Introduction to LINEAR PROGRAMMING with MATLAB ${ }^{\circledR}$

Shashi Kant Mishra
Bhagwat Ram

Introduction to LINEAR PROGRAMMING with MATLAB ${ }^{\circledR}$

Taylor \& Francis
 Taylor \& Francis Group
 http://taylorandfrancis.com

Introduction to LINEAR PROGRAMMING with MATLAB ${ }^{\circledR}$

Shashi Kant Mishra Bhagwat Ram

MATLAB ${ }^{\circledR}$ is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB ${ }^{\circledR}$ software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB ${ }^{\circledR}$ software.

CRC Press

Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2018 by Taylor \& Francis Group, LLC
CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works

Printed on acid-free paper
Version Date: 20170726

International Standard Book Number-13: 978-1-138-09226-6 (Hardback)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Mishra, Shashi Kant, 1967- author. | Ram, Bhagwat, author.
Title: Introduction to linear programming with MATLAB / Shashi Kant Mishra
and Bhagwat Ram.
Description: Boca Raton : Taylor \& Francis, CRC Press, 2018. | Includes
bibliographical references and index.
Identifiers: LCCN 2017016988 | ISBN 9781138092266 (hardback : acid-free paper)
| ISBN 9781315104003 (ebook)
Subjects: LCSH: Linear programming--Data processing. | MATLAB.
Classification: LCC T57.74 .M57 2018 | DDC 519.7/2028553--dc23
LC record available at https://lccn.loc.gov/2017016988

Visit the Taylor \& Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com

Contents

Foreword vii
Preface ix
List of Figures xi
List of Tables xiii
1 Introduction 1
1.1 History of Linear Programming 1
2 Vector Spaces and Matrices 5
2.1 Vector 5
2.2 Matrix 10
2.3 Linear Equations 10
2.4 Matrix Inversion 15
2.5 Exercises 19
3 MATLAB 21
3.1 Introduction 21
3.2 Basic Feature 21
3.3 Basic Operations in MATLAB 22
3.4 Selection Statements and Loop Statements 31
3.5 User-Defined Function 36
3.6 MATLAB Functions Defined in This Book 38
3.7 Exercises 43
4 Introduction to Linear Programming 45
4.1 Introduction 45
4.2 Simple Examples of Linear Programs 45
4.3 Convex Sets 49
4.4 Graphical Solution of Linear Programming Problem 52
4.5 Exercises 66
5 The Simplex Method 69
5.1 Standard Form of Linear Programming Problem 69
5.2 Basic Solutions 70
5.3 Properties of Basic Solutions 77
5.4 Simplex Algorithm 84
5.5 Two-Phase Simplex Method 118
5.6 Exercises 133
6 The Revised Simplex Method 137
6.1 Introduction 137
6.2 Matrix Form of the Revised Simplex Method 137
6.3 The Revised Simplex Algorithm 139
6.4 Exercises 171
7 Duality 175
7.1 Dual Linear Programs 175
7.2 Properties of Dual Problems 178
7.3 The Dual Simplex Method 185
7.4 Exercises 208
8 The Transportation Problem 213
8.1 Introduction 213
8.2 Balanced Transportation Problem 215
8.3 Northwest Corner Method 220
8.4 Least Cost Method 230
8.5 Vogel's Approximation Method 239
8.6 Optimal Solution from BFS 249
8.7 Exercises 269
9 The Assignment Problem 273
9.1 Introduction 273
9.2 Hungarian Method 275
9.3 Exercises 300
Answer Key 305
Bibliography 309
Index 311

Foreword

Writing the foreword for this introductory textbook on linear programming with MATLAB by Professors Shashi Kant Mishra and Bhagwat Ram at Banaras Hindu University has brought me back to the memory of the Fall Quarter, 1989, at Stanford University, where the famous Professor George Dantzig was teaching the PhD course, Linear Programming, in the Operations Research Department. It was a four-unit course with a one-hour lab. One of the lab projects was to develop codes for solving linear programming problems. At that time, most of my classmates handed in the codes in Fortran or C++. I remembered that difficult time during the compiling stage, making debugs and correct Do-loops, data structures, etc. using Fortran. Having gone through the project, I learned all the details from theories to the programming parts in linear programming. Later on, there was a period where some scholars were developing convenient software over a spreadsheet environment (like Solver in Excel) for students (especially MBAs) to simply just input the data and hit the return to get sheets of the solution reports. Learning like this may treat the Simplex method as a black box. This may be another extreme way to learn linear programming.

Professors Mishra and Ram write this introductory textbook in a clever way; with very light background in linear algebra and MATLAB, the students will be brought to the theory parts quickly. Friendly examples are given to illustrate the theory sections, and MATLAB codes are provided to demonstrate the results. MATLAB is useful here because of its interpreter feature, which allows students to verify step-by-step in the simplex method without the need of compiling the codes. The authors also provide convenient "functions", which are the main steps in the simplex method. Students can simply call the functions to implement some steps in the simplex methods. In this way, the Simplex method is
no longer a black box for our students. For the undergraduates, the authors make a very nice trade-off among learning theories, coding parts, and self-assessment of understanding the subject.

Linear programming has long been recognized with beautiful theories as well as wide applications in the practical world. Using MATLAB gives students the chance to "learn by doing", one of the effective learning strategies emphasized in our modern education, in assessing themselves the level of understanding of the linear programming subject. We strongly believe that students who learn the linear programming with MATLAB will definitely understand the subject much better in theories and practical applications.

Sy-Ming Guu Professor, Graduate Institute of Business and Management Dean, College of Management, Chang Gung University, Taoyuan, Taiwan

Ph.D. in Operations Research, Stanford University

Preface

George B. Dantzig formulated a linear programming problem and developed the simplex method to solve it. This new mathematical technique found a wide range of practical applications. This is an introductory textbook on linear programming with MATLAB ${ }^{\circledR}$, written mainly for students of mathematics, computer science, engineering, economics, management science and agriculture. The textbook is based on the lecture notes and experience of the first author while teaching mathematics Bachelor of Science students at the Banaras Hindu University, Varanasi, India for several years. A large number of available textbooks have been a source of inspiration for introduction of concepts and problems. We are thankful to the authors of those books for their indirect help.

There are many textbooks on linear programming but very few on linear programming with MATLAB. Moreover, among the available textbooks on linear programming with MATLAB, there is a lack of student-friendly textbooks. There was a desperate need of a textbook on linear programming with MATLAB for the beginner of such a course. The purpose of this textbook is to introduce linear programming and use of MATLAB in the formulation, solutions and interpretation of linear programming problems in a natural way. The textbook has been written in a simple and lucid language so that a beginner can learn the subject easily. A prerequisite is a standard single-variable calculus and introductory linear algebra course. Although some background knowledge of multivariable calculus and some experience with formal proof writing are helpful, these are by no means essential.

The textbook has been organized in nine chapters. The first three chapters are an introduction, background of linear algebra needed in the sequel and basic knowledge on MATLAB. Chapter 4 is on simple examples of linear programming problems, concept of convex sets and graphical solution of linear programming prob-
lems. Chapters 5 and 6 are on Simplex method with illustrative examples that are solved manually and several examples are solved using MATLAB. Chapter 7 is on duality results and dual simplex method, and the last two chapters are on transportation and assignment problems with a sufficient number of examples. A good number of suitable exercises is also given on each method and with answers at the end of textbook. The textbook contains 80 solved examples to illustrate various methods and applications, and out of these, 42 examples are solved manually and 38 examples are solved using MATLAB.

We have written 18 user-friendly functions which show the step-by-step solution of linear programming problems. This will be an effective concept to those learners who want to learn the programming concept in linear programming.

We are thankful to Prof. Niclas Borlin, Department of Computing Science, Ume University, Sweden who permitted us to use his MATLAB function: hungarian.m. We are also thankful to Senior Acquisitions Editor of CRC, Mrs. Aastha Sharma, for guiding us during the development of this book in LaTex.

Shashi Kant Mishra Bhagwat Ram Banaras Hindu University, Varanasi, India

MATLAB ${ }^{\circledR}$ and Simulink ${ }^{\circledR}$ are registered trademarks of The MathWorks, Inc. For product information, please contact: The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 017602098 USA; Tel: 508647 7000; Fax: 508-647-7001, E-mail: info@mathworks.com; Web: www.mathworks.com.

List of Figures

1.1 J. L. Lagrange (1736-1813) 1
1.2 Joseph B. Fourier (1768-1830) 1
1.3 Mikhail Ostrogradsky (1801-1862) 2
1.4 Julius Farkas (1847-1930) 2
1.5 Leonid Vitalievich Kantorovich (1912-1996) 3
1.6 T. C. Koopmans (1910-1985) 3
1.7 George B. Dantzig (1914-2005) 4
1.8 Cleve Barry Moler (August 17, 1939) 4
4.1 Line segment PQ 49
4.2 Triangle ABC 51
4.3 A convex set 51
4.4 A nonconvex set 51
4.5 Graphical solution of Example 4.6 53
4.6 Graphical solution of Example 4.6 in MATLAB 54
4.7 Graphical solution of Example 4.7 55
4.8 Graphical solution of Example 4.7 in MATLAB 56
4.9 Graphical solution of Example 4.8 57
4.10 Graphical solution of Example 4.8 in MATLAB 58
4.11 Graphical solution of Example 4.9 in MATLAB 59
4.12 Graphical solution of Example 4.10 59
4.13 Graphical solution of Example 4.10 in MATLAB 60
4.14 Graphical solution of Example 4.11 61
4.15 Graphical solution of Example 4.11 in MATLAB 61
4.16 Graphical solution of Example 4.12 in MATLAB 62
4.17 Graphical solution of Example 4.13 in MATLAB 63
4.18 Graphical solution of Example 4.14 64
4.19 Graphical solution of Example 4.14 in MATLAB 65

Taylor \& Francis
 Taylor \& Francis Group
 http://taylorandfrancis.com

List of Tables

3.1 Types of Specifiers 30
3.2 Numeric Display of Formats 31
3.3 Relational Operators 32
4.1 Production Time 47
4.2 Hotel Requirement 48

Taylor \& Francis
 Taylor \& Francis Group
 http://taylorandfrancis.com

Chapter 1

Introduction

1.1 History of Linear Programming

We are presenting a theory whose official birth was at the heart of the twentieth century and in fact in the years right after the Second World War. However, all the readers are familiar with the method of Lagrange multipliers from Calculus, named after Joseph Louis Lagrange (1736-1813) who considered equality constrained minimization and maximization problems in 1788 , in the course of the

FIGURE 1.1: J. L. Lagrange (1736-1813) study of a stable equilibrium for a mechanical system.

The famous French mathematician Joseph B. Fourier (1768-1830) considered mechanical systems subject to inequality constraints, in 1798, though Fourier died before he could raise any real interest of his new findings to the mathematical community. Two students of Fourier-the famous mathematician, Navier, in 1825, and the equally famous mathematical economist, Cournot, in 1827, without mentioning the work of Fourier-rediscovered the principle of Fourier, giving the necessary conditions for equilibrium with ad hoc argument which make specific reference to the mechanical interpretation.

In 1838, the Russian mathematician Mikhail Ostrogradsky (1801-1862) gave the same treatment in the more general terms. He asserted without referring to Joseph B. Fourier, that at the min-
imizer the gradient of the objective function can be represented as a linear combination, with nonnegative multipliers of the gradients of the constraints.

It is worth noticing that Ostrogradsky was a student in Paris before he went to St. Petersburg, and he attended the mathematical courses of Fourier, Poisson, Chauchy and other famous French mathematicians.

The Hungarian theoretical physicist Julius Farkas (1847-1930) focused on the mathematical foundation and developed a theory of ho-

FIGURE 1.3: Mikhail Ostrogradsky (1801-1862) mogeneous linear inequalities which was published in 1901. However, the first effective acknowledgment of the importance of the work of Farkas was given in the Masters thesis of Motzkin in 1933. But, the Farkas Lemma has to wait almost half a century to be applied. American mathematicians also started developing a theory for systems of linear inequalities followed by a paper on "preferential voting" published in The American Mathematical Monthly in 1916.

Note that the theory of linear program-

FIGURE 1.4: Julius Farkas (1847-1930) ming did not just appear overnight. Linear programming depends on development of other mathematical theories and mathematical tools, one of these is of course Convex Analysis, which was not known well before. The birth of the linear programming theory took place in two different, equally developed countries: the USSR and USA, but the motivating forces were also entirely different.
In the USSR, the father of linear programming is Leonid Vitalievich Kantorovich (1912-1996) and he is well known in the mathematical community for his achievements in linear programming, mathematical economics and functional analysis. He was awarded the Nobel Prize in 1975 together with T. C. Koopmans (1910-1985).

In the year 1939, Kantorovich was a young professor at the Leningrad University. A state firm that produced plywood and wished to make more efficient use of its machines contacted Kantorovich for a scientific advice. The aim was to increase the production level of five different types of plywood, carried out by eight factories, each with different production capacity. Kantorovich soon realized that this

FIGURE 1.5: Leonid Vitalievich Kantorovich (1912-1996) problem has a mathematical structure.

In 1939, Kantorovich discussed and numerically solved the optimization problem under inequality constraints, in his small book, which was translated to English in 1960. In this book, Kantorovich presented several microeconomic problems from the production planning of certain industries. But, till 1958, economists in the USSR were not in favour to use the theory given by Kantorovich. In 1960, at the Moscow Conference, economists discussed for the first time the use of mathematical methods in economics and planning, and later in 1971 for optimal planning procedures.

The work of Kantorovich was available to

FIGURE 1.6: T. C. Koopmans (1910-1985) the rest of the world in 1960, when Tjalling Carles Koopmans (1910-1985) published an English translation of Kantorovich's work in 1939.

Meanwhile, a similar line of research on inequality constrained optimization took place in the USA independent of the work of the Russians. During the Second World War from 1942 to 1944, Koopmans worked as a statistician at the "Allied Shipping Adjustment Board" and was concerned with some transportation models.

In the same period, George B. Dantzig (1914-2005), who is recognized as the Western Father of Linear Programming, collaborated with the Pentagon as an expert of programming methods, developed with the help of desk calculators. Dantzig finished his studies and became a PhD in mathematics soon after the war ended.

Job opportunities came from the University of California at Berkeley and from the Pentagon. The simplex method discovered by Dantzig to solve a linear programming problem was presented for the first time in the summer of 1947. In June 1947, Dantzig introduced the simplex algorithm to Koopmans who took it to the community of economists

FIGURE 1.7: George B. Dantzig (1914-2005) namely, K. J. Arrow, P. A. Samuelson, H. Simon, R. Dorfman, L. Hurwiez and others, and the Simplex method became quite a potential method. The Simplex algorithm has been declared as one of the best 10 algorithms with the greatest influence on the development and practice of science and engineering in the twentieth century.

Cleve Barry Moler, the chairman of the

FIGURE 1.8: Cleve Barry Moler (August 17, 1939) Computer Science department at the University of New Mexico, started developing MATLAB in the late 1970s. He designed it to give his undergraduate students for accessing LINPACK (Linear Algebra Subroutines for Vector-Matrix operations) and EISPACK (To compute eigenvalues and eigen vectors) general purpose libraries of algoritms. It soon became popular to other universities also and found a strong interest among the students of applied mathematics. Jack Little and Steve Bangert attracted with this new programming environment and rewrote several developed MATLAB functions in C. Moler, Little and Bangert founded the Mathworks, Inc., in 1984.

MATLAB was first adopted by researchers and practitioners in control engineering, Little's specialty, but quickly spread to many other domains. It is now also used in education for learning and teaching.

Chapter 2

Vector Spaces and Matrices

2.1 Vector

An n vector is a column array of n numbers, denoted as

$$
a=\left[\begin{array}{c}
a_{1} \tag{2.1}\\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]
$$

The number a_{i} is called the $i^{\text {th }}$ component of the vector a. For example, $a=\left[\begin{array}{r}1 \\ 2 \\ -3\end{array}\right]$ is a column vector of size $n=3$. Similarly, an n vector is a row vector of n numbers as

$$
a=\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n} \tag{2.2}
\end{array}\right] .
$$

For example, $a=\left[\begin{array}{lll}1 & 2 & -3\end{array}\right]$ is a row vector of size $\mathrm{n}=3$. We denote \mathbb{R} as the set of real numbers and \mathbb{R}^{n} is the set of column or row n-vectors with real components. We can say \mathbb{R}^{n} as n-dimensional real vector space. We can denote the vectors by lowercase letters such as a, b, c, etc. The components of $a \in \mathbb{R}^{n}$ are denoted as $a_{1}, a_{2}, \ldots, a_{n}$.
The transpose (denoted as T) of a given column vector (2.1) is a row vector (2.2). Therefore, we can write

$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right]^{T}=\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right] .
$$

The transpose of a row vector (2.2) is a column vector (2.1).

$$
\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right]^{T}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right],
$$

that is

$$
a^{T}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] .
$$

Note that the set of all row vectors forms a vector space called "row space", similarly the set of all column vectors forms a vector space called "column space".

A vector space V is a collection of vectors, which is closed under the operations of addition of two vectors $a, b \in V$, and multiplication by a scalar, $\alpha \in \mathbb{R}$, then the following properties hold:

1. Commutativity of vector addition: for vectors $a, b \in V$

$$
a+b=b+a .
$$

2. Associativity of vector addition: for vectors $a, b, c \in V$

$$
a+(b+c)=(a+b)+c
$$

3. Existence of zero vector: for vector $a \in V$, we have

$$
a+0=0+a=a .
$$

4. Distributivity: for vectors $a, b \in V$ and scalars $\alpha, \beta \in \mathbb{R}$, we have

$$
\begin{aligned}
\alpha(a+b) & =\alpha a+\alpha b \\
(\alpha+\beta) a & =\alpha a+\beta a
\end{aligned}
$$

5. Associativity of multiplication: for vector $a \in V$ and scalars $\alpha, \beta \in \mathbb{R}$, we have

$$
\alpha(\beta a)=(\alpha \beta) a
$$

6. Unitarity: for vector $a \in V$, we have

$$
1 a=a .
$$

7. The scalar 0 satisfies: for vector $a \in V$, we have

$$
0 a=0 .
$$

8. Any scalar $\alpha \in \mathbb{R}$ satisfies:

$$
\alpha 0=0 .
$$

9. Existence of negatives: for $a \in V$, we have

$$
(-1) a=-a .
$$

Two vectors $a=\left[\begin{array}{llll}a_{1} & a_{2} & \ldots & a_{n}\end{array}\right]^{T}$ and $b=\left[\begin{array}{llll}b_{1} & b_{2} & \ldots & b_{n}\end{array}\right]^{T}$ are equal if and only if $a_{i}=b_{i}$, for all $i=1,2, \ldots, n$.
We can add two vectors a and b as

$$
a+b=\left[\begin{array}{llll}
a_{1}+b_{1} & a_{2}+b_{2} & \ldots & a_{n}+b_{n}
\end{array}\right]^{T} .
$$

We can subtract two vectors a and b as

$$
a-b=\left[\begin{array}{llll}
a_{1}-b_{1} & a_{2}-b_{2} & \ldots & a_{n}-b_{n}
\end{array}\right]^{T} .
$$

The vector $0-b$ is denoted as $-b$.
Suppose that $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$ is a solution to $a+x=b$. Then,

$$
\begin{array}{r}
a_{1}+x_{1}=b_{1}, \\
a_{2}+x_{2}=b_{2}, \\
\vdots \\
a_{n}+x_{n}=b_{n},
\end{array}
$$

and thus

$$
x=b-a .
$$

We can say that vector $b-a$ is the unique solution of the vector equation $a+x=b$.

We define an operation of multiplication of a vector $a \in \mathbb{R}^{n}$ by a real scalar $\alpha \in \mathbb{R}$ as

$$
\alpha a=\left[\begin{array}{llll}
\alpha a_{1} & \alpha a_{2} & \ldots & \alpha a_{n}
\end{array}\right] .
$$

Note that $\alpha a=0$ if and only if $\alpha=0$ or $a=0$. To see this, observe that $\alpha a=0$ is equivalent to $\alpha a_{1}=\alpha a_{2}=\cdots=\alpha a_{n}=0$. If $\alpha=0$ or $a=0$, then $\alpha a=0$. If $a \neq 0$, then at least one of its components $a_{k} \neq 0$. For this component, $\alpha a_{k}=0$, and hence we must have $\alpha=0$. Similar arguments can be applied to the case when $\alpha \neq 0$.

Definition 2.1 (Linearly Independent). A set of vectors $S=$ $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ is said to be linearly independent if the equality $\alpha_{1} a_{1}+\alpha_{2} a_{2}+\cdots+\alpha_{k} a_{k}=0$ implies that all coefficients $\alpha_{i} \in \mathbb{R}$, where $i=1,2, \ldots, k$ are equal to zero.
Example 2.1. Prove that the vectors $a_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], a_{2}=\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$, $a_{3}=\left[\begin{array}{c}0 \\ 0 \\ -1\end{array}\right]$ are linearly independent.

We apply definition of linear independent. We must show that the linear combination of vectors a_{1}, a_{2} and a_{3} are equal to zero in which all the coefficients α_{1}, α_{2}, and α_{3} should be zero. Therefore, we can write as

$$
\alpha_{1}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+\alpha_{2}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]+\alpha_{3}\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Equating the corresponding coordinates of the vectors on the left and right side, we get the following system of linear equations:

$$
\begin{aligned}
\alpha_{1} & =0, \\
\alpha_{2} & =0, \\
\alpha_{1}-\alpha_{2}-\alpha_{3} & =0 .
\end{aligned}
$$

Solving the above equations, we get $\alpha_{1}=\alpha_{2}=\alpha_{3}=0$. Thus, vectors a_{1}, a_{2}, and a_{3} are linearly independent.

Definition 2.2 (Linearly Dependent). A set of the vectors $S=$ $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ is said to be linearly dependent if there exists coefficients $\alpha_{i} \in \mathbb{R}$, where $i=1,2, \ldots, k$ not all of which are zero such that $\alpha_{1} a_{1}+\alpha_{2} a_{2}+\cdots+\alpha_{k} a_{k}=0$.

Example 2.2. Show that the vectors $a_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], a_{2}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$, and $a_{3}=\left[\begin{array}{l}3 \\ 3 \\ 4\end{array}\right]$ are linearly dependent.

The vectors a_{1}, a_{2}, a_{3} are linearly dependent because $2 a_{1}+a_{2}-$ $a_{3}=0$, where $\alpha_{i} \neq 0$, i.e., $\alpha_{1}=2, \alpha_{2}=1$, and $\alpha_{3}=-1$.

Theorem 2.1. A set of vectors $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ is linearly dependent if and only if one of the vectors a_{i} from the set is a linear combination of the remaining vectors.

Proof. Using definition (2.2), since $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is linearly dependent, there exists coefficients $\alpha_{i} \in \mathbb{R}$, not all zero such that

$$
\begin{equation*}
\alpha_{1} a_{1}+\cdots+\alpha_{i} a_{i}+\cdots+\alpha_{k} a_{k}=0 . \tag{2.3}
\end{equation*}
$$

Suppose $\alpha_{i} \neq 0$ for some i, that is

$$
a_{i}=-\frac{\alpha_{1}}{\alpha_{i}} a_{1}-\frac{\alpha_{2}}{\alpha_{i}} a_{2}-\cdots-\frac{\alpha_{i-1}}{\alpha_{i}} a_{i-1}-\frac{\alpha_{i+1}}{\alpha_{i}} a_{i+1}-\cdots-\frac{\alpha_{k}}{\alpha_{i}} a_{k} .
$$

Conversely, for some i, a_{i} can be expressed as a linear combination of other vectors. That is,

$$
a_{i}=\alpha_{1} a_{1}+\cdots+\alpha_{i-1} a_{i-1}+\alpha_{i+1} a_{i+1}+\cdots+\alpha_{k} a_{k},
$$

then we can write

$$
\alpha_{1} a_{1}+\cdots+(-1) a_{i}+\alpha_{i+1} a_{i+1}+\cdots+\alpha_{k} a_{k}=0 .
$$

Since $\alpha_{i}=-1 \neq 0$, thus, the set of vectors $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is linearly dependent.

2.2 Matrix

A matrix is a rectangular array of numbers, commonly denoted by uppercase bold letters (e.g., A,B, etc.). A matrix with m rows and n columns is called an $m \times n$ matrix, and we write

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

The real number, $a_{i j}$, located in the $i^{\text {th }}$ row and $j^{\text {th }}$ column is called the $(i, j)^{\text {th }}$ entry. We can think of A in terms of its n columns, each of which is a column vector in \mathbb{R}^{m}. Alternatively, we can think of A in terms of its m rows, each of which is a row n-vector. The transpose of matrix A, denoted as A^{T}, is the $n \times m$ matrix.

$$
A^{T}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{m 1} \\
a_{12} & a_{22} & \ldots & a_{m 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \ldots & a_{m n}
\end{array}\right]
$$

We see that columns of A are the rows of A^{T} and vice versa.
Note that the symbol $\mathbb{R}^{m \times n}$ denotes the set of $m \times n$ matrices whose entries are real numbers. We treat column vectors in \mathbb{R}^{n} as elements of $\mathbb{R}^{n \times 1}$. Similarly, we treat row n-vectors as elements of $\mathbb{R}^{1 \times n}$.

2.3 Linear Equations

Consider m linear equations in n unknowns namely of $x_{1}, x_{2}, \ldots, x_{n}$ as:

$$
\begin{aligned}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
\vdots & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m} .
\end{aligned}
$$

Equivalently,

$$
A x=b .
$$

Associated with this system of equations is the matrix:

$$
A=\left[a_{1}, a_{2}, \ldots, a_{n}\right] .
$$

Consider the $m \times n$ matrix

$$
\mathrm{A}=\left[\begin{array}{cccc}
a_{11} & a_{21} & \ldots & a_{m 1} \\
a_{12} & a_{22} & \ldots & a_{m 2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & \ldots & a_{m n}
\end{array}\right] .
$$

We can apply elementary row operations in the matrix A to get the matrix in reduced form.

An elementary row operation on the given matrix A is an algebraic manipulation of the matrix that corresponds to one of the following:

1. Interchanging any two rows such as the $p^{\text {th }}$ and the $u^{\text {th }}$ rows of the matrix A;
2. Multiplying one of its rows such as the $p^{\text {th }}$ row by a real number α where $\alpha \neq 0$;
3. Adding one of its rows such as the $u^{\text {th }}$ row to the β times $p^{\text {th }}$ row.

Rank of Matrix

The number of nonzero rows in the row reduced form of a matrix A is called a rank of the matrix A, denoted as $\rho(A)$. It is read as 'rho of A '. Note that if the matrix A is of order $m \times n$ and $\rho(A)=m$, then A is said to be of full rank.

Example 2.3. Find the rank of the matrix $A=\left[\begin{array}{rrrr}2 & 2 & 2 & -2 \\ 1 & 2 & 3 & 4 \\ 3 & 4 & 5 & 2\end{array}\right]$.

$$
\left[\begin{array}{rrrr}
2 & 2 & 2 & -2 \\
1 & 2 & 3 & 4 \\
3 & 4 & 5 & 2
\end{array}\right]
$$

$R_{1} \rightarrow \frac{1}{2} R_{1}$

$$
\left[\begin{array}{rrrr}
1 & 1 & 1 & -1 \\
1 & 2 & 3 & 4 \\
3 & 4 & 5 & 2
\end{array}\right]
$$

$R_{2} \rightarrow R_{2}-R_{1}$

$$
\left[\begin{array}{rrrr}
1 & 1 & 1 & -1 \\
0 & 1 & 2 & 5 \\
3 & 4 & 5 & 2
\end{array}\right]
$$

$R_{3} \rightarrow R_{3}-3 R_{1}$

$$
\left[\begin{array}{rrrr}
1 & 1 & 1 & -1 \\
0 & 1 & 2 & 5 \\
0 & 1 & 2 & 5
\end{array}\right]
$$

$R_{3} \rightarrow R_{3}-R_{2}$

$$
\left[\begin{array}{rrrr}
1 & 1 & 1 & -1 \\
0 & 1 & 2 & 5 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Therefore, $\rho(A)=$ Number of nonzero rows $=2$.

Example 2.4. Find the rank of the matrix.

$$
\left[\begin{array}{rrrr}
0 & 1 & -3 & -1 \\
1 & 0 & 1 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0
\end{array}\right] .
$$

Applying elementary row operations,

$$
\left[\begin{array}{rrrr}
0 & 1 & -3 & -1 \\
1 & 0 & 1 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0
\end{array}\right]
$$

$R_{2} \leftrightarrow R_{1}$

$$
\left[\begin{array}{rrrr}
1 & 0 & 1 & 1 \\
0 & 1 & -3 & -1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0
\end{array}\right]
$$

$R_{3} \rightarrow R_{3}-3 R_{1}$

$$
\left[\begin{array}{rrrr}
1 & 0 & 1 & 1 \\
0 & 1 & -3 & -1 \\
0 & 1 & -3 & -1 \\
1 & 1 & -2 & 0
\end{array}\right]
$$

$R_{4} \rightarrow R_{4}-R_{1}$

$$
\left[\begin{array}{rrrr}
1 & 0 & 1 & 1 \\
0 & 1 & -3 & -1 \\
0 & 1 & -3 & -1 \\
0 & 1 & -3 & -1
\end{array}\right]
$$

$R_{3} \rightarrow R_{3}-R_{2}$

$$
\left[\begin{array}{rrrr}
1 & 0 & 1 & 1 \\
0 & 1 & -3 & -1 \\
0 & 0 & 0 & 0 \\
0 & 1 & -3 & -1
\end{array}\right]
$$

$R_{4} \rightarrow R_{4}-R_{2}$

$$
\left[\begin{array}{rrrr}
1 & 0 & 1 & 1 \\
0 & 1 & -3 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Therefore, $\rho(A)=$ Number of nonzero rows $=2$.
The system of linear equations is said to be

1. Consistent if $\rho(A)=\rho(A \mid b)$, then
(a) The system has a unique solution if $\rho(A)=\rho(A \mid b)$ $=$ Number of variables.
(b) The system has infinitely many solutions if $\rho(A)=$ $\rho(A \mid b)<$ Number of variables.
2. Inconsistent if $\rho(A) \neq \rho(A \mid b)$, then the system has no solution.

Example 2.5. Solve the following system of equations.

$$
\begin{aligned}
2 x+6 y & =-11, \\
6 x+20 y-6 z & =-3, \\
6 y-18 z & =-1 .
\end{aligned}
$$

We can write system of linear equations as an augmented matrix:

$$
\left[\begin{array}{rrr|r}
2 & 6 & 0 & -11 \\
6 & 20 & -6 & -3 \\
0 & 6 & -18 & -1
\end{array}\right]
$$

We proceed with elementary row operations.
$R_{2} \rightarrow R_{2}-3 R_{1}$

$$
\left[\begin{array}{rrr|r}
2 & 6 & 0 & -11 \\
0 & 2 & -6 & 30 \\
0 & 6 & -18 & -1
\end{array}\right]
$$

$R_{3} \rightarrow R_{3}-3 R_{2}$

$$
\left[\begin{array}{rrr|r}
2 & 6 & 0 & -11 \\
0 & 2 & -6 & 30 \\
0 & 0 & 0 & -91
\end{array}\right]
$$

We see that

$$
\begin{aligned}
\rho(A) & =2, \\
\rho(A \mid b) & =3 .
\end{aligned}
$$

That is,

$$
\rho(A) \neq \rho(A \mid b)
$$

Thus, the system is inconsistent and it has no solution.

2.4 Matrix Inversion

We apply the method of row reduction to find the inverse of a nonsingular matrix. If A be an $n \times n$ nonsingular matrix, then A^{-1} exists.

Suppose that we have an equation

$$
\begin{equation*}
A x=b, \tag{2.4}
\end{equation*}
$$

where $b \neq 0$. To solve this, we can proceed as follows:

$$
\begin{aligned}
A^{-1}(A x) & =A^{-1} b \\
\left(A^{-1} . A\right) x & =A^{-1} b
\end{aligned}
$$

Since

$$
A^{-1} A=I,
$$

then

$$
I x=A^{-1} b .
$$

Since

$$
I x=x,
$$

therefore

$$
\begin{equation*}
x=A^{-1} b \tag{2.5}
\end{equation*}
$$

Thus, solving (2.4) is just an equivalent to finding (2.5). But, the solution can be done by the process of row reduction. The method of row reduction will also be adaptable to find $A^{-1} b$ and consequently A^{-1}. We can also write (2.4) as

$$
\begin{equation*}
A x=I b . \tag{2.6}
\end{equation*}
$$

Premultiplying (2.6) by A^{-1},

$$
A^{-1} A x=A^{-1} I b
$$

We get

$$
\begin{equation*}
I x=A^{-1} b \tag{2.7}
\end{equation*}
$$

In this process, we always work from A and arrive at I. From (2.6) and (2.7), it is observed that if the same row reduction is applied to identity matrix, I, then we end up with matrix A^{-1}.
Example 2.6. Find the inverse of the matrix $A=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & 2\end{array}\right]$.

$$
\left[\begin{array}{rrrrrr}
1 & 1 & 0 & 1 & 0 & 0 \\
1 & -1 & 1 & 0 & 1 & 0 \\
1 & -1 & 2 & 0 & 0 & 1
\end{array}\right]
$$

$R_{2} \rightarrow R_{2}-R_{1}$

$$
\left[\begin{array}{rrrrrr}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & -2 & 1 & -1 & 1 & 0 \\
1 & -1 & 2 & 0 & 0 & 1
\end{array}\right]
$$

$R_{3} \rightarrow R_{3}-R_{1}$

$$
\left[\begin{array}{rrrrrr}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & -2 & 1 & -1 & 1 & 0 \\
0 & -2 & 2 & -1 & 0 & 1
\end{array}\right]
$$

$R_{2} \rightarrow-\frac{1}{2} R_{2}$

$$
\left[\begin{array}{rrrrrr}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 / 2 & 1 / 2 & -1 / 2 & 0 \\
0 & -2 & 2 & -1 & 0 & 1
\end{array}\right]
$$

$R_{3} \rightarrow \frac{1}{2} R_{3}$

$$
\left[\begin{array}{rrrrrr}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 / 2 & 1 / 2 & -1 / 2 & 0 \\
0 & -1 & 1 & -1 / 2 & 0 & 1 / 2
\end{array}\right]
$$

$R_{1} \rightarrow R_{1}-R_{2}$

$$
\left[\begin{array}{rrrrrr}
1 & 0 & 1 / 2 & 1 / 2 & 1 / 2 & 0 \\
0 & 1 & -1 / 2 & 1 / 2 & -1 / 2 & 0 \\
0 & -1 & 1 & -1 / 2 & 0 & 1 / 2
\end{array}\right]
$$

$R_{3} \rightarrow R_{3}+R_{2}$

$$
\left[\begin{array}{rrrrrr}
1 & 0 & 1 / 2 & 1 / 2 & 1 / 2 & 0 \\
0 & 1 & -1 / 2 & 1 / 2 & -1 / 2 & 0 \\
0 & 0 & 1 / 2 & 0 & -1 / 2 & 1 / 2
\end{array}\right]
$$

$R_{3} \rightarrow 2 R_{3}$

$$
\left[\begin{array}{rrrrrr}
1 & 0 & 1 / 2 & 1 / 2 & 1 / 2 & 0 \\
0 & 1 & -1 / 2 & 1 / 2 & -1 / 2 & 0 \\
0 & 0 & 1 & 0 & -1 & 1
\end{array}\right]
$$

$$
R_{1} \rightarrow R_{1}-\frac{1}{2} R_{3}
$$ Introduction to LINEAR PROGRAMMING with MATLAB ${ }^{\circledR}$

$$
\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 1 / 2 & 1 & -1 / 2 \\
0 & 1 & -1 / 2 & 1 / 2 & -1 / 2 & 0 \\
0 & 0 & 1 & 0 & -1 & 1
\end{array}\right]
$$

$R_{2} \rightarrow R_{2}+\frac{1}{2} R_{3}$

$$
\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 1 / 2 & 1 & -1 / 2 \\
0 & 1 & 0 & 1 / 2 & -1 & 1 / 2 \\
0 & 0 & 1 & 0 & -1 & 1
\end{array}\right]
$$

Therefore,

$$
A^{-1}=\left[\begin{array}{rrr}
1 / 2 & 1 & -1 / 2 \\
1 / 2 & -1 & 1 / 2 \\
0 & -1 & 1
\end{array}\right]
$$

2.5 Exercises

Exercise 2.1. Determine if each of the following sets of vectors is linearly independent or linearly dependent.
(a) $\mathrm{V}=\left\{\left[\begin{array}{lll}1 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 2 & 1\end{array}\right],\left[\begin{array}{lll}2 & 2 & 2\end{array}\right]\right\}$
(b) $\mathrm{V}=\left\{\left[\begin{array}{lll}2 & 1 & 0\end{array}\right],\left[\begin{array}{lll}1 & 2 & 0\end{array}\right],\left[\begin{array}{lll}3 & 3 & 1\end{array}\right]\right\}$
(c) $\mathrm{V}=\left\{\left[\begin{array}{ll}2 & 1\end{array}\right],\left[\begin{array}{ll}1 & 2\end{array}\right]\right\}$

Exercise 2.2. Find the rank of the following matrices.
(a)

$$
A=\left[\begin{array}{rrrr}
2 & 3 & -1 & -1 \\
1 & -1 & -2 & -4 \\
3 & 1 & 3 & -2 \\
6 & 3 & 0 & -7
\end{array}\right]
$$

(b)

$$
A=\left[\begin{array}{rrrr}
6 & 1 & 3 & 8 \\
16 & 4 & 12 & 15 \\
5 & 3 & 3 & 4 \\
4 & 2 & 6 & -1
\end{array}\right]
$$

Exercise 2.3. Find the inverse of the following matrices.
(a)

$$
A=\left[\begin{array}{rr}
5 & 6 \\
3 & -2
\end{array}\right]
$$

(b)

$$
A=\left[\begin{array}{rrr}
1 & 2 & -4 \\
-1 & -1 & 5 \\
2 & 7 & -3
\end{array}\right]
$$

Exercise 2.4. Find the inverse of the following matrices.
(a)

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(b)

$$
A=\left[\begin{array}{rrrr}
1 & 2 & 1 & 0 \\
0 & 1 & -1 & 1 \\
1 & 3 & 1 & -2 \\
1 & 4 & -2 & 4
\end{array}\right]
$$

Exercise 2.5. Solve the following system of equations.
(a)

$$
\begin{aligned}
x+y+2 z & =4, \\
2 x+3 y+6 z & =10, \\
3 x+6 y+10 z & =14 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& 2 x-y-4 z=2, \\
& 4 x-2 y-6 z=5, \\
& 6 x-3 y-8 z=8 .
\end{aligned}
$$

Chapter 3

MATLAB

3.1 Introduction

MATLAB is a standard tool which has been included in introductory and advanced courses in applied mathematics, engineering, science and economics in many universities around the world. In industry, it is a tool of research, development, and analysis. MATLAB (short for MATrix LABoratory) is a mathematical and graphical software package with numerical, graphical, and programming capabilities developed by the MathWorks, Inc., Natick, Massachusetts, USA. In 1984, the first version appeared.

MATLAB is helpful to solve complicated problems. All major functions can directly be used as the input. MATLAB uses an interpreter to understand what we type and what type of output may come. Users sometimes get suggestions to make error-free statements. Therefore, we need to be careful. We begin by studying the basic feature in MATLAB.

3.2 Basic Feature

To start MATLAB in Microsoft Windows, double-click on the MATLAB icon on the Windows desktop. MATLAB can also be started by selecting MATLAB from the Start menu. Once MATLAB is launched, a MATLAB Command Window appears on the screen.

Command Window

The Command Window is used to enter several variables, evalu-
ate MATLAB commands, and run M-files or functions.

Edit Window

To open the Edit Window, go to File \rightarrow New \rightarrow Script. This window allows us to type and save a series of commands without executing them. We can also open the Edit Window by typing Edit at the Command prompt or by selecting the New Script button on the toolbar.

MuPAD

MuPAD opens a new blank MuPAD notebook and returns an object representing the notebook. A MuPAD notebook is an easy to use environment for performing computations symbolically using the MuPAD language and documenting the results.
For example, we write in the Command Window:

>> Mupad

It will open a new blank MuPAD notebook.

Help Browser

The Help Browser is used to view pre-defined documentation for all MATLAB products. It helps to know about any command that we want.
For example, to know about for loop, we write in the Command Window as follows:
>> help for

3.3 Basic Operations in MATLAB

In the Command Window, we see: >>. This notation >> is called the prompt.
In the Command Window, MATLAB can be used interactively. It
means that MATLAB command or expression can be entered, and MATLAB immediately responds with the result.

For example, this is the way it would appear in the Command Window:
>> mynum $=10$
mynum $=$
10
MATLAB uses a default variable named, if an expression is typed at the prompt and it is not assigned to a variable. For example, the result of the expression $9+3$ is stored in the variable ans.

```
>> 9+3
ans =
12
```


Variables and Assignments

In MATLAB, we use the equal sign to assign values to a variable. For example:

```
>> u = 9
```

```
\(\mathrm{u}=\)
    9
```

Henceforth, MATLAB always takes the value of the variable u as 9. For example:

```
>> u*2 - 2*u + u
ans =
    9
```

Note that MATLAB never forgets used variables unless instructed to do so. We can check the current value of a variable by simply typing its name.
Example 3.1. $a=4, b=6, c=3$. Find $a \times(b+c), a \times(b+c)$, $\frac{a}{b}+c$, and $\frac{a}{b+c}$.

In the Command Window,

```
>> format rat
>> a = 4; b = 6; c = 3;
>> a*(b+c)
>> a*b+c
>> a/b+c
>> a/(b+c)
```

In this example, we get the answers $36,27,11 / 3,4 / 9$. This gives some idea that MATLAB performs those calculations first which are in brackets. The command format rat has been used to force the results to be shown as rationals, the final command format reverts to the default. We have used a semicolon at the end of MATLAB assignment statements to suppress echoing of assigned values in the Command Window. This greatly speeds program execution.

The transpose operator swaps the row and columns of any array that it is applied to.
For example:

```
>> f = [1:4],
f =
    1
    2
    3
    4
```


Vectors and Matrices

A vector is a list of elements. Elements should be separated by comma or space for row vector and semicolon for column vector. For example:
>> $B=\left[\begin{array}{lll}5 & 6 & 7\end{array}\right]$
$\mathrm{B}=$
$5 \quad 6$

```
>> b= [23; 34; 12]
```

$\mathrm{b}=$
23
34
12
A matrix is a rectangular array of numbers. Row and column vectors are also examples of matrices.
For example:

```
>> A = [1 3 5 6; 7 -3 1 8; 5 1 -1 9]
```

$\mathrm{A}=$

1	3	5	6
7	-3	1	8
5	1	-1	9

MATLAB has many built-in functions. The built-in function zeros can be used to create an all-zero array of any desired size.
For example:

```
>> a = zeros(2)
a}
    0
    0
>> b = zeros (2,3)
```

$\mathrm{b}=$
$0 \quad 0 \quad 0$
$0 \quad 0 \quad 0$
eye function can be used to generate arrays containing identity matrices, in which all on-diagonal elements are one, while all offdiagonal elements are zero.
For example:

```
>> eye(3)
ans =
\begin{tabular}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{tabular}
```


size() Function

size() function returns two values specifying the number of rows and columns of any matrix.
For example:

```
>> A=[1 2 2 3 7 4; 4 5 8 4 -3; 0 5 9 0 -3; 2 1 7 3 3 0 ];
>> [m n]=size(A)
m =
        4
n =
    5
end Function
```

MATLAB provides a special function named end that is very useful for creating array subscripts. The end function returns the highest value taken by the subscript in vector or matrix.
For example:

```
>> B =[lllllllllll}
>> B(5 : end)
ans =
    4 3 2 1
```

We can write 3×4 matrix in MATLAB as follows:
$\gg A=\left[\begin{array}{llllllllllll}1 & 2 & 3 & 4 ; & 5 & 6 & 7 & 8 ; & 9 & 10 & 11 & 12\end{array}\right]$
$A=$

1	2	3	4
5	6	7	8
9	10	11	12

>> A(2: end, 2:end)
ans $=$

6	7	8
10	11	12

abs() Function

abs () function calculates the absolute value of any variable. For example:

```
>> x= abs(-4)
```

$\mathrm{x}=$
4

Comments

Comments are an integral part of any programming language. Comments help to identify program purpose and explain the work of particular statements in a program. Comments also allow others to understand the code.

To comment out multiple lines of code, we can use the block comment operators, $\%\{$ and $\%\}$:
\%\{
Introduction to LINEAR PROGRAMMING with MATLAB Chapter I- By S K Mishra \%\}

We can also create quick, one-line comments with operator \%. The next line of code demonstrates this.
\% By S K Mishra

MATLAB SCRIPTS

A Script is nothing but, a computer program written in the language of MATLAB. It is stored in an M-file. It is saved with extension .m. We can display the contents of the script in the Command Window using the type command followed by file name without .m extension. Interpreter is a computer program which executes the statements of script step by step. The script can be executed, or run, by simply entering the name of the file (without the .m extension) in the command window. MATLAB ignores the comment lines and does not execute when we run the M-file.
For example:

Code 3.1: radius.m.

$$
\begin{aligned}
& \text { \%find radius of circle } \\
& \quad \text { radius }=5 ; \\
& \text { area }=\text { pi } *(\text { radius })^{\wedge} 2
\end{aligned}
$$

Note that type command is helpful to see the contents of the script in the Command Window. For eample:

```
>> type radius
```


Output:

```
radius=5;
area=pi*(radius)^2
```

To run the script, the name of the file is entered at the prompt (again, without the .m) or press F5.
>> radius
radius $=$

$$
5
$$

```
area =
```

 78.5398
 INPUT/OUTPUT

Statements that accomplish to print the output or take the input from users are called Input/Output statements. Input statements read in values from the standard input device that is the keyboard.

In the Command Window,

>> side $=$ input('Enter the side of square')

Output:

```
Enter the side of square:8
side=
        8
```

If we want character or string input, then 's' must be added as a second argument to the input function:

In the Command Window,

>> letter = input('Enter a char','s');
Output:
Enter a char: g
letter=

g

The simplest output function in MATLAB is disp, which is used to display the result of an expression.
For example:

In the Command Window,

>> disp('Hello')

Output:

Hello
In the Command Window,
>> disp($4^{\wedge} 3$)

Output:

64
fprintf() displays the values of several variables in a specified format. For eample:

In the Command Window,

$\gg a=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right] ;$
>> fprintf('\%d',a)

Output:

12345>>

We need to know different types of specifiers which are shown in Table 3.1.

TABLE 3.1: Types of Specifiers

Specifiers	Type
$\% c$	Character
$\% s$	String
$\% d$	Decimal integer number
$\% f$	Floating point number

Variable Precision

MATLAB uses floating-point arithmetic for its calculations. Using the Symbolic Math Toolbox, we can also do exact arithmetic with symbolic expressions. For example:

In the Command Window,

$\gg x=\cot (\mathrm{pi} / 2)$

Output:

$$
\mathrm{x}=6.1232 \mathrm{e}-17
$$

The value of x is in floating-point format that is 6.1232×10^{-17}. However, we know that $\cot (\pi / 2)$ is equal to 0 . This inaccuracy is due to the fact that typing pi in MATLAB gives an approximation to π accurate to about 15 digits, not its exact value. To compute an exact value, we must type sym(pi/2).
For example:

In the Command Window,

$\gg \mathrm{x}=\cot (\operatorname{sym}(\mathrm{pi} / 2))$

Output:

$\mathrm{x}=$

We wanted this value.

format

format Command style changes the output display format in the Command Window to the format specified by style. For example:

In the Command Window,

```
>> format long
```

>> pi

Output:

ans $=$

$$
3.141592653589793
$$

See Table 3.2 for several numeric display of formats.
TABLE 3.2: Numeric Display of Formats

Type	Result	Example
format short	5 digits	3.1416
format long	15 digits	3.141592653589793
format short g	Best of fixed or floating point, with 5 digits	3.1416
format long g	15 digits	3.14159265358979
format short eng	Engineering format	$3.1416 \mathrm{e}+000$
format long eng	Engineering format with 16 significant digits and a power is a multiple of three	$3.14159265358979 \mathrm{e}+000$

3.4 Selection Statements and Loop Statements

If the expression is true, then the commands are executed, otherwise the program continues with the next command immediately beyond the end statement.

The simplest form of if statements is

$$
\begin{aligned}
& \text { if }<\text { condition }> \\
& \text { statement1; } \\
& \text { end }
\end{aligned}
$$

If the condition is true, the statement 1 is executed, but if the condition is false, nothing happens. We use relational operators to create condition in if statement. Several relational operators have been shown in Table 3.3.

TABLE 3.3: Relational Operators

Operators	Meaning
$<$	Less than
$>$	Greater than
$<=$	Less than or equal
$>=$	Greater than or equal
$==$	Equivalent
$\sim=$	Not equal to

Suppose that an expression is $A<B$. When this condition is true, then block of statements will be executed. When this condition is false, then block of statements will not be executed.

The syntax of an if. . .else statement in MATLAB is

$$
\begin{aligned}
& \text { if condition } \\
& \quad \text { statementA; } \\
& \text { else } \\
& \quad \text { statementB; } \\
& \text { end }
\end{aligned}
$$

If the condition is true, then the if block of code will be executed, otherwise else block of code will be executed.

Example 3.2. Write MATLAB script to find whether a number is negative or not.

See MATLAB function given neg.m in Code 3.2.
Code 3.2: neg.m

$$
\begin{aligned}
& \text { function } a=n e g(a) \\
& \text { if } a<0
\end{aligned}
$$

$$
\begin{aligned}
& \quad \operatorname{disp}(\text { 'Negative' }) \\
& \text { else } \\
& \text { end }
\end{aligned}
$$

In the Command Window,

>> neg(-2)

Output:

negative
The for loop is a loop that executes a block of statements a specified number of times. The syntax of for loop has the form:

$$
\begin{aligned}
\text { for } & \text { index }=\text { values } \\
& \text { statement } 1 ; \\
& \text { statement } 2 ; \\
& \ldots
\end{aligned}
$$

The loop begins with the for statement and ends with the end statement.

Example 3.3. Write MATLAB script to compute and display 10!. We have written MATLAB script in the following Code 3.3.

Code 3.3: factorial.m

$$
\text { function } f=\text { factorial (a) }
$$

$$
\mathrm{f}=1 ;
$$

for $n=2$: a $\mathrm{f}=\mathrm{f} * \mathrm{n}$;
end
Example 3.4. Create a script file to display numbers from 1 to 10.

See Code 3.4.
Code 3.4: increment.m

$$
\begin{aligned}
& \text { for } \begin{array}{l}
n=1: 10 \\
\quad \operatorname{disp}(n) ;
\end{array} \\
& \text { end }
\end{aligned}
$$

Example 3.5. Write MATLAB function to display the most negative element in a given matrix

$$
A=\left[\begin{array}{lll}
-1 & -4 & -3 \\
-5 & -2 & -6 \\
-7 & -9 & -8
\end{array}\right]
$$

This MATLAB Code 3.5 is used to find the most negative element that is -9 in matrix A .

Code 3.5: mostnegative.m
function mn=mostnegative (A) \%input matrix A \%find most negative element in matrix A $[\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{A})$; $\mathrm{mn}=0$; for $I=1: m$ for $J=1: n$ if $A(I, J)<=m n$ $\mathrm{mn}=\mathrm{A}(\mathrm{I}, \mathrm{J})$;
end
end
end
return

In the Command Window:

>> mn = mostnegative(A)
Output:

$$
\begin{aligned}
& \mathrm{mn}= \\
&-9
\end{aligned}
$$

The while loop is a loop that executes a block of statements repeatedly as long as the expression is true. The syntax is

$$
\begin{aligned}
& \text { while } \begin{array}{l}
\text { expression } \\
\\
\\
\\
\\
\\
\text { statement } ;
\end{array} ; \\
& \text { end } \\
&
\end{aligned}
$$

```
For example:
In the Command Window,
>> k = 0;
while k<3
k = k+1
end
Output:
k=
    1
k=
    2
k=
    3
```

The for and while loops can be terminated using the break command.

Example 3.6. Write a MATLAB function to display even numbers in vector.

See Code 3.6.

Code 3.6: even.m
function $E=$ even (B)
\% input : vector B
\% output: vector E
\% This function displays even number
$[\sim, n]=\operatorname{size}(B)$;
$\mathrm{j}=1$;
$\mathrm{c}=1$;
while $j<=n$
if $\bmod (\mathrm{B}(1, \mathrm{j}), 2)==0$
$\mathrm{E}(1, \mathrm{c})=\mathrm{B}(1, \mathrm{j})$; $\mathrm{c}=\mathrm{c}+1$;
end
$\mathrm{j}=\mathrm{j}+1$;
end
return

3.5 User-Defined Function

A function is a collection of sequential statements that accepts an input argument from the user and provides output to the program. Functions allow us to program efficiently. It avoids rewriting the computer code for calculations that are performed frequently. User-defined functions are stored as M-files.
See a very simple MATLAB function poly.m in the following Code 3.7 that calculates the value of a particular polynomial.

Code 3.7: poly.m

```
function output = poly(x)
% This function calculates the value of third
% order
output=x^ 3 +x + 3;
return
```

Note that file name should be the same as that of function. Therefore, we save as poly.m

In the Command Window,

>> poly(3)

Output:

output = 33

We have used the elementary row operations in Linear Equations of Chapter 2 to find the rank of matrix and solve the system of linear equations. We can write MATLAB code to perform these elementary operations and use them to solve several problems. For Example:

We have developed MATLAB function exchange.m given in the following Code 3.8 to exchange the elements of $p^{\text {th }}$ and $u^{\text {th }}$ rows in any matrix.

Code 3.8: exchangeop.m

```
function A=exchangeop (A, p,u)
% input : augmented matrix A, row p,u
% output: augmented matrix A
[~ ,n]=\operatorname{size}(A);
for J=1:n
    t=A(p,J );
    A(p,J)=A(u,J );
    A(u,J)=t;
end
return
```

We have written MATLAB function identityop.m in the following Code 3.9 to place the identity element at any position in the matrix.

Code 3.9: identityop.m

```
function A=identityop(A,p,e)
%input : Augmented matrix A, pivot
%row p, pivotelement e
%output:Augmented matrix A
[~},n]=\operatorname{size(A);
format rat
for J=1:n
    A(p,J)=sym(e*A(p,J));
end
return
```

We have written a simple MATLAB function eliminationop.m in the following Code 3.10 to eliminate all elements of any row using pivot element in the matrix.

