

Java™	Homework	Projects
A	NetBeans	GUI	Swing	Programming	Tutorial

By	Philip	Conrod	&	Lou	Tylee

Kidware	Software	LLC
PO	Box	701

Maple	Valley,	WA	98038

http://www.computerscienceforkids.com
http://www.kidwaresoftware.com

http://www.computerscienceforkids.com
http://www.kidwaresoftware.com

Copyright	©	2015	by	Kidware	Software	LLC.	All	rights	reserved	Kidware	Software	LLC
PO	Box	701
Maple	Valley,	Washington	98038
1.425.413.1185
www.kidwaresoftware.com
www.computerscienceforkids.com

All	Rights	Reserved.	No	part	of	the	contents	of	this	book	may	be	reproduced	or	transmitted	in	any	form	or
by	any	means	without	the	written	permission	of	the	publisher.

Printed	in	 the	United	States	of	America	ISBN-13:	978-1-937161-63-7	(Printed)	ISBN-13:	978-1-937161-
95-8	(Electronic)	Previous	edition	published	as	“Programming	Home	Projects	with	Java	–	7th	Edition”

Cover	Design	by	Stephanie	Conrod
Copy	Editor:	Jessica	Conrod
Illustrations:	Kevin	Brockschmidt
Compositor:	Michael	Rogers

This	copy	of	“Java	Homework	Projects”	and	the	associated	software	is	licensed	to	a	single	user.	Copies	of
the	course	are	not	to	be	distributed	or	provided	to	any	other	user.	Multiple	copy	licenses	are	available	for
educational	institutions.	Please	contact	Kidware	Software	for	school	site	license	information.

This	guide	was	developed	for	the	course,	“Java	Homework	Projects”	produced	by	Kidware	Software	LLC,
Maple	 Valley,	 Washington.	 It	 is	 not	 intended	 to	 be	 a	 complete	 reference	 to	 the	 Java	 language.	 Please
consult	the	Oracle	website	for	detailed	reference	information.

This	guide	refers	to	several	software	and	hardware	products	by	their	trade	names.	These	references	are	for
informational	purposes	only	and	all	trademarks	are	the	property	of	their	respective	companies	and	owners.
Oracle	 and	 Java	 are	 registered	 trademarks	 of	 Oracle	 Corporation	 and/or	 its	 affiliates.	 JCreator	 is	 a
trademark	product	of	XINOX	Software.	Microsoft	Word,	Excel,	and	Windows	are	all	trademark	products	of
the	Microsoft	Corporation.	All	other	 trademarks	are	the	property	of	 their	respective	owners,	and	Kidware
Software	 makes	 no	 claim	 of	 ownership	 by	 the	 mention	 of	 products	 that	 contain	 these	 marks.	 Kidware
Software	is	not	associated	with	any	products	or	vendors	mentioned	in	this	book.	Kidware	Software	cannot
guarantee	 the	 accuracy	 of	 this	 information.	 The	 example	 companies,	 organizations,	 products,	 domain
names,	e-mail	addresses,	logos,	people,	places,	and	events	depicted	are	fictitious.	No	association	with	any
real	company,	organization,	product,	domain	name,	e-mail	address,	logo,	person,	place,	or	event	is	intended
or	should	be	inferred.

This	book	expresses	the	author’s	views	and	opinions.	The	information	in	this	book	is	distributed	on	an	"as
is"	 basis,	 without	 and	 expresses,	 statutory,	 or	 implied	 warranties.Neither	 the	 author(s)	 nor	 Kidware
Software	LLC	shall	have	any	liability	to	any	person	or	entity	with	respect	to	any	loss	nor	damage	caused	or
alleged	to	be	caused	directly	or	indirectly	by	the	information	contained	in	this	book.

http://www.kidwaresoftware.com
http://www.computerscienceforkids.com

About	The	Authors	Philip	Conrod	has	authored,	co-authored	and
edited	numerous	computer	programming	books	for	kids,	teens	and	adults.	Philip
holds	a	BS	in	Computer	Information	Systems	and	a	Master's	certificate	in	the
Essentials	of	Business	Development	from	Regis	University.	He	also	holds	a
Certificate	in	Programming	for	Business	from	WarrenTech.	Philip	has	been
programming	computers	since	1977.	He	has	also	held	various	Information
Technology	leadership	roles	in	companies	like	Sundstrand	Aerospace,	Safeco
Insurance	Companies,	FamilyLife,	Kenworth	Truck	Company,	PACCAR	and
Darigold	Inc.	In	his	spare	time,	Philip	serves	as	the	President	&	Publisher	of
Kidware	Software,	LLC.	Philip	and	his	lovely	family	live	in	Maple	Valley,
Washington.

Lou	Tylee	holds	BS	and	MS	degrees	in	Mechanical	Engineering	and	a	PhD	in
Electrical	Engineering.	Lou	has	been	programming	computers	since	1969	when
he	 took	 his	 first	 Fortran	 course	 in	 college.	He	 has	written	 software	 to	 control
suspensions	for	high	speed	ground	vehicles,	monitor	nuclear	power	plants,	lower
noise	levels	in	commercial	jetliners,	compute	takeoff	speeds	for	jetliners,	locate
and	 identify	 air	 and	ground	 traffic	 and	 to	 let	 kids	 count	 bunnies,	 learn	how	 to
spell	and	do	math	problems.	He	has	written	several	online	texts	teaching	Visual
Basic,	Visual	C#	and	Java	to	thousands	of	people.	He	taught	a	beginning	Visual
Basic	course	for	over	15	years	at	a	major	university.	Currently,	Lou	works	as	an
engineer	at	a	major	Seattle	aerospace	firm.	He	is	the	proud	father	of	five	children
and	 proud	 husband	 of	 his	 special	 wife.	 Lou	 and	 his	 family	 live	 in	 Seattle,
Washington.

Acknowledgements

I	want	 to	 thank	my	 three	wonderful	 daughters	 -	 Stephanie,	 Jessica	 and	Chloe,
who	 helped	 with	 various	 aspects	 of	 the	 book	 publishing	 process	 including
software	 testing,	 book	 editing,	 creative	 design	 and	 many	 other	 more	 tedious
tasks	 like	 finding	errors	and	 typos.	 I	could	not	have	accomplished	 this	without
all	your	hard	work,	love	and	support.	I	want	to	also	thank	my	best	friend	Jesus,
who	has	always	been	there	by	my	side	giving	me	wisdom	and	guidance.	Without
you,	this	book	would	have	never	been	printed	and	published.

I	 also	want	 to	 thank	my	multi-talented	 co-author,	Lou	Tylee,	 for	 doing	 all	 the
real	 hard	 work	 necessary	 to	 develop,	 test,	 debug,	 and	 keep	 current	 all	 the
‘beginner-friendly’	applications,	games	and	base	tutorial	text	found	in	this	book.
Lou	has	 tirelessly	poured	his	heart	and	soul	 into	so	many	previous	versions	of
this	tutorial	and	there	are	so	many	beginners	who	have	benefited	from	his	work
over	the	years.	Lou	is	by	far	one	of	the	best	application	developers	and	tutorial
writers	 I	have	ever	worked	with.	Thank	you	Lou	 for	collaborating	with	me	on
this	book	project.

	

Contents
Course	Description

System	Requirements

Course	Prerequisites

Installing	and	Using	the	Downloadable	Solution	Files

Using	Java	Homework	Projects

Forward	by	Alan	Payne,	A	Computer	Science	Teacher

1.	Introduction

Preview

Introducing	Java	Homework	Projects

Requirements	for	Java	Homework	Projects

Testing	the	Installation

Getting	Help	with	a	Java	Program

Structure	of	a	Java	Program

Structure	of	a	Java	GUI	Application

Swing	Controls

Stopwatch	-	Creating	a	Java	Project	with	NetBeans

Stopwatch	-	Create	a	Frame

Saving	Java	Projects	with	NetBeans

NetBeans	and	Java	Files

Create	the	User	Interface

Stopwatch	-	Adding	Controls

Adding	Event	Methods

Stopwatch	-	Writing	Code

Chapter	Review

2.	Dual-Mode	Stopwatch	Project

Review	and	Preview

Project	Design	Considerations

Dual-Mode	Stopwatch	Project	Preview

Frame	Design	–	GridBagLayout	Manager

Stopwatch	Frame	Design

Code	Design	–	Initial	to	Running	State

Code	Design	–	Timer	Object

Code	Design	–	Update	Display

Code	Design	–	Running	to	Stopped	State

Code	Design	–	Stopped	State

Dual-Mode	Stopwatch	Project	Review

Dual-Mode	Stopwatch	Project	Enhancements

Dual-Mode	Stopwatch	Project	Java	Code	Listing

3.	Consumer	Loan	Assistant	Project

Review	and	Preview

Consumer	Loan	Assistant	Project	Preview

Loan	Assistant	Frame	Design

Code	Design	–	Switching	Modes

Frame	Design	–	Focus	Traversal

Code	Design	–	Computing	Monthly	Payment

Code	Design	–	Computing	Number	of	Payments

Code	Design	–	Loan	Analysis

Code	Design	–	New	Loan	Analysis

Improving	a	Java	Project

Code	Design	–	Zero	Interest

Code	Design	–	Focus	Transfer

Code	Design	–	Input	Validation

Confirm	Dialog

Code	Design	–	User	Messages

Consumer	Loan	Assistant	Project	Review

Consumer	Loan	Assistant	Project	Enhancements

Consumer	Loan	Assistant	Project	Java	Code	Listing

4.	Flash	Card	Math	Quiz	Project

Review	and	Preview

Flash	Card	Math	Quiz	Project	Preview

Flash	Card	Math	Frame	Design

Code	Design	–	Start	Practice

Code	Design	–	Problem	Generation

Code	Design	–	Obtaining	Answer

Code	Design	–	Choosing	Problem	Type	and	Factor

Code	Design	–	Timing	Options

Code	Design	–	Presenting	Results

Flash	Card	Math	Quiz	Project	Review

Flash	Card	Math	Quiz	Project	Enhancements

Flash	Card	Math	Quiz	Project	Java	Code	Listing

5.	Multiple	Choice	Exam	Project

Review	and	Preview

Multiple	Choice	Exam	Project	Preview

Multiple	Choice	Exam	Frame	Design

Frame	Design	–	Menu	Options

Frame	Design	–	Initialization

Code	Design	–	Exam	File	Format

Code	Design	–	Generating	Exam	Files

Code	Design	–	Opening	an	Exam	File

Code	Design	–	Reading	an	Exam	File

Code	Design	–	Centering	Comment	Text

Code	Design	–	Error	Trapping	and	Handling

Frame	Design	–	Selecting	Options

Code	Design	–	Start	Exam

Code	Design	–	Question	Generation

Code	Design	–	Checking	Multiple	Choice	Answers

Code	Design	–	Checking	Type	In	Answers

Code	Design	–	Checking	Spelling

Code	Design	–	Presenting	Results

Multiple	Choice	Exam	Project	Review

Multiple	Choice	Exam	Project	Enhancements

Multiple	Choice	Exam	Project	Java	Code	Listing

6.	Blackjack	Card	Game	Project

Review	and	Preview

Blackjack	Card	Game	Project	Preview

Blackjack	Frame	Design

Code	Design	–	Card	Definition

Code	Design	–	Card	Shuffle

Code	Design	–	Start	New	Game

Code	Design	–	Start	New	Hand

Code	Design	–	End	Hand

Code	Design	–	Display	Dealer	Card

Code	Design	–	Display	Player	Card

Code	Design	–	Deal	New	Hand

Code	Design	–	Player	‘Hit’

Code	Design	–	Player	‘Stay’

Blackjack	Card	Game	Project	Review

Blackjack	Card	Game	Project	Enhancements

Blackjack	Card	Game	Java	Code	Listing

7.	Weight	Monitor	Project

Review	and	Preview

Weight	Monitor	Project	Preview

Tabbed	Pane	Control

Calendar	Controls

Weight	Monitor	Frame	Design

Frame	Design	–	Weight	Editor	Panel

Code	Design	–	New	Weight	File

Code	Design	–	Entering	Weights

Code	Design	–	Editing	Weights

Code	Design	–	Saving	Weight	Files

Code	Design	–	Opening	Weight	Files

Code	Design	–	Configuration	File

Frame	Design	–	Weight	Plot	Panel

Graphics	Methods

Graphics	2D	Object

Stroke	and	Paint	Objects

Shapes	and	Drawing	Methods

Line2D	Shape

Rectangle2D	Shape

Persistent	Graphics

Code	Design	–	Panel	Plot	Area

Code	Design	–	Weight	Plot

Code	Design	–	Grid	Lines

Code	Design	–	Plot	Labels

Code	Design	–	Weight	Plot	Trend

Weight	Monitor	Project	Review

Weight	Monitor	Project	Enhancements

Weight	Monitor	Project	Java	Code	Listing

8.	Home	Inventory	Manager	Project

Review	and	Preview

Home	Inventory	Manager	Project	Preview

Home	Inventory	Manager	Frame	Design

Frame	Design	–	Toolbar

Frame	Design	–	Entry	Controls

Frame	Design	–	Search	Panel

Frame	Design	–	Photo	Panel

Form	Design	–	Tab	Order	and	Focus

Introduction	to	Object-Oriented	Programming

Code	Design	–	InventoryItem	Class

Code	Design	–	Inventory	File	Input

Code	Design	–	Viewing	Inventory	Item

Code	Design	–	Viewing	Photo

Code	Design	–	Item	Navigation

Code	Design	–	Inventory	File	Output

Code	Design	–	Input	Validation

Code	Design	–	New	Inventory	Item

Code	Design	–	Deleting	Inventory	Items

Code	Design	–	Editing	Inventory	Items

Code	Design	–	Inventory	Item	Search

Printing	with	Java

Printing	Document	Pages

Code	Design	–	Printing	the	Inventory

Home	Inventory	Manager	Project	Preview

Home	Inventory	Manager	Project	Enhancements

Home	Inventory	Manager	Java	Code	Listing

9.	Snowball	Toss	Game	Project

Review	and	Preview

Snowball	Toss	Game	Project	Preview

Snowball	Toss	Game	Frame	Design

Frame	Design	–	Choosing	Options

Code	Design	–	Configuration	Files

Animation	with	Java

Drawing	Images	with	IconEdit

Displaying	Icons	with	Java

Code	Design	–	Sprite	Class

Code	Design	–	Start/Stop	Game

Code	Design	–	Moving	the	Tossers

Code	Design	–	MovingSprite	Class

Code	Design	–	Throwing	Snowballs

Code	Design	–	Collision	Detection

Code	Design	–	Zombie	Snowmen

Code	Design	–	Playing	Sounds

Code	Design	–	One	Player	Game

Snowball	Toss	Game	Project	Review

Snowball	Toss	Game	Project	Enhancements

Snowball	Toss	Game	Project	Java	Code	Listing

Appendix.	Distributing	a	Java	Project

Preview

Executable	jar	Files

Creating	a	jar	File	in	NetBeans

Application	Icons

Using	IconEdit

Running	a	Project	on	Another	Computer

Appendix.	Installing	Java	and	NetBeans

More	Self-Study	or	Instructor-Led	Computer	Programming
Tutorials	by	Kidware	Software

Course	Description	JAVA	HOMEWORK	PROJECTS	teaches	Java
programming	concepts	while	providing	detailed	step-by-step	instructions	in
building	many	fun	and	useful	projects.	JAVA	HOMEWORK	PROJECTS
explains	(in	simple,	easy-to-follow	terms)	how	to	build	a	Java	GUI	project.
Students	learn	about	project	design,	the	Java	Swing	controls,	many	elements	of
the	Java,	and	how	to	debug	and	distribute	finished	projects.	The	projects	built
include:

•		Dual-Mode	Stopwatch	-	Allows	you	to	time	tasks	you	may	be	doing.
•		Consumer	Loan	Assistant	-	Helps	you	see	just	how	much	those	credit	cards
are	costing	you.

•	 	 Flash	 Card	 Math	 Quiz	 -	 Lets	 you	 practice	 basic	 addition,	 subtraction,
multiplication	and	division	skills.

•	 	Multiple	 Choice	 Exam	 -	 Quizzes	 a	 user	 on	 matching	 pairs	 of	 items,	 like
countries/capitals,	words/meanings,	books/authors.

•	 	 Blackjack	 Card	 Game	 -	 Play	 the	 classic	 casino	 card	 game	 against	 the
computer.

•	 	Weight	Monitor	 -	 Track	 your	weight	 each	 day	 and	monitor	 your	 progress
toward	established	goals.

•	 	Home	Inventory	Manager	 -	Helps	you	keep	 track	of	all	your	belongings	 -
even	includes	photographs.

•		Snowball	Toss	Game	-	Lets	you	throw	snowballs	at	another	player	or	against
the	computer	-	has	varying	difficulties.

The	 product	 includes	 over	 850	 pages	 of	 self-study	 notes,	 all	 Java	 source	 code
and	all	needed	graphics	and	sound	files.

System	Requirements	You	will	need	the	following	software	to	complete	the
exercises	in	this	book:

•		Oracle	Java	Standard	Edition	JDK8
•		NetBeans	8.0

Course	Prerequisites	To	grasp	the	concepts	presented	in	JAVA
HOMEWORK	PROJECTS	you	should	have	experience	with	Java
programming.	You	should	also	be	familiar	with	using	the	Java	Swing	library.
Our	product	LEARN	JAVA	GUI	APPLICATIONS	can	provide	the	needed
background.

You	will	 also	 need	 the	 ability	 to	 view	 and	 print	 documents	 saved	 in	Acrobat
PDF	format.

You	also	need	to	have	the	current	Java	Development	Kit	(JDK)	and	the	current
version	 of	NetBeans,	 the	 Integrated	 Development	 Environment	 (IDE)	 we	 use
with	 this	 course.	Complete	 download	 and	 installation	 instructions	 for	 the	 JDK
and	 NetBeans	 are	 found	 in	 the	 Appendix	 (Installing	 Java	 and	 NetBeans)
included	with	these	notes.

Installing	and	Using	the	Downloadable	Solution	Files	If	you
purchased	this	directly	from	our	website	you	received	an	email	with	a	special
and	individualized	internet	download	link	where	you	could	download	the
compressed	Program	Solution	Files.	If	you	purchased	this	book	through	a	3rd
Party	Book	Store	like	Amazon.com,	the	solutions	files	for	this	tutorial	are
included	in	a	compressed	ZIP	file	that	is	available	for	download	directly	from
our	website	at:	http://www.kidwaresoftware.com/phpj8-registration.html

Complete	the	online	web	form	at	the	webpage	above	with	your	name,	shipping
address,	 email	 address,	 the	exact	 title	of	 this	book,	date	of	purchase,	online	or
physical	store	name,	and	your	order	confirmation	number	from	that	store.	After
we	receive	all	this	information	we	will	email	you	a	download	link	for	the	Source
Code	Solution	Files	associated	with	this	book.

Warning:	 If	 you	 purchased	 this	 book	 “used”	 or	 “second	 hand”	 you	 are	 not
licensed	or	entitled	to	download	the	Program	Solution	Files.	However,	you	can
purchase	the	Digital	Download	Version	of	this	book	at	a	discounted	price	which
allows	 you	 access	 to	 the	 digital	 source	 code	 solutions	 files	 required	 for
completing	this	tutorial.

http://www.Amazon.com
http://www.kidwaresoftware.com/phpj8-registration.html

Using	Java	Homework	Projects	The	course	notes	and	code	for	JAVA
HOMEWORK	PROJECTS	are	included	in	one	or	more	ZIP	file(s).	Use	your
favorite	‘unzipping’	application	to	write	all	files	to	your	computer.	(If	you’ve
received	the	course	on	CD-ROM,	the	files	are	not	zipped	and	no	unzipping	is
needed.)	The	course	is	included	in	the	folder	entitled	HomeJava.	This	folder
contains	two	other	folders:	HomeJava	Notes	and	HomeJava	Projects.	There’s
a	chance	when	you	copy	the	files	to	your	computer,	they	will	be	written	as
‘Read-Only.’	To	correct	this	(in	Windows	Explorer	or	My	Computer),	right-
click	the	HomeJava	folder	and	remove	the	check	next	to	Read	only.	Make	sure
to	choose	the	option	to	apply	this	change	to	all	sub-folders	and	files.	The
HomeJava	Projects	folder	includes	all	projects	developed	during	the	course.
Work	through	the	notes	and	projects	at	your	leisure.

Forward	by	Alan	Payne,	A	Computer	Science	Teacher	What	is
"Java	Homework	Projects"	and	how	it	works.

These	lessons	are	a	highly	organized	and	well-indexed	set	of	lessons	in	the	Java
programming	 language.	 NetBeans,	 a	 specific	 IDE	 (Integrated	 Development
Environment)	 is	 used	 throughout	 the	 lessons.	 Lessons	 are	 written	 for	 the
beginner	to	initiated	programmer:	the	high	school,	college	or	university	student
seeking	 to	 advance	 their	 computer	 science	 repertoire	 on	 their	 own,	 or	 the
enlightened	professional	who	wishes	to	embark	on	Java	coding	for	the	first	time.
Skilled	programmers	and	beginners	alike	benefit	from	the	style	of	presentation.

While	full	solutions	are	provided,	practical	projects	are	presented	in	an	easy-to-
follow	set	of	 lessons	explaining	 the	 rational	 for	 the	 solution	 -	 the	 form	 layout,
coding	 design	 and	 conventions,	 and	 specific	 code	 related	 to	 the	 problem.	 The
learner	may	follow	the	 tutorials	at	 their	own	pace	while	 focusing	upon	context
relevant	information.

The	finished	product	is	the	reward,	but	the	learner	is	fully	engaged	and	enriched
by	the	process.	This	kind	of	learning	is	often	the	focus	of	teacher	training	at	the
highest	 level.	 Every	 Computer	 Science	 teacher	 and	 self-taught	 learner	 knows
what	 a	great	deal	of	work	 is	 required	 for	projects	 to	work	 in	 this	manner,	 and
with	 these	 tutorials,	 the	work	 is	 done	 by	 an	 author	who	 understands	 the	 adult
need	for	streamlined	learning.

Graduated	Lessons	for	Every	Project.	Graduated	Learning.	Increasing	and
appropriate	difficulty.	Great	results.

By	presenting	Homework	Projects	 in	 this	graduated	manner,	adult	 students	are
fully	engaged	and	appropriately	challenged	to	become	independent	thinkers	who
can	 come	 up	with	 their	 own	 project	 ideas	 and	 design	 their	 own	 forms	 and	 do
their	 own	 coding.	 Once	 the	 problem-solving	 process	 is	 learned,	 then	 student
engagement	 is	unlimited!	Students	 literally	cannot	get	enough	of	what	 is	being
presented.

These	projects	encourage	accelerated	learning	-	in	the	sense	that	they	provide	an
enriched	 environment	 to	 learn	 Computer	 Science,	 but	 they	 also	 encourage
accelerating	 learning	 because	 students	 cannot	 put	 the	 lessons	 away	 once	 they

start!	Computer	Science	provides	this	unique	opportunity	to	challenge	students,
and	 it	 is	 a	 great	 testament	 to	 the	 authors	 that	 they	 are	 successful	 in	 achieving
such	levels	of	engagement	with	consistency.

My	history	with	the	Kidware	Software	products.

As	 a	 learner	who	 just	wants	 to	 get	 down	 to	 business,	 these	 lessons	match	my
learning	 style.	 I	 do	 not	 waste	 valuable	 time	 ensconced	 in	 language	 reference
libraries	 for	 programming	 environments	 and	 help	 screens	which	 can	 never	 be
fully	 remembered!	With	 every	Home	Project,	 the	 pathway	 to	 learning	 is	 clear
and	immediate,	though	the	topics	in	Computer	Science	remain	current,	relevant
and	challenging.

Some	of	the	topics	covered	in	these	tutorials	include:

•	Structure	of	a	Java	and	Java	GUI	Program
•	Swing	Controls
•	Managing	NetBeans	Files
•	Data	Types	and	Ranges
•	Scope	of	Variables
•	Naming	Conventions
•	Arithmetic,	Comparison	and	Logical	Operators	 •	String	Functions,	Dates	and
Times,	Random	Numbers,	•	Decision	Making	(Selections)

•	Looping
•	Language	Functions	-	String,	Date,	Numerical	•	Arrays
•	Writing	Your	own	Methods	and	Classes
•	 Sequential	 File	 Access,	 Error-Handling	 and	 Debugging	 techniques	 •
Distributing	a	 Java	Project	 (in	 the	Appendices)	and	more...	 it's	 all	 integrated
into	the	Homework	Projects.

The	specific	Homework	Projects	include:	•	Dual-Mode	Stopwatch
•	Consumer	Loan	Assistant
•	Flash	Card	Math	Quiz
•	Multiple	Choice	Exam	Project
•	Black	Jack	Card	Game

•	Weight	Monitor	Project
•	Home	Inventory	Manager
•	Snowball	Toss	Game

Quick	 learning	 curve	 by	 Contextualized	 Learning	 -	 "Java	 Homework
Projects"	encourages	contextualized,	self-guided	learning.

With	 the	 Java	 Homework	 Projects	 tutorials,	 sound	 advice	 regarding	 generally
accepted	 coding	 strategies	 ("build	 and	 test	 your	 code	 in	 stages",	 "learn	 input,
output,	 formatting	 and	 data	 storage	 strategies	 for	 different	 data	 types",	 build
graphical	components	from	Java's	Swing	Control	class	libraries,	etc..)	encourage
independent	 thought	 processes	 among	 learners.	After	mastery,	 then	 it	 is	much
more	 likely	 that	 students	 can	 create	 their	 own	 problems	 and	 solutions	 from
scratch.	 Students	 are	 ready	 to	 create	 their	 own	 summative	 projects	 for	 their
computer	science	course	-	or	just	for	fun,	and	they	may	think	of	projects	for	their
other	courses	as	well!

Students	 may	 trust	 the	 order	 of	 presentation	 in	 order	 to	 have	 sufficient
background	 information	 for	 every	 project.	 But	 the	 lessons	 are	 also	 highly
indexed,	so	that	students	may	pick	and	choose	projects	if	limited	by	time.

Materials	 already	 condense	 what	 is	 available	 from	 the	 Java	 SDK	 help	 files
(which	 tends	 to	 be	 written	 for	 adults)	 and	 in	 a	 context	 and	 age-appropriate
manner,	so	that	students	remember	what	they	learn.

The	time	savings	for	parents,	teachers	and	students	is	enormous	as	they	need	not
sift	through	pages	and	pages	of	on-line	help	to	find	what	they	need.

Meet	 Different	 State	 and	 Provincial	 Curriculum	 Expectations	 and	 More
Different	 states	 and	 provinces	 have	 their	 own	 curriculum	 requirements	 for
Computer	 Science.	 With	 the	 Kidware	 Software	 products,	 you	 may	 pick	 and
choose	from	Home	Projects	which	best	suit	your	learning	needs.	Learners	focus
upon	 design	 stages	 and	 sound	 problem-solving	 techniques	 from	 a	 Computer
Science	perspective.	In	doing	so,	they	become	independent	problem-solvers,	and
will	exceed	the	curricular	requirements	of	secondary	and	post-secondary	schools
everywhere.

Computer	Science	topics	not	explicitly	covered	in	tutorials	can	be	added	at	 the

learner's	discretion.	The	language	-	whether	it	is	Visual	Basic,	Visual	C#,	Visual
C++,	or	Console	Java,	Java	GUI,	etc...	is	really	up	to	the	individual	learner	!

Lessons	encourage	your	own	programming	extensions.

Once	Computer	Science	concepts	are	learned,	it	is	difficult	to	NOT	know	how	to
extend	the	learning	to	your	own	Home	Projects	and	beyond!

Having	 my	 own	 projects	 in	 one	 language,	 such	 as	 Java,	 I	 know	 that	 I	 could
easily	adapt	them	to	other	languages	once	I	have	studied	the	Kidware	Software
tutorials.	 I	do	not	believe	 there	 is	any	other	 reference	material	out	 there	which
would	cause	me	to	make	the	same	claim!	In	fact,	I	know	there	is	not	as	I	have
spent	over	a	decade	looking!

Having	 used	 Kidware	 Software	 tutorials	 for	 the	 past	 decade,	 I	 have	 been
successful	at	the	expansion	of	my	own	learning	to	other	platforms	such	as	XNA
for	 the	 Xbox,	 or	 the	 latest	 developer	 suites	 for	 tablets	 and	 phones.	 I	 thank
Kidware	Software	and	its	authors	for	continuing	to	stand	for	what	is	right	in	the
teaching	 methodologies	 which	 not	 only	 inspire,	 but	 propel	 the	 self-guided
learner	through	what	can	be	a	highly	intelligible	landscape	of	opportunities."

Regards,
Alan	Payne,	B.A.H.	,	B.Ed.
Computer	Science	Teacher
T.A.	Blakelock	High	School
Oakville,	Ontario
http://chatt.hdsb.ca/~paynea

http://chatt.hdsb.ca/~paynea

1

Introduction

Preview
In	 this	 first	 chapter,	we	will	do	an	overview	of	how	 to	build	 a	 Java
project	with	a	graphical	user	interface	(GUI).	You’ll	get	a	description
of	what	is	needed	to	complete	this	course,	review	the	steps	of	building
a	Java	GUI	project	and	delve	into	use	of	an	Integrated	Development
environment	(IDE).

Introducing	Java	Homework	Projects
In	these	notes,	we	will	use	Java	to	build	many	useful	home	projects	with	graphic
user	interfaces	(GUI).	The	projects	you	will	build	are	(in	increasing	complexity):

➢	Dual-Mode	Stopwatch	–	Measures	total	and	elapsed	time.
➢	Consumer	Loan	Assistant	–	Helps	you	determine	 just	how	much	those
loans	cost	you.

➢	Flash	Card	Math	Quiz	–	Practice	basic	math	skills	with	timed	drills.
➢	Multiple	Choice	Exam	–	Set	up	exams	matching	like	terms.
➢	Blackjack	Card	Game	–	The	classic	card	game.
➢	Weight	Monitor	–	Tool	to	aid	in	your	weight	management.
➢	Home	 Inventory	Manager	 –	 Keep	 track	 of	 all	 the	 stuff	 you	 own	 for
insurance	purposes.

➢	Snowball	Toss	Game	–	A	little	game	using	sounds	and	animation.

Each	 project	 will	 be	 addressed	 in	 a	 single	 chapter.	 Complete	 step-by-step
instructions	covering	every	project	detail	will	be	provided.	Before	beginning	the
projects,	 however,	 we	 will	 review	 course	 requirements,	 Java	 project	 structure
and	our	approach	to	building	a	Java	GUI	project.

Requirements	for	Home	Projects	With
Java
To	complete	the	projects	in	this	course,	you	should	have	a	basic	understanding
of	 the	 Java	 language	 and	 its	 syntax,	 understand	 the	 structure	 of	 a	 Java
application,	how	to	write	and	use	Java	methods	and	how	to	compile,	debug	and
run	 a	 Java	 GUI	 application.	 You	 should	 be	 familiar	 with	 the	 Swing	 control
library.	We	briefly	review	each	of	these	topics	in	the	course,	but	it	is	a	cursory
review.	 If	 you	haven’t	 built	 Java	GUI	projects	 before,	we	 suggest	 you	 try	 our
Java	tutorial	Learn	Java	(GUI	Applications).	See	our	website	for	details.

Regarding	software,	you	need	two	things:	(1)	the	Java	Development	Kit	(JDK)
and	(2)	a	development	environment.	The	JDK	is	a	free	download	from	the	Java
website.	Nearly	all	programmers	develop	 their	 Java	programs	using	 something
called	an	Integrated	Development	Environment	(IDE).	There	are	many	IDE’s
available	 for	 Java	 development	 purposes,	 some	 very	 elaborate,	 some	 very
simple.	 In	 these	 notes,	 we	 use	 a	 free	 IDE	 called	 NetBeans.	 If	 you	 are
comfortable	 with	 another	 IDE,	 by	 all	 means,	 use	 it.	 Complete	 download	 and
installation	 instructions	 are	 provided	 in	 the	 Appendix	 (Installing	 Java	 and
NetBeans)	included	with	these	notes.

Testing	the	Installation
We’ll	use	NetBeans	to	load	a	Java	project	and	to	run	a	project.	This	will	give	us
some	assurance	we	have	everything	installed	correctly.	This	will	let	us	begin	our
study	of	the	Java	programming	language.

Once	installed,	to	start	NetBeans:

*		Click	on	the	Start	button	on	the	Windows	task	bar.
*		Select	All	Programs,	then	NetBeans	*		Click	on	NetBeans	IDE	8.0

(Some	of	the	headings	given	here	may	differ	slightly	on	your	computer,	but	you
should	have	no	 trouble	finding	 the	correct	ones.)	 If	you	put	a	shortcut	on	your
desktop	 in	 the	 installation,	 you	 can	 also	 start	NetBeans	by	double-clicking	 the
correct	 icon.	The	NetBeans	program	should	start.	Several	windows	will	appear
on	the	screen.

Upon	 starting	 (after	 clearing	 the	 Start	 Page),	 my	 screen	 shows:	

This	 screen	 displays	 the	 NetBeans	 Integrated	 Development	 Environment

(IDE).	We’re	going	to	use	it	to	test	our	Java	installation	and	see	if	we	can	get	a
program	up	and	running.	Note	the	location	of	the	file	view	area,	editor	area	and
the	main	menu.	The	 file	view	 tells	you	what	 Java	programs	are	available,	 the
editor	area	is	used	to	view	the	actual	code	and	the	main	menu	is	used	to	control
file	access	and	file	editing	functions.	It	is	also	used	to	run	the	program.

What	 we	 want	 to	 do	 right	 now	 is	 open	 a	 project.	 Computer	 programs
(applications)	written	using	Java	are	referred	to	as	projects.	Projects	include	all
the	information	in	files	we	need	for	our	computer	program.	Java	projects	are	in
project	groups.	Included	with	these	notes	are	many	Java	projects	you	can	open
and	use.	Let’s	open	one	now.

Make	sure	NetBeans	 is	 running.	The	 first	 step	 to	opening	a	project	 is	 to	open
the	project	group	containing	the	project	of	interest.	Follow	these	steps:	Choose
the	File	menu	 option	 and	 click	 on	Project	Groups	 option.	 This	window	will

appear:	

All	projects	in	these	notes	are	saved	in	a	folder	named	 \HomeJava\HomeJava
Projects\.	Click	New	Group,	 select	Folder	of	Projects,	Browse	 to	 that	 folder
as	shown.	Click	Create	Group.

When	you	return	to	the	Select	Group	window,	select	your	new	program	group
(Class	1).

There	will	 be	many	projects	 listed	 in	 the	 file	 view	area	 in	NetBeans.	Find	 the
project	named	Welcome.	Right-click	that	project	name	and	choose	Set	as	Main
Project.	 Expand	 the	 Welcome	 project	 node	 by	 clicking	 the	 plus	 sign.	 Open
Source	Packages,	 then	welcome.	Note	there	 is	one	file	named	Welcome.java.
If	the	file	contents	do	not	appear	in	the	editor	view	area,	double-click	that	file	to
open	it.

To	 run	 this	project,	choose	Run	 from	 the	menu	and	select	Run	Main	Project

(or	alternately	press	<F6>	on	your	keyboard	or	click	the	green	Run	arrow	on	the
toolbar).	 An	Output	 window	 should	 open	 and	 you	 should	 see	 the	 following

Welcome	message:	

If	you’ve	gotten	this	far,	everything	has	been	installed	correctly.	If	you	don’t	see
the	Welcome	message,	 something	has	not	been	 installed	correctly.	You	should
probably	 go	 back	 and	 review	 all	 the	 steps	 involved	 with	 installing	 Java	 and
NetBeans	and	make	sure	all	steps	were	followed	properly.

To	 stop	 this	 project,	 you	 click	 the	 boxed	X	 in	 the	 upper	 right	 corner	 of	 the
window.	To	stop	NetBeans	(don’t	do	this	right	now,	though):

➢	Select	File	in	the	main	menu.
➢	Select	Exit	(at	the	end	of	the	File	menu).

NetBeans	will	close	all	open	windows	and	you	will	be	returned	to	the	Windows
desktop.	Like	with	 stopping	a	project,	 an	 alternate	way	 to	 stop	NetBeans	 is	 to
click	on	the	close	button	in	the	upper	right	hand	corner	of	the	main	window.

Getting	Help	With	a	Java	Program
As	you	build	Java	programs,	 there	will	be	 times	when	you	get	stuck.	You	will
not	know	how	to	do	a	certain	task	using	Java	or	you	will	receive	error	messages
while	compiling	or	running	your	program	that	you	do	not	understand.	What	do
you	do	in	these	cases?	There	are	several	options	for	getting	help.

A	highly	recommended	help	method	is	to	ask	someone	else	if	they	know	how	to
help	 you.	 Other	 Java	 programmers	 love	 to	 share	 their	 skills	 with	 people	 just
learning	the	language.	A	second	option	is	to	look	at	one	of	the	many	Java	books
out	there	(you	are	reading	one	of	them).	If	you	have	questions	about	these	notes,
just	e-mail	us	(support@kidwaresoftware.com)	and	we’ll	try	to	help.

The	 Java	 website	 (http://www.oracle.com/technetwork/java/index.html)	 has	 a
wealth	of	information	that	could	possibly	help.	The	problem	with	the	website	is
that	 there	 is	 so	much	 information,	 it	can	be	overwhelming.	There	are	 tutorials,
example,	 forums,	 …	 The	 Java	 API	 (application	 programming	 interface)
documentation	(on-line	at	the	Sun	website)	is	a	great	place	to	get	help	if	you	can
wade	through	the	difficult	format.	The	Java	website	does	offer	search	facilities.	I
often	type	in	a	few	keywords	and	find	topics	that	help	in	my	pursuit	of	answers.

There	 are	 also	 hundreds	 of	 other	 Java	 websites	 out	 in	 WWW-land.	 Many
websites	offer	forums	where	you	can	ask	other	Java	programmers	questions	and
get	quick	answers.	A	good	way	to	find	them	is	to	use	a	search	utility	like	Google
or	Yahoo.	Again,	type	in	a	few	keywords	and	many	times	you’ll	find	the	answer
you	are	looking	for.

As	you	progress	as	a	Java	programmer,	you	will	develop	your	own	methods	of
solving	 problems	 you	 encounter.	 One	 day,	 you’ll	 be	 the	 person	 other
programmers	come	to	for	their	answers.

mailto:support@kidwaresoftware.com
http://www.oracle.com/technetwork/java/index.html

Structure	of	a	Java	Program
Java,	 like	 any	 language	 (computer	 or	 spoken),	 has	 a	 terminology	 all	 its	 own.
Let’s	 look	 at	 the	 structure	 of	 a	 Java	 program	 and	 learn	 some	 of	 this	 new
terminology.	A	Java	program	(or	project)	is	made	up	of	a	number	of	files.	These
files	 are	 called	 classes.	 Each	 of	 these	 files	 has	 Java	 code	 that	 performs	 some
specific	 task(s).	 Each	 class	 file	 is	 saved	 with	 the	 file	 extension	 .java.	 The
filename	 used	 to	 save	 a	 class	 must	 match	 the	 class	 name.	 One	 class	 in	 each
project	will	 contain	 something	 called	 the	main	method.	Whenever	 you	 run	 a
Java	 program,	 your	 computer	 will	 search	 for	 the	main	 method	 to	 get	 things
started.	Hence,	 to	 run	a	program,	you	refer	directly	 to	 the	class	containing	 this
main	method.

Let’s	 see	 how	 this	 relates	 to	Welcome	 project.	 This	 particular	 project	 has	 a
single	 file	 named	 Welcome.java.	 Notice,	 as	 required,	 the	 name	 Welcome
matches	the	class	name	seen	in	the	code	(public	class	Welcome).	If	no	code	is
seen,	 simply	 double-click	 on	 the	 filename	Welcome.java.	 If	 the	 project	 had
other	classes,	they	would	be	listed	under	the	Welcome	project	folder.	Notice	too
in	the	code	area	the	word	main.	This	is	the	main	method	we	need	in	one	of	the
project’s	classes.

That’s	 really	 all	we	 need	 to	 know	 about	 the	 structure	 of	 a	 Java	 program.	 Just
remember	a	program	(or	project,	we’ll	use	both	terms)	is	made	up	of	files	called
classes	 that	 contain	 actual	 Java	 code.	 One	 class	 is	 the	 main	 class	 where
everything	 starts.	 And,	 one	 more	 thing	 to	 remember	 is	 that	 projects	 are	 in
project	groups.

NetBeans	uses	a	very	specific	directory	structure	for	saving	all	of	the	files	for	a
particular	 application.	When	 you	 start	 a	 new	 project,	 it	 is	 placed	 in	 a	 specific
folder	 in	 a	 specific	 project	 group.	 That	 folder	 will	 be	 used	 to	 store	 all	 files
needed	 by	 the	 project.	We’ll	 take	 another	 look	 at	 the	 NetBeans	 file	 structure
when	we	create	our	first	project.	You	can	stop	NetBeans	now,	if	you’d	like.

Structure	of	a	Java	GUI	Application
Let’s	look	at	the	structure	of	a	Java	GUI	application.	In	these	notes,	we	tend	to
use	 the	 terms	 application,	 program	 and	 project	 synonymously.	 A	 GUI
application	consists	of	a	frame,	with	associated	controls	and	code.	Pictorially,

this	is:	

Application	(Project)	is	made	up	of:

➢	Frame	 -	window	that	you	create	 for	user	 interface	(also	referred	 to	as	a
form)	➢	Controls	-	Graphical	features	positioned	on	frame	to	allow	user
interaction	 (text	 boxes,	 labels,	 scroll	 bars,	 buttons,	 etc.)	 (frames	 and
controls	are	objects.)	Controls	are	briefly	discussed	next.

➢	Properties	 -	Every	characteristic	of	a	 frame	or	control	 is	 specified	by	a
property.	 Example	 properties	 include	 names,	 captions,	 size,	 color,
position,	 and	 contents.	 Java	 applies	 default	 properties.	 You	 can	 change
properties	when	designing	the	application	or	even	when	an	application	is
executing.

➢	Methods	-	Built-in	procedures	that	can	be	invoked	to	impart	some	action
to	or	change	or	determine	a	property	of	a	particular	object.

➢	Event	Methods	-	Code	related	to	some	object	or	control.	This	is	the	code
that	is	executed	when	a	certain	event	occurs.	In	our	applications,	this	code
will	 be	 written	 in	 the	 Java	 language	 (covered	 in	 detail	 in	 Chapter	 2	 of
these	notes).

➢	 General	 Methods	 -	 Code	 not	 related	 to	 objects.	 This	 code	 must	 be
invoked	or	called	in	the	application.

The	application	displayed	above	has	a	single	form,	or	frame.	As	we	progress	in

this	 course,	we	will	 build	 applications	with	multiple	 forms.	The	 code	 for	 each
form	will	usually	be	stored	in	its	own	file	with	a	.java	extension.

We	will	follow	three	steps	in	building	a	Java	GUI	application:

1.	Create	the	frame.
2.	Create	the	user	interface	by	placing	controls	on	the	frame.
3.	Write	code	for	control	event	methods	(and	perhaps	write	other	methods).

These	 same	 steps	 are	 followed	 whether	 you	 are	 building	 a	 very	 simple
application	or	one	involving	many	controls	and	many	lines	of	code.	Recall,	the
GUI	 applications	 we	 build	 will	 use	 the	 Java	 Swing	 and	 AWT	 (Abstract
Windows	Toolkit)	components.

Each	of	 these	steps	 require	us	 to	write	 Java	code,	and	sometimes	 lots	of	code.
The	 event-driven	 nature	 of	 Java	 applications	 allows	 you	 to	 build	 your
application	in	stages	and	test	it	at	each	stage.	You	can	build	one	method,	or	part
of	a	method,	at	a	time	and	try	it	until	it	works	as	desired.	This	minimizes	errors
and	gives	you,	the	programmer,	confidence	as	your	application	takes	shape.

As	 you	 progress	 in	 your	 programming	 skills,	 always	 remember	 to	 take	 this
sequential	 approach	 to	 building	 a	 Java	 application.	 Build	 a	 little,	 test	 a	 little,
modify	a	little	and	test	again.	You’ll	quickly	have	a	completed	application.

Swing	Controls
The	 controls	 we	 use	 in	 GUI	 applications	 will	 be	 Swing	 components.	 These
components	 are	 defined	 in	 the	 javax.swing	 package	 and	 all	 have	 names
beginning	with	J.	Here,	we	briefly	look	at	several	controls	to	give	you	an	idea	of
what	they	are,	what	they	look	like	and	what	they	do.	You	will	see	more	Swing
components	in	several	of	the	projects.

JFrame	control:	

The	frame	control	is	the	basic	‘container’	for	other	controls.	It	is	the	framework
for	a	Java	project.	The	title	property	establishes	the	caption	information.	Every
application	 we	 build	 will	 start	 by	 building	 a	 class	 that	 extends	 the	 JFrame
control.

JButton	control:	

The	 button	 control	 is	 used	 to	 start	 some	 action.	 The	 text	 property	 is	 used	 to
establish	the	caption.

JLabel	control:	

The	 label	 control	 allows	 placement	 of	 formatted	 text	 information	 on	 a	 frame
(text	property).

JTextField	control:	

The	 text	 field	 control	 accepts	 a	 single	 line	 of	 typed	 information	 from	 the	 user
(text	property).

JTextArea	control:	

The	text	area	control	accepts	multiple	lines	of	scrollable	typed	information	(text
property).

JCheckBox	control:	

The	check	box	control	is	used	to	provide	a	yes	or	no	answer	to	a	question.

JRadioButton	control:	

The	 radio	 button	 control	 is	 used	 to	 select	 from	 a	mutually	 exclusive	 group	 of
options.	You	always	work	with	a	group	of	radio	buttons.

JComboBox	control:	

Combo	box	controls	are	very	common	in	GUI	applications.	Users	can	choose	an
item	from	a	drop	down	list	(states,	countries,	product).

JList	control:	

A	list	control	is	like	a	combo	box	with	the	list	portion	always	visible.	Multiple
selections	can	be	made	with	a	list	control.

JScroll	control:	

A	 scroll	 bar	 control	 is	 used	 to	 select	 from	a	 range	of	values.	The	 scroll	 bar	 is
always	“buddied”	with	another	control	related	to	the	scroll	bar	selection.

JPanel	control:	

The	panel	control	 is	a	 ‘workhorse’	 in	GUI	applications	–	we	will	use	many	of
them.	It	provides	a	convenient	way	of	grouping	related	controls	 in	a	Java	GUI
application.	And,	the	panel	can	also	be	used	to	host	graphics.

Now,	we’ll	start	NetBeans	and	look	at	each	step	in	the	application	development
process,	including	using	Swing	controls.	We	will	use	a	stopwatch	application	as
an	example.

Stopwatch	-	Creating	a	Java	Project
with	NetBeans	We	will	now	start	building	our	first	Java	GUI
application	(a	computer	stopwatch).	It	might	seem	like	a	slow,	long	process.	But,
it	has	to	be	in	order	to	cover	all	the	necessary	material.	The	more	projects	you
build,	the	simpler	this	process	will	become.	We	begin	by	creating	a	new	project
and	creating	a	frame.	We	will	store	all	created	projects	in	a	separate	project
group	named	Home	Projects.	Create	that	folder	now.	If	using	Windows,	you
can	use	Windows	Explorer	or	My	Computer	to	that	task.

If	 it’s	 not	 already	 running,	 start	NetBeans.	 The	 program	group	 containing	 the
Welcome	 project	 should	 still	 be	 there.	We	 are	 going	 to	 remove	 this	 program
group	 and	 create	 a	 new	 one.	 (You	 should	 only	 use	 the	HomeJava	 Projects
program	group	when	you	want	to	refer	to	the	code	included	with	the	class	notes.
For	all	your	projects,	you	will	use	your	own	program	group).

Choose	 File	 from	 the	 main	 menu	 and	 select	 Project	 Group	 The	Manage
Groups	 window	 appears	 –	 choose	 New	 Group	 to	 see	

As	 shown,	 click	 Folder	 of	 Projects,	 then	 Browse	 to	 your	 Home	 Projects
folder.	Click	Create	Group.	The	project	group	is	displayed	in	the	file	view	area
(it	is	empty).

Now,	we	want	to	add	a	project	to	the	project	group.	Pay	close	attention	to	these
steps	 because	 you	will	 repeat	 them	 every	 time	 you	 need	 to	 create	 a	 new	 Java
project.	 Right-click	 the	 project	 group	 area	 in	 the	 file	 view	 and	 choose	 New
Project	 to	 see:	

Select	Java	in	Categories	and	Java	Application	in	Projects.	Click	Next.

This	window	appears:

Type	 Stopwatch	 in	 the	Project	Name	 box	 (as	 shown	 above).	 Browse	 to	 the
Home	Projects	folder	for	Project	Location.	Click	Finish	to	create	the	project.
Once	created,	click	Finish	in	the	resulting	window.

The	project	group	view	window	should	now	show	a	project	(Stopwatch)	in	the

project	group	(I’ve	expanded	all	the	folders):	

NetBeans	 uses	 a	 particular	 structure	 for	 each	 project	 you	 create.	 Under	 the
Project	main	folder	is	a	folder	(Source	Packages)	with	a	package	 it	names	(in
this	 case,	 stopwatch).	 In	 that	 package	 folder	 are	 the	 class	 files	 (java	 files)
needed	for	your	project.	It	creates	a	default	class	file	(the	one	with	your	project
name,	Stopwatch.java	in	this	case).	You	do	not	have	to	accept	the	default	name
(or	 default	 package	 name)	 –	 you	 can	 change	 it	 when	 creating	 the	 project,	 if
desired.	Just	make	sure	there	is	a	main	class	with	the	matching	filename.

Double-click	on	 the	Stopwatch.java	 file	 to	see	a	 framework	 for	 the	 file	 in
the	 editor	 view	 area:	

The	default	code	created	by	NetBeans	is:

/	*

*	 To	 change	 this	 license	 header,	 choose	 License	 Headers	 in	 Project
Properties.
*	 To	 change	 this	 template	 file,	 choose	 Tools	 |	 Templates	 *	 and	 open	 the
template	in	the	editor.

*/

package	stopwatch;

/	**

*

*	@author	tyleel

*/

public	class	Stopwatch

{

/	**

*	@param	args	the	command	line	arguments	*/
public	static	void	main(String[]	args)

{

//	TODO	code	application	logic	here

}

}

We	will	always	replace	this	default	code	with	our	own	code	(or	you	can	modify
it	if	you	want	to	avoid	a	little	typing).	Delete	the	default	code.

Recall,	there	are	a	few	rules	to	pay	attention	to	as	you	type	Java	code	(we	will	go
over	these	rules	again	in	the	next	class):

➢	Java	code	requires	perfection.	All	words	must	be	spelled	correctly.
➢	Java	is	case-sensitive,	meaning	upper	and	lower	case	letters	are	considered
to	 be	 different	 characters.	When	 typing	 code,	make	 sure	 you	 use	 upper
and	lower	case	letters	properly	➢	Java	ignores	any	“white	space”	such	as
blanks.	We	will	often	use	white	space	to	make	our	code	more	readable.

➢	Curly	braces	are	used	for	grouping.	They	mark	the	beginning	and	end	of
programming	 sections.	 Make	 sure	 your	 Java	 programs	 have	 an	 equal
number	 of	 left	 and	 right	 braces.	 We	 call	 the	 section	 of	 code	 between
matching	braces	a	block.

➢	It	is	good	coding	practice	to	indent	code	within	a	block.	This	makes	code
easier	to	follow.	NetBeans	automatically	indents	code	in	blocks	for	you.

➢	 Every	 Java	 statement	 will	 end	 with	 a	 semicolon.	 A	 statement	 is	 a
program	 expression	 that	 generates	 some	 result.	 Note	 that	 not	 all	 Java
expressions	 are	 statements	 (for	 example,	 the	 line	 defining	 the	 main
method	has	no	semicolon).

Stopwatch	-	Create	a	Frame
The	first	step	in	building	a	Java	GUI	application	is	creating	a	frame.	At	the	same
time	 we	 create	 the	 frame,	 we	 establish	 the	 basic	 framework	 for	 the	 entire
program.	 The	 code	 (Stopwatch.java)	 that	 creates	 a	 frame	 within	 this	 basic
framework	is	defined	by	a	Java	class	of	the	same	name:	/	*
*	Stopwatch

*/

package	stopwatch;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
public	class	Stopwatch	extends	JFrame

{

public	static	void	main(String	args[])

{

//	Construct	the	frame
new	Stopwatch().show();

}

public	Stopwatch()

{

//	Frame	constructor
setTitle("Stopwatch	Application");
setSize(300,	100);

}

}

Type	one	line	at	a	time,	paying	close	attention	that	you	type	everything	as	shown
(use	the	rules).

As	you	type,	notice	after	you	type	each	left	brace	({),	the	NetBeans	editor	adds	a
corresponding	 right	 brace	 (})	 and	 automatically	 indents	 the	 next	 line.	 This
follows	the	rule	of	indenting	each	code	block.	Like	the	braces,	when	you	type	a
left	 parenthesis,	 a	 matching	 right	 parenthesis	 is	 added.	 Also,	 another	 thing	 to
notice	 is	 that	 the	 editor	 uses	 different	 colors	 for	 different	 things	 in	 the	 code.
Green	text	represents	comments.	Code	is	in	black	and	keywords	are	in	blue.	This
coloring	sometimes	helps	you	identify	mistakes	you	may	have	made	in	typing.

When	done	typing,	you	should	see:

This	code	creates	the	frame	by	extending	the	Swing	JFrame	object,	meaning	it
takes	on	all	characteristics	of	such	a	frame.	The	code	has	a	constructor	for	the
Stopwatch	object.	You	should	see	it	executes	two	methods:	one	to	set	 the	title
(setTitle)	and	one	to	set	the	size	(setSize).	The	constructor	is	called	in	the	main
method	 to	 create	 the	 frame.	 We	 will	 use	 this	 same	 basic	 structure	 in	 every
project	 built	 in	 this	 course.	 A	 constructor	 for	 the	 frame	 and	 all	 associated
controls	 and	 control	 events	will	 be	 built.	The	 frame	will	 be	 constructed	 in	 the
main	method.

Run	 the	 project	 (press	 <F6>	 or	 choose	Run,	 then	Run	Main	Project	 in	 the

menu).	You	will	see	your	first	frame:	

Saving	Java	Projects	with	NetBeans
Whenever	you	run	a	Java	project,	NetBeans	automatically	saves	both	the	source
files	and	the	compiled	code	files	for	you.	So,	most	of	the	time,	you	don't	need	to
worry	about	saving	your	projects	-	it's	taken	care	of	for	you.	If	you	want	to	save
code	you	are	 typing	 (before	 running),	 simply	choose	File	 from	 the	main	menu

and	click	Save	All.	Or,	just	click	the	Save	All	button	on	the	toolbar:	

You	do	need	to	save	the	project	group	anytime	you	make	a	change,	for	example,
if	 you	 add/delete	 files	 from	 a	 project	 or	 add/delete	 projects.	 This	 is	 also	 done
using	 the	 Save	 All	 option.	 If	 you	 try	 to	 exit	 NetBeans	 and	 have	 not	 saved
projects,	NetBeans	will	pop	up	dialog	boxes	to	inform	you	of	such	and	give	you
an	opportunity	to	save	files	before	exiting.

NetBeans	and	Java	Files
So,	how	does	all	this	information	about	program	structure,	files,	compiling	and
running	fit	in	with	NetBeans,	our	development	environment.	We	have	seen	that
Java	 projects	 are	 grouped	 in	 project	 groups.	 And	 projects	 are	 made	 up	 of
different	folders	and	files.

Using	My	Computer	or	Windows	Explorer	(if	using	Windows),	go	to	the	folder
containing	 the	 Stopwatch	 project	 you	 just	 built.	 There	 are	 many	 folders	 and
files.	In	the	src/stopwatch	folder,	you	will	see	Stopwatch.java

This	is	the	source	code	that	appears	in	the	editor	view	area	of	NetBeans.	In	the
build/classes/stopwatch	folder	is	Stopwatch.class.	This	the	compiled	version	of
Stopwatch.java	(this	is	the	file	needed	by	the	Java	virtual	machine).	Most	of	the
other	 files	are	used	by	NetBeans	used	 to	keep	 track	of	what	 files	make	up	 the
project.

Be	 aware	 that	 the	 only	 true	 Java	 files	 here	 are	 the	 ones	with	 .java	 and	 .class
extensions.	 The	 other	 files	 are	 created	 and	 modified	 by	 our	 particular
development	 environment,	NetBeans.	 If	 you	want	 to	 share	 your	 Java	 program
with	a	friend	or	move	your	Java	program	to	another	development	environment,
the	only	 files	you	 really	need	 to	 transfer	are	 the	 .java	 files.	These	 files	can	be
used	by	any	Java	programmer	or	programming	environment	to	create	a	running
program.

Create	the	User	Interface
Having	created	a	frame,	we	now	create	the	user	interface	by	“placing”	controls
in	the	frame.	This	placement	simply	involves	several	lines	of	logical	Java	code
per	control	desired.

An	object	called	a	 layout	manager	determines	how	controls	are	arranged	 in	a
frame.	Some	of	the	layout	managers	and	their	characteristics	are:

FlowLayout Places	controls	in	successive	rows,	fitting	as
many	as	possible	in	a	given	row.

BorderLayout Places	controls	against	any	of	the	four	frame
borders.

CardLayout Places	controls	on	top	of	each	other	like	a	deck	of
cards.

GridLayout Places	controls	within	a	specified	rectangular
grid.

GridBagLayout Places	controls	with	a	specified	very	flexible
rectangular	grid.

BoxLayout Arranges	controls	either	in	a	row	or	column.
SpringLayout Arranges	controls	with	positions	defined	by

sprints	and	struts.

In	this	class,	we	will	use	the	GridBagLayout.	In	our	opinion,	it	offers	the	nicest
interface	appearance.	As	we	work	 through	 the	course,	you	will	 learn	more	and
more	capabilities	of	this	manager.	Study	the	other	layout	managers	if	you’d	like.

A	frame	 is	actually	made	up	of	several	different	panes.	Controls	are	placed	 in
the	 content	 pane	 of	 the	 frame.	 The	 GridBagLayout	 manager	 divides	 the
content	 pane	 into	 a	 grid	 of	 rows	 and	 columns:	

The	top	row	is	Row	0	and	row	number	increases	as	you	go	down	the	grid.	The
left	column	is	Column	0	and	column	number	increases	as	you	move	to	the	right
in	the	grid.

The	GridBagConstraints	object	 is	used	 for	control	placement	and	positioning
within	the	various	grid	elements.	Controls	are	placed	in	this	grid	by	referring	to	a
particular	column	(gridx	location)	and	row	(gridy	location).	Rows	and	columns
both	 start	 at	 zero	 (0).	 The	 grid	 does	 not	 have	 to	 be	 (but	 can	 be)	 sized.	 It
automatically	grows	as	controls	are	added.	We	will	see	that	the	GridBagLayout
manager	is	very	flexible.	Controls	can	span	more	than	one	column/row	and	can
be	spaced	(using	insets)	anywhere	within	a	grid	element.

A	single	line	of	code	in	our	frame	constructor	is	needed	to	specify	we	are	using
the	 GridBagLayout	 in	 the	 frame	 content	 pane:
getContentPane().setLayout(new	GridBagLayout());	To	place	a	control	in	the
GridBagLayout	grid,	we	follow	these	steps:

➢	Declare	the	control.
➢	Create	(construct)	the	control.
➢	Establish	desired	control	properties.
➢	Add	the	control	to	the	layout	content	pane	at	the	desired	position.

In	 the	 projects	 we	 build,	 all	 controls	 will	 be	 declared	 with	 class	 level	 scope,
meaning	the	controls	and	associated	properties	and	methods	will	be	available	to
any	method	 in	 the	class.	Hence,	all	controls	will	be	declared	following	 the	 left
opening	brace	of	the	class,	before	the	first	method.

We	will	 also	give	meaningful	names	 to	controls.	Accepted	practice	 is	 to	give
the	 control	 a	 name	 beginning	 with	 some	 description	 of	 its	 purpose,	 then

concatenating	 the	 type	 of	 control	 at	 the	 end	 of	 the	 name.	 Such	 a	 naming
convention	makes	reading	and	writing	your	Java	code	much	easier.	Examples	of
names	 for	 button,	 label	 and	 text	 field	 controls	 (the	 ones	 we	 use	 with	 our
stopwatch	example):	startButton
stopButton
elapsedLabel
startTextField

To	declare	a	control,	you	type	the	statement:	ControlType	controlName;

In	the	Swing	library,	a	button	control	is	of	type	JButton.	Hence,	to	declare	our
startButton,	we	use:	JButton	startButton;

To	 create	 a	 previously	 declared	 control,	 use:	 controlName	 =	 new
ControlType();

For	our	start	timing	button,	the	Java	code	is:	startButton	=	new	JButton();

The	process	of	declaring	and	creating	a	control	can	be	combined	into	a	single
line	of	 code.	We	will	 always	do	 this.	For	our	 example,	 the	 control	declaration
would	be:	JButton	startButton	=	new	JButton();

The	next	step	is	to	set	any	desired	control	properties.	The	format	for	such	code
is:	controlName.setPropertyName(PropertyValue);	Where	setPropertyName
is	a	method	to	set	a	desired	property.	When	we	discuss	controls	in	detail,	we	will
cover	many	of	 these	methods.	 For	 now,	we	will	 just	 give	 them	 to	 you.	As	 an
example,	to	set	the	text	appearing	on	the	start	timing	button	to	“Start	Timing,”
you	would	use:	startButton.setText(“Start	Timing”);

The	next	step	(yes,	I	know	there	are	lots	of	steps)	is	to	position	the	control	in	the
GridBagLayout	 grid.	 First,	 we	 need	 to	 declare	 an	 object	 of	 type
GridBagConstraints	 to	 allow	 positioning.	 Assuming	 this	 object	 is	 named
gridConstraints,	 the	 declaration	 is:	GridBagConstraints	 gridConstraints	 =
new	GridBagConstraints();	This	statement	is	placed	near	the	top	of	the	frame
constructor	code.

Now,	we	use	a	three-step	process	to	place	each	control	in	the	grid.	Decide	on	an

x	location	(desiredColumn)	and	a	y	location	(desiredRow).	Then,	use	this	code
for	 a	 sample	 control	 named	 controlName):	 gridConstraints.gridx	 =
desiredColumn;
gridConstraints.gridy	=	desiredRow;
getContentPane().add(controlName,	gridConstraints);	We	will	place	the
start	timing	button	in	the	upper	left	corner	of	the	grid,	so	we	use:
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(startButton,	gridConstraints);	To	finalize
placement	of	controls	in	the	frame,	execute	a	pack	method:	pack();

This	“packs”	the	grid	layout	onto	the	frame	and	makes	the	controls	visible.

In	 summary,	 decide	 what	 controls	 you	 want	 to	 place	 in	 a	 frame.	 For	 each
control,	you	need:

➢	a	declaration	and	creation	statement	(class	 level)	➢	 three	 lines	of	code
for	placement	(in	constructor	method)

Once	all	controls	are	in	the	frame,	you	must	execute	a	pack	method	to	finalize
placement.	We’ll	clear	this	up	(hopefully)	with	an	example.

Stopwatch	–	Adding	Controls
Continue	with	 the	Stopwatch	 example	where	we	created	a	 frame.	We	want	 to

build	this	frame:	

1.	We	will	place	nine	controls	in	the	frame:	three	buttons	(JButton	class),	three
labels	 (JLabel	 class)	 and	 three	 text	 fields	 (JTextField	 class).	 The	 buttons
will	start	and	stop	the	timing.	The	labels	and	text	fields	will	be	used	to	display
the	 timing	 results:	 We	 will	 place	 these	 controls	 in	 a	 3	 x	 3	 array:	

Properties	we	will	set	in	code:

startButton:
text Start	Timing
gridx 0
gridy 0

	 	
stopButton: 	

text Stop	Timing
gridx 0
gridy 1

	 	
exitButton: 	

text Exit
gridx 0
gridy 2

	 	
startLabel: 	

text Start	Time
gridx 1
gridy 0

	 	
stopLabel: 	

text End	Time
gridx 1
gridy 1

	 	
elapsedLabel: 	

text Elapsed	Time	(sec)
gridx 1
gridy 2

	 	
startTextField: 	

text [Blank]
columns 15
gridx 2
gridy 0

	 	
stopTextField: 	

text [Blank]
columns 15
gridx 2
gridy 1

	 	
elapsedTextField: 	

text [Blank]
columns 15
gridx 2
gridy 2

2.	First,	type	the	code	to	declare	the	nine	controls	(recall	these	lines	go	after	the
opening	 left	 brace	 for	 the	 class	 definition):	 JButton	 startButton	 =	 new
JButton();

JButton	stopButton	=	new	JButton();
JButton	exitButton	=	new	JButton();
JLabel	startLabel	=	new	JLabel();
JLabel	stopLabel	=	new	JLabel();
JLabel	elapsedLabel	=	new	JLabel();;
JTextField	startTextField	=	new	JTextField();	JTextField	stopTextField	=
new	JTextField();	JTextField	elapsedTextField	=	new	JTextField();	3.
Replace	the	setSize	line	in	the	constructor	code	with	the	line	establishing	the
grid	layout:	getContentPane().setLayout(new	GridBagLayout());	4.	The
code	to	set	properties	of	and	place	each	of	the	nine	controls	(also	goes	in	the
constructor	method):	GridBagConstraints	gridConstraints	=	new
GridBagConstraints();	startButton.setText("Start	Timing");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(startButton,	gridConstraints);
stopButton.setText("Stop	Timing");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(stopButton,	gridConstraints);
exitButton.setText("Exit");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
getContentPane().add(exitButton,	gridConstraints);
startLabel.setText("Start	Time");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
getContentPane().add(startLabel,	gridConstraints);
stopLabel.setText("Stop	Time");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;

getContentPane().add(stopLabel,	gridConstraints);
elapsedLabel.setText("Elapsed	Time	(sec)");	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	2;
getContentPane().add(elapsedLabel,	gridConstraints);
startTextField.setText("");
startTextField.setColumns(15);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
getContentPane().add(startTextField,	gridConstraints);
stopTextField.setText("");
stopTextField.setColumns(15);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
getContentPane().add(stopTextField,	gridConstraints);
elapsedTextField.setText("");
elapsedTextField.setColumns(15);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
getContentPane().add(elapsedTextField,	gridConstraints);	pack();

Notice	how	each	control	is	located	within	the	grid.	Notice,	too,	how	we	set	the
number	of	columns	for	the	text	field	controls.	If	we	didn’t	do	this,	you	wouldn’t
see	the	controls.	I	know	there’s	lots	of	code	here	(and	there	will	always	be	lots	of
code	 for	GUI	 interfaces).	You	 can	 choose	 to	 type	 the	 code	 or	 copy	 and	 paste
from	these	notes	into	NetBeans.	If	you	choose	to	type	the	code,	notice	much	of
the	code	is	similar,	so	copy	and	paste	operations	come	in	very	handy.

For	 reference,	 here	 is	 the	 complete	Stopwatch.java	 code	 at	 this	 point	 (newly
added	code	is	shaded	–	the	line	setting	the	frame	size	has	been	deleted):	/	*
*	Stopwatch.java

*/

package	stopwatch;
import	javax.swing.*;

import	java.awt.*;
import	java.awt.event.*;

public	class	Stopwatch	extends	JFrame

{

//	declare	controls	used
JButton	startButton	=	new	JButton();
JButton	stopButton	=	new	JButton();
JButton	exitButton	=	new	JButton();
JLabel	startLabel	=	new	JLabel();
JLabel	stopLabel	=	new	JLabel();
JLabel	elapsedLabel	=	new	JLabel();;
JTextField	startTextField	=	new	JTextField();	JTextField	stopTextField
=	new	JTextField();	JTextField	elapsedTextField	=	new	JTextField();
public	static	void	main(String	args[])

{

//	Construct	frame
new	Stopwatch().show();

}

public	Stopwatch()

{

//	Frame	constructor
setTitle("Stopwatch	Application");
getContentPane().setLayout(new	GridBagLayout());	//	add	controls
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();

startButton.setText("Start	Timing");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;

getContentPane().add(startButton,	gridConstraints);
stopButton.setText("Stop	Timing");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(stopButton,	gridConstraints);
exitButton.setText("Exit");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
getContentPane().add(exitButton,	gridConstraints);
startLabel.setText("Start	Time");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
getContentPane().add(startLabel,	new	GridBagConstraints());
stopLabel.setText("Stop	Time");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
getContentPane().add(stopLabel,	gridConstraints);
	
elapsedLabel.setText("Elapsed	Time	(sec)");	gridConstraints.gridx	=
1;
gridConstraints.gridy	=	2;
getContentPane().add(elapsedLabel,	gridConstraints);

startTextField.setText("");
startTextField.setColumns(15);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
getContentPane().add(startTextField,	gridConstraints);

stopTextField.setText("");
stopTextField.setColumns(15);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
getContentPane().add(stopTextField,	gridConstraints);
elapsedTextField.setText("");

elapsedTextField.setColumns(15);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
getContentPane().add(elapsedTextField,	gridConstraints);	pack();

}

}

Run	 the	 project.	 The	 interface	 should	 look	 like	 this:	

Notice	how	each	control	is	located	and	sized	in	the	layout	of	the	frame.	Save	this
project.	We	 have	 no	 code	 to	 stop	 this	 project.	 To	 do	 this,	 select	Tools	 in	 the
NetBeans	menu	and	choose	Stop	Tool.

Adding	Event	Methods
At	 this	 point,	 our	 interface	 has	 a	 finished	 look.	 What	 is	 missing	 is	 the	 code
behind	the	control	events.	The	next	step	in	building	a	Java	GUI	application	is	to
add	this	code.	But,	 to	add	 the	code,	we	need	a	place	 to	put	 it.	We	need	 to	add
event	methods	 and	 their	 corresponding	 listeners	 to	 our	 application.	 There	 are
two	 ways	 to	 add	 listeners,	 one	 for	AWT	 objects	 and	 one	 for	 Swing	 objects.
Listeners	are	added	in	the	frame	constructor	code.

Java	event	listeners	for	AWT	objects	(primarily	those	for	mouse	and	keyboard
inputs)	 are	 implemented	using	 something	 called	adapters	 (also	 available	 from
the	AWT).	 The	 best	way	 to	 see	 how	 to	 add	 such	 a	 listener	 is	 by	 example.	 In
every	project	we	build,	we	need	to	“listen”	for	the	event	when	the	user	closes	the
window.	The	 adapter	 that	 implements	 events	 for	 the	 frame	 (window)	 is	 called
the	WindowAdapter	and	it	works	with	the	WindowListener.	There	are	certain
window	events	that	can	be	“listened	for.”	In	our	case,	we	want	to	listen	for	the
windowClosing	event.	The	code	that	adds	this	event	method	to	our	application
is:	addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)	{
[Java	code	for	window	closing]

}

});

This	 is	 actually	 one	 very	 long	 Java	 statement	 over	 several	 lines.	 It	 calls	 the
addWindowListener	method	and,	as	an	argument	(all	in	parentheses),	includes
a	new	instance	of	a	WindowAdapter	event	method	(the	windowClosing	event).
It’s	really	not	that	hard	to	understand	when	you	look	at	it,	just	very	long!!

In	 the	windowClosing	method,	we	would	write	 the	 code	 to	 execute	when	 the
window	 is	 closing.	 The	windowClosing	method	must	 have	 a	 single	 argument
(WindowEvent	e).	We	can	use	this	argument	to	determine	just	what	event	has
occurred.	In	the	stopwatch	example,	we	assume	a	window	closing	event.

For	 Swing	 components,	 like	 the	 button,	 label	 and	 text	 field	 used	 here,	 event
methods	 (actionPerformed)	 are	 added	 using	 the	 ActionListener.	 If	 the
component	 is	 named	 controlName,	 the	 method	 is	 added	 using:
controlName.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
[Java	code	to	execute]

}

});

Again,	 note	 this	 is	 just	 one	 long	 line	 of	 Java	 code.	 The	 method	 has	 a	 single
argument	(ActionEvent	e),	which	tells	us	what	particular	event	occurred	(each
control	can	respond	to	a	number	of	events).	For	our	stopwatch	example,	we	will
assume	click	events	for	the	three	button	controls.

Note	when	we	add	a	listener,	we	also	need	to	add	code	for	the	event	method.	We
could	type	the	code	at	the	same	time	we	add	the	listener,	but	we	take	a	different
approach.	When	a	method	is	added,	the	method	code	will	be	a	single	line	of	code
invoking	an	“external”	method	where	the	actual	code	will	reside.	This	separates
the	coding	of	method	events	from	the	code	building	the	frame	and	makes	for	a
“cleaner”	 code.	 For	 Swing	 components,	 we	will	 name	 these	 external	methods
using	 a	 specific	 convention	 –	 the	 control	 name	 and	method	 name	 will	 be
concatenated	 into	 a	 new	 method	 name.	 Similar	 conventions	 are	 followed	 for
AWT	events.	For	our	example	above,	the	code	adding	such	a	method	would	be:
controlName.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
controlNameActionPerformed(e);

}

});

Once	 the	 method	 is	 added,	 the	 actual	 code	 is	 written	 in	 a	 method	 defined
elsewhere	 in	 the	 program.	 The	 form	 for	 this	 method	 must	 be:	 private	 void
controlNameActionPerformed(ActionEvent	e)	{

[Java	code	to	execute]

}

}

By	 separating	 the	 event	 method	 code	 from	 the	 code	 constructing	 the	 frame,
editing,	modifying	and	testing	a	Java	GUI	application	is	much	easier.	And,	 the
naming	convention	selected	makes	it	easier	to	find	the	event	method	associated
with	a	particular	control.	The	control	event	methods	are	usually	placed	after	the
constructor	method.

Let’s	summarize	the	many	steps	to	place	a	control	(named	controlName	of	type
controlType)	in	a	frame	and	add	an	event	method:

➢	 Declare	 and	 create	 the	 control	 (class	 level	 scope):	 ControlType
controlName	 =	 new	 ControlType();	 ➢	 Position	 the	 control:
gridConstraints.gridx	=	desiredColumn;
gridConstraints.gridy	=	desiredRow;
getContentPane().add(controlName,	gridConstraints);	(assumes	a
gridConstraints	object	has	been	created).

➢	 Add	 the	 control	 listener:	 controlName.addActionListener(new
ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

controlNameActionPerformed(e);

}

});

➢	 Write	 the	 control	 event	 method:	 private	 void
controlNameActionPerformed(ActionEvent	e)	{
[Java	code	to	execute]

}

The	first	few	times	you	add	controls,	this	will	seem	to	be	a	tedious	process.	As
you	 develop	 more	 and	 more	 GUI	 applications,	 such	 additions	 will	 become
second	nature	(and,	you’ll	get	very	good	at	using	the	copy	and	paste	features	of
NetBeans).

Stopwatch	-	Writing	Code
All	 that’s	 left	 to	do	 is	write	 code	 for	 the	application.	We	write	 code	 for	 every
event	a	 response	 is	needed	 for.	 In	 this	application,	 there	are	 three	such	events:
clicking	on	each	of	the	buttons.

1.	 Under	 the	 lines	 declaring	 the	 frame	 controls,	 declare	 three	 class	 level
variables:	long	startTime;

long	stopTime;
double	elapsedTime;

This	establishes	startTime,	endTime,	and	elapsedTime	as	variables	with	class
level	scope.

2.	 In	 the	 frame	constructor,	add	 the	windowClosing	 event	method	 (every	GUI
project	 will	 need	 this	 code	 -	 place	 it	 after	 line	 establishing	 frame	 title):
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)	{
exitForm(e);

}

});

And,	 add	 the	 corresponding	 event	 method	 code:	 private	 void
exitForm(WindowEvent	e)

{

System.exit(0);

}

This	method	is	placed	before	the	final	right	closing	brace	of	the	Stopwatch	class
(the	 normal	 place	 for	methods).	 This	 one	 line	 of	 code	 tells	 the	 application	 to
stop.

3.	Let’s	create	an	actionPerformed	event	for	the	startButton.	Add	the	listener
(I	 place	 this	 after	 the	 code	 placing	 the	 control	 on	 the	 frame):
startButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
startButtonActionPerformed(e);

}

});

Then,	 add	 the	 event	 method	 after	 the	 constructor	 method:	 private	 void
startButtonActionPerformed(ActionEvent	e)	{

//	click	of	start	timing	button
startTime	=	System.currentTimeMillis();
startTextField.setText(String.valueOf(startTime));
stopTextField.setText("");
elapsedTextField.setText("");

}

In	this	procedure,	once	the	Start	Timing	button	is	clicked,	we	read	the	current
time	using	a	 system	function	 (in	milliseconds,	by	 the	way)	and	put	 it	 in	a	 text
field	using	 the	setText	method.	We	also	blank	out	 the	other	 text	 fields.	 In	 the
code	above	(and	in	all	code	in	these	notes),	any	line	beginning	with	two	slashes
(//)	is	a	comment.	You	decide	whether	you	want	to	type	these	lines	or	not.	They
are	not	needed	for	proper	application	operation.

4.	 Now,	 add	 a	 listener	 for	 the	 actionPerformed	 event	 method	 for	 the
stopButton:	stopButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
stopButtonActionPerformed(e);

}

}

});

Then,	 add	 this	 event	 method	 after	 the	 startButtonActionPerformed	 method:
private	void	stopButtonActionPerformed(ActionEvent	e)	{

//	click	of	stop	timing	button
stopTime	=	System.currentTimeMillis();
stopTextField.setText(String.valueOf(stopTime));	elapsedTime	=
(stopTime	-	startTime)	/	1000.0;
elapsedTextField.setText(String.valueOf(elapsedTime));	}

Here,	 when	 the	 Stop	 Timing	 button	 is	 clicked,	 we	 read	 the	 current	 time
(stopTime),	compute	the	elapsed	time	(in	seconds),	and	put	both	values	in	their
corresponding	text	field	controls.

5.	 Finally,	 we	 need	 code	 in	 the	 actionPerformed	 method	 for	 the	 exitButton
control.	 Add	 the	 listener:	 exitButton.addActionListener(new
ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
exitButtonActionPerformed(e);

}

});

Now,	add	the	method:

private	void	exitButtonActionPerformed(ActionEvent	e)	{
System.exit(0);

}

This	routine	simply	closes	the	frame	once	the	Exit	button	is	clicked.

For	reference,	the	complete,	final	Stopwatch.java	code	is	(newly	added	code	is
shaded):	/	*

*	Stopwatch.java

*/

package	stopwatch;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	Stopwatch	extends	JFrame

{

//	declare	controls	used
JButton	startButton	=	new	JButton();
JButton	stopButton	=	new	JButton();
JButton	exitButton	=	new	JButton();
JLabel	startLabel	=	new	JLabel();
JLabel	stopLabel	=	new	JLabel();
JLabel	elapsedLabel	=	new	JLabel();;
JTextField	startTextField	=	new	JTextField();	JTextField	stopTextField	=
new	JTextField();	JTextField	elapsedTextField	=	new	JTextField();
//	declare	class	level	variables
long	startTime;
long	stopTime;
double	elapsedTime;

public	static	void	main(String	args[])

{

new	Stopwatch().show();

}

public	Stopwatch()

{

//	frame	constructor
setTitle("Stopwatch	Application");
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)	{
exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	//	add	controls
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();
startButton.setText("Start	Timing");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(startButton,	gridConstraints);
startButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
startButtonActionPerformed(e);

}

});

stopButton.setText("Stop	Timing");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(stopButton,	gridConstraints);
stopButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
stopButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
getContentPane().add(exitButton,	gridConstraints);
exitButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
exitButtonActionPerformed(e);

}

});

startLabel.setText("Start	Time");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
getContentPane().add(startLabel,	new	GridBagConstraints());

stopLabel.setText("Stop	Time");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
getContentPane().add(stopLabel,	gridConstraints);
elapsedLabel.setText("Elapsed	Time	(sec)");	gridConstraints.gridx	=
1;
gridConstraints.gridy	=	2;
getContentPane().add(elapsedLabel,	gridConstraints);
startTextField.setText("");
startTextField.setColumns(15);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
getContentPane().add(startTextField,	new	GridBagConstraints());

stopTextField.setText("");
stopTextField.setColumns(15);

gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
getContentPane().add(stopTextField,	gridConstraints);

elapsedTextField.setText("");
elapsedTextField.setColumns(15);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
getContentPane().add(elapsedTextField,	gridConstraints);	pack();

}

private	void	startButtonActionPerformed(ActionEvent	e)	{
//	click	of	start	timing	button
startTime	=	System.currentTimeMillis();
startTextField.setText(String.valueOf(startTime));
stopTextField.setText("");
elapsedTextField.setText("");

}

	
private	void	stopButtonActionPerformed(ActionEvent	e)	{

//	click	of	stop	timing	button
stopTime	=	System.currentTimeMillis();
stopTextField.setText(String.valueOf(stopTime));	elapsedTime	=
(stopTime	-	startTime)	/	1000.0;
elapsedTextField.setText(String.valueOf(elapsedTime));	}

	
private	void	exitButtonActionPerformed(ActionEvent	e)	{

System.exit(0);

}

	

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Study	this	code	to	see	where	all	the	methods	go.

Now,	 run	 the	 application	 (press	 <F6>).	 Try	 it	 out.	 If	 your	 application	 doesn’t
run,	recheck	to	make	sure	the	code	is	typed	properly.	Save	your	application.	This
is	 saved	 as	 Stopwatch	 Project	 in	 the	 Projects	 program	 group	 in
\HomeJava\HomeJava	 Projects\	 folder.	 Here’s	 what	 I	 got	 when	 I	 tried:	

If	 you	 have	 the	 time,	 here	 are	 some	 other	 things	 you	 may	 try	 with	 the
Stopwatch.	To	make	these	changes	will	require	research	on	your	part	(use	web
sites,	other	books,	other	programmers)	to	find	answers.	This	is	an	important	skill
to	have	–	how	to	improve	existing	applications	by	discovering	new	things.	The
solutions	 to	 the	problems	and	exercises	at	 the	end	of	 this	class’	notes	can	also
shed	some	light	on	these	challenges:

A.	Try	changing	the	frame	background	color.

B.	Notice	you	can	press	the	‘Stop	Timing’	button	before	the	‘Start	Timing’
button.	This	shouldn’t	be	so.	Change	the	application	so	you	can’t	do	this.
And	 make	 it	 such	 that	 you	 can’t	 press	 the	 ‘Start	 Timing’	 until	 ‘Stop
Timing’	has	been	pressed.	Hint:	Look	at	the	button	enabled	property.

C.	Can	you	think	of	how	you	can	continuously	display	the	‘End	Time’	and

‘Elapsed	Time’?	This	is	a	little	tricky	because	of	the	event-driven	nature
of	Java.	Look	at	the	Timer	class	(do	a	little	Java	research).	By	setting	the
delay	property	of	this	class	to	1000,	it	will	generate	its	own	events	every
one	 second.	 Put	 code	 similar	 to	 that	 in	 the	 event	 method	 for	 the
stopButton	 in	 the	 Timer	 class’	 actionPerformed	 method	 and	 see	 what
happens.	Also,	see	the	exercise	at	the	end	of	the	class	for	help	on	this	one.

Chapter	Review
After	completing	this	chapter,	you	should	understand:

➢	The	prerequisites	for	this	course	➢	How	to	use	NetBeans	to	build,	run	an
application	➢	The	structure	of	a	Java	GUI	application	➢	The	three	steps
in	building	a	Java	GUI	application	➢	How	to	create	a	frame	➢	How	to
place	a	control	on	the	frame	using	the	GridBagLayout	➢	Proper	control
naming	 convention	➢	 How	 to	 add	 event	 listeners	 and	 event	 methods
➢	How	to	add	code	to	event	methods

2

DualMode	Stopwatch	Project

Review	and	Preview
We’ve	 completed	 our	 review	 of	 building	 Java	 GUI	 projects	 using
NetBeans	 (or	 any	 IDE	 you	 choose).	 We	 now	 start	 building	 some
projects.	For	each	project	built,	we	provide	step-by-step	instructions	in
designing	 and	 building	 the	 form’s	 graphic	 interface	 and	 detailed
explanations	of	the	code	behind	the	projects.

The	 first	 project	we	 build	 is	 a	DualMode	 Stopwatch	 that	 allows	 you	 to	 time
tasks	 you	 may	 be	 doing.	 It	 is	 similar	 to	 the	 simple	 stopwatch	 built	 in	 the
introduction.

Project	Design	Considerations
Before	building	this	first	project,	let’s	look	at	some	of	the	things	that	should	be
considered	to	make	a	useful	project.	A	first	consideration	should	be	to	determine
what	processes	and	methods	you	want	your	application	to	perform.	What	are	the
inputs	and	outputs?	Develop	a	framework	or	flow	chart	of	all	your	application's
processes.

Decide	what	controls	you	need.	Do	the	built-in	Java	controls	and	methods	meet
your	 needs?	Do	 you	 need	 to	 develop	 some	 controls	 or	methods	 of	 your	 own?
You	can	design	and	build	your	own	controls	using	Java,	but	that	topic	is	beyond
the	 scope	 of	 this	 course.	 The	 skills	 gained	 in	 this	 course,	 however,	 will	 be
invaluable	if	you	want	to	tackle	such	a	task.

Design	your	user	interface.	What	do	you	want	your	form	to	look	like?	Consider
appearance	 and	 ease	 of	 use.	 Make	 the	 interface	 consistent	 with	 other
applications.	Familiarity	is	good	in	program	design.

Write	your	code.	Make	your	code	readable	and	traceable	-	future	code	modifiers
(including	 yourself)	 will	 thank	 you.	 Consider	 developing	 reusable	 code	 -
modules	with	utility	outside	your	current	development.	This	will	save	you	time
in	future	developments.

Make	your	code	 'user-friendly.'	Make	operation	of	your	application	obvious	 to
the	user.	Step	the	user	through	its	use.	Try	to	anticipate	all	possible	ways	a	user
can	mess	up	in	using	your	application.	It's	fairly	easy	to	write	an	application	that
works	properly	when	the	user	does	everything	correctly.	It's	difficult	to	write	an
application	that	can	handle	all	the	possible	wrong	things	a	user	can	do	and	still
not	bomb	out.

Debug	 your	 code	 completely	 before	 giving	 it	 to	 others.	There's	 nothing	worse
than	having	a	user	call	you	to	point	out	flaws	in	your	application.	A	good	way	to
find	 all	 the	 bugs	 is	 to	 let	 several	 people	 try	 the	 code	 -	 a	 mini	 beta-testing
program.

DualMode	Stopwatch	Project	Preview	In
this	chapter,	we	will	build	a	dualmode	stopwatch.	The	stopwatch	can	be	started
and	stopped	when	desired.	Two	times	are	tracked:	the	time	that	elapses	while	the
stopwatch	is	active	(the	running	time)	and	the	total	time	elapsed	between	first
starting	and	finally	stopping	the	stopwatch.

The	 finished	 project	 is	 saved	 as	 DualModeStopwatch	 in	 the
\HomeJava\HomeJava	Projects\	project	group.	Start	NetBeans	(or	your	IDE).
Open	the	specified	project	group.	Make	DualModeStopwatch	the	main	project.
Run	 the	 project.	 You	 will	 see:	

Two	 text	 field	 controls	 are	 used	 for	 time	 displays	 (two	 labels	 provide	 titling
information).	Three	button	controls	 start,	 stop	and	 reset	 the	 stopwatch	and	one
stops	the	application.

The	stopwatch	appears	 in	 its	 ‘initial’	state,	with	 the	displayed	times	set	at	zero

and	the	Reset	button	disabled:	

Click	the	Start	button	to	start	the	stopwatch.	Its	caption	will	change	(now
reading	Stop)	and	the	Exit	button	will	become	disabled	-	the	two	displayed
times	will	be	the	same	(updating	every	second).	We	call	this	the	‘running’

state:	

At	 some	 point,	 click	 Stop.	 When	 I	 did,	 the	 form	 appears	 as:	

At	this	point	(‘stopped’	state),	all	buttons	become	enabled	and	you	have	three
options.	You	 can	 click	Exit	 to	 stop	 the	 project.	You	 can	 click	Reset	 to	 set
both	times	back	to	zero	and	return	the	project	to	its	initial	state.	Or,	you	can
click	the	button	now	labeled	Restart	to	restart	the	timer.	When	I	do	this,	after

a	short	wait,	I	get:	

The	stopwatch	is	running	again,	but	the	two	displayed	times	are	different.	The
Total	Time	is	the	amount	of	time	elapsed	since	we	first	started	the	stopwatch.
The	 Running	 Time	 is	 the	 total	 time	 less	 time	 when	 the	 stopwatch	 is	 in
stopped	 mode.	 Based	 on	 these	 values,	 this	 stopwatch	 has	 spent	 0:32	 (32
seconds)	waiting	around.

Continue	starting,	stopping,	restarting	and	resetting	the	stopwatch	to	understand
its	 operation.	Click	Exit	when	you’re	 done	 to	 stop	 the	 project.	Open	 the	 code

window	and	skim	over	the	code,	if	you	like.

You	will	now	build	this	project	in	stages.	As	you	build	Java	projects,	we	always
recommend	 taking	 a	 slow,	 step-by-step	 process.	 It	 minimizes	 programming
errors	 and	 helps	 build	 your	 confidence	 as	 things	 come	 together	 in	 a	 complete
project.	This	is	the	approach	we	will	take	on	all	projects	in	these	notes.

We	address	 frame	design.	We	present	 the	 controls	needed	 to	build	 the	 frame,
establish	 initial	 control	 properties	 and	 discuss	 how	 to	 change	 the	 state	 of	 the
controls.	 And,	 we	 address	 code	 design.	We	 discuss	 how	 to	 do	 the	 necessary
mathematics	 to	 determine	 the	 various	 displayed	 times.	 Before	 diving	 into	 this
first	project,	however,	we	review	some	of	the	‘tricks’	in	using	the	grid	bag	layout
manager.

Frame	Design	–	GridBagLayout
Manager	We	use	the	GridBagLayout	manager	to	set	up	our	Java	GUI
projects	(you	can,	of	course,	choose	to	use	any	layout	manager	you	want).
Recall,	with	this	manager,	a	grid	is	used	to	place	controls:	

The	GridBagConstraints	object	is	used	for	control	placement	and
positioning	within	the	various	grid	elements.	Controls	are	placed	in	this	grid
by	referring	to	a	particular	column	(gridx	location)	and	row	(gridy	location).
We	have	seen	that	the	grid	(and	frame)	automatically	grows	as	controls	are
added.	Column	widths	are	set	by	the	“widest”	control	in	a	particular	column.
And,	row	heights	are	set	by	the	“tallest”	control	in	a	particular	row.

There	are	other	variables	associated	with	GridBagConstraints	that	can	be	used
to	 adjust	 control	 size	 and,	 hence,	 associated	 column,	 row,	 and	 frame	 size.	 A
control	 can	 occupy	 more	 than	 one	 column	 or	 row.	 The	 number	 of	 columns
spanned	 by	 a	 control	 is	 set	 with	 the	 gridwidth	 variable;	 the	 number	 of	 rows
spanned	 is	set	with	 the	gridheight	variable.	By	default,	a	control	 fills	one	row
and	 one	 column.	 If	 we	 have	 a	 GridBagConstraints	 object	 named
gridConstraints,	a	control	will	occupy	two	rows	and	three	columns,	starting	in
the	 second	 column	 (gridx	 =	 1)	 and	 fourth	 row	 (gridy	 =	 3),	 with	 this	 code:
gridConstraints.gridx	 =	 1;	 gridConstraints.gridy	 =	 3;
gridConstraints.gridheight	 =	 2;	 gridConstraints.gridwidth	 =	 3;	 In	 our
example	 grid,	 this	 control	 would	 be	 placed	 like	 this:	

A	particular	control	may	completely	fill	 its	 region	or	may	not.	 If	 the	control	 is
smaller	than	its	allocated	region,	its	dimensions	may	be	adjusted	to	fill	the	region
–	use	the	fill	variable.	There	are	four	values:

GridBagConstraints.NONE Control	is	not	resized	(default
value)

GridBagConstraints.HORIZONTAL Control	width	fills	display	area.
GridBagConstraints.VERTICAL Control	height	fills	display	area.
GridBagConstraints.BOTH Control	fills	entire	display	area.

With	our	example	gridConstraints	object,	a	control	will	grow	to	fill	the
region	width	using:	gridConstraints.fill	=
GridBagConstraints.HORIZONTAL;	This	control	would	look	like	this	in

its	grid	region:	

Smaller	 changes	 in	 control	 size	 can	 be	 made	 using	 the	 ipadx	 and	 ipady
variables.	These	determine	how	much	a	control	size	is	to	be	increased	beyond	its
minimum	size	(in	each	direction).	To	add	five	pixels	to	the	width	and	height	of	a
control	 using	 our	 gridConstraints	 example:	 gridConstraints.ipadx	 =	 5;
gridConstraints.ipady	=	5;	If	you	choose	not	to	expand	a	control	to	fill	its	area,
its	position	within	 its	 allocated	area	 is	 set	with	 the	anchor	 variable.	There	 are
nine	possible	values:

GridBagConstraints.NORTH Control	is	centered	at	top

GridBagConstraints.NORTHEAST Control	is	in	upper	right	corner
GridBagConstraints.EAST Control	is	at	right,	centered

vertically
GridBagConstraints.SOUTHEAST Control	is	in	lower	right	corner
GridBagConstraints.SOUTH Control	is	centered	at	bottom
GridBagConstraints.SOUTHWEST Control	is	in	lower	left	corner
GridBagConstraints.WEST Control	is	at	left,	centered

vertically
GridBagConstraints.NORTHWEST Control	is	in	upper	left	corner
GridBagConstraints.CENTER Control	is	centered	horizontally

and	vertically

To	center	a	control	(in	both	directions)	in	its	display	area,	use:
gridConstraints.anchor	=	GridBagConstraints.CENTER;	This	control

would	look	like	this	in	its	grid	region:	

If	 a	 control	 completely	 fills	 its	 allocated	 display	 area,	 a	 border	 region	 (free
space)	can	be	established	around	the	control	using	the	Insets	object.	Four	values
are	used	to	define	the	top,	left,	bottom	and	right	side	margins	from	the	side	of
the	display	area.	The	default	is	Insets(0,	0,	0,	0).	With	our	example,	if	we	want
10	pixels	of	space	at	the	top	and	bottom,	20	on	the	left	and	30	on	the	right,	we
would	 use:	gridConstraints.insets	=	new	 Insets(10,	 20,	 10,	 30);	 This	 control
would	 look	 something	 like	 this	 in	 its	 grid	 region:	

Once	the	gridConstraints	are	established	for	a	control,	it	is	added	to	the	frame’s
content	pane	using	the	add	method.	If	the	control	is	myControl,	the	code	syntax
is:	getContentPane().add(myControl,	gridConstraints);	Many	 times,	we	add
controls	 to	 a	 panel	 control	 (with	 its	 own	GridBayLayout	 manager)	 within	 a
frame.	 If	 the	 panel	 is	 named	 myPanel,	 the	 code	 to	 add	 myControl	 is:

myPanel.add(myControl,	 gridConstraints);	 I	 think	 you	 see	 the	 flexibility
available	with	the	GridBagLayout	manager.	You	are	encouraged	to	learn	these
ideas	and	use	them	to	“beautify”	your	GUI	interfaces.	Remember	to	establish	all
grid	constraint	values	before	adding	a	control	to	the	grid.

Building	an	interface	is	an	“art,”	not	a	science.	You	will	see	the	process	involves
lots	 of	 trial	 and	 error	 and	 adjustments.	 And	 sometimes,	 you	 get	 results	 you
would	 never	 expect	 –	 components	 may	 not	 appear	 as	 you	 wish	 or	 may	 not
appear	 at	 all!	 The	 bottom	 line	 is	 –	 once	 all	 adjustments	 are	 made,	 your
completed	frame	size	is	established.	Let’s	look	at	one	final	task	-	how	to	center
the	frame	in	the	screen.

First,	to	place	a	frame	(width	by	height	in	size)	at	a	horizontal	position	left	and
vertical	position	top,	we	use	the	setBounds	method:	setBounds(left,	top,	width,
height);	All	 the	 dimensions	 are	 int	 types	 and	measured	 in	 pixels.	To	 center	 a
frame	in	the	computer	screen,	we	need	to	know	find	left	and	top.

To	find	the	centering	position,	we	need	two	things:	the	dimensions	of	the	frame
(use	getWidth	and	getHeight	methods)	and	 the	dimensions	of	 the	screen.	The
dimensions	of	the	screen	are	held	in	the	frame’s	‘toolkit’.	A	Dimension	object
holds	 the	 information	 we	 need.	 To	 retrieve	 this	 object,	 use:	 Dimension
screenSize	=
Toolkit.getDefaultToolkit().getScreenSize();	With	this,	screenSize.width
holds	the	screen	width	and	screenSize.height	holds	the	screen	height.	So,	the
code	to	center	the	frame	using	setBounds	is:	setBounds((int)	(0.5
(screenSize.width	-	getWidth())),	(int)	(0.5	(screenSize.height	-
getHeight())),	getWidth(),	getHeight());	This	code	needs	to	be	after	the	pack
method	in	the	code	establishing	the	frame,	so	that	proper	frame	size	is	used.
We’ll	use	this	centering	code	in	every	application	built	in	the	remainder	of
this	course.	Any	initializations	for	a	project	will	be	placed	after	this	line	in	the
frame	constructor.

Stopwatch	Frame	Design
We	 can	 begin	 building	 the	 DualMode	 Stopwatch	 Project.	 Before	 starting,
make	sure	you	have	established	a	project	group	on	your	computer	 for	building
Java	projects.	Always	save	your	projects	in	this	project	group.	Do	not	save	them
in	 the	 project	 group	 used	 in	 these	 notes	 (\HomeJava\HomeJava	 Projects\
folder).	Leave	this	project	group	intact	so	you	can	always	reference	the	finished
projects,	if	needed.

Let’s	build	the	frame.	Start	a	new	project	 in	your	Java	project	group	–	name	it
DualModeStopwatch.	Delete	default	code	in	file	named
DualModeStopwatch.java.	Once	started,	we	suggest	you	immediately	save	the
project	with	the	name	you	chose.	This	sets	up	the	folder	and	file	structure	needed
for	 your	 project.	 Build	 the	 basic	 frame	 with	 these	 properties:
DualModeStopwatchFrame:

title Stopwatch
resizable false

The	code	is:

/	*

*	DualModeStopwatch.java

*/

package	dualmodestopwatch;	import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	DualModeStopwatch	extends	JFrame	{
public	static	void	main(String	args[])	{

//	create	frame
new	DualModeStopwatch().show();	}

public	DualModeStopwatch()	{
//	frame	constructor
setTitle("Stopwatch");
setResizable(false);
addWindowListener(new	WindowAdapter()	{

public	void	windowClosing(WindowEvent	evt)	{
exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
GridBagConstraints	gridConstraints;	pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	setBounds((int)	(0.5
(screenSize.width	-	getWidth())),	(int)	(0.5	(screenSize.height	-
getHeight())),	getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	evt)	{
System.exit(0);

}

}

We	use	similar	code	to	start	each	project.	It	builds	the	frame,	sets	up	the
layout	manager	and	includes	code	to	exit	the	application.	Run	the	code	to
make	sure	the	frame	(at	least,	what	there	is	of	it	at	this	point)	appears	and	is

centered	on	the	screen:	

Let’s	populate	our	frame	with	other	controls.	All	code	for	creating	the	frame
and	placing	controls	(except	declarations)	goes	in	the	DualModeStopwatch
constructor.

All	 controls	 go	 directly	 on	 the	 frame.	 The	GridBagLayout	 for	 the	 frame	 is:	

The	label	and	text	field	controls	are	used	to	display	times	and	their	title
information.	The	buttons	(one	to	start/stop/restart,	one	to	reset	and	one	to	exit
the	project)	are	used	to	control	operation	of	the	stopwatch.	We’ll	add	a	few
controls	at	a	time	to	help	you	get	used	to	the	process	(you	can	also	use	lots	of
cut	and	paste	for	similar	controls).	Let’s	add	the	first	label/text	field	pair.

The	control	properties	are:

runningTimeLabel:
text Running	Time:
font Arial,	Plain,	Size	14
gridx 0
gridy 0
insets 10,	25,	0,	0
	 	
runningTimeTextField: 	
size 150,	50
editable false
background White
foreground Blue
text 00:00:00
horizontalAlignment CENTER
font Arial,	Bold,	Size	24
gridx 0
gridy 1
gridwidth 2

insets 0,	10,	0,	10

These	controls	are	declared	using:	JLabel	runningTimeLabel	=	new	JLabel();
JTextField	 runningTimeTextField	 =	 new	 JTextField();	 The	 controls	 are
placed	 in	 the	 frame	 using:	 runningTimeLabel.setText("Running	 Time:");
runningTimeLabel.setFont(new	 Font("Arial",	 Font.PLAIN,	 14));
gridConstraints	 =	 new	 GridBagConstraints();	 gridConstraints.gridx	 =	 0;
gridConstraints.gridy	=	0;	gridConstraints.insets	=	new	Insets(10,	25,	0,	0);
getContentPane().add(runningTimeLabel,	 gridConstraints);
runningTimeTextField.setPreferredSize(new	 Dimension(150,	 50));
runningTimeTextField.setEditable(false);
runningTimeTextField.setBackground(Color.WHITE);
runningTimeTextField.setForeground(Color.BLUE);
runningTimeTextField.setText("00:00:00");
runningTimeTextField.setHorizontalAlignment(SwingConstants.CENTER);
runningTimeTextField.setFont(new	 Font("Arial",	 Font.BOLD,	 24));
gridConstraints	 =	 new	 GridBagConstraints();	 gridConstraints.gridx	 =	 0;
gridConstraints.gridy	 =	 1;	 gridConstraints.gridwidth	 =	 2;
gridConstraints.insets	 =	 new	 Insets(0,	 10,	 0,	 10);
getContentPane().add(runningTimeTextField,	 gridConstraints);	 As	 a
reminder	of	where	particular	code	segments	go,	here	is	the	complete	code	at	this
point	(additions	are	shaded):	/	*
*	DualModeStopwatch.java

*/

package	dualmodestopwatch;	import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	DualModeStopwatch	extends	JFrame	{
JLabel	runningTimeLabel	=	new	JLabel();	JTextField
runningTimeTextField	=	new	JTextField();

public	static	void	main(String	args[])	{
//	create	frame
new	DualModeStopwatch().show();	}

public	DualModeStopwatch()	{
//	frame	constructor
setTitle("Stopwatch");
setResizable(false);
addWindowListener(new	WindowAdapter()	{

public	void	windowClosing(WindowEvent	evt)	{
exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
GridBagConstraints	gridConstraints;
runningTimeLabel.setText("Running	Time:");
runningTimeLabel.setFont(new	Font("Arial",	Font.PLAIN,	14));
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;	gridConstraints.gridy	=	0;	gridConstraints.insets	=	new	Insets(10,
25,	0,	0);	getContentPane().add(runningTimeLabel,	gridConstraints);
runningTimeTextField.setPreferredSize(new	Dimension(150,	50));
runningTimeTextField.setEditable(false);
runningTimeTextField.setBackground(Color.WHITE);
runningTimeTextField.setForeground(Color.BLUE);
runningTimeTextField.setText("00:00:00");
runningTimeTextField.setHorizontalAlignment(SwingConstants.CENTER);
runningTimeTextField.setFont(new	Font("Arial",	Font.BOLD,	24));
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;	gridConstraints.gridy	=	1;	gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(0,	10,	0,	10);
getContentPane().add(runningTimeTextField,	gridConstraints);

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	setBounds((int)	(0.5
(screenSize.width	-	getWidth())),	(int)	(0.5	(screenSize.height	-
getHeight())),	getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	evt)	{
System.exit(0);

}

}

Run	the	project	to	see	the	first	two	controls:	

The	next	two	control	properties	are:

totalTimeLabel: 	
text Total	Time:
font Arial,	Plain,	Size	14
gridx 0
gridy 2
insets 10,	10,	0,	10
	 	
totalTimeTextField: 	
size 150,	50
editable false
background White
foreground Red
text 00:00:00
horizontalAlignment CENTER
font Arial,	Bold,	Size	24
gridx 0
gridy 3
gridwidth 2
insets 0,	10,	15,	10

Notice	these	are	nearly	identical	to	the	two	previous	controls	(a	good	time	to	try
your	 cut	 and	paste	 skills).	Declare	 the	 controls:	Label	 totalTimeLabel	=	new
JLabel();	TextField	totalTimeTextField	=	new	JTextField();	Add	the	controls
with	 this	 code	 (goes	 after	 the	 code	 adding	 the	 two	 previous	 controls):
totalTimeLabel.setText("Total	 Time:");	 totalTimeLabel.setFont(new
Font("Arial",	 Font.PLAIN,	 14));	 gridConstraints	 =	 new
GridBagConstraints();	 gridConstraints.gridx	 =	 0;	 gridConstraints.gridy	 =
2;	 gridConstraints.insets	 =	 new	 Insets(10,	 10,	 0,	 10);
getContentPane().add(totalTimeLabel,	 gridConstraints);
totalTimeTextField.setPreferredSize(new	 Dimension(150,	 50));
totalTimeTextField.setEditable(false);
totalTimeTextField.setBackground(Color.WHITE);
totalTimeTextField.setForeground(Color.RED);
totalTimeTextField.setText("00:00:00");
totalTimeTextField.setHorizontalAlignment(SwingConstants.CENTER);
totalTimeTextField.setFont(new	 Font("Arial",	 Font.BOLD,	 24));
gridConstraints	 =	 new	 GridBagConstraints();	 gridConstraints.gridx	 =	 0;
gridConstraints.gridy	 =	 3;	 gridConstraints.gridwidth	 =	 2;
gridConstraints.insets	 =	 new	 Insets(0,	 10,	 15,	 10);
getContentPane().add(totalTimeTextField,	 gridConstraints);	Run	 to	 see	 the

newly	added	controls:	

Lastly,	let’s	add	the	three	button	controls.

The	three	button	control	properties	are:

startStopButton: 	
text Start
gridx 0
gridy 4

	 	
resetButton: 	
text Reset
enabled false
gridx 1
gridy 4
insets 0,	0,	0,	25
	 	
exitButton: 	
text Exit
gridx 1
gridy 5
insets 10,	0,	10,	25

The	 controls	 are	 declared	 using:	 JButton	 startStopButton	 =	 new	 JButton();
JButton	resetButton	=	new	JButton();	JButton	exitButton	=	new	JButton();
And	 added	 to	 the	 frame	 using:	 startStopButton.setText("Start");
gridConstraints	 =	 new	 GridBagConstraints();	 gridConstraints.gridx	 =	 0;
gridConstraints.gridy	 =	 4;	 getContentPane().add(startStopButton,
gridConstraints);	 startStopButton.addActionListener(new	ActionListener()
{

public	void	actionPerformed(ActionEvent	e)	{
startStopButtonActionPerformed(e);	}

});

resetButton.setText("Reset");	resetButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	4;	gridConstraints.insets	=	new	Insets(0,	0,	0,	25);
getContentPane().add(resetButton,	gridConstraints);
resetButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
resetButtonActionPerformed(e);	}

});

exitButton.setText("Exit");	gridConstraints	=	new
GridBagConstraints();	gridConstraints.gridx	=	1;	gridConstraints.gridy
=	5;	gridConstraints.insets	=	new	Insets(10,	0,	10,	25);
getContentPane().add(exitButton,	gridConstraints);
exitButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
exitButtonActionPerformed(e);	}

});

This	code	also	adds	listeners	for	each	button.	Add	these	empty	methods:	private
void	startStopButtonActionPerformed(ActionEvent	e)	{

}

private	void	resetButtonActionPerformed(ActionEvent	e)	{

}

private	void	exitButtonActionPerformed(ActionEvent	e)	{

}

Add	code	in	the	proper	locations.	Run	to	see:	

This	completes	the	frame	design.

We	will	begin	writing	code	for	the	application.	We	will	write	the	code	in	several
steps.	As	a	first	step,	we	will	write	 the	code	that	 takes	 the	stopwatch	from	this
‘initial’	state	to	its	‘running’	state,	following	clicking	of	the	Start	button.	During
the	 code	development	process,	 recognize	you	may	modify	 a	particular	method
several	times	before	arriving	at	the	finished	product.

Code	Design	–	Initial	to	Running	State
Even	though	we	have	yet	to	write	any	code,	notice	you	can	run	the	stopwatch
project	to	make	sure	the	form	is	properly	initialized.	Initially,	we	see	the

stopwatch	looks	like	this:	

We	have	two	options	at	this	point	–	either	click	startStopButton	(the	button
with	Start)	or	click	exitButton	(the	button	with	Exit).	(Note	the	Reset	button
is	initially	disabled	–	you	can’t	click	this	button	until	the	stopwatch	has	been
running.)	We	write	code	for	both	options.

First,	 the	 exitButtonActionPerformed	 method	 is	 simply:	 private	 void
exitButtonActionPerformed(ActionEvent	e)	{

System.exit(0);

}

This	simply	says	whenever	the	Exit	button	is	clicked,	the	project	ends.	Add
this	code	to	the	code	window.

When	 the	 user	 clicks	 the	 Start	 button	 in	 ‘initial’	 state,	 several	 things	 must
happen	to	switch	the	stopwatch	to	‘running’	state:

➢	Determine	the	starting	time.
➢	Initialize	the	stopped	time	to	zero.
➢	Change	the	text	property	of	startStopButton	to	Stop.

➢	Disable	exitButton.

We	will	define	two	class	level	variables	to	track	the	starting	time	and	the	stopped
time:	long	startTime;
long	stoppedTime;

Times	 will	 be	 established	 using	 the	 Java	 System.currentTimeMillis()	 method
which	 returns	 the	 current	 time	 (in	milliseconds).	 The	 returned	 value	 is	 a	 long
type	value.	Place	these	statements	in	the	declarations	area	under	the	declarations
for	 the	 controls	 The	 code	 for	 the	 startStopButtonActionPerformed	 method
that	 implements	 the	 listed	 steps	 is	 then:	 private	 void
startStopButtonActionPerformed(ActionEvent	e)	{
//	 initial	 to	 running	 state	 startTime	 =	 System.currentTimeMillis();
stoppedTime	=	0;
startStopButton.setText("Stop");	exitButton.setEnabled(false);	}

Again,	note	use	of	the	System.currentTimeMillis()	to	obtain	the	starting	time.

Save	 and	 run	 the	 project.	 Click	 the	 Start	 button	 and	 you	 should	 see:	

The	project	is	now	in	‘running’	state.	However,	nothing	is	seen	in	the	displays.
We	need	to	write	code	to	update	 the	displayed	times	every	second.	To	do	this,
we	use	the	Java	timer	object.	Since	this	may	not	be	a	familiar	topic,	we’ll	do	a
quick	review.

Code	Design	-	Timer	Object
A	 timer	object	 generates	 an	 event	 every	delay	milliseconds.	 The	 code	 in	 the
timer’s	 corresponding	 actionPerformed	 method	 is	 executed	 with	 each	 such
event.	 Other	 control	 events	 can	 be	 detected	 while	 the	 timer	 object	 processes
events	 in	 the	background.	This	multi-tasking	allows	more	 than	one	 thing	 to	be
happening	in	your	application.

Timer	Properties:

delay Number	of	milliseconds	(there	are	1000
milliseconds	in	one	second)	between	each
invocation	of	the	timer	object’s	actionPerformed
method.

running Boolean	value	indicating	if	timer	is	running.

Timer	Methods:

start Used	to	start	timer	object.
stop Used	to	stop	timer.
isRunning Method	that	returns	boolean	value	indicating

whether	timer	is	running	(generating	events).

Timer	Events:

actionPerformed Event	method	invoked	every	delay	milliseconds
while	timer	object’s	running	property	is	true.

To	use	a	timer	object,	you	first	declare	it	using	the	standard	syntax.	For	a	timer
named	myTimer,	the	code	is:	Timer	myTimer;

The	constructor	for	the	timer	object	specifies	the	delay	and	adds	the	event
(actionPerformed)	method,	using	an	ActionListener,	in	a	single	step.	The
syntax	is:	myTimer	=	new	Timer(delay,	new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{

myTimerActionPerformed(e);	}

});

And,	the	corresponding	event	code	would	be	placed	in	a
myTimerActionPerformed	method:	private	void
myTimerActionPerformed(ActionEvent	e)	{

[method	code]

}

To	use	the	timer	object,	we	add	it	to	our	application	the	same	as	any	object.	You
write	code	in	the	timer	object’s	actionPerformed	method.	This	is	the	code	you
want	to	repeat	every	delay	milliseconds	You	‘turn	on’	a	timer	in	code	using	the
start	method:	myTimer.start();

and	it	is	turned	off	using	the	stop	method:	myTimer.stop();

To	check	if	the	timer	is	on,	use	the	isRunning	method:
myTimer.isRunning();

If	this	method	returns	a	boolean	true,	the	timer	is	on.

Applications	 can	 (and	many	 times	 do)	 have	multiple	 timer	 objects.	 You	 need
separate	 timer	 objects	 (and	 event	methods)	 if	 you	 have	 events	 that	 occur	with
different	 regularity	 (different	 delay	 values).	 Timer	 objects	 are	 used	 for	 two
primary	 purposes.	 First,,	 you	 can	 use	 a	 timer	 object	 to	 implement	 some	 ‘wait
time’	established	by	the	delay	property.	In	this	case,	you	simply	start	the	timer
and	 when	 the	 delay	 is	 reached,	 have	 the	 actionPerformed	 event	 turn	 its
corresponding	 timer	 off.	 Second,	 you	 use	 timer	 objects	 to	 periodically	 repeat
some	 code	 segment	 (what	 we’ll	 do	 in	 this	 project).	 This	 is	 very	 useful	 for
graphics	 animation.	 We	 will	 do	 this	 in	 the	 remaining	 three	 projects	 in	 these
notes.

Typical	use	of	timer	object:

➢	 Declare	 timer,	 assigning	 an	 identifiable	 name.	 For	 myTimer,	 the
statement	is:	Timer	myTimer;

➢	 Establish	 a	 delay	 value.	 Create	 the	 timer	 using	 specified	 constructor,
adding	the	actionPerformed	method.	Write	the	method	code.

➢	At	some	point	in	your	application,	start	the	timer.	Also,	have	capability	to
turn	the	timer	off,	when	desired.

Code	Design	–	Update	Display
Let’s	add	a	timer	object	(displayTimer)	 to	the	project	 to	display	the	time.	Use
this	class	level	declaration:	Timer	displayTimer;

Add	the	object	with	this	code:	displayTimer	=	new	Timer(1000,	new
ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
displayTimerActionPerformed(e);	}

});

Note	we	set	the	timer	object’s	delay	property	to	1000	milliseconds,	or	1	second.
Hence,	 every	 second,	 the	 timer	 object’s	ActionPerformed	method	 is	 invoked.
Each	time	this	happens,	we	need	to:

➢	Determine	the	current	time.
➢	Subtract	the	current	time	from	the	start	time	to	obtain	the	total	time.
➢	Subtract	the	stopped	time	from	the	total	time	to	get	the	running	time.
➢	Display	the	total	and	running	times	in	the	appropriate	text	field	controls.

We	 will	 use	 a	 general	 method	 (HMS)	 to	 display	 tie	 values	 in	 the	 desired
hours:minutes:seconds	format:	private	String	HMS(long	tms)	{

int	h;
int	m;
int	s;
double	t;
t	=	tms	/	1000.0;
//	Break	time	down	into	hours,	minutes,	and	seconds	h	=	(int)	(t	/
3600);
m	=	(int)	((t	-	h	*	3600)	/	60);	s	=	(int)	(t	-	h	*	3600	-	m	*	60);	//	Format
time	as	string
return(new	DecimalFormat("00").format(h)	+	":"	+	new

DecimalFormat("00").format(m)	+	":"	+	new

DecimalFormat("00").format(s));	}

In	this	method,	the	time	in	milliseconds	(tms)	is	input	as	an	argument.	Integer
representations	of	the	hours	(h),	minutes	(m)	and	seconds	(s)	are	computed.
The	returned	value	is	a	String	type	in	the	desired	hs:ms:ss	format	for	display.
Work	through	this	method	with	an	example	to	convince	yourself	it	works.
Type	the	method	into	the	code	window.	To	use	the	DecimalFormat	method,
this	code	requires	addition	of	this	import	statement:	import	java.text.*;

The	HMS	method	is	used	in	the	timer	object’s	ActionPerformed	method,	which
has	 the	 steps	 outlined	 earlier.	 The	 displayTimerActionPerformed	 code	 is:
private	void	displayTimerActionPerformed(ActionEvent	e)	{

long	currentTime;
//	Determine	running	and	total	times	currentTime	=
System.currentTimeMillis();	//	Display	times
runningTimeTextField.setText(HMS(currentTime	-	startTime	-

stoppedTime));	totalTimeTextField.setText(HMS(currentTime	-
startTime));	}

You	should	be	able	to	see	how	this	method	computes	the	needed	times	and
displays	them	using	the	HMS	method.	Add	the	method	to	the	stopwatch
project	code	window.

We’re	almost	ready	to	see	times,	we	just	need	to	get	the	timer	started.	Add	the
single	 shaded	 line	 to	 the	 startStopButtonActionPerformed	method	 to	 do	 the
job:	private	void	startStopButtonActionPerformed(ActionEvent	e)	{

//	initial	to	running	state	startTime	=	System.currentTimeMillis();
stoppedTime	=	0;
startStopButton.setText("Stop");	exitButton.setEnabled(false);
displayTimer.start();

}

Code	Design	–	Running	to	Stopped	State
Save	and	run	the	project.	Click	the	Start	button.	The	times	should	now	be

updating	every	second:	

The	project	is	now	in	the	‘running’	state.	Only	one	option	exists	at	this	point	–
click	Stop	to	put	the	stopwatch	in	‘stopped’	state.

When	 a	 user	 clicks	 Stop	 (the	 startStopButton	 button),	 the	 following	 things
need	to	happen:

➢	Determine	the	stop	time	(not	to	be	confused	with	the	stopped	time).
➢	Stop	the	timer	to	stop	updating	the	displays.
➢	 Change	 the	 text	 property	 of	 startStopButton	 to	 Restart	 ➢	 Enable
resetButton.

➢	Enable	exitButton.

We	define	another	class	level	variable	to	store	the	stop	time:	long	stopTime;

Add	this	statement	with	the	other	declarations.

The	button	now	marked	Stop	 is	 the	startStopButton	button.	We	have	already
added	 some	code	 to	 its	ActionPerformed	method	 (when	 the	button	 is	used	 to
start	 the	 stopwatch).	 It	 is	 common	 practice	 to	 have	 one	 button	 control	 have
multiple	purposes	-	we	just	need	to	have	some	way	to	distinguish	which	“mode”
the	button	is	in	when	it	is	clicked.	In	this	project,	we	use	the	text	property	of	the

button.	 If	 the	 text	 property	 is	Start,	we	 switch	 to	 ‘running’	mode.	 If	 the	 text
property	 is	 Stop,	 we	 switch	 to	 ‘stopped’	 mode.	 The	 code	 that	 does	 this	 is
(modifications	 to	 the	 current	 ActionPerformed	 method	 code	 are	 shaded):
private	void	startStopButtonActionPerformed(ActionEvent	e)	{

if	(startStopButton.getText().equals("Start"))	{
//	initial	to	running	state	startTime	=	System.currentTimeMillis();
stoppedTime	=	0;
startStopButton.setText("Stop");	exitButton.setEnabled(false);
displayTimer.start();

}

else	if	(startStopButton.getText().equals("Stop"))	{
//	running	to	stopped	state	stopTime	=
System.currentTimeMillis();	startStopButton.setText("Restart");
resetButton.setEnabled(true);	exitButton.setEnabled(true);
displayTimer.stop();

}

}

Make	the	noted	modifications	to	the	code.

Code	Design	–	Stopped	State
Save	and	run	the	project.	Click	the	Start	button.	Let	the	stopwatch	run	for	a
while,	then	click	Stop.	The	stopwatch	will	go	to	‘stopped’	state:	

In	this	state,	there	are	three	possible	options	–	clicking	Restart
(startStopButton),	clicking	Reset	(resetButton)	or	clicking	Exit
(exitButton).	We’ll	address	each	possibility	in	reverse	order.

If	Exit	is	clicked,	the	project	ends.	We	have	already	coded	the
exitButtonActionPerformed	method.

If	Reset	is	clicked,	we	want	to	return	the	stopwatch	to	its	‘initial’	state.	The
steps	to	do	this	are:

➢	Reset	the	displayed	times	to	00:00:00
➢	 Change	 the	 text	 property	 of	 startStopButton	 to	 Start	 ➢	 Disable
resetButton.

The	resetButtonActionPerformed	method	is	thus:	private	void
resetButtonActionPerformed(ActionEvent	e)	{

//	return	to	initial	state	runningTimeTextField.setText("00:00:00");
totalTimeTextField.setText("00:00:00");
startStopButton.setText("Start");	resetButton.setEnabled(false);	}

If	 Restart	 is	 clicked	 while	 in	 ‘stopped’	 state,	 the
startStopButtonActionPerformed	method	is	processed.	This	is	another	use	for
the	startStopButton	button.	We	need	to	modify	the	code	already	in	that	method
to	 handle	 such	 an	 event	 When	 a	 user	 clicks	 Restart	 (the	 startStopButton
button),	the	following	things	need	to	happen:

➢	Update	(increment)	the	stopped	time	–	add	in	the	difference	between	the
current	 time	 and	 the	 stopTime,	 the	 time	 when	 the	 Stop	 button	 was
clicked.

➢	Start	the	timer.
➢	 Change	 the	 text	 property	 of	 startStopButton	 to	 Stop	 ➢	 Disable
resetButton.

➢	Disable	exitButton.

The	modified	startStopButtonActionPerformed	method	that	implements	these
new	 steps	 (changes	 are	 shaded)	 is:	 private	 void
startStopButtonActionPerformed(ActionEvent	e)	{

if	(startStopButton.getText().equals("Start"))	{
//	initial	to	running	state	startTime	=	System.currentTimeMillis();
stoppedTime	=	0;
startStopButton.setText("Stop");	exitButton.setEnabled(false);
displayTimer.start();

}

else	if	(startStopButton.getText().equals("Stop"))	{
//	running	to	stopped	state	stopTime	=
System.currentTimeMillis();	startStopButton.setText("Restart");
resetButton.setEnabled(true);	exitButton.setEnabled(true);
displayTimer.stop();

}

else	if	(startStopButton.getText().equals("Restart"))	{
//	stopped	to	running	state	stoppedTime	+=
System.currentTimeMillis()	-	stopTime;
startStopButton.setText("Stop");	resetButton.setEnabled(false);

exitButton.setEnabled(false);	displayTimer.start();

}

}

Notice	how	stoppedTime	is	updated.	Implement	the	noted	changes.

Save	 and	 run	 the	 project.	 At	 some	 point,	 click	 Stop.	 When	 I	 did,	 the	 form

appears	as:	

After	a	wait,	click	Restart.	When	I	do	this,	I	get:	

The	stopwatch	is	running	again,	but	the	two	displayed	times	are	different.	The
Total	Time	is	the	amount	of	time	elapsed	since	we	first	started	the	stopwatch.

The	Running	Time	is	the	total	time	less	time	when	the	stopwatch	is	in
stopped	mode.	Based	on	these	values,	this	stopwatch	has	spent	1:04	waiting
around.	Click	Stop	–	make	sure	the	Reset	option	works.

DualMode	Stopwatch	Project	Review	The
DualMode	Stopwatch	project	is	now	complete.	Save	and	run	the	project	and
make	sure	it	works	as	promised.	Check	that	you	can	move	from	state	to	state
correctly.	Use	it	to	time	tasks	as	you	work	on	your	computer.

