

	

	

JAVA

	

A	Beginner’s	Guide	to	Learning	the	Basics	of	Java

Programming

	

By	James	Patrick

	

©	Copyright	2015	by	James	Patterson	–	All	rights	reserved.

	

In	no	way	is	it	legal	to	reproduce,	duplicate,	or	transmit	any	part	of	this	document	in	either
electronic	means	or	in	printed	format.	Recording	of	this	publication	is	strictly	prohibited
and	any	storage	of	this	document	is	not	allowed	unless	with	written	permission	from	the
publisher.	All	rights	reserved.

	

The	information	provided	herein	is	stated	to	be	truthful	and	consistent,	in	that	any	liability,
in	terms	of	inattention	or	otherwise,	by	any	usage	or	abuse	of	any	policies,	processes,	or
directions	contained	within	is	 the	solitary	and	utter	responsibility	of	 the	recipient	reader.
Under	 no	 circumstances	 will	 any	 legal	 responsibility	 or	 blame	 be	 held	 against	 the
publisher	 for	 any	 reparation,	 damages,	 or	monetary	 loss	 due	 to	 the	 information	 herein,
either	directly	or	indirectly.

	

Respective	author	own	all	copyrights	not	held	by	the	publisher.

	

Legal	Notice:

	

This	 book	 is	 copyright	 protected.	 This	 is	 only	 for	 personal	 use.	 You	 cannot	 amend,
distribute,	sell,	use,	quote	or	paraphrase	any	part	of	the	content	within	this	book	without
the	 consent	 of	 the	 author	 or	 copyright	 owner.	 Legal	 action	 will	 be	 pursued	 if	 this	 is
breached.

	

Disclaimer	Notice:

	

Please	 note	 the	 information	 contained	 within	 this	 document	 is	 for	 educational	 and
entertainment	purposes	only.	Every	attempt	has	been	made	to	provide	accurate,	up	to	date
and	 reliable	 complete	 information.	No	warranties	 of	 any	kind	 are	 expressed	or	 implied.
Readers	acknowledge	that	the	author	is	not	engaging	in	the	rendering	of	legal,	financial,
medical	or	professional	advice.

	

By	 reading	 this	 document,	 the	 reader	 agrees	 that	 under	 no	 circumstances	 are	 we
responsible	for	any	losses,	direct	or	indirect,	which	are	incurred	as	a	result	of	the	use	of
information	 contained	 within	 this	 document,	 including,	 but	 not	 limited	 to,	 -	 errors,
omissions,	or	inaccuracies.

TABLE	OF	CONTENTS

	

Chapter	1	–	Introduction	to	Java	Programming

Chapter	2	–	Getting	Started

Chapter	3	–	Java	Variables

Chapter	4	–	Control	Flow

Chapter	5	–	Java	Arrays

Chapter	6	–	Java	String	Methods

Conclusion

	

	

Chapter	1	–	Introduction	to	Java	Programming

	

With	Object	Oriented	Programming	such	as	Java,	it	is	possible	today	to	organize	complex
and	 large	 programs	 through	 encapsulation,	 polymorphism,	 inheritance,	 objects,	 and
classes.

	

For	many	 years,	C++	 used	OOP	 language.	With	 the	 rise	 of	 the	World	Wide	Web,	 Java
programming	 became	 more	 popular,	 especially	 in	 the	 development	 of	 consumer
electronics	such	as	television,	microwaves,	and	more.

	

Computer	experts	devoted	a	lot	of	their	time	in	trying	to	find	software	that	is	safe,	reliable,
compact,	and	processor	independent.	Java	programming	gradually	progressed	to	become	a
full-pledged	 programming	 language,	 changing	 its	 focus	 from	 consumer	 electronics	 to	 a
wide	range	of	platforms	to	develop	more	powerful	applications.

	

JAVA	PROGRAMMING	–	A	BRIEF	HISTORY

The	Java	Programming	Language	was	developed	in	1991	by	five	computer	experts	–	Ed
Frank,	Mike	Sheridan,	Chris	Warth,	Patrick	Naughton,	and	James	Gosling	who	all	worked
for	Sun	Microsystems	Inc.	It	took	18	months	for	them	to	develop	the	program,	which	was
initially	named	“Oak.”	It	was	renamed	Java	in	1995	because	of	copyright	concerns.

	

The	concept	was	to	create	a	programming	language	that	can	be	used	across	platforms	and
that	could	build	embedded	software	for	consumer	electronics.	The	popular	programming
languages	 at	 the	 time,	C	 and	C++	were	 not	 efficient	 for	 this	 purpose,	 because	 they	 are
dependent	 on	 platform	 as	 the	 programs	 written	 on	 them	 should	 be	 compiled	 first	 for
specific	hardware	before	 launching.	 In	addition,	 the	compiled	code	was	not	efficient	 for
other	processors	and	it	should	be	re-compiled.

	

Hence,	 the	 team	of	 five,	also	known	as	 the	Green	Team,	started	 to	work	on	building	an
easier	programming	language.	They	tinkered	for	a	year	and	a	half	in	creating	a	compact,
platform-independent	programming	 language,	which	can	allow	a	programmer	 to	build	a
code	that	could	run	on	different	processors	under	various	environments.

	

This	led	to	the	development	of	Java.	Simultaneously,	the	World	Wide	Web	and	the	Internet
were	 becoming	 popular.	 The	 web	 programs	 were	 still	 dependent	 on	 platforms,	 and
required	 the	 programs	 that	 could	 operate	 on	 any	 OS	 regardless	 of	 the	 software	 and
hardware	configuration.

	

It	 required	 for	 compact	 and	 small	 programs,	 which	 could	 be	 easily	 carried	 over	 the
network.	 Java	was	 the	 language	 that	 complied	with	 such	 requirements.	Web	developers
soon	 realized	 that	 a	 language	 that	 is	 architectural	 neutral	 such	 as	 Java	 can	 be	 ideal	 for
writing	programs	for	the	web.

	

Hence,	Java	became	more	popular	as	a	programming	language	for	the	World	Wide	Web,
from	 its	 humble	 beginnings	 as	 a	 language	 for	 consumer	 electronics.	 Today,	 Java	 is	 far
from	a	basic	programming	language.	This	is	a	well-developed	technology	that	is	simple,
secure,	 portable,	 platform	 independent,	 multi-threaded,	 object	 oriented,	 distributed,	 and
robust.

	

PRIMARY	FEATURES	OF	JAVA

Simple

	

Java	is	regarded	as	a	simple	language,	because	it	doesn’t	have	complicated	features	such
as	Explicit	memory	allocation,	pointers,	Multiple	inheritance,	and	Operator	overloading.

	

Secure

	

Java	comes	with	a	virtual	firewall	between	the	computer	and	the	application.	Java	codes
are	 restricted	 inside	 the	 Java	 Runtime	 Environment	 (JRE),	 which	 doesn’t	 approve
unauthorized	access	for	the	system	resources.

	

Portable

	

A	 code	 written	 in	 Java	 on	 one	 platform	 could	 run	 on	 another	 platform	 on	 a	 different
machine.	The	 Java	byte	 code	could	be	 transported	 to	 any	platform	 for	operation,	which
makes	java	code	very	portable.