Code 3.10: eliminationop.m
function $A=$ eliminationop ($\mathrm{A}, \mathrm{u}, \mathrm{p}, \mathrm{co}$) \%input: augmented matrix A, row u, \%pivotrow p, coefficientvalue co \%output: augmented matrix A $\left[{ }^{\sim}, \mathrm{n}\right]=\operatorname{size}(\mathrm{A})$;
format rat
for $J=1: n$
$A(u, J)=\operatorname{sym}(A(u, J)+(\operatorname{co} * A(p, J))) ;$

$$
\begin{aligned}
& \text { end } \\
& \text { return }
\end{aligned}
$$

Example 3.7. Find rank of matrix of Example 2.3 in MATLAB.

$$
A=\left[\begin{array}{rrrr}
2 & 2 & 2 & -2 \\
1 & 2 & 3 & 4 \\
3 & 4 & 5 & 2
\end{array}\right]
$$

>> A = identityop(A,1,1/2)

$$
\left[\begin{array}{rrrr}
1 & 1 & 1 & -1 \\
1 & 2 & 3 & 4 \\
3 & 4 & 5 & 2
\end{array}\right]
$$

>> A = eliminationop $(A, 2,1,-1)$

$$
\left[\begin{array}{rrrr}
1 & 1 & 1 & -1 \\
0 & 1 & 2 & 5 \\
3 & 4 & 5 & 2
\end{array}\right]
$$

>> A = eliminationop(A, $3,1,-3$)

$$
\left[\begin{array}{rrrr}
1 & 1 & 1 & -1 \\
0 & 1 & 2 & 5 \\
0 & 1 & 2 & 5
\end{array}\right]
$$

>> A = eliminationop $(A, 3,2,-1)$

$$
\left[\begin{array}{rrrr}
1 & 1 & 1 & -1 \\
0 & 1 & 2 & 5 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Therefore, $\rho(A)=$ Number of nonzero rows $=2$.

3.6 MATLAB Functions Defined in This Book

We list below the user-defined MATLAB functions. These functions will be used to solve several linear programming problems in this book.

1. help $A=$ exchangeop ($\mathrm{A}, \mathrm{p}, \mathrm{u}$)
input : augmented matrix A, row p, u
output : augmented matrix A
operation: exchange elements of row p with elements of row u in tableau
2. help $A=$ identityop (A, p,e)
input : augmented matrix A, pivot row p, pivotelement e
output : augmented matrix A
operation: multiply real number e to elements of row p
3. help $A=$ eliminationop ($\mathrm{A}, \mathrm{u}, \mathrm{p}, \mathrm{co}$)
input : augmented matrix A, row u, pivotrow p, coefficientvalue co
output : augmented matrix A
operation: add elements of u to elements p times co
4. help $A=\operatorname{simplex}(A, p, q)$
input : augmented matrix A, pivot row p, pivot column q
output : augmented matrix A
operation: perform elementary row operation to make zero entries at q except unit entry at $A(p, q)$
5. help $[\mathrm{A}, \mathrm{q}]=$ pivotcolumn (A, v)
input : augmented matrix A, nonbasic variables v
output : pivot column q, augmented matrix A
operation: find pivot column in A
6. help $[A, p, e, B]=$ pivotrow (A, q, B)

input $:$	augmented matrix A, pivot
	column q, basis
	matrix B
output $:$	augmented matrix A, pivot row p,
	pivot element e
	basis matrix B
operation:	find pivot row in A

7. help A=updatelastrow (A, av)

input	$\begin{aligned} & \text { augmented matrix } A, \text { artificial } \\ & \text { variables av } \end{aligned}$
output	augmented matrix A
operation:	adding elements of all
	corresponding rows except
	last row and subtract
	same from last row in A

8. help $[A, p, q, e, B]=\operatorname{dual}(A, B)$
input : augmented matrix A, basis matrix B
output : augmented matrix A, pivot row p, pivot column q, pivot element e, basis matrix B
operation: find p, q, e, B using dual simplex algorithm
9. help $[\operatorname{Binv}, B, x B]=r \operatorname{sm}(A, c, B, x B, B i n v, v)$
input : augmented matrix A, cost c, basis matrix B, basic vector $x B$, identity matrix Binv, nonbasic variable v
output : basis matrix B, basic vector $x B$
operation: find B, $x B$ using revised simplex algorithm
10. help $[\operatorname{minTcost}, \mathrm{b}, \mathrm{c}]=\operatorname{nwc}(\mathrm{A}, \sup , \operatorname{dem})$
input : transportation matrix A, supply sup, demand dem
output : minimum transportation cost minTcost, basic matrix b, cost matrix c
operation: find minTcost using northwest corner method
11. help $[$ minTcost $, \mathrm{b}, \mathrm{c}]=$ leastcost (A, sup , dem)
input : transportation matrix A, supply sup, demand dem
output : minimum transportation cost minTcost, basic matrix b, cost matrix c
operation: find minTcost using least cost method
12. help $[\operatorname{minTcost}, \mathrm{b}, \mathrm{c}]=\operatorname{vogel}(\mathrm{A}, \sup , \operatorname{dem})$
input : transportation matrix A, supply sup, demand dem
output : minimum transportation cost minTcost, basic matrix b, cost matrix c
operation: find minTcost using vogel's approximation method
13. help $[u, v, b, c]=m u l t i p l i e r s 2(b, A, c, i, j)$
input : basic matrix b, transportation matrix A, cost matrix c, row i, column j
output : vector u, vector v
operation: find u and v
14. help $x=u v x 3(b, u, v, A)$
input : basic matrix b, vector u and v, transportation matrix A
output : nonbasic matrix x
operation: solve nonbasic cells
15. help [basic, row, col]= mostpositive4 (A, x, c) input : transportation matrix A, nonbasic matrix x, cost matrix c
output : element basic, position row and column
operation: find most positive element in nonbasic matrix x
16. help [y, bout]=cycle5 (c, row, col , b) input :cost matrix c, position row, col, basic matrix b
output :loop matrix y, bout
operation: find loop
17. help $[\mathrm{c}, \mathrm{b}, \mathrm{min}]=\mathrm{b}$ asiccell6 ($\mathrm{c}, \mathrm{y}, \mathrm{b}$, row, col)
input : cost matrix c, basic matrix b
output : minimum value min
operation: find basic cell
18. help $[\mathrm{C}, \mathrm{T}]=$ hungarian (A)
input : matrix A
output : optimal assignment C, optimal value T
operation:solve the assignment problem using the hungarian method

3.7 Exercises

Exercise 3.1. Suppose that $u=3$ and $v=4$. Evaluate the following expressions using MATLAB.
(a) $\frac{5 u}{3 v}$
(b) $\frac{3 v^{-2}}{(u+v)^{2}}$
(c) $\frac{v^{3}}{(v-u)^{2}}$

Exercise 3.2. Assume that $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and d are defined as follows:

$$
a=\left[\begin{array}{ll}
3 & 0 \\
2 & 1
\end{array}\right], \quad b=\left[\begin{array}{cc}
-1 & 2 \\
0 & 1
\end{array}\right], \quad c=\left[\begin{array}{l}
3 \\
2
\end{array}\right], \quad d=1 .
$$

What is the result of each of the following expressions in MATLAB?
(a) $a+b$
(b) $b^{*} c$
(c) $\mathrm{a} \cdot{ }^{*} \mathrm{~b}$
(d) a.$^{*} \mathrm{~d}$

Exercise 3.3. Answer the following questions for the following array.

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 8 & 5 & 3 \\
6 & 8 & 1 & 3 & 1 \\
12 & 6 & 9 & 1 & 0 \\
5 & 8 & 1 & 6 & 4
\end{array}\right]
$$

(a) What is the size of A?
(b) What is the value of $\mathrm{A}(1,4)$?
(c) What is the size and value of $\mathrm{A}(:, 1: 2: 5)$?
(d) What is the size and value of $\mathrm{A}([13]$, end)?

Exercise 3.4. Check the following expressions in the Command Window.
(a) $x=4>2$
(b) $x=2>5$
(c) $x=4<=3$
(d) $x=1<1$
(e) $x=2=2$
(f) $x=3==3$
(g) $x=0<0.5<1$

Exercise 3.5. Write the MATLAB function to find the following sum:

$$
1^{2}+2^{2}+3^{2}+\cdots+1000^{2}
$$

Exercise 3.6. Create a matrix B equal to $[-1 / 3,0,1 / 3,2 / 3]$, and use each of the built-in format options to display the results.
(a) format short (which is the default)
(b) format long
(c) format bank
(d) format short e
(e) format long e
(f) format short eng
(g) format long eng
(h) format short g
(i) format long g
(j) format +
(k) format rat

Chapter 4

Introduction to Linear Programming

4.1 Introduction

The objective of a linear programming problem is to obtain an optimal solution. Linear programming problems deal with the problem of minimizing or maximizing a linear objective function in the presence of a system of linear inequalities. The linear objective function represents cost or profit. A large and complex problem can be formulated in the form of a linear programming problem, and users can solve such a large problem in a definite amount of time using the simplex method and computer.

In this part we study a graphical method for solving linear programming problems. This method is helpful to choose the best feasible point among the many possible feasible points. A point minimizing the objective function and satisfying the set of linear constraints is called a "feasible point".

4.2 Simple Examples of Linear Programs

A linear programming problem is concerned with solving a very special type of problem - one in which all relations among the variables are linear both in the constraints and the function to be optimized. We wish to solve the linear programming problem. A linear programming problem is an optimization problem which can
be written in standard form as

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b, \\
\text { where } & x \geq 0, c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}
\end{array}
$$

The vector inequality $x \geq 0$ means that each component of x is nonnegative. In the above problem, $c^{T} x$ is called as an objective function to be minimize and $A x=b$ is called as a set constraints. This problem is the case of minimization. We can also write maximize in place of minimize and in place $A x=b$, we can write the inequalities such as $A x \geq b$ or $A x \leq b$ in the above linear programming problem. These inequalities can also be rewritten into the standard form as shown above.
The purpose of this section is to formulate the linear programming problems and illustrate the applications of linear programming methods.

Example 4.1. (The Diet Problem)Assume that there are two products, cereal and milk, for breakfast and assume that a person must consume at least 60 units of iron and at least 70 units of protein to stay alive. Assume that one unit of cereal costs $\$ 20$ and contains 30 units of iron and 5 units of protein and one unit of milk costs $\$ 10$ and contains 17 units of iron and 9 units of protein. The goal is to find the cheapest diet which will satisfy the minimum daily requirement.

Let x_{1} represents the number of units of cereal that the person consumes a day and x_{2} represents the number of units of milk consumed.
For the diet to meet the minimum requirements, we must have

$$
\begin{array}{ll}
\text { Iron Requirement } & : 30 x_{1}+17 x_{2} \geq 60, \\
\text { Protein Requirement } & : 5 x_{1}+9 x_{2} \geq 70, \text { where } x_{1}, x_{2} \geq 0
\end{array}
$$

The cost of the diet is: $20 x_{1}+10 x_{2}$.
Hence, the diet problem is:

$$
\begin{array}{cl}
\operatorname{minimize} & 20 x_{1}+10 x_{2} \\
\text { subject to } & 30 x_{1}+17 x_{2} \geq 60, \\
& 5 x_{1}+9 x_{2} \geq 70 \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

Example 4.2. A manufacturer produces two different products, say chairs and tables, using three machines M_{1}, M_{2} and M_{3}. Each machine can be used for only a limited period of time. Production time for each product on each machine is given below in Table 4.1.

TABLE 4.1: Production Time

Production time (hrs/unit)			
Machine	Chair	Table	Available time
M_{1}	1	1	18
M_{2}	1	3	18
M_{3}	2	1	14
total	4 hrs	5 hrs	

The objective is to maximize the combined time of utilization of all three machines.
Let x_{1} and x_{2} denote the number of chairs and tables.
Constraints:

$$
x_{1}+x_{2} \leq 18, x_{1}+3 x_{2} \leq 18,2 x_{1}+x_{2} \leq 14, \text { where } x_{1}, x_{2} \geq 0
$$

Objective: maximizing the combined production time of three machines, that is

$$
4 x_{1}+5 x_{2} .
$$

Therefore, the linear programming problem is

$$
\begin{array}{cc}
\operatorname{maximize} & 4 x_{1}+5 x_{2} \\
\text { subject to } & x_{1}+x_{2} \leq 18, \\
& x_{1}+3 x_{2} \leq 18, \\
& 2 x_{1}+x_{2} \leq 14, \\
& x_{1}, \quad x_{2} \geq 0 .
\end{array}
$$

Example 4.3. A person requires $8,15,16$ units of chemicals A, B, C, respectively, for his garden. The liquid product contains $4,5,3$ units of A, B, C, respectively per jar. The dry product contains $3,5,6$ units of A, B, C respectively per packet. The person wants to spend a minimum possible amount on his garden, where it is given that the liquid product is available for $\$ 40$ per jar and the dry product is available for $\$ 25$ per packet.

Suppose that person purchases x_{1} jars and x_{2} packets of the products.
Constraints:
$4 x_{1}+3 x_{2} \geq 8,5 x_{1}+5 x_{2} \geq 15,3 x_{1}+6 x_{2} \geq 16$, where $x_{1}, x_{2} \geq 0$.
Objective: Minimizing cost, that is

$$
40 x_{1}+25 x_{2}
$$

Therefore, the linear programming problem is

$$
\begin{aligned}
\operatorname{minimize} & 40 x_{1}+25 x_{2} \\
\text { subject to } & 4 x_{1}+3 x_{2} \geq 8, \\
& 5 x_{1}+5 x_{2} \geq 15, \\
& 3 x_{1}+6 x_{2} \geq 16, \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
$$

Example 4.4. A hotel has the following requirements for waiters shown in Table 4.2. Waiters report to the hotel rooms at the beginning of each period and work for eight consecutive hours. The same waiter cannot work for more than two consecutive periods. The hotel wants to determine the minimum number of waiters, so that there may be sufficient waiters available for each period. Formulate this as a linear programming problem.

TABLE 4.2: Hotel Requirement

Period	Clock time (24 hours per day $)$	Minimum number of waiters required
1	7 A.M. -11 A.M.	65
2	11 A.M. - 3 P.M.	75
3	3 P.M. -7 P.M.	65
4	7 P.M. -11 P.M.	55
5	11 P.M. - 3 A.M.	25
6	3 A.M. -7 A.M.	35

Suppose that $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ be the number of waiters reporting at the beginning of periods $1,2, \ldots, 6$.
Objective: minimizing the number of waiters, that is

$$
\operatorname{minimize} x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} .
$$

Since the same waiter cannot work for more than two consecutive
periods, x_{1} waiters work for the period of 1 and $2, x_{2}$ waiters work for the period of 2 and 3 etc. But, for the period 1 , the minimum number of waiters required is 65 . Similarly, we can write the minimum number of waiters required for periods $2,3,4,5$ and 6.

Constraint: $x_{6}+x_{1} \geq 65$.
Similarly, other constraints are $x_{1}+x_{2} \geq 75, x_{2}+x_{3} \geq 65, x_{3}+x_{4} \geq$ $55, x_{4}+x_{5} \geq 25, x_{5}+x_{6} \geq 35$.
Therefore, the linear programming problem is

$$
\begin{array}{rlrl}
\operatorname{minimize} & x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \\
\text { subject to } & x_{1} & +x_{6} & \geq 65 \\
& x_{1}+x_{2} & \geq 75 \\
& x_{2}+x_{3} & \geq 65 \\
& x_{3}+x_{4} & \geq 55 \\
& x_{4}+x_{5} & \geq 25 \\
& & x_{5}+x_{6} & \geq 35 \\
& x_{1}, & x_{2}, & x_{3}, \\
x_{4}, & x_{5}, & x_{6} & \geq 0
\end{array}
$$

4.3 Convex Sets

In order to know the concept of a convex set, we firstly undestand about the line segment. Let $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ be two points in \mathbb{R}^{2} (i.e., two-dimensional space) as given in Figure 4.1. Equation of any line through these points is

$$
z=\lambda x+(1-\lambda) y, \quad \lambda \in[0,1]
$$

FIGURE 4.1: Line segment PQ

$$
\frac{y-y_{2}}{y_{1}-y_{2}}=\frac{x-x_{2}}{x_{1}-x_{2}}
$$

Let

$$
\frac{x-x_{2}}{x_{1}-x_{2}}=\lambda
$$

That is,

$$
\begin{equation*}
x=\lambda x_{1}+(1-\lambda) x_{2} \tag{4.1}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
y=\lambda y_{1}+(1-\lambda) y_{2} \tag{4.2}
\end{equation*}
$$

Consider the three vectors

$$
\begin{equation*}
v=(x, y), \quad v_{1}=\left(x_{1}, y_{1}\right), \quad v_{2}=\left(x_{2}, y_{2}\right) \tag{4.3}
\end{equation*}
$$

With the help of $(4.3),(4.1)$ and (4.2) can be combined to get

$$
\begin{equation*}
v=\lambda v_{1}+(1-\lambda) v_{2} \tag{4.4}
\end{equation*}
$$

When $\lambda=1$, we get

$$
v=v_{1} \quad i . e ., \mathrm{P}
$$

When $\lambda=0$, we get

$$
v=v_{2} \quad i . e ., \mathrm{Q} .
$$

Therefore, for the line segment $P Q$, we must have $0 \leq \lambda \leq 1$. This is also true for \mathbb{R}^{n}. The elements of this space are the n component vectors $v=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]^{T}$
Definition 4.1 (Convex Set). A set Ω in n-dimensional \mathbb{R}^{n} is said to be a convex set if any two points x and y in Ω, the line segment joining the two points is also in Ω.

In other words, if $x \in \Omega$ and $y \in \Omega$ and also if $z \in \Omega$ for all values of $\lambda \in[0,1]$ and $z=\lambda x+(1-\lambda) y$, then Ω is called a "convex set". For example, a triangle and its interior form a convex set. See Figure 4.2 .

FIGURE 4.2: Triangle ABC
We can observe that Figure 4.3 is a convex set, but Figure 4.4 is not a convex set.

FIGURE 4.3: A convex set

FIGURE 4.4: A nonconvex set

Example 4.5. Show that $\{(x, y):|x| \leq 5,|y| \leq 10\}$ is a convex set.

We Consider $X_{1}=\{(x, y):|x| \leq 5,|y| \leq 10\}$. Let $\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right) \in X_{1}$. Then, $\left|x_{1}\right| \leq 5,\left|x_{2}\right| \leq 5$ and $\left|y_{1}\right| \leq 10,\left|y_{2}\right| \leq 10$. Suppose that $\lambda>0$; therefore, we consider

$$
\lambda\left(x_{1}, y_{1}\right)+(1-\lambda)\left(x_{2}, y_{2}\right)=\left(\lambda x_{1}, \lambda y_{1}\right)+\left((1-\lambda) x_{2},(1-\lambda) y_{2}\right) .
$$

Next,

$$
\begin{aligned}
\left|\lambda x_{1}+(1-\lambda) x_{2}\right| & \leq\left|\lambda x_{1}\right|+\left|(1-\lambda) x_{2}\right| \\
& =\lambda\left|x_{1}\right|+(1-\lambda)\left|x_{2}\right| \\
& \leq \lambda 5+(1-\lambda) 5 \\
& =5 \lambda+5-5 \lambda=5 .
\end{aligned}
$$

Therefore,

$$
\left|\lambda x_{1}+(1-\lambda) x_{2}\right| \leq 5 .
$$

Similarly,

$$
\begin{aligned}
\left|\lambda y_{1}+(1-\lambda) y_{2}\right| & \leq\left|\lambda y_{1}\right|+\left|(1-\lambda) y_{2}\right| \\
& =\lambda\left|y_{1}\right|+(1-\lambda)\left|y_{2}\right| \\
& \leq \lambda 10+(1-\lambda) 10 \\
& =10 \lambda+10-10 \lambda=10 .
\end{aligned}
$$

Therefore,

$$
\left|\lambda y_{1}+(1-\lambda) y_{2}\right| \leq 10
$$

Thus, $\lambda\left(x_{1}, y_{1}\right)+(1-\lambda)\left(x_{2}, y_{2}\right) \in X_{1}$ for $\lambda>0$. Therefore, X_{1} is a convex set.

4.4 Graphical Solution of Linear Programming Problem

We see graphically how linear programming optimizes a linear objective function in which the variables must satisfy a set of simultaneous linear equations. From the graphical view of points, we take following examples of linear programming problems of two variables and their analysis can be seen on a two-dimensional graph.
Example 4.6. Solve the following linear programming problem graphically.

$$
\begin{array}{cl}
\operatorname{maximize} & 5 x_{1}+7 x_{2} \\
\text { subject to } & 3 x_{1}+8 x_{2} \leq 12, \\
& x_{1}+x_{2} \leq 2, \\
& 2 x_{1} \leq 3, \\
& x_{1}, \quad x_{2} \geq 0 .
\end{array}
$$

We consider the constraints as equalities

$$
\begin{aligned}
3 x_{1}+8 x_{2} & =12, \\
x_{1}+x_{2} & =2, \\
2 x_{1} & =3 .
\end{aligned}
$$

See Figure 4.5.

FIGURE 4.5: Graphical solution of Example 4.6
The maximum value of $5 x_{1}+7 x_{2}$ will be attainable at any one of the five vertices (extreme points) of the feasible region.

$$
\begin{array}{lll}
\operatorname{At}(0,0), & 5 \times 0+7 \times 0 & =0 \\
\operatorname{At}\left(\frac{3}{2}, 0\right), & 5 \times \frac{3}{2}+7 \times 0=\frac{15}{2} & =7.5 \\
\operatorname{At}\left(\frac{3}{2}, \frac{1}{2}\right), & 5 \times \frac{3}{2}+7 \times \frac{1}{2}=\frac{15}{2}+\frac{7}{2}=\frac{22}{2} & =11 . \\
\operatorname{At}\left(\frac{4}{5}, \frac{6}{5}\right), & 5 \times \frac{4}{5}+7 \times \frac{6}{5}=\frac{20}{5}+\frac{42}{5}=\frac{62}{5} & =12.4 . \\
\operatorname{At}\left(0, \frac{3}{2}\right), & 5 \times 0+7 \times \frac{3}{2}=\frac{21}{2} & =10.5 .
\end{array}
$$

Thus, the objective function $5 x_{1}+7 x_{2}$ is maximum at $\left(\frac{4}{5}, \frac{6}{5}\right)$.

In the Command Window,

>> mupad

$\mathrm{k}:=[\{3 * \mathrm{x} 1+8 * \mathrm{x} 2<=12, \mathrm{x} 1+\mathrm{x} 2<=2,2 * \mathrm{x} 1<=3\}, 5 * \mathrm{x} 1+7 * \mathrm{x} 2$, NonNegative]:
$\mathrm{g}:=$ linopt: : plot_data $(\mathrm{k},[\mathrm{x} 1, \mathrm{x} 2])$:
plot(g):

See Figure 4.6 as output in MATLAB.

FIGURE 4.6: Graphical solution of Example 4.6 in MATLAB
Example 4.7. (Production Planning in the Automobile Industry) An automobile assembly plant assembles two types of vehicles: a four-door saloon and a people carrier. Both vehicle types must pass through a painting plant and an assembly plant. If the painting plant only paints four-door saloons, it can paint some 2,000 vehicles each day, whereas if it paints only people carriers, it can paint some 1,500 vehicles each day. Moreover, if the assembly plant only assembles either four-door saloons or people carriers, it can assemble some 2,200 vehicles every day. Each people carrier implies an average profit of $\$ 3,000$, whereas a four-door saloon implies an average profit of $\$ 2,100$.
(a) Use linear programming and indicate the daily production plan that would maximize the vehicle assembly plants daily profit.
Use linear programming and indicate the daily production plan that would maximize the vehicle assembly plant's daily profit.

Decision variables:
$x_{1}=$ Hundreds of four-door saloons produced daily, $x_{2}=$ Hundreds of people carriers produced daily.

Objective function:
To maximize $Z=21 x_{1}+30 x_{2}$.

Constraints:
$R 1$: The fraction of the day during which the painting plant occupied is equal to or less than 1.
$R 1$: The fraction of the day during which the painting plant works on four-door saloons: $\frac{1}{2.000}$.
$R 1$: The fraction of the day during which the painting plant works on people carriers: $\frac{1}{1.500}$.
$R 1: \frac{1}{20} x_{1}+\frac{1}{15} x_{2} \leq 1$.
R2: The fraction of the day during which the assembly plant occupied is equal to or less than 1 .
R2: The fraction of the day during which the assembly plant works on four-door saloons or people carriers: $\frac{1}{2.200}$.
$R 2: \frac{1}{22} x_{1}+\frac{1}{22} x_{2} \leq 1$.
R3: The non-negativity constraint.
$R 3: x_{1}, x_{2} \geq 0$.
As this model has two decision variables, the problem can be solved graphically which is shown in Figure 4.7.

FIGURE 4.7: Graphical solution of Example 4.7

```
In the Command Window
>> mupad
k}:=[{1/20*\textrm{x}1+1/15*\textrm{x}2<=1,1/22*\textrm{x}1+1/22*\textrm{x}2<=1}
    21*x1+30*x2,NonNegative]:
g:= linopt:: plot_data(k,[x1,x2]):
plot(g):
```

Output: See Figure 4.8 as output in MATLAB.

FIGURE 4.8: Graphical solution of Example 4.7 in MATLAB
(b) What surpluses would be produced in the painting plant and the assembly plant?
The painting plant is saturated, that is, it has no surplus, yet the assembly plant has a surplus of 0.3 .

Example 4.8. (Investment of Funds) A small investor has $\$ 12,000$ to invest and three different funds to choose from. Guaranteed investment funds offer an expected rate of return of 7%, mixed funds (part is guaranteed capital) have an expected rate of return of 8%, while an investment on the Stock Exchange involves an expected rate of return of 12%, but without guaranteed investment capital. In order to minimize the risk, the investor has decided to not invest more than $\$ 2,000$ on the Stock Exchange. Moreover, for tax reasons, the investor needs to invest at least three times more in guaranteed investment funds than in mixed funds. Let us assume that at the end of the year the returns are those expected; what are the optimum investment amounts?
(a) Consider this problem as if it were a linear programming model with two decision variables.

Decision variables:
x_{1} : amount (in thousands of $\$$) invested in guaranteed funds; x_{2} : amount (in thousands of $\$$) invested in mixed funds;
Objective function:

$$
\begin{aligned}
\operatorname{maximize} z & =0.07 x_{1}+0.08 x_{2}+0.12\left(12-x_{1}-x_{2}\right) \\
& =1.44-0.05 x_{1}-0.04 x_{2} .
\end{aligned}
$$

Constraints:
The non-negativity constraint of the amount invested,

$$
12-x_{1}-x_{2} \geq 0
$$

Upper limit of the amount invested,

$$
\left(12-x_{1}-x_{2}\right) \leq 2 .
$$

Constraint for tax reasons,

$$
x_{2} \leq \frac{1}{3} x_{1}
$$

where

$$
x_{1}, x_{2} \geq 0 .
$$

(b) Solve the problem with the graphic method and indicate the optimum solution.
The feasible region is given in Figure 4.9.

FIGURE 4.9: Graphical solution of Example 4.8

Corner points are $(9,3),(12,0),(10,0)$ and $(7.5,2.5)$; therefore, we get an optimum investment of $\$ 965$.

In the Command Window,

>> mupad
$\mathrm{k}:=[\{12-\mathrm{x} 1-\mathrm{x} 2>=0,12-\mathrm{x} 1-\mathrm{x} 2<=2, \mathrm{x} 2<=0.33 * \mathrm{x} 1\}, 1.44-$ $0.05 * x 1-0.04 * x 2$, NonNegative]:
$\mathrm{g}:=$ linopt:: plot_data $(\mathrm{k},[\mathrm{x} 1, \mathrm{x} 2])$:
plot (g):
Output: See Figure 4.10 as output in MATLAB.

FIGURE 4.10: Graphical solution of Example 4.8 in MATLAB
Example 4.9. Solve graphically.

$$
\begin{array}{rc}
\operatorname{minimize} & 4 x_{1}+2 x_{2} \\
\text { subject to } & x_{1}+2 x_{2} \geq 2, \\
& 3 x_{1}+x_{2} \geq 3, \\
& 4 x_{1}+3 x_{2} \geq 6, \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

>> mupad
$\mathrm{k}:=[\{\mathrm{x} 1+2 * \mathrm{x} 2>=2,3 * \mathrm{x} 1+\mathrm{x} 2>=3,4 * \mathrm{x} 1+3 * \mathrm{x} 2>=6\}$, $4 * \mathrm{x} 1+2 * \mathrm{x} 2$, NonNegative]:
$\mathrm{g}:=$ linopt: : plot_data $(\mathrm{k},[\mathrm{x} 1, \mathrm{x} 2])$:
plot(g)
Output: See Figure 4.11 as output in MATLAB.

FIGURE 4.11: Graphical solution of Example 4.9 in MATLAB
An optimum value of the objective function is $\frac{24}{5}$ at $\left(\frac{3}{5}, \frac{6}{5}\right)$.
Example 4.10. For the linear programming problem,

$$
\begin{array}{rc}
\operatorname{minimize} & x_{1}-x_{2} \\
\text { subject to } & 2 x_{1}+3 x_{2} \leq 6 \\
& x_{1} \\
& x_{2} \leq 3 \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

The number of corner points are $x_{1}=x_{2}=0 ; x_{1}=3, x_{2}=0$ and $x_{1}=0, x_{2}=2$. They are shown in Figure 4.12.

FIGURE 4.12: Graphical solution of Example 4.10
We can draw the graph in MATLAB.

In the Command Window,

```
>> mupad
k}:=[{2*\textrm{x}1+3*\textrm{x}2<=6,\textrm{x}1<=3,\textrm{x}2<=3},\textrm{x}1-\textrm{x}2
    NonNegative]:
g:= linopt:: plot_data(k,[x1,x2]):
plot(g):
```

See Figure 4.13 as output in MATLAB.

FIGURE 4.13: Graphical solution of Example 4.10 in MATLAB
Example 4.11. Solve the following linear programming problem by graphical method.

$$
\begin{aligned}
\operatorname{maximize} & x_{1}+x_{2} \\
\text { subject to } & 2 x_{1}+x_{2} \geq 8, \\
& 2 x_{1}+5 x_{2} \geq 10, \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

The optimal value of this problem is
See Figure 4.14.

FIGURE 4.14: Graphical solution of Example 4.11
Corner points are $(0,8),\left(\frac{15}{4}, \frac{1}{2}\right)$ and $(5,0)$. The optimal solution is found at $(0,8)$ and the maximum value of an objective function is 8 .

In the Command Window,

```
>> mupad
k:=[{2*x1+x2>=8,2*x1+5*x2>=10},x1+x2,
                                NonNegative]:
g:= linopt:: plot_data(k,[x1,x2]):
plot(g):
```

See Figure 4.15 as output in MATLAB.

FIGURE 4.15: Graphical solution of Example 4.11 in MATLAB

Example 4.12. Solve the following linear program graphically using MATLAB.

$\operatorname{maximize} \quad 2 x_{1}+5 x_{2}$	
subject to $\quad x_{1}$	≤ 4,
x_{2}	≤ 6,
$x_{1}+x_{2}$	≤ 8,
$x_{1}, \quad x_{2}$,	≥ 0.

In the Command Window,

>> mupad

$$
\begin{aligned}
& \mathrm{k}:=[\{\mathrm{x} 1<=4, \mathrm{x} 2<=6, \mathrm{x} 1+\mathrm{x} 2<=8\}, 2 * \mathrm{x} 1+5 * \mathrm{x} 2, \\
& \text { NonNegative }]: \\
& \mathrm{g}:=\operatorname{linopt}:: \text { plot_data }(\mathrm{k},[\mathrm{x} 1, \mathrm{x} 2]): \\
& \mathrm{plot}(\mathrm{~g}):
\end{aligned}
$$

Output: See Figure 4.16 as output in MATLAB.

FIGURE 4.16: Graphical solution of Example 4.12 in MATLAB
Corner points are $(4,0),(4,4),(2,6)$ and $(0,6)$. It clearly shows that the maximum value of an objective function at $(2,6)$ is $2 x_{1}+$ $5 x_{2}=2 \times 2+5 \times 6=34$.

Example 4.13. Consider the linear programming problem

$$
\begin{array}{lr}
\operatorname{maximize} & x_{1}+x_{2} \\
\text { subject to } & x_{1}-2 x_{2} \leq 10, \\
& -2 x_{1}+x_{2} \leq 10 \\
& x_{1}, \quad x_{2}, \geq 0
\end{array}
$$

Then, which of the following options is TRUE?
(a) The linear programming problem admits an optimal solution.
(b) The linear programming problem is unbounded.
(c) The linear programming problem admits no feasible solution.
(d) The linear programming problem admits a unique feasible solution.

In the Command Window,

```
\(\mathrm{k}:=[\{\mathrm{x} 1-2 * \mathrm{x} 2<=10, \mathrm{x} 2-2 * \mathrm{x} 1<=10\}, \mathrm{x} 1+\mathrm{x} 2\),
    NonNegative]:
\(\mathrm{g}:=\) linopt: : plot_data(k,[x1, x2]):
plot (g):
```

See Figure 4.17 as output in MATLAB.

FIGURE 4.17: Graphical solution of Example 4.13 in MATLAB
From the above graph in Figure 4.17, we observe that the linear programming problem has unbounded solution. Option (b) is ture.

Example 4.14. Suppose that the variables $x_{1} \geq 0$ and $x_{2} \geq 0$ satisfy the constraints $x_{1}+x_{2} \geq 3$ and $x_{1}+2 x_{2} \geq 4$. Which of the following is true?
(a) The maximum value of $5 x_{1}+7 x_{2}$ is 231 and it does not have any finite minimum.
(b) The minimum value of $5 x_{1}+7 x_{2}$ is 17 and it does not have any finite maximum.
(c) The maximum value of $5 x_{1}+7 x_{2}$ is 231 and its minimum value is 17 .
(d) $5 x_{1}+7 x_{2}$ neither has a finite maximum nor a finite minimum.

See Figure 4.18.

FIGURE 4.18: Graphical solution of Example 4.14

$$
\begin{array}{ll}
\operatorname{At}(0,3), & 5 x_{1}+7 x_{2}=5 \times 0+7 \times 3=21 \\
\operatorname{At}(2,1), & 5 x_{1}+7 x_{2}=5 \times 2+7 \times 1=17 \\
\operatorname{At}(4,0), & 5 x_{1}+7 x_{2}=5 \times 4+7 \times 0=20
\end{array}
$$

In the Command Window,

>> mupad

$\mathrm{k}:=[\{\mathrm{x} 1+\mathrm{x} 2>=3, \mathrm{x} 1+2 * \mathrm{x} 2>=4\}, 5 * \mathrm{x} 1+7 * \mathrm{x} 2$, NonNegative $]:$
$\mathrm{g}:=$ linopt: : plot_data $(\mathrm{k},[\mathrm{x} 1, \mathrm{x} 2])$:
plot (g):
See Figure 4.19 as output in MATLAB.

FIGURE 4.19: Graphical solution of Example 4.14 in MATLAB
The minimum value of $5 x_{1}+7 x_{2}$ is 17 and it does not have any finite maximum. Therefore, option (b) is true.

4.5 Exercises

Exercise 4.1. A production company produces two types of models: M_{1} and M_{2}. Each M_{1} model requires 4 hours of grinding and 2 hours of polishing; whereas, each M_{2} model requires 2 hours of grinding and 5 hours of polishing. The company has 2 grinders and 3 polishers. Each grinder works for 40 hours per week and each polisher works for 60 hours per week. Profit on an M_{1} model is $\$ 3$ and on an M_{2} model is $\$ 4$. Whatever produced in a week is sold in the market. How should the production company allocate his production capacity to the two types of models so that he may make maximum profit in a week.

Exercise 4.2. On the bank of Ganga river, Varanasi, there are three neighbouring cities that are discharging two kinds of pollutants, A and B, into the river. Now the Uttar Pradesh state government has set up a treatment plant that treats pollutants from City 1 for $\$ 15$ per ton which reduces pollutants A and B by the amount of 0.10 and 0.45 tons per ton of waste, respectively. It costs $\$ 10$ per ton to process a ton of City 2 waste and consequentially reducing pollutants A and B by 0.20 and 0.25 tons per ton of waste, respectively. Similarly, City 3 waste is treated for $\$ 20$ reducing A by 0.40 and B by 0.30 tons per ton of waste. The state wishes to reduce the amount of pollutant A by at least 30 and B by 40 tons. Formulate the linear programming problem that will minimize the cost of reducing pollutants by the desired amount.
Exercise 4.3. Which ones of the following subsets of \mathbb{R}^{2} are convex and which are not?
(a) $\left\{(x, y): x^{2}+y^{2}=1\right\}$
(b) $\left\{(x, y): y \geq x^{2}\right\}$
(c) $\left\{(x, y): y \leq x^{2}\right\}$
(d) $\left\{(x, y): x^{2}+y^{2} \leq 4\right\}$
(e) $\left\{(x, y): x^{2}+y^{2} \geq 3\right\}$

Exercise 4.4. Solve the following linear programming problems by graphical method.
(a)

$$
\begin{array}{ll}
\operatorname{maximize} & 3 x_{1}+2 x_{2} \\
\text { subject to } & 2 x_{1}-x_{2} \geq 2, \\
& x_{1}+2 x_{2} \leq 8, \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

(b)

$$
\begin{array}{rc}
\operatorname{maximize} & 2 x_{1}+3 x_{2} \\
\text { subject to } & x_{1}+x_{2} \leq 1, \\
& 3 x_{1}+x_{2} \leq 4, \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

(c)

$$
\begin{aligned}
\operatorname{maximize} & 3 x_{1}+2 x_{2} \\
\text { subject to } & 2 x_{1}+x_{2} \leq 1, \\
& x_{1} \leq 2, \\
& x_{1}+x_{2} \geq 3, \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
$$

(d)

$$
\begin{array}{lc}
\operatorname{maximize} & 3 x_{1}+4 x_{2} \\
\text { subject to } & x_{1}-x_{2} \leq-1, \\
& -x_{1}+x_{2} \leq 0, \\
& x_{1}, \quad x_{2} \geq 0 .
\end{array}
$$

(e)

maximize	$8000 x_{1}+7000 x_{2}$	
subject to	$3 x_{1}+\quad x_{2}$	≤ 66,
	$x_{1}+x_{2}$	≤ 45,
	x_{1}	≤ 20,
	x_{2}	≤ 40,
	x_{1},	x_{2}

Exercise 4.5. Solve the following linear programming problems graphically.
(a)

$$
\begin{array}{ll}
\operatorname{maximize} & 5 x_{1}+4 x_{2} \\
\text { subject to } & x_{1}-2 x_{2} \leq 1, \\
& x_{1}+2 x_{2} \leq 3, \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

(b)

$$
\begin{array}{ll}
\operatorname{maximize} & 3 x_{1}+2 x_{2} \\
\text { subject to } & 3 x_{1}-2 x_{2} \geq-20 \\
& -2 x_{1}+3 x_{2} \leq 9
\end{array}
$$

Exercise 4.6. Solve the following linear programming problem graphically.

$$
\begin{aligned}
& \text { maximize } 100 x_{1}+100 x_{2} \\
& \text { subject to } 10 x_{1}+5 x_{2} \leq 80 \text {, } \\
& 6 x_{1}+6 x_{2} \leq 66 \text {, } \\
& 4 x_{1}+\quad 8 x_{2} \geq 24 \text {, } \\
& 5 x_{1}+6 x_{2} \leq 90, \\
& x_{1}, \quad x_{2} \geq 0 \text {. }
\end{aligned}
$$

Chapter 5

The Simplex Method

5.1 Standard Form of Linear Programming Problem

We refer to a linear programming problem in standard form as follows:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b, \\
\text { where } & c \in \mathbb{R}^{n}, x \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}, x \geq 0 .
\end{array}
$$

The above problem can also be written as follows:
minimize

$$
c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}
$$

subject to $\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \vdots & \vdots & \ldots & \vdots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{m}\end{array}\right]$,

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \geq\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Equivalently.

$$
\begin{array}{ll}
\operatorname{minimize} & c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n} \\
\text { subject to } & a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}
$$

where c_{i}, b_{i} and $a_{i j}$ are fixed real constants and x_{i} is the real number to be determined.

5.2 Basic Solutions

Consider a linear programming problem in standard form:
minimize $\quad c^{T} x$,
subject to $A x=b$,
where

$$
x \geq 0, c \in \mathbb{R}^{n}, x \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times n}, m<n .
$$

We consider the system of equations as $A x=b$ where rank $A=m$. Let B be a square matrix of order $m \times m$ whose columns are linearly independent columns of the matrix A. We can write matrix A in the form $[B: D]$ where $D=m \times(n-m)$ whose columns are remaining columns of A. The matrix B is nonsingular. We can solve

$$
B x_{B}=b,
$$

that is

$$
x_{B}=B^{-1} b .
$$

Thus, $x=\left[x_{B}^{T}, 0^{T}\right]^{T}$ is a solution of $A x=b$.
Definition 5.1 (Basic Solution). We say $x=\left[x_{B}^{T}, 0^{T}\right]^{T}$ is a basic solution of $A x=b$ with respect to the basis matrix B. The components of x_{B} are called "basic variables". If some of the basic variables of a basic solution are zero, then the basic solution is called a "degenerate basic solution".

Definition 5.2 (Feasible Solution). A vector $x \in \mathbb{R}^{n}$ satisfying $A x=b$, where $x \geq 0$ is called a "feasible solution". A feasible solution that is also basic is called a "basic feasible solution".

Definition 5.3 (Degenerate Basic Feasible Solution). If the basic feasible solution is a degenerate basic solution, then it is called a
"degenerate basic feasible solution". We must note that $x_{B} \geq 0$ for any basic feasible solution.

Thus, we solve the following linear equations to find basic solutions and also check the feasible solution.

Example 5.1. Find all basic solutions of the following equations:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =1, \\
2 x_{1}+3 x_{2} & =1 .
\end{aligned}
$$

Augmented matrix is

$$
\begin{aligned}
{\left[\begin{array}{rrr|r}
1 & 1 & 1 & 1 \\
2 & 3 & 0 & 1
\end{array}\right] \sim } & \sim\left[\begin{array}{rrr|r}
1 & 1 & 0 & 1 \\
0 & 1 & -2 & -1
\end{array}\right] \sim\left[\begin{array}{rrr|r}
1 & 0 & 2 & 2 \\
0 & 1 & -2 & -1
\end{array}\right] \\
R_{2} \rightarrow R_{2}-2 R_{1} & R_{1} \rightarrow R_{1}-R_{2}
\end{aligned}
$$

System of linear equations can be given as

$$
\begin{aligned}
x_{1}+2 x_{3} & =2, \\
x_{2}-2 x_{3} & =-1 .
\end{aligned}
$$

Solving the above two equations,

$$
\begin{aligned}
& x_{1}=2-2 s, \\
& x_{2}=-1+2 s, \\
& x_{3}=s, s \in \mathbb{R} .
\end{aligned}
$$

Thus, the system of linear equations has infinitely many solutions, but it can have at most $\binom{3}{2}$, i.e., 3 basic solutions.

1. Since $B=\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]$ is a basis matrix, then we have $x_{B}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. Therefore, $B x_{B}=b$ and its augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ll|l}
1 & 1 & 1 \\
2 & 3 & 1
\end{array}\right] \sim\left[\begin{array}{ll|c}
1 & 1 & 1 \\
0 & 1 & -1
\end{array}\right] .} \\
& R_{2} \rightarrow R_{2}-2 R_{1}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
x_{1}+x_{2} & =1, \\
x_{2} & =-1 .
\end{aligned}
$$

Therefore, the basic vector, i.e., $x_{1}=2, x_{2}=-1, x_{B}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$ and $x=\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right]$. It is not a basic feasible solution.
2. Since basis matrix is $B=\left[\begin{array}{ll}a_{1} & a_{3}\end{array}\right]$, therefore, $x_{B}=\left[\begin{array}{l}x_{1} \\ x_{3}\end{array}\right]$. We write

$$
\begin{array}{r}
{\left[\begin{array}{ll|l}
1 & 1 & 1 \\
2 & 0 & 1
\end{array}\right] .} \\
2 x_{1}=1, \\
x_{1}+x_{3}=1 .
\end{array}
$$

The basic vector, i.e., $x_{1}=\frac{1}{2}, x_{3}=\frac{1}{2}, x_{B}=\left[\begin{array}{l}1 / 2 \\ 1 / 2\end{array}\right]$ and $x=$ $\left[\begin{array}{c}1 / 2 \\ 0 \\ 1 / 2\end{array}\right]$. It is a basic feasible solution.
3. Since basis matrix is $B=\left[\begin{array}{ll}a_{2} & a_{3}\end{array}\right]$, therefore $x_{B}=\left[\begin{array}{l}x_{2} \\ x_{3}\end{array}\right]$. We write

$$
\begin{array}{r}
{\left[\begin{array}{ll|l}
1 & 1 & 1 \\
3 & 0 & 1
\end{array}\right] .} \\
3 x_{2}=1, \\
x_{2}+x_{3}=1 .
\end{array}
$$

Therefore, basic vector, i.e., $x_{2}=\frac{1}{3}, x_{3}=\frac{2}{3}, x_{B}=\left[\begin{array}{l}1 / 3 \\ 2 / 3\end{array}\right]$ and $x=\left[\begin{array}{c}0 \\ 1 / 3 \\ 2 / 3\end{array}\right]$. It is a basic feasible solution.
Example 5.2. Consider the equation $A x=b$, where $A=$
$\left[\begin{array}{llll}2 & 6 & 2 & 1 \\ 6 & 4 & 4 & 6\end{array}\right], b=\left[\begin{array}{l}3 \\ 2\end{array}\right]$ and $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$. Find basic solutions of $A x=b$.

The augmented matrix

$$
\begin{aligned}
{[A \mid b] } & =\left[\begin{array}{lllc|c}
2 & 6 & 2 & 1 & 3 \\
6 & 4 & 4 & 6 & 2
\end{array}\right] R_{1} \rightarrow \frac{1}{2} R_{1} \\
& \sim\left[\begin{array}{cccc|c}
1 & 3 & 1 & 1 / 2 & 3 / 2 \\
6 & 4 & 4 & 6 & 2
\end{array}\right] R_{2} \rightarrow R_{2}-6 R_{1} \\
& \sim\left[\begin{array}{rrrc|c}
1 & 3 & 1 & 1 / 2 & 3 / 2 \\
0 & -14 & -2 & 3 & -7
\end{array}\right] R_{2} \rightarrow-\frac{1}{14} R_{2} \\
& \sim\left[\begin{array}{rrrc|c}
1 & 3 & 1 & 1 / 2 & 3 / 2 \\
0 & 1 & 1 / 7 & -3 / 14 & 1 / 2
\end{array}\right] R_{1} \rightarrow R_{1}-3 R_{2} \\
& \sim\left[\begin{array}{cccc|c}
1 & 0 & 4 / 7 & 8 / 7 & 0 \\
0 & 1 & 1 / 7 & -3 / 14 & 1 / 2
\end{array}\right]
\end{aligned}
$$

Corresponding system of linear equations is given by

$$
\begin{aligned}
x_{1}+\frac{4}{7} x_{3}+\frac{8}{7} x_{4} & =0 \\
x_{2}+\frac{1}{7} x_{3}-\frac{3}{14} x_{4} & =\frac{1}{2}
\end{aligned}
$$

Solving for unknown variables x_{1} and x_{2}, we get

$$
\begin{aligned}
& x_{1}=-\frac{4}{7} x_{3}-\frac{8}{7} x_{4} \\
& x_{2}=\frac{1}{2}-\frac{1}{7} x_{3}+\frac{3}{14} x_{4}
\end{aligned}
$$

Taking $x_{3}=s \in \mathbb{R}$ and $x_{4}=t \in \mathbb{R}$, we get

$$
\begin{aligned}
& x_{1}=-\frac{4}{7} s-\frac{8}{7} t, \\
& x_{2}=\frac{1}{2}-\frac{1}{7} s+\frac{3}{14} t, \\
& x_{3}=s, \\
& x_{4}=t .
\end{aligned}
$$

In vector notation, we may write the system of equations above as

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 / 2 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-4 / 7 \\
-1 / 7 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-8 / 7 \\
3 / 14 \\
0 \\
1
\end{array}\right] .
$$

We have infinitely many solutions for $s, t \in \mathbb{R}$. Our question is how many basic feasible solutions are there?
We have unknown variables $m=4$ and number of equations $n=2$.

$$
\binom{m}{n}=\binom{4}{2}=\frac{4!}{2!2!}=6
$$

Therefore, we have at most six basic feasible solutions. We try to check each of the basic solutions for feasibility.

1. Since basis matrix $B=\left[\begin{array}{ll}2 & 6 \\ 6 & 4\end{array}\right]$, then $x_{B}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. We solve $B x_{B}=b$.

$$
\begin{aligned}
& {\left[\begin{array}{rr|r}
2 & 6 & 3 \\
6 & 4 & 2
\end{array}\right] \sim\left[\begin{array}{rr|r}
2 & 6 & 3 \\
0 & -14 & -7
\end{array}\right] .} \\
& R_{2} \rightarrow R_{2}-3 R_{1}
\end{aligned}
$$

The corresponding system of linear equations is

$$
\begin{aligned}
2 x_{1}+6 x_{2} & =3 \\
-14 x_{2} & =-7 .
\end{aligned}
$$

After solving the above two equations, we get basic vector, i.e., $x_{1}=0, x_{2}=\frac{1}{2}, x_{B}=\left[\begin{array}{c}0 \\ 1 / 2\end{array}\right]$, and $x=\left[\begin{array}{c}0 \\ 1 / 2 \\ 0 \\ 0\end{array}\right]$ is a solution
of $A x=b$. We observe that x is a basic solution of $A x=b$. Since $x \geq 0$, it is also feasible.
2. Since basis $B=\left[\begin{array}{ll}2 & 2 \\ 6 & 4\end{array}\right]$, therefore $x_{B}=\left[\begin{array}{l}x_{1} \\ x_{3}\end{array}\right]$. We solve $B x_{B}=b$.
$\left[\begin{array}{ll|l}2 & 2 & 3 \\ 6 & 4 & 2\end{array}\right] \sim\left[\begin{array}{ll|l}1 & 1 & 3 / 2 \\ 6 & 4 & 2\end{array}\right] \sim\left[\begin{array}{rr|r}1 & 1 & 3 / 2 \\ 0 & -2 & -7\end{array}\right]$

$$
R_{1} \rightarrow \frac{1}{2} R_{1} \quad R_{2} \rightarrow R_{2}-6 R_{1} \quad R_{2} \rightarrow-\frac{1}{2} R_{2}
$$

$\sim\left[\begin{array}{ll|l}1 & 1 & 3 / 2 \\ 0 & 1 & 7 / 2\end{array}\right] \sim\left[\begin{array}{cc|c}1 & 0 & -2 \\ 0 & 1 & 7 / 2\end{array}\right]$.
$R_{1} \rightarrow R_{1}-R_{2}$
We get $x_{1}=-2$ and $x_{3}=\frac{7}{2}$. Thus, $x_{B}=\left[\begin{array}{c}-2 \\ 7 / 2\end{array}\right]$ and $x=$ $\left[\begin{array}{c}-2 \\ 0 \\ 7 / 2 \\ 0\end{array}\right]$ is a solution of $A x=b$. It is basic but it is not feasible.
3. Since basis matrix is $B=\left[\begin{array}{ll}2 & 1 \\ 6 & 6\end{array}\right]$, therefore, $x_{B}=\left[\begin{array}{l}x_{1} \\ x_{4}\end{array}\right]$. We solve $B x_{B}=b$.
$\left[\begin{array}{ll|l}2 & 1 & 3 \\ 6 & 6 & 2\end{array}\right] \sim\left[\begin{array}{rr|r}2 & 1 & 3 \\ -6 & 0 & -16\end{array}\right] \sim\left[\begin{array}{ll|l}2 & 1 & 3 \\ 1 & 0 & 8 / 3\end{array}\right]$ $R_{2} \rightarrow R_{2}-6 R_{1} \quad R_{2} \rightarrow-\frac{1}{6} R_{2} \quad R_{1} \rightarrow R_{1}-2 R_{2}$ $\sim\left[\begin{array}{cc|c}0 & 1 & -7 / 3 \\ 1 & 0 & 8 / 3\end{array}\right] \sim\left[\begin{array}{cc|c}1 & 0 & 8 / 3 \\ 0 & 1 & -7 / 3\end{array}\right]$.
$R_{1} \leftrightarrow R_{2}$
We get $x_{1}=\frac{8}{3}$ and $x_{4}=-\frac{7}{3}$. Thus, $x_{B}=\left[\begin{array}{c}8 / 3 \\ -7 / 3\end{array}\right]$ and $x=\left[\begin{array}{c}8 / 3 \\ 0 \\ 0 \\ -7 / 3\end{array}\right]$ is a solution of $A x=b$. It is basic, but it is not feasible.
4. Since basis matrix $\mathrm{B}=\left[\begin{array}{ll}6 & 2 \\ 4 & 4\end{array}\right]$, therefore $x_{B}=\left[\begin{array}{l}x_{2} \\ x_{3}\end{array}\right]$. We solve

$$
\begin{aligned}
& B x_{B}=b \\
& {\left[\begin{array}{cc|c}
6 & 2 & 3 \\
4 & 4 & 2
\end{array}\right] \sim\left[\begin{array}{ll|l}
6 & 2 & 3 \\
1 & 1 & 1 / 2
\end{array}\right] \sim\left[\begin{array}{cc|c}
0 & -4 & 0 \\
1 & 1 & 1 / 2
\end{array}\right]} \\
& R_{2} \rightarrow \frac{1}{4} R_{2} \quad R_{1} \rightarrow R_{1}-6 R_{2} \quad R_{1} \rightarrow-\frac{1}{4} R_{1} \\
& \sim\left[\begin{array}{ll|l}
0 & 1 & 0 \\
1 & 1 & 1 / 2
\end{array}\right] .
\end{aligned}
$$

Thus, we get $x_{3}=0, x_{2}=\frac{1}{2}$ and $x=\left[\begin{array}{c}0 \\ 1 / 2 \\ 0 \\ 0\end{array}\right]$. It gives a basic feasible solution.
5. Since $B=\left[\begin{array}{ll}6 & 1 \\ 4 & 6\end{array}\right]$ and $x_{B}=\left[\begin{array}{l}x_{2} \\ x_{4}\end{array}\right]$, then we solve $B x_{B}=b$.

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
6 & 1 & 3 \\
4 & 6 & 2
\end{array}\right]} \\
& R_{2} \rightarrow R_{2}-6 R_{1}
\end{aligned} \sim\left[\begin{array}{cc|c}
6 & 1 & 3 \\
-32 & 0 & -16
\end{array}\right] \quad \sim\left[\begin{array}{cc|c}
6 & 1 & 3 \\
1 & 0 & 1 / 2
\end{array}\right]
$$

We get $x_{2}=\frac{1}{2}, x_{4}=0$ and $x=\left[\begin{array}{c}0 \\ 1 / 2 \\ 0 \\ 0\end{array}\right]$. It is basic feasible solution.
6. Since basis matrix is $B=\left[\begin{array}{ll}2 & 1 \\ 4 & 6\end{array}\right]$; therefore, basic vector is $x_{B}=\left[\begin{array}{l}x_{3} \\ x_{4}\end{array}\right]$. Then, we solve $B x_{B}=b$.
$\left[\begin{array}{ll|l}2 & 1 & 3 \\ 4 & 6 & 2\end{array}\right] \sim\left[\begin{array}{cc|c}2 & 1 & 3 \\ -8 & 0 & -16\end{array}\right] \sim\left[\begin{array}{ll|l}2 & 1 & 3 \\ 1 & 0 & 2\end{array}\right]$ $R_{2} \rightarrow R_{2}-6 R_{1} \quad R_{2} \rightarrow-\frac{1}{8} R_{2} \quad R_{1} \rightarrow R_{1}-2 R_{2}$ $\sim \underset{c c \mid c}{\left[\begin{array}{cc|c}0 & 1 & -1 \\ 1 & 0 & 2\end{array}\right]} \underset{R_{1} \leftrightarrow R_{2}}{ } \sim\left[\begin{array}{cc|c}1 & 0 & 2 \\ 0 & 1 & -1\end{array}\right]$.