If	there	are	errors	in	your	implementation,	go	back	over	the	steps	of	frame	and
code	 design.	 Go	 over	 the	 developed	 code	 –	 make	 sure	 you	 understand	 how
different	parts	of	the	project	were	coded.	As	mentioned	in	the	beginning	of	this
chapter,	 the	 completed	 project	 is	 saved	 as	 DualModeStopwatch	 in	 the
\HomeJava\HomeJava	Projects\	folder.

While	completing	this	project,	new	concepts	and	skills	you	should	have	gained
include:

➢	Proper	steps	in	project	design.
➢	Capabilities	and	use	of	several	Swing	controls.
➢	Use	of	the	timer	object.
➢	How	to	develop	and	use	general	methods.

DualMode	Stopwatch	Project
Enhancements	There	are	always	things	you	can	do	to	improve	a
project.	At	the	end	of	each	chapter,	we	will	give	you	some	ideas	for	the	current
project.	For	the	dualmode	stopwatch,	some	possibilities	are:

➢	 Whenever	 you	 stop	 the	 stopwatch,	 save	 that	 time.	 Then,	 when	 you
ultimately	stop	the	watch,	provide	a	review	mode.	In	review,	you	can	see
how	much	time	was	spent	running	the	stopwatch	and	how	much	time	was
spent	stopped.

➢	Provide	an	immediate	feedback	on	each	segment	of	elapsed	time	–	a	lap
timing	feature.

DualMode	Stopwatch	Project	Java	Code
Listing	/	*
*	DualModeStopwatch.java
/	package	dualmodestopwatch;	import	javax.swing.;
import	java.awt.*;
import	java.awt.event.*;
import	java.text.*;

public	class	DualModeStopwatch	extends	JFrame	{

JLabel	runningTimeLabel	=	new	JLabel();	JTextField
runningTimeTextField	=	new	JTextField();	JLabel	totalTimeLabel	=	new
JLabel();	JTextField	totalTimeTextField	=	new	JTextField();	JButton
startStopButton	=	new	JButton();	JButton	resetButton	=	new	JButton();
JButton	exitButton	=	new	JButton();	Timer	displayTimer;

long	startTime;
long	stoppedTime;
long	stopTime;
public	static	void	main(String	args[])	{

//	create	frame
new	DualModeStopwatch().show();	}

public	DualModeStopwatch()	{
//	frame	constructor
setTitle("Stopwatch");
setResizable(false);
addWindowListener(new	WindowAdapter()	{

public	void	windowClosing(WindowEvent	evt)	{
exitForm(evt);

}

}

});

getContentPane().setLayout(new	GridBagLayout());
GridBagConstraints	gridConstraints;
runningTimeLabel.setText("Running	Time:");
runningTimeLabel.setFont(new	Font("Arial",	Font.PLAIN,	14));
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;	gridConstraints.gridy	=	0;	gridConstraints.insets	=	new	Insets(10,
25,	0,	0);	getContentPane().add(runningTimeLabel,	gridConstraints);
runningTimeTextField.setPreferredSize(new	Dimension(150,	50));
runningTimeTextField.setEditable(false);
runningTimeTextField.setBackground(Color.WHITE);
runningTimeTextField.setForeground(Color.BLUE);
runningTimeTextField.setText("00:00:00");
runningTimeTextField.setHorizontalAlignment(SwingConstants.CENTER);
runningTimeTextField.setFont(new	Font("Arial",	Font.BOLD,	24));
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;	gridConstraints.gridy	=	1;	gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(0,	10,	0,	10);
getContentPane().add(runningTimeTextField,	gridConstraints);
totalTimeLabel.setText("Total	Time:");	totalTimeLabel.setFont(new
Font("Arial",	Font.PLAIN,	14));	gridConstraints	=	new
GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;	gridConstraints.insets	=	new	Insets(10,	10,
0,	10);	getContentPane().add(totalTimeLabel,	gridConstraints);
totalTimeTextField.setPreferredSize(new	Dimension(150,	50));
totalTimeTextField.setEditable(false);
totalTimeTextField.setBackground(Color.WHITE);
totalTimeTextField.setForeground(Color.RED);
totalTimeTextField.setText("00:00:00");
totalTimeTextField.setHorizontalAlignment(SwingConstants.CENTER);
totalTimeTextField.setFont(new	Font("Arial",	Font.BOLD,	24));
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;	gridConstraints.gridy	=	3;	gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(0,	10,	15,	10);
getContentPane().add(totalTimeTextField,	gridConstraints);
startStopButton.setText("Start");	gridConstraints	=	new
GridBagConstraints();	gridConstraints.gridx	=	0;

gridConstraints.gridy	=	4;	getContentPane().add(startStopButton,
gridConstraints);	startStopButton.addActionListener(new
ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
startStopButtonActionPerformed(e);	}

});

resetButton.setText("Reset");	resetButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
1;	gridConstraints.gridy	=	4;	gridConstraints.insets	=	new	Insets(0,	0,
0,	25);	getContentPane().add(resetButton,	gridConstraints);
resetButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
resetButtonActionPerformed(e);	}

});

exitButton.setText("Exit");	gridConstraints	=	new
GridBagConstraints();	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	5;	gridConstraints.insets	=	new	Insets(10,	0,
10,	25);	getContentPane().add(exitButton,	gridConstraints);
exitButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
exitButtonActionPerformed(e);	}

});

displayTimer	=	new	Timer(1000,	new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

displayTimerActionPerformed(e);	}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	 setBounds((int)	 (0.5

(screenSize.width	 -	getWidth())),	 (int)	 (0.5	 (screenSize.height	 -	getHeight())),
getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	evt)	{
System.exit(0);

}

private	void	startStopButtonActionPerformed(ActionEvent	e)	{
if	(startStopButton.getText().equals("Start"))	{

//	initial	to	running	state	startTime	=	System.currentTimeMillis();
stoppedTime	=	0;
startStopButton.setText("Stop");	exitButton.setEnabled(false);
displayTimer.start();

}

else	if	(startStopButton.getText().equals("Stop"))	{
//	running	to	stopped	state	stopTime	=
System.currentTimeMillis();	startStopButton.setText("Restart");
resetButton.setEnabled(true);	exitButton.setEnabled(true);
displayTimer.stop();

}

else	if	(startStopButton.getText().equals("Restart"))	{
//	stopped	to	running	state	stoppedTime	+=
System.currentTimeMillis()	-	stopTime;
startStopButton.setText("Stop");	resetButton.setEnabled(false);
exitButton.setEnabled(false);	displayTimer.start();

}

}

private	void	resetButtonActionPerformed(ActionEvent	e)	{
//	return	to	initial	state	runningTimeTextField.setText("00:00:00");
totalTimeTextField.setText("00:00:00");

startStopButton.setText("Start");	resetButton.setEnabled(false);	}

private	void	exitButtonActionPerformed(ActionEvent	e)	{
System.exit(0);

}

private	void	displayTimerActionPerformed(ActionEvent	e)	{
long	currentTime;
//	Determine	running	and	total	times	currentTime	=
System.currentTimeMillis();	//	Display	times
runningTimeTextField.setText(HMS(currentTime	-	startTime	-

stoppedTime));	totalTimeTextField.setText(HMS(currentTime	-
startTime));	}

private	String	HMS(long	tms)	{
int	h;
int	m;
int	s;
double	t;
t	=	tms	/	1000.0;
//	Break	time	down	into	hours,	minutes,	and	seconds	h	=	(int)	(t	/
3600);
m	=	(int)	((t	-	h	*	3600)	/	60);	s	=	(int)	(t	-	h	*	3600	-	m	*	60);	//	Format
time	as	string
return(new	DecimalFormat("00").format(h)	+	":"	+	new

DecimalFormat("00").format(m)	+	":"	+	new
DecimalFormat("00").format(s));	}

}

3

Consumer	Loan
Assistant	Project

Review	and	Preview
Ever	 wonder	 just	 how	much	 those	 credit	 card	 accounts	 are	 costing
you?	This	project	will	help	you	get	a	handle	on	consumer	debt.	The
Consumer	Loan	Assistant	Project	we	build	computes	payments	and
loan	 terms	given	balance	and	 interest	 information.	We	 look	at	 focus
traversal	among	controls,	how	to	do	input	validation,	and	the	message
box	for	user	feedback.

Consumer	Loan	Assistant	Project
Preview
In	 this	 chapter,	 we	 will	 build	 a	 consumer	 loan	 assistant.	 You	 input	 a	 loan
balance	and	yearly	interest	rate.	You	then	have	two	options:	(1)	enter	the	desired
number	of	 payments	 and	 the	 loan	 assistant	 computes	 the	monthly	payment,	 or
(2)	 enter	 the	 desired	 monthly	 payment	 and	 the	 loan	 assistant	 determines	 the
number	of	payments	you	will	make.	An	analysis	of	your	loan,	including	total	of
payments	and	interest	paid	is	also	provided.

The	 finished	project	 is	 saved	 as	LoanAssistant	 in	 the	 \HomeJava\HomeJava
Projects\	 project	 group.	 Start	 NetBeans	 (or	 your	 IDE).	 Open	 the	 specified
project	group.	Make	LoanAssistant	the	main	project.	Run	the	project.	You	will

see:	

All	label	controls	are	used	for	title	information.	Two	button	controls	are	used
to	compute	results	and	to	start	a	new	analysis.	Two	small	button	controls
(marked	with	X;	only	one	is	seen	at	a	time)	control	whether	you	compute	the
number	of	payments	or	the	payment	amount.	One	button	exits	the	project.
Four	text	field	controls	are	used	for	inputs	and	a	large	text	area	is	used	to

present	the	loan	analysis	results.

The	loan	assistant	appears	as:

In	this	initial	configuration,	you	enter	a	Loan	Balance,	an	Interest	Rate
(annual	rate	as	a	percentage)	and	a	Number	of	Payments	value.	Click
Compute	Monthly	Payment.	The	payment	will	appear	in	the	‘yellow’	text
field	and	a	complete	loan	analysis	will	appear	in	the	large	text	field.	Here	are
some	numbers	I	tried:	

So,	if	I	borrow	$10,000	at	5.5%	interest,	I	will	pay	$301.96	for	three	years	(36
months).	More	specific	details	on	exact	payment	amounts,	including	total
interest	paid,	is	shown	under	Loan	Analysis.

At	 this	 point,	 you	 can	 click	 New	 Loan	 Analysis	 to	 try	 some	 new	 values:	

Note	the	Loan	Balance,	Interest	Rate,	and	Number	of	Payments	entries
remain.	Only	the	Monthly	Payment	and	the	Loan	Analysis	have	been
cleared.	This	lets	you	try	different	values	with	minimal	typing	of	new	entries.
Change	any	entry	you	like	to	see	different	results	–	or	even	change	them	all.
Try	as	many	combinations	as	you	like.

At	 some	point,	 clear	 the	 text	 fields	 and	click	 the	button	with	 an	X	 next	 to	 the
Number	 of	 Payments	 text	 field.	 You	 will	 see:	

Notice	the	Number	of	Payments	box	is	now	yellow.	The	button	with	an	X
has	moved	to	the	Monthly	Payment	text	field.	In	this	configuration,	you	enter
a	Loan	Balance,	an	Interest	Rate	and	a	Monthly	Payment.	The	loan
assistant	will	determine	how	many	payments	you	need	to	pay	off	the	loan.
Here	are	some	numbers	I	tried:	

It	will	take	59	payments	(the	last	one	is	smaller)	to	pay	off	this	particular	loan.
Again,	you	can	click	New	Loan	Analysis	to	try	other	values	and	see	the
results.

That’s	all	you	do	with	the	loan	assistant	project	–	there’s	a	lot	going	on	behind
the	 scenes	 though.	 The	 loan	 assistant	 has	 two	 modes	 of	 operation.	 It	 can
compute	 the	 monthly	 payment,	 given	 the	 balance,	 interest	 and	 number	 of
payments.	 Or,	 it	 can	 compute	 the	 number	 of	 payments,	 given	 the	 balance,
interest,	and	payment.	The	text	field	representing	the	computed	value	is	yellow.
The	button	marked	X	 is	used	to	switch	from	one	mode	to	the	next.	To	exit	 the
project,	click	the	Exit	button.

You	will	now	build	this	project	in	several	stages.	We	first	address	frame	design.
We	discuss	 the	controls	used	 to	build	 the	form,	establish	 initial	properties,	and
discuss	switching	from	one	mode	 to	 the	next.	And,	we	address	code	design	 in
detail.	We	 cover	 the	mathematics	 behind	 the	 financial	 computations.	We	 also
discuss	 validation	 of	 the	 input	 values,	 making	 sure	 the	 user	 only	 types	 valid
entries.

Loan	Assistant	Frame	Design
We	begin	 building	 the	Loan	Assistant	Project.	 Let’s	 build	 the	 frame.	 Start	 a
new	project	in	your	Java	project	group	–	name	it	LoanAssistant.	Delete	default
code	 in	 file	 named	 LoanAssistant.java.	 Once	 started,	 we	 suggest	 you
immediately	save	 the	project	with	 the	name	you	chose.	This	 sets	up	 the	 folder
and	 file	 structure	 needed	 for	 your	 project.	 Build	 the	 basic	 frame	 with	 these
properties:	LoanAssistant	Frame:

title Loan	Assistant
resizable false

The	code	is:

/	*

*	LoanAssistant.java

*/

package	loanassistant;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	LoanAssistant	extends	JFrame

{

public	static	void	main(String	args[])

{

//	create	frame
new	LoanAssistant().show();

}

public	LoanAssistant()

{

//	frame	constructor
setTitle("Loan	Assistant");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
GridBagConstraints	gridConstraints;

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	setBounds((int)	(0.5
(screenSize.width	-	getWidth())),	(int)	(0.5	(screenSize.height	-
getHeight())),	getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

This	code	builds	 the	frame,	sets	up	 the	 layout	manager	and	includes	code	 to
exit	the	application.	Run	the	code	to	make	sure	the	frame	(at	least,	what	there

is	of	it	at	this	point)	appears	and	is	centered	on	the	screen:	

Let’s	populate	our	frame	with	other	controls.	All	code	for	creating	the	frame
and	placing	controls	(except	declarations)	goes	in	the	LoanAssistant
constructor.

All	 controls	 go	 directly	 on	 the	 frame.	 The	GridBagLayout	 for	 the	 frame	 is:	

The	 label	 controls	 (loanBalanceLabel,	 interestRateLabel,	 monthsLabel,
paymentLabel,	analysisLabel)	are	used	for	title	information.	Four	text	fields
(loanBalanceTextField,	 interestRateTextField,	 monthsTextField,
paymentTextField)	 are	 for	 user	 input.	A	 text	 area	 (analysisTextArea)	will
display	 the	 loan	 analysis.	 Three	 buttons	 (computeButton,	newLoanButton
and	exitButton)	 are	used	 to	 compute	 loan	 results,	 redo	analysis,	 and/or	 exit
the	project.	Two	other	button	controls	(monthsButton	and	paymentButton)
are	 used	 to	 switch	 from	one	 calculation	mode	 to	 the	 next.	We’ll	 add	 a	 few
controls	at	a	time.	Let’s	add	the	four	label/text	field	pairs.

The	control	properties	are:

balanceLabel: 	
text Loan	Balance
font Arial,	Plain,	Size	16
gridx 0
gridy 0
anchor WEST
insets 10,	10,	0,	0

	 	
balanceTextField: 	
size 100,	25
font Arial,	Plain,	Size	16
gridx 1
gridy 0
insets 10,	10,	0,	10
	 	
interestLabel: 	
text Interest	Rate
font Arial,	Plain,	Size	16
gridx 0
gridy 1
anchor WEST
insets 10,	10,	0,	0
	 	
interestTextField: 	
size 100,	25
font Arial,	Plain,	Size	16
gridx 1
gridy 1
insets 10,	10,	0,	10
	 	
monthsLabel: 	
text Number	of	Payments
font Arial,	Plain,	Size	16
gridx 0
gridy 2
anchor WEST
insets 10,	10,	0,	0
	 	
monthsTextField: 	
size 100,	25

font Arial,	Plain,	Size	16
gridx 1
gridy 2
insets 10,	10,	0,	10
	 	
paymentLabel: 	
text Monthly	Payent
font Arial,	Plain,	Size	16
gridx 0
gridy 3
anchor WEST
insets 10,	10,	0,	0
	 	
paymentTextField: 	
size 100,	25
font Arial,	Plain,	Size	16
gridx 1
gridy 3
insets 10,	10,	0,	10

Declare	these	controls	using:

JLabel	balanceLabel	=	new	JLabel();
JTextField	balanceTextField	=	new	JTextField();	JLabel	interestLabel	=
new	JLabel();
JTextField	interestTextField	=	new	JTextField();	JLabel	monthsLabel	=
new	JLabel();
JTextField	monthsTextField	=	new	JTextField();	JLabel	paymentLabel	=
new	JLabel();
JTextField	paymentTextField	=	new	JTextField();	Note	the	labels	and	text
fields	all	use	the	same	font.	Let’s	create	a	Font	object	to	use	in	each:	Font
myFont	=	new	Font("Arial",	Font.PLAIN,	16);	Now,	the	controls	are
added	to	the	frame	using	(recall	code	goes	in	frame	constructor):
balanceLabel.setText("Loan	Balance");

balanceLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
getContentPane().add(balanceLabel,	gridConstraints);
balanceTextField.setPreferredSize(new	Dimension(100,	25));
balanceTextField.setHorizontalAlignment(SwingConstants.RIGHT);
balanceTextField.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
getContentPane().add(balanceTextField,	gridConstraints);
interestLabel.setText("Interest	Rate");
interestLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
getContentPane().add(interestLabel,	gridConstraints);
interestTextField.setPreferredSize(new	Dimension(100,	25));
interestTextField.setHorizontalAlignment(SwingConstants.RIGHT);
interestTextField.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
getContentPane().add(interestTextField,	gridConstraints);
monthsLabel.setText("Number	of	Payments");
monthsLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
getContentPane().add(monthsLabel,	gridConstraints);
monthsTextField.setPreferredSize(new	Dimension(100,	25));

monthsTextField.setHorizontalAlignment(SwingConstants.RIGHT);
monthsTextField.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
getContentPane().add(monthsTextField,	gridConstraints);
paymentLabel.setText("Monthly	Payment");
paymentLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
getContentPane().add(paymentLabel,	gridConstraints);
paymentTextField.setPreferredSize(new	Dimension(100,	25));
paymentTextField.setHorizontalAlignment(SwingConstants.RIGHT);
paymentTextField.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
getContentPane().add(paymentTextField,	gridConstraints);	Save,	run	the

project.	You	will	see	the	added	controls:	

Let’s	 add	 the	 two	 button	 controls	 that	 go	 under	 these	 controls.	 The	 properties
are:

computeButton: 	
text Compute	Monthly	Payments
gridx 0
gridy 4

gridwidth 2
insets 10,	0,	0,	0
	 	
newLoanButton: 	
text New	Loan	Analysis
enabled false
gridx 0
gridy 5
gridwidth 2
insets 10,	0,	10,	0

Declare	the	controls	using:

JButton	computeButton	=	new	JButton();
JButton	newLoanButton	=	new	JButton();

Add	the	buttons	to	the	frame	using:

computeButton.setText("Compute	Monthly	Payment");	gridConstraints
=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	4;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
getContentPane().add(computeButton,	gridConstraints);
computeButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

computeButtonActionPerformed(e);

}

});

newLoanButton.setText("New	Loan	Analysis");

newLoanButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	5;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	10,	0);
getContentPane().add(newLoanButton,	gridConstraints);
newLoanButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

newLoanButtonActionPerformed(e);

}

});

This	code	also	adds	listeners	for	each	button.	Add	these	empty	methods:	private
void	computeButtonActionPerformed(ActionEvent	e)	{

}

private	void	newLoanButtonActionPerformed(ActionEvent	e)	{

}

Run	 to	 see	 the	 buttons	 (the	 New	 Loan	 Analysis	 button	 is	 disabled):	

Now	we	add	the	two	small	button	controls	that	go	next	to	two	of	the	text	fields.
The	properties	are:

monthsButton: 	
text X
gridx 2
gridy 2
insets 10,	0,	0,	0
	 	
paymentButton: 	
text X
enabled false
gridx 0
gridy 5
gridwidth 2
insets 10,	0,	10,	0

Declare	the	controls	using:

JButton	monthsButton	=	new	JButton();
JButton	paymentButton	=	new	JButton();

Add	the	buttons	to	the	frame	using:

monthsButton.setText("X");
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
getContentPane().add(monthsButton,	gridConstraints);
monthsButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

monthsButtonActionPerformed(e);

}

});

paymentButton.setText("X");
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	2;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
getContentPane().add(paymentButton,	gridConstraints);
paymentButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

paymentButtonActionPerformed(e);

}

});

This	code	also	adds	listeners	for	each	button.	Add	these	empty	methods:	private
void	monthsButtonActionPerformed(ActionEvent	e)	{

}

private	void	paymentButtonActionPerformed(ActionEvent	e)	{

}

Run	to	see	the	buttons:

Both	X	buttons	appear	now.	When	we	write	code,	only	one	of	the	buttons	will
display	at	a	time.

Let’s	 finish	 the	 frame	by	 adding	 the	 three	 remaining	 controls	 (label,	 text	 field
and	button).	The	properties	are:

analysisLabel: 	
text Loan	Analysis:
font Arial,	Plain,	Size	16
gridx 3
gridy 0
anchor WEST
insets 0,	10,	0,	0
	 	
analysisTextArea: 	
size 250,	150
border Black	line
font Courier	New,	Plain,	Size	14
editable false
background White
gridx 3
gridy 1
gridheight 4

insets 0,	10,	0,	10
	 	
exitButton: 	
text Exit
gridx 3
gridy 5

Declare	the	controls	using:

JLabel	analysisLabel	=	new	JLabel();
JTextArea	analysisTextArea	=	new	JTextArea();	JButton	exitButton	=
new	JButton();

Add	the	controls	to	the	frame	using:

analysisLabel.setText("Loan	Analysis:");
analysisLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	3;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(0,	10,	0,	0);
getContentPane().add(analysisLabel,	gridConstraints);
analysisTextArea.setPreferredSize(new	Dimension(250,	150));
analysisTextArea.setBorder(BorderFactory.createLineBorder(Color.BLACK));
analysisTextArea.setFont(new	Font("Courier	New",	Font.PLAIN,	14));
analysisTextArea.setEditable(false);
analysisTextArea.setBackground(Color.WHITE);	gridConstraints	=	new
GridBagConstraints();	gridConstraints.gridx	=	3;
gridConstraints.gridy	=	1;
gridConstraints.gridheight	=	4;
gridConstraints.insets	=	new	Insets(0,	10,	0,	10);
getContentPane().add(analysisTextArea,	gridConstraints);
exitButton.setText("Exit");
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	3;
gridConstraints.gridy	=	5;

getContentPane().add(exitButton,	gridConstraints);
exitButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

exitButtonActionPerformed(e);

}

});

This	code	also	adds	listeners	for	each	button.	Add	these	empty	methods:	private
void	exitButtonActionPerformed(ActionEvent	e)	{

}

Run	to	see	the	final	frame	layout:

This	completes	the	initial	form.	We	will	begin	writing	code	for	the	application.
We	will	write	 the	code	 in	several	 steps.	As	a	 first	 step,	we	write	 the	code	 that
switches	 the	 application	 between	 its	 two	 possible	 modes	 of	 operation:	 (1)
compute	monthly	payment,	or	(2)	compute	number	of	payments.

Code	Design	–	Switching	Modes
There	 are	 two	modes	 the	 loan	 assistant	 can	 operate	 in.	 In	 the	 first	mode,	 you
enter	 a	 loan	balance,	 an	 interest	 rate	 and	 a	number	of	 payments.	The	 assistant
then	 computes	 the	 monthly	 payment.	 In	 the	 second	 mode,	 you	 enter	 a	 loan
balance,	 an	 interest	 rate	 and	 a	 monthly	 payment.	 The	 assistant	 computes	 the
number	 of	 payments.	 The	 buttons	 with	 X	 control	 which	 mode	 the	 assistant
operates	in.	Click	the	X	(paymentButton)	next	to	the	payment	text	field	and	you
switch	 to	 the	 first	 mode	 (compute	 monthly	 payment).	 Click	 the	 X
(monthsButton)	next	to	the	number	of	payments	text	field	and	you	switch	to	the
second	mode	 (compute	 number	 of	 payments).	 Let’s	 look	 at	 the	 steps	 for	 each
operation.

When	 the	 user	 clicks	 the	 X	 next	 to	 the	 monthly	 payment	 text	 field
(paymentButton	 button),	 we	 want	 to	 make	 paymentTextField	 available	 for
user	input	and	monthsTextField	available	for	output.	The	steps	are	taken:

➢	Make	paymentButton	disappear.
➢	Make	monthsButton	appear.
➢	Set	enabled	property	of	monthsTextField	to	false.
➢	Set	monthsTextField	background	to	White.
➢	Blank	out	the	paymentTextField	text	field.
➢	Set	enabled	property	of	paymentTextField	to	true.
➢	Set	paymentTextField	background	to	Light	Yellow.
➢	Set	text	property	of	computeButton	to	Compute	Monthly	Payment.

When	you	click	the	X	next	to	the	number	of	payments	text	field	(monthsButton
button),	we	essentially	‘reverse’	the	steps	just	listed:

➢	Make	paymentButton	appear.
➢	Make	monthsButton	disappear.
➢	Set	enabled	property	of	monthsTextField	to	true.
➢	Set	monthsTextField	background	to	Light	Yellow.
➢	Blank	out	the	monthsTextField	text	field.

➢	Set	enabled	property	of	paymentTextField	to	false.
➢	Set	paymentTextField	background	to	White.
➢	Set	text	property	of	computeButton	to	Compute	Number	of	Payments.

Define	 a	 class	 level	 object	 to	 define	 a	 ‘Light	Yellow’	 color	 and	 a	 variable	 to
keep	 track	 of	 what	 mode	 we	 are	 working	 in:	 Color	 lightYellow	 =	 new
Color(255,	255,	128);	boolean	computePayment;

If	computePayment	is	true,	we	are	computing	the	payment,	otherwise	we	are
computing	the	number	of	payments.

The	code	for	the	paymentButtonActionPerformed	method	that	implements	the
listed	 steps	 is	 then:	 private	 void
paymentButtonActionPerformed(ActionEvent	e)	{

//	will	compute	payment
computePayment	=	true;
paymentButton.setVisible(false);
monthsButton.setVisible(true);
monthsTextField.setEditable(true);
monthsTextField.setBackground(Color.WHITE);
paymentTextField.setText("");
paymentTextField.setEditable(false);
paymentTextField.setBackground(lightYellow);
computeButton.setText("Compute	Monthly	Payment");	}

The	 code	 for	 the	 monthsButton	 Click	 is:	 private	 void
monthsButtonActionPerformed(ActionEvent	e)	{

//	will	compute	months
computePayment	=	false;
paymentButton.setVisible(true);
monthsButton.setVisible(false);
monthsTextField.setText("");
monthsTextField.setEditable(false);
monthsTextField.setBackground(lightYellow);
paymentTextField.setEditable(true);

paymentTextField.setBackground(Color.WHITE);
computeButton.setText("Compute	Number	of	Payments");	}

We	would	like	the	application	to	begin	in	the	mode	where	the	monthly	payment
is	computed.	One	way	we	could	do	this	is	by	setting	properties	in	design	mode
that	correspond	to	the	properties	listed	in	the	paymentButtonActionPerformed
method.	But	an	easier	approach	is	to	have	the	application	‘simulate’	clicking	on
the	paymentButton	button	when	the	application	begins.	This	is	done	at	the	end
of	the	frame	constructor	with	paymentButton.doClick();

Save	and	run	the	project.	If	the	code	is	entered	correctly,	the	form	should	appear
in	 the	 ‘compute	 payment’	 mode:	

Note	the	Monthly	Payment	box	is	yellow,	as	desired.	The	computeButton
caption	is	Compute	Monthly	Payment.

Click	 the	X	 next	 to	Number	 of	 Payments	 and	 you	 switch	 to	 the	 ‘compute
number	 of	 payments’	 mode:	

Now,	the	Number	of	Payments	box	is	yellow	and	the	computeButton
caption	is	Compute	Number	of	Payments.

The	 mode	 switching	 should	 be	 working	 correctly.	 Before	 writing	 the	 code
behind	 the	actual	computations,	 let’s	address	 interface	 issues	of	 focus	 traversal
and	control	focus.

Frame	Design	–	Focus	Traversal
When	you	run	the	loan	assistant	application,	if	you	try	to	move	from	text	field	to
text	 field	 using	 the	<Tab>	key,	 there	may	be	 no	 predictable	 order	 in	 how	 the
cursor	moves.	Or,	 you	may	move	 to	 controls	 you	 don’t	want	 to	move	 to	 (for
example,	a	read-only	text	field).	To	enter	values,	you	have	to	make	sure	you	first
click	 in	 the	 text	 field.	To	make	 this	 process	more	 orderly,	we	 need	 to	 look	 at
something	called	focus	traversal.

When	interacting	with	a	Java	GUI	application,	we	can	work	with	a	single	control
at	a	time.	That	is,	we	can	click	on	a	single	button	or	type	in	a	single	text	field.
We	can’t	be	doing	two	things	at	once.	The	control	we	are	working	with	is	known
as	 the	 active	 control	 or	 we	 say	 the	 control	 has	 focus.	 In	 our	 loan	 assistant
example,	when	the	cursor	is	in	a	particular	text	field,	we	say	that	text	field	has
focus.	 In	 a	 properly	 designed	 application,	 focus	 is	 shifted	 from	one	 control	 to
another	(in	a	predictable,	orderly	fashion)	using	the	<Tab>	key.	Focus	can	only
be	given	 to	controls	 that	allow	user	 interaction	–	buttons	and	 text	 fields	 in	our
example,	but	not	labels.

Java	does	a	good	job	of	defining	an	orderly	tab	sequence	using	something	called
the	FocusTransversalPolicy.	 Essentially,	 the	 tab	 sequence	 starts	 in	 the	 upper
left	corner	of	the	GridBagLayout	and	works	its	way	across	a	row.	It	then	moves
down	 to	 the	next	 row	and	continues	until	 it	 reaches	 the	 last	column	of	 the	 last
row.	At	that	point,	the	sequence	begins	again.	The	process	can	be	reversed	using
<Tab>in	combination	with	the	<Shift>	key.

There	 are	 times	 you	 would	 like	 to	 remove	 a	 control	 from	 the	 tab	 sequence
(transversal	 policy).	 To	 remove	 a	 control	 (named	 myControl)	 from	 the
sequence,	use:	myControl.setFocusable(false);

It	is	also	possible	to	reorder	the	tab	sequence,	but	that	is	beyond	the	scope	of
this	course.

There	are	several	places	we’d	like	to	remove	focus	in	the	loan	assistant	project.
When	 computing	 payment,	 there	 is	 no	 need	 for	 the	 focus	 to	 go	 to	 the
paymentTextField	 control,	 since	 it	 is	not	editable.	Similarly,	when	computing

number	 of	 payments,	 focus	 should	 not	 go	 to	 the	monthsTextField.	 We	 also
want	to	keep	focus	from	three	button	controls:	monthsButton,	paymentButton
and	exitButton	to	avoid	inadvertent	option	selections	or	exiting	of	the	program.
And,	focus	never	needs	to	go	to	analysisTextArea,	since	no	editing	is	possible.

One	other	modification	is	needed.	Once	a	user	changes	the	computation	mode,	it
would	be	nice	 if	 focus	would	be	moved	 to	 the	Loan	Balance	 text	 field	 so	 the
user	 can	 type	 an	 entry	 there.	 To	 programmatically	 assign	 focus	 to	 a	 control,
apply	 the	 requestFocus	 method	 to	 the	 control	 using	 this	 dot-notation:
myControl.requestFocus();

Let’s	 implement	 the	 specified	 changes.	Three	 button	 controls	 (monthsButton,
paymentButton	 and	 exitButton)	 and	 the	 text	 area	 (analysisTextArea)	 are
permanently	removed	from	the	tab	sequence,	hence	modify	the	code	that	creates
these	 controls	 (in	 the	 frame	 constructor)	 with	 the	 three	 shaded	 lines:
monthsButton.setText("X");
monthsButton.setFocusable(false);
gridConstraints	=	new	GridBagConstraints();	.

.

paymentButton.setText("X");
paymentButton.setFocusable(false);
gridConstraints	=	new	GridBagConstraints();	.

.

analysisTextArea.setPreferredSize(new	Dimension(250,	150));
analysisTextArea.setFocusable(false);
analysisTextArea.setBorder(BorderFactory.createLineBorder(Color.BLACK));
.

.

exitButton.setText("Exit");
exitButton.setFocusable(false);
gridConstraints	=	new	GridBagConstraints();	.

.

Modifications	 to	 the	 paymentButton	 and	 monthsButton	 ActionPerformed
methods	to	modify	text	field	traversal	and	to	give	focus	to	the	balance	text	field
are	 shown	 as	 shaded	 lines:	 private	 void
paymentButtonActionPerformed(ActionEvent	e)	{

//	will	compute	payment
computePayment	=	true;
paymentButton.setVisible(false);
monthsButton.setVisible(true);
monthsTextField.setEditable(true);
monthsTextField.setBackground(Color.WHITE);
monthsTextField.setFocusable(true);
paymentTextField.setText("");
paymentTextField.setEditable(false);
paymentTextField.setBackground(lightYellow);
paymentTextField.setFocusable(false);
computeButton.setText("Compute	Monthly	Payment");
balanceTextField.requestFocus();

}

private	void	monthsButtonActionPerformed(ActionEvent	e)	{
//	will	compute	months
computePayment	=	false;
paymentButton.setVisible(true);
monthsButton.setVisible(false);
monthsTextField.setText("");
monthsTextField.setEditable(false);
monthsTextField.setBackground(lightYellow);
monthsTextField.setFocusable(false);
paymentTextField.setEditable(true);
paymentTextField.setBackground(Color.WHITE);
paymentTextField.setFocusable(true);
computeButton.setText("Compute	Number	of	Payments");

balanceTextField.requestFocus();

}

Save	and	run	the	project.	Switch	from	mode	to	mode.	Notice	how	in	each	mode,
the	 tab	 ordering	 is	 now	 predictable	 and	 as	 desired.	 Notice	 how	 the	 focus	 is
always	on	the	desired	control.	Notice	how	focus	ends	up	on	the	compute	button,
where	a	tap	of	the	space	bar	can	‘click’	on	that	button..

Code	Design	–	Computing	Monthly
Payment
Let’s	develop	the	code	to	run	the	loan	assistant	in	its	initial	‘compute	payment’
mode.	 We	 need	 an	 equation	 that	 computes	 the	 payment,	 knowing	 the	 loan
balance,	the	interest	rate	and	the	number	of	payments.	Computer	programming	is
many	 times	mathematical	 in	nature.	 I	 recognize	different	people	have	different
comfort	levels	with	math.	For	those	“math-phobes”	out	there,	I’ll	 just	give	you
the	code.	For	those	interested,	I’ll	show	you	the	math	behind	the	code.

Here’s	 the	 code	 that	 does	 the	 necessary	 computations.	 In	 these	 lines,	balance
(double	 type)	is	 the	entered	loan	balance,	 interest	 (double	 type)	is	 the	entered
interest	rate	and	months	(int	 type)	is	the	entered	number	of	payments	(each	of
these	values	will	come	from	the	text	field	controls):	multiplier	=	Math.pow(1	+
monthlyInterest,	months);	payment	 =	 balance	monthlyInterest	multiplier	 /
(multiplier	 -	 1);	 In	 this	 code,	 the	 input	 interest	 (a	 yearly	 percentage)	 is
converted	 to	a	monthly	 interest	 (monthlyInterest).	This	conversion	 is	done	by
dividing	 by	 12	 (the	 number	 of	 months	 in	 a	 year)	 times	 100	 (to	 convert
percentage	 to	 a	 decimal	 number).	 A	 multiplier	 term	 is	 formed	 using	 the
mathematical	power	(exponentiation)	method	(pow).	These	values	are	then	used
to	compute	payment	(double	type).

If	you	don’t	want	to	see	mathematics,	stop	now!!	Skip	ahead	to	the	code	steps
for	the	computeButtonActionPerformed	method.	If	you’re	still	with	me,	I’ll	go
over	the	steps	that	derive	the	code	above.	Let	B	represent	the	initial	loan	balance,
i	the	monthly	interest	and	P	the	monthly	payment	(we’ll	be	solving	an	equation
for	 this	value).	With	 this	notation,	 the	product	of	B	times	 i	 (Bi)	 represents	one
month’s	interest	on	the	existing	balance.	We	add	this	interest	to	the	balance	then
subtract	the	payment	to	obtain	the	balance	after	one	payment,	B1:	B1	=	B	+	Bi	–
P	=	B(1	+	i)	–	P

Using	the	same	approach,	the	balance	after	two	payments	(B2)	would	be:	B2	=
B1	+	B1i	–	P	=	B1(1	+	i)	–	P

Substituting	the	previous	equation	for	B1	into	this	equation	gets	things	in

terms	of	the	original	balance:	B2	=	[B(1	+	i)	–	P](1	+	i)	–	P	=	B(1	+	i)2	–	P(1	+
i)	-	P

Doing	the	same	for	B3,	we	can	show:	B3	=	B(1	+	i)3	–	P(1	+	i)2	–	P(1	+	i)	-	P

Noting	the	trend	in	this	relation,	we	can	obtain	an	expression	for	BN	(the
balance	after	N	payments,	when	the	loan	is	finally	paid	off):	

The	Greek	sigma	in	the	above	equation	simply	indicates	that	you	add	up	all
the	corresponding	elements	next	to	the	sigma.

After	N	payments,	we	want	 the	balance	of	 the	 loan	 to	be	zero.	 If	we	set	BN	 to
zero	 in	 the	 above	 equation,	 we	 obtain	 a	 value	 for	 P,	 the	 payment:	

This	is	the	desired	result	and	we	could	easily	code	it	using	a	for	loop	to
evaluate	the	summation	in	the	denominator.	We	can	avoid	this	step	by
consulting	a	handbook	on	“finite	series.”	The	denominator	term	actually	has	a
“closed-form”	(one	not	requiring	the	summation).	It	is	(trust	me	on	this):	

Try	a	few	values	of	i	and	N	to	convince	yourself	this	works	(if	you	need
convincing).	Substituting	this	into	the	equation	for	P	and	flipping	a	few	terms
around	gives	us	the	final	equation	for	computing	P:	P	=	Bi(1	+	i)N	/	[(1	+	i)N	–
1]

Compare	this	equation	to	the	code	we	gave	you.	You	should	see	the	code
matches	this	equation	(B	is	balance,	i	is	monthlyInterest,	N	is	months	and	P
is	payment).

When	 the	 user	 clicks	 Compute	 Monthly	 Payment	 (computeButton),	 the
following	steps	are	taken:

➢	Obtain	the	balance	value	from	user	input.
➢	Obtain	the	interest	value	from	user	input.
➢	Determine	monthly	interest.
➢	Obtain	the	months	value	from	user	input.
➢	Compute	payment	using	given	code.
➢	Display	payment	in	paymentTextField.

The	computeButtonActionPerformed	method	 that	 implements	 these	steps	are
(note	we	have	declared	all	variables	to	have	method	level	scope):	private	void
computeButtonActionPerformed(ActionEvent	e)	{

double	balance,	interest,	payment;
int	months;
double	monthlyInterest,	multiplier;
balance	=

Double.valueOf(balanceTextField.getText()).doubleValue();	interest	=
Double.valueOf(interestTextField.getText()).doubleValue();
monthlyInterest	=	interest	/	1200;

//	Compute	loan	payment
months	=

Integer.valueOf(monthsTextField.getText()).intValue();	multiplier	=
Math.pow(1	+	monthlyInterest,	months);	payment	=	balance
monthlyInterest	multiplier	/	(multiplier	-	1);
paymentTextField.setText(new
DecimalFormat("0.00").format(payment));	}

This	method	uses	the	Java	DecimalFormat	method	(to	assign	to	decimal
points	to	the	result).	To	use	this,	we	need	to	add	this	import	statement:	import
java.text.*;

While	 we’re	 at	 it,	 let’s	 take	 care	 of	 the	 Exit	 button.	 Its	 ActionPerformed
method	is	simply:	private	void	exitButtonActionPerformed(ActionEvent	e)	{

System.exit(0);

}

Save	and	run	the	project.	Enter	some	numbers	for	balance,	interest	and	number
of	 payments,	 then	 click	Compute	Monthly	 Payment.	 Here’s	 a	 run	 I	 made:	

A	$10,000	loan	at	5.5%	yearly	interest	has	a	monthly	payment	of	$301.96.
Try	as	many	possibilities	as	you’d	like.	Make	sure	Exit	works.

Code	Design	–	Computing	Number	of
Payments
The	 second	 mode	 of	 operation	 for	 the	 loan	 assistant	 is	 ‘compute	 number	 of
payments’	mode.	We	need	an	equation	 the	computes	 the	number	of	payments,
knowing	 the	 loan	balance,	 the	 interest	 rate	and	 the	monthly	payment.	Again,	a
bit	of	math	is	involved.	And,	again,	for	those	interested,	I’ll	show	you	the	math
behind	the	code.

Here’s	 the	 code	 that	 does	 the	 necessary	 computations.	 In	 these	 lines,	balance
(double	 type)	is	 the	entered	loan	balance,	 interest	 (double	 type)	is	 the	entered
interest	rate	and	payment	(double	type)	is	the	entered	monthly	payment	(each	of
these	 values	 will	 come	 from	 the	 text	 field	 controls):	 months	 =	 (int)
((Math.log(payment)	 -	 Math.log(payment	 -	 balance	 *	 monthlyInterest))	 /
Math.log(1	 +	 monthlyInterest));	 In	 this	 code,	 we	 again	 use	 the
monthlyInterest	 value.	 The	 number	 of	 payments	 (months,	 an	 int	 type)	 is
computed	using	the	Math.log	function.	This	is	a	mathematical	logarithm.

All	“math-phobes,”	skip	ahead	to	the	code	to	modify	the
computeButtonActionPerformed	method.	For	those	interested,	let’s	see	where
that	logarithm	comes	from.	The	equation	we	derived	for	the	Payment	(P)	was:	P
=	Bi(1	+	i)N	/	[(1	+	i)N	–	1]

where	B	is	Balance,	i	is	MonthlyInterest,	and	N	is	Months.	In	the	current
mode,	we	want	to	solve	for	N,	given	B,	i,	and	P.	Multiply	both	sides	of	the
equation	by	the	denominator	on	the	right	side	to	get:	[(1	+	i)N	–	1]P	=	Bi(1	+
i)N

Multiply	out	the	left	side:

(1	+	i)N	P	–	P	=	Bi(1	+	i)N

Then	collect	terms:

(P	–	Bi)(1	+	i)N	=	P

or

(1	+	i)N	=	P	/	(P	–	Bi)	Now,	take	the	logarithm	(hopefully	you	remember	how
these	work)	of	both	sides	to	yield:	Nlog(1	+	i)	=	log(P)	–	log(P	–	Bi)

Or,	solving	for	N,	our	desired	result:

N	=	[log(P)	–	log(P	–	Bi)]	/	log(1	+	i)

Look	back	at	the	code	and	you	should	see	this	equation.	In	the	code,	we	cast
the	result	to	an	int	type	(we	can’t	make	a	fractional	payment).

So	 when	 the	 user	 clicks	 Compute	 Number	 of	 Payments	 (computeButton
when	ComputePayment	is	false),	the	following	steps	are	taken:

➢	Obtain	the	balance	value	from	user	input.
➢	Obtain	the	interest	value	from	user	input.
➢	Determine	monthly	interest.
➢	Obtain	the	payment	value	from	user	input.
➢	Compute	months	using	given	code.
➢	Display	months	in	monthsTextField.

The	modifed	 computeButtonActionPerformed	method	 that	 implements	 these
steps	 are	 (new	 code	 is	 shaded,	 notice	we	 now	 look	ComputePayment	 to	 see
what	 ‘mode’	 we	 are	 in):	 private	 void
computeButtonActionPerformed(ActionEvent	e)	{

double	balance,	interest,	payment;
int	months;
double	monthlyInterest,	multiplier;
balance	=

Double.valueOf(balanceTextField.getText()).doubleValue();	interest	=
Double.valueOf(interestTextField.getText()).doubleValue();
monthlyInterest	=	interest	/	1200;

if	(computePayment)

{

//	Compute	loan	payment
months	=

Integer.valueOf(monthsTextField.getText()).intValue();	multiplier	=
Math.pow(1	+	monthlyInterest,	months);	payment	=	balance
monthlyInterest	multiplier	/	(multiplier	-	1);
paymentTextField.setText(new
DecimalFormat("0.00").format(payment));

}

else

{

//	Compute	number	of	payments
payment	=

Double.valueOf(paymentTextField.getText()).doubleValue();	months	=
(int)((Math.log(payment)	-	Math.log(payment	-	balance	*
monthlyInterest))	/	Math.log(1	+	monthlyInterest));
monthsTextField.setText(String.valueOf(months));	}

}

Save	 and	 run	 the	 application.	Make	 sure	 it	 still	 works	 in	 the	 initial	mode	 for
computing	the	monthly	payment.	When	you’re	sure	this	 is	working	okay,	click
the	X	next	to	the	number	of	payment	text	field	to	switch	to	‘compute	number	of
payments’	mode.

Type	in	some	values	for	balance,	interest	and	payment.	Click	Compute	Number
of	 Payments.	 Here’s	 a	 run	 I	 made:	

This	tells	me	if	I	borrow	$20,	000	at	6.5%	interest,	I	would	need	to	make	58
monthly	payments	of	$400	to	pay	the	loan	back.	If	you	have	a	good	memory
(or	look	back	earlier	in	this	chapter),	you’ll	remember	we	tried	this	when
demonstrating	the	loan	assistant	project.	In	that	earlier	run,	we	obtained	a
value	of	59	monthly	payments.	Is	this	a	mistake?	No	–	you’ll	see	why	next.

Code	Design	–	Loan	Analysis
Another	desired	 feature	of	 the	consumer	 loan	assistant	project	 is	 to	provide	an
analysis	of	the	loan,	once	computations	are	done.	The	information	this	analysis
should	include	is:

➢	Loan	Balance
➢	 Interest	 Rate	 ➢	 Number	 of	 Payments	 ➢	 Amount	 of	 Each	 Payment
➢	Total	of	Payments	Made	➢	Total	Interest	Paid

Such	information	is	very	useful	in	analyzing	how	effective	and	economical	a
loan	payoff	plan	is.	Our	frame	has	a	text	area	control	(analysisTextArea)
available	to	provide	these	results.	The	analysis	is	generated	after
computeButton	is	clicked	and	the	number	of	payments	or	payment	amount
have	been	computed.

At	 first,	 generating	 a	 loan	 analysis	 seems	 like	 a	 simple	 task.	 The	 balance
(balance)	 and	 interest	 rate	 (interest)	 are	 input	 numbers.	 The	 number	 of
payments	 (months)	 and	 monthly	 payment	 (payment)	 are	 either	 input	 or
computed.	So,	it	seems	the	total	of	payments	would	be	given	by:	totalPayments
=	months	*	payment;

while	the	interest	paid	would	be:

interestPaid	=	totalPayments	–	balance;

The	second	equation	is	correct	(assuming	totalPayments	is	correct).	But,	the
first	equation	(for	totalPayments)	doesn’t	quite	apply.	It’s	not	that	simple.

The	code	used	 for	computing	 the	payment	amount	 (computePayment	 is	 true)
and	 the	 number	 of	 payments	 (computePayment	 is	 false)	 is	 not	 exact.
Truncation	 errors	 (making	 sure	 payments	 only	 have	 two	 decimal	 places)	 can
affect	the	final	payment	amount.	And,	forcing	the	number	of	payments	to	be	an
integer	value	can	result	 in	significant	errors	 in	 the	final	payment,	perhaps	even
necessitating	a	final	payment	(remember	the	example	we	just	ran?).	We	need	to
develop	 an	 analysis	 that	 recognizes	 the	 possibility	 of	 such	 errors	 and	 make

necessary	adjustments.

Here’s	 the	approach	we	will	 take.	 If	 the	 loan	has	N	payments	of	P	dollars,	we
will	 process	 all	 but	 the	 last	 payment	 and	 see	what	 the	 remaining	balance	 is	 at
that	point.	 If	 that	balance	 is	 less	 than	P,	 that	will	become	the	final	payment.	 If
that	balance	is	greater	than	P,	a	payment	of	P	will	be	applied	and	an	additional
payment	 of	 the	 final	 balance	will	 be	 created.	The	 displayed	 loan	 analysis	will
then	 show	 the	 final	 payment	 and	 the	 associated	 total	 of	 payments	 and	 interest
paid.

For	 those	of	you	who	have	avoided	all	 the	mathematical	derivations	up	 to	 this
point,	 you	 need	 to	 know	 how	 to	 process	 a	 single	 payment	 to	 reduce	 the	 loan
balance.	 If	B	 is	 the	 current	 loan	balance,	 i	 the	monthly	 interest	 rate	 and	P	 the
payment.	The	balance	(Bafter)	after	the	payment	is:	Bafter	=	B	+	Bi	–	P

This	equation	simply	says	the	new	balance	is	the	old	balance	incremented	by
interest	owed	(Bi),	then	decreased	by	the	payment	amount	(P).	We	use	this
equation	to	compute	the	final	payment	in	the	loan	analysis.

The	steps	behind	generating	the	loan	analysis	are:

➢	Display	balance.
➢	Display	interest.
➢	Compute	finalPayment	(adding	a	payment,	if	necessary).
➢	Compute	and	display	total	of	payments.
➢	Compute	and	display	interest	paid.
➢	Disable	computeButton.
➢	Enable	newLoanButton.
➢	Set	focus	on	newLoanButton.

Each	 of	 these	 steps	 is	 performed	 in	 the	 computeButtonActionPerformed
method.	 The	 modified	 method	 is	 (changes	 are	 shaded):	 private	 void
computeButtonActionPerformed(ActionEvent	e)	{

double	balance,	interest,	payment;
int	months;
double	monthlyInterest,	multiplier;

double	loanBalance,	finalPayment;
balance	=

Double.valueOf(balanceTextField.getText()).doubleValue();	interest	=
Double.valueOf(interestTextField.getText()).doubleValue();
monthlyInterest	=	interest	/	1200;

if	(computePayment)

{

//	Compute	loan	payment
months	=

Integer.valueOf(monthsTextField.getText()).intValue();	multiplier	=
Math.pow(1	+	monthlyInterest,	months);	payment	=	balance
monthlyInterest	multiplier	/	(multiplier	-	1);
paymentTextField.setText(new
DecimalFormat("0.00").format(payment));	}

else

{

//	Compute	number	of	payments
payment	=

Double.valueOf(paymentTextField.getText()).doubleValue();	months	=
(int)((Math.log(payment)	-	Math.log(payment	-	balance	*
monthlyInterest))	/	Math.log(1	+	monthlyInterest));
monthsTextField.setText(String.valueOf(months));	}

//	reset	payment	prior	to	analysis	to	fix	at	two	decimals	payment	=
Double.valueOf(paymentTextField.getText()).doubleValue();	//	show
analysis

analysisTextArea.setText("Loan	Balance:	$"	+	new
DecimalFormat("0.00").format(balance));
analysisTextArea.append("\n"	+	"Interest	Rate:	"	+	new
DecimalFormat("0.00").format(interest)	+	"%");	//	process	all	but	last
payment

loanBalance	=	balance;
for	(int	paymentNumber	=	1;	paymentNumber	<=	months	-	1;

paymentNumber++)	{
loanBalance	+=	loanBalance	*	monthlyInterest	-	payment;	}

//	find	final	payment
finalPayment	=	loanBalance;
if	(finalPayment	>	payment)

{

//	apply	one	more	payment
loanBalance	+=	loanBalance	*	monthlyInterest	-	payment;

finalPayment	=	loanBalance;
months++;
monthsTextField.setText(String.valueOf(months));	}

analysisTextArea.append("\n\n"	+	String.valueOf(months	-	1)	+	"
Payments	of	$"	+	new	DecimalFormat("0.00").format(payment));
analysisTextArea.append("\n"	+	"Final	Payment	of:	$"	+	new
DecimalFormat("0.00").format(finalPayment));
analysisTextArea.append("\n"	+	"Total	Payments:	$"	+	new
DecimalFormat("0.00").format((months	-	1)	*	payment	+
finalPayment));	analysisTextArea.append("\n"	+	"Interest	Paid	$"	+
new	DecimalFormat("0.00").format((months	-	1)	*	payment	+
finalPayment	-	balance));	computeButton.setEnabled(false);

newLoanButton.setEnabled(true);
newLoanButton.requestFocus();

}

You	should	be	able	to	identify	all	the	steps	of	the	loan	analysis,	especially	the
final	payment	adjustment.

A	 couple	 of	 comments.	 In	 the	 first	 line	 of	 the	 analysis	 code,	 we	 reassign	 the
payment	value	to	the	displayed	value	in	the	paymentTextField	 text	field.	The
displayed	value	is	formatted	to	two	decimal	places.	Through	this	reassignment,
we	make	sure	payment	is	just	two	decimal	places.	Second,	note	the	analysis	in
the	 text	 field	 is	essentially	 just	one	 long	 text	property.	To	start	a	new	line,	we
use	the	control	string	\n.

Save	 and	 run	 the	 project.	 Enter	 values	 for	 balance,	 interest	 and	 number	 of
payments.	 Click	 Compute	Monthly	 Payment	 .	 Here	 are	 the	 results	 for	 the
example	 I’ve	 been	 using:	

Note	the	slight	adjustment	to	the	final	payment	amount.	Note	the	focus	on
New	Loan	Analysis.	You	can’t	do	another	analysis	at	this	point	since
computeButton	is	disabled	–	we’ll	fix	that	in	the	next	section.	Click	Exit.

Run	the	project	again,	this	time	clicking	the	X	next	to	the	Number	of	Payments
text	 field.	Enter	values	 for	balance,	 interest	 and	payment,	 then	click	Compute
Number	of	Payments.	Continuing	with	the	example	I’ve	been	using	(remember
we	 got	 58	 payments	 before?)	 shows:	

We	now	get	59	rather	than	58	payments,	the	same	result	we	saw	earlier	in	the
chapter.	It	was	determined	that	once	58	payments	of	$400.00	per	month	were
applied,	there	was	still	a	balance	over	$400,	necessitating	a	59th	payment	of
$400.00	plus	an	additional	payment	of	$186.90.	Click	Exit,	since	you	can’t	do

anything	else	at	this	point.

Code	Design	–	New	Loan	Analysis
Following	 an	 analysis,	 we	 would	 like	 the	 capability	 of	 performing	 a	 new
analysis.	When	a	user	clicks	the	New	Loan	Analysis	button	(newLoanButton),
the	following	things	should	happen:

➢	 If	 computing	 payment,	 clear	 paymentTextField,	 else	 clear
monthsTextField.

➢	Clear	analysisTextArea.
➢	Enable	computeButton.
➢	Disable	newLoanButton.
➢	Set	focus	on	balanceTextField.

We	do	not	clear	the	balanceTextField	or	interestTextField	boxes.	If
computing	the	payment,	we	do	not	clear	the	monthsTextField	box.	If
computing	the	number	of	months,	we	do	not	clear	the	paymentTextField
box.	This	allows	a	user	to	try	different	things	with	a	specific	loan.	Individual
boxes	can	be	cleared	by	the	user,	if	desired.

The	 newLoanButtonActionPerformed	 method	 is:	 private	 void
newLoanButtonActionPerformed(ActionEvent	e)	{

//	clear	computed	value	and	analysis
if	(computePayment)

{

paymentTextField.setText("");

}

else

{

monthsTextField.setText("");

}

}

analysisTextArea.setText("");
computeButton.setEnabled(true);
newLoanButton.setEnabled(false);
balanceTextField.requestFocus();

}

Add	this	new	code.	Save	and	run	the	project.	The	project	should	now	have	total
ability	 to	 compute	 monthly	 payments	 or	 number	 of	 payments,	 providing
complete	loan	analysis	results.	Play	with	the	project	as	much	as	you’d	like.

Improving	a	Java	Project
The	consumer	loan	assistant	project	works	fine	in	its	current	configuration,	but
there	 are	 some	 hidden	 problems.	 You	 may	 have	 uncovered	 some	 of	 them
already.	Earlier,	we	saw	the	possibility	of	unpredictable	 tab	ordering	and	fixed
the	problem,	improving	the	performance	of	our	project.	This	is	something	you,
as	a	programmer,	will	do	a	lot.	You	will	build	a	project	and,	while	running	it	and
testing	it,	will	uncover	weaknesses	that	need	to	be	eliminated.	These	weaknesses
could	be	actual	errors	 in	 the	application	or	 just	 things	 that,	 if	eliminated,	make
your	 application	 easier	 to	 use.	 Some	weaknesses	 are	 easy	 to	 find,	 some	more
subtle.

You	will	 find,	 as	 you	progress	 as	 a	 programmer,	 that	 you	will	 spend	much	of
your	time	improving	your	projects.	You	will	always	find	ways	to	add	features	to
a	project	and	to	make	it	more	appealing	to	your	user	base.	You	should	never	be
satisfied	with	 your	 first	 solution	 to	 a	 problem.	There	will	 always	 be	 room	 for
improvement.

If	 you	 run	 the	 loan	 assistant	 project	 a	 few	more	 times,	 you	 can	 identify	 some
weaknesses:

➢	For	example,	what	happens	if	you	input	a	zero	interest?	The	program	will
result	in	error	messages	and	not	compute	a	payment	because	the	formulas
implemented	in	code	will	not	work	with	zero	interest.

➢	As	 a	 convenience,	 it	would	be	nice	 that	when	you	hit	 the	<Enter>	key
after	typing	a	number,	the	focus	would	move	to	the	next	control	in	the	tab
sequence.

➢	Notice	you	can	type	any	characters	you	want	in	the	text	fields	when	you
should	just	be	limited	to	numbers	and	a	single	decimal	point	–	any	other
characters	will	cause	the	program	to	work	incorrectly.

➢	What	happens	if	you	forget	to	input	a	value	(leaving	a	text	field	empty)?
You	could	get	unpredictable	results.

➢	 A	 subtle	 problem	 arises	 when	 using	 the	 ‘compute	 number	 of	 months’
mode.	 In	 this	 configuration,	 the	minimum	desired	payment	must	 exceed
the	 loan	balance	 times	 the	monthly	 interest.	 If	 it	doesn’t,	you	will	never
get	the	loan	paid	off	–	your	balance	will	just	keep	growing	(!),	something

called	negative	amortization.

We	can	(and	will)	address	each	of	these	points	as	we	improve	the	loan	assistant
project.	As	we	do,	we’ll	look	at	some	other	Java	features.

Code	Design	–	Zero	Interest
If	you	are	 lucky	enough	 to	 find	a	bank	or	 someone	 to	give	you	a	 loan	at	 zero
percent	 interest,	 congratulations!!	 However,	 you	 can’t	 use	 the	 current	 code	 to
compute	payment	information.	Try	it	if	you	like	–	you’ll	receive	error	messages
in	the	NetBeans	output	window	and	see	no	computed	payment.

The	formulas	used	in	the	code	assume	a	non-zero	interest	rate.	If	interest	is	zero,
we	can	use	much	simpler	formulas.	For	the	‘compute	payment’	mode,	the	code
is	simply:	payment	=	balance	/	months;

While	for	the	‘compute	number	of	payments’	mode,	the	code	is:	months	=
(int)(balance	/	payment);

The	modified	 computeButtonActionPerformed	 method	 (changes	 are	 shaded,
some	 unmodified	 code	 is	 not	 shown	 for	 brevity):	 private	 void
computeButtonActionPerformed(ActionEvent	e)	{

.

.
if	(computePayment)

{

//	Compute	loan	payment
months	=

Integer.valueOf(monthsTextField.getText()).intValue();
if	(interest	==	0)

{

payment	=	balance	/	months;

}

else

{

{

multiplier	=	Math.pow(1	+	monthlyInterest,	months);	payment
=	balance	monthlyInterest	multiplier	/	(multiplier	-	1);

}

paymentTextField.setText(new
DecimalFormat("0.00").format(payment));	}

else

{

//	Compute	number	of	payments
payment	=

Double.valueOf(paymentTextField.getText()).doubleValue();
if	(interest	==	0)

{

months	=	(int)(balance	/	payment);

}

else

{

months	=	(int)((Math.log(payment)	-	Math.log(payment	-
balance	*	monthlyInterest))	/	Math.log(1	+	monthlyInterest));

}

monthsTextField.setText(String.valueOf(months));	}
.
.

}

Save	and	run	the	application,	making	sure	zero	interest	works	under	each	mode.

Notice	adjustments	to	the	final	payment	are	only	made	when	the	balance	is	not
an	exact	multiple	of	 the	payment.	Make	sure	 the	non-zero	 interest	options	still
work,	 too.	Always	make	 sure	when	 you	make	 changes	 to	 your	 code	 that	 you
haven’t	disturbed	portions	that	are	working	satisfactorily.

Code	Design	–	Focus	Transfer
We	 saw	 that	 the	 <Tab>	 key	 could	 be	 used	 to	 move	 from	 control	 to	 control,
shifting	the	focus.	Many	times,	you	might	like	to	move	focus	from	one	control	to
another	 in	 code,	 or	 programmatically.	 For	 example,	 in	 our	 savings	 example,
once	 the	user	 types	 in	 a	Deposit	Amount,	 it	would	be	nice	 if	 focus	would	be
moved	to	the	Interest	text	field	if	the	user	presses	<Enter>.

To	move	 from	 the	 current	 control	 to	 the	 next	 control	 in	 the	 tab	 sequence,	 use
transferFocus:	myControl.transferFocus();

To	move	from	the	current	control	to	the	previous	control	in	the	tab	sequence,
use	transerFocusBackward:	myControl.transferFocusBackward();

So,	 where	 does	 this	 code	 go	 in	 our	 project?	When	 a	 text	 field	 has	 focus	 and
<Enter>	is	pressed,	 the	ActionPerformed	method	is	 invoked.	Hence,	for	each
text	 field	where	we	want	 to	move	 focus	 based	 on	 keyboard	 input,	we	 add	 an
event	method	and	place	the	needed	code	there.	Adding	event	methods	for	a	text
field	is	identical	to	adding	methods	for	other	Swing	components.	For	a	text	field
named	 myTextField,	 use:	 myTextField.addActionListener(new
ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

myTextFieldActionPerformed(e);

}

});

and	the	corresponding	event	method	code	to	move	focus	would	be:	private
void	myTextFieldActionPerformed(ActionEvent	e)	{

myTextField.transferFocus();

}

Let’s	make	 the	modifications	 to	 the	 loan	assistant.	Each	 text	 field	will	need	 to
have	 a	method	 to	 transfer	 focus	 to	 the	 next	 control	 in	 sequence.	 In	 the	 frame
constructor,	 after	 each	 text	 field	 is	 established,	 add	 code	 in	 the	 corresponding
location	 to	 add	 a	 listener:	 balanceTextField.addActionListener(new
ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

balanceTextFieldActionPerformed(e);

}

});

interestTextField.addActionListener(new	ActionListener	()	{
public	void	actionPerformed(ActionEvent	e)

{

interestTextFieldActionPerformed(e);

}

});

monthsTextField.addActionListener(new	ActionListener	()	{
public	void	actionPerformed(ActionEvent	e)

{

monthsTextFieldActionPerformed(e);

}

});

paymentTextField.addActionListener(new	ActionListener	()	{
public	void	actionPerformed(ActionEvent	e)

{

paymentTextFieldActionPerformed(e);

}

});

Next,	add	the	four	ActionPerformed	methods	that	transfer	focus:	private	void
balanceTextFieldActionPerformed(ActionEvent	e)	{

balanceTextField.transferFocus();

}

private	void	interestTextFieldActionPerformed(ActionEvent	e)	{
interestTextField.transferFocus();

}

private	void	monthsTextFieldActionPerformed(ActionEvent	e)	{
monthsTextField.transferFocus();

}

private	void	paymentTextFieldActionPerformed(ActionEvent	e)	{
paymentTextField.transferFocus();

}

Save,	run	the	project.	Try	using	the	<Enter>	key	to	move	from	field	to	field.	Try
both	the	compute	payment	and	compute	number	of	payments	modes.

Code	Design	-	Input	Validation
In	the	loan	assistant	project,	there	is	nothing	to	prevent	the	user	from	typing	in
meaningless	 characters	 (for	 example,	 letters)	 into	 the	 text	 fields	 expecting
numerical	data.	We	want	to	keep	this	from	happening	–	if	the	input	is	not	a	valid
number,	 it	 cannot	 be	 converted	 from	 a	 string	 to	 a	 number,	 resulting	 in	 errors.
Whenever	 getting	 input	 from	 a	 user	 using	 a	 text	 field	 control,	 we	 need	 to
validate	the	typed	information	before	using	it.	Validation	rules	differ	depending
on	what	information	you	want	from	the	user.

In	 this	 project,	we	will	 perform	 input	validation	 in	 a	 general	method	 (named
validateDecimalNumber)	we	write.	The	method	will	examine	the	text	property
of	 a	 text	 field,	 trimming	 off	 leading	 and	 trailing	 spaces	 and	 checking	 that	 the
field	contains	only	numbers	and	a	single	decimal	point.	It	will	return	a	boolean
value	 indicating	 if	a	valid	number	 is	 found.	 If	 the	number	 is	valid,	 the	method
will	return	a	true	value.	If	not	valid,	the	method	will	return	a	false	value.	It	will
give	that	control	focus,	indicating	the	user	needs	to	modify	his/her	input.

Here’s	 the	 method	 that	 accomplishes	 that	 task:	 public	 boolean
validateDecimalNumber(JTextField	tf)	{

//	checks	to	see	if	text	field	contains
//	valid	decimal	number	with	only	digits	and	a	single	decimal	point

String	s	=	tf.getText().trim();
boolean	hasDecimal	=	false;
boolean	valid	=	true;
if	(s.length()	==	0)

{

valid	=	false;

}

else

{

for	(int	i	=	0;	i	<	s.length();	i++)

{

char	c	=	s.charAt(i);
if	(c	>=	'0'	&&	c	<=	'9')

{

continue;

}

else	if	(c	==	'.'	&&	!hasDecimal)

{

hasDecimal	=	true;

}

else

{

//	invalid	character	found
valid	=	false;

}

}

}

tf.setText(s);
if	(!valid)

{

tf.requestFocus();

}

return	(valid);

}

You	should	be	able	to	see	how	this	works.	The	text	field	text	property	is
stored	in	the	string	s	(after	trimming	off	leading	and	trailing	spaces).	Each
character	in	this	string	is	evaluated	to	see	if	it	contains	only	allows	number
and	a	single	decimal	point.	If	only	numbers	and	a	decimal	are	found,	valid	is
true	and	things	proceed.	If	valid	is	false,	indicating	invalid	characters	or	an
empty	string,	the	text	field	is	given	focus	to	allow	changing	the	input	value.
Add	this	validation	method	to	your	project.

Make	 the	 shaded	 changes	 to	 the	 computeButtonActionPerformed	method	 to
insure	 we	 have	 valid	 entries	 before	 doing	 a	 computation:	 private	 void
computeButtonActionPerformed(ActionEvent	e)	{

double	balance,	interest,	payment;
int	months;
double	monthlyInterest,	multiplier;
double	loanBalance,	finalPayment;
if	(validateDecimalNumber(balanceTextField))	{

balance	=
Double.valueOf(balanceTextField.getText()).doubleValue();

}

else

{

return;

}

if	(validateDecimalNumber(interestTextField))	{
interest	=

Double.valueOf(interestTextField.getText()).doubleValue();

}

else

{

return;

}

monthlyInterest	=	interest	/	1200;
if	(computePayment)

{

//	Compute	loan	payment
if	(validateDecimalNumber(monthsTextField))	{
months	=

Integer.valueOf(monthsTextField.getText()).intValue();

}

else

{

return;

}

if	(interest	==	0)

{

payment	=	balance	/	months;

}

else

{

multiplier	=	Math.pow(1	+	monthlyInterest,	months);	payment
=	balance	monthlyInterest	multiplier	/	(multiplier	-	1);	}

paymentTextField.setText(new
DecimalFormat("0.00").format(payment));	}

else

{

//	Compute	number	of	payments
if	(validateDecimalNumber(paymentTextField))	{

payment	=
Double.valueOf(paymentTextField.getText()).doubleValue();

}

else

{

return;

}

if	(interest	==	0)

{

months	=	(int)(balance	/	payment);

}

else

{

months	=	(int)((Math.log(payment)	-	Math.log(payment	-
balance	*	monthlyInterest))	/	Math.log(1	+	monthlyInterest));	}

monthsTextField.setText(String.valueOf(months));	}
.
.

}

In	each	case	where	we	need	a	value	from	a	text	field,	we	check	to	see	if	it	is
valid,	using	the	validateDecimalNumber	method.	If	valid,	computations	are
as	usual.	If	not	valid,	the	method	is	exited	and	the	focus	is	in	the	text	field
with	the	invalid	entry.

Run	 the	 project	 again.	 Try	 invalid	 entries.	 Click	 the	 compute	 button.	 There
should	be	no	error	messages,	only	a	blanking	out	of	the	offending	text	field.	A
user	 of	 your	 program	 would	 like	 some	 indication	 of	 why	 the	 program	 isn’t
working	 in	 these	 cases	 (in	 addition	 to	 simply	 blanking	 out	 an	 invalid	 entry).
Let’s	see	how	to	add	such	messages	using	the	confirm	dialog	control.

Confirm	Dialog
An	 often	 used	 dialog	 box	 in	 Java	GUI	 applications	 is	 a	 confirm	 dialog	 (also
known	as	 a	message	box).	This	dialog	 lets	you	display	messages	 to	your	user
and	 receive	 feedback	 for	 further	 information.	 It	 can	 be	 used	 to	 display	 error
messages,	 describe	 potential	 problems	 or	 just	 to	 show	 the	 result	 of	 some
computation.	 A	 confirm	 dialog	 is	 implemented	 with	 the	 Java	 Swing
JOptionPane	 class.	The	confirm	dialog	 is	versatile,	with	 the	ability	 to	display
any	message,	an	optional	icon,	and	a	selected	set	of	buttons.	The	user	responds
by	clicking	a	button	in	the	confirm	dialog	box.

You've	seen	confirm	dialog	boxes	if	you've	ever	used	a	Windows	(or	other	OS)
application.	Think	of	all	the	examples	you've	seen.	For	example,	confirm	dialogs
are	used	to	ask	you	if	you	wish	to	save	a	file	before	exiting	and	to	warn	you	if	a
disk	drive	 is	not	 ready.	For	example,	 if	while	writing	 these	notes	 in	Microsoft
Word,	 I	 attempt	 to	 exit,	 I	 see	 this	 confirm	 dialog:	

In	this	confirm	dialog	box,	the	different	parts	that	you	control	have	been
labeled.	You	will	see	how	you	can	format	a	confirm	dialog	box	any	way	you
desire.

To	 use	 the	 confirm	 dialog	 method,	 you	 decide	 what	 the	message	 should	 be,
what	title	you	desire,	and	what	icon	and	buttons	are	appropriate.	To	display	the
confirm	dialog	box	in	code,	you	use	the	showConfirmDialog	method.

The	 showConfirmDialog	 method	 is	 overloaded	 with	 several	 ways	 to
implement	 the	 dialog	 box.	 Some	 of	 the	 more	 common	 ways	 are:
JOptionPane.showConfirmDialog(null,	 message);
JOptionPane.showConfirmDialog(null,	 message,	 title,	 buttons);

JOptionPane.showConfirmDialog(null,	 message,	 title,	 buttons,	 icon);	 In
these	 implementations,	 if	 icon	 is	 omitted,	 a	 question	 mark	 is	 displayed.	 If
buttons	 is	 omitted,	 Yes,	 No,	 Cancel	 buttons	 are	 displayed.	 And,	 if	 title	 is
omitted,	 a	 title	 of	 “Select	 an	Option”	 is	 displayed.	 The	 first	 argument	 (null)
must	be	there	–	it	indicates	the	confirm	dialog	box	is	associated	with	the	current
frame.

As	mentioned,	you	decide	what	you	want	 for	 the	 confirm	dialog	message	 and
title	information	(string	data	types).	Be	aware	there	is	no	limit	to	how	long	the
message	can	be.	If	you	have	a	long	message,	use	the	new	line	character	(\n)	to
break	the	message	into	multiple	lines.

The	 other	 arguments	 are	 defined	 by	 Java	 JOptionPane	 predefined	 constants.
The	buttons	constants	are	defined	by:

Member Description
DEFAULT_OPTION Displays	an	OK	button
OK_CANCEL_OPTION Displays	OK	and	Cancel	buttons
YES_NO_CANCEL_OPTIONDisplays	Yes,	No	and	Cancel	buttons
YES_NO_OPTION Displays	Yes	and	No	buttons

The	syntax	for	specifying	a	choice	of	buttons	is	the	usual	dot-notation:
JOptionPane.Member

So,	to	display	an	OK	and	Cancel	button,	the	constant	is:
JOptionPane.OK_CANCEL_OPTION

The	displayed	icon	is	established	by	another	set	of	constants:

Member Description
PLAIN_MESSAGE Display	no	icon
INFORMATION_MESSAGEDisplays	an	information	icon
ERROR_MESSAGE Displays	an	error	icon
WARNING_MESSAGE Displays	an	exclamation	point	icon
QUESTION_MESSAGE Displays	a	question	mark	icon

To	specify	an	icon,	the	syntax	is:

JOptionPane.Member

To	display	an	error	icon,	use:

JOptionPane.ERROR_MESSAGE

When	 you	 invoke	 the	 showOptionDialog	 method,	 the	 method	 returns	 a
JOptionPane	 constant	 (an	 int	 type)	 indicating	 the	 user	 response.	The	 available
members	are:

Member Description
CLOSED_OPTION Window	closed	without	pressing	button
OK_OPTION The	OK	button	was	selected
YES_OPTION The	Yes	button	was	selected
NO_OPTION The	No	button	was	selected
CANCEL_OPTION The	Cancel	button	was	selected

Confirm	Dialog	Example:	This	little	code	snippet	(the	second	line	is	very	long):
int	response;
response	=	JOptionPane.showConfirmDialog(null,	"This	is	an	example	of
an	confirm	dialog	box.",	"Example",	JOptionPane.YES_NO_OPTION,
JOptionPane.INFORMATION_MESSAGE);	if	(response	==
JOptionPane.YES_OPTION)

{

//	Pressed	Yes

}

else	if	(response	==	JOptionPane.NO_OPTION)	{
//	Pressed	No

}

else

{

//	Closed	window	without	pressing	button

}

displays	this	message	box:

Of	course,	you	would	need	to	add	code	for	the	different	tasks	depending	on
whether	Yes	or	No	is	clicked	by	the	user	(or	the	window	is	simply	closed).

Another	Confirm	Dialog	Example:	Many	times,	you	just	want	to	display	a	quick
message	 to	 the	user	with	no	need	 for	 feedback	 (just	an	OK	button).	This	code
does	 the	 job:	 JOptionPane.showConfirmDialog(null,	 "Quick	 message	 for
you.",	 "Hey	 you!!",	 JOptionPane.DEFAULT_OPTION,
JOptionPane.PLAIN_MESSAGE);	The	resulting	message	box:

Notice	there	is	no	icon	and	the	OK	button	is	shown.	Also,	notice	in	the	code,
there	is	no	need	to	read	the	returned	value	–	we	know	what	it	is!	You	will	find
a	lot	of	uses	for	this	simple	form	of	the	message	box	(with	perhaps	some	kind
of	icon)	as	you	progress	in	Java.

Let’s	 use	 the	 confirm	 dialog	 control	 to	 provide	 our	 user	 some	 feedback	when
there	are	invalid	entries	in	the	loan	assistant	project.

Code	Design	–	User	Messages
When	 an	 invalid	 entry	 is	 encountered	 (either	 blank	 or	 containing	 invalid
characters),	we	want	 to	 inform	our	users	of	 the	problem.	We	will	use	a	simple
form	of	 the	confirm	dialog	 to	provide	 this	 feedback.	 It	will	 simply	present	 the
message	with	an	OK	button.

We	need	four	confirm	dialogs,	one	for	each	text	field.	The	dialogs	are	added	in
the	 computeButtonActionPerformed	 method	 (changes	 are	 shaded):	 private
void	computeButtonActionPerformed(ActionEvent	e)	{

double	balance,	interest,	payment;
int	months;
double	monthlyInterest,	multiplier;
double	loanBalance,	finalPayment;
if	(validateDecimalNumber(balanceTextField))	{

balance	=
Double.valueOf(balanceTextField.getText()).doubleValue();	}

else

{

JOptionPane.showConfirmDialog(null,	"Invalid	or	empty	Loan
Balance	entry.\nPlease	correct.",	"Balance	Input	Error",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);

return;

}

if	(validateDecimalNumber(interestTextField))	{
interest	=

Double.valueOf(interestTextField.getText()).doubleValue();	}
else

{

{

JOptionPane.showConfirmDialog(null,	"Invalid	or	empty	Interest
Rate	entry.\nPlease	correct.",	"Interest	Input	Error",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);

return;

}

monthlyInterest	=	interest	/	1200;
if	(computePayment)

{

//	Compute	loan	payment
if	(validateDecimalNumber(monthsTextField))	{

months	=
Integer.valueOf(monthsTextField.getText()).intValue();	}

else

{

JOptionPane.showConfirmDialog(null,	"Invalid	or	empty
Number	of	Payments	entry.\nPlease	correct.",	"Number	of	Payments
Input	Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);

return;

}

if	(interest	==	0)

{

payment	=	balance	/	months;

}

else

{

multiplier	=	Math.pow(1	+	monthlyInterest,	months);	payment
=	balance	monthlyInterest	multiplier	/	(multiplier	-	1);	}

paymentTextField.setText(new
DecimalFormat("0.00").format(payment));	}

else

{

//	Compute	number	of	payments
if	(validateDecimalNumber(paymentTextField))	{

payment	=
Double.valueOf(paymentTextField.getText()).doubleValue();	}

else

{

JOptionPane.showConfirmDialog(null,	"Invalid	or	empty
Monthly	Payment	entry.\nPlease	correct.",	"Payment	Input	Error",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);

return;

}

if	(interest	==	0)

{

months	=	(int)(balance	/	payment);

}

else

{

{

months	=	(int)((Math.log(payment)	-	Math.log(payment	-
balance	*	monthlyInterest))	/	Math.log(1	+	monthlyInterest));	}

monthsTextField.setText(String.valueOf(months));	}
.
.

}

After	 making	 these	 modifications,	 save	 and	 run	 the	 project.	 Make	 sure	 each
input	validation	works	correctly.	Make	sure	it	works	in	both	computation	modes.
And,	make	sure	your	changes	have	not	affected	previously	correct	calculations.

Each	 validation	 is	 similar.	 If	 the	 text	 field	 is	 not	 blank	 and	 all	 characters	 are
valid,	 things	 proceed	 as	 usual.	 If	 blank	 or	 containing	 invalid	 characters,	 a
message	box	like	 this	appears	(this	one	appears	when	balanceTextField	 is	 left

blank,	other	message	boxes	are	similar):	

The	user	clicks	OK,	the	focus	is	returned	to	the	blank	control	for	another
chance	at	inputting	a	non-blank	value.

We	 have	 one	 last	 input	 validation	 to	 implement	 and	 then	 the	 consumer	 loan
assistant	 project	 is	 complete	 (unless	 you	 can	 think	 of	 other	 improvements).
Recall,	 when	 computing	 the	 number	 of	 months,	 we	 must	 enter	 a	 minimum
payment	or	the	balance	will	continue	to	grow.	The	minimum	payment	is	the	loan
balance	 times	 the	 monthly	 interest:	 minimumPayment	 =	 balance	 *
monthlyInterest;	 If	 this	payment	 is	made	each	month,	 it	 is	 called	an	“interest
only”	 loan.	 This	 means,	 we	 just	 pay	 the	 interest	 owed	 each	 month,	 never
decreasing	the	balance.	Since	our	goal	is	to	decrease	the	balance,	we	will	suggest
to	the	user	a	minimum	payment	at	least	$1	greater	than	the	interest	only	option,
or	we	will	use:	minimumPayment	=	balance	*	monthlyInterest	+	1;	The	steps
for	minimum	 payment	 validation	 are	 (only	 needed	when	 computePayment	 is
false):

➢	 If	 entered	 payment	 is	 less	 than	 minimum	 value,	 display	 message	 box
informing	user	of	minimum	needed	and	ask	if	they	would	like	to	use	that
value.
o	 If	 user	 responds	Yes,	 set	payment,	 display	 in	paymentTextField	 and

continue.
o	If	user	responds	No,	set	focus	on	paymentTextField	to	allow	new	entry.

➢	If	entered	payment	is	above	minimum	value,	continue	as	usual.

These	modifications	go	in	the	computeButtonActionPerformed	method.	While
implementing	 improvements	 to	 the	 loan	assistant	project,	we	have	made	many
modifications	 to	 this	event.	For	 reference	purposes,	here	 is	 the	 final	version	of
the	 computeButton	Click	 method	 (with	 new	 additions	 shaded):	private	 void
computeButtonActionPerformed(ActionEvent	e)	{

double	balance,	interest,	payment;
int	months;
double	monthlyInterest,	multiplier;
double	loanBalance,	finalPayment;
if	(validateDecimalNumber(balanceTextField))	{

balance	=
Double.valueOf(balanceTextField.getText()).doubleValue();	}

else

{

JOptionPane.showConfirmDialog(null,	"Invalid	or	empty	Loan
Balance	entry.\nPlease	correct.",	"Balance	Input	Error",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	return;

}

if	(validateDecimalNumber(interestTextField))	{
interest	=

Double.valueOf(interestTextField.getText()).doubleValue();	}
else

{

{

JOptionPane.showConfirmDialog(null,	"Invalid	or	empty	Interest
Rate	entry.\nPlease	correct.",	"Interest	Input	Error",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	return;

}

monthlyInterest	=	interest	/	1200;
if	(computePayment)

{

//	Compute	loan	payment
if	(validateDecimalNumber(monthsTextField))	{

months	=
Integer.valueOf(monthsTextField.getText()).intValue();	}

else

{

JOptionPane.showConfirmDialog(null,	"Invalid	or	empty
Number	of	Payments	entry.\nPlease	correct.",	"Number	of	Payments
Input	Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	return;

}

if	(interest	==	0)

{

payment	=	balance	/	months;

}

else

{

multiplier	=	Math.pow(1	+	monthlyInterest,	months);	payment
=	balance	monthlyInterest	multiplier	/	(multiplier	-	1);	}

paymentTextField.setText(new
DecimalFormat("0.00").format(payment));	}

else

{

//	Compute	number	of	payments
if	(validateDecimalNumber(paymentTextField))	{

payment	=
Double.valueOf(paymentTextField.getText()).doubleValue();

if	(payment	<=	(balance	*	monthlyInterest	+	1.0))	{
if	(JOptionPane.showConfirmDialog(null,	"Minimum

payment	must	be	$"	+	new	DecimalFormat("0.00").format((int)(balance
*	monthlyInterest	+	1.0))	+	"\n"	+	"Do	you	want	to	use	the	minimum
payment?",	"Input	Error",	JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE)	==	JOptionPane.YES_OPTION)
{

paymentTextField.setText(new
DecimalFormat("0.00").format((int)(balance	*	monthlyInterest	+	1.0)));
payment	=
Double.valueOf(paymentTextField.getText()).doubleValue();	}

else

{

paymentTextField.requestFocus();
return;

}

}

}

else

{

JOptionPane.showConfirmDialog(null,	"Invalid	or	empty
Monthly	Payment	entry.\nPlease	correct.",	"Payment	Input	Error",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	return;

}

if	(interest	==	0)

{

months	=	(int)(balance	/	payment);

}

else

{

months	=	(int)((Math.log(payment)	-	Math.log(payment	-
balance	*	monthlyInterest))	/	Math.log(1	+	monthlyInterest));	}

monthsTextField.setText(String.valueOf(months));	}
//	reset	payment	prior	to	analysis	to	fix	at	two	decimals	payment	=

Double.valueOf(paymentTextField.getText()).doubleValue();	//	show
analysis

analysisTextArea.setText("Loan	Balance:	$"	+	new
DecimalFormat("0.00").format(balance));	analysisTextArea.append("\n"
+	"Interest	Rate:	"	+	new	DecimalFormat("0.00").format(interest)	+
"%");	//	process	all	but	last	payment

loanBalance	=	balance;
for	(int	paymentNumber	=	1;	paymentNumber	<=	months	-	1;

paymentNumber++)	{
loanBalance	+=	loanBalance	*	monthlyInterest	-	payment;	}

//	find	final	payment
finalPayment	=	loanBalance;
if	(finalPayment	>	payment)

{

//	apply	one	more	payment
loanBalance	+=	loanBalance	*	monthlyInterest	-	payment;

finalPayment	=	loanBalance;
months++;
monthsTextField.setText(String.valueOf(months));	}

analysisTextArea.append("\n\n"	+	String.valueOf(months	-	1)	+	"
Payments	of	$"	+	new	DecimalFormat("0.00").format(payment));
analysisTextArea.append("\n"	+	"Final	Payment	of:	$"	+	new
DecimalFormat("0.00").format(finalPayment));
analysisTextArea.append("\n"	+	"Total	Payments:	$"	+	new
DecimalFormat("0.00").format((months	-	1)	*	payment	+	finalPayment));
analysisTextArea.append("\n"	+	"Interest	Paid	$"	+	new
DecimalFormat("0.00").format((months	-	1)	*	payment	+	finalPayment	-
balance));	computeButton.setEnabled(false);

newLoanButton.setEnabled(true);
newLoanButton.requestFocus();

}

Make	the	noted	changes.

Save	and	run	the	loan	assistant	project.	Switch	to	‘compute	number	of	payments’
mode.	Enter	a	Loan	Balance	and	an	Interest	Rate.	Enter	a	“too	low”	Monthly
Payment	 amount.	 Here’s	 some	 numbers	 I	 used:	

Now,	click	Compute	Number	of	Payments.	A	message	box	like	this	should

appear:	

At	this	point,	if	you	click	No,	you	will	be	returned	to	the	Monthly	Payment
text	field	for	another	chance.

Click	 Yes	 and	 analysis	 will	 proceed	 using	 the	 suggested	 minimum	 payment
($92.00	 in	 my	 example):	

With	this	low	minimum	payment,	it	would	take	over	102	years	to	pay	off	the
loan!!	And,	unfortunately,	many	credit	card	companies	don’t	let	you	know
how	many	years	it	takes	to	pay	off	a	balance	if	you	just	make	the	minimum
payment	each	month.	This	new	project	arms	you	with	the	tool	you	need	to
make	such	computations.

Consumer	Loan	Assistant	Project
Review
The	 Consumer	 Loan	 Assistant	 project	 is	 now	 complete.	 Save	 and	 run	 the
project	and	make	sure	it	works	as	designed.	Check	that	you	can	move	back	and
forth	 between	 computation	modes.	Use	 the	 project	 to	make	 informed	payment
decisions	regarding	any	loans	or	credit	cards	you	may	have.

If	there	are	errors	in	your	implementation,	go	back	over	the	steps	of	frame	and
code	 design.	 Go	 over	 the	 developed	 code	 –	 make	 sure	 you	 understand	 how
different	parts	of	the	project	were	coded.	As	mentioned	in	the	beginning	of	this
chapter,	 the	 completed	 project	 is	 saved	 as	 LoanAssistant	 in	 the
\HomeJava\HomeJava	Projects\	folder.

While	completing	this	project,	new	concepts	and	skills	you	should	have	gained
include:

➢	Proper	use	of	the	text	field	control.
➢	How	to	use	tab	order	and	control	focus.
➢	Different	ways	to	improve	a	Java	project.
➢	How	to	use	message	boxes	in	conjunction	with	input	validation.

This	 project	 also	 showed	 that	 once	 you	 have	 built	 a	working	 project,	 there	 is
often	still	a	lot	of	work	to	do.	Much	of	the	code	in	the	loan	assistant	project	was
added	 to	 improve	 the	 application	 –	 making	 it	 more	 user	 friendly	 and	 less
susceptible	 to	 erroneous	 entries.	 As	mentioned	 previously	 in	 these	 notes,	 it	 is
relatively	 easy	 to	 write	 a	 project	 that	 works	 properly	 when	 the	 user	 does
everything	 correctly.	 It's	 difficult	 and	 takes	 time	 to	 write	 a	 project	 that	 can
handle	all	the	possible	wrong	things	a	user	can	do	and	still	not	bomb	out.	Added
improvements	separate	the	good	projects	from	the	adequate	projects.

Consumer	Loan	Assistant	Project
Enhancements
Possible	enhancements	to	the	consumer	loan	assistant	project	include:

➢	Many	 times,	 you	know	how	much	you	 can	 afford	monthly	 and	want	 to
know	how	much	you	can	borrow.	Add	a	 capability	 to	 compute	balance,
given	 interest,	months	 and	payment.	Follow	 similar	 steps	 for	 computing
the	other	parameters.

➢	Add	single	payment	processing	capability	so	you	can	see	how	much	 the
balance	 decreases	 each	 month	 and	 how	 much	 interest	 you	 are	 paying.
Show	results	in	the	current	text	field	or	add	other	controls.

➢	Add	the	capability	to	stop	after	a	certain	number	of	payments	have	been
processed.

➢	Add	printing	capability	to	see	a	complete	repayment	schedule	for	any	loan
you	design.	Printing	is	discussed	in	another	project	in	these	notes	–	Home
Inventory.

➢	Add	an	output	to	the	loan	analysis	that	tells	you	what	date	your	loan	will
be	paid	off	based	on	the	number	of	monthly	payments.

Consumer	Loan	Assistant	Project
Review

/	*

*	LoanAssistant.java

*/

package	loanassistant;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.text.*;

public	class	LoanAssistant	extends	JFrame

{

JLabel	balanceLabel	=	new	JLabel();
JTextField	balanceTextField	=	new	JTextField();	JLabel	interestLabel	=
new	JLabel();
JTextField	interestTextField	=	new	JTextField();	JLabel	monthsLabel	=
new	JLabel();
JTextField	monthsTextField	=	new	JTextField();	JLabel	paymentLabel	=
new	JLabel();
JTextField	paymentTextField	=	new	JTextField();	JButton
computeButton	=	new	JButton();
JButton	newLoanButton	=	new	JButton();
JButton	monthsButton	=	new	JButton();
JButton	paymentButton	=	new	JButton();
JLabel	analysisLabel	=	new	JLabel();
JTextArea	analysisTextArea	=	new	JTextArea();	JButton	exitButton	=

new	JButton();

Font	myFont	=	new	Font("Arial",	Font.PLAIN,	16);	Color	lightYellow	=
new	Color(255,	255,	128);	boolean	computePayment;

public	static	void	main(String	args[])

{

//	create	frame
new	LoanAssistant().show();

}

public	LoanAssistant()

{

//	frame	constructor
setTitle("Loan	Assistant");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
GridBagConstraints	gridConstraints;

balanceLabel.setText("Loan	Balance");

balanceLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
getContentPane().add(balanceLabel,	gridConstraints);
balanceTextField.setPreferredSize(new	Dimension(100,	25));
balanceTextField.setHorizontalAlignment(SwingConstants.RIGHT);
balanceTextField.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
1;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
getContentPane().add(balanceTextField,	gridConstraints);
balanceTextField.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

balanceTextFieldActionPerformed(e);

}

});

interestLabel.setText("Interest	Rate");
interestLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	1;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
getContentPane().add(interestLabel,	gridConstraints);
interestTextField.setPreferredSize(new	Dimension(100,	25));
interestTextField.setHorizontalAlignment(SwingConstants.RIGHT);
interestTextField.setFont(myFont);

gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
1;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
getContentPane().add(interestTextField,	gridConstraints);
interestTextField.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

interestTextFieldActionPerformed(e);

}

});

monthsLabel.setText("Number	of	Payments");
monthsLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	2;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
getContentPane().add(monthsLabel,	gridConstraints);
monthsTextField.setPreferredSize(new	Dimension(100,	25));
monthsTextField.setHorizontalAlignment(SwingConstants.RIGHT);
monthsTextField.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
1;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
getContentPane().add(monthsTextField,	gridConstraints);
monthsTextField.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

monthsTextFieldActionPerformed(e);

}

});

paymentLabel.setText("Monthly	Payment");
paymentLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	3;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
getContentPane().add(paymentLabel,	gridConstraints);
paymentTextField.setPreferredSize(new	Dimension(100,	25));
paymentTextField.setHorizontalAlignment(SwingConstants.RIGHT);
paymentTextField.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
1;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
getContentPane().add(paymentTextField,	gridConstraints);
paymentTextField.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

paymentTextFieldActionPerformed(e);

}

});

computeButton.setText("Compute	Monthly	Payment");
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	4;

gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
getContentPane().add(computeButton,	gridConstraints);
computeButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

computeButtonActionPerformed(e);

}

});

newLoanButton.setText("New	Loan	Analysis");
newLoanButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	5;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	10,	0);
getContentPane().add(newLoanButton,	gridConstraints);
newLoanButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

newLoanButtonActionPerformed(e);

}

});

monthsButton.setText("X");
monthsButton.setFocusable(false);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
2;

gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
getContentPane().add(monthsButton,	gridConstraints);
monthsButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

monthsButtonActionPerformed(e);

}

});

paymentButton.setText("X");
paymentButton.setFocusable(false);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
2;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
getContentPane().add(paymentButton,	gridConstraints);
paymentButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

paymentButtonActionPerformed(e);

}

});

analysisLabel.setText("Loan	Analysis:");
analysisLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
3;
gridConstraints.gridy	=	0;

gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(0,	10,	0,	0);
getContentPane().add(analysisLabel,	gridConstraints);
analysisTextArea.setPreferredSize(new	Dimension(250,	150));
analysisTextArea.setFocusable(false);

analysisTextArea.setBorder(BorderFactory.createLineBorder(Color.BLACK));
analysisTextArea.setFont(new	 Font("Courier	 New",	 Font.PLAIN,	 14));
analysisTextArea.setEditable(false);

analysisTextArea.setBackground(Color.WHITE);	gridConstraints	=
new	GridBagConstraints();	gridConstraints.gridx	=	3;
gridConstraints.gridy	=	1;
gridConstraints.gridheight	=	4;
gridConstraints.insets	=	new	Insets(0,	10,	0,	10);
getContentPane().add(analysisTextArea,	gridConstraints);
exitButton.setText("Exit");
exitButton.setFocusable(false);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
3;
gridConstraints.gridy	=	5;
getContentPane().add(exitButton,	gridConstraints);
exitButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

exitButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	 setBounds((int)	 (0.5
(screenSize.width	 -	getWidth())),	 (int)	 (0.5	 (screenSize.height	 -	getHeight())),
getWidth(),	getHeight());	paymentButton.doClick();

}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

private	void	computeButtonActionPerformed(ActionEvent	e)	{
double	balance,	interest,	payment;
int	months;
double	monthlyInterest,	multiplier;
double	loanBalance,	finalPayment;
if	(validateDecimalNumber(balanceTextField))	{

balance	=
Double.valueOf(balanceTextField.getText()).doubleValue();	}

else

{

JOptionPane.showConfirmDialog(null,	"Invalid	or	empty	Loan
Balance	entry.\nPlease	correct.",	"Balance	Input	Error",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	return;

}

if	(validateDecimalNumber(interestTextField))	{
interest	=

Double.valueOf(interestTextField.getText()).doubleValue();	}
else

{

JOptionPane.showConfirmDialog(null,	"Invalid	or	empty	Interest

Rate	entry.\nPlease	correct.",	"Interest	Input	Error",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	return;

}

monthlyInterest	=	interest	/	1200;
if	(computePayment)

{

//	Compute	loan	payment
if	(validateDecimalNumber(monthsTextField))	{

months	=
Integer.valueOf(monthsTextField.getText()).intValue();	}

else

{

JOptionPane.showConfirmDialog(null,	"Invalid	or	empty	Number
of	Payments	entry.\nPlease	correct.",	"Number	of	Payments	Input	Error",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	return;

}

if	(interest	==	0)

{

payment	=	balance	/	months;

}

else

{

multiplier	=	Math.pow(1	+	monthlyInterest,	months);	payment	=

balance	monthlyInterest	multiplier	/	(multiplier	-	1);	}
paymentTextField.setText(new

DecimalFormat("0.00").format(payment));	}
else

{

//	Compute	number	of	payments
if	(validateDecimalNumber(paymentTextField))	{

payment	=
Double.valueOf(paymentTextField.getText()).doubleValue();	 if	 (payment
<=	(balance	*	monthlyInterest	+	1.0))	{

if	(JOptionPane.showConfirmDialog(null,	"Minimum
payment	must	be	$"	+	new	DecimalFormat("0.00").format((int)(balance	*
monthlyInterest	+	1.0))	+	"\n"	+	"Do	you	want	to	use	the	minimum
payment?",	"Input	Error",	JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE)	==	JOptionPane.YES_OPTION)	{

paymentTextField.setText(new
DecimalFormat("0.00").format((int)(balance	*	monthlyInterest	+	1.0)));
payment	=
Double.valueOf(paymentTextField.getText()).doubleValue();	}

else

{

paymentTextField.requestFocus();
return;

}

}

}

else

{

JOptionPane.showConfirmDialog(null,	"Invalid	or	empty
Monthly	Payment	entry.\nPlease	correct.",	"Payment	Input	Error",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	return;

}

if	(interest	==	0)

{

months	=	(int)(balance	/	payment);

}

else

{

months	=	(int)((Math.log(payment)	-	Math.log(payment	-	balance
*	monthlyInterest))	/	Math.log(1	+	monthlyInterest));	}

monthsTextField.setText(String.valueOf(months));	}
//	reset	payment	prior	to	analysis	to	fix	at	two	decimals	payment	=

Double.valueOf(paymentTextField.getText()).doubleValue();	 //	 show
analysis
analysisTextArea.setText("Loan	Balance:	$"	+	new

DecimalFormat("0.00").format(balance));	analysisTextArea.append("\n"	+
"Interest	Rate:	"	+	new	DecimalFormat("0.00").format(interest)	+	"%");	//
process	all	but	last	payment
loanBalance	=	balance;
for	(int	paymentNumber	=	1;	paymentNumber	<=	months	-	1;
paymentNumber++)	{

loanBalance	+=	loanBalance	*	monthlyInterest	-	payment;	}
//	find	final	payment
finalPayment	=	loanBalance;
if	(finalPayment	>	payment)

{

//	apply	one	more	payment
loanBalance	+=	loanBalance	*	monthlyInterest	-	payment;
finalPayment	=	loanBalance;
months++;
monthsTextField.setText(String.valueOf(months));	}

analysisTextArea.append("\n\n"	+	String.valueOf(months	-	1)	+	"
Payments	of	$"	+	new	DecimalFormat("0.00").format(payment));
analysisTextArea.append("\n"	+	"Final	Payment	of:	$"	+	new
DecimalFormat("0.00").format(finalPayment));
analysisTextArea.append("\n"	+	"Total	Payments:	$"	+	new
DecimalFormat("0.00").format((months	-	1)	*	payment	+	finalPayment));
analysisTextArea.append("\n"	+	"Interest	Paid	$"	+	new
DecimalFormat("0.00").format((months	-	1)	*	payment	+	finalPayment	-
balance));	computeButton.setEnabled(false);
newLoanButton.setEnabled(true);
newLoanButton.requestFocus();

}

private	void	newLoanButtonActionPerformed(ActionEvent	e)	{
//	clear	computed	value	and	analysis
if	(computePayment)

{

paymentTextField.setText("");

}

else

{

monthsTextField.setText("");

}

analysisTextArea.setText("");

computeButton.setEnabled(true);
newLoanButton.setEnabled(false);
balanceTextField.requestFocus();

}

private	void	monthsButtonActionPerformed(ActionEvent	e)	{
//	will	compute	months
computePayment	=	false;
paymentButton.setVisible(true);
monthsButton.setVisible(false);
monthsTextField.setText("");
monthsTextField.setEditable(false);
monthsTextField.setBackground(lightYellow);
monthsTextField.setFocusable(false);
paymentTextField.setEditable(true);
paymentTextField.setBackground(Color.WHITE);
paymentTextField.setFocusable(true);
computeButton.setText("Compute	Number	of	Payments");
balanceTextField.requestFocus();

}

private	void	paymentButtonActionPerformed(ActionEvent	e)	{
//	will	compute	payment
computePayment	=	true;
paymentButton.setVisible(false);
monthsButton.setVisible(true);
monthsTextField.setEditable(true);
monthsTextField.setBackground(Color.WHITE);
monthsTextField.setFocusable(true);
paymentTextField.setText("");
paymentTextField.setEditable(false);
paymentTextField.setBackground(lightYellow);

paymentTextField.setFocusable(false);
computeButton.setText("Compute	Monthly	Payment");
balanceTextField.requestFocus();

}

private	void	exitButtonActionPerformed(ActionEvent	e)	{
System.exit(0);

}

private	void	balanceTextFieldActionPerformed(ActionEvent	e)	{
balanceTextField.transferFocus();

}

private	void	interestTextFieldActionPerformed(ActionEvent	e)	{
interestTextField.transferFocus();

}

private	void	monthsTextFieldActionPerformed(ActionEvent	e)	{
monthsTextField.transferFocus();

}

private	void	paymentTextFieldActionPerformed(ActionEvent	e)	{
paymentTextField.transferFocus();

}

private	boolean	validateDecimalNumber(JTextField	tf)	{
//	checks	to	see	if	text	field	contains
//	valid	decimal	number	with	only	digits	and	a	single	decimal	point
String	s	=	tf.getText().trim();
boolean	hasDecimal	=	false;
boolean	valid	=	true;

if	(s.length()	==	0)

{

valid	=	false;

}

else

{

for	(int	i	=	0;	i	<	s.length();	i++)

{

char	c	=	s.charAt(i);
if	(c	>=	'0'	&&	c	<=	'9')

{

continue;

}

else	if	(c	==	'.'	&&	!hasDecimal)

{

hasDecimal	=	true;

}

else

{

//	invalid	character	found
valid	=	false;

}

}

}

tf.setText(s);
if	(!valid)

{

tf.requestFocus();

}

return	(valid);

}

}

4

Flash	Card	Math	Quiz	Project

Review	and	Preview
In	this	chapter,	we	build	a	project	that	lets	kids	(or	adults)	practice	their
basic	 addition,	 subtraction,	 multiplication	 and	 division	 skills.	 The
Flash	 Card	Math	Quiz	 Project	 allows	 you	 to	 select	 problem	 type,
what	numbers	you	want	to	use	and	has	three	timing	options.	We	look	at
using	random	numbers	and	review	the	timer	object.

Flash	Card	Math	Quiz	Project	Preview
In	 this	 chapter,	 we	 will	 build	 a	 flash	 card	 math	 program.	 Random	 math
problems	(selectable	from	addition,	subtraction,	multiplication,	and/or	division)
using	 the	 numbers	 from	 0	 to	 9	 are	 presented.	 Timing	 options	 are	 available	 to
help	build	both	accuracy	and	speed.

The	finished	project	is	saved	as	FlashCardMath	in	the	\HomeJava\HomeJava
Projects\	 project	 group.	 Start	 NetBeans	 (or	 your	 IDE).	 Open	 the	 specified
project	 group.	Make	FlashCardMath	 the	main	 project.	 Run	 the	 project.	 You

will	see:	

There	are	lots	of	controls.	Two	label	controls	are	used	for	title	information,
two	text	fields	for	scoring.	There’s	a	large	label	in	the	middle	of	the	frame

(there	is	nothing	in	it,	so	you	can’t	see	it)	used	to	display	the	math	problem.
And,	a	final	label	(the	skinny	red	box)	is	just	used	for	“decoration.”	Two
button	controls	are	used	to	start	and	stop	the	problems	and	to	exit	the	project.
There	are	also	three	panel	controls.	The	first	holds	four	check	box	controls
used	to	select	problem	type.	The	second	holds	eleven	radio	button	controls
used	to	select	numbers	used	in	the	problems.	The	third	panel	holds	three	radio
button	controls	used	to	select	the	timing	option.	A	vertical	scroll	bar	control
(next	to	a	text	field)	is	used	to	adjust	the	amount	of	time	used	in	the	flash	card
drills.

The	 flash	 card	 math	 program	 appears	 as:	

Many	options	are	available.	First,	choose	problem	type	from	the	Type	panel.
Choose	from	Addition,	Subtraction,	Multiplication,	and/or	Division
problems	(you	may	choose	more	than	one	problem	type).	Choose	your
Factor,	any	number	from	0	to	9,	or	choose	Random	for	random	factors.
These	options	may	be	changed	at	any	time.	To	practice	math	facts,	click	on
the	Start	Practice	button.

When	 I	 click	 Start	 Practice	 (using	 the	 default	 choices),	 I	 see:	

There	is	a	large	label	control	in	the	middle	where	the	problem	(3	+	8	=)	is
displayed.	The	program	is	waiting	for	an	answer	to	this	problem.	Type	your
answer.	If	it	is	correct,	the	number	in	the	text	field	control	next	to	Correct:	is
incremented.	Whether	correct	or	not,	another	problem	is	presented.

A	 few	 notes	 on	 entering	 your	 answer.	 The	 primary	 goal	 of	 the	 program	 is	 to
build	speed	in	solving	simple	problems.	As	such,	you	have	one	chance	to	enter
an	 answer	 -	 there	 is	 no	 erasing.	 If	 the	 answer	 has	 more	 than	 two	 digits	 (the
number	of	digits	in	the	answer	is	shown	using	question	marks),	type	your	answer
from	left	to	right.	For	example,	if	the	answer	is	10,	type	a	1	then	a	0.	Try	several
addition	problems	to	see	how	answers	are	entered.	You	can	stop	practicing	math
problems,	at	any	time,	by	clicking	the	Stop	Practice	button.

Other	problem	types	can	be	selected	and	a	new	factor	chosen	at	any	time.	Each
problem	 is	 generated	 randomly,	 based	 on	 problem	 type	 and	 factor	 value.	 For
Addition,	you	are	given	problems	using	your	factor	as	the	second	addend.	If	you
choose	 7	 as	 your	 factor,	 an	 example	 problem	 would	 be:	

For	Subtraction,	 you	 are	 given	 problems	 using	 your	 factor	 as	 the	 subtrahend
(the	number	 being	 subtracted).	Selecting	 a	 factor	 of	5,	 an	 example	 subtraction

problem	is:	

For	Multiplication,	you	are	given	problems	using	your	factor	as	 the	multiplier

(the	 number	 you’re	 multiplying	 by).	 If	 a	 factor	 of	 9	 is	 selected,	 an	 example
multiplication	 problem	 is:	

Lastly,	for	Division,	you	are	given	problems	using	your	factor	as	the	divisor	(the
number	 you	 are	 dividing	 by).	 If	 the	 selected	 factor	 is	 4,	 a	 typical	 division

problem	would	be:	

As	mentioned,	you	do	not	have	to	choose	a	specific	factor	–	Random	factors
can	be	chosen.	Try	all	kinds	of	factors	with	all	kinds	of	problem	types.

There	is	another	option	to	consider	when	using	the	flash	card	math	project	–	the
corresponding	option	choices	are	in	the	Timer	panel.	These	options	can	only	be
selected	when	not	solving	problems.	There	are	three	choices	here.	If	you	select
Timer	Off,	you	solve	problems	until	you	click	Stop	Practice.	If	you	select	On-
Count	Up,	a	timer	will	appear	and	the	computer	will	keep	track	of	how	long	you
were	solving	problems	(a	maximum	of	30	minutes	is	allowed).	If	you	select	On-
Count	Down,	a	timer	will	appear,	along	with	a	scroll	bar	control.	The	scroll	bar
control	 is	used	to	set	how	long	you	want	to	solve	problems	(a	maximum	of	30
minutes	 is	 allowed).	 The	 timer	 will	 then	 count	 down,	 allowing	 you	 to	 solve
problems	until	the	allotted	time	expires.

Try	the	timer	options	if	you’d	like.	Here’s	the	beginning	of	a	run	I	made	using
the	 On-Count	 Down	 option	 (starting	 at	 1	 minute):	

Once	you	are	done	practicing	math	problems	(either	you	clicked	Stop	Practice
or	time	ran	out	with	the	On-Count	Down	option),	a	message	box	appears	giving
you	 the	 results	of	your	 little	quiz.	This	box	 tells	you	how	many	problems	you
solved	and	how	many	you	got	correct	(including	a	percentage	score).	If	the	timer
was	on,	you	are	also	 told	how	long	you	were	solving	problems	and	how	much

time	 (on	 average)	 you	 spent	 on	 each	 problem.	Here’s	 the	message	 box	 I	 saw

when	I	finished	the	quiz	I	started	above:	

Click	OK	and	you	can	try	again.	Click	the	Exit	button	in	Flash	Card	Math
when	you	are	done	solving	problems.

You	will	now	build	this	project	in	several	stages.	We	first	address	frame	design.
We	add	the	controls	used	to	build	the	frame	and	establish	initial	properties.	And,
we	 address	 code	 design	 in	 detail.	We	 cover	 random	 generation	 of	 problems,
selection	of	the	various	program	options,	and	how	to	use	timing.

Flash	Card	Math	Frame	Design
We	begin	building	the	Flash	Card	Math	Project.	Let’s	build	the	frame.	Start	a
new	 project	 in	 your	 Java	 project	 group	 –	 name	 it	 FlashCardMath.	 Delete
default	code	in	file	named	FlashCardMath.java.	Once	started,	we	suggest	you
immediately	save	 the	project	with	 the	name	you	chose.	This	 sets	up	 the	 folder
and	 file	 structure	 needed	 for	 your	 project.	 Build	 the	 basic	 frame	 with	 these
properties:	FlashCardMath	Frame:

title Flash	Card	Math
color Color(255,	255,	192)
resizable false

The	code	is:

/	*

*	FlashCardMath.java

*/

package	flashcardmath;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	FlashCardMath	extends	JFrame	{
public	static	void	main(String	args[])	{

//	create	frame
new	FlashCardMath().show();

}

public	FlashCardMath()

{

//	frame	constructor
setTitle("Flash	Card	Math");
getContentPane().setBackground(new	Color(255,	255,	192));

setResizable(false);
addWindowListener(new	WindowAdapter()	{

public	void	windowClosing(WindowEvent	evt)	{
exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
GridBagConstraints	gridConstraints;	pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	setBounds((int)	(0.5
(screenSize.width	-	getWidth())),	(int)	(0.5	(screenSize.height	-
getHeight())),	getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	evt)	{
System.exit(0);

}

}

This	code	builds	 the	frame,	sets	up	 the	 layout	manager	and	includes	code	 to
exit	the	application.	Run	the	code	to	make	sure	the	frame	(at	least,	what	there

is	of	it	at	this	point)	appears	and	is	centered	on	the	screen:	

Let’s	populate	our	frame	with	other	controls.	All	code	for	creating	the	frame
and	placing	controls	(except	declarations)	goes	in	the	FlashCardMath
constructor.

The	 GridBagLayout	 for	 the	 project	 frame	 is:	

The	 top	 label	 controls	 (triedLabel	 and	 correctLabel)	 are	 used	 for	 title
information.	 The	 text	 fields	 (triedTextField	 and	 correctTextField)	 are	 for
scoring.	One	 label	 (problemLabel)	will	display	 the	math	problem	while	 the
other	(dividerLabel)	is	a	dividing	line.	typePanel	holds	the	check	boxes	used
to	select	problem	type,	factorPanel	holds	the	radio	buttons	used	to	select	the
factor,	 and	 timerPanel	 holds	 controls	 used	 to	 establish	 timing	 options.	One
button	 (startButton)	 starts	 and	 stops	 the	 problem	 solving	 while	 the	 other
button	 (exitButton)	 exits	 the	 program.	We’ll	 add	 a	 few	 controls	 at	 a	 time.
Let’s	add	the	controls	‘above’	the	three	panel	controls.

The	control	properties	are:

triedLabel:
text Tried:
font Arial,	Plain,	Size	18
gridx 0
gridy 0
anchor WEST
insets 10,	10,	0,	10
	 	
triedTextField: 	
text 0
size 90,	30
editable false
background Red
foreground Yellow
horizontalAlignment Center

font Arial,	Plain,	Size	18
gridx 1
gridy 0
insets 10,	0,	0,	0
	 	
correctLabel: 	
text Correct:
font Arial,	Plain,	Size	18
gridx 2
gridy 0
anchor EAST
insets 10,	10,	0,	10
	 	
correctTextField: 	
text 0
size 90,	30
editable false
background Red
foreground Yellow
horizontalAlignment Center
font Arial,	Plain,	Size	18
gridx 3
gridy 0
insets 10,	0,	0,	0
	 	
problemLabel: 	
border Black	line
size 450,	100
background White
font Comic	Sans	MS,	Plain,	Size	48
horizontalAlignment Center
gridx 0
gridy 1

gridwidth 5
insets 10,	10,	0,	10
	 	
dividerLabel: 	
size 450,	10
background Red
opaque true
gridx 0
gridy 2
gridwidth 5
insets 10,	10,	10,	10

Declare	these	controls	using:

JLabel	triedLabel	=	new	JLabel();	JTextField	triedTextField	=	new
JTextField();	JLabel	correctLabel	=	new	JLabel();	JTextField
correctTextField	=	new	JTextField();	JLabel	problemLabel	=	new
JLabel();	JLabel	dividerLabel	=	new	JLabel();	Note	the	top	labels	and	text
fields	all	use	the	same	font.	Let’s	create	a	Font	object	to	use	in	each:	Font
myFont	=	new	Font("Arial",	Font.PLAIN,	18);	Now,	the	controls	are
added	to	the	frame	using	(recall	code	goes	in	frame	constructor):
triedLabel.setText("Tried:");	triedLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
getContentPane().add(triedLabel,	gridConstraints);
triedTextField.setText("0");
triedTextField.setPreferredSize(new	Dimension(90,30));
triedTextField.setEditable(false);
triedTextField.setBackground(Color.RED);
triedTextField.setForeground(Color.YELLOW);
triedTextField.setHorizontalAlignment(SwingConstants.CENTER);
triedTextField.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;

gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
getContentPane().add(triedTextField,	gridConstraints);
correctLabel.setText("Correct:");	correctLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.EAST;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
getContentPane().add(correctLabel,	gridConstraints);
correctTextField.setText("0");
correctTextField.setPreferredSize(new	Dimension(90,30));
correctTextField.setEditable(false);
correctTextField.setBackground(Color.RED);
correctTextField.setForeground(Color.YELLOW);
correctTextField.setHorizontalAlignment(SwingConstants.CENTER);
correctTextField.setFont(myFont);	gridConstraints	=	new
GridBagConstraints();	gridConstraints.gridx	=	3;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
getContentPane().add(correctTextField,	gridConstraints);
problemLabel.setText("");
problemLabel.setBorder(BorderFactory.createLineBorder(Color.BLACK));
problemLabel.setPreferredSize(new	Dimension(450,	100));
problemLabel.setBackground(Color.WHITE);
problemLabel.setOpaque(true);
problemLabel.setFont(new	Font("Comic	Sans	MS",	Font.PLAIN,	48));
problemLabel.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.gridwidth	=	5;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
getContentPane().add(problemLabel,	gridConstraints);
dividerLabel.setPreferredSize(new	Dimension(450,	10));
dividerLabel.setBackground(Color.RED);	dividerLabel.setOpaque(true);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;

gridConstraints.gridwidth	=	5;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(dividerLabel,	gridConstraints);	Save,	run	the
project.	You	will	see	the	added	controls:	

The	 typePanel	 will	 hold	 four	 check	 box	 controls	 (an	 array	 named
typeCheckBox)	used	to	select	problem	type.	The	GridBagLayout	for	typePanel

is:	

The	panel	and	check	box	properties:

typePanel:: 	
size 130,	130
title Type:
font Arial,	Bold,	14
background Color(192,	192,	255),	lightBlue
gridx 0	(on	frame)
gridy 3	(on	frame)
gridwidth 2
anchor NORTH
	 	
typeCheckBox[0]: 	

text Addition
background lightBlue
selected true
gridx 0	(on	typePanel)
gridy 0	(on	typePanel)
anchor WEST
	 	
typeCheckBox[1]: 	
text Subtraction
background lightBlue
selected true
gridx 0	(on	typePanel)
gridy 1	(on	typePanel)
anchor WEST
	 	
typeCheckBox[2]: 	
text Multiplication
background lightBlue
selected true
gridx 0	(on	typePanel)
gridy 2	(on	typePanel)
anchor WEST
	 	
typeCheckBox[3]: 	
text Division
background lightBlue
selected true
gridx 0	(on	typePanel)
gridy 3	(on	typePanel)
anchor WEST

These	controls	are	declared	using	(we’ve	added	a	Color	object	to	define	the	light
blue	color):	JPanel	typePanel	=	new	JPanel();

JCheckBox[]	typeCheckBox	=	new	JCheckBox[4];	Color	lightBlue	=	new
Color(192,	192,	255);	The	check	boxes	are	placed	in	the	typePanel	(which	is
placed	in	the	frame)	using:	UIManager.put("TitledBorder.font",	new
Font("Arial",	Font.BOLD,	14));	typePanel.setPreferredSize(new
Dimension(130,	130));
typePanel.setBorder(BorderFactory.createTitledBorder("Type	:"));
typePanel.setBackground(lightBlue);	typePanel.setLayout(new
GridBagLayout());	gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.gridwidth	=	2;
gridConstraints.anchor	=	GridBagConstraints.NORTH;
getContentPane().add(typePanel,	gridConstraints);	for	(int	i	=	0;	i	<	4;
i++)

{

typeCheckBox[i]	=	new	JCheckBox();
typeCheckBox[i].setBackground(lightBlue);	gridConstraints	=	new
GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	i;
gridConstraints.anchor	=	GridBagConstraints.WEST;
typePanel.add(typeCheckBox[i],	gridConstraints);
typeCheckBox[i].addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
typeCheckBoxActionPerformed(e);

}

});

}

typeCheckBox[0].setText("Addition");
typeCheckBox[1].setText("Subtraction");
typeCheckBox[2].setText("Multiplication");
typeCheckBox[3].setText("Division");
typeCheckBox[0].setSelected(true);	The	first	line	here	uses	the	UIManager

to	set	the	font	for	the	panel	borders.	Notice	how	properties	are	set	and	a
method	is	added	in	the	for	loop.

The	code	above	also	adds	an	ActionPerformed	method	for	each	check	box.	Add
this	 empty	 method:	 private	 void
typeCheckBoxActionPerformed(ActionEvent	e)	{

}

Add	 this	 code	 in	 the	 proper	 locations.	 Run	 to	 see:	

The	type	panel	is	displayed	with	a	check	mark	next	to	Addition.

The	 factorPanel	 will	 hold	 eleven	 radio	 button	 controls	 (an	 array	 named
factorRadioButton)	used	to	select	the	factor	used	in	the	problems.	The	first	ten
buttons	 (factorRadioButton[0]	 –	 factorRadioButton[9])	 choose	 the	 digits	 0
through	9,	 the	final	button	(factorRadioButton[10])	 is	 for	a	random	factor.	The
GridBagLayout	 for	 factorPanel	 is:	

The	panel	and	radio	button	properties:

factorPanel:: 	
size 130,	130
title Factor:
font Arial,	Bold,	14
background lightBlue
gridx 2	(on	frame)
gridy 3	(on	frame)
gridwidth 2
anchor NORTH
	 	
factorRadioButton[10]:
buttonGroup factorButtonGroup
text Random
selected true
background lightBlue
gridx 0	(on	factorPanel)
gridy 0	(on	factorPanel)
gridwidth 2
anchor WEST
	 	
factorRadioButton[0]:
buttonGroup factorButtonGroup
text 0
background lightBlue
gridx 2	(on	factorPanel)

gridy 0	(on	factorPanel)
anchor WEST
	 	
factorRadioButton[1]:
buttonGroup factorButtonGroup
text 1
background lightBlue
gridx 0	(on	factorPanel)
gridy 1	(on	factorPanel)
anchor WEST
	 	
factorRadioButton[2]:
buttonGroup factorButtonGroup
text 2
background lightBlue
gridx 1	(on	factorPanel)
gridy 1	(on	factorPanel)
anchor WEST
	 	
factorRadioButton[3]:
buttonGroup factorButtonGroup
text 3
background lightBlue
gridx 2	(on	factorPanel)
gridy 1	(on	factorPanel)
anchor WEST
	 	
factorRadioButton[4]:
buttonGroup factorButtonGroup
text 4
background lightBlue
gridx 0	(on	factorPanel)
gridy 2	(on	factorPanel)

anchor WEST
	 	
factorRadioButton[5]:
buttonGroup factorButtonGroup
text 5
background lightBlue
gridx 1	(on	factorPanel)
gridy 2	(on	factorPanel)
anchor WEST
	 	
factorRadioButton[6]:
buttonGroup factorButtonGroup
text 6
background lightBlue
gridx 2	(on	factorPanel)
gridy 2	(on	factorPanel)
anchor WEST
	 	
factorRadioButton[7]:
buttonGroup factorButtonGroup
text 7
background lightBlue
gridx 0	(on	factorPanel)
gridy 3	(on	factorPanel)
anchor WEST
	 	
factorRadioButton[8]:
buttonGroup factorButtonGroup
text 8
background lightBlue
gridx 1	(on	factorPanel)
gridy 3	(on	factorPanel)
anchor WEST

	 	
factorRadioButton[9]:
buttonGroup factorButtonGroup
text 9
background lightBlue
gridx 2	(on	factorPanel)
gridy 3	(on	factorPanel)
anchor WEST

These	controls	are	declared:

JPanel	factorPanel	=	new	JPanel();	ButtonGroup	factorButtonGroup	=
new	ButtonGroup();	JRadioButton[]	factorRadioButton	=	new
JRadioButton[11];	The	radio	buttons	are	placed	in	the	factorPanel	(which	is
placed	in	the	frame)	using:	factorPanel.setPreferredSize(new
Dimension(130,	130));
factorPanel.setBorder(BorderFactory.createTitledBorder("Factor:"));
factorPanel.setBackground(lightBlue);	factorPanel.setLayout(new
GridBagLayout());	gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	3;
gridConstraints.gridwidth	=	2;
gridConstraints.anchor	=	GridBagConstraints.NORTH;
getContentPane().add(factorPanel,	gridConstraints);	int	x	=	2;
int	y	=	0;
for	(int	i	=	0;	i	<	11;	i++)

{

factorRadioButton[i]	=	new	JRadioButton();
factorRadioButton[i].setText(String.valueOf(i));
factorRadioButton[i].setBackground(lightBlue);
factorButtonGroup.add(factorRadioButton[i]);	gridConstraints	=	new
GridBagConstraints();	if	(i	<	10)

{

gridConstraints.gridx	=	x;
gridConstraints.gridy	=	y;

}

else

{

gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.gridwidth	=	2;

}

gridConstraints.anchor	=	GridBagConstraints.WEST;
factorPanel.add(factorRadioButton[i],	gridConstraints);
factorRadioButton[i].addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
factorRadioButtonActionPerformed(e);	}

});

x++;
if	(x	>	2)

{

x	=	0;
y++;

}

}

factorRadioButton[10].setText("Random");
factorRadioButton[10].setSelected(true);	Notice	how	properties	are	set	and
a	method	is	added	in	the	for	loop.

The	 code	 adds	 an	ActionPerformed	 method	 for	 each	 radio	 button.	 Add	 this
empty	 method:	 private	 void
factorRadioButtonActionPerformed(ActionEvent	e)	{

}

Add	 this	 code	 in	 the	 proper	 locations.	 Run	 to	 see:	

The	factor	panel	is	displayed	with	the	Random	button	selected.

