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Foreword

Writing the foreword for this introductory textbook on linear pro-
gramming with MATLAB by Professors Shashi Kant Mishra and
Bhagwat Ram at Banaras Hindu University has brought me back
to the memory of the Fall Quarter, 1989, at Stanford University,
where the famous Professor George Dantzig was teaching the PhD
course, Linear Programming, in the Operations Research Depart-
ment. It was a four-unit course with a one-hour lab. One of the lab
projects was to develop codes for solving linear programming prob-
lems. At that time, most of my classmates handed in the codes in
Fortran or C++. I remembered that difficult time during the com-
piling stage, making debugs and correct Do-loops, data structures,
etc. using Fortran. Having gone through the project, I learned all
the details from theories to the programming parts in linear pro-
gramming. Later on, there was a period where some scholars were
developing convenient software over a spreadsheet environment
(like Solver in Excel) for students (especially MBAs) to simply
just input the data and hit the return to get sheets of the solu-
tion reports. Learning like this may treat the Simplex method as
a black box. This may be another extreme way to learn linear pro-
gramming.

Professors Mishra and Ram write this introductory textbook
in a clever way; with very light background in linear algebra and
MATLAB, the students will be brought to the theory parts quickly.
Friendly examples are given to illustrate the theory sections,
and MATLAB codes are provided to demonstrate the results.
MATLAB is useful here because of its interpreter feature, which
allows students to verify step-by-step in the simplex method with-
out the need of compiling the codes. The authors also provide
convenient “functions”, which are the main steps in the simplex
method. Students can simply call the functions to implement some
steps in the simplex methods. In this way, the Simplex method is

vii



viii Foreword

no longer a black box for our students. For the undergraduates,
the authors make a very nice trade-off among learning theories,
coding parts, and self-assessment of understanding the subject.

Linear programming has long been recognized with beautiful
theories as well as wide applications in the practical world. Using
MATLAB gives students the chance to “learn by doing”, one of
the effective learning strategies emphasized in our modern educa-
tion, in assessing themselves the level of understanding of the linear
programming subject. We strongly believe that students who learn
the linear programming with MATLAB will definitely understand
the subject much better in theories and practical applications.

Sy-Ming Guu
Professor,

Graduate Institute of Business and Management
Dean, College of Management,

Chang Gung University,
Taoyuan, Taiwan

Ph.D. in Operations Research,
Stanford University



Preface

George B. Dantzig formulated a linear programming problem and
developed the simplex method to solve it. This new mathematical
technique found a wide range of practical applications. This is an
introductory textbook on linear programming with MATLAB R©,
written mainly for students of mathematics, computer science, en-
gineering, economics, management science and agriculture. The
textbook is based on the lecture notes and experience of the first
author while teaching mathematics Bachelor of Science students
at the Banaras Hindu University, Varanasi, India for several years.
A large number of available textbooks have been a source of inspi-
ration for introduction of concepts and problems. We are thankful
to the authors of those books for their indirect help.

There are many textbooks on linear programming but very
few on linear programming with MATLAB. Moreover, among the
available textbooks on linear programming with MATLAB, there
is a lack of student-friendly textbooks. There was a desperate need
of a textbook on linear programming with MATLAB for the begin-
ner of such a course. The purpose of this textbook is to introduce
linear programming and use of MATLAB in the formulation, so-
lutions and interpretation of linear programming problems in a
natural way. The textbook has been written in a simple and lu-
cid language so that a beginner can learn the subject easily. A
prerequisite is a standard single-variable calculus and introduc-
tory linear algebra course. Although some background knowledge
of multivariable calculus and some experience with formal proof
writing are helpful, these are by no means essential.

The textbook has been organized in nine chapters. The first
three chapters are an introduction, background of linear algebra
needed in the sequel and basic knowledge on MATLAB. Chapter
4 is on simple examples of linear programming problems, concept
of convex sets and graphical solution of linear programming prob-

ix
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lems. Chapters 5 and 6 are on Simplex method with illustrative
examples that are solved manually and several examples are solved
using MATLAB. Chapter 7 is on duality results and dual simplex
method, and the last two chapters are on transportation and as-
signment problems with a sufficient number of examples. A good
number of suitable exercises is also given on each method and with
answers at the end of textbook. The textbook contains 80 solved
examples to illustrate various methods and applications, and out
of these, 42 examples are solved manually and 38 examples are
solved using MATLAB.

We have written 18 user-friendly functions which show the step-
by-step solution of linear programming problems. This will be an
effective concept to those learners who want to learn the program-
ming concept in linear programming.

We are thankful to Prof. Niclas Borlin, Department of Comput-
ing Science, Ume University, Sweden who permitted us to use his
MATLAB function: hungarian.m. We are also thankful to Senior
Acquisitions Editor of CRC, Mrs. Aastha Sharma, for guiding us
during the development of this book in LaTex.

Shashi Kant Mishra
Bhagwat Ram

Banaras Hindu University,
Varanasi, India

MATLAB R© and Simulink R© are registered trademarks of The
MathWorks, Inc. For product information, please contact: The
MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-
2098 USA; Tel: 508 647 7000; Fax: 508-647-7001, E-mail:
info@mathworks.com; Web: www.mathworks.com.

www.mathworks.com
mailto:info@mathworks.com
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Chapter 1

Introduction

1.1 History of Linear Programming

FIGURE 1.1: J. L. La-
grange (1736–1813)

We are presenting a theory whose official
birth was at the heart of the twentieth century
and in fact in the years right after the Second
World War. However, all the readers are fa-
miliar with the method of Lagrange multipli-
ers from Calculus, named after Joseph Louis
Lagrange (1736–1813) who considered equal-
ity constrained minimization and maximiza-
tion problems in 1788, in the course of the
study of a stable equilibrium for a mechanical
system.

FIGURE 1.2: Joseph B.
Fourier (1768–1830)

The famous French mathematician Joseph
B. Fourier (1768–1830) considered mechani-
cal systems subject to inequality constraints,
in 1798, though Fourier died before he could
raise any real interest of his new findings
to the mathematical community. Two stu-
dents of Fourier—the famous mathematician,
Navier, in 1825, and the equally famous math-
ematical economist, Cournot, in 1827, with-

out mentioning the work of Fourier—rediscovered the principle of
Fourier, giving the necessary conditions for equilibrium with ad
hoc argument which make specific reference to the mechanical in-
terpretation.

In 1838, the Russian mathematician Mikhail Ostrogradsky
(1801–1862) gave the same treatment in the more general terms.
He asserted without referring to Joseph B. Fourier, that at the min-

1



2 Introduction to LINEAR PROGRAMMING with MATLAB R©

imizer the gradient of the objective function can be represented as
a linear combination, with nonnegative multipliers of the gradients
of the constraints.

FIGURE 1.3: Mikhail Os-
trogradsky (1801–1862)

It is worth noticing that Ostrogradsky was
a student in Paris before he went to St. Pe-
tersburg, and he attended the mathemati-
cal courses of Fourier, Poisson, Chauchy and
other famous French mathematicians.

The Hungarian theoretical physicist Julius
Farkas (1847–1930) focused on the mathemat-
ical foundation and developed a theory of ho-
mogeneous linear inequalities which was pub-
lished in 1901. However, the first effective acknowledgment of the
importance of the work of Farkas was given in the Masters thesis of
Motzkin in 1933. But, the Farkas Lemma has to wait almost half a
century to be applied. American mathematicians also started de-
veloping a theory for systems of linear inequalities followed by a
paper on “preferential voting” published in The American Math-
ematical Monthly in 1916.

FIGURE 1.4: Julius Farkas
(1847–1930)

Note that the theory of linear program-
ming did not just appear overnight. Lin-
ear programming depends on development of
other mathematical theories and mathemat-
ical tools, one of these is of course Convex
Analysis, which was not known well before.
The birth of the linear programming theory
took place in two different, equally developed
countries: the USSR and USA, but the moti-
vating forces were also entirely different.

In the USSR, the father of linear programming is Leonid Vi-
talievich Kantorovich (1912–1996) and he is well known in the
mathematical community for his achievements in linear program-
ming, mathematical economics and functional analysis. He was
awarded the Nobel Prize in 1975 together with T. C. Koopmans
(1910–1985).
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FIGURE 1.5: Leonid Vi-
talievich Kantorovich
(1912–1996)

In the year 1939, Kantorovich was a young
professor at the Leningrad University. A state
firm that produced plywood and wished to
make more efficient use of its machines con-
tacted Kantorovich for a scientific advice. The
aim was to increase the production level of
five different types of plywood, carried out by
eight factories, each with different production
capacity. Kantorovich soon realized that this
problem has a mathematical structure.

In 1939, Kantorovich discussed and numerically solved the op-
timization problem under inequality constraints, in his small book,
which was translated to English in 1960. In this book, Kantorovich
presented several microeconomic problems from the production
planning of certain industries. But, till 1958, economists in the
USSR were not in favour to use the theory given by Kantorovich.
In 1960, at the Moscow Conference, economists discussed for the
first time the use of mathematical methods in economics and plan-
ning, and later in 1971 for optimal planning procedures.

FIGURE 1.6: T. C. Koop-
mans (1910–1985)

The work of Kantorovich was available to
the rest of the world in 1960, when Tjalling
Carles Koopmans (1910–1985) published an
English translation of Kantorovich’s work in
1939.

Meanwhile, a similar line of research on in-
equality constrained optimization took place
in the USA independent of the work of the
Russians. During the Second World War from
1942 to 1944, Koopmans worked as a statis-

tician at the “Allied Shipping Adjustment Board” and was con-
cerned with some transportation models.

In the same period, George B. Dantzig (1914–2005), who is
recognized as the Western Father of Linear Programming, collab-
orated with the Pentagon as an expert of programming methods,
developed with the help of desk calculators. Dantzig finished his
studies and became a PhD in mathematics soon after the war
ended.
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FIGURE 1.7: George B.
Dantzig (1914–2005)

Job opportunities came from the Univer-
sity of California at Berkeley and from the
Pentagon. The simplex method discovered by
Dantzig to solve a linear programming prob-
lem was presented for the first time in the
summer of 1947. In June 1947, Dantzig in-
troduced the simplex algorithm to Koopmans
who took it to the community of economists
namely, K. J. Arrow, P. A. Samuelson, H. Si-
mon, R. Dorfman, L. Hurwiez and others, and the Simplex method
became quite a potential method. The Simplex algorithm has been
declared as one of the best 10 algorithms with the greatest influ-
ence on the development and practice of science and engineering
in the twentieth century.

FIGURE 1.8: Cleve Barry
Moler (August 17, 1939)

Cleve Barry Moler, the chairman of the
Computer Science department at the Uni-
versity of New Mexico, started developing
MATLAB in the late 1970s. He designed it
to give his undergraduate students for access-
ing LINPACK (Linear Algebra Subroutines
for Vector-Matrix operations) and EISPACK
(To compute eigenvalues and eigen vectors)

general purpose libraries of algoritms. It soon became popular to
other universities also and found a strong interest among the stu-
dents of applied mathematics. Jack Little and Steve Bangert at-
tracted with this new programming environment and rewrote sev-
eral developed MATLAB functions in C. Moler, Little and Bangert
founded the Mathworks, Inc., in 1984.

MATLAB was first adopted by researchers and practitioners in
control engineering, Little’s specialty, but quickly spread to many
other domains. It is now also used in education for learning and
teaching.



Chapter 2

Vector Spaces and Matrices

2.1 Vector

An n vector is a column array of n numbers, denoted as

a =


a1
a2
...
an

 . (2.1)

The number ai is called the ith component of the vector a. For

example, a =

 1
2
−3

 is a column vector of size n = 3. Similarly, an

n vector is a row vector of n numbers as

a =
[
a1 a2 . . . an

]
. (2.2)

For example, a =
[

1 2 −3
]

is a row vector of size n=3. We
denote R as the set of real numbers and Rn is the set of col-
umn or row n-vectors with real components. We can say Rn as
n-dimensional real vector space. We can denote the vectors by
lowercase letters such as a, b, c, etc. The components of a ∈ Rn

are denoted as a1, a2, . . . , an.
The transpose (denoted as T ) of a given column vector (2.1) is a
row vector (2.2). Therefore, we can write

a1
a2
...
an


T

=
[
a1 a2 . . . an

]
.

5



6 Introduction to LINEAR PROGRAMMING with MATLAB R©

The transpose of a row vector (2.2) is a column vector (2.1).

[
a1 a2 . . . an

]T
=


a1
a2
...
an

 ,
that is

aT =


a1
a2
...
an

 .
Note that the set of all row vectors forms a vector space called

“row space”, similarly the set of all column vectors forms a vector
space called “column space”.

A vector space V is a collection of vectors, which is closed under
the operations of addition of two vectors a, b ∈ V , and multiplica-
tion by a scalar, α ∈ R, then the following properties hold:

1. Commutativity of vector addition: for vectors a, b ∈ V

a+ b = b+ a.

2. Associativity of vector addition: for vectors a, b, c ∈ V

a+ (b+ c) = (a+ b) + c.

3. Existence of zero vector: for vector a ∈ V , we have

a+ 0 = 0 + a = a.

4. Distributivity: for vectors a, b ∈ V and scalars α, β ∈ R, we
have

α(a+ b) = αa+ αb,

(α + β)a = αa+ βa.

5. Associativity of multiplication: for vector a ∈ V and scalars
α, β ∈ R, we have

α(βa) = (αβ)a.
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6. Unitarity: for vector a ∈ V , we have

1a = a.

7. The scalar 0 satisfies: for vector a ∈ V , we have

0a = 0.

8. Any scalar α ∈ R satisfies:

α0 = 0.

9. Existence of negatives: for a ∈ V , we have

(−1)a = −a.

Two vectors a =
[
a1 a2 . . . an

]T
and b =

[
b1 b2 . . . bn

]T
are

equal if and only if ai = bi, for all i = 1, 2, . . . , n.
We can add two vectors a and b as

a+ b =
[
a1 + b1 a2 + b2 . . . an + bn

]T
.

We can subtract two vectors a and b as

a− b =
[
a1 − b1 a2 − b2 . . . an − bn

]T
.

The vector 0− b is denoted as −b.

Suppose that x =
[
x1, x2, . . . , xn

]T
is a solution to a + x = b.

Then,

a1 + x1 = b1,

a2 + x2 = b2,

...

an + xn = bn,

and thus

x = b− a.

We can say that vector b − a is the unique solution of the vector
equation a+ x = b.
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We define an operation of multiplication of a vector a ∈ Rn by
a real scalar α ∈ R as

αa =
[
αa1 αa2 . . . αan

]
.

Note that αa = 0 if and only if α = 0 or a = 0. To see this,
observe that αa = 0 is equivalent to αa1 = αa2 = · · · = αan = 0.
If α = 0 or a = 0, then αa = 0. If a 6= 0, then at least one of its
components ak 6= 0. For this component, αak = 0, and hence we
must have α = 0. Similar arguments can be applied to the case
when α 6= 0.

Definition 2.1 (Linearly Independent). A set of vectors S ={
a1, a2, . . . , ak

}
is said to be linearly independent if the equal-

ity α1a1 + α2a2 + · · · + αkak = 0 implies that all coefficients
αi ∈ R, where i = 1, 2, . . . , k are equal to zero.

Example 2.1. Prove that the vectors a1 =

1
0
1

, a2 =

 0
1
−1

,

a3 =

 0
0
−1

 are linearly independent.

We apply definition of linear independent. We must show that
the linear combination of vectors a1, a2 and a3 are equal to zero in
which all the coefficients α1, α2, and α3 should be zero. Therefore,
we can write as

α1

1
0
1

+ α2

 0
1
−1

+ α3

 0
0
−1

 =

0
0
0

 .
Equating the corresponding coordinates of the vectors on the left
and right side, we get the following system of linear equations:

α1 = 0,

α2 = 0,

α1 − α2 − α3 = 0.

Solving the above equations, we get α1 = α2 = α3 = 0. Thus,
vectors a1, a2, and a3 are linearly independent.
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Definition 2.2 (Linearly Dependent). A set of the vectors S ={
a1, a2, . . . , ak

}
is said to be linearly dependent if there exists co-

efficients αi ∈ R,where i = 1, 2, . . . , k not all of which are zero
such that α1a1 + α2a2 + · · ·+ αkak = 0.

Example 2.2. Show that the vectors a1 =

1
2
1

, a2 =

 1
−1
2

, and

a3 =

3
3
4

 are linearly dependent.

The vectors a1, a2, a3 are linearly dependent because 2a1 +a2−
a3 = 0, where αi 6= 0, i.e., α1 = 2, α2 = 1, and α3 = −1.

Theorem 2.1. A set of vectors
{
a1, a2, . . . , ak

}
is linearly depen-

dent if and only if one of the vectors ai from the set is a linear
combination of the remaining vectors.

Proof. Using definition (2.2), since
{
a1, a2, . . . , an

}
is linearly de-

pendent, there exists coefficients αi ∈ R, not all zero such that

α1a1 + · · ·+ αiai + · · ·+ αkak = 0. (2.3)

Suppose αi 6= 0 for some i, that is

ai = −α1

αi
a1 −

α2

αi
a2 − · · · −

αi−1

αi
ai−1 −

αi+1

αi
ai+1 − · · · −

αk
αi
ak.

Conversely, for some i, ai can be expressed as a linear combination
of other vectors. That is,

ai = α1a1 + · · ·+ αi−1ai−1 + αi+1ai+1 + · · ·+ αkak,

then we can write

α1a1 + · · ·+ (−1)ai + αi+1ai+1 + · · ·+ αkak = 0.

Since αi=–16= 0, thus, the set of vectors
{
a1, a2, . . . , an

}
is linearly

dependent.
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2.2 Matrix

A matrix is a rectangular array of numbers, commonly denoted
by uppercase bold letters (e.g., A,B, etc.). A matrix with m rows
and n columns is called an m× n matrix, and we write

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 .
The real number, aij, located in the ith row and jth column is called
the (i, j)th entry. We can think of A in terms of its n columns, each
of which is a column vector in Rm. Alternatively, we can think of
A in terms of its m rows, each of which is a row n-vector. The
transpose of matrix A, denoted as AT , is the n×m matrix.

AT =


a11 a21 . . . am1

a12 a22 . . . am2
...

...
. . .

...
a1n a2n . . . amn

 .
We see that columns of A are the rows of AT and vice versa.
Note that the symbol Rm×n denotes the set of m × n matrices
whose entries are real numbers. We treat column vectors in Rn as
elements of Rn×1. Similarly, we treat row n-vectors as elements of
R1×n.

2.3 Linear Equations

Consider m linear equations in n unknowns namely of
x1, x2, . . . , xn as:
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a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,

...

am1x1 + am2x2 + · · ·+ amnxn = bm.

Equivalently,

Ax=b.

Associated with this system of equations is the matrix:

A = [a1, a2, . . . , an].

Consider the m× n matrix

A=


a11 a21 . . . am1

a12 a22 . . . am2
...

...
. . .

...
a1n a2n . . . amn

 .
We can apply elementary row operations in the matrix A to get
the matrix in reduced form.

An elementary row operation on the given matrix A is an al-
gebraic manipulation of the matrix that corresponds to one of the
following:

1. Interchanging any two rows such as the pth and the uth rows
of the matrix A;

2. Multiplying one of its rows such as the pth row by a real
number α where α 6= 0 ;

3. Adding one of its rows such as the uth row to the β times pth

row.

Rank of Matrix

The number of nonzero rows in the row reduced form of a ma-
trix A is called a rank of the matrix A, denoted as ρ(A). It is read
as ‘rho of A’. Note that if the matrix A is of order m × n and
ρ(A) = m, then A is said to be of full rank.
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Example 2.3. Find the rank of the matrix A =

2 2 2 −2
1 2 3 4
3 4 5 2

 .
 2 2 2 −2

1 2 3 4

3 4 5 2


R1 → 1

2
R1  1 1 1 −1

1 2 3 4

3 4 5 2


R2 → R2 −R1  1 1 1 −1

0 1 2 5

3 4 5 2


R3 → R3 − 3R1  1 1 1 −1

0 1 2 5

0 1 2 5


R3 → R3 −R2  1 1 1 −1

0 1 2 5

0 0 0 0

 .
Therefore, ρ(A)=Number of nonzero rows=2.

Example 2.4. Find the rank of the matrix.
0 1 −3 −1

1 0 1 1

3 1 0 2

1 1 −2 0

 .
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Applying elementary row operations,


0 1 −3 −1

1 0 1 1

3 1 0 2

1 1 −2 0


R2 ↔ R1 

1 0 1 1

0 1 −3 −1

3 1 0 2

1 1 −2 0


R3 → R3 − 3R1 

1 0 1 1

0 1 −3 −1

0 1 −3 −1

1 1 −2 0


R4 → R4 −R1 

1 0 1 1

0 1 −3 −1

0 1 −3 −1

0 1 −3 −1


R3 → R3 −R2 

1 0 1 1

0 1 −3 −1

0 0 0 0

0 1 −3 −1


R4 → R4 −R2
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1 0 1 1

0 1 −3 −1

0 0 0 0

0 0 0 0

 .
Therefore, ρ(A)=Number of nonzero rows=2.

The system of linear equations is said to be

1. Consistent if ρ(A) = ρ(A|b), then

(a) The system has a unique solution if ρ(A) = ρ(A|b)
=Number of variables.

(b) The system has infinitely many solutions if ρ(A) =
ρ(A|b)<Number of variables.

2. Inconsistent if ρ(A) 6= ρ(A|b), then the system has no solu-
tion.

Example 2.5. Solve the following system of equations.

2x+ 6y = −11,

6x+ 20y − 6z = − 3,

6y − 18z = − 1.

We can write system of linear equations as an augmented matrix:
2 6 0 −11

6 20 −6 −3

0 6 −18 −1


We proceed with elementary row operations.

R2 → R2 − 3R1 
2 6 0 −11

0 2 −6 30

0 6 −18 −1


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R3 → R3 − 3R2


2 6 0 −11

0 2 −6 30

0 0 0 −91

 .
We see that

ρ(A) = 2,

ρ(A|b) = 3.

That is,

ρ(A) 6= ρ(A|b).

Thus, the system is inconsistent and it has no solution.

2.4 Matrix Inversion

We apply the method of row reduction to find the inverse of a
nonsingular matrix. If A be an n×n nonsingular matrix, then A−1

exists.
Suppose that we have an equation

Ax = b, (2.4)

where b 6= 0. To solve this, we can proceed as follows:

A−1(Ax) = A−1b,

(A−1.A)x = A−1b.

Since

A−1A = I,

then

Ix = A−1b.
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Since

Ix = x,

therefore

x = A−1b. (2.5)

Thus, solving (2.4) is just an equivalent to finding (2.5). But, the
solution can be done by the process of row reduction. The method
of row reduction will also be adaptable to find A−1b and conse-
quently A−1. We can also write (2.4) as

Ax = Ib. (2.6)

Premultiplying (2.6) by A−1,

A−1Ax = A−1Ib.

We get

Ix = A−1b. (2.7)

In this process, we always work from A and arrive at I. From (2.6)
and (2.7), it is observed that if the same row reduction is applied
to identity matrix, I, then we end up with matrix A−1.

Example 2.6. Find the inverse of the matrix A =

1 1 0
1 −1 1
1 −1 2

.

 1 1 0 1 0 0

1 −1 1 0 1 0

1 −1 2 0 0 1


R2 → R2 −R1  1 1 0 1 0 0

0 −2 1 −1 1 0

1 −1 2 0 0 1


R3 → R3 −R1
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0 −2 1 −1 1 0

0 −2 2 −1 0 1


R2 → −1

2
R2 

1 1 0 1 0 0

0 1 −1/2 1/2 −1/2 0

0 −2 2 −1 0 1


R3 → 1

2
R3 

1 1 0 1 0 0

0 1 −1/2 1/2 −1/2 0

0 −1 1 −1/2 0 1/2


R1 → R1 −R2

1 0 1/2 1/2 1/2 0

0 1 −1/2 1/2 −1/2 0

0 −1 1 −1/2 0 1/2


R3 → R3 +R2 

1 0 1/2 1/2 1/2 0

0 1 −1/2 1/2 −1/2 0

0 0 1/2 0 −1/2 1/2


R3 → 2R3 

1 0 1/2 1/2 1/2 0

0 1 −1/2 1/2 −1/2 0

0 0 1 0 −1 1


R1 → R1 − 1

2
R3
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1 0 0 1/2 1 −1/2

0 1 −1/2 1/2 −1/2 0

0 0 1 0 −1 1


R2 → R2 + 1

2
R3 

1 0 0 1/2 1 −1/2

0 1 0 1/2 −1 1/2

0 0 1 0 −1 1

.

Therefore,

A−1 =


1/2 1 −1/2

1/2 −1 1/2

0 −1 1

 .
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2.5 Exercises

Exercise 2.1. Determine if each of the following sets of vectors is
linearly independent or linearly dependent.

(a) V=
{[

1 0 1
]
,
[
1 2 1

]
,
[
2 2 2

]}
(b) V=

{[
2 1 0

]
,
[
1 2 0

]
,
[
3 3 1

]}
(c) V=

{[
2 1

]
,
[
1 2

]}
Exercise 2.2. Find the rank of the following matrices.

(a)

A =



2 3 −1 −1

1 −1 −2 −4

3 1 3 −2

6 3 0 −7


(b)

A =



6 1 3 8

16 4 12 15

5 3 3 4

4 2 6 −1


Exercise 2.3. Find the inverse of the following matrices.

(a)

A =

 5 6

3 −2


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(b)

A =


1 2 −4

−1 −1 5

2 7 −3


Exercise 2.4. Find the inverse of the following matrices.

(a)

A =



1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1


(b)

A =



1 2 1 0

0 1 −1 1

1 3 1 −2

1 4 −2 4


Exercise 2.5. Solve the following system of equations.

(a)

x+ y + 2z = 4,

2x+ 3y + 6z = 10,

3x+ 6y + 10z = 14.

(b)

2x− y − 4z = 2,

4x− 2y − 6z = 5,

6x− 3y − 8z = 8.



Chapter 3

MATLAB

3.1 Introduction

MATLAB is a standard tool which has been included in in-
troductory and advanced courses in applied mathematics, engi-
neering, science and economics in many universities around the
world. In industry, it is a tool of research, development, and anal-
ysis. MATLAB (short for MATrix LABoratory) is a mathematical
and graphical software package with numerical, graphical, and pro-
gramming capabilities developed by the MathWorks, Inc., Natick,
Massachusetts, USA. In 1984, the first version appeared.

MATLAB is helpful to solve complicated problems. All major
functions can directly be used as the input. MATLAB uses an
interpreter to understand what we type and what type of output
may come. Users sometimes get suggestions to make error-free
statements. Therefore, we need to be careful. We begin by studying
the basic feature in MATLAB.

3.2 Basic Feature

To start MATLAB in Microsoft Windows, double-click on the
MATLAB icon on the Windows desktop. MATLAB can also
be started by selecting MATLAB from the Start menu. Once
MATLAB is launched, a MATLAB Command Window appears
on the screen.

Command Window
The Command Window is used to enter several variables, evalu-

21
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ate MATLAB commands, and run M-files or functions.

Edit Window

To open the Edit Window, go to File→New→Script. This window
allows us to type and save a series of commands without execut-
ing them. We can also open the Edit Window by typing Edit at
the Command prompt or by selecting the New Script button on
the toolbar.

MuPAD

MuPAD opens a new blank MuPAD notebook and returns an ob-
ject representing the notebook. A MuPAD notebook is an easy to
use environment for performing computations symbolically using
the MuPAD language and documenting the results.
For example, we write in the Command Window:

>> Mupad

It will open a new blank MuPAD notebook.

Help Browser

The Help Browser is used to view pre-defined documentation for
all MATLAB products. It helps to know about any command that
we want.
For example, to know about for loop, we write in the Command
Window as follows:

>> help for

3.3 Basic Operations in MATLAB

In the Command Window, we see: >>. This notation >> is called
the prompt.
In the Command Window, MATLAB can be used interactively. It
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means that MATLAB command or expression can be entered, and
MATLAB immediately responds with the result.

For example, this is the way it would appear in the Command
Window:

>> mynum = 10

mynum =
10

MATLAB uses a default variable named, if an expression is typed
at the prompt and it is not assigned to a variable. For example,
the result of the expression 9 + 3 is stored in the variable ans.

>> 9+3

ans =
12

Variables and Assignments

In MATLAB, we use the equal sign to assign values to a vari-
able. For example:

>> u = 9

u =
9

Henceforth, MATLAB always takes the value of the variable u as
9. For example:

>> u*2 - 2*u + u

ans =
9

Note that MATLAB never forgets used variables unless instructed
to do so. We can check the current value of a variable by simply
typing its name.

Example 3.1. a = 4, b = 6, c = 3. Find a× (b + c), a× (b + c),
a
b

+ c, and a
b+c
.
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In the Command Window,

>> format rat

>> a = 4; b = 6; c = 3;

>> a*(b+c)

>> a*b+c

>> a/b+c

>> a/(b+c)

In this example, we get the answers 36, 27, 11/3, 4/9. This gives some
idea that MATLAB performs those calculations first which are in
brackets. The command format rat has been used to force the
results to be shown as rationals, the final command format reverts
to the default. We have used a semicolon at the end of MATLAB
assignment statements to suppress echoing of assigned values in
the Command Window. This greatly speeds program execution.

The transpose operator swaps the row and columns of any ar-
ray that it is applied to.
For example:

>> f = [1:4]’

f =
1
2
3
4

Vectors and Matrices

A vector is a list of elements. Elements should be separated by
comma or space for row vector and semicolon for column vector.
For example:

>> B = [5 6 7]

B =
5 6 7
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>> b= [23; 34; 12]

b =
23
34
12

A matrix is a rectangular array of numbers. Row and column vec-
tors are also examples of matrices.
For example:
>> A = [1 3 5 6; 7 -3 1 8; 5 1 -1 9]

A =
1 3 5 6
7 −3 1 8
5 1 −1 9

MATLAB has many built-in functions. The built-in function zeros

can be used to create an all-zero array of any desired size.
For example:

>> a = zeros(2)

a =
0 0
0 0

>> b = zeros(2,3)

b =
0 0 0
0 0 0

eye function can be used to generate arrays containing identity
matrices, in which all on-diagonal elements are one, while all off-
diagonal elements are zero.
For example:

>> eye(3)

ans =
1 0 0
0 1 0
0 0 1
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size() Function

size() function returns two values specifying the number of rows
and columns of any matrix.
For example:

>> A=[1 2 3 7 4; 4 5 8 4 -3; 0 5 9 0 -3; 2 1 7 3 0 ];

>> [m n]=size(A)

m =
4

n =
5

end Function

MATLAB provides a special function named end that is very use-
ful for creating array subscripts. The end function returns the
highest value taken by the subscript in vector or matrix.
For example:

>> B =
[
8 7 6 5 4 3 2 1

]
;

>> B(5 : end)

ans =
4 3 2 1

We can write 3× 4 matrix in MATLAB as follows:

>> A =
[
1 2 3 4; 5 6 7 8; 9 10 11 12

]
A =

1 2 3 4
5 6 7 8
9 10 11 12

>> A(2: end, 2:end)

ans =
6 7 8

10 11 12
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abs() Function

abs() function calculates the absolute value of any variable.
For example:

>> x= abs(-4)

x =
4

Comments

Comments are an integral part of any programming language.
Comments help to identify program purpose and explain the work
of particular statements in a program. Comments also allow oth-
ers to understand the code.

To comment out multiple lines of code, we can use the block
comment operators, %{ and %} :

%{
In t roduc t i on to LINEAR PROGRAMMING with MATLAB
Chapter I− By S K Mishra
%}

We can also create quick, one-line comments with operator %.
The next line of code demonstrates this.

% By S K Mishra

MATLAB SCRIPTS

A Script is nothing but, a computer program written in the lan-
guage of MATLAB. It is stored in an M-file. It is saved with exten-
sion .m. We can display the contents of the script in the Command
Window using the type command followed by file name without
.m extension. Interpreter is a computer program which executes
the statements of script step by step. The script can be executed,
or run, by simply entering the name of the file (without the .m ex-
tension) in the command window. MATLAB ignores the comment
lines and does not execute when we run the M-file.
For example:
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Code 3.1: radius.m.

%f i n d rad iu s o f c i r c l e
rad iu s =5;
area=pi ∗( rad iu s ) ˆ 2 ;

Note that type command is helpful to see the contents of the script
in the Command Window. For eample:

>> type radius

Output:

rad iu s =5;
area=pi ∗( rad iu s )ˆ2

To run the script, the name of the file is entered at the prompt
(again, without the .m) or press F5.

>> radius

rad iu s =
5

area =
78.5398

INPUT/OUTPUT

Statements that accomplish to print the output or take the input
from users are called Input/Output statements. Input statements
read in values from the standard input device that is the keyboard.

In the Command Window,

>> side = input(’Enter the side of square’)

Output:

Enter the s i d e o f square : 8
s i d e =

8

If we want character or string input, then ’s’ must be added as a
second argument to the input function:
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In the Command Window,

>> letter = input(’Enter a char’,’s’);

Output:

Enter a char : g
l e t t e r=

g

The simplest output function in MATLAB is disp, which is used
to display the result of an expression.
For example:

In the Command Window,

>> disp(’Hello’)

Output:

Hel lo

In the Command Window,

>> disp(4ˆ3)

Output:

64

fprintf() displays the values of several variables in a specified
format. For eample:

In the Command Window,

>>a=
[
1 2 3 4 5

]
;

>> fprintf(’%d’,a)

Output:

12345>>
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We need to know different types of specifiers which are shown in
Table 3.1.

TABLE 3.1: Types of Specifiers

Specifiers Type
%c Character
%s String
%d Decimal integer number
%f Floating point number

Variable Precision

MATLAB uses floating-point arithmetic for its calculations.
Using the Symbolic Math Toolbox, we can also do exact
arithmetic with symbolic expressions. For example:

In the Command Window,

>>x = cot(pi/2)

Output:

x =
6.1232 e−17

The value of x is in floating-point format that is 6.1232×10−17.
However, we know that cot(π/2) is equal to 0. This inaccuracy is
due to the fact that typing pi in MATLAB gives an approximation
to π accurate to about 15 digits, not its exact value. To compute
an exact value, we must type sym(pi/2).
For example:

In the Command Window,

>> x = cot(sym(pi/2))

Output:

x =
0
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We wanted this value.

format

format Command style changes the output display format in the
Command Window to the format specified by style. For example:

In the Command Window,

>> format long

>> pi

Output:

ans =
3.141592653589793

See Table 3.2 for several numeric display of formats.

TABLE 3.2: Numeric Display of Formats

Type Result Example
format short 5 digits 3.1416

format long 15 digits 3.141592653589793
format short g Best of fixed or

floating point, with
5 digits

3.1416

format long g 15 digits 3.14159265358979
format short eng Engineering format 3.1416e+000
format long eng Engineering format

with 16 significant
digits and a power
is a multiple of
three

3.14159265358979e+000

3.4 Selection Statements and Loop Statements

If the expression is true, then the commands are executed, oth-
erwise the program continues with the next command immediately
beyond the end statement.
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The simplest form of if statements is

i f <cond i t ion>
statement1 ;
end

If the condition is true, the statement1 is executed, but if the con-
dition is false, nothing happens. We use relational operators to
create condition in if statement. Several relational operators have
been shown in Table 3.3.

TABLE 3.3: Relational Operators

Operators Meaning
< Less than
> Greater than
<= Less than or equal
>= Greater than or equal
== Equivalent
∼= Not equal to

Suppose that an expression is A < B. When this condition is true,
then block of statements will be executed. When this condition is
false, then block of statements will not be executed.

The syntax of an if...else statement in MATLAB is

i f c ond i t i on
statementA ;

e l s e
statementB ;

end

If the condition is true, then the if block of code will be executed,
otherwise else block of code will be executed.

Example 3.2. Write MATLAB script to find whether a number
is negative or not.

See MATLAB function given neg.m in Code 3.2.

Code 3.2: neg.m

f unc t i on a=neg ( a )
i f a<0
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di sp ( ’ Negative ’ )
e l s e

d i sp ( ’ Pos i t i ve ’ )
end

In the Command Window,

>> neg(-2)

Output:

negat ive

The for loop is a loop that executes a block of statements a spec-
ified number of times. The syntax of for loop has the form:

f o r index = va lues
statement1 ;
statement2 ;
. . .

end

The loop begins with the for statement and ends with the end

statement.

Example 3.3. Write MATLAB script to compute and display 10!.

We have written MATLAB script in the following Code 3.3.

Code 3.3: factorial.m

f unc t i on f=f a c t o r i a l ( a )
f =1;
f o r n=2:a

f=f ∗n ;
end

Example 3.4. Create a script file to display numbers from 1 to
10.

See Code 3.4.

Code 3.4: increment.m

f o r n=1:10
d i sp (n ) ;

end
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Example 3.5. Write MATLAB function to display the most neg-
ative element in a given matrix

A =

−1 −4 −3
−5 −2 −6
−7 −9 −8

 .
This MATLAB Code 3.5 is used to find the most negative element
that is –9 in matrix A.

Code 3.5: mostnegative.m

f unc t i on mn=mostnegat ive (A)
%input matrix A
%f i n d most negat ive element in matrix A
[m, n]= s i z e (A) ;
mn=0;
f o r I =1:m

f o r J=1:n
i f A( I , J)<= mn

mn=A( I , J ) ;
end

end
end
return

In the Command Window:

>> A=[-1 -4 -3; -5 -2 -6; -7 -9 -8 ]

>> mn = mostnegative(A)

Output:

mn =
−9

The while loop is a loop that executes a block of statements re-
peatedly as long as the expression is true. The syntax is

whi l e exp r e s s i on
statement1 ;
statement2 ;
. . .

end
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For example:
In the Command Window,
>> k = 0;

while k<3

k = k+1

end

Output:

k=
1

k=
2

k=
3

The for and while loops can be terminated using the break
command.

Example 3.6. Write a MATLAB function to display even num-
bers in vector.

See Code 3.6.

Code 3.6: even.m

f unc t i on E = even (B)
% input : vec to r B
% output : vec to r E
% This func t i on d i s p l a y s even number
[ ˜ , n]= s i z e (B) ;
j =1;
c=1;
whi l e j<=n

i f mod(B(1 , j ) ,2)==0
E(1 , c)=B(1 , j ) ;
c=c+1;

end
j=j +1;

end
return
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3.5 User-Defined Function

A function is a collection of sequential statements that accepts
an input argument from the user and provides output to the pro-
gram. Functions allow us to program efficiently. It avoids rewriting
the computer code for calculations that are performed frequently.
User-defined functions are stored as M-files.
See a very simple MATLAB function poly.m in the following Code
3.7 that calculates the value of a particular polynomial.

Code 3.7: poly.m

f unc t i on output = poly ( x )
% This func t i on c a l c u l a t e s the va lue o f th i rd
% order
output=xˆ3 +x+3;
re turn

Note that file name should be the same as that of function. There-
fore, we save as poly.m

In the Command Window,

>> poly(3)

Output:

output =
33

We have used the elementary row operations in Linear Equations
of Chapter 2 to find the rank of matrix and solve the system of
linear equations. We can write MATLAB code to perform these
elementary operations and use them to solve several problems.
For Example:

We have developed MATLAB function exchange.m given in the
following Code 3.8 to exchange the elements of pth and uth rows
in any matrix.



MATLAB 37

Code 3.8: exchangeop.m

f unc t i on A=exchangeop (A, p , u)
% input : augmented matrix A, row p , u
% output : augmented matrix A
[ ˜ , n]= s i z e (A) ;
f o r J=1:n

t=A(p , J ) ;
A(p , J)=A(u , J ) ;
A(u , J)=t ;

end
return

We have written MATLAB function identityop.m in the follow-
ing Code 3.9 to place the identity element at any position in the
matrix.

Code 3.9: identityop.m

f unc t i on A=iden t i t yop (A, p , e )
%input : Augmented matrix A, p ivot
%row p , p ivote lement e
%output : Augmented matrix A
[ ˜ , n]= s i z e (A) ;
format ra t
f o r J=1:n

A(p , J)=sym( e∗A(p , J ) ) ;
end
re turn

We have written a simple MATLAB function eliminationop.m in
the following Code 3.10 to eliminate all elements of any row using
pivot element in the matrix.

Code 3.10: eliminationop.m

f unc t i on A=e l im inat i onop (A, u , p , co )
%input : augmented matrix A, row u ,
%pivotrow p , c o e f f i c i e n t v a l u e co
%output : augmented matrix A
[ ˜ , n]= s i z e (A) ;
format ra t
f o r J=1:n

A(u , J)=sym(A(u , J)+( co∗A(p , J ) ) ) ;
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end
return

Example 3.7. Find rank of matrix of Example 2.3 in MATLAB.

A =

2 2 2 −2
1 2 3 4
3 4 5 2

 .
>> A = identityop(A,1,1/2) 1 1 1 −1

1 2 3 4

3 4 5 2


>> A = eliminationop(A,2,1,-1) 1 1 1 −1

0 1 2 5

3 4 5 2


>> A = eliminationop(A,3,1,-3) 1 1 1 −1

0 1 2 5

0 1 2 5


>> A = eliminationop(A,3,2,-1) 1 1 1 −1

0 1 2 5

0 0 0 0

 .
Therefore, ρ(A)=Number of nonzero rows=2.