We get $x_{3}=2, x_{4}=-1$ and $x=\left[\begin{array}{r}0 \\ 0 \\ 2 \\ -1\end{array}\right]$. It is basic but not feasible.

5.3 Properties of Basic Solutions

In this section, we discuss the importance of basic feasible solutions in solving linear programming problems. We prove the fundamental theorem of a linear programming problem. Before this, we should have an idea about an optimal basic feasible solution.

Definition 5.4 (Optimal Basic Feasible Solution). Any vector x that yields the minimum value of the objective function $c^{T} x$ over the set of vectors satisfying $A x=b, x \geq 0$ is called an "optimal feasible solution". An optimal feasible solution that is basic is called an "optimal basic feasible solution".

Theorem 5.1. The set of feasible solutions of a standard form linear programming problem is a convex set.

Proof. Consider a standard form of linear programming problem:

```
minimize c c
subject to }Ax=b\mathrm{ ,
where }\quadc\in\mp@subsup{\mathbb{R}}{}{n},x\in\mp@subsup{\mathbb{R}}{}{n},b\in\mp@subsup{\mathbb{R}}{}{m},A\in\mp@subsup{\mathbb{R}}{}{m\timesn},x\geq0
```

The set of feasible solution is $X:=\left\{X \in \mathbb{R}^{n}: A x=b, x \geq 0\right\}$. We have to prove that X is a convex set. That is, if $x, y \in X$ and $\lambda \in[0,1]$, then we have to show that $\lambda x+(1-\lambda) y \in X$. For that, we have to show that

$$
A(\lambda x+(1-\lambda) y)=b \text { and } \lambda x+(1-\lambda y) \geq 0
$$

Since

$$
x, y \in X,
$$

therefore

$$
\begin{aligned}
& A x=b \\
& A y=b
\end{aligned}
$$

Then,

$$
\begin{aligned}
A(\lambda x+(1-\lambda) y) & =\lambda A x+(1-\lambda) A y \\
& =\lambda b+(1-\lambda) b \\
& =b
\end{aligned}
$$

That is,

$$
\begin{equation*}
A(\lambda x+(1-\lambda) y)=b \tag{5.1}
\end{equation*}
$$

Since

$$
x, y \geq 0
$$

therefore

$$
\lambda x+(1-\lambda) y \geq \lambda \times 0+(1-\lambda) \times 0
$$

That is,

$$
\begin{equation*}
\lambda x+(1-\lambda) y \geq 0 \tag{5.2}
\end{equation*}
$$

From (5.1) and (5.2),

$$
\lambda x+(1-\lambda) y \in X
$$

Thus, X is a convex set.
Theorem 5.2. [Fundamental Theorem of Linear Programming Problem] Consider a linear programming problem in standard form:

```
minimize c c
subject to }Ax=b\mathrm{ ,
where }\quadc\in\mp@subsup{\mathbb{R}}{}{n},x\in\mp@subsup{\mathbb{R}}{}{n},b\in\mp@subsup{\mathbb{R}}{}{m},A\in\mp@subsup{\mathbb{R}}{}{m\timesn},x\geq0
```

1. If there exists a feasible solution, then there exists a basic feasible solution;
2. If there exists an optimal feasible solution, then there exists an optimal basic feasible solution.

Proof. 1. Suppose that $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ is a feasible solution and it
has p positive components, i.e., $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{p} \\ 0 \\ 0 \\ 0\end{array}\right]$. That is, $x_{i} \geq 0$, where $i=1, \ldots, p$. Let $A=\left[\begin{array}{llllll}a_{1} & a_{2} & \ldots & a_{p} & \ldots & a_{n}\end{array}\right]$, where a_{i} for all $i=1, \ldots, n$, is the $i^{\text {th }}$ column of A. We have

$$
A x=b
$$

then

$$
\left[\begin{array}{llllll}
a_{1} & a_{2} & \ldots & a_{p} & \ldots & a_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{p} \\
0 \\
0 \\
0
\end{array}\right]=b .
$$

That is,

$$
\begin{equation*}
x_{1} a_{1}+x_{2} a_{2}+\cdots+x_{p} a_{p}=b \tag{5.3}
\end{equation*}
$$

We consider two cases.
Case 1: If $a_{1}, a_{2}, \ldots, a_{p}$ are linearly independent, then $p \leq m$. If $p=m$, then the solution x is basic and the proof is done. If $p<m$ and since $\operatorname{rank} A=m$, then the matrix B is square
matrix of order $m \times m$ and therefore, $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{p} \\ 0 \\ 0 \\ 0\end{array}\right]$. That is,
$x_{i}>0$ for all $i=1, \ldots, p$, and $x_{i}=0$ for all $i=p+1, \ldots, m$. Thus, x is a degenerate basic feasible solution corresponding to the basis B.
Case 2: If $a_{1}, a_{2}, \ldots, a_{p}$ are linearly dependent, then there exist $\alpha_{i}, i=1, \ldots, p$, not all zero, such that

$$
\begin{equation*}
\alpha_{1} a_{1}+\alpha_{2} a_{2}+\cdots+\alpha_{p} a_{p}=0 \tag{5.4}
\end{equation*}
$$

We can assume that there exists at least one α_{i}, that is positive. Note that if all α_{i} are nonpositive, then we can multiply (5.4) by (-1).

Multiplying (5.4) by ϵ, a real number,

$$
\begin{equation*}
\epsilon \alpha_{1} a_{1}+\epsilon \alpha_{2} a_{2}+\cdots+\epsilon \alpha_{p} a_{p}=0 \tag{5.5}
\end{equation*}
$$

Subtracting (5.5) from (5.3) to get

$$
\left(x_{1}-\epsilon \alpha_{1}\right) a_{1}+\left(x_{2}-\epsilon \alpha_{2}\right) a_{2}+\cdots+\left(x_{p}-\epsilon \alpha_{p}\right) a_{p}=b
$$

Let $\alpha=\left[\begin{array}{c}\alpha_{1} \\ \vdots \\ \alpha_{p} \\ 0 \\ 0 \\ 0\end{array}\right]$. Then, for any ϵ, we can write $A[x-\epsilon \alpha]=b$.
Let $\epsilon=\min \left\{\frac{x_{i}}{\alpha_{i}}: i=1, \ldots, p, \alpha_{i}>0\right\}$. Then, the first p components of $x-\epsilon \alpha$ are non-negative, and at least one of these components is zero. Therefore, we have a feasible solution with at most $p-1$ positive components. We repeat this process until we get linearly independent columns of A, after that we get back to case-1. Therefore, Part 1 is done. We now prove Part 2.
2. Let the solution $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$ be an optimal feasible solution and the first p components are nonzero. We have two cases to consider. The first case is exactly the same as in Part 1. The second case follows the same arguments as in Part 1, but in addition, we must show that $x-\epsilon \alpha$ is the optimal for any ϵ. That is, we must show that $c^{T} \alpha=0$. Suppose that if possible $c^{T} \alpha \neq 0$. Note that for ϵ, sufficiently small,

$$
\left(|\epsilon| \leq \min \left\{\left|\frac{x_{i}}{\alpha_{i}}\right|: i=1, \ldots, p, \alpha_{i} \neq 0\right\}\right)
$$

The vector $x-\epsilon \alpha$ is feasible. We choose ϵ such that

$$
\begin{aligned}
c^{T} x & >c^{T} x-\epsilon c^{T} \alpha \\
& =c^{T}(x-\epsilon \alpha)
\end{aligned}
$$

It contradicts the optimality of x.

Definition 5.5 (Extreme Points). A point x of a convex set Ω is called an extreme point of Ω if there are no two points x_{1} and x_{2} such that $\lambda x_{1}+\left(1-\lambda x_{2}\right)=x$ for some $\lambda \in[0,1]$. It means that the extreme point is a point that does not lie strictly within the line segment connecting two other points of the set.

In other words, if x is an extreme point and $x=\lambda x_{1}+(1-\lambda) x_{2}$ for some $x_{1}, x_{2} \in \Omega$, then $x_{1}=x_{2}$.
For example,
Let the set R_{0} be determined by

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =1, \\
x_{1}-x_{2} & =0, \\
x_{1} \geq 0, x_{2} \geq 0, x_{3} & \geq 0 .
\end{aligned}
$$

Note that R_{0} is the line segment joining the points $x_{1}=\left[\begin{array}{c}1 / 2 \\ 1 / 2 \\ 0\end{array}\right]$ and
$x_{2}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Both x_{1} and x_{2} are extreme points; however, only one of them, namely x_{1}, is nondegenerate.

Theorem 5.3. Let Ω be the convex set consisting of all feasible solutions, that is, all n-vectors x satisfying

$$
\begin{equation*}
A x=b, x \geq 0 \tag{5.6}
\end{equation*}
$$

where $A \in \mathbb{R}^{m \times n}, m<n$. Then, x is an extreme point of Ω if and only if x is a basic feasible solution to $A x=b, x \geq 0$.

Proof. Suppose that $x=\left[x_{1}, x_{2}, \ldots, x_{p}, 0,0, \ldots, 0\right]^{T}$ satisfies (5.6) and has p positive components. Without loss of generality, we can assume that first p components are positive and the remaining components are zero. We have

$$
\begin{equation*}
x_{1} a_{1}+x_{2} a_{2}+\cdots+x_{p} a_{p}=b, \tag{5.7}
\end{equation*}
$$

Let $\alpha_{i}, i=1, \ldots, p$ be such that

$$
\begin{equation*}
\alpha_{1} a_{1}+\alpha_{2} a_{2}+\cdots+\alpha_{p} a_{p}=0 . \tag{5.8}
\end{equation*}
$$

We show that each $\alpha_{i}=0$, that is, we show that $a_{1}, a_{2}, \ldots, a_{p}$ are linearly independent. Let $\epsilon>0$, then

$$
\begin{equation*}
\epsilon \alpha_{1} a_{1}+\epsilon \alpha_{2} a_{2}+\cdots+\epsilon \alpha_{p} a_{p}=0 \tag{5.9}
\end{equation*}
$$

Adding (5.7) and (5.9) and subtracting (5.9) from (5.7) to get

$$
\begin{aligned}
& \left(x_{1}+\epsilon \alpha_{1}\right) a_{1}+\left(x_{2}+\epsilon \alpha_{2}\right) a_{2}+\cdots+\left(x_{p}+\epsilon \alpha_{p}\right) a_{p}=b, \\
& \left(x_{1}-\epsilon \alpha_{1}\right) a_{1}+\left(x_{2}-\epsilon \alpha_{2}\right) a_{2}+\cdots+\left(x_{p}-\epsilon \alpha_{p}\right) a_{p}=b .
\end{aligned}
$$

Since each $x_{i}>0, \epsilon>0$ can be chosen such that $x_{i}+\epsilon \alpha_{i} \geq 0$ and $x_{i}-\epsilon \alpha_{i} \geq 0$. We have

$$
\left(|\epsilon| \leq \min \left\{\left|\frac{x_{i}}{\alpha_{i}}\right|: i=1, \ldots, p, \alpha_{i} \neq 0\right\}\right) .
$$

For such a choice of ϵ, the vectors

$$
z_{1}=\left[\begin{array}{c}
x_{1}+\epsilon \alpha_{1} \\
x_{2}+\epsilon \alpha_{2} \\
\vdots \\
x_{p}+\epsilon \alpha_{p} \\
0 \\
0 \\
0
\end{array}\right] \quad \text { and } z_{2}=\left[\begin{array}{c}
x_{1}-\epsilon \alpha_{1} \\
x_{2}-\epsilon \alpha_{2} \\
\vdots \\
x_{p}-\epsilon \alpha_{p} \\
0 \\
0 \\
0
\end{array}\right], \text { where } z_{1}, z_{2} \in \Omega
$$

Note that $x=\frac{1}{2} z_{1}+\frac{1}{2} z_{2}$, but x is extreme. Therefore, $z_{1}=z_{2}$. That is $\alpha_{i}=0, i=1, \ldots, p$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}$ are linearly independent. Thus, $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{p} \\ 0 \\ 0 \\ 0\end{array}\right]$ is a basic feasible solution to $A x=b$, where $x \geq 0$.

Conversely, let $x \in \Omega$ be a basic feasible solution. Let $y, z \in \Omega$ be such that $x=\alpha y+(1-\alpha) z$ for some $\alpha \in(0,1)$.
We need to show that x is extreme, i.e., equivalent to show that $y=z$.
Since $y, z \geq 0$ and the last $n-m$ components of x are zero. Therefore, the last $n-m$ components of y and z are zero as well. Furthermore, since

$$
A y=A z=b,
$$

then

$$
\begin{align*}
& y_{1} a_{1}+\cdots+y_{m} a_{m}=b, \tag{5.10}\\
& z_{1} a_{1}+\cdots+z_{m} a_{m}=b . \tag{5.11}
\end{align*}
$$

Subtracting (5.11) from (5.10),

$$
\left(y_{1}-z_{1}\right) a_{1}+\cdots+\left(y_{m}-z_{m}\right) a_{m}=0 .
$$

Since the columns $a_{1}, a_{2}, \ldots, a_{m}$ are linearly independent, then $y_{1}-$ $z_{1}=0, y_{2}-z_{2}=0, \ldots, y_{m}-z_{m}=0$. That is,

$$
y_{i}=z_{i}, i=1, \ldots, m .
$$

Thus, x is an extreme point of Ω.

5.4 Simplex Algorithm

The aim of the simplex algorithm is to move from one basic feasible solution to another until an optimal basic feasible solution is found and the value of objective function continually decreases until a minimum is reached. A basic feasible solution is optimal if and only if the corresponding reduced cost coefficients are all non-negative.

Theorem 5.4. A basic feasible solution is optimal if and only if the corresponding reduced cost coefficients are all non-negative.
Note: The proof is beyond the scope of this book.
At this point, we have the following steps for the simplex algorithm.

Algorithm

1. Form an augmented simplex tableau corresponding to a starting basic feasible solution of the standard form of linear programming problem.
2. Calculate the reduced cost coefficients corresponding to the nonbasic variables.
3. If $r_{j} \geq 0$ for all j, then the current basic feasible solution is optimal and stop; otherwise, go to step 4.
4. Select a q such that $r_{q}<0$ (i.e., the q corresponding to the most negative r_{q}).
5. If no $y_{i q}>0$, then the problem is unbounded and stop; otherwise, go to step 6 .
6. Calculate $\mathrm{p}=\arg \min _{i}\left\{\frac{y_{i 0}}{y_{i q}}: y_{i q}>0\right\}$. If more than one in$\operatorname{dex} i$ minimizes $\frac{y_{i 0}}{y_{i q}}$, then let us choose p.
7. Update the augmented simplex tableau by pivoting about the $(\mathrm{p}, \mathrm{q})^{\text {th }}$ element.
8. Go to step 2.

The simplex method can be examined by selecting pivot column q and row p . The pivot column is q with the most negative element in the bottom row of an augmented matrix. The tableau is called an optimal in step 3 if all entries are non-negative in the last row of the tableau. In the simplex method, we want to move from one basic feasible solution to another until an optimal basic feasible solution is found. To improve the tableau, pivot row p is calculated by attaining minimum ratio in step 6 that is $\min _{i}\left\{\frac{y_{i 0}}{y_{i q}}\right\}$ where the entries $y_{i 0}, i=1,2, \ldots, m$ are found in the last column of the canonical augmented matrix and $y_{i q}$ are the entries of pivot column q. We use elementary row operations to get zero entries at $q^{\text {th }}$ column except the $(p, q)^{\text {th }}$ entry which is made to be unity. The rest of the entries will remain the same as that of old canonical augmented matrix. If all entries $y_{i q}$ are either zero or negative, then we cannot move to a new augmented matrix and the linear programming problem will be unbounded.

Example 5.3. Solve linear programming problem.

$$
\begin{aligned}
\operatorname{maximize} & 4 x_{1}+5 x_{2} \\
\text { subject to } & 2 x_{1}+\quad x_{2} \leq 9 \\
& x_{1} \quad \\
& x_{2} \leq 4 \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
$$

The first step is to convert the problem in standard form:

$$
\begin{array}{lc}
\operatorname{minimize} & -4 x_{1}-5 x_{2} \\
\text { subject to } \quad 2 x_{1}+x_{2}+x_{3} & =9 \\
x_{1} & =4 \\
& x_{2} \quad x_{4} \\
& x_{5}=3 \\
& x_{1}, \quad x_{2}, \quad x_{3}, x_{4}, x_{5},
\end{array}
$$

The augmented matrix of this problem is

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	b
a_{3}	2	1	1	0	0	9
a_{4}	1	0	0	1	0	4
a_{5}	0	1	0	0	1	3

Note that basis matrix is $B=\left[\begin{array}{lll}a_{3} & a_{4} & a_{5}\end{array}\right]$. Therefore, $x_{B}=\left[\begin{array}{l}x_{3} \\ x_{4} \\ x_{5}\end{array}\right]$ and since $B x_{B}=b$, so we get $x_{B}=\left[\begin{array}{l}9 \\ 4 \\ 3\end{array}\right]$. Therefore, the starting basic feasible solution to the problem is $x=\left[\begin{array}{l}0 \\ 0 \\ 9 \\ 4 \\ 3\end{array}\right]$. We compute the reduced cost coefficients corresponding to the nonbasic variables x_{1} and x_{2}.

$$
\begin{aligned}
r_{1} & =c_{1}-\left(c_{3} y_{11}+c_{4} y_{21}+c_{5} y_{31}\right) \\
& =-4-(0 \times 2+0 \times 1+0 \times 0) \\
& =-4
\end{aligned}
$$

and

$$
\begin{aligned}
r_{2} & =c_{2}-\left(c_{3} y_{12}+c_{4} y_{22}+c_{5} y_{32}\right) \\
& =-5-(0 \times 1+0 \times 0+0 \times 1) \\
& =-5
\end{aligned}
$$

We choose the most negative cost coefficient value r_{j} and bring the corresponding columns into the basis. We see that $r_{2}=-5$ is the most negative value. Therefore, a_{2} enters into basis.

	a_{1}	a_{2}
a_{3}	2	a_{3}
a_{3}	a_{4}	a_{5}

We compute $\mathrm{p}=\arg \min \left\{\frac{9}{1}, \frac{V}{2}, \frac{3}{1}\right\}=3^{\text {rd }}$ row. We choose the minimum ratio and we see that the third row is chosen as pivot row.

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	b
a_{3}	2	1	1	0	0	9
a_{4}	1	0	0	1	0	4
a_{2}	0	1	0	0	1	3

We now update the canonical augmented matrix by pivoting at $(3,2)^{\text {th }}$ entry with the help of row operations:

$$
\begin{array}{lrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{3} & 2 & 1 & 1 & 0 & 0 & 9 \\
a_{4} & 1 & 0 & 0 & 1 & 0 & 4 \\
a_{2} & 0 & 1 & 0 & 0 & 1 & 3
\end{array}
$$

$R_{1} \rightarrow R_{1}-R_{3}$

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{3} & 2 & 0 & 1 & 0 & -1 & 6 \\
a_{4} & 1 & 0 & 0 & 1 & 0 & 4 \\
a_{2} & 0 & 1 & 0 & 0 & 1 & 3
\end{array}
$$

$R_{1} \leftrightarrow R_{3}$

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{2} & 0 & 1 & 0 & 0 & 1 & 3 \\
a_{4} & 1 & 0 & 0 & 1 & 0 & 4 \\
a_{3} & 2 & 0 & 1 & 0 & -1 & 6
\end{array}
$$

$R_{2} \leftrightarrow R_{3}$

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{2} & 0 & 1 & 0 & 0 & 1 & 3 \\
a_{3} & 2 & 0 & 1 & 0 & -1 & 6 \\
a_{4} & 1 & 0 & 0 & 1 & 0 & 4
\end{array}
$$

We get basis $B=\left[\begin{array}{lll}a_{2} & a_{3} & a_{4}\end{array}\right], x_{B}=\left[\begin{array}{l}x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$. Since $B x_{B}=b$, therefore we get $x_{B}=\left[\begin{array}{l}3 \\ 6 \\ 4\end{array}\right]$ and hence $x=\left[\begin{array}{l}0 \\ 3 \\ 6 \\ 4 \\ 0\end{array}\right]$.
We again compute

$$
\begin{aligned}
r_{1} & =c_{1}-\left(c_{2} y_{11}+c_{3} y_{21}+c_{4} y_{31}\right) \\
& =-4-(-5 \times 0+0 \times 2+0 \times 1) \\
& =-4
\end{aligned}
$$

and

$$
\begin{aligned}
r_{5} & =c_{5}-\left(c_{2} y_{15}+c_{3} y_{25}+c_{4} y_{35}\right) \\
& =0-(-5 \times 1+0 \times-1+0 \times 0) \\
& =5
\end{aligned}
$$

Since r_{1} is the only negative reduced cost, therefore we choose first column a_{1} to enter into basis.

$$
\begin{array}{rrrrr}
1 & 0 & a_{4} & a_{5} & b \\
0 & 1 & 0 & -1 & 3 \\
0 & 0 & 1 & 0 & 4
\end{array}
$$

We find $\mathrm{p}=\arg \min \left\{\frac{3}{1}, \frac{6}{2}, \frac{4}{1}\right\}=2^{\text {nd }}$ row, therefore row 2 should be the pivot row.

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	b
a_{2}	0	1	0	0	1	3
a_{1}	2	0	1	0	-1	6
	1	0	0	1	0	4

We again perform elementary row operations by pivoting at $(2,1)^{\text {th }}$ entry.

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	b
a_{2}	0	1	0	0	1	3
a_{1}	2	0	1	0	-1	6
a_{4}	1	0	0	1	0	4

$R_{2} \rightarrow \frac{1}{2} R_{2}$

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	b
a_{2}	0	1	0	0	1	3
a_{1}	1	0	$1 / 2$	0	$-1 / 2$	3
a_{4}	1	0	0	1	0	4

$R_{3} \rightarrow R_{3}-R_{2}$

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	b
a_{2}	0	1	0	0	1	3
a_{1}	1	0	$1 / 2$	0	$-1 / 2$	3
a_{4}	0	0	$-1 / 2$	1	$1 / 2$	1

$R_{1} \leftrightarrow R_{2}$

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	b
a_{1}	1	0	$1 / 2$	0	$-1 / 2$	3
a_{2}	0	1	0	0	1	3
a_{4}	0	0	$-1 / 2$	1	$1 / 2$	1

Thus, basis $B=\left[\begin{array}{lll}a_{1} & a_{2} & a_{4}\end{array}\right], x_{B}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{4}\end{array}\right]$, so $B x_{B}=b$ implies $x_{B}=\left[\begin{array}{l}3 \\ 3 \\ 1\end{array}\right]$ and $x=\left[\begin{array}{l}3 \\ 3 \\ 0 \\ 1 \\ 0\end{array}\right]$.
We find

$$
\begin{aligned}
r_{3} & =c_{3}-\left(c_{1} y_{13}+c_{2} y_{23}+c_{4} y_{33}\right) \\
& =0-\left(-4 \times \frac{1}{2}+(-5) \times 0+0 \times-\frac{1}{2}\right) \\
& =2
\end{aligned}
$$

and

$$
\begin{aligned}
r_{5} & =c_{5}-\left(c_{1} y_{15}+c_{2} y_{25}+c_{4} y_{35}\right) \\
& =0-\left(-4 \times\left(-\frac{1}{2}\right)+(-5) \times 1+0 \times \frac{1}{2}\right) \\
& =3 .
\end{aligned}
$$

Note that all the reduced costs are non-negative. Therefore, the current basic feasible solution is the optimal solution. Thus, $x_{1}=3$ and $x_{2}=3$, and the value of the objective function is

$$
4 x_{1}+5 x_{2}=4 \times 3+5 \times 3=27 .
$$

Example 5.4. Solve the linear programming problem using the simplex method.

$$
\begin{aligned}
\operatorname{maximize} & 5 x_{1}+6 x_{2} \\
\text { subject to } & 3 x_{1}+4 x_{2} \leq 18 \\
& 2 x_{1}+x_{2} \leq 7, \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
$$

We first transform the problem into standard form:

$$
\begin{array}{lll}
\operatorname{minimize} & -5 x_{1}-6 x_{2} & \\
\text { subject to } & 3 x_{1}+4 x_{2}+x_{3} & =18 \\
& 2 x_{1}+x_{2} \quad+x_{4}=7 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq 0
\end{array}
$$

We construct the augmented matrix for the linear programming problem:

$$
\begin{array}{crrcc|c}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{3} & 3 & 4 & 1 & 0 & 18 \\
a_{4} & 2 & 1 & 0 & 1 & 7 \\
c^{T} & -5 & -6 & 0 & 0 & 0
\end{array}
$$

We see that the basis matrix is $B=\left[\begin{array}{ll}a_{3} & a_{4}\end{array}\right]$, therefore basic vector is $x_{B}=\left[\begin{array}{l}x_{3} \\ x_{4}\end{array}\right]$ and since $B x_{B}=b$, so we get $x_{B}=\left[\begin{array}{c}18 \\ 7\end{array}\right]$. Therefore, the starting basic feasible solution is $x=\left[\begin{array}{c}0 \\ 0 \\ 18 \\ 7\end{array}\right]$.
We choose the most negative element in the last row of the tableau corresponding to nonbasic variables. Since $r_{2}=-6$ is most negative element, we get the second column as a pivot column, i.e., $\mathrm{q}=2$ and bring a_{2} into basis. We compute ratios

$$
\frac{y_{10}}{y_{12}}=\frac{18}{4}=\frac{9}{2}, \quad \frac{y_{20}}{y_{22}}=\frac{7}{1}=7 .
$$

We find the minimum value as $\frac{9}{2}$ which is for the first row, i.e., $\mathrm{p}=1$. Thus, a_{3} of basis matrix B is replaced by a_{2}.

We now perform elementary row operations to get zero entries in the second pivot column except $(\mathrm{p}, \mathrm{q})^{\text {th }}=(1,2)^{\text {th }}$ place which is the unity. This is called update of tableau.

$R_{1} \rightarrow \frac{R_{1}}{4}$

$$
\begin{array}{lrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{2} & 3 / 4 & 1 & 1 / 4 & 0 & 9 / 2 \\
a_{4} & 2 & 1 & 0 & 1 & 7 \\
c^{T} & -5 & -6 & 0 & 0 & 0
\end{array}
$$

$R_{2} \rightarrow R_{2}-R_{1}$
$R_{3} \rightarrow R_{3}+6 R_{1}$

$$
\begin{array}{rrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{2} & 3 / 4 & 1 & 1 / 4 & 0 & 9 / 2 \\
a_{4} & 5 / 4 & 0 & -1 / 4 & 1 & 5 / 2 \\
c^{T} & -1 / 2 & 0 & 3 / 2 & 0 & 27
\end{array}
$$

We again check the reduced cost coefficient; we see that only $r_{1}=$ $-\frac{1}{2}$ is most negative. Therefore, $\mathrm{q}=1$, i.e., we bring a_{1} into basis. Since

$$
\frac{y_{10}}{y_{11}}=6, \quad \frac{y_{20}}{y_{21}}=2 .
$$

The minimum value is 2 , therefore we choose $\mathrm{p}=2$ as the pivot row and a_{4} is replaced by a_{1}. Thus, we update the tableau by pivoting about $(\mathrm{p}, \mathrm{q})^{\text {th }}=(2,1)^{\text {th }}$ element to obtain

	a_{1}		a_{2}	a_{3}	a_{4}
a_{2}	$3 / 4$	1	$1 / 4$	0	$9 / 2$
a_{2}	1				
a_{1}	$5 / 4$	0	$-1 / 4$	1	$5 / 2$
c^{T}	$-1 / 2$	0	$3 / 2$	0	27

$R_{2} \rightarrow \frac{4}{5} R_{2}$

$$
\begin{array}{rrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{2} & 3 / 4 & 1 & 1 / 4 & 0 & 9 / 2 \\
a_{1} & 1 & 0 & -1 / 5 & 4 / 5 & 2 \\
c^{T} & -1 / 2 & 0 & 3 / 2 & 0 & 27
\end{array}
$$

$R_{1} \rightarrow R_{1}-\frac{3}{4} R_{2}$
$R_{3} \rightarrow R_{3}+\frac{1}{2} R_{2}$

$$
\begin{array}{rrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{2} & 0 & 1 & 2 / 5 & -3 / 5 & 3 \\
a_{1} & 1 & 0 & -1 / 5 & 4 / 5 & 2 \\
c^{T} & 0 & 0 & 7 / 5 & 2 / 5 & 28
\end{array}
$$

$R_{1} \leftrightarrow R_{2}$

$$
\begin{array}{rrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{1} & 1 & 0 & -1 / 5 & 4 / 5 & 2 \\
a_{2} & 0 & 1 & 2 / 5 & -3 / 5 & 3 \\
c^{T} & 0 & 0 & 7 / 5 & 2 / 5 & 28
\end{array}
$$

Since the last row of this tableau has no negative elements, we conclude that the basic feasible solution corresponding to this tableau is optimal. Thus,

$$
x_{1}=2, x_{2}=3, x_{3}=0 \text { and } x_{4}=0
$$

is the solution to the original linear programming problem in standard form and the corresponding objective value is 28 .

Example 5.5. Solve linear programming problem using the simplex method.

$$
\begin{aligned}
\operatorname{maximize} & 3 x_{1}+6 x_{2}+2 x_{3} \\
\text { subject to } & 3 x_{1}+4 x_{2}+x_{3} \leq 20 \\
& x_{1}+3 x_{2}+2 x_{3} \leq 10 \\
& x_{1}, \quad x, \quad x_{3} \geq 0
\end{aligned}
$$

We write the linear programming problem in standard form:

$$
\begin{array}{lr}
\operatorname{minimize} & -3 x_{1}-6 x_{2}-2 x_{3} \\
\text { subject to } & 3 x_{1}+4 x_{2}+x_{3}+x_{4}=20, \\
& x_{1}+3 x_{2}+2 x_{3} \quad+x_{5}=10, \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5} \geq 0
\end{array}
$$

We create the simplex tableau as

$$
\begin{array}{crrrrr|c}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{4} & 3 & 4 & 1 & 1 & 0 & 20 \\
a_{5} & 1 & 3 & 2 & 0 & 1 & 10 \\
c^{T} & -3 & -6 & -2 & 0 & 0 & 0
\end{array}
$$

Note that in the above simplex tableau, the coefficient of variables of objective function is written in the last row of tableau. The current basis matrix is $B=\left[\begin{array}{ll}a_{4} & a_{5}\end{array}\right]$, therefore basic vector is $x_{B}=\left[\begin{array}{l}x_{4} \\ x_{5}\end{array}\right]$ and since $B x_{B}=b$, so we get $x_{B}=\left[\begin{array}{l}20 \\ 10\end{array}\right]$.
The starting basic feasible solution is $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 20 \\ 10\end{array}\right]$ and value of objective function is zero. We consider the negative coefficient corresponding to nonbasic variables in the simplex tableau. We have

$$
r_{1}=-3, r_{2}=-6, r_{3}=-2
$$

We choose the most negative element. Note that $r_{2}=-6$ is the most negative. Therefore, we obtain $\mathrm{q}=2$. That is, the second column is the pivot column.

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{4} & 3 & 4 & 1 & 1 & 0 & 20 \\
a_{5} & 1 & 3 & 2 & 0 & 1 & 10 \\
c^{T} & -3 & -6 & -2 & 0 & 0 & 0
\end{array}
$$

We use the ratio test to choose the pivot row, i.e., p. For this, we use the sixth statement of the simplex algorithm.

Thus, the second row is the pivot row. The intersecting box indicated is our pivot element and a_{5} of basis matrix will be replaced by a_{2} as a basic variable. We update the tableau by pivoting $(2,2)^{\mathrm{th}}$ element.
$R_{2} \rightarrow \frac{1}{3} R_{2}$

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{4} & 3 & 4 & 1 & 1 & 0 & 20 \\
a_{2} & 1 / 3 & 1 & 2 / 3 & 0 & 1 / 3 & 10 / 3 \\
c^{T} & -3 & -6 & -2 & 0 & 0 & 0
\end{array}
$$

$R_{1} \rightarrow R_{1}-4 R_{2}$
$R_{3} \rightarrow R_{3}+6 R_{2}$

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{4} & 5 / 3 & 0 & -5 / 3 & 1 & -4 / 3 & 20 / 3 \\
a_{2} & 1 / 3 & 1 & 2 / 3 & 0 & 1 / 3 & 10 / 3 \\
c^{T} & -1 & 0 & 2 & 0 & 2 & 20
\end{array}
$$

We choose the most negative. Only $r_{1}=-1$ is the most negative. Thus, the first column is the pivot column and bring a_{1} into basis. To determine which element in the second column is the appropriate pivot, we compute the two ratios:

$$
\mathrm{p}=\arg \min \left\{\frac{y_{10}}{y_{11}}, \frac{y_{20}}{y_{21}}\right\}=\left\{\frac{20}{5}, 10\right\}=1^{\text {st }} \text { row. }
$$

This gives the first row as the pivot row.

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	b
a_{1}	$5 / 3$	0	$-5 / 3$	1	$-4 / 3$	$20 / 3$
a_{2}	$1 / 3$	1	$2 / 3$	0	$1 / 3$	$10 / 3$
c^{T}	-1	0	2	0	2	20

We apply row operations to pivot the $(1,1)^{\text {th }}$ element for updating the tableau.
$R_{1} \rightarrow \frac{3}{5} R_{1}$

$$
\begin{aligned}
& \begin{array}{lllllll}
a_{2} & 1 / 3 & 1 & 2 / 3 & 0 & 1 / 3 & 10 / 3
\end{array} \\
& c^{T} \begin{array}{cllllll}
& -1 & 0 & 2 & 0 & 2 & 20
\end{array}
\end{aligned}
$$

$R_{2} \rightarrow R_{2}-\frac{1}{3} R_{1}$
$R_{3} \rightarrow R_{3}+R_{1}$

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{1} & 1 & 0 & -1 & 3 / 5 & -4 / 5 & 4 \\
a_{2} & 0 & 1 & 1 & -1 / 5 & 3 / 5 & 2 \\
c^{T} & 0 & 0 & 1 & 3 / 5 & 6 / 5 & 24
\end{array}
$$

Since the last row has no negative elements, we conclude that the solution corresponding to the above tableau is optimal. Thus, $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}4 \\ 2 \\ 0 \\ 0\end{array}\right]$ and the optimal solution of the maximum objective function is 24 .

We can solve linear programming problems with the help of MATLAB. To choose the pivot column from the feasible tableau, we use MATLAB function pivotcolumn.m given in the following Code 5.1:

Code 5.1: pivotcolumn.m

function $[A, q]=$ pivotcolumn (A, v)
\%input : augmented matrix A, nonbasic
\%variables v
\%output: pivot column q, augmented matrix A
$\left[\mathrm{m},{ }^{\sim}\right]=\operatorname{size}(\mathrm{A})$;
$\min =0$;
$\mathrm{q}=0$;
for $\mathrm{J}=1$: v
if $\mathrm{A}(\mathrm{m}, \mathrm{J})<0$
if $\mathrm{A}(\mathrm{m}, \mathrm{J})<\mathrm{min}$
$\min =\mathrm{A}(\mathrm{m}, \mathrm{J})$;
$\mathrm{q}=\mathrm{J}$;
end
end
end
return
MATLAB function pivotrow.m given in Code 5.2 is written to
choose the pivot row. This function also checks whether the linear programming problem is unbounded or not.

Code 5.2: pivotrow.m
function $[A, p, e, B]=$ pivotrow (A, q, B)
\%input : augmented matrix A, pivot column q,
\% basis vector B
\%output: pivot row p, pivot element e
$[\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{A})$;
min=Inf;
$\mathrm{p}=0$;
for $\mathrm{k}=1$:m
if $\mathrm{A}(\mathrm{k}, \mathrm{q})>0$ row $=A(k, n) / A(k, q)$;
if row $<$ min min=row ; $\mathrm{p}=\mathrm{k}$; end
end
end
if $\mathrm{p}==0$
disp ('unbounded');
$\mathrm{e}=0$;
else
$\mathrm{e}=\mathrm{A}(\mathrm{p}, \mathrm{q})$;
$B(p)=q$;
end
return
The MATLAB function simplex.m is given in Code 5.3 to make zero entries in $q^{\text {th }}$ column except $(\mathrm{p}, \mathrm{q})^{\text {th }}$ place which is unity.

Code 5.3: simplex.m
function $A=$ simplex (A, p, q)
\%input: augmented matrix A, pivot row p,
\% pivot column q
\%output: augmented matrix A
$[\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{A})$;
format rat
$\mathrm{C}=\mathrm{zeros}(\mathrm{m}, \mathrm{n})$;

$$
\begin{aligned}
& \mathrm{J}=(1: \mathrm{n}) ; \\
& \mathrm{C}(\mathrm{p}, \mathrm{~J})=\operatorname{sym}(\mathrm{A}(\mathrm{p}, \mathrm{~J}) / \mathrm{A}(\mathrm{p}, \mathrm{q})) ; \\
& \text { for } \mathrm{I}=1: \mathrm{m} \\
& \quad \text { if } \quad \mathrm{I}^{\sim}=\mathrm{p} \\
& \mathrm{C}(\mathrm{I}, \mathrm{~J})= \\
& \quad \operatorname{sym}(\mathrm{A}(\mathrm{I}, \mathrm{~J}))-\operatorname{sym}(\mathrm{A}(\mathrm{I}, \mathrm{q})) * \mathrm{C}(\mathrm{p}, \mathrm{~J}) ; \\
& \quad \text { end } \\
& \text { end } \\
& \mathrm{A}=\mathrm{C} ; \\
& \quad \text { return }
\end{aligned}
$$

We now see how the simplex algorithm works in MATLAB to move from a feasible tableau to an optimal tableau, one pivot at a time, by means of the following examples:

Example 5.6. Solve the linear programming problem using the simplex method.

$$
\begin{aligned}
\operatorname{maximize} & 7 x_{1}+6 x_{2} \\
\text { subject to } & 2 x_{1}+x_{2} \leq 3 \\
& x_{1}+4 x_{2} \leq 4 \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
$$

We first transform the problem into standard form. To do this, we multiply the objective function by -1 to change the maximization to minimization. We introduce two non-negative slack variables x_{3} and x_{4}. Then, the original problem can be written as

$$
\begin{array}{lrl}
\operatorname{minimize} & -7 x_{1}-6 x_{2} \\
\text { subject to } & 2 x_{1}+x_{2}+x_{3} & =3, \\
x_{1}+4 x_{2} \quad+x_{4} & =4, \\
x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} & \geq 0 .
\end{array}
$$

We construct the tableau for the problem:

$$
\left[\begin{array}{rrrr|r}
a_{1} & a_{2} & a_{3} & a_{4} & b \\
2 & 1 & 1 & 0 & 3 \\
1 & 4 & 0 & 1 & 4 \\
-7 & -6 & 0 & 0 & 0
\end{array}\right]
$$

Note that the basis matrix is $B=\left[\begin{array}{ll}a_{3} & a_{4}\end{array}\right], x_{B}=\left[\begin{array}{l}x_{3} \\ x_{4}\end{array}\right]$, and
$B x_{B}=b$ implies $x_{B}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$. Therefore, the starting basic feasible solution is $x=\left[\begin{array}{l}0 \\ 0 \\ 3 \\ 4\end{array}\right]$. The last row contains the reduced cost coefficients.

We use MATLAB function pivotcolumn.m to choose the pivot column corresponding to the most negative value. Note that nonbasic variables are x_{1} and x_{2}. Therefore, we take $\mathrm{v}=2$.
>> [A, q] =pivotcolumn(A, v)

a_{1}		a_{2}			
a_{3}	2	1	1	0	3
a_{4}	1	4	0	1	4
c^{T}	-7	-6	0	0	0

$\mathrm{q}=1$.
We compute $\mathrm{p}=\arg \min \left\{\frac{y_{10}}{y_{11}}, \frac{y_{20}}{y_{21}}\right\}=\left\{\frac{3}{2}, \frac{4}{1}\right\}=1^{\text {st }}$ row.
$\gg B=\left[\begin{array}{ll}3 & 4\end{array}\right]$
>> $[\mathrm{A}, \mathrm{p}, \mathrm{e}, \mathrm{B}]=$ pivotrow $(\mathrm{A}, \mathrm{q}, \mathrm{B})$

	a_{1}	a_{2}	a_{3}	a_{4}	b
a_{3}	2	1	1	0	3
a_{4}	1	4	0	1	4
c^{T}	-7	-6	0	0	0

$$
p=1 \quad e=2 \quad B=\left[\begin{array}{ll}
1 & 4
\end{array}\right] .
$$

\[

\]

```
>>A=identityop(A,p,1/2)
```

\[

\]

>>A=eliminationop(A, 2, p, -1)

\[

\]

>>A=eliminationop(A, 3, p, 7)

$$
\begin{array}{rrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{1} & 1 & 1 / 2 & 1 / 2 & 0 & 3 / 2 \\
a_{4} & 0 & 7 / 2 & -1 / 2 & 1 & 5 / 2 \\
c^{T} & 0 & -5 / 2 & 7 / 2 & 0 & 21 / 2
\end{array}
$$

>> [A, q] =pivotcolumn (A, v)

$$
\begin{aligned}
& q=2 \\
> & >B=\left[\begin{array}{ll}
1 & 4
\end{array}\right] \\
> & >[A, p, e, B]=\text { pivotrow }(A, q, B)
\end{aligned}
$$

	a_{1}	a_{2}	a_{3}	a_{4}	b
a_{1}	1	$1 / 2$	$1 / 2$	0	$3 / 2$
a_{4}	0	$7 / 2$	$-1 / 2$	1	$5 / 2$
c^{T}	0	$-5 / 2$	$7 / 2$	0	$21 / 2$

$$
p=2 \quad e=7 / 2 \quad B=\left[\begin{array}{ll}
1 & 2
\end{array}\right] .
$$

\[

\]

>>A=identityop(A, p, 1/e)

\[

\]

>>A=eliminationop(A, 3, p, 5/2)

$$
\begin{array}{lrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{1} & 1 & 1 / 2 & 1 / 2 & 0 & 3 / 2 \\
a_{2} & 0 & 1 & -1 / 7 & 2 / 7 & 5 / 7 \\
c^{T} & 0 & 0 & 22 / 7 & 5 / 7 & 86 / 7 \\
& R_{1} \rightarrow R_{1}-1 / 2 R_{2}
\end{array}
$$

>>A=eliminationop(A, $1, p,-1 / 2$)

	a_{1}	a_{2}	a_{3}	a_{4}	b
a_{1}	1	0	$4 / 7$	$-1 / 7$	$8 / 7$
a_{2}	0	1	$-1 / 7$	$2 / 7$	$5 / 7$
c^{T}	0	0	$22 / 7$	$5 / 7$	$86 / 7$

Since each element of the last row is non-negative, the present basic feasible solution is the optimal solution. Therefore, $x_{1}=\frac{8}{7}, x_{2}=\frac{5}{7}$ and the optimal value of objective function is $\frac{86}{7}$.

Example 5.7. Solve the linear programming problem.

$$
\begin{array}{rc}
\operatorname{maximize} & 2 x_{1}+x_{2} \\
\text { subject to } & x_{1} \leq 5 \\
& x_{2} \leq 7 \\
& x_{1}+x_{2} \leq 9 \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

The standard form of linear programming problem:

$$
\begin{array}{lrl}
\operatorname{minimize} & -2 x_{1}-x_{2} & \\
\text { subject to } & x_{1}+x_{3} & =5 \\
& x_{2}+x_{4} & =7 \\
& x_{1}+x_{2} & +x_{5}
\end{array}=9,9
$$

We construct the augmented matrix. It is represented by A.

$$
\begin{array}{lrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{3} & 1 & 0 & 1 & 0 & 0 & 5 \\
a_{4} & 0 & 1 & 0 & 1 & 0 & 7 \\
a_{5} & 1 & 1 & 0 & 0 & 1 & 9 \\
c^{T} & -2 & -1 & 0 & 0 & 0 & 0
\end{array}
$$

We have $B=\left[\begin{array}{lll}a_{3} & a_{4} & a_{5}\end{array}\right], x_{B}=\left[\begin{array}{l}x_{3} \\ x_{4} \\ x_{5}\end{array}\right]$ and $B x_{B}=b$ implies $x_{B}=\left[\begin{array}{l}5 \\ 7 \\ 9\end{array}\right]$. Thus, the starting basic feasible solution is $x=\left[\begin{array}{l}0 \\ 0 \\ 5 \\ 7 \\ 9\end{array}\right]$. >>v=2
>> [A, q] =pivotcolumn(A,v)

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	b
a_{3}	1	0	1	0	0	5
a_{4}	0	1	0	1	0	7
a_{5}	1	1	0	0	1	9
c^{T}	-2	-1	0	0	0	0

$$
q=1 .
$$

We compute for pivot row $\mathrm{p}=\arg \min \left\{\frac{5}{1}, \frac{7}{4}, \frac{9}{1}\right\}=1^{\text {st }}$ row.
$\gg B=\left[\begin{array}{lll}3 & 4 & 5\end{array}\right]$
>> $A, p, e, B]=$ pivotrow (A, q, B)

	a_{1}		a_{2}	a_{3}	a_{4}	a_{5}	b
a_{3}	1	0	1	0	0	5	
a_{4}	0	1	0	1	0	7	
a_{5}	1	1	0	0	1	9	
a^{T}	-2	-1	0	0	0	0	

$p=1 \quad e=1 \quad B=\left[\begin{array}{lll}1 & 4 & 5\end{array}\right]$.

$$
\begin{aligned}
& \begin{array}{lrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{1} & 1 & 0 & 1 & 0 & 0 & 5 \\
a_{4} & 0 & 1 & 0 & 1 & 0 & 7
\end{array} \\
& \begin{array}{lllllll}
a_{5} & 1 & 1 & 0 & 0 & 1 & 9
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& R_{3} \rightarrow R_{3}-R_{1}
\end{aligned}
$$

>>A=eliminationop (A, 3, p, -1)

\[

\]

>>A=eliminationop(A, 4, p, 2)

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{1} & 1 & 0 & 1 & 0 & 0 & 5 \\
a_{4} & 0 & 1 & 0 & 1 & 0 & 7 \\
a_{5} & 0 & 1 & -1 & 0 & 1 & 4 \\
c^{T} & 0 & -1 & 2 & 0 & 0 & 10
\end{array}
$$

>> [A, q]=pivotcolumn (A, v)

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	b
a_{1}	1	0	1	0	0	5
a_{4}	0	1	0	1	0	7
a_{5}	0	1	-1	0	1	4
c^{T}	0	-1	2	0	0	10

$q=2$.

Again, we compute pivot row $\mathrm{p}=\arg \min \left\{\frac{y}{x}, \frac{7}{1}, \frac{4}{1}\right\}=3^{\text {rd }}$ row.

$$
\begin{aligned}
& \gg B=\left[\begin{array}{lll}
1 & 4 & 5
\end{array}\right] \\
& \gg[\mathrm{A}, \mathrm{p}, \mathrm{e}, \mathrm{~B}]=\text { pivotrow }(\mathrm{A}, \mathrm{q}, \mathrm{~B})
\end{aligned}
$$

$a_{1} \quad a_{2}$			$\begin{array}{llll}a_{3} & a_{4} & a_{5} & b\end{array}$			
a_{1}	1	0	1	0	0	5
a_{4}	0	1	0	1	0	7
a_{5}	0	1	-1	0	1	4
	0	-1	2	0	0	10

$$
\mathrm{p}=3 \quad \mathrm{e}=1 \quad \mathrm{~B}=\left[\begin{array}{lll}
1 & 4 & 2
\end{array}\right] .
$$

\[

\]

We update the tableau using elementary row operations. We see that pivot element is already 1. Hence, we call only MATLAB function eliminationop.m

```
>>A=eliminationop(A,2,p,-1)
```

\[

\]

>>A=eliminationop(A, 4, p, 1)

\[

\]

$\gg A=$ exchangeop $(A, 2,3)$

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{1} & 1 & 0 & 1 & 0 & 0 & 5 \\
a_{2} & 0 & 1 & -1 & 0 & 1 & 4 \\
a_{4} & 0 & 0 & 1 & 1 & -1 & 3 \\
c^{T} & 0 & 0 & 1 & 0 & 1 & 14
\end{array}
$$

Since the last row has no negative elements corresponding to nonbasic variables, we conclude that the solution corresponding to the above tableau is optimal. Thus, we get $B=\left[\begin{array}{lll}a_{1} & a_{2} & a_{4}\end{array}\right], x_{B}=$ $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{4}\end{array}\right]$. Therefore, an optimal solution is $x=\left[\begin{array}{l}5 \\ 4 \\ 0 \\ 3 \\ 0\end{array}\right]$ and the maximum value of an objective function is 14 .

Example 5.8. Solve the linear programming problem using the simplex method.

$$
\begin{aligned}
\operatorname{minimize} & -2 x_{1}-x_{2} \\
\text { subject to } & -x_{1}-x_{2} \leq 1 \\
& x_{1}-2 x_{2} \leq 2 \\
& x_{1}, \quad x_{2}, \geq 0
\end{aligned}
$$

We write the linear programming problem in standard form:

$$
\begin{aligned}
\operatorname{minimize} & -2 x_{1}-x_{2} \\
\text { subject to } & -x_{1}-x_{2}+x_{3}=1 \\
& x_{1}-2 x_{2} \quad+x_{4}=2 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \geq 0
\end{aligned}
$$

The problem can be written in an augmented matrix form:

$$
\begin{array}{rrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{3} & -1 & -1 & 1 & 0 & 1 \\
a_{4} & 1 & -2 & 0 & 1 & 2 \\
c^{T} & -2 & -1 & 0 & 0 & 0
\end{array}
$$

Since the basis matrix is $B=\left[\begin{array}{ll}a_{3} & a_{4}\end{array}\right], x_{B}=\left[\begin{array}{l}x_{3} \\ x_{4}\end{array}\right]$ and $B x_{B}=b$ implies $x_{B}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Therefore, the starting basic feasible solution is $x=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 2\end{array}\right]$. Note that we have two nonbasic variables x_{1} and x_{2}. Therefore, we take $v=2$.

$$
\gg v=2
$$

$\gg[\mathrm{A}, \mathrm{q}]=\mathrm{pivotcolumn}[\mathrm{A}, \mathrm{v}]$

\[

\]

$q=1$.
We determine pivot row $\mathrm{p}=\arg \min \left\{\not \frac{x}{1}, \frac{2}{1}\right\}=2^{\text {nd }}$ row.

$$
\begin{aligned}
& \gg B=\left[\begin{array}{ll}
3 & 4
\end{array}\right] \\
& \gg[A, p, e, B]=\text { pivotrow }(A, q, B)
\end{aligned}
$$

	a_{1}	a_{2}	a_{3}	a_{4}	b
a_{3}	-1	-1	1	0	1
	-1	-2	0	1	2
a_{4}	1				
c^{T}	-2	-1	0	0	0

$p=2 \quad e=1 \quad B=\left[\begin{array}{ll}3 & 1\end{array}\right]$.

$$
\begin{array}{crrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{3} & -1 & -1 & 1 & 0 & 1 \\
a_{1} & 1 & -2 & 0 & 1 & 2 \\
c^{T} & -2 & -1 & 0 & 0 & 0 \\
& R_{1} \rightarrow R_{1}+R_{2}
\end{array}
$$

>>A=eliminationop(A, 1, p,1)

$$
\begin{array}{crrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{3} & 0 & -3 & 1 & 1 & 3 \\
a_{1} & 1 & -2 & 0 & 1 & 2 \\
c^{T} & -2 & -1 & 0 & 0 & 0 \\
& R_{3} \rightarrow R_{3}+2 R_{2} &
\end{array}
$$

>>A=eliminationop(A, 3, p, 2)

$$
\begin{array}{rrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{3} & 0 & -3 & 1 & 1 & 3 \\
a_{1} & 1 & -2 & 0 & 1 & 2 \\
c^{T} & 0 & -5 & 0 & 2 & 4
\end{array}
$$

>> $[\mathrm{A}, \mathrm{q}]=$ pivotcolumn (A, v)
$\gg A, p, e, B]=\operatorname{pivotrow}(A, q, B)$

$$
\begin{array}{cr|rrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{3} & 0 & -3 & 1 & 1 & 3 \\
a_{1} & 1 & -2 & \begin{array}{rrr}
1 & 3 \\
0 & 1 & 2 \\
c^{T} & 0 & -5
\end{array} & 0 & 2
\end{array}
$$

$q=2$ unbounded.

We have $\mathrm{p}=\arg \min \left\{\not \chi_{\frac{\gamma}{1}}, \not \frac{\mathscr{q}}{2}\right\}=$ no row. There is no such p . Therefore, the problem is unbounded.

Example 5.9. Solve the linear programming problem using the simplex method.

$$
\begin{array}{rc}
\operatorname{maximize} & 45 x_{1}+80 x_{2} \\
\text { subject to } & 5 x_{1}+20 x_{2} \leq 400 \\
& 10 x_{1}+15 x_{2} \leq 450 \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

The standard form of linear programming problem:

$$
\begin{array}{lcr}
\operatorname{minimize} & -45 x_{1}-80 x_{2} & \\
\text { subject to } & 5 x_{1}+20 x_{2}+x_{3}=400, \\
10 x_{1}+15 x_{2} \quad+x_{4}=450, \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq 0
\end{array}
$$

The augmented matrix is written as

	a_{1}	a_{2}	a_{3}	a_{4}	b
a_{3}	5	20	1	0	400
a_{4}	10	15	0	1	450
c^{T}	-45	-80	0	0	0

Since the basis matrix is $\mathrm{B}=\left[\begin{array}{ll}a_{3} & a_{4}\end{array}\right]$ and $x_{B}=\left[\begin{array}{l}x_{3} \\ x_{4}\end{array}\right]$, therefore $B x_{B}=b$ implies $x_{B}=\left[\begin{array}{l}400 \\ 450\end{array}\right]$.
>> v = 2
>> [A,q] = pivotcolumn [A,v]

\[

\]

$$
q=2 .
$$

The pivot row is $\mathrm{p}=\arg \min \left\{\frac{400}{20}, \frac{450}{15}\right\}=\arg \min \{20,30\}=1^{\text {st }}$ row.

```
>> B = [ll [ 4
>> [A,p,e,B] = pivotrow(A,q,B)
```

| | a_{1} | a_{2} | a_{3} | a_{4} | b |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| a_{3} | 5 | 20 | 1 | 0 | 400 |
| a_{4} | 10 | 15 | 0 | 1 | 450 |
| c^{T} | -45 | -80 | 0 | 0 | 0 |

 \(p=1 \quad e=20\)
 \(B=\left[\begin{array}{ll}2 & 4\end{array}\right]\).
 | | a_{1} | a_{2} | a_{3} | a_{4} | b |
| :--- | ---: | ---: | ---: | ---: | ---: |
| a_{2} | 5 | 20 | 1 | 0 | 400 |
| a_{4} | 10 | 15 | 0 | 1 | 450 |
| c^{T} | -45 | -80 | 0 | 0 | 0 |
| $R_{1} \rightarrow \frac{1}{20} R_{1}$ | | | | | |

>> A = identityop(A, p,1/20)

$$
\begin{array}{lrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{2} & 1 / 4 & 1 & 1 / 20 & 0 & 20 \\
a_{4} & 10 & 15 & 0 & 1 & 450 \\
c^{T} & -45 & -80 & 0 & 0 & 0 \\
R_{3} & \rightarrow R_{3}+80 & R_{1}
\end{array}
$$

```
>> A = eliminationop(A,2,p,-15)
```

$$
\begin{array}{rrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{2} & 1 / 4 & 1 & 1 / 20 & 0 & 20 \\
a_{4} & 25 / 4 & 0 & -3 / 4 & 1 & 150 \\
c^{T} & -25 & 0 & 4 & 0 & 1600
\end{array}
$$

>> $[\mathrm{A}, \mathrm{q}]=$ pivotcolumn (A, v)
$q=1$.
$\gg[A, p, e, B]=$ pivotrow (A, q, B)

	a_{1}	a_{2}	a_{3}	a_{4}	b
a_{2}	$1 / 4$	1	$1 / 20$	0	20
a_{4}	$25 / 4$	0	$-3 / 4$	1	150
c^{T}	-25	0	4	0	1600

$$
p=2 \quad e=25 / 4 \quad B=\left[\begin{array}{ll}
2 & 1
\end{array}\right]
$$

We now compute the pivot row $p=\arg \min \left\{\frac{20}{1 / 4}, \frac{150}{25 / 4}\right\}$ $=\arg \min \{80,24\}=2^{\text {nd }}$ row.

\[

\]

$\gg A=$ exchangeop $(A, 1,2)$

\[

\]

>>A=eliminationop (A, 2, 1, -1/4)

\[

\]

>>A=eliminationop(A, 3, 1, 25)

	a_{1}	a_{2}	a_{3}	a_{4}	b
a_{1}	1	0	$-3 / 25$	$4 / 25$	24
a_{2}	0	1	$2 / 25$	$-1 / 25$	14
c^{T}	0	0	1	4	2200

There is no negative element in the last row corresponding to nonbasic variables. Therefore, we achieved optimal solution. That is,
$B=\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right], x_{B}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}24 \\ 14\end{array}\right], x=\left[\begin{array}{c}24 \\ 14 \\ 0 \\ 0\end{array}\right]$ and maximum value of an objective function is 2200 .