	

Platform	Independent

	

A	platform	refers	to	a	pre-established	set-up	to	run	a	program,	conform	to	its	restrictions,
and	use	 its	 features.	During	 the	compilation	phase,	 the	 java	program	is	converted	 into	a
byte	 code,	which	 could	 be	 used	 to	 any	 platform	 such	 as	Mac/OS,	 Linux,	 or	Windows.
Therefore,	a	program	that	has	been	compiled	on	Linux	can	still	be	used	on	Windows	and
vice	versa.	That	is	why	Java	is	a	platform	independent	programming	language.

	

Multi-threading

	

Java	supports	multi-threading	because	it	allows	a	program	to	perform	several	tasks	all	at
the	same	time.

	

Object	Oriented

	

Java	is	an	object	oriented	programming	language,	because	it	can	organize	programs	as	a
group	of	objects	that	each	represent	an	instance	of	a	class.	The	four	primary	concepts	of
OOP	are:	polymorphism,	inheritance,	encapsulation,	and	abstraction.	You	will	understand
each	concept	as	you	learn	java	programming.

	

Distributed

	

Through	 java	 programming,	 you	 can	 develop	 distributed	 applications.	 Enterprise	 Java
Beans	 (EJB)	 and	 Remote	 Method	 Invocation	 (RMI)	 are	 employed	 for	 developing
distributed	 apps	 using	 Java.	 To	 put	 this	 simply,	 you	 can	 distribute	 java	 programs	 on
several	systems	that	are	linked	to	one	another	through	the	Internet.	Objects	within	a	Java
Virtual	Machine	(JVM)	could	run	protocols	using	a	remote	JVM.

	

Robust

	

Mishandled	runtime	errors	and	memory	management	mistakes	are	the	two	main	problems
which	 cause	 program	 failures.	 Java	 can	 handle	 these	 issues	 with	 high	 efficiency.
Mishandled	runtime	errors	could	be	resolved	through	Exception	Handling	protocol,	while
memory	 management	 mistakes	 could	 be	 resolved	 by	 garbage	 collection,	 which	 is	 an
automatic	de-allocation	of	objects	that	are	already	unnecessary.

	
	

Chapter	2	–	Getting	Started

	

Before	you	can	start	with	Java,	you	need	to	install	everything	that	you	need.	The	struggle
is	real:	you	can	experience	headache	even	before	you	write	a	single	code.	This	chapter	is
intended	 to	 make	 your	 experience	 a	 bit	 easier.	 I	 recommend	 writing	 your	 code	 using
NetBeans,	which	 is	 a	 free	 software	and	one	of	 the	most	popular	 Interface	Development
Environments	 (IDEs).	But	before	you	can	 just	do	 that,	you	need	 to	 install	 the	 important
Java	 files	 and	 components.	 The	 first	 thing	 that	 you	 need	 to	 install	 is	 the	 Java	 Virtual
Machine.

	

THE	JAVA	VIRTUAL	MACHINE

	

As	we	 have	 already	 discussed,	 Java	 is	 platform	 independent,	 so	 it	 can	 be	 used	 on	 any
operating	system.	Hence,	regardless	if	you	are	using	Mac	OS,	Linux,	or	Windows,	it	will
be	all	 the	same	with	Java.	The	Java	Virtual	Machine	(JVM)	 is	 the	main	reason	why	 the
program	could	run	on	any	OS.	The	Virtual	Machine	is	a	program,	which	could	accurately
process	all	your	codes.	Hence,	you	need	to	install	this	program	before	you	can	operate	any
form	of	Java	code.

	

Because	 Java	 is	 owned	 by	 Oracle,	 you	 first	 need	 to	 visit	 the	 company’s	 website	 to
download	 the	 JVM	 or	 also	 known	 as	 the	 JRE	 (Java	 Runtime	 Environment.	 But	 as	 a
shortcut,	you	can	click	on	the	link	below:

	

http://java.com/en/download/index.jsp

	

To	check	if	JRE	is	already	installed	in	your	computer,	just	click	the	link	“Do	I	have	Java?”
that	 you	 can	 find	 beneath	 the	 large	Download	 button	 at	 the	 upper	 portion	 of	 the	 page.
Once	 you	 click	 the	 link,	 your	 PC	 will	 be	 scanned	 to	 find	 if	 you	 have	 the	 JRE.	 A
notification	will	be	sent	to	you	if	you	have	the	JRE	or	not.	If	you	don’t	have	the	JRE,	you
will	be	prompted	to	download	and	install	 it.	But	as	a	shortcut,	you	can	click	on	the	link
below:

	

http://java.com/en/download/manual/jsp

	

The	link	above	will	direct	you	to	a	page	where	you	can	manually	download	the	JRE.	The
page	will	provide	you	with	the	instructions	and	download	links	for	different	OS.

	

After	you	download	and	install	 the	JRE,	you	might	need	to	re-start	your	PC,	before	you
could	use	the	program.

	

THE	JAVA	SOFTWARE	DEVELOPMENT	KIT

	

Even	if	you	have	the	JRE,	you	still	can’t	write	any	program.	The	JRE	will	only	allow	the
Java	 programs	 to	 run	 on	 your	PC.	 In	 order	 to	write	 a	 code	 and	 test	 it	 out,	 you	need	 to
download	and	install	the	Java	Software	Development	Kit.	You	can	download	it	by	clicking
the	link	below:

http://java.com/en/download/index.jsp
http://java.com/en/download/manual/jsp

	

http://www.oracle.com/technetwork/java/index.html

	

It	 is	 recommend	 that	 you	 use	 the	 Java	 Standard	 Edition	 or	 Java	 SE.	 Click	 the	 Top
Downloads	located	on	the	right	of	the	page,	and	you	will	be	redirected	on	a	separate	page
containing	a	list	of	options	for	download.	Since	we	will	use	NetBeans,	you	need	to	find
JDK	8	with	NetBeans.

	

Click	on	the	Download	link,	which	will	direct	you	to	another	page.	Find	the	link	for	your
OS.	But	take	note	that	this	download	requires	about	290	MB	for	Windows	(64	bit).	After
downloading	the	JDK	and	NetBeans,	you	can	install	it	on	your	PC.	In	this	book,	we	will
use	NetBeans	to	write	codes.

	

But	before	using	the	software,	you	first	need	to	understand	how	things	work	in	the	Java
world.

	

http://www.oracle.com/technetwork/java/index.html

THE	JAVA	SYSTEM

	

You	can	use	a	text	editor	to	write	the	actual	code	for	your	program.	NetBeans	provide	a
special	space	for	writing	a	code.	This	code	is	known	as	a	source	code,	and	is	stored	in	a
file	extension	-	.java.	A	special	program	known	as	Javac	will	be	used	to	convert	the	source
code	 into	 a	 byte	 code.	 This	 process	 is	 known	 as	 compiling.	Once	 Javac	 has	 completed
compiling	the	byte	code,	it	will	make	a	new	file	with	the	.class	extension.	When	the	class
file	has	been	generated,	it	could	be	used	on	the	JVM.

	

As	a	summary:

	

The	source	code	is	created	using	the	.java	extension.

	

Compiling	is	processed	through	Javac	and	will	create	a	file	with	.class	extension.