3.6 MATLAB Functions Defined in This Book

We list below the user-defined MATLAB functions. These func-
tions will be used to solve several linear programming problems in
this book.
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1. he lp A=exchangeop (A, p , u)

input : augmented matrix A, row p , u
output : augmented matrix A
operat i on : exchange e lements o f row p with

e lements o f row u in tab leau

2. he lp A=id e n t i t y o p (A, p , e )

input : augmented matrix A, p ivot row p ,
p ivote l ement e

output : augmented matrix A
operat i on : mul t ip ly r e a l number e to

e lements o f row p

3. he lp A=e l im inat i onop (A, u , p , co )

input : augmented matrix A, row u ,
pivotrow p , c o e f f i c i e n t v a l u e co

output : augmented matrix A
operat i on : add elements o f u to e lements p

t imes co

4. he lp A=simplex (A, p , q )

input : augmented matrix A, p ivot row p ,
p ivot column q

output : augmented matrix A
operat i on : perform elementary row operat i on

to make zero e n t r i e s at q except
un i t entry at A(p , q )

5. he lp [A, q]= pivotcolumn (A, v )

input : augmented matrix A, nonbas ic
v a r i a b l e s v

output : p ivot column q , augmented
matrix A

operat i on : f i n d p ivot column in A
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6. he lp [A, p , e ,B]= pivotrow (A, q ,B)

input : augmented matrix A, p ivot
column q , b a s i s
matrix B

output : augmented matrix A, p ivot row p ,
p ivot element e
b a s i s matrix B

operat i on : f i n d p ivot row in A

7. he lp A=update lastrow (A, av )

input : augmented matrix A, a r t i f i c i a l
v a r i a b l e s av

output : augmented matrix A
operat i on : adding e lements o f a l l

cor re spond ing rows except
l a s t row and subt rac t
same from l a s t row in A

8. he lp [A, p , q , e ,B]= dual (A,B)

input : augmented matrix A, b a s i s
matrix B

output : augmented matrix A, p ivot
row p , p ivot column q , p ivot
element e , b a s i s matrix B

operat i on : f i n d p , q , e ,B us ing dual
s implex a lgor i thm

9. he lp [ Binv ,B, xB]=rsm (A, c ,B, xB , Binv , v )

input : augmented matrix A, co s t c ,
b a s i s matrix B, ba s i c vec to r
xB , i d e n t i t y matrix Binv ,
nonbas ic v a r i a b l e v

output : b a s i s matrix B, ba s i c vec to r xB
operat i on : f i n d B, xB us ing r e v i s e d s implex

a lgor i thm
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10. he lp [ minTcost , b , c ]=nwc(A, sup , dem)

input : t r a n s p o r t a t i o n matrix A, supply
sup , demand dem

output : minimum t r a n s p o r t a t i o n co s t
minTcost , ba s i c matrix b , co s t
matrix c

opera t i on : f i n d minTcost us ing northwest
corner method

11. he lp [ minTcost , b , c ]= l e a s t c o s t (A, sup , dem)

input : t r a n s p o r t a t i o n matrix A, supply
sup , demand dem

output : minimum t r a n s p o r t a t i o n co s t
minTcost , ba s i c matrix b , co s t
matrix c

opera t i on : f i n d minTcost us ing l e a s t co s t
method

12. he lp [ minTcost , b , c ]= voge l (A, sup , dem)

input : t r a n s p o r t a t i o n matrix A, supply
sup , demand dem

output : minimum t r a n s p o r t a t i o n co s t
minTcost , ba s i c matrix b , co s t
matrix c

opera t i on : f i n d minTcost us ing vogel ’ s
approximation method

13. he lp [ u , v , b , c ]= m u l t i p l i e r s 2 (b ,A, c , i , j )

input : ba s i c matrix b , t r a n s p o r t a t i o n
matrix A, co s t matrix c , row i ,
column j

output : vec to r u , vec to r v
opera t i on : f i n d u and v
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14. he lp x=uvx3 (b , u , v ,A)
input : ba s i c matrix b , vec to r u and v ,

t r a n s p o r t a t i o n matrix A
output : nonbas ic matrix x
opera t i on : s o l v e nonbas ic c e l l s

15. he lp [ bas ic , row , c o l ]= mostpos i t i ve4 (A, x , c )
input : t r a n s p o r t a t i o n matrix A,

nonbas ic matrix x , co s t
matrix c

output : element bas ic , p o s i t i o n row and
column

operat i on : f i n d most p o s i t i v e element in
nonbas ic matrix x

16. he lp [ y , bout ]= cyc l e 5 ( c , row , co l , b )
input : co s t matrix c , p o s i t i o n row , co l ,

ba s i c matrix b
output : loop matrix y , bout
opera t i on : f i n d loop

17. he lp [ c , b , min]= b a s i c c e l l 6 ( c , y , b , row , c o l )

input : co s t matrix c , ba s i c matrix b
output : minimum value min
operat i on : f i n d ba s i c c e l l

18. he lp [C,T]= hungarian (A)

input : matrix A
output : opt imal ass ignment C, optimal

va lue T
operat i on : s o l v e the ass ignment problem

us ing the hungarian method
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3.7 Exercises

Exercise 3.1. Suppose that u= 3 and v= 4. Evaluate the following
expressions using MATLAB.

(a) 5u
3v

(b) 3v−2

(u+v)2

(c) v3

(v−u)2

Exercise 3.2. Assume that a, b, c, and d are defined as follows:

a =

[
3 0
2 1

]
, b =

[
−1 2
0 1

]
, c =

[
3
2

]
, d = 1.

What is the result of each of the following expressions in MAT-
LAB?

(a) a+b

(b) b*c

(c) a .* b

(d) a .* d

Exercise 3.3. Answer the following questions for the following
array.

A=


1 2 8 5 3
6 8 1 3 1
12 6 9 1 0
5 8 1 6 4


(a) What is the size of A?

(b) What is the value of A(1,4)?

(c) What is the size and value of A(:,1:2:5)?

(d) What is the size and value of A([1 3], end)?
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Exercise 3.4. Check the following expressions in the Command
Window.

(a) x = 4 > 2

(b) x = 2 > 5

(c) x = 4 <= 3

(d) x = 1 < 1

(e) x = 2 = 2

(f) x = 3 == 3

(g) x = 0 < 0.5 < 1

Exercise 3.5. Write the MATLAB function to find the following
sum:

12 + 22 + 32 + · · ·+ 10002

Exercise 3.6. Create a matrix B equal to [ -1/3, 0, 1/3, 2/3], and
use each of the built-in format options to display the results.

(a) format short (which is the default)

(b) format long

(c) format bank

(d) format short e

(e) format long e

(f) format short eng

(g) format long eng

(h) format short g

(i) format long g

(j) format +

(k) format rat



Chapter 4

Introduction to Linear Programming

4.1 Introduction

The objective of a linear programming problem is to obtain
an optimal solution. Linear programming problems deal with the
problem of minimizing or maximizing a linear objective function in
the presence of a system of linear inequalities. The linear objective
function represents cost or profit. A large and complex problem can
be formulated in the form of a linear programming problem, and
users can solve such a large problem in a definite amount of time
using the simplex method and computer.

In this part we study a graphical method for solving linear
programming problems. This method is helpful to choose the best
feasible point among the many possible feasible points. A point
minimizing the objective function and satisfying the set of linear
constraints is called a “feasible point”.

4.2 Simple Examples of Linear Programs

A linear programming problem is concerned with solving a very
special type of problem—one in which all relations among the vari-
ables are linear both in the constraints and the function to be
optimized. We wish to solve the linear programming problem. A
linear programming problem is an optimization problem which can

45
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be written in standard form as

minimize cTx,
subject to Ax = b,
where x ≥ 0, c ∈ Rn, b ∈ Rm, A ∈ Rm×n.

The vector inequality x ≥ 0 means that each component of x is
nonnegative. In the above problem, cTx is called as an objective
function to be minimize and Ax = b is called as a set constraints.
This problem is the case of minimization. We can also write max-
imize in place of minimize and in place Ax = b, we can write the
inequalities such as Ax ≥ b or Ax ≤ b in the above linear pro-
gramming problem. These inequalities can also be rewritten into
the standard form as shown above.
The purpose of this section is to formulate the linear program-
ming problems and illustrate the applications of linear program-
ming methods.

Example 4.1. (The Diet Problem)Assume that there are two
products, cereal and milk, for breakfast and assume that a person
must consume at least 60 units of iron and at least 70 units of
protein to stay alive. Assume that one unit of cereal costs $20 and
contains 30 units of iron and 5 units of protein and one unit of milk
costs $10 and contains 17 units of iron and 9 units of protein. The
goal is to find the cheapest diet which will satisfy the minimum
daily requirement.

Let x1 represents the number of units of cereal that the person
consumes a day and x2 represents the number of units of milk
consumed.
For the diet to meet the minimum requirements, we must have

Iron Requirement : 30x1 + 17x2 ≥ 60,
Protein Requirement : 5x1 + 9x2 ≥ 70, where x1, x2 ≥ 0.

The cost of the diet is: 20x1 + 10x2.
Hence, the diet problem is:

minimize 20x1 + 10x2

subject to 30x1 + 17x2 ≥ 60,
5x1 + 9x2 ≥ 70,
x1, x2 ≥ 0.
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Example 4.2. A manufacturer produces two different products,
say chairs and tables, using three machines M1,M2 and M3. Each
machine can be used for only a limited period of time. Production
time for each product on each machine is given below in Table 4.1.

TABLE 4.1: Production Time

Production time (hrs/unit)
Machine Chair Table Available

time
M1 1 1 18
M2 1 3 18
M3 2 1 14
total 4 hrs 5 hrs

The objective is to maximize the combined time of utilization
of all three machines.
Let x1 and x2 denote the number of chairs and tables.

Constraints:

x1 + x2 ≤ 18, x1 + 3x2 ≤ 18, 2x1 + x2 ≤ 14, where x1, x2 ≥ 0.

Objective: maximizing the combined production time of three ma-
chines, that is

4x1 + 5x2.

Therefore, the linear programming problem is

maximize 4x1 + 5x2
subject to x1 + x2 ≤ 18,

x1 + 3x2 ≤ 18,
2x1 + x2 ≤ 14,
x1, x2 ≥ 0.

Example 4.3. A person requires 8, 15, 16 units of chemicals
A,B,C, respectively, for his garden. The liquid product contains
4, 5, 3 units of A,B,C, respectively per jar. The dry product con-
tains 3, 5, 6 units of A,B,C respectively per packet. The person
wants to spend a minimum possible amount on his garden, where
it is given that the liquid product is available for $40 per jar and
the dry product is available for $25 per packet.
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Suppose that person purchases x1 jars and x2 packets of the
products.
Constraints:

4x1 + 3x2 ≥ 8, 5x1 + 5x2 ≥ 15, 3x1 + 6x2 ≥ 16, where x1, x2 ≥ 0.

Objective: Minimizing cost, that is

40x1 + 25x2.

Therefore, the linear programming problem is

minimize 40x1 + 25x2
subject to 4x1 + 3x2 ≥ 8,

5x1 + 5x2 ≥ 15,
3x1 + 6x2 ≥ 16,
x1, x2 ≥ 0.

Example 4.4. A hotel has the following requirements for waiters
shown in Table 4.2. Waiters report to the hotel rooms at the be-
ginning of each period and work for eight consecutive hours. The
same waiter cannot work for more than two consecutive periods.
The hotel wants to determine the minimum number of waiters,
so that there may be sufficient waiters available for each period.
Formulate this as a linear programming problem.

TABLE 4.2: Hotel Requirement

Period Clock time (24
hours per day)

Minimum number
of waiters required

1 7 A.M. - 11 A.M. 65
2 11 A.M. - 3 P.M. 75
3 3 P.M. - 7 P.M. 65
4 7 P.M. - 11 P.M. 55
5 11 P.M. - 3 A.M. 25

6 3 A.M. - 7 A.M. 35

Suppose that x1, x2, x3, x4, x5, x6 be the number of waiters re-
porting at the beginning of periods 1, 2, . . . , 6.
Objective: minimizing the number of waiters, that is

minimize x1 + x2 + x3 + x4 + x5 + x6.

Since the same waiter cannot work for more than two consecutive
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periods, x1 waiters work for the period of 1 and 2, x2 waiters
work for the period of 2 and 3 etc. But, for the period 1, the
minimum number of waiters required is 65. Similarly, we can write
the minimum number of waiters required for periods 2,3,4,5 and
6.
Constraint: x6 + x1 ≥ 65.
Similarly, other constraints are x1+x2 ≥ 75, x2+x3 ≥ 65, x3+x4 ≥
55, x4 + x5 ≥ 25, x5 + x6 ≥ 35.
Therefore, the linear programming problem is

minimize x1 + x2 + x3 + x4 + x5 + x6

subject to x1 +x6 ≥ 65,
x1 + x2 ≥ 75,

x2 + x3 ≥ 65,
x3 + x4 ≥ 55,

x4 + x5 ≥ 25,
x5 + x6 ≥ 35,

x1, x2, x3, x4, x5, x6 ≥ 0.

4.3 Convex Sets

In order to know the concept of a convex set, we firstly unde-
stand about the line segment. Let P(x1, y1) and Q(x2, y2) be two
points in R2 (i.e., two-dimensional space) as given in Figure 4.1.
Equation of any line through these points is

z = λx+ (1− λ)y, λ ∈ [0, 1]

P

z

Q

FIGURE 4.1: Line segment PQ
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y − y2
y1 − y2

=
x− x2
x1 − x2

.

Let

x− x2
x1 − x2

= λ.

That is,

x = λx1 + (1− λ)x2. (4.1)

Similarly,

y = λy1 + (1− λ)y2. (4.2)

Consider the three vectors

v = (x, y), v1 = (x1, y1), v2 = (x2, y2). (4.3)

With the help of (4.3), (4.1) and (4.2) can be combined to get

v = λv1 + (1− λ)v2. (4.4)

When λ = 1, we get

v = v1 i.e.,P.

When λ = 0, we get

v = v2 i.e.,Q.

Therefore, for the line segment PQ, we must have 0 ≤ λ ≤ 1. This
is also true for Rn. The elements of this space are the n component

vectors v =
[
v1 v2 . . . vn

]T
Definition 4.1 (Convex Set). A set Ω in n-dimensional Rn is said
to be a convex set if any two points x and y in Ω, the line segment
joining the two points is also in Ω.

In other words, if x ∈ Ω and y ∈ Ω and also if z ∈ Ω for all
values of λ ∈ [0, 1] and z = λx+(1−λ)y, then Ω is called a “convex
set”. For example, a triangle and its interior form a convex set. See
Figure 4.2.
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A C

B

FIGURE 4.2: Triangle ABC

We can observe that Figure 4.3 is a convex set, but Figure 4.4
is not a convex set.

FIGURE 4.3: A convex set FIGURE 4.4: A nonconvex set

Example 4.5. Show that {(x, y) : |x| ≤ 5, |y| ≤ 10} is a convex
set.

We Consider X1 ={(x, y) : |x| ≤ 5, |y| ≤ 10}. Let (x1, y1),
(x2, y2) ∈ X1. Then, |x1| ≤ 5, |x2| ≤ 5 and |y1| ≤ 10, |y2| ≤ 10.
Suppose that λ >0; therefore, we consider

λ(x1, y1) + (1− λ)(x2, y2) = (λx1, λy1) + ((1− λ)x2, (1− λ)y2).

Next,

|λx1 + (1− λ)x2| ≤ |λx1|+ |(1− λ)x2|
= λ|x1|+ (1− λ)|x2|
≤ λ5 + (1− λ)5

= 5λ+ 5− 5λ = 5.
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Therefore,

|λx1 + (1− λ)x2| ≤ 5.

Similarly,

|λy1 + (1− λ)y2| ≤ |λy1|+ |(1− λ)y2|
= λ|y1|+ (1− λ)|y2|
≤ λ10 + (1− λ)10

= 10λ+ 10− 10λ = 10.

Therefore,

|λy1 + (1− λ)y2| ≤ 10.

Thus, λ(x1, y1) + (1 − λ)(x2, y2) ∈ X1 for λ > 0. Therefore, X1 is
a convex set.

4.4 Graphical Solution of Linear Programming Problem

We see graphically how linear programming optimizes a linear
objective function in which the variables must satisfy a set of si-
multaneous linear equations. From the graphical view of points,
we take following examples of linear programming problems of
two variables and their analysis can be seen on a two-dimensional
graph.

Example 4.6. Solve the following linear programming problem
graphically.

maximize 5x1 + 7x2

subject to 3x1 + 8x2 ≤ 12,
x1 + x2 ≤ 2,

2x1 ≤ 3,
x1, x2 ≥ 0.

We consider the constraints as equalities

3x1 + 8x2 = 12,
x1 + x2 = 2,

2x1 = 3.
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See Figure 4.5.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x1

x
2

FIGURE 4.5: Graphical solution of Example 4.6

The maximum value of 5x1 + 7x2 will be attainable at any one
of the five vertices (extreme points) of the feasible region.

At(0, 0), 5× 0 + 7× 0 = 0.

At(3
2
, 0), 5× 3

2
+ 7× 0 = 15

2
= 7.5.

At(3
2
, 1
2
), 5× 3

2
+ 7× 1

2
= 15

2
+ 7

2
= 22

2
= 11.

At(4
5
, 6
5
), 5× 4

5
+ 7× 6

5
= 20

5
+ 42

5
= 62

5
= 12.4.

At(0, 3
2
), 5× 0 + 7× 3

2
= 21

2
= 10.5.

Thus, the objective function 5x1 + 7x2 is maximum at (4
5
, 6

5
).

In the Command Window,

>> mupad

k :=[{3∗ x1+8∗x2<=12,x1+x2<=2,2∗x1<=3},5∗x1+7∗x2 ,
NonNegative ] :

g:= l i n o p t : : p l o t da ta (k , [ x1 , x2 ] ) :
p l o t ( g ) :
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See Figure 4.6 as output in MATLAB.

FIGURE 4.6: Graphical solution of Example 4.6 in MATLAB

Example 4.7. (Production Planning in the Automobile
Industry) An automobile assembly plant assembles two types
of vehicles: a four-door saloon and a people carrier. Both vehicle
types must pass through a painting plant and an assembly plant. If
the painting plant only paints four-door saloons, it can paint some
2,000 vehicles each day, whereas if it paints only people carriers, it
can paint some 1,500 vehicles each day. Moreover, if the assembly
plant only assembles either four-door saloons or people carriers, it
can assemble some 2,200 vehicles every day. Each people carrier
implies an average profit of $3,000, whereas a four-door saloon
implies an average profit of $2,100.

(a) Use linear programming and indicate the daily production
plan that would maximize the vehicle assembly plants daily
profit.
Use linear programming and indicate the daily production
plan that would maximize the vehicle assembly plant’s daily
profit.

Decision variables:
x1=Hundreds of four-door saloons produced daily,
x2=Hundreds of people carriers produced daily.

Objective function:
To maximize Z = 21x1 + 30x2.
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Constraints:
R1: The fraction of the day during which the painting plant
occupied is equal to or less than 1.
R1: The fraction of the day during which the painting plant
works on four-door saloons: 1

2.000
.

R1: The fraction of the day during which the painting plant
works on people carriers: 1

1.500
.

R1: 1
20
x1 + 1

15
x2 ≤ 1.

R2: The fraction of the day during which the assembly plant
occupied is equal to or less than 1.
R2: The fraction of the day during which the assembly plant
works on four-door saloons or people carriers: 1

2.200
.

R2: 1
22
x1 + 1

22
x2 ≤ 1.

R3: The non-negativity constraint.
R3: x1, x2 ≥ 0.
As this model has two decision variables, the problem can be
solved graphically which is shown in Figure 4.7.

0 5 10 15 20
0

5

10

15

x1

x
2

FIGURE 4.7: Graphical solution of Example 4.7
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In the Command Window
>> mupad

k :=[{1/20∗ x1+1/15∗x2<=1,1/22∗x1+1/22∗x2<=1},
21∗x1+30∗x2 , NonNegative ] :

g:= l i n o p t : : p l o t da ta (k , [ x1 , x2 ] ) :
p l o t ( g ) :

Output: See Figure 4.8 as output in MATLAB.

FIGURE 4.8: Graphical solution of Example 4.7 in MATLAB

(b) What surpluses would be produced in the painting plant and
the assembly plant?
The painting plant is saturated, that is, it has no surplus, yet
the assembly plant has a surplus of 0.3.

Example 4.8. (Investment of Funds) A small investor has
$12,000 to invest and three different funds to choose from. Guar-
anteed investment funds offer an expected rate of return of 7%,
mixed funds (part is guaranteed capital) have an expected rate
of return of 8%, while an investment on the Stock Exchange in-
volves an expected rate of return of 12%, but without guaranteed
investment capital. In order to minimize the risk, the investor has
decided to not invest more than $2,000 on the Stock Exchange.
Moreover, for tax reasons, the investor needs to invest at least
three times more in guaranteed investment funds than in mixed
funds. Let us assume that at the end of the year the returns are
those expected; what are the optimum investment amounts?

(a) Consider this problem as if it were a linear programming
model with two decision variables.
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Decision variables:
x1: amount (in thousands of $) invested in guaranteed funds;
x2: amount (in thousands of $) invested in mixed funds;

Objective function:

maximize z = 0.07x1 + 0.08x2 + 0.12(12− x1 − x2)
= 1.44− 0.05x1 − 0.04x2.

Constraints:

The non-negativity constraint of the amount invested,

12− x1 − x2 ≥ 0.

Upper limit of the amount invested,

(12− x1 − x2) ≤ 2.

Constraint for tax reasons,

x2 ≤
1

3
x1,

where

x1, x2 ≥ 0.

(b) Solve the problem with the graphic method and indicate the
optimum solution.
The feasible region is given in Figure 4.9.
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FIGURE 4.9: Graphical solution of Example 4.8
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Corner points are (9, 3), (12, 0), (10, 0) and (7.5, 2.5); there-
fore, we get an optimum investment of $965.

In the Command Window,

>> mupad

k:=[{12−x1−x2>=0,12−x1−x2<=2,x2<=0.33∗x1} ,1.44−
0 .05∗ x1−0.04∗x2 , NonNegative ] :

g:= l i n o p t : : p l o t da ta (k , [ x1 , x2 ] ) :
p l o t ( g ) :

Output: See Figure 4.10 as output in MATLAB.

FIGURE 4.10: Graphical solution of Example 4.8 in MATLAB

Example 4.9. Solve graphically.

minimize 4x1 + 2x2

subject to x1 + 2x2 ≥ 2,
3x1 + x2 ≥ 3,
4x1 + 3x2 ≥ 6,
x1, x2 ≥ 0.

>> mupad

k :=[{ x1+2∗x2>=2,3∗x1+x2>=3,4∗x1+3∗x2>=6},
4∗x1+2∗x2 , NonNegative ] :

g:= l i n o p t : : p l o t da ta (k , [ x1 , x2 ] ) :
p l o t ( g )

Output: See Figure 4.11 as output in MATLAB.
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FIGURE 4.11: Graphical solution of Example 4.9 in MATLAB

An optimum value of the objective function is 24
5

at (3
5
, 6
5
).

Example 4.10. For the linear programming problem,

minimize x1 − x2

subject to 2x1 + 3x2 ≤ 6,
x1 ≤ 3,

x2 ≤ 3,
x1, x2 ≥ 0.

The number of corner points are x1 = x2 = 0; x1 = 3, x2 = 0 and
x1 = 0, x2 = 2. They are shown in Figure 4.12.
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FIGURE 4.12: Graphical solution of Example 4.10

We can draw the graph in MATLAB.
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In the Command Window,

>> mupad

k :=[{2∗ x1+3∗x2<=6,x1<=3,x2<=3},x1−x2 ,
NonNegative ] :

g:= l i n o p t : : p l o t da ta (k , [ x1 , x2 ] ) :
p l o t ( g ) :

See Figure 4.13 as output in MATLAB.

FIGURE 4.13: Graphical solution of Example 4.10 in MATLAB

Example 4.11. Solve the following linear programming problem
by graphical method.

maximize x1 + x2

subject to 2x1 + x2 ≥ 8,

2x1 + 5x2 ≥ 10,

x1, x2 ≥ 0.

The optimal value of this problem is .
See Figure 4.14.
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FIGURE 4.14: Graphical solution of Example 4.11

Corner points are (0, 8), (15
4
, 1
2
) and (5, 0). The optimal solution

is found at (0, 8) and the maximum value of an objective function
is 8.

In the Command Window,

>> mupad

k :=[{2∗ x1+x2>=8,2∗x1+5∗x2>=10},x1+x2 ,
NonNegative ] :

g:= l i n o p t : : p l o t da ta (k , [ x1 , x2 ] ) :
p l o t ( g ) :

See Figure 4.15 as output in MATLAB.

FIGURE 4.15: Graphical solution of Example 4.11 in MATLAB
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Example 4.12. Solve the following linear program graphically
using MATLAB.

maximize 2x1 + 5x2

subject to x1 ≤ 4,
x2 ≤ 6,

x1 + x2 ≤ 8,
x1, x2, ≥ 0.

In the Command Window,

>> mupad

k :=[{x1<=4,x2<=6,x1+x2<=8},2∗x1+5∗x2 ,
NonNegative ] :

g:= l i n o p t : : p l o t da ta (k , [ x1 , x2 ] ) :
p l o t ( g ) :

Output: See Figure 4.16 as output in MATLAB.

FIGURE 4.16: Graphical solution of Example 4.12 in MATLAB

Corner points are (4,0), (4,4), (2,6) and (0,6). It clearly shows
that the maximum value of an objective function at (2, 6) is 2x1 +
5x2 = 2× 2 + 5× 6 = 34.

Example 4.13. Consider the linear programming problem

maximize x1 + x2

subject to x1 − 2x2 ≤ 10,
−2x1 + x2 ≤ 10,
x1, x2, ≥ 0.

Then, which of the following options is TRUE?
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(a) The linear programming problem admits an optimal solution.

(b) The linear programming problem is unbounded.

(c) The linear programming problem admits no feasible solution.

(d) The linear programming problem admits a unique feasible
solution.

In the Command Window,

k :=[{x1−2∗x2<=10,x2−2∗x1<=10},x1+x2 ,
NonNegative ] :

g:= l i n o p t : : p l o t da ta (k , [ x1 , x2 ] ) :
p l o t ( g ) :

See Figure 4.17 as output in MATLAB.

FIGURE 4.17: Graphical solution of Example 4.13 in MATLAB

From the above graph in Figure 4.17, we observe that the linear
programming problem has unbounded solution. Option (b) is ture.

Example 4.14. Suppose that the variables x1 ≥ 0 and x2 ≥ 0
satisfy the constraints x1 +x2 ≥ 3 and x1 + 2x2 ≥ 4. Which of the
following is true?

(a) The maximum value of 5x1 + 7x2 is 231 and it does not have
any finite minimum.

(b) The minimum value of 5x1 + 7x2 is 17 and it does not have
any finite maximum.

(c) The maximum value of 5x1 + 7x2 is 231 and its minimum
value is 17.

(d) 5x1+7x2 neither has a finite maximum nor a finite minimum.
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See Figure 4.18.
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FIGURE 4.18: Graphical solution of Example 4.14

At(0, 3), 5x1 + 7x2 = 5× 0 + 7× 3 = 21.

At(2, 1), 5x1 + 7x2 = 5× 2 + 7× 1 = 17.

At(4, 0), 5x1 + 7x2 = 5× 4 + 7× 0 = 20.

In the Command Window,

>> mupad

k :=[{ x1+x2>=3,x1+2∗x2>=4},5∗x1+7∗x2 , NonNegative ] :
g:= l i n o p t : : p l o t da ta (k , [ x1 , x2 ] ) :
p l o t ( g ) :

See Figure 4.19 as output in MATLAB.
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FIGURE 4.19: Graphical solution of Example 4.14 in MATLAB

The minimum value of 5x1 + 7x2 is 17 and it does not have any
finite maximum. Therefore, option (b) is true.
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4.5 Exercises

Exercise 4.1. A production company produces two types of mod-
els: M1 and M2. Each M1 model requires 4 hours of grinding and
2 hours of polishing; whereas, each M2 model requires 2 hours of
grinding and 5 hours of polishing. The company has 2 grinders
and 3 polishers. Each grinder works for 40 hours per week and
each polisher works for 60 hours per week. Profit on an M1 model
is $3 and on an M2 model is $4. Whatever produced in a week is
sold in the market. How should the production company allocate
his production capacity to the two types of models so that he may
make maximum profit in a week.

Exercise 4.2. On the bank of Ganga river, Varanasi, there are
three neighbouring cities that are discharging two kinds of pol-
lutants, A and B, into the river. Now the Uttar Pradesh state
government has set up a treatment plant that treats pollutants
from City 1 for $15 per ton which reduces pollutants A and B by
the amount of 0.10 and 0.45 tons per ton of waste, respectively. It
costs $10 per ton to process a ton of City 2 waste and consequen-
tially reducing pollutants A and B by 0.20 and 0.25 tons per ton
of waste, respectively. Similarly, City 3 waste is treated for $20 re-
ducing A by 0.40 and B by 0.30 tons per ton of waste. The state
wishes to reduce the amount of pollutant A by at least 30 and B
by 40 tons. Formulate the linear programming problem that will
minimize the cost of reducing pollutants by the desired amount.

Exercise 4.3. Which ones of the following subsets of R2 are con-
vex and which are not?

(a) {(x, y): x2 + y2 = 1}

(b) {(x, y): y ≥ x2}

(c) {(x, y): y ≤ x2}

(d) {(x, y): x2 + y2 ≤ 4}

(e) {(x, y): x2 + y2 ≥ 3}

Exercise 4.4. Solve the following linear programming problems
by graphical method.
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(a)
maximize 3x1 + 2x2

subject to 2x1 − x2 ≥ 2,
x1 + 2x2 ≤ 8,
x1, x2 ≥ 0.

(b)
maximize 2x1 + 3x2

subject to x1 + x2 ≤ 1,
3x1 + x2 ≤ 4,
x1, x2 ≥ 0.

(c)
maximize 3x1 + 2x2

subject to 2x1 + x2 ≤ 1,
x1 ≤ 2,
x1 + x2 ≥ 3,
x1, x2 ≥ 0.

(d)
maximize 3x1 + 4x2

subject to x1 − x2 ≤ −1,
− x1 + x2 ≤ 0,
x1, x2 ≥ 0.

(e)
maximize 8000x1 + 7000x2

subject to 3x1 + x2 ≤ 66,
x1 + x2 ≤ 45,
x1 ≤ 20,

x2 ≤ 40,
x1, x2 ≥ 0.

Exercise 4.5. Solve the following linear programming problems
graphically.

(a)
maximize 5x1 + 4x2

subject to x1 − 2x2 ≤ 1,
x1 + 2x2 ≤ 3,
x1, x2 ≥ 0.
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(b)
maximize 3x1 + 2x2

subject to 3x1 − 2x2 ≥ −20,
−2x1 + 3x2 ≤ 9,
x1, x2 ≥ 0.

Exercise 4.6. Solve the following linear programming problem
graphically.

maximize 100x1 + 100x2

subject to 10x1 + 5x2 ≤ 80,
6x1 + 6x2 ≤ 66,
4x1 + 8x2 ≥ 24,
5x1 + 6x2 ≤ 90,
x1, x2 ≥ 0.



Chapter 5

The Simplex Method

5.1 Standard Form of Linear Programming Problem

We refer to a linear programming problem in standard form as
follows:

minimize cTx
subject to Ax = b,
where c ∈ Rn, x ∈ Rn, b ∈ Rm, A ∈ Rm×n, x ≥ 0.

The above problem can also be written as follows:

minimize c1x1 + c2x2 + · · ·+ cnxn

subject to


a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . .
...

am1 am2 . . . amn



x1
x2
...
xn

=


b1
b2
...
bm

 ,

x1
x2
...
xn

 ≥


0
0
...
0

 .
Equivalently.

minimize c1x1 + c2x2 + · · ·+ cnxn
subject to a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,
...

am1x1 + am2x2 + · · ·+ amnxn = bm,

69
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where ci, bi and aij are fixed real constants and xi is the real num-
ber to be determined.

5.2 Basic Solutions

Consider a linear programming problem in standard form:

minimize cTx,
subject to Ax = b,
where x ≥ 0, c ∈ Rn, x ∈ Rn, b ∈ Rm, A ∈ Rm×n,m < n.

We consider the system of equations as Ax = b where rank A = m.
LetB be a square matrix of orderm×m whose columns are linearly
independent columns of the matrix A. We can write matrix A in
the form

[
B : D

]
where D = m × (n − m) whose columns are

remaining columns of A. The matrix B is nonsingular. We can
solve

BxB = b,

that is

xB = B−1b.

Thus, x =
[
xTB, 0

T
]T

is a solution of Ax = b.

Definition 5.1 (Basic Solution). We say x =
[
xTB, 0

T
]T

is a ba-
sic solution of Ax = b with respect to the basis matrix B. The
components of xB are called “basic variables”. If some of the ba-
sic variables of a basic solution are zero, then the basic solution is
called a “degenerate basic solution”.

Definition 5.2 (Feasible Solution). A vector x ∈ Rn satisfying
Ax = b, where x ≥ 0 is called a “feasible solution”. A feasible
solution that is also basic is called a “basic feasible solution”.

Definition 5.3 (Degenerate Basic Feasible Solution). If the basic
feasible solution is a degenerate basic solution, then it is called a
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“degenerate basic feasible solution”. We must note that xB ≥ 0
for any basic feasible solution.

Thus, we solve the following linear equations to find basic so-
lutions and also check the feasible solution.

Example 5.1. Find all basic solutions of the following equations:

x1 + x2 + x3 = 1,
2x1 + 3x2 = 1.

Augmented matrix is[
1 1 1 1
2 3 0 1

]
∼
[

1 1 0 1
0 1 −2 −1

]
∼
[

1 0 2 2
0 1 −2 −1

]
R2 → R2 − 2R1 R1 → R1 −R2

System of linear equations can be given as

x1 + 2x3 = 2,
x2 − 2x3 = −1.

Solving the above two equations,

x1 = 2− 2s,

x2 = −1 + 2s,

x3 = s, s ∈ R.

Thus, the system of linear equations has infinitely many solutions,
but it can have at most

(
3
2

)
, i.e., 3 basic solutions.

1. Since B =
[
a1 a2

]
is a basis matrix, then we have xB =

[
x1
x2

]
.

Therefore, BxB = b and its augmented matrix is[
1 1 1
2 3 1

]
∼
[

1 1 1
0 1 −1

]
.

R2 → R2 − 2R1

Therefore,

x1 + x2 = 1,

x2 = −1.
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Therefore, the basic vector, i.e., x1 = 2, x2 = −1, xB =

[
2
−1

]
and x =

 2
−1
0

. It is not a basic feasible solution.

2. Since basis matrix is B =
[
a1 a3

]
, therefore, xB =

[
x1
x3

]
. We

write [
1 1 1
2 0 1

]
.

2x1 = 1,

x1 + x3 = 1.

The basic vector, i.e., x1 = 1
2
, x3 = 1

2
, xB =

[
1/2
1/2

]
and x =1/2

0
1/2

. It is a basic feasible solution.

3. Since basis matrix is B =
[
a2 a3

]
, therefore xB =

[
x2
x3

]
. We

write [
1 1 1
3 0 1

]
.

3x2 = 1,

x2 + x3 = 1.

Therefore, basic vector, i.e., x2 = 1
3
, x3 = 2

3
, xB =

[
1/3
2/3

]
and

x =

 0
1/3
2/3

. It is a basic feasible solution.

Example 5.2. Consider the equation Ax = b, where A =
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[
2 6 2 1
6 4 4 6

]
, b =

[
3
2

]
and x =


x1
x2
x3
x4

. Find basic solutions of

Ax = b.

The augmented matrix[
A b

]
=

[
2 6 2 1 3
6 4 4 6 2

]
R1 →

1

2
R1

∼
[

1 3 1 1/2 3/2
6 4 4 6 2

]
R2 → R2 − 6R1

∼
[

1 3 1 1/2 3/2
0 −14 −2 3 −7

]
R2 → −

1

14
R2

∼
[

1 3 1 1/2 3/2
0 1 1/7 −3/14 1/2

]
R1 → R1 − 3R2

∼
[

1 0 4/7 8/7 0
0 1 1/7 −3/14 1/2

]
.

Corresponding system of linear equations is given by

x1 +
4

7
x3 +

8

7
x4 = 0,

x2 +
1

7
x3 −

3

14
x4 =

1

2
.

Solving for unknown variables x1 and x2, we get

x1 = −4

7
x3 −

8

7
x4,

x2 =
1

2
− 1

7
x3 +

3

14
x4.

Taking x3 = s ∈ R and x4 = t ∈ R, we get
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x1 = −4

7
s− 8

7
t,

x2 =
1

2
− 1

7
s+

3

14
t,

x3 = s,

x4 = t.

In vector notation, we may write the system of equations above as
x1
x2
x3
x4

 =


0
1/2
0
0

+ s


−4/7
−1/7

1
0

+ t


−8/7
3/14
0
1

 .
We have infinitely many solutions for s, t ∈ R. Our question is how
many basic feasible solutions are there?
We have unknown variables m = 4 and number of equations n = 2.(

m

n

)
=

(
4

2

)
=

4!

2!2!
= 6.

Therefore, we have at most six basic feasible solutions. We try to
check each of the basic solutions for feasibility.

1. Since basis matrix B =

[
2 6
6 4

]
, then xB =

[
x1
x2

]
. We solve

BxB = b. [
2 6 3
6 4 2

]
∼
[

2 6 3
0 −14 −7

]
.

R2 → R2 − 3R1

The corresponding system of linear equations is

2x1 + 6x2 = 3,

−14x2 = −7.

After solving the above two equations, we get basic vector,

i.e., x1 = 0, x2 = 1
2
, xB =

[
0
1/2

]
, and x =


0
1/2
0
0

 is a solution
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of Ax = b. We observe that x is a basic solution of Ax = b.
Since x ≥ 0, it is also feasible.

2. Since basis B =

[
2 2
6 4

]
, therefore xB =

[
x1
x3

]
. We solve

BxB = b.[
2 2 3
6 4 2

]
∼
[

1 1 3/2
6 4 2

]
∼
[

1 1 3/2
0 −2 −7

]
R1 → 1

2
R1 R2 → R2 − 6R1 R2 → −1

2
R2

∼
[

1 1 3/2
0 1 7/2

]
∼
[

1 0 −2
0 1 7/2

]
.

R1 → R1 −R2

We get x1 = −2 and x3 = 7
2
. Thus, xB =

[
−2
7/2

]
and x =

−2
0
7/2
0

 is a solution of Ax = b. It is basic but it is not feasible.

3. Since basis matrix is B =

[
2 1
6 6

]
, therefore, xB =

[
x1
x4

]
. We

solve BxB = b.[
2 1 3
6 6 2

]
∼
[

2 1 3
−6 0 −16

]
∼
[

2 1 3
1 0 8/3

]
R2 → R2 − 6R1 R2 → −1

6
R2 R1 → R1 − 2R2

∼
[

0 1 −7/3
1 0 8/3

]
∼
[

1 0 8/3
0 1 −7/3

]
.

R1 ↔ R2

We get x1 = 8
3

and x4 = −7
3
. Thus, xB =

[
8/3
−7/3

]
and

x =


8/3
0
0
−7/3

 is a solution of Ax = b. It is basic, but it is

not feasible.

4. Since basis matrix B=

[
6 2
4 4

]
, therefore xB =

[
x2
x3

]
. We solve
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BxB = b.[
6 2 3
4 4 2

]
∼
[

6 2 3
1 1 1/2

]
∼
[

0 −4 0
1 1 1/2

]
R2 → 1

4
R2 R1 → R1 − 6R2 R1 → −1

4
R1

∼
[

0 1 0
1 1 1/2

]
.

Thus, we get x3 = 0, x2 = 1
2

and x =


0
1/2
0
0

 . It gives a basic

feasible solution.

5. Since B =

[
6 1
4 6

]
and xB =

[
x2
x4

]
, then we solve BxB = b.[

6 1 3
4 6 2

]
∼
[

6 1 3
−32 0 −16

]
∼
[

6 1 3
1 0 1/2

]
R2 → R2 − 6R1 R2 → − 1

32
R2 R1 → R1 − 6R2

∼
[

0 1 0
1 0 1/2

]
∼
[

1 0 1/2
0 1 0

]
.

R1 ↔ R2

We get x2 = 1
2
, x4 = 0 and x =


0
1/2
0
0

 . It is basic feasible

solution.

6. Since basis matrix is B =

[
2 1
4 6

]
; therefore, basic vector is

xB =

[
x3
x4

]
. Then, we solve BxB = b.[

2 1 3
4 6 2

]
∼
[

2 1 3
−8 0 −16

]
∼
[

2 1 3
1 0 2

]
R2 → R2 − 6R1 R2 → −1

8
R2 R1 → R1 − 2R2

∼
[

0 1 −1
1 0 2

]
∼
[

1 0 2
0 1 −1

]
.

R1 ↔ R2
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We get x3 = 2, x4 = −1 and x =


0
0
2
−1

. It is basic but not

feasible.

5.3 Properties of Basic Solutions

In this section, we discuss the importance of basic feasible solu-
tions in solving linear programming problems. We prove the fun-
damental theorem of a linear programming problem. Before this,
we should have an idea about an optimal basic feasible solution.

Definition 5.4 ( Optimal Basic Feasible Solution). Any vector
x that yields the minimum value of the objective function cTx
over the set of vectors satisfying Ax = b, x ≥ 0 is called an
“optimal feasible solution”. An optimal feasible solution that is
basic is called an “optimal basic feasible solution”.

Theorem 5.1. The set of feasible solutions of a standard form
linear programming problem is a convex set.

Proof. Consider a standard form of linear programming problem:

minimize cTx,
subject to Ax = b,
where c ∈ Rn, x ∈ Rn, b ∈ Rm, A ∈ Rm×n, x ≥ 0.

The set of feasible solution is X := {X ∈ Rn : Ax = b, x ≥ 0}.
We have to prove that X is a convex set. That is, if x, y ∈ X and
λ ∈ [0, 1], then we have to show that λx+ (1− λ)y ∈ X.
For that, we have to show that

A(λx+ (1− λ)y) = b and λx+ (1− λy) ≥ 0.

Since

x, y ∈ X,
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therefore

Ax = b,

Ay = b.

Then,

A(λx+ (1− λ)y) = λAx+ (1− λ)Ay

= λb+ (1− λ)b

= b.

That is,

A(λx+ (1− λ)y) = b. (5.1)

Since

x, y ≥ 0,

therefore

λx+ (1− λ)y ≥ λ× 0 + (1− λ)× 0.

That is,

λx+ (1− λ)y ≥ 0. (5.2)

From (5.1) and (5.2),

λx+ (1− λ)y ∈ X.