Example 5.10. Solve the linear programming problem.

$$
\begin{aligned}
\operatorname{maximize} & 2 x_{1}+x_{2}+2 x_{3}+9 x_{4} \\
\text { subject to } & x_{1} \quad+2 x_{4}=2 \\
& x_{2}-\quad x_{3}+x_{4}=4 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq 0
\end{aligned}
$$

The standard form of the linear programming problem is given as

$$
\begin{aligned}
& \text { minimize } \quad-2 x_{1}-x_{2}-2 x_{3}-9 x_{4} \\
& \text { subject to } \quad x_{1} \quad+2 x_{4}=2 \text {, } \\
& x_{2}-x_{3}+x_{4}=4, \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq 0 \text {. }
\end{aligned}
$$

The augmented form of the matrix is

$$
\begin{array}{rrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
& 1 & 0 & 0 & 2 & 2 \\
& 0 & 1 & -1 & 1 & 4 \\
c^{T} & -2 & -1 & -2 & -9 & 0
\end{array}
$$

We have basis matrix $B=\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right], x_{B}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ and $B x_{B}=b \mathrm{im}-$ plies $x_{B}=\left[\begin{array}{l}2 \\ 4\end{array}\right]$. Therefore, the starting basic feasible solution is $x=\left[\begin{array}{l}2 \\ 4 \\ 0 \\ 0\end{array}\right]$. Note that there are four nonbasic variables, therefore we take $\mathrm{v}=4$.
>> v = 4
$\gg[A, q]=\operatorname{pivotcolumn}(A, v)$

$$
\begin{array}{rrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{1} & 1 & 0 & 0 & 2 & 2 \\
a_{2} & 0 & 1 & -1 & 1 & 4 \\
c^{T} & -2 & -1 & -2 & -9 & 0
\end{array}
$$

$q=4$.
We compute pivot row $\mathrm{p}=\arg \min \left\{\frac{2}{2}, \frac{4}{1}\right\}=1^{\text {st }}$ row.
$\gg B=\left[\begin{array}{ll}1 & 2\end{array}\right]$
$\gg A, p, e, B]=$ pivotrow (A, q, B)

	a_{1}	a_{2}	a_{3}	a_{4}	b
a_{1}	1	0	0	2	2
a_{2}	0	1	-1	1	4
c^{T}	-2	-1	-2	-9	0

$p=1 \quad e=2 \quad B=\left[\begin{array}{ll}4 & 2\end{array}\right]$.

\[

\]

>> $A=$ identityop $(A, p, 1 / 2)$

\[

\]

>>A=eliminationop(A, 2, p,-1)

$$
\begin{array}{rrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{4} & 1 / 2 & 0 & 0 & 1 & 1 \\
a_{2} & -1 / 2 & 1 & -1 & 0 & 3 \\
c^{T} & -2 & -1 & -2 & -9 & 0 \\
& R_{3} \rightarrow & R_{3}+9 R_{1}
\end{array}
$$

>> $A=\operatorname{eliminationop(A,3,p,9)~}$

\[

\]

>> $A=\operatorname{exchangeop}(A, 1,2)$

$$
\begin{array}{rrr|r|r}
& a_{1} & a_{2} & a_{3} & a_{4} \\
& b \\
a_{2} & -1 / 2 & 1 & -1 & \begin{array}{rr}
-1 & 3 \\
a_{4} & 1 / 2
\end{array} \\
0 & 0 & 1 \\
c^{T} & 5 / 2 & -1 & -2 & 1 \\
0 & 9
\end{array}
$$

$\gg[\mathrm{A}, \mathrm{q}]=$ pivotcolumn (A, v)
$\gg A, p, e, B]=\operatorname{pivotrow}(A, q, B)$

$$
\begin{array}{rrr|r|r}
& a_{1} & a_{2} & a_{3} & a_{4} \\
& b \\
a_{2} & -1 / 2 & 1 & -1 & \begin{array}{rr}
-1 \\
0 & 3 \\
a_{4} & 1 / 2
\end{array} \\
c^{T} & 0 & 5 / 2 & -1 & -2 \\
1 & 1 \\
c^{T} & 9
\end{array}
$$

$q=3 \quad$ unbounded.
We have $\mathrm{p}=\arg \min \left\{\frac{3}{-1}, \frac{1}{x}\right\}$. $=$ no row. There is no such p . Hence, the problem is unbounded.

Example 5.11. x_{1} and x_{2} are two positive real numbers such that $2 x_{1}+x_{2} \leq 6$ and $x_{1}+2 x_{2} \leq 8$. For which of the following value of $\left(x_{1}, x_{2}\right)$ the function $f\left(x_{1}, x_{2}\right)=3 x_{1}+6 x_{2}$ will give the maximum value?
(a) $(4 / 3,10 / 3)$
(b) $\left(8 / 3,{ }^{20} / 3\right)$
(c) $\left(8 / 3,{ }^{10 / 3}\right)$
(d) $(4 / 3,20 / 3)$

Given that

$$
\begin{aligned}
2 x_{1}+x_{2} & \leq 6, \\
x_{1}+2 x_{2} & \leq 8 .
\end{aligned}
$$

We write the above inequalities into equation form

$$
2 x_{1}+x_{2}=6 \text { and } x_{1}+2 x_{2}=8 .
$$

Solving the above two equations, we get

$$
x_{1}=\frac{4}{3} \text { and } x_{2}=\frac{10}{3} .
$$

Therefore, $3 x_{1}+6 x_{2}$ will give maximum value at $\left(\frac{4}{3}, \frac{10}{3}\right)$. Thus, option (a) is true.
Example 5.12. Which of the following statement is TRUE?
(a) A convex set cannot have infinite many extreme points.
(b) A linear programming problem can have infinite many extreme points.
(c) A linear programming problem can have exactly two different optimal solutions.
(d) A linear programming problem can have a nonbasic optimal solution.

A linear programming problem can have a nonbasic optimal solution. Thus, option (d) is true.

5.5 Two-Phase Simplex Method

Sometimes, we get a linear programming problem in which a starting basic feasible solution is not available and we cannot initiate the simplex algorithm. Therefore, we require a systematic method to find a starting basic feasible solution of such linear programming problems, so that the simplex method could be started. The two-phase method is useful in such situations.

Consider a linear programming problem

$$
\begin{aligned}
\operatorname{minimize} & 2 x_{1}+3 x_{2} \\
\text { subject to } & 4 x_{1}+2 x_{2} \geq 12, \\
& x_{1}+4 x_{2} \geq 6, \\
& x_{1}, \quad x_{2} \geq 0 .
\end{aligned}
$$

We write the standard form as

$$
\begin{aligned}
\operatorname{minimize} & 2 x_{1}+3 x_{2} \\
\text { subject to } & 4 x_{1}+2 x_{2}-x_{3}=12, \\
& x_{1}+4 x_{2} \quad-x_{4}=6, \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq 0 .
\end{aligned}
$$

The tableau of the above problem is

	a_{1}	a_{2}	a_{3}	a_{4}	b
	4	2	-1	0	12
	1	4	0	-1	6
c^{T}	2	3	0	0	0

Since there is no basis matrix in the present tableau, we do not have any basic solution, and therefore, there is no basic feasible solution. Thus, we cannot initiate the simplex algorithm.

To proceed further, we consider an artificial problem as follows:

$$
\begin{gathered}
\text { minimize } \quad y_{1}+y_{2}+\cdots+y_{n} \\
\text { subject to }\left[\begin{array}{ll}
A & I_{m}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=b \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right] \geq 0}
\end{gathered}
$$

Given that $y=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]$ is the vector of artificial variables. Note that
the artificial problem has an obvious initial basic feasible solution $\left[\begin{array}{l}0 \\ b\end{array}\right]$.

Theorem 5.5. The original linear programming problem has a basic feasible solution if and only if the associated artificial problem has an optimal feasible solution with objective function value zero.

Proof. If the original problem has a basic feasible solution x, then the vector $\left[\begin{array}{l}x \\ 0\end{array}\right]$ is a basic feasible solution of the artifical problem. This basic feasible solution clearly gives an objective function value zero. Therefore, this solution is optimal for the artificial problem. Conversely, suppose that the artificial problem has an optimal feasible solution with objective function value zero. Then, this solution has the form $\left[\begin{array}{l}x \\ 0\end{array}\right], x \geq 0$. It means that $A x=b$ and x is feasible solution to original linear programming problem. By the fundamental theorem of linear programming problem (5.2), there also exists a basic feasible solution.

The two-phase method consists of phase I and phase II. In phase I, artificial variables are introduced in constraints and an objective function is formed using artificial variables only. The artificial variables have no meaning in a physical sense, but are useful to get the starting basic feasible solution of the linear programming problem.

We update the tableau to get the value of objective function as zero. If it is zero, then a basic feasible solution is available and we move to phase II; otherwise, it is determined that no feasible solutions exist and we stop in phase I.

In phase II, the artifical variables and the objective function of phase I are omitted and the original objective function is minimized using the basic feasible solution resulting from phase I and updating the tableau.

We illustrate the two-phase method in the following example.
Example 5.13. Solve the following linear programming problem using the two-phase method.

$$
\begin{aligned}
\operatorname{minimize} & 2 x_{1}+3 x_{2} \\
\text { subject to } & 4 x_{1}+2 x_{2} \geq 12, \\
& x_{1}+4 x_{2} \geq 6, \\
& x_{1}, \quad x_{2} \geq 0 .
\end{aligned}
$$

The standard form of linear programming problem is given as

$$
\begin{aligned}
\operatorname{minimize} & 2 x_{1}+3 x_{2} \\
\text { subject to } & 4 x_{1}+2 x_{2}-x_{3}=12, \\
& x_{1}+4 x_{2} \quad-x_{4}=6, \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq 0
\end{aligned}
$$

This linear programming problem has no obvious feasible solution to use the simplex method. Therefore, we use the two-phase method.
Phase I: We introduce artificial variables. Consider an artificial problem:

$$
\begin{array}{lccc}
\operatorname{minimize} & x_{5}+x_{6} \\
\text { subject to } & 4 x_{1}+2 x_{2}-x_{3}+x_{5} & =12 \\
& x_{1}+4 x_{2}-x_{4}+x_{6} & =6 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5}, \quad x_{6} \geq 0
\end{array}
$$

We form the tableau for the corresponding problem:

$$
\begin{array}{rrrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & b \\
a_{5} & 4 & 2 & -1 & 0 & 1 & 0 & 12 \\
a_{6} & 1 & 4 & 0 & -1 & 0 & 1 & 6 \\
c^{T} & 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}
$$

Since basis matrix $B=\left[\begin{array}{ll}a_{5} & a_{6}\end{array}\right]$, therefore $x_{B}=\left[\begin{array}{l}x_{5} \\ x_{6}\end{array}\right]=\left[\begin{array}{c}12 \\ 6\end{array}\right]$.
We are looking for the basic feasible solutions which are $x_{1}=0$, $x_{2}=0$. To initiate the simplex method, we must update the last row of this tableau so that it has zero component under the basic variables.

We update the last row to get the feasible tableau. Updating the last row means that we subtract elements of the last row from the sum of the corresponding elements of rows where artificial variables are basis. That is,

$$
\begin{aligned}
& R_{3} \rightarrow R_{3}-\left(R_{1}+R_{2}\right) \\
& \\
& \\
& a_{5}
\end{aligned} \begin{array}{rrrrrrrr}
\\
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & b \\
a_{6} & 1 & 4 & -1 & 0 & 1 & 0 & 12 \\
c^{T} & -5 & -6 & 1 & -1 & 0 & 1 & 6 \\
6
\end{array}
$$

The basic feasible solution of the above tableau is not optimal. Therefore, we proceed with the simplex method. We choose the most negative entry in the last row of the canonical tableau.

```
>> v = 4
>> [A,q] = pivotcolumn(A,v)
\[

\]
```

$$
\begin{aligned}
& \mathrm{q}=2 \\
& \gg B=\left[\begin{array}{ll}
5 & 6
\end{array}\right] \\
& \gg \\
& >A, p, e, B]=\operatorname{pivotrow}(A, q, B)
\end{aligned}
$$

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	b
a_{5}	4	2	-1	0	1	0	12
a_{6}	1	4	0		0	1	6
c^{T}	-5	-6	1	1	0	0	-18

$$
\mathrm{p}=2 \quad \mathrm{e}=4 \quad \mathrm{~B}=\left[\begin{array}{ll}
5 & 2
\end{array}\right]
$$

$$
\begin{array}{rrrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & b \\
a_{5} & 4 & 2 & -1 & 0 & 1 & 0 & 12 \\
a_{2} & 1 & 4 & 0 & -1 & 0 & 1 & 6 \\
c^{T} & -5 & -6 & 1 & 1 & 0 & 0 & -18
\end{array}
$$

$R_{2} \rightarrow \frac{1}{4} R_{2}$

$$
\begin{array}{rrrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & b \\
a_{5} & 4 & 2 & -1 & 0 & 1 & 0 & 12 \\
a_{2} & 1 / 4 & 1 & 0 & -1 / 4 & 0 & 1 / 4 & 3 / 2 \\
c^{T} & -5 & -6 & 1 & 1 & 0 & 0 & -18
\end{array}
$$

$R_{1} \rightarrow R_{1}-2 R_{2}$

$$
\begin{array}{rrrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & b \\
a_{5} & 7 / 2 & 0 & -1 & 1 / 2 & 1 & -1 / 2 & 9 \\
a_{2} & 1 / 4 & 1 & 0 & -1 / 4 & 0 & 1 / 4 & 3 / 2 \\
c^{T} & -5 & -6 & 1 & 1 & 0 & 0 & -18
\end{array}
$$

$R_{3} \rightarrow R_{3}+6 R_{2}$

$$
\begin{array}{rrrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & b \\
a_{5} & 7 / 2 & 0 & -1 & 1 / 2 & 1 & -1 / 2 & 9 \\
a_{2} & 1 / 4 & 1 & 0 & -1 / 4 & 0 & 1 / 4 & 3 / 2 \\
c^{T} & -7 / 2 & 0 & 1 & -1 / 2 & 0 & 3 / 2 & -9
\end{array}
$$

The most negative element for the pivot column is $q=1$ and the pivot row is $\mathrm{p}=\arg \min \left\{\frac{9}{7 / 2}, \frac{3 / 2}{1 / 4}\right\}=1^{\text {st }}$ row.

```
>> [A,q] = pivotcolumn(A,v)
>> B =[ll
>> [A,p,e,B] = pivotrow(A,q,B)
```

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	b
	a_{5}	$7 / 2$	0	-1	$1 / 2$	1	$-1 / 2$
a_{2}	9						
a_{2}	$1 / 4$	1	0	$-1 / 4$	0	$1 / 4$	$3 / 2$
c^{T}	$-7 / 2$	0	1	$-1 / 2$	0	$3 / 2$	-9

$$
p=1 \quad q=1 \quad e=7 / 2 \quad B=\left[\begin{array}{ll}
1 & 2
\end{array}\right] .
$$

\[

\]

$R_{1} \rightarrow \frac{2}{7} R_{1}$

$$
\begin{array}{lrrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & b \\
a_{1} & 1 & 0 & -2 / 7 & 1 / 7 & 2 / 7 & -1 / 7 & 18 / 7 \\
a_{2} & 1 / 4 & 1 & 0 & -1 / 4 & 0 & 1 / 4 & 3 / 2 \\
a_{2} & 1 / 2 / 2 & 0 & 1 & -1 / 2 & 0 & 3 / 2 & -9
\end{array}
$$

$R_{2} \rightarrow R_{2}-\frac{1}{4} R_{1}$

$$
\begin{aligned}
& \begin{array}{llllllll}
a_{2} & 0 & 1 & 1 / 14 & -2 / 7 & -1 / 14 & 2 / 7 & 6 / 7
\end{array} \\
& \begin{array}{llllllll}
c^{T} & -7 / 2 & 0 & 1 & -1 / 2 & 0 & 3 / 2 & -9
\end{array} \\
& R_{3} \rightarrow R_{3}+\frac{7}{2} R_{1} \\
& \begin{array}{rrrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & b \\
a_{1} & 1 & 0 & -2 / 7 & 1 / 7 & 2 / 7 & -1 / 7 & 18 / 7 \\
a_{2} & 0 & 1 & 1 / 14 & -2 / 7 & -1 / 14 & 2 / 7 & 6 / 7 \\
c^{T} & 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}
\end{aligned}
$$

Note that both the artificial variables have been driven out of the basis and the current basic feasible solution $x=\left[\begin{array}{c}18 / 7 \\ 6 / 7\end{array}\right]$ is giving objective value zero to the artificial problem.

Phase II: We apply the simplex algorithm to the original linear programming problem after deleting the columns corresponding to the artificial variables and writing the cost of the original problem.

$$
\begin{array}{rrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{1} & 1 & 0 & -2 / 7 & 1 / 7 & 18 / 7 \\
a_{2} & 0 & 1 & 1 / 14 & -2 / 7 & 6 / 7 \\
c^{T} & 2 & 3 & 0 & 0 & 0
\end{array}
$$

$R_{3} \rightarrow R_{3}-2 R_{1}$

$$
\begin{array}{rrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{1} & 1 & 0 & -2 / 7 & 1 / 7 & 18 / 7 \\
a_{2} & 0 & 1 & 1 / 14 & -2 / 7 & 6 / 7 \\
c^{T} & 0 & 3 & 4 / 7 & -2 / 7 & -36 / 7
\end{array}
$$

$R_{3} \rightarrow R_{3}-3 R_{2}$

$$
\begin{array}{rrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{1} & 1 & 0 & -2 / 7 & 1 / 7 & 18 / 7 \\
a_{2} & 0 & 1 & 1 / 14 & -2 / 7 & 6 / 7 \\
c^{T} & 0 & 0 & 5 / 14 & 4 / 7 & -54 / 7
\end{array}
$$

The cost corresponding to basic variables should be zero. We get basic variables x_{1} and x_{2}. Since all costs are non-negative, therefore the current basic feasible solution is optimal. That is, $x_{1}=\frac{18}{7}$, $x_{2}=\frac{6}{7}$ and $x=\left[\begin{array}{c}18 / 7 \\ 6 / 7 \\ 0 \\ 0\end{array}\right]$. The minimum value of an objective function is $\frac{54}{7}$.

We can take the advantage of MATLAB code updatelastrow.m given in the following Code 5.4 to get the feasible tableau.

Code 5.4: updatelastrow.m

```
function A=updatelastrow (A, av)
%input : augmented matrix A, artifical
% variables av
%output: augmented matrix
%update last row of tableau
[m,n]=\operatorname{size}(A);
sum=0;
for J=1:n
    for I=1:av
        sum=sum+A(I,J );
    end
    A(m,J)=A(m,J)-sum;
    sum=0;
end
return
```

Example 5.14. Solve the linear programming problem using the two-phase method.

$$
\begin{aligned}
& \text { minimize } 4 x_{1}+x_{2}+x_{3} \\
& \text { subject to } 2 x_{1}+x_{2}+2 x_{3}=4 \text {, } \\
& 3 x_{1}+3 x_{2}+x_{3}=3 \text {, } \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0 . \\
& \begin{array}{rrrr}
a_{1} & a_{2} & a_{3} & b \\
2 & 1 & 2 & 4 \\
3 & 3 & 1 & 3 \\
4 & 1 & 1 & 0
\end{array}
\end{aligned}
$$

There is no basic feasible solution. Therefore, we move to the twophase simplex method.

Phase I:

We introduce artificial variables $x_{4} \geq 0, x_{5} \geq 0$ and an objective function $x_{4}+x_{5}$. Our linear programming problem will be in the form:

$$
\begin{array}{ll}
\operatorname{minimize} & x_{4}+x_{5} \\
\text { subject to } & 2 x_{1}+x_{2}+2 x_{3}+x_{4}=4 \\
& 3 x_{1}+3 x_{2}+x_{3} \quad+x_{5}=3 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5} \geq 0
\end{array}
$$

We use MATLAB function updatelastrow.m to update the last row of tableau. Note that the number of artificial variables is 2 . Therefore, we take $\mathrm{av}=2$.

\[

\]

>> av $=2$
>> A = updatelastrow(A, av)

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{4} & 2 & 1 & 2 & 1 & 0 & 4 \\
a_{5} & 3 & 3 & 1 & 0 & 1 & 3 \\
c^{T} & -5 & -4 & -3 & 0 & 0 & -7
\end{array}
$$

We get the feasible tableau. Thus, we can apply the simplex method. 3
>> [A,q] = pivotcolumn(A,v)

\[

\]

$q=1$.
We find pivot row $\mathrm{p}=\arg \min \left\{\frac{4}{2}, \frac{3}{3}\right\}=2^{\text {nd }}$ row.

$$
\begin{aligned}
& \gg B=\left[\begin{array}{ll}
4 & 5
\end{array}\right] \\
& \gg[A, p, e, B]=\text { pivotrow }(A, q, B)
\end{aligned}
$$

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	b
a_{4}	2	1	2	1	0	4
a_{5}	3	3	1	0	1	3
a_{5}	c^{T}	-5	-4	-3	0	0
			-7			

$$
p=2 \quad e=3 \quad B=\left[\begin{array}{ll}
4 & 1
\end{array}\right] .
$$

\[

\]

>> $A=$ identityop(A, $p, 1 / 3$)

\[

\]

```
>> A = eliminationop(A,1,p,-2)
```

\[

\]

>> A = eliminationop(A, 3, p,5)

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{4} & 0 & -1 & 4 / 3 & 1 & -2 / 3 & 2 \\
a_{1} & 1 & 1 & 1 / 3 & 0 & 1 / 3 & 1 \\
c^{T} & 0 & 1 & -4 / 3 & 0 & 5 / 3 & -2
\end{array}
$$

>> $[A, q]=$ pivotcolumn (A,v)

$$
\left.\begin{array}{rrr}
& a_{1} & a_{2} \\
a_{4} & 0 & -1 \\
a_{1} & 1 & 1 \\
c^{T} & 0 & 1
\end{array} \begin{array}{r}
a_{3}
\end{array} a_{4} \begin{array}{rrr}
4 / 3 & a_{5} & b \\
1 / 3 & -2 / 3 & 2 \\
c^{T} & -4 / 3 & 1 / 3
\end{array} \begin{array}{r}
1 \\
0
\end{array}\right)
$$

$$
q=3 .
$$

To update the simplex tableau, we calculate pivot row $\mathrm{p}=$ $\arg \min \left\{\frac{2 \times 3}{4}, \frac{1 \times 3}{1}\right\}=\arg \min \left\{\frac{3}{2}, 3\right\}=1^{\text {st }}$ row. >> $[A, p, e, B]=$ pivotrow (A, q, B)

$$
\begin{aligned}
& \\
& p=1 \quad e=4 / 3 \quad B=\left[\begin{array}{ll}
3 & 1
\end{array}\right] .
\end{aligned}
$$

\[

\]

>> $A=$ identityop $(A, p, 3 / 4)$

\[

\]

>>A=eliminationop(A, 2, p, -1/3)

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{3} & 0 & -3 / 4 & 1 & 3 / 4 & -1 / 2 & 3 / 2 \\
a_{1} & 1 & 5 / 4 & 0 & -1 / 4 & 1 / 2 & 1 / 2 \\
c^{T} & 0 & 1 & -4 / 3 & 0 & 5 / 3 & -2 \\
& & R_{3} & \rightarrow R_{3}+\frac{4}{3} R_{1} & &
\end{array}
$$

>>A=eliminationop(A, 3, p, 4/3)

\[

\]

> $A=\operatorname{exchangeop}(A, 1,2)$

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{1} & 1 & 5 / 4 & 0 & -1 / 4 & 1 / 2 & 1 / 2 \\
a_{3} & 0 & -3 / 4 & 1 & 3 / 4 & -1 / 2 & 3 / 2 \\
c^{T} & 0 & 0 & 0 & 1 & 1 & 0
\end{array}
$$

Since the basis matrix is $B=\left[\begin{array}{ll}a_{1} & a_{3}\end{array}\right]$ and $x_{B}=\left[\begin{array}{l}x_{1} \\ x_{3}\end{array}\right]$, therefore, $x=\left[\begin{array}{c}1 / 2 \\ 0 \\ 3 / 2 \\ 0 \\ 0\end{array}\right]$. The value of the artificial problem is zero. Therefore, we proceed to phase II.

Phase II: We start by deleting the columns corresponding to artificial variables and using costs of the original problem.

$$
R_{3}-4 R_{1} .
$$

>> $A=$ eliminationop $(A, 3, p,-4)$

\[

\]

>> $A=$ eliminationop $(A, 3,2,-1)$

$$
\begin{array}{rrrrr}
& a_{1} & a_{2} & a_{3} & b \\
a_{1} & 1 & 5 / 4 & 0 & 1 / 2 \\
a_{3} & 0 & -3 / 4 & 1 & 3 / 2 \\
c^{T} & 0 & -13 / 4 & 0 & -7 / 2
\end{array}
$$

>> $[\mathrm{A}, \mathrm{q}]=$ pivotcolumn (A, v)

$$
q=2
$$

$$
\gg \mathrm{B}=\left[\begin{array}{ll}
1 & 3
\end{array}\right]
$$

$$
\gg[A, p, e, B]=\text { pivotrow }(A, q, B)
$$

	a_{1}	a_{2}	a_{3}	b
a_{1}	1	$5 / 4$	0	$1 / 2$
a_{3}	0	$-3 / 4$	1	$3 / 2$
c^{T}	0	$-13 / 4$	0	$-7 / 2$

$p=1 \quad e=5 / 4 \quad B=\left[\begin{array}{ll}2 & 3\end{array}\right]$.

\[

\]

>> $\mathrm{A}=$ identityop $(\mathrm{A}, \mathrm{p}, 4 / 5)$

$$
\begin{array}{rrrrrr}
a_{1} & a_{2} & a_{3} & b \\
a_{2} & 4 / 5 & 1 & 0 & 2 / 5 \\
a_{3} & 0 & -3 / 4 & 1 & 3 / 2 \\
c^{T} & 0 & -13 / 4 & 0 & -7 / 2 \\
R_{2} & \rightarrow & R_{2}+\frac{3}{4} R_{1}
\end{array}
$$

All costs are non-negative. Since basis matrix $B=\left[\begin{array}{ll}a_{2} & a_{3}\end{array}\right]$ and basic vector $x_{B}=\left[\begin{array}{l}x_{2} \\ x_{3}\end{array}\right]$, therefore $x=\left[\begin{array}{c}0 \\ 2 / 5 \\ 9 / 5\end{array}\right]$ and an optimal value is $\frac{11}{5}$.

5.6 Exercises

Exercise 5.1. Find all basic feasible solutions of the following system of linear equations.
(a)

$$
\begin{aligned}
& x_{1}-x_{2}+2 x_{3}=18 \\
& x_{1}+2 x_{2}-x_{3}=1
\end{aligned}
$$

(b)

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =1, \\
3 x_{1}+2 x_{2}-x_{4} & =6 .
\end{aligned}
$$

Exercise 5.2. Find all basic feasible solutions of the following system of linear equations.

$$
\begin{array}{r}
x_{1}+2 x_{2}+4 x_{3}+x_{4}=7, \\
2 x_{1}-x_{2}+3 x_{3}-2 x_{4}=4 .
\end{array}
$$

Indicate which of these solutions are feasible.
Exercise 5.3. Solve the following linear programming problem by the simplex method.

$$
\begin{aligned}
\operatorname{maximize} & 3 x_{1}+4 x_{2}+4 x_{3}+7 x_{4} \\
\text { subject to } & 8 x_{1}+3 x_{2}+4 x_{3}+x_{4} \leq 7, \\
& 2 x_{1}+6 x_{2}+x_{3}+5 x_{4} \leq 10 \\
& x_{1}+4 x_{2}+5 x_{3}+2 x_{4} \leq 8, \\
& x, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq 0
\end{aligned}
$$

Exercise 5.4. Solve the following problem by the simplex method.

$$
\begin{aligned}
& \text { maximize } \quad 11 x_{1}+10 x_{2} \\
& \text { subject to }-0.5 x_{1}+1.3 x_{2} \leq 0.8 \text {, } \\
& 4 x_{1}+x_{2} \leq 12.7, \\
& 6 x_{1}+x_{2} \leq 15.4, \\
& 6 x_{1}-x_{2} \leq 13.4 \text {, } \\
& 4 x_{1}-x_{2} \leq 8.7 \text {, } \\
& 5 x_{1} \quad-3 x_{2} \leq 10.0 \text {. } \\
& x_{1}, \quad x_{2} \geq 0 .
\end{aligned}
$$

Exercise 5.5. Solve the following problem by the simplex method.

$$
\begin{aligned}
x_{1}+x_{2} & \leq 3, \\
x_{1}-2 x_{2} & \leq 1, \\
-2 x_{1}+x_{2} & \leq 2, \\
x_{1}, \quad x_{2} & \geq 0
\end{aligned}
$$

(a) maximize $x_{1}-x_{2}$
(b) minimize $x_{1}-x_{2}$

Exercise 5.6. Solve the problem by the simplex method.

$$
\begin{array}{cc}
\operatorname{maximize} & 7 x_{1}+5 x_{2} \\
\text { subject to } & x_{1}+2 x_{2} \leq 6, \\
& 4 x_{1}+3 x_{2} \leq 12 \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

Exercise 5.7. Solve the problem by the simplex method.

$$
\begin{array}{cl}
\operatorname{maximize} & 9 x_{1}+7 x_{2} \\
\text { subject to } & x_{1}+2 x_{2} \leq 7, \\
& x_{1}-x_{2} \leq 4, \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

Exercise 5.8. Solve the linear programming problem using the simplex method.

$$
\begin{aligned}
\operatorname{maximize} & 10 x_{1}+6 x_{2}-8 x_{3} \\
\text { subject to } & 5 x_{1}-2 x_{2}+6 x_{3} \leq 20, \\
10 x_{1}+4 x_{2}-6 x_{3} & \leq 30, \\
x_{1}, \quad x_{2}, \quad x_{3} & \geq 0
\end{aligned}
$$

Exercise 5.9. Solve the problem by the simplex method.

$$
\begin{aligned}
\operatorname{maximize} & 2 x_{1}+x_{2} \\
\text { subject to } & 2 x_{1}+3 x_{2} \leq 3, \\
& x_{1}+5 x_{2} \leq 2, \\
& 2 x_{1}+x_{2} \leq 5, \\
& x_{1}, \quad x_{2} \geq 0 .
\end{aligned}
$$

Exercise 5.10. Solve the linear programming problem using the simplex method.

$$
\begin{array}{cc}
\operatorname{maximize} & 5 x_{1}+x_{2} \\
\text { subject to } & 3 x_{1}-2 x_{2} \leq 6 \\
& -4 x_{1}+2 x_{2} \leq 4 \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

Exercise 5.11. Solve the linear programming problem using the two-phase method.

$$
\begin{aligned}
\operatorname{minimize} & 2 x_{1}+4 x_{2}+7 x_{3}+x_{4}+5 x_{5} \\
\text { subject to } & -x_{1}+x_{2}+2 x_{3}+x_{4}+2 x_{5}=7 \\
& -x_{1}+2 x_{2}+3 x_{3}+x_{4}+x_{5}=6 \\
& -x_{1}+x_{2}+x_{3}+2 x_{4}+x_{5}=4 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5} \geq 0
\end{aligned}
$$

Exercise 5.12. Solve the following linear programming problem using the two-phase method.

$$
\begin{aligned}
\operatorname{minimize} & 5 x_{1}+8 x_{2} \\
\text { subject to } & 3 x_{1}+2 x_{2} \geq 3 \\
& x_{1}+4 x_{2} \geq 4 \\
& x_{1}+x_{2} \geq 5 \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
$$

Taylor \& Francis
 Taylor \& Francis Group
 http://taylorandfrancis.com

Chapter 6

The Revised Simplex Method

6.1 Introduction

Consider a linear programming problem in standard form with a simplex tableau A of size $m \times n$. Suppose that we wish to solve this problem using the simplex method. Experience suggests that if the simplex tableau A has fewer rows m than columns n, then in most instances, pivots occur in only a small fraction of the columns of the simplex tableau A. The operation of pivoting involves updating all the columns of the simplex tableau to move from one iteration to next in search of an improved solution. However, if a particular column of A never enters into basis during the entire simplex procedure, then computations performed on this column are not explicitly used. Therefore, the effort expended on performing operations on many such columns of A may be a waste. The revised simplex method reduces the amount of computation leading to an optimal solution by eliminating operations on columns of A that do not enter into the basis.

Therefore, we apply the revised simplex method to avoid the unnecessary calculations and save the computational time.

6.2 Matrix Form of the Revised Simplex Method

Consider a linear programming problem in standard form

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b, \\
& x \geq 0
\end{array}
$$

Let the first m columns of A be the basic columns. The columns form a square $m \times m$ nonsingular matrix B. The nonbasic columns of A form an $m \times(n-m)$ matrix D. We correspondingly partition the cost vector as $c^{T}=\left[c_{B}^{T}, c_{D}^{T}\right]$. Then, the original linear programming problem can be represented as follows:

$$
\begin{aligned}
& \operatorname{minimize} \quad c_{B}^{T} x_{B}+c_{D}^{T} x_{D} \\
& \text { subject to } \quad B x_{B}+D x_{D}=b, \\
& x_{B} \\
& \geq 0, \\
& x_{D} \geq 0 .
\end{aligned}
$$

If $x_{D}=0$, then the solution $x=\left[\begin{array}{ll}x_{B}^{T}, & x_{D}^{T}\end{array}\right]^{T}=\left[\begin{array}{ll}x_{B}^{T}, & 0^{T}\end{array}\right]^{T}$ is the basic feasible solution corresponding to the basis matrix B. It is clear that for this to be the solution, we need $x_{B}=B^{-1} b$, that is, the basic feasible solution is

$$
x=\left[\begin{array}{c}
B^{-1} b \\
0
\end{array}\right] .
$$

The corresponding objective function value is $z_{0}=c_{B}^{T} B^{-1} b$. But, if $x_{D} \neq 0$, then the solution $x=\left[x_{B}^{T}, x_{D}^{T}\right]$ is not basic. In this case, x_{B} is given by

$$
x_{B}=B^{-1} b-B^{-1} D x_{D},
$$

and the corresponding objective function value is

$$
\begin{aligned}
z & =c_{B}^{T} x_{B}+c_{D}^{T} x_{D} \\
& =c_{B}^{T}\left(B^{-1} b-B^{-1} D x_{D}\right)+c_{D}^{T} c_{D} \\
& =c_{B}^{T} B^{-1} b+\left(c_{D}^{T}-c_{B}^{T} B^{-1} D\right) x_{D}
\end{aligned}
$$

We can define $r_{D}^{T}=c_{D}^{T}-\lambda^{T} D$, where $\lambda^{T}=c_{B}^{T} B^{-1}$.
The elements of vector r_{D}^{T} are called the reduced cost coefficients corresponding to the nonbasic variables.
If $r_{D}^{T} \geq 0$, then the basic feasible solution corresponding to the basis B is optimal. If, on the other hand, any component of r_{D}^{T} is negative, then the value of the objective function can be reduced by increasing a corresponding component of x_{D}, that is, by changing the basis.
We now use the above observations in the revised simplex algorithm.

6.3 The Revised Simplex Algorithm

We have the following steps for the revised simplex algorithm.

Algorithm

1. Form a revised simplex tableau corresponding to a starting basic feasible solution $\left[\begin{array}{ll}B^{-1} & b_{0}\end{array}\right]$.
2. Calculate the current reduced cost coefficient vector: $r_{D}^{T}=$ $c_{D}^{T}-\lambda^{T} D$, where $\lambda^{T}=c_{B}^{T} B^{-1}$.
3. If $r_{j} \geq 0$ for all j, then the current basic feasible solution is optimal so stop, otherwise go to step 4.
4. Select a q such that $r_{q}<0$ (i.e., the q corresponding to the most negative r_{q}).
5. Compute $y_{q}=B^{-1} a_{q}$.
6. If no $y_{i q} \geq 0$, then the problem is unbounded so stop, otherwise go to step 7 .
7. Compute $\mathrm{p}=\arg \min _{i}\left\{\frac{b_{i 0}}{y_{i q}}: y_{i q}>0\right\}$.
8. Form the augmented revised table $\left[\begin{array}{lll}B^{-1} & b_{0} & y_{q}\end{array}\right]$ and update the augmented tableau pivoting about the $\mathrm{p}^{\text {th }}$ element of the last column that is, y_{q} of the tableau.
9. Remove the last column that is, y_{q} of the augmented revised tableau and go to step 2.

We write the linear programming problem in an augmented matrix form. We form the revised tableau using B^{-1} and b_{0}. The reduced cost coefficients are calculated to find pivot column corresponding to the most negative element in step 2 . If reduced cost coefficients are non-negative, then the problem is optimal, otherwise we form the augmented revised tableau in step 8 . We compute $\mathrm{p}=\arg \min \left\{\frac{b_{i 0}}{y_{i q}}: y_{i q}>0\right\}$ for pivot row in step 7. If all $y_{i q}$ are negative in step 6 , then the problem is unbounded. In every iteration, we obtain an updated revised tableau consisting of B^{-1} and
b_{0} with removal of the last column that is, $y_{i q}$ of the augmented revised tableau in step 9.

Example 6.1. Solve the linear programming problem using the revised simplex method.

$$
\begin{aligned}
\operatorname{maximize} & 3 x_{1}+x_{2}+3 x_{3} \\
\text { subject to } & 2 x_{1}+x_{2}+x_{3} \leq 2, \\
& x_{1}+2 x_{2}+3 x_{3} \leq 5, \\
& 2 x_{1}+2 x_{2}+x_{3} \leq 6, \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0 .
\end{aligned}
$$

We express the problem in standard form:

$$
\begin{array}{lrl}
\operatorname{minimize} & -3 x_{1}-x_{2}-3 x_{3} & \\
\text { subject to } & 2 x_{1}+x_{2}+x_{3}+x_{4} & =2, \\
x_{1}+2 x_{2}+3 x_{3} \quad+x_{5}=5, \\
2 x_{1}+2 x_{2}+x_{3} & +x_{6}=6, \\
x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5}, \quad x_{6} \geq 0 .
\end{array}
$$

The augmented matrix is

$$
\begin{array}{lrrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & b \\
a_{4} & 2 & 1 & 1 & 1 & 0 & 0 & 2 \\
a_{5} & 1 & 2 & 3 & 0 & 1 & 0 & 5 \\
a_{6} & 2 & 2 & 1 & 0 & 0 & 1 & 6
\end{array}
$$

Since the basis matrix is $B=\left[\begin{array}{lll}a_{4} & a_{5} & a_{6}\end{array}\right]$, therefore basic vector is $x_{B}=\left[\begin{array}{l}x_{4} \\ x_{5} \\ x_{6}\end{array}\right]=\left[\begin{array}{l}2 \\ 5 \\ 6\end{array}\right]$. We have basic feasible solution, that is $x=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 2 \\ 5 \\ 6\end{array}\right]$. Therefore, we can start the revised simplex method.

We determine

$$
c_{B}^{T}=\left[\begin{array}{lll}
c_{4} & c_{5} & c_{6}
\end{array}\right], c_{D}^{T}=\left[\begin{array}{lll}
c_{1} & c_{2} & c_{3}
\end{array}\right]
$$

and

$$
\lambda^{T}=c_{B}^{T} B^{-1}=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] .
$$

The revised simplex table is

\[

\]

We compute

$$
\begin{aligned}
r_{D}^{T} & =c_{D}^{T}-\lambda^{T} D \\
& =\left[\begin{array}{lll}
c_{1} & c_{2} & c_{3}
\end{array}\right]-\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 3 \\
2 & 7 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
-3 & -1 & -3
\end{array}\right] \\
& =\left[\begin{array}{lll}
r_{1} & r_{2} & r_{3}
\end{array}\right]
\end{aligned}
$$

We have to choose the most negative reduced cost coefficients; they are $r_{1}=r_{3}=-3$. We take the first one, i.e., a_{1} and bring a_{1} into the basis. However, we first calculate

$$
y_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]
$$

We now form the augmented revised tableau

\[

\]

Then, we compute $\mathrm{p}=\arg \min \left\{\frac{2}{2}, \frac{5}{1}, \frac{6}{2}\right\}=1^{\text {st }}$ row and apply elementary row operations by pivoting about the $1^{\text {st }}$ element of the last column of the above revised tableau.

\[

\]

$$
R_{1} \rightarrow \frac{R_{1}}{2}
$$

\[

\]

$R_{2} \rightarrow R_{2}-R_{1}$
$R_{3} \rightarrow R_{3}-2 R_{1}$

\[

\]

After removing the last column, that is y_{1}, we get

\[

\]

We compute

$$
\begin{aligned}
\lambda^{T} & =c_{B}^{T} B^{-1} \\
& =\left[\begin{array}{lll}
c_{1} & c_{5} & c_{6}
\end{array}\right] B^{-1} \\
& =\left[\begin{array}{lll}
-3 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 / 2 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
-3 / 2 & 0 & 0
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
r_{D}^{T} & =c_{D}^{T}-\lambda^{T} D \\
& =\left[\begin{array}{lll}
c_{2} & c_{3} & c_{4}
\end{array}\right]-\left[\begin{array}{lll}
-3 / 2 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 0 \\
2 & 1 & 0
\end{array}\right] \\
& =\left[\begin{array}{lll}
-1 & -3 & 0
\end{array}\right]-\left[\begin{array}{lll}
-3 / 2 & -3 / 2 & -3 / 2
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 / 2 & -3 / 2 & 3 / 2
\end{array}\right] \\
& =\left[\begin{array}{lll}
r_{2} & r_{3} & r_{4}
\end{array}\right]
\end{aligned}
$$

We observe that reduced cost coefficient r_{3} is only negative. Therefore, we bring a_{3} into the basis.

$$
\begin{aligned}
y_{3} & =B^{-1} a_{3} \\
& =\left[\begin{array}{ccc}
1 / 2 & 0 & 0 \\
-1 / 2 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
-1 / 2+3 \\
-1+0+1
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
5 / 2 \\
0
\end{array}\right] .
\end{aligned}
$$

In this case, we get $\mathrm{p}=\arg \min \left\{1 \times 2, \frac{4 \times 2}{5}, \frac{4}{x}\right\}=2^{\text {nd }}$ row.

\[

\]

We update the revised simplex tableau by pivoting the $2^{\text {nd }}$ element of the last column.
$R_{2} \rightarrow \frac{2}{5} R_{2}$

\[

\]

$R_{1} \rightarrow R_{1}-\frac{1}{2} R_{2}$

\[

\]

After removing the last column in the above tableau,

$$
\begin{array}{ccccc}
& & B^{-1} & & b \\
a_{1} & 3 / 5 & -1 / 5 & 0 & 1 / 5 \\
a_{3} & -1 / 5 & 2 / 5 & 0 & 8 / 5 \\
a_{6} & -1 & 0 & 1 & 4
\end{array}
$$

We again compute

$$
\left.\begin{array}{rl}
\lambda^{T} & =c_{B}^{T} B^{-1} \\
& =\left[\begin{array}{lll}
c_{1} & c_{3} & c_{6}
\end{array}\right] B^{-1} \\
& =\left[\begin{array}{lll}
-3 & -3 & 0
\end{array}\right]\left[\begin{array}{ccc}
3 / 5 & -1 / 5 & 0 \\
-1 / 5 & 2 / 5 & 0 \\
-1 & 0 & 1
\end{array}\right] \\
& =\left[\frac{-9}{5}+\frac{3}{5}\right. \\
\frac{3}{5}-\frac{6}{5} & 0
\end{array}\right] .
$$

and

$$
\begin{aligned}
r_{D}^{T} & =c_{D}^{T}-\lambda^{T} D \\
& =\left[\begin{array}{lll}
c_{2} & c_{4} & c_{5}
\end{array}\right]-\left[\begin{array}{lll}
\frac{-6}{5} & \frac{-3}{5} & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
2 & 0 & 1 \\
2 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\right]-\left[\begin{array}{lll}
\frac{-12}{5} & \frac{-6}{5} & \frac{-3}{5}
\end{array}\right] \\
& =\left[\begin{array}{lll}
7 / 5 & 6 / 5 & 3 / 5
\end{array}\right] \\
& =\left[\begin{array}{lll}
r_{2} & r_{4} & r_{5}
\end{array}\right] .
\end{aligned}
$$

Note that all reduced cost coefficients are positive. Therefore, the current tableau is optimal and the optimal solution is $x=$ $\left[\begin{array}{llllll}\frac{1}{5} & 0 & \frac{8}{5} & 0 & 0 & 4\end{array}\right]^{T}$. The optimal value is $-3 \times \frac{1}{5}+(-3) \times \frac{8}{5}=-\frac{27}{5}$.

Example 6.2. Consider the linear programming problem

$$
\begin{array}{lr}
\operatorname{minimize} & -4 x_{1}-3 x_{2}-2 x_{3} \\
\text { subject to } & 2 x_{1}-3 x_{2}+2 x_{3} \leq 6, \\
& -x_{1}+x_{2}+x_{3} \leq 5, \\
& x_{1}, x_{2}, \quad x_{3} \geq 0
\end{array}
$$

The augmented matrix is

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{4} & 2 & -3 & 2 & 1 & 0 & 6 \\
a_{5} & -1 & 1 & 1 & 0 & 1 & 5
\end{array}
$$

Since basis matrix $\mathrm{B}=\left[\begin{array}{ll}a_{4} & a_{5}\end{array}\right]$, therefore basic vector is $x_{B}=$ $\left[\begin{array}{l}x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{l}6 \\ 5\end{array}\right]$. We have a starting basic feasible solution $x=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 6 \\ 5\end{array}\right]$.
We determine

$$
c_{B}^{T}=\left[\begin{array}{ll}
c_{4} & c_{5}
\end{array}\right], \quad c_{D}^{T}=\left[\begin{array}{lll}
c_{1} & c_{2} & c_{3}
\end{array}\right]
$$

and

$$
\lambda^{T}=c_{B}^{T} B^{-1}=\left[\begin{array}{ll}
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0
\end{array}\right]
$$

The revised simplex tableau is

\[

\]

We compute

$$
\begin{aligned}
r_{D}^{T} & =c_{D}^{T}-\lambda^{T} D=\left[\begin{array}{lll}
c_{1} & c_{2} & c_{3}
\end{array}\right]-\left[\begin{array}{ll}
0 & 0
\end{array}\right]\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right] \\
& =\left[\begin{array}{lll}
-4 & -3 & -2
\end{array}\right]-\left[\begin{array}{ll}
0 & 0
\end{array}\right]\left[\begin{array}{rrr}
2 & -3 & 2 \\
-1 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
-4 & -3 & -2
\end{array}\right] \\
& =\left[\begin{array}{lll}
r_{1} & r_{2} & r_{3}
\end{array}\right] .
\end{aligned}
$$

Since $r_{1}=-4$ is most negative, therefore we bring a_{1} into basis. However, we first calculate

$$
\begin{aligned}
y_{1} & =B^{-1} a_{1} \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{r}
2 \\
-1
\end{array}\right]=\left[\begin{array}{r}
2 \\
-1
\end{array}\right] .
\end{aligned}
$$

We now form the augmented revised tableau

\[

\]

We find pivot row, that is $\mathrm{p}=\arg \min \left\{\frac{6}{2}, \not \frac{\boxed{Z}}{\mathbf{Z}}\right\}=1^{\text {st }}$ row. Therefore, a_{4} of basis matrix B is replaced by a_{1}.

$$
\begin{array}{ccccc}
& B^{-1} & b & y_{1} \\
a_{1} & 1 & 0 & 6 & 2 \\
a_{5} & 0 & 1 & 5 & -1
\end{array}
$$

We apply elementary row operations by pivoting about the first element of the last column of the augmented revised tableau.
$R_{1} \rightarrow \frac{1}{2} R_{1}$

$$
\begin{array}{ccccc}
& B^{-1} & b & y_{1} \\
a_{1} & 1 / 2 & 0 & 3 & 1 \\
a_{5} & 0 & 1 & 5 & -1
\end{array}
$$

$R_{2} \rightarrow R_{2}+R_{1}$

\[

\]

We remove the column y_{1} to get the revised simplex tableau

\[

\]

We again compute

$$
\lambda^{T}=c_{B}^{T} B^{-1}=\left[\begin{array}{ll}
c_{1} & c_{5}
\end{array}\right]\left[\begin{array}{ll}
1 / 2 & 0 \\
1 / 2 & 1
\end{array}\right]=\left[\begin{array}{ll}
-4 & 0
\end{array}\right]\left[\begin{array}{ll}
1 / 2 & 0 \\
1 / 2 & 1
\end{array}\right]=\left[\begin{array}{ll}
-2 & 0
\end{array}\right]
$$

and

$$
\begin{aligned}
r_{D}^{T} & =c_{D}^{T}-\lambda^{T} D=\left[\begin{array}{lll}
c_{2} & c_{3} & c_{4}
\end{array}\right]-\left[\begin{array}{ll}
-2 & 0
\end{array}\right]\left[\begin{array}{lll}
a_{2} & a_{3} & a_{4}
\end{array}\right] \\
& =\left[\begin{array}{lll}
-3 & -2 & 0
\end{array}\right]-\left[\begin{array}{ll}
-2 & 0
\end{array}\right]\left[\begin{array}{rrc}
-3 & 2 & 1 \\
1 & 1 & 0
\end{array}\right] \\
& =\left[\begin{array}{lll}
-3 & -2 & 0
\end{array}\right]-\left[\begin{array}{lll}
6 & -4 & -2
\end{array}\right] \\
& =\left[\begin{array}{lll}
-9 & 2 & 2
\end{array}\right] \\
& =\left[\begin{array}{lll}
r_{2} & r_{3} & r_{4}
\end{array}\right] .
\end{aligned}
$$

Since $r_{2}=-9$ is only negative, therefore a_{2} will come into basis. We also calculate

$$
\begin{aligned}
y_{2} & =B^{-1} a_{2} \\
& =\left[\begin{array}{ll}
1 / 2 & 0 \\
1 / 2 & 1
\end{array}\right]\left[\begin{array}{r}
-3 \\
1
\end{array}\right]=\left[\begin{array}{l}
-3 / 2 \\
-1 / 2
\end{array}\right] .
\end{aligned}
$$

We form the augmented revised tableau

\[

\]

We find $\mathrm{p}=\arg \min \left\{\frac{3 / 2}{-\frac{1}{2}}, \frac{8}{-1 \times 2}\right\}=$ no row. Since no $y_{i q} \geq 0$, therefore the problem is unbounded.

We can call MATLAB function rsm.m to find the optimal solution of the linear programming problem. See the following Code 6.1.

Code 6.1: rsm.m

function $[\operatorname{Binv}, B, x B]=r s m(A, c, B, x B, B i n v, v)$
\%input: augmented matrix A , cost c , basis
\%vector B, basic vector xB, identity matrix
\%Binv, non-basic variable v
\%output: basis vector B, basic vector $x B$
$[\sim$, n$]=\operatorname{size}(\mathrm{A})$;
format rat
$\mathrm{Cb}=\mathrm{c}$ (B);
Cdd=setdiff(1:n,B);

```
D=A(: ,Cdd);
Cd=c (1, Cdd );
L=Cb*Binv ;
    disp('L=');
    disp(L);
    r=Cd}-(L*D)
    disp('r=');
    disp(r);
    [~ ,aa]=pivotcolumn(r,v);
%check optimality
    if aa==0
        disp('optimal solution reached');
    return
    else
        a=Cdd(aa );
        disp ('q=');
        disp(a);
        y=Binv*A(:, a );
        Y=sprintf('%s', ''y=');
        disp(Y);
        disp(y);
        revise=[Binv xB y];
        [m,n]=size(revise);
        min=Inf;
        arg_min=0;
end
%select pivot row
    for k=1:m
        if revise(k,n)>0
        row=revise(k,n-1)/revise(k,n);
        if row<min
                min=row;
                arg_min=k;
        end
    end
end
%check unbounded solution
    if arg_min==0
        x=sprintf('%c','unbounded');
```

```
    disp(x);
return
else
    disp('p=');
    disp(arg_min);
%update revise tableau
    revise=simplex(revise, arg_min,n);
    disp('revise');
    disp(revise);
    Binv=revise (:, 1:n-2);
    B(arg_min)=a;
    xB=revise (:, n-1);
end
end
```

Note that in the above MATLAB function, we have called function simplex.m to make the pivot element unity and all values below and up of pivot element in pivot column become zero. We have also called function pivotcolumn.m to select pivot column. The MATLAB functions simplex.m, pivotcolumn.m, and rsm.m should be in the same folder in the computer.