The	timerPanel	has	 three	radio	buttons	 to	allow	selection	of	 timer	options	(an
array	named	timerRadioButton).	I	also	holds	a	text	field	and	scroll	bar	used	to
display/set	 times.	 The	 GridBagLayout	 for	 timerPanel	 is:	

The	panel	and	control	properties:

timerPanel:: 	

size 130,	130
title Timer:
font Arial,	Bold,	14
background lightBlue
gridx 4	(on	frame)
gridy 3	(on	frame)
insets 0,	0,	0,	10
anchor NORTH
	 	
timerRadioButton[0]:
buttonGroup timerButtonGroup
text Off
selected true
background lightBlue
gridx 0	(on	factorPanel)
gridy 0	(on	factorPanel)
gridwidth 2
anchor WEST
	 	
timerRadioButton[1]:
buttonGroup timerButtonGroup
text On-Count	Up
background lightBlue
gridx 0	(on	factorPanel)
gridy 1	(on	factorPanel)
gridwidth 2
anchor WEST
	 	
timerRadioButton[2]:
buttonGroup timerButtonGroup
text On-Count	Down
background lightBlue
gridx 0	(on	factorPanel)

gridy 2	(on	factorPanel)
gridwidth 2
anchor WEST
	 	
timerTextField:
text Off
size 90,	25
editable false
background White
foreground red
horizontalAlignment Center
font myFont
gridx 0	(on	factorPanel)
gridy 3
insets 5,	0,	0,	0
anchor WEST
	 	
timerScrollBar:
size 20,	25
minimum 1
maximum 60
value 1
blockIncrement 1
unitIncrement 1
orientation Vertical
enabled false
gridx 1
gridy 3
insets 5,	0,	0,	0
anchor WEST

The	scroll	bar	is	disabled	initially	since	the	timer	is	off	by	default.

These	controls	are	declared:

JPanel	timerPanel	=	new	JPanel();	uttonGroup	timerButtonGroup	=	new
ButtonGroup();	JRadioButton[]	timerRadioButton	=	new
JRadioButton[3];	JTextField	timerTextField	=	new	JTextField();
JScrollBar	timerScrollBar	=	new	JScrollBar();	The	controls	are	placed	in
the	timerPanel	(which	is	placed	in	the	frame)	using:
timerPanel.setPreferredSize(new	Dimension(130,	130));
timerPanel.setBorder(BorderFactory.createTitledBorder("Timer:"));
timerPanel.setBackground(lightBlue);	timerPanel.setLayout(new
GridBagLayout());	gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	4;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(0,	0,	0,	10);	gridConstraints.anchor	=
GridBagConstraints.NORTH;	getContentPane().add(timerPanel,
gridConstraints);	for	(int	i	=	0;	i	<	3;	i++)

{

timerRadioButton[i]	=	new	JRadioButton();
timerRadioButton[i].setBackground(lightBlue);
timerButtonGroup.add(timerRadioButton[i]);	gridConstraints	=	new
GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	i;
gridConstraints.gridwidth	=	2;
gridConstraints.anchor	=	GridBagConstraints.WEST;
timerPanel.add(timerRadioButton[i],	gridConstraints);
timerRadioButton[i].addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
timerRadioButtonActionPerformed(e);	}

});

}

timerRadioButton[0].setText("Off");	timerRadioButton[1].setText("On-
Count	Up");	timerRadioButton[2].setText("On-Count	Down");
timerRadioButton[0].setSelected(true);	timerTextField.setText("Off");

timerTextField.setPreferredSize(new	Dimension(90,25));
timerTextField.setEditable(false);
timerTextField.setBackground(Color.WHITE);
timerTextField.setForeground(Color.RED);
timerTextField.setHorizontalAlignment(SwingConstants.CENTER);
timerTextField.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(5,	0,	0,	0);
timerPanel.add(timerTextField,	gridConstraints);
timerScrollBar.setPreferredSize(new	Dimension(20,	25));
timerScrollBar.setMinimum(1);
timerScrollBar.setMaximum(60);
timerScrollBar.setValue(1);
timerScrollBar.setBlockIncrement(1);
timerScrollBar.setUnitIncrement(1);
timerScrollBar.setOrientation(JScrollBar.VERTICAL);
timerScrollBar.setEnabled(false);	gridConstraints	=	new
GridBagConstraints();	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	3;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(5,	0,	0,	0);
timerPanel.add(timerScrollBar,	gridConstraints);
timerScrollBar.addAdjustmentListener(new	AdjustmentListener()	{

public	void	adjustmentValueChanged(AdjustmentEvent	e)	{
timerScrollBarAdjustmentValueChanged(e);	}

});

The	 code	 adds	 an	 ActionPerformed	 method	 for	 each	 radio	 button	 and	 an
AdjustmentValueChanged	method	for	the	scroll	bar.	Add	these	empty	method:
private	void	timerRadioButtonActionPerformed(ActionEvent	e)	{

}

private	void	timerScrollBarAdjustmentValueChanged	(AdjustmentEvent

e)	{

}

Add	 this	 code	 in	 the	 proper	 locations.	 Run	 to	 see:	

The	timer	panel	is	displayed	with	the	Off	button	selected.	Let’s	add	a	couple
of	buttons	and	we’re	done.

The	two	button	controls	(startButton	and	exitButton)	are	placed	directly	in	the
frame.	The	properties	are:

startButton: 	
text Start	Practice
gridx 0
gridy 4
gridwidth 2
insets 10,	0,	10,	0
	 	
exitButton: 	
text Exit
gridx 2

gridy 4
gridwidth 2
insets 10,	0,	10,	0

Declare	the	controls	using:

JButton	startButton	=	new	JButton();	JButton	exitButton	=	new
JButton();	Add	the	buttons	to	the	frame	using:	startButton.setText("Start
Practice");	gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	4;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	10,	0);
getContentPane().add(startButton,	gridConstraints);
startButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
startButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	2;
gridConstraints.gridy	=	4;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	10,	0);
getContentPane().add(exitButton,	gridConstraints);
exitButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
exitButtonActionPerformed(e);

}

});

This	code	also	adds	listeners	for	each	button.	Add	these	empty	methods:	private
void	startButtonActionPerformed(ActionEvent	e)	{

}

private	void	exitButtonActionPerformed(ActionEvent	e)	{

}

Save,	 run	 the	 program	 one	 more	 time.	 You	 will	 see	 the	 completed	 frame:	

We	will	begin	writing	code	for	the	application.	We	will	write	the	code	in	several
steps.	As	a	first	step,	we	write	the	code	that	generates	a	random	problem	(using
the	Random	object)	and	gets	the	answer	from	the	user,	updating	the	score.

Code	Design	–	Start	Practice
The	idea	of	the	flash	card	math	project	is	to	display	a	problem,	receive	an	answer
from	the	user	and	check	for	correctness.	Problems	can	be	of	four	different	types
with	different	factor	choices	and	different	timer	options.	For	now,	we	will	ignore
the	timer	options.	Once	this	initial	code	is	working	satisfactorily,	timing	will	be
considered.	Again,	this	step-by-step	approach	to	building	a	project	is	far	simpler
than	trying	to	build	everything	at	once.

Things	 begin	 by	 clicking	 the	Start	Practice	 button	 (startButton).	When	 this
happens,	the	following	steps	are	taken:

➢	Change	text	property	of	startButton	to	Stop	Practice.
➢	Disable	exitButton.
➢	Set	number	of	problems	tried	and	number	correct	to	zero.
➢	Generate	and	display	a	problem	in	problemLabel.
➢	Obtain	answer	from	user.
➢	Check	answer	and	update	score.

Once	each	generated	problem	is	answered,	subsequent	problems	are	generated
and	answered.

The	user	answers	problems	until	he/she	clicks	Stop	Practice	(or	time	elapses	in
timed	drills).	The	steps	followed	at	this	point	are:

➢	 Change	 text	 property	 of	 startButton	 to	 Start	 Practice	 ➢	 Enable
exitButton.

➢	Clear	problemLabel.
➢	Present	results.

This	 code	 (for	 the	 startButtonActionPerformed	 method)	 is	 fairly
straightforward.	Let’s	build	 the	 framework.	First,	 create	 a	Random	 object	 and
declare	 two	class	 level	variables	 to	keep	track	of	 the	number	of	problems	tried
and	the	number	correct:	Random	myRandom	=	new	Random();
int	numberTried,	numberCorrect;

The	Random	object	requires	addition	of	this	import	statement:	import
java.util.Random;

Now,	 use	 this	 code	 in	 the	 startButtonActionPerformed	 method	 (implements
the	 steps	 above,	 except	 for	 presenting	 results):	 private	 void
startButtonActionPerformed(ActionEvent	e)	{

if	(startButton.getText().equals("Start	Practice"))	{
startButton.setText("Stop	Practice");
exitButton.setEnabled(false);
numberTried	=	0;
numberCorrect	=	0;
triedTextField.setText("0");
correctTextField.setText("0");
problemLabel.setText(getProblem());	}

else

{

startButton.setText("Start	Practice");
exitButton.setEnabled(true);
problemLabel.setText("");

}

}

This	 code	uses	a	general	method	getProblem	 to	generate	 the	 random	problem
and	 return	 it	 as	 a	String	 type.	 Add	 this	 nearly	 empty	method	 (we’ll	 fill	 it	 in
soon).

private	String	getProblem()

{

return	("Problem!");

}

And,	while	we’re	at	it,	code	the	exitButtonActionPerformed	method.

private	void	exitButtonActionPerformed(ActionEvent	e)	{
System.exit(0);

}

Save	 and	 run	 the	 project.	 The	 form	 should	 appear	 as:	

All	controls	are	in	their	initial	configuration.	You	can	change	options,	but
nothing	will	happen	since	there	is	no	code	behind	any	of	the	check	boxes	or
radio	buttons.

Click	Start	Practice	to	make	sure	buttons	change	as	planned.	You	will	also	see
the	 generated	 “problem”:	

Now,	click	Stop	Practice.	Make	sure	Exit	works.

This	 framework	 seems	 acceptable.	 We	 continue	 code	 design	 by	 discussing
problem	 generation	 and	 obtaining	 an	 answer	 (including	 scoring)	 from	 the
user.	Then,	later	we	discuss	timing	and	presenting	the	results.

Code	Design	–	Problem	Generation
To	generate	a	problem,	we	examine	the	current	options	selected	by	the	user	and
produce	 a	 random	 problem	 based	 on	 these	 selections.	 All	 code	will	 be	 in	 the
getProblem	general	method	currently	in	the	framework	code.

The	steps	involved	in	generating	a	random	flash	card	problem	are:

➢	Select	problem	type	(random	selection	based	on	checked	choices	in	Type
panel)	 ➢	 Generate	 factor	 (based	 on	 selection	 in	 Factor	 panel)
➢	Formulate	problem	and	determine	correct	answer.

➢	 Return	 problem	 as	String	 type,	 replacing	 correct	 answer	 with	 question
marks	 (?)	 in	 place	 of	 digits.	 An	 example	 of	 the	 desired	 form	 of	 the
returned	value	is:

8	+	6	=	??

where	question	marks	tell	the	user	how	many	digits	are	in	the	correct	answer.

Let’s	 look	 at	 each	 step	 of	 the	 problem	 generation	 process.	 The	 first	 step	 is	 to
choose	a	random	problem	type	from	the	maximum	of	four	possibilities.	We	will
use	 a	 simple	 approach,	 first	 generating	 a	 random	 number	 from	 1	 to	 4	 (1
representing	 addition,	 2	 representing	 subtraction,	 3	 representing	multiplication
and	4	representing	division).	If	the	check	box	(in	the	Type	panel)	corresponding
to	the	random	number	is	checked,	that	will	be	the	problem	type.	It	the	check	box
corresponding	to	the	random	number	is	not	checked,	we	choose	another	random
number.	We	continue	 this	process	until	 a	problem	 type	 is	 selected.	Notice	 this
approach	assumes	at	least	one	check	box	is	always	selected.	We	will	make	sure
this	 is	 the	 case	when	 developing	 code	 for	 the	 problem	 type	 option.	 There	 are
more	efficient	ways	to	choose	problem	type	which	don’t	involve	loops,	but,	for
this	simple	problem,	this	works	quite	well.

A	snippet	of	code	that	performs	the	choice	of	problem	type	(p)	based	on	random
number	pType	is:	p	=	0;
do

{

{

pType	=	myRandom.nextInt(4)	+	1;
if	(pType	==	1	&&	typeCheckBox[0].isSelected())	{

//	Addition
p	=	pType;

}

else	if	(pType	==	2	&&	typeCheckBox[1].isSelected())	{
//	Subtraction
p	=	pType;

}

else	if	(pType	==	3	&&	typeCheckBox[2].isSelected())	{
//	Multiplication
p	=	pType;	number	=	myRandom.nextInt(10);	}

else	if	(pType	==	4	&&	typeCheckBox[3].isSelected())	{
//	Division
p	=	pType;

}

}

while	(p	==	0);

Once	 a	 problem	 type	 is	 selected,	 we	 determine	 the	 factor	 used	 to	 generate	 a
problem.	It	can	be	a	selected	value	from	0	to	9,	or	a	random	value	from	0	to	9,
based	on	the	radio	button	selected	in	the	Factor	panel.	For	now,	we	assume	that
value	 is	 provided	 by	 a	 general	method	getFactor(p)	 that	 returns	 an	 int	 value,
based	on	problem	type	p.

Each	 problem	 has	 four	 variables	 associated	 with	 it:	 factor,	 representing	 the
value	 returned	 by	 getFactor,	 number,	 the	 other	 number	 used	 in	 the	 math
problem,	 correctAnswer,	 the	 problem	 answer,	 and	 problem,	 a	 string
representation	 of	 the	 unsolved	 problem.	Once	 a	 problem	 type	 and	 factor	 have

been	determined,	we	find	values	for	each	of	these	variables.	Each	problem	type
has	unique	considerations	for	problem	generation.	Let’s	look	at	each	type.

For	Addition	problems,	the	selected	factor	is	the	second	addend	in	the	problem.
The	string	form	of	addition	problems	(problem)	will	be:	number	+	factor	=

where	number	is	a	random	value	from	0	to	9,	while	recall	factor	is	the
selected	factor.	A	snippet	of	code	to	generate	an	addition	problem	and
determine	the	correctAnswer	is:	number	=	myRandom.nextInt(10);
factor	=	getFactor(1);
correctAnswer	=	number	+	factor;
problem	=	String.valueOf(number)	+	"	+	"	+
String.valueOf(factor)	+	"	=	";

For	 Subtraction	 problems,	 the	 factor	 is	 the	 subtrahend	 (the	 number	 being
subtracted).	 The	 string	 form	 of	 subtraction	 problems	 (problem)	 will	 be:
number	-	factor	=

We	want	all	the	possible	answers	to	be	positive	numbers	between	0	and	9.
Because	of	this,	we	formulate	the	problem	in	a	backwards	sense,	generating	a
random	answer	(correctAnswer),	then	computing	number	based	on	that
answer	and	the	known	factor	(factor).	The	code	that	does	this	is:	factor	=
getFactor(2);
correctAnswer	=	myRandom.nextInt(10);	number	=	correctAnswer	+
factor;
problem	=	String.valueOf(number)	+	"	-	"	+
String.valueOf(factor)	+	"	=	";

For	Multiplication	problems,	 the	selected	factor	 is	 the	multiplier	 (the	number
you’re	 multiplying	 by)	 in	 the	 problem.	 The	 string	 form	 of	 multiplication
problems	(problem)	will	be:	number	x	factor	=

where	number	is	a	random	value	from	0	to	9,	and	factor	is	the	factor.	A
snippet	of	code	to	generate	a	multiplication	problem	and	determine	the
correctAnswer	is:	number	=	myRandom.nextInt(10);
factor	=	getFactor(3);

correctAnswer	=	number	*	factor;
problem	=	String.valueOf(number)	+	"	x	"	+
String.valueOf(factor)	+	"	=	";

For	Division	problems,	the	factor	is	the	divisor	(the	number	doing	the	dividing).
The	string	form	of	division	problems	(problem)	will	be:	number	/	factor	=

Like	in	subtraction,	we	want	all	the	possible	answers	to	be	positive	numbers
between	0	and	9.	So,	we	again	formulate	the	problem	in	a	backwards	sense,
generating	a	random	answer	(correctAnswer),	then	computing	number	based
on	that	answer	and	the	known	factor	(factor).	The	code	that	does	this	is:
factor	=	getFactor(4);
correctAnswer	=	myRandom.nextInt(10);	number	=	correctAnswer	*
factor;
problem	=	String.valueOf(number)	+	"	/	"	+
String.valueOf(factor)	+	"	=	";

Note	with	division,	we	must	make	sure	the	factor	is	never	zero	(can’t	divide
by	zero).

The	getFactor	routine	provides	the	factor	based	on	the	radio	button	selection	in
the	Factor	 panel	 and	problem	 type	p.	 For	 random	 factors,	 it	will	make	 sure	 a
zero	 is	 not	 returned	 if	 a	 division	 problem	 is	 being	 generated.	 The	 getFactor
general	method	is	thus:	private	int	getFactor(int	p)

{

if	(factorRadioButton[10].isSelected())	{
//random
if	(p	==	4)

return	(myRandom.nextInt(9)	+	1);	else
return	(myRandom.nextInt(10));

}

else

{

{

for	(int	i	=	0;	i	<	10;	i++)

{

if	(factorRadioButton[i].isSelected())	return(i);

}

return	(0);

}

}

If	Random	(factorRadioButton[10])	option	is	selected,	0	to	9	is	returned	for
addition,	subtraction	and	multiplication	problems;	1	to	9	is	returned	for
division	problems	(p	=	4).	If	another	radio	button	is	selected,	the	selected
factor	is	returned	(we	will	have	to	make	sure	zero	is	not	a	choice	when	doing
division).

The	 getProblem	 method	 is	 nearly	 complete.	We	 want	 to	 return	 the	 problem
variable	 with	 appended	 question	 marks	 that	 represent	 the	 number	 of	 digits
(numberDigits,	 another	 class	 level	 variable)	 in	 the	 correct	 answer.	 The	 code
snippet	that	does	this	is:	if	(correctAnswer	<	10)

{

numberDigits	=	1;
return	(problem	+	"?");

}

else

{

numberDigits	=	2;
return	(problem	+	"??");

}

We	 can	 now	 assemble	 all	 the	 little	 code	 snippets	 into	 a	 final	 form	 for
getProblem	method.	 First,	 add	 these	 declarations	 for	 class	 level	 variables:	 int
correctAnswer,	numberDigits;
String	problem;

To	 form	 the	 getProblem	 method,	 start	 with	 the	 snippet	 that	 selects	 problem
type.	 Then,	 add	 each	 problem	 generation	 segment	 (one	 for	 each	 of	 the	 four
mathematical	operations)	in	its	corresponding	location.	Finally,	add	the	question
mark	appending	code.	The	finished	method	is:	private	String	getProblem()

{

int	pType,	p,	number,	factor;
p	=	0;
do

{

pType	=	myRandom.nextInt(4)	+	1;
if	(pType	==	1	&&	typeCheckBox[0].isSelected())	{

//	Addition
p	=	pType;
number	=	myRandom.nextInt(10);
factor	=	getFactor(1);
correctAnswer	=	number	+	factor;
problem	=	String.valueOf(number)	+	"	+	"	+

String.valueOf(factor)	+	"	=	";	}
else	if	(pType	==	2	&&	typeCheckBox[1].isSelected())	{

//	Subtraction
p	=	pType;
factor	=	getFactor(2);
correctAnswer	=	myRandom.nextInt(10);	number	=
correctAnswer	+	factor;
problem	=	String.valueOf(number)	+	"	-	"	+

String.valueOf(factor)	+	"	=	";	}
else	if	(pType	==	3	&&	typeCheckBox[2].isSelected())	{

//	Multiplication
p	=	pType;
number	=	myRandom.nextInt(10);
factor	=	getFactor(3);
correctAnswer	=	number	*	factor;
problem	=	String.valueOf(number)	+	"	x	"	+

String.valueOf(factor)	+	"	=	";	}
else	if	(pType	==	4	&&	typeCheckBox[3].isSelected())	{

//	Division
p	=	pType;
factor	=	getFactor(4);
correctAnswer	=	myRandom.nextInt(10);	number	=
correctAnswer	*	factor;
problem	=	String.valueOf(number)	+	"	/	"	+

String.valueOf(factor)	+	"	=	";	}

}

while	(p	==	0);
if	(correctAnswer	<	10)

{

numberDigits	=	1;
return	(problem	+	"?");

}

else

{

numberDigits	=	2;
return	(problem	+	"??");

}

}

Add	this	to	the	project	along	with	the	code	for	getFactor.	Remember	to	delete
the	temporary	line	that	just	displays	Problem!

Save	 and	 run	 the	 project.	 Click	Start	Practice	 and	 you	 should	 see	 a	 random

addition	problem:	

The	two	question	marks	tell	us	there	are	two	digits	in	the	correct	answer.
We’ll	see	how	to	get	that	answer	next.	At	this	point,	all	you	can	do	is	click
Stop	Practice.	You	can	then	click	Start	Practice	to	see	another	addition
problem	if	you’d	like.	View	as	many	addition	problems	as	you	want.

Actually,	you	can	also	view	other	types	of	problems	with	other	factors.	But,	you
need	to	be	careful.	You	need	to	make	sure	there	is	always	at	least	one	problem
type	 selected.	 And,	 if	Division	 problems	 are	 selected,	 make	 sure	 the	 selected
Factor	is	not	zero	(0).	Later,	in	code,	we	will	make	sure	this	doesn’t	happen.

Code	Design	–	Obtaining	Answer
Once	a	problem	is	displayed,	the	user	can	enter	the	digits	in	the	answer.	These
digits	will	be	entered	using	the	keyboard.	The	keystrokes	will	be	handled	by	the
problemLabelKeyPressed	 method.	 This	 method	 intercepts	 keystrokes	 when
problemLabel	 has	 focus.	 So,	 add	 a	 listener	 for	 this	 method	 with	 the	 code
establishing	problemLabel	in	the	frame	constructor.	The	needed	code	is	shaded:
problemLabel.setText("");
problemLabel.setBorder(BorderFactory.createLineBorder(Color.BLACK));
problemLabel.setPreferredSize(new	Dimension(450,	100));
problemLabel.setBackground(Color.WHITE);
problemLabel.setOpaque(true);
problemLabel.setFont(new	Font("Comic	Sans	MS",	Font.PLAIN,	48));
problemLabel.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.gridwidth	=	5;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
getContentPane().add(problemLabel,	gridConstraints);
problemLabel.addKeyListener(new	KeyAdapter()	{

public	void	keyPressed(KeyEvent	e)	{
problemLabelKeyPressed(e);

}

});

Add	the	empty	method	problemLabelKeyPressed	where	keystrokes	will	be
examined:	private	void	problemLabelKeyPressed(KeyEvent	e)	{

}

We	will	need	to	insure	the	label	has	focus	when	it	needs	it.	That	way,	no	key
strokes	will	be	missed.

The	steps	for	obtaining	and	checking	an	answer	in	the	key	pressed	method	are:

➢	Make	sure	keystroke	is	a	number	(0	to	9).
➢	 If	 number,	 keep	 keystroke	 as	 part	 of	 your	 answer	 and	 replace	 question
mark	with	number.

➢	If	a	question	mark	remains,	exit	waiting	for	another	keystroke.
➢	If	all	question	marks	are	gone,	compare	your	answer	with	correct	answer.
➢	Increment	the	number	of	problems	tried.
➢	If	your	answer	is	correct,	increment	the	number	of	correct	problems.
➢	Update	scoring	label	controls.
➢	Generate	another	problem.

Declare	class	level	variables	to	hold	your	answer	and	the	current	digit	number	in
your	answer:	String	yourAnswer;
int	digitNumber;

The	problemLabelKeyPressed	method	that	incorporates	the	steps	listed	above
is	then:	private	void	problemLabelKeyPressed(KeyEvent	e)	{

if	(startButton.getText().equals("Start	Practice"))	return;
//	only	allow	number	keys
if	(e.getKeyChar()	>=	'0'	&&	e.getKeyChar()	<=	'9')	{

yourAnswer	+=	e.getKeyChar();
problemLabel.setText(problem	+	yourAnswer);	if	(digitNumber	!=
numberDigits)

{

digitNumber++;
problemLabel.setText(problemLabel.getText()	+	"?");	return;

}

else

{

numberTried++;
//	check	answer
if	(Integer.valueOf(yourAnswer).intValue()	==	correctAnswer)

{
numberCorrect++;

}

triedTextField.setText(String.valueOf(numberTried));
correctTextField.setText(String.valueOf(numberCorrect));
problemLabel.setText(getProblem());	}

}

}

In	the	first	few	lines	of	code,	we	make	sure	we	are	solving	problems	before
allowing	any	keystrokes.	Notice	how	all	digits	in	your	answer	(represented	by
the	typed	character	in	e.getKeyChar())	are	saved	and	concatenated	into
yourAnswer.	Also,	notice	how	the	displayed	problem	is	updated,	overwriting
a	question	mark,	with	each	keystroke.	As	mentioned	earlier,	the	program	only
gives	you	one	chance	to	enter	an	answer	-	there	is	no	erasing.

You	need	to	add	a	few	lines	to	the	getProblem	method	to	initialize	yourAnswer
and	 digitNumber,	 with	 each	 new	 problem,	 and	 also	 give	 the	 problem	 label
focus,	 so	answers	can	be	 typed.	The	modified	method	 is	 (new	 lines	are	coded,
most	unmodified	code	is	not	shown):	private	String	getProblem()

{

int	pType,	p,	number,	factor;
p	=	0;
do

{

.

.

{

while	(p	==	0);
yourAnswer	=	"";
digitNumber	=	1;
problemLabel.requestFocus();
if	(correctAnswer	<	10)

{

numberDigits	=	1;
return	(problem	+	"?");

}

else

{

numberDigits	=	2;
return	(problem	+	"??");

}

}

Save	and	 run	 the	project.	You	should	now	be	able	 to	answer	as	many	 random
addition	problems	as	you’d	like.	Try	it.	Make	sure	the	score	is	updating	properly.
You	 can	 stop	 practicing	 problems,	 at	 any	 time,	 by	 clicking	 the	Stop	Practice
button.	As	mentioned	 earlier,	 you	 can	 also	 solve	other	 types	of	 problems	with
other	 factors,	 if	 you’re	 careful	 changing	 the	 options.	Make	 sure	 one	 problem
type	is	always	selected	and	make	sure	zero	is	not	used	with	division	problems.
And,	 as	 programmed,	 you	 can	 only	 change	 options	when	 stopped	 because	 the
problem	label	loses	focus	and	answers	can’t	be	entered.	Try	it,	you’ll	see	what	I
mean.	We’ll	fix	these	problems	next.

Code	Design	–	Choosing	Problem	Type
and	Factor	The	selection	of	problem	type	seems	simple.	Choose	the
check	box	or	check	boxes	you	want	and	the	correct	problem	will	be	generated.
But	there	are	a	couple	of	problems	we’ve	alluded	to.	Currently,	there	is	nothing
to	prevent	a	user	from	“unchecking”	all	the	boxes,	leaving	no	problem	type	to
select.	We	must	make	sure	at	least	one	box	is	always	selected.	And,	if	Division
problems	are	selected,	we	cannot	allow	zero	(0)	to	be	used	as	a	factor.	We	now
write	code	to	address	these	problems.

The	code	to	handle	these	considerations	goes	in	the
typeCheckBoxActionPerformed	 method.	 In	 this	 method,	 these	 steps	 are
followed:

➢	Determine	which	check	box	was	clicked.
➢	Determine	how	many	boxes	are	checked.
➢	 If	Division	 (typeCheckBox[3])	 is	 checked,	 make	 sure	 zero	 is	 not	 the
selected	factor;	if	it	is,	change	the	factor	to	1.	Also,	if	Division	is	checked,
disable	factorRadioButton[0]	(the	zero	choice).

➢	If	no	boxes	are	checked,	“recheck”	selected	check	box.
➢	Set	focus	on	problem	label.

The	 typeCheckBoxActionPerformed	 method	 that	 implements	 these	 steps	 is:
private	void	typeCheckBoxActionPerformed(ActionEvent	e)	{

int	numberChecks;
int	clickedBox	=	0;
//	determine	which	box	was	clicked	String	s	=	e.getActionCommand();
if	(s.equals("Addition"))

clickedBox	=	0;
else	if	(s.equals("Subtraction"))	clickedBox	=	1;
else	if	(s.equals("Multiplication"))	clickedBox	=	2;
else	if	(s.equals("Division"))

clickedBox	=	3;
//	determine	how	many	boxes	are	checked	numberChecks	=	0;

if	(typeCheckBox[0].isSelected())	numberChecks++;
if	(typeCheckBox[1].isSelected())	numberChecks++;
if	(typeCheckBox[2].isSelected())	numberChecks++;
if	(typeCheckBox[3].isSelected())	{

numberChecks++;
//	make	sure	zero	not	selected	factor	if
(factorRadioButton[0].isSelected())
factorRadioButton[1].doClick();
factorRadioButton[0].setEnabled(false);	}

else

{

factorRadioButton[0].setEnabled(true);	}
//	if	all	boxes	unchecked,	recheck	last	clicked	box	if	(numberChecks
==	0)

typeCheckBox[clickedBox].setSelected(true);
problemLabel.requestFocus();

}

You	should	be	able	to	see	how	the	various	steps	are	implemented.	Enter	this
code	into	your	project.

Notice	 the	 last	 step	 in	 this	 method	 is	 to	 return	 focus	 to	 the	 problem	 label	 so
answers	 can	 be	 entered.	We	 need	 similar	 code	 if	 a	 factor	 is	 changed.	 Add	 a
single	 line	 to	 the	 factorRadioButtonActionPerformed	 method:	 private	 void
factorRadioButtonActionPerformed(ActionEvent	e)	{

problemLabel.requestFocus();

}

Save	and	run	the	project.	Make	sure	all	the	newly	installed	code	is	doing	its	job.
Try	 to	 “uncheck”	 all	 the	 problem	 type	 boxes	 –	 one	 box	 will	 always	 remain.
Check	Division	 problems	 and	 notice	 that	 the	 0	 option	 for	Factor	 is	 disabled.
Uncheck	Division	problems.	Choose	0	as	a	factor.	Now,	check	Division	again.
Notice	the	factor	is	changed	to	1	and	the	0	option	is	disabled.	You	can	now	solve

any	problem	type	with	any	factor.	If	you	change	options	while	solving	problems,
the	 changes	 will	 be	 seen	 once	 you	 finish	 solving	 the	 current	 problem.	 Try
solving	 problems,	 changing	 problem	 type	 and	 factors.	 Notice	 if	 you	 change
options	while	in	running	mode,	you	can	still	enter	answers	since	focus	is	placed
on	the	problem	label	control.

Next,	we	add	timing	options,	using	the	Timer	object	reviewed	in	Chapter	2.

Code	Design	–	Timing	Options
Having	coded	problem	generation	and	answer	checking,	we	can	now	address	the
use	of	timing	in	the	flash	card	math	project.	Up	to	now,	we’ve	assumed	no	timer
has	 been	used.	We	have	 two	possibilities	 for	 a	 timer:	 (1)	 one	where	 the	 timer
counts	 up,	 keeping	 track	 of	 how	 long	 you	 are	 solving	 problems,	 and	 (2)	 one
where	the	timer	counts	down	from	some	preset	value.	In	both	cases,	a	text	field
control	 (timerTextField)	 displays	 the	 time	 in	minutes:seconds	 form.	 In	 the
second	case,	a	vertical	scroll	bar	(timerScrollBar)	is	used	to	set	the	value.	The
timing	 will	 be	 controlled	 with	 a	 timer	 object	 (problemsTimer).	 There	 are
several	steps	involved.	Let’s	add	the	timer	object	first.

Declare	the	timer	as	a	class	level	variable:	Timer	problemsTimer;

Create	the	timer	(using	a	delay	of	1000	milliseconds,	or	1	second).	Place	this
code	in	the	frame	constructor	before	the	pack()	line:	problemsTimer	=	new
Timer(1000,	new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
problemsTimerActionPerformed(e);

}

});

And,	the	corresponding	event	code	would	be	placed	in	a
problemsTimerActionPerformed	method:	private	void
problemsTimerActionPerformed(ActionEvent	e)	{

}

We’ll	code	this	next.

We	 will	 use	 a	 class	 level	 variable	 (problemTime)	 to	 store	 the	 time	 value
(whether	 counting	 up	 or	 down)	 in	 seconds.	 Add	 this	 variable	 in	 the	 general
declarations	area:	int	problemTime;

When	the	timer	(problemsTimer)	is	running,	the	time	display	(timerTextField)
is	updated	every	second	(we	use	a	delay	property	of	1000).	The	displayed	time
is	incremented	if	counting	up,	decremented	if	counting	down.	The	steps	involved
for	counting	up	are:

➢	Increment	problemTime	by	1.
➢	Display	problemTime.
➢	If	problemTime	is	1800	(30	minutes),	stop	solving	problems.

Note	we	limit	the	total	solving	time	to	30	minutes.

The	steps	for	counting	down	are:

➢	Decrement	problemTime	by	1.
➢	Display	problemTime.
➢	If	problemTime	is	0,	stop	solving	problems.

The	code	to	update	the	displayed	time	is	placed	in	the
problemsTimerActionPerformed	method.	The	code	that	implements	the	above
steps	are:	private	void	problemsTimerActionPerformed(ActionEvent	e)	{

if	(timerRadioButton[1].isSelected())	{
problemTime++;
timerTextField.setText(getTime(problemTime));	if	(problemTime
>=	1800)

{

startButton.doClick();
return;

}

}

else

{

problemTime--;
timerTextField.setText(getTime(problemTime));	if	(problemTime
==	0)

{

startButton.doClick();
return;

}

}

}

Notice	to	stop	solving	problems,	we	simulate	a	click	on	Stop	Practice	(the
startButton	button).	Add	this	method	to	the	project.

This	 method	 uses	 a	 general	 method	 getTime	 that	 returns	 the	 time	 properly
formatted:	private	String	getTime(int	s)

{

int	min,	sec;
String	ms,	ss;
min	=	(int)	(s	/	60);
sec	=	s	-	60	*	min;
ms	=	String.valueOf(min);
ss	=	String.valueOf(sec);
if	(sec	<	10)

ss	=	"0"	+	ss;
return	(ms	+	":"	+	ss);

}

This	method	takes	the	time	(S)	in	seconds	and	breaks	it	into	minutes	and
seconds.	Add	this	new	code	to	your	project.

Next,	we	write	the	code	to	switch	from	one	timing	option	to	the	next.	The	code
goes	in	the	timerRadioButtonActionPerformed	method.	The	steps	followed	in
this	method:

➢	 If	 Off	 (timerRadioButton[0])	 is	 selected:	 set	 text	 property	 of
timerTextField	to	Off	and	disable	timerScrollBar.

➢	 If	 On-Count	 Up	 (timerRadioButton[1])	 is	 selected,	 initialize
timerTextField	 and	 disable	 timerScrollBar.	 Initialize	problemTime	 to
0.

➢	 If	 On-Count	 Down	 (timerRadioButton[2])	 is	 selectedinitialize
timerTextField	 and	 enable	 timerScrollBar.	 Initialize	 problemTime	 to
30	times	timerScrollBar	value	property	(30	seconds	for	each	increment).

The	method	(timerRadioButtonActionPerformed)	that	implements	the	steps	is
(again,	 this	 handles	 the	 three	 radio	 buttons	 in	 the	Timer	 panel):	private	 void
timerRadioButtonActionPerformed(ActionEvent	e)	{

if	(timerRadioButton[0].isSelected())	{
timerTextField.setText("Off");
timerScrollBar.setEnabled(false);	}

else	if	(timerRadioButton[1].isSelected())	{
problemTime	=	0;
timerTextField.setText(getTime(problemTime));
timerScrollBar.setEnabled(false);	}

else	if	(timerRadioButton[2].isSelected())	{
problemTime	=	30	*	timerScrollBar.getValue();
timerTextField.setText(getTime(problemTime));
timerScrollBar.setEnabled(true);

}

}

Add	this	method	to	the	project.

Though	not	quite	finished,	we	can	run	our	code	to	make	sure	all	the	new	changes
work.	 Run	 the	 project	 and	 click	 the	Timer-Count	Up	 button.	Notice	 the	 text
field	 displays	 0:00	 and	 the	 scroll	 bar	 is	 disabled:	

Now,	click	On-Count	Down,	the	display	shows	0:30	the	scroll	bar	becomes
enabled	allowing	a	user	to	enter	the	amount	of	solution	time:	

We’ll	code	the	scroll	bar	function	now,	then	finish	the	timing	option	by

adding	code	that	starts	and	starts	the	timer	object.

As	 just	 seen,	 when	 the	 On-Count	 Down	 radio	 button	 is,	 the	 scroll	 bar
(timerScrollBar)	value	property	is	used	to	initialize	the	problemTime	variable.
In	the	code,	each	increment	on	the	scroll	bar	adds	30	seconds	to	the	timer.	If	you
look	 back	 to	 where	 we	 set	 control	 properties,	 you	 will	 see	 the	 maximum
property	for	this	scroll	bar	was	set	to	60.	This	allows	a	maximum	of	30	minutes
(1800	 seconds)	 for	 a	 timed	 flash	 card	 math	 session.	 We	 need	 a
timerScrollBarAdjustmentValueChanged	 method	 to	 changed	 the	 displayed
time	whenever	the	scroll	bar	arrows	are	clicked.	That	method	needs	a	single	line
of	 code:	 private	 void	 timerScrollBarAdjustmentValueChanged
(AdjustmentEvent	e)	{

timerTextField.setText(getTime(30	*	timerScrollBar.getValue()));	}

If	you	like,	run	the	project	to	try	the	scroll	bar	and	make	sure	it	works.

We’re	almost	done.	We	allow	changing	problem	type	and	factors	while	solving
problems.	 It	 wouldn’t	 make	 sense	 to	 be	 able	 to	 change	 timer	 options	 while
solving	problems	–	the	times	would	not	be	correct.	We	will	only	allow	selection
of	 timer	options	prior	 to	 clicking	Start	Practice.	Clicking	Start	Practice	will
disable	the	timer	panel	radio	buttons	and	scroll	bar	and	start	the	timing	process
(controlled	by	problemsTimer);	the	steps	are:

➢	Disable	all	controls	in	timerPanel.
➢	If	Off	radio	button	(timerRadioButton[0])	is	selected,	do	nothing	else.
➢	 If	 On-Count	 Up	 radio	 button	 (timerRadioButton[1])	 is	 selected:
o	Initialize	problemTime	to	zero;	display	problemTime.
o	Start	problemsTimer.
o	 If	On-Count	 Down	 radio	 button	 (timerRadioButton[2])	 is	 selected:

o	 Initialize	 problemTime	 to	 30	 times	 timerScrollBar.getValue();
display	problemTime.

o	Start	problemsTimer.

Clicking	Stop	Practice	will	stop	the	timing	process	and	restore	the	timer	panel
controls	to	allow	selection.	The	corresponding	steps:

➢	 Enable	 all	 controls	 in	 timerPanel	 (enable	 timerScrollBar	 only	 if	On-

Count	Down	is	selected.
➢	Stop	problemsTimer.

Each	of	these	steps	is	handled	in	the	startButtonActionPerformed	method.	The
modified	 method	 (changes	 are	 shaded)	 is:	 private	 void
startButtonActionPerformed(ActionEvent	e)	{

if	(startButton.getText().equals("Start	Practice"))	{
startButton.setText("Stop	Practice");
exitButton.setEnabled(false);
numberTried	=	0;
numberCorrect	=	0;
triedTextField.setText("0");
correctTextField.setText("0");
timerRadioButton[0].setEnabled(false);
timerRadioButton[1].setEnabled(false);
timerRadioButton[2].setEnabled(false);
timerScrollBar.setEnabled(false);	if
(!timerRadioButton[0].isSelected())	{

if	(timerRadioButton[1].isSelected())	problemTime	=	0;
else

problemTime	=	30	*	timerScrollBar.getValue();
timerTextField.setText(getTime(problemTime));
problemsTimer.start();

}

problemLabel.setText(getProblem());	}
else

{

timerRadioButton[0].setEnabled(true);
timerRadioButton[1].setEnabled(true);
timerRadioButton[2].setEnabled(true);	if
(timerRadioButton[2].isSelected())
timerScrollBar.setEnabled(true);

problemsTimer.stop();
startButton.setText("Start	Practice");
exitButton.setEnabled(true);
problemLabel.setText("");

}

}

Make	the	indicated	changes

We’re	done	implementing	the	modifications	to	add	timing	in	the	flash	card	math
project.	Save	and	 run	 the	project.	You	want	 to	make	sure	all	 the	 timer	options
work	correctly.	First,	check	to	see	that	 the	project	still	works	correctly	with	no
timer.

Once	you	are	convinced	 the	no	 timer	option	still	works,	stop	solving	problems
and	 choose	 the	On-Count	 Up	 option.	 Run	 the	 project.	 Make	 sure	 the	 timer
increments	properly.	Here’s	a	 run	 I	 just	 started	 (note	 the	Timer	panel	controls
are	 properly	 disabled):	

Click	Stop	Practice	at	some	point.	You	should	also	make	sure	the	program
automatically	stops	after	30	minutes	(go	have	lunch	while	the	program	runs).

Choose	the	On-Count	Down	option.	Change	the	amount	of	allowed	time	using
the	 vertical	 scroll	 bar.	 Make	 sure	 it	 reaches	 a	 maximum	 of	 30:00	 (it	 has	 a
minimum	of	0:30).	Start	 the	project.	Make	 sure	 the	 time	decrements	correctly.
Here’s	 a	 run	 I	 made	 using	 a	 starting	 time	 of	 1:00:	

Make	sure	the	program	stops	once	the	time	elapses.

Code	Design	–	Presenting	Results
Once	a	user	stops	solving	problems,	we	want	to	let	he/she	know	how	well	they
did	in	answering	problems.	The	information	of	use	would	be:

➢	The	number	of	problems	tried	➢	The	number	of	correct	answers	➢	The
percentage	score	➢	If	timing,	amount	of	elapsed	time	and	time	spent	(on
average)	on	each	problem

If	timing	up,	the	elapsed	time	is	equal	to	problemTime.	If	timing	down,	the
elapsed	time	is	equal	to	the	initial	amount	of	time	minus	problemTime.

All	 of	 this	 information	 is	 readily	 available	 from	 the	 current	 variable	 set.	 The
results	 are	 presented	 in	 the	 startButtonActionPerformed	 method	 (following
clicking	 of	 Stop	 Practice).	 We	 will	 use	 a	 simple	 message	 box	 to	 relay	 the
results.	The	modified	startButton	method	(changes	are	shaded)	that	displays	the
results	is:	private	void	startButtonActionPerformed(ActionEvent	e)	{

int	score;
String	message	=	"";
if	(startButton.getText().equals("Start	Practice"))	{

.

.

}

else

{

timerRadioButton[0].setEnabled(true);
timerRadioButton[1].setEnabled(true);
timerRadioButton[2].setEnabled(true);	if
(timerRadioButton[2].isSelected())
timerScrollBar.setEnabled(true);
problemsTimer.stop();

startButton.setText("Start	Practice");
exitButton.setEnabled(true);
problemLabel.setText("");
if	(numberTried	>	0)

{

score	=	(int)(100	*	(double)	(numberCorrect)	/	numberTried);
message	=	"Problems	Tried:	"	+	String.valueOf(numberTried)	+	"\n";
message	+=	"Problems	Correct:	"	+	String.valueOf(numberCorrect)	+	"
("	+	String.valueOf(score)	+	"%)"	+	"\n";	if
(timerRadioButton[0].isSelected())	{

message	+=	"Timer	Off";

}

else

{

if	(timerRadioButton[2].isSelected())	{
problemTime	=	30	*	timerScrollBar.getValue()	-

problemTime;	}
message	+=	"Elapsed	Time:	"	+	getTime(problemTime)	+

"\n";	message	+=	"Time	Per	Problem:	"	+	new
DecimalFormat("0.00").format((double)	(problemTime)	/	numberTried)
+	"	sec";	}

JOptionPane.showConfirmDialog(null,	message,	"Results",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	}

}

}

Add	the	noted	changes.	The	DecimalFormat	method	is	used	for	formatting
times.	You	need	to	add	this	import	statement:	import	java.text.*;

One	 last	 time	 –	 save	 and	 run	 the	 project.	 Solve	 some	 problems	 and	 see	 the
results.	Make	sure	the	results	display	correctly	whether	timing	or	not.	Here	is	a
set	 of	 results	 I	 received	 while	 using	 the	 timing	 down	 option:	

Flash	Card	Math	Quiz	Project	Review
The	Flash	Card	Math	Quiz	project	is	now	complete.	Save	and	run	the	project
and	make	sure	it	works	as	designed.	Recheck	that	all	options	work	and	interact
properly.	 Let	 your	 kids	 (or	 anyone	 else)	 have	 fun	 tuning	 up	 their	 basic	 math
skills.

If	there	are	errors	in	your	implementation,	go	back	over	the	steps	of	frame	and
code	 design.	 Go	 over	 the	 developed	 code	 –	 make	 sure	 you	 understand	 how
different	parts	of	the	project	were	coded.	As	mentioned	in	the	beginning	of	this
chapter,	 the	 completed	 project	 is	 saved	 as	 FlashCardMath	 in	 the
\HomeJava\HomeJava	Projects\	folder.

While	completing	this	project,	new	concepts	and	skills	you	should	have	gained
include:

➢	 Capabilities	 and	 proper	 use	 of	 the	 check	 box,	 radio	 button	 and	 panel
controls.

➢	How	to	use	scroll	bars	as	input	devices.
➢	Use	of	the	KeyPressed	event	for	“label”	input.
➢	Using	a	message	box	to	report	results.

Flash	Card	Math	Quiz	Project
Enhancements	Possible	enhancements	to	the	flash	card	math
project	include:

➢	As	implemented,	the	only	feedback	a	user	gets	about	entered	answers	is	an
update	 of	 the	 score.	 Some	 kind	 of	 audible	 feedback	 would	 be	 a	 big
improvement	(a	positive	sound	for	correct	answer,	a	negative	sound	for	a
wrong	 answer).	We	 discuss	 adding	 sounds	 to	 a	 project	 in	Chapter	 10	 –
you	might	like	to	look	ahead.

➢	When	a	user	stops	answering	problems,	it	would	be	nice	to	have	a	review
mode	where	 the	 problems	missed	 are	 presented.	You	would	 need	 some
way	to	save	each	problem	that	was	answered	incorrectly.

➢	Kids	 like	 rewards.	As	 you	 gain	more	 programming	 skills,	 a	 nice	 visual
display	of	some	sort	for	good	work	would	be	a	fun	addition.

➢	Currently,	once	a	problem	is	answered,	 the	next	problem	is	 immediately
displayed.	Some	kind	of	delay	(perhaps	make	 it	optional	and	adjustable)
might	be	desired.	You	would	need	another	timer	object.

Flash	Card	Math	Quiz	Project	Java
Code	Listing	/	*
*	FlashCardMath.java

*/

package	flashcardmath;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.util.Random;
import	java.text.*;

public	class	FlashCardMath	extends	JFrame	{
JLabel	triedLabel	=	new	JLabel();	JTextField	triedTextField	=	new
JTextField();	JLabel	correctLabel	=	new	JLabel();	JTextField
correctTextField	=	new	JTextField();	JLabel	problemLabel	=	new
JLabel();	JLabel	dividerLabel	=	new	JLabel();	JPanel	typePanel	=	new
JPanel();
JCheckBox[]	typeCheckBox	=	new	JCheckBox[4];	JPanel	factorPanel	=
new	JPanel();	ButtonGroup	factorButtonGroup	=	new	ButtonGroup();
JRadioButton[]	factorRadioButton	=	new	JRadioButton[11];	JPanel
timerPanel	=	new	JPanel();	ButtonGroup	timerButtonGroup	=	new
ButtonGroup();	JRadioButton[]	timerRadioButton	=	new
JRadioButton[3];	JTextField	timerTextField	=	new	JTextField();
JScrollBar	timerScrollBar	=	new	JScrollBar();	JButton	startButton	=
new	JButton();	JButton	exitButton	=	new	JButton();	Timer
problemsTimer;

Font	myFont	=	new	Font("Arial",	Font.PLAIN,	18);	Color	lightBlue	=
new	Color(192,	192,	255);	Random	myRandom	=	new	Random();
int	numberTried,	numberCorrect;
int	correctAnswer,	numberDigits;

String	problem;
String	yourAnswer;

int	digitNumber;
int	problemTime;

public	static	void	main(String	args[])	{
//	create	frame
new	FlashCardMath().show();

}

public	FlashCardMath()

{

//	frame	constructor
setTitle("Flash	Card	Math");
getContentPane().setBackground(new	Color(255,	255,	192));
setResizable(false);

addWindowListener(new	WindowAdapter()	{
public	void	windowClosing(WindowEvent	evt)	{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
GridBagConstraints	gridConstraints;	triedLabel.setText("Tried:");
triedLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.WEST;

gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
getContentPane().add(triedLabel,	gridConstraints);
triedTextField.setText("0");
triedTextField.setPreferredSize(new	Dimension(90,30));
triedTextField.setEditable(false);
triedTextField.setBackground(Color.RED);
triedTextField.setForeground(Color.YELLOW);
triedTextField.setHorizontalAlignment(SwingConstants.CENTER);
triedTextField.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
1;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
getContentPane().add(triedTextField,	gridConstraints);
correctLabel.setText("Correct:");	correctLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
2;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.EAST;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
getContentPane().add(correctLabel,	gridConstraints);
correctTextField.setText("0");
correctTextField.setPreferredSize(new	Dimension(90,30));
correctTextField.setEditable(false);
correctTextField.setBackground(Color.RED);
correctTextField.setForeground(Color.YELLOW);
correctTextField.setHorizontalAlignment(SwingConstants.CENTER);
correctTextField.setFont(myFont);	gridConstraints	=	new
GridBagConstraints();	gridConstraints.gridx	=	3;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
getContentPane().add(correctTextField,	gridConstraints);
problemLabel.setText("");

problemLabel.setBorder(BorderFactory.createLineBorder(Color.BLACK));
problemLabel.setPreferredSize(new	 Dimension(450,	 100));

problemLabel.setBackground(Color.WHITE);
problemLabel.setOpaque(true);

problemLabel.setFont(new	Font("Comic	Sans	MS",	Font.PLAIN,
48));	problemLabel.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;

gridConstraints.gridy	=	1;
gridConstraints.gridwidth	=	5;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
getContentPane().add(problemLabel,	gridConstraints);
problemLabel.addKeyListener(new	KeyAdapter()	{

public	void	keyPressed(KeyEvent	e)	{
problemLabelKeyPressed(e);

}

});

dividerLabel.setPreferredSize(new	Dimension(450,	10));
dividerLabel.setBackground(Color.RED);
dividerLabel.setOpaque(true);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	2;
gridConstraints.gridwidth	=	5;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(dividerLabel,	gridConstraints);
UIManager.put("TitledBorder.font",	new	Font("Arial",	Font.BOLD,
14));	typePanel.setPreferredSize(new	Dimension(130,	130));
typePanel.setBorder(BorderFactory.createTitledBorder("Type:"));
typePanel.setBackground(lightBlue);	typePanel.setLayout(new
GridBagLayout());	gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.gridwidth	=	2;
gridConstraints.anchor	=	GridBagConstraints.NORTH;
getContentPane().add(typePanel,	gridConstraints);	for	(int	i	=	0;	i	<	4;

i++)

{

typeCheckBox[i]	=	new	JCheckBox();
typeCheckBox[i].setBackground(lightBlue);	gridConstraints	=
new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	i;
gridConstraints.anchor	=	GridBagConstraints.WEST;
typePanel.add(typeCheckBox[i],	gridConstraints);
typeCheckBox[i].addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
typeCheckBoxActionPerformed(e);

}

});

}

typeCheckBox[0].setText("Addition");
typeCheckBox[1].setText("Subtraction");
typeCheckBox[2].setText("Multiplication");
typeCheckBox[3].setText("Division");
typeCheckBox[0].setSelected(true);	factorPanel.setPreferredSize(new
Dimension(130,	130));
factorPanel.setBorder(BorderFactory.createTitledBorder("Factor:"));
factorPanel.setBackground(lightBlue);	factorPanel.setLayout(new
GridBagLayout());	gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	3;
gridConstraints.gridwidth	=	2;
gridConstraints.anchor	=	GridBagConstraints.NORTH;
getContentPane().add(factorPanel,	gridConstraints);	int	x	=	2;
int	y	=	0;
for	(int	i	=	0;	i	<	11;	i++)

{

factorRadioButton[i]	=	new	JRadioButton();
factorRadioButton[i].setText(String.valueOf(i));
factorRadioButton[i].setBackground(lightBlue);
factorButtonGroup.add(factorRadioButton[i]);	gridConstraints	=
new	GridBagConstraints();	if	(i	<	10)

{

gridConstraints.gridx	=	x;
gridConstraints.gridy	=	y;

}

else

{

gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.gridwidth	=	2;

}

gridConstraints.anchor	=	GridBagConstraints.WEST;
factorPanel.add(factorRadioButton[i],	gridConstraints);
factorRadioButton[i].addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
factorRadioButtonActionPerformed(e);	}

});

x++;
if	(x	>	2)

{

x	=	0;
y++;

}

}

}

factorRadioButton[10].setText("Random");
factorRadioButton[10].setSelected(true);
timerPanel.setPreferredSize(new	Dimension(130,	130));
timerPanel.setBorder(BorderFactory.createTitledBorder("Timer:"));
timerPanel.setBackground(lightBlue);	timerPanel.setLayout(new
GridBagLayout());	gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	4;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(0,	0,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.NORTH;
getContentPane().add(timerPanel,	gridConstraints);	for	(int	i	=	0;	i	<
3;	i++)

{

timerRadioButton[i]	=	new	JRadioButton();
timerRadioButton[i].setBackground(lightBlue);
timerButtonGroup.add(timerRadioButton[i]);	gridConstraints	=
new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	i;
gridConstraints.gridwidth	=	2;
gridConstraints.anchor	=	GridBagConstraints.WEST;
timerPanel.add(timerRadioButton[i],	gridConstraints);
timerRadioButton[i].addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
timerRadioButtonActionPerformed(e);	}

});

}

timerRadioButton[0].setText("Off");
timerRadioButton[1].setText("On-Count	Up");
timerRadioButton[2].setText("On-Count	Down");

timerRadioButton[0].setSelected(true);
timerTextField.setText("Off");
timerTextField.setPreferredSize(new	Dimension(90,25));
timerTextField.setEditable(false);
timerTextField.setBackground(Color.WHITE);
timerTextField.setForeground(Color.RED);
timerTextField.setHorizontalAlignment(SwingConstants.CENTER);
timerTextField.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	3;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(5,	0,	0,	0);
timerPanel.add(timerTextField,	gridConstraints);
timerScrollBar.setPreferredSize(new	Dimension(20,	25));
timerScrollBar.setMinimum(1);
timerScrollBar.setMaximum(60);
timerScrollBar.setValue(1);
timerScrollBar.setBlockIncrement(1);
timerScrollBar.setUnitIncrement(1);
timerScrollBar.setOrientation(JScrollBar.VERTICAL);
timerScrollBar.setEnabled(false);	gridConstraints	=	new
GridBagConstraints();	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	3;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(5,	0,	0,	0);
timerPanel.add(timerScrollBar,	gridConstraints);
timerScrollBar.addAdjustmentListener(new	AdjustmentListener()	{

public	void	adjustmentValueChanged(AdjustmentEvent	e)	{
timerScrollBarAdjustmentValueChanged(e);	}

});

startButton.setText("Start	Practice");	gridConstraints	=	new
GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	4;

gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	10,	0);
getContentPane().add(startButton,	gridConstraints);
startButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
startButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
2;
gridConstraints.gridy	=	4;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	10,	0);
getContentPane().add(exitButton,	gridConstraints);
exitButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
exitButtonActionPerformed(e);

}

});

problemsTimer	=	new	Timer(1000,	new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

problemsTimerActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	 setBounds((int)	 (0.5
(screenSize.width	 -	getWidth())),	 (int)	 (0.5	 (screenSize.height	 -	getHeight())),
getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	evt)	{
System.exit(0);

}

private	void	typeCheckBoxActionPerformed(ActionEvent	e)	{
int	numberChecks;
int	clickedBox	=	0;
//	determine	which	box	was	clicked	String	s	=	e.getActionCommand();
if	(s.equals("Addition"))

clickedBox	=	0;
else	if	(s.equals("Subtraction"))	clickedBox	=	1;
else	if	(s.equals("Multiplication"))	clickedBox	=	2;
else	if	(s.equals("Division"))

clickedBox	=	3;
//	determine	how	many	boxes	are	checked	numberChecks	=	0;
if	(typeCheckBox[0].isSelected())	numberChecks++;
if	(typeCheckBox[1].isSelected())	numberChecks++;
if	(typeCheckBox[2].isSelected())	numberChecks++;
if	(typeCheckBox[3].isSelected())	{

numberChecks++;
//	make	sure	zero	not	selected	factor	if
(factorRadioButton[0].isSelected())
factorRadioButton[1].doClick();
factorRadioButton[0].setEnabled(false);	}

else

{

factorRadioButton[0].setEnabled(true);	}
//	if	all	boxes	unchecked,	recheck	last	clicked	box	if	(numberChecks

==	0)
typeCheckBox[clickedBox].setSelected(true);
problemLabel.requestFocus();

}

private	void	factorRadioButtonActionPerformed(ActionEvent	e)	{
problemLabel.requestFocus();

}

private	void	timerRadioButtonActionPerformed(ActionEvent	e)	{
if	(timerRadioButton[0].isSelected())	{

timerTextField.setText("Off");
timerScrollBar.setEnabled(false);	}

else	if	(timerRadioButton[1].isSelected())	{
problemTime	=	0;
timerTextField.setText(getTime(problemTime));
timerScrollBar.setEnabled(false);	}

else	if	(timerRadioButton[2].isSelected())	{
problemTime	=	30	*	timerScrollBar.getValue();
timerTextField.setText(getTime(problemTime));
timerScrollBar.setEnabled(true);

}

}

private	void	timerScrollBarAdjustmentValueChanged	(AdjustmentEvent
e)	{

timerTextField.setText(getTime(30	*	timerScrollBar.getValue()));	}

private	void	startButtonActionPerformed(ActionEvent	e)	{
int	score;
String	message	=	"";
if	(startButton.getText().equals("Start	Practice"))	{

startButton.setText("Stop	Practice");
exitButton.setEnabled(false);
numberTried	=	0;
numberCorrect	=	0;
triedTextField.setText("0");
correctTextField.setText("0");
timerRadioButton[0].setEnabled(false);
timerRadioButton[1].setEnabled(false);
timerRadioButton[2].setEnabled(false);
timerScrollBar.setEnabled(false);	if
(!timerRadioButton[0].isSelected())	{

if	(timerRadioButton[1].isSelected())	problemTime	=	0;
else

problemTime	=	30	*	timerScrollBar.getValue();
timerTextField.setText(getTime(problemTime));
problemsTimer.start();

}

problemLabel.setText(getProblem());	}
else

{

timerRadioButton[0].setEnabled(true);
timerRadioButton[1].setEnabled(true);
timerRadioButton[2].setEnabled(true);	if
(timerRadioButton[2].isSelected())
timerScrollBar.setEnabled(true);
problemsTimer.stop();
startButton.setText("Start	Practice");
exitButton.setEnabled(true);
problemLabel.setText("");
if	(numberTried	>	0)

{

score	=	(int)(100	*	(double)	(numberCorrect)	/	numberTried);
message	=	"Problems	Tried:	"	+	String.valueOf(numberTried)	+	"\n";
message	+=	"Problems	Correct:	"	+	String.valueOf(numberCorrect)	+	"	("
+	String.valueOf(score)	+	"%)"	+	"\n";	if
(timerRadioButton[0].isSelected())	{

message	+=	"Timer	Off";

}

else

{

if	(timerRadioButton[2].isSelected())	{
problemTime	=	30	*	timerScrollBar.getValue()	-
problemTime;	}

message	+=	"Elapsed	Time:	"	+	getTime(problemTime)	+
"\n";	message	+=	"Time	Per	Problem:	"	+	new
DecimalFormat("0.00").format((double)	(problemTime)	/	numberTried)	+
"	sec";	}

JOptionPane.showConfirmDialog(null,	message,	"Results",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	}

}

}

private	void	exitButtonActionPerformed(ActionEvent	e)	{
System.exit(0);

}

private	void	problemLabelKeyPressed(KeyEvent	e)	{
if	(startButton.getText().equals("Start	Practice"))	return;
//	only	allow	number	keys
if	(e.getKeyChar()	>=	'0'	&&	e.getKeyChar()	<=	'9')	{

yourAnswer	+=	e.getKeyChar();
problemLabel.setText(problem	+	yourAnswer);	if	(digitNumber	!=
numberDigits)

{

digitNumber++;
problemLabel.setText(problemLabel.getText()	+	"?");	return;

}

else

{

numberTried++;
//	check	answer
if	(Integer.valueOf(yourAnswer).intValue()	==	correctAnswer)

{
numberCorrect++;

}

triedTextField.setText(String.valueOf(numberTried));
correctTextField.setText(String.valueOf(numberCorrect));
problemLabel.setText(getProblem());	}

}

}

private	void	problemsTimerActionPerformed(ActionEvent	e)	{
if	(timerRadioButton[1].isSelected())	{

problemTime++;
timerTextField.setText(getTime(problemTime));	if	(problemTime
>=	1800)

{

startButton.doClick();
return;

}

}

else

{

problemTime--;
timerTextField.setText(getTime(problemTime));	if	(problemTime
==	0)

{

startButton.doClick();
return;

}

}

}

private	String	getProblem()

{

int	pType,	p,	number,	factor;
p	=	0;
do

{

pType	=	myRandom.nextInt(4)	+	1;
if	(pType	==	1	&&	typeCheckBox[0].isSelected())	{

//	Addition

p	=	pType;
number	=	myRandom.nextInt(10);
factor	=	getFactor(1);
correctAnswer	=	number	+	factor;
problem	=	String.valueOf(number)	+	"	+	"	+

String.valueOf(factor)	+	"	=	";	}
else	if	(pType	==	2	&&	typeCheckBox[1].isSelected())	{

//	Subtraction
p	=	pType;
factor	=	getFactor(2);
correctAnswer	=	myRandom.nextInt(10);	number	=
correctAnswer	+	factor;
problem	=	String.valueOf(number)	+	"	-	"	+

String.valueOf(factor)	+	"	=	";	}
else	if	(pType	==	3	&&	typeCheckBox[2].isSelected())	{

//	Multiplication
p	=	pType;
number	=	myRandom.nextInt(10);
factor	=	getFactor(3);
correctAnswer	=	number	*	factor;
problem	=	String.valueOf(number)	+	"	x	"	+

String.valueOf(factor)	+	"	=	";	}
else	if	(pType	==	4	&&	typeCheckBox[3].isSelected())	{

//	Division
p	=	pType;
factor	=	getFactor(4);
correctAnswer	=	myRandom.nextInt(10);	number	=
correctAnswer	*	factor;
problem	=	String.valueOf(number)	+	"	/	"	+

String.valueOf(factor)	+	"	=	";	}

}

while	(p	==	0);

yourAnswer	=	"";
digitNumber	=	1;
problemLabel.requestFocus();
if	(correctAnswer	<	10)

{

numberDigits	=	1;
return	(problem	+	"?");

}

else

{

numberDigits	=	2;
return	(problem	+	"??");

}

}

private	int	getFactor(int	p)

{

if	(factorRadioButton[10].isSelected())	{
//random
if	(p	==	4)

return	(myRandom.nextInt(9)	+	1);	else
return	(myRandom.nextInt(10));

}

else

{

for	(int	i	=	0;	i	<	10;	i++)

{

if	(factorRadioButton[i].isSelected())	return(i);

}

return	(0);

}

}

private	String	getTime(int	s)

{

int	min,	sec;
String	ms,	ss;
min	=	(int)	(s	/	60);
sec	=	s	-	60	*	min;
ms	=	String.valueOf(min);
ss	=	String.valueOf(sec);
if	(sec	<	10)

ss	=	"0"	+	ss;
return	(ms	+	":"	+	ss);

}

}

5

Multiple	Choice	Exam	Project

Review	and	Preview
In	 this	 chapter,	 we	 build	 a	 project	 that	 quizzes	 a	 user	 on	matching
pairs	 of	 items	–	 for	 example,	 states	 (or	 countries)	 and	 capital	 cities,
words	 and	 meanings,	 books	 and	 authors,	 inventions	 and	 inventors.
The	Multiple	Choice	Exam	Project	allows	you	to	select	which	item
is	given	and	which	should	be	provided	as	the	answer	and	whether	the
answers	should	be	multiple	choice	or	typed	in.	The	project	illustrates

use	of	menus	in	Java	projects,	as	well	as	reading	information	(using	the	open	file
dialog	control)	from	files.

Multiple	Choice	Exam	Project	Preview
In	this	chapter,	we	will	build	a	multiple	choice	exam	program.	Random	items
from	a	provided	list	are	displayed	to	the	user.	The	user	picks	the	item	that
matches	(or	goes	with	the	displayed	item).	For	example,	if	a	country	is	listed,
the	user	may	be	asked	for	the	capital	city.	Answers	can	be	multiple	choice	or
typed	in.

The	finished	project	is	saved	as	MultipleChoiceExam	in	the
\HomeJava\HomeJava	Projects\	project	group.	Start	NetBeans	(or	your
IDE).	Open	the	specified	project	group.	Make	MultipleChoiceExam	the	main
project.	Run	the	project.	You	will	see:	

There	are	lots	of	controls	here.	A	menu	is	used	to	control	the	program	Two
label	controls	(blank)	are	used	for	header	information.	Four	white	labels	are

used	for	multiple	choice	answers	and	a	large	yellow	text	area	is	used	to
provide	comments	to	the	user.	There	is	also	a	text	field	control	behind	one	of
the	label	controls,	used	for	entering	typed-in	answers.	Two	button	controls	are
used	to	move	from	question	to	question	and	to	start	and	stop	the	exam.

When	started,	the	multiple	choice	exam	program	appears	as:	

In	the	comment	area	you	see	“Open	Exam	File	to	Start”.	The	information
used	for	a	multiple	choice	exam	is	stored	in	files	you	build	(we	will	discuss
how	to	do	this).	So,	the	first	step	is	to	open	and	load	such	a	file.	Choose	the
File	menu	item	and	click	Open.	An	open	file	dialog	box	will	appear:	

As	shown	above,	navigate	to	the	\HomeJava\HomeJava
Projects\MultipleChoiceExam\	folder.	The	two	files	USCapitals.csv	(listing
states	and	capitals)	and	WorldCapitals.csv	(listing	countries	and	capitals)	are
example	exam	files	included	with	these	notes.	Choose	WorldCapitals.csv
and	click	Open.

The	file	will	open	and	the	project	form	should	now	appear	as:	

Notice	headers	(Capital	and	Country)	are	now	listed	on	the	form.	The	form
has	a	caption	(Multiple	Choice	Exam	–	World	Capitals)	with	the	exam	title.
The	program	is	now	asking	you	to	select	options	before	starting	the	exam.

Click	 the	Options	 menu	 item	 and	 you	 will	 see	 four	 options	 with	 the	 default
selections	 indicated	 by	 filled	 circles:	

Two	choices	are	to	be	made.	In	this	example,	you	are	asked	whether	you	want

to	name	the	Country,	given	the	Capital,	or	vice	versa.	Let’s	choose	Capital,
Given	Country.	The	other	choice	is	whether	you	want	to	be	provided	with	a
list	of	multiple	choice	answers	or	you	want	to	type	in	your	answer.	Make	sure
a	filled	circle	is	next	to	Multiple	Choice	Answers.	The	choices	should	now

appear	as:	

We’re	ready	to	start	the	exam.	Click	the	button	marked	Start	Exam	and	you	will

see:	

Your	entries	will	be	different	since	the	exam	questions	and	possible	answers
are	selected	randomly.	This	question	asks	for	the	capital	of	Turkey	and	four

possible	answers	are	listed.	You	click	on	your	choice	of	capital.	You	will	be
told	if	you	are	correct	or	not	and	given	the	opportunity	to	answer	another
question.	You	are	only	given	one	chance	to	get	the	correct	answer.

I	 know	 the	 capital	 of	Turkey	 is	Ankara.	When	 I	 click	 that	 selection,	 I	 see:	

At	this	point,	you	have	two	choices	–	click	Next	Question	to	continue	or	click
Stop	Exam	to	stop.	Try	a	few	more	questions.

At	 some	 point,	when	 you	 answer	 incorrectly,	 you	will	 see	 a	 screen	 similar	 to

this:	

So,	with	an	incorrect	answer,	you	are	told	so	and	given	the	correct	answer.
Keep	answering	questions	as	long	as	you’d	like.	When	you	finally	click	Stop
Exam,	you	will	be	shown	a	message	box	with	the	exam	results.	Mine	for	a

short	exam	is:	

Click	OK	in	the	message	box	and	your	form	returns	to	its	initial	configuration:	

At	this	point,	you	can	change	any	option	and	start	a	new	exam,	start	a	new
exam	with	the	same	options	or	load	a	new	exam	file.	Or,	you	can	choose	Exit
in	the	File	menu	structure	to	stop	the	program.

Click	 the	 Options	 menu	 and	 choose	 Type	 In	 Answer.	 You	 will	 see:	

The	form	has	reconfigured	–	the	four	multiple	choice	answer	areas	(label
controls)	have	been	replaced	by	a	single	text	field	control	where	your	answer
is	typed.	Click	Start	Exam.

The	 first	 question	 is	 displayed	 (again,	 yours	 will	 be	 different):	

The	capital	 of	Taiwan	 is	Taipei.	 If	 you	 type	Taipei	 in	 the	 text	 field	 area	 and
press	<Enter>	you	will	be	told	this	is	a	correct	answer.	The	program	allows	your
answers	 to	 be	 case-insensitive	 (we’ll	 show	 you	 how	 to	 do	 this	 in	 the	 code
design),	so	even	if	you	type	taipei,	you	are	credited	with	a	correct	answer.

When	 I	 type	 cairo	 in	 the	 text	 box	 and	 press	 <Enter>,	 I	 see:	

As	mentioned,	the	answer	is	accepted	and	the	‘capitalization’	is	corrected.

Now,	let’s	look	at	a	really	neat	feature	of	the	program.	Many	times,	when	typing
answers,	you	might	know	the	answer	but	not	the	correct	spelling.	This	happens	a
lot	with	kids	–	could	you	spell	Taipei	when	you	were	young?	Rather	than	telling
a	 user	 the	 answer	 is	wrong,	 it	would	 be	 nice	 to	 credit	 a	 user	with	 the	 correct
answer	if	the	spelling	is	close.	How	do	you	do	such	magic,	you	ask?	We’ll	see	in
the	code	design	section.	For	now,	let’s	just	try	it.

After	 getting	 credit	 for	my	Taiwan	 question,	 the	 next	 question	 presented	was
(again,	 your	 question	 will	 be	 different,	 but	 try	 misspelling	 an	 answer):	

The	capital	of	Iceland	is	Reykjavik,	but	who	can	spell	that?	What	if	I
mistakenly	spell	it	as	raykavick:	

When	I	press	<Enter>,	I	see:	

So,	 even	 though	 I	misspelled	 the	word,	 I	 am	given	credit	 for	 a	 correct	 answer
and	 shown	 the	 correct	 spelling.	 This	 little	 feature	 really	 helps	 alleviate	 user’s
frustration	at	not	quite	knowing	how	to	spell	an	answer	–	this	is	especially	useful
with	kids.

I	 think	you	see	 the	 idea	of	 the	program.	Try	as	many	questions,	with	as	many
different	options,	as	you	like.	Maybe	load	in	the	USCapitals.csv	file.	When	you
are	finally,	finished	choose	Exit	under	the	File	menu	to	stop.

You	will	now	build	this	project	in	several	stages.	We	address	frame	design.	We
discuss	the	controls	used	to	build	the	form	and	establish	initial	properties.	And,
we	 address	 code	 design	 in	 detail.	We	 cover	 opening	 and	 loading	 exam	 files,
establishing	 and	 switching	 configurations	 for	 different	 options,	 validation	 of
both	multiple	choice	and	typed	in	answers	and	presenting	results.	And,	we	show
how	we	did	the	trick	to	check	for	“close	spelling”?

Multiple	Choice	Exam	Frame	Design
We	begin	building	 the	Multiple	Choice	Exam	Project.	Let’s	build	 the	 frame.
Start	a	new	project	in	your	Java	project	group	–	name	it	MultipleChoiceExam.
Delete	default	code	in	file	named	MultipleChoiceExam.java.	Once	started,	we
suggest	you	immediately	save	the	project	with	the	name	you	chose.	This	sets	up
the	folder	and	file	structure	needed	for	your	project.	Build	the	basic	frame	with
these	properties:	MultipleChoiceExam	Frame:

title Multiple	Choice	Exam	–	No	File
resizable false

The	code	is:

/	*

*	MultipleChoiceExam.java

*/

package	multiplechoiceexam;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	MultipleChoiceExam	extends	JFrame

{

public	static	void	main(String	args[])

{

//	create	frame
new	MultipleChoiceExam().show();

}

public	MultipleChoiceExam()

{

//	frame	constructor
setTitle("Multiple	Choice	Exam	-	No	File");
setResizable(false);

addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
GridBagConstraints	gridConstraints;

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

}

This	code	builds	 the	frame,	sets	up	 the	 layout	manager	and	includes	code	 to
exit	the	application.	Run	the	code	to	make	sure	the	frame	(at	least,	what	there

is	of	it	at	this	point)	appears	and	is	centered	on	the	screen:	

Let’s	populate	our	frame	with	other	controls.	All	code	for	creating	the	frame	and
placing	 controls	 (except	 declarations)	 goes	 in	 the	 MultipleChoiceExam
constructor.

The	 GridBagLayout	 for	 the	 project	 frame	 is	 quite	 simple:	

headGivenLabel	 and	 headAnswerLabel	 are	 used	 for	 header	 information.
givenLabel	is	used	to	list	the	‘given’	item.	answerLabel[0],	answerLabel[1],
answerLabel[2]	 and	 answerLabel[3]	 are	 used	 to	 list	 the	 multiple	 choice
answers.	 In	 the	 same	 location	 as	 answerLabel[0]	 is	 a	 text	 field	 control
(answerText	 Field)	 used	 to	 type-in	 answers.	We	 will	 use	 code	 to	 make	 it
appear	when	needed.	The	commentTextArea	 is	used	 for	comments.	Lastly,
one	button	(startButton)	starts	and	stops	the	exams	and	one	moves	you	from
one	 question	 to	 the	 next	 (nextButton).	We’ll	 add	 a	 few	 controls	 at	 a	 time.
Let’s	add	the	top	three	labels.

The	control	properties	are:

headGivenLabel: 	
size 370,	30
font Arial,	Bold,	Size	18
gridx 0
gridy 0
insets 10,	10,	0,	10
	 	
givenLabel: 	
size 370,	30
font Arial,	Bold,	Size	16
border Black	line
background White
foreground Blue
opaque true
horizontalAlignment Center
gridx 0
gridy 1
insets 0,	10,	0,	10
	 	
headAnswerLabel: 	
size 370,	30:
font Arial,	Bold,	Size	18
gridx 0
gridy 2
insets 10,	10,	0,	10

Declare	these	controls	using:

JLabel	headGivenLabel	=	new	JLabel();
JLabel	givenLabel	=	new	JLabel();
JLabel	headAnswerLabel	=	new	JLabel();

Many	controls	will	have	the	same	size	and	font.	Define	two	font	objects	and	a
size	object	to	make	life	a	little	easier:	Font	headerFont	=	new	Font("Arial",

Font.BOLD,	18);	Font	examItemFont	=	new	Font("Arial",	Font.BOLD,
16);	Dimension	itemSize	=	new	Dimension(370,	30);

Now,	the	controls	are	added	to	the	frame	in	the	frame	constructor	using:
headGivenLabel.setPreferredSize(itemSize);
headGivenLabel.setFont(headerFont);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
getContentPane().add(headGivenLabel,	gridConstraints);
givenLabel.setPreferredSize(itemSize);
givenLabel.setFont(examItemFont);
givenLabel.setBorder(BorderFactory.createLineBorder(Color.BLACK));
givenLabel.setBackground(Color.WHITE);
givenLabel.setForeground(Color.BLUE);
givenLabel.setOpaque(true);
givenLabel.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(0,	10,	0,	10);
getContentPane().add(givenLabel,	gridConstraints);
headAnswerLabel.setPreferredSize(itemSize);
headAnswerLabel.setFont(headerFont);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
getContentPane().add(headAnswerLabel,	gridConstraints);	Notice	where
the	font	objects	and	size	object	are	used.

Save,	 run	 the	 project.	 You	 will	 see	 the	 added	 controls:	

The	two	header	labels	are	blank	(text	values	will	be	established	when	we	run
the	program).

Next,	we	add	 the	 four	 labels	 for	multiple	choice	answers	and	 the	 text	 field	 for
typing	in	answers.	The	control	properties	are:

answerLabel[0]: 	
size itemSize
font examItemFont
border Black	line
background White
foreground Blue
opaque true
horizontalAlignment Center
gridx 0
gridy 3
insets 0,	10,	10,	10
	 	
answerLabel[1]: 	
size itemSize
font examItemFont
border Black	line
background White
foreground Blue
opaque true
horizontalAlignment Center
gridx 0
gridy 4

insets 0,	10,	10,	10
	 	
answerLabel[2]: 	
size itemSize
font examItemFont
border Black	line
background White
foreground Blue
opaque true
horizontalAlignment Center
gridx 0
gridy 5
insets 0,	10,	10,	10
	 	
answerLabel[3]: 	
size itemSize
font examItemFont
border Black	line
background White
foreground Blue
opaque true
horizontalAlignment Center
gridx 0
gridy 6
insets 0,	10,	10,	10
	 	
answerTextField: 	
size itemSize
font examItemFont
background White
foreground Blue
visible false
gridx 0

gridy 3
insets 0,	10,	10,	10

Notice	answerTextField	and	answerLabel[0]	are	in	the	same	place	on	the
grid.	answerTextField	has	a	visible	property	of	false,	hence	it	does	not
initially	appear.	Its	appearance	will	be	established	based	on	selected	options	in
the	program.

Declare	these	controls	using:

JLabel[]	answerLabel	=	new	JLabel[4];
JTextField	answerTextField	=	new	JTextField();

Add	them	to	the	frame	with	this	code:

for	(int	i	=	0;	i	<	4;	i++)

{

answerLabel[i]	=	new	JLabel();
answerLabel[i].setPreferredSize(itemSize);
answerLabel[i].setFont(examItemFont);

answerLabel[i].setBorder(BorderFactory.createLineBorder(Color.BLACK));
answerLabel[i].setBackground(Color.WHITE);

answerLabel[i].setForeground(Color.BLUE);
answerLabel[i].setOpaque(true);

answerLabel[i].setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();

gridConstraints.gridx	=	0;
gridConstraints.gridy	=	i	+	3;
gridConstraints.insets	=	new	Insets(0,	10,	10,	10);
getContentPane().add(answerLabel[i],	gridConstraints);
answerLabel[i].addMouseListener(new	MouseAdapter()	{

public	void	mousePressed(MouseEvent	e)

{

answerLabelMousePressed(e);

}

});

}

answerTextField.setPreferredSize(itemSize);
answerTextField.setFont(examItemFont);
answerTextField.setBackground(Color.WHITE);
answerTextField.setForeground(Color.BLUE);
answerTextField.setVisible(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(0,	10,	10,	10);
getContentPane().add(answerTextField,	gridConstraints);
answerTextField.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

answerTextFieldActionPerformed(e);

}

});

The	 code	 above	 also	 adds	 a	MousePressed	 method	 for	 the	 label	 controls	 (to
detect	clicking	on	the	labels)	and	a	ActionPerformed	method	for	the	text	field
(to	 allow	 checking	 typed	 answers).	 Add	 these	 empty	 methods:	 private	 void
answerLabelMousePressed(MouseEvent	e)	{

}

private	void	answerTextFieldActionPerformed(ActionEvent	e)	{

}

Save,	run	to	see	the	newly	added	controls:

Let’s	add	the	final	three	controls.	The	properties	are:

commentTextArea: 	
size 370,	80
font Courier	New,	Bold,	Italic,	Size	18
border Black	line
editable false
background Color(255,	255,	192);
foreground Red
gridx 0
gridy 7
insets 0,	10,	10,	10
	 	
nextButton: 	
text Next	Question
gridx 0

gridy 8
insets 0,	0,	10,	0
	 	
startButton: 	
text Start	Exam
gridx 0
gridy 9
insets 0,	0,	10,	0

Declare	these	controls	using:

JTextArea	commentTextArea	=	new	JTextArea();
JButton	nextButton	=	new	JButton();
JButton	startButton	=	new	JButton();

Add	them	to	the	frame	using:

commentTextArea.setPreferredSize(new	Dimension(370,	80));
commentTextArea.setFont(new	Font("Courier	New",	Font.BOLD	+
Font.ITALIC,	18));
commentTextArea.setBorder(BorderFactory.createLineBorder(Color.BLACK));
commentTextArea.setEditable(false);
commentTextArea.setBackground(new	Color(255,	255,	196));
commentTextArea.setForeground(Color.RED);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	7;
gridConstraints.insets	=	new	Insets(0,	10,	10,	10);
getContentPane().add(commentTextArea,	gridConstraints);
nextButton.setText("Next	Question");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	8;
gridConstraints.insets	=	new	Insets(0,	0,	10,	0);
getContentPane().add(nextButton,	gridConstraints);

nextButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

nextButtonActionPerformed(e);

}

});

startButton.setText("Start	Exam");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	9;
gridConstraints.insets	=	new	Insets(0,	0,	10,	0);
getContentPane().add(startButton,	gridConstraints);
startButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

startButtonActionPerformed(e);

}

});

The	 code	 above	 adds	 a	ActionPerformed	method	 for	 each	button..	Add	 these
empty	methods:	private	void	nextButtonActionPerformed(ActionEvent	e)	{

}

private	void	startButtonActionPerformed(ActionEvent	e)	{

}

Save,	run	one	more	time:

This	completes	the	first	part	of	the	frame	design.	In	the	next	section,	we	add	a
menu	that	allows	us	to	control	the	program.

Frame	Design	–	Menu	Options
Menus	 are	 easily	 incorporated	 into	 Java	 GUI	 programs	 using	 three	 Swing
objects:	menu	bars,	menus,	and	menu	items.	The	JMenuBar	object	is	placed
at	 the	 top	 of	 a	 frame	 and	 is	 used	 to	 hold	 the	 menu.	 The	 JMenu	 object	 is	 a
labeled	menu	item,	within	the	menu	bar,	that	when	clicked	displays	a	pull-down
menu.	And,	 a	JMenuItem	 is	 a	 simple	menu	 item	 that	when	 clicked	 results	 in
some	 program	 action.	 JMenuItem	 objects	 appear	 in	 the	 pull-down	 menus	 of
JMenu	objects.	Menu	items	can	be	simply	text	or	even	radio	buttons	and	check
boxes.

In	the	multiple	choice	exam	project,	we	use	one	menu	object	(fileMenu)	to	open
files	and	exit	program	and	one	object	(optionsMenu)	to	allow	choosing	options.
Our	menu	bar	(mainMenuBar)	structure	will	be:

Text Name
File fileMenu

Open openMenuItem
(Separator) 	
Exit exitMenuItem

Options optionsMenu
Header	1 header1MenuItem
Header	2 header2MenuItem
(Separator) 	
Multiple	Choice	Answers mcMenuItem
Type	In	Answers typeMenuItem

Notice	a	separator	in	each	menu	object.	The	items	under	the	Objects	menu
will	be	two	sets	of	radio	buttons	(to	allow	distinct	choices).

Declare	the	different	menu	items	as	class	level	objects:	//	menu	structure
JMenuBar	mainMenuBar	=	new	JMenuBar();
JMenu	fileMenu	=	new	JMenu("File");
JMenuItem	openMenuItem	=	new	JMenuItem("Open");

JMenuItem	exitMenuItem	=	new	JMenuItem("Exit");
JMenu	optionsMenu	=	new	JMenu("Options");
JRadioButtonMenuItem	header1MenuItem	=	new
JRadioButtonMenuItem("Header	1",	true);	JRadioButtonMenuItem
header2MenuItem	=	new	JRadioButtonMenuItem("Header	2",	false);
JRadioButtonMenuItem	mcMenuItem	=	new
JRadioButtonMenuItem("Multiple	Choice	Answers",	true);
JRadioButtonMenuItem	typeMenuItem	=	new
JRadioButtonMenuItem("Type	In	Answers",	false);	ButtonGroup
nameGroup	=	new	ButtonGroup();
ButtonGroup	typeGroup	=	new	ButtonGroup();

Establish	the	menu	structure	using	this	code	in	the	frame	constructor	(each	menu
item	has	a	corresponding	ActionPerformed	method):	 //	build	menu	structure
setJMenuBar(mainMenuBar);	mainMenuBar.add(fileMenu);
fileMenu.add(openMenuItem);
fileMenu.addSeparator();
fileMenu.add(exitMenuItem);
mainMenuBar.add(optionsMenu);
optionsMenu.add(header1MenuItem);
optionsMenu.add(header2MenuItem);
optionsMenu.addSeparator();
optionsMenu.add(mcMenuItem);
optionsMenu.add(typeMenuItem);
nameGroup.add(header1MenuItem);
nameGroup.add(header2MenuItem);
typeGroup.add(mcMenuItem);
typeGroup.add(typeMenuItem);
openMenuItem.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

openMenuItemActionPerformed(e);

}

}

});

exitMenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

exitMenuItemActionPerformed(e);

}

});

header1MenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

header1MenuItemActionPerformed(e);

}

});

header2MenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

header2MenuItemActionPerformed(e);

}

});

mcMenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

mcMenuItemActionPerformed(e);

}

});

typeMenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

typeMenuItemActionPerformed(e);

}

});

Add	the	six	empty	methods:

private	void	openMenuItemActionPerformed(ActionEvent	e)	{

}

private	void	exitMenuItemActionPerformed(ActionEvent	e)	{

}

private	void	header1MenuItemActionPerformed(ActionEvent	e)	{

}

private	void	header2MenuItemActionPerformed(ActionEvent	e)	{

}

private	void	mcMenuItemActionPerformed(ActionEvent	e)	{

}

private	void	typeMenuItemActionPerformed(ActionEvent	e)	{

}

Save,	run.	The	menu	structure	appears:

Click	File	to	see:	

Notice	the	separator	bar.	Now	click	Options:	

Notice	the	use	of	radio	buttons	to	indicate	choices.	The	Header	1	and	Header
2	entries	will	be	replaced	when	exam	files	are	opened.

The	frame	is	now	complete.	We	will	begin	writing	code	for	the	application.	We
will	write	 the	code	in	several	steps.	As	a	first	step,	we	write	 the	code	that	gets
the	program	in	initial	mode	to	allow	opening	an	exam	file.

Frame	Design	–	Initialization
In	the	multiple	choice	exam	project,	the	user	opens	an	exam	file,	chooses	options
and	proceeds	to	take	a	test.	Once	done,	 the	results	are	presented.	At	that	point,
other	 options	 can	 be	 selected	 or	 other	 files	 used.	 We	 want	 to	 step	 the	 user
through	 program	 use	 –	 this	 minimizes	 the	 possibility	 of	 errors.	 When	 the
program	starts,	the	first	thing	a	user	must	do	is	open	a	file.	We	need	to	make	sure
the	interface	only	allows	access	to	the	File	menu	option.

When	the	program	first	loads,	these	steps	are	taken:

➢	Disable	startButton.
➢	Disable	nextButton.
➢	Disable	optionsMenu.
➢	Change	text	property	of	commentTextArea	to	Open	Exam	File	to	Start.

This	 initialization	 code	 is	 placed	 at	 the	 end	 of	 the	 frame	 constructor	 code:	 //
initialize	form
startButton.setEnabled(false);
nextButton.setEnabled(false);
optionsMenu.setEnabled(false);
commentTextArea.setText(Open	Exam	File	to	Start));	Add	this	code	to	the
project.

Save	 and	 run	 the	 project.	 The	 form	 will	 appear	 as:	

Notice	at	this	point,	the	only	thing	a	user	can	do	is	select	the	File	menu	option,
where	a	file	can	be	opened	(Open)	or	the	project	can	be	stopped	(Exit).	We’ll
write	code	for	both	options.	Also	it	would	be	nice	if	the	text	in	the	comment
area	were	centered	(both	vertically	and	horizontally).	Unfortunately,	the	text
area	control	has	no	property	for	justifying	text.	But,	we	will	fix	this	annoyance
later	with	some	clever	coding.

The	exitMenuItem	ActionPerformed	method	 is	 simple.	The	 code	 is:	private
void	exitMenuItemActionPerformed(ActionEvent	e)	{

System.exit(0);

}

Add	this	method	to	the	project.

The	 code	 for	 the	 openMenuItem	 ActionPerformed	 method	 is	 far	 more

involved.	We’ll	 spend	 a	 lot	 of	 time	 talking	 about	 it,	 building	 it	 in	 stages.	We
discuss	file	format,	ways	to	generate	exam	files,	how	to	open	exam	files,	how	to
read	information	from	the	exam	files	and	how	to	avoid	errors	when	opening	and
reading	files.

Code	Design	–	Exam	File	Format
The	 files	 used	 to	 store	 information	 for	multiple	 choice	 exams	 have	 a	 specific
format	–	you	need	to	insure	any	files	you	generate	conform	to	this	standard.	The
files	 used	 are	 called	 sequential	 files,	 indicating	 they	 are	 just	 line	 after	 line	 of
information.

To	generate	a	file,	you	need	to	have	two	lists	of	matching	terms	(in	our	sample
files,	 the	 lists	 are	 states	 and	 capitals	 and	 countries	 and	 capitals).	 Each	 term
should	 have	 an	 identifying	 header.	 And	 each	 file	 (exam)	 should	 have	 a	 title.
Once	 you	 have	 this	 information,	 the	 first	 line	 of	 the	 file	 is	 the	 exam	 title,
followed	by	a	comma	(,).	The	second	line	is	the	two	headers	describing	the	listed
terms,	separated	by	a	comma.	Subsequent	lines	are	the	pairs	of	terms,	each	pair
separated	by	a	comma	–	the	program	will	allow	up	to	100	matching	pairs.

Using	Windows	Notepad	 (or	 some	other	 text	editor),	open	 the	USCapitals.csv
file	 in	 the	 \HomeJava\HomeJava	 Projects\MultipleChoiceExam\	 folder.
When	Notepad	opens,	choose	Open	under	the	File	menu.	Then,	choose	All	Files
under	 Files	 of	Type	 in	 the	Open	 dialog	 box	 (by	 default,	 only	 files	 with	 txt
extensions	 are	 shown).	 Choose	 the	 file	 and	 click	 Open.	 Note	 the	 format:	

The	first	line	shows	the	title	(US	Capitals)	with	an	ending	comma	(don’t
forget	this	comma	when	generating	a	file).	The	second	line	are	the	headers
(State	and	Capital),	separated	by	a	comma.	Following	the	headers	are	the	50
pairs	of	states	and	capitals,	separated	by	commas.	All	files	must	be	in	this
form.	Let’s	see	how	you	can	generate	such	files.

Code	Design	–	Generating	Exam	Files
You	 will	 eventually	 want	 to	 use	 exam	 files	 other	 than	 the	 two	 examples
included.	Hence,	you	need	to	know	how	to	generate	such	files.	First,	you	need	to
have	your	list	of	terms.	Choose	a	title	and	the	two	headers.	Once	you	have	this
information,	you	need	to	save	it	 in	 the	proper	file	format	with	a	csv	extension.
The	extension	csv	stands	for	comma	separated	values	–	that’s	why	we	saw	all
the	commas	in	the	USCapitals.csv	file.

One	way	 to	 generate	 an	 exam	 file	 is	 use	 a	 simple	word	 processor	 such	 as	 the
Windows	Notepad.	 Start	 a	 new	 file	 and	 simply	 type	 in	 the	 information	 in	 the

proper	format	like	this:	

There	are	very	few	restrictions	on	the	information	you	can	use	in	an	exam	file.
Entries	 can	be	 letters,	 numbers,	 spaces	 and	nearly	 any	“typeable”	 character.	A
major	restriction	is	that	the	entries	can	have	no	commas.	Since	we	use	a	comma
as	a	delimiter	 (the	character	that	separates	one	term	from	the	other),	any	other
comma	in	a	line	would	result	in	an	error.

When	the	file	is	complete,	save	it	with	a	csv	extension.	Notepad,	by	default,	will
want	to	save	your	file	with	a	txt	extension.	To	bypass	this,	when	the	Save	dialog
opens,	 choose	 All	 Files	 in	 the	 Save	 as	 type	 drop-down	 as	 shown:	

Type	your	file	name	with	the	csv	extension	and	click	Save.

A	spreadsheet	program	such	as	Microsoft’s	Excel	can	also	be	used	to	generate
an	exam	file.	To	do	this,	start	Excel.	A	blank	worksheet	should	appear.	Type	the
information	 in	 the	 spreadsheet	 cells	 something	 like	 this:	

Once	you’ve	entered	all	your	terms,	choose	File,	then	click	Save	As.	When	the
Save	As	window	 appears,	 choose	CSV	 under	Save	 as	 type	 as	 shown	 below:	

The	information	in	the	spreadsheet	will	be	saved	as	a	comma-separated	file	in

the	format	used	by	the	multiple	choice	exam	project.

You	can	also	open	the	example	exam	files	in	Excel.	Choose	Open	under	the	File
menu,	then	choose	one	of	the	samples	–	you	have	to	set	Files	of	type	to	All	Files
when	 selecting	 the	 file.	 Here’s	 the	 WorldCapitals.csv	 file	 in	 Excel:	

Now,	let’s	see	how	to	open	exam	files	in	our	project.

Code	Design	–	Opening	an	Exam	File
When	a	user	clicks	the	Open	entry	in	the	File	menu,	the	project	should	ask	the
user	for	an	exam	file.	When	that	file’s	name	is	provided,	the	program	will	open
the	file,	read	in	the	information	and	place	that	information	in	the	proper	program
variables.	Once	this	is	done,	the	user	can	begin	to	take	a	quiz.	All	of	this	happens
in	 the	 openMenuItemActionPerformed	 method.	We	will	 begin	 building	 that
method.	As	a	first	step,	 let’s	 look	at	 the	step	of	obtaining	a	file	name	from	the
user	and	opening	the	file	for	input.

The	user	needs	to	tell	the	program	which	exam	file	they	want	to	use.	The	Swing
file	chooser	(JChooser)	object	will	be	used	to	provide	this	name.	The	steps	to	do
this	are:

➢	Show	the	open	file	dialog	box.
➢	If	user	picks	a	file	name	and	clicks	Open,	proceed	to	open	file	and	obtain
values.

➢	If	Cancel	is	clicked,	do	nothing.

Let’s	review	JFileChooser	relative	to	our	task.	File	chooser	Properties:

currentDirectory The	selected	directory.
dialogTitle Title	that	appears	in	the	title	area	of	the

dialog.
dialogType By	default,	an	Open	dialog

(JFileChooser.OPEN_DIALOG),	set	to
JFileChooser.SAVE_DIALOG	for	a	save
dialog	control.

fileFilter Used	to	limit	types	of	files	displayed.
selectedFile The	currently	selected	file.

File	chooser	Methods:

showOpenDialog Displays	the	dialog	box	for	opening	files.
Returned	value	indicates	which	button	was

clicked	by	user	(Open	or	Cancel).
getCurrentDirectory Retrieves	the	selected	directory.
setDialogTitle Sets	the	dialog	title.
setDialogType Sets	the	dialog	type.
setFileFilter Sets	the	filter	to	limit	types	of	files

displayed.
addChoosableFileFilter Add	a	file	filter	to	file	chooser.
getSelectedFile Retrieves	the	currently	selected	file.

To	 display	 the	 file	 chooser	 as	 an	 open	 dialog	 box,	 use	 the	 showOpenDialog
method.	 If	 the	 chooser	 is	 named	 openChooser,	 the	 format	 is:
openChooser.showOpenDialog(this);

where	this	is	a	keyword	referring	to	the	current	frame.	The	displayed	dialog

box	is:	

The	user	selects	a	file	using	the	dialog	control	(or	types	a	name	in	the	File	Name
box).	The	file	type	is	selected	from	the	Files	of	Type	box	(values	here	set	with
the	Filter	property).	Once	selected,	 the	Open	button	 is	clicked.	Cancel	can	be
clicked	to	cancel	the	open	operation.	The	showOpenDialog	method	returns	the
clicked	 button.	 This	 method	 will	 return	 one	 of	 two	 values:
JFileChooser.APPROVE_OPTION	 –	 Approve	 (Open)	 button	 clicked

JFileChooser.CANCEL_OPTION	 –	 Cancel	 button	 clicked	 If	 the	 user	 has
selected	the	Open	button,	we	can	determine	the	selected	file.	This	value	is	given
by:	openChooser.getSelectedFile()

The	fileFilter	property	is	set	by	the	FileNameExtensionFilter	constructor.	The
form	for	this	constructor	is	FileNameExtensionFilter(description,	extension1,
extension2,	 ...)	 Here,	 description	 is	 the	 description	 that	 appears	 in	 the	 file
chooser	window,	each	extension	is	an	acceptable	file	extension	type	to	display.
Each	argument	 is	 a	string	 type.	To	use	 this	 constructor,	you	need	 this	 import
statement	in	your	java	class:	import	javax.swing.filechooser.*;

Add	this	import	statement	to	the	project.	In	our	project,	we	only	want	csv	files.
The	 snippet	 of	 code	 that	 accomplishes	 this	 is:
openChooser.addChoosableFileFilter(new	 FileNameExtensionFilter("Exam
Files",	"csv"));	With	this	filter,	only	csv	files	will	be	displayed	for	opening.

We	now	look	at	opening	the	file	for	now.	That’s	all	we’ll	do	for	now	–	open	the
file.	 Assuming	 we	 know	 the	 name	 of	 the	 exam	 file,	 it	 is	 opened	 using	 Java
BufferedReader	 and	FileReader	 objects.	 These	 objects	 require	 the	 following
import	statement:	import	java.io.*;

The	syntax	for	opening	a	sequential	file	for	input	is:	BufferedReader	inputFile
=	 new	 BufferedReader(new	 FileReader(fileName));	 where	 fileName	 is	 a
complete	path	to	the	file	and	inputFile	is	the	returned	file	object.

Once	opened,	we	can	read	information	from	the	file.	We	will	discuss	how	to	do
that	next.	When	all	values	have	been	 read	 from	 the	sequential	 file,	 it	 is	closed
using:	inputFile.close();

Let’s	 make	 sure	 we	 can	 open	 and	 close	 an	 exam	 file.	 The	 code	 in	 the
openMenuItemActionPerformed	method	that	accomplishes	the	above	tasks	is:
private	void	openMenuItemActionPerformed(ActionEvent	e)	{

JFileChooser	openChooser	=	new	JFileChooser();
openChooser.setDialogType(JFileChooser.OPEN_DIALOG);
openChooser.setDialogTitle("Open	Exam	File");
openChooser.addChoosableFileFilter(new

FileNameExtensionFilter("Exam	Files",	"csv"));	if

(openChooser.showOpenDialog(this)	==
JFileChooser.APPROVE_OPTION)	{

try

{

BufferedReader	inputFile	=	new	BufferedReader(new
FileReader(openChooser.getSelectedFile()));
JOptionPane.showConfirmDialog(null,	openChooser.getSelectedFile()	+	"
Opened",	"Success!",	JOptionPane.DEFAULT_OPTION,
JOptionPane.PLAIN_MESSAGE);	inputFile.close();

}

catch	(Exception	ex)

{

}

}

}

We	use	a	temporary	message	box	(JOptionPane)	to	tell	us	if	the	file	opens
successfully:	Save	and	run	the	project.	Choose	the	Open	option	under	the	File
menu.	You	should	see	an	open	file	dialog	box:.	Navigate	to	your	project
folder	(or	wherever	you	have	the	sample	files)	

Select	an	exam	file	and	click	Open	to	open	the	file.	When	I	choose	the	example
USCapitals.csv	 file,	 the	 message	 box	 I	 obtain	 is:	

Try	opening	the	other	example	file.	Make	sure	the	Cancel	option	in	the	open
file	dialog	works	properly,	meaning	nothing	changes	in	the	application	if
Cancel	is	selected.	Stop	the	project	and	delete	the	line	with	the	message	box	–
we	will	no	longer	need	that.

Code	Design	–	Reading	an	Exam	File
Once	an	exam	 file	 is	open,	we	can	 read	 in	 the	 information	 from	 the	 file,	 line-
byline,	and	obtain	needed	program	variables.	Let’s	first	declare	those	variables.
The	file	will	provide	us	with	the	exam	title	(examTitle),	two	headers	(header1,
header2)	 and	 lists	 of	 exam	 terms	 (term1,	 term2).	 We	 will	 use	 String	 type
variables	for	all	this	information	(the	term	lists	will	be	stored	in	arrays).	We	will
also	need	an	int	type	variable	(numberTerms)	to	know	how	many	items	are	in
the	 lists.	 Add	 these	 variable	 declarations	 as	 class	 level	 variables:	 String
examTitle;
String	header1,	header2;	int	numberTerms;
String[]	term1	=	new	String[100];
String[]	term2	=	new	String[100];

We	have	arbitrarily	set	the	limit	on	list	length	to	be	100.

The	steps	to	follow	after	opening	an	exam	file	are:

➢	Read	in	first	line,	obtain	examTitle.
➢	Read	in	second	line,	obtain	header1	and	header2
➢	Initialize	numberTerms	to	0.
➢	 Increment	 numberTerms,	 read	 in	 term1[numberTerms	 –	 1]	 and
term2[numberTerms	–	1]

➢	Continue	reading	lines	until	end	of	file	is	reached.

Note	the	term	lists	are	stored	in	0-based	arrays	(meaning	the	indices	start	at	0
and	end	at	numberTerms	-	1).

Let’s	see	how	to	read	 the	 lines	and	get	 the	needed	variables.	To	read	an	entire
line	 from	 a	 file	 opened	 as	 inputFile,	 use	 the	 readLine	 method:	myLine	 =
inputFile.readLine();

where	myLine	will	be	the	line	represented	as	a	String	data	type.	In	the	exam
file,	this	line	(except	for	the	first	line)	will	have	one	variable,	a	comma,	then
another	variable.	To	obtain	the	individual	variables,	we	need	to	‘parse’	the

line.	This	means	we	will	identify	where	the	comma	is	in	the	line	then	extract
one	variable	to	the	left	of	the	comma	and	another	variable	to	the	right	of	the
comma.	This	parsing	is	done	with	various	string	functions.

To	determine	the	location	of	the	comma	in	myLine,	we	use	the	indexOf	method
we	have	seen	before.	In	the	expression:	cl	=	myLine.indexOf(",");

The	int	variable	cl	will	tell	us	which	character	in	myLine	is	a	comma.	The
characters	of	myLine	are	numbered	from	0	to	myLine.Length	-	1,	where	the
length()	property	is	the	number	of	characters	in	myLine.	As	an	example,	say
myLine	is	given	by:	myLine	="First,Second";

Note	myLine.length()	is	12.	If	we	apply	the	above	indexOf	method	to	this
line,	we	will	find	cl	is	5	(remember	the	first	character	is	index	0,	not	1).

To	extract	 the	 two	variables	from	this	 line,	we	use	 the	substring	method.	This
function	allows	you	to	extract	substrings	from	a	string.	You	need	to	specify	the
source	string	(myLine,	in	this	case),	the	starting	position	(start)	and	the	number
of	characters	(number)	to	extract.	The	resulting	mySubstring	is	obtained	using:
mySubString	=	myLine.substring(start,	number);

For	multiple	choice	exam	files,	to	extract	the	characters	to	the	left	of	the	comma
(located	at	cl)	 in	myLine,	we	 start	 at	 character	0	 and	extract	cl	 characters,	or:
leftString	=	myLine.substring(0,	cl);

To	get	the	string	to	the	right	of	the	comma	is	easy.	Simply	specify	the
character	you	wish	to	start	at	and	the	function	will	return	all	characters	from
that	point	on.	We	want	to	start	at	cl	+	1,	so	use:	rightString	=
myLine.substring(cl	+	1);

To	 convince	 you	 that	 this	 works,	 let’s	 return	 to	 the	 example	 with:	myLine
="First,Second";

where	recall	cl	is	5	and	myLine.length()	is	12.	Using	the	leftString	relation,
we	see:	leftString	=	myLine.substring(0,	5);

Starting	at	the	first	character	(character	index	0)	and	extracting	five	characters,
we	get:	leftString	=	"First";

Success.	Now,	using	the	rightString	relation,	we	see:	rightString	=
myLine.substring(5	+	1);
rightString	=	myLine.substring(6);

Starting	at	the	7th	character	(character	index	6)	and	extracting	all	characters,
we	get:	rightString	=	"Second";

It	works!!

All	we	need	to	know	now	is	how	to	determine	when	we’ve	reached	the	end	of
the	exam	file,	so	we	can	close	the	file	and	continue.	After	each	line	is	read,	we
call	the	ready	property	of	the	BufferedReader	object.	If	true,	there	are	still	lines
to	read.	When	we	reach	the	end	of	file,	the	property	is	false..

We	 can	 now	 write	 the	 code	 to	 implement	 the	 steps	 to	 read	 and	 establish	 the
variable	 values.	 The	 modified	 openMenuItemActionPerformed	 method
(changes	 are	 shaded)	 is:	 private	 void
openMenuItemActionPerformed(ActionEvent	e)	{

String	myLine;
JFileChooser	openChooser	=	new	JFileChooser();
openChooser.setDialogType(JFileChooser.OPEN_DIALOG);
openChooser.setDialogTitle("Open	Exam	File");
openChooser.addChoosableFileFilter(new

FileNameExtensionFilter("Exam	Files",	"csv"));	if
(openChooser.showOpenDialog(this)	==
JFileChooser.APPROVE_OPTION)	{

try

{

BufferedReader	inputFile	=	new	BufferedReader(new
FileReader(openChooser.getSelectedFile()));

myLine	=	inputFile.readLine();
examTitle	=	parseLeft(myLine);
myLine	=	inputFile.readLine();
header1	=	parseLeft(myLine);

header2	=	parseRight(myLine);
numberTerms	=	0;
do

{

numberTerms++;
myLine	=	inputFile.readLine();
term1[numberTerms	-	1]	=	parseLeft(myLine);
term2[numberTerms	-	1]	=	parseRight(myLine);

}

while	(inputFile.ready());
inputFile.close();

}

catch	(Exception	ex)

{

}

}

}

This	code	uses	two	general	methods	to	parse	the	left	(parseLeft)	and	right
(parseRight)	portions	of	the	input	line.	These	methods	used	the	substring
method:	private	String	parseLeft(String	s)

{

int	cl;
//	find	comma
cl	=	s.indexOf(",");
return	(s.substring(0,	cl));

}

private	String	parseRight(String	s)

{

int	cl;
//	find	comma
cl	=	s.indexOf(",");
return	(s.substring(cl	+	1));

}

You	should	be	able	to	see	all	the	steps	in	the	code	–	we	read	the	title,	read	the
headers,	then	read	in	each	set	of	variables.	Save	and	run	the	project.	Open	and
process	an	exam	file.	Nothing	exciting	will	happen.	The	code	will	just	run	and
the	interface	won’t	change.

Let’s	 add	 the	 code	 that	 changes	 the	 frame	 so	 it	 is	 ready	 to	 start	 an	 exam.	The
steps	are	(assuming	an	exam	file	has	been	read	correctly):

➢	Establish	text	property	for	frame.
➢	Set	text	properties	for	header1MenuOption	and	header2MenuOption.
➢	 Set	 text	 properties	 for	headGivenLabel	 and	headAnswerLabel	 (based
on	selected	properties	of	menu	items	under	Option	heading).

➢	Enable	startButton.
➢	Enable	optionsMenu.
➢	Set	text	property	of	commentTextArea	to	indicate	the	file	is	loaded.

The	code	for	each	of	these	steps	also	goes	in	the
openMenuItemActionPerformed	 method.	 The	 changes	 are	 shaded:	 private
void	openMenuItemActionPerformed(ActionEvent	e)	{

String	myLine;
JFileChooser	openChooser	=	new	JFileChooser();
openChooser.setDialogType(JFileChooser.OPEN_DIALOG);
openChooser.setDialogTitle("Open	Exam	File");

openChooser.addChoosableFileFilter(new
FileNameExtensionFilter("Exam	Files",	"csv"));	if
(openChooser.showOpenDialog(this)	==
JFileChooser.APPROVE_OPTION)	{

try

{

BufferedReader	inputFile	=	new	BufferedReader(new
FileReader(openChooser.getSelectedFile()));	myLine	=
inputFile.readLine();

examTitle	=	parseLeft(myLine);
myLine	=	inputFile.readLine();
header1	=	parseLeft(myLine);
header2	=	parseRight(myLine);
numberTerms	=	0;
do

{

numberTerms++;
myLine	=	inputFile.readLine();
term1[numberTerms	-	1]	=	parseLeft(myLine);
term2[numberTerms	-	1]	=	parseRight(myLine);

}

while	(inputFile.ready());
inputFile.close();
//	establish	frame	title
this.setTitle("Multiple	Choice	Exam	-	"	+	examTitle);	//	set	up

menu	items
header1MenuItem.setText(header1	+	",	Given	"	+	header2);

header2MenuItem.setText(header2	+	",	Given	"	+	header1);	if
(header1MenuItem.isSelected())

{

headGivenLabel.setText(header2);
headAnswerLabel.setText(header1);

}

else

{

headGivenLabel.setText(header1);
headAnswerLabel.setText(header2);

}

startButton.setEnabled(true);
optionsMenu.setEnabled(true);
commentTextArea.setText(File	Loaded,	Choose

Options\nClick	Start	Exam");	}
catch	(Exception	ex)

{

}

}

}

Save	and	run	the	project.	Load	in	an	exam	file.	When	I	loaded	USCapitals.csv,

the	form	looks	like	this:	

The	form	is	ready	for	a	multiple	choice	exam,	where	you	name	the	State,
given	the	Capital	(default	options).	At	this	point,	the	user	can	change	options
if	desired,	then	click	Start	Exam	to	start	an	exam.	We’ll	look	at	the	code	to
do	that	soon,	but	first	we	need	to	address	the	possibilities	of	errors	when
trying	to	open	and	read	an	exam	file.	Before	doing	this,	though,	notice	again
the	comment	text	is	not	nicely	centered.	Let’s	solve	this	problem.

Code	Design	–	Centering	Comment	Text
The	 text	 area	 control	 used	 for	 comments	 has	 no	 provision	 for	 centering	 text
(vertically	 or	 horizontally)	which	 results	 in	 a	 bit	 of	 an	 ugly	 display.	Let’s	 use
some	string	functions	to	build	a	method	that	centers	up	to	two	lines	of	text.

The	 general	 method	 (centerTextArea)	 that	 does	 the	 job	 is:	 private	 String
centerTextArea(String	s)

{

//	centers	up	to	two	lines	in	text	area
int	charsPerLine	=	33;
String	sOut	=	"";
int	j	=	s.indexOf("\n");
int	nSpaces;
if	(j	==	-1)

{

//	single	line
sOut	=	"\n"	+	spacePadding((int)	((charsPerLine	-	s.length())	/	2))

+	s;	}
else

{

//	first	line
String	l	=	s.substring(0,	j);
sOut	=	"\n"	+	spacePadding((int)	((charsPerLine	-	l.length())	/	2))

+	l;	//	second	line
l	=	s.substring(j	+	1);
sOut	+=	"\n"	+	spacePadding((int)	((charsPerLine	-	l.length())	/	2))

+	l	;	}
return(sOut);

}

This	method	accepts	the	string	to	be	centered	(with	perhaps	two	lines
separated	by	a	\n	character).	If	there	is	a	single	line,	it	counts	the	characters
and	centers	it	based	on	a	maximum	width	of	charsPerLine	(33	here,	based	on
trial	and	error).	If	there	are	two	lines,	the	two	lines	are	extracted	using	the	\n
character	as	a	delimiter.	These	two	lines	are	then	centered	in	the	same	manner
as	a	single	line.

Note	the	method	uses	another	method	(spacePadding)	to	form	a	string	of
spaces.	This	method	is:	private	String	spacePadding(int	n)

{

String	s	=	"";
if	(n	!=	0)

for	(int	i	=	0;	i	<	n;	i++)
s	+=	"	";

return(s);

}

Add	both	methods	to	your	project.

There	are	two	places	we	currently	need	this	method.	Change	the	last	line	in	the
frame	 constructor	 to	 (change	 is	 shaded):
commentTextArea.setText(centerTextArea("Open	 Exam	 File	 to	 Start"));
And	the	line	just	added	in	the	openMenuItemActionPerformed	method	should
be:	 commentTextArea.setText(centerTextArea("File	 Loaded,	 Choose
Options\nClick	 Start	 Exam"));	 Run	 the	 project.	 Note	 the	 initial	 text	 is	 now

centered:	

And	open	an	exam	file	to	see	the	next	message:

I	think	you	see	these	are	nicer	displays.	It’s	always	fun	to	do	a	little
programming	to	solve	a	problem	like	this.	Let’s	continue	the	code	to	get	an
exam	up	and	going.

Code	Design	-	Error	Trapping	and
Handling
When	working	with	 files	 in	 a	 Java,	 things	 can	 go	wrong.	 For	 example,	 in	 the
multiple	 choice	 exam	 project,	what	 if	 the	 selected	 exam	 file	 doesn’t	meet	 the
specified	 format?	 Perhaps	 a	 comma	 is	 left	 off	 somewhere	 or	 a	 blank	 line	 is
encountered.	As	written,	the	current	project	would	go	to	the	catch	statement	in
the	try	 loop	with	no	indication	of	what	happened.	Or	what	if	the	user	selects	a
csv	file	that	looks	like	an	exam	file,	but	isn’t?	Again,	the	program	will	exit	via
the	catch	statement	when	it	realizes	it	can’t	process	the	information	in	the	file.

Also	 in	 the	 multiple	 choice	 exam	 project,	 we	 must	 make	 sure	 we	 have	 a
minimum	of	five	entries	in	the	exam	files.	This	insures	we	can	generate	multiple
choices	 (when	 that	 option	 is	 selected).	 And,	 recall	 we	 have	 set	 the	maximum
number	of	entries	to	100.	This	limit	can	be	changed	by	resetting	the	array	limits,
but,	no	matter	what	the	value,	we	need	to	insure	we	don’t	read	in	more	than	the
maximum	number	of	values	when	reading	an	exam	file.

How	do	we	handle	the	possibility	of	errors?	Checking	the	limits	on	the	number
of	allowed	terms	is	relatively	simple.	If	we	don’t	have	the	minimum	number	of
entries,	we	can	present	a	message	box	 to	 the	user.	 If	we	exceed	 the	maximum
number	of	 entries,	we	can	 just	 stop	 reading	values.	 If	 an	 incorrectly	 formatted
file	is	encountered,	we	will	tell	the	user	(using	a	message	box)	that	the	file	is	not
acceptable	and	give	them	another	chance	to	open	a	file.	This	is	far	preferable	to
the	program	just	stopping,	as	it	would	now.

Here	 is	 the	 modified	 openMenuItem	 ActionPerformed	 method	 uses	 the
try/catch	 block	 to	 check	 for	 file	 errors	 and	 code	 to	 check	 the	 minimum	 and
maximum	number	of	entries.	As	always,	 the	changes	are	shaded:	private	void
openMenuItemActionPerformed(ActionEvent	e)	{

String	myLine;
JFileChooser	openChooser	=	new	JFileChooser();
openChooser.setDialogType(JFileChooser.OPEN_DIALOG);
openChooser.setDialogTitle("Open	Exam	File");
openChooser.addChoosableFileFilter(new

FileNameExtensionFilter("Exam	Files",	"csv"));	if
(openChooser.showOpenDialog(this)	==
JFileChooser.APPROVE_OPTION)	{

try

{

BufferedReader	inputFile	=	new	BufferedReader(new
FileReader(openChooser.getSelectedFile()));	myLine	=
inputFile.readLine();

examTitle	=	parseLeft(myLine);
myLine	=	inputFile.readLine();
header1	=	parseLeft(myLine);
header2	=	parseRight(myLine);
numberTerms	=	0;
do

{

numberTerms++;
myLine	=	inputFile.readLine();
term1[numberTerms	-	1]	=	parseLeft(myLine);
term2[numberTerms	-	1]	=	parseRight(myLine);

}

while	(inputFile.ready()	&&	numberTerms	<	100);
if	(numberTerms	<	5)

{

JOptionPane.showConfirmDialog(null,	"Must	have	at	least
5	entries	in	exam	file.",	"Exam	File	Error",
JOptionPane.DEFAULT_OPTION,	JOptionPane.ERROR_MESSAGE);
return;

}

inputFile.close();
//	establish	frame	title
this.setTitle("Multiple	Choice	Exam	-	"	+	examTitle);	//	set	up

menu	items
header1MenuItem.setText(header1	+	",	Given	"	+	header2);

header2MenuItem.setText(header2	+	",	Given	"	+	header1);	if
(header1MenuItem.isSelected())

{

headGivenLabel.setText(header2);
headAnswerLabel.setText(header1);

}

else

{

headGivenLabel.setText(header1);
headAnswerLabel.setText(header2);

}

startButton.setEnabled(true);
optionsMenu.setEnabled(true);
commentTextArea.setText(centerTextArea("File	Loaded,

Choose	Options\nClick	Start	Exam"));	}
catch	(Exception	ex)

{

JOptionPane.showConfirmDialog(null,	"Error	reading	in
input	file	-	make	sure	file	is	correct	format.",	"Multiple	Choice	Exam
File	Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	return;

}

}

}

If	an	error	occurs	when	opening/processing	the	file,	a	message	box	is
presented	(code	in	the	catch	block)	and	the	method	is	exited	(after	closing	the
file).	If	fewer	than	5	elements	are	read	in,	a	message	box	is	presented	to	the
user	and	method	exited.	And,	notice	we	have	modified	the	while	statement	to
now	make	sure	we	have	no	more	than	100	entries.

To	make	sure	 this	code	works,	you	need	some	 invalid	 files.	 I	used	Notepad	 to
create	one	file	in	proper	format,	but	with	only	a	single	entry:	Title,
Header1,Header2
Term1,Term2

I	saved	this	file	as	Short.csv.	I	also	created	a	file	in	improper	format,	leaving
off	a	comma	in	one	line:	Title,
Header1,Header2
Term1,Term2
Term1,Term2
Term1,Term2
Term1,Term2
Term1Term2

I	saved	this	file	as	Bad.csv.	You	should	do	the	same	–	create	some	test	files.
Whenever	adding	error	handling	to	a	project,	you	need	to	make	sure	it	works!
Both	of	these	files	are	included	in	the	\HomeJava\HomeJava
Projects\MultipleChoiceExam\	folder.

Save	and	run	the	project.	The	interface	should	still	look	the	same.	Open	one	of
the	example	exam	files	to	make	sure	it	still	opens	successfully.	Now,	try	loading
a	 file	with	 too	 few	 entries.	When	 I	 try	my	Short.csv	 file,	 I	 get	 this	message:	

And,	attempting	to	open	the	invalid	file	(Bad.csv),	I	get:	

With	either	error,	the	user	is	returned	to	the	program	and	allowed	another	chance
at	opening	a	file.	This	method	of	handling	file	errors	 is	far	preferable	than	just
having	the	program	stop	with	the	user	having	no	idea	of	what	happened.

The	openMenuItemActionPerformed	method	is	now	complete.	Once	an	exam
file	 is	successfully	opened,	 the	user	can	change	options	and	start	an	exam.	We
develop	that	code	next.

Frame	Design	–	Selecting	Options
Once	an	exam	file	 is	opened,	 the	user	needs	to	make	two	decisions.	First,	 they
choose	which	term	in	the	list	they	want	to	have	as	the	‘given’	value.	The	other
term	 in	 the	 list	 will	 then	 be	 the	 answer.	 As	 answers,	 the	 user	 can	 be	 given
multiple	answers	to	choose	from	or	the	user	can	type	in	the	correct	answer.	This
is	other	option	the	user	must	choose.	All	options	are	selected	under	the	Option
heading	in	the	menu	structure.	The	code	to	switch	from	one	option	to	the	next	is
in	the	corresponding	menu	items’	ActionPerformed	methods.

Deciding	which	term	will	be	‘given’	involves	changing	the	headers	in	two	of	the
label	 controls.	 If	 the	 user	 chooses	 the	menu	 option	 that	 says	header1,	Given
header2	(header1MenuItem),	the	steps	are:

➢	Set	text	property	of	headGivenLabel	to	header2
➢	Set	text	property	of	headAnswerLabel	to	header1

Conversely,	 if	 the	user	 chooses	 the	menu	option	 that	 says	header2,	Given
header1	 (header2MenuItem),	 the	 steps	 are:	 ➢	 Set	 text	 property	 of
headGivenLabel	to	header1
➢	Set	text	property	of	headAnswerLabel	to	header2

The	header1MenuItem	and	optionsMenu2Header2	ActionPerformed
methods	that	correspond	to	these	steps	are:	private	void
header1MenuItemActionPerformed(ActionEvent	e)	{

//	Set	up	for	naming	header1,	given	header2
headGivenLabel.setText(header2);
headAnswerLabel.setText(header1);

}

private	void	header2MenuItemActionPerformed(ActionEvent	e)	{
//	Set	up	for	naming	header2,	given	header1
headGivenLabel.setText(header1);
headAnswerLabel.setText(header2);

}

Add	these	event	methods.

Choosing	between	multiple	choice	and	type	in	answers	requires	reconfiguration
of	 the	frame.	The	multiple	choice	option	requires	four	 label	controls	 to	present
the	 possible	 answers,	 while	 the	 type	 in	 option	 requires	 a	 single	 text	 field	 for
entry	 of	 the	 answer.	 The	 steps	 involved	 in	 choosing	 the	 Multiple	 Choice
Answers	option	(mcMenuItem)	are:

➢	Make	four	label	controls	for	answer	visible.
➢	Make	text	field	control	invisible.

And,	conversely,	if	the	Type	In	Answer	option	(typeMenuItem),	the	steps	are:

➢	Make	four	label	controls	for	answer	invisible.
➢	Make	text	box	control	visible.

The	 mcMenuItem	 and	 typeMenuItem	 ActionPerformed	 methods	 that
correspond	 to	 these	 steps	 are:	 private	 void
mcMenuItemActionPerformed(ActionEvent	e)	{

answerLabel[0].setVisible(true);
answerLabel[1].setVisible(true);
answerLabel[2].setVisible(true);
answerLabel[3].setVisible(true);
answerTextField.setVisible(false);

}

private	void	typeMenuItemActionPerformed(ActionEvent	e)	{
answerLabel[0].setVisible(false);
answerLabel[1].setVisible(false);
answerLabel[2].setVisible(false);
answerLabel[3].setVisible(false);
answerTextField.setVisible(true);

}

}

Add	these	methods.

Save	 and	 run	 the	 project.	 Open	 an	 example	 exam	 file.	 Make	 sure	 the	 newly
coded	 options	work	 correctly.	When	 I	 load	 the	USCapitals.csv	 file	 and	 select
the	 Capital,	 Given	 State	 option,	 I	 see:	

Note	the	proper	headers.

By	default,	 the	multiple	choice	answer	option	is	shown.	Choosing	the	Type	In
Answers	 option	 changes	 the	 form	 to:	

Make	sure	you	can	change	back	to	the	Multiple	Choice	Answers	option.