Thus, X is a convex set.

Theorem 5.2. [Fundamental Theorem of Linear Pro-
gramming Problem] Consider a linear programming problem
in standard form:

minimize cTx,
subject to Ax = b,
where c ∈ Rn, x ∈ Rn, b ∈ Rm, A ∈ Rm×n, x ≥ 0.

1. If there exists a feasible solution, then there exists a basic
feasible solution;
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2. If there exists an optimal feasible solution, then there exists
an optimal basic feasible solution.

Proof. 1. Suppose that x =


x1
x2
...
xn

 is a feasible solution and it

has p positive components, i.e., x =



x1
x2
...
xp
0
0
0


. That is, xi ≥ 0,

where i = 1, . . . , p. Let A =
[
a1 a2 . . . ap . . . an

]
, where

ai for all i = 1, . . . , n, is the ith column of A. We have

Ax = b,

then

[
a1 a2 . . . ap . . . an

]


x1
x2
...
xp
0
0
0


= b.

That is,

x1a1 + x2a2 + · · ·+ xpap = b. (5.3)

We consider two cases.
Case 1: If a1, a2, . . . , ap are linearly independent, then p ≤ m.
If p = m, then the solution x is basic and the proof is done.
If p < m and since rank A = m, then the matrix B is square
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matrix of order m × m and therefore, x =



x1
x2
...
xp
0
0
0


. That is,

xi > 0 for all i = 1, . . . , p, and xi = 0 for all i = p+ 1, . . . ,m.
Thus, x is a degenerate basic feasible solution corresponding
to the basis B.
Case 2: If a1, a2, . . . , ap are linearly dependent, then there
exist αi, i = 1, . . . , p, not all zero, such that

α1a1 + α2a2 + · · ·+ αpap = 0. (5.4)

We can assume that there exists at least one αi, that is posi-
tive. Note that if all αi are nonpositive, then we can multiply
(5.4) by (–1).
Multiplying (5.4) by ε, a real number,

εα1a1 + εα2a2 + · · ·+ εαpap = 0. (5.5)

Subtracting (5.5) from (5.3) to get

(x1 − εα1)a1 + (x2 − εα2)a2 + · · ·+ (xp − εαp)ap = b.

Let α =



α1
...
αp
0
0
0

. Then, for any ε, we can write A[x− εα] = b.

Let ε = min{ xi
αi

: i = 1, . . . , p, αi > 0}. Then, the first
p components of x − εα are non-negative, and at least one
of these components is zero. Therefore, we have a feasible
solution with at most p − 1 positive components. We repeat
this process until we get linearly independent columns of A,
after that we get back to case-1. Therefore, Part 1 is done.
We now prove Part 2.
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2. Let the solution x =


x1
x2
...
xn

 be an optimal feasible solution

and the first p components are nonzero.
We have two cases to consider. The first case is exactly the
same as in Part 1. The second case follows the same arguments
as in Part 1, but in addition, we must show that x− εα is the
optimal for any ε. That is, we must show that cTα = 0.
Suppose that if possible cTα 6= 0. Note that for ε, sufficiently
small,

(|ε| ≤ min{| xi
αi
|: i = 1, . . . , p, αi 6= 0}).

The vector x− εα is feasible. We choose ε such that

cTx > cTx− εcTα
= cT (x− εα).

It contradicts the optimality of x.

Definition 5.5 ( Extreme Points). A point x of a convex set Ω is
called an extreme point of Ω if there are no two points x1 and x2
such that λx1 + (1 − λx2) = x for some λ ∈ [0, 1]. It means that
the extreme point is a point that does not lie strictly within the
line segment connecting two other points of the set.

In other words, if x is an extreme point and x = λx1 +(1−λ)x2
for some x1, x2 ∈ Ω, then x1 = x2.
For example,
Let the set R0 be determined by

x1 + x2 + x3 = 1,

x1 − x2 = 0,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Note that R0 is the line segment joining the points x1 =

1/2
1/2
0

 and
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x2 =

0
0
1

 . Both x1 and x2 are extreme points; however, only one

of them, namely x1, is nondegenerate.

Theorem 5.3. Let Ω be the convex set consisting of all feasible
solutions, that is, all n-vectors x satisfying

Ax = b, x ≥ 0, (5.6)

where A ∈ Rm×n, m < n. Then, x is an extreme point of Ω if and
only if x is a basic feasible solution to Ax = b, x ≥ 0.

Proof. Suppose that x = [x1, x2, . . . , xp, 0, 0, . . . , 0]T satisfies (5.6)
and has p positive components. Without loss of generality, we can
assume that first p components are positive and the remaining
components are zero. We have

x1a1 + x2a2 + · · ·+ xpap = b, (5.7)

Let αi, i = 1, . . . , p be such that

α1a1 + α2a2 + · · ·+ αpap = 0. (5.8)

We show that each αi = 0, that is, we show that a1, a2, . . . , ap are
linearly independent. Let ε > 0, then

εα1a1 + εα2a2 + · · ·+ εαpap = 0. (5.9)

Adding (5.7) and (5.9) and subtracting (5.9) from (5.7) to get

(x1 + εα1)a1 + (x2 + εα2)a2 + · · ·+ (xp + εαp)ap = b,

(x1 − εα1)a1 + (x2 − εα2)a2 + · · ·+ (xp − εαp)ap = b.

Since each xi > 0, ε > 0 can be chosen such that xi + εαi ≥ 0 and
xi − εαi ≥ 0. We have

(|ε| ≤ min{| xi
αi
|: i = 1, . . . , p, αi 6= 0}).
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For such a choice of ε, the vectors

z1 =



x1 + εα1

x2 + εα2
...

xp + εαp
0
0
0


and z2 =



x1 − εα1

x2 − εα2
...

xp − εαp
0
0
0


, where z1, z2 ∈ Ω.

Note that x = 1
2
z1 + 1

2
z2, but x is extreme. Therefore, z1 = z2.

That is αi = 0, i = 1, . . . , p and α1, α2, . . . , αp are linearly inde-

pendent. Thus, x =



x1
x2
...
xp
0
0
0


is a basic feasible solution to Ax = b,

where x ≥ 0.

Conversely, let x ∈ Ω be a basic feasible solution. Let y, z ∈ Ω
be such that x = αy + (1− α)z for some α ∈ (0, 1).
We need to show that x is extreme, i.e., equivalent to show that
y = z.
Since y, z ≥ 0 and the last n−m components of x are zero. There-
fore, the last n−m components of y and z are zero as well.
Furthermore, since

Ay = Az = b,

then

y1a1 + · · ·+ ymam = b, (5.10)

z1a1 + · · ·+ zmam = b. (5.11)

Subtracting (5.11) from (5.10),

(y1 − z1)a1 + · · ·+ (ym − zm)am = 0.
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Since the columns a1, a2, . . . , am are linearly independent, then y1−
z1 = 0, y2 − z2 = 0,. . . , ym − zm = 0. That is,

yi = zi, i = 1, . . . ,m.

Thus, x is an extreme point of Ω.

5.4 Simplex Algorithm

The aim of the simplex algorithm is to move from one basic
feasible solution to another until an optimal basic feasible solution
is found and the value of objective function continually decreases
until a minimum is reached. A basic feasible solution is optimal
if and only if the corresponding reduced cost coefficients are all
non-negative.

Theorem 5.4. A basic feasible solution is optimal if and only if
the corresponding reduced cost coefficients are all non-negative.

Note: The proof is beyond the scope of this book.

At this point, we have the following steps for the simplex algo-
rithm.

Algorithm

1. Form an augmented simplex tableau corresponding to a start-
ing basic feasible solution of the standard form of linear pro-
gramming problem.

2. Calculate the reduced cost coefficients corresponding to the
nonbasic variables.

3. If rj ≥ 0 for all j, then the current basic feasible solution is
optimal and stop; otherwise, go to step 4.

4. Select a q such that rq < 0 (i.e., the q corresponding to the
most negative rq).

5. If no yiq > 0, then the problem is unbounded and stop; oth-
erwise, go to step 6.
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6. Calculate p = arg mini

{
yi0
yiq

: yiq > 0
}
. If more than one in-

dex i minimizes yi0
yiq

, then let us choose p.

7. Update the augmented simplex tableau by pivoting about the
(p, q)th element.

8. Go to step 2.

The simplex method can be examined by selecting pivot column
q and row p. The pivot column is q with the most negative ele-
ment in the bottom row of an augmented matrix. The tableau is
called an optimal in step 3 if all entries are non-negative in the
last row of the tableau. In the simplex method, we want to move
from one basic feasible solution to another until an optimal basic
feasible solution is found. To improve the tableau, pivot row p is

calculated by attaining minimum ratio in step 6 that is min
i

{yi0
yiq

}
where the entries yi0, i = 1, 2, . . . ,m are found in the last column
of the canonical augmented matrix and yiq are the entries of pivot
column q. We use elementary row operations to get zero entries
at qth column except the (p,q)th entry which is made to be unity.
The rest of the entries will remain the same as that of old canoni-
cal augmented matrix. If all entries yiq are either zero or negative,
then we cannot move to a new augmented matrix and the linear
programming problem will be unbounded.

Example 5.3. Solve linear programming problem.

maximize 4x1 + 5x2

subject to 2x1 + x2 ≤ 9,
x1 ≤ 4,

x2 ≤ 3,
x1, x2 ≥ 0.

The first step is to convert the problem in standard form:
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minimize − 4x1 − 5x2

subject to 2x1 + x2 + x3 = 9,
x1 +x4 = 4,

x2 +x5 = 3,
x1, x2, x3, x4, x5, ≥ 0.

The augmented matrix of this problem is

a1 a2 a3 a4 a5 b
a3 2 1 1 0 0 9
a4 1 0 0 1 0 4
a5 0 1 0 0 1 3

Note that basis matrix is B =
[
a3 a4 a5

]
. Therefore, xB =

x3x4
x5


and since BxB = b, so we get xB =

9
4
3

. Therefore, the starting

basic feasible solution to the problem is x =


0
0
9
4
3

 . We compute the

reduced cost coefficients corresponding to the nonbasic variables
x1 and x2.

r1 = c1 − (c3y11 + c4y21 + c5y31)

= −4− (0× 2 + 0× 1 + 0× 0)

= −4,

and

r2 = c2 − (c3y12 + c4y22 + c5y32)

= −5− (0× 1 + 0× 0 + 0× 1)

= −5.

We choose the most negative cost coefficient value rj and bring
the corresponding columns into the basis. We see that r2 = −5 is
the most negative value. Therefore, a2 enters into basis.
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a1 a2 a3 a4 a5 b

a3 2 1 1 0 0 9

a4 1 0 0 1 0 4

a5 0 1 0 0 1 3

We compute p= arg min
{

9
1
,
�
�A
A
4
0
, 3
1

}
= 3rd row. We choose the min-

imum ratio and we see that the third row is chosen as pivot row.

a1 a2 a3 a4 a5 b

a3 2 1 1 0 0 9

a4 1 0 0 1 0 4

a2 0 1 0 0 1 3

We now update the canonical augmented matrix by pivoting at
(3, 2)th entry with the help of row operations:

a1 a2 a3 a4 a5 b

a3 2 1 1 0 0 9

a4 1 0 0 1 0 4

a2 0 1 0 0 1 3

R1 → R1 −R3

a1 a2 a3 a4 a5 b

a3 2 0 1 0 −1 6

a4 1 0 0 1 0 4

a2 0 1 0 0 1 3

R1 ↔ R3
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a1 a2 a3 a4 a5 b

a2 0 1 0 0 1 3

a4 1 0 0 1 0 4

a3 2 0 1 0 −1 6

R2 ↔ R3

a1 a2 a3 a4 a5 b

a2 0 1 0 0 1 3

a3 2 0 1 0 −1 6

a4 1 0 0 1 0 4

We get basis B =
[
a2 a3 a4

]
, xB =

x2x3
x4

. Since BxB = b,

therefore we get xB =

3
6
4

 and hence x =


0
3
6
4
0

.

We again compute

r1 = c1 − (c2y11 + c3y21 + c4y31)

= −4− (−5× 0 + 0× 2 + 0× 1)

= −4,

and

r5 = c5 − (c2y15 + c3y25 + c4y35)

= 0− (−5× 1 + 0×−1 + 0× 0)

= 5.

Since r1 is the only negative reduced cost, therefore we choose
first column a1 to enter into basis.
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a1 a2 a3 a4 a5 b

a2 0 1 0 0 1 3

a3 2 0 1 0 −1 6

a4 1 0 0 1 0 4

We find p = arg min
{
�
�A
A
3
0
, 6
2
, 4
1

}
= 2nd row, therefore row 2 should

be the pivot row.

a1 a2 a3 a4 a5 b

a2 0 1 0 0 1 3

a1 2 0 1 0 −1 6

a4 1 0 0 1 0 4

We again perform elementary row operations by pivoting at (2, 1)th

entry.

a1 a2 a3 a4 a5 b

a2 0 1 0 0 1 3

a1 2 0 1 0 −1 6

a4 1 0 0 1 0 4

R2 → 1
2
R2

a1 a2 a3 a4 a5 b

a2 0 1 0 0 1 3

a1 1 0 1/2 0 −1/2 3

a4 1 0 0 1 0 4

R3 → R3 −R2
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a1 a2 a3 a4 a5 b

a2 0 1 0 0 1 3

a1 1 0 1/2 0 −1/2 3

a4 0 0 −1/2 1 1/2 1

R1 ↔ R2

a1 a2 a3 a4 a5 b

a1 1 0 1/2 0 −1/2 3

a2 0 1 0 0 1 3

a4 0 0 −1/2 1 1/2 1

Thus, basis B = [a1 a2 a4], xB =

x1x2
x4

, so BxB = b implies

xB =

3
3
1

 and x =


3
3
0
1
0

 .
We find

r3 = c3 − (c1y13 + c2y23 + c4y33)

= 0− (−4× 1

2
+ (−5)× 0 + 0×−1

2
)

= 2,

and

r5 = c5 − (c1y15 + c2y25 + c4y35)

= 0− (−4× (−1

2
) + (−5)× 1 + 0× 1

2
)

= 3.

Note that all the reduced costs are non-negative. Therefore, the
current basic feasible solution is the optimal solution. Thus, x1 = 3
and x2 = 3, and the value of the objective function is

4x1 + 5x2 = 4× 3 + 5× 3 = 27.
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Example 5.4. Solve the linear programming problem using the
simplex method.

maximize 5x1 + 6x2

subject to 3x1 + 4x2 ≤ 18,
2x1 + x2 ≤ 7,
x1, x2 ≥ 0.

We first transform the problem into standard form:

minimize − 5x1 − 6x2

subject to 3x1 + 4x2 + x3 = 18,
2x1 + x2 +x4 = 7,
x1, x2, x3, x4 ≥ 0.

We construct the augmented matrix for the linear programming
problem:

a1 a2 a3 a4 b
a3 3 4 1 0 18
a4 2 1 0 1 7
cT −5 −6 0 0 0

We see that the basis matrix is B =
[
a3 a4

]
, therefore basic vector

is xB =

[
x3
x4

]
and since BxB = b, so we get xB =

[
18
7

]
. Therefore,

the starting basic feasible solution is x =


0
0
18
7

 .
We choose the most negative element in the last row of the tableau
corresponding to nonbasic variables. Since r2 = −6 is most neg-
ative element, we get the second column as a pivot column, i.e.,
q=2 and bring a2 into basis. We compute ratios

y10
y12

=
18

4
=

9

2
,

y20
y22

=
7

1
= 7.

We find the minimum value as 9
2

which is for the first row, i.e.,
p=1. Thus, a3 of basis matrix B is replaced by a2.
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We now perform elementary row operations to get zero entries
in the second pivot column except (p,q)th = (1, 2)th place which is
the unity. This is called update of tableau.

a1 a2 a3 a4 b

a2 3 4 1 0 18

a4 2 1 0 1 7

cT −5 −6 0 0 0

R1 → R1

4

a1 a2 a3 a4 b

a2 3/4 1 1/4 0 9/2

a4 2 1 0 1 7

cT −5 −6 0 0 0

R2 → R2 − R1

R3 → R3 + 6R1

a1 a2 a3 a4 b

a2 3/4 1 1/4 0 9/2

a4 5/4 0 −1/4 1 5/2

cT −1/2 0 3/2 0 27

We again check the reduced cost coefficient; we see that only r1 =
−1

2
is most negative. Therefore, q=1, i.e., we bring a1 into basis.

Since

y10
y11

= 6,
y20
y21

= 2.

The minimum value is 2, therefore we choose p=2 as the pivot row
and a4 is replaced by a1. Thus, we update the tableau by pivoting
about (p,q)th = (2, 1)th element to obtain
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a1 a2 a3 a4 b

a2 3/4 1 1/4 0 9/2

a1 5/4 0 −1/4 1 5/2

cT −1/2 0 3/2 0 27

R2 → 4
5
R2

a1 a2 a3 a4 b

a2 3/4 1 1/4 0 9/2

a1 1 0 −1/5 4/5 2

cT −1/2 0 3/2 0 27

R1 → R1 − 3
4
R2

R3 → R3 + 1
2
R2

a1 a2 a3 a4 b

a2 0 1 2/5 −3/5 3

a1 1 0 −1/5 4/5 2

cT 0 0 7/5 2/5 28

R1 ↔ R2

a1 a2 a3 a4 b

a1 1 0 −1/5 4/5 2

a2 0 1 2/5 −3/5 3

cT 0 0 7/5 2/5 28

Since the last row of this tableau has no negative elements, we con-
clude that the basic feasible solution corresponding to this tableau
is optimal. Thus,

x1 = 2, x2 = 3, x3 = 0 and x4 = 0
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is the solution to the original linear programming problem in stan-
dard form and the corresponding objective value is 28.

Example 5.5. Solve linear programming problem using the sim-
plex method.

maximize 3x1 + 6x2 + 2x3

subject to 3x1 + 4x2 + x3 ≤ 20,
x1 + 3x2 + 2x3 ≤ 10,
x1, x, x3 ≥ 0.

We write the linear programming problem in standard form:

minimize − 3x1 − 6x2 − 2x3

subject to 3x1 + 4x2 + x3 + x4 = 20,
x1 + 3x2 + 2x3 +x5 = 10,
x1, x2, x3, x4, x5 ≥ 0.

We create the simplex tableau as

a1 a2 a3 a4 a5 b
a4 3 4 1 1 0 20
a5 1 3 2 0 1 10
cT −3 −6 −2 0 0 0

Note that in the above simplex tableau, the coefficient of variables
of objective function is written in the last row of tableau. The
current basis matrix is B =

[
a4 a5

]
, therefore basic vector is

xB =

[
x4
x5

]
and since BxB = b, so we get xB =

[
20
10

]
.

The starting basic feasible solution is x =


x1
x2
x3
x4
x5

 =


0
0
0
20
10

 and value

of objective function is zero. We consider the negative coefficient
corresponding to nonbasic variables in the simplex tableau. We
have

r1 = −3, r2 = −6, r3 = −2.
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We choose the most negative element. Note that r2 = −6 is the
most negative. Therefore, we obtain q=2. That is, the second col-
umn is the pivot column.

a1 a2 a3 a4 a5 b

a4 3 4 1 1 0 20

a5 1 3 2 0 1 10

cT −3 −6 −2 0 0 0

We use the ratio test to choose the pivot row, i.e., p. For this, we
use the sixth statement of the simplex algorithm.

p = arg min
{y10
y12

,
y20
y22

}
= arg min

{20

4
,
10

3

}
= 2nd row.

a1 a2 a3 a4 a5 b

a4 3 4 1 1 0 20

a5 1 3 2 0 1 10

cT −3 −6 −2 0 0 0

Thus, the second row is the pivot row. The intersecting box indi-
cated is our pivot element and a5 of basis matrix will be replaced
by a2 as a basic variable. We update the tableau by pivoting (2, 2)th

element.

R2 → 1
3
R2

a1 a2 a3 a4 a5 b

a4 3 4 1 1 0 20

a2 1/3 1 2/3 0 1/3 10/3

cT −3 −6 −2 0 0 0

R1 → R1 − 4R2

R3 → R3 + 6R2
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a1 a2 a3 a4 a5 b

a4 5/3 0 −5/3 1 −4/3 20/3

a2 1/3 1 2/3 0 1/3 10/3

cT −1 0 2 0 2 20

We choose the most negative. Only r1 = −1 is the most nega-
tive. Thus, the first column is the pivot column and bring a1 into
basis. To determine which element in the second column is the
appropriate pivot, we compute the two ratios:

p = arg min
{y10
y11

,
y20
y21

}
=
{20

5
, 10
}

= 1st row.

This gives the first row as the pivot row.

a1 a2 a3 a4 a5 b

a1 5/3 0 −5/3 1 −4/3 20/3

a2 1/3 1 2/3 0 1/3 10/3

cT −1 0 2 0 2 20

We apply row operations to pivot the (1, 1)th element for updat-
ing the tableau.

R1 → 3
5
R1

a1 a2 a3 a4 a5 b

a1 1 0 −1 3/5 −4/5 4

a2 1/3 1 2/3 0 1/3 10/3

cT −1 0 2 0 2 20

R2 → R2 − 1
3
R1

R3 → R3 +R1
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a1 a2 a3 a4 a5 b

a1 1 0 −1 3/5 −4/5 4

a2 0 1 1 −1/5 3/5 2

cT 0 0 1 3/5 6/5 24

Since the last row has no negative elements, we conclude that
the solution corresponding to the above tableau is optimal. Thus,

x =


x1
x2
x3
x4

 =


4
2
0
0

 and the optimal solution of the maximum ob-

jective function is 24.

We can solve linear programming problems with the help of
MATLAB. To choose the pivot column from the feasible tableau,
we use MATLAB function pivotcolumn.m given in the following
Code 5.1:

Code 5.1: pivotcolumn.m

f unc t i on [A, q]= pivotcolumn (A, v )
%input : augmented matrix A, nonbas ic
%v a r i a b l e s v
%output : p ivot column q , augmented matrix A

[m,˜]= s i z e (A) ;
min=0;
q=0;
f o r J=1:v

i f A(m, J)<0
i f A(m, J)<min
min=A(m, J ) ;
q=J ;

end
end
end
return

MATLAB function pivotrow.m given in Code 5.2 is written to
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choose the pivot row. This function also checks whether the linear
programming problem is unbounded or not.

Code 5.2: pivotrow.m

f unc t i on [A, p , e ,B]= pivotrow (A, q ,B)
%input : augmented matrix A, p ivot column q ,
% b a s i s vec to r B
%output : p ivot row p , p ivot element e

[m, n]= s i z e (A) ;
min=I n f ;
p=0;
f o r k=1:m

i f A(k , q)>0
row=A(k , n)/A(k , q ) ;
i f row<min

min=row ;
p=k ;

end
end

end
i f p==0

di sp ( ’ unbounded ’ ) ;
e =0;

e l s e
e=A(p , q ) ;
B(p)=q ;

end
return

The MATLAB function simplex.m is given in Code 5.3 to make

zero entries in qth column except (p,q)th place which is unity.

Code 5.3: simplex.m

f unc t i on A=simplex (A, p , q )
%input : augmented matrix A, p ivot row p ,

% pivot column q
%output : augmented matrix A
[m, n]= s i z e (A) ;
format ra t
C=ze ro s (m, n ) ;
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J=(1:n ) ;
C(p , J)=sym(A(p , J )/A(p , q ) ) ;
f o r I =1:m

i f I˜=p
C( I , J)=sym(A( I , J))−sym(A( I , q ) )∗C(p , J ) ;

end
end
A=C;
return

We now see how the simplex algorithm works in MATLAB to move
from a feasible tableau to an optimal tableau, one pivot at a time,
by means of the following examples:

Example 5.6. Solve the linear programming problem using the
simplex method.

maximize 7x1 + 6x2

subject to 2x1 + x2 ≤ 3,
x1 + 4x2 ≤ 4,
x1, x2 ≥ 0.

We first transform the problem into standard form. To do this, we
multiply the objective function by –1 to change the maximization
to minimization. We introduce two non-negative slack variables x3
and x4. Then, the original problem can be written as

minimize − 7x1 − 6x2

subject to 2x1 + x2 + x3 = 3,
x1 + 4x2 +x4 = 4,
x1, x2, x3, x4 ≥ 0.

We construct the tableau for the problem:


a1 a2 a3 a4 b
2 1 1 0 3
1 4 0 1 4
−7 −6 0 0 0


Note that the basis matrix is B = [a3 a4], xB =

[
x3
x4

]
, and
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BxB = b implies xB =

[
3
4

]
. Therefore, the starting basic feasi-

ble solution is x =


0
0
3
4

 . The last row contains the reduced cost

coefficients.

We use MATLAB function pivotcolumn.m to choose the pivot
column corresponding to the most negative value. Note that non-
basic variables are x1 and x2. Therefore, we take v=2.

>>[A,q]=pivotcolumn(A,v)

a1 a2 a3 a4 b

a3 2 1 1 0 3

a4 1 4 0 1 4

cT −7 −6 0 0 0

q=1.

We compute p = arg min
{
y10
y11
, y20
y21

}
=
{

3
2
, 4

1

}
= 1st row.

>>B=
[
3 4

]
>>[A,p,e,B]=pivotrow(A,q,B)

a1 a2 a3 a4 b

a3 2 1 1 0 3

a4 1 4 0 1 4

cT −7 −6 0 0 0

p = 1 e = 2 B =
[
1 4

]
.
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a1 a2 a3 a4 b

a1 2 1 1 0 3

a4 1 4 0 1 4

cT −7 −6 0 0 0

R1 → 1
2
R1

>>A=identityop(A,p,1/2)

a1 a2 a3 a4 b

a1 1 1/2 1/2 0 3/2

a4 1 4 0 1 4

CT −7 −6 0 0 0

R2 → R2 −R1

>>A=eliminationop(A,2,p,-1)

a1 a2 a3 a4 b

a1 1 1/2 1/2 0 3/2

a4 0 7/2 −1/2 1 5/2

cT −7 −6 0 0 0

R3 → R3 + 7R1

>>A=eliminationop(A,3,p,7)

a1 a2 a3 a4 b

a1 1 1/2 1/2 0 3/2

a4 0 7/2 −1/2 1 5/2

cT 0 −5/2 7/2 0 21/2

>>[A,q]=pivotcolumn(A,v)
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a1 a2 a3 a4 b

a1 1 1/2 1/2 0 3/2

a4 0 7/2 −1/2 1 5/2

cT 0 −5/2 7/2 0 21/2

q = 2.

>>B=
[
1 4

]
>>[A,p,e,B]=pivotrow(A,q,B)

a1 a2 a3 a4 b

a1 1 1/2 1/2 0 3/2

a4 0 7/2 −1/2 1 5/2

cT 0 −5/2 7/2 0 21/2

p = 2 e = 7/2 B =
[
1 2

]
.

a1 a2 a3 a4 b

a1 1 1/2 1/2 0 3/2

a2 0 7/2 −1/2 1 5/2

cT 0 −5/2 7/2 0 21/2

R2 → 2
7
R2

>>A=identityop(A,p,1/e)

a1 a2 a3 a4 b

a1 1 1/2 1/2 0 3/2

a2 0 1 −1/7 2/7 5/7

cT 0 −5/2 7/2 0 21/2

R3 → R3 + 5/2R2

>>A=eliminationop(A,3,p,5/2)
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a1 a2 a3 a4 b

a1 1 1/2 1/2 0 3/2

a2 0 1 −1/7 2/7 5/7

cT 0 0 22/7 5/7 86/7

R1 → R1 − 1/2R2

>>A=eliminationop(A,1,p,-1/2)

a1 a2 a3 a4 b

a1 1 0 4/7 −1/7 8/7

a2 0 1 −1/7 2/7 5/7

cT 0 0 22/7 5/7 86/7

Since each element of the last row is non-negative, the present basic
feasible solution is the optimal solution. Therefore, x1 = 8

7
, x2 = 5

7

and the optimal value of objective function is 86
7

.

Example 5.7. Solve the linear programming problem.

maximize 2x1 + x2

subject to x1 ≤ 5,
x2 ≤ 7,

x1 + x2 ≤ 9,
x1, x2 ≥ 0.

The standard form of linear programming problem:

minimize − 2x1 − x2
subject to x1 +x3 = 5,

x2 +x4 = 7,
x1 + x2 +x5 = 9,
x1, x2, x3, x4, x5 ≥ 0.

We construct the augmented matrix. It is represented by A.
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a1 a2 a3 a4 a5 b

a3 1 0 1 0 0 5

a4 0 1 0 1 0 7

a5 1 1 0 0 1 9

cT −2 −1 0 0 0 0

We have B =
[
a3 a4 a5

]
, xB =

x3x4
x5

 and BxB = b implies

xB =

5
7
9

. Thus, the starting basic feasible solution is x =


0
0
5
7
9

.

>>v=2

>>[A,q]=pivotcolumn(A,v)

a1 a2 a3 a4 a5 b

a3 1 0 1 0 0 5

a4 0 1 0 1 0 7

a5 1 1 0 0 1 9

cT −2 −1 0 0 0 0

q = 1.

We compute for pivot row p = arg min
{

5
1
,
�
�A
A
7
0
, 9
1

}
= 1st row.

>>B=
[
3 4 5

]
>>[A,p,e,B]=pivotrow(A,q,B)

a1 a2 a3 a4 a5 b

a3 1 0 1 0 0 5

a4 0 1 0 1 0 7

a5 1 1 0 0 1 9

cT −2 −1 0 0 0 0

p = 1 e = 1 B =
[
1 4 5

]
.
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a1 a2 a3 a4 a5 b

a1 1 0 1 0 0 5

a4 0 1 0 1 0 7

a5 1 1 0 0 1 9

cT −2 −1 0 0 0 0

R3 → R3 −R1

>>A=eliminationop(A,3,p,-1)

a1 a2 a3 a4 a5 b

a1 1 0 1 0 0 5

a4 0 1 0 1 0 7

a5 0 1 −1 0 1 4

cT −2 −1 0 0 0 0

R4 → R4 + 2R1

>>A=eliminationop(A,4,p,2)

a1 a2 a3 a4 a5 b

a1 1 0 1 0 0 5

a4 0 1 0 1 0 7

a5 0 1 −1 0 1 4

cT 0 −1 2 0 0 10

>>[A,q]=pivotcolumn(A,v)

a1 a2 a3 a4 a5 b

a1 1 0 1 0 0 5

a4 0 1 0 1 0 7

a5 0 1 −1 0 1 4

cT 0 −1 2 0 0 10

q = 2.



106 Introduction to LINEAR PROGRAMMING with MATLAB R©

Again, we compute pivot row p = arg min
{
�
�A
A
5
0
, 7
1
, 4
1

}
= 3rd row.

>> B =
[
1 4 5

]
>>[A,p,e,B]=pivotrow(A,q,B)

a1 a2 a3 a4 a5 b

a1 1 0 1 0 0 5

a4 0 1 0 1 0 7

a5 0 1 −1 0 1 4

cT 0 −1 2 0 0 10

p = 3 e = 1 B =
[
1 4 2

]
.

a1 a2 a3 a4 a5 b

a1 1 0 1 0 0 5

a4 0 1 0 1 0 7

a2 0 1 −1 0 1 4

cT 0 −1 2 0 0 10

R2 → R2 −R3

We update the tableau using elementary row operations. We see
that pivot element is already 1. Hence, we call only MATLAB
function eliminationop.m

>>A=eliminationop(A,2,p,-1)

a1 a2 a3 a4 a5 b

a1 1 0 1 0 0 5

a4 0 0 1 1 −1 3

a2 0 1 −1 0 1 4

cT 0 −1 2 0 0 10

R4 → R4 +R3

>>A=eliminationop(A,4,p,1)
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a1 a2 a3 a4 a5 b

a1 1 0 1 0 0 5

a4 0 0 1 1 −1 3

a2 0 1 −1 0 1 4

cT 0 0 1 0 1 14
R2 ↔ R3

>>A=exchangeop(A,2,3)

a1 a2 a3 a4 a5 b

a1 1 0 1 0 0 5

a2 0 1 −1 0 1 4

a4 0 0 1 1 −1 3

cT 0 0 1 0 1 14

Since the last row has no negative elements corresponding to non-
basic variables, we conclude that the solution corresponding to
the above tableau is optimal. Thus, we get B = [a1 a2 a4], xB =x1x2
x4

 . Therefore, an optimal solution is x=


5
4
0
3
0

 and the maximum

value of an objective function is 14.

Example 5.8. Solve the linear programming problem using the
simplex method.

minimize − 2x1 − x2

subject to − x1 − x2 ≤ 1,
x1 − 2x2 ≤ 2,
x1, x2, ≥ 0.

We write the linear programming problem in standard form:
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minimize − 2x1 − x2

subject to − x1 − x2 + x3 = 1,
x1 − 2x2 +x4 = 2,
x1, x2, x3, x4, ≥ 0.

The problem can be written in an augmented matrix form:

a1 a2 a3 a4 b

a3 −1 −1 1 0 1

a4 1 −2 0 1 2

cT −2 −1 0 0 0

Since the basis matrix is B =
[
a3 a4

]
, xB =

[
x3
x4

]
and BxB = b

implies xB =

[
1
2

]
. Therefore, the starting basic feasible solution

is x =


0
0
1
2

. Note that we have two nonbasic variables x1 and x2.

Therefore, we take v = 2.

>>v=2

>>[A,q]=pivotcolumn[A,v]

a1 a2 a3 a4 b

a3 −1 −1 1 0 1

a4 1 −2 0 1 2

cT −2 −1 0 0 0

q = 1.

We determine pivot row p = arg min
{
�
�@
@
−1

1
, 2
1

}
= 2nd row.

>> B =
[
3 4

]
>>[A,p,e,B]=pivotrow(A,q,B)
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a1 a2 a3 a4 b

a3 −1 −1 1 0 1

a4 1 −2 0 1 2

cT −2 −1 0 0 0

p = 2 e = 1 B =
[
3 1

]
.

a1 a2 a3 a4 b

a3 −1 −1 1 0 1

a1 1 −2 0 1 2

cT −2 −1 0 0 0

R1 → R1 +R2

>>A=eliminationop(A,1,p,1)

a1 a2 a3 a4 b

a3 0 −3 1 1 3

a1 1 −2 0 1 2

cT −2 −1 0 0 0

R3 → R3 + 2R2

>>A=eliminationop(A,3,p,2)

a1 a2 a3 a4 b

a3 0 −3 1 1 3

a1 1 −2 0 1 2

cT 0 −5 0 2 4

>> [A,q] = pivotcolumn(A,v)

>> [A,p,e,B] = pivotrow(A,q,B)

a1 a2 a3 a4 b

a3 0 −3 1 1 3

a1 1 −2 0 1 2

cT 0 −5 0 2 4
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q = 2 unbounded.

We have p = arg min
{
�
�@
@
−3

1
,
�
�@
@
−2

2

}
=no row. There is no such p.

Therefore, the problem is unbounded.

Example 5.9. Solve the linear programming problem using the
simplex method.

maximize 45x1 + 80x2

subject to 5x1 + 20x2 ≤ 400,
10x1 + 15x2 ≤ 450,
x1, x2 ≥ 0.

The standard form of linear programming problem:

minimize − 45x1 − 80x2

subject to 5x1 + 20x2 + x3 = 400,
10x1 + 15x2 +x4 = 450,
x1, x2, x3, x4 ≥ 0.

The augmented matrix is written as

a1 a2 a3 a4 b

a3 5 20 1 0 400

a4 10 15 0 1 450

cT −45 −80 0 0 0

Since the basis matrix is B=
[
a3 a4

]
and xB =

[
x3
x4

]
, therefore

BxB = b implies xB =

[
400
450

]
.

>> v = 2

>> [A,q] = pivotcolumn[A,v]

a1 a2 a3 a4 b

a3 5 20 1 0 400

a4 10 15 0 1 450

cT −45 −80 0 0 0
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q = 2.

The pivot row is p = arg min
{

400
20
, 450

15

}
= arg min

{
20, 30

}
= 1st

row.

>> B =
[
3 4

]
>> [A,p,e,B] = pivotrow(A,q,B)

a1 a2 a3 a4 b

a3 5 20 1 0 400

a4 10 15 0 1 450

cT −45 −80 0 0 0

p = 1 e = 20 B =
[
2 4

]
.

a1 a2 a3 a4 b

a2 5 20 1 0 400

a4 10 15 0 1 450

cT −45 −80 0 0 0

R1 → 1
20
R1

>> A = identityop(A,p,1/20)

a1 a2 a3 a4 b

a2 1/4 1 1/20 0 20

a4 10 15 0 1 450

cT −45 −80 0 0 0

R3 → R3 + 80R1

>> A = eliminationop(A,3,p,80)

a1 a2 a3 a4 b

a2 1/4 1 1/20 0 20

a4 10 15 0 1 450

cT −25 0 4 0 1600

R2 → R2 − 15R1
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>> A = eliminationop(A,2,p,-15)

a1 a2 a3 a4 b

a2 1/4 1 1/20 0 20

a4 25/4 0 −3/4 1 150

cT −25 0 4 0 1600

>>[A,q]=pivotcolumn(A,v)

a1 a2 a3 a4 b

a2 1/4 1 1/20 0 20

a4 25/4 0 −3/4 1 150

cT −25 0 4 0 1600

q=1.

>>[A,p,e,B]=pivotrow(A,q,B)

a1 a2 a3 a4 b

a2 1/4 1 1/20 0 20

a4 25/4 0 −3/4 1 150

cT −25 0 4 0 1600

p = 2 e = 25/4 B =
[
2 1

]
.

We now compute the pivot row p = arg min
{

20
1/4
, 150

25/4

}
=arg min

{
80, 24

}
= 2nd row.

a1 a2 a3 a4 b

a2 1/4 1 1/20 0 20

a1 25/4 0 −3/4 1 150

cT −25 0 4 0 1600

R2 → 4
25
R2
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>> A = identityop(A,p,4/25)

a1 a2 a3 a4 b

a2 1/4 1 1/20 0 20

a1 1 0 −3/25 4/25 24

cT −25 0 4 0 1600

R1 ↔ R2

>>A=exchangeop(A,1,2)

a1 a2 a3 a4 b

a1 1 0 −3/25 4/25 24

a2 1/4 1 1/20 0 20

cT −25 0 4 0 1600

R2 → R2 − 1
4
R1

>>A=eliminationop(A,2,1,-1/4)

a1 a2 a3 a4 b

a1 1 0 −3/25 4/25 24

a2 0 1 2/25 −1/25 14

cT −25 0 4 0 1600

R3 → R3 + 25R1

>>A=eliminationop(A,3,1,25)

a1 a2 a3 a4 b

a1 1 0 −3/25 4/25 24

a2 0 1 2/25 −1/25 14

cT 0 0 1 4 2200

There is no negative element in the last row corresponding to non-
basic variables. Therefore, we achieved optimal solution. That is,
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B = [a1 a2], xB =

[
x1
x2

]
=

[
24
14

]
, x =


24
14
0
0

 and maximum value

of an objective function is 2200.

Example 5.10. Solve the linear programming problem.

maximize 2x1 + x2 + 2x3 + 9x4

subject to x1 +2x4 = 2,
x2 − x3 + x4 = 4,

x1, x2, x3, x4 ≥ 0.

The standard form of the linear programming problem is given as

minimize − 2x1 − x2 − 2x3 − 9x4

subject to x1 + 2x4 = 2,
x2 − x3 + x4 = 4,

x1, x2, x3, x4 ≥ 0.

The augmented form of the matrix is

a1 a2 a3 a4 b

1 0 0 2 2

0 1 −1 1 4

cT −2 −1 −2 −9 0

We have basis matrix B = [a1 a2], xB =

[
x1
x2

]
and BxB = b im-

plies xB =

[
2
4

]
. Therefore, the starting basic feasible solution is

x =


2
4
0
0

. Note that there are four nonbasic variables, therefore we

take v=4.

>> v = 4

>> [A,q] = pivotcolumn(A,v)
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a1 a2 a3 a4 b

a1 1 0 0 2 2

a2 0 1 −1 1 4

cT −2 −1 −2 −9 0

q = 4.

We compute pivot row p = arg min
{

2
2
, 4
1

}
= 1st row.

>> B =
[
1 2

]
>>[A,p,e,B]=pivotrow(A,q,B)

a1 a2 a3 a4 b

a1 1 0 0 2 2

a2 0 1 −1 1 4

cT −2 −1 −2 −9 0

p = 1 e = 2 B =
[
4 2

]
.

a1 a2 a3 a4 b

a4 1 0 0 2 2

a2 0 1 −1 1 4

cT −2 −1 −2 −9 0

R1 → 1
2
R1

>> A = identityop(A,p,1/2)

a1 a2 a3 a4 b

a4 1/2 0 0 1 1

a2 0 1 −1 1 4

cT −2 −1 −2 −9 0

R2 → R2 −R1

>>A=eliminationop(A,2,p,-1)
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a1 a2 a3 a4 b

a4 1/2 0 0 1 1

a2 −1/2 1 −1 0 3

cT −2 −1 −2 −9 0

R3 → R3 + 9R1

>> A = eliminationop(A,3,p,9)

a1 a2 a3 a4 b

a4 1/2 0 0 1 1

a2 −1/2 1 −1 0 3

cT 5/2 −1 −2 0 9

R1 ↔ R2

>> A = exchangeop(A,1,2)

a1 a2 a3 a4 b

a2 −1/2 1 −1 0 3

a4 1/2 0 0 1 1

cT 5/2 −1 −2 0 9

>> [A,q] = pivotcolumn(A,v)

>> [A,p,e,B] = pivotrow(A,q,B)

a1 a2 a3 a4 b

a2 −1/2 1 −1 0 3

a4 1/2 0 0 1 1

cT 5/2 −1 −2 0 9

q = 3 unbounded.

We have p = arg min
{
�
�S
S
3
−1
,
�
�A
A
1
0

}
.=no row. There is no such p. Hence,

the problem is unbounded.
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Example 5.11. x1 and x2 are two positive real numbers such that
2x1+x2 ≤ 6 and x1+2x2 ≤ 8. For which of the following value of
(x1, x2) the function f(x1, x2) = 3x1 + 6x2 will give the maximum
value?

