values, interval: 1)

IF OBJECT_ID('dbo.NumSeq', 'U') IS NOT NULL DROP TABLE dbo.NumSeq;

CREATE TABLE dbo.NumSeq

(

 seqval INT NOT NULL

 CONSTRAINT PK_NumSeq PRIMARY KEY

);

INSERT INTO dbo.NumSeq(seqval) VALUES

 (2),(3),(11),(12),(13),(27),(33),(34),(35),(42);

 Table 6-2 shows the gaps in the sequence in NumSeq, and Table 6-3 shows the islands.

TABLE 6-2 Gaps in NumSeq

start_range end_range

4 10

14 26

28 32

36 41

start_range end_range

C06626034.indd 363 2/13/2009 2:22:37 AM

364 Inside Microsoft SQL Server 2008: T-SQL Querying

 TABLE 6-3 Islands in NumSeq

start_range end_range

2 3

11 13

27 27

33 35

42 42

 You can use the small NumSeq table to ensure that you get the correct results when working
on the logical aspects of your solutions. To test the performance aspects, you need a bigger
sequence. Use the following code to create and populate a table called BigNumSeq that has
a big numeric sequence with unique values:

-- dbo.BigNumSeq (big numeric sequence with unique values, interval: 1)

IF OBJECT_ID('dbo.BigNumSeq', 'U') IS NOT NULL DROP TABLE dbo.BigNumSeq;

CREATE TABLE dbo.BigNumSeq

(

 seqval INT NOT NULL

 CONSTRAINT PK_BigNumSeq PRIMARY KEY

);

-- Populate table with values in the range 1 through to 10,000,000

-- with a gap every 1000 (total 9,999 gaps, 10,000 islands)

WITH

L0 AS(SELECT 1 AS c UNION ALL SELECT 1),

L1 AS(SELECT 1 AS c FROM L0 AS A, L0 AS B),

L2 AS(SELECT 1 AS c FROM L1 AS A, L1 AS B),

L3 AS(SELECT 1 AS c FROM L2 AS A, L2 AS B),

L4 AS(SELECT 1 AS c FROM L3 AS A, L3 AS B),

L5 AS(SELECT 1 AS c FROM L4 AS A, L4 AS B),

Nums AS(SELECT ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS n FROM L5)

INSERT INTO dbo.BigNumSeq WITH(TABLOCK) (seqval)

 SELECT n

 FROM Nums

 WHERE n <= 10000000

 AND n % 1000 <> 0;

 The seqval column in the BigNumSeq table is populated with integer values in the range 1
through to 10,000,000, with 9,999 gaps, 10,000 islands.

 Your solutions will likely need certain revisions if you want to apply them to temporal
 sequences. Use the following code to create and populate a table called TempSeq that
 represents a temporal sequence with unique values, with a fi xed interval of four hours:

-- dbo.TempSeq (temporal sequence with unique values, interval: 4 hours)

IF OBJECT_ID('dbo.TempSeq', 'U') IS NOT NULL DROP TABLE dbo.TempSeq;

CREATE TABLE dbo.TempSeq

(

 seqval DATETIME NOT NULL

 CONSTRAINT PK_TempSeq PRIMARY KEY

);

start_range end_range

C06626034.indd 364 2/13/2009 2:22:37 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 365

INSERT INTO dbo.TempSeq(seqval) VALUES

 ('20090212 00:00'),

 ('20090212 04:00'),

 ('20090212 12:00'),

 ('20090212 16:00'),

 ('20090212 20:00'),

 ('20090213 08:00'),

 ('20090213 20:00'),

 ('20090214 00:00'),

 ('20090214 04:00'),

 ('20090214 12:00');

The sequence values could represent, for example, a timestamp recorded by a process every
fi xed interval of time reporting that it’s online. And then the gaps information would represent
nonavailability of the process, while the islands info would represent availability of the process.

Table 6-4 shows the gaps in TempSeq, and Table 6-5 shows the islands.

TABLE 6-4 Gaps in TempSeq

start_range end_range

2009-02-12 08:00:00.000 2009-02-12 08:00:00.000

2009-02-13 00:00:00.000 2009-02-13 04:00:00.000

2009-02-13 12:00:00.000 2009-02-13 16:00:00.000

2009-02-14 08:00:00.000 2009-02-14 08:00:00.000

TABLE 6-5 Islands in TempSeq

start_range end_range

2009-02-12 00:00:00.000 2009-02-12 04:00:00.000

2009-02-12 12:00:00.000 2009-02-12 20:00:00.000

2009-02-13 08:00:00.000 2009-02-13 08:00:00.000

2009-02-13 20:00:00.000 2009-02-14 04:00:00.000

2009-02-14 12:00:00.000 2009-02-14 12:00:00.000

You may also need to handle sequences that contain duplicate values. Run the following
code to create and populate a table called NumSeqDups that represents a numeric sequence
with duplicate values:

-- dbo.NumSeqDups (numeric sequence with duplicates, interval: 1)

IF OBJECT_ID('dbo.NumSeqDups', 'U') IS NOT NULL DROP TABLE dbo.NumSeqDups;

CREATE TABLE dbo.NumSeqDups

(

 seqval INT NOT NULL

);

CREATE CLUSTERED INDEX idx_seqval ON dbo.NumSeqDups(seqval);

INSERT INTO dbo.NumSeqDups(seqval) VALUES

 (2),(2),(2),(3),(11),(12),(12),(13),(27),(27),(27),(27),

 (33),(34),(34),(35),(35),(35),(42),(42);

start_range end_range

start_range end_range

C06626034.indd 365 2/13/2009 2:22:37 AM

366 Inside Microsoft SQL Server 2008: T-SQL Querying

Missing Ranges (Gaps)

 You can take several approaches to solve the gaps problem. I will present four different
 solutions and discuss both their logical and their performance aspects. I’ll always start by
 presenting a solution for a unique numeric sequence and then explain how to handle the
other variations. So unless I explicitly say otherwise, the discussion is about the unique
 numeric sequence stored in the NumSeq table.

Gaps, Solution 1: Using Subqueries

 One approach to solving the gaps problem can be described by the following steps:

 1. Find the points before the gaps and add one interval to each.

 2. For each starting point of a gap, fi nd the next existing value in the sequence and
 subtract one interval.

 Having the logical aspects of the steps resolved, you can start coding. You will fi nd in
the preceding logical steps that the chapter covered all the fundamental techniques that are
mentioned—namely, fi nding points before gaps and fi nding the next existing value.

 The following query returns the points before the gaps (in the sequence stored in
NumSeq):

SELECT seqval

FROM dbo.NumSeq AS A

WHERE NOT EXISTS(SELECT *

 FROM dbo.NumSeq AS B

 WHERE B.seqval = A.seqval + 1);

 This query generated the following output:

seqval

3

13

27

35

42

 Remember that a point before a gap is a value after which the next consecutive value doesn’t
exist.

 Notice in the output that the last row is of no interest to us because the gap it precedes is
the gap to infi nity. The following query returns the starting points of the gaps. It achieves this
by adding one to the points before the gaps to get the fi rst values in the gaps, fi ltering out
the point before infi nity.

C06626034.indd 366 2/13/2009 2:22:37 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 367

SELECT

 seqval + 1 AS start_range

FROM dbo.NumSeq AS A

WHERE NOT EXISTS(SELECT *

 FROM dbo.NumSeq AS B

 WHERE B.seqval = A.seqval + 1)

 AND seqval < (SELECT MAX(seqval) FROM dbo.NumSeq);

 This query generates the following output:

start_range

4

14

28

36

 Finally, for each starting point in the gap, you use a subquery to return the next value in the
sequence minus 1—in other words, the end of the gap:

SELECT

 seqval + 1 AS start_range,

 (SELECT MIN(B.seqval)

 FROM dbo.NumSeq AS B

 WHERE B.seqval > A.seqval) - 1 AS end_range

FROM dbo.NumSeq AS A

WHERE NOT EXISTS(SELECT *

 FROM dbo.NumSeq AS B

 WHERE B.seqval = A.seqval + 1)

 AND seqval < (SELECT MAX(seqval) FROM dbo.NumSeq);

 To test the performance of this solution, run it against the BigNumSeq table:

SELECT

 seqval + 1 AS start_range,

 (SELECT MIN(B.seqval)

 FROM dbo.BigNumSeq AS B

 WHERE B.seqval > A.seqval) - 1 AS end_range

FROM dbo.BigNumSeq AS A

WHERE NOT EXISTS(SELECT *

 FROM dbo.BigNumSeq AS B

 WHERE B.seqval = A.seqval + 1)

 AND seqval < (SELECT MAX(seqval) FROM dbo.BigNumSeq);

 On my system, this solution ran for 8 seconds and incurred 62,262 logical reads. This is
the fastest of all solutions I tested for the gaps problem. To understand why it performs
so well (compared to others), examine this query’s execution plan, which is shown in
Figure 6-11.

C06626034.indd 367 2/13/2009 2:22:37 AM

368 Inside Microsoft SQL Server 2008: T-SQL Querying

FIGURE 6-11 Query plan for gaps, solution 1

 The key to the good performance of this solution is the way the optimizer decided to handle
the “point before a gap” part represented in our query by the NOT EXISTS predicate. The
 optimizer identifi ed this part logically as an anti-semi join and processed it with a merge join
operator between two ordered scans of the index on seqval (one complete and another almost
complete). These two scans incurred a little more than 32,000 reads, with the physical part
probably being sequential. For almost 10,000,000 rows, this is far more effi cient than doing
a seek operation per each row. Next, only for the fi ltered points identifi ed as points before
gaps, the optimizer uses an index seek operation to fetch the next sequence value. Because
our sequence has close to 10,000 such points and 3 levels in the index, this activity amounts to
about 30,000 reads, with the physical part being random. All in all, the number of logical reads
is a little more than 62,000 reads. Note that the number of seek operations depends on the
number of gaps in the sequence. Therefore, the performance of this solution varies based on
the number of gaps.

 To apply this solution to a temporal sequence, instead of using + 1 or –1, simply use the
DATEADD function with the appropriate interval, like so:

SELECT

 DATEADD(hour, 4, seqval) AS start_range,

 DATEADD(hour, -4,

 (SELECT MIN(B.seqval)

 FROM dbo.TempSeq AS B

 WHERE B.seqval > A.seqval)) AS end_range

C06626034.indd 368 2/13/2009 2:22:37 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 369

FROM dbo.TempSeq AS A

WHERE NOT EXISTS(SELECT *

 FROM dbo.TempSeq AS B

 WHERE B.seqval = DATEADD(hour, 4, A.seqval))

 AND seqval < (SELECT MAX(seqval) FROM dbo.TempSeq);

 You have a couple of options for dealing with a nonunique sequence. One is to replace the
reference in the outer query to the original table with a reference to a derived table that has
only distinct values, like so:

SELECT

 seqval + 1 AS start_range,

 (SELECT MIN(B.seqval)

 FROM dbo.NumSeqDups AS B

 WHERE B.seqval > A.seqval) - 1 AS end_range

FROM (SELECT DISTINCT seqval FROM dbo.NumSeqDups) AS A

WHERE NOT EXISTS(SELECT *

 FROM dbo.NumSeqDups AS B

 WHERE B.seqval = A.seqval + 1)

 AND seqval < (SELECT MAX(seqval) FROM dbo.NumSeqDups);

 Another is to simply use a DISTINCT clause in the SELECT list:

SELECT DISTINCT

 seqval + 1 AS start_range,

 (SELECT MIN(B.seqval)

 FROM dbo.NumSeqDups AS B

 WHERE B.seqval > A.seqval) - 1 AS end_range

FROM dbo.NumSeqDups AS A

WHERE NOT EXISTS(SELECT *

 FROM dbo.NumSeqDups AS B

 WHERE B.seqval = A.seqval + 1)

 AND seqval < (SELECT MAX(seqval) FROM dbo.NumSeqDups);

Gaps, Solution 2: Using Subqueries

 The second approach to solving the gaps problem is one I fi nd to be simpler and more intuitive
than the previous. It implements the following steps:

 1. To each existing value, match the next existing value, generating current, next pairs.

 2. Keep only pairs where next minus current is greater than one interval.

 3. With the remaining pairs, add one interval to the current and subtract one interval
from the next.

 This approach relies on the fact that adjacent values with a difference greater than one interval
represent the boundaries of a gap. Identifying a gap based on identifi cation of the next existing
value is another useful fundamental technique.

C06626034.indd 369 2/13/2009 2:22:37 AM

370 Inside Microsoft SQL Server 2008: T-SQL Querying

 To translate the preceding steps to T-SQL, the following query simply returns the next value
for each current value:

SELECT

 seqval AS cur,

 (SELECT MIN(B.seqval)

 FROM dbo.NumSeq AS B

 WHERE B.seqval > A.seqval) AS nxt

FROM dbo.NumSeq AS A;

 This query generates the following output:

cur nxt

----------- -----------

2 3

3 11

11 12

12 13

13 27

27 33

33 34

34 35

35 42

42 NULL

 Finally, you create a derived table out of the previous step’s query, and you keep only pairs
where nxt – cur is greater than one. You add one to cur to get the actual start of the gap
and subtract one from nxt to get the actual end of the gap:

SELECT cur + 1 AS start_range, nxt - 1 AS end_range

FROM (SELECT

 seqval AS cur,

 (SELECT MIN(B.seqval)

 FROM dbo.NumSeq AS B

 WHERE B.seqval > A.seqval) AS nxt

 FROM dbo.NumSeq AS A) AS D

WHERE nxt - cur > 1;

 Note that this solution got rid of the point before infi nity with no special treatment because
the nxt value for it was NULL.

 Run this solution against BigNumSeq to test its performance:

SELECT cur + 1 AS start_range, nxt - 1 AS end_range

FROM (SELECT

 seqval AS cur,

 (SELECT MIN(B.seqval)

 FROM dbo.BigNumSeq AS B

 WHERE B.seqval > A.seqval) AS nxt

 FROM dbo.BigNumSeq AS A) AS D

WHERE nxt - cur > 1;

 The plan for this query is shown in Figure 6-12.

C06626034.indd 370 2/13/2009 2:22:37 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 371

FIGURE 6-12 Query plan for gaps, solution 2

 This solution is signifi cantly slower than the previous one. It ran on my system for 48 seconds
and incurred 31,875,478 logical reads. The reason for the large number of reads becomes
apparent when you examine the plan. The plan shows a full scan of the index to retrieve all
sequence values (close to 10,000,000 of them), and per each row, an index seek operation is
used to return the next value. With a cost of 3 reads per seek (for the 3 levels of the index),
you get about 30,000,000 reads for all seeks.

 To apply the solution to a temporal sequence, use the DATEADD function to add or subtract
an interval, and the DATEDIFF function to calculate the difference between cur and nxt:

SELECT

 DATEADD(hour, 4, cur) AS start_range,

 DATEADD(hour, -4, nxt) AS end_range

FROM (SELECT

 seqval AS cur,

 (SELECT MIN(B.seqval)

 FROM dbo.TempSeq AS B

 WHERE B.seqval > A.seqval) AS nxt

 FROM dbo.TempSeq AS A) AS D

WHERE DATEDIFF(hour, cur, nxt) > 4;

 For a sequence with duplicates, again, one approach is to query a derived table that has only
distinct values, like so:

SELECT cur + 1 AS start_range, nxt - 1 AS end_range

FROM (SELECT

 seqval AS cur,

 (SELECT MIN(B.seqval)

 FROM dbo.NumSeqDups AS B

 WHERE B.seqval > A.seqval) AS nxt

 FROM (SELECT DISTINCT seqval FROM dbo.NumSeqDups) AS A) AS D

WHERE nxt - cur > 1;

 Or simply add a DISTINCT clause to the SELECT list:

SELECT DISTINCT cur + 1 AS start_range, nxt - 1 AS end_range

FROM (SELECT

 seqval AS cur,

 (SELECT MIN(B.seqval)

C06626034.indd 371 2/13/2009 2:22:37 AM

372 Inside Microsoft SQL Server 2008: T-SQL Querying

 FROM dbo.NumSeqDups AS B

 WHERE B.seqval > A.seqval) AS nxt

 FROM dbo.NumSeqDups AS A) AS D

WHERE nxt - cur > 1;

Gaps, Solution 3: Using Ranking Functions

 The third solution is similar to the second, but it uses a different method to pair current and
next values. It defi nes a CTE that assigns row numbers to rows based on seqval ordering. The
outer query then joins two instances, matching current and next values based on an offset of
1 between their row numbers. Here’s the complete solution:

WITH C AS

(

 SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

 FROM dbo.NumSeq

)

SELECT Cur.seqval + 1 AS start_range, Nxt.seqval - 1 AS end_range

FROM C AS Cur

 JOIN C AS Nxt

 ON Nxt.rownum = Cur.rownum + 1

WHERE Nxt.seqval - Cur.seqval > 1;

 Run the solution against the big sequence to test its performance:

WITH C AS

(

 SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

 FROM dbo.BigNumSeq

)

SELECT Cur.seqval + 1 AS start_range, Nxt.seqval - 1 AS end_range

FROM C AS Cur

 JOIN C AS Nxt

 ON Nxt.rownum = Cur.rownum + 1

WHERE Nxt.seqval - Cur.seqval > 1;

 The plan for this query is shown in Figure 6-13.

FIGURE 6-13 Query plan for gaps, solution 3

C06626034.indd 372 2/13/2009 2:22:37 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 373

 This solution performs better than the previous. It ran on my system for 24 seconds and
 incurred 32,246 logical reads. It performs two ordered scans of the index on seqval, to return
the current and next values and their row numbers, and then uses a merge join operator to
match current with next values. The merge operator turns out to be quite expensive here.
It is handled as a many-to-many join, even though you and I know that in practice it’s a
 one-to-one join.

 As in the previous solution, to apply this solution to a temporal sequence, use the DATEADD
function to add or subtract an interval and use the DATEDIFF function to calculate the
 difference between cur and nxt:

WITH C AS

(

 SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

 FROM dbo.TempSeq

)

SELECT

 DATEADD(hour, 4, Cur.seqval) AS start_range,

 DATEADD(hour, -4, Nxt.Seqval) AS end_range

FROM C AS Cur

 JOIN C AS Nxt

 ON Nxt.rownum = Cur.rownum + 1

WHERE DATEDIFF(hour, Cur.seqval, Nxt.seqval) > 4;

 For a sequence with duplicates, one option is as usual to use a derived table with the distinct
sequence values, like so:

WITH C AS

(

 SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

 FROM (SELECT DISTINCT seqval FROM dbo.NumSeqDups) AS D

)

SELECT Cur.seqval + 1 AS start_range, Nxt.seqval - 1 AS end_range

FROM C AS Cur

 JOIN C AS Nxt

 ON Nxt.rownum = Cur.rownum + 1

WHERE Nxt.seqval - Cur.seqval > 1;

 Another option is to use row numbers to number the occurrences of each unique value and
fi lter only occurrences with the row number 1. The rest is the same as in the original solution.
Here’s the complete solution query:

WITH C1 AS

(

 SELECT seqval, ROW_NUMBER() OVER(PARTITION BY seqval

 ORDER BY (SELECT 0)) AS dupnum

 FROM dbo.NumSeqDups

),

C2 AS

(

 SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

 FROM C1

 WHERE dupnum = 1

)

C06626034.indd 373 2/13/2009 2:22:37 AM

374 Inside Microsoft SQL Server 2008: T-SQL Querying

SELECT Cur.seqval + 1 AS start_range, Nxt.seqval - 1 AS end_range

FROM C2 AS Cur

 JOIN C2 AS Nxt

 ON Nxt.rownum = Cur.rownum + 1

WHERE Nxt.seqval - Cur.seqval > 1;

Gaps, Solution 4: Using Cursors

 I also wrote a solution based on cursors because I was curious about its performance. On the
one hand, the cursor can achieve the task using a single ordered scan of the index; on the other
hand, a lot of overhead is associated with the record-by-record manipulation of the cursor. You
pay overhead per each row that is processed with the cursor that you don’t normally pay for
set-based manipulation.

 The cursor solution is quite straightforward: The cursor scans the sequence values once in
order and compares each current value with the previous. If the difference between them is
greater than one interval, the pair represents a gap. Here’s the complete solution’s code:

SET NOCOUNT ON;

DECLARE @seqval AS INT, @prvseqval AS INT;

DECLARE @Gaps TABLE(start_range INT, end_range INT);

DECLARE C CURSOR FAST_FORWARD FOR

 SELECT seqval FROM dbo.BigNumSeq ORDER BY seqval;

OPEN C;

FETCH NEXT FROM C INTO @prvseqval;

IF @@FETCH_STATUS = 0 FETCH NEXT FROM C INTO @seqval;

WHILE @@FETCH_STATUS = 0

BEGIN

 IF @seqval - @prvseqval > 1

 INSERT INTO @Gaps(start_range, end_range)

 VALUES(@prvseqval + 1, @seqval - 1);

 SET @prvseqval = @seqval;

 FETCH NEXT FROM C INTO @seqval;

END

CLOSE C;

DEALLOCATE C;

SELECT start_range, end_range FROM @Gaps;

 As expected, the cursor solution was very slow. It ran for 250 seconds on my system even
though it incurred only 16,123 logical reads.

C06626034.indd 374 2/13/2009 2:22:37 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 375

Returning Individual Missing Values

 Before I move on to covering the solutions to the islands problem, I want to address a special
case of the missing values problem. If you need to return the list of individual missing values
as opposed to missing ranges, using the Nums table the task is very simple:

SELECT n FROM dbo.Nums

WHERE n BETWEEN (SELECT MIN(seqval) FROM dbo.NumSeq)

 AND (SELECT MAX(seqval) FROM dbo.NumSeq)

 AND n NOT IN(SELECT seqval FROM dbo.NumSeq);

Existing Ranges (Islands)

 As with the gaps problem, you can take several approaches to solve the islands problem. I’ll
describe four solutions here.

Islands, Solution 1: Using Subqueries and Ranking Calculations

 The fi rst solution to the islands problem is quite straightforward. It involves the following steps:

 1. Identify points after gaps and assign them row numbers—these points are starting
points of islands.

 2. Identify points before gaps and assign with row numbers—these points are ending
points of islands.

 3. Match starting and ending points of islands based on equality between their row
numbers.

 Here’s the solution code for the unique numeric sequence:

WITH StartingPoints AS

(

 SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

 FROM dbo.NumSeq AS A

 WHERE NOT EXISTS

 (SELECT *

 FROM dbo.NumSeq AS B

 WHERE B.seqval = A.seqval - 1)

),

EndingPoints AS

(

 SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

 FROM dbo.NumSeq AS A

 WHERE NOT EXISTS

 (SELECT *

 FROM dbo.NumSeq AS B

 WHERE B.seqval = A.seqval + 1)

)

SELECT S.seqval AS start_range, E.seqval AS end_range

FROM StartingPoints AS S

 JOIN EndingPoints AS E

 ON E.rownum = S.rownum;

C06626034.indd 375 2/13/2009 2:22:37 AM

376 Inside Microsoft SQL Server 2008: T-SQL Querying

 To test the performance of this solution, run the code against the BigNumSeq table:

WITH StartingPoints AS

(

 SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

 FROM dbo.BigNumSeq AS A

 WHERE NOT EXISTS

 (SELECT *

 FROM dbo.BigNumSeq AS B

 WHERE B.seqval = A.seqval - 1)

),

EndingPoints AS

(

 SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

 FROM dbo.BigNumSeq AS A

 WHERE NOT EXISTS

 (SELECT *

 FROM dbo.BigNumSeq AS B

 WHERE B.seqval = A.seqval + 1)

)

SELECT S.seqval AS start_range, E.seqval AS end_range

FROM StartingPoints AS S

 JOIN EndingPoints AS E

 ON E.rownum = S.rownum;

 The plan for this query is shown in Figure 6-14.

FIGURE 6-14 Query plan for islands, solution 1

C06626034.indd 376 2/13/2009 2:22:37 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 377

 The plan shows two merge joins, each between the results of two ordered scans of the index
on seqval. Each such merge join is used to process a logical anti-semi join that fi lters points
before or after gaps. Each such merge join fi lters as many rows as the number of islands
(10,000 in our case). Finally, another merge join is used to pair starting and ending points.
Even though the last merge is many-to-many and can potentially be slow, it’s pretty fast
 because it handles only a small number of islands in our case. This solution ran on my system
for 17 seconds and incurred 64,492 logical reads.

 To apply the solution to a temporal sequence, simply use the DATEADD function as usual to
add an interval to the sequence value:

WITH StartingPoints AS

(

 SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

 FROM dbo.TempSeq AS A

 WHERE NOT EXISTS

 (SELECT *

 FROM dbo.TempSeq AS B

 WHERE B.seqval = DATEADD(hour, -4, A.seqval))

),

EndingPoints AS

(

 SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

 FROM dbo.TempSeq AS A

 WHERE NOT EXISTS

 (SELECT *

 FROM dbo.TempSeq AS B

 WHERE B.seqval = DATEADD(hour, 4, A.seqval))

)

SELECT S.seqval AS start_range, E.seqval AS end_range

FROM StartingPoints AS S

 JOIN EndingPoints AS E

 ON E.rownum = S.rownum;

 To apply the solution to a sequence with duplicates, query a derived table with the distinct
values:

WITH StartingPoints AS

(

 SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

 FROM (SELECT DISTINCT seqval FROM dbo.NumSeqDups) AS A

 WHERE NOT EXISTS

 (SELECT *

 FROM dbo.NumSeqDups AS B

 WHERE B.seqval = A.seqval - 1)

),

EndingPoints AS

(

 SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

 FROM (SELECT DISTINCT seqval FROM dbo.NumSeqDups) AS A

 WHERE NOT EXISTS

 (SELECT *

 FROM dbo.NumSeqDups AS B

 WHERE B.seqval = A.seqval + 1)

)

C06626034.indd 377 2/13/2009 2:22:37 AM

378 Inside Microsoft SQL Server 2008: T-SQL Querying

SELECT S.seqval AS start_range, E.seqval AS end_range

FROM StartingPoints AS S

 JOIN EndingPoints AS E

 ON E.rownum = S.rownum;

Islands, Solution 2: Using Group Identifi er Based on Subqueries

 The second solution to the islands problem involves a concept I haven’t discussed yet—a grouping
factor, or group identifi er. You basically need to group data by a factor that does not exist in the
data as a base attribute. In our case, you need to calculate some x value for all members of the fi rst
subset of consecutive values {2, 3}, some y value for the second {11, 12, 13}, some z value for the
third {27}, and so on. When you have this grouping factor available, you can group the data by this
factor and return the minimum and maximum col1 values in each group.

 One approach to calculating this grouping factor brings me to another technique: calculating the
min or max value of a group of consecutive values. Take the group {11, 12, 13} as an example.
If you can manage to calculate for each of the members the max value in the group (13), you can
use it as your grouping factor.

 The logic behind the technique to calculating the maximum within a group of consecutive
values is: return the minimum value that is greater than or equal to the current, after which
there’s a gap. Here’s the translation to T-SQL:

SELECT seqval,

 (SELECT MIN(B.seqval)

 FROM dbo.NumSeq AS B

 WHERE B.seqval >= A.seqval

 AND NOT EXISTS

 (SELECT *

 FROM dbo.NumSeq AS C

 WHERE C.seqval = B.seqval + 1)) AS grp

FROM dbo.NumSeq AS A;

 This code generates the following output:

seqval grp

----------- -----------

2 3

3 3

11 13

12 13

13 13

27 27

33 35

34 35

35 35

42 42

 The rest is really easy: create a CTE table out of the previous step’s query, group the data by
the grouping factor, and return the minimum and maximum values for each group:

C06626034.indd 378 2/13/2009 2:22:37 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 379

WITH D AS

(

 SELECT seqval,

 (SELECT MIN(B.seqval)

 FROM dbo.NumSeq AS B

 WHERE B.seqval >= A.seqval

 AND NOT EXISTS

 (SELECT *

 FROM dbo.NumSeq AS C

 WHERE C.seqval = B.seqval + 1)) AS grp

 FROM dbo.NumSeq AS A

)

SELECT MIN(seqval) AS start_range, MAX(seqval) AS end_range

FROM D

GROUP BY grp;

 This solution solves the problem, but I’m not sure I’d qualify it as a very simple and intuitive
solution with satisfactory performance. To test its performance, you can run it against the
BigNumSeq table:

WITH D AS

(

 SELECT seqval,

 (SELECT MIN(B.seqval)

 FROM dbo.BigNumSeq AS B

 WHERE B.seqval >= A.seqval

 AND NOT EXISTS

 (SELECT *

 FROM dbo.BigNumSeq AS C

 WHERE C.seqval = B.seqval + 1)) AS grp

 FROM dbo.BigNumSeq AS A

)

SELECT MIN(seqval) AS start_range, MAX(seqval) AS end_range

FROM D

GROUP BY grp;

 The execution plan for this query is shown in Figure 6-15.

FIGURE 6-15 Query plan for islands, solution 2

C06626034.indd 379 2/13/2009 2:22:38 AM

380 Inside Microsoft SQL Server 2008: T-SQL Querying

 This solution is so slow that after 10 minutes I simply canceled it. The cause for the poor
 performance can be identifi ed in the query’s execution plan. The index on seqval is fully
scanned to retrieve all rows from the instance of the table named A. Recall that the table
has almost 10,000,000 rows. For each of those rows a nested loops operator invokes quite
 expensive activity—a merge join implementing a logical anti-semi join to identify all points
before a gap. This merge join happens between the results of a full and a partial scan of the
index on seqval. Then the minimum of those points is returned.

 To apply this solution to a temporal sequence, use the DATEADD function to add an interval
to the sequence value:

WITH D AS

(

 SELECT seqval,

 (SELECT MIN(B.seqval)

 FROM dbo.TempSeq AS B

 WHERE B.seqval >= A.seqval

 AND NOT EXISTS

 (SELECT *

 FROM dbo.TempSeq AS C

 WHERE C.seqval = DATEADD(hour, 4, B.seqval))) AS grp

 FROM dbo.TempSeq AS A

)

SELECT MIN(seqval) AS start_range, MAX(seqval) AS end_range

FROM D

GROUP BY grp;

 For a sequence with duplicates, the solution actually works as is because the GROUP BY
 operation eliminates the duplicates:

WITH D AS

(

 SELECT seqval,

 (SELECT MIN(B.seqval)

 FROM dbo.NumSeqDups AS B

 WHERE B.seqval >= A.seqval

 AND NOT EXISTS

 (SELECT *

 FROM dbo.NumSeqDups AS C

 WHERE C.seqval = B.seqval + 1)) AS grp

 FROM dbo.NumSeqDups AS A

)

SELECT MIN(seqval) AS start_range, MAX(seqval) AS end_range

FROM D

GROUP BY grp;

Islands, Solution 3: Using Group Identifi er Based on Ranking Calculations

 The third solution to the islands problem is also based on the concept of a group identifi er,
but it calculates it using a dramatically simpler and faster technique. The solution is based
on a certain relationship that can be identifi ed between the sequence with the gaps and a
sequence of row numbers. To explain the technique, fi rst run the following query calculating
row numbers based on seqval order:

C06626034.indd 380 2/13/2009 2:22:38 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 381

SELECT seqval, ROW_NUMBER() OVER(ORDER BY seqval) AS rownum

FROM dbo.NumSeq;

 This query generates the following output:

seqval rownum

----------- --------------------

2 1

3 2

11 3

12 4

13 5

27 6

33 7

34 8

35 9

42 10

 See if you can identify a relationship between the way the seqval values increment and the
way row numbers do.

 Because both sequences keep incrementing by the same interval within an island, their
 difference remains constant within an island. As soon as you get to a new island, the difference
between them increases because seqval increments by more than 1, while the row number
increments by 1. Run the following query to produce this difference:

SELECT seqval, seqval - ROW_NUMBER() OVER(ORDER BY seqval) AS diff

FROM dbo.NumSeq;

 You get the following output:

seqval diff

----------- --------------------

2 1

3 1

11 8

12 8

13 8

27 21

33 26

34 26

35 26

42 32

 As you can see, this difference is the same for all members of the same island and different
for other islands. Now, simply replace in the previous solution the CTE table query with the
preceding query to get the desired result:

WITH D AS

(

 SELECT seqval, seqval - ROW_NUMBER() OVER(ORDER BY seqval) AS grp

 FROM dbo.NumSeq

)

C06626034.indd 381 2/13/2009 2:22:38 AM

382 Inside Microsoft SQL Server 2008: T-SQL Querying

SELECT MIN(seqval) AS start_range, MAX(seqval) AS end_range

FROM D

GROUP BY grp;

 The performance of this solution is very good. Run it against the BigNumSeq table:

WITH D AS

(

 SELECT seqval, seqval - ROW_NUMBER() OVER(ORDER BY seqval) AS grp

 FROM dbo.BigNumSeq

)

SELECT MIN(seqval) AS start_range, MAX(seqval) AS end_range

FROM D

GROUP BY grp;

 The execution plan for this query is shown in Figure 6-16.

FIGURE 6-16 Query plan for islands, solution 3

 The execution plan explains the effi ciency of this solution. The index is scanned only once
to retrieve the sequence values and also to calculate the row numbers. The rows are then
grouped by the difference between the two, and the minimum and maximum seqval values
are calculated for each group. This code ran for about 10 seconds on my system and incurred
16,123 logical reads. This is the fastest solution to the islands problem out of the ones
I present here.

 Applying the solution to a temporal sequence is not as trivial as in the previous cases. Here,
the temporal sequence and the row numbers sequence have different data types and also
different intervals. The trick to applying the effi cient technique in this case is to realize that
instead of calculating the difference between the two sequences, you can subtract from
each of the temporal sequence values as many temporal intervals as the row number. As a
result, all members of the same island get a constant date and time value, which is different
than it is for other islands. The sequence in the TempSeq table has an interval of four hours;

C06626034.indd 382 2/13/2009 2:22:38 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 383

 therefore, to produce the group identifi er in this case, you need to subtract from seqval row
number times four hours, like so:

WITH D AS

(

 SELECT seqval, DATEADD(hour, -4 * ROW_NUMBER() OVER(ORDER BY seqval), seqval) AS grp

 FROM dbo.TempSeq

)

SELECT MIN(seqval) AS start_range, MAX(seqval) AS end_range

FROM D

GROUP BY grp;

 For a sequence with duplicates, the trick is simply not to increment the ranking value for
 duplicate values. To achieve this, use the DENSE_RANK function instead of ROW_NUMBER,
like so:

WITH D AS

(

 SELECT seqval, seqval - DENSE_RANK() OVER(ORDER BY seqval) AS grp

 FROM dbo.NumSeqDups

)

SELECT MIN(seqval) AS start_range, MAX(seqval) AS end_range

FROM D

GROUP BY grp;

Islands, Solution 4: Using Cursors

 Of course, coverage of solutions to the islands problem cannot be considered complete without
a cursor-based solution. The logic of the solution is straightforward: scan the sequence values in
order, and as soon as the current value is greater than the previous by more than one interval,
you know that the previous value closes the last island, and the new value opens a new one.
Here’s the code implementing this logic:

SET NOCOUNT ON;

DECLARE @seqval AS INT, @prvseqval AS INT, @first AS INT;

DECLARE @Islands TABLE(start_range INT, end_range INT);

DECLARE C CURSOR FAST_FORWARD FOR

 SELECT seqval FROM dbo.BigNumSeq ORDER BY seqval;

OPEN C;

FETCH NEXT FROM C INTO @seqval;

SET @first = @seqval;

SET @prvseqval = @seqval;

WHILE @@FETCH_STATUS = 0

BEGIN

 IF @seqval - @prvseqval > 1

 BEGIN

 INSERT INTO @Islands(start_range, end_range)

C06626034.indd 383 2/13/2009 2:22:38 AM

384 Inside Microsoft SQL Server 2008: T-SQL Querying

 VALUES(@first, @prvseqval);

 SET @first = @seqval;

 END

 SET @prvseqval = @seqval;

 FETCH NEXT FROM C INTO @seqval;

END

IF @first IS NOT NULL

 INSERT INTO @Islands(start_range, end_range)

 VALUES(@first, @prvseqval);

CLOSE C;

DEALLOCATE C;

SELECT start_range, end_range FROM @Islands;

 Because of the high overhead of the record-by-record manipulation of the cursor, it ran for
about 217 seconds against BigNumSeq on my system even though it incurred only 16,123
logical reads.

A Variation of the Islands Problem

 In this section I’ll describe a variation of the islands problem and a solution based on the
group identifi er concept.

 The problem at hand involves a table (call it T3) with two columns of interest—one column
represents a sequence of keys (call it id), and another column represents a status value (call it
val). Run the following code to create a table called T3 and populate it with sample data:

USE tempdb;

IF OBJECT_ID('dbo.T3') IS NOT NULL DROP TABLE dbo.T3;

CREATE TABLE dbo.T3

(

 id INT NOT NULL PRIMARY KEY,

 val VARCHAR(10) NOT NULL

);

GO

INSERT INTO dbo.T3(id, val) VALUES

 (2, 'a'),

 (3, 'a'),

 (5, 'a'),

 (7, 'b'),

 (11, 'b'),

 (13, 'a'),

 (17, 'a'),

 (19, 'a'),

 (23, 'c'),

 (29, 'c'),

 (31, 'a'),

 (37, 'a'),

C06626034.indd 384 2/13/2009 2:22:38 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 385

 (41, 'a'),

 (43, 'a'),

 (47, 'c'),

 (53, 'c'),

 (59, 'c');

This kind of data can represent, for example, the status of a product in various stations in an
assembly line.

The challenge is to identify the ranges of IDs for each contiguous segment with the same status
value. With the given sample data your solution should produce the output shown in Table 6-6.

TABLE 6-6 Desired Result of Solution to a Variation of the Islands Problem

mn mx val

2 5 a

7 11 b

13 19 a

23 29 c

31 43 a

47 59 c

The key to solving the problem is to calculate two row numbers—one based on id ordering
and the other based on val, id ordering, like so:

SELECT id, val,

 ROW_NUMBER() OVER(ORDER BY id) AS rn_id,

 ROW_NUMBER() OVER(ORDER BY val, id) AS rn_val_id

FROM dbo.T3

ORDER BY id;

This query generates the following output:

id val rn_id rn_val_id

----------- ---------- -------------------- --------------------

2 a 1 1

3 a 2 2

5 a 3 3

7 b 4 11

11 b 5 12

13 a 6 4

17 a 7 5

19 a 8 6

23 c 9 13

29 c 10 14

31 a 11 7

37 a 12 8

41 a 13 9

43 a 14 10

47 c 15 15

53 c 16 16

59 c 17 17

mn mx val

C06626034.indd 385 2/13/2009 2:22:38 AM

386 Inside Microsoft SQL Server 2008: T-SQL Querying

 Naturally, both types of row numbers increment the same way within a contiguous segment
of a status value. When jumping to the next segment with the same status, the row number
based on val, id ordering increases by 1, while the row number based on only id ordering
increases by more than 1. This means that the difference between the two row numbers is
constant in a segment and different from those in other segments of the same status value.
Run the following query to obtain this difference:

SELECT id, val,

 ROW_NUMBER() OVER(ORDER BY id)

 - ROW_NUMBER() OVER(ORDER BY val, id) AS diff

FROM dbo.T3

ORDER BY id;

 Notice in the output that the combination of val and diff is unique per segment:

id val diff

----------- ---------- --------------------

2 a 0

3 a 0

5 a 0

7 b -7

11 b -7

13 a 2

17 a 2

19 a 2

23 c -4

29 c -4

31 a 4

37 a 4

41 a 4

43 a 4

47 c 0

53 c 0

59 c 0

 What’s left is simply to group the data by the status value and the difference between the
row numbers and return for each group the minimum and maximum ids, and the status
value, as the following query shows:

WITH C AS

(

 SELECT id, val,

 ROW_NUMBER() OVER(ORDER BY id)

 - ROW_NUMBER() OVER(ORDER BY val, id) AS grp

 FROM dbo.T3

)

SELECT MIN(id) AS mn, MAX(id) AS mx, val

FROM C

GROUP BY val, grp

ORDER BY mn;

C06626034.indd 386 2/13/2009 2:22:38 AM

 Chapter 6 Subqueries, Table Expressions, and Ranking Functions 387

Conclusion

 This chapter covered many subjects, all related to subqueries. I discussed scalar and list
subqueries, self-contained and correlated subqueries, table expressions, and ranking
calculations.

 It’s important to make mental notes of the fundamental techniques that I point out here
and throughout the book, such as generating copies using an auxiliary table of numbers,
 introducing a tiebreaker, fi nding points before gaps, returning the next or previous value,
 calculating a grouping factor, and so on. This builds your T-SQL vocabulary and enhances
your skills. As you progress with this approach, you’ll see that it becomes easier and easier
to identify fundamental elements in a problem. Having already resolved and polished
key techniques separately in a focused manner, you will use them naturally to solve
problems.

C06626034.indd 387 2/13/2009 2:22:38 AM

C06626034.indd 388 2/13/2009 2:22:38 AM

 389

Chapter 7

 Joins and Set Operations

 This chapter covers joins and set operations—their logical aspects as well as their physical
performance aspects. I’ll demonstrate practical applications for each type of join and set
 operation. I have used the ANSI SQL terminology to categorize the elements of the language
that I’ll cover here. Joins (CROSS, INNER, OUTER) refer to horizontal operations (loosely
speaking) between tables, while set operations (UNION, EXCEPT, INTERSECT) refer to vertical
operations between tables.

Joins

 Joins are operations that allow you to match rows between tables. I informally call these
operations horizontal because the virtual table resulting from a join operation between two
tables contains all columns from both tables.

 I’ll fi rst describe the different syntaxes for joins supported by the standard, and I’ll also
briefl y mention legacy proprietary elements in T-SQL. I’ll then describe the fundamental join
types and their applications followed by further examples of joins. I’ll also include a focused
 discussion on the internal processing of joins—namely, join algorithms.

 You’ll have a couple of chances to practice what you’ve learned by trying to solve a problem
that encompasses previously discussed aspects of joins.

Old Style vs. New Style

 T-SQL supports two different syntaxes for joins. A lot of confusion surrounds the two. When
do you use each? Which performs better? Which is standard, and which is proprietary? Will
the older syntax be deprecated soon? And so on. I hope this chapter will clear the fog.

 I’ll start by saying that the ANSI standard supports two different syntaxes for joins, and
 neither syntax is in the process of deprecation yet. The join elements of the older standard
are a complete part of the newer. This means that you can use either one without worrying
that it will not be supported by Microsoft SQL Server sometime soon. SQL Server will not
 remove support for implemented features that were not deprecated by the standard.

 The older of the two syntaxes was introduced in ANSI SQL-89. What distinguishes it from the
newer syntax is the use of commas to separate table names that appear in the FROM clause
and the absence of the JOIN keyword and the ON clause:

FROM T1, T2

WHERE where_predicate

C07626034.indd 389 2/13/2009 2:02:20 AM

390 Inside Microsoft SQL Server 2008: T-SQL Querying

 The ANSI SQL-89 syntax had support only for cross and inner join types. It did not have
 support for outer joins.

 The newer syntax was introduced in ANSI SQL-92, and what distinguishes it from the older
 syntax is the removal of the commas and the introduction of the JOIN keyword and the ON
clause:

FROM T1 <join_type> JOIN T2 ON <on_predicate>

WHERE where_predicate

 ANSI SQL-92 introduced support for outer joins, and this drove the need for a separation of
fi lters—the ON fi lter and the WHERE fi lter. I’ll explain this in detail in the outer joins section.

 Some people think that the comma-based syntax for joins in general is not standard, which is not
true. Part of the confusion has to do with the fact that in the past, T-SQL supported a proprietary
syntax for outer joins that was based on commas before SQL Server added support for the ANSI
SQL-92 syntax. In particular, I’m talking about the old-style proprietary outer join syntax, using
= and = for left outer and right outer joins, respectively. In addition to not being standard, this
syntax was problematic in the sense that in some cases the meaning of the query was ambiguous.
SQL Server deprecated this syntax, and it is supported only under a backward-compatibility fl ag.
In short, with cross and inner joins both the comma-based and JOIN keyword-based syntaxes are
standard, while with outer joins only the JOIN keyword–based syntax is standard.

 In the following section, I’ll discuss both syntaxes and explain why I recommend that you stick to
the ANSI SQL-92 join syntax even though the old-style syntax for cross and inner joins is standard.

Fundamental Join Types

 As I describe the different fundamental join types—cross, inner, and outer—keep in mind
the phases in logical query processing that I described in detail in Chapter 1, “Logical Query
Processing.” In particular, keep in mind the logical phases involved in join processing.

 Each fundamental join type takes place only between two tables. Even if you have more than
two tables in the FROM clause, the three logical query processing subphases of joins take
place between two tables at a time. Each join results in a virtual table, which in turn is joined
with the next table in the FROM clause. This process continues until all table operators in the
FROM clause are processed.

 The fundamental join types differ in the logical subphases that they apply. Cross join applies
only the fi rst (Cartesian product), inner join applies the fi rst and the second (Cartesian product
and ON fi lter), and outer join applies all three (Cartesian product, ON fi lter, add outer rows).

CROSS

 A cross join performs a Cartesian product between two tables. In other words, it returns
a row for each possible combination of a row from the left table and a row from the right

C07626034.indd 390 2/13/2009 2:02:21 AM

 Chapter 7 Joins and Set Operations 391

table. If the left table has n rows and the right table has m rows, a cross join returns a table
with n × m rows.

 Before I demonstrate practical applications of cross joins, I’ll start with a very simple example—a
plain cross.

 The following query produces all possible pairs of employees from the Employees table in
the InsideTSQL2008 database:

USE InsideTSQL2008;

SELECT E1.firstname, E1.lastname AS emp1,

 E2.firstname, E2.lastname AS emp2

FROM HR.Employees AS E1

 CROSS JOIN HR.Employees AS E2;

 Because the Employees table contains nine rows, the result set contains 81 rows.

 Here’s the ANSI SQL-89 syntax you would use for the same task:

SELECT E1.firstname, E1.lastname AS emp1,

 E2.firstname, E2.lastname AS emp2

FROM HR.Employees AS E1, HR.Employees AS E2;

 The optimizer produces the same plan for both the ANSI SQL-92 and the ANSI SQL-89
syntaxes, so you shouldn’t have any concerns about performance. For reasons that I will
explain later in the chapter, I recommend that you stick to the ANSI SQL-92 syntax. Now let’s
look at more sophisticated uses of cross joins.

 In Chapter 6, “Subqueries, Table Expressions, and Ranking Functions,” I presented a fundamental
technique to generate copies of rows. Recall that I used an auxiliary table of numbers (Nums) as
follows to generate the requested number of copies of each row:

SELECT . . .

FROM T1 CROSS JOIN Nums

WHERE n <= <num_of_copies>

 The preceding technique generates in the result set as many copies of each row in T1
as num_of_copies. As a practical example, suppose you need to fi ll an Orders table with
sample data for testing. You have a Customers table with sample customer information
and an Employees table with sample employee information. You want to generate, for each
 combination of a customer and an employee, an order for each day in January 2009.

 I will demonstrate this technique in the InsideTSQL2008 database. The Customers table
 contains 91 rows, the Employees table contains 9 rows, and for each customer-employee
combination, you need an order for each day in January 2009—that is, for 31 days. The result
set should contain 25,389 rows (91 × 9 × 31 = 25,389). Naturally, you want to store the result
set in a target table and generate an order ID for each order.

C07626034.indd 391 2/13/2009 2:02:21 AM

392 Inside Microsoft SQL Server 2008: T-SQL Querying

 You already have tables with customers and employees, but a table is missing—you need a
table to represent the days. You probably guessed already that the Nums table will assume
the role of the missing table:

SELECT custid, empid,

 DATEADD(day, n-1, '20090101') AS orderdate

FROM Sales.Customers

 CROSS JOIN HR.Employees

 CROSS JOIN dbo.Nums

WHERE n <= 31;

 You cross Customers, Employees, and Nums, fi ltering the fi rst 31 values of n from the Nums
table for the 31 days of the month. In the SELECT list, you calculate the specifi c target dates
by adding n – 1 days to the fi rst date of the month, January 1, 2009.

 The last missing element is the order ID. But you can easily generate it using the ROW_NUMBER
function.

 In practice, you’d probably want to encapsulate this logic in a stored procedure that accepts
the date range as input. Instead of using a literal for the number of days in the fi lter, you use
the following expression:

DATEDIFF(day, @fromdate, @todate) + 1

 Similarly, the DATEADD function in the SELECT list will refer to @fromdate instead of a literal
base date:

DATEADD(day, n-1, @fromdate) AS orderdate

 Here’s the code that you need to generate the test data and populate a target table:

IF OBJECT_ID('dbo.MyOrders') IS NOT NULL DROP TABLE dbo.MyOrders;

GO

DECLARE

 @fromdate AS DATE = '20090101',

 @todate AS DATE = '20090131';

WITH Orders

AS

(

 SELECT custid, empid,

 DATEADD(day, n-1, @fromdate) AS orderdate

 FROM Sales.Customers

 CROSS JOIN HR.Employees

 CROSS JOIN dbo.Nums

 WHERE n <= DATEDIFF(day, @fromdate, @todate) + 1

)

SELECT ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS orderid,

 custid, empid, orderdate

INTO dbo.MyOrders

FROM Orders;

C07626034.indd 392 2/13/2009 2:02:21 AM

 Chapter 7 Joins and Set Operations 393

Note the use of the expression (SELECT 0) in the ORDER BY clause of the ROW_NUMBER
function indicating that the order of assignment of row numbers doesn’t matter. If order
matters, specify the appropriate attributes that you need—for example, orderdate—in case
you want the row numbers to be assigned based on order date ordering.

When you’re done experimenting with this code, don’t forget to drop the MyOrders table:

DROP TABLE dbo.MyOrders;

Another application of cross joins allows you to improve performance of queries that
 apply calculations between row attributes and aggregates over rows. To demonstrate this
 fundamental technique, I’ll use a table called MyOrderValues that you create and populate
by running the following code in the InsideTSQL2008 database:

IF OBJECT_ID('dbo.MyOrderValues', 'U') IS NOT NULL DROP TABLE dbo.MyOrderValues;

GO

SELECT *

INTO dbo.MyOrderValues

FROM Sales.OrderValues;

ALTER TABLE dbo.MyOrderValues

 ADD CONSTRAINT PK_MyOrderValues PRIMARY KEY(orderid);

CREATE INDEX idx_val ON dbo.MyOrderValues(val);

The task at hand is to calculate for each order that order’s percentage of total value and the
difference between the order value and the average value for all orders. The intuitive way for
programmers to write calculations between row attributes and aggregates over rows is to
use subqueries. The query in Listing 7-1 demonstrates the subquery approach.

LISTING 7-1 Query obtaining aggregates with subqueries

SELECT orderid, custid, val,

 CAST(val / (SELECT SUM(val) FROM dbo.MyOrderValues) * 100.

 AS NUMERIC(5, 2)) AS pct,

 CAST(val - (SELECT AVG(val) FROM dbo.MyOrderValues)

 AS NUMERIC(12, 2)) AS diff

FROM dbo.MyOrderValues;

This query generates the following output:

orderid custid val pct diff

----------- ----------- ---------- --------- -------------

10248 85 440.00 0.03 -1085.05

10249 79 1863.40 0.15 338.35

10250 34 1552.60 0.12 27.55

10251 84 654.06 0.05 -870.99

SELECT orderid, custid, val,

 CAST(val / (SELECT SUM(val) FROM dbo.MyOrderValues) * 100.

 AS NUMERIC(5, 2)) AS pct,

 CAST(val - (SELECT AVG(val) FROM dbo.MyOrderValues)

 AS NUMERIC(12, 2)) AS diff

FROM dbo.MyOrderValues;

C07626034.indd 393 2/13/2009 2:02:21 AM

394 Inside Microsoft SQL Server 2008: T-SQL Querying

10252 76 3597.90 0.28 2072.85

10253 34 1444.80 0.11 -80.25

10254 14 556.62 0.04 -968.43

10255 68 2490.50 0.20 965.45

10256 88 517.80 0.04 -1007.25

10257 35 1119.90 0.09 -405.15

. . .

(830 row(s) affected)

 Examine this query’s execution plan, which is shown in Figure 7-1.

FIGURE 7-1 Execution plan for query in Listing 7-1

 Notice that the index I created on the val column is scanned twice—once to calculate the
sum and once to calculate the average. In other words, provided that you have an index
on the aggregated column, the index is scanned once for each subquery that returns an
 aggregate. If you don’t have an index containing the aggregated column, matters are even
worse: you’ll get a table scan for each subquery.

 This query can be optimized using a cross join. You can calculate all needed aggregates in
one query that requires only a single index or table scan. Such a query produces a single
 result row with all aggregates. You create a CTE defi ned by this query and cross it with the
base table. Now you have access to both attributes and aggregates. The solution query is
shown in Listing 7-2, and it produces the more optimal plan shown in Figure 7-2.

C07626034.indd 394 2/13/2009 2:02:21 AM

 Chapter 7 Joins and Set Operations 395

LISTING 7-2 Query obtaining aggregates with a cross join

WITH Aggs AS

(

 SELECT SUM(val) AS sumval, AVG(val) AS avgval

 FROM dbo.MyOrderValues

)

SELECT orderid, custid, val,

 CAST(val / sumval * 100. AS NUMERIC(5, 2)) AS pct,

 CAST(val - avgval AS NUMERIC(12, 2)) AS diff

FROM dbo.MyOrderValues

 CROSS JOIN Aggs;

FIGURE 7-2 Execution plan for the query in Listing 7-2

As you can see in the plan, the index on the val column is scanned only once, and both
 aggregates are calculated with the same scan.

In Chapter 8, “Aggregating and Pivoting Data,” I’ll demonstrate how to use the new OVER
clause to tackle similar problems.

When you’re done experimenting with this technique, run the following code for cleanup:

IF OBJECT_ID('dbo.MyOrderValues', 'U') IS NOT NULL DROP TABLE dbo.MyOrderValues;

INNER

Inner joins are used to match rows between two tables based on some criterion. Out of the
fi rst three logical query processing phases, inner joins apply the fi rst two—namely, Cartesian
product and ON fi lter. Neither phase adds outer rows. Consequently, if an INNER JOIN query
contains both an ON clause and a WHERE clause, logically they are applied one after the
other. With one exception, there’s no difference between specifying a logical expression in
the ON clause or in the WHERE clause of an INNER JOIN because no intermediate step adds
outer rows between the two.

WITH Aggs AS

(

 SELECT SUM(val) AS sumval, AVG(val) AS avgval

 FROM dbo.MyOrderValues

)

SELECT orderid, custid, val,

 CAST(val / sumval * 100. AS NUMERIC(5, 2)) AS pct,

 CAST(val - avgval AS NUMERIC(12, 2)) AS diff

FROM dbo.MyOrderValues

 CROSS JOIN Aggs;

C07626034.indd 395 2/13/2009 2:02:21 AM

396 Inside Microsoft SQL Server 2008: T-SQL Querying

 The one exception is when you specify GROUP BY ALL. Remember that GROUP BY ALL adds
back groups that were fi ltered out by the WHERE clause, but it does not add back groups
that were fi ltered out by the ON clause. Remember also that this is a nonstandard legacy
 feature that you should avoid using.

 For performance, when not using the GROUP BY ALL option, you typically get the same plan
regardless of where you place the fi lter expression. That’s because the optimizer is aware that
there’s no difference. I’m always cautious when saying such things related to optimization
choices because the process is so dynamic.

 For the two supported join syntaxes, using the ANSI SQL-92 syntax, you have more fl exibility
in choosing which clause you will use to specify a fi lter expression. Because logically it
makes no difference where you place your fi lters, and typically there’s also no performance
 difference, your guideline should be natural and intuitive writing. Write in a way that feels
more natural to you and to the programmers who need to maintain your code. For example,
to me a fi lter that matches attributes between the tables should appear in the ON clause,
while a fi lter on an attribute from only one table should appear in the WHERE clause. I’ll use
the following query to return orders placed by U.S. customers:

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C

 JOIN Sales.Orders AS O

 ON C.custid = O.custid

WHERE country = N'USA';

 Using the ANSI SQL-89 syntax, you have no choice but to specify all fi lter expressions in the
WHERE clause:

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C, Sales.Orders AS O

WHERE C.custid = O.custid

 AND country = N'USA';

 Remember that the discussion here is about inner joins; with outer joins, there are logical
differences between specifying a fi lter expression in the ON clause and specifying it in the
WHERE clause.

 Note the risk in using the ANSI SQL-89 syntax for inner joins: If you forget to specify the join
condition, unintentionally you get a cross join, as demonstrated in the following code:

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C, Sales.Orders AS O;

 In SQL Server Management Studio (SSMS), the query plan for a cross join includes a join
operator marked with a yellow warning symbol, and the pop-up details will say “No Join
Predicate” in the Warnings section. This warning is designed to alert you that you might have
forgotten to specify a join predicate.

C07626034.indd 396 2/13/2009 2:02:21 AM

 Chapter 7 Joins and Set Operations 397

 However, if you explicitly specify INNER JOIN when you write an inner join query, an ON
clause is required. If you forget to specify any join condition, the parser traps the error, and
the query is not run:

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C JOIN Sales.Orders AS O;

Msg 102, Level 15, State 1, Line 2

Incorrect syntax near ';'.

 The parser fi nds a semicolon after Sales.Orders AS O, even though it expects something else (an
ON clause or other options), so it generates an error saying that there’s incorrect syntax near ‘;’.

 Note If you have a composite join (a join based on multiple attributes), and you specify at least
one expression but forget the others, neither syntax will trap the error. Similarly, other logical
 errors won’t be trapped—for example, if you mistakenly type ON C.orderid = C.orderid.

 The ANSI SQL-89 syntax is more prone to mistakes such as forgetting to specify a join
 condition. You list all table names in the FROM clause separated by commas, and you AND all
join predicates in the WHERE clause—for example, FROM T1, T2, T3, T4 WHERE <predicate1>
AND <predicate2> AND <predicate3>. Therefore, it’s easier not to notice that you forgot one
of them. With the ANSI SQL-92 syntax it’s harder not to notice that you missed something even
before the parser catches the error. That’s because you normally express each join predicate
immediately after the right table in the join—for example, T1 JOIN T2 ON <predicate1> JOIN
T3 ON <predicate2> JOIN T4 ON <predicate3>.

 Let’s go back to cross joins. You might think that when you intend to write a cross join, using the
comma syntax is perfectly fi ne. However, I’d recommend sticking to the ANSI SQL-92 syntax for
several reasons. One reason is for the sake of consistency. Things can especially get awkward
when you start mixings different syntaxes in the same query. Another reason is that when
other programmers (or even you!) review your code after a while, how will they be able to tell
whether you intended to write a cross join or intended to write an inner join and forgot the join
 predicate? In short, it’s a best practice to use the ANSI SQL-92 syntax with all types of joins.

OUTER

 Outer joins are used to return matching rows from both tables based on some criterion,
 together with unmatched rows from the “preserved” table or tables.

 You identify preserved tables with the LEFT, RIGHT, or FULL keywords. LEFT marks the left
table as preserved, RIGHT marks the right table, and FULL marks both.

 Outer joins apply all three logical query processing phases—namely, Cartesian product, ON
fi lter, and adding outer rows. Outer rows added for rows from the preserved table with no
match have NULLs for the attributes of the nonpreserved table.

C07626034.indd 397 2/13/2009 2:02:21 AM

398 Inside Microsoft SQL Server 2008: T-SQL Querying

 The following query returns customers with their order IDs (just as an inner join with the
same ON clause would), but it also returns a row for each customer with no orders because
the keyword LEFT identifi es the Customers table as preserved:

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C

 LEFT OUTER JOIN Sales.Orders AS O

 ON C.custid = O.custid;

 The keyword OUTER is optional because the mention of any of the keywords LEFT, RIGHT, or
FULL implies an outer join. However, unlike inner joins, where most programmers typically
don’t specify the optional INNER keyword, most programmers (including me) typically do
specify the OUTER keyword. I guess it feels more natural.

 As I mentioned earlier, SQL Server 2008 supports the nonstandard proprietary syntax for outer
joins only under a backward-compatibility fl ag. If you still have legacy code with the proprietary
outer join syntax, it’s important to change it to use the standard syntax. Besides the fact that
the old syntax is nonstandard, it’s also ambiguous in some cases, as I will demonstrate shortly.
Also, starting with SQL Server 2008, only two backward-compatibility modes are supported. To
work with the proprietary outer join syntax you need to set the database compatibility mode to
80 (SQL Server 2000). SQL Server 2008 is the last version that still supports this mode. The next
major release of SQL Server will support only modes 100 (SQL Server 2008) and 90 (SQL Server
2005). This means that as of the next version of SQL Server, you won’t be able to run such
 legacy code—not even under a backward- compatibility fl ag.

 To demonstrate code with the proprietary outer join syntax, change the InsideTSQL2008
 database’s compatibility mode to 80 (SQL Server 2000):

ALTER DATABASE InsideTSQL2008 SET COMPATIBILITY_LEVEL = 80;

 Note Changing the compatibility mode of a database to an earlier version will prevent you from
using some of the newer language elements (for example, PIVOT, UNPIVOT, and so on). I’m just
changing the compatibility mode to demonstrate the code. Once I’m done, I’ll instruct you to
turn it back to 100 (SQL Server 2008).

 The old-style outer join was indicated in the WHERE clause, not the FROM clause. Instead of =, it
used *= to represent a left outer join and =* to represent a right outer join. There was no support
for a full outer join. For example, the following query returns customers with their order IDs and
customers with no orders:

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C, Sales.Orders AS O

WHERE C.custid *= O.custid;

C07626034.indd 398 2/13/2009 2:02:21 AM

 Chapter 7 Joins and Set Operations 399

 This syntax is very problematic because of the lack of separation between an ON fi lter and a
WHERE fi lter. For example, if you want to return only customers with no orders, using ANSI
syntax it’s very simple:

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C

 LEFT OUTER JOIN Sales.Orders AS O

 ON C.custid = O.custid

WHERE O.custid IS NULL;

 You get customers 22 and 57 back. The query initially applies the fi rst three steps in logical
query processing, yielding an intermediate virtual table containing customers with their orders
(inner rows) and also customers with no orders (outer rows). For the outer rows, the attributes
from the Orders table are NULL. The WHERE fi lter is subsequently applied to this intermediate
result. Only the rows with a NULL in the join column from the nonpreserved side, which
 represent the customers with no orders, satisfy the condition in the WHERE clause.

 If you attempt to write the query using the old-style syntax, you get surprising results:

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C, Sales.Orders AS O

WHERE C.custid *= O.custid

 AND O.custid IS NULL;

 The query returns all 91 customers. Because there’s no distinction between an ON clause
and a WHERE clause, I specifi ed both expressions in the WHERE clause separated by the
logical operator AND. You have no control over which part of the fi lter takes place before
adding the outer rows and which part takes place afterwards. That’s at the sole discretion of
SQL Server. By looking at the result, you can guess what SQL Server did. Logically, it applied
the whole expression before adding outer rows. Obviously, there’s no row in the Cartesian
 product for which both the predicate C.custid = O.custid and the predicate O.custid IS
NULL are TRUE. So the second phase in logical query processing yields an empty set. The
third phase adds outer rows for rows from the preserved table (Customers) with no match.
Because none of the rows matched the join condition, all customers are added back as outer
rows. That’s why this query returned all 91 customers.

 Important Keep in mind that I demonstrated the older proprietary syntax just to make
you aware of its issues in case you still have legacy code using it. It is of course strongly
 recommended that you refrain from using it and revise all code that does use it to the ANSI
 syntax. In short, don’t try this at home!

 When you’re done experimenting with the old-style syntax, change the database’s
 compatibility level back to 100 (SQL Server 2008):

ALTER DATABASE InsideTSQL2008 SET COMPATIBILITY_LEVEL = 100;

C07626034.indd 399 2/13/2009 2:02:21 AM

400 Inside Microsoft SQL Server 2008: T-SQL Querying

 In the previous chapter, I provided a solution using subqueries for the minimum missing
value problem. As a reminder, you begin with the table T1, which you create and populate by
running the following code:

USE tempdb;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

 keycol INT NOT NULL PRIMARY KEY,

 datacol VARCHAR(10) NOT NULL

);

GO

INSERT INTO dbo.T1(keycol, datacol) VALUES

 (1, 'e'),

 (2, 'f'),

 (3, 'a'),

 (4, 'b'),

 (6, 'c'),

 (7, 'd');

 Your task is to fi nd the minimum missing key (in this case, 5) assuming the key starts at 1.
I provided the following solution based on subqueries:

SELECT MIN(A.keycol) + 1

FROM dbo.T1 AS A

WHERE NOT EXISTS

 (SELECT * FROM dbo.T1 AS B

 WHERE B.keycol = A.keycol + 1);

 Remember that I provided a CASE expression that returns the value 1 if it is missing;
 otherwise, it returns the result of the preceding query. You can solve the same problem—
returning the minimum missing key when 1 exists in the table—by using the following outer
join query between two instances of T1:

SELECT MIN(A.keycol) + 1

FROM dbo.T1 AS A

 LEFT OUTER JOIN dbo.T1 AS B

 ON B.keycol = A.keycol + 1

WHERE B.keycol IS NULL;

 The fi rst step in the solution is applying the left outer join between two instances of T1,
called A and B, based on the join condition B.keycol = A.keycol + 1. This step involves the
fi rst three logical query processing phases I described in Chapter 1 (Cartesian product, ON
fi lter, and adding outer rows). For now, ignore the WHERE fi lter and the SELECT clause. The
join condition matches each row in A with a row from B whose key value is 1 greater than A’s
key value. Because it’s an outer join, rows from A that have no match in B are added as outer
rows, producing the virtual table shown in Table 7-1.

 Note that the outer rows represent the points before the gaps because the next key value is
missing. The second step in the solution is to isolate only the points before the gaps; the WHERE
clause fi lters only rows where B.keycol is NULL, producing the virtual table shown in Table 7-2.

C07626034.indd 400 2/13/2009 2:02:21 AM

 Chapter 7 Joins and Set Operations 401

TABLE 7-1 Output of Step 1 in Minimum Missing Value Solution

A.keycol A.datacol B.keycol B.datacol

1 e 2 f

2 f 3 a

3 a 4 b

4 b NULL NULL

6 c 7 d

7 d NULL NULL

TABLE 7-2 Output of Step 2 in Minimum Missing Value Solution

A.keycol A.datacol B.keycol B.datacol

4 b NULL NULL

7 d NULL NULL

Finally, the last step in the solution isolates the minimum A.keycol value, which is the minimum
key value before a gap, and adds 1. The result is the requested minimum missing value.

The optimizer generates very similar plans for both queries, with identical costs. So you can
use the solution that you feel more comfortable with. Some people feel more comfortable
with joins, while others are more comfortable with subqueries, very much like some people
feel more comfortable with 1-based offsets, while others are more comfortable with 0-based
offsets. Some people are subquery-type people, and some are join-type people, and I guess
I qualify as a subquery type. To me, the solution based on subqueries seems more intuitive.

Nonsupported Join Types

ANSI SQL supports a couple of join types that are not supported by T-SQL—natural join and
union join. I haven’t found practical applications for a union join, so I won’t bother to describe
or demonstrate it in this book.

A natural join is an inner join where the join condition is implicitly based on equating columns
that share the same names in both tables. The syntax for a natural join, not surprisingly, is
NATURAL JOIN. For example, the following two queries are logically equivalent, but only the
second is recognized by SQL Server:

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C NATURAL JOIN Sales.Orders AS O;

and

USE InsideTSQL2008;

SELECT C.custid, companyname, orderid

FROM Sales.Customers AS C

 JOIN Sales.Orders AS O

 ON O.custid = O.custid;

A.keycol A.datacol B.keycol B.datacol

A.keycol A.datacol B.keycol B.datacol

C07626034.indd 401 2/13/2009 2:02:21 AM

402 Inside Microsoft SQL Server 2008: T-SQL Querying

Further Examples of Joins

 So far, I have demonstrated fundamental join types. You can categorize joins in ways other
than by their fundamental type. In this section, I’ll describe self joins, non-equi-joins, queries
with multiple joins, and semi joins.

Self Joins

 A self join is simply a join between two instances of the same table. I’ve already shown
 examples of self joins without classifying them explicitly as such.

 Here’s a simple example of a self join between two instances of the Employees table, one
representing employees (E) and the other representing managers (M):

SELECT E.firstname, E.lastname AS emp,

 M.firstname, M.lastname AS mgr

FROM HR.Employees AS E

 LEFT OUTER JOIN HR.Employees AS M

 ON E.mgrid = M.empid;

 The query produces the following output, where the employees’ names are returned along
with their managers’ names:

firstname emp firstname mgr

------------ -------------------- ------------ --------------------

Sara Davis NULL NULL

Don Funk Sara Davis

Judy Lew Don Funk

Yael Peled Judy Lew

Sven Buck Don Funk

Paul Suurs Sven Buck

Russell King Sven Buck

Maria Cameron Judy Lew

Zoya Dolgopyatova Sven Buck

 I used a left outer join to include Sara—the CEO—in the result. She has a NULL in the mgrid
column because she has no manager.

Note When joining two instances of the same table, you must alias at least one of the tables.
This provides a unique name or alias to each instance to prevent ambiguity in the result column
names and in the column names in the intermediate virtual tables.

 Equi-joins are joins with a join condition based on an equality operator. Non-equi-joins have
operators other than equality in their join condition.

 For example, suppose that you need to generate all pairs of two different employees from an
Employees table. Assume that currently the table contains employee IDs A, B, and C. A cross
join would generate the following nine pairs:

 A, A

 A, B

C07626034.indd 402 2/13/2009 2:02:21 AM

 Chapter 7 Joins and Set Operations 403

 A, C

 B, A

 B, B

 B, C

 C, A

 C, B

 C, C

 Obviously, a “self” pair (x, x) that has the same employee ID twice is not a pair of two different
employees. Also, for each pair (x, y), you will fi nd its “mirror” pair (y, x) in the result. You need
to return only one of the two. To take care of both issues, you can specify a join condition
that fi lters pairs where the key from the left table is smaller than the key from the right table.
Pairs where the same employee appears twice are removed. Also, one of the mirror pairs (x, y)
and (y, x) is removed because only one has a left key smaller than the right key.

 The following query returns the required result, without mirror pairs and without self pairs:

SELECT E1.empid, E1.lastname, E1.firstname,

 E2.empid, E2.lastname, E2.firstname

FROM HR.Employees AS E1

 JOIN HR.Employees AS E2

 ON E1.empid < E2.empid;

 If you need to produce unique triples, simply join to a third instance of the table and have
the join predicate verify that the key of the second instance is smaller than the key of the
third instance. In a similar manner you can add a fourth instance, a fi fth instance, and so on.

 You can also calculate row numbers using a non-equi-join. Of course, when you need to
 calculate row numbers, the most effi cient way to do it is with the ROW_NUMBER function. I’ll
explain how to calculate row numbers with a non-equi-join for illustration purposes and also
because the fundamental technique that I will use is applicable to other types of calculations—
for example, running aggregates, which have no built-in functions. For example, the following
query calculates row numbers for orders from the Orders table, based on increasing orderid:

SELECT O1.orderid, O1.custid, O1.empid, COUNT(*) AS rn

FROM Sales.Orders AS O1

 JOIN Sales.Orders AS O2

 ON O2.orderid <= O1.orderid

GROUP BY O1.orderid, O1.custid, O1.empid;

 You can fi nd similarities between this solution and the solution I showed in the previous
chapter using subqueries. The join condition here contains the same logical expression
I used in a subquery before. After applying the fi rst two phases in logical query processing

C07626034.indd 403 2/13/2009 2:02:21 AM

404 Inside Microsoft SQL Server 2008: T-SQL Querying

(Cartesian product and ON fi lter), each order from O1 is matched with all orders from O2
that have a smaller or equal orderid. This means that a row from O1 with a target row number
n is matched with n rows from O2. Each row from O1 is duplicated in the result of the join
n times. If this is confusing, bear with me as I try to demonstrate this logic with an example.
Say you have orders with the following IDs (in order): x, y, and z. The result of the join is the
following:

 x, x

 y, x

 y, y

 z, x

 z, y

 z, z

 The join created duplicates out of each row from O1—as many as the target row number.
The next step is to collapse each group of rows back to one row, returning the count of rows
as the row number:

 x, 1

 y, 2

 z, 3

 Note that you must include in the GROUP BY clause all attributes from O1 that you want
to return. Remember that in an aggregate query, an attribute that you want to return in
the SELECT list must appear in the GROUP BY clause. This query suffers from the same N2
 performance issues I described with the subquery solution. This query also demonstrates
an expand-collapse technique, where the join achieves the expansion of the number of rows
by generating copies, and the grouping achieves the collapsing of the rows allowing you to
 calculate aggregates.

 Being a subquery-type person, I fi nd the subquery technique more appealing because
it’s so much more intuitive to me. I fi nd the expand-collapse technique to be artifi cial and
nonintuitive.

 Remember that in both solutions to generating row numbers you used an aggregate
 function—a count of rows. You can use very similar logic to calculate other aggregates,
 either with a subquery or with a join (the expand-collapse technique). I will elaborate on
this technique in Chapter 8 in the “Running Aggregations” section, where I’ll also describe
 scenarios in which I’d still consider using the expand-collapse technique even though I fi nd it
less intuitive than the subquery technique.

C07626034.indd 404 2/13/2009 2:02:21 AM

 Chapter 7 Joins and Set Operations 405

Multiple Joins

A query with multiple joins involves three or more tables. In this section, I’ll describe both
physical and logical aspects of multi-join queries.

Controlling the Physical Join Evaluation Order In a multi-join query with no outer joins,
you can rearrange the order in which the tables are specifi ed without affecting the result.
The optimizer is aware of that and determines the order in which it accesses the tables based
on cost estimates. In the query’s execution plan, you might fi nd that the optimizer chose to
 access the tables in a different order than the one you specifi ed in the query.

For example, the query in Listing 7-3 returns customer company name and supplier company
name where the supplier supplied products to the customer:

LISTING 7-3 Multi-join query

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

 JOIN Sales.Orders AS O

 ON O.custid = C.custid

 JOIN Sales.OrderDetails AS OD

 ON OD.orderid = O.orderid

 JOIN Production.Products AS P

 ON P.productid = OD.productid

 JOIN Production.Suppliers AS S

 ON S.supplierid = P.supplierid;

Examine the execution plan shown in Figure 7-3, and you will fi nd that the tables are
 accessed physically in a different order than the logical order specifi ed in the query.

FIGURE 7-3 Execution plan for the query in Listing 7-3

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

 JOIN Sales.Orders AS O

 ON O.custid = C.custid

 JOIN Sales.OrderDetails AS OD

 ON OD.orderid = O.orderid

 JOIN Production.Products AS P

 ON P.productid = OD.productid

 JOIN Production.Suppliers AS S

 ON S.supplierid = P.supplierid;

C07626034.indd 405 2/13/2009 2:02:21 AM

406 Inside Microsoft SQL Server 2008: T-SQL Querying

 If you suspect that a plan that accesses the tables in a different order than the one chosen
by the optimizer will be more effi cient, you can force the order of join processing by using
one of two options. You can use the FORCE ORDER hint as shown in Listing 7-4, forcing the
 optimizer to process the joins physically in the same order as the logical one:

LISTING 7-4 Multi-join query with the FORCE ORDER hint

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

 JOIN Sales.Orders AS O

 ON O.custid = C.custid

 JOIN Sales.OrderDetails AS OD

 ON OD.orderid = O.orderid

 JOIN Production.Products AS P

 ON P.productid = OD.productid

 JOIN Production.Suppliers AS S

 ON S.supplierid = P.supplierid

OPTION (FORCE ORDER);

This query generates the execution plan shown in Figure 7-4, where you can see that tables
are accessed in the order they appear in the query.

FIGURE 7-4 Execution plan for the query in Listing 7-4

Another option to force the order of join processing is to execute the statement SET FORCEPLAN
ON. This will affect all queries in the session.

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

 JOIN Sales.Orders AS O

 ON O.custid = C.custid

 JOIN Sales.OrderDetails AS OD

 ON OD.orderid = O.orderid

 JOIN Production.Products AS P

 ON P.productid = OD.productid

 JOIN Production.Suppliers AS S

 ON S.supplierid = P.supplierid

OPTION (FORCE ORDER);

C07626034.indd 406 2/13/2009 2:02:22 AM

 Chapter 7 Joins and Set Operations 407

Hints

 Note that in general, using hints to override the optimizer’s choice of plan should be
the last resort when dealing with performance issues. A hint is not a kind gesture:
you’re forcing the optimizer to use a particular route in optimization. If you introduce
a hint in production code, that aspect of the plan becomes static (for example, the join
ordering, the use of a particular index, or the use of a certain join algorithm). Hints
prevent the optimizer from making dynamic choices to accommodate changes in data
volume and distribution.

 There are, nonetheless, several reasons the optimizer might not produce an optimal
plan, and when this occurs, a hint can improve performance.

 First, the optimizer doesn’t necessarily generate all possible execution plans for a query.
If it did, the optimization phase could simply take too long. The optimizer calculates a
threshold for optimization based on the input table sizes, and it stops optimizing when
that threshold is reached, yielding the plan with the lowest cost among the ones it did
generate. This means that you won’t necessarily get the optimal plan.

 Second, optimization in many cases is based on data selectivity and density information,
especially with regard to the choice of indexes and access methods. If statistics are not up
to date or aren’t based on a suffi cient sample size, the optimizer might make inaccurate
estimates.

 Third, the key distribution histograms that SQL Server maintains for indexed columns
(and, in some cases, nonindexed ones as well) have at most 200 steps. With many join
 conditions and fi lters, the difference between the selectivity or density information that
the optimizer estimates and the actual information can be substantial in some cases,
leading to ineffi cient plans. Each selectivity or join density estimate has some level of
inaccuracy; the more tables you have in the query and the more join conditions and
fi lters, the more inaccurate the estimates are likely to become. And inaccurate estimates
can lead to suboptimal choices. One way to check whether the estimates are inaccurate
is to compare the estimated and the actual number of rows coming out of the various
 operators in the execution plan.

 Keep in mind, though, that while you’re never guaranteed to get the optimal plan, the
optimizer generally does well, and you should do everything in your power to help it
succeed. To do this and avoid hints in production code, for example, make sure that
statistics are up to date, increase the sampling rate if needed, and in some cases revise
the query to help the optimizer make better choices. Use a hint only as a last resort if
all other means fail. And if you do end up using a hint, revisit the code from time to
time after doing more research or opening a support case with Microsoft.

C07626034.indd 407 2/13/2009 2:02:22 AM

408 Inside Microsoft SQL Server 2008: T-SQL Querying

Controlling the Logical Join Evaluation Order In some cases you might want to be able to
control the logical order of join processing beyond the observable order in which the tables
are specifi ed in the FROM clause. For example, consider the previous request to return all
pairs of customer company name and supplier company name, where the supplier supplied
products to the customer. Suppose you were also asked to return customers that made
no orders. By intuition, you’d probably make the following attempt, using a left outer join
 between Customers and Orders:

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

 LEFT OUTER JOIN Sales.Orders AS O

 ON O.custid = C.custid

 JOIN Sales.OrderDetails AS OD

 ON OD.orderid = O.orderid

 JOIN Production.Products AS P

 ON P.productid = OD.productid

 JOIN Production.Suppliers AS S

 ON S.supplierid = P.supplierid;

 The previous query returned 1,236 pairs of customer-supplier, and you expected this query
to return 1,238 rows (because two customers made no orders). However, this query returns
the same result set as the previous one without the outer customers. Remember that the fi rst
join takes place only between the fi rst two tables (Customers and Orders), applying the fi rst
three phases of logical query processing, and results in a virtual table. The resulting virtual
table is then joined with the third table (OrderDetails) and so on.

 The fi rst join did, at the logical level, generate outer rows for customers with no orders, but
the orderid in those outer rows was NULL, of course. The second join—between the result
virtual table and OrderDetails—removed those outer rows because an equi-join will never
fi nd a match based on a comparison to a NULL. In fact, in terms of physical processing,
the optimizer realizes that the second join nullifi es the outer part of the outer joins, and
 therefore it doesn’t even bother to process it as an outer join. If you look at the plan for this
query, you can see that the plan processed this join as an inner join. In general, when a left
outer join is followed by an inner join or a right outer join and the join predicate compares
attributes from the nonpreserved part of the join with attributes from the right table, the left
outer join gets nullifi ed.

 You have several ways to make sure that those outer customers will not disappear. One
technique is to use a left outer join in all joins, even though logically you want inner joins
 between Orders, OrderDetails, Products, and Suppliers:

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

 LEFT OUTER JOIN Sales.Orders AS O

 ON O.custid = C.custid

 LEFT OUTER JOIN Sales.OrderDetails AS OD

 ON OD.orderid = O.orderid

C07626034.indd 408 2/13/2009 2:02:22 AM

 Chapter 7 Joins and Set Operations 409

 LEFT OUTER JOIN Production.Products AS P

 ON P.productid = OD.productid

 LEFT OUTER JOIN Production.Suppliers AS S

 ON S.supplierid = P.supplierid;

 The left outer joins keep the outer customers in the intermediate virtual tables. This query
correctly produces 1,238 rows, including the two customers that made no orders. However,
if you had orders with no related order details, order details with no related products, or
 products with no related suppliers, this query would have produced incorrect results. That is,
you would have received result rows that were unmatched by several join conditions when
you wanted only the unmatched rows from the fi rst join condition. Also, remember that
the optimizer cannot apply join ordering optimization with outer joins—those have to be
 processed in specifi ed order, so this technique might hurt optimization.

 Another option is to make sure the join with the Customers table is logically last. This can
be achieved by using inner joins between all other tables and fi nally a right outer join with
Customers:

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Orders AS O

 JOIN Sales.OrderDetails AS OD

 ON OD.orderid = O.orderid

 JOIN Production.Products AS P

 ON P.productid = OD.productid

 JOIN Production.Suppliers AS S

 ON S.supplierid = P.supplierid

 RIGHT OUTER JOIN Sales.Customers AS C

 ON O.custid = C.custid;

 This scenario was fairly simple, but in cases where you mix different types of joins—not
to mention other table operators (APPLY, PIVOT, UNPIVOT)—it might not be that simple.
Furthermore, using left outer joins all along the way is very artifi cial. It’s more intuitive to
think of the query as a single left outer join, where the left table is the Customers table and
the right table is the result of inner joins between all the other tables. Both ANSI SQL and
T-SQL allow you to control the logical order of join processing:

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

 LEFT OUTER JOIN

 (Sales.Orders AS O

 JOIN Sales.OrderDetails AS OD

 ON OD.orderid = O.orderid

 JOIN Production.Products AS P

 ON P.productid = OD.productid

 JOIN Production.Suppliers AS S

 ON S.supplierid = P.supplierid)

 ON O.custid = C.custid;

 Technically, the parentheses are ignored here, but I recommend you use them because they
will help you write the query correctly. Using parentheses caused you to change another

C07626034.indd 409 2/13/2009 2:02:22 AM

410 Inside Microsoft SQL Server 2008: T-SQL Querying

aspect of the query, which is the one that the language really uses to determine the logical
order of processing. If you haven’t guessed yet, it’s the ON clause order. Specifying the ON
clause ON O.custid = C.custid last causes the other joins to be logically processed fi rst; the
left outer join occurs logically between Customers and the inner join of the rest of the tables.
You could write the query without parentheses, and it would mean the same thing:

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

 LEFT OUTER JOIN

 Sales.Orders AS O

 JOIN Sales.OrderDetails AS OD

 ON OD.orderid = O.orderid

 JOIN Production.Products AS P

 ON P.productid = OD.productid

 JOIN Production.Suppliers AS S

 ON S.supplierid = P.supplierid

 ON O.custid = C.custid;

 Other variations that specify the ON clause that refers to C.custid last include the following two:

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

 LEFT OUTER JOIN Sales.Orders AS O

 JOIN Production.Products AS P

 JOIN Sales.OrderDetails AS OD

 ON P.productid = OD.productid

 ON OD.orderid = O.orderid

 JOIN Production.Suppliers AS S

 ON S.supplierid = P.supplierid

 ON O.custid = C.custid;

SELECT DISTINCT C.companyname AS customer, S.companyname AS supplier

FROM Sales.Customers AS C

 LEFT OUTER JOIN Sales.Orders AS O

 JOIN Sales.OrderDetails AS OD

 JOIN Production.Products AS P

 JOIN Production.Suppliers AS S

 ON S.supplierid = P.supplierid

 ON P.productid = OD.productid

 ON OD.orderid = O.orderid

 ON O.custid = C.custid;

 The obvious disadvantage to not using parentheses is a decrease in the readability and clarity
of code. Without parentheses, the queries are far from intuitive. But we have another issue, too.

 It’s important to note that you cannot play with the ON clause’s order any way you’d like.
There’s a certain relationship that must be maintained between the order of the specifi ed
tables and the order of the specifi ed ON clauses for the query to be valid. The relationship
is called a chiastic relationship. A chiastic relationship is neither unique to SQL nor unique to
 computer science; rather, it appears in many fi elds, including poetry, linguistics, mathematics,
and others. In an ordered series of items, this relationship correlates the fi rst item with the last,
the second with the next to last, and so on. For example, palindromes such as “never odd or

C07626034.indd 410 2/13/2009 2:02:22 AM

 Chapter 7 Joins and Set Operations 411

even” have a chiastic relationship between the letters. As an example of a chiastic relationship
in mathematics, recall the arithmetic sequence I described in the last chapter: 1, 2, 3, . . ., n. To
 calculate the sum of the elements, you make n/2 pairs based on a chiastic relationship (1 + n, 2
+ n – 1, 3 + n – 2, and so on). The sum of each pair is always 1 + n; therefore, the total sum of
the arithmetic sequence is (1 + n) * n / 2 = (n + n2) / 2.

Similarly, the relationship between the tables specifi ed in the FROM clause and the ON
clauses must be chiastic for the query to be valid. That is, the fi rst ON clause can refer only
to the two tables immediately above it. The second ON clause can refer to the previously
referenced tables and to an additional one right above them and so on. Figure 7-5 illustrates
the chiastic relationship maintained in the last query. The code in the fi gure was slightly
 rearranged for readability.

SELECT DISTINCT

C.companyname AS customer,

S.companyname AS supplier

Sales.Customers AS C LEFT OUTER JOIN

Sales.Orders JOIN

FROM

JOIN

JOIN

JOIN

Sales.OrderDetails

Production.Products

Production.Suppliers

= P.supplierid

ON P.productid

ON OD.OrderID

ON O.custid

= OD.productid

= O.orderid

= C.custid;

AS OD

AS O

AS P

AS S

ON S.supplierid

FIGURE 7-5 Chiastic relationship in a multi-join query

 Without using parentheses, the queries are not very readable, and you need to be aware of
the chiastic relationship in order to write a valid query. Conversely, if you do use parentheses,
the queries are more readable and intuitive, and you don’t need to concern yourself with
 chiastic relationships because parentheses force you to write correctly.

Bushy Plans Besides impacting logical join ordering, the ability to change the order of the
ON clauses reliably affects optimization in ways that the optimizer alone does not consider. To
demonstrate this capability, fi rst run the following code to create the tables T1, T2, T3, and T4:

USE tempdb;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

IF OBJECT_ID('dbo.T2', 'U') IS NOT NULL DROP TABLE dbo.T2;

IF OBJECT_ID('dbo.T3', 'U') IS NOT NULL DROP TABLE dbo.T3;

IF OBJECT_ID('dbo.T4', 'U') IS NOT NULL DROP TABLE dbo.T4;

GO

C07626034.indd 411 2/13/2009 2:02:22 AM

412 Inside Microsoft SQL Server 2008: T-SQL Querying

CREATE TABLE dbo.T1(a INT, b INT, c INT, v1 INT);

CREATE TABLE dbo.T2(b INT, v2 INT);

CREATE TABLE dbo.T3(c INT, v3 INT);

CREATE TABLE dbo.T4(d INT, c INT, v4 INT);

GO

 When you write joins in a traditional manner—namely, each joined table is immediately
 followed by the join predicate (for example, T1 JOIN T2 ON <predicate1> JOIN T3 ON
<predicate2> JOIN T4 ON <predicate3>)—the optimizer considers only certain plan tree
 layouts. The normal layout is always going to have a join between two base inputs (base
meaning not a result of a join), then a join between the result of a previous join and another
base input, and so on. The optimizer can rearrange the order in which the tables are accessed
and can determine whether the base input will be the outer or the inner input of the join,
but the optimizer will always consider this kind of tree layout. For example, consider the
 following query and examine its execution plan, shown in Figure 7-6:

SELECT *

FROM dbo.T1

 JOIN dbo.T2

 ON T2.b = T1.b

 JOIN dbo.T3

 ON T3.c = T1.c

 JOIN dbo.T4

 ON T4.c = T3.c;

FIGURE 7-6 Query plan for four-table join

 This particular tree layout is known as a right deep tree, where the result of each join is used
as the inner input to the next join. A left deep tree would be one where the result of each
join is used as the outer input to the next join. Notice that besides one join that naturally has
to take place between two base inputs, all other joins take place between a base input and
a result of a join. None of the joins takes place between two results of joins. Unless explicitly
 instructed, the optimizer does not consider what the members of the SQL Server engine

C07626034.indd 412 2/13/2009 2:02:22 AM

 Chapter 7 Joins and Set Operations 413

team refer to as a bushy tree layout. A bushy plan is one where a join operates on two results
of joins as opposed to always having at least one base input. Because the optimizer normally
does not consider such plans unless instructed, in some cases you might be able to gain
 performance improvements by forcing a bushy plan. One example that comes to mind is
when each of two different joins can gain signifi cant fi ltering because of the join itself, and it
would make sense to perform each of those joins fi rst and then join their results.

 To force a bushy plan you need to rearrange the ON clauses and use the FORCE ORDER hint.
For example, the following query forces a join between T1 and T2 and between T3 and T4
and then a join between their results:

SELECT *

FROM dbo.T1

 JOIN dbo.T2

 ON T2.b = T1.b

 JOIN dbo.T3

 JOIN dbo.T4

 ON T4.c = T3.c

 ON T3.c = T1.c

OPTION(FORCE ORDER);

 You might fi nd this query a bit hard to follow. As I mentioned earlier, you can improve the
clarity of the code by using parentheses and indentation as the following query shows:

SELECT *

FROM (dbo.T1 JOIN dbo.T2 ON T2.b = T1.b)

 JOIN (dbo.T3 JOIN dbo.T4 ON T4.c = T3.c)

 ON T3.c = T1.c

OPTION(FORCE ORDER);

 Now it’s much easier to see the “bushy” layout that is forced. Figure 7-7 shows the graphical
execution plan for this query.

FIGURE 7-7 Bushy plan

C07626034.indd 413 2/13/2009 2:02:22 AM

414 Inside Microsoft SQL Server 2008: T-SQL Querying

 Another way to get bushy plans is to use table expressions like so:

WITH J1 AS

(

 SELECT T1.a AS T1a, T1.b AS T1b, T1.c, T1.v1, T2.b AS T2b, T2.v2

 FROM dbo.T1 JOIN dbo.T2

 ON T2.b = T1.b

),

J2 AS

(

 SELECT T3.c AS T3c, T3.v3, T4.d, T4.c AS T4c, T4.v4

 FROM dbo.T3 JOIN dbo.T4

 ON T4.c = T3.c

)

SELECT *

FROM J1 JOIN J2

 ON J2.T3c = J1.c

OPTION(FORCE ORDER);

 Compared to the previous options, this technique requires more code because you need to
express the SELECT lists of the queries defi ning the table expressions.

 This optimization technique is interesting to experiment with because the optimizer doesn’t
consider it normally.

 When you’re done, run the following code for cleanup:

USE tempdb;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

IF OBJECT_ID('dbo.T2', 'U') IS NOT NULL DROP TABLE dbo.T2;

IF OBJECT_ID('dbo.T3', 'U') IS NOT NULL DROP TABLE dbo.T3;

IF OBJECT_ID('dbo.T4', 'U') IS NOT NULL DROP TABLE dbo.T4;

Semi Joins

 Semi joins are joins that return rows from one table based on the existence of related rows in
the other table. If you return attributes from the left table, the join is called a left semi join. If
you return attributes from the right table, it’s called a right semi join.

 You can achieve a semi join in several ways: using inner joins, the EXISTS or IN predicate with
subqueries, and the INTERSECT set operation (which I’ll demonstrate later in the chapter).
Using an inner join, you select attributes from only one of the tables. If that table is in the
one side of a one-to-many join, you also apply DISTINCT. For example, the following query
returns customers from Spain that made orders:

USE InsideTSQL2008;

SELECT DISTINCT C.custid, C.companyname

FROM Sales.Customers AS C

C07626034.indd 414 2/13/2009 2:02:22 AM

 Chapter 7 Joins and Set Operations 415

 JOIN Sales.Orders AS O

 ON O.custid = C.custid

WHERE country = N'Spain';

 You can also use the EXISTS predicate as follows:

SELECT custid, companyname

FROM Sales.Customers AS C

WHERE country = N'Spain'

 AND EXISTS

 (SELECT * FROM Sales.Orders AS O

 WHERE O.custid = C.custid);

 If you’re wondering about the performance difference between the two, in this case the
 optimizer generates an identical plan for both. This plan is shown in Figure 7-8.

FIGURE 7-8 Execution plan for a left semi join

 When the optimizer identifi es the join as a semi join, this is typically a good sign. The
 optimizer knows that per each row from one side, it needs to check only whether at least one
matching row exists in the other side as opposed to actually processing all matching rows.

 The inverse of a semi join is an anti-semi join, where you’re looking for rows in one table
based on their nonexistence in the other. You can achieve an anti-semi join (left or right)
 using an outer join, fi ltering only outer rows, using the NOT EXISTS or NOT IN predicates
with subqueries, and with the EXCEPT set operation. For example, the following query returns
customers from Spain that made no orders. The anti-semi join is achieved using an outer join:

SELECT C.custid, C.companyname

FROM Sales.Customers AS C

C07626034.indd 415 2/13/2009 2:02:22 AM

416 Inside Microsoft SQL Server 2008: T-SQL Querying

 LEFT OUTER JOIN Sales.Orders AS O

 ON O.custid = C.custid

WHERE country = N'Spain'

 AND O.custid IS NULL;

 You can also use the NOT EXISTS predicate as follows:

SELECT custid, companyname

FROM Sales.Customers AS C

WHERE country = N'Spain'

 AND NOT EXISTS

 (SELECT * FROM Sales.Orders AS O

 WHERE O.custid = C.custid);

 As you can see in the execution plans shown in Figure 7-9 for the two query variations, the
solution using the NOT EXISTS predicate is estimated to perform better.

FIGURE 7-9 Execution plan for a left anti-semi join

 The plan for the outer join solution shows that all orders for customers from Spain were actually
processed. Let c equal the number of customers from Spain and o equal the average number of
orders per customer. You get c × o orders accessed. Then only the outer rows are fi ltered.

 The plan for the NOT EXISTS solution is more effi cient. Like the plan for the LEFT OUTER
JOIN solution, this plan performs a seek within the index on Orders.custid for each customer.
However, the NOT EXISTS plan checks only whether a row with that customer ID was found
(shown by the TOP operator), while the plan for the outer join actually scans all index rows
for each customer. Note that the tables in our sample database are very small. With more
realistic table sizes the optimizer may come up with different plans, so make sure you don’t
draw any conclusions from this example alone.

C07626034.indd 416 2/13/2009 2:02:22 AM

 Chapter 7 Joins and Set Operations 417

Sliding Total of Previous Year

 The following exercise demonstrates a mix of several join types and categories: inner and
outer joins, self joins, and non-equi-join joins. First create and populate the MonthlyOrders
table by running the following code:

IF OBJECT_ID('dbo.MonthlyOrders') IS NOT NULL

 DROP TABLE dbo.MonthlyOrders;

GO

SELECT

 DATEADD(month, DATEDIFF(month, '19000101', orderdate), '19000101')

 AS ordermonth,

 SUM(val) AS val

INTO dbo.MonthlyOrders

FROM Sales.OrderValues

GROUP BY DATEADD(month, DATEDIFF(month, '19000101', orderdate), '19000101');

CREATE UNIQUE CLUSTERED INDEX idx_ordermonth ON dbo.MonthlyOrders(ordermonth);

SELECT * FROM dbo.MonthlyOrders ORDER BY ordermonth;

 The SELECT statement at the end of the script produces the following output:

ordermonth val

------------------------- ---------

2006-07-01 00:00:00.000 27861.90

2006-08-01 00:00:00.000 25485.28

2006-09-01 00:00:00.000 26381.40

2006-10-01 00:00:00.000 37515.73

2006-11-01 00:00:00.000 45600.05

2006-12-01 00:00:00.000 45239.63

2007-01-01 00:00:00.000 61258.08

2007-02-01 00:00:00.000 38483.64

2007-03-01 00:00:00.000 38547.23

2007-04-01 00:00:00.000 53032.95

2007-05-01 00:00:00.000 53781.30

2007-06-01 00:00:00.000 36362.82

2007-07-01 00:00:00.000 51020.86

2007-08-01 00:00:00.000 47287.68

2007-09-01 00:00:00.000 55629.27

2007-10-01 00:00:00.000 66749.23

2007-11-01 00:00:00.000 43533.80

2007-12-01 00:00:00.000 71398.44

2008-01-01 00:00:00.000 94222.12

2008-02-01 00:00:00.000 99415.29

2008-03-01 00:00:00.000 104854.18

2008-04-01 00:00:00.000 123798.70

2008-05-01 00:00:00.000 18333.64

 Notice that I used the DATETIME data type for the ordermonth column. A valid date must
 include a day portion, so I just used the fi rst of the month. When I need to present data, I’ll
get rid of the day portion. Storing the order month in a DATETIME data type allows more
fl exible manipulations using date-and-time-related functions.

C07626034.indd 417 2/13/2009 2:02:22 AM

418 Inside Microsoft SQL Server 2008: T-SQL Querying

 The request is to return, for each month, a sliding total of the previous year. In other words, for
each month n, return the total number of orders from month n minus 11 through month n.

 First I’ll demonstrate a solution that assumes that the sequence of months has no gaps. Later
I’ll provide a solution that works correctly even when some months are missing. Here I won’t
address performance aspects of the solution; instead, I’ll focus on its logical aspects. The
purpose of this exercise is to practice with different join types and techniques shown in this
chapter. In Chapter 8, you will fi nd a focused discussion on running aggregates, including
performance issues.

 The following query returns the sliding total of the previous year for each month:

SELECT

 CONVERT(CHAR(6), DATEADD(month, -11, O1.ordermonth), 112) AS frommonth,

 CONVERT(CHAR(6), O1.ordermonth, 112) AS tomonth,

 SUM(O2.val) AS totalval,

 COUNT(*) AS nummonths

FROM dbo.MonthlyOrders AS O1

 JOIN dbo.MonthlyOrders AS O2

 ON O2.ordermonth BETWEEN DATEADD(month, -11, O1.ordermonth)

 AND O1.ordermonth

GROUP BY O1.ordermonth

ORDER BY O1.ordermonth;

 This query generates the following output:

frommonth tomonth totalval nummonths

----------- --------- ------------- -----------

200508 200607 27861.90 1

200509 200608 53347.18 2

200510 200609 79728.58 3

200511 200610 117244.31 4

200512 200611 162844.36 5

200601 200612 208083.99 6

200602 200701 269342.07 7

200603 200702 307825.71 8

200604 200703 346372.94 9

200605 200704 399405.89 10

200606 200705 453187.19 11

200607 200706 489550.01 12

200608 200707 512708.97 12

200609 200708 534511.37 12

200610 200709 563759.24 12

200611 200710 592992.74 12

200612 200711 590926.49 12

200701 200712 617085.30 12

200702 200801 650049.34 12

200703 200802 710980.99 12

200704 200803 777287.94 12

200705 200804 848053.69 12

200706 200805 812606.03 12

C07626034.indd 418 2/13/2009 2:02:22 AM

 Chapter 7 Joins and Set Operations 419

 The query joins two instances of MonthlyOrders: O1 and O2. The left instance (O1) represents
the upper boundary point of the month range, and the right instance (O2) represents all
months in the range tomonth – 11 through to tomonth. This means that each row in O1 fi nds
up to 12 matches, one for each month. The logic here is similar to the expand technique I
mentioned earlier. Now that each upper boundary point has been duplicated up to 12 times,
once for each qualifying month from O2, you want to collapse the group back to a single
row, returning the total value of orders for each group.

 To note that some ranges do not cover a whole year, the query returns also the count of
months involved in the aggregation. If you want to return only groups representing complete
years, you can simply add a fi lter in the HAVING clause, ensuring that the number of rows
(months) in the group is equal to 12, like so:

SELECT

 CONVERT(CHAR(6), DATEADD(month, -11, O1.ordermonth), 112) AS frommonth,

 CONVERT(CHAR(6), O1.ordermonth, 112) AS tomonth,

 SUM(O2.val) AS totalval

FROM dbo.MonthlyOrders AS O1

 JOIN dbo.MonthlyOrders AS O2

 ON O2.ordermonth BETWEEN DATEADD(month, -11, O1.ordermonth)

 AND O1.ordermonth

GROUP BY O1.ordermonth

HAVING COUNT(*) = 12

ORDER BY O1.ordermonth;

 This query generates the following output:

frommonth tomonth totalval

----------- --------- -------------

200607 200706 489550.01

200608 200707 512708.97

200609 200708 534511.37

200610 200709 563759.24

200611 200710 592992.74

200612 200711 590926.49

200701 200712 617085.30

200702 200801 650049.34

200703 200802 710980.99

200704 200803 777287.94

200705 200804 848053.69

200706 200805 812606.03

 This solution assumes that the sequence of months has no gaps. If you don’t have such
 assurance, you can use an auxiliary table that contains all month ranges that you need to cover
and perform an outer join between the auxiliary table and MonthlyOrders. You can use the
Nums table to produce the month ranges. Here’s the complete solution code demonstrating
the technique applied for a given tomonth range and number of months trailing:

DECLARE

 @firsttomonth AS DATE = '20061201',

 @lasttomonth AS DATE = '20081201',

 @monthstrailing AS INT = 11;

C07626034.indd 419 2/13/2009 2:02:22 AM

420 Inside Microsoft SQL Server 2008: T-SQL Querying

WITH Months AS

(

 SELECT

 DATEADD(month, n-1-@monthstrailing, @firsttomonth) AS frommonth,

 DATEADD(month, n-1, @firsttomonth) AS tomonth

 FROM dbo.Nums

 WHERE n <= DATEDIFF(month, @firsttomonth, @lasttomonth) + 1

)

SELECT

 CONVERT(CHAR(6), frommonth, 112) AS frommonth,

 CONVERT(CHAR(6), tomonth, 112) AS tomonth,

 COUNT(O.ordermonth) AS nummonths,

 SUM(O.val) AS totalval

FROM Months M

 LEFT OUTER JOIN

 dbo.MonthlyOrders AS O

 ON O.ordermonth BETWEEN M.frommonth AND M.tomonth

GROUP BY frommonth, tomonth

ORDER BY frommonth;

 This query generates the following output:

frommonth tomonth nummonths totalval

----------- --------- ----------- -------------

200601 200612 6 208083.99

200602 200701 7 269342.07

200603 200702 8 307825.71

200604 200703 9 346372.94

200605 200704 10 399405.89

200606 200705 11 453187.19

200607 200706 12 489550.01

200608 200707 12 512708.97

200609 200708 12 534511.37

200610 200709 12 563759.24

200611 200710 12 592992.74

200612 200711 12 590926.49

200701 200712 12 617085.30

200702 200801 12 650049.34

200703 200802 12 710980.99

200704 200803 12 777287.94

200705 200804 12 848053.69

200706 200805 12 812606.03

200707 200806 11 776243.21

200708 200807 10 725222.35

200709 200808 9 677934.67

200710 200809 8 622305.40

200711 200810 7 555556.17

200712 200811 6 512022.37

200801 200812 5 440623.93

 To clean up, drop the MonthlyOrders table:

DROP TABLE dbo.MonthlyOrders;

C07626034.indd 420 2/13/2009 2:02:22 AM

 Chapter 7 Joins and Set Operations 421

Join Algorithms

 Join algorithms are the physical strategies SQL Server can use to process joins. SQL Server
supports three join algorithms: nested loops, merge, and hash. In the query execution plan,
the join algorithm appears under the join operator’s Physical Operation property and the
logical join type under Logical Operation.

 The following sections describe the different join algorithms. In my examples I will use
the Performance database that was used in Chapter 4, “Query Tuning.” The code to create
and populate this sample database is provided in Chapter 4, Listing 4-1. In addition, run
the following code to create a couple of indexes used in the plans for the queries that I’ll
demonstrate:

USE Performance;

CREATE INDEX idx_nc_cn_i_cid

 ON dbo.Customers(custname) INCLUDE(custid);

CREATE INDEX idx_nc_cid_od_i_oid_eid_sid

 ON dbo.Orders(custid, orderdate)

 INCLUDE(orderid, empid, shipperid);

Nested Loops

 A nested loops join operator receives one set of rows from its outer input (the upper input in
the graphical query plan). These outer input rows are typically the rows of one of the joined
tables, after some sorting or fi ltering, if the optimizer decides such processing is possible
and effi cient when done before joining the tables and matching rows. Then for each such
row of the outer input, using a loop, this operator applies some access method to obtain the
 matching rows from the inner input of the join (the lower input in the plan).

 A nested loops join algorithm can be used with both equi-joins and non-equi-joins, while
the other algorithms require at least one equi-join predicate. For logical join types, a nested
loops join can be used with cross, inner, left outer, left semi and anti-semi joins, and cross
and outer apply. A nested loops join algorithm cannot be used with full and right outer joins
and right semi and anti-semi joins. Nested loops usually works best with small inputs (not
necessarily small tables).

 For each row of the outer input, matching rows are sought from the inner input. Ideally, these
matching rows will be found in a small number of effi cient searches. The number of searches
is smallest when the smaller input is the outer one, and the searches are most effi cient when
the join condition is selective and there’s a useful index on the inner input’s join column.
With this in mind, the following scale describes the optimization you will get for different
indexing options on the inner table’s join column, from worst to best. The access method

C07626034.indd 421 2/13/2009 2:02:22 AM

422 Inside Microsoft SQL Server 2008: T-SQL Querying

in parentheses occurs once for each row in the join’s outer input; this access fi nds matching
rows in the join’s inner input:

■ No index (table scan)

■ Nonclustered noncovering index (when selective enough, seek + partial ordered scan +
lookups)

■ Clustered index (seek + partial scan)

■ Nonclustered covering (seek + partial scan)

 The following query, which produces the plan shown in Figure 7-10, is an example of a query
for which the optimizer chooses the nested loops operator:

SELECT C.custid, C.custname, O.orderid, O.empid, O.shipperid, O.orderdate

FROM dbo.Customers AS C

 JOIN dbo.Orders AS O

 ON O.custid = C.custid

WHERE C.custname LIKE 'Cust[_]1000%'

 AND O.orderdate >= '20080101'

 AND O.orderdate < '20080401';

FIGURE 7-10 Execution plan that includes a nested loops operator

 Regarding the smaller side of the join, which is usually used as the outer input (Customers in
our case), an index to support its fi lter is not that crucial, but it can prevent the need for a full
table scan. So I created a covering index with the key being the fi ltered column (custname)
and the custid as an included column for coverage purposes.

 For the bigger side of the join, which is usually chosen as the inner input of a nested loops
join (Orders in our case), you can sometimes arrange one index that supports both the join
and additional fi lters against that table. For example, in our case the join column is custid,
and there’s an additional range fi lter on orderdate. In this case the optimal index is one
 defi ned on the keylist (custid, orderdate) with the rest of the columns from the table defi ned
as included columns (orderid, empid, shipperid).

 The plan performs a seek and partial scan in the covering index on the Customers table to retrieve
the qualifying customers. For each one of those customers, the plan performs a seek and partial
scan in the covering index on the Orders side. The seek predicate contains both the equality
 condition between the inner and outer tables’ custid columns as well as the range fi lter on
 orderdate. With a nested loops join, what you see in this plan is pretty much as good as it can get.

C07626034.indd 422 2/13/2009 2:02:22 AM

 Chapter 7 Joins and Set Operations 423

 Important With regard to joins and indexing, remember that joins are often based on foreign
key/primary key relationships. Although an index (to enforce uniqueness) is automatically created
when a primary key is declared, a foreign key declaration doesn’t automatically create an index.
Remember that for nested loops, typically an index on the join column in the larger table is
 preferable. So it’s your responsibility to create that index explicitly.

Merge

 A merge join is a join algorithm that requires both inputs to be sorted based on the join
column(s). If an input is already sorted in an index (for example, a clustered index or, even
better, a covering nonclustered index), the plan can perform an index order scan. In such
a case, the merge join can be pretty effi cient even with large table sizes. If an input is not
already sorted, the optimizer may decide to apply a sort operation. This typically happens
when the input is small because sorting a large number of rows can be quite expensive.

 A merge join can be applied either as a one-to-many join or as a many-to-many join. When
the optimizer can be certain of the uniqueness of the join column(s) in one of the sides, it
can utilize a one-to-many merge join. With a one-to-many join, SQL Server scans both sides
only once in an ordered fashion and merges the rows while scanning both inputs. It scans the
fi rst row from both sides. As long as the end of the inputs is not reached, it checks whether
the rows match. If they do, it returns a result row and reads another row in the many side.
If they don’t, it reads the next row from the side with the lower value. For example, in a
join between T1 that has the values x, y, z in the join column and T2 with the values x, x, y,
y, y, y, z, z, z, the merge join reads T1(x), T2(x, x, y), T1(y), T2(y, y, y, z), T1(z), T2(z, z, <end>),
T1(<end>).

 Things become more complicated and expensive when you have a many-to-many join,
where the optimizer might still use a merge join operator with rewind logic. In that case, it
needs to use a worktable to save rows from one input aside to be able to reuse them when
duplicate matching rows exist in the other side.

 A merge join requires at least one of the join predicates to be an equi-join predicate (with
the exception of a full outer join). As for logical join types, a merge join algorithm cannot
be used with a cross join. It can be used with inner, outer, and semi joins. Cross joins have
an exception in which a merge join can be used when it’s an inner join disguised as a cross
join (for example, T1 CROSS JOIN T2 ON T1.keycol = T2.keycol). Merge can work well with
 medium- to large-sized inputs provided that they are presorted.

 For example, the following query joins Customers and Orders on equal custid values:

SELECT C.custid, C.custname, O.orderid, O.empid, O.shipperid, O.orderdate

FROM dbo.Customers AS C

 JOIN dbo.Orders AS O

 ON O.custid = C.custid;

C07626034.indd 423 2/13/2009 2:02:22 AM

424 Inside Microsoft SQL Server 2008: T-SQL Querying

 Both tables have covering indexes on custid (clustered index on Customers and covering non-
clustered index on Orders), so it’s quite a natural choice for the optimizer to go for a merge
join in this case. The plan for this query is shown in Figure 7-11.

FIGURE 7-11 Execution plan for a merge join

 As mentioned, in some cases the optimizer might decide to use a merge join even when one
of the inputs is not presorted by an index, especially if that input is fairly small. In such a case,
you will see that the unsorted input is scanned and then sorted, as in the execution plan shown
in Figure 7-12 for the following query:

SELECT C.custid, C.custname, O.orderid, O.empid, O.shipperid, O.orderdate

FROM dbo.Customers AS C

 JOIN dbo.Orders AS O

 ON O.custid = C.custid

WHERE O.orderdate >= '20080101'

 AND O.orderdate < '20080102';

FIGURE 7-12 Execution plan for a merge join with sort

 The rows in the Customers table are already sorted based on the join column (custid) in the
table’s clustered index. As for the Orders table, even if you have a covering index on custid,
fully scanning it would mean scanning about 1,000,000 rows. The optimizer estimates the
selectivity of the fi lter on the orderdate column and realizes that the fi lter is highly selective.
Therefore it decides to use the clustered index on orderdate to scan the applicable orders
(estimated about 1,000 rows) and sort by custid to enable the merge join.

 A word of caution here: If the optimizer makes a bad selectivity estimate—especially when
the estimate is for a small number of rows (for example, 1,000 rows)—but in practice you
get a very large number of rows (for example, 2,000,000 rows), the sort operation ends
up being very expensive. You can identify the problem by inspecting the actual execution

C07626034.indd 424 2/13/2009 2:02:22 AM

 Chapter 7 Joins and Set Operations 425

plan: compare the Estimated and Actual numbers of rows in the arrow going into the sort
 operator. In such a case you should try to determine the cause of the inaccurate selectivity
estimate and fi x it, if possible.

Hash

 The hash join algorithm is effi cient mainly in processing queries that involve medium to large
input sizes, especially in data warehouses. A hash join algorithm builds and uses a searching
 structure called a hash table, which is an alternative searching structure to a balanced tree.
SQL Server does not allow us to explicitly create hash indexes, only B-trees, but it does use
hash tables internally as part of processing of joins, aggregates, and so on.

 The optimizer usually uses the smaller input of the two as the input for building the hash
table; hence, this input is known as the build input. The reasoning behind using the smaller
input as the build input is that the hash table is created in memory (unless there’s not enough
memory and it spills to disk). It distributes the rows (relevant attributes for query) from the
build input into buckets, based on a hash function applied to the join column values. The hash
function is chosen to create a predetermined number of buckets of fairly equal size. Once the
optimizer fi nishes building the hash table based on the build input, it scans, or probes, the
other input (known as the probe input); applies the hash function to the join column value;
and, based on the result, knows which bucket in the hash table to scan to look for matches.

 As an analogy, say you have a garage with a large number of tools and items. If you don’t
organize them in a particular manner, every time you look for an item you need to scan all of
them. This is similar to a table scan. Of course, you want to organize the items in groups and
shelves by some criteria—for example, by functionality, size, color, and so on. You’d probably
choose a criterion that would result in fairly equal-sized, manageable groups.

 The criterion you would use is analogous to the hash function, and a shelf or group of items
is analogous to the hash bucket. Once the items in the garage are organized, every time you
need to look for one, apply the same criterion you used to organize the items, go directly to
the relevant shelf, and scan that shelf.

 A hash join requires at least one of the join predicates to be an equi-join predicate. As for logical
join types, a hash join algorithm does not support cross joins. It does support inner, outer,
and semi joins of all types. Regarding cross joins, like with the merge join algorithm there’s an
 exception in which a hash join algorithm can be used: when it’s an inner join disguised as a cross
join (for example, T1 CROSS JOIN T2 ON T1.keycol = T2.keycol).

 Note that while in certain scenarios hash joins are the preferable option, sometimes—
usually in OLTP type scenarios—SQL Server uses hash joins for lack of existing indexes to
 support other join algorithms that would have been more effi cient. Occasionally, you do see
 execution plans where the optimizer decides that it’s worthwhile to create a temporary index
(an Index Spool operator). But in many cases, when no B-tree is in place, it’s more expensive
to create a temporary index as part of the plan, use it, and drop it than it is to create a hash

C07626034.indd 425 2/13/2009 2:02:22 AM

426 Inside Microsoft SQL Server 2008: T-SQL Querying

table and use it. What I’m trying to say is that in some cases, the use of a hash join algorithm
is due to lack of existing indexes. But as I said, hash joins can be the optimal option,
 especially in data warehouse types of scenarios.

 To demonstrate a hash join, fi rst run the following code to drop the two indexes created
 earlier on the Customers and Orders tables:

DROP INDEX dbo.Customers.idx_nc_cn_i_cid;

DROP INDEX dbo.Orders.idx_nc_cid_od_i_oid_eid_sid;

 Next, run the following query:

SELECT C.custid, C.custname, O.orderid, O.empid, O.shipperid, O.orderdate

FROM dbo.Customers AS C

 JOIN dbo.Orders AS O

 ON O.custid = C.custid

WHERE C.custname LIKE 'Cust[_]1000%'

 AND O.orderdate >= '20080101'

 AND O.orderdate < '20080401';

 You will see the Hash Match operator in the execution plan generated for the query, as
shown in Figure 7-13:

FIGURE 7-13 Execution plan for a hash join

 As you can see, the smaller side (Customers) was chosen as the build input (upper input in
the plan). The Customers table was fully scanned because no index supported the query’s
fi lter on the attribute custname. The bigger side (Orders) was chosen as the probe input.
Because the fi ltered column orderdate is the clustered index key for Orders, a seek followed
by a range scan in the leaf of the index can obtain the qualifying orders. Those qualifying
rows are used as the probe input for the hash join.

Bitmap Filters in Star Schema Joins Bitmap fi lters are used in parallel query plans to fi lter
data based on a bitmap created by the Bitmap operator. A bitmap is an in-memory compact
representation of a set of values. A bitmap fi lter can use a bitmap representing a set of values
obtained by one operator in the plan tree to fi lter rows as part of another operator in the tree.
Using a bitmap fi lter is effi cient when the set of values represented by the bitmap is small.

 Bitmap fi lters were supported prior to SQL Server 2008. However, SQL Server 2008 introduces
optimized bitmap fi lters. While regular bitmap fi lters can be introduced in the query plan only
after optimization, optimized bitmap fi lters can be introduced dynamically by the optimizer

C07626034.indd 426 2/13/2009 2:02:22 AM

 Chapter 7 Joins and Set Operations 427

during optimization. Optimized bitmap fi lters can be especially effi cient in optimizing data
warehouse types of queries, such as star schema joins. The bitmaps in this case would be
 compact representations of applicable join keys obtained from dimension tables. With regular
bitmap fi lters, all rows from the fact table are processed before the joins with the dimension
tables eliminate the non-qualifying rows. With optimized bitmap fi lters, the non-qualifying
rows from the fact table are eliminated immediately as part of the table/index scan operator.
If applicable, more than one bitmap fi lter can be applied.