	

Initiate	the	compiled	class.

	

Using	NetBeans,	you	can	easily	compile	and	create	files.	At	the	background	though,	it	will
take	 the	source	codes	and	create	 the	 java	file.	This	will	 run	Javac	and	compile	 the	class
file.	 NetBeans	 will	 then	 run	 the	 program	 inside	 the	 software,	 which	 will	 save	 you	 the
trouble	of	initiating	a	terminal	window	as	well	as	encoding	a	lengthy	series	of	commands.

	

After	understanding	how	Java	works,	you	can	now	run	the	NetBeans	software.

	

THE	NETBEANS	SOFTWARE

	

In	first	running	the	NetBeans	Software,	you	will	see	a	screen	like	this:

	

	

Go	ahead	and	have	a	cup	of	coffee	as	this	is	not	known	for	its	speed.

	

At	 the	 top	of	 the	NetBeans	menu,	you	can	click	on	File>New	Project	 to	 initiate	a	new
project.	The	dialogue	box	below	will	appear:

	

You	need	 to	make	 a	 Java	Application,	 so	 choose	 Java	 under	 the	Categories	menu,	 then
Java	Application	under	the	Projects	category.	To	go	to	step	two,	click	the	Next	button.

	

	

	

The	first	area	shows	the	Project	Name.	Click	on	the	blank	space	and	choose	a	title	for	your
Project.	You	will	notice	that	the	text	at	the	bottom	also	changes	to	match	the	name	of	the
project.

	

Our	Class	will	 be	 known	 as	 ProjectOne	with	 capitalized	 P	 and	O.	 The	 package	 is	 also
known	as	projectone,	but	with	small	caps	p	and	o.	Notice	that	the	default	location	to	save
your	projects	also	appears	in	the	text	box	for	Project	Location.	You	have	the	freedom	to
change	 this,	 if	 you	 like.	 NetBeans	 can	 also	 generate	 a	 folder	 with	 your	 chosen	 project
name	and	will	be	saved	 in	 the	same	 location.	Just	click	 the	Finish	button	and	NetBeans
will	run	to	create	all	the	needed	files.

	

Once	NetBeans	redirects	you	to	the	IDE,	observe	the	Projects	area	located	in	the	upper	left
of	the	screen.	If	you	cannot	see	this,	just	click	Windows	>	Projects	from	the	menu	bar	at
the	upper	part	of	the	software.

	

When	you	click	the	plus	symbol,	you	can	expand	the	project,	and	you	will	see	the	screen
below:

	

	

Next,	you	can	expand	the	Source	Packages	to	see	the	project	name.	You	can	expand	this
and	you	will	see	the	Java	file,	which	is	actually	your	source	code.

	

	

The	 same	source	code	will	be	 shown	 to	 the	 right,	 in	 the	bigger	 text	 space.	This	will	be
called	as	ProjectOne.java.	If	there	is	no	code	windown,	you	just	need	to	double	click	the
ProjectOne.java	 in	your	Projects	 screen	as	 show	above.	The	code	will	be	shown	so	you
can	start	working	on	it.

	

The	coding	screen	is	shown	below:

	

Take	note	that	the	class	here	is	known	as	ProjectOne:

	

public	class	ProjectOne	{

	

This	is	similar	to	the	name	of	the	java	source	file	in	the	project	window:	ProjectOne.java.
Once	you	run	the	programs,	the	compiler	will	require	the	source	file	as	well	as	the	class
name.	Hence,	if	the	.java	file	is	known	as	projectOne	but	the	class	is	known	as	ProjectOne
then	you	will	have	an	error	on	compiation.	This	is	all	because	of	the	lower	case	“p”	and
the	second	one	is	capitalized.

	

Take	 note	 that	 even	 though	 we	 have	 also	 called	 the	 package	 ProjectOne,	 this	 is	 not
necessary.	 You	 can	 use	 a	 different	 name	 for	 the	 package,	 because	 the	 package	 name
doesn’t	need	to	be	the	same	as	the	java	source	file	or	the	source	file	class.	It	 is	only	the
name	of	the	class	and	the	name	of	the	java	source	file	that	should	be	the	same.

	

	

JAVA	COMMENTS

	

Once	you	 create	 a	New	Project	 in	NetBeans,	 you	will	 notice	 that	 there	 are	 text	 in	 grey
color,	with	asterisks	and	slashes.

	

	

The	text	in	grey	are	comments.	Once	you	run	the	program,	these	will	be	ignored.	Hence,
you	 have	 the	 freedom	 to	 type	 anything	 you	 like	 as	 comments.	 It	 is	 typical	 for	 the
comments	to	describe	what	you	are	trying	to	do.	You	can	enter	a	single	line	comment	by
typing	two	slashes	then	your	comment.

	

//This	is	an	example	of	a	single	line	comment	in	Java.

	

If	you	like	to	enter	comments	in	several	lines,	you	can	perform	this:

	

/*

This	is	an	example	of	a	comment

That	takes	two	lines	or	more.

*/

	

Or	this:

	

//This	is	another	example	of	a	comment

//	that	takes	two	lines	or	more.

	

	

	

In	the	first	option,	notice	how	the	comment	begins	with	/*	and	ends	with	*/.

	

	

	

Then	there’s	 the	Javadoc	coment,	which	begins	with	one	forward	slask	followed	by	 two
asterisks	 (/**).	 It	 also	 ends	with	 an	 asterisk	with	 one	 forward	 slash	 (*/).	Take	note	 that
every	line	of	the	comment	begins	with	an	asterisk:

	

/**

*This	is	an	example	of	a	Javadoc	type	comment

*/

	

Javadoc	comments	are	used	to	record	code.	The	recorded	code	could	be	converted	into	an
HTML	page,	which	will	 help	other	programmers	 to	make	 sense	of	 the	 code.	Click	Run
from	 the	 NetBeans	menu	 to	 see	 what	 this	 will	 look	 like.	 From	 the	 Run	menu,	 choose
Generate	Javadoc.	Don’t	expect	to	see	much	as	we	haven’t	started	writing	any	code	yet.

	

At	 this	 point,	 it’s	 okay	 to	 do	 away	with	 the	 comments	 first,	 which	 the	NetBeans	 have
generated	for	you.	Below	is	the	code	area	without	the	comments:

	

	

In	the	above	screenshot,	you	can	see	the	name	of	the	package	first.	Take	note	that	the	line
ends	using	a	semicolon.	Remember,	without	 the	semicolon,	 the	program	will	not	 initiate
the	compilation	process.

	

package	projectone;

Next	is	the	class	name:

Public	class	ProjectOne	{

}

The	 class	 is	 considered	 as	 a	 code	 segment.	 However,	 you	 need	 to	 specify	 where	 the
segments	begin	 and	 end	by	 adding	 curvy	brackets.	The	beginning	of	 a	 code	 segment	 is
indicated	with	 a	 left	 curvy	 bracket	 {	 and	 ends	with	 a	 right	 curvy	 bracket	 }.	 Any	 code
confined	in	these	brackets	are	included	in	that	code	segment.