We’ve	completed	the	code	for	opening	exam	files	and	configuring	the	interface
(by	choosing	options).	It	is	now	time	to	address	the	code	to	present	an	exam	to
the	user.

Code	Design	–	Start	Exam
The	 idea	of	a	multiple	choice	exam	 is	 to	display	a	 random	question,	obtain	an
answer	 from	 the	 user	 and	 check	 for	 correctness.	 Once	 an	 exam	 is	 complete,
scoring	results	are	provided.

An	 exam	 is	 started	 by	 clicking	Start	Exam	 (startButton).	We	want	 to	make
sure	all	 the	user	can	do	at	 this	point	 is	answer	a	question.	The	 following	steps
should	occur:

➢	 Change	 text	 property	 of	 startButton	 to	 Stop	 Practice	 ➢	 Disable
nextButton.

➢	Set	number	of	questions	tried	and	number	correct	to	zero.
➢	Clear	text	property	of	commentTextArea.
➢	Disable	fileMenu.
➢	Disable	optionsMenu.
➢	Present	question.
➢	Check	answer	and	update	score.

Once	each	question	is	answered,	subsequent	questions	are	presented.

The	user	 answers	questions	until	he/she	clicks	Stop	Exam	 (also	startButton).
We	want	 the	 interface	 to	 return	 to	where	options	can	be	selected	or	a	new	file
opened.	The	steps	at	this	point	are:

➢	 Change	 text	 property	 of	 startButton	 to	 Stop	 Practice	 ➢	 Disable
nextButton.

➢	Present	results.
➢	Clear	text	property	of	all	controls	used	for	answers.
➢	 Set	 text	 property	 of	commentTextArea	 to	 indicate	 a	 new	exam	can	be
started.

➢	Enable	fileMenu.
➢	Enable	optionsMenu.

Let’s	 build	 a	 framework	 for	 the	 startButton	 ActionPerformed	 method	 that
implements	most	of	 these	steps	 (we’ll	 look	at	presenting	 results	 later).	Declare
two	class	level	variables	to	keep	track	of	the	number	of	questions	tried	and	the
number	correct:	int	numberTried,	numberCorrect;

The	 startButton	 ActionPerformed	 method	 that	 implements	 the	 listed	 steps
(again,	 except	 for	 results)	 is:	 private	 void
startButtonActionPerformed(ActionEvent	e)	{

if	(startButton.getText().equals("Start	Exam"))

{

startButton.setText("Stop	Exam");
nextButton.setEnabled(false);
//	Reset	the	score
numberTried	=	0;
numberCorrect	=	0;
commentTextArea.setText("");
fileMenu.setEnabled(false);
optionsMenu.setEnabled(false);
nextQuestion();

}

else

{

startButton.setText("Start	Exam");
nextButton.setEnabled(false);
givenLabel.setText("");
answerLabel[0].setText("");
answerLabel[1].setText("");
answerLabel[2].setText("");
answerLabel[3].setText("");
answerTextField.setText("");

commentTextArea.setText(centerTextArea("Choose
Options\nClick	Start	Exam"));	fileMenu.setEnabled(true);

optionsMenu.setEnabled(true);

}

}

Add	this	code	to	the	project.

This	code	uses	a	general	method	nextQuestion	 to	generate	a	random	question.
Add	this	empty	method	to	the	project:	private	void	nextQuestion()

{

}

We’ll	write	code	for	this	method	next,	once	we	make	sure	the	changes	just
made	work.

Save	and	run	the	project.	Open	an	exam	file.	When	you	click	Start	Exam,	you

should	see:	

Make	sure	when	you	click	Stop	Exam,	the	interface	returns	to	its	initial
configuration.

Code	Design	-	Question	Generation
To	generate	a	question,	we	examine	the	options	selected	by	the	user	and	produce
a	 random	 question	 based	 on	 these	 selections.	 The	 code	 to	 generate	 such	 a
question	will	be	in	the	nextQuestion	general	method.

The	steps	involved	in	generating	a	random	question	are:

➢	Clear	text	property	of	commentTextArea.
➢	Select	random	item	from	term	list	as	the	“correct	answer”.
➢	Set	text	property	of	givenLabel	to	‘given’	term.
➢	If	Multiple	Choice	Answers	is	selected:	o	Generate	four	possible	answers
(one	of	which	is	the	correct	answer)	o	Display	answers	in	label	controls.

➢	If	Type	In	Answers	is	selected:	o	Set	answerTextField	editable	property
to	true.
o	Clear	answerTextField	text	box.
o	Give	answerTextField	focus.

The	code	to	select	a	question,	set	givenLabel	and	to	set	up	for	type	in	answers
is	straightforward,	so	we’ll	do	this	first.	Add	a	class	level	variable	to	identify	the
array	 index	 of	 the	 correct	 answer	 and	 a	 random	 object	 to	 generate	 random
questions:	int	correctAnswer;
Random	myRandom	=	new	Random();

The	Random	object	requires	this	import	statement:	import
java.util.Random;

The	 code	 for	 the	 nextQuestion	 method	 for	 these	 steps	 is:	 private	 void
nextQuestion()

{

commentTextArea.setText("");
//	Generate	the	next	question	based	on	selected	options	correctAnswer
=	myRandom.nextInt(numberTerms);

if	(header1MenuItem.isSelected())

{

givenLabel.setText(term2[correctAnswer]);

}

else

{

givenLabel.setText(term1[correctAnswer]);

}

if	(mcMenuItem.isSelected())

{

//	Multiple	choice	answers

}

else

{

//	Type-in	answers
answerTextField.setEditable(true);
answerTextField.setText("");
answerTextField.requestFocus();

}

}

Add	this	code	to	the	project.

Save	and	run	 the	project	 if	you’d	 like	 to	see	 if	you	can	 type	 in	answers	(make

sure	 you	 select	 this	 option).	 Here’s	 an	 example	 with	 the	USCapitals.csv	 file
(you	 will	 see	 a	 different	 result	 because	 of	 the	 Random	 object):	

We	will	see	how	to	check	an	answer	soon.

The	code	for	presenting	multiple	choice	answers	is	more	detailed	and	we	need
to	spend	some	time	looking	at	it.	The	tricky	part	of	this	code	is	to	select	the	four
multiple	 choice	 options,	 one	 of	which	 is	 the	 correct	 answer.	The	 approach	we
follow	 is	 to	 first	 select	 four	 terms	 at	 random	 from	 the	 numberTerms
possibilities,	 making	 sure	 we	 don’t	 select	 the	 correct	 answer	 (index	 is
correctAnswer).	 Once	 we	 have	 these	 four	 possibilities,	 we	 replace	 one	 at
random	with	the	correct	answer.	Let’s	look	at	the	steps.

First,	 we	 need	 some	 way	 to	 know	 if	 we	 have	 already	 selected	 a	 previously
chosen	answer	possibility.	We	will	use	a	method	level	boolean	array	termUsed,
dimensioned	to	numberTerms	to	tell	us	if	a	term	has	been	used.	Each	element
in	this	array	is	initialized	to	false,	indicating	all	are	available.	The	code	snippet

that	 accomplishes	 this	 task	 is:	 boolean[]	 termUsed	 =	 new
boolean[numberTerms];
for	(int	i	=	0;	i	<	numberTerms;	i++)

{

termUsed[i]	=	false;

}

A	do	 loop	 is	 used	 to	 pick	 the	 four	 random	 answer	 possibilities.	 An	 int	 array
index,	 dimensioned	 to	4,	 stores	 the	 four	 selected	 indices.	The	 code	 snippet	 is:
int[]	index	=	new	int[4];
int	j;
for	(int	i	=	0;	i	<	4;	i++)

{

do

{

j	=	myRandom.nextInt(numberTerms);

}

while	(termUsed[j]	||	j	==	correctAnswer);
termUsed[j]	=	true;
index[i]	=	j;

}

See	how	this	works?	For	each	of	the	four	answers	(selected	with	the	for	loop),
a	random	index	j	is	selected	making	sure	the	corresponding	term	has	not	been
selected	before	and	is	not	the	correctAnswer.

Once	 the	 array	 index	 is	 established,	 one	 item	 in	 the	 array	 is	 replaced	 with
correctAnswer.	 The	 line	 of	 code	 that	 accomplishes	 this	 replacement	 is:
index[myRandom.nextInt(4)]	=	correctAnswer;

Now,	depending	on	which	is	term	is	given	and	which	is	the	answer,	the	index
array	establishes	the	contents	of	the	label	controls	used	for	multiple	choice
answers.

The	 modified	 nextQuestion	 method	 that	 incorporates	 the	 code	 for	 multiple
choice	answers	(changes	are	shaded)	is:	private	void	nextQuestion()

{

boolean[]	termUsed	=	new	boolean[numberTerms];
int[]	index	=	new	int[4];
int	j;
commentTextArea.setText("");
//	Generate	the	next	question	based	on	selected	options	correctAnswer
=	myRandom.nextInt(numberTerms);
if	(header1MenuItem.isSelected())

{

givenLabel.setText(term2[correctAnswer]);

}

else

{

givenLabel.setText(term1[correctAnswer]);

}

if	(mcMenuItem.isSelected())

{

//	Multiple	choice	answers
for	(int	i	=	0;	i	<	numberTerms;	i++)

{

termUsed[i]	=	false;

}

//	Pick	four	random	possiblities
for	(int	i	=	0;	i	<	4;	i++)

{

do

{

j	=	myRandom.nextInt(numberTerms);

}

while	(termUsed[j]	||	j	==	correctAnswer);
termUsed[j]	=	true;
index[i]	=	j;

}

//	Replace	one	with	correct	answer
index[myRandom.nextInt(4)]	=	correctAnswer;
//	Display	multiple	choice	answers	in	label	boxes	if
(header1MenuItem.isSelected())

{

answerLabel[0].setText(term1[index[0]]);
answerLabel[1].setText(term1[index[1]]);
answerLabel[2].setText(term1[index[2]]);
answerLabel[3].setText(term1[index[3]]);

}

else

{

{

answerLabel[0].setText(term2[index[0]]);
answerLabel[1].setText(term2[index[1]]);
answerLabel[2].setText(term2[index[2]]);
answerLabel[3].setText(term2[index[3]]);

}

}

else

{

//	Type-in	answers
answerTextField.setEditable(true);
answerTextField.setText("");
answerTextField.requestFocus();

}

}

Make	the	noted	modifications.

Save	and	run	the	project.	Open	an	example	exam	file.	Using	default	options	and
the	 USCapitals.csv	 file,	 clicking	 Start	 Exam,	 I	 see	 (you	 will	 see	 different
results	 because	 of	 the	 Random	 object):	

The	given	Capital	is	Juneau.	Note	the	four	possible	State	answers	(three
random	and	one	the	correct	answer,	Alaska).	The	multiple	choice	logic	seems
to	be	working.	All	you	can	do	at	this	point	is	click	Stop	Exam.	You	can	then
click	Start	Exam	to	see	another	question	(changing	options	if	you	wish).
View	as	many	questions,	with	different	options,	as	you	wish.	Next,	we’ll	see
how	to	get	answers	to	these	questions	–	we	consider	both	multiple	choice	and
type	in	answers.

Code	Design	–	Checking	Multiple	Choice
Answers
Once	a	question	is	presented	using	multiple	choice	answers,	the	user	is	asked	to
click	on	the	correct	answer.	That	answer	is	then	checked	-	we	will	only	give	the
user	one	chance	to	get	the	answer	right.	The	steps	for	checking	a	multiple	choice
answer:

➢	Make	sure	exam	is	in	progress	and	question	hasn’t	been	answered	already.
➢	Increment	numberTried.
➢	Determine	which	label	control	was	clicked.
➢	Check	to	see	if	text	property	of	clicked	label	control	matches	the	correct
answer	 (correct	 answer	 depends	 on	 which	 term	 is	 given	 and	 which	 is
answer).

➢	Update	the	score	and	provide	feedback,	presenting	the	correct	answer.

The	 code	 corresponding	 to	 these	 steps	 is	 placed	 in	 a	 method	 named
answerLabelMousePressed.	This	method	will	handle	clicking	on	all	four	label
controls	 used	 to	 display	 answers:	 answerLabel[0],	 answerLabel[1],
answerLabel[2],	answerLabel[3].	The	tricky	part	is	–	how	to	determine	which
of	the	four	controls	was	clicked.	An	Internet	search	yielded	the	necessary	logic.
The	mouse	press	method	has	a	MouseEvent	argument,	e.	The	following	method
uses	this	argument	and	returns	a	Point	object	(p)	that	has	the	coordinates	of	the
upper	 left	 corner	 of	 the	 clicked	 component	 (relative	 to	 the	 panel	 hosting	 the
component):	Point	p	=	e.getComponent().getLocation();

So,	for	our	case,	p.x	and	p.y	represent	the	upper	left	corner	of	the	clicked
label	control.	The	corresponding	coordinates	for	the	labels	can	be	obtained
using	getX	and	getY	methods.

The	 code	 for	 answerLabelMousePressed	 is:	 private	 void
answerLabelMousePressed(MouseEvent	e)	{

boolean	correct	=	false;
int	labelSelected;

//	make	sure	exam	has	started	and	question	has	not	been	answered	if
(startButton.getText().equals("Start	Exam")	||	nextButton.isEnabled())
return;

//	determine	which	label	was	clicked
//	get	upper	left	corner	of	clicked	label
Point	p	=	e.getComponent().getLocation();
//	determine	index	based	on	p
for	(labelSelected	=	0;	labelSelected	<	20;	labelSelected++)	{

if	(p.x	==	answerLabel[labelSelected].getX()	&&	p.y	==
answerLabel[labelSelected].getY())	break;

}

//	If	already	answered,	exit
numberTried++;
if	(header1MenuItem.isSelected())

{

if
(answerLabel[labelSelected].getText().equals(term1[correct	Answer]))
correct	=	true;

}

else

{

if
(answerLabel[labelSelected].getText().equals(term2[correct	Answer]))
correct	=	true;

}

updateScore(correct);

}

Make	sure	you	see	how	this	works.

This	code	uses	a	general	method	updateScore	to	update	the	scoring	and	prepare
the	 user	 interface	 for	 the	 next	 question.	 The	 method	 uses	 a	 single	 boolean
argument	that	is	true	if	the	answer	was	answered	correct,	false	is	incorrect.	The
steps	involved:

➢	 If	answer	 is	correct:	 increment	numberCorrect	and	set	 text	property	of
commentTextArea	to	“Correct!”

➢	If	answer	is	incorrect:	set	text	property	of	commentTextArea	to	“Sorry
…	Correct	Answer	Shown”

➢	 If	 multiple	 choice	 answers	 are	 used:	 put	 correct	 answer	 in
answerLabel[0],	clear	all	other	label	controls.

➢	If	type	in	answers	are	used:	put	correct	answer	in	answerTextField.
➢	Enable	startButton.
➢	Enable	nextButton.
➢	Give	nextButton	focus.

The	code	for	updateScore	is:	private	void	updateScore(boolean	correct)

{

//	Check	if	answer	is	correct
if	(correct)

{

numberCorrect++;
commentTextArea.setText(centerTextArea("Correct!"));	}

else
commentTextArea.setText(centerTextArea("Sorry	...	Correct

Answer	Shown"));	//	Display	correct	answer
if	(mcMenuItem.isSelected())

{

if	(header1MenuItem.isSelected())

answerLabel[0].setText(term1[correctAnswer]);
else

answerLabel[0].setText(term2[correctAnswer]);
answerLabel[1].setText("");
answerLabel[2].setText("");
answerLabel[3].setText("");

}

else

{

if	(header1MenuItem.isSelected())
answerTextField.setText(term1[correctAnswer]);

else
answerTextField.setText(term2[correctAnswer]);

}

startButton.setEnabled(true);
nextButton.setEnabled(true);
nextButton.requestFocus();

}

Add	the	answerLabelMousePressed	and	updateScore	(this	routine	will	also
be	used	when	checking	typed	in	answers)	code	to	the	project.

Notice	 after	 displaying	 the	 correct	 answer,	 focus	 is	 given	 to	 nextButton.
Clicking	this	button	will	present	another	question	 to	 the	user.	The	code	for	 the
nextButtonActionPerformed	 method	 simply	 involves	 disabling	 the	 button,
once	 clicked,	 then	 invoking	 the	 existing	 nextQuestion	 method:	 private	 void
nextButtonActionPerformed(ActionEvent	e)	{

//	Generate	next	question
nextButton.setEnabled(false);
nextQuestion();

}

Enter	this	code	and	we	are	now	ready	to	take	exams	with	multiple	choice
answers	Save	and	run	the	project.	Open	an	exam	file.	Select	options
(obviously	choose	multiple	choice	answers).	For	the	example	here,	I	use	the
WorldCapitals.csv	file,	providing	capitals,	given	the	country.	The	first

question	I	see	is:	

When	I	click	Rangoon,	I	see:	

At	this	point,	I	can	click	Next	Question	for	another	question,	or	click	Stop
Exam	to	stop	this	test.	Answer	as	many	questions	as	you	like.

At	 some	 point,	 answer	 incorrectly.	 When	 I	 do,	 I	 see:	

So,	with	an	incorrect	answer,	you	are	told	so	and	given	the	correct	answer.
The	only	difference	between	the	results	of	a	correct	and	incorrect	answer	is
the	message	displayed	to	the	user	(and	the	score,	of	course).

Code	Design	–	Checking	Type	In
Answers
We	 see	 it	 is	 a	 clear	 decision	 to	 check	 whether	 a	 multiple	 choice	 answer	 was
correct.	It’s	not	so	clear	here,	when	typing	in	answers..

When	a	user	types	an	answer,	how	do	we	know	when	they	are	done	entering	an
answer?	You	could	have	a	button	to	click	that	says	Check	Answer	or	have	the
user	press	a	certain	key.	In	this	exam	project,	we	will	check	the	answer	once	a
user	presses	the	<Enter>	key.

We	 need	 to	 consider	 case	 sensitivity	 when	 entering	 alphabetic	 entries.	 For
example,	in	the	USCapitals.csv	file,	the	capital	of	the	state	of	Washington	(our
home	state)	is	saved	as	Olympia.	If	a	user	types	olympia	(all	lower	case),	do	we
really	 want	 to	 tell	 the	 user	 the	 answer	 is	 incorrect?	 Or,	 what	 if	 they	 type
Olimpia,	a	very	close	spelling?	What	do	we	do	in	this	situation?	We	will	solve
both	of	these	problems,	addressing	case-sensitivity	first.

Once	a	user	types	an	answer	and	presses	<Enter>,	we	take	these	steps:

➢	 Make	 sure	 an	 exam	 is	 in	 progress	 and	 question	 hasn’t	 been	 answered
already.

➢	Set	answerTextField	editable	property	to	false.
➢	Increment	numberTried.
➢	Convert	answerTextField.getText()	(user	answer)	to	all	upper	case.
➢	Convert	correct	answer	to	all	upper	case.
➢	Compare	upper	case	strings	to	see	if	they	are	equal.
➢	Update	the	score	and	provide	feedback,	presenting	the	correct	answer.

The	method	toUpperCase	converts	a	string	value	to	all	upper	case.	The
function	ignores	any	non-letter	characters.

We	 place	 the	 code	 for	 these	 steps	 in	 the	 answerTextFieldActionPerformed
method	(processing	the	code	when	the	<Enter>	key	is	pressed).	The	method	is:

private	void	answerTextFieldActionPerformed(ActionEvent	e)	{
//	Check	type	in	answer
boolean	correct;
String	ucTypedAnswer,	ucAnswer;
//	make	sure	exam	has	started	and	question	has	not	been	answered	if

(startButton.getText().equals("Start	Exam")	||	nextButton.isEnabled())
return;

answerTextField.setEditable(false);
numberTried++;
ucTypedAnswer	=	answerTextField.getText().toUpperCase();	if
(header1MenuItem.isSelected())

ucAnswer	=	term1[correctAnswer].toUpperCase();
else

ucAnswer	=	term2[correctAnswer].toUpperCase();
correct	=	false;
if	(ucTypedAnswer.equals(ucAnswer))

correct	=	true;
updateScore(correct);

}

Note	the	use	of	the	toUpperCase	method.	This	code	also	uses	the	general
method	updateScore	to	update	the	score	and	controls	after	answering.	Add
the	answerTextFieldActionPerformed	method	to	the	project.

Save	 and	 run	 the	 project.	 Select	 an	 exam	 file	 (I	 used	WorldCapitals.csv).
Choose	the	Type	In	Answers	option.	I	also	selected	Capitals,	Given	Country
as	 an	 option.	 Click	 Start	 Exam.	 My	 first	 question	 appears	 as:	

If	I	type	Cairo,	the	correct	answer	with	correct	letter	case,	then	press	<Enter>,	I

am	told	the	answer	is	correct:	

Click	Next	Question.

The	next	question	is:

The	capital	of	Iraq	is	Baghdad.	If	you	type	Baghdad	in	the	text	field	area
and	press	<Enter>	you	will	be	told	this	is	a	correct	answer.	Let’s	make	sure
the	answers	are	not	case-sensitive.

When	 I	 type	 baghdad	 in	 the	 text	 area	 and	 click	 <Enter>,	 I	 see:	

The	answer	is	accepted	and	the	‘capitalization’	is	corrected.

Continue	 trying	 correct	 and	 incorrect	 answers,	 checking	 to	 make	 sure	 case-
insensitivity	is	properly	incorporated	into	the	project.	Try	typing	an	answer	with
spelling	‘close	to’	the	correct	spelling.	You	will	be	told	you	are	incorrect.	This
can	 be	 frustrating	 to	 the	 ‘spelling	 challenged’	 and	 especially	 frustrating	 for
children	learning	how	to	spell.	If	your	spelling	is	‘close’	you	should	be	rewarded
and	gently	corrected,	not	told	you	are	wrong.	Stop	the	exam	and	the	project	and
we’ll	fix	this	problem.

Code	Design	–	Checking	Spelling
The	techniques	behind	checking	for	‘close	spelling’	are	called	Soundex	checks.
Words,	or	terms,	are	assigned	something	called	a	Soundex	code.	Any	two	terms
with	 the	 same	 Soundex	 code	 will	 have	 similar	 spellings.	 This	 is	 how	 spell
checker	programs	work.	When	you	misspell	a	word,	you	are	presented	with	a	list
of	words	with	similar	Soundex	codes	from	which	to	choose	possible	corrections.
In	 our	 multiple	 choice	 exam	 project,	 if	 the	 Soundex	 code	 for	 a	 user	 typed
response	is	equal	to	the	Soundex	code	for	the	actual	answer,	we	will	credit	 the
user	with	a	correct	answer.

The	 technique	we	use	 to	determine	Soundex	codes	 is	based	on	an	article	 in	an
issue	 of	Byte	 magazine	 from	 the	 early	 1980’s.	 As	 a	 historical	 footnote,	 early
programmers	were	always	eager	to	get	the	latest	issue	of	Byte.	It	would	contain
programs	 you	 could	 type	 into	 your	 computer	 and	 try.	 These	 programs	 were
usually	written	in	the	BASIC	language.	The	code	here	is	based	on	one	of	these
programs.	 It’s	 fun	 to	 go	 to	 a	 local	 library	 and	 look	 at	 old	 issues	 of	 Byte
magazine.	You’ll	find	ads	for	computers	with	8K	(yes,	I	said	8K)	of	memory	for
just	 $500.	 And,	 you’ll	 see	 1/12th	 page	 ads	 for	 a	 little	 Bellevue,	 Washington,
company	just	getting	started	in	the	computer	business	–	yes,	Microsoft.

To	determine	the	Soundex	code	s	(a	String	value)	for	a	String	value	w	(whose
first	character	must	be	a	letter),	these	steps	are	followed:

➢	 Convert	 w	 to	 all	 upper	 case	 (call	 the	 result	 wTemp)	➢	 Set	 the	 first
character	of	s	to	the	first	character	of	wTemp.

➢	Cycle	through	all	remaining	characters	in	wTemp,	one	at	a	time.
➢	Assign	letter	characters	in	wTemp	a	corresponding	numerical	value	from
0	to	9,	according	to	provided	table.	Numerical	values	are	not	given	to	any
non-letter	characters.

➢	 If	 numerical	value	 is	non-zero	and	not	 equal	 to	 the	previous	character’s
numerical	value,	append	that	number	to	the	end	of	the	Soundex	code	s.

The	numerical	values	associated	with	the	26	letters	of	the	English	alphabet
are:

A	=	0 B	=	1 C	=	2 D	=	3 E	=	0 F	=	1 G	=	2
H	=	0 I	=	0 J	=	2 K	=	2 L	=	4 M	=	5 N	=	5
O	=	0 P	=	1 Q	=	2 R	=	6 S	=	2 T	=	3 U	=	0
V	=	1 W	=0 X	=	2 Y	=	0 Z	=	2 	 	

Notice	the	vowels	(A,	E,	I,	O,	U)	and	soft	consonants	(H,	W,	Y)	have	zero
values.

You	 should	 see	 that	 a	 Soundex	 code	 will	 be	 a	 string	 starting	 with	 a	 letter,
followed	by	a	sequence	of	numbers	(none	of	which	are	zero)	with	no	 identical
consecutive	 numbers.	 Let’s	 try	 it	 with	 an	 example	 to	 see	 how	 it	 works,	 then
we’ll	 write	 the	 code.	 We’ll	 use	 the	 word	 ‘beautiful’.	 We’ll	 misspell	 it	 as
‘buetifull’.	First,	convert	both	words	to	upper	case.	Initialize	the	Soundex	codes
for	both	to	the	first	letter	of	the	word	(both	will	be	B).	So,	obviously	a	condition
for	 two	Soundex	 codes	 to	match	 is	 that	 the	 first	 letter	 of	 the	 two	words	being
compared	 must	 be	 the	 same.	 Now,	 go	 through	 all	 subsequent	 letters	 in	 each
capitalized	word	and	assign	the	corresponding	numerical	value	to	the	letters.	The
results	are:

BEAUTIFUL Code:	B00030104
BUETIFULL Code:	B00301044

Remove	the	zeroes	and	repeated	values	to	get	the	final	codes:

BEAUTIFUL Code:	B314
BUETIFULL Code:	B314

The	two	codes	match,	hence	have	similar	spellings.	Can	you	find	other	words
with	the	same	code.	Some	I	came	up	with	are:	bad	ball	(the	space	is	ignored
by	Soundex),	bedful,	and	bait	pail.	So,	Soundex	doesn’t	always	work	–	call
some	one	‘bait	pail’	instead	of	‘beautiful’	and	you’ll	see	what	I	mean!

The	code	to	compute	a	Soundex	code	will	be	in	a	general	method	soundex.	The
method	 will	 have	 a	 single	 String	 argument,	 w,	 the	 word	 the	 code	 is	 being
computed	for.	The	method	returns	a	String	argument	which	is	the	soundex	code
for	w:	public	String	soundex(String	w)

{

{

//	Generates	Soundex	code	for	w	based	on	Unicode	value	//	Allows
answers	whose	spelling	is	close,	but	not	exact	String	wTemp,	s	=	"";
int	l;
int	wPrev,	wSnd,	cIndex;
//	Load	soundex	function	array
int[]	wSound	=	{0,	1,	2,	3,	0,	1,	2,	0,	0,	2,	2,	4,	5,	5,	0,	1,	2,	6,	2,	3,	0,	1,	0,

2,	0,	2};	wTemp	=	w.toUpperCase();
l	=	w.length();
if	(l	!=	0)

{

s	=	String.valueOf(w.charAt(0));
wPrev	=	0;
if	(l	>	1)

{

for	(int	i	=	1;	i	<	l;	i++)

{

cIndex	=	(int)	wTemp.charAt(i)	-	65;
if	(cIndex	>=	0	&&	cIndex	<=	25)

{

wSnd	=	wSound[cIndex]	+	48;
if	(wSnd	!=	48	&&	wSnd	!=	wPrev)

{

s	+=	String.valueOf((char)	wSnd);

}

wPrev	=	wSnd;

}

}

}

else
s	=	"";

}

return(s);

}

The	steps	for	finding	a	Soundex	code	are	straightforward	–	the	coding	may	not
seem	so.	Let	me	explain	what’s	going	on	here.	First,	the	26	numeric	values	are
stored	in	a	string	array	named	wSound.	wSound[0]	represents	the	numeric	value
for	 an	A	 up	 to	wSound[25],	which	 represents	 the	 numeric	 value	 for	 a	Z.	The
input	word	(w)	is	converted	to	all	upper	case	(wTemp).	The	returned	code	(s)	is
initialized	to	the	first	character	of	wTemp	(obtained	using	the	charAt	method).

The	 tricky	 part	 of	 the	 code	 is	 getting	 the	 numeric	 values	 for	 the	 subsequent
characters	in	wTemp.	The	characters	are	related	to	their	corresponding	index	in
wTemp	by	their	Unicode	value	(65	for	an	A,	up	to	90	for	a	Z).	So,	the	process
is:

➢	Find	the	next	character	in	wTemp	using	charAt.
➢	Find	Unicode	value	for	character	and	subtract	65,	 this	is	 the	array	index
(cIndex).

➢	Find	character’s	numeric	value	(wSnd).
➢	Append	wSnd	 to	 s	 if	 not	 a	 zero	 (0)	 and	 not	 equal	 to	 the	 last	 character
currently	in	s.

Add	the	soundex	method	to	the	project.

To	 use	 the	 soundex	 method,	 we	 must	 modify	 a	 single	 line	 of	 code	 in	 the
answerTextFieldKeyPress	method	to	not	only	check	for	exact	spelling,	but	for

equal	 Soundex	 codes.	 The	 modified	 line	 is	 shaded:	 private	 void
answerTextFieldActionPerformed(ActionEvent	e)	{

//	Check	type	in	answer
boolean	correct;
String	ucTypedAnswer,	ucAnswer;
//	make	sure	exam	has	started	and	question	has	not	been	answered	if

(startButton.getText().equals("Start	Exam")	||	nextButton.isEnabled())
return;

answerTextField.setEditable(false);
numberTried++;
ucTypedAnswer	=	answerTextField.getText().toUpperCase();	if
(header1MenuItem.isSelected())

ucAnswer	=	term1[correctAnswer].toUpperCase();
else

ucAnswer	=	term2[correctAnswer].toUpperCase();
correct	=	false;
if	(ucTypedAnswer.equals(ucAnswer)	||

soundex(ucTypedAnswer).equals(soundex(ucAnswer)))
correct	=	true;

updateScore(correct);

}

Make	this	change.	Now,	let’s	give	the	Soundex	code	a	try!

Save	and	run	the	project.	Select	an	exam	file	(I	again	used	WorldCapitals.csv).
Choose	the	Type	In	Answers	option.	I	again	selected	Capitals,	Given	Country
as	 an	 option.	 Click	 Start	 Exam.	 My	 first	 question	 appears	 as:	

The	capital	of	Iceland	is	Reykjavik	(Soundex	code	is	R212),	but	who	can
spell	that?	What	if	I	mistakenly	spell	it	as	raykavick:	

When	I	press	<Enter>,	I	see:	

So,	even	though	I	misspelled	the	word,	I	am	given	credit	for	a	correct	answer
and	shown	the	correct	spelling.	This	happens	because	the	Soundex	code	for
‘raykavick’	is	R212,	the	same	code	as	‘Reykjavik’.

The	 program	 is	 nearly	 complete.	 Keep	 trying	 exams	with	 different	 options	 to
make	sure	everything	works	correctly.	Play	with	the	type	in	answers	to	see	how
well	 the	Soundex	 codes	work.	How	close	 does	 the	 spelling	 really	 need	 to	 be?
Chose	File,	then	Exit	to	stop	the	program	when	you	want.

Code	Design	–	Presenting	Results
Once	a	user	stops	a	particular	exam,	we	want	 to	 let	 them	know	how	well	 they
did	in	answering	questions.	The	information	of	use	would	be:

➢	The	number	of	questions	tried.
➢	The	number	of	correct	answers.
➢	The	percentage	score.

All	of	this	information	is	available	from	the	defined	variables.

The	 exam	 results	 are	 presented	 in	 the	 startButtonActionPerformed	 method
(following	clicking	of	Stop	Exam).	A	message	box	is	used	to	display	the	results.
The	 modified	 startButtonActionPerformed	 method	 (changes	 are	 shaded)	 is:
private	void	startButtonActionPerformed(ActionEvent	e)	{

String	message;
if	(startButton.getText().equals("Start	Exam"))

{

startButton.setText("Stop	Exam");
nextButton.setEnabled(false);
//	Reset	the	score
numberTried	=	0;
numberCorrect	=	0;
commentTextArea.setText("");
fileMenu.setEnabled(false);
optionsMenu.setEnabled(false);
nextQuestion();

}

else

{

{

startButton.setText("Start	Exam");
nextButton.setEnabled(false);
if	(numberTried	>	0)

{

message	=	"Questions	Tried:	"	+
String.valueOf(numberTried)	+	"\n";	message	+=	"Questions	Correct:	"
+	String.valueOf(numberCorrect)	+	"\n\n";	message	+=	"Your	Score:	"
+	new	DecimalFormat("0.0").format(100.0	*	((double)	numberCorrect	/
numberTried))	+	"%";	JOptionPane.showConfirmDialog(null,	message,
examTitle	+	"	Results",	JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	}

givenLabel.setText("");
answerLabel[0].setText("");
answerLabel[1].setText("");
answerLabel[2].setText("");
answerLabel[3].setText("");
answerTextField.setText("");
commentTextArea.setText(centerTextArea("Choose

Options\nClick	Start	Exam"));	fileMenu.setEnabled(true);
optionsMenu.setEnabled(true);

}

}

Make	the	noted	changes.	The	DecimalFormat	method	requires	this	import
statement:	import	java.text.*;

And,	one	 last	 time,	save	and	run	 the	project.	Load	 in	an	exam	file.	Take	some
kind	 of	 exam.	Answer	 some	 questions	 –	miss	 a	 few	 to	make	 sure	 the	 scoring
works.	At	some	point,	click	Stop	Exam	and	some	results	should	appear.	Here’s

a	message	box	I	received	after	taking	an	exam:	

Multiple	Choice	Exam	Project	Review
The	Multiple	Choice	Exam	project	 is	now	complete.	Save	and	run	the	project
and	make	sure	it	works	as	designed.	Recheck	that	all	options	work	and	interact
properly.	 Create	 some	 exam	 files	 (or	 use	 the	 two	 examples)	 and	 have	 fun
learning.

If	there	are	errors	in	your	implementation,	go	back	over	the	steps	of	frame	and
code	 design.	 Go	 over	 the	 developed	 code	 –	 make	 sure	 you	 understand	 how
different	parts	of	the	project	were	coded.	As	mentioned	in	the	beginning	of	this
chapter,	 the	 completed	 project	 is	 saved	 as	 MultipleChoiceExam	 in	 the
\HomeJava\HomeJava	Projects\	folder.

While	completing	this	project,	new	concepts	and	skills	you	should	have	gained
include:

➢	How	to	use	the	menus.
➢	How	to	use	the	open	file	dialog	control	to	obtain	a	filename.
➢	Creating	and	saving	an	exam	file.
➢	Opening	a	sequential	file,	inputting	and	parsing	data	lines.
➢	Error	trapping	techniques.
➢	Checking	spelling	using	Soundex	codes.

Multiple	Choice	Exam	Project
Enhancements
Possible	enhancements	to	the	multiple	choice	exam	project	include:

➢	 The	 only	 feedback	 a	 user	 gets	 about	 entered	 answers	 is	 a	 displayed
message.	Some	kind	of	audible	feedback	would	be	nice	(a	positive	sound
for	 correct	 answer,	 a	 negative	 sound	 for	 a	 wrong	 answer).	 We	 discuss
adding	sounds	to	a	project	in	Chapter	10	–	you	might	like	to	look	ahead.

➢	 Modify	 the	 program	 and	 scoring	 system	 to	 allow	 multiple	 tries	 at	 the
answer.	Award	 higher	 scores	 for	 fewer	missed	 guesses.	 If	 using	 type	 in
answers,	you	would	need	some	kind	of	‘I	Give	Up’	button	or	just	give	a
specified	number	of	guesses.

➢	 The	 user	 only	 learns	 the	 results	 after	 an	 exam.	Add	 some	 controls	 that
always	display	the	current	results.

➢	Add	an	option	that	allows	a	user	to	review	the	entries	in	an	exam	file.
➢	Build	an	‘Exam	Builder’	tool	that	lets	a	user	enter	the	needed	information
and	save	the	exam	file.	You	need	to	know	how	to	save	sequential	files,	a
topic	discussed	in	Chapter	8.

➢	Add	printing	capabilities	where	you	can	print	out	exams	to	take	on	your
own	time.	We	discuss	printing	in	Chapter	9.

Multiple	Choice	Exam	Project	Java
Code	Listing

/	*

*	MultipleChoiceExam.java

*/

package	multiplechoiceexam;
import	javax.swing.filechooser.*;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.io.*;
import	java.util.Random;
import	java.text.*;

public	class	MultipleChoiceExam	extends	JFrame

{

JLabel	headGivenLabel	=	new	JLabel();
JLabel	givenLabel	=	new	JLabel();
JLabel	headAnswerLabel	=	new	JLabel();
JLabel[]	answerLabel	=	new	JLabel[4];
JTextField	answerTextField	=	new	JTextField();
JTextArea	commentTextArea	=	new	JTextArea();
JButton	nextButton	=	new	JButton();
JButton	startButton	=	new	JButton();

//	menu	structure
JMenuBar	mainMenuBar	=	new	JMenuBar();

JMenu	fileMenu	=	new	JMenu("File");
JMenuItem	openMenuItem	=	new	JMenuItem("Open");
JMenuItem	exitMenuItem	=	new	JMenuItem("Exit");
JMenu	optionsMenu	=	new	JMenu("Options");
JRadioButtonMenuItem	header1MenuItem	=	new

JRadioButtonMenuItem("Header	1",	true);	JRadioButtonMenuItem
header2MenuItem	=	new	JRadioButtonMenuItem("Header	2",	false);
JRadioButtonMenuItem	mcMenuItem	=	new
JRadioButtonMenuItem("Multiple	Choice	Answers",	true);
JRadioButtonMenuItem	typeMenuItem	=	new
JRadioButtonMenuItem("Type	In	Answers",	false);	ButtonGroup
nameGroup	=	new	ButtonGroup();
ButtonGroup	typeGroup	=	new	ButtonGroup();

Font	headerFont	=	new	Font("Arial",	Font.BOLD,	18);	Font
examItemFont	=	new	Font("Arial",	Font.BOLD,	16);	Dimension	itemSize
=	new	Dimension(370,	30);

String	examTitle;
String	header1,	header2;
int	numberTerms;
String[]	term1	=	new	String[100];
String[]	term2	=	new	String[100];
int	numberTried,	numberCorrect;
int	correctAnswer;
Random	myRandom	=	new	Random();

public	static	void	main(String	args[])

{

//	create	frame
new	MultipleChoiceExam().show();

}

public	MultipleChoiceExam()

{

//	frame	constructor
setTitle("Multiple	Choice	Exam	-	No	File");
setResizable(false);

addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
GridBagConstraints	gridConstraints;

headGivenLabel.setPreferredSize(itemSize);
headGivenLabel.setFont(headerFont);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
getContentPane().add(headGivenLabel,	gridConstraints);
givenLabel.setPreferredSize(itemSize);
givenLabel.setFont(examItemFont);

givenLabel.setBorder(BorderFactory.createLineBorder(Color.BLA	 CK));
givenLabel.setBackground(Color.WHITE);

givenLabel.setForeground(Color.BLUE);
givenLabel.setOpaque(true);
givenLabel.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(0,	10,	0,	10);
getContentPane().add(givenLabel,	gridConstraints);
headAnswerLabel.setPreferredSize(itemSize);
headAnswerLabel.setFont(headerFont);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
getContentPane().add(headAnswerLabel,	gridConstraints);	for	(int	i
=	0;	i	<	4;	i++)

{

answerLabel[i]	=	new	JLabel();
answerLabel[i].setPreferredSize(itemSize);
answerLabel[i].setFont(examItemFont);

answerLabel[i].setBorder(BorderFactory.createLineBorder(Color.BLACK));
answerLabel[i].setBackground(Color.WHITE);

answerLabel[i].setForeground(Color.BLUE);
answerLabel[i].setOpaque(true);

answerLabel[i].setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();

gridConstraints.gridx	=	0;
gridConstraints.gridy	=	i	+	3;
gridConstraints.insets	=	new	Insets(0,	10,	10,	10);
getContentPane().add(answerLabel[i],	gridConstraints);
answerLabel[i].addMouseListener(new	MouseAdapter()	{

public	void	mousePressed(MouseEvent	e)

{

answerLabelMousePressed(e);

}

});

}

answerTextField.setPreferredSize(itemSize);
answerTextField.setFont(examItemFont);
answerTextField.setBackground(Color.WHITE);
answerTextField.setForeground(Color.BLUE);
answerTextField.setVisible(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(0,	10,	10,	10);
getContentPane().add(answerTextField,	gridConstraints);
answerTextField.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

answerTextFieldActionPerformed(e);

}

});

commentTextArea.setPreferredSize(new	Dimension(370,	80));
commentTextArea.setFont(new	Font("Courier	New",	Font.BOLD	+
Font.ITALIC,	18));
commentTextArea.setBorder(BorderFactory.createLineBorder(Color.BLACK));
commentTextArea.setEditable(false);

commentTextArea.setBackground(new	Color(255,	255,	192));
commentTextArea.setForeground(Color.RED);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	7;
gridConstraints.insets	=	new	Insets(0,	10,	10,	10);
getContentPane().add(commentTextArea,	gridConstraints);
nextButton.setText("Next	Question");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	8;
gridConstraints.insets	=	new	Insets(0,	0,	10,	0);
getContentPane().add(nextButton,	gridConstraints);
nextButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

nextButtonActionPerformed(e);

}

});

startButton.setText("Start	Exam");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	9;
gridConstraints.insets	=	new	Insets(0,	0,	10,	0);
getContentPane().add(startButton,	gridConstraints);
startButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

startButtonActionPerformed(e);

}

});

//	build	menu	structure
setJMenuBar(mainMenuBar);
mainMenuBar.add(fileMenu);
fileMenu.add(openMenuItem);
fileMenu.addSeparator();
fileMenu.add(exitMenuItem);
mainMenuBar.add(optionsMenu);
optionsMenu.add(header1MenuItem);
optionsMenu.add(header2MenuItem);
optionsMenu.addSeparator();
optionsMenu.add(mcMenuItem);
optionsMenu.add(typeMenuItem);
nameGroup.add(header1MenuItem);
nameGroup.add(header2MenuItem);
typeGroup.add(mcMenuItem);
typeGroup.add(typeMenuItem);
openMenuItem.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

openMenuItemActionPerformed(e);

}

});

exitMenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

exitMenuItemActionPerformed(e);

}

});

header1MenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

header1MenuItemActionPerformed(e);

}

});

header2MenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

header2MenuItemActionPerformed(e);

}

});

mcMenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

mcMenuItemActionPerformed(e);

}

});

typeMenuItem.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

typeMenuItemActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	//	initialize	form
startButton.setEnabled(false);
nextButton.setEnabled(false);
optionsMenu.setEnabled(false);
commentTextArea.setText(centerTextArea("Open	Exam	File	to

Start"));	}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

private	void	answerLabelMousePressed(MouseEvent	e)	{
boolean	correct	=	false;
int	labelSelected;
//	make	sure	exam	has	started	and	question	has	not	been	answered	if

(startButton.getText().equals("Start	Exam")	||	nextButton.isEnabled())
return;

//	determine	which	label	was	clicked
//	get	upper	left	corner	of	clicked	label

Point	p	=	e.getComponent().getLocation();
//	determine	index	based	on	p
for	(labelSelected	=	0;	labelSelected	<	20;	labelSelected++)	{

if	(p.x	==	answerLabel[labelSelected].getX()	&&	p.y	==
answerLabel[labelSelected].getY())	break;

}

//	If	already	answered,	exit
numberTried++;
if	(header1MenuItem.isSelected())

{

if	(answerLabel[labelSelected].getText().equals(term1[correctAns
wer]))	correct	=	true;

}

else

{

if	(answerLabel[labelSelected].getText().equals(term2[correctAns
wer]))	correct	=	true;

}

updateScore(correct);

}

private	void	answerTextFieldActionPerformed(ActionEvent	e)	{
//	Check	type	in	answer
boolean	correct;
String	ucTypedAnswer,	ucAnswer;
//	make	sure	exam	has	started	and	question	has	not	been	answered	if

(startButton.getText().equals("Start	Exam")	||	nextButton.isEnabled())

return;
answerTextField.setEditable(false);
numberTried++;
ucTypedAnswer	=	answerTextField.getText().toUpperCase();	if
(header1MenuItem.isSelected())

ucAnswer	=	term1[correctAnswer].toUpperCase();
else

ucAnswer	=	term2[correctAnswer].toUpperCase();
correct	=	false;
if	(ucTypedAnswer.equals(ucAnswer)	||

soundex(ucTypedAnswer).equals(soundex(ucAnswer)))	correct	=	true;
updateScore(correct);

}

private	void	nextButtonActionPerformed(ActionEvent	e)	{
//	Generate	next	question
nextButton.setEnabled(false);
nextQuestion();

}

private	void	startButtonActionPerformed(ActionEvent	e)	{
String	message;
if	(startButton.getText().equals("Start	Exam"))

{

startButton.setText("Stop	Exam");
nextButton.setEnabled(false);
//	Reset	the	score
numberTried	=	0;
numberCorrect	=	0;
commentTextArea.setText("");
fileMenu.setEnabled(false);

optionsMenu.setEnabled(false);
nextQuestion();

}

else

{

startButton.setText("Start	Exam");
nextButton.setEnabled(false);
if	(numberTried	>	0)

{

message	=	"Questions	Tried:	"	+	String.valueOf(numberTried)
+	"\n";	message	+=	"Questions	Correct:	"	+
String.valueOf(numberCorrect)	+	"\n\n";	message	+=	"Your	Score:	"	+
new	DecimalFormat("0.0").format(100.0	*	((double)	numberCorrect	/
numberTried))	+	"%";	JOptionPane.showConfirmDialog(null,	message,
examTitle	+	"	Results",	JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	}

givenLabel.setText("");
answerLabel[0].setText("");
answerLabel[1].setText("");
answerLabel[2].setText("");
answerLabel[3].setText("");
answerTextField.setText("");

commentTextArea.setText(centerTextArea("Choose
Options\nClick	Start	Exam"));	fileMenu.setEnabled(true);

optionsMenu.setEnabled(true);

}

}

private	void	openMenuItemActionPerformed(ActionEvent	e)	{

String	myLine;
JFileChooser	openChooser	=	new	JFileChooser();
openChooser.setDialogType(JFileChooser.OPEN_DIALOG);
openChooser.setDialogTitle("Open	Exam	File");
openChooser.addChoosableFileFilter(new

FileNameExtensionFilter("Exam	Files",	"csv"));	if
(openChooser.showOpenDialog(this)	==
JFileChooser.APPROVE_OPTION)	{

try

{

BufferedReader	inputFile	=	new	BufferedReader(new
FileReader(openChooser.getSelectedFile()));	myLine	=
inputFile.readLine();

examTitle	=	parseLeft(myLine);
myLine	=	inputFile.readLine();
header1	=	parseLeft(myLine);
header2	=	parseRight(myLine);
numberTerms	=	0;
do

{

numberTerms++;
myLine	=	inputFile.readLine();
term1[numberTerms	-	1]	=	parseLeft(myLine);
term2[numberTerms	-	1]	=	parseRight(myLine);

}

while	(inputFile.ready()	&&	numberTerms	<	100);	if
(numberTerms	<	5)

{

JOptionPane.showConfirmDialog(null,	"Must	have	at	least

5	entries	in	exam	file.",	"Exam	File	Error",
JOptionPane.DEFAULT_OPTION,	JOptionPane.ERROR_MESSAGE);
return;

}

inputFile.close();
//	establish	frame	title
this.setTitle("Multiple	Choice	Exam	-	"	+	examTitle);	//	set	up
menu	items
header1MenuItem.setText(header1	+	",	Given	"	+	header2);

header2MenuItem.setText(header2	+	",	Given	"	+	header1);	if
(header1MenuItem.isSelected())

{

headGivenLabel.setText(header2);
headAnswerLabel.setText(header1);

}

else

{

headGivenLabel.setText(header1);
headAnswerLabel.setText(header2);

}

startButton.setEnabled(true);
optionsMenu.setEnabled(true);
commentTextArea.setText(centerTextArea("File	Loaded,

Choose	Options\nClick	Start	Exam"));	}
catch	(Exception	ex)

{

JOptionPane.showConfirmDialog(null,	"Error	reading	in
input	file	-	make	sure	file	is	correct	format.",	"Multiple	Choice	Exam	File
Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	return;

}

}

}

private	void	exitMenuItemActionPerformed(ActionEvent	e)	{
System.exit(0);

}

private	void	header1MenuItemActionPerformed(ActionEvent	e)	{
//	Set	up	for	naming	header1,	given	header2
headGivenLabel.setText(header2);
headAnswerLabel.setText(header1);

}

private	void	header2MenuItemActionPerformed(ActionEvent	e)	{
//	Set	up	for	naming	header2,	given	header1
headGivenLabel.setText(header1);
headAnswerLabel.setText(header2);

}

private	void	mcMenuItemActionPerformed(ActionEvent	e)	{
answerLabel[0].setVisible(true);
answerLabel[1].setVisible(true);
answerLabel[2].setVisible(true);
answerLabel[3].setVisible(true);
answerTextField.setVisible(false);

}

}

private	void	typeMenuItemActionPerformed(ActionEvent	e)	{
answerLabel[0].setVisible(false);
answerLabel[1].setVisible(false);
answerLabel[2].setVisible(false);
answerLabel[3].setVisible(false);
answerTextField.setVisible(true);

}

private	String	parseLeft(String	s)

{

int	cl;
//	find	comma
cl	=	s.indexOf(",");
return	(s.substring(0,	cl));

}

private	String	parseRight(String	s)

{

int	cl;
//	find	comma
cl	=	s.indexOf(",");
return	(s.substring(cl	+	1));

}

private	String	centerTextArea(String	s)

{

//	centers	up	to	two	lines	in	text	area
int	charsPerLine	=	33;
String	sOut	=	"";
int	j	=	s.indexOf("\n");
int	nSpaces;
if	(j	==	-1)

{

//	single	line
sOut	=	"\n"	+	spacePadding((int)	((charsPerLine	-	s.length())	/	2))

+	s;	}
else

{

//	first	line
String	l	=	s.substring(0,	j);
sOut	=	"\n"	+	spacePadding((int)	((charsPerLine	-	l.length())	/	2))

+	l;	//	second	line
l	=	s.substring(j	+	1);
sOut	+=	"\n"	+	spacePadding((int)	((charsPerLine	-	l.length())	/	2))

+	l	;	}
return(sOut);

}

private	String	spacePadding(int	n)

{

String	s	=	"";
if	(n	!=	0)
for	(int	i	=	0;	i	<	n;	i++)

s	+=	"	";
return(s);

}

private	void	nextQuestion()

{

boolean[]	termUsed	=	new	boolean[numberTerms];
int[]	index	=	new	int[4];
int	j;
commentTextArea.setText("");
//	Generate	the	next	question	based	on	selected	options	correctAnswer
=	myRandom.nextInt(numberTerms);
if	(header1MenuItem.isSelected())

{

givenLabel.setText(term2[correctAnswer]);

}

else

{

givenLabel.setText(term1[correctAnswer]);

}

if	(mcMenuItem.isSelected())

{

//	Multiple	choice	answers
for	(int	i	=	0;	i	<	numberTerms;	i++)

{

termUsed[i]	=	false;

}

}

//	Pick	four	random	possiblities
for	(int	i	=	0;	i	<	4;	i++)

{

do

{

j	=	myRandom.nextInt(numberTerms);

}

while	(termUsed[j]	||	j	==	correctAnswer);
termUsed[j]	=	true;
index[i]	=	j;

}

//	Replace	one	with	correct	answer
index[myRandom.nextInt(4)]	=	correctAnswer;
//	Display	multiple	choice	answers	in	label	boxes	if
(header1MenuItem.isSelected())

{

answerLabel[0].setText(term1[index[0]]);
answerLabel[1].setText(term1[index[1]]);
answerLabel[2].setText(term1[index[2]]);
answerLabel[3].setText(term1[index[3]]);

}

else

{

answerLabel[0].setText(term2[index[0]]);

answerLabel[1].setText(term2[index[1]]);
answerLabel[2].setText(term2[index[2]]);
answerLabel[3].setText(term2[index[3]]);

}

}

else

{

//	Type-in	answers
answerTextField.setEditable(true);
answerTextField.setText("");
answerTextField.requestFocus();

}

}

private	void	updateScore(boolean	correct)

{

//	Check	if	answer	is	correct
if	(correct)

{

numberCorrect++;
commentTextArea.setText(centerTextArea("Correct!"));	}

else
commentTextArea.setText(centerTextArea("Sorry	...	Correct

Answer	Shown"));	//	Display	correct	answer
if	(mcMenuItem.isSelected())

{

if	(header1MenuItem.isSelected())
answerLabel[0].setText(term1[correctAnswer]);

else
answerLabel[0].setText(term2[correctAnswer]);

answerLabel[1].setText("");
answerLabel[2].setText("");
answerLabel[3].setText("");

}

else

{

if	(header1MenuItem.isSelected())
answerTextField.setText(term1[correctAnswer]);

else
answerTextField.setText(term2[correctAnswer]);

}

startButton.setEnabled(true);
nextButton.setEnabled(true);
nextButton.requestFocus();

}

public	String	soundex(String	w)

{

//	Generates	Soundex	code	for	W	based	on	Unicode	value	//	Allows
answers	whose	spelling	is	close,	but	not	exact	String	wTemp,	s	=	"";
int	l;
int	wPrev,	wSnd,	cIndex;
//	Load	soundex	function	array

int[]	wSound	=	{0,	1,	2,	3,	0,	1,	2,	0,	0,	2,	2,	4,	5,	5,	0,	1,	2,	6,	2,	3,	0,	1,	0,
2,	0,	2};	wTemp	=	w.toUpperCase();

l	=	w.length();
if	(l	!=	0)

{

s	=	String.valueOf(w.charAt(0));
wPrev	=	0;
if	(l	>	1)

{

for	(int	i	=	1;	i	<	l;	i++)

{

cIndex	=	(int)	wTemp.charAt(i)	-	65;
if	(cIndex	>=	0	&&	cIndex	<=	25)

{

wSnd	=	wSound[cIndex]	+	48;
if	(wSnd	!=	48	&&	wSnd	!=	wPrev)

{

s	+=	String.valueOf((char)	wSnd);

}

wPrev	=	wSnd;

}

}

}

else
s	=	"";

}

return(s);

}

}

6

Blackjack	Card	Game	Project

Review	and	Preview
The	first	popular	computer	games	appeared	in	the	early	1970’s	with	the
introduction	of	 timeshare	computing.	There	was	a	classic	 set	of	DEC
(Digital	 Equipment	 Corporation)	 programs	 written	 in	 BASIC	 for
timeshare	users.	The	set	included	gambling	games,	simulations	and	the
ever-popular	Star	Trek	game.

In	 this	 chapter,	we	 build	 a	Blackjack	 card	 game.	The	Blackjack	Card	Game
Project	 allows	 a	 single	 player	 to	 compete	 against	 the	 computer	 dealer.	 The
project	uses	card	images	and	discusses	the	math	and	logic	involved	in	shuffling
and	displaying	 a	 deck	 of	 cards.	You	will	 indeed	 see	 that	 the	 odds	 are	 stacked
against	you	so	keep	you	real	money	in	your	wallet!

Blackjack	Card	Game	Project	Preview
In	 this	 chapter,	we	will	 build	 a	Blackjack	 card	game	 program.	This	 program
allows	 a	 single	 player	 to	 compete	 against	 the	 computer	 dealer.	 The	 idea	 of
Blackjack	 is	 to	 score	 higher	 than	 the	 dealer’s	 hand	without	 exceeding	 twenty-
one	 points.	 Cards	 count	 their	 value,	 except	 face	 cards	 (Jacks,	 Queens,	 Kings)
count	for	ten,	and	Aces	count	for	either	one	or	eleven	(you	pick).	If	you	beat	the
dealer,	you	get	10	points.	If	you	get	Blackjack	(21	with	just	two	cards)	and	beat
the	dealer,	you	get	15	points.	If	the	dealer	beats	you,	you	lose	10	points.

The	 finished	 project	 is	 saved	 as	 Blackjack	 in	 the	 \HomeJava\HomeJava
Projects\	 project	 group.	 Start	 NetBeans	 (or	 your	 IDE).	 Open	 the	 specified
project	group.	Make	Blackjack	the	active	project.	Run	the	project.	You	will	see:

A	menu	bar	is	used	to	control	the	program	Label	controls	are	used	for	header
information	and	text	fields	used	to	provide	feedback	and	winnings	information
to	the	player.	Three	button	controls	are	used	by	the	player	to	‘talk	to’	the
dealer.	The	cards	are	displayed	using	label	controls	–	ImageIcon	objects

represent	the	graphic	card	depictions.

Defining	 the	 interface	 for	 this	 project	 is	 straightforward	 -	 the	 code	 behind	 the
interface	 is	not	 trivial.	There	are	 lots	of	 rules	 involved	with	playing	Blackjack
and	we	need	to	determine	some	way	to	display	the	cards.	We	will	build	the	code
slowly.	For	now,	let’s	review	the	rules	used	in	this	version	of	Blackjack	and	see
how	the	program	works.

Blackjack	starts	by	giving	two	cards	(from	a	standard	52	card	deck	–	reshuffles
are	done	when	only	a	few	cards	remain)	to	the	dealer	(one	face	down)	and	two
cards	 to	 the	 player	 (you).	 The	 player	 decides	whether	 to	Hit	 (receive	 another
card)	or	Stay	(stop	receiving	cards).	The	player	can	choose	as	many	extra	cards
as	desired.	If	the	player’s	score	exceeds	21	before	staying,	it	is	a	loss	(-10	points)
and	we	say	the	player	busted.	If	the	player	does	not	exceed	21,	it	becomes	the
dealer’s	turn.	The	dealer	must	add	cards	to	his	score	until	16	is	exceeded.	When
this	occurs,	 if	 the	dealer	also	exceeds	21	(busts)	or	 if	his	score	is	 less	 than	the
player’s,	he	 loses	 (+10	points	 for	you).	 If	 the	dealer’s	score	 is	greater	 than	 the
player’s	score	(and	under	21),	the	dealer	wins	(-10	points	for	you).	If	the	dealer
and	 the	 player	 have	 the	 same	 score,	 it	 is	 called	 a	 push	 (no	 points	 added	 or
subtracted).	The	dealer	must	always	take	an	Ace	to	be	11	points,	unless	it	causes
him	to	bust.

If	either	the	player	or	dealer	get	‘Blackjack’	which	is	defined	as	21	points	with
just	two	cards	(an	Ace	and	a	card	worth	10	points),	they	automatically	win.	If	the
dealer	gets	Blackjack,	the	player	loses	10	points.	If	the	player	gets	Blackjack,	he
wins	15	points.	If	both	the	dealer	and	the	player	get	Blackjack,	it’s	a	push.

A	 special	 rule	 for	 this	 version	 of	Blackjack	 (not	 used	 in	 casinos)	 involves	 the
number	of	cards	received.	Theoretically,	you	can	have	eleven	cards	given	to	you
and	still	not	bust!	We	don’t	want	to	display	that	many	cards	since	it	would	be	a
rare	occurrence.	You	can	see	in	the	interface,	we	limit	 the	display	to	six	cards.
So,	a	special	rule	in	this	implementation	is	that,	if	the	player	gets	six	cards	and
has	21	or	fewer	points,	 the	player	 is	declared	a	winner.	Similarly,	 if	 the	player
has	 fewer	 than	 six	 cards	 and	 the	 dealer	 is	 able	 to	 draw	 six	 cards	 without
exceeding	16	points	(since	the	dealer	must	stop	adding	cards	after	16	points),	the
dealer	wins,	regardless	of	score.

Like	we	said	–	 there	are	 lots	of	 rules	here.	Let’s	see	 these	 rules	 in	action.	The

running	Blackjack	program	appears	as	(you	will	see	different	cards	–	the	results
are	 random):	

Notice	the	card	graphics	displayed	in	the	label	controls.	In	card	lingo,	the
displayed	cards	are	referred	to	hands.	The	dealer	plays	one	hand,	while	the
player	plays	the	other	hand.	One	of	the	dealer’s	cards	is	face	down	–	the	other
is	a	3.	I	have	a	2	and	a	6	showing	(8	points).	I	can	either	get	another	card	(Hit)
or	stop	(Stay).	I	think	you’d	agree	that	Hit	is	the	correct	choice	since	I’m	far
from	21.

When	 I	 click	 Hit,	 I	 receive	 a	 3,	 giving	 me	 11	 points:	

I	 click	 Hit	 one	 more	 time	 to	 see:	

The	10	gives	me	21	points.	Can’t	do	any	better	–	a	good	time	to	Stay.

After	 clicking	Stay,	 the	 dealer	 plays	 out	 his	 cards	 according	 to	 the	 prescribed

rules:	

The	first	card	is	‘flipped’	over	revealing	a	Ace,	giving	the	dealer	14	points	or
4	points.	The	dealer	adds	a	5.	At	this	point,	the	rules	say	the	dealer	must	make
the	Ace	worth	11	points,	giving	him	19	points.	The	dealer	must	stop	at	this
point	–	can’t	take	a	hit	since	the	score	exceeds	16.	The	dealer	loses.	I	win	10
points!	A	good	start.	Notice	the	text	field	controls	telling	me	the	results	and
displaying	my	winnings.	Click	Deal	to	play	another	hand.

The	next	hand	I	see	is:

I	have	Blackjack	–	I	win	again!	I	have	25	points.

I	click	Deal	again.

I	have	14	points.	I	choose	not	to	take	a	hit.

I	 click	 Stay	 and	 the	 dealer	 plays	 out:	

The	face-down	card	is	revealed	to	be	a	2.	The	dealer	has	12	points.	He	must
take	another	card	–	a	5.	This	brings	the	dealer	score	to	17.	The	dealer	has
beaten	my	14	points.	My	winnings	drop	to	15.

After	playing	a	few	more	hands	(not	doing	so	well,	since	my	Winnings	are	now
-35),	 I	 got	 these	 cards.:	

Recall,	an	Ace	can	be	either	1	or	11	points.	Choosing	1	in	this	case	gives	me	4
points	(1	+	3).	I	choose	to	Hit.

After	 a	 Hit	 (actually	 I	 took	 two	 hits),	 I	 see:	

Leaving	the	Ace	at	1	point,	I	have	18	(1	+	3	+	4	+	10).	I	choose	to	Stay.

After	 clicking	 Stay,	 the	 dealer	 flips	 over	 the	 face	 down	 card:	

The	dealer	reveals	his	first	card	as	an	Queen.	The	second	card	is	a	10.	The
dealer	has	20	points	–	a	winning	hand.

Continue	 playing	 hands	 until	 you	 understand	 how	 the	 rules	 of	 the	 game,
especially	 those	 that	 the	dealer	 uses,	 are	 applied.	Try	 to	 figure	out	 some	good
strategy	 for	 playing	 Blackjack.	 At	 any	 point,	 a	 new	 game	 can	 be	 started
(resetting	the	winnings)	by	choosing	the	New	Game	option	under	the	File	menu.
Selecting	Exit	under	the	File	menu	will	stop	the	Blackjack	program.

You	will	now	build	this	project	in	several	stages.	We	address	frame	design.	We
discuss	the	controls	used	to	build	the	form	and	establish	initial	properties.	And,
we	address	code	design	in	detail.	We	will	discuss	how	to	shuffle	a	deck	of	cards
and	 how	 to	 display	 the	 card	 graphics.	 We	 also	 cover	 the	 logic	 behind	 the
complicated	rules	of	play	and	how	to	determine	who	wins	(or	if	it	is	a	push).

Blackjack	Form	Design
We	 begin	 building	 the	Blackjack	 project.	 Let’s	 build	 the	 frame.	 Start	 a	 new
project	 in	your	Java	project	group	–	name	it	Blackjack.	Delete	default	code	in
file	named	Blackjack.java.	Once	started,	we	suggest	you	immediately	save	the
project	with	the	name	you	chose.	This	sets	up	the	folder	and	file	structure	needed
for	your	project.	Build	the	basic	frame	with	these	properties:

Blackjack	Frame:
title Blackjack
background Color(192,	192,	255),	a	light	blue
resizable false

The	code	is:

/	*

*	Blackjack.java
*/	package	blackjack;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	Blackjack	extends	JFrame	{
public	static	void	main(String	args[])	{

//	create	frame
new	Blackjack().show();

}

public	Blackjack()

{

//	frame	constructor

setTitle("Blackjack");
getContentPane().setBackground(new	Color(192,	192,	255));

setResizable(false);

addWindowListener(new	WindowAdapter()	{
public	void	windowClosing(WindowEvent	evt)	{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
GridBagConstraints	gridConstraints;

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	setBounds((int)	(0.5
(screenSize.width	-	getWidth())),	(int)	(0.5	(screenSize.height	-
getHeight())),	getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	evt)	{
System.exit(0);

}

}

This	code	builds	 the	frame,	sets	up	 the	 layout	manager	and	includes	code	 to
exit	the	application.	Run	the	code	to	make	sure	the	frame	(at	least,	what	there

is	of	it	at	this	point)	appears	and	is	centered	on	the	screen:	

Let’s	populate	our	frame	with	other	controls.	All	code	for	creating	the	frame
and	placing	controls	(except	declarations)	goes	in	the	Blackjack	constructor.

First,	 let’s	define	the	simple	menu.	We	use	a	single	menu	object	(fileMenu)	to
start	a	new	game	and	to	exit	program.	Our	menu	bar	(mainMenuBar)	structure

will	be:

Text Name
File fileMenu

New	Game newMenuItem
(Separator) 	
Exit exitMenuItem

Declare	the	different	menu	items	as	class	level	objects:	//	menu	structure
JMenuBar	mainMenuBar	=	new	JMenuBar();	JMenu	fileMenu	=	new
JMenu("File");
JMenuItem	newMenuItem	=	new	JMenuItem("New	Game");
JMenuItem	exitMenuItem	=	new	JMenuItem("Exit");	Establish	the	menu
structure	using	this	code	in	the	frame	constructor	(each	menu	item	has	a
corresponding	ActionPerformed	method):	//	build	menu	structure
setJMenuBar(mainMenuBar);	mainMenuBar.add(fileMenu);
fileMenu.add(newMenuItem);
fileMenu.addSeparator();
fileMenu.add(exitMenuItem);
newMenuItem.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
newMenuItemActionPerformed(e);

}

});

exitMenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

exitMenuItemActionPerformed(e);

}

});

Add	the	empty	methods:

private	void	newMenuItemActionPerformed(ActionEvent	e)	{

}

private	void	exitMenuItemActionPerformed(ActionEvent	e)	{

}

Save,	run.	Make	sure	the	menu	structure	appears:	

Click	File	to	see:	

Let’s	add	the	controls.

The	GridBagLayout	 for	 the	 project	 frame	 is	 fairly	 large	 (we	 show	 it	 in	 two

segments	to	fit	in	the	margins):	

dealerLabel,	playerLabel	and	winningsLabel	are	used	for	titling
information.	dealerTextField	and	playerTextField	are	used	to	say	who	won

and	who	lost.	And,	winningsTextfield	displays	your	winnings.	The	first	six
label	controls	(dealerCard	array)	are	used	to	display	the	dealer	cards,	while
the	other	six	(playerCard	array)display	the	player	(your)	cards.	The	three
button	controls	(hitButton,	dealButton,	stayButton)	are	used	to	indicate	if
you	wish	to	take	a	hit,	stay	or	deal	a	new	hand.	Let’s	add	the	dealer	controls
first.

The	control	properties	are:

dealerLabel:
text Dealer’s	Cards
font Arial,	Bold,	Size	18
gridx 0
gridy 0
gridwidth 2
anchor WEST
insets 10,	10,	10,	0
	 	
dealerTextField: 	
size 430,	30
font Comic	Sans	MS,	Plain,	Size	18
background Color(255,	255,	128),	a	light	yellow
foreground Blue
horizontalAlignment Center
editable false
gridx 2
gridy 0
gridwidth 4
insets 0,	10,	0,	10
	 	
dealerCard[0]: 	
size 100,	50
border Black	line
gridx 0

gridy 1
insets 0,	10,	0,	0
	 	
dealerCard[1]: 	
size 100,	50
border Black	line
gridx 1
gridy 1
insets 0,	10,	0,	0
	 	
dealerCard[2]: 	
size 100,	50
border Black	line
gridx 2
gridy 1
insets 0,	10,	0,	0
	 	
dealerCard[3]: 	
size 100,	50
border Black	line
gridx 3
gridy 1
insets 0,	10,	0,	0
	 	
dealerCard[4]: 	
size 100,	50
border Black	line
gridx 4
gridy 1
insets 0,	10,	0,	0
	 	
dealerCard[5]: 	
size 100,	50

border Black	line
gridx 5
gridy 1
insets 0,	10,	0,	10

Declare	these	controls	using:

JLabel	dealerLabel	=	new	JLabel();
JTextField	dealerTextField	=	new	JTextField();	JLabel[]	dealerCard	=
new	JLabel[6];

Now,	the	controls	are	added	to	the	frame	in	the	frame	constructor	using:
dealerLabel.setText("Dealer's	Cards:");	dealerLabel.setFont(new
Font("Arial",	Font.BOLD,	18));	gridConstraints	=	new
GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.gridwidth	=	2;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(10,	10,	10,	0);
getContentPane().add(dealerLabel,	gridConstraints);
dealerTextField.setPreferredSize(new	Dimension(430,	30));
dealerTextField.setFont(new	Font("Comic	Sans	MS",	Font.PLAIN,	18));
dealerTextField.setBackground(new	Color(255,	255,	128));
dealerTextField.setForeground(Color.BLUE);
dealerTextField.setHorizontalAlignment(SwingConstants.CENTER);
dealerTextField.setEditable(false);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
gridConstraints.gridwidth	=	4;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(dealerTextField,	gridConstraints);	for	(int	i	=	0;	i	<
6;	i++)

{

dealerCard[i]	=	new	JLabel();

dealerCard[i].setPreferredSize(new	Dimension(100,	150));
dealerCard[i].setBorder(BorderFactory.createLineBorder(Color.BLACK));
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
i;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(0,	10,	0,	0);	if	(i	==	5)

gridConstraints.insets	=	new	Insets(0,	10,	0,	10);
getContentPane().add(dealerCard[i],	gridConstraints);	}

Save,	 run	 the	 project.	 You	 will	 see	 the	 added	 controls:	

Using	nearly	identical	code,	we	can	add	the	player	controls.	Set	the	properties:

playerLabel: 	
text Player’s	Cards
font Arial,	Bold,	Size	18
gridx 0
gridy 2
gridwidth 2
anchor WEST
insets 10,	10,	10,	0
	 	
playerTextField: 	
size 430,	30
font Comic	Sans	MS,	Plain,	Size	18
background Color(255,	255,	128),	a	light	yellow
foreground Blue

horizontalAlignment Center
editable false
gridx 2
gridy 2
gridwidth 4
insets 0,	10,	0,	10
	 	
playerCard[0]: 	
size 100,	50
border Black	line
gridx 0
gridy 3
insets 0,	10,	0,	0
	 	
playerCard[1]: 	
size 100,	50
border Black	line
gridx 1
gridy 3
insets 0,	10,	0,	0
	 	
playerCard[2]: 	
size 100,	50
border Black	line
gridx 2
gridy 3
insets 0,	10,	0,	0
	 	
playerCard[3]: 	
size 100,	50
border Black	line
gridx 3
gridy 3

insets 0,	10,	0,	0
	 	
playerCard[4]: 	
size 100,	50
border Black	line
gridx 4
gridy 3
insets 0,	10,	0,	0
	 	
playerCard[5]: 	
size 100,	50
border Black	line
gridx 5
gridy 3
insets 0,	10,	0,	10

Declare	these	controls	using:

JLabel	playerLabel	=	new	JLabel();
JTextField	playerTextField	=	new	JTextField();	JLabel[]	playerCard	=
new	JLabel[6];

The	controls	are	added	to	the	frame	in	the	frame	constructor	using:
playerLabel.setText("Your	Cards:");
playerLabel.setFont(new	Font("Arial",	Font.BOLD,	18));
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.gridwidth	=	2;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(10,	10,	10,	0);
getContentPane().add(playerLabel,	gridConstraints);
playerTextField.setPreferredSize(new	Dimension(430,	30));
playerTextField.setFont(new	Font("Comic	Sans	MS",	Font.PLAIN,	18));
playerTextField.setBackground(new	Color(255,	255,	128));
playerTextField.setForeground(Color.BLUE);

playerTextField.setHorizontalAlignment(SwingConstants.CENTER);
playerTextField.setEditable(false);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
gridConstraints.gridwidth	=	4;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(playerTextField,	gridConstraints);	for	(int	i	=	0;	i
<	6;	i++)

{

playerCard[i]	=	new	JLabel();
playerCard[i].setPreferredSize(new	Dimension(100,	150));
playerCard[i].setBorder(BorderFactory.createLineBorder(Color.BLACK));
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
i;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(0,	10,	0,	0);	if	(i	==	5)

gridConstraints.insets	=	new	Insets(0,	10,	0,	10);
getContentPane().add(playerCard[i],	gridConstraints);	}

Save,	 run	 the	 project.	 You	 will	 see	 the	 newly	 added	 player	 controls:	

Let’s	finish	by	adding	the	button	controls	and	winnings	label	and	text	field.	The
properties	are:

hitButton: 	
text Hit
font Arial,	Bold,	Size	16
gridx 0
gridy 4
insets 10,	0,	10,	0
	 	
dealButton: 	
text Deal
font Arial,	Bold,	Size	16
gridx 1
gridy 4
insets 10,	0,	10,	0
	 	
stayButton: 	
text Stay

font Arial,	Bold,	Size	16
gridx 2
gridy 4
insets 10,	0,	10,	0
	 	
winningsLabel: 	
text Winnings
font Arial,	Bold,	Size	18
gridx 4
gridy 4
anchor WEST
insets 10,	10,	10,	0
	 	
winningsTextField: 	
text 0
size 100,	30
font Comic	Sans	MS,	Plain,	Size	18
background White
foreground Blue
horizontalAlignment Center
editable false
gridx 5
gridy 4
insets 10,	0,	10,	0

Declare	these	controls	using:

JButton	hitButton	=	new	JButton();
JButton	dealButton	=	new	JButton();
JButton	stayButton	=	new	JButton();
JLabel	winningsLabel	=	new	JLabel();
JTextField	winningsTextField	=	new	JTextField();	Add	them	to	the	frame
using:

hitButton.setText("Hit");
hitButton.setFont(new	Font("Arial",	Font.BOLD,	16));	gridConstraints	=
new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	4;
gridConstraints.insets	=	new	Insets(10,	0,	10,	0);
getContentPane().add(hitButton,	gridConstraints);
hitButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
hitButtonActionPerformed(e);

}

});

dealButton.setText("Deal");
dealButton.setFont(new	Font("Arial",	Font.BOLD,	16));	gridConstraints
=	new	GridBagConstraints();	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	4;
gridConstraints.insets	=	new	Insets(10,	0,	10,	0);
getContentPane().add(dealButton,	gridConstraints);
dealButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
dealButtonActionPerformed(e);

}

});

stayButton.setText("Stay");
stayButton.setFont(new	Font("Arial",	Font.BOLD,	16));	gridConstraints
=	new	GridBagConstraints();	gridConstraints.gridx	=	2;
gridConstraints.gridy	=	4;
gridConstraints.insets	=	new	Insets(10,	0,	10,	0);
getContentPane().add(stayButton,	gridConstraints);
stayButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{

stayButtonActionPerformed(e);

}

});

winningsLabel.setText("Winnings:");
winningsLabel.setFont(new	Font("Arial",	Font.BOLD,	18));
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	4;
gridConstraints.gridy	=	4;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(10,	10,	10,	0);
getContentPane().add(winningsLabel,	gridConstraints);
winningsTextField.setText("0");
winningsTextField.setPreferredSize(new	Dimension(100,	30));
winningsTextField.setFont(new	Font("Comic	Sans	MS",	Font.PLAIN,
18));	winningsTextField.setBackground(Color.WHITE);
winningsTextField.setForeground(Color.BLUE);
winningsTextField.setHorizontalAlignment(SwingConstants.CENTER);
winningsTextField.setEditable(false);	gridConstraints	=	new
GridBagConstraints();	gridConstraints.gridx	=	5;
gridConstraints.gridy	=	4;
gridConstraints.insets	=	new	Insets(10,	0,	10,	0);
getContentPane().add(winningsTextField,	gridConstraints);	The	code
above	adds	a	ActionPerformed	method	for	each	button..	Add	these	empty
methods:	private	void	hitButtonActionPerformed(ActionEvent	e)	{

}

private	void	dealButtonActionPerformed(ActionEvent	e)	{

}

private	void	stayButtonActionPerformed(ActionEvent	e)	{

}

Save,	run	one	more	time:

This	completes	the	the	frame	design.

We	will	begin	writing	code	for	 the	application.	Many	 tasks	are	 repeated	 in	 the
Blackjack	 card	 game.	We	 need	 to	 shuffle	 a	 deck	 of	 cards,	 deal	 a	 new	 hand,
display	cards	for	the	dealer	and	player	as	play	continues,	and	end	a	hand	when	a
winner	 is	declared.	The	approach	we	 take	 is	 to	build	 the	code	 in	modules	 that
perform	 these	 repeated	 tasks.	As	we	 build	 the	modules	 (general	methods),	we
use	 them	 to	write	 code	 for	 the	 event	methods.	One	 drawback	 to	 this	modular
approach	is	that	we	will	have	to	write	lots	of	code	before	anything	can	be	tested.
You	may	want	to	occasionally	compile	new	code	as	it’s	built	to	make	sure	you
don’t	get	any	unexpected	errors.	As	a	first	step,	we	write	the	code	that	defines	a
deck	of	cards.

Code	Design	–	Card	Definition
Defining	a	card	consists	of	answering	 two	questions:	what	 is	 the	card	 suit	 and
what	is	the	card	value?	The	four	suits	are	Hearts,	Diamonds,	Clubs,	and	Spades.
The	thirteen	card	values	are:	Ace	(A),	2,	3,	4,	5,	6,	7,	8,	9,	10,	Jack	(J),	Queen
(Q),	King	(K).	Since	there	are	52	cards	in	a	standard	deck	of	playing	cards,	we
will	use	integers	from	0	to	51	(array	indices)	to	represent	the	cards.	How	do	we
translate	 that	 card	 number	 to	 a	 card	 suit	 and	 value?	 (Notice	 the	 distinction
between	card	number	and	card	value	-	card	number	ranges	from	0	to	51,	card
value	 can	 only	 range	 from	 Ace	 to	 King.)	 We	 need	 to	 develop	 some	 type	 of
translation	 rule.	 This	 is	 done	 all	 the	 time	 in	 programming.	 If	 the	 number	 you
compute	with	or	work	with	does	not	directly	translate	to	information	you	need,
you	need	to	make	up	rules	to	do	the	translation.	For	example,	the	numbers	1	to
12	 are	 used	 to	 represent	 the	 months	 of	 the	 year.	 But,	 these	 numbers	 tell	 us
nothing	about	the	names	of	the	month	-	we	need	a	rule	to	translate	each	number
to	a	month	name.

We	know	we	need	13	of	 each	card	 suit.	Hence,	 an	 easy	 rule	 to	decide	 suit	 is:
cards	numbered	0	-	12	are	Hearts,	cards	numbered	13	-	25	are	Diamonds,	cards
numbered	26	-	38	are	Clubs,	and	cards	numbered	39	-	51	are	Spades.	For	card
values,	 lower	 numbers	 should	 represent	 lower	 cards.	A	 rule	 that	 does	 this	 for
each	number	in	each	card	suit	is:

Card	Numbers

Hearts Diamonds Clubs Spades Card	Value
0 13 26 39 A
1 14 27 40 2
2 15 28 41 3
3 16 29 42 4
4 17 30 43 5
5 18 31 44 6
6 19 32 45 7
7 20 33 46 8

8 21 34 47 9
9 22 35 48 10
10 23 36 49 J
11 24 37 50 Q
12 25 38 51 K

As	examples,	notice	card	number	11	is	a	Queen	of	Hearts.	Card	number	30	is
a	5	of	Clubs.	These	card	numbers	will	be	used	to	establish	the	graphics	file
associated	with	the	card.

As	mentioned,	a	card	number	is	used	to	establish	the	graphics	file	that	represents
the	corresponding	card.	In	the	\HomeJava\HomeJava	Projects\Card	Graphics
folder	are	52	graphics	files	(gif	files)	that	represent	the	52	playing	cards.	These
files	are	named	CARD00.GIF	to	CARD51.GIF.	And,	yes,	the	file	numbers	(the
last	two	digits	in	the	name)	correspond	to	the	card	numbers	we’ve	assigned.	So
CARD11.GIF	is	a	Queen	of	Hearts	and	CARD30.GIF	is	a	5	of	Clubs.	So,	once
we	know	a	card	number,	we	know	which	file	 is	used	 to	display	 that	card.	 Just
how	are	these	files	used	in	the	Blackjack	program?

Two	 approaches	 can	 be	 taken	 to	 display	 cards	 in	 the	Blackjack	 program.	 The
first	is	that	whenever	a	card	must	be	displayed	in	a	label	control,	we	could	load
the	appropriate	file	into	a	label	control	using	the	ImageIcon	constructor.	In	this
approach,	every	time	a	card	is	needed,	 the	program	would	have	to	find	the	file
and	 load	 it	 from	 disk.	 This	 approach	 would	 require	 multiple	 accesses	 to	 disk
files,	slowing	down	the	program.	The	second	approach	(and	the	one	we	use)	is	to
preload	all	graphics	files	(still	using	the	ImageIcon	constructor)	into	an	array	of
ImageIcon	objects.	Then,	when	a	card	must	be	displayed,	we	simply	set	the	icon
property	 of	 the	 label	 control	 displaying	 a	 card	 to	 the	 ImageIcon	 object
representing	the	card.	This	is	a	much	faster	approach	and	only	requires	opening
the	graphics	files	one	 time.	The	preloading	of	 images	 is	done	at	 the	end	of	 the
frame’s	constructor	code.

Before	coding	this,	we	address	where	the	graphics	files	should	be	located	in	the
project	 file	 structure.	 The	 accepted	 standard	 for	 storing	 needed	 files	 (graphics
files,	 sound	 files,	data	 files,	 configuration	 files)	 is	 to	place	 them	 in	 the	project
folder.	 We	 will	 keep	 all	 the	 graphics	 files	 in	 this	 folder.	 Copy	 the	 52	 card
graphics	(plus	the	file	CARDBACK.GIF,	which	holds	the	graphics	to	represent

the	 back	of	 a	 card)	 into	your	 project’s	 folder.	 If	 you	want,	 open	 and	view	 the
\HomeJava\HomeJava	 Projects\Blackjack\	 folder	 to	 see	 these	 files	 in	 the
included	project.

We	will	define	53	ImageIcon	objects	 for	card	display	–	one	 for	 the	card	back
(cardBack)	 and	 an	 array	 of	 52	 images	 (cardImage)	 for	 the	 individual	 cards.
These	 will	 be	 class	 level	 variables	 in	 our	 program.	 Add	 these	 declarations	 to
your	project:	ImageIcon	cardBack;
ImageIcon[]	cardImage	=	new	ImageIcon[52];	Now,	the	frame	constructor
code	that	establishes	each	ImageIcon	object	is:	String	cn;
//	load	card	images	and	determine	points	for	each	cardBack	=	new
ImageIcon("CARDBACK.GIF");	for	(int	cardNumber	=	0;	cardNumber
<	52;	cardNumber++)	{

cn	=	String.valueOf(cardNumber);
if	(cardNumber	<	10)

cn	=	"0"	+	cn;
cardImage[cardNumber]	=	new	ImageIcon("CARD"	+	cn	+	".GIF");

}

In	this	code,	we	first	set	cardBack.	Then,	for	all	52	cards,	we	form	the
appropriate	file	name	using	string	functions	and	load	the	52	cardImage
values	from	files.

Add	 this	 new	 code	 at	 the	 end	 of	 the	 frame	 constructor,	 then	 save	 and	 run	 the
project.	If	the	program	runs	without	errors	(the	frame	appears),	this	tells	you	that
all	 needed	 files	 are	 properly	 located	 in	 your	 project	 folder.	 If	 there	 are	 errors,
you	 need	 to	 correct	 them.	 Want	 to	 really	 see	 if	 things	 worked?	 Add	 this
temporary	 line	 at	 the	 end	 of	 the	 frame	 constructor:
dealerCard[0].setIcon(cardImage[11]);	 This	 should	 display	 the	 Queen	 of
Hearts	 in	 the	 first	 dealer	 card.	 Give	 it	 a	 try.	 If	 things	 work,	 you	 will	 see:	

Remove	the	line	you	just	added.

At	 this	point,	we	have	an	array	 (cardImage)	of	 the	graphics	used	 to	 represent
each	 of	 the	 52	 cards.	 In	Blackjack,	 each	 card	 also	 has	 a	 point	 value.	An	Ace
(initially,	 at	 least)	 is	 worth	 1	 point,	 the	 cards	 2	 through	 10	 have	 point	 values
equal	to	their	card	value.	And,	the	face	cards	(Jack,	Queen,	King)	are	each	worth
10	points.	A	class	 level	 array	 (cardPoints)	 is	 used	 to	hold	 the	point	 value	 for
each	card.	Add	this	declaration:	int[]	cardPoints	=	new	int[52];

Modify	 the	 frame	 constructor	 code	 to	 establish	 the	 elements	 of	 this	 array
(changes	are	shaded):	String	cn;
//	load	card	images	and	determine	points	for	each	cardBack	=	new
ImageIcon("CARDBACK.GIF");	for	(int	cardNumber	=	0;	cardNumber
<	52;	cardNumber++)	{

cn	=	String.valueOf(cardNumber);
if	(cardNumber	<	10)

cn	=	"0"	+	cn;
cardImage[cardNumber]	=	new	ImageIcon("CARD"	+	cn	+	".GIF");

int	i	=	cardNumber	%	13	+	1;	//	get	a	number	from	1	(A)	to	13	(K)	if	(i
==	11	||	i	==	12	||	i	==	13)	//	Jack,	Queen,	King	cardPoints[cardNumber]	=
10;

else	//	A	through	10
cardPoints[cardNumber]	=	i;

}

This	new	code	uses	the	modulus	(remainder)	operator	(%)	to	assign	a	point
value	to	a	card	(cardNumber)	from	0	to	51.	The	expression	using	the
modulus	operator	converts	any	card	number	to	a	number	(i)	from	1	(Ace)	to
13	(King),	regardless	of	suit.	The	result	is	then	used	to	assign	the	point	value.
Try	a	few	values	to	convince	yourself	this	works.	Make	the	noted
modifications.	Save	and	run	the	project,	if	you’d	like.

We	now	have	all	the	information	we	need	to	define	a	card.	The	array	cardImage
has	images	for	specific	cards,	while	the	array	cardPoints	has	the	corresponding
point	values.	The	index	on	the	array,	called	the	card	number,	ranges	from	0	to
51	(Ace	of	Hearts	to	King	of	Spades).	Let’s	learn	how	to	“shuffle”	these	cards.

Code	Design	–	Card	Shuffle
With	52	cards,	we	need	to	randomly	sort	the	integers	from	0	to	51	to	“simulate”
the	shuffling	process.	How	do	we	do	this?

Usually	when	we	 need	 a	 computer	 version	 of	 something	we	 can	 do	without	 a
computer,	 it	 is	 fairly	easy	 to	write	down	 the	steps	 taken	and	duplicate	 them	 in
code.	When	we	shuffle	a	deck	of	cards,	we	separate	the	deck	in	two	parts,	then
interleaf	 the	 cards	 as	we	 fan	 each	 part,	making	 that	 familiar	 shuffling	 noise.	 I
don’t	know	how	you	could	write	code	 to	do	 this.	We’ll	 take	another	approach
which	is	hard	or	tedious	to	do	off	the	computer,	but	is	easy	to	do	on	a	computer.

We	perform	what	is	called	a	“one	card	shuffle.”	In	a	one	card	shuffle,	you	pull	a
single	card	(at	random)	out	of	the	deck	and	lay	it	aside	on	a	pile.	Repeat	this	52
times	and	the	cards	are	shuffled.	Try	it!	I	 think	you	see	this	idea	is	simple,	but
doing	 a	 one	 card	 shuffle	 with	 a	 real	 deck	 of	 cards	 would	 be	 awfully	 time-
consuming.	We’ll	 use	 the	 idea	 of	 a	 one	 card	 shuffle	 here,	with	 a	 slight	 twist.
Rather	than	lay	the	selected	card	on	a	pile,	we	will	swap	it	with	the	bottom	card
in	the	stack	of	cards	remaining	to	be	shuffled.	This	takes	the	selected	card	out	of
the	deck	and	replaces	it	with	the	remaining	bottom	card.	The	result	is	the	same
as	if	we	lay	it	aside.

Here’s	how	the	shuffle	works	with	n	numbers:

➢	Start	with	a	list	of	n	consecutive	integers.
➢	Randomly	pick	one	item	from	the	list.	Swap	that	item	with	the	last	item.
You	 now	 have	 one	 fewer	 items	 in	 the	 list	 to	 be	 sorted	 (called	 the
remaining	list),	or	n	is	now	n	-	1.

➢	Randomly	pick	one	item	from	the	remaining	list.	Swap	it	with	the	item	on
the	bottom	of	the	remaining	list.	Again,	your	remaining	list	now	has	one
fewer	items.

➢	Repeatedly	remove	one	item	from	the	remaining	list	and	swap	it	with	the
item	on	the	bottom	of	the	remaining	list	until	you	have	run	out	of	items.
When	 done,	 the	 list	 will	 have	 been	 replaced	 with	 the	 original	 list	 in
random	order.

The	 code	 to	 do	 a	 one	 card	 shuffle,	 or	 sort	 n	 integers,	 is	 placed	 in	 a	 general
method	named	sortIntegers.	The	single	argument	is	n	the	number	of	integers	to
sort.	The	method	returns	an	array	containing	the	randomly	sorted	integers.	The
returned	array	is	zero-based,	returning	random	integers	from	0	to	n	-	1,	not	1	to
n.	 If	 you	 need	 integers	 from	 1	 to	 n,	 just	 simply	 add	 1	 to	 each	 value	 in	 the
returned	array!	The	code	is:	private	int[]	sortIntegers(int	n)

{

/	*

*	Returns	n	randomly	sorted	integers	0	->	n	-	1

*/

int[]	sortedArray	=	new	int[n];
int	temp,	s;
Random	sortRandom	=	new	Random();
//	initialize	array	from	0	to	n	-	1
for	(int	i	=	0;	i	<	n;	i++)

{

sortedArray[i]	=	i;

}

//	i	is	number	of	items	remaining	in	list	for	(int	i	=	n;	i	>=	1;	i--)

{

s	=	sortRandom.nextInt(i);
temp	=	sortedArray[s];
sortedArray[s]	=	sortedArray[i	-	1];
sortedArray[i	-	1]	=	temp;

}

return(sortedArray);

}

You	should	be	able	to	see	each	step	of	the	shuffle	method.	This	method	is
general	(sorting	n	integers)	and	can	be	used	in	other	projects	requiring	random
lists	of	integers.	Since	we	are	using	a	random	number,	we	need	the	following
import	statement:	import	java.util.Random;

Add	 the	 sortIntegers	 method	 (and	 the	 import	 statement)	 to	 your	 Blackjack
project.	It	will	be	used	every	time	we	need	to	shuffle	the	52	cards.	In	the	project,
we	will	use	a	class	 level	array	card	 (dimensioned	 to	52)	 to	hold	 the	 randomly
sorted	integers	(the	shuffled	cards).	A	class	level	variable	currentCard	will	be
used	 to	 indicate	 the	 current	 index	 of	 the	 card	 array	 being	 used.	 Add	 these
declarations	to	your	project:	int[]	card	=	new	int[52];
int	currentCard;

The	snippet	of	code	that	does	a	shuffle	is:	card	=	sortIntegers(52);
currentCard	=	0;

In	this	code,	we	obtain	the	shuffled	cards	in	card	and	set	currentCard	to	zero
so	we	are	‘pointing’	to	the	first	card	(array	index	zero)	in	the	deck.

We	can	now	use	 the	 shuffling	process	 and	 card	descriptions	 to	 begin	 building
modules	to	play	the	Blackjack	game.

Code	Design	–	Start	New	Game
To	start	a	new	Blackjack	game,	a	user	chooses	New	Game	from	the	File	menu.
The	steps	in	this	method	are:

➢	Set	winnings	to	zero	and	reset	winnings	display.
➢	Shuffle	cards.
➢	Start	a	new	hand.

A	class	level	variable	winnings	is	used	to	track	the	player’s	winnings.	Add	this
declaration	to	the	project:	int	winnings;

The	 code	 for	 the	 newMenuItemActionPerformed	 method	 is:	 private	 void
newMenuItemActionPerformed(ActionEvent	e)	{

//	start	new	game	-	clear	winnings	and	start	over	winnings	=	0;
winningsTextField.setText("0");
card	=	sortIntegers(52);
currentCard	=	0;
newHand();

}

Add	this	method	to	the	project	–	the	steps	are	obvious.	This	method	uses	a
general	method	newHand	to	start	a	new	hand	of	Blackjack.	We	will	code	that
next,	but	let’s	take	care	of	a	couple	of	other	tasks	first.

Add	 the	 exitMenutItemActionPerformed	 method:	 private	 void
exitMenuItemActionPerformed(ActionEvent	e)	{

System.exit(0);

}

When	the	Blackjack	program	first	begins,	we	also	want	to	start	a	new	game.	Add
this	single	line	at	the	end	of	the	frame	constructor:	newMenuItem.doClick();

This	line	will	cause	the	newMenuItemActionPerformed	method	to	be
executed:	Now,	we’ll	code	the	newHand	method.

Code	Design	–	Start	New	Hand
Each	“round”	of	Blackjack	begins	with	a	new	hand.	In	a	new	hand,	two	dealer
cards	(one	face	down)	and	two	player	cards	are	displayed	and	the	interface	is	set
so	the	player	can	begin	playing	his	hand.	Many	steps	are	required	to	start	a	new
hand:

➢	Clear	all	cards.
➢	Clear	dealer	and	player	comments.
➢	Enable	Hit	button.
➢	Enable	Stay	button.
➢	Disable	Deal	button.
➢	Reshuffle	if	necessary	(if	more	than	35	cards	have	been	used).
➢	Add	two	cards	to	dealer	hand.
➢	Add	two	cards	to	player	hand.
➢	Check	if	either	hand	is	a	Blackjack.	If	so,	end	the	hand.

Six	 class	 level	 variables	 are	 used	 to	 know	 the	 status	 of	 the	 dealer	 and	 player
hands.	 Add	 these	 declarations:	 int	 numberCardsDealer,	 acesDealer,
scoreDealer;	 int	 numberCardsPlayer,	 acesPlayer,	 scorePlayer;
numberCardsDealer	tells	us	how	many	cards	are	currently	in	the	dealer’s	hand,
acesDealer	tells	us	how	many	of	those	cards	are	Aces,	and	scoreDealer	tells	us
the	dealer	point	total.	We	track	Aces	separately	since	their	score	can	be	either	a	1
or	 11.	 numberCardsPlayer	 tells	 us	 how	 many	 cards	 are	 currently	 in	 the
player’s	 hand,	 acesPlayer	 tells	 us	 how	 many	 of	 those	 cards	 are	 Aces,	 and
scorePlayer	tells	us	the	player	point	total.	In	the	newHand	method,	all	of	these
will	be	initialized	at	zero,	prior	to	adding	cards	to	the	hands.

The	newHand	general	method	that	implements	the	listed	steps	is:	private	void
newHand()

{

//	Deal	a	new	hand
//	Clear	table	of	cards

for	(int	i	=	0;	i	<	6;	i++)

{

dealerCard[i].setIcon(null);
playerCard[i].setIcon(null);

}

dealerTextField.setText("");
playerTextField.setText("");
hitButton.setEnabled(true);
stayButton.setEnabled(true);
dealButton.setEnabled(false);
//	reshuffle	occasionally
if	(currentCard	>	34)

{

card	=	sortIntegers(52);
currentCard	=	0;

}

//	Get	two	dealer	cards
scoreDealer	=	0;
acesDealer	=	0;
numberCardsDealer	=	0;
addDealerCard();
addDealerCard();
//	Get	two	player	cards
scorePlayer	=	0;
acesPlayer	=	0;
numberCardsPlayer	=	0;
addPlayerCard();
addPlayerCard();

//	Check	for	blackjacks
if	(scoreDealer	==	11	&&	acesDealer	==	1)	scoreDealer	=	21;
if	(scorePlayer	==	11	&&	acesPlayer	==	1)	scorePlayer	=	21;
if	(scoreDealer	==	21	&&	scorePlayer	==	21)	endHand("Dealer	has
Blackjack!",	"And,	you	have	Blackjack	..	a	push!",	0);	else	if
(scoreDealer	==	21)

endHand("Dealer	has	Blackjack!",	"You	lose	...",	-10);	else	if
(scorePlayer	==	21)
endHand("Dealer	loses	...",	"You	have	Blackjack!",	15);	}

Let’s	 look	 at	 the	newHand	method	 in	 a	 little	 detail.	The	 cards	 are	 cleared	 by
setting	 the	 label	 control	 icon	 properties	 to	 null.	 A	 reshuffle	 is	 done	 when
currenCard	 is	greater	than	34.	The	dealer	hand	status	variables	are	set	to	zero
and	 two	 cards	 are	 added	 to	 the	 dealer	 hand	 using	 a	 general	 method
addDealerCard.	 Similarly	 for	 the	 player’s	 hand,	 two	 cards	 are	 added	 using
addPlayerCard.	We	will	write	these	methods	soon	(they	update	the	three	status
variables	for	the	dealer	and	player).

The	last	part	of	the	method	checks	each	hand	for	Blackjack	(having	an	Ace	and	a
card	worth	10	points,	a	10,	a	Jack,	a	Queen,	or	a	King).	If	either	has	a	Blackjack,
the	general	method	endHand	is	called.	In	this	method,	appropriate	messages	are
displayed	 and	 the	 player’s	winnings	 are	 updated.	 The	messages	 and	winnings
change	are	passed	as	arguments	to	the	method.

Add	 the	newHand	method	 to	 your	 project.	We	 still	 can’t	 test	 the	 project.	We
still	 need	 three	 more	 methods	 which	 we’ll	 code	 next	 –	 endHand,
addDealerCard,	addPlayerCard.

Code	Design	–	End	Hand
When	 a	 hand	 has	 ended,	 we	 want	 to	 tell	 the	 player	 whether	 he/she	 won	 and
update	 their	 winnings.	 A	 new	 hand	 can	 then	 be	 dealt.	 The	 steps	 involved	 in
ending	a	hand	are:

➢	 Display	 the	 dealer’s	 face	 down	 card	 (just	 to	 make	 sure	 it	 is	 showing)
➢	Display	dealer	and	player	comments.

➢	Update	winnings	and	display	new	value.
➢	Disable	Hit	button.
➢	Disable	Stay	button.
➢	Enable	Deal	button.

Since	 the	 first	 dealer	 card	 is	 shown	 face	 down	 (unless	 there	 is	 a	Blackjack	 or
until	 the	 player	 stays	 or	 busts),	 we	 need	 a	 variable	 to	 hold	 that	 card’s	 image
(dealerFaceDown).	 This	 variable	 will	 be	 established	 in	 the	 addDealerCard
method.	Add	this	declaration	to	your	project:	ImageIcon	dealerFaceDown;

The	 endHand	 general	 method	 that	 accomplishes	 the	 above	 tasks	 is:	 private
void	endHand(String	dealerComment,	String	playerComment,	int	change)	{

//	make	sure	dealer	cards	are	seen
dealerCard[0].setIcon(dealerFaceDown);
dealerTextField.setText(dealerComment);
playerTextField.setText(playerComment);	//	Hand	has	ended	-	update
winnings
winnings	+=	change;
winningsTextField.setText(String.valueOf(winnings));
hitButton.setEnabled(false);
stayButton.setEnabled(false);
dealButton.setEnabled(true);

}

Note	(as	seen	in	newHand)	the	dealer	and	player	comments	along	with	the

amount	to	update	the	player’s	winnings	are	passed	as	arguments	to	the
method.	Add	this	method	to	the	project.

Just	two	more	methods	and	we	can	see	if	all	this	works!	We	need	to	add	cards	to
the	dealer	and	player	hands.

Code	Design	–	Display	Dealer	Card
Here,	we	build	a	general	method	to	add	a	card	to	the	dealer’s	hand	and	display
that	 card.	 The	 currentCard	 variable,	 used	 with	 the	 card	 array,	 identifies	 the
card	 added	 to	 the	 dealer’s	 hand.	 Recall	 three	 class	 level	 variables
(numberCardsDealer,	acesDealer,	scoreDealer)	are	used	 to	provide	specifics
about	 the	 dealer’s	 hand.	Also,	 recall	dealerFaceDown	 saves	 the	 dealer’s	 face
down	card.

Knowing	currentCard,	the	steps	involved	in	adding	a	card	to	the	dealer’s	hand
are:

➢	Determine	cardNumber	from	the	card	array.
➢	Increment	numberCardsDealer.
➢	 If	 displaying	 first	 card:	 o	 Set	 dealerFaceDown	 to
cardImage[cardNumber].
o	Set	dealerCard[0]	icon	to	cardBack.

➢	 If	display	 second	 through	sixth	card:	o	Set	 appropriate	dealer	card	 label
control	icon	to	cardImage[cardNumber].

➢	Increment	dealer’s	score	by	cardPoint[cardNumber]
➢	Increment	acesDealer,	if	card	is	an	Ace.
➢	Increment	currentCard.

In	these	steps,	if	we	are	adding	the	first	card,	we	save	the	image	and	display	the
card	back.	For	other	cards,	 the	appropriate	 image	is	displayed.	We	then	update
the	score,	noting	if	an	Ace	has	been	added.	As	a	last	step,	the	current	card	index
is	 incremented	 by	 one.	 At	 all	 times,	 we	 know	 the	 status	 of	 the	 dealer’s	 hand
(number	of	cards,	number	of	aces	and	score).

The	steps	of	the	process	to	add	a	card	to	the	dealer’s	hand	are	coded	in	a	general
method	named	addDealerCard:	private	void	addDealerCard()

{

int	cardNumber;

cardNumber	=	card[currentCard];
//	Adds	a	card	to	dealer	hand
numberCardsDealer++;
switch	(numberCardsDealer)

{

case	1:
dealerFaceDown	=	cardImage[cardNumber];
dealerCard[0].setIcon(cardBack);
break;

case	2:
dealerCard[1].setIcon(cardImage[cardNumber]);	break;

case	3:
dealerCard[2].setIcon(cardImage[cardNumber]);	break;

case	4:
dealerCard[3].setIcon(cardImage[cardNumber]);	break;

case	5:
dealerCard[4].setIcon(cardImage[cardNumber]);	break;

case	6:
dealerCard[5].setIcon(cardImage[cardNumber]);	break;

}

scoreDealer	+=	cardPoints[cardNumber];	if
(cardPoints[cardNumber]	==	1)

acesDealer++;
currentCard++;

}

Add	this	method	to	your	project.	Notice	the	score	(scoreDealer)	always
considers	Aces	as	a	single	point.	This	may	change	when	final	hands	are
considered.

Code	Design	–	Display	Player	Card
The	 method	 to	 add	 a	 card	 to	 the	 player’s	 hand	 is	 similar	 to	 the	 code	 just
developed.	The	only	difference	 is	 that	 there	 is	never	a	 ‘face-down’	card	 in	 the
player’s	 hand.	The	currentCard	 variable,	 used	with	 the	card	 array,	 identifies
the	 card	 added	 to	 the	 player’s	 hand.	 Three	 class	 level	 variables
(numberCardsPlayer,	acesPlayer,	 scorePlayer)	 are	 used	 to	 provide	 specifics
about	the	player’s	hand.

Knowing	currentCard,	the	steps	involved	in	adding	a	card	to	the	player’s	hand
are:

➢	Determine	cardNumber	from	the	card	array.
➢	Increment	numberCardsPlayer.
➢	 Set	 appropriate	 player	 card	 label	 control	 icon	 to
cardImage[cardNumber].

➢	Increment	player’s	score	by	cardPoints[cardNumber]
➢	Increment	acesPlayer,	if	card	is	an	Ace.
➢	Increment	currentCard.

In	 these	 steps,	 the	 appropriate	 image	 is	 displayed.	We	 then	 update	 the	 score,
noting	 if	 an	 Ace	 has	 been	 added.	 As	 a	 last	 step,	 the	 current	 card	 index	 is
incremented	 by	 one.	 At	 all	 times,	 we	 know	 the	 status	 of	 the	 player’s	 hand
(number	of	cards,	number	of	aces	and	score).

The	steps	of	the	process	to	add	a	card	to	the	player’s	hand	are	coded	in	a	general
method	named	addPlayerCard:	private	void	addPlayerCard()

{

int	cardNumber;
cardNumber	=	card[currentCard];
//	Adds	a	card	to	player	hand
numberCardsPlayer++;
switch	(numberCardsPlayer)

{

case	1:
playerCard[0].setIcon(cardImage[cardNumber]);	break;

case	2:
playerCard[1].setIcon(cardImage[cardNumber]);	break;

case	3:
playerCard[2].setIcon(cardImage[cardNumber]);	break;

case	4:
playerCard[3].setIcon(cardImage[cardNumber]);	break;

case	5:
playerCard[4].setIcon(cardImage[cardNumber]);	break;

case	6:
playerCard[5].setIcon(cardImage[cardNumber]);	break;

}

scorePlayer	+=	cardPoints[cardNumber];	if	(cardPoints[cardNumber]
==	1)

acesPlayer++;
currentCard++;

}

Add	this	method	to	your	project.	Again,	notice	the	score	(scorePlayer)	always
considers	Aces	as	a	single	point.	This	may	change	when	final	hands	are
considered.

After	 all	 the	 code	we	 have	 added,	we	 are	 finally	 at	 a	 point	 to	 try	 running	 the
project.	Save	and	run	the	project	to	make	sure	there	are	no	syntax	errors	in	the
code.	If	there	are	no	errors,	the	frame	with	the	first	hand	should	appear.	Here’s

what	I	see:	

You	should	see	something	similar,	unless	there	is	a	Blackjack.	If	one	of	the
first	hands	is	a	Blackjack,	you	will	see	messages	to	say	so	and	the	frame	will
be	set	so	a	new	hand	can	be	dealt	(the	Deal	button	will	be	enabled).

If	you	encounter	syntax	errors	in	trying	to	run	the	project,	you	need	to	go	back
over	all	the	code	and	see	what	went	wrong.	Hopefully,	by	taking	things	slow	and
step-by-step,	fixing	problems	should	be	straightforward.	In	the	current	mode,	the
user	can	click	Hit	or	Stay.	If	there	is	a	Blackjack,	the	user	can	click	Deal.	The
last	remaining	programming	tasks	are	to	code	the	ActionPerformed	events	for
these	 three	 buttons.	 The	 general	 methods	 we	 have	 written	 will	 help	 in	 this
additional	coding.	The	Deal	button	has	the	simplest	coding,	so	we’ll	do	it	first.

Code	Design	–	Deal	New	Hand
When	a	hand	has	ended,	the	user	can	either	start	a	new	game,	exit	the	program	or
deal	a	new	hand.	We	have	already	coded	methods	for	starting	a	new	game	and
exiting	the	program.	Here	we	write	code	for	dealing	a	new	hand,	once	the	user
clicks	the	Deal	button.

The	code	for	the	dealButtonActionPerformed	method	is	made	simple	because
of	all	the	code	we	have	already	developed.	It	is	a	single	line	of	code	that	calls	the
existing	 newHand	 method:	 private	 void
dealButtonActionPerformed(ActionEvent	e)	{

newHand();

}

Add	this	method	to	the	project.

Code	Design	–	Player	‘Hit’
When	a	player	chooses	the	Hit	button,	a	new	card	is	added	to	his/her	hand	and
the	results	evaluated.	The	steps	are:

➢	Add	a	player	card.
➢	If	player’s	score	exceeds	21,	end	hand	announcing	player	has	busted.
➢	If	player	has	6	cards,	end	hand	announcing	player	has	won.

As	mentioned	earlier	 in	 this	chapter,	 this	 last	 step	 is	a	 special	 rule	used	 in	our
version	of	Blackjack.

The	 code	 is	 placed	 in	 the	 hitButtonActionPerformed	 method:	 private	 void
hitButtonActionPerformed(ActionEvent	e)	{

//	Add	a	card	if	player	requests
addPlayerCard();
if	(scorePlayer	>	21)

endHand("Dealer	wins",	"You	busted!",	-10);	else	if
(numberCardsPlayer	==	6)
endHand("No	dealer	play",	"You	win	-	6	cards	and	not	over	21!",

10);	}

Add	this	method	to	the	project.

Save	and	run	the	project.	Try	the	Hit	button.	Keep	adding	cards	until	you	bust
(exceed	21)	or	get	6	cards.	You	can’t	choose	to	Stay	–	we	need	to	write	some
code	behind	that	method.	Once	you	bust	or	get	6	cards,	you	can	click	Deal	to	try
again.	You	won’t	be	able	to	test	the	Hit	button	if	there	is	an	initial	Blackjack.	In
this	case,	click	the	Deal	button	until	hands	without	a	Blackjack	appear.	Then	try
the	Hit	button.

Code	Design	–	Player	‘Stay’
We	 save	 the	most	 detailed	 event–	 clicking	 the	Stay	 button	 -	 for	 last.	 Lots	 of
things	need	 to	happen	 in	 this	code.	We	need	 to	determine	player’s	 final	 score,
then	 allow	 the	 dealer	 to	 play	 out	 his	 hand	 according	 to	 the	 fixed	 set	 of	 rules.
There	are	lots	of	decisions	to	be	made.	The	method	steps	are:

➢	Disable	Hit	button.
➢	Disable	Stay	button.
➢	 Determine	 player’s	 highest	 possible	 score	 without	 exceeding	 21
(accounting	for	any	aces).

➢	Display	the	dealer’s	face	down	card.
➢	 Play	 dealer’s	 hand	 (repeat	 all	 steps	 until	 hand	 is	 ended):	 o	 Determine
dealer’s	highest	possible	score	without	exceeding	21	(accounting	for	any
aces).
o	If	dealer’s	score	is	above	16,	determine	winner	and	end	hand.
o	If	dealer	has	six	cards	and	still	under	16,	end	hand	and	declare	dealer	the

winner.
o	Add	card	to	dealer’s	hand.
o	If	above	21,	end	hand	and	declare	player	the	winner.

As	you	can	see	most	of	the	logic	is	in	playing	the	dealer’s	hand.	Also,	notice	the
special	“six	card”	rule	we	use.

Determining	either	 the	player’s	or	dealer’s	score	(considering	the	possibility	of
Aces)	is	a	little	tricky.	Let’s	look	at	a	snippet	of	code	that	does	the	task	for	the
player:	if	(acesPlayer	!=	0	&&	scorePlayer	<=	11)	{

scorePlayer	+=	10;
acesPlayer--;

}

Recall	the	running	score	(scorePlayer)	always	considers	Aces	as	one	point.	If
the	player	has	no	Aces,	there	is	no	score	adjustment.	Otherwise	10	points	is

added	to	the	score,	if	that	adjusted	score	would	not	exceed	21.	If	a	player	has
multiple	Aces,	only	one	can	count	for	11	points	(would	exceed	21,	otherwise).
Similar	code	is	used	for	the	dealer	score.

The	 stayButtonActionPerformed	 method	 is:	 private	 void
stayButtonActionPerformed(ActionEvent	e)	{

boolean	dealerDone	=	false;
int	scoreTemp,	acesTemp;
hitButton.setEnabled(false);
stayButton.setEnabled(false);
//	Check	for	aces	in	player	hand	and	adjust	score	//	to	highest	possible
if	(acesPlayer	!=	0	&&	scorePlayer	<=	11)	{

scorePlayer	+=	10;
acesPlayer--;

}

//	Uncover	dealer	face	down	card	and	play	dealer	hand
dealerCard[0].setIcon(dealerFaceDown);	do

{

scoreTemp	=	scoreDealer;
acesTemp	=	acesDealer;
//	Check	for	aces	and	adjust	score
if	(acesTemp	!=	0	&&	scoreDealer	<=	11)	{

scoreTemp	+=	10;
acesTemp--;

}

//	add	card	unless	score	above	16	or	dealer	has	6	cards	if
(scoreTemp	>	16)

{

if	(scoreTemp	>	scorePlayer)

endHand("Dealer	wins	with	"	+
String.valueOf(scoreTemp),	"You	lose	with	"	+
String.valueOf(scorePlayer),	-10);	else	if	(scoreTemp	==	scorePlayer)

endHand("Dealer	has	"	+	String.valueOf(scoreTemp),	"So
do	you	...	a	push!",	0);	else

endHand("Dealer	loses	with	"	+
String.valueOf(scoreTemp),	"You	win	with	"	+
String.valueOf(scorePlayer),	10);	dealerDone	=	true;

continue;

}

else	if	(numberCardsDealer	==	6)

{

endHand("Dealer	wins	...	6	cards	and	not	over	16!",	"You	lose
...",	-10);	dealerDone	=	true;

continue;

}

else

{

addDealerCard();
//	dealer	loses	if	busted
if	(scoreDealer	>	21)

{

endHand("Dealer	busts!",	"You	win!!",	10);	dealerDone	=
true;
continue;

}

}

}

while	(!dealerDone);

}

We	use	a	boolean	variable	dealerDone	to	let	us	know	when	the	dealer	is	done
playing	his	cards.	Notice	the	code	to	determine	player	and	dealer	scores.	For
the	dealer,	we	use	temporary	variables	(scoreTemp	and	acesTemp)	to
represent	the	dealer	score.	We	don’t	want	to	destroy	the	values	of
scoreDealer	and	acesDealer	in	case	more	cards	may	be	added.	A	do/while
structure	is	implemented	to	allow	the	dealer	to	continue	to	add	cards	to	his
hand	until	the	hand	ends.	Notice	whenever	a	call	to	endHand	is	encountered,
it	is	followed	by	setting	dealerDone	to	true	and	a	continue	statement	to
move	to	the	while	statement	so	the	dealer	no	longer	adds	cards.	Add	this	final
method	to	the	project.

Save	and	run	the	project.	You	should	now	have	a	complete,	running	version	of
the	Blackjack	game.	Have	fun	playing	it!	See	if	you	can	come	up	with	some	kind
of	winning	strategy.	Here’s	the	first	game	I	played.	I	won	after	taking	a	couple
of	 hits	 and	 staying:	

My	 luck	 ran	 out	 in	 the	 next	 hand	 though:	

In	 a	 later	 game,	 the	 dealer	 and	 I	 tied	 (a	 push):	

And,	in	one	game,	I	got	Blackjack!!

Blackjack	Card	Game	Project	Review
The	Blackjack	Card	Game	Project	is	now	complete.	Save	and	run	the	project
and	make	sure	it	works	as	designed.	Play	lots	of	games	to	make	sure	winners	are
always	declared	correctly	and	that	the	dealer	logic	is	implemented	correctly.	You
may	have	to	play	lots	of	hands	before	both	the	dealer	and	player	have	Blackjack.
And,	you	may	have	 to	play	many,	many	hands	 to	 see	 if	 the	 special	 “six	card”
rule	works	correctly.

If	there	are	errors	in	your	implementation,	go	back	over	the	steps	of	frame	and
code	 design.	 Go	 over	 the	 developed	 code	 –	 make	 sure	 you	 understand	 how
different	parts	of	the	project	were	coded.	As	mentioned	in	the	beginning	of	this
chapter,	 the	 completed	 project	 is	 saved	 as	 Blackjack	 in	 the
\HomeJava\HomeJava	Projects\	folder.

While	completing	this	project,	new	concepts	and	skills	you	should	have	gained
include:

➢	Using	the	label	control	to	display	graphics.
➢	How	to	define	a	deck	of	cards	using	card	number	indices.
➢	How	to	use	the	ImageIcon	object	to	store	a	graphics	file.
➢	How	to	“shuffle”	a	deck	of	cards	using	the	sortIntegers	method.

Blackjack	Card	Game	Project
Enhancements
Possible	enhancements	to	the	Blackjack	card	game	project	include:

➢	As	you	probably	know,	Blackjack	is	a	gambling	game.	The	idea	is	for	you
(the	 player)	 to	 win	 as	 much	 money	 as	 possible	 from	 the	 dealer.	 Our
version	of	Blackjack	is	a	simplification	of	the	casino	version.	The	casino
version	 allows	 betting	 –	 our	 version	 doesn’t	 (you	 either	win	 or	 lose	 10
points	 with	 each	 hand;	 well,	 you	 win	 15	 if	 you	 get	 a	 Blackjack).
Unfortunately,	 Casinos	 tend	 to	 make	 a	 lot	 of	 profit	 from	 uneducated
players.	Our	purpose	here	is	to	educate	you	on	how	the	odds	are	stacked
against	you.	We	recommend	you	enjoy	this	game	at	home	and	keep	your
hard	earned	money	in	your	wallet!

➢	Casinos	also	allow	you,	 in	certain	cases,	 to	double	your	bet	after	a	hand
has	been	dealt.	And,	 if	your	 two	initial	cards	are	 the	same,	you	can	split
them	 and	 play	 two	 hands.	 Not	 being	 a	 gambler,	 I	 don’t	 know	 all	 the
specifics	 behind	 “double-down”	 and	 “splitting.”	Ask	 some	who	 does	 or
consult	a	gambling	guide.	If	you	want,	 implement	these	modifications	to
the	program.

➢	Some	casinos	have	different	rules	for	dealer	play.	In	our	version,	an	Ace
must	always	take	on	its	highest	value	(without	exceeding	21	of	course).	In
other	versions,	the	dealer	has	discretion.	Perhaps,	you	would	like	to	give
the	dealer	in	your	program	this	discretion.

➢	To	make	play	more	difficult,	some	casinos	play	Blackjack	with	more	than
one	deck	of	cards.	Maybe	have	the	number	of	card	decks	being	used	be	an
option	 in	 your	 program.	 In	 such	 a	 case,	 or	 even	 in	 the	 current
configuration,	it	might	be	nice	to	announce	to	the	player	when	a	reshuffle
of	the	cards	is	done.

➢	Now	that	you	know	the	high	risks	involved	with	gambling,	let’s	move	on
to	a	more	practical	application.