 The query optimizer can use regular bitmap fi lters in both merge and hash joins. Optimized
bitmap fi lters can be used in hash joins only. The bitmaps are created on the build input (the
dimension tables) and applied to the probe input (the fact table). If the join column is an
integer, the fi ltering of the rows from the fact table can be done in-row while scanning the
data. Otherwise, the fi ltering is done by a parallelism operator.

 The following query demonstrates using hash joins and bitmap fi ltering:

SELECT C.custname, E.lastname, E.firstname,

 O.orderid, O.orderdate, O.custid, O.empid, O.shipperid

FROM dbo.Orders AS O

 JOIN dbo.Customers AS C

 ON O.custid = C.custid

 JOIN dbo.Employees AS E

 ON O.empid = E.empid

WHERE C.custname LIKE 'Cust[_]100%'

 AND E.lastname LIKE 'Lname[_]100%';

 The execution plan produced for this query is shown in Figure 7-14.

FIGURE 7-14 Execution plan with optimized bitmap fi lters

C07626034.indd 427 2/13/2009 2:02:23 AM

428 Inside Microsoft SQL Server 2008: T-SQL Querying

 Each Bitmap operator creates a bitmap from the dimension table rows returned by a fi lter.
The bitmap represents the set of join keys for these rows. Then when the fact table (Orders
in our case) is scanned, rows that don’t satisfy the dimension table fi lter condition can be
 identifi ed and excluded based on their join key. You can tell that a fi lter is an optimized
 bitmap fi lter when its name starts with Opt_, as in Opt_Bitmap1008.

 If you’re trying to reproduce a plan with bitmap fi lters and can’t manage to do so, consider the
following. Bitmap fi lters are used only in parallel execution plans. Parallel plans are considered
only if you have more than one processor and the execution plan cost is greater than 5.

 Tip If you want to be able to produce plans with bitmap fi lters on a computer with a single
processor for practice purposes, you can start the SQL Server service with the undocumented –P
switch. Using this switch you can specify how many user mode schedulers (UMSs) you want SQL
Server to start with. Normally it starts with one UMS per CPU.

Forcing a Join Strategy

 You can force the optimizer to use a particular join algorithm, provided that it’s technically
supported for the given query. You do so by specifying a hint between the keyword or
 keywords representing the join type (for example, INNER, LEFT OUTER) and the JOIN
 keyword. For example, the following query forces a nested loops join:

SELECT C.custid, C.custname, O.orderid, O.empid, O.shipperid, O.orderdate

FROM dbo.Customers AS C

 INNER LOOP JOIN dbo.Orders AS O

 ON O.custid = C.custid;

 Note With inner joins, when forcing a join algorithm, the keyword INNER is not optional. With
outer joins, the OUTER keyword is still optional. For example, you can use LEFT LOOP JOIN or
LEFT OUTER LOOP JOIN.

 In some cases you may want to prevent the optimizer from using a certain join algorithm
rather than forcing it to use a specifi c one. Unfortunately, you cannot do this at the individual
join level, but you can do it at the whole query level using a table hint where you specify the
algorithms you allow. As long as only one join is in the query, the hint impacts only that join.
However, bear in mind that when the query has multiple joins, the hint impacts all of the
joins. For example, the following query restricts the optimizer to use either nested loops or
hash join algorithms, preventing it from using merge:

SELECT C.custid, C.custname, O.orderid, O.empid, O.shipperid, O.orderdate

FROM dbo.Customers AS C

 JOIN dbo.Orders AS O

 ON O.custid = C.custid

OPTION(LOOP JOIN, HASH JOIN);

C07626034.indd 428 2/13/2009 2:02:23 AM

 Chapter 7 Joins and Set Operations 429

Note Keep in mind the discussion earlier in the chapter regarding using hints to override
the optimizer’s choices. Limit the use of hints and try to exhaust all other means before you
 introduce such a hint in production code.

 For more information about join algorithms, please refer to Craig Freedman’s excellent blog
entries on the subject. You can fi nd Craig’s blog at http://blogs.msdn.com/craigfr/.

Separating Elements

At this point, you have a chance to put your knowledge of joins and the key techniques
you learned so far into action. Here I’ll present a generic form of a problem that has many
 practical applications in production. Create and populate a table called Arrays by running the
following code:

USE tempdb;

IF OBJECT_ID('dbo.Arrays') IS NOT NULL DROP TABLE dbo.Arrays;

CREATE TABLE dbo.Arrays

(

 arrid VARCHAR(10) NOT NULL PRIMARY KEY,

 array VARCHAR(8000) NOT NULL

)

GO

INSERT INTO Arrays(arrid, array) VALUES

 ('A', '20,223,2544,25567,14'),

 ('B', '30,-23433,28'),

 ('C', '12,10,8099,12,1200,13,12,14,10,9'),

 ('D', '-4,-6,-45678,-2');

The table contains arrays of elements separated by commas. Your task is to write a query that
generates the result shown in Table 7-3.

 TABLE 7-3 Arrays Split to Elements

 arid pos element

 A 1 20

 A 2 223

 A 3 2544

 A 4 25567

 A 5 14

 B 1 30

 B 2 -23433

arid pos element

C07626034.indd 429 2/13/2009 2:02:23 AM

430 Inside Microsoft SQL Server 2008: T-SQL Querying

 TABLE 7-3 Arrays Split to Elements

 arid pos element

 B 3 28

 C 1 12

 C 2 10

 C 3 8099

 C 4 12

 C 5 1200

 C 6 13

 C 7 12

 C 8 14

 C 9 10

 C 10 9

 D 1 -4

 D 2 -6

 D 3 -45678

 D 4 -2

 The request is to split the arrays. The result set should have a row for each array element,
 including the array ID, the element’s position within the array, and the element value. The
solution is presented in the following paragraphs.

 Before you even start coding, it’s always a good idea to identify the steps in the solution
and resolve them logically. It’s often a good starting point to think in terms of the number
of rows in the target and consider how that is related to the number of rows in the source.
Obviously, here you need to generate multiple rows in the result from each row in Arrays. In
other words, as the fi rst step, you need to generate copies.

 You already know that to generate copies, you can join the Arrays table with an auxiliary
 table of numbers. Here the join is not a simple cross join and a fi lter on a fi xed number of
rows. The number of copies here should equal the number of elements in the array. Each
element is identifi ed by a preceding comma (except for the fi rst element, which we must not
forget). So the join condition can be based on the existence of a comma in the nth character
position in the array, where n comes from the Nums table.

 Obviously, you wouldn’t want to check characters beyond the length of the array, so you can
limit n to the array’s length. The following query implements the fi rst step of the solution:

SELECT arrid, array, n

FROM dbo.Arrays

 JOIN dbo.Nums

 ON n <= DATALENGTH(array)

 AND SUBSTRING(array, n, 1) = ',';

arid pos element

C07626034.indd 430 2/13/2009 2:02:23 AM

 Chapter 7 Joins and Set Operations 431

 Note The array column is of a regular character type in our case. When working with a Unicode
type, make sure that you divide the result of the DATALENGTH function by 2.

 This query generates the following output:

arrid array n

---------- ----------------------------------- -----------

A 20,223,2544,25567,14 3

A 20,223,2544,25567,14 7

A 20,223,2544,25567,14 12

A 20,223,2544,25567,14 18

B 30,-23433,28 3

B 30,-23433,28 10

C 12,10,8099,12,1200,13,12,14,10,9 3

C 12,10,8099,12,1200,13,12,14,10,9 6

C 12,10,8099,12,1200,13,12,14,10,9 11

C 12,10,8099,12,1200,13,12,14,10,9 14

C 12,10,8099,12,1200,13,12,14,10,9 19

C 12,10,8099,12,1200,13,12,14,10,9 22

C 12,10,8099,12,1200,13,12,14,10,9 25

C 12,10,8099,12,1200,13,12,14,10,9 28

C 12,10,8099,12,1200,13,12,14,10,9 31

D -4,-6,-45678,-2 3

D -4,-6,-45678,-2 6

D -4,-6,-45678,-2 13

 You have almost generated the correct number of duplicates for each array, along with the
n value representing the matching comma’s position. You have one fewer copy than the
 desired number of copies for each array. For example, array A has fi ve elements, but you have
only four rows. The reason that a row is missing for each array is that no comma precedes the
fi rst element in the array. To fi x this small problem, concatenate a comma with the array to
specify the fi rst input of the SUBSTRING function:

SELECT arrid, array, n

FROM dbo.Arrays

 JOIN dbo.Nums

 ON n <= DATALENGTH(array) + 1

 AND SUBSTRING(',' + array, n, 1) = ',';

 Note that because you added a comma in front of the original string, the string is now one
character longer. Therefore, the fi lter in the ON clause needs to fi lter n values from Nums
that are smaller than or equal to the length of the original array plus one. As you can see in
the following output, each array now produces an additional row in the result with n = 1:

arrid array n

---------- ----------------------------------- -----------

A 20,223,2544,25567,14 1

A 20,223,2544,25567,14 4

A 20,223,2544,25567,14 8

A 20,223,2544,25567,14 13

A 20,223,2544,25567,14 19

C07626034.indd 431 2/13/2009 2:02:23 AM

432 Inside Microsoft SQL Server 2008: T-SQL Querying

B 30,-23433,28 1

B 30,-23433,28 4

B 30,-23433,28 11

C 12,10,8099,12,1200,13,12,14,10,9 1

C 12,10,8099,12,1200,13,12,14,10,9 4

C 12,10,8099,12,1200,13,12,14,10,9 7

C 12,10,8099,12,1200,13,12,14,10,9 12

C 12,10,8099,12,1200,13,12,14,10,9 15

C 12,10,8099,12,1200,13,12,14,10,9 20

C 12,10,8099,12,1200,13,12,14,10,9 23

C 12,10,8099,12,1200,13,12,14,10,9 26

C 12,10,8099,12,1200,13,12,14,10,9 29

C 12,10,8099,12,1200,13,12,14,10,9 32

D -4,-6,-45678,-2 1

D -4,-6,-45678,-2 4

D -4,-6,-45678,-2 7

D -4,-6,-45678,-2 14

 Also, because all characters in ‘,’ + array appear one character further to the right than they
do in the original array, all n values are greater than before by one. That’s actually even
 better for us because now n represents the starting position of the corresponding element
within the original array.

 The third step is to extract from each row the element starting at the nth character. You
know where the element starts—at the nth character—but you need to fi gure out its length.
The length of the element is the position of the next comma minus the element’s starting
position (n). You can use the CHARINDEX function to fi nd the position of the next comma.
You will need to provide the function with the value n as the third argument to tell it to
start looking for the comma at or after the nth character and not from the beginning of the
string. Just keep in mind that you’ll face a very similar problem here to the one that caused
you to get one fewer copy than the number of elements. Here, there’s no comma after the
last element. Just as you added a comma before the fi rst element earlier, you can now add
one at the end. The following query shows the third step in the solution:

SELECT arrid,

 SUBSTRING(array, n, CHARINDEX(',', array + ',', n) - n) AS element

FROM dbo.Arrays

 JOIN dbo.Nums

 ON n <= DATALENGTH(array) + 1

 AND SUBSTRING(',' + array, n, 1) = ',';

 This query generates the following output:

arrid element

---------- -----------

A 20

A 223

A 2544

A 25567

A 14

B 30

B -23433

B 28

C07626034.indd 432 2/13/2009 2:02:23 AM

 Chapter 7 Joins and Set Operations 433

C 12

C 10

C 8099

C 12

C 1200

C 13

C 12

C 14

C 10

C 9

D -4

D -6

D -45678

D -2

 Note that the element result column is currently a character string. You might want to
 convert it to a more appropriate data type (for example, an integer in this case).

 Finally, the last step in the solution is to calculate the position of each element within the
 array. A simple way to achieve this is to use the ROW_NUMBER function, partitioned by arrid,
ordered by n, like so:

SELECT arrid,

 ROW_NUMBER() OVER(PARTITION BY arrid ORDER BY n) AS pos,

 CAST(SUBSTRING(array, n, CHARINDEX(',', array + ',', n) - n)

 AS INT) AS element

FROM dbo.Arrays

 JOIN dbo.Nums

 ON n <= DATALENGTH(array) + 1

 AND SUBSTRING(',' + array, n, 1) = ',';

 But if you feel that this is too easy and you were shortchanged of a challenge, you can try
and calculate the position without the ROW_NUMBER function. With this restriction, this
step is very tricky. You fi rst need to fi gure out what determines the position of an element
within an array. The position is the number of commas in the original array before the nth
character (in the fi rst n – 1 characters), plus one. Once you fi gure this out, you need to come
up with an expression that will calculate this. You want to avoid writing a T-SQL user-defi ned
function, which would slow the query down. If you come up with an inline expression that
uses only built-in functions, you will get a very fast solution. To phrase the problem more
technically, you need to take the fi rst n – 1 characters (LEFT(array, n – 1)) and count the
number of commas within that substring. The problem is that most string functions have
no notion of repetitions or multiple occurrences of a substring within a string. There is one
built-in function, though, that does—REPLACE. This function replaces each occurrence of
a certain substring (call it oldsubstr) within a string (call it str) with another substring (call it
newsubstr). You invoke the function with the aforementioned arguments in the following
order: REPLACE(str, oldsubstr, newsubstr). Here’s an interesting way we can use the REPLACE
function: REPLACE(LEFT(array, n – 1), ‘,’, ”). Here str is the fi rst n – 1 characters within the
 array (LEFT(array, n – 1)), oldsubstr is a comma, and newsubstr is an empty string. We replace
each occurrence of a comma within the substring with an empty string. Now, what can you
say about the difference in length between the original substring (n – 1) and the new one?

C07626034.indd 433 2/13/2009 2:02:23 AM

434 Inside Microsoft SQL Server 2008: T-SQL Querying

The new one will obviously be (n – 1) – num_commas, where num_commas is the number of
commas in str. In other words, (n – 1) – ((n – 1) – num_commas) will give you the number
of commas. Add one, and you have the position of the element within the array. Use the
DATALENGTH function to return the number of characters in str after removing the commas.
Here’s the complete expression that calculates pos:

(n – 1) - DATALENGTH(REPLACE(LEFT(array, n - 1), ',', '')) + 1 AS pos

 Using the REPLACE function to count occurrences of a string within a string is a trick that can
come in handy.

 The following query shows the fi nal solution to the problem, including the position calculation:

SELECT arrid,

 (n - 1) - DATALENGTH(REPLACE(LEFT(array, n - 1), ',', '')) + 1 AS pos,

 CAST(SUBSTRING(array, n, CHARINDEX(',', array + ',', n) - n)

 AS INT) AS element

FROM dbo.Arrays

 JOIN dbo.Nums

 ON n <= DATALENGTH(array) + 1

 AND SUBSTRING(',' + array, n, 1) = ',';

 Another solution to the problem involves using a recursive CTE to separate elements. It’s not
as effi cient as the previous one, but it does not require an auxiliary table of numbers. Here’s
the solution’s code:

WITH Split AS

(

 SELECT arrid, 1 AS pos, 1 AS startpos,

 CHARINDEX(',', array + ',') - 1 AS endpos

 FROM dbo.Arrays

 WHERE DATALENGTH(array) > 0

 UNION ALL

 SELECT Prv.arrid, Prv.pos + 1, Prv.endpos + 2,

 CHARINDEX(',', Cur.array + ',', Prv.endpos + 2) - 1

 FROM Split AS Prv

 JOIN dbo.Arrays AS Cur

 ON Cur.arrid = Prv.arrid

 AND CHARINDEX(',', Cur.array + ',', Prv.endpos + 2) > 0

)

SELECT A.arrid, pos,

 CAST(SUBSTRING(array, startpos, endpos-startpos+1) AS INT) AS element

FROM dbo.Arrays AS A

 JOIN Split AS S

 ON S.arrid = A.arrid

ORDER BY arrid, pos;

 The CTE calculates the start and end position of each element. The anchor member calculates
the values for the fi rst element within each array. The recursive member calculates the values
of the next elements, terminating when no “next” elements are found. The pos column is
initialized with the constant 1 and incremented by 1 in each iteration. The outer query joins

C07626034.indd 434 2/13/2009 2:02:23 AM

 Chapter 7 Joins and Set Operations 435

the Arrays table with the CTE, and it extracts the individual elements of the arrays based on
the start and end positions calculated by the CTE. As mentioned, this solution is slower than the
previous one, but it has the advantage of not requiring an auxiliary table of numbers.

 I once posted this puzzle in a private SQL trainer’s forum. One of the trainers posted the
 following very witty solution that one of his colleagues came up with:

SELECT CAST(arrid AS VARCHAR(10)) AS arrid,

 REPLACE(array, ',',

 CHAR(13)+CHAR(10) + CAST(arrid AS VARCHAR(10))+SPACE(10)) AS value

FROM dbo.Arrays;

 First examine the solution to see whether you can fi gure it out and then run it with Results to
Text output mode. You will get the following output, which seems correct:

arrid value

---------- -------------

A 20

A 223

A 2544

A 25567

A 14

B 30

B -23433

B 28

C 12

C 10

C 8099

C 12

C 1200

C 13

C 12

C 14

C 10

C 9

D -4

D -6

D -45678

D -2

 This solution replaces each comma with a new line (CHAR(13)+CHAR(10)) + array id + 10
spaces. It seems correct when you run it in text mode, but it isn’t. If you run it in grid output
mode, you will see that the output really contains only one row for each array.

Set Operations

 You can think of joins as horizontal operations between tables, generating a virtual table that
contains columns from both tables. This section covers vertical operations between tables,
 including UNION, EXCEPT, and INTERSECT. Any mention of set operations in this section
 refers to these vertical operations.

C07626034.indd 435 2/13/2009 2:02:23 AM

436 Inside Microsoft SQL Server 2008: T-SQL Querying

 A set operation operates on two input tables, each resulting from a query specifi cation. For
simplicity’s sake, I’ll just use the term inputs in this section to describe the input tables of the
set operations.

 UNION returns the unifi ed set of rows from both inputs, EXCEPT returns the rows that appear
in the fi rst input but not the second, and INTERSECT returns rows that are common to both
inputs.

 ANSI SQL:1999 defi nes native operators for all three set operations, each with two nuances:
one optionally followed by DISTINCT (the default) and one followed by ALL. SQL Server
 supports two nuances of the UNION set operation (UNION and UNION ALL) and only one
nuance of the EXCEPT and INTERSECT set operations. Currently, SQL Server does not support
the optional use of DISTINCT for set operations. This is not a functional limitation because
DISTINCT is implied when you don’t specify ALL. I will provide alternative techniques to
achieve the set operations that are missing in the product.

 Like joins, these set operations always operate on only two inputs, generating a virtual table
as the result. You might feel comfortable calling the input tables left and right, as with joins,
or you might feel more comfortable referring to them as the fi rst and second input tables.

 Before I describe each set operation in detail, let’s deal with a few technicalities regarding
how set operations work.

 The two inputs must have the same number of columns, and corresponding columns must
have the same data type or at least be implicitly convertible. The column names of the result
are determined by the fi rst input.

 An ORDER BY clause is not allowed in the individual table expressions. All other logical
 processing phases (joins, fi ltering, grouping, and so on) are supported on the individual
queries.

 Conversely, ORDER BY is the only logical processing phase supported directly on the fi nal
 result of a set operation. If you specify an ORDER BY clause at the end of the query, it is
 applied to the fi nal result set. None of the other logical processing phases is allowed directly
on the result of a set operation. I will provide alternatives later in the chapter.

 Set operations work on complete rows from the two input tables. Note that when comparing
rows between the inputs, set operations treat NULLs as equal, just like identical known
 values. In this regard, set operations are not like query fi lters (ON, WHERE, HAVING), which as
you recall do not treat NULLs as equal.

UNION

 UNION generates a result set combining the rows from both inputs. The following sections
describe the differences between UNION (implicit DISTINCT) and UNION ALL.

C07626034.indd 436 2/13/2009 2:02:23 AM

 Chapter 7 Joins and Set Operations 437

UNION DISTINCT

 Specifying UNION without the ALL option combines the rows from both inputs and applies a
DISTINCT on top (in other words, removes duplicate rows).

 For example, the following query returns all occurrences of country, region, city that appear in
either the Employees table or the Customers table, with duplicate rows removed:

USE InsideTSQL2008;

SELECT country, region, city FROM HR.Employees

UNION

SELECT country, region, city FROM Sales.Customers;

 The query returns 71 unique rows.

UNION ALL

 You can think of UNION ALL as UNION without duplicate removal. That is, you get one result
set containing all rows from both inputs, including duplicates. For example, the following
query returns all occurrences of country, region, city from both tables:

SELECT country, region, city FROM HR.Employees

UNION ALL

SELECT country, region, city FROM Sales.Customers;

 Because the Employees table has 9 rows and the Customers table has 91 rows, you get a
 result set with 100 rows.

EXCEPT

 EXCEPT allows you to identify rows that appear in the fi rst input but not in the second.

EXCEPT DISTINCT

 EXCEPT DISTINCT returns distinct rows that appear in the fi rst input but not in the second input.
To achieve EXCEPT, programmers sometimes use the NOT EXISTS predicate, or an outer join
fi ltering only outer rows, as I demonstrated earlier in the “Semi Joins” section. However, those
solutions treat two NULLs as different from each other. For example, (UK, NULL, London) will not
be considered equal to (UK, NULL, London). If both tables contain such a row, input1 EXCEPT
input2 is not supposed to return it, yet the NOT EXISTS and outer join solutions will as typically
written, unless you add logic that treats two NULLs as equal. As mentioned, the built-in set
operations treat NULLs as equal. The following code uses the built-in EXCEPT set operation to
return distinct cities that appear in Employees but not in Customers:

SELECT country, region, city FROM HR.Employees

EXCEPT

SELECT country, region, city FROM Sales.Customers;

C07626034.indd 437 2/13/2009 2:02:23 AM

438 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note that of the three set operations, only EXCEPT is asymmetrical. That is, input1 EXCEPT
input2 is not the same as input2 EXCEPT input1.

 For example, the query just shown returned the two cities that appear in Employees but not in
Customers. The following query returns 66 cities that appear in Customers but not in Employees:

SELECT country, region, city FROM Sales.Customers

EXCEPT

SELECT country, region, city FROM HR.Employees;

EXCEPT ALL

 EXCEPT ALL is trickier than EXCEPT DISTINCT and has not yet been implemented in SQL Server.
Besides caring about the existence of a row, it also cares about the number of occurrences of
each row. Say you request the result of input1 EXCEPT ALL input2. If a row appears n times in
 input1 and m times in input2 (both n and m will be >= 0), it will appear MAX(0, n – m) times in the
output. That is, if n is greater than m, the row will appear n – m times in the result; otherwise, it
won’t appear in the result at all.

 Even though you don’t have a native operator for EXCEPT ALL in SQL Server 2008, you can easily
generate the logical equivalent using EXCEPT and the ROW_NUMBER function. Here’s the solution:

WITH EXCEPT_ALL

AS

(

 SELECT

 ROW_NUMBER()

 OVER(PARTITION BY country, region, city

 ORDER BY (SELECT 0) As rn,

 country, region, city

 FROM HR.Employees

 EXCEPT

 SELECT

 ROW_NUMBER()

 OVER(PARTITION BY country, region, city

 ORDER BY (SELECT 0) As rn,

 country, region, city

 FROM Sales.Customers

)

SELECT country, region, city

FROM EXCEPT_ALL;

 To understand the solution, I suggest that you fi rst highlight sections (queries) within it and
run them separately. This allows you to examine the intermediate result sets and get a better
idea of what the following paragraph tries to explain.

 The code fi rst assigns row numbers to the rows of each of the inputs, partitioned by the
whole attribute list. The row numbers will number the duplicate rows within the input. For
example, a row that appears fi ve times in Employees and three times in Customers will get

C07626034.indd 438 2/13/2009 2:02:23 AM

 Chapter 7 Joins and Set Operations 439

row numbers 1 through 5 in the fi rst input, and row numbers 1 through 3 in the second
 input. You then apply input1 EXCEPT input2 and get rows (including the rn attribute) that
appear in input1 but not in input2. If row R appears fi ve times in input1 and three times in
input2, you get the following result:

 {(R, 1), (R, 2), (R, 3), (R, 4), (R, 5)}

 EXCEPT

 {(R, 1), (R, 2), (R, 3)}

 And this produces the following result:

 {(R, 4), (R, 5)}

 In other words, R appears in the result exactly the number of times mandated by EXCEPT
ALL. I encapsulated this logic in a CTE to return only the original attribute list without the row
number, which is what EXCEPT ALL would do.

INTERSECT

 INTERSECT returns rows that appear in both inputs.

 To achieve INTERSECT, programmers sometimes use the EXISTS predicate or an inner join,
as I demonstrated earlier in the “Semi Joins” section. However, as I explained earlier, those
 solutions as typically written treat two NULLs as different from each other, and set operations
are supposed to treat them as equal. You need to add logic to those solutions to treat two
NULLs as equal.

 SQL Server provides a built-in INTERSECT operator, but only the nuance with the implicit
DISTINCT.

INTERSECT DISTINCT

 The INTERSECT DISTINCT set operation returns only distinct rows that appear in both
 inputs. For example, the following query returns cities that appear in both Employees and
Customers:

SELECT country, region, city FROM HR.Employees

INTERSECT

SELECT country, region, city FROM Sales.Customers;

INTERSECT ALL

 Like EXCEPT ALL, INTERSECT ALL also considers multiple occurrences of rows. If a row R
 appears n times in one input table and m times in the other, it should appear MIN(n, m)
times in the result.

C07626034.indd 439 2/13/2009 2:02:23 AM

440 Inside Microsoft SQL Server 2008: T-SQL Querying

 The solution to INTERSECT ALL in SQL Server 2008 is similar to the one for EXCEPT ALL
 except for one obvious difference—the use of the INTERSECT operator instead of EXCEPT:

WITH INTERSECT_ALL

AS

(

 SELECT

 ROW_NUMBER()

 OVER(PARTITION BY country, region, city

 ORDER BY (SELECT 0) AS rn,

 country, region, city

 FROM HR.Employees

 INTERSECT

 SELECT

 ROW_NUMBER()

 OVER(PARTITION BY country, region, city

 ORDER BY (SELECT 0) AS rn,

 country, region, city

 FROM Sales.Customers

)

SELECT country, region, city

FROM INTERSECT_ALL;

Precedence of Set Operations

 The INTERSECT set operation has a higher precedence than the others. In a query that mixes
multiple set operations, INTERSECT is evaluated fi rst. Other than that, set operations are evaluated
from left to right. The exception is that parentheses are always fi rst in precedence, so by using
parentheses you have full control of the logical order of evaluation of set operations.

 For example, in the following query INTERSECT is evaluated fi rst even though it appears second:

SELECT country, region, city FROM Production.Suppliers

EXCEPT

SELECT country, region, city FROM HR.Employees

INTERSECT

SELECT country, region, city FROM Sales.Customers;

 The meaning of the query is: return supplier cities that do not appear in the intersection of
employee cities and customer cities.

 However, if you use parentheses, you can change the evaluation order:

(SELECT country, region, city FROM Production.Suppliers

 EXCEPT

 SELECT country, region, city FROM HR.Employees)

INTERSECT

SELECT country, region, city FROM Sales.Customers;

 This query means: return supplier cities that are not employee cities and are also customer cities.

C07626034.indd 440 2/13/2009 2:02:23 AM

 Chapter 7 Joins and Set Operations 441

Using INTO with Set Operations

 If you want to write a SELECT INTO statement where you use set operations, specify the INTO
clause just before the FROM clause of the fi rst input. For example, here’s how you populate a
temporary table #T with the result of one of the previous queries:

SELECT country, region, city INTO #T FROM Production.Suppliers

EXCEPT

SELECT country, region, city FROM HR.Employees

INTERSECT

SELECT country, region, city FROM Sales.Customers;

Circumventing Unsupported Logical Phases

 As I mentioned earlier, logical processing phases other than sorting (joins, fi ltering, grouping,
TOP, and so on) are not allowed directly on the result of a set operation. This limitation can
easily be circumvented by using a derived table or a CTE like so:

SELECT DISTINCT TOP . . .

FROM (<set operation query>) AS D

 JOIN | PIVOT | UNPIVOT | APPLY . . .

WHERE . . .

GROUP BY . . .

HAVING . . .

ORDER BY . . .

 For example, the following query tells you how many cities in each country are covered by
customers or employees:

SELECT country, COUNT(*) AS numcities

FROM (SELECT country, region, city FROM HR.Employees

 UNION

 SELECT country, region, city FROM Sales.Customers) AS U

GROUP BY country;

 This query generates the following output:

country numcities

--------------- -----------

Argentina 1

Austria 2

Belgium 2

Brazil 4

Canada 3

Denmark 2

Finland 2

France 9

Germany 11

Ireland 1

Italy 3

Mexico 1

C07626034.indd 441 2/13/2009 2:02:23 AM

442 Inside Microsoft SQL Server 2008: T-SQL Querying

Norway 1

Poland 1

Portugal 1

Spain 3

Sweden 2

Switzerland 2

UK 2

USA 14

Venezuela 4

 In a similar manner, you can circumvent the limitations on the individual queries used as inputs
to the set operation. Each input can be written as a simple SELECT query from a derived table
or a CTE, where you use the disallowed elements in the derived table or CTE expression.

 For example, the following query returns the two most recent orders for employees 3 and 5:

SELECT empid, orderid, orderdate

FROM (SELECT TOP (2) empid, orderid, orderdate

 FROM Sales.Orders

 WHERE empid = 3

 ORDER BY orderdate DESC, orderid DESC) AS D1

UNION ALL

SELECT empid, orderid, orderdate

FROM (SELECT TOP (2) empid, orderid, orderdate

 FROM Sales.Orders

 WHERE empid = 5

 ORDER BY orderdate DESC, orderid DESC) AS D2;

 This query generates the following output:

empid orderid orderdate

----------- ----------- -----------------------

3 11063 2008-04-30 00:00:00.000

3 11057 2008-04-29 00:00:00.000

5 11043 2008-04-22 00:00:00.000

5 10954 2008-03-17 00:00:00.000

 As for the limitation on sorting the individual inputs, suppose you need to sort each input
independently. For example, you want to return orders placed by customer 1 and also orders
handled by employee 3. As for sorting the rows in the output, you want customer 1’s orders
to appear fi rst, sorted by orderid descending, and then orders handled by employee 3, sorted
by orderdate ascending. To achieve this, you create a column (sortcol) with the constant 1 for
the fi rst input (customer 1) and 2 for the second (employee 3). Create a derived table (call it
U) out of the UNION ALL between the two. In the outer query, fi rst sort by sortcol, and then
by a CASE expression for each set. The CASE expression will return the relevant value based
on the source set; otherwise, it returns a NULL, which won’t affect sorting. Here’s the solution
query followed by its output (abbreviated):

SELECT empid, custid, orderid, orderdate

FROM (SELECT 1 AS sortcol, custid, empid, orderid, orderdate

C07626034.indd 442 2/13/2009 2:02:23 AM

 Chapter 7 Joins and Set Operations 443

 FROM Sales.Orders

 WHERE custid = 1

 UNION ALL

 SELECT 2 AS sortcol, custid, empid, orderid, orderdate

 FROM Sales.Orders

 WHERE empid = 3) AS U

ORDER BY sortcol,

 CASE WHEN sortcol = 1 THEN orderid END,

 CASE WHEN sortcol = 2 THEN orderdate END DESC;

empid custid orderid orderdate

----------- ----------- ----------- -----------------------

6 1 10643 2007-08-25 00:00:00.000

4 1 10692 2007-10-03 00:00:00.000

4 1 10702 2007-10-13 00:00:00.000

1 1 10835 2008-01-15 00:00:00.000

1 1 10952 2008-03-16 00:00:00.000

3 1 11011 2008-04-09 00:00:00.000

3 37 11063 2008-04-30 00:00:00.000

3 53 11057 2008-04-29 00:00:00.000

3 34 11052 2008-04-27 00:00:00.000

3 31 11049 2008-04-24 00:00:00.000

3 14 11041 2008-04-22 00:00:00.000

3 63 11021 2008-04-14 00:00:00.000

. . .

Conclusion

 I covered many aspects of joins and set operations and demonstrated new querying
 techniques that you might fi nd handy.

 Remember that the comma-based syntax for cross and inner joins is part of standard SQL
and is fully supported by SQL Server. However, when you intend to write an inner join but
you forget to specify the join predicate in the WHERE clause, you get a Cartesian product.
For this reason and for consistency’s sake, I recommended that you stick to the ANSI SQL-92
join syntax with the JOIN keyword.

 SQL Server has native operators for the UNION, UNION ALL, EXCEPT, and INTERSECT set
 operations. It also provides other tools that allow simple solutions for achieving EXCEPT ALL
and INTERSECT ALL.

C07626034.indd 443 2/13/2009 2:02:23 AM

C07626034.indd 444 2/13/2009 2:02:23 AM

 445

Chapter 8

 Aggregating and Pivoting Data

 This chapter covers various data-aggregation techniques, including using the OVER clause
with aggregate functions, tiebreakers, running aggregates, pivoting, unpivoting, custom
 aggregations, histograms, grouping factors, and grouping sets.

 In my solutions in this chapter, I’ll reuse techniques that I introduced earlier. I’ll also introduce
new techniques for you to familiarize yourself with.

 Logic will naturally be an integral element in the solutions. Remember that at the heart of
every querying problem lies a logical puzzle.

OVER Clause

 The OVER clause allows you to request window-based calculations—that is, calculations
performed over a whole window of rows. In Chapter 6, “Subqueries, Table Expressions,
and Ranking Functions,” I described in detail how you use the OVER clause with analytical
 ranking functions. Microsoft SQL Server also supports the OVER clause with scalar aggregate
 functions; however, currently you can provide only the PARTITION BY clause. Future versions
of SQL Server will most likely also support the other ANSI elements of aggregate window
functions, including the ORDER BY and ROWS clauses.

 The purpose of using the OVER clause with scalar aggregates is to calculate, for each row, an
aggregate based on a window of values that extends beyond that row—and to do all this
without using a GROUP BY clause in the query. In other words, the OVER clause allows you to
add aggregate calculations to the results of an ungrouped query. This capability provides an
alternative to requesting aggregates with subqueries in case you need to include both base
row attributes and aggregates in your results.

 Remember that in Chapter 7, “Joins and Set Operations,” I presented a problem in which
you were required to calculate two aggregates for each order row: the percentage the row
 contributed to the total value of all orders and the difference between the row’s order value
and the average value over all orders. In my examples I used a table called MyOrderValues
that you create and populate by running the following code:

SET NOCOUNT ON;

USE InsideTSQL2008;

IF OBJECT_ID('dbo.MyOrderValues', 'U') IS NOT NULL

 DROP TABLE dbo.MyOrderValues;

GO

C08626034.indd 445 2/13/2009 2:04:49 AM

446 Inside Microsoft SQL Server 2008: T-SQL Querying

SELECT *

INTO dbo.MyOrderValues

FROM Sales.OrderValues;

ALTER TABLE dbo.MyOrderValues

 ADD CONSTRAINT PK_MyOrderValues PRIMARY KEY(orderid);

CREATE INDEX idx_val ON dbo.MyOrderValues(val);

 I showed the following optimized query in which I used a cross join between the base table
and a derived table of aggregates instead of using multiple subqueries:

SELECT orderid, custid, val,

 CAST(val / sumval * 100. AS NUMERIC(5, 2)) AS pct,

 CAST(val - avgval AS NUMERIC(12, 2)) AS diff

FROM dbo.MyOrderValues

 CROSS JOIN (SELECT SUM(val) AS sumval, AVG(val) AS avgval

 FROM dbo.MyOrderValues) AS Aggs;

 This query produces the following output:

orderid custid val pct diff

-------- ------- --------- ----- -------------

10248 85 440.00 0.03 -1085.05

10249 79 1863.40 0.15 338.35

10250 34 1552.60 0.12 27.55

10251 84 654.06 0.05 -870.99

10252 76 3597.90 0.28 2072.85

10253 34 1444.80 0.11 -80.25

10254 14 556.62 0.04 -968.43

10255 68 2490.50 0.20 965.45

10256 88 517.80 0.04 -1007.25

...

 The motivation for calculating the two aggregates in a single derived table instead of as
two separate subqueries stemmed from the fact that each subquery accessed the base table
 separately, while the derived table calculated the aggregates using a single scan of the data.
SQL Server’s query optimizer didn’t use the fact that the two subqueries aggregated the
same data into the same groups.

 When you specify multiple aggregates with identical OVER clauses in the same SELECT list,
however, the aggregates refer to the same window, as with a derived table, and SQL Server’s
query optimizer evaluates them all with one scan of the source data. Here’s how you use the
OVER clause to answer the same request:

SELECT orderid, custid, val,

 CAST(val / SUM(val) OVER() * 100. AS NUMERIC(5, 2)) AS pct,

 CAST(val - AVG(val) OVER() AS NUMERIC(12, 2)) AS diff

FROM dbo.MyOrderValues;

C08626034.indd 446 2/13/2009 2:04:49 AM

 Chapter 8 Aggregating and Pivoting Data 447

 Note In Chapter 6, I described the PARTITION BY clause, which is used with window functions,
including aggregate window functions. This clause is optional. When not specifi ed, the aggregate
is based on the whole input rather than being calculated per partition.

 Here, because I didn’t specify a PARTITION BY clause, the aggregates were calculated based
on the whole input. Logically, SUM(val) OVER() is equivalent here to the subquery (SELECT
SUM(val) FROM dbo.MyOrderValues). Physically, it’s a different story. As an exercise, you
can compare the execution plans of the following two queries, each requesting a different
 number of aggregates using the same OVER clause:

SELECT orderid, custid, val,

 SUM(val) OVER() AS sumval

FROM dbo.MyOrderValues;

SELECT orderid, custid, val,

 SUM(val) OVER() AS sumval,

 COUNT(val) OVER() AS cntval,

 AVG(val) OVER() AS avgval,

 MIN(val) OVER() AS minval,

 MAX(val) OVER() AS maxval

FROM dbo.MyOrderValues;

 You’ll fi nd the two plans nearly identical, with the only difference being that the single
Stream Aggregate operator calculates a different number of aggregates. The query costs are
identical. On the other hand, compare the execution plans of the following two queries, each
requesting a different number of aggregates using subqueries:

SELECT orderid, custid, val,

 (SELECT SUM(val) FROM dbo.MyOrderValues) AS sumval

FROM dbo.MyOrderValues;

SELECT orderid, custid, val,

 (SELECT SUM(val) FROM dbo.MyOrderValues) AS sumval,

 (SELECT COUNT(val) FROM dbo.MyOrderValues) AS cntval,

 (SELECT AVG(val) FROM dbo.MyOrderValues) AS avgval,

 (SELECT MIN(val) FROM dbo.MyOrderValues) AS minval,

 (SELECT MAX(val) FROM dbo.MyOrderValues) AS maxval

FROM dbo.MyOrderValues;

 You’ll fi nd that they have different plans, with the latter being more expensive because it
 rescans the source data for each aggregate.

 Another benefi t of the OVER clause is that it allows for shorter and simpler code. This is
 especially apparent when you need to calculate partitioned aggregates. Using OVER, you
simply specify a PARTITION BY clause. Using subqueries, you have to correlate the inner
 query to the outer, making the query longer and more complex.

C08626034.indd 447 2/13/2009 2:04:49 AM

448 Inside Microsoft SQL Server 2008: T-SQL Querying

 As an example of using the PARTITION BY clause, the following query calculates the percentage
of the order value out of the customer total and the difference from the customer average:

SELECT orderid, custid, val,

 CAST(val / SUM(val) OVER(PARTITION BY custid) * 100.

 AS NUMERIC(5, 2)) AS pct,

 CAST(val - AVG(val) OVER(PARTITION BY custid) AS NUMERIC(12, 2)) AS diff

FROM dbo.MyOrderValues

ORDER BY custid;

This query generates the following output:

orderid custid val pct diff

-------- ------- ------- ------ ------------

10643 1 814.50 19.06 102.33

10692 1 878.00 20.55 165.83

10702 1 330.00 7.72 -382.17

10835 1 845.80 19.79 133.63

10952 1 471.20 11.03 -240.97

11011 1 933.50 21.85 221.33

10926 2 514.40 36.67 163.66

10759 2 320.00 22.81 -30.74

10625 2 479.75 34.20 129.01

10308 2 88.80 6.33 -261.94

...

 In short, the OVER clause allows for more concise and faster-running queries.

 When you’re done, run the following code for cleanup:

IF OBJECT_ID('dbo.MyOrderValues', 'U') IS NOT NULL

 DROP TABLE dbo.MyOrderValues;

Tiebreakers

 In this section, I want to introduce a new technique based on aggregates to solve tiebreaker
problems, which I started discussing in Chapter 6. I’ll use the same example as I used
there—returning the most recent order for each employee—using different combinations
of tiebreaker attributes that uniquely identify an order for each employee. Keep in
mind that the performance of the solutions that use subqueries depends very strongly
on indexing. That is, you need an index on the partitioning column, sort column, and
 tiebreaker attributes. But in practice, you don’t always have the option of adding as many
indexes as you like. The subquery-based solutions will greatly suffer in performance from
a lack of appropriate indexes. Using aggregation techniques, you’ll see that the solution
yields reasonable performance even when an optimal index is not in place—in fact, even
when no good index is in place.

 Let’s start by using MAX(orderid) as the tiebreaker. To recap, you’re after the most recent
 order for each employee, and if there’s a tie for most recent, choose the order with the
 largest ID. For each employee’s most recent order, you’re supposed to return the columns
empid, orderdate, orderid, custid, and requireddate.

C08626034.indd 448 2/13/2009 2:04:49 AM

 Chapter 8 Aggregating and Pivoting Data 449

 The aggregate technique to solve the problem applies the following logical idea, given here
in pseudocode:

SELECT empid, MAX(orderdate, orderid, custid, requireddate)

FROM Sales.Orders

GROUP BY empid;

 This idea can’t be expressed directly in T-SQL, so don’t try to run this query. The idea here is to
select for each empid, the row with largest orderdate (most recent), then largest orderid—the
tiebreaker—among orders with the most recent orderdate. Because the combination empid,
orderdate, orderid is already unique, there will be no further ties to break, and the other
 attributes (custid and requireddate) are simply returned from the selected row. Because a MAX
of more than one attribute does not exist in T-SQL, you must mimic it somehow. One way is
by merging the attributes into a single input to the MAX function, then extracting back the
individual elements in an outer query.

 The question is this: What technique should you use to merge the attributes? The trick
is to convert each attribute to a fi xed-width string and concatenate the strings. You
must convert the attributes to strings in a way that doesn’t change the sorting order.
When dealing exclusively with nonnegative numbers, you can get by with an arithmetic
 calculation instead of concatenation. For example, say you have the numbers m and n,
each with a valid range of 1 through 999. To merge m and n, use the following formula:
m*1000 + n AS r. You can easily extract the individual pieces later: r divided by 1000 is
m, and r modulo 1000 is n. However, in many cases you may have nonnumeric data to
 concatenate, so arithmetic wouldn’t be possible. You might want to consider converting
all values to fi xed-width character strings (CHAR(n) or NCHAR(n)) or to fi xed-width binary
strings (BINARY(n)).

 Here’s an example of returning the most recent order for each employee, where
MAX(orderid) is the tiebreaker, using binary concatenation:

SELECT empid,

 CAST(SUBSTRING(binstr, 1, 8) AS DATETIME) AS orderdate,

 CAST(SUBSTRING(binstr, 9, 4) AS INT) AS orderid,

 CAST(SUBSTRING(binstr, 13, 4) AS INT) AS custid,

 CAST(SUBSTRING(binstr, 17, 8) AS DATETIME) AS requireddate

FROM (SELECT empid,

 MAX(CAST(orderdate AS BINARY(8))

 + CAST(orderid AS BINARY(4))

 + CAST(custid AS BINARY(4))

 + CAST(requireddate AS BINARY(8))) AS binstr

 FROM Sales.Orders

 GROUP BY empid) AS D;

 The derived table D contains the maximum concatenated string for each employee. Notice
that each value was converted to the appropriate fi xed-size string before concatenation
based on its data type (DATETIME—8 bytes, INT—4 bytes, and so on).

C08626034.indd 449 2/13/2009 2:04:49 AM

450 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note When you convert numbers to binary strings, only nonnegative values preserve their
 original sort order. As for DATETIME values, as long as they are not earlier than the base date
January 1st, 1900, when converted to binary, the values preserve the original sort behavior.
Values of the new DATE data type, however, do not preserve their sort behavior when converted
to binary. As for character strings, converting them to binary values changes their sort order
to one like a binary collation would defi ne. Also note that preserving the original sort order is
required only up to the point where uniqueness of a row per group is guaranteed (orderdate +
orderid in our case).

 The outer query uses SUBSTRING to extract the individual elements, and it converts them
back to their original data types.

 The real benefi t in this solution is that it scans the data only once regardless of whether you
have a good index. If you do, you’ll probably get an ordered scan of the index and a sort-based
aggregate (a stream aggregate). If you don’t have a good index—as is the case here—you’ll
probably get a hash-based aggregate, as you can see in Figure 8-1.

FIGURE 8-1 Execution plan for a tiebreaker query

 Things get trickier when the sort columns and tiebreaker attributes have different sort directions
within them. For example, suppose the tiebreaker was MIN(orderid). In that case, you would
need to apply MAX to orderdate and MIN to orderid. There is a logical solution when the
 attribute with the opposite direction is numeric. Say you need to calculate the MIN value of a
nonnegative integer column n, using only MAX, and you need to use binary concatenation. You
can get the minimum by using <maxint> - MAX(<maxint> - n).

 The following query incorporates this logical technique:

SELECT empid,

 CAST(SUBSTRING(binstr, 1, 8) AS DATETIME) AS orderdate,

 2147483647 - CAST(SUBSTRING(binstr, 9, 4) AS INT) AS orderid,

 CAST(SUBSTRING(binstr, 13, 4) AS INT) AS custid,

 CAST(SUBSTRING(binstr, 17, 8) AS DATETIME) AS requireddate

FROM (SELECT empid,

 MAX(CAST(orderdate AS BINARY(8))

 + CAST(2147483647 - orderid AS BINARY(4))

 + CAST(custid AS BINARY(4))

 + CAST(requireddate AS BINARY(8))) AS binstr

 FROM Sales.Orders

 GROUP BY empid) AS D;

 Another technique to calculate the minimum by using the MAX function is based on bitwise
manipulation and works with nonnegative integers. The minimum value of a column n is
equal to ~MAX(~n), where ~ is the bitwise NOT operator.

C08626034.indd 450 2/13/2009 2:04:49 AM

 Chapter 8 Aggregating and Pivoting Data 451

 The following query incorporates this technique:

SELECT empid,

 CAST(SUBSTRING(binstr, 1, 8) AS DATETIME) AS orderdate,

 ~CAST(SUBSTRING(binstr, 9, 4) AS INT) AS orderid,

 CAST(SUBSTRING(binstr, 13, 4) AS INT) AS custid,

 CAST(SUBSTRING(binstr, 17, 8) AS DATETIME) AS requireddate

FROM (SELECT empid,

 MAX(CAST(orderdate AS BINARY(8))

 + CAST(~orderid AS BINARY(4))

 + CAST(custid AS BINARY(4))

 + CAST(requireddate AS BINARY(8))) AS binstr

 FROM Sales.Orders

 GROUP BY empid) AS D;

 Of course, you can play with the tiebreakers you’re using in any way you like. For example, the
following query returns the most recent order for each employee, using MAX(requireddate),
MAX(orderid) as the tiebreaker:

SELECT empid,

 CAST(SUBSTRING(binstr, 1, 8) AS DATETIME) AS orderdate,

 CAST(SUBSTRING(binstr, 9, 8) AS DATETIME) AS requireddate,

 CAST(SUBSTRING(binstr, 17, 4) AS INT) AS orderid,

 CAST(SUBSTRING(binstr, 21, 4) AS INT) AS custid

FROM (SELECT empid,

 MAX(CAST(orderdate AS BINARY(8))

 + CAST(requireddate AS BINARY(8))

 + CAST(orderid AS BINARY(4))

 + CAST(custid AS BINARY(4))

) AS binstr

 FROM Sales.Orders

 GROUP BY empid) AS D;

Running Aggregations

 Running aggregations are aggregations of data over a sequence (typically temporal). Running
aggregate problems have many variations, and I’ll describe several important ones here.

 In my examples, I’ll use a summary table called EmpOrders that contains one row for
each employee and month, with the total quantity of orders made by that employee in
that month. Run the following code to create the EmpOrders table and populate it with
sample data:

USE tempdb;

IF OBJECT_ID('dbo.EmpOrders') IS NOT NULL DROP TABLE dbo.EmpOrders;

CREATE TABLE dbo.EmpOrders

(

 empid INT NOT NULL,

 ordmonth DATE NOT NULL,

C08626034.indd 451 2/13/2009 2:04:49 AM

452 Inside Microsoft SQL Server 2008: T-SQL Querying

 qty INT NOT NULL,

 PRIMARY KEY(empid, ordmonth)

);

GO

INSERT INTO dbo.EmpOrders(empid, ordmonth, qty)

 SELECT O.empid,

 DATEADD(month, DATEDIFF(month, 0, O.orderdate), 0) AS ordmonth,

 SUM(qty) AS qty

 FROM InsideTSQL2008.Sales.Orders AS O

 JOIN InsideTSQL2008.Sales.OrderDetails AS OD

 ON O.orderid = OD.orderid

 GROUP BY empid,

 DATEADD(month, DATEDIFF(month, 0, O.orderdate), 0);

 Tip I will represent each month by its start date stored as a DATE. This allows fl exible manipulation
of the data using date-related functions. Of course, I’ll ignore the day part of the value in my
 calculations.

 Run the following query to get the contents of the EmpOrders table:

SELECT empid, CONVERT(VARCHAR(7), ordmonth, 121) AS ordmonth, qty

FROM dbo.EmpOrders

ORDER BY empid, ordmonth;

 This query generates the following output, shown here in abbreviated form:

empid ordmonth qty

----------- -------- -----------

1 2006-07 121

1 2006-08 247

1 2006-09 255

1 2006-10 143

1 2006-11 318

1 2006-12 536

1 2007-01 304

1 2007-02 168

1 2007-03 275

1 2007-04 20

...

2 2006-07 50

2 2006-08 94

2 2006-09 137

2 2006-10 248

2 2006-11 237

2 2006-12 319

2 2007-01 230

2 2007-02 36

2 2007-03 151

2 2007-04 468

...

 I’ll discuss three types of running aggregation problems: cumulative, sliding, and
 year-to-date (YTD).

C08626034.indd 452 2/13/2009 2:04:49 AM

 Chapter 8 Aggregating and Pivoting Data 453

Cumulative Aggregations

 Cumulative aggregations accumulate data from the fi rst element within the sequence up
to the current point. For example, imagine the following request: for each employee and
month, return the total quantity and average monthly quantity from the beginning of the
employee’s activity through the month in question.

 Recall the techniques for calculating row numbers without using the built-in ROW_NUMBER
function; using these techniques, you scan the same rows we need here to calculate the
 total quantities. The difference is that for row numbers you used the aggregate COUNT, and
here you’ll use the aggregates SUM and AVG. I demonstrated two set-based solutions to
 calculate row numbers without the ROW_NUMBER function—one using subqueries and one
using joins. In the solution using joins, I applied what I called an expand-collapse technique.
To me, the subquery solution is much more intuitive than the join solution, with its artifi cial
 expand-collapse technique. So, when there’s no performance difference, I’d rather use
 subqueries. Typically, you won’t see a performance difference when only one aggregate is
 involved because the plans would be similar. However, when you request multiple aggregates,
the subquery solution might result in a plan that scans the data separately for each aggregate.
Compare this to the plan for the join solution, which typically calculates all aggregates during a
single scan of the source data.

 So my choice is usually simple—use a subquery for one aggregate and use a join for multiple
aggregates. The following query applies the expand-collapse approach to produce the
 desired result:

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

 O1.qty AS qtythismonth, SUM(O2.qty) AS totalqty,

 CAST(AVG(1.*O2.qty) AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

 JOIN dbo.EmpOrders AS O2

 ON O2.empid = O1.empid

 AND O2.ordmonth <= O1.ordmonth

GROUP BY O1.empid, O1.ordmonth, O1.qty

ORDER BY O1.empid, O1.ordmonth;

 This query generates the following output, shown here in abbreviated form:

empid ordmonth qtythismonth totalqty avgqty

----------- -------- ------------ ----------- ----------

1 2006-07 121 121 121.00

1 2006-08 247 368 184.00

1 2006-09 255 623 207.67

1 2006-10 143 766 191.50

1 2006-11 318 1084 216.80

1 2006-12 536 1620 270.00

1 2007-01 304 1924 274.86

1 2007-02 168 2092 261.50

1 2007-03 275 2367 263.00

1 2007-04 20 2387 238.70

...

C08626034.indd 453 2/13/2009 2:04:49 AM

454 Inside Microsoft SQL Server 2008: T-SQL Querying

2 2006-07 50 50 50.00

2 2006-08 94 144 72.00

2 2006-09 137 281 93.67

2 2006-10 248 529 132.25

2 2006-11 237 766 153.20

2 2006-12 319 1085 180.83

2 2007-01 230 1315 187.86

2 2007-02 36 1351 168.88

2 2007-03 151 1502 166.89

2 2007-04 468 1970 197.00

...

 Now let’s say that you are asked to return only one aggregate (say, total quantity). You can
safely use the subquery approach:

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

 O1.qty AS qtythismonth,

 (SELECT SUM(O2.qty)

 FROM dbo.EmpOrders AS O2

 WHERE O2.empid = O1.empid

 AND O2.ordmonth <= O1.ordmonth) AS totalqty

FROM dbo.EmpOrders AS O1

GROUP BY O1.empid, O1.ordmonth, O1.qty;

 As was the case for calculating row numbers based on subqueries or joins, when calculating
running aggregates based on similar techniques, the N2 performance issues I discussed
 before apply once again. Because running aggregates typically are calculated on a fairly
small number of rows per group, you won’t be adversely affected by performance issues,
 assuming you have appropriate indexes (keyed on grouping columns, then sort columns, and
including covering columns).

 Let p be the number of partitions involved (employees in our case), let n be the average
 number of rows per partition (months in our case), and let a be the number of aggregates
 involved. The total number of rows scanned using the join approach can be expressed as
pn + p(n+n2)/2 and as pn + ap(n+n2)/2 using the subquery approach because with subqueries
the optimizer uses a separate scan per subquery. It’s important to note that the N2 complexity
is relevant to the partition size and not the table size. If the number of rows in the table grows
by a factor of f but the partition size doesn’t change, the run time increases by a factor of f
as well. If, on the other hand, the average partition size grows by a factor of f, the run time
increases by a factor of f2. With small partitions (say, up to several dozen rows), this set-based
solution provides reasonable performance. With large partitions, a cursor solution would be
faster despite the overhead associated with row-by-row manipulation because a cursor scans
the rows only once, and the per-row overhead is constant.

 Note ANSI SQL provides support for running aggregates by means of aggregate window
functions. SQL Server 2005 introduced the OVER clause for aggregate functions only with the
PARTITION BY clause, and unfortunately SQL Server 2008 didn’t enhance the OVER clause further.
Further enhancements are currently planned for the next major release of SQL Server—SQL

C08626034.indd 454 2/13/2009 2:04:49 AM

 Chapter 8 Aggregating and Pivoting Data 455

Server 11. Per ANSI SQL—and I hope in future versions of SQL Server—you could provide a
 solution relying exclusively on window functions, like so:

SELECT empid, CONVERT(VARCHAR(7), ordmonth, 121) AS ordmonth, qty,

 SUM(O2.qty) OVER(PARTITION BY empid

 ORDER BY ordmonth

 ROWS BETWEEN UNBOUNDED PRECEDING

 AND CURRENT ROW) AS totalqty,

 CAST(AVG(1.*O2.qty) OVER(PARTITION BY empid

 ORDER BY ordmonth

 ROWS BETWEEN UNBOUNDED PRECEDING

 AND CURRENT ROW)

 AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders;

 When this code is fi nally supported in SQL Server, you can expect dramatic performance
 improvements and obviously much simpler queries. Being familiar with the way ranking calculations
based on the OVER clause are currently optimized, you should expect running aggregates based on
the OVER clause to be optimized similarly. That is, given a good index to support the request, you
should expect the plan to involve a single ordered scan of the data. Then the total number of rows
scanned would simply be the number of rows in the table (pn).

 You might also be requested to fi lter the data—for example, return monthly aggregates for
each employee only for months before the employee reached a certain target. Typically, you’ll
have a target for each employee stored in a Targets table that you’ll need to join to. To make
this example simple, I’ll assume that all employees have the same target total quantity—1,000.
In practice, you’ll use the target attribute from the Targets table. Because you need to fi lter
an aggregate, not an attribute, you must specify the fi lter expression (in this case,
SUM(O2.qty) < 1000) in the HAVING clause, not the WHERE clause. The solution is as follows:

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

 O1.qty AS qtythismonth, SUM(O2.qty) AS totalqty,

 CAST(AVG(1.*O2.qty) AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

 JOIN dbo.EmpOrders AS O2

 ON O2.empid = O1.empid

 AND O2.ordmonth <= O1.ordmonth

GROUP BY O1.empid, O1.ordmonth, O1.qty

HAVING SUM(O2.qty) < 1000

ORDER BY O1.empid, O1.ordmonth;

 This query generates the following output, shown here in abbreviated form:

empid ordmonth qtythismonth totalqty avgqty

----------- -------- ------------ ----------- ----------

1 2006-07 121 121 121.00

1 2006-08 247 368 184.00

1 2006-09 255 623 207.67

1 2006-10 143 766 191.50

2 2006-07 50 50 50.00

2 2006-08 94 144 72.00

2 2006-09 137 281 93.67

2 2006-10 248 529 132.25

C08626034.indd 455 2/13/2009 2:04:49 AM

456 Inside Microsoft SQL Server 2008: T-SQL Querying

2 2006-11 237 766 153.20

3 2006-07 182 182 182.00

3 2006-08 228 410 205.00

3 2006-09 75 485 161.67

3 2006-10 151 636 159.00

3 2006-11 204 840 168.00

3 2006-12 100 940 156.67

...

 Things get a bit tricky if you also need to include the rows for those months in which the
 employees reached their target. If you specify SUM(O2.qty) <= 1000 (that is, write <= instead
of <), you still won’t get the row in which the employee reached the target unless the total
through that month is exactly 1,000. But remember that you have access to both the cumulative
total and the current month’s quantity, and using these two values together, you can solve this
problem. If you change the HAVING fi lter to SUM(O2.qty) – O1.qty < 1000, you get the months
in which the employee’s total quantity, excluding the current month’s orders, had not reached the
target. In particular, the fi rst month in which an employee reached or exceeded the target satisfi es
this new criterion, and that month will appear in the results. The complete solution follows:

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

 O1.qty AS qtythismonth, SUM(O2.qty) AS totalqty,

 CAST(AVG(1.*O2.qty) AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

 JOIN dbo.EmpOrders AS O2

 ON O2.empid = O1.empid

 AND O2.ordmonth <= O1.ordmonth

GROUP BY O1.empid, O1.ordmonth, O1.qty

HAVING SUM(O2.qty) - O1.qty < 1000

ORDER BY O1.empid, O1.ordmonth;

 This query generates the following output, shown here in abbreviated form:

empid ordmonth qtythismonth totalqty avgqty

----------- -------- ------------ ----------- ----------

1 2006-07 121 121 121.00

1 2006-08 247 368 184.00

1 2006-09 255 623 207.67

1 2006-10 143 766 191.50

1 2006-11 318 1084 216.80

2 2006-07 50 50 50.00

2 2006-08 94 144 72.00

2 2006-09 137 281 93.67

2 2006-10 248 529 132.25

2 2006-11 237 766 153.20

2 2006-12 319 1085 180.83

3 2006-07 182 182 182.00

3 2006-08 228 410 205.00

3 2006-09 75 485 161.67

3 2006-10 151 636 159.00

3 2006-11 204 840 168.00

3 2006-12 100 940 156.67

3 2007-01 364 1304 186.29

...

C08626034.indd 456 2/13/2009 2:04:49 AM

 Chapter 8 Aggregating and Pivoting Data 457

 Note You might have another solution in mind that seems like a plausible and simpler
 alternative—to leave the SUM condition alone but change the join condition to O2.ordmonth <
O1.ordmonth. This way, the query would select rows where the total through the previous month
did not meet the target. However, in the end, this solution is not any easier (the AVG is hard to
generate, for example); what’s worse is that you might come up with a solution that does not
work for employees who reach the target in their fi rst month.

 Tip If you want to return no fewer than a certain number of rows per partition, simply add the
criterion OR COUNT(*) <= <min_num_of_rows> to the HAVING clause. This technique works well
in our case since the base table contains one row per result row/group.

 Suppose you’re interested in seeing results only for the specifi c month in which the employee
reached the target of 1,000, without seeing results for preceding months. What’s true for
only those rows in the output of the last query? You’re looking for rows where the total
 quantity is greater than or equal to 1,000. Simply add this criterion to the HAVING fi lter.
Here’s the query followed by its output:

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

 O1.qty AS qtythismonth, SUM(O2.qty) AS totalqty,

 CAST(AVG(1.*O2.qty) AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

 JOIN dbo.EmpOrders AS O2

 ON O2.empid = O1.empid

 AND O2.ordmonth <= O1.ordmonth

GROUP BY O1.empid, O1.ordmonth, O1.qty

HAVING SUM(O2.qty) - O1.qty < 1000

 AND SUM(O2.qty) >= 1000

ORDER BY O1.empid, O1.ordmonth;

empid ordmonth qtythismonth totalqty avgqty

----------- -------- ------------ ----------- ----------

1 2006-11 318 1084 216.80

2 2006-12 319 1085 180.83

3 2007-01 364 1304 186.29

4 2006-10 613 1439 359.75

5 2007-05 247 1213 173.29

6 2007-01 64 1027 171.17

7 2007-03 191 1069 152.71

8 2007-01 305 1228 175.43

9 2007-06 161 1007 125.88

Sliding Aggregations

 Sliding aggregates are calculated over a sliding window in a sequence (again, typically temporal),
as opposed to being calculated from the beginning of the sequence until the current point.
A moving average—such as the employee’s average quantity over the last three months—is one
example of a sliding aggregate.

C08626034.indd 457 2/13/2009 2:04:49 AM

458 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note Without clarifi cation, expressions such as “last three months” are ambiguous. The last
three months could mean the previous three months (not including this month), or it could mean
the previous two months along with this month. When you get a problem like this, be sure you
know precisely what window of time you are using for aggregation—for a particular row, exactly
when does the window begin and end?

 In our example, the window of time is this: greater than the point in time starting three months
ago and smaller than or equal to the current point in time. Note that this defi nition works well
even in cases where you track fi ner time granularities than a month (including day, hour, minute,
second, millisecond, microsecond, and nanosecond). This defi nition also addresses implicit
 conversion issues resulting from the accuracy level supported by SQL Server for the DATETIME
data type—3.33 milliseconds. To avoid implicit conversion issues, it’s wiser to use > and <=
predicates than the BETWEEN predicate.

 The main difference between the solution for cumulative aggregates and the solution for sliding
aggregates is in the join condition (or in the subquery’s fi lter in the case of the alternate solution
using subqueries). Instead of using O2.ordmonth <= O1.current_month, you use O2.ordmonth >
three_months_before_current AND O2.ordmonth <= O1.current_month. In T-SQL, this translates
to the following query:

SELECT O1.empid,

 CONVERT(VARCHAR(7), O1.ordmonth, 121) AS tomonth,

 O1.qty AS qtythismonth,

 SUM(O2.qty) AS totalqty,

 CAST(AVG(1.*O2.qty) AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

 JOIN dbo.EmpOrders AS O2

 ON O2.empid = O1.empid

 AND (O2.ordmonth > DATEADD(month, -3, O1.ordmonth)

 AND O2.ordmonth <= O1.ordmonth)

GROUP BY O1.empid, O1.ordmonth, O1.qty

ORDER BY O1.empid, O1.ordmonth;

 This query generates the following output, shown here in abbreviated form:

empid tomonth qtythismonth totalqty avgqty

----------- ------- ------------ ----------- ----------

1 2006-07 121 121 121.00

1 2006-08 247 368 184.00

1 2006-09 255 623 207.67

1 2006-10 143 645 215.00

1 2006-11 318 716 238.67

1 2006-12 536 997 332.33

1 2007-01 304 1158 386.00

1 2007-02 168 1008 336.00

1 2007-03 275 747 249.00

1 2007-04 20 463 154.33

...

2 2006-07 50 50 50.00

2 2006-08 94 144 72.00

2 2006-09 137 281 93.67

2 2006-10 248 479 159.67

2 2006-11 237 622 207.33

C08626034.indd 458 2/13/2009 2:04:49 AM

 Chapter 8 Aggregating and Pivoting Data 459

2 2006-12 319 804 268.00

2 2007-01 230 786 262.00

2 2007-02 36 585 195.00

2 2007-03 151 417 139.00

2 2007-04 468 655 218.33

...

 Note that this solution includes aggregates for three-month periods that don’t include three
months of actual data. If you want to return only periods with three full months accumulated,
without the fi rst two periods that do not cover three months, you can add the criterion
MIN(O2.ordmonth) = DATEADD(month, –2, O1.ordmonth) to the HAVING fi lter.

 Note Per ANSI SQL, you can use the ORDER BY and ROWS subclauses of the OVER clause—which
are currently missing in SQL Server—to address sliding aggregates. You would use the following
query to return the desired result for the last sliding aggregates request (assuming the data has
exactly one row per month):

SELECT empid, CONVERT(VARCHAR(7), ordmonth, 121) AS ordmonth,

 qty AS qtythismonth,

 SUM(O2.qty) OVER(PARTITION BY empid

 ORDER BY ordmonth

 ROWS BETWEEN 2 PRECEDING

 AND CURRENT ROW) AS totalqty,

 CAST(AVG(1.*O2.qty) OVER(PARTITION BY empid

 ORDER BY ordmonth

 ROWS BETWEEN 2 PRECEDING

 AND CURRENT ROW)

 AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders;

Year-to-Date (YTD)

 YTD aggregates accumulate values from the beginning of a period based on some date and
time unit (say, a year) until the current point. The calculation is very similar to the sliding
 aggregates solution. The only difference is the lower bound provided in the query’s fi lter,
which is the calculation of the beginning of the year. For example, the following query
 returns YTD aggregates for each employee and month:

SELECT O1.empid,

 CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

 O1.qty AS qtythismonth,

 SUM(O2.qty) AS totalqty,

 CAST(AVG(1.*O2.qty) AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

 JOIN dbo.EmpOrders AS O2

 ON O2.empid = O1.empid

 AND (O2.ordmonth >= CAST(CAST(YEAR(O1.ordmonth) AS CHAR(4))

 + '0101' AS DATETIME)

 AND O2.ordmonth <= O1.ordmonth)

GROUP BY O1.empid, O1.ordmonth, O1.qty

ORDER BY O1.empid, O1.ordmonth;

C08626034.indd 459 2/13/2009 2:04:49 AM

460 Inside Microsoft SQL Server 2008: T-SQL Querying

 This query generates the following output, shown here in abbreviated form:

empid ordmonth qtythismonth totalqty avgqty

----------- -------- ------------ ----------- ----------

1 2006-07 121 121 121.00

1 2006-08 247 368 184.00

1 2006-09 255 623 207.67

1 2006-10 143 766 191.50

1 2006-11 318 1084 216.80

1 2006-12 536 1620 270.00

1 2007-01 304 304 304.00

1 2007-02 168 472 236.00

1 2007-03 275 747 249.00

1 2007-04 20 767 191.75

...

2 2006-07 50 50 50.00

2 2006-08 94 144 72.00

2 2006-09 137 281 93.67

2 2006-10 248 529 132.25

2 2006-11 237 766 153.20

2 2006-12 319 1085 180.83

2 2007-01 230 230 230.00

2 2007-02 36 266 133.00

2 2007-03 151 417 139.00

2 2007-04 468 885 221.25

...

Pivoting

 Pivoting is a technique that allows you to rotate rows to columns, possibly performing
 aggregations along the way. The number of applications for pivoting is simply astounding.
In this section, I’ll present a few, including pivoting attributes in an open schema environment,
solving relational division problems, and formatting aggregated data. Later in the chapter
and also in later chapters in the book, I’ll show additional applications.

Pivoting Attributes

 I’ll use open schema as the scenario for pivoting attributes. Open schema is a design problem
describing an environment that needs to deal with frequent schema changes. The relational
model and SQL were conceived to handle frequent changes and requests for data via SQL’s
data manipulation language (DML). However, SQL’s data defi nition language (DDL) was not
conceived to support frequent schema changes. Whenever you need to add new entities,
you must create new tables; whenever existing entities change their structures, you must add,
alter, or drop columns. Such changes usually require downtime of the affected objects, and
they also bring about substantial revisions to the application.

 You can choose from several ways to model an open schema environment, each of which
has advantages and disadvantages. One of those models is known as Entity Attribute

C08626034.indd 460 2/13/2009 2:04:49 AM

 Chapter 8 Aggregating and Pivoting Data 461

Value (EAV) and also as the narrow representation of data. In this model, you store all data
in a single table, where each attribute value resides in its own row along with the entity or
 object ID and the attribute name or ID. You represent the attribute values using the data
type SQL_VARIANT to accommodate multiple attribute types in a single column.

 In my examples, I’ll use the OpenSchema table, which you can create and populate by running
the following code:

USE tempdb;

IF OBJECT_ID('dbo.OpenSchema') IS NOT NULL DROP TABLE dbo.OpenSchema;

CREATE TABLE dbo.OpenSchema

(

 objectid INT NOT NULL,

 attribute NVARCHAR(30) NOT NULL,

 value SQL_VARIANT NOT NULL,

 PRIMARY KEY (objectid, attribute)

);

GO

INSERT INTO dbo.OpenSchema(objectid, attribute, value) VALUES

 (1, N'attr1', CAST(CAST('ABC' AS VARCHAR(10)) AS SQL_VARIANT)),

 (1, N'attr2', CAST(CAST(10 AS INT) AS SQL_VARIANT)),

 (1, N'attr3', CAST(CAST('20070101' AS SMALLDATETIME) AS SQL_VARIANT)),

 (2, N'attr2', CAST(CAST(12 AS INT) AS SQL_VARIANT)),

 (2, N'attr3', CAST(CAST('20090101' AS SMALLDATETIME) AS SQL_VARIANT)),

 (2, N'attr4', CAST(CAST('Y' AS CHAR(1)) AS SQL_VARIANT)),

 (2, N'attr5', CAST(CAST(13.7 AS NUMERIC(9,3)) AS SQL_VARIANT)),

 (3, N'attr1', CAST(CAST('XYZ' AS VARCHAR(10)) AS SQL_VARIANT)),

 (3, N'attr2', CAST(CAST(20 AS INT) AS SQL_VARIANT)),

 (3, N'attr3', CAST(CAST('20080101' AS SMALLDATETIME) AS SQL_VARIANT));

-- show the contents of the table

SELECT * FROM dbo.OpenSchema;

 This generates the following output:

objectid attribute value

----------- ---------- ------------------------

1 attr1 ABC

1 attr2 10

1 attr3 2007-01-01 00:00:00.000

2 attr2 12

2 attr3 2009-01-01 00:00:00.000

2 attr4 Y

2 attr5 13.700

3 attr1 XYZ

3 attr2 20

3 attr3 2008-01-01 00:00:00.000

 Representing data this way allows logical schema changes to be implemented without adding,
altering, or dropping tables and columns—you use DML INSERTs, UPDATEs, and DELETEs instead.

C08626034.indd 461 2/13/2009 2:04:49 AM

462 Inside Microsoft SQL Server 2008: T-SQL Querying

Of course, other aspects of working with the data (such as enforcing integrity, tuning, and
 querying) become more complex and expensive with such a representation. As mentioned, there
are other approaches to dealing with open schema environments—for example, storing the data
in XML format, using a wide representation of data, using CLR types, and others. However, when
you weigh the advantages and disadvantages of each representation, you might fi nd the EAV
approach demonstrated here more favorable in some scenarios.

 Keep in mind that this representation of the data requires very complex queries even for simple
requests because different attributes of the same entity instance are spread over multiple rows.
Before you query such data, you might want to rotate it to a traditional form with one column
for each attribute—perhaps store the result in a temporary table, index it, query it, and then
get rid of the temporary table. To rotate the data from its open schema form into a traditional
form, you need to use a pivoting technique.

 In the following section, I’ll describe the steps involved in solving pivoting problems. I’d like
to point out that to understand the steps of the solution, it can be very helpful if you think
about query logical processing phases, which I described in detail in Chapter 1, “Logical
Query Processing.” I discussed the query processing phases involved with the native PIVOT
table operator, but those phases apply just as well to the standard solution that does not use
this proprietary operator. Moreover, in the standard solution the phases are more apparent in
the code, while using the PIVOT operator they are implicit.

 The fi rst step you might want to try when solving pivoting problems is to fi gure out how the
number of rows in the result correlates to the number of rows in the source data. Here, you
need to create a single result row out of the multiple base rows for each object. In SQL, this
translates to grouping rows. So our fi rst logical processing phase in pivoting is a grouping
phase, and the associated element (the element you need to group by) is the objectid column.

 As the next step in a pivoting problem, you can think in terms of the result columns. You
need a result column for each unique attribute. Because the data contains fi ve unique
 attributes (attr1, attr2, attr3, attr4, and attr5), you need fi ve expressions in the SELECT list.
Each expression is supposed to extract, out of the rows belonging to the grouped object, the
value corresponding to a specifi c attribute. You can think of this logical phase as a spreading
phase—you need to spread the values, or shift them, from the source column (value in our
case) to the corresponding target column. As for the element that dictates where to spread
the values, or the spread by element, in our case it is the attribute column. This spreading
 activity can be done with the following CASE expression, which in this example is applied to
the attribute attr2:

CASE WHEN attribute = 'attr2' THEN value END

 Remember that with no ELSE clause, CASE assumes an implicit ELSE NULL. The CASE
 expression just shown yields NULL for rows where attribute does not equal attr2 and yields
value when attribute does equal attr2. This means that among the rows with a given value of
 objectid (say, 1), the CASE expression would yield several NULLs and, at most, one known value

C08626034.indd 462 2/13/2009 2:04:49 AM

 Chapter 8 Aggregating and Pivoting Data 463

(10 in our example), which represents the value of the target attribute (attr2 in our example) for
the given objectid.

 The third phase in pivoting attributes is to extract the known value (if it exists) out of the set of
NULLs and the known value. You have to use an aggregate for this purpose because, as you’ll
recall, the query involves grouping. The trick to extracting the one known value is to use MAX
or MIN. Both ignore NULLs and will return the one non-NULL value present because both the
minimum and the maximum of a set containing one value is that value. So our third logical
processing phase in pivoting is an aggregation phase. The aggregation element is the value
column, and the aggregate function is MAX. Using the previous expression implementing the
second phase with attr2, here’s the revised expression including the aggregation as well:

MAX(CASE WHEN attribute = 'attr2' THEN value END) AS attr2

 Here’s the complete query that pivots the attributes from OpenSchema:

SELECT objectid,

 MAX(CASE WHEN attribute = 'attr1' THEN value END) AS attr1,

 MAX(CASE WHEN attribute = 'attr2' THEN value END) AS attr2,

 MAX(CASE WHEN attribute = 'attr3' THEN value END) AS attr3,

 MAX(CASE WHEN attribute = 'attr4' THEN value END) AS attr4,

 MAX(CASE WHEN attribute = 'attr5' THEN value END) AS attr5

FROM dbo.OpenSchema

GROUP BY objectid;

 This query generates the following output:

objectid attr1 attr2 attr3 attr4 attr5

----------- ---------- ---------- ------------------------ ---------- ----------

1 ABC 10 2007-01-01 00:00:00.000 NULL NULL

2 NULL 12 2009-01-01 00:00:00.000 Y 13.700

3 XYZ 20 2008-01-01 00:00:00.000 NULL NULL

 Note To write this query, you have to know the names of the attributes. If you don’t, you’ll need
to construct the query string dynamically. I’ll provide an example later in the chapter.

 This technique for pivoting data is very effi cient because it scans the base table only once.

 SQL Server supports a native specialized table operator for pivoting called PIVOT. This operator
does not provide any special advantages over the technique I just showed, except that it allows
for shorter code. It doesn’t support dynamic pivoting, and underneath the covers, it applies
very similar logic to the one I presented in the last solution. So you probably won’t even fi nd
noticeable performance differences. At any rate, here’s how you would pivot the OpenSchema
data using the PIVOT operator:

SELECT objectid, attr1, attr2, attr3, attr4, attr5

FROM dbo.OpenSchema

 PIVOT(MAX(value) FOR attribute

 IN([attr1],[attr2],[attr3],[attr4],[attr5])) AS P;

C08626034.indd 463 2/13/2009 2:04:49 AM

464 Inside Microsoft SQL Server 2008: T-SQL Querying

 Within this solution, you can identify all the elements I used in the previous solution. The
 inputs to the PIVOT operator are as follows:

■ The aggregate function applied to the aggregation element. In our case, it’s MAX(value),
which extracts the single non-NULL value corresponding to the target attribute. In other
cases, you might have more than one non-NULL value per group and want a different
aggregate (for example, SUM or AVG).

■ Following the FOR keyword, the name of the spread by element (attribute, in our case).
This is the source column holding the values that become the target column names.

■ The list of actual target column names in parentheses following the keyword IN.

 As you can see, in the parentheses of the PIVOT operator, you specify the aggregate function
and aggregation element and the spread by element and spreading values but not the group
by elements. This is a problematic aspect of the syntax of the PIVOT operator—the grouping
 elements are implicitly derived from what was not specifi ed. The grouping elements are the list
of all columns from the input table to the PIVOT operator that were not mentioned as either
the aggregation or the spreading elements. In our case, objectid is the only column left. If you
 unintentionally query the base table directly, you might end up with undesired grouping. If new
columns will be added to the table in the future, those columns will be implicitly added to
PIVOT’s grouping list. Therefore, it is strongly recommended that you apply the PIVOT operator
not to the base table directly but rather to a table expression (derived table or CTE) that includes
only the elements relevant to the pivoting activity. This way, you can control exactly which
 columns remain besides the aggregation and spreading elements. Future column additions
to the table won’t have any impact on what PIVOT ends up operating on. The following query
 demonstrates applying this approach to our previous query, using a derived table:

SELECT objectid, attr1, attr2, attr3, attr4, attr5

FROM (SELECT objectid, attribute, value FROM dbo.OpenSchema) AS D

 PIVOT(MAX(value) FOR attribute

 IN([attr1],[attr2],[attr3],[attr4],[attr5])) AS P;

 Tip The input to the aggregate function must be a base column from the PIVOT operator’s input
table with no manipulation—it cannot be an expression (for example: SUM(qty * price)). If you
want to provide the aggregate function with an expression as input, have the PIVOT operator
 operate on a derived table or CTE (as suggested for other reasons as well), and in the derived
table query assign the expression with a column alias (qty * price AS value). Then, as far as the
PIVOT operator is concerned, that alias is the name of a base column in its input table, so it is
valid to use that column name as input to PIVOT’s aggregate function (SUM(value)).

 Also, you cannot spread attributes from more than one column (the column that appears after
the FOR keyword). If you need to pivot more than one column’s attributes (say, empid and
YEAR(orderdate)), you can use a similar approach to the previous suggestion: in the derived
table or CTE used as the input to the PIVOT operator, concatenate the values from all columns
you want to use as the spreading elements and assign the expression with a column alias
(CAST(empid AS VARCHAR(10)) + ‘_’ + CAST(YEAR(orderdate) AS CHAR(4)) AS emp_year). Then,
in the outer query, specify that column after PIVOT’s FOR keyword (FOR emp_year IN([1_2007],
[1_2008], [1_2009], [2_2007], . . .)).

C08626034.indd 464 2/13/2009 2:04:49 AM

 Chapter 8 Aggregating and Pivoting Data 465

Relational Division

 You can also use pivoting to solve relational division problems when the number of elements
in the divisor set is fairly small. In my examples, I’ll use the OrderDetails table, which you
 create and populate by running the following code:

USE tempdb;

IF OBJECT_ID('dbo.OrderDetails') IS NOT NULL

 DROP TABLE dbo.OrderDetails;

CREATE TABLE dbo.OrderDetails

(

 orderid VARCHAR(10) NOT NULL,

 productid INT NOT NULL,

 PRIMARY KEY(orderid, productid)

 /* other colums */

);

GO

INSERT INTO dbo.OrderDetails(orderid, productid) VALUES

 ('A', 1),

 ('A', 2),

 ('A', 3),

 ('A', 4),

 ('B', 2),

 ('B', 3),

 ('B', 4),

 ('C', 3),

 ('C', 4),

 ('D', 4);

 A classic relational division problem is to return orders that contain a certain basket of
products—say, products 2, 3, and 4. You use a pivoting technique to rotate only the relevant
products into separate columns for each order. Instead of returning an actual attribute value,
you produce a 1 if the product exists in the order and a 0 otherwise. Create a derived table
out of the pivot query, and in the outer query fi lter only orders that contain a 1 in all product
columns. Here’s the full query, which correctly returns orders A and B:

SELECT orderid

FROM (SELECT

 orderid,

 MAX(CASE WHEN productid = 2 THEN 1 END) AS P2,

 MAX(CASE WHEN productid = 3 THEN 1 END) AS P3,

 MAX(CASE WHEN productid = 4 THEN 1 END) AS P4

 FROM dbo.OrderDetails

 GROUP BY orderid) AS P

WHERE P2 = 1 AND P3 = 1 AND P4 = 1;

C08626034.indd 465 2/13/2009 2:04:50 AM

466 Inside Microsoft SQL Server 2008: T-SQL Querying

 If you run only the derived table query, you get the following output with the pivoted products
for each order:

orderid P2 P3 P4

---------- ----------- ----------- -----------

A 1 1 1

B 1 1 1

C NULL 1 1

D NULL NULL 1

 To answer the request at hand using the new PIVOT operator, use the following query:

SELECT orderid

FROM (SELECT orderid, productid FROM dbo.OrderDetails) AS D

 PIVOT(MAX(productid) FOR productid IN([2],[3],[4])) AS P

WHERE [2] = 2 AND [3] = 3 AND [4] = 4;

 The aggregate function must accept a column as input, so I provided the productid itself. This
means that if the product exists within an order, the corresponding value will contain the
 actual productid and not 1. That’s why the fi lter looks a bit different here.

 Note that you can make both queries more intuitive and similar to each other in their logic
by using the COUNT aggregate instead of MAX. This way, both queries would produce a 1
where the product exists and a 0 where it doesn’t (instead of NULL). Here’s what the query
that does not use the PIVOT operator looks like:

SELECT orderid

FROM (SELECT

 orderid,

 COUNT(CASE WHEN productid = 2 THEN productid END) AS P2,

 COUNT(CASE WHEN productid = 3 THEN productid END) AS P3,

 COUNT(CASE WHEN productid = 4 THEN productid END) AS P4

 FROM dbo.OrderDetails

 GROUP BY orderid) AS P

WHERE P2 = 1 AND P3 = 1 AND P4 = 1;

 And here’s the query you would use based on the PIVOT operator:

SELECT orderid

FROM (SELECT orderid, productid FROM dbo.OrderDetails) AS D

 PIVOT(COUNT(productid) FOR productid IN([2],[3],[4])) AS P

WHERE [2] = 1 AND [3] = 1 AND [4] = 1;

Aggregating Data

 You can also use a pivoting technique to format aggregated data, typically for reporting
 purposes. In my examples, I’ll use the Orders table, which you create and populate by
 running the code in Listing 8-1.

C08626034.indd 466 2/13/2009 2:04:50 AM

 Chapter 8 Aggregating and Pivoting Data 467

LISTING 8-1 Creating and populating the Orders table

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

CREATE TABLE dbo.Orders

(

 orderid INT NOT NULL,

 orderdate DATETIME NOT NULL,

 empid INT NOT NULL,

 custid VARCHAR(5) NOT NULL,

 qty INT NOT NULL,

 CONSTRAINT PK_Orders PRIMARY KEY(orderid)

);

GO

INSERT INTO dbo.Orders

 (orderid, orderdate, empid, custid, qty)

VALUES

 (30001, '20060802', 3, 'A', 10),

 (10001, '20061224', 1, 'A', 12),

 (10005, '20061224', 1, 'B', 20),

 (40001, '20070109', 4, 'A', 40),

 (10006, '20070118', 1, 'C', 14),

 (20001, '20070212', 2, 'B', 12),

 (40005, '20080212', 4, 'A', 10),

 (20002, '20080216', 2, 'C', 20),

 (30003, '20080418', 3, 'B', 15),

 (30004, '20060418', 3, 'C', 22),

 (30007, '20060907', 3, 'D', 30);

-- show the contents of the table

SELECT * FROM dbo.Orders;

 This generates the following output:

orderid orderdate empid custid qty

----------- ----------------------- ----------- ------ -----------

10001 2006-12-24 00:00:00.000 1 A 12

10005 2006-12-24 00:00:00.000 1 B 20

10006 2007-01-18 00:00:00.000 1 C 14

20001 2007-02-12 00:00:00.000 2 B 12

20002 2008-02-16 00:00:00.000 2 C 20

30001 2006-08-02 00:00:00.000 3 A 10

30003 2008-04-18 00:00:00.000 3 B 15

30004 2006-04-18 00:00:00.000 3 C 22

30007 2006-09-07 00:00:00.000 3 D 30

40001 2007-01-09 00:00:00.000 4 A 40

40005 2008-02-12 00:00:00.000 4 A 10

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

CREATE TABLE dbo.Orders

(

 orderid INT NOT NULL,

 orderdate DATETIME NOT NULL,

 empid INT NOT NULL,

 custid VARCHAR(5) NOT NULL,

 qty INT NOT NULL,

 CONSTRAINT PK_Orders PRIMARY KEY(orderid)

);

GO

INSERT INTO dbo.Orders

 (orderid, orderdate, empid, custid, qty)

VALUES

 (30001, '20060802', 3, 'A', 10),

 (10001, '20061224', 1, 'A', 12),

 (10005, '20061224', 1, 'B', 20),

 (40001, '20070109', 4, 'A', 40),

 (10006, '20070118', 1, 'C', 14),

 (20001, '20070212', 2, 'B', 12),

 (40005, '20080212', 4, 'A', 10),

 (20002, '20080216', 2, 'C', 20),

 (30003, '20080418', 3, 'B', 15),

 (30004, '20060418', 3, 'C', 22),

 (30007, '20060907', 3, 'D', 30);

-- show the contents of the table

SELECT * FROM dbo.Orders;

C08626034.indd 467 2/13/2009 2:04:50 AM

468 Inside Microsoft SQL Server 2008: T-SQL Querying

 Suppose you want to return a row for each customer, with the total yearly quantities in a
 different column for each year. As with all pivoting problems, it boils down to identifying the
grouping, spreading, and aggregation elements. In this case, the grouping element is the custid
column, the spreading element is the expression YEAR(orderdate), and the aggregate function
and element is SUM(qty). What remains is simply to use the solution templates I provided
 previously. Here’s the solution that does not use the PIVOT operator, followed by its output:

SELECT custid,

 SUM(CASE WHEN orderyear = 2006 THEN qty END) AS [2006],

 SUM(CASE WHEN orderyear = 2007 THEN qty END) AS [2007],

 SUM(CASE WHEN orderyear = 2008 THEN qty END) AS [2008]

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

 FROM dbo.Orders) AS D

GROUP BY custid;

custid 2006 2007 2008

------ ----------- ----------- -----------

A 22 40 10

B 20 12 15

C 22 14 20

D 30 NULL NULL

 Here you can see the use of a derived table to isolate only the relevant elements for the
 pivoting activity (custid, orderyear, qty).

 One of the main issues with this pivoting solution is that you might end up with lengthy query
strings when the number of elements you need to rotate is large. It’s not a problem in this
case because we are dealing with order years, and there usually aren’t that many, but it could
be a problem in other cases when the spreading column has a large number of values. In an
effort to shorten the query string, you can use a matrix table that contains a column and a row
for each attribute that you need to rotate (orderyear, in this case). Only column values in the
intersections of corresponding rows and columns contain the value 1, and the other column
values are populated with a NULL or a 0, depending on your needs. Run the following code
to create and populate the Matrix table:

USE tempdb;

GO

IF OBJECTPROPERTY(OBJECT_ID('dbo.Matrix'), 'IsUserTable') = 1

 DROP TABLE dbo.Matrix;

GO

CREATE TABLE dbo.Matrix

(

 orderyear INT NOT NULL PRIMARY KEY,

 y2006 INT NULL,

 y2007 INT NULL,

 y2008 INT NULL

);

INSERT INTO dbo.Matrix(orderyear, y2006) VALUES(2006, 1);

INSERT INTO dbo.Matrix(orderyear, y2007) VALUES(2007, 1);

INSERT INTO dbo.Matrix(orderyear, y2008) VALUES(2008, 1);

C08626034.indd 468 2/13/2009 2:04:50 AM

 Chapter 8 Aggregating and Pivoting Data 469

-- show the contents of the table

SELECT * FROM dbo.Matrix;

 This generates the following output:

orderyear y2006 y2007 y2008

----------- ----------- ----------- -----------

2006 1 NULL NULL

2007 NULL 1 NULL

2008 NULL NULL 1

 You join the base table (or table expression) with the Matrix table based on a match in orderyear.
This means that each row from the base table will be matched with one row from Matrix—the
one with the same orderyear. In that row, only the corresponding orderyear’s column value will
contain a 1. So you can substitute the expression

SUM(CASE WHEN orderyear = <some_year> THEN qty END) AS [<some_year>]

 with the logically equivalent expression

SUM(qty*y<some_year>) AS [<some_year>]

 Here’s what the full query looks like:

SELECT custid,

 SUM(qty*y2006) AS [2006],

 SUM(qty*y2007) AS [2007],

 SUM(qty*y2008) AS [2008]

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

 FROM dbo.Orders) AS D

 JOIN dbo.Matrix AS M ON D.orderyear = M.orderyear

GROUP BY custid;

 If you need the number of orders instead of the sum of qty, in the original solution you produce
a 1 instead of the qty column for each order and use the COUNT aggregate function, like so:

SELECT custid,

 COUNT(CASE WHEN orderyear = 2006 THEN 1 END) AS [2006],

 COUNT(CASE WHEN orderyear = 2007 THEN 1 END) AS [2007],

 COUNT(CASE WHEN orderyear = 2008 THEN 1 END) AS [2008]

FROM (SELECT custid, YEAR(orderdate) AS orderyear

 FROM dbo.Orders) AS D

GROUP BY custid;

 This code generates the following output:

custid 2006 2007 2008

------ ----------- ----------- -----------

A 2 1 1

B 1 1 1

C 1 1 1

D 1 0 0

C08626034.indd 469 2/13/2009 2:04:50 AM

470 Inside Microsoft SQL Server 2008: T-SQL Querying

 With the Matrix table, simply specify the column corresponding to the target year:

SELECT custid,

 COUNT(y2006) AS [2006],

 COUNT(y2007) AS [2007],

 COUNT(y2008) AS [2008]

FROM (SELECT custid, YEAR(orderdate) AS orderyear

 FROM dbo.Orders) AS D

 JOIN dbo.Matrix AS M ON D.orderyear = M.orderyear

GROUP BY custid;

 Of course, using the PIVOT operator, the query strings are pretty much as short as they can
get. You don’t explicitly specify the CASE expressions: those are constructed behind the scenes
for you (you can actually see them by looking at the properties of the aggregate operator in
the plan). In short, you don’t need to use the Matrix table approach with the PIVOT operator.
Here’s the query using the PIVOT operator to calculate total yearly quantities per customer:

SELECT *

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

 FROM dbo.Orders) AS D

 PIVOT(SUM(qty) FOR orderyear IN([2006],[2007],[2008])) AS P;

 And here’s a query that counts the orders:

SELECT *

FROM (SELECT custid, YEAR(orderdate) AS orderyear

 FROM dbo.Orders) AS D

 PIVOT(COUNT(orderyear) FOR orderyear IN([2006],[2007],[2008])) AS P;

 Remember that static queries performing pivoting require you to know ahead of time the list
of attributes you’re going to rotate. For dynamic pivoting, you need to construct the query
string dynamically.

Unpivoting

 Unpivoting is the opposite of pivoting—namely, rotating columns to rows. Unpivoting is usually
used to normalize data, but it has other applications as well.

 Note Unpivoting is not an exact inverse of pivoting—it won’t necessarily allow you to regenerate
source rows that were pivoted. However, for the sake of simplicity, think of it as the opposite of pivoting.

 In my examples, I’ll use the PvtCustOrders table, which you create and populate by running
the following code:

USE tempdb;

IF OBJECT_ID('dbo.PvtCustOrders') IS NOT NULL

 DROP TABLE dbo.PvtCustOrders;

GO

C08626034.indd 470 2/13/2009 2:04:50 AM

 Chapter 8 Aggregating and Pivoting Data 471

SELECT custid,

 COALESCE([2006], 0) AS [2006],

 COALESCE([2007], 0) AS [2007],

 COALESCE([2008], 0) AS [2008]

INTO dbo.PvtCustOrders

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

 FROM dbo.Orders) AS D

 PIVOT(SUM(qty) FOR orderyear IN([2006],[2007],[2008])) AS P;

UPDATE dbo.PvtCustOrders

 SET [2007] = NULL, [2008] = NULL

WHERE custid = 'D';

-- Show the contents of the table

SELECT * FROM dbo.PvtCustOrders;

 This generates the following output:

custid 2006 2007 2008

------ ----------- ----------- -----------

A 22 40 10

B 20 12 15

C 22 14 20

D 30 NULL NULL

 The goal in this case is to generate a result row for each customer and year, containing the
customer ID (custid), order year (orderyear), and quantity (qty).

 I’ll start with a solution that does not use the native UNPIVOT operator. Here as well, try to
think in terms of logical query processing as described in Chapter 1.

 The fi rst step in the solution is to generate three copies of each base row—one for each year.
You can achieve this by performing a cross join between the base table and a virtual auxiliary
table that has one row per year. The SELECT list can then return custid and orderyear and also
calculate the target year’s qty with the following CASE expression:

CASE orderyear

 WHEN 2006 THEN [2006]

 WHEN 2007 THEN [2007]

 WHEN 2008 THEN [2008]

END AS qty

 You achieve unpivoting this way, but you also get rows corresponding to NULL values in the
source table (for example, for customer D in years 2007 and 2008). To eliminate those rows,
create a derived table out of the solution query and, in the outer query, eliminate the rows
with the NULL in the qty column.

 Note In practice, you’d typically store a 0 and not a NULL as the quantity for a customer with
no orders in a certain year; the order quantity is known to be zero and not unknown. However,
I used NULLs here to demonstrate the treatment of NULLs, which is a very common need in
 unpivoting problems.

C08626034.indd 471 2/13/2009 2:04:50 AM

472 Inside Microsoft SQL Server 2008: T-SQL Querying

 Here’s the complete solution, followed by its output:

SELECT custid, orderyear, qty

FROM (SELECT custid, orderyear,

 CASE orderyear

 WHEN 2006 THEN [2006]

 WHEN 2007 THEN [2007]

 WHEN 2008 THEN [2008]

 END AS qty

 FROM dbo.PvtCustOrders

 CROSS JOIN

 (SELECT 2006 AS orderyear

 UNION ALL SELECT 2007

 UNION ALL SELECT 2008) AS OrderYears) AS D

WHERE qty IS NOT NULL;

custid orderyear qty

------ ----------- -----------

A 2006 22

A 2007 40

A 2008 10

B 2006 20

B 2007 12

B 2008 15

C 2006 22

C 2007 14

C 2008 20

D 2006 30

D 2007 0

D 2008 0

 As of SQL Server 2008, you can replace the current defi nition of the derived table D with a
table value constructor based on the VALUES clause, like so:

SELECT custid, orderyear, qty

FROM (SELECT custid, orderyear,

 CASE orderyear

 WHEN 2006 THEN [2006]

 WHEN 2007 THEN [2007]

 WHEN 2008 THEN [2008]

 END AS qty

 FROM dbo.PvtCustOrders

 CROSS JOIN

 (VALUES(2006),(2007),(2008)) AS OrderYears(orderyear)) AS D

WHERE qty IS NOT NULL;

 Either way, using the native proprietary UNPIVOT table operator is dramatically simpler, as
the following query shows:

SELECT custid, orderyear, qty

FROM dbo.PvtCustOrders

 UNPIVOT(qty FOR orderyear IN([2006],[2007],[2008])) AS U;

 Unlike the PIVOT operator, I fi nd the UNPIVOT operator simple and intuitive, and obviously
it requires signifi cantly less code than the alternative solutions. UNPIVOT’s fi rst input is the
 target column name to hold the source column values (qty). Then, following the FOR keyword,

C08626034.indd 472 2/13/2009 2:04:50 AM

 Chapter 8 Aggregating and Pivoting Data 473

you specify the target column name to hold the source column names (orderyear). Finally,
in the parentheses of the IN clause, you specify the source column names that you want to
 unpivot ([2006],[2007],[2008]).

 Tip All source attributes that are unpivoted must share the same data type. If you want to
 unpivot attributes defi ned with different data types, create a derived table or CTE where you fi rst
convert all those attributes to SQL_VARIANT. The target column that will hold unpivoted values
will also be defi ned as SQL_VARIANT, and within that column, the values will preserve their
 original types.

 Note Like PIVOT, UNPIVOT requires a static list of column names to be rotated. Also, the
UNPIVOT operator applies a logical phase that removes NULL rows. However, unlike in the other
solutions where the removal of NULL rows is an optional phase, with the UNPIVOT operator it is
not optional.

Custom Aggregations

 Custom aggregations are aggregations that are not provided as built-in aggregate
 functions—for example, concatenating strings, calculating products, performing bitwise
 manipulations, calculating medians, and others. In this section, I’ll provide solutions to several
custom aggregate requests. Some techniques that I’ll cover are generic, in the sense that you
can use similar logic for other aggregate requests; other techniques are specifi c to one kind
of aggregate request.

 More Info One of the generic custom aggregate techniques uses cursors. For details about
 cursors, including handling of custom aggregates with cursors, please refer to Inside Microsoft
SQL Server 2008: T-SQL Programming (Microsoft Press, 2009).

 In my examples, I’ll use the generic Groups table, which you create and populate by running
the following code:

USE tempdb;

IF OBJECT_ID('dbo.Groups') IS NOT NULL DROP TABLE dbo.Groups;

CREATE TABLE dbo.Groups

(

 groupid VARCHAR(10) NOT NULL,

 memberid INT NOT NULL,

 string VARCHAR(10) NOT NULL,

 val INT NOT NULL,

 PRIMARY KEY (groupid, memberid)

);

GO

C08626034.indd 473 2/13/2009 2:04:50 AM

474 Inside Microsoft SQL Server 2008: T-SQL Querying

INSERT INTO dbo.Groups(groupid, memberid, string, val) VALUES

 ('a', 3, 'stra1', 6),

 ('a', 9, 'stra2', 7),

 ('b', 2, 'strb1', 3),

 ('b', 4, 'strb2', 7),

 ('b', 5, 'strb3', 3),

 ('b', 9, 'strb4', 11),

 ('c', 3, 'strc1', 8),

 ('c', 7, 'strc2', 10),

 ('c', 9, 'strc3', 12);

-- Show the contents of the table

SELECT * FROM dbo.Groups;

 This generates the following output:

groupid memberid string val

---------- ----------- ---------- -----------

a 3 stra1 6

a 9 stra2 7

b 2 strb1 3

b 4 strb2 7

b 5 strb3 3

b 9 strb4 11

c 3 strc1 8

c 7 strc2 10

c 9 strc3 12

 The Groups table has a column representing the group (groupid), a column representing
a unique identifi er within the group (memberid), and some value columns (string and val)
that need to be aggregated. I like to use such a generic form of data because it allows you
to focus on the techniques and not on the data. Note that this is merely a generic form of
a table containing data that you want to aggregate. For example, it could represent a Sales
table where groupid stands for empid, val stands for qty, and so on.

Custom Aggregations Using Pivoting

 One technique for solving custom aggregate problems is pivoting. You pivot the values that
need to participate in the aggregate calculation; when they all appear in the same result
row, you perform the calculation as a linear one across the columns. With a large number of
elements you’ll end up with very lengthy query strings; therefore, this pivoting technique is
limited to situations where each group has a small number of elements. Note that unless you
have a sequencing column within the group, you need to calculate row numbers that will
be used to identify the position of elements within the group. For example, if you need to
 concatenate all values from the string column per group, what do you specify as the pivoted
attribute list (the spreading values)? The values in the memberid column are not known
ahead of time, plus they differ in each group. Row numbers representing positions within the
group solve this problem.

C08626034.indd 474 2/13/2009 2:04:50 AM

 Chapter 8 Aggregating and Pivoting Data 475

String Concatenation Using Pivoting

 As the fi rst example, the following query calculates an aggregate string concatenation over
the column string for each group with a pivoting technique:

SELECT groupid,

 [1]

 + COALESCE(',' + [2], '')

 + COALESCE(',' + [3], '')

 + COALESCE(',' + [4], '') AS string

FROM (SELECT groupid, string,

 ROW_NUMBER() OVER(PARTITION BY groupid ORDER BY memberid) AS rn

 FROM dbo.Groups AS A) AS D

 PIVOT(MAX(string) FOR rn IN([1],[2],[3],[4])) AS P;

 This query generates the following output:

groupid string

---------- -------------------------

a stra1,stra2

b strb1,strb2,strb3,strb4

c strc1,strc2,strc3

 The query that generates the derived table D calculates a row number within the group
based on memberid order. The outer query pivots the values based on the row numbers, and
it performs linear concatenation. I’m assuming here that each group has at most four rows,
so I specifi ed four row numbers. You need as many row numbers as the maximum number of
elements you anticipate.

 The COALESCE function is used to replace a NULL representing a nonexistent element with
an empty string so as not to cause the result to become NULL. You don’t need the COALESCE
function with the fi rst element ([1]) because at least one element must exist in the group;
otherwise, the group won’t appear in the table.

Aggregate Product Using Pivoting

 In a similar manner, you can calculate the product of the values in the val column for each group:

SELECT groupid,

 [1]

 * COALESCE([2], 1)

 * COALESCE([3], 1)

 * COALESCE([4], 1) AS product

FROM (SELECT groupid, val,

 ROW_NUMBER() OVER(PARTITION BY groupid ORDER BY memberid) AS rn

 FROM dbo.Groups AS A) AS D

 PIVOT(MAX(val) FOR rn IN([1],[2],[3],[4])) AS P;

 This query generates the following output:

groupid product

---------- -----------

a 42

b 693

c 960

C08626034.indd 475 2/13/2009 2:04:50 AM

476 Inside Microsoft SQL Server 2008: T-SQL Querying

 The need for an aggregate product is common in fi nancial applications—for example, to
 calculate compound interest rates.

User Defi ned Aggregates (UDA)

 SQL Server allows you to create your own user-defi ned aggregates (UDAs). You write UDAs
in a .NET language of your choice (for example, C# or Visual Basic), and you use them in
T-SQL. This book is dedicated to T-SQL and not to the common language runtime (CLR), so
I won’t explain CLR UDAs at great length. Rather, I’ll provide you with a couple of examples
with step-by-step instructions and, of course, the T-SQL interfaces involved. Examples are
 provided in both C# and Visual Basic.

CLR Code in a Database

 This section discusses .NET common language runtime (CLR) integration in SQL Server;
therefore, it’s appropriate to spend a couple of words explaining the reasoning behind
CLR integration in a database. It is also important to identify the scenarios where using
CLR objects is more appropriate than using T-SQL.

 Developing in .NET languages such as C# and Visual Basic gives you an incredibly rich
programming model. The .NET Framework includes literally thousands of prepared
classes, and it is up to you to make astute use of them. .NET languages are not just
data oriented like SQL, so you are not as limited. For example, regular expressions are
extremely useful for validating data, and they are fully supported in .NET. SQL languages
are set oriented and slow to perform row-oriented (row-by-row or one-row-at-a-time)
operations. Sometimes you need row-oriented operations inside the database; moving
away from cursors to CLR code should improve the performance. Another benefi t of
CLR code is that it can be much faster than T-SQL code for operations such as string
 manipulation and iterations and in computationally intensive calculations.

 SQL Server 2005 introduced CLR integration, and SQL Server 2008 enhances this
 integration in a number of ways. Later in this section I’ll describe the enhancements
that are applicable to UDAs. Although SQL Server supported programmatic extensions
even before CLR integration was introduced, CLR integration in .NET code is superior in
a number of ways.

 For example, you could add functionality to earlier versions of SQL Server (before 2005)
using extended stored procedures. However, such procedures can compromise the
 integrity of SQL Server processes because their memory and thread management is not
integrated well enough with SQL Server’s resource management. .NET code is managed
by the CLR inside SQL Server, and because the CLR itself is managed by SQL Server, it is
much safer to use than extended procedure code.

C08626034.indd 476 2/13/2009 2:04:50 AM

 Chapter 8 Aggregating and Pivoting Data 477

 T-SQL—a set-oriented language—was designed to deal mainly with data and is optimized
for data manipulation. You should not rush to translate all your T-SQL code to CLR code.
T-SQL is still SQL Server’s primary language. Data access can be achieved through T-SQL
only. If an operation can be expressed as a set-oriented one, you should program it in T-SQL.

 You need to make another important decision before you start using CLR code inside
SQL Server. You need to decide where your CLR code is going to run—at the server or
at the client. CLR code is typically faster and more fl exible than T-SQL for computations,
and thus it extends the opportunities for server-side computations. However, the server
side is typically a single working box, and load balancing at the data tier is still in its
infancy. Therefore, you should consider whether it would be more sensible to process
those computations at the client side.

 With CLR code, you can write stored procedures, triggers, user-defi ned functions,
 user-defi ned types, and user-defi ned aggregate functions. The last two objects can’t
be written with declarative T-SQL; rather, they can be written only with CLR code.
A user- defi ned type (UDT) is the most complex CLR object type and demands extensive
coverage.

 More Info For details about programming CLR UDTs, as well as programming CLR routines,
please refer to Inside Microsoft SQL Server 2008: T-SQL Programming.

 Let’s start with a concrete implementation of two UDAs. The steps involved in creating a
 CLR-based UDA are as follows:

 1. Defi ne the UDA as a class in a .NET language.

 2. Compile the class you defi ned to build a CLR assembly.

 3. Register the assembly in SQL Server using the CREATE ASSEMBLY command in T-SQL.

 4. Use the CREATE AGGREGATE command in T-SQL to create the UDA that references the
registered assembly.

 Note You can register an assembly and create a CLR object from Microsoft Visual Studio 2008
directly, using the project deployment option (from the Build menu item, choose the Deploy
option). Direct deployment from Visual Studio is supported only with the Professional edition or
higher; if you’re using the Standard edition, your only option is explicit deployment in SQL Server.

 This section will provide examples for creating aggregate string concatenation and aggregate
product functions in both C# and Visual Basic. You can fi nd the code for the C# classes in
Listing 8-2 and the code for the Visual Basic classes in Listing 8-3. You’ll be provided with the
requirements for a CLR UDA alongside the development of a UDA.

C08626034.indd 477 2/13/2009 2:04:50 AM

478 Inside Microsoft SQL Server 2008: T-SQL Querying

LISTING 8-2 C# code for UDAs

using System;

using System.Data;

using Microsoft.SqlServer.Server;

using System.Data.SqlTypes;

using System.IO;

using System.Text;

using System.Runtime.InteropServices;

[Serializable]

[SqlUserDefinedAggregate(

 Format.UserDefined, // use user defined serialization

 IsInvariantToNulls = true, // NULLs don't matter

 IsInvariantToDuplicates = false, // duplicates matter

 IsInvariantToOrder = false, // order matters

 IsNullIfEmpty = false, // do not yield a NULL for a set of zero strings

 MaxByteSize = -1) // max size unlimited

]

public struct StringConcat : IBinarySerialize

{

 private StringBuilder sb;

 public void Init()

 {

 this.sb = new StringBuilder();

 }

 //two arguments

 public void Accumulate(SqlString v, SqlString separator)

 {

 if (v.IsNull)

 {

 return; // ignore NULLs approach

 }

 this.sb.Append(v.Value).Append(separator.Value);

 }

 public void Merge(StringConcat other)

 {

 this.sb.Append(other.sb);

 }

 public SqlString Terminate()

 {

 string output = string.Empty;

 if (this.sb != null && this.sb.Length > 0)

 {

 // remove last separator

 output = this.sb.ToString(0, this.sb.Length - 1);

 }

 return new SqlString(output);

 }

using System;

using System.Data;

using Microsoft.SqlServer.Server;

using System.Data.SqlTypes;

using System.IO;

using System.Text;

using System.Runtime.InteropServices;

[Serializable]

[SqlUserDefinedAggregate(

 Format.UserDefined, // use user defined serialization

 IsInvariantToNulls = true, // NULLs don't matter

 IsInvariantToDuplicates = false, // duplicates matter

 IsInvariantToOrder = false, // order matters

 IsNullIfEmpty = false, // do not yield a NULL for a set of zero strings

 MaxByteSize = -1) // max size unlimited

]

public struct StringConcat : IBinarySerialize

{

 private StringBuilder sb;

 public void Init()

 {

 this.sb = new StringBuilder();

 }

 //two arguments

 public void Accumulate(SqlString v, SqlString separator)

 {

 if (v.IsNull)

 {

 return; // ignore NULLs approach

 }

 this.sb.Append(v.Value).Append(separator.Value);

 }

 public void Merge(StringConcat other)

 {

 this.sb.Append(other.sb);

 }

 public SqlString Terminate()

 {

 string output = string.Empty;

 if (this.sb != null && this.sb.Length > 0)

 {

 // remove last separator

 output = this.sb.ToString(0, this.sb.Length - 1);

 }

 return new SqlString(output);

 }

C08626034.indd 478 2/13/2009 2:04:50 AM

 Chapter 8 Aggregating and Pivoting Data 479

 public void Read(BinaryReader r)

 {

 sb = new StringBuilder(r.ReadString());

 }

 public void Write(BinaryWriter w)

 {

 w.Write(this.sb.ToString());

 }

} // end StringConcat

[Serializable]

[StructLayout(LayoutKind.Sequential)]

[SqlUserDefinedAggregate(

 Format.Native, // use native serialization

 IsInvariantToNulls = true, // NULLs don't matter

 IsInvariantToDuplicates = false, // duplicates matter

 IsInvariantToOrder = false)] // order matters

public class Product

{

 private SqlInt64 si;

 public void Init()

 {

 si = 1;

 }

 public void Accumulate(SqlInt64 v)

 {

 if (v.IsNull || si.IsNull) // NULL input = NULL output approach

 {

 si = SqlInt64.Null;

 return;

 }

 if (v == 0 || si == 0) // to prevent an exception in next if

 {

 si = 0;

 return;

 }

 // stop before we reach max v

 if (Math.Abs(v.Value) <= SqlInt64.MaxValue / Math.Abs(si.Value))

 {

 si = si * v;

 }

 else

 {

 si = 0; // if we reach too big v, return 0

 }

 }

 public void Merge(Product Group)

 {

 Accumulate(Group.Terminate());

 }

 public void Read(BinaryReader r)

 {

 sb = new StringBuilder(r.ReadString());

 }

 public void Write(BinaryWriter w)

 {

 w.Write(this.sb.ToString());

 }

} // end StringConcat

[Serializable]

[StructLayout(LayoutKind.Sequential)]

[SqlUserDefinedAggregate(

 Format.Native, // use native serialization

 IsInvariantToNulls = true, // NULLs don't matter

 IsInvariantToDuplicates = false, // duplicates matter

 IsInvariantToOrder = false)] // order matters

public class Product

{

 private SqlInt64 si;

 public void Init()

 {

 si = 1;

 }

 public void Accumulate(SqlInt64 v)

 {

 if (v.IsNull || si.IsNull) // NULL input = NULL output approach

 {

 si = SqlInt64.Null;

 return;

 }

 if (v == 0 || si == 0) // to prevent an exception in next if

 {

 si = 0;

 return;

 }

 // stop before we reach max v

 if (Math.Abs(v.Value) <= SqlInt64.MaxValue / Math.Abs(si.Value))

 {

 si = si * v;

 }

 else

 {

 si = 0; // if we reach too big v, return 0

 }

 }

 public void Merge(Product Group)

 {

 Accumulate(Group.Terminate());

 }

C08626034.indd 479 2/13/2009 2:04:50 AM

480 Inside Microsoft SQL Server 2008: T-SQL Querying

 public SqlInt64 Terminate()

 {

 return (si);

 }

} // end Product

LISTING 8-3 Visual Basic code for UDAs

Imports System

Imports System.Data

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Imports System.Text

Imports System.IO

Imports System.Runtime.InteropServices

<Serializable(), _

 SqlUserDefinedAggregate(_

 Format.UserDefined, _

 IsInvariantToDuplicates:=False, _

 IsInvariantToNulls:=True, _

 IsInvariantToOrder:=False, _

 IsNullIfEmpty:=False, _

 MaxByteSize:=-1)> _

Public Structure StringConcat

 Implements IBinarySerialize

 Private sb As StringBuilder

 Public Sub Init()

 Me.sb = New StringBuilder()

 End Sub

 Public Sub Accumulate(ByVal v As SqlString, ByVal separator As SqlString)

 If v.IsNull Then

 Return

 End If

 Me.sb.Append(v.Value).Append(separator.Value)

 End Sub

 Public Sub Merge(ByVal other As StringConcat)

 Me.sb.Append(other.sb)

 End Sub

 Public Function Terminate() As SqlString

 Dim output As String = String.Empty

 If Not (Me.sb Is Nothing) AndAlso Me.sb.Length > 0 Then

 output = Me.sb.ToString(0, Me.sb.Length - 1)

 End If

 Return New SqlString(output)

 End Function

 public SqlInt64 Terminate()

 {

 return (si);

 }

} // end Product

Imports System

Imports System.Data

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Imports System.Text

Imports System.IO

Imports System.Runtime.InteropServices

<Serializable(), _

 SqlUserDefinedAggregate(_

 Format.UserDefined, _

 IsInvariantToDuplicates:=False, _

 IsInvariantToNulls:=True, _

 IsInvariantToOrder:=False, _

 IsNullIfEmpty:=False, _

 MaxByteSize:=-1)> _

Public Structure StringConcat

 Implements IBinarySerialize

 Private sb As StringBuilder

 Public Sub Init()

 Me.sb = New StringBuilder()

 End Sub

 Public Sub Accumulate(ByVal v As SqlString, ByVal separator As SqlString)

 If v.IsNull Then

 Return

 End If

 Me.sb.Append(v.Value).Append(separator.Value)

 End Sub

 Public Sub Merge(ByVal other As StringConcat)

 Me.sb.Append(other.sb)

 End Sub

 Public Function Terminate() As SqlString

 Dim output As String = String.Empty

 If Not (Me.sb Is Nothing) AndAlso Me.sb.Length > 0 Then

 output = Me.sb.ToString(0, Me.sb.Length - 1)

 End If

 Return New SqlString(output)

 End Function

C08626034.indd 480 2/13/2009 2:04:50 AM

 Chapter 8 Aggregating and Pivoting Data 481

 Public Sub Read(ByVal r As BinaryReader) _

 Implements IBinarySerialize.Read

 sb = New StringBuilder(r.ReadString())

 End Sub

 Public Sub Write(ByVal w As BinaryWriter) _

 Implements IBinarySerialize.Write

 w.Write(Me.sb.ToString())

 End Sub

End Structure

<Serializable(), _

 StructLayout(LayoutKind.Sequential), _

 SqlUserDefinedAggregate(_

 Format.Native, _

 IsInvariantToOrder:=False, _

 IsInvariantToNulls:=True, _

 IsInvariantToDuplicates:=False)> _

Public Class Product

 Private si As SqlInt64

 Public Sub Init()

 si = 1

 End Sub

 Public Sub Accumulate(ByVal v As SqlInt64)

 If v.IsNull = True Or si.IsNull = True Then

 si = SqlInt64.Null

 Return

 End If

 If v = 0 Or si = 0 Then

 si = 0

 Return

 End If

 If (Math.Abs(v.Value) <= SqlInt64.MaxValue / Math.Abs(si.Value)) _

 Then

 si = si * v

 Else

 si = 0

 End If

 End Sub

 Public Sub Merge(ByVal Group As Product)

 Accumulate(Group.Terminate())

 End Sub

 Public Function Terminate() As SqlInt64

 If si.IsNull = True Then

 Return SqlInt64.Null

 Else

 Return si

 End If

 End Function

End Class

 Public Sub Read(ByVal r As BinaryReader) _

 Implements IBinarySerialize.Read

 sb = New StringBuilder(r.ReadString())

 End Sub

 Public Sub Write(ByVal w As BinaryWriter) _

 Implements IBinarySerialize.Write

 w.Write(Me.sb.ToString())

 End Sub

End Structure

<Serializable(), _

 StructLayout(LayoutKind.Sequential), _

 SqlUserDefinedAggregate(_

 Format.Native, _

 IsInvariantToOrder:=False, _

 IsInvariantToNulls:=True, _

 IsInvariantToDuplicates:=False)> _

Public Class Product

 Private si As SqlInt64

 Public Sub Init()

 si = 1

 End Sub

 Public Sub Accumulate(ByVal v As SqlInt64)

 If v.IsNull = True Or si.IsNull = True Then

 si = SqlInt64.Null

 Return

 End If

 If v = 0 Or si = 0 Then

 si = 0

 Return

 End If

 If (Math.Abs(v.Value) <= SqlInt64.MaxValue / Math.Abs(si.Value)) _

 Then

 si = si * v

 Else

 si = 0

 End If

 End Sub

 Public Sub Merge(ByVal Group As Product)

 Accumulate(Group.Terminate())

 End Sub

 Public Function Terminate() As SqlInt64

 If si.IsNull = True Then

 Return SqlInt64.Null

 Else

 Return si

 End If

 End Function

End Class

C08626034.indd 481 2/13/2009 2:04:51 AM

482 Inside Microsoft SQL Server 2008: T-SQL Querying

 Use the following step-by-step instructions to create and deploy the assemblies in Visual
Studio 2008.