Example 6.3. Solve the linear programming problem using the revised simplex method.

$$
\begin{array}{cl}
\operatorname{maximize} & 3 x_{1}+4 x_{2}+x_{3}+7 x_{4} \\
\text { subject to } & 8 x_{1}+3 x_{2}+4 x_{3}+x_{4} \leq 7, \\
& 2 x_{1}+6 x_{2}+x_{3}+5 x_{4} \leq 3, \\
& x_{1}+4 x_{2}+5 x_{3}+2 x_{4} \leq 8, \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq 0 .
\end{array}
$$

Using slack variables x_{5}, x_{6} and x_{7} to express the linear programming problem in standard form:

$$
\begin{array}{llll}
\operatorname{minimize} & -3 x_{1}-4 x_{2}-x_{3}-7 x_{4} & \\
\text { subject to } & 8 x_{1}+3 x_{2}+4 x_{3}+x_{4}+x_{5} & =7 \\
& 2 x_{1}+6 x_{2}+x_{3}+5 x_{4}+x_{6} & =3 \\
& x_{1}+4 x_{2}+5 x_{3}+2 x_{4} & +x_{7}=8 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5}, \quad x_{6}, \quad x_{7} \geq 0
\end{array}
$$

The augmented matrix is

$$
\begin{array}{ccccccccc}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & a_{7} & b \\
a_{5} & 8 & 3 & 4 & 1 & 1 & 0 & 0 & 7 \\
a_{6} & 2 & 6 & 1 & 5 & 0 & 1 & 0 & 3 \\
a_{7} & 1 & 4 & 5 & 2 & 0 & 0 & 1 & 8
\end{array}
$$

The revised simplex tableau is

\[

\]

We compute

$$
\begin{aligned}
\lambda^{T} & =c_{B}^{T} B^{-1} \\
& =\left[\begin{array}{lll}
c_{5} & c_{6} & c_{7}
\end{array}\right] B^{-1}=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
r_{D}^{T}=c_{D}^{T}-\lambda^{T} D & =\left[\begin{array}{llll}
c_{1} & c_{2} & c_{3} & c_{4}
\end{array}\right]-\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
8 & 3 & 4 & 1 \\
2 & 6 & 1 & 5 \\
1 & 4 & 5 & 2
\end{array}\right] \\
& =\left[\begin{array}{llll}
-3 & -4 & -1 & -7
\end{array}\right]-\left[\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{llll}
-3 & -4 & -1 & -7
\end{array}\right] \\
& =\left[\begin{array}{llll}
r_{1} & r_{2} & r_{3} & r_{4}
\end{array}\right]
\end{aligned}
$$

r_{4} is the most negative. Therefore, a_{4} will enter into basis.

We calculate

$$
y=B^{-1} a_{4}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
5 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
5 \\
2
\end{array}\right] .
$$

We now form the augmented revised tableau.

\[

\]

We compute pivot row $\mathrm{p}=\arg \min \left\{\frac{7}{1}, \frac{3}{5}, \frac{8}{2}\right\}=2^{\text {nd }}$ row. Therefore, a_{6} is replaced by a_{4}. We call MATLAB functions to perform elementary row operations.

\[

\]

>> A = identityop(A, 2, 1/5)

\[

\]

>> A = eliminationop (A, 1, 2,-1)

		B^{-1}		b	y_{4}
a_{5}	1	$-1 / 5$	0	$32 / 5$	0
a_{4}	0	$1 / 5$	0	$3 / 5$	1
a_{7}	0	0	1	8	2
	$R_{3} \rightarrow$	R_{3}	$-2 R_{2}$		

>>A=eliminationop(A, 3, 2,-2)

$$
\begin{array}{lccccc}
& & B^{-1} & & \mathrm{~b} & y_{4} \\
a_{5} & 1 & -1 / 5 & 0 & 32 / 5 & 0 \\
a_{4} & 0 & 1 / 5 & 0 & 3 / 5 & 1 \\
a_{7} & 0 & -2 / 5 & 1 & 34 / 5 & 0
\end{array}
$$

After removing the last column from the above revised tableau, we get

$$
\begin{array}{ccccc}
& & B^{-1} & & \mathrm{~b} \\
a_{5} & 1 & -1 / 5 & 0 & 32 / 5 \\
a_{4} & 0 & 1 / 5 & 0 & 3 / 5 \\
a_{7} & 0 & -2 / 5 & 1 & 34 / 5
\end{array}
$$

We compute

$$
\begin{aligned}
\lambda^{T} & =c_{B}^{T} B^{-1} \\
& =\left[\begin{array}{lll}
c_{5} & c_{4} & c_{7}
\end{array}\right] B^{-1} \\
& =\left[\begin{array}{lll}
0 & -7 & 0
\end{array}\right]\left[\begin{array}{rrr}
1 & -1 / 5 & 0 \\
0 & 1 / 5 & 0 \\
0 & -2 / 5 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & -7 / 5 & 0
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
r_{D}^{T} & =c_{D}^{T}-\lambda^{T} D \\
& =\left[\begin{array}{llll}
c_{1} & c_{2} & c_{3} & c_{6}
\end{array}\right]-\left[\begin{array}{lll}
0 & -7 / 5 & 0
\end{array}\right]\left[\begin{array}{cccc}
8 & 3 & 4 & 0 \\
2 & 6 & 1 & 1 \\
1 & 4 & 5 & 0
\end{array}\right] \\
& =\left[\begin{array}{llll}
-3 & -4 & -1 & 0
\end{array}\right]-\left[\begin{array}{llll}
-14 / 5 & -42 / 5 & -7 / 5 & -7 / 5
\end{array}\right] \\
& =\left[\begin{array}{llll}
-3+14 / 5 & -4+42 / 5 & -1+7 / 5 & 0+7 / 5
\end{array}\right] \\
& =\left[\begin{array}{llll}
-1 / 5 & 22 / 5 & 2 / 5 & 7 / 5
\end{array}\right] \\
& =\left[\begin{array}{llll}
r_{1} & r_{2} & r_{3} & r_{6}
\end{array}\right] .
\end{aligned}
$$

r_{1} is the most negative. Therefore, a_{1} will enter to basis by

$$
\begin{aligned}
y_{1} & =B^{-1} a_{1} \\
& =\left[\begin{array}{ccc}
1 & -1 / 5 & 0 \\
0 & 1 / 5 & 0 \\
0 & -2 / 5 & 1
\end{array}\right]\left[\begin{array}{l}
8 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
8-2 / 5 \\
2 / 5 \\
-\frac{4}{5}+1
\end{array}\right]=\left[\begin{array}{c}
38 / 5 \\
2 / 5 \\
\frac{1}{5}
\end{array}\right] .
\end{aligned}
$$

We form the augmented revised tableau.

$$
\begin{array}{lccccc}
& & B^{-1} & & \mathrm{~b} & y_{1} \\
a_{5} & 1 & -1 / 5 & 0 & 32 / 5 & 38 / 5 \\
a_{4} & 0 & 1 / 5 & 0 & 3 / 5 & 2 / 5 \\
a_{7} & 0 & -2 / 5 & 1 & 34 / 5 & 1 / 5
\end{array}
$$

We find pivot row $\mathrm{p}=\arg \min \left\{\frac{32}{38}, \frac{3}{2}, 34\right\}=1^{\text {st }}$ row. Therefore, a_{5} is replaced by a_{1}.

$$
\begin{array}{lccccc}
& & B^{-1} & \mathrm{~b} & y_{1} \\
a_{1} & 1 & -1 / 5 & 0 & 32 / 5 & 38 / 5 \\
a_{4} & 0 & 1 / 5 & 0 & 3 / 5 & 2 / 5 \\
a_{7} & 0 & -2 / 5 & 1 & 34 / 5 & 1 / 5 \\
& & R_{1} \rightarrow & \frac{5}{38} R_{1} &
\end{array}
$$

>>A=identityop(A, 1,5/38)

\[

\]

>>A=eliminationop(A, 2,1,-2/5)

\[

\]

>>A=eliminationop $(A, 3,1,-1 / 5)$

\[

\]

After removing last the column from the above revised tableau, we get

\[

\]

We compute

$$
\begin{aligned}
& \lambda^{T}=c_{B}^{T} B^{-1} \\
&=\left[\begin{array}{lll}
c_{1} & c_{4} & c_{7}
\end{array}\right] B^{-1} \\
&=\left[\begin{array}{lll}
-3 & -7 & 0
\end{array}\right]\left[\begin{array}{ccc}
5 / 38 & -1 / 38 & 0 \\
-1 / 19 & 4 / 19 & 0 \\
-1 / 38 & -15 / 38 & 1
\end{array}\right] \\
&=\left[\begin{array}{lll}
-\frac{15}{38}+\frac{7}{19} & \frac{3}{38}-\frac{28}{19} & 0
\end{array}\right] \\
&=\left[\begin{array}{lll}
-\frac{1}{38} & -\frac{53}{38} & 0
\end{array}\right] . \\
& r_{D}^{T}=c_{D}^{T}-\lambda^{T} D \\
&=\left[\begin{array}{llll}
c_{2} & c_{3} & c_{5} & c_{6}
\end{array}\right]-\left[\begin{array}{lll}
-\frac{1}{38} & -\frac{53}{38} & 0
\end{array}\right]\left[\begin{array}{cccc}
3 & 4 & 1 & 0 \\
6 & 1 & 0 & 1 \\
4 & 5 & 0 & 0
\end{array}\right] \\
&=\left[\begin{array}{llll}
-4 & -1 & 0 & 0
\end{array}\right]-\left[\begin{array}{llll}
-\frac{321}{38} & -\frac{3}{2} & -\frac{1}{38} & -\frac{53}{38}
\end{array}\right] \\
&= {\left[\begin{array}{llll}
\frac{169}{38} & \frac{1}{2} & \frac{1}{38} & \frac{53}{38}
\end{array}\right] } \\
&= {\left[\begin{array}{llll}
r_{2} & r_{3} & r_{5} & r_{6}
\end{array}\right] . }
\end{aligned}
$$

All are greater than zero. Therefore, the current revised tableau contains the optimal solution, that is $x_{1}=\frac{16}{19}, x_{4}=\frac{5}{19}$ and the value of an objective function is

$$
\begin{aligned}
& =-3 \times \frac{16}{19}+-7 \times \frac{5}{19} \\
& =-\frac{48}{19}-\frac{35}{19} \\
& =-\frac{83}{19} .
\end{aligned}
$$

Example 6.4. Solve the following linear programming problem using the revised simplex method.

$$
\begin{aligned}
\operatorname{maximize} & 3 x_{1}+5 x_{2} \\
\text { subject to } & x_{1}+x_{2} \leq 4, \\
& 5 x_{1}+3 x_{2} \geq 8 \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
$$

In standard form

$$
\begin{array}{lc}
\operatorname{minimize} & -3 x_{1}-5 x_{2} \\
\text { subject to } & x_{1}+x_{2}+x_{3}=4 \\
& 5 x_{1}+3 x_{2} \quad-x_{4}=8 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq 0
\end{array}
$$

There is no obvious basic feasible solution. Therefore, we use the two-phase method.
Phase-I: We introduce an artificial variable

$$
\begin{array}{lc}
\operatorname{minimize} & x_{5} \\
\text { subject to } & x_{1}+x_{2}+x_{3} \\
& 5 x_{1}+3 x_{2}-x_{4}+x_{5}=8 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5}, \geq 0
\end{array}
$$

The augmented matrix is

$$
\begin{array}{rrrrrr}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
1 & 1 & 1 & 0 & 0 & 4 \\
5 & 3 & 0 & -1 & 1 & 8
\end{array}
$$

Note that $B=\left[\begin{array}{ll}a_{3} & a_{5}\end{array}\right], x_{B}=\left[\begin{array}{l}x_{3} \\ x_{5}\end{array}\right]=\left[\begin{array}{l}4 \\ 8\end{array}\right]$. We have a basic feasible solution. We can start the revised simplex method.

\[

\]

We compute

$$
\begin{aligned}
\lambda^{T}=c_{B}^{T} B^{-1}=\left[\begin{array}{ll}
c_{3} & c_{5}
\end{array}\right] B^{-1} & =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 1
\end{array}\right]
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
r_{D}^{T} & =c_{D}^{T}-\lambda^{T} D \\
& =\left[\begin{array}{lll}
c_{1} & c_{2} & c_{4}
\end{array}\right]-\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 0 \\
5 & 3 & -1
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]-\left[\begin{array}{lll}
5 & 3 & -1
\end{array}\right] \\
& =\left[\begin{array}{lll}
-5 & -3 & 1
\end{array}\right] \\
& =\left[\begin{array}{lll}
r_{1} & r_{2} & r_{4}
\end{array}\right] .
\end{aligned}
$$

The most reduced cost coefficient is r_{1}. Therefore, a_{1} will enter into basis. We calculate

$$
\begin{aligned}
y_{1} & =B^{-1} a_{1} \\
& =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
5
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
5
\end{array}\right] .
\end{aligned}
$$

We write the augmented revised tableau.

$$
\begin{array}{ccccc}
& B^{-1} & \mathrm{~b} & y_{1} \\
a_{3} & 1 & 0 & 4 & 1 \\
a_{5} & 0 & 1 & 8 & 5
\end{array}
$$

We find $\mathrm{p}=\arg \min \left\{\frac{4}{1}, \frac{8}{5}\right\}=2^{\text {nd }}$ row. Therefore, a_{5} is replaced by a_{1}. We now apply row operations to update the above revised simplex tableau.

\[

\]

>>A=identityop(A, 2,1/5)

\[

\]

>>A=eliminationop(A, 1, 2,-1)

\[

\]

After removing the last column from the above revised tableau, we get

\[

\]

We now compute

$$
\lambda^{T}=c_{B}^{T} B^{-1}=\left[\begin{array}{ll}
0 & 0
\end{array}\right] B^{-1}=\left[\begin{array}{ll}
0 & 0
\end{array}\right]
$$

and

$$
r_{D}^{T}=c_{D}^{T}-\lambda^{T} D=\left[\begin{array}{lll}
c_{2} & c_{4} & c_{5}
\end{array}\right]-\left[\begin{array}{ll}
0 & 0
\end{array}\right] D=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] .
$$

All reduced cost coefficients are greater than or equal to zero. Therefore, we stop to get a starting basic feasible solution $x=$ $\left[\begin{array}{c}8 / 5 \\ 0 \\ 12 / 5 \\ 0 \\ 0\end{array}\right]$ for Phase-II

Phase-II: We now take original objective function for calculating λ^{T} and r_{D}^{T}

$$
\left.\begin{array}{rl}
a_{3} & B^{-1} \\
a_{3} & -1 / 5 \\
a_{1} & 0 \\
1 / 5 & 8 / 5
\end{array}\right] .
$$

and

$$
\begin{aligned}
r_{D}^{T}=c_{D}^{T}-\lambda^{T} D & =\left[\begin{array}{ll}
c_{2} & c_{4}
\end{array}\right]-\left[\begin{array}{ll}
0 & -3 / 5
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
3 & -1
\end{array}\right] \\
& =\left[\begin{array}{ll}
-5 & 0
\end{array}\right]-\left[\begin{array}{ll}
-\frac{9}{5} & \frac{3}{5}
\end{array}\right] \\
& =\left[\begin{array}{cc}
-\frac{16}{5} & -\frac{3}{5}
\end{array}\right] \\
& =\left[\begin{array}{cc}
r_{2} & r_{4}
\end{array}\right] .
\end{aligned}
$$

Since r_{2} is the most negative, therefore a_{2} will enter into basis by $y_{2}=B^{-1} a_{2}$. We find

$$
y_{2}=\left[\begin{array}{cc}
1 & -1 / 5 \\
0 & 1 / 5
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 / 5 \\
3 / 5
\end{array}\right] .
$$

We form the augmented revised tableau.

\[

\]

We find $\mathrm{p}=\arg \min \left\{6, \frac{8}{3}\right\}=2^{\text {nd }}$ row. Therefore, a_{1} is replaced by a_{2} We now update the revised simplex tableau.

\[

\]

>> A=identityop (A, 2, 5/3)

\[

\]

>>A=eliminationop(A, 1, 2,-2/5)

$$
\begin{array}{ccccc}
& B^{-1} & b & y_{2} \\
a_{3} & 1 & -1 / 3 & 4 / 3 & 0 \\
a_{2} & 0 & 1 / 3 & 8 / 3 & 1
\end{array}
$$

After removing the last column from the above revised tableau, we get

$$
\begin{gathered}
B^{-1} \mathrm{~b} \\
a_{3} \begin{array}{cc}
1 & -1 / 3 \\
a_{2} & 0
\end{array} 1 / 3 \\
1 / 3 / 3
\end{gathered}, \begin{aligned}
& \lambda^{T}=c_{B}^{T} B^{-1}=\left[\begin{array}{ll}
c_{3} & c_{2}
\end{array}\right]\left[\begin{array}{cc}
1 & -1 / 3 \\
0 & 1 / 3
\end{array}\right]=\left[\begin{array}{ll}
0 & -5
\end{array}\right]\left[\begin{array}{cc}
1 & -1 / 3 \\
0 & 1 / 3
\end{array}\right] \\
&=\left[\begin{array}{ll}
0 & -5 / 3
\end{array}\right] \\
& r_{D}^{T}=c_{D}^{T}-\lambda^{T} D= {\left[\begin{array}{ll}
c_{1} & c_{4}
\end{array}\right]-\left[\begin{array}{ll}
0 & -5 / 3
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
5 & -1
\end{array}\right] } \\
&= {\left[\begin{array}{ll}
-3 & 0
\end{array}\right]-\left[\begin{array}{ll}
-\frac{25}{3} & \frac{5}{3}
\end{array}\right]=\left[\begin{array}{cc}
\frac{16}{3} & -\frac{5}{3}
\end{array}\right] }
\end{aligned}
$$

r_{4} is the most negative. Therefore, a_{4} will enter into basis by $y_{4}=$ $B^{-1} a_{4}$.

$$
\begin{gathered}
y_{4}=\left[\begin{array}{cc}
1 & -1 / 3 \\
0 & 1 / 3
\end{array}\right]\left[\begin{array}{c}
0 \\
-1
\end{array}\right]=\left[\begin{array}{c}
1 / 3 \\
-1 / 3
\end{array}\right] . \\
B^{-1} \\
\begin{array}{ccccc}
a_{3} & 1 & -1 / 3 & 4 / 3 & 1 / 3 \\
a_{2} & 0 & 1 / 3 & 8 / 3 & -1 / 3
\end{array}
\end{gathered}
$$

We find $\mathrm{p}=\arg \min \{4, \ngtr\}=1^{\text {st }}$ row. Therefore, a_{3} is replaced by a_{4}. We now update the revised simplex tableau.

\[

\]

```
>> A = identityop(A,1,3)
```

\[

\]

>> $A=$ eliminationop $(A, 2,1,1 / 3)$

$$
\begin{array}{ccccc}
& B^{-1} & b & y_{2} \\
a_{4} & 3 & -1 & 4 & 1 \\
a_{2} & 1 & 0 & 4 & 0
\end{array}
$$

after removing the last column from the above revised tableau, we get

$$
\begin{gathered}
B^{B^{-1}} \begin{array}{c}
b \\
a_{4} \\
a_{2}
\end{array} 1 \begin{array}{ccc}
-1 & 4 & 4
\end{array} \\
\lambda^{T}=c_{B}^{T} B^{-1}=\left[\begin{array}{ll}
c_{4} & c_{2}
\end{array}\right]\left[\begin{array}{cc}
3 & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & -5
\end{array}\right]\left[\begin{array}{cc}
3 & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
-5 & 0
\end{array}\right]
\end{gathered}
$$

and

$$
\begin{aligned}
r_{D}^{T} & =c_{D}^{T}-\lambda^{T} D=\left[\begin{array}{ll}
c_{1} & c_{3}
\end{array}\right]-\left[\begin{array}{ll}
-5 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
5 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
-3 & 0
\end{array}\right]+\left[\begin{array}{ll}
5 & 5
\end{array}\right]=\left[\begin{array}{ll}
2 & 5
\end{array}\right] .
\end{aligned}
$$

All reduced cost coefficients are nonnegative. Therefore, $x=\left[\begin{array}{l}0 \\ 4 \\ 0 \\ 4\end{array}\right]$.
The optimal solution to the original problem is $x_{1}=0, x_{2}=4$ and the value of the objective function is $3 x_{1}+5 x_{2}=3 \times 0+5 \times 4=20$.

Example 6.5. Solve the following problem by the revised simplex method.

$$
\begin{array}{cc}
\operatorname{maximize} & 6 x_{1}-2 x_{2}+3 x_{3} \\
\text { subject to } & 2 x_{1}-x_{2}+2 x_{3} \leq 2, \\
& x_{1} \quad 4 x_{3} \leq 4, \\
& x_{1}, \quad x_{2}, \quad x_{3}, \geq 0
\end{array}
$$

We can call MATLAB function rsm.m to solve the above problem in MATLAB.

In the Command Window,

```
>> A = [2 -1 2 1 0; 1 0 4 0 1]
>> c = [\begin{array}{lllll}{-6}&{2}&{-3}&{0}&{0}\end{array}]
>> Binv = eye(2)
>> v = 3
>> B = [4 5
```

```
>> xB = [2;4]
>> [Binv,B,xB] = rsm(A,c,B,xB,Binv,v)
L=
            0 0
r=
            -6 2
            2
                                    -3
q=
    1
y=
    2
    1
p=
1
    revise=
    1/2
    -1/2
                1 3
                0
            -1/2
                                    1
    B =
            1
                                    5
    xB =
        1
            3
>> [Binv,B,xB] = rsm(A,c,B,xB,Binv,v)
L=
            -3 0
r=
            -1 3
                                    3
q=
                        2
y=
        -1/2
            1/2
p=
    2
    revise=
```

```
        0 1 0
    -1 2 6
    0 1
    -1 2
    B =
    1 2
    xB =
        4
    6
>> [Binv,B,b] = rsm(A,c,B,b,Binv,v)
L=
        -2 -2
r=
        9 2
        2
optimal solution reached
Binv =
    0 1
        -1 2
B =
    1 2
xB =
    4
    6
```

We get $x_{1}=4, x_{2}=6$ and objective value is $6 \times 4-2 \times 6=12$.
Example 6.6. [7]A multistage stratified random sampling technique was adopted for the selection of one block (Ghosi), five villages and 60 farmers in the Mau district of Uttar Pradesh, India in 2003. Out of 71 districts, the Mau district had been purposely selected because the maximum area of the district was covered under agricultural practices and the majority of the farmers were mostly dependent on traditional agricultural practices, which ultimately resulted in a lower per capita district. For this reason, the Mau district was selected.

The basic objective was to develop an optimal resource plan for the farmers of the Mau district so that they could optimize their income and employment level under the given constraints.

$$
\begin{array}{r}
\text { maximize } \quad 5334 x_{01}+4670 x_{02}+3701 x_{03}+6805 x_{04}+16387 x_{05} \\
+5024 x_{06}+4193 x_{07}+5572 x_{08}+18907 x_{09}+12165 x_{10} \\
+7176 x_{11}+8732 x_{12}-40 x_{13}-40 x_{14}-0.14 x_{15}-0.14 x_{16} \\
\text { subject to } \quad x_{01}+x_{02}+x_{03}+x_{04}+x_{05} \\
\qquad \begin{array}{rr}
x_{04}+x_{05}+x_{06}+x_{07}+x_{08}+x_{09}+x_{10}+x_{11}+x_{12} & \leq 3.44 \\
78 x_{01}+71 x_{02}+36 x_{03}+46 x_{04}+45 x_{05} & \leq 661 \\
16 x_{04}+98 x_{05}+66 x_{06}+57 x_{07}+54 x_{08}+88 x_{09}+41 x_{11} \\
& +36 x_{12} \leq 661 \\
4125 x_{01}+4021 x_{02}+2018 x_{03}+2898 x_{04}+4335 x_{05} \leq 5800 \\
638 x_{04}+7548 x_{05}+4368 x_{06}+3812 x_{07}+3905 x_{08} \\
+12497 x_{09}+3990 x_{10}+3841 x_{11}+3277 x_{12} \leq 5800
\end{array} \\
\text { where } x_{i} \geq 0 \text { for all } i=1, \ldots, 12
\end{array}
$$

The augmented matrix A is:

a_{01}	a_{02}	a_{03}	a_{04}	a_{05}	a_{06}	a_{07}	a_{08}	a_{09}	a_{10}
1	1	1	1	1	0	0	0	0	0
0	0	0	1	1	1	1	1	1	1
78	71	36	46	45	0	0	0	0	0
0	0	0	16	98	66	57	54	88	33
4125	4021	2018	2898	4335	0	0	0	0	0
0	0	0	638	7548	4368	3812	3905	12497	3990
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}	a_{16}	a_{17}	a_{18}	a_{19}	a_{20}
a_{21}	a_{22}								
0	0	0	0	0	0	1	0	0	0
0	0								
1	1	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	1	0
0	0	0							
41	36	0	0	0	0	0	0	0	1
0	0	0							
0	0	0	0	0	0	0	0	0	0
1	0								
3841	3277	0	0	0	0	0	0	0	0
0	0	1							

We have basis matrix $\mathrm{B}=\left[\begin{array}{llllll}a_{17} & a_{18} & a_{19} & a_{20} & a_{21} & a_{22}\end{array}\right]$.

The starting basic feasible solution is given as

$$
x=\left[\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
& & & & 0 & 0 & 3.44 & 3.44 & 661 & 661 & 5800 & 5800
\end{array}\right]^{\mathrm{T}} .
$$

We form a revised tableau corresponding to a starting basic feasible solution.

							b
a_{1}	1	0	0	0	0	0	3.44
a_{18}	0	1	0	0	0	0	3.44
a_{19}	0	0	1	0	0	0	661
		0	0	1	0	0	661
a_{21}	0		0	0	1		5800
a_{22}		0	0	0	0	1	58

We call MATLAB function rsm.m to solve this problem in the MATLAB. Therefore, we take the value of all arguments used in this function. These are

In the Command Window,

```
>> A=[ 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0; 0
0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0; 78 71 36
4645 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0;0 0 0 16 98 66
5754 88 33 41 36 0 0 0 0 0 0 0 1 0 0 ; 4125 4021 2018
2898 4335 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0; 0 0 0 638
75484368 38123905 12497 3990 3841 3277 0 0 0 0 0 0 0
0 0 1]
>> c = [-5334 -4670 -3701 -6805 -16387 -5024 -4193
-5572 -18907 -12165 -7176 -8732 40 40 0.14 0.14 0 0 0
0 0 0]
>> Binv = eye(6)
>> v = 16
>> xB = [3.44;3.44;661;661;5800;5800]
```

>> $B=\left[\begin{array}{llllll}17 & 18 & 19 & 20 & 21 & 22\end{array}\right]$
In the Command Window,
>> [Binv, $B, x B]=\operatorname{rsm}(A, c, B, x B, B i n v, ~ v)$

OUTPUT:

$$
\left.\begin{array}{rl}
L & =\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& r=\left[\begin{array}{lllllllll}
-5334 & -4670 & -3701 & -6805 & -16387 & -5024 & -4193 \\
& -5572 & -18907 & -12165 & -7176 & -8732 & 40 & 40 & 7 / 50
\end{array}\right. \\
& 7 / 50
\end{array}\right] .
$$

$$
\mathrm{q}=9
$$

$$
\mathrm{y}=\left[\begin{array}{c}
9 \\
1 \\
0 \\
88 \\
0 \\
12497
\end{array}\right] \mathrm{p}=6
$$

$$
\text { revise }=\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 86 / 25 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 / 12497 & 2345 / 788 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 661 & 0 \\
0 & 0 & 0 & 1 & 0 & -88 / 12497 & 11783 / 19 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 5800 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 12497 & 666 / 1435 & 1
\end{array}\right]
$$

$$
\operatorname{Binv}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 / 12497 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & -88 / 12497 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 12497
\end{array}\right]
$$

$$
\mathrm{B}=\left[\begin{array}{llllll}
17 & 18 & 19 & 20 & 21 & 9
\end{array}\right]
$$

$\mathrm{xB}=\left[\begin{array}{c}86 / 25 \\ 2345 / 788 \\ 661 \\ 11783 / 19 \\ 5800 \\ 666 / 1435\end{array}\right]$

In the Command Window,
>> $[$ Binv, $B, x B]=\operatorname{ssm}(A, c, B, x B, B i n v, v)$

OUTPUT:

$$
\begin{aligned}
& L=\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & -761 / 503
\end{array}\right] \\
& \quad r=\left[\begin{array}{lllllllll}
-5334 & -4670 & -3701 & -23359 / 4 & -54642 / 11 & 45949 / 29 & 29911 / 19 \\
28557 / 85 & -98055 / 16 & -39581 / 29 & -75483 / 20 & 40 & 40 & 7 / 50 & 7 / 50 & 761 / 503
\end{array}\right]
\end{aligned}
$$

$$
\mathrm{q}=10
$$

$$
\mathrm{y}=\left[\begin{array}{c}
0 \\
113 / 166 \\
0 \\
1476 / 301 \\
0 \\
3990 / 12497
\end{array}\right] \mathrm{p}=6
$$

revise $=\left[\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 86 / 25 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 / 3990 & 3788 / 1907 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 661 & 0 \\ 0 & 0 & 0 & 1 & 0 & -11 / 1330 & 20230 / 33 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 5800 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 / 3990 & 580 / 399 & 1\end{array}\right]$
Binv $=\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 / 3990 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -11 / 1330 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 / 3990\end{array}\right]$
$\mathrm{B}=\left[\begin{array}{llllll}17 & 18 & 19 & 20 & 21 & 10\end{array}\right]$
$\mathrm{xB}=\left[\begin{array}{c}86 / 25 \\ 3788 / 1907 \\ 661 \\ 20230 / 33 \\ 5800 \\ 580 / 399\end{array}\right]$

In the Command Window,

>> $[$ Binv, $B, x B]=r s m(A, c, B, x B, B i n v, v)$

OUTPUT:

$$
L=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & -811 / 266
\end{array}\right]
$$

$$
\left.\begin{array}{rl}
r= & {\left[\begin{array}{llllllll}
-5334 & -4670 & -3701 & -53458 / 11 & 59633 / 9 & 157576 / 19 & 74293 / 10 \\
& 82340 / 13 & 76779 / 4 & 31743 / 7 & 16369 / 13 & 40 & 40 & 7 / 50 \\
7 / 50
\end{array}\right]} \\
811 / 266
\end{array}\right]
$$

$$
\mathrm{q}=1
$$

$$
\begin{aligned}
& \mathrm{y}=\left[\begin{array}{c}
1 \\
0 \\
78 \\
0 \\
4125 \\
0
\end{array}\right] \\
& \mathrm{p}=5
\end{aligned}
$$

$$
\text { revise }=\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & -1 / 4125 & 0 & 1678 / 825 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 / 3990 & 3788 / 1907 & 0 \\
0 & 0 & 1 & 0 & -26 / 1375 & 0 & 30323 / 55 & 0 \\
0 & 0 & 0 & 1 & 0 & -11 / 1330 & 20230 / 33 & 0 \\
0 & 0 & 0 & 0 & 1 / 4125 & 0 & 232 / 165 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 / 3990 & 580 / 399 & 0
\end{array}\right]
$$

$\operatorname{Binv}=\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & -1 / 4125 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 / 3990 \\ 0 & 0 & 1 & 0 & -26 / 1375 & 0 \\ 0 & 0 & 0 & 1 & 0 & -11 / 1330 \\ 0 & 0 & 0 & 0 & 1 / 4125 & \\ 0 & 0 & 0 & 0 & 0 & 1 / 3990\end{array}\right]$
$\mathrm{B}=\left[\begin{array}{llllll}17 & 18 & 19 & 20 & 1 & 10\end{array}\right]$
$\mathrm{xB}=\left[\begin{array}{c}1678 / 825 \\ 3788 / 1997 \\ 30323 / 55 \\ 20230 / 33 \\ 232 / 165 \\ 580 / 399\end{array}\right]$

In the Command Window,

>> $[$ Binv $, B, x B]=r s m(A, c, B, x B, B i n v, v)$

OUTPUT:

$$
\begin{aligned}
& L= {\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & -1778 / 1375 & -811 / 266
\end{array}\right] } \\
& r=\left[\begin{array}{lllllll}
14297 / 27 & -38204 / 35 & -47835 / 43 & -85620 / 7 & 157576 / 19 & 74293 / 10 \\
& 82340 / 13 & 76779 / 4 & 31743 / 7 & 16369 / 13 & 40 & 40 \\
7 / 50 & 7 / 50 & 1778 / 1375 \\
811 / 266
\end{array}\right] \\
& \mathrm{q}=4 \\
& \mathrm{y}==\left[\begin{array}{c}
409 / 1375 \\
1676 / 995 \\
-3625 / 412 \\
2209 / 206 \\
966 / 1375 \\
319 / 1995
\end{array}\right] \\
& \mathrm{p}=5
\end{aligned}
$$

revise $=\left[\begin{array}{cccccccc}1 & 0 & 0 & 0 & -1 / 2898 & 0 & 1125 / 782 & 0 \\ 0 & 1 & 0 & 0 & -17 / 58643 & -1 / 3990 & 262 / 859 & 0 \\ 0 & 0 & 1 & 0 & -1 / 63 & 0 & 35843 / 63 & 0 \\ 0 & 0 & 0 & 1 & -103 / 27836 & -11 / 1330 & 30170 / 51 & 0 \\ 0 & 0 & 0 & 0 & 1 / 2898 & 0 & 1451 / 725 & 1 \\ 0 & 0 & 0 & 0 & -7 / 126867 & 1 / 3990 & 806 / 711 & 0\end{array}\right]$
Binv $=\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & -1 / 2898 & 0 \\ 0 & 1 & 0 & 0 & -17 / 58643 & -1 / 3990 \\ 0 & 0 & 1 & 0 & -1 / 63 & 0 \\ 0 & 0 & 0 & 1 & -103 / 27836 & -11 / 1330 \\ 0 & 0 & 0 & 0 & 1 / 2898 & 0 \\ 0 & 0 & 0 & 0 & -7 / 126867 & 1 / 3990\end{array}\right]$
$\mathrm{B}=\left[\begin{array}{llllll}17 & 18 & 19 & 20 & 4 & 10\end{array}\right]$
$\mathrm{xB}=\left[\begin{array}{c}1125 / 782 \\ 262 / 859 \\ 35843 / 63 \\ 30170 / 51 \\ 1451 / 725 \\ 806 / 711\end{array}\right]$

In the Command Window,

>> $[\operatorname{Binv}, B, x B]=r \operatorname{sm}(A, c, B, x B, B i n v, v)$

OUTPUT:

$$
\left.\begin{array}{rl}
L & =\left[\begin{array}{lllllllll}
0 & 0 & 0 & 0 & -815 / 486 & -811 / 266
\end{array}\right] \\
r & =\left[\begin{array}{llllllll}
14251 / 9 & 49753 / 24 & -16162 / 51 & 27791 / 2 & 157576 / 19 & 74293 / 10 & 82340 / 13 \\
76779 / 4 & 31743 / 7 & 16369 / 13 & 40 & 40 & 7 / 50 & 7 / 50 & 815 / 486
\end{array}\right. \\
811 / 266
\end{array}\right] .
$$

$\mathrm{q}=3$
$\mathrm{y}=\left[\begin{array}{c}440 / 1449 \\ -1084 / 1853 \\ 250 / 63 \\ -3517 / 471 \\ 1009 / 1449 \\ -529 / 4751\end{array}\right]$
$\mathrm{p}=5$
revise $=\left[\begin{array}{cccccccc}1 & 0 & 0 & 0 & -1 / 2018 & 0 & 1628 / 2877 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 / 3990 & 3788 / 1907 & 0 \\ 0 & 0 & 1 & 0 & -18 / 1009 & 0 & 17841 / 32 & 0 \\ 0 & 0 & 0 & 1 & 0 & -11 / 1330 & 20230 / 33 & 0 \\ 0 & 0 & 0 & 0 & 1 / 2018 & 0 & 2900 / 1009 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 / 3990 & 580 / 399 & 0\end{array}\right]$
$\operatorname{Binv}=\left[\begin{array}{cccccc}1 & 0 & 0 & 0 & -1 / 2018 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 / 3990 \\ 0 & 0 & 1 & 0 & -18 / 1009 & 0 \\ 0 & 0 & 0 & 1 & 0 & -11 / 1330 \\ 0 & 0 & 0 & 0 & 1 / 2018 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 / 3990\end{array}\right]$
$\mathrm{B}=\left[\begin{array}{llllll}17 & 18 & 19 & 20 & 3 & 10\end{array}\right]$
$\mathrm{xB}=\left[\begin{array}{c}1628 / 2877 \\ 3788 / 1907 \\ 17841 / 32 \\ 20230 / 33 \\ 2900 / 1009 \\ 580 / 399\end{array}\right]$

In the Command Window,

>> [Binv, $B, b]=r s m(A, c, B, b, B i n v, v)$

OUTPUT:

$$
\left.\begin{array}{rl}
L= & {\left[\begin{array}{llllllllll}
0 & 0 & 0 & 0 & -3701 / 2018 & -811 / 266
\end{array}\right]} \\
r & =\left[\begin{array}{llllllll}
69168 / 31 & 137929 / 51 & 9557 / 21 & 58305 / 4 & 157576 / 19 & 74293 / 10 & 82340 / 13 \\
76779 / 4 & 31743 / 7 & 16369 / 13 & 40 & 40 & 7 / 50 & 7 / 50 & 815 / 486
\end{array} 811 / 266\right.
\end{array}\right] .
$$

Optimal solution reached.
$\mathrm{B}=\left[\begin{array}{llllll}17 & 18 & 19 & 20 & 3 & 10\end{array}\right]$
$\mathrm{xB}=\left[\begin{array}{c}1628 / 2877 \\ 3788 / 1907 \\ 17841 / 32 \\ 20230 / 33 \\ 2900 / 1009 \\ 580 / 399\end{array}\right]$.

6.4 Exercises

Exercise 6.1. Solve the linear programming problem.

$$
\begin{aligned}
\operatorname{maximize} & 3 x_{1}+x_{2}+5 x_{3}+4 x_{4} \\
\text { subject to } & 3 x_{1}-3 x_{2}+2 x_{3}+8 x_{4} \leq 50, \\
& 4 x_{1}+6 x_{2}-4 x_{3}-4 x_{4} \leq 40, \\
& 4 x_{1}-2 x_{2}+x_{3}+3 x_{4} \leq 20, \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq 0
\end{aligned}
$$

Exercise 6.2. Solve the following linear program by the revised simplex method in MATLAB.

$$
\begin{array}{rc}
\operatorname{maximize} & x_{1}-3 x_{2}+x_{3} \\
\text { subject to } & 2 x_{1}+x_{2}+x_{3} \leq 6, \\
& x_{1}+x_{2}-x_{3} \leq 40 \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0
\end{array}
$$

Exercise 6.3. Solve using the revised simplex method.

$$
\begin{aligned}
\operatorname{maximize} & 2 x_{1}+x_{2}+3 x_{3} \\
\text { subject to } & x_{1}+2 x_{2}+x_{3} \leq 6 \\
& 2 x_{1} \quad+x_{3} \leq 4 \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0
\end{aligned}
$$

Exercise 6.4. Solve the problem.

$$
\begin{array}{lr}
\text { minimize } & -9 x_{1}-10 x_{2}-15 x_{3} \\
\text { subject to } & x_{1}+2 x_{2}+5 x_{3} \leq 45, \\
2 x_{1}+3 x_{2}+3 x_{3} \leq 60, \\
x_{1}+x_{2}+2 x_{3} \leq 27, \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0
\end{array}
$$

Exercise 6.5. Consider the following linear programming problem.

$$
\begin{array}{ll}
\text { minimize } & -4 x_{1}-3 x_{2} \\
\text { subject to } & x_{1}+2 x_{2} \leq 8, \\
-2 x_{1}+x_{2} \leq 5, \\
& 5 x_{1}+3 x_{2} \leq 16, \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

(a) Solve the linear programming problem using the simplex method.
(b) Solve the linear programming problem using the revised simplex method.

Exercise 6.6. Solve the linear programming problem using the revised simplex method.

$$
\begin{array}{ll}
\operatorname{maximize} & 3 x_{1}+6 x_{2}+2 x_{3} \\
\text { subject to } & 3 x_{1}+4 x_{2}+x_{3} \leq 20 \\
& x_{1}+3 x_{2}+2 x_{3} \leq 10 \\
x_{1}-x_{2} \quad \leq 3 \\
& x, \quad x_{2}, \quad x_{3} \leq 2 \\
& \geq 0
\end{array}
$$

Exercise 6.7. Solve the linear programming problem using the revised simplex method.

$$
\begin{array}{lll}
\operatorname{maximize} & x_{1}+8 x_{2}+5 x_{3} \\
\text { subject to } & x_{1}+4 x_{2}+5 x_{3} & \leq 7 \\
& 3 x_{1}+4 x_{2} & \leq 18 \\
& 2 x_{1}+x_{2} & \leq 7 \\
& x_{1}, \quad x_{2}, \quad x_{3} & \geq 0
\end{array}
$$

Exercise 6.8. Solve the linear programming problem using the revised simplex method.

$$
\begin{array}{rrr}
\operatorname{maximize} & 19 x_{1}+13 x_{2}+12 x_{3}+17 x_{4} \\
\text { subject to } & 3 x_{1}+2 x_{2}+x_{3}+2 x_{4} \leq 225, \\
& x_{1}+x_{2}+x_{3}+x_{4} \leq 117, \\
4 x_{1}+3 x_{2}+3 x_{3}+4 x_{4} & \leq 420, \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} & \geq 0 .
\end{array}
$$

Exercise 6.9. Solve the following problems using the revised simplex method.
(a)

$$
\begin{aligned}
\operatorname{maximize} & 2 x_{1}+3 x_{2} \\
\text { subject to } & 2 x_{1}+3 x_{2} \leq 30 \\
& x_{1}+2 x_{2} \geq 10 \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
$$

(b)

$$
\begin{aligned}
\operatorname{maximize} & 5 x_{1}+6 x_{2} \\
\text { subject to } & x_{1}+x_{2} \leq 2 \\
& 4 x_{1}+x_{2} \geq 4 \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
$$

Exercise 6.10. Solve the following linear program using the revised simplex method.

$$
\begin{array}{ll}
\operatorname{minimize} & -4 x_{1}-3 x_{2} \\
\text { subject to } & 5 x_{1}+x_{2} \geq 11, \\
& 2 x_{1}+x_{2} \leq 8, \\
& x_{1}+2 x_{2} \geq 7, \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

Exercise 6.11. Solve the problem.

$$
\begin{aligned}
\operatorname{maximize} & x_{1}+4 x_{2} \\
\text { subject to } & 2 x_{1}+x_{2} \leq 7 \\
& 2 x_{1}+3 x_{2} \geq 6 \\
& 2 x_{1}+6 x_{2} \geq 9 \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
$$

Taylor \& Francis
 Taylor \& Francis Group
 http://taylorandfrancis.com

Chapter 7

Duality

7.1 Dual Linear Programs

For every linear programming problem, there is a corresponding dual linear programming problem. The dual linear programming problem is constructed from the cost and constraints of the original linear programming problem or their primal linear programming problem. We know that a linear programming problem is solved by the simplex method. Therefore, a dual linear programming problem can also be solved using the simplex method because every dual linear programming problem is a linear programming problem. Duality is used to improve the performance of the simplex algorithm (leading to dual algorithm). It helped to develop nonsimplex algorithms such as Karmarkar's algorithm and Khachiyan's algorithm. Lemke and Beale in 1954 designed a dual version of the simplex method.

Consider the following linear programming problem of the form:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x, \\
\text { subject to } & A x \geq b, \tag{7.1}\\
\text { where } & x \geq 0, x \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, m<n, b \in \mathbb{R}^{m} .
\end{array}
$$

We refer to the above problem as the primal problem. The cost vector c in the primal will move to the constraints in the dual. The vector b on the right-hand side of $A x \geq b$ given in (7.1) will become part of the cost in the dual. Thus, we define the corresponding dual problem as follows:

$$
\begin{array}{cl}
\operatorname{maximize} & \lambda^{T} b \\
\text { subject to } & \lambda^{T} A \leq c^{T}, \tag{7.2}\\
& \lambda \geq 0, \lambda \in \mathbb{R}^{m} .
\end{array}
$$

Note:

(a) The cost vector $c \in \mathbb{R}^{n}$ of the primal linear programming problem has moved to the constraints in the dual linear programming.
(b) The vector $b \in \mathbb{R}^{m}$ of the constraints of the primal linear programming problem becomes the part of the cost of the dual linear programming problem.
(c) The form of duality defined as (7.2) is called the symmetric form of duality.
(d) To construct the dual of an arbitrary linear programming problem, we follow the procedure: we firstly convert the given linear programming problem into a problem of above form (symmetric form) and then construct the dual as above.
(e) The dual of the dual is the original linear programming problem.

Problem (7.2) can be written in symmetric form of duality as follows:

$$
\begin{array}{cl}
\operatorname{minimize} & \left(+\lambda^{T}\right)(-b) \\
\text { subject to } & \lambda^{T}(-A) \geq-c^{T}, \tag{7.3}\\
& \lambda \geq 0
\end{array}
$$

Then, the dual of the above problem is

$$
\begin{array}{cl}
\operatorname{maximize} & \left(-c^{T} x\right) \\
\text { subject to } & (-A) x \leq-b, \tag{7.4}\\
& x \geq 0
\end{array}
$$

We can get back to the primal linear programming problem:

$$
\begin{array}{cl}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \geq b, \\
& x \geq 0
\end{array}
$$

Thus, the dual of the dual is the primal problem. Such problems are also called "symmetric dual problems". It is a very important
class in nonlinear programming problems.
We now consider the standard form of the linear programming problem as

$$
\begin{array}{cc}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b, \tag{7.5}\\
& x \geq 0
\end{array}
$$

This form has an equality constraint. To obtain the dual problem of (7.5), we convert the constraint in symmetric form, i.e., $A x \geq b$.

We observe that $A x=b$ is an equality constraint. We first convert this equality constraint into the inequality constraints as

$$
A x \geq b \text { and } A x \leq b
$$

That is,

$$
A x \geq b \text { and }-A x \geq-b
$$

Therefore, the standard form of the linear programming problem can be written as:

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & {\left[\begin{array}{r}
A \\
-A
\end{array}\right] x \geq\left[\begin{array}{r}
b \\
-b
\end{array}\right],} \\
& x \geq 0
\end{array}
$$

and its dual is

$$
\text { maximize } \quad \lambda^{T}\left[\begin{array}{c}
b \\
-b
\end{array}\right]
$$

$$
\begin{gathered}
\text { subject to } \quad \lambda^{T}\left[\begin{array}{r}
A \\
-A
\end{array}\right] \leq c^{T}, \\
\lambda \geq 0
\end{gathered}
$$

Asymmetric form of duality can also be referred to as:

$$
\begin{aligned}
\operatorname{maximize} & \lambda^{T} b \\
\text { subject to } & \lambda^{T} A \leq c^{T} .
\end{aligned}
$$

Let $\lambda=u-v$, then the above dual problem becomes

$$
\begin{array}{cl}
\operatorname{maximize} & (u-v)^{T} b \\
\text { subject to } & (u-v)^{T} A \leq c^{T} \\
& u, v \geq 0, u, v \in \mathbb{R}^{m}
\end{array}
$$

Note that the dual vector λ is not restricted to be non-negative.

Example 7.1. Find the dual of the following linear programming problem.

$$
\begin{array}{cl}
\operatorname{minimize} & x_{1}-2 x_{2} \\
\text { subject to } & x_{1}-x_{2} \geq 2 \\
& -x_{1}+x_{2} \geq-1 \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

The dual of the linear programming problem is

$$
\begin{array}{ll}
\text { maximize } & 2 \lambda_{1}-\lambda_{2} \\
\text { subject to } & \lambda_{1}-\lambda_{2} \leq 1, \\
& -\lambda_{1}+\lambda_{2} \leq-2, \\
& \lambda_{1}, \quad \lambda_{2} \geq 0 .
\end{array}
$$

Example 7.2. Write down the dual of the linear programming problem.

$$
\begin{aligned}
& \operatorname{maximize} \quad 2 x_{1}+x_{2} \\
& \text { subject to } \quad x_{1} \leq 3 \\
& x_{2} \leq 4 \\
& x_{1}+x_{2} \leq 10 \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
$$

The dual of the linear programming problem is

$$
\begin{array}{ccc}
\operatorname{minimize} & 3 \lambda_{1}+4 \lambda_{2}+10 \lambda_{3} \\
\text { subject to } & \lambda_{1} & +\lambda_{3} \geq 2, \\
& \lambda_{2}+\quad \lambda_{3} \geq 1, \\
& \lambda_{1}, \quad \lambda_{2}, \quad \lambda_{3} \geq 0
\end{array}
$$

7.2 Properties of Dual Problems

In this section, we discuss some basic properties of dual problems. We begin with the weak duality theorem.

Theorem 7.1. [Weak Duality Theorem] Suppose that x and λ are feasible solutions of the primal and the dual linear programming problems, respectively (either in the symmetric or asymmetric form), then

$$
c^{T} x \geq \lambda^{T} b
$$

Proof. We first prove this theorem for the symmetric form of duality.
Case-1: (Symmetric Case) Primal linear programming can be written as

$$
\begin{array}{cl}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x \geq b, \tag{7.6}\\
& x \geq 0 .
\end{array}
$$

Its dual problem can also be written as

$$
\begin{array}{ll}
\operatorname{maximize} & \lambda^{T} b \\
\text { subject to } & \lambda^{T} A \leq c^{T}, \tag{7.7}\\
& \lambda \geq 0
\end{array}
$$

Since x is a feasible solution to the primal problem, we have

$$
\begin{align*}
A x & \geq b, \tag{7.8}\\
x & \geq 0 . \tag{7.9}
\end{align*}
$$

Since λ is a feasible solution to the dual problem, we have

$$
\begin{array}{r}
\lambda^{T} A \leq c^{T}, \\
\lambda \geq 0 . \tag{7.11}
\end{array}
$$

Premultiply (7.8) by λ^{T}, we get

$$
\begin{equation*}
\lambda^{T} A x \geq \lambda^{T} b \tag{7.12}
\end{equation*}
$$

Premultiply (7.10) by x, we get

$$
\begin{equation*}
\lambda^{T} A x \leq c^{T} x \tag{7.13}
\end{equation*}
$$

From (7.12) and (7.13),

$$
\begin{equation*}
\lambda^{T} b \leq \lambda^{T} A x \leq c^{T} x, \tag{7.14}
\end{equation*}
$$

that is

$$
\begin{equation*}
\lambda^{T} b \leq c^{T} x \tag{7.15}
\end{equation*}
$$

Case-II: Asymmetric Case:
The primal problem in asymmetric form is

$$
\begin{array}{cl}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

Given that x is a feasible solution to the primal problem. That is

$$
\begin{array}{r}
A x=b \\
x \geq 0 \tag{7.17}
\end{array}
$$

λ is a feasible solution to the dual problem (7.2). That is

$$
\begin{equation*}
\lambda^{T} A \leq c^{T} \tag{7.18}
\end{equation*}
$$

Postmultiply (7.18) by x,

$$
\begin{equation*}
\lambda^{T} A x \leq c^{T} x \tag{7.19}
\end{equation*}
$$

From (7.16) and (7.19), we get

$$
\lambda^{T} b \leq c^{T} x
$$

Note: From the weak duality theorem, we have noticed that the value of the objective function of the dual problem is always less than or equal to the value of the objective function of the primal problem. That is, the value of the objective function of the dual problem is a lower bound to the value of objective function of the primal problem. This is one important concept of the duality.

Theorem 7.2. Suppose that x_{0} and λ_{0} are feasible solutions to the primal and dual problems, respectively (either in symmetric or asymmetric form). If $c^{T} x_{0}=\lambda_{0}^{T} b$, then x_{0} and λ_{0} are optimal solutions to their respective problems.

Proof. Let x be an arbitrary feasible solution of the primal problem. Since λ_{0} is a feasible solution to the dual problem, then by the weak duality theorem

$$
\begin{equation*}
c^{T} x \geq \lambda_{0}^{T} b . \tag{7.20}
\end{equation*}
$$

We have

$$
\begin{equation*}
c^{T} x_{0}=\lambda_{0}^{T} b . \tag{7.21}
\end{equation*}
$$

From (7.20) and (7.21)

$$
\begin{equation*}
c^{T} x \geq c^{T} x_{0} . \tag{7.22}
\end{equation*}
$$

Thus, x_{0} is an optimal solution to the primal linear programming problem. Similarly, let λ be an arbitrary feasible solution to the dual problem and x_{0} is a feasible solution to the primal problem, then by weak duality theorem, we have

$$
\begin{equation*}
c^{T} x_{0} \geq \lambda^{T} b \tag{7.23}
\end{equation*}
$$

From (7.21) and (7.23), we get

$$
\lambda_{0}^{T} b \geq \lambda^{T} b
$$

Thus, λ_{0} is an optimal solution of the dual problem.
Theorem 7.3. [Duality Theorem] If the primal problem (either in symmetric or asymmetric form) has an optimal solution, then the dual and optimal values of their respective objective functions are equal.

Proof. Case I [Asymmetric Case]:
Assume that the primal problem has an optimal solution. Then, by the fundamental theorem of the linear programming problem (5.2), there exists an optimal basic feasible solution of the linear programming problem. Let B be the basis matrix, D the matrix corresponding to the nonbasic variables, c_{B}^{T} the basic matrix, c_{D}^{T} the non-basic vector, and r_{D}^{T} the reduced cost coefficients vector. Thus,

$$
r_{D}^{T}=c_{D}^{T}-c_{B}^{T} B^{-1} D \geq 0
$$

that is

$$
c_{B}^{T} B^{-1} D \leq c_{D}^{T}
$$

Define

$$
\lambda^{T}=c_{B}^{T} B^{-1}
$$

then

$$
\lambda^{T} D \leq c_{D}^{T}
$$

Claim: λ is a feasible solution to the dual problem.
Without loss of generality, we assume that the basic columns are the first m columns of A. Then,

$$
\lambda^{T} A=\lambda^{T}[B, \quad D]=\left[\begin{array}{ll}
\lambda^{T} B, & \left.\lambda^{T} D\right] \leq\left[c_{B}^{T}, c_{D}^{T}\right]=c^{T}, ~
\end{array}\right.
$$

that is

$$
\lambda^{T} A \leq c^{T}
$$

Therefore, λ is feasible for the dual problem.
Claim: λ is an optimal feasible solution of the dual problem.

$$
\lambda^{T} b=c_{B}^{T} B^{-1} b
$$

Since

$$
x_{B}=B^{-1} b
$$

then

$$
\lambda^{T} b=c_{B}^{T} x_{B}
$$

By weak duality theorem, λ is optimal to the dual problem. Case II: [Symmetric Case] Recall primal problem (7.1). We convert this problem to standard form using surplus variables, that is

$$
\left.\begin{array}{r}
\operatorname{minimize}
\end{array} \begin{array}{ll}
c^{T} & 0^{T}
\end{array}\right]\left[\begin{array}{l}
x \\
y \tag{7.24}
\end{array}\right] .
$$

Note that x is optimal for (7.1) if and only if $\left[x^{T},(A x-b)^{T}\right]^{T}$ is optimal for (7.24). The result of Case I also applies to Case II. This completes the proof.

Theorem 7.4 (Complementary Slackness Condition). The feasible solutions x and λ to a primal dual pair of problems (either in symmetric or asymmetric form) are optimal if and only if

1. $\left(c^{T}-\lambda^{T} A\right) x=0$, and
2. $\lambda^{T}(A x-b)=0$.