(a) (4/3,10/3)

(b) (8/3,20/3)

(c) (8/3,10/3)

(d) (4/3,20/3)

Given that

2x1 + x2 ≤ 6,

x1 + 2x2 ≤ 8.

We write the above inequalities into equation form

2x1 + x2 = 6 and x1 + 2x2 = 8.

Solving the above two equations, we get

x1 =
4

3
and x2 =

10

3
.

Therefore, 3x1 + 6x2 will give maximum value at (4
3
, 10

3
). Thus,

option (a) is true.

Example 5.12. Which of the following statement is TRUE?

(a) A convex set cannot have infinite many extreme points.

(b) A linear programming problem can have infinite many ex-
treme points.

(c) A linear programming problem can have exactly two different
optimal solutions.

(d) A linear programming problem can have a nonbasic optimal
solution.

A linear programming problem can have a nonbasic optimal solu-
tion. Thus, option (d) is true.



118 Introduction to LINEAR PROGRAMMING with MATLAB R©

5.5 Two-Phase Simplex Method

Sometimes, we get a linear programming problem in which a
starting basic feasible solution is not available and we cannot ini-
tiate the simplex algorithm. Therefore, we require a systematic
method to find a starting basic feasible solution of such linear pro-
gramming problems, so that the simplex method could be started.
The two-phase method is useful in such situations.

Consider a linear programming problem

minimize 2x1 + 3x2

subject to 4x1 + 2x2 ≥ 12,
x1 + 4x2 ≥ 6,
x1, x2 ≥ 0.

We write the standard form as

minimize 2x1 + 3x2

subject to 4x1 + 2x2 − x3 = 12,
x1 + 4x2 −x4 = 6,
x1, x2, x3, x4 ≥ 0.

The tableau of the above problem is

a1 a2 a3 a4 b

4 2 −1 0 12

1 4 0 −1 6

cT 2 3 0 0 0

Since there is no basis matrix in the present tableau, we do not
have any basic solution, and therefore, there is no basic feasible
solution. Thus, we cannot initiate the simplex algorithm.
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To proceed further, we consider an artificial problem as follows:

minimize y1 + y2 + · · ·+ yn

subject to
[
A Im

] [x
y

]
= b,

[
x
y

]
≥ 0.

Given that y =


y1
y2
...
yn

 is the vector of artificial variables. Note that

the artificial problem has an obvious initial basic feasible solution[
0
b

]
.

Theorem 5.5. The original linear programming problem has a
basic feasible solution if and only if the associated artificial problem
has an optimal feasible solution with objective function value zero.

Proof. If the original problem has a basic feasible solution x, then

the vector

[
x
0

]
is a basic feasible solution of the artifical problem.

This basic feasible solution clearly gives an objective function value
zero. Therefore, this solution is optimal for the artificial problem.
Conversely, suppose that the artificial problem has an optimal fea-
sible solution with objective function value zero. Then, this solu-

tion has the form

[
x
0

]
, x ≥ 0. It means that Ax = b and x is

feasible solution to original linear programming problem. By the
fundamental theorem of linear programming problem (5.2), there
also exists a basic feasible solution.

The two-phase method consists of phase I and phase II. In phase
I, artificial variables are introduced in constraints and an objec-
tive function is formed using artificial variables only. The artificial
variables have no meaning in a physical sense, but are useful to
get the starting basic feasible solution of the linear programming
problem.
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We update the tableau to get the value of objective function as
zero. If it is zero, then a basic feasible solution is available and we
move to phase II; otherwise, it is determined that no feasible so-
lutions exist and we stop in phase I.

In phase II, the artifical variables and the objective function
of phase I are omitted and the original objective function is mini-
mized using the basic feasible solution resulting from phase I and
updating the tableau.

We illustrate the two-phase method in the following example.

Example 5.13. Solve the following linear programming problem
using the two-phase method.

minimize 2x1 + 3x2

subject to 4x1 + 2x2 ≥ 12,
x1 + 4x2 ≥ 6,
x1, x2 ≥ 0.

The standard form of linear programming problem is given as

minimize 2x1 + 3x2

subject to 4x1 + 2x2 − x3 = 12,
x1 + 4x2 −x4 = 6,
x1, x2, x3, x4 ≥ 0.

This linear programming problem has no obvious feasible solu-
tion to use the simplex method. Therefore, we use the two-phase
method.
Phase I: We introduce artificial variables. Consider an artificial
problem:

minimize x5 + x6

subject to 4x1 + 2x2 − x3 +x5 = 12,
x1 + 4x2 −x4 +x6 = 6,
x1, x2, x3, x4, x5, x6 ≥ 0.

We form the tableau for the corresponding problem:
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a1 a2 a3 a4 a5 a6 b

a5 4 2 −1 0 1 0 12

a6 1 4 0 −1 0 1 6

cT 0 0 0 0 1 1 0

Since basis matrix B =
[
a5 a6

]
, therefore xB =

[
x5
x6

]
=

[
12
6

]
.

We are looking for the basic feasible solutions which are x1 = 0,
x2 = 0. To initiate the simplex method, we must update the last
row of this tableau so that it has zero component under the basic
variables.

We update the last row to get the feasible tableau. Updating
the last row means that we subtract elements of the last row from
the sum of the corresponding elements of rows where artificial vari-
ables are basis. That is,

R3 → R3 − (R1 +R2)

a1 a2 a3 a4 a5 a6 b

a5 4 2 −1 0 1 0 12

a6 1 4 0 −1 0 1 6

cT −5 −6 1 1 0 0 −18

The basic feasible solution of the above tableau is not optimal.
Therefore, we proceed with the simplex method. We choose the
most negative entry in the last row of the canonical tableau.

>> v = 4

>> [A,q] = pivotcolumn(A,v)

a1 a2 a3 a4 a5 a6 b

a5 4 2 −1 0 1 0 12

a6 1 4 0 −1 0 1 6

cT −5 −6 1 1 0 0 −18
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q = 2.

>> B =
[
5 6

]
>>[A,p,e,B] = pivotrow(A,q,B)

a1 a2 a3 a4 a5 a6 b

a5 4 2 −1 0 1 0 12

a6 1 4 0 −1 0 1 6

cT −5 −6 1 1 0 0 −18

p = 2 e = 4 B =
[
5 2

]
.

a1 a2 a3 a4 a5 a6 b

a5 4 2 −1 0 1 0 12

a2 1 4 0 −1 0 1 6

cT −5 −6 1 1 0 0 −18

R2 → 1
4
R2

a1 a2 a3 a4 a5 a6 b

a5 4 2 −1 0 1 0 12

a2 1/4 1 0 −1/4 0 1/4 3/2

cT −5 −6 1 1 0 0 −18

R1 → R1 − 2R2

a1 a2 a3 a4 a5 a6 b

a5 7/2 0 −1 1/2 1 −1/2 9

a2 1/4 1 0 −1/4 0 1/4 3/2

cT −5 −6 1 1 0 0 −18

R3 → R3 + 6R2
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a1 a2 a3 a4 a5 a6 b

a5 7/2 0 −1 1/2 1 −1/2 9

a2 1/4 1 0 −1/4 0 1/4 3/2

cT −7/2 0 1 −1/2 0 3/2 −9

The most negative element for the pivot column is q=1 and the

pivot row is p=arg min
{

9
7/2
,

3/2
1/4

}
= 1st row.

>> [A,q] = pivotcolumn(A,v)

>> B =
[
5 2

]
>> [A,p,e,B] = pivotrow(A,q,B)

a1 a2 a3 a4 a5 a6 b

a5 7/2 0 −1 1/2 1 −1/2 9

a2 1/4 1 0 −1/4 0 1/4 3/2

cT −7/2 0 1 −1/2 0 3/2 −9

p = 1 q = 1 e = 7/2 B =
[
1 2

]
.

a1 a2 a3 a4 a5 a6 b

a1 7/2 0 −1 1/2 1 −1/2 9

a2 1/4 1 0 −1/4 0 1/4 3/2

cT −7/2 0 1 −1/2 0 3/2 −9

R1 → 2
7
R1

a1 a2 a3 a4 a5 a6 b

a1 1 0 −2/7 1/7 2/7 −1/7 18/7

a2 1/4 1 0 −1/4 0 1/4 3/2

cT −7/2 0 1 −1/2 0 3/2 −9

R2 → R2 − 1
4
R1
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a1 a2 a3 a4 a5 a6 b

a1 1 0 −2/7 1/7 2/7 −1/7 18/7

a2 0 1 1/14 −2/7 −1/14 2/7 6/7

cT −7/2 0 1 −1/2 0 3/2 −9

R3 → R3 + 7
2
R1

a1 a2 a3 a4 a5 a6 b

a1 1 0 −2/7 1/7 2/7 −1/7 18/7

a2 0 1 1/14 −2/7 −1/14 2/7 6/7

cT 0 0 0 0 1 1 0

Note that both the artificial variables have been driven out of the

basis and the current basic feasible solution x =

[
18/7
6/7

]
is giving

objective value zero to the artificial problem.

Phase II: We apply the simplex algorithm to the original linear
programming problem after deleting the columns corresponding to
the artificial variables and writing the cost of the original problem.

a1 a2 a3 a4 b

a1 1 0 −2/7 1/7 18/7

a2 0 1 1/14 −2/7 6/7

cT 2 3 0 0 0

R3 → R3 − 2R1

a1 a2 a3 a4 b

a1 1 0 −2/7 1/7 18/7

a2 0 1 1/14 −2/7 6/7

cT 0 3 4/7 −2/7 −36/7

R3 → R3 − 3R2



The Simplex Method 125

a1 a2 a3 a4 b

a1 1 0 −2/7 1/7 18/7

a2 0 1 1/14 −2/7 6/7

cT 0 0 5/14 4/7 −54/7

The cost corresponding to basic variables should be zero. We get
basic variables x1 and x2. Since all costs are non-negative, there-
fore the current basic feasible solution is optimal. That is, x1 = 18

7
,

x2 = 6
7

and x =


18/7
6/7
0
0

. The minimum value of an objective func-

tion is 54
7

.

We can take the advantage of MATLAB code updatelastrow.m

given in the following Code 5.4 to get the feasible tableau.

Code 5.4: updatelastrow.m

f unc t i on A=update lastrow (A, av )
%input : augmented matrix A, a r t i f i c a l
% v a r i a b l e s av
%output : augmented matrix
%update l a s t row o f tab leau
[m, n]= s i z e (A) ;
sum=0;
f o r J=1:n

f o r I =1:av
sum=sum+A( I , J ) ;

end
A(m, J)=A(m, J)−sum ;
sum=0;

end
return

Example 5.14. Solve the linear programming problem using the
two-phase method.
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minimize 4x1 + x2 + x3

subject to 2x1 + x2 + 2x3 = 4,
3x1 + 3x2 + x3 = 3,
x1, x2, x3 ≥ 0.

a1 a2 a3 b

2 1 2 4

3 3 1 3

4 1 1 0

There is no basic feasible solution. Therefore, we move to the two-
phase simplex method.

Phase I:
We introduce artificial variables x4 ≥ 0, x5 ≥ 0 and an objective
function x4 + x5. Our linear programming problem will be in the
form:

minimize x4 + x5
subject to 2x1 + x2 + 2x3 + x4 = 4,

3x1 + 3x2 + x3 +x5 = 3,
x1, x2, x3, x4, x5 ≥ 0.

We use MATLAB function updatelastrow.m to update the last
row of tableau. Note that the number of artificial variables is 2.
Therefore, we take av=2.

a1 a2 a3 a4 a5 b

a4 2 1 2 1 0 4

a5 3 3 1 0 1 3

cT 0 0 0 1 1 0
R3 → R3 − (R1 +R2)

>> av = 2

>> A = updatelastrow(A,av)

a1 a2 a3 a4 a5 b

a4 2 1 2 1 0 4

a5 3 3 1 0 1 3

cT −5 −4 −3 0 0 −7
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We get the feasible tableau. Thus, we can apply the simplex
method.
>> v = 3

>> [A,q] = pivotcolumn(A,v)

a1 a2 a3 a4 a5 b

a4 2 1 2 1 0 4

a5 3 3 1 0 1 3

cT −5 −4 −3 0 0 −7

q = 1.

We find pivot row p = arg min
{

4
2
, 3
3

}
= 2nd row.

>> B =
[
4 5

]
>> [A,p,e,B] = pivotrow(A,q,B)

a1 a2 a3 a4 a5 b

a4 2 1 2 1 0 4

a5 3 3 1 0 1 3

cT −5 −4 −3 0 0 −7

p = 2 e = 3 B =
[
4 1

]
.

a1 a2 a3 a4 a5 b

a4 2 1 2 1 0 4

a1 3 3 1 0 1 3

cT −5 −4 −3 0 0 −7

R2 → 1
3
R2

>> A = identityop(A,p,1/3)

a1 a2 a3 a4 a5 b

a4 2 1 2 1 0 4

a1 1 1 1/3 0 1/3 1

cT −5 −4 −3 0 0 −7

R1 → R1 − 2R2
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>> A = eliminationop(A,1,p,-2)

a1 a2 a3 a4 a5 b

a4 0 −1 4/3 1 −2/3 2

a1 1 1 1/3 0 1/3 1

cT −5 −4 −3 0 0 −7

R3 → R3 + 5R2

>> A = eliminationop(A,3,p,5)

a1 a2 a3 a4 a5 b

a4 0 −1 4/3 1 −2/3 2

a1 1 1 1/3 0 1/3 1

cT 0 1 −4/3 0 5/3 −2

>> [A,q] = pivotcolumn(A,v)

a1 a2 a3 a4 a5 b

a4 0 −1 4/3 1 −2/3 2

a1 1 1 1/3 0 1/3 1

cT 0 1 −4/3 0 5/3 −2

q = 3.
To update the simplex tableau, we calculate pivot row p =
arg min

{
2×3
4
, 1×3

1

}
= arg min

{
3
2
, 3
}

= 1st row.
>> [A,p,e,B] = pivotrow(A,q,B)

a1 a2 a3 a4 a5 b

a4 0 −1 4/3 1 −2/3 2

a1 1 1 1/3 0 1/3 1

cT 0 1 −4/3 0 5/3 −2

p=1 e = 4/3 B =
[
3 1

]
.
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a1 a2 a3 a4 a5 b

a3 0 −1 4/3 1 −2/3 2

a1 1 1 1/3 0 1/3 1

cT 0 1 −4/3 0 5/3 −2

R1 → 3
4
R1

>> A = identityop(A,p,3/4)

a1 a2 a3 a4 a5 b

a3 0 −3/4 1 3/4 −1/2 3/2

a1 1 1 1/3 0 1/3 1

cT 0 1 −4/3 0 5/3 −2

R2 → R2 − 1
3
R1

>>A=eliminationop(A,2,p,-1/3)

a1 a2 a3 a4 a5 b

a3 0 −3/4 1 3/4 −1/2 3/2

a1 1 5/4 0 −1/4 1/2 1/2

cT 0 1 −4/3 0 5/3 −2

R3 → R3 + 4
3
R1

>>A=eliminationop(A,3,p,4/3)

a1 a2 a3 a4 a5 b

a3 0 −3/4 1 3/4 −1/2 3/2

a1 1 5/4 0 −1/4 1/2 1/2

cT 0 0 0 1 1 0
R1 ↔ R2

>> A = exchangeop(A,1,2)
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a1 a2 a3 a4 a5 b

a1 1 5/4 0 −1/4 1/2 1/2

a3 0 −3/4 1 3/4 −1/2 3/2

cT 0 0 0 1 1 0

Since the basis matrix is B =
[
a1 a3

]
and xB =

[
x1
x3

]
, therefore,

x =


1/2
0
3/2
0
0

. The value of the artificial problem is zero. Therefore,

we proceed to phase II.

Phase II: We start by deleting the columns corresponding to ar-
tificial variables and using costs of the original problem.

a1 a2 a3 b

a1 1 5/4 0 1/2

a3 0 −3/4 1 3/2

cT 4 1 1 0
R3 → R3 − 4R1

>> A = eliminationop(A,3,p,-4)

a1 a2 a3 b

a1 1 5/4 0 1/2

a3 0 −3/4 1 3/2

cT 0 −4 1 −2

R3 → R3 −R2

>> A = eliminationop(A,3,2,-1)
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a1 a2 a3 b

a1 1 5/4 0 1/2

a3 0 −3/4 1 3/2

cT 0 −13/4 0 −7/2

>> [A,q] = pivotcolumn(A,v)

a1 a2 a3 b

a1 1 5/4 0 1/2

a3 0 −3/4 1 3/2

cT 0 −13/4 0 −7/2

q = 2.
>> B=

[
1 3

]
>> [A,p,e,B] = pivotrow(A,q,B)

a1 a2 a3 b

a1 1 5/4 0 1/2

a3 0 −3/4 1 3/2

cT 0 −13/4 0 −7/2

p = 1 e = 5/4 B =
[
2 3

]
.

a1 a2 a3 b

a2 1 5/4 0 1/2

a3 0 −3/4 1 3/2

cT 0 −13/4 0 −7/2

R1 → 4
5
R1

>> A = identityop(A,p,4/5)
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a1 a2 a3 b

a2 4/5 1 0 2/5

a3 0 −3/4 1 3/2

cT 0 −13/4 0 −7/2

R2 → R2 + 3
4
R1

>> A = eliminationop(A,2,p,3/4)

a1 a2 a3 b

a2 4/5 1 0 2/5

a3 3/5 0 1 9/5

cT 0 −13/4 0 −7/2

R3 → R3 + 13
4
R1

>> A = eliminationop(A,3,p,13/4)

a1 a2 a3 b

a2 4/5 1 0 2/5

a3 3/5 0 1 9/5

cT 13/5 0 0 −11/5

All costs are non-negative. Since basis matrix B =
[
a2 a3

]
and

basic vector xB =

[
x2
x3

]
, therefore x =

 0
2/5
9/5

 and an optimal value

is 11
5

.
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5.6 Exercises

Exercise 5.1. Find all basic feasible solutions of the following
system of linear equations.

(a)
x1 − x2 + 2x3 = 18,
x1 + 2x2 − x3 = 1.

(b)
x1 + x2 + x3 = 1,

3x1 + 2x2 −x4 = 6.

Exercise 5.2. Find all basic feasible solutions of the following
system of linear equations.

x1 + 2x2 + 4x3 + x4 = 7,
2x1 − x2 + 3x3 − 2x4 = 4.

Indicate which of these solutions are feasible.

Exercise 5.3. Solve the following linear programming problem by
the simplex method.

maximize 3x1 + 4x2 + 4x3 + 7x4

subject to 8x1 + 3x2 + 4x3 + x4 ≤ 7,
2x1 + 6x2 + x3 + 5x4 ≤ 10,
x1 + 4x2 + 5x3 + 2x4 ≤ 8,
x, x2, x3, x4 ≥ 0.

Exercise 5.4. Solve the following problem by the simplex method.

maximize 11x1 + 10x2

subject to − 0.5x1 + 1.3x2 ≤ 0.8,
4x1 + x2 ≤ 12.7,
6x1 + x2 ≤ 15.4,
6x1 − x2 ≤ 13.4,
4x1 − x2 ≤ 8.7,
5x1 − 3x2 ≤ 10.0.
x1, x2 ≥ 0.
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Exercise 5.5. Solve the following problem by the simplex method.

x1 + x2 ≤ 3,
x1 − 2x2 ≤ 1,

−2x1 + x2 ≤ 2,
x1, x2 ≥ 0.

(a) maximize x1 − x2
(b) minimize x1 − x2

Exercise 5.6. Solve the problem by the simplex method.

maximize 7x1 + 5x2

subject to x1 + 2x2 ≤ 6,
4x1 + 3x2 ≤ 12,
x1, x2 ≥ 0.

Exercise 5.7. Solve the problem by the simplex method.

maximize 9x1 + 7x2

subject to x1 + 2x2 ≤ 7,
x1 − x2 ≤ 4,
x1, x2 ≥ 0.

Exercise 5.8. Solve the linear programming problem using the
simplex method.

maximize 10x1 + 6x2 − 8x3

subject to 5x1 − 2x2 + 6x3 ≤ 20,
10x1 + 4x2 − 6x3 ≤ 30,
x1, x2, x3 ≥ 0.

Exercise 5.9. Solve the problem by the simplex method.

maximize 2x1 + x2

subject to 2x1 + 3x2 ≤ 3,
x1 + 5x2 ≤ 2,

2x1 + x2 ≤ 5,
x1, x2 ≥ 0.

Exercise 5.10. Solve the linear programming problem using the
simplex method.
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maximize 5x1 + x2

subject to 3x1 − 2x2 ≤ 6,
−4x1 + 2x2 ≤ 4,
x1, x2 ≥ 0.

Exercise 5.11. Solve the linear programming problem using the
two-phase method.

minimize 2x1 + 4x2 + 7x3 + x4 + 5x5

subject to − x1 + x2 + 2x3 + x4 + 2x5 = 7,
− x1 + 2x2 + 3x3 + x4 + x5 = 6,
− x1 + x2 + x3 + 2x4 + x5 = 4,
x1, x2, x3, x4, x5 ≥ 0.

Exercise 5.12. Solve the following linear programming problem
using the two-phase method.

minimize 5x1 + 8x2

subject to 3x1 + 2x2 ≥ 3,
x1 + 4x2 ≥ 4,
x1 + x2 ≥ 5,
x1, x2 ≥ 0.
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Chapter 6

The Revised Simplex Method

6.1 Introduction

Consider a linear programming problem in standard form with
a simplex tableau A of size m× n. Suppose that we wish to solve
this problem using the simplex method. Experience suggests that
if the simplex tableau A has fewer rows m than columns n, then in
most instances, pivots occur in only a small fraction of the columns
of the simplex tableau A. The operation of pivoting involves up-
dating all the columns of the simplex tableau to move from one
iteration to next in search of an improved solution. However, if a
particular column of A never enters into basis during the entire
simplex procedure, then computations performed on this column
are not explicitly used. Therefore, the effort expended on perform-
ing operations on many such columns of A may be a waste. The
revised simplex method reduces the amount of computation lead-
ing to an optimal solution by eliminating operations on columns
of A that do not enter into the basis.

Therefore, we apply the revised simplex method to avoid the
unnecessary calculations and save the computational time.

6.2 Matrix Form of the Revised Simplex Method

Consider a linear programming problem in standard form

minimize cTx
subject to Ax = b,

x ≥ 0.

137
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Let the first m columns of A be the basic columns. The columns
form a square m×m nonsingular matrix B. The nonbasic columns
of A form an m× (n−m) matrix D. We correspondingly partition
the cost vector as cT = [cTB, c

T
D]. Then, the original linear program-

ming problem can be represented as follows:

minimize cTBxB + cTDxD

subject to BxB + DxD = b,
xB ≥ 0,

xD ≥ 0.

If xD=0, then the solution x =
[
xTB, xTD

]T
=
[
xTB, 0T

]T
is the

basic feasible solution corresponding to the basis matrix B. It is
clear that for this to be the solution, we need xB = B−1b, that is,
the basic feasible solution is

x =

[
B−1b

0

]
.

The corresponding objective function value is z0 = cTBB
−1b.

But, if xD 6= 0, then the solution x =
[
xTB, xTD

]
is not basic. In

this case, xB is given by

xB = B−1b−B−1DxD,

and the corresponding objective function value is

z = cTBxB + cTDxD

= cTB(B−1b−B−1DxD) + cTDcD

= cTBB
−1b+ (cTD − cTBB−1D)xD.

We can define rTD = cTD − λTD, where λT = cTBB
−1.

The elements of vector rTD are called the reduced cost coefficients
corresponding to the nonbasic variables.
If rTD ≥ 0, then the basic feasible solution corresponding to the ba-
sis B is optimal. If, on the other hand, any component of rTD is
negative, then the value of the objective function can be reduced
by increasing a corresponding component of xD, that is, by chang-
ing the basis.
We now use the above observations in the revised simplex algo-
rithm.
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6.3 The Revised Simplex Algorithm

We have the following steps for the revised simplex algorithm.

Algorithm

1. Form a revised simplex tableau corresponding to a starting
basic feasible solution

[
B−1 b0

]
.

2. Calculate the current reduced cost coefficient vector: rTD =
cTD − λTD, where λT = cTBB

−1.

3. If rj ≥ 0 for all j, then the current basic feasible solution is
optimal so stop, otherwise go to step 4.

4. Select a q such that rq < 0 (i.e., the q corresponding to the
most negative rq).

5. Compute yq = B−1aq.

6. If no yiq ≥ 0, then the problem is unbounded so stop, other-
wise go to step 7.

7. Compute p = arg mini

{
bi0
yiq

: yiq > 0
}
.

8. Form the augmented revised table
[
B−1 b0 yq

]
and update

the augmented tableau pivoting about the pth element of the
last column that is, yq of the tableau.

9. Remove the last column that is, yq of the augmented revised
tableau and go to step 2.

We write the linear programming problem in an augmented
matrix form. We form the revised tableau using B−1 and b0. The
reduced cost coefficients are calculated to find pivot column cor-
responding to the most negative element in step 2. If reduced cost
coefficients are non-negative, then the problem is optimal, other-
wise we form the augmented revised tableau in step 8. We compute

p = arg min
{
bi0
yiq

: yiq > 0
}

for pivot row in step 7. If all yiq are

negative in step 6, then the problem is unbounded. In every itera-
tion, we obtain an updated revised tableau consisting of B−1 and
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b0 with removal of the last column that is, yiq of the augmented
revised tableau in step 9.

Example 6.1. Solve the linear programming problem using the
revised simplex method.

maximize 3x1 + x2 + 3x3

subject to 2x1 + x2 + x3 ≤ 2,
x1 + 2x2 + 3x3 ≤ 5,

2x1 + 2x2 + x3 ≤ 6,
x1, x2, x3 ≥ 0.

We express the problem in standard form:

minimize − 3x1 − x2 − 3x3

subject to 2x1 + x2 + x3 + x4 = 2,
x1 + 2x2 + 3x3 +x5 = 5,

2x1 + 2x2 + x3 +x6 = 6,
x1, x2, x3, x4, x5, x6 ≥ 0.

The augmented matrix is

a1 a2 a3 a4 a5 a6 b

a4 2 1 1 1 0 0 2

a5 1 2 3 0 1 0 5

a6 2 2 1 0 0 1 6

Since the basis matrix is B =
[
a4 a5 a6

]
, therefore basic vector

is xB =

x4x5
x6

 =

2
5
6

. We have basic feasible solution, that is

x =


0
0
0
2
5
6

 . Therefore, we can start the revised simplex method.
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We determine

cTB =
[
c4 c5 c6

]
, cTD =

[
c1 c2 c3

]
and

λT = cTBB
−1 =

[
0 0 0

] 1 0 0
0 1 0
0 0 1

 =
[
0 0 0

]
.

The revised simplex table is

B−1 b
a4 1 0 0 2
a5 0 1 0 5
a6 0 0 1 6

We compute

rTD = cTD − λTD

=
[
c1 c2 c3

]
−
[
0 0 0

] 2 1 1
1 2 3
2 7 1


=
[
−3 −1 −3

]
=
[
r1 r2 r3

]
.

We have to choose the most negative reduced cost coefficients; they
are r1 = r3 = −3. We take the first one, i.e., a1 and bring a1 into
the basis. However, we first calculate

y1 =

1 0 0
0 1 0
0 0 1

2
1
2

 =

2
1
2

 .
We now form the augmented revised tableau

B−1 b y1
a4 1 0 0 2 2
a5 0 1 0 5 1
a6 0 0 1 6 2



142 Introduction to LINEAR PROGRAMMING with MATLAB R©

Then, we compute p = arg min
{

2
2
, 5
1
, 6
2

}
= 1st row and apply

elementary row operations by pivoting about the 1st element of
the last column of the above revised tableau.

B−1 b y1
a1 1 0 0 2 2
a5 0 1 0 5 1
a6 0 0 1 6 2

R1 → R1

2

B−1 b y1
a1 1/2 0 0 1 1
a5 0 1 0 5 1
a6 0 0 1 6 2

R2 → R2 − R1

R3 → R3 − 2R1

B−1 b y1
a1 1/2 0 0 1 1
a5 -1/2 1 0 4 0
a6 -1 0 1 4 0

After removing the last column, that is y1, we get

B−1 b
a1 1/2 0 0 1
a5 -1/2 1 0 4
a6 -1 0 1 4

We compute

λT = cTBB
−1

=
[
c1 c5 c6

]
B−1

=
[
−3 0 0

]  1/2 0 0
−1/2 1 0
−1 0 1


=
[
−3/2 0 0

]
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and

rTD = cTD − λTD

=
[
c2 c3 c4

]
−
[
−3/2 0 0

] 1 1 1
2 3 0
2 1 0


=
[
−1 −3 0

]
−
[
−3/2 −3/2 −3/2

]
=
[
1/2 −3/2 3/2

]
=
[
r2 r3 r4

]
.

We observe that reduced cost coefficient r3 is only negative. There-
fore, we bring a3 into the basis.

y3 = B−1a3

=

 1/2 0 0
−1/2 1 0
−1 0 1

1
3
1

 =

 1/2
−1/2 + 3
−1 + 0 + 1

 =

1/2
5/2
0

 .
In this case, we get p= arg min

{
1× 2, 4×2

5
,
�
�A
A
4
0

}
= 2nd row.

B−1 b y3
a1 1/2 0 0 1 1/2

a3 -1/2 1 0 4 5/2

a6 -1 0 1 4 0

We update the revised simplex tableau by pivoting the 2nd ele-
ment of the last column.

R2 → 2
5
R2

B−1 b y3
a1 1/2 0 0 1 1/2

a3 -1/5 2/5 0 8/5 1
a6 -1 0 1 4 0

R1 → R1 − 1
2
R2

B−1 b y3
a1 3/5 -1/5 0 1/5 0
a3 -1/5 2/5 0 8/5 1
a6 -1 0 1 4 0
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After removing the last column in the above tableau,

B−1 b
a1 3/5 -1/5 0 1/5
a3 -1/5 2/5 0 8/5
a6 -1 0 1 4

We again compute

λT = cTBB
−1

=
[
c1 c3 c6

]
B−1

=
[
−3 −3 0

]  3/5 −1/5 0
−1/5 2/5 0
−1 0 1


=
[−9

5
+ 3

5
3
5
− 6

5
0
]

=
[−6

5
, −3

5
, 0
]
,

and

rTD = cTD − λTD

=
[
c2 c4 c5

]
−
[−6

5
−3
5

0
] 1 1 0

2 0 1
2 0 0


=
[
−1 0 0

]
−
[−12

5
−6
5

−3
5

]
=
[
7/5 6/5 3/5

]
=
[
r2 r4 r5

]
.

Note that all reduced cost coefficients are positive. Therefore,
the current tableau is optimal and the optimal solution is x =[
1
5

0 8
5

0 0 4
]T

. The optimal value is−3× 1
5
+(−3)× 8

5
= −27

5
.

Example 6.2. Consider the linear programming problem

minimize − 4x1 − 3x2 − 2x3

subject to 2x1 − 3x2 + 2x3 ≤ 6,
−x1 + x2 + x3 ≤ 5,
x1 , x2, x3 ≥ 0.
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The augmented matrix is

a1 a2 a3 a4 a5 b

a4 2 −3 2 1 0 6

a5 −1 1 1 0 1 5

Since basis matrix B=
[
a4 a5

]
, therefore basic vector is xB =

[
x4
x5

]
=

[
6
5

]
. We have a starting basic feasible solution x =


0
0
0
6
5

.

We determine

cTB =
[
c4 c5

]
, cTD =

[
c1 c2 c3

]
and

λT = cTBB
−1 =

[
0 0

] [1 0
0 1

]
=
[
0 0

]
.

The revised simplex tableau is

B−1 b
a4 1 0 6
a5 0 1 5

We compute

rTD = cTD − λTD =
[
c1 c2 c3

]
−
[
0 0

] [
a1 a2 a3

]
=
[
−4 −3 −2

]
−
[
0 0

] [ 2 −3 2
−1 1 1

]
=
[
−4 −3 −2

]
=
[
r1 r2 r3

]
.
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Since r1 = −4 is most negative, therefore we bring a1 into basis.
However, we first calculate

y1 = B−1a1

=

[
1 0
0 1

] [
2
−1

]
=

[
2
−1

]
.

We now form the augmented revised tableau

B−1 b y1
a4 1 0 6 2
a5 0 1 5 -1

We find pivot row, that is p = arg min
{

6
2
,
�
�@
@
−5

1

}
= 1st row. There-

fore, a4 of basis matrix B is replaced by a1.

B−1 b y1
a1 1 0 6 2
a5 0 1 5 -1

We apply elementary row operations by pivoting about the first
element of the last column of the augmented revised tableau.

R1 → 1
2
R1

B−1 b y1
a1 1/2 0 3 1
a5 0 1 5 -1

R2 → R2 +R1

B−1 b y1
a1 1/2 0 3 1
a5 1/2 1 8 0

We remove the column y1 to get the revised simplex tableau

B−1 b
a1 1/2 0 3
a5 1/2 1 8

We again compute

λT = cTBB
−1 =

[
c1 c5

] [1/2 0
1/2 1

]
=
[
−4 0

] [1/2 0
1/2 1

]
=
[
−2 0

]



The Revised Simplex Method 147

and

rTD = cTD − λTD =
[
c2 c3 c4

]
−
[
−2 0

] [
a2 a3 a4

]
=
[
−3 −2 0

]
−
[
−2 0

] [−3 2 1
1 1 0

]
=
[
−3 −2 0

]
−
[
6 −4 −2

]
=
[
−9 2 2

]
=
[
r2 r3 r4

]
.

Since r2 = −9 is only negative, therefore a2 will come into basis.
We also calculate

y2 = B−1a2

=

[
1/2 0
1/2 1

] [
−3

1

]
=

[
−3/2
−1/2

]
.

We form the augmented revised tableau

B−1 b y2
a1 1/2 0 3 -3/2
a5 1/2 1 8 -1/2

We find p=arg min
{
�
��@
@@

3
−3/2

,
�
��@
@@

8
−1/2

}
=no row. Since no yiq ≥ 0, there-

fore the problem is unbounded.

We can call MATLAB function rsm.m to find the optimal solution
of the linear programming problem. See the following Code 6.1.

Code 6.1: rsm.m

f unc t i on [ Binv ,B, xB]=rsm (A, c ,B, xB , Binv , v )
%input : augmented matrix A, co s t c , b a s i s
%vecto r B, ba s i c vec to r xB , i d e n t i t y matrix
%Binv , non−bas i c v a r i a b l e v
%output : b a s i s vec to r B, ba s i c vec to r xB

[ ˜ , n]= s i z e (A) ;
format ra t
Cb=c (B) ;
Cdd=s e t d i f f ( 1 : n ,B) ;
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D=A( : , Cdd ) ;
Cd=c (1 ,Cdd ) ;
L=Cb∗Binv ;
d i sp ( ’L= ’) ;
d i sp (L ) ;
r=Cd−(L∗D) ;
d i sp ( ’ r = ’) ;
d i sp ( r ) ;
[ ˜ , aa ]= pivotcolumn ( r , v ) ;
%check opt ima l i ty
i f aa==0

disp ( ’ opt imal s o l u t i o n reached ’ ) ;
r e turn
e l s e

a=Cdd( aa ) ;
d i sp ( ’ q = ’) ;
d i sp ( a ) ;
y=Binv∗A( : , a ) ;
Y=s p r i n t f ( ’%s ’ , ’ y = ’) ;
d i sp (Y) ;
d i sp ( y ) ;
r e v i s e =[Binv xB y ] ;
[m, n]= s i z e ( r e v i s e ) ;
min=I n f ;
arg min =0;

end
%s e l e c t p ivot row
f o r k=1:m

i f r e v i s e (k , n)>0
row=r e v i s e (k , n−1)/ r e v i s e (k , n ) ;
i f row<min

min=row ;
arg min=k ;

end
end

end
%check unbounded s o l u t i o n
i f arg min==0

x=s p r i n t f ( ’%c ’ , ’ unbounded ’ ) ;
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di sp ( x ) ;
r e turn
e l s e

d i sp ( ’ p= ’) ;
d i sp ( arg min ) ;

%update r e v i s e tab leau
r e v i s e=simplex ( r e v i s e , arg min , n ) ;
d i sp ( ’ r e v i s e ’ ) ;
d i sp ( r e v i s e ) ;
Binv=r e v i s e ( : , 1 : n−2);
B( arg min)=a ;
xB=r e v i s e ( : , n−1);

end
end

Note that in the above MATLAB function, we have called func-
tion simplex.m to make the pivot element unity and all values be-
low and up of pivot element in pivot column become zero. We have
also called function pivotcolumn.m to select pivot column. The
MATLAB functions simplex.m, pivotcolumn.m, and rsm.m
should be in the same folder in the computer.

Example 6.3. Solve the linear programming problem using the
revised simplex method.

maximize 3x1 + 4x2 + x3 + 7x4

subject to 8x1 + 3x2 + 4x3 + x4 ≤ 7,
2x1 + 6x2 + x3 + 5x4 ≤ 3,
x1 + 4x2 + 5x3 + 2x4 ≤ 8,
x1, x2, x3, x4 ≥ 0.

Using slack variables x5, x6 and x7 to express the linear program-
ming problem in standard form:
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minimize − 3x1 − 4x2 − x3 − 7x4

subject to 8x1 + 3x2 + 4x3 + x4 + x5 = 7,
2x1 + 6x2 + x3 + 5x4 +x6 = 3,
x1 + 4x2 + 5x3 + 2x4 +x7 = 8,
x1, x2, x3, x4, x5, x6, x7 ≥ 0.

The augmented matrix is

a1 a2 a3 a4 a5 a6 a7 b

a5 8 3 4 1 1 0 0 7

a6 2 6 1 5 0 1 0 3

a7 1 4 5 2 0 0 1 8

The revised simplex tableau is

B−1 b
a5 1 0 0 7
a6 0 1 0 3
a7 0 0 1 8

We compute

λT = cTBB
−1

=
[
c5 c6 c7

]
B−1 =

[
0 0 0

] 1 0 0
0 1 0
0 0 1

 =
[
0 0 0

]
and

rTD = cTD − λTD =
[
c1 c2 c3 c4

]
−
[
0 0 0

] 8 3 4 1
2 6 1 5
1 4 5 2


=
[
−3 −4 −1 −7

]
−
[
0 0 0 0

]
=
[
−3 −4 −1 −7

]
=
[
r1 r2 r3 r4

]
.

r4 is the most negative. Therefore, a4 will enter into basis.
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We calculate

y = B−1a4 =

1 0 0
0 1 0
0 0 1

1
5
2

 =

1
5
2

 .
We now form the augmented revised tableau.

B−1 b y4
a5 1 0 0 7 1
a6 0 1 0 3 5
a7 0 0 1 8 2

We compute pivot row p = arg min
{

7
1
, 3
5
, 8
2

}
= 2nd row. There-

fore, a6 is replaced by a4. We call MATLAB functions to perform
elementary row operations.

B−1 b y4
a5 1 0 0 7 1

a4 0 1 0 3 5
a7 0 0 1 8 2

R2 → 1
5
R2

>> A = identityop(A,2,1/5)

B−1 b y4
a5 1 0 0 7 1

a4 0 1/5 0 3/5 1
a7 0 0 1 8 2

R1 → R1 −R2

>> A = eliminationop(A,1,2,-1)

B−1 b y4
a5 1 -1/5 0 32/5 0

a4 0 1/5 0 3/5 1
a7 0 0 1 8 2

R3 → R3 − 2R2

>>A=eliminationop(A,3,2,-2)

B−1 b y4
a5 1 -1/5 0 32/5 0
a4 0 1/5 0 3/5 1
a7 0 -2/5 1 34/5 0



152 Introduction to LINEAR PROGRAMMING with MATLAB R©

After removing the last column from the above revised tableau,
we get

B−1 b
a5 1 -1/5 0 32/5
a4 0 1/5 0 3/5
a7 0 -2/5 1 34/5

We compute

λT = cTBB
−1

=
[
c5 c4 c7

]
B−1

=
[
0 −7 0

] 1 −1/5 0
0 1/5 0
0 −2/5 1


=
[
0 −7/5 0

]
and

rTD = cTD − λTD

=
[
c1 c2 c3 c6

]
−
[
0 −7/5 0

] 8 3 4 0
2 6 1 1
1 4 5 0


=
[
−3 −4 −1 0

]
−
[
−14/5 −42/5 −7/5 −7/5

]
=
[
−3 + 14/5 −4 + 42/5 −1 + 7/5 0 + 7/5

]
=
[
−1/5 22/5 2/5 7/5

]
=
[
r1 r2 r3 r6

]
.

r1 is the most negative. Therefore, a1 will enter to basis by

y1 = B−1a1

=

1 −1/5 0
0 1/5 0
0 −2/5 1

8
2
1

 =

8− 2/5
2/5
−4

5
+ 1

 =

38/5
2/5
1
5

 .
We form the augmented revised tableau.

B−1 b y1
a5 1 -1/5 0 32/5 38/5
a4 0 1/5 0 3/5 2/5
a7 0 -2/5 1 34/5 1/5
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We find pivot row p = arg min
{

32
38
, 3
2
, 34
}

= 1st row. Therefore, a5
is replaced by a1.