	

Meanwhile,	anything	that	is	inside	of	the	right	and	left	curvy	brackets	for	the	class	is	also
a	considered	a	code	segment.	Take	a	look	at	this:

	

	

	

What’s	 inside	of	 the	 left	and	right	curvy	brackets	 for	 the	class	 is	another	code	segment.
This	one:

public	static	void	main(String[]	args)	{

}

	

Take	 note	 that	 the	 text	 “main”	 is	 the	 most	 essential	 word	 here.	 Once	 you	 initiate	 the
program,	it	will	search	for	a	method	named	main.	A	method	is	just	a	segment	of	code,	and
you	will	learn	more	about	the	other	segments	later	on.	It	will	then	launch	any	code	inside
the	 curvy	 brackets	 for	 the	 main.	 There	 will	 be	 error	 without	 the	 main	 method	 in	 the
program.	But	as	the	name	suggests,	it	refers	to	the	main	entry	point	for	the	programs.

	

For	now,	don’t	worry	about	 the	blue	 text	before	 the	 text	“main”.	But	 in	case	you	 like	a
glimpse,	 public	 refers	 to	 the	method,	 which	 could	 be	 seen	 external	 of	 the	 class,	 while
static	signifies	that	there	is	no	need	to	build	a	new	object,	and	void	means	it	will	not	yield
a	value.	The	sections	between	the	rounded	brackets	of	main	are	known	as	the	command
line	arguments.	Confused?	Well,	you	can	learn	more	about	them	later,	so	don’t	worry.

	

The	important	pointer	to	take	note	is	that	you	now	have	a	class	known	as	ProjectOne.	This
class	involves	a	method	known	as	main.	These	segments	have	their	own	curvy	brackets.
However,	the	main	chunk	of	the	code	refers	to	the	ProjectOne	class.

	

Now,	let’s	learn	how	we	can	print	to	the	output	screen	or	window.

	

At	 this	 point,	 you	 can	 run	 the	 code	 and	 convert	 it	 into	 a	 real	 program.	 It	 will	 not	 do
anything,	but	you	can	initiate	the	compilation	process.	Now,	add	another	code	line	to	see
how	 it	 will	 work.	 You	 can	 add	 some	 words	 to	 a	 console	 window.	 You	 can	 insert	 the
following	line	to	the	main	method:

	

public	static	void	main(String[]	args)	{

System.out.println(“My	Project	One”);

}

	

Once	you	end	the	word	System	with	a	full	stop,	the	program	will	help	you	by	showing	a
list	of	options:

	

	

	

Click	the	out	option	twice	so	you	can	add	it	to	your	code.	Then,	add	another	full	stop,	and
the	list	of	options	will	appear	again:

	

	
	

Choose	 the	printIn()	 option,	which	will	 allow	you	 to	 print	 a	 single	 line	 of	 text	 to	 the
output	 window.	 However,	 you	 should	 place	 the	 text	 between	 the	 rounded	 brackets	 for
printIn.	The	text	must	be	enclosed	in	double	quotes.

	

	

When	 you	 enter	 your	 double	 quotes,	 you
can	add	the	text	of	your	choice:

	

	
	
	
Take	note	that	the	line	ends	using	a	semicolon.	Every	completed	code	line	in	Java	should
end	 using	 a	 semicolon.	 Without	 the	 semicolon,	 the	 program	 will	 not	 initiate	 the
compilation	process.

	

Now,	we	could	 test	our	 first	program.	But	before	you	can	do	 that,	be	 sure	 to	 save	your
code.	You	can	do	this	by	clicking	the	Save	icon	in	the	NetBeans	toolbar	or	following	this
command	line:	File	>	Save	or	File	>	Save	All.

	

RUNNING	JAVA	PROGRAMS

	

Once	you	run	a	program	in	NetBeans,	the	software	will	run	it	in	the	Output	screen	under
the	screen	at	 the	bottom	of	the	code.	This	is	easier	because	there	is	no	need	to	initiate	a
console	window	or	a	terminal.	The	Output	screen	IS	your	console.

	

There	are	several	methods	of	running	a	program	in	NetBeans.	The	simplest	way	is	to	hit
F6	on	Keyboard.	Also,	you	can	run	a	program	using	the	menu	on	the	NetBeans	toolbar:
Run	>	Run	Project	(Name	of	your	project).

	

	

Another	option	is	to	hit	the	green	arrow	icon	on	the	toolbar.

	

	

Another	 method	 in	 running	 a	 program	 is	 through	 the	 Projects	 screen.	 This	 will	 make
certain	that	you	are	running	the	right	source	code.	Just	right	click	the	java	source	file	 in
the	projects	screen	and	the	menu	will	appear.	Choose	Run	File.	

	

You	can	also	run	the	program	by	right	clicking	within	the	code	screen.	As	shown	in	the
screenshot	below,	we	have	right	clicked	before	the	final	curvy	bracket.

	

	

Choose	your	 preferred	method	 and	 run	 the	program.	 In	 the	Output	 screen,	 you	will	 see
something	like	this:

	

The	second	line	in	the	Output	screen	in	the	image	above	is	our	code:	My	Project	One.	It’s
easy	to	initiate	a	re-run	by	clicking	the	two	green	arrows	in	the	left	side	toolbar.

	

SHARING	JAVA	PROGRAMS

	

Java	allows	you	to	share	your	programs	to	other	people,	so	they	can	also	try	running	them.
In	order	to	do	this,	you	should	first	create	a	Java	Archive	file	or	JAR	file.	NetBeans	will
help	you	do	this.	On	the	Run	menu,	choose	Clean	and	Build	Main	project.

	

NetBeans	will	then	save	your	code	and	will	make	all	the	needed	files.	It	will	also	make	a
new	folder	named	dist	where	it	will	save	all	the	files.	Take	a	look	at	the	location	where	the
projects	are	and	you	will	also	see	the	folder	named	dist.

	

Open	the	dist	folder	and	take	a	look	inside:

	

There	must	be	a	JAR	file	and	a	README	txt	file,	which	stores	 the	instructions	on	how
you	can	run	the	program	from	the	console	or	terminal	screen.

	

At	this	point,	you	already	know	how	you	can	run	java	source	files.	The	next	chapter	will
help	you	learn	more	about	actual	programming.

	

Chapter	3	–	Java	Variables

	
In	programming,	always	remember	that	the	language	works	through	the	use	of	data	stored
in	memory.	This	data	could	be	objects,	text,	or	pointer	numbers	to	other	data	areas.	This
data	is	provided	in	a	name.	Hence,	it	will	be	retrieved	once	you	need	it.	Variable	refers	to
the	name	as	well	as	its	value.	We	will	begin	learning	about	number	values.

	

In	java,	there	are	different	options	in	storing	numbers.	Whole	numbers	like	2,	5,	10	and	so
on	can	be	held	using	the	variable	int,	which	means	integer.	Point	numbers	such	as	2.4,	5.8,
10.2,	and	so	on	are	stored	through	the	use	of	the	variable	double.	We	can	store	it	using	the
equals	 symbol	 (=).	 In	 this	 section,	 we	 will	 take	 a	 work	 on	 examples,	 using	 your
ProjectOne	code.

	

To	establish	an	integer,	just	enter	the	main	line	code	method	of	the	ProjectOne.