Blackjack	Card	Game	Project	Java
Code	Listing	/	*
*	Blackjack.java

*/

package	blackjack;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.util.Random;

public	class	Blackjack	extends	JFrame	{

//	menu	structure
JMenuBar	mainMenuBar	=	new	JMenuBar();	JMenu	fileMenu	=	new
JMenu("File");
JMenuItem	newMenuItem	=	new	JMenuItem("New	Game");
JMenuItem	exitMenuItem	=	new	JMenuItem("Exit");	JLabel
dealerLabel	=	new	JLabel();
JTextField	dealerTextField	=	new	JTextField();	JLabel[]	dealerCard	=
new	JLabel[6];
JLabel	playerLabel	=	new	JLabel();
JTextField	playerTextField	=	new	JTextField();	JLabel[]	playerCard	=
new	JLabel[6];
JButton	hitButton	=	new	JButton();
JButton	dealButton	=	new	JButton();
JButton	stayButton	=	new	JButton();
JLabel	winningsLabel	=	new	JLabel();
JTextField	winningsTextField	=	new	JTextField();	ImageIcon	cardBack;
ImageIcon[]	cardImage	=	new	ImageIcon[52];	ImageIcon
dealerFaceDown;

int[]	cardPoints	=	new	int[52];
int[]	card	=	new	int[52];
int	currentCard;
int	winnings;
int	numberCardsDealer,	acesDealer,	scoreDealer;	int
numberCardsPlayer,	acesPlayer,	scorePlayer;	public	static	void
main(String	args[])	{

//	create	frame
new	Blackjack().show();

}

public	Blackjack()

{

//	frame	constructor
setTitle("Blackjack");
getContentPane().setBackground(new	Color(192,	192,	255));
setResizable(false);

addWindowListener(new	WindowAdapter()	{
public	void	windowClosing(WindowEvent	evt)	{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
GridBagConstraints	gridConstraints;

//	build	menu	structure
setJMenuBar(mainMenuBar);
mainMenuBar.add(fileMenu);
fileMenu.add(newMenuItem);

fileMenu.addSeparator();
fileMenu.add(exitMenuItem);
newMenuItem.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
newMenuItemActionPerformed(e);

}

});

exitMenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

exitMenuItemActionPerformed(e);

}

});

dealerLabel.setText("Dealer's	Cards:");	dealerLabel.setFont(new
Font("Arial",	Font.BOLD,	18));	gridConstraints	=	new
GridBagConstraints();	gridConstraints.gridx	=	0;

gridConstraints.gridy	=	0;
gridConstraints.gridwidth	=	2;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(10,	10,	10,	0);
getContentPane().add(dealerLabel,	gridConstraints);
dealerTextField.setPreferredSize(new	Dimension(430,	30));
dealerTextField.setFont(new	Font("Comic	Sans	MS",	Font.PLAIN,
18));	dealerTextField.setBackground(new	Color(255,	255,	128));
dealerTextField.setForeground(Color.BLUE);
dealerTextField.setHorizontalAlignment(SwingConstants.CENTER);
dealerTextField.setEditable(false);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
2;
gridConstraints.gridy	=	0;
gridConstraints.gridwidth	=	4;

gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(dealerTextField,	gridConstraints);	for	(int	i	=
0;	i	<	6;	i++)

{

dealerCard[i]	=	new	JLabel();
dealerCard[i].setPreferredSize(new	Dimension(100,	150));

dealerCard[i].setBorder(BorderFactory.createLineBorder(Color.BLACK));
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	i;

gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(0,	10,	0,	0);	if	(i	==	5)
gridConstraints.insets	=	new	Insets(0,	10,	0,	10);
getContentPane().add(dealerCard[i],	gridConstraints);	}

playerLabel.setText("Your	Cards:");
playerLabel.setFont(new	Font("Arial",	Font.BOLD,	18));
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	2;
gridConstraints.gridwidth	=	2;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(10,	10,	10,	0);
getContentPane().add(playerLabel,	gridConstraints);
playerTextField.setPreferredSize(new	Dimension(430,	30));
playerTextField.setFont(new	Font("Comic	Sans	MS",	Font.PLAIN,
18));	playerTextField.setBackground(new	Color(255,	255,	128));
playerTextField.setForeground(Color.BLUE);
playerTextField.setHorizontalAlignment(SwingConstants.CENTER);
playerTextField.setEditable(false);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
2;
gridConstraints.gridy	=	2;
gridConstraints.gridwidth	=	4;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(playerTextField,	gridConstraints);	for	(int	i	=

0;	i	<	6;	i++)

{

playerCard[i]	=	new	JLabel();
playerCard[i].setPreferredSize(new	Dimension(100,	150));
playerCard[i].setBorder(BorderFactory.createLineBorder(Color.BLACK));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	i;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(0,	10,	0,	0);	if	(i	==	5)

gridConstraints.insets	=	new	Insets(0,	10,	0,	10);
getContentPane().add(playerCard[i],	gridConstraints);	}

hitButton.setText("Hit");
hitButton.setFont(new	Font("Arial",	Font.BOLD,	16));
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	4;
gridConstraints.insets	=	new	Insets(10,	0,	10,	0);
getContentPane().add(hitButton,	gridConstraints);
hitButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
hitButtonActionPerformed(e);

}

});

dealButton.setText("Deal");
dealButton.setFont(new	Font("Arial",	Font.BOLD,	16));
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
1;
gridConstraints.gridy	=	4;
gridConstraints.insets	=	new	Insets(10,	0,	10,	0);
getContentPane().add(dealButton,	gridConstraints);

dealButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

dealButtonActionPerformed(e);

}

});

stayButton.setText("Stay");
stayButton.setFont(new	Font("Arial",	Font.BOLD,	16));
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
2;
gridConstraints.gridy	=	4;
gridConstraints.insets	=	new	Insets(10,	0,	10,	0);
getContentPane().add(stayButton,	gridConstraints);
stayButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
stayButtonActionPerformed(e);

}

});

winningsLabel.setText("Winnings:");
winningsLabel.setFont(new	Font("Arial",	Font.BOLD,	18));
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
4;	gridConstraints.gridy	=	4;
gridConstraints.anchor	=	GridBagConstraints.WEST;
gridConstraints.insets	=	new	Insets(10,	10,	10,	0);
getContentPane().add(winningsLabel,	gridConstraints);
winningsTextField.setText("0");
winningsTextField.setPreferredSize(new	Dimension(100,	30));

winningsTextField.setFont(new	Font("Comic	Sans	MS",	Font.PLAIN,	18));
winningsTextField.setBackground(Color.WHITE);
winningsTextField.setForeground(Color.BLUE);
winningsTextField.setHorizontalAlignment(SwingConstants.CENTER);
winningsTextField.setEditable(false);	gridConstraints	=	new

GridBagConstraints();	gridConstraints.gridx	=	5;
gridConstraints.gridy	=	4;
gridConstraints.insets	=	new	Insets(10,	0,	10,	0);
getContentPane().add(winningsTextField,	gridConstraints);	pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	 setBounds((int)	 (0.5
(screenSize.width	 -	getWidth())),	 (int)	 (0.5	 (screenSize.height	 -	getHeight())),
getWidth(),	getHeight());	String	cn;

//	load	card	images	and	determine	points	for	each	cardBack	=	new
ImageIcon("CARDBACK.GIF");	for	(int	cardNumber	=	0;
cardNumber	<	52;	cardNumber++)	{

cn	=	String.valueOf(cardNumber);
if	(cardNumber	<	10)

cn	=	"0"	+	cn;
cardImage[cardNumber]	=	new	ImageIcon("CARD"	+	cn	+

".GIF");	int	i	=	cardNumber	%	13	+	1;	//	get	a	number	from	1	(A)	to	13	(K)
if	(i	==	11	||	i	==	12	||	i	==	13)	//	Jack,	Queen,	King	cardPoints[cardNumber]
=	10;

else	//	A	through	10
cardPoints[cardNumber]	=	i;

}

newMenuItem.doClick();

}

private	void	exitForm(WindowEvent	evt)	{
System.exit(0);

}

private	void	newMenuItemActionPerformed(ActionEvent	e)	{
//	start	new	game	-	clear	winnings	and	start	over	winnings	=	0;
winningsTextField.setText("0");
card	=	sortIntegers(52);

currentCard	=	0;
newHand();

}

private	void	exitMenuItemActionPerformed(ActionEvent	e)	{
System.exit(0);

}

private	void	hitButtonActionPerformed(ActionEvent	e)	{
//	Add	a	card	if	player	requests
addPlayerCard();
if	(scorePlayer	>	21)

endHand("Dealer	wins",	"You	busted!",	-10);	else	if
(numberCardsPlayer	==	6)
endHand("No	dealer	play",	"You	win	-	6	cards	and	not	over	21!",

10);	}

private	void	dealButtonActionPerformed(ActionEvent	e)	{
newHand();

}

private	void	stayButtonActionPerformed(ActionEvent	e)	{
boolean	dealerDone	=	false;
int	scoreTemp,	acesTemp;
hitButton.setEnabled(false);
stayButton.setEnabled(false);
//	Check	for	aces	in	player	hand	and	adjust	score	//	to	highest	possible
if	(acesPlayer	!=	0	&&	scorePlayer	<=	11)	{

scorePlayer	+=	10;
acesPlayer--;

}

//	Uncover	dealer	face	down	card	and	play	dealer	hand
dealerCard[0].setIcon(dealerFaceDown);	do

{

scoreTemp	=	scoreDealer;
acesTemp	=	acesDealer;
//	Check	for	aces	and	adjust	score
if	(acesTemp	!=	0	&&	scoreDealer	<=	11)	{

scoreTemp	+=	10;
acesTemp--;

}

//	add	card	unless	score	above	16	or	dealer	has	6	cards	if
(scoreTemp	>	16)

{

if	(scoreTemp	>	scorePlayer)
endHand("Dealer	wins	with	"	+

String.valueOf(scoreTemp),	"You	lose	with	"	+
String.valueOf(scorePlayer),	-10);	else	if	(scoreTemp	==	scorePlayer)

endHand("Dealer	has	"	+	String.valueOf(scoreTemp),	"So
do	you	...	a	push!",	0);	else

endHand("Dealer	loses	with	"	+
String.valueOf(scoreTemp),	"You	win	with	"	+
String.valueOf(scorePlayer),	10);	dealerDone	=	true;

continue;

}

else	if	(numberCardsDealer	==	6)

{

endHand("Dealer	wins	...	6	cards	and	not	over	16!",	"You	lose
...",	-10);	dealerDone	=	true;

continue;

}

else

{

addDealerCard();
//	dealer	loses	if	busted
if	(scoreDealer	>	21)

{

endHand("Dealer	busts!",	"You	win!!",	10);	dealerDone	=
true;
continue;

}

}

}

while	(!dealerDone);

}

private	int[]	sortIntegers(int	n)

{

/	*

*	Returns	n	randomly	sorted	integers	0	->	n	-	1

*/

int[]	sortedArray	=	new	int[n];
int	temp,	s;	Random	sortRandom	=	new	Random();	//	initialize	array

from	0	to	n	-	1
for	(int	i	=	0;	i	<	n;	i++)

{

sortedArray[i]	=	i;

}

//	i	is	number	of	items	remaining	in	list	for	(int	i	=	n;	i	>=	1;	i--)

{

s	=	sortRandom.nextInt(i);
temp	=	sortedArray[s];
sortedArray[s]	=	sortedArray[i	-	1];
sortedArray[i	-	1]	=	temp;

}

return(sortedArray);

}

private	void	newHand()

{

//	Deal	a	new	hand
//	Clear	table	of	cards
for	(int	i	=	0;	i	<	6;	i++)

{

dealerCard[i].setIcon(null);
playerCard[i].setIcon(null);

}

dealerTextField.setText("");
playerTextField.setText("");
hitButton.setEnabled(true);
stayButton.setEnabled(true);
dealButton.setEnabled(false);
//	reshuffle	occasionally
if	(currentCard	>	34)

{

card	=	sortIntegers(52);
currentCard	=	0;

}

//	Get	two	dealer	cards
scoreDealer	=	0;
acesDealer	=	0;
numberCardsDealer	=	0;
addDealerCard();
addDealerCard();
//	Get	two	player	cards
scorePlayer	=	0;
acesPlayer	=	0;
numberCardsPlayer	=	0;
addPlayerCard();
addPlayerCard();
//	Check	for	blackjacks
if	(scoreDealer	==	11	&&	acesDealer	==	1)	scoreDealer	=	21;
if	(scorePlayer	==	11	&&	acesPlayer	==	1)	scorePlayer	=	21;
if	(scoreDealer	==	21	&&	scorePlayer	==	21)	endHand("Dealer	has
Blackjack!",	"And,	you	have	Blackjack	..	a	push!",	0);	else	if
(scoreDealer	==	21)

endHand("Dealer	has	Blackjack!",	"You	lose	...",	-10);	else	if

(scorePlayer	==	21)
endHand("Dealer	loses	...",	"You	have	Blackjack!",	15);	}

private	void	endHand(String	dealerComment,	String	playerComment,	int
change)	{

//	make	sure	dealer	cards	are	seen
dealerCard[0].setIcon(dealerFaceDown);
dealerTextField.setText(dealerComment);
playerTextField.setText(playerComment);	//	Hand	has	ended	-	update
winnings
winnings	+=	change;
winningsTextField.setText(String.valueOf(winnings));
hitButton.setEnabled(false);
stayButton.setEnabled(false);
dealButton.setEnabled(true);

}

private	void	addDealerCard()

{

int	cardNumber;
cardNumber	=	card[currentCard];
//	Adds	a	card	to	dealer	hand
numberCardsDealer++;
switch	(numberCardsDealer)

{

case	1:
dealerFaceDown	=	cardImage[cardNumber];
dealerCard[0].setIcon(cardBack);
break;

case	2:
dealerCard[1].setIcon(cardImage[cardNumber]);	break;

case	3:
dealerCard[2].setIcon(cardImage[cardNumber]);	break;

case	4:
dealerCard[3].setIcon(cardImage[cardNumber]);	break;

case	5:
dealerCard[4].setIcon(cardImage[cardNumber]);	break;

case	6:
dealerCard[5].setIcon(cardImage[cardNumber]);	break;

}

scoreDealer	+=	cardPoints[cardNumber];	if
(cardPoints[cardNumber]	==	1)

acesDealer++;
currentCard++;

}

private	void	addPlayerCard()

{

int	cardNumber;
cardNumber	=	card[currentCard];
//	Adds	a	card	to	player	hand
numberCardsPlayer++;
switch	(numberCardsPlayer)

{

case	1:
playerCard[0].setIcon(cardImage[cardNumber]);	break;

case	2:
playerCard[1].setIcon(cardImage[cardNumber]);	break;

case	3:
playerCard[2].setIcon(cardImage[cardNumber]);	break;

case	4:
playerCard[3].setIcon(cardImage[cardNumber]);	break;

case	5:
playerCard[4].setIcon(cardImage[cardNumber]);	break;

case	6:
playerCard[5].setIcon(cardImage[cardNumber]);	break;

}

scorePlayer	+=	cardPoints[cardNumber];	if	(cardPoints[cardNumber]
==	1)

acesPlayer++;
currentCard++;

}

}

7

Weight	Monitor	Project

Review	and	Preview
Everyone	 these	 days	 seems	 to	 be	 watching	 their	 weight.	 In	 this
project,	 we	 build	 a	 program	 that	 tracks	 your	 weight	 each	 day	 and
helps	you	monitor	progress	toward	goals.

The	Weight	Monitor	Project	lets	you	choose	a	date	from	a	calendar
and	 enter	 your	 weight	 on	 that	 day.	 Plots	 of	 your	 daily	 weight	 are

provided	 along	with	 a	 computation	 of	 the	 trend	 in	 your	weight.	New	 controls
(tab	control,	 list,	 save	 file	dialog)	are	 introduced	as	 is	sequential	 file	 input	and
output.	The	project	 also	 introduces	 use	 of	 date	 selection	 controls	 and	graphics
used	to	draw	and	display	the	weight	curves.

Weight	Monitor	Project	Preview
In	 this	chapter,	we	will	build	a	weight	monitor	program.	This	program	allows
you	to	enter	your	weight	each	day,	then	examine	a	plot	to	observe	trends.

The	finished	project	is	saved	as	WeightMonitor	in	the	\HomeJava\HomeJava
Projects\	 project	 group.	 Start	 NetBeans	 (or	 your	 IDE).	 Open	 the	 specified
project	group.	Make	WeightMonitor	the	main	project.	Run	the	project.	You	will

see:	

This	project	is	built	using	a	tabbed	pane	control	which	allows	multiple	pages
(tabs)	of	information	on	a	single	form.	There	are	two	tabs:	Weight	Editor,
Weight	Plot.	Each	tab	has	a	single	panel	control	upon	which	other	controls
are	placed.	We	initially	see	the	controls	on	the	Weight	Editor	tab	panel.

Labels	(used	for	titling)	are	unidentified.	A	text	area	control	displays	the	most
recent	weight	file.	A	calendar	control	is	used	to	select	the	date	and	a	text	box
used	to	enter	a	weight	value.	Button	controls	are	used	to	add	and	delete	entries
from	the	weight	file,	which	are	displayed	in	the	list	control.

Click	 the	 Weight	 Plot	 tab	 and	 you	 will	 see:	

On	this	tab	is	a	single	panel	with	a	blank	rectangular	region	(will	be	used	to
show	the	weight	plot).

The	 normal	 way	 to	 use	 the	 weight	 monitor	 is	 to	 run	 the	 program,	 open	 an
existing	weight	file,	modify	it	with	new	entries,	view	the	trends,	resave	the	file
and	exit.	A	nice	feature	of	the	weight	monitor	program	is	that,	when	it	begins,	it
will	automatically	open	the	last	opened/saved	file	(saving	you	that	step	for	daily
recording).	The	weight	monitor	program	appeasr	in	an	initial	condition	(since	no

file	 has	 been	 saved	 yet).	 Return	 to	 the	 Weight	 Monitor	 tab:	

The	program	indicates	we	are	working	with	a	new	file.	Today’s	date	is
displayed	on	the	calendar.	At	this	point,	you	enter	a	weight	in	the	text	box
control	and	press	<Enter>	or	click	Add	Weight	to	File.	Give	it	a	try.

When	I	enter	my	weight,	I	see:

Notice	the	date	(displayed	as	year/month/day	and	weight	have	been	added	to
the	list	control.	And,	that’s	what	the	program	does	–	it	records	your	weight
each	day.	By	running	the	program	periodically,	you	will	have	a	log	of	your
weight	that	you	can	plot	and	view	any	trends.	Try	adding	more	values	(by
selecting	other	dates	on	the	calendar)	if	you’d	like.	A	file	is	saved	using	the
Save	Weight	File	option	under	the	File	menu.	The	File	menu	can	also	be
used	to	start	a	new	with	file	or	open	previously	saved	weight	files.

In	 the	 \HomeJava\HomeJava	 Projects\WeightMonitor\	 folder	 is	 a	 sample
weight	file	named	sample.wgt.	Use	the	Open	Weight	File	option	under	the	File
menu	 to	 open	 that	 file.	 You	 will	 see	 a	 message	 box:	

Answer	Yes.	The	program	always	asks	before	you	want	to	change	the
displayed	information.	Such	protective	mechanisms	can	save	you	(and	your
users)	from	losing	important	data.	An	open	file	dialog	control	will	appear.
Navigate	to	the	sample.wgt	file	and	click	Open.

Here’s	 my	 Weight	 Editor	 tab	 after	 opening	 the	 sample	 file:	

The	weight	monitor	 program	 allows	 you	 to	add	 (we’ve	 seen	 how	 to	 do	 that),
delete	or	modify	entries.	To	delete	an	entry,	select	that	entry	in	the	list	control
and	 click	Delete	 Selection.	 To	 edit	 an	 entry,	 select	 that	 entry	 in	 the	 list;	 the
corresponding	date	will	appear	on	the	calendar	control	and	the	weight	in	the	text
box.	Make	any	changes	and	click	Add	Weight	to	File.	The	calendar	control	and
list	 entries	 are	 always	 coordinated	 (assuming	 there	 is	 a	 list	 entry	matching	 the
selected	date).	See	that	coordination	in	the	example	above	(the	April	10	entry	is
shown).	Try	adding,	deleting	and	modifying	weight	entries,	if	you	want.	At	some
point,	click	the	Weight	Plot	tab.

Here’s	what	I	see	on	the	Weight	Plot	 tab	(I	didn’t	modify	any	of	the	entries):	

The	program	has	provided	a	nice	line	plot	of	the	recorded	weights	over	the
specified	time	period.	At	the	top	of	the	plot,	I	am	shown	an	indication	of	the
trend	in	my	weight	(going	down	at	0.79	pounds	each	week	–	a	good	trend).

That’s	what	you	do	with	the	weight	monitor	project.	Periodically	enter	your
weight	in	a	saved	file	using	the	Weight	Editor	tab.	View	your	weight	trends
using	the	Weight	Plot	tab.	To	stop	the	program,	select	Exit	under	the	File
menu.	The	program	will	automatically	save	the	last	file	opened	and/or	saved.
After	stopping,	if	you	restart	the	program	(assuming	you	opened	the	sample
weight	file),	the	weight	monitor	will	automatically	display	the	sample.wgt	file
(the	last	file	opened/saved).	Play	with	the	program	some	more	if	you	want.
Start	a	new	file,	select	some	dates,	enter	some	weights,	view	your	plot.	Save
your	file.

You	will	now	build	this	project	in	several	stages.	We	first	address	frame	design.
We	discuss	the	controls	used	to	build	each	tab	page	on	the	frame	and	establish
initial	 properties.	 And,	 we	 address	 code	 design	 in	 detail.	 We	 will	 discuss
graphics	methods	 in	 detail.	 These	 are	 the	methods	we	 use	 to	 draw	 the	weight

curves	 and	 curve	 labeling	 information.	 We	 will	 discuss	 how	 to	 do	 date
mathematics.	We	discuss	how	to	open/save/edit	the	weight	files.	There	is	a	new
control	in	this	project	–	we	describe	the	calendar	control	(used	to	select	weight
date).	And,	since	the	tabbed	pane	used	in	the	program	may	be	a	new	control	to
you,	we	will	also	briefly	review	its	use	before	starting	the	project.

TabbedPane	Control

The	 tabbed	 pane	 control	 provides	 an	 easy	 way	 to	 present	 several	 panels	 of
information	in	a	single	frame	-	it	is	similar	to	having	a	multi-frame	application.
This	is	the	same	interface	seen	in	many	commercial	GUI	applications.

The	tabbed	pane	control	provides	a	group	of	tabs,	each	holding	a	panel	control.
The	process	for	using	a	tabbed	pane	control	is	to	create	a	separate	panel	for	each
tab.	The	panels	are	then	added	to	the	tabbed	pane	using	the	addTab	method.	For
example,	 to	 add	 a	 panel	 named	 myPanel	 to	 a	 tabbed	 pane	 control	 named
myTabbedPane,	you	would	use:	myTabbedPane.addTab(tabTitle,	myPanel);

where	tabTitle	is	a	string	value	representing	the	text	that	will	appear	on	the	tab
associated	 with	myPanel.	 The	 panels	 “grow”	 to	 fit	 the	 declared	 size	 of	 the
tabbed	pane	control	or	the	tabbed	pane	can	“grow”	to	fit	the	largest	panel	added
to	it.

Only	 one	 tab	 can	 be	 active	 at	 a	 time.	 Navigation	 from	 one	 tab	 to	 the	 next	 is
simple:	 just	 click	 on	 the	 corresponding	 tab.	 Using	 this	 control	 is	 easy.	 Since
most	 of	 the	 coding	 is	 in	 the	 panels	 attached	 to	 the	 tabbed	 pane,	 there	 are
relatively	few	properties	and	methods	associated	with	the	tabbed	pane.	Do	some
study	on	your	own	if	you’d	like	to	learn	more	about	this	control.

Calendar	Controls
•	The	Java	Swing	library	does	not	have	a	control	that	allows	selection	of	a	date.

A	 quick	 search	 of	 the	 Internet	 will	 find	 several	 Java	 controls	 that	 perform
such	 a	 task.	 The	 calendar	 controls	 we	 present	 here	 are	 described	 at	 this
website:	http://www.toedter.com/

There	are	two	controls:	JDateChooser	(a	drop-down	selector)	and	JCalendar
(a	monthly	calendar	display	that	allows	a	user	to	select	a	date).	Here,	we	just
use	JCalendar.	Both	feature	a	very	easy	to	use	interface	–	just	point	and
click.	These	controls	are	useful	for	ordering	information,	making	reservations
or	choosing	the	current	date.	Use	of	these	controls	is	similar,	with	identical
properties	and	identical	methods.

•	 The	 calendar	 control	 is	 made	 up	 of	 three	 components	 a	MonthChooser,	 a
DayChooser	 and	 a	 YearChooser:	

Operation	is	simple.	A	month	is	selected	either	from	the	drop-down	box	or	by
clicking	the	spinner	arrows.	A	day	is	selected	by	clicking	the	desired	box.	A
year	is	selected	using	the	spinner	arrows	or	by	typing	a	value.	By	default,	a
calendar	for	the	current	month	is	displayed	initially.

The	date	chooser	control	is	a	drop-down	box:

When	you	click	the	drop-down	arrow,	the	calendar	control	described	above
appears,	allowing	date	selection.

http://www.toedter.com/

•	Calendar/DateChooser	Properties:

font Font	name,	style,	size.
background Calendar	background	color.

•	Calendar/Date	Chooser	Methods:

setFont Sets	font	name,	style,	size.
setBackground Sets	the	calendar	background	color.
getDate Returns	current	date.
getDayChooser Returns	calendar	DayChooser
getMonthChooser Returns	calendar	MonthChooser.
getYearChooser Returns	calendar	YearChooser.
setDate Sets	specified	date.

•	Calendar/Date	Chooser	Event:

propertyChange Event	(PropertyChangeEvent)	triggered	when
the	selected	date	changes.	Added	with
PropertyChangeListener	(requires	importation
of	java.beans.*	files).

•	 To	 add	 a	 listener	 for	 such	 a	 propertyChange	 event	 to	 a	 calendar	 control
named	 myCalendar,	 use:	 myCalendar.addPropertyChangeListener(new
PropertyChangeListener()	{

public	void	propertyChange(PropertyChangeEvent	e)

{

myCalendarPropertyChange(e);

}

});

And,	the	corresponding	event	code	would	be	placed	in	a
myCalendarPropertyChange	method:	private	void

myCalendarPropertyChange(PropertyChangeEvent	e)	{
[method	code]

}

•	Two	 tasks	you	usually	want	 to	do	with	a	 calendar	 control	 are	 to	 retrieve	 the
displayed	 date	 and	 to	 set	 the	 date.	 To	 retrieve	 the	 displayed	 date	 for	 a
calendar	control	named	myCalendar,	use:	myCalendar.getDate();

This	returns	a	Java	Date	type	(we	will	talk	about	these	later	in	this	chapter).	A
calendar	date	is	established	using:	myCalendar.setDate(myDate);

•	Typical	use	of	date	chooser	control:

➢	Declare	and	create	calendar	control,	assigning	an	 identifiable	name.	For
myDateChooser,	 the	 code	 is:	 JDateChooser	 myDateChooser	 =	 new
JDateChooser();

➢	Place	control	in	layout	manager.
➢	Initialize	date	if	desired	(default	display	is	today’s	date).
➢	Add	listener	for	and	monitor	propertyChange	event	for	changes	in	value.
➢	Use	getDate	method	to	determine	selected	date.
➢	You	may	also	choose	 to	change	 the	 font	 and	background	properties	of
the	date	chooser	control.

•	Typical	use	of	calendar	control:

➢	Declare	and	create	calendar	control,	assigning	an	 identifiable	name.	For
myCalendar,	the	code	is:	JCalendar	myCalendar	=	new	JCalendar();

➢	Place	control	in	layout	manager.
➢	Initialize	date	if	desired	(default	display	is	today’s	date).
➢	Add	listener	for	and	monitor	propertyChange	event	for	changes	in	value.
➢	Use	getDate	method	to	determine	selected	date.
➢	You	may	also	choose	 to	change	 the	 font	 and	background	properties	of
the	calendar	control.

•	The	JDateChooser	 and	JCalendar	 controls	 are	provided	 in	what	 is	 called	a
jar	(Java	archive)	file	that	you	download	from	the	Internet.	This	is	a	library
file	that	contains	any	code	you	need	to	use	the	controls.	To	add	the	controls	to
your	computer,	go	to	the	above	referenced	website.	On	the	page,	you	will	find
a	link	to	download	the	zipped	file.	The	zip	file	(current	version	is	jcalendar-
1.3.2.zip)	can	also	be	found	in	 the	 \HomeJava\HomeJava	Projects\	 folder.
Download	 the	 file	 and	 extract	 (unzip)	 the	 files	 to	 a	 directory	 on	 your
computer	 (I	 used	 c:\JCalendar\).	 Many	 files	 will	 be	 written	 to	 your
computer,	 including	 documentation	 and	 source	 files.	 The	 actual	 jar	 file
(jcalendar-1.3.2.jar)	will	be	in	the	lib	subfolder.

•	You	need	to	make	your	project	aware	of	the	fact	you	will	be	using	such	a	jar
file.	Once	we	get	 the	 framework	built	 for	 the	weight	monitor,	we	will	 take
these	steps.

Weight	Monitor	Frame	Design
We	begin	building	the	Weight	Monitor	Project.	Let’s	build	the	frame.	Start	a
new	project	in	your	Java	project	group	–	name	it	WeightMonitor.	Delete	default
code	 in	 file	 named	 WeightMonitor.java.	 Once	 started,	 we	 suggest	 you
immediately	save	 the	project	with	 the	name	you	chose.	This	 sets	up	 the	 folder
and	 file	 structure	 needed	 for	 your	 project.	 Build	 the	 basic	 frame	 with	 these
properties:	Weight	Monitor	Frame:

title Weight	Monitor
resizable false

The	code	is:

/	*

*	WeightMonitor.java

*/

package	weightmonitor;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	WeightMonitor	extends	JFrame

{

public	static	void	main(String	args[])

{

//	create	frame
new	WeightMonitor().show();

}

public	WeightMonitor()

{

//	frame	constructor
setTitle("Weight	Monitor");
setResizable(false);

addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
GridBagConstraints	gridConstraints;

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

}

This	code	builds	 the	frame,	sets	up	 the	 layout	manager	and	includes	code	 to
exit	the	application.	Run	the	code	to	make	sure	the	frame	(at	least,	what	there

is	of	it	at	this	point)	appears	and	is	centered	on	the	screen:	

Let’s	populate	our	frame	with	other	controls.	All	code	for	creating	the	frame
and	 placing	 controls	 (except	 declarations)	 goes	 in	 the	 WeightMonitor
constructor.

First,	 let’s	define	 the	menu.	We	use	a	single	menu	object	 (fileMenu)	 to	start	a
new	 file,	 open	 a	 file,	 save	 a	 file	 and	 to	 exit	 program.	 Our	 menu	 bar
(mainMenuBar)	structure	will	be:

Text Name
File fileMenu

New	Weight	File newMenuItem
Open	Weight	File openMenuItem
Save	Weight	File saveMenuItem
(Separator) 	
Exit exitMenuItem

Declare	the	different	menu	items	as	class	level	objects:	//	menu	structure
JMenuBar	mainMenuBar	=	new	JMenuBar();
JMenu	fileMenu	=	new	JMenu("File");
JMenuItem	newMenuItem	=	new	JMenuItem("New	Weight	File");
JMenuItem	openMenuItem	=	new	JMenuItem("Open	Weight	File");
JMenuItem	saveMenuItem	=	new	JMenuItem("Save	Weight	File");
JMenuItem	exitMenuItem	=	new	JMenuItem("Exit");

Establish	the	menu	structure	using	this	code	in	the	frame	constructor	(each	menu
item	has	a	corresponding	ActionPerformed	method):	 //	build	menu	structure
setJMenuBar(mainMenuBar);
mainMenuBar.add(fileMenu);
fileMenu.add(newMenuItem);

fileMenu.add(openMenuItem);
fileMenu.add(saveMenuItem);
fileMenu.addSeparator();
fileMenu.add(exitMenuItem);
newMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

newMenuItemActionPerformed(e);

}

});

openMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

openMenuItemActionPerformed(e);

}

});

saveMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

saveMenuItemActionPerformed(e);

}

});

exitMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

exitMenuItemActionPerformed(e);

}

});

Add	the	empty	methods:

private	void	newMenuItemActionPerformed(ActionEvent	e)

{

}

private	void	openMenuItemActionPerformed(ActionEvent	e)	{

}

private	void	saveMenuItemActionPerformed(ActionEvent	e)	{

}

private	void	exitMenuItemActionPerformed(ActionEvent	e)	{

}

Save,	run.	Make	sure	the	menu	structure	appears:

Click	File	to	see:	

Let’s	add	controls.

The	GridBagLayout	 for	 the	 project	 frame	 is	 very	 simple,	 just	 one	 control	 (a

tabbed	pane)::	

The	 tab	 control	 (weightTabbedPane)	 will	 host	 the	 two	 tab	 pages	 (each	 with
panel	 controls,	 editorPanel	 and	 plotPanel).	 Before	 adding	 this	 basic	 starting
framework,	we	do	some	proactive	work.

The	 plotPanel	 will	 display	 a	 plot	 of	 weight	 versus	 time.	 For	 graphics	 to	 be
persistent	(we	will	explain	what	this	means),	we	need	a	special	panel	class	with	a
paintComponent	method	(where	the	graphics	methods	are	used).	We	need	such
a	class	here	 too.	We	define	 the	WeightPlotPanel	 class	using	 this	 code	 (added
after	the	WeightMonitor	class):	class	WeightPlotPanel	extends	JPanel

{

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);

g2D.dispose();

}

}

All	graphics	used	for	the	weight	plot	will	go	in	the	paintComponent	method	for
this	class	(this	will	be	done	after	developing	all	the	code	for	the	editor	panel).

Now,	the	control	properties	are:

weightTabbedPane: 	
size 500,	400
gridx 0
gridy 0
	 	
editorPanel: 	
background Color(192,	192,	255)
	 	
weightPanel: 	
background Color(255,	192,	192)

Declare	the	tab	control	and	panels	using:

JTabbedPane	weightTabbedPane	=	new	JTabbedPane();
JPanel	editorPanel	=	new	JPanel();
WeightPlotPanel	plotPanel	=	new	WeightPlotPanel();

Note	the	plotPanel	is	from	the	newly	added	WeightPlotPanel	class.

Now,	the	tabbed	pane	and	panels	are	added	to	the	frame	in	the	frame
constructor	using:	weightTabbedPane.setPreferredSize(new
Dimension(500,	400));	weightTabbedPane.addTab("Weight	Editor",
editorPanel);
weightTabbedPane.addTab("Weight	Plot",	plotPanel);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;

gridConstraints.gridy	=	0;
getContentPane().add(weightTabbedPane,	gridConstraints);
editorPanel.setBackground(new	Color(192,	192,	255));
editorPanel.setLayout(new	GridBagLayout());
plotPanel.setBackground(new	Color(255,	192,	192));

Notice	we	give	the	editor	panel	a	GridBagLayout	for	control	placement.

Save,	 run	 the	 project.	 You	 will	 see	 the	 blank	 Weight	 Editor	 tab:	

Click	Weight	Plot	to	see	that	blank	panel	if	you	wish.	Let’s	add	controls	to
the	Weight	Editor	tab.

Frame	Design	–	Weight	Editor	Panel
Let’s	build	 this	 first	 tab	panel.	The	GridBagLayout	 for	 the	project	 frame	 is::	

fileLabel,	weightLabel	and	weightsListLabel	are	used	for	header	information.
fileTextArea	 holds	 the	 current	 weight	 file	 name.	 The	 calendar	 control
(weightCalendar)	 is	 used	 for	 date	 selection	 and	 the	 text	 field	 control
(weightTextField)	 is	 used	 to	 enter	 the	 weight	 for	 that	 day.	 The
weightsScrollPane	 holds	 list	 control	 (weightsList)	 that	 displays	 the	 date	 and
weight	 values	 (they	 will	 be	 sorted	 in	 ascending	 order	 of	 date).	 One	 button
(addButton)	is	used	to	enter	a	weight	and	one	(deleteButton)	is	used	to	delete	a
selected	entry.

We	 need	 to	 make	 sure	 we	 can	 use	 the	 calendar	 control.	 Recall	 where	 you
downloaded	the	JCalendar	jar	file.	Let’s	look	at	how	to	make	a	project	aware	of
such	a	file.	First,	we	need	to	make	the	jar	file	available	in	your	IDE.	We’ll	show
you	how	with	NetBeans.	If	you	are	using	another	IDE,	consult	its	documentation
to	see	how	to	add	jar	files	to	a	project.	Make	sure	WeightMonitor	is	the	active
project.

In	 the	 menu,	 choose	 Tools,	 then	 Libaries	 to	 see:	

Click	 New	 Library	 and	 name	 it	 Calendar:	

Click	OK	to	accept	name.	In	next	window,	click	Add	JAR/Folder.	Navigate	to
jar	 location:	

Click	Add	JAR/Folder.

Library	is	now	there:

The	Calendar	library	can	now	be	added	to	any	project	that	needs	it.	Click	OK.

To	add	this	to	your	project,	follow	these	steps:

In	 file	 view	 area,	 right-click	 the	 project	 name	 (WeightMonitor)	 and	 click
Properties.	 In	 the	 properties	 window,	 choose	 the	 Libraries	 category:	

Click	Add	Library	to	see	

Choose	Calendar,	 then	 click	Add	Library.	 Click	OK	 when	 returned	 to	 the
Properties	window.	The	calendar	tools	can	now	be	used	in	the	weight	monitor
project	 with	 the	 addition	 of	 these	 import	 statements:	 import
com.toedter.calendar.*;
import	java.beans.*;

Add	these	to	the	code	window.

Let’s	add	the	controls	on	the	left	side	of	the	editor	panel.	Control	properties	are:

fileLabel: 	
text Current	Weight	File
font Arial,	Bold,	Size	14
gridx 0
gridy 0
gridwidth 2
insets 10,	10,	0,	0
anchor WEST

	 	
fileTextArea: 	
size 220,	50
font Arial,	Plain,	Size	12
editable false
background White
lineWrap true
wrapStyleWord true
gridx 0
gridy 1
gridwidth 2
insets 0,	10,	10,	0
	 	
weightCalendar: 	
size 220,	200
border Black	line,	width	2
gridx 0
gridy 2
gridwidth 2
insets 5,	10,	0,	5
	 	
weightLabel: 	
text Weight	(lb)
font Arial,	Bold,	Size	14
gridx 0
gridy 3
insets 10,	10,	0,	0
anchor WEST
	 	
weightTextField: 	
size 100,	25
font Arial,	Plain,	Size	12
gridx 1

gridy 3
insets 10,	5,	0,	0
	 	
addButton: 	
text Add	Weights	to	File
gridx 0
gridy 4
gridwidth 2
insets 10,	0,	0,	0

Declare	these	controls	using:

JLabel	fileLabel	=	new	JLabel();
JTextArea	fileTextArea	=	new	JTextArea();
JCalendar	weightCalendar	=	new	JCalendar();
JLabel	weightLabel	=	new	JLabel();
JTextField	weightTextField	=	new	JTextField();
JButton	addButton	=	new	JButton();

Add	 the	 controls	 to	 the	 panel	 with	 this	 code	 (in	 the	 frame	 constructor):
fileLabel.setText("Current	Weight	File");
fileLabel.setFont(new	Font("Arial",	Font.BOLD,	14));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
editorPanel.add(fileLabel,	gridConstraints);

fileTextArea.setPreferredSize(new	Dimension(220,	50));
fileTextArea.setFont(new	Font("Arial",	Font.PLAIN,	12));
fileTextArea.setEditable(false);
fileTextArea.setBackground(Color.WHITE);

fileTextArea.setLineWrap(true);
fileTextArea.setWrapStyleWord(true);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(0,	10,	10,	0);
editorPanel.add(fileTextArea,	gridConstraints);

weightCalendar.setPreferredSize(new	Dimension(220,	200));
weightCalendar.setBorder(BorderFactory.createLineBorder(Color.BLACK,
2));	gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(5,	10,	0,	5);
editorPanel.add(weightCalendar,	gridConstraints);
weightCalendar.addPropertyChangeListener(new
PropertyChangeListener()	{

public	void	propertyChange(PropertyChangeEvent	e)

{

weightCalendarPropertyChange(e);

}

});

weightLabel.setText("Weight	(lb)");
weightLabel.setFont(new	Font("Arial",	Font.BOLD,	14));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);

gridConstraints.anchor	=	GridBagConstraints.WEST;
editorPanel.add(weightLabel,	gridConstraints);

weightTextField.setPreferredSize(new	Dimension(100,	25));
weightTextField.setFont(new	Font("Arial",	Font.PLAIN,	12));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(10,	5,	0,	0);
editorPanel.add(weightTextField,	gridConstraints);
weightTextField.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

weightTextFieldActionPerformed(e);

}

});

addButton.setText("Add	Weight	to	File");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	4;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
editorPanel.add(addButton,	gridConstraints);
addButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

addButtonActionPerformed(e);

}

});

Three	 methods	 were	 added	 with	 this	 code,	 one	 to	 detect	 changes	 in	 selected
dates	 (weightCalendarPropertyChange),	 one	 to	 detect	 changes	 in	 an	 entered
weight	 value	 (weightTextFieldActionPerformed)	 and	 one	 to	 detect	 button
clicks	(addButtonActionPerformed).	Add	these	empty	methods:	private	void
weightCalendarPropertyChange(PropertyChangeEvent	e)

{

}

private	void	weightTextFieldActionPerformed(ActionEvent	e)	{

}

private	void	addButtonActionPerformed(ActionEvent	e)

{

}

Save,	run	the	project	to	see	the	results:

The	controls	will	move	to	the	left	when	we	complete	the	panel.	We	do	that
now.

Let’s	 add	 the	 controls	 on	 the	 right	 side	 of	 the	 editor	 panel.	Control	 properties
are:

weightsListLabel: 	
text Date	Weight	(lb)
font Courier	New,	Bold,	Size	16
gridx 2
gridy 0
insets 10,	10,	0,	0
anchor WEST
	 	
weightsScrollPane: 	
size 250,	300

font Courier	New,	Plain,	Size	16
viewportView weightsList
model weightsListModel
gridx 2
gridy 1
insets 0,	5,	0,	0
anchor NORTHWEST
	 	
addButton: 	
text Delete	Selection
gridx 2
gridy 4
insets 10,	0,	0,	0
anchor CENTER

Declare	 these	 controls	 (and	 the	 list	 and	 list	model	 needed	 by	 the	 scroll	 pane)
using:	JLabel	weightsListLabel	=	new	JLabel();
JScrollPane	weightsScrollPane	=	new	JScrollPane();
JList	weightsList	=	new	JList();
DefaultListModel	weightsListModel	=	new	DefaultListModel();	Button
deleteButton	=	new	JButton();

Add	 the	 controls	 to	 the	 panel	 with	 this	 code	 (in	 the	 frame	 constructor):
weightsListLabel.setText("Date	Weight	(lb)");
weightsListLabel.setFont(new	Font("Courier	New",	Font.BOLD,	16));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
editorPanel.add(weightsListLabel,	gridConstraints);

weightsScrollPane.setPreferredSize(new	Dimension(250,	300));
weightsList.setFont(new	Font("Courier	New",	Font.PLAIN,	16));

weightsScrollPane.setViewportView(weightsList);
weightsList.setModel(weightsListModel);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
gridConstraints.gridheight	=	3;
gridConstraints.insets	=	new	Insets(0,	5,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.NORTHWEST;
editorPanel.add(weightsScrollPane,	gridConstraints);
weightsList.addListSelectionListener(new	ListSelectionListener()	{

public	void	valueChanged(ListSelectionEvent	e)

{

weightsListValueChanged(e);

}

});

deleteButton.setText("Delete	Selection");
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	4;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.CENTER;
editorPanel.add(deleteButton,	gridConstraints);
deleteButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

deleteButtonActionPerformed(e);

}

}

});

Two	methods	were	added	with	this	code,	one	to	detect	changes	in	the	list	control
(weightsListValueChanged)	 and	 one	 to	 detect	 button	 clicks
(deleteButtonActionPerformed).	 Add	 these	 empty	 methods:	 private	 void
weightsListValueChanged(ListSelectionEvent	e)	{

}

private	void	deleteButtonActionPerformed(ActionEvent	e)	{

}

The	list	selection	method	requires	this	import	statement:	import
javax.swing.event.*;

Save,	 run	 the	 project	 to	 see	 the	 finished	 Weight	 Editor	 panel:	

We	will	begin	writing	code	for	this	tab	page.	As	always,	the	code	will	be	written
in	steps.	We’ll	begin	by	writing	code	that	starts	a	new	weight	file	and	initializes
the	application	in	its	starting	mode.

Code	Design	–	New	Weight	File
When	 the	project	 first	begins,	we	want	a	new	file	 to	be	established	 for	weight
values.	(Later,	we	will	make	modifications	so	the	program	automatically	opens
the	last	opened/saved	file.)	The	steps	to	initialize	the	program	for	a	new	file	are:

➢	Make	Weight	Editor	tab	page	active.
➢	Set	calendar	date	to	current	day.
➢	Clear	list	control.
➢	Set	text	property	of	fileTextArea	to	New	File.
➢	Blank	out	weightTextField.
➢	Give	focus	to	weightTextField.

With	these	steps,	the	program	is	ready	to	accept	the	first	entry	for	the	current
date.

We	put	these	initialization	steps	in	a	general	method	named	initialize.	The	code
is:	private	void	initialize()

{

weightTabbedPane.setSelectedIndex(0);
weightCalendar.setDate(new	Date());
weightsListModel.clear();
fileTextArea.setText("New	File");
weightTextField.setText("");
weightTextField.requestFocus();

}

The	Date	object	(sets	the	initial	date)	requires	this	import	statement:	import
java.util.*;

This	general	method	should	be	called	when	the	frame	is	first	created.	Add	this
single	line	at	the	end	of	the	frame	constructor	code.

initialize();

This	method	should	also	be	called	when	the	user	selects	New	Weight	File	in	the
File	menu.	Before	 calling	 it,	 though,	 the	 user	 should	 be	 asked	 if	 he/she	 really
wants	 to	 start	 a	 new	 file.	 The	 code	 for	 the	 corresponding
newMenuItemActionPerformed	 method	 is:	 private	 void
newMenuItemActionPerformed(ActionEvent	e)

{

if	(JOptionPane.showConfirmDialog(null,	"Are	you	sure	you	want	to
start	a	new	weight	file?",	"New	File",	JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE)	==	JOptionPane.YES_OPTION)
{

initialize();

}

}

And,	let’s	take	care	of	the	exitMenuItemActionPerformed	method	while	we’re
at	 it.	 The	 code	 is	 a	 little	 different	 here	 than	 usual.	 Usually	 we	 just	 close	 the
application	if	a	user	clicks	Exit.	Here,	though,	we	want	to	save	some	information
when	 the	 program	 stops	 (that	 code	will	 be	 added	 later).	We	want	 to	 save	 this
information	whether	the	user	clicks	the	Exit	button	or	clicks	the	X	in	the	upper
right	 corner	 of	 the	 frame.	 When	 a	 user	 clicks	 the	 X,	 code	 in	 the	 exitForm
method	 is	 executed.	 Hence,	 we	 will	 simply	 have	 the
exitMenuItemActionPerformed	 method	 call	 this	 method	 to	 insure	 the	 same
code	 (in	 the	 exitForm	 method)	 is	 executed:	 private	 void
exitMenuItemActionPerformed(ActionEvent	e)	{

exitForm(null);

}

In	general,	it	is	a	good	idea	to	have	your	‘exit’	button	method	call	the
exitForm	method	to	make	sure	the	program	is	always	exited	in	a	consistent
manner.	Also,	you	should	make	sure	you	have	saved	any	edits	before	clicking
Exit.	You	could	put	a	message	box	here	asking	the	user	if	they	really	mean	to
exit.	I’ve	chosen	not	to.

Add	 these	 methods	 (initialize,	 newMenuItemActionPerformed,
exitMenuItemActionPerformed)	 to	 the	 project.	 Add	 the	 reference	 to	 the
initialize	method	in	the	frame	constructor.

Save	and	run	the	application	to	make	sure	things	initialize	correctly.	The	frame

should	appear	as:	

On	your	frame,	the	current	date	will	appear.	Try	the	New	Weight	File	option
under	the	File	menu.	This	message	box	should	appear	asking	you	if	you’re

sure:	

Make	sure	the	Exit	option	works.

Code	Design	–	Entering	Weights
When	 the	 program	opens,	 the	 user	 selects	 a	 date	 from	 the	 calendar	 (if	 not	 the
current	date)	and	enters	a	corresponding	weight	in	the	text	field	control.	The	user
then	 clicks	Add	Weight	 to	File	 to	 have	 that	 entry	 placed	 in	 the	 list	 control.
Here,	we	write	the	code	that	accomplishes	this	task.

Once	a	user	selects	a	date	and	enters	a	weight,	we	need	to	process	the	following
steps	to	add	the	entry	to	the	list	control:

➢	See	if	entry	already	exists	in	list	for	selected	date;	if	so,	delete	the	entry	to
avoid	a	repeat.

➢	Add	new	date	and	new	weight	to	list.
➢	Highlight	(select)	new	entry	in	list.

The	code	to	implement	these	steps	will	be	in	the
addButtonActionPerformed	method.	Before	writing	code	to	process	these
steps,	let’s	look	at	how	the	information	will	be	formatted	in	the	list	control.

We	want	the	date	and	weight	information	to	be	neatly	represented	in	a	single	line
of	information	in	the	list	control.	The	format	we	choose	is	to	have	each	line	be
19	 characters	 long	 (I	 picked	 this	 number	 because	 it	 fit	 nicely	 in	 the	 space
provided).	The	 first	 10	 columns	 of	 the	 line	will	 be	 the	 date	 in	 a	yyyy/mm/dd
format	 (where	yyyy	 is	 the	year	number,	mm	 is	 the	month	number,	and	dd	 the
day	number).	Using	this	format	insures	the	lines	are	can	be	sorted	in	ascending
date	order.	The	weight	(with	a	single	decimal	place)	will	be	right	justified	in	the
remaining	9	columns.	A	fixed	width	font	(Courier	New)	is	used.	As	an	example,
if	 the	 weight	 is	 202	 on	 April	 24,	 2005,	 the	 line	 in	 the	 list	 control	 will	 be:
2005/04/24				202.0

There	are	four	spaces	between	the	date	and	the	weight,	making	the	line	the
required	19	characters	long.	Formatting	the	weight	is	straightforward.	Let’s
look	at	how	to	get	the	date	in	this	string	format	(yyyy/mm/dd).

The	 calendar	 control	 uses	 the	Date	 data	 type	 to	 represent	 a	 date.	 This	 type	 is
used	to	hold	a	date	and	a	time.	Here,	we	only	want	the	date.	To	initialize	a	Date

variable	 (myDate)	 to	 a	 specific	 date,	 use:	 Date	 myDate	 =	 new	 Date(year,
month,	day);

where	year	is	the	desired	year	(less	1900,	that	is,	a	value	of	0	represents	the
year	1900)	(int	type),	month	the	desired	month	(int	type),	and	day	the	desired
day	(int	type).	The	month	‘numbers’	run	from	0	(January)	to	11	(December),
not	1	to	12.	As	an	example,	if	you	use:	myDate	=	new	Date(50,	6,	19);

then,	display	the	result,	you	would	get:

Wed	Jul	19	00:00:00	GMT-08:00	1950

This	is	my	birthday	(July	19,	1950),	by	the	way.	The	time	is	set	to	a	default
value	since	only	a	date	was	specified.

Individual	 parts	 of	 a	 Date	 object	 can	 be	 retrieved.	 For	 our	 example:
myDate.getYear()	//	returns	50
myDate.getMonth()	//	returns	6
myDate.getDate()	//	returns	19

To	retrieve	the	actual	year,	add	1900	to	the	value	returned	by	getYear.	To
retrieve	the	month	(1	–	12),	add	1	to	the	value	returned	by	getMonth.	Note,	to
retrieve	the	day	number,	the	method	is	getDate,	not	getDay	–	getDay	returns
the	day	of	the	week	(a	number	from	0	to	6).

We	will	write	two	general	methods	to	work	with	dates.	One	takes	a	Date	object
and	converts	it	to	the	desired	string	format	(dateToString)	and	one	that	takes	the
string	format	and	converts	it	to	a	Date	object	(stringToDate).	The	two	methods
are:	private	String	dateToString(Date	dd)

{

String	yString	=	String.valueOf(dd.getYear()	+	1900);
int	m	=	dd.getMonth()	+	1;
String	mString	=	new	DecimalFormat("00").format(m);
int	d	=	dd.getDate();
String	dString	=	new	DecimalFormat("00").format(d);

return(yString	+	""	+	mString	+	""	+	dString);

}

private	Date	stringToDate(String	s)

{

int	y	=	Integer.valueOf(s.substring(0,	4)).intValue()	-	1900;	int	m	=
Integer.valueOf(s.substring(5,	7)).intValue()	-	1;	int	d	=
Integer.valueOf(s.substring(8,	10)).intValue();	return(new	Date(y,	m,	d));

}

Notice	we	use	zero-padding	for	months	and	days,	that	is	if	the	month	is	6,	we
write	it	as	06.	Add	these	methods	to	your	project.

We	can	use	 these	date	methods	 to	format	a	data	 line	with	 the	date	and	weight.
The	 function	 is	 named	 formLine.	 It	 requires	 a	 date	 (in	 yyyy/mm/dd	 String
format)	and	weight	(String	type)	as	input	arguments.	It	returns	the	data	line	as	a
String	type:	private	String	formLine(String	d,	String	w)

{

int	lineLength	=	19;
String	s	=	d;
w	=	new

DecimalFormat("0.0").format(Double.valueOf(w).doubleValue());	for
(int	i	=	0;	i	<	lineLength	-	10	-	w.length();	i++)	s	+=	"	";

s	+=	w;
return	(s);

}

You	should	recognize	the	steps	in	forming	the	line.	Note	how	we	determine
how	many	spaces	to	add	between	the	date	(10	characters	long)	and	the	weight.
The	DecimalFormat	method	needs	this	import	statement:	import	java.text.*;

With	 the	 formLine	 function,	we	can	add	a	date	and	weight	 to	 the	 list	 control.
We	also	need	the	capability	of	‘parsing’	out	date	and	weight	values	from	a	list
line.	The	two	methods	that	do	this	are	getDate	and	getWeight.	Each	method	has
the	list	data	line	(19	characters	long)	as	the	input	argument.	getDate	returns	the
date	 (in	 the	 desired	 yyyy/mm/dd	 String	 format)	 and	 getWeight	 returns	 the
weight	(String	type).	Those	methods	are:	private	String	getDate(String	s)

{

s	=	s.substring(0,	10);
return(s);

}

private	String	getWeight(String	s)

{

s	=	s.substring(10);
return	(s.trim());

}

One	 more	 method	 is	 needed.	 The	 last	 step	 in	 adding	 a	 line	 to	 the	 list	 is	 to
highlight	 the	 newly	 added	 line.	 This	 involves	 searching	 through	 the	 list	 and
finding	the	line	with	the	matching	date	(using	the	getDate	method).	The	method
findDate	 takes	a	date	(String	 type)	as	input	and	returns	the	index	(int	 type)	of
the	line	in	the	list	with	that	date.	A	negative	one	(-1)	is	returned	if	no	matching
line	is	found.	The	code	that	does	the	search	is:	private	int	findDate(String	d)

{

if	(!weightsListModel.isEmpty())

{

for	(int	i	=	0;	i	<	weightsListModel.getSize();	i++)	{
if

(getDate(weightsListModel.getElementAt(i).toString()).equals(d))	return

(i);

}

}

return	(-1);

}

With	 these	 new	methods,	we	 can	 now	write	 the	 addButtonActionPerformed
method	 that	 implements	 the	 previously	 outlined	 steps:	 private	 void
addButtonActionPerformed(ActionEvent	e)

{

int	i;
//	add	to	list	(check	to	see	if	date	already	there)
i	=	findDate(dateToString(weightCalendar.getDate()));
if	(i	!=	-1)

weightsListModel.removeElementAt(i);
String	item	=

formLine(dateToString(weightCalendar.getDate()),
weightTextField.getText());	//	bubble	sort	to	see	where	item	goes	in	list	to
maintain	order	if	(weightsListModel.isEmpty()	||
item.compareTo(weightsListModel.getElementAt(weightsListMo
del.size()	-	1).toString())	>	0)	{

//	if	list	empty	or	greater	than	last	item,	item	goes	at	end
weightsListModel.addElement(item);

weightsList.setSelectedIndex(weightsListModel.size()	-	1);	}
else

{

for	(i	=	weightsListModel.size()	-	1;	i	>=	0;	i--)

{

if
((weightsListModel.getElementAt(i).toString().compareTo(it	em))	<	0)	{

break;

}

}

weightsListModel.insertElementAt(item,	i	+	1);
weightsList.setSelectedIndex(i	+	1);

}

}

The	list	control	has	no	sorting	capability	–	we	use	code	to	place	entries	in	proper
position.	We	using	something	called	a	bubble	sort	to	do	this.	The	idea	is	simple.
First,	if	the	list	is	empty	or	the	new	entry	is	‘greater	than’	the	last	entry,	we	put
the	new	entry	at	the	end.	Else,	we	go	through	the	existing	list	from	bottom	to	top
(bubbling	up),	find	where	the	new	entry	fits	and	add	it	at	the	proper	position.	In
either	 case,	 we	 highlight	 the	 added	 entry	 using	 the	 setSelectedIndex	 method.
Add	 addButtonActionPerformed,	 formLine,	GetDate,	 getWeight,	 findDate
methods	to	your	project.

Save	and	run	the	project.	Type	a	weight	in	the	text	box	control	and	click	the	Add
Weight	 to	 File.	 When	 I	 type	 my	 weight	 in	 for	 today,	 I	 see:	

Note	the	proper	formatting	in	the	list	control.	Pick	some	other	dates	on	the
calendar	and	enter	other	weights	if	you’d	like.	Stop	the	project	when	you’re
done.

You	may	 or	may	 not	 have	 noted	 that	when	 entering	 a	weight	 in	 the	 text	 box,
there	are	no	 restrictions	on	what	you	can	 type	or	 if	you	 type	any	entry.	 In	 the
Loan	 Assistant	 project	 (Chapter	 3),	 we	 developed	 this	 method
(validateDecimalNumber)	 that	 validates	 decimal	 number	 entries	 in	 text	 field
controls:	private	boolean	validateDecimalNumber(JTextField	tf)

{

//	checks	to	see	if	text	field	contains
//	valid	decimal	number	with	only	digits	and	a	single	decimal	point

String	s	=	tf.getText().trim();
boolean	hasDecimal	=	false;
boolean	valid	=	true;

if	(s.length()	==	0)

{

valid	=	false;

}

else

{

for	(int	i	=	0;	i	<	s.length();	i++)

{

char	c	=	s.charAt(i);
if	(c	>=	'0'	&&	c	<=	'9')

{

continue;

}

else	if	(c	==	'.'	&&	!hasDecimal)

{

hasDecimal	=	true;

}

else

{

//	invalid	character	found
valid	=	false;

}

}

}

tf.setText(s);
if	(!valid)

{

tf.requestFocus();

}

return	(valid);

}

Add	this	to	your	project.

We	 can	 now	 use	 this	 method	 in	 the	 addButtonActionPerformed	 method	 to
validate	entries	before	adding	 them	 to	 the	 list	 control.	The	 shaded	code	 shows
the	 needed	 modifications:	 private	 void
addButtonActionPerformed(ActionEvent	e)

{

int	i;
if	(!validateDecimalNumber(weightTextField))

{

JOptionPane.showConfirmDialog(null,	"Empty	or	invalid	weight
entry.\nPlease	correct.",	"Weight	Input	Error",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	return;

}

//	add	to	list	(check	to	see	if	date	already	there)

.

.

}

We	would	also	like	this	method	to	be	executed	when	the	user	presses	<Enter>
after	 typing	 a	 weight.	 To	 do	 this,	 add	 a	 single	 line	 to	 the
weightTextFieldActionPerformed	 method:	 private	 void
weightTextFieldActionPerformed(ActionEvent	e)	{

addButton.doClick();

}

Add	these	changes	 to	 the	project	 to	make	sure	 the	validation	works	as	desired.
When	 you	 type	 an	 incorrect	 entry	 you	 should	 see:	

Make	sure	weight	entries	are	added	to	the	list	when	the	<Enter>	key	is
pressed.

Code	Design	–	Editing	Weights
We	have	the	capability	to	enter	weights	for	selected	dates.	We	should	also	have
the	capability	to	edit	existing	entries	in	list	control,	in	case	of	incorrect	entries.

The	most	drastic	 editing	 feature	 is	 to	delete	 an	 entry	 in	 the	 list	 control.	To	do
this,	 the	 user	 selects	 the	 entry	 to	 delete,	 then	 clicks	 the	 button	marked	Delete
Selection.	The	code	for	this	process	goes	in	the	deleteButtonActionPerformed
method:	private	void	deleteButtonActionPerformed(ActionEvent	e)	{

//	remove	selected	item

weightsListModel.removeElementAt(weightsList.getSelectedIn	dex());	}

Note,	we	have	not	given	the	user	an	option	to	change	his/her	mind	about
deleting.	You	might	like	to	do	this	using	a	message	box.

Now,	 let’s	 look	 at	 a	 less	 drastic	 editing	 step	 –	 changing	 a	 previously	 entered
weight	value.	When	a	user	clicks	an	entry	 in	 the	 list	 control,	he/she	 should	be
given	the	ability	to	edit	the	entry.	Conversely,	when	the	user	clicks	a	date	on	the
calendar,	 if	 there	 is	 an	 corresponding	 entry	 in	 the	 list,	 editing	 should	 be
available.	 Note	 both	 editing	 tasks	 require	 some	 coordination	 between	 the
calendar	date	and	the	selected	list	entry.

When	a	user	selects	a	list	control	line	to	edit,	the	following	should	occur:

➢	Parse	the	date	from	the	selected	line	and	establish	that	date	on	the	calendar
control.

➢	Parse	the	weight	from	the	selected	line	and	place	it	in	weightTextField.
➢	Give	focus	to	weightTextField.

After	this,	the	user	can	change	the	weight	and	click	Add	Weight	to	File	(or
press	<Enter>)	to	register	the	change.

The	code	for	the	above	steps	will	go	in	the	weightsListValueChanged	method.
The	 corresponding	 method	 is:	 private	 void

weightsListValueChanged(ListSelectionEvent	e)	{
//	display	corresponding	date
if	(weightsList.getSelectedIndex()	>=	0)

{

//	form	Date	object	from	String

weightCalendar.setDate(stringToDate(weightsList.getSelecte
dValue().toString()));
weightTextField.setText(getWeight(weightsList.getSelectedV
alue().toString()));	weightTextField.requestFocus();

}

}

Add	this	method	to	the	project.

When	a	user	selects	a	date	from	the	calendar	control,	the	following	should	occur:

➢	Check	to	see	if	there	is	a	corresponding	date	entry	in	list	control.
➢	If	corresponding	entry	is	found:	o	Select	(highlight)	entry	in	list.
o	Parse	the	weight	from	the	selected	line	and	place	it	in	weightTextField.
o	Give	focus	to	weightTextField.

➢	If	corresponding	entry	is	not	found:	o	Unselect	all	items	in	list.
o	Blank	out	weightTextField.
o	Give	focus	to	weightTextField.

In	either	case,	the	user	can	enter	a	weight	for	the	selected	date	and	click	Add
Weight	to	File	(or	press	<Enter>)	to	register	the	change.

The	 code	 for	 responding	 to	 a	 date	 selection	 is	 placed	 in	 the	 calWeights
DateChanged	method.	That	code	is:	private	void
weightCalendarPropertyChange(PropertyChangeEvent	e)

{

//	show	corresponding	list	box	element	(if	there	is	one)	int	i;
i	=	findDate(dateToString(weightCalendar.getDate()));
if	(i	!=	-1)

{

weightsList.setSelectedIndex(i);

weightTextField.setText(getWeight(weightsList.getSelectedV
alue().toString()));	}

else

{

weightsList.clearSelection();
weightTextField.setText("");

}

weightTextField.requestFocus();

}

Place	this	method	in	the	project.	Notice	use	of	the	findDate	method	to
highlight	the	corresponding	line	(if	it	is	there).

Save	and	run	the	project.	Click	a	few	dates	on	the	calendar	control	and	add	some
weights.	Then,	try	the	editing	features.	Click	a	date	on	the	calendar	–	see	if	there
is	 a	matching	 line	 in	 the	 list	 control.	Click	 a	 line	 in	 the	 list	 control	 –	 the	date
should	be	highlighted	in	the	calendar	control	and	the	weight	available	for	edit	in
the	 text	 box.	 Here’s	 such	 a	 case	 in	 a	 run	 I	 made:	

We	now	have	full	editing	capability	for	the	weight	monitor	project.	We	still	need
the	 capability	 to	 save	 any	 entries	we	might	make.	And	we	 need	 the	 ability	 to
read	any	saved	values.	We	will	use	sequential	files	to	save	the	date	and	weight
values.

Code	Design	–	Saving	Weight	Files
We	now	write	 the	code	 that	 saves	date	and	weight	 information	 to	a	 sequential
file.	We	will	save	each	individual	line	from	the	list	control	on	separate	lines	in
the	file.

When	 the	 user	 selects	 the	Save	Weight	File	 option	 under	 the	File	 menu,	 the
following	steps	should	be	taken:

➢	Make	sure	there	is	at	least	one	entry	in	the	list.
➢	Display	save	file	dialog	(using	JChooser)	to	obtain	file	name.
➢	If	user	clicks	Save,	then:	o	Check	if	we	are	overwriting	an	existing	file.
o	Add	extension	to	filename.
o	Open	file	for	output.
o	Write	each	line	in	list	control	to	file..
o	Close	file.

➢	If	user	clicks	Cancel,	do	nothing.

We	 reviewed	 the	 JChooser	 control	 in	 Chapter	 5	 (Multiple	 Choice	 Exam
Proejct).

Let’s	look	at	saving	a	weight	file.	Assuming	we	know	the	name	of	the	file,	it	is
created	using	Java	PrintWriter,	BufferedWriter	and	FileWriter	objects.	These
objects	require	the	following	import	statement:	import	java.io.*;

Add	this	to	your	project.	The	syntax	for	opening	a	sequential	file	for	output	is:
PrintWriter	outputFile	=	new	PrintWriter(new	BufferedWriter(new
FileWriter(myFile)));	where	myFile	is	the	name	(a	String)	of	the	file	to	open
and	outputFile	is	the	returned	PrintWriter	object	used	to	write	variables	to
disk.

A	word	of	warning	-	when	you	open	a	file	using	the	PrintWriter	method,	if
the	file	already	exists,	it	will	be	erased	immediately!	So,	make	sure	you	really
want	to	overwrite	the	file.	We	will	take	steps	to	give	the	user	a	second	chance
before	overwriting	an	existing	weight	file.

Information	 (variables	 or	 text)	 is	 written	 to	 a	 sequential	 file	 in	 an	 appended
fashion.	 Separate	 Java	 statements	 are	 required	 for	 each	 appending.	 In	 this
project,	we	write	each	line	from	the	list	control	to	the	file.	If	a	line	is	myLine,
the	syntax	is:	outputFile.println(myLine);

When	done	writing	to	a	sequential	file,	it	must	be	flushed	(information	placed	on
disk)	and	closed.	The	syntax	for	our	example	file	is:	outputFile.flush();
outputFile.close();

Once	a	file	is	closed,	it	is	saved	on	the	disk	under	the	path	(if	different	from
the	project	path)	and	filename	used	to	open	the	file.

We	 put	 the	 code	 to	 write	 the	 weight	 data	 to	 a	 file	 (fn)	 in	 a	 general	 method
saveWeightFile:	private	void	saveWeightFile(String	fn)

{

try

{

PrintWriter	outputFile	=	new	PrintWriter(new
BufferedWriter(new	FileWriter(fn)));	fileTextArea.setText(fn);

for	(int	i	=	0;	i	<	weightsListModel.getSize();	i++)	{

outputFile.println(weightsListModel.getElementAt(i).toString());	}
outputFile.flush();
outputFile.close();

}

catch	(Exception	ex)

{

JOptionPane.showConfirmDialog(null,	"An	error	occurred	saving
the	weight	file.",	"File	Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	}

}

}

This	code	opens	the	file	(fn)	and	cycles	through	all	the	lines	in	the	list	control,
writing	them	to	the	file.

The	 code	 to	 obtain	 and	 validate	 the	 filename	 selected	 by	 a	 user	 then	 call	 the
above	 method	 goes	 in	 the	 saveMenuItemActionPerformed	 method:	 private
void	saveMenuItemActionPerformed(ActionEvent	e)	{

if	(weightsListModel.isEmpty())

{

JOptionPane.showConfirmDialog(null,	"You	need	to	enter	at	least
one	weight	value.",	"File	Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	return;

}

JFileChooser	saveChooser	=	new	JFileChooser();
saveChooser.setDialogType(JFileChooser.SAVE_DIALOG);
saveChooser.setDialogTitle("Save	Weight	File");
saveChooser.addChoosableFileFilter(new

FileNameExtensionFilter("Weight	Files",	"wgt"));	if
(saveChooser.showSaveDialog(this)	==
JFileChooser.APPROVE_OPTION)	{

//	see	if	file	already	exists
if	(saveChooser.getSelectedFile().exists())

{

int	response;
response	=	JOptionPane.showConfirmDialog(null,

saveChooser.getSelectedFile().toString()	+	"exists.	Overwrite?",
"Confirm	Save",	JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE);	if	(response	==
JOptionPane.NO_OPTION)

{

return;

}

}

//	make	sure	file	has	wgt	extension
//	strip	off	any	extension	that	might	be	there
//	then	tack	on	wgt
String	fileName	=	saveChooser.getSelectedFile().toString();	int

dotlocation	=	fileName.indexOf(".");
if	(dotlocation	==	-1)

{

//	no	extension
fileName	+=	".wgt";

}

else

{

//	make	sure	extension	is	wgt
fileName	=	fileName.substring(0,	dotlocation)	+	".wgt";	}

saveWeightFile(fileName);

}

}

You	also	need	this	import	statement	for	the	file	filter:	import
javax.swing.filechooser.*;

Step	through	this	to	understand	its	operation.	We	first	check	to	see	if	the
selected	file	already	exists.	If	it	does,	a	message	box	appears.	Then,	we	make
sure	the	wgt	extension	is	added	to	the	file.	Once	a	valid	name	(fileName)	is

available,	the	saveWeightFile	method	is	called.	Add	this	method	to	the
project.

Save	 and	 run	 the	 project.	 Click	 some	 dates	 and	 enter	 some	weights.	Here	 are
some	 values	 I	 entered:	

Choose	 Save	 Weight	 File	 from	 the	 File	 menu.	 You	 will	 see:	

Give	a	name	to	your	file	(I	chose	myfile)	and	note	the	folder	it	is	saved	in.
Click	Save.	Start	a	text	editor	(like	Notepad)	and	open	the	file	just	created.
Since	we	use	a	wgt	extension	for	a	weight	file,	you	will	have	to	make	sure
you	display	all	file	types,	not	just	txt	files.	The	file	I	created	looks	like	this:	

Note	the	file	looks	just	like	the	list	control	entries.

Select	File	and	Save	Weight	File	from	the	menu	again.	Select	the	file	you	just

saved:	

Click	Save.	This	message	will	appear	warning	you	that	you	are	about	to
overwrite	and	existing	file:	

Code	Design	–	Opening	Weight	Files
Now,	 with	 a	 capability	 to	 save	 weight	 files,	 we	 need	 code	 to	 open	 and	 read
information	from	those	files.	When	the	user	selects	Open	Weight	File	from	the
File	menu,	the	following	occurs:

➢	Make	sure	the	user	wants	to	open	a	new	file;	if	not,	do	nothing.
➢	Display	open	file	dialog	to	obtain	file	name.
➢	If	user	clicks	Open,	then:	o	Initialize	the	panel.
o	Open	file	for	input.
o	Set	text	property	of	fileTextArea.
o	Read	each	date	and	weight	pair.
o	Add	entry	to	list	control	using	formLine	method.
o	Close	file.

➢	If	user	clicks	Cancel,	do	nothing.

The	syntax	for	opening	a	sequential	file	for	input	is:

BufferedReader	inputFile	=	new	BufferedReader(new
FileReader(fileName));	where	fileName	is	a	complete	path	to	the	file	and
inputFile	is	the	returned	file	object.

Once	opened,	we	 read	 information	 from	the	 file.	To	 read	an	entire	 line	 from	a
file	 opened	 as	 inputFile,	 use	 the	 readLine	 method:	 myLine	 =
inputFile.readLine();

where	myLine	will	be	the	line	represented	as	a	String	data	type.	In	the	weight
file,	this	has	the	formatted	date	and	weight.	To	obtain	the	individual	variables,
we	need	to	‘parse’	the	line	with	the	getDate	and	getWeight	methods	When	all
values	have	been	read	from	the	sequential	file,	it	is	closed	using:
inputFile.close();

A	general	method	openWeightFile	 is	used	to	open	and	read	a	known	file	(fn):
private	void	openWeightFile(String	fn)

{

{

try

{

initialize();
BufferedReader	inputFile	=	new	BufferedReader(new

FileReader(fn));	fileTextArea.setText(fn);
do

{

String	s	=	inputFile.readLine();
weightsListModel.addElement(s);

}

while	(inputFile.ready());
inputFile.close();
//	see	if	current	date	is	in	file
int	i	=

findDate(dateToString(weightCalendar.getDate()));
if	(i	!=	-1)

weightsList.setSelectedIndex(i);

}

catch	(Exception	ex)

{

JOptionPane.showConfirmDialog(null,	"An	error	occurred
opening	the	weight	file.",	"File	Error",
JOptionPane.DEFAULT_OPTION,	JOptionPane.ERROR_MESSAGE);
}

}

The	code	reads	in	each	line	and	places	it	in	the	list	control.	Note	how	the
ready	method	is	used	to	read	until	the	end-of-file	is	reached.	Once	done,	if
today’s	date	is	in	the	listing,	that	element	is	selected	in	the	list	control.	Add
this	method	to	your	project.

The	 code	 to	 obtain	 a	 filename	 and	 call	 this	 method	 goes	 in	 the
mnuFileOpenActionPerformed	 method:	 private	 void
openMenuItemActionPerformed(ActionEvent	e)	{

if	(JOptionPane.showConfirmDialog(null,	"Are	you	sure	you	want	to
open	a	weight	new	file?",	"New	Weight	File",
JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE)	==	JOptionPane.YES_OPTION)
{

JFileChooser	openChooser	=	new	JFileChooser();
openChooser.setDialogType(JFileChooser.OPEN_DIALOG);
openChooser.setDialogTitle("Open	Weight	File");
openChooser.addChoosableFileFilter(new

FileNameExtensionFilter("Weight	Files",	"wgt"));	if
(openChooser.showOpenDialog(this)	==
JFileChooser.APPROVE_OPTION)	{

openWeightFile(openChooser.getSelectedFile().toString());	}

}

}

Save	and	run	the	project.	Choose	Open	Weight	File	under	the	File	menu.	You

will	see	the	message	box:	

Click	Yes	and	the	open	file	dialog	box	will	appear:	

Navigate	to	the	file	you	just	created	and	click	Open.	The	dates	and	weights
you	entered	will	appear.

Here	 is	 what	 I	 see	 when	 I	 open	 the	 file	 I	 created	 (myfile.wgt):	

The	file	name	appears	under	Current	Weight	File	and	the	date	and	weight
values	are	displayed.	They	can	now	be	edited.

The	Weight	Editor	tab	is	nearly	complete.	The	most	common	use	for	the	weight
monitor	 program	 is	 to	 enter	 your	 daily	 weight.	 This	 involves	 starting	 the
program,	opening	your	weight	file,	making	any	new	entries,	saving	the	file,	then
exiting.	You	might	also	view	a	plot	of	your	weight	(using	the	Weight	Plot	 tab
we	develop	next).	After	a	while,	you	get	tired	of	opening	the	same	file	each	time
you	run	the	program.	It	would	be	nice	if	your	file	opened	automatically	and	the
date	 and	weight	 values	were	 displayed.	And,	 you	 get	 tired	 of	 remembering	 to
save	 your	 file	 before	 exiting.	 It	 would	 be	 nice	 if	 the	 program	 would	 just
automatically	save	the	last	file	your	were	working	with.

We	can	 solve	both	 of	 these	 problems.	To	do	 this,	we	use	 a	 configuration	 file.
Such	 a	 file	 is	 used	 to	 save	 information	 needed	 to	 initialize	 a	 program.	 In	 our
case,	we	want	to	use	a	configuration	file	to	save	the	last	file	opened	so	that	file	is
automatically	opened/saved	the	next	time	we	run	the	weight	monitor	program.

Code	Design	–	Configuration	File
We	want	to	use	a	configuration	file	(named	weight.ini)	to	save	the	name	of	the
last	weight	 file	 opened	 and/or	 saved	 in	 the	weight	monitor	 project.	When	 the
application	ends	(exitForm	method),	we	need	code	to	save	the	configuration	file
and	 specified	 weight	 file.	 That’s	 why	 we	 call	 exitForm	 in	 the
exitMenuItemActionPerformed	method	(rather	than	just	close	the	form).	That
way,	no	matter	how	the	application	is	stopped,	either	with	the	Exit	menu	item	or
by	 clicking	 the	 X	 in	 the	 upper	 right	 corner	 of	 the	 frame,	 the	 code	 in	 the
exitForm	event	method	(writing	the	configuration	file)	will	be	executed.

Conversely,	when	the	application	starts,	we	need	code	in	the	frame	constructor
method	 to	 open	 the	 configuration	 file	 and	 then	 open	 the	 specified	weight	 file.
Let’s	do	the	save	steps	first.

Establish	a	class	level	variable	(String	 type)	to	hold	the	last	file	opened	and/or
saved:	String	lastFile	=	"";

We	initialize	it	to	a	blank.

Modify	 the	 saveWeightFile	 general	 method	 to	 establish	 a	 value	 for	 lastFile
(new	lines	are	shaded):	private	void	saveWeightFile(String	fn)

{

try

{

PrintWriter	outputFile	=	new	PrintWriter(new
BufferedWriter(new	FileWriter(fn)));	fileTextArea.setText(fn);

for	(int	i	=	0;	i	<	weightsListModel.getSize();	i++)	{

outputFile.println(weightsListModel.getElementAt(i).toString());	}
outputFile.flush();
outputFile.close();

lastFile	=	fn;

}

catch	(Exception	ex)

{

JOptionPane.showConfirmDialog(null,	"An	error	occurred	saving
the	weight	file.",	"File	Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);

lastFile	=	"";

}

}

No	value	is	established	if	there	is	an	error	in	saving	the	file.

The	exitForm	method	saves	the	configuration	file	and	uses	SaveWeightFile	to
automatically	 save	 lastFile.	That	method	 is	 (changes	are	 shaded;	only	 last	 line
currently	exists):	private	void	exitForm(WindowEvent	evt)

{

//	Write	out	initialization	file
try

{

PrintWriter	outputFile	=	new	PrintWriter(new
BufferedWriter(new	FileWriter("weight.ini")));
outputFile.println(lastFile);

outputFile.close();

}

catch	(Exception	ex)

{

{

}

//	save	last	file
if	(!lastFile.equals(""))

saveWeightFile(lastFile);
System.exit(0);

}

With	these	changes,	when	the	program	ends,	the	configuration	file	is	saved,	as
is	the	last	opened	weight	file.	Make	the	noted	changes.

Let’s	do	the	converse	operation	–	open	the	configuration	file	and	accompanying
weight	file.	Modify	the	openWeightFile	general	method	to	establish	a	value	for
lastFile	(new	lines	are	shaded):	private	void	openWeightFile(String	fn)

{

try

{

initialize();
BufferedReader	inputFile	=	new	BufferedReader(new

FileReader(fn));	fileTextArea.setText(fn);
do

{

String	s	=	inputFile.readLine();
weightsListModel.addElement(s);

}

while	(inputFile.ready());
inputFile.close();

lastFile	=	fn;
//	see	if	current	date	is	in	file
int	i	=

findDate(dateToString(weightCalendar.getDate()));
if	(i	!=	-1)

weightsList.setSelectedIndex(i);

}

catch	(Exception	ex)

{

JOptionPane.showConfirmDialog(null,	"An	error	occurred
opening	the	weight	file.",	"File	Error",
JOptionPane.DEFAULT_OPTION,	JOptionPane.ERROR_MESSAGE);

lastFile	=	"";

}

}

Again,	no	value	is	established	if	there	is	an	error	in	opening	the	file.

The	code	to	open	the	configuration	file	and	use	the	openWeightFile	method	to
automatically	open	lastFile	goes	in	the	frame	constructor	code.	Add	these	lines
at	the	end	of	that	code	(new	code	is	shaded;	one	line	is	original):
//	open	.ini	file
try

{

BufferedReader	inputFile	=	new	BufferedReader(new
FileReader("weight.ini"));	lastFile	=	inputFile.readLine();
inputFile.close();

}

catch	(Exception	ex)

{

//	initialization	file	not	found
lastFile	=	"";

}

if	(!lastFile.equals(""))
openWeightFile(lastFile);

else
initialize();

With	these	changes,	when	the	program	begins,	the	configuration	file	is	opened
and	the	last	saved	weight	file	opened	and	those	values	displayed.

The	Weight	Editor	panel	is	now	complete.	Let’s	try	it.	Save	and	run	the	project.
The	form	will	appear	in	its	initial	configuration	since	no	lastFile	value	has	been
saved	yet	 (there	 is	no	weight.ini	 file).	Click	Open	Weight	File	under	 the	File
menu.	 In	 the	 \HomeJava\HomeJava	 Projects\WeightMonitor\	 folder	 is	 a
sample	 weight	 file	 named	 sample.wgt.	 Open	 that	 file.	 You	 should	 see:	

Edit	some	values	if	you	want	or	add	some	values.	Now,	stop	the	project	–	the
weight	file	will	be	automatically	saved.	And,	at	this	point,	the	weight.ini	file
is	written	to	your	project’s	folder.	Look	in	that	folder	to	make	sure	it’s	there.
Open	it	and	you	should	see:	

Now,	run	 the	project	again.	The	data	 in	 the	sample	file	 (with	any	changes	you
made)	 should	 appear:	

Now,	whenever	you	run	the	weight	monitor	project,	 it	will	automatically	begin
using	the	last	set	of	weight	values	you	were	editing.	When	you	stop,	any	changes
you	made	are	automatically	saved.	This	is	usually	what	you	want	to	do.	You	can
always	override	this	automatic	feature	if	you	want.	If	the	values	displayed	upon
opening	are	not	correct,	 simply	open	 the	correct	 file	using	Open	 option	 in	 the
File	 menu.	 Similarly,	 a	 file	 can	 be	 saved	 at	 any	 time	 using	 the	 Save	 option.
Now,	let’s	take	a	look	at	plotting	these	weight	values.

Frame	Design	–	Weight	Plot	Panel
Run	 the	 weight	 monitor	 program	 and	 click	 the	Weight	 Plot	 tab.	 You	 see:	

This	 is	 the	empty	plotPanel	added	long	ago	to	 the	 tabbed	pane	control.	Recall
plotPanel	was	constructed	using	our	defined	WeightPlotPanel	class.	That	class
has	a	paintComponent	method	where	all	graphics	methods	will	reside.

Let’s	look	at	what	the	finished	product	will	look	like	(originally,	I	sketched	this
on	 a	 piece	 of	 paper	 to	 get	 the	 general	 idea	 of	 where	 things	 go):	

We	have	a	white	rectangular	region	hosting	the	plot	(two	lines,	one	straight	and
one	 jagged	are	shown).	There	are	grid	 lines,	horizontal	and	vertical	axis	 labels
and	 a	 heading	 title.	 To	 draw	 the	 information	 on	 this	 panel,	 we	 use	 graphics
methods.

We	need	to	learn	several	tasks:

1.	Drawing	a	framed,	filled	rectangle	for	the	plot	area.
2.	Drawing	lines	for	the	plot	grid.
3.	Drawing	text	information	(yes,	it	is	drawn)	for	plot	labeling.
4.	Drawing	text/lines	for	legend.
5.	Drawing	weight	plot.

We	will	look	at	how	to	accomplish	each	task.	First,	we	give	a	general	overview
of	graphics	methods	and	the	graphics	object.

Graphics	Methods
Java	 offers	 a	 wealth	 of	 graphics	methods	 that	 let	 us	 draw	 lines,	 rectangles,
ellipses,	pie	shapes	and	polygons.	With	these	methods,	you	can	draw	anything	–
even	text!	These	methods	are	provided	by	the	Graphics2D	class.

Using	graphics	objects	is	a	little	detailed,	but	worth	the	time	to	learn.	There	is	a
new	vocabulary	with	many	new	objects	 to	 study.	We’ll	 cover	 every	 step.	The
basic	approach	to	drawing	with	graphics	objects	will	always	be:

➢	Create	a	Graphics2D	object.
➢	Establish	the	Stroke	and	Paint	objects	needed	for	drawing.
➢	Establish	the	object	for	drawing.
➢	Draw	object	to	Graphics2D	object	using	drawing	methods	➢	Dispose	of
graphics	object	when	done.

In	 the	 next	 few	 sections,	 we	 will	 learn	 about	 Graphics2D	 objects,	 Stroke
objects	 and	 Paint	 objects	 (use	 of	 colors).	 We’ll	 learn	 how	 to	 draw	 and	 fill
rectangles,	 how	 to	 draw	 lines,	 and	 how	 to	 draw	 text.	 As	 we	 learn,	 we	 will
construct	the	display	panel	in	a	step-by-step	fashion.	Let’s	get	started.

Graphics2D	Object
As	 mentioned,	 graphics	 methods	 (drawing	 methods)	 are	 applied	 to	 graphics
objects.	Graphics2D	objects	provide	the	“surface”	for	drawing	methods.	In	this
project,	we	will	use	the	panel	control	for	drawing.

A	Graphics2D	object	 (g2D)	 is	created	using:	Graphics	g2D	=	(Graphics2D)
hostControl.getGraphics();

where	 hostControl	 is	 the	 control	 hosting	 the	 graphics	 object.	 Note	 the
getGraphics	method	returns	a	Graphics	object	that	must	be	cast	(converted)	to
a	Graphics2D	object.	Placement	of	this	statement	depends	on	scope.	Place	it	in
a	method	for	method	level	scope.	Place	it	with	other	class	level	declarations	for
class	level	scope.

Once	a	graphics	object	is	created,	all	graphics	methods	are	applied	to	this	object.
Hence,	 to	 apply	a	drawing	method	named	drawingMethod	 to	 the	g2D	 object,
use:	g2D.drawingMethod(arguments);

where	arguments	are	any	needed	arguments.

Once	 you	 are	 done	 drawing	 to	 an	 object	 and	 need	 it	 no	 longer,	 it	 should	 be
properly	disposed	to	clear	up	system	resources.	The	syntax	for	disposing	of	our
example	graphics	object	uses	the	dispose	method:	g2D.dispose();

Stroke	and	Paint	Objects
The	 attributes	 of	 lines	 (either	 lines	 or	 borders	 of	 shapes)	 drawn	 using
Graphics2D	objects	are	specified	by	the	stroke.	Stroke	can	be	used	to	establish
line	style,	such	as	solid,	dashed	or	dotted	lines,	line	thickness	and	line	end	styles.
By	default,	a	solid	line,	one	pixel	in	width	is	drawn.	In	this	class,	we	will	only
look	at	how	to	change	the	line	thickness.	Stroke	is	changed	using	the	setStroke
method.	To	set	the	thickness	(width)	of	the	line	for	a	graphics	object	g2D,	use	a
BasicStroke	object:	g2D.setStroke(new	BasicStroke(width));

After	this	method,	all	lines	will	be	drawn	with	the	new	width	attribute.

To	 change	 the	 color	 of	 lines	 being	 drawn,	 use	 the	 setPaint	 method.	 For	 our
example	graphics	object,	the	color	is	changed	using:	g2D.setPaint(color);

where	color	is	either	a	built-in	color	or	one	set	using	RGB	values.	After	this	line
of	code,	all	lines	are	drawn	with	the	new	color.

The	setPaint	method	can	also	be	used	to	establish	the	color	and	pattern	used	to
fill	a	graphics	region.

Shapes	and	Drawing	Methods
We	will	learn	to	draw	various	shapes.	Shapes	will	include	lines	and	rectangles.
The	classes	used	to	do	this	drawing	are	in	the	java.awt.geom.*	package,	so	we
need	to	include	an	import	statement	for	this	package:	import	java.awt.geom.*;

Shape	 objects	 are	 specified	 with	 the	 user	 coordinates	 of	 the	 hosting	 panel
control	 (myPanel):	

The	host	dimensions,	myPanel.getWidth()	and	myPanel.getHeight()	represent
the	“graphics”	region	of	the	control	hosting	the	graphics	object.

Points	 are	 referred	 to	 by	 a	 Cartesian	 pair,	 (x,	 y).	 In	 the	 diagram,	 note	 the	 x
(horizontal)	 coordinate	 runs	 from	 left	 to	 right,	 starting	 at	 0	 and	 extending	 to
myPanel.getWidth()	 -	1.	The	y	 (vertical)	coordinate	goes	 from	 top	 to	bottom,
starting	 at	 0	 and	 ending	 at	myPanel.getHeight()	 -	 1.	 All	 measurements	 are
integers	and	in	units	of	pixels.

Once	a	shape	object	 is	created	 (we	will	 see	how	 to	do	 that	next),	 the	shape	 is
drawn	using	the	draw	method.	For	a	shape	myShape	using	our	example	graphics
object	(g2D),	the	code	is:	g2D.draw(myShape);

The	shape	will	be	drawn	using	the	current	stroke	and	paint	attributes.

For	shape	objects	that	encompass	some	two-dimensional	region,	that	region	can

be	filled	using	the	fill	method.	For	our	example,	the	code	is:	g2D.fill(myShape);

The	shape	will	be	filled	using	the	current	paint	attribute.

Let’s	define	our	first	two	shapes	–	a	line	–	yes,	a	line	is	a	shape	and	a	rectangle.
This	will	allow	us	to	draw	the	weight	plot	area	in	the	display	panel.

Line2D	Shape
The	 first	 shape	we	 learn	 to	draw	 is	a	 line,	or	 the	Line2D	 shape.	This	 shape	 is
used	 to	 connect	 two	 Cartesian	 points	 with	 a	 straight-line	 segment:	

If	we	wish	 to	 connect	 the	 point	 (x1,	y1)	with	 (x2,	y2),	 the	 shape	 (myLine)	 is
created	using:	Line2D.Double	myLine	=	new	Line2D.Double(x1,	y1,	x2,	y2);
Each	 coordinate	 value	 is	 a	 double	 type	 (there	 is	 also	 a	Line2D.Float	 shape,
where	 each	 coordinate	 is	 a	 float	 type).	 Once	 created,	 the	 line	 is	 drawn	 (in	 a
previously	 created	 Graphics2D	 object,	 g2D)	 using	 the	 draw	 method:
g2D.draw(myLine);

The	line	will	be	drawn	using	the	current	stroke	and	paint	attributes.

Rectangle2D	Shape
We	 now	 look	 at	 two-dimensional	 shapes.	 We	 want	 to	 draw	 a	 rectangle,
represented	by	the	Rectangle2D	shape.	To	specify	an	rectangle,	you	specify	the
upper	 left	 corner	 (x,	 y),	 the	 width	 (w)	 and	 the	 height	 (h)	 of	 the	 rectangle:	

If	 the	 rectangle	 is	 named	 myRectangle,	 the	 corresponding	 shape	 is	 created
using:	Rectangle2D.Double	myRectangle	=	new	Rectangle2D.Double(x,	y,	w,
h);	 Each	 argument	 value	 is	 a	double	 type	 (there	 is	 also	 a	Rectangle2D.Float
shape,	where	each	argument	is	a	float	type).	Once	created,	the	rectangle	is	drawn
(in	 a	 previously	 created	 Graphics2D	 object,	 g2D)	 using	 the	 draw	 method:
g2D.draw(myRectangle);

The	rectangle	will	be	drawn	using	the	current	stroke	and	paint	attributes.

Say	 we	 have	 a	 panel	 (myPanel)	 of	 dimension	 (300,	 200).	 To	 draw	 a	 black
rectangle	 (myRectangle)	 in	 that	 panel,	 with	 a	 line	 width	 of	 1	 (the	 default
stroke),	starting	at	(40,	40),	with	width	150	and	height	100,	the	Java	code	would
be:	Graphics2D	g2D	=	(Graphics2D)	myPanel.getGraphics();
Rectangle2D.Double	myRectangle	=	new	Rectangle2D.Double(40,	40,	150,
100);	g2D.setPaint(Color.BLACK);
g2D.draw(myRectangle);
g2D.dispose();

This	produces:

The	 rectangle	 we	 just	 drew	 is	 pretty	 boring.	 It	 would	 be	 nice	 to	 have	 the
capability	 to	 fill	 it	 with	 a	 color	 and/or	 pattern.	 Filling	 of	 shapes	 in	 Java2D	 is
done	with	the	fill	method.	To	fill	the	rectangle,	use:	g2D.fill(myRectangle);

The	rectangle	will	be	filled	with	the	current	paint	attribute.	For	now,	we	will	just
fill	the	shapes	with	solid	colors.

To	 fill	 our	 example	 rectangle	with	 red,	we	 use	 this	 code:	Graphics2D	g2D	=
(Graphics2D)	myPanel.getGraphics();
Rectangle2D.Double	myRectangle	=	new	Rectangle2D.Double(40,	40,	150,
100);	g2D.setPaint(Color.RED);
g2D.fill(myRectangle);
g2D.dispose();

This	produces:

Notice	the	fill	method	fills	 the	entire	region	with	the	selected	color.	If	you	had
previously	used	the	draw	method	to	form	a	bordered	rectangle,	the	fill	will	blot
out	that	border.	If	you	want	a	bordered,	filled	region,	do	the	fill	operation	first,
then	the	draw	operation.

Persistent	Graphics
It	looks	like	we	have	enough	information	to	draw	the	plot	area	(a	filled	rectangle
with	some	black	grid	lines)	on	the	displayPanel.	Before	doing	that,	we	need	to
address	one	problem	–	graphics	persistence.

Java	 graphics	 objects	 have	 no	memory.	 They	 only	 display	what	 has	 been	 last
drawn	on	them.	If	you	reduce	your	frame	to	an	icon	(or	it	becomes	obscured	by
another	 frame)	 and	 restore	 it,	 the	 graphics	 object	 cannot	 remember	 what	 was
displayed	previously	–	it	will	be	cleared.	Similarly,	if	you	switch	from	an	active
Java	application	to	some	other	application,	your	Java	form	may	become	partially
or	fully	obscured.	When	you	return	to	your	Java	application,	the	obscured	part	of
any	graphics	object	will	 be	 erased.	Again,	 there	 is	no	memory.	Notice	 in	both
these	 cases,	however,	 all	 controls	 are	 automatically	 restored	 to	 the	 form.	Your
application	 remembers	 these,	 fortunately!	 The	 controls	 are	 persistent.	We	 also
want	persistent	graphics.

To	 maintain	 persistent	 graphics,	 we	 need	 to	 build	 memory	 into	 our	 graphics
objects	using	code.	In	this	code,	we	must	be	able	to	recreate,	when	needed,	the
current	 state	 of	 a	 graphics	 object.	 This	 ‘custom’	 code	 is	 placed	 in	 the	 host
control’s	paintComponent	 method.	 This	 event	method	 is	 called	whenever	 an
obscured	 object	 becomes	 unobscured.	 The	 paintComponent	 method	 will	 be
called	 for	 each	 object	 when	 a	 frame	 is	 first	 activated	 and	 when	 a	 frame	 is
restored	from	an	icon	or	whenever	an	obscured	object	is	viewable	again.

How	do	we	access	the	paintComponent	method	for	a	control?	For	such	access,
we	 need	 to	 create	 a	 separate	 class	 for	 the	 control	 that	 extends	 the	 particular
control.	 Creating	 the	 class	 is	 a	 simple.	 We	 define	 a	GraphicsPanel	 class	 (a
JPanel	control	hosting	a	graphics	object,	each	panel	needing	persistent	graphics
would	 use	 a	 different	 name)	 using	 the	 following	 code	 framework:	 class
GraphicsPanel	extends	JPanel

{

public	void	paintComponent(Graphics	g)

{

[Painting	code	goes	here]

}

}

This	class	is	placed	after	the	main	class	in	a	program.	A	GraphicsPanel	object
is	 then	 declared	 and	 created	 using:	 GraphicsPanel	 myPanel	 =	 new
GraphicsPanel();

With	 this	 declaration,	 the	 “painting”	 of	 the	 control	 is	 now	 handled	 by	 the
paintComponent	method.	Notice	this	method	passes	a	Graphics	object	g.	The
first	step	in	painting	the	component	is	to	cast	this	object	to	a	Graphics2D	object:
Graphics2D	g2D	=	(Graphics2D)	g;

After	 this,	 we	 place	 code	 in	 the	 paintComponent	 method	 that	 describes	 the
current	state	of	the	graphics	object.	In	particular,	make	sure	the	first	statement	is:
super.paintComponent(g2D);

This	 will	 reestablish	 any	 background	 color	 (the	 keyword	 super	 refers	 to	 the
‘inherited’	control,	the	panel	in	this	case).

Maintaining	 persistent	 graphics	 does	 require	 a	 bit	 of	 work	 on	 your	 part.	 You
need	 to	 always	 know	what	 is	 in	 your	 graphics	 object	 and	 how	 to	 recreate	 the
object,	when	needed.	This	usually	involves	developing	some	program	variables
that	 describe	 how	 to	 recreate	 the	 graphics	 object.	 And,	 you	 usually	 need	 to
develop	 some	 ad	 hoc	 rules	 for	 recreation.	 As	 you	 build	 your	 first	 few
paintComponent	 events,	 you	 will	 begin	 to	 develop	 your	 own	 ways	 for
maintaining	persistent	graphics.	At	certain	times,	you’ll	need	to	force	a	“repaint”
of	 your	 control.	 To	 do	 this,	 for	 a	 host	 control	 named	 hostControl	 use:
hostControl.repaint();

You	 will	 often	 need	 to	 have	 your	 paintComponent	 method	 access	 variables
from	your	main	class.	If	your	main	class	is	named	mainClass	and	you	want	the
value	of	myVariable,	the	variable	is	accessed	using:	mainClass.myVariable

Any	variables	 accessed	 in	 this	manner	must	 have	 class	 level	 scope	 and,	when
declared,	 be	 prefaced	 with	 the	 keyword	 static.	 This	 is	 due	 to	 the	 way	 the

paintComponent	method	works.

This	all	may	sound	difficult,	but	it	really	isn’t.	We’ve	already	added	our	graphics
panel	 (WeightPlotPanel)	 and	 it’s	paintComponent	method.	Let’s	 see	 how	 to
use	it.

Code	Design	–	Panel	Plot	Area
Again,	let’s	look	at	our	future:

Since	 this	 is	 our	 first	 drawing,	 we’ll	 take	 it	 in	 steps.	 As	 a	 first	 step,	 we	 will
define	 the	 plot	 frame	 (plotFrame)	 rectangular	 region	 where	 the	 plot	 will	 be
drawn.	 Add	 the	 import	 statement	 (to	 the	WeightMonitor	 class)	 needed	 for
graphics:	import	java.awt.geom.*;

All	graphics	code	will	go	in	the	WeightPlotPanel	class.	Add	the	shaded	code	to
define	and	draw	plotFrame:	class	WeightPlotPanel	extends	JPanel

{

	
Rectangle2D.Double	plotFrame;

public	void	paintComponent(Graphics	g)

{

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);

//	draw	plot	frame
plotFrame	=	new	Rectangle2D.Double(50,	40,	420,	280);
g2D.setPaint(Color.WHITE);
g2D.fill(plotFrame);
g2D.setStroke(new	BasicStroke(2));
g2D.setPaint(Color.BLACK);
g2D.draw(plotFrame);

g2D.dispose();

}

}

Save,	 run	 to	 see	 the	 newly	 create	 plotFrame	 element:	

As	usual,	we	will	write	 the	code	 for	 this	panel	 in	 several	 steps.	There	are	 two
primary	 tasks	 in	 drawing	 the	weight	 plot.	 The	 first	 is	 to	 “connect	 the	 points”
entered	in	the	list	control	to	draw	the	plot	in	a	panel	control.	The	second	is	to	put
useful	 labeling	information	around	the	plot.	Let’s	 look	at	 the	plot	drawing	task
first.	 All	 remaining	 code	 will	 go	 in	 the	 WeightPlotPanel	 class
paintComponent	method.

Code	Design	–	Weight	Plot
When	a	user	clicks	the	Weight	Plot	tab,	we	want	to	display	a	plot	of	the	input
weights.	We	generate	what	 is	 known	 as	 a	 line	plot,	which	 connects	Cartesian
pairs	of	points.	We	used	such	data	pairs	in	Chapter	7.	The	horizontal	axis	will	be
the	number	of	days	 that	have	elapsed	 since	 the	 first	weight	entry.	The	vertical
axis	will	be	the	corresponding	weight	value.	Such	a	plot	will	give	us	some	idea
of	any	trends	noted	over	time.

The	steps	to	generate	such	a	plot	are	fairly	simple:

➢	Cycle	through	all	values	in	the	list	control,	extracting	the	date	and	weight
values.	 Store	 the	 number	 of	 elapsed	 days	 (difference	 between	 ‘current’
date	and	first	date)	in	an	array	d.	Store	the	corresponding	weight	values	in
an	array	w.

➢	Loop	through	all	array	elements,	connecting	consecutive	points	(with	d	as
the	horizontal	point	and	w	as	the	vertical	point)	using	the	Line2D	shape.

In	 our	work,	 both	d	 and	w	 will	 be	 zero-based	 arrays	 (to	match	 up	with	 the
items	 of	 the	 list	 control).	 Hence,	 each	 array	 will	 have
weightsListModel.getSize()	 elements,	 numbered	 from	 0	 to
weightsListModel.getSize()–	1.

In	the	weight	plot,	the	horizontal	value	(a	date	difference)	will	range	from	0	(the
first	day	in	the	weight	file)	to	d[weightsListModel.getSize()	–	1]	(we’ll	call	this
dmax,	 the	difference	between	 the	 last	date	 in	 the	 list	 control	 and	 the	 first	 date).
This	 value	 increases	 from	 left	 to	 right.	 The	 vertical	 value	will	 range	 from	 the
minimum	weight	 value	 (wmin)	 to	 the	maximum	weight	 value	 (wmax)	 -	 we	will
need	to	find	these	extremes.	This	value	increases	from	bottom	to	top.	Hence,	to
plot	our	data,	we	need	to	compute	where	each	(d,	w)	pair	in	our	weight	plot	fits
within	 the	 dimensions	 of	 plotFrame.	 This	 is	 a	 straightforward	 coordinate
conversion	computation.

Let’s	 look	 at	 the	 horizontal	 axis	 first.	The	horizontal	 (x	 axis)	 in	plotFrame	 is
plotFrame.getWidth()	 pixels	 wide.	 The	 far	 left	 pixel	 is	 at	 x	 =
plotFrame.getX()	 and	 the	 far	 right	 is	 at	 x	 =	 plotFrame.getX()	 +

plotFrame.getWidth().	 x	 increases	 from	 left	 to	 right:	

The	horizontal	weight	plot	value	(d)	runs	from	a	minimum,	0,	at	the	left	to	a
maximum,	dmax,	at	the	right.	Thus,	the	first	pixel	on	the	horizontal	axis	of	our
weight	plot	will	be	0	and	the	last	will	be	dmax:	

With	these	two	depictions,	we	can	compute	the	x	value	corresponding	to	a	given
d	value	using	simple	proportions,	taking	the	distance	from	some	point	on	each
axis	 to	 the	 minimum	 and	 dividing	 by	 the	 total	 distance.	 The	 process	 is	 also
called	 linear	 interpolation.	 These	 proportions	 show:	

Solving	this	for	x	yields	the	desired	conversion	from	a	days	value	on	the
horizontal	axis	(d)	to	a	graphics	object	value	for	plotting:	x	=
plotFrame.getX()	+	d(plotFrame.getX())/dmax	You	can	see	this	is	correct	at
each	extreme	value.	When	d	=	0,	x	=	plotFrame.getX().	When	d	=	dmax,	x	=
plotFrame.getX()	+	plotFrame.getWidth().

Now,	we	find	the	corresponding	conversion	for	the	vertical	(y)	axis.	We’ll	place
the	 two	axes	 side-by-side	 for	 easy	comparison	 (graphics	object	on	 left,	weight

axis	on	right):	

The	vertical	(y	axis)	in	plotFrame	is	plotFrame.getHeight()pixels	high.	The
topmost	pixel	is	at	y	=	plotFrame.getY()	and	the	bottom	is	at	y	=
plotFrame.getY()	+	plotFrame.getHeight().	y	increases	from	top	to	bottom.
The	vertical	data	(weight	axis,	w)	in	our	weight	plot,	runs	from	a	minimum,
wmin,	at	the	bottom,	to	a	maximum,	wmax,	at	the	top.	Thus,	the	top	pixel	on	the
vertical	axis	will	be	wmax	and	the	bottom	will	be	wmin	(note	the	weight	axis
increases	up,	rather	than	down).

With	these	two	depictions,	we	can	compute	the	y	value	corresponding	to	a	given
w	 value	 using	 linear	 interpolation.	 The	 computations	 show:	

Solving	this	for	y	yields	the	desired	conversion	from	a	weight	value	on	the
vertical	axis	(w)	to	a	graphics	object	value	for	plotting	(this	requires	a	bit
algebra,	but	it’s	straightforward):	y	=	plotFrame.getY()	+	(wmax	-	w)
(plotFrame.getHeight())/(wmax	–	wmin)	Again,	check	the	extremes.	When	w	=
wmin,	y	=	plotFrame.getY()	+	plotFrame.getHeight().	When	w	=	wmax,	y	=
plotFrame.getY().	It	looks	good.

We	will	use	two	general	methods	to	do	these	coordinate	conversions.	First,	for
the	horizontal	axis,	we	use	cToX.	This	method	has	two	input	arguments:	 the	d
value	 and	 the	maximum	d	 value,	dmax.	Both	 values	 are	 of	double	 data	 type.
The	 method	 returns	 the	 plotFramecoordinate	 (an	 int	 type):	 private	 int
dToX(double	d,	double	dmax)

{

return	((int)(d	*	(plotFrame.getWidth()	-	1)	/	dmax	+
plotFrame.getX()));	}

Note	this	is	used	with	the	panel	control	where	the	plot	will	be	drawn
(plotPanel).

For	the	vertical	axis,	we	use	wToY.	This	method	has	three	input	arguments:	the
w	 value,	 the	 minimum	w	 value,	wmin,	 and	 the	 maximum	 value,	wmax.	 All
values	are	of	double	data	type.	The	method	returns	the	plotPanel	coordinate	(an
int	type):	private	int	wToY(double	w,	double	wmin,	double	wmax)

{

{

return	((int)((wmax	-	w)	*	(plotFrame.getHeight()	-	1)	/	(wmax	-
wmin)	+	plotFrame.getY()));	}

Add	both	these	methods	to	the	WeightPlotClass.

With	 the	 ability	 to	 transform	 coordinates,	 we	 can	 now	 rewrite	 the	 steps	 to
generate	a	weight	plot:

➢	Cycle	through	all	values	in	the	list	control,	extracting	the	date	and	weight
values.	 Store	 the	 number	 of	 elapsed	 days	 (difference	 between	 ‘current’
date	and	first	date)	in	an	array	d.	Store	the	corresponding	weight	values	in
an	 array	w.	 These	 are	 both	 zero-based	 arrays.	While	 extracting	 values,
determine	the	minimum	and	maximum	weight	values	(wmin	and	wmax).

➢	 Loop	 through	 all	 array	 elements.	 For	 each	 point,	 convert	 the	 d	 and	w
values	to	graphics	object	coordinates,	then	connect	the	current	point	with
the	previous	point	using	a	Line2D	object.

The	 code	 to	 create	 the	 weight	 plot	 in	 the	WeightPlotPanel	 class	 will	 need
objects,	 variables	 and	 methods	 from	 the	 main	 class	 (WeightMonitor).	 In	 the
previous	 chapter,	 we	 saw	 that	 any	 main	 class	 variables	 or	 objects	 that	 need
access	 in	 another	 class	 should	be	prefaced	with	 the	keyword	 static.	To	 access
such	a	variable,	we	use	the	syntax:	MainClass.variable

Main	class	variables	that	require	the	static	modifier	are:	static
DefaultListModel	weightsListModel	=	new	DefaultListModel();	Make	the
changes.

In	a	similar	fashion,	any	methods	in	the	main	class	 that	need	to	be	accessed	in
the	‘secondary’	class	need	to	be	declared	static,	with	public	rather	than	private
access.	 This	 is	 a	 simple	 change,	merely	 needing	 a	modification	 of	 the	 header
line.	 Once	 done,	 these	 methods	 can	 be	 accessed	 using:
MainClass.method(arguments)

The	modified	headers	for	main	class	methods	that	require	such	access	are:
static	public	Date	stringToDate(String	s)

static	public	String	getDate(String	s)

static	public	String	getWeight(String	s)

Make	the	noted	changes

With	this	knowledge,	the	code	to	implement	the	above	plotting	steps	is:	//	draw
weight	plot
int	lSize	=	WeightMonitor.weightsListModel.getSize();
double[]	d	=	new	double[lSize];
double[]	w	=	new	double[lSize];
double	wmin,	wmax;
String	s;
if	(lSize	<	2)

return;
g2D.setStroke(new	BasicStroke(2));
g2D.setPaint(Color.BLUE);
wmin	=	1000.0;
wmax	=	0.0;
long	t1	=
WeightMonitor.stringToDate(WeightMonitor.getDate(WeightMon
itor.weightsListModel.getElementAt(0).toString())).getTime	();	for	(int	i	=
0;	i	<	lSize;	i++)

{

s	=
WeightMonitor.weightsListModel.getElementAt(i).toString();	long	t2	=
WeightMonitor.stringToDate(WeightMonitor.getDate(s)).getTi	me();	d[i]
=	(double)	((t2	-	t1)	/	(24	3600	1000));

w[i]	=
Double.valueOf(WeightMonitor.getWeight(s)).doubleValue();	wmin	=
Math.min(w[i],	wmin);

wmax	=	Math.max(w[i],	wmax);

}

for	(int	i	=	1;	i	<	lSize;	i++)

{

//	connect	current	point	to	previous	point
Line2D.Double	weightLine	=	new	Line2D.Double(dToX(d[i	-	1],

d[lSize	-	1]),	wToY(w[i	-	1],	wmin,	wmax),	dToX(d[i],	d[lSize	-	1]),
wToY(w[i],	wmin,	wmax));	g2D.draw(weightLine);

}

Add	this	code	to	the	paintComponent	method	for	the	WeightPlotPanel
class..

Let’s	look	at	this	code	in	detail.	If	there	are	fewer	than	2	points,	we	return	the
user	to	the	Weight	Editor	tab	and	exit	the	method,	since	you	need	two	points
to	draw	a	line.	Next,	the	d	and	w	array	values	are	obtained	from	the	list	items
and	the	minimum	and	maximum	weight	values	are	found.	To	draw	the	plot,
we	cycle	through	all	points	in	the	array,	connecting	the	current	point	with	the
previous	point.	Make	sure	you	understand	these	steps.	Notice	how	we	use
time	in	milliseconds	to	compute	date	differences	in	days	(t2	–	t1)	Save	and
run	the	project.	If	you	opened	the	sample	weight	file	before,	the	weight	values
for	that	file	will	be	displayed.	If	they	are	not	displayed,	open	the	sample.wgt
file	found	in	the	\HomeJava\HomeJava	Projects\WeightMonitor\	folder.
You	should	see:	

Now,	click	the	Weight	Plot	tab	and	you	will	see	this	data	in	a	line	plot:	

Success!

As	 drawn,	 the	 weight	 plot	 (though	 informative)	 is	 pretty	 boring.	 It	 lacks	 grid
lines	indicating	weight	values.	And,	it	lacks	labeling	information	to	tell	us	what
we’re	looking	at.	We	need	labels	on	the	vertical	axis	telling	us	the	weight	range.
We	need	labels	on	the	horizontal	axis	telling	us	the	represented	date	range.	Let’s
make	things	nicer.

Code	Design	–	Grid	Lines
With	horizontal	grid	lines,	we	would	be	better	able	to	determine	plotted	weight
values.	How	many	grid	 lines	should	 there	be	and	how	far	apart	should	 they	be
spaced?	We	will	use	grid	line	spacing	that	results	in	a	“nice”	plot.

If	you	look	back	at	the	weight	values	in	the	Weight	Editor	tab,	you	will	see	that
the	weights	range	from	a	minimum	of	200.5	to	205.0.	So,	as	drawn,	the	bottom
of	the	vertical	axis	in	the	plot	is	200.5	and	the	top	is	205.0.	Notice	the	line	plot
hits	these	extremes	in	a	few	points.	With	this	example,	we	could	choose	a	grid
line	spacing	of	0.5	pounds.	That	would	result	in	10	weight	value	labels	(200.5,
201.0,	 201.5,	 202.0,	 202.5,	 203.0,	 203.5,	 204.0,	 204.5,	 205.0)	 and	8	grid	 lines
(we	don’t	need	grid	lines	at	the	bottom	or	top	of	the	plot).	Such	a	plot	would	be
pretty	 cluttered,	not	 a	 “nice”	plot.	Let’s	develop	 some	 rules	 for	nicer	grid	 line
spacing.	We’ll	 use	 whole	 numbers	 for	 spacing	 and	 whole	 number	 for	 labels.
And,	 we’ll	 try	 to	 make	 sure	 the	 weight	 plot	 never	 touches	 either	 vertical
extreme.

Here’s	the	rules	I	use	(you	may	come	up	with	some	others):

➢	Round	maximum	weight	up	to	next	integer	value.
➢	Round	minimum	weight	down	to	next	integer	value.
➢	 If	difference	between	maximum	and	minimum	is	 less	 than	5	pounds,	set
grid	line	spacing	to	1	pound.

➢	If	difference	between	maximum	and	minimum	is	less	than	10	pounds,	set
grid	line	spacing	to	2	pounds.

➢	If	difference	between	maximum	and	minimum	is	less	than	25	pounds,	set
grid	line	spacing	to	5	pounds.

➢	If	difference	between	maximum	and	minimum	is	less	than	50	pounds,	set
grid	line	spacing	to	10	pounds.

➢	For	larger	differences,	use	a	grid	line	spacing	of	20	pounds.
➢	Adjust	maximum	value	 to	 next	 highest	 integer	multiple	 of	 the	 grid	 line
spacing	(if	necessary).

➢	 Adjust	 minimum	 value	 to	 next	 lowest	 integer	 multiple	 of	 the	 grid	 line
spacing	(if	necessary).

Once	the	grid	line	spacing	is	determined,	the	grid	lines	can	be	drawn	using	the
Line2D	object.	As	stated,	grid	lines	are	drawn	at	each	vertical	position,	except
the	bottom	and	top.

The	modified	paintComponent	 code	 segment	 that	 computes	 grid	 line	 spacing
and	draws	the	grid	lines	is	(changes	are	shaded):	//	draw	weight	plot
int	lSize	=	WeightMonitor.weightsListModel.getSize();
double[]	d	=	new	double[lSize];
double[]	w	=	new	double[lSize];
double	wmin,	wmax;
String	s;
int	intervals;
double	gridSpacing,	wLegend;
if	(lSize	<	2)

return;
g2D.setStroke(new	BasicStroke(2));
g2D.setPaint(Color.BLUE);
wmin	=	1000.0;
wmax	=	0.0;
long	t1	=
WeightMonitor.stringToDate(WeightMonitor.getDate(WeightMonitor.weightsListModel.getElementAt(0).toString())).getTime();
for	(int	i	=	0;	i	<	lSize;	i++)

{

s	=
WeightMonitor.weightsListModel.getElementAt(i).toString();	long	t2	=
WeightMonitor.stringToDate(WeightMonitor.getDate(s)).getTime();	d[i]
=	(double)	((t2	-	t1)	/	(24	3600	1000));

w[i]	=
Double.valueOf(WeightMonitor.getWeight(s)).doubleValue();	wmin	=
Math.min(w[i],	wmin);

wmax	=	Math.max(w[i],	wmax);

}

}

//	adjust	Wmin/Wmax	for	'nice'	intervals
if	(wmin	==	wmax)

wmin	=	wmax	-	1;
wmax	=	(double)	((int)(wmax	+	0.5));	//	round	up
wmin	=	(double)	((int)(wmin	-	0.5));	//	round	down
if	(wmax	-	wmin	<=	5.0)

gridSpacing	=	1.0;
else	if	(wmax	-	wmin	<=	10.0)

gridSpacing	=	2.0;
else	if	(wmax	-	wmin	<=	25.0)

gridSpacing	=	5.0;
else	if	(wmax	-	wmin	<=	50.0)

gridSpacing	=	10.0;
else

gridSpacing	=	20.0;
if	(wmax	%	(int)gridSpacing	!=	0)

wmax	=	gridSpacing	*	(int)(wmax	/	gridSpacing)	+	gridSpacing;	if
(wmin	%	(int)gridSpacing	!=	0)
wmin	=	gridSpacing	*	(int)(wmin	/	gridSpacing);

intervals	=	(int)((wmax	-	wmin)	/	gridSpacing);
for	(int	i	=	1;	i	<	lSize;	i++)

{

//	connect	current	point	to	previous	point
Line2D.Double	weightLine	=	new	Line2D.Double(dToX(d[i	-	1],

d[lSize	-	1]),	wToY(w[i	-	1],	wmin,	wmax),	dToX(d[i],	d[lSize	-	1]),
wToY(w[i],	wmin,	wmax));	g2D.draw(weightLine);

}

//	draw	grid	lines	g2D.setStroke(new	BasicStroke(1));
g2D.setPaint(Color.BLACK);

wLegend	=	wmin;
for	(int	i	=	0;	i	<=	intervals;	i++)

{

if	(i	>	0	&&	i	<	intervals)

{

//	draw	grid	line	(except	at	top	and	bottom)
Line2D.Double	gridLine	=	new	Line2D.Double(plotFrame.getX(),

wToY(wLegend,	wmin,	wmax),	plotFrame.getX()	+
plotFrame.getWidth(),	wToY(wLegend,	wmin,	wmax));
g2D.draw(gridLine);

}

wLegend	+=	gridSpacing;

}

In	this	code,	gridSpacing	is	the	spacing	between	grid	lines	and	intervals	is	the
number	 of	 grid	 intervals	 between	wmin	 and	wmax.	wLegend	 is	 the	 weight
value	 at	 the	 current	 grid	 line	 (it	 starts	 at	wmin	 and	 increases	 by	gridSpacing
after	drawing	a	grid	line).	The	grid	lines	are	drawn	with	a	black	pen	with	1	pixel
width.	You	should	see	all	the	grid	spacing	calculation	steps.	Make	the	indicated
changes	in	your	project.

Save	 and	 run	 the	 project.	Make	 sure	 the	 sample.wgt	 file	 is	 opened.	Click	 the
Weight	 Plot	 tab.	 Here’s	 the	 modified	 plot:	

Notice	the	grid	lines	(they’re	spaced	apart	by	1	pound,	by	the	way).	This	is	a
nicer	plot.	It’s	still	not	“nice	enough.”	There’s	no	indication	of	what	the	grid
line	spacing	is.	We	don’t	know	what	the	weight	range	is.	We	don’t	know	what
the	date	range	is.	All	that	information	is	provided	with	plot	labeling.

Code	Design	–	Plot	Labels
We	will	add	labels	(not	label	controls,	just	text	information	for	labeling)	for	the
weight	axis	first.	When	drawing	the	grid	lines,	we	wrote	code	that	specified	the
weight	values	(wLegend)	for	the	labels.	We	just	need	to	add	code	that	converts
these	values	to	strings	and	places	them	in	the	appropriate	location	on	the	plot	tab
page.	For	each	wLegend	value:

➢	 Convert	 wLegend	 to	 String	 type	 (formatted	 with	 no	 decimal	 places)
➢	Determine	width	and	height	of	string.

➢	Position	string	in	proper	vertical	location	and	right	justified	to	left	side	of
plot.

The	getStringBounds	method	will	be	used	to	find	the	width	and	height	of	the
string.	The	wToY	method	helps	position	the	string	label	vertically.

Each	 label	 will	 be	 “drawn”	 outside	 the	plotFrame	 area.	 Here’s	 a	 sketch	 that
shows	 you	 how	 one	 label	 (for	 a	 weight	 value	 w)	 is	 positioned:	

To	horizontally	position	label,	you	use	(the	5	gives	a	little	padding):	x	=	(int)
(plotFrame.getX()	–	label.getWidth()	–	5);

To	vertically	position	label,	use:	y	=	(int)	(wtoY(w,	wmin,	wmax)	+	0.5	*
label.getHeight()));	The	pair	(x,	y)	are	used	to	position	the	string	label	using
drawString	on	weightPanel.	The	width	and	height	of	the	label	are	found
using	the	getStringBounds	method.

The	 code	 to	 ‘draw’	 the	 labels	 is	 placed	 in	 the	 code	 where	 the	 grid	 lines	 are
drawn.	 This	modified	 code	 segment	 (changes	 are	 shaded):	 //	 draw	 grid	 lines
and	labels
Font	labelFont	=	new	Font("Arial",	Font.BOLD,	14);
g2D.setFont(labelFont);
Rectangle2D	labelRect;
String	lblText;
g2D.setStroke(new	BasicStroke(1));
g2D.setPaint(Color.BLACK);
wLegend	=	wmin;
for	(int	i	=	0;	i	<=	intervals;	i++)

{

lblText	=	String.valueOf((int)	wLegend);
labelRect	=	labelFont.getStringBounds(lblText,
g2D.getFontRenderContext());	g2D.drawString(lblText,	(int)
(plotFrame.getX()	-	labelRect.getWidth()	-	5),	(int)	(wToY(wLegend,
wmin,	wmax)	+	0.5	*	labelRect.getHeight()));
if	(i	>	0	&&	i	<	intervals)

{

//	draw	grid	line	(except	at	top	and	bottom)
Line2D.Double	gridLine	=	new	Line2D.Double(plotFrame.getX(),

wToY(wLegend,	wmin,	wmax),	plotFrame.getX()	+
plotFrame.getWidth(),	wToY(wLegend,	wmin,	wmax));
g2D.draw(gridLine);

}

wLegend	+=	gridSpacing;

}

Make	the	noted	changes	to	the	segment	of	code	in	the	paintComponent
method.

Save	 and	 run	 the	project.	The	values	 for	 sample.wgt	 should	 appear.	Click	 the

Weight	Plot	tab:	

Our	plot	now	has	very	nice	labels.

Now,	we	add	 labels	 to	 the	horizontal	weight	plot	axis.	Recall	 this	axis	 tells	us
how	many	days	have	elapsed	since	we	started	the	weight	file.	We	could	label	the
axis	with	such	day	values,	choosing	an	appropriate	horizontal	spacing.	Instead	of
doing	 this,	we	will	 simply	 label	 the	 axis	with	 the	 starting	date	 and	 the	 ending
date.	We	feel	this	is	more	meaningful	information.	The	form	of	the	labeling	will

be:	

That	is,	we	will	display	the	two	dates	and	draw	lines	indicating	where	these
dates	fall	on	the	plot.	Recall	the	start	date	is	given	by:
getDate(weightsListModel.getElementAt(0).toString())

and	the	end	date	is	given	by
getDate(weightsListModel.getElementAt(weightsListModel.get	Size()	-
1).toString())	The	code	to	generate	these	labels	also	goes	at	the	end	of	the
current	paintComponent	method.:	//	draw	horizontal	axis	labels	(using
label	font)
String	dateText	=	"Start:	"	+
WeightMonitor.getDate(WeightMonitor.weightsListModel.getEl
ementAt(0).toString());	g2D.drawString(dateText,	(int)	(plotFrame.getX()
+	10),	(int)	(plotFrame.getY()	+	plotFrame.getHeight()	+	20));
Line2D.Double	dateLine	=	new	Line2D.Double(plotFrame.getX()	+	10,
plotFrame.getY()	+	plotFrame.getHeight()	+	10,	plotFrame.getX(),
plotFrame.getY()	+	plotFrame.getHeight());	g2D.draw(dateLine);
dateText	=	"End:	"	+
WeightMonitor.getDate(WeightMonitor.weightsListModel.getEl
ementAt(WeightMonitor.weightsListModel.getSize()	-	1).toString());
Rectangle2D	dateRect	=	labelFont.getStringBounds(dateText,
g2D.getFontRenderContext());	g2D.drawString(dateText,	(int)
(plotFrame.getX()	+	plotFrame.getWidth()	-	dateRect.getWidth()	-	10),
(int)	(plotFrame.getY()	+	plotFrame.getHeight()	+	20));	dateLine	=	new
Line2D.Double(plotFrame.getX()	+	plotFrame.getWidth()	-	10,
plotFrame.getY()	+	plotFrame.getHeight()	+	10,	plotFrame.getX()	+
plotFrame.getWidth(),	plotFrame.getY()	+	plotFrame.getHeight());
g2D.draw(dateLine);

You	should	be	able	to	see	how	the	labels	are	formed	and	positioned.	Add	the
new	code.

Save	and	run	the	project.	Click	Weight	Plot	(using	the	sample.wgt	values)	and

you	should	see:	

Don’t	you	agree	the	plot	looks	much	nicer	with	labels?

Code	Design	–	Weight	Plot	Trend
We’re	 almost	 done	 with	 our	 weight	 monitor	 project.	 Just	 one	 more	 change.
When	you	 track	your	weight	with	a	plot,	you	want	 to	know	how	you’re	doing
with	 your	weight	management	 plan.	Are	 you	 gaining	weight?	 Losing	weight?
Maintaining	weight?	 You	want	 to	 know	 if	 there	 are	 any	 trends	 in	 the	 plotted
values.

We	want	to	add	a	‘trend	line’	to	the	weight	plot.	Such	a	straight	line	can	give	us
some	 idea	 of	what	 direction	 our	weight	 is	 going	 in.	 A	 very	 simple	 trend	 line
would	be	 to	connect	 the	 first	point	 in	 the	plot	 to	 the	 last	point.	This	approach,
however,	ignores	all	other	points	in	the	plot.	The	approach	we	take	will	consider
every	point	in	the	plot,	but,	be	forewarned,	some	mathematics	is	needed.

The	 trend	 line	we	use	will	 represent	a	“best	 fit”	 to	all	 the	points	 in	 the	weight
plot.	 Mathematically	 speaking,	 we	 do	 a	 linear	 regression	 on	 the	 data.	 This
regression	involves	calculus	and	solving	linear	equations,	so	we	won’t	bore	you
with	 the	details	 (unless	you	want	 to	see	 them).	We’ll	 just	give	you	 the	needed
equations	so	they	can	be	added	to	the	project	code.

Our	trend	line	‘models’	the	weight	values	using	the	straight	line	equation:	wm	=
td	+	w0

where:

wm	–	modeled	weight	d	–	horizontal	axis	value	(number	of	days	since	first
weight	entry)	t	–	trend	value	(pounds/day),	called	the	slope	of	the	line	w0	–
modeled	weight	when	d	=	0

With	the	above	model,	the	trend	line	connects	two	Cartesian	end	points:	(0,	w0)
and	(dmax,	tdmax	+	w0).	So,	to	draw	the	trend	line,	we	need	to	know	values	for	t
and	w0	(we	know	dmax).	Values	for	these	two	terms	are	found	using	the	d	and	w
arrays	currently	used	to	create	the	weight	plots.	The	equations	for	t	and	w0,	using
these	arrays	are	(these	equations	come	from	the	linear	regression	we	mentioned):

where	recall	the	Greek	sigma	in	the	above	equations	indicates	you	add	up	all
the	corresponding	elements	next	to	the	sigma.	Also,	N	is	the	number	of
elements	in	each	array	(weightsListModel.getSize()).

I	know	the	above	equations	are	messy,	but	they	yield	a	very	nice	trend	line	and
are	 straightforward	 to	 program.	You	 simply	 declare	 a	 variable	 for	 each	 of	 the
summation	 terms	 and	 form	 the	 sums	 as	you	 establish	 the	 two	arrays	d	 and	w.
Then	a	little	math	gives	you	values	for	t	and	w0.