B−1 b y1
a1 1 -1/5 0 32/5 38/5

a4 0 1/5 0 3/5 2/5
a7 0 -2/5 1 34/5 1/5

R1 → 5
38
R1

>>A=identityop(A,1,5/38)

B−1 b y1
a1 5/38 -1/38 0 16/19 1
a4 0 1/5 0 3/5 2/5
a7 0 -2/5 1 34/5 1/5

R2 → R2 − 2
5
R1

>>A=eliminationop(A,2,1,-2/5)

B−1 b y1
a1 5/38 -1/38 0 16/19 1
a4 -1/19 4/19 0 5/19 0
a7 0 -2/5 1 34/5 1/5

R3 → R3 − 1
5
R2

>>A=eliminationop(A,3,1,-1/5)

B−1 b y1
a1 5/38 -1/38 0 16/19 1
a4 -1/19 4/19 0 5/19 0
a7 -1/38 -15/38 1 126/19 0

After removing last the column from the above revised tableau,
we get

B−1 b
a1 5/38 -1/38 0 16/19
a4 -1/19 4/19 0 5/19
a7 -1/38 -15/38 1 126/19
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We compute

λT = cTBB
−1

=
[
c1 c4 c7

]
B−1

=
[
−3 −7 0

]  5/38 −1/38 0
−1/19 4/19 0
−1/38 −15/38 1


=
[
−15

38
+ 7

19
3
38
− 28

19
0
]

=
[
− 1

38
−53

38
0
]
.

rTD = cTD − λTD

=
[
c2 c3 c5 c6

]
−
[
− 1

38
−53

38
0
] 3 4 1 0

6 1 0 1
4 5 0 0


=
[
−4 −1 0 0

]
−
[
−321

38
−3

2
− 1

38
−53

38

]
=
[
169
38

1
2

1
38

53
38

]
=
[
r2 r3 r5 r6

]
.

All are greater than zero. Therefore, the current revised tableau
contains the optimal solution, that is x1 = 16

19
, x4 = 5

19
and the

value of an objective function is

= −3× 16

19
+−7× 5

19

= −48

19
− 35

19

= −83

19
.

Example 6.4. Solve the following linear programming problem
using the revised simplex method.

maximize 3x1 + 5x2

subject to x1 + x2 ≤ 4,
5x1 + 3x2 ≥ 8,
x1, x2 ≥ 0.
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In standard form

minimize − 3x1 − 5x2

subject to x1 + x2 + x3 = 4,
5x1 + 3x2 −x4 = 8,
x1, x2, x3, x4 ≥ 0.

There is no obvious basic feasible solution. Therefore, we use the
two-phase method.
Phase-I: We introduce an artificial variable

minimize x5

subject to x1 + x2 + x3 = 4,
5x1 + 3x2 −x4 + x5 = 8,
x1, x2, x3, x4, x5, ≥ 0.

The augmented matrix is

a1 a2 a3 a4 a5 b

1 1 1 0 0 4

5 3 0 −1 1 8

Note that B =
[
a3 a5

]
, xB =

[
x3
x5

]
=

[
4
8

]
. We have a basic fea-

sible solution. We can start the revised simplex method.

B−1 b
a3 1 0 4
a5 0 1 8

We compute

λT = cTBB
−1 =

[
c3 c5

]
B−1 =

[
0 1

] [1 0
0 1

]
=
[
0 1

]
.
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Therefore,

rTD = cTD − λTD

=
[
c1 c2 c4

]
−
[
0 1

] [1 1 0
5 3 −1

]
=
[
0 0 0

]
−
[
5 3 −1

]
=
[
−5 −3 1

]
=
[
r1 r2 r4

]
.

The most reduced cost coefficient is r1. Therefore, a1 will enter
into basis. We calculate

y1 = B−1a1

=

[
1 0
0 1

] [
1
5

]
=

[
1
5

]
.

We write the augmented revised tableau.

B−1 b y1
a3 1 0 4 1
a5 0 1 8 5

We find p =arg min{4
1
, 8
5
}=2nd row. Therefore, a5 is replaced by a1.

We now apply row operations to update the above revised simplex
tableau.

B−1 b y1
a3 1 0 4 1

a1 0 1 8 5

R2 → 1
5
R2

>>A=identityop(A,2,1/5)

B−1 b y1
a3 1 0 4 1

a1 0 1/5 8/5 1
R1 → R1 −R2

>>A=eliminationop(A,1,2,-1)
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B−1 b y1
a3 1 -1/5 12/5 0

a1 0 1/5 8/5 1

After removing the last column from the above revised tableau,
we get

B−1 b
a3 1 -1/5 12/5
a1 0 1/5 8/5

We now compute

λT = cTBB
−1 =

[
0 0

]
B−1 =

[
0 0

]
and

rTD = cTD − λTD =
[
c2 c4 c5

]
−
[
0 0

]
D =

[
0 0 1

]
.

All reduced cost coefficients are greater than or equal to zero.
Therefore, we stop to get a starting basic feasible solution x =

8/5
0

12/5
0
0

 for Phase-II

Phase-II: We now take original objective function for calculat-
ing λT and rTD

B−1 b
a3 1 -1/5 12/5
a1 0 1/5 8/5

λT = cTBB
−1 =

[
c3 c1

] [1 −1/5
0 1/5

]
=
[
0 −3

] [1 −1/5
0 1/5

]
=
[
0 −3/5

]



158 Introduction to LINEAR PROGRAMMING with MATLAB R©

and

rTD = cTD − λTD =
[
c2 c4

]
−
[
0 −3/5

] [1 0
3 −1

]
=
[
−5 0

]
−
[
−9

5
3
5

]
=
[
−16

5
−3

5

]
=
[
r2 r4

]
.

Since r2 is the most negative, therefore a2 will enter into basis by
y2 = B−1a2. We find

y2 =

[
1 −1/5
0 1/5

] [
1
3

]
=

[
2/5
3/5

]
.

We form the augmented revised tableau.

B−1 b y2
a3 1 -1/5 12/5 2/5
a1 0 1/5 8/5 3/5

We find p=arg min{6, 8
3
}=2nd row. Therefore, a1 is replaced by a2

We now update the revised simplex tableau.

B−1 b y2
a3 1 -1/5 12/5 2/5

a2 0 1/5 8/5 3/5

R2 → 5
3
R2

>> A=identityop(A,2,5/3)

B−1 b y2
a3 1 -1/5 12/5 2/5

a2 0 1/3 8/3 1

R1 → R1 − 2
5
R2

>>A=eliminationop(A,1,2,-2/5)

B−1 b y2
a3 1 -1/3 4/3 0

a2 0 1/3 8/3 1

After removing the last column from the above revised tableau,
we get
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B−1 b
a3 1 -1/3 4/3
a2 0 1/3 8/3

λT = cTBB
−1 =

[
c3 c2

] [1 −1/3
0 1/3

]
=
[
0 −5

] [1 −1/3
0 1/3

]
=
[
0 −5/3

]
.

rTD = cTD − λTD =
[
c1 c4

]
−
[
0 −5/3

] [1 0
5 −1

]
=
[
−3 0

]
−
[
−25

3
5
3

]
=
[
16
3
−5

3

]
.

r4 is the most negative. Therefore, a4 will enter into basis by y4 =
B−1a4.

y4 =

[
1 −1/3
0 1/3

] [
0
−1

]
=

[
1/3
−1/3

]
.

B−1 b y4
a3 1 -1/3 4/3 1/3
a2 0 1/3 8/3 -1/3

We find p =arg min{4,��HH−8}=1st row. Therefore, a3 is replaced by
a4. We now update the revised simplex tableau.

B−1 b y2
a4 1 -1/3 4/3 1/3

a2 0 1/3 8/3 -1/3
R1 → 3R1

>> A = identityop(A,1,3)

B−1 b y2
a4 3 -1 4 1
a2 0 1/3 8/3 -1/3

R2 → R2 + 1
3
R1

>> A = eliminationop(A,2,1,1/3)

B−1 b y2
a4 3 -1 4 1
a2 1 0 4 0
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after removing the last column from the above revised tableau, we
get

B−1 b
a4 3 -1 4
a2 1 0 4

λT = cTBB
−1 =

[
c4 c2

] [3 −1
1 0

]
=
[
0 −5

] [3 −1
1 0

]
=
[
−5 0

]
and

rTD = cTD − λTD =
[
c1 c3

]
−
[
−5 0

] [1 1
5 0

]
=
[
−3 0

]
+
[
5 5

]
=
[
2 5

]
.

All reduced cost coefficients are nonnegative. Therefore, x =


0
4
0
4

.

The optimal solution to the original problem is x1 = 0, x2 = 4 and
the value of the objective function is 3x1 +5x2 = 3×0+5×4 =20.

Example 6.5. Solve the following problem by the revised simplex
method.

maximize 6x1 − 2x2 + 3x3

subject to 2x1 − x2 + 2x3 ≤ 2,
x1 4x3 ≤ 4,
x1, x2, x3, ≥ 0.

We can call MATLAB function rsm.m to solve the above problem
in MATLAB.

In the Command Window,

>> A = [2 -1 2 1 0; 1 0 4 0 1]

>> c = [-6 2 -3 0 0]

>> Binv = eye(2)

>> v = 3

>> B = [4 5]
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>> xB = [2;4]

>> [Binv,B,xB] = rsm(A,c,B,xB,Binv,v)

L=
0 0

r=
−6 2 −3

q=
1

y=
2
1

p=
1

r e v i s e=
1/2 0 1 1
−1/2 1 3 0

Binv =
1/2 0
−1/2 1

B =
1 5

xB =
1
3

>> [Binv,B,xB] = rsm(A,c,B,xB,Binv,v)

L=
−3 0

r=
−1 3 3

q=
2

y=
−1/2

1/2
p=

2
r e v i s e=
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0 1 4 0
−1 2 6 1

Binv =
0 1
−1 2

B =
1 2

xB =
4
6

>> [Binv,B,b] = rsm(A,c,B,b,Binv,v)

L=
−2 −2

r=
9 2 2

optimal s o l u t i o n reached
Binv =

0 1
−1 2

B =
1 2

xB =
4
6

We get x1 = 4, x2 = 6 and objective value is 6× 4− 2× 6 = 12.

Example 6.6. [7]A multistage stratified random sampling tech-
nique was adopted for the selection of one block (Ghosi), five vil-
lages and 60 farmers in the Mau district of Uttar Pradesh, India
in 2003. Out of 71 districts, the Mau district had been purposely
selected because the maximum area of the district was covered
under agricultural practices and the majority of the farmers were
mostly dependent on traditional agricultural practices, which ulti-
mately resulted in a lower per capita district. For this reason, the
Mau district was selected.

The basic objective was to develop an optimal resource plan for
the farmers of the Mau district so that they could optimize their
income and employment level under the given constraints.
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maximize 5334x01 + 4670x02 + 3701x03 + 6805x04 + 16387x05

+ 5024x06 + 4193x07 + 5572x08 + 18907x09 + 12165x10

+ 7176x11 + 8732x12 − 40x13 − 40x14 − 0.14x15 − 0.14x16

subject to x01+x02+x03+x04+x05 ≤ 3.44,

x04+x05+x06+x07+x08+x09+x10+x11+x12 ≤ 3.44,

78x01 + 71x02 + 36x03 + 46x04 + 45x05 ≤ 661,

16x04 + 98x05 + 66x06 + 57x07 + 54x08 + 88x09 + 41x11

+ 36x12 ≤ 661,

4125x01+4021x02+2018x03+2898x04+4335x05 ≤ 5800,

638x04+7548x05+4368x06+3812x07+3905x08

+ 12497x09 + 3990x10 + 3841x11 + 3277x12 ≤ 5800,

where xi ≥ 0 for all i = 1, . . . , 12.

The augmented matrix A is:
a01 a02 a03 a04 a05 a06 a07 a08 a09 a10

1 1 1 1 1 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1

78 71 36 46 45 0 0 0 0 0

0 0 0 16 98 66 57 54 88 33

4125 4021 2018 2898 4335 0 0 0 0 0

0 0 0 638 7548 4368 3812 3905 12497 3990
a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21 a22

0 0 0 0 0 0 1 0 0 0 0 0

1 1 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

41 36 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

3841 3277 0 0 0 0 0 0 0 0 0 1

We have basis matrix B=
[
a17 a18 a19 a20 a21 a22

]
.
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The starting basic feasible solution is given as

x = [0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 3.44 3.44 661 661 5800 5800]T.

We form a revised tableau corresponding to a starting basic feasible
solution.

B−1 b
a17 1 0 0 0 0 0 3.44
a18 0 1 0 0 0 0 3.44
a19 0 0 1 0 0 0 661
a20 0 0 0 1 0 0 661
a21 0 0 0 0 1 0 5800
a22 0 0 0 0 0 1 5800

We call MATLAB function rsm.m to solve this problem in the
MATLAB. Therefore, we take the value of all arguments used in
this function. These are

In the Command Window,

>> A=[ 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0; 0

0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0; 78 71 36

46 45 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0;0 0 0 16 98 66

57 54 88 33 41 36 0 0 0 0 0 0 0 1 0 0 ; 4125 4021 2018

2898 4335 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0; 0 0 0 638

7548 4368 3812 3905 12497 3990 3841 3277 0 0 0 0 0 0 0

0 0 1]

>> c = [-5334 -4670 -3701 -6805 -16387 -5024 -4193

-5572 -18907 -12165 -7176 -8732 40 40 0.14 0.14 0 0 0

0 0 0]

>> Binv = eye(6)

>> v = 16

>> xB = [3.44;3.44;661;661;5800;5800]
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>> B = [17 18 19 20 21 22]

In the Command Window,

>> [Binv,B,xB] = rsm(A, c, B, xB, Binv, v)

OUTPUT:

L =
[
0 0 0 0 0 0

]
r = [−5334 −4670 −3701 −6805 −16387 −5024 −4193

−5572 −18907 −12165 −7176 −8732 40 40 7/50 7/50]

q=9

y=


9
1
0
88
0

12497

 p=6

revise=


1 0 0 0 0 0 86/25 0
0 1 0 0 0 −1/12497 2345/788 0
0 0 1 0 0 0 661 0
0 0 0 1 0 −88/12497 11783/19 0
0 0 0 0 1 0 5800 0
0 0 0 0 0 1/12497 666/1435 1



Binv=


1 0 0 0 0 0
0 1 0 0 0 −1/12497
0 0 1 0 0 0
0 0 0 1 0 −88/12497
0 0 0 0 1 0
0 0 0 0 0 1/12497


B=
[
17 18 19 20 21 9

]
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xB=


86/25

2345/788
661

11783/19
5800

666/1435



In the Command Window,

>> [Binv,B,xB] = rsm(A, c, B, xB, Binv, v)

OUTPUT:

L =
[
0 0 0 0 0 −761/503

]
r = [−5334 −4670 −3701 −23359/4 −54642/11 45949/29 29911/19

28557/85 −98055/16 −39581/29 −75483/20 40 40 7/50 7/50 761/503]

q=10

y=


0

113/166
0

1476/301
0

3990/12497

 p=6

revise=


1 0 0 0 0 0 86/25 0
0 1 0 0 0 −1/3990 3788/1907 0
0 0 1 0 0 0 661 0
0 0 0 1 0 −11/1330 20230/33 0
0 0 0 0 1 0 5800 0
0 0 0 0 0 1/3990 580/399 1



Binv=


1 0 0 0 0 0
0 1 0 0 0 −1/3990
0 0 1 0 0 0
0 0 0 1 0 −11/1330
0 0 0 0 1 0
0 0 0 0 0 1/3990


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B=
[
17 18 19 20 21 10

]

xB=


86/25

3788/1907
661

20230/33
5800
580/399


In the Command Window,

>> [Binv,B,xB]=rsm(A,c,B,xB,Binv,v)

OUTPUT:

L =
[
0 0 0 0 0 −811/266

]
r = [−5334 −4670 −3701 −53458/11 59633/9 157576/19 74293/10

82340/13 76779/4 31743/7 16369/13 40 40 7/50 7/50] 811/266]

q=1

y=


1
0
78
0

4125
0


p=5

revise=


1 0 0 0 −1/4125 0 1678/825 0
0 1 0 0 0 −1/3990 3788/1907 0
0 0 1 0 −26/1375 0 30323/55 0
0 0 0 1 0 −11/1330 20230/33 0
0 0 0 0 1/4125 0 232/165 1
0 0 0 0 0 1/3990 580/399 0


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Binv=


1 0 0 0 −1/4125 0
0 1 0 0 0 −1/3990
0 0 1 0 −26/1375 0
0 0 0 1 0 −11/1330
0 0 0 0 1/4125
0 0 0 0 0 1/3990


B=
[
17 18 19 20 1 10

]

xB=


1678/825
3788/1907
30323/55
20230/33
232/165
580/399



In the Command Window,

>> [Binv,B,xB]=rsm(A,c,B,xB,Binv,v)

OUTPUT:

L =
[
0 0 0 0 −1778/1375 −811/266

]
r = [14297/27 −38204/35 −47835/43 −85620/7 157576/19 74293/10

82340/13 76779/4 31743/7 16369/13 40 40 7/50 7/50 1778/1375

811/266]

q=4

y=


409/1375
1676/1995
−3625/412
2209/206
966/1375
319/1995


p=5
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revise=


1 0 0 0 −1/2898 0 1125/782 0
0 1 0 0 −17/58643 −1/3990 262/859 0
0 0 1 0 −1/63 0 35843/63 0
0 0 0 1 −103/27836 −11/1330 30170/51 0
0 0 0 0 1/2898 0 1451/725 1
0 0 0 0 −7/126867 1/3990 806/711 0



Binv=


1 0 0 0 −1/2898 0
0 1 0 0 −17/58643 −1/3990
0 0 1 0 −1/63 0
0 0 0 1 −103/27836 −11/1330
0 0 0 0 1/2898 0
0 0 0 0 −7/126867 1/3990


B=
[
17 18 19 20 4 10

]

xB=


1125/782
262/859
35843/63
30170/51
1451/725
806/711


In the Command Window,

>> [Binv,B,xB]=rsm(A,c,B,xB,Binv,v)

OUTPUT:

L =
[
0 0 0 0 −815/486 −811/266

]
r = [14251/9 49753/24 −16162/51 27791/2 157576/19 74293/10 82340/13

76779/4 31743/7 16369/13 40 40 7/50 7/50 815/486 811/266]

q=3

y=


440/1449
−1084/1853

250/63
−3517/471
1009/1449
−529/4751


p=5
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revise=


1 0 0 0 −1/2018 0 1628/2877 0
0 1 0 0 0 −1/3990 3788/1907 0
0 0 1 0 −18/1009 0 17841/32 0
0 0 0 1 0 −11/1330 20230/33 0
0 0 0 0 1/2018 0 2900/1009 1
0 0 0 0 0 1/3990 580/399 0



Binv=


1 0 0 0 −1/2018 0
0 1 0 0 0 −1/3990
0 0 1 0 −18/1009 0
0 0 0 1 0 −11/1330
0 0 0 0 1/2018 0
0 0 0 0 0 1/3990


B=
[
17 18 19 20 3 10

]

xB=


1628/2877
3788/1907
17841/32
20230/33
2900/1009
580/399


In the Command Window,

>> [Binv,B,b]=rsm(A,c,B,b,Binv,v)

OUTPUT:

L =
[
0 0 0 0 −3701/2018 −811/266

]
r = [69168/31 137929/51 9557/21 58305/4 157576/19 74293/10 82340/13

76779/4 31743/7 16369/13 40 40 7/50 7/50 815/486 811/266]

Optimal solution reached.
B=
[
17 18 19 20 3 10

]

xB=


1628/2877
3788/1907
17841/32
20230/33
2900/1009
580/399

.
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6.4 Exercises

Exercise 6.1. Solve the linear programming problem.

maximize 3x1 + x2 + 5x3 + 4x4
subject to 3x1 − 3x2 + 2x3 + 8x4 ≤ 50,

4x1 + 6x2 − 4x3 − 4x4 ≤ 40,
4x1 − 2x2 + x3 + 3x4 ≤ 20,
x1, x2, x3, x4 ≥ 0.

Exercise 6.2. Solve the following linear program by the revised
simplex method in MATLAB.

maximize x1 − 3x2 + x3
subject to 2x1 + x2 + x3 ≤ 6,

x1 + x2 − x3 ≤ 40,
x1, x2, x3 ≥ 0.

Exercise 6.3. Solve using the revised simplex method.

maximize 2x1 + x2 + 3x3
subject to x1 + 2x2 + x3 ≤ 6,

2x1 + x3 ≤ 4,
x1, x2, x3 ≥ 0.

Exercise 6.4. Solve the problem.

minimize − 9x1 − 10x2 − 15x3
subject to x1 + 2x2 + 5x3 ≤ 45,

2x1 + 3x2 + 3x3 ≤ 60,
x1 + x2 + 2x3 ≤ 27,
x1, x2, x3 ≥ 0.

Exercise 6.5. Consider the following linear programming prob-
lem.
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minimize − 4x1 − 3x2
subject to x1 + 2x2 ≤ 8,

−2x1 + x2 ≤ 5,
5x1 + 3x2 ≤ 16,
x1, x2 ≥ 0.

(a) Solve the linear programming problem using the simplex
method.

(b) Solve the linear programming problem using the revised sim-
plex method.

Exercise 6.6. Solve the linear programming problem using the
revised simplex method.

maximize 3x1 + 6x2 + 2x3

subject to 3x1 + 4x2 + x3 ≤ 20,
x1 + 3x2 + 2x3 ≤ 10,
x1 − x2 ≤ 3,

x3 ≤ 2,
x, x2, x3 ≥ 0.

Exercise 6.7. Solve the linear programming problem using the
revised simplex method.

maximize x1 + 8x2 + 5x3

subject to x1 + 4x2 + 5x3 ≤ 7,
3x1 + 4x2 ≤ 18,
2x1 + x2 ≤ 7,
x1, x2, x3 ≥ 0.

Exercise 6.8. Solve the linear programming problem using the
revised simplex method.

maximize 19x1 + 13x2 + 12x3 + 17x4
subject to 3x1 + 2x2 + x3 + 2x4 ≤ 225,

x1 + x2 + x3 + x4 ≤ 117,
4x1 + 3x2 + 3x3 + 4x4 ≤ 420,
x1, x2, x3, x4 ≥ 0.

Exercise 6.9. Solve the following problems using the revised sim-
plex method.
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(a)
maximize 2x1 + 3x2

subject to 2x1 + 3x2 ≤ 30,
x1 + 2x2 ≥ 10,
x1, x2 ≥ 0.

(b)
maximize 5x1 + 6x2

subject to x1 + x2 ≤ 2,
4x1 + x2 ≥ 4,
x1, x2 ≥ 0.

Exercise 6.10. Solve the following linear program using the
revised simplex method.

minimize − 4x1 − 3x2

subject to 5x1 + x2 ≥ 11,
2x1 + x2 ≤ 8,
x1 + 2x2 ≥ 7,
x1, x2 ≥ 0.

Exercise 6.11. Solve the problem.

maximize x1 + 4x2
subject to 2x1 + x2 ≤ 7,

2x1 + 3x2 ≥ 6,
2x1 + 6x2 ≥ 9,
x1, x2 ≥ 0.
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Chapter 7

Duality

7.1 Dual Linear Programs

For every linear programming problem, there is a correspond-
ing dual linear programming problem. The dual linear program-
ming problem is constructed from the cost and constraints of the
original linear programming problem or their primal linear pro-
gramming problem. We know that a linear programming problem
is solved by the simplex method. Therefore, a dual linear pro-
gramming problem can also be solved using the simplex method
because every dual linear programming problem is a linear pro-
gramming problem. Duality is used to improve the performance of
the simplex algorithm (leading to dual algorithm). It helped to de-
velop nonsimplex algorithms such as Karmarkar’s algorithm and
Khachiyan’s algorithm. Lemke and Beale in 1954 designed a dual
version of the simplex method.

Consider the following linear programming problem of the form:

minimize cTx,
subject to Ax ≥ b,
where x ≥ 0, x ∈ Rn, A ∈ Rm×n,m < n, b ∈ Rm.

(7.1)

We refer to the above problem as the primal problem. The cost
vector c in the primal will move to the constraints in the dual. The
vector b on the right-hand side of Ax ≥ b given in (7.1) will become
part of the cost in the dual. Thus, we define the corresponding dual
problem as follows:

maximize λT b
subject to λTA ≤ cT ,

λ ≥ 0, λ ∈ Rm.
(7.2)

175
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Note:

(a) The cost vector c ∈ Rn of the primal linear programming
problem has moved to the constraints in the dual linear pro-
gramming.

(b) The vector b ∈ Rm of the constraints of the primal linear
programming problem becomes the part of the cost of the
dual linear programming problem.

(c) The form of duality defined as (7.2) is called the symmetric
form of duality.

(d) To construct the dual of an arbitrary linear programming
problem, we follow the procedure: we firstly convert the given
linear programming problem into a problem of above form
(symmetric form) and then construct the dual as above.

(e) The dual of the dual is the original linear programming prob-
lem.

Problem (7.2) can be written in symmetric form of duality as
follows:

minimize (+λT )(−b)
subject to λT (−A) ≥ −cT ,

λ ≥ 0.
(7.3)

Then, the dual of the above problem is

maximize (−cTx)
subject to (−A)x ≤ −b,

x ≥ 0.
(7.4)

We can get back to the primal linear programming problem:

minimize cTx
subject to Ax ≥ b,

x ≥ 0.

Thus, the dual of the dual is the primal problem. Such problems
are also called “symmetric dual problems”. It is a very important
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class in nonlinear programming problems.

We now consider the standard form of the linear programming
problem as

minimize cTx
subject to Ax = b,

x ≥ 0.
(7.5)

This form has an equality constraint. To obtain the dual problem
of (7.5), we convert the constraint in symmetric form, i.e., Ax ≥ b.

We observe that Ax = b is an equality constraint. We first
convert this equality constraint into the inequality constraints as

Ax ≥ b and Ax ≤ b.

That is,
Ax ≥ b and − Ax ≥ −b.

Therefore, the standard form of the linear programming problem
can be written as:

minimize cTx

subject to

[
A
−A

]
x ≥

[
b
−b

]
,

x ≥ 0.

and its dual is

maximize λT
[
b
−b

]

subject to λT
[

A
−A

]
≤ cT ,

λ ≥ 0.

Asymmetric form of duality can also be referred to as:

maximize λT b
subject to λTA ≤ cT .

Let λ = u− v, then the above dual problem becomes

maximize (u− v)T b
subject to (u− v)TA ≤ cT ,

u, v ≥ 0, u, v ∈ Rm.
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Note that the dual vector λ is not restricted to be non-negative.

Example 7.1. Find the dual of the following linear programming
problem.

minimize x1 − 2x2
subject to x1 − x2 ≥ 2,

−x1 + x2 ≥ −1,
x1, x2 ≥ 0.

The dual of the linear programming problem is

maximize 2λ1 − λ2
subject to λ1 − λ2 ≤ 1,

− λ1 + λ2 ≤ −2,
λ1, λ2 ≥ 0.

Example 7.2. Write down the dual of the linear programming
problem.

maximize 2x1 + x2

subject to x1 ≤ 3,
x2 ≤ 4,

x1 + x2 ≤ 10,
x1, x2 ≥ 0.

The dual of the linear programming problem is

minimize 3λ1 + 4λ2 + 10λ3

subject to λ1 + λ3 ≥ 2,
λ2 + λ3 ≥ 1,

λ1, λ2, λ3 ≥ 0.

7.2 Properties of Dual Problems

In this section, we discuss some basic properties of dual prob-
lems. We begin with the weak duality theorem.
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Theorem 7.1. [Weak Duality Theorem] Suppose that x and
λ are feasible solutions of the primal and the dual linear program-
ming problems, respectively (either in the symmetric or asymmet-
ric form), then

cTx ≥ λT b.

Proof. We first prove this theorem for the symmetric form of du-
ality.
Case-1: (Symmetric Case) Primal linear programming can be
written as

minimize cTx
subject to Ax ≥ b,

x ≥ 0.
(7.6)

Its dual problem can also be written as

maximize λT b
subject to λTA ≤ cT ,

λ ≥ 0.
(7.7)

Since x is a feasible solution to the primal problem, we have

Ax ≥ b, (7.8)

x ≥ 0. (7.9)

Since λ is a feasible solution to the dual problem, we have

λTA ≤ cT , (7.10)

λ ≥ 0. (7.11)

Premultiply (7.8) by λT , we get

λTAx ≥ λT b. (7.12)

Premultiply (7.10) by x, we get

λTAx ≤ cTx. (7.13)

From (7.12) and (7.13),

λT b ≤ λTAx ≤ cTx, (7.14)
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that is

λT b ≤ cTx. (7.15)

Case-II: Asymmetric Case:
The primal problem in asymmetric form is

minimize cTx
subject to Ax = b,

x ≥ 0.

Given that x is a feasible solution to the primal problem. That is

Ax = b, (7.16)

x ≥ 0. (7.17)

λ is a feasible solution to the dual problem (7.2). That is

λTA ≤ cT . (7.18)

Postmultiply (7.18) by x,

λTAx ≤ cTx. (7.19)

From (7.16) and (7.19), we get

λT b ≤ cTx.

Note: From the weak duality theorem, we have noticed that the
value of the objective function of the dual problem is al-
ways less than or equal to the value of the objective func-
tion of the primal problem. That is, the value of the objec-
tive function of the dual problem is a lower bound to the
value of objective function of the primal problem. This is
one important concept of the duality.

Theorem 7.2. Suppose that x0 and λ0 are feasible solutions to
the primal and dual problems, respectively (either in symmetric
or asymmetric form). If cTx0 = λT0 b, then x0 and λ0 are optimal
solutions to their respective problems.
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Proof. Let x be an arbitrary feasible solution of the primal prob-
lem. Since λ0 is a feasible solution to the dual problem, then by
the weak duality theorem

cTx ≥ λT0 b. (7.20)

We have

cTx0 = λT0 b. (7.21)

From (7.20) and (7.21)

cTx ≥ cTx0. (7.22)

Thus, x0 is an optimal solution to the primal linear programming
problem. Similarly, let λ be an arbitrary feasible solution to the
dual problem and x0 is a feasible solution to the primal problem,
then by weak duality theorem, we have

cTx0 ≥ λT b. (7.23)

From (7.21) and (7.23), we get

λT0 b ≥ λT b.

Thus, λ0 is an optimal solution of the dual problem.

Theorem 7.3. [Duality Theorem] If the primal problem (either
in symmetric or asymmetric form) has an optimal solution, then
the dual and optimal values of their respective objective functions
are equal.

Proof. Case I [Asymmetric Case]:
Assume that the primal problem has an optimal solution. Then,
by the fundamental theorem of the linear programming problem
(5.2), there exists an optimal basic feasible solution of the linear
programming problem. Let B be the basis matrix, D the matrix
corresponding to the nonbasic variables, cTB the basic matrix, cTD
the non-basic vector, and rTD the reduced cost coefficients vector.
Thus,

rTD = cTD − cTBB−1D ≥ 0,
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that is

cTBB
−1D ≤ cTD.

Define

λT = cTBB
−1,

then

λTD ≤ cTD.

Claim: λ is a feasible solution to the dual problem.
Without loss of generality, we assume that the basic columns are
the first m columns of A. Then,

λTA = λT [B, D] =
[
λTB, λTD

]
≤
[
cTB, c

T
D

]
= cT ,

that is

λTA ≤ cT .

Therefore, λ is feasible for the dual problem.
Claim: λ is an optimal feasible solution of the dual problem.

λT b = cTBB
−1b.

Since

xB = B−1b,

then

λT b = cTBxB.

By weak duality theorem, λ is optimal to the dual problem.
Case II: [Symmetric Case] Recall primal problem (7.1). We con-
vert this problem to standard form using surplus variables, that
is

minimize
[
cT 0T

] [x
y

]

subject to
[
A −I

] [x
y

]
= b,

[
x
y

]
≥ 0.

(7.24)
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Note that x is optimal for (7.1) if and only if
[
xT , (Ax− b)T

]T
is

optimal for (7.24). The result of Case I also applies to Case II.
This completes the proof.

Theorem 7.4 (Complementary Slackness Condition). The
feasible solutions x and λ to a primal dual pair of problems (either
in symmetric or asymmetric form) are optimal if and only if

1. (cT − λTA)x = 0, and

2. λT (Ax− b) = 0.

Proof. Case I: (Asymmetric Case) Recall the primal linear pro-
gram (7.5).
Suppose that x and λ are optimal solutions of the primal dual pair
linear programming problem, then by Theorem (7.2),

cTx = λT b. (7.25)

Since

Ax = b,

therefore,

cTx = λTAx.

That is,

(cT − λTA)x = 0.

Condition 1 is done.
Case II: (Symmetric Case) Suppose that x and λ are optimal
solutions of the primal dual pair linear programming problem, then

cTx = λT b.

In case of symmetric,

Ax ≥ b, x ≥ 0.

Since

(cT − λTA)x = cTx− λTAx
= λT b− λTAx
= λT (b− Ax)

≤ 0,
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that is

(cT − λTA)x ≤ 0. (7.26)

On the other hand,

λTA ≤ cT and x ≥ 0.

We can have

λTAx ≤ cTx,

that is

(cT − λTA)x ≥ 0. (7.27)

From (7.26) and (7.27), we get

(cT − λTA)x = 0.

Condition 1 is done.
Since

Ax ≥ b and λ ≥ 0,

then

λT (Ax− b) ≥ 0 (7.28)

On the other hand, recall the symmetric form of the dual problem:

λTA ≤ cT .

We can have

λTAx ≤ cTx where x ≥ 0.

Using (7.25) to get

λTAx ≤ λT b.

Thus,

λT (Ax− b) ≤ 0. (7.29)
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From (7.28) and (7.29),

λT (Ax− b) = 0.

Condition 2 is done.
Conversely, suppose that

(cT − λTA)x = 0,

then

cTx = λTAx. (7.30)

Since

λT (Ax− b) = 0,

then

λTAx = λT b. (7.31)

Combining (7.30) and (7.31), we get

cTx = λT b.

Therefore, x and λ are optimal solutions for primal and dual linear
programming problems, respectively.

7.3 The Dual Simplex Method

We can find the dual of any linear programming problem. We
use an implicit technique that involves the simplex algorithm to
the dual tableau. This is known as a “dual simplex method”. The
dual simplex method is used when there is no obvious basic feasi-
ble solution to the linear programming problem.

Algorithm

1. Create a canonical augmented matrix.

2. Is bi0 ≥ 0 for all i? If yes, then go to Step 3, otherwise go to
Step 4.



186 Introduction to LINEAR PROGRAMMING with MATLAB R©

3. The current solution is optimal.

4. Select the pth row as most negative element such that bp0 < 0.

5. If apj ≥ 0 for all j, stop; the dual problem is unbounded,

otherwise compute q=arg minj

{
| cj
apj
|; apj < 0

}
for selecting

the qth column.

6. Update the canonical augmented matrix by pivoting about
the (p,q)th element.

Example 7.3. Solve the following linear programming problem
using the dual simplex method.

minimize x1 + x2 + x3

subject to x1 + x2 + x3 ≥ 3,
4x1 + x2 + 2x3 ≥ 5,
x1, x2, x3 ≥ 0.

minimize x1 + x2 + x3

subject to − x1 − x2 − x3 + x4 = −3,
−4x1 − x2 − 2x3 +x5 = −5,
x1, x2, x3, x4, x5 ≥ 0.

The augmented matrix form can be given as

a1 a2 a3 a4 a5 b

a4 −1 −1 −1 1 0 −3

a5 −4 −1 −2 0 1 −5

cT 1 1 1 0 0 0

Since the basis matrix B =
[
a4 a5

]
, therefore xB =

[
x4
x5

]
=

[
−3
−5

]
.

This is a basic solution, but this is not feasible. We use the dual
simplex method for solving the above linear programming prob-

lem. We get p =min

[
−3
−5

]
= 2nd row as a pivot row. We now com-

pute q =arg min
{
| 1

−4
|, | 1

−1
|, | 1

−2
|,
�
��Z
ZZ
| 0
0
| ,
�
��Z
ZZ
| 0
1
|
}

= 1st column as

a pivot column. We apply row operations to update the tableau
by pivoting (2, 1)th element.



Duality 187

a1 a2 a3 a4 a5 b

a4 −1 −1 −1 1 0 −3

a1 −4 −1 −2 0 1 −5

cT 1 1 1 0 0 0

R2 → −1
4
R2

a1 a2 a3 a4 a5 b

a4 −1 −1 −1 1 0 −3

a1 1 1/4 1/2 0 −1/4 5/4

cT 1 1 1 0 0 0

R1 → R1 +R2

R3 → R3 −R2

a1 a2 a3 a4 a5 b

a4 0 −3/4 −1/2 1 −1/4 −7/4

a1 1 1/4 1/2 0 −1/4 5/4

cT 0 3/4 1/2 0 1/4 −5/4

R1 ↔ R2

a1 a2 a3 a4 a5 b

a1 1 1/4 1/2 0 −1/4 5/4

a4 0 −3/4 −1/2 1 −1/4 −7/4

cT 0 3/4 1/2 0 1/4 −5/4

Since B =
[
a1 a4

]
, therefore basic vector xB =

[
x1
x4

]
=

[
5/4
−7/4

]
.

The solution is basic but not feasible. Therefore, we again apply
the dual simplex method. −7

4
is the only negative element. Thus,

p=2, that is, the 2nd row is chosen as a pivot row. We find q=arg
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min
{
�
�A
A
0
0
, | −1 |, | −1 |,

�
�A
A
0
1
, | −1 |

}
= 2nd column. We update the

tableau.

a1 a2 a3 a4 a5 b

a1 1 1/4 1/2 0 −1/4 5/4

a4 0 −3/4 −1/2 1 −1/4 −7/4

cT 0 3/4 1/2 0 1/4 −5/4

R2 → −4
3
R2

a1 a2 a3 a4 a5 b

a1 1 1/4 1/2 0 −1/4 5/4

a2 0 1 2/3 −4/3 1/3 7/3

cT 0 3/4 1/2 0 1/4 −5/4

R1 → R1 − 1
4
R2

R3 → R3 − 3
4
R2

a1 a2 a3 a4 a5 b

a1 1 0 1/3 1/3 −1/3 2/3

a2 0 1 2/3 −4/3 1/3 7/3

cT 0 0 0 1 0 −3

Since basis B =
[
a1 a2

]
, therefore xB =

[
2/3
7/3

]
. This is basic and

feasible also. All bi0 ≥0. Thus, the current basic feasible solution is

optimal. Therefore, x =


x1
x2
x3
x4
x5

 =


2/3
7/3
0
0
0

 and value of the objective

function is 3.
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Example 7.4. Consider the linear programming problem

minimize x1 + 2x2

subject to x1 − 4x2 ≥ 2,
2x1 − 2x2 ≥ 7,
x1 + 3x2 ≥ −2,
x1, x2 ≥ 0.

Solve the above problem using the dual simplex method.
We write the problem in standard form:

minimize x1 + 2x2

subject to − x1 + 4x2 ≤ −2,
−2x1 + 2x2 ≤ −7,
− x1 − 3x2 ≤ 2,
x1, x2 ≥ 0.

That is,

minimize x1 + 2x2

subject to − x1 + 4x2 + x3 = −2,
−2x1 + 2x2 +x4 = −7,
− x1 − 3x2 +x5 = 2,
x1, x2, x3, x4, x5 ≥ 0.

The augmented matrix of the above problem is

a1 a2 a3 a4 a5 b

a3 −1 4 1 0 0 −2

a4 −2 2 0 1 0 −7

a5 −1 −3 0 0 1 2

cT 1 2 0 0 0 0

Basis is B =
[
a3 a4 a5

]
, therefore basic vector is xB =

−2
−7

2

. It

has a basic solution, but it is not feasible. We now apply the dual

simplex method. We find p= min
{
xB
}

= min

−2
−7

�A2

 =2nd row as
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a pivot row and q= arg min
{
| 1
−2
|,
�
��Z
ZZ
| 2
2
| ,
�
�A
A
0
0
,
�
�A
A
0
1
,
�
�A
A
0
0

}
= 1st column as

a pivot column. We update the tableau.

a1 a2 a3 a4 a5 b

a3 −1 4 1 0 0 −2

a1 −2 2 0 1 0 −7

a5 −1 −3 0 0 1 2

cT 1 2 0 0 0 0

R2 → −1
2
R2

a1 a2 a3 a4 a5 b

a3 −1 4 1 0 0 −2

a1 1 −1 0 −1/2 0 7/2

a5 −1 −3 0 0 1 2

cT 1 2 0 0 0 0

R1 → R1 +R2

R3 → R3 +R2

R4 → R4 −R2

a1 a2 a3 a4 a5 b

a3 0 3 1 −1/2 0 3/2

a1 1 −1 0 −1/2 0 7/2

a5 0 −4 0 −1/2 1 11/2

cT 0 3 0 1/2 0 −7/2

All bi0 ≥ 0, which ultimately leads to an optimal solution for the
problem. Thus x1 = 7

2
, x2 = 0, x3 = 3

2
and the value of the objec-

tive function is 7
2
.

We can solve the above problems in MATLAB. MATLAB function
dual.m is written in the following Code 7.1 to choose the pivot row
and pivot column leading to the pivot element.
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Code 7.1: dual.m

f unc t i on [A, p , q , e ,B] = dual (A,B)
%input : augmented matrix A, b a s i s matrix B
%output : augmented matrix A, pivotrow p ,
% pivotcolumn q , p ivote lement e ,
% b a s i s matrix B
[m, n]= s i z e (A) ;
min=0;
p=0;
f o r I =1:m−1

i f A( I , n)< min
min=A( I , n ) ;
p=I ;

end
end
i f p==0

disp ( ’ opt imal s o l u t i o n reached ’ ) ;
e=0;
q=0;
re turn ;

end
min =I n f ;
q=0;
count =0;
f o r k = 1 : n−1

i f A(m, k ) ˜=0
i f A(p , k)<0

c o l= abs (A(m, k )/A(p , k ) ) ;
i f c o l < min

min = c o l ;
q = k ;

end
end

end
end
f o r k = 1 : n−1

i f A(p , k)>=0
count=count +1;
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end
end
i f count==n−1

d i sp ( ’ unbounded ’ ) ;
e =0;
q=0;
re turn

end
e=A(p , q ) ;
B(p)=q ;
re turn

Example 7.5. Solve the following linear programming problem
by the dual simplex method:

minimize 3x1 + x2

subject to x1 + x2 ≥ 1,
2x1 + 3x2 ≥ 2,
x1, x2 ≥ 0.

We need to express the problem in standard form:

minimize 3x1 + x2
subject to − x1 − x2 ≤ −1,

−2x1 − 3x2 ≤ −2,
x1, x2 ≥ 0.

That is,
minimize 3x1 + x2

subject to− x1 − x2 + x3 = −1,
−2x1 − 3x2 +x4 = −2,
x1, x2, x3, x4 ≥ 0.