 Creating and Deploying an Assembly in Visual Studio 2008

 1. In Visual Studio 2008, create a new C# or Visual Basic project based on your language
preference. Use the Database folder and the SQL Server Project template.

 Note This template is not available in Visual Studio 2008, Standard edition. If you’re working
with the Standard edition, use the Class Library template and manually write all the code.

 2. In the New Project dialog box, specify the following information:

❏ Name UDAs

❏ Location C:\

❏ Solution Name UDAs

When you’re done entering the information, confi rm that it is correct.

 3. At this point, you’ll be requested to specify a database reference. Create a new
 database reference to the tempdb database in the SQL Server instance you’re working
with and choose it. The database reference you choose tells Visual Studio where to
 deploy the UDAs that you develop.

 4. After confi rming the choice of database reference, in the Solution Explorer window,
right-click the UDAs project, select the menu items Add and Aggregate, and then
choose the Aggregate template. If you’re using C#, rename the class Aggregate1.cs to
UDAClasses.cs. If you’re using Visual Basic, rename Aggregate1.vb to UDAClasses.vb.
Confi rm.

 5. Examine the code of the template. You’ll fi nd that a UDA is implemented as a structure
(struct in C#, Structure in Visual Basic). It can be implemented as a class as well. The
fi rst block of code in the template includes namespaces that are used in the assembly
(lines of code starting with using in C# and with Imports in Visual Basic). Add three
more statements to include the following namespaces: System.Text, System.IO, and
System.Runtime.InteropServices. (You can copy those from Listing 8-2 or Listing 8-3.)
You’ll use the StringBuilder class from the System.Text namespace, the BinaryReader
and BinaryWriter classes from the System.IO namespace, and the StructLayout attribute
from the System.Runtime.InteropServices namespace (in the second UDA).

 6. Rename the default name of the UDA—which is currently the same name as the name
of the class (UDAClasses)—to StringConcat.

 7. You’ll fi nd four methods that are already provided by the template. These are the methods
that every UDA must implement. However, if you use the Class Library template for your

Creating and Deploying an Assembly in Visual Studio 2008

C08626034.indd 482 2/13/2009 2:04:51 AM

 Chapter 8 Aggregating and Pivoting Data 483

project, you have to write them manually. Using the Aggregate template, all you have to
do is fi ll them with your code. Following is a description of the four methods:

❏ Init This method is used to initialize the computation. It is invoked once for each
group that the query processor is aggregating.

❏ Accumulate The name of the method gives you a hint at its purpose—
accumulating the aggregate values, of course. This method is invoked once for
each value (that is, for every single row) in the group that is being aggregated.
It uses input parameters, and the parameters have to be of the data types
 corresponding to the native SQL Server data types of the columns you are going
to aggregate. The data type of the input can also be a CLR UDT. In SQL Server
2005, UDAs supported no more than one input parameter. In SQL Server 2008,
UDAs support multiple input parameters.

❏ Merge Notice that this method uses an input parameter with the type that is the
aggregate class. The method is used to merge multiple partial computations of
an aggregation.

❏ Terminate This method fi nishes the aggregation and returns the result.

 8. Add an internal (private) variable—sb—to the class just before the Init method. You
can do so by simply copying the code that declares it from Listing 8-2 or Listing 8-3,
depending on your choice of language. The variable sb is of type StringBuilder and will
hold the intermediate aggregate value.

 9. Override the current code for the four methods with the code implementing them from
Listing 8-2 or Listing 8-3. Keep in mind the following points for each method:

❏ In the Init method, you initialize sb with an empty string.

❏ The Accumulate method accepts two input parameters (new in SQL Server
2008)—v and separator. The parameter v represents the value to be concatenated,
and the parameter separator is obviously the separator. If v is NULL, it is simply
ignored, similar to the way built-in aggregates handle NULLs. If v is not NULL, the
value in v and a separator are appended to sb.

❏ In the Merge method, you are simply adding a partial aggregation to the current
one. You do so by calling the Accumulate method of the current aggregation and
adding the termination (fi nal value) of the other partial aggregation. The input
of the Merge function refers to the class name, which you revised earlier to
StringConcat.

❏ The Terminate method is very simple as well; it just returns the string representation
of the aggregated value minus the superfl uous separator at the end.

 10. Delete the last two rows of the code in the class from the template; these are a
 placeholder for a member fi eld. You already defi ned the member fi eld you need at the
beginning of the UDA.

C08626034.indd 483 2/13/2009 2:04:51 AM

484 Inside Microsoft SQL Server 2008: T-SQL Querying

 11. Next, go back to the top of the UDA, right after the inclusion of the namespaces.
You’ll fi nd attribute names that you want to include. Attributes help Visual Studio in
 deployment, and they help SQL Server to optimize the usage of the UDA. UDAs have
to include the Serializable attribute. Serialization in .NET means saving the values
of the fi elds of a class persistently. UDAs need serialization for intermediate results.
The format of the serialization can be native, meaning they are left to SQL Server or
 defi ned by the user. Serialization can be native if you use only .NET value types; it has
to be user defi ned if you use .NET reference types. Unfortunately, the string type is
a reference type in .NET. Therefore, you have to prepare your own serialization. You
have to implement the IBinarySerialize interface, which defi nes just two methods: Read
and Write. The implementation of these methods in our UDA is very simple. The Read
method uses the ReadString method of the StringBuilder class. The Write method uses
the default ToString method. The ToString method is inherited by all .NET classes from
the topmost class, called System.Object.

 Continue implementing the UDA by following these steps:

 11.1. Specify that you are going to implement the IBinarySerialize interface in the
structure. If you’re using C#, you do so by adding a colon and the name of the
interface right after the name of the structure (the UDA name). If you’re using
Visual Basic, you do so by adding Implements IBinarySerialize after the name of
the structure.

 11.2. Copy the Read and Write methods from Listing 8-2 or Listing 8-3 to the end of
your UDA.

 11.3. Change the Format.Native property of the SqlUserDefi nedAggregate attribute
to Format.UserDefi ned. In SQL Server 2005, with user-defi ned serialization,
your aggregate was limited to 8,000 bytes only. You had to specify how many
bytes your UDA could return at maximum with the MaxByteSize property of
the SqlUserDefi nedAggregate attribute. SQL Server 2008 lifts this restriction and
 supports unlimited size (or more accurately, the maximum size supported by
large object types like VARCHAR(MAX), which is currently 2 GB). A value of –1 in
the MaxByteSize property indicates unlimited size.

 12. You’ll fi nd some other interesting properties of the SqlUserDefi nedAggregate attribute
in Listings 8-2 and 8-3. Let’s explore them:

❏ IsInvariantToDuplicates This is an optional property. For example, the MAX
 aggregate is invariant to duplicates, while SUM is not.

❏ IsInvariantToNulls This is another optional property. It specifi es whether the
 aggregate is invariant to NULLs.

❏ IsInvariantToOrder This property is reserved for future use. It is currently ignored
by the query processor. Therefore, order is currently not guaranteed. If you want
to concatenate elements in a certain order, you have to implement your own
sorting logic either in the Accumulate or the Terminate methods. This naturally
incurs extra cost and unfortunately cannot benefi t from index ordering.

C08626034.indd 484 2/13/2009 2:04:51 AM

 Chapter 8 Aggregating and Pivoting Data 485

❏ IsNullIfEmpty This property indicates whether the aggregate returns a NULL if
no values have been accumulated.

 13. Add the aforementioned properties to your UDA by copying them from Listing 8-2 or
Listing 8-3. Your fi rst UDA is now complete!

 14. Listings 8-2 and 8-3 also have the code to implement a product UDA (Product). Copy
the complete code implementing Product to your script. Note that this UDA involves
 handling of big integers only. Because the UDA internally deals only with value types, it
can use native serialization. Native serialization requires that the StructLayoutAttribute be
specifi ed as StructLayout.LayoutKind.Sequential if the UDA is defi ned in a class and not
a structure. Otherwise, the UDA implements the same four methods as your previous
UDA. An additional check in the Accumulate method prevents out-of-range values.

 15. Save all fi les by choosing the File menu item and then choosing Save All.

 16. Create the assembly fi le in the project folder by building the solution. You do this by
choosing the Build menu item and then choosing Build Solution.

 17. Deploy the assembly in SQL Server.

 Note To automatically deploy the solution in SQL Server, you normally choose the
Build menu item and then choose Deploy Solution. However, at the time of this writing,
 automatic deployment in Visual Studio 2008 with Service Pack 1 fails if you use any of
the new UDA features in SQL Server 2008 (multiple input parameters or the unlimited
 maximum size). Therefore, I’ll provide instructions here to do explicit deployment.

 18. Explicit deployment of the UDAs in SQL Server involves running the CREATE ASSEMBLY
command to import the intermediate language code from the assembly fi le into
the target database (tempdb in our case) and the CREATE AGGREGATE command to
 register each aggregate. If you used C# to defi ne the UDAs, run the following code
while connected to the tempdb database:

CREATE ASSEMBLY UDAs

 FROM ‘C:\UDAs\UDAs\bin\Debug\UDAs.dll’;

CREATE AGGREGATE dbo.StringConcat

(

 @value AS NVARCHAR(MAX),

 @separator AS NCHAR(1)

)

RETURNS NVARCHAR(MAX)

EXTERNAL NAME UDAs.StringConcat;

CREATE AGGREGATE dbo.Product

(

 @value AS BIGINT

)

RETURNS BIGINT

EXTERNAL NAME UDAs.Product;

C08626034.indd 485 2/13/2009 2:04:51 AM

486 Inside Microsoft SQL Server 2008: T-SQL Querying

 If you used Visual Basic, run the following code:

CREATE ASSEMBLY UDAs

 FROM ‘C:\UDAs\UDAs\bin\UDAs.dll’;

CREATE AGGREGATE dbo.StringConcat

(

 @value AS NVARCHAR(MAX),

 @separator AS NCHAR(1)

)

RETURNS NVARCHAR(MAX)

EXTERNAL NAME UDAs.[UDAs.StringConcat];

CREATE AGGREGATE dbo.Product

(

 @value AS BIGINT

)

RETURNS BIGINT

EXTERNAL NAME UDAs.[UDAs.Product];

 The assembly should be cataloged at this point, and both UDAs should be created.

 You can check whether the deployment was successful by browsing the sys.assemblies and
sys.assembly_modules catalog views, which are in the tempdb database in our case. Run the
following code to query those views:

SELECT * FROM sys.assemblies;

SELECT * FROM sys.assembly_modules;

 Note that to run user-defi ned assemblies in SQL Server, you need to enable the server
 confi guration option ‘clr enabled’ (which is disabled by default). You do so by running the
 following code:

EXEC sp_configure 'clr enabled', 1;

RECONFIGURE WITH OVERRIDE;

 This requirement is applicable only if you want to run user-defi ned assemblies; this option is
not required to be turned on if you want to run system-supplied assemblies.

 That’s basically it. You use UDAs just like you use any built-in aggregate function—and that’s
one of their great advantages compared to other solutions to custom aggregates. To test the
new functions, run the following code, and you’ll get the same results returned by the other
solutions to custom aggregates I presented earlier:

SELECT groupid, dbo.StringConcat(string, N',') AS string

FROM dbo.Groups

GROUP BY groupid;

SELECT groupid, dbo.Product(val) AS product

FROM dbo.Groups

GROUP BY groupid;

C08626034.indd 486 2/13/2009 2:04:51 AM

 Chapter 8 Aggregating and Pivoting Data 487

 Note that the StringConcat function expects a non-NULL separator as input and will fail if
provided with a NULL. Of course, you can add logic to the function’s defi nition to use some
default separator when a NULL is specifi ed.

Specialized Solutions

 Another type of solution for custom aggregates is developing a specialized, optimized
 solution for each aggregate. The advantage is usually the improved performance of the
 solution. The disadvantage is that you probably won’t be able to use similar logic for other
aggregate calculations.

Specialized Solution for Aggregate String Concatenation

 A specialized solution for aggregate string concatenation uses the PATH mode of the FOR
XML query option. This beautiful (and extremely fast) technique was devised by Michael Rys,
a program manager with the Microsoft SQL Server development team, and Eugene Kogan,
a technical lead on the Microsoft SQL Server Engine team. The PATH mode provides an
easier way to mix elements and attributes than the EXPLICIT directive. Here’s the specialized
 solution for aggregate string concatenation:

SELECT groupid,

 STUFF((SELECT ',' + string AS [text()]

 FROM dbo.Groups AS G2

 WHERE G2.groupid = G1.groupid

 ORDER BY memberid

 FOR XML PATH('')), 1, 1, '') AS string

FROM dbo.Groups AS G1

GROUP BY groupid;

 The subquery basically returns an ordered path of all strings within the current group.
Because an empty string is provided to the PATH clause as input, a wrapper element is not
generated. An expression with no alias (for example, ‘,’ + string) or one aliased as [text()] is
inlined, and its contents are inserted as a text node. The purpose of the STUFF function is
simply to remove the fi rst comma (by substituting it with an empty string).

Dynamic Pivoting Now that you are familiar with a fast, specialized solution to string
 concatenation, you can put it to use to achieve dynamic pivoting. Recall from the “Pivoting”
section that the static solutions for pivoting in SQL Server require you to explicitly list the
spreading values (the values in the spreading element). Consider the following static query,
which I covered earlier in the “Pivoting” section:

SELECT *

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

 FROM dbo.Orders) AS D

 PIVOT(SUM(qty) FOR orderyear IN([2006],[2007],[2008])) AS P;

C08626034.indd 487 2/13/2009 2:04:51 AM

488 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note that this query is against the dbo.Orders table that you created and populated earlier
by running the code in Listing 8-1. Here you have to explicitly list the order years in the
IN clause. If you want to make this solution more dynamic, query the distinct order years
from the table and use the FOR XML PATH technique to construct the comma-separated
list of years. You can use the QUOTENAME function to convert the integer years to Unicode
 character strings and add brackets around them. Also, using QUOTENAME is critical to
 prevent SQL Injection if this technique is used for a nonnumeric spreading column. The query
that produces the comma-separated list of years looks like this:

SELECT

 STUFF(

 (SELECT N',' + QUOTENAME(orderyear) AS [text()]

 FROM (SELECT DISTINCT YEAR(orderdate) AS orderyear

 FROM dbo.Orders) AS Years

 ORDER BY orderyear

 FOR XML PATH('')), 1, 1, '');

 Note that this useful technique has some limitations, though not serious ones, because
it’s XML based. For example, characters that have special meaning in XML, like ‘<’, will be
 converted to codes (like <), yielding the wrong pivot statement.

 What’s left is to construct the whole query string, store it in a variable and use the sp_executesql
stored procedure to execute it dynamically, like so:

DECLARE @sql AS NVARCHAR(1000);

SET @sql = N'SELECT *

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

 FROM dbo.Orders) AS D

 PIVOT(SUM(qty) FOR orderyear IN(' +

STUFF(

 (SELECT N',' + QUOTENAME(orderyear) AS [text()]

 FROM (SELECT DISTINCT YEAR(orderdate) AS orderyear

 FROM dbo.Orders) AS Years

 ORDER BY orderyear

 FOR XML PATH('')), 1, 1, '') + N')) AS P;';

EXEC sp_executesql @stmt = @sql;

Specialized Solution for Aggregate Product

 Keep in mind that to calculate an aggregate product, you have to scan all values in the
group. So the performance potential your solution can reach is to achieve the calculation by
 scanning the data only once, using a set-based query. In the case of an aggregate product,
this can be achieved using mathematical manipulation based on logarithms. I’ll rely on the
following logarithmic equations:

 Equation 1: loga(b) = x if and only if ax = b

C08626034.indd 488 2/13/2009 2:04:51 AM

 Chapter 8 Aggregating and Pivoting Data 489

 Equation 2: loga(v1 * v2 * . . . * vn) = loga(v1) + loga(v2) + . . . + loga(vn)

 Basically, what you’re going to do here is a transformation of calculations. You have support
in T-SQL for the LOG, POWER, and SUM functions. Using those, you can generate the missing
product. Group the data by the groupid column, as you would with any built-in aggregate.
The expression SUM(LOG10(val)) corresponds to the right side of Equation 2, where the base
a is equal to 10 in our case, because you used the LOG10 function. To get the product of the
elements, all you have left to do is raise the base (10) to the power of the right side of the
equation. In other words, the expression POWER(10., SUM(LOG10(val))) gives you the product
of elements within the group. Here’s what the full query looks like:

SELECT groupid, POWER(10., SUM(LOG10(val))) AS product

FROM dbo.Groups

GROUP BY groupid;

 This is the fi nal solution if you’re dealing only with positive values. However, the logarithm
function is undefi ned for zero and negative numbers. You can use pivoting techniques to
identify and deal with zeros and negatives as follows:

SELECT groupid,

 CASE

 WHEN MAX(CASE WHEN val = 0 THEN 1 END) = 1 THEN 0

 ELSE

 CASE WHEN COUNT(CASE WHEN val < 0 THEN 1 END) % 2 = 0

 THEN 1 ELSE -1

 END * POWER(10., SUM(LOG10(NULLIF(ABS(val), 0))))

 END AS product

FROM dbo.Groups

GROUP BY groupid;

 The outer CASE expression fi rst uses a pivoting technique to check whether a 0 value
 appears in the group, in which case it returns a 0 as the result. The ELSE clause invokes
 another CASE expression, which also uses a pivoting technique to count the number of
 negative values in the group. If that number is even, it produces a +1; if it’s odd, it produces
a –1. The purpose of this calculation is to determine the numerical sign of the result. The sign
(–1 or +1) is then multiplied by the product of the absolute values of the numbers in the
group to give the desired product.

 Note that NULLIF is used here to substitute zeros with NULLs. You might expect this part
of the expression not to be evaluated at all if a zero is found. But remember that the
 optimizer can consider many different physical plans to execute your query. As a result, you
can’t be certain of the actual order in which parts of an expression will be evaluated. By
substituting zeros with NULLs, you ensure that you’ll never get a domain error if the LOG10
function ends up being invoked with a zero as an input. This use of NULLIF, together with
the use of ABS, allows this solution to accommodate inputs of any sign (negative, zero,
and positive).

C08626034.indd 489 2/13/2009 2:04:51 AM

490 Inside Microsoft SQL Server 2008: T-SQL Querying

 You could also use a pure mathematical approach to handle zeros and negative values using
the following query:

SELECT groupid,

 CAST(ROUND(EXP(SUM(LOG(ABS(NULLIF(val,0)))))*

 (1-SUM(1-SIGN(val))%4)*(1-SUM(1-SQUARE(SIGN(val)))),0) AS INT)

 AS product

FROM dbo.Groups

GROUP BY groupid;

 This example shows that you should never lose hope when searching for an effi cient solution.
If you invest the time and think outside the box, in most cases you’ll fi nd a solution.

Specialized Solutions for Aggregate Bitwise Operations

 In this section, I’ll introduce specialized solutions for aggregating the T-SQL bitwise
 operations—bitwise OR (|), bitwise AND (&), and bitwise XOR (̂). I’ll assume that you’re
 familiar with the basics of bitwise operators and their uses and provide only a brief overview.
If you’re not, please refer fi rst to the section “Bitwise Operators” in SQL Server Books Online.

 Bitwise operations are operations performed on the individual bits of integer data. Each bit has two
possible values, 1 and 0. Integers can be used to store bitmaps, or strings of bits, and in fact they are
used internally by SQL Server to store metadata information—for example, properties of indexes
(clustered, unique, and so on) and properties of databases (readonly, restrict access, autoshrink, and
so on). You might also choose to store bitmaps yourself to represent sets of binary attributes—for
example, a set of permissions where each bit represents a different permission.

 Some experts advise against using such a design because it violates 1NF (fi rst normal form,
which requires attributes to be atomic). You might well prefer to design your data in a more
normalized form, where attributes like this are stored in separate columns. I don’t want to
get into a debate about which design is better. Here I’ll assume a given design that does
store bitmaps with sets of fl ags, and I’ll assume that you need to perform aggregate bitwise
 activities on these bitmaps. I just want to introduce the techniques for cases where you do
fi nd the need to use them.

 Bitwise OR (|) is usually used to construct bitmaps or to generate a result bitmap that
 accumulates all bits that are turned on. In the result of bitwise OR, bits are turned on (that is,
have value 1) if they are turned on in at least one of the separate bitmaps.

 Bitwise AND (&) is usually used to check whether a certain bit (or a set of bits) is turned on by
ANDing the source bitmap and a mask. It’s also used to accumulate only bits that are turned
on in all bitmaps. It generates a result bit that is turned on if that bit is turned on in all the
individual bitmaps.

 Bitwise XOR (̂) is usually used to calculate parity or as part of a scheme to encrypt data. For
each bit position, the result bit is turned on if it is on in an odd number of the individual bitmaps.

C08626034.indd 490 2/13/2009 2:04:51 AM

 Chapter 8 Aggregating and Pivoting Data 491

 Note Bitwise XOR is the only bitwise operator that is reversible. That’s why it’s used for parity
calculations and encryption.

 Aggregate versions of the bitwise operators are not provided in SQL Server, and I’ll provide
solutions here to perform aggregate bitwise operations. I’ll use the same Groups table
that I used in my other custom aggregate examples. Assume that the integer column val
represents a bitmap. To see the bit representation of each integer, fi rst create the function
DecToBase by running the following code:

IF OBJECT_ID('dbo.DecToBase') IS NOT NULL

 DROP FUNCTION dbo.DecToBase;

GO

CREATE FUNCTION dbo.DecToBase(@val AS BIGINT, @base AS INT)

 RETURNS VARCHAR(63)

AS

BEGIN

 DECLARE @r AS VARCHAR(63), @alldigits AS VARCHAR(36);

 SET @alldigits = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ';

 SET @r = '';

 WHILE @val > 0

 BEGIN

 SET @r = SUBSTRING(@alldigits, @val % @base + 1, 1) + @r;

 SET @val = @val / @base;

 END

 RETURN @r;

END

GO

 The function accepts two inputs: a 64-bit integer holding the source bitmap and a base in
which you want to represent the data. Use the following query to return the bit representation
of the integers in the val column of Groups:

SELECT groupid, val,

 RIGHT(REPLICATE('0', 32) + CAST(dbo.DecToBase(val, 2) AS VARCHAR(64)),

 32) AS binval

FROM dbo.Groups;

 This code generates the following output (only the 10 rightmost digits of binval are shown):

groupid val binval

---------- ----------- ---------

a 6 00000110

a 7 00000111

b 3 00000011

b 7 00000111

b 3 00000011

b 11 00001011

c 8 00001000

c 10 00001010

c 12 00001100

C08626034.indd 491 2/13/2009 2:04:51 AM

492 Inside Microsoft SQL Server 2008: T-SQL Querying

 The binval column shows the val column in base 2 representation, with leading zeros to create
a string with a fi xed number of digits. Of course, you can adjust the number of leading zeros
according to your needs, which I did to produce the outputs I’ll show. To avoid distracting
you from the techniques I want to focus on, however, the code for that adjustment is not in
my code samples.

Aggregate Bitwise OR Without further ado, let’s start with calculating an aggregate bitwise
OR. To give tangible context to the problem, imagine that you’re maintaining application
 security in the database. The groupid column represents a user, and the val column represents
a bitmap with permission states (either 1 for granted or 0 for not granted) of a role the user is a
member of. You’re after the effective permissions bitmap for each user (group), which should be
calculated as the aggregate bitwise OR between all bitmaps of roles the user is a member of.

 The main aspect of a bitwise OR operation that I’ll rely on in my solutions is the fact that it’s
equivalent to the arithmetic sum of the values represented by each distinct bit value that is
turned on in the individual bitmaps. Within an integer, a bit represents the value 2(bit_pos-1).
For example, the bit value of the third bit is 22 = 4. Take, for example, the bitmaps for user
c: 8 (1000), 10 (1010), and 12 (1100). The bitmap 8 has only one bit turned on—the bit value
 representing 8; 10 has the bits representing 8 and 2 turned on; and 12 has the 8 and 4 bits
turned on. The distinct bits turned on in any of the integers 8, 10, and 12 are the 2, 4, and
8 bits, so the aggregate bitwise OR of 8, 10, and 12 is equal to 2 + 4 + 8 = 14 (1110).

 The following solution relies on the aforementioned logic by extracting the individual bit
 values that are turned on in any of the participating bitmaps. The extraction is achieved
 using the expression MAX(val & <bitval>). The query then performs an arithmetic sum of the
 individual bit values:

SELECT groupid,

 MAX(val & 1)

 + MAX(val & 2)

 + MAX(val & 4)

 + MAX(val & 8)

-- ...

 + MAX(val & 1073741824) AS agg_or

FROM dbo.Groups

GROUP BY groupid;

 This query generates the following output:

groupid agg_or binval

---------- ----------- --------

a 7 00000111

b 15 00001111

c 14 00001110

 Note that I added a third column (binval) to the output showing the 10 rightmost digits of
the binary representation of the result value. I’ll continue to do so with the rest of the queries
that apply aggregate bitwise operations.

C08626034.indd 492 2/13/2009 2:04:51 AM

 Chapter 8 Aggregating and Pivoting Data 493

 Similarly, you can use SUM(DISTINCT val & <bitval>) instead of MAX(val & <bitval>) because
the only possible results are <bitval> and 0:

SELECT groupid,

 SUM(DISTINCT val & 1)

 + SUM(DISTINCT val & 2)

 + SUM(DISTINCT val & 4)

 + SUM(DISTINCT val & 8)

-- ...

 + SUM(DISTINCT val & 1073741824) AS agg_or

FROM dbo.Groups

GROUP BY groupid;

 Both solutions suffer from the same limitation—lengthy query strings—because of
the need for a different expression for each bit value. In an effort to shorten the query
strings, you can use an auxiliary table. You join the Groups table with an auxiliary table
that contains all relevant bit values, using val & bitval = bitval as the join condition.
The result of the join will include all bit values that are turned on in any of the bitmaps.
You can then fi nd SUM(DISTINCT <bitval>) for each group. You can easily generate
the auxiliary table of bit values from the Nums table used earlier. Filter as many
 numbers as the bits that you might need and raise 2 to the power n–1. Here’s the
complete solution:

SELECT groupid, SUM(DISTINCT bitval) AS agg_or

FROM dbo.Groups

 JOIN (SELECT POWER(2, n-1) AS bitval

 FROM dbo.Nums

 WHERE n <= 31) AS Bits

 ON val & bitval = bitval

GROUP BY groupid;

Aggregate Bitwise AND In a similar manner, you can calculate an aggregate bitwise
AND. In the permissions scenario, an aggregate bitwise AND represents the most restrictive
 permission set. Just keep in mind that a bit value should be added to the arithmetic sum only
if it’s turned on in all bitmaps. So fi rst group the data by groupid and bitval and fi lter only the
groups where MIN(val & bitval) > 0, meaning that the bit value was turned on in all bitmaps.
In an outer query, group the data by groupid and perform the arithmetic sum of the bit
 values from the inner query:

SELECT groupid, SUM(bitval) AS agg_and

FROM (SELECT groupid, bitval

 FROM dbo.Groups,

 (SELECT POWER(2, n-1) AS bitval

 FROM dbo.Nums

 WHERE n <= 31) AS Bits

 GROUP BY groupid, bitval

 HAVING MIN(val & bitval) > 0) AS D

GROUP BY groupid;

C08626034.indd 493 2/13/2009 2:04:51 AM

494 Inside Microsoft SQL Server 2008: T-SQL Querying

 This query generates the following output:

groupid agg_and binval

---------- ----------- --------

a 6 00000110

b 3 00000011

c 8 00001000

Aggregate Bitwise XOR To calculate an aggregate bitwise XOR operation, fi lter only the
groupid, bitval groups that have an odd number of bits turned on, as shown in the following
code, which illustrates an aggregate bitwise XOR using Nums:

SELECT groupid, SUM(bitval) AS agg_xor

FROM (SELECT groupid, bitval

 FROM dbo.Groups,

 (SELECT POWER(2, n-1) AS bitval

 FROM dbo.Nums

 WHERE n <= 31) AS Bits

 GROUP BY groupid, bitval

 HAVING SUM(SIGN(val & bitval)) % 2 = 1) AS D

GROUP BY groupid;

 This query produces the following output:

groupid agg_xor binval

---------- ----------- --------

a 1 00000001

b 12 00001100

c 14 00001110

Median

 As another example of a specialized custom aggregate solution, I’ll use the statistical median
calculation. Suppose that you need to calculate the median of the val column for each group.
There are two different defi nitions of median. Here we will return the middle value in case we
have an odd number of elements and the average of the two middle values in case we have
an even number of elements.

 The following code shows a technique for calculating the median:

WITH Tiles AS

(

 SELECT groupid, val,

 NTILE(2) OVER(PARTITION BY groupid ORDER BY val) AS tile

 FROM dbo.Groups

),

GroupedTiles AS

(

 SELECT groupid, tile, COUNT(*) AS cnt,

 CASE WHEN tile = 1 THEN MAX(val) ELSE MIN(val) END AS val

 FROM Tiles

 GROUP BY groupid, tile

)

C08626034.indd 494 2/13/2009 2:04:51 AM

 Chapter 8 Aggregating and Pivoting Data 495

SELECT groupid,

 CASE WHEN MIN(cnt) = MAX(cnt) THEN AVG(1.*val)

 ELSE MIN(val) END AS median

FROM GroupedTiles

GROUP BY groupid;

 This code generates the following output:

groupid median

---------- ----------

a 6.500000

b 5.000000

c 10.000000

 The Tiles CTE calculates the NTILE(2) value within the group, based on val order. When you
have an even number of elements, the fi rst half of the values gets tile number 1, and the
 second half gets tile number 2. In an even case, the median is supposed to be the average
of the highest value within the fi rst tile and the lowest in the second. When you have an
odd number of elements, remember that an additional row is added to the fi rst group. This
means that the highest value in the fi rst tile is the median.

 The second CTE (GroupedTiles) groups the data by group and tile number, returning the row
count for each group and tile as well as the val column, which for the fi rst tile is the maximum
value within the tile and for the second tile is the minimum value within the tile.

 The outer query groups the two rows in each group (one representing each tile). A CASE
 expression in the SELECT list determines what to return based on the parity of the group’s
row count. When the group has an even number of rows (that is, the group’s two tiles have
the same row count), you get the average of the maximum in the fi rst tile and the minimum
in the second. When the group has an odd number of elements (that is, the group’s two tiles
have different row counts), you get the minimum of the two values, which happens to be the
maximum within the fi rst tile, which, in turn, happens to be the median.

 Using the ROW_NUMBER function, you can come up with additional solutions to fi nding the
median that are more elegant and somewhat simpler. Here’s the fi rst example:

WITH RN AS

(

 SELECT groupid, val,

 ROW_NUMBER()

 OVER(PARTITION BY groupid ORDER BY val, memberid) AS rna,

 ROW_NUMBER()

 OVER(PARTITION BY groupid ORDER BY val DESC, memberid DESC) AS rnd

 FROM dbo.Groups

)

SELECT groupid, AVG(1.*val) AS median

FROM RN

WHERE ABS(rna - rnd) <= 1

GROUP BY groupid;

C08626034.indd 495 2/13/2009 2:04:51 AM

496 Inside Microsoft SQL Server 2008: T-SQL Querying

 The idea is to calculate two row numbers for each row: one based on val, memberid (the
 tiebreaker) in ascending order (rna) and the other based on the same attributes in descending
order (rnd). Two sequences sorted in opposite directions have an interesting mathematical
 relationship that you can use to your advantage. The absolute difference between the two
is smaller than or equal to 1 only for the elements that need to participate in the median
 calculation. Take, for example, a group with an odd number of elements; ABS(rna – rnd) is equal
to 0 only for the middle row. For all other rows, it is greater than 1. Given an even number of
elements, the difference is 1 for the two middle rows and greater than 1 for all others.

 The reason for using memberid as a tiebreaker is to guarantee determinism of the row
 number calculations. Because you’re calculating two different row numbers, you want to
make sure that a value that appears at the nth position from the beginning in ascending
 order appears at the nth position from the end in descending order.

 Once the values that need to participate in the median calculation are isolated, you just need
to group them by groupid and calculate the average per group.

 You can avoid the need to calculate two separate row numbers by deriving the second from
the fi rst. The descending row numbers can be calculated by subtracting the ascending row
numbers from the count of rows in the group and adding one. For example, in a group of four
elements, the row that got an ascending row number 1 would get the descending row number
4–1+1 = 4. Ascending row number 2 would get the descending row number 4–2+1 = 3 and
so on. Deriving the descending row number from the ascending one eliminates the need for a
tiebreaker. You’re not dealing with two separate calculations; therefore, nondeterminism is not
an issue anymore.

 So the calculation rna – rnd becomes the following: rn – (cnt-rn+1) = 2*rn – cnt – 1. Here’s a
query that implements this logic:

WITH RN AS

(

 SELECT groupid, val,

 ROW_NUMBER() OVER(PARTITION BY groupid ORDER BY val) AS rn,

 COUNT(*) OVER(PARTITION BY groupid) AS cnt

 FROM dbo.Groups

)

SELECT groupid, AVG(1.*val) AS median

FROM RN

WHERE ABS(2*rn - cnt - 1) <= 1

GROUP BY groupid;

 Here’s another way to fi gure out which rows participate in the median calculation based on
the row number and the count of rows in the group: rn IN((cnt+1)/2, (cnt+2)/2). For an odd
number of elements, both expressions yield the middle row number. For example, if you
have 7 rows, both (7+1)/2 and (7+2)/2 equal 4. For an even number of elements, the fi rst
 expression yields the row number just before the middle point, and the second yields the

C08626034.indd 496 2/13/2009 2:04:51 AM

 Chapter 8 Aggregating and Pivoting Data 497

row number just after it. If you have 8 rows, (8+1)/2 yields 4, and (8+2)/2 yields 5. Here’s the
query that implements this logic:

WITH RN AS

(

 SELECT groupid, val,

 ROW_NUMBER() OVER(PARTITION BY groupid ORDER BY val) AS rn,

 COUNT(*) OVER(PARTITION BY groupid) AS cnt

 FROM dbo.Groups

)

SELECT groupid, AVG(1.*val) AS median

FROM RN

WHERE rn IN((cnt+1)/2, (cnt+2)/2)

GROUP BY groupid;

Mode

 The last specialized solution of a custom aggregate that I’ll cover is for the mode of a
 distribution. The mode is the most frequently occurring value. As an example of mode
 calculation, consider a request to return for each customer the ID of the employee who
handled the most orders for that customer, according to the Sales.Orders table in the
InsideTSQL2008 database. In case of ties, you need to determine what you want to do. One
option is to return all tied employees; another option is to use a tiebreaker to determine
which to return—for example, the one with the higher employee ID.

 The fi rst solution that I’ll present is based on ranking calculations. I’ll fi rst describe a solution
that applies a tiebreaker, and then I’ll explain the required revisions for the solution to return
all ties.

 You group the rows by customer ID and employee ID. You calculate a count of orders per
group, plus a row number partitioned by customer ID, based on the order of count descending
and employee ID descending. The rows with the employee ID that is the mode—with the
higher employee ID used as a tiebreaker—have row number 1. What’s left is to defi ne a table
 expression based on the query and in the outer query fi lter only the rows where the row
 number is equal to 1, like so:

USE InsideTSQL2008;

WITH C AS

(

 SELECT custid, empid, COUNT(*) AS cnt,

 ROW_NUMBER() OVER(PARTITION BY custid

 ORDER BY COUNT(*) DESC, empid DESC) AS rn

 FROM Sales.Orders

 GROUP BY custid, empid

)

SELECT custid, empid, cnt

FROM C

WHERE rn = 1;

C08626034.indd 497 2/13/2009 2:04:51 AM

498 Inside Microsoft SQL Server 2008: T-SQL Querying

 This query generates the following output, shown here in abbreviated form:

custid empid cnt

----------- ----------- -----------

1 4 2

2 3 2

3 3 3

4 4 4

5 3 6

6 9 3

7 4 3

8 4 2

9 4 4

10 3 4

11 6 2

12 8 2

...

 If you want to return all ties, simply use the RANK function instead of ROW_NUMBER and
calculate it based on count ordering alone (without the employee ID tiebreaker), like so:

WITH C AS

(

 SELECT custid, empid, COUNT(*) AS cnt,

 RANK() OVER(PARTITION BY custid

 ORDER BY COUNT(*) DESC) AS rn

 FROM Sales.Orders

 GROUP BY custid, empid

)

SELECT custid, empid, cnt

FROM C

WHERE rn = 1;

 This time, as you can see in the following output, ties are returned:

custid empid cnt

----------- ----------- -----------

1 1 2

1 4 2

2 3 2

3 3 3

4 4 4

5 3 6

6 9 3

7 4 3

8 4 2

9 4 4

10 3 4

11 6 2

11 4 2

11 3 2

12 8 2

...

C08626034.indd 498 2/13/2009 2:04:51 AM

 Chapter 8 Aggregating and Pivoting Data 499

 In case you do want to apply a tiebreaker, you can use another solution that is very
 effi cient. It is based on the concatenation technique that I presented earlier in the chapter.
Write a query that groups the data by customer ID and employee ID, and for each group,
 concatenate the count of rows and the employee ID to a single value (call it binval). Defi ne
a table expression based on this query. Have the outer query group the data by customer
ID and calculate for each customer the maximum binval. This maximum value contains the
max count and within it the maximum employee ID. What’s left is to extract the count and
 employee ID from the binary value by using the SUBSTRING function and convert the values
to the original types. Here’s the complete solution query:

SELECT custid,

 CAST(SUBSTRING(MAX(binval), 5, 4) AS INT) AS empid,

 CAST(SUBSTRING(MAX(binval), 1, 4) AS INT) AS cnt

FROM (SELECT custid,

 CAST(COUNT(*) AS BINARY(4)) + CAST(empid AS BINARY(4)) AS binval

 FROM Sales.Orders

 GROUP BY custid, empid) AS D

GROUP BY custid;

 As an exercise, you can test the solutions against a table with a large number of rows. You
will see that this solution is very fast.

Histograms

 Histograms are powerful analytical tools that express the distribution of items. For example,
suppose you need to fi gure out from the order information in the Sales.OrderValues view how
many small, medium, and large orders you have, based on the order values. In other words,
you need a histogram with three steps. The extreme values (the minimum and maximum
 values) are what defi nes values as small, medium, or large. Suppose for the sake of simplicity
that the minimum order value is 10 and the maximum is 40. Take the difference between the
two extremes (40 – 10 = 30) and divide it by the number of steps (3) to get the step size. In this
case, it’s 30 divided by 3, which is 10. So the boundaries of step 1 (small) would be 10 and 20;
for step 2 (medium), they would be 20 and 30; and for step 3 (large), they would be 30 and 40.

 To generalize this, let mn = MIN(val) and mx = MAX(val) and let stepsize = (mx – mn) /
@numsteps. Given a step number n, the lower bound of the step (lb) is mn + (n – 1) * stepsize
and the higher bound (hb) is mn + n * stepsize. Something is tricky here. What predicate do
you use to bracket the elements that belong in a specifi c step? You can’t use val BETWEEN
lb and hb because a value that is equal to hb appears in this step and also in the next step,
where it equals the lower bound. Remember that the same calculation yielded the higher
bound of one step and the lower bound of the next step. One approach to deal with this
problem is to increase each of the lower bounds besides the fi rst by one so that they exceed
the previous step’s higher bounds. With integers, this is a fi ne solution, but with another
data type (such as NUMERIC in our case) it doesn’t work because there are potential values
 between adjacent steps but not within either one—between the cracks, so to speak.

C08626034.indd 499 2/13/2009 2:04:51 AM

500 Inside Microsoft SQL Server 2008: T-SQL Querying

 What I like to do to solve the problem is keep the same value in both bounds, and instead
of using BETWEEN, I use val >= lb and val < hb. This technique has its own issues, but I fi nd
it easier to deal with than the previous technique. The issue here is that the item with the
highest quantity (40, in our simplifi ed example) is left out of the histogram. To solve this,
I add a very small number to the maximum value before calculating the step size: stepsize
= ((1E0*mx + 0.0000000001) – mn) / @numsteps. This technique allows the item with
the highest value to be included, and the effect on the histogram is otherwise negligible.
I multiplied mx by the fl oat value 1E0 to protect against the loss of the upper data point
when val is typed as MONEY or SMALLMONEY.

 So you need the following ingredients to generate the lower and higher bounds of the
 histogram’s steps: @numsteps (given as input), step number (the n column from the Nums
auxiliary table), mn, and stepsize, which I described earlier.

 Here’s the T-SQL code required to produce the step number, lower bound, and higher bound
for each step of the histogram:

USE InsideTSQL2008;

DECLARE @numsteps AS INT;

SET @numsteps = 3;

SELECT n AS step,

 mn + (n - 1) * stepsize AS lb,

 mn + n * stepsize AS hb

FROM dbo.Nums

 CROSS JOIN

 (SELECT MIN(val) AS mn,

 ((1E0*MAX(val) + 0.0000000001) - MIN(val))

 / @numsteps AS stepsize

 FROM Sales.OrderValues) AS D

WHERE n < = @numsteps;

 This code generates the following output:

step lb hb

----------- ---------------------- ----------------------

1 12.5 5470.83333333337

2 5470.83333333337 10929.1666666667

3 10929.1666666667 16387.5000000001

 You might want to encapsulate this code in a user-defi ned function to simplify the queries
that return the actual histograms, like so:

IF OBJECT_ID('dbo.HistSteps') IS NOT NULL

 DROP FUNCTION dbo.HistSteps;

GO

CREATE FUNCTION dbo.HistSteps(@numsteps AS INT) RETURNS TABLE

AS

RETURN

 SELECT n AS step,

 mn + (n - 1) * stepsize AS lb,

 mn + n * stepsize AS hb

C08626034.indd 500 2/13/2009 2:04:51 AM

 Chapter 8 Aggregating and Pivoting Data 501

 FROM dbo.Nums

 CROSS JOIN

 (SELECT MIN(val) AS mn,

 ((1E0*MAX(val) + 0.0000000001) - MIN(val))

 / @numsteps AS stepsize

 FROM Sales.OrderValues) AS D

 WHERE n < = @numsteps;

GO

 To test the function, run the following query, which will give you a three-row histogram steps
table:

SELECT * FROM dbo.HistSteps(3) AS S;

 To return the actual histogram, simply join the steps table and the OrderValues view on the
predicate I described earlier (val >= lb AND val < hb), group the data by step number, and
return the step number and row count:

SELECT step, COUNT(*) AS numorders

FROM dbo.HistSteps(3) AS S

 JOIN Sales.OrderValues AS O

 ON val >= lb AND val < hb

GROUP BY step;

 This query generates the following histogram:

step numorders

----------- -----------

1 803

2 21

3 6

 You can see that there are 803 small orders, 21 medium orders, and 6 large order. To return a
histogram with 10 steps, simply provide 10 as the input to the HistSteps function:

SELECT step, COUNT(*) AS numorders

FROM dbo.HistSteps(10) AS S

 JOIN Sales.OrderValues AS O

 ON val >= lb AND val < hb

GROUP BY step;

 This query generates the following output:

step numorders

----------- -----------

1 578

2 172

3 46

4 14

5 3

6 6

7 8

8 1

10 2

C08626034.indd 501 2/13/2009 2:04:51 AM

502 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note that because you’re using an inner join, empty steps are not returned like in the case of
step 9. To return empty steps also, you can use the following outer join query:

SELECT step, COUNT(val) AS numorders

FROM dbo.HistSteps(10) AS S

 LEFT OUTER JOIN Sales.OrderValues AS O

 ON val >= lb AND val < hb

GROUP BY step;

 As you can see in the output of this query, empty steps are included this time:

step numorders

----------- -----------

1 578

2 172

3 46

4 14

5 3

6 6

7 8

8 1

9 0

10 2

 Note Notice that COUNT(val) is used here and not COUNT(*). COUNT(*) would incorrectly
return 1 for empty steps because the group has an outer row. You have to provide the COUNT
function an attribute from the nonpreserved side (Orders) to get the correct count.

 There’s another alternative to taking care of the issue with the step boundaries and the
predicate used to identify a match. You can simply check whether the step number is 1, in
which case you subtract 1 from the lower bound. Then, in the query generating the actual
histogram, you use the predicate val > lb AND val <= hb.

 Another approach is to check whether the step is the last, and if it is, add 1 to the higher
bound. Then use the predicate val >= lb AND val < hb.

 Here’s the revised function implementing the latter approach:

ALTER FUNCTION dbo.HistSteps(@numsteps AS INT) RETURNS TABLE

AS

RETURN

 SELECT n AS step,

 mn + (n - 1) * stepsize AS lb,

 mn + n * stepsize + CASE WHEN n = @numsteps THEN 1 ELSE 0 END AS hb

 FROM dbo.Nums

 CROSS JOIN

 (SELECT MIN(val) AS mn,

 (1E0*MAX(val) - MIN(val)) / @numsteps AS stepsize

 FROM Sales.OrderValues) AS D

 WHERE n < = @numsteps;

GO

C08626034.indd 502 2/13/2009 2:04:51 AM

 Chapter 8 Aggregating and Pivoting Data 503

 And the following query generates the actual histogram:

SELECT step, COUNT(val) AS numorders

FROM dbo.HistSteps(3) AS S

 LEFT OUTER JOIN Sales.OrderValues AS O

 ON val >= lb AND val < hb

GROUP BY step;

Grouping Factor

 In earlier chapters, Chapter 6 in particular, I described a concept called a grouping factor. I used
it in a problem to isolate islands, or ranges of consecutive elements in a sequence. Recall that
the grouping factor is the factor you end up using in your GROUP BY clause to identify the
group. In the earlier problem, I demonstrated two techniques to calculate the grouping factor.
One method was calculating the maximum value within the group (specifi cally, the smallest
value that is both greater than or equal to the current value and followed by a gap). The other
method used row numbers.

 Because this chapter covers aggregates, it is appropriate to revisit this very practical problem.
In my examples here, I’ll use the Stocks table, which you create and populate by running the
following code:

USE tempdb;

IF OBJECT_ID('Stocks') IS NOT NULL DROP TABLE Stocks;

CREATE TABLE dbo.Stocks

(

 dt DATE NOT NULL PRIMARY KEY,

 price INT NOT NULL

);

GO

INSERT INTO dbo.Stocks(dt, price) VALUES

 ('20090801', 13),

 ('20090802', 14),

 ('20090803', 17),

 ('20090804', 40),

 ('20090805', 40),

 ('20090806', 52),

 ('20090807', 56),

 ('20090808', 60),

 ('20090809', 70),

 ('20090810', 30),

 ('20090811', 29),

 ('20090812', 29),

 ('20090813', 40),

 ('20090814', 45),

 ('20090815', 60),

 ('20090816', 60),

C08626034.indd 503 2/13/2009 2:04:51 AM

504 Inside Microsoft SQL Server 2008: T-SQL Querying

 ('20090817', 55),

 ('20090818', 60),

 ('20090819', 60),

 ('20090820', 15),

 ('20090821', 20),

 ('20090822', 30),

 ('20090823', 40),

 ('20090824', 20),

 ('20090825', 60),

 ('20090826', 60),

 ('20090827', 70),

 ('20090828', 70),

 ('20090829', 40),

 ('20090830', 30),

 ('20090831', 10);

CREATE UNIQUE INDEX idx_price_dt ON Stocks(price, dt);

 The Stocks table contains daily stock prices.

 Note Stock prices are rarely restricted to integers, and there is usually more than one stock, but
I’ll use integers and a single stock for simplifi cation purposes. Also, stock markets usually don’t have
activity on Saturdays; because I want to demonstrate a technique over a sequence with no gaps,
I introduced rows for Saturdays as well, with the same value that was stored in the preceding Friday.

 The request is to isolate consecutive periods where the stock price was greater than or equal
to 50. Figure 8-2 has a graphical depiction of the stock prices over time, and the arrows
 represent the periods you’re supposed to return.

80

70

60

50

40

30

20

10

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2728 29 30 31

Va
l

Stock Values

Date

FIGURE 8-2 Periods in which stock values were greater than or equal to 50

C08626034.indd 504 2/13/2009 2:04:52 AM

 Chapter 8 Aggregating and Pivoting Data 505

 For each such period, you need to return the starting date, ending date, duration in days,
and the peak (maximum) price.

 Let’s start with a solution that does not use row numbers. The fi rst step here is to fi lter
only the rows where the price is greater than or equal to 50. Unlike the traditional problem
where you really have gaps in the data, here the gaps appear only after fi ltering. The whole
 sequence still appears in the Stocks table. You can use this fact to your advantage. Of course,
you could take the long route of calculating the maximum date within the group (the fi rst
date that is both later than or equal to the current date and followed by a gap). However, a
much simpler and faster technique to calculate the grouping factor would be to return the
fi rst date that is greater than the current, on which the stock’s price is less than 50. Here, you
still get the same grouping factor for all elements of the same target group, yet you need
only one nesting level of subqueries instead of two.

 Here’s the query:

SELECT MIN(dt) AS startrange, MAX(dt) AS endrange,

 DATEDIFF(day, MIN(dt), MAX(dt)) + 1 AS numdays,

 MAX(price) AS maxprice

FROM (SELECT dt, price,

 (SELECT MIN(dt)

 FROM dbo.Stocks AS S2

 WHERE S2.dt > S1.dt

 AND price < 50) AS grp

 FROM dbo.Stocks AS S1

 WHERE price >= 50) AS D

GROUP BY grp;

 This query generates the following output, which is the desired result:

startrange endrange numdays maxprice

---------- ---------- ----------- -----------

2009-08-06 2009-08-09 4 70

2009-08-15 2009-08-19 5 60

2009-08-25 2009-08-28 4 70

 Of course, post fi ltering, you could consider the problem as a classic islands problem in a
temporal sequence scenario and address it with the very effi cient technique that uses the
ROW_NUMBER function, as I described in Chapter 6:

SELECT MIN(dt) AS startrange, MAX(dt) AS endrange,

 DATEDIFF(day, MIN(dt), MAX(dt)) + 1 AS numdays,

 MAX(price) AS maxprice

FROM (SELECT dt, price,

 DATEADD(day, -1 * ROW_NUMBER() OVER(ORDER BY dt), dt) AS grp

 FROM dbo.Stocks AS S1

 WHERE price >= 50) AS D

GROUP BY grp;

C08626034.indd 505 2/13/2009 2:04:52 AM

506 Inside Microsoft SQL Server 2008: T-SQL Querying

Grouping Sets

 A grouping set is simply a set of attributes that you group by, such as in a query that has the
following GROUP BY clause:

GROUP BY custid, empid, YEAR(orderdate)

 You defi ne a single grouping set—(custid, empid, YEAR(orderdate)). Traditionally, aggre-
gate queries defi ne a single grouping set, as demonstrated in the previous example. SQL
Server supports features that allow you to defi ne multiple grouping sets in the same query
and return a single result set with aggregates calculated for the different grouping sets.
The ability to defi ne multiple grouping sets in the same query was available prior to SQL
Server 2008 in the form of options called WITH CUBE and WITH ROLLUP and a helper
 function called GROUPING. However, those options were neither standard nor fl exible
enough. SQL Server 2008 introduces several new features that allow you to defi ne multiple
grouping sets in the same query. The new features include the GROUPING SETS, CUBE, and
ROLLUP subclauses of the GROUP BY clause (not to be confused with the older WITH CUBE
and WITH ROLLUP options) and the helper function GROUPING_ID. These new features are
 ISO compliant and substantially more fl exible than the older, nonstandard ones.

 Before I provide the technicalities of the grouping sets–related features, I’d like to explain the
motivation for using those and the kind of problems that they solve. If you’re interested only
in the technicalities, feel free to skip this section.

 Consider a data warehouse with a large volume of sales data. Users of this data warehouse
 frequently need to analyze aggregated views of the data by various dimensions, such as
 customer, employee, product, time, and so on. When a user such as a sales manager starts the
analysis process, the user asks for some initial aggregated view of the data—for example, the
total quantities for each customer and year. This request translates in more technical terms to a
request to aggregate data for the grouping set (custid, YEAR(orderdate)). The user then analyzes
the data, and based on the fi ndings the user makes the next request—say, to return total
quantities for each year and month. This is a request to aggregate data for a new grouping
set—(YEAR(orderdate), MONTH(orderdate)). In this manner the user keeps asking for different
aggregated views of the data—in other words, to aggregate data for different grouping sets.

 To address such analysis needs of your system’s users, you could develop an application that
generates a different GROUP BY query for each user request. Each query would need to
scan all applicable base data and process the aggregates. With large volumes of data, this
 approach is very ineffi cient, and the response time will probably be unreasonable.

 To provide fast response time, you need to preprocess aggregates for all grouping sets that
users might ask for and store those in the data warehouse. For example, you could do this
 every night. When the user requests aggregates for a certain grouping set, the aggregates will
be readily available. The problem is that given n dimensions, 2n possible grouping sets can be
constructed from those dimensions. For example, with 10 dimensions you get 1,024 grouping
sets. If you actually run a separate GROUP BY query for each, it will take a very long time to
process all aggregates, and you might not have a suffi cient processing window for this.

C08626034.indd 506 2/13/2009 2:04:52 AM

 Chapter 8 Aggregating and Pivoting Data 507

 This is where the new grouping features come into the picture. They allow you to calculate
aggregates for multiple grouping sets without rescanning the base data separately for each.
Instead, SQL Server scans the data the minimum number of times that the optimizer fi gures
is optimal, calculates the base aggregates, and on top of the base aggregates calculates the
super aggregates (aggregates of aggregates).

 Note that the product Microsoft SQL Server Analysis Services (SSAS, or just AS) specializes
in preprocessing aggregates for multiple grouping sets and storing them in a specialized
 multidimensional database. It provides very fast response time to user requests, which are made
with a language called Multidimensional Expressions (MDX). The recommended approach
to handling needs for dynamic analysis of aggregated data is to implement an Analysis
Services solution. However, some organizations don’t need the scale and sophistication levels
 provided by Analysis Services and would rather get the most they can from their relational data
 warehouse with T-SQL. For those organizations, the new grouping features provided by SQL
Server can come in very handy.

 The following sections describe the technicalities of the grouping sets–related features
 supported by SQL Server 2008.

Sample Data

 In my examples I will use the Orders table that you create and populate in tempdb by
 running the code provided earlier in Listing 8-1. This code is provided here again for your
convenience:

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

GO

CREATE TABLE dbo.Orders

(

 orderid INT NOT NULL,

 orderdate DATETIME NOT NULL,

 empid INT NOT NULL,

 custid VARCHAR(5) NOT NULL,

 qty INT NOT NULL,

 CONSTRAINT PK_Orders PRIMARY KEY(orderid)

);

GO

INSERT INTO dbo.Orders

 (orderid, orderdate, empid, custid, qty)

VALUES

 (30001, '20060802', 3, 'A', 10),

 (10001, '20061224', 1, 'A', 12),

 (10005, '20061224', 1, 'B', 20),

 (40001, '20070109', 4, 'A', 40),

 (10006, '20070118', 1, 'C', 14),

C08626034.indd 507 2/13/2009 2:04:52 AM

508 Inside Microsoft SQL Server 2008: T-SQL Querying

 (20001, '20070212', 2, 'B', 12),

 (40005, '20080212', 4, 'A', 10),

 (20002, '20080216', 2, 'C', 20),

 (30003, '20080418', 3, 'B', 15),

 (30004, '20060418', 3, 'C', 22),

 (30007, '20060907', 3, 'D', 30);

The GROUPING SETS Subclause

 SQL Server 2008 allows you to defi ne multiple grouping sets in the same query by using
the new GROUPING SETS subclause of the GROUP BY clause. Within the outermost pair of
parentheses, you specify a list of grouping sets separated by commas. Each grouping set is
expressed by a pair of parentheses containing the set’s elements separated by commas. For
example, the following query defi nes four grouping sets:

SELECT custid, empid, YEAR(orderdate) AS orderyear, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY GROUPING SETS

(

 (custid, empid, YEAR(orderdate)),

 (custid, YEAR(orderdate)),

 (empid, YEAR(orderdate)),

 ()

);

 The fi rst grouping set is (custid, empid, YEAR(orderdate)), the second is (custid, YEAR(orderdate)),
the third is (empid, YEAR(orderdate)), and the fourth is the empty grouping set (), which is used
to calculate grand totals. This query generates the following output:

custid empid orderyear qty

------ ----------- ----------- -----------

A 1 2006 12

B 1 2006 20

NULL 1 2006 32

C 1 2007 14

NULL 1 2007 14

B 2 2007 12

NULL 2 2007 12

C 2 2008 20

NULL 2 2008 20

A 3 2006 10

C 3 2006 22

D 3 2006 30

NULL 3 2006 62

B 3 2008 15

NULL 3 2008 15

A 4 2007 40

NULL 4 2007 40

A 4 2008 10

NULL 4 2008 10

NULL NULL NULL 205

A NULL 2006 22

B NULL 2006 20

C08626034.indd 508 2/13/2009 2:04:52 AM

 Chapter 8 Aggregating and Pivoting Data 509

C NULL 2006 22

D NULL 2006 30

A NULL 2007 40

B NULL 2007 12

C NULL 2007 14

A NULL 2008 10

B NULL 2008 15

C NULL 2008 20

 Note To specify a single-element grouping set, the parentheses are optional. (A one-element
grouping set means the same as a simple group by item.) If you simply list elements directly
within the outer pair of parentheses of the GROUPING SETS clause itself, as opposed to listing
them within an inner pair of parentheses, you get a separate grouping set made of each element.
For example, GROUPING SETS(a, b, c) defi nes three grouping sets: one with the element a,
one with b and one with c. GROUPING SETS((a, b, c)) defi nes a single grouping set made of the
 elements a, b, c.

 As you can see in the output of the query, NULLs are used as placeholders in inapplicable
attributes. You could also think of these NULLs as indicating that the row represents an
 aggregate over all values of that column. This way, SQL Server can combine rows associated
with different grouping sets to one result set. So, for example, in rows associated with the
grouping set (custid, YEAR(orderdate)), the empid column is NULL. In rows associated with the
empty grouping set, the columns empid, custid, and orderyear are NULLs and so on.

 Compared to a query that unifi es the result sets of four GROUP BY queries, our query that
uses the GROUPING SETS subclause requires much less code. It has a performance advantage
as well. Examine the execution plan of this query shown in Figure 8-3.

FIGURE 8-3 Execution plan of query with GROUPING SETS subclause

 Observe that even though the query defi nes four grouping sets, the execution plan shows
only two scans of the data. In particular, observe that the fi rst branch of the plan shows two
Stream Aggregate operators. The Sort operator sorts the data by empid, YEAR(orderdate),
custid. Based on this sorting, the fi rst Stream Aggregate operator calculates the aggregates
for the grouping set (custid, empid, YEAR(orderdate)); the second Stream Aggregate operates

C08626034.indd 509 2/13/2009 2:04:52 AM

510 Inside Microsoft SQL Server 2008: T-SQL Querying

on the results of the fi rst and calculates the aggregates for the grouping set (empid,
YEAR(orderdate)) and the empty grouping set. The second branch of the plan sorts the data
by YEAR(orderdate), custid to allow the Stream Aggregate operator that follows to calculate
aggregates for the grouping set (custid, YEAR(orderdate)).

 Following is a query that is logically equivalent to the previous one, except that this one actually
invokes four GROUP BY queries—one for each grouping set—and unifi es their result sets:

SELECT custid, empid, YEAR(orderdate) AS orderyear, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY custid, empid, YEAR(orderdate)

UNION ALL

SELECT custid, NULL AS empid, YEAR(orderdate) AS orderyear, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY custid, YEAR(orderdate)

UNION ALL

SELECT NULL AS custid, empid, YEAR(orderdate) AS orderyear, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY empid, YEAR(orderdate)

UNION ALL

SELECT NULL AS custid, NULL AS empid, NULL AS orderyear, SUM(qty) AS qty

FROM dbo.Orders;

 The execution plan for this query is shown in Figure 8-4. You can see that the data is scanned
four times.

FIGURE 8-4 Execution plan of code unifying four GROUP BY queries

 SQL Server 2008 allows you to defi ne up to 4,096 grouping sets in a single query.

C08626034.indd 510 2/13/2009 2:04:52 AM

 Chapter 8 Aggregating and Pivoting Data 511

The CUBE Subclause

 SQL Server 2008 also introduces the CUBE subclause of the GROUP BY clause (not to be
 confused with the older WITH CUBE option). The CUBE subclause is merely an abbreviated
way to express a large number of grouping sets without actually listing them in a GROUPING
SETS subclause. CUBE accepts a list of elements as input and defi nes all possible grouping sets
out of those, including the empty grouping set. In set theory, this is called the power set of a
set. The power set of a set V is the set of all subsets of V. Given n elements, CUBE produces
2n grouping sets. For example, CUBE(a, b, c) is equivalent to GROUPING SETS((a, b, c), (a, b),
(a, c), (b, c), (a), (b), (c), ()).

 The following query uses the CUBE option to defi ne all four grouping sets that can be made
of the elements custid and empid:

SELECT custid, empid, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY CUBE(custid, empid);

 This query generates the following output:

custid empid qty

------ ----------- -----------

A 1 12

B 1 20

C 1 14

NULL 1 46

B 2 12

C 2 20

NULL 2 32

A 3 10

B 3 15

C 3 22

D 3 30

NULL 3 77

A 4 50

NULL 4 50

NULL NULL 205

A NULL 72

B NULL 47

C NULL 56

D NULL 30

 The following query using the GROUPING SETS subclause is equivalent to the previous query:

SELECT custid, empid, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY GROUPING SETS

 (

 (custid, empid),

 (custid),

 (empid),

 ()

);

C08626034.indd 511 2/13/2009 2:04:52 AM

512 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note that each of the elements in the list you provide to CUBE as input can be made of either a
single attribute or multiple attributes. The previous CUBE expression used two single-attribute
elements. To defi ne a multi-attribute element, simply list the element’s attributes in parentheses.
As an example, the expression CUBE(x, y, z) has three single- attribute elements and defi nes
eight grouping sets: (x, y, z), (x, y), (x, z), (y, z), (x), (y), (z), (). The expression CUBE((x, y), z) has
one two-attribute element and one single-attribute element and defi nes four grouping sets:
(x, y, z), (x, y), (z), ().

 Prior to SQL Server 2008, you could achieve something similar to what the CUBE subclause
gives you by using a WITH CUBE option that you specifi ed after the GROUP BY clause, like so:

SELECT custid, empid, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY custid, empid

WITH CUBE;

 This is an equivalent to our previous CUBE query, but it has two drawbacks. First, it’s not
standard, while the new CUBE subclause is. Second, when you specify the WITH CUBE option,
you cannot defi ne additional grouping sets beyond the ones defi ned by CUBE, while you can
with the new CUBE subclause.

The ROLLUP Subclause

 The new ROLLUP subclause of the GROUP BY clause is similar to the CUBE subclause. It also
 allows defi ning multiple grouping sets in an abbreviated way. However, while CUBE defi nes
all possible grouping sets that can be made of the input elements (the power set), ROLLUP
 defi nes only a subset of those. ROLLUP assumes a hierarchy between the input elements. For
example, ROLLUP(a, b, c) assumes a hierarchy between the elements a, b, and c. When there is
a hierarchy, not all possible grouping sets that can be made of the input elements make sense
in terms of having business value. Consider, for example, the hierarchy country, region, city. You
can see the business value in the grouping sets (country, region, city), (country, region), (country),
and (). But as grouping sets, (city), (region), (region, city) and (country, city) have no business
 value. For example, the grouping set (city) has no business value because different cities can
have the same name, and a business typically needs totals by city, not by city name. When
the input elements represent a hierarchy, ROLLUP produces only the grouping sets that make
 business sense for the hierarchy. Given n elements, ROLLUP will produce n + 1 grouping sets.

 The following query shows an example of using the ROLLUP subclause:

SELECT

 YEAR(orderdate) AS orderyear,

 MONTH(orderdate) AS ordermonth,

 DAY(orderdate) AS orderday,

 SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

 ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate));

C08626034.indd 512 2/13/2009 2:04:52 AM

 Chapter 8 Aggregating and Pivoting Data 513

 Out of the three input elements, ROLLUP defi nes four (3 + 1) grouping sets—(YEAR(orderdate),
MONTH(orderdate), DAY(orderdate)), (YEAR(orderdate), MONTH(orderdate)), (YEAR(orderdate)),
and (). This query generates the following output:

orderyear ordermonth orderday qty

----------- ----------- ----------- -----------

2006 4 18 22

2006 4 NULL 22

2006 8 2 10

2006 8 NULL 10

2006 9 7 30

2006 9 NULL 30

2006 12 24 32

2006 12 NULL 32

2006 NULL NULL 94

2007 1 9 40

2007 1 18 14

2007 1 NULL 54

2007 2 12 12

2007 2 NULL 12

2007 NULL NULL 66

2008 2 12 10

2008 2 16 20

2008 2 NULL 30

2008 4 18 15

2008 4 NULL 15

2008 NULL NULL 45

NULL NULL NULL 205

 This query is equivalent to the following query that uses the GROUPING SETS subclause to
defi ne the aforementioned grouping sets explicitly:

SELECT

 YEAR(orderdate) AS orderyear,

 MONTH(orderdate) AS ordermonth,

 DAY(orderdate) AS orderday,

 SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

 GROUPING SETS

 (

 (YEAR(orderdate), MONTH(orderdate), DAY(orderdate)),

 (YEAR(orderdate), MONTH(orderdate)),

 (YEAR(orderdate)),

 ()

);

 Like with CUBE, each of the elements in the list you provide to ROLLUP as input can be made of
either a single attribute or multiple attributes. As an example, the expression ROLLUP(x, y, z)
defi nes four grouping sets: (x, y, z), (x, y), (x), (). The expression ROLLUP((x, y), z) defi nes three
grouping sets: (x, y, z), (x, y), ().

C08626034.indd 513 2/13/2009 2:04:52 AM

514 Inside Microsoft SQL Server 2008: T-SQL Querying

 Similar to the WITH CUBE option that I described earlier, previous versions of SQL Server prior
to SQL Server 2008 supported a WITH ROLLUP option. Following is a query that is equivalent
to the previous ROLLUP query, except that it uses the older WITH ROLLUP option:

SELECT

 YEAR(orderdate) AS orderyear,

 MONTH(orderdate) AS ordermonth,

 DAY(orderdate) AS orderday,

 SUM(qty) AS qty

FROM dbo.Orders

GROUP BY YEAR(orderdate), MONTH(orderdate), DAY(orderdate)

WITH ROLLUP;

 Like the WITH CUBE option, the WITH ROLLUP option is nonstandard and doesn’t allow you
to defi ne further grouping sets in the same query.

Grouping Sets Algebra

 One beautiful thing about the design of the grouping sets–related features implemented in
SQL Server 2008 is that they support a whole algebra of operations that can help you defi ne
a large number of grouping sets using minimal coding. You have support for operations that
you can think of as multiplication, division, and addition.

Multiplication

 Multiplication means producing a Cartesian product of grouping sets. You perform
 multiplication by separating GROUPING SETS subclauses (or the abbreviated CUBE and
ROLLUP subclauses) by commas. For example, if A represents a set of attributes a1, a2, . . .,
an, and B represents a set of attributes b1, b2, . . ., bn, and so on, the product GROUPING
SETS((A), (B), (C)), GROUPING SETS((D), (E)) is equal to GROUPING SETS ((A, D), (A, E),
(B, D), (B, E), (C, D), (C, E)).

 Consider the following query and try to fi gure out which grouping sets it defi nes:

SELECT custid, empid,

 YEAR(orderdate) AS orderyear,

 MONTH(orderdate) AS ordermonth,

 DAY(orderdate) AS orderday,

 SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

 CUBE(custid, empid),

 ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate));

 First, expand the CUBE and ROLLUP subclauses to the corresponding GROUPING SETS
 subclauses, and you get the following query:

SELECT custid, empid,

 YEAR(orderdate) AS orderyear,

 MONTH(orderdate) AS ordermonth,

 SUM(qty) AS qty

C08626034.indd 514 2/13/2009 2:04:52 AM

 Chapter 8 Aggregating and Pivoting Data 515

FROM dbo.Orders

GROUP BY

 GROUPING SETS

 (

 (custid, empid),

 (custid),

 (empid),

 ()

),

 GROUPING SETS

 (

 (YEAR(orderdate), MONTH(orderdate), DAY(orderdate)),

 (YEAR(orderdate), MONTH(orderdate)),

 (YEAR(orderdate)),

 ()

);

 Now apply the multiplication between the GROUPING SETS subclauses, and you get the
 following query:

SELECT custid, empid,

 YEAR(orderdate) AS orderyear,

 MONTH(orderdate) AS ordermonth,

 SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

 GROUPING SETS

 (

 (custid, empid, YEAR(orderdate), MONTH(orderdate), DAY(orderdate)),

 (custid, empid, YEAR(orderdate), MONTH(orderdate)),

 (custid, empid, YEAR(orderdate)),

 (custid, empid),

 (custid, YEAR(orderdate), MONTH(orderdate), DAY(orderdate)),

 (custid, YEAR(orderdate), MONTH(orderdate)),

 (custid, YEAR(orderdate)),

 (custid),

 (empid, YEAR(orderdate), MONTH(orderdate), DAY(orderdate)),

 (empid, YEAR(orderdate), MONTH(orderdate)),

 (empid, YEAR(orderdate)),

 (empid),

 (YEAR(orderdate), MONTH(orderdate), DAY(orderdate)),

 (YEAR(orderdate), MONTH(orderdate)),

 (YEAR(orderdate)),

 ()

);

Division

 When multiple grouping sets in an existing GROUPING SETS subclause share common
 elements, you can separate the common elements to another GROUPING SETS subclause
and multiply the two. The concept is similar to arithmetic division, where you divide operands
of an expression by a common element and pull it outside the parentheses. For example,
(5×3 + 5×7) can be expressed as (5)×(3 + 7). Based on this logic, you can sometimes reduce

C08626034.indd 515 2/13/2009 2:04:52 AM

516 Inside Microsoft SQL Server 2008: T-SQL Querying

the amount of code needed to defi ne multiple grouping sets. For example, see if you can
 reduce the code in the following query while preserving the same grouping sets:

SELECT

 custid,

 empid,

 YEAR(orderdate) AS orderyear,

 MONTH(orderdate) AS ordermonth,

 SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

 GROUPING SETS

 (

 (custid, empid, YEAR(orderdate), MONTH(orderdate)),

 (custid, empid, YEAR(orderdate)),

 (custid, YEAR(orderdate), MONTH(orderdate)),

 (custid, YEAR(orderdate)),

 (empid, YEAR(orderdate), MONTH(orderdate)),

 (empid, YEAR(orderdate))

);

 Because YEAR(orderdate) is a common element to all grouping sets, you can move it to
 another GROUPING SETS subclause and multiply the two, like so:

SELECT

 custid,

 empid,

 YEAR(orderdate) AS orderyear,

 MONTH(orderdate) AS ordermonth,

 SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

 GROUPING SETS

 (

 (YEAR(orderdate))

),

 GROUPING SETS

 (

 (custid, empid, MONTH(orderdate)),

 (custid, empid),

 (custid, MONTH(orderdate)),

 (custid),

 (empid, MONTH(orderdate)),

 (empid)

);

 Note that when a GROUPING SETS subclause contains only one grouping set, it is equivalent
to listing the grouping set’s elements directly in the GROUP BY clause. Hence, the previous
query is logically equivalent to the following:

SELECT

 custid,

 empid,

 YEAR(orderdate) AS orderyear,

C08626034.indd 516 2/13/2009 2:04:52 AM

 Chapter 8 Aggregating and Pivoting Data 517

 MONTH(orderdate) AS ordermonth,

 SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

 YEAR(orderdate),

 GROUPING SETS

 (

 (custid, empid, MONTH(orderdate)),

 (custid, empid),

 (custid, MONTH(orderdate)),

 (custid),

 (empid, MONTH(orderdate)),

 (empid)

);

 You can reduce this form even further. Notice in the remaining GROUPING SETS subclause
that three subsets of elements appear once with MONTH(orderdate) and once without.
Hence, you can reduce this form to a multiplication between a GROUPING SETS subclause
containing those three and another containing two grouping sets, (MONTH(orderdate)) and
the empty grouping set, like so:

SELECT

 custid,

 empid,

 YEAR(orderdate) AS orderyear,

 MONTH(orderdate) AS ordermonth,

 SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

 YEAR(orderdate),

 GROUPING SETS

 (

 (custid, empid),

 (custid),

 (empid)

),

 GROUPING SETS

 (

 (MONTH(orderdate)),

 ()

);

Addition

 Recall that when you separate GROUPING SETS, CUBE, and ROLLUP subclauses by commas,
you get a Cartesian product between the sets of grouping sets that each represents. But
what if you have an existing GROUPING SETS subclause and you just want to add—not
multiply—the grouping sets that are defi ned by a CUBE or ROLLUP subclause? This can
be achieved by specifying the CUBE or ROLLUP subclause (or multiple ones) within the
 parentheses of the GROUPING SETS subclause.

C08626034.indd 517 2/13/2009 2:04:52 AM

518 Inside Microsoft SQL Server 2008: T-SQL Querying

 For example, the following query demonstrates adding the grouping sets defi ned by a
ROLLUP subclause to the grouping sets defi ned by the hosting GROUPING SETS subclause:

SELECT

 custid,

 empid,

 YEAR(orderdate) AS orderyear,

 MONTH(orderdate) AS ordermonth,

 SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

 GROUPING SETS

 (

 (custid, empid),

 (custid),

 (empid),

 ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate))

);

 This query is a logical equivalent of the following query:

SELECT

 custid,

 empid,

 YEAR(orderdate) AS orderyear,

 MONTH(orderdate) AS ordermonth,

 SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

 GROUPING SETS

 (

 (custid, empid),

 (custid),

 (empid),

 (YEAR(orderdate), MONTH(orderdate), DAY(orderdate)),

 (YEAR(orderdate), MONTH(orderdate)),

 (YEAR(orderdate)),

 ()

);

 Unfortunately, there is no built-in option to do subtraction. For example, you can’t somehow
express the idea of CUBE(a, b, c, d) minus GROUPING SETS ((a, c), (b, d), ()). Of course, you can
achieve this with the EXCEPT set operation and other techniques but not as a direct algebraic
operation on grouping sets–related subclauses.

The GROUPING_ID Function

 In your applications you may need to be able to identify the grouping set with which each result
row of your query is associated. Relying on the NULL placeholders may lead to convoluted
code, not to mention the fact that if a column is defi ned in the table as allowing NULLs, a NULL
in the result will be ambiguous. SQL Server 2008 introduces a very convenient tool for this

C08626034.indd 518 2/13/2009 2:04:52 AM

 Chapter 8 Aggregating and Pivoting Data 519

 purpose in the form of a function called GROUPING_ID. This function accepts a list of attributes
as input and constructs an integer bitmap where each bit represents the corresponding
 attribute (the rightmost bit represents the rightmost input attribute). The bit is 0 when the
 corresponding attribute is a member of the grouping set and 1 otherwise.

 You provide the function with all attributes that participate in any grouping set as input, and
you will get a unique integer representing each grouping set. So, for example, the expression
GROUPING_ID(a, b, c, d) would return 0 (0×8 + 0×4 + 0×2 + 0×1) for rows associated with
the grouping set (a, b, c, d), 1 (0×8 + 0×4 + 0×2 + 1×1) for the grouping set (a, b, c), 2
(0×8 + 0×4 + 1×2 + 0×1) for the grouping set (a, b, d), 3 (0×8 + 0×4 + 1×2 + 1×1) for the
grouping set (a, b), and so on.

 The following query demonstrate the use of the GROUPING_ID function:

SELECT

 GROUPING_ID(

 custid, empid,

 YEAR(orderdate), MONTH(orderdate), DAY(orderdate)) AS grp_id,

 custid, empid,

 YEAR(orderdate) AS orderyear,

 MONTH(orderdate) AS ordermonth,

 DAY(orderdate) AS orderday,

 SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

 CUBE(custid, empid),

 ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate));

 This query generates the following output:

grp_id custid empid orderyear ordermonth orderday qty

------- ------ ------ ---------- ----------- --------- ----

0 C 3 2006 4 18 22

16 NULL 3 2006 4 18 22

0 A 3 2006 8 2 10

24 NULL NULL 2006 4 18 22

25 NULL NULL 2006 4 NULL 22

16 NULL 3 2006 8 2 10

24 NULL NULL 2006 8 2 10

25 NULL NULL 2006 8 NULL 10

0 D 3 2006 9 7 30

16 NULL 3 2006 9 7 30

...

 For example, the grp_id value 25 represents the grouping set (YEAR(orderdate),
MONTH(orderdate)). These attributes are represented by the second (value 2) and third
(value 4) bits. However, remember that the bits representing members that participate in the
grouping set are turned off. The bits representing the members that do not participate in the
grouping set are turned on. In our case, those are the fi rst (1), fourth (8), and fi fth (16) bits
representing the attributes DAY(orderdate), empid and custid, respectively. The sum of the
values of the bits that are turned on is 1 + 8 + 16 = 25.

C08626034.indd 519 2/13/2009 2:04:52 AM

520 Inside Microsoft SQL Server 2008: T-SQL Querying

 The following query helps you see which bits are turned on or off in each integer bitmap
generated by the GROUPING_ID function with fi ve input elements:

SELECT

 GROUPING_ID(e, d, c, b, a) as n,

 COALESCE(e, 1) as [16],

 COALESCE(d, 1) as [8],

 COALESCE(c, 1) as [4],

 COALESCE(b, 1) as [2],

 COALESCE(a, 1) as [1]

FROM (VALUES(0, 0, 0, 0, 0)) AS D(a, b, c, d, e)

GROUP BY CUBE (a, b, c, d, e)

ORDER BY n;

 This query generates the following output:

n 16 8 4 2 1

----------- ----------- ----------- ----------- ----------- -----------

0 0 0 0 0 0

1 0 0 0 0 1

2 0 0 0 1 0

3 0 0 0 1 1

4 0 0 1 0 0

5 0 0 1 0 1

6 0 0 1 1 0

7 0 0 1 1 1

8 0 1 0 0 0

9 0 1 0 0 1

10 0 1 0 1 0

11 0 1 0 1 1

12 0 1 1 0 0

13 0 1 1 0 1

14 0 1 1 1 0

15 0 1 1 1 1

16 1 0 0 0 0

17 1 0 0 0 1

18 1 0 0 1 0

19 1 0 0 1 1

20 1 0 1 0 0

21 1 0 1 0 1

22 1 0 1 1 0

23 1 0 1 1 1

24 1 1 0 0 0

25 1 1 0 0 1

26 1 1 0 1 0

27 1 1 0 1 1

28 1 1 1 0 0

29 1 1 1 0 1

30 1 1 1 1 0

31 1 1 1 1 1

 Remember—when the bit is off, the corresponding member is part of the grouping set.

 As mentioned, the GROUPING_ID function was introduced in SQL Server 2008. You could
 produce a similar integer bitmap prior to SQL Server 2008, but it involved more work. You
could use a function called GROUPING that accepts a single attribute as input and returns 0 if

C08626034.indd 520 2/13/2009 2:04:52 AM

 Chapter 8 Aggregating and Pivoting Data 521

the attribute is a member of the grouping set and 1 otherwise. You could construct the integer
bitmap by multiplying the GROUPING value of each attribute by a different power of 2 and
summing all values. Here’s an example of implementing this logic in a query that uses the older
WITH CUBE option:

SELECT

 GROUPING(custid) * 4 +

 GROUPING(empid) * 2 +

 GROUPING(YEAR(orderdate)) * 1 AS grp_id,

 custid, empid, YEAR(orderdate) AS orderyear,

 SUM(qty) AS totalqty

FROM dbo.Orders

GROUP BY custid, empid, YEAR(orderdate)

WITH CUBE;

 This query generates the following output:

grp_id custid empid orderyear totalqty

----------- ------ ----------- ----------- -----------

0 A 1 2006 12

0 B 1 2006 20

4 NULL 1 2006 32

0 A 3 2006 10

0 C 3 2006 22

0 D 3 2006 30

4 NULL 3 2006 62

6 NULL NULL 2006 94

0 C 1 2007 14

4 NULL 1 2007 14

...

Materialize Grouping Sets

 Recall that before I started describing the technicalities of the grouping sets–related features,
I explained that one of their uses is to preprocess aggregates for multiple grouping sets
and store those in the data warehouse for fast retrieval. The following code demonstrates
 materializing aggregates for multiple grouping sets, including an integer identifi er of the
grouping set calculated with the GROUPING_ID function in a table called MyGroupingSets:

USE tempdb;

IF OBJECT_ID('dbo.MyGroupingSets', 'U') IS NOT NULL DROP TABLE dbo.MyGroupingSets;

GO

SELECT

 GROUPING_ID(

 custid, empid,

 YEAR(orderdate), MONTH(orderdate), DAY(orderdate)) AS grp_id,

 custid, empid,

 YEAR(orderdate) AS orderyear,

 MONTH(orderdate) AS ordermonth,

 DAY(orderdate) AS orderday,

 SUM(qty) AS qty

INTO dbo.MyGroupingSets

C08626034.indd 521 2/13/2009 2:04:53 AM

522 Inside Microsoft SQL Server 2008: T-SQL Querying

FROM dbo.Orders

GROUP BY

 CUBE(custid, empid),

 ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate));

CREATE UNIQUE CLUSTERED INDEX idx_cl_grp_id_grp_attributes

 ON dbo.MyGroupingSets(grp_id, custid, empid, orderyear, ordermonth, orderday);

 The index created on the table MyGroupingSets is defi ned on the grp_id column as the fi rst
key to allow effi cient retrieval of all rows associated with a single grouping set. For example,
consider the following query, which asks for all rows associated with the grouping set (custid,
YEAR(orderdate), MONTH(orderdate)):

SELECT *

FROM dbo.MyGroupingSets

WHERE grp_id = 9;

 This query generates the following output:

grp_id custid empid orderyear ordermonth orderday qty

----------- ------ ----------- ----------- ----------- ----------- -----------

9 A NULL 2006 8 NULL 10

9 A NULL 2006 12 NULL 12

9 A NULL 2007 1 NULL 40

9 A NULL 2008 2 NULL 10

9 B NULL 2006 12 NULL 20

9 B NULL 2007 2 NULL 12

9 B NULL 2008 4 NULL 15

9 C NULL 2006 4 NULL 22

9 C NULL 2007 1 NULL 14

9 C NULL 2008 2 NULL 20

9 D NULL 2006 9 NULL 30

 Figure 8-5 shows the plan for this query.

FIGURE 8-5 Execution plan of query that fi lters a single grouping set

 This plan is very effi cient. It scans only the rows that are associated with the requested
grouping set because they reside in a consecutive section in the leaf of the clustered index.

 Provided that you are using aggregates that are additive measures, like SUM, COUNT, and
AVG, you can apply incremental updates to the stored aggregates with only the delta of
 additions since you last processed those aggregates. You can achieve this by using the new
MERGE statement that was introduced in SQL Server 2008. Here I’m just going to show the
code to demonstrate how this is done. For details about the MERGE statement, please refer
to Chapter 10, “Data Modifi cation.”

C08626034.indd 522 2/13/2009 2:04:53 AM

 Chapter 8 Aggregating and Pivoting Data 523

 Run the following code to simulate another day’s worth of order activity (April 19, 2008):

INSERT INTO dbo.Orders

 (orderid, orderdate, empid, custid, qty)

VALUES

 (50001, '20080419', 1, 'A', 10),

 (50002, '20080419', 1, 'B', 30),

 (50003, '20080419', 2, 'A', 20),

 (50004, '20080419', 2, 'B', 5),

 (50005, '20080419', 3, 'A', 15)

 Then run the following code to incrementally update the stored aggregates with the new
day’s worth of data:

WITH LastDay AS

(

 SELECT

 GROUPING_ID(

 custid, empid,

 YEAR(orderdate), MONTH(orderdate), DAY(orderdate)) AS grp_id,

 custid, empid,

 YEAR(orderdate) AS orderyear,

 MONTH(orderdate) AS ordermonth,

 DAY(orderdate) AS orderday,

 SUM(qty) AS qty

 FROM dbo.Orders

 WHERE orderdate = '20080419'

 GROUP BY

 CUBE(custid, empid),

 ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate))

)

MERGE INTO dbo.MyGroupingSets AS TGT

USING LastDay AS SRC

 ON (TGT.grp_id = SRC.grp_id)

 AND (TGT.orderyear = SRC.orderyear

 OR (TGT.orderyear IS NULL AND SRC.orderyear IS NULL))

 AND (TGT.ordermonth = SRC.ordermonth

 OR (TGT.ordermonth IS NULL AND SRC.ordermonth IS NULL))

 AND (TGT.orderday = SRC.orderday

 OR (TGT.orderday IS NULL AND SRC.orderday IS NULL))

 AND (TGT.custid = SRC.custid

 OR (TGT.custid IS NULL AND SRC.custid IS NULL))

 AND (TGT.empid = SRC.empid

 OR (TGT.empid IS NULL AND SRC.empid IS NULL))

WHEN MATCHED THEN

 UPDATE SET

 TGT.qty += SRC.qty

WHEN NOT MATCHED THEN

 INSERT (grp_id, custid, empid, orderyear, ordermonth, orderday)

 VALUES (SRC.grp_id, SRC.custid, SRC.empid, SRC.orderyear, SRC.ordermonth, SRC.orderday);

 The code in the CTE LastDay calculates aggregates for the same grouping sets as in the original
query but fi lters only the last day’s worth of data. The MERGE statement then increments the
quantities of groups that already exist in the target by adding the new quantities and inserts
the groups that don’t exist in the target.

C08626034.indd 523 2/13/2009 2:04:53 AM

524 Inside Microsoft SQL Server 2008: T-SQL Querying

Sorting

 Consider a request to calculate the total quantity aggregate for all grouping sets in the
 hierarchy order year > order month > order day. You can achieve this, of course, by simply
using the ROLLUP subclause. However, a tricky part of the request is that you need to sort
the rows in the output in a hierarchical manner, that is, days of a month, followed by the
month total, months of a year followed by the yearly total, and fi nally the grand total. This
can be achieved with the help of the GROUPING function as follows:

SELECT

 YEAR(orderdate) AS orderyear,

 MONTH(orderdate) AS ordermonth,

 DAY(orderdate) AS orderday,

 SUM(qty) AS totalqty

FROM dbo.Orders

GROUP BY

 ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate))

ORDER BY

 GROUPING(YEAR(orderdate)) , YEAR(orderdate),

 GROUPING(MONTH(orderdate)), MONTH(orderdate),

 GROUPING(DAY(orderdate)) , DAY(orderdate);

 Remember that the GROUPING function returns 0 when the element is a member of a
grouping set (representing detail) and 1 when the element isn’t (representing an aggregate).
Because we want to present detail before aggregates, the GROUPING function is very
 convenient. We want to fi rst see the detail of years and at the end the grand total. Within
the detail of years, we want to sort by year. Within each year, we want to fi rst see the detail
of months and then the year total. Within the detail of months, we want to sort by month.
Within the month we want to sort by the detail of days and then month total. Within the
 detail of days, we want to sort by day.

 This query generates the following output:

orderyear ordermonth orderday totalqty

----------- ----------- ----------- -----------

2006 4 18 22

2006 4 NULL 22

2006 8 2 10

2006 8 NULL 10

2006 9 7 30

2006 9 NULL 30

2006 12 24 32

2006 12 NULL 32

2006 NULL NULL 94

2007 1 9 40

2007 1 18 14

2007 1 NULL 54

2007 2 12 12

2007 2 NULL 12

2007 NULL NULL 66

C08626034.indd 524 2/13/2009 2:04:53 AM

 Chapter 8 Aggregating and Pivoting Data 525

2008 2 12 10

2008 2 16 20

2008 2 NULL 30

2008 4 18 15

2008 4 19 80

2008 4 NULL 95

2008 NULL NULL 125

NULL NULL NULL 285

Conclusion

 This chapter covered various solutions to data-aggregation problems that reused fundamental
querying techniques I introduced earlier in the book. It also introduced new techniques, such
as dealing with tiebreakers by using concatenation, calculating a minimum using the MAX
function, pivoting, unpivoting, calculating custom aggregates by using specialized techniques,
and more. This chapter also covered the new grouping sets features in SQL Server 2008
and showed how you can use those to effi ciently address the need for dynamic analysis of
aggregates.

 As you probably noticed, data-aggregation techniques involve a lot of logical manipulation.
If you’re looking for ways to improve your logic, you can practice pure logical puzzles, which
have a lot in common with querying problems in terms of the thought processes involved.
You can fi nd pure logic puzzles in Appendix A.

C08626034.indd 525 2/13/2009 2:04:53 AM

C08626034.indd 526 2/13/2009 2:04:53 AM

 527

Chapter 9

 TOP and APPLY

 This chapter covers two query elements that might seem unrelated. One element is the TOP
option, which allows you to limit the number of rows affected by a query. The other is the
APPLY table operator, which allows you to apply a table expression to each row of another
table expression—basically creating a correlated join. I decided to cover both elements in the
same chapter because I fi nd that quite often you can use them together to solve querying
problems.

 I’ll fi rst describe the fundamentals of TOP and APPLY and then follow with solutions to
 common problems using these elements.

SELECT TOP

 In a SELECT query or table expression, TOP is used with an ORDER BY clause to limit the
result to rows that come fi rst in the ORDER BY ordering. You can specify the quantity
of rows you want in one of two ways: as an exact number of rows, from TOP (0) to TOP
(9223372036854775807) (the largest BIGINT value), or as a percentage of rows, from TOP
(0E0) PERCENT to TOP (100E0) PERCENT, using a FLOAT value. SQL Server supports any
 self-contained expression, not just constants, with TOP.

 To make it clear which rows are the “top” rows affected by a TOP query, you must indicate an
ordering of the rows. Just as you can’t tell top from bottom unless you know which way is up,
you won’t know which rows TOP affects unless you specify an ORDER BY clause. You should
think of TOP and ORDER BY together as a logical fi lter rather than a sorting mechanism.
That’s why a query with both a TOP clause and an ORDER BY clause is allowed to defi ne a
table expression. Recall from Chapter 1, “Logical Query Processing,” that when a TOP query is
the outermost query, the ORDER BY clause serves two purposes—to defi ne logical ordering
for TOP and to defi ne presentation ordering in the result cursor. However, when a TOP query
is used to defi ne a table expression, the ORDER BY clause serves only one purpose—to defi ne
logical ordering for TOP. Hence, the result can qualify as a relational table. The existing
 design of the TOP option can be quite confusing. Later in this chapter I’ll describe a design
that I think wouldn’t have been confusing, and I’ll show how you can provide an alternative
that isn’t confusing.

 Note Interestingly, you can specify the TOP option in a query without an ORDER BY clause, but
the logical meaning of TOP in such a query is not completely defi ned. I’ll explain this aspect of
TOP shortly.

C09626034.indd 527 2/20/2009 8:24:20 PM

528 Inside Microsoft SQL Server 2008: T-SQL Querying

 Let’s start with a basic example. The following query returns the three most recent orders:

USE InsideTSQL2008;

SELECT TOP (3) orderid, custid, orderdate

FROM Sales.Orders

ORDER BY orderdate DESC, orderid DESC;

 This query generates the following output:

orderid custid orderdate

----------- ----------- -----------------------

11077 65 2008-05-06 00:00:00.000

11076 9 2008-05-06 00:00:00.000

11075 68 2008-05-06 00:00:00.000

 Sorting fi rst by orderdate DESC guarantees that you get the most recent orders. Because
 orderdate is not unique, I added orderid DESC to the ORDER BY list as a tiebreaker. Among orders
with the same orderdate, the tiebreaker gives precedence to orders with higher orderid values.

 Note Notice the usage of parentheses here for the input expression to the TOP option.
Because SQL Server supports any self-contained expression as input, the expression must reside
within parentheses. For purposes of backward compatibility, SQL Server still supports SELECT
TOP queries that use a constant without parentheses. However, it’s good practice to put TOP
 constants in parentheses to conform to the current requirements.

 As an example of the PERCENT option, the following query returns the most recent 1 percent
of orders:

SELECT TOP (1) PERCENT orderid, custid, orderdate

FROM Sales.Orders

ORDER BY orderdate DESC, orderid DESC;

 This query generates the following output:

orderid custid orderdate

----------- ----------- -----------------------

11077 65 2008-05-06 00:00:00.000

11076 9 2008-05-06 00:00:00.000

11075 68 2008-05-06 00:00:00.000

11074 73 2008-05-06 00:00:00.000

11073 58 2008-05-05 00:00:00.000

11072 20 2008-05-05 00:00:00.000

11071 46 2008-05-05 00:00:00.000

11070 44 2008-05-05 00:00:00.000

11069 80 2008-05-04 00:00:00.000

 The Orders table has 830 rows, and 1 percent of 830 is 8.3. Because only whole rows can
be returned and 8.3 were requested, the actual number of rows returned is 9. When TOP . . .
PERCENT is used and the specifi ed percent includes a fractional row, the exact number of
rows requested is rounded up.

C09626034.indd 528 2/20/2009 8:24:20 PM

 Chapter 9 TOP and APPLY 529

TOP and Determinism

 As I mentioned earlier, a TOP query doesn’t require an ORDER BY clause. However, such a
query is nondeterministic. That is, running the same query twice against the same data might
yield different result sets, and both would be correct. The following query returns three
 orders, with no rule governing which three are returned:

SELECT TOP (3) orderid, custid, orderdate

FROM Sales.Orders;

 When I ran this query, I got the following output:

orderid custid orderdate

----------- ----------- -----------------------

10248 85 2006-07-04 00:00:00.000

10249 79 2006-07-05 00:00:00.000

10250 34 2006-07-08 00:00:00.000

 But you might get a different output. SQL Server will return the fi rst three rows it happened
to access fi rst.

 Note I can think of very few reasons to use SELECT TOP without ORDER BY, and I don’t
 recommend it. One reason is to serve as a quick reminder of the structure or column names of
a table or to fi nd out if the table contains any data at all. Another reason is to create an empty
table with the same structure as another table or query. In this case, you can use SELECT TOP (0)
<column list> INTO <table name> FROM Obviously, you don’t need an ORDER BY clause to
indicate “which zero rows” you want to select!

 A TOP query can be nondeterministic even when an ORDER BY clause is specifi ed if the
ORDER BY list is nonunique. For example, the following query returns the fi rst three orders in
order of increasing custid:

SELECT TOP (3) orderid, custid, orderdate

FROM Sales.Orders

ORDER BY custid;

 This query generates the following output:

orderid custid orderdate

----------- ----------- -----------------------

10643 1 2007-08-25 00:00:00.000

10692 1 2007-10-03 00:00:00.000

10702 1 2007-10-13 00:00:00.000

 You are guaranteed to get the orders with the lowest custid values. However, because the
custid column is not unique, you cannot guarantee which rows among the ones with the
same custid values will be returned in case of ties. Again, you will get the ones that SQL

C09626034.indd 529 2/20/2009 8:24:20 PM

530 Inside Microsoft SQL Server 2008: T-SQL Querying

Server happens to access fi rst. One way to guarantee determinism is to add a tiebreaker
that makes the ORDER BY list unique—for example, the primary key:

SELECT TOP (3) orderid, custid, orderdate

FROM Sales.Orders

ORDER BY custid, orderid;

 Another way to guarantee determinism is to use the WITH TIES option. When you use WITH
TIES, the query generates a result set including any additional rows that have the same values
in the sort column or columns as the last row returned. For example, consider the following
query:

SELECT TOP (3) WITH TIES orderid, custid, orderdate

FROM Sales.Orders

ORDER BY custid;

 This query specifi es TOP (3), yet it returns the following six rows:

orderid custid orderdate

----------- ----------- -----------------------

10643 1 2007-08-25 00:00:00.000

10692 1 2007-10-03 00:00:00.000

10702 1 2007-10-13 00:00:00.000

10835 1 2008-01-15 00:00:00.000

10952 1 2008-03-16 00:00:00.000

11011 1 2008-04-09 00:00:00.000

Three additional orders are returned because they have the same custid value (1) as the third row.

 Note Some applications must guarantee determinism. For example, if you’re using the TOP
 option to implement paging, you don’t want the same row to end up on two successive
pages just because the query was nondeterministic. Remember that you can always add the
 primary key as a tiebreaker to guarantee determinism in case the ORDER BY list is not
unique.

TOP and Input Expressions

 As the input to TOP, SQL Server supports any self-contained expression yielding a scalar
result. An expression that is independent of the outer query can be used—a variable or
parameter, an arithmetic expression, or even the result of a subquery. For example, the
 following query returns the @n most recent orders, where @n is a variable:

DECLARE @n AS INT = 2;

SELECT TOP (@n) orderid, orderdate, custid, empid

FROM Sales.Orders

ORDER BY orderdate DESC, orderid DESC;

C09626034.indd 530 2/20/2009 8:24:20 PM

 Chapter 9 TOP and APPLY 531

 The following query shows the use of a subquery as the input to TOP. As always, the input to
TOP specifi es the number of rows the query returns—for this example, the number of rows
returned is the monthly average number of orders. The ORDER BY clause in this example
specifi es that the rows returned are the most recent ones, where orderid is the tiebreaker
(higher ID wins):

SELECT TOP (SELECT COUNT(*)/(DATEDIFF(month,

 MIN(orderdate), MAX(orderdate))+1)

 FROM Sales.Orders)

 orderid, orderdate, custid, empid

FROM Sales.Orders

ORDER BY orderdate DESC, orderid DESC;

 The average number of monthly orders is the count of orders divided by one more than the
difference in months between the maximum and minimum order dates. Because 830 orders
in the table were placed during a period of 23 months, the output has the most recent
36 orders.

TOP and Modifi cations

 SQL Server provides a TOP option for data modifi cation statements (INSERT, UPDATE, and
DELETE).

 Note Before SQL Server 2005, the SET ROWCOUNT option provided the same capability as
some of TOP’s newer features. SET ROWCOUNT accepted a variable as input, and it affected
both data modifi cation statements and SELECT statements. Microsoft no longer recommends
SET ROWCOUNT as a way to affect INSERT, UPDATE, and DELETE statements—in fact, SET
ROWCOUNT enters a deprecation process, and in the next planned release of SQL Server (SQL
Server 11), it will not affect data modifi cation statements at all. Use TOP to limit the number of
rows affected by data modifi cation statements.

 SQL Server supports the TOP option with modifi cation statements, allowing you to limit the
number or percentage of affected rows. A TOP specifi cation can follow the keyword DELETE,
UPDATE, or INSERT.

 An ORDER BY clause is not supported with modifi cation statements, even when using TOP, so
none of them can rely on logical ordering. SQL Server simply affects the specifi ed number of
rows that it happens to access fi rst.

 In the following statement, SQL Server does not guarantee which rows will be inserted from
the source table:

INSERT TOP (10) INTO target_table

 SELECT col1, col2, col3

 FROM source_table;

C09626034.indd 531 2/20/2009 8:24:20 PM

532 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note Although you cannot use ORDER BY with INSERT TOP, you can guarantee which rows will
be inserted if you specify TOP and ORDER BY in the SELECT statement, like so:

INSERT INTO target_table

 SELECT TOP (10) col1, col2, col3

 FROM source_table

 ORDER BY col1;

 An INSERT TOP is handy when you want to load a subset of rows from a large table or result
set into a target table and you don’t care which subset will be chosen; instead, you care only
about the number of rows.

 Note Although ORDER BY cannot be used with UPDATE TOP and DELETE TOP, you can
 overcome the limitation by creating a CTE from a SELECT TOP query that has an ORDER BY clause
and then issue your UPDATE or DELETE against the CTE:

WITH CTE_DEL AS

(

 SELECT TOP (10) * FROM some_table ORDER BY col1

)

DELETE FROM CTE_DEL;

WITH CTE_UPD AS

(

 SELECT TOP (10) * FROM some_table ORDER BY col1

)

UPDATE CTE_UPD SET col2 += 1;

 One such situation is when you need to insert or modify large volumes of data and, for
practical reasons, you split it into batches, modifying one subset of the data at a time. For
example, purging historic data might involve deleting millions of rows of data. Unless the
 target table is partitioned and you can simply drop a partition, the purging process requires
a DELETE statement. Deleting such a large set of rows in a single transaction has several
 drawbacks. A DELETE statement is fully logged, and it will require enough space in the
 transaction log to accommodate the whole transaction. During the delete operation (which
can take a long time), no part of the log from the oldest open transaction up to the current
point can be overwritten. Furthermore, if the transaction breaks in the middle for some
 reason, all the activity that took place to that point will be rolled back, and this will take a
while. Finally, when many rows are deleted at once, SQL Server might escalate the individual
locks held on the deleted rows to an exclusive table lock, preventing both read and write
 access to the target table until the DELETE is completed.

 It makes sense to break the single large DELETE transaction into several smaller ones—
small enough to avoid lock escalation (typically, a few thousand rows per transaction) and
to allow recycling of the transaction log. You can easily verify that the number you chose
doesn’t cause lock escalation by testing a DELETE with the TOP option while monitoring Lock

C09626034.indd 532 2/20/2009 8:24:20 PM

 Chapter 9 TOP and APPLY 533

Escalation events with Profi ler. Splitting the large DELETE also allows overwriting the inactive
section of the log.

 To demonstrate purging data in multiple transactions, run the following code, which creates
the LargeOrders table and populates it with sample data:

IF OBJECT_ID('dbo.LargeOrders') IS NOT NULL

 DROP TABLE dbo.LargeOrders;

GO

SELECT ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS orderid,

 O1.custid, O1.empid, O1.orderdate, O1.requireddate,

 O1.shippeddate, O1.shipperid, O1.freight, O1.shipname, O1.shipaddress,

 O1.shipcity, O1.shipregion, O1.shippostalcode, O1.shipcountry

INTO dbo.LargeOrders

FROM Sales.Orders AS O1

 CROSS JOIN Sales.Orders AS O2;

CREATE UNIQUE CLUSTERED INDEX idx_od_oid

 ON dbo.LargeOrders(orderdate, orderid);

 To split a large DELETE, use the following solution:

WHILE 1 = 1

BEGIN

 DELETE TOP (5000) FROM dbo.LargeOrders

 WHERE orderdate < '20070101';

 IF @@rowcount < 5000 BREAK;

END

 The code sets the TOP option to 5,000, limiting the number of rows affected by the
 statement to 5,000. An endless loop attempts to delete 5,000 rows in each iteration, where
each 5,000-row deletion resides in a separate transaction. The loop breaks as soon as the last
batch is handled (that is, when the number of affected rows is less than 5,000).

 In a similar manner, you can split large updates into batches, as long as the attribute that
you are changing is also the attribute that you fi lter by. For example, say you need to change
the value of custid from 55 to 123 wherever it appears in the LargeOrders table. Here’s the
 solution you would use with UPDATE TOP:

WHILE 1 = 1

BEGIN

 UPDATE TOP (5000) dbo.LargeOrders

 SET custid = 123

 WHERE custid = 55;

 IF @@rowcount < 5000 BREAK;

END

 If, however, you need to fi lter one attribute and modify another, you won’t be able to use
this solution. Rather, you will need to implement paging logic, which I’ll describe later in this
chapter.

C09626034.indd 533 2/20/2009 8:24:20 PM

534 Inside Microsoft SQL Server 2008: T-SQL Querying

TOP on Steroids

 Earlier I talked about TOP’s confusing design. This confusion stems from the fact that the same
ORDER BY clause that was traditionally designed for presentation purposes also serves the
logical fi ltering purpose for TOP. What I believe would have been a simpler design would have
been to designate the TOP option with its own ORDER BY clause, unrelated to the traditional
presentation ORDER BY clause. This way, there would be no confusion as to whether the query
returns a relational table result because this aspect depends solely on whether a presentation
ORDER BY clause was specifi ed. Also, such a design would have allowed defi ning logical
 ordering for TOP that is different than presentation ordering. The OVER clause that is used
for other purposes in SQL (for example, ranking calculations) fi ts TOP’s needs like a glove. In
fact, it would have also allowed accommodating a concept of partitioned TOP (applying TOP
per partition). Had such a design been implemented, you would have been able to express a
 request for the three most recent orders for each employee, like so:

SELECT

 TOP (3) OVER(PARTITION BY empid

 ORDER BY orderdate DESC, orderid DESC)

 empid, orderid, orderdate, custid

FROM Sales.Orders;

 Alas, SQL Server doesn’t support such syntax. However, you can get quite close by defi ning a
row number based on the same OVER clause specifi cation and then fi ltering any number of
rows that you want per partition based on the row number, like so:

WITH C AS

(

 SELECT

 ROW_NUMBER() OVER(PARTITION BY empid

 ORDER BY orderdate DESC, orderid DESC) AS rownum,

 empid, orderid, orderdate, custid

 FROM Sales.Orders

)

SELECT *

FROM C

WHERE rownum <= 3;

 And in fact, as I mentioned earlier, modifi cations with TOP don’t allow you to control logical
ordering. Because you can modify data through table expressions, you can control which
rows will be modifi ed by using row numbers. For example, the following code deletes the
1,000 least recent orders for each employee:

WITH C AS

(

 SELECT

 ROW_NUMBER() OVER(PARTITION BY empid

 ORDER BY orderdate, orderid) AS rownum,

 empid, orderid, orderdate, custid

 FROM dbo.LargeOrders

)

DELETE FROM C

WHERE rownum <= 1000;

C09626034.indd 534 2/20/2009 8:24:20 PM

 Chapter 9 TOP and APPLY 535

 When you’re done experimenting with the batch modifi cations, drop the LargeOrders table:

IF OBJECT_ID('dbo.LargeOrders', 'U') IS NOT NULL

 DROP TABLE dbo.LargeOrders;

APPLY

 The APPLY table operator applies the right-hand table expression to every row of the left-hand
table expression. Unlike a join, where the order in which each of the table expressions is
 evaluated is unimportant, APPLY must logically evaluate the left table expression fi rst. This
logical evaluation order of the inputs allows the right table expression to be correlated with
the left one. The concept can probably be made clearer with an example.

 Run the following code to create an inline table-valued function called GetTopProducts:

IF OBJECT_ID('dbo.GetTopProducts') IS NOT NULL

 DROP FUNCTION dbo.GetTopProducts;

GO

CREATE FUNCTION dbo.GetTopProducts

 (@supid AS INT, @catid INT, @n AS INT)

 RETURNS TABLE

AS

RETURN

 SELECT TOP (@n) WITH TIES productid, productname, unitprice

 FROM Production.Products

 WHERE supplierid = @supid

 AND categoryid = @catid

 ORDER BY unitprice DESC;

GO

 The function accepts three inputs: a supplier ID (@supid), a category ID (@catid), and a
 requested number of products (@n). The function returns the requested number of products
of the given category, supplied by the given supplier, with the highest unit prices. The query
uses the TOP option WITH TIES to ensure a deterministic result set by including all products
that have the same unit price as the least expensive product returned.

 The following query uses the APPLY operator in conjunction with GetTopProducts to return,
for each supplier, the two most expensive beverages. The category ID for beverages is 1,
so 1 is supplied for the parameter @catid:

SELECT S.supplierid, S.companyname, P.productid, P.productname, P.unitprice

FROM Production.Suppliers AS S

 CROSS APPLY dbo.GetTopProducts(S.supplierid, 1, 2) AS P;

 This query generates the following output:

supplierid companyname productid productname unitprice

----------- --------------- ----------- -------------- ----------

20 Supplier CIYNM 43 Product ZZZHR 46.00

23 Supplier ELCRN 76 Product JYGFE 18.00

7 Supplier GQRCV 70 Product TOONT 15.00

18 Supplier LVJUA 38 Product QDOMO 263.50

C09626034.indd 535 2/20/2009 8:24:20 PM

536 Inside Microsoft SQL Server 2008: T-SQL Querying

18 Supplier LVJUA 39 Product LSOFL 18.00

12 Supplier AARON 75 Product BWRLG 7.75

1 Supplier SWRXU 2 Product RECZE 19.00

1 Supplier SWRXU 1 Product HHYDP 18.00

16 Supplier UHZRG 35 Product NEVTJ 18.00

16 Supplier UHZRG 67 Product XLXQF 14.00

16 Supplier UHZRG 34 Product SWNJY 14.00

10 Supplier UNAHG 24 Product QOGNU 4.50

 There are two forms of the APPLY operator: CROSS APPLY and OUTER APPLY. The operators
CROSS APPLY and OUTER APPLY behave like correlated versions of INNER JOIN and LEFT OUTER
JOIN, respectively. Recall that rows from an inner join’s left input table won’t automatically
appear in the result set; the join condition might never be true for a particular left input row.
Similarly, rows from a CROSS APPLY’s left input table won’t automatically appear in the result set;
the right table expression could be empty for a particular (left input) row. Such is the case here,
for example, for suppliers that don’t supply beverages. To include results for those suppliers as
well, use the OUTER APPLY operator instead of CROSS APPLY, as the following query shows:

SELECT S.supplierid, S.companyname, P.productid, P.productname, P.unitprice

FROM Production.Suppliers AS S

 OUTER APPLY dbo.GetTopProducts(S.supplierid, 1, 2) AS P;

 This query returns 33 rows. The result set with OUTER APPLY includes left rows for which the
right table expression yielded an empty set, and for these rows the right table expression’s
attributes are NULL.

 A nice side effect resulted from the technology added to SQL Server’s engine to support
the APPLY operator. You are now allowed to pass a column reference parameter from an
outer query to a table-valued function. As an example of this capability, the following query
 returns, for each supplier, the lower of the two most expensive beverage prices (assuming
there are at least two):

SELECT supplierid, companyname,

 (SELECT MIN(P.unitprice)

 FROM dbo.GetTopProducts(S.supplierid, 1, 2) AS P) AS price

FROM Production.Suppliers AS S;

 This query generates the following output:

supplierid companyname price

----------- --------------- -------

8 Supplier BWGYE NULL

20 Supplier CIYNM 46.00

23 Supplier ELCRN 18.00

5 Supplier EQPNC NULL

25 Supplier ERVYZ NULL

22 Supplier FNUXM NULL

7 Supplier GQRCV 15.00

19 Supplier JDNUG NULL

24 Supplier JNNES NULL

14 Supplier KEREV NULL

18 Supplier LVJUA 18.00

C09626034.indd 536 2/20/2009 8:24:20 PM

 Chapter 9 TOP and APPLY 537

15 Supplier NZLIF NULL

28 Supplier OAVQT NULL

29 Supplier OGLRK NULL

4 Supplier QOVFD NULL

9 Supplier QQYEU NULL

6 Supplier QWUSF NULL

17 Supplier QZGUF NULL

3 Supplier STUAZ NULL

12 Supplier AARON 7.75

1 Supplier SWRXU 18.00

13 Supplier TEGSC NULL

16 Supplier UHZRG 14.00

10 Supplier UNAHG 4.50

2 Supplier VHQZD NULL

21 Supplier XOXZA NULL

11 Supplier ZPYVS NULL

27 Supplier ZRYDZ NULL

26 Supplier ZWZDM NULL

Solutions to Common Problems Using TOP and APPLY

 Now that I’ve covered the fundamentals of TOP and APPLY, I’ll present common problems
and solutions that use TOP and APPLY.

TOP n for Each Group

 In Chapter 6, “Subqueries, Table Expressions, and Ranking Functions,” and Chapter 8,
“Aggregating and Pivoting Data,” I discussed a problem involving tiebreakers in which you
were asked to return the most recent order for each employee. This problem is actually
a special case of a more generic problem in which you are after the top n rows for each
group—for example, returning the three most recent orders for each employee. Again,
 orders with higher orderdate values have precedence, but you need to introduce a tiebreaker
to determine precedence in case of ties. Here I’ll use the maximum orderid as the tiebreaker.
I’ll present solutions to this class of problems using TOP and APPLY. You will fi nd that these
solutions are dramatically simpler than the ones I presented previously, and in some cases
they are substantially faster. Indexing guidelines, though, remain the same. That is, you want
an index with the key list being the partitioning columns (empid), sort columns (orderdate),
tiebreaker columns (orderid), and, for covering purposes, the other columns mentioned in the
query as the included column list (custid and requireddate).

 Before going over the different solutions, run the following code to create the desired
 indexes on the Orders and OrderDetails tables that participate in my examples:

CREATE UNIQUE INDEX idx_eid_od_oid_i_cid_rd

 ON Sales.Orders(empid, orderdate, orderid)

 INCLUDE(custid, requireddate);

CREATE UNIQUE INDEX idx_oid_qtyd_pid

 ON Sales.OrderDetails(orderid, qty DESC, productid);

C09626034.indd 537 2/20/2009 8:24:20 PM

538 Inside Microsoft SQL Server 2008: T-SQL Querying

 The fi rst solution that I’ll present will fi nd the most recent order for each employee. The
 solution queries the Orders table, fi ltering only orders that have an orderid value equal to the
result of a subquery. The subquery returns the orderid value of the most recent order for the
current employee by using a simple TOP (1) logic. Listing 9-1 contains the solution query.

LISTING 9-1 Solution 1 to the Single Most Recent Order for Each Employee problem

SELECT empid, orderid, custid, orderdate, requireddate

FROM Sales.Orders AS O1

WHERE orderid =

 (SELECT TOP (1) orderid

 FROM Sales.Orders AS O2

 WHERE O2.empid = O1.empid

 ORDER BY orderdate DESC, orderid DESC);

The query in Listing 9-1 generates the following output:

empid orderid custid orderdate requireddate

------ -------- ------- ----------------------- -----------------------

5 11043 74 2008-04-22 00:00:00.000 2008-05-20 00:00:00.000

6 11045 10 2008-04-23 00:00:00.000 2008-05-21 00:00:00.000

9 11058 6 2008-04-29 00:00:00.000 2008-05-27 00:00:00.000

3 11063 37 2008-04-30 00:00:00.000 2008-05-28 00:00:00.000

2 11073 58 2008-05-05 00:00:00.000 2008-06-02 00:00:00.000

7 11074 73 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

8 11075 68 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

4 11076 9 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

1 11077 65 2008-05-06 00:00:00.000 2008-06-03 00:00:00.000

Figure 9-1 shows the execution plan for the query in Listing 9-1.

FIGURE 9-1 Execution plan for the query in Listing 9-1

This solution has several advantages over the solutions I presented earlier in the book.
Compared to the ANSI subqueries solution I presented in Chapter 6, this one is much simpler,
especially when you have multiple sort/tiebreaker columns: You simply extend the ORDER
BY list in the subquery to include the additional columns. Compared to the solution based
on aggregations I presented in Chapter 8, this solution may be slower, but it is substantially
simpler.

SELECT empid, orderid, custid, orderdate, requireddate

FROM Sales.Orders AS O1

WHERE orderid =

 (SELECT TOP (1) orderid

 FROM Sales.Orders AS O2

 WHERE O2.empid = O1.empid

 ORDER BY orderdate DESC, orderid DESC);

C09626034.indd 538 2/20/2009 8:24:20 PM

 Chapter 9 TOP and APPLY 539

Examine the query’s execution plan in Figure 9-1. The Index Scan operator shows that the
covering index idx_eid_od_oid_i_cid_rd is scanned once. The bottom branch of the Nested
Loops operator represents the work done for each row of the Index Scan. Here you see
that for each row of the Index Scan, an Index Seek and a Top operation take place to fi nd
the given employee’s most recent order. Remember that the index leaf level holds the data
sorted by empid, orderdate, orderid, in that order; this means that the last row within each
group of rows per employee represents the sought row. The Index Seek operation reaches
the end of the group of rows for the current employee, and the Top operator goes one step
backward to return the key of the most recent order. A fi lter operator then keeps only orders
where the outer orderid value matches the one returned by the subquery.

The I/O cost of this query is 1,786 logical reads, and this number breaks down as follows:
The full scan of the covering index requires six logical reads because the index spans six data
pages, each of the 830 index seeks requires at least two logical reads because the index has
two levels, and some of the index seeks require three logical reads in all because the seek
might lead to the beginning of one data page and the most recent orderid might be at the
end of the preceding page.

Realizing that a separate seek operation within the index was invoked for each outer order,
you can fi gure out that you have room for optimization here. The performance potential is
to invoke only a single seek per employee, not per order, because ultimately you are after
the most recent order for each employee. I’ll describe how to achieve such optimization
shortly. But before that, I’d like to point out another advantage of this solution over the ones
I presented earlier in the book. Previous solutions were limited to returning only a single
order per employee. This solution, however, can be easily extended to support any number
of orders per employee by converting the equality operator to an IN predicate. The solution
query is shown in Listing 9-2.

LISTING 9-2 Solution 1 to the Three Most Recent Orders for Each Employee problem

SELECT empid, orderid, custid, orderdate, requireddate

FROM Sales.Orders AS O1

WHERE orderid IN

 (SELECT TOP (3) orderid

 FROM Sales.Orders AS O2

 WHERE O2.empid = O1.empid

 ORDER BY orderdate DESC, orderid DESC);

Now let’s go to the optimization technique. Remember that you are attempting to give the
optimizer a hint that you want one index seek operation per employee, not one per order.
You can achieve this by querying the Employees table and retrieving the most recent orderid
for each employee. Create a derived table out of this query against Employees and join the
derived table to the Orders table on matching orderid values. Listing 9-3 has the solution
query, generating the execution plan shown in Figure 9-2.