For	those	interested	in	the	mathematics	involved	in	deriving	these	relations,	I’ll
outline	 them	 for	 you.	 For	 those	 not	 interested,	 leave	 this	 paragraph	 now.	 The
idea	 behind	 linear	 regression	 is	 to	 minimize	 the	 squared	 error	 between	 the
modeled	weight	points	and	the	actual	weight	points.	That	error	(e)	is	given	by:	

We	want	e	to	as	small	as	possible,	seeking	the	so-called	least	square	error
solution.	For	e	to	be	minimum	the	partial	derivative	of	e	with	respect	to	t	and
the	partial	derivative	with	respect	to	w0	must	be	zero.	Those	derivatives	are
(here’s	where	the	calculus	shows	up):	

If	we	rearrange	these	equations	a	bit,	we	get:

We	have	two	linear	equations	with	two	unknowns	(t	and	w0).	We	can	use
Cramer’s	rule	to	solve	these	equations	to	yield	the	previously	seen	relations
for	t	and	w0.

The	code	to	compute	and	draw	the	trend	line	is	interspersed	at	various	locations
in	the	paintComponent	method.	In	addition	to	drawing	the	trend	line,	we	add	a
label	at	 the	 top	of	 the	plot	 to	 indicate	a	“weekly”	 trend	value	 (7	*	 t),	 showing
how	much	weight	you	are	losing	or	gaining	each	week.	The	modified	method	is
(changes	are	shaded;	we	show	the	entire	paintComponent	method,	now	that	it	is
complete):	public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);

//	draw	plot	frame
plotFrame	=	new	Rectangle2D.Double(50,	40,	420,	280);
g2D.setPaint(Color.WHITE);
g2D.fill(plotFrame);
g2D.setStroke(new	BasicStroke(2));
g2D.setPaint(Color.BLACK);
g2D.draw(plotFrame);

//	draw	weight	plot
int	lSize	=	WeightMonitor.weightsListModel.getSize();
double[]	d	=	new	double[lSize];
double[]	w	=	new	double[lSize];

double	wmin,	wmax;
String	s;
int	intervals;
double	gridSpacing,	wLegend;
double	sumD,	sumD2,	sumW,	sumDW;
double	t,	w0;
if	(lSize	<	2)

return;
g2D.setStroke(new	BasicStroke(2));
g2D.setPaint(Color.BLUE);
wmin	=	1000.0;
wmax	=	0.0;
sumD	=	0.0;
sumD2	=	0.0;
sumW	=	0.0;
sumDW	=	0.0;
long	t1	=

WeightMonitor.stringToDate(WeightMonitor.getDate(WeightMon
itor.weightsListModel.getElementAt(0).toString())).getTime();	for	(int	i	=
0;	i	<	lSize;	i++)

{

s	=
WeightMonitor.weightsListModel.getElementAt(i).toString();	long	t2	=
WeightMonitor.stringToDate(WeightMonitor.getDate(s)).getTime();	d[i]
=	(double)	((t2	-	t1)	/	(24	3600	1000));

w[i]	=
Double.valueOf(WeightMonitor.getWeight(s)).doubleValue();	wmin	=
Math.min(w[i],	wmin);

wmax	=	Math.max(w[i],	wmax);
//	values	for	trend	line
sumD	+=	d[i];

sumD2	+=	d[i]	*	d[i];
sumW	+=	w[i];
sumDW	+=	d[i]	*	w[i];

}

//	adjust	Wmin/Wmax	for	'nice'	intervals
if	(wmin	==	wmax)

wmin	=	wmax	-	1;
wmax	=	(double)	((int)(wmax	+	0.5));	//	round	up
wmin	=	(double)	((int)(wmin	-	0.5));	//	round	down
if	(wmax	-	wmin	<=	5.0)

gridSpacing	=	1.0;
else	if	(wmax	-	wmin	<=	10.0)

gridSpacing	=	2.0;
else	if	(wmax	-	wmin	<=	25.0)

gridSpacing	=	5.0;
else	if	(wmax	-	wmin	<=	50.0)

gridSpacing	=	10.0;
else

gridSpacing	=	20.0;
if	(wmax	%	(int)gridSpacing	!=	0)

wmax	=	gridSpacing	*	(int)(wmax	/	gridSpacing)	+	gridSpacing;	if
(wmin	%	(int)gridSpacing	!=	0)

wmin	=	gridSpacing	*	(int)(wmin	/	gridSpacing);
intervals	=	(int)((wmax	-	wmin)	/	gridSpacing);
for	(int	i	=	1;	i	<	lSize;	i++)

{

//	connect	current	point	to	previous	point
Line2D.Double	weightLine	=	new	Line2D.Double(dToX(d[i	-	1],

d[lSize	-	1]),	wToY(w[i	-	1],	wmin,	wmax),	dToX(d[i],	d[lSize	-	1]),
wToY(w[i],	wmin,	wmax));	g2D.draw(weightLine);

}

//	draw	grid	lines	and	labels
Font	labelFont	=	new	Font("Arial",	Font.BOLD,	14);
g2D.setFont(labelFont);
Rectangle2D	labelRect;
String	lblText;
g2D.setStroke(new	BasicStroke(1));
g2D.setPaint(Color.BLACK);
wLegend	=	wmin;
for	(int	i	=	0;	i	<=	intervals;	i++)

{

lblText	=	String.valueOf((int)	wLegend);
labelRect	=	labelFont.getStringBounds(lblText,
g2D.getFontRenderContext());	g2D.drawString(lblText,	(int)
(plotFrame.getX()	-	labelRect.getWidth()	-	5),	(int)
(wToY(wLegend,	wmin,	wmax)	+	0.5	*	labelRect.getHeight()));	if
(i	>	0	&&	i	<	intervals)

{

//	draw	grid	line	(except	at	top	and	bottom)
Line2D.Double	gridLine	=	new

Line2D.Double(plotFrame.getX(),	wToY(wLegend,	wmin,	wmax),
plotFrame.getX()	+	plotFrame.getWidth(),	wToY(wLegend,	wmin,
wmax));	g2D.draw(gridLine);

}

wLegend	+=	gridSpacing;

}

//	draw	horizontal	axis	labels	(using	label	font)
String	dateText	=	"Start:	"	+

WeightMonitor.getDate(WeightMonitor.weightsListModel.getEl
ementAt(0).toString());	g2D.drawString(dateText,	(int)	(plotFrame.getX()
+	10),	(int)	(plotFrame.getY()	+	plotFrame.getHeight()	+	20));
Line2D.Double	dateLine	=	new	Line2D.Double(plotFrame.getX()	+	10,
plotFrame.getY()	+	plotFrame.getHeight()	+	10,	plotFrame.getX(),
plotFrame.getY()	+	plotFrame.getHeight());	g2D.draw(dateLine);

dateText	=	"End:	"	+
WeightMonitor.getDate(WeightMonitor.weightsListModel.getEl
ementAt(WeightMonitor.weightsListModel.getSize()	-	1).toString());
Rectangle2D	dateRect	=	labelFont.getStringBounds(dateText,
g2D.getFontRenderContext());	g2D.drawString(dateText,	(int)
(plotFrame.getX()	+	plotFrame.getWidth()	-	dateRect.getWidth()	-	10),
(int)	(plotFrame.getY()	+	plotFrame.getHeight()	+	20));	dateLine	=	new
Line2D.Double(plotFrame.getX()	+	plotFrame.getWidth()	-	10,
plotFrame.getY()	+	plotFrame.getHeight()	+	10,	plotFrame.getX()	+
plotFrame.getWidth(),	plotFrame.getY()	+	plotFrame.getHeight());
g2D.draw(dateLine);

//	trend	computations
t	=	(lSize	sumDW	-	sumD	sumW)	/	(lSize	sumD2	-	sumD	sumD);	w0	=

(sumD2	sumW	-	sumD	sumDW)	/	(lSize	sumD2	-	sumD	sumD);	//	draw
line

Line2D.Double	trendLine	=	new	Line2D.Double(plotFrame.getX(),
wToY(w0,	wmin,	wmax),	dToX(d[lSize	-	1],	d[lSize	-	1]),	wToY(t	*	d[lSize
-	1]	+	w0,	wmin,	wmax));	g2D.setPaint(Color.RED);

g2D.draw(trendLine);
String	title	=	"Trend:	";
if	(t	>	0)

title	+=	"+";
title	+=	new	DecimalFormat("0.00").format(7	*	t)	+	"	lb/week";	Font

titleFont	=	new	Font("Arial",	Font.BOLD,	16);
Rectangle2D	titleRect	=	titleFont.getStringBounds(title,

g2D.getFontRenderContext());	g2D.setFont(titleFont);
g2D.setPaint(Color.BLACK);
g2D.drawString(title,	(int)	(plotFrame.getX()	+	0.5	*

(plotFrame.getWidth()	-	titleRect.getWidth())),	(int)	(plotFrame.getY()	-
10));

g2D.dispose();

}

This	is	the	final	version	of	the	paintComponent	event.	Make	the	noted
changes.	You	should	see	how	the	trend	line	is	computed	and	drawn.	Also
notice	how	the	trend	value	is	printed	at	the	top	of	the	plot.

Save	and	run	the	project.	Click	Weight	Plot	one	last	time	using	sample.wgt	and
you	will	see	a	nice	red	trend	line	and	corresponding	label	indicating	I’m	losing
nearly	 a	 pound	 a	 week:	

Weight	Monitor	Project	Review
The	Weight	Monitor	Project	 is	 now	 complete.	 Save	 and	 run	 the	 project	 and
make	sure	it	works	as	designed.	Use	the	program	to	track	your	weight	each	day
(or	let	your	family	try	it).	Hopefully	the	program	can	become	an	integral	part	of
an	overall	health	program.

If	there	are	errors	in	your	implementation,	go	back	over	the	steps	of	frame	and
code	 design.	 Go	 over	 the	 developed	 code	 –	 make	 sure	 you	 understand	 how
different	parts	of	the	project	were	coded.	As	mentioned	in	the	beginning	of	this
chapter,	 the	 completed	 project	 is	 saved	 as	 WeightMonitor	 in	 the
\HomeJava\HomeJava	Projects\	project	group.

While	completing	this	project,	new	concepts	and	skills	you	should	have	gained
include:

➢	Use	of	the	tabbed	pane	control.
➢	Input/output	of	variables	with	sequential	files.
➢	Using	configuration	files	in	projects.
➢	Doing	unit	conversions	need	for	plotting.
➢	Making	“nice”	intervals	for	plots.

Weight	Monitor	Project	Enhancements
Possible	enhancements	to	the	weight	monitor	project	include:

➢	 We	 discuss	 printing	 in	 the	 next	 chapter.	 Once	 you	 understand	 how	 to
print,	 you	 might	 like	 to	 add	 such	 capabilities	 to	 the	 weight	 monitor
project.	 Print	 out	 your	 date/weight	 values.	 Print	 out	 the	 weight	 plot,
including	trend	line.

➢	Many	times,	you	are	trying	to	achieve	a	certain	weight	goal.	Modify	the
program	 to	 allow	a	user	 to	 enter	 a	desired	goal	 and	a	desired	goal	date.
Provide	computations	that	show	how	well	the	user	to	doing	in	trying	the
reach	this	goal.	Draw	a	“goal”	line	on	the	weight	plot.

➢	As	 implemented,	weights	need	 to	be	 in	pounds.	Most	of	 the	world	uses
kilograms	for	weight.	Add	the	capability	to	choose	either	unit	for	weight.
You’ll	have	to	decide	if	you	want	to	change	any	current	values	to	the	new
units	or	just	keep	file	in	one	particular	set	of	units.

Weight	Monitor	Project	Java	Code
Listing

/	*

*	WeightMonitor.java

*/

package	weightmonitor;
import	javax.swing.*;
import	javax.swing.filechooser.*;
import	javax.swing.event.*;
import	java.awt.*;
import	java.awt.event.*;
import	com.toedter.calendar.*;
import	java.beans.*;
import	java.util.*;
import	java.text.*;
import	java.io.*;
import	java.awt.geom.*;

public	class	WeightMonitor	extends	JFrame

{

//	menu	structure
JMenuBar	mainMenuBar	=	new	JMenuBar();
JMenu	fileMenu	=	new	JMenu("File");
JMenuItem	newMenuItem	=	new	JMenuItem("New	Weight	File");
JMenuItem	openMenuItem	=	new	JMenuItem("Open	Weight	File");
JMenuItem	saveMenuItem	=	new	JMenuItem("Save	Weight	File");
JMenuItem	exitMenuItem	=	new	JMenuItem("Exit");

JTabbedPane	weightTabbedPane	=	new	JTabbedPane();
JPanel	editorPanel	=	new	JPanel();
WeightPlotPanel	plotPanel	=	new	WeightPlotPanel();

JLabel	fileLabel	=	new	JLabel();
JTextArea	fileTextArea	=	new	JTextArea();
JCalendar	weightCalendar	=	new	JCalendar();
JLabel	weightLabel	=	new	JLabel();
JTextField	weightTextField	=	new	JTextField();
JButton	addButton	=	new	JButton();
JLabel	weightsListLabel	=	new	JLabel();
JScrollPane	weightsScrollPane	=	new	JScrollPane();
JList	weightsList	=	new	JList();
static	DefaultListModel	weightsListModel	=	new	DefaultListModel();

JButton	deleteButton	=	new	JButton();

String	lastFile	=	"";

public	static	void	main(String	args[])

{

//	create	frame
new	WeightMonitor().show();

}

public	WeightMonitor()

{

//	frame	constructor
setTitle("Weight	Monitor");
setResizable(false);

addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
GridBagConstraints	gridConstraints;
//	build	menu	structure
setJMenuBar(mainMenuBar);
mainMenuBar.add(fileMenu);
fileMenu.add(newMenuItem);
fileMenu.add(openMenuItem);
fileMenu.add(saveMenuItem);
fileMenu.addSeparator();
fileMenu.add(exitMenuItem);
newMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

newMenuItemActionPerformed(e);

}

});

openMenuItem.addActionListener(new	ActionListener()

{

{

public	void	actionPerformed(ActionEvent	e)

{

openMenuItemActionPerformed(e);

}

});

saveMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

saveMenuItemActionPerformed(e);

}

});

exitMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

exitMenuItemActionPerformed(e);

}

});

weightTabbedPane.setPreferredSize(new	Dimension(500,	400));
weightTabbedPane.addTab("Weight	Editor",	editorPanel);

weightTabbedPane.addTab("Weight	Plot",	plotPanel);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(weightTabbedPane,	gridConstraints);
editorPanel.setBackground(new	Color(192,	192,	255));
editorPanel.setLayout(new	GridBagLayout());
plotPanel.setBackground(new	Color(255,	192,	192));

fileLabel.setText("Current	Weight	File");
fileLabel.setFont(new	Font("Arial",	Font.BOLD,	14));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
editorPanel.add(fileLabel,	gridConstraints);

fileTextArea.setPreferredSize(new	Dimension(220,	50));
fileTextArea.setFont(new	Font("Arial",	Font.PLAIN,	12));
fileTextArea.setEditable(false);
fileTextArea.setBackground(Color.WHITE);
fileTextArea.setLineWrap(true);
fileTextArea.setWrapStyleWord(true);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(0,	10,	10,	0);
editorPanel.add(fileTextArea,	gridConstraints);

weightCalendar.setPreferredSize(new	Dimension(220,	200));

weightCalendar.setBorder(BorderFactory.createLineBorder(Color.BLACK,
2));	gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(5,	10,	0,	5);
editorPanel.add(weightCalendar,	gridConstraints);
weightCalendar.addPropertyChangeListener(new

PropertyChangeListener()	{
public	void	propertyChange(PropertyChangeEvent	e)

{

weightCalendarPropertyChange(e);

}

});

weightLabel.setText("Weight	(lb)");
weightLabel.setFont(new	Font("Arial",	Font.BOLD,	14));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
editorPanel.add(weightLabel,	gridConstraints);
weightTextField.setPreferredSize(new	Dimension(100,	25));
weightTextField.setFont(new	Font("Arial",	Font.PLAIN,	12));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(10,	5,	0,	0);
editorPanel.add(weightTextField,	gridConstraints);
weightTextField.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

weightTextFieldActionPerformed(e);

}

});

addButton.setText("Add	Weight	to	File");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	4;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
editorPanel.add(addButton,	gridConstraints);
addButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

addButtonActionPerformed(e);

}

});

weightsListLabel.setText("Date	Weight	(lb)");
weightsListLabel.setFont(new	Font("Courier	New",	Font.BOLD,

16));	gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;

editorPanel.add(weightsListLabel,	gridConstraints);

weightsScrollPane.setPreferredSize(new	Dimension(250,	300));
weightsList.setFont(new	Font("Courier	New",	Font.PLAIN,	16));
weightsScrollPane.setViewportView(weightsList);

weightsList.setModel(weightsListModel);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
gridConstraints.gridheight	=	3;
gridConstraints.insets	=	new	Insets(0,	5,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.NORTHWEST;
editorPanel.add(weightsScrollPane,	gridConstraints);
weightsList.addListSelectionListener(new	ListSelectionListener()	{

public	void	valueChanged(ListSelectionEvent	e)

{

weightsListValueChanged(e);

}

});

deleteButton.setText("Delete	Selection");
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	4;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.CENTER;
editorPanel.add(deleteButton,	gridConstraints);
deleteButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

{

deleteButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	//	open	.ini	file
try

{

BufferedReader	inputFile	=	new	BufferedReader(new
FileReader("weight.ini"));	lastFile	=	inputFile.readLine();

inputFile.close();

}

catch	(Exception	ex)

{

//	initialization	file	not	found
lastFile	=	"";

}

if	(!lastFile.equals(""))
openWeightFile(lastFile);

else
initialize();

}

private	void	exitForm(WindowEvent	evt)

{

System.out.print(lastFile);
//	Write	out	initialization	file
try

{

PrintWriter	outputFile	=	new	PrintWriter(new	BufferedWriter(new
FileWriter("weight.ini")));	outputFile.println(lastFile);

outputFile.close();

}

catch	(Exception	ex)

{

	

}

//	save	last	file
if	(!lastFile.equals(""))

saveWeightFile(lastFile);
System.exit(0);

}

private	void	newMenuItemActionPerformed(ActionEvent	e)

{

if	(JOptionPane.showConfirmDialog(null,	"Are	you	sure	you	want	to
start	a	new	weight	file?",	"New	File",	JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE)	==	JOptionPane.YES_OPTION)
{

initialize();

}

}

private	void	openMenuItemActionPerformed(ActionEvent	e)	{
if	(JOptionPane.showConfirmDialog(null,	"Are	you	sure	you	want	to

open	a	weight	new	file?",	"New	Weight	File",
JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE)	==	JOptionPane.YES_OPTION)
{

JFileChooser	openChooser	=	new	JFileChooser();
openChooser.setDialogType(JFileChooser.OPEN_DIALOG);
openChooser.setDialogTitle("Open	Weight	File");
openChooser.addChoosableFileFilter(new

FileNameExtensionFilter("Weight	Files",	"wgt"));	if
(openChooser.showOpenDialog(this)	==
JFileChooser.APPROVE_OPTION)	{

openWeightFile(openChooser.getSelectedFile().toString());	}

}

}

private	void	saveMenuItemActionPerformed(ActionEvent	e)	{
if	(weightsListModel.isEmpty())

{

JOptionPane.showConfirmDialog(null,	"You	need	to	enter	at	least
one	weight	value.",	"File	Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	return;

}

JFileChooser	saveChooser	=	new	JFileChooser();

saveChooser.setDialogType(JFileChooser.SAVE_DIALOG);
saveChooser.setDialogTitle("Save	Weight	File");
saveChooser.addChoosableFileFilter(new

FileNameExtensionFilter("Weight	Files",	"wgt"));	if
(saveChooser.showSaveDialog(this)	==
JFileChooser.APPROVE_OPTION)	{

//	see	if	file	already	exists
if	(saveChooser.getSelectedFile().exists())

{

int	response;
response	=	JOptionPane.showConfirmDialog(null,

saveChooser.getSelectedFile().toString()	+	"exists.	Overwrite?",
"Confirm	Save",	JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE);	if	(response	==
JOptionPane.NO_OPTION)

{

return;

}

}

//	make	sure	file	has	wgt	extension
//	strip	off	any	extension	that	might	be	there
//	then	tack	on	wgt
String	fileName	=	saveChooser.getSelectedFile().toString();	int

dotlocation	=	fileName.indexOf(".");
if	(dotlocation	==	-1)

{

//	no	extension
fileName	+=	".wgt";

}

}

else

{

//	make	sure	extension	is	txt
fileName	=	fileName.substring(0,	dotlocation)	+	".wgt";	}

saveWeightFile(fileName);

}

}

private	void	exitMenuItemActionPerformed(ActionEvent	e)	{
exitForm(null);

}

private	void
weightCalendarPropertyChange(PropertyChangeEvent	e)

{

//	show	corresponding	list	box	element	(if	there	is	one)	int	i;
i	=	findDate(dateToString(weightCalendar.getDate()));
if	(i	!=	-1)

{

weightsList.setSelectedIndex(i);

weightTextField.setText(getWeight(weightsList.getSelectedValu
e().toString()));	}

else

{

weightsList.clearSelection();

weightTextField.setText("");

}

weightTextField.requestFocus();

}

private	void	weightTextFieldActionPerformed(ActionEvent	e)	{
addButton.doClick();

}

private	void	addButtonActionPerformed(ActionEvent	e)

{

int	i;
if	(!validateDecimalNumber(weightTextField))

{

JOptionPane.showConfirmDialog(null,	"Empty	or	invalid	weight
entry.\nPlease	correct.",	"Weight	Input	Error",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	return;

}

//	add	to	list	(check	to	see	if	date	already	there)
i	=	findDate(dateToString(weightCalendar.getDate()));
if	(i	!=	-1)

weightsListModel.removeElementAt(i);
String	item	=	formLine(dateToString(weightCalendar.getDate()),

weightTextField.getText());	//	bubble	sort	to	see	where	item	goes	in	list	to
maintain	order	if	(weightsListModel.isEmpty()	||
item.compareTo(weightsListModel.getElementAt(weightsListModel
.size()	-	1).toString())	>	0)	{

//	if	list	empty	or	greater	than	last	item,	item	goes	at	end
weightsListModel.addElement(item);

weightsList.setSelectedIndex(weightsListModel.size()	-	1);	}
else

{

for	(i	=	weightsListModel.size()	-	1;	i	>=	0;	i--)

{

if
((weightsListModel.getElementAt(i).toString().compareTo(item))	<	0)	{

break;

}

}

weightsListModel.insertElementAt(item,	i	+	1);
weightsList.setSelectedIndex(i	+	1);

}

}

private	void	weightsListValueChanged(ListSelectionEvent	e)	{
//	display	corresponding	date
if	(weightsList.getSelectedIndex()	>=	0)

{

//	form	Date	object	from	String

weightCalendar.setDate(stringToDate(weightsList.getSelectedVa
lue().toString()));
weightTextField.setText(getWeight(weightsList.getSelectedValu
e().toString()));	weightTextField.requestFocus();

}

}

}

private	void	deleteButtonActionPerformed(ActionEvent	e)	{
//	remove	selected	item

weightsListModel.removeElementAt(weightsList.getSelectedIndex());	}

private	void	initialize()

{

weightTabbedPane.setSelectedIndex(0);
weightCalendar.setDate(new	Date());
weightsListModel.clear();
fileTextArea.setText("New	File");
weightTextField.setText("");
weightTextField.requestFocus();

}

private	String	dateToString(Date	dd)

{

String	yString	=	String.valueOf(dd.getYear()	+	1900);
int	m	=	dd.getMonth()	+	1;
String	mString	=	new	DecimalFormat("00").format(m);
int	d	=	dd.getDate();
String	dString	=	new	DecimalFormat("00").format(d);
return(yString	+	""	+	mString	+	""	+	dString);

}

static	public	Date	stringToDate(String	s)

{

{

int	y	=	Integer.valueOf(s.substring(0,	4)).intValue()	-	1900;	int	m	=
Integer.valueOf(s.substring(5,	7)).intValue()	-	1;	int	d	=
Integer.valueOf(s.substring(8,	10)).intValue();	return(new	Date(y,	m,	d));

}

private	String	formLine(String	d,	String	w)

{

int	lineLength	=	19;
String	s	=	d;
w	=	new

DecimalFormat("0.0").format(Double.valueOf(w).doubleValue());	for
(int	i	=	0;	i	<	lineLength	-	10	-	w.length();	i++)	s	+=	"	";

s	+=	w;
return	(s);

}

static	public	String	getDate(String	s)

{

s	=	s.substring(0,	10);
return(s);

}

static	public	String	getWeight(String	s)

{

s	=	s.substring(10);
return	(s.trim());

}

private	int	findDate(String	d)

{

if	(!weightsListModel.isEmpty())

{

for	(int	i	=	0;	i	<	weightsListModel.getSize();	i++)	{
if
(getDate(weightsListModel.getElementAt(i).toString()).equals(
d))	return	(i);

}

}

return	(-1);

}

private	boolean	validateDecimalNumber(JTextField	tf)

{

//	checks	to	see	if	text	field	contains
//	valid	decimal	number	with	only	digits	and	a	single	decimal	point

String	s	=	tf.getText().trim();
boolean	hasDecimal	=	false;
boolean	valid	=	true;
if	(s.length()	==	0)

{

valid	=	false;

}

else

{

for	(int	i	=	0;	i	<	s.length();	i++)

{

char	c	=	s.charAt(i);
if	(c	>=	'0'	&&	c	<=	'9')

{

continue;

}

else	if	(c	==	'.'	&&	!hasDecimal)

{

hasDecimal	=	true;

}

else

{

//	invalid	character	found
valid	=	false;

}

}

}

tf.setText(s);
if	(!valid)

{

tf.requestFocus();

}

return	(valid);

}

private	void	saveWeightFile(String	fn)

{

try

{

PrintWriter	outputFile	=	new	PrintWriter(new
BufferedWriter(new	FileWriter(fn)));	fileTextArea.setText(fn);

for	(int	i	=	0;	i	<	weightsListModel.getSize();	i++)	{

outputFile.println(weightsListModel.getElementAt(i).toString());	}
outputFile.flush();
outputFile.close();
lastFile	=	fn;

}

catch	(Exception	ex)

{

JOptionPane.showConfirmDialog(null,	"An	error	occurred	saving
the	weight	file.",	"File	Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	lastFile	=	"";

}

}

private	void	openWeightFile(String	fn)

{

try

{

initialize();
BufferedReader	inputFile	=	new	BufferedReader(new

FileReader(fn));	fileTextArea.setText(fn);
do

{

String	s	=	inputFile.readLine();
weightsListModel.addElement(s);

}

while	(inputFile.ready());
inputFile.close();
lastFile	=	fn;
//	see	if	current	date	is	in	file
int	i	=	findDate(dateToString(weightCalendar.getDate()));	if	(i	!=

-1)
weightsList.setSelectedIndex(i);

}

catch	(Exception	ex)

{

JOptionPane.showConfirmDialog(null,	"An	error	occurred
opening	the	weight	file.",	"File	Error",
JOptionPane.DEFAULT_OPTION,	JOptionPane.ERROR_MESSAGE);
lastFile	=	"";

}

}

}

}

class	WeightPlotPanel	extends	JPanel

{

Rectangle2D.Double	plotFrame;

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);

//	draw	plot	frame
plotFrame	=	new	Rectangle2D.Double(50,	40,	420,	280);
g2D.setPaint(Color.WHITE);
g2D.fill(plotFrame);
g2D.setStroke(new	BasicStroke(2));
g2D.setPaint(Color.BLACK);
g2D.draw(plotFrame);

//	draw	weight	plot
int	lSize	=	WeightMonitor.weightsListModel.getSize();
double[]	d	=	new	double[lSize];
double[]	w	=	new	double[lSize];
double	wmin,	wmax;
String	s;
int	intervals;
double	gridSpacing,	wLegend;
double	sumD,	sumD2,	sumW,	sumDW;

double	t,	w0;
if	(lSize	<	2)

return;
g2D.setStroke(new	BasicStroke(2));
g2D.setPaint(Color.BLUE);
wmin	=	1000.0;
wmax	=	0.0;
sumD	=	0.0;
sumD2	=	0.0;
sumW	=	0.0;
sumDW	=	0.0;
long	t1	=

WeightMonitor.stringToDate(WeightMonitor.getDate(WeightMonitor.weightsListModel.getElementAt(0).toString())).getTime();
for	(int	i	=	0;	i	<	lSize;	i++)

{

s	=
WeightMonitor.weightsListModel.getElementAt(i).toString();	long	t2	=
WeightMonitor.stringToDate(WeightMonitor.getDate(s)).getTime();	d[i]	 =
(double)	((t2	-	t1)	/	(24	3600	1000));

w[i]	=
Double.valueOf(WeightMonitor.getWeight(s)).doubleValue();	 wmin	 =
Math.min(w[i],	wmin);

wmax	=	Math.max(w[i],	wmax);
//	values	for	trend	line
sumD	+=	d[i];
sumD2	+=	d[i]	*	d[i];
sumW	+=	w[i];
sumDW	+=	d[i]	*	w[i];

}

//	adjust	Wmin/Wmax	for	'nice'	intervals

if	(wmin	==	wmax)
wmin	=	wmax	-	1;

wmax	=	(double)	((int)(wmax	+	0.5));	//	round	up
wmin	=	(double)	((int)(wmin	-	0.5));	//	round	down
if	(wmax	-	wmin	<=	5.0)

gridSpacing	=	1.0;
else	if	(wmax	-	wmin	<=	10.0)

gridSpacing	=	2.0;
else	if	(wmax	-	wmin	<=	25.0)

gridSpacing	=	5.0;
else	if	(wmax	-	wmin	<=	50.0)

gridSpacing	=	10.0;
else

gridSpacing	=	20.0;
if	(wmax	%	(int)gridSpacing	!=	0)

wmax	=	gridSpacing	*	(int)(wmax	/	gridSpacing)	+
gridSpacing;	if	(wmin	%	(int)gridSpacing	!=	0)

wmin	=	gridSpacing	*	(int)(wmin	/	gridSpacing);
intervals	=	(int)((wmax	-	wmin)	/	gridSpacing);
for	(int	i	=	1;	i	<	lSize;	i++)

{

//	connect	current	point	to	previous	point
Line2D.Double	weightLine	=	new	Line2D.Double(dToX(d[i	-

1],	d[lSize	-	1]),	wToY(w[i	-	1],	wmin,	wmax),	dToX(d[i],	d[lSize	-	1]),
wToY(w[i],	wmin,	wmax));	g2D.draw(weightLine);

}

//	draw	grid	lines	and	labels
Font	labelFont	=	new	Font("Arial",	Font.BOLD,	14);
g2D.setFont(labelFont);
Rectangle2D	labelRect;

String	lblText;
g2D.setStroke(new	BasicStroke(1));
g2D.setPaint(Color.BLACK);
wLegend	=	wmin;
for	(int	i	=	0;	i	<=	intervals;	i++)

{

lblText	=	String.valueOf((int)	wLegend);
labelRect	=	labelFont.getStringBounds(lblText,

g2D.getFontRenderContext());	g2D.drawString(lblText,	(int)
(plotFrame.getX()	-	labelRect.getWidth()	-	5),	(int)	(wToY(wLegend,
wmin,	wmax)	+	0.5	*	labelRect.getHeight()));	if	(i	>	0	&&	i	<	intervals)

{

//	draw	grid	line	(except	at	top	and	bottom)
Line2D.Double	gridLine	=	new

Line2D.Double(plotFrame.getX(),	wToY(wLegend,	wmin,	wmax),
plotFrame.getX()	+	plotFrame.getWidth(),	wToY(wLegend,	wmin,
wmax));	g2D.draw(gridLine);

}

wLegend	+=	gridSpacing;

}

//	draw	horizontal	axis	labels	(using	label	font)
String	dateText	=	"Start:	"	+

WeightMonitor.getDate(WeightMonitor.weightsListModel.getEleme
ntAt(0).toString());	g2D.drawString(dateText,	(int)	(plotFrame.getX()	+
10),	(int)	(plotFrame.getY()	+	plotFrame.getHeight()	+	20));
Line2D.Double	dateLine	=	new	Line2D.Double(plotFrame.getX()	+	10,
plotFrame.getY()	+	plotFrame.getHeight()	+	10,	plotFrame.getX(),
plotFrame.getY()	+	plotFrame.getHeight());	g2D.draw(dateLine);
dateText	=	"End:	"	+
WeightMonitor.getDate(WeightMonitor.weightsListModel.getEleme

ntAt(WeightMonitor.weightsListModel.getSize()	-	1).toString());
Rectangle2D	dateRect	=	labelFont.getStringBounds(dateText,
g2D.getFontRenderContext());	g2D.drawString(dateText,	(int)
(plotFrame.getX()	+	plotFrame.getWidth()	-	dateRect.getWidth()	-	10),
(int)	(plotFrame.getY()	+	plotFrame.getHeight()	+	20));	dateLine	=	new
Line2D.Double(plotFrame.getX()	+	plotFrame.getWidth()	-	10,
plotFrame.getY()	+	plotFrame.getHeight()	+	10,	plotFrame.getX()	+
plotFrame.getWidth(),	plotFrame.getY()	+	plotFrame.getHeight());
g2D.draw(dateLine);

//	trend	computations
t	=	(lSize	sumDW	-	sumD	sumW)	/	(lSize	sumD2	-	sumD	sumD);	w0

=	(sumD2	sumW	-	sumD	sumDW)	/	(lSize	sumD2	-	sumD	sumD);	//	draw
line

Line2D.Double	trendLine	=	new	Line2D.Double(plotFrame.getX(),
wToY(w0,	wmin,	wmax),	dToX(d[lSize	-	1],	d[lSize	-	1]),	wToY(t	*	d[lSize
-	1]	+	w0,	wmin,	wmax));	g2D.setPaint(Color.RED);

g2D.draw(trendLine);
String	title	=	"Trend:	";
if	(t	>	0)

title	+=	"+";
title	+=	new	DecimalFormat("0.00").format(7	*	t)	+	"	lb/week";
Font	titleFont	=	new	Font("Arial",	Font.BOLD,	16);
Rectangle2D	titleRect	=	titleFont.getStringBounds(title,

g2D.getFontRenderContext());	g2D.setFont(titleFont);
g2D.setPaint(Color.BLACK);
g2D.drawString(title,	(int)	(plotFrame.getX()	+	0.5	*

(plotFrame.getWidth()	-	titleRect.getWidth())),	(int)	(plotFrame.getY()	-
10));	g2D.dispose();

}

private	int	dToX(double	d,	double	dmax)

{

return	((int)(d	*	(plotFrame.getWidth()	-	1)	/	dmax	+

plotFrame.getX()));	}

private	int	wToY(double	w,	double	wmin,	double	wmax)

{

return	((int)((wmax	-	w)	*	(plotFrame.getHeight()	-	1)	/	(wmax	-
wmin)	+	plotFrame.getY()));	}

}

8

Home	Inventory	Manager	Project

Review	and	Preview
The	Home	Inventory	Manager	Project	helps	you	keep	track	of	your
valuable	 belongings.	 For	 every	 item	 in	 your	 inventory,	 the	 program
stores	a	description,	location,	serial	number,	purchase	information,	and
even	 a	 photo!	 A	 printed	 inventory	 is	 available	 -	 very	 useful	 for
insurance	 purposes.	We	 introduce	 some	 object-oriented	 programming
concepts	and	how	to	print	from	a	project.

Home	Inventory	Manager	Project
Preview
In	this	chapter,	we	will	build	a	home	inventory	manager	program.	This
program	lets	you	keep	a	record	of	your	belongings.

The	finished	project	is	saved	as	HomeInventory	in	the
\HomeJava\HomeJava	Projects\	project	group.	Start	NetBeans	(or	your
IDE).	Open	the	specified	project	group.	Make	HomeInventory	the	main
project.	Run	the	project.	You	will	see:	

A	toolbar	control	is	used	to	add,	delete	and	save	items	from	the	inventory.	It	is
also	used	to	navigate	from	one	item	to	the	next.	The	primary	way	to	enter

information	about	an	inventory	item	is	with	several	text	field	controls.	A
combo	box	is	used	to	specify	location,	while	a	date	chooser	is	used	to	select
purchase	date.	A	check	box	control	indicates	if	an	item	is	marked	with
identifying	information.	A	button	control	(with	an	ellipsis)	selects	a	photo	to
display	in	the	panel	control.	A	panel	control	holds	26	buttons	for	searching.

The	program	has	a	built-in	sample	inventory	file	–	the	first	item	in	that	file	is
displayed	(items	are	listed	alphabetically	by	Inventory	Item):	

You	will,	of	course,	be	able	to	replace	the	built-in	file	with	your	own
belongings,	but	for	now,	let’s	see	how	the	program	works.

The	idea	of	the	program	is	to	enter	and/or	view	descriptive	information	about
each	item	in	your	inventory.	You	can	enter:

Inventory	Item A	description	of	the	item	(required)
Location Description	of	where	item	is	located
Marked Indicates	if	item	is	marked	with	some	kind	of

identifying	information	(social	security	number,
driver’s	license	number,	phone	number)

Serial	Number Item	serial	number
Purchase	Price How	much	you	paid	for	the	item.
Date	Purchased When	you	purchased	the	item.
Store/Website Where	you	purchased	the	item.
Note Any	additional	information	about	the	item.
Photo View	a	stored	JPEG	photo	of	the	item.

On	the	toolbar	are	two	buttons	marked	Previous	and	Next.	Use	these	to	move
from	one	item	to	the	next.	The	sample	file	has	10	items	to	view.	In	the	Item
Search	panel	are	26	buttons,	each	with	a	letter	of	the	alphabet.	These	are	used
to	search	through	the	inventory	for	items	beginning	with	the	clicked	letter.	Try
searching	the	sample	inventory,	if	you’d	like.

Another	nice	feature	of	the	project	is	the	ability	to	get	a	printed	record	of	your
inventory.	Click	the	toolbar	button	marked	Print	(don’t	worry,	nothing	will

print).	You	will	see:	

This	is	the	standard	print	dialog	where	you	select	printing	options	(including
what	printer	to	use).	Click	Cancel.

A	primary	 task	of	 the	home	 inventory	manager	 is	 to	add,	edit,	 save	and	delete
inventory	 items.	To	add	an	 item,	you	click	 the	Add	button	 in	 the	 toolbar.	You
then	 enter	 the	 necessary	 information	 and	 click	 the	 Save	 button.	 To	 edit	 an
existing	 item,	you	 first	display	 the	 item	 to	edit.	Make	 the	desired	changes	and

click	Save.	To	delete	an	item,	you	display	the	item,	then	click	the	Delete	toolbar
button.	Let’s	try	the	editing	features.

Navigate	 to	 one	 of	 the	 existing	 items	 in	 the	 sample	 file	 (use	 the	Previous	 or
Next	 buttons	 or	 try	 a	 search).	 I	 moved	 to	 Toby,	 my	 ever	 faithful	 dog:	

We’ll	delete	this	item,	then	rebuild	it	to	demonstrate	how	to	enter	information.
Click	the	Delete	button	–	choose	Yes	when	asked	if	you	really	want	Toby	to
go	away.	The	display	will	show	the	next	item	in	the	inventory.	Click	the	New
button	to	start	a	new	item.

The	blank	inventory	screen	appears	as:

At	this	point,	you	simply	work	your	way	down	the	form	entering	the	desired
information	at	the	desired	locations.	When	done,	you	click	Save	and	the	item
is	added	to	your	inventory.	We’ll	add	Toby	back	to	the	file.

Under	Inventory	Item,	type	Toby	and	press	<Enter>.	This	is	the	only	required
piece	 of	 information	 –	 all	 other	 entries	 are	 optional.	 For	Location,	 click	 the
drop-down	arrow	in	the	combo	box.	A	list	of	choices	is	presented.	Choose	one	of
these	items	or	type	your	own.	If	you	type	an	entry	that’s	not	in	the	combo	box,	it
will	 be	 added	 and	 saved	 for	 future	 items.	 Choose	Under	 the	 other	 desk	 for
Toby	(he’s	always	there).	Put	a	check	mark	next	to	Marked?	Make	up	a	Serial
Number	 for	 Toby	 –	 I	 used	 DOOFUS123.	 We	 got	 Toby	 for	 free,	 so	 his
Purchase	Price	is	0.00.	We	got	Toby	on	June	6,	2001.	Under	Date	Purchased,
click	 the	drop-down	arrow.	On	 the	 calendar	 that	 appears,	 navigate	 to	 this	 date
and	click	it.	Under	Store/Website,	 type	Olympia	SPCA	 (he’s	a	pound	puppy)
and	under	Note,	type	Priceless.

At	this	point,	the	form	should	look	like	this:

The	last	step	is	adding	a	photo.

Click	the	button	with	the	ellipsis	(…)	next	to	the	Photo	label	area.	An	open	file
dialog	 box	 will	 appear:	

The	photo	can	be	any	JPEG	file	(what	a	digital	camera	uses).	You	simply
navigate	to	a	photo	location	and	click	Open.	The	samples	for	these	notes	are
in	the	\HomeJava\HomeJava	Projects\Inventory	Photos\	folder.	Move	to
that	folder	and	select	toby.jpg	as	shown.	Click	Open	and	the	photo	will
appear.

The	 final	 Toby	 inventory	 item	 page	 looks	 like	 this:	

Notice	the	photo	and	the	file	name	listed	under	Photo.	At	this	point,	click
Save	and	Toby	is	back	in	the	list	(properly	sorted	alphabetically).

That’s	 the	 idea	 of	 the	 program.	 Fill	 in	 an	 entry	 page	 for	 each	 item	 in	 your
inventory	and	click	Save.	Click	Exit	on	the	toolbar	when	done.	Upon	exiting	the
program,	all	your	 inventory	 items	are	saved	 to	a	 file	 (the	built-in	 file	currently
holding	 the	 sample	 entries).	 This	 same	 file	 is	 automatically	 opened	when	 you
rerun	the	program,	so	your	items	are	always	available	for	additions,	changes	and
deletions.

We	will	now	build	this	program	in	several	stages.	We	discuss	frame	design.	We
discuss	the	controls	used	to	build	the	frame	and	establish	initial	properties.	We

see	how	to	add	a	toolbar	to	the	project.	And,	we	address	code	design	in	detail.
We	 introduce	 object-oriented	 programming	 (OOP)	 concepts	 to	 store	 the
inventory	 data.	We	 discuss	 how	 to	 read	 and	 write	 the	 inventory	 file,	 how	 to
perform	the	various	editing	features,	how	to	load	a	photo	file,	how	to	create	the
buttons	used	in	the	search	function,	and	how	to	print	out	the	inventory.

Home	Inventory	Manager	Frame	Design
We	begin	building	the	Home	Inventory	Project.	Let’s	build	the	frame.	Start	a
new	 project	 in	 your	 Java	 project	 group	 –	 name	 it	 HomeInventory.	 Delete
default	code	in	file	named	HomeInventory.java.	Once	started,	we	suggest	you
immediately	save	 the	project	with	 the	name	you	chose.	This	 sets	up	 the	 folder
and	 file	 structure	 needed	 for	 your	 project.	 Build	 the	 basic	 frame	 with	 these
properties:	Home	Inventory	Frame:

title Home	Inventory	Manager
resizable false

The	code	is:

/	*

*	HomeInventory.java

*/

package	homeinventory;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	HomeInventory	extends	JFrame

{

public	static	void	main(String	args[])

{

//	create	frame
new	HomeInventory().show();

}

public	HomeInventory()

{

//	frame	constructor
setTitle("Home	Inventory	Manager");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
GridBagConstraints	gridConstraints;

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

}

This	code	builds	 the	frame,	sets	up	 the	 layout	manager	and	includes	code	 to
exit	the	application.	Run	the	code	to	make	sure	the	frame	(at	least,	what	there

is	of	it	at	this	point)	appears	and	is	centered	on	the	screen:	

Let’s	populate	our	frame	with	other	controls.	All	code	for	creating	the	frame
and	placing	controls	(except	declarations)	goes	in	the	HomeInventory
constructor.

The	are	 lots	of	controls	 in	 this	project.	The	GridBagLayout	 for	 the	frame	is::	

The	 label	 controls	 are	 used	 for	 titling.	 photoTextArea	 holds	 the	 plot	 file
name.	 The	 text	 fields	 are	 used	 to	 input	 item	 information.	 The	 combo	 box
control	 (locationCombo)	 is	 used	 to	 select	 location	 information.	 The	 check
box	 (markedCheckBox)	 indicates	 if	 an	 item	 is	 marked.	 The	 date	 chooser
(dateDateChooser)	selects	purchase	date.	The	button	(photoButton)	is	used
to	select	the	photo	file.	The	photo	is	displayed	in	photoPanel.	The	other	panel
(searchPanel)	 will	 hold	 buttons	 used	 for	 searching.	 The	 tool	 bar
(inventoryToolbar)	 is	used	 to	edit	 items	and	navigate	 from	one	 item	 to	 the
next.

As	 noted,	 there	 are	 lots	 of	 controls.	We	will	 discuss	 adding	 controls	 in	 a	 few
steps.	 First,	we	 discuss	 the	 toolbar.	 Then,	we	 cover	 the	 controls	 used	 to	 input
inventory	 information.	 Lastly,	we	 add	 the	 searchPanel	 (and	 associated	 button
controls)	and	the	photoPanel.

Frame	Design	–	Toolbar
The	toolbar	(JToolbar)	is	used	to	edit	the	inventory	items	and	navigate
through	them.	It	is	also	used	to	print	the	items	and	exit	the	program.	Let’s

preview	what	it	should	look	like:	

The	toolbar	will	have	seven	buttons:	one	to	create	a	new	item	(newButton),
one	to	delete	an	item	(deleteButton),	one	to	save	an	item	(saveButton),	one
to	view	the	previous	item	(previousButton)	one	to	view	the	next	item
(nextButton),	one	to	print	the	inventory	(printButton)	and	one	to	exit	the
program	(exitButton).	Separators	are	used	at	the	top,	after	the	save	button	and
after	the	next	button.

All	but	the	last	button	has	an	image.	The	images	used	are	in	the
\HomeJava\HomeJava	Projects\HomeInventory\	folder.	Copy	these	images
to	your	project	folder.	The	six	images	are:	

The	control	properties	associated	with	the	toolbar:

inventoryToolbar:
floatable false
background Blue
orientation Vertical
gridx 0
gridy 0
gridheight 8
fill Vertical
	 	
newbutton: 	
image new.gif
text New
size 70,	50
toolTipText Add	New	Item
horizontalTextPosition Center
verticalTextPosition Bottom
	 	
deletebutton: 	
image delete.gif
text Delete
size 70,	50
toolTipText Delete	Current	Item
horizontalTextPosition Center
verticalTextPosition Bottom
	 	
savebutton: 	
image save.gif
text Save
size 70,	50
toolTipText Save	Current	Item
horizontalTextPosition Center
verticalTextPosition Bottom
	 	

previousbutton: 	
image previous.gif
text Previous
size 70,	50
toolTipText Display	Previous	Item
horizontalTextPosition Center
verticalTextPosition Bottom
	 	
nextbutton: 	
image next.gif
text Next
size 70,	50
toolTipText Display	Next	Item
horizontalTextPosition Center
verticalTextPosition Bottom
	 	
printbutton: 	
image print.gif
text Print
size 70,	50
toolTipText Print	Inventory	List
horizontalTextPosition Center
verticalTextPosition Bottom
	 	
exitButton: 	
text Exit
size 70,	50
toolTipText Exit	Program

Declare	the	controls	as	class	level	objects:

//	Toolbar
JToolBar	inventoryToolBar	=	new	JToolBar();

JButton	newButton	=	new	JButton(new	ImageIcon("new.gif"));	JButton
deleteButton	=	new	JButton(new	ImageIcon("delete.gif"));	JButton
saveButton	=	new	JButton(new	ImageIcon("save.gif"));	JButton
previousButton	=	new	JButton(new	ImageIcon("previous.gif"));	JButton
nextButton	=	new	JButton(new	ImageIcon("next.gif"));	JButton
printButton	=	new	JButton(new	ImageIcon("print.gif"));	JButton
exitButton	=	new	JButton();

Add	the	controls	(and	separators)	to	the	frame/toolbar	using	this	code	in	the
frame	constructor:	inventoryToolBar.setFloatable(false);
inventoryToolBar.setBackground(Color.BLUE);
inventoryToolBar.setOrientation(SwingConstants.VERTICAL);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.gridheight	=	8;
gridConstraints.fill	=	GridBagConstraints.VERTICAL;
getContentPane().add(inventoryToolBar,	gridConstraints);
inventoryToolBar.addSeparator();

Dimension	bSize	=	new	Dimension(70,	50);
newButton.setText("New");
sizeButton(newButton,	bSize);
newButton.setToolTipText("Add	New	Item");
newButton.setHorizontalTextPosition(SwingConstants.CENTER);
newButton.setVerticalTextPosition(SwingConstants.BOTTOM);
inventoryToolBar.add(newButton);
newButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

newButtonActionPerformed(e);

}

});

deleteButton.setText("Delete");
sizeButton(deleteButton,	bSize);
deleteButton.setToolTipText("Delete	Current	Item");
deleteButton.setHorizontalTextPosition(SwingConstants.CENTER);
deleteButton.setVerticalTextPosition(SwingConstants.BOTTOM);
inventoryToolBar.add(deleteButton);
deleteButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

deleteButtonActionPerformed(e);

}

});

saveButton.setText("Save");
sizeButton(saveButton,	bSize);
saveButton.setToolTipText("Save	Current	Item");
saveButton.setHorizontalTextPosition(SwingConstants.CENTER);
saveButton.setVerticalTextPosition(SwingConstants.BOTTOM);
inventoryToolBar.add(saveButton);
saveButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

saveButtonActionPerformed(e);

}

});

inventoryToolBar.addSeparator();

previousButton.setText("Previous");
sizeButton(previousButton,	bSize);
previousButton.setToolTipText("Display	Previous	Item");
previousButton.setHorizontalTextPosition(SwingConstants.CENTER);
previousButton.setVerticalTextPosition(SwingConstants.BOTTOM);
inventoryToolBar.add(previousButton);
previousButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

previousButtonActionPerformed(e);

}

});

nextButton.setText("Next");
sizeButton(nextButton,	bSize);
nextButton.setToolTipText("Display	Next	Item");
nextButton.setHorizontalTextPosition(SwingConstants.CENTER);
nextButton.setVerticalTextPosition(SwingConstants.BOTTOM);
inventoryToolBar.add(nextButton);
nextButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

nextButtonActionPerformed(e);

}

});

inventoryToolBar.addSeparator();

printButton.setText("Print");
sizeButton(printButton,	bSize);
printButton.setToolTipText("Print	Inventory	List");
printButton.setHorizontalTextPosition(SwingConstants.CENTER);
printButton.setVerticalTextPosition(SwingConstants.BOTTOM);
inventoryToolBar.add(printButton);
printButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

printButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
sizeButton(exitButton,	bSize);
exitButton.setToolTipText("Exit	Program");
inventoryToolBar.add(exitButton);
exitButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

{

exitButtonActionPerformed(e);

}

});

Note	 each	 toolbar	 button	 is	 the	 same	 size	 (70	 x	 50).	 We	 defined	 a	 variable
(bSize)	 to	represent	 the	size	and	used	a	general	method	(sizeButton)	 to	set	 the
size..	 Add	 this	 method	 to	 your	 project:	 private	 void	 sizeButton(JButton	 b,
Dimension	d)

{

b.setPreferredSize(d);
b.setMinimumSize(d);
b.setMaximumSize(d);

}

Each	 button	 has	 an	 ActionPerformed	 method.	 Add	 these	 empty	 methods:
private	void	newButtonActionPerformed(ActionEvent	e)	{

}

private	void	deleteButtonActionPerformed(ActionEvent	e)	{

}

private	void	saveButtonActionPerformed(ActionEvent	e)	{

}

private	void	previousButtonActionPerformed(ActionEvent	e)	{

}

private	void	nextButtonActionPerformed(ActionEvent	e)	{

}

}

private	void	printButtonActionPerformed(ActionEvent	e)	{

}

private	void	exitButtonActionPerformed(ActionEvent	e)	{

}

Save	and	run	the	project.	You	should	see	the	completed	toolbar	on	the	left	side

of	the	frame:	

Frame	Design	–	Entry	Controls
We	show	the	frame	GridBagLayout	again	to	allow	placement	of	all	the	controls
used	 to	 input	 information	 about	 items:	

We	will	now	add	everything	but	the	two	panels	at	the	bottom	of	the	grid.
There	are	many	controls	and	many	properties.	We	will	add	them	in	stages	to
keep	things	manageable.	First	the	controls	in	the	first	three	grid	rows.

The	control	properties	are:

itemLabel: 	
text Inventory	Item
gridx 1
gridy 0
insets 10,	10,	0,	10
anchor EAST
	 	
itemTextField: 	
size 400,	25
gridx 2
gridy 0
gridwidth 5
insets 10,	0,	0,	10
anchor WEST

	 	
locationLabel: 	
text Location
gridx 1
gridy 1
insets 10,	10,	0,	10
anchor EAST
	 	
locationComboBox: 	
size 270,	25
font Arial,	Plain,	Size	12
editable true
background White
gridx 2
gridy 1
gridwidth 3
insets 10,	0,	0,	10
anchor WEST
	 	
markedCheckBox: 	
text Marked?
gridx 5
gridy 1
insets 10,	10,	0,	0
anchor WEST
	 	
serialLabel: 	
text Serial	Number
gridx 1
gridy 2
insets 10,	10,	0,	10
anchor EAST
	 	

serialTextField: 	
size 270,	25
gridx 2
gridy 2
gridwidth 3
insets 10,	0,	0,	10
anchor WEST

Declare	the	controls	as	class	level	objects:

//	Frame
JLabel	itemLabel	=	new	JLabel();
JTextField	itemTextField	=	new	JTextField();
JLabel	locationLabel	=	new	JLabel();
JComboBox	locationComboBox	=	new	JComboBox();
JCheckBox	markedCheckBox	=	new	JCheckBox();
JLabel	serialLabel	=	new	JLabel();
JTextField	serialTextField	=	new	JTextField();

Add	the	controls	to	the	frame	using:

itemLabel.setText("Inventory	Item");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.EAST;
getContentPane().add(itemLabel,	gridConstraints);

itemTextField.setPreferredSize(new	Dimension(400,	25));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
gridConstraints.gridwidth	=	5;

gridConstraints.insets	=	new	Insets(10,	0,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(itemTextField,	gridConstraints);
locationLabel.setText("Location");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.EAST;
getContentPane().add(locationLabel,	gridConstraints);
locationComboBox.setPreferredSize(new	Dimension(270,	25));
locationComboBox.setFont(new	Font("Arial",	Font.PLAIN,	12));
locationComboBox.setEditable(true);
locationComboBox.setBackground(Color.WHITE);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
gridConstraints.gridwidth	=	3;
gridConstraints.insets	=	new	Insets(10,	0,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(locationComboBox,	gridConstraints);
markedCheckBox.setText("Marked?");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	5;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(markedCheckBox,	gridConstraints);
serialLabel.setText("Serial	Number");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);

gridConstraints.anchor	=	GridBagConstraints.EAST;
getContentPane().add(serialLabel,	gridConstraints);

serialTextField.setPreferredSize(new	Dimension(270,	25));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
gridConstraints.gridwidth	=	3;
gridConstraints.insets	=	new	Insets(10,	0,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(serialTextField,	gridConstraints);	Run	to	see	the
newly	added	controls:

Let’s	 add	 the	 remaining	 input	 controls.	One	 of	 these	 is	 the	 same	date	 chooser
control	 used	 in	 the	 Weight	 Monitor	 project.	 In	 that	 chapter,	 we	 added	 a
reference	 to	 the	 jcalendar-1.3.2.jar	 library	 to	 our	NetBeans	 IDE.	We	 need	 to
add	this	 library	 to	our	project.	Make	sure	HomeInventoryis	 the	active	project.
In	 the	 file	 view	area,	 right-click	 the	project	 name	 (HomeInventory)	 and	 click
Properties.	 In	 the	 properties	 window,	 choose	 the	 Libraries	 category:	

Click	Add	Library	to	see	

Choose	Calendar,	 then	 click	Add	Library.	 Click	OK	 when	 returned	 to	 the
Properties	window.	The	calendar	tools	can	now	be	used	in	the	weight	monitor
project	 with	 the	 addition	 of	 these	 import	 statements:	 import
com.toedter.calendar.*;
import	java.beans.*;

Add	these	to	the	code	window.

The	control	properties	are:

priceLabel: 	
text Purchase	Price
gridx 1
gridy 3
insets 10,	10,	0,	10
anchor EAST
	 	
priceTextField: 	
size 160,	25
gridx 2
gridy 3
gridwidth 1
insets 10,	0,	0,	10
anchor WEST
	 	
dateLabel: 	
text Date	Purchased
gridx 4
gridy 3
insets 10,	10,	0,	0
anchor EAST
	 	
dateDateChooser: 	
size 120,	25
gridx 5
gridy 3
gridwidth 2
insets 10,	0,	0,	10
anchor WEST
	 	
storeLabel: 	

text Store/Website
gridx 1
gridy 4
insets 10,	10,	0,	10
anchor EAST
	 	
storeTextField: 	
size 400,	25
gridx 2
gridy 4
gridwidth 5
insets 10,	0,	0,	10
anchor WEST
	 	
noteLabel: 	
text Note
gridx 1
gridy 5
insets 10,	10,	0,	10
anchor EAST
	 	
noteTextField: 	
size 400,	25
gridx 2
gridy 5
gridwidth 5
insets 10,	0,	0,	10
anchor WEST
	 	
photoLabel: 	
text Photo
gridx 1
gridy 6

insets 10,	10,	0,	10

anchor EAST
	 	
photoTextArea: 	
size 350,	35
font Arial,	Plain,	Size	12
editable false
lineWrap true
wrapStyleWord true
background Color(255,	255,	192)
border Black	line
gridx 2
gridy 6
gridwidth 4
insets 10,	0,	0,	10
anchor WEST
	 	
photoButton: 	
text …
gridx 6
gridy 6
insets 10,	0,	0,	10
anchor WEST

These	controls	are	declared	using:

JLabel	priceLabel	=	new	JLabel();
JTextField	priceTextField	=	new	JTextField();
JLabel	dateLabel	=	new	JLabel();
JDateChooser	dateDateChooser	=	new	JDateChooser();
JLabel	storeLabel	=	new	JLabel();
JTextField	storeTextField	=	new	JTextField();
JLabel	noteLabel	=	new	JLabel();

JTextField	noteTextField	=	new	JTextField();
JLabel	photoLabel	=	new	JLabel();
JTextArea	photoTextArea	=	new	JTextArea();
JButton	photoButton	=	new	JButton();

The	controls	are	added	to	the	frame	using:

priceLabel.setText("Purchase	Price");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.EAST;
getContentPane().add(priceLabel,	gridConstraints);

priceTextField.setPreferredSize(new	Dimension(160,	25));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	3;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(priceTextField,	gridConstraints);
dateLabel.setText("Date	Purchased");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	4;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(dateLabel,	gridConstraints);

dateDateChooser.setPreferredSize(new	Dimension(120,	25));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	5;

gridConstraints.gridy	=	3;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(dateDateChooser,	gridConstraints);
storeLabel.setText("Store/Website");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	4;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.EAST;
getContentPane().add(storeLabel,	gridConstraints);

storeTextField.setPreferredSize(new	Dimension(400,	25));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	4;
gridConstraints.gridwidth	=	5;
gridConstraints.insets	=	new	Insets(10,	0,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(storeTextField,	gridConstraints);
noteLabel.setText("Note");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	5;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.EAST;
getContentPane().add(noteLabel,	gridConstraints);

noteTextField.setPreferredSize(new	Dimension(400,	25));	gridConstraints
=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	5;

gridConstraints.gridwidth	=	5;
gridConstraints.insets	=	new	Insets(10,	0,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(noteTextField,	gridConstraints);
photoLabel.setText("Photo");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	6;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.EAST;
getContentPane().add(photoLabel,	gridConstraints);

photoTextArea.setPreferredSize(new	Dimension(350,	35));
photoTextArea.setFont(new	Font("Arial",	Font.PLAIN,	12));
photoTextArea.setEditable(false);
photoTextArea.setLineWrap(true);
photoTextArea.setWrapStyleWord(true);
photoTextArea.setBackground(new	Color(255,	255,	192));
photoTextArea.setBorder(BorderFactory.createLineBorder(Color.BLACK));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	6;
gridConstraints.gridwidth	=	4;
gridConstraints.insets	=	new	Insets(10,	0,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(photoTextArea,	gridConstraints);
photoButton.setText("...");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	6;
gridConstraints.gridy	=	6;
gridConstraints.insets	=	new	Insets(10,	0,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(photoButton,	gridConstraints);

photoButton.addActionListener(new	ActionListener	()

{

public	void	actionPerformed(ActionEvent	e)

{

photoButtonActionPerformed(e);

}

});

The	 button	 control	 has	 an	ActionPerformed	 method.	 Add	 the	 empty	method
private	void	photoButtonActionPerformed(ActionEvent	e)	{

}:

Run	to	see	more	controls:

Frame	Design	–	Search	Panel
As	an	inventory	list	grows,	you	will	want	the	capability	to	search	for	particular
items.	In	 this	project,	we	use	26	small	button	controls	(searchButton	array)	 in
the	searchPanel	control.	Each	of	these	buttons	will	have	a	letter	of	the	alphabet.
When	a	letter	is	clicked,	the	first	item	in	the	inventory	beginning	with	that	letter
(if	there	is	such	an	item)	is	displayed	on	the	frame.

The	 searchPanel	GridBagLayout	 is	 (shown	 is	 the	 letter	 of	 the	 button	 to	 be

displayed):	

The	panel	and	button	properties	are:

searchPanel: 	
size 240,	160
title Item	Search
gridx 1
gridy 7
gridwidth 3
insets 10,	0,	10,	0
anchor CENTER
	 	
searchButton: 	
font Arial,	Bold,	Size	12
margin -10,	-10,	-10,	-10
size 37,	27
background Yellow

We	only	list	generic	button	properties.	The	grid	above	shows	the
corresponding	letter	and	location.	Using	negative	margins	allows	room	for	the
text.	The	button	size	(37	x	27)	was	found	by	trial	and	error.

Declare	the	panel	and	buttons	using:

JPanel	searchPanel	=	new	JPanel();
JButton[]	searchButton	=	new	JButton[26];

Add	them	to	the	panel	using:

searchPanel.setPreferredSize(new	Dimension(240,	160));
searchPanel.setBorder(BorderFactory.createTitledBorder("Item
Search"));	searchPanel.setLayout(new	GridBagLayout());
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	7;
gridConstraints.gridwidth	=	3;
gridConstraints.insets	=	new	Insets(10,	0,	10,	0);
gridConstraints.anchor	=	GridBagConstraints.CENTER;
getContentPane().add(searchPanel,	gridConstraints);

int	x	=	0,	y	=	0;
//	create	and	position	26	buttons
for	(int	i	=	0;	i	<	26;	i++)

{

//	create	new	button
searchButton[i]	=	new	JButton();
//	set	text	property
searchButton[i].setText(String.valueOf((char)	(65	+	i)));

searchButton[i].setFont(new	Font("Arial",	Font.BOLD,	12));
searchButton[i].setMargin(new	Insets(-10,	-10,	-10,	-10));
sizeButton(searchButton[i],	new	Dimension(37,	27));

searchButton[i].setBackground(Color.YELLOW);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	x;
gridConstraints.gridy	=	y;
searchPanel.add(searchButton[i],	gridConstraints);
//	add	method
searchButton[i].addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

searchButtonActionPerformed(e);

}

});

x++;
//	six	buttons	per	row
if	(x	%	6	==	0)

{

x	=	0;
y++;

}

}

Note	the	buttons	are	sized	using	the	previously	added	sizeButton	method.

Each	 button	 has	 the	 same	 ActionPerformed	 method.	 Add	 this	 empty
framework:	private	void	searchButtonActionPerformed(ActionEvent	e)	{

}

Save	and	run	the	project.	The	search	buttons	should	now	appear	on	the	frame	in

the	 search	 panel	 control:	

Frame	Design	–	Photo	Panel
We	 complete	 the	 frame	 design	 by	 adding	 the	 panel	 (photoPanel)	 that	 will
display	inventory	photos.	We	will	use	a	graphic	method	to	place	a	scaled	version
of	any	photo	we	load	into	the	panel.	As	such,	we	need	a	special	panel	class	with
a	paintComponent	method	(where	 the	graphics	methods	are	used).	We	define
the	PhotoPanel	 class	 using	 this	 code	 (added	 after	 the	HomeInventory	 class):
class	PhotoPanel	extends	JPanel

{

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);

g2D.dispose();

}

}

All	graphics	methods	will	go	in	the	paintComponent	method	for	this	class.
Add	this	class	to	your	project.

Now,	the	panel	properties	are:

photoPanel: 	
size 240,	160
gridx 4
gridy 7
gridwidth 3
insets 10,	0,	10,	10
anchor CENTER

The	panel	is	declared	using:

PhotoPanel	photoPanel	=	new	PhotoPanel();

and	added	to	the	frame	using:

photoPanel.setPreferredSize(new	Dimension(240,	160));	gridConstraints
=	new	GridBagConstraints();
gridConstraints.gridx	=	4;
gridConstraints.gridy	=	7;
gridConstraints.gridwidth	=	3;
gridConstraints.insets	=	new	Insets(10,	0,	10,	10);
gridConstraints.anchor	=	GridBagConstraints.CENTER;
getContentPane().add(photoPanel,	gridConstraints);

Let’s	 add	 a	 border	 to	 the	 panel.	 Add	 the	 shaded	 code	 to	 the	 panel
paintComponent	method.

class	PhotoPanel	extends	JPanel

{

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);

//	draw	border
g2D.setPaint(Color.BLACK);
g2D.draw(new	Rectangle2D.Double(0,	0,	getWidth()	-	1,

getHeight()	-	1));

g2D.dispose();

}

}

You	need	to	add	this	import	statement	to	the	project	(for	the	graphics	code):
import	java.awt.geom.*;

Run	the	project	one	more	time	to	see	 the	 last	control,	 the	framed	photo	panel:	

At	long	last,	all	the	controls	are	in	place.	We	now	start	writing	the	code.	There
are	many	steps.	First,	let’s	address	proper	ordering	of	the	controls	for	input.

Frame	Design	–	Tab	Order	and	Focus
This	project	has	many	controls	for	user	input.	We	want	to	make	sure	it’s	clear
to	the	user	just	what	information	is	needed	and	when.	We	want	the	input	to
‘flow’	from	the	top	of	the	form	to	the	bottom.	Run	the	project.	You	will	see
that	the	New	button	has	focus.	We	would	prefer	the	cursor	starting	in	the
itemTextField	control	so	the	user	can	start	typing	input.	And,	if	you	tab
through	the	controls,	you	will	see	that	the	toolbar	buttons	and	search	buttons
(and	other	controls)	can	receive	focus,	even	though	we	don’t	want	this
behavior.

Remove	the	ability	to	focus	on	all	the	toolbar	buttons	(newButton,
deleteButton,	saveButton,	previousButton,	nextButton,	printButton,
exitButton),	the	search	buttons	(searchButton	array),	the	markedCheckBox
and	the	photoTextArea	controls.	To	do	this,	set	the	focusable	property	of
each	(use	the	setFocusable	method)	to	false.	This	involves	a	single	line	of
code	for	each	control	in	the	frame	constructor	code.

Now,	run	the	project	again.	The	tab	sequence	starts	at	the	Inventory	Item	text
field	(itemTextField)	and	sequentially	works	down	through	all	the	input
controls	(text	fields,	combo	box,	date	chooser)	to	the	note	text	field
(noteTextField),	then	the	photo	button	(photoButton).	We	choose	to	skip	the
check	box.

Another	 feature	 for	 the	 input	 is	 that	whenever	 the	 user	 presses	 <Enter>	 after
entering	 a	 value	 (in	 the	 combo	 box	 or	 text	 fields)	 or	 clicks	 a	 date	 in	 the	 date
chooser,	 the	 control	 focus	 should	 move	 to	 the	 next	 control.	 This	 feature	 is
implemented	 in	 the	ActionPerformed	methods	 for	 the	combo	box	control	and
the	five	text	fields	and	the	PropertyChange	method	for	the	date	control.	Let’s
start	at	the	top	of	the	frame	and	work	our	way	down,	in	proper	tab	order.	First,
the	 itemTextFieldActionPerformed	 method.	 Add	 a	 listener	 in	 the	 frame
constructor	code:	itemTextField.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

itemTextFieldActionPerformed(e);

}

});

Then	add	the	corresponding	method:

private	void	itemTextFieldActionPerformed(ActionEvent	e)	{
locationComboBox.requestFocus();

}

This	method	moves	focus	to	the	combo	box	(locationComboBox).	Add	it’s
listener:	locationComboBox.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

locationComboBoxActionPerformed(e);

}

});

and	corresponding	method:

private	void	locationComboBoxActionPerformed(ActionEvent	e)	{
serialTextField.requestFocus();

}

Focus	moves	to	serialTextField.	Add	a	listener:
serialTextField.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

serialTextFieldActionPerformed(e);

}

});

Then,	the	corresponding	method:

private	void	serialTextFieldActionPerformed(ActionEvent	e)	{
priceTextField.requestFocus();

}

Focus	moves	to	priceTextField.	Add	a	listener:
priceTextField.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

priceTextFieldActionPerformed(e);

}

});

Then,	the	corresponding	method:

private	void	priceTextFieldActionPerformed(ActionEvent	e)	{
dateDateChooser.requestFocus();

}

Focus	moves	to	dateDateChooser.	Add	a	listener	for	property	change:
dateDateChooser.addPropertyChangeListener(new
PropertyChangeListener()	{

public	void	propertyChange(PropertyChangeEvent	e)

{

dateDateChooserPropertyChange(e);

}

}

});

Then,	the	corresponding	method:

private	void
dateDateChooserPropertyChange(PropertyChangeEvent	e)	{

storeTextField.requestFocus();

}

Focus	moves	to	storeTextField.	Add	a	listener:
storeTextField.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

storeTextFieldActionPerformed(e);

}

});

Then,	the	corresponding	method:

private	void	storeTextFieldActionPerformed(ActionEvent	e)	{
noteTextField.requestFocus();

}

Focus	moves	to	noteTextField.	Add	a	listener:
noteTextField.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

noteTextFieldActionPerformed(e);

}

});

And	method:

private	void	noteTextFieldActionPerformed(ActionEvent	e)	{
photoButton.requestFocus();

}

So,	 the	focus	ends	up,	as	desired,	on	the	photo	button	(photoButton).	Double-
check	that	all	this	added	code	is	in	the	proper	place.	The	listeners	are	created	in
the	 frame	 constructor	 code	 and	 the	 methods	 are	 added	 with	 all	 the	 other
HomeInventory	class	methods.

Save	and	run	the	project.	Press	<Enter>	in	each	control	to	make	sure	the	focus
transfers	properly.	One	exception	is	the	date	chooser	–	you	need	to	select	a	date
to	have	the	focus	move	to	the	next	control.	You	will	see	this	bit	of	work	will	be
well	 worth	 it	 when	 you	 start	 entering	 information	 onto	 the	 form.	 We’ll	 start
writing	code	 to	process	entries	soon.	First,	 let’s	 look	at	how	we’ll	 structure	all
the	information	used	to	describe	an	inventory	item.

Introduction	to	Object-Oriented
Programming
Each	 inventory	 item	 requires	 nine	 individual	 pieces	 of	 information.	Each	 item
and	the	data	type	represented	are:

➢	Description	(String	 type)	➢	Location	(String	 type)	➢	Marked	 indicator
(boolean	 type)	➢	Serial	number	(String	 type)	➢	Purchase	Price	(String
type)	➢	Purchase	Date	(String	 type)	➢	Purchase	Location	(String	 type)
➢	Note	(String	type)	➢	Photo	file	(String	type)

One	way	to	store	all	this	information	is	to	use	nine	different	arrays,	one	for	each
quantity,	each	element	of	 the	array	 representing	a	single	 item	 in	 the	 inventory.
Using	 arrays	 would	 be	 “doable,”	 but	 messy.	 It	 would	 be	 especially	 messy	 to
write	code	for	swapping	inventory	items	(needed	to	make	sure	items	remain	in
alphabetical	 order).	 Each	 swap	 would	 require	 swapping	 nine	 different	 array
elements.	And,	what	 if	we	 later	want	 to	add	more	 information	 to	an	 inventory
item?	We	would	need	to	remember	everywhere	these	arrays	were	referenced	in
code	to	make	the	needed	changes.	There	must	be	a	better	way	to	structure	all	this
information.	And	there	is.

We	 say	 Java	 is	 an	 object-oriented	 language.	 At	 this	 point	 in	 this	 course,	 we
have	used	many	of	the	built-in	objects	included	with	Java.	We	have	used	button
objects,	text	field	objects,	label	objects	and	many	other	controls.	We	have	used
graphics	 objects,	 stroke	 objects,	 paint	 objects,	 and	 shape	 objects.	Having	 used
these	 objects,	 we	 are	 familiar	 with	 such	 concepts	 as	 declaring	 an	 object,
constructing	an	object	and	using	an	object’s	properties	and	methods.

We	have	 seen	 that	 objects	 are	 just	 things	 that	 have	 attributes	 (properties)	with
possible	actions	(methods).	We’ll	use	the	idea	here	to	create	our	own	“inventory
item”	 objects.	 Our	 objects	 will	 only	 have	 properties	 (specified	 above)	 and	 no
methods.	You	will	see	how	creating	such	objects	saves	us	lots	of	work.

Before	 getting	 started,	 you	may	 be	 asking	 the	 question	 “If	 Java	 is	 an	 object-
oriented	language,	why	have	we	waited	so	long	to	start	talking	about	using	our

own	objects?”	And,	that’s	a	good	question.	Many	books	on	Java	dive	right	into
building	objects.	We	feel	it’s	best	to	see	objects	and	use	objects	before	trying	to
create	your	own.	Java	is	a	great	language	for	doing	this.	The	wealth	of	existing,
built-in	objects	helps	you	learn	about	OOP	before	needing	to	build	your	own.

Now,	 let’s	 review	 some	 of	 the	 vocabulary	 of	 object-oriented	 programming.
These	are	terms	you’ve	seen	before	in	working	with	the	built-in	objects	of	Java.
A	class	provides	a	general	description	of	an	object.	All	objects	are	created	from
this	class	description.	The	first	 step	 in	creating	an	object	 is	adding	a	class	 to	a
Java	project.	Every	application	we	have	built	in	this	course	is	a	class	itself.	Note
the	top	line	of	every	application	has	the	keyword	class.

The	class	provides	a	framework	for	describing	three	primary	components:

➢	Properties	–	attributes	describing	the	objects	➢	Constructors	–	methods
that	 initialize	 the	 object	➢	Methods	 –	 procedures	 describing	 things	 an
object	can	do

Once	a	class	is	defined,	an	object	can	be	created	or	instantiated	from	the	class.
This	simply	means	we	use	the	class	description	to	create	a	copy	of	the	object	we
can	work	with.	Once	the	instance	is	created,	we	construct	the	finished	object	for
our	use.

One	 last	 important	 term	 to	 define,	 related	 to	 OOP,	 is	 inheritance.	 This	 is	 a
capability	 that	 allows	 one	 object	 to	 ‘borrow’	 properties	 and	 methods	 from
another	 object.	 This	 prevents	 the	 classic	 ‘reinventing	 the	 wheel’	 situation.
Inheritance	is	one	of	the	most	powerful	features	of	OOP.	In	this	chapter,	we	will
only	look	at	using	a	simple	object,	with	just	some	properties.	In	the	next	chapter,
we	will	look	at	adding	methods	and	using	inheritance	in	a	project.

Code	Design	–	InventoryItem	Class
The	 first	 step	 in	 creating	our	own	object	 is	 to	define	 the	 class	 from	which	 the
object	will	 be	 created.	This	 step	 (and	all	 following	 steps)	 is	best	 illustrated	by
example.	 And	 our	 example	 will	 be	 our	 inventory	 item	 object.	 We	 will	 be
creating	 InventoryItem	 objects	 that	 have	 nine	 properties,	 one	 for	 each
previously-listed	piece	of	information	input	on	the	form.

We	 need	 to	 add	 a	 class	 to	 our	 project	 to	 allow	 the	 definition	 of	 our
InventoryItem	 objects.	 We	 could	 add	 the	 class	 in	 the	 existing	 frame	 file.
However,	doing	so	would	defeat	a	primary	advantage	of	objects,	 that	being	re-
use.	 Hence,	 we	 will	 create	 a	 separate	 file	 to	 hold	 our	 class.	 To	 do	 this,	 in
NetBeans,	right-click	the	project	name	(Home	Inventory)	and	add	a	new	Java
class	 file	 to	 the	 project.	 Name	 that	 file	 InventoryItem.	 Put	 it	 in	 the
homeinventory	source	folder.	Delete	the	default	code	in	the	file	and	type	these
lines:	package	homeinventory;
public	class	InventoryItem

{

	

}

All	code	needed	to	define	properties,	constructors	and	methods	for	this	class
will	be	between	the	curly	braces	defining	this	class.

Add	 nine	 property	 declarations	 so	 the	 file	 looks	 like	 this:	 package
homeinventory;
public	class	InventoryItem

{

public	String	description;
public	String	location;
public	boolean	marked;

public	String	serialNumber;
public	String	purchasePrice;
public	String	purchaseDate;
public	String	purchaseLocation;
public	String	note;
public	String	photoFile;

}

You	should	see	how	each	property	relates	to	the	information	on	the	frame.
The	keyword	public	indicates	the	variable	is	available	to	any	class.

To	 declare	 an	 InventoryItem	 object	 named	 myItem	 (in	 our	 inventory
application)	use	this	line	of	code:	InventoryItem	myItem;

To	construct	this	object,	use	this	line	of	code:

myItem	=	new	InventoryItem();

This	line	just	says	“give	me	a	new	inventory	item.”	Our	InventoryItem	object
is	now	complete,	ready	for	use.	This	uses	the	default	constructor
automatically	included	with	every	class.	The	default	constructor	simply
creates	an	object	with	no	defined	properties.

Once	 we	 have	 created	 an	 object,	 we	 can	 refer	 to	 properties	 using	 the	 usual
notation:	objectName.propertyName

So,	to	set	the	description	property	of	our	example	inventory	item,	we	would
use:	myItem.description	=	"This	is	my	inventory	item";

Let’s	 see	how	 to	use	our	InventoryItem	 class	 in	 the	home	 inventory	manager
project.	In	this	project,	we	will	use	an	array	of	inventory	items	to	keep	track	of
things.

Code	Design	–	Inventory	File	Input
We	can	now	use	the	InventoryItem	class	to	define	how	we	will	save	inventory
information	in	our	project.	First,	we	look	at	how	to	input	that	information	from	a
file.	 We	 have	 chosen	 to	 store	 the	 inventory	 information	 in	 a	 built-in,	 “hard-
wired”	 file.	 The	 program	 looks	 for	 a	 file	 named	 inventory.txt	 in	 the	 project
folder.	 If	 the	 file	 can’t	 be	 found,	 the	program	begins	with	 an	 empty	 inventory
and,	 once	 items	 are	 added,	 these	 items	 are	 written	 to	 a	 new	 copy	 of
inventory.txt.

The	file	(inventory.txt)	keeps	track	of	each	item	in	the	inventory.	The	file	also
stores	the	items	in	the	combo	box	used	to	specify	item	location.	In	later	code,	we
will	 look	 at	 how	 to	 modify	 these	 items,	 so	 new	 ones	 are	 saved.	 The
inventory.txt	file	is	sequential	and	stores	one	piece	of	information	on	each	line.
The	 first	 line	 is	 the	number	of	 inventory	 items	 in	 the	 file.	After	 this	 line	are	9
lines	 for	 each	 item	 in	 the	 inventory	 (each	 line	 saving	 one	 property	 for	 the
InventoryItem	 object).	 After	 each	 item	 is	 described	 in	 the	 file	 is	 a	 line
containing	the	number	of	items	in	the	combo	box	control	(locationComboBox).
Following	 this	 line	 are	 the	 corresponding	 combo	 box	 items.	 In	 the
\HomeJava\HomeJava	Projects\	folder	is	the	sample	provided	with	these	notes
(seen	 in	 the	project	preview).	Open	 this	 file	 in	 a	 text	 editor	 and	you	will	 see:	

You	see	this	file	has	10	entries	and	there	will	be	9	lines	per	entry.	You	can	see
the	first	entry	(Cannondale	Bicycle)	and	the	beginning	of	the	second	(Clara).

Scroll	down	to	the	bottom	to	see:

After	the	last	entry	are	the	eight	(8)	items	used	in	the	combo	box	control.	Let’s
write	the	code	to	read	this	file.

When	 the	home	 inventory	manager	project	begins,	 the	program	should	 read	 in
the	 inventory.txt	 file	 to	 store	 the	 inventory	 item	 information.	 Here’s	 where
we’ll	use	the	InventoryItem	object.	The	steps	are:

➢	Open	inventory.txt	for	input.
➢	Read	in	the	number	of	entries.
➢	For	each	entry	in	the	file:	o	Create	a	new	InventoryItem	object.
o	Read	in	the	nine	object	properties.

➢	When	done	reading	inventory	items,	read	in	the	number	of	items	in	combo
box	control.

➢	Read	in	combo	box	items.
➢	Close	file.

Make	 sure	your	 are	now	working	with	 the	HomeInventory.java	 file.	We	will
use	the	file	objects	to	read	the	file,	so	add	this	import	statement	at	the	top	of	the
code	window:	import	java.io.*;

The	 code	 associated	 with	 the	 above	 steps	 goes	 at	 the	 end	 of	 the	 frame
constructor	method	so	it	is	executed	when	the	program	first	begins.	Define	three

class	level	variables:	final	int	maximumEntries	=	300;
int	numberEntries;
InventoryItem[]	myInventory	=	new	InventoryItem[maximumEntries];
maximumEntries	is	the	maximum	number	of	inventory	items	allowed,
numberEntries	is	the	number	of	entries	in	our	inventory	and	myInventory	is
a	0-based	array	of	InventoryItem	objects	used	to	store	the	information.	With
these	variables,	the	code	to	open	and	read	the	inventory.txt	file	is:	int	n;
//	open	file	for	entries	try

{

BufferedReader	inputFile	=	new	BufferedReader(new
FileReader("inventory.txt"));	numberEntries	=
Integer.valueOf(inputFile.readLine()).intValue();

if	(numberEntries	!=	0)

{

for	(int	i	=	0;	i	<	numberEntries;	i++)

{

myInventory[i]	=	new	InventoryItem();
myInventory[i].description	=	inputFile.readLine();
myInventory[i].location	=	inputFile.readLine();
myInventory[i].serialNumber	=	inputFile.readLine();
myInventory[i].marked	=

Boolean.valueOf(inputFile.readLine()).booleanValue();
myInventory[i].purchasePrice	=	inputFile.readLine();
myInventory[i].purchaseDate	=	inputFile.readLine();

myInventory[i].purchaseLocation	=	inputFile.readLine();
myInventory[i].note	=	inputFile.readLine();
myInventory[i].photoFile	=	inputFile.readLine();

}

}

//	read	in	combo	box	elements
n	=	Integer.valueOf(inputFile.readLine()).intValue();	if	(n	!=	0)

{

for	(int	i	=	0;	i	<	n;	i++)

{

locationComboBox.addItem(inputFile.readLine());

}

}

inputFile.close();

}

catch	(Exception	ex)

{

numberEntries	=	0;

}

if	(numberEntries	==	0)

{

newButton.setEnabled(false);
deleteButton.setEnabled(false);
nextButton.setEnabled(false);
previousButton.setEnabled(false);
printButton.setEnabled(false);

}

Let’s	take	a	look	at	this	code.	All	the	code	is	in	a	try/catch	structure	in	case

the	input	file	cannot	be	opened.	If	the	file	is	successfully	opened,	we	read
numberEntries,	then	read	each	subsequent	entry,	creating	a	new
InventoryItem	object	for	each	entry.	Once	the	inventory	items	have	been
input,	the	combo	box	items	are	read	in.	If	numberEntries	is	zero	when	done
(meaning	the	file	couldn’t	be	opened	or	truly	had	zero	elements),	we	set	the
toolbar	buttons	so	only	a	new	item	can	be	entered.	Add	this	method	to	your
project.

Let’s	try	this	code.	Copy	the	sample	inventory.txt	file	into	your	project	folder.
Save	and	run	the	project.	If	the	file	opens	and	reads	successfully,	you	should	see
a	blank	form	with	all	toolbar	buttons	enabled	(try	clicking	the	drop-down	in	the
combo	 box	 to	 see	 the	 items	 added).	 Here’s	 my	 frame:	

If	only	the	Save	button	is	enabled,	there	was	an	error	in	reading	the	file.	If	this
occurs,	make	sure	the	file	is	in	the	correct	folder	and	double-check	the	code.

Code	Design	–	Viewing	Inventory	Item
We	can	now	read	in	the	input	file,	but	it’s	not	very	satisfying	not	being	able	to
see	the	results.	We	remedy	that	now	by	writing	code	to	display	the	properties	of
an	inventory	item	(including	the	photo).	The	code	simply	sets	the	correct	frame
control	with	the	corresponding	property.

We	will	use	a	general	method	showEntry	 to	display	 the	properties	of	a	 single
inventory	 item.	 The	 method	 will	 have	 an	 int	 argument,	 specifying	 the	 entry
number	 (from	 1	 to	 numberEntries)	 to	 display.	 The	 method	 is:	 private	 void
showEntry(int	j)

{

//	display	entry	j	(1	to	numberEntries)
itemTextField.setText(myInventory[j	-	1].description);

locationComboBox.setSelectedItem(myInventory[j	-	1].location);
markedCheckBox.setSelected(myInventory[j	-	1].marked);
serialTextField.setText(myInventory[j	-	1].serialNumber);
priceTextField.setText(myInventory[j	-	1].purchasePrice);
dateDateChooser.setDate(stringToDate(myInventory[j	-
1].purchaseDate));	storeTextField.setText(myInventory[j	-
1].purchaseLocation);	noteTextField.setText(myInventory[j	-	1].note);

showPhoto(myInventory[j	-	1].photoFile);
itemTextField.requestFocus();

}

This	 code	 simply	 transfers	 the	 properties	 of	 the	myInventory	 InventoryItem
object	 into	 the	appropriate	 controls.	When	done,	 it	gives	 focus	 to	 the	 first	 text
field	(itemTextField).

The	 showEntry	 method	 uses	 a	 general	 method,	 stringToDate.	 We	 store	 the
purchase	 date	 as	 a	 String	 type	 in	 the	 data	 file.	 We	 use	 a	month/day/year
representation,	always	using	two	digits	for	the	month	and	day.	The	date	chooser
control	 requires	 dates	 to	 be	 of	Date	 type.	 Hence,	 we	 need	 the	 capability	 of

converting	 strings	 to	 dates,	 and	dates	 to	 strings.	We	did	 the	 same	 thing	 in	 the
biorhythm	tracker	project.	The	stringToDate	and	dateToString	methods	that	do
this	task	are:	private	Date	stringToDate(String	s)

{

int	m	=	Integer.valueOf(s.substring(0,	2)).intValue()	-	1;	int	d	=
Integer.valueOf(s.substring(3,	5)).intValue();	int	y	=
Integer.valueOf(s.substring(6)).intValue()	-	1900;	return(new	Date(y,	m,
d));

}

private	String	dateToString(Date	dd)

{

String	yString	=	String.valueOf(dd.getYear()	+	1900);	int	m	=
dd.getMonth()	+	1;
String	mString	=	new	DecimalFormat("00").format(m);
int	d	=	dd.getDate();
String	dString	=	new	DecimalFormat("00").format(d);
return(mString	+	""	+	dString	+	""	+	yString);	}

These	routines	require	these	import	statements:

import	java.util.*;
import	java.text.*;

To	 show	 a	 photo,	 we	 use	 another	 general	 method	 showPhoto.	 The	 code	 to
actually	 display	 the	 photo	 goes	 in	 the	 paintComponent	 method	 for	 the
PhotoPanel	 class.	We	will	 write	 code	 for	 this	 method	 soon.	 The	 showPhoto
method	 simply	 accepts	 the	 photo	 file	 name	 (photoFile)	 as	 a	String	 argument
and	 displays	 the	 name.	A	 try/catch	 structure	 is	 used	 in	 case	 there	 is	 an	 error
loading	a	photo	file:	private	void	showPhoto(String	photoFile)

{

if	(!photoFile.equals(""))

{

try

{

photoTextArea.setText(photoFile);

}

catch	(Exception	ex)

{

photoTextArea.setText("");

}

}

else

{

photoTextArea.setText("");

}

photoPanel.repaint();

}

Place	all	of	these	methods	(showEntry,	stringToDate,	dateToString	and
showPhoto)	in	your	project.	Add	the	two	new	import	statements.

We	need	to	modify	the	frame	constructor	code	to	call	the	display	routine.	First,
add	another	class	level	variable	declaration:	int	currentEntry;

currentEntry	will	always	point	to	the	current	entry	in	the	inventory	file
(going	from	1	to	numberEntries).	The	modified	code	that	uses	this	variable
to	display	the	entry	is	(changes	are	shaded,	much	unmodified	code	is	not
shown):	int	n;
//	open	file	for	entries
try

{

BufferedReader	inputFile	=	new	BufferedReader(new
FileReader("inventory.txt"));	.

.

}

inputFile.close();
currentEntry	=	1;
showEntry(currentEntry);

}

catch	(Exception	ex)

{

numberEntries	=	0;
currentEntry	=	0;

}

if	(numberEntries	==	0)

{

newButton.setEnabled(false);
deleteButton.setEnabled(false);
nextButton.setEnabled(false);
previousButton.setEnabled(false);

printButton.setEnabled(false);

}

Make	the	noted	changes.

Save	 and	 run	 the	 project.	 You	 should	 now	 see	 the	 first	 item	 in	 the	 inventory
displayed	 (except	 for	 photo):	

Code	Design	–	Viewing	Photo
The	 photo	 is	 displayed	 in	 photoPanel	 (using	 code	 in	 the	 paintComponent
method).	We	 use	 the	drawImage	 graphics	method	 to	 display	 the	 photo.	 This
method	 allows	 us	 to	 scale	 any	 photo	 to	 fit	 within	 the	 display	 region.	 If	 our
graphics	region	is	g2D,	the	drawImage	method	is:	g2D.drawImage(myImage,
x,	y,	w,	h,	null);

In	this	method,	the	image	(myImage)	will	be	positioned	at	(x,	y)	with	width	w
and	height	h.	We	will	adjust	the	width	and	height	arguments	to	maintain	the
width-to-height	ratio	of	the	corresponding	photo.

A	word	about	photo	location.	The	example	file	assumes	the	inventory	photos	are
located	 in	 a	 folder	 named	 c:\HomeJava\HomeJava	 Projects\Inventory
Photos\.	Your	copy	of	the	photos	may	or	may	not	be	in	such	a	folder,	depending
on	where	you	 installed	your	version	of	 these	notes	 and	projects.	 If	 they	are	 in
such	a	folder,	great!	If	not,	you	have	a	few	choices:	(1)	create	such	a	folder	and
copy	the	photos	to	that	folder,	(2)	hand	edit	the	inventory.txt	file	to	change	the
file	names	to	your	particular	folder,	(3)	ignore	the	location	and	let	the	program
run,	knowing	the	photos	won’t	display.	You	choose.	Once	the	program	is	fully
functional,	 you	 can	 load	 each	 picture	 individually	 from	 folders	 on	 your
computer.	Then,	when	the	data	file	is	saved,	those	locations	are	saved	correctly
for	your	machine.

Add	the	shaded	code	to	the	PhotoPanel	class	paintComponent	method:	public
void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);

//	draw	border
g2D.setPaint(Color.BLACK);
g2D.draw(new	Rectangle2D.Double(0,	0,	getWidth()	-	1,	getHeight()	-

1));

//	show	photo
Image	photoImage	=	new

ImageIcon(HomeInventory.photoTextArea.getText()).getImage();	int	w
=	getWidth();

int	h	=	getHeight();
double	rWidth	=	(double)	getWidth()	/	(double)

photoImage.getWidth(null);	double	rHeight	=	(double)	getHeight()	/
(double)	photoImage.getHeight(null);	if	(rWidth	>	rHeight)

{

//	leave	height	at	display	height,	change	width	by	amount	height	is
changed	w	=	(int)	(photoImage.getWidth(null)	*	rHeight);

}

else

{

//	leave	width	at	display	width,	change	height	by	amount	width	is
changed	h	=	(int)	(photoImage.getHeight(null)	*	rWidth);

}

//	center	in	panel
g2D.drawImage(photoImage,	(int)	(0.5	(getWidth()	-	w)),	(int)	(0.5

(getHeight()	-	h)),	w,	h,	null);

g2D.dispose();

}

In	this	code,	we	first	create	an	Image	object	(photoImage)	from	the	photo
file.	We	then	determine	photo	scaling	so	that	the	width-to-height	ration	of	the
original	photo	is	maintained.	Lastly,	we	use	the	drawImage	method	to
position	the	photo	on	the	photoPanel.	Note	the	code	requires	access	to	the
photoTextArea	control	in	the	HomeInventory	class.	Because	of	this,	the
photoTextArea	declaration	must	be	prefaced	with	static:	static	JTextArea

photoTextArea	=	new	JTextArea();

Make	this	simple	change.

Run	 the	 project.	 You	 should	 see	 the	 first	 inventory	 item	 (including	 photo,
assuming	 you	 solved	 any	 “photo	 location”	 problem	 you	 may	 have	 had):	

At	this	point,	we	would	like	to	be	able	to	move	to	the	next	item,	or	move
backward.	Let’s	write	the	code	to	do	that.

Code	Design	–	Item	Navigation
First,	we	modify	the	showEntry	method	to	establish	proper	enabled	properties
for	 the	 two	 toolbar	 buttons	 (previousButton	 and	 nextButton)	 used	 to	 move
among	 the	 inventory	 items.	We	set	 these	properties	based	on	whether	we’re	at
the	beginning,	at	the	end	or	in	the	middle	of	the	item	list	(changes	are	shaded):
private	void	showEntry(int	j)

{

//	display	entry	j	(1	to	numberEntries)
itemTextField.setText(myInventory[j	-	1].description);
locationComboBox.setSelectedItem(myInventory[j	-	1].location);
markedCheckBox.setSelected(myInventory[j	-	1].marked);
serialTextField.setText(myInventory[j	-	1].serialNumber);
priceTextField.setText(myInventory[j	-	1].purchasePrice);
dateDateChooser.setDate(stringToDate(myInventory[j	-
1].purchaseDate));	storeTextField.setText(myInventory[j	-
1].purchaseLocation);	noteTextField.setText(myInventory[j	-	1].note);
showPhoto(myInventory[j	-	1].photoFile);
nextButton.setEnabled(true);
previousButton.setEnabled(true);
if	(j	==	1)

previousButton.setEnabled(false);
if	(j	==	numberEntries)

nextButton.setEnabled(false);
itemTextField.requestFocus();

}

Make	these	changes.

Now,	we	need	code	for	the	ActionPerformed	methods	on	the	previousButton
and	nextButton	 buttons.	 In	 each	 case,	 we	 adjust	 currentEntry	 in	 the	 proper
direction	 and	 display	 the	 item.	 The	 methods	 are:	 private	 void

previousButtonActionPerformed(ActionEvent	e)	{
currentEntry--;
showEntry(currentEntry);

}

private	void	nextButtonActionPerformed(ActionEvent	e)	{
currentEntry++;
showEntry(currentEntry);

}

Add	these	methods	to	your	project.

And,	 while	 we’re	 at	 it,	 add	 the	 exitButtonActionPerformed	 method	 to	 your
project:	private	void	exitButtonActionPerformed(ActionEvent	e)	{

exitForm(null);

}

We	call	the	exitForm	method.

Again,	save	and	run	the	project.	You	should	now	be	able	to	view	all	10	items	in
the	sample	file	by	using	the	Previous	and	Next	buttons	in	the	toolbar.	Give	it	a
try.	 Here’s	 my	 dog	 Toby:	

Try	the	Exit	button.

Code	Design	–	Inventory	File	Output
If	 inventory	 entries	 are	 edited	 or	 new	 items	 added	 (we’ll	 see	 how	 to	 do	 this
next),	 we	 want	 to	 save	 all	 entries	 back	 to	 the	 inventory.txt	 file.	We	 do	 this
output	in	the	exitForm	method.	That	method	is	essentially	the	same	as	the	code
in	the	frame	constructor	with	the	readLine	lines	replaced	by	println	statements:
private	void	exitForm(WindowEvent	evt)

{

//	write	entries	back	to	file
try

{

PrintWriter	outputFile	=	new	PrintWriter(new
BufferedWriter(new	FileWriter("inventory.txt")));
outputFile.println(numberEntries);

if	(numberEntries	!=	0)

{

for	(int	i	=	0;	i	<	numberEntries;	i++)

{

outputFile.println(myInventory[i].description);
outputFile.println(myInventory[i].location);
outputFile.println(myInventory[i].serialNumber);
outputFile.println(myInventory[i].marked);
outputFile.println(myInventory[i].purchasePrice);
outputFile.println(myInventory[i].purchaseDate);

outputFile.println(myInventory[i].purchaseLocation);
outputFile.println(myInventory[i].note);

outputFile.println(myInventory[i].photoFile);

}

}

//	write	combo	box	entries
outputFile.println(locationComboBox.getItemCount());	if
(locationComboBox.getItemCount()	!=	0)

{

for	(int	i	=	0;	i	<	locationComboBox.getItemCount();	i++)
outputFile.println(locationComboBox.getItemAt(i));

}

outputFile.close();

}

catch	(Exception	ex)

{

	

}

System.exit(0);

}

All	but	the	last	line	is	new	code.	Add	this	method	to	your	project.	Note	the
code	to	write	the	combo	box	items	back	to	file	also.

Save	 and	 run	 the	 project.	 The	 input	 file	will	 be	 read	 and	 the	 items	 displayed.
Stop	 the	project.	The	 file	will	be	written	back	 to	disk.	Currently,	 the	same	file
will	be	written	back.	This	is	because	we	have	no	editing	capability.

Code	Design	–	Input	Validation
Before	adding	editing	capability,	we	need	to	address	a	couple	of	input	validation
issues.	First,	let’s	discuss	the	purchasePrice	property.	We	could	make	sure	this
is	 a	 numeric	 input,	 using	 validation	 code	 used	 in	 the	 loan	 assistant	 project.	 I
choose	not	to	do	this	for	a	couple	of	reasons.	First,	the	value	is	never	used	with
any	math	functions,	so	we	really	don’t	care	if	it’s	a	number.	Second,	it	allows	the
user	to	write	something	like	‘Free’	or	‘Gift’	in	the	text	field	and	have	it	properly
saved.

Next,	we	address	the	 location	property.	The	value	for	 this	property	is	obtained
from	 the	 locationComboBox	 control.	 Two	 selection	 possibilities	 exist:	 (1)
choose	from	an	existing	location,	(2)	type	in	a	new	location.	If	a	new	location	is
typed	in,	it	is	added	to	the	list	portion	of	the	combo	box,	so	it	can	be	saved	for
future	edits	(in	the	inventory.txt	file).	So,	we	need	code	to	check	a	typed	entry
versus	the	existing	list	to	see	if	the	new	entry	needs	to	be	added	to	the	list	box.
The	code	 to	do	 this	goes	 in	 the	 locationComboBoxActionPerformed	method.
Make	 the	 shaded	 changes	 to	 this	 method:	 private	 void
locationComboBoxActionPerformed(ActionEvent	e)	{

//	If	in	list	-	exit	method
if	(locationComboBox.getItemCount()	!=	0)

{

for	(int	i	=	0;	i	<	locationComboBox.getItemCount();	i++)	{
if

(locationComboBox.getSelectedItem().toString().equals(loca
tionComboBox.getItemAt(i).toString()))	{

serialTextField.requestFocus();
return;

}

}

}

//	If	not	found,	add	to	list	box

locationComboBox.addItem(locationComboBox.getSelectedItem());
serialTextField.requestFocus();

}

You	should	be	able	to	follow	the	logic	of	what’s	going	on	here.	Add	this
method	to	the	project.

Lastly,	we	address	how	to	load	a	photo	into	the	photo	panel	control	on	the	frame.
When	the	user	clicks	the	button	with	an	ellipsis	(photoButton)	next	to	the	Photo
text	 area	 control,	 the	 open	 file	 dialog	 control	 (using	JChooser)	 should	 appear
allowing	the	user	to	select	a	file.	The	FileNameExtensionFilter	method	is	used
to	set	the	filter.	Add	this	import	statement:	import	javax.swing.filechooser.*;

Once	 a	 file	 is	 selected,	 the	 photo	 panel	 control	 should	 display	 the	 photo.	We
have	already	written	code	to	do	most	of	these	steps	in	the	showPhoto	method	we
use	 to	 display	 an	 already	 stored	 photo	 file.	 So,	 the
photoButtonActionPerformed	 method	 is:	 private	 void
photoButtonActionPerformed(ActionEvent	e)	{

JFileChooser	openChooser	=	new	JFileChooser();
openChooser.setDialogType(JFileChooser.OPEN_DIALOG);
openChooser.setDialogTitle("Open	Photo	File");
openChooser.addChoosableFileFilter(new

FileNameExtensionFilter("Photo	Files",	"jpg"));	if
(openChooser.showOpenDialog(this)	==
JFileChooser.APPROVE_OPTION)
showPhoto(openChooser.getSelectedFile().toString());	}

Add	this	method	to	the	project.

Save	and	run	the	project	 to	make	sure	the	code	compiles.	You	can	try	the	new
validations	with	the	existing	inventory	items.	Click	the	photo	button.	The	dialog

will	appear:	

You	can	change	a	photo,	if	you	choose.	Any	changes	to	an	item	won’t	be
saved	(changes	to	the	combo	box	will	be	saved).	We	now	add	editing
capability	to	allow	saving	changes	to	existing	and	new	inventory	items.

Code	Design	–	New	Inventory	Item
When	the	project	first	begins	(with	an	empty	input	file)	or	when	the	user	clicks
the	New	button	in	the	toolbar,	we	want	the	form	to	be	in	a	state	to	accept	a	new
set	of	inventory	information.	The	steps	are:

➢	Disable	all	toolbar	buttons,	except	saveButton.
➢	Blank	out	all	text	field	controls	and	combo	box.
➢	Uncheck	check	box	control	(markedCheckBox).
➢	Set	calendar	to	today’s	date.
➢	Blank	out	photoPanel	paneland	photoTextField	label.
➢	Give	itemTextField	focus.

The	code	for	these	steps	is	placed	in	a	general	method	blankValues.	We	use	a
method	 because	 it	 is	 needed	 here,	 to	 start	 a	 new	 item,	 and	 later	 in	 the	 delete
method	 (in	 case	 we	 delete	 the	 last	 item	 in	 the	 inventory).	 The	 method	 to
implement	the	above	steps	is:	private	void	blankValues()

{

//	blank	input	screen
newButton.setEnabled(false);
deleteButton.setEnabled(false);
saveButton.setEnabled(true);
previousButton.setEnabled(false);
nextButton.setEnabled(false);
printButton.setEnabled(false);
itemTextField.setText("");
locationComboBox.setSelectedItem("");
markedCheckBox.setSelected(false);
serialTextField.setText("");
priceTextField.setText("");
dateDateChooser.setDate(new	Date());

storeTextField.setText("");
noteTextField.setText("");
photoTextArea.setText("");
photoPanel.repaint();
itemTextField.requestFocus();

}

Add	this	method	to	your	project.

With	 this	 general	 method,	 the	 newButton	 Click	 event	 is	 coded	 simply	 as:
private	void	newButtonActionPerformed(ActionEvent	e)	{

blankValues();

}

Add	this	method	to	your	project.

Now	 we	 need	 code	 to	 save	 entries	 for	 a	 new	 inventory	 item.	When	 the	 user
clicks	the	Save	button	on	the	toolbar,	the	following	steps	occur:

➢	Make	 sure	 there	 is	 an	 entry	 in	 itemTextField	 (the	only	 required	 input).
Capitalize	the	first	character	(to	insure	proper	ordering).

➢	Increment	numberEntries.
➢	 Determine	 entry	 location	 in	myInventory	 array	 (alphabetically,	 using
itemTextField	Text	 property)	➢	Once	 location	 is	 determined,	move	 all
items	“below”	location	down	one	position	in	myInventory	array.

➢	Establish	properties	for	new	array	entry.
➢	Display	new	entry.
➢	Disable	newButton,	if	we’ve	reached	the	maximum	number	of	entries.
➢	Enable	deleteButton	and	printButton.

The	tricky	part	of	the	code	associated	with	these	steps	involves	moving	elements
in	the	myInventory	array.	Let	me	explain.	With	normal	Java	variables	a,	b,	c	if
you	write:	a	=	b;
b	=	c;

a	will	be	replaced	by	 the	value	 in	b.	When	b	 is	 replaced	by	c,	a	 is	unchanged,
retaining	the	original	value	for	b.

What	if	a,	b,	c	are	objects	(such	as	elements	of	the	myInventory	array)	and	we
write	the	same	code:	a	=	b;
b	=	c;

With	objects,	a	will	be	assigned	the	same	memory	location	as	b,	not	a	copy	of	its
value.	When	b	 is	 then	assigned	 to	c,	a	will	also	change	 to	c	since	 it	shares	 the
same	memory	location.	To	avoid	this,	we	need	one	additional	step	following	the
assignment	of	b	to	a.	The	modified	code	is:	a	=	b;
b	=	new	Object();
b	=	c;

In	this	code,	once	b	is	assigned	to	a,	we	create	a	new	object	for	b,	giving	it	a	new
memory	location	prior	to	assigning	it	to	c.	This	“breaks”	the	connection	between
memory	locations	for	a	and	b.	This	modified	code	gives	us	the	desired	result	of	a
having	the	original	value	for	b	and	b	having	the	new	value	for	c.

The	 code	 for	 saving	 an	 entry	 is	 placed	 in	 the	 saveButtonActionPerformed
method:	private	void	saveButtonActionPerformed(ActionEvent	e)	{

//	check	for	description
itemTextField.setText(itemTextField.getText().trim());	if
(itemTextField.getText().equals(""))

{

JOptionPane.showConfirmDialog(null,	"Must	have	item
description.",	"Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	itemTextField.requestFocus();

return;

}

//	capitalize	first	letter
String	s	=	itemTextField.getText();
itemTextField.setText(s.substring(0,	1).toUpperCase()	+

s.substring(1));	numberEntries++;
//	determine	new	current	entry	location	based	on	description

currentEntry	=	1;
if	(numberEntries	!=	1)

{

do

{

if
(itemTextField.getText().compareTo(myInventory[currentEntr	y	-
1].description)	<	0)	break;

currentEntry++;

}

while	(currentEntry	<	numberEntries);

}

//	move	all	entries	below	new	value	down	one	position	unless	at	end	if
(currentEntry	!=	numberEntries)

{

for	(int	i	=	numberEntries;	i	>=	currentEntry	+	1;	i--)	{
myInventory[i	-	1]	=	myInventory[i	-	2];
myInventory[i	-	2]	=	new	InventoryItem();

}

}

myInventory[currentEntry	-	1]	=	new	InventoryItem();
myInventory[currentEntry	-	1].description	=	itemTextField.getText();
myInventory[currentEntry	-	1].location	=
locationComboBox.getSelectedItem().toString();

myInventory[currentEntry	-	1].marked	=
markedCheckBox.isSelected();	myInventory[currentEntry	-
1].serialNumber	=	serialTextField.getText();
myInventory[currentEntry	-	1].purchasePrice	=
priceTextField.getText();	myInventory[currentEntry	-
1].purchaseDate	=	dateToString(dateDateChooser.getDate());
myInventory[currentEntry	-	1].purchaseLocation	=
storeTextField.getText();	myInventory[currentEntry	-	1].photoFile	=
photoTextArea.getText();	myInventory[currentEntry	-	1].note	=
noteTextField.getText();	showEntry(currentEntry);
if	(numberEntries	<	maximumEntries)

newButton.setEnabled(true);
else

newButton.setEnabled(false);
deleteButton.setEnabled(true);
printButton.setEnabled(true);

}

Study	 this	 code.	 If	 there	 is	 no	 entry	 in	 itemTextField,	 a	 message	 box	 is
displayed.	 If	 there	 is	 an	 entry,	 capitalize	 the	 first	 character,	 to	 obtain	 proper
ordering.	We	then	determine	the	location	of	the	new	entry	in	the	list	of	current
entries.	Once	that	position	(currentEntry)	is	found,	all	other	array	elements	are
moved	down	one	position	(paying	attention	to	how	we	“equate”	objects).	A	new
InventoryItem	 is	 created	 at	 currentEntry	 -	 1	 (recall	 we’re	 using	 a	 0-based
array)	and	the	control	values	placed	in	 the	appropriate	object	properties.	Based
on	the	number	of	entries,	 toolbar	button	status	is	modified.	Add	this	method	to
your	project.

One	option	the	user	has	while	adding	a	new	inventory	item	is	to	click	on	the	Exit
button	 in	 the	 toolbar,	 essentially	 stopping	 the	 program.	 We	 want	 to	 add	 a
message	box	to	the	program	to	make	sure	if	this	happens,	the	user	really	means
to	exit.	This	message	box	could	be	placed	 in	 the	exitButtonActionPerformed
event	(which	closes	the	form,	invoking	the	exitForm	method).	Recall,	however,
a	user	can	also	exit	a	program	by	clicking	the	X	in	the	upper	right	corner	of	the
form,	also	invoking	the	exitForm	method.	So,	to	intercept	all	exit	requests,	we
place	 this	new	message	box	 in	 the	exitForm	method.	The	modified	method	 is

(changes	 are	 shaded,	 unmodified	 code	 writing	 properties	 back	 to	 file	 is	 not
shown):	private	void	exitForm(WindowEvent	evt)

{

if	(JOptionPane.showConfirmDialog(null,	"Any	unsaved	changes	will
be	lost.\nAre	you	sure	you	want	to	exit?",	"Exit	Program",
JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE)	==	JOptionPane.NO_OPTION)
return;

//	write	entries	back	to	file
try

{

PrintWriter	outputFile	=	new	PrintWriter(new
BufferedWriter(new	FileWriter("inventory.txt")));
outputFile.println(numberEntries);

.

.

}

We	 need	 to	make	 one	 change	 to	make	 this	 code	work.	 By	 default,	 when	 this
method	is	called,	the	frame	is	closed	and	cannot	be	reopened.	To	avoid	this,	add
this	 line	 of	 code	 in	 the	 frame	 constructor	 when	 the	 frame	 is	 first	 created:
setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);	 Add
these	code	modifications	to	your	project.

Save	and	run	the	project.	You	should	now	have	the	capability	to	add	and	save	a
new	 item	 to	 the	 inventory.	 Let’s	 try	 it.	 Click	 the	New	 toolbar	 button	 to	 see	 a
blank	form	ready	for	input	(only	the	Save	button	and	Exit	buttons	are	enabled):	

Type	in	some	entries.	Try	the	combo	box	selections	(type	a	new	one	if	you
want).	Add	a	photo	if	you	have	one.	When	done,	click	Save	to	make	sure	the
item	is	properly	sorted.

I	 added	 a	 Couch	 to	 my	 inventory	 (no	 photo).	 After	 clicking	 Save,	 I	 see:	

Notice	all	toolbar	buttons	are	now	active.	I	can	add	another	item	or	move	to
another	item.	By	clicking	Previous	and	Next,	I	can	see	that	the	item	is
properly	located	in	the	list	(right	after	my	Coffee	Cup).	Stop	the	project	when
you	want.	When	you	click	Exit,	you	should	see	the	message	box	we	added	to
prevent	inadvertent	stopping	of	the	program:	

Make	sure	both	the	Yes	and	No	options	work	correctly.	Stop,	then	rerun	the
project.	Make	sure	any	added	items	are	now	in	the	inventory.

Code	Design	–	Deleting	Inventory	Items
After	entering	a	new	item	(or	when	viewing	an	existing	item),	the	Delete	toolbar
button	is	enabled,	but	there	is	no	code	“behind”	the	button.	Let’s	write	that	code.

When	 a	user	 clicks	 the	Delete	 button	while	 displaying	 an	 entry,	 the	 following
should	happen:

➢	Ask	the	user	if	he/she	really	wants	to	delete	the	entry.
➢	Move	all	items	“below”	displayed	entry	up	one	position	in	myInventory
array.	This	removes	the	entry	from	the	array.

➢	Decrement	numberEntries.
➢	If	entry	deleted	is	last	item,	set	form	up	for	new	entry.
➢	 If	 more	 entries	 remain	 after	 deletion,	 display	 entry	 preceding	 deleted
entry.

The	 code	 for	 the	 above	 steps	 is	 placed	 in	 the	deleteButtonActionPerformed
method:	private	void	deleteButtonActionPerformed(ActionEvent	e)	{

if	(JOptionPane.showConfirmDialog(null,	"Are	you	sure	you	want	to
delete	this	item?",	"Delete	Inventory	Item",
JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE)	==	JOptionPane.NO_OPTION)
return;

deleteEntry(currentEntry);
if	(numberEntries	==	0)

{

currentEntry	=	0;
blankValues();

}

else

{

{

currentEntry--;
if	(currentEntry	==	0)

currentEntry	=	1;
showEntry(currentEntry);

}

}

Notice	 if	 we	 delete	 the	 last	 item	 in	 the	 inventory,	 the	 form	 is	 ‘blanked.’
Otherwise,	 the	 entry	 preceding	 the	 deleted	 entry	 (if	 there	 is	 one)	 is	 displayed.
Add	this	method	to	your	project.

The	above	code	uses	a	general	method	deleteEntry	to	remove	an	entry	from	the
myInventory	 array.	 The	 code	 for	 this	 method	 is	 (the	 int	 argument	 indicates
which	item	to	remove):	private	void	deleteEntry(int	j)

{

//	delete	entry	j
if	(j	!=	numberEntries)

{

//	move	all	entries	under	j	up	one	level
for	(int	i	=	j;	i	<	numberEntries;	i++)

{

myInventory[i	-	1]	=	new	InventoryItem();
myInventory[i	-	1]	=	myInventory[i];

}

}

numberEntries--;

}

}

Again,	 notice	 the	 special	 way	 to	 “equate”	 objects.	 Add	 this	 method	 to	 your
project.

Save	 and	 run	 the	 project	 with	 these	 changes.	 Make	 sure	 you	 can	 delete	 any
entries	you	added	earlier.	You	will	see	this	message	box	when	you	try	to	delete

an	entry:	

Make	sure	both	the	Yes	and	No	options	work.	I	was	able	to	successfully	delete
my	Couch	from	the	inventory.

Code	Design	–	Editing	Inventory	Items
There	is	one	problem	you	may	notice.	If	you	edit	a	current	entry	in	the	inventory
and	click	Save,	a	new	item	is	added	to	the	inventory,	rather	than	a	simple	update
of	 the	existing	 item.	We	need	 to	modify	 the	 save	method	 to	be	able	 to	handle
editing	an	existing	item.

The	approach	we	take	is	that	if	we	are	editing	an	existing	item	and	click	Save,
we	first	delete	it,	then	treat	the	modified	item	as	if	it	is	a	new	item.	This	allows
us	 to	use	 the	 existing	 save	code	and	also	properly	 sorts	 the	 edited	 item	 (if	 the
Description	 property	 changed).	 The	 modified	 saveButtonActionPerformed
method	is	(changes	are	shaded,	much	unmodified	code	not	shown):	private	void
saveButtonActionPerformed(ActionEvent	e)	{

//	check	for	description
itemTextField.setText(itemTextField.getText().trim());	if
(itemTextField.getText().equals(""))

{

JOptionPane.showConfirmDialog(null,	"Must	have	item
description.",	"Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	itemTextField.requestFocus();

return;

}

if	(newButton.isEnabled())

{

//	delete	edit	entry	then	resave
deleteEntry(currentEntry);

}

.

.

}

In	 this	 code,	we	 use	 the	 enabled	 status	 of	newButton	 to	 determine	 if	we	 are
saving	an	existing	item	(enabled	is	true)	or	a	new	item	(enabled	is	false).	Add
these	changes	to	your	project.

Save	 and	 run	 the	 project.	 You	 now	 have	 full	 editing	 capability	 in	 the	 home
inventory	manager	project.	You	can	view	inventory	items,	add	new	items	to	your
inventory,	 delete	 items,	 or	modify	 existing	 items.	All	 information	 can	 now	be
properly	saved.

We	 still	 need	 to	 add	 search	 and	 print	 capabilities	 to	 our	 project.	But,	 first	we
need	 to	 address	 one	 “small”	 annoyance.	 If	 you	 edit	 an	 existing	 item	 and	 then
click	New,	Previous,	or	Next	without	clicking	Save,	your	changes	are	lost.	(You
can	also	click	Exit,	but	we	have	already	added	code	 for	 that	 event	 to	give	 the
user	 a	 chance	 to	 reconsider).	 It	would	 be	 nice	 if	 the	 program	would	 “save	 us
from	ourselves”	and	ask	us	if	we’d	like	to	save	the	changes	before	moving	on.
This	is	a	straightforward	modification.	We	essentially	need	to	know	if	anything
was	changed	for	a	particular	item.	If	changes	were	made	and	we	attempt	to	move
away	from	that	 item	(click	New,	Previous	or	Next)	without	clicking	Save,	we
can	display	a	message	box	asking	if	the	changes	should	be	saved.

We	will	 use	 a	 general	method,	 checkSave,	 to	 see	 if	 a	 save	might	 be	 needed.
Modify	 the	 newButton,	 previousButton	 and	 nextButton	 ActionPerformed
methods	 to	 call	 this	 method	 (changes	 are	 shaded):	 private	 void
newButtonActionPerformed(ActionEvent	e)	{

checkSave();
blankValues();

}

private	void	previousButtonActionPerformed(ActionEvent	e)	{
checkSave();
currentEntry--;
showEntry(currentEntry);

}

private	void	nextButtonActionPerformed(ActionEvent	e)	{
checkSave();
currentEntry++;
showEntry(currentEntry);

}

The	general	method	checkSave	used	by	each	of	these	methods	is:	private	void
checkSave()

{

boolean	edited	=	false;
if	(!myInventory[currentEntry	-

1].description.equals(itemTextField.getText()))	edited	=	true;
else	if	(!myInventory[currentEntry	-

1].location.equals(locationComboBox.getSelectedItem().toString()))
edited	=	true;

else	if	(myInventory[currentEntry	-	1].marked	!=
markedCheckBox.isSelected())	edited	=	true;

else	if	(!myInventory[currentEntry	-
1].serialNumber.equals(serialTextField.getText()))	edited	=	true;

else	if	(!myInventory[currentEntry	-
1].purchasePrice.equals(priceTextField.getText()))	edited	=	true;

else	if	(!myInventory[currentEntry	-
1].purchaseDate.equals(dateToString(dateDateChooser.getDate())))
edited	=	true;

else	if	(!myInventory[currentEntry	-
1].purchaseLocation.equals(storeTextField.getText()))	edited	=	true;

else	if	(!myInventory[currentEntry	-
1].note.equals(noteTextField.getText()))	edited	=	true;

else	if	(!myInventory[currentEntry	-
1].photoFile.equals(photoTextArea.getText()))	edited	=	true;

if	(edited)

{

if	(JOptionPane.showConfirmDialog(null,	"You	have	edited	this
item.	Do	you	want	to	save	the	changes?",	"Save	Item",
JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE)	==	JOptionPane.YES_OPTION)
saveButton.doClick();

}

}

This	 method	 has	 a	 local	 boolean	 variable	 edited	 that	 tells	 us	 if	 the	 current
inventory	 item	has	been	modified.	 It	 is	 initialized	 at	 false.	 It	 then	 sequentially
goes	through	all	the	input	controls.	If	any	of	the	values	displayed	in	the	controls
disagree	with	the	stored	values,	the	user	has	changed	something	and	edited	is	set
to	true.	If	edited	is	true,	the	user	is	asked	if	they	would	like	to	save	the	entry.

Make	the	specified	changes	to	your	project.	Save	and	run	the	project.	Add	a	new
inventory	 item,	 make	 some	 entries	 describing	 the	 item	 and	 click	 Save.	 Now
modify	something	about	your	new	item	and	click	New,	Previous	or	Next.	You

should	see	this	message	box:	

You	decide	whether	to	save	the	changes	or	not.	If	you	do,	notice	you	don’t
have	to	click	the	Save	button;	it	is	done	for	you	in	code.

Code	Design	–	Inventory	Item	Search
When	a	user	clicks	one	of	the	search	button	controls	(searchButton	array),	the
following	happens:

➢	Determine	which	search	button	was	clicked.
➢	Find	first	item	in	inventory	list	that	begins	with	‘clicked’	letter	–	display
that	item.

➢	If	no	matching	item	found,	display	a	message	box.

The	 code	 to	 implement	 these	 steps	 is	 straightforward	 and	 is	 placed	 in	 the
searchLabelActionPerformed	 method:	 private	 void
searchButtonActionPerformed(ActionEvent	e)	{

int	i;
if	(numberEntries	==	0)

return;
//	search	for	item	letter
String	letterClicked	=	e.getActionCommand();
i	=	0;
do

{

if	(myInventory[i].description.substring(0,
1).equals(letterClicked))	{

currentEntry	=	i	+	1;
showEntry(currentEntry);
return;

}

i++;

}

while	(i	<	numberEntries);
JOptionPane.showConfirmDialog(null,	"No	"	+	letterClicked	+	"

inventory	items.",	"None	Found",	JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	}

Add	this	method	to	your	project.

Save	and	run	the	project.	Notice	how	the	search	labels	are	properly	created	and
positioned.	When	I	click	the	‘T’	search	label	using	the	sample	inventory,	I	see:	

Notice	we	see	the	first	T	entry	(TIVO).	To	see	entries	‘around’	this	choice,	use
the	 Previous	 and	 Next	 buttons.	 Click	 on	 ‘R’	 and	 you’ll	 see:	

Printing	with	Java
One	 last	 capability	 we	 will	 add	 to	 our	 home	 inventory	 project	 is	 printing.	 A
printed	 copy	 of	 our	 items	would	 be	 helpful	 for	 archival	 purposes	 and	 for	 any
potential	 insurance	 claims.	 Printing	 is	 one	 of	 the	 more	 tedious	 programming
tasks	 within	 Java.	 But,	 fortunately,	 it	 is	 straightforward	 and	 there	 are	 dialog
controls	that	help	with	the	tasks.	We	will	introduce	lots	of	new	topics	here.	All
steps	will	be	reviewed.

To	 perform	 printing	 in	 Java,	 we	 need	 this	 import	 statement:	 import
java.awt.print.*;

The	PrinterJob	class	from	this	imported	package	controls	the	printing	process.
This	class	is	used	to	start	or	cancel	a	printing	job.	It	can	also	be	used	to	display
dialog	boxes	when	needed.	The	Printable	interface	from	this	package	is	used	to
represent	the	item	(document)	to	be	printed.

The	steps	to	print	a	document	(which	may	include	text	and	graphics)	using	the
PrinterJob	class	are:

➢	Declare	and	create	a	PrinterJob	object.
➢	Point	the	PrinterJob	object	to	a	Printable	class	(containing	code	to	print
the	desired	document)	using	 the	setPrintable	method	of	 the	PrinterJob
object.

➢	Print	the	document	using	the	print	method	of	the	PrinterJob	object.