	

public	static	void	main(String[]	args)	{

int	first_number;

System.out.println(“My	Project	One“);

}

	

In	order	to	command	the	Java	program	to	store	an	integer,	you	first	need	to	start	type	int
and	space.	It	is	important	to	think	of	a	title	for	the	whole	number	variable.	Generally,	you
have	the	freedom	to	choose	a	name,	as	long	as	you	follow	the	rules	below:

	

1.	 You	can’t	 start	a	variable	name	using	a	number.	Hence,	 first_number	 is	 fine,	but
1st_number	 is	 not.	 It	 is	 acceptable	 to	 include	 numbers	 anywhere	 on	 the	 name
variable	except	at	the	beginning.

	

2.	 You	can’t	use	Java	keywords	as	name	variable.	These	keywords	will	instantly	turn
blue	when	you	type	them	such	as	int.

	

3.	 Spaces	 are	 not	 allowed	 in	 naming	 variables.	 The	 expression	 variable	 int	 first
number	 would	 result	 to	 an	 error.	 Instead,	 you	 can	 use	 underscore	 in	 place	 of
space.	It	is	an	industry	practice	that	the	main	word	begins	with	a	small	text	and	the
next	word	capitalized	such	as	myFirstnumber	or	firstNumber.

	

4.	 Case	 sensitivity	 is	 crucial	 for	 name	 variables.	 Hence,	 FirstNumber	 and
firstNumber	are	not	the	same.

	

To	keep	anything	within	variable	known	as	first_number,	 just	include	an	equals	symbol
followed	by	the	value	that	you	like	to	keep.

	

public	static	void	main(String[]	args)	{

int	first_number;

first_number	=	5;

System.out.println(“My	Project	One“);

}

	

Java	will	interpret	this	that	you	like	to	keep	the	value	5	in	the	int	variable,	which	refers	to
the	first_number.

	

You	can	also	write	this	all	in	a	single	linecode:

public	static	void	main(String[]	args)	{

int	first_number	=	5;

System.out.println(“My	Project	One“);

}

	

In	order	to	see	how	this	code	works,	make	a	slight	change	in	the	printIn	method:

	

System.out.println(“First	number	=	”	+	first_number);

	

Inside	 the	 printIn	 rounded	 brackets,	 you	 now	 have	 a	 direct	 text	 confined	 in	 double
quotations:

	

(“First	number	=	“

	

Followed	by	a	plus	symbol	and	the	variable	name:

	

+	first_number);

	

Adding	the	plus	symbol	will	be	interpreted	by	Java	that	you	like	to	combine	the	variable
name	with	the	direct	text.	This	process	is	called	concatenation.

	

The	coding	screen	will	now	appear	like	the	screenshot	below.	Notice	how	every	code	line
is	ended	using	a	semicolon.

	

When	you	try	to	run	the	program,	you’ll	see	the	Output	screen	under:

	

	
Hence,	the	number	which	you	keep	in	variable	that	we	call	as	the	first_number	refers	to
the	text	at	the	right	of	the	equals	symbol.

	

Now,	 try	 a	 basic	 addition.	Type	 two	 additional	 int	 variables	 into	 your	 code.	Another	 to
define	a	2nd	number	while	the	other	to	define	the	“answer”:

	

int	first_number,	second_number,	answer;

	

Take	note	that	there	are	three	names	of	variables	in	a	single	line.	It’s	possible	to	perform
this	 using	 Java	 as	 long	 as	 variables	 could	 be	 of	 similar	 type.	 In	 this	 case,	 they	 are	 all
integers.	Every	name	of	the	variable	is	then	divided	using	comma.

	

Then,	you	can	hold	another	text	in	the	added	variables:	

first_number	=	5;
second_number	=	10;
answer	=	first_number	+	second_number;

	

To	 define	 the	 variable	 answer,	 you	 need	 to	 get	 the	 sum	 of	 the	 1st	 number	 and	 the	 2nd
number.	 You	 can	 perform	 addition	 by	 including	 the	 addition	 symbol	 (+).	 This	 will
command	 the	 Java	 program	 to	 add	 values	 in	 the	 first_number	 and	 the	 second_Number.
Once	 it	 is	done,	 it	will	also	keep	 the	 total	variable	 located	on	 the	 left	part	of	 the	equals
symbol.	Therefore,	instead	of	defining	5	or	10	to	the	name	of	the	variable,	it	will	sum	up
and	will	perform	the	assigning.

	

But	Java	has	already	interpreted	what	is	the	value	of	the	double	variables,	so	it	is	fine	to
use	their	names.

	

Now,	turn	the	method	of	the	printIn	to	the	line	below:

	

System.out.println(“Addition	Total	=	”	+	answer);

	

Remember,	we	are	adding	direct	text	within	the	double	quotations	with	the	variable	name.
The	coding	screen	will	appear	like	the	screenshot	below:

Run	the	program,	and	the	result	should	look	like	what	is	shown	in	the	screenshot	below:

	

So	far,	we	have	performed	these	things	in	our	first	program:

	

Stored	an	integer	(first	number)
Stored	another	integer	(second	number)
Combined	these	integers
Held	the	sum	of	the	integers	in	the	third	variable
Print	out	the	output
	

Alternatively,	it	is	also	possible	to	use	direct	number.	Just	turn	the	line	answer	to	this:

answer	=	first_number	+	second_number	+	10;

	

Click	the	run	program,	and	see	the	results.

	

It	is	possible	to	store	large	integers	using	the	int	type,	but	the	max	value	is	2147483647.
To	 store	 a	 negative	 integer,	 the	minimum	 value	we	 can	 keep	 is	 -2147483648.	 To	 store
higher	or	lower	number,	it	is	recommended	to	use	the	double	variable	type.

	

THE	DOUBLE	VARIABLE

	

The	double	variable	could	store	very	small	or	very	 large	numbers.	The	max	value	 is	17
followed	by	307	zeros,	and	the	minimum	value	is	-17	followed	by	307	zeros.

Floating	point	values	 such	as	7.8,	 11.6,	or	14.5	 can	also	be	 stored	 in	 a	double	variable.
When	you	try	to	store	a	floating	point	value	using	an	int	variable,	NetBeans	will	interpret
it	as	an	error.

	

Let’s	try	practicing	with	double	variables,	using	your	ProjectOne	code.

	

First,	change	the	int	variable	to	a	double	variable.	Hence,	this	code:

	

int	first_number,	second_number,	answer;

	

should	be	changed	to	this:

	

double	first_number,	second_number,	answer;

	

Then	change	the	corresponding	values	of	the	first_number	and	the	second_number:

	

first_number	=	5.2;
second_number	=	10.4;

	

The	coding	area	should	look	like	the	screenshot	below:

When	you	run	the	program,	the	Output	screen	should	look	like	this:

	

	

Change	values	stored	in	the	first_number	and	second_number.	Choose	any	value	you	like.
Run	the	program	and	see	the	results.

	

SHORT	AND	FLOAT	VARIABLES

	

Short	and	float	are	another	types	of	variables	that	you	can	use.	The	variable	short	can	be
used	to	hold	smaller	number,	ranging	from	-32768	to	32767.	But	rather	than	utilizing	int
in	the	code	like	in	the	previous	codes,	you	can	use	short.	Take	note	that	you	must	only	use
the	variable	 short	 if	you	are	certain	 that	values,	which	you	 like	 to	 store	will	not	exceed
32767	or	lower	than	-32768.