The augmented matrix of above linear equality constraints:

a1 a2 a3 a4 b

a3 −1 −1 1 0 −1

a4 −2 −3 0 1 −2

Since basis B =
[
a3 a4

]
. Therefore, xB =

[
x3
x4

]
=

[
−1
−2

]
. This is
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a basic solution, but it is not feasible. Therefore, for solving such
problem, we use the dual simplex method. The augmented matrix
form of the above standard problem is

a1 a2 a3 a4 b

a3 −1 −1 1 0 −1

a4 −2 −3 0 1 −2

cT 3 1 0 0 0

We use MATLAB function dual.m to find the pivot row and col-
umn resulting pivot element.

>> B =
[
3 4

]
>> [A,p,q,e,B] = dual(A,B)

a1 a2 a3 a4 b

a3 −1 −1 1 0 −1

a4 −2 −3 0 1 −2

cT 3 1 0 0 0

p = 2 q = 2 e = -3 B =
[
3 2

]
.

We find pivot row p= min
{
xB
}

= min

[
−1
−2

]
= 2nd row and pivot

column q= arg min
{
| 3
−2
|, | 1

−3
|,
�
��Z
ZZ
| 0
0
| ,
�
��Z
ZZ
| 0
1
|
}

= 2nd column.

a1 a2 a3 a4 b

a3 −1 −1 1 0 −1

a2 −2 −3 0 1 −2

cT 3 1 0 0 0

We call MATLAB functions to perform elementary row operations.

a1 a2 a3 a4 b

a3 −1 −1 1 0 −1

a2 −2 −3 0 1 −2

cT 3 1 0 0 0

R2 → −1
3
R2
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>> A = identityop(A,p,-1/3)

a1 a2 a3 a4 b

a3 −1 −1 1 0 −1

a2 2/3 1 0 −1/3 2/3

cT 3 1 0 0 0
R1 → R1 +R2

>> A = eliminationop(A,1,p,1)

a1 a2 a3 a4 b

a3 −1/3 0 1 −1/3 −1/3

a2 2/3 1 0 −1/3 2/3

cT 3 1 0 0 0
R3 → R3 −R2

>> A = eliminationop(A,3,p,-1)

a1 a2 a3 a4 b

a3 −1/3 0 1 −1/3 −1/3

a2 2/3 1 0 −1/3 2/3

cT 7/3 0 0 1/3 −2/3

R1 ↔ R2

>> A = exchangeop(A,1,2)

a1 a2 a3 a4 b

a2 2/3 1 0 −1/3 2/3

a3 −1/3 0 1 −1/3 −1/3

cT 7/3 0 0 1/3 −2/3

>>[A,p,q,e,B] = dual(A,B)
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a1 a2 a3 a4 b

a2 2/3 1 0 −1/3 2/3

a3 −1/3 0 1 −1/3 −1/3

cT 7/3 0 0 1/3 −2/3

Since basis B =
[
a2 a3

]
, therefore xB =

[
x2
x3

]
=

[
2/3
−1/3

]
. We find

pivot row p=min
{
xB
}

= min

[
2/3
−1/3

]
= 2nd row, and pivot column

q=arg min
{
| 7/3
−1/3
|,
�
�@
@
|0
0
| ,
�
�@
@
|0
1
| , | 1/3

−1/3
|
}

=4th column.

p = 2 q = 4 e = -1/3 B =
[
2 4

]
.

a1 a2 a3 a4 b

a2 2/3 1 0 −1/3 2/3

a4 −1/3 0 1 −1/3 −1/3

cT 7/3 0 0 1/3 −2/3

R2 → −3R2

>> A = identityop(A,p,-3)

a1 a2 a3 a4 b

a2 2/3 1 0 −1/3 2/3

a4 1 0 −3 1 1

cT 7/3 0 0 1/3 −2/3

R1 → R1 + 1
3
R2

>> A = eliminationop(A,1,p,1/3)
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a1 a2 a3 a4 b

a2 1 1 −1 0 1

a4 1 0 −3 1 1

cT 7/3 0 0 1/3 −2/3

R3 → R3 − 1
3
R2

>> A = eliminationop(A,3,p,-1/3)

a1 a2 a3 a4 b

a2 1 1 −1 0 1

a4 1 0 −3 1 1

cT 2 0 1 0 −1

B =
[
a2 a4

]
, xB =

[
x2
x4

]
=

[
1
1

]
and bi0 ≥ 0. The current basic

feasible solution is optimal. Thus, x =


x1
x2
x3
x4

 =


0
1
0
1

 and the opti-

mal value is 1.

Example 7.6. Use the dual simplex method to solve:

minimize 3x1 + 4x2 + 5x3

subject to x1 + 2x2 + 3x3 ≥ 5,
2x1 + 2x2 + x3 ≥ 6,
x1, x2, x3 ≥ 0.

In standard form:

minimize 3x1 + 4x2 + 5x3
subject to − x1 − 2x2 − 3x3 ≤ −5,

−2x1 − 2x2 − x3 ≤ −6;
x1, x2, x3 ≥ 0.
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That is,

minimize 3x1 + 4x2 + 5x3

subject to− x1 − 2x2 − 3x3 + x4 = −5,
−2x1 − 2x2 − x3 +x5 = −6,
x1, x2, x3, x4, x5 ≥ 0.

The augmented matrix is

a1 a2 a3 a4 a5 b

a4 −1 −2 −3 1 0 −5

a5 −2 −2 −1 0 1 −6

cT 3 4 5 0 0 0

Since the basis matrix is B =
[
a4 a5

]
and xB =

[
a4
a5

]
, therefore

BxB = b implies xB =

[
−5
−6

]
. It has a basis solution, but it is not

feasible.

>>B=
[
4 5

]
>>[A,p,q,e,B]=dual(A,B)

a1 a2 a3 a4 a5 b

a4 −1 −2 −3 1 0 −5

a5 −2 −2 −1 0 1 −6

cT 3 4 5 0 0 0

We find pivot row p=min{xB} = min

[
−5
−6

]
= 2nd row and pivot

column q=arg min
{
| 3
−2
|, | 4

−2
|, | 5

−1
|,
�
��Z
ZZ
| 0
0
| ,
�
��Z
ZZ
| 0
1
|
}

= 1st column.

p=2 q=1 e=-2 B=
[
4 1

]
.
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a1 a2 a3 a4 a5 b

a4 −1 −2 −3 1 0 −5

a1 −2 −2 −1 0 1 −6

cT 3 4 5 0 0 0

R2 → −1
2
R2

>> A = identityop(A,p,-1/2)

a1 a2 a3 a4 a5 b

a4 −1 −2 −3 1 0 −5

a1 1 1 1/2 0 −1/2 3

cT 3 4 5 0 0 0
R1 → R1 +R2

>> A = eliminationop(A,1,p,1)

a1 a2 a3 a4 a5 b

a4 0 −1 −5/2 1 −1/2 −2

a1 1 1 1/2 0 −1/2 3

cT 3 4 5 0 0 0
R3 → R3 − 3R2

>> A = eliminationop(A,3,p,-3)

a1 a2 a3 a4 a5 b

a4 0 −1 −5/2 1 −1/2 −2

a1 1 1 1/2 0 −1/2 3

cT 0 1 7/2 0 3/2 −9

R1 ↔ R2

>> A = exchangeop(A,1,2)
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a1 a2 a3 a4 a5 b

a1 1 1 1/2 0 −1/2 3

a4 0 −1 −5/2 1 −1/2 −2

cT 0 1 7/2 0 3/2 −9

We have basis B =
[
a1 a4

]
. Thus, xB =

[
3
−2

]
. This is not feasi-

ble.

>> [A,p,q,e,B] = dual(A,B)

a1 a2 a3 a4 a5 b

a1 1 1 1/2 0 −1/2 3

a4 0 −1 −5/2 1 −1/2 −2

cT 0 1 7/2 0 3/2 −9

We find pivot row p=min
{
xB
}

= min

[
�A3
−2

]
= 2nd row

and pivot column q=arg min
{
�
��Z
ZZ
| 0
0
| , | 1

−1
|, | 7/2

−5/2
|,
�
��Z
ZZ
| 0
1
| , | 3/2

−1/2
|
}

=

2nd column.

p=2 q=2 e=-1 B=
[
1 2

]
.

a1 a2 a3 a4 a5 b

a1 1 1 1/2 0 −1/2 3

a2 0 −1 −5/2 1 −1/2 −2

cT 0 1 7/2 0 3/2 −9

R2 → −R2

>> A = identityop(A,p,-1)
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a1 a2 a3 a4 a5 b

a1 1 1 1/2 0 −1/2 3

a2 0 1 5/2 −1 1/2 2

cT 0 1 7/2 0 3/2 −9

R3 → R3 −R2

>> A = eliminationop(A,3,p,-1)

a1 a2 a3 a4 a5 b

a1 1 1 1/2 0 −1/2 3

a2 0 1 5/2 −1 1/2 2

cT 0 0 1 1 1 −11

R1 → R1 −R2

>> A = eliminationop(A,1,p,-1)

a1 a2 a3 a4 a5 b

a1 1 0 −2 1 −1 1

a2 0 1 5/2 −1 1/2 2

cT 0 0 1 1 1 −11

Since bi0 ≥ 0, therefore the present solution is an optimal solution.
Thus, x1 = 1, x2 = 2, and the objective value is 11.

Example 7.7. Consider the linear programming problem

maximize− 4x1 − 6x2 − 5x3
subject to 2x1 +3x3 ≥ 3,

3x2 + 2x3 ≥ 6,
x1, x2, x3, ≥ 0.

Solve the problem by the dual simplex method.
We express the problem in standard form as

minimize 4x1 + 6x2 + 5x3
subject to −2x1 −3x3 ≤ −3,

−3x2 − 2x3 ≤ −6,
x1, x2, x3 ≥ 0.
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That is,

minimize 4x1 + 6x2 + 5x3
subject to −2x1 −3x3 + x4 = −3,

−3x2 − 2x3 +x5 = −6,
x1, x2, x3 , x4, x5 ≥ 0.

The augmented matrix is

a1 a2 a3 a4 a5 b

a4 −2 0 −3 1 0 −3

a5 0 −3 −2 0 1 −6

cT 4 6 5 0 0 0

Since basis matrix B =
[
a4 a5

]
and xB =

[
x4
x5

]
, therefore, the

BxB = b implies xB =

[
−3
−6

]
. It has a basis solution, but it is not

feasible.
>> B =

[
4 5

]
>> [A,p,q,e,B] = dual(A,B)

a1 a2 a3 a4 a5 b

a4 −2 0 −3 1 0 −3

a5 0 −3 −2 0 1 −6

cT 4 6 5 0 0 0

We find pivot row p=min
{
xB
}

= min

[
−3
−6

]
= 2nd row and the

pivot column q=arg min
{
�
��Z
ZZ
| 4
0
| , | 6

−3
|, | 5

−2
|,
�
��Z
ZZ
| 0
0
| ,
�
��Z
ZZ
| 0
1
|
}

= 2nd col-
umn.

p = 2 q = 2 e = -3 B =
[
4 2

]
.
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a1 a2 a3 a4 a5 b

a4 −2 0 −3 1 0 −3

a2 0 −3 −2 0 1 −6

cT 4 6 5 0 0 0

R2 → −1
3
R2

>> A = identityop(A,p,-1/3)

a1 a2 a3 a4 a5 b

a4 −2 0 −3 1 0 −3

a2 0 1 2/3 0 −1/3 2

cT 4 6 5 0 0 0
R3 → R3 − 6R2

>> A = eliminationop(A,3,p,-6)

a1 a2 a3 a4 a5 b

a4 −2 0 −3 1 0 −3

a2 0 1 2/3 0 −1/3 2

cT 4 0 1 0 2 −12

We have available basis B =
[
a4 a2

]
. Thus, xB =

[
−3

2

]
. It is

basic, but it does not give a feasible solution.

>> [A,p,q,e,B] = dual(A,B)

a1 a2 a3 a4 a5 b

a4 −2 0 −3 1 0 −3

a2 0 1 2/3 0 −1/3 2

cT 4 0 1 0 2 −12

We find pivot row p=min
{
xB
}

= min

[
−3

�A2

]
=1st row and pivot

column q=arg min
{
| 4
−2
|,
�
��Z
ZZ
| 0
0
| , | 1

−3
|,
�
��Z
ZZ
| 0
1
| ,
�
��Z
ZZ
| 2
0
|
}

= 3rd column.
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p = 1 q = 3 e = -3 B =
[
3 2

]
.

a1 a2 a3 a4 a5 b

a3 −2 0 −3 1 0 −3

a2 0 1 2/3 0 −1/3 2

cT 4 0 1 0 2 −12

R1 → −1
3
R1

>> A = identityop(A,p,-1/3)

a1 a2 a3 a4 a5 b

a3 2/3 0 1 −1/3 0 1

a2 0 1 2/3 0 −1/3 2

cT 4 0 1 0 2 −12

R2 → R2 − 2
3
R1

>> A = eliminationop(A,2,p,-2/3)

a1 a2 a3 a4 a5 b

a3 2/3 0 1 −1/3 0 1

a2 −4/9 1 0 2/9 −1/3 4/3

cT 4 0 1 0 2 −12

R3 → R3 −R1

>> A = eliminationop(A,3,p,-1)

a1 a2 a3 a4 a5 b

a3 2/3 0 1 −1/3 0 1

a2 −4/9 1 0 2/9 −1/3 4/3

cT 10/3 0 0 1/3 2 −13
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Since all bi0 ≥ 0, therefore, the present solution is optimal. We have

basis B =
[
a3 a2

]
, xB =

[
x3
x2

]
=

[
1
4/3

]
and x =

x1x2
x3

 =

 0
4/3
1

 is

the optimal solution. The minimum objective value is 13.

Example 7.8. Consider the following linear programming prob-
lem:

minimize 160x1 + 400x2 + 300x3

subject to 3x1 + 6x2 + 6x3 ≥ 36,
4x1 + 6x2 + 3x3 ≥ 20,
2x1 + 8x2 + 4x3 ≥ 30,
x1, x2, x3 ≥ 0.

Solve using the dual simplex method.
Standard form of the linear programming problem:

minimize 160x1 + 400x2 + 300x3

subject to − 3x1 − 6x2 − 6x3 ≤ −36,
− 4x1 − 6x2 − 3x3 ≤ −20,
− 2x1 − 8x2 − 4x3 ≤ −30,

x1, x2, x3 ≥ 0.

That is,

minimize 160x1 + 400x2 + 300x3

subject to − 3x1 − 6x2 − 6x3 + x4 = −36,
− 4x1 − 6x2 − 3x3 +x5 = −20,
− 2x1 − 8x2 − 4x3 +x6 = −30,

x1, x2, x3 x4, x5, x6 ≥ 0.

The augmented matrix is

a1 a2 a3 a4 a5 a6 b

a4 −3 −6 −6 1 0 0 −36

a5 −4 −6 −3 0 1 0 −20

a6 −2 −8 −4 0 0 1 −30

cT 160 400 300 0 0 0 0
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Note that the basis matrix B =
[
a4 a5 a6

]
, xB =

x4x5
x6

 , and

BxB = b implies xB =

−36
−20
−30

 .
>> B =

[
4 5 6

]
>> [A,p,q,e,B] = dual(A,B)

a1 a2 a3 a4 a5 a6 b

a3 −3 −6 −6 1 0 0 −36

a5 −4 −6 −3 0 1 0 −20

a6 −2 −8 −4 0 0 1 −30

cT 160 400 300 0 0 0 0

p = 1 q = 3 e = -6 B =
[
3 5 6

]
.

>> A = simplex(A,p,q)

a1 a2 a3 a4 a5 a6 b

a3 1/2 1 1 −1/6 0 0 6

a5 −5/2 −3 0 −1/2 1 0 −2

a6 0 −4 0 −2/3 0 1 −6

cT 10 100 0 50 0 0 −18000

>> [A,p,q,e,B] = dual(A,B)

a1 a2 a3 a4 a5 a6 b

a3 1/2 1 1 −1/6 0 0 6

a5 −5/2 −3 0 −1/2 1 0 −2

a6 0 −4 0 −2/3 0 1 −6

cT 10 100 0 50 0 0 −18000

p=3 q=2 e=-4 B=
[
3 5 2

]
.
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a1 a2 a3 a4 a5 a6 b

a3 1/2 0 1 −1/3 0 1/4 9/2

a5 −5/2 0 0 0 1 −3/4 5/2

a2 0 1 0 1/6 0 −1/4 3/2

cT 10 0 0 100/3 0 25 −1950

All bi0 ≥ 0, which yields an optimal solution as xB =

x1x2
x3

 = 0
3/2
9/2

 and value of the objective function is 1950.

Example 7.9. If P and D are a primal-dual pair of linear pro-
gramming, then which of the following statements is FALSE?

(a) If P has an optimal solution, then D also has an optimal
solution.

(b) The dual of the dual problem is a primal problem.

(c) If P has an unbounded solution, then D has no feasible solu-
tion.

(d) If P has no feasible solution, then D has a feasible solution.

Option (d) is false. If P has no feasible solution, then D has a fea-
sible solution.

Example 7.10. For a linear programming primal maximiza-
tion problem P with dual Q, which of the following statements
is TRUE?

(a) The optimal values of P and Q exist and are the same.

(b) Both optimal values exist, and the optimal value of P is less
than the optimal value of Q.

(c) P will have an optimal solution, if and only if Q also has an
optimal solution.
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(d) Both P and Q cannot be infeasible.

For a linear programming primal maximization problem P with
dual Q, P will have an optimal solution, if and only if Q also has
an optimal solution. Therefore, option (c) is true.

Example 7.11. Suppose that the linear programming problem

maximize cTx
subject to Ax ≤ b

x ≥ 0

admits a feasible solution and the dual

maximize bTy
subject to ATy ≥ c

y ≥ 0

admits a feasible solution y0.Then,

(a) the dual admits an optimal solution.

(b) any feasible solution of the primal and of the dual satisfies.

(c) the dual problem is unbounded.

(d) the primal problem admits an optimal solution.

Options (a,d) are true. That is, the primal and dual both admit
an optimal solution.
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7.4 Exercises

Exercise 7.1. Determine the dual of each of the following linear
programming problems.

(a)
maximize 10x1 + 30x2

subject to 5x1 − 4x2 ≤ 100,
x1 + 12x2 ≤ 90,

x2 ≤ 400,
x1, x2 ≥ 0.

(b)
minimize 3x1 − 4x2

subject to 6x1 + 11x2 ≥ −30,
2x1 − 7x2 ≤ 50,

x2 ≤ 80,
x1, x2 ≥ 0.

(c)
maximize − x1 + 2x2

subject to 5x1 + x2 ≤ 60,
3x1 − 8x2 ≥ 10,
x1 + 7x2 = 20,
x1, x2 ≥ 0.

Exercise 7.2. Consider the linear programming problem.

minimize − 4x1 − 3x2 − 2x3

subject to 2x1 + 3x2 + 2x3 ≤ 6,
− x1 + x2 + x3 ≤ 5,
x1, x2, x3 ≥ 0.

(a) Write down the dual of this linear programming problem.

(b) Solve the primal problem by the simplex method.

Exercise 7.3. Solve the linear programming problem using the
dual simplex method.
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minimize 2x1 + x2

subject to − 3x1 − x2 + x3 = −3,
−4x1 − 3x2 + x4 = −6,
−x1 − 2x2 + x5 = −2,
x1, x2, x3, x4, x5 ≥ 0.

Exercise 7.4. Solve the linear programming problem using the
dual simplex method.

minimize x1 + 45x2 + 3x3

subject to x1 + 5x2 − x3 ≥ 4,
x1 + x2 + 2x3 ≥ 2,

− x1 + 3x2 + 3x3 ≥ 5,
−3x1 + 8x2 − 5x3 ≥ 3,
x1, x2, x3 ≥ 0.

Exercise 7.5. Solve the linear programming problem using the
dual simplex method.

minimize 10x1 + 2x2 + 4x3 + 8x4 + x5

subject to x1 + 4x2 − x3 ≥ 16,
2x1 + x2 + x3 ≥ 4,
3x1 + x4 − x5 ≥ 8,
x1 +x4 − x5 ≥ 20,
x1, x2, x3, x4, x5 ≥ 0.

Exercise 7.6. Solve the linear programming problem.

minimize 2x1 + 3x2

subject to 4x1 − 3x2 ≥ 5,
x1 + 2x2 ≥ 4,
x1, x2 ≥ 0.

Exercise 7.7. Consider the following linear programming prob-
lem.

minimize 3x1 + 4x2 + 5x3

subject to x1 + 3x2 + x3 ≥ 2,
2x1 − x2 + 3x3 ≥ 3,
x1, x2, x3 ≥ 0.

Solve using
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(a) the dual simplex method.

(b) the simplex method on the dual of the problem.

Exercise 7.8. Solve the linear programming problem using the
dual simplex method.

minimize 17x1 + 7x2 + 17x3

subject to x1 + x2 ≥ 8,
x1 + 4x2 + 2x3 ≥ 14,

3x2 + 4x3 ≥ 9,
x1, x2, x3 ≥ 0.

Exercise 7.9. Solve the linear programming problem using the
dual simplex method.

minimize 30x1 + 50x2 + 26x3

subject to 2x1 + 0.5x2 + x3 ≥ 25,
x1 + 3x2 + 2x3 ≥ 40,

2x1 + x2 + x3 ≥ 30,
x1, x2, x3 ≥ 0.

Exercise 7.10. Solve the linear programming problem using the
dual simplex method.

minimize 10x1 + 4x2

subject to 3x1 + 2x2 ≥ 60,
7x1 + 2x2 ≥ 84,
3x1 + 6x2 ≥ 72,
x1, x2 ≥ 0.

Exercise 7.11. Solve the following problem by the dual simplex
method.

minimize x1 + 3x2 + 4x3 + x4 + 2x5

subject to 2x1 + 5x2 + 3x3 − 2x4 + 6x5 ≥ 10,
− x1 − 2x2 − 4x3 + x4 + 2x5 ≥ 12,
x1, x2, x3, x4, x5 ≥ 0.

Exercise 7.12. Solve the linear programming problem using the
dual simplex method.
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minimize 8x1 + 8x2 + 16x3 + 7x4

subject to x1 + 3x2 + 3x3 + 2x4 ≥ 32,
2x1 + 2x2 + 8x3 + 3x4 ≥ 28,
7x1 + 4x2 + 6x3 + 5x4 ≥ 35,
x1, x2, x3, x4 ≥ 0.

Exercise 7.13. Solve the following problems using the dual sim-
plex method.

minimize x1 + x2

subject to 2x1 + x2 ≥ 1,
x1 + 2x2 ≥ 1,
x1, x2 ≥ 0,

and hence

minimize x1 + x2 + x3 + 1
3
x4

subject to 2x1 + x2 + 2x3 ≥ 1,
x1 + 2x2 +2x4 ≥ 1,

2x1 + 2x2 + x4 ≥ 1,
x1, x2, x3, x4 ≥ 0.
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Chapter 8

The Transportation Problem

8.1 Introduction

Transportation means the transfer of materials from different
sources to different destinations. Suppose that a firm has pro-
duction units at O1, O2, . . . , Om places. The demand for produced
goods is at n different centers D1, D2 . . . , Dn. The problem of the
firm is to transport goods from m different production units to
n different demand centers with minimum cost. Consider the cost
of shipping from production unit Oi to the demand center Dj is
cij, and xij unit is shipped from Oi to Dj, then the cost is cijxij.
Therefore, the total shipping cost is

z =
m∑
i=1

n∑
j=1

cijxij. (8.1)

Note that z is a linear. From (8.1), the matrix (cij)m×n is called
the “unit cost matrix”. The goods are transferred from the source
i to the demand center j. We wish to find xij ≥ 0 which satisfy
the m+ n constraints.

Then, we have

m∑
i=1

ai = a, (8.2)

n∑
j=1

bj = b, (8.3)

where a and b are total supply and demand. The problem of trans-
portation is to find xij so that the cost of transportation z is

213
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minimum. If the amount of goods available at the ith source is
transferred to jth destination, then

n∑
j=1

xij = ai, (8.4)

m∑
i=1

xij = bj. (8.5)

Using (8.1) and (8.4)–(8.5), the transportation problem can be
formulated as a linear programming problem

minimize z =
m∑
i=1

n∑
j=1

cijxij

subject to
n∑
j=1

xij = ai, i = 1, 2, . . . ,m,

m∑
i=1

xij = bj, j = 1, 2, . . . , n,

xij ≥ 0 ∀i, j.

(8.6)

Equivalently,

minimize c11x11 + c12x12 + · · ·+ cmnxmn
subject to x11 + x12 + · · ·+ x1n = a1,

x21 + x22 + · · ·+ x2n = a2,
x31 + x32 + · · ·+ x3n = a3,

...
xm1 + xm2 + · · ·+ xmn = am,
x11 + x21 + · · ·+ xm1 = b1,
x12 + x22 + · · ·+ xm2 = b2,
x13 + x23 + · · ·+ xm3 = b3,

...
x1n + x2n + · · ·+ xmn = bn,

xij ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

That is,
minimize cTx

subject to Ax = b,
x ≥ 0,
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where

cT =
[
c11 c12 . . . cmn

]
,

xT =
[
x11 x12 . . . x1n x21 . . . x2n . . . xmn

]
,

bT =
[
a1 a2 . . . am b1 b2 . . . bn

]
,

A =
[
a11 a12 . . . amn

]
,

aT11 =
[
1 0 . . . 0 1 0 . . . 0

]
,

aTmn =
[
0 . . . 1 0 . . . 1

]
.

8.2 Balanced Transportation Problem

If the total quantity required at destinations is precisely the
same as the amount available at the origins, then the problem is
said to be a balanced transportation problem. Therefore, using
(8.2) and (8.3) to get

m∑
i=1

ai =
n∑
j=1

bj. (8.7)

The transportation problem is a special type of linear program-
ming problem. Thus, the definition of basic feasible solution of the
transportation problem is the same as the definition of the linear
programming problem.

Frrom (8.6), it follows that xij are known as decision variables.
They are mn in total. But, the number of basic variables is much
less than mn in a transportation problem.

Theorem 8.1. In a balanced transportation problem, there are at
most m+ n− 1 basic variables.
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Proof. Consider a balanced transportation problem

minimize z =
m∑
i=1

n∑
j=1

cijxij

subject to
n∑
j=1

xij = ai, i = 1, 2, . . . ,m,

m∑
i=1

xij = bj, j = 1, 2, . . . , n.

xij ≥ 0 ∀ i, j.

(8.8)

However,
m∑
i=1

ai =
n∑
j=1

bj. (8.9)

Note that the transportation problem has m+n linear constraints
with mn variables. In order to show that there are m+n−1 basic
variables, we must show that out of m+n linear constraints, only
m+ n− 1 are linear independent. For that, it is sufficient to show
that any one of m+n linear constraints can be written as a linear
combination of the other linear constraints.

Summing the m constraints of (8.4) to get
m∑
i=1

n∑
j=1

xij =
m∑
i=1

ai =
n∑
j=1

bj. (8.10)

The transportation problem is balanced.
Summing the first n− 1 of (8.5) to get

n−1∑
j=1

m∑
i=1

xij =
n−1∑
j=1

bj. (8.11)

Subtracting (8.11) from (8.10) to obtain

m∑
i=1

n∑
j=1

xij −
n−1∑
j=1

m∑
i=1

xij =
m∑
i=1

ai −
n−1∑
j=1

bj

=
n∑
j=1

bj −
n−1∑
j=1

bj

= bn.
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That is,
m∑
i=1

n∑
j=1

xij −
n−1∑
j=1

m∑
i=1

xij = bn

m∑
i=1

[ n∑
j=1

xij −
n−1∑
j=1

xij

]
= bn

m∑
i=1

xin = bn.

It is the 2nd linear equation of (8.8).

Note: If a feasible solution involves exactly m + n − 1 indepen-
dent positive allocations, then it is a nondegenerate basic
feasible solution, otherwise it is said to be a degenerate
basic feasible solution.

Theorem 8.2. There exists a feasible solution to the transporta-
tion problem if and only if

m∑
i=1

ai =
n∑
j=1

bj.

Proof. Recall the transportation problem (8.6)

minimize z =
m∑
i=1

n∑
j=1

cijxij

subject to
n∑
j=1

xij = ai, i = 1, 2, . . . ,m,

m∑
i=1

xij = bj, j = 1, 2, . . . , n,

xij ≥ 0 ∀ i, j.
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Suppose that a feasible solution to the above transportation prob-
lem exists, then we get

m∑
i=1

ai =
m∑
i=1

n∑
j=1

xij

=
n∑
j=1

( m∑
i=1

xij

)
=

n∑
j=1

bj.

That is,

m∑
i=1

ai =
n∑
j=1

bj.

Conversely, assume that

m∑
i=1

ai =
n∑
j=1

bj = λ .

We know that ai ≥ 0, where i = 1, 2, . . . ,m, that is, available
goods at ‘m’ source centers and bj ≥ 0, where j = 1, 2, . . . , n, that
is, demand at ‘n’ destination centers.
Note that all ai and bj cannot be zero. Therefore, λ > 0. Let

aibj
λ

= yij.

Since ai ≥ 0, bj ≥ 0 and λ > 0, we have yij ≥ 0.
Indeed,

n∑
j=1

yij =
n∑
j=1

aibj
λ

=
ai
λ

n∑
j=1

bj

=
ai
λ
λ.
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That is,

n∑
j=1

yij = ai.

Similarly, we can also have

m∑
i=1

yij =
m∑
i=1

aibj
λ

=
bj
λ

m∑
i=1

ai

=
bj
λ
λ.

That is,

m∑
i=1

yij = bj.

Thus, yij, where i = 1, 2, . . . ,m; j = 1, 2, . . . , n is a feasible solu-
tion to the transportation problem.

Remarks : An unbalanced transportation problem can be
made a balanced transportation problem. If

m∑
i=1

ai >
n∑
j=1

bj, (8.12)

then we can create an additional demand center, called a fictitious

or dummy demand center, having an additional demand of
m∑
i=1

ai−
n∑
j=1

bj and the transportation cost of this demand from source units

is zero. This reduces an unbalanced transportation problem to a
balanced transportation problem.

If

m∑
i=1

ai <
n∑
j=1

bj, (8.13)
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then we consider a fictitious source center with goods
n∑
j=1

bj−
m∑
i=1

ai

at the fictitious origin and the transportation of
n∑
j=1

bj−
m∑
i=1

ai from

fictitious origin will be taken as a short supply.

We now study the following three methods to find the initial basic
feasible solution to a transportation problem:

1. Northwest Corner Method

2. Least Cost Method

3. Vogel’s Approximation Method

8.3 Northwest Corner Method

The major advantage of this method is that it is very simple
and easy to apply. The algorithm to find a starting basic feasible
solution is given below:

Algorithm

1. Allocate min
{
ai, bj

}
to the northwest corner of the cost ma-

trix, where ai is available supply at the ith source and bj is
demand at the jth destination.

2. The row or column which is satisfied is ignored for further
consideration. Adjust the supply and demand by subtracting
the allocated amount.

3. Perform the following operations:

(a) If the supply for the first row is satisfied, then move down
in the 1st column and go to step 1.

(b) If the demand for the 1st column is satisfied then move
horizontally to the next cell in the same row and go to
step 1.
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4. If both row and column tend to zero simultaneously, then
ignore both the row and column with respect to the allocated
cell.

5. Repeat steps 3 to 4 until all the allocations are made, i.e.,
until the supply meets demand.

Example 8.1. Find the initial basic feasible solution of the fol-
lowing transportation problem.

D1 D2 D3 D4

O1
5 2 4 3

30

O2
6 4 9 5

40

O3
2 3 8 1

55

15 20 40 50

Supply : a1 = 30, a2 = 40, a3 = 55.
Demand : b1 = 15, b2 = 20, b3 = 40, b4 = 50.
Matrix cost : c11 = 5, c12 = 2, c13 = 4, c14 = 3, c21 = 6, c22 =

4, c23 = 9, c24 = 5, c31 = 2, c32 = 3, c33 = 8, c34 = 1.
We have

3∑
i=1

ai = a1 + a2 + a3 = 125,

4∑
j=1

bj = b1 + b2 + b3 + b4 = 125.

Since

3∑
i=1

ai =
4∑
j=1

bj,

therefore the problem is the balanced transportation problem. The
northwest corner is x11.
x11 = min

{
a1, b1

}
=
{

30, 15
}

= 15. Subtract 15 from a1 and b1.
Therefore, next transportation matrix is
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D1 D2 D3 D4

O1
5 2 4 3

15
15

O2
6 4 9 5

40

O3
2 3 8 1

55

0 20 40 50

Leave the 1st column because it is satisfied. x12 is the northwest
corner. Thus, x12 = min

{
a1, b2

}
= min

{
15, 20

}
= 15. Subtract

15 from a1 and b2.

D1 D2 D3 D4

O1
5 2 4 3

0
15 15

O2
6 4 9 5

40

O3
2 3 8 1

55

0 5 40 50

We get x11 = 15 and x12 = 15. Thus, for the next allocation, ignore
1st row and 1st column. That is, x22 = min

{
a2, b2

}
=
{

40, 5
}

= 5.

D1 D2 D3 D4

O1
5 2 4 3

0
15 15

O2
6 4 9 5

35
5

O3
2 3 8 1

55

0 0 40 50

For next the allocation, the 2nd column is ignored. Therefore,
northwest is x23 = min

{
a2, b3

}
=
{

35, 40
}

= 35.
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D1 D2 D3 D4

O1
5 2 4 3

0
15 15

O2
6 4 9 5

0
5 35

O3
2 3 8 1

55

0 0 5 50

We get x23 = 35. Ignore the 2nd row. The northwest cost is x33 =
min

{
a3, b3

}
= min

{
55, 5

}
= 5.

D1 D2 D3 D4

O1
5 2 4 3

0
15 15

O2
6 4 9 5

0
5 35

O3
2 3 8 1

50
5

0 0 0 50

Thus, x33 = 5. The last northwest corner is x34 = min
{
a3, b4

}
=

min
{

50, 50
}

= 50.

D1 D2 D3 D4

O1
5 2 4 3

0
15 15

O2
6 4 9 5

0
5 35

O3
2 3 8 1

0
5 50

0 0 0 0

Thus, the initial basic feasible solution of the transportation prob-
lem is given by

x11 = 15, x12 = 15, x22 = 5, x23 = 35, x33 = 5, x34 = 50.

The basic feasible solution is nondegenerate as there are m+ n−
1 = 3 + 4 − 1 = 6 allocated cells. The corresponding minimum
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transportation cost is given by

z = 5× 15 + 2× 15 + 4× 5 + 9× 35 + 8× 5 + 1× 50

= 75 + 30 + 20 + 315 + 40 + 50

= 530 units.

Example 8.2. Solve the following transportation problem using
the northwest corner method.

D1 D2 D3 D4

O1
19 30 50 10

7

O2
70 30 40 60

9

O3
40 8 70 20

18

5 8 7 14

Supply : a1 = 7, a2 = 9, a3 = 18.
Demand : b1 = 5, b2 = 8, b3 = 7, b4 = 14.
Matrix cost : c11 = 19, c12 = 30, c13 = 50, c14 = 10, c21 = 70,

c22 = 30, c23 = 40, c24 = 60, c31 = 40, c32 = 8,
c33 = 70, c34 = 20.

We have

3∑
i=1

ai = a1 + a2 + a3 = 34,

4∑
j=1

bj = b1 + b2 + b3 + b4 = 34.

Since

3∑
i=1

ai =
4∑
j=1

bj,

therefore the problem is the balanced transportation problem. The
northwest corner is x11. We get x11 =min

{
a1, b1

}
=min

{
7, 5
}

=5.
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D1 D2 D3 D4

O1
19 30 50 10

2
5

O2
70 30 40 60

9

O3
40 8 70 20

18

0 8 7 14

We move to x12. Therefore, we find min
{

2, 8
}

=2.

D1 D2 D3 D4

O1
19 30 50 10

0
5 2

O2
70 30 40 60

9

O3
40 8 70 20

18

0 6 7 14

The 1st row has supply zero. We move to cost cell x22 and find
min

{
9, 6
}

=6.

D1 D2 D3 D4

O1
19 30 50 10

0
5 2

O2
70 30 40 60

3
6

O3
40 8 70 20

18

0 0 7 14

The 2nd column has demand zero. We move to cost cell x23 =
min

{
3, 7
}

= 3.

D1 D2 D3 D4

O1
19 30 50 10

0
5 2

O2
70 30 40 60

0
6 3

O3
40 8 70 20

18

0 0 4 14
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The 2nd row has supply zero. We move to cost cell x33 and find
min

{
18, 4

}
=4.

D1 D2 D3 D4

O1
19 30 50 10

0
5 2

O2
70 30 40 60

0
6 3

O3
40 8 70 20

14
4

0 0 0 14

At this stage, we get equal supply and demand that is 14. There-
fore, we move to cost cell x34 with entry 14. We now stop.

D1 D2 D3 D4

O1
19 30 50 10

0
5 2

O2
70 30 40 60

0
6 3

O3
40 8 70 20

0
4 14

0 0 0 0

Finally, the initial basic feasible solution is

x11 = 5, x12 = 2, x22 = 6, x23 = 3, x33 = 4, x34 = 14.

The corresponding transportation cost is given by

= x11c11 + x12c12 + x22c22 + x23c23 + x33c33 + x34c34

= 5× 19 + 2× 30 + 6× 30 + 3× 40 + 4× 70 + 14× 20

= 1015 units.

We can solve the transportation problem using MATLAB func-
tion nwc.m. See the following Code 8.1 for northwest corner
method.

Code 8.1: nwc.m label

f unc t i on [ minTcost , b , c ]=nwc(A, sup , dem)
%input : augmented matrix A, supply sup ,
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%demand dem
%output : co s t matrix c , b a s i s matrix B
[m, n]= s i z e (A) ;
minTcost=0;
I =1;
J=1;
b=ze ro s (m, n ) ;
c=ze ro s (m, n ) ;
whi l e I<m+1

whi le J <n+1
i f sup ( I ,1)<dem(1 , J )

minTcost=minTcost+(A( I , J )∗ sup ( I , 1 ) ) ;
c ( I , J)=sup ( I , 1 ) ;
d i sp ( c ) ;
dem(1 , J)=dem(1 , J)−sup ( I , 1 ) ;
x=s p r i n t f ( ’ x(%d,%d)=%d ’ , I , J , sup ( I , 1 ) ) ;
d i sp ( x ) ;
d i sp ( ’dem= ’) ;
d i sp (dem ) ;
sup ( I ,1 )=0 ;
d i sp ( ’ sup ’ ) ;
d i sp ( sup ) ;
b ( I , J )=1;
I=I +1;
end
i f sup ( I ,1)>dem(1 , J )
minTcost=minTcost+(A( I , J )∗dem(1 , J ) ) ;
c ( I , J)=dem(1 , J ) ;
d i sp ( c ) ;
% disp (dem ) ;
sup ( I ,1)= sup ( I ,1)−dem(1 , J ) ;
x=s p r i n t f ( ’ x(%d,%d)=%d ’ , I , J , dem(1 , J ) ) ;
d i sp ( x ) ;
d i sp ( ’ sup ’ ) ;
d i sp ( sup ) ;
dem(1 , J )=0;
d i sp ( ’dem ’ ) ;
d i sp (dem ) ;
b( I , J )=1;
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J=J+1;
end
i f sup ( I ,1)==dem(1 , J )
minTcost=minTcost+(A( I , J )∗dem(1 , J ) ) ;
c ( I , J)=dem(1 , J ) ;
d i sp ( c ) ;
x=s p r i n t f ( ’ x(%d,%d)=%d ’ , I , J , dem(1 , J ) ) ;
d i sp ( x ) ;
sup ( I ,1 )=0 ;
dem(1 , J )=0;
d i sp ( ’ sup ’ ) ;
d i sp ( sup ) ;
d i sp ( ’dem ’ )
d i sp (dem ) ;
b( I , J )=1;
I=I+1 ;
J=J+1 ;
end
end
end
end

Example 8.3. Solve the transportation problem in MATLAB.

D1 D2 D3 D4

O1
5 2 4 3

7

O2
6 9 4 5

9

O3
2 3 8 1

18

5 8 7 14

In the Command Window,

>> A=
[
5 2 4 3; 6 9 4 5; 2 3 8 1

]
>> sup=

[
7; 9; 18

]
>> dem=

[
5 8 7 14

]
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>>[minTcost]=nwc(A, sup, dem)

Output:

>>
x(1 ,1)=5
x(1 ,2)=2
x(2 ,2)=6
x(2 ,3)=3
x(3 ,3)=4
x(3 ,4)=14

minTcost=
141

Example 8.4. The cost matrix of a transportation problem is
given by

1 2 3 4

4 3 2 1

0 2 2 1

The following are the values of variables in a feasible solution x11 =
3, x12 = 6, x23 = 2, x24 = 6, x31 = 4, x33 = 6. Then, which of the
following is TRUE?

(a) The solution is degenerate and basic.

(b) The solution is nondegenerate and basic.

(c) The solution is degenerate and nonbasic.

(d) The solution is nondegenerate and nonbasic.

We have m+ n− 1 = 3 + 4− 1 = 6. In a balanced transportation
problem, there are atmost m + n − 1 basic variables. None of xij
is zero, therefore the solution is nondegenerate and basic. Thus,
option (b) is true.
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8.4 Least Cost Method

This method usually provides a better starting basic feasible
solution than the northwest corner method since it takes into ac-
count the cost variables in the problem.

Algorithm

1. Allocate min{ai, bj} to the cell having lowest cost in the trans-
portation matrix. If there is a tie, then choose arbitrarily.

2. Ignore the row or column which is satisfied. If a row and
column are both satisfied, then ignore only one of them.

3. Adjust ai and bj for those rows and columns which are not
ignored.

4. Repeat steps 1–3 until all units have been allocated.

Example 8.5. Determine an initial basic feasible solution of
the following balanced transportation problem by the least cost
method.