These	 steps	 are	 straightforward.	 To	 declare	 and	 create	 a	 PrinterJob	 object
named	 myPrinterJob,	 use:	 PrinterJob	 myPrinterJob	 =
PrinterJob.getPrinterJob();	If	the	Printable	class	is	named	MyDocument,	the
PrinterJob	is	associated	with	this	class	using:	myPrinterJob.setPrintable(new
MyDocument);

Once	 associated,	 the	 printing	 is	 accomplished	 using	 the	 print	 method:
myPrinterJob.print();

This	 print	 method	 must	 be	 enclosed	 in	 a	 try/catch	 (catching	 a

PrinterException)	block.

The	 key	 to	 printing	 is	 the	 establishment	 of	 the	 Printable	 interface,	 called
MyDocument	 here.	 This	 class	 describes	 the	 document	 to	 be	 printed	 and	 is
placed	 after	 the	 main	 class.	 The	 form	 of	 this	 class	 is:	 class	 MyDocument
implements	Printable

{

public	int	print(Graphics	g,	PageFormat	pf,	int	pageIndex)	{
Graphics2D	g2D	=	(Graphics2D)	g;
.
.
.

}

}

This	class	has	a	single	method,	print,	which	is	called	whenever	the	PrinterJob
object	needs	information	to	do	its	job.	In	this	method,	you	‘construct’	each	page
(using	 Java	 code)	 that	 is	 to	 be	 printed.	 You’ll	 see	 the	 code	 in	 this	method	 is
familiar.

Note	 the	print	method	has	 three	 arguments.	The	 first	 argument	 is	 a	Graphics
object	 g.	 Something	 familiar!	 The	 Printable	 interface	 provides	 us	 with	 a
graphics	 object	 to	 ‘draw’	 each	 page	 we	 want	 to	 print.	 We	 cast	 this	 to	 a
Graphics2D	object,	noting	this	is	the	same	graphics	object	we	used	in	Chapters
7	 and	 8	 to	 draw	 lines,	 curves,	 rectangles,	 and	 text.	 And,	 all	 the	 methods	 we
learned	there	apply	here!	We’ll	look	at	how	to	do	this	in	detail	next.	The	second
argument	is	a	PageFormat	object	pf,	which	describes	the	size	and	orientation	of
the	paper	being	used.	Finally,	the	pageIndex	argument	is	the	number	of	the	page
to	print.	This	argument	is	zero-based,	meaning	the	first	page	has	a	value	of	zero.

The	print	method	can	return	one	of	two	constant	values:

PAGE_EXISTS returned	if	pageIndex	refers	to	an	existing	page
NO_SUCH_PAGE returned	if	pageIndex	refers	to	a	non-existing

page

It	 is	 very	 important	 that	NO_SUCH_PAGE	 is	 returned	 at	 some	point	 or	 your
program	will	assume	there	are	an	infinite	number	of	pages	to	print!!

Another	 important	 thing	 to	 remember	 is	 that	 the	print	 method	may	 be	 called
more	 than	 once	 per	 printed	 page,	 as	 the	 output	 is	 buffered	 to	 the	 printer.	 So,
don’t	build	in	any	assumptions	about	how	often	print	is	called	for	a	given	page.

Summarizing	 the	printing	steps,	here	 is	basic	 Java	code	 (PrintingExample)	 to
print	a	document	described	by	a	class	MyDocument:	import	javax.swing.*;
import	java.awt.*;
import	java.awt.print.*;

public	class	PrintingExample

{

public	static	void	main(String[]	args)

{

PrinterJob	myPrinterJob	=	PrinterJob.getPrinterJob();
myPrinterJob.setPrintable(new	MyDocument());
try

{

myPrinterJob.print();

}

catch	(PrinterException	ex)

{

JOptionPane.showConfirmDialog(null,	ex.getMessage(),	"Print
Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	}

}

}

class	MyDocument	implements	Printable

{

public	int	print(Graphics	g,	PageFormat	pf,	int	pageIndex)	{
Graphics2D	g2D	=	(Graphics2D)	g;
.
.
.

}

}

Let’s	 see	how	 to	develop	code	 for	 the	Printable	 interface	print	method	 to	do
some	printing.

Printing	Document	Pages
The	 Printable	 interface	 provides	 (in	 its	 print	 method)	 a	 graphics	 object	 (g,
which	 we	 cast	 to	 a	Graphics2D	 object,	 g2D)	 for	 ‘drawing’	 our	 pages.	 And,
that’s	 just	what	we	 do	 using	 familiar	 graphics	methods.	 For	 each	 page	 in	 our
printed	document,	we	draw	 the	desired	 text	 information	 (drawString	method),
any	 shapes	 (draw	 method),	 or	 graphics	 (using	 the	 drawImage	 we	 used	 to
‘draw’	the	inventory	photo).

Once	a	page	is	completely	drawn	to	the	graphics	object,	we	‘tell’	the	PrinterJob
object	 to	 print	 it.	We	 repeat	 this	 process	 for	 each	 page	 we	 want	 to	 print.	 As
noted,	 the	pageIndex	 argument	 (in	 conjunction	with	 the	 return	 value)	 of	 the
print	method	helps	with	this	effort.	This	does	require	a	little	bit	of	work	on	your
part.	 You	must	 know	 how	many	 pages	 your	 document	 has	 and	what	 goes	 on
each	page.

Let’s	look	at	the	coordinates	and	dimensions	of	the	graphics	object	for	a	single
page.

This	becomes	our	palette	for	positioning	items	on	a	page.	Horizontal	position	is
governed	by	X	(increases	from	0	to	the	right)	and	vertical	position	is	governed
by	Y	(increases	from	0	to	the	bottom).	All	dimensions	are	type	double,	in	units
of	1/72	inch.	A	standard	sheet	of	8.5	inch	by	11-inch	paper	(with	zero	margins)
would	have	a	width	and	height	of	612	and	792,	respectively.

The	imageable	area	rectangle	is	described	by	the	PageFormat	argument	(pf)	of
the	 Printable	 class	 print	 method.	 The	 origin	 can	 be	 determined	 using:
pf.getImageableX();
pf.getImageableY();

These	 values	 define	 the	 right	 and	 top	 margins,	 respectively.	 The	 width	 and
height	 of	 the	 imageable	 area,	 respectively,	 are	 found	 using:
pf.getImageableWidth();
pf.getImageableHeight();

The	returned	values	are	double	types	in	units	of	1/72	inch.

The	process	for	each	page	is	to	decide	“what	goes	where”	and	then	position	the
desired	information	using	the	appropriate	graphics	method.	Any	of	the	graphics
methods	we	have	learned	can	be	used	to	put	information	on	the	graphic	object.

To	 place	 text	 on	 the	 graphics	 object	 (g2D),	 use	 the	 drawString	 method
introduced	 in	 Chapter	 7.	 To	 place	 the	 string	myString	 at	 position	 (x,	 y),	 the
syntax	is:	g2D.drawString(myString,	x,	y);

The	 string	 is	 printed	 using	 the	 current	 font	 and	 paint	 attributes.	 With	 this
statement,	you	can	place	any	 text,	anywhere	you	 like,	with	any	font	and	paint.
You	just	need	to	make	the	desired	specifications.	Each	line	of	text	on	a	printed
page	will	 require	a	drawString	statement.	Note	x	and	y	 in	 this	method	are	 int
types,	not	double,	hence	type	casting	of	page	dimensions	is	usually	needed.

Also	 in	 Chapter	 7,	 we	 saw	 how	 to	 determine	 the	 width	 and	 height	 of	 strings
(knowing	 the	 font	 object	 myFont).	 This	 is	 helpful	 for	 both	 vertical	 and
horizontal	 placement	 of	 text	 on	 a	 page.	 This	 information	 is	 returned	 in	 a
Rectangle2D	 structure	 (stringRect),	 using:	 Rectangle2D	 stringRect	 =
myFont.getStringBounds(myString,	 g2D.getFontRenderContext());	 The
height	 and	width	 of	 the	 returned	 stringRect	 structure	 yield	 the	 string	 size	 (in
units	 of	 1/72	 inch).	 These	 two	 properties	 are	 useful	 for	 justifying	 (left,	 right,
center,	vertical)	text	strings.

Many	times,	you	use	lines	in	a	document	to	delineate	various	sections.	To	draw	a
line	 on	 the	 graphics	 object,	 use	 the	 draw	 method	 and	 Line2D	 shape	 (from
Chapter	 7):	Line2D.Double	 myLine	 =	 new	 Line2D.Double(x1,	 y1,	 x2,	 y2);
g2D.draw(myLine);

This	statement	will	draw	a	line	from	(x1,	y1)	to	(x2,	y2)	using	the	current	stroke
and	paint	attributes.

Finally,	the	drawImage	method	is	used	to	position	an	image	(myImage)	object
on	a	page.	This	is	the	same	method	we	used	earlier	to	place	the	inventory	photo
on	 photoPanel.	 The	 syntax	 is:	 g2D.drawImage(myImage,	 x,	 y,	 width,
height,null);

The	upper	left	corner	of	myImage	will	be	at	(x,	y)	with	the	specified	width	and
height.	Any	image	will	be	scaled	to	fit	the	specified	region.

We’ve	seen	all	of	these	graphics	methods	before,	so	their	use	should	be	familiar.
You	 should	note	 that	 each	 item	on	 a	printed	page	 requires	 at	 least	 one	 line	of
code.	That	results	in	lots	of	coding	for	printing.	So,	if	you’re	writing	lots	of	code
in	your	print	routines,	you’re	probably	doing	it	right.

Recall	 when	 doing	 persistent	 graphics	 using	 a	 paintComponent	 method	 in
another	clas,	any	variable	needed	by	that	method	needed	to	be	prefaced	by	 the
keyword	static.	That	is	also	needed	here.	Any	class	level	object	referred	to	in	the
print	method	of	the	Printable	class	must	also	be	declared	with	a	static	preface.

Many	print	 jobs	 just	 involve	 the	user	clicking	a	button	marked	‘Print’	and	 the
results	appear	on	the	printed	page	with	no	further	interaction.	If	more	interaction
is	 desired,	 there	 is	 a	methods	 associated	with	 the	PrinterJob	 class	 that	 helps
specify	desired	printing	job	properties:	printDialog.

The	 printDialog	 method	 displays	 a	 dialog	 box	 that	 allows	 the	 user	 to	 select
which	printer	to	use,	choose	page	orientation,	printed	page	range	and	number	of
copies.	 This	 is	 the	 same	 dialog	 box	 that	 appears	 in	 many	 applications.	 The
Windows	 version	 of	 the	 print	 dialog	 is:	

The	printDialog	method	returns	true	if	the	user	clicked	the	OK	button	to	leave
the	dialog	and	false	otherwise.	After	the	method	returns	a	value,	you	don’t	have
to	 do	 anything	 to	 retrieve	 the	 parameters	 the	 user	 selected.	 The	 PrinterJob
object	is	automatically	updated	with	the	selections!

Code	Design	–	Printing	the	Inventory
The	format	used	for	the	printed	inventory	is	straightforward	–	modify	it	as	you
see	fit.	Each	page	will	have	a	simple	header	(giving	the	page	number)	and	will
hold	 two	 items	 from	 the	 inventory.	Each	property	 for	each	 item	(including	 the
picture)	will	be	printed.	Items	will	be	separated	by	a	single	straight	line.

The	code	to	establish	the	print	document	and	display	the	printed	inventory	goes
in	 the	 printButtonActionPerformed	 method.	 But,	 first,	 we	 need	 two	 class
(HomeInventory	class)	level	variable	declarations	to	keep	track	of	the	printing
process:	static	final	int	entriesPerPage	=	2;
static	int	lastPage;

They	are	prefaced	with	static	because	 they	will	be	used	 in	 the	PrintJob	class.
Also	 add	 the	 static	 preface	 to	 numberEntries,	 myInventory	 and
photoTextArea	 since	 we	 will	 need	 these	 to	 print	 everything:	 static	 int
numberEntries;
static	InventoryItem[]	myInventory	=	new
InventoryItem[maximumEntries];	static	JTextArea	photoTextArea	=
new	JTextArea();

Lastly,	make	sure	you	have	added	this	import	statement:	import
java.awt.print.*;

The	 printButtonActionPerformed	 method	 is	 then:	 private	 void
printButtonActionPerformed(ActionEvent	e)	{

lastPage	=	(int)	(1	+	(numberEntries	-	1)	/	entriesPerPage);	PrinterJob
inventoryPrinterJob	=	PrinterJob.getPrinterJob();
inventoryPrinterJob.setPrintable(new	InventoryDocument());	if
(inventoryPrinterJob.printDialog())

{

try

{

inventoryPrinterJob.print();

}

catch	(PrinterException	ex)

{

JOptionPane.showConfirmDialog(null,	ex.getMessage(),	"Print
Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	}

}

}

We	 determine	 the	 lastPage	 to	 print	 and	 create	 the	 PrinterJob	 object
(inventoryPrinterJob).	 This	 object	 ‘points’	 to	 the	 Printable	 class,
InventoryDocument.	A	print	dialog	 is	displayed.	 If	 the	user	 chooses	OK,	 the
print	method	 is	 called	Add	 this	method	 and	 the	 variable	 declarations	 to	 your
project.

The	 Printable	 class	 to	 accomplish	 the	 printing	 is	 (place	 this	 after	 the
HomeInventory	 and	 PhotoPanel	 classes)::	 class	 InventoryDocument
implements	Printable

{

public	int	print(Graphics	g,	PageFormat	pf,	int	pageIndex)	{
Graphics2D	g2D	=	(Graphics2D)	g;
if	((pageIndex	+	1)	>	HomeInventory.lastPage)

{

return	NO_SUCH_PAGE;

}

int	i,	iEnd;

//	here	you	decide	what	goes	on	each	page	and	draw	it	//	header
g2D.setFont(new	Font("Arial",	Font.BOLD,	14));
g2D.drawString("Home	Inventory	Items	-	Page	"	+

String.valueOf(pageIndex	+	1),	(int)	pf.getImageableX(),	(int)
(pf.getImageableY()	+	25));	//	get	starting	y

int	dy	=	(int)	g2D.getFont().getStringBounds("S",
g2D.getFontRenderContext()).getHeight();	int	y	=	(int)
(pf.getImageableY()	+	4	*	dy);

iEnd	=	HomeInventory.entriesPerPage	*	(pageIndex	+	1);	if	(iEnd
>	HomeInventory.numberEntries)

iEnd	=	HomeInventory.numberEntries;
for	(i	=	0	+	HomeInventory.entriesPerPage	*	pageIndex;	i	<	iEnd;

i++)	{
//	dividing	line
Line2D.Double	dividingLine	=	new

Line2D.Double(pf.getImageableX(),	y,	pf.getImageableX()	+
pf.getImageableWidth(),	y);	g2D.draw(dividingLine);

y	+=	dy;
g2D.setFont(new	Font("Arial",	Font.BOLD,	12));

g2D.drawString(HomeInventory.myInventory[i].description,	 (int)
pf.getImageableX(),	y);	y	+=	dy;

g2D.setFont(new	Font("Arial",	Font.PLAIN,	12));
g2D.drawString("Location:	"	+

HomeInventory.myInventory[i].location,	(int)	(pf.getImageableX()	+	25),
y);	y	+=	dy;

if	(HomeInventory.myInventory[i].marked)
g2D.drawString("Item	is	marked	with	identifying

information.",	(int)	(pf.getImageableX()	+	25),	y);	else
g2D.drawString("Item	is	NOT	marked	with	identifying

information.",	(int)	(pf.getImageableX()	+	25),	y);	y	+=	dy;
g2D.drawString("Serial	Number:	"	+
HomeInventory.myInventory[i].serialNumber,	(int)
(pf.getImageableX()	+	25),	y);	y	+=	dy;
g2D.drawString("Price:	$"	+

HomeInventory.myInventory[i].purchasePrice	+	",	Purchased	on:	"	+
HomeInventory.myInventory[i].purchaseDate,	(int)	(pf.getImageableX()
+	25),	y);	y	+=	dy;

g2D.drawString("Purchased	at:	"	+
HomeInventory.myInventory[i].purchaseLocation,	(int)
(pf.getImageableX()	+	25),	y);	y	+=	dy;

g2D.drawString("Note:	"	+
HomeInventory.myInventory[i].note,	(int)	(pf.getImageableX()	+	25),	y);
y	+=	dy;

try

{

//	maintain	original	width/height	ratio
Image	inventoryImage	=	new

ImageIcon(HomeInventory.myInventory[i].photoFile).getImage	();
double	ratio	=	(double)	(inventoryImage.getWidth(null))	/	(double)
inventoryImage.getHeight(null);	g2D.drawImage(inventoryImage,	(int)
(pf.getImageableX()	+	25),	y,	(int)	(100	*	ratio),	100,	null);	}

catch	(Exception	ex)

{

//	have	place	to	go	in	case	image	file	doesn't	open	}
y	+=	2	*	dy	+	100;

}

return	PAGE_EXISTS;

}

}

Yes,	there’s	lots	of	code	here,	but	the	steps	are	straightforward:

➢	Print	the	header.
➢	For	next	two	items	in	inventory:	o	Draw	dividing	line.

o	 Print	 on	 separate	 lines:	 Description,	 Location,	Marked	 Statement,
Serial	Number,	Purchase	Price,	Purchase	Date,	Purchase	Location,
and	any	Note.

o	Print	picture	(maintaining	original	height-to-width	ratio).
➢	Check	to	see	if	more	pages	are	to	be	printed.

You	should	see	all	of	 these	steps	 in	 the	above	code.	Note	specifically	how	the
vertical	print	location	is	updated	using	the	text	height.

Save,	run	the	project	one	last	time.	Click	the	Print	button	on	the	toolbar.	For	the
example	 inventory,	 the	 print	 dialog	 should	 appear:	

You	can	choose	how	many	(if	not	all)	pages	to	print	here	and	click	OK,	if	your
wish.	A	nicely	formatted	printing	of	your	inventory	will	be	obtained.

Home	Inventory	Manager	Project
Review
The	Home	 Inventory	 Manager	 Project	 is	 now	 complete.	 Save	 and	 run	 the
project	 and	make	 sure	 it	works	 as	designed.	Use	 the	program	 to	keep	 track	of
your	belongings.	You’ll	want	 to	delete	 the	 inventory.txt	 file	 currently	 in	your
project	 folder	and	start	over	adding	your	own	items	and	establishing	your	own
combo	box	elements.

If	there	are	errors	in	your	implementation,	go	back	over	the	steps	of	frame	and
code	 design.	 Go	 over	 the	 developed	 code	 –	 make	 sure	 you	 understand	 how
different	parts	of	the	project	were	coded.	As	mentioned	in	the	beginning	of	this
chapter,	 the	 completed	 project	 is	 saved	 as	 HomeInventory	 in	 the
\HomeJava\HomeJava	Projects\	project	group.

While	completing	this	project,	new	concepts	and	skills	you	should	have	gained
include:

➢	Use	of	combo	box	control.
➢	Basic	object-oriented	programming	concepts	and	how	to	define	your	own
classes	and	objects.

➢	How	to	add	printing	to	a	project,	including	use	of	the	print	dialog	control.

Home	Inventory	Manager	Project
Enhancements
Possible	enhancements	to	the	home	inventory	manager	project	include:

➢	 After	 clicking	 the	 New	 toolbar	 button,	 you	 must	 add	 an	 item	 to	 the
inventory	and	click	Save.	There	is	no	Cancel	option	–	add	such	an	option.

➢	The	implemented	search	is	rather	basic.	Add	a	search	capability	that	looks
through	all	 the	 information	 in	 the	 inventory	 for	certain	 terms	or	parts	of
terms.	 Use	 the	 SoundEx	 function	 from	 the	 Multiple	 Choice	 Exam
Project	to	do	“sound-alike”	searches.

➢	 Modify	 the	 project	 to	 allow	 opening	 and	 saving	 of	 separate	 inventory
files.	 That	 is,	 replace	 the	 built-in	 file	 (inventory.txt)	 with	 one	 you
open/save	using	the	dialog	controls.

Home	Inventory	Manager	Project	Java
Code	Listing
There	are	two	files,	HomeInventory.java	and	InventoryItem.
HomeInventory.java:

/	*

*	HomeInventory.java

*/

package	homeinventory;
import	javax.swing.*;
import	javax.swing.filechooser.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.beans.*;
import	com.toedter.calendar.*;
import	java.awt.geom.*;
import	java.io.*;
import	java.util.*;
import	java.text.*;
import	java.awt.print.*;

public	class	HomeInventory	extends	JFrame

{

//	Toolbar
JToolBar	inventoryToolBar	=	new	JToolBar();
JButton	newButton	=	new	JButton(new	ImageIcon("new.gif"));	JButton

deleteButton	=	new	JButton(new	ImageIcon("delete.gif"));	JButton

saveButton	=	new	JButton(new	ImageIcon("save.gif"));	JButton
previousButton	=	new	JButton(new	ImageIcon("previous.gif"));	JButton
nextButton	=	new	JButton(new	ImageIcon("next.gif"));	JButton
printButton	=	new	JButton(new	ImageIcon("print.gif"));	JButton
exitButton	=	new	JButton();

//	Frame
JLabel	itemLabel	=	new	JLabel();
JTextField	itemTextField	=	new	JTextField();
JLabel	locationLabel	=	new	JLabel();
JComboBox	locationComboBox	=	new	JComboBox();
JCheckBox	markedCheckBox	=	new	JCheckBox();
JLabel	serialLabel	=	new	JLabel();
JTextField	serialTextField	=	new	JTextField();
JLabel	priceLabel	=	new	JLabel();
JTextField	priceTextField	=	new	JTextField();
JLabel	dateLabel	=	new	JLabel();
JDateChooser	dateDateChooser	=	new	JDateChooser();
JLabel	storeLabel	=	new	JLabel();
JTextField	storeTextField	=	new	JTextField();
JLabel	noteLabel	=	new	JLabel();
JTextField	noteTextField	=	new	JTextField();
JLabel	photoLabel	=	new	JLabel();
static	JTextArea	photoTextArea	=	new	JTextArea();
JButton	photoButton	=	new	JButton();
JPanel	searchPanel	=	new	JPanel();
JButton[]	searchButton	=	new	JButton[26];
PhotoPanel	photoPanel	=	new	PhotoPanel();

static	final	int	maximumEntries	=	300;
static	int	numberEntries;
static	InventoryItem[]	myInventory	=	new

InventoryItem[maximumEntries];	int	currentEntry;

static	final	int	entriesPerPage	=	2;
static	int	lastPage;

public	static	void	main(String	args[])

{

//	create	frame
new	HomeInventory().show();

}

public	HomeInventory()

{

//	frame	constructor
setTitle("Home	Inventory	Manager");
setResizable(false);

setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
GridBagConstraints	gridConstraints;

inventoryToolBar.setFloatable(false);

inventoryToolBar.setBackground(Color.BLUE);
inventoryToolBar.setOrientation(SwingConstants.VERTICAL);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.gridheight	=	8;
gridConstraints.fill	=	GridBagConstraints.VERTICAL;
getContentPane().add(inventoryToolBar,	gridConstraints);
inventoryToolBar.addSeparator();
Dimension	bSize	=	new	Dimension(70,	50);
newButton.setText("New");
sizeButton(newButton,	bSize);
newButton.setToolTipText("Add	New	Item");

newButton.setHorizontalTextPosition(SwingConstants.CENTER);
newButton.setVerticalTextPosition(SwingConstants.BOTTOM);
newButton.setFocusable(false);

inventoryToolBar.add(newButton);
newButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

newButtonActionPerformed(e);

}

});

deleteButton.setText("Delete");
sizeButton(deleteButton,	bSize);
deleteButton.setToolTipText("Delete	Current	Item");

deleteButton.setHorizontalTextPosition(SwingConstants.CENTER);
deleteButton.setVerticalTextPosition(SwingConstants.BOTTOM);
deleteButton.setFocusable(false);

inventoryToolBar.add(deleteButton);
deleteButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

deleteButtonActionPerformed(e);

}

});

saveButton.setText("Save");
sizeButton(saveButton,	bSize);
saveButton.setToolTipText("Save	Current	Item");

saveButton.setHorizontalTextPosition(SwingConstants.CENTER);
saveButton.setVerticalTextPosition(SwingConstants.BOTTOM);
saveButton.setFocusable(false);

inventoryToolBar.add(saveButton);
saveButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

saveButtonActionPerformed(e);

}

});

inventoryToolBar.addSeparator();

previousButton.setText("Previous");
sizeButton(previousButton,	bSize);
previousButton.setToolTipText("Display	Previous	Item");
previousButton.setHorizontalTextPosition(SwingConstants.CENTER);
previousButton.setVerticalTextPosition(SwingConstants.BOTTOM);
previousButton.setFocusable(false);
inventoryToolBar.add(previousButton);
previousButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

previousButtonActionPerformed(e);

}

});

nextButton.setText("Next");
sizeButton(nextButton,	bSize);
nextButton.setToolTipText("Display	Next	Item");

nextButton.setHorizontalTextPosition(SwingConstants.CENTER);
nextButton.setVerticalTextPosition(SwingConstants.BOTTOM);
nextButton.setFocusable(false);

inventoryToolBar.add(nextButton);
nextButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

nextButtonActionPerformed(e);

}

}

});

inventoryToolBar.addSeparator();

printButton.setText("Print");
sizeButton(printButton,	bSize);
printButton.setToolTipText("Print	Inventory	List");

printButton.setHorizontalTextPosition(SwingConstants.CENTER);
printButton.setVerticalTextPosition(SwingConstants.BOTTOM);
printButton.setFocusable(false);

inventoryToolBar.add(printButton);
printButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

printButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
sizeButton(exitButton,	bSize);
exitButton.setToolTipText("Exit	Program");
exitButton.setFocusable(false);
inventoryToolBar.add(exitButton);
exitButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

exitButtonActionPerformed(e);

}

});

itemLabel.setText("Inventory	Item");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.EAST;
getContentPane().add(itemLabel,	gridConstraints);

itemTextField.setPreferredSize(new	Dimension(400,	25));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
gridConstraints.gridwidth	=	5;
gridConstraints.insets	=	new	Insets(10,	0,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(itemTextField,	gridConstraints);
itemTextField.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

itemTextFieldActionPerformed(e);

}

});

locationLabel.setText("Location");

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.EAST;
getContentPane().add(locationLabel,	gridConstraints);
locationComboBox.setPreferredSize(new	Dimension(270,	25));
locationComboBox.setFont(new	Font("Arial",	Font.PLAIN,	12));
locationComboBox.setEditable(true);
locationComboBox.setBackground(Color.WHITE);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
gridConstraints.gridwidth	=	3;
gridConstraints.insets	=	new	Insets(10,	0,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(locationComboBox,	gridConstraints);
locationComboBox.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

locationComboBoxActionPerformed(e);

}

});

markedCheckBox.setText("Marked?");
markedCheckBox.setFocusable(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	5;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;

getContentPane().add(markedCheckBox,	gridConstraints);
serialLabel.setText("Serial	Number");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.EAST;
getContentPane().add(serialLabel,	gridConstraints);

serialTextField.setPreferredSize(new	Dimension(270,	25));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
gridConstraints.gridwidth	=	3;
gridConstraints.insets	=	new	Insets(10,	0,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(serialTextField,	gridConstraints);
serialTextField.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

serialTextFieldActionPerformed(e);

}

});

priceLabel.setText("Purchase	Price");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.EAST;
getContentPane().add(priceLabel,	gridConstraints);

priceTextField.setPreferredSize(new	Dimension(160,	25));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	3;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(priceTextField,	gridConstraints);
priceTextField.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

priceTextFieldActionPerformed(e);

}

});

dateLabel.setText("Date	Purchased");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	4;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(dateLabel,	gridConstraints);

dateDateChooser.setPreferredSize(new	Dimension(120,	25));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	5;
gridConstraints.gridy	=	3;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(dateDateChooser,	gridConstraints);

dateDateChooser.addPropertyChangeListener(new
PropertyChangeListener()	{

public	void	propertyChange(PropertyChangeEvent	e)

{

dateDateChooserPropertyChange(e);

}

});

storeLabel.setText("Store/Website");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	4;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.EAST;
getContentPane().add(storeLabel,	gridConstraints);

storeTextField.setPreferredSize(new	Dimension(400,	25));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	4;
gridConstraints.gridwidth	=	5;
gridConstraints.insets	=	new	Insets(10,	0,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(storeTextField,	gridConstraints);
storeTextField.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

storeTextFieldActionPerformed(e);

}

});

noteLabel.setText("Note");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	5;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.EAST;
getContentPane().add(noteLabel,	gridConstraints);

noteTextField.setPreferredSize(new	Dimension(400,	25));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	5;
gridConstraints.gridwidth	=	5;
gridConstraints.insets	=	new	Insets(10,	0,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(noteTextField,	gridConstraints);
noteTextField.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

noteTextFieldActionPerformed(e);

}

});

photoLabel.setText("Photo");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	6;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.EAST;

getContentPane().add(photoLabel,	gridConstraints);

photoTextArea.setPreferredSize(new	Dimension(350,	35));
photoTextArea.setFont(new	Font("Arial",	Font.PLAIN,	12));
photoTextArea.setEditable(false);
photoTextArea.setLineWrap(true);
photoTextArea.setWrapStyleWord(true);
photoTextArea.setBackground(new	Color(255,	255,	192));
photoTextArea.setBorder(BorderFactory.createLineBorder(Color.BLACK));
photoTextArea.setFocusable(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	6;
gridConstraints.gridwidth	=	4;
gridConstraints.insets	=	new	Insets(10,	0,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(photoTextArea,	gridConstraints);
photoButton.setText("...");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	6;
gridConstraints.gridy	=	6;
gridConstraints.insets	=	new	Insets(10,	0,	0,	10);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(photoButton,	gridConstraints);
photoButton.addActionListener(new	ActionListener	()

{

public	void	actionPerformed(ActionEvent	e)

{

photoButtonActionPerformed(e);

}

});

});

searchPanel.setPreferredSize(new	Dimension(240,	160));
searchPanel.setBorder(BorderFactory.createTitledBorder("Item
Search"));	searchPanel.setLayout(new	GridBagLayout());
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	7;
gridConstraints.gridwidth	=	3;
gridConstraints.insets	=	new	Insets(10,	0,	10,	0);
gridConstraints.anchor	=	GridBagConstraints.CENTER;
getContentPane().add(searchPanel,	gridConstraints);

int	x	=	0,	y	=	0;
//	create	and	position	26	buttons
for	(int	i	=	0;	i	<	26;	i++)

{

//	create	new	button
searchButton[i]	=	new	JButton();
//	set	text	property
searchButton[i].setText(String.valueOf((char)	(65	+	i)));

searchButton[i].setFont(new	Font("Arial",	Font.BOLD,	12));
searchButton[i].setMargin(new	Insets(-10,	-10,	-10,	-10));
sizeButton(searchButton[i],	new	Dimension(37,	27));

searchButton[i].setBackground(Color.YELLOW);
searchButton[i].setFocusable(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	x;
gridConstraints.gridy	=	y;
searchPanel.add(searchButton[i],	gridConstraints);
//	add	method
searchButton[i].addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

searchButtonActionPerformed(e);

}

});

x++;
//	six	buttons	per	row
if	(x	%	6	==	0)

{

x	=	0;
y++;

}

}

photoPanel.setPreferredSize(new	Dimension(240,	160));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	4;
gridConstraints.gridy	=	7;
gridConstraints.gridwidth	=	3;
gridConstraints.insets	=	new	Insets(10,	0,	10,	10);
gridConstraints.anchor	=	GridBagConstraints.CENTER;
getContentPane().add(photoPanel,	gridConstraints);

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	int	n;

//	open	file	for	entries
try

{

BufferedReader	inputFile	=	new	BufferedReader(new
FileReader("inventory.txt"));	numberEntries	=
Integer.valueOf(inputFile.readLine()).intValue();

if	(numberEntries	!=	0)

{

for	(int	i	=	0;	i	<	numberEntries;	i++)

{

myInventory[i]	=	new	InventoryItem();
myInventory[i].description	=	inputFile.readLine();
myInventory[i].location	=	inputFile.readLine();
myInventory[i].serialNumber	=	inputFile.readLine();
myInventory[i].marked	=

Boolean.valueOf(inputFile.readLine()).booleanValue();
myInventory[i].purchasePrice	=
inputFile.readLine();

myInventory[i].purchaseDate	=	inputFile.readLine();
myInventory[i].purchaseLocation	=

inputFile.readLine();
myInventory[i].note	=	inputFile.readLine();
myInventory[i].photoFile	=	inputFile.readLine();

}

}

//	read	in	combo	box	elements
n	=	Integer.valueOf(inputFile.readLine()).intValue();	if	(n	!=	0)

{

{

for	(int	i	=	0;	i	<	n;	i++)

{

locationComboBox.addItem(inputFile.readLine());

}

}

inputFile.close();
currentEntry	=	1;
showEntry(currentEntry);

}

catch	(Exception	ex)

{

numberEntries	=	0;
currentEntry	=	0;

}

if	(numberEntries	==	0)

{

newButton.setEnabled(false);
deleteButton.setEnabled(false);
nextButton.setEnabled(false);
previousButton.setEnabled(false);
printButton.setEnabled(false);

}

}

}

private	void	exitForm(WindowEvent	evt)

{

if	(JOptionPane.showConfirmDialog(null,	"Any	unsaved	changes	will
be	lost.\nAre	you	sure	you	want	to	exit?",	"Exit	Program",
JOptionPane.YES_NO_OPTION,	JOptionPane.QUESTION_MESSAGE)
==	JOptionPane.NO_OPTION)	return;

//	write	entries	back	to	file
try

{

PrintWriter	outputFile	=	new	PrintWriter(new
BufferedWriter(new	FileWriter("inventory.txt")));
outputFile.println(numberEntries);

if	(numberEntries	!=	0)

{

for	(int	i	=	0;	i	<	numberEntries;	i++)

{

outputFile.println(myInventory[i].description);
outputFile.println(myInventory[i].location);
outputFile.println(myInventory[i].serialNumber);
outputFile.println(myInventory[i].marked);
outputFile.println(myInventory[i].purchasePrice);
outputFile.println(myInventory[i].purchaseDate);

outputFile.println(myInventory[i].purchaseLocation);
outputFile.println(myInventory[i].note);

outputFile.println(myInventory[i].photoFile);

}

}

}

//	write	combo	box	entries
outputFile.println(locationComboBox.getItemCount());	if
(locationComboBox.getItemCount()	!=	0)

{

for	(int	i	=	0;	i	<	locationComboBox.getItemCount();	i++)
outputFile.println(locationComboBox.getItemAt(i));

}

outputFile.close();

}

catch	(Exception	ex)

{

	

}

System.exit(0);

}

private	void	newButtonActionPerformed(ActionEvent	e)	{
checkSave();
blankValues();

}

private	void	deleteButtonActionPerformed(ActionEvent	e)	{
if	(JOptionPane.showConfirmDialog(null,	"Are	you	sure	you	want	to

delete	this	item?",	"Delete	Inventory	Item",
JOptionPane.YES_NO_OPTION,	JOptionPane.QUESTION_MESSAGE)

==	JOptionPane.NO_OPTION)	return;
deleteEntry(currentEntry);
if	(numberEntries	==	0)

{

currentEntry	=	0;
blankValues();

}

else

{

currentEntry--;
if	(currentEntry	==	0)

currentEntry	=	1;
showEntry(currentEntry);

}

}

private	void	saveButtonActionPerformed(ActionEvent	e)	{
//	check	for	description
itemTextField.setText(itemTextField.getText().trim());	if
(itemTextField.getText().equals(""))

{

JOptionPane.showConfirmDialog(null,	"Must	have	item
description.",	"Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	itemTextField.requestFocus();

return;

}

if	(newButton.isEnabled())

{

//	delete	edit	entry	then	resave
deleteEntry(currentEntry);

}

//	capitalize	first	letter
String	s	=	itemTextField.getText();
itemTextField.setText(s.substring(0,	1).toUpperCase()	+

s.substring(1));	numberEntries++;
//	determine	new	current	entry	location	based	on	description

currentEntry	=	1;
if	(numberEntries	!=	1)

{

do

{

if
(itemTextField.getText().compareTo(myInventory[currentEntry	 -
1].description)	<	0)	break;

currentEntry++;

}

while	(currentEntry	<	numberEntries);

}

//	move	all	entries	below	new	value	down	one	position	unless	at	end	if
(currentEntry	!=	numberEntries)

{

for	(int	i	=	numberEntries;	i	>=	currentEntry	+	1;	i--)	{
myInventory[i	-	1]	=	myInventory[i	-	2];
myInventory[i	-	2]	=	new	InventoryItem();

}

}

myInventory[currentEntry	-	1]	=	new	InventoryItem();
myInventory[currentEntry	-	1].description	=	itemTextField.getText();
myInventory[currentEntry	-	1].location	=
locationComboBox.getSelectedItem().toString();
myInventory[currentEntry	-	1].marked	=

markedCheckBox.isSelected();	myInventory[currentEntry	-
1].serialNumber	=	serialTextField.getText();	myInventory[currentEntry	-
1].purchasePrice	=	priceTextField.getText();	myInventory[currentEntry	-
1].purchaseDate	=	dateToString(dateDateChooser.getDate());
myInventory[currentEntry	-	1].purchaseLocation	=
storeTextField.getText();	myInventory[currentEntry	-	1].photoFile	=
photoTextArea.getText();	myInventory[currentEntry	-	1].note	=
noteTextField.getText();	showEntry(currentEntry);

if	(numberEntries	<	maximumEntries)
newButton.setEnabled(true);

else
newButton.setEnabled(false);

deleteButton.setEnabled(true);
printButton.setEnabled(true);

}

private	void	previousButtonActionPerformed(ActionEvent	e)	{
checkSave();
currentEntry--;
showEntry(currentEntry);

}

private	void	nextButtonActionPerformed(ActionEvent	e)	{
checkSave();
currentEntry++;
showEntry(currentEntry);

}

private	void	printButtonActionPerformed(ActionEvent	e)	{
lastPage	=	(int)	(1	+	(numberEntries	-	1)	/	entriesPerPage);	PrinterJob

inventoryPrinterJob	=	PrinterJob.getPrinterJob();
inventoryPrinterJob.setPrintable(new	InventoryDocument());	if
(inventoryPrinterJob.printDialog())

{

try

{

inventoryPrinterJob.print();

}

catch	(PrinterException	ex)

{

JOptionPane.showConfirmDialog(null,	ex.getMessage(),	"Print
Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	}

}

}

private	void	exitButtonActionPerformed(ActionEvent	e)	{
exitForm(null);

}

private	void	photoButtonActionPerformed(ActionEvent	e)	{
JFileChooser	openChooser	=	new	JFileChooser();
openChooser.setDialogType(JFileChooser.OPEN_DIALOG);
openChooser.setDialogTitle("Open	Photo	File");
openChooser.addChoosableFileFilter(new

FileNameExtensionFilter("Photo	Files",	"jpg"));	if
(openChooser.showOpenDialog(this)	==
JFileChooser.APPROVE_OPTION)
showPhoto(openChooser.getSelectedFile().toString());	}

private	void	searchButtonActionPerformed(ActionEvent	e)	{
int	i;
if	(numberEntries	==	0)

return;
//	search	for	item	letter
String	letterClicked	=	e.getActionCommand();
i	=	0;
do

{

if	(myInventory[i].description.substring(0,
1).equals(letterClicked))	{

currentEntry	=	i	+	1;
showEntry(currentEntry);
return;

}

i++;

}

while	(i	<	numberEntries);
JOptionPane.showConfirmDialog(null,	"No	"	+	letterClicked	+	"

inventory	items.",	"None	Found",	JOptionPane.DEFAULT_OPTION,

JOptionPane.INFORMATION_MESSAGE);	}

private	void	itemTextFieldActionPerformed(ActionEvent	e)	{
locationComboBox.requestFocus();

}

private	void	locationComboBoxActionPerformed(ActionEvent	e)	{
//	If	in	list	-	exit	method
if	(locationComboBox.getItemCount()	!=	0)

{

for	(int	i	=	0;	i	<	locationComboBox.getItemCount();	i++)	{
if

(locationComboBox.getSelectedItem().toString().equals(locatio
nComboBox.getItemAt(i).toString()))	{

serialTextField.requestFocus();
return;

}

}

}

//	If	not	found,	add	to	list	box

locationComboBox.addItem(locationComboBox.getSelectedItem());
serialTextField.requestFocus();

}

private	void	serialTextFieldActionPerformed(ActionEvent	e)	{
priceTextField.requestFocus();

}

private	void	priceTextFieldActionPerformed(ActionEvent	e)	{
dateDateChooser.requestFocus();

}

private	void	dateDateChooserPropertyChange(PropertyChangeEvent	e)	{
storeTextField.requestFocus();

}

private	void	storeTextFieldActionPerformed(ActionEvent	e)	{
noteTextField.requestFocus();

}

private	void	noteTextFieldActionPerformed(ActionEvent	e)	{
photoButton.requestFocus();

}

private	void	sizeButton(JButton	b,	Dimension	d)

{

b.setPreferredSize(d);
b.setMinimumSize(d);
b.setMaximumSize(d);

}

private	void	showEntry(int	j)

{

//	display	entry	j	(1	to	numberEntries)
itemTextField.setText(myInventory[j	-	1].description);

locationComboBox.setSelectedItem(myInventory[j	-	1].location);
markedCheckBox.setSelected(myInventory[j	-	1].marked);

serialTextField.setText(myInventory[j	-	1].serialNumber);
priceTextField.setText(myInventory[j	-	1].purchasePrice);
dateDateChooser.setDate(stringToDate(myInventory[j	-	1].purchaseDate));
storeTextField.setText(myInventory[j	-	1].purchaseLocation);
noteTextField.setText(myInventory[j	-	1].note);

showPhoto(myInventory[j	-	1].photoFile);
nextButton.setEnabled(true);
previousButton.setEnabled(true);
if	(j	==	1)

previousButton.setEnabled(false);
if	(j	==	numberEntries)

nextButton.setEnabled(false);
itemTextField.requestFocus();

}

private	Date	stringToDate(String	s)

{

int	m	=	Integer.valueOf(s.substring(0,	2)).intValue()	-	1;	int	d	=
Integer.valueOf(s.substring(3,	5)).intValue();	int	y	=
Integer.valueOf(s.substring(6)).intValue()	-	1900;	return(new	Date(y,	m,
d));

}

private	String	dateToString(Date	dd)

{

String	yString	=	String.valueOf(dd.getYear()	+	1900);	int	m	=
dd.getMonth()	+	1;
String	mString	=	new	DecimalFormat("00").format(m);
int	d	=	dd.getDate();
String	dString	=	new	DecimalFormat("00").format(d);
return(mString	+	""	+	dString	+	""	+	yString);	}

private	void	showPhoto(String	photoFile)

{

if	(!photoFile.equals(""))

{

try

{

photoTextArea.setText(photoFile);

}

catch	(Exception	ex)

{

photoTextArea.setText("");

}

}

else

{

photoTextArea.setText("");

}

photoPanel.repaint();

}

private	void	blankValues()

{

//	blank	input	screen
newButton.setEnabled(false);
deleteButton.setEnabled(false);
saveButton.setEnabled(true);
previousButton.setEnabled(false);
nextButton.setEnabled(false);
printButton.setEnabled(false);
itemTextField.setText("");
locationComboBox.setSelectedItem("");
markedCheckBox.setSelected(false);
serialTextField.setText("");
priceTextField.setText("");
dateDateChooser.setDate(new	Date());
storeTextField.setText("");
noteTextField.setText("");
photoTextArea.setText("");
photoPanel.repaint();
itemTextField.requestFocus();

}

private	void	deleteEntry(int	j)

{

//	delete	entry	j
if	(j	!=	numberEntries)

{

//	move	all	entries	under	j	up	one	level
for	(int	i	=	j;	i	<	numberEntries;	i++)

{

myInventory[i	-	1]	=	new	InventoryItem();
myInventory[i	-	1]	=	myInventory[i];

}

}

numberEntries--;

}

private	void	checkSave()

{

boolean	edited	=	false;
if	(!myInventory[currentEntry	-

1].description.equals(itemTextField.getText()))	edited	=	true;
else	if	(!myInventory[currentEntry	-

1].location.equals(locationComboBox.getSelectedItem().toStrin	g()))	edited
=	true;

else	if	(myInventory[currentEntry	-	1].marked	!=
markedCheckBox.isSelected())	edited	=	true;

else	if	(!myInventory[currentEntry	-
1].serialNumber.equals(serialTextField.getText()))	edited	=	true;

else	if	(!myInventory[currentEntry	-
1].purchasePrice.equals(priceTextField.getText()))	edited	=	true;

else	if	(!myInventory[currentEntry	-
1].purchaseDate.equals(dateToString(dateDateChooser.getDate())))	edited
=	true;

else	if	(!myInventory[currentEntry	-
1].purchaseLocation.equals(storeTextField.getText()))	edited	=	true;

else	if	(!myInventory[currentEntry	-
1].note.equals(noteTextField.getText()))	edited	=	true;

else	if	(!myInventory[currentEntry	-
1].photoFile.equals(photoTextArea.getText()))	edited	=	true;

if	(edited)

{

if	(JOptionPane.showConfirmDialog(null,	"You	have	edited	this
item.	Do	you	want	to	save	the	changes?",	"Save	Item",
JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE)	==	JOptionPane.YES_OPTION)
saveButton.doClick();

}

}

}

class	PhotoPanel	extends	JPanel

{

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);

//	draw	border
g2D.setPaint(Color.BLACK);
g2D.draw(new	Rectangle2D.Double(0,	0,	getWidth()	-	1,

getHeight()	-	1));	//	show	photo
Image	photoImage	=	new

ImageIcon(HomeInventory.photoTextArea.getText()).getImage();	int	w	=
getWidth();

int	h	=	getHeight();
double	rWidth	=	(double)	getWidth()	/	(double)

photoImage.getWidth(null);	double	rHeight	=	(double)	getHeight()	/
(double)	photoImage.getHeight(null);	if	(rWidth	>	rHeight)

{

//	leave	height	at	display	height,	change	width	by	amount
height	is	changed	w	=	(int)	(photoImage.getWidth(null)	*	rHeight);

}

else

{

//	leave	width	at	display	width,	change	height	by	amount	width
is	changed	h	=	(int)	(photoImage.getHeight(null)	*	rWidth);

}

//	center	in	panel
g2D.drawImage(photoImage,	(int)	(0.5	(getWidth()	-	w)),	(int)	(0.5

(getHeight()	-	h)),	w,	h,	null);	g2D.dispose();

}

}

class	InventoryDocument	implements	Printable

{

public	int	print(Graphics	g,	PageFormat	pf,	int	pageIndex)	{
Graphics2D	g2D	=	(Graphics2D)	g;
if	((pageIndex	+	1)	>	HomeInventory.lastPage)

{

return	NO_SUCH_PAGE;

}

int	i,	iEnd;
//	here	you	decide	what	goes	on	each	page	and	draw	it	//	header
g2D.setFont(new	Font("Arial",	Font.BOLD,	14));

g2D.drawString("Home	Inventory	Items	-	Page	"	+
String.valueOf(pageIndex	+	1),	(int)	pf.getImageableX(),	(int)
(pf.getImageableY()	+	25));	//	get	starting	y

int	dy	=	(int)	g2D.getFont().getStringBounds("S",
g2D.getFontRenderContext()).getHeight();	int	y	=	(int)	(pf.getImageableY()
+	4	*	dy);

iEnd	=	HomeInventory.entriesPerPage	*	(pageIndex	+	1);	if	(iEnd
>	HomeInventory.numberEntries)

iEnd	=	HomeInventory.numberEntries;
for	(i	=	0	+	HomeInventory.entriesPerPage	*	pageIndex;	i	<	iEnd;

i++)	{
//	dividing	line
Line2D.Double	dividingLine	=	new

Line2D.Double(pf.getImageableX(),	 y,	 pf.getImageableX()	 +
pf.getImageableWidth(),	y);	g2D.draw(dividingLine);

y	+=	dy;
g2D.setFont(new	Font("Arial",	Font.BOLD,	12));

g2D.drawString(HomeInventory.myInventory[i].description,	 (int)
pf.getImageableX(),	y);	y	+=	dy;

g2D.setFont(new	Font("Arial",	Font.PLAIN,	12));
g2D.drawString("Location:	"	+

HomeInventory.myInventory[i].location,	(int)	(pf.getImageableX()	+	25),	y);
y	+=	dy;

if	(HomeInventory.myInventory[i].marked)
g2D.drawString("Item	is	marked	with	identifying

information.",	(int)	(pf.getImageableX()	+	25),	y);	else
g2D.drawString("Item	is	NOT	marked	with	identifying

information.",	(int)	(pf.getImageableX()	+	25),	y);	y	+=	dy;
g2D.drawString("Serial	Number:	"	+

HomeInventory.myInventory[i].serialNumber,	(int)	(pf.getImageableX()	+
25),	y);	y	+=	dy;

g2D.drawString("Price:	$"	+
HomeInventory.myInventory[i].purchasePrice	+	",	Purchased	on:	"	+
HomeInventory.myInventory[i].purchaseDate,	(int)	(pf.getImageableX()	+

25),	y);	y	+=	dy;
g2D.drawString("Purchased	at:	"	+

HomeInventory.myInventory[i].purchaseLocation,	(int)
(pf.getImageableX()	+	25),	y);	y	+=	dy;

g2D.drawString("Note:	"	+
HomeInventory.myInventory[i].note,	(int)	(pf.getImageableX()	+	25),	y);	y
+=	dy;

try

{

//	maintain	original	width/height	ratio
Image	inventoryImage	=	new

ImageIcon(HomeInventory.myInventory[i].photoFile).getImage();	double
ratio	=	(double)	(inventoryImage.getWidth(null))	/	(double)
inventoryImage.getHeight(null);	g2D.drawImage(inventoryImage,	(int)
(pf.getImageableX()	+	25),	y,	(int)	(100	*	ratio),	100,	null);	}

catch	(Exception	ex)

{

//	have	place	to	go	in	case	image	file	doesn't	open

}

y	+=	2	*	dy	+	100;

}

return	PAGE_EXISTS;

}

}

InventoryItem.java:

package	homeinventory;

public	class	InventoryItem

{

public	String	description;
public	String	location;
public	boolean	marked;
public	String	serialNumber;
public	String	purchasePrice;
public	String	purchaseDate;
public	String	purchaseLocation;
public	String	note;
public	String	photoFile;

}

9

Snowball	Toss	Game	Project

Review	and	Preview
In	the	final	project,	we’ll	have	some	fun.	In	the	Snowball	Toss	Game
Project,	 two	players	 toss	 snowballs	 at	 each	other	 or	 a	 single	 player
plays	 against	 the	 computer	 -	 the	 most	 hits	 wins!	 We	 introduce
concepts	 needed	 for	 game	 programming	 –	 animation,	 collision
detection,	keyboard	control,	and	sounds.

We	also	look	at	adding	methods	to	custom	objects	and	how	to	use	inheritance.
And,	we’ll	look	at	how	to	give	our	computer	a	semblance	of	intelligence.

Snowball	Toss	Game	Project	Preview
In	 this	 chapter,	we	will	 build	 a	Snowball	Toss	Game	 program.	This	 program
lets	two	players	compete	in	throwing	snowballs	at	each	other.	Or,	optionally,	a
single	player	can	play	against	a	computer	with	adjustable	‘smarts’.

The	 finished	project	 is	 saved	as	Snowball	Toss	 in	 the	 \HomeJava\HomeJava
Projects\	 program	 group.	 Start	 NetBeans	 (or	 your	 IDE).	 Open	 the	 specified
project	group.	Make	Snowball	Toss	the	main	project.	Run	the	project.	Press	the
Options	 button.	 You	 will	 see:	

The	 label	 and	 text	 field	 controls	 at	 the	 top	 of	 the	 form	 provide	 game	 status

(score,	 snowballs	 left	 to	 toss	and	keys	 to	use	 to	move	players).	The	 large	gray
panel	with	the	Game	Over	message	is	the	game	field.	Three	button	controls	are
used	to	start/stop	the	game,	set	options	and	stop	the	program.

Click	 Options.	 Another	 panel	 with	 radio	 buttons	 appears:	

In	 the	 game,	 you	 can	 have	 two	 players	 competing	 against	 each	 other	 or	 one
player	against	the	computer.	For	now,	choose	One	Player.	With	a	single	player,
you	can	also	choose	Difficulty	(setting	the	intelligence	level	of	the	computer)	–
select	Easiest.	Click	OK	 to	make	 the	Options	window	disappear.	Then,	 click
New	Game.

The	game	screen	shows	the	two	snowball	tossing	characters,	one	on	each	side	of
the	screen	(the	players	are	identified	by	the	label	controls	at	the	top	of	the	form).
Also	 shown	 are	 the	 player	 scores	 (Hits)	 and	 displays	 showing	 how	 many
snowballs	are	left.	The	idea	of	 the	game	is	 to	move	your	‘tosser’	up	and	down

the	 screen,	 trying	 to	 hit	 the	 other	 player	 with	 a	 snowball.	 Zombie	 snowmen
move	 in	 strange	 ways	 through	 the	 middle	 of	 the	 screen	 to	 act	 as	 cover	 and
deflect	 some	 tosses:	

Watch	out	–	the	computer	may	make	a	toss	at	you.

Control	of	the	players	is	via	the	keyboard.	Player	1	(and	the	player	when	playing
against	the	computer)	uses	the	A	key	to	move	up,	the	Z	key	to	move	down,	and
the	S	key	to	toss	a	snowball.	Player	2	uses	the	K	key	to	move	up,	the	M	key	to
move	down,	and	the	J	key	to	toss.	These	instructions	are	shown	on	the	form.	The
game	ends	when	all	the	snowballs	have	been	thrown	or	when	the	Stop	button	is
clicked.

Try	moving	your	player	up	and	down	using	the	A	and	Z	keys.	When	you	want,
take	 a	 toss	 at	 the	 other	 player	 by	 pressing	 the	 S	 key.	 You	 should	 hear	 a
‘throwing’	 sound.	 Here’s	 a	 throw	 I	 made:	

The	snowball	will	move	across	the	screen	until	it	hits	something	or	flies	off	the
side	 of	 the	 form.	 If	 you	hit	 the	 other	 player	 (resulting	 in	 an	 ouch	 sound),	 you
earn	 one	 point.	 The	 player	 with	 the	 most	 points	 when	 the	 game	 stops	 is	 the
winner.

That’s	 all	 there	 is	 to	 this	 game.	 Conceptually,	 it	 is	 very	 simple.	 Just	 throw
snowballs	at	each	other	until	you’re	out	of	snowballs.	Though	simple,	there	are
many	topics	we	need	to	discuss	to	build	the	project.

The	project	will	be	built	in	several	stages.	We	discuss	frame	design.	We	discuss
the	controls	used	to	build	the	form	and	establish	initial	properties.	We	show	how
to	configure	the	form	based	on	selected	options.	And,	we	address	code	design.
We	 discuss	 several	 areas	 of	 game	 programming:	 animation,	 keyboard	 events,
collision	 detection	 and	 sounds.	 Lastly,	 we	 look	 at	 how	 to	 give	 the	 computer
intelligence	in	making	decisions	needed	to	play	the	game.

Snowball	Toss	Game	Frame	Design
We	 begin	 building	 the	Snowball	 Toss	 Project.	 Let’s	 build	 the	 frame.	 Start	 a
new	project	in	your	Java	project	group	–	name	it	SnowballToss.	Delete	default
code	 in	 file	 named	 SnowballToss.java.	 Once	 started,	 we	 suggest	 you
immediately	save	 the	project	with	 the	name	you	chose.	This	 sets	up	 the	 folder
and	 file	 structure	 needed	 for	 your	 project.	 Build	 the	 basic	 frame	 with	 these
properties:	SnowballToss	Frame:

title Snowball	Toss
background Color(192,	192,	255)
resizable false

The	code	is:

/	*

*	SnowballToss.java

*/

package	snowballtoss;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	SnowballToss	extends	JFrame

{

public	static	void	main(String	args[])

{

//	create	frame
new	SnowballToss().show();

}

}

public	SnowballToss()

{

//	frame	constructor
setTitle("Snowball	Toss");
getContentPane().setBackground(new	Color(192,	192,	255));

setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
GridBagConstraints	gridConstraints;

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

This	code	builds	the	frame,	sets	up	the	layout	manager	and	includes	code	to	exit
the	application.	Run	the	code	to	make	sure	the	frame	(at	least,	what	there	is	of	it

at	this	point)	appears	and	is	centered	on	the	screen:	

Let’s	populate	our	frame	with	other	controls.	All	code	for	creating	the	frame	and
placing	controls	(except	declarations)	goes	in	the	SnowballToss	constructor.

The	 GridBagLayout	 for	 the	 frame	 is	 (in	 two	 segments)::	

All	 label	 and	 text	 field	 controls	 are	 used	 for	 titling	 and	 providing	 scoring	 and
game	play	 information.	The	 large	panel	 (snowPanel)	 is	 the	game	 field.	 It	 also
holds	another	panel	control	that	allows	options	selection	(we	will	code	that	panel
soon).	The	three	button	controls	are	used	to	start/stop	a	game	(gameButton),	set
options	 (optionsButton)	and	exit	 the	program	(exitButton).	Default	properties
are	set	for	a	one	player	game	with	easiest	difficulty.

As	usual,	we	will	discuss	add	controls	in	stages.	First,	we	add	the	scoring	labels
and	 text	controls	 for	each	player..	Then,	we	add	 the	snowPanel	along	with	 the

yet	to	be	designed	optionsPanel.	Lastly,	we	add	the	three	button	controls.

Properties	for	the	Player	1	controls	are:

player1Label:
text You:
font Arial,	Bold,	Size	16
gridx 0
gridy 0
gridwidth 2
insets 10,	10,	0,	0
anchor WEST
	 	
player1HitsLabel: 	
text Hits
font Arial,	Bold,	Size	16
gridx 0
gridy 1
insets 10,	10,	0,	0
anchor WEST
	 	
player1HitsTextField: 	
size 50,	25
text 0
font Arial,	Bold,	Size	16
editable false
background White
horizontalAlignment Center
gridx 1
gridy 1
insets 10,	10,	0,	0
	 	
player1LeftLabel:
text Left

font Arial,	Bold,	Size	16
gridx 0
gridy 2
insets 10,	10,	0,	0
anchor WEST
	 	
player1LeftTextField: 	
size 50,	25
text 20
font Arial,	Bold,	Size	16
editable false
background White
horizontalAlignment Center
gridx 1
gridy 2
insets 10,	10,	0,	0
	 	
player1TextArea: 	
size 160,	60
text A	Key	-	Move	Up\nZ	Key	-	Move	Down\nS

Key	-	Toss
font Arial,	Plain,	Size	14
editable false
background Color(192,	192,	255),	same	as	frame
gridx 2
gridy 1
gridheight 2
insets 10,	20,	0,	0

Declare	the	controls	as	class	level	objects	using:

JLabel	player1Label	=	new	JLabel();
JLabel	player1HitsLabel	=	new	JLabel();

JTextField	player1HitsTextField	=	new	JTextField();	JLabel
player1LeftLabel	=	new	JLabel();
JTextField	player1LeftTextField	=	new	JTextField();	JTextArea
player1TextArea	=	new	JTextArea();

Add	 the	 controls	 to	 the	 frame	using	 (since	many	 of	 the	 controls	 use	 the	 same
font,	we	define	a	common	object,	myFont):	Font	myFont	=	new	Font("Arial",
Font.BOLD,	16);

player1Label.setText("You:");
player1Label.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(player1Label,	gridConstraints);
player1HitsLabel.setText("Hits");
player1HitsLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(player1HitsLabel,	gridConstraints);
player1HitsTextField.setPreferredSize(new	Dimension(50,	25));
player1HitsTextField.setText("0");
player1HitsTextField.setFont(myFont);
player1HitsTextField.setEditable(false);
player1HitsTextField.setBackground(Color.WHITE);
player1HitsTextField.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;

gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
getContentPane().add(player1HitsTextField,	gridConstraints);
player1LeftLabel.setText("Left");
player1LeftLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(player1LeftLabel,	gridConstraints);
player1LeftTextField.setPreferredSize(new	Dimension(50,	25));
player1LeftTextField.setText("20");
player1LeftTextField.setFont(myFont);
player1LeftTextField.setEditable(false);
player1LeftTextField.setBackground(Color.WHITE);
player1LeftTextField.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
getContentPane().add(player1LeftTextField,	gridConstraints);
player1TextArea.setPreferredSize(new	Dimension(160,	60));
player1TextArea.setText("A	Key	-	Move	Up\nZ	Key	-	Move	Down\nS
Key	-	Toss");	player1TextArea.setFont(new	Font("Arial",	Font.PLAIN,
14));	player1TextArea.setEditable(false);
player1TextArea.setBackground(getContentPane().getBackground());
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
gridConstraints.gridheight	=	2;
gridConstraints.insets	=	new	Insets(10,	20,	0,	0);
getContentPane().add(player1TextArea,	gridConstraints);	Run	to	see
these	controls:

The	Player	 2	 controls	 are	 nearly	 identical	 to	 those	we	 just	 added,	 so	 this	 is	 a
good	place	to	practice	your	cut	and	paste	skills	with	the	code.	The	properties	are:

player2Label: 	
text Computer:
font Arial,	Bold,	Size	16
gridx 3
gridy 0
gridwidth 2
insets 10,	10,	0,	0
anchor WEST
	 	
player2HitsLabel: 	
text Hits
font Arial,	Bold,	Size	16
gridx 3
gridy 1
insets 10,	10,	0,	0
anchor WEST
	 	
player2HitsTextField: 	
size 50,	25
text 0
font Arial,	Bold,	Size	16
editable false
background White
horizontalAlignment Center
gridx 4

gridy 1
insets 10,	10,	0,	0
	 	
player2LeftLabel: 	
text Left
font Arial,	Bold,	Size	16
gridx 3
gridy 2
insets 10,	10,	0,	0
anchor WEST
	 	
player2LeftTextField: 	
size 50,	25
text 20
font Arial,	Bold,	Size	16
editable false
background White
horizontalAlignment Center
gridx 4
gridy 2
insets 10,	10,	0,	0
	 	
player2TextArea: 	
size 160,	60
text K	Key	-	Move	Up\nM	Key	-	Move	Down\nJ

Key	-	Toss
font Arial,	Plain,	Size	14
editable false
background Color(192,	192,	255),	same	as	frame
gridx 5
gridy 1
gridheight 2
insets 10,	20,	0,	0

The	controls	are	declared	using:

JLabel	player2Label	=	new	JLabel();
JLabel	player2HitsLabel	=	new	JLabel();
JTextField	player2HitsTextField	=	new	JTextField();	JLabel
player2LeftLabel	=	new	JLabel();
JTextField	player2LeftTextField	=	new	JTextField();	JTextArea
player2TextArea	=	new	JTextArea();

The	controls	are	added	to	the	frame	using:

player2Label.setText("Computer:");
player2Label.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	3;
gridConstraints.gridy	=	0;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(player2Label,	gridConstraints);
player2HitsLabel.setText("Hits");
player2HitsLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	3;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(player2HitsLabel,	gridConstraints);
player2HitsTextField.setPreferredSize(new	Dimension(50,	25));
player2HitsTextField.setText("0");
player2HitsTextField.setFont(myFont);
player2HitsTextField.setEditable(false);
player2HitsTextField.setBackground(Color.WHITE);
player2HitsTextField.setHorizontalAlignment(SwingConstants.CENTER);

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	4;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
getContentPane().add(player2HitsTextField,	gridConstraints);
player2LeftLabel.setText("Left");
player2LeftLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	3;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(player2LeftLabel,	gridConstraints);
player2LeftTextField.setPreferredSize(new	Dimension(50,	25));
player2LeftTextField.setText("20");
player2LeftTextField.setFont(myFont);
player2LeftTextField.setEditable(false);
player2LeftTextField.setBackground(Color.WHITE);
player2LeftTextField.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	4;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
getContentPane().add(player2LeftTextField,	gridConstraints);
player2TextArea.setPreferredSize(new	Dimension(140,	60));
player2TextArea.setText("K	Key	-	Move	Up\nM	Key	-	Move	Down\nJ
Key	-	Toss");	player2TextArea.setFont(new	Font("Arial",	Font.PLAIN,
14));	player2TextArea.setEditable(false);
player2TextArea.setBackground(getContentPane().getBackground());
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	5;
gridConstraints.gridy	=	1;
gridConstraints.gridheight	=	2;

gridConstraints.insets	=	new	Insets(10,	20,	0,	0);
getContentPane().add(player2TextArea,	gridConstraints);	Run	to	see:

The	labels	and	text	fields	will	change	when	the	user	selects	a	different	number	of
players.	 The	 scoring	 controls	 are	 complete.	 Let’s	 add	 the	 game	 display
(snowPanel)	and	associated	options	panels	and	controls.

The	large	panel	in	the	middle	of	the	frame	(snowPanel)	is	used	to	display	game
play.	It	holds	another	panel	(optionsPanel)	used	to	establish	options.	Since	we
use	snowPanel	to	host	graphics,	we	will	create	a	special	class	(SnowPanel)	with
a	paintComponent	method	to	place	graphics	methods.	Add	this	class	after	 the
SnowballToss	main	class:	class	SnowPanel	extends	JPanel

{

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);

g2D.dispose();

}

}

Properties	for	the	two	new	panels	are:

snowPanel: 	
size 550,	350

background Gray
gridx 0	(on	frame)
gridy 3	(on	frame)
gridwidth 6	(on	frame)
insets 10,	10,	10,	10
	 	
optionsPanel: 	
size 200,	280
background Color(255,	255,	192)
gridx 0	(on	snowPanel)
gridy 0	(on	snowPanel)

The	panels	are	declared	using:

SnowPanel	snowPanel	=	new	SnowPanel();
Static	JPanel	optionsPanel	=	new	JPanel();

We	need	 to	display	 the	optionsPanel	 on	 the	 snowPanel	 so	 it	 needs	 the	 static
declaration.

The	panels	are	added	to	the	frame	with	this	code:

snowPanel.setPreferredSize(new	Dimension(550,	350));
snowPanel.setBackground(Color.GRAY);
snowPanel.setLayout(new	GridBagLayout());
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.gridwidth	=	6;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(snowPanel,	gridConstraints);

optionsPanel.setPreferredSize(new	Dimension(200,	280));
optionsPanel.setBackground(new	Color(255,	255,	192));
optionsPanel.setLayout(new	GridBagLayout());

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
snowPanel.add(optionsPanel,	gridConstraints);

Add	the	shaded	line	to	the	SnowPanel	painttComponent	method	to	make	sure
the	options	panel	shows	up:	class	SnowPanel	extends	JPanel

{

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);

SnowballToss.optionsPanel.repaint();

g2D.dispose();

}

}

Save,	run	to	see	the	added	panels:

Next,	we	add	controls	to	optionsPanel	to	allow	selection	of	options.

The	GridBagLayout	for	the	options	panel	is:	

One	panel	(playersPanel)	holds	two	radio	buttons	used	to	select	the	number	of
players.	One	panel	(difficultyPanel)	holds	four	radio	buttons	to	select	the	game
difficulty	level,	when	playing	against	the	computer.	A	small	button	(okButton)
is	 used	 to	 close	 the	 options	 panel.	 We’ll	 add	 all	 the	 controls	 (panels,	 radio
buttons	 and	ok	button)	 at	 one	 time.	You	 should	have	no	 trouble	 following	 the
logic.

The	control	properties	are:

playersPanel: 	
size 140,	55
title Number	of	Players
background Color(255,	255,	192)
gridx 0	(on	optionsPanel)
gridy 0	(on	optionsPanel)
	 	
onePlayerRadioButton: 	
text One
background Color(255,	255,	192)
selected true
buttonGroup playersButtons
gridx 0	(on	playersPanel)
gridy 0	(on	playersPanel)
	 	
twoPlayersRadioButton: 	
text Two
background Color(255,	255,	192)
buttonGroup playersButtons
gridx 1	(on	playersPanel)
gridy 0	(on	playersPanel)
	 	
difficultyPanel: 	
size 140,	140
title Difficulty
background Color(255,	255,	192)
gridx 0	(on	optionsPanel)
gridy 0	(on	optionsPanel)
	 	
easiestRadioButton: 	
text Easiest
background Color(255,	255,	192)
selected true

buttonGroup difficultyButtons
gridx 0	(on	difficultyPanel)
gridy 0	(on	difficultyPanel)
anchor WEST
	 	
easyRadioButton: 	
text Easy
background Color(255,	255,	192)
buttonGroup difficultyButtons
gridx 0	(on	difficultyPanel)
gridy 1	(on	difficultyPanel)
anchor WEST
	 	
hardRadioButton: 	
text Hard
background Color(255,	255,	192)
buttonGroup difficultyButtons
gridx 0	(on	difficultyPanel)
gridy 2	(on	difficultyPanel)
anchor WEST
	 	
hardestRadioButton: 	
text Hardest
background Color(255,	255,	192)
buttonGroup difficultyButtons
gridx 0	(on	difficultyPanel)
gridy 3	(on	difficultyPanel)
anchor WEST
	 	
okButton: 	
text OK
gridx 0	(on	optionsPanel)
gridy 2	(on	optionsPanel)

insets 10,	0,	0,	0

The	controls	are	declared	using:

JPanel	playersPanel	=	new	JPanel();
ButtonGroup	playersButtons	=	new	ButtonGroup();
JRadioButton	onePlayerRadioButton	=	new	JRadioButton();
JRadioButton	twoPlayersRadioButton	=	new	JRadioButton();	JPanel
difficultyPanel	=	new	JPanel();
ButtonGroup	difficultyButtons	=	new	ButtonGroup();
JRadioButton	easiestRadioButton	=	new	JRadioButton();	JRadioButton
easyRadioButton	=	new	JRadioButton();
JRadioButton	hardRadioButton	=	new	JRadioButton();
JRadioButton	hardestRadioButton	=	new	JRadioButton();	JButton
okButton	=	new	JButton();

The	 controls	 are	 added	 to	 the	 various	 panel	 controls	 using:
playersPanel.setPreferredSize(new	 Dimension(140,	 55));
playersPanel.setBorder(BorderFactory.createTitledBorder("Number	 of
Players"));	 playersPanel.setBackground(new	 Color(255,	 255,	 192));
playersPanel.setLayout(new	GridBagLayout());
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
optionsPanel.add(playersPanel,	gridConstraints);

onePlayerRadioButton.setText("One");
onePlayerRadioButton.setBackground(new	Color(255,	255,	192));
onePlayerRadioButton.setSelected(true);
onePlayerRadioButton.setLayout(new	GridBagLayout());
playersButtons.add(onePlayerRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
playersPanel.add(onePlayerRadioButton,	gridConstraints);

onePlayerRadioButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

playersRadioButtonActionPerformed(e);

}

});

twoPlayersRadioButton.setText("Two");
twoPlayersRadioButton.setBackground(new	Color(255,	255,	192));
twoPlayersRadioButton.setLayout(new	GridBagLayout());
playersButtons.add(twoPlayersRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
playersPanel.add(twoPlayersRadioButton,	gridConstraints);
twoPlayersRadioButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

playersRadioButtonActionPerformed(e);

}

});

difficultyPanel.setPreferredSize(new	Dimension(140,	140));
difficultyPanel.setBorder(BorderFactory.createTitledBorder("Difficulty"));
difficultyPanel.setBackground(new	Color(255,	255,	192));
difficultyPanel.setLayout(new	GridBagLayout());
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;

optionsPanel.add(difficultyPanel,	gridConstraints);
easiestRadioButton.setText("Easiest");
easiestRadioButton.setBackground(new	Color(255,	255,	192));
easiestRadioButton.setSelected(true);
easiestRadioButton.setLayout(new	GridBagLayout());
difficultyButtons.add(easiestRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.WEST;
difficultyPanel.add(easiestRadioButton,	gridConstraints);
easiestRadioButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

difficultyRadioButtonActionPerformed(e);

}

});

easyRadioButton.setText("Easy");
easyRadioButton.setBackground(new	Color(255,	255,	192));
easyRadioButton.setLayout(new	GridBagLayout());
difficultyButtons.add(easyRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.anchor	=	GridBagConstraints.WEST;
difficultyPanel.add(easyRadioButton,	gridConstraints);
easyRadioButton.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

difficultyRadioButtonActionPerformed(e);

}

});

hardRadioButton.setText("Hard");
hardRadioButton.setBackground(new	Color(255,	255,	192));
hardRadioButton.setLayout(new	GridBagLayout());
difficultyButtons.add(hardRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.anchor	=	GridBagConstraints.WEST;
difficultyPanel.add(hardRadioButton,	gridConstraints);
hardRadioButton.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

difficultyRadioButtonActionPerformed(e);

}

});

hardestRadioButton.setText("Hardest");
hardestRadioButton.setBackground(new	Color(255,	255,	192));
hardestRadioButton.setLayout(new	GridBagLayout());
difficultyButtons.add(hardestRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.anchor	=	GridBagConstraints.WEST;
difficultyPanel.add(hardestRadioButton,	gridConstraints);
hardestRadioButton.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

difficultyRadioButtonActionPerformed(e);

}

});

okButton.setText("OK");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
optionsPanel.add(okButton,	gridConstraints);
okButton.addActionListener(new	ActionListener	()

{

public	void	actionPerformed(ActionEvent	e)

{

okButtonActionPerformed(e);

}

});

Each	group	of	radio	buttons	and	the	OK	button	each	have	an	ActionPerformed
method.	 Add	 these	 empty	 methods	 to	 the	 project:	 private	 void
playersRadioButtonActionPerformed(ActionEvent	e)	{

}

private	void	difficultyRadioButtonActionPerformed(ActionEvent	e)	{

}

private	void	okButtonActionPerformed(ActionEvent	e)	{

}

Save	 and	 run	 the	 project.	 The	 fully	 coded	 options	 panel	 is	 now	 seen:	

We	 complete	 the	 frame	 by	 adding	 the	 three	 button	 controls	 to	 the	 frame.	The
properties	are:

gameButton: 	
text New	Game
gridx 0
gridy 4
gridwidth 2
insets 0,	10,	10,	0
	 	
optionsButton: 	

text Options
gridx 2
gridy 4
insets 0,	0,	10,	0
	 	
exitButton: 	
text Exit
gridx 3
gridy 4
gridwidth 2
insets 0,	0,	10,	0

Declare	the	button	controls	using:

JButton	gameButton	=	new	JButton();
JButton	optionsButton	=	new	JButton();
JButton	exitButton	=	new	JButton();

Add	 the	 button	 controls	 to	 the	 frame	 using	 this	 code:
gameButton.setText("New	Game");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	4;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(0,	10,	10,	0);
getContentPane().add(gameButton,	gridConstraints);
gameButton.addActionListener(new	ActionListener	()

{

public	void	actionPerformed(ActionEvent	e)

{

gameButtonActionPerformed(e);

}

});

optionsButton.setText("Options");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	4;
gridConstraints.insets	=	new	Insets(0,	0,	10,	0);
getContentPane().add(optionsButton,	gridConstraints);
optionsButton.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

optionsButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	3;
gridConstraints.gridy	=	4;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(0,	0,	10,	0);
getContentPane().add(exitButton,	gridConstraints);
exitButton.addActionListener(new	ActionListener	()

{

public	void	actionPerformed(ActionEvent	e)

{

exitButtonActionPerformed(e);

}

});

Each	button	has	an	ActionPerformed	method.	Add	these	empty	methods	to	the
code	listing:	private	void	gameButtonActionPerformed(ActionEvent	e)	{

}

private	void	optionsButtonActionPerformed(ActionEvent	e)	{

}

private	void	exitButtonActionPerformed(ActionEvent	e)	{

}

Run	to	see	the	completed	frame:

There	is	one	slight	problem.	We	don’t	want	the	options	panel	to	appear	initially
(it	 shouldn’t	appear	until	 the	user	clicks	Options).	So,	add	 this	one	 line	 in	 the
code	establishing	the	options	panel:	optionsPanel.setVisible(false);

Run	again	and	the	frame	is	in	the	desired	initial	configuration	(no	options	panel):

We	now	begin	writing	project	code.	We	first	write	code	 that	establishes	 frame
status	based	on	selected	game	options.

Frame	Design	–	Choosing	Options
When	the	game	begins,	a	user	usually	chooses	options	 (number	of	players	and
difficulty	 level).	 Based	 on	 these	 choices,	 the	 frame	 will	 display	 different
information.	 When	 the	 user	 clicks	 the	 Options	 button	 (optionsButton),	 the
following	occurs:

➢	Disable	gameButton.
➢	Disable	optionsButton.
➢	Disable	exitButton.
➢	Make	optionsPanel	visible.

The	code	 for	 these	 steps	goes	 in	 the	optionsButtonActionPerformed	method:
private	void	optionsButtonActionPerformed(ActionEvent	e)	{

gameButton.setEnabled(false);
optionsButton.setEnabled(false);
exitButton.setEnabled(false);
optionsPanel.setVisible(true);

}

Add	this	method.

Once	the	options	panel	is	displayed,	the	user	can	choose	one	or	two	players	and
game	difficulty	 (if	playing	against	 the	computer).	We	will	use	 the	 int	 variable
numberPlayers	to	store	the	number	of	players	and	the	int	variable	difficulty	to
store	 the	 selected	 difficulty.	 Add	 these	 class	 level	 variable	 declarations	 to	 the
project:	int	numberPlayers,	difficulty;

Add	 these	 two	 lines	 at	 the	 end	 of	 the	 frame	 constructor	 to	 initialize	 these
variables	to	default	values:	numberPlayers	=	1;
difficulty	=	1;

If	 the	one	player	 (onePlayerRadioButton	button)	 is	selected,	you	play	against
the	computer	and	the	following	happens:

➢	Set	numberPlayers	to	1.
➢	 Set	 player1Label	 text	 property	 to	 You:	 ➢	 Set	 player2Label	 text
property	 to	Computer:	➢	 Set	 visible	 property	 of	 player2TextArea	 to
false	➢	Set	visible	property	of	difficultyPanel	to	true

If	the	two	player	(twoPlayersRadioButton	button)	is	selected,	you	play	against
another	person	and	the	following	happens:

➢	Set	numberPlayers	to	2.
➢	 Set	player1Label	 text	 property	 to	Player	 1:	➢	 Set	player2Label	 text
property	to	Player	2:	➢	Set	visible	property	of	player2TextArea	to	true
➢	Set	visible	property	of	difficultyPanel	to	false

Notice	game	difficulty	is	only	selected	when	playing	against	the	computer	(one
player).

The	 code	 to	 implement	 these	 steps	 is	 placed	 in	 a	 method	 named
playersRadioButtonActionPerformed	 (which	 handles	 the	 ActionPerformed
method	 for	 both	 onePlayerRadioButton	 and	 twoPlayersRadioButton):
private	void	playersRadioButtonActionPerformed(ActionEvent	e)	{

if	(e.getActionCommand().equals("One"))

{

numberPlayers	=	1;
player1Label.setText("You:");
player2Label.setText("Computer:");
player2TextArea.setVisible(false);
difficultyPanel.setVisible(true);

}

else

{

numberPlayers	=	2;
player1Label.setText("Player	1:");

player2Label.setText("Player	2:");
player2TextArea.setVisible(true);
difficultyPanel.setVisible(false);

}

}

Add	this	method	to	your	project.

Similarly,	 a	 method	 named	 difficultyRadioButtonActionPerformed	 handles
the	 ActionPerformed	 method	 for	 the	 four	 radio	 buttons	 in	 difficultyPanel.
Based	on	which	button	is	clicked,	the	difficulty	variable	is	set:	private	void
difficultyRadioButtonActionPerformed(ActionEvent	e)	{

String	s	=	e.getActionCommand();
if	(s.equals("Easiest"))

difficulty	=	1;
else	if	(s.equals("Easy"))

difficulty	=	2;
else	if	(s.equals("Hard"))

difficulty	=	3;
else	if	(s.equals("Hardest"))

difficulty	=	4;

}

Add	this	method	to	your	project.

Once	the	user	has	selected	options,	he	clicks	the	OK	button	(okButton)	to	close
out	 the	 options	 panel.	 The	 code	 in	 the	 okButtonActionPerformed	 method	 is
just	 the	 reverse	 of	 the	 code	 in	 the	 optionsButtonActionPerformed	 method
(reversing	 the	 boolean	 properties):	 private	 void
okButtonActionPerformed(ActionEvent	e)	{

gameButton.setEnabled(true);
optionsButton.setEnabled(true);

exitButton.setEnabled(true);
optionsPanel.setVisible(false);

}

Add	 this	 final	 options	 method	 to	 your	 project.	 At	 this	 point,	 game	 play	 can
begin.

Save	and	run	the	project.	The	game	screen	will	appear	with	default	values	(one
player,	 easiest	 difficulty).	 Click	Options	 to	 make	 the	 options	 panel	 appear:	

Changing	 the	 difficulty	 will	 not	 change	 the	 form	 appearance.	 Changing	 the
number	 of	 players	 will.	 Choose	 two	 players	 –	 the	 header	 information	 should
change	to	reflect	two	players	and	the	Difficulty	panel	will	disappear.	Make	sure
everything	works	as	planned.

Each	time	you	play	the	game,	you	would	like	the	options	you	used	the	last	time
you	played	 the	game	 to	be	“pre-selected.”	A	configuration	 file	can	handle	 this
task.

Code	Design	–	Configuration	File
Since	we	will	be	writing/reading	files,	we	need	 to	add	 this	 import	statement	at
the	top	of	the	code	window:	using	System.IO;

The	configuration	file	will	hold	two	pieces	of	information:	the	number	of	players
(numberPlayers)	and	the	difficulty	(difficulty).	First,	let’s	develop	the	code	to
write	the	configuration	file	to	disk	when	the	program	ends.	This	code	goes	in	the
exitForm	 method	 (all	 but	 the	 last	 line	 is	 new	 code):	 private	 void
exitForm(WindowEvent	evt)

{

try

{

PrintWriter	outputFile	=	new	PrintWriter(new
BufferedWriter(new	FileWriter("snowball.ini")));
outputFile.println(numberPlayers);

outputFile.println(difficulty);
outputFile.flush();
outputFile.close();

}

catch	(Exception	ex)

{

}

System.exit(0);

}

As	always,	the	configuration	file	is	in	the	project	folder.	Add	this	method	to	your

project.

Add	 this	code	 to	 the	exitButtonActionPerformed	method,	 so	we	can	stop	 the
project	 and	 write	 the	 file:	 private	 void
exitButtonActionPerformed(ActionEvent	e)	{

exitForm(null);

}

The	configuration	file	is	opened	and	read	in	at	the	end	of	the	frame	constructor
method.	Based	 on	 the	 values	 read,	we	 then	 simulate	 clicks	 on	 the	 appropriate
radio	buttons	to	choose	options.	The	code	that	opens	the	configuration	file	and
chooses	the	appropriate	radio	buttons	is	(changes	are	shaded):
try

{

BufferedReader	inputFile	=	new	BufferedReader(new
FileReader("snowball.ini"));	numberPlayers	=
Integer.valueOf(inputFile.readLine()).intValue();

difficulty	=
Integer.valueOf(inputFile.readLine()).intValue();

inputFile.close();

}

catch	(Exception	ex)

{

numberPlayers	=	1;
difficulty	=	1;

}

if	(difficulty	==	1)
easiestRadioButton.doClick();

else	if	(difficulty	==	2)
easyRadioButton.doClick();

else	if	(difficulty	==	3)
hardRadioButton.doClick();

else
hardestRadioButton.doClick();

if	(numberPlayers	==	1)
onePlayerRadioButton.doClick();

else
twoPlayersRadioButton.doClick();

Notice	 we	 use	 default	 values	 if	 the	 configuration	 file	 cannot	 be	 opened.	 We
choose	 the	 difficulty	 option	 first,	 since	 this	 option	 is	 not	 enabled	 if	 the	 two
player	optioned	is	selected.

Save	and	run	the	project.	Choose	some	options.	Make	sure	the	form	is	properly
configured	after	choosing	the	options.	Stop	the	project	–	click	Exit	or	click	the	X
in	 the	upper	 right	corner	of	 the	 form.	Run	 the	project	again	 to	make	sure	your
last	 set	 of	 selected	 options	 is	 still	 selected	 and	 the	 form	 looks	 correct.	 Before
stopping	 the	 program	 for	 the	 last	 time,	 make	 sure	 the	Two	 Player	 option	 is
selected.	We	will	use	this	for	most	of	our	design	work.

We’re	 now	 ready	 to	 start	 programming	 the	 graphics	 features	 of	 the	 snowball
game	 –	moving	 the	 tossers	 up	 and	 down	 the	 screen,	 throwing	 snowballs,	 and
moving	the	zombie	snowmen	across	the	screen.

Animation	with	Java
Programming	animated	games	in	Java	requires	a	specific	set	of	skills.	We	need
to	know	how	to	develop	a	graphic	image,	how	to	move	(animate)	that	image	and
how	 to	 see	 if	 one	 image	 collides	 with	 another	 image.	 We	 also	 want	 to	 add
sounds	to	our	games.	As	we	build	the	snowball	toss	game,	we	will	discuss	these
new	skills.	We	start	with	animation.

Animating	 an	 image	 in	 a	 graphic	 object	 involves	 two	 steps:	 (1)	 determine	 the
image	 location,	 and	 (2)	move	 the	 image	 to	 that	 location.	 The	 image	 region	 is
rectangular.	We	use	 the	 Java	Rectangle2D	 shape	 to	 specify	 such	 regions.	The
properties	for	this	shape	we	will	use	are:

x x-coordinate	of	the	upper-left	corner	of	the
rectangle

y y-coordinate	of	the	upper-left	corner	of	the
rectangle

height Width	of	the	rectangle
width Height	of	the	rectangle

The	 x	 and	 y	 values	 are	 relative	 to	 the	 graphics	 object.	 A	 diagram	 shows

everything:	

x,	y,	width	and	height	can	be	changed	at	run-time.

There	are	two	steps	involved	in	creating	a	rectangle	shape.	We	first	declare	the
structure	using	the	standard	statement:	Rectangle2D.Double	myRectangle;

Placement	of	this	statement	depends	on	scope.	Place	it	 in	a	method	for	method
level	 scope.	 Place	 it	 with	 other	 class	 level	 declarations	 for	 class	 level	 scope.
Once	 declared,	 the	 structure	 is	 created	 using	 the	 Rectangle2D	 constructor:
myRectangle	 =	 new	 Rectangle2D.Double(x,	 y,	 width,	 height);	 where	 x,	 y,
width	and	height	are	the	desired	integer	measurements	(in	pixels).

Once	established,	 the	x,	 y,	width	 and	height	properties	 can	be	 retrieved	using:
myRectangle.getX();
myRectangle.getY();
myRectangle.getWidth();
mRectangle.getHeight();

You	 can	 move	 and	 resize	 the	 rectangle	 in	 code,	 by	 changing	 any	 of	 four
properties	using:	myRectangle.setX(newX);
myRectangle.setY(newY);
myRectangle.setWidth(newWidth);
mRectangle.setHeight(newHeight);

where	newX,	newY,	newWidth,	 and	newHeight	 represent	new	values	 for	 the
respective	properties.	We	can	set	all	of	 these	at	once	with	the	setRect	method:
myRectangle.setRect(newX,	 newY,	 newWidth,	 newHeight);	 An	 image	 is
drawn	to	a	graphics	object	using	the	drawImage	graphics	method.	Before	using
drawImage,	you	need	two	things:	a	Graphics2D	object	(g2D)	to	draw	to	and	an
Image	 object	 to	 draw.	 In	 our	 project,	 the	 graphics	 object	 is	 available	 in	 the
SnowPanel	class	paintComponent	method.	The	Image	object	is	usually	loaded
from	a	graphics	file.

The	drawImage	method	 is:	g2D.DrawImage(myImage,	myRectangle.getX(),
myRectangle.getY(),	 null);	 where	 myRectangle	 is	 a	 rectangle	 shape	 that
positions	myImage	within	g2D.	myRectangle	 is	 specified	by	x	 the	 horizontal
position,	y	the	vertical	position,	the	width	w	and	height	h:	myRectangle	=	new
Rectangle2D.Double(x,	y,	w,	h);

The	width	and	height	is	the	image	size	given	by:

myImage.getWidth(null);
myImage.getHeight(null);

A	 picture	 illustrates	 what’s	 going	 on	 with	 drawImage:	

Note	 how	 the	 transfer	 of	 the	 rectangular	 region	 occurs.	 Successive	 image
transfers	 gives	 the	 impression	 of	motion,	 or	 animation	With	 our	 newly-gained
knowledge	of	the	Rectangle2D	shape	and	the	drawImage	graphics	method,	we
can	summarize	the	steps	needed	to	move	(or	animate)	an	image	(myImage)	in	a
graphics	object	named	g2D.	Assume	the	image	is	currently	at	location	(x,	y)	and
is	w	by	h	in	size.	Assume	we	want	to	move	the	image	to	a	new	location	(x	+	dx,
y	+	dy).	The	steps	are:

➢	 Update	 Rectangle2D	 structure	 to	 new	 location:
myRectangle.setRect(myRectangle.getX()	+	dx,	myRectangle.getY()	+
dy,	 myRectangle.getWidth(),	 myRectangle.getHeight());	 ➢	 Draw
image	at	new	location:	g2D.DrawImage(myImage,	myRectangle.getX(),
myRectangle.getY(),	null);

Successive	 application	 of	 each	 of	 these	 steps	 for	 each	 image	 in	 our	 graphics
region	results	in	a	nice	smooth	animated	motion.

We’re	ready	to	start	writing	code	to	animate	our	snowball	toss	game,	but	first	we
need	 to	 answer	 one	 question	 that	 might	 be	 lingering.	 In	 describing	 the
drawImage	 method,	 we	 said	 the	 images	 we	 use	 are	 loaded	 from	 files.	 Your
question	might	be	–	where	do	these	files	come	from?	The	answer	is	you	either
need	 to	 find	 them	 from	 some	 source	 (the	 Internet	 is	 a	 good	 place	 to	 look)	 or
create	them	yourself.

To	 create	 animation	 images,	 you	 could	 use	 a	 tool	 like	 the	Paint	 program	 that
ships	 with	Windows.	 Draw	 your	 picture	 and	 save	 it	 as	 a	 bitmap	 file.	 Or	 you
could	 use	 one	 of	 many	 available	 commercial	 paintbrush	 programs.	 In	 the
snowball	 toss	 game,	 we	 use	 another	 tool	 to	 develop	 our	 images	 –	 a	 program
called	IconEdit.

Drawing	Images	with	IconEdit
Icons	 are	 used	 in	 Windows	 Explorer,	 to	 represent	 programs	 in	 the	 Programs
menu,	 to	 represent	 programs	 on	 the	 desktop	 and	 to	 identify	 an	 application
removal	 tool.	Icons	are	used	throughout	projects.	We	can	create	our	own	icons
and	 use	 them.	 In	 fact,	 we	 do	 that	 in	 the	 Appendix	 to	 these	 notes,	 where	 we
discuss	distributing	a	Java	project.

For	now,	we	just	want	to	look	at	a	tool	used	to	create	such	icons	(a	file	with	an
ico	 extension)	 and	 use	 it	 to	 create	 the	 images	 we	 need	 for	 our	 snowball	 toss
program.	Icons	are	simply	special	cases	of	bitmap	files	that	are	32	bits	by	32	bits
in	size.	Their	size	makes	them	very	useful	in	games	such	as	this.

A	few	years	ago,	PC	Magazine	offered	a	free	utility	called	IconEdit	that	allows
you	 to	 design	 and	 save	 icons.	 Included	with	 these	 notes	 are	 this	 program	 and
other	 files	 (directory	 \HomeJava\HomeJava	 Projects\IconEdit\).	 To	 run
IconEdit,	 click	Start	 on	 the	Windows	 task	 bar,	 and	 then	 click	Run.	 Find	 the
IconEdit.exe	program	(use	Browse	mode)	and	run	it.	You	can	also	establish	a
shortcut	 to	 start	 IconEdit	 from	your	 desktop,	 if	 desired.	The	 following	Editor
window	 will	 appear	 when	 you	 choose	 the	New	 option	 under	 the	File	 menu:	

The	basic	idea	of	IconEdit	is	to	draw	an	icon	in	the	large	32	x	32	grid	displayed.
You	 can	 draw	 single	 points,	 lines,	 open	 rectangles	 and	 ovals,	 and	 filled
rectangles	and	ovals.	Various	colors	are	available	with	simple	mouse	clicks.	The
displayed	green	color	 is	a	 transparent	color.	As	you	draw	in	 the	 large	grid,	 the
small	grid	to	the	right	displays	your	finished	icon.	Once	completed,	the	icon	file
can	be	saved	for	attaching	to	a	form	or	use	within	an	application.

We	won’t	go	into	a	lot	of	detail	on	using	the	IconEdit	program	here	-	I	just	want
you	 to	 know	 it	 exists	 and	 can	 be	 used	 to	 create	 and	 save	 icon	 files.	 Its	 use	 is
fairly	 intuitive.	Consult	 the	help	 (click	Help	 in	 the	menu)	 that	 comes	with	 the
program	for	details.	Or,	more	specific	usage	details	are	given	in	 the	Appendix.
One	point	you	might	like	to	ponder	is	that	an	application	like	this	could	easily	be
built	with	Java.

All	graphics	used	in	the	snowball	toss	game	were	created	using	IconEdit.	These
files	are	included	in	the	\HomeJava\HomeJava	Projects\SnowballToss\folder.
Let’s	 look	at	 the	files	used	to	represent	one	of	 the	two	players.	Start	IconEdit.
Choose	Open	under	the	File	menu.	An	Open	Icon	dialog	will	appear.	Navigate
to	 the	 above	 folder.	 There	 are	 two	 files	 used	 to	 represent	 the	 players	 –
player1.ico	 and	 player2.ico.	 Open	 player1.ico	 as	 shown:	

This	cute	little	guy	will	appear:

Notice	you	can	get	quite	a	lot	of	detail	into	a	32	x	32	space.	I,	personally,	have
no	artistic	talent.	Someone	drew	all	the	graphics	in	this	program	for	me.

Open	the	second	player	file	if	you	like	or	look	ahead	at	the	graphics	to	represent
snowmen	and	snowballs.	Right	now,	let’s	look	at	how	to	display	these	little	guys
in	the	panel	control	on	our	form.

Displaying	Icons	with	Java
The	 usual	 Java	 code	 to	 establish	 an	 Image	 object	 (myImage)	 is:	myImage	=
new	ImageIcon(imageFile).getImage();

where	imageFile	is	the	file	holding	the	image.	We	have	one	big	problem	–	even
though	we	have	an	object	named	ImageIcon,	we	cannot	open	a	Windows	icon
file	(ico	file)	using	this	code.	Our	we	out	of	luck?	Of	course	not.

A	quick	search	of	the	Internet	finds	many	sites	offering	Java	code	that	opens	an
ico	 file	 as	 an	 Image	 object.	 We	 include	 one	 such	 offering	 with	 these	 notes
(found	from	the	SourceForge	website).	The	zip	file	(current	version	is	aclibico-
2.1.zip)	 is	 in	 the	 \HomeJava\HomeJava	 Projects\	 folder.	 Extract	 (unzip)	 the
files	 to	 a	 directory	 on	 your	 computer	 (I	 used	 c:\icofiles\).	Many	 files	 will	 be
written	to	your	computer,	 including	documentation	and	source	files.	The	actual
jar	 files	 needed	 (aclibico-2.1.jar	 and	 log4j-1.2.8.jar)	 will	 be	 in	 the	 2.1
subfolder.	The	second	jar	file	is	needed	for	messaging	by	the	icon	reader.

You	 need	 to	make	 your	 project	 aware	 you	will	 be	 using	 these	 jar	 files.	We’ll
give	 the	 steps	 using	 NetBeans.	 If	 you	 are	 using	 another	 IDE,	 consult	 its
documentation	to	see	how	to	add	jar	files	to	a	project.	Make	sure	SnowballToss
is	the	active	project.

In	 the	 menu,	 choose	 Tools,	 then	 Libaries	 to	 see:	

Click	 New	 Library	 and	 name	 it	 IcoReader:	

Click	OK	to	accept	name.	In	next	window,	click	Add	JAR/Folder.	Navigate	to
jar	 location:	

Select	both	jar	files	and	click	Add	JAR/Folder.

Library	is	now	there:

The	IcoReader	library	can	now	be	added	to	any	project	that	needs	it.	Click	OK.

To	add	this	to	your	project,	follow	these	steps:

In	 file	 view	 area,	 right-click	 the	 project	 name	 (SnowballToss)	 and	 click
Properties.	 In	 the	 properties	 window,	 choose	 the	 Libraries	 category:	

Click	Add	Library	to	see	

Choose	 IcoReader,	 then	 click	Add	Library.	 Click	OK	 when	 returned	 to	 the
Properties	window.	The	file	reading	code	can	now	be	used	in	the	snowball	toss
project	 with	 the	 addition	 of	 this	 import	 statement:	 import
com.ctreber.aclib.image.ico.ICOFile;

Add	 this	 to	 the	 code	 window.	 Also	 included	 with	 the	 download	 is	 a
documentation	file.	Like	many	sets	of	documentation,	however,	it	is	difficult	to
read.	We	save	you	 that	 trouble	and	 just	give	you	 the	code	needed	 to	create	an
Image	object	using	an	ico	file.

If	we	want	an	Image	object	(myImage)	to	be	created	using	an	ico	file	(icoFile),
the	syntax	is:	myImage	=	new
ICOFile(icoFile).getDescriptor(0).getImageRGB();

Briefly,	an	ico	file	may	have	more	than	one	icon.	We	assume	only	one	icon	per
file,	so	here	we	read	the	file,	get	the	descriptor	for	the	first	icon	(element	0)	and
convert	 it	 to	an	 image	using	RGB	colors.	The	above	code	must	be	placed	 in	a
try/catch	block.	We’ll	use	similar	code	very	soon	to	display	some	graphics.

Code	Design	–	Sprite	Class
We	will	have	several	images	moving	around	in	this	project	(players,	snowballs,
snowmen).	 This	 is	 a	 good	 place	 to	 try	 our	 object-oriented	 programming	 skills
introduced	in	Chapter	9.	We	will	build	a	class	named	Sprite	to	represent	the	two
player	objects.

Review	the	steps	to	add	a	class	file	to	your	Java	project	in	Chapter	7.	Name	the
added	 file	 Sprite.java.	 Delete	 the	 default	 code.	 Type	 these	 lines	 in	 the	 file:
package	snowballtoss;
public	class	Sprite

{

	

}

We	will	be	doing	drawing	with	our	class,	so	add	these	import	statements:	import
java.awt.geom.*;
import	java.awt.*;

We	 will	 use	 three	 properties	 to	 describe	 a	 Sprite	 object	 –	 image	 (Image
displayed),	rectangle	 (Rectangle2D.Double	 describing	 size	 and	 location),	 and
isVisible	(boolean	type	saying	whether	object	is	visible).	Add	these	declarations
to	the	file,	initializing	isVisible	to	false:	The	file	should	look	like	this:	package
snowballtoss;
import	java.awt.geom.*;
import	java.awt.*;

public	class	Sprite

{

public	Image	image;
public	Rectangle2D.Double	rectangle;

public	boolean	isVisible	=	false;

}

We	want	to	extend	our	class	description	by	adding	some	methods	 to	help	with
the	 animation	 task.	 Class	methods	 allow	 objects	 to	 perform	 certain	 tasks.	We
will	write	 two	methods	 for	 our	Sprite	 object,	 one	 that	 places	 it	 on	 a	 graphics
object	and	one	that	moves	it	to	a	new	location.	These	methods	are	added	to	the
class	description	exactly	like	general	methods	are	added	to	a	frame’s	code	file.
To	 add	 a	 method	 to	 a	 class	 description,	 you	 select	 a	 name	 and	 a	 type	 of
information	 the	 method	 will	 return	 (if	 there	 is	 any	 returned	 value).	 Also
determine	any	needed	arguments	for	the	method.

The	method	draw	 positions	 a	Sprite	 object	 into	 a	graphics	object	named	g2D
(passed	as	an	argument):	public	void	draw(Graphics2D	g2D)

{

g2D.drawImage(this.image,	(int)	this.rectangle.getX(),	(int)
this.rectangle.getY(),	null);	}

Note	the	use	of	the	keyword	this	to	refer	to	the	current	object.	Once	the	object	is
placed	on	g2D.

The	 method	 move	 moves	 a	 Sprite	 object	 to	 a	 new	 location.	 The	 required
arguments	 are	dx,	 the	 change	 in	 x	 location	 and	dy,	 the	 change	 in	 y	 location:
public	void	move(int	dx,	int	dy)

{

this.rectangle.setRect(this.rectangle.getX()	+	dx,	this.rectangle.getY()
+	dy,	this.rectangle.getWidth(),	this.rectangle.getHeight());	}

This	code	updates	the	Sprite	object	location.

Add	 these	 methods	 (draw,	move)	 to	 the	 Sprite	 class	 file	 to	 make	 the	 final
version	look	like	this:	package	snowballtoss;
import	java.awt.geom.*;

import	java.awt.*;

public	class	Sprite

{

public	Image	image;
public	Rectangle2D.Double	rectangle;
public	boolean	isVisible	=	false;

public	void	draw(Graphics2D	g2D)

{

g2D.drawImage(this.image,	(int)	this.rectangle.getX(),	(int)
this.rectangle.getY(),	null);	}

public	void	move(int	dx,	int	dy)

{

this.rectangle.setRect(this.rectangle.getX()	+	dx,
this.rectangle.getY()	+	dy,	this.rectangle.getWidth(),
this.rectangle.getHeight());	}

}

With	this	class,	a	Sprite	object	is	created	with:	Sprite	mySprite;

It	is	constructed	with:

mySprite	=	new	Sprite();

Once	constructed,	the	image	property	can	be	set	using	the	ICOFile	method	and
the	rectangle	property	equated	to	a	Rectangle2D	shape.

The	 Sprite	 object	 is	 drawn	 in	 a	 graphics	 object	 (g2D)	 using:
mySprite.draw(g2D);

It	is	moved	using:

mySprite.move(dx,	dy);

where	dx	 is	 how	much	you	want	 to	move	 the	object	 horizontally	 and	dy	 how
much	you	want	to	move	the	object	vertically.

At	long	last,	we	have	all	the	background	needed	to	draw	something	on	the	panel
control	(snowPanel)	where	we	play	the	snowball	toss	game.

Code	Design	–	Start/Stop	Game
We’ll	now	write	the	code	to	start	and	stop	the	game.	We	first	define	some	class
level	variables	 to	play	and	control	 the	game.	Return	 to	 the	SnowballToss.java
file.	Add	these	declarations	to	the	project:	static	Sprite	player1,	player2;
int	player1Hits,	player2Hits,	player1Left,	player2Left;	final	int
maximumBalls	=	20;

Two	Sprite	objects	(player1	and	player2)	represent	the	two	‘tossers’.	We	give
them	 the	 static	 preface	 anticipating	 their	 need	 in	 the	 panel	 paintComponent
method.	player1Hits	and	player2Hits	will	keep	 track	of	how	many	successful
snowball	 tosses	 each	 player	 has.	 player1Left	 and	 player2Left	 keep	 track	 of
how	many	snowballs	each	player	still	has.	A	constant	maximumBalls	(you	can
change	this	if	you	want)	sets	the	number	of	snowballs	a	player	starts	with.

We	add	some	code	to	the	end	of	the	frame	constructor	to	initialize	each	of	these
variables.	The	added	code	is:	player1Left	=	maximumBalls;
player2Left	=	maximumBalls;
player1LeftTextField.setText(String.valueOf(player1Left));
player2LeftTextField.setText(String.valueOf(player2Left));	//	create
sprites	player1	=	new	Sprite();
player2	=	new	Sprite();
//	read	in	icon	files	and	sounds
try

{

player1.image	=	new
ICOFile("player1.ico").getDescriptor(0).getImageRGB();	player2.image
=	new	ICOFile("player2.ico").getDescriptor(0).getImageRGB();	}
catch	(Exception	ex)

{

//	can	print	error	message	if	desired

}

}

Note	 the	 code	 to	 create	 the	 two	 Sprite	 objects	 and	 initialize	 the	 image
properties.	Copy	the	player1.ico	and	player2.ico	graphics	files	into	your	project
folder	or	this	code	will	not	work.	Also,	make	sure	you	have	this	import	statement
in	 your	 project	 to	 use	 the	 icon	 reading	 code:	 import
com.ctreber.aclib.image.ico.ICOFile;

At	this	point,	the	user	can	click	New	Game	(gameButton)	to	start	a	game.	The
following	preliminary	steps	should	happen	(more	steps	will	be	added	later):

➢	Change	gameButton	text	property	to	Stop	Game.
➢	Disable	optionsButton.
➢	Disable	exitButton.
➢	Reset	player1Hits	and	player2Hits	to	0.
➢	Reset	player1Left	and	player2Left	to	maximumBalls.
➢	Place	player1	and	player2	objects	in	initial	positions.
➢	Set	player1	and	player2	objects	isVisible	property	to	true.
➢	Repaint	snowPanel.

The	 code	 behind	 these	 steps	 is	 straightforward.	 The	 player1	 object	 will	 be
centered	vertically	in	snowPanel	near	the	left	edge.	The	player2	object	will	be
centered	vertically	near	the	right	edge.

This	same	button	(gameButton)	is	used	to	stop	a	game.	When	a	user	clicks	the
button	(when	Stop	Game	is	displayed),	the	following	should	happen:

➢	Set	player1	and	player2	objects	isVisible	property	to	false.
➢	Change	gameButton	text	property	to	Start	Game.
➢	Enable	optionsButton.
➢	Enable	exitButton.
➢	Write	Game	Over	message.
➢	Repaint	snowPanel.

The	 code	 for	 all	 these	 steps	 is	 placed	 in	 the	 gameButtonActionPerformed
method.	 That	 code	 is:	 private	 void

gameButtonActionPerformed(ActionEvent	e)	{
if	(gameButton.getText().equals("New	Game"))

{

gameButton.setText("Stop	Game");
optionsButton.setEnabled(false);
exitButton.setEnabled(false);
player1Hits	=	0;
player2Hits	=	0;
player1HitsTextField.setText("0");
player2HitsTextField.setText("0");
player1Left	=	maximumBalls;
player2Left	=	maximumBalls;

player1LeftTextField.setText(String.valueOf(player1Left));
player2LeftTextField.setText(String.valueOf(player2Left));
player1.rectangle	=	new	Rectangle2D.Double(5,	0.5	snowPanel.getHeight()
-	0.5	player1.image.getHeight(null),	player1.image.getWidth(null),
player1.image.getHeight(null));	player2.rectangle	=	new
Rectangle2D.Double(snowPanel.getWidth()	-
player2.image.getWidth(null)	-	5,	0.5	snowPanel.getHeight()	-	0.5
player2.image.getHeight(null),	player2.image.getWidth(null),
player2.image.getHeight(null));	player1.isVisible	=	true;

player2.isVisible	=	true;
snowPanel.repaint();

}

else

{

player1.isVisible	=	false;
player2.isVisible	=	false;
gameButton.setText("New	Game");

optionsButton.setEnabled(true);
exitButton.setEnabled(true);
snowPanel.repaint();

}

}

Add	 this	 method	 to	 your	 project.	 Use	 of	 the	 Rectangle2D	 object	 necessitates
addition	of	this	import	statement:	import	java.awt.geom.*;

You	 may	 wonder	 where	 the	 code	 to	 actually	 draw	 the	 two	 players	 and	 the
‘Game	 Over’	 message	 is.	 That	 goes	 in	 the	 snow	 panel	 paintComponent
method.

Currently,	 the	SnowPanel	paintComponent	 method	 has	 a	 single	 line,	 one	 to
repaint	optionsPanel:	class	SnowPanel	extends	JPanel

{

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);

SnowballToss.optionsPanel.repaint();

g2D.dispose();

}

}

We	only	want	the	options	panel	to	be	repainted	when	it	is	displayed.	When	the
game	 is	 being	 played,	 we	 want	 graphics	 elements	 to	 be	 drawn	 and	 when	 the
game	is	stopped,	we	want	the	‘Game	Over’	message	to	appear.	We	will	use	the
state/status	of	the	gameButton	to	tell	us	which	of	three	modes	we	are	in:	game

being	played,	game	stopped,	options	being	selected.	So,	a	 first	 step	 is	 to	add	a
static	preface	 to	 the	declaration	 for	 that	button:	static	JButton	gameButton	=
new	JButton();

Now,	 here’s	 the	 logic.	 If	 gameButton	 says	 ‘Stop	Game’,	 the	 game	 is	 being
played	and	we	want	 to	draw	graphics	elements.	 If	 the	gameButton	 says	 ‘New
Game’	and	is	enabled,	we	are	stopped	and	want	to	display	Game	Over.	 If	 the
gameButton	 says	 ‘New	Game’	 and	 is	 disabled,	we	are	 selecting	options.	The
code	 that	 implements	 this	 logic	 is	 (changes	 are	 shaded):	 class	 SnowPanel
extends	JPanel

{

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);

if	(SnowballToss.gameButton.getText().equals("Stop	Game"))	{
SnowballToss.player1.draw(g2D);
SnowballToss.player2.draw(g2D);

}

else

{

if	(SnowballToss.gameButton.isEnabled())

{

g2D.setFont(new	Font("Arial",	Font.BOLD,	36));
g2D.setPaint(Color.YELLOW);
g2D.drawString("Game	Over",	180,	180);

}

else

{

SnowballToss.optionsPanel.repaint();

}

}

g2D.dispose();

}

}

The	positioning	of	the	Game	Over	message	was	obtained	with	trial	and	error.

Save	and	run	the	project.	You	will	see	the	Game	Over	message.	At	this	point,
you	have	the	option	to	start	a	new	game,	change	options	or	exit.

You	may	notice	when	you	run	the	project	that	the	icon	reader	code	prints	out	a
bunch	of	messages	 into	your	IDE’s	output	window.	There’s	probably	a	way	to
turn	this	off,	but	I	didn’t	look	into	it.

Click	 New	 Game	 and	 the	 two	 guys	 should	 appear:	

The	game	is	ready	to	play	–	once	we	add	the	capability	of	moving	the	guys	and
throwing	 snowballs.	 It	 took	a	 lot	of	work	 to	get	 this	 far.	We	had	a	 lot	of	new
information	to	learn	about	animation.	Things	should	progress	a	little	faster	from
now	on.

Before	 leaving,	 click	 Stop	Game	 to	 make	 sure	 the	 stop	 method	 works	 and
Game	Over	 appears	again.	Click	Options	 to	make	sure	 the	options	panel	 still
displays	properly.

Code	Design	–	Moving	the	Tossers
We	need	the	capability	to	move	our	snowball	tossers	up	and	down	in	the	display
panel	 (snowPanel).	 We	 choose	 to	 use	 the	 keyboard	 for	 control,	 using	 the
KeyPressed	 method	 attached	 to	 the	 snowPanel	 control.	 Add	 this	 code	 in	 the
frame	 constructor	 to	 add	 a	 listener	 for	 this	 method:
snowPanel.addKeyListener(new	KeyAdapter()

{

public	void	keyPressed(KeyEvent	e)

{

snowPanelKeyPressed(e);

}

});

Then	 add	 the	 empty	 method	 we	 will	 use	 to	 determine	 which	 key	 is	 pressed:
private	void	snowPanelKeyPressed(KeyEvent	e)

{

}

In	the	above	method,	The	KeyEvent	argument	e	tells	us	which	key	was	pressed
by	providing	what	is	called	a	key	code.	There	is	a	key	code	value	for	each	key
on	the	keyboard.	By	evaluating	the	e.getKeyCode()	argument,	we	can	determine
which	key	was	pressed.	In	the	snowball	toss	game,	we	choose	the	following	keys
to	control	player	motion	and	tossing	of	snowballs	(selected	based	on	location	on
the	keyboard):

Player	1 A	–	Move	Up,	Z	–	Move	Down,	S	–	Toss
Player	2 K	–	Move	Up,	M	–	Move	Down,	J	–	Toss

You	can	change	these	if	you’d	like.	Key	codes	for	these	keys	are:

e.getKeyCode() Description
e.VK_A The	letter	A.
e.VK_Z The	letter	Z.
e.VK_S The	letter	S.
e.VK_K The	letter	K.
e.VK_M The	letter	M.
e.VK_J The	letter	J.

Each	 time	 a	 movement	 key	 is	 pressed,	 we	 will	 move	 (using	 the	 Sprite	 class
move	method)	the	player	an	amount	playerIncrement	(a	value	you	can	adjust	if
needed)	 if	 going	 down	 and	 an	 amount	 –playerIncrement	 if	 going	 up.	 Add	 a
class	level	constant	declaration	for	this	value:	final	int	playerIncrement	=	5;

You	might	wonder	how	I	came	up	with	this	value.	I	tried	several	values	finding
one	that	resulted	in	smooth	motion	that	wasn’t	too	small	or	too	large.	Any	time
you	program	a	game,	you	will	have	several	adjustable	parameters.	There	 is	no
real	science	to	setting	values	–	just	some	guessing,	trying	and	refining.	Feel	free
to	change	any	of	the	“built-in”	values	in	the	snowball	toss	game.

The	 code	 to	move	 the	 tossers	 (we’ll	 add	 throwing	 logic	 later)	 is	 placed	 in	 the
snowPanelKeyPressed	 method.	 That	 code	 is:	 private	 void
snowPanelKeyPressed(KeyEvent	e)

{

if	(gameButton.getText().equals("New	Game"))
return;

//	get	current	location	for	possible	update
double	newY1	=	player1.rectangle.getY(),	newY2	=

player2.rectangle.getY();	if	(e.getKeyCode()	==	e.VK_A)

{

newY1	-=	playerIncrement;
if	(newY1	<	0)

newY1	=	0;

}

else	if	(e.getKeyCode()	==	e.VK_Z)

{

newY1	+=	playerIncrement;
if	(newY1	>	snowPanel.getHeight()	-	player1.rectangle.getHeight())

newY1	=	snowPanel.getHeight()	-	player1.rectangle.getHeight();	}
else	if	(e.getKeyCode()	==	e.VK_K)

{

newY2	-=	playerIncrement;
if	(newY2	<	0)

newY2	=	0;

}

else	if	(e.getKeyCode()	==	e.VK_M)

{

newY2	+=	playerIncrement;
if	(newY2	>	snowPanel.getHeight()	-	player2.rectangle.getHeight())

newY2	=	snowPanel.getHeight()	-	player2.rectangle.getHeight();	}
player1.rectangle	=	new

Rectangle2D.Double(player1.rectangle.getX(),	newY1,
player1.rectangle.getWidth(),	player1.rectangle.getHeight());
player2.rectangle	=	new	Rectangle2D.Double(player2.rectangle.getX(),
newY2,	player2.rectangle.getWidth(),	player2.rectangle.getHeight());
snowPanel.repaint();

}

Notice	we	don’t	allow	any	key	down	events	if	we	haven’t	started	a	game	(that	is,
if	 gameButton	 is	 displaying	 New	Game).	 Also	 notice	 that	 most	 of	 code	 is

involved	with	insuring	a	player	never	leaves	the	playing	field.	Add	this	method
to	your	project.

We	 want	 to	 make	 sure	 the	 snow	 panel	 always	 has	 focus	 to	 intercept	 the
movement	keystrokes.	To	insure	this,	add	this	line:	snowPanel.requestFocus();

at	the	end	of	the	gameButtonActionPerformed	method	code	used	to	start	a	new
game.

Save	and	run	the	project.	Select	the	Two	Players	option	so	you	can	see	if	both
players	can	move.	Click	New	Game.	Press	the	A	and	Z	keys	to	move	Player	1
(the	guy	on	the	left)	and	press	the	K	and	M	keys	to	move	Player	2	(the	guy	on
the	right).	Make	sure	they	can’t	move	off	the	top	or	bottom	of	the	panel	control.
Here	 I’ve	 moved	 one	 to	 the	 top	 and	 one	 to	 the	 bottom	 of	 the	 panel:	

Now,	let’s	start	throwing	some	snowballs.

Code	Design	–	MovingSprite	Class
We	want	to	give	our	player’s	the	capability	of	throwing	a	snowball	at	each	other.
The	 snowballs	will	 be	 represented	by	 Image	 objects	 similar	 to	our	players,	 so
you	might	be	thinking	they	fit	within	the	Sprite	class	we’ve	already	developed.
The	one	difference	here	is	that	once	a	snowball	is	thrown,	it	moves	without	user
interaction	at	 some	predetermined	 speed,	 its	position	being	updated	by	a	 timer
object.	 And,	 we	 need	 to	 constantly	 check	 if	 a	 snowball	 collides	 with	 another
object.	Our	Sprite	class	has	no	property	for	speed,	nor	any	method	for	collision
checking.	Hence,	we	need	a	new	class	to	define	our	snowballs.

We	will	describe	our	snowballs	using	a	MovingSprite	class.	This	class	will	have
all	 the	 properties	 and	methods	 of	 the	 Sprite	 class	 (to	 allow	movement),	 plus
additional	 speed	properties	 and	a	method	 to	check	 for	 collisions.	To	build	 this
class,	we	could	start	from	scratch	–	with	all	new	properties	and	all	new	methods.
Or,	 we	 could	 take	 advantage	 of	 a	 very	 powerful	 concept	 in	 object-oriented
programming,	inheritance.	Inheritance	is	the	idea	that	you	can	base	one	class	on
an	existing	class,	adding	properties	and/or	methods	as	needed.	This	saves	lots	of
work.

Let’s	 see	 how	 inheritance	 works	 with	 our	 snowballs,	 considering	 the	 speed
properties	for	now.	We’ll	add	the	collision	checking	method	later.	Add	another
class	 file	 to	 the	 project,	 naming	 it	MovingSprite.	Use	 this	 code	 for	 the	 class:
package	snowballtoss;
public	class	MovingSprite	extends	Sprite

{

public	int	xSpeed;
public	int	ySpeed;

}

The	key	line	here	is:

public	class	MovingSprite	extends	Sprite	The	shaded	addition	makes	all	the

properties	and	methods	of	the	Sprite	class	available	to	our	new	class
(MovingSprite).	The	remaining	lines	add	the	speed	properties	(sSpeed,	speed
in	horizontal	direction;	ySpeed,	speed	in	vertical	direction).	These	speeds
represent	how	much	the	MovingSprite	will	move	in	the	corresponding
direction	with	each	update	of	position.

Code	Design	–	Throwing	Snowballs
We	can	use	the	MovingSprite	class	to	add	the	capability	of	throwing	snowballs
to	our	project.	We	include	two	icon	files	to	represent	the	snowballs	(included	in
the	 \HomeJava\HomeJava	 Projects\SnowballToss\folder)	 named
player1ball.ico	and	player2ball.ico.	Move	these	files	 to	your	project	folder.	If
you	 open	 player1ball.ico	 in	 the	 IconEdit	 program,	 you	 can	 see	 the	 detail:	

Snowballs	 are	 represented	 by	 two	MovingSprite	 objects	 (snowball1	 is	 player
1’s	snowball,	while	snowball2	 is	player	2’s	snowball).	The	horizontal	speed	is
set	by	the	constant	snowballSpeed.	The	vertical	speed	is	zero.	Add	these	class
level	 declarations	 to	 your	 project	 (SnowballToss.java):	 static	 MovingSprite
snowball1,	snowball2;
final	int	snowballSpeed	=	20;

Again,	 the	sprites	are	declared	as	static	 to	allow	use	 in	 the	graphics	code.	The
speed	 is	 another	 parameter	 set	 by	 playing	 around	 with	 the	 program	 (again,	 a
value	you	might	like	to	change).

Snowballs	 are	 constructed	 in	 the	 frame	 constructor	 code.	Add	 the	 shaded	 four
lines	to	the	code	already	there	that	establishes	the	player	Sprite	objects:	//	create
sprites	player1	=	new	Sprite();
player2	=	new	Sprite();
snowball1	=	new	MovingSprite();
snowball2	=	new	MovingSprite();
//	read	in	icon	files	and	sounds
try

{

player1.image	=	new
ICOFile("player1.ico").getDescriptor(0).getImageRGB();	player2.image
=	new	ICOFile("player2.ico").getDescriptor(0).getImageRGB();

snowball1.image	=	new
ICOFile("player1ball.ico").getDescriptor(0).getImageRGB();
snowball2.image	=	new
ICOFile("player2ball.ico").getDescriptor(0).getImageRGB();

}

catch	(Exception	ex)

{

//	can	print	error	message	if	desired

}

Player	1	throws	a	snowball	by	pressing	the	S	key.	Player	2	throws	a	snowball	by
pressing	the	J	key.	We	establish	a	couple	of	rules	for	throwing	a	snowball.	First,
we	will	only	allow	one	snowball	from	each	player	to	be	on	the	screen	at	any	one
time	(no	multiple	firings!).	Second,	the	player	can’t	throw	a	snowball	if	he	is	out
of	 snowballs	 (obviously).	 Assuming	 these	 conditions	 are	 met,	 when	 a	 player
makes	a	throw,	the	following	steps	occur:

➢	Decrement	the	number	of	snowballs	left.
➢	Update	display	of	snowballs	left.

➢	Position	snowball	next	to	throwing	player	(just	to	right	of	Player	1,	just	to
left	of	Player	2).

➢	Set	snowball	isVisible	property	to	true.

This	‘throwing’	code	goes	in	the	existing	form	snowPanelKeyPressed	method.
The	 modified	 code	 is	 (changes	 are	 shaded):	 private	 void
snowPanelKeyPressed(KeyEvent	e)

{

if	(gameButton.getText().equals("New	Game"))
return;

//	get	current	location	for	possible	update
double	newY1	=	player1.rectangle.getY(),	newY2	=

player2.rectangle.getY();	if	(e.getKeyCode()	==	e.VK_A)

{

newY1	-=	playerIncrement;
if	(newY1	<	0)

newY1	=	0;

}

else	if	(e.getKeyCode()	==	e.VK_Z)

{

newY1	+=	playerIncrement;
if	(newY1	>	snowPanel.getHeight()	-	player1.rectangle.getHeight())

newY1	=	snowPanel.getHeight()	-	player1.rectangle.getHeight();	}
else	if	(e.getKeyCode()	==	e.VK_S)

{

if	(!snowball1.isVisible	&&	player1Left	>	0)	{
player1Left--;

player1LeftTextField.setText(String.valueOf(player1Left));
snowball1.rectangle	=	new	Rectangle2D.Double(player1.rectangle.getX()
+	player1.rectangle.getWidth(),	player1.rectangle.getY(),
snowball1.image.getWidth(null),	snowball1.image.getHeight(null));
snowball1.isVisible	=	true;

}

}

else	if	(e.getKeyCode()	==	e.VK_K)

{

newY2	-=	playerIncrement;
if	(newY2	<	0)

newY2	=	0;

}

else	if	(e.getKeyCode()	==	e.VK_M)

{

newY2	+=	playerIncrement;
if	(newY2	>	snowPanel.getHeight()	-	player2.rectangle.getHeight())

newY2	=	snowPanel.getHeight()	-	player2.rectangle.getHeight();	}
else	if	(e.getKeyCode()	==	e.VK_J)

{

if	(!snowball2.isVisible	&&	player2Left	>	0)	{
player2Left--;

player2LeftTextField.setText(String.valueOf(player2Left));
snowball2.rectangle	=	new	Rectangle2D.Double(player2.rectangle.getX()
-	snowball2.image.getWidth(null),	player2.rectangle.getY(),
snowball2.image.getWidth(null),	snowball2.image.getHeight(null));

snowball2.isVisible	=	true;

}

}

player1.rectangle	=	new
Rectangle2D.Double(player1.rectangle.getX(),	newY1,
player1.rectangle.getWidth(),	player1.rectangle.getHeight());
player2.rectangle	=	new	Rectangle2D.Double(player2.rectangle.getX(),
newY2,	player2.rectangle.getWidth(),	player2.rectangle.getHeight());
snowPanel.repaint();

}

Make	the	noted	changes.