	

The	double	variable	can	hold	very	large	numbers	for	the	floating	range	point.	But	rather
than	using	double,	you	can	use	float.	In	holding	a	value	in	a	variable	float,	you	should	add
f	at	the	end	of	the	number,	such	as:

float	first_number,	second_number,	answer;

	

first_number	=	5.2f;
second_number	=	10.4f;

	

Take	note	that	f	should	be	added	after	the	actual	value	but	not	after	the	semicolon.

	

BASIC	ARITHMETIC

	

Using	 the	 variables	 we	 have	 learned	 so	 far,	 we	 can	 use	 these	 symbols	 to	 perform
computations:

	

The	plus	symbol	(+)	is	for	addition.
The	minus	symbol	(-)	is	for	subtraction.
The	asterisk	(*)	is	for	multiplication.
The	forward	dash	(/)	is	for	division.

	

	

Let’s	do	some	exercise.

	

	

Get	 rid	 of	 the	 plus	 sign,	 which	 we	 have	 used	 to	 combine	 the	 first_number	 and	 the
second_number.	In	its	place,	enter	the	minus	symbol,	the	asterisk,	and	the	forward	dash.
The	result	for	the	division	must	provide	a	large	number	(15.600000000000001),	because
the	 variable	 type	 that	 you	 have	 used	 is	 the	 double.	 But	 you	 need	 to	 turn	 the	 double
variable	to	float	and	insert	the	letter	f	next	to	values.	Hence,	the	code	must	appear	similar
to	this	screenshot:

	

	

If	 you	 run	 this	 code,	 you	 will	 get	 0.5.	 The	 program	 has	 rounded	 this	 up.	 Hence,	 the
variable	double	type	can	store	more	numbers	compared	to	the	float.	(Float	has	the	capacity
of	32	bits	while	double	has	64	bits.

	

OPERATOR	PRECEDENCE

	

Of	course,	it	is	possible	to	compute	more	numbers.	However	you	must	define	specifically
what	should	be	computed.	Let’s	add	another	number	in	our	code.

	

first_number	=	50;

second_number=25;

third_number=15;

answer	=	first_number	-	second_number	+	third_number;

	

In	performing	the	computation	starting	from	left	to	right,	the	result	will	be	50-25,	and	the
final	answer	is	25.	Then	include	the	third	number	(15).	The	total	will	be	40.	But	what	if
this	is	not	your	intention?	Let’s	say	you	like	to	get	the	sum	of	the	second_number	and	the
third_number,	and	then	subtract	the	result	from	the	first_number.	Hence,	that	will	be	25	+
15	=	40.	Then,	subtract	this	from	the	first_number,	which	is	50.	The	answer	would	be	10.

	

To	make	certain	 that	 the	program	is	performing	what	you	 intend,	you	must	use	rounded
brackets.	Hence,	the	first	computation	will	look	like	this:

answer	=	(first_number	-	second_number)	+	third_number;

	

Your	coding	area	should	look	like	this:

	

This	is	the	second	computation:

	

answer	=	first_number	-	(second_number	+	third_number);

	

Meanwhile,	the	code	area	is	this:

Next,	we’ll	do	some	exercises	for	addition	and	multiplication.

	

Change	the	operators	into	addition	symbol	and	asterisk	sign:

answer	=	first_number	+	second_number	*	third_number;

	

Get	rid	of	all	the	rounded	brackets	before	running	the	program.	Without	the	brackets,	it	is
common	 to	 guess	 that	 Java	will	 do	 the	 calculation	 starting	 at	 left	 to	 right.	 Hence,	 you
would	think	that	it	will	add	the	first_number	to	the	second_number	to	get	75.	Then	it	will
multiply	 the	 answer	 to	 the	 third_number,	which	 is	 15.	Hence,	 the	 answer	will	 be	 1125.
Run	the	program,	and	the	answer	you	will	get	 is	only	425.	The	answer	is	different	from
what	we	expect.

	

Operator	 Precedence	 is	 the	 reason	 why	 Java	 yielded	 a	 different	 result.	 Java	 prioritizes
some	operators	than	other	operators.	It	prioritizes	multiplication	as	than	addition,	hence	it
is	 performing	 multiplication	 first.	 It	 will	 then	 perform	 the	 addition.	 Hence,	 Java	 is
performing	the	code	below:

	

answer	=	first_number	+	(second_number	*	third_number);

	

Within	the	added	rounded	brackets,	the	second_number	is	multiplied	by	the	third_number.
This	 total	will	 then	be	 added	on	 top	of	 the	 first_number.	Hence,	25	multiplied	by	15	 is
375.	Add	50,	and	you	will	get	425.

	

If	 you	 prefer	 it	 the	 alternative	way,	 be	 sure	 to	 instruct	 the	 Java	 by	 adding	 the	 rounded
brackets:

	

answer	=	(first_number	+	second_number)	*	third_number;

	

Aside	from	multiplication,	division	is	regarded	as	a	more	important	operator	for	Java.	The
program	will	do	the	division	first	before	doing	the	subtraction	or	addition.	Try	changing

the	answer	line:

	

answer	=	first_number	+	second_number	/	third_number;

The	result	that	we	will	get	is	51.	Then,	add	rounded	brackets:

	

answer	=	(first_number	+	second_number)	/	third_number;

	

This	time,	the	answer	is	5.	Hence,	if	you	get	rid	of	the	rounded	brackets,	Java	will	first	do
the	division	and	add	50	to	the	total.	Java	will	not	perform	calculations	from	left	to	right.

	

Here	is	the	Operator	Precedence:

Multiply	and	Divide	are	considered	equally,	but	they	are	treated	as	more	important
compared	to	Subtraction	and	Addition.
Add	and	Subtract	are	considered	equally,	but	they	are	less	prioritized	compared	to
multiplication	and	division.

	

Hence,	if	Java	is	providing	you	an	incorrect	result,	take	note	that	Precedence	is	essential,
and	include	rounded	brackets.

	

String	Variables

	

Aside	 from	 holding	 number	 values,	 variables	 could	 also	 store	 text.	 You	 can	 hold	 one
character	 or	 many	 characters.	 You	 could	 use	 the	 char	 variable	 if	 you	 like	 to	 hold	 one
character.	But	commonly,	you	need	to	hold	several	characters.	

	

To	store	just	one	character,	the	char	variable	is	used.	Usually,	though,	you’ll	like	to	store
more	than	one	character.	To	do	so,	you	need	the	string	variable	type.

	

You	need	 to	begin	a	new	project	 for	 this	 in	NetBeans.	Click	File	>	New	Project	 at	 the
menu.	Once	 the	NewProject	 dialogue	box	will	 appear,	 ensure	 that	 you	 select	Java	 and
Java	Application.

	

Click	Next	and	enter	ProjectString	as	 the	name	of	 the	project.	Be	sure	 that	 the	box	for
Create	Main	Class	 has	 been	 selected.	Then,	 delete	 the	Main	 after	 the	 projectstring,	 and
type	ProjectStrings	instead	as	you	can	see	below:

	

Hence	the	name	of	the	project	is	ProjectString,	and	the	class	name	is	ProjectStrings.	Hit
the	Finish	button	and	the	coding	area	should	look	like	this,	after	deleting	all	the	comments.
Take	 note	 that	 the	 package	 name	 is	 in	 lower	 case	 (projectstring),	 but	 the	 name	 of	 the
project	is	ProjectString.