D1 D2 D3 D4

O1
6 4 1 5

14

O2
8 9 2 7

16

O3
4 3 6 2

5

6 10 15 4

Supply : a1 = 14, a2 = 16, a3 = 5.
Demand : b1 = 6, b2 = 10, b3 = 15, b4 = 4.

Note that the least cost is 1 at (1, 3) cell in above transportation
matrix. Therefore, we allocate min

{
14, 15

}
= 14 at (1,3) cell.
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D1 D2 D3 D4

O1
6 4 1 5

0
14

O2
8 9 2 7

16

O3
4 3 6 2

5

6 10 1 4

Ignore the 1st row. The least costs are at (2, 3) and (3, 4) cell. We
choose any one. Allocate min

{
16, 1

}
= 1 at (2, 3) cell in the above

transportation matrix.

D1 D2 D3 D4

O1
6 4 1 5

0
14

O2
8 9 2 7

15
1

O3
4 3 6 2

5

6 10 0 4

Ignore the 3rd column. The least cost is 2 at (3, 4) cell in trans-
portation matrix. Therefore, we allocate min

{
5, 4
}

= 4 at (3, 4)
cell.

D1 D2 D3 D4

O1
6 4 1 5

0
14

O2
8 9 2 7

15
1

O3
4 3 6 2

1
4

6 10 0 0

The least cost is 3 at (3, 2) cell. Allocate min
{

1, 10
}

= 1 at (3, 2)

cell. We ignore the 3rd row.
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D1 D2 D3 D4

O1
6 4 1 5

0
14

O2
8 9 2 7

15
1

O3
4 3 6 2

0
1 4

6 9 0 0

The least cost is 4 at (3, 1) cell, but the 3rd row is satisfied and
ignored. Therefore, we look for the next least cost which is 6 at
cell (3,3), but its row and column are satisfied and ignored. Next,
the least cost is 7 at (2, 4) cell which is also ignored. Finally, the
least cost is 8 at (2, 1) cell. We allocate min

{
15, 6

}
= 6 at (2, 1)

cell and the 1st column is ignored.

D1 D2 D3 D4

O1
6 4 1 5

0
14

O2
8 9 2 7

9
6 1

O3
4 3 6 2

0
1 4

0 9 0 0

This time, the least cost is 9 at (2, 2) cell. Therefore, we allocate
min

{
9, 9
}

= 9 at (2, 2) cell.

D1 D2 D3 D4

O1
6 4 1 5

0
14

O2
8 9 2 7

0
6 9 1

O3
4 3 6 2

0
1 4

0 0 0 0

All supplies and demands are satisfied. Therefore, the least cost
method is over. The initial basic feasible solution is

x13 = 14, x21 = 6, x22 = 9, x23 = 1, x32 = 1, x34 = 4.
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The transportation cost is given by

= 1× 14 + 8× 6 + 9× 9 + 2× 1 + 3× 1 + 2× 4 = 156 units.

Example 8.6. Solve the following transportation problem by the
least cost method.

D1 D2 D3 D4

O1
5 4 3 2

5

O2
10 8 4 7

5

O3
9 9 8 4

5

1 6 2 6

Supply : a1 = 5, a2 = 5, a3 = 5.
Demand : b1 = 1, b2 = 6, b3 = 2, b4 = 6.

We identify the least cost cell as (1,4) cell with cost 2. We have
a1 = 5 and b4 = 6. We allocate min

{
5, 6
}

= 5 and new a1 = 0 and
b4 = 6− 5 = 1.

D1 D2 D3 D4

O1
5 4 3 2

0
5

O2
10 8 4 7

5

O3
9 9 8 4

5

1 6 2 1

Ignore the 1st row. The least cost is 4 in the two cell: (2,3) and
(3,4). We choose (3,4) cell and allocate min

{
5, 1
}

= 1. We have
a3 = 5− 1 = 4 and b4 = 0.

D1 D2 D3 D4

O1
5 4 3 2

0
5

O2
10 8 4 7

5

O3
9 9 8 4

4
1

1 6 2 0
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Ignore the 4th column. The least cost cell in the new submatrix
is (2,3) with cost 4. Thus, we allocate min

{
5, 2
}

= 2 and new
a2 = 5− 2 = 3 and b3 = 0.

D1 D2 D3 D4

O1
5 4 3 2

0
5

O2
10 8 4 7

3
2

O3
9 9 8 4

4
1

1 6 0 0

Ignore the 3rd column. The least cost cell is (2,2) with cost 8 in
the new submatrix. We allocate min

{
3, 6
}

= 3 and new a2 = 0
and b2 = 6− 3 = 3.

D1 D2 D3 D4

O1
5 4 3 2

0
5

O2
10 8 4 7

0
3 2

O3
9 9 8 4

4
1

1 3 0 0

Ignore the 2nd row. The least cost cells are (3,1) and (3,2). We
choose (3,2) cell arbitrarily and allocate min

{
4, 3
}

= 3. We have
new a3 = 4− 3 = 1 and b2 = 0.

D1 D2 D3 D4

O1
5 4 3 2

0
5

O2
10 8 4 7

0
3 2

O3
9 9 8 4

1
3 1

1 0 0 0

Ignore the 2nd column. We have only one cell left, that is (3,1)
cell. Therefore we allocate min

{
1, 1
}

= 1. We have new a3 = 0
and b1 = 0.
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D1 D2 D3 D4 0

O1
5 4 3 2

0
5

O2
10 8 4 7

0
3 2

O3
9 9 8 4

0
1 3 1

0 0 0 0 0

All supplies and demands are satisfied. Thus, least cost method is
over and the initial basic feasible solution is

x14 = 5, x22 = 3, x23 = 2, x31 = 1, x32 = 3, x34 = 1.

The minimum transportation cost is

= 5× 2 + 3× 8 + 2× 4 + 1× 9 + 3× 9 + 1× 4

= 82 units.

We have written MATLAB function lcm.m for the least cost
method as given in the following Code 8.2.

Code 8.2: lcm.m

f unc t i on [ minTcost , b , c ]= l e a s t c o s t (A, sup , dem)
%input : Transportat ion co s t A, supply sup ,
% demand dem

%output : minimum t r a n s p o r t a t i o n co s t
%minTcost , ba s i c matrix b , co s t matrix c

[m, n]= s i z e (A) ;
sum=0;
r f=ze ro s ;
c f=ze ro s ;
b=ze ro s (m, n ) ;
c=ze ro s (m, n ) ;
f o r I =1:m

r f ( I , 1 )=0 ;
f o r J=1:n

c f (1 , J )=0;
end

end
f=m;
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d=n ;
whi l e f>0 && d>0

min=I n f ;
f o r I =1:m

i f r f ( I ,1)˜=1
f o r J=1:n

i f c f (1 , J)˜=1
i f min>A( I , J )

min=A( I , J ) ;
p=I ;
q=J ;

end
end

end
end

end
i f sup (p,1)<dem(1 , q )

b(p , q)=1;
c (p , q)=sup (p , 1 ) ;
d i sp ( c ) ;
sum=sum+A(p , q )∗ sup (p , 1 ) ;

x=s p r i n t f ( ’ x(%d,%d)=%d ’ , p , q , sup (p , 1 ) ) ;
d i sp ( x ) ;
dem(1 , q)=dem(1 , q)−sup (p , 1 ) ;
sup (p ,1 )=0 ;
d i sp ( ’ sup ’ ) ;
d i sp ( sup ) ;
d i sp ( ’dem ’ ) ;
d i sp (dem ) ;
r f (p ,1 )=1 ;
f=f −1;

e l s e
i f sup (p,1)>dem(1 , q )

b(p , q)=1;
c (p , q)=dem(1 , q ) ;
d i sp ( c ) ;
sum=sum+A(p , q )∗dem(1 , q ) ;

x=s p r i n t f ( ’ x(%d,%d)=%d ’ , p , q , dem(1 , q ) ) ;
d i sp ( x ) ;
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sup (p ,1)= sup (p,1)−dem(1 , q ) ;
dem(1 , q)=0;
d i sp ( ’ sup ’ ) ;
d i sp ( sup ) ;
d i sp ( ’dem ’ ) ;
d i sp (dem ) ;
c f (1 , q )=1;
d=d−1;

e l s e
i f sup (p,1)==dem(1 , q )

b(p , q)=1;
c (p , q)=sup (p , 1 ) ;
d i sp ( c ) ;
sum=sum+A(p , q )∗ sup (p , 1 ) ;

x=s p r i n t f ( ’ x(%d,%d)=%d ’ , p , q , sup (p , 1 ) ) ;
sup (p ,1 )=0 ;
dem(1 , q)=0;
d i sp ( ’ sup ’ ) ;
d i sp ( sup ) ;
d i sp ( ’dem ’ ) ;
d i sp (dem ) ;
d i sp ( x ) ;
r f (p ,1 )=1 ;
c f (1 , q )=1;
f=f −1;
d=d−1;

end
end

end
end
minTcost=sum ;
re turn

Example 8.7. Solve the following transportation problem by the
least cost method in MATLAB.
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D1 D2 D3 D4

O1
3 1 5 10

2

O2
7 4 5 3

6

O3
8 8 2 2

7

3 3 4 5

In the Command Window,

>> A=
[
3 1 5 10; 7 4 5 3; 8 8 2 2

]
>> sup=

[
2; 6; 7

]
>> dem=

[
3 3 4 5

]
>> [minTcost]=leastcostnew(A,sup,dem)

Output:

x(1 ,2)=2
x(3 ,3)=4
x(3 ,4)=3
x(2 ,4)=2
x(2 ,2)=1
x(2 ,1)=3

minTcost=

47

Example 8.8. Solve by the least cost method in MATLAB.
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D1 D2 D3 D4

O1
14 9 18 6

11

O2
20 11 7 16

13

O3
25 10 11 34

19

6 10 12 15

In the Command Window,

>> A=
[
14 9 18 6; 20 11 7 16; 25 10 11 34

]
>> sup=

[
11; 13; 19

]
>> dem=

[
6 10 12 15

]
>> [minTcost]=leastcost(A,sup,dem)

Output:

x(1 ,4)=11
x(2 ,3)=12
x(3 ,2)=10
x(2 ,4)=1
x(3 ,1)=6
x(3 ,4)=3

minTcost =
518

8.5 Vogel’s Approximation Method

This method is preferred over the other two methods discussed
above because it produces best possible minimize cost and close to
an optimal solution. Therefore, if we use the starting basic feasible
solution obtained by Vogel’s approximation method and proceed
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to solve for the optimum solution, then the time required to arrive
at the optimum solution is greatly reduced. W. R. Vogel devel-
oped this method.

Algorithm

1. Take the 1st row and choose its smallest cost and subtract
this from the cost which is the next highest cost, and write
the result in front of the row on the right. This is the penalty
for the first row. In this way, compute the penalty of each
row. Similarly, calculate column penalties and write those in
the bottom of the cost matrix below corresponding columns.

2. Select the highest penalty and observe the row or column for
which this corresponds. Then, make allocation min

{
ai, bj

}
to

the cell having the lowest cost in the selected row or column.

3. Ignore the row or cell which is satisfied. Calculate fresh penal-
ties for the remaining sub-matrix as in step 1 and for alloca-
tion, follow the procedure of step 2. Continue the process
untill all rows and columns are satisfied.

Rules for tie:
In case of a tie for the largest penalty, choose the lowest cost cell in
all tied rows and columns for allocation. Again, if there is a tie for
the lowest cost cell; select one for allocation which gives minimum
cijxij.

Example 8.9. Consider the transportation problem:

D1 D2 D3 D4

O1
19 30 50 10

7

O2
70 30 40 60

9

O3
40 8 70 20

18

5 8 7 14

Obtain a starting basic feasible solution for transportation prob-
lem using Vogel’s approximation method.
As the problem is balanced, we find a starting basic feasible solu-
tion.
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D1 D2 D3 D4 row penalty

O1
19 30 50 10

7 9

O2
70 30 40 60

9 10

O3
40 8 70 20

18 12

5 8 7 14
column penalty 21 22 10 10

The highest penalty is 22 which is the 2nd column. Observe that
the lowest cost cell in the 2nd column is 8 at (3,2) cell. We allocate
min

{
18, 8

}
= 8 at (3,2) cell and ignore the 2nd column.

D1 D2 D3 D4 row penalty

O1
19 30 50 10

7 9

O2
70 30 40 60

9 20

O3
40 8 70 20

10 20
8

5 0 7 14
column penalty 21 × 10 10

The highest penalty is 21 which is the 1st column. Observe that
the lowest cost is 19. We allocate min

{
7, 5
}

= 5 in (1, 1) cell.

D1 D2 D3 D4 row penalty

O1
19 30 50 10

2 40
5

O2
70 30 40 60

9 20

O3
40 8 70 20

10 50
8

0 0 7 14
column penalty × × 10 10

We now compute penalties of each row and column. Note that the
highest penalty is 50 in the 3rd row and the least cost is 20 in (3, 4)
cell. Therefore, we allocate min

{
10, 14

}
=10 at (3, 4) cell. In this

way, the third row is satisfied.
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D1 D2 D3 D4 row penalty

O1
19 30 50 10

2 40
5

O2
70 30 40 60

9 20

O3
40 8 70 20

0 ×
8 10

0 0 7 4
column penalty × × 10 50

We again calculate penalties of remaining rows and columns. This
time, the highest penalty is 50 in the 4th column and the least cost
is 10 in that column. Therefore, we find min

{
2, 4
}

=2 at (1, 4) cell.
Thus, the 1st row is satisfied.

D1 D2 D3 D4 row penalty

O1
19 30 50 10

0 ×
5 2

O2
70 30 40 60

9 20

O3
40 8 70 20

0 ×
8 10

0 0 7 2
column penalty × × 40 60

The highest penalty is 60 in the 4th column and the least cost is
60. Thus, we find min

{
9, 2
}

=2 at (2, 4) cell and the 4th column is
satisfied.

D1 D2 D3 D4 row penalty

O1
19 30 50 10

0 ×
5 2

O2
70 30 40 60

7 40
2

O3
40 8 70 20

0 ×
8 10

0 0 7 0
column penalty × × 40 ×

The remaining highest penalty is 40 and the least cost cell is (2, 3).
Thus, we allocate min

{
7, 7
}

=7 at (2,3) cell. The 3rd column and

the 2nd row are satisfied.
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D1 D2 D3 D4 row penalty

O1
19 30 50 10

0 ×
5 2

O2
70 30 40 60

0 ×
7 2

O3
40 8 70 20

0 ×
8 10

0 0 0 0
column penalty × × × ×

The initial basic feasible solution is:

x11 = 5, x14 = 2, x23 = 7, x24 = 2, x32 = 8, x34 = 10.

It is nondegenerate and the total transportation cost is computed
as follows:

= 5× 19 + 2× 10 + 7× 40 + 2× 60 + 8× 8 + 10× 20

= 779 units.

Example 8.10. Calculate the initial basic feasible solution for
this transportation problem by Vogel’s Approximation Method.

D1 D2 D3 D4

O1
2 2 1 5

300

O2
8 2 6 5

300

O3
6 1 4 2

200

200 200 300 100

We firstly calculate row penalty and column penalty.

D1 D2 D3 D4 row penalty

O1
2 2 1 5

300 1

O2
8 2 6 5

300 3

O3
6 1 4 2

200 1

200 200 300 100
column penalty 4 1 3 3

The highest penalty is 4. We allocate min
{

300, 200
}

= 200 at (1,1)
cell because cell (1,1) contains the least cost for the 1st column.
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D1 D2 D3 D4 row penalty

O1
2 2 1 5

100 1
200

O2
8 2 6 5

300 3

O3
6 1 4 2

200 1

0 200 300 100
column penalty × 1 3 3

The 2nd row, and 3rd column have equal and highest penalties.
Since the least cost is 1 at (1,3) cell in the 3rd column, we allocate
min

{
100, 300

}
= 100 at (1,3) cell.

D1 D2 D3 D4 row penalty

O1
2 2 1 5

0 ×
200 100

O2
8 2 6 5

300 3

O3
6 1 4 2

200 1

0 200 200 100
column penalty × 1 3 3

The highest penalty is 3 and the least cost is 2. Thus, we allocate
min

{
200, 100

}
= 100 at (3,4) cell.

D1 D2 D3 D4 row penalty

O1
2 2 1 5

0 ×
200 100

O2
8 2 6 5

300 4

O3
6 1 4 2

100 3
100

0 200 200 0
column penalty × 1 2 ×

The highest penalty is 4 which is in the 2nd row. Therefore, we
allocate min

{
300, 200

}
= 200 at (2,2) cell. This cell contains the

least cost.
D1 D2 D3 D4 row penalty

O1
2 2 1 5

0 ×
200 100

O2
8 2 6 5

100 6
200

O3
6 1 4 2

100 4
100

0 0 200 0
column penalty × × 2 ×
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The highest penalty is 6 in the 2nd row and least cost cell is (2,3).
Therefore, we allocate min

{
100, 200

}
= 100.

D1 D2 D3 D4 row penalty

O1
2 2 1 5

0 ×
200 100

O2
8 2 6 5

0 ×
200 100

O3
6 1 4 2

100 4
100

0 0 100 0
column penalty × × 4 ×

The highest penalty is 4 and the least cost cell is 4. Thus, we
allocate min

{
100, 100

}
= 100 at (3, 3) cell.

D1 D2 D3 D4 row penalty

O1
2 2 1 5

0 ×
200 100

O2
8 2 6 5

0 ×
200 100

O3
6 1 4 2

0 ×
100 100

0 0 0 0
column penalty × × × ×

Thus, the initial basic feasible solution is

x11 = 200, x13 = 100, x22 = 200, x23 = 100, x33 = 100, x34 = 100.

The total transportation cost is computed as follows:

= 200× 2 + 100× 1 + 200× 2 + 100× 6 + 100× 4 + 100× 2

= 2100 units.

We have written MATLAB function vogel.m for Vogel’s Approx-
imation Method in the following Code 8.3.

Code 8.3: vogel.m

f unc t i on [ minTcost , b , c ] = voge l (A, sup , dem)
%input : t r a n s p o r t a t i o n co s t A, vec to r supply
% sup , vec to r demand dem
%output : minimum t r a n s p o r t a t i o n co s t minTcost ,
% bas i c matrix b , co s t matrix c ,
b= ze ro s ( s i z e (A) ) ;
ctemp = A;
[m, n]= s i z e (A) ;
c=ze ro s (m, n ) ;
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whi le l ength ( f i n d (dem==0)) < l ength (dem) | |
l ength ( f i n d ( sup==0)) < l ength ( sup )

prow = s o r t ( ctemp , 1 ) ;
prow = prow ( 2 , : ) − prow ( 1 , : ) ; % row pena l ty
pco l = s o r t ( ctemp , 2 ) ;
pco l = pco l ( : , 2 ) − pco l ( : , 1 ) ; %column penal ty
[ rmax , r ind ] = max( prow ) ;
[ cmax , c ind ] = max( pco l ) ;
d i sp ( ’ column penalty ’ )
d i sp ( prow ) ;
d i sp ( ’ row penalty ’ ) ;
d i sp ( pco l ) ;
%value f o r a l l o c a t e d c e l l
i f rmax>cmax

[ ˜ , mind ] = min ( ctemp ( : , r ind ) ) ;
[ amt , dem , sup , ctemp ] =

chkdemandsupply (dem , sup , r ind , mind , ctemp ) ;
x=s p r i n t f ( ’ x(%d,%d)=%d ’ , mind , r ind , amt ) ;
d i sp ( x ) ;
b (mind , r ind )=1;
c (mind , r ind )=amt ;
d i sp ( c ) ;

end
i f cmax>= rmax

[ ˜ , mind ] = min ( ctemp ( cind , : ) ) ;
[ amt , dem , sup , ctemp ] = chkdemandsupply (dem , sup ,

mind , cind , ctemp ) ;
x=s p r i n t f ( ’ x(%d,%d)=%d ’ , cind , mind , amt ) ;
d i sp ( x ) ;
b ( cind , mind ) =1;
c ( cind , mind)=amt ;
d i sp ( c ) ;
minTcost = sum(sum( c .∗A) ) ;

end
end
func t i on [ y , dem , sup , ctemp ] =

chkdemandsupply (dem , sup , ded , sud , ctem )
tempd = dem ;
temps = sup ;
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i f tempd ( ded ) > temps ( sud )
temps ( sud ) = 0 ;
tempd ( ded ) = dem( ded ) − sup ( sud ) ;
d i sp ( ’ sup ’ ) ;
d i sp ( temps ) ;
d i sp ( ’dem ’ ) ;
d i sp ( tempd ) ;
y = sup ( sud ) ;

ctem ( sud , : ) = i n f ;
end
i f tempd ( ded ) < temps ( sud )

tempd ( ded ) = 0 ;
temps ( sud ) = sup ( sud ) − dem( ded ) ;
d i sp ( ’ sup ’ ) ;
d i sp ( temps ) ;
d i sp ( ’dem ’ ) ;
d i sp ( tempd ) ;
y = dem( ded ) ;
ctem ( : , ded ) = i n f ;

end
i f tempd ( ded ) == temps ( sud )

tempd ( ded ) = 0 ;
temps ( sud ) = 0 ;
d i sp ( ’ sup ’ ) ;
d i sp ( temps ) ;
d i sp ( ’dem ’ ) ;
d i sp ( tempd ) ;
y = dem( ded ) ;

ctem ( : , ded ) = i n f ;
ctem ( sud , : ) = i n f ;

end
dem = tempd ;
sup = temps ;
ctemp = ctem ;

Example 8.11. Solve the following transportation problem by
Vogel’s Approximation Method in MATLAB.
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D1 D2 D3 D4

O1
6 2 4 3

500

O2
3 8 5 7

200

O3
5 7 8 2

400

200 350 120 430

In the Command Window,

>> A=[6 2 4 3 ; 3 8 5 7 ; 5 7 8 2 ]

>> sup =[500; 200 ; 400 ]

>> dem=[200 350 120 430 ]

>> [ minTcost ] = voge l (A, sup , dem)

0 350 120 30
200 0 0 0
0 0 0 400

minTcost =

2670

Example 8.12. Solve the transportation problem by Vogel’s Ap-
proximation Method in MATLAB.

D1 D2 D3 D4

O1
30 20 50 20

75

O2
20 10 30 40

120

O3
40 20 40 30

105

65 60 80 95

In the Command Window,
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>> A=
[
30 20 50 20; 20 10 30 40; 40 20 40 30

]
>> sup=

[
75; 120; 105

]
>> dem=

[
65 60 80 95

]
>> [minTcost,b,c] = vogel(A,sup,dem)

Output:

x(2 ,2)=60
x(1 ,4)=75
x(2 ,1)=60
x(3 ,1)=5
x(3 ,3)=80
x(3 ,4)=20

minTcost =

7300

Note: All the output of MATLAB functions nwc.m, lcm.m and
vogel.m have not been shown in the solution of the above
problems. It is left for the reader to use MATLAB to see
all the output step-by-step.

8.6 Optimal Solution from BFS

We study a computational procedure to find an optimal solu-
tion from the starting basic feasible solution (BFS).

Computational Procedure

1. Introduce the variables ui and vj corresponding to ith row and
jth column, respectively. Write ui in front of each ith row and
vj at the bottom of each jth column. Take any ui or vj to be
zero for maximum number of allocations.
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2. For basic cells (which contain allocations), calculate ui+vj =
cij. This relation assigns value to all ui and vj. Note that this
relation is equivalent to zj − cj = 0 for basic variables in the
simplex algorithm.

3. For nonbasic cells (which have no allocations), calculate
ui + vj − cij and write them in the southwest corner of the
concerned cells of the tableau.

4. If all the southwest entries are less than or equal to zero, then
the basic feasible solution is optimal. If at least one of the
southwest entries is positive, then this basic feasible solution
is not optimal. In this situation, look for the most positive
southwest entry in the cost matrix. This decides the entering
variable.

5. Assign θ (quantity in the cell having most positive southwest
entry) and make a loop.

6. Start from θ cell and move horizontally and vertically to the
nearest basic cell with restriction that the turn (corner) of
the loop must not lie in any nonbasic cell (except θ cell). In
this way, return to θ cell to complete the loop.

7. Add or subtract θ in concerned entries of the loop maintaining
feasibility and value of θ is fixed as the minimum of the entries
from which θ has been subtracted.

8. Inserting the fixed value of θ, we get the next basic feasible
solution which improves the initial transportation cost.

9. While inserting the value θ if a cell assumes ‘0’ value, we
will not mention ’0’ value as this is the leaving variable, i.e.,
this cell has become nonbasic. Again, use the latest basic
feasible solution and repeat steps 1–8 until every southwest
entry turns out to be less than or equal to zero. This is an
optimal solution.

Example 8.13. Find an optimal solution to the transportation
problem.
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D1 D2 D3 D4

O1
1 2 3 4

30

O2
7 6 2 5

50

O3
4 3 2 7

35

15 30 25 45

We have applied the least cost method to find a starting basic
feasible solution. It is left for the reader to solve this transportation
problem step-by-step.

D1 D2 D3 D4

O1
1 2 3 4

30
15 15

O2
7 6 2 5

50
25 25

O3
4 3 2 7

35
15 20

15 30 25 45

Thus, the starting basic feasible solution is x11 = 15, x12 =
15, x23 = 25, x24 = 25, x32 = 15, x34 = 20. It is a nondegener-
ate basic feasible solution. Note that we are concerned only to find
the optimal solution of the transportation problem.

1. Since all the rows have the same number of allocations, there-
fore any of the u1, u2, u3 may be assigned zero. Suppose that
u1 = 0

2. We allocate the values of the other dual variables using the
relation: ui + vj = cij for basic cells.
The possible equations for the basic cells are:

u1 + v1 = 1,

u1 + v2 = 2,

u2 + v3 = 2,

u2 + v4 = 5,

u3 + v2 = 3,

u3 + v4 = 7.
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Solving the above equations, we get

u1 = 0, u2 = −1, u3 = 1,
v1 = 1, v2 = 2, v3 = 3, v4 = 6.

Thus, u1, u2, u3, v1, v2, v3, v4 are calculated.

3. We calculate ui + vj − cij for each nonbasic cell and write
those in the southwest corner of the cell. Note that x13, x14,
x21, x22, x31, x33 are nonbasic variables. Therefore, we calcu-
late all these values for nonbasic cells and write those in the
southwest corner:

x13 = u1 + v3 − c13 = 0 + 3− 3 = 0,

x14 = u1 + v4 − c14 = 0 + 6− 4 = 2,

x21 = u2 + v1 − c21 = −1 + 1− 7 = −7

x22 = u2 + v2 − c22 = 1 + 2− 6 = −5,

x31 = u3 + v1 − c31 = 1 + 1− 4 = −2,

x33 = u3 + v3 − c33 = 1 + 3− 2 = 2.

1 2 3 4
15 15

0 2
7 6 2 5

25 25
-7 -5

4 3 2 7
20

-2 15 2

Note that all elements in the southwest corner are not less
than or equal to zero. Therefore, this basic feasible solution
is not optimal.

4. We look at the most positive southwest entry. This is available
at (1, 4) and (3, 3) cells of the cost matrix. Take any one cell
for the entering variable. Suppose that we take the nonbasic
cell (3, 3), i.e., nonbasic variable x33 to enter the basis.

5. We make a loop as per rule. Assign θ value to (3,3) cell. Sub-
tract and add θ at corners of the loop to maintain feasibility.
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Decide the value of θ by taking the minimum of the entries
from which θ have been subtracted, i.e., θ =min{25,20}=20.

1 2 3 4

15 15 0 2
7 6 2 5

25-θ 25+θ
-7 -5

4 3 2 7

θ 20-θ
-2 15 2

6. The new tableau is

1 2 3 4
15 15

0 2
7 6 2 5

5 45
-7 -5

4 3 2 7
15 20

-2

The new basic feasible solution is x11 = 15, x12 = 5, x23 = 5,
x24 = 45, x32 = 15, x33 = 20. The first iteration is over.

7. To start the second iteration, we introduce new u1, u2, u3, v1,
v2, v3 and v4.
The possible equations for the basic cells are

u1 + v1 = 1,

u1 + v2 = 2,

u2 + v3 = 2,

u2 + v4 = 5,

u3 + v2 = 3,

u3 + v3 = 2.
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Solving the above equations, we get

u1 = 0, u2 = 1, u3 = 1,
v1 = 1, v2 = 2, v3 = 1, v4 = 4.

8. We calculate ui + vj − cij for each nonbasic cell and write
those in the southwest corner of the cell. Note that x13, x14,
x21, x22, x31, x34 are nonbasic variables. Therefore, we calcu-
late all these values for nonbasic cells and write those in the
southwest corner.

x13 = u1 + v3 − c13 = 0 + 1− 3 = −2,

x14 = u1 + v4 − c14 = 0 + 4− 4 = 0,

x21 = u2 + v1 − c21 = 1 + 1− 7 = −5,

x22 = u2 + v2 − c22 = 1 + 2− 6 = −3,

x31 = u3 + v1 − c31 = 1 + 1− 4 = −2,

x34 = u3 + v4 − c34 = 1 + 4− 7 = −2.

1 2 3 4
15 15

-2 0
7 6 2 5

5 45
-5 -3

4 3 2 7
15 20

-2 -2

All elements in the southwest corner are less than or equal to
zero. Therefore, the current basic feasible solution is optimal.

Thus, the optimal solution to the given transportation prob-
lem is

x11 = 15, x12 = 15, x23 = 5, x24 = 45, x32 = 15, x33 = 20.

The minimum cost of the transportation problem is

= 15× 1 + 15× 2 + 5× 2 + 45× 5 + 15× 3 + 20× 2

= 15 + 30 + 10 + 225 + 45 + 40

= 365 units.
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Example 8.14. Check the optimality of the solution obtained by
Vogel’s Approximation Method for the transportation problem in
Example 8.10.

The starting basic feasible solution obtained in Example 8.10 is as
follows:

D1 D2 D3 D4

O1
2 2 1 5

200 100

O2
8 2 6 5

200 100

O3
6 1 4 2

100 100

The starting transportation cost is 2100 units. The possible equa-
tions for the basic cells are

u1 + v1 = 2,

u1 + v3 = 1,

u2 + v2 = 2,

u2 + v3 = 6,

u3 + v3 = 4,

u3 + v4 = 2.

Solving the above equations, we get

u1 = 0, u2 = 5, u3 = 3,
v1 = 2, v2 = −3, v3 = 1, v4 = −1.

We calculate ui + vj − cij for each nonbasic cell and write those in
the southwest corner of the cell. Note that x12, x14, x21, x24, x31,
x32 are nonbasic variables. Therefore, we calculate all these values



256 Introduction to LINEAR PROGRAMMING with MATLAB R©

for nonbasic cells and write those in the southwest corner.

x12 = u1 + v2 − c12 = 0− 3− 2 = −5,

x14 = u1 + v4 − c14 = 0− 1− 5 = −6,

x21 = u2 + v1 − c21 = 5 + 2− 8 = −1,

x24 = u2 + v4 − c24 = 5− 1− 5 = −1,

x31 = u3 + v1 − c31 = 3 + 2− 6 = −1,

x32 = u3 + v2 − c32 = 3− 3− 1 = −1.

2 2 1 5
200 100

-5 -6
8 2 6 5

200 100
-1 -1

6 1 4 2
100 100

-1 -1

All elements in the southwest corner entries are less than or equal
to zero. Therefore, the current basic feasible solution is optimal.

MATLAB function multipliers2.m is written in the following
Code 8.4 to calculate the values of dual variables.

Code 8.4: multipliers2.m

f unc t i on [ u , v , b , c ]= m u l t i p l i e r s 2 (b ,A, c , i , j )
%input : ba s i c matrix b , t r a n s p o r t a t i o n
% matrix A, co s t matrix c , row i ,
% column j
%output : vec to r u , vec to r v
[m, n]= s i z e (A) ;
i f sum(sum(b))<m+n−1

d i sp ( ’ Degenerate ’ ) ;
e l s e

d i sp ( ’ Nondegenerate ’ ) ;
end

u=I n f ∗ones (m, 1 ) ;
v=I n f ∗ones (1 , n ) ;
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i f ( j==0)
u( i , 1 )=0 ;

e l s e
v (1 , j )=0;

end
f o r row=1:m

f o r c o l =1:n
i f b ( row , c o l )>0

i f (u ( row ,1)˜= I n f ) && ( v (1 , c o l)==I n f )
v (1 , c o l )=A( row , c o l )−u( row , 1 ) ;
e l s e

i f (u ( row,1)== I n f ) && ( v (1 , c o l )˜= I n f )
u( row ,1)=A( row , c o l )−v (1 , c o l ) ;

end
end

end
end

end
f o r row=1:m

f o r c o l =1:n
i f b ( row , c o l )>0
i f (u ( row ,1)˜= I n f ) && ( v (1 , c o l)==I n f )

v (1 , c o l )=A( row , c o l )−u( row , 1 ) ;
e l s e

i f (u ( row,1)== I n f ) && ( v (1 , c o l )˜= I n f )
u( row ,1)=A( row , c o l )−v (1 , c o l ) ;

end
end

end
end

end
f o r row=1:m

f o r c o l =1:n
i f b ( row , c o l )>0
i f (u ( row ,1)˜= I n f ) && ( v (1 , c o l)==I n f )

v (1 , c o l )=A( row , c o l )−u( row , 1 ) ;
e l s e

i f (u ( row,1)== I n f ) && ( v (1 , c o l )˜= I n f )
u( row ,1)=A( row , c o l )−v (1 , c o l ) ;
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end
end

end
end

end
f o r row=1:m

f o r c o l =1:n
i f b ( row , c o l )>0
i f (u ( row ,1)˜= I n f ) && ( v (1 , c o l)==I n f )

v (1 , c o l )=A( row , c o l )−u( row , 1 ) ;
e l s e

i f (u ( row,1)== I n f ) && ( v (1 , c o l )˜= I n f )
u( row ,1)=A( row , c o l )−v (1 , c o l ) ;

end
end

end
end

end
return

Note that the value of i is for the most number of allocations in
a particular row, and the value of j is for the most number of
allocations in a particular column in the above MATLAB function
multipliers2.m. If i is selected, then the value of j will be zero
and vice versa.
MATLAB function uvx3.m is written in the following Code 8.5 to
calculate ui + vj − cij for each nonbasic cell of the transportation
problem.

Code 8.5: uvx3.m

f unc t i on [ x]=uvx3 (b , u , v ,A)
%input : ba s i c matrix b , vec to r u and v ,
% t r a n s p o r t a t i o n matrix A
%output : nonbas ic matrix x
[m, n]= s i z e (A) ;
x=ze r o s (m, n ) ;
nr =1;
whi l e nr<m+n

f o r row=1:m
f o r c o l =1:n
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i f b ( row , c o l )˜=1
x ( row , c o l )=u( row ,1)+v (1 , c o l )−A( row , c o l ) ;

i f x ( row , c o l )<=0
nr=nr +1;

end
end

end
end

end
[m, n]= s i z e (A) ;
count =0;
f o r I =1:m

f o r J=1:n
i f x ( I , J)<=0

count=count +1;
end

end
end
i f count==(m∗n)

d i sp ( ’ op t ima l i ty reached ’ ) ;
end
re turn

MATLAB function mostpositive4.m is written in the following
Code 8.6 to choose the most positive entry of the transportation
problem.

Code 8.6: mostpositive4.m

f unc t i on [ bas ic , row , c o l ]= mostpos i t i ve4 (A, x , c )
%input : t r a n s p o r t a t i o n matrix A, nonbas ic
% matrix x , co s t matrix c
%output : element bas ic , p o s i t i o n row and
% column

[m, n]= s i z e ( x ) ;
ba s i c =0;
count =0;
opt =0;
f o r I =1:m

f o r J=1:n
i f x ( I , J)<0 | | x ( I , J)==0
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count=count +1;
i f c ( I , J)˜=0

opt=opt+A( I , J )∗ c ( I , J ) ;
end

end
i f count==(m∗n)

row=0;
c o l =0;

d i sp l ay ( ’ opt imal co s t obtained ’ ) ;
x=s p r i n t f ( ’%d ’ , opt ) ;
d i sp ( x ) ;
break ;

e l s e
i f bas ic<x ( I , J )

ba s i c=x ( I , J ) ;
row=I ;
c o l=J ;

end
end

end
end
return

MATLAB function cycle5.m is written in the following Code 8.7
to make a loop of the transportation problem.

Code 8.7: cycle5.m

f unc t i on [ y , bout ]= cyc l e 5 ( c , row , co l , b )
%input : co s t matrix c , p o s i t i o n row , co l ,
% bas i c matrix b
%output : loop matrix y , bout
format shor t
bout=b ;
y=c ;
[m, n]= s i z e ( c ) ;
loop =[row c o l ] ;
c ( row , c o l )= I n f ;
b ( row , c o l )= I n f ;
rowsearch =1;
whi l e ( loop (1 ,1)˜= row | | loop (1 ,2)˜= c o l | |
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l ength ( loop )==2)
i f rowsearch

j =1;
whi l e rowsearch
i f (b ( loop ( 1 , 1 ) , j )˜=0) && ( j˜=loop ( 1 , 2 ) )

loop =[ loop (1 , 1 ) j ; loop ] ;
rowsearch =0;

e l s e i f j==n
b( loop ( 1 , 1 ) , loop (1 ,2 ) )=0 ;
loop=loop ( 2 : l ength ( loop ) , : ) ;
rowsearch =0;
e l s e
j=j +1;
end
end
e l s e
i =1;
whi l e ˜ rowsearch
i f (b ( i , loop (1 ,2))˜=0)&&( i˜=loop ( 1 , 1 ) )

loop =[ i loop ( 1 , 2 ) ; loop ] ;
rowsearch =1;

e l s e i f i==m
b( loop ( 1 , 1 ) , loop (1 ,2 ) )=0 ;
loop=loop ( 2 : l ength ( loop ) , : ) ;
rowsearch =1;

e l s e
i=i +1;

end
end
end
end
l=length ( loop ) ;
theta=I n f ;
minindex=I n f ;
f o r i =2:2:1

i f c ( loop ( i , 1 ) , loop ( i ,2))< theta
theta=c ( loop ( i , 1 ) , loop ( i , 2 ) ) ;
minindex=i ;

end
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end
y ( row , c o l )=theta ;
f o r i =2: l−1
y ( loop ( i , 1 ) , loop ( i ,2))= y ( loop ( i , 1 ) ,

loop ( i ,2))+(−1)ˆ( i −1)∗ theta ;
end
end

MATLAB function basiccell6.m is written in the following Code
8.8 to find a basic cell from nonbasic cells.

Code 8.8: basiccell6.m

f unc t i on [ c , b , min]= b a s i c c e l l 6 ( c , y , b , row , c o l )
%input : co s t matrix c , ba s i c matrix b
%output : minimum value min

[m, n]= s i z e ( c ) ;
min=100;
f o r I =1:m

f o r J=1:n
i f y ( I , J)==−I n f

i f c ( I , J)<min
min=c ( I , J ) ;

end
end

end
end
f o r I =1:m

f o r J=1:n
i f y ( I , J)==−I n f

c ( I , J)=c ( I , J)−min ;
i f c ( I , J)==0

b( I , J )=0;
end

e l s e i f y ( I , J)==I n f
c ( I , J)=c ( I , J)+min ;
b( I , J )=1;

end
end
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end
c ( row , c o l )=min ;
b( row , c o l )=1;

end

Example 8.15. Find the optimal transportation cost for the fol-
lowing transportation problem in MATLAB.

D1 D2 D3 D4 D5

O1
3 4 6 8 9

20

O2
2 10 1 5 6

30

O3
7 11 40 20 3

15

O4
2 1 9 14 10

13

40 6 8 18 6

In the Command Window,

>> A=[3 4 6 8 9; 2 10 1 5 6; 7 11 40 20 3;
2 1 9 14 10]

>> sup=
[
20; 30; 15; 13

]
>> dem=

[
40 6 8 18 6

]
>> [minTcost,b,c] = vogel(A,sup,dem)

Output:

x(2 ,3)=8
x(3 ,5)=6
x(3 ,1)=9
x(2 ,1)=22
x(1 ,4)=18
x(4 ,2)=6
x(1 ,1)=2
x(4 ,1)=7
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minTcost=
303

b =
1 0 0 1 0
1 0 1 0 0
1 0 0 0 1
1 1 0 0 0

c =
2 0 0 18 0

22 0 8 0 0
9 0 0 0 6
7 6 0 0 0

>> [u,v,b,c]=multipliers2(b,A,c,0,1)

Output:

Nondegenerate

u =

3
2
7
2

v =

0 −1 −1 5 −4

b =

1 0 0 1 0
1 0 1 0 0
1 0 0 0 1
1 1 0 0 0
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c =

2 0 0 18 0
22 0 8 0 0

9 0 0 0 6
7 6 0 0 0

>> x=uvx3(b,u,v,A)

Output:

x =

0 −2 −4 0 −10
0 −9 0 2 −8
0 −5 −34 −8 0
0 0 −8 −7 −12

>> [basic,row,col]=mostpositive4(A,x,c)

bas i c =

2

row =

2

c o l =

4

>> [y,bout]=cycle5(c,row,col,b)

Output:

y =

I n f 0 0 −I n f 0
−I n f 0 8 I n f 0

9 0 0 0 6
7 6 0 0 0
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bout =

1 0 0 1 0
1 0 1 0 0
1 0 0 0 1
1 1 0 0 0

>> [c,b,min]=basiccell6(c,y,b,row,col)

Output:

c =

20 0 0 0 0
4 0 8 18 0
9 0 0 0 6
7 6 0 0 0

b =

1 0 0 0 0
1 0 1 1 0
1 0 0 0 1
1 1 0 0 0

min =

18

>> j=1 >> i=0

>> [u,v,b,c]=multipliers2(b,A,c,i,j)

Output:

Nondegenerate

u =

3
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2
7
2

v =

0 −1 −1 3 −4

b =

1 0 0 0 0
1 0 1 1 0
1 0 0 0 1
1 1 0 0 0

c =

20 0 0 0 0
4 0 8 18 0
9 0 0 0 6
7 6 0 0 0

>> x=uvx3(b,u,v,A)

Output:

opt ima l i ty reached

x =

0 −2 −4 −2 −10
0 −9 0 0 −8
0 −5 −34 −10 0
0 0 −8 −9 −12

>> [basic,row,col]=mostpositive4(A,x,c)

Output:

optimal co s t obta ined
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267

ba s i c =
0

row =

0

c o l =

0
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8.7 Exercises

Exercise 8.1. Solve the following transportation problems using
the northwest corner method.