Proof. Case I: (Asymmetric Case) Recall the primal linear program (7.5).
Suppose that x and λ are optimal solutions of the primal dual pair linear programming problem, then by Theorem (7.2),

$$
\begin{equation*}
c^{T} x=\lambda^{T} b . \tag{7.25}
\end{equation*}
$$

Since

$$
A x=b,
$$

therefore,

$$
c^{T} x=\lambda^{T} A x .
$$

That is,

$$
\left(c^{T}-\lambda^{T} A\right) x=0
$$

Condition 1 is done.
Case II: (Symmetric Case) Suppose that x and λ are optimal solutions of the primal dual pair linear programming problem, then

$$
c^{T} x=\lambda^{T} b .
$$

In case of symmetric,

$$
A x \geq b, x \geq 0
$$

Since

$$
\begin{aligned}
\left(c^{T}-\lambda^{T} A\right) x & =c^{T} x-\lambda^{T} A x \\
& =\lambda^{T} b-\lambda^{T} A x \\
& =\lambda^{T}(b-A x) \\
& \leq 0,
\end{aligned}
$$ that is

$$
\begin{equation*}
\left(c^{T}-\lambda^{T} A\right) x \leq 0 \tag{7.26}
\end{equation*}
$$

On the other hand,

$$
\lambda^{T} A \leq c^{T} \text { and } x \geq 0
$$

We can have

$$
\lambda^{T} A x \leq c^{T} x
$$

that is

$$
\begin{equation*}
\left(c^{T}-\lambda^{T} A\right) x \geq 0 \tag{7.27}
\end{equation*}
$$

From (7.26) and (7.27), we get

$$
\left(c^{T}-\lambda^{T} A\right) x=0
$$

Condition 1 is done.
Since

$$
A x \geq b \text { and } \lambda \geq 0
$$

then

$$
\begin{equation*}
\lambda^{T}(A x-b) \geq 0 \tag{7.28}
\end{equation*}
$$

On the other hand, recall the symmetric form of the dual problem:

$$
\lambda^{T} A \leq c^{T}
$$

We can have

$$
\lambda^{T} A x \leq c^{T} x \text { where } x \geq 0
$$

Using (7.25) to get

$$
\lambda^{T} A x \leq \lambda^{T} b
$$

Thus,

$$
\begin{equation*}
\lambda^{T}(A x-b) \leq 0 \tag{7.29}
\end{equation*}
$$

From (7.28) and (7.29),

$$
\lambda^{T}(A x-b)=0
$$

Condition 2 is done.
Conversely, suppose that

$$
\left(c^{T}-\lambda^{T} A\right) x=0
$$

then

$$
\begin{equation*}
c^{T} x=\lambda^{T} A x . \tag{7.30}
\end{equation*}
$$

Since

$$
\lambda^{T}(A x-b)=0,
$$

then

$$
\begin{equation*}
\lambda^{T} A x=\lambda^{T} b . \tag{7.31}
\end{equation*}
$$

Combining (7.30) and (7.31), we get

$$
c^{T} x=\lambda^{T} b .
$$

Therefore, x and λ are optimal solutions for primal and dual linear programming problems, respectively.

7.3 The Dual Simplex Method

We can find the dual of any linear programming problem. We use an implicit technique that involves the simplex algorithm to the dual tableau. This is known as a "dual simplex method". The dual simplex method is used when there is no obvious basic feasible solution to the linear programming problem.

Algorithm

1. Create a canonical augmented matrix.
2. Is $b_{i 0} \geq 0$ for all i ? If yes, then go to Step 3 , otherwise go to Step 4.
3. The current solution is optimal.
4. Select the $\mathrm{p}^{\text {th }}$ row as most negative element such that $b_{p 0}<0$.
5. If $a_{p j} \geq 0$ for all j, stop; the dual problem is unbounded, otherwise compute q=arg $\min _{j}\left\{\left|\frac{c_{j}}{a_{p j}}\right| ; a_{p j}<0\right\}$ for selecting the $q^{\text {th }}$ column.
6. Update the canonical augmented matrix by pivoting about the $(\mathrm{p}, \mathrm{q})^{\text {th }}$ element.

Example 7.3. Solve the following linear programming problem using the dual simplex method.

$$
\begin{aligned}
& \text { minimize } x_{1}+x_{2}+x_{3} \\
& \text { subject to } \quad x_{1}+x_{2}+x_{3} \geq 3 \\
& 4 x_{1}+x_{2}+2 x_{3} \geq 5 \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0 \\
& \text { minimize } x_{1}+x_{2}+x_{3} \\
& \text { subject to }-x_{1}-x_{2}-x_{3}+x_{4} \quad=-3 \\
&-4 x_{1}-x_{2}-2 x_{3} \quad+x_{5}=-5 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5} \geq 0
\end{aligned}
$$

The augmented matrix form can be given as

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{4} & -1 & -1 & -1 & 1 & 0 & -3 \\
a_{5} & -4 & -1 & -2 & 0 & 1 & -5 \\
c^{T} & 1 & 1 & 1 & 0 & 0 & 0
\end{array}
$$

Since the basis matrix $B=\left[\begin{array}{ll}a_{4} & a_{5}\end{array}\right]$, therefore $x_{B}=\left[\begin{array}{l}x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{l}-3 \\ -5\end{array}\right]$. This is a basic solution, but this is not feasible. We use the dual simplex method for solving the above linear programming problem. We get $\mathrm{p}=\min \left[\begin{array}{l}-3 \\ -5\end{array}\right]=2^{\text {nd }}$ row as a pivot row. We now compute $\mathrm{q}=\arg \min \left\{\left|\frac{1}{-4}\right|,\left|\frac{1}{-1}\right|,\left|\frac{1}{-2}\right|, \perp\left(\left.\frac{1}{0} \right\rvert\,, 1\right\}=1^{\text {st }}\right.$ column as a pivot column. We apply row operations to update the tableau by pivoting $(2,1)^{\text {th }}$ element.

\[

\]

$R_{2} \rightarrow-\frac{1}{4} R_{2}$

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{4} & -1 & -1 & -1 & 1 & 0 & -3 \\
a_{1} & 1 & 1 / 4 & 1 / 2 & 0 & -1 / 4 & 5 / 4 \\
c^{T} & 1 & 1 & 1 & 0 & 0 & 0
\end{array}
$$

$R_{1} \rightarrow R_{1}+R_{2}$
$R_{3} \rightarrow R_{3}-R_{2}$

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{4} & 0 & -3 / 4 & -1 / 2 & 1 & -1 / 4 & -7 / 4 \\
a_{1} & 1 & 1 / 4 & 1 / 2 & 0 & -1 / 4 & 5 / 4 \\
c^{T} & 0 & 3 / 4 & 1 / 2 & 0 & 1 / 4 & -5 / 4
\end{array}
$$

$R_{1} \leftrightarrow R_{2}$

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{1} & 1 & 1 / 4 & 1 / 2 & 0 & -1 / 4 & 5 / 4 \\
a_{4} & 0 & -3 / 4 & -1 / 2 & 1 & -1 / 4 & -7 / 4 \\
c^{T} & 0 & 3 / 4 & 1 / 2 & 0 & 1 / 4 & -5 / 4
\end{array}
$$

Since $B=\left[\begin{array}{ll}a_{1} & a_{4}\end{array}\right]$, therefore basic vector $x_{B}=\left[\begin{array}{l}x_{1} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}5 / 4 \\ -7 / 4\end{array}\right]$. The solution is basic but not feasible. Therefore, we again apply the dual simplex method. $-\frac{7}{4}$ is the only negative element. Thus, $\mathrm{p}=2$, that is, the $2^{\text {nd }}$ row is chosen as a pivot row. We find $\mathrm{q}=\arg$
$\min \left\{\nmid y,|-1|,|-1|, \frac{\not Z}{x},|-1|\right\}=2^{\text {nd }}$ column. We update the tableau.

$a_{1} \quad a_{2}$			$a_{3} \quad a_{4}$			
a_{1}	1	1/4	1/2	0	$-1 / 4$	5/4
a_{4}	0	$-3 / 4$	-1/2	1	-1/4	-7/4
c^{T}	0	$3 / 4$	$1 / 2$	0		$-5 / 4$

$R_{2} \rightarrow-\frac{4}{3} R_{2}$

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{1} & 1 & 1 / 4 & 1 / 2 & 0 & -1 / 4 & 5 / 4 \\
a_{2} & 0 & 1 & 1 & 2 / 3 & -4 / 3 & 1 / 3 \\
c^{T} & 0 & 3 / 4 & 1 / 2 & 0 & 1 / 4 & -5 / 4
\end{array}
$$

$R_{1} \rightarrow R_{1}-\frac{1}{4} R_{2}$
$R_{3} \rightarrow R_{3}-\frac{3}{4} R_{2}$

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{1} & 1 & 0 & 1 / 3 & 1 / 3 & -1 / 3 & 2 / 3 \\
a_{2} & 0 & 1 & 2 / 3 & -4 / 3 & 1 / 3 & 7 / 3 \\
c^{T} & 0 & 0 & 0 & 1 & 0 & -3
\end{array}
$$

Since basis $B=\left[\begin{array}{ll}a_{1} & a_{2}\end{array}\right]$, therefore $x_{B}=\left[\begin{array}{l}2 / 3 \\ 7 / 3\end{array}\right]$. This is basic and feasible also. All $b_{i 0} \geq 0$. Thus, the current basic feasible solution is optimal. Therefore, $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]=\left[\begin{array}{c}2 / 3 \\ 7 / 3 \\ 0 \\ 0 \\ 0\end{array}\right]$ and value of the objective function is 3 .

Example 7.4. Consider the linear programming problem

$$
\begin{aligned}
\operatorname{minimize} & x_{1}+2 x_{2} \\
\text { subject to } & x_{1}-4 x_{2} \geq 2 \\
& 2 x_{1}-2 x_{2} \geq 7 \\
& x_{1}+3 x_{2} \geq-2 \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
$$

Solve the above problem using the dual simplex method.
We write the problem in standard form:

$$
\begin{array}{cc}
\text { minimize } & x_{1}+2 x_{2} \\
\text { subject to } & -x_{1}+4 x_{2} \leq-2, \\
-2 x_{1}+2 x_{2} \leq-7 \\
-x_{1}-3 x_{2} \leq 2 \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

That is,

$$
\begin{array}{rlrl}
\operatorname{minimize} & x_{1}+2 x_{2} & \\
\text { subject to } & -x_{1}+4 x_{2}+x_{3} & =-2, \\
& -2 x_{1}+2 x_{2}+x_{4} & =-7, \\
& -x_{1}-3 x_{2} & +x_{5} & =2, \\
x_{1}, \quad x_{2}, & x_{3}, \quad x_{4}, \quad x_{5} & \geq 0 .
\end{array}
$$

The augmented matrix of the above problem is

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{3} & -1 & 4 & 1 & 0 & 0 & -2 \\
a_{4} & -2 & 2 & 0 & 1 & 0 & -7 \\
a_{5} & -1 & -3 & 0 & 0 & 1 & 2 \\
c^{T} & 1 & 2 & 0 & 0 & 0 & 0
\end{array}
$$

Basis is $B=\left[\begin{array}{lll}a_{3} & a_{4} & a_{5}\end{array}\right]$, therefore basic vector is $x_{B}=\left[\begin{array}{r}-2 \\ -7 \\ 2\end{array}\right]$. It has a basic solution, but it is not feasible. We now apply the dual simplex method. We find $\mathrm{p}=\min \left\{x_{B}\right\}=\min \left[\begin{array}{r}-2 \\ -7 \\ 2 x\end{array}\right]=2^{\text {nd }}$ row as
 a pivot column. We update the tableau.

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	b
a_{3}	-1	4	1	0	0	-2
a_{1}	-2	2	0	1	0	-7
a_{5}	-1	-3	0	0	1	2
c^{T}	1	2	0	0	0	0

$R_{2} \rightarrow-\frac{1}{2} R_{2}$

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	b
a_{3}	-1	4	1	0	0	-2
a_{1}	1	-1	0	$-1 / 2$	0	$7 / 2$
a_{5}	-1	-3	0	0	1	2
c^{T}	1	2	0	0	0	0

$R_{1} \rightarrow R_{1}+R_{2}$
$R_{3} \rightarrow R_{3}+R_{2}$
$R_{4} \rightarrow R_{4}-R_{2}$

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{3} & 0 & 3 & 1 & -1 / 2 & 0 & 3 / 2 \\
a_{1} & 1 & -1 & 0 & -1 / 2 & 0 & 7 / 2 \\
a_{5} & 0 & -4 & 0 & -1 / 2 & 1 & 11 / 2 \\
c^{T} & 0 & 3 & 0 & 1 / 2 & 0 & -7 / 2
\end{array}
$$

All $b_{i 0} \geq 0$, which ultimately leads to an optimal solution for the problem. Thus $x_{1}=\frac{7}{2}, x_{2}=0, x_{3}=\frac{3}{2}$ and the value of the objective function is $\frac{7}{2}$.

We can solve the above problems in MATLAB. MATLAB function dual. m is written in the following Code 7.1 to choose the pivot row and pivot column leading to the pivot element.

Code 7.1: dual.m

function $[A, p, q, e, B]=$ dual (A, B)
\%input: augmented matrix A , basis matrix B
\%output: augmented matrix A, pivotrow p, \% pivotcolumn q, pivotelement e,
\% basis matrix B
$[\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{A})$;
$\min =0$;
$\mathrm{p}=0$;
for $\quad \mathrm{I}=1: \mathrm{m}-1$
if $\mathrm{A}(\mathrm{I}, \mathrm{n})<\min$ min=A(I, n); $\mathrm{p}=\mathrm{I}$;
end
end
if $p==0$
disp ('optimal solution reached');
$\mathrm{e}=0$;
$\mathrm{q}=0$;
return;
end
$\min =\operatorname{Inf}$;
$\mathrm{q}=0$;
count $=0$;
for $\mathrm{k}=1: \mathrm{n}-1$
if $\mathrm{A}(\mathrm{m}, \mathrm{k}) \quad \sim=0$
if $\mathrm{A}(\mathrm{p}, \mathrm{k})<0$ $\operatorname{col}=\operatorname{abs}(\mathrm{A}(\mathrm{m}, \mathrm{k}) / \mathrm{A}(\mathrm{p}, \mathrm{k}))$;
if col $<$ min
$\min =\operatorname{col}$;
$\mathrm{q}=\mathrm{k} ;$
end
end
end
end
for $\mathrm{k}=1: \mathrm{n}-1$
if $\mathrm{A}(\mathrm{p}, \mathrm{k})>=0$ count=count +1 ;

```
        end
end
if count==n-1
    disp('unbounded');
    e=0;
    q=0;
    return
end
e=A(p,q);
B(p)=q;
return
```

Example 7.5. Solve the following linear programming problem by the dual simplex method:

$$
\begin{array}{cc}
\operatorname{minimize} & 3 x_{1}+x_{2} \\
\text { subject to } & x_{1}+x_{2} \geq 1 \\
& 2 x_{1}+3 x_{2} \geq 2 \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

We need to express the problem in standard form:

$$
\begin{array}{cc}
\text { minimize } & 3 x_{1}+x_{2} \\
\text { subject to } & -x_{1}-x_{2} \leq-1, \\
& -2 x_{1}-3 x_{2} \leq-2, \\
& x_{1}, \quad x_{2} \geq 0 .
\end{array}
$$

That is,

$$
\begin{array}{lll}
\operatorname{minimize} & 3 x_{1}+x_{2} \\
\text { subject to }- & x_{1}-x_{2}+x_{3}=-1, \\
& -2 x_{1}-3 x_{2} \quad+x_{4}=-2, \\
x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq 0 .
\end{array}
$$

The augmented matrix of above linear equality constraints:

$$
\begin{array}{rrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{3} & -1 & -1 & 1 & 0 & -1 \\
a_{4} & -2 & -3 & 0 & 1 & -2
\end{array}
$$

Since basis $B=\left[\begin{array}{ll}a_{3} & a_{4}\end{array}\right]$. Therefore, $x_{B}=\left[\begin{array}{l}x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}-1 \\ -2\end{array}\right]$. This is
a basic solution, but it is not feasible. Therefore, for solving such problem, we use the dual simplex method. The augmented matrix form of the above standard problem is

$$
\begin{array}{rrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{3} & -1 & -1 & 1 & 0 & -1 \\
a_{4} & -2 & -3 & 0 & 1 & -2 \\
c^{T} & 3 & 1 & 0 & 0 & 0
\end{array}
$$

We use MATLAB function dual.m to find the pivot row and column resulting pivot element.
$\gg B=\left[\begin{array}{ll}3 & 4\end{array}\right]$
$\gg[A, p, q, e, B]=\operatorname{dual}(A, B)$

a_{3}	a_{1}	a_{2}	a_{3}	a_{4}	b
	-1	-1	1	0	-1
a_{4}	-2	-3	0	1	-2
	3	1	0	0	0

$$
p=2 \quad q=2 \quad e=-3 \quad B=\left[\begin{array}{ll}
3 & 2
\end{array}\right]
$$

We find pivot row $\mathrm{p}=\min \left\{x_{B}\right\}=\min \left[\begin{array}{l}-1 \\ -2\end{array}\right]=2^{\text {nd }}$ row and pivot column $\mathrm{q}=\arg \min \left\{\left|\frac{3}{-2}\right|,\left|\frac{1}{-3}\right|, \left.\frac{0}{0} \right\rvert\, \frac{0}{1}\right\}=2^{\text {nd }}$ column.

$$
\begin{array}{rrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{3} & -1 & -1 & 1 & 0 & -1 \\
a_{2} & -2 & -3 & 0 & 1 & -2 \\
c^{T} & 3 & 1 & 0 & 0 & 0
\end{array}
$$

We call MATLAB functions to perform elementary row operations.

\[

\]

```
>> A = identityop(A,p,-1/3)
```

$$
\begin{array}{crrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{3} & -1 & -1 & 1 & 0 & -1 \\
a_{2} & 2 / 3 & 1 & 0 & -1 / 3 & 2 / 3 \\
c^{T} & 3 & 1 & 0 & 0 & 0 \\
& R_{1} \rightarrow R_{1}+R_{2}
\end{array}
$$

```
>> A = eliminationop(A,1,p,1)
```

$$
\begin{array}{lrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{3} & -1 / 3 & 0 & 1 & -1 / 3 & -1 / 3 \\
a_{2} & 2 / 3 & 1 & 0 & -1 / 3 & 2 / 3 \\
c^{T} & 3 & 1 & 0 & 0 & 0 \\
& R_{3} \rightarrow & R_{3}-R_{2} &
\end{array}
$$

>> $\mathrm{A}=$ eliminationop $(\mathrm{A}, 3, \mathrm{p},-1)$

\[

\]

$\gg A=\operatorname{exchangeop}(A, 1,2)$

$$
\begin{array}{rrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{2} & 2 / 3 & 1 & 0 & -1 / 3 & 2 / 3 \\
a_{3} & -1 / 3 & 0 & 1 & -1 / 3 & -1 / 3 \\
c^{T} & 7 / 3 & 0 & 0 & 1 / 3 & -2 / 3
\end{array}
$$

$$
\gg[A, p, q, e, B]=\operatorname{dual}(A, B)
$$

| | a_{1} | a_{2} | a_{3} | a_{4} | b |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| a_{2} | $2 / 3$ | 1 | 0 | $-1 / 3$ | $2 / 3$ |
| a_{3} | $-1 / 3$ | 0 | 1 | $-1 / 3$ | $-1 / 3$ |
| c^{T} | $7 / 3$ | 0 | 0 | $1 / 3$ | $-2 / 3$ |

Since basis $B=\left[\begin{array}{ll}a_{2} & a_{3}\end{array}\right]$, therefore $x_{B}=\left[\begin{array}{l}x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{r}2 / 3 \\ -1 / 3\end{array}\right]$. We find pivot row $\mathrm{p}=\min \left\{x_{B}\right\}=\min \left[\begin{array}{c}2 / 3 \\ -1 / 3\end{array}\right]=2^{\text {nd }}$ row, and pivot column

$p=2 \quad q=4 \quad e=-1 / 3 \quad B=\left[\begin{array}{ll}2 & 4\end{array}\right]$.

$$
-3 R_{2} .
$$

>> A = identityop(A, p,-3)

$$
\begin{aligned}
& \begin{array}{lllll}
a_{1} & a_{2} & a_{3} & a_{4} & b
\end{array} \\
& \begin{array}{llllll}
a_{2} & 2 / 3 & 1 & 0 & -1 / 3 & 2 / 3
\end{array} \\
& \begin{array}{llllll}
a_{4} & 1 & 0 & -3 & 1 & 1
\end{array} \\
& \begin{array}{llllll}
c^{T} & 7 / 3 & 0 & 0 & 1 / 3 & -2 / 3
\end{array} \\
& R_{1} \rightarrow R_{1}+\frac{1}{3} R_{2}
\end{aligned}
$$

>> $A=\operatorname{eliminationop(A,1,p,1/3)~}$

$$
\begin{gathered}
\begin{array}{rrrrrr}
a_{1} & a_{2} & a_{3} & a_{4} & b \\
a_{2} & 1 & 1 & -1 & 0 & 1
\end{array} \\
a_{4} \\
c^{T} \\
c^{2} \\
7 / 3
\end{gathered} 0_{1}
$$ mal value is 1.

Example 7.6. Use the dual simplex method to solve:

$$
\begin{array}{cc}
\operatorname{minimize} & 3 x_{1}+4 x_{2}+5 x_{3} \\
\text { subject to } & x_{1}+2 x_{2}+3 x_{3} \geq 5, \\
& 2 x_{1}+2 x_{2}+x_{3} \geq 6, \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0 .
\end{array}
$$

In standard form:

$$
\begin{array}{cc}
\text { minimize } & 3 x_{1}+4 x_{2}+5 x_{3} \\
\text { subject to } & -x_{1}-2 x_{2}-3 x_{3} \leq-5, \\
& -2 x_{1}-2 x_{2}-x_{3} \leq-6 ; \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0 .
\end{array}
$$

That is,

$$
\begin{aligned}
& \operatorname{minimize} 3 x_{1}+4 x_{2}+5 x_{3} \\
& \text { subject to }-\quad x_{1}-2 x_{2}-3 x_{3}+x_{4}=-5 \\
&-2 x_{1}-2 x_{2}-x_{3} \quad+x_{5}=-6 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5} \geq 0
\end{aligned}
$$

The augmented matrix is

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{4} & -1 & -2 & -3 & 1 & 0 & -5 \\
a_{5} & -2 & -2 & -1 & 0 & 1 & -6 \\
c^{T} & 3 & 4 & 5 & 0 & 0 & 0
\end{array}
$$

Since the basis matrix is $B=\left[\begin{array}{ll}a_{4} & a_{5}\end{array}\right]$ and $x_{B}=\left[\begin{array}{l}a_{4} \\ a_{5}\end{array}\right]$, therefore $B x_{B}=b$ implies $x_{B}=\left[\begin{array}{l}-5 \\ -6\end{array}\right]$. It has a basis solution, but it is not feasible.

$$
\begin{aligned}
& \gg B=\left[\begin{array}{ll}
4 & 5
\end{array}\right] \\
& \gg[A, p, q, e, B]=\operatorname{dual}(A, B)
\end{aligned}
$$

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	b
a_{4}	-1	-2	-3	1	0	-5
a_{5}	-2	-2	-1	0	1	-6
c^{T}	3	4	5	0	0	0

We find pivot row $\mathrm{p}=\min \left\{x_{B}\right\}=\min \left[\begin{array}{l}-5 \\ -6\end{array}\right]=2^{\text {nd }}$ row and pivot column $\mathrm{q}=\arg \min \left\{\left|\frac{3}{-2}\right|,\left|\frac{4}{-2}\right|,\left|\frac{5}{-1}\right|, \frac{0}{0}, \left.\frac{0}{1} \right\rvert\,\right\}=1^{\text {st }}$ column.
$\mathrm{p}=2 \quad \mathrm{q}=1 \quad \mathrm{e}=-2 \quad \mathrm{~B}=\left[\begin{array}{ll}4 & 1\end{array}\right]$.

\[

\]

>> $A=$ identityop $(A, p,-1 / 2)$

\[

\]

>> $A=\operatorname{eliminationop}(A, 1, p, 1)$

\[

\]

$$
\gg A=\text { eliminationop }(A, 3, p,-3)
$$

$$
\begin{array}{lrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{4} & 0 & -1 & -5 / 2 & 1 & -1 / 2 & -2 \\
a_{1} & 1 & 1 & 1 / 2 & 0 & -1 / 2 & 3 \\
c^{T} & 0 & 1 & 7 / 2 & 0 & 3 / 2 & -9 \\
& & R_{1} \leftrightarrow R_{2}
\end{array}
$$

$$
>A=\operatorname{exchangeop}(A, 1,2)
$$

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{1} & 1 & 1 & 1 / 2 & 0 & -1 / 2 & 3 \\
a_{4} & 0 & -1 & -5 / 2 & 1 & -1 / 2 & -2 \\
c^{T} & 0 & 1 & 7 / 2 & 0 & 3 / 2 & -9
\end{array}
$$

We have basis $B=\left[\begin{array}{ll}a_{1} & a_{4}\end{array}\right]$. Thus, $x_{B}=\left[\begin{array}{r}3 \\ -2\end{array}\right]$. This is not feasible.
>> $[A, p, q, e, B]=\operatorname{dual}(A, B)$

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	b
a_{1}	1	1	$1 / 2$	0	$-1 / 2$	3
a_{4}	0	-1	$-5 / 2$	1	$-1 / 2$	-2
c^{T}	0	1	$7 / 2$	0	$3 / 2$	-9

We find pivot row $\mathrm{p}=\min \left\{x_{B}\right\}=\min \left[\begin{array}{c}x \\ -2\end{array}\right]=2^{\text {nd }}$ row and pivot column $q=\arg \min \left\{\frac{0}{0}\left|,\left|\frac{1}{-1}\right|,\left|\frac{7 / 2}{-5 / 2}\right|, \frac{0}{1}\right|,\left|\frac{3 / 2}{-1 / 2}\right|\right\}=$ $2^{\text {nd }}$ column.

$$
\begin{aligned}
& \mathrm{p}=2 \\
& \mathrm{q}=2 \\
& \mathrm{e}=-1 \\
& B=\left[\begin{array}{ll}
1 & 2
\end{array}\right] . \\
& \begin{array}{llllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b
\end{array} \\
& \begin{array}{lllllll}
a_{1} & 1 & 1 & 1 / 2 & 0 & -1 / 2 & 3
\end{array} \\
& \begin{array}{llllllll}
a_{2} & 0 & -1 & -5 / 2 & 1 & -1 / 2 & -2
\end{array} \\
& \begin{array}{lllllll}
c^{T} & 0 & 1 & 7 / 2 & 0 & 3 / 2 & -9
\end{array} \\
& R_{2} \rightarrow-R_{2}
\end{aligned}
$$

>> A = identityop(A,p,-1)

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{1} & 1 & 1 & 1 / 2 & 0 & -1 / 2 & 3 \\
a_{2} & 0 & r_{1} & 5 / 2 & -1 & 1 / 2 & 2 \\
c^{T} & 0 & 1 & 7 / 2 & 0 & 3 / 2 & -9 \\
& R_{3} \rightarrow & R_{3}-R_{2}
\end{array}
$$

Since $b_{i 0} \geq 0$, therefore the present solution is an optimal solution.
Thus, $x_{1}=1, x_{2}=2$, and the objective value is 11 .
Example 7.7. Consider the linear programming problem

$$
\begin{array}{r}
\operatorname{maximize}-4 x_{1}-6 x_{2}-5 x_{3} \\
\text { subject to } \quad 2 x_{1} \quad+3 x_{3} \geq 3 \\
\\
x_{1}, \quad x_{2}, \quad x_{3}, \geq 0
\end{array}
$$

Solve the problem by the dual simplex method.
We express the problem in standard form as

$$
\begin{aligned}
& \text { minimize } 4 x_{1}+6 x_{2}+5 x_{3} \\
& \text { subject to }-2 x_{1} \quad-3 x_{3} \leq-3 \text {, } \\
& -3 x_{2}-2 x_{3} \leq-6, \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0 .
\end{aligned}
$$

That is,

$$
\begin{aligned}
\operatorname{minimize} & 4 x_{1}+6 x_{2}+5 x_{3} \\
\text { subject to }-2 x_{1}-3 x_{3}+x_{4} & =-3, \\
-3 x_{2}-2 x_{3}+x_{5} & =-6, \\
x_{1}, \quad x_{2}, \quad x_{3}, x_{4}, \quad x_{5} & \geq 0
\end{aligned}
$$

The augmented matrix is

$$
\begin{array}{lrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{4} & -2 & 0 & -3 & 1 & 0 & -3 \\
a_{5} & 0 & -3 & -2 & 0 & 1 & -6 \\
c^{T} & 4 & 6 & 5 & 0 & 0 & 0
\end{array}
$$

Since basis matrix $B=\left[\begin{array}{ll}a_{4} & a_{5}\end{array}\right]$ and $x_{B}=\left[\begin{array}{l}x_{4} \\ x_{5}\end{array}\right]$, therefore, the $B x_{B}=b$ implies $x_{B}=\left[\begin{array}{l}-3 \\ -6\end{array}\right]$. It has a basis solution, but it is not feasible.
>> $\mathrm{B}=\left[\begin{array}{ll}4 & 5\end{array}\right]$
>> $[A, p, q, e, B]=\operatorname{dual}(A, B)$

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}		b
a_{4}	-2	0	-3	1			3
a_{5}	0	-3	-2	0			
c^{T}	4	6	5	0	0		0

We find pivot row $\mathrm{p}=\min \left\{x_{B}\right\}=\min \left[\begin{array}{l}-3 \\ -6\end{array}\right]=2^{\text {nd }}$ row and the pivot column $q=\arg \min \left\{\frac{4}{0}\left(\left|\frac{6}{-3}\right|,\left|\frac{5}{-2}\right|, \frac{1}{0} \left\lvert\,, \frac{1}{1}\right.\right\}=2^{\text {nd }}\right.$ column.
$\mathrm{p}=2 \quad \mathrm{q}=2 \quad \mathrm{e}=-3 \quad \mathrm{~B}=\left[\begin{array}{ll}4 & 2\end{array}\right]$.

\[

\]

>> $A=$ identityop $(A, p,-1 / 3)$

\[

\]

>> $A=$ eliminationop $(A, 3, p,-6)$

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{4} & -2 & 0 & -3 & 1 & 0 & -3 \\
a_{2} & 0 & 1 & 2 / 3 & 0 & -1 / 3 & 2 \\
c^{T} & 4 & 0 & 1 & 0 & 2 & -12
\end{array}
$$

We have available basis $B=\left[\begin{array}{ll}a_{4} & a_{2}\end{array}\right]$. Thus, $x_{B}=\left[\begin{array}{r}-3 \\ 2\end{array}\right]$. It is basic, but it does not give a feasible solution.
>> $[A, p, q, e, B]=\operatorname{dual}(A, B)$

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	b
a_{4}	-2	0	-3	1	0	-3
a_{2}	0	1	$2 / 3$		$-1 / 3$	2
c^{T}	4	0	1	0	2	-12

We find pivot row $\mathrm{p}=\min \left\{x_{B}\right\}=\min \left[\begin{array}{r}-3 \\ 2\end{array}\right]=1^{\text {st }}$ row and pivot column $\mathrm{q}=\arg \min \left\{\left|\frac{4}{-2}\right|, \frac{0}{0}\left|,\left|\frac{1}{-3}\right|, \frac{0}{1}, \frac{2}{0}\right\}=3^{\text {rd }}\right.$ column.

\[

\]

>> $A=$ identityop $(A, p,-1 / 3)$

\[

\]

$$
\gg A=\text { eliminationop }(A, 2, p,-2 / 3)
$$

\[

\]

$$
>\mathrm{A}=\text { eliminationop }(\mathrm{A}, 3, \mathrm{p},-1)
$$

$$
\begin{array}{rrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & b \\
a_{3} & 2 / 3 & 0 & 1 & -1 / 3 & 0 & 1 \\
a_{2} & -4 / 9 & 1 & 0 & 2 / 9 & -1 / 3 & 4 / 3 \\
c^{T} & 10 / 3 & 0 & 0 & 1 / 3 & 2 & -13
\end{array}
$$

Since all $b_{i 0} \geq 0$, therefore, the present solution is optimal. We have basis $B=\left[\begin{array}{ll}a_{3} & a_{2}\end{array}\right], x_{B}=\left[\begin{array}{l}x_{3} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}1 \\ 4 / 3\end{array}\right]$ and $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}0 \\ 4 / 3 \\ 1\end{array}\right]$ is the optimal solution. The minimum objective value is 13 .

Example 7.8. Consider the following linear programming problem:

$$
\begin{array}{cc}
\operatorname{minimize} & 160 x_{1}+400 x_{2}+300 x_{3} \\
\text { subject to } & 3 x_{1}+6 x_{2}+6 x_{3} \geq 36, \\
& 4 x_{1}+6 x_{2}+3 x_{3} \geq 20 \\
& 2 x_{1}+8 x_{2}+4 x_{3} \geq 30 \\
& x_{1}, \\
x_{2}, & x_{3} \geq 0
\end{array}
$$

Solve using the dual simplex method.
Standard form of the linear programming problem:

\[

\]

That is,

$$
\begin{array}{rlrll}
\operatorname{minimize} & 160 x_{1}+400 x_{2}+300 x_{3} & \\
\text { subject to } & -3 x_{1}-6 x_{2}-6 x_{3}+x_{4} & =-36, \\
& -4 x_{1}-6 x_{2}-3 x_{3}+x_{5} & =-20, \\
& -2 x_{1}-6 x_{2}-4 x_{3} & +x_{6} & =-30, \\
& x_{1}, & x_{2}, & x_{3} & x_{4}, x_{5}, \\
x_{6} & \geq 0 .
\end{array}
$$

The augmented matrix is

$$
\begin{array}{rrrrrrrr}
& a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6} & b \\
a_{4} & -3 & -6 & -6 & 1 & 0 & 0 & -36 \\
a_{5} & -4 & -6 & -3 & 0 & 1 & 0 & -20 \\
a_{6} & -2 & -8 & -4 & 0 & 0 & 1 & -30 \\
c^{T} & 160 & 400 & 300 & 0 & 0 & 0 & 0
\end{array}
$$

Note that the basis matrix $B=\left[\begin{array}{lll}a_{4} & a_{5} & a_{6}\end{array}\right], x_{B}=\left[\begin{array}{l}x_{4} \\ x_{5} \\ x_{6}\end{array}\right]$, and $B x_{B}=b$ implies $x_{B}=\left[\begin{array}{l}-36 \\ -20 \\ -30\end{array}\right]$.
$\gg \mathrm{B}=\left[\begin{array}{lll}4 & 5 & 6\end{array}\right]$
$\gg \mathrm{A}, \mathrm{p}, \mathrm{q}, \mathrm{e}, \mathrm{B}]=\operatorname{dual}(\mathrm{A}, \mathrm{B})$

	a_{1}		a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	b
a_{3}	-3	-6	-6	1	0	0	-36	
a_{5}	-4	-6	-3	0	1	0	-20	
a_{6}	-2	-8	-4	0	0	1	-30	
c^{T}	160	400	300	0	0	0	0	

$$
p=1 \quad q=3 \quad e=-6
$$

$$
B=\left[\begin{array}{lll}
3 & 5 & 6
\end{array}\right] .
$$

>> A $=\operatorname{simplex}(A, p, q)$

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	b
a_{3}	$1 / 2$	1	1	$-1 / 6$	0	0	6
a_{5}	$-5 / 2$	-3	0	$-1 / 2$	1	0	-2
a_{6}	0	-4	0	$-2 / 3$	0	1	-6
c^{T}	10	100	0	50	0	0	-18000

>> $[A, p, q, e, B]=\operatorname{dual}(A, B)$

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	b
a_{3}	$1 / 2$	1	1	$-1 / 6$	0	0	6
a_{5}	$-5 / 2$	-3	0	$-1 / 2$	1	0	-2
a_{6}	0	-4	0	$-2 / 3$	0	1	-6
c_{6}^{T}	10	100	0	50	0	0	-18000

$\mathrm{p}=3 \quad \mathrm{q}=2 \quad \mathrm{e}=-4 \quad \mathrm{~B}=\left[\begin{array}{lll}3 & 5 & 2\end{array}\right]$.

	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	b
a_{3}	$1 / 2$	0	1	$-1 / 3$	0	$1 / 4$	$9 / 2$
a_{5}	$-5 / 2$	0	0	0	1	$-3 / 4$	$5 / 2$
a_{2}	0	1	0	$1 / 6$	0	$-1 / 4$	$3 / 2$
c^{T}	10	0	0	$100 / 3$	0	25	-1950

All $b_{i 0} \geq 0$, which yields an optimal solution as $x_{B}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=$ $\left[\begin{array}{c}0 \\ 3 / 2 \\ 9 / 2\end{array}\right]$ and value of the objective function is 1950.
Example 7.9. If P and D are a primal-dual pair of linear programming, then which of the following statements is FALSE?
(a) If P has an optimal solution, then D also has an optimal solution.
(b) The dual of the dual problem is a primal problem.
(c) If P has an unbounded solution, then D has no feasible solution.
(d) If P has no feasible solution, then D has a feasible solution.

Option (d) is false. If P has no feasible solution, then D has a feasible solution.

Example 7.10. For a linear programming primal maximization problem P with dual Q , which of the following statements is TRUE?
(a) The optimal values of P and Q exist and are the same.
(b) Both optimal values exist, and the optimal value of P is less than the optimal value of Q .
(c) P will have an optimal solution, if and only if Q also has an optimal solution.
(d) Both P and Q cannot be infeasible.

For a linear programming primal maximization problem P with dual Q, P will have an optimal solution, if and only if Q also has an optimal solution. Therefore, option (c) is true.

Example 7.11. Suppose that the linear programming problem

$$
\begin{aligned}
\operatorname{maximize} & c^{T} x \\
\text { subject to } & A x \leq b \\
& x \geq 0
\end{aligned}
$$

admits a feasible solution and the dual

$$
\begin{array}{ll}
\operatorname{maximize} & b^{T} y \\
\text { subject to } & A^{T} y \geq c \\
& y \geq 0
\end{array}
$$

admits a feasible solution y_{0}. Then,
(a) the dual admits an optimal solution.
(b) any feasible solution of the primal and of the dual satisfies.
(c) the dual problem is unbounded.
(d) the primal problem admits an optimal solution.

Options (a,d) are true. That is, the primal and dual both admit an optimal solution.

7.4 Exercises

Exercise 7.1. Determine the dual of each of the following linear programming problems.
(a)

$$
\begin{array}{lr}
\text { maximize } & 10 x_{1}+30 x_{2} \\
\text { subject to } & 5 x_{1}-4 x_{2} \leq 100 \\
& x_{1}+12 x_{2} \leq 90 \\
& x_{2} \leq 400 \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

(b)

$$
\begin{aligned}
\operatorname{minimize} & 3 x_{1}-4 x_{2} \\
\text { subject to } & 6 x_{1}+11 x_{2} \geq-30, \\
& 2 x_{1}-7 x_{2} \leq 50, \\
& x_{2} \leq 80 \\
& x_{1}, \quad x_{2} \geq 0
\end{aligned}
$$

(c)

$$
\begin{array}{cc}
\operatorname{maximize} & -x_{1}+2 x_{2} \\
\text { subject to } & 5 x_{1}+x_{2} \leq 60, \\
& 3 x_{1}-8 x_{2} \geq 10, \\
& x_{1}+7 x_{2}=20, \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

Exercise 7.2. Consider the linear programming problem.

$$
\begin{array}{lr}
\operatorname{minimize} & -4 x_{1}-3 x_{2}-2 x_{3} \\
\text { subject to } & 2 x_{1}+3 x_{2}+2 x_{3} \leq 6, \\
& -x_{1}+x_{2}+x_{3} \leq 5, \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0 .
\end{array}
$$

(a) Write down the dual of this linear programming problem.
(b) Solve the primal problem by the simplex method.

Exercise 7.3. Solve the linear programming problem using the dual simplex method.

$$
\begin{array}{rlrl}
\operatorname{minimize} & 2 x_{1}+x_{2} & \\
\text { subject to }-3 x_{1}-x_{2}+x_{3} & =-3 \\
& -4 x_{1}-3 x_{2} & +x_{4} & =-6 \\
-x_{1}-2 x_{2} & & x_{5} & =-2 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5} & \geq 0
\end{array}
$$

Exercise 7.4. Solve the linear programming problem using the dual simplex method.

$$
\begin{array}{cc}
\operatorname{minimize} & x_{1}+45 x_{2}+3 x_{3} \\
\text { subject to } & x_{1}+5 x_{2}-x_{3} \geq 4 \\
& x_{1}+x_{2}+2 x_{3} \geq 2 \\
- & x_{1}+3 x_{2}+3 x_{3} \geq 5 \\
-3 x_{1}+8 x_{2}-5 x_{3} \geq 3 \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0
\end{array}
$$

Exercise 7.5. Solve the linear programming problem using the dual simplex method.

$$
\begin{array}{crl}
\operatorname{minimize} & 10 x_{1}+2 x_{2}+4 x_{3}+8 x_{4}+x_{5} & \\
\text { subject to } & x_{1}+4 x_{2}-x_{3} & \geq 16 \\
& 2 x_{1}+x_{2}+x_{3} & \geq 4 \\
& 3 x_{1} & +x_{4}-x_{5}
\end{array}
$$

Exercise 7.6. Solve the linear programming problem.

$$
\begin{aligned}
\operatorname{minimize} & 2 x_{1}+3 x_{2} \\
\text { subject to } & 4 x_{1}-3 x_{2} \geq 5, \\
& x_{1}+2 x_{2} \geq 4, \\
& x_{1}, \quad x_{2} \geq 0 .
\end{aligned}
$$

Exercise 7.7. Consider the following linear programming problem.

$$
\begin{array}{cc}
\operatorname{minimize} & 3 x_{1}+4 x_{2}+5 x_{3} \\
\text { subject to } & x_{1}+3 x_{2}+x_{3} \geq 2, \\
& 2 x_{1}-x_{2}+3 x_{3} \geq 3, \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0
\end{array}
$$

Solve using
(a) the dual simplex method.
(b) the simplex method on the dual of the problem.

Exercise 7.8. Solve the linear programming problem using the dual simplex method.

$$
\begin{array}{cc}
\operatorname{minimize} & 17 x_{1}+7 x_{2}+17 x_{3} \\
\text { subject to } & x_{1}+x_{2} \\
& x_{1}+4 x_{2}+2 x_{3} \geq 14 \\
& 3 x_{2}+4 x_{3} \geq 9 \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0
\end{array}
$$

Exercise 7.9. Solve the linear programming problem using the dual simplex method.

$$
\begin{array}{cc}
\operatorname{minimize} & 30 x_{1}+50 x_{2}+26 x_{3} \\
\text { subject to } & 2 x_{1}+0.5 x_{2}+x_{3} \geq 25, \\
& x_{1}+3 x_{2}+2 x_{3} \geq 40, \\
& 2 x_{1}+x_{2}+x_{3} \geq 30, \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0 .
\end{array}
$$

Exercise 7.10. Solve the linear programming problem using the dual simplex method.

$$
\begin{array}{cc}
\operatorname{minimize} & 10 x_{1}+4 x_{2} \\
\text { subject to } & 3 x_{1}+2 x_{2} \geq 60, \\
& 7 x_{1}+2 x_{2} \geq 84, \\
& 3 x_{1}+6 x_{2} \geq 72, \\
& x_{1}, \quad x_{2} \geq 0 .
\end{array}
$$

Exercise 7.11. Solve the following problem by the dual simplex method.

$$
\begin{array}{rc}
\operatorname{minimize} & x_{1}+3 x_{2}+4 x_{3}+x_{4}+2 x_{5} \\
\text { subject to } & 2 x_{1}+5 x_{2}+3 x_{3}-2 x_{4}+6 x_{5} \geq 10, \\
& -x_{1}-2 x_{2}-4 x_{3}+x_{4}+2 x_{5} \geq 12, \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5} \geq 0 .
\end{array}
$$

Exercise 7.12. Solve the linear programming problem using the dual simplex method.

$$
\begin{array}{cl}
\operatorname{minimize} & 8 x_{1}+8 x_{2}+16 x_{3}+7 x_{4} \\
\text { subject to } & x_{1}+3 x_{2}+3 x_{3}+2 x_{4} \geq 32 \\
& 2 x_{1}+2 x_{2}+8 x_{3}+3 x_{4} \geq 28 \\
& 7 x_{1}+4 x_{2}+6 x_{3}+5 x_{4} \geq 35 \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq 0
\end{array}
$$

Exercise 7.13. Solve the following problems using the dual simplex method.

$$
\begin{array}{rc}
\operatorname{minimize} & x_{1}+x_{2} \\
\text { subject to } & 2 x_{1}+x_{2} \geq 1 \\
& x_{1}+2 x_{2} \geq 1 \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

and hence

$$
\begin{aligned}
\operatorname{minimize} & x_{1}+x_{2}+x_{3}+\frac{1}{3} x_{4} \\
\text { subject to } & 2 x_{1}+x_{2}+2 x_{3} \\
& x_{1}+2 x_{2} \\
& 2 x_{1}+2 x_{2} \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq 1 \\
& x_{4} \geq 0
\end{aligned}
$$

Taylor \& Francis
 Taylor \& Francis Group
 http://taylorandfrancis.com

Chapter 8

The Transportation Problem

8.1 Introduction

Transportation means the transfer of materials from different sources to different destinations. Suppose that a firm has production units at $O_{1}, O_{2}, \ldots, O_{m}$ places. The demand for produced goods is at n different centers $D_{1}, D_{2} \ldots, D_{n}$. The problem of the firm is to transport goods from m different production units to n different demand centers with minimum cost. Consider the cost of shipping from production unit O_{i} to the demand center D_{j} is $c_{i j}$, and $x_{i j}$ unit is shipped from O_{i} to D_{j}, then the cost is $c_{i j} x_{i j}$. Therefore, the total shipping cost is

$$
\begin{equation*}
z=\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} . \tag{8.1}
\end{equation*}
$$

Note that z is a linear. From (8.1), the matrix $\left(c_{i j}\right)_{m \times n}$ is called the "unit cost matrix". The goods are transferred from the source i to the demand center j. We wish to find $x_{i j} \geq 0$ which satisfy the $m+n$ constraints.

Then, we have

$$
\begin{align*}
& \sum_{i=1}^{m} a_{i}=a, \tag{8.2}\\
& \sum_{j=1}^{n} b_{j}=b, \tag{8.3}
\end{align*}
$$

where a and b are total supply and demand. The problem of transportation is to find $x_{i j}$ so that the cost of transportation z is
minimum. If the amount of goods available at the $i^{\text {th }}$ source is transferred to $j^{\text {th }}$ destination, then

$$
\begin{align*}
& \sum_{j=1}^{n} x_{i j}=a_{i} \tag{8.4}\\
& \sum_{i=1}^{m} x_{i j}=b_{j} \tag{8.5}
\end{align*}
$$

Using (8.1) and (8.4)-(8.5), the transportation problem can be formulated as a linear programming problem

$$
\begin{align*}
& \operatorname{minimize} \quad z= \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} \\
& \text { subject to } \quad \sum_{j=1}^{n} x_{i j}=a_{i}, \quad i=1,2, \ldots, m \tag{8.6}\\
& \sum_{i=1}^{m} x_{i j}=b_{j}, \quad j=1,2, \ldots, n \\
& x_{i j} \geq 0 \quad \forall i, j
\end{align*}
$$

Equivalently,

$$
\begin{aligned}
& \text { minimize } \quad c_{11} x_{11}+c_{12} x_{12}+\cdots+c_{m n} x_{m n} \\
& \text { subject to } \quad x_{11}+x_{12}+\cdots+\quad x_{1 n}=a_{1} \text {, } \\
& x_{21}+x_{22}+\cdots+\quad x_{2 n}=a_{2}, \\
& x_{31}+x_{32}+\cdots+\quad x_{3 n}=a_{3}, \\
& \vdots \\
& x_{m 1}+x_{m 2}+\cdots+\quad x_{m n}=a_{m}, \\
& x_{11}+x_{21}+\cdots+\quad x_{m 1}=b_{1}, \\
& x_{12}+x_{22}+\cdots+\quad x_{m 2}=b_{2}, \\
& x_{13}+x_{23}+\cdots+\quad x_{m 3}=b_{3} \text {, } \\
& \vdots \\
& x_{1 n}+\quad x_{2 n}+\cdots+\quad x_{m n}=b_{n}, \\
& x_{i j} \geq 0, i=1,2, \ldots, m, j=1,2, \ldots, n \text {. }
\end{aligned}
$$

That is,

$$
\begin{array}{cc}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b \\
& x \geq 0
\end{array}
$$

where

$$
\begin{aligned}
& c^{T}=\left[\begin{array}{llll}
c_{11} & c_{12} & \ldots & c_{m n}
\end{array}\right], \\
& x^{T}=\left[\begin{array}{lllllllll}
x_{11} & x_{12} & \ldots & x_{1 n} & x_{21} & \ldots & x_{2 n} & \ldots & x_{m n}
\end{array}\right] \text {, } \\
& b^{T}=\left[\begin{array}{llllllll}
a_{1} & a_{2} & \ldots & a_{m} & b_{1} & b_{2} & \ldots & b_{n}
\end{array}\right], \\
& A=\left[\begin{array}{llll}
a_{11} & a_{12} & \ldots & a_{m n}
\end{array}\right] \text {, } \\
& a_{11}^{T}=\left[\begin{array}{llllllll}
1 & 0 & \ldots & 0 & 1 & 0 & \ldots & 0
\end{array}\right] \text {, } \\
& a_{m n}^{T}=\left[\begin{array}{llllll}
0 & \ldots & 1 & 0 & \ldots & 1
\end{array}\right] \text {. }
\end{aligned}
$$

8.2 Balanced Transportation Problem

If the total quantity required at destinations is precisely the same as the amount available at the origins, then the problem is said to be a balanced transportation problem. Therefore, using (8.2) and (8.3) to get

$$
\begin{equation*}
\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j} \tag{8.7}
\end{equation*}
$$

The transportation problem is a special type of linear programming problem. Thus, the definition of basic feasible solution of the transportation problem is the same as the definition of the linear programming problem.

Frrom (8.6), it follows that $x_{i j}$ are known as decision variables. They are $m n$ in total. But, the number of basic variables is much less than $m n$ in a transportation problem.

Theorem 8.1. In a balanced transportation problem, there are at most $m+n-1$ basic variables.

Proof. Consider a balanced transportation problem

$$
\begin{align*}
\operatorname{minimize} \quad z= & \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} \\
\text { subject to } & \sum_{j=1}^{n} x_{i j}=a_{i}, \quad i=1,2, \ldots, m \tag{8.8}\\
& \sum_{i=1}^{m} x_{i j}=b_{j}, \quad j=1,2, \ldots, n \\
& x_{i j} \geq 0 \forall i, j
\end{align*}
$$

However,

$$
\begin{equation*}
\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j} \tag{8.9}
\end{equation*}
$$

Note that the transportation problem has $m+n$ linear constraints with $m n$ variables. In order to show that there are $m+n-1$ basic variables, we must show that out of $m+n$ linear constraints, only $m+n-1$ are linear independent. For that, it is sufficient to show that any one of $m+n$ linear constraints can be written as a linear combination of the other linear constraints.

Summing the m constraints of (8.4) to get

$$
\begin{equation*}
\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j}=\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j} . \tag{8.10}
\end{equation*}
$$

The transportation problem is balanced.
Summing the first $n-1$ of (8.5) to get

$$
\begin{equation*}
\sum_{j=1}^{n-1} \sum_{i=1}^{m} x_{i j}=\sum_{j=1}^{n-1} b_{j} . \tag{8.11}
\end{equation*}
$$

Subtracting (8.11) from (8.10) to obtain

$$
\begin{aligned}
\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j}-\sum_{j=1}^{n-1} \sum_{i=1}^{m} x_{i j} & =\sum_{i=1}^{m} a_{i}-\sum_{j=1}^{n-1} b_{j} \\
& =\sum_{j=1}^{n} b_{j}-\sum_{j=1}^{n-1} b_{j} \\
& =b_{n}
\end{aligned}
$$

That is,

$$
\begin{gathered}
\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j}-\sum_{j=1}^{n-1} \sum_{i=1}^{m} x_{i j}=b_{n} \\
\sum_{i=1}^{m}\left[\sum_{j=1}^{n} x_{i j}-\sum_{j=1}^{n-1} x_{i j}\right]=b_{n} \\
\sum_{i=1}^{m} x_{i n}=b_{n}
\end{gathered}
$$

It is the $2^{\text {nd }}$ linear equation of (8.8).
Note: If a feasible solution involves exactly $m+n-1$ independent positive allocations, then it is a nondegenerate basic feasible solution, otherwise it is said to be a degenerate basic feasible solution.

Theorem 8.2. There exists a feasible solution to the transportation problem if and only if

$$
\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}
$$

Proof. Recall the transportation problem (8.6)

$$
\begin{aligned}
\operatorname{minimize} \quad z= & \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} \\
\text { subject to } \quad & \sum_{j=1}^{n} x_{i j}=a_{i}, \quad i=1,2, \ldots, m \\
& \sum_{i=1}^{m} x_{i j}=b_{j}, \quad j=1,2, \ldots, n \\
& x_{i j} \geq 0 \forall i, j
\end{aligned}
$$

Suppose that a feasible solution to the above transportation problem exists, then we get

$$
\begin{aligned}
\sum_{i=1}^{m} a_{i} & =\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j} \\
& =\sum_{j=1}^{n}\left(\sum_{i=1}^{m} x_{i j}\right) \\
& =\sum_{j=1}^{n} b_{j}
\end{aligned}
$$

That is,

$$
\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j} .
$$

Conversely, assume that

$$
\sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}=\lambda
$$

We know that $a_{i} \geq 0$, where $i=1,2, \ldots, m$, that is, available goods at ' m ' source centers and $b_{j} \geq 0$, where $j=1,2, \ldots, n$, that is, demand at ' n ' destination centers.
Note that all a_{i} and b_{j} cannot be zero. Therefore, $\lambda>0$. Let

$$
\frac{a_{i} b_{j}}{\lambda}=y_{i j}
$$

Since $a_{i} \geq 0, b_{j} \geq 0$ and $\lambda>0$, we have $y_{i j} \geq 0$. Indeed,

$$
\begin{aligned}
\sum_{j=1}^{n} y_{i j} & =\sum_{j=1}^{n} \frac{a_{i} b_{j}}{\lambda} \\
& =\frac{a_{i}}{\lambda} \sum_{j=1}^{n} b_{j} \\
& =\frac{a_{i}}{\lambda} \lambda
\end{aligned}
$$

That is,

$$
\sum_{j=1}^{n} y_{i j}=a_{i} .
$$

Similarly, we can also have

$$
\begin{aligned}
\sum_{i=1}^{m} y_{i j} & =\sum_{i=1}^{m} \frac{a_{i} b_{j}}{\lambda} \\
& =\frac{b_{j}}{\lambda} \sum_{i=1}^{m} a_{i} \\
& =\frac{b_{j}}{\lambda} \lambda .
\end{aligned}
$$

That is,

$$
\sum_{i=1}^{m} y_{i j}=b_{j} .
$$

Thus, $y_{i j}$, where $i=1,2, \ldots, m ; j=1,2, \ldots, n$ is a feasible solution to the transportation problem.

Remarks: An unbalanced transportation problem can be made a balanced transportation problem. If

$$
\begin{equation*}
\sum_{i=1}^{m} a_{i}>\sum_{j=1}^{n} b_{j}, \tag{8.12}
\end{equation*}
$$

then we can create an additional demand center, called a fictitious or dummy demand center, having an additional demand of $\sum_{i=1}^{m} a_{i}-$ $\sum_{j=1}^{n} b_{j}$ and the transportation cost of this demand from source units is zero. This reduces an unbalanced transportation problem to a balanced transportation problem.

If

$$
\begin{equation*}
\sum_{i=1}^{m} a_{i}<\sum_{j=1}^{n} b_{j}, \tag{8.13}
\end{equation*}
$$

then we consider a fictitious source center with goods $\sum_{j=1}^{n} b_{j}-\sum_{i=1}^{m} a_{i}$ at the fictitious origin and the transportation of $\sum_{j=1}^{n} b_{j}-\sum_{i=1}^{m} a_{i}$ from fictitious origin will be taken as a short supply.