	

In	order	to	create	a	string	variable,	you	need	to	use	the	term	String	and	then	the	name	of
the	variable.	Remember,	it	should	be	started	with	a	capital	S.	Of	course,	it	should	be	ended
using	a	semicolon.

	

String	first_name;

	

Choose	a	value	to	be	stored	in	the	new	string	variable	by	adding	an	equals	sign.	Following
the	equals	symbol,	the	text	that	you	like	to	be	held	will	go	between	the	two	sets	of	double
quotes.

	

first_name	=	“Harry”;

If	you	like,	you	can	type	them	all	in	a	single	line:

String	first_name	=	“Harry”;

Add	another	string	variable	to	store	a	family	name:

String	family_name	=	“Potter”;

In	order	to	print	these	names,	follow	it	with	the	printIn	method	()

System.out.println(first_name	+	”	”	+	family_name);

Within	the	rounded	brackets	of	printIn,	add	this:

first_name	+	”	”	+	family_name

	

Basically,	we	are	telling	Java	to	print	out	the	contents	of	the	variable	known	as	first_name.
Then,	we	have	a	plus	sign	and	a	space.	The	space	 is	restricted	 in	double	quotes.	This	 is
important	to	make	certain	that	the	Java	will	understand	that	we	like	to	add	a	space.	After
this	space,	be	sure	to	add	another	plus	sign	then	the	family_name	variable.

	

Even	though	this	could	be	a	bit	complicated,	we	are	only	telling	Java	to	print	out	a	first
name,	a	space,	then	the	family	name.	The	code	must	look	like	what	is	shown	below:

	
When	you	run	this	program,	you	must	see	this	in	the	Output	screen:

	

	

If	you	just	need	to	hold	one	character,	then	the	variable	that	you	should	use	is	char.	Take
note	that	 it	 is	 in	 lowercase	c.	To	hold	one	character,	you	should	use	single	quotes	rather

than	double	quotes.	Take	a	look	at	the	program	below	using	the	char	variable.

	

	

Try	 to	 confine	 a	 char	 variable	within	double	quotes,	 and	NetBeans	will	 flag	 it	with	 red
underline,	 and	 will	 result	 to	 incompatible	 error.	 However,	 you	 can	 still	 have	 a	 string
variable	using	only	one	character.	But	you	should	use	double	quotes.	Hence,	 this	 line	 is
okay:

	

String	first_name	=	“H”;

But	this	is	not	okay:

String	first_name	=	‘S’;

	

The	first	example	has	double	quotes,	while	the	second	has	single	quotes.

	

There	are	more	to	learn	about	string	variables,	and	we	will	discuss	them	in	the	succeeding
chapters.	At	this	point,	we	need	to	proceed	and	get	some	input.

	

RECEIVING	INPUT

	

With	Java,	you	can	 take	advantage	of	 the	wide	range	of	code	 libraries	 that	you	can	use.
These	codes	have	been	established	to	perform	particular	tasks.	You	just	need	to	determine
the	specific	code	that	you	like	to	use,	then	pinpoint	a	method.	A	useful	class,	which	could
handle	 user	 input	 is	 known	 as	 a	 Scanner	 class.	 This	 can	 be	 referenced	 in	 the	 library:
java.util.	 You	 should	 refer	 it	 before	 you	 can	 utilize	 the	 class	 Scanner.	 This	 can	 be
performed	using	the	import	keyword.

	

import	java.util.Scanner;

The	line	import	should	be	placed	on	the	top	of	the	statement	Class:

import	java.util.Scanner;

public	class	ProjectStrings	{

}

	

This	will	instruct	the	Java	program	to	use	a	certain	class	within	a	specific	library	(Scanner
class)	that	could	be	found	in	the	library:	java.util.

	

Next,	you	need	to	make	the	object	from	the	class	Scanner.	Take	note	that	a	class	is	just	a
group	of	codes.	It	cannot	perform	something	unless	you	make	another	object.

	

To	set	up	a	new	object	Scanner,	you	need	to	type	this	code:

Scanner	input_user	=	new	Scanner(System.in);

	

Hence,	 you	 need	 to	 set	 up	 a	 Scanner	 variable	 instead	 of	 a	 variable	 String	 or	 an	 int
variable.	 The	 name	 of	 our	 variable	 is	 input_user.	 Next	 to	 the	 equals	 symbol,	 we	 have
entered	the	new	keyword,	which	can	be	used	to	make	fresh	objects	in	the	class.	Take	note
that	 this	object	 that	we	are	 setting	up	 is	 sourced	out	 from	 the	class	Scanner.	Within	 the
rounded	 brackets,	 we	 need	 to	 instruct	 Java	 that	 we	 intend	 this	 to	 be	 for	 System.in	 or
System	Input.

	

In	order	to	receive	the	input	from	the	user,	we	need	to	specify	an	action	from	the	different
methods	that	you	can	use	to	your	Scanner	object.	A	method	is	known	as	next,	which	could
obtain	the	following	text	string,	which	a	user	could	type.	

	

String	first_name;
first_name	=	input_user.next();

	

After	the	input_user,	we	follow	it	with	a	period.	A	popup	list	will	appear	containing	a	list
of	methods	that	you	can	use.	Choose	the	method	next	and	follow	it	using	semicolon	at	the
line	end.	Also,	it	is	possible	to	print	the	text	as	a	guide:

String	first_name;
System.out.print(“Type	your	first	name	here:	“);
first_name	=	input_user.next();

	

Take	note	that	we	have	used	print	 instead	of	printIn	that	we	have	used	 in	our	previous
code.	Take	note	that	the	print	will	stay	on	one	line,	while	printIn	will	shift	the	cursor	for
another	line	next	to	the	output.

	

Next,	add	another	prompt	for	the	surname	or	family	name:

String	family_name;
System.out.print(“Type	your	family	name	here:	“);
family_name	=	input_user.next();

	

Take	note	that	this	is	a	similar	code,	but	the	program	will	now	hold	any	information	that
the	user	provides	into	the	variable	family_name	rather	than	the	variable	first_name.

	

In	order	to	display	the	input,	just	add	the	code	below:

String	full_name;
full_name	=	first_name	+	”	”	+	family_name;

System.out.println(“Hello	“);

	

Now,	 we	 have	 established	 full_name	 as	 another	 variable	 String.	 We	 are	 holding	 any
information	 in	variables	 family_name	and	 first_name.	Take	note	 that	 there	 is	 a	 space	 in
between	these	variables,	and	the	last	line	will	print	it	all	from	the	Output	screen.

	

Your	code	should	look	like	the	screenshot	below:

	

When	you	run	the	program,	the	Output	screen	should	look	like	this:

	

	

At	 this	point,	Java	 is	waiting	for	you	to	 type	in	something.	It	will	not	proceed	until	you
press	the	Enter	button	in	your	keyboard.	Just	click	the	left	mouse	button	next	to	the	“Type
your	first	name	here:”	and	a	cursor	will	blink.	Enter	your	first	name,	and	press	the	Enter
button.