Make	 the	 shaded	change	 to	 the	SnowPanel	paintComponent	method	 to	draw
the	snowballs	(if	visible):	class	SnowPanel	extends	JPanel

{

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);

if	(SnowballToss.gameButton.getText().equals("Stop	Game"))	{
SnowballToss.player1.draw(g2D);
SnowballToss.player2.draw(g2D);
if	(SnowballToss.snowball1.isVisible)

SnowballToss.snowball1.draw(g2D);
if	(SnowballToss.snowball2.isVisible)

SnowballToss.snowball2.draw(g2D);

}

else

{

if	(SnowballToss.gameButton.isEnabled())

{

g2D.setFont(new	Font("Arial",	Font.BOLD,	36));
g2D.setPaint(Color.YELLOW);
g2D.drawString("Game	Over",	180,	180);

}

else

{

SnowballToss.optionsPanel.repaint();

}

}

g2D.dispose();

}

}

Save,	 run.	Click	New	Game.	 Press	 the	S	 key,	 then	 the	J	 key.	Two	 snowballs
should	 appear:	

This	 code	 gets	 a	 snowball	 started.	 Let’s	 look	 at	 the	 code	 to	 get	 a	 snowball
moving.

Once	 thrown,	 motion	 of	 the	 snowball(s)	 is	 updated	 by	 a	 timer	 object
(gameTimer)	with	 a	delay	 property	 of	 50	milliseconds	 (again,	 determined	 by
playing	around	with	the	game).	Declare	the	timer	using:	Timer	gameTimer;

Add	this	code	to	the	frame	constructor:

gameTimer	=	new	Timer(50,	new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

{

gameTimerActionPerformed(e);

}

});

And,	 add	 this	 empty	 ActionPerformed	 method:	 private	 void
gameTimerActionPerformed(ActionEvent	e)	{

}

We	need	code	 in	 the	gameButtonActionPerformed	method	 to	start	 that	 timer
(when	New	Game	is	clicked)	and	to	stop	the	timer	(when	Stop	Game	is	clicked.
We	 also	 remove	 the	 snowballs	 when	 Stop	 Game	 is	 clicked.	 The	 modified
gameButtonActionPerformed	 method	 (changes	 are	 shaded,	 most	 unmodified
code	 is	 not	 shown)	 is:	 private	 void
gameButtonActionPerformed(ActionEvent	e)	{

if	(gameButton.getText().equals("New	Game"))

{

.

.
gameTimer.start();
snowPanel.requestFocus();

}

else

{

gameTimer.stop();
player1.isVisible	=	false;
player2.isVisible	=	false;
snowball1.isVisible	=	false;

snowball2.isVisible	=	false;
.
.

}

}

Add	the	new	lines.

In	the	gameTimerActionPerformed	method,	we	update	the	position	of	thrown
snowballs	using	the	horizontal	speed	value	and	the	move	method.	We	also	check
to	see	if	a	snowball	goes	off	the	edge	of	the	panel	control.	If	it	does,	we	remove
it	from	the	panel	to	allow	another	throw.	We	also	check	for	the	end	of	the	game
(both	players	are	out	of	snowballs	and	none	are	visible).	If	the	game	has	ended,
we	 ‘click’	 gameButton.	 The	 code	 that	 does	 all	 this	 is:	 private	 void
gameTimerActionPerformed(ActionEvent	e)	{

//	status	of	player	1	snowball
if	(snowball1.isVisible)

{

snowball1.move(snowballSpeed,	0);
if	(snowball1.rectangle.getX()	>	snowPanel.getWidth())
snowball1.isVisible	=	false;	//	off	screen

}

//	status	of	player	2	snowball
if	(snowball2.isVisible)

{

snowball2.move(-snowballSpeed,	0);
if	(snowball2.rectangle.getX()	<	0)

snowball2.isVisible	=	false;	//	off	screen

}

snowPanel.repaint();
//	check	status	of	game
if	(!snowball1.isVisible	&&	player1Left	==	0	&&	!snowball2.isVisible

&&	player2Left	==	0)	gameButton.doClick();

}

Add	this	method	to	your	project.

Save	 and	 run	 the	project.	Make	 sure	you	are	 still	 using	 the	 two	player	option.
Click	New	Game.	Click	S	and	J	to	throw	snowballs.	Make	sure	the	labels	reflect
the	proper	number	of	remaining	snowballs.	Here	is	a	run	I	made	with	a	couple	of
snowballs	 flying:	

Stop	 the	game	when	you	want	or	 throw	snowballs	until	neither	player	has	any
remaining.	Notice	we	don’t	have	any	scoring	(counting	hits).	To	do	this,	we	need

collision	logic,	which	is	discussed	next.

Code	Design	-	Collision	Detection
If	a	thrown	snowball	hits	a	player,	the	other	player	gets	a	point	(a	Hit).	We	need
some	way	to	check	for	such	a	‘collision.’	Since	rectangular	regions	describe	the
moving	objects	here,	we	want	 to	know	if	 two	rectangles	 intersect.	 In	Java,	 this
test	 can	 be	 accomplished	 using	 the	 createIntersection	 method	 of	 the
Rectangle2D	shape.

To	use	the	createIntersection	method,	we	need	three	Rectangle2D	shapes.	The
first	 two	 (call	 them	 rectangle1	 and	 rectangle2)	 describe	 the	 rectangles	 being
checked	for	 intersection.	The	rectangle	describing	 the	 intersection	of	 these	 two
rectangles	 (collided)	 is	 then	 defined	 by:	 collided	 =
rectangle1.createIntersection(rectangle2);	Once	the	 intersection	(or	collision)
rectangle	 is	 created	 using	 createIntersection,	 we	 check	 the	 intersection	 by
examining	the	isEmpty	Boolean	property:	collided.isEmpty()

If	this	property	is	true,	there	is	no	intersection	or	collision.	If	isEmpty	is	false,
there	is	intersection	and	properties	(x,	y,	width,	height)	of	the	collided	rectangle
define	that	intersection	region.

To	use	this	in	our	project,	we	will	add	a	collided	method	to	our	MovingSprite
class.	Open	the	MovingSprite.java	file	and	make	the	shaded	changes:	package
snowballtoss;
import	java.awt.geom.*;

public	class	MovingSprite	extends	Sprite

{

public	int	xSpeed;
public	int	ySpeed;

public	boolean	collided(Rectangle2D.Double	r)

{

return
(!this.rectangle.createIntersection(r).isEmpty());

}

}

The	 method	 is	 passed	 the	 rectangle	 shape	 (r)	 to	 check	 for	 collision	 with	 the
MovingSprite	 object.	 The	 import	 statement	 is	 needed	 because	 we	 use	 the
Rectangle2D	shape.

As	an	example	of	using	this	new	method,	say	we	want	to	check	if	snowball1	has
hit	player2.	The	boolean	value:	snowball1.collided(player2.rectangle)

will	 be	 true	 if	 a	 collision	 has	 occurred.	 If	 a	 collision	 occurs,	 we	 remove	 the
snowball	and	update	the	successful	tosser’s	score.

We	 check	 for	 collisions	 between	 snowballs	 and	 players	 in	 the
gameTimerActionPerformed	method.	The	modified	code	 (shaded)	checks	 for
collisions	 and	 updates	 the	 score	 accordingly:	 private	 void
gameTimerActionPerformed(ActionEvent	e)	{

//	status	of	player	1	snowball
if	(snowball1.isVisible)

{

snowball1.move(snowballSpeed,	0);
if	(snowball1.rectangle.getX()	>	snowPanel.getWidth())
snowball1.isVisible	=	false;	//	off	screen
else	if	(snowball1.collided(player2.rectangle))

{

player1Hits++;

player1HitsTextField.setText(String.valueOf(player1Hits));
snowball1.isVisible	=	false;

}

}

//	status	of	player	2	snowball
if	(snowball2.isVisible)

{

snowball2.move(-snowballSpeed,	0);
if	(snowball2.rectangle.getX()	<	0)

snowball2.isVisible	=	false;	//	off	screen
else	if	(snowball2.collided(player1.rectangle))

{

player2Hits++;

player2HitsTextField.setText(String.valueOf(player2Hits));
snowball2.isVisible	=	false;

}

}

snowPanel.repaint();
//	check	status	of	game
if	(!snowball1.isVisible	&&	player1Left	==	0	&&	!snowball2.isVisible

&&	player2Left	==	0)	gameButton.doClick();

}

Make	the	noted	modifications.

Save	and	run	the	project.	Now	if	you	throw	a	snowball	and	hit	the	other	player,
the	 snowball	 should	 disappear,	 but	 not	 the	 player.	 Give	 it	 a	 try.	 Here’s	 the

middle	 of	 a	 game	 I	 played:	

Make	sure	the	score	updates	properly	after	each	successful	toss.

Code	Design	–	Zombie	Snowmen
As	designed,	 the	players	have	no	protection	 from	 thrown	snowballs	other	 than
their	ability	to	move	up	and	down.	We’ll	change	that	now.	We’ll	invent	a	tribe
of	“zombie”	snowmen	that	roam	up	and	down	in	the	middle	of	the	playing	field.
These	snowmen	will	deflect	(stop)	any	snowball	that	has	been	thrown.

The	 icon	 file	 snowman.ico	 (included	 in	 the	 \HomeJava\HomeJava
Projects\SnowballToss\folder)	 depicts	 a	 snowman.	 Move	 this	 file	 to	 your
project	folder.	If	you	open	snowman.ico	in	the	IconEdit	program,	you	can	see

the	detail:	

I	know	–	he	looks	pretty	happy	for	a	zombie!

We	will	have	two	snowmen	(you	can	choose	more	if	you	want).	Snowmen	are
represented	 by	 MovingSprite	 objects	 (snowman1	 and	 snowman2).	 Their
motion	will	be	random,	with	some	restrictions.	Add	these	class	level	declarations
to	your	project	to	declare	the	snowman	objects	(again	use	static	preface)	and	the
random	number	object.

static	MovingSprite	snowman1,	snowman2;
Random	myRandom	=	new	Random();

You	 will	 need	 this	 import	 statement	 for	 the	 Random	 object:	 import
java.util.Random;

Our	 snowmen	 will	 move	 according	 to	 some	 predetermined	 rules.	 snowman1
will	 move	 vertically	 just	 to	 the	 left	 of	 the	 center	 of	 playing	 field,	 while
snowman2	will	move	vertically	just	to	the	right	of	center.	The	horizontal	speed
for	both	will	be	zero.	The	vertical	speed	will	be	a	random	value	between	1	and	4
(a	value	you	might	want	to	change).	The	snowmen	can	move	either	up	or	down.
If	moving	up,	they	start	at	the	bottom	of	the	field.	If	moving	down,	they	start	at
the	top.	How	did	I	come	up	with	all	these	rules	for	my	zombies?	I	made	them	up.
That’s	 the	 nice	 thing	 about	 being	 a	 game	 programmer.	 You	 can	 make	 your
characters	do	whatever	you	want	them	to.	Come	up	with	rules	for	your	own	set
of	zombie	snowmen	if	you	want.

Like	 the	 other	 sprites,	 the	 snowmen	 are	 constructed	 in	 the	 frame	 constructor
method.	Add	these	shaded	lines	to	that	section	of	code:	//	create	sprites
player1	=	new	Sprite();
player2	=	new	Sprite();
snowball1	=	new	MovingSprite();
snowball2	=	new	MovingSprite();
snowman1	=	new	MovingSprite();
snowman2	=	new	MovingSprite();
//	read	in	icon	files	and	sounds
try

{

player1.image	=	new
ICOFile("player1.ico").getDescriptor(0).getImageRGB();	player2.image
=	new	ICOFile("player2.ico").getDescriptor(0).getImageRGB();
snowball1.image	=	new
ICOFile("player1ball.ico").getDescriptor(0).getImageRGB();
snowball2.image	=	new
ICOFile("player2ball.ico").getDescriptor(0).getImageRGB();

snowman1.image	=	new
ICOFile("snowman.ico").getDescriptor(0).getImageRGB();
snowman2.image	=	new
ICOFile("snowman.ico").getDescriptor(0).getImageRGB();

}

catch	(Exception	ex)

{

//	can	print	error	message	if	desired

}

The	snowmen	are	initially	placed	in	the	field	when	New	Game	is	clicked.	When
this	 occurs,	 they	 are	 randomly	 placed	 within	 the	 vertical	 constraints	 of	 the
graphics	 object.	 And,	 they	 are	 assigned	 a	 random	 speed.	 The	 snowmen	 are
removed	 when	 Stop	 Game	 is	 clicked.	 The	 modified
gameButtonActionPerformed	method	 that	 accomplishes	 these	 tasks	 (changes
are	 shaded,	 with	 much	 unmodified	 code	 not	 shown)	 is:	 private	 void
gameButtonActionPerformed(ActionEvent	e)	{

if	(gameButton.getText().equals("New	Game"))

{

.

.
snowman1.rectangle	=	new	Rectangle2D.Double(0.5	*

snowPanel.getWidth()	-	snowman1.image.getWidth(null),
myRandom.nextInt(snowPanel.getHeight()),
snowman1.image.getWidth(null),	snowman1.image.getHeight(null));
snowman2.rectangle	=	new	Rectangle2D.Double(0.5	*
snowPanel.getWidth(),	myRandom.nextInt(snowPanel.getHeight()),
snowman2.image.getWidth(null),	snowman2.image.getHeight(null));
snowman1.ySpeed	=	snowmanSpeed();

snowman2.ySpeed	=	snowmanSpeed();
snowman1.isVisible	=	true;

snowman2.isVisible	=	true;
snowPanel.repaint();
gameTimer.start();
snowPanel.requestFocus();

}

else

{

gameTimer.stop();
player1.isVisible	=	false;
player2.isVisible	=	false;
snowball1.isVisible	=	false;
snowball2.isVisible	=	false;
snowman1.isVisible	=	false;
snowman2.isVisible	=	false;
.
.

}

}

snowman1	is	just	to	the	left	of	the	middle	of	the	panel	control,	while	snowman2
is	just	to	the	right.	Notice	how	the	snowmen	are	randomly	positioned	vertically.

The	 snowman	 speed	 is	 assigned	 using	 a	 general	 method	 snowmanSpeed.	 As
mentioned,	we	choose	this	value	to	be	random,	between	1	and	4.	The	speed	can
be	positive	(for	downward	motion)	or	negative	(for	upward	motion).	This	choice
of	 sign	 is	 also	 random.	 The	 code	 that	 incorporates	 this	 speed	 assignment	 is:
private	int	snowmanSpeed()

{

final	int	speedMin	=	1;

final	int	speedMax	=	4;
int	speed;
speed	=	myRandom.nextInt(speedMax	-	speedMin	+	1)	+	speedMin;	if

(myRandom.nextInt(2)	==	0)
speed	=	-speed;

return(speed);

}

Computing	 the	 speed	 value	 is	 straightforward.	 To	 choose	 the	 sign,	 we	 do	 a
computerized	 “coin	 flip”.	 This	 flip	 is	 done	 by	 looking	 at	 the	 value	 of:
myRandom.nextInt(2)

This	can	return	one	of	two	values,	0	(“heads”)	or	1	(“tails”).

Snowman	motion	 is	 updated	 in	 the	 gameTimerActionPerformed	method.	At
each	update,	for	each	snowman,	we	need	to	perform	the	following	steps:

➢	Move	the	snowman	using	the	current	ySpeed	property.
➢	Check	to	see	if	the	snowman	has	moved	off	the	playing	field.
➢	If	off	field,	do	this:	o	Compute	a	new	speed.
o	If	speed	is	positive,	position	snowman	off	top	of	playing	field	so	it	can

start	moving	down.
o	If	speed	is	negative,	position	snowman	off	bottom	of	playing	field	so	it

can	start	moving	up.
➢	 After	 moving	 or	 repositioning	 snowman,	 check	 to	 see	 if	 a	 thrown
snowball	has	collided	with	it.	If	there	is	a	collision,	remove	the	snowball
from	the	field.

The	 modified	 gameTimerActionPerformed	 method	 that	 implements	 these
steps	 is	 (changes	 are	 shaded):	 private	 void
gameTimerActionPerformed(ActionEvent	e)	{

//	move	snowmen
snowman1.move(0,	snowman1.ySpeed);
if	(snowman1.rectangle.getY()	<	-snowman1.image.getHeight(null)	||

snowman1.rectangle.getY()	>	snowPanel.getHeight())	{

//	recompute	speed
snowman1.ySpeed	=	snowmanSpeed();
if	(snowman1.ySpeed	>	0)

snowman1.rectangle	=	new
Rectangle2D.Double(snowman1.rectangle.getX(),	-
snowman1.image.getHeight(null),	snowman1.rectangle.getWidth(),
snowman1.rectangle.getHeight());	else

snowman1.rectangle	=	new
Rectangle2D.Double(snowman1.rectangle.getX(),	snowPanel.getHeight(),
snowman1.rectangle.getWidth(),	snowman1.rectangle.getHeight());	}

snowman2.move(0,	snowman2.ySpeed);
if	(snowman2.rectangle.getY()	<	-snowman2.image.getHeight(null)	||

snowman2.rectangle.getY()	>	snowPanel.getHeight())	{
//	recompute	speed
snowman2.ySpeed	=	snowmanSpeed();
if	(snowman2.ySpeed	>	0)

snowman2.rectangle	=	new
Rectangle2D.Double(snowman2.rectangle.getX(),	-
snowman2.image.getHeight(null),	snowman2.rectangle.getWidth(),
snowman2.rectangle.getHeight());	else

snowman2.rectangle	=	new
Rectangle2D.Double(snowman2.rectangle.getX(),	snowPanel.getHeight(),
snowman2.rectangle.getWidth(),	snowman2.rectangle.getHeight());	}

//	status	of	player	1	snowball
if	(snowball1.isVisible)

{

snowball1.move(snowballSpeed,	0);
if	(snowball1.rectangle.getX()	>	snowPanel.getWidth())
snowball1.isVisible	=	false;	//	off	screen
else	if	(snowball1.collided(player2.rectangle))

{

player1Hits++;

player1HitsTextField.setText(String.valueOf(player1Hits));
snowball1.isVisible	=	false;

}

else	if	(snowball1.collided(snowman1.rectangle)	||
snowball1.collided(snowman2.rectangle))	snowball1.isVisible	=	false;

}

//	status	of	player	2	snowball
if	(snowball2.isVisible)

{

snowball2.move(-snowballSpeed,	0);
if	(snowball2.rectangle.getX()	<	0)

snowball2.isVisible	=	false;	//	off	screen
else	if	(snowball2.collided(player1.rectangle))

{

player2Hits++;

player2HitsTextField.setText(String.valueOf(player2Hits));
snowball2.isVisible	=	false;

}

else	if	(snowball2.collided(snowman1.rectangle)	||
snowball2.collided(snowman2.rectangle))	snowball2.isVisible	=	false;

}

snowPanel.repaint();
//	check	status	of	game
if	(!snowball1.isVisible	&&	player1Left	==	0	&&	!snowball2.isVisible

&&	player2Left	==	0)	gameButton.doClick();

}

Make	the	noted	changes.	You	should	understand	how	all	the	zombie	rules	have
been	applied.

Lastly,	make	the	shaded	change	to	the	SnowPanel	paintComponent	method	to
draw	 the	 snowmen	 (always	 visible	 while	 the	 game	 is	 being	 played):	 class
SnowPanel	extends	JPanel

{

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);

if	(SnowballToss.gameButton.getText().equals("Stop	Game"))	{
SnowballToss.player1.draw(g2D);
SnowballToss.player2.draw(g2D);
if	(SnowballToss.snowball1.isVisible)

SnowballToss.snowball1.draw(g2D);
if	(SnowballToss.snowball2.isVisible)

SnowballToss.snowball2.draw(g2D);
SnowballToss.snowman1.draw(g2D);
SnowballToss.snowman2.draw(g2D);

}

else

{

if	(SnowballToss.gameButton.isEnabled())

{

g2D.setFont(new	Font("Arial",	Font.BOLD,	36));
g2D.setPaint(Color.YELLOW);
g2D.drawString("Game	Over",	180,	180);

}

else

{

SnowballToss.optionsPanel.repaint();

}

}

g2D.dispose();

}

}

Save	and	run	the	project.	The	snowmen	should	be	moving	through	the	middle	of
the	field	deflecting	any	snowballs	they	might	block.	They	should	move	both	up
and	 down	 at	 varying	 speeds.	Watch	 them	 for	 a	 while.	 Here’s	 a	 run	 I	 made:	

The	two	player	version	of	the	snowball	toss	game	is	essentially	complete.	All	the
animation	 steps	 are	 implemented	 –	 we	 can	 move	 the	 players,	 we	 can	 throw
snowballs,	 the	zombie	snowmen	can	block	snowballs	and	 the	score	 is	properly
kept.	Next,	we’ll	program	the	one	player	version,	making	the	computer	control
Player	2.

Before	doing	 the	one	player	version,	however,	 let’s	address	one	sorely	 lacking
feature	–	sounds!	Any	good	game	has	sound	and	we	should	have	some	 in	 this
game.	Let’s	add	a	throwing	sound,	a	splat	sound	when	a	snowman	is	hit	and	an
“Ouch”	sound	when	a	player	is	hit.	And,	let’s	add	a	little	tune	when	the	game	is
over.

Code	Design	–	Playing	Sounds
Most	games	feature	sounds	that	take	advantage	of	stereo	sound	cards.	By	using
the	Java	Applet	class,	we	can	add	such	sounds	to	our	snowball	toss	game.	This
class	requires	these	import	statements:	import	java.net.URL;
import	java.applet.*;

We	will	play	one	particular	type	of	sound,	those	represented	by	wav	files	(files
with	wav	extensions).	Most	sounds	you	hear	played	in	Windows	applications	are
saved	as	wav	files.	These	are	the	files	formed	when	you	record	using	one	of	the
many	 sound	 recorder	 programs	 available.	 In	 the	 \HomeJava\HomeJava
Projects\SnowballToss\folder	are	four	wav	files	for	use	in	this	program:

throw.wav sound	to	play	when	a	snowball	is	thrown
splat.wav sound	to	play	when	a	snowball	hits	a	snowman
ouch.wav sound	to	play	when	a	snowball	hits	a	player
gameover.wav sound	to	play	when	game	is	over	(both	players	are

out	of	snowballs)

You	can	play	each	of	these	sounds	in	your	computer’s	media	player	if	you	want.

A	sound	file	is	loaded	using	the	newAudioClip	method.	If	we	name	the	sound
mySound,	 the	 sound	 is	 loaded	 using:	 mySound	 =
Applet.newAudioClip(mySoundURL);

where	mySoundURL	is	the	“address”	of	the	sound	file.	You	may	note	that	URL
is	 an	 Internet	 address	 (universal	 resource	 locator)	 –	 this	 is	 because	 the	 sound
utilities	are	part	of	the	applet	package.	Does	this	mean	our	sounds	must	be	stored
on	the	Internet	somewhere?	No.	By	forming	a	special	URL	as	the	argument,	we
can	 load	sound	files	 from	our	project	 folder,	 just	 like	we	have	 loaded	graphics
files.

A	URL	 for	 use	 in	 the	newAudioClip	 method	 is	 formed	 using	 the	 Java	URL
method.	 If	 the	 sound	 file	 is	mySoundFile	 (String	 type),	 the	 URL	 is	 formed
with:	mySoundURL	=	new	URL("file:	"	+	mySoundFile);

The	addition	of	the	“file:”	string	tells	Java	the	sound	is	loaded	from	a	file	rather
than	the	Internet.	This	assumes	the	sound	file	is	located	in	the	project	folder.	If	it
is	 in	 another	 folder,	 you	need	 to	 “prepend”	 the	 file	 name	with	 the	 appropriate
directory	information.

The	 URL	 can	 only	 be	 formed	 within	 a	 try/catch	 loop	 to	 catch	 potential
exceptions.	Hence,	the	complete	code	segment	to	load	a	sound	(mySound)	from
a	file	(mySoundFile)	is:	try

{

mySound	=	Applet.newAudioClip(new	URL("file:	"	+	mySoundFile));
}
catch	(Exception	ex)

{

[Error	message]

}

Such	code	to	create	sounds	is	usually	placed	in	at	the	end	of	your	application’s
constructor	with	all	sounds	declared	as	class	level	variables.

Once	we	have	created	a	sound	clip,	there	are	three	methods	used	to	play	or	stop
the	 corresponding	 sound.	 To	 play	mySound	 one	 time,	 use	 the	 play	 method:
mySound.play();

To	play	the	sound	in	a	continuous	loop,	use	the	loop	method:	mySound.loop();

To	stop	the	sound	from	playing,	use	the	stop	method:	mySound.stop();

It’s	that	easy.

It	is	normal	practice	to	include	any	sound	files	an	application	uses	in	the	project
folder.	 This	 makes	 them	 easily	 accessible.	 As	 such,	 when	 distributing	 your
application	to	other	users,	you	must	remember	to	include	the	sound	files	in	the
package.	Copy	the	four	included	sound	files	into	your	project’s	folder.

Let’s	 modify	 the	 snowball	 toss	 game	 code	 to	 include	 the	 sounds.	 Add	 these
import	statements:	import	java.net.URL;
import	java.applet.*;

Add	 class	 level	 declarations	 for	 the	 variables	 used	 to	 represent	 the	 sounds:
AudioClip	throwSound;
AudioClip	splatSound;
AudioClip	ouchSound;
AudioClip	gameOverSound;

The	code	 to	 construct	 the	AudioClip	 objects	 (using	 the	wav	 files)	goes	 in	 the
frame	 constructor	 method.	 Place	 the	 shaded	 lines	 in	 the	 same	 try/catch	 loop
used	to	load	the	sprite	image	files:	//	read	in	icon	files	and	sounds
try

{

player1.image	=	new
ICOFile("player1.ico").getDescriptor(0).getImageRGB();	player2.image
=	new	ICOFile("player2.ico").getDescriptor(0).getImageRGB();
snowball1.image	=	new
ICOFile("player1ball.ico").getDescriptor(0).getImageRGB();
snowball2.image	=	new
ICOFile("player2ball.ico").getDescriptor(0).getImageRGB();
snowman1.image	=	new
ICOFile("snowman.ico").getDescriptor(0).getImageRGB();
snowman2.image	=	new
ICOFile("snowman.ico").getDescriptor(0).getImageRGB();

throwSound	=	Applet.newAudioClip(new	URL("file:"	+
"throw.wav"));	splatSound	=	Applet.newAudioClip(new	URL("file:"	+
"splat.wav"));	ouchSound	=	Applet.newAudioClip(new	URL("file:"	+
"ouch.wav"));	gameOverSound	=	Applet.newAudioClip(new	URL("file:"
+	"gameover.wav"));

}

catch	(Exception	ex)

{

{

//	can	print	error	message	if	desired

}

throwSound	 will	 play	 when	 a	 snowball	 is	 thrown.	 This	 action	 occurs	 in	 the
snowPanelKeyPressed	method.	The	modified	code	 (changes	are	 shaded,	most
unmodified	 code	 is	 not	 shown)	 is:	 private	 void
snowPanelKeyPressed(KeyEvent	e)

{

if	(gameButton.getText().equals("New	Game"))
return;

//	get	current	location	for	possible	update
double	newY1	=	player1.rectangle.getY(),	newY2	=

player2.rectangle.getY();	if	(e.getKeyCode()	==	e.VK_A)

{

.

.
else	if	(e.getKeyCode()	==	e.VK_S)

{

if	(!snowball1.isVisible	&&	player1Left	>	0)	{
throwSound.play();
player1Left--;

player1LeftTextField.setText(String.valueOf(player1Left));
snowball1.rectangle	=	new	Rectangle2D.Double(player1.rectangle.getX()
+	player1.rectangle.getWidth(),	player1.rectangle.getY(),
snowball1.image.getWidth(null),	snowball1.image.getHeight(null));
snowball1.isVisible	=	true;

}

.

.
else	if	(e.getKeyCode()	==	e.VK_J)

{

if	(!snowball2.isVisible	&&	player2Left	>	0)	{
throwSound.play();
player2Left--;

player2LeftTextField.setText(String.valueOf(player2Left));
snowball2.rectangle	 =	 new	 Rectangle2D.Double(player2.rectangle.getX()	 -
snowball2.image.getWidth(null),	 player2.rectangle.getY(),
snowball2.image.getWidth(null),	 snowball2.image.getHeight(null));
snowball2.isVisible	=	true;

}

.

.

}

player1.rectangle	=	new
Rectangle2D.Double(player1.rectangle.getX(),	newY1,
player1.rectangle.getWidth(),	player1.rectangle.getHeight());
player2.rectangle	=	new	Rectangle2D.Double(player2.rectangle.getX(),
newY2,	player2.rectangle.getWidth(),	player2.rectangle.getHeight());
snowPanel.repaint();

}

Make	the	two	changes.

splatSound	will	 play	when	 a	 snowman	 is	 hit	 by	 a	 snowball,	ouchSound	will
play	when	a	player	is	hit	by	a	snowball	and	gameOverSound	will	play	when	the
players	 run	 out	 of	 snowballs.	 All	 of	 these	 actions	 occur	 in	 the
gameTimerActionPerformed	method.	The	modified	code	(changes	are	shaded)

is:	private	void	gameTimerActionPerformed(ActionEvent	e)	{
//	move	snowmen
snowman1.move(0,	snowman1.ySpeed);
if	(snowman1.rectangle.getY()	<	-snowman1.image.getHeight(null)	||

snowman1.rectangle.getY()	>	snowPanel.getHeight())	{
//	recompute	speed
snowman1.ySpeed	=	snowmanSpeed();
if	(snowman1.ySpeed	>	0)

snowman1.rectangle	=	new
Rectangle2D.Double(snowman1.rectangle.getX(),	-
snowman1.image.getHeight(null),	snowman1.rectangle.getWidth(),
snowman1.rectangle.getHeight());	else

snowman1.rectangle	=	new
Rectangle2D.Double(snowman1.rectangle.getX(),	snowPanel.getHeight(),
snowman1.rectangle.getWidth(),	snowman1.rectangle.getHeight());	}

snowman2.move(0,	snowman2.ySpeed);
if	(snowman2.rectangle.getY()	<	-snowman2.image.getHeight(null)	||

snowman2.rectangle.getY()	>	snowPanel.getHeight())	{
//	recompute	speed
snowman2.ySpeed	=	snowmanSpeed();
if	(snowman2.ySpeed	>	0)

snowman2.rectangle	=	new
Rectangle2D.Double(snowman2.rectangle.getX(),	-
snowman2.image.getHeight(null),	snowman2.rectangle.getWidth(),
snowman2.rectangle.getHeight());	else

snowman2.rectangle	=	new
Rectangle2D.Double(snowman2.rectangle.getX(),	snowPanel.getHeight(),
snowman2.rectangle.getWidth(),	snowman2.rectangle.getHeight());	}

//	status	of	player	1	snowball
if	(snowball1.isVisible)

{

snowball1.move(snowballSpeed,	0);
if	(snowball1.rectangle.getX()	>	snowPanel.getWidth())

snowball1.isVisible	=	false;	//	off	screen
else	if	(snowball1.collided(player2.rectangle))

{

ouchSound.play();
player1Hits++;

player1HitsTextField.setText(String.valueOf(player1Hits));
snowball1.isVisible	=	false;

}

else	if	(snowball1.collided(snowman1.rectangle)	||
snowball1.collided(snowman2.rectangle))

{

splatSound.play();
snowball1.isVisible	=	false;

}

}

//	status	of	player	2	snowball
if	(snowball2.isVisible)

{

snowball2.move(-snowballSpeed,	0);
if	(snowball2.rectangle.getX()	<	0)

snowball2.isVisible	=	false;	//	off	screen
else	if	(snowball2.collided(player1.rectangle))

{

ouchSound.play();
player2Hits++;

player2HitsTextField.setText(String.valueOf(player2Hits));
snowball2.isVisible	=	false;

}

else	if	(snowball2.collided(snowman1.rectangle)	||
snowball2.collided(snowman2.rectangle))

{

splatSound.play();
snowball2.isVisible	=	false;

}

}

snowPanel.repaint();
//	check	status	of	game
if	(!snowball1.isVisible	&&	player1Left	==	0	&&	!snowball2.isVisible

&&	player2Left	==	0)

{

gameOverSound.play();
gameButton.doClick();

}

}

Make	the	noted	changes.	This	is	the	final	version	of	this	method.

Save	and	run	the	project.	Play	the	two	player	game.	Listen	for	 the	throw,	splat
and	ouch	sounds.	And,	play	until	all	 the	snowballs	are	 thrown	to	hear	 the	cute
little	“game	over”	tune.	Make	these	changes.	I	think	you’ll	agree	that	the	sounds
make	the	game	far	more	fun	to	play.

Code	Design	–	One	Player	Game
You	 can’t	 always	 find	 someone	 to	 play	 a	 game	 with.	 So	 why	 not	 let	 the
computer	be	your	opponent?	In	a	one	player	snowball	toss	game,	we	will	let	the
computer	control	Player	2.

For	such	computer	control,	we	need	to	develop	some	rules	for	 the	computer	 to
use.	In	 the	Blackjack	card	game	built	earlier	 in	 these	notes,	we	played	against
the	computer.	The	rules	used	there	by	the	computer	were	predetermined	by	those
used	 in	most	casinos.	Here,	 in	 the	snowball	 toss	game,	we	have	no	such	rules.
We	need	to	develop	them	ourselves.	This	is	a	fun	part	of	programming	–	giving
the	computer	some	semblance	of	intelligence.	The	logic	presented	here	are	ideas
that	 I	 just	 made	 up	 as	 I	 went	 along.	 They	 seem	 to	 work.	 Feel	 free	 to	 make
changes	you	think	are	needed.

There	 are	 two	 approaches	 we	 could	 take	 in	 writing	 code	 for	 a	 computer
competitor.	We	could	use	very	simple	logic,	making	it	easy	for	a	human	to	win.
Or,	we	could	write	more	detailed	logic,	emulating	steps	you,	as	a	human,	might
take	 in	 playing	 the	 game.	With	more	 detailed	 logic,	 it	 would	 be	 harder	 for	 a
human	 to	win.	 In	 the	 snowball	 toss	 game,	we	 take	 both	 approaches.	We	 first
develop	a	simple,	random	game	playing	logic,	then	a	more	detailed	logic.	Then,
we	use	the	level	of	difficulty	selected	with	the	Options	button	to	determine	how
often	we	use	the	random	logic	versus	how	often	we	use	the	detailed	logic.	The
values	I	chose	to	use	are:

Difficulty	Level Random	Logic	(%) Detailed	Logic	(%)
Easiest 100 0
Easy 75 25
Hard 50 50
Hardest 25 75

So,	when	the	Easiest	 level	is	selected,	we	use	the	random	logic	100	percent	of
the	 time.	 When	 the	 Hardest	 level	 is	 selected,	 we	 use	 the	 random	 logic	 25
percent	 of	 the	 time	 (we	 don’t	 want	 our	 computer	 to	 be	 too	 smart)	 and	 the
detailed	 logic	 75	 percent	 of	 the	 time	 Another	 value	 selected	 by	 the	 level	 of
difficulty	will	be	how	often	the	computer	makes	a	move.	The	computer	moves

will	 be	 controlled	 by	 a	 separate	 timer	 control	 (computerTimer).	 For	 easier
games,	we	want	a	larger	value	for	the	delay	property	for	this	control.	This	slows
down	the	computer’s	thought	process.	The	delay	values	I	chose	are:

Difficulty	Level delay
Easiest 1000
Easy 750
Hard 500
Hardest 250

So	with	 the	Hardest	difficulty,	 the	computer	makes	moves	4	 times	as	often	as
when	the	Easiest	difficulty	is	selected.

Declare	the	timer	using:

Timer	computerTimer;

Add	 this	 code	 to	 the	 frame	 constructor	 (using	 the	 Easiest	 delay	 value):
computerTimer	=	new	Timer(1000,	new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

computerTimerActionPerformed(e);

}

});

And,	 add	 this	 empty	 ActionPerformed	 method:	 private	 void
computerTimerActionPerformed(ActionEvent	e)	{

}

We	will	use	an	int	variable	(computerRandom)	to	represent	the	percentage	of
time	random	logic	is	used	and	an	int	variable	(computerTime)	to	represent	the
timer	 control	delay	 property.	Add	 these	 class	 level	 declarations	 to	 the	project:
int	computerRandom,	computerTime;

Values	for	these	two	new	variables	are	set	in	the
rdoDifficultyActionPerformed	method.	The	modified	method	 is	 (changes	 are
shaded):	private	void
difficultyRadioButtonActionPerformed(ActionEvent	e)	{

String	s	=	e.getActionCommand();
if	(s.equals("Easiest"))

{

difficulty	=	1;
computerRandom	=	100;
computerTime	=	1000;

}

else	if	(s.equals("Easy"))

{

difficulty	=	2;
computerRandom	=	75;
computerTime	=	750;

}

else	if	(s.equals("Hard"))

{

difficulty	=	3;
computerRandom	=	50;
computerTime	=	500;

}

else	if	(s.equals("Hardest"))

{

difficulty	=	4;
computerRandom	=	25;
computerTime	=	250;

}

computerTimer.setDelay(computerTime);

}

Make	the	noted	modifications.

We	need	 to	start	 the	computer’s	 timer	control	 (computerTimer)	when	playing
the	one	player	game.	And,	we	need	to	stop	it	when	done	playing.	This	is	done	in
the	gameButtonActionPerformed	method	(new	lines	are	shaded):	private	void
gameButtonActionPerformed(ActionEvent	e)	{

if	(gameButton.getText().equals("New	Game"))

{

gameButton.setText("Stop	Game");
optionsButton.setEnabled(false);
exitButton.setEnabled(false);
player1Hits	=	0;
player2Hits	=	0;
player1HitsTextField.setText("0");
player2HitsTextField.setText("0");
player1Left	=	maximumBalls;
player2Left	=	maximumBalls;

player1LeftTextField.setText(String.valueOf(player1Left));
player2LeftTextField.setText(String.valueOf(player2Left));
player1.rectangle	=	new	Rectangle2D.Double(5,	0.5	snowPanel.getHeight()
-	0.5	player1.image.getHeight(null),	player1.image.getWidth(null),

player1.image.getHeight(null));	player2.rectangle	=	new
Rectangle2D.Double(snowPanel.getWidth()	-
player2.image.getWidth(null)	-	5,	0.5	snowPanel.getHeight()	-	0.5
player2.image.getHeight(null),	player2.image.getWidth(null),
player2.image.getHeight(null));	player1.isVisible	=	true;

player2.isVisible	=	true;
snowman1.rectangle	=	new	Rectangle2D.Double(0.5	*

snowPanel.getWidth()	-	snowman1.image.getWidth(null),
myRandom.nextInt(snowPanel.getHeight()),
snowman1.image.getWidth(null),	snowman1.image.getHeight(null));
snowman2.rectangle	=	new	Rectangle2D.Double(0.5	*
snowPanel.getWidth(),	myRandom.nextInt(snowPanel.getHeight()),
snowman2.image.getWidth(null),	snowman2.image.getHeight(null));
snowman1.ySpeed	=	snowmanSpeed();

snowman2.ySpeed	=	snowmanSpeed();
snowman1.isVisible	=	true;
snowman2.isVisible	=	true;
snowPanel.repaint();
gameTimer.start();
if	(numberPlayers	==	1)

computerTimer.start();
snowPanel.requestFocus();

}

else

{

gameTimer.stop();
computerTimer.stop();
player1.isVisible	=	false;
player2.isVisible	=	false;
snowball1.isVisible	=	false;
snowball2.isVisible	=	false;

snowman1.isVisible	=	false;
snowman2.isVisible	=	false;
gameButton.setText("New	Game");
optionsButton.setEnabled(true);
exitButton.setEnabled(true);
snowPanel.repaint();

}

}

Add	the	shaded	lines.	We	have	listed	the	entire	gameButtonActionPerformed
method	–	it	is	now	complete.

Now,	let’s	write	the	computer	playing	rules.	We’ll	start	with	the	simple,	random
rules.	In	these	rules,	the	computer	will	just	make	random	moves	up	and	down	the
field,	occasionally	tossing	a	snowball.	The	only	non-random	element	we	add	is
that	we	only	allow	the	computer	 to	 throw	a	snowball	 if	 it	has	at	 least	as	many
snowballs	left	as	the	human	player.	This	prevents	the	computer	from	tossing	all
its	snowballs	and	becoming	an	easy	target	for	the	human.	The	rules	I	use	are:

➢	Generate	a	random	number	from	0	to	4.
➢	If	number	is	0,	toss	snowball	if	computer	has	at	least	as	many	snowballs
as	player.

➢	If	number	is	1	or	2,	move	up.
➢	If	number	is	3	or	4,	move	down.

With	 these	 rules,	 a	 snowball	 is	 thrown	1	out	of	5	 times	 the	computer	makes	a
move,	 the	 computer’s	 player	moves	 up	 2	 of	 5	 times	 and	moves	 down	 2	 of	 5
times.	 There’s	 no	 real	 intelligence	 involved	 –	 just	 random	moves.	 Let’s	write
some	more	intelligent	rules.

In	writing	more	detailed	(smarter)	playing	rules,	just	think	about	how	you	would
play	 the	game.	Smarter	 rules	would	be	 if	 the	other	player	 is	“in	 range”,	 take	a
toss.	 Otherwise,	 move	 away	 from	 the	 other	 player	 if	 he’s	 tossed	 a	 snowball
(defensive	move)	or	move	toward	the	other	player	to	keep	him	range	(offensive
move).	In	our	rules,	we	define	“in	range”	to	mean	the	difference	between	the	two

players’	vertical	position	no	more	than	80	percent	of	a	player’s	height.	The	rules
I	used	are:

➢	If	“in	range”	and	computer	has	at	least	as	many	snowballs	as	player,	take
toss.

➢	 If	 human	 player	 has	 tossed	 snowball	 or	 computer	 has	 no	 snowballs
remaining,	make	 defensive	move:	 o	 If	 human	 player	 is	 above	 computer
player,	move	down.
o	If	human	player	is	below	computer	player,	move	up.

➢	Else,	make	offensive	move:	o	If	human	player	is	above	computer	player,
move	up.
o	If	human	player	is	below	computer	player,	move	down.

Notice	we	 still	 only	 toss	 a	 snowball	 when	 the	 computer	 has	 at	 least	 as	many
snowballs	 remaining	 as	 the	 player.	We	 don’t	want	 the	 computer	 to	 run	 out	 of
snowballs	before	the	human	player.

The	 code	 for	 both	 the	 simple	 and	 detailed	 computer	 logic	 is	 placed	 in	 the
computerTimerActionPerformed	method.	Before	writing	 this	code,	however,
we	need	to	address	how	we	can	make	the	computer	player	take	a	toss,	move	up
or	move	down.	With	a	human	second	player,	pressing	J	would	make	Player	2
toss,	pressing	K	would	move	Player	2	up	and	pressing	M	would	move	Player	2
down.	It	would	be	nice	if	there	was	a	way	we	could	make	the	computer	player
press	 these	same	keys	for	 the	desired	action.	And,	we	can.	Java	has	something
called	a	Robot	object	(cool	name,	huh?)	that	can	be	used	to	simulate	a	key	press
on	the	keyboard.	To	press	the	J	key,	the	code	is:	Robot	robot	=	new	Robot();
robot.keyPress(KeyEvent.VK_J);

where	KeyEvent.VK_J	is	the	integer	key	code	for	a	J.

Java	requires	the	Robot	object	and	methods	be	in	a	try/catch	block.	We	write	a
general	 method	 (robotKeyPress)	 to	 implement	 a	 robot	 key	 press.	 As	 an
argument,	 this	 method	 requires	 the	 int	 key	 code.	 Add	 this	 method	 to	 your
project:	private	void	robotKeyPress(int	k)

{

try

{

Robot	robot	=	new	Robot();
robot.keyPress(k);

}

catch	(Exception	ex)

{

}

}

With	 this	 method,	 to	 press	 the	 J	 key	 requires	 this	 line	 of	 code:
robotKeyPress(KeyEvent.VK_J);

A	word	of	warning	…	if	the	Snowball	Toss	game	is	running	and	you	switch	to
another	program,	like	a	word	processor	or	 text	editor,	 the	keystrokes	generated
by	 the	 robot	 will	 appear	 in	 your	 editor!!	 You	 could	 use	 this	 method	 to	 be	 a
phantom	typist!!

The	 computerTimerActionPerformed	 method	 that	 implements	 the	 computer
player	 logic	 is	 (note	 where	 computer	 key	 presses	 are	 used):	 private	 void
computerTimerActionPerformed(ActionEvent	e)	{

int	i;
if	(myRandom.nextInt(100)	<	computerRandom)

{

i	=	myRandom.nextInt(5);	//	random	move
if	(i	==	0)

{

if	(player2Left	>=	player1Left)
robotKeyPress(KeyEvent.VK_J);	//	take	toss

}

}

else	if	(i	<=	2)
robotKeyPress(KeyEvent.VK_K);	//	move	up

else
robotKeyPress(KeyEvent.VK_M);	//	move	down

}

else

{

if	(Math.abs(player1.rectangle.getY()	-	player2.rectangle.getY())	<
(int)(0.8	*	player1.image.getHeight(null))	&&	player2Left	>=
player1Left)	robotKeyPress(KeyEvent.VK_J);	//	take	toss

if	(snowball1.isVisible	||	player2Left	==	0)

{

if	(player1.rectangle.getY()	-	player2.rectangle.getY()	<	0)
robotKeyPress(KeyEvent.VK_M);	//	move	down

else
robotKeyPress(KeyEvent.VK_K);	//	move	up

}

else

{

if	(player1.rectangle.getY()	-	player2.rectangle.getY()	<	0)
robotKeyPress(KeyEvent.VK_K);	//	move	up

else
robotKeyPress(KeyEvent.VK_M);	//	move	down

}

}

}

Add	this	method	to	your	project.	You	should	be	able	to	identify	each	step	in	the
different	 computer	 player	 logics.	 Make	 sure	 you	 understand	 how	 the
computerRandom	 value	 is	 used	 to	 determine	 whether	 randommmmk	 or
detailed	logic	is	used.

Save	 and	 run	 the	 project.	 Click	Options,	 select	 a	One	Player	 game.	 Select	 a
difficulty	 level.	 Click	OK,	 then	New	Game.	 Then,	 watch	 out,	 the	 computer
opponent	will	start	tossing	snowballs	at	you!

This	completes	the	snowball	 toss	game.	As	you	play	the	game,	against	another
player	or	against	the	computer,	you’ll	find	modifications	you	want	to	make.	This
is	a	fun	part	of	game	programming	–	tailoring	themm	game	play	to	your	desires
and	needs.

Snowball	Toss	Game	Project	Review
The	Snowball	Toss	Game	Project	 is	now	complete.	Save	and	 run	 the	project
and	make	sure	it	works	as	designed.	Have	fun	playing	the	game	against	friends
and	family	or	against	 the	computer.	In	the	Appendix,	we’ll	show	you	how	you
can	share	this	game	(or	any	other	project)	with	other	users.

If	there	are	errors	in	your	implementation,	go	back	over	the	steps	of	frame	and
code	 design.	 Go	 over	 the	 developed	 code	 –	 make	 sure	 you	 understand	 how
different	parts	of	the	project	were	coded.	As	mentioned	in	the	beginning	of	this
chapter,	 the	 completed	 project	 is	 saved	 as	 SnowballToss	 in	 the
\HomeJava\HomeJava	Projects\	project	group.

While	completing	this	project,	new	concepts	and	skills	you	should	have	gained
include:

➢	Use	of	the	Rectangle2D	strshapeucture	in	graphics.
➢	How	the	drawImage	graphics	method	are	used.
➢	Using	a	tool	like	IconEdit	to	develop	graphics	files.
➢	How	to	add	methods	to	classes.
➢	Using	inheritance	with	classes.
➢	Using	the	keyboard	for	control	of	animated	characters.
➢	Detecting	collisions	between	Rectangle2D	shapes.
➢	How	to	play	sounds.
➢	How	to	develop	game	playing	rules	for	the	computer.

This	is	the	last	project	in	these	notes.	By	now,	you	should	be	a	fairly	competent
Java	programmer.	There’s	always	more	to	learn	though.	Consult	the	Internet	and
bookstores	for	more	books	about	skills	you	might	want	to	gain.

Snowball	Toss	Game	Project
Enhancements
Possible	enhancements	to	the	snowball	toss	game	project	include:

➢	Add	another	option	to	allow	the	user	to	select	the	number	of	snowballs	to
use.	Look	at	the	Swing	JSpinner	control	to	set	such	a	value.	Modify	the
configuration	file	so	this	value	is	saved.

➢	Players	like	to	see	their	name	“in	lights.”	Add	an	option	to	have	player’s
name	placed	on	 the	frame	instead	of	 the	generic	 titling	 information	used
now.	You	might	want	to	save	the	names	in	the	configuration	file.

➢	Add	some	horizontal	motion	to	the	zombie	snowmen.
➢	In	the	computer	playing	logic,	no	consideration	is	given	to	position	of	the
zombie	 snowmen.	 Modify	 the	 logic	 so	 a	 toss	 is	 taken	 only	 when	 a
snowman	is	not	blocking	the	toss.

➢	 If	 you	 play	 the	 game	 against	 a	 ‘smart’	 computer,	 you	 will	 find	 it	 is
possible	 to	 trap	 the	 computer	 player	 at	 the	 top	or	 bottom	of	 the	playing
field	and	 fire	 away.	Modify	 the	code	 to	have	 the	computer	player	move
away	from	such	trapped	situations.

➢	In	the	one	player	game,	it	is	still	possible	to	control	the	computer	player
manually	 using	 the	 J,	K	 and	M	keys.	Can	you	write	 code	 so	 this	 is	 not
possible?	It’s	not	an	easy	task	because	of	the	robotKeyPressed	method.

Snowball	Toss	Game	Project	Java	Code
Listing
There	are	three	files,	SnowballToss.java,	Sprite.java	and	MovingSprite.java.

SnowballToss.java:

/	*

*	SnowballToss.java

*/

package	snowballtoss;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.io.*;
import	java.awt.geom.*;
import	java.util.Random;
import	java.net.URL;
import	java.applet.*;

import	com.ctreber.aclib.image.ico.ICOFile;

public	class	SnowballToss	extends	JFrame

{

JLabel	player1Label	=	new	JLabel();
JLabel	player1HitsLabel	=	new	JLabel();
JTextField	player1HitsTextField	=	new	JTextField();	JLabel
player1LeftLabel	=	new	JLabel();

JTextField	player1LeftTextField	=	new	JTextField();	JTextArea
player1TextArea	=	new	JTextArea();
JLabel	player2Label	=	new	JLabel();
JLabel	player2HitsLabel	=	new	JLabel();
JTextField	player2HitsTextField	=	new	JTextField();	JLabel
player2LeftLabel	=	new	JLabel();
JTextField	player2LeftTextField	=	new	JTextField();	JTextArea
player2TextArea	=	new	JTextArea();
SnowPanel	snowPanel	=	new	SnowPanel();
static	JPanel	optionsPanel	=	new	JPanel();
JPanel	playersPanel	=	new	JPanel();
ButtonGroup	playersButtons	=	new	ButtonGroup();
JRadioButton	onePlayerRadioButton	=	new	JRadioButton();
JRadioButton	twoPlayersRadioButton	=	new	JRadioButton();	JPanel
difficultyPanel	=	new	JPanel();
ButtonGroup	difficultyButtons	=	new	ButtonGroup();
JRadioButton	easiestRadioButton	=	new	JRadioButton();	JRadioButton
easyRadioButton	=	new	JRadioButton();
JRadioButton	hardRadioButton	=	new	JRadioButton();
JRadioButton	hardestRadioButton	=	new	JRadioButton();	JButton
okButton	=	new	JButton();
static	JButton	gameButton	=	new	JButton();
JButton	optionsButton	=	new	JButton();
JButton	exitButton	=	new	JButton();

int	numberPlayers,	difficulty;
static	Sprite	player1,	player2;
int	player1Hits,	player2Hits,	player1Left,	player2Left;	final	int
maximumBalls	=	20;
final	int	playerIncrement	=	5;
static	MovingSprite	snowball1,	snowball2;
final	int	snowballSpeed	=	20;
static	MovingSprite	snowman1,	snowman2;
Random	myRandom	=	new	Random();

int	computerRandom,	computerTime;

Timer	gameTimer;
Timer	computerTimer;

AudioClip	throwSound;
AudioClip	splatSound;
AudioClip	ouchSound;
AudioClip	gameOverSound;

public	static	void	main(String	args[])

{

//	create	frame
new	SnowballToss().show();

}

public	SnowballToss()

{

//	frame	constructor
setTitle("Snowball	Toss");
getContentPane().setBackground(new	Color(192,	192,	255));
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
GridBagConstraints	gridConstraints;

Font	myFont	=	new	Font("Arial",	Font.BOLD,	16);

player1Label.setText("You:");

player1Label.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(player1Label,	gridConstraints);
player1HitsLabel.setText("Hits");
player1HitsLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(player1HitsLabel,	gridConstraints);
player1HitsTextField.setPreferredSize(new	Dimension(50,	25));
player1HitsTextField.setText("0");
player1HitsTextField.setFont(myFont);
player1HitsTextField.setEditable(false);
player1HitsTextField.setBackground(Color.WHITE);

player1HitsTextField.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();

gridConstraints.gridx	=	1;

gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
getContentPane().add(player1HitsTextField,	gridConstraints);

player1LeftLabel.setText("Left");
player1LeftLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(player1LeftLabel,	gridConstraints);
player1LeftTextField.setPreferredSize(new	Dimension(50,	25));
player1LeftTextField.setText("20");
player1LeftTextField.setFont(myFont);
player1LeftTextField.setEditable(false);
player1LeftTextField.setBackground(Color.WHITE);

player1LeftTextField.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();

gridConstraints.gridx	=	1;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
getContentPane().add(player1LeftTextField,	gridConstraints);

player1TextArea.setPreferredSize(new	Dimension(160,	60));
player1TextArea.setText("A	Key	-	Move	Up\nZ	Key	-	Move	Down\nS	Key	-
Toss");	player1TextArea.setFont(new	Font("Arial",	Font.PLAIN,	14));
player1TextArea.setEditable(false);

player1TextArea.setBackground(getContentPane().getBackground());
gridConstraints	=	new	GridBagConstraints();

gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
gridConstraints.gridheight	=	2;
gridConstraints.insets	=	new	Insets(10,	20,	0,	0);

getContentPane().add(player1TextArea,	gridConstraints);
player2Label.setText("Computer:");
player2Label.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	3;
gridConstraints.gridy	=	0;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(player2Label,	gridConstraints);
player2HitsLabel.setText("Hits");
player2HitsLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	3;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(player2HitsLabel,	gridConstraints);
player2HitsTextField.setPreferredSize(new	Dimension(50,	25));
player2HitsTextField.setText("0");
player2HitsTextField.setFont(myFont);
player2HitsTextField.setEditable(false);
player2HitsTextField.setBackground(Color.WHITE);

player2HitsTextField.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();

gridConstraints.gridx	=	4;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
getContentPane().add(player2HitsTextField,	gridConstraints);

player2LeftLabel.setText("Left");
player2LeftLabel.setFont(myFont);
gridConstraints	=	new	GridBagConstraints();

gridConstraints.gridx	=	3;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(player2LeftLabel,	gridConstraints);
player2LeftTextField.setPreferredSize(new	Dimension(50,	25));
player2LeftTextField.setText("20");
player2LeftTextField.setFont(myFont);
player2LeftTextField.setEditable(false);
player2LeftTextField.setBackground(Color.WHITE);

player2LeftTextField.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();

gridConstraints.gridx	=	4;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
getContentPane().add(player2LeftTextField,	gridConstraints);

player2TextArea.setPreferredSize(new	Dimension(140,	60));
player2TextArea.setText("K	Key	-	Move	Up\nM	Key	-	Move	Down\nJ	Key
-	Toss");	player2TextArea.setFont(new	Font("Arial",	Font.PLAIN,	14));
player2TextArea.setEditable(false);

player2TextArea.setBackground(getContentPane().getBackground());
gridConstraints	=	new	GridBagConstraints();

gridConstraints.gridx	=	5;
gridConstraints.gridy	=	1;
gridConstraints.gridheight	=	2;
gridConstraints.insets	=	new	Insets(10,	20,	0,	0);
getContentPane().add(player2TextArea,	gridConstraints);
snowPanel.setPreferredSize(new	Dimension(550,	350));
snowPanel.setBackground(Color.GRAY);
snowPanel.setLayout(new	GridBagLayout());
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;

gridConstraints.gridy	=	3;
gridConstraints.gridwidth	=	6;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(snowPanel,	gridConstraints);
snowPanel.addKeyListener(new	KeyAdapter()

{

public	void	keyPressed(KeyEvent	e)

{

snowPanelKeyPressed(e);

}

});

optionsPanel.setPreferredSize(new	Dimension(200,	280));
optionsPanel.setBackground(new	Color(255,	255,	192));
optionsPanel.setVisible(false);
optionsPanel.setLayout(new	GridBagLayout());
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
snowPanel.add(optionsPanel,	gridConstraints);

playersPanel.setPreferredSize(new	Dimension(140,	55));
playersPanel.setBorder(BorderFactory.createTitledBorder("Number
of	Players"));	playersPanel.setBackground(new	Color(255,	255,	192));
playersPanel.setLayout(new	GridBagLayout());
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
optionsPanel.add(playersPanel,	gridConstraints);

onePlayerRadioButton.setText("One");

onePlayerRadioButton.setBackground(new	Color(255,	255,	192));
onePlayerRadioButton.setSelected(true);

onePlayerRadioButton.setLayout(new	GridBagLayout());
playersButtons.add(onePlayerRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
playersPanel.add(onePlayerRadioButton,	gridConstraints);

onePlayerRadioButton.addActionListener(new	ActionListener	()	{
public	void	actionPerformed(ActionEvent	e)

{

playersRadioButtonActionPerformed(e);

}

});

twoPlayersRadioButton.setText("Two");

twoPlayersRadioButton.setBackground(new	Color(255,	255,	192));
twoPlayersRadioButton.setLayout(new	GridBagLayout());
playersButtons.add(twoPlayersRadioButton);

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
playersPanel.add(twoPlayersRadioButton,	gridConstraints);
twoPlayersRadioButton.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

playersRadioButtonActionPerformed(e);

}

});

});

difficultyPanel.setPreferredSize(new	Dimension(140,	140));
difficultyPanel.setBorder(BorderFactory.createTitledBorder("Difficulty"));
difficultyPanel.setBackground(new	Color(255,	255,	192));
difficultyPanel.setLayout(new	GridBagLayout());

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
optionsPanel.add(difficultyPanel,	gridConstraints);
easiestRadioButton.setText("Easiest");
easiestRadioButton.setBackground(new	Color(255,	255,	192));

easiestRadioButton.setSelected(true);
easiestRadioButton.setLayout(new	GridBagLayout());
difficultyButtons.add(easiestRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.WEST;
difficultyPanel.add(easiestRadioButton,	gridConstraints);
easiestRadioButton.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

difficultyRadioButtonActionPerformed(e);

}

});

easyRadioButton.setText("Easy");
easyRadioButton.setBackground(new	Color(255,	255,	192));
easyRadioButton.setLayout(new	GridBagLayout());
difficultyButtons.add(easyRadioButton);
gridConstraints	=	new	GridBagConstraints();

gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.anchor	=	GridBagConstraints.WEST;
difficultyPanel.add(easyRadioButton,	gridConstraints);
easyRadioButton.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

difficultyRadioButtonActionPerformed(e);

}

});

hardRadioButton.setText("Hard");
hardRadioButton.setBackground(new	Color(255,	255,	192));
hardRadioButton.setLayout(new	GridBagLayout());
difficultyButtons.add(hardRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.anchor	=	GridBagConstraints.WEST;
difficultyPanel.add(hardRadioButton,	gridConstraints);
hardRadioButton.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

difficultyRadioButtonActionPerformed(e);

}

});

hardestRadioButton.setText("Hardest");
hardestRadioButton.setBackground(new	Color(255,	255,	192));

hardestRadioButton.setLayout(new	GridBagLayout());
difficultyButtons.add(hardestRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.anchor	=	GridBagConstraints.WEST;
difficultyPanel.add(hardestRadioButton,	gridConstraints);
hardestRadioButton.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

difficultyRadioButtonActionPerformed(e);

}

});

okButton.setText("OK");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
optionsPanel.add(okButton,	gridConstraints);
okButton.addActionListener(new	ActionListener	()

{

public	void	actionPerformed(ActionEvent	e)

{

okButtonActionPerformed(e);

}

});

gameButton.setText("New	Game");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	4;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(0,	10,	10,	0);
getContentPane().add(gameButton,	gridConstraints);
gameButton.addActionListener(new	ActionListener	()

{

public	void	actionPerformed(ActionEvent	e)

{

gameButtonActionPerformed(e);

}

});

optionsButton.setText("Options");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	4;
gridConstraints.insets	=	new	Insets(0,	0,	10,	0);
getContentPane().add(optionsButton,	gridConstraints);
optionsButton.addActionListener(new	ActionListener	()	{

public	void	actionPerformed(ActionEvent	e)

{

optionsButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	3;
gridConstraints.gridy	=	4;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(0,	0,	10,	0);
getContentPane().add(exitButton,	gridConstraints);
exitButton.addActionListener(new	ActionListener	()

{

public	void	actionPerformed(ActionEvent	e)

{

exitButtonActionPerformed(e);

}

});

gameTimer	=	new	Timer(50,	new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

gameTimerActionPerformed(e);

}

});

computerTimer	=	new	Timer(1000,	new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

{

computerTimerActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	try

{

BufferedReader	inputFile	=	new	BufferedReader(new
FileReader("snowball.ini"));	numberPlayers	=
Integer.valueOf(inputFile.readLine()).intValue();

difficulty	=
Integer.valueOf(inputFile.readLine()).intValue();

inputFile.close();

}

catch	(Exception	ex)

{

numberPlayers	=	1;
difficulty	=	1;

}

if	(difficulty	==	1)
easiestRadioButton.doClick();

else	if	(difficulty	==	2)
easyRadioButton.doClick();

else	if	(difficulty	==	3)
hardRadioButton.doClick();

else
hardestRadioButton.doClick();

if	(numberPlayers	==	1)
onePlayerRadioButton.doClick();

else
twoPlayersRadioButton.doClick();

player1Left	=	maximumBalls;
player2Left	=	maximumBalls;

player1LeftTextField.setText(String.valueOf(player1Left));
player2LeftTextField.setText(String.valueOf(player2Left));	//	create	sprites

player1	=	new	Sprite();
player2	=	new	Sprite();
snowball1	=	new	MovingSprite();
snowball2	=	new	MovingSprite();
snowman1	=	new	MovingSprite();
snowman2	=	new	MovingSprite();
//	read	in	icon	files	and	sounds
try

{

player1.image	=	new
ICOFile("player1.ico").getDescriptor(0).getImageRGB();	player2.image	=
new	ICOFile("player2.ico").getDescriptor(0).getImageRGB();
snowball1.image	=	new
ICOFile("player1ball.ico").getDescriptor(0).getImageRGB();
snowball2.image	=	new
ICOFile("player2ball.ico").getDescriptor(0).getImageRGB();
snowman1.image	=	new
ICOFile("snowman.ico").getDescriptor(0).getImageRGB();
snowman2.image	=	new

ICOFile("snowman.ico").getDescriptor(0).getImageRGB();	throwSound	=
Applet.newAudioClip(new	URL("file:"	+	"throw.wav"));	splatSound	=
Applet.newAudioClip(new	URL("file:"	+	"splat.wav"));	ouchSound	=
Applet.newAudioClip(new	URL("file:"	+	"ouch.wav"));	gameOverSound	=
Applet.newAudioClip(new	URL("file:"	+	"gameover.wav"));	}

catch	(Exception	ex)

{

//	can	print	error	message	if	desired

}

}

private	void	exitForm(WindowEvent	evt)

{

try

{

PrintWriter	outputFile	=	new	PrintWriter(new
BufferedWriter(new	FileWriter("snowball.ini")));
outputFile.println(numberPlayers);	outputFile.println(difficulty);

outputFile.flush();
outputFile.close();

}

catch	(Exception	ex)

{

}

System.exit(0);

}

private	void	playersRadioButtonActionPerformed(ActionEvent	e)	{
if	(e.getActionCommand().equals("One"))

{

numberPlayers	=	1;
player1Label.setText("You:");
player2Label.setText("Computer:");
player2TextArea.setVisible(false);
difficultyPanel.setVisible(true);

}

else

{

numberPlayers	=	2;
player1Label.setText("Player	1:");
player2Label.setText("Player	2:");
player2TextArea.setVisible(true);
difficultyPanel.setVisible(false);

}

}

private	void
difficultyRadioButtonActionPerformed(ActionEvent	e)	{

String	s	=	e.getActionCommand();
if	(s.equals("Easiest"))

{

difficulty	=	1;
computerRandom	=	100;
computerTime	=	1000;

}

else	if	(s.equals("Easy"))

{

difficulty	=	2;
computerRandom	=	75;
computerTime	=	750;

}

else	if	(s.equals("Hard"))

{

difficulty	=	3;
computerRandom	=	50;
computerTime	=	500;

}

else	if	(s.equals("Hardest"))

{

difficulty	=	4;
computerRandom	=	25;
computerTime	=	250;

}

computerTimer.setDelay(computerTime);

}

private	void	okButtonActionPerformed(ActionEvent	e)	{
gameButton.setEnabled(true);
optionsButton.setEnabled(true);

exitButton.setEnabled(true);
optionsPanel.setVisible(false);

}

private	void	gameButtonActionPerformed(ActionEvent	e)	{
if	(gameButton.getText().equals("New	Game"))

{

gameButton.setText("Stop	Game");
optionsButton.setEnabled(false);
exitButton.setEnabled(false);
player1Hits	=	0;
player2Hits	=	0;
player1HitsTextField.setText("0");
player2HitsTextField.setText("0");
player1Left	=	maximumBalls;
player2Left	=	maximumBalls;

player1LeftTextField.setText(String.valueOf(player1Left));
player2LeftTextField.setText(String.valueOf(player2Left));
player1.rectangle	=	new	Rectangle2D.Double(5,	0.5	snowPanel.getHeight()	-
0.5	 player1.image.getHeight(null),	 player1.image.getWidth(null),
player1.image.getHeight(null));	 player2.rectangle	 =	 new
Rectangle2D.Double(snowPanel.getWidth()	 -	 player2.image.getWidth(null)
-	 5,	 0.5	 snowPanel.getHeight()	 -	 0.5	 player2.image.getHeight(null),
player2.image.getWidth(null),	 player2.image.getHeight(null));
player1.isVisible	=	true;

player2.isVisible	=	true;
snowman1.rectangle	=	new	Rectangle2D.Double(0.5	*

snowPanel.getWidth()	-	snowman1.image.getWidth(null),
myRandom.nextInt(snowPanel.getHeight()),
snowman1.image.getWidth(null),	snowman1.image.getHeight(null));
snowman2.rectangle	=	new	Rectangle2D.Double(0.5	*
snowPanel.getWidth(),	myRandom.nextInt(snowPanel.getHeight()),

snowman2.image.getWidth(null),	snowman2.image.getHeight(null));
snowman1.ySpeed	=	snowmanSpeed();

snowman2.ySpeed	=	snowmanSpeed();
snowman1.isVisible	=	true;
snowman2.isVisible	=	true;
snowPanel.repaint();
gameTimer.start();
if	(numberPlayers	==	1)

computerTimer.start();
snowPanel.requestFocus();

}

else

{

gameTimer.stop();
computerTimer.stop();
player1.isVisible	=	false;
player2.isVisible	=	false;
snowball1.isVisible	=	false;
snowball2.isVisible	=	false;
snowman1.isVisible	=	false;
snowman2.isVisible	=	false;
gameButton.setText("New	Game");
optionsButton.setEnabled(true);
exitButton.setEnabled(true);
snowPanel.repaint();

}

}

private	void	optionsButtonActionPerformed(ActionEvent	e)	{

gameButton.setEnabled(false);
optionsButton.setEnabled(false);
exitButton.setEnabled(false);
optionsPanel.setVisible(true);

}

private	void	exitButtonActionPerformed(ActionEvent	e)	{
exitForm(null);

}

private	void	snowPanelKeyPressed(KeyEvent	e)

{

if	(gameButton.getText().equals("New	Game"))
return;

//	get	current	location	for	possible	update
double	newY1	=	player1.rectangle.getY(),	newY2	=

player2.rectangle.getY();	if	(e.getKeyCode()	==	e.VK_A)

{

newY1	-=	playerIncrement;
if	(newY1	<	0)

newY1	=	0;

}

else	if	(e.getKeyCode()	==	e.VK_Z)

{

newY1	+=	playerIncrement;
if	(newY1	>	snowPanel.getHeight()	-	player1.rectangle.getHeight())

newY1	=	snowPanel.getHeight()	-	player1.rectangle.getHeight();	}

else	if	(e.getKeyCode()	==	e.VK_S)

{

if	(!snowball1.isVisible	&&	player1Left	>	0)	{
throwSound.play();
player1Left--;

player1LeftTextField.setText(String.valueOf(player1Left));
snowball1.rectangle	 =	 new	 Rectangle2D.Double(player1.rectangle.getX()	 +
player1.rectangle.getWidth(),	 player1.rectangle.getY(),
snowball1.image.getWidth(null),	 snowball1.image.getHeight(null));
snowball1.isVisible	=	true;

}

}

else	if	(e.getKeyCode()	==	e.VK_K)

{

newY2	-=	playerIncrement;
if	(newY2	<	0)

newY2	=	0;

}

else	if	(e.getKeyCode()	==	e.VK_M)

{

newY2	+=	playerIncrement;
if	(newY2	>	snowPanel.getHeight()	-	player2.rectangle.getHeight())

newY2	=	snowPanel.getHeight()	-	player2.rectangle.getHeight();	}
else	if	(e.getKeyCode()	==	e.VK_J)

{

if	(!snowball2.isVisible	&&	player2Left	>	0)	{
throwSound.play();
player2Left--;

player2LeftTextField.setText(String.valueOf(player2Left));
snowball2.rectangle	 =	 new	 Rectangle2D.Double(player2.rectangle.getX()	 -
snowball2.image.getWidth(null),	 player2.rectangle.getY(),
snowball2.image.getWidth(null),	 snowball2.image.getHeight(null));
snowball2.isVisible	=	true;

}

}

player1.rectangle	=	new
Rectangle2D.Double(player1.rectangle.getX(),	newY1,
player1.rectangle.getWidth(),	player1.rectangle.getHeight());
player2.rectangle	=	new	Rectangle2D.Double(player2.rectangle.getX(),
newY2,	player2.rectangle.getWidth(),	player2.rectangle.getHeight());
snowPanel.repaint();

}

private	void	gameTimerActionPerformed(ActionEvent	e)	{
//	move	snowmen
snowman1.move(0,	snowman1.ySpeed);
if	(snowman1.rectangle.getY()	<	-snowman1.image.getHeight(null)	||

snowman1.rectangle.getY()	>	snowPanel.getHeight())	{
//	recompute	speed
snowman1.ySpeed	=	snowmanSpeed();
if	(snowman1.ySpeed	>	0)

snowman1.rectangle	=	new
Rectangle2D.Double(snowman1.rectangle.getX(),	-
snowman1.image.getHeight(null),	snowman1.rectangle.getWidth(),
snowman1.rectangle.getHeight());	else

snowman1.rectangle	=	new
Rectangle2D.Double(snowman1.rectangle.getX(),	snowPanel.getHeight(),

snowman1.rectangle.getWidth(),	snowman1.rectangle.getHeight());	}
snowman2.move(0,	snowman2.ySpeed);
if	(snowman2.rectangle.getY()	<	-snowman2.image.getHeight(null)	||
snowman2.rectangle.getY()	>	snowPanel.getHeight())	{

//	recompute	speed
snowman2.ySpeed	=	snowmanSpeed();
if	(snowman2.ySpeed	>	0)

snowman2.rectangle	=	new
Rectangle2D.Double(snowman2.rectangle.getX(),	-
snowman2.image.getHeight(null),	snowman2.rectangle.getWidth(),
snowman2.rectangle.getHeight());	else

snowman2.rectangle	=	new
Rectangle2D.Double(snowman2.rectangle.getX(),
snowPanel.getHeight(),	snowman2.rectangle.getWidth(),
snowman2.rectangle.getHeight());	}

//	status	of	player	1	snowball
if	(snowball1.isVisible)

{

snowball1.move(snowballSpeed,	0);
if	(snowball1.rectangle.getX()	>	snowPanel.getWidth())
snowball1.isVisible	=	false;	//	off	screen
else	if	(snowball1.collided(player2.rectangle))

{

ouchSound.play();
player1Hits++;

player1HitsTextField.setText(String.valueOf(player1Hits));
snowball1.isVisible	=	false;

}

else	if	(snowball1.collided(snowman1.rectangle)	||
snowball1.collided(snowman2.rectangle))	{

splatSound.play();
snowball1.isVisible	=	false;

}

}

//	status	of	player	2	snowball
if	(snowball2.isVisible)

{

snowball2.move(-snowballSpeed,	0);
if	(snowball2.rectangle.getX()	<	0)

snowball2.isVisible	=	false;	//	off	screen
else	if	(snowball2.collided(player1.rectangle))

{

ouchSound.play();
player2Hits++;

player2HitsTextField.setText(String.valueOf(player2Hits));
snowball2.isVisible	=	false;

}

else	if	(snowball2.collided(snowman1.rectangle)	||
snowball2.collided(snowman2.rectangle))	{

splatSound.play();
snowball2.isVisible	=	false;

}

}

snowPanel.repaint();
//	check	status	of	game

if	(!snowball1.isVisible	&&	player1Left	==	0	&&	!snowball2.isVisible
&&	player2Left	==	0)	{

gameOverSound.play();
gameButton.doClick();

}

}

private	void	computerTimerActionPerformed(ActionEvent	e)	{
int	i;
if	(myRandom.nextInt(100)	<	computerRandom)

{

i	=	myRandom.nextInt(5);	//	random	move
if	(i	==	0)

{

if	(player2Left	>=	player1Left)
robotKeyPress(KeyEvent.VK_J);	//	take	toss

}

else	if	(i	<=	2)
robotKeyPress(KeyEvent.VK_K);	//	move	up

else
robotKeyPress(KeyEvent.VK_M);	//	move	down

}

else

{

if	(Math.abs(player1.rectangle.getY()	-	player2.rectangle.getY())	<
(int)(0.8	*	player1.image.getHeight(null))	&&	player2Left	>=	player1Left)

robotKeyPress(KeyEvent.VK_J);	//	take	toss
if	(snowball1.isVisible	||	player2Left	==	0)

{

if	(player1.rectangle.getY()	-	player2.rectangle.getY()	<	0)
robotKeyPress(KeyEvent.VK_M);	//	move	down

else
robotKeyPress(KeyEvent.VK_K);	//	move	up

}

else

{

if	(player1.rectangle.getY()	-	player2.rectangle.getY()	<	0)
robotKeyPress(KeyEvent.VK_K);	//	move	up

else
robotKeyPress(KeyEvent.VK_M);	//	move	down

}

}

}

private	int	snowmanSpeed()

{

final	int	speedMin	=	1;
final	int	speedMax	=	4;
int	speed;
speed	=	myRandom.nextInt(speedMax	-	speedMin	+	1)	+	speedMin;	if

(myRandom.nextInt(2)	==	0)
speed	=	-speed;

return(speed);

}

private	void	robotKeyPress(int	k)

{

try

{

Robot	robot	=	new	Robot();
robot.keyPress(k);

}

catch	(Exception	ex)

{

}

}

}

class	SnowPanel	extends	JPanel

{

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);

if	(SnowballToss.gameButton.getText().equals("Stop	Game"))	{
SnowballToss.player1.draw(g2D);
SnowballToss.player2.draw(g2D);

if	(SnowballToss.snowball1.isVisible)
SnowballToss.snowball1.draw(g2D);

if	(SnowballToss.snowball2.isVisible)
SnowballToss.snowball2.draw(g2D);

SnowballToss.snowman1.draw(g2D);
SnowballToss.snowman2.draw(g2D);

}

else

{

if	(SnowballToss.gameButton.isEnabled())

{

g2D.setFont(new	Font("Arial",	Font.BOLD,	36));
g2D.setPaint(Color.YELLOW);
g2D.drawString("Game	Over",	180,	180);

}

else

{

SnowballToss.optionsPanel.repaint();

}

}

g2D.dispose();

}

}

Sprite.java:

package	snowballtoss;
import	java.awt.geom.*;
import	java.awt.*;

public	class	Sprite

{

public	Image	image;
public	Rectangle2D.Double	rectangle;
public	boolean	isVisible	=	false;

public	void	draw(Graphics2D	g2D)

{

g2D.drawImage(this.image,	(int)	this.rectangle.getX(),	(int)
this.rectangle.getY(),	null);	}

public	void	move(int	dx,	int	dy)

{

this.rectangle.setRect(this.rectangle.getX()	+	dx,	this.rectangle.getY()
+	dy,	this.rectangle.getWidth(),	this.rectangle.getHeight());	}

}

MovingSprite.java:

package	snowballtoss;
import	java.awt.geom.*;

public	class	MovingSprite	extends	Sprite

{

public	int	xSpeed;
public	int	ySpeed;

public	boolean	collided(Rectangle2D.Double	r)

{

return	(!this.rectangle.createIntersection(r).isEmpty());	}

}

Appendix
Distributing	a	Java	Project

Preview
I	bet	you’re	ready	to	show	your	friends	and	colleagues	some	of	the	projects	you
have	built	using	Java.	Just	give	them	a	copy	of	all	your	project	files,	ask	them	to
download	 and	 install	 the	 Java	 SDK,	 download	 and	 install	NetBeans	 and	 learn
how	to	open	and	run	a	project.	Then,	have	them	open	your	project	and	run	the
application.

I	 think	 you’ll	 agree	 this	 is	 asking	 a	 lot	 of	 your	 friends,	 colleagues,	 and,
ultimately,	 your	 user	 base.	 Fortunately,	 there	 are	 other	 solutions.	 In	 this
Appendix,	we	will	look	at	two	possibilities,	one	simple,	one	not	so	simple.	We’ll
use	 the	 Snowball	 Toss	 game	 just	 built	 as	 an	 example.	 You	 can	 easily	 make
needed	modifications	 for	 other	 projects.	 The	 example	 is	 built	 using	Windows.
Similar	 steps	 can	 be	 taken	 using	 other	 operating	 systems	 (Linux,	 UNIX,
MacOS).

Executable	(jar)	Files	A	simple	way	to	run	a	Java
application	outside	of	the	IDE	environment	is	with	an	executable	version	of	the
application,	a	so-called	jar	(java	archive)	file.	With	such	a	file,	a	user	can
simply	double-click	the	file	and	the	corresponding	application	will	run.	As
mentioned,	we	will	work	with	the	Snowball	Toss	project	in	the
\HomeJava\HomeJava	Projects\	folder.

jar	 files	are	created	using	 the	 Java	 jar.exe	 application.	You	can	make	your	 jar
file	runnable	by	telling	jar.exe	which	class	has	main.	To	do	that,	you	first	need
to	create	a	manifest	file.	A	manifest	is	a	text	file	with	a	"Main-Class"	directive
and	“Class-Path”	directives	for	any	external	jar	files	needed.

Creating	a	Manifest	File	in	NetBeans	Make
the	Snowball	Toss	project	the	main	project.	Then,

1.	Right-click	the	project's	name	and	choose	Properties.
2.	Select	the	Run	category	and	snowballtoss.SnowballToss	in	the	Main
Class	field.

3.	Click	OK	to	close	the	Project	Properties	dialog	box.

Creating	a	jar	File	in	NetBeans	Now	that	you	have
your	sources	ready	and	your	project	configured,	it	is	time	to	build	your	project.
To	build	the	project:

•	Choose	Run	>	Build	Project	•	Alternatively,	right-click	the	project's	name
in	the	Projects	window	and	choose	Build.

When	you	build	your	project,	a	jar	file	containing	your	project	is	created	inside
the	project’s	/dist	folder.

With	Windows	Explorer,	 go	 to	 your	 project	 folder.	Open	 the	dist	 folder.	 The
SnowballToss.jar	file	will	be	there	(as	will	a	lib	folder,	containing	external	jar
files).

Copy	that	file	and	folder	to	your	project	folder	(the	folder	with	all	the	graphics
and	sound	files).	Double-click	the	SnowballToss.jar	file	and	the	Snowball	Toss
program	 will	 appear:	

Notice	the	file	has	a	“plain	vanilla”	Java	frame	icon	in	the	title	bar	area	–	we	will
change	that	soon.

So,	to	distribute	a	Java	project	 to	other	users,	you	need	to	give	them	a	copy	of
the	project’s	jar	 file	and	copies	of	any	additional	files	 the	project	needs	 to	run
(jar	 files,	data	 files,	graphics	 files,	 sound	 files).	These	 files	 can	be	copied	 to	 a
floppy	disk	or	CD-ROM	and	transferred	to	other	users.	For	the	Snowball	Toss
game,	 the	 files	 to	 distribute	 are:	 SnowballToss.jar	 aclibico-2.1.jar,	 log4j-
1.2.8.jar	snowball.ini
player1.ico,	player1Ball.ico,	player2.ico,	player2Ball.ico,	snowman.ico
gameover.wav,	ouch.wav,	splat.wav,	throw.wav	For	another	user	to	run	the
project	on	his/her	computer,	they	need	to	copy	the	files	you	give	them	to	a
folder	they	create.	To	run	the	project,	they	would	then	navigate	to	that	folder
and	double-click	the	jar	file	(just	like	we	did	for	the	Snowball	Toss	game).
Alternatively,	the	user	could	create	a	shortcut	to	the	jar	file	and	place	it	on

their	desktop	or	Programs	file	menu.	We	will	see	how	to	do	this	soon,	but
first	let’s	“dress	up”	our	application	a	bit.

One	more	 thing	before	moving	on.	Snowball	Toss	 runs	on	my	computer	 (and
will	work	 on	 yours)	 because	 I	 have	 the	Java	Run-Time	Environment	 (JRE)
installed	(it	is	installed	when	Java	is	installed).	Every	Java	application	needs	the
JRE	 to	 be	 installed	 on	 the	 hosting	 computer.	 Installing	 the	 JRE	 is	 similar	 to
installing	 the	 Java	 SDK.	 Full	 details	 can	 be	 found	 at:
http://java.com/en/download/index.jsp

So,	in	addition	to	our	application’s	files,	we	also	need	to	point	potential	users	to
the	 JRE	 and	 ask	 them	 to	 download	 and	 install	 the	 environment	 on	 their
computer.

http://java.com/en/download/index.jsp

Application	Icons
Recall	there	is	a	plain	Java	icon	that	appears	in	the	upper	left	hand	corner	of	the
frame.	Icons	are	also	used	to	represent	programs	in	the	Programs	menu	and	to
represent	 programs	 on	 the	 desktop.	 The	 default	 icons	 are	 ugly!	We	 need	 the
capability	to	change	them.	The	icon	associated	with	the	frame	is	different	from
the	 icons	used	 to	 represent	 the	application	 in	 the	Windows	menu	and	desktop.
We	discuss	both.

The	icon	associated	with	a	frame	is	based	on	a	graphics	file.	Changing	this	icon
is	simple.	The	idea	is	to	assign	a	unique	icon	to	indicate	the	frame’s	function.	To
assign	an	icon,	use	this	line	of	code	when	the	frame	(myFrame	in	this	example)
is	 first	 created:	 myFrame.setIconImage(new	 ImageIcon(icon).getImage());
where	 icon	 is	some	graphics	file	(usually	a	gif	 file).	 If	 the	file	 is	a	 ico	 file,	we
must	 use	 the	 ICOFile	 method:	 myFrame.setIconImage(new
ICOFile(icon).getDescriptor(0).getImageRGB());	 Open	 the	 Snowball	 Toss
project	in	NetBeans.	We	will	use	the	snowman.ico	graphic	for	the	icon.	Add	the
shaded	 lines	 of	 code	 to	 the	 top	 of	 the	 frame	 constructor	 code:	 public
SnowballToss()	{

//	frame	constructor	setTitle("Snowball	Toss");
getContentPane().setBackground(new	Color(192,	192,	255));
try

{

setIconImage(new
ICOFile("snowman.ico").getDescriptor(0).getImageRGB());	}

catch	(Exception	ex)	{

}

setResizable(false);	addWindowListener(new	WindowAdapter()	{
public	void	windowClosing(WindowEvent	evt)	{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
GridBagConstraints	gridConstraints;	.
.

Save,	 compile	 and	 run	 the	 project	 again.	 The	 cute	 little	 icon	 appears:	

At	this	point,	rebuild	the	jar	file	for	the	project	so	the	icon	is	included.

Icons	associated	with	the	program	menu	and	desktop	are	always	Windows	icon
files	(ico	extension).	They	are	special	32	x	32	graphics.	The	Internet	and	other
sources	offer	a	wealth	of	 such	 icon	 files	 from	which	you	can	choose.	But,	 it’s
also	fun	to	design	your	own	icon	to	add	that	personal	touch.

Using	IconEdit
Remember	 the	 IconEdit	 program	we	used	 in	 the	 snowball	 toss	game.	We	can
use	that	here	to	to	design	and	save	icons.	Recall	it	is	included	with	these	notes	in
the	 folder	 \HomeJava\HomeJava	 Projects\IconEdit\.	 To	 run	 IconEdit,	 click
Start	on	the	Windows	task	bar,	then	click	Run.	Find	the	IconEdit	program	(use
Browse	mode),	 then	 click	OK.	When	 the	 IconEdit	 program	window	 appears,
click	the	File	menu	heading,	then	choose	New	(we	are	creating	a	new	icon).	The
following	 editor	 window	 will	 appear:	

The	editor	window	displays	 two	representations	of	 the	 icon:	a	 large	zoomed-in
square	(a	32	x	32	grid)	that’s	eight	times	bigger	than	the	actual	icon,	and	a	small
square	 to	 its	 right	 that’s	 actual	 size.	 The	 zoomed	 square	 is	 where	 the	 editing
takes	 place.	New	 icons	 appear	 as	 solid	 green	with	 a	 black	 square	 surrounding
each	pixel	representation.	The	pixels	(small	squares)	are,	of	course,	eight	times
actual	 size	 like	 the	 square	 itself	 for	 ease	 of	 editing.	 The	 green	 color	 is	 not
actually	 the	 starting	 color	 of	 the	 icon,	 but	 instead	 represents	 the	 transparent
“color”	(whatever	is	behind	this	green	color	on	the	screen	will	be	seen).

The	basic	idea	of	IconEdit	is	to	draw	an	icon	in	the	32	x	32	grid	displayed.	You

can	draw	single	points,	lines,	open	rectangles	and	ovals,	and	filled	rectangles	and
ovals.	Various	colors	are	available.	Once	completed,	 the	icon	file	can	be	saved
for	 attaching	 to	 a	 form.	 IconEdit	 has	 a	 tool	 bar	 that	 consists	 of	 eight	 tools:
capture	 (we	 won’t	 talk	 about	 this	 one),	 pencil,	 fill,	 line,	 hollow	 and	 filled
rectangle,	 and	hollow	and	 filled	 ellipse.	These	will	 be	 familiar	 to	 anyone	who
has	 used	 a	 paint	 program	and	on-line	 help	 is	 available.	The	 default	 tool	when
you	start	editing	an	icon	is	the	pencil,	since	this	is	the	tool	you’ll	probably	use
the	 most.	 The	 pencil	 let’s	 you	 color	 one	 pixel	 at	 a	 time.	 To	 change	 a	 pixel,
simply	place	the	point	of	the	pencil	cursor	over	a	pixel	in	the	big	editing	square
and	 click.	 You	 can	 pencil-draw	 several	 pixels	 at	 once	 by	 dragging	 the	 pencil
over	an	area.

To	change	editing	tools,	simply	click	the	tool	button	of	your	choice.	The	fill	tool
(represented	 by	 a	 paint	 can)	will	 color	 the	 pixel	 you	 point	 to	 and	 all	 adjacent
pixels	of	the	same	color	with	the	color	you’ve	selected.	The	remaining	five	tools
all	operate	in	the	same	way.	You	click	and	hold	the	mouse	button	at	the	starting
pixel	 position,	 drag	 the	 mouse	 to	 an	 ending	 position,	 and	 release	 the	 mouse
button.	 For	 example,	 to	 draw	 a	 line,	 click	 and	 hold	 the	 mouse	 button	 on	 the
starting	point	for	the	line	and	drag	to	the	ending	point.	As	you	drag,	the	line	will
stretch	between	where	you	 started	and	 the	 current	 ending	position.	Only	when
you	release	the	mouse	button	will	the	line	be	permanently	drawn.	For	a	rectangle
or	an	ellipse,	drag	from	one	corner	to	the	opposite	corner.	You	control	the	color
that	the	tool	uses	by	pressing	either	the	left	or	right	mouse	button.

The	 two	 large	color	squares	 right	under	 the	 tools	are	 the	current	colors	 for	 the
left	 and	 right	 mouse	 buttons,	 respectively.	 When	 you	 start	 IconEdit,	 the	 left
mouse	 button	 color	 is	 black	 and	 the	 right	mouse	 button	 color	 is	white.	 If	 you
click	with	the	left	mouse	button	on	a	pixel	with	the	pencil	tool,	for	example,	the
pixel	will	 turn	black.	Click	with	 the	right	mouse	button	and	 the	pixel	will	 turn
white.	To	change	the	default	colors,	click	on	one	of	the	16	colors	in	the	palette
just	 below	 the	 current	 color	 boxes	 with	 either	 the	 left	 or	 right	 mouse	 button.
Clicking	on	a	palette	color	with	the	left	button	will	change	the	left	button	color
and	 a	 right	 button	 click	 will	 change	 the	 right	 button	 color.	 You	 can	 pick	 the
transparent	 “color”	 at	 the	 bottom	 of	 the	 editor	 if	 you	 want	 a	 pixel	 to	 be
transparent.

Try	 drawing	 an	 icon	 using	 IconEdit.	 It’s	 really	 pretty	 easy.	 Once	 you	 have
finished	your	icon,	save	it.	Click	File,	then	Save.	Icon	files	are	special	graphics

files	 saved	 with	 an	 ico	 extension.	 The	 save	 window	 is	 just	 like	 the	 window
you’ve	 used	 to	 save	 files	 in	 other	Windows	 programs.	 Remember	 where	 you
saved	your	icon	(usually	in	your	project	folder).

With	IconEdit,	you	can	now	customize	your	games	with	your	own	icons.	And,
another	fun	thing	to	do	is	load	in	other	icon	files	you	find	(click	File,	then	Open)
and	see	how	much	artistic	talent	really	goes	into	creating	an	icon.	You	can	even
modify	these	other	icons	and	save	them	for	your	use.

I	 found	 an	 icon	 on	 the	 Internet	 to	 use	 with	 the	 Snowball	 Toss	 game	 –	 a
snowflake!!.	 The	 file	 snowflake.ico	 is	 included	 in	 the	 \HomeJava\HomeJava
Projects\Snowball	Toss	Projects\	folder.	When	you	open	this	file	in	IconEdit,
you	 can	 see	 the	 detail	 in	 the	 icon:	

We’ll	now	use	this	icon	to	help	your	user	run	the	game.

Running	a	Project	on	Another
Computer	As	mentioned,	users	of	your	program	need	to	copy	the	files
you	give	them	into	a	folder	of	their	choice.	Once	done,	they	should	do	one	or
both	of	these	steps	to	make	it	easier	to	run	the	project:

1.	Add	a	shortcut	to	the	computer	desktop.
2.	Add	a	shortcut	to	the	All	Programs	item	on	the	Start	menu.

Let’s	 see	 how	 to	 do	 both	 of	 these	 steps	 with	 our	 example.	 We	 do	 this	 for
Windows	7.	The	steps	are	similar	for	other	versions	of	Windows.

I	 copied	 all	 the	 needed	 files	 to	 a	 folder	 named	 MySnowballToss	 on	 my
computer.	 Examining	 the	 files	 in	 that	 folder,	 I	 see:	

To	 create	 a	 shortcut	 to	 the	 executable	 file,	 right-click	 SnowballToss.jar	 and
choose	 Create	 Shortcut.	 The	 shortcut	 will	 appear	 in	 the	 folder:	

Give	the	shortcut	an	appropriate	name	(I	used	Snowball	Toss).

To	move	the	shortcut	to	the	desktop,	right-click	the	shortcut	and	choose	Copy.
Then,	navigate	to	your	computer’s	desktop.	Right-click	the	desktop	and	choose

Paste.	The	shortcut	will	appear	on	the	desktop:	

Let’s	 change	 the	 icon.	 Right-click	 the	 shortcut	 and	 choose	 Properties.	 This

window	appears:	

Click	 the	Change	 Icon	 button.	Navigate	 to	 your	 project	 folder	 and	 select	 the
snowflake.ico	 file.	 Close	 out	 the	 properties	 window	 and	 the	 desktop	 shortcut

should	now	appear	as:	

If	you	double-click	this	icon,	the	Snowball	Toss	game	will	begin.

To	add	the	program	shortcut	to	the	All	Programs	item	on	the	Start	menu,	Click
Start,	then	select	All	Programs.	Right-click	All	Programs	and	select	Open.

Open	 the	Programs	 folder.	 All	 programs	 in	 the	All	Programs	 menu	 will	 be
listed.	Copy	and	paste	the	desktop	shortcut	to	Snowball	Toss	into	this	folder.

The	Start	menu	will	now	contain	the	project	shortcut.	To	see	it,	click	Start,	then

choose	All	Programs:	

Click	Snowball	Toss	and	the	game	begins.

Your	 user	 now	 has	 two	 ways	 to	 run	 the	 project	 on	 their	 computer	 –	 via	 the
desktop	or	via	the	Programs	menu.	If	you	ever	modify	your	program,	you	will
need	 to	provide	your	user	with	 a	new	copy	of	 the	 jar	 file	 (and	 any	 additional
files	that	may	have	changed).

Appendix
Installing	Java	and	NetBeans

Downloading	and	Installing	Java	To	write	and	run	programs	using	Java,
you	need	the	Java	Development	Kit	(JDK)	and	the	NetBeans	Integrated
Development	Environment	(IDE).	These	are	free	products	that	you	can
download	from	the	Internet.	This	simply	means	we	will	copy	a	file	onto	our
computer	to	allow	installation	of	Java.

1.	Start	up	your	web	browser	(Internet	Explorer,	Chrome,	Firefox,	Safari	or	other
browser)	 and	 go	 to	 Java	 web	 site:
http://www.oracle.com/technetwork/java/javase/downloads/index.html

This	 web	 site	 has	 lots	 of	 useful	 Java	 information.	 As	 you	 become	 more
proficient	in	your	programming	skills,	you	will	go	to	this	site	often	for	answers
to	programming	questions,	interaction	with	other	Java	programmers,	and	lots	of
sample	programs.

2.	 On	 this	 web	 page,	 you	 should	 see	 a	 button	 that	 looks	 something	 like	 this	

NetBeans	with	JDK	8

This	button	downloads	both	NetBeans	(Version	8.0)	with	JDK	(Version	8).

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Once	 on	 the	 page	with	 the	 JDK	download	 links,	 accept	 the	 license	 agreement
and	choose	the	link	corresponding	to	your	computer’s	operating	system.

For	Microsoft	Windows:	click	on	the	Windows	version	that	corresponds	with
your	 specific	 Operating	 System.	 In	 these	 notes,	 I	 will	 be	 downloading	 and
installing	the	Windows	64	bit	version	of	the	JDK	because	I	am	currently	using	a
brand	new	system	with	the	64	Bit	version	of	Windows.	Select	the	Windows	x86
version	if	you	are	using	the	older	32	Bit	version	of	Windows	like	Windows
Vista	on	a	tablet	or	older	PC	or	laptop	computer.

Instructions	for	 installing	Java	on	other	platforms	such	as	Linux	or	Solaris	can
also	be	 found	on	 the	website.	My	screenshots	 in	 these	notes	will	be	Microsoft
Windows.

For	Mac	OS:	click	on	the	Mac	OS	X	x64	click	to	download	for	your	Operating
System.

3.	 You	 will	 be	 asked	 if	 you	 want	 to	Run	 a	 file.	 Click	Yes.	 The	 Installation
begins.

4.	 The	 Java	 installer	will	 unpack	 some	 files	 and	 an	 introductory	window	will
appear:	For	Linux	OS:	click	on	the	Linux	version	that	corresponds	with	your
specific	Operating	System.	If	you	are	using	Linux	on	a	x64	bit	platform	click
on	Linux	x64.

Click	Next	 to	 start	 the	 installation.	 Several	windows	will	 appear	 in	 sequence.
Accept	the	default	choices	by	clicking	Next	at	each	window.

When	 complete	 (it	 will	 take	 a	 while),	 you	 will	 see	 this	 window:	

Click	Finish	and	the	installation	will	complete.

Running	NetBeans	You	now	have	Java	and	the	NetBeans	IDE	installed	on
your	computer.	All	of	our	programming	work	will	be	done	using	NetBeans.
Let’s	make	sure	NetBeans	installed	correctly.	To	start	using	NetBeans	under
Microsoft	Windows,

•	Click	on	the	Start	button	on	the	Windows	task	bar.
•	Select	All	Programs,	then	NetBeans	•	Click	on	NetBeans	IDE	8.0

To	start	using	NetBeans	under	the	MAC	OS,

•	Click	on	the	Finder	and	go	to	the	Applications	Folder.
•	Open	the	NetBeans	folder	•	Click	on	NetBeans	IDE	8.0

Some	of	the	headings	given	here	may	differ	slightly	on	your	computer,	but	you
should	have	no	trouble	finding	the	correct	ones.	You	can	also	start	NetBeans	by

double-clicking	 the	 desktop	 icon.	 The	NetBeans	 program	 should	 start	 (several
windows	and	menus	will	appear).

We	will	 learn	more	 about	NetBeans	 in	 the	 notes.	 For	 now,	we	want	 to	make
some	formatting	changes.

In	 Java	 programming,	 indentations	 in	 the	 code	we	write	 are	 used	 to	 delineate
common	 blocks.	 The	 NetBeans	 IDE	 uses	 four	 spaces	 for	 indentations	 as	 a
default.	 This	 author	 (and	 these	 notes)	 uses	 two	 spaces.	 To	make	 this	 change,
choose	 the	Tools	 menu	 item	 and	 click	Options.	 In	 the	 window	 that	 appears,
choose	 the	 Editor	 option	 and	 the	 Format	 tab:	

As	 shown,	 choose	 the	 Tabs	 and	 Indents	Category	 and	 set	 the	Number	 of
Spaces	per	Indent	to	2.

Before	 leaving	 this	 window,	 we	 make	 another	 change.	 Braces	 (curly
brackets)	 are	 used	 to	 start	 and	 stop	 blocks	 of	 code.	We	 choose	 to	 have	 these
brackets	always	be	on	a	separate	line	–	it	makes	checking	code	much	easier.

As	 shown,	 choose	 the	Braces	Category	 and	 under	Braces	Placement,	 set	 all
choices	to	New	Line.	Click	Apply,	then	OK.	Stop	NetBeans	–	you’re	ready	to
go!

More	Self-Study	or	Instructor-Led	Computer
Programming	Tutorials	by	Kidware	Software

Java™	For	Kids	 is	 a	 beginning	 programming	 tutorial	 consisting	 of	 10	 chapters	 explaining	 (in	 simple,
easy-to-follow	terms)	how	to	build	a	Java	application.	Students	learn	about	project	design,	object-oriented
programming,	 console	 applications,	 graphics	 applications	 and	 many	 elements	 of	 the	 Java	 language.
Numerous	 examples	 are	 used	 to	 demonstrate	 every	 step	 in	 the	 building	 process.	 The	 projects	 include	 a
number	guessing	game,	a	card	game,	an	allowance	calculator,	a	state	capitals	game,	Tic-Tac-Toe,	a	simple
drawing	program,	and	even	a	basic	video	game.	Designed	for	kids	ages	12	and	up.

Learn	Java™	GUI	Applications	 is	a	9	 lesson	Tutorial	covering	object-oriented	programming	concepts,
using	an	integrated	development	environment	to	create	and	test	Java	projects,	building	and	distributing	GUI
applications,	understanding	and	using	the	Swing	control	library,	exception	handling,	sequential	file	access,
graphics,	multimedia,	advanced	topics	such	as	printing,	and	help	system	authoring.	Our	Beginning	Java	or
Java	For	Kids	tutorial	is	a	pre-requisite	for	this	tutorial

http://www.computerscienceforkids.com/java/
http://www.computerscienceforkids.com/java/

Java™	Homework	Projects	is	a	Java	GUI	Swing	tutorial	covering	object-oriented	programming	concepts.
It	 explains	 (in	 simple,	 easy-to-follow	 terms)	 how	 to	 build	 Java	 GUI	 project	 to	 use	 around	 the	 home.
Students	learn	about	project	design,	the	Java	Swing	controls,	many	elements	of	the	Java	language,	and	how
to	distribute	finished	projects.	The	projects	built	 include	a	Dual-Mode	Stopwatch,	Flash	Card	Math	Quiz,
Multiple	Choice	Exam,	Blackjack	Card	Game,	Weight	Monitor,	Home	Inventory	Manager	and	a	Snowball
Toss	 Game.	 Our	 Learn	 Java	 GUI	 Applications	 tutorial	 is	 a	 pre-requisite	 for	 this	 tutorial	

Beginning	 Java™	 is	 a	 semester	 long	 "beginning"	 programming	 tutorial	 consisting	 of	 10	 chapters
explaining	(in	simple,	easy-to-follow	terms)	how	to	build	a	Java	application.	The	tutorial	includes	several
detailed	computer	projects	 for	students	 to	build	and	 try.	These	projects	 include	a	number	guessing	game,
card	game,	allowance	calculator,	drawing	program,	state	capitals	game,	and	a	couple	of	video	games	like
Pong.	We	also	include	several	college	prep	bonus	projects	 including	a	loan	calculator,	portfolio	manager,
and	checkbook	balancer.	Designed	for	students	age	15	and	up.

http://www.computerscienceforkids.com/java/
http://www.computerscienceforkids.com/java/
http://www.computerscienceforkids.com/java/

Programming	Games	with	Java™	 is	a	semester	long	"intermediate"	programming	tutorial	consisting	of
10	chapters	explaining	(in	simple,	easy-to-follow	terms)	how	to	build	a	Visual	C#	Video	Games.	The	games
built	are	non-violent,	family-friendly	and	teach	logical	thinking	skills.	Students	will	learn	how	to	program
the	 following	 Visual	 C#	 video	 games:	 Safecracker,	 Tic	 Tac	 Toe,	 Match	 Game,	 Pizza	 Delivery,	 Moon
Landing,	 and	Leap	Frog.	This	 intermediate	 level	 self-paced	 tutorial	 can	 be	 used	 at	 home	or	 school.	The
tutorial	 is	 simple	 enough	 for	 kids	 yet	 engaging	 enough	 for	 beginning	 adults.	 Our	 Learn	 Java	 GUI
Applications	tutorial	is	a	required	pre-requisite	for	this	tutorial.

Small	Basic	For	Kids	is	an	illustrated	introduction	to	computer	programming	that	provides	an	interactive,
self-paced	tutorial	to	the	new	Small	Basic	programming	environment.	The	book	consists	of	30	short	lessons
that	explain	how	to	create	and	run	a	Small	Basic	program.	Elementary	students	learn	about	program	design
and	many	elements	of	the	Small	Basic	language.	Numerous	examples	are	used	to	demonstrate	every	step	in
the	 building	 process.	 The	 tutorial	 also	 includes	 two	 complete	 games	 (Hangman	 and	 Pizza	 Zapper)	 for
students	to	build	and	try.	Designed	for	kids	ages	8+.

Programming	Games	with	Microsoft	Small	Basic	 is	a	 self-paced	second	semester	“intermediate"	 level
programming	 tutorial	consisting	of	10	chapters	explaining	 (in	simple,	easy-to-follow	 terms)	how	 to	write
video	games	in	Microsoft	Small	Basic.	The	games	built	are	non-violent,	family-friendly,	and	teach	logical
thinking	skills.	Students	will	learn	how	to	program	the	following	Small	Basic	video	games:	Safecracker,	Tic
Tac	Toe,	Match	Game,	Pizza	Delivery,	Moon	Landing,	and	Leap	Frog.	This	intermediate	level	self-paced
tutorial	can	be	used	at	home	or	school.

http://www.computerscienceforkids.com/microsoft-small-basic
http://www.computerscienceforkids.com/microsoft-small-basic

The	Developer’s	Reference	Guide	to	Microsoft	Small	Basic	While	developing	all	the	different	Microsoft
Small	Basic	tutorials	we	found	it	necessary	to	write	The	Developer's	Reference	Guide	to	Microsoft	Small
Basic.	The	Developer's	Reference	Guide	to	Microsoft	Small	Basic	is	over	500	pages	long	and	includes	over
100	Small	Basic	programming	examples	 for	you	 to	 learn	 from	and	 include	 in	your	own	Microsoft	Small
Basic	programs.	It	is	a	detailed	reference	guide	for	new	developers.

Basic	Computer	Games	-	Small	Basic	Edition	is	a	re-make	of	the	classic	BASIC	COMPUTER	GAMES
book	 originally	 edited	 by	 David	 H.	 Ahl.	 It	 contains	 100	 of	 the	 original	 text	 based	 BASIC	 games	 that
inspired	 a	 whole	 generation	 of	 programmers.	 Now	 these	 classic	 BASIC	 games	 have	 been	 re-written	 in
Microsoft	Small	Basic	 for	 a	new	generation	 to	enjoy!	The	new	Small	Basic	games	 look	and	act	 like	 the
original	text	based	games.	The	book	includes	all	the	original	spaghetti	code	and	GOTO	commands!

The	 Beginning	Microsoft	 Small	 Basic	 Programming	 Tutorial	 is	 a	 self-study	 first	 semester	 "beginner"
programming	 tutorial	consisting	of	11	chapters	explaining	 (in	simple,	easy-to-follow	 terms)	how	 to	write
Microsoft	Small	Basic	programs.	Numerous	examples	are	used	 to	demonstrate	every	step	 in	 the	building

http://www.computerscienceforkids.com/microsoft-small-basic
http://www.computerscienceforkids.com/microsoft-small-basic
http://www.computerscienceforkids.com/microsoft-small-basic

process.	The	 last	 chapter	 of	 this	 tutorial	 shows	 you	 how	 four	 different	 Small	Basic	 games	 could	 port	 to
Visual	Basic,	Visual	C#	and	Java.	This	beginning	level	self-paced	tutorial	can	be	used	at	home	or	at	school.
The	tutorial	is	simple	enough	for	kids	ages	10+	yet	engaging	enough	for	adults.

Programming	Home	Projects	with	Microsoft	Small	Basic	is	a	self-paced	programming	tutorial	explains
(in	 simple,	 easy-to-follow	 terms)	 how	 to	 build	 Small	 Basic	Windows	 applications.	 Students	 learn	 about
program	design,	Small	Basic	objects,	many	elements	of	the	Small	Basic	language,	and	how	to	debug	and
distribute	finished	programs.	Sequential	file	input	and	output	is	also	introduced.	The	projects	built	include	a
Dual-Mode	 Stopwatch,	 Flash	 Card	 Math	 Quiz,	 Multiple	 Choice	 Exam,	 Blackjack	 Card	 Game,	 Weight
Monitor,Home	Inventory	Manager	and	a	Snowball	Toss	Game.

David	Ahl's	Small	Basic	Computer	Adventures	is	a	Microsoft	Small	Basic	re-make	of	the	classic	Basic
Computer	 Games	 programming	 book	 originally	 written	 by	 David	 H.	 Ahl.	 This	 new	 book	 includes	 the
following	classic	adventure	simulations;	Marco	Polo,	Westward	Ho!,	The	Longest	Automobile	Race,	The
Orient	Express,	Amelia	Earhart:	Around	the	World	Flight,	Tour	de	France,	Subway	Scavenger,	Hong	Kong
Hustle,	 and	Voyage	 to	Neptune.	 Learn	 how	 to	 program	 these	 classic	 computer	 simulations	 in	Microsoft
Small	Basic.

http://www.computerscienceforkids.com/microsoft-small-basic
http://www.computerscienceforkids.com/microsoft-small-basic

Visual	 Basic®	 For	 Kids	 is	 a	 beginning	 programming	 tutorial	 consisting	 of	 10	 chapters	 explaining	 (in
simple,	 easy-to-follow	 terms)	 how	 to	 build	 a	 Visual	 Basic	 Windows	 application.	 Students	 learn	 about
project	 design,	 the	 Visual	 Basic	 toolbox,	 and	many	 elements	 of	 the	 BASIC	 language.	 The	 tutorial	 also
includes	several	detailed	computer	projects	for	students	to	build	and	try.	These	projects	include	a	number
guessing	game,	a	card	game,	an	allowance	calculator,	a	drawing	program,	a	state	capitals	game,	Tic-Tac-
Toe	and	even	a	simple	video	game.	Designed	for	kids	ages	12	and	up.

Programming	 Games	 with	 Visual	 Basic®	 is	 a	 semester	 long	 "intermediate"	 programming	 tutorial
consisting	 of	 10	 chapters	 explaining	 (in	 simple,	 easy-to-follow	 terms)	 how	 to	 build	Visual	 Basic	Video
Games.	The	 games	 built	 are	 non-violent,	 family-friendly,	 and	 teach	 logical	 thinking	 skills.	 Students	will
learn	 how	 to	 program	 the	 following	Visual	Basic	 video	 games:	Safecracker,	Tic	Tac	Toe,	Match	Game,
Pizza	Delivery,	Moon	Landing,	and	Leap	Frog.	This	 intermediate	 level	self-paced	 tutorial	can	be	used	at
home	or	school.	The	tutorial	is	simple	enough	for	kids	yet	engaging	enough	for	beginning	adults.

https://www.computerscienceforkids.com/visual-basic/
https://www.computerscienceforkids.com/visual-basic/
https://www.computerscienceforkids.com/visual-basic/

LEARN	VISUAL	BASIC	is	acomprehensive	college	prep	programming	tutorial	covering	object-oriented
programming,	 the	Visual	Basic	 integrated	 development	 environment,	 building	 and	 distributing	Windows
applications	using	the	Windows	Installer,	exception	handling,	sequential	file	access,	graphics,	multimedia,
advanced	 topics	 such	 as	 web	 access,	 printing,	 and	 HTML	 help	 system	 authoring.	 The	 tutorial	 also
introduces	database	applications	(using	ADO	.NET)	and	web	applications	(using	ASP.NET).

Beginning	Visual	Basic®	is	a	semester	long	self-paced	"beginner"	programming	tutorial	consisting	of	10
chapters	 explaining	 (in	 simple,	 easy-to-follow	 terms)	 how	 to	 build	 a	Visual	Basic	Windows	 application.
The	tutorial	includes	several	detailed	computer	projects	for	students	to	build	and	try.	These	projects	include
a	 number	 guessing	 game,	 card	 game,	 allowance	 calculator,	 drawing	 program,	 state	 capitals	 game,	 and	 a
couple	 of	 video	 games	 like	 Pong.	We	 also	 include	 several	 college	 prep	 bonus	 projects	 including	 a	 loan
calculator,	portfolio	manager,	and	checkbook	balancer.	Designed	for	students	age	15	and	up.

Visual	 Basic®	 Homework	 Projects	 is	 a	 semester	 long	 self-paced	 programming	 tutorial	 explains	 (in
simple,	easy-to-follow	terms)	how	to	build	a	Visual	Basic	Windows	project.	Students	 learn	about	project
design,	 the	 Visual	 Basic	 toolbox,	 many	 elements	 of	 the	 Visual	 Basic	 language,	 and	 how	 to	 debug	 and
distribute	 finished	 projects.	 The	 projects	 built	 include	 a	 Dual-Mode	 Stopwatch,	 Flash	 Card	Math	 Quiz,
Multiple	Choice	Exam,	Blackjack	Card	Game,	Weight	Monitor,Home	Inventory	Manager	and	a	Snowball
Toss	Game.

https://www.computerscienceforkids.com/visual-basic/
https://www.computerscienceforkids.com/visual-basic/

VISUAL	BASIC	AND	DATABASES	 is	 a	 tutorial	 that	 provides	 a	 detailed	 introduction	 to	 using	Visual
Basic	for	accessing	and	maintaining	databases	for	desktop	applications.	Topics	covered	 include:	database
structure,	database	design,	Visual	Basic	project	building,	ADO	.NET	data	objects	(connection,	data	adapter,
command,	 data	 table),	 data	 bound	 controls,	 proper	 interface	 design,	 structured	 query	 language	 (SQL),
creating	databases	using	Access,	SQL	Server	and	ADOX,	and	database	reports.	Actual	projects	developed
include	a	book	tracking	system,	a	sales	 invoicing	program,	a	home	inventory	system	and	a	daily	weather
monitor.

Visual	C#®	For	Kids	is	a	beginning	programming	tutorial	consisting	of	10	chapters	explaining	(in	simple,
easy-to-follow	terms)	how	to	build	a	Visual	C#	Windows	application.	Students	learn	about	project	design,
the	Visual	C#	toolbox,	and	many	elements	of	the	C#	language.	Numerous	examples	are	used	to	demonstrate
every	step	in	the	building	process.	The	projects	include	a	number	guessing	game,	a	card	game,	an	allowance
calculator,	a	drawing	program,	a	state	capitals	game,	Tic-Tac-Toe	and	even	a	simple	video	game.	Designed
for	kids	ages	12+.

https://www.computerscienceforkids.com/visual-basic/
https://www.computerscienceforkids.com/visual-c/
https://www.computerscienceforkids.com/visual-c/

Programming	Games	with	Visual	C#®	is	a	semester	long	"intermediate"	programming	tutorial	consisting
of	10	chapters	explaining	 (in	 simple,	easy-to-follow	 terms)	how	 to	build	a	Visual	C#	Video	Games.	The
games	 built	 are	 non-violent,	 family-friendly	 and	 teach	 logical	 thinking	 skills.	 Students	will	 learn	 how	 to
program	 the	 following	Visual	C#	video	 games:	 Safecracker,	Tic	Tac	Toe,	Match	Game,	Pizza	Delivery,
Moon	Landing,	and	Leap	Frog.	This	intermediate	level	self-paced	tutorial	can	be	used	at	home	or	school.

The	tutorial	is	simple	enough	for	kids	yet	engaging	enough	for	beginning	adults	
LEARN	VISUAL	C#	 is	 a	 comprehensive	 college	 prep	 computer	 programming	 tutorial	 covering	 object-
oriented	 programming,	 the	 Visual	 C#	 integrated	 development	 environment	 and	 toolbox,	 building	 and
distributing	Windows	applications	(using	the	Windows	Installer),	exception	handling,	sequential	file	input
and	 output,	 graphics,	 multimedia	 effects	 (animation	 and	 sounds),	 advanced	 topics	 such	 as	 web	 access,
printing,	and	HTML	help	system	authoring.	The	tutorial	also	introduces	database	applications	(using	ADO
.NET)	and	web	applications	(using	ASP.NET).

Beginning	 Visual	 C#®	 is	 a	 semester	 long	 “beginning"	 programming	 tutorial	 consisting	 of	 10	 chapters
explaining	(in	simple,	easy-to-follow	terms)	how	to	build	a	C#	Windows	application.	The	tutorial	includes
several	detailed	computer	projects	for	students	to	build	and	try.	These	projects	include	a	number	guessing
game,	card	game,	allowance	calculator,	drawing	program,	state	capitals	game,	and	a	couple	of	video	games
like	 Pong.	 We	 also	 include	 several	 college	 prep	 bonus	 projects	 including	 a	 loan	 calculator,	 portfolio
manager,	and	checkbook	balancer.	Designed	for	students	ages	15+.

https://www.computerscienceforkids.com/visual-c/
https://www.computerscienceforkids.com/visual-c/

Visual	C#®	Homework	Projects	is	a	semester	long	self-paced	programming	tutorial	explains	(in	simple,
easy-to-follow	terms)	how	to	build	a	Visual	C#	Windows	project.	Students	learn	about	project	design,	the
Visual	C#	 toolbox,	many	 elements	 of	 the	Visual	C#	 language,	 and	how	 to	debug	 and	distribute	 finished
projects.	The	projects	built	include	a	Dual-Mode	Stopwatch,	Flash	Card	Math	Quiz,	Multiple	Choice	Exam,
Blackjack	Card	Game,	Weight	Monitor,Home	Inventory	Manager	and	a	Snowball	Toss	Game.

VISUAL	C#	AND	DATABASES	is	a	tutorial	that	provides	a	detailed	introduction	to	using	Visual	C#	for
accessing	and	maintaining	databases	for	desktop	applications.	Topics	covered	 include:	database	structure,
database	design,	Visual	C#	project	building,	ADO	.NET	data	objects	(connection,	data	adapter,	command,
data	 table),	 data	 bound	 controls,	 proper	 interface	 design,	 structured	 query	 language	 (SQL),	 creating
databases	using	Access,	SQL	Server	and	ADOX,	and	database	reports.	Actual	projects	developed	include	a
book	tracking	system,	a	sales	invoicing	program,	a	home	inventory	system	and	a	daily	weather	monitor.

https://www.computerscienceforkids.com/visual-c/
https://www.computerscienceforkids.com/visual-c/

	Course Description
	System Requirements
	Course Prerequisites
	Installing and Using the Downloadable Solution Files
	Using Java Homework Projects
	Forward by Alan Payne, A Computer Science Teacher
	1. Introduction
	Preview
	Introducing Java Homework Projects
	Requirements for Java Homework Projects
	Testing the Installation
	Getting Help with a Java Program
	Structure of a Java Program
	Structure of a Java GUI Application
	Swing Controls
	Stopwatch - Creating a Java Project with NetBeans
	Stopwatch - Create a Frame
	Saving Java Projects with NetBeans
	NetBeans and Java Files
	Create the User Interface
	Stopwatch - Adding Controls
	Adding Event Methods
	Stopwatch - Writing Code
	Chapter Review
	2. Dual-Mode Stopwatch Project
	Review and Preview
	Project Design Considerations
	Dual-Mode Stopwatch Project Preview
	Frame Design – GridBagLayout Manager
	Stopwatch Frame Design
	Code Design – Initial to Running State
	Code Design – Timer Object
	Code Design – Update Display
	Code Design – Running to Stopped State
	Code Design – Stopped State
	Dual-Mode Stopwatch Project Review
	Dual-Mode Stopwatch Project Enhancements
	Dual-Mode Stopwatch Project Java Code Listing
	3. Consumer Loan Assistant Project
	Review and Preview
	Consumer Loan Assistant Project Preview
	Loan Assistant Frame Design
	Code Design – Switching Modes
	Frame Design – Focus Traversal
	Code Design – Computing Monthly Payment
	Code Design – Computing Number of Payments
	Code Design – Loan Analysis
	Code Design – New Loan Analysis
	Improving a Java Project
	Code Design – Zero Interest
	Code Design – Focus Transfer
	Code Design – Input Validation
	Confirm Dialog
	Code Design – User Messages
	Consumer Loan Assistant Project Review
	Consumer Loan Assistant Project Enhancements
	Consumer Loan Assistant Project Java Code Listing
	4. Flash Card Math Quiz Project
	Review and Preview
	Flash Card Math Quiz Project Preview
	Flash Card Math Frame Design
	Code Design – Start Practice
	Code Design – Problem Generation
	Code Design – Obtaining Answer
	Code Design – Choosing Problem Type and Factor
	Code Design – Timing Options
	Code Design – Presenting Results
	Flash Card Math Quiz Project Review
	Flash Card Math Quiz Project Enhancements
	Flash Card Math Quiz Project Java Code Listing
	5. Multiple Choice Exam Project
	Review and Preview
	Multiple Choice Exam Project Preview
	Multiple Choice Exam Frame Design
	Frame Design – Menu Options
	Frame Design – Initialization
	Code Design – Exam File Format
	Code Design – Generating Exam Files
	Code Design – Opening an Exam File
	Code Design – Reading an Exam File
	Code Design – Centering Comment Text
	Code Design – Error Trapping and Handling
	Frame Design – Selecting Options
	Code Design – Start Exam
	Code Design – Question Generation
	Code Design – Checking Multiple Choice Answers
	Code Design – Checking Type In Answers
	Code Design – Checking Spelling
	Code Design – Presenting Results
	Multiple Choice Exam Project Review
	Multiple Choice Exam Project Enhancements
	Multiple Choice Exam Project Java Code Listing
	6. Blackjack Card Game Project
	Review and Preview
	Blackjack Card Game Project Preview
	Blackjack Frame Design
	Code Design – Card Definition
	Code Design – Card Shuffle
	Code Design – Start New Game
	Code Design – Start New Hand
	Code Design – End Hand
	Code Design – Display Dealer Card
	Code Design – Display Player Card
	Code Design – Deal New Hand
	Code Design – Player ‘Hit’
	Code Design – Player ‘Stay’
	Blackjack Card Game Project Review
	Blackjack Card Game Project Enhancements
	Blackjack Card Game Java Code Listing
	7. Weight Monitor Project
	Review and Preview
	Weight Monitor Project Preview
	Tabbed Pane Control
	Calendar Controls
	Weight Monitor Frame Design
	Frame Design – Weight Editor Panel
	Code Design – New Weight File
	Code Design – Entering Weights
	Code Design – Editing Weights
	Code Design – Saving Weight Files
	Code Design – Opening Weight Files
	Code Design – Configuration File
	Frame Design – Weight Plot Panel
	Graphics Methods
	Graphics 2D Object
	Stroke and Paint Objects
	Shapes and Drawing Methods
	Line2D Shape
	Rectangle2D Shape
	Persistent Graphics
	Code Design – Panel Plot Area
	Code Design – Weight Plot
	Code Design – Grid Lines
	Code Design – Plot Labels
	Code Design – Weight Plot Trend
	Weight Monitor Project Review
	Weight Monitor Project Enhancements
	Weight Monitor Project Java Code Listing
	8. Home Inventory Manager Project
	Review and Preview
	Home Inventory Manager Project Preview
	Home Inventory Manager Frame Design
	Frame Design – Toolbar
	Frame Design – Entry Controls
	Frame Design – Search Panel
	Frame Design – Photo Panel
	Form Design – Tab Order and Focus
	Introduction to Object-Oriented Programming
	Code Design – InventoryItem Class
	Code Design – Inventory File Input
	Code Design – Viewing Inventory Item
	Code Design – Viewing Photo
	Code Design – Item Navigation
	Code Design – Inventory File Output
	Code Design – Input Validation
	Code Design – New Inventory Item
	Code Design – Deleting Inventory Items
	Code Design – Editing Inventory Items
	Code Design – Inventory Item Search
	Printing with Java
	Printing Document Pages
	Code Design – Printing the Inventory
	Home Inventory Manager Project Preview
	Home Inventory Manager Project Enhancements
	Home Inventory Manager Java Code Listing
	9. Snowball Toss Game Project
	Review and Preview
	Snowball Toss Game Project Preview
	Snowball Toss Game Frame Design
	Frame Design – Choosing Options
	Code Design – Configuration Files
	Animation with Java
	Drawing Images with IconEdit
	Displaying Icons with Java
	Code Design – Sprite Class
	Code Design – Start/Stop Game
	Code Design – Moving the Tossers
	Code Design – MovingSprite Class
	Code Design – Throwing Snowballs
	Code Design – Collision Detection
	Code Design – Zombie Snowmen
	Code Design – Playing Sounds
	Code Design – One Player Game
	Snowball Toss Game Project Review
	Snowball Toss Game Project Enhancements
	Snowball Toss Game Project Java Code Listing
	Appendix. Distributing a Java Project
	Preview
	Executable jar Files
	Creating a jar File in NetBeans
	Application Icons
	Using IconEdit
	Running a Project on Another Computer
	Appendix. Installing Java and NetBeans
	More Self-Study or Instructor-Led Computer Programming Tutorials by Kidware Software