SELECT empid, orderid, custid, orderdate, requireddate

FROM Sales.Orders AS O1

WHERE orderid IN

 (SELECT TOP (3) orderid

 FROM Sales.Orders AS O2

 WHERE O2.empid = O1.empid

 ORDER BY orderdate DESC, orderid DESC);

C09626034.indd 539 2/20/2009 8:24:20 PM

540 Inside Microsoft SQL Server 2008: T-SQL Querying

LISTING 9-3 Solution 2 to the Single Most Recent Order for Each Employee problem

SELECT O.empid, O.orderid, custid, O.orderdate, O.requireddate

FROM (SELECT E.empid,

 (SELECT TOP (1) orderid

 FROM Sales.Orders AS O2

 WHERE O2.empid = E.empid

 ORDER BY orderdate DESC, orderid DESC) AS toporder

 FROM HR.Employees AS E) AS EO

 JOIN Sales.Orders AS O

 ON O.orderid = EO.toporder;

FIGURE 9-2 Execution plan for the query in Listing 9-3

You can see in the plan that one of the indexes on the Employees table is scanned to access
the empids. The next operator that appears in the plan (Nested Loops) drives a seek in the
 index on Orders to retrieve the ID of the employee’s most recent order. With nine employees,
only nine seek operations will be performed, compared to the previous 830 that were
driven by the number of orders. Finally, another Nested Loops operator drives one seek per
 employee in the clustered index on Orders.orderid to look up the attributes of the order
based on the orderid value. If the index on orderid wasn’t clustered, you would have seen
an additional lookup to access the full data row. The I/O cost of this query is only 36 logical
reads against the Orders table and two reads against the Employees table.

An attempt to regenerate the same success when you’re after more than one order per
employee is disappointing. Because you cannot return more than one key in the SELECT list
using a subquery, you might attempt to do something similar in a join condition between
Employees and Orders. The solution query is shown in Listing 9-4.

LISTING 9-4 Solution 2 to the Three Most Recent Orders for Each Employee problem

SELECT O1.empid, O1.orderid, O1.custid, O1.orderdate, O1.requireddate

FROM HR.Employees AS E

 JOIN Sales.Orders AS O1

 ON orderid IN

 (SELECT TOP (3) orderid

 FROM Sales.Orders AS O2

 WHERE O2.empid = E.empid

 ORDER BY orderdate DESC, orderid DESC);

SELECT O.empid, O.orderid, custid, O.orderdate, O.requireddate

FROM (SELECT E.empid,

 (SELECT TOP (1) orderid

 FROM Sales.Orders AS O2

 WHERE O2.empid = E.empid

 ORDER BY orderdate DESC, orderid DESC) AS toporder

 FROM HR.Employees AS E) AS EO

 JOIN Sales.Orders AS O

 ON O.orderid = EO.toporder;

SELECT O1.empid, O1.orderid, O1.custid, O1.orderdate, O1.requireddate

FROM HR.Employees AS E

 JOIN Sales.Orders AS O1

 ON orderid IN

 (SELECT TOP (3) orderid

 FROM Sales.Orders AS O2

 WHERE O2.empid = E.empid

 ORDER BY orderdate DESC, orderid DESC);

C09626034.indd 540 2/20/2009 8:24:20 PM

 Chapter 9 TOP and APPLY 541

However, this solution yields the poor plan shown in Figure 9-3, generating 15,944 logical
reads against the Orders table and two logical reads against the Employees table. In this
case, you’re better off using the solution I showed earlier that supports returning multiple
orders per employee.

FIGURE 9-3 Execution plan for the query in Listing 9-4

 Another solution to the problem involves using the APPLY operator. This solution
 outperforms all others thus far, and it also supports returning multiple orders per employee.
You apply to the Employees table a table expression that returns, for a given row of the
Employees table, the n most recent orders for the employee in that row. Listing 9-5 has the
solution query, generating the execution plan shown in Figure 9-4.

LISTING 9-5 Solution 3 to the Three Most Recent Orders for Each Employee problem

SELECT E.empid, A.orderid, A.custid, A.orderdate, A.requireddate

FROM HR.Employees AS E

 CROSS APPLY

 (SELECT TOP (3) orderid, custid, orderdate, requireddate

 FROM Sales.Orders AS O

 WHERE O.empid = E.empid

 ORDER BY orderdate DESC, orderid DESC) AS A;

FIGURE 9-4 Execution plan for the query in Listing 9-5

 The plan scans an index on the Employees table for the empid values. Each empid value
drives a single seek within the covering index on Orders to return the requested most recent
three orders for that employee. The interesting part here is that you don’t get only the keys

SELECT E.empid, A.orderid, A.custid, A.orderdate, A.requireddate

FROM HR.Employees AS E

 CROSS APPLY

 (SELECT TOP (3) orderid, custid, orderdate, requireddate

 FROM Sales.Orders AS O

 WHERE O.empid = E.empid

 ORDER BY orderdate DESC, orderid DESC) AS A;

C09626034.indd 541 2/20/2009 8:24:20 PM

542 Inside Microsoft SQL Server 2008: T-SQL Querying

of the rows found; rather, this plan allows for returning multiple attributes. So you don’t need
any additional activities to return the nonkey attributes. The I/O cost of this query is only
18 logical reads against the Orders table and two reads against the Employees table.

 Surprisingly, one solution can be even faster than the one using the APPLY operator in certain
circumstances, which I’ll describe shortly. The solution uses the ROW_NUMBER function. You
calculate the row number of each order, partitioned by empid and based on orderdate DESC,
orderid DESC order. Then, in an outer query, you fi lter only results with a row number less
than or equal to 3. The optimal index for this solution is similar to the covering index created
earlier, but with the orderdate and orderid columns defi ned in descending order:

CREATE UNIQUE INDEX idx_eid_odD_oidD_i_cid_rd

 ON Sales.Orders(empid, orderdate DESC, orderid DESC)

 INCLUDE(custid, requireddate);

 Listing 9-6 has the solution query, generating the execution plan shown in Figure 9-5.

LISTING 9-6 Solution 4 to the Three Most Recent Orders for Each Employee problem

SELECT orderid, custid, orderdate, requireddate

FROM (SELECT orderid, custid, orderdate, requireddate,

 ROW_NUMBER() OVER(PARTITION BY empid

 ORDER BY orderdate DESC, orderid DESC) AS rownum

 FROM Sales.Orders) AS D

WHERE rownum <= 3;

FIGURE 9-5 Execution plan for the query in Listing 9-6

 I already described the execution plans generated for ranking functions in Chapter 6, and this
plan is very similar. The I/O cost here is only six logical reads caused by the single full scan
of the covering index. Note that to calculate the row numbers here, the index must be fully
scanned. With large tables, when you’re seeking a small percentage of rows per group, the
APPLY operator will be faster because the total cost of the multiple seek operations—one per
group—is lower than a full scan of the covering index.

 The last two solutions that use the APPLY operator and the ROW_NUMBER function have
an important advantage over the other solutions that I’ve shown. The other solutions are
 supported only when the table at hand has a single column key because they rely on a
 subquery returning a scalar. The last two solutions, on the other hand, are just as applicable
with composite keys. For example, say you were after the top three order details for each
order, with precedence determined by qty DESC and where productid ASC is used as the
 tiebreaker ordering. The OrderDetails table has a composite primary key, (orderid, productid),

SELECT orderid, custid, orderdate, requireddate

FROM (SELECT orderid, custid, orderdate, requireddate,

 ROW_NUMBER() OVER(PARTITION BY empid

 ORDER BY orderdate DESC, orderid DESC) AS rownum

 FROM Sales.Orders) AS D

WHERE rownum <= 3;

C09626034.indd 542 2/20/2009 8:24:21 PM

 Chapter 9 TOP and APPLY 543

so you can’t return a key for this table from a subquery. On the other hand, the APPLY operator
doesn’t rely on having a single-column key. It cares only about the correlation of the inner
OrderDetails table to the outer Orders table based on orderid match and on a sort based on
qty DESC and productid ASC:

SELECT D.orderid, D.productid, D.qty

FROM Sales.Orders AS O

 CROSS APPLY

 (SELECT TOP (3) OD.orderid, OD.productid, OD.qty

 FROM Sales.OrderDetails AS OD

 WHERE OD.orderid = O.orderid

 ORDER BY qty DESC, productid) AS D;

 Similarly, the ROW_NUMBER–based solution doesn’t rely on having a single-column key. It
simply calculates row numbers partitioned by orderid, sorted by qty DESC and productid ASC:

SELECT orderid, productid, qty

FROM (SELECT ROW_NUMBER() OVER(PARTITION BY orderid

 ORDER BY qty DESC, productid) AS rownum,

 orderid, productid, qty

 FROM Sales.OrderDetails) AS D

WHERE rownum <= 3;

Matching Current and Previous Occurrences

 Matching current and previous occurrences is yet another problem for which you can use
the TOP option. The problem is matching to each “current” row, a row from the same table
that is considered the “previous” row based on some ordering criteria—typically, time-based
criteria. Such a request serves the need to make calculations involving measurements from
both a “current” row and a “previous” row. Examples for such requests are calculating trends,
differences, ratios, and so on. When you need to include only one value from the previous
row for your calculation, use a simple TOP (1) subquery to get that value. But when you need
multiple measurements from the previous row, it makes more sense in terms of performance
to use a join rather than multiple subqueries.

 Suppose you need to match each employee’s order with her previous order, using orderdate
to determine the previous order and using orderid as a tiebreaker. Once the employee’s
orders are matched, you can request calculations involving attributes from both sides—for
example, calculating differences between the current and previous order dates, required
dates, and so on. For brevity’s sake, I won’t show the actual calculations of differences; rather,
I’ll just focus on the matching techniques. One solution is to join two instances of the Orders
table: one representing the current rows (C) and the other representing the previous row (P).
The join condition will match P.orderid with the orderid representing the previous order,
which you return from a TOP (1) subquery. You use a LEFT OUTER join to keep the “fi rst”
 order for each employee. An inner join would eliminate such orders because a match would
not be found for them. Listing 9-7 has the solution query to the matching problem.

C09626034.indd 543 2/20/2009 8:24:21 PM

544 Inside Microsoft SQL Server 2008: T-SQL Querying

LISTING 9-7 Query Solution 1 to the Matching Current and Previous Occurrences problem

SELECT C.empid,

 C.orderid AS curorderid, P.orderid AS prvorderid,

 C.orderdate AS curorderdate, P.orderdate AS prvorderdate,

 C.requireddate AS curreqdate, P.requireddate AS prvreqdate

FROM Sales.Orders AS C

 LEFT OUTER JOIN Sales.Orders AS P

 ON P.orderid =

 (SELECT TOP (1) orderid

 FROM Sales.Orders AS O

 WHERE O.empid = C.empid

 AND (O.orderdate < C.orderdate

 OR (O.orderdate = C.orderdate

 AND O.orderid < C.orderid))

 ORDER BY orderdate DESC, orderid DESC)

ORDER BY C.empid, C.orderdate, C.orderid;

 The subquery’s fi lter is a bit tricky because precedence is determined by two attributes:
 orderdate (ordering column) and orderid (tiebreaker). Had the request been for precedence
based on a single column—say, orderid alone—the fi lter would have been much simpler—
O.orderid < C.orderid. Because two attributes are involved, “previous” rows are identifi ed with
a logical expression that says inner_sort_col < outer_sort_col or (inner_sort_col = outer_sort_col
and inner_tiebreaker < outer_tiebreaker).

This query generates the execution plan shown in Figure 9-6, with an I/O cost of 4,844
 logical reads.

FIGURE 9-6 Execution plan for the query in Listing 9-7

The plan fi rst scans the covering index I created earlier on the key list (empid, orderdate,
orderid), with the covered columns (custid, requireddate) specifi ed as included columns. This
scan’s purpose is to return the “current” rows. For each current row, a Nested Loops operator
initiates an Index Seek operation in the same index, driven by the subquery to fetch the key
(orderid) of the “previous” row. For each returned previous orderid, another Nested Loops
operator retrieves the requested list of attributes of the previous row. You realize that one
of the two seek operations is superfl uous and that there’s potential for a revised query that
would issue only one seek per current order.

SELECT C.empid,

 C.orderid AS curorderid, P.orderid AS prvorderid,

 C.orderdate AS curorderdate, P.orderdate AS prvorderdate,

 C.requireddate AS curreqdate, P.requireddate AS prvreqdate

FROM Sales.Orders AS C

 LEFT OUTER JOIN Sales.Orders AS P

 ON P.orderid =

 (SELECT TOP (1) orderid

 FROM Sales.Orders AS O

 WHERE O.empid = C.empid

 AND (O.orderdate < C.orderdate

 OR (O.orderdate = C.orderdate

 AND O.orderid < C.orderid))

 ORDER BY orderdate DESC, orderid DESC)

ORDER BY C.empid, C.orderdate, C.orderid;

C09626034.indd 544 2/20/2009 8:24:21 PM

 Chapter 9 TOP and APPLY 545

You can try various query revisions that might improve performance. Listing 9-8 has an
 example of a query revision that generates the plan shown in Figure 9-7.

LISTING 9-8 Query Solution 2 to the Matching Current and Previous Occurrences problem

SELECT C.empid,

 C.orderid AS curorderid, P.orderid AS prvorderid,

 C.orderdate AS curorderdate, P.orderdate AS prvorderdate,

 C.requireddate AS curreqdate, P.requireddate AS prvreqdate

FROM (SELECT empid, orderid, orderdate, requireddate,

 (SELECT TOP (1) orderid

 FROM Sales.Orders AS O2

 WHERE O2.empid = O1.empid

 AND (O2.orderdate < O1.orderdate

 OR O2.orderdate = O1.orderdate

 AND O2.orderid < O1.orderid)

 ORDER BY orderdate DESC, orderid DESC) AS prvorderid

 FROM Sales.Orders AS O1) AS C

 LEFT OUTER JOIN Sales.Orders AS P

 ON C.prvorderid = P.orderid

ORDER BY C.empid, C.orderdate, C.orderid;

FIGURE 9-7 Execution plan for the query in Listing 9-8

This plan incurs an I/O cost of 3,223 logical reads, but it also involves a sort operation. The
solution creates a derived table called C that contains current orders, with an additional
column (prvorderid) holding the orderid of the previous order as obtained by a correlated
subquery. The outer query then joins C with another instance of Orders, aliased as P, which
supplies the full list of attributes from the previous order. The lower I/O cost is mainly the
result of the Merge join algorithm that the plan uses. In the graphical query plan, the upper
input to the Merge Join operator is the result of an ordered scan of the clustered index on
orderid, representing the “previous” orders, and this is the nonpreserved side of the outer
join. The lower input is the result of scanning the covering index and fetching each previous
orderid with a seek operation followed by a Top 1.

SELECT C.empid,

 C.orderid AS curorderid, P.orderid AS prvorderid,

 C.orderdate AS curorderdate, P.orderdate AS prvorderdate,

 C.requireddate AS curreqdate, P.requireddate AS prvreqdate

FROM (SELECT empid, orderid, orderdate, requireddate,

 (SELECT TOP (1) orderid

 FROM Sales.Orders AS O2

 WHERE O2.empid = O1.empid

 AND (O2.orderdate < O1.orderdate

 OR O2.orderdate = O1.orderdate

 AND O2.orderid < O1.orderid)

 ORDER BY orderdate DESC, orderid DESC) AS prvorderid

 FROM Sales.Orders AS O1) AS C

 LEFT OUTER JOIN Sales.Orders AS P

 ON C.prvorderid = P.orderid

ORDER BY C.empid, C.orderdate, C.orderid;

C09626034.indd 545 2/20/2009 8:24:21 PM

546 Inside Microsoft SQL Server 2008: T-SQL Querying

 A merge join turned out to be cost effective here because the rows of the Orders table were
presorted on the clustered index key column orderid and it was not too much work to sort
the other input in preparation for the merge. In larger production systems, circumstances
will most likely be different. With a much larger number of rows and a different clustered
 index—on a column that frequently appears in range queries, perhaps—you shouldn’t
 expect to see the same query plan.

This is where the APPLY operator comes in handy. It often leads to simple and effi cient plans
that perform well even with large volumes of data. Using the APPLY operator in this case
leads to a plan that scans the data once to get the current orders and performs a single index
seek for each current order to fetch from the covering index all the attributes of the previous
order at once.

Listing 9-9 has the solution query, which generates the plan shown in Figure 9-8, with an I/O
cost of 3,202 logical reads and no sorting involved.

LISTING 9-9 Query Solution 3 to the Matching Current and Previous Occurrences problem

SELECT C.empid,

 C.orderid AS curorderid, P.orderid AS prvorderid,

 C.orderdate AS curorderdate, P.orderdate AS prvorderdate,

 C.requireddate AS curreqdate, P.requireddate AS prvreqdate

FROM Sales.Orders AS C

 OUTER APPLY

 (SELECT TOP (1) orderid, orderdate, requireddate

 FROM Sales.Orders AS O

 WHERE O.empid = C.empid

 AND (O.orderdate < C.orderdate

 OR (O.orderdate = C.orderdate

 AND O.orderid < C.orderid))

 ORDER BY orderdate DESC, orderid DESC) AS P

ORDER BY C.empid, C.orderdate, C.orderid;

FIGURE 9-8 Execution plan for the query in Listing 9-9

 But a more effi cient solution is based on the ROW_NUMBER function. You can create a CTE
that calculates row numbers for orders partitioned by empid and based on orderdate, orderid
ordering. Join two instances of the CTE, one representing the current orders and the other
representing the previous orders. The join condition will be based on matching empid values
and row numbers that differ by one. Listing 9-10 has the solution query, generating the
 execution plan shown in Figure 9-9.

SELECT C.empid,

 C.orderid AS curorderid, P.orderid AS prvorderid,

 C.orderdate AS curorderdate, P.orderdate AS prvorderdate,

 C.requireddate AS curreqdate, P.requireddate AS prvreqdate

FROM Sales.Orders AS C

 OUTER APPLY

 (SELECT TOP (1) orderid, orderdate, requireddate

 FROM Sales.Orders AS O

 WHERE O.empid = C.empid

 AND (O.orderdate < C.orderdate

 OR (O.orderdate = C.orderdate

 AND O.orderid < C.orderid))

 ORDER BY orderdate DESC, orderid DESC) AS P

ORDER BY C.empid, C.orderdate, C.orderid;

C09626034.indd 546 2/20/2009 8:24:21 PM

 Chapter 9 TOP and APPLY 547

LISTING 9-10 Query Solution 4 to the Matching Current and Previous Occurrences problem

WITH OrdersRN AS

(

 SELECT empid, orderid, orderdate, requireddate,

 ROW_NUMBER() OVER(PARTITION BY empid

 ORDER BY orderdate, orderid) AS rn

 FROM Sales.Orders

)

SELECT C.empid,

 C.orderid AS curorderid, P.orderid AS prvorderid,

 C.orderdate AS curorderdate, P.orderdate AS prvorderdate,

 C.requireddate AS curreqdate, P.requireddate AS prvreqdate

FROM OrdersRN AS C

 LEFT OUTER JOIN OrdersRN AS P

 ON C.empid = P.empid

 AND C.rn = P.rn + 1

ORDER BY C.empid, C.orderdate, C.orderid;

FIGURE 9-9 Execution plan for the query in Listing 9-10

Because the plan scans the covering index only twice to access the order attributes and
 calculate the row numbers, it incurs a total I/O cost of 12 logical reads, leaving all other
 solutions lagging far behind in terms of I/O cost.

 To clean up, run the following code, which drops indexes used for the solutions presented here:

DROP INDEX Sales.Orders.idx_eid_od_oid_i_cid_rd;

DROP INDEX Sales.Orders.idx_eid_odD_oidD_i_cid_rd;

DROP INDEX Sales.OrderDetails.idx_oid_qtyd_pid;

Paging

I started talking about paging in Chapter 6, where I presented solutions based on row
 numbers. As a reminder, you’re looking to return rows from the result set of a query in pages
or chunks, allowing the user to navigate through the pages. In my examples, I used the
Orders table in the InsideTSQL2008 database.

WITH OrdersRN AS

(

 SELECT empid, orderid, orderdate, requireddate,

 ROW_NUMBER() OVER(PARTITION BY empid

 ORDER BY orderdate, orderid) AS rn

 FROM Sales.Orders

)

SELECT C.empid,

 C.orderid AS curorderid, P.orderid AS prvorderid,

 C.orderdate AS curorderdate, P.orderdate AS prvorderdate,

 C.requireddate AS curreqdate, P.requireddate AS prvreqdate

FROM OrdersRN AS C

 LEFT OUTER JOIN OrdersRN AS P

 ON C.empid = P.empid

 AND C.rn = P.rn + 1

ORDER BY C.empid, C.orderdate, C.orderid;

C09626034.indd 547 2/20/2009 8:24:21 PM

548 Inside Microsoft SQL Server 2008: T-SQL Querying

 In production environments, paging typically involves dynamic fi lters and sorting based on
user requests. To focus on the paging techniques, I’ll assume no fi lters here and a desired
 order of orderdate with orderid as a tiebreaker.

 The optimal index for the paging solutions that I’ll present follows similar guidelines to other
TOP solutions I presented—that is, an index on the sort column or columns and the tiebreaker
column or columns. If you can afford to, make the index a covering index, either by making it
the table’s clustered index or, if it is nonclustered, by including the other columns mentioned
in the query. Remember from Chapter 4, “Query Tuning,” that an index can contain nonkey
columns, which are specifi ed in the INCLUDE clause of the CREATE INDEX command. The
nonkey columns of an index appear only in the leaf level of the index. If you cannot afford a
covering index, at least make sure that you create one on the sort+tiebreaker columns. The
plans will be less effi cient than with a covering one because lookups will be involved to obtain
the data row, but at least you won’t get a table scan for each page request.

 For sorting by orderdate and orderid and to cover the columns custid and empid, create the
following index:

CREATE INDEX idx_od_oid_i_cid_eid

 ON Sales.Orders(orderdate, orderid) INCLUDE(custid, empid);

 The solution I’ll present here supports paging through consecutive pages. That is, you
 request the fi rst page and then proceed to the next. You might also want to provide
the option to request a previous page. It is strongly recommended to implement the
fi rst, next, and previous page requests as stored procedures for both performance and
 encapsulation reasons. This way you can get effi cient plan reuse, and you can always alter
the implementation of the stored procedures if you fi nd more effi cient techniques, without
 affecting the users of the stored procedures.

First Page

 Implementing the stored procedure that returns the fi rst page is really simple because you
don’t need an anchor to mark the starting point. You simply return the number of rows
 requested from the top, like so:

CREATE PROC dbo.GetFirstPage

 @n AS INT = 10

AS

SELECT TOP (@n) orderid, orderdate, custid, empid

FROM Sales.Orders

ORDER BY orderdate, orderid;

GO

 Note In this example, ORDER BY has two purposes: to specify which rows TOP should fi lter and
to control the order of rows in the result set for presentation purposes.

C09626034.indd 548 2/20/2009 8:24:21 PM

 Chapter 9 TOP and APPLY 549

 Having an index on the sort columns, especially if it’s a covering one like I created for this
purpose, allows for an optimal plan where only the relevant page of rows is scanned within
the index in order. You can see this by running the following stored procedure and examining
the plan shown in Figure 9-10:

EXEC dbo.GetFirstPage;

FIGURE 9-10 Execution plan for stored procedure dbo.GetFirstPage

 Rows are scanned within the index, starting with the head of the linked list and moving
 forward in an ordered fashion. The Top operator stops the scan as soon as the requested
number of rows is accessed.

Next Page

 The request for a “next” page has to rely on some anchor row that marks where the page
should start. This anchor should be provided to the stored procedure as input. The anchor
could be the sort column values of the last row on the previous page because, as you
might remember, for determinism purposes the sort values must be unique. In the client
 application, you already retrieved the previous page. So you can simply set aside the sort
column values from the last row in the previous page. When you get a request for the next
page, you can provide those as an input to the stored procedure.

 Bearing in mind that, in practice, fi lters and sorting are usually dynamic, you can’t rely on any
particular number or type of columns as input parameters. So a smarter design, which would
accommodate later enhancement of the procedure to support dynamic execution, would be
to provide the primary key as input and not the sort column values. The client application
would set aside the primary key value from the last row it retrieved and use it as input to the
next invocation of the stored procedure.

 Here’s the implementation of the GetNextPage stored procedure:

CREATE PROC dbo.GetNextPage

 @anchor AS INT, -- key of last row in prev page

 @n AS INT = 10

AS

SELECT TOP (@n) O.orderid, O.orderdate, O.custid, O.empid

FROM Sales.Orders AS O

 JOIN Sales.Orders AS A

 ON A.orderid = @anchor

 AND (O.orderdate > A.orderdate

 OR (O.orderdate = A.orderdate

 AND O.orderid > A.orderid))

ORDER BY O.orderdate, O.orderid;

GO

C09626034.indd 549 2/20/2009 8:24:21 PM

550 Inside Microsoft SQL Server 2008: T-SQL Querying

 The procedure joins the two instances of the orders table: one called O, representing the
next page, and one called A, representing the anchor. The join condition fi rst fi lters the
 anchor instance with the input key, and then it fi lters the instance representing the next page
so that only rows following the anchor will be returned. The columns orderdate and orderid
determine precedence both in terms of the logical expression in the ON clause that fi lters
rows following the anchor and in terms of the ORDER BY clause that TOP relies on. To test
the stored procedure, fi rst execute it with the orderid from the last row returned from the
fi rst page (10257) as the anchor. Then execute it again with the orderid of the last row in the
 second page (10267) as the anchor:

EXEC dbo.GetNextPage @anchor = 10257;

EXEC dbo.GetNextPage @anchor = 10267;

 Remember that the client application iterates through the rows it got back from SQL Server,
so naturally it can pick up the key from the last row and use it as input to the next invocation
of the stored procedure.

 Both procedure calls yield the same execution plan, which is shown in Figure 9-11.

FIGURE 9-11 Execution plan for the stored procedure GetNextPage

 You will see a single seek operation within the clustered index to fetch the anchor row,
 followed by an ordered scan within the covering index to fetch the next page of rows. That’s
not a very effi cient plan. Ideally, the optimizer would have performed a seek within the
 covering index to the fi rst row from the desired page of orders, then it would have followed
with a partial ordered scan to grab the rest of the rows in the desired page of orders,
 physically accessing only the relevant rows. The reason for getting an ineffi cient plan is
 because the fi lter has an OR operator between the expression O.orderdate > A.orderdate and
the expression O.orderdate = A.orderdate AND O.orderid > A.orderid. SQL Server’s optimizer
tends to produce better plans for predicates that use AND logic instead of OR logic for
 reasons that I’ll describe later in the chapter under the section “Logical Transformations.” For
our GetNextPage procedure, here’s the optimized implementation that transforms the OR
logic to AND logic:

ALTER PROC dbo.GetNextPage

 @anchor AS INT, -- key of last row in prev page

 @n AS INT = 10

AS

SELECT TOP (@n) O.orderid, O.orderdate, O.custid, O.empid

C09626034.indd 550 2/20/2009 8:24:21 PM

 Chapter 9 TOP and APPLY 551

FROM Sales.Orders AS O

 JOIN Sales.Orders AS A

 ON A.orderid = @anchor

 AND (O.orderdate >= A.orderdate

 AND (O.orderdate > A.orderdate

 OR O.orderid > A.orderid))

ORDER BY O.orderdate, O.orderid;

GO

 Notice that the AND expression within the parentheses is logically equivalent to the previous OR
expression. (I just implemented the techniques described in the section “Logical Transformations”
later in the chapter.) To show that the AND implementation is really optimized better, run the
following code and examine the execution plan shown in Figure 9-12:

EXEC dbo.GetNextPage @anchor = 10257;

FIGURE 9-12 Execution plan for the stored procedure GetNextPage—second version

 Now you get the desired plan. You see a single seek operation within the clustered index
to fetch the anchor row, followed by a seek within the covering index and a partial ordered
scan, physically accessing only the relevant rows in the desired page of orders.

Previous Page

 You can use two approaches to dealing with requests for previous pages. One is to locally
cache pages already retrieved to the client. This means that you need to develop a caching
mechanism in the client. A simpler approach is to implement another stored procedure that
works like the GetNextPage procedure in reverse. The anchor parameter will be the key of the
fi rst row after the page you want. The comparisons within the procedure will use < instead of >,
and the TOP clause will use an ORDER BY list that defi nes the opposite sorting direction. If these
were the only changes, you would get the correct page but in reverse order from normal. To
fi x the ordering of the result set, encapsulate the query as a derived table and apply SELECT . . .
ORDER BY to this derived table, with the desired ordering.

 Here’s the implementation of the GetPrevPage procedure:

CREATE PROC dbo.GetPrevPage

 @anchor AS INT, -- key of first row in next page

 @n AS INT = 10

AS

SELECT orderid, orderdate, custid, empid

C09626034.indd 551 2/20/2009 8:24:21 PM

552 Inside Microsoft SQL Server 2008: T-SQL Querying

FROM (SELECT TOP (@n) O.orderid, O.orderdate, O.custid, O.empid

 FROM Sales.Orders AS O

 JOIN Sales.Orders AS A

 ON A.orderid = @anchor

 AND (O.orderdate <= A.orderdate

 AND (O.orderdate < A.orderdate

 OR O.orderid < A.orderid))

 ORDER BY O.orderdate DESC, O.orderid DESC) AS D

ORDER BY orderdate, orderid;

GO

 To test the procedure, run it with orderid values from the fi rst rows on the pages you
already got:

EXEC dbo.GetPrevPage @anchor = 10268;

EXEC dbo.GetPrevPage @anchor = 10258;

 Examine the execution plan shown in Figure 9-13, produced for the execution of the
GetPrevPage procedure.

FIGURE 9-13 Execution plan for the previous page

 You will fi nd an almost identical plan to the one produced for the GetNextPage procedure,
with an additional Sort operator, which is a result of the extra ORDER BY clause in the
GetPrevPage procedure.

 When you’re fi nished, drop the covered index created for the paging solutions:

DROP INDEX Sales.Orders.idx_od_oid_i_cid_eid;

Random Rows

 This section covers another class of problems that you can solve with the TOP option—
returning rows in a random fashion. Dealing with randomness in T-SQL is quite tricky.
Typical requests for randomness involve returning a random row from a table, sorting rows
in random order, and the like. The fi rst attempt you might make when asked to return a
 random row might be to use the RAND function as follows:

SELECT TOP (1) orderid, orderdate, custid, empid

FROM Sales.Orders

ORDER BY RAND();

C09626034.indd 552 2/20/2009 8:24:21 PM

 Chapter 9 TOP and APPLY 553

 However, if you try running this query several times, you will probably be disappointed
to fi nd that you’re not really getting a random row. RAND as well as most other
 nondeterministic functions (for example, GETDATE) are invoked once per query, not once per
row. So you end up getting the same value of RAND for every row, and the ORDER BY clause
does not affect the ordering of the query’s result set.

 Tip You might be surprised to fi nd that the RAND function—when given an integer seed as
input—is not really nondeterministic; rather, it’s sort of a hash function. Given the same seed,
RAND(<seed>) always yields the same result. For example, run the following code multiple times:

SELECT RAND (5);

 You will always get back 0.713666525097956. And if that’s not enough, when you don’t specify
a seed, SQL Server doesn’t really choose a random seed. Rather, the new seed is based on the
 previous invocation of RAND. Hence, running the following code multiple times will always yield
the same two results (0.713666525097956 and 0.454560299686459):

SELECT RAND(5);

SELECT RAND();

 The most important use of RAND(<seed>) is probably to create reproducible sample data
 because you can seed it once and then call it repeatedly without a seed to get a well-distributed
sequence of values.

 If you’re seeking a random value, you will have much better success with the following expression:

SELECT CHECKSUM(NEWID());

 And for a random value in the range 1 through @n, use this:

SELECT ABS(CHECKSUM(NEWID())) % @n + 1;

 Note The NEWID function appears to have good distribution properties; however, I haven’t yet
found any documentation from Microsoft that specifi es that this is guaranteed or supported.

 An interesting behavior of the NEWID function is that unlike other nondeterministic functions,
NEWID is evaluated separately for each row if you invoke it in a query. Bearing this in mind, you
can get a random row by using the preceding expression in the ORDER BY clause as follows:

SELECT TOP (1) orderid, orderdate, custid, empid

FROM Sales.Orders

ORDER BY CHECKSUM(NEWID());

 This gives me an opportunity to present another example for using the new functionality of
TOP, which allows you to specify a self-contained expression as an input. The following query
also returns a random row:

SELECT TOP (1) orderid, orderdate, custid, empid

FROM (SELECT TOP (100e0*(CHECKSUM(NEWID()) + 2147483649)/4294967296e0) PERCENT

 orderid, orderdate, custid, empid

C09626034.indd 553 2/20/2009 8:24:21 PM

554 Inside Microsoft SQL Server 2008: T-SQL Querying

 FROM Sales.Orders

 ORDER BY orderid) AS D

ORDER BY orderid DESC;

 CHECKSUM returns an integer between –2147483648 and 2147483647. Adding 2147483649
and then dividing by the fl oat value 4294967296e0 yields a random number in the range
0 through 1 (excluding 0). Multiplying this random number by 100 returns a random fl oat
value greater than 0 and less than or equal to 100. Remember that the TOP PERCENT option
accepts a fl oat percentage in the range 0 through 100, and it rounds up the number of
returned rows. A percentage greater than 0 guarantees that at least one row will be returned.
The query creating the derived table D thus returns a random number of rows from the
table based on orderid (primary key) sort. The outer query then simply returns the last row
from the derived table—that is, the one with the greatest orderid values. This solution is not
necessarily more effi cient than the previous one I presented, but it was a good opportunity
to show how you can use TOP’s ability to accept an expression as input.

 With the new APPLY operator, you can now answer other randomness requests easily and
 effi ciently, without the need to explicitly apply iterative logic. For example, the following
query returns three random orders for each employee:

SELECT orderid, custid, empid, orderdate, requireddate

FROM HR.Employees AS E

 CROSS APPLY

 (SELECT TOP (3) orderid, custid, orderdate, requireddate

 FROM Sales.Orders AS O

 WHERE O.empid = E.empid

 ORDER BY CHECKSUM(NEWID())) AS A;

Median

 In the “Custom Aggregations” section in Chapter 8, I discussed techniques to calculate the
median value for each group based on ranking calculations. Here, for the sake of the exercise,
I’ll present techniques relying on TOP. First run the following code to create the Groups table
that I used in my previous solutions to obtain a median:

USE tempdb;

IF OBJECT_ID('dbo.Groups') IS NOT NULL DROP TABLE dbo.Groups;

CREATE TABLE dbo.Groups

(

 groupid VARCHAR(10) NOT NULL,

 memberid INT NOT NULL,

 string VARCHAR(10) NOT NULL,

 val INT NOT NULL,

 PRIMARY KEY (groupid, memberid)

);

GO

C09626034.indd 554 2/20/2009 8:24:21 PM

 Chapter 9 TOP and APPLY 555

INSERT INTO dbo.Groups(groupid, memberid, string, val) VALUES

 ('a', 3, 'stra1', 6),

 ('a', 9, 'stra2', 7),

 ('b', 2, 'strb1', 3),

 ('b', 4, 'strb2', 7),

 ('b', 5, 'strb3', 3),

 ('b', 9, 'strb4', 11),

 ('c', 3, 'strc1', 8),

 ('c', 7, 'strc2', 10),

 ('c', 9, 'strc3', 12);

 Remember that median is the middle value (assuming a sorted list) when the group has an
odd number of elements, and it’s the average of the two middle values when it has an even
number.

 It’s always a good idea to handle each case separately and then try to fi gure out whether
the solutions can be merged. So fi rst assume an odd number of elements. You can use a
TOP (50) PERCENT query to access the fi rst half of the elements, including the middle one.
Remember that the PERCENT option rounds up. Then simply query the maximum value from
the returned result set.

 Now handle the even case. The same query you use to get the middle value from an odd
number of rows will produce the largest value of the fi rst half of an even number of rows.
You can then write a similar query to return the smallest value of the second half. Sum the
two values, divide by two, and you have the median in the even case.

 Now try to fi gure out whether the two solutions can be merged. Interestingly, running
the solution for the even case against an odd number of elements yields the correct result
 because both subqueries used in the even case solution end up returning the same row
when you have an odd number of rows. The average of two values that are equal is obviously
the same value.

 Here’s what the solution looks like when you want to return the median of the val column for
the whole table:

SELECT

 ((SELECT MAX(val)

 FROM (SELECT TOP (50) PERCENT val

 FROM dbo.Groups

 ORDER BY val) AS M1)

 +

 (SELECT MIN(val)

 FROM (SELECT TOP (50) PERCENT val

 FROM dbo.Groups

 ORDER BY val DESC) AS M2))

 /2. AS median;

 To return the median for each group, you need to apply the preceding logic in a correlated
subquery against a table that holds one row per group. In our example we don’t have such

C09626034.indd 555 2/20/2009 8:24:21 PM

556 Inside Microsoft SQL Server 2008: T-SQL Querying

a table, so you can create a virtual one by selecting the distinct groupid values from the
 existing table, like so:

SELECT groupid,

 ((SELECT MAX(val)

 FROM (SELECT TOP (50) PERCENT val

 FROM dbo.Groups AS H1

 WHERE H1.groupid = G.groupid

 ORDER BY val) AS M1)

 +

 (SELECT MIN(val)

 FROM (SELECT TOP (50) PERCENT val

 FROM dbo.Groups AS H2

 WHERE H2.groupid = G.groupid

 ORDER BY val DESC) AS M2))

 /2. AS median

FROM (SELECT DISTINCT groupid FROM dbo.Groups) AS G;

Logical Transformations

 In several solutions I’ve presented, I used logical expressions with an OR operator to deal
with precedence based on multiple attributes. Such was the case in the recent solutions for
paging, matching current and previous occurrences, and other problems. I used OR logic
 because this is how human minds are accustomed to thinking. The logical expressions using
OR logic are fairly intuitive for the purpose of determining precedence and identifying rows
that follow a certain anchor.

 However, because of the way SQL Server’s optimizer works, OR logic is problematic in terms
of performance, especially when some of the fi ltered columns are not indexed. For example,
consider a fi lter such as col1 = 5 OR col2 = 10. If you have individual indexes on col1 and
col2, the optimizer can fi lter the rows in each index and then perform an index intersection
between the two. However, if you have an index on only one of the columns, even when the
fi lter is very selective, the index is useless. SQL Server would still need to scan the whole table
to see whether rows that didn’t match the fi rst fi lter qualify for the second condition.

 On the other hand, AND logic has much better performance potential. With each expression,
you narrow down the result set. Rows fi ltered by one index are already a superset of the rows
you’ll end up returning. So potentially you can use an index on any of the fi ltered columns to your
 advantage. Whether it is worthwhile to use the existing index is a matter of selectivity, but the
 potential is there. For example, consider the fi lter col1 = 5 AND col2 = 10. The optimal index here
is a composite one created on both columns. However, if you have an index on only one of them
and it’s selective enough, that’s suffi cient already. SQL Server can fi lter the data through that
 index and then look up the rows and examine whether they also meet the second condition.

 In this chapter, the logical expressions I used in my solutions used OR logic to identify rows
following a given anchor. For example, say you’re looking at the row with an orderid of
11075 and you’re supposed to identify the rows that follow, where precedence is based on
 orderdate and orderid is the tiebreaker. The orderdate of the anchor is ‘20080506’. A query

C09626034.indd 556 2/20/2009 8:24:22 PM

 Chapter 9 TOP and APPLY 557

returning the rows that come after this anchor row is very selective. I used the following logic
to fi lter these rows:

orderdate > '20080506' OR (orderdate = '20080506' AND orderid > 11075)

 Say that you could afford creating only one index, on orderdate. Such an index is not
 suffi cient in the eyes of the optimizer to fi lter the relevant rows because the logical expression
referring to orderdate is followed by an OR operator, with the right side of the operator
 referring to other columns (orderid, in this case). Such a fi lter would yield a table scan. You can
perform a logical transformation here and end up with an equivalent expression that uses
AND logic. Here’s the transformed expression:

orderdate >= '20080506' AND (orderdate > '20080506' OR orderid > 11075)

 Instead of specifying orderdate > ‘20080506’, you specify orderdate >= ‘20080506’. Now you
can use an AND operator and request either rows where the orderdate is greater than the
 anchor’s orderdate (meaning the orderdate is not equal to the anchor’s orderdate, in which
case you don’t care about the value of orderid) or rows where the orderid is greater than
the anchor’s orderid (meaning the orderdate is equal to the anchor’s orderdate). The logical
 expressions are equivalent. However, the transformed one has the form orderdate_ comparison
AND other_logical_expression—meaning that now an index on orderdate alone can be
 considered. To put these words into action, fi rst create a table called MyOrders containing
the same data as the Orders table and an index only on orderdate:

IF OBJECT_ID('dbo.MyOrders') IS NOT NULL

 DROP TABLE dbo.MyOrders;

GO

SELECT * INTO dbo.MyOrders FROM Sales.Orders

CREATE INDEX idx_dt ON dbo.MyOrders(orderdate);

 Next, run the query in Listing 9-11, which uses OR logic, and examine the plan shown in
Figure 9-14.

LISTING 9-11 Query using OR logic

SELECT orderid, orderdate, custid, empid

FROM dbo.MyOrders

WHERE orderdate > '20080506'

 OR (orderdate = '20080506' AND orderid > 11075);

FIGURE 9-14 Execution plan for the query in Listing 9-11

 You will see a table scan, which in the case of this table costs 20 logical reads. Of course, with
more realistic table sizes you will see substantially more I/O.

SELECT orderid, orderdate, custid, empid

FROM dbo.MyOrders

WHERE orderdate > '20080506'

 OR (orderdate = '20080506' AND orderid > 11075);

C09626034.indd 557 2/20/2009 8:24:22 PM

558 Inside Microsoft SQL Server 2008: T-SQL Querying

 Next, run the query in Listing 9-12, which uses AND logic, and examine the plan shown in
Figure 9-15.

LISTING 9-12 Query using AND logic

SELECT orderid, orderdate, custid, empid

FROM dbo.MyOrders

WHERE orderdate >= '20080506'

 AND (orderdate > '20080506' OR orderid > 11075);

FIGURE 9-15 Execution plan for the query in Listing 9-12

You will see that the index on orderdate is used. The I/O cost of this query is six logical reads.
Creating an index on both columns (orderdate, orderid) is even better:

CREATE INDEX idx_dt_oid ON dbo.MyOrders(orderdate, orderid);

Run the query in Listing 9-11, which uses the OR logic. You will see in the plan, shown in
Figure 9-16, that the new index is used. The I/O cost for this plan is six logical reads.

FIGURE 9-16 Execution plan for the query in Listing 9-11, with the new index in place

 Run the query in Listing 9-12, which uses the AND logic. You will see the plan shown in
Figure 9-17, which might seem similar, but it yields even a lower I/O cost of only four logical reads.

FIGURE 9-17 Execution plan for the query in Listing 9-12, with the new index in place

SELECT orderid, orderdate, custid, empid

FROM dbo.MyOrders

WHERE orderdate >= '20080506'

 AND (orderdate > '20080506' OR orderid > 11075);

C09626034.indd 558 2/20/2009 8:24:22 PM

 Chapter 9 TOP and APPLY 559

 The conclusion is, of course, that SQL Server can optimize AND logic better than OR logic.
All the solutions I presented in this chapter would be better off in terms of performance if
you transformed their OR logic to AND logic. Similarly, you might be able to achieve such
 transformations with other logical expressions.

 Another conclusion is that it’s better to have an index on all columns determining
 precedence. The problem is that in production environments you can’t always afford it.

Note When discussing subjects that involve logic, I like to use small tables such as those
in InsideTSQL2008, with simple and recognizable data. With such tables, the differences in
 logical reads that you see when testing your solutions are small. In real performance tests and
 benchmarks, you should use more realistic table sizes as your test data, such as the test data I
used in Chapter 4. For example, if you use the GetNextPage procedure, which returns the next
page of orders, you see very small I/O differences between OR logic and the AND logic, as I’ll
present shortly. But when I tested the solution against an Orders table with about a million rows,
the OR implementation costs more than 1,000 logical reads, while the AND implementation
costs only 11 logical reads, physically accessing only the relevant page of orders.

 When you’re done, don’t forget to get rid of the MyOrders table created for these examples:

IF OBJECT_ID('dbo.MyOrders') IS NOT NULL

 DROP TABLE dbo.MyOrders;

Conclusion

 As you probably realized from this chapter, TOP and APPLY are two features that complement
each other in many ways. Remember that the SET ROWCOUNT option is a legacy feature and
is supported in SQL Server only for purposes of backward compatibility. It is a good idea to
replace all references to SET ROWCOUNT with the TOP option. Compared to the alternatives,
the APPLY operator allows for very simple and fast queries whenever you need to apply a
table expression to each row of an outer query.

C09626034.indd 559 2/20/2009 8:24:22 PM

C09626034.indd 560 2/20/2009 8:24:22 PM

 561

Chapter 10

 Data Modifi cation

 This chapter covers different facets of data modifi cation. I’ll discuss aspects of inserting,
 deleting, updating, and merging data, as well as the OUTPUT clause for data modifi cation
statements. I’ll also cover new features related to data modifi cation in Microsoft SQL
Server 2008, which include an enhanced VALUES clause, minimally logged inserts, the MERGE
statement, and a new feature I call composable DML.

Inserting Data

 In this section, I’ll cover several subjects related to inserting data, including the enhanced
VALUES clause, the SELECT INTO statement, the BULK rowset provider, minimally logged
 inserts, the INSERT EXEC statement, and sequence mechanisms.

Enhanced VALUES Clause

 Traditionally the VALUES clause was used in SQL Server to insert a single row into a table. SQL
Server 2008 enhances the VALUES clause in two ways—you can now use the VALUES clause
in an INSERT statement to insert multiple rows into a table, and you can also use the VALUES
clause to defi ne a virtual derived table. Because the VALUES clause can be used to construct
a virtual table, it is also known as a table value constructor. Each row specifi cation within the
clause is called a row value constructor.

 To demonstrate using the enhanced VALUES clause, fi rst create the Customers table in the
tempdb database by running the following code:

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.Customers', 'U') IS NOT NULL DROP TABLE dbo.Customers;

CREATE TABLE dbo.Customers

(

 custid INT NOT NULL,

 companyname VARCHAR(25) NOT NULL,

 phone VARCHAR(20) NOT NULL,

 address VARCHAR(50) NOT NULL,

 CONSTRAINT PK_Customers PRIMARY KEY(custid)

);

C10626034.indd 561 2/20/2009 5:47:33 PM

562 Inside Microsoft SQL Server 2008: T-SQL Querying

 Run the following code to insert fi ve rows into the Customers table:

INSERT INTO dbo.Customers(custid, companyname, phone, address)

 VALUES

 (1, 'cust 1', '(111) 111-1111', 'address 1'),

 (2, 'cust 2', '(222) 222-2222', 'address 2'),

 (3, 'cust 3', '(333) 333-3333', 'address 3'),

 (4, 'cust 4', '(444) 444-4444', 'address 4'),

 (5, 'cust 5', '(555) 555-5555', 'address 5');

 As you can see, each pair of parentheses encloses a single row. The individual rows are
 separated by commas.

 Compared to writing a separate INSERT VALUES statement per row, the enhanced INSERT
VALUES statement for multiple rows has an obvious advantage in terms of the brevity of
code. Also, such a statement is executed as an atomic operation, and therefore if any row
fails to enter the target table, the whole operation fails. However, for now the INSERT VALUES
clause is internally algebrized like an INSERT SELECT statement that unifi es individual rows
using the UNION ALL set operation. For example, the previous INSERT VALUES statement
is processed like this statement:

INSERT INTO dbo.Customers(custid, companyname, phone, address)

 SELECT 1, 'cust 1', '(111) 111-1111', 'address 1'

 UNION ALL SELECT 2, 'cust 2', '(222) 222-2222', 'address 2'

 UNION ALL SELECT 3, 'cust 3', '(333) 333-3333', 'address 3'

 UNION ALL SELECT 4, 'cust 4', '(444) 444-4444', 'address 4'

 UNION ALL SELECT 5, 'cust 5', '(555) 555-5555', 'address 5';

 Therefore, you shouldn’t expect the INSERT VALUES statement to give you any performance
benefi ts compared to the alternative method. If you care about conforming to the ANSI
SQL standard, though, you should use the INSERT VALUES clause, which is standard. The
 alternative—using UNION ALL—relies on a proprietary aspect of T-SQL that allows a SELECT
statement without a FROM clause.

 You can also use the VALUES clause to defi ne a derived table, as the following query shows:

SELECT *

FROM

 (VALUES

 (1, 'cust 1', '(111) 111-1111', 'address 1'),

 (2, 'cust 2', '(222) 222-2222', 'address 2'),

 (3, 'cust 3', '(333) 333-3333', 'address 3'),

 (4, 'cust 4', '(444) 444-4444', 'address 4'),

 (5, 'cust 5', '(555) 555-5555', 'address 5')

) AS C(custid, companyname, phone, address);

 This query generates the following output:

custid companyname phone address

----------- ----------- -------------- ---------

1 cust 1 (111) 111-1111 address 1

2 cust 2 (222) 222-2222 address 2

C10626034.indd 562 2/20/2009 5:47:33 PM

 Chapter 10 Data Modifi cation 563

3 cust 3 (333) 333-3333 address 3

4 cust 4 (444) 444-4444 address 4

5 cust 5 (555) 555-5555 address 5

 Unfortunately, SQL Server 2008 does not support defi ning a CTE by a VALUES clause.

SELECT INTO

 The SELECT INTO statement creates a new table from the result set of a query. For example,
the following statement creates the temporary table #MyShippers and populates it with all
rows from the Sales.Shippers table in the InsideTSQL2008 database:

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('tempdb..#MyShippers') IS NOT NULL DROP TABLE #MyShippers;

SELECT shipperid, companyname, phone

INTO #MyShippers

FROM InsideTSQL2008.Sales.Shippers;

 The columns of the new table inherit their names, data types, nullability, and IDENTITY
 property from the query’s result set. SELECT INTO doesn’t copy constraints, indexes, or
 triggers from the query’s source. If you need the results in a table with the same indexes,
constraints, and triggers as the source, you have to add them afterward.

 SELECT INTO is a bulk operation. (See the “Minimally Logged Operations” section later in the
chapter for details.) If the recovery model of the destination database is not FULL, the SELECT
INTO is done with minimal logging, which can be substantially faster than full logging.

 Unlike some other database platforms, in SQL Server both DDL and DML are transactional.
Remember that the SELECT INTO statement both creates the target table (DDL) and populates
it with the result set produced by the query (DML). It is quite obvious that the data that is
inserted into the target table is exclusively locked until the SELECT INTO transaction fi nishes;
however, you need to keep in mind that metadata describing the defi nition of the table and
its columns in system tables is also exclusively locked for the duration of the transaction. If the
SELECT INTO statement deals with a large result set, it may take it some time to fi nish; during
that time both the data and the metadata are exclusively locked. If, from another transaction,
you try to obtain confl icting locks on the metadata that is exclusively locked by the SELECT
INTO transaction, even unintentionally (for example, a full scan of sys.objects or sys.columns),
your transaction will be blocked. To avoid such blocking, you may want to consider creating the
target table in one transaction and inserting the data into the table using an INSERT SELECT
statement in another transaction. Prior to SQL Server 2008, an INSERT SELECT statement was
always fully logged and therefore slower than a minimally logged SELECT INTO statement.
However, SQL Server 2008 introduces support for minimally logged INSERT SELECT statements.
I’ll provide more details about minimally logged operations later in the chapter.

C10626034.indd 563 2/20/2009 5:47:33 PM

564 Inside Microsoft SQL Server 2008: T-SQL Querying

 If you need a quick and dirty empty copy of some table, SELECT INTO allows you to obtain
such a copy very simply. You don’t have to script the CREATE TABLE statement and change
the table’s name—you just need to issue the following statement:

SELECT * INTO target_table FROM source_table WHERE 1 = 2;

 The optimizer is smart enough to realize that no source row will satisfy the fi lter 1 = 2.
Therefore, SQL Server doesn’t bother to physically access the source data; rather, it creates the
target table based on the schema of the source. Here’s an example that creates a table called
MyOrders in tempdb, based on the schema of the Sales.Orders table in InsideTSQL2008:

IF OBJECT_ID('dbo.MyOrders') IS NOT NULL DROP TABLE dbo.MyOrders;

SELECT *

INTO dbo.MyOrders

FROM InsideTSQL2008.Sales.Orders

WHERE 1 = 2;

 Keep in mind that if a source column has the IDENTITY property, the target has it as well.
For example, the orderid column in the Orders table has the IDENTITY property. If you don’t
want the IDENTITY property to be copied to the target column, simply apply any type of
 manipulation to the source column. For example, you can use the expression orderid + 0 AS
orderid as follows:

IF OBJECT_ID('dbo.MyOrders') IS NOT NULL DROP TABLE dbo.MyOrders;

SELECT orderid+0 AS orderid, custid, empid, orderdate,

 requireddate, shippeddate, shipperid, freight, shipname,

 shipaddress, shipcity, shipregion, shippostalcode, shipcountry

INTO dbo.MyOrders

FROM InsideTSQL2008.Sales.Orders

WHERE 1 = 2;

 In this case, the orderid column in the target MyOrders table doesn’t have the IDENTITY
property.

Tip Suppose you want to insert the result set of a stored procedure or a dynamic batch into a
new table, but you don’t know what table structure you need to create. You can use a SELECT
INTO statement, specifying OPENQUERY in the FROM clause, referring to your own server as if it
were a linked server:

EXEC sp_serveroption <your_server>, 'data access', true;

 SELECT * INTO <target_table>

 FROM OPENQUERY(<your_server>,

 'EXEC {<proc_name> | (<dynamic_batch>)}') AS O;

C10626034.indd 564 2/20/2009 5:47:33 PM

 Chapter 10 Data Modifi cation 565

BULK Rowset Provider

 SQL Server supports the BULK rowset provider, which allows you to use the BULK engine
to load fi le data as a rowset or as a single large object (LOB) value. You specify BULK as the
provider in the OPENROWSET function, along with other options that are relevant to your
request.

 For example, the following code returns the data from a fi le called shippers.txt as a row set,
based on the format fi le shippers.fmt:

SELECT shipperid, companyname, phone

FROM OPENROWSET(BULK 'c:\temp\shippers.txt',

 FORMATFILE = 'c:\temp\shippers.fmt') AS S;

 This code generates the following output:

shipperid companyname phone

---------- -------------- ---------------

1 Shipper GVSUA (503) 555-0137

2 Shipper ETYNR (425) 555-0136

3 Shipper ZHISN (415) 555-0138

 More Info You can download the fi les used in this section’s examples from
http://www.insidetsql.com as part of the book’s source code download. For more information,
see the Introduction.

 The format fi le is the same format fi le you’re familiar with when working with bcp.exe or
BULK INSERT. In fact, you can generate it either manually or by using bcp.exe as you have
used it thus far. Besides FORMATFILE, you can also specify other read-related bulk options:
CODEPAGE, ERRORFILE, FIRSTROW, LASTROW, MAXERRORS, and ROWS_PER_BATCH.

 You can also use the BULK provider to specify a fi le source for an INSERT statement. This
way, you can effi ciently utilize the BULK engine. In such an INSERT statement, you can
control insert options using table hints, including KEEPIDENTITY, KEEPDEFAULTS, IGNORE_
CONSTRAINTS, IGNORE_TRIGGERS, and TABLOCK. To demonstrate inserting a rowset into a
table using the BULK provider, fi rst run the following code, which creates the Shippers table
in the tempdb database:

USE tempdb;

IF OBJECT_ID('dbo.Shippers') IS NOT NULL DROP TABLE dbo.Shippers;

CREATE TABLE dbo.Shippers

(

 shipperid INT NOT NULL PRIMARY KEY,

 companyname NVARCHAR(40) NOT NULL,

 phone NVARCHAR(24) NOT NULL

);

C10626034.indd 565 2/20/2009 5:47:33 PM

566 Inside Microsoft SQL Server 2008: T-SQL Querying

 The following code is an example of inserting the contents of a fi le called shippers.txt into
the target table Shippers, using shippers.fmt as the format fi le:

INSERT INTO dbo.Shippers WITH (TABLOCK) (shipperid, companyname, phone)

 SELECT shipperid, companyname, phone

 FROM OPENROWSET(BULK 'c:\temp\shippers.txt',

 FORMATFILE = 'c:\temp\shippers.fmt') AS S;

The hint TABLOCK tells SQL Server to take a table lock during the insert operation, minimizing
lock overhead. In the case of an INSERT SELECT FROM OPENROWSET(BULK . . .) statement, the
TABLOCK hint has special meaning. It tells SQL Server to obtain a bulk update table-level lock
that will allow an optimized BULK operation while also allowing other sessions to obtain a
bulk update table-level lock as well. This way multiple processes can run such optimized bulk
inserts in parallel.

If you’re asking yourself why use the INSERT SELECT FROM OPENROWSET(BULK . . .)
 statement rather than the BULK INSERT statement or the bcp.exe tool, the fi rst statement
has an advantage. Unlike the BULK INSERT command or the bcp.exe tool, the INSERT SELECT
FROM OPENROWSET(BULK . . .) statement allows you to apply usual query manipulation on
the source. This means that you can use table operators like joins, APPLY, PIVOT, UNPIVOT,
fi lter data with the WHERE clause, group data with the GROUP BY clause, and so on.

The BULK rowset provider can also be used to insert the content of a fi le as a scalar LOB
value in an INSERT, UPDATE, or MERGE statement. You use the OPENROWSET function
and specify the BULK option, the source fi lename, and one of three options for the type of
data: SINGLE_CLOB for regular character data, SINGLE_NCLOB for Unicode data, and SINGLE_
BLOB for binary data.

Note When you want to load XML data from a fi le, you use either SINGLE_CLOB or SINGLE_
NCLOB, depending on whether the XML fi le contains regular character data or Unicode data.

To demonstrate using the BULK rowset provider to insert fi le content as a scalar LOB value,
fi rst create the CustomerData table by running the code in Listing 10-1.

LISTING 10-1 Creating the CustomerData table

IF OBJECT_ID('dbo.CustomerData') IS NOT NULL DROP TABLE dbo.CustomerData;

CREATE TABLE dbo.CustomerData

(

 custid INT NOT NULL PRIMARY KEY,

 txt_data VARCHAR(MAX) NULL,

 ntxt_data NVARCHAR(MAX) NULL,

 binary_data VARBINARY(MAX) NULL,

 xml_data XML NULL

);

IF OBJECT_ID('dbo.CustomerData') IS NOT NULL DROP TABLE dbo.CustomerData;

CREATE TABLE dbo.CustomerData

(

 custid INT NOT NULL PRIMARY KEY,

 txt_data VARCHAR(MAX) NULL,

 ntxt_data NVARCHAR(MAX) NULL,

 binary_data VARBINARY(MAX) NULL,

 xml_data XML NULL

);

C10626034.indd 566 2/20/2009 5:47:33 PM

 Chapter 10 Data Modifi cation 567

 As an example, the following INSERT statement inserts a new customer into the
CustomerData table, with custid 101, and an XML value read from the fi le xmlfi le101.xml into
the xml_data column:

INSERT INTO dbo.CustomerData(custid, xml_data)

 VALUES(

 101,

 (SELECT xml_data FROM OPENROWSET(

 BULK 'c:\temp\xmlfile101.xml', SINGLE_CLOB) AS F(xml_data)));

 Similarly, the following UPDATE statement reads the three fi les textfi le101.txt, unicodefi le101.txt,
and binaryfi le101.jpg and updates customer 101’s columns: txt_data, ntxt_data, and
binary_data, respectively:

UPDATE dbo.CustomerData

 SET txt_data = (SELECT txt_data FROM OPENROWSET(

 BULK 'c:\temp\textfile101.txt', SINGLE_CLOB) AS F(txt_data)),

 ntxt_data = (SELECT ntxt_data FROM OPENROWSET(

 BULK 'c:\temp\unicodefile101.txt', SINGLE_NCLOB) AS F(ntxt_data)),

 binary_data = (SELECT binary_data FROM OPENROWSET(

 BULK 'c:\temp\binaryfile101.jpg', SINGLE_BLOB) AS F(binary_data))

WHERE custid = 101;

 Run the following code to examine the row in CustomerData for customer 101:

SELECT * FROM dbo.CustomerData WHERE custid = 101;

 You get the following output, shown here in abbreviated form and in three parts because of
the length of the output row:

custid txt_data

------- ---

101 This file contains character data for customer 101

custid ntxt_data

------- ---

101 This file contains Unicode data for customer 101

custid binary_data xml_data

------- --------------------- ---------------

101 0xFFD8FFE000104A46... <ShowPlanXML...

Minimally Logged Operations

 SQL Server can perform minimal logging with certain kinds of operations. An operation
done with minimal logging can run substantially faster than when done with full logging.
One reason for the big difference is that writes to the transaction log are done sequentially,
so in many cases writes to the log become the bottleneck of the operation. The following
 operations can benefi t from minimal logging: SELECT INTO, index operations, operations on
large object values, BULK INSERT, bcp.exe, INSERT SELECT FROM OPENROWSET(BULK . . .),
and, new to SQL Server 2008, regular INSERT SELECT.

C10626034.indd 567 2/20/2009 5:47:33 PM

568 Inside Microsoft SQL Server 2008: T-SQL Querying

 More Info For more information on Bulk Import/Export, see Sunil Agarwal’s blog posts on the
subject: http://blogs.msdn.com/sqlserverstorageengine/archive/tags/Bulk+Import_2F00_Export/
default.aspx.

 SQL Server has certain requirements for minimal logging. First of all, the recovery model
of the target database cannot be FULL; rather, minimal logging is possible only if the
 recovery model is SIMPLE or BULK_LOGGED. As far as SELECT INTO is concerned, that’s the
only requirement. All other insert methods (BULK INSERT, bcp.exe, INSERT SELECT FROM
OPENROWSET(BULK . . .), and INSERT SELECT) have additional requirements. Besides the
 requirement that the target database have a non-FULL recovery model, there are two
 requirements on the target table: it must not be marked for replication, and one of the
 following must be true:

 The target is a heap, and you specify TABLOCK. The target can be empty or nonempty, and
no trace fl ag is required.

 The target is an empty B-tree, and you specify TABLOCK. No trace fl ag is required.

 The target is an empty B-tree, and trace fl ag 610 is on. The TABLOCK option is not required.
This case is new in SQL Server 2008.

 The target is a nonempty B-tree, and trace fl ag 610 is on—minimal logging will apply to new
key ranges that allocate and populate new pages. The TABLOCK option is not required. This
case is also new in SQL Server 2008.

 Note that while a database backup is running, minimal logging is disabled temporarily.
The backup does not prevent the operation from running—it just causes it to perform full
logging.

 For now this list of requirements might be a bit overwhelming. I provide it here for reference
purposes. I’ll provide more details and examples shortly and also show you how to analyze
the logging behavior yourself.

 As mentioned, regular INSERT SELECT statements in SQL Server 2008 can also benefi t from
minimal logging. Note, however, that some aspects of optimized bulk imports do not apply
to INSERT SELECT but do apply to the other bulk import methods (BULK INSERT, bcp.exe, and
INSERT SELECT FROM OPENROWSET(BULK . . .)). I’ll collectively call the last three methods
the other methods. The other methods support a table-level bulk update lock that reduces
lock overhead while still allowing parallel bulk imports from multiple processes. The INSERT
SELECT statement supports the TABLOCK option, but it results in an exclusive table lock that
only one process can hold at a time. The other methods also support defi ning a batch size
that indicates after every how many rows to commit, while INSERT SELECT doesn’t support
this option. You will fi nd other such differences between the other methods and INSERT
SELECT; for details please consult SQL Server Books Online.

C10626034.indd 568 2/20/2009 5:47:33 PM

 Chapter 10 Data Modifi cation 569

Analyzing Logging Behavior

 This section describes tools and techniques that you can use to analyze logging behavior.
You can use these tools to do your own research and fi gure out how SQL Server handles
 certain insert scenarios when those scenarios are not documented or when you are in doubt.

 One of the main tools I use to analyze logging behavior is the undocumented fn_dblog
 function. This function accepts two inputs indicating the from log sequence number and the to
log sequence number, and it returns all log records in the requested range from the transaction
log of the database where the function is queried. To get all records from the transaction log,
specify NULL in both inputs.

 To check how much logging was involved in processing an insert operation against a certain
table, you can aggregate measures from the function’s result set before and after the
 operation and calculate the difference between the before and after values. The general
form of the code may look like this:

CHECKPOINT;

GO

DECLARE @numrecords AS INT, @size AS BIGINT, @dt AS DATETIME;

SELECT

 @numrecords = COUNT(*),

 @size = COALESCE(SUM([Log Record Length]), 0),

 @dt = CURRENT_TIMESTAMP

FROM fn_dblog(NULL, NULL) AS D

WHERE AllocUnitName = '<table_name>' OR AllocUnitName LIKE '<table_name>.%';

-- <operation>

SELECT

 COUNT(*) - @numrecords AS numrecords,

 CAST((COALESCE(SUM([Log Record Length]), 0) - @size)

 / 1024. / 1024. AS NUMERIC(12, 2)) AS size_mb,

 CAST(DATEDIFF(millisecond, @dt, CURRENT_TIMESTAMP)/1000. AS DECIMAL(12,3))

 AS duration_sec

FROM fn_dblog(NULL, NULL) AS D

WHERE AllocUnitName = '<table_name>' OR AllocUnitName LIKE '<table_name>.%';

 The code fi rst applies a checkpoint to fl ush dirty pages from cache to disk, allowing truncation of
the inactive portion of the log. The code then aggregates measures of the log records associated
with the table of interest before the insert operation. The code then applies the insert operation.
Finally, the code calculates the difference between the before and after values.

 You may also be interested in the distribution of log records based on their lengths. To
achieve this you can produce a histogram with as many steps as you would like to analyze.
The following code demonstrates how to produce a histogram with 10 steps:

DECLARE @numsteps AS INT = 10;

DECLARE @log AS TABLE(id INT IDENTITY, size INT, PRIMARY KEY(size, id));

C10626034.indd 569 2/20/2009 5:47:33 PM

570 Inside Microsoft SQL Server 2008: T-SQL Querying

INSERT INTO @log(size)

 SELECT [Log Record Length]

 FROM fn_dblog(null, null) AS D

 WHERE AllocUnitName = '<table_name>' OR AllocUnitName LIKE '<table_name>.%';

WITH Args AS

(

 SELECT MIN(size) AS mn, MAX(size) AS mx,

 1E0*(MAX(size) - MIN(size)) / @numsteps AS stepsize

 FROM @log

),

Steps AS

(

 SELECT n,

 mn + (n-1)*stepsize - CASE WHEN n = 1 THEN 1 ELSE 0 END AS lb,

 mn + n*stepsize AS hb

 FROM Nums

 CROSS JOIN Args

 WHERE n <= @numsteps

)

SELECT n, lb, hb, COUNT(size) AS numrecords

FROM Steps

 LEFT OUTER JOIN @log

 ON size > lb AND size <= hb

GROUP BY n, lb, hb

ORDER BY n;

 I also fi nd it very useful to analyze the actual log records involved in logging the operation to
fi gure out what was logged and not just how much logging was done. The following query
gives you aggregated information with a breakdown by average log record length in units of
100 bytes, log operation, and log context:

SELECT Operation, Context,

 AVG([Log Record Length]) AS AvgLen, COUNT(*) AS Cnt

FROM fn_dblog(null, null) AS D

WHERE AllocUnitName = '<table_name>' OR AllocUnitName LIKE '<table_name>.%'

GROUP BY Operation, Context, ROUND([Log Record Length], -2)

ORDER BY AvgLen, Operation, Context;

 The rounding of log record lengths to units of 100 bytes is achieved by specifying –2 as the
second argument to the ROUND function. If you need to round to units of 1,000, specify –3.
As an alternative, you may prefer to get a logarithmic breakdown (10s, 100s, 1,000s). To achieve
this, use the length of the string holding the log record length as the grouped expression,
like so:

SELECT Operation, Context,

 '1'+REPLICATE('0',-1+LEN([Log Record Length]))+'s' AS [Log Entry Sizes],

 AVG([Log Record Length]) AS AvgLen, COUNT(*) AS Cnt

FROM fn_dblog(null, null) AS D

WHERE AllocUnitName = '<table_name>' OR AllocUnitName LIKE '<table_name>.%'

GROUP BY Operation, Context, LEN([Log Record Length])

ORDER BY AvgLen, Operation, Context;

C10626034.indd 570 2/20/2009 5:47:33 PM

 Chapter 10 Data Modifi cation 571

Testing Insert Scenarios

This section demonstrates tests of different insert scenarios and the logging behavior involved.
I will demonstrate some scenarios using the SELECT INTO and INSERT SELECT statements, but
of course you can apply similar analysis with other scenarios that you’re interested in.

All tests will be run in a sample database called testdb that you create and use by running
the following code:

USE master;

IF DB_ID('testdb') IS NULL CREATE DATABASE testdb;

GO

USE testdb;

Scenario 1: SELECT INTO, FULL Recovery The fi rst scenario demonstrates using the SELECT
INTO statement in a database set to the FULL recovery model. Run the following code to set
the recovery model of the testdb database to FULL and back up the database to get out of
log truncate mode:

ALTER DATABASE testdb SET RECOVERY FULL;

BACKUP DATABASE testdb TO DISK = 'c:\temp\testdb.bak' WITH INIT;

 Next, run the code in Listing 10-2 to use the SELECT INTO statement to create a table called T1
and populate it with 100,000 rows, each of which is more than 2,000 bytes long (~200 MB total).

LISTING 10-2 Script with SELECT INTO

USE testdb;

-- Preparation

-- Replace this code with your preparation code

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CHECKPOINT;

GO

-- Collect values prior to operation

DECLARE @numrecords AS INT, @size AS BIGINT, @dt AS DATETIME;

SELECT

 @numrecords = COUNT(*),

 @size = COALESCE(SUM([Log Record Length]), 0),

 @dt = CURRENT_TIMESTAMP

FROM fn_dblog(NULL, NULL) AS D

WHERE AllocUnitName = 'dbo.T1' OR AllocUnitName LIKE 'dbo.T1.%';

-- Operation

-- Replace this code with your operation code

SELECT n, CAST('a' AS CHAR(2000)) AS filler

INTO dbo.T1

FROM dbo.Nums

WHERE n <= 100000;

USE testdb;

-- Preparation

-- Replace this code with your preparation code

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CHECKPOINT;

GO

-- Collect values prior to operation

DECLARE @numrecords AS INT, @size AS BIGINT, @dt AS DATETIME;

SELECT

 @numrecords = COUNT(*),

 @size = COALESCE(SUM([Log Record Length]), 0),

 @dt = CURRENT_TIMESTAMP

FROM fn_dblog(NULL, NULL) AS D

WHERE AllocUnitName = 'dbo.T1' OR AllocUnitName LIKE 'dbo.T1.%';

-- Operation

-- Replace this code with your operation code

SELECT n, CAST('a' AS CHAR(2000)) AS filler

INTO dbo.T1

FROM dbo.Nums

WHERE n <= 100000;

C10626034.indd 571 2/20/2009 5:47:33 PM

572 Inside Microsoft SQL Server 2008: T-SQL Querying

-- Calculate delta of values for operation

SELECT

 COUNT(*) - @numrecords AS numrecords,

 CAST((COALESCE(SUM([Log Record Length]), 0) - @size)

 / 1024. / 1024. AS NUMERIC(12, 2)) AS size_mb,

 CAST(DATEDIFF(millisecond, @dt, CURRENT_TIMESTAMP)/1000. AS DECIMAL(12,3))

 AS duration_sec

FROM fn_dblog(NULL, NULL) AS D

WHERE AllocUnitName = 'dbo.T1' OR AllocUnitName LIKE 'dbo.T1.%';

-- Generate histogram

DECLARE @numsteps AS INT = 10;

DECLARE @log AS TABLE(id INT IDENTITY, size INT, PRIMARY KEY(size, id));

INSERT INTO @log(size)

 SELECT [Log Record Length]

 FROM fn_dblog(null, null) AS D

 WHERE AllocUnitName = 'dbo.T1' OR AllocUnitName LIKE 'dbo.T1.%';

WITH Args AS

(

 SELECT MIN(size) AS mn, MAX(size) AS mx,

 1E0*(MAX(size) - MIN(size)) / @numsteps AS stepsize

 FROM @log

),

Steps AS

(

 SELECT n,

 mn + (n-1)*stepsize - CASE WHEN n = 1 THEN 1 ELSE 0 END AS lb,

 mn + n*stepsize AS hb

 FROM Nums

 CROSS JOIN Args

 WHERE n <= @numsteps

)

SELECT n, lb, hb, COUNT(size) AS numrecords

FROM Steps

 LEFT OUTER JOIN @log

 ON size > lb AND size <= hb

GROUP BY n, lb, hb

ORDER BY n;

-- Get breakdown of log record types

SELECT Operation, Context,

 AVG([Log Record Length]) AS AvgLen, COUNT(*) AS Cnt

FROM fn_dblog(null, null) AS D

WHERE AllocUnitName = 'dbo.T1' OR AllocUnitName LIKE 'dbo.T1.%'

GROUP BY Operation, Context, ROUND([Log Record Length], -2)

ORDER BY AvgLen, Operation, Context;

 The code in Listing 10-2 uses as its source table the Nums table described in Chapter 6,
“Subqueries, Table Expressions, and Ranking Functions,” under the section “Auxiliary Table
of Numbers.” The code uses the tools described earlier to calculate how much logging was

-- Calculate delta of values for operation

SELECT

 COUNT(*) - @numrecords AS numrecords,

 CAST((COALESCE(SUM([Log Record Length]), 0) - @size)

 / 1024. / 1024. AS NUMERIC(12, 2)) AS size_mb,

 CAST(DATEDIFF(millisecond, @dt, CURRENT_TIMESTAMP)/1000. AS DECIMAL(12,3))

 AS duration_sec

FROM fn_dblog(NULL, NULL) AS D

WHERE AllocUnitName = 'dbo.T1' OR AllocUnitName LIKE 'dbo.T1.%';

-- Generate histogram

DECLARE @numsteps AS INT = 10;

DECLARE @log AS TABLE(id INT IDENTITY, size INT, PRIMARY KEY(size, id));

INSERT INTO @log(size)

 SELECT [Log Record Length]

 FROM fn_dblog(null, null) AS D

 WHERE AllocUnitName = 'dbo.T1' OR AllocUnitName LIKE 'dbo.T1.%';

WITH Args AS

(

 SELECT MIN(size) AS mn, MAX(size) AS mx,

 1E0*(MAX(size) - MIN(size)) / @numsteps AS stepsize

 FROM @log

),

Steps AS

(

 SELECT n,

 mn + (n-1)*stepsize - CASE WHEN n = 1 THEN 1 ELSE 0 END AS lb,

 mn + n*stepsize AS hb

 FROM Nums

 CROSS JOIN Args

 WHERE n <= @numsteps

)

SELECT n, lb, hb, COUNT(size) AS numrecords

FROM Steps

 LEFT OUTER JOIN @log

 ON size > lb AND size <= hb

GROUP BY n, lb, hb

ORDER BY n;

-- Get breakdown of log record types

SELECT Operation, Context,

 AVG([Log Record Length]) AS AvgLen, COUNT(*) AS Cnt

FROM fn_dblog(null, null) AS D

WHERE AllocUnitName = 'dbo.T1' OR AllocUnitName LIKE 'dbo.T1.%'

GROUP BY Operation, Context, ROUND([Log Record Length], -2)

ORDER BY AvgLen, Operation, Context;

C10626034.indd 572 2/20/2009 5:47:33 PM

 Chapter 10 Data Modifi cation 573

involved, to produce a histogram showing the distribution of the log record lengths, and to
show a breakdown of the log records by length, operation, and context. You can use the code
in Listing 10-2 as a template to investigate the logging behavior of other kinds of activities.
Simply replace the sections marked with the comments -- Preparation and -- Operation with
the applicable preparation and operation code that you want to test.

 The code in Listing 10-2 produced the following results on my system:

numrecords size_mb duration_sec

----------- -------- ------------

34522 197.95 24.000

n lb hb numrecords

----------- ---------------------- ---------------------- -----------

1 59 881.6 9522

2 881.6 1703.2 0

3 1703.2 2524.8 0

4 2524.8 3346.4 0

5 3346.4 4168 0

6 4168 4989.6 0

7 4989.6 5811.2 0

8 5811.2 6632.8 0

9 6632.8 7454.4 0

10 7454.4 8276 25000

Operation Context AvgLen Cnt

---------------- --------- ----------- -----------

LOP_SET_BITS LCX_GAM 60 3147

LOP_SET_BITS LCX_IAM 60 3147

LOP_FORMAT_PAGE LCX_HEAP 84 1

LOP_FORMAT_PAGE LCX_IAM 84 1

LOP_MODIFY_ROW LCX_IAM 88 1

LOP_MODIFY_ROW LCX_PFS 88 3225

LOP_FORMAT_PAGE LCX_HEAP 8276 25000

 From these outputs you can learn that SQL Server applied full logging, amounting in total to
about 200 MB. The histogram shows the distribution of the log records based on their size
in 10 steps. Each row in the histogram has the step number (n), low boundary point of the
step (lb), high boundary point of step (hb), and number of log records matching this step.
You can learn from this histogram that there were 9,522 log records with lengths in the range
59 bytes to 881.6 bytes and 25,000 records in the range 7,454.4 bytes to 8,276 bytes.

 The breakdown of the log operations shows 25,000 log records with the log operation (LOP)
LOP_FORMAT_PAGE and log context (LCX) LCX_HEAP, meaning that 25,000 heap pages were
allocated and populated during the SELECT INTO operation and that the data populated in
those pages was fully logged. From the log operation LOP_SET_BITS with the contexts
LCX_GAM and LCX_IAM and the operation LOP_MODIFY_ROW with the context LCK_PFS,
you learn that some logging is also taking place for modifi cations of GAM, IAM, and PFS
pages (allocation bitmaps and page free space bitmaps).

C10626034.indd 573 2/20/2009 5:47:34 PM

574 Inside Microsoft SQL Server 2008: T-SQL Querying

 From this test you learn that a SELECT INTO statement running in a database that is set to the
FULL recovery model is fully logged. In fact, when the recovery model of the database is set
to FULL, all insert methods perform full logging.

In the following scenarios, I will show the results from Listing 10-2 under a variety of different
circumstances: with a different database recovery model in place, with a trace fl ag turned
on, or with changes to the sections of the code identifi ed with the comments -- Preparation
and -- Operation. The parts of Listing 10-2 that produce the logging information will stay the
same, so in those scenarios where I change the code, I won’t provide the entire listing—I’ll
just provide the new Preparation and Operation code. When I do, I will assume that you are
still running the full Listing 10-2 with replacement versions of these two sections.

Scenario 2: SELECT INTO, Non-FULL Recovery To test the SELECT INTO statement in a
 database with a non-FULL recovery model, fi rst change the recovery model to SIMPLE by
running the following code:

ALTER DATABASE testdb SET RECOVERY SIMPLE;

 Next, run the code in Listing 10-2 again. I got the following outputs when running the code
on my system:

numrecords size_mb duration_sec

----------- -------- ------------

9521 0.63 10.000

n lb hb numrecords

----------- ---------------------- ---------------------- -----------

1 59 63.2 6272

2 63.2 66.4 0

3 66.4 69.6 0

4 69.6 72.8 22

5 72.8 76 0

6 76 79.2 0

7 79.2 82.4 1

8 82.4 85.6 1

9 85.6 88.8 3137

10 88.8 92 88

Operation Context AvgLen Cnt

---------------- -------- ----------- -----------

LOP_SET_BITS LCX_GAM 60 3147

LOP_SET_BITS LCX_IAM 60 3147

LOP_FORMAT_PAGE LCX_IAM 84 1

LOP_MODIFY_ROW LCX_IAM 88 1

LOP_MODIFY_ROW LCX_PFS 88 3225

 As you can see, this time the actual contents of the inserted data were not logged. Instead,
there was only minimal logging of changes to GAM, IAM, and PFS pages (allocation bitmaps
and page free space bitmaps). In total, the logging amounted to less than 1 MB.

C10626034.indd 574 2/20/2009 5:47:34 PM

 Chapter 10 Data Modifi cation 575

 From this test you learn that a SELECT INTO statement running in a database that is set to a
non-FULL recovery model is minimally logged.

 As mentioned, when the database recovery model is set to FULL, you get full logging
 regardless of the insert method. For the subsequent scenarios, the testdb database will
 remain in SIMPLE recovery model.

Scenario 3: INSERT SELECT, Empty Heap, TABLOCK This scenario involves an INSERT
SELECT statement against an empty heap using the TABLOCK table hint. Recall that prior
to SQL Server 2008, regular INSERT SELECT statements always performed full logging, but
in SQL Server 2008, they can be done with minimal logging, similar to other bulk import
methods.

 In order to test this scenario, replace the Preparation and Operation sections of Listing 10-2
with this code:

-- Preparation

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

 n INT NOT NULL,

 filler CHAR(2000) NOT NULL

);

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

 SELECT n, CAST('a' AS CHAR(2000)) AS filler

 FROM dbo.Nums

 WHERE n <= 100000;

 I got the following results on my system from this test:

numrecords size_mb duration_sec

----------- -------- ------------

9521 0.63 9.000

n lb hb numrecords

----------- ---------------------- ---------------------- -----------

1 59 63.2 6272

2 63.2 66.4 0

3 66.4 69.6 0

4 69.6 72.8 22

5 72.8 76 0

6 76 79.2 0

7 79.2 82.4 1

8 82.4 85.6 1

9 85.6 88.8 3137

10 88.8 92 88

C10626034.indd 575 2/20/2009 5:47:34 PM

576 Inside Microsoft SQL Server 2008: T-SQL Querying

Operation Context AvgLen Cnt

---------------- -------- ----------- -----------

LOP_SET_BITS LCX_GAM 60 3147

LOP_SET_BITS LCX_IAM 60 3147

LOP_FORMAT_PAGE LCX_IAM 84 1

LOP_MODIFY_ROW LCX_IAM 88 1

LOP_MODIFY_ROW LCX_PFS 88 3225

 As you can learn from these results, you also get minimal logging in this scenario.

Scenario 4: INSERT SELECT, Nonempty Heap, TABLOCK This scenario is similar to
Scenario 3, except that this time the target heap is not empty. Use the following code for the
Preparation and Operation sections this time:

-- Preparation

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

 SELECT n, CAST('a' AS CHAR(2000)) AS filler

 FROM dbo.Nums

 WHERE n BETWEEN 100001 AND 200000;

 I got the following logging results for this test on my system:

numrecords size_mb duration_sec

----------- -------- ------------

9518 0.63 8.000

n lb hb numrecords

----------- ---------------------- ---------------------- -----------

1 59 63.2 6272

2 63.2 66.4 0

3 66.4 69.6 0

4 69.6 72.8 22

5 72.8 76 0

6 76 79.2 0

7 79.2 82.4 0

8 82.4 85.6 0

9 85.6 88.8 3136

10 88.8 92 88

Operation Context AvgLen Cnt

--------------- -------- ----------- -----------

LOP_SET_BITS LCX_GAM 60 3147

LOP_SET_BITS LCX_IAM 60 3147

LOP_MODIFY_ROW LCX_PFS 88 3224

 As you can see, even when the target heap is nonempty, you still get minimal logging.

C10626034.indd 576 2/20/2009 5:47:34 PM

 Chapter 10 Data Modifi cation 577

Scenario 5: INSERT SELECT, Empty Heap, Without TABLOCK This scenario is similar to
Scenario 3, except that in this case you do not specify the TABLOCK table hint. The following
code provides the Preparation and Operation parts of this test:

-- Preparation

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

 n INT NOT NULL,

 filler CHAR(2000) NOT NULL

);

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 (n, filler)

 SELECT n, CAST('a' AS CHAR(2000)) AS filler

 FROM dbo.Nums

 WHERE n <= 100000;

 This test generates the following results on my system:

numrecords size_mb duration_sec

----------- -------- ------------

159384 204.46 12.000

n lb hb numrecords

----------- ---------------------- ---------------------- -----------

1 59 264.4 59384

2 264.4 468.8 0

3 468.8 673.2 0

4 673.2 877.6 0

5 877.6 1082 0

6 1082 1286.4 0

7 1286.4 1490.8 0

8 1490.8 1695.2 0

9 1695.2 1899.6 0

10 1899.6 2104 100000

Operation Context AvgLen Cnt

---------------- --------- ----------- -----------

LOP_SET_BITS LCX_GAM 60 3125

LOP_SET_BITS LCX_IAM 60 3125

LOP_MODIFY_ROW LCX_PFS 80 28125

LOP_FORMAT_PAGE LCX_HEAP 84 25000

LOP_FORMAT_PAGE LCX_IAM 84 1

LOP_MODIFY_ROW LCX_IAM 88 8

LOP_INSERT_ROWS LCX_HEAP 2096 100000

 The simple fact that this time you didn’t specify the TABLOCK hint caused the operation
to be fully logged. The 100,000 INSERT statements, each of which inserted a row of over

C10626034.indd 577 2/20/2009 5:47:34 PM

578 Inside Microsoft SQL Server 2008: T-SQL Querying

2,000 bytes, were logged individually. Further logging was due to the page allocations that
took place (25,000 of those) and to the updates of the GAM, IAM, and PFS pages.

 As you can guess, when the target heap is not empty, you also get full logging when not
specifying TABLOCK.

Scenario 6: INSERT SELECT, Empty B-Tree, TABLOCK This scenario involves an INSERT
SELECT statement against an empty B-tree (as opposed to a heap) using the TABLOCK hint.
The following code shows the Preparation and Operation parts of this test:

-- Preparation

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

 n INT NOT NULL,

 filler CHAR(2000) NOT NULL

);

CREATE UNIQUE CLUSTERED INDEX idx_n ON dbo.T1(n);

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

 SELECT n, CAST('a' AS CHAR(2000)) AS filler

 FROM dbo.Nums

 WHERE n <= 200000

 AND n % 2 = 0

 ORDER BY n;

 The INSERT SELECT statement fi lters the 100,000 rows with even values of n smaller than or
equal to 200,000 from the Nums table. Later I’ll insert odd numbers to show what happens
when you insert rows into existing pages as opposed to allocating new ones. Also notice that
the INSERT SELECT statement has an ORDER BY clause that ensures that the data is inserted
in the target B-tree order. Note that in this particular example the ORDER BY clause might
not have mattered in terms of optimization because the Nums table has a clustered index on
the column n; however, in other cases where the source data is not preordered, specifying an
ORDER BY clause could help optimizing the operation.

 I got the following results on my system for this test:

numrecords size_mb duration_sec

----------- -------- ------------

9868 0.66 8.000

n lb hb numrecords

----------- ---------------------- ---------------------- -----------

1 59 63.2 6394

2 63.2 66.4 0

3 66.4 69.6 0

C10626034.indd 578 2/20/2009 5:47:34 PM

 Chapter 10 Data Modifi cation 579

4 69.6 72.8 6

5 72.8 76 0

6 76 79.2 0

7 79.2 82.4 264

8 82.4 85.6 1

9 85.6 88.8 3173

10 88.8 92 30

Operation Context AvgLen Cnt

---------------- -------- ----------- -----------

LOP_SET_BITS LCX_GAM 60 3200

LOP_SET_BITS LCX_IAM 60 3200

LOP_FORMAT_PAGE LCX_IAM 84 1

LOP_MODIFY_ROW LCX_PFS 87 3459

LOP_MODIFY_ROW LCX_IAM 88 8

 As you can see, an INSERT SELECT against an empty B-tree using the TABLOCK option
 performs minimal logging.

 In the next few scenarios, we will learn how trace fl ag 610 affects logging, and in what
 follows, we’ll use the abbreviation TF-610 for this trace fl ag.

Scenario 7: INSERT SELECT, Nonempty B-Tree, TABLOCK, TF-610 Off, New Key Range This
scenario is similar to Scenario 6, except that the target B-tree already contains data. TF-610 is
off. The following code contains the Preparation and Operation sections for this test:

-- Preparation

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

 SELECT n, CAST('a' AS CHAR(2000)) AS filler

 FROM dbo.Nums

 WHERE n BETWEEN 200001 AND 300000

 ORDER BY n;

 Notice that the key range for the inserted rows is new (between 200,001 and 300,000). In
other words, the inserted rows do not enter existing pages; instead, they populate newly
 allocated pages. The following output shows the logging information that I got on my
 system for this test:

numrecords size_mb duration_sec

----------- -------- ------------

209969 208.91 11.000

n lb hb numrecords

----------- ---------------------- ---------------------- -----------

1 59 555.2 109876

2 555.2 1050.4 0

3 1050.4 1545.6 0

4 1545.6 2040.8 0

5 2040.8 2536 100000

6 2536 3031.2 0

C10626034.indd 579 2/20/2009 5:47:34 PM

580 Inside Microsoft SQL Server 2008: T-SQL Querying

7 3031.2 3526.4 0

8 3526.4 4021.6 0

9 4021.6 4516.8 1

10 4516.8 5012 92

Operation Context AvgLen Cnt

------------------ ------------------- ----------- -----------

LOP_DELETE_SPLIT LCX_CLUSTERED 60 1

LOP_DELETE_SPLIT LCX_INDEX_INTERIOR 60 92

LOP_SET_BITS LCX_GAM 60 3137

LOP_SET_BITS LCX_IAM 60 3137

LOP_MODIFY_ROW LCX_PFS 80 28230

LOP_FORMAT_PAGE LCX_HEAP 84 25001

LOP_FORMAT_PAGE LCX_INDEX_INTERIOR 84 92

LOP_INSERT_ROWS LCX_INDEX_INTERIOR 84 25093

LOP_MODIFY_HEADER LCX_HEAP 84 25001

LOP_MODIFY_HEADER LCX_INDEX_INTERIOR 84 92

LOP_INSERT_ROWS LCX_CLUSTERED 2096 100000

LOP_INSERT_ROWS LCX_CLUSTERED 4096 1

LOP_INSERT_ROWS LCX_INDEX_INTERIOR 5012 92

 As you can see, in this scenario the operation was fully logged. In addition to the log records
for each INSERT statement, there are log records for page allocations (including leaf and
nonleaf pages), log records for each insertion into a nonleaf page, and log records for the
updates of the GAM, IAM, and PFS bitmaps.

Scenario 8: INSERT SELECT, Nonempty B-Tree, TABLOCK, TF-610 On, New Key Range This
scenario is similar to Scenario 7, except that this time you turn on TF-610. This trace fl ag is
available in SQL Server 2008 to enable minimal logging against a B-tree even when not using
the TABLOCK hint and for new key ranges that allocate and populate new pages even when
the target is nonempty.

 Turn this trace fl ag on for your SQL Server 2008 instance by running the following code:

DBCC TRACEON(610, -1);

DBCC TRACESTATUS;

 You can also turn this trace fl ag on whenever SQL Server starts by specifying -T610 as a the
service startup parameter.

 Now, with the trace fl ag turned on, the following code provides the Preparation and
Operation parts of this test:

-- Preparation

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

 n INT NOT NULL,

 filler CHAR(2000) NOT NULL

);

CREATE UNIQUE CLUSTERED INDEX idx_n ON dbo.T1(n);

C10626034.indd 580 2/20/2009 5:47:34 PM

 Chapter 10 Data Modifi cation 581

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

 SELECT n, CAST('a' AS CHAR(2000)) AS filler

 FROM dbo.Nums

 WHERE n <= 200000

 AND n % 2 = 0

 ORDER BY n;

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

 SELECT n, CAST('a' AS CHAR(2000)) AS filler

 FROM dbo.Nums

 WHERE n BETWEEN 200001 AND 300000

 ORDER BY n;

 I got the following logging information on my system for this test:

numrecords size_mb duration_sec

----------- -------- ------------

135131 10.94 15.000

n lb hb numrecords

----------- ---------------------- ---------------------- -----------

1 59 555.2 135036

2 555.2 1050.4 0

3 1050.4 1545.6 0

4 1545.6 2040.8 0

5 2040.8 2536 2

6 2536 3031.2 0

7 3031.2 3526.4 0

8 3526.4 4021.6 0

9 4021.6 4516.8 1

10 4516.8 5012 92

Operation Context AvgLen Cnt

------------------ ------------------------ ----------- -----------

LOP_DELETE_SPLIT LCX_CLUSTERED 60 1

LOP_DELETE_SPLIT LCX_INDEX_INTERIOR 60 92

LOP_SET_BITS LCX_GAM 60 3142

LOP_SET_BITS LCX_IAM 60 3142

LOP_MODIFY_HEADER LCX_BULK_OPERATION_PAGE 76 25093

LOP_FORMAT_PAGE LCX_BULK_OPERATION_PAGE 84 25120

LOP_FORMAT_PAGE LCX_INDEX_INTERIOR 84 92

LOP_INSERT_ROWS LCX_INDEX_INTERIOR 84 25093

LOP_MODIFY_HEADER LCX_HEAP 84 50002

LOP_MODIFY_HEADER LCX_INDEX_INTERIOR 84 92

LOP_MODIFY_ROW LCX_PFS 88 3167

LOP_INSERT_ROWS LCX_CLUSTERED 2096 2

LOP_INSERT_ROWS LCX_CLUSTERED 4096 1

LOP_INSERT_ROWS LCX_INDEX_INTERIOR 5012 92

 As you can see, this scenario produced minimal logging. A bit more logging is involved here
(~10 MB) compared to what was needed for an empty B-tree (~1 MB) because more changes
are required to balance the tree.

C10626034.indd 581 2/20/2009 5:47:34 PM

582 Inside Microsoft SQL Server 2008: T-SQL Querying

 When you want to turn trace fl ag 610 off, run the following code:

DBCC TRACEOFF(610, -1);

DBCC TRACESTATUS;

Scenario 9: INSERT SELECT, Nonempty B-Tree, TABLOCK, Merged Key Range This
 scenario is similar to Scenario 7, except that here the new keys are such that the new rows are
merged into existing pages. In this scenario, regardless of whether TF-610 is on or off, rows
inserted into existing pages will be fully logged.

 The following code provides the Preparation and Operation sections you need to demonstrate
the full logging involved with inserts into existing pages:

-- Preparation

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

 n INT NOT NULL,

 filler CHAR(2000) NOT NULL

);

CREATE UNIQUE CLUSTERED INDEX idx_n ON dbo.T1(n);

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

 SELECT n, CAST('a' AS CHAR(2000)) AS filler

 FROM dbo.Nums

 WHERE n <= 200000

 AND n % 2 = 0

 ORDER BY n;

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

 SELECT n, CAST('a' AS CHAR(2000)) AS filler

 FROM dbo.Nums

 WHERE n <= 200000

 AND n % 2 = 1

 ORDER BY n;

 Before the INSERT SELECT statement in the Operation section is executed, there are already
100,000 rows in table T1, and the primary key values in those rows are the even numbers up
to 200,000. The INSERT SELECT statement inserts 100,000 new rows using as primary keys
the odd numbers from dbo.Nums that are smaller than 200,000. I got the following logging
information on my system for this test both when TF-610 was turned off and when it was
turned on:

numrecords size_mb duration_sec

----------- -------- ------------

284972 309.94 24.000

C10626034.indd 582 2/20/2009 5:47:34 PM

 Chapter 10 Data Modifi cation 583

n lb hb numrecords

----------- ---------------------- ---------------------- -----------

1 59 555.2 159891

2 555.2 1050.4 0

3 1050.4 1545.6 0

4 1545.6 2040.8 0

5 2040.8 2536 100000

6 2536 3031.2 0

7 3031.2 3526.4 0

8 3526.4 4021.6 0

9 4021.6 4516.8 25001

10 4516.8 5012 80

Operation Context AvgLen Cnt

------------------ ------------------- ----------- -----------

LOP_DELETE_SPLIT LCX_CLUSTERED 60 25001

LOP_DELETE_SPLIT LCX_INDEX_INTERIOR 60 80

LOP_SET_BITS LCX_GAM 60 3136

LOP_SET_BITS LCX_IAM 60 3136

LOP_MODIFY_ROW LCX_PFS 80 28217

LOP_FORMAT_PAGE LCX_HEAP 84 25001

LOP_FORMAT_PAGE LCX_INDEX_INTERIOR 84 80

LOP_INSERT_ROWS LCX_INDEX_INTERIOR 84 25081

LOP_MODIFY_HEADER LCX_HEAP 84 50002

LOP_MODIFY_HEADER LCX_INDEX_INTERIOR 84 160

LOP_INSERT_ROWS LCX_CLUSTERED 2096 100000

LOP_INSERT_ROWS LCX_CLUSTERED 4096 25001

LOP_INSERT_ROWS LCX_INDEX_INTERIOR 5012 80

 You can see that in addition to the full logging of the 100,000 inserted rows (each with
~2,000 bytes), signifi cant logging also occurred because of page splits that caused rows to
move (25,001 times ~4,000 bytes). The total amount of logging was more than 300 MB.

 Remember that only new key ranges that allocate and populate new pages will be minimally
logged when TF-610 is on. Of course the rows you insert could cover both existing and new
key ranges. When that’s the case, rows destined for existing pages will be fully logged and
rows destined for new pages minimally logged when trace fl ag 610 is on.

Scenario 10: INSERT SELECT, Empty B-Tree, Without TABLOCK, TF-610 Off This scenario is
similar to Scenario 6 except that here you do not specify the TABLOCK option. Remember that
in this scenario TF-610 is off. Use the following Preparation and Operation parts for this test:

-- Preparation

DBCC TRACEOFF(610, -1);

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

 n INT NOT NULL,

 filler CHAR(2000) NOT NULL

);

CREATE UNIQUE CLUSTERED INDEX idx_n ON dbo.T1(n);

C10626034.indd 583 2/20/2009 5:47:34 PM

584 Inside Microsoft SQL Server 2008: T-SQL Querying

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 (n, filler)

 SELECT n, CAST('a' AS CHAR(2000)) AS filler

 FROM dbo.Nums

 WHERE n <= 200000

 AND n % 2 = 0

 ORDER BY n;

 I got the following logging information on my system for this test:

numrecords size_mb duration_sec

----------- -------- ------------

209967 209.20 11.000

n lb hb numrecords

----------- ---------------------- ---------------------- -----------

1 59 555.2 109876

2 555.2 1050.4 0

3 1050.4 1545.6 0

4 1545.6 2040.8 0

5 2040.8 2536 100000

6 2536 3031.2 0

7 3031.2 3526.4 0

8 3526.4 4021.6 0

9 4021.6 4516.8 0

10 4516.8 5012 91

Operation Context AvgLen Cnt

------------------ ------------------- ----------- -----------

LOP_DELETE_SPLIT LCX_INDEX_INTERIOR 60 91

LOP_SET_BITS LCX_GAM 60 3136

LOP_SET_BITS LCX_IAM 60 3136

LOP_MODIFY_ROW LCX_PFS 80 28229

LOP_FORMAT_PAGE LCX_HEAP 84 25000

LOP_FORMAT_PAGE LCX_IAM 84 1

LOP_FORMAT_PAGE LCX_INDEX_INTERIOR 84 93

LOP_INSERT_ROWS LCX_INDEX_INTERIOR 84 25092

LOP_MODIFY_HEADER LCX_HEAP 84 24999

LOP_MODIFY_HEADER LCX_INDEX_INTERIOR 84 91

LOP_MODIFY_ROW LCX_IAM 88 8

LOP_INSERT_ROWS LCX_CLUSTERED 2099 100000

LOP_INSERT_ROWS LCX_INDEX_INTERIOR 5012 91

 As you can see, this scenario involves full logging because the TABLOCK option wasn’t used
and trace fl ag 610 was off.

Scenario 11: INSERT SELECT, Empty B-Tree, Without TABLOCK, TF-610 On This scenario
is similar to Scenario 10 except that here you run it when TF-610 is on. The following code
 contains the Preparation and Operation Parts for this test:

-- Preparation

DBCC TRACEON(610, -1);

C10626034.indd 584 2/20/2009 5:47:34 PM

 Chapter 10 Data Modifi cation 585

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

 n INT NOT NULL,

 filler CHAR(2000) NOT NULL

);

CREATE UNIQUE CLUSTERED INDEX idx_n ON dbo.T1(n);

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 (n, filler)

 SELECT n, CAST('a' AS CHAR(2000)) AS filler

 FROM dbo.Nums

 WHERE n <= 200000

 AND n % 2 = 0

 ORDER BY n;

 I got the following logging information on my system for this test:

numrecords size_mb duration_sec

----------- -------- ------------

135160 10.94 18.000

n lb hb numrecords

----------- ---------------------- ---------------------- -----------

1 59 555.2 135065

2 555.2 1050.4 0

3 1050.4 1545.6 0

4 1545.6 2040.8 0

5 2040.8 2536 4

6 2536 3031.2 0

7 3031.2 3526.4 0

8 3526.4 4021.6 0

9 4021.6 4516.8 0

10 4516.8 5012 91

Operation Context AvgLen Cnt

------------------ ------------------------ ----------- -----------

LOP_DELETE_SPLIT LCX_INDEX_INTERIOR 60 91

LOP_SET_BITS LCX_GAM 60 3144

LOP_SET_BITS LCX_IAM 60 3144

LOP_MODIFY_HEADER LCX_BULK_OPERATION_PAGE 76 25092

LOP_FORMAT_PAGE LCX_BULK_OPERATION_PAGE 84 25127

LOP_FORMAT_PAGE LCX_HEAP 84 1

LOP_FORMAT_PAGE LCX_IAM 84 1

LOP_FORMAT_PAGE LCX_INDEX_INTERIOR 84 93

LOP_INSERT_ROWS LCX_INDEX_INTERIOR 84 25092

LOP_MODIFY_HEADER LCX_HEAP 84 49998

LOP_MODIFY_HEADER LCX_INDEX_INTERIOR 84 91

LOP_MODIFY_ROW LCX_IAM 88 8

LOP_MODIFY_ROW LCX_PFS 88 3183

LOP_INSERT_ROWS LCX_CLUSTERED 2112 4

LOP_INSERT_ROWS LCX_INDEX_INTERIOR 5012 91

C10626034.indd 585 2/20/2009 5:47:34 PM

586 Inside Microsoft SQL Server 2008: T-SQL Querying

 As you can see, this time there was minimal logging; compared to the previous scenario, you
only had to turn on TF-610 to allow minimal logging.

Scenario 12: INSERT SELECT, Nonempty B-Tree, without TABLOCK, TF-610 Off, New

 Key Range This scenario is similar to Scenario 7 except that here you don’t specify the
TABLOCK hint. Note that when TF-610 is not turned on and the TABLOCK hint isn’t specifi ed,
you get full logging regardless of whether the target table is empty. Use the following
Preparation and Operation parts to test this scenario:

-- Preparation

DBCC TRACEOFF(610, -1);

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

 n INT NOT NULL,

 filler CHAR(2000) NOT NULL

);

CREATE UNIQUE CLUSTERED INDEX idx_n ON dbo.T1(n);

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

 SELECT n, CAST('a' AS CHAR(2000)) AS filler

 FROM dbo.Nums

 WHERE n <= 200000

 AND n % 2 = 0

 ORDER BY n;

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1 (n, filler)

 SELECT n, CAST('a' AS CHAR(2000)) AS filler

 FROM dbo.Nums

 WHERE n BETWEEN 200001 AND 300000

 ORDER BY n;

 Here’s the logging information I got for this test on my system:

numrecords size_mb duration_sec

----------- -------- ------------

209969 209.21 9.000

n lb hb numrecords

----------- ---------------------- ---------------------- -----------

1 59 555.2 109876

2 555.2 1050.4 0

3 1050.4 1545.6 0

4 1545.6 2040.8 0

5 2040.8 2536 100000

6 2536 3031.2 0

7 3031.2 3526.4 0

C10626034.indd 586 2/20/2009 5:47:34 PM

 Chapter 10 Data Modifi cation 587

8 3526.4 4021.6 0

9 4021.6 4516.8 0

10 4516.8 5012 93

Operation Context AvgLen Cnt

------------------ ------------------- ----------- -----------

LOP_DELETE_SPLIT LCX_INDEX_INTERIOR 60 93

LOP_SET_BITS LCX_GAM 60 3137

LOP_SET_BITS LCX_IAM 60 3137

LOP_MODIFY_ROW LCX_PFS 80 28230

LOP_FORMAT_PAGE LCX_HEAP 84 25000

LOP_FORMAT_PAGE LCX_INDEX_INTERIOR 84 93

LOP_INSERT_ROWS LCX_INDEX_INTERIOR 84 25093

LOP_MODIFY_HEADER LCX_HEAP 84 25000

LOP_MODIFY_HEADER LCX_INDEX_INTERIOR 84 93

LOP_INSERT_ROWS LCX_CLUSTERED 2099 100000

LOP_INSERT_ROWS LCX_INDEX_INTERIOR 5012 93

 As you can see, full logging took place.

Scenario 13: INSERT SELECT, Nonempty B-Tree, without TABLOCK, TF-610 On, New

 Key Range This scenario is identical to Scenario 12 except that this time TF-610 is on. It is
also the same as Scenario 8 without the TABLOCK option. Use the following Preparation and
Operation parts to test this scenario:

-- Preparation

DBCC TRACEON(610, -1);

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

 n INT NOT NULL,

 filler CHAR(2000) NOT NULL

);

CREATE UNIQUE CLUSTERED INDEX idx_n ON dbo.T1(n);

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

 SELECT n, CAST('a' AS CHAR(2000)) AS filler

 FROM dbo.Nums

 WHERE n <= 200000

 AND n % 2 = 0

 ORDER BY n;

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1(n, filler)

 SELECT n, CAST('a' AS CHAR(2000)) AS filler

 FROM dbo.Nums

 WHERE n BETWEEN 200001 AND 300000

 ORDER BY n;

C10626034.indd 587 2/20/2009 5:47:34 PM

588 Inside Microsoft SQL Server 2008: T-SQL Querying

 I got the following logging information for this test on my system:

numrecords size_mb duration_sec

----------- -------- ------------

135131 10.94 16.000

n lb hb numrecords

----------- ---------------------- ---------------------- -----------

1 59 555.2 135038

2 555.2 1050.4 0

3 1050.4 1545.6 0

4 1545.6 2040.8 0

5 2040.8 2536 0

6 2536 3031.2 0

7 3031.2 3526.4 0

8 3526.4 4021.6 0

9 4021.6 4516.8 0

10 4516.8 5012 93

Operation Context AvgLen Cnt

------------------ ------------------------ ----------- -----------

LOP_DELETE_SPLIT LCX_INDEX_INTERIOR 60 93

LOP_SET_BITS LCX_GAM 60 3143

LOP_SET_BITS LCX_IAM 60 3143

LOP_MODIFY_HEADER LCX_BULK_OPERATION_PAGE 76 25093

LOP_FORMAT_PAGE LCX_BULK_OPERATION_PAGE 84 25120

LOP_FORMAT_PAGE LCX_INDEX_INTERIOR 84 93

LOP_INSERT_ROWS LCX_INDEX_INTERIOR 84 25093

LOP_MODIFY_HEADER LCX_HEAP 84 50000

LOP_MODIFY_HEADER LCX_INDEX_INTERIOR 84 93

LOP_MODIFY_ROW LCX_PFS 88 3167

LOP_INSERT_ROWS LCX_INDEX_INTERIOR 5012 93

 As you can see, this time the test generated minimal logging. So even when the TABLOCK
hint isn’t specifi ed, turning TF-610 on will provide minimal logging of rows inserted into new
key ranges.

Scenario 14: INSERT SELECT, Nonempty B-Tree, without TABLOCK, Merged Key Range The
last scenario is similar to Scenario 9 but without the TABLOCK option. Whenever you insert
rows into existing pages of a B-tree, you get full logging—regardless of whether you use
TABLOCK and regardless of whether TF-610 is on or off. To test this scenario, use the following
Preparation and Operation parts:

-- Preparation

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

 n INT NOT NULL,

 filler CHAR(2000) NOT NULL

);

CREATE UNIQUE CLUSTERED INDEX idx_n ON dbo.T1(n);

C10626034.indd 588 2/20/2009 5:47:34 PM

 Chapter 10 Data Modifi cation 589

INSERT INTO dbo.T1 WITH (TABLOCK) (n, filler)

 SELECT n, CAST('a' AS CHAR(2000)) AS filler

 FROM dbo.Nums

 WHERE n <= 200000

 AND n % 2 = 0

 ORDER BY n;

CHECKPOINT;

GO

-- Operation

INSERT INTO dbo.T1(n, filler)

 SELECT n, CAST('a' AS CHAR(2000)) AS filler

 FROM dbo.Nums

 WHERE n <= 200000

 AND n % 2 = 1

 Both when TF-610 was on and when it was off, I got the following logging information
 indicating full logging:

numrecords size_mb duration_sec

----------- -------- ------------

284385 309.67 12.000

n lb hb numrecords

----------- ---------------------- ---------------------- -----------

1 59 463.6 159384

2 463.6 867.2 0

3 867.2 1270.8 0

4 1270.8 1674.4 0

5 1674.4 2078 0

6 2078 2481.6 100000

7 2481.6 2885.2 0

8 2885.2 3288.8 0

9 3288.8 3692.4 0

10 3692.4 4096 25001

Operation Context AvgLen Cnt

------------------ ------------------- ----------- -----------

LOP_DELETE_SPLIT LCX_CLUSTERED 60 25001

LOP_SET_BITS LCX_GAM 60 3126

LOP_SET_BITS LCX_IAM 60 3126

LOP_MODIFY_ROW LCX_PFS 80 28127

LOP_FORMAT_PAGE LCX_HEAP 84 25001

LOP_INSERT_ROWS LCX_INDEX_INTERIOR 84 25001

LOP_MODIFY_HEADER LCX_HEAP 84 50002

LOP_INSERT_ROWS LCX_CLUSTERED 2097 100000

LOP_INSERT_ROWS LCX_CLUSTERED 4096 25001

 Remember that you can have a mixed case with some key ranges that are new and with
some rows destined for existing pages. For rows with key ranges that are new, you get
 minimal logging when TF-610 is on regardless of whether the TABLOCK hint is used. For rows
inserted into existing pages, you always get full logging.

C10626034.indd 589 2/20/2009 5:47:34 PM

590 Inside Microsoft SQL Server 2008: T-SQL Querying

Summary of Minimal Logging

 This section summarizes the requirements for minimal logging.

 The SELECT INTO statement has one requirement to be processed with minimal logging—
the database recovery model should be set to a non-FULL recovery model (SIMPLE or
BULK_LOGGED). Note that if you’re populating a temporary table, what matters is tempdb’s
recovery model, which is SIMPLE and can’t be changed.

 You can summarize the requirements for minimal logging for the other insert methods (BULK
INSERT, bcp.exe, INSERT SELECT FROM OPENROWSET(BULK . . .), and regular INSERT SELECT)
with the following logical expression:

 non-FULL recovery model

AND not replicated

AND (

 (Heap AND TABLOCK)

 OR (B-tree AND empty AND TABLOCK)

 OR (B-tree AND empty AND TF-610)

 OR (B-tree AND nonempty AND TF-610 AND new key-range)

)

 SQL Server 2008 introduces support for minimal logging with the regular INSERT SELECT
statement. The INSERT SELECT method is sometimes preferable to SELECT INTO because it
does not involve locks on metadata, and it gives you control over the schema of the target
table that you create.

 SQL Server 2008 also introduces support for minimal logging when inserting data into a
 nonempty B-tree (clustered or nonclustered index). Minimal logging is used when inserting
new key ranges that allocate and populate new pages while TF-610 is on regardless of
whether the TABLOCK hint is specifi ed. For those new key ranges, SQL Server internally takes
key-range locks to ensure that other processes don’t run confl icting activities.

 I demonstrated only a sample of the possible insert scenarios just to give you a sense of how
you can do your own research. Using the tools I provided here, you can fi gure out for yourself
what kind of logging you get for the scenarios that are of interest to you.

 Unfortunately, the INSERT EXEC and MERGE statements currently do not support minimal
logging.

INSERT EXEC

 The INSERT EXEC statement allows you to direct a table result set returned from a stored
procedure or dynamic batch to an existing table:

INSERT INTO <target_table> EXEC {<proc_name> | (<dynamic_batch>)};

C10626034.indd 590 2/20/2009 5:47:34 PM

 Chapter 10 Data Modifi cation 591

 This statement is very handy when you need to set aside the result set of a stored procedure
or dynamic batch for further processing at the server, as opposed to just returning the result
set back to the client.

 I’ll demonstrate practical uses of the INSERT EXEC statement through an example. Recall
the discussion about paging techniques in Chapter 9, “TOP and APPLY.” I provided a stored
procedure called GetFirstPage, which returns the fi rst page of orders based on orderdate,
orderid ordering. I also provided a stored procedure called GetNextPage, which returns
the next page of orders based on an input key (@anchor) representing the last row in the
 previous page. In this section, I will use slightly revised forms of the stored procedures, which
I’ll call GetFirstRows and GetNextRows. Run the following code to create both procedures:

USE InsideTSQL2008;

GO

-- Index for paging problem

IF INDEXPROPERTY(OBJECT_ID('Sales.Orders'),

 'idx_od_oid_i_cid_eid', 'IndexID') IS NOT NULL

 DROP INDEX Sales.Orders.idx_od_oid_i_cid_eid;

GO

CREATE INDEX idx_od_oid_i_cid_eid

 ON Sales.Orders(orderdate, orderid, custid, empid);

GO

-- First Rows

IF OBJECT_ID('dbo.GetFirstRows') IS NOT NULL

 DROP PROC dbo.GetFirstRows;

GO

CREATE PROC dbo.GetFirstRows

 @n AS INT = 10 -- num rows

AS

SELECT TOP(@n) ROW_NUMBER() OVER(ORDER BY orderdate, orderid) AS rownum,

 orderid, orderdate, custid, empid

FROM Sales.Orders

ORDER BY orderdate, orderid;

GO

-- Next Rows

IF OBJECT_ID('dbo.GetNextRows') IS NOT NULL

 DROP PROC dbo.GetNextRows;

GO

CREATE PROC dbo.GetNextRows

 @anchor_rownum AS INT = 0, -- row number of last row in prev page

 @anchor_key AS INT, -- key of last row in prev page,

 @n AS INT = 10 -- num rows

AS

SELECT TOP(@n)

 @anchor_rownum

 + ROW_NUMBER() OVER(ORDER BY O.orderdate, O.orderid) AS rownum,

 O.orderid, O.orderdate, O.custid, O.empid

FROM Sales.Orders AS O

 JOIN Sales.Orders AS A

C10626034.indd 591 2/20/2009 5:47:34 PM

592 Inside Microsoft SQL Server 2008: T-SQL Querying

 ON A.orderid = @anchor_key

 AND (O.orderdate >= A.orderdate

 AND (O.orderdate > A.orderdate

 OR O.orderid > A.orderid))

ORDER BY O.orderdate, O.orderid;

GO

 The stored procedure GetFirstRows returns the fi rst @n rows of Orders, based on orderdate
and orderid ordering. In addition to the columns that GetFirstPage returned, GetFirstRows (as
well as GetNextRows) also returns rownum, a column representing the global logical position
of the row in the full Orders table under the aforementioned ordering. Because GetFirstRows
returns the fi rst page of rows, rownum is just the row number within the result set.

 The stored procedure GetNextRows returns the @n rows following an anchor row, whose
key is provided as input (@anchor_key). For a row in the result set of GetNextRows, rownum
equals the anchor’s global row number (@anchor_rownum) plus the result row’s logical
 position within the qualifying set. If you don’t want the stored procedure to return a global
row number—rather, just the row number within the qualifying set—don’t specify a value
in the input parameter. In such a case, the default 0 is used as the anchor row number, and
the minimum row number assigned is 1.

 Suppose you want to allow the user to request any range of rows without limiting the
 solution to forward-only paging. You also want to avoid rescanning large portions of data
from the Orders table. You need to develop some caching mechanism where you set aside
a copy of the rows you already scanned, along with row numbers representing their global
logical position throughout the pages. Upon a request for a range of rows (a page), you fi rst
check whether rows are missing from the cache. In such a case, you insert the missing rows
into the cache. You then query the cache to return the requested page. Here’s an example of
how you can implement a server-side solution of such a mechanism.

 Run the following code to create the #CachedPages temporary table:

IF OBJECT_ID('tempdb..#CachedPages') IS NOT NULL

 DROP TABLE #CachedPages;

GO

CREATE TABLE #CachedPages

(

 rownum INT NOT NULL PRIMARY KEY,

 orderid INT NOT NULL UNIQUE,

 orderdate DATETIME NOT NULL,

 custid INT NOT NULL,

 empid INT NOT NULL

);

 The caching logic is encapsulated in the stored procedure GetPage, which you create by
 running the following code:

IF OBJECT_ID('dbo.GetPage') IS NOT NULL

 DROP PROC dbo.GetPage;

GO

C10626034.indd 592 2/20/2009 5:47:35 PM

 Chapter 10 Data Modifi cation 593

CREATE PROC dbo.GetPage

 @from_rownum AS INT, -- row number of first row in requested page

 @to_rownum AS INT, -- row number of last row in requested page

 @rc AS INT OUTPUT -- number of rows returned

AS

SET NOCOUNT ON;

DECLARE

 @last_key AS INT, -- key of last row in #CachedPages

 @last_rownum AS INT, -- row number of last row in #CachedPages

 @numrows AS INT; -- number of missing rows in #CachedPages

-- Get anchor values from last cached row

SELECT @last_rownum = rownum, @last_key = orderid

FROM (SELECT TOP(1) rownum, orderid

 FROM #CachedPages ORDER BY rownum DESC) AS D;

-- If temporary table is empty insert first rows to #CachedPages

IF @last_rownum IS NULL

 INSERT INTO #CachedPages

 EXEC dbo.GetFirstRows

 @n = @to_rownum;

ELSE

BEGIN

 SET @numrows = @to_rownum - @last_rownum;

 IF @numrows > 0

 INSERT INTO #CachedPages

 EXEC dbo.GetNextRows

 @anchor_rownum = @last_rownum,

 @anchor_key = @last_key,

 @n = @numrows;

END

-- Return requested page

SELECT *

FROM #CachedPages

WHERE rownum BETWEEN @from_rownum AND @to_rownum

ORDER BY rownum;

SET @rc = @@rowcount;

GO

 The stored procedure accepts the row numbers representing the fi rst row in the requested
page (@from_rownum) and the last (@to_rownum) as inputs. Besides returning the requested
page of rows, the stored procedure also returns an output parameter holding the number
of rows returned (@rc). You can inspect the output parameter to determine whether you’ve
reached the last page.