We now study the following three methods to find the initial basic feasible solution to a transportation problem:

1. Northwest Corner Method
2. Least Cost Method
3. Vogel's Approximation Method

8.3 Northwest Corner Method

The major advantage of this method is that it is very simple and easy to apply. The algorithm to find a starting basic feasible solution is given below:

Algorithm

1. Allocate $\min \left\{a_{i}, b_{j}\right\}$ to the northwest corner of the cost matrix, where a_{i} is available supply at the $i^{\text {th }}$ source and b_{j} is demand at the $j^{\text {th }}$ destination.
2. The row or column which is satisfied is ignored for further consideration. Adjust the supply and demand by subtracting the allocated amount.
3. Perform the following operations:
(a) If the supply for the first row is satisfied, then move down in the $1^{\text {st }}$ column and go to step 1.
(b) If the demand for the $1^{\text {st }}$ column is satisfied then move horizontally to the next cell in the same row and go to step 1.
4. If both row and column tend to zero simultaneously, then ignore both the row and column with respect to the allocated cell.
5. Repeat steps 3 to 4 until all the allocations are made, i.e., until the supply meets demand.

Example 8.1. Find the initial basic feasible solution of the following transportation problem.

Supply $\quad: a_{1}=30, a_{2}=40, a_{3}=55$.
Demand $\quad: b_{1}=15, b_{2}=20, b_{3}=40, b_{4}=50$.
Matrix cost: $c_{11}=5, c_{12}=2, c_{13}=4, c_{14}=3, c_{21}=6, c_{22}=$ $4, c_{23}=9, c_{24}=5, c_{31}=2, c_{32}=3, c_{33}=8, c_{34}=1$.
We have

$$
\begin{aligned}
& \sum_{i=1}^{3} a_{i}=a_{1}+a_{2}+a_{3}=125 \\
& \sum_{j=1}^{4} b_{j}=b_{1}+b_{2}+b_{3}+b_{4}=125 .
\end{aligned}
$$

Since

$$
\sum_{i=1}^{3} a_{i}=\sum_{j=1}^{4} b_{j},
$$

therefore the problem is the balanced transportation problem. The northwest corner is x_{11}.
$x_{11}=\min \left\{a_{1}, b_{1}\right\}=\{30,15\}=15$. Subtract 15 from a_{1} and b_{1}. Therefore, next transportation matrix is

Leave the $1^{\text {st }}$ column because it is satisfied. x_{12} is the northwest corner. Thus, $x_{12}=\min \left\{a_{1}, b_{2}\right\}=\min \{15,20\}=15$. Subtract 15 from a_{1} and b_{2}.

We get $x_{11}=15$ and $x_{12}=15$. Thus, for the next allocation, ignore $1^{\text {st }}$ row and $1^{\text {st }}$ column. That is, $x_{22}=\min \left\{a_{2}, b_{2}\right\}=\{40,5\}=5$.

For next the allocation, the $2^{\text {nd }}$ column is ignored. Therefore, northwest is $x_{23}=\min \left\{a_{2}, b_{3}\right\}=\{35,40\}=35$.

We get $x_{23}=35$. Ignore the $2^{\text {nd }}$ row. The northwest cost is $x_{33}=$ $\min \left\{a_{3}, b_{3}\right\}=\min \{55,5\}=5$.

Thus, $x_{33}=5$. The last northwest corner is $x_{34}=\min \left\{a_{3}, b_{4}\right\}=$ $\min \{50,50\}=50$.

Thus, the initial basic feasible solution of the transportation problem is given by

$$
x_{11}=15, x_{12}=15, x_{22}=5, x_{23}=35, x_{33}=5, x_{34}=50 .
$$

The basic feasible solution is nondegenerate as there are $m+n-$ $1=3+4-1=6$ allocated cells. The corresponding minimum
transportation cost is given by

$$
\begin{aligned}
z & =5 \times 15+2 \times 15+4 \times 5+9 \times 35+8 \times 5+1 \times 50 \\
& =75+30+20+315+40+50 \\
& =530 \text { units. }
\end{aligned}
$$

Example 8.2. Solve the following transportation problem using the northwest corner method.

O_{1}	D_{1}	D_{2}	D_{3}	D_{4}	
	19	30	50	10	7
O_{2}	70	30	40	60	9
O_{3}	40	8	70	20	18
	5	8		4	

Supply $\quad: a_{1}=7, a_{2}=9, a_{3}=18$.
Demand $\quad: b_{1}=5, b_{2}=8, b_{3}=7, b_{4}=14$.
Matrix cost : $c_{11}=19, c_{12}=30, c_{13}=50, c_{14}=10, c_{21}=70$,

$$
\begin{aligned}
& c_{22}=30, c_{23}=40, c_{24}=60, c_{31}=40, c_{32}=8 \\
& c_{33}=70, c_{34}=20
\end{aligned}
$$

We have

$$
\begin{aligned}
& \sum_{i=1}^{3} a_{i}=a_{1}+a_{2}+a_{3}=34 \\
& \sum_{j=1}^{4} b_{j}=b_{1}+b_{2}+b_{3}+b_{4}=34
\end{aligned}
$$

Since

$$
\sum_{i=1}^{3} a_{i}=\sum_{j=1}^{4} b_{j}
$$

therefore the problem is the balanced transportation problem. The northwest corner is x_{11}. We get $x_{11}=\min \left\{a_{1}, b_{1}\right\}=\min \{7,5\}=5$.

We move to x_{12}. Therefore, we find $\min \{2,8\}=2$.

	D_{1}	D_{2}	D_{3}	D_{4}	
O_{1}	$5{ }_{5} 19$	$2 \stackrel{30}{4}$	50	10	0
O_{2}	70	30	40	60	9
O_{3}	40	8	70	20	18
	0	6	7	14	

The $1^{\text {st }}$ row has supply zero. We move to cost cell x_{22} and find $\min \{9,6\}=6$.

	D_{1}	D_{2}	D_{3}	D_{4}	
O_{1}	$5_{5} 19$	230	50	10	0
O_{2}	70	${ }_{6}{ }^{30}$	40	60	3
O_{3}	40	8	70	20	18
	0	0	7	14	

The $2^{\text {nd }}$ column has demand zero. We move to cost cell $x_{23}=$ $\min \{3,7\}=3$.

The $2^{\text {nd }}$ row has supply zero. We move to cost cell x_{33} and find $\min \{18,4\}=4$.

	D_{1}	D_{2}	D_{3}	D_{4}	
O_{1}	$5{ }_{5} 19$	${ }_{2} \stackrel{30}{ }$	50	10	0
O_{2}	70	$\begin{array}{l\|l} \hline 6 \\ 6 \end{array}$	$\begin{array}{l\|l} \hline & 40 \\ \hline \end{array}$	60	0
O_{3}	40	8	$\begin{array}{l\|l} \hline & 70 \\ \hline \end{array}$	20	14
	0	0	0	14	

At this stage, we get equal supply and demand that is 14 . Therefore, we move to cost cell x_{34} with entry 14 . We now stop.

Finally, the initial basic feasible solution is

$$
x_{11}=5, \quad x_{12}=2, \quad x_{22}=6, \quad x_{23}=3, \quad x_{33}=4, \quad x_{34}=14 .
$$

The corresponding transportation cost is given by

$$
\begin{aligned}
& =x_{11} c_{11}+x_{12} c_{12}+x_{22} c_{22}+x_{23} c_{23}+x_{33} c_{33}+x_{34} c_{34} \\
& =5 \times 19+2 \times 30+6 \times 30+3 \times 40+4 \times 70+14 \times 20 \\
& =1015 \text { units }
\end{aligned}
$$

We can solve the transportation problem using MATLAB function nwc.m. See the following Code 8.1 for northwest corner method.

Code 8.1: nwc.m label

function $[$ minTcost $, \mathrm{b}, \mathrm{c}]=$ nwc (A, sup , dem) \%input : augmented matrix A, supply sup,

```
%demand dem
%output: cost matrix c, basis matrix B
[m,n]=size(A);
minTcost=0;
I=1;
J=1;
b=zeros(m,n);
c=zeros(m,n);
while I }<\textrm{m}+
while J <n+1
    if sup(I,1)<dem(1,J)
minTcost=minTcost+(A(I, J )*sup (I, 1));
c (I, J)=sup (I , 1);
disp(c);
dem(1,J)=\operatorname{dem}(1,J)-\operatorname{sup}(I,1);
x=sprintf('x(%d,%d)=%d',I, J, sup (I, 1));
disp(x);
disp('dem=');
disp (dem);
sup (I,1)=0;
disp('sup');
disp(sup);
b}(\textrm{I},\textrm{J})=1\mathrm{ ;
I=I +1;
end
if sup(I,1)>dem(1,J)
minTcost=minTcost+(A(I , J )*dem(1, J ));
c (I, J)=dem (1,J );
disp(c);
% disp(dem);
sup (I,1)=sup (I,1)-\operatorname{dem}(1,J);
x=sprintf('x(%d,%d)=%d', I, J, dem(1, J ));
disp(x);
disp ('sup ');
disp(sup);
dem(1,J)=0;
disp('dem');
disp(dem);
b}(\textrm{I},\textrm{J})=1\mathrm{ ;
```

```
J=J +1;
end
if sup (I,1)== dem (1,J)
minTcost=minTcost+(A(I,J)*\operatorname{dem}(1,J));
c (I, J) = dem ( 1, J );
disp(c);
x=sprintf('x(%d,%d)=%d', I, J, dem(1,J ));
disp(x);
sup (I, 1)=0;
dem}(1,J)=0
disp('sup');
disp (sup);
disp('dem')
disp (dem);
b}(\textrm{I},\textrm{J})=1
I=I+1 ;
J=J+1 ;
end
end
end
end
```

Example 8.3. Solve the transportation problem in MATLAB.

In the Command Window,

```
>> A=[[5
>> sup=[ [7; 9; 18]
>> dem=[lllll}
```

```
>>[minTcost]=nwc(A, sup, dem)
```


Output:

```
>>
    x (1, 1) =5
    x (1,2) =2
    x (2,2) =6
    x (2,3)=3
    x (3,3)=4
    x(3,4)=14
```

$\operatorname{minTcost}=$
141

Example 8.4. The cost matrix of a transportation problem is given by

1	2	3	4
4	3	2	1
0	2	2	1

The following are the values of variables in a feasible solution $x_{11}=$ $3, x_{12}=6, x_{23}=2, x_{24}=6, x_{31}=4, x_{33}=6$. Then, which of the following is TRUE?
(a) The solution is degenerate and basic.
(b) The solution is nondegenerate and basic.
(c) The solution is degenerate and nonbasic.
(d) The solution is nondegenerate and nonbasic.

We have $m+n-1=3+4-1=6$. In a balanced transportation problem, there are atmost $m+n-1$ basic variables. None of $x_{i j}$ is zero, therefore the solution is nondegenerate and basic. Thus, option (b) is true.

8.4 Least Cost Method

This method usually provides a better starting basic feasible solution than the northwest corner method since it takes into account the cost variables in the problem.

Algorithm

1. Allocate $\min \left\{a_{i}, b_{j}\right\}$ to the cell having lowest cost in the transportation matrix. If there is a tie, then choose arbitrarily.
2. Ignore the row or column which is satisfied. If a row and column are both satisfied, then ignore only one of them.
3. Adjust a_{i} and b_{j} for those rows and columns which are not ignored.
4. Repeat steps 1-3 until all units have been allocated.

Example 8.5. Determine an initial basic feasible solution of the following balanced transportation problem by the least cost method.

Supply $\quad: a_{1}=14, a_{2}=16, a_{3}=5$.
Demand $\quad: b_{1}=6, b_{2}=10, b_{3}=15, b_{4}=4$.
Note that the least cost is 1 at $(1,3)$ cell in above transportation matrix. Therefore, we allocate $\min \{14,15\}=14$ at $(1,3)$ cell.

Ignore the $1^{\text {st }}$ row. The least costs are at $(2,3)$ and $(3,4)$ cell. We choose any one. Allocate $\min \{16,1\}=1$ at $(2,3)$ cell in the above transportation matrix.

Ignore the $3^{\text {rd }}$ column. The least cost is 2 at $(3,4)$ cell in transportation matrix. Therefore, we allocate $\min \{5,4\}=4$ at $(3,4)$ cell.

The least cost is 3 at $(3,2)$ cell. Allocate $\min \{1,10\}=1$ at $(3,2)$ cell. We ignore the $3^{\text {rd }}$ row.

The least cost is 4 at $(3,1)$ cell, but the $3^{\text {rd }}$ row is satisfied and ignored. Therefore, we look for the next least cost which is 6 at cell $(3,3)$, but its row and column are satisfied and ignored. Next, the least cost is 7 at $(2,4)$ cell which is also ignored. Finally, the least cost is 8 at $(2,1)$ cell. We allocate $\min \{15,6\}=6$ at $(2,1)$ cell and the $1^{\text {st }}$ column is ignored.

This time, the least cost is 9 at $(2,2)$ cell. Therefore, we allocate $\min \{9,9\}=9$ at $(2,2)$ cell.

All supplies and demands are satisfied. Therefore, the least cost method is over. The initial basic feasible solution is

$$
x_{13}=14, x_{21}=6, x_{22}=9, x_{23}=1, x_{32}=1, x_{34}=4 .
$$

The transportation cost is given by

$$
=1 \times 14+8 \times 6+9 \times 9+2 \times 1+3 \times 1+2 \times 4=156 \text { units. }
$$

Example 8.6. Solve the following transportation problem by the least cost method.

Supply $\quad: a_{1}=5, a_{2}=5, a_{3}=5$.
Demand $\quad: b_{1}=1, b_{2}=6, b_{3}=2, b_{4}=6$.
We identify the least cost cell as $(1,4)$ cell with cost 2 . We have $a_{1}=5$ and $b_{4}=6$. We allocate $\min \{5,6\}=5$ and new $a_{1}=0$ and $b_{4}=6-5=1$.

Ignore the $1^{\text {st }}$ row. The least cost is 4 in the two cell: $(2,3)$ and $(3,4)$. We choose $(3,4)$ cell and allocate $\min \{5,1\}=1$. We have $a_{3}=5-1=4$ and $b_{4}=0$.

Ignore the $4^{\text {th }}$ column. The least cost cell in the new submatrix is $(2,3)$ with cost 4 . Thus, we allocate $\min \{5,2\}=2$ and new $a_{2}=5-2=3$ and $b_{3}=0$.

Ignore the $3^{\text {rd }}$ column. The least cost cell is $(2,2)$ with cost 8 in the new submatrix. We allocate $\min \{3,6\}=3$ and new $a_{2}=0$ and $b_{2}=6-3=3$.

Ignore the $2^{\text {nd }}$ row. The least cost cells are $(3,1)$ and $(3,2)$. We choose $(3,2)$ cell arbitrarily and allocate $\min \{4,3\}=3$. We have new $a_{3}=4-3=1$ and $b_{2}=0$.

Ignore the $2^{\text {nd }}$ column. We have only one cell left, that is $(3,1)$ cell. Therefore we allocate $\min \{1,1\}=1$. We have new $a_{3}=0$ and $b_{1}=0$.

All supplies and demands are satisfied. Thus, least cost method is over and the initial basic feasible solution is

$$
x_{14}=5, x_{22}=3, x_{23}=2, x_{31}=1, x_{32}=3, x_{34}=1
$$

The minimum transportation cost is

$$
\begin{aligned}
& =5 \times 2+3 \times 8+2 \times 4+1 \times 9+3 \times 9+1 \times 4 \\
& =82 \text { units }
\end{aligned}
$$

We have written MATLAB function lcm.m for the least cost method as given in the following Code 8.2.

Code 8.2: lcm.m

```
function [minTcost, b, c] = leastcost (A, sup , dem)
\%input: Transportation cost A, supply sup,
\%
    demand dem
    \%output: minimum transportation cost
\%minTcost, basic matrix b, cost matrix c
    \([\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{A})\);
    sum \(=0\);
    rf=zeros;
    cf=zeros;
    \(\mathrm{b}=\mathrm{zeros}(\mathrm{m}, \mathrm{n})\);
    \(\mathrm{c}=\mathrm{zeros}(\mathrm{m}, \mathrm{n})\);
    for \(I=1: m\)
        rf \((\mathrm{I}, 1)=0\);
        for \(J=1: n\)
        cf \((1, J)=0\);
        end
    end
    \(\mathrm{f}=\mathrm{m}\);
```

```
d=n;
while f>0 && d>0
    min=Inf;
    for I=1:m
        if rf(I,1)~}=
                for J=1:n
                        if cf(1,J)~}=
                        if min>A(I, J)
                                min}=\textrm{A}(\textrm{I},\textrm{J})
                                p=I;
                q=J;
                end
                end
                end
            end
    end
        if sup (p,1)<\operatorname{dem}(1,q)
    b}(p,q)=1
        c(p,q)=sup (p,1);
        disp(c);
        sum=sum+A(p,q)*\operatorname{sup}(p,1);
x=sprintf(''x(%d,%d)=%d', p,q, sup (p,1));
    disp(x);
    dem(1,q)=\operatorname{dem}(1,q)-\operatorname{sup}(p,1);
    sup (p,1)=0;
    disp ('sup');
    disp (sup);
    disp ('dem');
    disp (dem);
    rf(p,1)=1;
    f=f-1;
    else
    if sup (p,1)>\operatorname{dem}(1,q)
            b}(p,q)=1
            c(p,q)= dem(1,q);
                disp(c);
                sum=sum}+A(p,q)*\operatorname{dem}(1,q)
x=sprintf('x(%d,%d)=%d'',p,q, dem(1,q));
                disp(x);
```

$$
\begin{aligned}
& \sup (p, 1)=\sup (p, 1)-\operatorname{dem}(1, q) ; \\
& \operatorname{dem}(1, q)=0 ; \\
& \operatorname{disp}\left(\sup ^{\prime}\right) ; \\
& \operatorname{disp}(\sup) ; \\
& \operatorname{disp}(\operatorname{dem},) ; \\
& \operatorname{disp}(\operatorname{dem}) ; \\
& \operatorname{cf}(1, q)=1 ; \\
& d=d-1 ;
\end{aligned}
$$

else

$$
\text { if } \sup (p, 1)==\operatorname{dem}(1, q)
$$

$$
\mathrm{b}(\mathrm{p}, \mathrm{q})=1
$$

$$
c(p, q)=\sup (p, 1)
$$

$$
\operatorname{disp}(\mathrm{c}) ;
$$

$$
\operatorname{sum}=\operatorname{sum}+A(p, q) * \sup (p, 1) ;
$$

$$
x=\operatorname{sprintf}\left({ }^{\prime} x(\% d, \% d)=\% d^{\prime}, p, q, \sup (p, 1)\right)
$$

$$
\sup (p, 1)=0
$$

$$
\operatorname{dem}(1, q)=0
$$

$$
\operatorname{disp}\left(\sup ^{\prime}\right)
$$

$$
\operatorname{disp}(\sup)
$$

$$
\operatorname{disp}(' \operatorname{dem} ') ;
$$

$$
\operatorname{disp}(\operatorname{dem})
$$

$$
\operatorname{disp}(x)
$$

$$
\operatorname{rf}(\mathrm{p}, 1)=1
$$

$$
\operatorname{cf}(1, q)=1
$$

$$
\mathrm{f}=\mathrm{f}-1
$$

$$
\mathrm{d}=\mathrm{d}-1 ;
$$

end
end
end
end
minTcost=sum ;
return

Example 8.7. Solve the following transportation problem by the least cost method in MATLAB.

In the Command Window,

> $\mathrm{A}=\left[\begin{array}{llllllllllll}3 & 1 & 5 & 10 ; & 7 & 4 & 5 & 3 ; & 8 & 8 & 2 & 2\end{array}\right]$
>> sup $=\left[\begin{array}{lll}2 ; & 6 ; & 7\end{array}\right]$
\gg dem $=\left[\begin{array}{llll}3 & 3 & 4 & 5\end{array}\right]$
>> [minTcost]=leastcostnew(A,sup,dem)

Output:

$$
\begin{aligned}
& \mathrm{x}(1,2)=2 \\
& \mathrm{x}(3,3)=4 \\
& \mathrm{x}(3,4)=3 \\
& \mathrm{x}(2,4)=2 \\
& \mathrm{x}(2,2)=1 \\
& \mathrm{x}(2,1)=3
\end{aligned}
$$

$\min T \cos t=$

Example 8.8. Solve by the least cost method in MATLAB.

In the Command Window,

```
>> A=[14 [14 18 6; 20 11 7
>> sup = [11; 13; 19]
>> dem}=[\begin{array}{llll}{6}&{10}&{12}&{15}\end{array}
>> [minTcost]=leastcost(A,sup,dem)
```


Output:

$$
\begin{aligned}
& \mathrm{x}(1,4)=11 \\
& \mathrm{x}(2,3)=12 \\
& \mathrm{x}(3,2)=10 \\
& \mathrm{x}(2,4)=1 \\
& \mathrm{x}(3,1)=6 \\
& \mathrm{x}(3,4)=3
\end{aligned}
$$

$$
\min T \cos t=
$$

$$
518
$$

8.5 Vogel's Approximation Method

This method is preferred over the other two methods discussed above because it produces best possible minimize cost and close to an optimal solution. Therefore, if we use the starting basic feasible solution obtained by Vogel's approximation method and proceed
to solve for the optimum solution, then the time required to arrive at the optimum solution is greatly reduced. W. R. Vogel developed this method.

Algorithm

1. Take the $1^{\text {st }}$ row and choose its smallest cost and subtract this from the cost which is the next highest cost, and write the result in front of the row on the right. This is the penalty for the first row. In this way, compute the penalty of each row. Similarly, calculate column penalties and write those in the bottom of the cost matrix below corresponding columns.
2. Select the highest penalty and observe the row or column for which this corresponds. Then, make allocation $\min \left\{a_{i}, b_{j}\right\}$ to the cell having the lowest cost in the selected row or column.
3. Ignore the row or cell which is satisfied. Calculate fresh penalties for the remaining sub-matrix as in step 1 and for allocation, follow the procedure of step 2 . Continue the process untill all rows and columns are satisfied.

Rules for tie:

In case of a tie for the largest penalty, choose the lowest cost cell in all tied rows and columns for allocation. Again, if there is a tie for the lowest cost cell; select one for allocation which gives minimum $c_{i j} x_{i j}$.
Example 8.9. Consider the transportation problem:

	D_{1}	D_{2}	D_{3}	D_{4}	
O_{1}	19	30	50	10	7
O_{2}	70	30	40	60	9
O_{3}	40	8	70	20	18
	5	8	7	4	

Obtain a starting basic feasible solution for transportation problem using Vogel's approximation method.
As the problem is balanced, we find a starting basic feasible solution.

O_{1}	D_{1}	D_{2}	D_{3}	D_{4}		row penalty
	19	30	50	10	7	9
O_{2}	70	30	40	60	9	10
O_{3}	40	8	70	20	18	12
	5	8	7	14		
column penalty	21	22	10	10		

The highest penalty is 22 which is the $2^{\text {nd }}$ column. Observe that the lowest cost cell in the $2^{\text {nd }}$ column is 8 at $(3,2)$ cell. We allocate $\min \{18,8\}=8$ at $(3,2)$ cell and ignore the $2^{\text {nd }}$ column.

O_{1}	D_{1}	D_{2}	D_{3}	D_{4}	7	row penalty
	19	30	50	10		9
O_{2}	70	30	40	60	9	20
O_{3}	40	${ }_{8} 8$	70	20	10	20
column penalty	$\begin{gathered} \hline 5 \\ 21 \end{gathered}$	$\begin{aligned} & \hline 0 \\ & \times \end{aligned}$	$\begin{gathered} \hline 7 \\ 10 \end{gathered}$	$\begin{aligned} & \hline 14 \\ & 10 \end{aligned}$		

The highest penalty is 21 which is the $1^{\text {st }}$ column. Observe that the lowest cost is 19 . We allocate $\min \{7,5\}=5$ in $(1,1)$ cell.

	D_{1}	D_{2}	D_{3}	D_{4}		row penalty
O_{1}	${ }_{5}{ }^{19}$	30	50	10	2	40
O_{2}	70	30	40	60	9	20
O_{3}	40	$8{ }_{8} 8$	70	20	10	50
	0	0	7	14		
column penalty	\times	\times	10	10		

We now compute penalties of each row and column. Note that the highest penalty is 50 in the $3^{\text {rd }}$ row and the least cost is 20 in $(3,4)$ cell. Therefore, we allocate $\min \{10,14\}=10$ at $(3,4)$ cell. In this way, the third row is satisfied.

O_{1}	D_{1}	D_{2}	D_{3}	D_{4}	row penalty	
	$\begin{array}{l\|l} \\ \hline \end{array}$	30	50	10	2	40
O_{2}	70	30	40	60	9	20
O_{3}	40	$8{ }_{8} 8$	70	${ }_{10} 1020$	0	\times
	0	0	7	4		
column penalty	\times	\times	10	50		

We again calculate penalties of remaining rows and columns. This time, the highest penalty is 50 in the $4^{\text {th }}$ column and the least cost is 10 in that column. Therefore, we find $\min \{2,4\}=2$ at $(1,4)$ cell. Thus, the $1^{\text {st }}$ row is satisfied.

The highest penalty is 60 in the $4^{\text {th }}$ column and the least cost is 60. Thus, we find $\min \{9,2\}=2$ at $(2,4)$ cell and the $4^{\text {th }}$ column is satisfied.

The remaining highest penalty is 40 and the least cost cell is $(2,3)$. Thus, we allocate $\min \{7,7\}=7$ at $(2,3)$ cell. The $3^{\text {rd }}$ column and the $2^{\text {nd }}$ row are satisfied.

The initial basic feasible solution is:

$$
x_{11}=5, x_{14}=2, x_{23}=7, x_{24}=2, x_{32}=8, x_{34}=10 .
$$

It is nondegenerate and the total transportation cost is computed as follows:

$$
\begin{aligned}
& =5 \times 19+2 \times 10+7 \times 40+2 \times 60+8 \times 8+10 \times 20 \\
& =779 \text { units }
\end{aligned}
$$

Example 8.10. Calculate the initial basic feasible solution for this transportation problem by Vogel's Approximation Method.

We firstly calculate row penalty and column penalty.

The highest penalty is 4 . We allocate $\min \{300,200\}=200$ at $(1,1)$ cell because cell $(1,1)$ contains the least cost for the $1^{\text {st }}$ column.

	D_{1}	D_{2}	D_{3}	D_{4}	row penalty	
O_{1}	$\begin{array}{l\|l} \hline & 2 \\ 200 \end{array}$	2	1	5	100	1
O_{2}	8	2	6	5	300	3
O_{3}	6	1	4	2	200	1
	0	200	300	100		
column penalty	\times	1	3	3		

The $2^{\text {nd }}$ row, and $3^{\text {rd }}$ column have equal and highest penalties. Since the least cost is 1 at $(1,3)$ cell in the $3^{\text {rd }}$ column, we allocate $\min \{100,300\}=100$ at $(1,3)$ cell.

The highest penalty is 3 and the least cost is 2 . Thus, we allocate $\min \{200,100\}=100$ at $(3,4)$ cell.

The highest penalty is 4 which is in the $2^{\text {nd }}$ row. Therefore, we allocate $\min \{300,200\}=200$ at $(2,2)$ cell. This cell contains the least cost.

The highest penalty is 6 in the $2^{\text {nd }}$ row and least cost cell is $(2,3)$. Therefore, we allocate $\min \{100,200\}=100$.

The highest penalty is 4 and the least cost cell is 4 . Thus, we allocate $\min \{100,100\}=100$ at $(3,3)$ cell.

Thus, the initial basic feasible solution is

$$
x_{11}=200, x_{13}=100, x_{22}=200, x_{23}=100, x_{33}=100, x_{34}=100
$$

The total transportation cost is computed as follows:

$$
\begin{aligned}
& =200 \times 2+100 \times 1+200 \times 2+100 \times 6+100 \times 4+100 \times 2 \\
& =2100 \text { units }
\end{aligned}
$$

We have written MATLAB function vogel.m for Vogel's Approximation Method in the following Code 8.3.

Code 8.3: vogel.m
function $[$ minTcost $, \mathrm{b}, \mathrm{c}]=\operatorname{vogel}(\mathrm{A}, \mathrm{sup}, \operatorname{dem})$ \%input: transportation cost A, vector supply \% sup, vector demand dem
\%output:minimum transportation cost minTcost,
\% basic matrix b, cost matrix c,
$\mathrm{b}=\mathrm{zeros}(\operatorname{size}(\mathrm{A}))$;
ctemp $=\mathrm{A}$;
$[\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{A})$;
$\mathrm{c}=\mathrm{zeros}(\mathrm{m}, \mathrm{n})$;

```
while length(find (dem==0))< length(dem) ||
    length(find (sup==0))}< < length(sup
prow = sort(ctemp,1);
prow = prow (2,:) - prow (1,:); % row penalty
pcol = sort(ctemp,2);
pcol = pcol(:,2) - pcol (:,1); %column penalty
[rmax, rind] = max(prow);
[cmax, cind ] = max(pcol );
disp('column penalty')
disp (prow);
disp('row penalty ');
disp(pcol);
%value for allocated cell
if rmax>cmax
    [~ ,mind] = min}(\operatorname{ctemp}(:, rind))
[amt,dem,sup,ctemp]=
    chkdemandsupply(dem, sup, rind, mind, ctemp );
    x=sprintf('x(%d,%d)=%d', mind,rind,amt );
    disp(x);
    b}(\mathrm{ mind , rind ) = 1;
    c(mind, rind )=amt;
    disp(c);
end
    if cmax>= rmax
        [~},mind]=\operatorname{min}(\operatorname{ctemp}(\operatorname{cind},:))
[amt,dem,sup,ctemp] = chkdemandsupply(dem,sup,
                                    mind, cind,ctemp );
            x=sprintf('x(%d,%d)=%d', cind, mind,amt );
            disp(x);
            b(cind,mind) = 1;
            c( cind,mind ) =amt;
            disp(c);
            minTcost = sum(sum(c.*A));
    end
end
function [y,dem,sup,ctemp] =
    chkdemandsupply(dem,sup,ded,sud,ctem)
tempd = dem;
temps = sup;
```

```
if tempd(ded) > temps(sud)
    temps(sud) = 0;
    tempd(ded ) = dem(ded ) - sup (sud );
    disp('sup');
    disp(temps);
    disp('dem');
    disp (tempd);
    y = sup (sud);
    ctem(sud,:)= inf;
end
if tempd(ded) < temps(sud)
    tempd (ded ) = 0;
    temps(sud) = sup(sud) - dem(ded );
    disp('sup');
    disp(temps);
    disp ('dem');
    disp (tempd);
    y = dem(ded );
    ctem(:, ded) = inf;
end
    if tempd(ded) = temps(sud)
        tempd (ded) = 0;
        temps(sud) = 0;
        disp ('sup') ;
        disp(temps);
        disp ('dem');
        disp(tempd);
        y = dem(ded );
        ctem(:, ded) = inf;
        ctem(sud,:) = inf;
    end
dem = tempd;
sup = temps;
ctemp = ctem;
```

Example 8.11. Solve the following transportation problem by Vogel's Approximation Method in MATLAB.

In the Command Window,

$\gg A=\left[\begin{array}{llllllllllll}6 & 2 & 4 & 3 ; & 3 & 8 & 5 & 7 ; & 5 & 7 & 8 & 2\end{array}\right]$
$\gg \sup =[500 ; 200 ; 400]$
\gg dem $=\left[\begin{array}{llll}200 & 350 & 120 & 430\end{array}\right]$
$\gg[\operatorname{minTcost}]=\operatorname{vogel}(\mathrm{A}, \sup , \operatorname{dem})$

0	350	120	30
200	0	0	0
0	0	0	400

$\operatorname{minTcost}=$

$$
2670
$$

Example 8.12. Solve the transportation problem by Vogel's Approximation Method in MATLAB.

	D_{1}	D_{2}	D_{3}	D_{4}	
O_{1}	$\underline{30}$	20	50	20	75
O_{2}	20	10	30	40	120
O_{3}	40	20	40	30	105
	65	60	0	95	

In the Command Window,

```
>> A=[[\begin{array}{llllllllllllllll}{30}&{20}&{50}&{20;}&{20}&{10}&{30}&{40;}&{40}&{20}&{40}&{30}\end{array}]
>> sup =[75; 120; 105]
>> dem=[ll65 600 80 95}
>> [minTcost,b,c] = vogel(A,sup,dem)
```


Output:

```
\(\mathrm{x}(2,2)=60\)
\(\mathrm{x}(1,4)=75\)
\(x(2,1)=60\)
\(\mathrm{x}(3,1)=5\)
\(\mathrm{x}(3,3)=80\)
\(\mathrm{x}(3,4)=20\)
\(\operatorname{minTcost}=\)
```

7300
Note: All the output of MATLAB functions nwc.m, $1 \mathrm{~cm} . \mathrm{m}$ and vogel.m have not been shown in the solution of the above problems. It is left for the reader to use MATLAB to see all the output step-by-step.

8.6 Optimal Solution from BFS

We study a computational procedure to find an optimal solution from the starting basic feasible solution (BFS).

Computational Procedure

1. Introduce the variables u_{i} and v_{j} corresponding to $i^{\text {th }}$ row and $j^{\text {th }}$ column, respectively. Write u_{i} in front of each $i^{\text {th }}$ row and v_{j} at the bottom of each $j^{\text {th }}$ column. Take any u_{i} or v_{j} to be zero for maximum number of allocations.
2. For basic cells (which contain allocations), calculate $u_{i}+v_{j}=$ $c_{i j}$. This relation assigns value to all u_{i} and v_{j}. Note that this relation is equivalent to $z_{j}-c_{j}=0$ for basic variables in the simplex algorithm.
3. For nonbasic cells (which have no allocations), calculate $u_{i}+v_{j}-c_{i j}$ and write them in the southwest corner of the concerned cells of the tableau.
4. If all the southwest entries are less than or equal to zero, then the basic feasible solution is optimal. If at least one of the southwest entries is positive, then this basic feasible solution is not optimal. In this situation, look for the most positive southwest entry in the cost matrix. This decides the entering variable.
5. Assign θ (quantity in the cell having most positive southwest entry) and make a loop.
6. Start from θ cell and move horizontally and vertically to the nearest basic cell with restriction that the turn (corner) of the loop must not lie in any nonbasic cell (except θ cell). In this way, return to θ cell to complete the loop.
7. Add or subtract θ in concerned entries of the loop maintaining feasibility and value of θ is fixed as the minimum of the entries from which θ has been subtracted.
8. Inserting the fixed value of θ, we get the next basic feasible solution which improves the initial transportation cost.

9 . While inserting the value θ if a cell assumes ' 0 ' value, we will not mention ' 0 ' value as this is the leaving variable, i.e., this cell has become nonbasic. Again, use the latest basic feasible solution and repeat steps 1-8 until every southwest entry turns out to be less than or equal to zero. This is an optimal solution.

Example 8.13. Find an optimal solution to the transportation problem.

We have applied the least cost method to find a starting basic feasible solution. It is left for the reader to solve this transportation problem step-by-step.

Thus, the starting basic feasible solution is $x_{11}=15, x_{12}=$ $15, x_{23}=25, x_{24}=25, x_{32}=15, x_{34}=20$. It is a nondegenerate basic feasible solution. Note that we are concerned only to find the optimal solution of the transportation problem.

1. Since all the rows have the same number of allocations, therefore any of the u_{1}, u_{2}, u_{3} may be assigned zero. Suppose that $u_{1}=0$
2. We allocate the values of the other dual variables using the relation: $u_{i}+v_{j}=c_{i j}$ for basic cells.
The possible equations for the basic cells are:

$$
\begin{aligned}
& u_{1}+v_{1}=1 \\
& u_{1}+v_{2}=2 \\
& u_{2}+v_{3}=2 \\
& u_{2}+v_{4}=5 \\
& u_{3}+v_{2}=3 \\
& u_{3}+v_{4}=7
\end{aligned}
$$

Solving the above equations, we get

$$
\begin{array}{lll}
u_{1}=0, & u_{2}=-1, & u_{3}=1, \\
v_{1}=1, & v_{2}=2, & v_{3}=3,
\end{array} v_{4}=6 .
$$

Thus, $u_{1}, u_{2}, u_{3}, v_{1}, v_{2}, v_{3}, v_{4}$ are calculated.
3. We calculate $u_{i}+v_{j}-c_{i j}$ for each nonbasic cell and write those in the southwest corner of the cell. Note that x_{13}, x_{14}, $x_{21}, x_{22}, x_{31}, x_{33}$ are nonbasic variables. Therefore, we calculate all these values for nonbasic cells and write those in the southwest corner:

$$
\begin{aligned}
& x_{13}=u_{1}+v_{3}-c_{13}=0+3-3=0, \\
& x_{14}=u_{1}+v_{4}-c_{14}=0+6-4=2, \\
& x_{21}=u_{2}+v_{1}-c_{21}=-1+1-7=-7 \\
& x_{22}=u_{2}+v_{2}-c_{22}=1+2-6=-5, \\
& x_{31}=u_{3}+v_{1}-c_{31}=1+1-4=-2, \\
& x_{33}=u_{3}+v_{3}-c_{33}=1+3-2=2 .
\end{aligned}
$$

Note that all elements in the southwest corner are not less than or equal to zero. Therefore, this basic feasible solution is not optimal.
4. We look at the most positive southwest entry. This is available at $(1,4)$ and $(3,3)$ cells of the cost matrix. Take any one cell for the entering variable. Suppose that we take the nonbasic cell $(3,3)$, i.e., nonbasic variable x_{33} to enter the basis.
5. We make a loop as per rule. Assign θ value to $(3,3)$ cell. Subtract and add θ at corners of the loop to maintain feasibility.

Decide the value of θ by taking the minimum of the entries from which θ have been subtracted, i.e., $\theta=\min \{25,20\}=20$.

6. The new tableau is

The new basic feasible solution is $x_{11}=15, x_{12}=5, x_{23}=5$, $x_{24}=45, x_{32}=15, x_{33}=20$. The first iteration is over.
7. To start the second iteration, we introduce new $u_{1}, u_{2}, u_{3}, v_{1}$, v_{2}, v_{3} and v_{4}.
The possible equations for the basic cells are

$$
\begin{aligned}
& u_{1}+v_{1}=1 \\
& u_{1}+v_{2}=2 \\
& u_{2}+v_{3}=2 \\
& u_{2}+v_{4}=5 \\
& u_{3}+v_{2}=3 \\
& u_{3}+v_{3}=2
\end{aligned}
$$

Solving the above equations, we get

$$
\begin{array}{lll}
u_{1}=0, & u_{2}=1, & u_{3}=1 \\
v_{1}=1, & v_{2}=2, & v_{3}=1, \quad \\
v_{4}=4
\end{array}
$$

8. We calculate $u_{i}+v_{j}-c_{i j}$ for each nonbasic cell and write those in the southwest corner of the cell. Note that x_{13}, x_{14}, $x_{21}, x_{22}, x_{31}, x_{34}$ are nonbasic variables. Therefore, we calculate all these values for nonbasic cells and write those in the southwest corner.

$$
\begin{aligned}
& x_{13}=u_{1}+v_{3}-c_{13}=0+1-3=-2, \\
& x_{14}=u_{1}+v_{4}-c_{14}=0+4-4=0, \\
& x_{21}=u_{2}+v_{1}-c_{21}=1+1-7=-5, \\
& x_{22}=u_{2}+v_{2}-c_{22}=1+2-6=-3, \\
& x_{31}=u_{3}+v_{1}-c_{31}=1+1-4=-2, \\
& x_{34}=u_{3}+v_{4}-c_{34}=1+4-7=-2 .
\end{aligned}
$$

All elements in the southwest corner are less than or equal to zero. Therefore, the current basic feasible solution is optimal.

Thus, the optimal solution to the given transportation problem is

$$
x_{11}=15, x_{12}=15, x_{23}=5, x_{24}=45, x_{32}=15, x_{33}=20 .
$$

The minimum cost of the transportation problem is

$$
\begin{aligned}
& =15 \times 1+15 \times 2+5 \times 2+45 \times 5+15 \times 3+20 \times 2 \\
& =15+30+10+225+45+40 \\
& =365 \text { units }
\end{aligned}
$$

Example 8.14. Check the optimality of the solution obtained by Vogel's Approximation Method for the transportation problem in Example 8.10.

The starting basic feasible solution obtained in Example 8.10 is as follows:

The starting transportation cost is 2100 units. The possible equations for the basic cells are

$$
\begin{aligned}
& u_{1}+v_{1}=2, \\
& u_{1}+v_{3}=1, \\
& u_{2}+v_{2}=2, \\
& u_{2}+v_{3}=6, \\
& u_{3}+v_{3}=4, \\
& u_{3}+v_{4}=2 .
\end{aligned}
$$

Solving the above equations, we get

$$
\begin{aligned}
& u_{1}=0, \quad u_{2}=5, \quad u_{3}=3, \\
& v_{1}=2, \quad v_{2}=-3, \quad v_{3}=1, \quad v_{4}=-1 .
\end{aligned}
$$

We calculate $u_{i}+v_{j}-c_{i j}$ for each nonbasic cell and write those in the southwest corner of the cell. Note that $x_{12}, x_{14}, x_{21}, x_{24}, x_{31}$, x_{32} are nonbasic variables. Therefore, we calculate all these values
for nonbasic cells and write those in the southwest corner.

$$
\begin{aligned}
& x_{12}=u_{1}+v_{2}-c_{12}=0-3-2=-5, \\
& x_{14}=u_{1}+v_{4}-c_{14}=0-1-5=-6, \\
& x_{21}=u_{2}+v_{1}-c_{21}=5+2-8=-1, \\
& x_{24}=u_{2}+v_{4}-c_{24}=5-1-5=-1, \\
& x_{31}=u_{3}+v_{1}-c_{31}=3+2-6=-1, \\
& x_{32}=u_{3}+v_{2}-c_{32}=3-3-1=-1 .
\end{aligned}
$$

All elements in the southwest corner entries are less than or equal to zero. Therefore, the current basic feasible solution is optimal.

MATLAB function multipliers2.m is written in the following Code 8.4 to calculate the values of dual variables.

Code 8.4: multipliers2.m

```
function \([u, v, b, c]=m u l t i p l i e r s 2(b, A, c, i, j)\)
\%input : basic matrix b, transportation
\% matrix A, cost matrix c, row i,
\% column j
\%output: vector \(u\), vector \(v\)
    \([\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{A})\);
if \(\operatorname{sum}(\operatorname{sum}(b))<m+n-1\)
    disp('Degenerate');
else
    disp('Nondegenerate ');
end
\(u=\operatorname{Inf} * \operatorname{ones}(\mathrm{~m}, 1) ;\)
\(\mathrm{v}=\operatorname{Inf} * \operatorname{ones}(1, \mathrm{n}) ;\)
```

```
if ( j==0)
    u(i, 1)=0;
else
    v}(1,j)=0
end
    for row=1:m
            for col=1:n
                if b(row, col)>0
            if (u(row,1)~}=\operatorname{Inf})&&(v(1,\operatorname{col})===\operatorname{Inf}
            v}(1,\operatorname{col})=A(\mathrm{ row , col )}-\textrm{u}(\mathrm{ row , 1);
            else
        if (u(row,1)== Inf) && (v(1, col) ~}=\operatorname{Inf}
                        u(row, 1)=A(row, col)-v(1, col );
                                    end
                end
                end
            end
    end
for row=1:m
        for col=1:n
        if b(row, col)>0
        if (u(row,1)~}=\operatorname{Inf})&&(v(1,\operatorname{col})===\operatorname{Inf}
            v}(1,\operatorname{col})=A(\mathrm{ row , col )-u(row, 1);
            else
        if (u(row,1)== Inf) && (v(1, col) ~}=\operatorname{Inf}
                u(row},1)=A(\mathrm{ row , col ) -v(1, col );
                        end
                end
            end
    end
end
for row=1:m
    for col=1:n
        if b(row, col)>0
        if (u(row,1)~}=\operatorname{Inf})&&(v(1,\operatorname{col})===Inf
            v}(1,\operatorname{col})=\textrm{A}(\mathrm{ row , col )}-\textrm{u}(\mathrm{ row , 1);
            else
    if (u(row,1)== Inf) && (v(1, col ) ~ = Inf)
        u(row,1)=A(row, col)-v(1, col );
```

```
        end
            end
            end
        end
    end
    for row =1:m
        for col=1:n
        if b(row, col)>0
        if (u(row,1) ~}=\operatorname{Inf})&&(v(1,\operatorname{col})===Inf
            v}(1,\operatorname{col})=A(\mathrm{ row , col )-u(row, 1);
        else
        if (u(row,1)== Inf) && (v(1, col) ~}=\operatorname{Inf}
        u(row,1)=A(row, col)-v(1, col );
                end
            end
        end
    end
    end
return
```

Note that the value of i is for the most number of allocations in a particular row, and the value of j is for the most number of allocations in a particular column in the above MATLAB function multipliers2.m. If i is selected, then the value of j will be zero and vice versa.
MATLAB function uvx3.m is written in the following Code 8.5 to calculate $u_{i}+v_{j}-c_{i j}$ for each nonbasic cell of the transportation problem.

Code 8.5: uvx3.m

```
function [x]=uvx3(b,u,v,A)
%input : basic matrix b, vector u and v,
% transportation matrix A
%output: nonbasic matrix x
[m,n]=size(A);
x=zeros(m,n);
nr=1;
while nr<m+n
    for row=1:m
        for col=1:n
```

end

$$
[\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{A}) ;
$$

$$
\operatorname{count}=0 ;
$$

$$
\text { for } \quad \mathrm{I}=1: \mathrm{m}
$$

$$
\text { for } \quad J=1: n
$$

$$
\text { if } \quad x(I, J)<=0
$$

$$
\operatorname{count}=\operatorname{count}+1 ;
$$

end
end
end

```
if count==(m*n)
    disp('optimality reached');
end
```

return

MATLAB function mostpositive4.m is written in the following Code 8.6 to choose the most positive entry of the transportation problem.

Code 8.6: mostpositive4.m

```
function [basic, row, col]= mostpositive4(A, x, c)
%input : transportation matrix A, nonbasic
% matrix x, cost matrix c
%output: element basic, position row and
%
column
    [m,n]= size(x);
    basic}=0\mathrm{ ;
    count=0;
    opt=0;
    for I=1:m
        for J=1:n
            if x(I,J)<0 || x (I,J)==0
```

$$
\begin{aligned}
& \text { if } \mathrm{b}(\text { row, } \mathrm{col})^{\sim}=1 \\
& \mathrm{x}(\text { row }, \operatorname{col})=\mathrm{u}(\text { row }, 1)+\mathrm{v}(1, \text { col })-\mathrm{A}(\text { row }, \operatorname{col}) ; \\
& \text { if } x(\text { row }, \operatorname{col})<=0 \\
& \mathrm{nr}=\mathrm{nr}+1 \text {; } \\
& \text { end }
\end{aligned}
$$

```
    count=count +1;
            if c(I,J) ~}=
        opt=opt+A(I,J)*c(I, J );
            end
                end
            if count==(m*n)
            row =0;
            col=0;
                display('optimal cost obtained');
            x=sprintf('%d', opt );
            disp(x);
            break;
            else
            if basic<x(I,J)
                basic=x (I, J);
                row=I ;
                col=J;
            end
        end
    end
end
return
```

MATLAB function cycle5.m is written in the following Code 8.7 to make a loop of the transportation problem.

Code 8.7: cycle5.m
function $[y, b o u t]=\operatorname{cycle} 5(c$, row, col, $b)$
\%input : cost matrix c, position row, col,
\% basic matrix b
\%output: loop matrix y, bout
format short
bout=b;
$\mathrm{y}=\mathrm{c}$;
$[\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{c})$;
loop $=[$ row col $]$;
$\mathrm{c}($ row, col$)=\mathrm{Inf}$;
b(row, col) $=\operatorname{Inf}$;
rowsearch $=1$;
while $\left(\operatorname{loop}(1,1)^{\sim}=\right.$ row $\left\|\operatorname{loop}(1,2)^{\sim}=\operatorname{col}\right\|$

$$
\operatorname{length}(\operatorname{loop})==2)
$$

if rowsearch

$$
\mathrm{j}=1
$$

while rowsearch
if $\left(b(\operatorname{loop}(1,1), j)^{\sim}=0\right) \& \&\left(j^{\sim}=\operatorname{loop}(1,2)\right)$ loop $=[\operatorname{loop}(1,1)$ j; loop $]$; rowsearch $=0$;
elseif $\mathrm{j}=\mathrm{n}$
$\mathrm{b}(\operatorname{loop}(1,1), \operatorname{loop}(1,2))=0$;
loop=loop (2: length (loop) ,:);
rowsearch $=0$;
else
$\mathrm{j}=\mathrm{j}+1$;
end
end
else
$\mathrm{i}=1$;
while ~rowsearch
if $\left(\mathrm{b}(\mathrm{i}, \operatorname{loop}(1,2))^{\sim}=0\right) \& \&\left(\mathrm{i}^{\sim}=\operatorname{loop}(1,1)\right)$
loop $=[$ i $\operatorname{loop}(1,2) ;$ loop $]$;
rowsearch $=1$;
elseif $\mathrm{i} \Longrightarrow \mathrm{m}$
b(loop $(1,1), \operatorname{loop}(1,2))=0$;
loop=loop (2: length (loop) ,:);
rowsearch $=1$;
else
$\mathrm{i}=\mathrm{i}+1 ;$
end
end
end
end
l=length (loop);
theta=Inf;
minindex $=\operatorname{Inf}$;
for $\mathrm{i}=2: 2: 1$
if $\mathrm{c}(\operatorname{loop}(\mathrm{i}, 1), \operatorname{loop}(\mathrm{i}, 2))<$ theta theta $=\mathrm{c}(\operatorname{loop}(\mathrm{i}, 1), \operatorname{loop}(\mathrm{i}, 2))$; minindex $=\mathrm{i}$;
end

```
end
y(row, col)=theta;
for i=2:l-1
y(loop (i,1), loop (i, 2))=y(loop (i,1),
    loop (i,2))+(-1)^(i - 1)*theta;
end
end
```

MATLAB function basiccell6.m is written in the following Code 8.8 to find a basic cell from nonbasic cells.

Code 8.8: basiccell6.m

function $[\mathrm{c}, \mathrm{b}, \min]=\mathrm{basiccell} 6(\mathrm{c}, \mathrm{y}, \mathrm{b}$, row, col$)$ \%input : cost matrix c, basic matrix b
\%output: minimum value min

$$
[\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{c}) ;
$$

$$
\min =100
$$

$$
\text { for } \quad \mathrm{I}=1: \mathrm{m}
$$

$$
\text { for } \quad J=1: n
$$

$$
\text { if } y(\mathrm{I}, \mathrm{~J})==-\operatorname{Inf}
$$

$$
\text { if } \quad \mathrm{c}(\mathrm{I}, \mathrm{~J})<\min
$$

$$
\min =\mathrm{c}(\mathrm{I}, \mathrm{~J})
$$

end
end
end
end
for $I=1: m$
for $J=1: n$
if $y(I, J)==-\operatorname{Inf}$ $c(I, J)=c(I, J)-\min ;$ if $\mathrm{c}(\mathrm{I}, \mathrm{J})=0$ $\mathrm{b}(\mathrm{I}, \mathrm{J})=0$; end
elseif $y(I, J)==\operatorname{Inf}$ $c(I, J)=c(I, J)+\min ;$
$\mathrm{b}(\mathrm{I}, \mathrm{J})=1$;
end
end

```
    end
    c(row, col)=min;
    b}(\mathrm{ row , col ) =1;
end
```

Example 8.15. Find the optimal transportation cost for the following transportation problem in MATLAB.

In the Command Window,

```
>> A=[[3 4 6 8 8 9; 2 10 1 1 5 6; 7 11 40 20 3;
2 1 1 9 14 10]
>> sup }=[20; 30; 15; 13] 
>> dem=[lllllll}4
>> [minTcost,b,c] = vogel(A,sup,dem)
Output:
```

$x(2,3)=8$
$x(3,5)=6$
$\mathrm{x}(3,1)=9$
$\mathrm{x}(2,1)=22$
$x(1,4)=18$
$\mathrm{x}(4,2)=6$
$\mathrm{x}(1,1)=2$
$x(4,1)=7$

Output:

Nondegenerate
$\mathrm{u}=$
3
2
7
2
$\mathrm{v}=$
$\begin{array}{lllll}0 & -1 & -1 & 5 & -4\end{array}$
$\mathrm{b}=$

1	0	0	1	0
1	0	1	0	0
1	0	0	0	1
1	1	0	0	0

c $=$

2	0	0	18	0
22	0	8	0	0
9	0	0	0	6
7	6	0	0	0

>> $\mathrm{x}=\mathrm{uvx} 3(\mathrm{~b}, \mathrm{u}, \mathrm{v}, \mathrm{A})$
Output:
$\mathrm{x}=$

0	-2	-4	0	-10
0	-9	0	2	-8
0	-5	-34	-8	0
0	0	-8	-7	-12

>> [basic,row,col]=mostpositive4(A, x, c)
basic =

2
row $=$

2
$\operatorname{col}=$

4
>> [y, bout]=cycle5(c, row, col, b)

Output:

$\mathrm{y}=$

Inf	0	0	$-\operatorname{Inf}$	0
$-\operatorname{Inf}$	0	8	Inf	0
9	0	0	0	6
7	6	0	0	0

```
bout =
\begin{tabular}{lllll}
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0
\end{tabular}
>> [c,b,min]=basiccell6(c,y,b,row,col)
```


Output:

c $=$

20	0	0	0	0
4	0	8	18	0
9	0	0	0	6
7	6	0	0	0

$\mathrm{b}=$

1	0	0	0	0
1	0	1	1	0
1	0	0	0	1
1	1	0	0	0

$\min =$

18
>> $j=1 \quad \gg i=0$
>> $[u, v, b, c]=m u l t i p l i \operatorname{ers} 2(b, A, c, i, j)$

Output:

Nondegenerate
$\mathrm{u}=$

```
    2
    7
    2
v =
    0
    b =
\begin{tabular}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0
\end{tabular}
c =
\begin{tabular}{rrrrr}
20 & 0 & 0 & 0 & 0 \\
4 & 0 & 8 & 18 & 0 \\
9 & 0 & 0 & 0 & 6 \\
7 & 6 & 0 & 0 & 0
\end{tabular}
>> x=uvx3(b,u,v,A)
```


Output:

```
optimality reached
\(\mathrm{x}=\)
\begin{tabular}{rrrrr}
0 & -2 & -4 & -2 & -10 \\
0 & -9 & 0 & 0 & -8 \\
0 & -5 & -34 & -10 & 0 \\
0 & 0 & -8 & -9 & -12
\end{tabular}
>> [basic, row, col]=mostpositive4(A, x, c)
```


Output:

```
optimal cost obtained
```

basic $=$
0
row $=$

0
$\operatorname{col}=$

0

8.7 Exercises

Exercise 8.1. Solve the following transportation problems using the northwest corner method.
(a) O_{2}

O_{1}	D_{1}	D_{2}		${ }_{4}$
	15	10	17	18
O_{2}	16	13	12	13
O_{3}	12	17	20	11
	3	3		5

(b)

Exercise 8.2. Solve the following transportation problems using the least cost method.
(a) O_{2}

(b)

Exercise 8.3. Solve the following transportation problems using Vogel's Approximation Method.
(a)

(b)

Exercise 8.4. Determine an initial basic feasible solution to the following transportation problem using the
(a) northwest corner method;
(b) least cost method;
(c) Vogel's Approximation Method.