(a)

D1 D2 D3 D4

O1
15 10 17 18

2

O2
16 13 12 13

6

O3
12 17 20 11

7

3 3 4 5

(b)

D1 D2 D3 D4

O1
8 10 19 17

22

O2
4 3 7 10

12

O3
8 7 6 5

7

O4
4 2 3 1

6

18 19 8 2

Exercise 8.2. Solve the following transportation problems using
the least cost method.

(a)

D1 D2 D3 D4

O1
3 5 7 6

50

O2
2 5 8 2

75

O3
3 6 9 2

25

20 20 50 60
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(b)

2 7 4
5

3 4 7
8

5 3 1
7

1 6 2
14

7 9 18

Exercise 8.3. Solve the following transportation problems using
Vogel’s Approximation Method.

(a)

D1 D2 D3 D4

O1
5 3 6 2

19

O2
4 7 9 1

37

O3
3 4 7 5

34

16 18 31 25

(b)

2 7 4
5

3 4 8
8

5 3 7
7

1 6 2
14

7 9 18

Exercise 8.4. Determine an initial basic feasible solution to the
following transportation problem using the

(a) northwest corner method;

(b) least cost method;

(c) Vogel’s Approximation Method.
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D1 D2 D3 D4

O1
10 22 10 20

8

O2
15 20 12 8

13

O3
20 12 10 15

11

5 11 8 8

Exercise 8.5. Obtain an optimal transportation cost for the fol-
lowing transportation problem.

D1 D2 D3 D4

O1
1 2 1 4

30

O2
3 3 2 1

50

O3
4 2 5 9

20

20 40 30 10

Exercise 8.6. Determine an optimal basic feasible solution and
the minimum total cost for the following transportation problem.

D1 D2 D3 D4 D5

O1
2 11 10 3 7

4

O2
1 4 7 2 1

8

O3
3 9 8 4 12

9

3 3 4 5 6

Exercise 8.7. Find an optimal solution for and the corresponding
cost of the transportation problem.
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D1 D2 D3 D4

O1
6 1 9 3

70

O2
11 5 2 8

55

O3
10 12 4 7

90

85 35 50 45

Exercise 8.8. Find an optimal solution for the following mini-
mization transportation problem.

D1 D2 D3 D4

O1
19 20 40 10

7

O2
70 20 40 60

9

O3
40 8 70 20

18

5 8 7 14



Chapter 9

The Assignment Problem

9.1 Introduction

An assignment problem is a particular case of the transporta-
tion problem. The goal of the assignment problem is to minimize
the cost or time to finish the number of jobs assigned to the number
of persons. An important characteristic of the assignment problem
is that the number of jobs is equal to the number of persons.

The mathematical model of the assignment problem is given as

xij =

{
1 if ith job is assigned to jth person,

0 if ith job is not assigned to jth person.

Suppose that cij is the cost if ith job is assigned to jth person. Our
goal is to minimize the cost cij associated with an assignment xij,
then the linear programming problem can be formulated for the
assignment problem as

minimize
m∑
i=1

m∑
j=1

cijxij

subject to
m∑
i=1

xij = 1,

m∑
j=1

xij = 1,

xij = 0 or 1, 1 ≤ i, j ≤ m.

(9.1)

The first set of constraints in (9.1) indicate that for each j , there
is exactly one i for which xij=1, that is, for each job there is ex-
actly one person. Similarly, the second set of constraints in (9.1)
indicate that for each i, there is exactly one j for which xij = 1,
that is, each person is assigned exactly one job.

273
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Note that a transportation problem reduces to an assignment prob-
lem, if m = n and ai = bj, where i, j = 1, 2, . . . ,m.

Theorem 9.1. If a constant is added or subtracted to every ele-
ment of a row and/or column of the cost matrix of an assignment
problem, then the resulting assignment problem has the same op-
timal solution as the original problem.

Proof. Mathematically, the theorem can be stated as

If z =
m∑
i=1

m∑
j=1

cijxij over all xij such that
m∑
i=1

xij=
m∑
j=1

xij=1, xij ≥ 0,

then xij = x∗ij and also minimizes z∗ =
m∑
i=1

m∑
j=1

c∗ijxij where c∗ij =

cij ± ui± vj, for i, j = 1, 2, . . . ,m and ui, and vj are real numbers.
We now prove it. We know that

z∗ =
m∑
i=1

m∑
j=1

c∗ijxij

=
m∑
i=1

m∑
j=1

(cij ± ui ± vj)xij

=
m∑
i=1

m∑
j=1

cijxij ±
m∑
i=1

m∑
j=1

uixij ±
m∑
i=1

m∑
j=1

vjxij

= z ±
m∑
i=1

ui

m∑
j=1

xij ±
m∑
j=1

vj

m∑
i=1

xij.

Since
m∑
i=1

xij =
m∑
j=1

xij = 1,

therefore

z∗ = z ±
m∑
i=1

ui ±
m∑
j=1

vj.

Note that z∗ is minimum when z is minimum. Thus, xij = x∗ij also
minimizes z∗.
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Theorem 9.2. If all cij ≥ 0 and there exists a solution xij = x∗ij

such that z∗ =
m∑
i=1

m∑
j=1

c∗ijxij = 0 , then the present solution is an

optimal solution.

Proof. Given that cij ≥ 0, therefore, the value of z =
m∑
i=1

m∑
j=1

cijxij

cannot be negative. Thus, its minimum value is zero which is at-
tained at xij = x∗ij. Therefore, the present solution is optimal.

Definition 9.1 (Reduced Matrix). If a matrix contains at least
one zero in each row and column, then such matrix is called a
“reduced matrix”.

9.2 Hungarian Method

The Hungarian method was developed in 1955 by H. Kuhn.
He gave it the name “Hungarian Method” because two Hungar-
ian mathematicians, Denes Konig and Jeno Egervary, had already
worked on this algorithm.

Algorithm

1. Choose the smallest cost entry in each row of the tableau,
subtract this smallest cost entry from each entry in that row
of tableau to get the reduced matrix.

2. If the tableau is a reduced matrix, then go to step 3, otherwise
do the same procedure of step 1 for the columns which do not
have at least one zero.

3. For the first assignment, choose the row having only one zero.
Box this zero and cross all other zeros of the row and column
in which this boxed zero lies.

4. If each zero of the reduced matrix is either boxed or crossed,
and each row and column contains exactly one boxed zero,
then optimality is reached so stop, otherwise go to step 5.
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5. Draw the minimum number of horizontal and vertical lines so
that all the zeros are covered. This can be done easily by first
covering zeros in that row or column which has the maximum
number of zeros. In case of a tie, we take any one, and search
the rows or columns having the next lower number of zeros.
Continue this until all zeros are covered.

6. Locate the smallest entry from the uncovered entries, say ‘x’.
Subtract ‘x’ from all entries not covered by these lines and add
‘x’ to all those entries that lie at the intersection of these lines.
The entries lying on these lines but not on the intersection
must be left unchanged.

7. Go to step 3.

Note: For application of the above algorithm, we assume that all
cij are non-negative and the assignment problem is of the
minimization case.

Example 9.1. Four persons A,B,C,D are assigned to work on
four different machines I, II, III, IV . The following table shows
how long it takes for a specific person to finish a job at a specific
machine.

(Machine)

I II III IV

A 8 26 17 11

(Person)
B 13 24 4 26

C 38 15 18 15

D 19 22 14 10

Find the optimal solution, i.e., how the machines should be as-
signed to A,B,C,D so that the job could be completed in mini-
mum time.

We want to find xij = 0 or 1 so as to minimize z =
4∑
i=1

4∑
j=1

cijxij.

1. We subtract the smallest entry of each row from all the entries
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of the respective rows.

I II III IV

A 0 18 9 3

B 9 20 0 22

C 23 0 3 0

D 9 12 4 0

We achieved zero in each row and column. Therefore, the
matrix is a reduced matrix.

2. For the first assignment, choose the row having only one zero
and box this zero and cross all other zeros of the row and
column in which the boxed zero lies.

I II III IV

A 0 18 9 3

B 9 20 0 22

C 23 0 3 �A0

D 9 12 4 0

3. Each zero of the reduced matrix is either boxed or crossed.
Since each row and column contains exactly one boxed zero,
therefore optimality is reached.
The optimal assignment is

A→ I,B→ III,C→ II,D→ IV.

The optimal value is

8 + 4 + 15 + 10 = 37.

Example 9.2. Consider the following assignment problem:

(Job)

I II III IV V

A 5 5 7 4 8

B 6 5 8 3 7

(Person) C 6 8 9 5 10

D 7 6 6 3 6

E 6 7 10 6 11
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Find the optimal solution to minimize the total time.

1. Row reduction

1 1 3 0 4

3 2 5 0 4

1 3 4 0 5

4 3 3 0 3

0 1 4 0 5

2. Column reduction

1 0 0 0 1

3 1 2 0 1

1 2 1 0 2

4 2 0 0 0

0 0 1 0 2

3. Each row and column do not have a boxed zero. Thus, the
optimal solution is not obtained.

1 0 �A0 �A0 1

3 1 2 0 1

1 2 1 �A0 2

4 2 0 �A0 �A0

0 �A0 1 �A0 2

4. We draw the minimum number of horizontal and vertical lines
so that all the zeros are covered. Each horizontal line must
pass through an entire row and each vertical line must pass
through an entire column. This can be done easily by first
covering zeros in that row or column which has a maximum
number of zeros. We search the rows or columns having the
next lower number of zeros and continue this till all zeros are
covered. Note that only four lines are required to cover all
zeros, i.e., only four assignments could be made at this stage.
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1 0 0 0 1

3 1 2 0 1

1 2 1 0 2

4 2 0 0 0

0 0 1 0 2

5. The smallest uncovered entry is 1. We subtract 1 from all
elements not covered by these lines and add 1 to all those
elements that lie at the intersection of these lines. Note that
the entries lying on these lines, but not on the intersection
must be left unchanged.

1 0 0 1 1

2 0 1 0 0

0 1 0 0 1

4 2 0 1 0

0 0 1 1 2

6. No single zero is in any row or column of the tableau. There-
fore, we should go for rows with two zeros. Cell (1, 2) contains
the first zero in the 1st row. We box it and cross all other ze-
ros in the 1st row and 2nd column. We move row wise. There
is a single 0 in the 5th row at cell (5, 1). We apply the same
process to box this and move column-wise until all zeros are
either boxed or crossed.

1 0 �A0 1 1

2 �A0 1 0 �A0

�A0 1 0 �A0 1

4 2 �A0 1 0

0 �A0 1 1 2

Each row and column contains exactly one boxed zero. There-
fore, optimality is reached.
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The optimal assignment is

Person Job T ime

A II 5

B IV 3

C III 9

D V 6

E I 6

29

Example 9.3. Solve the following assignment problem.

(Machine)

I II III IV V

A 4 6 5 1 2

B 6 9 9 7 4

(Man) C 5 8 5 5 1

D 1 3 3 2 1

E 6 8 7 6 2

We simply follow the following procedure:

1. We reduce the matrix row-wise.

I II III IV V

A 3 5 4 0 1

B 2 5 5 3 0

C 4 7 4 4 0

D 0 2 2 1 0

E 4 6 5 4 0

2. Note that 2nd and 3rd columns do not contain zero. Therefore,
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we reduce the matrix column-wise.

I II III IV V

A 3 3 2 0 1

B 2 3 3 3 0

C 4 5 2 4 0

D 0 0 0 1 0

E 4 4 3 4 0

3. Each row and column do not have a boxed zero.

I II III IV V

A 3 3 2 0 1

B 2 3 3 3 0

C 4 5 2 4 �A0

D 0 �A0 �A0 1 �A0

E 4 4 3 4 �A0

4. We draw the minimum number of horizontal and vertical lines
to supress all zeros.

3 3 2 0 1

2 3 3 3 0

4 5 2 4 0

0 0 0 1 0

4 4 3 4 0

Number of lines=3< number of rows=5.

5. The smallest entry is 2 from the uncovered lines. We subtract
it from the uncovered entries and add it to entries on the
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intersection of the lines.

I II III IV V

A 1 1 0 0 1

B 0 1 1 3 0

C 2 3 0 4 0

D 0 0 0 3 2

E 2 2 1 4 0

6. Each row and column have a boxed zero. Therefore, we
reached to the optimal solution.

I II III IV V

A 1 1 �A0 0 1

B 0 1 1 3 �A0

C 2 3 0 4 �A0

D �A0 0 �A0 3 2

E 2 2 1 4 0

The optimal assignment is

A→ IV,B → I, C → III,D → II, E → V

and the optimal value is

1 + 6 + 5 + 3 + 2 = 17.

Example 9.4. A group of five men and five women live on an is-
land. The amount of happiness that ith man and jth woman derive
by spending a fraction xij of their lives together is cijxij, where cij
is given in the table below:

(woman)

W1 W2 W3 W4 W5

M1 4 2 4 5 2

M2 4 5 4 1 3

(man)
M3 4 4 3 3 5

M4 2 2 6 4 5

M5 3 5 7 5 2
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We simply follow the following procedure:

1. According to the Hungarian Method, we subtract the mini-
mum of each row from all the entries of the respective rows.

(woman)

W1 W2 W3 W4 W5

M1 2 0 2 3 0

M2 3 4 3 0 2

(man)
M3 1 1 0 0 2

M4 0 0 4 2 3

M5 1 3 5 3 0

2. Note that the 2nd and 5th rows contain a single zero, box the
zeros and cross all other zeros of the column in which the
boxed zero lies. Apply the same procedure for the remaining
rows.

(woman)

W1 W2 W3 W4 W5

M1 2 0 2 3 �A0

M2 3 4 3 0 2

(man)
M3 1 1 0 �A0 2

M4 0 �A0 4 2 3

M5 1 3 5 3 0

Each row and column has a boxed zero. Therefore, we reached
the optimal solution.

The optimal assignment is

M1 → W2,M2 → W4,M3 → W3,M4 → W1,M5 → W5

and the optimal value is

2 + 1 + 3 + 2 + 2 = 10.

Example 9.5. Consider the assignment problem shown below.
In this problem, five different optimization problems are assigned
to five different researchers such that the total processing time is
minimized. The matrix entries represent processing time in hours.
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Problem

P1 P2 P3 P4 P5

R1 3 5 8 5 1

R2 3 12 10 10 7

Researcher R3 9 10 3 5 5

R4 4 2 3 5 2

R5 2 7 9 5 9

1. Row reduction

2 4 7 4 0

0 9 7 7 4

6 7 0 2 2

2 0 1 3 0

0 5 7 3 7

2. Column reduction

2 4 7 2 0

0 9 7 5 4

6 7 0 0 2

2 0 1 1 0

0 5 7 1 7

3. Each row and column does not have a boxed zero.

2 4 7 2 0

0 9 7 5 4

6 7 0 �A0 2

2 0 1 1 �A0

�A0 5 7 1 7

4. We now draw the minimum number of horizontal or vertical
lines to suppress all the zeros.



The Assignment Problem 285

2 4 7 2 0

0 9 7 5 4

6 7 0 0 2

2 0 1 1 0

0 5 7 1 7

The number of lines drawn= 4 < number of rows (= 5).

5. The smallest uncovered entry is 1. We subtract it from all the
uncovered entries and add it to the entries on the intersection
of the lines.

2 4 6 1 0

0 9 6 4 4

7 8 0 0 3

2 0 0 0 0

0 5 6 0 7

6. The number of boxed zeros is equal to the number of rows.
We achieved the optimal assignment.

2 4 6 1 0

0 9 6 4 4

7 8 0 �A0 3

2 0 �A0 �A0 �A0

�A0 5 6 0 7

The optimal assignment is

Researcher Problem Time

R1 P5 1

R2 P1 3

R3 P3 3

R4 P2 2

R5 P4 5

14
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The total processing time is 14 hours.

MATLAB function hungarian.m is written in the following Code
9.1 to find an optimal solution of the assignment problem.

Code 9.1: hungarian.m

f unc t i on [C,T]= hungarian (A)
%[C,T]= hungarian (A)
%A − a square co s t matrix
%C − the optimal ass ignment
%T − the co s t o f the optimal ass ignment

[m, n]= s i z e (A) ;
i f (m̃ =n)
e r r o r ( ’HUNGARIAN: Cost matrix must be

square ! ’ ) ;
end
% Save o r i g i n a l co s t matrix .
o r i g=A;

% Reduce matrix .
A=hminired (A) ;

% Do an i n i t i a l ass ignment .
[A,C,U]= hminiass (A) ;

% Repeat whi l e we have unass igned rows
whi le (U(n+1))
% Star t with no path , no unchecked zeros ,
% and no unexplored rows .
LR=ze ro s (1 , n ) ;
LC=ze ro s (1 , n ) ;
CH=ze ro s (1 , n ) ;
RH=[ z e ro s (1 , n ) −1];

% No l a b e l l e d columns .
SLC= [ ] ;

% Star t path in f i r s t unass igned row
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r=U(n+1);
% Mark row with end−of−path l a b e l
LR( r )=−1;
% I n s e r t row f i r s t in l a b e l l e d row s e t
SLR=r ;

% Repeat u n t i l we manage to f i n d an
% a s s i g n a b l e ze ro .
whi l e (1 )
% I f the re are f r e e z e r o s in row r
i f (A( r , n+1)˜=0)

% . . . get column o f f i r s t f r e e ze ro .
l=−A( r , n+1);

% I f the re are more f r e e z e r o s in row r and
%row r i s not
% yet marked as unexplored . .
i f (A( r , l )˜=0 & RH( r )==0)

% I n s e r t row r f i r s t in unexplored l i s t
RH( r)=RH(n+1);
RH(n+1)=r ;

% Mark in which column the next unexplored
%zero in t h i s row i s
CH( r)=−A( r , l ) ;
end
e l s e

% I f a l l rows are exp lored .
i f (RH(n+1)<=0)

% Reduce matrix .
[A,CH,RH]=hmreduce (A,CH,RH,LC,LR, SLC,SLR ) ;
end

% Re−s t a r t with f i r s t unexplored row
r=RH(n+1);
% Get column o f next f r e e ze ro in row r
l=CH( r ) ;

% Advance ’ column o f next f r e e zero ’
CH( r)=−A( r , l ) ;
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% I f t h i s ze ro i s l a s t in the l i s t
i f (A( r , l )==0)

% . . . remove row r from unexplored l i s t
RH(n+1)=RH( r ) ;
RH( r )=0;
end
end

% While the column l i s l a b e l l e d , i . e .
%in path
whi le (LC( l )˜=0)
% I f row r i s exp lored
i f (RH( r )==0)

% I f a l l rows are exp lored
i f (RH(n+1)<=0)

% Reduce co s t matrix
[A,CH,RH]=hmreduce (A,CH,RH,LC,LR, SLC,SLR ) ;
end

% Re−s t a r t with f i r s t unexplored row
r=RH(n+1);
end

% Get column o f next f r e e ze ro in row r
l=CH( r ) ;

% Advance ”column o f next f r e e ze ro ”
CH( r)=−A( r , l ) ;

% I f t h i s ze ro i s l a s t in l i s t
i f (A( r , l )==0)

% remove row r from unexplored l i s t
RH(n+1)=RH( r ) ;
RH( r )=0;
end
end

% I f the column found i s unass igned
i f (C( l )==0)



The Assignment Problem 289

% Fl ip a l l z e r o s a long the path in LR,LC
[A,C,U]= hmfl ip (A,C,LC,LR,U, l , r ) ;

%and e x i t to cont inue with next unass igned
%row .
break ;
e l s e

% . . . e l s e add zero to path

% Label column l with row r
LC( l )=r ;

% Add l to the s e t o f l a b e l l e d columns
SLC=[SLC l ] ;

% Continue with the row as s i gned to column l
r=C( l ) ;

% Label row r with column l .
LR( r)= l ;

% Add r to the s e t o f l a b e l l e d rows .
SLR=[SLR r ] ;
end
end
end

% Calcu la te the t o t a l co s t .
T=sum( o r i g ( l o g i c a l ( spa r s e (C, 1 : s i z e ( or ig , 2 ) , 1

) ) ) ) ;

f unc t i on A=hminired (A)
%HMINIRED I n i t i a l r educt i on o f co s t
%matrix f o r the Hungarian method .
%B=a s s r e d i n (A)
%A−the unreduced co s t matrix .
%B−the reduced co s t matrix with l i nked
%ze ro s in each row .
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[m, n]= s i z e (A) ;

%Subtract column−minimum va lues from each
%column
colMin=min (A) ;
A=A−colMin ( ones (n , 1 ) , : ) ;

%Subtract row−minimum va lues from each row
rowMin=min(A’ ) ’ ;
A=A−rowMin ( : , ones (1 , n ) ) ;

% Get p o s i t i o n s o f a l l z e r o s .
[ i , j ]= f i n d (A==0);

% Extend A to g ive room f o r row zero l i s t
% header column .
A(1 , n+1)=0;
f o r k=1:n
% Get a l l column in t h i s row .
c o l s=j ( k==i ) ’ ;
% I n s e r t p o i n t e r s in matrix .
A(k , [ n+1 c o l s ])=[− c o l s 0 ] ;
end

func t i on [A,C,U]= hminiass (A)
%HMINIASS I n i t i a l ass ignment o f the
%Hungarian method .
%[B,C,U]= hminiass (A)
%A−the reduced co s t matrix .
%B−the reduced co s t matrix , with as s i gned
% ze ro s removed from l i s t s .
%C−a vec to r . C( J)=I means row I i s
%as s i gned to column J ,
%i . e . the re i s an as s i gned zero in
% p o s i t i o n I , J
%U−vec to r with a l i nked l i s t o f
%unass igned rows



The Assignment Problem 291

[ n , np1]= s i z e (A) ;

% I n i t i a l i z e re turn v e c t o r s .
C=ze ro s (1 , n ) ;
U=ze ro s (1 , n+1);

% I n i t i a l i z e l a s t / next zero ” p o i n t e r s ”
LZ=ze ro s (1 , n ) ;
NZ=ze ro s (1 , n ) ;

f o r i =1:n
% Set j to f i r s t unass igned zero in row i
l j=n+1;
j=−A( i , l j ) ;

% Repeat u n t i l we have no more z e ro s ( j==0)
% or we f i n d a zero
% in an unass igned column ( c ( j )==0)

whi le (C( j )˜=0)
% Advance l j and j in zero l i s t .
l j=j ;
j=−A( i , l j ) ;

% Stop i f we h i t end o f l i s t
i f ( j==0)
break ;
end
end

i f ( j ˜=0)
% We found a zero in an unass igned column .

% Assign row i to column j .
C( j )= i ;

% Remove A( i , j ) from unass igned zero l i s t
A( i , l j )=A( i , j ) ;
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% Update next / l a s t unass igned zero p o i n t e r s
NZ( i )=−A( i , j ) ;
LZ( i )= l j ;

% I n d i c a t e A( i , j ) i s an as s i gned zero
A( i , j )=0;
e l s e

%We found no zero in an unass igned column

%Check a l l z e r o s in t h i s row .

l j=n+1;
j=−A( i , l j ) ;

% Check a l l z e r o s in t h i s row f o r a s u i t a b l e
% zero in another row .
whi l e ( j ˜=0)
%Check the zero in the row as s i gned to t h i s
%column
r=C( j ) ;

% Pick up l a s t / next p o i n t e r s .
lm=LZ( r ) ;
m=NZ( r ) ;

%Check a l l unchecked ze ro s in f r e e l i s t o f
% t h i s row .
whi l e (m˜=0)
% Stop i f we f i n d an unass igned column .
i f (C(m)==0)
break ;
end

% Advance one step in l i s t .
lm=m;
m=−A( r , lm ) ;
end

i f (m==0)
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% We f a i l e d on row r . Continue with next
% zero on row i
l j=j ;
j=−A( i , l j ) ;
e l s e

% We found a zero in an unass igned column

%Replace zero at ( r ,m) in unass igned l i s t
% with zero at ( r , j )
A( r , lm)=− j ;
A( r , j )=A( r ,m) ;

% Update l a s t / next p o i n t e r s in row r .
NZ( r)=−A( r ,m) ;
LZ( r)= j ;

% Mark A( r ,m) as an as s i gned zero in
%the matrix
A( r ,m)=0;

% . . . and in the ass ignment vec to r .
C(m)=r ;

%Remove A( i , j ) from unass igned l i s t .
A( i , l j )=A( i , j ) ;

%Update l a s t / next p o i n t e r s in row r .
NZ( i )=−A( i , j ) ;
LZ( i )= l j ;

% Mark A( r ,m) as an as s i gned zero in the
% matrix
A( i , j )=0;

% . . . and in the ass ignment vec to r .
C( j )= i ;

% Stop search .
break ;
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end
end
end
end

%Create vec to r with l i s t o f unass igned
%rows .

% Mark a l l rows have ass ignment .
r=ze ro s (1 , n ) ;
rows=C(C˜=0);
r ( rows)=rows ;
empty=f i n d ( r ==0);

% Create vec to r with l i nked l i s t o f
%unass igned rows .
U=ze ro s (1 , n+1);
U( [ n+1 empty ] )= [ empty 0 ] ;

f unc t i on [A,C,U]= hmfl ip (A,C,LC,LR,U, l , r )
%HMFLIP Fl ip ass ignment s t a t e o f a l l
%ze ro s along a path .
%
%[A,C,U]= hmfl ip (A,C,LC,LR,U, l , r )
%Input :
%A − the co s t matrix .
%C − the ass ignment vec to r .
%LC− the column l a b e l vec to r .
%LR− the row l a b e l vec to r .
%r , l− p o s i t i o n o f l a s t ze ro in path .
%Output :
%A −updated co s t matrix .
%C −updated ass ignment vec to r .
%U −updated unass igned row l i s t vec to r

n=s i z e (A, 1 ) ;

whi l e (1 )
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% Move assignment in column l to row r
C( l )=r ;

% Find zero to be removed from zero l i s t

% Find zero be f o r e t h i s
m=f i n d (A( r ,:)==− l ) ;

% Link past t h i s ze ro
A( r ,m)=A( r , l ) ;

A( r , l )=0;

% I f t h i s was the f i r s t ze ro o f the path
i f (LR( r )<0)

%remove row from unass igned row l i s t
%and return
U(n+1)=U( r ) ;
U( r )=0;
re turn ;
e l s e

% Move back in t h i s row along the path and
% get column o f next zero
l=LR( r ) ;

% I n s e r t ze ro at ( r , l ) f i r s t in zero l i s t
A( r , l )=A( r , n+1);
A( r , n+1)=− l ;

% Continue back along the column to get
%row o f next zero in path .
r=LC( l ) ;
end
end

func t i on [A,CH,RH]=hmreduce (A,CH,RH,LC,LR,
SLC,SLR)
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%Reduce par t s o f co s t matrix in
% the Hungarian method .
%[A,CH,RH]=hmreduce (A,CH,RH,LC,LR, SLC,SLR)
%Input :
%A −Cost matrix .
%CH−vec to r o f column o f ’ next zeros ’ in
%each row
%RH− vec to r with l i s t o f unexplored rows
%LC −column l a b e l s
%RC −row l a b e l s
%SLC−s e t o f column l a b e l s
%SLR−s e t o f row l a b e l s
%
%Output :
%A −Reduced co s t matrix .
%CH−Updated vec to r o f ’ next zeros ’ in
%each row
%RH −Updated vec to r o f unexplored rows

n=s i z e (A, 1 ) ;

%Find which rows are covered ,
%i . e . u n l a b e l l e d
coveredRows=LR==0;

%Find which columns are covered ,
%i . e . l a b e l l e d
coveredCols=LC˜=0;

r=f i n d (˜ coveredRows ) ;
c=f i n d (˜ coveredCols ) ;

% Get minimum of uncovered e lements .
m=min(min (A( r , c ) ) ) ;

%Subtract minimum from a l l uncovered e lements
A( r , c)=A( r , c)−m;
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% Check a l l uncovered columns
f o r j=c
% . . . and uncovered rows in path order
f o r i=SLR
% I f t h i s i s a (new) zero
i f (A( i , j )==0)

% I f the row i s not in unexplored l i s t
i f (RH( i )==0)

% . . . i n s e r t i t f i r s t in unexplored l i s t
RH( i )=RH(n+1);
RH(n+1)= i ;
%Mark t h i s ze ro as ” next f r e e ” in t h i s row
CH( i )= j ;
end
% Find l a s t unass igned zero on row I
row=A( i , : ) ;
c o l s I n L i s t=−row ( row<0);
i f ( l ength ( c o l s I n L i s t )==0)

% No ze ro s in the l i s t .
l=n+1;
e l s e
l=c o l s I n L i s t ( row ( c o l s I n L i s t )==0);
end
% Append t h i s ze ro to end o f l i s t .
A( i , l )=− j ;
end
end
end

% Add minimum to a l l doubly covered e lements .
r=f i n d ( coveredRows ) ;
c=f i n d ( coveredCols ) ;
% Take care o f the z e r o s we w i l l remove .
[ i , j ]= f i n d (A( r , c )<=0);
i=r ( i ) ;
j=c ( j ) ;
f o r k=1: l ength ( i )
% Find zero be f o r e t h i s in t h i s row .
l j=f i n d (A( i ( k),:)==− j ( k ) ) ;
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% Link past i t .
A( i ( k ) , l j )=A( i ( k ) , j ( k ) ) ;
% Mark i t as a s s i gned .
A( i ( k ) , j ( k ))=0;
end

A( r , c)=A( r , c)+m;

Example 9.6. Solve the following assignment problem in MAT-
LAB.

6768 124 916 2489

124 6768 6768 2489

2489 337 2489 6768

916 916 6768 10000

In the Command prompt

>> A=[6768 124 916 2489; 124 6768 6768 2489; 2489 337

2489 6768; 916 916 6768 10000]

>> [C,T]=hungarian(A)

Output:

C= 4 3 1 2

T= 4658

Example 9.7. Determine an optimal assignment in MATLAB for
the following assignment problem.
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12 16 14 10 5 12 18 13

8 8 7 9 8 11 10 12

13 18 16 20 9 11 14 17

14 18 17 19 12 10 15 14

13 15 12 13 6 18 13 13

6 5 8 9 8 7 4 7

1 4 7 6 3 3 2 5

11 9 10 12 7 5 7 11

In the Command prompt

>> A=[12 16 14 10 5 12 18 13; 8 8 7 9 8 11 10 12; 13

18 16 20 9 11 14 17; 14 18 17 19 12 10 15 14; 13 15

12 13 6 18 13 13; 6 5 8 9 8 7 4 7; 1 4 7 6 3 3 2 5;

11 9 10 12 7 5 7 11]

>> [C,T]=hungarian(A)

Output:

C= 7 6 2 1 5 3 8 4
T= 61
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9.3 Exercises

Exercise 9.1. A traveling company owns cars in each of the five
locations L1, L2, L3, L4, L5 and the passengers are in each of
the five villages V 1, V 2, V 3, V 4, V 5, respectively. The follow-
ing table shows the distance between the locations and villages in
kilometers. How should cars be assigned to the passengers so as to
minimize the total distance covered?

V illage

V 1 V 2 V 3 V 4 V 5

L1 120 110 115 30 36

L2 125 100 95 30 16

Loc
L3 145 90 135 60 70

L4 160 140 150 60 60

L5 190 155 165 90 85

Exercise 9.2. Solve the following minimal assignment problem.

Man

1 2 3 4 5 6

A 31 62 29 42 15 41

B 12 19 39 55 71 40

Job
C 17 29 50 40 22 22

D 35 41 38 42 27 33

E 19 30 29 16 20 23

F 72 30 30 50 41 20

Exercise 9.3. Five professors reach the Varanasi railway station
in their hometown and want to travel to their respective homes
in auto rickshaws. Each professor approaches a rickshaw driver
and finds out the charge for the final destinations from him. The
following table denotes the charges.
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Loc

1 2 3 4 5

A 60 90 40 60 40

B 30 70 50 80 50

Professor
C 40 90 70 60 60

D 80 50 60 40 50

E 70 80 60 60 60

Find out the total charge if the professors use the optimal assign-
ment solution.

Exercise 9.4. An optimization class contains four students avail-
able for work on four projects. Only one student can work on any
one project. The following table shows the cost of assigning each
student to each project. The objective is to assign students to
projects such that the total assignment cost is a minimum.

Student

1 2 3 4

A 20 25 22 28

Project
B 15 18 23 17

C 19 17 21 24

D 25 23 24 24

Exercise 9.5. Solve the assignment problem represented by the
following matrix which gives the distances from customers A, B,
C, D, E to depots a, b, c, d, and e. Each depot has one car. How
should the cars be assigned to the customers so as to minimize the
distance travelled?
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City

a b c d e

A 160 130 175 190 200

B 135 120 150 160 175

Loc
C 50 50 180 180 110

D 160 140 130 60 60

E 55 35 80 80 105

Exercise 9.6. Determine an optimal assignment for the assign-
ment problem with the following rating matrix.

A B C D E

1 7 9 10 3 7

2 5 10 11 6 6

3 2 6 9 1 8

4 9 8 7 5 9

5 3 8 6 4 8

Exercise 9.7. Find the optimal assignment for the following as-
signment problem given by the cost matrix.

A B C D E

C1 11 14 8 16 20

C2 9 7 12 12 15

C3 13 16 15 6 16

C4 21 24 17 28 26

C5 17 10 12 11 15

Exercise 9.8. A software company has four system analysts, and
four tasks have to be performed. System analysts differ in effi-
ciency, and tasks differ in their intrinsic difficulty. The time that
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each analyst would take to complete each task is given in the effec-
tiveness matrix. How should the tasks be allocated to each analyst
so as to minimize the total man-hours?

Task

1 2 3 4

A 5 23 14 8

Analyst
B 10 15 1 23

C 35 16 12 15

D 16 23 21 7

Exercise 9.9. Find the optimal assignment profit from the fol-
lowing matrices.

(a)

1 2 3 4

A 7 5 4 3

B 8 2 6 4

C 5 3 2 1

D 5 4 1 8

(b)

A B C D E

1 32 38 40 28 40

2 40 24 28 21 36

3 41 127 33 30 37

4 22 38 41 36 36

5 29 33 40 35 39

Exercise 9.10. Solve the minimal assignment problem.
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Man

M1 M2 M3 M4 M5

J1 7 17 8 16 20

J2 9 11 12 6 15

Job
J3 13 16 15 12 16

J4 21 25 17 28 26

J5 14 10 12 11 15

Exercise 9.11. Solve the assignment problem.

1 2 3 4 5

A 6 5 8 11 16

B 1 16 16 1 10

C 13 11 8 8 8

D 9 14 12 10 16

E 10 13 11 8 16



Answer Key

Chapter 2

Exercise 2.1 (a) Linearly dependent (b) Linearly independent (c)
Linearly independent. Exercise 2.2 (a) Rank=3 (b) Rank=3. Ex-
ercise 2.5 (a) Unique solution x=2, y=–2, z=2 (b) Infinitely many
solutions.

Chapter 3

Exercise 3.1 (a) 2 (b) 1/50 (c) –8. Exercise 3.2 (a)

[
2 2

2 2

]
(b)
[
1 2

]
(c)

[
−3 0

0 1

]
(d)

[
3 0

2 1

]
. Exercise 3.3 (a) 4, 5 (b) 5 (c) 4, 3 (d) 2,

1. Exercise 3.4 (a) 1 (b) 0 (c) 0 (d) 0 (e) 2 (f) 1 (g) 0

Chapter 4

Exercise 4.1 x1 = 5/2, x2 = 35, max=295/2. Exercise 4.2 x1 = 160,
x2 = 0, max=4800. Exercise 4.3 (a) nonconvex set (b) convex set
(c) nonconvex set (d) convex set (e) nonconvex set. Exercise 4.4
(a) x1 = 8, x2 = 0, max=23. (b) x1 = 0, x2 = 1, max=3. (c) no
feasible corner (d) unbounded (e) x1 = 11, x2 = 35, max=323000.
Exercise 4.5 (a) x1 = 2, x2=1/2, max=12 (b) x1 = 0, x2 = 3,
max=6. Exercise 4.6 x1 = 5, x2 = 6, max=1100.

Chapter 5

Exercise 5.1 (a)
[
0 20/3 37/3 0

]T
and

[
20/3 0 17/3 0

]T
ba-

sic feasible (b) basic but no feasible. Exercise 5.3 x1=13/57,
x3=49/57, max=928/57. Exercise 5.4 x1=23/10, x2=1/2,
min=303/10. Exercise 5.5 (a) x1=7/3, x2=2/3, max=5/3 (b)
x1=1/3, x2=8/3, max=7/3. Exercise 5.6 x1=3, max=21. Exercise
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5.7 x1=5, x2=1, max=52. Exercise 5.8 x2=15/2, max=45. Exercise
5.9 x1 = 3/2, x2 = 0, max=3. Exercise 5.10 unbounded. Exercise
5.11 x3 = 7/6, x4 = 1/3, x5 = 13/6, min=58

3
. Exercise 5.12 x1 = 5,

x2 = 0, min=25.

Chapter 6

Exercise 6.1 unbounded. Exercise 6.2 x1 = 0, x2 = 0, x3 = 6,
max=6. Exercise 6.3 x2 = 1, x3 = 4, max=13. Exercise 6.4 x1 =
21, x2 =6, max=549. Exercise 6.5 (a) x1 = 8/7, x2 = 24/7, max=104/7
(b) x1 = 8/7, x2 = 24/7, max=104/7. Exercise 6.6 x1 = 4, x2 = 2,
max=24. Exercise 6.7 x1 = x3 = 0, x2 = 7/4, max=14. Exercise
6.8 x1 = 39, x2 = 0, x3 = 48, x4 = 30, max=1827. Exercise 6.9 (a)
x1 = 0, x2 = 2, max=6. (b) x1 = 2/3, x2 = 4/3, max=34/3. Exercise
6.10 x1 = 0, x2 = 11, max=33. Exercise 6.11 x1 = 0, x2 = 7,
max=28.

Chapter 7

Exercise 7.1 (a) min 100y1+90y2+400y3 s.t. 5y1 + y2 ≥ 10, −4y1 +
12y2 + y3 ≥ 30 (b) max −30y1 − 50y2 − 70y3 s.t. 6y1 − 2y2 ≤
3, 11y1 + 7y2 − y3 ≤ −4 (c) min 60y1 − 10y2 − 20y3 + 20y4 s.t.
5y1−3y2−y3+y4 ≥ 3, y1+8y2−7y3+7y4 ≥ 2. Exercise 7.3 x1=3/5,
x2=6/5, min=12/5. Exercise 7.4 x1=25/22, x2=9/11,x3=27/22,
min=458/11. Exercise 7.5 x2=4, x4=20, min=168. Exercise 7.6
x1=2, x2=1, min=7. Exercise 7.7 (a) x1=11/7, x2=1/7, min=37/7.
Exercise 7.8 x1 = 5, x2 = 3, x3 = 0 min=106. Exercise 7.9 x1 =
20/3, x2 = 0, x3 = 50/3, min=1900/3. Exercise 7.10 x1 = 6, x2 =
21, min=144. Exercise 7.11 x2 = 34, x4 = 80, min=182. Exercise
7.12 x2 = 86/9, x3 = 10/9, min=719

9
. Exercise 7.13 x1 = x2 = 1/3,

min=2/3, x1 = 1/2, x4 = 1/4, min=7/12.

Chapter 8

Exercise 8.1 (a) x11=2,x21=1, x22=3, x23=2, x33=2, x34=5, minT-
cost= 204 (b) x11=18, x12=4, x22=12, x32=3,x33=4, x43=4,
x44=2,minTcost = 279. Exercise 8.2 (a) x21=20, x24=55, x34=5,
x12=20, x13=30, x33 = 20, minTcost=650 (b) x33 = 7, x41 = 7,
x43 = 7, x13 = 4, x22 = 8, x12 = 1, minTcost=83. Exercise 8.3(a)
x24 = 25, x21 = 12, x12 = 18, x31 = 4, x13 = 1, x33 = 30, minT-
cost=355 (b) x11 = 5, x43 = 14, x21 = 2, x22 = 6, x32 = 3,
x33 = 4, minTcost=102. Exercise 8.4 (a) x11 = 5, x12 = 3, x22 = 8,
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x23 = 5, x33 = 3, x34 = 8, minTcost=486 (b) x24 = 8, x11 = 5,
x13 = 3, x33 = 5, x32 = 6, x22 = 5 minTcost=366 (c) x32 = 11,
x24 = 8, x11 = 5, x13 = 3, x23 = 5, minTcost=366. Exercise 8.5
optimum cost=180. Exercise 8.6 optimal cost=80. Exercise 8.7 op-
timum cost=743. Exercise 8.8 optimal cost=723.

Chapter 9

Exercise 9.1 L1→C1, L2→C3, L3→C2, L4→C4, L5→C5, 450. Ex-
ercise 9.2 A→5, B→2, C→1, D→3, E→4, F→6, 125. Exercise 9.3
A→5, B→1, C→4, D→2, E→3, 240. Exercise 9.4 A→3, B→1,
C→2, D→4, 78. Exercise 9.5 A → b, B → c, C → a, D → d,
E → e, 470. Exercise 9.6 1 → D, 2 → E, 3 → A, 4 → B,
5 → C,25. Exercise 9.7 C1 → A, C2 → B, C3 → D, C4 → C,
C5→ E, 56. Exercise 9.8 A→ 1, C → 2, B → 3, D → 4, 29. Exer-
cise 9.9 (a)A→ 1, B → 2, C → 4, D → 3, 11 (b) 4→ A, 2→ B,
3 → C, 1 → D, 5 → E, 146. Exercise 9.10 J1→M1, J2→M4,
J3→M5, J4→M3, J5→M2, 56. Exercise 9.11 1→B, 2→A, 3→D,
4→E, 5→C, 34.
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