 The stored procedure’s code fi rst queries the #CachedPages temporary table to store in the
local variables @last_rownum and @last_key the row number and key of the last cached row,
respectively. If the temporary table is empty (@last_rownum IS NULL), the code invokes the
GetFirstRows procedure with an INSERT EXEC statement to populate #CachedPages with the

C10626034.indd 593 2/20/2009 5:47:35 PM

594 Inside Microsoft SQL Server 2008: T-SQL Querying

fi rst rows up to the requested high boundary row number. If the temporary table already
contains rows, the code checks whether rows from the requested page are missing from
it (@to_rownum - @last_rownum > 0). In such a case, the code invokes the GetNextRows
 procedure to insert all missing rows up to the requested high boundary row number to the
temporary table.

 Finally, the code queries the #CachedPages temporary table to return the requested range of
rows, and it stores the number of returned rows in the output parameter @rc.

 To get the fi rst page of rows, assuming a page size of 10, run the following code:

DECLARE @rc AS INT;

EXEC dbo.GetPage

 @from_rownum = 1,

 @to_rownum = 10,

 @rc = @rc OUTPUT;

IF @rc = 0

 PRINT 'No more pages.'

ELSE IF @rc < 10

 PRINT 'Reached last page.';

 You get back the fi rst 10 rows based on orderdate and orderid ordering. Notice in the code
that you can inspect the output parameter to determine whether there are no more pages
(@rc = 0) or whether you’ve reached the last page (@rc < 10).

 Query the #CachedPages temporary table, and you can see that 10 rows were cached:

SELECT * FROM #CachedPages;

 Further requests for rows that were already cached will be satisfi ed from #CachedPages
 without the need to access the Orders table. Querying #CachedPages is very effi cient
 because the table contains a clustered index on the rownum column. Only the requested
rows are physically accessed.

 If you now run the preceding code specifying row numbers 21 to 30 as inputs, the GetPage
procedure adds rows 11 through 30 to the temporary table and returns rows 21 through 30.
Subsequent requests for rows up to row 30 will be satisfi ed solely from the temporary table.

 Once you’re done experimenting with this paging technique, run the following code for
cleanup:

IF OBJECT_ID('tempdb..#CachedPages') IS NOT NULL

 DROP TABLE #CachedPages;

GO

IF INDEXPROPERTY(OBJECT_ID('Sales.Orders'),

 'idx_od_oid_i_cid_eid', 'IndexID') IS NOT NULL

 DROP INDEX Sales.Orders.idx_od_oid_i_cid_eid;

GO

C10626034.indd 594 2/20/2009 5:47:35 PM

 Chapter 10 Data Modifi cation 595

IF OBJECT_ID('dbo.GetFirstRows') IS NOT NULL

 DROP PROC dbo.GetFirstRows;

GO

IF OBJECT_ID('dbo.GetNextRows') IS NOT NULL

 DROP PROC dbo.GetNextRows;

GO

IF OBJECT_ID('dbo.GetPage') IS NOT NULL

 DROP PROC dbo.GetPage;

GO

Sequence Mechanisms

 Sequence mechanisms produce numbers that you usually use as keys. SQL Server provides
a sequencing mechanism via the IDENTITY column property. The IDENTITY property has
several characteristics that might cause you to look for an alternative sequencing mechanism.
In this section, I’ll describe some of these characteristics and alternative mechanisms to
 generate keys—some that use built-in features, such as globally unique identifi ers (GUIDs),
and some that you can develop yourself.

Identity Columns

 The IDENTITY property can be convenient when you want SQL Server to generate single
 column keys in a table. To guarantee uniqueness, create a PRIMARY KEY or UNIQUE
 constraint on the identity column. Upon INSERT, SQL Server increments the table’s identity
value and stores it in the new row.

 However, several aspects of the IDENTITY property might make it an impractical sequencing
mechanism for some applications.

 One aspect is that the IDENTITY property is table dependent. It’s not an independent
 sequencing mechanism that assigns new values that you can then use in any manner you
like. Imagine that you need to generate sequence values that will be used as keys that cannot
confl ict across tables.

 Another aspect is that an identity value is generated when an INSERT statement is issued, not
before. In some cases you might need to generate the new sequence value and then use it in
an INSERT statement and not the other way around.

 Another aspect of the IDENTITY property that can be considered a limitation in some cases
is that identity values are assigned in an asynchronous manner. This means that multiple
 sessions issuing multirow inserts might end up getting nonsequential identity values.
Moreover, the assignment of a new identity value is not part of the transaction in which
the INSERT was issued. The identity resource is internally locked momentarily when the
value is incremented but not for the duration of the transaction. These facts have several
 implications. SQL Server increments the table’s identity value regardless of whether the
 insert succeeds or fails and whether the transaction hosting the insert succeeds or fails. You
might end up with gaps in the sequence that were not generated by deletions. Some systems

C10626034.indd 595 2/20/2009 5:47:35 PM

596 Inside Microsoft SQL Server 2008: T-SQL Querying

 cannot allow missing values that cannot be accounted for (for example, some invoicing
 systems). Try telling the Internal Revenue Service that some of the missing invoice IDs in your
system are a result of the nonblocking manner in which identity values are managed.

Custom Sequences

 I’ll suggest a couple of solutions to the problem of maintaining a custom sequencing
 mechanism. I’ll show solutions with both blocking and nonblocking sequence mechanisms.
With a blocking sequence mechanism, the sequence resource is locked for the duration
of the transaction. This prevents gaps from occurring in the sequence values. With a
 nonblocking sequence mechanism, the sequence resource is not locked for the duration of
the transaction. This mechanism gives better performance than the blocking one, but gaps in
the sequence values are possible.

Blocking Sequences You need a blocking sequence mechanism when you must account
for all values in the sequence. The classic scenario for such a sequence is generating invoice
numbers. The way to guarantee that no gaps occur is to lock the sequence resource when
you need to increment it and release the lock only when the transaction is fi nished. If
you think about it, that’s exactly how exclusive locks behave when you modify data in a
 transaction—that is, a lock is acquired to modify data, and it’s released when the transaction
is fi nished (committed or rolled back). To maintain such a sequence, create a table with a
 single row and a single column holding the last sequence value used. Initially, populate it
with a zero if you want the fi rst value in the sequence to be 1:

USE tempdb;

IF OBJECT_ID('dbo.Sequence') IS NOT NULL DROP TABLE dbo.Sequence;

CREATE TABLE dbo.Sequence(val INT);

GO

INSERT INTO dbo.Sequence VALUES(0);

 Now that the sequence table is in place, I’ll describe how you get a single sequence value or
a block of consecutive sequence values at once.

Single Sequence Value To get a single sequence value, you increment the sequence
value by 1 and return the resulting value. You can achieve this by beginning a transaction,
 modifying the sequence value, and then retrieving it. Or you can both increment and retrieve
the new sequence value in a single atomic operation using a specialized UPDATE syntax. Run
the following code to create a stored procedure that uses the specialized T-SQL UPDATE
 syntax, increments the sequence value, and returns the new value as an output parameter:

IF OBJECT_ID('dbo.GetSequence') IS NOT NULL

 DROP PROC dbo.GetSequence;

GO

CREATE PROC dbo.GetSequence

 @val AS INT OUTPUT

AS

C10626034.indd 596 2/20/2009 5:47:35 PM

 Chapter 10 Data Modifi cation 597

UPDATE dbo.Sequence

 SET @val = val = val + 1;

GO

 The assignment SET @val = val = val + 1 is equivalent to SET val = val + 1, @val = val + 1.
Note that SQL Server fi rst locks the row exclusively and then increments val, retrieves it, and
releases the lock only when the transaction is completed.

 Whenever you need a new sequence value, use the following code:

DECLARE @key AS INT;

EXEC dbo.GetSequence @val = @key OUTPUT;

SELECT @key;

 To reset the sequence—for example, when the sequence value is about to overfl ow—set its
value to zero:

UPDATE dbo.Sequence SET val = 0;

Block of Sequence Values If you want a mechanism to allocate a block of sequence values
all at once, you need to slightly alter the stored procedure’s implementation as follows:

ALTER PROC dbo.GetSequence

 @val AS INT OUTPUT,

 @n AS INT = 1

AS

UPDATE dbo.Sequence

 SET @val = val = val + @n;

SET @val = @val - @n + 1;

GO

 In the additional argument (@n), you specify the block size (how many sequence values you
need). The stored procedure increments the current sequence value by @n and returns the
fi rst value in the block via the @val output parameter. This procedure allocates the block
of sequence values from @val to @val + @n – 1.

 The following code provides an example of acquiring and using a whole block of sequence values:

DECLARE @firstkey AS INT, @rc AS INT;

IF OBJECT_ID('tempdb..#CustsStage') IS NOT NULL DROP TABLE #CustsStage;

SELECT custid, ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS rownum

INTO #CustsStage

FROM InsideTSQL2008.Sales.Customers

WHERE country = N'UK';

SET @rc = @@rowcount;

EXEC dbo.GetSequence @val = @firstkey OUTPUT, @n = @rc;

SELECT custid, @firstkey + rownum - 1 AS keycol

FROM #CustsStage;

C10626034.indd 597 2/20/2009 5:47:35 PM

598 Inside Microsoft SQL Server 2008: T-SQL Querying

 This example generates surrogate keys for UK customers. This code uses a SELECT INTO
statement to insert UK customers into a temporary table called #CustsStage, along with
row numbers (attribute rownum) calculated in no particular order. The code then stores
the number of affected rows (@@rowcount) in the variable @rc. Next, the code invokes the
GetSequence procedure to request a block of a size @rc of new sequence values. The stored
procedure stores the fi rst sequence value from the block in the variable @fi rstkey through
the output parameter @val. Next, the code queries the #CustsStage table and calculates the
surrogate customer key using the expression @fi rstkey + rownum – 1.

Nonblocking Sequences The blocking sequencing mechanism doesn’t allow gaps, but it
might cause concurrency problems. Remember that you must exclusively lock the sequence
to increment it, and then you must maintain the lock until the transaction fi nishes. The
 longer the transaction is, the longer you lock the sequence. Obviously, this solution can cause
queues of processes waiting for the sequence resource to be released. But there’s not much
you can do if you want to maintain a blocking sequence.

 However, in some cases you might not care about having gaps. For example, suppose
that all you need is a key generator that guarantees that you don’t generate the same key
twice. Say that you need those keys to uniquely identify rows across tables. You don’t want
the sequence resource to be locked for the duration of the transaction. Rather, you want
the sequence to be locked for a fraction of a second while incrementing it, just to prevent
 multiple processes from getting the same value. In other words, you need a nonblocking
 sequence, one that works much faster than the blocking one, allowing better concurrency.

 One option that would address these requirements is to use built-in functions that SQL
Server provides you to generate GUIDs. I’ll discuss this option shortly. However, GUIDs are
long (16 bytes). You might prefer to use integer sequence values, which are substantially
smaller (4 bytes). To achieve such a nonblocking sequencing mechanism, you create a table
(Sequence) with an identity column as follows:

USE tempdb;

IF OBJECT_ID('dbo.Sequence') IS NOT NULL DROP TABLE dbo.Sequence;

CREATE TABLE dbo.Sequence(val INT IDENTITY);

 Create the following GetSequence procedure to generate a new sequence value and return it
through the @val output parameter:

IF OBJECT_ID('dbo.GetSequence') IS NOT NULL

 DROP PROC dbo.GetSequence;

GO

CREATE PROC dbo.GetSequence

 @val AS INT OUTPUT

AS

BEGIN TRAN

 SAVE TRAN S1;

 INSERT INTO dbo.Sequence DEFAULT VALUES;

C10626034.indd 598 2/20/2009 5:47:35 PM

 Chapter 10 Data Modifi cation 599

 SET @val = SCOPE_IDENTITY();

 ROLLBACK TRAN S1;

COMMIT TRAN

GO

 The procedure opens a transaction just for the sake of creating a save point called S1. It
 inserts a new row to Sequence, which generates a new identity value in the table and stores
it in the @val output parameter. The procedure then rolls back the INSERT. But a rollback
doesn’t undo a variable assignment, nor does it undo incrementing the identity value. Plus,
the identity resource is not locked for the duration of an outer transaction; rather, it’s locked
only for a fraction of a second to increment. This behavior of the IDENTITY property is crucial
for maintaining a nonblocking sequence.

 Note As of this writing, I haven’t found any offi cial documentation from Microsoft that
 describes this behavior of the IDENTITY property.

 Rolling back to a save point ensures that the rollback does not have any effect on an external
transaction. The rollback prevents the Sequence table from growing. In fact, it will never
 contain any committed rows from calls to GetSequence.

 Whenever you need the next sequence value, run the GetSequence, just like you did with the
blocking sequence:

DECLARE @key AS INT;

EXEC dbo.GetSequence @val = @key OUTPUT;

SELECT @key;

 This time, however, the sequence does not block if you increment it within an external
 transaction. One drawback to this sequence solution is that it can generate only one
 sequence value at a time.

 If you want to reset the sequence value, you can truncate the table, which resets the identity
value:

TRUNCATE TABLE dbo.Sequence;

 You can further optimize this sequencing mechanism by avoiding the rollback to undo the
insertion. The stored procedure simply inserts a new row into the table and returns the newly
generated identity value, like so:

IF OBJECT_ID('dbo.GetSequence') IS NOT NULL

 DROP PROC dbo.GetSequence;

GO

CREATE PROC dbo.GetSequence

 @val AS INT OUTPUT

AS

C10626034.indd 599 2/20/2009 5:47:35 PM

600 Inside Microsoft SQL Server 2008: T-SQL Querying

INSERT INTO dbo.Sequence DEFAULT VALUES;

SET @val = SCOPE_IDENTITY();

GO

 As before, use the stored procedure to get new sequence values:

DECLARE @key AS INT;

EXEC dbo.GetSequence @val = @key OUTPUT;

SELECT @key;

 The only problem is that the Sequence table keeps growing as new sequence values are
 generated. You need to run a job on scheduled basis that periodically clears the table. Be
careful, though, with the technique that you use to clear the table. If you use a DELETE
 statement, it will take time to fi nish because it’s a fully logged operation, and it might also
cause lock escalation. If you use the minimally logged TRUNCATE TABLE statement, it will
be fast, but the identity value will be reseeded. To use the fast TRUNCATE TABLE statement
while preserving the seed before the emptying of the table, you need to do the following:

 1. Open a transaction.

 2. Lock the table.

 3. Set aside the current identity value plus one.

 4. Truncate the table.

 5. Reseed the identity value to the value you kept aside.

 6. Commit the transaction and release the lock.

 Here’s how the code might look:

BEGIN TRAN

 DECLARE @val AS INT;

 SELECT TOP (1) @val = val FROM dbo.Sequence WITH (TABLOCKX); -- lock table

 SET @val = IDENT_CURRENT('dbo.Sequence') + 1;

 TRUNCATE TABLE dbo.Sequence;

 DBCC CHECKIDENT('dbo.Sequence', RESEED, @val);

COMMIT

 Run this code in a job on scheduled basis—say once a day—and you will get a faster
 sequencing mechanism, while the Sequence table won’t get too large.

GUIDs

 SQL Server provides you with the NEWID function, which generates a new GUID every time it
is invoked. The function returns a 16-byte value typed as UNIQUEIDENTIFIER. If you need an
automatic mechanism that assigns unique keys in a table or even across different tables, you
can create a UNIQUEIDENTIFIER column with the default value NEWID(). The downside of a
UNIQUEIDENTIFIER column used as a key is that it’s pretty big—16 bytes. This, of course, has
an impact on index sizes, join performance, and so on.

C10626034.indd 600 2/20/2009 5:47:35 PM

 Chapter 10 Data Modifi cation 601

 Note that the NEWID function does not guarantee that a newly generated GUID will be
 greater than any previously generated one in the same computer. If you need such a guarantee,
use the NEWSEQUENTIALID function. Note that this function guarantees that a new value is
greater than any previously generated one only on the same computer, not across computers.

Deleting Data

 In this section, I’ll cover different aspects of deleting data, including TRUNCATE versus
DELETE, removing rows with duplicate data, DELETE using joins, and large DELETEs.

TRUNCATE vs. DELETE

 If you need to remove all rows from a table, use TRUNCATE TABLE and not DELETE without
a WHERE clause. DELETE is always fully logged, and with large tables it can take a while to
complete. TRUNCATE TABLE is always minimally logged regardless of the recovery model
of the database, and therefore it is always signifi cantly faster than DELETE. Note, though,
that TRUNCATE TABLE does not fi re any DELETE triggers on the table. To give you a sense of
the difference, using TRUNCATE TABLE to clear a table with millions of rows can take a matter
of seconds, while clearing the table with DELETE can take hours.

 Tip SQL Server rejects DROP TABLE attempts if a schema-bound object is pointing to the target
table. It rejects both DROP TABLE and TRUNCATE TABLE attempts if a foreign key is pointing to
the target table. This limitation applies even when the foreign table is empty and even when the
foreign key is disabled. If you want to prevent accidental TRUNCATE TABLE and DROP TABLE
 attempts against sensitive production tables, simply create dummy tables with foreign keys
pointing to them and disable the foreign keys.

 In addition to the substantial performance difference between TRUNCATE TABLE and DELETE,
each also handles the IDENTITY property differently: TRUNCATE TABLE resets the IDENTITY
property to its original seed, while DELETE doesn’t.

Removing Rows with Duplicate Data

 Duplicate data can arise for various reasons. Users might enter duplicate data by mistake,
or an import process might be invoked accidentally more than once and so on. If you don’t
enforce data integrity with constraints such as primary keys and unique constraints or
with other mechanisms, you may end up with duplicate data in your database. Of course,
the best practice is to enforce uniqueness with constraints where the data is supposed to
be unique. But sometimes you don’t have control over the system, and sometimes you
 intentionally don’t want to enforce uniqueness in special cases, such as a staging table in a
data warehouse. Regardless of how you end up with duplicate data in your table, this section
will provide you with a solution to remove rows with duplicate data.

C10626034.indd 601 2/20/2009 5:47:35 PM

602 Inside Microsoft SQL Server 2008: T-SQL Querying

 To demonstrate techniques to remove rows with duplicate data, fi rst create and populate the
OrdersDups table in the tempdb database by running the following code:

USE tempdb;

IF OBJECT_ID('dbo.OrdersDups') IS NOT NULL DROP TABLE dbo.OrdersDups;

GO

SELECT orderid, custid, empid, orderdate

INTO dbo.OrdersDups

FROM InsideTSQL2008.Sales.Orders

 CROSS JOIN dbo.Nums

WHERE n <= 3;

 OrdersDups contains three copies of each order, and the task at hand is to remove rows with
duplicate data, keeping only one occurrence of each unique orderid value. I suggest two
techniques for handling the task. The factor that determines which technique is most effi cient
is the percentage of rows that need to be removed out of the total number of rows in the
table. With a small percentage, you’re better off deleting the relevant rows directly from the
table using a fully logged DELETE statement. However, with a large percentage, you might
be better off copying the rows you need to keep to another table using a minimally logged
operation, dropping the original table, renaming the new one to the original table name, and
re-creating all constraints, indexes, and triggers.

 Here’s the code that implements the solution I recommend when a small percentage of rows
needs to be removed:

WITH Dups AS

(

 SELECT orderid, custid, empid, orderdate,

 ROW_NUMBER() OVER(PARTITION BY orderid ORDER BY (SELECT 0)) AS rn

 FROM dbo.OrdersDups

)

DELETE FROM Dups

WHERE rn > 1;

 The query defi ning the CTE Dups assigns row numbers to the rows from OrdersDups
 partitioned by orderid, in no particular order. Rows with the same orderid value are numbered
starting at 1. Here I’m making the assumption that you don’t care which of the duplicates you
wish to keep. Of course, if you do have some preference when the rows are not completely
identical copies, you can specify the applicable attributes in the ORDER BY clause of the
ROW_NUMBER function. The outer DELETE statement against the CTE deletes all rows with a
row number greater than 1, leaving a single row in the table for each unique orderid value.

 My friend and colleague Javier Loria showed me another cool technique. You calculate both
a row number and a rank for each row partitioned by orderid and then delete all rows where

C10626034.indd 602 2/20/2009 5:47:35 PM

 Chapter 10 Data Modifi cation 603

the two are different. For only one occurrence of each unique orderid value will the two be
the same. The code looks like this:

WITH Dups AS

(

 SELECT orderid, custid, empid, orderdate,

 ROW_NUMBER() OVER(PARTITION BY orderid ORDER BY (SELECT 0)) AS rn,

 RANK() OVER(PARTITION BY orderid ORDER BY (SELECT 0)) AS rnk

 FROM dbo.OrdersDups

)

DELETE FROM Dups

WHERE rn <> rnk;

 For a scenario with a large percentage of rows that need to be deleted, the solutions that
 apply a fully logged DELETE statement might end up being very slow. In this case, you might
be better off copying the unique rows to a new table using a minimally logged operation,
then dropping the original table and renaming the new table. Here’s the code implementing
this solution:

WITH Dups AS

(

 SELECT orderid, custid, empid, orderdate,

 ROW_NUMBER() OVER(PARTITION BY orderid ORDER BY (SELECT 0)) AS rn

 FROM dbo.OrdersDups

)

SELECT orderid, custid, empid, orderdate

INTO dbo.OrdersDupsTmp

FROM Dups

WHERE rn = 1;

DROP TABLE dbo.OrdersDups;

EXEC sp_rename 'dbo.OrdersDupsTmp', 'OrdersDups';

 Here as before, the solution assigns row numbers to the copies of each unique orderid value,
except that here the solution fi lters the rows where the row number is equal to 1, and copies
those rows to another table using the minimally logged SELECT INTO statement (assuming
the recovery model of the database is not set to FULL). The solution then drops the original
table and renames the new table to the original table name. At this point you can re-create
any constraints, indexes, and triggers if needed.

DELETE Using Joins

 T-SQL supports a proprietary syntax for DELETE and UPDATE based on joins. Here I’ll cover
DELETEs based on joins. Later, in the UPDATE section, I’ll cover UPDATEs based on joins.

 Note This syntax is not standard, and you should avoid it unless it has a compelling benefi t over
the standard syntax using subqueries.

C10626034.indd 603 2/20/2009 5:47:35 PM

604 Inside Microsoft SQL Server 2008: T-SQL Querying

 I’ll fi rst describe the syntax and then show examples where it provides functionality not
 available with subqueries.

 You write a DELETE based on a join in a similar manner to writing a SELECT based on a join.
You substitute the SELECT clause with a DELETE FROM <target_table>, where <target_table>
is the table from which you want to delete rows. Note that you should specify the table alias
if one was provided.

 Some people feel more comfortable using joins than using subqueries and hence prefer to
also express DELETE statements that require access to other tables with joins rather than
 subqueries .

 As an example of how a SELECT join query and a DELETE join statement are similar, fi rst look
at this query, which returns order details for orders placed on or after May 6, 2008:

USE InsideTSQL2008;

SELECT OD.*

FROM Sales.OrderDetails AS OD

 JOIN Sales.Orders AS O

 ON OD.orderid = O.orderid

WHERE O.orderdate >= '20080506';

 If you want to delete order details for orders placed on or after May 6, 2008, simply replace
SELECT OD.* in the preceding query with DELETE FROM OD:

BEGIN TRAN

DELETE FROM OD

FROM Sales.OrderDetails AS OD

 JOIN Sales.Orders AS O

 ON OD.orderid = O.orderid

WHERE O.orderdate >= '20080506';

ROLLBACK TRAN

 In some of my examples I use a transaction and roll back the modifi cation so that you can
try out the examples without permanently modifying the sample tables. This particular
 nonstandard DELETE query can be rewritten as a standard one using a subquery:

BEGIN TRAN

DELETE FROM Sales.OrderDetails

WHERE EXISTS

 (SELECT *

 FROM Sales.Orders AS O

 WHERE O.orderid = Sales.OrderDetails.orderid

 AND O.orderdate >= '20080506');

ROLLBACK TRAN

C10626034.indd 604 2/20/2009 5:47:35 PM

 Chapter 10 Data Modifi cation 605

 In this case, the nonstandard DELETE has no advantage over the standard one—either in
performance or in simplicity—so I don’t see any point in using it. However, you will fi nd
cases in which it is hard to get by without using the proprietary syntax. For example, suppose
you need to delete from a table variable and you must refer to the table variable from a
 subquery. T-SQL doesn’t support qualifying a column name with a table variable name.

 The following code declares a table variable called @MyOD and populates it with some
 order details, identifi ed by (orderid, productid). The code then attempts to delete all rows
from @MyOD with keys that already appear in the OrderDetails table:

DECLARE @MyOD TABLE

(

 orderid INT NOT NULL,

 productid INT NOT NULL,

 PRIMARY KEY(orderid, productid)

);

INSERT INTO @MyOD VALUES(10001, 14);

INSERT INTO @MyOD VALUES(10001, 51);

INSERT INTO @MyOD VALUES(10001, 65);

INSERT INTO @MyOD VALUES(10248, 11);

INSERT INTO @MyOD VALUES(10248, 42);

DELETE FROM @MyOD

WHERE EXISTS

 (SELECT * FROM Sales.OrderDetails AS OD

 WHERE OD.orderid = @MyOD.orderid

 AND OD.productid = @MyOD.productid);

 This code fails with the following error:

Msg 137, Level 15, State 2, Line 17

Must declare the scalar variable "@MyOD".

 Essentially, the reason for the failure is that T-SQL doesn’t support qualifying a column name
with a table variable name. Moreover, T-SQL doesn’t allow you to alias the target table
 directly; rather, it requires you to do so via a second FROM clause, like so:

DELETE FROM MyOD

FROM @MyOD AS MyOD

WHERE EXISTS

 (SELECT * FROM Sales.OrderDetails AS OD

 WHERE OD.orderid = MyOD.orderid

 AND OD.productid = MyOD.productid);

 Note If you want to test this code, make sure you run it right after declaring and populating the
table variable in the same batch. Otherwise, you will get an error saying that the variable
@MyOD was not declared. Like any other variable, the scope of a table variable is the local batch.

C10626034.indd 605 2/20/2009 5:47:35 PM

606 Inside Microsoft SQL Server 2008: T-SQL Querying

 Another solution is to use a join instead of the subquery, where you can also alias tables:

DELETE FROM MyOD

FROM @MyOD AS MyOD

 JOIN Sales.OrderDetails AS OD

 ON OD.orderid = MyOD.orderid

 AND OD.productid = MyOD.productid;

 You can also use a CTE as an alternative to aliasing the table variable, allowing a simpler solution:

WITH MyOD AS (SELECT * FROM @MyOD)

DELETE FROM MyOD

WHERE EXISTS

 (SELECT * FROM Sales.OrderDetails AS OD

 WHERE OD.orderid = MyOD.orderid

 AND OD.productid = MyOD.productid);

 CTEs are extremely useful in other scenarios where you need to modify data in one table
based on data that you inspect in another. It allows you to simplify your code and, in many
cases, avoid relying on modifi cation statements that use joins.

 In SQL Server 2008 you can also handle such tasks using the new MERGE statement. I’ll
 describe this statement later in the chapter.

Updating Data

 This section covers several aspects of updating data, including UPDATEs using joins, updating
large values types, and SELECT and UPDATE statements that perform assignments to variables.

UPDATE Using Joins

 Earlier in this chapter, I mentioned that T-SQL supports a nonstandard syntax for modifying
data based on a join, and I showed DELETE examples. Here I’ll cover UPDATEs based on joins,
focusing on cases where the nonstandard syntax has advantages over the supported standard
syntax using subqueries. I’ll also show how you can use CTEs to update data based on joins.

 I’ll start with one of the cases where an UPDATE based on a join has a performance advantages
over an UPDATE using subqueries. Suppose you wanted to update the shipping information
for orders placed by USA customers, overwriting the shipcountry, shipregion, and shipcity
 attributes with the customer’s country, region, and city attributes from the Customers table.
You could use one subquery for each of the new attribute values plus one in the WHERE clause
to fi lter orders placed by USA customers as follows:

USE InsideTSQL2008;

BEGIN TRAN

 UPDATE Sales.Orders

 SET shipcountry = (SELECT C.country FROM Sales.Customers AS C

 WHERE C.custid = Sales.Orders.custid),

C10626034.indd 606 2/20/2009 5:47:35 PM

 Chapter 10 Data Modifi cation 607

 shipregion = (SELECT C.region FROM Sales.Customers AS C

 WHERE C.custid = Sales.Orders.custid),

 shipcity = (SELECT C.city FROM Sales.Customers AS C

 WHERE C.custid = Sales.Orders.custid)

 WHERE custid IN

 (SELECT custid FROM Sales.Customers WHERE country = N'USA');

ROLLBACK TRAN

 Again, I’m rolling back the transaction so that the change does not take effect in the
InsideTSQL2008 database. Though standard, this technique is very slow. Each such subquery
involves separate access to return the requested attribute from the Customers table.
I wanted to provide a fi gure with the graphical execution plan for this UPDATE, but it’s just
too big! Request a graphical execution plan in SSMS to see for yourself.

 You can write an UPDATE based on a join to perform the same task as follows:

BEGIN TRAN

 UPDATE O

 SET shipcountry = C.country,

 shipregion = C.region,

 shipcity = C.city

 FROM Sales.Orders AS O

 JOIN Sales.Customers AS C

 ON O.custid = C.custid

 WHERE C.country = N'USA';

ROLLBACK TRAN

 This code is shorter and simpler, and the optimizer generates a more effi cient plan for it, as you
will notice if you request the graphical execution plan in SSMS. You will fi nd in the execution
plan that the Customers table is scanned only once, and through that scan, the query
 processor accesses all the customer attributes it needs. This plan reports half the estimated
execution cost of the previous one. In practice, if you compare the two solutions against larger
tables, you will fi nd that the performance difference is substantially higher. Alas, the UPDATE
with a join technique is nonstandard.

 Earlier in the chapter I introduced the enhanced VALUES clause in SQL Server 2008, which
implements one aspect of the standard row value constructors. Other aspects of the standard
row value constructors have not yet been implemented in SQL Server. One of those aspects
allows you to simplify queries like the one just shown. This syntax allows you to specify
 vectors of attributes and expressions and eliminates the need to issue a subquery for each
attribute separately. The following example shows this syntax:

UPDATE Sales.Orders

 SET (shipcountry, shipregion, shipcity) =

 (SELECT country, region, city

 FROM Sales.Customers AS C

 WHERE C.custid = Sales.Orders.custid)

WHERE custid IN

 (SELECT custid FROM Sales.Customers WHERE country = 'USA');

C10626034.indd 607 2/20/2009 5:47:35 PM

608 Inside Microsoft SQL Server 2008: T-SQL Querying

 Such support would allow for simple standard solutions and naturally also lend itself to
 better optimization.

 Another option to handle the task at hand is to use a CTE. By using a CTE, you can come
up with a simple solution that is easy to troubleshoot and maintain, yielding an effi cient
plan very similar to the one that uses a join UPDATE. Simply create a CTE out of a join SELECT
and then UPDATE the target table through the CTE, like so:

BEGIN TRAN;

WITH UPD_CTE AS

(

 SELECT

 O.shipcountry AS set_country, C.country AS get_country,

 O.shipregion AS set_region, C.region AS get_region,

 O.shipcity AS set_city, C.city AS get_city

 FROM Sales.Orders AS O

 JOIN Sales.Customers AS C

 ON O.custid = C.custid

 WHERE C.country = 'USA'

)

UPDATE UPD_CTE

 SET set_country = get_country,

 set_region = get_region,

 set_city = get_city;

ROLLBACK TRAN

 Note Even though CTEs are defi ned by ANSI SQL, the DELETE and UPDATE syntax against CTEs
implemented in SQL Server is not standard.

 This UPDATE generates an identical plan to the one generated for the UPDATE based on a join.

 In SQL Server 2008 you can handle such tasks using a MERGE statement that you also express
using join semantics. I’ll discuss MERGE and provide examples later in this chapter.

 You should be aware of another issue when using the join-based UPDATE. When you modify
the table on the “one” side of a one-to-many join, you might end up with a nondeterministic
update. To demonstrate the problem, run the following code, which creates the tables
Customers and Orders and populates them with sample data:

USE tempdb;

GO

IF OBJECT_ID('dbo.Orders') IS NOT NULL

 DROP TABLE dbo.Orders;

IF OBJECT_ID('dbo.Customers') IS NOT NULL

 DROP TABLE dbo.Customers;

GO

C10626034.indd 608 2/20/2009 5:47:35 PM

 Chapter 10 Data Modifi cation 609

CREATE TABLE dbo.Customers

(

 custid VARCHAR(5) NOT NULL PRIMARY KEY,

 qty INT NULL

);

INSERT INTO dbo.Customers(custid) VALUES('A'),('B');

CREATE TABLE dbo.Orders

(

 orderid INT NOT NULL PRIMARY KEY,

 custid VARCHAR(5) NOT NULL REFERENCES dbo.Customers,

 qty INT NOT NULL

);

INSERT INTO dbo.Orders(orderid, custid, qty) VALUES

 (1, 'A', 20),

 (2, 'A', 10),

 (3, 'A', 30),

 (4, 'B', 35),

 (5, 'B', 45),

 (6, 'B', 15);

 Customers and Orders have a one-to-many relationship. Notice that each row in Customers
currently has three related rows in Orders. Now, examine the following UPDATE and see if
you can guess how Customers would look after the UPDATE:

UPDATE C

 SET qty = O.qty

FROM dbo.Customers AS C

 JOIN dbo.Orders AS O

 ON C.custid = O.custid;

 The truth is that the UPDATE is nondeterministic. You can’t guarantee which of the values
from the related Orders rows is used to update the qty value in Customers. Remember that
you cannot assume or rely on any physical order of the data. For example, run the following
query against Customers after running the preceding UPDATE:

SELECT custid, qty FROM dbo.Customers;

 You might get the following output:

custid qty

------ -----------

A 20

B 35

 But you might just as easily get the following output:

custid qty

------ -----------

A 10

B 45

C10626034.indd 609 2/20/2009 5:47:36 PM

610 Inside Microsoft SQL Server 2008: T-SQL Querying

 It is interesting to note that if you attempt such an update with the MERGE statement,
where the same target row is modifi ed more than once, SQL Server raises an error, and the
 statement fails to execute. The MERGE statement doesn’t allow such a nondeterministic
 update like the join UPDATE allows.

 When you’re done experimenting with nondeterministic UPDATEs, run the following code to
drop Orders and Customers:

IF OBJECT_ID('dbo.Orders') IS NOT NULL

 DROP TABLE dbo.Orders;

IF OBJECT_ID('dbo.Customers') IS NOT NULL

 DROP TABLE dbo.Customers;

Updating Large Value Types

 This section covers updates of large value types (VARCHAR(MAX), NVARCHAR(MAX), and
VARBINARY(MAX)) using the WRITE method. In my examples I’ll use the CustomerData table
that you create by running the code provided earlier in the chapter in Listing 10-1. Then run
the following code to insert a row into the table:

INSERT INTO dbo.CustomerData(custid, txt_data)

 VALUES(102, 'Customer 102 text data');

 To update a column of a large value type, you can use a regular UPDATE statement setting
the column to a result of an expression. For example, if you want to modify a certain section
within, such as the txt_data column value for customer 102, you could set the column to
the result of an expression using the STUFF function. However, an update using regular
data manipulation would result in overwriting the entire string using full logging, which is
 ineffi cient with large values. Instead, the UPDATE statement supports a WRITE method for
large value types. The WRITE method allows you to modify only a section within the string
and not overwrite the whole thing. Plus, when the database recovery model is not set to
FULL, some of the updates using the WRITE method can benefi t from minimal logging. Those
include inserting or appending new data.

 Logically, the WRITE method is similar to the STUFF function. It accepts three arguments:
@expression, @offset, and @length. The @expression argument replaces @length units
(characters/bytes) starting from @offset position in the target value.

 Note The @offset argument is zero based.

 For example, the following code operates on the txt_data column value for customer 102.
It replaces the string ‘102’ located at offset 9 (zero based) with the string ‘one hundred and
two’, resulting in the string ‘Customer one hundred and two text data’:

UPDATE dbo.CustomerData

 SET txt_data.WRITE('one hundred and two', 9, 3)

WHERE custid = 102;

C10626034.indd 610 2/20/2009 5:47:36 PM

 Chapter 10 Data Modifi cation 611

 Note If the target LOB is NULL, an update that uses WRITE will fail.

 If @expression is NULL, @length is ignored, and the value is truncated at the @offset position.
For example, the following code truncates the string at the 28th position, resulting in the
string ‘Customer one hundred and two’:

UPDATE dbo.CustomerData

 SET txt_data.WRITE(NULL, 28, 0)

WHERE custid = 102;

 If @length is NULL, the string is truncated at the @offset position, and @expression is
 appended at the end. For example, the following code truncates the string at the ninth
 position and appends ‘102’ at the end, resulting in the string ‘Customer 102’:

UPDATE dbo.CustomerData

 SET txt_data.WRITE('102', 9, NULL)

WHERE custid = 102;

 If @offset is NULL and @length is 0, @expression is simply appended at the end. For example,
the following code appends the string ‘ is discontinued’ at the end, resulting in the string
‘Customer 102 is discontinued’:

UPDATE dbo.CustomerData

 SET txt_data.WRITE(' is discontinued', NULL, 0)

WHERE custid = 102;

 If @expression is an empty string, no data is inserted; rather, you just remove a substring at
the @offset position in the size of @length. For example, the following code removes four
characters at the ninth position:

UPDATE dbo.CustomerData

 SET txt_data.WRITE('', 9, 4)

WHERE custid = 102;

 If you query the data at this point, you get the string ‘Customer is discontinued’:

SELECT txt_data FROM dbo.CustomerData WHERE custid = 102;

SELECT and UPDATE Statement Assignments

 This section covers statements that assign values to variables and that, in the case of UPDATE,
can modify data at the same time. Such assignments have some tricky issues that you might
want to be aware of. Being familiar with the way assignments work in T-SQL is important for
 programming correctly—that is, programming what you intended to.

C10626034.indd 611 2/20/2009 5:47:36 PM

612 Inside Microsoft SQL Server 2008: T-SQL Querying

Assignment SELECT

 I’ll start with assignment SELECT statements. T-SQL supports assigning values to variables
 using a SELECT statement, but the ANSI form of assignment, which is also supported by
T-SQL, is to use a SET statement. So, as a rule, unless you have a compelling reason to do
 otherwise, it’s a good practice to stick to using SET. I’ll describe cases where you might want to
use SELECT because it has advantages over SET in those cases. However, as I will demonstrate
shortly, you should be aware that when using SELECT, your code is more prone to errors.

 As an example of the way an assignment SELECT works, suppose you need to assign the
 employee ID whose last name matches a given pattern (@pattern) to the @empid variable.
You assume that only one employee will match the pattern. The following code, which uses
an assignment SELECT, doesn’t accomplish the requirement:

USE InsideTSQL2008;

DECLARE @empid AS INT, @pattern AS NVARCHAR(100);

SET @pattern = N'Davis'; -- Try also N'Ben-Gan', N'D%';

SET @empid = 999;

SELECT @empid = empid

FROM HR.Employees

WHERE lastname LIKE @pattern;

SELECT @empid;

 Given N’Davis’ as the input pattern, you get the employee ID 1 in the @empid variable. In
this case, only one employee matched the fi lter. However, if you’re given a pattern that does
not apply to any existing last name in the Employees table (for example, N’Ben-Gan’), the
assignment doesn’t take place even once. The content of the @empid variable remains as it
was before the assignment—999. (This value is used for demonstration purposes.) If you’re
given a pattern that matches more than one last name (for example, N’D%’), this code issues
multiple assignments, overwriting the previous value in @empid with each assignment. The
fi nal value of @empid is the employee ID from the qualifying row that SQL Server happened
to access last.

 A much safer way to assign the qualifying employee ID to the @empid variable is to use a SET
statement as follows:

DECLARE @empid AS INT, @pattern AS NVARCHAR(100);

SET @pattern = N'Davis'; -- Try also N'Ben-Gan', N'D%';

SET @empid = 999;

SET @empid = (SELECT empid

 FROM HR.Employees

 WHERE lastname LIKE @pattern);

SELECT @empid;

C10626034.indd 612 2/20/2009 5:47:36 PM

 Chapter 10 Data Modifi cation 613

 If only one employee qualifi es, you get the employee ID in the @empid variable. If no employee
qualifi es, the subquery sets @empid to NULL. When you get a NULL, you know that you had no
matches. If multiple employees qualify, you get an error saying that the subquery returned more
than one value. In such a case, you will realize that something is wrong with your assumptions or
with the design of your code. But the problem will surface as opposed to eluding you.

 When you understand how an assignment SELECT works, you can use it to your advantage.
For example, a SET statement can assign only one variable at a time. An assignment SELECT
can assign values to multiple variables within the same statement. With well-designed code,
this capability can give you performance benefi ts. For example, the following code assigns
the fi rst name and last name of a given employee to variables:

DECLARE @firstname AS NVARCHAR(10), @lastname AS NVARCHAR(20);

SELECT @firstname = NULL, @lastname = NULL;

SELECT @firstname = firstname, @lastname = lastname

FROM HR.Employees

WHERE empid = 3;

SELECT @firstname, @lastname;

 Notice that this code uses the primary key to fi lter an employee, meaning that you cannot get
more than one row back. The code also initializes the @fi rstname and @lastname variables with
NULLs. If no employee qualifi es, the variables simply retain the NULLs. This type of assignment
is especially useful in triggers when you want to read attributes from the special tables inserted
and deleted into your own variables, after you verify that only one row was affected.

 Technically, you could rely on the fact that an assignment SELECT performs multiple
 assignments when multiple rows qualify. For example, you could do aggregate calculations,
such as concatenating all order IDs for a given customer:

DECLARE @Orders AS VARCHAR(8000), @custid AS INT;

SET @custid = 1;

SET @Orders = '';

SELECT @Orders = @Orders + CAST(orderid AS VARCHAR(10)) + ';'

FROM Sales.Orders

WHERE custid = @custid;

SELECT @Orders;

 However, this code is far from being standard, and the ability to apply such an assignment
SELECT with multiple rows is not offi cially documented. This type of assignment is also often
used with an ORDER BY clause, assuming that the order of concatenation is guaranteed, like so:

DECLARE @Orders AS VARCHAR(8000), @custid AS INT;

SET @custid = 1;

SET @Orders = '';

C10626034.indd 613 2/20/2009 5:47:36 PM

614 Inside Microsoft SQL Server 2008: T-SQL Querying

SELECT @Orders = @Orders + CAST(orderid AS VARCHAR(10)) + ';'

FROM Sales.Orders

WHERE custid = @custid

ORDER BY orderdate, orderid;

SELECT @Orders;

 But again, no offi cial documentation defi nes the behavior of such multirow assignment
SELECT statements, let alone ones that include an ORDER BY clause. I did stumble across
the following blog by Microsoft’s Conor Cunningham, in which he indicates that this
 undocumented technique does guarantee concatenation order: http://blogs.msdn.com/
sqltips/archive/2005/07/20/441053.aspx.

 However, I have to stress that I feel very awkward about this technique, and I’m reluctant to
trust it to always work, including in future versions of the product. You have enough supported
and guaranteed techniques to choose from for such calculations, many of which I covered in
Chapter 8, “Aggregating and Pivoting Data.”

Assignment UPDATE

 T-SQL also supports a nonstandard UPDATE syntax that can assign values to variables in
 addition to modifying data. To demonstrate the technique, fi rst run the following code,
which creates the table T1 and populates it with sample data:

USE tempdb;

IF OBJECT_ID('dbo.T1') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

 col1 INT NOT NULL,

 col2 VARCHAR(5) NOT NULL

);

GO

INSERT INTO dbo.T1(col1, col2) VALUES

 (0, 'A'),

 (0, 'B'),

 (0, 'C'),

 (0, 'C'),

 (0, 'C'),

 (0, 'B'),

 (0, 'A'),

 (0, 'A'),

 (0, 'C'),

 (0, 'C');

 Currently, the T1 table has no primary key, and there’s no way to uniquely identify the rows.
Suppose that you wanted to assign unique integers to col1 and then make it the primary
key. You can use the following assignment UPDATE to achieve this task:

DECLARE @i AS INT;

SET @i = 0;

UPDATE dbo.T1 SET @i = col1 = @i + 1;

SELECT * FROM dbo.T1;

C10626034.indd 614 2/20/2009 5:47:36 PM

 Chapter 10 Data Modifi cation 615

 This code declares the variable @i and initializes it with 0. The UPDATE statement then scans
the data and, for each row, sets the current col1 value to @i + 1 and then sets @i’s value to
col1’s new value. Logically, the SET clause is equivalent to SET col1 = @i + 1, @i = @i + 1.
However, in such an UPDATE statement, you have no way to control the order in which the
rows in T1 are scanned and modifi ed. For example, when I queried the table after applying
the preceding assignment UPDATE, I got the following output:

col1 col2

----------- -----

1 A

2 B

3 C

4 C

5 C

6 B

7 A

8 A

9 C

10 C

 But keep in mind that the UPDATE statement’s assignment of col1 values might be different.
As long as you don’t care about the order in which the data is scanned and modifi ed, you
might be happy with this technique. It is very fast because it scans the data only once.

 SQL Server supports another technique to achieve this task that is much more elegant and
that allows you to specify the logical ordering of the resulting row numbers. This technique
involves issuing an UPDATE through a CTE that calculates row numbers based on any desired
order, like so:

WITH T1RN AS

(

 SELECT col1, ROW_NUMBER() OVER(ORDER BY col2) AS rownum

 FROM dbo.T1

)

UPDATE T1RN SET col1 = rownum;

SELECT * FROM dbo.T1;

 This code generates the following output:

col1 col2

----------- -----

1 A

4 B

6 C

7 C

8 C

5 B

2 A

3 A

9 C

10 C

C10626034.indd 615 2/20/2009 5:47:36 PM

616 Inside Microsoft SQL Server 2008: T-SQL Querying

 Recall that if you want to assign the row numbers in no particular order and would rather not
pay for any costs associated with ordering, you can specify ORDER BY (SELECT 0). By now,
you have probably fi gured out why my favorite features in SQL Server are the ROW_NUMBER
function and CTEs.

Merging Data

 SQL Server 2008 introduces support for the MERGE statement. This statement allows you
to identify a source and a target table and modify the target with data from the source,
 applying different modifi cation actions (INSERT, UPDATE, DELETE) based on conditional logic.
SQL Server implements the standard MERGE statement with a couple of extensions that are
not part of the standard.

 The MERGE statement has many uses both in OLTP and in data warehouse environments.
For example, in an OLTP environment you can use it to merge data you get from an external
source into an existing target table. In a data warehouse environment you can use it to apply
incremental updates to aggregated data, process slowly changing dimensions, and so on.

In the following sections I’ll cover the details of the MERGE statement and how to use it.
In the examples I provide, I’ll use two tables, Customers and CustomersStage, that you will
 create in tempdb and populate with initial sample data by running the code in Listing 10-3.

LISTING 10-3 Script creating and populating the Customers and CustomersStage tables

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.Customers', 'U') IS NOT NULL

 DROP TABLE dbo.Customers;

GO

CREATE TABLE dbo.Customers

(

 custid INT NOT NULL,

 companyname VARCHAR(25) NOT NULL,

 phone VARCHAR(20) NOT NULL,

 address VARCHAR(50) NOT NULL,

 inactive BIT NOT NULL DEFAULT (0),

 CONSTRAINT PK_Customers PRIMARY KEY(custid)

);

INSERT INTO dbo.Customers(custid, companyname, phone, address)

 VALUES

 (1, 'cust 1', '(111) 111-1111', 'address 1'),

 (2, 'cust 2', '(222) 222-2222', 'address 2'),

 (3, 'cust 3', '(333) 333-3333', 'address 3'),

 (4, 'cust 4', '(444) 444-4444', 'address 4'),

 (5, 'cust 5', '(555) 555-5555', 'address 5');

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.Customers', 'U') IS NOT NULL

 DROP TABLE dbo.Customers;

GO

CREATE TABLE dbo.Customers

(

 custid INT NOT NULL,

 companyname VARCHAR(25) NOT NULL,

 phone VARCHAR(20) NOT NULL,

 address VARCHAR(50) NOT NULL,

 inactive BIT NOT NULL DEFAULT (0),

 CONSTRAINT PK_Customers PRIMARY KEY(custid)

);

INSERT INTO dbo.Customers(custid, companyname, phone, address)

 VALUES

 (1, 'cust 1', '(111) 111-1111', 'address 1'),

 (2, 'cust 2', '(222) 222-2222', 'address 2'),

 (3, 'cust 3', '(333) 333-3333', 'address 3'),

 (4, 'cust 4', '(444) 444-4444', 'address 4'),

 (5, 'cust 5', '(555) 555-5555', 'address 5');

C10626034.indd 616 2/20/2009 5:47:36 PM

 Chapter 10 Data Modifi cation 617

IF OBJECT_ID('dbo.CustomersStage', 'U') IS NOT NULL

 DROP TABLE dbo.CustomersStage;

GO

CREATE TABLE dbo.CustomersStage

(

 custid INT NOT NULL,

 companyname VARCHAR(25) NOT NULL,

 phone VARCHAR(20) NOT NULL,

 address VARCHAR(50) NOT NULL,

 CONSTRAINT PK_CustomersStage PRIMARY KEY(custid)

);

INSERT INTO dbo.CustomersStage(custid, companyname, phone, address)

 VALUES

 (2, 'AAAAA', '(222) 222-2222', 'address 2'),

 (3, 'cust 3', '(333) 333-3333', 'address 3'),

 (5, 'BBBBB', 'CCCCC', 'DDDDD'),

 (6, 'cust 6 (new)', '(666) 666-6666', 'address 6'),

 (7, 'cust 7 (new)', '(777) 777-7777', 'address 7');

GO

SELECT * FROM dbo.Customers;

SELECT * FROM dbo.CustomersStage;

The queries against the Customers and CustomersStage tables generate the following output:

custid companyname phone address inactive

------- ------------ --------------- ---------- ------------

1 cust 1 (111) 111-1111 address 1 0

2 cust 2 (222) 222-2222 address 2 0

3 cust 3 (333) 333-3333 address 3 0

4 cust 4 (444) 444-4444 address 4 0

5 cust 5 (555) 555-5555 address 5 0

custid companyname phone address

------- ------------ --------------- ----------

2 AAAAA (222) 222-2222 address 2

3 cust 3 (333) 333-3333 address 3

5 BBBBB CCCCC DDDDD

6 cust 6 (new) (666) 666-6666 address 6

7 cust 7 (new) (777) 777-7777 address 7

MERGE Fundamentals

The MERGE statement is expressed using join semantics. Two tables are involved, but in
a MERGE statement one table is identifi ed as the target and one as the source. A MERGE
 predicate determines what it means for a source row to match a target row. You can specify
which action to take when a source row matches a target row and which action to take when
a source row doesn’t match a target row. The T-SQL MERGE statement even allows you to
 specify which action to take when a target row matches no source row—but I’m getting ahead

IF OBJECT_ID('dbo.CustomersStage', 'U') IS NOT NULL

 DROP TABLE dbo.CustomersStage;

GO

CREATE TABLE dbo.CustomersStage

(

 custid INT NOT NULL,

 companyname VARCHAR(25) NOT NULL,

 phone VARCHAR(20) NOT NULL,

 address VARCHAR(50) NOT NULL,

 CONSTRAINT PK_CustomersStage PRIMARY KEY(custid)

);

INSERT INTO dbo.CustomersStage(custid, companyname, phone, address)

 VALUES

 (2, 'AAAAA', '(222) 222-2222', 'address 2'),

 (3, 'cust 3', '(333) 333-3333', 'address 3'),

 (5, 'BBBBB', 'CCCCC', 'DDDDD'),

 (6, 'cust 6 (new)', '(666) 666-6666', 'address 6'),

 (7, 'cust 7 (new)', '(777) 777-7777', 'address 7');

GO

SELECT * FROM dbo.Customers;

SELECT * FROM dbo.CustomersStage;

C10626034.indd 617 2/20/2009 5:47:36 PM

618 Inside Microsoft SQL Server 2008: T-SQL Querying

of myself. I’ll start with the basic form of a MERGE statement, and in subsequent sections I’ll
cover the more advanced options. A basic MERGE statement has the following general form:

MERGE [INTO] <target>

USING <source>

 ON <predicate>

WHEN MATCHED THEN <action>

WHEN NOT MATCHED [BY TARGET] THEN <action>;

 In the MERGE INTO clause you identify the target for the operation. The target can be a
table or a view. In the USING clause you identify the source for the operation. Think of the
USING clause in similar terms to a FROM clause in a SELECT query. You can specify a table,
a table expression (view, derived table, CTE), or a table function (for example, OPENROWSET,
OPENXML). You can use table operators such as JOIN, APPLY, PIVOT, and UNPIVOT to specify
the source in the USING clause.

 In the ON clause you specify the merge predicate that defi nes matches and nonmatches.
In the WHEN MATCHED THEN clause you specify an action to take place when the MERGE
predicate is TRUE, that is, when a source row is matched by a target row. The actions that
are supported by this clause are UPDATE and DELETE. In the WHEN NOT MATCHED [BY
TARGET] THEN clause you specify an action to take place when the MERGE predicate is FALSE
or UNKNOWN, that is, when a source row isn’t matched by a target row. The only action
 supported by this clause is INSERT.

 If this is the fi rst time that you’ve seen the MERGE statement, the technical details
are probably confusing. An example should make things clearer. The following code
 demonstrates how to merge the contents of the CustomersStage table into the Customers
table, updating existing customers and adding new ones:

SET NOCOUNT OFF;

BEGIN TRAN

MERGE INTO dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

 ON TGT.custid = SRC.custid

WHEN MATCHED THEN

 UPDATE SET

 TGT.companyname = SRC.companyname,

 TGT.phone = SRC.phone,

 TGT.address = SRC.address

WHEN NOT MATCHED THEN

 INSERT (custid, companyname, phone, address)

 VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address);

SELECT * FROM dbo.Customers;

ROLLBACK TRAN

 I run the code within a transaction and then roll the transaction back for test purposes so
that after each example the Customers table is returned to its original form. I also run the

C10626034.indd 618 2/20/2009 5:47:36 PM

 Chapter 10 Data Modifi cation 619

examples with the NOCOUNT option set to OFF so that you get a message indicating how
many rows were affected.

 This MERGE statement identifi es the Customers table as the target and the CustomersStage
table as the source. The MERGE predicate indicates that a source row is matched by a target
row if the source custid and the target custid values are equal.

 When a source row is matched by a target row, the nonkey attributes of the target row are
overwritten with those from the source row using an UPDATE action. Notice that the syntax
of the UPDATE action is very similar to that of a regular UPDATE statement except that you
don’t need to indicate the name of the target table because you already identifi ed it earlier
in the merge statement’s INTO clause.

 When a source row isn’t matched by a target row, a new row is inserted into the target based
on the attributes of the source row using an INSERT action. Again, the syntax of the INSERT
 action is very similar to that of a regular INSERT statement except that you don’t need to
 indicate the name of the target table because you already identifi ed it earlier in the INTO clause.

 When the preceding MERGE statement completes, you get a message indicating that fi ve rows
were affected, and the query against the Customers table generates the following output:

custid companyname phone address inactive

------- ------------- --------------- ---------- ------------

1 cust 1 (111) 111-1111 address 1 0

2 AAAAA (222) 222-2222 address 2 0

3 cust 3 (333) 333-3333 address 3 0

4 cust 4 (444) 444-4444 address 4 0

5 BBBBB CCCCC DDDDD 0

6 cust 6 (new) (666) 666-6666 address 6 0

7 cust 7 (new) (777) 777-7777 address 7 0

 The fi ve affected rows include three rows that were updated (customers 2, 3, and 5) and two
that were inserted (customers 6 and 7).

 The MERGE statement is similar to a join not only semantically but also in terms of its physical
processing. When both the WHEN MATCHED and the WHEN NOT MATCHED clauses appear
in the statement, it is processed as a one-sided outer join. For example, Figure 10-1 shows the
plan for the preceding MERGE statement, showing that it was processed as a left outer join.

FIGURE 10-1 MERGE processed with left outer join

C10626034.indd 619 2/20/2009 5:47:36 PM

620 Inside Microsoft SQL Server 2008: T-SQL Querying

 The MERGE statement doesn’t require you to specify both the WHEN MATCHED and the
WHEN NOT MATCHED clauses; instead, it supports having only one clause. For example,
the following code demonstrates using only the WHEN MATCHED clause to update existing
 customers without adding new ones:

BEGIN TRAN

MERGE INTO dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

 ON TGT.custid = SRC.custid

WHEN MATCHED THEN

 UPDATE SET

 TGT.companyname = SRC.companyname,

 TGT.phone = SRC.phone,

 TGT.address = SRC.address;

ROLLBACK TRAN

Figure 10-2 shows the execution plan SQL Server generated for this statement.

FIGURE 10-2 MERGE processed with inner join

 As you can see, the statement was processed using an inner join. Later I will show you cases
where a MERGE statement is processed as a full outer join.

 Returning to the original task—updating existing customers and adding new ones—the
 alternative prior to SQL Server 2008 was to issue separate UPDATE and INSERT statements,
like so:

BEGIN TRAN

UPDATE TGT

 SET TGT.companyname = SRC.companyname,

 TGT.phone = SRC.phone,

 TGT.address = SRC.address

FROM dbo.Customers AS TGT

 JOIN dbo.CustomersStage AS SRC

 ON TGT.custid = SRC.custid;

C10626034.indd 620 2/20/2009 5:47:36 PM

 Chapter 10 Data Modifi cation 621

INSERT INTO dbo.Customers (custid, companyname, phone, address)

 SELECT custid, companyname, phone, address

 FROM dbo.CustomersStage AS SRC

 WHERE NOT EXISTS

 (SELECT * FROM dbo.Customers AS TGT

 WHERE TGT.custid = SRC.custid);

ROLLBACK TRAN

 The advantages of using the MERGE statement are that you don’t need to access the data
twice, plus the MERGE statement is processed as an atomic operation without the need
for explicit transactions. Unfortunately though, my tests show that the MERGE statement is
 processed with full logging. Recall that in SQL Server 2008 the INSERT SELECT statement can
be processed with minimal logging in certain cases.

 Earlier in the chapter I covered nondeterministic UPDATE statements. A MERGE statement
is safer in the sense that if a target row is modifi ed more than once, the statement fails at
run time. This usually happens when the target table is the “one” side in a one-to-many
relationship.

Adding a Predicate

 The various WHEN clauses of the MERGE statement support specifying the AND operator
followed by an additional predicate. In the case of the WHEN MATCHED clause, you can
specify WHEN MATCHED AND <predicate> THEN <action>. Only when both the original ON
predicate and the additional predicate following the AND operator are TRUE does the action
following the THEN clause take place.

 Here’s an example of where this capability might be handy. Consider again the task to update
existing customers and add new ones. You want to update a target customer row only if at
least one of the nonkey attributes in the source row is different. If the source and target rows
are identical, you don’t want to apply the update. Avoiding an update in such a case would
improve performance and also prevent triggers from including the rows in the inserted and
deleted tables.

 Following is the revised MERGE statement including the additional predicate that ensures
that at least one nonkey attribute is different to apply the UPDATE action:

BEGIN TRAN

MERGE dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

 ON TGT.custid = SRC.custid

WHEN MATCHED AND

 (TGT.companyname <> SRC.companyname

 OR TGT.phone <> SRC.phone

 OR TGT.address <> SRC.address) THEN

 UPDATE SET

 TGT.companyname = SRC.companyname,

C10626034.indd 621 2/20/2009 5:47:36 PM

622 Inside Microsoft SQL Server 2008: T-SQL Querying

 TGT.phone = SRC.phone,

 TGT.address = SRC.address

WHEN NOT MATCHED THEN

 INSERT (custid, companyname, phone, address)

 VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address);

SELECT * FROM dbo.Customers;

ROLLBACK TRAN

 This time, the Messages pane should indicate that four rows were affected and not fi ve. The
row for customer 3 was not updated because the source and the target rows were identical.

 The query against the Customers table generates the following output showing the new data
for the updated customers 2 and 5 and the new customers 6 and 7:

custid companyname phone address inactive

------- ------------- --------------- ---------- ------------

1 cust 1 (111) 111-1111 address 1 0

2 AAAAA (222) 222-2222 address 2 0

3 cust 3 (333) 333-3333 address 3 0

4 cust 4 (444) 444-4444 address 4 0

5 BBBBB CCCCC DDDDD 0

6 cust 6 (new) (666) 666-6666 address 6 0

7 cust 7 (new) (777) 777-7777 address 7 0

 Note that I used the <> operator to check whether the source and target values are different.
Remember that according to the three-valued logic in SQL, an expression can return TRUE,
FALSE, and UNKNOWN. I didn’t worry about the UNKNOWN case because you get it only
when one of the values is NULL, and I defi ned all columns in both cases as NOT NULL.
However, if the attributes do allow NULLs, you need to enhance the expressions to check for
cases where one is NULL and the other isn’t. Your code would look like this:

BEGIN TRAN

MERGE dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

 ON TGT.custid = SRC.custid

WHEN MATCHED AND

 ((TGT.companyname <> SRC.companyname

 OR (TGT.companyname IS NOT NULL AND SRC.companyname IS NULL)

 OR (TGT.companyname IS NULL AND SRC.companyname IS NOT NULL))

 OR (TGT.phone <> SRC.phone

 OR (TGT.phone IS NOT NULL AND SRC.phone IS NULL)

 OR (TGT.phone IS NULL AND SRC.phone IS NOT NULL))

 OR (TGT.address <> SRC.address

 OR (TGT.address IS NOT NULL AND SRC.address IS NULL)

 OR (TGT.address IS NULL AND SRC.address IS NOT NULL)))

 THEN UPDATE SET

 TGT.companyname = SRC.companyname,

 TGT.phone = SRC.phone,

 TGT.address = SRC.address

C10626034.indd 622 2/20/2009 5:47:36 PM

 Chapter 10 Data Modifi cation 623

WHEN NOT MATCHED THEN

 INSERT (custid, companyname, phone, address)

 VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address);

SELECT * FROM dbo.Customers;

ROLLBACK TRAN

 In a similar manner you can specify an additional predicate in the WHEN NOT MATCHED
clause. The complete clause would be WHEN NOT MATCHED [BY TARGET] AND <predicate>.

 It is interesting to note that ANSI SQL supports operators that apply two-valued logic when
comparing values, treating two NULLs as equal to each other and a NULL and non-NULL values
as different from one another. Those operators are IS NOT DISTINCT FROM (a two-valued-logic
alternative to equality) and IS DISTINCT FROM (a two-valued-logic alternative to inequality).
These operators would simplify the WHEN MATCHED clause of the preceding code, but they
have not yet been implemented in SQL Server. Steve Kass posted a feature enhancement
 request to add such support in SQL Server at the following URL: http://connect.microsoft.com/
SQLServer/feedback/ViewFeedback.aspx?FeedbackID=286422.

Multiple WHEN Clauses

 The MERGE statement supports up to two WHEN MATCHED clauses. When you use two
WHEN MATCHED clauses, the fi rst must include an additional predicate, while the second can
be specifi ed either with or without an additional predicate. When two clauses are specifi ed,
the MERGE statement applies the action in the fi rst only when both the ON predicate is TRUE
and the additional predicate in the fi rst clause is TRUE. If the ON predicate is TRUE but the
additional predicate in the fi rst clause is FALSE or UNKNOWN, the second clause is evaluated.

 As an example where multiple WHEN MATCHED clauses could be useful, consider the following
requirement. When the custid value in the source exists in the target, you need to update the
target row only if at least one of the nonkey attributes changed. But if the source and target
rows are identical, that’s actually a signal that you need to delete the target row. When the
source custid value doesn’t appear in the target, as before you need to insert the row. You can
implement the update or delete part by using two WHEN MATCHED clauses, like so:

BEGIN TRAN

MERGE dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

 ON TGT.custid = SRC.custid

WHEN MATCHED AND

 (TGT.companyname <> SRC.companyname

 OR TGT.phone <> SRC.phone

 OR TGT.address <> SRC.address) THEN

 UPDATE SET

 TGT.companyname = SRC.companyname,

 TGT.phone = SRC.phone,

 TGT.address = SRC.address

C10626034.indd 623 2/20/2009 5:47:36 PM

624 Inside Microsoft SQL Server 2008: T-SQL Querying

WHEN MATCHED THEN

 DELETE

WHEN NOT MATCHED THEN

 INSERT (custid, companyname, phone, address)

 VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address);

SELECT * FROM dbo.Customers;

ROLLBACK TRAN

 The Messages pane should indicate fi ve affected rows (two updated, one deleted, and
two inserted). The query against the Customers table generates the following output:

custid companyname phone address inactive

------- ------------- --------------- ---------- ------------

1 cust 1 (111) 111-1111 address 1 0

2 AAAAA (222) 222-2222 address 2 0

4 cust 4 (444) 444-4444 address 4 0

5 BBBBB CCCCC DDDDD 0

6 cust 6 (new) (666) 666-6666 address 6 0

7 cust 7 (new) (777) 777-7777 address 7 0

 Customers 2 and 5 were updated, customer 3 was deleted, and customers 6 and 7 were added.

 Unlike the WHEN MATCHED clause, the MERGE statement supports only one WHEN NOT
MATCHED [BY TARGET] clause.

WHEN NOT MATCHED BY SOURCE

 The WHEN MATCHED clause allows you to specify an action to take when a source row is
matched by a target row, and the WHEN NOT MATCHED [BY TARGET] clause allows you to specify
an action to take when a source row is not matched by a target row. The MERGE statement in
T-SQL supports a third clause called WHEN NOT MATCHED BY SOURCE, which allows you to
 indicate an action to take against a target row that is not matched by any source row.

 As an example of using this third clause, let’s say that when a target row in our Customers
table isn’t matched by a source row in our CustomersStage table, you need to set the inactive
attribute of the target row to 1. Here’s the previous MERGE statement with this added logic:

BEGIN TRAN

MERGE dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

 ON TGT.custid = SRC.custid

WHEN MATCHED AND

 (TGT.companyname <> SRC.companyname

 OR TGT.phone <> SRC.phone

 OR TGT.address <> SRC.address) THEN

 UPDATE SET

 TGT.companyname = SRC.companyname,

 TGT.phone = SRC.phone,

 TGT.address = SRC.address

C10626034.indd 624 2/20/2009 5:47:37 PM

 Chapter 10 Data Modifi cation 625

WHEN MATCHED THEN

 DELETE

WHEN NOT MATCHED THEN

 INSERT (custid, companyname, phone, address)

 VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address)

WHEN NOT MATCHED BY SOURCE THEN

 UPDATE SET

 inactive = 1;

SELECT * FROM dbo.Customers;

ROLLBACK TRAN

 The code updates existing customers that changed, deletes existing customers that did
not change, adds missing customers, and discontinues target customers that are missing in
the source. In total, seven rows were modifi ed this time. Customers 2 and 5 were updated,
 customer 3 was deleted, customers 6 and 7 were added, and customers 1 and 4 became
 inactive. The query against the Customers table generates the following output:

custid companyname phone address inactive

------- ------------- --------------- ---------- ------------

1 cust 1 (111) 111-1111 address 1 1

2 AAAAA (222) 222-2222 address 2 0

4 cust 4 (444) 444-4444 address 4 1

5 BBBBB CCCCC DDDDD 0

6 cust 6 (new) (666) 666-6666 address 6 0

7 cust 7 (new) (777) 777-7777 address 7 0

 Because all three clauses are involved this time, SQL Server processes this MERGE statement
using a full outer join, as you can see in Figure 10-3.

FIGURE 10-3 MERGE processed with full outer join

 Similarly to the WHEN MATCHED clause, the WHEN NOT MATCHED BY SOURCE clause
 supports the DELETE and UPDATE actions. Another similarity is that you can specify up to
two WHEN NOT MATCHED BY SOURCE clauses, following rules similar to those for using two
WHEN MATCHED clauses.

C10626034.indd 625 2/20/2009 5:47:37 PM

626 Inside Microsoft SQL Server 2008: T-SQL Querying

MERGE Values

 A common task involving merging data is the need to write a stored procedure that updates
or adds a new row (such as a customer). That is, the procedure accepts the attributes of a
customer and updates the target row if the customer already exists and inserts a row if the
customer doesn’t exist. Of course, you may need to apply additional logic such as updating
the target customer if it already exists and at least one of the nonkey attributes changed.

 Prior to SQL Server 2008 you could handle the task in different ways, but all of them were quite
tricky to implement. One way is to use IF EXISTS to determine whether to apply an UPDATE or
an INSERT. Another way is apply an UPDATE fi rst and, if the value of the @@rowcount function
equals 0, issue an INSERT. Either way, there is an opportunity for another transaction to
 introduce a new row in between the activities (the IF EXISTS and the INSERT or the check of the
@@rowcount value and the INSERT). To address the problem you may consider performing all
activities in one transaction using the serializable isolation level, but this approach can turn out
to be very ineffi cient because it is likely to result in many deadlocks. Other approaches exist,
but the point remains that addressing this task is not trivial.

 In SQL Server 2008 you can simply use the MERGE statement to implement this task. Recall
that the MERGE statement supports specifying a derived table as input. You can defi ne a
 derived table based on a row value constructor (the enhanced VALUES clause described
 earlier in the chapter), where the row is made of the procedure’s input parameters. Run the
following code to implement such a stored procedure called AddCust:

IF OBJECT_ID('dbo.AddCust', 'P') IS NOT NULL DROP PROC dbo.AddCust;

GO

CREATE PROC dbo.AddCust

 @custid INT,

 @companyname VARCHAR(25),

 @phone VARCHAR(20),

 @address VARCHAR(50)

AS

MERGE dbo.Customers AS TGT

USING (VALUES(@custid, @companyname, @phone, @address))

 AS SRC(custid, companyname, phone, address)

 ON TGT.custid = SRC.custid

WHEN MATCHED AND

 (TGT.companyname <> SRC.companyname

 OR TGT.phone <> SRC.phone

 OR TGT.address <> SRC.address) THEN

 UPDATE SET

 TGT.companyname = SRC.companyname,

 TGT.phone = SRC.phone,

 TGT.address = SRC.address

WHEN NOT MATCHED THEN

 INSERT (custid, companyname, phone, address)

 VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address);

GO

C10626034.indd 626 2/20/2009 5:47:37 PM

 Chapter 10 Data Modifi cation 627

 Run the following code to test the procedure:

BEGIN TRAN

EXEC dbo.AddCust

 @custid = 8,

 @companyname = 'cust 8 (new)',

 @phone = '(888) 888-8888',

 @address = 'address 8';

SELECT * FROM dbo.Customers;

ROLLBACK TRAN

 The query against the Customers table generates the following output showing the new
 customer 8:

custid companyname phone address inactive

------- ------------- --------------- ---------- ------------

1 cust 1 (111) 111-1111 address 1 0

2 cust 2 (222) 222-2222 address 2 0

3 cust 3 (333) 333-3333 address 3 0

4 cust 4 (444) 444-4444 address 4 0

5 cust 5 (555) 555-5555 address 5 0

8 cust 8 (new) (888) 888-8888 address 8 0

MERGE and Triggers

 SQL Server doesn’t support MERGE triggers. However, if INSERT, UPDATE, and DELETE
 triggers are defi ned on the target table, the MERGE statement causes those to fi re if the
 corresponding actions take place. You get only one occurrence of each trigger to fi re even
if the MERGE statement ends up invoking more than one occurrence of the same action. As
usual, you can access all rows modifi ed by the triggering actions via the inserted and deleted
tables within the trigger.

 To demonstrate trigger behavior for a MERGE statement, create INSERT, UPDATE, and DELETE
triggers on the Customers table by running the following code:

CREATE TRIGGER trg_Customers_INSERT ON dbo.Customers AFTER INSERT

AS

PRINT 'INSERT detected.';

GO

CREATE TRIGGER trg_Customers_UPDATE ON dbo.Customers AFTER UPDATE

AS

PRINT 'UPDATE detected.';

GO

CREATE TRIGGER trg_Customers_DELETE ON dbo.Customers AFTER DELETE

AS

PRINT 'DELETE detected.';

GO

C10626034.indd 627 2/20/2009 5:47:37 PM

628 Inside Microsoft SQL Server 2008: T-SQL Querying

 The trigger simply prints the action that was detected. Run the following MERGE statement
that involves all actions and even an action that appears twice in the statement:

BEGIN TRAN

MERGE dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

 ON TGT.custid = SRC.custid

WHEN MATCHED AND

 (TGT.companyname <> SRC.companyname

 OR TGT.phone <> SRC.phone

 OR TGT.address <> SRC.address) THEN

 UPDATE SET

 TGT.companyname = SRC.companyname,

 TGT.phone = SRC.phone,

 TGT.address = SRC.address

WHEN MATCHED THEN

 DELETE

WHEN NOT MATCHED THEN

 INSERT (custid, companyname, phone, address)

 VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address)

WHEN NOT MATCHED BY SOURCE THEN

 UPDATE SET

 inactive = 1;

ROLLBACK TRAN

 This code generates the following output:

INSERT detected.

UPDATE detected.

DELETE detected.

(7 row(s) affected)

 Notice that even though the UPDATE action was activated by two different clauses, only one
occurrence of the UPDATE trigger was invoked for all updated rows. This is in accord with the
fact that in SQL Server a trigger fi res for each statement.

OUTPUT Clause

 SQL Server supports returning output from a data modifi cation statement via the OUTPUT
clause. The OUTPUT clause is supported for INSERT, DELETE, UPDATE, and MERGE
 statements. In the OUTPUT clause, you can refer to the special tables inserted and deleted.
These special tables contain the rows affected by the data modifi cation statement—in their
new (after-modifi cation) and old (before-modifi cation) versions, respectively. You use the
inserted and deleted tables here much like you do in triggers. With INSERTs, you refer to
the inserted table to identify attributes from the new rows. With DELETEs, you refer to the
 deleted table to identify attributes from the old rows. With UPDATEs, you refer to the deleted
table to identify the attributes from the updated rows before the change, and you refer to

C10626034.indd 628 2/20/2009 5:47:37 PM

 Chapter 10 Data Modifi cation 629

the inserted table to identify the attributes from the updated rows after the change. With the
MERGE statement you refer to the relevant tables depending on the actions that you invoke.
The output can be directed to the caller (client application), a table, or even both.

 The feature is probably best explained through examples. In the following sections I’ll give
examples for each kind of modifi cation statement. Then I’ll cover a new feature in SQL
Server 2008 called composable DML that is related to the OUTPUT clause.

INSERT with OUTPUT

 An example of an INSERT statement in which the OUTPUT clause can be very handy is when
you issue a multirow INSERT into a table with an identity column and want to capture the
new identity values. With single-row INSERTs, this isn’t a problem: The SCOPE_IDENTITY
 function provides the last identity value generated by your session in the current scope.
But for a multirow INSERT statement, how do you fi nd the new identity values? You use the
OUTPUT clause to return the new identity values or insert them into a table.

 To demonstrate this technique, fi rst run the following code, which creates the CustomersDim
table:

USE tempdb;

IF OBJECT_ID('dbo.CustomersDim') IS NOT NULL DROP TABLE dbo.CustomersDim;

CREATE TABLE dbo.CustomersDim

(

 keycol INT NOT NULL IDENTITY PRIMARY KEY,

 custid INT NOT NULL,

 companyname NVARCHAR(40) NOT NULL,

 /* ... other columns ... */

);

 Imagine that this table represents a customer dimension in your data warehouse. You now
need to insert into the CustomersDim table the UK customers from the Sales.Customers table
in the InsideTSQL2008 database. Notice that the target has an identity column called keycol
that contains surrogate keys for customers. I won’t get into the reasoning behind the common
use of surrogate keys in dimension tables in data warehouses (as opposed to relying on natural
keys only); that’s not the focus of my discussion here. I just want to demonstrate a technique
that uses the OUTPUT clause. Suppose that after each insert you need to do some processing
of the newly added customers and identify which surrogate key was assigned to each customer.

 The following code declares a table variable (@NewCusts), issues an INSERT statement
 inserting UK customers into CustomersDim and directing the new custid and keycol values
into @NewCusts, and queries the table variable:

DECLARE @NewCusts TABLE

(

 custid INT NOT NULL PRIMARY KEY,

 keycol INT NOT NULL UNIQUE

);

C10626034.indd 629 2/20/2009 5:47:37 PM

630 Inside Microsoft SQL Server 2008: T-SQL Querying

INSERT INTO dbo.CustomersDim(custid, companyname)

 OUTPUT inserted.custid, inserted.keycol

 INTO @NewCusts

 -- OUTPUT inserted.custid, inserted.keycol

 SELECT custid, companyname

 FROM InsideTSQL2008.Sales.Customers

 WHERE country = N'UK';

SELECT custid, keycol FROM @NewCusts;

 This code generates the following output, where you can see the new identity values in the
column keycol:

custid keycol

----------- -----------

4 1

11 2

16 3

19 4

38 5

53 6

72 7

 Notice the commented second OUTPUT clause in the code, which isn’t followed by an INTO
clause. Uncomment it if you also want to send the output to the caller; you will have two
OUTPUT clauses in the INSERT statement.

DELETE with OUTPUT

 In Chapter 9, I described a technique to delete large volumes of data from an existing table
in batches to avoid log explosion and lock escalation problems. Here I will show how you
can use the new OUTPUT clause to archive the data that you purge. To demonstrate the
 technique, fi rst run the following code, which creates the LargeOrders table and populates
it with more than two million orders placed in years 2004 through 2008:

USE tempdb;

IF OBJECT_ID('dbo.LargeOrders') IS NOT NULL DROP TABLE dbo.LargeOrders;

CREATE TABLE dbo.LargeOrders

(

 orderid INT NOT NULL

 CONSTRAINT PK_LargeOrders PRIMARY KEY NONCLUSTERED,

 custid INT NOT NULL,

 empid INT NOT NULL,

 orderdate DATE NOT NULL,

 filler CHAR(200) NOT NULL DEFAULT ('a')

)

GO

CREATE UNIQUE CLUSTERED INDEX idx_od_oid

 ON dbo.LargeOrders(orderdate, orderid);

GO

C10626034.indd 630 2/20/2009 5:47:37 PM

 Chapter 10 Data Modifi cation 631

INSERT INTO dbo.LargeOrders WITH (TABLOCK)(orderid, custid, empid, orderdate)

 SELECT ROW_NUMBER() OVER(ORDER BY (SELECT 0)),

 custid, empid, DATEADD(day, n-1, '20040101')

 FROM InsideTSQL2008.Sales.Customers AS C

 CROSS JOIN InsideTSQL2008.HR.Employees AS E

 CROSS JOIN dbo.Nums

 WHERE n <= DATEDIFF(day, '20000401', '20081231') + 1;

 Warning It should take the code a few minutes to run, and it will require about a gigabyte
of space in your tempdb database. Also, the code refers to the Nums auxiliary table, which
I covered in Chapter 6.

 Remember, you use the following technique to delete all rows with an orderdate older than
2006 in batches of 5,000 rows (but don’t run it yet):

WHILE 1 = 1

BEGIN

 DELETE TOP (5000) FROM dbo.LargeOrders WHERE orderdate < '20060101';

 IF @@rowcount < 5000 BREAK;

END

 Suppose you wanted to enhance the solution that purges historic data in batches by also
archiving the data that you purge. Run the following code to create the OrdersArchive table,
where you will store the archived orders:

IF OBJECT_ID('dbo.Archive') IS NOT NULL DROP TABLE dbo.Archive;

CREATE TABLE dbo.Archive

(

 orderid INT NOT NULL PRIMARY KEY NONCLUSTERED,

 custid INT NOT NULL,

 empid INT NOT NULL,

 orderdate DATE NOT NULL,

 filler CHAR(200) NOT NULL

);

GO

CREATE UNIQUE CLUSTERED INDEX idx_od_oid

 ON dbo.Archive(orderdate, orderid);

 Using the OUTPUT clause, you can direct the deleted rows from each batch into the
OrdersArchive table. Here is the enhanced solution, which purges orders with an orderdate
before 2006 in batches and also archives them:

WHILE 1 = 1

BEGIN

 DELETE TOP(5000) FROM dbo.LargeOrders

 OUTPUT deleted.orderid, deleted.custid, deleted.empid,

 deleted.orderdate, deleted.filler

 INTO dbo.Archive(orderid, custid, empid, orderdate, filler)

 WHERE orderdate < '20060101';

 IF @@rowcount < 5000 BREAK;

END

C10626034.indd 631 2/20/2009 5:47:37 PM

632 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note It should take this code a few minutes to run.

 The OrdersArchive table now holds archived orders placed before 2006.

 Note When using the OUTPUT clause to direct the output to a table, the table cannot have
enabled triggers or CHECK constraints, nor can it participate on either side of a foreign key
 constraint. If the target table doesn’t meet these requirements, you can direct the output to a
staging table and then copy the rows from there to the target table.

 Using the OUTPUT clause has important benefi ts when you want to archive data that you
 delete. Without the OUTPUT clause, you need to fi rst query the data to archive it and then
delete it. This technique is slower and more complex. To guarantee that new rows matching
the fi lter (also known as phantoms) are not added between the SELECT and the DELETE, you
must lock the data you archive using a serializable isolation level. With the OUTPUT clause,
you not only get better performance, but you don’t need to worry about phantoms because
you are guaranteed to get exactly what you deleted back from the OUTPUT clause.

UPDATE with OUTPUT

 As with the INSERT and DELETE statements, UPDATE statements also support an OUTPUT
clause, allowing you to return output when you update data. Remember that with an
UPDATE statement there are both new and old versions of rows, so you can refer to both the
deleted and the inserted tables. UPDATEs with the OUTPUT clause have many interesting
 applications. I will give an example of managing a simple message or event queue without
using Service Broker.

 To demonstrate managing a queue, run the following code, which creates the Messages
table:

USE tempdb;

IF OBJECT_ID('dbo.Messages') IS NOT NULL DROP TABLE dbo.Messages;

CREATE TABLE dbo.Messages

(

 msgid INT NOT NULL IDENTITY ,

 msgts DATETIME NOT NULL DEFAULT(CURRENT_TIMESTAMP),

 msg VARCHAR(MAX) NOT NULL,

 status VARCHAR(20) NOT NULL DEFAULT('new'),

 CONSTRAINT PK_Messages

 PRIMARY KEY NONCLUSTERED(msgid),

 CONSTRAINT UNQ_Messages_status_msgid

 UNIQUE CLUSTERED(status, msgid),

 CONSTRAINT CHK_Messages_status

 CHECK (status IN('new', 'open', 'done'))

);

C10626034.indd 632 2/20/2009 5:47:37 PM

 Chapter 10 Data Modifi cation 633

 For each message, you store a message ID, an entry date, message text, and a status code
indicating whether the message has yet to be processed (‘new’), is being processed (‘open’), or
has already been processed (‘done’).

 The following code simulates a session that generates messages by using a loop that inserts
a message with random text every second for fi ve minutes. The status of newly inserted
 messages is ‘new’ because the status column was assigned with the default value ‘new’. Run
this code from multiple sessions at the same time:

SET NOCOUNT ON;

USE tempdb;

GO

DECLARE @msg AS VARCHAR(MAX);

DECLARE @now AS DATETIME = CURRENT_TIMESTAMP;

WHILE 1=1 AND DATEDIFF(second,@now,CURRENT_TIMESTAMP) < 300

BEGIN

 SET @msg = 'msg' + RIGHT('000000000'

 + CAST(1 + ABS(CHECKSUM(NEWID())) AS VARCHAR(10)), 10);

 INSERT INTO dbo.Messages(msg) VALUES(@msg);

 WAITFOR DELAY '00:00:01';

END

 Of course, you can play with the delay period as you wish.

 The following code simulates a session that processes messages repeatedly using these steps:

 1. Lock @n available new messages using an UPDATE TOP (@n) statement with the
READPAST hint to skip locked rows and change their status to ‘open’. The integer @n is
a confi gurable input that determines the maximum number of messages to process in
each iteration.

 2. Store the attributes of the messages in the @Msgs table variable using the OUTPUT
clause.

 3. Process the messages.

 4. Set the status of the messages to ‘done’ by joining the Messages table and the @Msgs
table variable.

 5. If no new message was found in the Messages table, wait for one second.

SET NOCOUNT ON;

USE tempdb;

GO

DECLARE @Msgs TABLE(msgid INT, msgts DATETIME, msg VARCHAR(MAX));

DECLARE @n AS INT;

SET @n = 3;

WHILE 1 = 1

BEGIN

 UPDATE TOP(@n) dbo.Messages WITH(READPAST) SET status = 'open'

C10626034.indd 633 2/20/2009 5:47:37 PM

634 Inside Microsoft SQL Server 2008: T-SQL Querying

 OUTPUT inserted.msgid, inserted.msgts, inserted.msg INTO @Msgs

 OUTPUT inserted.msgid, inserted.msgts, inserted.msg

 WHERE status = 'new';

 IF @@rowcount > 0

 BEGIN

 PRINT 'Processing messages...';

 /* ...process messages here... */

 WITH UPD_CTE AS

 (

 SELECT M.status

 FROM dbo.Messages AS M

 JOIN @Msgs AS N

 ON M.msgid = N.msgid

)

 UPDATE UPD_CTE

 SET status = 'done';

/*

 -- Alternatively you can delete the processed messages:

 DELETE FROM M

 FROM dbo.Messages AS M

 JOIN @Msgs AS N

 ON M.msgid = N.msgid;

*/

 DELETE FROM @Msgs;

 END

 ELSE

 BEGIN

 PRINT 'No messages to process.';

 WAITFOR DELAY '00:00:01';

 END

END

 You can run this code from multiple sessions at the same time. You can increase the
 number of sessions that run this code based on the processing throughput that you need to
accommodate.

 Note that for demonstration purposes only, I included in the fi rst UPDATE statement a
 second OUTPUT clause, which returns the messages back to the caller.

 When you’re done, stop the executing code in the various sessions and run the following
code for cleanup:

IF OBJECT_ID('dbo.Messages') IS NOT NULL DROP TABLE dbo.Messages;

MERGE with OUTPUT

 The MERGE statement also supports the OUTPUT clause, but with MERGE things are a bit
trickier than with the other modifi cation statements. One MERGE statement can involve
 multiple modifi cation actions. You may need to be able to tell whether an output row was

C10626034.indd 634 2/20/2009 5:47:37 PM

 Chapter 10 Data Modifi cation 635

generated by an INSERT, DELETE, or UPDATE action. For this purpose SQL Server provides
you with the $action function, which returns a character string indicating the action that
 generated the output row: ‘INSERT’, ‘DELETE’, or ‘UPDATE’.

 To demonstrate using the OUTPUT clause and the $action function with the MERGE
 statement, fi rst create and populate the Customers and CustomersStage tables by running
the code provided earlier in Listing 10-3.

 The following code demonstrates one of the merge scenarios discussed earlier—update
 existing customers and add new customers—except that this MERGE statement also contains
an OUTPUT clause showing the action and the deleted and inserted values:

BEGIN TRAN

MERGE INTO dbo.Customers AS TGT

USING dbo.CustomersStage AS SRC

 ON TGT.custid = SRC.custid

WHEN MATCHED THEN

 UPDATE SET

 TGT.companyname = SRC.companyname,

 TGT.phone = SRC.phone,

 TGT.address = SRC.address

WHEN NOT MATCHED THEN

 INSERT (custid, companyname, phone, address)

 VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address)

OUTPUT $action AS action,

 inserted.custid,

 deleted.companyname AS Dcompanyname,

 deleted.phone AS Dphone,

 deleted.address AS Daddress,

 inserted.companyname AS Icompanyname,

 inserted.phone AS Iphone,

 inserted.address AS Iaddress;

ROLLBACK TRAN

 This code generates the following output, which is shown here in two parts to fi t on the page:

action custid Dcompanyname Dphone Daddress

------- ------- ------------- --------------- -----------

UPDATE 2 cust 2 (222) 222-2222 address 2

UPDATE 3 cust 3 (333) 333-3333 address 3

UPDATE 5 cust 5 (555) 555-5555 address 5

INSERT 6 NULL NULL NULL

INSERT 7 NULL NULL NULL

action custid Icompanyname Iphone Iaddress

------- ------- ------------- --------------- ----------

UPDATE 2 AAAAA (222) 222-2222 address 2

UPDATE 3 cust 3 (333) 333-3333 address 3

UPDATE 5 BBBBB CCCCC DDDDD

INSERT 6 cust 6 (new) (666) 666-6666 address 6

INSERT 7 cust 7 (new) (777) 777-7777 address 7

C10626034.indd 635 2/20/2009 5:47:37 PM

636 Inside Microsoft SQL Server 2008: T-SQL Querying

 As you can see, three rows were updated, and for those you get both deleted (old) and
 inserted (new) values. Two rows were inserted, and for those you get only inserted values;
deleted values are NULLs.

Composable DML

 Consider situations where you need to modify data, but you need to generate output rows
only for a subset of the modifi ed rows. For example, you may need to audit only rows that
meet certain criteria.

 One way to achieve this is to output all modifi ed rows into a staging table and then copy
the relevant subset of rows to the fi nal target table. But of course this approach can be very
 ineffi cient, especially when the subset that you actually need to keep is a small percentage of
the modifi ed rows.

 SQL Server 2008 provides an answer to this need with a feature called composable DML.
Composable DML allows you to use a data modifi cation statement (INSERT, DELETE, UPDATE,
MERGE) as a table expression in the FROM clause of an outer INSERT SELECT statement,
so long as the data modifi cation statement contains an OUTPUT clause. The outer INSERT
SELECT statement can fi lter the relevant subset of rows from the output and insert them into
a target table. The general form of this feature looks like this:

INSERT INTO <target_table>

 SELECT ...

 FROM (<modification_with_output>) AS D

 WHERE <where_predicate>;

 As an example of using this feature, suppose that in the last shown MERGE statement, which
updates existing customers and adds new ones, you need to audit information only for new
customers. Run the following code to create the CustomersAudit table:

IF OBJECT_ID('dbo.CustomersAudit', 'U') IS NOT NULL

 DROP TABLE dbo.CustomersAudit;

CREATE TABLE dbo.CustomersAudit

(

 audit_lsn INT NOT NULL IDENTITY,

 login_name SYSNAME NOT NULL DEFAULT (SUSER_SNAME()),

 post_time DATETIME NOT NULL DEFAULT (CURRENT_TIMESTAMP),

 custid INT NOT NULL,

 companyname VARCHAR(25) NOT NULL,

 phone VARCHAR(20) NOT NULL,

 address VARCHAR(50) NOT NULL,

 CONSTRAINT PK_CustomersAudit PRIMARY KEY(audit_lsn)

);

C10626034.indd 636 2/20/2009 5:47:37 PM

 Chapter 10 Data Modifi cation 637

 The following code demonstrates how to handle this request:

BEGIN TRAN

INSERT INTO dbo.CustomersAudit(custid, companyname, phone, address)

 SELECT custid, Icompanyname, Iphone, Iaddress

 FROM (MERGE INTO dbo.Customers AS TGT

 USING dbo.CustomersStage AS SRC

 ON TGT.custid = SRC.custid

 WHEN MATCHED THEN

 UPDATE SET

 TGT.companyname = SRC.companyname,

 TGT.phone = SRC.phone,

 TGT.address = SRC.address

 WHEN NOT MATCHED THEN

 INSERT (custid, companyname, phone, address)

 VALUES (SRC.custid, SRC.companyname, SRC.phone, SRC.address)

 OUTPUT $action AS action,

 inserted.custid,

 inserted.companyname AS Icompanyname,

 inserted.phone AS Iphone,

 inserted.address AS Iaddress) AS D

 WHERE action = 'INSERT';

SELECT * FROM dbo.CustomersAudit;

ROLLBACK TRAN

 The MERGE statement invokes an UPDATE action to update existing customers and an
INSERT action to add new ones. The OUTPUT clause returns the action that generated
the output rows and inserted attributes. The outer INSERT SELECT statement fi lters only
output rows where the action is equal to ‘INSERT’ and stores those in the audit table. The
 subsequent SELECT statement returns the contents of the audit table, and that statement
generates the following output, which is shown here in two parts to fi t on the page:

audit_lsn login_name post_time

--------- ------------- -----------------------

1 DOJO\Gandalf 2009-02-12 12:59:17.957

2 DOJO\Gandalf 2009-02-12 12:59:17.957

audit_lsn custid companyname phone address

--------- ------- ------------- --------------- ----------

1 6 cust 6 (new) (666) 666-6666 address 6

2 7 cust 7 (new) (777) 777-7777 address 7

 For now, composable DML is implemented in a very basic form. You can use this feature only
in an INSERT SELECT statement. You can specify a WHERE fi lter, but you cannot apply any
further manipulations like joins or other table operators, grouping, and so on. I hope that in
the future this feature will be enhanced.

C10626034.indd 637 2/20/2009 5:47:37 PM

638 Inside Microsoft SQL Server 2008: T-SQL Querying

 Finally, this feature has restrictions very similar to those for the OUTPUT clause. The target
table can be a permanent table, temporary table, or table variable. The target cannot do the
following:

■ Be a table expression, such as a view.

■ Have triggers.

■ Participate in primary key–foreign key relationships.

■ Participate in merge replication or updatable subscriptions for transactional replication.

Conclusion

 Data modifi cations involve many challenges. You need to be familiar with SQL Server’s
 architecture and internals if you want to design systems that can cope with large volumes of
data and large-scale modifi cations. Many challenging logical problems are related to data
modifi cations, such as maintaining your own custom sequence, deleting rows with duplicate
data, and assigning unique values to existing rows. In this chapter, I covered performance
aspects of data modifi cations as well as logical ones. I also introduced the new features in
SQL Server 2008 including the enhanced VALUES clause, minimal logging enhancements, the
MERGE statement, and composable DML.

C10626034.indd 638 2/20/2009 5:47:37 PM

 639

Chapter 11

Querying Partitioned Tables

 The primary reasons to consider table partitioning in SQL Server are manageability and data
availability. By splitting a large table into several smaller partitions you can perform some of
the most time-consuming and resource-demanding tasks—including backups, consistency
checks using DBCC commands, and index maintenance—one partition at a time. Partitioning
enables you to move large chunks of data into and out of a partitioned table with minimal
impact on concurrent operations on the table, requiring only a very brief period of exclusive
table access.

 Database architects often carefully design partitioning to achieve manageability and
 availability goals only to fi nd a negative impact on workload performance that is
 unacceptable to end users. This chapter explains how partitioning affects query plans and,
consequently, query performance. You will learn how to write effi cient queries against
 partitioned objects and how to analyze the query plans and execution information.

 For information about creating partitioned tables and indexes, see SQL Server Books Online.

Partitioning in SQL Server

 It is hard to say exactly when partitioning was introduced in the SQL Server relational engine
for the fi rst time. Clever programmers can create a UNION ALL view over several SELECTs,
each from one table. The tables can be, for example, daily customer transactions, and a new
table is introduced and included in the view defi nition every day. Most people believe the
fi rst true partitioning was introduced by supporting partitioned tables and indexes without
the need to use views in Microsoft SQL Server 2005. This may be true because the keyword
PARTITION found its way into T-SQL syntax for the very fi rst time in SQL Server 2005.

Partitioned Views

 There are two orthogonal classifi cations of partitioned views. The fi rst is guided by the physical
placement of the component tables: If all tables constituting a partitioned view are located in
a single instance of SQL Server, we refer to the view as a local partitioned view. If the tables are
located across two or more instances, we call it a distributed partitioned view.

 The second classifi cation concerns updatability. A partitioned view (distributed or local) may
be updatable or not updatable. An updatable partitioned view has a single column constraint
on each participating table that makes it possible to decide for every single row which table
it belongs to. This constraint must be contained in a primary key in all tables as well. Please
consult the “Create View” section of SQL Server Books Online for detailed conditions for
 creating partitioned or updatable partitioned views.

C11626034.indd 639 2/20/2009 9:17:09 PM

640 Inside Microsoft SQL Server 2008: T-SQL Querying

 In most updatable partitioned views the constraints are defi ned such that each inserted
row satisfi es the constraint on one and only one participating table. It is possible to defi ne
constraints with “holes” in the domain of the partitioning column when some partitioning
column values violate all constraints. If that is the case, you will see following error message
if you are inserting a new row or updating an existing one and the resulting partitioning
 column value violates constraints in all participating tables:

Msg 4457, Level 16, State 1, Line 1

The attempted insert or update of the partitioned view failed because the value of the

partitioning column does not belong to any of the partitions.

The statement has been terminated.

Comparing Partitioned Views and Partitioned Tables

 Partitioned views and partitioned tables have several signifi cant differences. Data Defi nition
Language (DDL) differences and the need to manage more objects with partitioned views are
obvious—all participating tables must have coordinated constraints and primary keys. Less
obvious is the fact that all partitions of a partitioned table must reside in the same database,
while in the case of partitioned views the participating tables may reside not only in different
databases but also on different servers and on separate machines. Probably the least-known
discrepancies are in query compilation, optimization, and execution. During query compilation
and optimization, each branch of a partitioned view is processed separately. This is required
because the tables may reside in different databases and they may have different statistics
and indexes. Therefore, each branch may have a different query plan as well. While this may
be advantageous in some cases, in most cases the compilation cost is too high, especially
when the number of partitions is large. A partitioned view with dozens of partitions takes
 signifi cantly longer to compile and optimize compared to similar partitioned tables. When
SQL Server is compiling a query with a partitioned table, SQL Server knows the table is
 partitioned and that each partition has exactly the same attributes, including indexes and
 statistics, as the rest of the partitions. Therefore, the compilation is performed only once, and
the same plan is used for all partitions of the table.

 Partitioned tables and indexes are supported only in the SQL Server Enterprise and Developer
editions. Partitioned views are available in all editions.

 The rest of this chapter concerns partitioned tables and indexes.

Partitioned Tables

 We will start with query plans for simple queries to explain how partitioned tables appear
in SQL Server 2005 and SQL Server 2008 query plans. Then we will take a look at specifi cs
of statistics on partitioned tables and indexes. Later, we will examine partition elimination.
Because partitioned tables are usually introduced in large databases on multi-CPU computers,
we will talk about how parallelism and table partitioning work together.

C11626034.indd 640 2/20/2009 9:17:09 PM

 Chapter 11 Querying Partitioned Tables 641

Query Plans for Partitioned Tables

Query plans involving partitioned tables in SQL Server 2005 and in SQL Server 2008 are
 substantially different. I will use a modifi cation of the TPC-H table LINEITEM to illustrate the
differences. TPC-H is a decision support performance benchmark defi ned by the Transaction
Processing Performance Council (TPC). For more information about TPC and its benchmarks,
see www.tpc.org. I use the following partition function and partition scheme defi nitions as a
basis for a partitioned version of the LINEITEM table:

CREATE PARTITION FUNCTION PF2009 (SMALLDATETIME)

AS RANGE RIGHT FOR VALUES ('20090101','20090201','20090301','20090401','20090501','20090601',

'20090701','20090801','20090901','20091001','20091101','20091201','20100101');

CREATE PARTITION SCHEME PSYEAR AS PARTITION PF2009 ALL TO ([PRIMARY]);

 Next is the defi nition of our partitioned version of the LINEITEM table:

CREATE TABLE LINEITEMPART

(L_ORDERKEY INT NOT NULL,

 L_PARTKEY INT NOT NULL,

 L_SUPPKEY INT NOT NULL,

 L_LINENUMBER INT NOT NULL,

 L_QUANTITY MONEY NOT NULL,

 L_EXTENDEDPRICE MONEY NOT NULL,

 L_DISCOUNT MONEY NOT NULL,

 L_TAX MONEY NOT NULL,

 L_RETURNFLAG CHAR(1) NOT NULL,

 L_LINESTATUS CHAR(1) NOT NULL,

 L_SHIPDATE SMALLDATETIME NOT NULL,

 L_COMMITDATE SMALLDATETIME NOT NULL,

 L_RECEIPTDATE SMALLDATETIME NOT NULL,

 L_SHIPINSTRUCT CHAR(25) NOT NULL,

 L_SHIPMODE CHAR(10) NOT NULL,

 L_COMMENT VARCHAR(44) NOT NULL)

 ON PSYEAR (L_SHIPDATE);

 In TPC-H the values in columns L_SHIPDATE, L_COMMITDATE, and L_RECEIPTDATE are
spread over seven years, but in the following script, which generates data and populates
LINEITEMPART, I have modifi ed the year values so that all dates are within the year 2009.

/***

1. Get the TPC-H data generator tool DBGEN from www.tpc.org (warning: the site contains

 only the source and make files; you have to use your own C compiler to build

 the executable dbgen.exe using instructions at http://www.tpc.org/tpch/default.asp

2. Execute dgben with the following parameters to generate the table data:

 dbgen -vf -s 1 -T L

 One of the files generated is lineitem.tbl, and it contains 6+ million rows

3. Create a staging table named LINEITEM in your database, using the same definition

 as LINEITEMPART but without partitioning

/***

1. Get the TPC-H data generator tool DBGEN from www.tpc.org (warning: the site contains

 only the source and make files; you have to use your own C compiler to build

 the executable dbgen.exe using instructions at http://www.tpc.org/tpch/default.asp

2. Execute dgben with the following parameters to generate the table data:

 dbgen -vf -s 1 -T L

 One of the files generated is lineitem.tbl, and it contains 6+ million rows

3. Create a staging table named LINEITEM in your database, using the same definition

 as LINEITEMPART but without partitioning

C11626034.indd 641 2/20/2009 9:17:09 PM

642 Inside Microsoft SQL Server 2008: T-SQL Querying

4. Load the data into the staging table using the following bcp command

 bcp <dbname>..LINEITEM in "lineitem.tbl" -c -b 1000 -a 65535 -t”|” -r”|\n” -T

5. Perform the following insert to transform the dates to the year 2009

 and at the same time copy data into your partitioned table

***/

INSERT INTO LINEITEMPART SELECT

 L_ORDERKEY ,

 L_PARTKEY ,

 L_SUPPKEY ,

 L_LINENUMBER ,

 L_QUANTITY ,

 L_EXTENDEDPRICE ,

 L_DISCOUNT ,

 L_TAX ,

 L_RETURNFLAG ,

 L_LINESTATUS ,

 DATEADD (YY,2009-DATEPART(YY,L_SHIPDATE),L_SHIPDATE),

 DATEADD (YY,2009-DATEPART(YY,L_COMMITDATE),L_COMMITDATE),

 DATEADD (YY,2009-DATEPART(YY,L_RECEIPTDATE),L_RECEIPTDATE),

 L_SHIPINSTRUCT ,

 L_SHIPMODE ,

 L_COMMENT FROM LINEITEM

 Because I ran dbgen.exe with a 1-GB scale factor, the LINEITEMPART table has 6,001,215 rows.
Later in the chapter I will introduce a clustered index on the table, but let’s work with the heap
to explain query plans for the simplest scans in both SQL Server 2005 and SQL Server 2008.
Following the best practices for a sliding window scenario, the table has 14 partitions holding
12 months of data with the fi rst and last partitions empty. A partition function with empty fi rst
and last partitions makes it effi cient to remove the oldest partition and introduce a new one.

Tip If you are using the sliding window type of partitioning (adding a new partition to one end
of the partition function intervals and removing one from the opposite end), keep the fi rst and
last partitions empty.

Figure 11-1 shows the query plan for SELECT * FROM LINEITEMPART in SQL Server 2005.

FIGURE 11-1 Execution plan for simple SELECT from partitioned table in SQL Server 2005

4. Load the data into the staging table using the following bcp command

 bcp <dbname>..LINEITEM in "lineitem.tbl" -c -b 1000 -a 65535 -t”|” -r”|\n” -T

5. Perform the following insert to transform the dates to the year 2009

 and at the same time copy data into your partitioned table

***/

INSERT INTO LINEITEMPART SELECT

 L_ORDERKEY ,

 L_PARTKEY ,

 L_SUPPKEY ,

 L_LINENUMBER ,

 L_QUANTITY ,

 L_EXTENDEDPRICE ,

 L_DISCOUNT ,

 L_TAX ,

 L_RETURNFLAG ,

 L_LINESTATUS ,

 DATEADD (YY,2009-DATEPART(YY,L_SHIPDATE),L_SHIPDATE),

 DATEADD (YY,2009-DATEPART(YY,L_COMMITDATE),L_COMMITDATE),

 DATEADD (YY,2009-DATEPART(YY,L_RECEIPTDATE),L_RECEIPTDATE),

 L_SHIPINSTRUCT ,

 L_SHIPMODE ,

 L_COMMENT FROM LINEITEM

C11626034.indd 642 2/20/2009 9:17:09 PM

 Chapter 11 Querying Partitioned Tables 643

 If you rest the cursor on the Constant Scan operator, you will see 14 values, as shown in
Figure 11-2. The constants enumerate the visited partitions. Each partition is then accessed
by Table Scan, as shown in Figure 11-3. The internally generated variable PtnIds1004 is
 assigned values 1, 2, 3. . ., 14 in the Constant Scan, and then each value is used as a parameter
for the Table Scan operator.

FIGURE 11-2 Constant Scan enumerating partitions in SQL Server 2005

FIGURE 11-3 Table Scan for one partition in SQL Server 2005

 The preceding SQL Server showplan of a simple SELECT statement suggests that the lower
levels of the engine (Storage Engine) perform scans and seeks knowing nothing about
the partitioning above. They access each partition as if it is a new table after the Query
Processor has translated a single partitioned table access into a join of a list of enumerated

C11626034.indd 643 2/20/2009 9:17:09 PM

644 Inside Microsoft SQL Server 2008: T-SQL Querying

 constants and parameterized table scans. Figure 11-4 shows the plan for the same statement
against the same database in SQL Server 2008. Compared with the SQL Server 2005 plan in
Figure 11-1, this plan is missing the Constant Scan enumerating partitions and the Nested
Loops that performs the scan one partition after another.

FIGURE 11-4 Execution plan for simple SELECT from partitioned table in SQL Server 2008

 The Table Scan properties are shown in Figure 11-5. Instead of the Partition ID we have only
a True/False value for the Partitioned attribute. Observe that from the Estimated Execution
Plan in SQL Server 2008, we cannot determine how many partitions the table has.

FIGURE 11-5 Table Scan for a partitioned table in SQL Server 2008 in the Estimated Execution Plan

 We only know the table is partitioned. The apparent advantage of SQL Server 2005 Estimated
Execution Plans disappears as soon as we have to work with hundreds of partitions or access
several partitioned tables in a single query. The Actual Execution Plan in SQL Server 2008
does contain an Actual Partition Count attribute for every partitioned table scan and for
 every partitioned index scan or seek, as you can see in Figure 11-6.

 Before we start talking about statistics on partitioned tables and examining various examples
of partition elimination, let’s create a partitioned clustered index on our LINEITEMPART table:

CREATE CLUSTERED INDEX L_IDX_SHIPDATE ON LINEITEMPART (L_SHIPDATE);

C11626034.indd 644 2/20/2009 9:17:09 PM

 Chapter 11 Querying Partitioned Tables 645

FIGURE 11-6 Table Scan for partitioned table in SQL Server 2008 in Actual Execution Plan

 Notice that we didn’t indicate the use of a partition key or partition scheme in the CREATE
CLUSTERED INDEX statement. The resulting index will still be partitioned using the same partition
scheme and partition column as the original table. This behavior is by design. Even before SQL
Server introduced partitioning in SQL Server 2005, if no fi legroup is specifi ed by the CREATE
INDEX statement’s ON <fi legroup> clause, SQL Server creates the index in the same fi legroup
where the table resides. The ON <fi legroup> clause is generalized for partitioning to allow not
only ON <fi legroup> but also ON <partition_scheme_name (column_name)> in SQL Server
2005. The concept of inheriting the same physical location is preserved by using the same
 partitioning scheme and column if none is specifi ed explicitly.

Statistics on Partitioned Tables

 In most cases creating and maintaining statistics on partitioned tables is the same as if the
tables were not partitioned. All CREATE, UPDATE, and DROP statistics commands can be
 executed the same way they are executed against nonpartitioned tables. In some sense
table and index partitioning is ignored when creating, updating, and using statistics. Rows
participate in creating and maintaining statistics regardless of partition boundaries. In two
cases the context of statistics on partitioned tables require special attention: the ALTER
TABLE SWITCH command and statistics created by the CREATE INDEX statement on an index
 partitioned on nonleading column.

 ALTER TABLE SWITCH is a powerful data manipulation command introduced in SQL
Server 2005. It can be used to switch whole partitions of data in or out of a partitioned table.
One way to explain the effect of ALTER TABLE SWITCH is to visualize each table as a pointer
from its metadata description in the catalog to the physical location where the rows are
stored. Similarly, for each index the pointer is to the root of the index tree. For partitioned

C11626034.indd 645 2/20/2009 9:17:09 PM

646 Inside Microsoft SQL Server 2008: T-SQL Querying

tables and indexes each partition may reside in a different physical location. Therefore, there
is a separate pointer to each table and index partition within the metadata describing the
 partitioned table and index. ALTER TABLE SWITCH command works with two partitioned or
nonpartitioned tables. One table (or partition, if the table is partitioned) is the source, and
the other is the target of the operation. The SWITCH command causes the toggling of the
 pointers between the source and target tables. After the command is complete, the source
table and index pointers will point to the original target table and indexes and vice versa.
This is shown in Figure 11-7, for the statement ALTER TABLE T SWITCH TO PT PARTITION 2,
where T is a nonpartitioned table T with index I, and PT is a partitioned table PT with
 index PI. No data movement is involved when performing the SWITCH command. Therefore,
the execution time is the same (usually milliseconds) regardless of the size of data volume
 involved. This is the major advantage of the ALTER TABLE SWITCH command.

Pl Pll l

T T
PT PT

FIGURE 11-7 Changing metadata pointers

 SQL Server requires the target partition or nonpartitioned table to be empty before the
 command is performed. Several more conditions must be met for the SWITCH command
to work. For example, all indexes on the table must be aligned—meaning they must be
 partitioned the same way as the heap or clustered index. And if the target is a partitioned
table, there must be an implicit (a partition of a partitioned table) or explicit (column
 constraint) constraint on the source to ensure that all data in the source correctly belongs
to the target partition. You can fi nd a complete list of all SWITCH restrictions in SQL Server
Books Online under “Transferring Data Effi ciently by Using Partition Switching.”

 Almost all uses of the SWITCH command fall into one of two categories:

 1. The source is a nonpartitioned table containing data that will fi ll a partition of the
 partitioned table (the target). This is also known as “switching data into a partitioned
table.”

 2. The source is a partition of a table containing “old” data, and the target is an empty
 nonpartitioned table. This is the case of “switching data out of a partitioned table.”

C11626034.indd 646 2/20/2009 9:17:09 PM

 Chapter 11 Querying Partitioned Tables 647

 From the perspective of statistics maintenance, SWITCH IN is equivalent to inserting
data (usually a large amount) into the table, and SWITCH OUT is equivalent to deleting
data. Therefore, SQL Server treats the statistics the same way as if INSERT or DELETE has
been performed on the table. You can investigate the column rowmodctr for the heap or
 clustered index (indid 0 or 1) in the sysindexes system table before and after you perform
the switch. You’ll notice that the rowmodctr increases by the number of rows switched in
or out. Consequently, if you have auto-update statistics ON for the table, statistics will be
 automatically updated when they are needed to generate a plan for a query if any of the
 following conditions is satisfi ed:

 1. The table size has increased from 0 rows to more than 0 rows.

 2. The number of rows in the table when original statistics were gathered was 500 or
less, and one or more SWITCH commands cumulatively added or removed more than
500 rows.

 3. The table had more than 500 rows when the statistics were originally gathered, and the
rowmodctr has changed by more than 500 plus 20 percent of the number of rows in
the table.

 Note You can control this setting in several ways: the ALTER DATABASE option AUTO_UPDATE_
STATISTICS, sp_autostats, and the NORECOMPUTE option on CREATE STATISTICS and UPDATE
STATISTICS.

 If the partitioned table is large, it may take signifi cant time to update the statistics, and the
fi rst query that needs the statistics will be affected by this time increase unless you have set
your auto-statistics update to be performed asynchronously (the ALTER DATABASE option
AUTO_UPDATE_STATISTICS_ASYNC). The SWITCH commands are usually performed in regular
intervals, and often it is the only way rows are added and removed from the partitioned
table. If SWITCH operations are routine, then it may be better to turn auto-update statistics
OFF for the table and run a manual update as an integral part of the process of inserting and
deleting large amounts of rows.

 Tip If you add or remove large amounts of rows from your table periodically in separate time
windows, you should consider updating statistics for the affected table at the end of the data
change.

 Now let’s talk about statistics created by the CREATE INDEX statement on an index partitioned
on a column that is not the leading column of the index key. To understand the problem
we fi rst need to understand the history of the relationship between indexes and statistics in
SQL Server. SQL Server in releases prior to 7.0 created statistics only as a by-product of index
 creation. When an index is created, SQL Server must read the table, order all index key values,

C11626034.indd 647 2/20/2009 9:17:10 PM

648 Inside Microsoft SQL Server 2008: T-SQL Querying

and build the index tree. When statistics with FULLSCAN are created, reading the whole table
or index and sorting the columns on which the statistics are built represent the majority of
the work. But this all happens when creating an index; therefore, the additional cost to create
 statistics with FULLSCAN is minimal. Thus when any index or unique constraint is created,
SQL Server creates statistics with FULLSCAN for the index or constraint, and this logic still
 exists in SQL Server 2008. SQL Server 7.0 is the fi rst release introducing CREATE STATISTICS,
 auto-create, and auto-update statistics commands and options. The CREATE STATISTICS
 equivalent of the by-product of CREATE INDEX described earlier would require a scan of the
whole table or index, perform sort, and build statistics. This could be a very costly operation;
therefore, SQL Server by default creates statistics on large tables using sampling. The default
may be overwritten in CREATE or UPDATE STATISTICS commands, but it cannot be changed for
 auto-created and auto-updated statistics.

 The problem with statistics on partitioned indexes is specifi c to a case when the partitioning
column is not the leading column of the index key. For example, to effi ciently join our table
LINEITEMPART with a table of all suppliers, we need to create an index with the leading
 column L_SUPPKEY on LINEITEMPART. If we need to perform a SWITCH on the table as
well, all our indexes must be partitioned on the same column—in our case, L_SHIPDATE.
Therefore, the new index satisfying these conditions could be defi ned as follows:

CREATE INDEX L_IDX_SUPPKEY ON LINEITEMPART (L_SUPPKEY) ON PSYEAR (L_SHIPDATE);

 Because our index is partitioned on L_SHIPDATE, the same value of L_SUPPKEY may appear
in more than one partition if the supplier shipped goods we track in different months. SQL
Server is creating partitioned indexes on partitioned tables by creating a separate index
tree for each of the partitions. Therefore, we will have a completely sorted sequence of
L_SUPPKEY in each of the partitions, but the same supplier—and thus the same value of
L_SUPPKEY—may appear in more than one partition. In the specifi c case where an index
is partitioned on one column, but another column is the leading key of the index, SQL
Server 2005 and SQL Server 2008 cannot create correct histograms during index creation.
This may be fi xed in the upcoming service packs or releases of SQL Server.

 Tip Whenever you build or rebuild a partitioned index that is partitioned on a column that is
not the leading column of the index, you should run update statistics on the index immediately
after you build or rebuild this index.

 The following query against metadata tables identifi es all partitioned indexes in a database that
are partitioned on a column different from the leading column of the index key.

SELECT OBJECT_NAME(IX.object_id) AS table_name, IX.name AS index_name

FROM sys.index_columns AS IC

 JOIN sys.indexes AS IX

 ON IC.object_id = IX.object_id AND IC.index_id = ix.index_id

WHERE IC.partition_ordinal = 1 AND IC.key_ordinal <> 1;

C11626034.indd 648 2/20/2009 9:17:10 PM

 Chapter 11 Querying Partitioned Tables 649

Partition Elimination

Partition elimination is a technique to avoid accessing partitions that cannot contain any
rows contributing to the result. Most frequently this is accomplished by a WHERE clause
 using predicates that restrict the values of the partitioning column. Nested Loops joins have
a similar effect, with an equality join predicate on the partitioning column . The outer row
 contains the partitioning column value because we are joining on it. The value determines
single partition where we seek for the match for the outer row.

Let’s investigate the query plan for the SELECT query in Listing 11-1.

LISTING 11-1 SELECT query with simple predicate on its partitioning column

SELECT * FROM LINEITEMPART WHERE L_SHIPDATE = '20090301';

Because we specify the value of L_SHIPDATE in an equality predicate in the WHERE clause,
and L_SHIPDATE is the partitioning column, we know that all resulting rows reside in
a single partition. Figure 11-8 illustrates this query’s executionplan, which is the same
for both SQL Server 2005 and SQL Server 2008. But the interpretation is very different.
Because we don’t see the partition enumerating Constant Scan in the SQL Server 2005
plan (as you saw earlier in Figure 11-1), we know we are accessing only a single partition
if this is SQL Server 2005 plan. However, in SQL Server 2008, partition-enumerating
Constant Scans are not displayed graphically. Therefore, we cannot tell by looking only at
Figure 11-8 whether the partition elimination happened. For this we have to investigate
the properties of the Clustered Index Seek operator in the SQL Server Management Studio
(SSMS) window.