Exercise 8.5. Obtain an optimal transportation cost for the following transportation problem.

Exercise 8.6. Determine an optimal basic feasible solution and the minimum total cost for the following transportation problem.

Exercise 8.7. Find an optimal solution for and the corresponding cost of the transportation problem.

Exercise 8.8. Find an optimal solution for the following minimization transportation problem.

	D_{1}	D_{2}	D_{3}	D_{4}	
O_{1}	-19	20		10	7
O_{2}	70	20	40	60	9
O_{3}	40	8	70	20	18
	S	8		14	

Chapter 9

The Assignment Problem

9.1 Introduction

An assignment problem is a particular case of the transportation problem. The goal of the assignment problem is to minimize the cost or time to finish the number of jobs assigned to the number of persons. An important characteristic of the assignment problem is that the number of jobs is equal to the number of persons.

The mathematical model of the assignment problem is given as

$$
x_{i j}= \begin{cases}1 & \text { if } i^{\text {th }} \text { job is assigned to } j^{\text {th }} \text { person, } \\ 0 & \text { if } i^{\text {th }} \text { job is not assigned to } j^{\text {th }} \text { person. }\end{cases}
$$

Suppose that $c_{i j}$ is the cost if $i^{\text {th }}$ job is assigned to $j^{\text {th }}$ person. Our goal is to minimize the cost $c_{i j}$ associated with an assignment $x_{i j}$, then the linear programming problem can be formulated for the assignment problem as

$$
\begin{align*}
\operatorname{minimize} & \sum_{i=1}^{m} \sum_{j=1}^{m} c_{i j} x_{i j} \\
\text { subject to } & \sum_{i=1}^{m} x_{i j}=1 \tag{9.1}\\
& \sum_{j=1}^{m} x_{i j}=1, \\
& x_{i j}=0 \text { or } 1, \quad 1 \leq i, j \leq m .
\end{align*}
$$

The first set of constraints in (9.1) indicate that for each j, there is exactly one i for which $x_{i j}=1$, that is, for each job there is exactly one person. Similarly, the second set of constraints in (9.1) indicate that for each i, there is exactly one j for which $x_{i j}=1$, that is, each person is assigned exactly one job.

Note that a transportation problem reduces to an assignment problem, if $m=n$ and $a_{i}=b_{j}$, where $i, j=1,2, \ldots, m$.

Theorem 9.1. If a constant is added or subtracted to every element of a row and/or column of the cost matrix of an assignment problem, then the resulting assignment problem has the same optimal solution as the original problem.

Proof. Mathematically, the theorem can be stated as If $z=\sum_{i=1}^{m} \sum_{j=1}^{m} c_{i j} x_{i j}$ over all $x_{i j}$ such that $\sum_{i=1}^{m} x_{i j}=\sum_{j=1}^{m} x_{i j}=1, x_{i j} \geq 0$, then $x_{i j}=x_{i j}^{*}$ and also minimizes $z^{*}=\sum_{i=1}^{m} \sum_{j=1}^{m} c_{i j}^{*} x_{i j}$ where $c_{i j}^{*}=$ $c_{i j} \pm u_{i} \pm v_{j}$, for $i, j=1,2, \ldots, m$ and u_{i}, and v_{j} are real numbers. We now prove it. We know that

$$
\begin{aligned}
z^{*} & =\sum_{i=1}^{m} \sum_{j=1}^{m} c_{i j}^{*} x_{i j} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{m}\left(c_{i j} \pm u_{i} \pm v_{j}\right) x_{i j} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{m} c_{i j} x_{i j} \pm \sum_{i=1}^{m} \sum_{j=1}^{m} u_{i} x_{i j} \pm \sum_{i=1}^{m} \sum_{j=1}^{m} v_{j} x_{i j} \\
& =z \pm \sum_{i=1}^{m} u_{i} \sum_{j=1}^{m} x_{i j} \pm \sum_{j=1}^{m} v_{j} \sum_{i=1}^{m} x_{i j} .
\end{aligned}
$$

Since

$$
\sum_{i=1}^{m} x_{i j}=\sum_{j=1}^{m} x_{i j}=1
$$

therefore

$$
z^{*}=z \pm \sum_{i=1}^{m} u_{i} \pm \sum_{j=1}^{m} v_{j} .
$$

Note that z^{*} is minimum when z is minimum. Thus, $x_{i j}=x_{i j}^{*}$ also minimizes z^{*}.

Theorem 9.2. If all $c_{i j} \geq 0$ and there exists a solution $x_{i j}=x_{i j}^{*}$ such that $z^{*}=\sum_{i=1}^{m} \sum_{j=1}^{m} c_{i j}^{*} x_{i j}=0$, then the present solution is an optimal solution.

Proof. Given that $c_{i j} \geq 0$, therefore, the value of $z=\sum_{i=1}^{m} \sum_{j=1}^{m} c_{i j} x_{i j}$ cannot be negative. Thus, its minimum value is zero which is attained at $x_{i j}=x_{i j}^{*}$. Therefore, the present solution is optimal. \square

Definition 9.1 (Reduced Matrix). If a matrix contains at least one zero in each row and column, then such matrix is called a "reduced matrix".

9.2 Hungarian Method

The Hungarian method was developed in 1955 by H. Kuhn. He gave it the name "Hungarian Method" because two Hungarian mathematicians, Denes Konig and Jeno Egervary, had already worked on this algorithm.

Algorithm

1. Choose the smallest cost entry in each row of the tableau, subtract this smallest cost entry from each entry in that row of tableau to get the reduced matrix.
2. If the tableau is a reduced matrix, then go to step 3 , otherwise do the same procedure of step 1 for the columns which do not have at least one zero.
3. For the first assignment, choose the row having only one zero. Box this zero and cross all other zeros of the row and column in which this boxed zero lies.
4. If each zero of the reduced matrix is either boxed or crossed, and each row and column contains exactly one boxed zero, then optimality is reached so stop, otherwise go to step 5 .
5. Draw the minimum number of horizontal and vertical lines so that all the zeros are covered. This can be done easily by first covering zeros in that row or column which has the maximum number of zeros. In case of a tie, we take any one, and search the rows or columns having the next lower number of zeros. Continue this until all zeros are covered.
6. Locate the smallest entry from the uncovered entries, say ' x '. Subtract ' x ' from all entries not covered by these lines and add ' x ' to all those entries that lie at the intersection of these lines. The entries lying on these lines but not on the intersection must be left unchanged.
7. Go to step 3.

Note: For application of the above algorithm, we assume that all $c_{i j}$ are non-negative and the assignment problem is of the minimization case.

Example 9.1. Four persons A, B, C, D are assigned to work on four different machines $I, I I, I I I, I V$. The following table shows how long it takes for a specific person to finish a job at a specific machine.

Find the optimal solution, i.e., how the machines should be assigned to A, B, C, D so that the job could be completed in minimum time.

We want to find $x_{i j}=0$ or 1 so as to minimize $z=\sum_{i=1}^{4} \sum_{j=1}^{4} c_{i j} x_{i j}$.

1. We subtract the smallest entry of each row from all the entries
of the respective rows.

	I	$I I$	$I I I$	$I V$
A	0	18	9	3
B	9	20	0	22
C	23	0	3	0
D	9	12	4	0

We achieved zero in each row and column. Therefore, the matrix is a reduced matrix.
2. For the first assignment, choose the row having only one zero and box this zero and cross all other zeros of the row and column in which the boxed zero lies.

	I	$I I$	$I I I$	$I V$
A	$\boxed{0}$	18	9	3
B	9	20	0	22
C	23	0	3	$\not 2$
D	9	12	4	0

3. Each zero of the reduced matrix is either boxed or crossed. Since each row and column contains exactly one boxed zero, therefore optimality is reached.
The optimal assignment is

$$
\mathrm{A} \rightarrow \mathrm{I}, \mathrm{~B} \rightarrow \mathrm{III}, \mathrm{C} \rightarrow \mathrm{II}, \mathrm{D} \rightarrow \mathrm{IV}
$$

The optimal value is

$$
8+4+15+10=37
$$

Example 9.2. Consider the following assignment problem:

\[

\]

Find the optimal solution to minimize the total time.

1. Row reduction

1	1	3	0	4
3	2	5	0	4
1	3	4	0	5
4	3	3	0	3
0	1	4	0	5

2. Column reduction

1	0	0	0	1
3	1	2	0	1
1	2	1	0	2
4	2	0	0	0
0	0	1	0	2

3. Each row and column do not have a boxed zero. Thus, the optimal solution is not obtained.

1	0	\nsupseteq	$\not め$	1
3	1	2	0	1
1	2	1	\nless	2
4	2	0	\nless	\nless
0	\nless	1	\nless	2

4. We draw the minimum number of horizontal and vertical lines so that all the zeros are covered. Each horizontal line must pass through an entire row and each vertical line must pass through an entire column. This can be done easily by first covering zeros in that row or column which has a maximum number of zeros. We search the rows or columns having the next lower number of zeros and continue this till all zeros are covered. Note that only four lines are required to cover all zeros, i.e., only four assignments could be made at this stage.

1	0	0	\oint	1
3	1	2	\emptyset	1
1	2	1	\emptyset	2
4	2	0	φ	0
0	0	1	\oint	2

5. The smallest uncovered entry is 1 . We subtract 1 from all elements not covered by these lines and add 1 to all those elements that lie at the intersection of these lines. Note that the entries lying on these lines, but not on the intersection must be left unchanged.

1	0	0	1	1
2	0	1	0	0
0	1	0	0	1
4	2	0	1	0
0	0	1	1	2

6 . No single zero is in any row or column of the tableau. Therefore, we should go for rows with two zeros. Cell $(1,2)$ contains the first zero in the $1^{\text {st }}$ row. We box it and cross all other zeros in the $1^{\text {st }}$ row and $2^{\text {nd }}$ column. We move row wise. There is a single 0 in the $5^{\text {th }}$ row at cell $(5,1)$. We apply the same process to box this and move column-wise until all zeros are either boxed or crossed.

1	0	\nless	1	1
2	\nsim	1	0	\nless
\#	1	0	\#	1
4	2	\nless	1	0
0	め	1	1	2

Each row and column contains exactly one boxed zero. Therefore, optimality is reached.

The optimal assignment is

Person	Job	Time
A	$I I$	5
B	$I V$	3
C	$I I I$	9
D	V	6
E	I	6
		29

Example 9.3. Solve the following assignment problem.

We simply follow the following procedure:

1. We reduce the matrix row-wise.

	I	$I I$	$I I I$	$I V$	V
A	3	5	4	0	1
B	2	5	5	3	0
C	4	7	4	4	0
D	0	2	2	1	0
E	4	6	5	4	0

2. Note that $2^{\text {nd }}$ and $3^{\text {rd }}$ columns do not contain zero. Therefore,
we reduce the matrix column-wise.

		$I I$	$I I I$	$I V$	V
A	3	3	2	0	1
B	2	3	3	3	0
C	4	5	2	4	0
D	0	0	0	1	0
E	4	4	3	4	0

3. Each row and column do not have a boxed zero.

	I	II	III	IV	V
A	3	3	2	0	1
B	2	3	3	3	0
C	4	5	2	4	*
D	0	Q	\|	1	*
E	4	4	3	4	Q

4. We draw the minimum number of horizontal and vertical lines to supress all zeros.

3	3	2	\emptyset	\neq
2	3	3	$\$$	\emptyset
4	5	2	4	\emptyset
0	0	0		
4	4	3	4	\emptyset

Number of lines $=3<$ number of rows $=5$.
5 . The smallest entry is 2 from the uncovered lines. We subtract it from the uncovered entries and add it to entries on the
intersection of the lines.

	I	$I I$	$I I I$	$I V$	V
A	1	1	0	0	1
B	0	1	1	3	0
C	2	3	0	4	0
D	0	0	0	3	2
E	2	2	1	4	0

6. Each row and column have a boxed zero. Therefore, we reached to the optimal solution.

	I	II	III	IV	V
A	1	1	\#	0	1
B	0	1	1	3	\#
C	2	3	0	4	\#
D	M	0	\#	3	2
E	2	2	1	4	0

The optimal assignment is

$$
A \rightarrow I V, B \rightarrow I, C \rightarrow I I I, D \rightarrow I I, E \rightarrow V
$$

and the optimal value is

$$
1+6+5+3+2=17
$$

Example 9.4. A group of five men and five women live on an island. The amount of happiness that $i^{\text {th }}$ man and $j^{\text {th }}$ woman derive by spending a fraction x_{ij} of their lives together is $c_{\mathrm{ij}} \mathrm{x}_{\mathrm{ij}}$, where c_{ij} is given in the table below:

\[

\]

We simply follow the following procedure:

1. According to the Hungarian Method, we subtract the minimum of each row from all the entries of the respective rows.

(woman)					
	W_{1}	W_{2}	W_{3}	W_{4}	W_{5}
M_{1}	2	0	2	3	0
M_{2}	3	4	3	0	2
$(\operatorname{man})^{M_{3}}$	1	1	0	0	2
${ }^{(m a n)} M_{4}$	0	0	4	2	3
M_{5}	1	3	5	3	0

2. Note that the $2^{\text {nd }}$ and $5^{\text {th }}$ rows contain a single zero, box the zeros and cross all other zeros of the column in which the boxed zero lies. Apply the same procedure for the remaining rows.

\[

\]

Each row and column has a boxed zero. Therefore, we reached the optimal solution.

The optimal assignment is

$$
M_{1} \rightarrow W_{2}, M_{2} \rightarrow W_{4}, M_{3} \rightarrow W_{3}, M_{4} \rightarrow W_{1}, M_{5} \rightarrow W_{5}
$$

and the optimal value is

$$
2+1+3+2+2=10
$$

Example 9.5. Consider the assignment problem shown below. In this problem, five different optimization problems are assigned to five different researchers such that the total processing time is minimized. The matrix entries represent processing time in hours.

\[

\]

1. Row reduction

2	4	7	4	0
0	9	7	7	4
6	7	0	2	2
2	0	1	3	0
0	5	7	3	7

2. Column reduction

2	4	7	2	0
0	9	7	5	4
6	7	0	0	2
2	0	1	1	0
0	5	7	1	7

3. Each row and column does not have a boxed zero.

2	4	7	2	0
0	9	7	5	4
6	7	0	\nless	2
2	0	1	1	\nmid
$\not 2$	5	7	1	7

4. We now draw the minimum number of horizontal or vertical lines to suppress all the zeros.

2	4	7	2	ϕ
ϕ	9	7	5	4
ϕ	7	0	0	2
2	0	1	1	0
ϕ	5	7	1	7

The number of lines drawn $=4<$ number of rows $(=5)$.
5 . The smallest uncovered entry is 1 . We subtract it from all the uncovered entries and add it to the entries on the intersection of the lines.

2	4	6	1	0
0	9	6	4	4
7	8	0	0	3
2	0	0	0	0
0	5	6	0	7

6. The number of boxed zeros is equal to the number of rows. We achieved the optimal assignment.

2	4	6	1	$\boxed{0}$
00	9	6	4	4
7	8	0	\nless	3
2	0	\nless	\nless	\nmid
$\not \Longrightarrow$	5	6	0	7

The optimal assignment is

Researcher	Problem	Time
R_{1}	P_{5}	1
R_{2}	P_{1}	3
R_{3}	P_{3}	3
R_{4}	P_{2}	2
R_{5}	P_{4}	5
		14

The total processing time is 14 hours.
MATLAB function hungarian. m is written in the following Code 9.1 to find an optimal solution of the assignment problem.

Code 9.1: hungarian.m
function $[\mathrm{C}, \mathrm{T}]=$ hungarian (A)
$\%[\mathrm{C}, \mathrm{T}]=$ hungarian (A)
$\% A-a \operatorname{square} \operatorname{cost}$ matrix
$\%$ - the optimal assignment
$\% T$ - the cost of the optimal assignment
$[\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{A})$;
if $\quad\left(\mathrm{m}^{\sim}=\mathrm{n}\right)$
error ('HUNGARIAN: Cost matrix must be square!');
end
\% Save original cost matrix.
orig=A;
\% Reduce matrix.
$A=$ hminired (A);
\% Do an initial assignment.
$[\mathrm{A}, \mathrm{C}, \mathrm{U}]=\mathrm{hminiass}(\mathrm{A})$;
\% Repeat while we have unassigned rows while $(\mathrm{U}(\mathrm{n}+1))$
\% Start with no path, no unchecked zeros,
\% and no unexplored rows.
$\mathrm{LR}=\mathrm{zeros}(1, \mathrm{n})$;
$\mathrm{LC}=\mathrm{zeros}(1, \mathrm{n})$;
$\mathrm{CH}=\operatorname{zeros}(1, \mathrm{n})$;
$R H=[\operatorname{zeros}(1, n)-1]$;
\% No labelled columns.
$\mathrm{SLC}=[]$;
\% Start path in first unassigned row
$\mathrm{r}=\mathrm{U}(\mathrm{n}+1)$;
\% Mark row with end-of-path label
$\mathrm{LR}(\mathrm{r})=-1$;
\% Insert row first in labelled row set
$\mathrm{SLR}=\mathrm{r}$;
\% Repeat until we manage to find an
\% assignable zero.
while (1)
\% If there are free zeros in row r
if $\left(\mathrm{A}(\mathrm{r}, \mathrm{n}+1)^{\sim}=0\right)$
$\%$...get column of first free zero.
$\mathrm{l}=-\mathrm{A}(\mathrm{r}, \mathrm{n}+1)$;
\% If there are more free zeros in row r and \%row r is not
\% yet marked as unexplored..
if $\left(\mathrm{A}(\mathrm{r}, \mathrm{l})^{\sim}=0 \& \operatorname{RH}(\mathrm{r})==0\right)$
\% Insert row r first in unexplored list
$\mathrm{RH}(\mathrm{r})=\mathrm{RH}(\mathrm{n}+1)$;
$R H(n+1)=r ;$
\% Mark in which column the next unexplored
\%zero in this row is
$\mathrm{CH}(\mathrm{r})=-\mathrm{A}(\mathrm{r}, \mathrm{l})$;
end
else
\% If all rows are explored.
if $\quad(\mathrm{RH}(\mathrm{n}+1)<=0)$
\% Reduce matrix.
$[\mathrm{A}, \mathrm{CH}, \mathrm{RH}]=$ hmreduce $(\mathrm{A}, \mathrm{CH}, \mathrm{RH}, \mathrm{LC}, \mathrm{LR}, \mathrm{SLC}, \mathrm{SLR})$;
end
\% Re-start with first unexplored row
$\mathrm{r}=\mathrm{RH}(\mathrm{n}+1)$;
\% Get column of next free zero in row r $\mathrm{l}=\mathrm{CH}(\mathrm{r})$;
\% Advance 'column of next free zero'
$\mathrm{CH}(\mathrm{r})=-\mathrm{A}(\mathrm{r}, \mathrm{l})$;
\% If this zero is last in the list

$$
\text { if } \quad(\mathrm{A}(\mathrm{r}, \mathrm{l})==0)
$$

\% ...remove row r from unexplored list
$\mathrm{RH}(\mathrm{n}+1)=\mathrm{RH}(\mathrm{r})$;
$R H(r)=0$;
end
end
\% While the column l is labelled, i.e.
\%in path
while $\left(\mathrm{LC}(\mathrm{l})^{\sim}=0\right)$
\% If row r is explored
if $\quad(\mathrm{RH}(\mathrm{r})==0)$
\% If all rows are explored
if $\quad(\mathrm{RH}(\mathrm{n}+1)<=0)$
\% Reduce cost matrix
$[\mathrm{A}, \mathrm{CH}, \mathrm{RH}]=$ hmreduce $(\mathrm{A}, \mathrm{CH}, \mathrm{RH}, \mathrm{LC}, \mathrm{LR}, \mathrm{SLC}, \mathrm{SLR})$;
end
\% Re-start with first unexplored row
$\mathrm{r}=\mathrm{RH}(\mathrm{n}+1)$;
end
\% Get column of next free zero in row r $\mathrm{l}=\mathrm{CH}(\mathrm{r})$;
\% Advance "column of next free zero" $\mathrm{CH}(\mathrm{r})=-\mathrm{A}(\mathrm{r}, \mathrm{l})$;
\% If this zero is last in list if $(\mathrm{A}(\mathrm{r}, \mathrm{l})==0)$
\% remove row r from unexplored list
$\mathrm{RH}(\mathrm{n}+1)=\mathrm{RH}(\mathrm{r})$;
$\mathrm{RH}(\mathrm{r})=0$;
end
end
\% If the column found is unassigned if $(\mathrm{C}(\mathrm{l})==0)$
\% Flip all zeros along the path in LR,LC
$[\mathrm{A}, \mathrm{C}, \mathrm{U}]=\mathrm{hmflip}(\mathrm{A}, \mathrm{C}, \mathrm{LC}, \mathrm{LR}, \mathrm{U}, \mathrm{l}, \mathrm{r})$;
\%and exit to continue with next unassigned \%row.
break;
else
\% ...else add zero to path
\% Label column l with row r $\mathrm{LC}(\mathrm{l})=\mathrm{r}$;
\% Add l to the set of labelled columns $\mathrm{SLC}=\left[\begin{array}{ll}\text { SLC } & 1\end{array}\right]$;
\% Continue with the row assigned to column l $\mathrm{r}=\mathrm{C}(1)$;
\% Label row r with column 1.
$\operatorname{LR}(\mathrm{r})=1$;
\% Add r to the set of labelled rows.
SLR $=\left[\begin{array}{ll}\text { SLR r }\end{array}\right]$;
end
end
end
\% Calculate the total cost.
$\mathrm{T}=$ sum (orig (logical(sparse (C, 1 : size (orig , 2) , 1
))) ;
function $A=$ hminired (A)
\%HMINIRED Initial reduction of cost
\%matrix for the Hungarian method.
$\% \mathrm{~B}=$ assredin (A)
\%A-the unreduced cost matrix.
\%B-the reduced cost matrix with linked
\%zeros in each row.
$[\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{A}) ;$
\%Subtract column-minimum values from each \%column
$\operatorname{col} \operatorname{Min}=\min (\mathrm{A})$;
$\mathrm{A}=\mathrm{A}-\operatorname{colMin}($ ones $(\mathrm{n}, 1),:)$;
\%Subtract row-minimum values from each row rowMin $=\min \left(A^{\prime}\right)^{\prime}$;
$A=A-\operatorname{rowMin}(:$, ones $(1, n))$;
\% Get positions of all zeros.
$[\mathrm{i}, \mathrm{j}]=\mathrm{find}(\mathrm{A}==0)$;
\% Extend A to give room for row zero list
\% header column.
$\mathrm{A}(1, \mathrm{n}+1)=0$;
for $k=1: n$
\% Get all column in this row.
$\operatorname{cols}=\mathrm{j}(\mathrm{k}=\mathrm{i})^{\prime}$;
\% Insert pointers in matrix.
$\mathrm{A}\left(\mathrm{k},\left[\begin{array}{ll}\mathrm{n}+1 & \operatorname{cols}\end{array}\right]\right)=\left[\begin{array}{ll}-\operatorname{cols} & 0\end{array}\right]$;
end
function $[A, C, U]=h m i n i a s s(A)$
\%HMINIASS Initial assignment of the
\%Hungarian method.
$\%[\mathrm{~B}, \mathrm{C}, \mathrm{U}]=$ hminiass (A)
$\% A-t h e$ reduced cost matrix.
$\% \mathrm{~B}$-the reduced cost matrix, with assigned
\% zeros removed from lists.
$\% \mathrm{C}-\mathrm{a}$ vector. $\mathrm{C}(\mathrm{J})=\mathrm{I}$ means row I is
\%assigned to column J,
\%i.e.there is an assigned zero in
\% position I, J
\%U-vector with a linked list of
\%unassigned rows
$[\mathrm{n}, \mathrm{np} 1]=\operatorname{size}(\mathrm{A}) ;$
\% Initialize return vectors.
$\mathrm{C}=\mathrm{zeros}(1, \mathrm{n})$;
$\mathrm{U}=\mathrm{zeros}(1, \mathrm{n}+1)$;
\% Initialize last/next zero "pointers"
$\mathrm{LZ}=\mathrm{zeros}(1, \mathrm{n})$;
$\mathrm{NZ}=\mathrm{zeros}(1, \mathrm{n})$;
for $\quad i=1: n$
\% Set j to first unassigned zero in row i
$\mathrm{l} j=\mathrm{n}+1$;
$j=-A(i, l j) ;$
\% Repeat until we have no more $\operatorname{zeros}(\mathrm{j}==0)$
\% or we find a zero
$\%$ in an unassigned column $(\mathrm{c}(\mathrm{j})==0)$
while $\left(C(j)^{\sim}=0\right)$
\% Advance lj and j in zero list.
$\mathrm{l} j=\mathrm{j}$;
$j=-A(i, l j) ;$
\% Stop if we hit end of list
if $\quad(\mathrm{j}==0)$
break;
end
end
if $\quad\left(\mathrm{j}^{\sim}=0\right)$
\% We found a zero in an unassigned column.
\% Assign row i to column j.
$\mathrm{C}(\mathrm{j})=\mathrm{i}$;
\% Remove $\mathrm{A}(\mathrm{i}, \mathrm{j})$ from unassigned zero list
$A(\mathrm{i}, \mathrm{l} j)=\mathrm{A}(\mathrm{i}, \mathrm{j})$;
\% Update next/last unassigned zero pointers $N Z(i)=-A(i, j)$; $L Z(i)=l j$;
\% Indicate $A(i, j)$ is an assigned zero
$\mathrm{A}(\mathrm{i}, \mathrm{j})=0$;
else
\%We found no zero in an unassigned column
\%Check all zeros in this row.
$\mathrm{l} j=\mathrm{n}+1$;
$\mathrm{j}=-\mathrm{A}(\mathrm{i}, \mathrm{l} \mathrm{j})$;
\% Check all zeros in this row for a suitable
\% zero in another row.
while $\left(\mathrm{j}^{\sim}=0\right)$
\%Check the zero in the row assigned to this \%column
$\mathrm{r}=\mathrm{C}(\mathrm{j})$;
\% Pick up last/next pointers.
$\operatorname{lm}=\mathrm{LZ}(\mathrm{r})$;
$\mathrm{m}=\mathrm{NZ}(\mathrm{r})$;
\%Check all unchecked zeros in free list of \% this row.
while $\left(\mathrm{m}^{\sim}=0\right)$
\% Stop if we find an unassigned column.
if $\quad(\mathrm{C}(\mathrm{m})==0)$
break;
end
\% Advance one step in list.
$\operatorname{lm}=\mathrm{m}$;
$\mathrm{m}=-\mathrm{A}(\mathrm{r}, \operatorname{lm})$;
end
if $\quad(\mathrm{m}==0)$
\% We failed on row r. Continue with next
\% zero on row i
$\mathrm{l}=\mathrm{j}$;
$\mathrm{j}=-\mathrm{A}(\mathrm{i}, \mathrm{lj})$;
else
\% We found a zero in an unassigned column
\%Replace zero at (r,m) in unassigned list \% with zero at (r, j)
$A(\mathrm{r}, \mathrm{lm})=-\mathrm{j}$;
$A(r, j)=A(r, m) ;$
\% Update last/next pointers in row r.
$\mathrm{NZ}(\mathrm{r})=-\mathrm{A}(\mathrm{r}, \mathrm{m})$;
$\mathrm{LZ}(\mathrm{r})=\mathrm{j}$;
\% Mark $\mathrm{A}(\mathrm{r}, \mathrm{m})$ as an assigned zero in
\%the matrix
$\mathrm{A}(\mathrm{r}, \mathrm{m})=0$;
\% ...and in the assignment vector.
$C(m)=r$;
\%Remove $A(\mathrm{i}, \mathrm{j})$ from unassigned list.
$\mathrm{A}(\mathrm{i}, \mathrm{l} \mathrm{j})=\mathrm{A}(\mathrm{i}, \mathrm{j})$;
\%Update last/next pointers in row r.
$\mathrm{NZ}(\mathrm{i})=-\mathrm{A}(\mathrm{i}, \mathrm{j})$;
LZ(i) $=1 \mathrm{j}$;
\% Mark $\mathrm{A}(\mathrm{r}, \mathrm{m})$ as an assigned zero in the
\% matrix
$\mathrm{A}(\mathrm{i}, \mathrm{j})=0$;
\%and in the assignment vector.
$\mathrm{C}(\mathrm{j})=\mathrm{i}$;
\% Stop search.
break;
end
end
end
end
\%Create vector with list of unassigned \%rows.
\% Mark all rows have assignment.
$\mathrm{r}=\mathrm{zeros}(1, \mathrm{n})$;
rows $=\mathrm{C}\left(\mathrm{C}^{\sim}=0\right)$;
r (rows) = rows ;
empty $=\mathrm{find}(\mathrm{r}==0)$;
\% Create vector with linked list of
\%unassigned rows.
$\mathrm{U}=\mathrm{zeros}(1, \mathrm{n}+1)$;
$\mathrm{U}\left(\left[\begin{array}{ll}\mathrm{n}+1 & \text { empty }\end{array}\right]\right)=\left[\begin{array}{ll}\operatorname{empty} & 0\end{array}\right]$;
function $[A, C, U]=h m f l i p(A, C, L C, L R, U, l, r)$
\%HMFLIP Flip assignment state of all
\%zeros along a path.
\%
$\%[\mathrm{~A}, \mathrm{C}, \mathrm{U}]=\mathrm{hmflip}(\mathrm{A}, \mathrm{C}, \mathrm{LC}, \mathrm{LR}, \mathrm{U}, \mathrm{l}, \mathrm{r})$
\%Input:
$\% \mathrm{~A}$ - the cost matrix.
$\%$ - the assignment vector.
\%LC- the column label vector.
\%LR- the row label vector.
$\% r, l-$ position of last zero in path.
\%Output:
$\% A$-updated cost matrix.
$\%$-updated assignment vector.
$\% \mathrm{U}$-updated unassigned row list vector
$\mathrm{n}=\operatorname{size}(\mathrm{A}, 1)$;
while (1)
\% Move assignment in column l to row r $\mathrm{C}(\mathrm{l})=\mathrm{r}$;
\% Find zero to be removed from zero list
\% Find zero before this
$m=$ find $(A(r,:)==-l)$;
\% Link past this zero
$\mathrm{A}(\mathrm{r}, \mathrm{m})=\mathrm{A}(\mathrm{r}, \mathrm{l})$;
$\mathrm{A}(\mathrm{r}, \mathrm{l})=0$;
\% If this was the first zero of the path if $\quad(\operatorname{LR}(r)<0)$
\%remove row from unassigned row list
\%and return
$\mathrm{U}(\mathrm{n}+1)=\mathrm{U}(\mathrm{r})$;
$\mathrm{U}(\mathrm{r})=0$;
return;
else
\% Move back in this row along the path and \% get column of next zero $\mathrm{l}=\mathrm{LR}$ (r) ;
\% Insert zero at (r,l) first in zero list $\mathrm{A}(\mathrm{r}, \mathrm{l})=\mathrm{A}(\mathrm{r}, \mathrm{n}+1)$;
$\mathrm{A}(\mathrm{r}, \mathrm{n}+1)=-\mathrm{l}$;
\% Continue back along the column to get
\%row of next zero in path.
$\mathrm{r}=\mathrm{LC}(\mathrm{l})$;
end
end
function $[\mathrm{A}, \mathrm{CH}, \mathrm{RH}]=$ hmreduce $(\mathrm{A}, \mathrm{CH}, \mathrm{RH}, \mathrm{LC}, \mathrm{LR}$, SLC, SLR)
\%Reduce parts of cost matrix in
\% the Hungarian method.
$\%[\mathrm{~A}, \mathrm{CH}, \mathrm{RH}]=$ hmreduce $(\mathrm{A}, \mathrm{CH}, \mathrm{RH}, \mathrm{LC}, \mathrm{LR}, \mathrm{SLC}, \mathrm{SLR})$
\%Input:
\%A -Cost matrix.
\%CH-vector of column of 'next zeros' in
\%each row
\%RH- vector with list of unexplored rows
\%LC-column labels
\%RC -row labels
\%SLC-set of column labels
\%SLR-set of row labels
\%
\%Output:
\%A -Reduced cost matrix.
\%CH-Updated vector of 'next zeros' in
\%each row
\%RH - Updated vector of unexplored rows
$\mathrm{n}=\operatorname{size}(\mathrm{A}, 1)$;
\%Find which rows are covered,
\%i.e. unlabelled
coveredRows $=\mathrm{LR}==0$;
\%Find which columns are covered,
\%i.e. labelled
coveredCols $=\mathrm{LC}^{\sim}=0$;
r=find (~ coveredRows);
$\mathrm{c}=\mathrm{find}(\sim \operatorname{coveredCols})$;
\% Get minimum of uncovered elements.
$m=\min (\min (A(r, c)))$;
\%Subtract minimum from all uncovered elements $\mathrm{A}(\mathrm{r}, \mathrm{c})=\mathrm{A}(\mathrm{r}, \mathrm{c})-\mathrm{m}$;
\% Check all uncovered columns
for $\mathrm{j}=\mathrm{c}$
\% ... and uncovered rows in path order
for $i=S L R$
\% If this is a (new) zero
if $\quad(\mathrm{A}(\mathrm{i}, \mathrm{j})==0)$
\% If the row is not in unexplored list
if $\quad(\mathrm{RH}(\mathrm{i})==0)$
\% ...insert it first in unexplored list
$\mathrm{RH}(\mathrm{i})=\mathrm{RH}(\mathrm{n}+1)$;
$\mathrm{RH}(\mathrm{n}+1)=\mathrm{i}$;
\%Mark this zero as "next free" in this row
$\mathrm{CH}(\mathrm{i})=\mathrm{j}$;
end
\% Find last unassigned zero on row I
row=A(i, :);
colsInList $=-$ row $($ row $<0)$;
if (length (colsInList) $==0$)
\% No zeros in the list.
$\mathrm{l}=\mathrm{n}+1$;
else
$l=\operatorname{colsInList}(\operatorname{row}(\operatorname{colsInList})==0)$;
end
\% Append this zero to end of list.
$A(i, l)=-j$;
end
end
end
\% Add minimum to all doubly covered elements.
r=find (coveredRows);
$\mathrm{c}=$ find (coveredCols) ;
\% Take care of the zeros we will remove.
$[\mathrm{i}, \mathrm{j}]=\mathrm{find}(\mathrm{A}(\mathrm{r}, \mathrm{c})<=0)$;
$\mathrm{i}=\mathrm{r}$ (i);
$\mathrm{j}=\mathrm{c}(\mathrm{j})$;
for $\mathrm{k}=1$:length (i)
\% Find zero before this in this row.
$\mathrm{l}=\mathrm{find}(\mathrm{A}(\mathrm{i}(\mathrm{k}),:)==-\mathrm{j}(\mathrm{k}))$;
\% Link past it.
$A(\mathrm{i}(\mathrm{k}), \mathrm{l} j)=\mathrm{A}(\mathrm{i}(\mathrm{k}), \mathrm{j}(\mathrm{k}))$;
\% Mark it as assigned.
A(i $(k), j(k))=0$;
end
$\mathrm{A}(\mathrm{r}, \mathrm{c})=\mathrm{A}(\mathrm{r}, \mathrm{c})+\mathrm{m} ;$
Example 9.6. Solve the following assignment problem in MATLAB.

6768	124	916	2489
124	6768	6768	2489
2489	337	2489	6768
916	916	6768	10000

In the Command prompt

>> $A=\left[\begin{array}{llllllllllllllll}6768 & 124 & 916 & 2489 ; & 124 & 6768 & 6768 & 2489 ; & 2489 & 337\end{array}\right.$
2489 6768; 9169166768 10000]
>> [C,T]=hungarian(A)

Output:

$\mathrm{C}=4 \begin{array}{llll}4 & 3 & 1 & 2\end{array}$
$T=4658$

Example 9.7. Determine an optimal assignment in MATLAB for the following assignment problem.

12	16	14	10	5	12	18	13
8	8	7	9	8	11	10	12
13	18	16	20	9	11	14	17
14	18	17	19	12	10	15	14
13	15	12	13	6	18	13	13
6	5	8	9	8	7	4	7
1	4	7	6	3	3	2	5
11	9	10	12	7	5	7	11

In the Command prompt


```
18 16 20 9 11 14 17; 14 18 17 19 12 10 15 14; 13 15
12 13 6 18 13 13; 6 5 8 9 8 7 4 7; 1 4 7 6 3 3 2 5;
11 9 10 12 7 5 7 11]
>> [C,T]=hungarian(A)
```


Output:

$$
\begin{array}{llllllll}
\mathrm{C}=7 & 6 & 2 & 1 & 5 & 3 & 8 & 4 \\
\mathrm{~T}=61
\end{array}
$$

9.3 Exercises

Exercise 9.1. A traveling company owns cars in each of the five locations $L 1, L 2, L 3, L 4, L 5$ and the passengers are in each of the five villages $V 1, V 2, V 3, V 4, V 5$, respectively. The following table shows the distance between the locations and villages in kilometers. How should cars be assigned to the passengers so as to minimize the total distance covered?

Village					
	$V 1$	$V 2$	$V 3$	$V 4$	$V 5$
$L 1$	120	110	115	30	36
$L 2$	125	100	95	30	16
${ }^{\text {Loc }}$L3 $L 4$	145	90	135	60	70
$L 5$	160	140	150	60	60
L5	155	165	90	85	

Exercise 9.2. Solve the following minimal assignment problem.

	Man					
	1	2	3	4	5	6
A	31	62	29	42	15	41
B	12	19	39	55	71	40
${ }_{\text {ab }} C$	17	29	50	40	22	22
${ }^{J}{ }^{\text {D }}$	35	41	38	42	27	33
E	19	30	29	16	20	23
F	72	30	30	50	41	20

Exercise 9.3. Five professors reach the Varanasi railway station in their hometown and want to travel to their respective homes in auto rickshaws. Each professor approaches a rickshaw driver and finds out the charge for the final destinations from him. The following table denotes the charges.

				oc		
		1	2	3	4	5
	A	60	90	40	60	40
	B	30	70	50	80	50
Professor	C	40	90	70	60	60
	D	80	50	60	40	50
	E	70	80	60	60	60

Find out the total charge if the professors use the optimal assignment solution.

Exercise 9.4. An optimization class contains four students available for work on four projects. Only one student can work on any one project. The following table shows the cost of assigning each student to each project. The objective is to assign students to projects such that the total assignment cost is a minimum.

Student

Project		1	2	3	
	A	20	25	22	
	B	15	18	23	
	C	19	17	21	
	D	25	23	2	

Exercise 9.5. Solve the assignment problem represented by the following matrix which gives the distances from customers A, B, C, D, E to depots a, b, c, d, and e. Each depot has one car. How should the cars be assigned to the customers so as to minimize the distance travelled?

Exercise 9.6. Determine an optimal assignment for the assignment problem with the following rating matrix.

A	B	C	D	E	
		7	9	10	3

Exercise 9.7. Find the optimal assignment for the following assignment problem given by the cost matrix.

	A	B	C	D	E
$C 1$	11	14	8	16	20
$C 2$	9	7	12	12	15
$C 3$	13	16	15	6	16
$C 4$	21	24	17	28	26
$C 5$	17	10	12	11	15

Exercise 9.8. A software company has four system analysts, and four tasks have to be performed. System analysts differ in efficiency, and tasks differ in their intrinsic difficulty. The time that
each analyst would take to complete each task is given in the effectiveness matrix. How should the tasks be allocated to each analyst so as to minimize the total man-hours?

$$
\begin{aligned}
& \text { Task } \\
& \text { Analyst }
\end{aligned}
$$

Exercise 9.9. Find the optimal assignment profit from the following matrices.
(a)

	1	2	3	4
A	7	5	4	3
B	8	2	6	4
C	5	3	2	1
D	5	4	1	8

(b)

	A	B	C	D	E
	32	38	40	28	40
2	40	24	28	21	36
3	41	127	33	30	37
4	22	38	41	36	36
5	29	33	40	35	39

Exercise 9.10. Solve the minimal assignment problem.

Man					
M1		M2	M3	M4	M5
J1	7	17	8	16	20
J2	9	11	12	6	15
Job	13	16	15	12	16
J4	21	25	17	28	26
J5	14	10	12	11	15

Exercise 9.11. Solve the assignment problem.

	1	2	3	4	5
	6	5	8	11	16
B	1	16	16	1	10
C	13	11	8	8	8
D	9	14	12	10	16
E	10	13	11	8	16

Answer Key

Chapter 2

Exercise 2.1 (a) Linearly dependent (b) Linearly independent (c) Linearly independent. Exercise 2.2 (a) Rank=3 (b) Rank=3. Exercise 2.5 (a) Unique solution $\mathrm{x}=2, \mathrm{y}=-2, \mathrm{z}=2$ (b) Infinitely many solutions.

Chapter 3

Exercise 3.1 (a) 2 (b) $1 / 50$ (c) -8. Exercise 3.2 (a) $\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$ (b) $\left[\begin{array}{ll}1 & 2\end{array}\right]$ (c) $\left[\begin{array}{cc}-3 & 0 \\ 0 & 1\end{array}\right]$ (d) $\left[\begin{array}{ll}3 & 0 \\ 2 & 1\end{array}\right]$. Exercise 3.3 (a) 4,5 (b) 5 (c) 4,3 (d) 2 , 1. Exercise 3.4 (a) 1 (b) 0 (c) 0 (d) 0 (e) 2 (f) 1 (g) 0

Chapter 4

Exercise $4.1 x_{1}=5 / 2, x_{2}=35$, max $=295 / 2$. Exercise $4.2 x_{1}=160$, $x_{2}=0$, max $=4800$. Exercise 4.3 (a) nonconvex set (b) convex set (c) nonconvex set (d) convex set (e) nonconvex set. Exercise 4.4 (a) $x_{1}=8, x_{2}=0, \max =23$. (b) $x_{1}=0, x_{2}=1, \max =3$. (c) no feasible corner (d) unbounded (e) $x_{1}=11, x_{2}=35$, $\max =323000$. Exercise 4.5 (a) $x_{1}=2, x_{2}=1 / 2, \max =12$ (b) $x_{1}=0, x_{2}=3$, $\max =6$. Exercise $4.6 x_{1}=5, x_{2}=6, \max =1100$.

Chapter 5

Exercise 5.1 (a) $\left[\begin{array}{llll}0 & 20 / 3 & 37 / 3 & 0\end{array}\right]^{T}$ and $\left[\begin{array}{llll}20 / 3 & 0 & 17 / 3 & 0\end{array}\right]^{T}$ basic feasible (b) basic but no feasible. Exercise $5.3 x_{1}=13 / 57$, $x_{3}=49 / 57, \quad \max =928 / 57$. Exercise $5.4 x_{1}=23 / 10, x_{2}=1 / 2$, $\min =303 / 10$. Exercise 5.5 (a) $x_{1}=7 / 3, x_{2}=2 / 3, \max =5 / 3$ (b) $x_{1}=1 / 3, x_{2}=8 / 3, \max =7 / 3$. Exercise $5.6 x_{1}=3$, $\max =21$. Exercise
$5.7 x_{1}=5, x_{2}=1$, max $=52$. Exercise $5.8 x_{2}=15 / 2, \max =45$. Exercise $5.9 x_{1}=3 / 2, x_{2}=0$, max $=3$. Exercise 5.10 unbounded. Exercise $5.11 x_{3}=7 / 6, x_{4}=1 / 3, x_{5}=13 / 6, \min =\frac{58}{3}$. Exercise $5.12 x_{1}=5$, $x_{2}=0, \min =25$.

Chapter 6

Exercise 6.1 unbounded. Exercise $6.2 x_{1}=0, x_{2}=0, x_{3}=6$, $\max =6$. Exercise $6.3 x_{2}=1, x_{3}=4$, $\max =13$. Exercise $6.4 x_{1}=$ 21, $x_{2}=6$, max $=549$. Exercise 6.5 (a) $x_{1}=8 / 7, x_{2}=24 / 7, \max =104 / 7$ (b) $x_{1}=8 / 7, x_{2}=24 / 7, \max =104 / 7$. Exercise $6.6 x_{1}=4, x_{2}=2$, $\max =24$. Exercise $6.7 x_{1}=x_{3}=0, x_{2}=7 / 4, \max =14$. Exercise $6.8 x_{1}=39, x_{2}=0, x_{3}=48, x_{4}=30, \max =1827$. Exercise 6.9 (a) $x_{1}=0, x_{2}=2, \max =6$. (b) $x_{1}=2 / 3, x_{2}=4 / 3, \max =34 / 3$. Exercise $6.10 x_{1}=0, x_{2}=11$, max $=33$. Exercise $6.11 x_{1}=0, x_{2}=7$, $\max =28$.

Chapter 7

Exercise 7.1 (a) min $100 y_{1}+90 y_{2}+400 y_{3}$ s.t. $5 y_{1}+y_{2} \geq 10,-4 y_{1}+$ $12 y_{2}+y_{3} \geq 30$ (b) $\max -30 y_{1}-50 y_{2}-70 y_{3}$ s.t. $6 y_{1}-2 y_{2} \leq$ $3,11 y_{1}+7 y_{2}-y_{3} \leq-4$ (c) min $60 y_{1}-10 y_{2}-20 y_{3}+20 y_{4}$ s.t. $5 y_{1}-3 y_{2}-y_{3}+y_{4} \geq 3, y_{1}+8 y_{2}-7 y_{3}+7 y_{4} \geq 2$. Exercise $7.3 x_{1}=3 / 5$, $x_{2}=6 / 5, \min =12 / 5$. Exercise $7.4 x_{1}=25 / 22, x_{2}=9 / 11, x_{3}=27 / 22$, $\min =458 / 11$. Exercise $7.5 x_{2}=4, x_{4}=20$, $\min =168$. Exercise 7.6 $x_{1}=2, x_{2}=1, \min =7$. Exercise 7.7 (a) $x_{1}=11 / 7, x_{2}=1 / 7, \min =37 / 7$. Exercise $7.8 x_{1}=5, x_{2}=3, x_{3}=0 \mathrm{~min}=106$. Exercise $7.9 x_{1}=$ $20 / 3, x_{2}=0, x_{3}=50 / 3, \min =1900 / 3$. Exercise $7.10 x_{1}=6, x_{2}=$ 21, min $=144$. Exercise $7.11 x_{2}=34, x_{4}=80$, min $=182$. Exercise $7.12 x_{2}=86 / 9, x_{3}=10 / 9, \min =\frac{719}{9}$. Exercise $7.13 x_{1}=x_{2}=1 / 3$, $\min =2 / 3, x_{1}=1 / 2, x_{4}=1 / 4, \min =7 / 12$.

Chapter 8

Exercise 8.1 (a) $x_{11}=2, x_{21}=1, x_{22}=3, x_{23}=2, x_{33}=2, x_{34}=5$, minTcost $=204$ (b) $x_{11}=18, x_{12}=4, x_{22}=12, x_{32}=3, x_{33}=4, x_{43}=4$, $x_{44}=2$,minTcost $=279$. Exercise 8.2 (a) $x_{21}=20, x_{24}=55, x_{34}=5$, $x_{12}=20, x_{13}=30, x_{33}=20$, minTcost $=650$ (b) $x_{33}=7, x_{41}=7$, $x_{43}=7, x_{13}=4, x_{22}=8, x_{12}=1$, minTcost=83. Exercise 8.3(a) $x_{24}=25, x_{21}=12, x_{12}=18, x_{31}=4, x_{13}=1, x_{33}=30$, minTcost $=355$ (b) $x_{11}=5, x_{43}=14, x_{21}=2, x_{22}=6, x_{32}=3$, $x_{33}=4$, minTcost $=102$. Exercise 8.4 (a) $x_{11}=5, x_{12}=3, x_{22}=8$,
$x_{23}=5, x_{33}=3, x_{34}=8$, minTcost $=486(\mathrm{~b}) x_{24}=8, x_{11}=5$, $x_{13}=3, x_{33}=5, x_{32}=6, x_{22}=5$ minTcost=366 (c) $x_{32}=11$, $x_{24}=8, x_{11}=5, x_{13}=3, x_{23}=5$, minTcost $=366$. Exercise 8.5 optimum cost $=180$. Exercise 8.6 optimal cost $=80$. Exercise 8.7 optimum cost $=743$. Exercise 8.8 optimal cost $=723$.

Chapter 9

Exercise 9.1 L1 $\rightarrow \mathrm{C} 1, \mathrm{~L} 2 \rightarrow \mathrm{C} 3, \mathrm{~L} 3 \rightarrow \mathrm{C} 2, \mathrm{~L} 4 \rightarrow \mathrm{C} 4, \mathrm{~L} 5 \rightarrow \mathrm{C} 5,450$. Exercise $9.2 \mathrm{~A} \rightarrow 5, \mathrm{~B} \rightarrow 2, \mathrm{C} \rightarrow 1, \mathrm{D} \rightarrow 3, \mathrm{E} \rightarrow 4, \mathrm{~F} \rightarrow 6,125$. Exercise 9.3 $\mathrm{A} \rightarrow 5, \mathrm{~B} \rightarrow 1, \mathrm{C} \rightarrow 4, \mathrm{D} \rightarrow 2, \mathrm{E} \rightarrow 3,240$. Exercise $9.4 \mathrm{~A} \rightarrow 3, \mathrm{~B} \rightarrow 1$, $\mathrm{C} \rightarrow 2, \mathrm{D} \rightarrow 4$, 78. Exercise $9.5 A \rightarrow b, B \rightarrow c, C \rightarrow a, D \rightarrow d$, $E \rightarrow e, 470$. Exercise $9.61 \rightarrow D, 2 \rightarrow E, 3 \rightarrow A, 4 \rightarrow B$, $5 \rightarrow C, 25$. Exercise $9.7 C 1 \rightarrow A, C 2 \rightarrow B, C 3 \rightarrow D, C 4 \rightarrow C$, $C 5 \rightarrow E, 56$. Exercise $9.8 A \rightarrow 1, C \rightarrow 2, B \rightarrow 3, D \rightarrow 4,29$. Exercise 9.9 (a) $A \rightarrow 1, B \rightarrow 2, C \rightarrow 4, D \rightarrow 3,11$ (b) $4 \rightarrow A, 2 \rightarrow B$, $3 \rightarrow C, 1 \rightarrow D, 5 \rightarrow E, 146$. Exercise $9.10 \mathrm{~J} 1 \rightarrow \mathrm{M} 1, \mathrm{~J} 2 \rightarrow \mathrm{M} 4$, $\mathrm{J} 3 \rightarrow \mathrm{M} 5, \mathrm{~J} 4 \rightarrow \mathrm{M} 3$, J5 $\rightarrow \mathrm{M} 2$, 56. Exercise $9.111 \rightarrow \mathrm{~B}, 2 \rightarrow \mathrm{~A}, 3 \rightarrow \mathrm{D}$, $4 \rightarrow \mathrm{E}, 5 \rightarrow \mathrm{C}, 34$.

Taylor \& Francis
 Taylor \& Francis Group
 http://taylorandfrancis.com

Bibliography

[1] E. K. P. Chong and S. H. Zak. An Introduction to Optimization. John Wiley \& Sons, Inc, New Jersey, USA, 2013.
[2] G. Giorgi and T. H. Kjeldsen. Traces and Emergence of Nonlinear Programming. Springer, Basel, 2014.
[3] B. R. Hunt, R. L. Lipsman, and J. M. Rosenberg. A Guide to MATLAB for Beginners and Experienced Users. Cambridge University Press, USA, 2006.
[4] V. Krishnamurthy, V. P. Mainra, and J. L. Arora. An Introduction to Linear Algebra. East West Press Ltd. New Delhi, 1976.
[5] D. G. Luenberger. Linear and Nonlinear Programming. Addison Wesley Publishing Company, USA, 1984.
[6] B. N. Mishra and B. K. Mishra. Optimization: Linear Programming. Ane Books Pvt. Ltd, New Delhi, 2006.
[7] P. K. Singh. Math-Level Multiobjective Planning for Agriculture for District Mau, UP. PhD thesis, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 2003.
[8] A. Sultan. Linear Programming-An Introduction with Applications. Academic Press, Inc., USA, 1993.
[9] S. Vajda. Problems in Linear and Non-Linear Programming. Charles Griffin and Company Ltd, London and High Wycombe, 1975.
[10] S. Vajda. Linear Programming-Algorithms and Applications. Chapman and Hall Ltd, New York, USA, 1981.
[11] S. Vajda. Mathematical Programming. Dover Publications Inc., New York, 1989.

Taylor \& Francis
 Taylor \& Francis Group
 http://taylorandfrancis.com

Index

abs, 27
Algorithm
The Revised Simplex
Algorithm, 139
artificial problem, 119
assignment problem, 273
asymmetric form of duality, 177
augmented matrix, 14
Balanced Transportation
Problem, 215
bascicell6.m, 262
basic feasible solution, 84
basic solution, 70
BFS, 249
built-in, 25
canonical augmented matrix, 87
Cleve Barry Moler, 4
Command Window, 21
comments, 27
complementary slackness
condition, 183
computational procedure, 249
convex set, 50
cycle5.m, 260
degenerate, 217
degenerate basic solution, 70
demand center, 219
Dual Linear Programs, 175
dual of the dual, 176
Dual Simplex Algorithm

Algorithm, 185
Dual Simplex Method, 185
dual.m, 190
Duality Theorem, 181
elementary row operation, 11
end, 26
extreme points, 53,81
eye, 25
feasible point, 45
feasible solution, 70, 80, 217
fictitious source center, 220
floating point, 30
fprintf(), 29
Fundamental Theorem of Linear Programming Problem, 78

George B. Dantzig, 3
hotel requirement, 48
Hungarian method, 275
if, 32
inequality, 46
input, 28
investment of funds, 56
Jeno Egervary, 275
Joseph B. Fourier, 1
Julius Farkas, 2
Kantorovich, 3

Lagrange multipliers, 1
lcm.m, 235
Least Cost Method, 230
Lemke and Beale, 175
line segment, 50
linear combination, 8
linear equations, 10
linear independent, 8
Linear programming problems, 45
linearly dependent, 9
loop
for, 33
while, 34
MathWorks, 21
MATLAB, 21
MATLAB function
hungarian.m, 286
matrix, 10
inverse, 15
rank of, 11, 38
mostpositive4.m, 259
nonbasic, 138
nondegenerate, 82, 217
Northwest Corner Method, 220
nwc .m, 226
objective function, 45
operation
associative, 6
commutative, 6
distributive, 6
Optimal Basic Feasible Solution, 77
optimal feasible solution, 81
output, 29
pivotcolumn.m, 97, 100
primal problem, 175
production planning in the automobile industry, 54
prompt, 22
properties of basic solutions, 77
reduced cost coefficients, 86
reduced matrix, 275
restricted, 178
revise, 137
Revised Simplex Method, 137
rsm.m, 147
scalar, 7
Script, 27
Simplex Algorithm, 84
size, 26
slack variables, 149
space
column, 6
row, 6
standard form, 91
$\operatorname{sym}(), 30$
symmetric dual problems, 176
symmetric form, 176
T. C. Koopmans, 2

The Diet Problem, 46
transportation, 213
transportation problem, 214
transpose, 5
Two-Phase Simplex Method, 118
update, 92
updatelastrow.m, 125
User Defined Function, 36
eliminationop.m, 37
identity.m, 37
vector, 24
subtract, 7
zero, 6
Vogel's Approximation
Method, 239
vogel.m, 245
Weak Duality Theorem, 179
zeros, 25

Taylor \& Francis
 Taylor \& Francis Group
 http://taylorandfrancis.com