FIGURE 11-8 Query plan for index seek into partitioned table with equal predicate
on the partitioning column

If you right-click the Clustered Index Seek icon in the SQL Server 2008 query plan, a dialog
box pops up with several actions (for example, Zoom In, Zoom Out); the last action is
Properties. Choose Properties, and the properties of the Clustered Index Seek operator are
displayed in a separate Properties window in Management Studio. After expanding several
levels under the Seek Predicates in the Properties Window, the Properties dialog box shown
in Figure 11-9 opens.

SELECT * FROM LINEITEMPART WHERE L_SHIPDATE = '20090301';

C11626034.indd 649 2/20/2009 9:17:10 PM

650 Inside Microsoft SQL Server 2008: T-SQL Querying

FIGURE 11-9 Clustered Index Seek operator properties

 Tip You can expand all the nodes below a selected expandable node by typing *.

 Figure 11-9 shows two Range Columns ([1] and [2]) and two corresponding Range
Expressions. The fi rst Range Column is generated by SQL Server to perform partition
 elimination. We recognize it by its internally generated PtnId1000 name. The second Range
Column is generated for the predicate L_SHIPDATE= ‘20090301’ in the query. The fi rst
Range Expression is not shown completely in Figure 11-9, but it can be seen in a separate
 pop-up window, and its content is shown in Listing 11-2. The second Range Expression
is Scalar Operator(CONVERT_IMPLICIT(smalldatetime,[@1],0)) and it represents the value
of constant ‘20090301’ converted to the smalldatetime type. Observe that both Range
Expressions are referring to [@1] instead of the constant ‘20090301’. This is because the
query was auto- parameterized by SQL Server, and its query plan can be used for any other
constant in the place of ‘20090301’.

 Evaluating the fi rst Range Expression for Range Column PtnId1000 generates the correct
 partition number, and only this partition is accessed by the Clustered Index Seek operator.
The second Range Expression is used to seek the partition of the clustered index for all rows
with the correct values of L_SHIPDATE. If the query uses a parameter value instead of the
constant ‘20090301’, the query plan will be exactly the same, except that instead of [@1], you
will see the parameter name.

C11626034.indd 650 2/20/2009 9:17:10 PM

 Chapter 11 Querying Partitioned Tables 651

LISTING 11-2 First Scalar Operator Range Expression from Index Seek in Figure 11-9

Scalar Operator(RangePartitionNew(CONVERT_IMPLICIT(smalldatetime,[@1],0),(1),'2009-01-01

00:00:00.000','2009-02-01 00:00:00.000','2009-03-01 00:00:00.000','2009-04-01

00:00:00.000','2009-05-01 00:00:00.000','2009-06-01 00:00:00.000','2009-07-01

00:00:00.000','2009-08-01 00:00:00.000','2009-09-01 00:00:00.000','2009-10-01

00:00:00.000','2009-11-01 00:00:00.000','2009-12-01 00:00:00.000','2010-01-01

00:00:00.000'))

Listing 11-3 contains a query in which we use the BETWEEN predicate on the partitioning
column.

LISTING 11-3 A SELECT query that uses the BETWEEN predicate

SELECT * FROM LINEITEMPART WHERE L_SHIPDATE BETWEEN '20090301' AND '20090531';

In this case, the SQL Server 2005 and SQL Server 2008 query plans are different. Let’s fi rst
look at the SQL Server 2005 plan, shown in Figure 11-10.

FIGURE 11-10 SQL Server 2005 plan for the query in Listing 11-3

Because this query is accessing more than one partition, we see again the Constant Scan
 enumerating the accessed partitions in the query plan. Figure 11-11 shows the properties of the
Constant Scan operator, which can be displayed by resting the cursor on the operator in SSMS.

FIGURE 11-11 Properties for the Constant Scan operator in Figure 11-10

Scalar Operator(RangePartitionNew(CONVERT_IMPLICIT(smalldatetime,[@1],0),(1),'2009-01-01

00:00:00.000','2009-02-01 00:00:00.000','2009-03-01 00:00:00.000','2009-04-01

00:00:00.000','2009-05-01 00:00:00.000','2009-06-01 00:00:00.000','2009-07-01

00:00:00.000','2009-08-01 00:00:00.000','2009-09-01 00:00:00.000','2009-10-01

00:00:00.000','2009-11-01 00:00:00.000','2009-12-01 00:00:00.000','2010-01-01

00:00:00.000'))

SELECT * FROM LINEITEMPART WHERE L_SHIPDATE BETWEEN '20090301' AND '20090531';

C11626034.indd 651 2/20/2009 9:17:10 PM

652 Inside Microsoft SQL Server 2008: T-SQL Querying

 The Values list shows that partition numbers 4, 5, and 6 are accessed to get the result of the
query.

 In SQL Server 2008, the plan for the query in Listing 11-3 looks exactly the same as the plan
in Figure 11-8. Deeper investigation of the properties of the Clustered Index Seek reveals
the difference: For the BETWEEN query we will see two different Range Expressions for
Range Column PtnId1000. One is called “Start,” and the other is called “End.” The Range
Expressions are, respectively ,

Scalar Operator(RangePartitionNew(CONVERT_IMPLICIT(smalldatetime,[@1],0),(1),'2009-01-01

00:00:00.000','2009-02-01 00:00:00.000','2009-03-01 00:00:00.000','2009-04-01

00:00:00.000','2009-05-01 00:00:00.000','2009-06-01 00:00:00.000','2009-07-01

00:00:00.000','2009-08-01 00:00:00.000','2009-09-01 00:00:00.000','2009-10-01

00:00:00.000','2009-11-01 00:00:00.000','2009-12-01 00:00:00.000','2010-01-01

00:00:00.000'))

Scalar Operator(RangePartitionNew(CONVERT_IMPLICIT(smalldatetime,[@2],0),(1),'2009-01-01

00:00:00.000','2009-02-01 00:00:00.000','2009-03-01 00:00:00.000','2009-04-01

00:00:00.000','2009-05-01 00:00:00.000','2009-06-01 00:00:00.000','2009-07-01

00:00:00.000','2009-08-01 00:00:00.000','2009-09-01 00:00:00.000','2009-10-01

00:00:00.000','2009-11-01 00:00:00.000','2009-12-01 00:00:00.000','2010-01-01

00:00:00.000'))

 As in the case of the equality predicate, the query is auto-parameterized (the auto-generated
parameter [@1] replaces the Start constant ‘20090301’ and [@2] replaces the End constant
‘20090531’). Therefore, the execution plan may be reused for various values of the range
constants.

Partitioning and Parallelism

 Partitioning is usually introduced for large tables processed on big multi-CPU servers.
Therefore, it is important to pay attention to parallelism of queries against partitioned tables.
When investigating parallelism, we should fi rst determine whether a parallel query plan is
generated at all. Subsequently we can evaluate execution effi ciency of the query from the
point of view of parallelism.

 In this section I will explain how to recognize what parts of a query plan are parallel, what
special considerations we should have in the context of partitioning and parallelism, and
how to investigate execution effi ciency for parallel query plans. I will also give the details
of one substantial change in parallel plan processing for partitioned tables between
SQL Server 2005 and SQL Server 2008.

 Take a look back at the query plan in Figure 11-10 for our BETWEEN query in SQL
Server 2005. It has four parallel operators as well as two operators without parallelism
(Constant Scan and SELECT). The parallel operators are indicated by a round yellow icon
with two arrows at the base of the operator icon. A parallel query plan has at least one
Parallelism operator. Figure 11-10 shows two kinds of Parallelism operators: Gather Streams

C11626034.indd 652 2/20/2009 9:17:10 PM

 Chapter 11 Querying Partitioned Tables 653

on the left and Distribute Streams after the Constant Scan operator. The Distribute Streams
 operator creates multiple streams from a single input data stream. The Gather Streams
 operator merges several input streams into single output. There is one more type of
Parallelism operator that does not occur in our example. It is called Redistribute Streams,
and it has multiple input and multiple output data streams.

 Parallel execution of SQL Server query plan is performed by distributing single stream of rows
into several streams, each processed by a separate thread. The distribution can be initiated
either by a parallel scan or parallel seek operator, or by the afore mentioned Distribute
Streams Parallelism operator. The effectiveness of parallel processing is then determined by
how equally the work is distributed into the parallel streams. In some cases, the Gather and
Redistribute Streams operators must preserve order, and this may introduce stalling because
they can produce a new row only when they have received at least one row or end-of-stream
indication from all input streams.

 SQL Server considers query parallelism only if there is more than one processor (multiple CPUs,
cores, hyperthreading, or any combination of these) available to SQL Server. Query Optimizer
then decides for each individual query whether to generate a parallel plan. For low-cost
 queries, the overhead of parallelism may be bigger than the gain. Therefore, parallelism is not
considered for queries with estimated cost less than 5. (You may see parallel query plans with
an estimated cost lower than 5 if the parallelism is what caused the plan’s cost to drop below 5.)

 The degree of parallelism of a query with a parallel plan in SQL Server is the maximum
number of active threads executing the query. The number of worker threads required for
parallel query is usually much higher because every Parallelism operator creates a thread
boundary—each input stream and output stream is assigned a separate worker thread. The
degree of parallelism restricts the number of active worker threads at any point of single query
execution.

 The same parallel query plan may be executed with different degrees of parallelism.
SQL Server decides at the time of query startup what degree of parallelism to use. This is
 affected by the available resources at that moment. Therefore, the same query with a single
 parallel query plan may be executed with different degrees of parallelism at different times.
You can use either the Degree of Parallelism Event in the SQL Server’s Performance Event
profi ler category or the Actual Execution Plan captured in SSMS or profi ler to monitor the
actual degree of parallelism for a particular instance of query execution.

 You can use sp_confi gure with the ‘max degree or parallelism’ option to lower the maximum
considered by SQL Server for the whole instance. An individual query can include the clause
OPTION (MAXDOP <value>) to change the maximum for its own execution.

 The query in Listing 11-4 demonstrates a major discrepancy in parallel query execution for
partitioned tables between SQL Server 2005 and SQL Server 2008. As a by-product of the
 explanation, we will learn how to investigate the effi ciency of parallelism.

C11626034.indd 653 2/20/2009 9:17:10 PM

654 Inside Microsoft SQL Server 2008: T-SQL Querying

LISTING 11-4 Query to investigate parallel execution

SELECT COUNT(*) FROM LINEITEMPART WHERE L_SHIPDATE BETWEEN '20090301' AND '20090531';

First let’s look at the SQL Server 2005 query plan. Because we want to know what was
happening during the execution, we have to turn on Include Actual Execution Plan in
Management Studio and run the query. The result is the plan shown in Figure 11-12. The
 actual plan looks the same as the estimated plan, but it contains additional information from
the execution inside the properties of individual operators and connecting edges.

FIGURE 11-12 SQL Server 2005 Actual Execution Plan for the query in Listing 11-4

Let’s go over the plan in Figure 11-12 in the order of execution from right to left. By now
we know that the Constant Scan enumerates the partitions the query has to access in
SQL Server 2005. It produces three constant values—IDs for partitions 4, 5, and 6. We are
running the query with degree of parallelism 8; therefore, the Distribute Streams Parallelism
operator has threads ready to accept values on the output. But there are only three values
on input, and while they end up on three different threads, the remaining fi ve threads are
empty. Therefore, the query executes only three (and not eight) concurrent seek loops into
the LINITEMPART.L_IDX_SHIPDATE clustered index. The Nested Loops join is ready to be
 performed concurrently on eight threads, but only three have input values, so the remaining
fi ve threads stay idle. Figure 11-13 displays the properties of the edge exiting from the
Nested Loops join.

Note The Properties window in Figure 11-13 incorrectly enumerates threads. Thread 0 is
not used.

SELECT COUNT(*) FROM LINEITEMPART WHERE L_SHIPDATE BETWEEN '20090301' AND '20090531';

C11626034.indd 654 2/20/2009 9:17:10 PM

 Chapter 11 Querying Partitioned Tables 655

FIGURE 11-13 SQL Server 2005 Actual Number of Rows generated from the Nested Loops join

 Following the Nested Loops join is a parallel Stream Aggregate operator, which we also call
Partial Aggregation. Because we are performing COUNT(*), this operator is prepared to count
the rows in each of the eight streams. Only three streams have any rows and return a nonzero
number. The remaining fi ve will return no rows without doing any work except to check for
the end of stream. The next Gather Streams Parallelism operator merges the eight streams,
where fi ve are empty and the remaining three have one Partial Aggregate value, into a
single stream that fl ows into another Stream Aggregate operator called Global Aggregation
 because it is producing a fi nal count from partial counts generated earlier by the Parallel
Partial Aggregations.

 Let’s turn our attention to the SQL Server 2008 plan for the same query in Listing 11-4
against the same table LINEITEMPART. The Actual Execution Plan is shown in Figure 11-14.

FIGURE 11-14 SQL Server 2008 Actual Execution Plan for the query in Listing 11-4

 The plan is similar to the SQL Server 2005 plan shown in Figure 11-12. It performs partial
 aggregation on eight streams and then performs global aggregation. But if we investigate

C11626034.indd 655 2/20/2009 9:17:10 PM

656 Inside Microsoft SQL Server 2008: T-SQL Querying

the properties of the edge exiting the Clustered Index Seek operator, we see a very different
row distribution compared to the SQL Server 2005 row distribution. Figure 11-15 shows that
each of the eight threads from Thread 1 to Thread 8 has processed some rows. Therefore, the
SQL Server 2008 query plan is executing more effi ciently.

FIGURE 11-15 SQL Server 2008 Actual Number of Rows generated from the Nested Loops join

 Let’s summarize and generalize our investigation of parallel plans on partitioned tables in
SQL Server 2005 and 2008.

 In SQL Server 2005, for queries that access partitioned table or index, the parallelism is driven
by the partitions. Each individual table or index partition is processed by a separate single
thread. Therefore, if there are fewer partitions than degree of parallelism, some of the parallel
threads will end up idle. That was the case with accessing only three partitions on an eight-core
machine. On the other hand, if there are more partitions, some will be processed only after
one of the previous partitions has been handled. But at most, one thread is always active on
one partition at a time. There is a signifi cant exception to this rule: If SQL Server 2005 knows
at compile time that only a single partition of partitioned table is accessed, a fully parallel plan
is considered and potentially generated exactly as if accessing a nonpartitioned table. The at
 compile time exception is important when designing your queries using parameters in SQL
Server 2005. For example, if instead of the existing WHERE clause in the query in Listing 11-4

WHERE L_SHIPDATE BETWEEN '20090301' AND '20090531'

 we access only a single month, and therefore a single partition:

WHERE L_SHIPDATE BETWEEN '20090301' AND '20090331'

C11626034.indd 656 2/20/2009 9:17:10 PM

 Chapter 11 Querying Partitioned Tables 657

 the SQL Server 2005 query plan will look exactly like the SQL Server 2008 plan in Figure 11-14,
and all threads (eight in our case) will be used during query execution. But if we use parameters
instead of the constants

WHERE L_SHIPDATE BETWEEN @date1 AND @date2

 SQL Server has to generate the Constant Scan with Nested Loop plan, because we don’t know
at compile time whether only one partition or more than one partition is accessed. If, for
 example, the value ‘20090301’ is then substituted for @date1 and ‘20090331’ is substituted
for @date2, the query will still be executed on a single thread instead of eight threads, as
were used when the query was written without parameters!

 The preceding problems with parallelism on partitioned tables were addressed when
 developing SQL Server 2008 by implementing a round-robin strategy when assigning
threads to partitions. Therefore, the same query plan is used for one or many partitions and
the assignment of threads is adjusted at query startup time.

Conclusion

 When we write queries accessing partitioned tables, we should fi rst pay attention to all the
 normal pitfalls surrounding query plan selection. In addition, partitioned tables bring further
challenges in the area of partition elimination, statistics, and parallelism. When writing
 queries against partitioned tables, pay special attention to partition elimination (for example,
ask whether your query provides enough information so that only some partitions will be
 accessed) and how parallelism works across multiple partitions. We have learned that the
best way to investigate any issue affecting query execution is to analyze the Actual Execution
Plans that contain information about query execution.

C11626034.indd 657 2/20/2009 9:17:10 PM

C11626034.indd 658 2/20/2009 9:17:10 PM

 659

Chapter 12

 Graphs, Trees, Hierarchies,
and Recursive Queries

 This chapter covers treatment of specialized data structures called graphs, trees, and
 hierarchies in Microsoft SQL Server using T-SQL. Of the three, probably the most commonly
used among T-SQL programmers is the hierarchy, and this term is sometimes used even
when the data structure involved is not really a hierarchy. I’ll start with a terminology section
describing each data structure to clear the confusion.

 Treatment (representation, maintenance, and manipulation) of graphs, trees, and hierarchies in
an RDBMS is far from trivial. I’ll discuss two main approaches, one based on iterative/ recursive
logic and another based on materializing extra information in the database that describes
the data structure.

 This chapter also covers the HIERARCHYID data type introduced in SQL Server 2008, which is
designed to help in maintaining and querying graphs.

Terminology

 Note The explanations in this section are based on defi nitions from the National Institute
of Standards and Technology (NIST). I made some revisions and added some narrative to the
 original defi nitions to make them less formal and keep them relevant to the subject area (T-SQL).

 For more complete and formal defi nitions of graphs, trees, and related terms, please refer to
http://www.nist.gov/dads/.

Graphs

 A graph is a set of items connected by edges. Each item is called a vertex or node. An edge is
a connection between two vertices of a graph.

 A graph is a catchall term for a data structure, and many scenarios can be represented
as graphs—for example, employee organizational charts, bills of materials (BOMs), road
 systems, and so on. To narrow down the type of graph to a more specifi c case, you need to
identify its properties:

 Directed/Undirected In a directed graph (also known as a digraph), the two vertices of an
edge have a direction or order. For example, in a BOM graph for coffee shop products,

C12626034.indd 659 2/20/2009 8:20:31 PM

660 Inside Microsoft SQL Server 2008: T-SQL Querying

Latte contains Milk and not the other way around. The graph has an edge (containment
relationship) for the pair of vertices/items (Latte, Milk) but has no edge for the pair
(Milk, Latte).

 In an undirected graph, each edge simply connects two vertices, with no particular
 order. For example, a road system graph could have a road between Los Angeles
and San Francisco. The edge (road) between the vertices (cities) Los Angeles and San
Francisco can be expressed as either of the following: {Los Angeles, San Francisco} or
{San Francisco, Los Angeles}.

 Acyclic An acyclic graph is a graph with no cycle—that is, no path that starts and ends at
the same vertex—for example, employee organizational charts and BOMs. A directed
acyclic graph is also known as a DAG.

 If the graph has paths that start and end at the same vertex—as there usually are in
road systems—the graph is not acyclic.

 Connected A connected graph is a graph where there’s a path between every pair of
 vertices—for example, employee organizational charts.

Trees

 A tree is a special kind of graph—a connected, acyclic graph.

 A rooted tree is accessed beginning at the root node. Each node is either a leaf or an internal
node. An internal node has one or more child nodes and is called the parent of its child
nodes. All children of the same node are siblings. Contrary to the appearance in a physical
tree, the root is usually depicted at the top of the structure, and the leaves are depicted at
the bottom, as illustrated in Figure 12-1.

parent

child

leaf
node siblings

internal
node

root

FIGURE 12-1 A tree

C12626034.indd 660 2/20/2009 8:20:32 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 661

 A forest is a collection of one or more trees—for example, forum discussions can be represented
as a forest where each thread is a tree.

Hierarchies

 Some scenarios can be described as hierarchies and modeled as directed acyclic graphs—for
example, inheritance among types/classes in object-oriented programming and reports-to
relationships in an employee organizational chart. In the former, the edges of the graph
locate the inheritance. Classes can inherit methods and properties from other classes (and
possibly from multiple classes). In the latter, the edges represent the reports-to relationship
between employees. Note the acyclic, directed nature of these scenarios. The management
chain of responsibility in a company cannot go around in circles, for example.

Scenarios

 Throughout the chapter, I will use three scenarios: Employee Organizational Chart (tree,
 hierarchy); Bill Of Materials, or BOM (DAG); and Road System (undirected cyclic graph). Note
what distinguishes a (directed) tree from a DAG. All trees are DAGs, but not all DAGs are
trees. In a tree, an item can have at most one parent; in some management hierarchies, an
employee can have more than one manager.

Employee Organizational Chart

 The employee organizational chart that I will use is depicted graphically in Figure 12-2.

David
1

Eitan
2

Seraph
4

Jiru
5

Steve
6

Lilach
8

Rita
9

Sean
10

Emilia
12

Michael
13

Didi
14

Gabriel
11

Aaron
7

Ina
3

FIGURE 12-2 Employee organizational chart

 To create the Employees table and populate it with sample data, run the code in Listing 12-1.
The contents of the Employees table are shown in Table 12-1.

C12626034.indd 661 2/20/2009 8:20:32 PM

662 Inside Microsoft SQL Server 2008: T-SQL Querying

LISTING 12-1 Data defi nition language and sample data for the Employees table

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.Employees') IS NOT NULL

 DROP TABLE dbo.Employees;

GO

CREATE TABLE dbo.Employees

(

 empid INT NOT NULL PRIMARY KEY,

 mgrid INT NULL REFERENCES dbo.Employees,

 empname VARCHAR(25) NOT NULL,

 salary MONEY NOT NULL,

 CHECK (empid <> mgrid)

);

INSERT INTO dbo.Employees(empid, mgrid, empname, salary) VALUES

 (1, NULL, 'David' , $10000.00),

 (2, 1, 'Eitan' , $7000.00),

 (3, 1, 'Ina' , $7500.00),

 (4, 2, 'Seraph' , $5000.00),

 (5, 2, 'Jiru' , $5500.00),

 (6, 2, 'Steve' , $4500.00),

 (7, 3, 'Aaron' , $5000.00),

 (8, 5, 'Lilach' , $3500.00),

 (9, 7, 'Rita' , $3000.00),

 (10, 5, 'Sean' , $3000.00),

 (11, 7, 'Gabriel', $3000.00),

 (12, 9, 'Emilia' , $2000.00),

 (13, 9, 'Michael', $2000.00),

 (14, 9, 'Didi' , $1500.00);

CREATE UNIQUE INDEX idx_unc_mgrid_empid ON dbo.Employees(mgrid, empid);

 TABLE 12-1 Contents of Employees Table

 empid mgrid empname salary

 1 NULL David 10000.0000

 2 1 Eitan 7000.0000

 3 1 Ina 7500.0000

 4 2 Seraph 5000.0000

 5 2 Jiru 5500.0000

 6 2 Steve 4500.0000

 7 3 Aaron 5000.0000

 8 5 Lilach 3500.0000

 9 7 Rita 3000.0000

 10 5 Sean 3000.0000

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.Employees') IS NOT NULL

 DROP TABLE dbo.Employees;

GO

CREATE TABLE dbo.Employees

(

 empid INT NOT NULL PRIMARY KEY,

 mgrid INT NULL REFERENCES dbo.Employees,

 empname VARCHAR(25) NOT NULL,

 salary MONEY NOT NULL,

 CHECK (empid <> mgrid)

);

INSERT INTO dbo.Employees(empid, mgrid, empname, salary) VALUES

 (1, NULL, 'David' , $10000.00),

 (2, 1, 'Eitan' , $7000.00),

 (3, 1, 'Ina' , $7500.00),

 (4, 2, 'Seraph' , $5000.00),

 (5, 2, 'Jiru' , $5500.00),

 (6, 2, 'Steve' , $4500.00),

 (7, 3, 'Aaron' , $5000.00),

 (8, 5, 'Lilach' , $3500.00),

 (9, 7, 'Rita' , $3000.00),

 (10, 5, 'Sean' , $3000.00),

 (11, 7, 'Gabriel', $3000.00),

 (12, 9, 'Emilia' , $2000.00),

 (13, 9, 'Michael', $2000.00),

 (14, 9, 'Didi' , $1500.00);

CREATE UNIQUE INDEX idx_unc_mgrid_empid ON dbo.Employees(mgrid, empid);

empid mgrid empname salary

C12626034.indd 662 2/20/2009 8:20:32 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 663

TABLE 12-1 Contents of Employees Table

empid mgrid empname salary

 11 7 Gabriel 3000.0000

 12 9 Emilia 2000.0000

 13 9 Michael 2000.0000

 14 9 Didi 1500.0000

 The Employees table represents a management hierarchy as an adjacency list, where the
manager and employee represent the parent and child nodes, respectively.

Bill of Materials (BOM)

 I will use a BOM of coffee shop products, which is depicted graphically in Figure 12-3.

Cup Cover
6

Black Tea
1

Tea Shot
10

Tea Leaves
13

Assembly Part

Coffee
Beans 17

Water
14

Sugar Bag
15

Ground
Coffee 16

Milk
11

Coffee Shot
12

White Tea
2

Latte
3

Espresso
4

Double
Espresso 5

Regular
Cup 7

Stirrer
8

Espresso
Cup 9

1

1

5g 20ml

230ml 205ml

20ml

25ml 225ml 1 1 21

1 1 1 1 1 11

15g

15g

Contains

FIGURE 12-3 Bill of Materials (BOM)

 To create the Parts and BOM tables and populate them with sample data, run the code in
Listing 12-2. The contents of the Parts and BOM tables are shown in Tables 12-2 and 12-3.

 Notice that the fi rst scenario (employee organizational chart) requires only one table because
it is modeled as a tree; both an edge (manager, employee) and a vertex (employee) can be
represented by the same row. The BOM scenario requires two tables because it is modeled as
a DAG, where multiple paths can lead to each node; an edge (assembly, part) is represented
by a row in the BOM table, and a vertex (part) is represented by a row in the Parts table.

empid mgrid empname salary

C12626034.indd 663 2/20/2009 8:20:32 PM

664 Inside Microsoft SQL Server 2008: T-SQL Querying

LISTING 12-2 Data defi nition language and sample data for the Parts and BOM tables

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.BOM') IS NOT NULL

 DROP TABLE dbo.BOM;

GO

IF OBJECT_ID('dbo.Parts') IS NOT NULL

 DROP TABLE dbo.Parts;

GO

CREATE TABLE dbo.Parts

(

 partid INT NOT NULL PRIMARY KEY,

 partname VARCHAR(25) NOT NULL

);

INSERT INTO dbo.Parts(partid, partname) VALUES

 (1, 'Black Tea'),

 (2, 'White Tea'),

 (3, 'Latte'),

 (4, 'Espresso'),

 (5, 'Double Espresso'),

 (6, 'Cup Cover'),

 (7, 'Regular Cup'),

 (8, 'Stirrer'),

 (9, 'Espresso Cup'),

 (10, 'Tea Shot'),

 (11, 'Milk'),

 (12, 'Coffee Shot'),

 (13, 'Tea Leaves'),

 (14, 'Water'),

 (15, 'Sugar Bag'),

 (16, 'Ground Coffee'),

 (17, 'Coffee Beans');

CREATE TABLE dbo.BOM

(

 partid INT NOT NULL REFERENCES dbo.Parts,

 assemblyid INT NULL REFERENCES dbo.Parts,

 unit VARCHAR(3) NOT NULL,

 qty DECIMAL(8, 2) NOT NULL,

 UNIQUE(partid, assemblyid),

 CHECK (partid <> assemblyid)

);

INSERT INTO dbo.BOM(partid, assemblyid, unit, qty) VALUES

 (1, NULL, 'EA', 1.00),

 (2, NULL, 'EA', 1.00),

 (3, NULL, 'EA', 1.00),

 (4, NULL, 'EA', 1.00),

 (5, NULL, 'EA', 1.00),

 (6, 1, 'EA', 1.00),

 (7, 1, 'EA', 1.00),

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.BOM') IS NOT NULL

 DROP TABLE dbo.BOM;

GO

IF OBJECT_ID('dbo.Parts') IS NOT NULL

 DROP TABLE dbo.Parts;

GO

CREATE TABLE dbo.Parts

(

 partid INT NOT NULL PRIMARY KEY,

 partname VARCHAR(25) NOT NULL

);

INSERT INTO dbo.Parts(partid, partname) VALUES

 (1, 'Black Tea'),

 (2, 'White Tea'),

 (3, 'Latte'),

 (4, 'Espresso'),

 (5, 'Double Espresso'),

 (6, 'Cup Cover'),

 (7, 'Regular Cup'),

 (8, 'Stirrer'),

 (9, 'Espresso Cup'),

 (10, 'Tea Shot'),

 (11, 'Milk'),

 (12, 'Coffee Shot'),

 (13, 'Tea Leaves'),

 (14, 'Water'),

 (15, 'Sugar Bag'),

 (16, 'Ground Coffee'),

 (17, 'Coffee Beans');

CREATE TABLE dbo.BOM

(

 partid INT NOT NULL REFERENCES dbo.Parts,

 assemblyid INT NULL REFERENCES dbo.Parts,

 unit VARCHAR(3) NOT NULL,

 qty DECIMAL(8, 2) NOT NULL,

 UNIQUE(partid, assemblyid),

 CHECK (partid <> assemblyid)

);

INSERT INTO dbo.BOM(partid, assemblyid, unit, qty) VALUES

 (1, NULL, 'EA', 1.00),

 (2, NULL, 'EA', 1.00),

 (3, NULL, 'EA', 1.00),

 (4, NULL, 'EA', 1.00),

 (5, NULL, 'EA', 1.00),

 (6, 1, 'EA', 1.00),

 (7, 1, 'EA', 1.00),

C12626034.indd 664 2/20/2009 8:20:32 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 665

 (10, 1, 'EA', 1.00),

 (14, 1, 'mL', 230.00),

 (6, 2, 'EA', 1.00),

 (7, 2, 'EA', 1.00),

 (10, 2, 'EA', 1.00),

 (14, 2, 'mL', 205.00),

 (11, 2, 'mL', 25.00),

 (6, 3, 'EA', 1.00),

 (7, 3, 'EA', 1.00),

 (11, 3, 'mL', 225.00),

 (12, 3, 'EA', 1.00),

 (9, 4, 'EA', 1.00),

 (12, 4, 'EA', 1.00),

 (9, 5, 'EA', 1.00),

 (12, 5, 'EA', 2.00),

 (13, 10, 'g' , 5.00),

 (14, 10, 'mL', 20.00),

 (14, 12, 'mL', 20.00),

 (16, 12, 'g' , 15.00),

 (17, 16, 'g' , 15.00);

TABLE 12-2 Contents of Parts Table

partid partname

1 Black Tea

2 White Tea

3 Latte

4 Espresso

5 Double Espresso

6 Cup Cover

7 Regular Cup

8 Stirrer

9 Espresso Cup

10 Tea Shot

11 Milk

12 Coffee Shot

13 Tea Leaves

14 Water

15 Sugar Bag

16 Ground Coffee

17 Coffee Beans

 (10, 1, 'EA', 1.00),

 (14, 1, 'mL', 230.00),

 (6, 2, 'EA', 1.00),

 (7, 2, 'EA', 1.00),

 (10, 2, 'EA', 1.00),

 (14, 2, 'mL', 205.00),

 (11, 2, 'mL', 25.00),

 (6, 3, 'EA', 1.00),

 (7, 3, 'EA', 1.00),

 (11, 3, 'mL', 225.00),

 (12, 3, 'EA', 1.00),

 (9, 4, 'EA', 1.00),

 (12, 4, 'EA', 1.00),

 (9, 5, 'EA', 1.00),

 (12, 5, 'EA', 2.00),

 (13, 10, 'g' , 5.00),

 (14, 10, 'mL', 20.00),

 (14, 12, 'mL', 20.00),

 (16, 12, 'g' , 15.00),

 (17, 16, 'g' , 15.00);

partid partname

C12626034.indd 665 2/20/2009 8:20:32 PM

666 Inside Microsoft SQL Server 2008: T-SQL Querying

TABLE 12-3 Contents of BOM Table

partid assemblyid unit qty

 1 NULL EA 1.00

 2 NULL EA 1.00

 3 NULL EA 1.00

 4 NULL EA 1.00

 5 NULL EA 1.00

 6 1 EA 1.00

 7 1 EA 1.00

 10 1 EA 1.00

 14 1 mL 230.00

 6 2 EA 1.00

 7 2 EA 1.00

 10 2 EA 1.00

 14 2 mL 205.00

 11 2 mL 25.00

 6 3 EA 1.00

 7 3 EA 1.00

 11 3 mL 225.00

 12 3 EA 1.00

 9 4 EA 1.00

 12 4 EA 1.00

 9 5 EA 1.00

 12 5 EA 2.00

 13 10 g 5.00

 14 10 mL 20.00

 14 12 mL 20.00

 16 12 g 15.00

 17 16 g 15.00

 BOM represents a directed acyclic graph (DAG). It holds the parent and child node IDs in the
assemblyid and partid attributes, respectively. BOM also represents a weighted graph, where
a weight/number is associated with each edge. In our case, that weight is the qty attribute
that holds the quantity of the part within the assembly (assembly of sub parts). The unit
 attribute holds the unit of the qty (EA for each, g for gram, mL for milliliter, and so on).

Road System

The Road System scenario that I will use is that of several major cities in the United States,
and it is depicted graphically in Figure 12-4. In this scenario, I’ve chosen an International Air
Transport Association (IATA) code to identify each city.

partid assemblyid unit qty

C12626034.indd 666 2/20/2009 8:20:32 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 667

1650 800

1190

665

44
0

2015

81
0

38
5

795

35
9

FAI

SEA

LAX

IAH

MIA

ATL

JFK

MSP

ANC

1335

1270

SFO

1025
DEN

1120

79
5

918

86
5

71
5

600

MCI

525

ORD410

806

FIGURE 12-4 Road system

To create the Cities and Roads tables and populate them with sample data, run the code in
Listing 12-3. The contents of the Cities and Roads tables are shown in Tables 12-4 and 12-5.

LISTING 12-3 Data defi nition language and sample data for the Cities and Roads tables

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.Roads') IS NOT NULL

 DROP TABLE dbo.Roads;

GO

IF OBJECT_ID('dbo.Cities') IS NOT NULL

 DROP TABLE dbo.Cities;

GO

CREATE TABLE dbo.Cities

(

 cityid CHAR(3) NOT NULL PRIMARY KEY,

 city VARCHAR(30) NOT NULL,

 region VARCHAR(30) NULL,

 country VARCHAR(30) NOT NULL

);

INSERT INTO dbo.Cities(cityid, city, region, country) VALUES

 ('ATL', 'Atlanta', 'GA', 'USA'),

 ('ORD', 'Chicago', 'IL', 'USA'),

 ('DEN', 'Denver', 'CO', 'USA'),

 ('IAH', 'Houston', 'TX', 'USA'),

 ('MCI', 'Kansas City', 'KS', 'USA'),

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.Roads') IS NOT NULL

 DROP TABLE dbo.Roads;

GO

IF OBJECT_ID('dbo.Cities') IS NOT NULL

 DROP TABLE dbo.Cities;

GO

CREATE TABLE dbo.Cities

(

 cityid CHAR(3) NOT NULL PRIMARY KEY,

 city VARCHAR(30) NOT NULL,

 region VARCHAR(30) NULL,

 country VARCHAR(30) NOT NULL

);

INSERT INTO dbo.Cities(cityid, city, region, country) VALUES

 ('ATL', 'Atlanta', 'GA', 'USA'),

 ('ORD', 'Chicago', 'IL', 'USA'),

 ('DEN', 'Denver', 'CO', 'USA'),

 ('IAH', 'Houston', 'TX', 'USA'),

 ('MCI', 'Kansas City', 'KS', 'USA'),

C12626034.indd 667 2/20/2009 8:20:32 PM

668 Inside Microsoft SQL Server 2008: T-SQL Querying

 ('LAX', 'Los Angeles', 'CA', 'USA'),

 ('MIA', 'Miami', 'FL', 'USA'),

 ('MSP', 'Minneapolis', 'MN', 'USA'),

 ('JFK', 'New York', 'NY', 'USA'),

 ('SEA', 'Seattle', 'WA', 'USA'),

 ('SFO', 'San Francisco', 'CA', 'USA'),

 ('ANC', 'Anchorage', 'AK', 'USA'),

 ('FAI', 'Fairbanks', 'AK', 'USA');

CREATE TABLE dbo.Roads

(

 city1 CHAR(3) NOT NULL REFERENCES dbo.Cities,

 city2 CHAR(3) NOT NULL REFERENCES dbo.Cities,

 distance INT NOT NULL,

 PRIMARY KEY(city1, city2),

 CHECK(city1 < city2),

 CHECK(distance > 0)

);

INSERT INTO dbo.Roads(city1, city2, distance) VALUES

 ('ANC', 'FAI', 359),

 ('ATL', 'ORD', 715),

 ('ATL', 'IAH', 800),

 ('ATL', 'MCI', 805),

 ('ATL', 'MIA', 665),

 ('ATL', 'JFK', 865),

 ('DEN', 'IAH', 1120),

 ('DEN', 'MCI', 600),

 ('DEN', 'LAX', 1025),

 ('DEN', 'MSP', 915),

 ('DEN', 'SEA', 1335),

 ('DEN', 'SFO', 1270),

 ('IAH', 'MCI', 795),

 ('IAH', 'LAX', 1550),

 ('IAH', 'MIA', 1190),

 ('JFK', 'ORD', 795),

 ('LAX', 'SFO', 385),

 ('MCI', 'ORD', 525),

 ('MCI', 'MSP', 440),

 ('MSP', 'ORD', 410),

 ('MSP', 'SEA', 2015),

 ('SEA', 'SFO', 815);

 TABLE 12-4 Contents of Cities Table

 cityid city region country

 ANC Anchorage AK USA

 ATL Atlanta GA USA

 DEN Denver CO USA

 ('LAX', 'Los Angeles', 'CA', 'USA'),

 ('MIA', 'Miami', 'FL', 'USA'),

 ('MSP', 'Minneapolis', 'MN', 'USA'),

 ('JFK', 'New York', 'NY', 'USA'),

 ('SEA', 'Seattle', 'WA', 'USA'),

 ('SFO', 'San Francisco', 'CA', 'USA'),

 ('ANC', 'Anchorage', 'AK', 'USA'),

 ('FAI', 'Fairbanks', 'AK', 'USA');

CREATE TABLE dbo.Roads

(

 city1 CHAR(3) NOT NULL REFERENCES dbo.Cities,

 city2 CHAR(3) NOT NULL REFERENCES dbo.Cities,

 distance INT NOT NULL,

 PRIMARY KEY(city1, city2),

 CHECK(city1 < city2),

 CHECK(distance > 0)

);

INSERT INTO dbo.Roads(city1, city2, distance) VALUES

 ('ANC', 'FAI', 359),

 ('ATL', 'ORD', 715),

 ('ATL', 'IAH', 800),

 ('ATL', 'MCI', 805),

 ('ATL', 'MIA', 665),

 ('ATL', 'JFK', 865),

 ('DEN', 'IAH', 1120),

 ('DEN', 'MCI', 600),

 ('DEN', 'LAX', 1025),

 ('DEN', 'MSP', 915),

 ('DEN', 'SEA', 1335),

 ('DEN', 'SFO', 1270),

 ('IAH', 'MCI', 795),

 ('IAH', 'LAX', 1550),

 ('IAH', 'MIA', 1190),

 ('JFK', 'ORD', 795),

 ('LAX', 'SFO', 385),

 ('MCI', 'ORD', 525),

 ('MCI', 'MSP', 440),

 ('MSP', 'ORD', 410),

 ('MSP', 'SEA', 2015),

 ('SEA', 'SFO', 815);

cityid city region country

C12626034.indd 668 2/20/2009 8:20:32 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 669

 TABLE 12-4 Contents of Cities Table

 cityid city region country

 FAI Fairbanks AK USA

 IAH Houston TX USA

 JFK New York NY USA

 LAX Los Angeles CA USA

 MCI Kansas City KS USA

 MIA Miami FL USA

 MSP Minneapolis MN USA

 ORD Chicago IL USA

 SEA Seattle WA USA

 SFO San Francisco CA USA

TABLE 12-5 Contents of Roads Table

 city1 city2 distance

 ANC FAI 359

 ATL IAH 800

 ATL JFK 865

 ATL MCI 805

 ATL MIA 665

 ATL ORD 715

 DEN IAH 1120

 DEN LAX 1025

 DEN MCI 600

 DEN MSP 915

 DEN SEA 1335

 DEN SFO 1270

 IAH LAX 1550

 IAH MCI 795

 IAH MIA 1190

 JFK ORD 795

 LAX SFO 385

 MCI MSP 440

 MCI ORD 525

 MSP ORD 410

 MSP SEA 2015

 SEA SFO 815

cityid city region country

city1 city2 distance

C12626034.indd 669 2/20/2009 8:20:32 PM

670 Inside Microsoft SQL Server 2008: T-SQL Querying

 The Roads table represents an undirected cyclic weighted graph. Each edge (road) is
 represented by a row in the table. The attributes city1 and city2 are two city IDs representing
the nodes of the edge. The weight in this case is the distance attribute, which holds the
 distance between the cities in miles. Note that the Roads table has a CHECK constraint
(city1 < city2) as part of its schema defi nition to reject attempts to enter the same edge
twice (for example, {SEA, SFO} and {SFO, SEA}).

 Having all the scenarios and sample data in place, let’s go over the approaches to treatment
of graphs, trees, and hierarchies. I’ll cover three main approaches: iterative/recursive,
 materialized path, and nested sets.

Iteration/Recursion

 Iterative approaches apply some form of loops or recursion. Many iterative algorithms
 traverse graphs. Some traverse graphs a node at a time and are usually implemented with
cursors, but these are typically very slow. I will focus on algorithms that traverse graphs one
level at a time using a combination of iterative or recursive logic and set-based queries. Given
a set of nodes U, the next level of subordinates refers to the set V, which consists of the direct
subordinates (children) of the nodes in U. In my experience, implementations of iterative
 algorithms that traverse a graph one level at a time perform much better than the ones that
traverse a graph one node at a time.

 Using iterative solutions has several advantages over the other methods. First, you don’t
need to materialize any extra information describing the graph to the database besides the
node IDs in the edges. In other words, you don’t need to redesign your tables. The solutions
traverse the graph by relying solely on the stored edge information—for example, (mgrid,
empid), (assemblyid, partid), (city1, city2), and so on.

 Second, most of the solutions that apply to trees also apply to the more generic digraphs.
In other words, most solutions that apply to graphs where only one path can lead to a given
node also apply to graphs where multiple paths may lead to a given node.

 Finally, most of the solutions that I will describe in this section support a virtually unlimited
number of levels.

 I will use two main tools to implement solutions in my examples: user-defi ned functions
(UDFs) with loops and recursive common table expressions (CTEs). The core algorithms are
similar in both versions.

 In my solutions, I focused on UDFs and CTEs, but note that in some cases when performance
of a UDF or CTE is not satisfactory, you might get better performance by implementing a
 solution with a stored procedure. Stored procedures give you more control—for example,
you can materialize and index interim sets in temporary tables. However, I used UDFs and
CTEs because I wanted to focus on the algorithms and the clarity of the solutions.

C12626034.indd 670 2/20/2009 8:20:33 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 671

Subordinates

 Let’s start with a classical request to return subordinates; for example, return all subordinates
of a given employee. More technically, you’re after a subgraph/subtree of a given root in a
digraph. The iterative algorithm is very simple:

 Input: @root

 Algorithm:

 - set @lvl = 0; insert into table @Subs row for @root

 - while there were rows in the previous level of employees:

 - set @lvl = @lvl + 1; insert into table @Subs rows for the next level (mgrid in (empid values in
previous level))

 - return @Subs

 Run the following code to create the Subordinates1 function, which implements this algorithm
as a UDF:

-- Function: Subordinates1, Descendants

--

-- Input : @root INT: Manager id

--

-- Output : @Subs Table: id and level of subordinates of

-- input manager (empid = @root) in all levels

--

-- Process : * Insert into @Subs row of input manager

-- * In a loop, while previous insert loaded more than 0 rows

-- insert into @Subs next level of subordinates

USE tempdb;

GO

IF OBJECT_ID('dbo.Subordinates1') IS NOT NULL

 DROP FUNCTION dbo.Subordinates1;

GO

CREATE FUNCTION dbo.Subordinates1(@root AS INT) RETURNS @Subs TABLE

(

 empid INT NOT NULL PRIMARY KEY NONCLUSTERED,

 lvl INT NOT NULL,

 UNIQUE CLUSTERED(lvl, empid) -- Index will be used to filter level

)

AS

BEGIN

 DECLARE @lvl AS INT = 0; -- Initialize level counter with 0

 -- Insert root node into @Subs

 INSERT INTO @Subs(empid, lvl)

 SELECT empid, @lvl FROM dbo.Employees WHERE empid = @root;

 WHILE @@rowcount > 0 -- while previous level had rows

C12626034.indd 671 2/20/2009 8:20:33 PM

672 Inside Microsoft SQL Server 2008: T-SQL Querying

 BEGIN

 SET @lvl = @lvl + 1; -- Increment level counter

 -- Insert next level of subordinates to @Subs

 INSERT INTO @Subs(empid, lvl)

 SELECT C.empid, @lvl

 FROM @Subs AS P -- P = Parent

 JOIN dbo.Employees AS C -- C = Child

 ON P.lvl = @lvl - 1 -- Filter parents from previous level

 AND C.mgrid = P.empid;

 END

 RETURN;

END

GO

 The function accepts the @root input parameter, which is the ID of the requested subtree’s
root employee. The function returns the @Subs table variable, with all subordinates of
 employee with ID = @root in all levels. Besides containing the employee attributes, @Subs
also has a column called lvl that keeps track of the level in the subtree (0 for the subtree’s
root and increasing from there by 1 in each iteration).

 The function’s code keeps track of the current level being handled in the @lvl local variable,
which is initialized with zero.

 The function’s code fi rst inserts into @Subs the row from Employees where empid = @root.

 Then in a loop, while the last insert affects more than zero rows, the code increments the
@lvl variable’s value by one and inserts into @Subs the next level of employees—in other
words, direct subordinates of the managers inserted in the previous level.

 To insert the next level of employees into @Subs, the query in the loop joins @Subs
(representing managers) with Employees (representing subordinates).

 The lvl column is important because it allows you to isolate the managers that were inserted
into @Subs in the last iteration. To return only subordinates of the previously inserted
 managers, the join condition fi lters from @Subs only rows where the lvl column is equal to
the previous level (@lvl – 1).

 To test the function, run the following code, which returns the subordinates of employee 3:

SELECT empid, lvl FROM dbo.Subordinates1(3) AS S;

 This code generates the following output:

empid lvl

----------- -----------

3 0

7 1

9 2

11 2

12 3

13 3

14 3

C12626034.indd 672 2/20/2009 8:20:33 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 673

 You can verify that the output is correct by examining Figure 12-2 and following the subtree
of the root employee (ID = 3).

 To get other attributes of the employees besides just the employee ID, you can either rewrite
the function and add those attributes to the @Subs table or simply join the function with the
Employees table, like so:

SELECT E.empid, E.empname, S.lvl

FROM dbo.Subordinates1(3) AS S

 JOIN dbo.Employees AS E

 ON E.empid = S.empid;

 You get the following output:

empid empname lvl

----------- ------------------------- -----------

3 Ina 0

7 Aaron 1

9 Rita 2

11 Gabriel 2

12 Emilia 3

13 Michael 3

14 Didi 3

 To limit the result set to leaf employees under the given root, simply add a fi lter with a NOT
EXISTS predicate to select only employees that are not managers of other employees:

SELECT empid

FROM dbo.Subordinates1(3) AS P

WHERE NOT EXISTS

 (SELECT * FROM dbo.Employees AS C

 WHERE c.mgrid = P.empid);

 This query returns employee IDs 11, 12, 13, and 14.

 So far, you’ve seen a UDF implementation of a subtree under a given root, which contains a
WHILE loop. The following code has the CTE solution, which contains no explicit loop:

DECLARE @root AS INT = 3;

WITH Subs

AS

(

 -- Anchor member returns root node

 SELECT empid, empname, 0 AS lvl

 FROM dbo.Employees

 WHERE empid = @root

 UNION ALL

 -- Recursive member returns next level of children

 SELECT C.empid, C.empname, P.lvl + 1

 FROM Subs AS P

 JOIN dbo.Employees AS C

 ON C.mgrid = P.empid

)

SELECT * FROM Subs;

C12626034.indd 673 2/20/2009 8:20:33 PM

674 Inside Microsoft SQL Server 2008: T-SQL Querying

 This code generates the following output:

empid empname lvl

----------- ------------------------- -----------

3 Ina 0

7 Aaron 1

9 Rita 2

11 Gabriel 2

12 Emilia 3

13 Michael 3

14 Didi 3

 The solution applies very similar logic to the UDF implementation. It’s simpler in the sense that
you don’t need to explicitly defi ne the returned table or to fi lter the previous level’s managers.

 The fi rst query in the CTE’s body returns the row from Employees for the given root employee.
It also returns zero as the level of the root employee. In a recursive CTE, a query that doesn’t
have any recursive references is known as an anchor member.

 The second query in the CTE’s body (following the UNION ALL set operation) has a recursive
reference to the CTE’s name. This makes it a recursive member, and it is treated in a special
manner. The recursive reference to the CTE’s name (Subs) represents the result set returned
previously. The recursive member query joins the previous result set, which represents
the managers in the previous level, with the Employees table to return the next level of
 employees. The recursive query also calculates the level value as the employee’s manager
level plus one. The fi rst time that the recursive member is invoked, Subs stands for the result
set returned by the anchor member (root employee). There’s no explicit termination check
for the recursive member; rather, it is invoked repeatedly until it returns an empty set. Thus,
the fi rst time it is invoked, it returns direct subordinates of the subtree’s root employee. The
second time it is invoked, Subs represents the result set of the fi rst invocation of the recursive
member (fi rst level of subordinates), so it returns the second level of subordinates. The
 recursive member is invoked repeatedly until there are no more subordinates, in which case
it returns an empty set and recursion stops.

 The reference to the CTE name in the outer query represents the UNION ALL of all the result
sets returned by the invocation of the anchor member and all the invocations of the recursive
member.

 As I mentioned earlier, using iterative logic to return a subgraph of a digraph where multiple
paths might exist to a node is similar to returning a subtree. Run the following code to create
the PartsExplosion function:

-- Function: PartsExplosion, Parts Explosion

--

-- Input : @root INT: assembly id

--

-- Output : @PartsExplosion Table:

-- id and level of contained parts of input part

-- in all levels

--

C12626034.indd 674 2/20/2009 8:20:33 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 675

-- Process : * Insert into @PartsExplosion row of input root part

-- * In a loop, while previous insert loaded more than 0 rows

-- insert into @PartsExplosion next level of parts

USE tempdb;

GO

IF OBJECT_ID('dbo.PartsExplosion') IS NOT NULL

 DROP FUNCTION dbo.PartsExplosion;

GO

CREATE FUNCTION dbo.PartsExplosion(@root AS INT)

 RETURNS @PartsExplosion Table

(

 partid INT NOT NULL,

 qty DECIMAL(8, 2) NOT NULL,

 unit VARCHAR(3) NOT NULL,

 lvl INT NOT NULL,

 n INT NOT NULL IDENTITY, -- surrogate key

 UNIQUE CLUSTERED(lvl, n) -- Index will be used to filter lvl

)

AS

BEGIN

 DECLARE @lvl AS INT = 0; -- Initialize level counter with 0

 -- Insert root node to @PartsExplosion

 INSERT INTO @PartsExplosion(partid, qty, unit, lvl)

 SELECT partid, qty, unit, @lvl

 FROM dbo.BOM

 WHERE partid = @root;

 WHILE @@rowcount > 0 -- while previous level had rows

 BEGIN

 SET @lvl = @lvl + 1; -- Increment level counter

 -- Insert next level of subordinates to @PartsExplosion

 INSERT INTO @PartsExplosion(partid, qty, unit, lvl)

 SELECT C.partid, P.qty * C.qty, C.unit, @lvl

 FROM @PartsExplosion AS P -- P = Parent

 JOIN dbo.BOM AS C -- C = Child

 ON P.lvl = @lvl - 1 -- Filter parents from previous level

 AND C.assemblyid = P.partid;

 END

 RETURN;

END

GO

 The function accepts a part ID representing an assembly in a BOM, and it returns the parts
explosion (the direct and indirect subitems) of the assembly. The implementation of the
PartsExplosion function is similar to the implementation of the function Subordinates1. The
row for the root part is inserted into the @PartsExplosion table variable (the function’s
 output parameter). And then in a loop, while the previous insert found more than zero rows,
the next level parts are inserted into @PartsExplosion. A small addition here is specifi c to a

C12626034.indd 675 2/20/2009 8:20:33 PM

676 Inside Microsoft SQL Server 2008: T-SQL Querying

BOM: calculating the quantity. The root part’s quantity is simply the one stored in the part’s
row. The contained (child) part’s quantity is the quantity of its containing (parent) item
 multiplied by its own quantity.

 Run the following code to test the function, returning the part explosion of partid 2 (White Tea):

SELECT P.partid, P.partname, PE.qty, PE.unit, PE.lvl

FROM dbo.PartsExplosion(2) AS PE

 JOIN dbo.Parts AS P

 ON P.partid = PE.partid;

 This code generates the following output:

partid partname qty unit lvl

------- ------------ ------- ---- ----

2 White Tea 1.00 EA 0

6 Cup Cover 1.00 EA 1

7 Regular Cup 1.00 EA 1

10 Tea Shot 1.00 EA 1

14 Water 205.00 mL 1

11 Milk 25.00 mL 1

13 Tea Leaves 5.00 g 2

14 Water 20.00 mL 2

 You can check the correctness of this output by examining Figure 12-3.

 Following is the CTE solution for the parts explosion, which, again, is similar to the subtree
solution with the addition of the quantity calculation:

DECLARE @root AS INT = 2;

WITH PartsExplosion

AS

(

 -- Anchor member returns root part

 SELECT partid, qty, unit, 0 AS lvl

 FROM dbo.BOM

 WHERE partid = @root

 UNION ALL

 -- Recursive member returns next level of parts

 SELECT C.partid, CAST(P.qty * C.qty AS DECIMAL(8, 2)),

 C.unit, P.lvl + 1

 FROM PartsExplosion AS P

 JOIN dbo.BOM AS C

 ON C.assemblyid = P.partid

)

SELECT P.partid, P.partname, PE.qty, PE.unit, PE.lvl

FROM PartsExplosion AS PE

 JOIN dbo.Parts AS P

 ON P.partid = PE.partid;

 A parts explosion might contain more than one occurrence of the same part because
 different parts in the assembly might contain the same subpart. For example, you can
 notice in the result of the explosion of partid 2 that water appears twice because white

C12626034.indd 676 2/20/2009 8:20:33 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 677

tea contains 205 milliliters of water directly, and it also contains a tea shot, which in turn
 contains 20 milliliters of water. You might want to aggregate the result set by part and unit
as follows:

SELECT P.partid, P.partname, PES.qty, PES.unit

FROM (SELECT partid, unit, SUM(qty) AS qty

 FROM dbo.PartsExplosion(2) AS PE

 GROUP BY partid, unit) AS PES

 JOIN dbo.Parts AS P

 ON P.partid = PES.partid;

 You get the following output:

partid partname qty unit

------- ------------ ------- ----

2 White Tea 1.00 EA

6 Cup Cover 1.00 EA

7 Regular Cup 1.00 EA

10 Tea Shot 1.00 EA

13 Tea Leaves 5.00 g

11 Milk 25.00 mL

14 Water 225.00 mL

 I won’t get into issues with grouping of parts that might contain different units of measurements
here. Obviously, you’ll need to deal with those by applying conversion factors.

 As another example, the following code explodes part 5 (Double Espresso):

SELECT P.partid, P.partname, PES.qty, PES.unit

FROM (SELECT partid, unit, SUM(qty) AS qty

 FROM dbo.PartsExplosion(5) AS PE

 GROUP BY partid, unit) AS PES

 JOIN dbo.Parts AS P

 ON P.partid = PES.partid;

 This code generates the following output:

partid partname qty unit

------- ---------------- ------- ----

5 Double Espresso 1.00 EA

9 Espresso Cup 1.00 EA

12 Coffee Shot 2.00 EA

16 Ground Coffee 30.00 g

17 Coffee Beans 450.00 g

14 Water 40.00 mL

 Going back to returning a subtree of a given employee, in some cases you might need to
limit the number of returned levels. To achieve this, you need to make a minor addition
to the original algorithm:

 Input: @root, @maxlevels (besides root)

 Algorithm:

 - set @lvl = 0; insert into table @Subs row for @root

C12626034.indd 677 2/20/2009 8:20:33 PM

678 Inside Microsoft SQL Server 2008: T-SQL Querying

 - while there were rows in the previous level, and @lvl < @maxlevels:

 - set @lvl = @lvl + 1; insert into table @Subs rows for the next level (mgrid in (empid values in
previous level))

 - return @Subs

 Run the following code to create the Subordinates2 function, which is a revision of Subordinates1
that also supports a level limit:

-- Function: Subordinates2,

-- Descendants with optional level limit

--

-- Input : @root INT: Manager id

-- @maxlevels INT: Max number of levels to return

--

-- Output : @Subs TABLE: id and level of subordinates of

-- input manager in all levels <= @maxlevels

--

-- Process : * Insert into @Subs row of input manager

-- * In a loop, while previous insert loaded more than 0 rows

-- and previous level is smaller than @maxlevels

-- insert into @Subs next level of subordinates

USE tempdb;

GO

IF OBJECT_ID('dbo.Subordinates2') IS NOT NULL

 DROP FUNCTION dbo.Subordinates2;

GO

CREATE FUNCTION dbo.Subordinates2

 (@root AS INT, @maxlevels AS INT = NULL) RETURNS @Subs TABLE

(

 empid INT NOT NULL PRIMARY KEY NONCLUSTERED,

 lvl INT NOT NULL,

 UNIQUE CLUSTERED(lvl, empid) -- Index will be used to filter level

)

AS

BEGIN

 DECLARE @lvl AS INT = 0; -- Initialize level counter with 0

 -- If input @maxlevels is NULL, set it to maximum integer

 -- to virtually have no limit on levels

 SET @maxlevels = COALESCE(@maxlevels, 2147483647);

 -- Insert root node to @Subs

 INSERT INTO @Subs(empid, lvl)

 SELECT empid, @lvl FROM dbo.Employees WHERE empid = @root;

 WHILE @@rowcount > 0 -- while previous level had rows

 AND @lvl < @maxlevels -- and previous level < @maxlevels

 BEGIN

 SET @lvl = @lvl + 1; -- Increment level counter

C12626034.indd 678 2/20/2009 8:20:33 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 679

 -- Insert next level of subordinates to @Subs

 INSERT INTO @Subs(empid, lvl)

 SELECT C.empid, @lvl

 FROM @Subs AS P -- P = Parent

 JOIN dbo.Employees AS C -- C = Child

 ON P.lvl = @lvl - 1 -- Filter parents from previous level

 AND C.mgrid = P.empid;

 END

 RETURN;

END

GO

 In addition to the original input, Subordinates2 also accepts the @maxlevels input that indicates
the maximum number of requested levels under @root to return. For no limit on levels, a NULL
should be specifi ed in @maxlevels. Notice that if @maxlevels is NULL, the function substitutes
the NULL with the maximum possible integer value to practically have no limit.

 The loop’s condition, besides checking that the previous insert affected more than zero
rows, also checks that the @lvl variable is smaller than @maxlevels. Except for these minor
 revisions, the function’s implementation is the same as Subordinates1.

 To test the function, run the following code that requests the subordinates of employee 3 in
all levels (@maxlevels is NULL):

SELECT empid, lvl

FROM dbo.Subordinates2(3, NULL) AS S;

 You get the following output:

empid lvl

----------- -----------

3 0

7 1

9 2

11 2

12 3

13 3

14 3

 To get only two levels of subordinates under employee 3, run the following code:

SELECT empid, lvl

FROM dbo.Subordinates2(3, 2) AS S;

 This code generates the following output:

empid lvl

----------- -----------

3 0

7 1

9 2

11 2

C12626034.indd 679 2/20/2009 8:20:33 PM

680 Inside Microsoft SQL Server 2008: T-SQL Querying

 To get only the second-level employees under employee 3, add a fi lter on the level:

SELECT empid

FROM dbo.Subordinates2(3, 2) AS S

WHERE lvl = 2;

 You get the following output:

empid

9

11

 Caution To limit levels using a CTE, you might be tempted to use the hint called MAXRECURSION,
which raises an error and aborts when the number of invocations of the recursive member exceeds
the input. However, MAXRECURSION was designed as a safety measure to avoid infi nite recursion
in cases of problems in the data or bugs in the code. When not specifi ed, MAXRECURSION defaults
to 100. You can specify MAXRECURSION 0 to have no limit, but be aware of the implications.

 To test this approach, run the following code:

DECLARE @root AS INT = 3;

WITH Subs

AS

(

 SELECT empid, empname, 0 AS lvl

 FROM dbo.Employees

 WHERE empid = @root

 UNION ALL

 SELECT C.empid, C.empname, P.lvl + 1

 FROM Subs AS P

 JOIN dbo.Employees AS C

 ON C.mgrid = P.empid

)

SELECT * FROM Subs

OPTION (MAXRECURSION 2);

 This is the same subtree CTE shown earlier, with the addition of the MAXRECURSION hint,
 limiting recursive invocations to 2. This code generates the following output, including an error
message:

empid empname lvl

----------- ------------------------- -----------

3 Ina 0

7 Aaron 1

9 Rita 2

11 Gabriel 2

Msg 530, Level 16, State 1, Line 4

The statement terminated. The maximum recursion 2 has been exhausted before

 statement completion.

C12626034.indd 680 2/20/2009 8:20:33 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 681

 The code breaks as soon as the recursive member is invoked the third time. There are two
 reasons not to use the MAXRECURSION hint to logically limit the number of levels. First, an error
is generated even though there’s no logical error here. Second, SQL Server does not guarantee
to return any result set if an error is generated. In this particular case, a result set was returned,
but this is not guaranteed to happen in other cases.

 To logically limit the number of levels, simply fi lter the level column in the outer query, as in
the following code:

DECLARE @root AS INT = 3, @maxlevels AS INT = 2;

WITH Subs

AS

(

 SELECT empid, empname, 0 AS lvl

 FROM dbo.Employees

 WHERE empid = @root

 UNION ALL

 SELECT C.empid, C.empname, P.lvl + 1

 FROM Subs AS P

 JOIN dbo.Employees AS C

 ON C.mgrid = P.empid

)

SELECT * FROM Subs

WHERE lvl <= @maxlevels;

 It is interesting to note that in terms of optimization, SQL Server expands the defi nition
of the CTE and applies the fi lter as part of the processing of the inner queries. This means
that it doesn’t bother to fi rst process all levels and then fi lter the applicable ones; instead, it
 processes only the requested number of levels.

Ancestors

 Requests for ancestors of a given node are also common—for example, returning the
chain of management for a given employee. Not surprisingly, the algorithms for returning
 ancestors using iterative logic are similar to those for returning subordinates. Simply put,
 instead of traversing the graph starting with a given node and proceeding “downward” to
child nodes, you start with a given node and proceed “upward” to parent nodes.

 Run the following code to create the Managers function:

-- Function: Managers, Ancestors with optional level limit

--

-- Input : @empid INT : Employee id

-- @maxlevels : Max number of levels to return

--

C12626034.indd 681 2/20/2009 8:20:34 PM

682 Inside Microsoft SQL Server 2008: T-SQL Querying

-- Output : @Mgrs Table: id and level of managers of

-- input employee in all levels <= @maxlevels

--

-- Process : * In a loop, while current manager is not null

-- and previous level is smaller than @maxlevels

-- insert into @Mgrs current manager,

-- and get next level manager

USE tempdb;

GO

IF OBJECT_ID('dbo.Managers') IS NOT NULL

 DROP FUNCTION dbo.Managers;

GO

CREATE FUNCTION dbo.Managers

 (@empid AS INT, @maxlevels AS INT = NULL) RETURNS @Mgrs TABLE

(

 empid INT NOT NULL PRIMARY KEY,

 lvl INT NOT NULL

)

AS

BEGIN

 IF NOT EXISTS(SELECT * FROM dbo.Employees WHERE empid = @empid)

 RETURN;

 DECLARE @lvl AS INT = 0; -- Initialize level counter with 0

 -- If input @maxlevels is NULL, set it to maximum integer

 -- to virtually have no limit on levels

 SET @maxlevels = COALESCE(@maxlevels, 2147483647);

 WHILE @empid IS NOT NULL -- while current employee has a manager

 AND @lvl <= @maxlevels -- and previous level <= @maxlevels

 BEGIN

 -- Insert current manager to @Mgrs

 INSERT INTO @Mgrs(empid, lvl) VALUES(@empid, @lvl);

 SET @lvl = @lvl + 1; -- Increment level counter

 -- Get next level manager

 SET @empid = (SELECT mgrid FROM dbo.Employees

 WHERE empid = @empid);

 END

 RETURN;

END

GO

 The function accepts an input employee ID (@empid) and, optionally, a level limit
(@ maxlevels), and it returns managers up to the requested number of levels from the input
employee (if a limit was specifi ed). The function fi rst checks whether the input node ID
 exists and then breaks if it doesn’t. It then initializes the @lvl counter to zero, and it assigns
the maximum possible integer to the @maxlevels variable if a NULL was specifi ed in it to
 practically have no level limit.

 The function then enters a loop that iterates as long as @empid is not NULL (because NULL
 represents the root’s manager ID) and the current level is smaller than or equal to the
 requested number of levels. The loop’s body inserts the current employee ID along with the

C12626034.indd 682 2/20/2009 8:20:34 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 683

level counter into the @Mgrs output table variable, increments the level counter, and assigns
the current employee’s manager’s ID to the @empid variable.

 I should point out a couple of differences between this function and the subordinates function.
This function uses a scalar subquery to get the manager ID in the next level, unlike the
 subordinates function, which used a join to get the next level of subordinates. The reason for
the difference is that a given employee can have only one manager, while a manager can have
multiple subordinates. Also, this function uses the expression @lvl <= @maxlevels to limit the
number of levels, while the subordinates function used the expression @lvl < @maxlevels. The
reason for the discrepancy is that this function doesn’t have a separate INSERT statement to get
the root employee and a separate one to get the next level of employees; rather, it has only one
INSERT statement in the loop. Consequently, the @lvl counter here is incremented after the
INSERT, while in the subordinates function it was incremented before the INSERT.

 To test the function, run the following code:

SELECT empid, lvl

FROM dbo.Managers(8, NULL) AS M;

 This code returns managers in all levels of employee 8 and generates the following output:

empid lvl

----------- -----------

1 3

2 2

5 1

8 0

 The CTE solution to returning ancestors is almost identical to the CTE solution returning
a subtree. The minor difference is that here the recursive member treats the CTE as the child
part of the join and the Employees table as the parent part, while in the subtree solution the
roles were opposite. Run the following code to get the management chain of employee 8:

DECLARE @empid AS INT = 8;

WITH Mgrs

AS

(

 SELECT empid, mgrid, empname, 0 AS lvl

 FROM dbo.Employees

 WHERE empid = @empid

 UNION ALL

 SELECT P.empid, P.mgrid, P.empname, C.lvl + 1

 FROM Mgrs AS C

 JOIN dbo.Employees AS P

 ON C.mgrid = P.empid

)

SELECT * FROM Mgrs;

C12626034.indd 683 2/20/2009 8:20:34 PM

684 Inside Microsoft SQL Server 2008: T-SQL Querying

 This code generates the following output:

empid mgrid empname lvl

------ ------ -------- ----

8 5 Lilach 0

5 2 Jiru 1

2 1 Eitan 2

1 NULL David 3

 To get only two levels of managers of employee 8 using the Managers function, run the
 following code:

SELECT empid, lvl

FROM dbo.Managers(8, 2) AS M;

 You get the following output:

empid lvl

----------- -----------

2 2

5 1

8 0

 And to return only the second-level manager, simply add a fi lter in the outer query, returning
employee ID 2:

SELECT empid

FROM dbo.Managers(8, 2) AS M

WHERE lvl = 2;

 To return two levels of managers for employee 8 with a CTE, simply add a fi lter on the lvl
 attribute in the outer query, like so:

DECLARE @empid AS INT = 8, @maxlevels AS INT = 2;

WITH Mgrs

AS

(

 SELECT empid, mgrid, empname, 0 AS lvl

 FROM dbo.Employees

 WHERE empid = @empid

 UNION ALL

 SELECT P.empid, P.mgrid, P.empname, C.lvl + 1

 FROM Mgrs AS C

 JOIN dbo.Employees AS P

 ON C.mgrid = P.empid

)

SELECT * FROM Mgrs

WHERE lvl <= @maxlevels;

C12626034.indd 684 2/20/2009 8:20:34 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 685

Subgraph/Subtree with Path Enumeration

 In the subgraph/subtree solutions, you might also want to generate for each node an
 enumerated path consisting of all node IDs in the path to that node, using some separator
(such as ‘.’). For example, the enumerated path for employee 8 in the Organization
Chart scenario is ‘.1.2.5.8.’ because employee 5 is the manager of employee 8, employee 2
is the manager of 5, employee 1 is the manager of 2, and employee 1 is the root employee.

 The enumerated path has many uses—for example, to sort the nodes from the hierarchy in
the output, to detect cycles, and other uses that I’ll describe later in the “Materialized Path”
section. Fortunately, you can make minor additions to the solutions I provided for returning a
subgraph/subtree to calculate the enumerated path without any additional I/O.

 The algorithm starts with the subtree’s root node and in a loop or recursive call returns the
next level. For the root node, the path is simply ‘.’ + node id + ‘.’. For successive level nodes,
the path is parent’s path + node id + ‘.’.

 Run the following code to create the Subordinates3 function, which is the same as
Subordinates2 except for the addition of the enumerated path calculation:

-- Function: Subordinates3,

-- Descendants with optional level limit

-- and path enumeration

--

-- Input : @root INT: Manager id

-- @maxlevels INT: Max number of levels to return

--

-- Output : @Subs TABLE: id, level and materialized ancestors path

-- of subordinates of input manager

-- in all levels <= @maxlevels

--

-- Process : * Insert into @Subs row of input manager

-- * In a loop, while previous insert loaded more than 0 rows

-- and previous level is smaller than @maxlevels:

-- - insert into @Subs next level of subordinates

-- - calculate a materialized ancestors path for each

-- by concatenating current node id to parent's path

USE tempdb;

GO

IF OBJECT_ID('dbo.Subordinates3') IS NOT NULL

 DROP FUNCTION dbo.Subordinates3;

GO

CREATE FUNCTION dbo.Subordinates3

 (@root AS INT, @maxlevels AS INT = NULL) RETURNS @Subs TABLE

(

 empid INT NOT NULL PRIMARY KEY NONCLUSTERED,

 lvl INT NOT NULL,

 path VARCHAR(900) NOT NULL

 UNIQUE CLUSTERED(lvl, empid) -- Index will be used to filter level

)

C12626034.indd 685 2/20/2009 8:20:34 PM

686 Inside Microsoft SQL Server 2008: T-SQL Querying

AS

BEGIN

 DECLARE @lvl AS INT = 0; -- Initialize level counter with 0

 -- If input @maxlevels is NULL, set it to maximum integer

 -- to virtually have no limit on levels

 SET @maxlevels = COALESCE(@maxlevels, 2147483647);

 -- Insert root node to @Subs

 INSERT INTO @Subs(empid, lvl, path)

 SELECT empid, @lvl, '.' + CAST(empid AS VARCHAR(10)) + '.'

 FROM dbo.Employees WHERE empid = @root;

 WHILE @@rowcount > 0 -- while previous level had rows

 AND @lvl < @maxlevels -- and previous level < @maxlevels

 BEGIN

 SET @lvl = @lvl + 1; -- Increment level counter

 -- Insert next level of subordinates to @Subs

 INSERT INTO @Subs(empid, lvl, path)

 SELECT C.empid, @lvl,

 P.path + CAST(C.empid AS VARCHAR(10)) + '.'

 FROM @Subs AS P -- P = Parent

 JOIN dbo.Employees AS C -- C = Child

 ON P.lvl = @lvl - 1 -- Filter parents from previous level

 AND C.mgrid = P.empid;

 END

 RETURN;

END

GO

 Run the following code to returns all subordinates of employee 1 and their paths:

SELECT empid, lvl, path

FROM dbo.Subordinates3(1, NULL) AS S;

 This code generates the following output:

empid lvl path

----------- ----------- ------------------

1 0 .1.

2 1 .1.2.

3 1 .1.3.

4 2 .1.2.4.

5 2 .1.2.5.

6 2 .1.2.6.

7 2 .1.3.7.

8 3 .1.2.5.8.

9 3 .1.3.7.9.

10 3 .1.2.5.10.

11 3 .1.3.7.11.

12 4 .1.3.7.9.12.

13 4 .1.3.7.9.13.

14 4 .1.3.7.9.14.

C12626034.indd 686 2/20/2009 8:20:34 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 687

 With both the lvl and path values, you can easily return output that graphically shows the
hierarchical relationships of the employees in the subtree:

SELECT E.empid, REPLICATE(' | ', lvl) + empname AS empname

FROM dbo.Subordinates3(1, NULL) AS S

 JOIN dbo.Employees AS E

 ON E.empid = S.empid

ORDER BY path;

 The query joins the subtree returned from the Subordinates3 function with the Employees
table based on employee ID match. From the function, you get the lvl and path values, and
from the table, you get other employee attributes of interest, such as the employee name.
You generate indentation before the employee name by replicating a string (in this case, ‘ | ‘)
lvl times and concatenating the employee name to it. Sorting the employees by the path
column produces a correct hierarchical sort, which requires a child node to appear later than
its parent node—or, in other words, that a child node will have a higher sort value than its
parent node. By defi nition, a child’s path is greater than a parent’s path because it is prefi xed
with the parent’s path. Following is the output of this query:

empid empname

----------- ------------------------

1 David

2 | Eitan

4 | | Seraph

5 | | Jiru

10 | | | Sean

8 | | | Lilach

6 | | Steve

3 | Ina

7 | | Aaron

11 | | | Gabriel

9 | | | Rita

12 | | | | Emilia

13 | | | | Michael

14 | | | | Didi

 Similarly, you can add path calculation to the subtree CTE, like so:

DECLARE @root AS INT = 1;

WITH Subs

AS

(

 SELECT empid, empname, 0 AS lvl,

 -- Path of root = '.' + empid + '.'

 CAST('.' + CAST(empid AS VARCHAR(10)) + '.'

 AS VARCHAR(MAX)) AS path

 FROM dbo.Employees

 WHERE empid = @root

 UNION ALL

C12626034.indd 687 2/20/2009 8:20:34 PM

688 Inside Microsoft SQL Server 2008: T-SQL Querying

 SELECT C.empid, C.empname, P.lvl + 1,

 -- Path of child = parent's path + child empid + '.'

 CAST(P.path + CAST(C.empid AS VARCHAR(10)) + '.'

 AS VARCHAR(MAX))

 FROM Subs AS P

 JOIN dbo.Employees AS C

 ON C.mgrid = P.empid

)

SELECT empid, REPLICATE(' | ', lvl) + empname AS empname

FROM Subs

ORDER BY path;

 Note Corresponding columns between an anchor member and a recursive member of a CTE
must match in both data type and size. That’s why I converted the path strings in both to the
same data type and size: VARCHAR(MAX).

Sorting

 Sorting is a presentation request and usually is used by the client rather than the server.
This means that you might want the sorting of hierarchies to take place on the client. In this
 section, however, I’ll present server-side sorting techniques with T-SQL that you can use when
you prefer to handle sorting on the server.

 A topological sort of a DAG is defi ned as one that provides a child with a higher sort value
than its parent. Occasionally, I will refer to a topological sort informally as correct hierarchical
sort. More than one way of ordering the items in a DAG may qualify as correct. You might or
might not care about the order among siblings. If the order among siblings doesn’t matter
to you, you can achieve sorting by constructing an enumerated path for each node, as
 described in the previous section, and sort the nodes by that path.

 Remember that the enumerated path is a character string made of the IDs of the ancestors
leading to the node, using some separator. This means that siblings are sorted by their node
IDs. Because the path is character based, you get character-based sorting of IDs, which might
be different than the integer sorting. For example, employee ID 11 sorts lower than its sibling
with ID 9 (‘.1.3.7.11.’ < ‘.1.3.7.9.’), even though 9 < 11. You can guarantee that sorting by the
enumerated path produces a correct hierarchical sort, but it doesn’t guarantee the order of
siblings. If you need such a guarantee, you need a different solution.

 For optimal sorting fl exibility, you might want to guarantee the following:

 1. A correct topological sort—that is, a sort in which a child has a higher sort value than
its parent’s.

 2. Siblings are sorted in a requested order (for example, by empname or by salary).

 3. Integer sort values are generated, as opposed to lengthy strings.

C12626034.indd 688 2/20/2009 8:20:34 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 689

 In the enumerated path solution, requirement 1 is met. Requirement 2 is not met because
the path is made of node IDs and is character based; comparison and sorting among
 characters is based on collation properties, yielding different comparison and sorting
 behavior than with integers. Requirement 3 is not met because the solution orders the results
by the path, which is lengthy compared to an integer value. To meet all three requirements,
we can still make use of a path for each node, but with several differences:

■ Instead of node IDs, the path is constructed from values that represent a position (row
number) among nodes based on a requested order (for example, empname or salary).

■ Instead of using a character string with varying lengths for each level in the path, use a
binary string with a fi xed length for each level.

■ Once the binary paths are constructed, calculate integer values representing path order
(row numbers) and ultimately use those to sort the hierarchy.

 The core algorithm to traverse the subtree is maintained, but the paths are constructed
 differently, based on the binary representation of row numbers. The implementation uses
CTEs and the ROW_NUMBER function.

 Run the following code to return the subtree of employee 1, with siblings sorted by empname
with indentation:

DECLARE @root AS INT = 1;

WITH Subs

AS

(

 SELECT empid, empname, 0 AS lvl,

 -- Path of root is 1 (binary)

 CAST(1 AS VARBINARY(MAX)) AS sort_path

 FROM dbo.Employees

 WHERE empid = @root

 UNION ALL

 SELECT C.empid, C.empname, P.lvl + 1,

 -- Path of child = parent's path + child row number (binary)

 P.sort_path + CAST(

 ROW_NUMBER() OVER(PARTITION BY C.mgrid

 ORDER BY C.empname) -- sort col(s)

 AS BINARY(4))

 FROM Subs AS P

 JOIN dbo.Employees AS C

 ON C.mgrid = P.empid

)

SELECT empid, ROW_NUMBER() OVER(ORDER BY sort_path) AS sortval,

 REPLICATE(' | ', lvl) + empname AS empname

FROM Subs

ORDER BY sortval;

C12626034.indd 689 2/20/2009 8:20:34 PM

690 Inside Microsoft SQL Server 2008: T-SQL Querying

 This code generates the following output:

empid sortval empname

------ -------- --------------------

1 1 David

2 2 | Eitan

5 3 | | Jiru

8 4 | | | Lilach

10 5 | | | Sean

4 6 | | Seraph

6 7 | | Steve

3 8 | Ina

7 9 | | Aaron

11 10 | | | Gabriel

9 11 | | | Rita

14 12 | | | | Didi

12 13 | | | | Emilia

13 14 | | | | Michael

 The anchor member query returns the root, with 1 as the binary path. The recursive member
query calculates the row number of an employee among siblings based on empname
 ordering and concatenates that row number converted to binary(4) to the parent’s path.

 The outer query simply calculates row numbers to generate the sort values based on the
binary path order, and it sorts the subtree by those sort values, adding indentation based on
the calculated level.

 If you want siblings sorted in a different way, you need to change only the ORDER BY list
of the ROW_NUMBER function in the recursive member query. The following code has the
 revision that sorts siblings by salary:

DECLARE @root AS INT = 1;

WITH Subs

AS

(

 SELECT empid, empname, salary, 0 AS lvl,

 -- Path of root = 1 (binary)

 CAST(1 AS VARBINARY(MAX)) AS sort_path

 FROM dbo.Employees

 WHERE empid = @root

 UNION ALL

 SELECT C.empid, C.empname, C.salary, P.lvl + 1,

 -- Path of child = parent's path + child row number (binary)

 P.sort_path + CAST(

 ROW_NUMBER() OVER(PARTITION BY C.mgrid

 ORDER BY C.salary) -- sort col(s)

 AS BINARY(4))

 FROM Subs AS P

 JOIN dbo.Employees AS C

 ON C.mgrid = P.empid

)

C12626034.indd 690 2/20/2009 8:20:34 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 691

SELECT empid, salary, ROW_NUMBER() OVER(ORDER BY sort_path) AS sortval,

 REPLICATE(' | ', lvl) + empname AS empname

FROM Subs

ORDER BY sortval;

 This code generates the following output:

empid salary sortval empname

------ --------- -------- ---------------------

1 10000.00 1 David

2 7000.00 2 | Eitan

6 4500.00 3 | | Steve

4 5000.00 4 | | Seraph

5 5500.00 5 | | Jiru

10 3000.00 6 | | | Sean

8 3500.00 7 | | | Lilach

3 7500.00 8 | Ina

7 5000.00 9 | | Aaron

9 3000.00 10 | | | Rita

14 1500.00 11 | | | | Didi

12 2000.00 12 | | | | Emilia

13 2000.00 13 | | | | Michael

11 3000.00 14 | | | Gabriel

 Note If you need to sort siblings by a single integer sort column (for example, by empid),
you can construct the binary sort path from the sort column values themselves instead of row
 numbers based on that column.

Cycles

 Cycles in graphs are paths that begin and end at the same node. In some scenarios, cycles are
natural (for example, road systems). If you have a cycle in what’s supposed to be an acyclic
graph, it might indicate a problem in your data. Either way, you need a way to identify them. If a
cycle indicates a problem in the data, you need to identify the problem and fi x it. If cycles are
natural, you don’t want to endlessly keep returning to the same point while traversing the graph.

 Cycle detection with T-SQL can be a very complex and expensive task. However, I’ll show
you a fairly simple technique to detect cycles with reasonable performance, relying on path
 enumeration, which I discussed earlier. For demonstration purposes, I’ll use this technique
to detect cycles in the tree represented by the Employees table, but you can apply this
 technique to forests as well and also to more generic graphs, as I will demonstrate later.

 Suppose that Didi (empid 14) is unhappy with her location in the company’s management
 hierarchy. Didi also happens to be the database administrator and has full access to the Employees
table. Didi runs the following code, making her the manager of the CEO and introducing a cycle:

UPDATE dbo.Employees SET mgrid = 14 WHERE empid = 1;

C12626034.indd 691 2/20/2009 8:20:34 PM

692 Inside Microsoft SQL Server 2008: T-SQL Querying

 The Employees table currently contains the following cycle of employee IDs:

1 3 7 9 14 1

 As a baseline, I’ll use one of the solutions I covered earlier, which constructs an enumerated
path. In my examples, I’ll use a CTE solution, but of course you can apply the same logic to
the UDF solution that uses loops.

 Simply put, a cycle is detected when you follow a path leading to a given node if its parent’s
path already contains the child node ID. You can keep track of cycles by maintaining a
cycle column, which contain 0 if no cycle is detected and 1 if one is detected. In the anchor
 member of the solution CTE, the cycle column value is simply the constant 0 because
 obviously the root level has no cycle. In the recursive member’s query, use a LIKE predicate
to check whether the parent’s path contains the child node ID. Return 1 if it does and 0
 otherwise. Note the importance of the dots at both the beginning and end of both the
path and the pattern—without the dots, you get an unwanted match for employee ID n
(for example n = 3) if the path contains employee ID nm (for example m = 15, nm = 315).
The following code returns a subtree with an enumerated path calculation and has the
 addition of the cycle column calculation:

DECLARE @root AS INT = 1;

WITH Subs

AS

(

 SELECT empid, empname, 0 AS lvl,

 CAST('.' + CAST(empid AS VARCHAR(10)) + '.'

 AS VARCHAR(MAX)) AS path,

 -- Obviously root has no cycle

 0 AS cycle

 FROM dbo.Employees

 WHERE empid = @root

 UNION ALL

 SELECT C.empid, C.empname, P.lvl + 1,

 CAST(P.path + CAST(C.empid AS VARCHAR(10)) + '.'

 AS VARCHAR(MAX)),

 -- Cycle detected if parent's path contains child's id

 CASE WHEN P.path LIKE '%.' + CAST(C.empid AS VARCHAR(10)) + '.%'

 THEN 1 ELSE 0 END

 FROM Subs AS P

 JOIN dbo.Employees AS C

 ON C.mgrid = P.empid

)

SELECT empid, empname, cycle, path

FROM Subs;

 If you run this code, it always breaks after 100 levels (the default MAXRECURSION value)
 because cycles are detected but not avoided. You need to avoid cycles—in other words,

C12626034.indd 692 2/20/2009 8:20:34 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 693

don’t pursue paths for which cycles are detected. To achieve this, simply add a fi lter to the
recursive member that returns a child only if its parent’s cycle value is 0, like so:

DECLARE @root AS INT = 1;

WITH Subs

AS

(

 SELECT empid, empname, 0 AS lvl,

 CAST('.' + CAST(empid AS VARCHAR(10)) + '.'

 AS VARCHAR(MAX)) AS path,

 -- Obviously root has no cycle

 0 AS cycle

 FROM dbo.Employees

 WHERE empid = @root

 UNION ALL

 SELECT C.empid, C.empname, P.lvl + 1,

 CAST(P.path + CAST(C.empid AS VARCHAR(10)) + '.'

 AS VARCHAR(MAX)),

 -- Cycle detected if parent's path contains child's id

 CASE WHEN P.path LIKE '%.' + CAST(C.empid AS VARCHAR(10)) + '.%'

 THEN 1 ELSE 0 END

 FROM Subs AS P

 JOIN dbo.Employees AS C

 ON C.mgrid = P.empid

 AND P.cycle = 0 -- do not pursue branch for parent with cycle

)

SELECT empid, empname, cycle, path

FROM Subs;

 This code generates the following output:

empid empname cycle path

------ -------- ------ -----------------

1 David 0 .1.

2 Eitan 0 .1.2.

3 Ina 0 .1.3.

7 Aaron 0 .1.3.7.

9 Rita 0 .1.3.7.9.

11 Gabriel 0 .1.3.7.11.

12 Emilia 0 .1.3.7.9.12.

13 Michael 0 .1.3.7.9.13.

14 Didi 0 .1.3.7.9.14.

1 David 1 .1.3.7.9.14.1.

4 Seraph 0 .1.2.4.

5 Jiru 0 .1.2.5.

6 Steve 0 .1.2.6.

8 Lilach 0 .1.2.5.8.

10 Sean 0 .1.2.5.10.

 Notice in the output that the second time employee 1 was reached, a cycle was detected for
it, and the path was not pursued any further. In a cyclic graph, that’s all the logic you usually
need to add. In our case, the cycle indicates a problem with the data that needs to be fi xed.

C12626034.indd 693 2/20/2009 8:20:34 PM

694 Inside Microsoft SQL Server 2008: T-SQL Querying

To isolate only the cyclic path (in our case, .1.3.7.9.14.1.), simply add the fi lter cycle = 1 to the
outer query, like so:

DECLARE @root AS INT = 1;

WITH Subs

AS

(

 SELECT empid, empname, 0 AS lvl,

 CAST('.' + CAST(empid AS VARCHAR(10)) + '.'

 AS VARCHAR(MAX)) AS path,

 -- Obviously root has no cycle

 0 AS cycle

 FROM dbo.Employees

 WHERE empid = @root

 UNION ALL

 SELECT C.empid, C.empname, P.lvl + 1,

 CAST(P.path + CAST(C.empid AS VARCHAR(10)) + '.'

 AS VARCHAR(MAX)),

 -- Cycle detected if parent's path contains child's id

 CASE WHEN P.path LIKE '%.' + CAST(C.empid AS VARCHAR(10)) + '.%'

 THEN 1 ELSE 0 END

 FROM Subs AS P

 JOIN dbo.Employees AS C

 ON C.mgrid = P.empid

 AND P.cycle = 0

)

SELECT path FROM Subs WHERE cycle = 1;

 Now that the cyclic path has been identifi ed, you can fi x the data by running the following code:

UPDATE dbo.Employees SET mgrid = NULL WHERE empid = 1;

 Didi will probably fi nd herself unemployed.

Materialized Path

 So far I presented solutions where paths were computed when the code was executed.
In the materialized path solution, the paths are stored so that they need not be computed
 repeatedly. You basically store an enumerated path and a level for each node of the tree in
two additional columns. The solution works optimally with trees and forests.

 This approach has two main advantages over the iterative/recursive approach. Queries are
simpler and set based (without relying on recursive CTEs). Also, queries typically perform
much faster because they can rely on indexing of the path.

 However, now that you have two additional attributes in the table, you need to keep them
in sync with the tree as it undergoes changes. The cost of modifi cations determines whether

C12626034.indd 694 2/20/2009 8:20:34 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 695

it’s reasonable to synchronize the path and level values with every change in the tree. For
example, what is the effect of adding a new leaf to the tree? I like to refer to the effect of
such a modifi cation informally as the shake effect. Fortunately, as I will elaborate on shortly,
the shake effect of adding new leaves is minor. Also, the effect of dropping or moving a small
subtree is typically not very signifi cant.

 The enumerated path can get lengthy when the tree is deep—in other words, when there
are many levels of managers. SQL Server limits the size of index keys to 900 bytes. To achieve
the performance benefi ts of an index on the path column, you must limit the size of that
 column to 900 bytes. Before you become concerned by this fact, try thinking in practical
terms: 900 bytes is enough for trees with hundreds of levels. Will your tree ever reach more
than hundreds of levels? I’ll admit that I never had to model a hierarchy with hundreds of
 levels. In short, apply common sense and think in practical terms.

Maintaining Data

 First run the following code to create the Employees table with the new lvl and path columns:

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.Employees') IS NOT NULL

 DROP TABLE dbo.Employees;

GO

CREATE TABLE dbo.Employees

(

 empid INT NOT NULL PRIMARY KEY NONCLUSTERED,

 mgrid INT NULL REFERENCES dbo.Employees,

 empname VARCHAR(25) NOT NULL,

 salary MONEY NOT NULL,

 lvl INT NOT NULL,

 path VARCHAR(900) NOT NULL UNIQUE CLUSTERED

);

CREATE UNIQUE INDEX idx_unc_mgrid_empid ON dbo.Employees(mgrid, empid);

GO

 To handle modifi cations in a tree, it’s recommended that you use stored procedures that also
take care of the lvl and path values. Alternatively, you can use triggers, and their logic will be
very similar to that in the following stored procedures.

Adding Employees Who Manage No One (Leaves)

 Let’s start with handling inserts. The logic of the insert procedure is simple. If the new
 employee is a root employee (that is, the manager ID is NULL), its level is 0, and its path is
‘.’ + employee id + ‘.’. Otherwise, its level is the parent’s level plus 1, and its path is parent
path + employee id + ‘.’. As you can fi gure out, the shake effect here is minor. You don’t need
to make any changes to other employees, and to calculate the new employee’s lvl and path
values, you need only to query the employee’s parent.

C12626034.indd 695 2/20/2009 8:20:34 PM

696 Inside Microsoft SQL Server 2008: T-SQL Querying

 Run the following code to create the AddEmp stored procedure and populate the Employees
table with sample data:

-- Stored Procedure: AddEmp,

-- Inserts new employee who manages no one into the table

USE tempdb;

GO

IF OBJECT_ID('dbo.AddEmp') IS NOT NULL

 DROP PROC dbo.AddEmp;

GO

CREATE PROC dbo.AddEmp

 @empid INT,

 @mgrid INT,

 @empname VARCHAR(25),

 @salary MONEY

AS

SET NOCOUNT ON;

-- Handle case where the new employee has no manager (root)

IF @mgrid IS NULL

 INSERT INTO dbo.Employees(empid, mgrid, empname, salary, lvl, path)

 VALUES(@empid, @mgrid, @empname, @salary,

 0, '.' + CAST(@empid AS VARCHAR(10)) + '.');

-- Handle subordinate case (non-root)

ELSE

 INSERT INTO dbo.Employees(empid, mgrid, empname, salary, lvl, path)

 SELECT @empid, @mgrid, @empname, @salary,

 lvl + 1, path + CAST(@empid AS VARCHAR(10)) + '.'

 FROM dbo.Employees

 WHERE empid = @mgrid;

GO

EXEC dbo.AddEmp

 @empid = 1, @mgrid = NULL, @empname = 'David', @salary = $10000.00;

EXEC dbo.AddEmp

 @empid = 2, @mgrid = 1, @empname = 'Eitan', @salary = $7000.00;

EXEC dbo.AddEmp

 @empid = 3, @mgrid = 1, @empname = 'Ina', @salary = $7500.00;

EXEC dbo.AddEmp

 @empid = 4, @mgrid = 2, @empname = 'Seraph', @salary = $5000.00;

EXEC dbo.AddEmp

 @empid = 5, @mgrid = 2, @empname = 'Jiru', @salary = $5500.00;

EXEC dbo.AddEmp

 @empid = 6, @mgrid = 2, @empname = 'Steve', @salary = $4500.00;

EXEC dbo.AddEmp

 @empid = 7, @mgrid = 3, @empname = 'Aaron', @salary = $5000.00;

EXEC dbo.AddEmp

 @empid = 8, @mgrid = 5, @empname = 'Lilach', @salary = $3500.00;

EXEC dbo.AddEmp

 @empid = 9, @mgrid = 7, @empname = 'Rita', @salary = $3000.00;

EXEC dbo.AddEmp

 @empid = 10, @mgrid = 5, @empname = 'Sean', @salary = $3000.00;

C12626034.indd 696 2/20/2009 8:20:34 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 697

EXEC dbo.AddEmp

 @empid = 11, @mgrid = 7, @empname = 'Gabriel', @salary = $3000.00;

EXEC dbo.AddEmp

 @empid = 12, @mgrid = 9, @empname = 'Emilia', @salary = $2000.00;

EXEC dbo.AddEmp

 @empid = 13, @mgrid = 9, @empname = 'Michael', @salary = $2000.00;

EXEC dbo.AddEmp

 @empid = 14, @mgrid = 9, @empname = 'Didi', @salary = $1500.00;

 Run the following query to examine the resulting contents of Employees:

SELECT empid, mgrid, empname, salary, lvl, path

FROM dbo.Employees

ORDER BY path;

 You get the following output:

empid mgrid empname salary lvl path

------ ------ -------- --------- ---- --------------

1 NULL David 10000.00 0 .1.

2 1 Eitan 7000.00 1 .1.2.

4 2 Seraph 5000.00 2 .1.2.4.

5 2 Jiru 5500.00 2 .1.2.5.

10 5 Sean 3000.00 3 .1.2.5.10.

8 5 Lilach 3500.00 3 .1.2.5.8.

6 2 Steve 4500.00 2 .1.2.6.

3 1 Ina 7500.00 1 .1.3.

7 3 Aaron 5000.00 2 .1.3.7.

11 7 Gabriel 3000.00 3 .1.3.7.11.

9 7 Rita 3000.00 3 .1.3.7.9.

12 9 Emilia 2000.00 4 .1.3.7.9.12.

13 9 Michael 2000.00 4 .1.3.7.9.13.

14 9 Didi 1500.00 4 .1.3.7.9.14.

Moving a Subtree

 Moving a subtree is a bit tricky. A change in someone’s manager affects the row for that
 employee and for all of his or her subordinates. The inputs are the root of the subtree and
the new parent (manager) of that root. The level and path values of all employees in the
 subtree are going to be affected. So you need to be able to isolate that subtree and also
fi gure out how to revise the level and path values of all the subtree’s members. To isolate
the affected subtree, you join the row for the root (R) with the Employees table (E) based
on E.path LIKE R.path + ‘%’. To calculate the revisions in level and path, you need access to
the rows of both the old manager of the root (OM) and the new one (NM). The new level
value for all nodes is their current level value plus the difference in levels between the new
 manager’s level and the old manager’s level. For example, if you move a subtree to a new
location so that the difference in levels between the new manager and the old one is 2, you
need to add 2 to the level value of all employees in the affected subtree. Similarly, to amend
the path value of all nodes in the subtree, you need to remove the prefi x containing the

C12626034.indd 697 2/20/2009 8:20:35 PM

698 Inside Microsoft SQL Server 2008: T-SQL Querying

root’s old manager’s path and substitute it with the new manager’s path. This can be achieved
simply by using the STUFF function.

 Run the following code to create the MoveSubtree stored procedure, which implements the
logic I just described:

-- Stored Procedure: MoveSubtree,

-- Moves a whole subtree of a given root to a new location

-- under a given manager

USE tempdb;

GO

IF OBJECT_ID('dbo.MoveSubtree') IS NOT NULL

 DROP PROC dbo.MoveSubtree;

GO

CREATE PROC dbo.MoveSubtree

 @root INT,

 @mgrid INT

AS

SET NOCOUNT ON;

BEGIN TRAN;

 -- Update level and path of all employees in the subtree (E)

 -- Set level =

 -- current level + new manager's level - old manager's level

 -- Set path =

 -- in current path remove old manager's path

 -- and substitute with new manager's path

 UPDATE E

 SET lvl = E.lvl + NM.lvl - OM.lvl,

 path = STUFF(E.path, 1, LEN(OM.path), NM.path)

 FROM dbo.Employees AS E -- E = Employees (subtree)

 JOIN dbo.Employees AS R -- R = Root (one row)

 ON R.empid = @root

 AND E.path LIKE R.path + '%'

 JOIN dbo.Employees AS OM -- OM = Old Manager (one row)

 ON OM.empid = R.mgrid

 JOIN dbo.Employees AS NM -- NM = New Manager (one row)

 ON NM.empid = @mgrid;

 -- Update root's new manager

 UPDATE dbo.Employees SET mgrid = @mgrid WHERE empid = @root;

COMMIT TRAN;

GO

 The implementation of this stored procedure is simplistic and is provided for demonstration
 purposes. Good behavior is not guaranteed for invalid parameter choices. To make this procedure
more robust, you should also check the inputs to make sure that attempts to make someone
his or her own manager or to generate cycles are rejected. For example, this can be achieved by
using an EXISTS predicate with a SELECT statement that fi rst generates a result set with the new
paths and making sure that the employees’ IDs do not appear in their managers’ paths.

C12626034.indd 698 2/20/2009 8:20:35 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 699

 To test the procedure, fi rst examine the tree before moving the subtree:

SELECT empid, REPLICATE(' | ', lvl) + empname AS empname, lvl, path

FROM dbo.Employees

ORDER BY path;

 You get the following output:

empid empname lvl path

----------- ------------------- ---- -------------

1 David 0 .1.

2 | Eitan 1 .1.2.

4 | | Seraph 2 .1.2.4.

5 | | Jiru 2 .1.2.5.

10 | | | Sean 3 .1.2.5.10.

8 | | | Lilach 3 .1.2.5.8.

6 | | Steve 2 .1.2.6.

3 | Ina 1 .1.3.

7 | | Aaron 2 .1.3.7.

11 | | | Gabriel 3 .1.3.7.11.

9 | | | Rita 3 .1.3.7.9.

12 | | | | Emilia 4 .1.3.7.9.12.

13 | | | | Michael 4 .1.3.7.9.13.

14 | | | | Didi 4 .1.3.7.9.14.

 Then run the following code to move Aaron’s subtree under Sean:

BEGIN TRAN;

 EXEC dbo.MoveSubtree

 @root = 7,

 @mgrid = 10;

 -- After moving subtree

 SELECT empid, REPLICATE(' | ', lvl) + empname AS empname, lvl, path

 FROM dbo.Employees

 ORDER BY path;

ROLLBACK TRAN; -- rollback used in order not to apply the change

 Note The change is rolled back for demonstration only, so the data is the same at the start of
each test script.

 Examine the result tree to verify that the subtree moved correctly:

empid empname lvl path

----------- ------------------------- ---- ------------------

1 David 0 .1.

2 | Eitan 1 .1.2.

4 | | Seraph 2 .1.2.4.

5 | | Jiru 2 .1.2.5.

10 | | | Sean 3 .1.2.5.10.

7 | | | | Aaron 4 .1.2.5.10.7.

11 | | | | | Gabriel 5 .1.2.5.10.7.11.

C12626034.indd 699 2/20/2009 8:20:35 PM

700 Inside Microsoft SQL Server 2008: T-SQL Querying

9 | | | | | Rita 5 .1.2.5.10.7.9.

12 | | | | | | Emilia 6 .1.2.5.10.7.9.12.

13 | | | | | | Michael 6 .1.2.5.10.7.9.13.

14 | | | | | | Didi 6 .1.2.5.10.7.9.14.

8 | | | Lilach 3 .1.2.5.8.

6 | | Steve 2 .1.2.6.

3 | Ina 1 .1.3.

Removing a Subtree

 Removing a subtree is a simple task. You just delete all employees whose path value has the
subtree’s root path as a prefi x.

 To test this solution, fi rst examine the current state of the tree by running the following query:

SELECT empid, REPLICATE(' | ', lvl) + empname AS empname, lvl, path

FROM dbo.Employees

ORDER BY path;

 You get the following output:

empid empname lvl path

----------- ------------------- ---- ------------

1 David 0 .1.

2 | Eitan 1 .1.2.

4 | | Seraph 2 .1.2.4.

5 | | Jiru 2 .1.2.5.

10 | | | Sean 3 .1.2.5.10.

8 | | | Lilach 3 .1.2.5.8.

6 | | Steve 2 .1.2.6.

3 | Ina 1 .1.3.

7 | | Aaron 2 .1.3.7.

11 | | | Gabriel 3 .1.3.7.11.

9 | | | Rita 3 .1.3.7.9.

12 | | | | Emilia 4 .1.3.7.9.12.

13 | | | | Michael 4 .1.3.7.9.13.

14 | | | | Didi 4 .1.3.7.9.14.

 Issue the following code, which fi rst removes Aaron and his subordinates and then displays
the resulting tree:

BEGIN TRAN;

 DELETE FROM dbo.Employees

 WHERE path LIKE

 (SELECT M.path + '%'

 FROM dbo.Employees as M

 WHERE M.empid = 7);

 -- After deleting subtree

 SELECT empid, REPLICATE(' | ', lvl) + empname AS empname, lvl, path

 FROM dbo.Employees

 ORDER BY path;

ROLLBACK TRAN; -- rollback used in order not to apply the change

C12626034.indd 700 2/20/2009 8:20:35 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 701

 You get the following output:

empid empname lvl path

----------- --------------- ---- -----------

1 David 0 .1.

2 | Eitan 1 .1.2.

4 | | Seraph 2 .1.2.4.

5 | | Jiru 2 .1.2.5.

10 | | | Sean 3 .1.2.5.10.

8 | | | Lilach 3 .1.2.5.8.

6 | | Steve 2 .1.2.6.

3 | Ina 1 .1.3.

Querying

 Querying data in the materialized path solution is simple and elegant. For subtree-related
requests, the optimizer can always use a clustered or covering index that you create on
the path column. If you create a nonclustered, noncovering index on the path column, the
 optimizer can still use it if the query is selective enough.

 Let’s review typical requests from a tree. For each request, I’ll provide a sample query followed
by its output.

 Return the subtree with a given root:

SELECT REPLICATE(' | ', E.lvl - M.lvl) + E.empname

FROM dbo.Employees AS E

 JOIN dbo.Employees AS M

 ON M.empid = 3 -- root

 AND E.path LIKE M.path + '%'

ORDER BY E.path;

Ina

 | Aaron

 | | Gabriel

 | | Rita

 | | | Emilia

 | | | Michael

 | | | Didi

 The query joins two instances of Employees. One represents the managers (M) and is
 fi ltered by the given root employee. The other represents the employees in the subtree (E).
The subtree is identifi ed using the following logical expression in the join condition, E.path
LIKE M.path + ‘%’, which identifi es a subordinate if it contains the root’s path as a prefi x.
Indentation is achieved by replicating a string (‘ | ‘) as many times as the employee’s level
within the subtree. The output is sorted by the path of the employee.

 This query generates the execution plan shown in Figure 12-5.

C12626034.indd 701 2/20/2009 8:20:35 PM

702 Inside Microsoft SQL Server 2008: T-SQL Querying

FIGURE 12-5 Execution plan for custom materialized path subtree query

 The fi rst Index Seek operator in the plan and the associated Key Lookup are in charge of
retrieving the row for the fi ltered employee (empid 3). The second Index Seek operator in
the plan performs a range scan in the index on the path attribute to retrieve the requested
subtree of employees. Because the path attribute represents topological sorting, an index on
path ensures that all members of the same subtree are stored continguously in the leaf level
of the index. Therefore, a request for a subtree is processed with a simple range scan in the
index, touching only the nodes that are in fact members of the requested subtree.

 To exclude the subtree’s root (top-level manager) from the output, simply add an underscore
before the percent sign in the LIKE pattern:

SELECT REPLICATE(' | ', E.lvl - M.lvl - 1) + E.empname

FROM dbo.Employees AS E

 JOIN dbo.Employees AS M

 ON M.empid = 3

 AND E.path LIKE M.path + '_%'

ORDER BY E.path;

Aaron

 | Gabriel

 | Rita

 | | Emilia

 | | Michael

 | | Didi

 With the additional underscore in the LIKE condition, an employee is returned only if its path
starts with the root’s path and has at least one subsequent character.

 To return leaf nodes under a given root (including the root itself if it is a leaf), add a NOT
EXISTS predicate to identify only employees that are not managers of another employee:

SELECT E.empid, E.empname

FROM dbo.Employees AS E

 JOIN dbo.Employees AS M

 ON M.empid = 3

 AND E.path LIKE M.path + '%'

C12626034.indd 702 2/20/2009 8:20:35 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 703

WHERE NOT EXISTS

 (SELECT *

 FROM dbo.Employees AS E2

 WHERE E2.mgrid = E.empid);

empid empname

----------- --------

11 Gabriel

12 Emilia

13 Michael

14 Didi

 To return a subtree with a given root, limiting the number of levels under the root, add a
 fi lter in the join condition that limits the level difference between the employee and the root:

SELECT REPLICATE(' | ', E.lvl - M.lvl) + E.empname

FROM dbo.Employees AS E

 JOIN dbo.Employees AS M

 ON M.empid = 3

 AND E.path LIKE M.path + '%'

 AND E.lvl - M.lvl <= 2

ORDER BY E.path;

Ina

 | Aaron

 | | Gabriel

 | | Rita

 To return only the nodes exactly n levels under a given root, use an equal to operator (=) to
identify the specifi c level difference instead of a less than or equal to (<=) operator:

SELECT E.empid, E.empname

FROM dbo.Employees AS E

 JOIN dbo.Employees AS M

 ON M.empid = 3

 AND E.path LIKE M.path + '%'

 AND E.lvl - M.lvl = 2;

empid empname

----------- --------

11 Gabriel

9 Rita

 To return management chain of a given node, you use a query similar to the subtree query,
with one small difference: you fi lter a specifi c employee ID, as opposed to fi ltering a specifi c
manager ID:

SELECT REPLICATE(' | ', M.lvl) + M.empname

FROM dbo.Employees AS E

 JOIN dbo.Employees AS M

 ON E.empid = 14

 AND E.path LIKE M.path + '%'

ORDER BY E.path;

C12626034.indd 703 2/20/2009 8:20:35 PM

704 Inside Microsoft SQL Server 2008: T-SQL Querying

David

 | Ina

 | | Aaron

 | | | Rita

 | | | | Didi

 You get all managers whose paths are a prefi x of the given employee’s path.

 Note that requesting a subtree and requesting the ancestors have an important difference
in performance, even though they look very similar. For each query, either M.path or E.path
is a constant. If M.path is constant, E.path LIKE M.path + ‘%’ uses an index because it asks
for all paths with a given prefi x. If E.path is constant, it does not use an index because it asks
for all prefi xes of a given path. The subtree query can seek within an index to the fi rst path
that meets the fi lter, and it can scan to the right until it gets to the last path that meets the
fi lter. In other words, only the relevant paths in the index are accessed. While in the ancestors
query, ALL paths must be scanned to check whether they match the fi lter. In large tables,
this translates to a slow query. To handle ancestor requests more effi ciently, you can create
a function that accepts an employee ID as input, splits its path, and returns a table with the
path’s node IDs in separate rows. You can join this table with the tree and use index seek
operations for the specifi c employee IDs in the path. The split function uses an auxiliary
table of numbers, which I covered in Chapter 6, “Subqueries, Table Expressions, and Ranking
Functions,” under the section “Auxiliary Table of Numbers.” If you currently don’t have a
Nums table in tempdb, fi rst create it by running the following code:

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.Nums') IS NOT NULL

 DROP TABLE dbo.Nums;

GO

CREATE TABLE Nums(n INT NOT NULL PRIMARY KEY);

DECLARE @max AS INT = 1000000, @rc AS INT = 1;

INSERT INTO Nums VALUES(1);

WHILE @rc * 2 <= @max

BEGIN

 INSERT INTO dbo.Nums SELECT n + @rc FROM dbo.Nums;

 SET @rc = @rc * 2;

END

INSERT INTO dbo.Nums

 SELECT n + @rc FROM dbo.Nums WHERE n + @rc <= @max;

 Run the following code to create the SplitPath function:

USE tempdb;

GO

IF OBJECT_ID('dbo.SplitPath') IS NOT NULL

 DROP FUNCTION dbo.SplitPath;

GO

CREATE FUNCTION dbo.SplitPath(@empid AS INT) RETURNS TABLE

AS

C12626034.indd 704 2/20/2009 8:20:35 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 705

RETURN

 SELECT

 ROW_NUMBER() OVER(ORDER BY n) AS pos,

 CAST(SUBSTRING(path, n + 1,

 CHARINDEX('.', path, n + 1) - n - 1) AS INT) AS empid

 FROM dbo.Employees

 JOIN dbo.Nums

 ON empid = @empid

 AND n < LEN(path)

 AND SUBSTRING(path, n, 1) = '.';

GO

 You can fi nd details on the logic behind the split technique that the function implements in
Chapter 6 under the section “Separating Elements.”

 To test the function, run the following code, which splits employee 14’s path:

SELECT pos, empid FROM dbo.SplitPath(14);

 This code generates the following output:

pos empid

---- ------

1 1

2 3

3 7

4 9

5 14

 To get the management chain of a given employee, simply join the table returned by the
function with the Employees table:

SELECT REPLICATE(' | ', lvl) + empname

FROM dbo.SplitPath(14) AS SP

 JOIN dbo.Employees AS E

 ON E.empid = SP.empid

ORDER BY path;

 When presenting information from a tree or a subtree, a common need is to present the
nodes in topological sort order (parent before child). Because the path column already gives
you topological sorting, you can simply sort the rows by path. Having an index on the path
column means that the optimizer can satisfy the request with an index order scan as opposed
to needing to apply a sort operation. As shown earlier, indentation of nodes can be achieved
by replicating a string lvl times. For example, the following query presents the employees in
topological sort order:

SELECT REPLICATE(' | ', lvl) + empname

FROM dbo.Employees

ORDER BY path;

C12626034.indd 705 2/20/2009 8:20:35 PM

706 Inside Microsoft SQL Server 2008: T-SQL Querying

 This code generates the following output:

David

 | Eitan

 | | Seraph

 | | Jiru

 | | | Sean

 | | | Lilach

 | | Steve

 | Ina

 | | Aaron

 | | | Gabriel

 | | | Rita

 | | | | Emilia

 | | | | Michael

 | | | | Didi

 The execution plan for this query is shown in Figure 12-6. Notice that the clustered index
 created on the path column is scanned in an ordered fashion.

FIGURE 12-6 Execution plan for custom materialized path sorting query

Materialized Path with the HIERARCHYID Data Type

 SQL Server 2008 introduces a CLR-based data type called HIERARCHYID that you can use
to represent graphs. This type provides a built-in implementation for the materialized path
model. Like the custom materialized path model, it works ideally for trees. As with the
 custom model, the HIERARCHYID values provide topological ordering, positioning a node

C12626034.indd 706 2/20/2009 8:20:35 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 707

in a certain place in the tree with respect to other nodes. Besides providing topological
sorting, the HIERARCHYID paths position each node under a certain path of ancestors and
in a certain place with respect to siblings. The HIERARCHYID paths differ from the custom
model’s paths in two main ways. First, the custom model’s paths are made of the actual node
IDs, while the HIERARCHYID paths are made of internally generated values. Second, the
 custom model’s path is character based, while the HIERARCHYID paths are binary. One of
the major benefi ts I’ve found with the HIERARCHYID type paths is that they tend to be much
more economical compared to the custom model’s paths. The encoding of the paths in the
HIERARCHYID data type cannot exceed 892 bytes, but this limit shouldn’t present a problem
for most trees. Also, you typically want to index the paths, and index keys are limited to
900 bytes anyway.

 The HIERARCHYID type provides the following set of methods and properties that
help you maintain and query the tree: GetLevel, GetRoot, GetAncestor, GetDescendant,
GetReparentedValue, IsDescendantOf, ToString, Parse, Read, and Write. I will describe the
methods and properties in context of tasks where they need to be used.

 Note I should mention several points about working with the HIERARCHYID type in terms of
case sensitivity:

❏ As a T-SQL type identifi er, HIERARCHYID is always case insensitive, like any T-SQL keyword.

❏ The method names associated with this type, like GetAncestor(), are always case sensitive,
like any CLR identifi er, whether they are static methods or not.

❏ HIERARCHYID/hierarchyid, when used to identify the CLR class of a static method, as
in hierarchyid::GetRoot(), is case sensitive or case insensitive according to the current
 database context. When the current database is case sensitive, lowercase must be used to
identify the CLR class of a static method.

❏ I’ve chosen to write the T-SQL type as HIERARCHYID for typographical reasons, but
 lowercase hierarchyid is the most portable choice for code.

 In my examples I will use an employee organizational chart to demonstrate working with the
HIERARCHYID type. Run the following code to create the Employees table, along with a few
indexes to support typical queries:

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.Employees') IS NOT NULL

 DROP TABLE dbo.Employees;

GO

CREATE TABLE dbo.Employees

(

 empid INT NOT NULL,

 hid HIERARCHYID NOT NULL,

 lvl AS hid.GetLevel() PERSISTED,

 empname VARCHAR(25) NOT NULL,

 salary MONEY NOT NULL

);

C12626034.indd 707 2/20/2009 8:20:35 PM

708 Inside Microsoft SQL Server 2008: T-SQL Querying

CREATE UNIQUE CLUSTERED INDEX idx_depth_first ON dbo.Employees(hid);

CREATE UNIQUE INDEX idx_breadth_first ON dbo.Employees(lvl, hid);

CREATE UNIQUE INDEX idx_empid ON dbo.Employees(empid);

 In addition to the hid column that holds the path, the table has a computed persisted column
based on the GetLevel method applied to the hid column. As its name implies, the method
returns the level of the node in the tree—in other words, the distance from the root.

 Besides the obvious index on the empid attribute that supports queries requesting a
 particular employee, the code creates two other indexes. First, a clustered index is created
on the hid column. Because HIERARCHYID provides topological sorting, an index on the hid
column stores all members of the same subtree close to each other. Such an index allows
effi cient processing of requests that need to traverse the tree in a depth-fi rst manner—for
example, a request for a whole subtree of employees. Second, an index is created on lvl and
hid, in that order. This index supports effi cient processing of requests that need to traverse
the tree in a breadth-fi rst manner—for example, returning a whole level of employees.

 Notice that the Employees table does not include an attribute for the manager ID. With the
HIERARCHYID type you can easily address requests that would normally require such an
attribute.

Maintaining Data

 Whenever you need to apply changes to the tree, such as adding new leaf nodes or moving
a subtree, you want to make sure that you produce new HIERARCHYID values or adjust
existing ones correctly. The HIERARCHYID type’s methods and properties can help you
in such tasks. Also, it’s important to note that the type itself does not enforce the validity
of your tree—that’s your responsibility. For example, if you do not enforce uniqueness of
the HIERARCHYID values with a constraint, the type itself won’t reject attempts to insert
 multiple rows with the same HIERARCHYID value. Also, it is your responsibility to develop
a process that prevents concurrent sessions that perform tree maintenance tasks from
 producing confl icting (the same) HIERARCHYID values for different nodes. I will explain
how this can be achieved.

 I will demonstrate techniques for adding employees who manage no one (leaf nodes)
and for moving a subtree. I’ll leave other tasks—such as dropping a subtree and changing
a manager—as exercises because those apply similar techniques to the ones I will cover.

Adding Employees

 The task of adding a new employee who manages no one requires you to produce a
HIERARCHYID value for the new node that positions it correctly within the tree and then

C12626034.indd 708 2/20/2009 8:20:35 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 709

insert the new employee row into the table. Run the following code to create a stored
 procedure called AddEmp that implements this task:

-- Stored Procedure: AddEmp,

-- Inserts new employee who manages no one into the table

IF OBJECT_ID('dbo.AddEmp', 'P') IS NOT NULL

 DROP PROC dbo.AddEmp;

GO

CREATE PROC dbo.AddEmp

 @empid AS INT,

 @mgrid AS INT,

 @empname AS VARCHAR(25),

 @salary AS MONEY

AS

DECLARE

 @hid AS HIERARCHYID,

 @mgr_hid AS HIERARCHYID,

 @last_child_hid AS HIERARCHYID;

BEGIN TRAN

 IF @mgrid IS NULL

 SET @hid = hierarchyid::GetRoot();

 ELSE

 BEGIN

 SET @mgr_hid = (SELECT hid FROM dbo.Employees WITH (UPDLOCK)

 WHERE empid = @mgrid);

 SET @last_child_hid =

 (SELECT MAX(hid) FROM dbo.Employees

 WHERE hid.GetAncestor(1) = @mgr_hid);

 SET @hid = @mgr_hid.GetDescendant(@last_child_hid, NULL);

 END

 INSERT INTO dbo.Employees(empid, hid, empname, salary)

 VALUES(@empid, @hid, @empname, @salary);

COMMIT TRAN

GO

 The procedure accepts as inputs all attributes of the new employee (employee ID, manager ID,
employee name, and salary). It then applies logic to generate the HIERARCHYID value of
the new employee and store it in the variable @hid. Finally, the procedure uses the new
HIERARCHYID value, @hid, in the new row it inserts into the Employees table.

 The procedure’s code fi rst checks whether the input employee is the root employee
(manager ID is NULL). In such a case, the code calculates the employee’s path with the static
method hierarchyid::GetRoot. As you can imagine, the purpose of this method is to produce
the path for the tree’s root node. In terms of the binary value that actually represents the
path, this method simply returns an empty binary string (0x). You could, if you wanted,
 replace the static method call with the constant 0x, but with the method call the code is
clearer and more self-explanatory.

C12626034.indd 709 2/20/2009 8:20:35 PM

710 Inside Microsoft SQL Server 2008: T-SQL Querying

 The next section of the procedure’s code (the ELSE block of the IF statement) handles an
 input employee that is not the root employee. To calculate a path for an employee that is not
the root employee, you can invoke the GetDescendant method applied to the HIERARCHYID
value of the employee’s manager. The code retrieves the manager’s HIERARCHYID value into
the @mgr_hid variable and later applies to it the GetDescendant method.

 The GetDescendant method accepts two input HIERARCHYID values and returns a
HIERARCHYID value that is positioned under the node it is applied to and between the input
left and right nodes. If both inputs are NULL, the method simply generates a value below the
parent node. If the left input is not NULL, the method generates a value greater than the left
input. If the right input is not NULL, the method generates a value less than the right input.
Note that the method has no knowledge of other values in your tree; all it cares about is
the value to which it is applied and the two input values. If you call the method twice and in
both cases apply it to the same value with the same inputs, you get the same output back.
It is your responsibility to prevent such confl icts. A simple technique to achieve this is to run
the code in a transaction (as in the AddEmp procedure) and specify the UPDLOCK hint in the
query that retrieves the manager’s path. Remember that an update lock can be held by only
one process on the same resource at a time. This hint allows only one session to request a
new HIERARCHYID value under the same manager. This simple technique will guarantee that
distinct HIERARCHYID values are generated by each process.

 You need to be specifi c about where to position the new node with respect to other siblings
under the same manager. For example, the inputs to the stored procedure could be the IDs
of two employees between which you want to position the new employee, and the stored
procedure could retrieve their HIERARCHYID values and provide those as the left and right
values to the GetDescendant method. I decided for this implementation that I simply wanted
to position the new employee right after the last under the target manager. This strategy,
coupled with the use of the UPDLOCK described earlier, is always safe in the sense that
HIERARCHYID values of employees will never confl ict. If you choose to implement a solution
that allows specifying the left and right employees, the responsibility to prevent confl icts is
now yours and not the procedure’s; that is, you will need to ensure that you never call the
procedure more than once with the same left and right employees. To apply my chosen
strategy, immediately after a query that retrieves the path of the target manager, another
query retrieves the maximum path among the existing subordinates of the manager, and
the result is stored in the @last_child_hid variable. The method GetAncestor helps identify
direct subordinates of the target manager. The method is applied to a HIERARCHYID value
of a node, and it returns the HIERARCHYID value of an ancestor that is n levels up, where
n is provided as input. For n=1, you get the node’s parent. So all employees for whom
GetAncestor(1) returns the path of the manager are direct subordinates of the manager.

 Once you have the path of the manager stored in the @hid variable and the path of the
manager’s last direct subordinate is stored in the variable @last_child_hid, you can generate
the input employee’s path with the expression @hid.GetDescendant(@last_child_hid, NULL).
Once the path for the input employee is generated, you can insert the employee’s row into
the Employees table and commit the transaction. Committing the transaction releases the

C12626034.indd 710 2/20/2009 8:20:35 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 711

update lock held on the manager’s row, allowing those who want to add other subordinates
under that manager to generate new HIERARCHYID values.

 Run the following code to populate the Employees table with sample data:

EXEC dbo.AddEmp @empid = 1, @mgrid = NULL, @empname = 'David' , @salary = $10000.00;

EXEC dbo.AddEmp @empid = 2, @mgrid = 1, @empname = 'Eitan' , @salary = $7000.00;

EXEC dbo.AddEmp @empid = 3, @mgrid = 1, @empname = 'Ina' , @salary = $7500.00;

EXEC dbo.AddEmp @empid = 4, @mgrid = 2, @empname = 'Seraph' , @salary = $5000.00;

EXEC dbo.AddEmp @empid = 5, @mgrid = 2, @empname = 'Jiru' , @salary = $5500.00;

EXEC dbo.AddEmp @empid = 6, @mgrid = 2, @empname = 'Steve' , @salary = $4500.00;

EXEC dbo.AddEmp @empid = 7, @mgrid = 3, @empname = 'Aaron' , @salary = $5000.00;

EXEC dbo.AddEmp @empid = 8, @mgrid = 5, @empname = 'Lilach' , @salary = $3500.00;

EXEC dbo.AddEmp @empid = 9, @mgrid = 7, @empname = 'Rita' , @salary = $3000.00;

EXEC dbo.AddEmp @empid = 10, @mgrid = 5, @empname = 'Sean' , @salary = $3000.00;

EXEC dbo.AddEmp @empid = 11, @mgrid = 7, @empname = 'Gabriel', @salary = $3000.00;

EXEC dbo.AddEmp @empid = 12, @mgrid = 9, @empname = 'Emilia' , @salary = $2000.00;

EXEC dbo.AddEmp @empid = 13, @mgrid = 9, @empname = 'Michael', @salary = $2000.00;

EXEC dbo.AddEmp @empid = 14, @mgrid = 9, @empname = 'Didi' , @salary = $1500.00;

 Run the following query to present the contents of the Employees table:

SELECT hid, hid.ToString() AS path, lvl, empid, empname, salary

FROM dbo.Employees

ORDER BY hid;

 The ToString method returns a canonical representation of the path, using slashes to separate
the values at each level. This query generates the following output:

hid path lvl empid empname salary

--------- ---------- ------ ------ -------- ---------

0x / 0 1 David 10000.00

0x58 /1/ 1 2 Eitan 7000.00

0x5AC0 /1/1/ 2 4 Seraph 5000.00

0x5B40 /1/2/ 2 5 Jiru 5500.00

0x5B56 /1/2/1/ 3 8 Lilach 3500.00

0x5B5A /1/2/2/ 3 10 Sean 3000.00

0x5BC0 /1/3/ 2 6 Steve 4500.00

0x68 /2/ 1 3 Ina 7500.00

0x6AC0 /2/1/ 2 7 Aaron 5000.00

0x6AD6 /2/1/1/ 3 9 Rita 3000.00

0x6AD6B0 /2/1/1/1/ 4 12 Emilia 2000.00

0x6AD6D0 /2/1/1/2/ 4 13 Michael 2000.00

0x6AD6F0 /2/1/1/3/ 4 14 Didi 1500.00

0x6ADA /2/1/2/ 3 11 Gabriel 3000.00

 This output gives you a sense of the logic that the GetDescendant method applies to
 calculate the values. The root (empty binary string) is represented by the canonical path /.
The fi rst child under a node obtains its HIERARCHYID from a call to GetDescendant with two
NULL inputs. The result is the parent’s canonical path plus 1/. So the path of the fi rst child of
the root becomes /1/.

 If you add someone to the right of an existing child and under that child’s parent, the new
child’s hid is obtained by a call to GetDescendant with the existing child’s hid as left input and

C12626034.indd 711 2/20/2009 8:20:35 PM

712 Inside Microsoft SQL Server 2008: T-SQL Querying

NULL as right input. The new path value is like the existing child’s value but with a rightmost
number that is greater by one. So, for example, the value under / and to the right of /1/
would be /2/. Similarly, the value under /1/ and to the right of /1/1/ would be /1/2/.

 If you add someone under a certain parent and to the left of an existing child, the left input
to GetDescendant is NULL, and the new path value will be like the existing child’s but with a
rightmost number that is less by one. So, for example, the value under /1/ and to the left of
/1/1/ would be /1/0/. Similarly, the value under /1/ and to the left of /1/0/ would be /1/-1/.

 If you add someone under a certain parent and provide two of that parent’s existing
 children’s hid values as inputs to GetDescendant, the resulting path matches the existing
children’s paths except for the last number. If the last numbers in the existing children’s
paths aren’t consecutive, the last number of the new child’s path will be one greater than
that of the left child. For example, when the method is applied to the parent /1/1/ and
the input children are /1/1/1/ and /1/1/4/, you get /1/1/2/. If the last path numbers of
the input children are consecutive, you get the last number of the left child, followed
by .1 (read “dot one”). For example, when the method is applied to the parent /1/1/ and the
 input children’s paths are /1/1/1/ and /1/1/2/, you get /1/1/1.1/. Similarly, when the method
is applied to the parent /1/2.1/3/4/5/ and the input children are /1/2.1/3/4/5/2.1.3.4/ and
/1/2.1/3/4/5/2.1.3.5/, you get /1/2.1/3/4/5/2.1.3.4.1/. I could go on, but at this point you
probably get the general idea and realize that the paths are simpler if you add new nodes
either to the right of the last child or to the left of the fi rst child.

 Later in the chapter, in the section “Normalizing HIERARCHYID Values,” I’ll provide details as
to how you can normalize paths.

Moving a Subtree

 The HIERARCHYID type supports a method called GetReparentedValue that helps in
 calculating new paths when you need to move a whole subtree to a new location in the tree.
The method is applied to the HIERARCHYID value of a node that you want to reparent, but it
doesn’t perform the actual reparenting. It simply returns a new value that you can then use
to overwrite the existing path. The method accepts two inputs (call them @old_root and
@new_root) and returns a new value with the target node’s path where the @new_root prefi x
replaces the @old_root prefi x. It’s as simple as that.

 Note When you call GetReparentedValue on a HIERARCHYID h, the path of @old_root must be a
prefi x of h’s path. If it is not, you’ll get an exception of type HierarchyIdException.

 For example, if you apply the GetReparentedValue method to a HIERARCHYID whose
 canonical path is /1/1/2/3/2/, providing /1/1/ as the old root and /2/1/4/ as the new root,
you get a HIERARCHYID whose canonical path is /2/1/4/2/3/2/. By the way, you can cast a
canonical path representation to the HIERARCHYID data type by using the CAST function

C12626034.indd 712 2/20/2009 8:20:36 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 713

or the static method hierarchyid::Parse. With this in mind, you can test the aforementioned
 example by using the GetReparentedValue with constants, like so:

SELECT

 CAST('/1/1/2/3/2/' AS HIERARCHYID).GetReparentedValue('/1/1/', '/2/1/4/').ToString();

 You get the path /2/1/4/2/3/2/ as output.

 With this in mind, consider the task to create a stored procedure called MoveSubtree that
accepts two inputs called @empid and @new_mgrid. The stored procedure’s purpose is
to move the subtree of employee @empid under @new_mgrid. The stored procedure can
 implement the task in three steps:

 1. Store the existing paths of the employees represented by @new_mgrid and @empid in
variables (call them @new_mgr_hid and @old_root, respectively).

 2. Apply the GetDescendant method to @new_mgr_hid, providing the maximum among
the new manager’s existing subordinates (or NULL if there are none) as left input, to get
a new path under the target manager for employee @empid. Store the new path in a
variable (call it @new_root).

 3. Update the hid value of all descendants of the employee represented by @empid
(including itself) to hid.GetReparentedValue(@old_root, @new_root). To identify all
 descendants of a node you can check the value of the method IsDescendantOf on each
hid in the table. This method returns 1 when the node it is applied to is a descendant of
the input node and 0 otherwise.

 Run the following code to create the MoveSubtree stored procedure, which implements the
preceding steps:

-- Stored Procedure: MoveSubtree,

-- Moves a whole subtree of a given root to a new location

-- under a given manager

IF OBJECT_ID('dbo.MoveSubtree') IS NOT NULL

 DROP PROC dbo.MoveSubtree;

GO

CREATE PROC dbo.MoveSubtree

 @empid AS INT,

 @new_mgrid AS INT

AS

DECLARE

 @old_root AS HIERARCHYID,

 @new_root AS HIERARCHYID,

 @new_mgr_hid AS HIERARCHYID;

BEGIN TRAN

 SET @new_mgr_hid = (SELECT hid FROM dbo.Employees WITH (UPDLOCK)

 WHERE empid = @new_mgrid);

 SET @old_root = (SELECT hid FROM dbo.Employees

 WHERE empid = @empid);

C12626034.indd 713 2/20/2009 8:20:36 PM

714 Inside Microsoft SQL Server 2008: T-SQL Querying

 -- First, get a new hid for the subtree root employee that moves

 SET @new_root = @new_mgr_hid.GetDescendant

 ((SELECT MAX(hid)

 FROM dbo.Employees

 WHERE hid.GetAncestor(1) = @new_mgr_hid),

 NULL);

 -- Next, reparent all descendants of employee that moves

 UPDATE dbo.Employees

 SET hid = hid.GetReparentedValue(@old_root, @new_root)

 WHERE hid.IsDescendantOf(@old_root) = 1;

COMMIT TRAN

GO

 Notice that the code uses an explicit transaction, and as the fi rst step when querying the
target manager’s row, the statement obtains an update lock on that row. Much like in
the AddEmp procedure discussed earlier, this technique guarantees that only one subtree
is moved under a given target manager at a time, which prevents confl icts in the newly
 generated HIERARCHYID values.

 To test the MoveSubtree procedure run the following code, moving the subtree of employee 5
(Jiru) under employee 9 (Rita):

SELECT empid, REPLICATE(' | ', lvl) + empname AS empname, hid.ToString() AS path

FROM dbo.Employees

ORDER BY hid;

BEGIN TRAN

 EXEC dbo.MoveSubtree

 @empid = 5,

 @new_mgrid = 9;

 SELECT empid, REPLICATE(' | ', lvl) + empname AS empname, hid.ToString() AS path

 FROM dbo.Employees

 ORDER BY hid;

ROLLBACK TRAN

 The code presents the before and after states of the data, and because this is just a
 demonstration, it runs the activity in a transaction so that the changes won’t be committed.
Following are the outputs of this code showing that the subtree was moved correctly:

empid empname path

----------- ---------------------- ------------

1 David /

2 | Eitan /1/

4 | | Seraph /1/1/

5 | | Jiru /1/2/

8 | | | Lilach /1/2/1/

10 | | | Sean /1/2/2/

6 | | Steve /1/3/

3 | Ina /2/

C12626034.indd 714 2/20/2009 8:20:36 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 715

7 | | Aaron /2/1/

9 | | | Rita /2/1/1/

12 | | | | Emilia /2/1/1/1/

13 | | | | Michael /2/1/1/2/

14 | | | | Didi /2/1/1/3/

11 | | | Gabriel /2/1/2/

empid empname path

----------- ---------------------- ------------

1 David /

2 | Eitan /1/

4 | | Seraph /1/1/

6 | | Steve /1/3/

3 | Ina /2/

7 | | Aaron /2/1/

9 | | | Rita /2/1/1/

12 | | | | Emilia /2/1/1/1/

13 | | | | Michael /2/1/1/2/

14 | | | | Didi /2/1/1/3/

5 | | | | Jiru /2/1/1/4/

8 | | | | | Lilach /2/1/1/4/1/

10 | | | | | Sean /2/1/1/4/2/

11 | | | Gabriel /2/1/2/

Querying

 As with the custom materialized path solution, querying data in the built-in materialized
path solution that is based on the HIERARCHYID data type is simple and elegant. With the
 depth-fi rst and breadth-fi rst indexes in place, you can enable SQL Server’s optimizer to
 handle certain types of requests effi ciently.

 I won’t cover all possible requests against the tree here because there are so many. Instead,
I’ll show a sample of the common ones. As I did before, I’ll provide a sample query for each
request followed by its output.

Subtree

 Return the subtree of employee 3, limiting the number of levels under the input employee to 3:

SELECT E.empid, E.empname

FROM dbo.Employees AS M

 JOIN dbo.Employees AS E

 ON M.empid = 3

 AND E.hid.IsDescendantOf(M.hid) = 1

WHERE E.lvl - M.lvl <= 3;

 The query uses the IsDescendantOf method. Recall that this method returns 1 if the node
to which it is applied is a descendant of the input node and 0 otherwise. The query joins
two instances of the Employees table: one representing the input manager (M) and one
 representing the subordinates (E). The predicate in the ON clause fi lters only one row
from the instance M—the one for employee 3—and returns all employees from E that are

C12626034.indd 715 2/20/2009 8:20:36 PM

716 Inside Microsoft SQL Server 2008: T-SQL Querying

 descendants of the employee in M. The predicate in the WHERE clause fi lters only employees
that are up to three levels below the employee in M.

 This query generates the following output:

empid empname

----------- -------------------------

3 Ina

7 Aaron

9 Rita

12 Emilia

13 Michael

14 Didi

11 Gabriel

 The execution plan of this query is shown in Figure 12-7.

FIGURE 12-7 Execution plan for HIERARCHYID subtree query

 The fi rst Index Seek operator in the plan (the top one) is responsible for returning the row
for employee 3 from the index on the empid column. A Compute Scalar operator (the
 second one) then calculates the boundary points of the HIERARCHYID values at the edges
of the requested subtree. Recall that because the HIERARCHYID values give you topological
 sorting, an index on the hid column arranges all members of the same subtree together. The
 second Index Seek operator in the plan (the bottom one) performs a range scan between the
 boundary points in the index on hid, which retrieves the members of the requested subtree.
This plan is pretty much as good as it can get for this kind of request because SQL Server
ends up scanning only the members of the applicable subtree.

Path

 Next, I’ll explain how to handle a request to return all managers in the path leading to a
 certain employee. You can implement a solution that is very similar to the one used to handle

C12626034.indd 716 2/20/2009 8:20:36 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 717

the subtree request. Instead of fi ltering the row representing the one manager (from an
 instance M of Employees) and then returning the attributes of all qualifying subordinates
(from an instance E), you fi lter the row representing the one employee and then return the
attributes of all qualifying managers. For example, the following query returns all managers
of employee 14, direct or indirect:

SELECT M.empid, M.empname

FROM dbo.Employees AS M

 JOIN dbo.Employees AS E

 ON E.empid = 14

 AND E.hid.IsDescendantOf(M.hid) = 1;

 This query generates the following output:

empid empname

----------- -------------------------

1 David

3 Ina

7 Aaron

9 Rita

14 Didi

 Although this query is very similar to the one that implemented the subtree request, it
 cannot be optimized as effi ciently. That’s because members of the same path do not reside
close to each other in the index.

Direct Subordinates

 Next, I’ll describe how to handle a request to get direct subordinates of an employee.
To handle this request you can use a similar join form as in the previous queries. Filter the
one row representing the employee whose subordinates you want from an instance (M) of
the Employees table and return all employees (from another instance, E) whose parent is the
employee fi ltered from M. A node’s parent is its ancestor one level up, and the GetAncestor
method with input value 1 returns the parent HIERARCHYID. As an example of fi nding direct
subordinates, the following query returns direct subordinates of employee 2:

SELECT E.empid, E.empname

FROM dbo.Employees AS M

 JOIN dbo.Employees AS E

 ON M.empid = 2

 AND E.hid.GetAncestor(1) = M.hid;

 This code generates the following output:

empid empname

----------- -------------------------

4 Seraph

5 Jiru

6 Steve

C12626034.indd 717 2/20/2009 8:20:36 PM

718 Inside Microsoft SQL Server 2008: T-SQL Querying

Leaf Nodes

 You can also use the GetAncestor method with input value 1 to identify leaf nodes. Leaf
nodes, or employees who manage no one, are employees that do not appear as the parent
of other employees. This logic can be implemented with a NOT EXISTS predicate, like so:

SELECT empid, empname

FROM dbo.Employees AS M

WHERE NOT EXISTS

 (SELECT * FROM dbo.Employees AS E

 WHERE E.hid.GetAncestor(1) = M.hid);

 This code generates the following output:

empid empname

----------- -------------------------

4 Seraph

8 Lilach

10 Sean

6 Steve

12 Emilia

13 Michael

14 Didi

11 Gabriel

Presentation

 Finally, to present the hierarchy of employees so that a subordinate appears under and to the
right of its manager, use the following query:

SELECT REPLICATE(' | ', lvl) + empname AS empname, hid.ToString() AS path

FROM dbo.Employees

ORDER BY hid;

 Recall that the HIERARCHYID data type gives you topological sorting, so all you need to
do to get the desired presentation ordering is to order by the hid attribute. Indentation is
achieved by replicating a string lvl times. This query generates the following output:

empname path

--------------------- ----------

David /

 | Eitan /1/

 | | Seraph /1/1/

 | | Jiru /1/2/

 | | | Lilach /1/2/1/

 | | | Sean /1/2/2/

 | | Steve /1/3/

 | Ina /2/

 | | Aaron /2/1/

 | | | Rita /2/1/1/

 | | | | Emilia /2/1/1/1/

 | | | | Michael /2/1/1/2/

 | | | | Didi /2/1/1/3/

 | | | Gabriel /2/1/2/

C12626034.indd 718 2/20/2009 8:20:36 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 719

 The execution plan of this query is shown in Figure 12-8.

FIGURE 12-8 Execution plan for HIERARCHYID sorting query

 You can see that the optimizer effi ciently processed the request with an ordered scan of the
index on the hid column.

Further Aspects of Working with HIERARCHYID

 This section covers further aspects of working with the HIERARCHYID data type. I’ll explain
the circumstances in which paths can get lengthy and provide you with a solution to
 normalize them. I’ll show you how to convert a representation of a tree as an adjacency list to
one that is based on the HIERARCHYID data type. Finally, I’ll show you how you can use the
HIERARCHYID data type to sort separated lists of values.

Normalizing HIERARCHYID Values

 When you use the HIERARCHYID data type to represent trees, in certain cases the paths can
become long. With very deep trees this is natural because the HIERARCHYID value represents
a path of all nodes leading to the current node, starting with the root. However, in certain
cases, even when the tree is not very deep, the path can become long. First I’ll explain the
circumstances in which this can happen, and then I’ll provide a solution to normalizing the
values, making them shorter. Note that in this section, the word normalizing does not refer to
database normalization.

C12626034.indd 719 2/20/2009 8:20:36 PM

720 Inside Microsoft SQL Server 2008: T-SQL Querying

 HIERARCHYID values can become long when you keep adding new nodes between existing
nodes whose canonical paths have consecutive last numbers. For example, say you have
nodes with canonical paths /1/ and /2/ and you add a node between them. You get a new
value whose canonical path is /1.1/. Now add a value between /1.1/ and /2/, and you get
/1.2/. Now add a value between /1.1/ and /1.2/, and you get /1.1.1/. As you see, if you keep
adding nodes between existing nodes in this manner, you can get lengthy paths (which
 represent lengthy HIERARCHYID values) even when the tree is not deep.

 If order among siblings is not important, you can always make sure to add new child nodes
after the last existing child or before the fi rst one; this way, the paths are more economical.
But when order among siblings matters, you can’t control this. If you must frequently add
new nodes between existing ones, you may end up with very long HIERARCHYID values. In
such a case, you can periodically run a procedure, which I will provide here, that normalizes
the HIERARCHYID values for the whole graph, making them shorter.

 Run the following code to create a new version of the AddEmp stored procedure:

-- Stored Procedure: AddEmp,

-- Inserts new employee who manages no one into the table

IF OBJECT_ID('dbo.AddEmp', 'P') IS NOT NULL

 DROP PROC dbo.AddEmp;

GO

CREATE PROC dbo.AddEmp

 @empid AS INT,

 @mgrid AS INT,

 @leftempid AS INT,

 @rightempid AS INT,

 @empname AS VARCHAR(25) ,

 @salary AS MONEY = 1000

AS

DECLARE @hid AS HIERARCHYID;

IF @mgrid IS NULL

 SET @hid = hierarchyid::GetRoot();

ELSE

 SET @hid = (SELECT hid FROM dbo.Employees WHERE empid = @mgrid).GetDescendant

 ((SELECT hid FROM dbo.Employees WHERE empid = @leftempid),

 (SELECT hid FROM dbo.Employees WHERE empid = @rightempid));

INSERT INTO dbo.Employees(empid, hid, empname, salary)

 VALUES(@empid, @hid, @empname, @salary);

GO

 This version accepts the IDs of the two child employees between which you want to add the
new one.

C12626034.indd 720 2/20/2009 8:20:36 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 721

 Next, run the following code, which truncates the Employees table and populates it with data
in such a manner that lengthy paths are produced:

TRUNCATE TABLE dbo.Employees;

EXEC dbo.AddEmp @empid = 1, @mgrid = NULL, @leftempid = NULL, @rightempid = NULL,

 @empname = 'A';

EXEC dbo.AddEmp @empid = 2, @mgrid = 1, @leftempid = NULL, @rightempid = NULL,

 @empname = 'B';

EXEC dbo.AddEmp @empid = 3, @mgrid = 1, @leftempid = 2, @rightempid = NULL,

 @empname = 'C';

EXEC dbo.AddEmp @empid = 4, @mgrid = 1, @leftempid = 2, @rightempid = 3,

 @empname = 'D';

EXEC dbo.AddEmp @empid = 5, @mgrid = 1, @leftempid = 4, @rightempid = 3,

 @empname = 'E';

EXEC dbo.AddEmp @empid = 6, @mgrid = 1, @leftempid = 4, @rightempid = 5,

 @empname = 'F';

EXEC dbo.AddEmp @empid = 7, @mgrid = 1, @leftempid = 6, @rightempid = 5,

 @empname = 'G';

EXEC dbo.AddEmp @empid = 8, @mgrid = 1, @leftempid = 6, @rightempid = 7,

 @empname = 'H';

EXEC dbo.AddEmp @empid = 9, @mgrid = 8, @leftempid = NULL, @rightempid = NULL,

 @empname = 'I';

EXEC dbo.AddEmp @empid = 10, @mgrid = 8, @leftempid = 9, @rightempid = NULL,

 @empname = 'J';

EXEC dbo.AddEmp @empid = 11, @mgrid = 8, @leftempid = 9, @rightempid = 10,

 @empname = 'K';

EXEC dbo.AddEmp @empid = 12, @mgrid = 8, @leftempid = 11, @rightempid = 10,

 @empname = 'J';

EXEC dbo.AddEmp @empid = 13, @mgrid = 8, @leftempid = 11, @rightempid = 12,

 @empname = 'L';

EXEC dbo.AddEmp @empid = 14, @mgrid = 8, @leftempid = 13, @rightempid = 12,

 @empname = 'M';

EXEC dbo.AddEmp @empid = 15, @mgrid = 8, @leftempid = 13, @rightempid = 14,

 @empname = 'N';

EXEC dbo.AddEmp @empid = 16, @mgrid = 8, @leftempid = 15, @rightempid = 14,

 @empname = 'O';

EXEC dbo.AddEmp @empid = 17, @mgrid = 8, @leftempid = 15, @rightempid = 16,

 @empname = 'P';

EXEC dbo.AddEmp @empid = 18, @mgrid = 8, @leftempid = 17, @rightempid = 16,

 @empname = 'Q';

EXEC dbo.AddEmp @empid = 19, @mgrid = 8, @leftempid = 17, @rightempid = 18,

 @empname = 'E';

EXEC dbo.AddEmp @empid = 20, @mgrid = 8, @leftempid = 19, @rightempid = 18,

 @empname = 'S';

EXEC dbo.AddEmp @empid = 21, @mgrid = 8, @leftempid = 19, @rightempid = 20,

 @empname = 'T';

 Then run the following code to show the current HIERARCHYID values and their canonical paths:

SELECT

 empid,

 REPLICATE(' | ', lvl) + empname AS emp,

 hid,

 hid.ToString() AS path

FROM dbo.Employees

ORDER BY hid;

C12626034.indd 721 2/20/2009 8:20:36 PM

722 Inside Microsoft SQL Server 2008: T-SQL Querying

 You get the following output:

empid emp hid path

------ -------- ----------------- -----------------------

1 A 0x /

2 | B 0x58 /1/

4 | D 0x62C0 /1.1/

6 | F 0x6316 /1.1.1/

8 | H 0x6318B0 /1.1.1.1/

9 | | I 0x6318B580 /1.1.1.1/1/

11 | | K 0x6318B62C /1.1.1.1/1.1/

13 | | L 0x6318B63160 /1.1.1.1/1.1.1/

15 | | N 0x6318B6318B /1.1.1.1/1.1.1.1/

17 | | P 0x6318B6318C58 /1.1.1.1/1.1.1.1.1/

19 | | E 0x6318B6318C62C0 /1.1.1.1/1.1.1.1.1.1/

21 | | T 0x6318B6318C6316 /1.1.1.1/1.1.1.1.1.1.1/

20 | | S 0x6318B6318C6340 /1.1.1.1/1.1.1.1.1.2/

18 | | Q 0x6318B6318C68 /1.1.1.1/1.1.1.1.2/

16 | | O 0x6318B6318D /1.1.1.1/1.1.1.2/

14 | | M 0x6318B631A0 /1.1.1.1/1.1.2/

12 | | J 0x6318B634 /1.1.1.1/1.2/

10 | | J 0x6318B680 /1.1.1.1/2/

7 | G 0x631A /1.1.2/

5 | E 0x6340 /1.2/

3 | C 0x68 /2/

 As you can see, even though the tree is only three levels deep, some of the HIERARCHYID
values became quite long because of the insertion order of children.

 The solution that normalizes the values involves the following steps:

 1. Defi ne a CTE called EmpsRN that calculates for each node a row number, partitioned by
parent and ordered by current hid value.

 2. Defi ne a recursive CTE called EmpPaths that iterates through the levels of the tree,
starting with the root node and proceeding to the next level of children in each
 iteration. Use this CTE to construct a new canonical path for the nodes. The root should
be assigned the path /, and for each node in the next level the path is obtained by
 concatenating the parent’s path, the current node’s row number from the previous
step, and another / character.

 3. Join the Employees table with the EmpPaths CTE and update the existing hid values
with new ones converted from the canonical paths generated in the previous step.

 Here’s the code that performs this normalization process:

WITH EmpsRN AS

(

 SELECT

 empid,

 hid,

 ROW_NUMBER() OVER(PARTITION BY hid.GetAncestor(1) ORDER BY hid) AS rownum

 FROM dbo.Employees

),

C12626034.indd 722 2/20/2009 8:20:36 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 723

EmpPaths AS

(

 SELECT empid, hid, CAST('/' AS VARCHAR(900)) AS path

 FROM dbo.Employees

 WHERE hid = hierarchyid::GetRoot()

 UNION ALL

 SELECT C.empid, C.hid,

 CAST(P.path + CAST(C.rownum AS VARCHAR(20)) + '/' AS VARCHAR(900))

 FROM EmpPaths AS P

 JOIN EmpsRN AS C

 ON C.hid.GetAncestor(1) = P.hid

)

UPDATE E

 SET hid = CAST(EP.path AS HIERARCHYID)

FROM dbo.Employees AS E

 JOIN EmpPaths AS EP

 ON E.empid = EP.empid;

 Now query the data after normalization:

SELECT

 empid,

 REPLICATE(' | ', lvl) + empname AS emp,

 hid,

 hid.ToString() AS path

FROM dbo.Employees

ORDER BY hid;

 As you can see in the output, you get nice compact paths:

empid emp hid path

----------- -------- ------- -------

1 A 0x /

2 | B 0x58 /1/

4 | D 0x68 /2/

6 | F 0x78 /3/

8 | H 0x84 /4/

9 | | I 0x8560 /4/1/

11 | | K 0x85A0 /4/2/

13 | | L 0x85E0 /4/3/

15 | | N 0x8610 /4/4/

17 | | P 0x8630 /4/5/

19 | | E 0x8650 /4/6/

21 | | T 0x8670 /4/7/

20 | | S 0x8688 /4/8/

18 | | Q 0x8698 /4/9/

16 | | O 0x86A8 /4/10/

14 | | M 0x86B8 /4/11/

12 | | J 0x86C8 /4/12/

10 | | J 0x86D8 /4/13/

7 | G 0x8C /5/

5 | E 0x94 /6/

3 | C 0x9C /7/

C12626034.indd 723 2/20/2009 8:20:36 PM

724 Inside Microsoft SQL Server 2008: T-SQL Querying

Convert Parent-Child Representation to HIERARCHYID

 This section explains how to convert an existing representation of a tree that is based on an
adjacency list (parent-child relationships) to one that is based on the HIERARCHYID data type.

 Run the following code to create and populate the EmployeesOld table that implements an
adjacency list representation of an employee tree:

SET NOCOUNT ON;

USE tempdb;

GO

IF OBJECT_ID('dbo.EmployeesOld') IS NOT NULL

 DROP TABLE dbo.EmployeesOld;

GO

IF OBJECT_ID('dbo.EmployeesNew') IS NOT NULL

 DROP TABLE dbo.EmployeesNew;

GO

CREATE TABLE dbo.EmployeesOld

(

 empid INT PRIMARY KEY,

 mgrid INT NULL REFERENCES dbo.EmployeesOld,

 empname VARCHAR(25) NOT NULL,

 salary MONEY NOT NULL

);

CREATE UNIQUE INDEX idx_unc_mgrid_empid ON dbo.EmployeesOld(mgrid, empid);

INSERT INTO dbo.EmployeesOld(empid, mgrid, empname, salary) VALUES

 (1, NULL, 'David', $10000.00),

 (2, 1, 'Eitan', $7000.00),

 (3, 1, 'Ina', $7500.00),

 (4, 2, 'Seraph', $5000.00),

 (5, 2, 'Jiru', $5500.00),

 (6, 2, 'Steve', $4500.00),

 (7, 3, 'Aaron', $5000.00),

 (8, 5, 'Lilach', $3500.00),

 (9, 7, 'Rita', $3000.00),

 (10, 5, 'Sean', $3000.00),

 (11, 7, 'Gabriel', $3000.00),

 (12, 9, 'Emilia' , $2000.00),

 (13, 9, 'Michael', $2000.00),

 (14, 9, 'Didi', $1500.00);

 Run the following code to create the target EmployeesNew table that will represent the
 employee tree using HIERARCHYID values:

CREATE TABLE dbo.EmployeesNew

(

 empid INT NOT NULL PRIMARY KEY,

 hid HIERARCHYID NOT NULL,

 lvl AS hid.GetLevel() PERSISTED,

 empname VARCHAR(25) NOT NULL,

 salary MONEY NOT NULL

);

 The task is now to query the EmployeesOld table that contains the source data, calculate
HIERARCHYID values for the employees, and populate the target EmployeesNew table.

C12626034.indd 724 2/20/2009 8:20:36 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 725

This task can be achieved in a similar manner to normalizing existing HIERARCHYID values
as described earlier. You apply the following steps:

 1. Defi ne a CTE called EmpsRN that calculates for each node a row number partitioned
by mgrid, ordered by the attributes that you want to dictate order among siblings—for
example, empid.

 2. Defi ne a recursive CTE called EmpPaths that iterates through the levels of the tree, starting
with the root node and proceeding to the next level of children in each iteration. Use this
CTE to construct a new canonical path for the nodes. The root should be assigned the path /,
and for each node in the next level the path is obtained by concatenating the parent’s path,
the current node’s row number from the previous step, and another / character.

 3. Insert into the target table EmployeesNew the employee rows along with their newly
generated HIERARCHYID values from the EmpPaths CTE.

 Here’s the code that performs this conversion process:

WITH EmpsRN

AS

(

 SELECT empid, mgrid, empname, salary,

 ROW_NUMBER() OVER(PARTITION BY mgrid ORDER BY empid) AS rn

 FROM dbo.EmployeesOld

),

EmpPaths AS

(

 SELECT empid, mgrid, empname, salary,

 CAST('/' AS VARCHAR(900)) AS cpath

 FROM dbo.EmployeesOld

 WHERE mgrid IS NULL

 UNION ALL

 SELECT C.empid, C.mgrid, C.empname, C.salary,

 CAST(cpath + CAST(C.rn AS VARCHAR(20)) + '/' AS VARCHAR(900))

 FROM EmpPaths AS P

 JOIN EmpsRN AS C

 ON C.mgrid = P.empid

)

INSERT INTO dbo.EmployeesNew(empid, empname, salary, hid)

 SELECT empid, empname, salary,

 CAST(cpath AS HIERARCHYID) AS hid

 FROM EmpPaths;

 Run the following code to present the contents of the EmployeesNew table after the
conversion:

SELECT REPLICATE(' | ', lvl) + empname AS empname, hid.ToString() AS path

FROM dbo.EmployeesNew

ORDER BY hid;

C12626034.indd 725 2/20/2009 8:20:36 PM

726 Inside Microsoft SQL Server 2008: T-SQL Querying

 You get the following output:

empname path

--------------------- ----------

David /

 | Eitan /1/

 | | Seraph /1/1/

 | | Jiru /1/2/

 | | | Lilach /1/2/1/

 | | | Sean /1/2/2/

 | | Steve /1/3/

 | Ina /2/

 | | Aaron /2/1/

 | | | Rita /2/1/1/

 | | | | Emilia /2/1/1/1/

 | | | | Michael /2/1/1/2/

 | | | | Didi /2/1/1/3/

 | | | Gabriel /2/1/2/

Sorting Separated Lists of Values

 Some applications store information about arrays and lists of numbers in the form of
 character strings with separated lists of values. I won’t get into a discussion here regarding
whether such representation of data is really appropriate. Instead, I’ll address a certain need
involving such representation. Sometimes you don’t have control over the design of certain
systems, and you need to provide solutions to requests using the existing design.

 The request at hand involves sorting such lists, but based on the numeric values of the
 elements and not by their character representation. For example, consider the lists ‘13,41,17’
and ‘13,41,3’. If you sort the lists based on the character representation of the elements,
the former would be returned before the latter because the character ‘1’ is considered
smaller than the character ‘3’. You want the second string to sort before the fi rst because the
 number 3 is smaller than the number 17.

 A special case of the problem is sorting IP addresses represented as character strings. In this
special case you have an assurance that each string always has exactly four elements, and the
length of each element never exceeds three digits. I’ll fi rst cover this special case and then
discuss the more generic one.

 Run the following code to create the IPs table and populate it with some sample IP addresses:

USE tempdb;

IF OBJECT_ID('dbo.IPs', 'U') IS NOT NULL DROP TABLE dbo.IPs;

-- Creation script for table IPs

CREATE TABLE dbo.IPs

(

 ip varchar(15) NOT NULL,

 CONSTRAINT PK_IPs PRIMARY KEY(ip),

 -- CHECK constraint that validates IPs

C12626034.indd 726 2/20/2009 8:20:36 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 727

 CONSTRAINT CHK_IP_valid CHECK

 (

 -- 3 periods and no empty octets

 ip LIKE '_%._%._%._%'

 AND

 -- not 4 periods or more

 ip NOT LIKE '%.%.%.%.%'

 AND

 -- no characters other than digits and periods

 ip NOT LIKE '%[^0-9.]%'

 AND

 -- not more than 3 digits per octet

 ip NOT LIKE '%[0-9][0-9][0-9][0-9]%'

 AND

 -- NOT 300 - 999

 ip NOT LIKE '%[3-9][0-9][0-9]%'

 AND

 -- NOT 260 - 299

 ip NOT LIKE '%2[6-9][0-9]%'

 AND

 -- NOT 256 - 259

 ip NOT LIKE '%25[6-9]%'

)

);

GO

-- Sample data

INSERT INTO dbo.IPs(ip) VALUES

 ('131.107.2.201'),

 ('131.33.2.201'),

 ('131.33.2.202'),

 ('3.107.2.4'),

 ('3.107.3.169'),

 ('3.107.104.172'),

 ('22.107.202.123'),

 ('22.20.2.77'),

 ('22.156.9.91'),

 ('22.156.89.32');

 I’ll fi rst describe one of the solutions that I had for this need prior to SQL Server 2008.

 An IP address must be one of 81 (34) possible patterns in terms of the number of digits in
each octet (assuming we are talking about IPv4). You can write a query that produces all
possible patterns that a LIKE predicate would recognize, representing each digit with an
 underscore. You can use an auxiliary table of numbers (call it Nums with a column n) that has
three numbers for the three possible octet lengths. By joining four instances of the Nums
table, you get the 81 possible variations of the four octet sizes. You can then easily construct
the LIKE patterns representing the IP addresses and, using the numbers from the Nums table,
calculate the starting position and length of each octet.

 Run the following code to create and query the view IPPatterns, which implements this logic:

IF OBJECT_ID('dbo.IPPatterns') IS NOT NULL DROP VIEW dbo.IPPatterns;

GO

CREATE VIEW dbo.IPPatterns

AS

C12626034.indd 727 2/20/2009 8:20:36 PM

728 Inside Microsoft SQL Server 2008: T-SQL Querying

SELECT

 REPLICATE('_', N1.n) + '.' + REPLICATE('_', N2.n) + '.'

 + REPLICATE('_', N3.n) + '.' + REPLICATE('_', N4.n) AS pattern,

 N1.n AS l1, N2.n AS l2, N3.n AS l3, N4.n AS l4,

 1 AS s1, N1.n+2 AS s2, N1.n+N2.n+3 AS s3, N1.n+N2.n+N3.n+4 AS s4

FROM dbo.Nums AS N1, dbo.Nums AS N2, dbo.Nums AS N3, dbo.Nums AS N4

WHERE N1.n <= 3 AND N2.n <= 3 AND N3.n <= 3 AND N4.n <= 3;

GO

SELECT * FROM dbo.IPPatterns;

 When you query the view you get the possible IP patterns and the starting position and
length of each pattern, as shown here in abbreviated form:

pattern l1 l2 l3 l4 s1 s2 s3 s4

--------------- --- --- --- --- --- --- --- ---

.._._ 1 1 1 1 1 3 5 7

.._.__ 1 1 1 2 1 3 5 7

.._.___ 1 1 1 3 1 3 5 7

..__._ 1 1 2 1 1 3 5 8

..__.__ 1 1 2 2 1 3 5 8

..__.___ 1 1 2 3 1 3 5 8

..___._ 1 1 3 1 1 3 5 9

..___.__ 1 1 3 2 1 3 5 9

..___.___ 1 1 3 3 1 3 5 9

_.__._._ 1 2 1 1 1 3 6 8

_.__._.__ 1 2 1 2 1 3 6 8

_.__._.___ 1 2 1 3 1 3 6 8

_.__.__._ 1 2 2 1 1 3 6 9

_.__.__.__ 1 2 2 2 1 3 6 9

_.__.__.___ 1 2 2 3 1 3 6 9

_.__.___._ 1 2 3 1 1 3 6 10

_.__.___.__ 1 2 3 2 1 3 6 10

_.__.___.___ 1 2 3 3 1 3 6 10

_.___._._ 1 3 1 1 1 3 7 9

_.___._.__ 1 3 1 2 1 3 7 9

...

 Of course, you can implement similar logic to create the possible patterns for IP addresses of IPv6.

 Now you can write a query that joins the IPs table with the IPPatterns view based on a match
between the IP address and the IP pattern. This way you identify the IP pattern for each IP
address, along with the measures indicating the starting position and length of each octet.
You can then specify four expressions in the ORDER BY clause that apply the SUBSTRING
function to extract the octets and cast the character string representation of the octet to a
numeric one. Here’s what the query looks like:

SELECT ip

FROM dbo.IPs

 JOIN dbo.IPPatterns

 ON ip LIKE pattern

ORDER BY

C12626034.indd 728 2/20/2009 8:20:36 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 729

 CAST(SUBSTRING(ip, s1, l1) AS TINYINT),

 CAST(SUBSTRING(ip, s2, l2) AS TINYINT),

 CAST(SUBSTRING(ip, s3, l3) AS TINYINT),

 CAST(SUBSTRING(ip, s4, l4) AS TINYINT);

 This query generates the following output:

ip

3.107.2.4

3.107.3.169

3.107.104.172

22.20.2.77

22.107.202.123

22.156.9.91

22.156.89.32

131.33.2.201

131.33.2.202

131.107.2.201

 The problem with this solution is that it’s not very effi cient, and it doesn’t work in the more
generic cases of lists where you have an unknown number of elements.

 Interestingly, the canonical representation of HIERARCHYID values in SQL Server 2008 is
also a separated list of numbers. Within a level you can have values separated by dots, and
 between levels the values are separated by slashes. With this in mind, you can handle the
task at hand by concatenating a slash before and after the IP address, then sorting the rows
after converting the result to the HIERARCHYID data type, like so:

SELECT ip

FROM dbo.IPs

ORDER BY CAST('/' + ip + '/' AS HIERARCHYID);

 This solution works just as well with the more generic case of the problem. To demonstrate
this, fi rst create and populate the table T1 by running the following code:

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;

CREATE TABLE dbo.T1

(

 id INT NOT NULL IDENTITY PRIMARY KEY,

 val VARCHAR(500) NOT NULL

);

GO

INSERT INTO dbo.T1(val) VALUES

 ('100'),

 ('7,4,250'),

 ('22,40,5,60,4,100,300,478,19710212'),

 ('22,40,5,60,4,99,300,478,19710212'),

 ('22,40,5,60,4,99,300,478,9999999'),

 ('10,30,40,50,20,30,40'),

C12626034.indd 729 2/20/2009 8:20:37 PM

730 Inside Microsoft SQL Server 2008: T-SQL Querying

 ('7,4,250'),

 ('-1'),

 ('-2'),

 ('-11'),

 ('-22'),

 ('-123'),

 ('-321'),

 ('22,40,5,60,4,-100,300,478,19710212'),

 ('22,40,5,60,4,-99,300,478,19710212');

 As you can see, the lists in the table have varying numbers of elements. Note that because
the separator used in these lists is a comma, you need to replace the separators by slashes or
dots before converting to the HIERARCHYID data type. Here’s the solution query that sorts
the lists by the numeric values of the elements:

SELECT id, val

FROM dbo.T1

ORDER BY CAST('/' + REPLACE(val, ',', '/') + '/' AS HIERARCHYID);

 This query generates the following output:

id val

----------- ------------------------------------

13 -321

12 -123

11 -22

10 -11

9 -2

8 -1

7 7,4,250

2 7,4,250

6 10,30,40,50,20,30,40

14 22,40,5,60,4,-100,300,478,19710212

15 22,40,5,60,4,-99,300,478,19710212

5 22,40,5,60,4,99,300,478,9999999

4 22,40,5,60,4,99,300,478,19710212

3 22,40,5,60,4,100,300,478,19710212

1 100

 Note that you can create a computed persisted column in the table based on this expression
and index that column. Such an index can support a request to sort the data without the
need for an explicit sort operation in the query’s execution plan.

Nested Sets

 The nested sets solution is one of the most beautiful solutions I’ve seen for modeling trees.

 More Info Joe Celko has extensive coverage of the Nested Sets model in his writings. You can
fi nd Joe Celko’s coverage of nested sets in his book Joe Celko’s Trees and Hierarchies in SQL for
Smarties (Morgan-Kaufmann, 2004).

C12626034.indd 730 2/20/2009 8:20:37 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 731

 The main advantages of the nested sets solution are simple and fast queries, which I’ll
 describe later, and no level limit. Unfortunately, however, with large data sets the solution’s
practicality is usually limited to static trees. For dynamic environments, the solution is limited
to small trees (or forests of small trees).

 Instead of representing a tree as an adjacency list (parent-child relationship), this solution
models the tree relationships as nested sets. A parent is represented in the nested sets
model as a containing set, and a child is represented as a contained set. Set containment
 relationships are represented with two integer values assigned to each set: left and right.
For all sets, a set’s left value is smaller than all contained sets’ left values, and a set’s right
value is higher than all contained sets’ right values. Naturally, this containment relationship
is transitive in terms of n-level relationships (ancestor/descendant). The queries are based
on these nested sets relationships. Logically, it’s as if a set spreads two arms around all its
contained sets.

Assigning Left and Right Values

 Figure 12-9 provides a graphical visualization of the Employees hierarchy with the left and
right values assigned to each employee.

2019

Didi
14

16 17

Gabriel
11

2423

Michael
132221

Emilia
12

2518

Rita
9

2615

Aaron
7

2714

Ina
3

Steve
6

Sean
10

Lilach
8 7654

1211109

Seraph
483

Jiru
5

132

Eitan
2

1
David

1 28

FIGURE 12-9 Employees hierarchy as nested sets

 The curved line that walks the tree represents the order of assignment of the left and right
values. Note that the model allows you to choose in which order you assign values to siblings.
In this particular case, I chose to traverse siblings by employee name order.

 You start with the root, traversing the tree counterclockwise. Every time you enter
a node, you increment a counter and set it as the node’s left value. Every time you leave a
node, you increment the counter and set it as the node’s right value. This algorithm can be
 implemented to the letter as an iterative or recursive routine that assigns each node with left
and right values. However, such an implementation requires traversing the tree one node at
a time, which can be very slow. I’ll show an algorithm that traverses the tree one level at a

C12626034.indd 731 2/20/2009 8:20:37 PM

732 Inside Microsoft SQL Server 2008: T-SQL Querying

time, which is faster. The core algorithm is based on logic I discussed earlier in the chapter,
traversing the tree one level at a time and calculating binary sort paths. To understand this
algorithm, examine Figure 12-10.

David
Ina

Aaron
Gabriel

Didi Emilia Michael

Eitan

1

Jiru
Lilach Sean

Seraph Steve

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 2822

FIGURE 12-10 The nested sets model

 The fi gure illustrates each employee as spreading two arms around its subordinates. Left and
right values can now be assigned to the different arms by simply incrementing a counter
from left to right. Keep this illustration in mind—it’s the key to understanding the solution
that I will present.

 Again, the baseline is the original algorithm that traverses a subtree one level at a time and
constructs a binary sort path based on a desired ordering of siblings (for example, empname,
empid).

 Note For good performance, you should create an index on the parent ID and sort columns—for
example, (mgrid, empname, empid).

 Instead of generating one row for each node (as was the case in the earlier solutions for
generating sort values based on a binary path), you generate two rows by cross-joining each
level with an auxiliary table that has two numbers: n=1 represents the left arm, and n=2
 represents the right arm. The binary paths are still constructed from row numbers, but in this
case the arm number is taken into consideration in addition to the other sort elements (for
example, empname, empid, n). The query that returns the next level of subordinates returns
the subordinates of the left arm only—again, cross-joined with two numbers (n=1, n=2) to
generate two arms for each node.

 The following code is the CTE implementation of this algorithm. The purpose of this code is
to generate two binary sort paths for each employee that are later used to calculate left and
right values. Before you run this code, make sure you have the original Employees table in
the tempdb database. If you don’t, rerun the code in Listing 12-1 fi rst:

USE tempdb;

GO

-- Create index to speed sorting siblings by empname, empid

CREATE UNIQUE INDEX idx_unc_mgrid_empname_empid

 ON dbo.Employees(mgrid, empname, empid);

GO

DECLARE @root AS INT = 1;

C12626034.indd 732 2/20/2009 8:20:37 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 733

-- CTE with two numbers: 1 and 2

WITH TwoNums

AS

(

 SELECT n FROM(VALUES(1),(2)) AS D(n)

),

-- CTE with two binary sort paths for each node:

-- One smaller than descendants sort paths

-- One greater than descendants sort paths

SortPath

AS

(

 SELECT empid, 0 AS lvl, n,

 CAST(n AS VARBINARY(MAX)) AS sort_path

 FROM dbo.Employees CROSS JOIN TwoNums

 WHERE empid = @root

 UNION ALL

 SELECT C.empid, P.lvl + 1, TN.n,

 P.sort_path + CAST(

 (-1+ROW_NUMBER() OVER(PARTITION BY C.mgrid

 -- *** determines order of siblings ***

 ORDER BY C.empname, C.empid))/2*2+TN.n

 AS BINARY(4))

 FROM SortPath AS P

 JOIN dbo.Employees AS C

 ON P.n = 1

 AND C.mgrid = P.empid

 CROSS JOIN TwoNums AS TN

)

SELECT * FROM SortPath

ORDER BY sort_path;

 This code generates the following output:

empid lvl n sort_path

------ ---- -- ---

1 0 1 0x00000001

2 1 1 0x0000000100000001

5 2 1 0x000000010000000100000001

8 3 1 0x00000001000000010000000100000001

8 3 2 0x00000001000000010000000100000002

10 3 1 0x00000001000000010000000100000003

10 3 2 0x00000001000000010000000100000004

5 2 2 0x000000010000000100000002

4 2 1 0x000000010000000100000003

4 2 2 0x000000010000000100000004

6 2 1 0x000000010000000100000005

6 2 2 0x000000010000000100000006

2 1 2 0x0000000100000002

3 1 1 0x0000000100000003

7 2 1 0x000000010000000300000001

11 3 1 0x00000001000000030000000100000001

11 3 2 0x00000001000000030000000100000002

9 3 1 0x00000001000000030000000100000003

C12626034.indd 733 2/20/2009 8:20:37 PM

734 Inside Microsoft SQL Server 2008: T-SQL Querying

14 4 1 0x0000000100000003000000010000000300000001

14 4 2 0x0000000100000003000000010000000300000002

12 4 1 0x0000000100000003000000010000000300000003

12 4 2 0x0000000100000003000000010000000300000004

13 4 1 0x0000000100000003000000010000000300000005

13 4 2 0x0000000100000003000000010000000300000006

9 3 2 0x00000001000000030000000100000004

7 2 2 0x000000010000000300000002

3 1 2 0x0000000100000004

1 0 2 0x00000002

 TwoNums is the auxiliary table with two numbers representing the two arms. Of course, if
you wanted to, you could use a real Nums table instead of generating a virtual one.

 Two sort paths are generated for each node. The left one is represented by n=1, and the right
one is represented by n=2. Notice that for a given node, the left sort path is smaller than all
left sort paths of subordinates, and the right sort path is greater than all right sort paths of
subordinates. The sort paths are used to generate the left and right values in Figure 12-10.
You need to generate left and right integer values to represent the nested sets relationships
between the employees. To assign the integer values to the arms (sortval), simply use
the ROW_NUMBER function based on sort_path order. Finally, to return one row for each
 employee containing the left and right integer values, group the rows by employee and level
and return the MIN(sortval) as the left value and MAX(sortval) as the right value. Here’s the
complete solution to generate left and right values, followed by its output:

DECLARE @root AS INT = 1;

-- CTE with two numbers: 1 and 2

WITH TwoNums

AS

(

 SELECT n FROM(VALUES(1),(2)) AS D(n)

),

-- CTE with two binary sort paths for each node:

-- One smaller than descendants sort paths

-- One greater than descendants sort paths

SortPath

AS

(

 SELECT empid, 0 AS lvl, n,

 CAST(n AS VARBINARY(MAX)) AS sort_path

 FROM dbo.Employees CROSS JOIN TwoNums

 WHERE empid = @root

 UNION ALL

 SELECT C.empid, P.lvl + 1, TN.n,

 P.sort_path + CAST(

 (-1+ROW_NUMBER() OVER(PARTITION BY C.mgrid

 -- *** determines order of siblings ***

 ORDER BY C.empname, C.empid))/2*2+TN.n

 AS BINARY(4))

C12626034.indd 734 2/20/2009 8:20:37 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 735

 FROM SortPath AS P

 JOIN dbo.Employees AS C

 ON P.n = 1

 AND C.mgrid = P.empid

 CROSS JOIN TwoNums AS TN

),

-- CTE with Row Numbers Representing sort_path Order

Sort

AS

(

 SELECT empid, lvl,

 ROW_NUMBER() OVER(ORDER BY sort_path) AS sortval

 FROM SortPath

),

-- CTE with Left and Right Values Representing

-- Nested Sets Relationships

NestedSets

AS

(

 SELECT empid, lvl, MIN(sortval) AS lft, MAX(sortval) AS rgt

 FROM Sort

 GROUP BY empid, lvl

)

SELECT * FROM NestedSets

ORDER BY lft;

empid lvl lft rgt

------ ---- ---- ----

1 0 1 28

2 1 2 13

5 2 3 8

8 3 4 5

10 3 6 7

4 2 9 10

6 2 11 12

3 1 14 27

7 2 15 26

11 3 16 17

9 3 18 25

14 4 19 20

12 4 21 22

13 4 23 24

 In the opening paragraph of the “Nested Sets” section, I mentioned that this solution is not
 adequate for large dynamic trees (trees that incur frequent changes). Suppose you stored
left and right values in two additional columns in the Employees table. Note that you won’t
need the mgrid column in the table anymore because the two additional columns with
the left and right values are suffi cient to answer requests for subordinates, ancestors, and
so on. Consider the shake effect of adding a node to the tree. For example, take a look
at Figures 12-9 and 12-10 and try to fi gure out the effect of adding a new subordinate to
Steve. Steve has left and right values of 11 and 12, respectively. The new node should get
left and right values of 12 and 13, respectively. Steve’s right value—and in fact all left and

C12626034.indd 735 2/20/2009 8:20:37 PM

736 Inside Microsoft SQL Server 2008: T-SQL Querying

right values in the tree that were greater than or equal to 12—should be increased by two.
On average, at least half the nodes in the tree must be updated every time a new node is
inserted. As you can see here, the shake effect is very dramatic. That’s why the nested sets
solution is adequate for a large tree only if it’s static or if you need to run queries against a
static snapshot of the tree periodically.

 Nested sets can provide reasonably good performance with dynamic trees that are small (or
forests of small trees)—for example, when maintaining forum discussions where each thread
is a small independent tree in a forest. You can implement a solution that synchronizes
the left and right values of the tree with every change. You can achieve this by using
stored procedures or even triggers, as long as the cost of modifi cation is small enough to
be bearable. I won’t even get into variations of the nested sets model that maintain gaps
 between the values (that is, leave room to insert new leaves without as much work) because
they are all ultimately limited.

 To generate a table of employees (EmployeesNS) with the employee ID, employee name,
salary, level, left, and right values, join the outer query of the CTE solution and use a SELECT
INTO statement. Run the following code to create this as the EmployeesNS table with siblings
ordered by empname, empid:

SET NOCOUNT ON;

USE tempdb;

GO

DECLARE @root AS INT = 1;

WITH TwoNums

AS

(

 SELECT n FROM(VALUES(1),(2)) AS D(n)

),

SortPath

AS

(

 SELECT empid, 0 AS lvl, n,

 CAST(n AS VARBINARY(MAX)) AS sort_path

 FROM dbo.Employees CROSS JOIN TwoNums

 WHERE empid = @root

 UNION ALL

 SELECT C.empid, P.lvl + 1, TN.n,

 P.sort_path + CAST(

 ROW_NUMBER() OVER(PARTITION BY C.mgrid

 -- *** determines order of siblings ***

 ORDER BY C.empname, C.empid, TN.n)

 AS BINARY(4))

 FROM SortPath AS P

 JOIN dbo.Employees AS C

 ON P.n = 1

C12626034.indd 736 2/20/2009 8:20:37 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 737

 AND C.mgrid = P.empid

 CROSS JOIN TwoNums AS TN

),

Sort

AS

(

 SELECT empid, lvl,

 ROW_NUMBER() OVER(ORDER BY sort_path) AS sortval

 FROM SortPath

),

NestedSets

AS

(

 SELECT empid, lvl, MIN(sortval) AS lft, MAX(sortval) AS rgt

 FROM Sort

 GROUP BY empid, lvl

)

SELECT E.empid, E.empname, E.salary, NS.lvl, NS.lft, NS.rgt

INTO dbo.EmployeesNS

FROM NestedSets AS NS

 JOIN dbo.Employees AS E

 ON E.empid = NS.empid;

ALTER TABLE dbo.EmployeesNS ADD PRIMARY KEY NONCLUSTERED(empid);

CREATE UNIQUE CLUSTERED INDEX idx_unc_lft_rgt ON dbo.EmployeesNS(lft, rgt);

GO

Querying

 The EmployeesNS table models a tree of employees as nested sets. Querying is simple,
 elegant, and fast with the index on left and right values.

 In the following section, I’ll present common requests against a tree and the query solution
for each, followed by the output of the query.

 Return the subtree of a given root:

SELECT C.empid, REPLICATE(' | ', C.lvl - P.lvl) + C.empname AS empname

FROM dbo.EmployeesNS AS P

 JOIN dbo.EmployeesNS AS C

 ON P.empid = 3

 AND C.lft >= P.lft AND C.rgt <= P.rgt

ORDER BY C.lft;

empid empname

----------- ------------------

3 Ina

7 | Aaron

11 | | Gabriel

9 | | Rita

14 | | | Didi

12 | | | Emilia

13 | | | Michael

C12626034.indd 737 2/20/2009 8:20:37 PM

738 Inside Microsoft SQL Server 2008: T-SQL Querying

 The query joins two instances of EmployeesNS. One represents the parent (P) and is fi ltered
by the given root. The other represents the child (C). The two are joined based on the child’s
left being greater than or equal to the parent’s left and the child’s right being smaller than or
equal to the parent’s right. Indentation of the output is achieved by replicating a string (‘ | ‘)
child level minus parent level times. The output is sorted by the child’s left value, which by
defi nition represents correct hierarchical sorting, and the desired sort of siblings. This subtree
query is used as the baseline for most of the following queries.

 If you want to exclude the subtree’s root node from the output, simply use greater than (>)
and less than (<) operators instead of greater than or equal to (>=) and less than or equal to
(<=) operators. To the subtree query, add a fi lter in the join condition that returns only nodes
where the child’s level minus the parent’s level is smaller than or equal to the requested
 number of levels under the root.

 Return the subtree of a given root, limiting two levels of subordinates under the root:

SELECT C.empid, REPLICATE(' | ', C.lvl - P.lvl) + C.empname AS empname

FROM dbo.EmployeesNS AS P

 JOIN dbo.EmployeesNS AS C

 ON P.empid = 3

 AND C.lft >= P.lft AND C.rgt <= P.rgt

 AND C.lvl - P.lvl <= 2

ORDER BY C.lft;

empid empname

----------- ---------------

3 Ina

7 | Aaron

11 | | Gabriel

9 | | Rita

 Return leaf nodes under a given root:

SELECT C.empid, C.empname

FROM dbo.EmployeesNS AS P

 JOIN dbo.EmployeesNS AS C

 ON P.empid = 3

 AND C.lft >= P.lft AND C.rgt <= P.rgt

WHERE C.rgt - C.lft = 1;

empid empname

----------- ---------

11 Gabriel

14 Didi

12 Emilia

13 Michael

 A leaf node is a node for which the right value is greater than the left value by 1
(no subordinates). Add this fi lter to the subtree query’s WHERE clause. As you can see, the
nested sets solution allows for dramatically faster identifi cation of leaf nodes than other
 solutions using a NOT EXISTS predicate.

C12626034.indd 738 2/20/2009 8:20:37 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 739

 Return the count of subordinates of each node:

SELECT empid, (rgt - lft - 1) / 2 AS cnt,

 REPLICATE(' | ', lvl) + empname AS empname

FROM dbo.EmployeesNS

ORDER BY lft;

empid cnt empname

------ ---- -------------------

1 13 David

2 5 | Eitan

5 2 | | Jiru

8 0 | | | Lilach

10 0 | | | Sean

4 0 | | Seraph

6 0 | | Steve

3 6 | Ina

7 5 | | Aaron

11 0 | | | Gabriel

9 3 | | | Rita

14 0 | | | | Didi

12 0 | | | | Emilia

13 0 | | | | Michael

 Because each node accounts for exactly two lft and rgt values and in our implementation no
gaps exist, you can calculate the count of subordinates by accessing the subtree’s root alone.
The count is (rgt – lft – 1) / 2.

 Return all ancestors of a given node:

SELECT P.empid, P.empname, P.lvl

FROM dbo.EmployeesNS AS P

 JOIN dbo.EmployeesNS AS C

 ON C.empid = 14

 AND C.lft >= P.lft AND C.rgt <= P.rgt;

empid empname lvl

------ -------- ----

1 David 0

3 Ina 1

7 Aaron 2

9 Rita 3

14 Didi 4

 The ancestors query is almost identical to the subtree query. The nested sets relationships
remain the same. The only difference is that here you fi lter a specifi c child node ID, while in
the subtree query you fi ltered a specifi c parent node ID.

 When you’re done querying the EmployeesNS table, run the following code for cleanup:

DROP TABLE dbo.EmployeesNS;

C12626034.indd 739 2/20/2009 8:20:37 PM

740 Inside Microsoft SQL Server 2008: T-SQL Querying

Transitive Closure

 The transitive closure of a directed graph G is the graph with the same vertices as G and
with an edge connecting each pair of nodes that are connected by a path (not necessarily
containing just one edge) in G. The transitive closure helps answer a number of questions
 immediately, without the need to explore paths in the graph. For example, is David a
 manager of Aaron (directly or indirectly)? If the transitive closure of the Employees graph
contains an edge from David to Aaron, he is. Does Double Espresso contain water? Can I
drive from Los Angeles to New York? If the input graph contains the edges (a, b) and (b, c), a
and c have a transitive relationship. The transitive closure contains the edges (a, b), (b, c), and
also (a, c). If David is the direct manager of Ina and Ina is the direct manager of Aaron, David
transitively is a manager of Aaron, or Aaron transitively is a subordinate of David.

 Problems related to transitive closure deal with specialized cases of transitive relationships.
An example is the “shortest path” problem, where you’re trying to determine the shortest path
 between two nodes. For example, what’s the shortest path between Los Angeles and New York?

 In this section, I will describe iterative/recursive solutions for transitive closure and shortest
path problems.

 Note The performance of some of the solutions that I will show (specifi cally those that
use recursive CTEs) degrades exponentially as the input graph grows. I’ll present them for
 demonstration purposes because they are fairly simple and natural. They are adequate for fairly
small graphs. Some effi cient algorithms for transitive closure–related problems (for example,
Floyd’s and Warshall’s algorithms) can be implemented as “level at a time” (breadth-fi rst)
 iterations. For details on those, please refer to http://www.nist.gov/dads/. I’ll show effi cient
 solutions provided by Steve Kass that can be applied to larger graphs.

Directed Acyclic Graph

 The fi rst problem that I will discuss is generating a transitive closure of a directed acyclic graph
(DAG). Later I’ll show you how to deal with undirected and cyclic graphs as well. Whether the
graph is directed or undirected doesn’t really complicate the solution signifi cantly, but dealing
with cyclic graphs does. The input DAG that I will use in my example is the BOM I used earlier
in the chapter, which you create by running the code in Listing 12-2.

 The code that generates the transitive closure of BOM is somewhat similar to solutions for the
subgraph problem (that is, the parts explosion). Specifi cally, you traverse the graph one level
at a time (or, more accurately, you are using breadth-fi rst search techniques). However, instead
of returning only a root node here, the anchor member returns all fi rst-level relationships
in BOM. In most graphs, this simply means all existing source/target pairs. In our case, this
means all assembly/part pairs where the assembly is not NULL. The recursive member joins
the CTE representing the previous level or parent (P) with BOM representing the next level or
child (C). It returns the original product ID (P) as the source and the child product ID (C) as the

C12626034.indd 740 2/20/2009 8:20:37 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 741

target. The outer query returns the distinct assembly/part pairs. Keep in mind that multiple
paths may lead to a part in BOM, but you need to return each unique pair only once.

 Run the following code to generate the transitive closure of BOM:

WITH BOMTC

AS

(

 -- Return all first-level containment relationships

 SELECT assemblyid, partid

 FROM dbo.BOM

 WHERE assemblyid IS NOT NULL

 UNION ALL

 -- Return next-level containment relationships

 SELECT P.assemblyid, C.partid

 FROM BOMTC AS P

 JOIN dbo.BOM AS C

 ON C.assemblyid = P.partid

)

-- Return distinct pairs that have

-- transitive containment relationships

SELECT DISTINCT assemblyid, partid

FROM BOMTC;

 This code generates the following output:

assemblyid partid

----------- -----------

1 6

1 7

1 10

1 13

1 14

2 6

2 7

2 10

2 11

2 13

2 14

3 6

3 7

3 11

3 12

3 14

3 16

3 17

4 9

4 12

4 14

4 16

4 17

5 9

5 12

5 14

C12626034.indd 741 2/20/2009 8:20:37 PM

742 Inside Microsoft SQL Server 2008: T-SQL Querying

5 16

5 17

10 13

10 14

12 14

12 16

12 17

16 17

 This solution eliminates duplicate edges found in the BOMTC by applying a DISTINCT clause
in the outer query. A more effi cient solution would be to avoid getting duplicates altogether
by using a NOT EXISTS predicate in the query that runs repeatedly; such a predicate would
fi lter newly found edges that do not appear in the set of edges that were already found.
However, such an implementation can’t use a CTE because the recursive member in the CTE
has access only to the immediate previous level, as opposed to all previous levels obtained
thus far. Instead, you can use a UDF that invokes the query that runs repeatedly in a loop and
inserts each obtained level of nodes into a table variable. Run the following code to create
the BOMTC UDF, which implements this logic:

IF OBJECT_ID('dbo.BOMTC') IS NOT NULL

 DROP FUNCTION dbo.BOMTC;

GO

CREATE FUNCTION BOMTC() RETURNS @BOMTC TABLE

(

 assemblyid INT NOT NULL,

 partid INT NOT NULL,

 PRIMARY KEY (assemblyid, partid)

)

AS

BEGIN

 INSERT INTO @BOMTC(assemblyid, partid)

 SELECT assemblyid, partid

 FROM dbo.BOM

 WHERE assemblyid IS NOT NULL

 WHILE @@rowcount > 0

 INSERT INTO @BOMTC

 SELECT P.assemblyid, C.partid

 FROM @BOMTC AS P

 JOIN dbo.BOM AS C

 ON C.assemblyid = P.partid

 WHERE NOT EXISTS

 (SELECT * FROM @BOMTC AS P2

 WHERE P2.assemblyid = P.assemblyid

 AND P2.partid = C.partid);

 RETURN;

END

GO

 Query the function to get the transitive closure of BOM:

SELECT assemblyid, partid FROM BOMTC();

C12626034.indd 742 2/20/2009 8:20:37 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 743

 If you want to return all paths in BOM, along with the distance in levels between the parts,
you use a similar algorithm with a few additions and revisions. You calculate the distance
the same way you calculated the level value in the subgraph/subtree solutions. That is,
the anchor assigns a constant distance of 1 for the fi rst level, and the recursive member
 simply adds one in each iteration. Also, the path calculation is similar to the one used in
the subgraph/subtree solutions. The anchor generates a path made of ‘.’ + source_id + ‘.’ +
 target_id + ‘.’. The recursive member generates it as parent’s path + target_id + ‘.’. Finally, the
outer query simply returns all paths (without applying DISTINCT in this case).

 Run the following code to generate all possible paths in BOM and their distances:

WITH BOMPaths

AS

(

 SELECT assemblyid, partid,

 1 AS distance, -- distance in first level is 1

 -- path in first level is .assemblyid.partid.

 '.' + CAST(assemblyid AS VARCHAR(MAX)) +

 '.' + CAST(partid AS VARCHAR(MAX)) + '.' AS path

 FROM dbo.BOM

 WHERE assemblyid IS NOT NULL

 UNION ALL

 SELECT P.assemblyid, C.partid,

 -- distance in next level is parent's distance + 1

 P.distance + 1,

 -- path in next level is parent_path.child_partid.

 P.path + CAST(C.partid AS VARCHAR(MAX)) + '.'

 FROM BOMPaths AS P

 JOIN dbo.BOM AS C

 ON C.assemblyid = P.partid

)

-- Return all paths

SELECT * FROM BOMPaths;

 You get the following output:

assemblyid partid distance path

----------- ----------- ----------- ----------------

1 6 1 .1.6.

2 6 1 .2.6.

3 6 1 .3.6.

1 7 1 .1.7.

2 7 1 .2.7.

3 7 1 .3.7.

4 9 1 .4.9.

5 9 1 .5.9.

1 10 1 .1.10.

2 10 1 .2.10.

2 11 1 .2.11.

3 11 1 .3.11.

3 12 1 .3.12.

4 12 1 .4.12.

5 12 1 .5.12.

C12626034.indd 743 2/20/2009 8:20:37 PM

744 Inside Microsoft SQL Server 2008: T-SQL Querying

10 13 1 .10.13.

1 14 1 .1.14.

2 14 1 .2.14.

10 14 1 .10.14.

12 14 1 .12.14.

12 16 1 .12.16.

16 17 1 .16.17.

12 17 2 .12.16.17.

5 14 2 .5.12.14.

5 16 2 .5.12.16.

5 17 3 .5.12.16.17.

4 14 2 .4.12.14.

4 16 2 .4.12.16.

4 17 3 .4.12.16.17.

3 14 2 .3.12.14.

3 16 2 .3.12.16.

3 17 3 .3.12.16.17.

2 13 2 .2.10.13.

2 14 2 .2.10.14.

1 13 2 .1.10.13.

1 14 2 .1.10.14.

 To isolate only the shortest paths, add a second CTE (BOMMinDist) that groups all paths by
assembly and part, returning the minimum distance for each group. In the outer query, join
the fi rst CTE (BOMPaths) with BOMMinDist, based on assembly, part, and distance match to
return the actual paths.

 Run the following code to produce the shortest paths in BOM:

WITH BOMPaths -- All paths

AS

(

 SELECT assemblyid, partid,

 1 AS distance,

 '.' + CAST(assemblyid AS VARCHAR(MAX)) +

 '.' + CAST(partid AS VARCHAR(MAX)) + '.' AS path

 FROM dbo.BOM

 WHERE assemblyid IS NOT NULL

 UNION ALL

 SELECT P.assemblyid, C.partid,

 P.distance + 1,

 P.path + CAST(C.partid AS VARCHAR(MAX)) + '.'

 FROM BOMPaths AS P

 JOIN dbo.BOM AS C

 ON C.assemblyid = P.partid

),

BOMMinDist AS -- Minimum distance for each pair

(

 SELECT assemblyid, partid, MIN(distance) AS mindist

 FROM BOMPaths

 GROUP BY assemblyid, partid

)

C12626034.indd 744 2/20/2009 8:20:37 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 745

-- Shortest path for each pair

SELECT BP.*

FROM BOMMinDist AS BMD

 JOIN BOMPaths AS BP

 ON BMD.assemblyid = BP.assemblyid

 AND BMD.partid = BP.partid

 AND BMD.mindist = BP.distance;

 This code generates the following output:

assemblyid partid distance path

----------- ----------- ----------- ------------------

1 6 1 .1.6.

2 6 1 .2.6.

3 6 1 .3.6.

1 7 1 .1.7.

2 7 1 .2.7.

3 7 1 .3.7.

4 9 1 .4.9.

5 9 1 .5.9.

1 10 1 .1.10.

2 10 1 .2.10.

2 11 1 .2.11.

3 11 1 .3.11.

3 12 1 .3.12.

4 12 1 .4.12.

5 12 1 .5.12.

10 13 1 .10.13.

1 14 1 .1.14.

2 14 1 .2.14.

10 14 1 .10.14.

12 14 1 .12.14.

12 16 1 .12.16.

16 17 1 .16.17.

12 17 2 .12.16.17.

5 14 2 .5.12.14.

5 16 2 .5.12.16.

5 17 3 .5.12.16.17.

4 14 2 .4.12.14.

4 16 2 .4.12.16.

4 17 3 .4.12.16.17.

3 14 2 .3.12.14.

3 16 2 .3.12.16.

3 17 3 .3.12.16.17.

2 13 2 .2.10.13.

1 13 2 .1.10.13.

Undirected Cyclic Graph

 Even though transitive closure is defi ned for a directed graph, you can also defi ne and
 generate it for undirected graphs where each edge represents a two-way relationship. In
my examples, I will use the Roads graph, which you create and populate by running the
code in Listing 12-3. To see a visual representation of Roads, examine Figure 12-4. To apply

C12626034.indd 745 2/20/2009 8:20:38 PM

746 Inside Microsoft SQL Server 2008: T-SQL Querying

the transitive closure and shortest path solutions to Roads, fi rst convert it to a digraph by
 generating two directed edges from each existing edge:

SELECT city1 AS from_city, city2 AS to_city FROM dbo.Roads

UNION ALL

SELECT city2, city1 FROM dbo.Roads

 For example, the edge (JFK, ATL) in the undirected graph appears as two edges, (JFK, ATL)
and (ATL, JFK), in the digraph. The former represents the road from New York to Atlanta, and
the latter represents the road from Atlanta to New York.

 Because Roads is a cyclic graph, you also need to use the cycle-detection logic I described
earlier in the chapter to avoid traversing cyclic paths. Armed with the techniques to generate
a digraph out of an undirected graph and to detect cycles, you have all the tools you need to
produce the transitive closure of roads.

 Run the following code to generate the transitive closure of Roads:

WITH Roads2 -- Two rows for each pair (from-->to, to-->from)

AS

(

 SELECT city1 AS from_city, city2 AS to_city FROM dbo.Roads

 UNION ALL

 SELECT city2, city1 FROM dbo.Roads

),

RoadPaths AS

(

 -- Return all first-level reachability pairs

 SELECT from_city, to_city,

 -- path is needed to identify cycles

 CAST('.' + from_city + '.' + to_city + '.' AS VARCHAR(MAX)) AS path

 FROM Roads2

 UNION ALL

 -- Return next-level reachability pairs

 SELECT F.from_city, T.to_city,

 CAST(F.path + T.to_city + '.' AS VARCHAR(MAX))

 FROM RoadPaths AS F

 JOIN Roads2 AS T

 -- if to_city appears in from_city's path, cycle detected

 ON CASE WHEN F.path LIKE '%.' + T.to_city + '.%'

 THEN 1 ELSE 0 END = 0

 AND F.to_city = T.from_city

)

-- Return Transitive Closure of Roads

SELECT DISTINCT from_city, to_city

FROM RoadPaths;

C12626034.indd 746 2/20/2009 8:20:38 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 747

 The Roads2 CTE creates the digraph out of Roads. The RoadPaths CTE returns all possible
source/target pairs (this has a big performance penalty), and it avoids returning and pursuing
a path for which a cycle is detected. The outer query returns all distinct source/target pairs:

from to from to from to from to from to

---- ---- ---- ---- ---- ---- ---- ---- ---- ----

ANC FAI IAH LAX LAX SEA MSP JFK SEA ORD

ATL DEN IAH MCI LAX SFO MSP LAX SEA SFO

ATL IAH IAH MIA MCI ATL MSP MCI SFO ATL

ATL JFK IAH MSP MCI DEN MSP MIA SFO DEN

ATL LAX IAH ORD MCI IAH MSP ORD SFO IAH

ATL MCI IAH SEA MCI JFK MSP SEA SFO JFK

ATL MIA IAH SFO MCI LAX MSP SFO SFO LAX

ATL MSP JFK ATL MCI MIA ORD ATL SFO MCI

ATL ORD JFK DEN MCI MSP ORD DEN SFO MIA

ATL SEA JFK IAH MCI ORD ORD IAH SFO MSP

ATL SFO JFK LAX MCI SEA ORD JFK SFO ORD

DEN ATL JFK MCI MCI SFO ORD LAX SFO SEA

DEN IAH JFK MIA MIA ATL ORD MCI

DEN JFK JFK MSP MIA DEN ORD MIA

DEN LAX JFK ORD MIA IAH ORD MSP

DEN MCI JFK SEA MIA JFK ORD SEA

DEN MIA JFK SFO MIA LAX ORD SFO

DEN MSP LAX ATL MIA MCI SEA ATL

DEN ORD LAX DEN MIA MSP SEA DEN

DEN SEA LAX IAH MIA ORD SEA IAH

DEN SFO LAX JFK MIA SEA SEA JFK

FAI ANC LAX MCI MIA SFO SEA LAX

IAH ATL LAX MIA MSP ATL SEA MCI

IAH DEN LAX MSP MSP DEN SEA MIA

IAH JFK LAX ORD MSP IAH SEA MSP

 Here as well, you can use loops instead of a recursive CTE to optimize the solution, as
 demonstrated earlier with the BOM scenario. Run the following code to create the RoadsTC
UDF, which returns the transitive closure of Roads using loops:

IF OBJECT_ID('dbo.RoadsTC') IS NOT NULL

 DROP FUNCTION dbo.RoadsTC;

GO

CREATE FUNCTION dbo.RoadsTC() RETURNS @RoadsTC TABLE (

 from_city VARCHAR(3) NOT NULL,

 to_city VARCHAR(3) NOT NULL,

 PRIMARY KEY (from_city, to_city)

)

AS

BEGIN

 DECLARE @added as INT;

 INSERT INTO @RoadsTC(from_city, to_city)

 SELECT city1, city2 FROM dbo.Roads;

 SET @added = @@rowcount;

 INSERT INTO @RoadsTC

 SELECT city2, city1 FROM dbo.Roads

C12626034.indd 747 2/20/2009 8:20:38 PM

748 Inside Microsoft SQL Server 2008: T-SQL Querying

 SET @added = @added + @@rowcount;

 WHILE @added > 0 BEGIN

 INSERT INTO @RoadsTC

 SELECT DISTINCT TC.from_city, R.city2

 FROM @RoadsTC AS TC

 JOIN dbo.Roads AS R

 ON R.city1 = TC.to_city

 WHERE NOT EXISTS

 (SELECT * FROM @RoadsTC AS TC2

 WHERE TC2.from_city = TC.from_city

 AND TC2.to_city = R.city2)

 AND TC.from_city <> R.city2;

 SET @added = @@rowcount;

 INSERT INTO @RoadsTC

 SELECT DISTINCT TC.from_city, R.city1

 FROM @RoadsTC AS TC

 JOIN dbo.Roads AS R

 ON R.city2 = TC.to_city

 WHERE NOT EXISTS

 (SELECT * FROM @RoadsTC AS TC2

 WHERE TC2.from_city = TC.from_city

 AND TC2.to_city = R.city1)

 AND TC.from_city <> R.city1;

 SET @added = @added + @@rowcount;

 END

 RETURN;

END

GO

-- Use the RoadsTC UDF

SELECT * FROM dbo.RoadsTC();

GO

 Run the following query to get the transitive closure of Roads:

SELECT * FROM dbo.RoadsTC();

 To return all paths and distances, use similar logic to the one used in the digraph solution in
the previous section. The difference here is that the distance is not just a level counter—it is
the sum of the distances along the route from one city to the other.

 Run the following code to return all paths and distances in Roads:

WITH Roads2

AS

(

 SELECT city1 AS from_city, city2 AS to_city, distance FROM dbo.Roads

 UNION ALL

 SELECT city2, city1, distance FROM dbo.Roads

),

C12626034.indd 748 2/20/2009 8:20:38 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 749

RoadPaths AS

(

 SELECT from_city, to_city, distance,

 CAST('.' + from_city + '.' + to_city + '.' AS VARCHAR(MAX)) AS path

 FROM Roads2

 UNION ALL

 SELECT F.from_city, T.to_city, F.distance + T.distance,

 CAST(F.path + T.to_city + '.' AS VARCHAR(MAX))

 FROM RoadPaths AS F

 JOIN Roads2 AS T

 ON CASE WHEN F.path LIKE '%.' + T.to_city + '.%'

 THEN 1 ELSE 0 END = 0

 AND F.to_city = T.from_city

)

-- Return all paths and distances

SELECT * FROM RoadPaths;

 Finally, to return shortest paths in Roads, use the same logic as the digraph shortest paths
solution. Run the following code to return shortest paths in Roads:

WITH Roads2

AS

(

 SELECT city1 AS from_city, city2 AS to_city, distance FROM dbo.Roads

 UNION ALL

 SELECT city2, city1, distance FROM dbo.Roads

),

RoadPaths AS

(

 SELECT from_city, to_city, distance,

 CAST('.' + from_city + '.' + to_city + '.' AS VARCHAR(MAX)) AS path

 FROM Roads2

 UNION ALL

 SELECT F.from_city, T.to_city, F.distance + T.distance,

 CAST(F.path + T.to_city + '.' AS VARCHAR(MAX))

 FROM RoadPaths AS F

 JOIN Roads2 AS T

 ON CASE WHEN F.path LIKE '%.' + T.to_city + '.%'

 THEN 1 ELSE 0 END = 0

 AND F.to_city = T.from_city

),

RoadsMinDist -- Min distance for each pair in TC

AS

(

 SELECT from_city, to_city, MIN(distance) AS mindist

 FROM RoadPaths

 GROUP BY from_city, to_city

)

-- Return shortest paths and distances

SELECT RP.*

FROM RoadsMinDist AS RMD

C12626034.indd 749 2/20/2009 8:20:38 PM

750 Inside Microsoft SQL Server 2008: T-SQL Querying

 JOIN RoadPaths AS RP

 ON RMD.from_city = RP.from_city

 AND RMD.to_city = RP.to_city

 AND RMD.mindist = RP.distance;

 You get the following output:

from_city to_city distance path

--------- ------- ----------- ------------------------

ANC FAI 359 .ANC.FAI.

ATL IAH 800 .ATL.IAH.

ATL JFK 865 .ATL.JFK.

ATL MCI 805 .ATL.MCI.

ATL MIA 665 .ATL.MIA.

ATL ORD 715 .ATL.ORD.

DEN IAH 1120 .DEN.IAH.

DEN LAX 1025 .DEN.LAX.

DEN MCI 600 .DEN.MCI.

DEN MSP 915 .DEN.MSP.

DEN SEA 1335 .DEN.SEA.

DEN SFO 1270 .DEN.SFO.

IAH LAX 1550 .IAH.LAX.

IAH MCI 795 .IAH.MCI.

IAH MIA 1190 .IAH.MIA.

JFK ORD 795 .JFK.ORD.

LAX SFO 385 .LAX.SFO.

MCI MSP 440 .MCI.MSP.

MCI ORD 525 .MCI.ORD.

MSP ORD 410 .MSP.ORD.

MSP SEA 2015 .MSP.SEA.

SEA SFO 815 .SEA.SFO.

FAI ANC 359 .FAI.ANC.

IAH ATL 800 .IAH.ATL.

JFK ATL 865 .JFK.ATL.

MCI ATL 805 .MCI.ATL.

MIA ATL 665 .MIA.ATL.

ORD ATL 715 .ORD.ATL.

IAH DEN 1120 .IAH.DEN.

LAX DEN 1025 .LAX.DEN.

MCI DEN 600 .MCI.DEN.

MSP DEN 915 .MSP.DEN.

SEA DEN 1335 .SEA.DEN.

SFO DEN 1270 .SFO.DEN.

LAX IAH 1550 .LAX.IAH.

MCI IAH 795 .MCI.IAH.

MIA IAH 1190 .MIA.IAH.

ORD JFK 795 .ORD.JFK.

SFO LAX 385 .SFO.LAX.

MSP MCI 440 .MSP.MCI.

ORD MCI 525 .ORD.MCI.

ORD MSP 410 .ORD.MSP.

SEA MSP 2015 .SEA.MSP.

SFO SEA 815 .SFO.SEA.

SEA ORD 2425 .SEA.MSP.ORD.

SEA JFK 3220 .SEA.MSP.ORD.JFK.

ORD SEA 2425 .ORD.MSP.SEA.

ORD DEN 1125 .ORD.MCI.DEN.

C12626034.indd 750 2/20/2009 8:20:38 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 751

ORD IAH 1320 .ORD.MCI.IAH.

ORD LAX 2150 .ORD.MCI.DEN.LAX.

ORD SFO 2395 .ORD.MCI.DEN.SFO.

MSP IAH 1235 .MSP.MCI.IAH.

SFO IAH 1935 .SFO.LAX.IAH.

SFO MIA 3125 .SFO.LAX.IAH.MIA.

MIA LAX 2740 .MIA.IAH.LAX.

MIA SFO 3125 .MIA.IAH.LAX.SFO.

LAX MIA 2740 .LAX.IAH.MIA.

LAX ATL 2350 .LAX.IAH.ATL.

SFO MCI 1870 .SFO.DEN.MCI.

SFO MSP 2185 .SFO.DEN.MSP.

SFO ORD 2395 .SFO.DEN.MCI.ORD.

SFO ATL 2675 .SFO.DEN.MCI.ATL.

SFO JFK 3190 .SFO.DEN.MCI.ORD.JFK.

SEA IAH 2455 .SEA.DEN.IAH.

SEA MCI 1935 .SEA.DEN.MCI.

SEA ATL 2740 .SEA.DEN.MCI.ATL.

SEA MIA 3405 .SEA.DEN.MCI.ATL.MIA.

MSP LAX 1940 .MSP.DEN.LAX.

MSP SFO 2185 .MSP.DEN.SFO.

MCI LAX 1625 .MCI.DEN.LAX.

MCI SEA 1935 .MCI.DEN.SEA.

MCI SFO 1870 .MCI.DEN.SFO.

LAX MCI 1625 .LAX.DEN.MCI.

LAX MSP 1940 .LAX.DEN.MSP.

LAX ORD 2150 .LAX.DEN.MCI.ORD.

LAX JFK 2945 .LAX.DEN.MCI.ORD.JFK.

IAH SEA 2455 .IAH.DEN.SEA.

ORD MIA 1380 .ORD.ATL.MIA.

MIA JFK 1530 .MIA.ATL.JFK.

MIA MCI 1470 .MIA.ATL.MCI.

MIA ORD 1380 .MIA.ATL.ORD.

MIA MSP 1790 .MIA.ATL.ORD.MSP.

MIA DEN 2070 .MIA.ATL.MCI.DEN.

MIA SEA 3405 .MIA.ATL.MCI.DEN.SEA.

MCI MIA 1470 .MCI.ATL.MIA.

JFK IAH 1665 .JFK.ATL.IAH.

JFK MIA 1530 .JFK.ATL.MIA.

IAH JFK 1665 .IAH.ATL.JFK.

SEA LAX 1200 .SEA.SFO.LAX.

MSP ATL 1125 .MSP.ORD.ATL.

MSP JFK 1205 .MSP.ORD.JFK.

MSP MIA 1790 .MSP.ORD.ATL.MIA.

MCI JFK 1320 .MCI.ORD.JFK.

LAX SEA 1200 .LAX.SFO.SEA.

JFK MCI 1320 .JFK.ORD.MCI.

JFK MSP 1205 .JFK.ORD.MSP.

JFK SEA 3220 .JFK.ORD.MSP.SEA.

JFK DEN 1920 .JFK.ORD.MCI.DEN.

JFK LAX 2945 .JFK.ORD.MCI.DEN.LAX.

JFK SFO 3190 .JFK.ORD.MCI.DEN.SFO.

IAH MSP 1235 .IAH.MCI.MSP.

IAH ORD 1320 .IAH.MCI.ORD.

IAH SFO 1935 .IAH.LAX.SFO.

DEN ORD 1125 .DEN.MCI.ORD.

DEN ATL 1405 .DEN.MCI.ATL.

C12626034.indd 751 2/20/2009 8:20:38 PM

752 Inside Microsoft SQL Server 2008: T-SQL Querying

DEN MIA 2070 .DEN.MCI.ATL.MIA.

DEN JFK 1920 .DEN.MCI.ORD.JFK.

ATL MSP 1125 .ATL.ORD.MSP.

ATL DEN 1405 .ATL.MCI.DEN.

ATL SEA 2740 .ATL.MCI.DEN.SEA.

ATL SFO 2675 .ATL.MCI.DEN.SFO.

ATL LAX 2350 .ATL.IAH.LAX.

 To satisfy multiple requests for the shortest paths between two cities, you might want to
 materialize the result set in a table and index it, like so:

WITH Roads2

AS

(

 SELECT city1 AS from_city, city2 AS to_city, distance FROM dbo.Roads

 UNION ALL

 SELECT city2, city1, distance FROM dbo.Roads

),

RoadPaths AS

(

 SELECT from_city, to_city, distance,

 CAST('.' + from_city + '.' + to_city + '.' AS VARCHAR(MAX)) AS path

 FROM Roads2

 UNION ALL

 SELECT F.from_city, T.to_city, F.distance + T.distance,

 CAST(F.path + T.to_city + '.' AS VARCHAR(MAX))

 FROM RoadPaths AS F

 JOIN Roads2 AS T

 ON CASE WHEN F.path LIKE '%.' + T.to_city + '.%'

 THEN 1 ELSE 0 END = 0

 AND F.to_city = T.from_city

),

RoadsMinDist

AS

(

 SELECT from_city, to_city, MIN(distance) AS mindist

 FROM RoadPaths

 GROUP BY from_city, to_city

)

SELECT RP.*

INTO dbo.RoadPaths

FROM RoadsMinDist AS RMD

 JOIN RoadPaths AS RP

 ON RMD.from_city = RP.from_city

 AND RMD.to_city = RP.to_city

 AND RMD.mindist = RP.distance;

CREATE UNIQUE CLUSTERED INDEX idx_uc_from_city_to_city

 ON dbo.RoadPaths(from_city, to_city);

 Once the result set is materialized and indexed, a request for the shortest path between two
cities can be satisfi ed instantly. This is practical and advisable when information changes

C12626034.indd 752 2/20/2009 8:20:38 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 753

 infrequently. As is often the case, there is a trade-off between up to date and fast. The
 following query requests the shortest path between Los Angeles and New York:

SELECT * FROM dbo.RoadPaths

WHERE from_city = 'LAX' AND to_city = 'JFK';

 This query generates the following output:

from_city to_city distance path

--------- ------- ----------- ----------------------

LAX JFK 2945 .LAX.DEN.MCI.ORD.JFK.

 A more effi cient solution to the shortest paths problem uses loops instead of recursive
CTEs. It is more effi cient for reasons similar to the ones described earlier; that is, in each
iteration of the loop you have access to all previously spooled data and not just to the
 immediate previous level. You create a function called RoadsTC that returns a table
 variable called @RoadsTC. The table variable has the attributes from_city, to_city, distance,
and route, which are self-explanatory. The function’s code fi rst inserts into @RoadsTC a
row for each (city1, city2) and (city2, city1) pair from the table Roads. The code then enters
a loop that iterates as long as the previous iteration inserted rows to @RoadsTC. In each
iteration of the loop the code inserts new routes that extend the existing routes in
@RoadsTC. New routes are added only if the source and destination do not appear already
in @RoadsTC with the same or shorter distance. Run the following code to create the
RoadsTC function:

IF OBJECT_ID('dbo.RoadsTC') IS NOT NULL

 DROP FUNCTION dbo.RoadsTC;

GO

CREATE FUNCTION dbo.RoadsTC() RETURNS @RoadsTC TABLE

(

 uniquifier INT NOT NULL IDENTITY,

 from_city VARCHAR(3) NOT NULL,

 to_city VARCHAR(3) NOT NULL,

 distance INT NOT NULL,

 route VARCHAR(MAX) NOT NULL,

 PRIMARY KEY (from_city, to_city, uniquifier)

)

AS

BEGIN

 DECLARE @added AS INT;

 INSERT INTO @RoadsTC

 SELECT city1 AS from_city, city2 AS to_city, distance,

 '.' + city1 + '.' + city2 + '.'

 FROM dbo.Roads;

 SET @added = @@rowcount;

 INSERT INTO @RoadsTC

 SELECT city2, city1, distance, '.' + city2 + '.' + city1 + '.'

 FROM dbo.Roads;

C12626034.indd 753 2/20/2009 8:20:38 PM

754 Inside Microsoft SQL Server 2008: T-SQL Querying

 SET @added = @added + @@rowcount;

 WHILE @added > 0 BEGIN

 INSERT INTO @RoadsTC

 SELECT DISTINCT TC.from_city, R.city2,

 TC.distance + R.distance, TC.route + city2 + '.'

 FROM @RoadsTC AS TC

 JOIN dbo.Roads AS R

 ON R.city1 = TC.to_city

 WHERE NOT EXISTS

 (SELECT * FROM @RoadsTC AS TC2

 WHERE TC2.from_city = TC.from_city

 AND TC2.to_city = R.city2

 AND TC2.distance <= TC.distance + R.distance)

 AND TC.from_city <> R.city2;

 SET @added = @@rowcount;

 INSERT INTO @RoadsTC

 SELECT DISTINCT TC.from_city, R.city1,

 TC.distance + R.distance, TC.route + city1 + '.'

 FROM @RoadsTC AS TC

 JOIN dbo.Roads AS R

 ON R.city2 = TC.to_city

 WHERE NOT EXISTS

 (SELECT * FROM @RoadsTC AS TC2

 WHERE TC2.from_city = TC.from_city

 AND TC2.to_city = R.city1

 AND TC2.distance <= TC.distance + R.distance)

 AND TC.from_city <> R.city1;

 SET @added = @added + @@rowcount;

 END

 RETURN;

END

GO

 The function might return more than one row for the same source and target cities. To return
shortest paths and distances, use the following query:

SELECT from_city, to_city, distance, route

FROM (SELECT from_city, to_city, distance, route,

 RANK() OVER (PARTITION BY from_city, to_city

 ORDER BY distance) AS rk

 FROM dbo.RoadsTC()) AS RTC

WHERE rk = 1;

 The derived table query assigns a rank value (rk) to each row, based on from_city, to_city
partitioning and distance ordering. This means that shortest paths are assigned with the rank
value 1. The outer query fi lters only shortest paths (rk = 1).

 When you’re done querying the RoadPaths table, don’t forget to drop it:

DROP TABLE dbo.RoadPaths;

C12626034.indd 754 2/20/2009 8:20:38 PM

 Chapter 12 Graphs, Trees, Hierarchies, and Recursive Queries 755

Conclusion

 This chapter covered the treatment of graphs, trees, and hierarchies. I presented iterative/
recursive solutions for graphs and also solutions in which you materialize information
 describing a tree. The main advantage of the iterative/recursive solutions is that you don’t
need to materialize and maintain any additional attributes—the graph manipulation is based
on the stored edge attributes. The materialized path solution materializes an enumerated
path and possibly also the level for each node in the tree. You can either maintain your
own custom materialized path or use SQL Server 2008’s built-in HIERARCHYID data type.
In the materialized path solution, the maintenance of the additional information is not very
 expensive, and you benefi t from simple and fast set-based queries. The nested sets solution
materializes left and right values representing set containment relationships and possibly the
level in the tree. This is probably the most elegant solution of those I presented, and it also
allows simple and fast queries. However, maintaining the materialized information is very
 expensive, so typically this solution is practical for either static trees or small dynamic trees.

 In the last section, I presented solutions to transitive closure and shortest path problems.

 Because this chapter concludes the book, I feel I should also add some closing words.

 If you ask me what’s the most important thing I hope you carry from this book, I’d say that it
is giving special attention to fundamentals. Do not underestimate or take them lightly. Spend
time on identifying, focusing on, and perfecting fundamental techniques. When you are
faced with a tough problem, solutions will fl ow naturally.

 “Matters of great concern should be treated lightly.”

 “Matters of small concern should be treated seriously.”

 — Hagakure, The Book of the Samurai by Yamamoto Tsunetomo

 The meaning of these sayings is not what appears on the surface. The book goes on to
explain,

 “Among one’s affairs there should not be more than two or three matters of what one
could call great concern. If these are deliberated upon during ordinary times, they can be
understood. Thinking about things previously and then handling them lightly when the time
comes is what this is all about. To face an event and solve it lightly is diffi cult if you are not
resolved beforehand, and there will always be uncertainty in hitting your mark. However, if the
foundation is laid previously, you can think of the saying, ‘Matters of great concern should be
treated lightly,’ as your own basis for action.”

C12626034.indd 755 2/20/2009 8:20:38 PM

C12626034.indd 756 2/20/2009 8:20:38 PM

 757

Appendix A

 Logic Puzzles

 Logic is at the heart of querying problems. SQL is logic, and each query problem in essence is a
logic puzzle. The toughest part of solving a querying problem is usually fi guring out its logical
aspects. You can improve your SQL problem-solving capabilities by practicing pure logic puzzles.

 A while back, I provided a couple of logic puzzles in my T-SQL column in SQL Server
Magazine (www.sqlmag.com). I wanted to show the strong relationship between SQL and
logic. Originally, I planned on providing only those couple of puzzles. But the puzzles raised
so much interest with readers—interestingly, even more than the T-SQL puzzles—that for a
while we published a new logic puzzle every month. I’d like to thank SQL Server Magazine,
which kindly allowed me to share the puzzles from my column with the book’s readers. The
puzzles you will see here are a compilation from my column.

 I’d also like to thank Gabriel Ben-Gan, Dejan Sarka, Adi Dafni (Didi), Adam Machanic, Marcello
Poletti (Marc), Clifford Jensen, Ron Talmage, and Nicolay Tchernitsky, who originally
 introduced some of the puzzles to me.

Puzzles

 The following section introduces logic puzzles. You can fi nd the puzzle solutions in the
 section that follows this one.

 Someone once said, “A puzzle is its own reward.” Enjoy!

Puzzle 1: Remainders

 Find the smallest integer (n) that yields a remainder of i – 1 when divided by i, for any i in
the range 2 through 10. That is, n % 2 = 1, n % 3 = 2, n % 4 = 3, . . ., n% 9 = 8, n % 10 = 9, in
which the percent sign (%) signifi es the T-SQL modulo operator.

Puzzle 2: Round Manhole Covers

 Why are manhole (maintenance hole) covers typically round? You might fi nd this a strange
topic for a puzzle, but the answer lies purely in logic.

Z01A626034.indd 757 2/20/2009 7:54:20 PM

758 Inside Microsoft SQL Server 2008: T-SQL Querying

Puzzle 3: Shaking Hands

 My wife and I were at a party recently with four other married couples. All the people who
didn’t know each other shook hands. Of course, each person knew his or her spouse. I asked
each of the nine other people at the party how many hands they shook and received all
 possible answers ranging from 0 through 8. Each person shook a different number of hands.
What was my wife’s answer?

Puzzle 4: Then There Were Five?

 This puzzle involves a mix of logic and English. Can you think of a sentence that contains
the word “and” fi ve times consecutively (“and and and and and”)? The sentence must make
sense. In other words, I’m not aiming for a sentence such as “Five times and is and and and
and and.” Rather, the sentence should make sense without such silly tricks.

Puzzle 5: Arranging Soldiers in a Row

 A commander decides to discipline his platoon after they misbehave and also check their
logic. He gives them these orders:

 1. You will enter a room one by one.

 2. At the entrance to the room I will place a hat on your head. The hat will have either a
circle or a square sign. You will not know what your sign is, but you will be able to see
the signs on the hats of all those that have already entered the room.

 3. Don’t remove your hat or in any way check what the sign on your hat is.

 4. Arrange yourselves in a row, with all soldiers with a circle on their hats on the left and
all soldiers with a square on their hats on the right.

 5. Don’t communicate with each other verbally or by any other means; rely solely on your
sight and logic to form a row in compliance with these instructions (all circles to the left
and all squares to the right).

 Assume you’re one of the soldiers who entered the room. Your commander placed the hat
on your head. You’re facing none, one, or several soldiers arranged in a row. You don’t know
what sign is on your hat, but you can see the signs of the others. What logic should you
 follow to comply with your commander’s instructions?

Puzzle 6: Crossing the Tunnel

 Four people—let’s call them persons A, B, C, and D—need to cross a dark tunnel. Only
two people at a time can cross the tunnel, and because the tunnel is very dark, a fl ashlight

Z01A626034.indd 758 2/20/2009 7:54:21 PM

 Appendix A Logic Puzzles 759

is mandatory. Person A can cross the tunnel in 1 minute, person B can cross in 2 minutes,
person C can cross in 4 minutes, and person D can make it in 5 minutes. The group has
one fl ashlight, containing batteries that last only 12 minutes. What strategy will enable
all members of the group to cross to the other side in 12 minutes, before the fl ashlight’s
 batteries run down?

Puzzle 7: Escaping a Cave

 While hiking a mountain, you enter a cave. Suddenly, rocks fall and block the cave’s entrance.
You turn on your fl ashlight and start walking deeper into the cave. After a while, you fi nd
another opening. Unfortunately, the opening gives way to a sheer rock wall 60 feet above
a climbable surface. You fi gure that 10 feet is the greatest distance you could jump down
 without sustaining serious injuries (also taking your own height into consideration).

 You look around the cave and fi nd that the ceiling is very high—40 feet above the fl oor.
After a while, you fi nd a 40-foot rope hanging from ceiling to fl oor. A few minutes later, you
fi nd another 40-foot rope hanging from ceiling to fl oor. You have your hiking knife with you.
Can you think of a plan that will let you get out of the cave and down the climbable surface
without jumping down more than 10 feet?

Puzzle 8: Free Tuna

 You go to the grocery store and grab eight cans of tuna from the shelf. You go to the cash
register to pay. Because he’s in a good mood, the store owner hands you three plastic bags
and says, “If you can arrange the eight cans in these three plastic bags so that each bag
 contains an odd number of cans, you can have them for free.” Can you think of a way to get
that free tuna?

Puzzle 9: Naming an Heir

 A mighty king had three sons and wanted to declare the wisest of them as his heir. He decided
to give them a logic puzzle to test their wisdom. He placed the sons in a triangular room,
each in a different corner, and placed a hat on each son’s head. The king said, “You need
to determine the color of your hat. You can’t take your hat off to look at it, and you can’t
 communicate in any way. The hat on your head is either green or red. At least one of you is
wearing a green hat. I’ll be waiting outside the door and will ring a bell every fi ve minutes. You
can’t leave the room until you know the color of your hat. If you know the answer, you must
wait for the next bell and then come tell me the answer.” At the third bell, one of the sons
opened the door and told the king the answer. The king said, “You’re correct, and I’m naming
you my heir. However, I’m disappointed in you. You still have much to learn.” What was that
son’s answer, and why was the king disappointed?

Z01A626034.indd 759 2/20/2009 7:54:21 PM

760 Inside Microsoft SQL Server 2008: T-SQL Querying

Puzzle 10: The Next Element in a Series

 Given the following series of elements, can you determine the next element?

 1, 11, 21, 1211, 111221, 312211, ?

Puzzle 11: Same Birthday

 What’s the probability that in a group of 23 randomly chosen people, at least 2 of them will
have the same birthday?

Puzzle 12: Catching a Train

 Two trains race toward each other on a railway segment that’s 100 miles long. The trains are
traveling at 100 mph. A mosquito fl ying at 200 mph fl ies from one train toward the other,
and as soon as it arrives at the other train, it fl ips its direction and fl ies back toward the fi rst
train. The mosquito continues bouncing back and forth between the trains until the trains
crash. What’s the total distance that the mosquito covers until the moment of the crash?

Puzzle 13: Prisoners and Switches

 A prison warden meets with 23 new prisoners when they arrive. He tells them, “You may
meet today and plan your strategy for the challenge I’m about to propose. But after today,
you’ll be in isolated cells and will have no communication with one another. In the prison is
a switch room, which contains two switches labeled A and B, each of which can be in either
the On or Off position. The switches aren’t connected to anything. I’m not telling you the
 switches’ present positions. After today, from time to time, whenever I feel so inclined, I’ll
 select one prisoner at random and escort him to the switch room. This prisoner will select
one of the two switches and reverse its position. He must move exactly one of the switches:
He can’t move both switches, and he can’t move no switch at all. Then, I’ll lead the prisoner
back to his cell. No one else will enter the switch room until I lead the next prisoner there,
and I’ll instruct him to do the same thing. I’m going to choose prisoners at random. I might
choose the same prisoner three times in a row, or I might jump around and come back.
However, given enough time, everyone will eventually visit the switch room as many times
as everyone else. At any time, if you’re 100 percent certain, any one of you can declare to
me, ‘We have now all visited the switch room.’ If that person is correct, I’ll set you all free. If
that person is wrong, and somebody hasn’t yet visited the switch room, I’ll feed you all to the
 alligators.” What strategy can the prisoners use to obtain freedom?

Puzzle 14: Probabilities in China

 Is it possible to prove statistically that at least two people in China must have the same
 number of hairs on their heads? Try to stick to pure probability and not to assumptions such

Z01A626034.indd 760 2/20/2009 7:54:21 PM

 Appendix A Logic Puzzles 761

as, “There must be many bald people in China.” Also, is it possible to prove statistically that at
least two people in China are missing exactly the same set of teeth (for example, the upper
left bicuspid, the lower inner incisor, and the two lower wisdom teeth)? Again, try to stick to
pure probability and not to assumptions such as, “There must be many old people with no
teeth, or people with no missing teeth.”

Puzzle 15: Two Mathematicians

 Two mathematicians (let’s call them M and N) who were once good friends meet after a long
time to have a drink together. M asks, “Are you married? Any kids? Do you still live in that old
apartment building?” N replies, “Yes, I’m married with three kids, and we live in a house now.”
M asks, “How old are your kids?” N replies, “Let me answer with a riddle: The product of the
ages of my kids is 36. Now, see that bus over there? The sum of my kids’ ages is equal to that
bus number.” M thinks for a moment, then says, “I don’t have suffi cient information to solve
the puzzle.” N replies, “Oh, yes, you’re right, I forgot to mention that one of my kids was born
before we bought the house.” Soon after N provides this last bit of information, M solves the
puzzle and tells N the correct ages of the kids. Can you fi gure out the solution? Also, how
would the solution change if N’s additional piece of information was that one of his kids was
born after he bought the house?

Puzzle 16: Crazy Sequence

 This puzzle requires that you determine the next number in the following sequence:

 0,

 1,

 2,

 26012189435657951002049032270810436111915218750169457857275418378508356311569
47382240678577958130457082619920575892247259536641565162052015873791984587740
83252910524469038881188412376434119195104550534665861624327194019711390984553
67272785370993456298555867193697740700037004307837589974206767840169672078462
8062922903210716166986726054898844551425719398549944893959449606404513236214
02659861930732493697704776060676806701764916694030348199618814556251955925669
18830825514942947596537274845624628824234526597789737740896466553992435928786
21251596748322097602950569669992728467056374713753301924831358707612541268341
5860129447566011455420749589952563543068288634631084965650682771552996256790
84523570255218622235813001670083452344323682193579318470195651072978180435417
38905607274280485839959197290217266122912984205160675790362323376994539641914
75175567557695392233803056825308599977441675784352815913461340394604901269542
0288383471013637338244845066600933484844407119312925376946573543373757247722
30181534032647177531984537341478674327048457983786618703257405938924215709695
99463055752106320326349320922073832092335630992326750440170176057202601082928

Z01A626034.indd 761 2/20/2009 7:54:21 PM

762 Inside Microsoft SQL Server 2008: T-SQL Querying

8042335606643089888710297380797578013056049576342838683057190662205291174822
51053669775660302957404338798347151855260280533386635713910104633641976909739
74322859942198370469791099563033896046758898657957111765666700391567481531159
4398004362539939973120306649060132531130471902889849185620376666916446879112
52491937544258458950003115616829743046411425380748972817233759553806617198014
046779356147936352662656833395097600
00
00,

 ?

Puzzle 17: Minimum Number of Weights

 Can you determine the minimum number of weights required to measure any integer weight
in the range 1 through 100 pounds using a scale? Also, can you generalize your answer for a
range 1 through n pounds?

Puzzle 18: Counting Triangles

 Can you fi gure out how many triangles Figure A-1 contains? Can you think of a methodical
approach or formula to calculate this number?

FIGURE A-1 The counting triangles puzzle

Puzzle 19: Counterfeit Coins

 Suppose you have 10 stacks of coins, with 10 coins in each stack. One stack consists of
10 counterfeit coins, and the other 9 stacks each consist of 10 legitimate coins. Each legitimate

Z01A626034.indd 762 2/20/2009 7:54:21 PM

 Appendix A Logic Puzzles 763

coin weighs exactly 1 gram. Each counterfeit coin weighs exactly 0.9 grams. You have a digital
scale that’s graduated in tenths of grams. Using the scale to take only one reading, determine
which stack has the 10 counterfeit coins. You can weigh any number of coins from any number
of stacks, but must you weigh them all together. (In other words, you can take only one
 reading from the scale.)

Puzzle 20: Too Clever by Half

 A chicken and a half lay an egg and a half in a day and a half. How many eggs would one
chicken lay in three days?

 A builder and a half build a house and a half in a year and a half using a tool and a half. How
many houses would one builder build in nine years? Can you generalize your calculation to
solve both equations?

Puzzle 21: A Cat, a String, and the Earth

 This puzzle is quite simple, but I like it because it’s so counterintuitive. Suppose you lay a string
on the ground all around the earth right over the equator. The length of the string would
be equal to the earth’s equatorial circumference—40,075.02 kilometers. Suppose you add
1 meter to the string and suspend the string directly above the equator, with an even distance
from the ground all the way around. Would a cat be able to pass from one hemisphere to
 another below the string?

Puzzle 22: Josephus Problem

 The Josephus problem is an ancient puzzle that involves a group of 41 men standing in a
circle. Going around the circle, every second standing man is executed (one skipped, one
executed) until only one man is left standing. Assuming that the positions are numbered
1 through 41, which position should Josephus (one of the men) choose if he could so that he
would be the only one to remain standing? Can you generalize the solution for n men? Write
a T-SQL solution that returns the position based on the input number of men @n.

Puzzle 23: Shipping Algebra

 The combined age of a ship and its boiler is 42. The ship is twice as old as the boiler was
when the ship was as old as the boiler is now. How old are the ship and its boiler?

Z01A626034.indd 763 2/20/2009 7:54:21 PM

764 Inside Microsoft SQL Server 2008: T-SQL Querying

Puzzle 24: Equilateral Triangles Puzzle

 Examine the drawing in Figure A-2.

E

D

F C

S

a

A

B

FIGURE A-2 The equilateral triangles puzzle

 The triangle ABC is an equilateral triangle with an area S and a side length a. The line CF is a
continuation of the line AC, AD is a continuation of BA, and BE is a continuation of CB. The
length of all continuation segments (CF, AD, and BE) is a—the same as the length of triangle
ABC’s sides. The puzzle is to calculate the area of the triangle DEF.

Puzzle Solutions

 This section contains solutions to the logic puzzles.

Puzzle 1: Remainders

 When solving such a problem, try fi rst to relax the limitations and simplify the problem. Then
add complexity layers. For example, fi rst ignore the requirement to fi nd the minimum integer
n that qualifi es. Try to fi nd a solution for any integer n that would yield the remainder i – 1
for any i value. Obviously, if you multiply all i values (2 × 3 × 4 × 5 × 6 × 7 × 8 × 9 ×10) and
subtract 1, the result meets the puzzle’s requirement (except for the requirement to fi nd
the minimum n). You can express the same result as the product of the prime factors of the
 various i values: (2 × 3 × [2 × 2] × 5 × [2 × 3] × 7 × [2 × 2 × 2] × [3 × 3] × [2 × 5]) – 1. Next,
tackle the minimum requirement. Of course, you’ll have to keep at least one occurrence of
each prime number (2, 3, 5, 7). The distinct prime factors already cover the i values: 2, 3, 6, 5,

Z01A626034.indd 764 2/20/2009 7:54:21 PM

 Appendix A Logic Puzzles 765

7, and 10. You’ll need to add occurrences of some of the prime numbers to also cover 4, 8,
and 9. It’s suffi cient to have 3 occurrences of 2 to get 4 and 8, and it’s also suffi cient to keep
2 occurrences of 3 to get 9. So, the minimum integer n that qualifi es can be expressed as
2 × 2 × 2 × 3 × 3 × 5 × 7 – 1 = 2519.

Puzzle 2: Round Manhole Covers

 Manhole covers are typically made round as a safety measure. Any way you turn the round
cover, it cannot fall into the round manhole because of its geometrical properties. With other
geometrical shapes (rectangle, square, and so on), if you turn the cover in a certain way, it
can fall into the manhole and endanger the people working there.

Puzzle 3: Shaking Hands

 Let’s start with the person who shook eight hands (call that person P8). All those who shook
the hand of P8 (including myself and excluding the spouse of P8) shook at least one hand.
Therefore, the spouse of P8 must be the person who shook zero hands (call that person P0).
Now, take P8 and P0 out of the equation. You know that the remaining six people shook a
known number of hands (exactly one) from the being-excluded couple. So you subtract one
from the answers of all remaining individuals. Simply imagine that you’re now facing the
same puzzle, but with four couples and with the seven individuals besides me replying to my
question with the answers 0 through 6.

 You’ll quickly conclude that the fi ve couples, including me and my wife, shook hands in the
following chiastic manner: 8/0, 7/1, 6/2, 5/3, 4/4. Because I asked nine individuals how many
hands they shook and I got nine unique answers, my wife and I must be the couple who
shook four hands each. Hence, my wife shook four hands.

Puzzle 4: Then There Were Five?

 I’ve seen several versions of solutions to this puzzle, but they’re essentially all the same.
Here’s one with a bit of SQL in it: Given the fi lter expression col1 = 1 and col2 = 3, there are
spaces between 1 and and and and and col2. Another version of the solution refers to a
 restaurant sign that says “fi sh and chips,” and the owner wants to replace the spaces between
fi sh and and and and and chips with hyphens.

Puzzle 5: Arranging Soldiers in a Row

 The key to the solution is that each soldier can put himself between the correct pair of
(placed up to then) soldiers without knowing what’s on his hat. Assuming you’re one of the
soldiers, here’s the logic you would follow:

■ If you enter the room fi rst, simply position yourself somewhere in the room so that the
next soldier can see the sign on your hat.

Z01A626034.indd 765 2/20/2009 7:54:21 PM

766 Inside Microsoft SQL Server 2008: T-SQL Querying

■ If you’re not the fi rst one in the room, look at the hats of the soldiers that are already
there. If all soldiers have the same sign, stand to the right of the rightmost one in case
that sign is a circle and to the left of the leftmost one in case the sign is a square.

■ If some soldiers have a circle and some have a square, squeeze yourself between the
two with the different signs.

Puzzle 6: Crossing the Tunnel

 Most people try to solve this puzzle by letting person A walk from start to end with each
of the others, then walk back alone to pair with the next person. Intuition says that this
 approach must be the fastest because person A is the fastest. But if you calculate the total
time it takes all four people to get to the end, you get 13 minutes. Of course, the pace is
dictated by the slowest in the pair. Person A would need to go from start to end three times:
with B (2 minutes), C (4 minutes), and D (5 minutes). These walks amount to 11 minutes,
plus the two times that person A needs to walk back alone (1 minute per walk), and you
get 13. The trick to solving the puzzle is to fi gure out that you can save most time by letting
the two slowest people walk together. Here’s the strategy that gets all the people across in
12 minutes:

■ Persons A and B walk fi rst from start to end (2 minutes)

■ Person A walks back (1 minute)

■ Persons C and D walk from start to end (5 minutes)

■ Person B walks back (2 minutes)

■ Persons A and B walk from start to end (2 minutes)

Puzzle 7: Escaping a Cave

 First, climb one of the ropes and cut it at the halfway point. You now have 20 feet of rope in
your hand, you’re hanging on to the 20-foot rope anchored to the ceiling, and you’re 20 feet
above the fl oor. Make a knot at the edge of the hanging rope to form a small loop. (For the
purpose of simplifi cation, we’ll assume that knots don’t affect the length of the rope.) Slide
the 20-foot rope through the loop to its middle point (the 10-foot mark). Now, you have a
20-foot rope hanging from the ceiling, plus another 10-foot segment (20 feet, doubled up),
amounting to 30 feet in total. You can now shimmy down the rope, and when you reach the
end of the doubled-up segment, let go of one end of it and let it slide through the loop as
you jump down. You now have a 20-foot rope in hand.

 Next, carrying this 20-foot rope, climb the second rope and cut it when you’re 10 feet from
the ceiling (or 30 feet above the fl oor). Tie the resulting 30-foot rope to the end of your
20-foot rope to form a 50-foot rope. Again, make a loop at the end of the hanging 10-foot
rope and slide the 50-foot rope through the loop to its middle point. In total, you have
35 feet of rope made by the two segments (10 feet of hanging rope plus 25 feet made by the

Z01A626034.indd 766 2/20/2009 7:54:21 PM

 Appendix A Logic Puzzles 767

doubled-up 50-foot rope). You can now shimmy down the rope, and when you get to the
end of the rope (5 feet above the fl oor), hold one of its ends and jump down. You now have
a rope that’s 50 feet in length, and you can use it to get down from the cave to the climbable
surface.

Puzzle 8: Free Tuna

 Obviously, you can‘t divide the eight tuna cans into three separate plastic bags so that each
holds an odd number of cans. However, nothing in the puzzle dictates the arrangement of
the bags around the tuna cans. The sum of three odd numbers x+y+z, where each number is
considered only once, naturally amounts to an odd number. However, taking one of the odd
numbers into consideration twice allows for an arrangement in which one of the elements is
even (say, y)—for example, (x+(y))+(z) = 8. The use of parentheses is intentional—each pair
of parentheses represents a plastic bag. For example, let x equal 1, y equal 2, and z equal 5:
You place 1 tuna can in plastic bag A, 2 tuna cans in plastic bag B, and 5 tuna cans in plastic
bag C. Then, place plastic bag A in plastic bag B. You end up with 1 tuna can in bag A, 3 in
B (x+y), and 5 in C.

 As an aside, if you like trying to solve open puzzles, the tuna cans puzzle reminds me of
a mathematical conjecture that so far hasn’t been proven. The conjecture, which is called
Goldbach’s conjecture, is named after its creator. The original conjecture says: Every integer
greater than fi ve can be expressed as the sum of three prime numbers. Euler simplifi ed the
conjecture to this form: Every even number greater than two can be expressed as the sum of
two prime numbers.

Puzzle 9: Naming an Heir

 That son’s answer was green, based on the following logical deduction:

■ If there were two red hats and one green hat, the son with the green hat would have
realized it immediately (by seeing both his brothers wearing red hats) and approached
the king at the fi rst bell ring. Because this didn’t happen, there is—at most—one red
hat among the sons.

■ If there was one red hat and two green hats, each of the two sons wearing green hats
should have seen his brothers wearing one red and one green hat; therefore, both
these brothers could have deduced that they were wearing green hats (because no one
approached the king after the fi rst bell, and there’s at most one red hat in such a case)
and thus approached the king at the second bell.

■ The son who ultimately fi gured out the answer reasoned that his brothers weren’t
stupid, so if no one approached the king at the second bell, they must all be wearing
green hats. Of course, this tells you that he saw both his brothers wearing green hats.
So, he approached the king at the third bell to say that he was wearing a green hat.

Z01A626034.indd 767 2/20/2009 7:54:21 PM

768 Inside Microsoft SQL Server 2008: T-SQL Querying

 Why was the king disappointed in his son? The answer involves true wisdom. The son should
have reasoned that any setting in which (at minimum) one of the hats is green and not all
of them are green is an unfair contest. If at least one hat is green and not all hats are green,
 different sons can fi gure out their own hat color at different points in time.

 For example, if two of the hats are red, the son who wears a green hat can fi gure out the
 answer immediately and approach the king at the fi rst bell, while the other two must wait to
see whether someone approaches the king at the fi rst bell (in which case it will be too late
for them). Similarly, if one of the hats is red, the two sons wearing green hats can know the
 answer after the fi rst bell and approach the king at the second bell, while the son with the
red hat must wait to see whether someone approaches the king at the second bell (in which
case it’s too late for him).

 If the king had favored one of the sons, he would have named that son his heir without a
contest. Because he wanted to put their wisdom to test, you would expect the contest to be
fair. The only way for the contest to be fair while having a minimum of one green hat is to
have three green hats. The king expected one of his sons to approach him at the fi rst bell
with this logic.

Puzzle 10: The Next Element in a Series

 Each element describes the previous element by counting the number of consecutive
 occurrences of each digit from left to right. For example, to describe the element 1, you would
say that there’s one occurrence of the digit 1, or “1 1,” resulting in 11. To describe 11, you would
say that there are two occurrences of the digit 1, or “2 1s,” resulting in 21. The description of
21 is “1 2, (then) 1 1,” resulting in 1211. The description of 1211 is “1 1, 1 2, 2 1s,” resulting in
111221. Following this logic, the next few elements are 312211, 13112221, and 1112213211.

Puzzle 11: Same Birthday

 The answer to this puzzle might seem strange. Most people intuitively assume that the
 probability is very low. However, the probability that two people in a group of 23 have the
same birthday happens to be greater than 50 percent (about 50.7 percent). For 60 or more
people, it’s greater than 99 percent (disregarding variations in the distribution and assuming
that the 365 possible birthdays are equally likely). The tricky part of the puzzle is that you need
to determine the probability that any two people share the same birthday—not a specifi c two.
For the exact solution and some interesting information about the birthday paradox, check
out the Wikipedia entry at http://en.wikipedia.org/wiki/Birthday_paradox.

Puzzle 12: Catching a Train

 Some people try to solve the puzzle by doing infi nity-related calculations—that is, attempting
to calculate the distance the mosquito covers in each leg from one train to the other before

Z01A626034.indd 768 2/20/2009 7:54:21 PM

 Appendix A Logic Puzzles 769

turning around. However, a solution based on time and speed is much simpler, although
I should constrain the term simpler to most mere mortals (and not to mathematicians who
might fi nd infi nity-related calculations to be a natural way of thinking). Naturally, the trains
will meet halfway in a half hour. The mosquito’s speed is 200 mph, so in a half hour, the total
distance it covers is 100 miles.

Puzzle 13: Prisoners and Switches

 The solution is to put one prisoner in charge of counting and notifying the warden when the
count is complete. We’ll call him Charles. Charles should follow these instructions each time
he enters the room:

■ Toggle switch A.

■ If you just turned the switch Off and you also turned the switch Off on your previous
visit to the room, increment the count of prisoners who visited the room.

 The prisoners who aren’t in charge of counting should follow these instructions:

■ If switch A is Off and you have never switched it to On yourself but you have previously
seen it On, turn switch A to the On state.

■ In any other case, toggle switch B.

 The logic is that the only prisoner who can turn switch A to Off is Charles. The other prisoners
can turn switch A to On, but each can do so only once and only after seeing it in the On state
previously. This means two things: First, when a prisoner who isn’t in charge (say his name
is Paul) and who has seen switch A On at some time in the past sees that switch A is Off, he
knows that Charles visited the room before him and was the one who turned it Off. (Paul saw
the switch On in the past, but it is now Off, and Charles is the only prisoner who ever turns
the switch to Off). Paul will then turn switch A to On. Second, Paul knows that switch A will
remain On until Charles subsequently turns it off knowing that another prisoner (not Charles
himself) turned it on, and Charles will count that prisoner (Paul) in his tally.

Puzzle 14: Probabilities in China

 The answer to the fi rst puzzle is yes. China has more than a billion people, and a human
head has fewer than a billion hairs. Because there are fewer hairs on a human head than
people in China, it’s impossible for every person in China to have a different number of hairs.
Therefore, at least one number must occur twice; in other words, at least two people in China
have the same number of hairs on their heads.

 The answer to the second puzzle is no. It can’t be proven that at least two people in China are
missing the same set of teeth. Humans have as many as 32 teeth. You can represent any set of
(missing) teeth from these 32 with a 32-bit bitmap, using a 0 to represent missing and a 1 to
represent not missing. The number of distinct 32-bit bitmaps is 232, or more than 4 billion.
Because the number of subsets of human teeth is greater than the number of people in China,
it’s possible that all Chinese people are missing a different set of teeth.

Z01A626034.indd 769 2/20/2009 7:54:21 PM

770 Inside Microsoft SQL Server 2008: T-SQL Querying

Puzzle 15: Two Mathematicians

 A good way to start solving this puzzle is to fi rst list all groups of three integers whose
 product is 36, then calculate each group’s sum:

 1 + 1 + 36 = 38

 1 + 2 + 18 = 21

 1 + 3 + 12 = 16

 1 + 4 + 9 = 14

 1 + 6 + 6 = 13

 2 + 2 + 9 = 13

 2 + 3 + 6 = 11

 3 + 3 + 4 = 10

 M knows the sum of the kids’ ages (equal to the number of the bus N pointed to). Notice
that all sums arise in one way except for the sum 13, which arises from two different groups
of three integers. Had the bus number been something other than 13, M would have
 immediately known the answer. Because M said that he doesn’t have suffi cient information
to solve the puzzle, the bus number must have been 13. Now, the question remains, which of
the two age variations is the correct one? Notice that in both cases (1, 6, 6 and 2, 2, 9), there
are twins. The additional piece of information N provided was, “One of my kids was born
before we bought the house.” The implication is that one of the kids is older than the other
two, so of the two variations, the correct one is 2, 2, 9. Now, how would the solution change
if N’s additional piece of information had been that one of his kids was born after he bought
the house? In this case, one of the kids is younger than the other two, so the correct answer
would be 1, 6, 6. Interestingly, you can solve this puzzle with a T-SQL query, like so:

WITH

 L0 AS(SELECT 0 AS c UNION ALL SELECT 0),

 L1 AS(SELECT 0 AS c FROM L0 AS a CROSS JOIN L0 AS b),

 L2 AS(SELECT 0 AS c FROM L1 AS a CROSS JOIN L1 AS b),

 L3 AS(SELECT TOP(36) 0 AS c FROM L2 AS a CROSS JOIN L2 AS b),

Nums AS(SELECT ROW_NUMBER() OVER(ORDER BY (SELECT 0)) AS n

 FROM L3),

Divisors AS

(

 SELECT C1.n AS age1, C2.n AS age2, C3.n AS age3,

 COUNT(*) OVER(PARTITION BY C1.n + C2.n + C3.n) AS cnt

 FROM Nums AS C1

 CROSS JOIN Nums AS C2

 CROSS JOIN Nums AS C3

 WHERE C1.n * C2.n * C3.n = 36

 AND C1.n <= C2.n AND C2.n <= C3.n

)

Z01A626034.indd 770 2/20/2009 7:54:21 PM

 Appendix A Logic Puzzles 771

SELECT age1, age2, age3

FROM Divisors

WHERE cnt > 1

 AND age3 > age2; -- One born before others (before house);

 To solve the version where N’s additional piece of information is that one of his kids was born
after he bought the house, change the last predicate in the outer query’s fi lter to age1 < age2.

Puzzle 16: Crazy Sequence

 Let n be the zero-based position of the number in the sequence (0, 1, 2, 3, …). The given
numbers are what you get if you begin with the number n, then take the factorial n times in
sequence—that is, 0, 1!, 2!!, 3!!!, and so on. The lengthy last number in the sequence is 3!!!,
so the next number in the sequence is 4!!!!. It is probably prudent not to include the actual
number in this space because it wouldn’t leave space for anything else.

Puzzle 17: Minimum Number of Weights

 The puzzle doesn’t restrict you to placing the item you’re weighing on one side of the scale
and the weights on the other. Therefore, you can place weights on both sides. To simplify
the solution’s explanation, fi rst assume that there was a restriction to place the item you’re
weighing on one side of the scale and the weights on the other.

 Given a set of weights, to measure some item’s weight (call it w), you need to use a subset
of the weights you have—that is, each weight from your set of weights will be either used
or not used to weigh the item. So any w in the range 1 through n must be representable
with a binary system, where each bit represents a different weight from your set of weights,
and only the bits of the participating weights will be turned on. The best strategy is to use
the positional values of binary representation. For example, to represent any integer in
the range 1 through 100, you need 7 bits (1, 2, 4, 8, 16, 32, and 64). Notice that you get a
 geometric sequence (also known as a geometric progression) with a common ratio 2 (1 × 20,
1 × 21, 1 × 22, 1 × 23, and so on). To use any set of weights, their total weight must be at least
the largest weight you need. The simplifi ed formula for the sum of the geometric sequence
in our case is 2num_weights – 1, and this sum must be greater than or equal to n. Hence, the
 minimum number of weights required is ceiling(log2(n+1)).

 Next, remove the restriction to place weights only on one side of the scale. Now each weight
from your set of weights can assume one of three roles: fi rst, placed on the same side of the
scale as the item you’re weighing (a negative value); second, placed on the other side of the
scale (a positive value); and third, not used (a 0 value). If you think about it, just like you can
represent numbers using a binary system where each bit represents a different power of 2,
you can represent numbers using a ternary system where each trit (ternary digit) represents
a different power of 3. A ternary system where each trit can be –1, 0, and +1 is known as a
balanced ternary system. As an example, in this system the number 150 is represented as
1 × (0) + 3 × (–1) + 9 × (–1) + 27 × (0) + 81 × (–1) + 243 × (+1). Though very cumbersome,

Z01A626034.indd 771 2/20/2009 7:54:21 PM

772 Inside Microsoft SQL Server 2008: T-SQL Querying

such a system provides the optimal solution in terms of the number of weights required to
weigh any object. With a set of weights that are consecutive powers of 3 starting with 1 and
on (1, 3, 9, 27, 81, . . .) whose sum is s, you can express any number in the range –s through
s. In our case, only the positive numbers are relevant. So in order to be able to weigh any
w in the range 1 through n, you need the sum of the values represented by the trits to be
greater than or equal to n. This time, the common ratio of our geometric sequence is 3. The
 simplifi ed sum of the geometric sequence is (3num_weights – 1) ÷ 2. To represent any integer in
the range 1 through n, the minimum number of weights required is ceiling(log3(2×n+1)).

Puzzle 18: Counting Triangles

 To follow the explanation of this puzzle’s solution, examine Figure A-3, in which the points in
the diagram are marked with letters.

A

J

L

I

F

G

D

B C

E

H

K

FIGURE A-3 The counting triangles puzzle solution

 To fi nd a methodical approach for solving the puzzle, you must identify a repeating pattern
in the diagram. Note that the diagram contains a repeating pattern of fl oors or levels. Each
fl oor except the top one consists of two lines crossing each other as well as a ceiling.

 To create a formula for counting the triangles, you must determine the effect of adding each
fl oor. You can start by drawing only the outermost triangle (ABC). So far, your count is 1. Add
the ceiling of the fi rst fl oor (DE), and the triangle ADE adds 1 to the count. Next, add the
lines crossing each other within the fi rst fl oor (DC, BE). The new triangles formed as a result
of adding these two lines include 4 one-celled triangles (DBF, FBC, EFC, DFE), 4 two-celled
 triangles (DBC, BCE, CED, EDB) and 2 three-celled triangles (ABE, ADC), thus adding 10
new triangles to the count. So adding the fi rst fl oor (including the ceiling and the two lines
 crossing each other) adds 11 to the original count of 1.

Z01A626034.indd 772 2/20/2009 7:54:21 PM

 Appendix A Logic Puzzles 773

 Add another fl oor by marking the lines GH, DH, and GE. This adds 11 new triangles (the fi rst
fl oor is also added), plus 2 new four-celled triangles (GBE, HDC). In other words, the fi rst fl oor
adds 11 to the count, and every additional fl oor beyond the fi rst adds 13 to the count.

 Although the top fl oor doesn’t have a ceiling (no line exists between points J and K), you can
imagine the fl oor as if there were a ceiling (namely, add 13 to the count), then subtract the
triangles that are eliminated by removing the fl oor. Four triangles are eliminated (AJK, JLK,
JGK, JHK). So the total number of triangles you get is 1 + 11 + 13 + 13 – 4 = 34.

 The general formula for n fl oors when the top fl oor has no ceiling is 1 + 11 + [(n – 1) × 13] – 4.
If you simplify the formula by expanding the parentheses (1 + 11 + (n × 13) – 13 – 4), you get
(n × 13) – 5. So for 3 fl oors you get (3 × 13) – 5 = 34. Now you can easily calculate the number
of triangles for any given number of fl oors.

Puzzle 19: Counterfeit Coins

 Take 1 coin from stack 1, 2 coins from stack 2, and so on. Weigh the stack of 55 coins. If all the
coins were legitimate, the scale would show 55 grams. If stack 3 is the stack of counterfeit coins,
the scale will show 54.7 grams because the pile of coins you weighed contains 3 counterfeit
coins and is therefore 0.3 grams light. More generally, if stack n is the stack of counterfeit coins
and w is the weight the scale shows, n = (55.0 – w)/0.1.

Puzzle 20: Too Clever by Half

 The intuitive yet incorrect answer to the chicken-and-eggs puzzle is that one chicken lays
three eggs in three days, while the correct answer is that one chicken lays two eggs in three
days. Our brain plays a trick on us and makes us think that if a chicken and a half lay an egg
and a half in a day and a half, one chicken lays one egg in one day. But if you express the
 relationship between chickens, days, and eggs mathematically, you get this equation:

 3/2 chickens × 3/2 days = 3/2 eggs × k chicken-days per egg

 For the purposes of solving this puzzle, the factor k chicken-days per egg can be ignored.
Under reasonable assumptions—that the number of eggs is directly proportional to the
number of chickens and directly proportional to the number of days and that the same
number of chicken-days is required for every egg—k will be a constant, and I can safely
 manipulate the equation without writing down the factor k chicken-days per egg.

 Reducing the number of chickens from 3/2 to 1 is achieved by dividing the original number
by 3/2. For the equation to be true, you also need to divide the number of eggs (3/2) by 3/2,
giving you this equation:

 1 chicken × 3/2 days = 1 egg

Z01A626034.indd 773 2/20/2009 7:54:21 PM

774 Inside Microsoft SQL Server 2008: T-SQL Querying

 Reducing the number of days from 3/2 to 1 has a similar effect on the number of eggs;
namely, you need to divide 1 (egg) by 3/2, giving you this equation:

 1 chicken × 1 day = 2/3 egg

 If you increase the number of days from 1 to 3, the effect on the number of eggs is a factor
of 3 as well:

 1 chicken × 3 days = 2 eggs

 So the correct answer to the puzzle is that one chicken lays two eggs in three days.

 In a very similar manner, you can express the relationship between builders, houses, years,
and tools with the following equation:

 3/2 builders × 3/2 years × 3/2 tools = 3/2 house

 To reduce the number of builders, years, and tools to one each, you need to divide the
 number of houses by 3/2 three times; in other words, by (3/2)3:

 1 builder × 1 year × 1 tool = 3/2 ÷ 3/2 ÷ 3/2 ÷ 3/2 houses

 This gives you the following equation:

 1 builder × 1 year × 1 tool = 4/9 house

 Thus, one builder with one tool will build four houses in nine years.

 To generalization the equation, you need to divide the right side of the equation by 3/2 n
times for n elements in the left side of the equation. Or, if you want to express the calculation
as a multiplication instead of division, multiply by (2/3)n. For example, take our last equation:

 3/2 builders × 3/2 years × 3/2 tools = 3/2 houses

 The left side of the equation contains three elements; therefore, you get this equation:

 1 builder × 1 year × 1 tool = 3/2 × (2/3)3 houses

 This is equal to:

 1 builder × 1 year × 1 tool = 4/9 house

Puzzle 21: A Cat, a String, and the Earth

 As I said, although this puzzle is quite simple, I like it because it’s so counterintuitive.
It probably seems inconceivable that adding only 1 meter to such a large circumference
would make any noticeable difference in the radius, let alone allow a cat to pass below
the string in the space that was added. But if you do the math, you realize that the actual

Z01A626034.indd 774 2/20/2009 7:54:21 PM

 Appendix A Logic Puzzles 775

 circumference has no signifi cance in determining how the radius would be affected when
 extending the circumference. Instead, only the addition is signifi cant. The circumference
can be expressed as C = 2πr (2 times π times the radius). Hence, the original radius can
be expressed as roriginal = C/(2π). Adding 1 meter to the existing circumference would change
the equation to C + 1 = 2πrnew. Isolating rnew , you get rnew = (C + 1)/(2π). Expanding the
 parentheses, you get rnew = C/(2π) + 1/(2π). Because the original radius was C/(2π), the new
radius is 1/(2π) greater, which is about 16 centimeters (a bit more than 6 inches) greater.
That’s enough for a cat to go under and move from one hemisphere to the other.

Puzzle 22: Josephus Problem

 An easy way to fi nd a generic solution to this puzzle with any number of men is to fi rst solve
it with very small numbers of men (1, 2, 3, and so on) and to look for a pattern in the results.
If you solve the puzzle for small numbers, you get the results shown in Table A-1, where n is
the number of men and p is the position of the only man left.

 TABLE A-1 Results of the Josephus Problem

 n p

 1 1

 2 1

 3 3

 4 1

 5 3

 6 5

 7 7

 8 1

 9 3

 10 5

 11 7

 12 9

 13 11

 14 13

 15 15

 16 1

 The pattern you can identify is that p is an increasing sequence of odd integers that restarts
from 1 when n is a power of 2. You express n as 2a + b, where b >= 0 and b < 2a. That is, a
is the highest power of 2 such that 2a is smaller than n, and b is n minus 2a. Then, p can be
expressed as 2b + 1. For example, for n = 41, express n as 25 + 9. Since b = 9 and p = 2b + 1,
you get p = 19.

n p

Z01A626034.indd 775 2/20/2009 7:54:21 PM

776 Inside Microsoft SQL Server 2008: T-SQL Querying

 Of course, this is just an observation of a pattern based on the cases that were tested. To
 ensure that the pattern holds for all cases, you need a mathematical proof. You can fi nd one
at http://en.wikipedia.org/wiki/Josephus_problem. The following T-SQL statement calculates
and returns p for a given @n:

DECLARE @n AS INT = 41;

SELECT 2 * (@n - POWER(2, CAST(LOG(@n)/LOG(2) AS INT))) + 1 AS p;

Puzzle 23: Shipping Algebra

 Here’s the algebra I used in my solution to the problem:

 Let s = current age of ship, b = current age of boiler, and y = years passed since the age of
the ship was equal to the current age of the boiler. You can translate the statements in the
puzzle to the following three equations:

 1. s + b = 42

 2. s = 2 × (b – y)

 3. s – y = b

 From equations 2 and 3 you get the following equation:

 s = 2 × (b – s + b)

 This gives us equation 4:

 4. 3 × s = 4 × b

 From equations 1 and 4 you get the following equation:

 3 × s = 4 × (42 – s)

 When you solve the equation for s, you get 24. And now that the age of the ship is known,
you can solve equation 1 for b:

 b = 42 – 24 = 18

 The solution is that the ship’s current age is 24 and the boiler’s current age is 18.

Puzzle 24: Equilateral Triangles Puzzle

 You can solve this puzzle in many ways. I provided this puzzle not because it is tough but
rather the contrary—it is pretty simple. However, some of the solutions are simply beautiful.
I’ll fi rst provide an ordinary solution and then a more creative one. To explain the fi rst
 solution, examine the drawing in Figure A-4.

Z01A626034.indd 776 2/20/2009 7:54:21 PM

 Appendix A Logic Puzzles 777

D

F

E

B

C

S

G H
A

a

h2

h1

FIGURE A-4 Solution 1 to the equilateral triangles puzzle

 The segment h1 has the same length as the altitude of the triangle ABC, and the segment h2
has the same length as the altitude of the triangle CEF. G is the point where h1 intersects CA,
and H is the point where h2 intersects the same line. It is fairly easy to prove that H is the same
point as A but not really necessary for our purposes. The triangles GBC and HEC are similar
because they have two corresponding angles that are equal (both have a right angle and
share another angle). |CE| is twice |CB|; therefore |HE| (which is |h2|) is twice |GB| (which is |h1|).
The area of a triangle is ½bh (half base times altitude). Because the bases FC and CH of the
 triangles CEF and ABC have equal lengths but |h2| is twice |h1|, the area of CEF is twice the area
of ABC. In other words, the area of CEF (as well as DEB and DAF, which are congruent to CEF) is
2S. Therefore, the area of the triangle DEF is 3 × 2S + S = 7S.

 The second solution is more creative. Examine the drawing in Figure A-5.

 You draw the lines EG and GF parallel to CF and EC, respectively, to form the parallelogram
CEGF. Next, draw the lines BG, BH, and CE. We know that |FC| = |CB| = |BE| = |EG| = |GH| =
|HF| = |HB| = |a|. Triangles ABC, CHF, and BGH are congruent because corresponding sides
and the angle between them are equal. This means that |HC| = |BG| = |a|. This means that
the four triangles BEG, BGH, CBH, and CHF enclosed by the parallelogram and ABC are
 congruent; therefore, the area of the parallelogram is 4S. The triangle CEF has exactly half
the area of the parallelogram; therefore, the triangle’s area is 2S. Therefore, the area of the
triangle DEF is 3 × 2S + S = 7S.

Z01A626034.indd 777 2/20/2009 7:54:21 PM

778 Inside Microsoft SQL Server 2008: T-SQL Querying

A

a

S

B

CF

H

G E

D

FIGURE A-5 Solution 2 to the equilateral triangles puzzle

Conclusion

 I hope that you fi nd logic puzzles challenging, fun, and a great tool to improve your logic and
SQL. And if you’re still looking for a reason to practice them, here’s one:

 “Crime is common. Logic is rare. Therefore it is upon the logic rather than upon the
crime that you should dwell.”

 —Sir Arthur Conan Doyle, 1859–1930, The Adventures of Sherlock Holmes,
“The Adventure of the Copper Beeches”

Z01A626034.indd 778 2/20/2009 7:54:21 PM

 779

Index

Symbols and Numbers
#CachedPages sample table, 592–94
.NET

CLR database code, 476–77
reference types, 484

� (set membership operator), 44–45
@expression argument, 610–11
@length argument, 610–11
@myOD variable, 605
@offset argument, 610–11

A
abstraction
Accumulate method, 482–83
Actual Execution Plan, 653
acyclic graphs, 660
ad hoc paging, 350–51
ad hoc queries, 136
Add Outer Rows phase, 5, 11
adjacency list model, 99–100
AFTER triggers, 110
aggregate functions

OVER clause, 29
subqueries, 14

aggregate product, pivoting, 475
aggregate window functions, 454
aggregation, 445. See also pivoting

bitwise operations specialized solution, 490–94
cumulative, 453–57
custom, 473–99
duration by query, 155–57
OVER clause, 445–48
PIVOT operator, 24
product specialized solution, 488–90
query signature, 157–59
running, 451–52
sliding, 457–59
specialized solutions, 487–99
string concatenation specialized solution, 487–88
tiebreakers, 448–51
top wait isolation, 137–38
user-defi ned aggregates (UDA), 476–82
year-to-date, 459–60

Aldous, David, 292
algebra, relational, 90–104
algorithms, 43–44, 277–79. See also complexity

binary search, 282
joins, 421–29
linear complexity, 133–34
LISLP problem solution, 292

O(n log n), 288–89
quadratic sorting, 288
running time comparsions, 286
scale, 279–82
sorting, 287–89
swapping, 289
ultra sort, 289

aliases
column, 319–20, 322
reuse, 16
SELECT list, 14–15
table, 606

ALL predicate, 316–18
all-at-once operations, 14–15
allocation order scans, 192, 208–19
allocation units, 189
alphabetical order, 43, 57–58
ALTER DATABASE option, 647
ALTER INDEX statement, 258
ALTER TABLE SWITCH, 645–46
An Introduction to Database Systems (Date), 83, 125
Analysis Services, wait analysis, 140
analytical ranking functions, 330–32

NTILE, 354–59
RANK and DENSE RANK, 352–54
ROW_NUMBER, 332–52
tile number, 354–59

ancestors, iteration/recursion, 681–84
Anchor Member, 328–30
anchor rows, 549–50, 592
And operator, 68–70

ALL predicate, 317
logical transformations, 556–59

ANSI SQL, 1
aggregate window functions, 454
constraints, 105
cross joins, 396–97
cursors, 17
INSERT VALUES clause, 562
join logical processing order, 409
join syntax, 389–90
nonsupported joins, 401
NULL values, 111
ORDER BY clause, 16
outer joins, 399
OVER clause subclauses, 459
relations, 103
semicolon termination, 322
set operations, 436
two-valued logic, 623

anti-semi joins, 415–16
antisymmetric relation properties, 75–76

Z02I626034.indd 779 2/21/2009 2:01:57 AM

780 ANY predicate

ANY predicate, 316–18
APPLY operator, 21–22, 527, 535–36

TOP n for each group, 537–43
arguments

common table expressions, 323
derived tables, 320–21

arrays, 287
separating elements, 429–35

assembly creation and deployment, 482–87
assignment SELECT, 612–14
assignment UPDATE, 614–16
asterisk, 306
asymptotic complexity, 283
atomic types, 86
attributes

pivoting, 460–64
relations, 85–87
scalar, 86–87
tuples, 84
types, 86

AUTO_CREATE_STATISTICS property, 228
auxiliary table of numbers, 359–62
average fragmentation in percent, 256–57
AVG aggregate, 453–57

B
bag theory, 64–65
balanced trees, 191
base columns, 14
bcp.exe, 565
BEFORE triggers, 109
benchmarks, row numbering, 344–48
Ben-Gan, Gabriel, 757
Ben-Gan, Itzik, 44
Bernoulli sampling algorithm, 268
BETWEEN predicate, 651–52
Big Oh notation, 283–84
BigNumSeq table, 364
bill of materials (BOM) example, 663–66
bin packing problem, 281
binary search algorithm, 282
bitmap fi lters, 426–28
Bitmap operator, 426–28
bitmap pages, 190–91
bitwise AND operation, 490–94
bitwise operations specialized solution,

490–94
bitwise OR operation, 490–94
bitwise XOR operation, 490–94
BLOBs, 290
block sequence values, 597–98
blocking sequences, 596
BOM sample table, 663–66
Boolean algebra, 74
Boolean expressions, 65–66

restriction expression, 91–92
T-SQL, 67

Boolean operators, 90–91
Boyce-Codd normal form, 117–19
braces, 45
B-trees, 189. See also subtrees; trees

INSERT SELECT statement scenarios, 578–89
BULK INSERT statement, 567–68
BULK rowset provider, 565–67
bushy plans, 411–14

C
C# code

UDA creation, 477–82
user-defi ned functions, 160–61

cache
clearing, 171–72
query execution plans, 171

calculus, relational, 90–104
candidate keys, 105–06
cardinal numbers, 59–60
cardinality

notation, 56
sets, 56–57

Cartesian Product phase, 3, 7–8
Cartesian products, 53–54

cross joins, 390–91
Cascade implementation, 107–08
CASE expressions

aggregate product specialized solution, 489
EXISTS predicate, 310–12
NTILE function, 355
outer joins, 400
PIVOT operator, 24
pivoting, 462–63
unsupported logical phrases, 442

characteristic function defi nition, 55
CHARINDEX function, 432
CHECK constraints, 108–09, 670

MERGE statement, 632
CHECKSUM, 554
Chen, Peter, 87
chiastic relationships, 410–11
Cities sample table, 666–70
CLR (Common Language Runtime). See Common

Language Runtime (CLR)
Clustered Index Scan operator. See index scans;

clustered indexes
Clustered Index Seek operator.

See index seek; clustered indexes
clustered indexes, 191–95

index seek + ordered partial scan, 250
index tuning, 169–70
ordered scan, 202–04
seek + ordered partial scan, 233–38
unordered index scan, 245
unordered scan, 198–201

clustering key, 196
CMEMTHREAD wait, 136

Z02I626034.indd 780 2/21/2009 2:01:57 AM

 cursors 781

COALESCE expression, 312
COALESCE function, 475
concurrency

wait analysis, 137
Codd, Edgar F., 1
code revision, query tuning, 269–76
collation, 57–58
columns

aliases, 14–16, 319–20, 322
base, 14
Boyce-Codd normal form, 117–19
copy generation, 26–27
extraction of elements, 27
fi fth normal form, 120–21
fi rst normal form, 113–15
foreign key, 106–08
fourth normal form, 119–20
identity, 595–96
IDENTITY property, 110
included nonkey, 237
key, 105–06
nonunique sort column method,

with tiebreaker, 337–38
nonunique sort column method,

without tiebreaker, 338–40
pivoting. See pivoting
second normal form, 115–16
SELECT list ordering, 17
set operations, 32
spreading, 24
third normal form, 116–17
unique sort column method, 335–37

Common Language Runtime (CLR)
database code, 476–77
user-defi ned data type, 188
user-defi ned functions, 160–61

common table expressions (CTEs),
321–22

arguments, 323
auxiliary table of numbers, 362
column aliases, 322
data modifi cation, 324–25
DELETE statement, 606
EmpsPaths, 722–26
EmpsRn, 722–26
inline function defi nitions, 325–26
level limiting, 680
multiple, 323
multiple references, 324
recursive, 327–30
Tiles, 495
unsupported logical phrases, 442
UPDATE statement, 608
views, 325–26
WITH keyword, 322

compatibility mode, 398
compatibility views, 171
Completed event classes, 150

complexity, 277–79. See also algorithms
asymptotic, 283
best- and worst-case, 283
Big Oh notation, 283–84
comparisons, 285–86
constant, 283
exponential and superexponential,

134–35
linear, 133–34
polynomial and nonpolynomial, 284–85
sublinear, 282
technical defi nitions, 283

composable DML, 636–38
composite joins, 397
Concatenation operator, 330
connected graphs, 660
consistency vs. correctness, 105
constant complexity, 283
Constant Scan operator, 643–45, 651–52

parallelism, 652–57
constraints, 104–05

check. See CHECK constraints
declarative, 105–09
join dependency, 121
order of enforcement, 110

context, mathematics and, 41–43
contrapositives, 71
control-of-fl ow statements, 65–66
correctness vs. consistency, 105
correlated subqueries, 297–98, 302

EXISTS predicate, 305–14
tiebreaker, 302–06

COUNT aggregate, 466
COUNT(*), 14, 30, 655
COUNT(O.orderid), 14
COUNT(val), 502
covering indexes, 201
CREATE AGGREGATE command, 485
CREATE ASSEMBLY command, 485
CREATE CLUSTERED INDEX statement, 645
CREATE INDEX command, 548, 647–48
CREATE STATISTICS command, 645, 647
CREATE SYNONYM command, 360
CROSS APPLY operator, 21, 536
Cross Join phase. See Cartesian Product phase
cross joins, 7, 390–95. See also

Cartesian Product phase
CTEs (common table expressions). See

common table expressions (CTEs)
CUBE subclass, 506
CUBE subclause, 511–12
cumulative aggregation, 453–57
cursors, 17

custom aggregations, 473
gaps solution, 374
islands solution, 383–84
query tuning, 268–76
row number calculation, 341–42

Z02I626034.indd 781 2/21/2009 2:01:58 AM

782 custom aggregation

custom aggregation, 473–99
pivoting, 474–99

custom sequences, 596–600
CustomerData sample table, 567
Customers sample table, 306, 308

cross joins, 390–95
hash joins, 425–26
merge joins, 424–25
MERGE statement, 616–17
multiple joins, 408–11
triggers, 627
UPDATE statement, 607

CustomersDim sample table, 629
CustomersStage sample table, 616–17
CXPACKET wait, 136, 145
cycles, iteration/recursion, 691–94

D
Dafni, Adi, 757
DAG (directed acyclic graph).

See directed acyclic graph (DAG)
data

aggregation. See aggregation
bad, domains and, 47–48
collection, 187
deletion, 601–06
duplicate, removal, 601–03
insertion, 561–601
integrity, 104–11. See also constraints
large value type updates, 610–11
maintenance, materialized path,

695–701
merging, 616–28
model, 83
modifi cation, CTEs, 324–25
modifi cation, TOP option, 531–33
OUTPUT clause, 628–38
preparation, sample, 259–65
processing, 83
schema, 83
structure, 277, 279
temporal, 122
trend identifi cation, 291
type. See types
updating, 606–16

data collector, 187
data defi nition language (DDL), 460

partitioned views and tables, 640
triggers, 109

data integrity
domain, 108–09
enforcing, 109–11
entity, 105–06
referential, 106–08

Data Manipulation Language (DML), 460
composable, 636–38
constraints, 105

relations, 103–04
triggers, 109

Data Modeling Essentials (Simsion and Witt),
111–12

database
data integrity. See data integrity
FULL recovery model, 571–74
generalization, 124–25
I/O analysis, 145–48
ID, 256
non-FULL recovery mode, 574–75
NULL values, 110–11
relational model. See relational database model
schema, 104
specialization, 124–25

Database Design for Smarties (Muller), 112
Database Engine Tuning Advisor, 187
DATE type, 48

binary string conversion, 450
date values, 42
Date, C. J., 83, 122, 125
DATEADD function, 368, 373, 392
DATEDIFF function, 373
DATETIME type, 417

accuracy level, 458
binary string conversion, 450

DBCC DROPCLEANBUFFERS, 118
DBCC FLUSHPROCINDB, 171
DBCC FREEPROCCACHE, 171
DBCC FREESYSTEMCACHE, 171–72
DBCC IND, 213–14
dbo.Customers table, 5–7
dbo.EmpYearValues table, 24–28
dbo.Orders table, 5–7
DDL (data defi nition language).

See data defi nition language (DDL)
DecToBase function, 491
defi nitions, 38–39

cardinality, 56
Cartesian products, 54
characteristic function of a set, 55
complexity, 283
logical operators, 69
ordered pairs and tuples, 53
propositions and predicates, 66
set complement, 62
set difference, 63
set partition, 63
subsets, 61
undefi ned terms, 39
union and intersect, 62–63

defragmentation utilities, 258
Degree of Parallelism event, 653
DELETE statement, 103–04, 601

OUTPUT clause, 630–32
TOP option, 531–33

DELETE trigger, 627–28
DeMorgan, Augustus, 70

Z02I626034.indd 782 2/21/2009 2:01:58 AM

 external sorting 783

DeMorgans laws, 70
denormalization, 122–24
DENSE_RANK function, 352–54, 383
derived tables, 318–19

arguments, 320–21
column aliases, 319–20
multiple references, 321
nesting, 320–21

Designing Database Solutions
(Sarka, Leonard, Loria, and Wiernik), 122

determinism, 333–34
RANK and DENSE_RANK functions, 353
TOP option, 529–30

Diaconis, Persi, 292
Difference operator, 93–94
direct subordinates, 717–18
directed acyclic graph (DAG), 666

transitive closure, 740–45
directed graphs, 659–60
Discard Results option, 344
Disk Usage collection set, 148
Disk Usage Summary report, 148
DISTINCT clause, 15–16, 369,

371, 742–43
DISTINCT COUNT, 299
DISTINCT phase, 5
DISTINCT predicate, 414
Distribute Streams Parallelism operator, 652–57
Divide operator, 95–97
dividend relation, 95–97
divisor relation, 95–97
dm_db_index_operational_stats, 256
dm_db_index_usage_stats, 256
dm_db_index_physical_stats, 257
DMFs (Dynamic Management Functions).

See specifi c DMFs
DML (Data Manipulation Language).

See Data Manipulation Language (DML)
DMOs (Dynamic Management Objects), 172.

See also specifi c DMOs
DMVs (Dynamic Management Views).

See specifi c DMVs
domain integrity, 108–09
domain-key normal form, 122
domains, 84

bad data, 47–48
calculus, 102–03
check constraint, 108–09
modeling, 49

DROP statistics command, 645
DROP TABLE statement, 601
dta.exe command-line utility, 187
Dynamic Management Functions (DMFs).

See specifi c DMFs
Dynamic Management Objects (DMOs), 172.

See also specifi c DMOs
Dynamic Management Views (DMVs).

See specifi c DMVs
dynamic pivoting, 487–88

E
edges, 99–100
Element Of operator, 90–91
elements, separating, 429–35
ellipsis, 45
employee organization chart example, 661–63
Employees sample table, 661–63

cross joins, 390–95
self joins, 402–04
TOP n, 539–42

EmpOrders sample table, 451–52
empty sets, 54–55, 315
encapsulated types, 86
English-to-mathematics translation, 35–44
entity

defi ned, 87
primitive, 124

Entity Attribute Value (EAV), 460–61
entity integrity, 105–06
enumeration, sets, 45
equality, 39
Equals operator, 90–91
equi-joins, 94, 402–03
errors

composite joins, 397
duplicate key, 312
ORDER BY table expressions, 18–19
partitioned views updates, 640
subqueries, 314–16

Estimated Execution Plan, 644
Estimated Subtree Cost, 178
Evaluate Expressions phase, 5
EXCEPT DISTINCT operation, 437–38
EXCEPT operation, 31–32, 435–39
excluded middle, law of, 68
exclusive locks, 257–58
Exclusive or, 70
execution plan, 2

analysis, 174–85
cached, 169–71
graphical, 174–85

EXISTS predicate
asterisk use, 306
correlated subqueries, 305–14
minimum missing values, 309–12
semi joins, 414–16
vs. IN predicate, 307

expand-collapse technique, 404
exponential complexity, 134–35
expressions

logical transformations, 556–59
TOP option, 530–31

Extend operator, 98
T-SQL support, 103–04

extents, 188–89
external column aliasing, 319–20
external fragmentation, 256–57
external sorting, 287

Z02I626034.indd 783 2/21/2009 2:01:58 AM

784 factorial function

F
factorial function, 281–82
faithfulness, 49–51
FALSE values, 9
FAST_FORWARD cursor, 268–69
Fermats Last Theorem, 110
fi fth normal form, 120
fi llfactor, 194, 257
fi ltering

bitmap fi lters, 426–28
indexes, statistics and, 239–42

fi lters, 8. See also specifi c fi lters
fi rst normal form, 113–15

bitwise operations, 490
fi rst page request, 548–49
FLOAT data type, 41
fn_dblog function, 569
fn_trace_gettable function, 149, 155
FOR keyword, 464
FOR XML PATH option, 214
FOR XML query option, 487–88
FORCE ORDER hint, 406

bushy plans, 413
foreign keys, 106–08

nested loops, 423
forests, 661
format fi le, 565
Format.Native property, 484
Format.UserDefi ned property, 484
forwarding pointers, 191
fourth normal form, 119–20
fragmentation, 256–58

logical index, 233–34
logical scan, 192–93

Freedman, Craig, 429
FROM clause

derived tables, 318
MERGE statement, 618
TABLESAMPLE, 265

FROM phase, 3, 7
FULL keyword, 397–401
FULL recovery model, 571–74
FULLSCAN, 647–48
functional dependencies

multivalued dependency, 120
normal forms, 112

functions, 43. See also specifi c functions
aggregate. See aggregate functions
aggregate window, 454
analytical ranking, 330–32
inline defi nitions, CTEs, 325–26

fuzzy logic, 75

G
Galindo-Legaria, Cesar, 273
gaps, 363–86
Gather Stream operator, 653–57

generalization
database, 124–25
relational database model, 124–26

GetAncestor method, 717–18
GetDescendant method, 711–12
GetFirstRows, 591–94
GetLevel method, 708
GetNextPage, 549–51
GetNextRows, 591–94
GetPrevPage, 551–52
GetReparentedValue, 712–14
GetSequence procedure, 598
GetTopProducts sample table, 535
Global Aggregation operator, 655
globally unique identifi ers (GUIDs), 600–01

random, 212
temporary tables, 216

graph theory, 99–100
graphical execution plans, 174–85
graphs, 659–60. See also specifi c graphs
GROUP BY ALL, inner joins, 395–97
GROUP BY clause

derived tables, 319
grouping sets, 506–07
relational division, 299
self joins, 404
subclasses, 506

GROUP BY phase, 5, 12–13
grouping factor, 503–05
GROUPING function, 524
grouping sets, 12–13, 506–07

algebra, 514–18
CUBE subclause, 511–12
GROUPING SETS subclause, 508–10
GROUPING_ID function, 518–21
materialize, 521–23
PIVOT operator, 23
ROLLUP subclause, 512–14
sample data, 507
sorting, 524

GROUPING SETS subclass, 506
GROUPING SETS subclause, 508–10

addition, 517–18
division, 515–17
multiplication, 514–15

GROUPING_ID function, 506, 518–21
Groups sample table, 473–74

median, 554
GUIDs (globally unique identifi ers).

See globally unique identifi ers (GUIDs)

H
Halpin, Terry, 88, 111–12
hash algorithm, 428
Hash Match operator, 426
hash tables, 425–28
HAVING clause, 80

cumulative aggregations, 455–57

Z02I626034.indd 784 2/21/2009 2:01:58 AM

 induced order 785

HAVING phase, 5, 13–14
heaps, 189–91

INSERT SELECT statement scenarios, 575–78
Heisenberg Uncertainty Principle, 149
Heisenberg, Werner, 149
hierarchies, 99–100, 661
HIERARCHYID data type, 719

list sorting, 726–30
materialized path, 706–14
normalizing, 719–23
parent-child conversion, 724–26

hints, 185–86
joins, 407–14

histograms, 499–503
HOBT, 189
Hungarian notation, 89

I
I/O subsystem

AND logic costs, 558–59
current and previous occurrence matching, 545
OR logic costs, 558–59
performance analysis, 145–48
query costs, 224, 229
reads, index seek cost, 193
STATISTICS IO option, 172–73
TOP n costs, 539, 542
wait analysis, 136–37, 143, 145

IBinarySerialize interface, 484
identity, 39
IDENTITY function, 342–44
IDENTITY property

inserting values, 110
SELECT INTO statement, 564
sequence mechanisms, 595–96

IF EXISTS, 626
IF keyword, 65–66
if.then statements, 70–72
ijk dialect, 40
IN predicate

vs. EXISTS predicate, 307
IN_ROW_DATA allocation units, 189
Include Actual Execution Plan, 654
INCLUDE clause, 548

fi ltered indexes, 240–41
included nonkey columns, 237
increasing subsequences, 291
Index Allocation Map (IAM) pages,

190–91
allocation order scans, 192

index ID, 256
index keys

updates, 219–23
index order scans, 204, 208
Index Scan operator, 205

allocation order scans, 208–12
index order scans, 219

index scans, 544
allocation order scans, 192, 208–19
APPLY operator, 546
index order scans, 204, 208
ordered clustered index, 202–04
ordered covering nonclustered index scan,

204–07
Storage Engine, 207–23, 256
strategy analysis, 244–56
unordered clustered index, 198–201, 245
unordered covering index scan, 245–46
unordered covering nonclustered index, 201–02

index seek, 193, 544
clustered index seek + ordered partial scan,

233–38, 250
covering nonclustered index seek + ordered partial

scan, 251
nonclustered index seek + ordered

partial scan + lookups, 223–28, 247–50
partion elimination, 649–50
subtree removal, 700–01
TOP n, 539
unordered nonclustered index scan + lookups,

228–33, 246–47
Index Seek operator, 223–26
indexed views, 242–44
indexes

access methods, 197–239.
See also index scans; index seek

clustered. See clustered indexes
costs, 238
covering, 201
covering index seek + ordered partial scan, 251
fi ltered, statistics and, 239–42
fragmentation, 192–93, 256–58
index seek + ordered partial scan + lookups, 247–50
intersection, 238–39
joins and, 421–23
level calculations, 193–95
nonclustered index seek + ordered

partial scan + lookups method, 223–28
on a clustered table, 196–97
on a heap, 195–96
ordered covering scan, 204–07
pages and extents, 188–89
partitioning, 258–59
performance monitoring, 256
rebuilding, 257–58
rebuilds, 648
reorganizing, 251
strategy analysis, 244–56
tuning, 169–70, 188–97. See index tuning
unordered covering scan, 201–02, 245–46
unordered index scan + lookups, 246–47
unordered nonclustered index scan + lookups,

228–33
INDEXPROPERTY function, 193
induced order, 59

Z02I626034.indd 785 2/21/2009 2:01:58 AM

786 Information Modeling and Relational Databases

Information Modeling and Relational Databases
(Halpin and Morgan), 88, 111–12

Information Principle, 83
Init method, 482–83
inline column aliasing, 319–20
inline function defi nitions, CTEs, 325–26
inner joins, 395–97

sliding total sample, 417–20
strategy forcing, 428–29

input expressions
TOP option, 530–31

INSERT EXEC statement, 590–94
INSERT loop, 360
INSERT SELECT FROM OPENROWSET

statement, 566
minimal logging, 567–68

INSERT SELECT statement
CASE expression, 310–12
minimal logging, 567–68
minimal logging summary, 590
TABLOCK hint, heap, B-tree, TF-610, key range

scenarios, 575–89
INSERT statement, 103–04

auxiliary table of numbers, 360–62
MERGE statement, 617–21
OUTPUT clause, 629–30
TOP option, 531–33

INSERT TOP, 532
INSERT trigger, 627–28
INSERT VALUES statement, 562
insertion sort, 288
Inside Microsoft SQL Server 2008, 105, 109,

122, 127, 318
INSTEAD OF triggers, 109
instructions, 43–44
integrity

domain, 108–09
entity, 105–06
referential, 106–08

interchangeability, principle of, 88
internal fragmentation, 257
INTERSECT operation, 435–36, 439–40

precedence, 440
Intersect operator, 93, 31–32

T-SQL support, 103–04
intersect, set, 62–63
IntervalWaits function, 139–40
INTO clause, 441
intractable problems, 285
IP address, 704–30
irrefl exive relation properties, 75–76
IsDescendantOf method, 715–16
IsInvariantToDuplicates property,

484–85
IsInvariantToNulls property, 484–85
IsInvariantToOrder property, 484–85
islands, 363–86

variation, 384–86
IsNullIfEmpty property, 484–85

isolation levels, 211–12
iteration/recursion, 670

ancestors, 681–84
cycles, 691–94
sorting, 688–91
subgraph/subtree with path enumeration,

685–88
subordinates, 671–81

iterative/procedural query tuning vs. set-based
approaches, 268–76

J
Jensen, Clifford, 757
join hints, 185–86
JOIN keyword, 185, 428–29
Join operator, 94

T-SQL support, 103–04
joins, 389

algorithims, 421–29
anti-semi, 415–16
composite, 397
cross, 390–95
DELETE statement, 603–06
dependency constraints, 121
equi-, 94, 402–03
hash, 428
hints, 407–14
inner, 395–97
logical evaluation order, 408–11
logical processing phase, 390
many-to-many, 423
merge, 423–25
multiple, 405–06
nested loops, 422–23
nonsupported, 401
old vs. new style, 389–403
outer, 397–401
self, 402–04
semi, 98
semi joins, 414–16
theta, 94
UPDATE statement, 606–10

K
Kass, Steve, 35, 267–68, 277
Kelly, Andrew J., 127
key lookups, 196–97
key-range, INSERT SELECT statement scenarios,

579–89
keys. See also foreign keys; primary keys

Boyce-Codd normal form, 117–19
duplicate, 312
entity integrity, 105–06
fi rst normal form, 113–15
natural vs. surrogate, 106

Z02I626034.indd 786 2/21/2009 2:01:58 AM

 Merge Interval operator 787

NULL values, 106
second normal form, 115–16
third normal form, 116–17
uniqueness and applicability, 106

Kogan, Eugene, 487
k-tuples, 53

L
L_SUPPKEY, 648
large object (LOB) data, 565–67
large value type updates, 610–11
LargeOrders sample table, 533, 630
LastDay CTE, 523
latch waits, 137
law of excluded middle, 68
LCK waits, 137
leaf level, 191–95

split pages, 192–93
leaf nodes, 718, 738–39
leaf_row_size, 193
left input, 20–21

APPLY operator, 21–22
LEFT keyword, 397–401
LEFT OUTER join, 543
left semi joins, 414–16
Leonard, Andy, 122
LIKE condition, 702
LIKE predicate, 232, 727
linear complexity, 133–34
LINEITEM sample table, 641–45
LINEITEMPART sample table, 641–45
lists, 287
LOB_DATA allocation units, 189
locks

exclusive, 257–58
index rebuilds, 257–58
shared, 219, 257–58
wait analysis, 137

LOG function, 489–90
logging

analysis, 569–71
minimally logged operations, 567–90
testing insert scenarios, 571–89

logic. See also fuzzy logic; predicate logic
puzzles, 757–77
three-valued, 9, 74
two-valued, 623

logical equivalence, 70
logical index fragmentation, 233–34

allocation order scans, 208–19
logical operators, 68–70. See also

specifi c operators
logical query processing, 1–2

OVER clause, 29–31
phases, 2–5, 7–20. See also specifi c phases
phases, joins and, 390

sample query, 5–7
set operators, 31–32
table operators, 20–28

logical reads, 251–52
logical scan fragmentation, 192–93, 256–57
logical transformations, 556–59
longest increasing subsequence length problem

(LISLP), 291–95
lookups

cost, 196
key, 196–97
RID, 196

Loria, Javier, 122

M
Machanic, Adam, 757
magnetic tape storage, 287
Management data warehouse, 187
manual partitioning, 88
materialize grouping sets, 521–23
materialized path, 694–95

data maintenance, 695–701
querying, 701–06

materialized path, HIERARCHYID data type,
706–08

data maintenance, 708–14
querying, 715–19

mathematics
context, 41–43
conventions, 39–40
defi nitions, 38–39
equality, identity, and sameness, 39
functions, parameters, and values, 43
graph theory, 99–100
grouping sets algebra, 514–18
instructions and algorithms, 43–44
median, 494–97, 554–56
mode, 497–99
numbers, 41
relational algebra and calculus, 90–104
set S, 35–37
well-defi nedness, 37–38

Matrix sample table, 468–69
MAX(order date), 302
MAX(ordered), 302–05

tiebreaker, 448–51
MAX(requireddate), 302–05
MaxByteSize property, 484
MAXDOP hint, 257
MAXRECURSION hint, 329–30, 680–81
MDX (Multidimensional Expressions), 507
median, 494–97

TOP option, 554–56
memory, wait analysis, 143
merge algorithm, 423–25
Merge Interval operator, 351

Z02I626034.indd 787 2/21/2009 2:01:58 AM

788 MERGE INTO clause

MERGE INTO clause, 618
Merge method, 482–83
MERGE predicate, 617–18
MERGE statement, 103–04, 294, 617–21

multiple WHEN clauses, 623–24
OUTPUT clause, 634–36
predicate addition, 621–23
triggers, 627–28
values, 626–27

Messages sample table, 632
metadata table queries, 648
Microsoft SQL Server Customer

Advisory Team, 158
minimally logged operations, 567–90
minimum missing values

EXISTS predicate, 309–12
outer joins, 400–01

Minus operator, 93–94
T-SQL support, 103–04

missing values
EXISTS predicate, 309–12
outer joins, 400–01

mode, 497–99
modeling, 111–12

domains, 49
Object-Role Modeling (ORM), 111–12
relational databases, 88

modifi cations
TOP option, 531–33

modus ponens, 70
MonthlyOrders sample table, 417–20
Moran, Brian, 149
Morgan, Tony, 88, 111–12
Muller, Robert J., 112
Multidimensional Expressions (MDX), 507
multipage access, 351–52
multiple joins, 405–06
multiple references

common table expressions, 324
table expressions, 321

multiset theory, 64–119
multivalued dependencies, 120
multivalued subqueries, 297–98
mutator operators, 86
MyGroupingSets sample table, 521–22
MyOrders sample table, 557

N
naming conventions, 49–51. See also notation

Hungarian notation, 89
relational database model, 89

National Institute of Standards and Technology
(NIST), 659

Natural Join operator, 94
natural keys, 106
natural numbers, 86

nave set theory, 52
nested loop algorithm, 422–23
Nested Loops operator, 544

parallel query plans, 654–57
partition elimination, 649

nested sets
left and right value assignment, 731–36
querying, 737–39

nesting, derived tables, 320–21
network waits, 145
NEWID function, 553, 601
NEWSEQUENTIALID function, 601
next page request, 549–51
next pointers, 204
NIST (National Institute of Standards

and Technology), 659
No Action implementation, 107–08
NOCOUNT option, 618–19
nodes, 99–100
NOEXPAND hint, 244
NOLOCK hint

allocation order, 215–19
index order scan, 223

non_leaf_row_size, 194
nonblocking sequences, 598–600
non-equi-join joins

sliding total sample, 417–20
non-FULL recovery mode, 574–75
nonpolynomial complexity, 284–85
nonscalar types, 86–87
nonunique sort column method

with tiebreaker, 337–38
without tiebreaker, 338–40

NORECOMPUTE option, 647
normal forms

additional, 122
Boyce-Codd, 117–19
domain-key, 122
fi fth, 120
fi rst, 113–15
fourth, 119–20
functional dependencies, 112
higher, 119–22
second, 115–16
sixth, 122
third, 116–17

normalization, 111–22.
See also normal forms

normalizing
HIERARCHYID data type, 719–23

Not Equals operator, 90–91
NOT EXISTS predicate, 742

semi joins, 415–16
vs. NOT IN predicate, 307–09

NOT IN predicate
semi joins, 415–16
vs. NOT EXISTS predicate, 307–09

Not operator, 68–70

Z02I626034.indd 788 2/21/2009 2:01:58 AM

 order 789

notation
Big Oh, 283–84
cardinality, 56
Hungarian, 89
ordered pairs and tuples, 53
set theory, 45–46
set-builder, 45–46
sets, 45–46
shorthand, 56

NP switch, 428
NTILE function, 354–59
NULL values, 9, 48

@expression, @length, and
@value arguments, 611

aggregate product specialized solution, 489
COALESCE function, 475
EXCEPT DISTINCT operation, 437
fi ltered indexes, 239
GROUP BY phase, 13
GROUPING SETS subclause, 509
GROUPING_ID function, 518–21
HIERARCHYID data type, 710
in databases, 110–11
IN predicate, 307
INTERSECT operation, 439
key constraints, 106
multiple joins, 408
NOT EXISTS and NOT in predicate,

307–09
ORDER BY clause, 19–20
outer joins, 399
pivoting, 462–63
ranking functions, 336
row removal, UNPIVOT operator, 28
set operations, 32
specialization, 124–25
UNIQUE constraint, 241–42
UNPIVOT operator, 471

NULLIF, 489
num_leaf_pages, 194
num_rows, 193
numbers

cardinal, 59–60
mathematics and, 41
natural, 86
ordinal, 59–60
whichth, 60–61

numerical order, 57
Nums sample table, 131, 359–62

cross joins, 390–95
missing values, returning,

375–83
NumSeq table, 363–64
NVARCHAR data type, 188–89
NVARCHAR(MAX) data type, 189
NVARCHAR(MAX) type

updating, 610–11

O
O(n log n)

LISLP problem, 292
sorting algorithms, 288–89

object ID, 256
Object-Role Modeling (ORM), 88, 111–12
order

trichotomy, 58–59
offl ine index rebuilding, 257–58
OLEDB wait, 137
OLTP (online transaction processing).

See online transaction processing (OLTP)
ON clause

bushy plans, 413
inner joins, 395–97
MERGE statement, 618
multiple joins, 409–11

ON fi lter, 3
OUTER JOIN clause, 12

ON fi lter phase, 8–10
online index rebuilding, 257–58
online transaction processing (OLTP)

MERGE statement, 616
wait analysis, 136

open schema, 460–62
OPENROWSET function, 565
OpenSchema sample table, 461–62
operators. See also specifi c operators

Boolean, 90–91
Codds, 91–97
cost percentages, 178
mutator, 86
relational algebra, 98–102
relations. See relations
relations and tuples, 90–91
selector, 86
set, 31–32
table, 20–28
ToolTip information, 179–85
type, 86

optimization. See also query optimizer
indexing strategies analysis, 244–56
nested loops, 421–22
partitioned views and partitioned tables, 640

optimized bitmap fi lters, 426–28
optimizer. See query optimizer
OPTION clause, 185
Or operator, 68–70

IN predicate, 316–17
logical transformations, 556–59

order, 57
alphabetical, 57–58
induced, 59
numerical, 57
sets, 57–61
total, 59

Z02I626034.indd 789 2/21/2009 2:01:58 AM

790 ORDER BY clause

ORDER BY clause, 205
cross joins, 393
derived tables, 318–19
ranking function, 331, 334
TOP option, 16, 527, 534–35

ORDER BY list, 353
ORDER BY operation, 91, 436
ORDER BY phase, 5, 16–20

OVER clause, 30–31
Order property, 208–12

index order scans, 219
OrderDetails sample table, 465

TOP n, 537–38
OrderDups sample table, 602–03
ordered pairs, 53–54
Ordered property, 204–05

allocation order vs. index order scans,
207–08

Orders sample table, 131, 269–76,
306–07, 507

data aggregation, 466–68
hash joins, 425–26
merge joins, 424–25
multiple joins, 408–11
TOP n, 537–38

OrdersArchive sample table, 631
ordinal numbers, 59–60
ORM (Object-Role Modeling), 88,

111–12
orthogonal design, 125–26
OUTER APPLY operator, 21, 536
OUTER JOIN clause, 12
outer joins, 11, 397–401

fi lters, 12
sliding total sample, 417–20

OUTER keyword, 398
OVER clause, 29–31

aggregation, 445–70
ranking functions, 331
subcaluses, 459

Ozer, Stuart, 158

P
Pack operator, 100–01
Page Free Space (PFS) pages, 191
page splits, 191

allocation order scans, 208–12
page_density, 194
PAGEIOLATCH_SH wait, 142
pages, 188–89
paging

multipage access, 351–52
row numbers, 349–52
TOP option, 547–52

parallel queries, 228–31
parallel query plans, 136

wait analysis, 145
Parallelism operators, 228, 652–57

parallelism, partitioning and, 652–57
parameters, 43
parent-child representation conversion,

724–26
parentheses, 322, 528

chiastic relationships, 410–11
Partial Aggregation operator, 655
PARTITION BY clause, 30

OVER clause, 447–48
ranking functions, 331–32
Segment operator, 333

partition ID, 256
partitioned row numbers, 344
partitioned tables, 639–40

partition elimination, 649–52
query plans, 641–45
statistics, 645–48
vs. partitioned views, 640

partitioned views, 639–40
partitioning. See also partitioned tables

manual, 88
parallelism, 652–57
partitioned views, 639–40
ranking functions, 334
subqueries, 340–41

partitions sets, 63–64
Parts sample table, 663–66
Pascal, Fabian, 119
path enumeration, 685–88
PATH mode, 487–88
path queries, 716–17
penguin dialect, 39–40
PERCENT keyword, 265
PERCENT option, 528, 555
performance

row number calculation, 344–49
selectivity and query cost, 253–55
tracing effects on, 149–50
tuning methodology, 131–34
workload tracing, 150–55

performance counters, 143–44
Performance sample database, 127–31

join algorithms, 421
performance testing

data preparation, 259–65
TABLESAMPLE, 265–68

PerfWorkloadTraceStart procedure, 151
physical query processing, 2
PIVOT operator, 22–24, 463–64, 466, 470

phases, 23–24
pivoting, 460

aggregate product, 475
attributes, 460–64
custom aggregation, 474–99
data aggregation, 466–70
dynamic, 487–88
relational division, 465–66
string concatenation, 475
unpivoting, 470–73

Z02I626034.indd 790 2/21/2009 2:01:58 AM

 query optimizer 791

PivotTables
wait analysis, 140–42

plan guides, 124
plan handles, 168
plan hash, 168
point queries, 233–34
Poletti, Marcello, 757
polynomial complexity, 284–85
pool cache, 171–72
POWER function, 489–90
Practical Issues in Database Management

(Pascal), 119
precedence

set operations, 440
predicate logic, 35, 65

alternatives, 73–75
DeMorgans laws, 70
generalizations, 73–75
implications, 70–72
law of excluded middle, 68
logical equivalence, 70
operators, 68–70
predicates. See predicates
programming languages, 65–66
propositions, 66–68
quantifi cation, 72–73
relations, 75–80

predicates, 66–68
MERGE statement additions, 621–23
proposition creation from, 67–68
quantifi ed, negating, 73
relations and, 87–88
truth value, 68
uncommon, subqueries, 316–18

preserved tables, 11
previous page request, 551–52
previous pointers, 204
primary keys, 105–06

nested loops, 423
primitive entities, 124
principle of interchangeability, 88
process-level analysis, 148–50

performance workload tracing, 150–55
query statistics, 167–69
trace data analysis, 155–67

product aggregate specialized solution,
488–90

Product operator, 92–93
T-SQL support, 103–04

Profi ler, 186
programming languages

dialects, 40
fourth-generation, 277
predicate logic, 65–66

Project operator, 92
proof by contradiction, 68
proof by contrapositive, 71
propositional functions, 35

propositions, 66–68
creation from predicates, 67–68
relations and, 87–88

proto-tuple, 103
PvtCustOrders sample table, 470

Q
quadratic scaling, 280
quadratic sorting algorithms, 288
quantifi cation

multiple, 73
predicate logic, 72–73

quantifi ed statements, 72
multiple, 73
negating, 72–73

queries. See also query optimizer; query plan;
query tuning

ad hoc, 136
aggregation, 156–67
compilation, 640
cost and performance statistics, 253–55
cost percentages, 178–79
execution plan. See execution plan
fi lters. See specifi c fi lters
HIERARCHYID data type, 715–19
materialized path, 701–06
nested sets, 737–39
ORDER BY clause, 31
parallel, 228–31
partitioned tables. See partitioned tables
path, 716–17
plan guides, 124
point, 233–34
processing. See logical query processing; physical

query processing
range, 233–34
recursive, CTEs, 327–30
run time measurement, 173–74
S set sample application, 77–80
sample, 5–7
selectivity vs. query cost, 253–55
set operations. See set operations
set-based, 268–76
signature, 157–67
statistics, 167–69
subqueries. See subqueries
wait analysis. See wait analysis

query hash, 168
query hints, 185–86
query optimizer, 2

bitmap fi lter, 427
Database Engine Tuning Advisor, 187
hash table, 425–28
hints, 185–86
join hints, 407–14
join strategy forcing, 428–29
joins, 412–13

Z02I626034.indd 791 2/21/2009 2:01:58 AM

792 query optimizer

query optimizer (continued)
logical transformations, 556–59
merge joins, 423–25
paging, 350–52
relational algebra operators, 101–02
scan order, 273–76
semi joins, 415

query plans
parallel, 136, 145
parallelism, 652–57
partitioned tables, 641–45

query processing. See logical query processing;
physical query processing

Query Statistics History report, 167
query tuning, 127

course of action determination, 145
database/fi le level analysis, 145–48
index tuning, 187–259. See also index tuning
indexes and queries, 169–70
methodology, 131–34
process level analysis, 148–69
sample data, 127–31
set-based vs. iterative/procedural approaches, 268–76
tools, 171–87
wait analysis, 134–43
wait correlation with queues, 143–44

queues, wait correlation, 143–44
quick sort, 289
QUOTENAME function, 488
quotient relation, 95–97

R
RAND function, 552–54
random vs. sequential, 193
Range Expression, 650–52
ranges, 108–09

missing and existing, 363–86
queries, 233–34

RANK function, 352–54
mode, 498

ranking functions, 60–61
analytical. See analytical ranking functions
gaps solution, 372–73
NULL values, 336

RDBMS (relational database management systems),
1, 83. See also relational database model

read committed isolation level, 219
Read method, 484
read uncommitted isolation, 219
READPAST hint, 633
real numbers, 41, 51
recursion. See iteration/recursion
recursive common table expressions, 327–30
Recursive Member, 328–30
Redistribute Streams operator, 653–57
references, multiple

common table expressions, 324
table expressions, 321

referential integrity, 106–08
refl exive relation properties, 75–76
RegexReplace function, 160–61
relational algebra, 90–104

operators, 98–102
T-SQL support, 103–04

relational calculus, 90–104
T-SQL support, 103–04

relational database management systems (RDBMS),
1, 83

relational database management systems (RDMBS), 83.
See also relational database model

relational database model, 83
algebra and calculus, 90–104
data integrity, 104–11
denormalization, 122–24
generalization and specialization, 124–26
naming conventions, 89
normalization, 111–22
relations, tuples and types, 84–89
summary, 89–90
views, 88–89

relational division, 312–14
pivoting, 465–66

relations
attributes, 85–87
divisor, dividend, and quotient, 95–97
operators, 90–91
properties of, 75–76
propositions and predicates, 87–88
relational database model, 84–89
universe, 76
virtual, 88–89

relvar, 126
Rename operator, 98

T-SQL support, 103–04
Repartition Streams operator, 228
REPEATTABLE clause, 266
REPLACE function, 433–34
representation, faithful, 49–51
Resource Governor, 171–72
Restrict operator, 91–92

T-SQL support, 103–04
restriction expression, 91–92
Results to Text output mode, 435
reverse logic, 72

relational division problems, 312–14
RID lookup operation, 196
right input, 20–21

APPLY operator, 21–22
RIGHT keyword

outer joins, 397–401
right semi joins, 414–16
Rincon, Eladio, 127
RNBenchmark table, 344–48
Road System example, 666–70
Roads sample table, 666–70
ROLLUP subclass, 506
ROLLUP subclause, 512–14

Z02I626034.indd 792 2/21/2009 2:01:58 AM

 sequence mechanisms 793

root pages, 193
roots node, 738–39
ROUND function, 570
row number calculation

benchmarks, 348–49
cursors, 341–42
IDENTITY-based, 342–44
nonpartitioned, 343
partitioned, 344
performance considerations, 344–49
subqueries, 335–41

row numbers
benchmarks, 348–49
calculation. See row numbers calculation
paging, 349–52

row overfl ow pages, 188
ROW_NUMBER function, 330–52, 433–34

benchmarks, 348–49
cross joins, 392–93
current and previous occurrence matching, 546–47
median, 495
TOP n, 542

ROW_OVERFLOW_DATA allocation units, 189
ROWMODCTR, 647
rows

anchor, 549–50, 592
copy generation, 26–27
current and previous occurrence matching, 543–47
duplicate, 15
duplicate data removal, 601–03
foreign key, 106–08
grouping, 23
index levels, 193–95
keys, 105–06
NULL values removal, 28
pivoting. See pivoting
random, TOP option, 552–54
removal, 28
set operations, 31–32
size limits, 188–89
TOP option, 16
value constructors, 607–08

ROWS keyword, 265
ROWS option, 266
rows_per_leaf_page, 194
rows_per_non_leaf_page, 194
rowsets, 88
RPCCompleted event class, 150
running aggregation, 451–52
Russell, Bertrand, 52
Russell’s Paradox, 52, 96, 110–11
Rys, Michael, 487

S
S set, 46

sample application, 77–80
Sales sample table, 330–31
Sales.MyShippers sample table, 314–16

Sales.Orders sample table, 497
SalesRN CTE, 350
sameness, 39
sample data. See also specifi c sample tables

grouping sets, 507
Performance database, 127–31
preparation, 259–65
TABLESAMPLE, 265–68

Sarka, Dejan, 44, 122, 757
Scalar operator, 650
scalar subqueries, 297–98
scalar types, 86–87
scale, algorithms, 279–82
SCOPE_IDENTITY function, 629
second normal form, 115–16
Segment operator, 207, 333
SELECT clause, 331
SELECT INTO statement, 216, 563–64

FULL recovery model, 571–74
minimal logging, 567–68
non-FULL recovery mode, 574–75

SELECT list
aliases, 14–15
asterisk use, 306
bushy plans, 414
column order, 17
DATEADD function, 392
derived tables, 319
DISTINCT clause, 16, 369, 371
pivoting, 462
self joins, 404
unpivot operator, 471

SELECT phase, 5, 14–16
ORDER BY clause, 29–30

SELECT query, 278
partition elimination, 649–52
TOP option, 527–35

SELECT statement, 103–04
assignments, 611–14
NOLOCK hint, 216
showplan, 643–45

SELECT TOP, 528–29
SELECT_INTO statement, 343–44
selection sort, 288
selectivity, 224, 251

logical reads and, 251–52
performance statistics and query cost, 253–55
point determination, 248–49
vs. logical reads, 252
vs. query cost, 253–55

selector operators, 86
self joins, 402–04
self-contained subqueries, 297–302
semi joins, 98, 414–16
semicolons, 322
Semijoin operator, 98
SEQUEL, 1
sequence mechanisms

custom sequences, 596–600
IDENTITY property, 595–96

Z02I626034.indd 793 2/21/2009 2:01:58 AM

794 Sequence Project operator

Sequence Project operator, 333
sequential access, 287
Serializable attribute, 484
Server Activity collections, 148
Server Activity History report, 139
Server Actual History report, 148
server instance

partitioned view, 639
wait analysis, 134–37

Server Management Objects (SMO), 187
Server Management Studio (SMSS)

cross joins, 396–97
Discard Results option, 329–44

Sessions sample table, 260–65
Set Default implementation, 107–08
SET FORCEPLAN ON statement, 406
Set Null implementation, 107–08
set operations, 31–32, 435–36

EXCEPT, 437–39
INTERSECT, 439–40
INTO clause, 441
NULL values, 32
precedence, 440
UNION, 436–37
unsupported logical phrases, circumventing,

441–42
set operators, 31–32, 56–63
set S. See S set
SET STATISTICS IO option, 351
set theory, 35, 44. See also sets

domains of discourse, 46–49
faithfulness, 49–51
generalizations, 64–65
multiset theory, 64–65
nave, 52
notation, 45–46
ordered pairs, tuples, and Cartesian products, 53–54
Russell’s Paradox, 52
set membership operator defi nition, 44–45
set U, 46
empty sets, 54–55

set-based query tuning vs. iterative/procedural
approaches, 268–76

sets. See also set operations; set operators; set theory
cardinality, 56–57
characteristic function, 77–80
characteristic function defi nition, 55
complement, 62
difference, 63
empty, 54–55, 315
enumeration, 45
membership operator defi nition, 44–45
nested. See nested sets
notation, 45–46
operators. See set operators
order, 57–61
partitions, 63–64
set-builder notation, 45–46

subsets, 61–62
union and intersection, 62–63
universe. See U set
well-defi nedness, 46

shared locks, 219, 257–58
Shippers sample table, 269–76, 566
SHOWPLAN_XML option, 186
SIMPLE recovery model, 575
Simsion, Graeme, 111–12
Singh, Simon, 110
single sequence values, 596–97
SINGLE_BLOB type, 566
SINGLE_CLOB type, 566
SINGLE_NCLOB type, 566
sixth normal form, 122
sliding aggregation, 457–59
sliding total, previous year, example, 417–20
sliding window scenario, 642
SMO (Server Management Objects), 187
SMSS (Server Management Studio). See Server

Management Studio (SMSS)
Solid Quality Mentors, 127
SOME predicate, 316–18
Sort operator, 286, 509–10
SORT_IN_TEMP_DB option, 257
sorting

algorithms, 285–86
external, 287
grouping sets, 524
HIERARCHYID data type, 726–30
insertion and selection, 288
iteration/recursion, 688–91
O(n log N) algorithms, 288–89
quadratic algorithms, 288
quick sort, 289
running time comparsions, 285–86
swapping, 289
ultra sort, 289

source code, 43–44
sp_autostats, 647
sp_confi gure, 653
sp_create_plan_guide, 124
sp_get_query_template procedure, 157
sp_updatestats, 142–43
specialization

database, 124–25
relational database model, 124–26

specialized solutions, 487–99
bitwise operations, 490–94
product, 488–90
string concatenation, 487–88

spread by element, 464
spreading, PIVOT operator, 24
SPStmtCompleted event class, 150
SQL

pronunciation origin, 1
relations, 103

SQL handle, 168

Z02I626034.indd 794 2/21/2009 2:01:58 AM

 System.Object class 795

SQL Server 2005
partitioning, 641–45
query plans, parallelism, 654–57
showplan, 649–52

SQL Server 2008
CLR database code, 476–77
constraints, order of enforcement, 110
data collection and Management

data warehouse, 187
hash joins, 425–26
hints, 185
partitioning, 639–57
query plans, parallelism, 654–57
showplan, 649–52
Timestamp type, 109–10
tracing, 149–50
triggers support, 109
XML type, 109

SQL Server Magazine, 757
SQL_VARIANT data type, 188–89, 461

UNPIVOT operator, 473
SQLBatchCompleted event class, 150
SQLStmtCompleted event class, 150
SqlUserDefi nedAggregate attribute,

484–85
statistics

automatic maintenance, 142–43
cloning, 187
fi ltered indexes, 239–42
partitioned tables, 645–48
queries, 167–69

statistics cloning, 187
STATISTCS IO, 172–73
STATISTICS IO option, 172–73
STATISTICS TIME option, 173–74
STATISTICS XML option
Storage Engine, 207–23
stored procedures, 109
Stream Aggregate operator, 509–10, 655
string concatenation, 449

aggregate specialized solution, 487–88
pivoting, 475

StringBuilder class, 484
StringConcat function, 487
strings, searching, 289–90
StructLayoutAttribute, 485
STUFF function, 610–11
subgraph/subtree, with path enumeration,

685–88
sublinear complexity, 282
subordinates

direct, 717–18
iteration/recursion, 671–81

subqueries, 297–98
aggregate functions, 14
correlated. See correlated subqueries
gaps solution 1, 366–69

gaps solution 2, 369–71
misbehaving, 314–16
multivalued, 297–98
partitioning, 340–41
RANK and DENSE_RANK functions, 352–54
row number calculation, 335–41
scalar, 297–98
self joins, 404
self-contained, 297–302
table-valued, 297–98
uncommon predicates, 316–18

subsequences, increasing, 291
Subset Of operator, 90–91
subsets, 61–62
SUBSTRING function, 214, 431

mode, 499
subtrees

cost, 178
moving, 697–99, 712–14
querying, 715–17
removal, 700–01

subtypes, 124
SUM aggregate, 453–57
SUM function, 489–90
SUM(qty) function, 468
superexponential complexity, 134–35
Superset Of operator, 90–91
supertypes, 124
surrogate keys, 106
swapping algorithms, 289
SWITCH command, 645–46
SWITCH OUT command, 647
symmetric relation properties, 75–76
syntax, joins, 389–90
sys.assemblies, 486
sys.assembly_modules, 486
sys.dm_db_missing_index_columns, 232
sys.dm_db_missing_index_details, 232
sys.dm_db_missing_index_group_stats, 232
sys.dm_db_missing_index_groups, 232
sys.dm_exec_cached_plans, 171
sys.dm_exec_plan_attributes, 171
sys.dm_exec_query_plan, 168, 171
sys.dm_exec_query_stats, 167–69
sys.dm_exec_sql_text, 168, 171
sys.dm_io_virtual fi le_stats, 145–48
sys.dm_os_performance_counters,

143–44
sys.dm_os_wait_stats, 134–37
sys.syscacheobjects, 171
sys.system_internals_allocation_units,

189–90
SYSDATETIME function, 173–74
SYSTEM keyword, 265
SYSTEM method, 265–66
system types, 87
System.Object class, 484

Z02I626034.indd 795 2/21/2009 2:01:58 AM

796 table expressions

T
table expressions, 318

common (CTEs), 321–30. See also common table
expressions (CTEs)

derived tables, 318–21
interchangeability, 89
left and right input, 20–21
ORDER BY clause, 18–20
TOP option, 18–20

table hints, 185–86
table operators, 20–28. See also specifi c operators

processing order, 11
table scan, 198–201, 245, 557
Table Scan operator, 643–45
Table Spool operator, 263
tables

aliases, 606
auxiliary table of numbers, 359–62
clustered, nonclustered indexes, 196–97
constraints, 109–10
derived. See derived tables
foreign key, 106–08
heaps, 189–91
joins. See table joins
key, 105–06
metadata query, 648
normalization. See normal forms; normalization
organization, 189
parent and child relations, 106–08
partitioned. See partitioned tables
partitioning, 258–59
pivoting. See pivoting
preserved, 11

TABLESAMPLE, 265–68
table-valued subqueries, 297–98
TABLOCK hint, 211–12, 215, 566, 568

INSERT statement heap, B-tree, TF-610, key range
scenarios, 575–89

minimal logging summary, 590
Talmage, Ron, 757
Tchernitsky, Nicolay, 757
TClose operator, 99–100
temp db database, 137, 148
temporal data, 122
TempSeq table, 364–65
Terminate method, 482–83
testing, insert scenarios, 571–89
TF-610, INSERT SELECT statement scenarios, 579–89
theta joins, 94
third normal form, 116–17
three-valued logic, 9, 74
tiebreaker, 302–06

aggregation, 448–51
determinism, 334
median, 496
mode, 498–99
nonunique sort column method, 337–38
TOP option, 529–30

tile number functions, 354–59
Tiles CTE, 495
TOP n for each group, 537–43
Top operator, 207, 308
TOP option, 16, 527

determinism, 529–30
input expressions, 530–31
matching current and previous occurrences,

543–47
median, 554–56
modifi cations, 531–33
on steroids, 534–35
paging, 547–52
random rows, 552–54
table expressions, 18–20
TOP n for each group, 537–43

TOP PERCENT option, 554
TOP phase, 5
ToString method, 484, 711
total order, 59
TPC-H benchmark, 641–45
tracing, 149–50, 186

data analysis, 155–67
performance workload, 150–55

transaction log, wait analysis, 136, 148
transactions, 105
Transact-SQL. See T-SQL
transitive closure, 99–100, 740

directed acyclic graphs, 740–45
undirected cyclic graphs, 745–54

transitive relation properties, 75–76
translation, English to mathematics, 35–44
tree diagrams, 99–100
trees, 660–61. See also subtrees

left and right values assignment, 731–36
trend identifi cation, 291
trend marker practical application, 290–92
trichotomy, 58–59
triggers, 109

denormalization, 123–24
MERGE statement, 627–28

TRUE values, 9
true/false expressions. See Boolean expressions
TRUNCATE TABLE statement, 600–01
truth value, 68
T-SQL, 1–2

Boolean expressions, 67
cycle detection, 691
HIERARCHYID data type, 707
joins logical processing order, 409
joins, nonsupported, 401
LISLP problem solution, 292–95
MAX attribute, 449
relational algebra and calculus support,

103–04
semicolon termination, 322
statement assignments, 611
UPDATE syntax, 596
vs. CLR, function implementation, 159

Z02I626034.indd 796 2/21/2009 2:01:58 AM

 WHEN NOT MATCHED THEN clause 797

tuples, 53–54
attributes, 84
calculus, 102–03
header, 103
heading, 84
operators, 90–91
properties, 84
relational database nodel, 84–89
sets. See relations

two-valued logic, 623
types

atomic, 86
constraints, 109
defi ned, 85
encapsulated, 86
operators, 86, 90–91
relational database model, 84–89
scalar vs. nonscalar, 86–87
subtypes and supertypes, 124
system, 87
user-defi ned, 87
vs. domains, 84

U
U set, 46

empty sets, 54–55
UDAs (user-defi ned aggregates), 476–82
ultra sort, 289
undefi ned terms, 39
undirected cyclic graphs, 745–54
undirected cyclic weighted graphs, 670
undirected graphs, 659–60
UNION ALL operation, 437
UNION ALL operator, 31–32
UNION DISTINCT operation, 437
UNION operation, 31–32, 435–37
Union operator, 92–93

T-SQL support, 103–04
union, set, 62–63
UNIQUE constraint

NULL values, 241–42
unique sort column method, 335–37
UNIQUEIDENTIFIER value, 600
uniquifi er, 191, 196
UNKNOWN values, 9, 74

EXISTS predicate, 305–06
IN predicate, 307

Unpack operator, 100–01
UNPIVOT operator, 24–28, 471–73

phases, 25–28
unpivoting, 470–73
UPDATE statement, 103–04

assignments, 614–16
joins, 606–10
MERGE statement, 617–21
OUTPUT clause, 632–34
TOP option, 531–33

UPDATE STATISTICS command, 645, 647
UPDATE trigger, 627–28
updating data, 606–16
updating, partitioned views,

639–40
UPDLOCK hint, 710
USE PLAN hint, 122–24
user-defi ned aggregates (UDAs), 476–82
user-defi ned functions

auxiliary table of numbers, 362
inline, CTEs, 325–26

user-defi ned types, 87
USING clause

MERGE statement, 618

V
vacuous truths, 71–72
values, 43
VALUES clause, 472–73, 561–84
VARBINARY data type, 188–89
VARBINARY(MAX) data type, 189

updating, 610–11
VARCHAR data type, 188–89
VARCHAR(MAX) data type, 189, 484, 688

updating, 610–11
variables

functional dependencies, 112
types, 86

vertices, 99–100
views, 88–89

common table expressions, 325–26
compatibility, 171
indexed, 242–44
updatable, 109

Visual Studio 2008, assembly creation and
deployment, 482–87

W
wait analysis

instance level, 134–37
top wait isolation, 137–38
wait information collection, 139–43

weighted graphs, 666
well-defi nedness, 37–38

sets, 46
WHEN clause, 623–24
WHEN MATCHED clause, 624

MERGE statement, 621
multiple, 623–24

WHEN MATCHED THEN clause, 618–20
WHEN NOT MATCHED BY SOURCE

clause, 624
WHEN NOT MATCHED clause

MERGE statement, 623, 624
WHEN NOT MATCHED THEN clause

MERGE statement, 618–20

Z02I626034.indd 797 2/21/2009 2:01:58 AM

798 WHERE clause

WHERE clause
inner joins, 395–97
outer joins, 399–401

WHERE fi lter, 399. See also WHERE phase
OUTER JOIN clause, 12

WHERE phase, 5, 11–12
whichth number, 60–61
Wiernik, Adolfo, 122
window-based calculations, 29, 445
WITH clause, table hints, 185
WITH CUBE option, 506, 511–12
WITH keyword, CTEs, 322
WITH ROLLUP option, 506, 514
WITH statement, multiple CTEs, 323
WITH TIES option, 16

TOP option, 530

Witt, Graham, 111–12
WRITE method, 484, 610–11
WRITELOG wait, 136

X
XML

showplans, 185–86
triggers and validations, 109

Y
YEAR(orderdate), 468
year-to-date aggregation, 459–60

Z02I626034.indd 798 2/21/2009 2:01:58 AM

About the Authors

Itzik Ben-Gan

Itzik Ben-Gan is a mentor and cofounder of Solid Quality Mentors.
An SQL Server Microsoft MVP (Most Valuable Professional) since
1999, Itzik has delivered numerous training events around the world
 focused on T-SQL querying, query tuning, and programming. Itzik
is the author of several books about T-SQL. He has written many
articles for SQL Server Magazine as well as articles and white papers
for MSDN. Itzik’s speaking engagements include Tech Ed, DevWeek,
PASS, SQL Server Magazine Connections, various user groups around
the world, and Solid Quality Mentors events.

Lubor Kollar

Lubor Kollar is Group Program Manager in Microsoft Corp. He has
been working in SQL Server development organization since 1996.
Prior to joining Microsoft, he was developing various DB2 engines
at IBM. Currently Lubor is leading SQL Server Customer Advisory Team
(SQL CAT) working on the most challenging SQL Server deployments
around the world. SQL CAT is responsible for maintaining tight
 connections between the users and creators of new SQL Server releases.
Another goal of SQL CAT is to spread the wisdom learned from the
most advanced SQL Server deployments. One of the major channels
easily accessible to the widest audience is the www.sqlcat.com Web site.

Dejan Sarka

Dejan Sarka focuses on development of database and business
 intelligence applications. Besides projects, he spends about half of
his time on training and mentoring. He is a frequent speaker at some
of the most important international conferences, including PASS,
TechEd, and SqlDevCon. He is also indispensable at regional Microsoft
events—for example, the NT Conference (the biggest Microsoft
conference in Central and Eastern Europe). He is the founder of
the Slovenian SQL Server and .NET Users Group. Dejan is the main
 author, coauthor, or guest author of seven books about databases

and SQL Server. Dejan also developed two courses for Solid Quality Learning: Data Modeling
Essentials and Data Mining with SQL Server 2008.

Z03A626034.indd 799 2/20/2009 4:21:25 PM

Steve Kass

Steve Kass holds a Ph.D. in mathematics from the University
of Wisconsin, and he is a professor of Mathematics and
Computer Science at Drew University, where he has taught
since 1988. An SQL Server Microsoft MVP since 2002, he has
written for SQL Server Magazine and spoken at SQL Server
Magazine Connections events and to user groups in
the New York City area. Steve’s mathematical work has
 appeared in Complex Systems and the Journal of Algebra.

Z03A626034.indd 800 2/20/2009 4:21:26 PM

	Cover
	Copyright page

	Dedication
	Table of Contents
	Foreword
	Acknowledgments
	Introduction
	Hardware and Software Requirements
	Companion Content and Sample Database
	Find Additional Content Online
	Support for These Books
	Questions and Comments

	Chapter 1: Logical Query Processing
	Logical Query Processing Phases
	Logical Query Processing Phases in Brief

	Sample Query Based on Customers/Orders Scenario
	Logical Query Processing Phase Details
	Step 1: The FROM Phase
	Step 2: The WHERE Phase
	Step 3: The GROUP BY Phase
	Step 4: The HAVING Phase
	Step 5: The SELECT Phase
	Step 6: The Presentation ORDER BY Phase

	Further Aspects of Logical Query Processing
	Table Operators
	OVER Clause
	Set Operators

	Conclusion

	Chapter 2: Set Theory and Predicate Logic
	An Example of English-to-Mathematics Translation
	Well-Definedness
	Equality, Identity, and Sameness
	Mathematical Conventions
	Numbers
	Context
	Functions, Parameters, and Variables
	Instructions and Algorithms

	Set Theory
	Notation for Sets
	Well-Definedness of Sets
	Domains of Discourse
	Faithfulness
	Russell’s Paradox
	Ordered Pairs, Tuples, and Cartesian Products
	The Empty Set(s)
	The Characteristic Function of a Set
	Cardinality
	Order
	Set Operators
	Set Partitions
	Generalizations of Set Theory

	Predicate Logic
	Logic-Like Features of Programming Languages
	Propositions and Predicates
	The Law of Excluded Middle
	And, Or, and Not
	Logical Equivalence
	Logical Implication
	Quantification
	Alternatives and Generalizations

	Relations
	The Refiexive, Symmetric, and Transitive Properties

	A Practical Application
	Conclusion

	Chapter 3: The Relational Model
	Introduction to the Relational Model
	Relations, Tuples and Types
	The Relational Model: A Quick Summary

	Relational Algebra and Relational Calculus
	Basic Operators
	Relational Algebra
	Relational Calculus
	T-SQL Support

	Data Integrity
	Declarative Constraints
	Other Means of Enforcing Integrity

	Normalization and Other Design Topics
	Normal Forms Dealing with Functional Dependencies
	Higher Normal Forms
	Denormalization
	Generalization and Specialization

	Conclusion

	Chapter 4: Query Tuning
	Sample Data for This Chapter
	Tuning Methodology
	Analyze Waits at the Instance Level
	Correlate Waits with Queues
	Determine Course of Action
	Drill Down to the Database/File Level
	Drill Down to the Process Level
	Tune Indexes and Queries

	Tools for Query Tuning
	Cached Query Execution Plans
	Clearing the Cache
	Dynamic Management Objects
	STATISTICS IO
	Measuring the Run Time of Queries
	Analyzing Execution Plans
	Hints
	Traces/Profiler
	Database Engine Tuning Advisor
	Data Collection and Management Data Warehouse
	Using SMO to Clone Statistics

	Index Tuning
	Table and Index Structures
	Index Access Methods
	Analysis of Indexing Strategies
	Fragmentation
	Partitioning

	Preparing Sample Data
	Data Preparation
	TABLESAMPLE

	An Examination of Set-Based vs. Iterative/Procedural Approaches and a Tuning Exercise
	Conclusion

	Chapter 5: Algorithms and Complexity
	Do You Have a Quarter?
	How Algorithms Scale
	An Example of Quadratic Scaling
	An Algorithm with Linear Complexity
	Exponential and Superexponential Complexity
	Sublinear Complexity
	Constant Complexity
	Technical Definitions of Complexity
	Comparing Complexities

	Classic Algorithms and Algorithmic Strategies
	Algorithms for Sorting
	String Searching

	A Practical Application
	Identifying Trends in Measurement Data
	The Algorithmic Complexity of LISLP
	Solving the Longest Increasing Subsequence Length Problem in T-SQL

	Conclusion

	Chapter 6: Subqueries, Table Expressions, and Ranking Functions
	Subqueries
	Self-Contained Subqueries
	Correlated Subqueries
	Misbehaving Subqueries
	Uncommon Predicates

	Table Expressions
	Derived Tables
	Common Table Expressions

	Analytical Ranking Functions
	Row Number
	Rank and Dense Rank
	Tile Number

	Auxiliary Table of Numbers
	Missing and Existing Ranges (Also Known as Gapsand Islands)
	Missing Ranges (Gaps)
	Existing Ranges (Islands)

	Conclusion

	Chapter 7: Joins and Set Operations
	Joins
	Old Style vs. New Style
	Fundamental Join Types
	Further Examples of Joins
	Sliding Total of Previous Year
	Join Algorithms
	Separating Elements

	Set Operations
	UNION
	EXCEPT
	INTERSECT
	Precedence of Set Operations
	Using INTO with Set Operations
	Circumventing Unsupported Logical Phases

	Conclusion

	Chapter 8: Aggregating and Pivoting Data
	OVER Clause
	Tiebreakers
	Running Aggregations
	Cumulative Aggregations
	Sliding Aggregations
	Year-to-Date (YTD)

	Pivoting
	Pivoting Attributes
	Relational Division
	Aggregating Data

	Unpivoting
	Custom Aggregations
	Custom Aggregations Using Pivoting
	User Defined Aggregates (UDA)
	Specialized Solutions

	Histograms
	Grouping Factor
	Grouping Sets
	Sample Data
	The GROUPING SETS Subclause
	The CUBE Subclause
	The ROLLUP Subclause
	Grouping Sets Algebra
	The GROUPING_ID Function
	Materialize Grouping Sets
	Sorting

	Conclusion

	Chapter 9: TOP and APPLY
	SELECT TOP
	TOP and Determinism
	TOP and Input Expressions
	TOP and Modifications
	TOP on Steroids

	APPLY
	Solutions to Common Problems Using TOP and APPLY
	TOP n for Each Group
	Matching Current and Previous Occurrences
	Paging
	Random Rows
	Median

	Logical Transformations
	Conclusion

	Chapter 10: Data Modification
	Inserting Data
	Enhanced VALUES Clause
	SELECT INTO
	BULK Rowset Provider
	Minimally Logged Operations
	INSERT EXEC
	Sequence Mechanisms
	GUIDs

	Deleting Data
	TRUNCATE vs. DELETE
	Removing Rows with Duplicate Data
	DELETE Using Joins

	Updating Data
	UPDATE Using Joins
	Updating Large Value Types
	SELECT and UPDATE Statement Assignments

	Merging Data
	MERGE Fundamentals
	Adding a Predicate
	Multiple WHEN Clauses
	WHEN NOT MATCHED BY SOURCE
	MERGE Values
	MERGE and Triggers

	OUTPUT Clause
	INSERT with OUTPUT
	DELETE with OUTPUT
	UPDATE with OUTPUT
	MERGE with OUTPUT
	Composable DML

	Conclusion

	Chapter 11: Querying Partitioned Tables
	Partitioning in SQL Server
	Partitioned Views
	Partitioned Tables

	Conclusion

	Chapter 12: Graphs, Trees, Hierarchies, and Recursive Queries
	Terminology
	Graphs
	Trees
	Hierarchies

	Scenarios
	Employee Organizational Chart
	Bill of Materials (BOM)
	Road System

	Iteration/Recursion
	Subordinates
	Ancestors
	Subgraph/Subtree with Path Enumeration
	Sorting
	Cycles

	Materialized Path
	Maintaining Data
	Querying

	Materialized Path with the HIERARCHYID Data Type
	Maintaining Data
	Querying
	Further Aspects of Working with HIERARCHYID

	Nested Sets
	Assigning Left and Right Values
	Querying

	Transitive Closure
	Directed Acyclic Graph

	Conclusion

	Appendix A: Logic Puzzles
	Puzzles
	Puzzle 1: Remainders
	Puzzle 2: Round Manhole Covers
	Puzzle 3: Shaking Hands
	Puzzle 4: Then There Were Five?
	Puzzle 5: Arranging Soldiers in a Row
	Puzzle 6: Crossing the Tunnel
	Puzzle 7: Escaping a Cave
	Puzzle 8: Free Tuna
	Puzzle 9: Naming an Heir
	Puzzle 10: The Next Element in a Series
	Puzzle 11: Same Birthday
	Puzzle 12: Catching a Train
	Puzzle 13: Prisoners and Switches
	Puzzle 14: Probabilities in China
	Puzzle 15: Two Mathematicians
	Puzzle 16: Crazy Sequence
	Puzzle 17: Minimum Number of Weights
	Puzzle 18: Counting Triangles
	Puzzle 19: Counterfeit Coins
	Puzzle 20: Too Clever by Half
	Puzzle 21: A Cat, a String, and the Earth
	Puzzle 22: Josephus Problem
	Puzzle 23: Shipping Algebra
	Puzzle 24: Equilateral Triangles Puzzle

	Puzzle Solutions
	Puzzle 1: Remainders
	Puzzle 2: Round Manhole Covers
	Puzzle 3: Shaking Hands
	Puzzle 4: Then There Were Five?
	Puzzle 5: Arranging Soldiers in a Row
	Puzzle 6: Crossing the Tunnel
	Puzzle 7: Escaping a Cave
	Puzzle 8: Free Tuna
	Puzzle 9: Naming an Heir
	Puzzle 10: The Next Element in a Series
	Puzzle 11: Same Birthday
	Puzzle 12: Catching a Train
	Puzzle 13: Prisoners and Switches
	Puzzle 14: Probabilities in China
	Puzzle 15: Two Mathematicians
	Puzzle 16: Crazy Sequence
	Puzzle 17: Minimum Number of Weights
	Puzzle 18: Counting Triangles
	Puzzle 19: Counterfeit Coins
	Puzzle 20: Too Clever by Half
	Puzzle 21: A Cat, a String, and the Earth
	Puzzle 22: Josephus Problem
	Puzzle 23: Shipping Algebra
	Puzzle 24: Equilateral Triangles Puzzle

	Index
	Symbols and Numbers
	A
	B,C
	D
	E
	F,G,H
	I
	J,K
	L,M
	N
	O
	P
	Q
	R
	S
	T
	U,V,W
	X,Y

	About the Authors
	Itzik Ben-Gan
	Lubor Kollar
	Dejan Sarka
	Steve Kass

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ARA <FFFE270633062A062E062F0645062000470630064706200027064406250639062F0627062F0627062A0620004406250646063406270621062000450633062A0646062F0627062A062000410064006F0062006500200050004400460020004A064506430646062000270644062A06390627064506440620004506390647062706200048062A062A063606450646062000390644062706450627062A0620002A0645064A064A063206200048063106480627062806370620002A063406390628064A06290620004806250634062706310627062A062000450631062C0639064A062906200048063906460627063506310620002A0641062706390644064A0629062000480637062806420627062A062E0020004A06450643064606200041062A062D062000450633062A0646062F0627062A0620005000440046002000270644064506460634062306290620002806270633062A062E062F062706450620004100630072006F0062006100740020004806410064006F00620065002000520065006100640065007200200037002E003000200023064806200023062D062F062B062E0029000D000A00>
 /CHS <FEFF4F7F75288FD94E9B8BBE7F6E6765521B5EFA7684002000410064006F006200650020005000440046002065876863517759078F8552A95DE55177FF0C53735305542B68077B7E30018D8594FE63A530014E667B7E30014EA44E9251437D20548C56FE5C423002521B5EFA76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C676562535F003002>
 /CHT <FEFF4F7F752890194E9B8A2D5B9A5EFA7ACB7684002000410064006F006200650020005000440046002065874EF651775099535452A95DE55177FF0C53735305542B6A197C6430018D8590237D50300166F87C6430014E9252D551437D20548C57165C6430025EFA7ACB76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C958B555F3002>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200073006E00610064006E006F00200070015900ED0073007400750070006E00FD0063006800200064006F006B0075006D0065006E0074016F002000410064006F006200650020005000440046002C0020006B00740065007200E90020006F00620073006100680075006A00ED00200074006100670079002C00200068007900700065007200760061007A00620079002C0020007A00E1006C006F017E006B0079002C00200069006E0074006500720061006B007400690076006E00ED0020007000720076006B0079002000610020007600720073007400760079002E00200056007900740076006F01590065006E00E900200064006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000410064006F00620065002000520065006100640065007200200037002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /DAN <FEFF004200720075006700200064006900730073006500200069006E0064007300740069006C006C0069006E006700650072002000740069006C0020006100740020006F0070007200650074007400650020006C0065007400740069006C006700E6006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400650072002C002000640065007200200069006E006400650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006C0069006E006B0073002C00200062006F0067006D00E60072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004400650020006F007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50062006E00650073002000690020004100630072006F00620061007400200065006C006C006500720020004100630072006F006200610074002000520065006100640065007200200037002E00300020006F00670020006E0079006500720065002E>
 /DEU <FEFFFEFF00560065007200770065006E00640065006E0020005300690065002000640069006500730065002000450069006E007300740065006C006C0075006E00670065006E0020007A0075006D002000450072007300740065006C006C0065006E00200076006F006E0020007A0075006700E4006E0067006C0069006300680065006E002000410064006F006200650020005000440046002D0044006F006B0075006D0065006E00740065006E0020006D0069007400200054006100670073002C002000480079007000650072006C0069006E006B0073002C0020004C006500730065007A00650069006300680065006E002C00200069006E0074006500720061006B0074006900760065006E00200045006C0065006D0065006E00740065006E00200075006E00640020004500620065006E0065006E002E002000450072007300740065006C006C007400650020005000440046002D0044006F006B0075006D0065006E007400650020006B00F6006E006E0065006E0020006D006900740020004100630072006F00620061007400200075006E0064002000410064006F00620065002000520065006100640065007200200037002E00300020006F0064006500720020006800F600680065007200200067006500F600660066006E00650074002000770065007200640065006E002E>
 /ENU (Use these settings to create accessible Adobe PDF documents that include tags, hyperlinks, bookmarks, interactive elements, and layers. Created PDF documents can be opened with Acrobat and Adobe Reader 7.0 and later.)
 /ESP <FEFF005500740069006C0069006300650020006500730074006100200063006F006E0066006900670075007200610063006900F3006E0020007000610072006100200063007200650061007200200064006F00630075006D0065006E0074006F0073002000500044004600200061006300630065007300690062006C00650073002000640065002000410064006F00620065002000710075006500200069006E0063006C007500790061006E0020006500740069007100750065007400610073002C002000680069007000650072007600ED006E00630075006C006F0073002C0020006D00610072006300610064006F0072006500730020006400650020007000E100670069006E0061002C00200065006C0065006D0065006E0074006F007300200069006E00740065007200610063007400690076006F007300200079002000630061007000610073002E002000530065002000700075006500640065006E00200061006200720069007200200064006F00630075006D0065006E0074006F00730020005000440046002000630072006500610064006F007300200063006F006E0020004100630072006F006200610074002C002000410064006F00620065002000520065006100640065007200200037002E003000200079002000760065007200730069006F006E0065007300200070006F00730074006500720069006F007200650073002E>
 /FRA <FEFF005500740069006C006900730065007A00200063006500730020006F007000740069006F006E007300200070006F0075007200200063007200E900650072002000640065007300200064006F00630075006D0065006E00740073002000410064006F006200650020005000440046002000610063006300650073007300690062006C0065007300200064006F007400E90073002000640065002000620061006C0069007300650073002C00200064002700680079007000650072006C00690065006E0073002C0020006400650020007300690067006E006500740073002C00200064002700E9006C00E9006D0065006E0074007300200069006E007400650072006100630074006900660073002000650074002000640065002000630061006C0071007500650073002E0020004C0065007300200064006F00630075006D0065006E0074007300200050004400460020006F006200740065006E00750073002000730027006F0075007600720065006E0074002000640061006E00730020004100630072006F006200610074002000650074002000410064006F00620065002000520065006100640065007200200037002E00300020002800650074002000760065007200730069006F006E007300200075006C007400E900720069006500750072006500730029002E>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003C003C103BF03C303C003B503BB03AC03C303B903BC03B1002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003C403B1002003BF03C003BF03AF03B1002003C003B503C103B903BB03B103BC03B203AC03BD03BF03C503BD002003B503C403B903BA03AD03C403B503C2002C002003C503C003B503C103C303C503BD03B403AD03C303B503B903C2002C002003C303B503BB03B903B403BF03B403B503AF03BA03C403B503C2002C002003B103BB03BB03B703BB03B503C003B903B403C103B103C303C403B903BA03AC002003C303C403BF03B903C703B503AF03B1002003BA03B103B9002003B503C003AF03C003B503B403B1002E002003A403B1002003AD03B303B303C103C603B10020005000440046002003C003BF03C5002003B403B703BC03B903BF03C503C103B303BF03CD03BD03C403B103B9002003BC03C003BF03C103BF03CD03BD002003BD03B1002003B103BD03BF03B903C703B803BF03CD03BD002003BC03B5002003C403BF0020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200037002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B7002E>
 /HEB <FEFF05d405e905ea05de05e905d5002005d105e705d105d905e205d505ea002005d005dc05d4002005dc05d905e605d905e805ea002005de05e105de05db05d9002000410064006f006200650020005000440046002005e005d205d905e905d905dd002005d405db05d505dc05dc05d905dd002005ea05d205d905dd002c002005e705d905e905d505e805d9002d05e205dc002c002005e105d905de05e005d905d505ea002c002005e805db05d905d105d905dd002005d005d905e005d805e805d005e705d805d905d105d905d905dd002005d505e905db05d105d505ea002e002005de05e105de05db05d90020005000440046002005e905e005d505e605e805d5002005e005d905ea05df002005dc05e405ea05d505d7002005d1002d0020004100630072006f006200610074002005d505d1002d002000410064006f00620065002000520065006100640065007200200037002e0030002005d505d205e805e105d005d505ea002005de05ea05e705d305de05d505ea002005d905d505ea05e8002e>
 /HUN <FEFF004100200062006500E1006C006C00ED007400E10073006F006B0020006800610073007A006E00E1006C0061007400E100760061006C0020006300ED006D006B00E9006B00650074002C002000680069007600610074006B006F007A00E10073006F006B00610074002C0020006B00F6006E00790076006A0065006C007A0151006B00650074002C00200069006E0074006500720061006B007400ED007600200065006C0065006D0065006B00650074002000E900730020007200E90074006500670065006B00650074002000740061007200740061006C006D0061007A00F300200068006F007A007A00E1006600E900720068006500740151002000410064006F00620065002000500044004600200064006F006B0075006D0065006E00740075006D006F006B0061007400200068006F007A0068006100740020006C00E9007400720065002E002000410020006C00E90074007200650068006F007A006F00740074002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061007A002000410064006F00620065002000520065006100640065007200200037002E003000200061006C006B0061006C006D0061007A00E10073006F006B006B0061006C002C0020007600610067007900200061007A002000610074007400F3006C0020006B00E9007301510062006200690020007600650072007A006900F3006B006B0061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /ITA <FEFF005500740069006C0069007A007A006100720065002000710075006500730074006500200069006D0070006F007300740061007A0069006F006E00690020007000650072002000630072006500610072006500200064006F00630075006D0065006E00740069002000410064006F0062006500200050004400460020006100630063006500730073006900620069006C0069002000630068006500200069006E0063006C00750064006F006E006F0020007400610067002C0020006C0069006E006B00200069007000650072007400650073007400750061006C0069002C0020007300650067006E0061006C0069006200720069002C00200065006C0065006D0065006E0074006900200069006E007400650072006100740074006900760069002000650020006C006900760065006C006C0069002E002000C800200070006F00730073006900620069006C006500200061007000720069007200650020006900200064006F00630075006D0065006E007400690020005000440046002000630072006500610074006900200063006F006E0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E003000200065002000760065007200730069006F006E006900200073007500630063006500730073006900760065002E>
 /JPN <FEFF30BF30B0300130CF30A430D130FC30EA30F330AF30013057304A308A300130A430F330BF30E930AF30C630A330D6306A89817D20300130EC30A430E430FC3092542B308030A230AF30BB30B730D630EB306A002000410064006F0062006500200050004400460020658766F830924F5C62103059308B306B306F30013053308C3089306E8A2D5B9A30924F7F75283057307E305930024F5C62103055308C305F00200050004400460020306F0020004100630072006F0062006100740020304A30883073002000410064006F00620065002000520065006100640065007200200037002E003000204EE5964D3067958B304F30533068304C3067304D307E30593002>
 /KOR <FEFFD0DCADF8002C0020D558C774D37CB9C1D06C002C0020CC45AC08D53C002C0020B300D654D6150020C694C18C0020BC0F0020B808C774C5B4AC000020D3ECD568B418C5B40020C788C5B40020C0ACC6A9C790AC000020C27DAC8C0020C561C138C2A4D5600020C2180020C788B294002000410064006F0062006500200050004400460020BB38C11CB97C0020C791C131D558B824BA740020C774B7ECD55C0020C124C815C7440020C0ACC6A9D569B2C8B2E4002E0020C774C6400020AC19C7400020C635C158C7440020C0ACC6A9D558C5EC0020C791C131B41C00200050004400460020BB38C11CB2940020004100630072006F0062006100740020BC0F002000410064006F00620065002000520065006100640065007200200037002E00300020C774C0C1C5D0C11C0020C5F40020C2180020C788C2B5B2C8B2E4002E>
 /NLD (Gebruik deze instellingen om toegankelijke Adobe PDF-documenten met labels, hyperlinks, bladwijzers, interactieve elementen en lagen te maken. U kunt gemaakte PDF-documenten openen met Acrobat en Adobe Reader 7.0 en hoger.)
 /NOR <FEFF004200720075006B00200064006900730073006500200069006E006E007300740069006C006C0069006E00670065006E0065002000740069006C002000E50020006F0070007000720065007400740065002000740069006C0067006A0065006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E00740065007200200073006F006D00200069006E006E00650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006B006F0062006C0069006E006700650072002C00200062006F006B006D00650072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004F0070007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50070006E00650073002000690020004100630072006F0062006100740020006F0067002000410064006F00620065002000520065006100640065007200200037002E00300020006F0067002000730065006E006500720065002E>
 /POL <FEFF005A006100200070006F006D006F00630105002000740079006300680020007500730074006100770069006501440020006D006F017C006E0061002000740077006F0072007A0079010700200142006100740077006F00200064006F0073007401190070006E006500200064006F006B0075006D0065006E00740079002000410064006F006200650020005000440046002C0020007A006100770069006500720061006A0105006300650020007A006E00610063007A006E0069006B0069002C002000680069007000650072014201050063007A0061002C0020007A0061006B014200610064006B0069002C00200065006C0065006D0065006E0074007900200069006E0074006500720061006B007400790077006E00650020006900200077006100720073007400770079002E0020005500740077006F0072007A006F006E006500200077002000740065006E002000730070006F007300F3006200200064006F006B0075006D0065006E0074007900200050004400460020006D006F017C006E00610020006F007400770069006500720061010700200077002000700072006F006700720061006D0061006300680020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200037002E00300020006900200069006300680020006E006F00770073007A00790063006800200077006500720073006A006100630068002E>
 /PTB <FEFF00550073006500200065007300740061007300200063006F006E00660069006700750072006100E700F5006500730020007000610072006100200063007200690061007200200064006F00630075006D0065006E0074006F007300200061006300650073007300ED00760065006900730020005000440046002000410064006F00620065002000710075006500200069006E0063006C00750065006D00200074006100670073002C002000680079007000650072006C0069006E006B0073002C0020006D00610072006300610064006F007200650073002C00200065006C0065006D0065006E0074006F007300200069006E0074006500720061007400690076006F007300200065002000630061006D0061006400610073002E0020004F007300200064006F00630075006D0065006E0074006F00730020005000440046002000630072006900610064006F007300200070006F00640065006D0020007300650072002000610062006500720074006F007300200063006F006D0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E00300020006F007500200070006F00730074006500720069006F007200650073002E>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610063006300650073006900620069006c00650020006300610072006500200069006e0063006c007500640020007400610067007500720069002c002000680069007000650072006c0069006e006b007500720069002c002000730065006d006e0065002000640065002000630061007200740065002c00200065006c0065006d0065006e0074006500200069006e0074006500720061006300740069007600650020015f0069002000730074007200610074007500720069002e00200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f0062006100740020015f0069002000410064006f00620065002000520065006100640065007200200037002e0030002c002000700072006500630075006d0020015f00690020006300750020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043D0430044104420440043E0439043A043800200434043B044F00200441043E043704340430043D0438044F00200434043E044104420443043F043D044B0445002000410064006F006200650020005000440046002D0434043E043A0443043C0435043D0442043E0432002C00200441043E0434043504400436043004490438044500200442043504330438002C002004330438043F0435044004410441044B043B043A0438002C002004370430043A043B04300434043A0438002C00200438043D0442043504400430043A044204380432043D044B04350020044D043B0435043C0435043D0442044B0020043800200441043B043E0438002E00200421043E043704340430043D043D044B04350020005000440046002D0434043E043A0443043C0435043D0442044B0020043C043E0436043D043E0020043E0442043A0440044B043204300442044C002004410020043F043E043C043E0449044C044E0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200037002E00300020043800200431043E043B043504350020043F043E04370434043D043804450020043204350440044104380439002E>
 /SUO <FEFF004B00E40079007400E40020006E00E40069007400E4002000610073006500740075006B0073006900610020006C0075006F0064006500730073006100730069002000680065006C00700070006F006B00E400790074007400F600690073006900E4002000410064006F0062006500200050004400460020002D0064006F006B0075006D0065006E007400740065006A0061002C0020006A006F0074006B0061002000730069007300E4006C007400E4007600E400740020006B006F006F00640069006D00650072006B0069006E007400F6006A00E4002C002000680079007000650072006C0069006E006B006B0065006A00E4002C0020006B00690072006A0061006E006D00650072006B006B0065006A00E4002C002000760075006F0072006F007600610069006B0075007400740065006900730069006100200065006C0065006D0065006E007400740065006A00E40020006A00610020007400610073006F006A0061002E002000410073006500740075007300740065006E0020006100760075006C006C00610020006C0075006F0064007500740020005000440046002D0064006F006B0075006D0065006E00740069007400200076006F00690020006100760061007400610020004100630072006F0062006100740020006A0061002000410064006F00620065002000520065006100640065007200200037002E0030003A006C006C0061002000740061006900200075007500640065006D006D0061006C006C0061002000760065007200730069006F006C006C0061002E>
 /SVE <FEFF0041006E007600E4006E00640020006400650020006800E4007200200069006E0073007400E4006C006C006E0069006E006700610072006E00610020006600F60072002000610074007400200073006B0061007000610020006C00E4007400740069006C006C006700E4006E0067006C006900670061002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400200073006F006D00200069006E006E0065006800E5006C006C006500720020007400610067006700610072002C002000680079007000650072006C00E4006E006B00610072002C00200062006F006B006D00E40072006B0065006E002C00200069006E0074006500720061006B007400690076006100200065006C0065006D0065006E00740020006F006300680020006C0061006700650072002E00200044006500200064006F006B0075006D0065006E007400200064007500200073006B00610070006100720020006B0061006E002000F600700070006E00610073002000690020004100630072006F0062006100740020006F00630068002000410064006F00620065002000520065006100640065007200200037002E003000200065006C006C00650072002000730065006E006100720065002E>
 /TUR <FEFF0130006D006C00650072002C002000680069007000650072002000620061011F006C00610072002C002000790065007200200069006D006C006500720069002C002000650074006B0069006C0065015F0069006D006C0069002000F6011F0065006C006500720020007600650020006B00610074006D0061006E006C006100720020006900E7006500720065006E0020006500720069015F0069006C006500620069006C00690072002000410064006F006200650020005000440046002000620065006C00670065006C0065007200690020006F006C0075015F007400750072006D0061006B0020006900E70069006E00200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E0020004F006C0075015F0074007500720075006C0061006E0020005000440046002000620065006C00670065006C0065007200690020004100630072006F006200610074002000760065002000410064006F00620065002000520065006100640065007200200037002E003000200076006500200073006F006E00720061006B00690020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f002000410064006f006200650020005000440046002d0434043e043a0443043c0435043d044204560432002c0020044f043a04560020043c045604410442044f0442044c00200442043504330438002c002004330456043f04350440043f043e04410438043b0430043d043d044f002c002004370430043a043b04300434043a0438002c00200456043d0442043504400430043a044204380432043d045600200435043b0435043c0435043d044204380020043900200448043004400438002e0020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004320020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200037002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive true
 /IncludeLayers true
 /IncludeProfiles true
 /MultimediaHandling /EmbedAll
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