	

After	pressing	 the	Enter	button,	 the	program	will	 store	 the	 information	you	provide	and
keep	 it	within	 the	name	variable	 after	 the	 equals	 symbol.	 In	our	 code,	 this	 refers	 to	 the
first_name	variable.

After	providing	your	first	name,	the	program	will	proceed	to	the	following	code	line:

	

	
Provide	a	surname,	and	press	again	the	Enter	button:

	

	
We	have	now	completed	the	input	from	the	user,	and	the	program	will	start	processing	the
code,	which	is	the	combination	of	the	two	names.	The	final	output	must	look	like	this:

	

Now,	 you	 have	 learned	 how	 to	 use	 the	 class	 Scanner	 to	 obtain	 information	 from	 the
program	 user.	 Any	 information	 provided	 by	 the	 user	 will	 be	 held	 in	 variables,	 and	 the
result	will	be	printed	in	the	Output	screen.

	

THE	OPTION	PANES

	

The	 JOptionPane	 class	 is	 another	 valuable	 class	 for	 obtaining	 input	 from	 the	 user	 and
showing	 results.	 You	 can	 find	 this	 in	 the	 library:	 javax.swing.	 This	 class	 will	 let	 you
display	attractive	input	boxes	such	as	this	one:

	

	

Or	a	message	box	such	as	this:

	

	

We	 can	 use	 our	 ProjectStrings	 code	 and	 add	 options	 type	 panes.	 It	 is	 important	 first	 to
refer	the	library	that	we	need.	Enter	this	into	the	code:

	

import	javax.swing.JOptionPane;

	

This	 will	 instruct	 program	 that	 you	 need	 the	 class	 JOptionPane,	 situated	 in	 the	 library
javax.swing.

	

If	you	like,	we	could	begin	another	project.	I	trust,	by	now	you	know	already	how	to	start
a	project.	Be	sure	to	turn	the	class	name	to	the	name	of	your	own	choice.	We	will	use	the
name	class	DisplayPanes	for	this	one,	and	the	name	of	the	package	is	inputuser.

	

Type	in	new	import	line	in	the	new	project.	The	coding	screen	must	appear	like	this:

	

	

Notice	that	there	is	a	wavy	yellow	line	in	the	import	code	because	we	are	not	still	using
any	class	yet.	Once	we	do,	it	will	just	go	away,	so	don’t	worry	about	it.

	

In	order	to	create	a	box	for	input,	which	the	user	could	provide	information,	you	can	use
the	method	showInputDialog	of	 the	JOptionPane.	 Just	 like	 in	 the	previous	sections,	we
will	handle	the	input	directly	into	the	variable	first	name.	Add	the	following	line	below	the
main	method	so	you	can	see	how	this	one	works:

	

String	first_name;
first_name	=	JOptionPane.showInputDialog(“First	Name”);

Once	you	enter	a	period	after	the	JOptionPane,	a	popup	list	will	appear	like	this:

	

	

Choose	the	showInputDialog.	Within	the	rounded	brackets	of	 the	showInputDialog	type,
enter	the	message,	which	you	like	to	be	displayed	on	top	of	the	text	box	for	input.	We	have
chosen	“First	Name”.	Similar	to	strings,	this	should	be	confined	inside	the	double	quotes.

	

Type	the	code	below,	so	we	could	obtain	the	family	name	of	the	user:

	

String	family_name;
family_name	=	JOptionPane.showInputDialog(“Family	Name”);

	

Combine	these	together,	and	include	a	message:

	

String	full_name;
full_name	=	“Hello”	+	first_name	+	”	”	+	family_name;

In	order	to	show	the	message	in	a	display	box,	include	this	line:

JOptionPane.showMessageDialog(null,	full_name);

At	this	point,	you	need	to	choose	the	showMessageDialog.	Within	the	rounded	brackets,
you	need	to	enter	the	null	word.	This	keyword	signifies	that	the	box	for	message	should
not	be	connected	to	any	aspect	of	the	program.	The	comma	should	be	followed	by	a	text
that	you	like	to	be	shown	from	the	message	prompt.	Your	code	must	appear	like:

	

	

Take	note	of	the	end	code	below:

	

System.exit(0);

This	codeline	will	make	certain	that	the	box	will	exit.	It	will	also	tidy	things	up	as	it	could
get	rid	of	the	objects	from	the	memory.

Once	you	run	the	code,	you	will	see	the	input	box	for	First	Name.	Enter	a	text	and	click
OK.

	

	

Once	the	input	box	for	Family	Name	pops	up,	enter	a	name	and	hit	OK:

	

	

This	box	will	appear	after	clicking	OK.

	

	

Now	you	have	learned	how	to	create	display	boxes.	But	this	is	just	the	tip	of	the	iceberg	as
you	can	do	 far	greater	 things	with	 Java.	The	next	chapter	will	discuss	all	 about	Control
Flow.

Chapter	4	–	Control	Flow

	

	

The	programming	that	you	have	learned	at	this	point	is	known	as	sequential	programming,
which	signifies	that	the	code	is	initiated	from	up	to	down.	This	is	quite	linear,	as	each	code
line	will	be	interpreted,	beginning	on	the	first	line	that	you	have	entered	to	the	end	of	the
last	line.

	

But	 that	 is	 very	 primitive	 programming.	 You	 need	 a	 code	 to	 be	 initiated	 once	 specific
conditions	are	met.	For	 instance,	you	may	need	one	message	 to	be	 shown	 if	 a	user	 is	 a
male	and	a	different	message	if	the	user	is	a	female.	You	need	to	control	the	program	flow.
This	could	be	done	through	conditional	logic.

	

Conditional	 logic	 is	 primarily	 about	 the	 word	 “IF.”	 IF	 user	 is	 a	 male,	 then	 show	 this
message.	 IF	 user	 is	 female,	 then	 show	 this	 message.	 Luckily,	 it	 is	 quite	 easy	 to	 use
conditional	logic	in	Java	programming.	The	first	conditional	logic	that	we	will	learn	is	IF
statements.

	

IF	STATEMENTS

	

In	programming,	 it	 is	quite	common	 to	 run	a	code	 if	certain	conditions	are	met.	That	 is
why	IF	Statements	are	developed.	In	Java,	the	structure	of	the	IF	statement	is	this:

	

if	(Statement)	{

}

	

You	 begin	 with	 the	 lowercase	 word	 if	 followed	 by	 a	 pair	 of	 rounded	 brackets.	 Curvy
brackets	are	then	used	to	group	a	bunch	of	code.	This	code	is	the	only	code	you	like	to	run
once	the	IF	condition	has	been	fulfilled.	The	condition	itself	must	be	confined	between	the
rounded	brackets:

if	(user	<	21)	{

}

	

This	condition	states	that	IF	user	is	less	than	21.	But	rather	than	using	less	than,	we	could
use	the	less	than	sign	(<).	If	the	user	is	less	than	21	years	old,	then	you	need	to	perform	a
certain	action	such	as	to	show	a	message:

	

if	(user	<	21)	{

//DISPLAY	MESSAGE

}

	

When	the	user	is	not	less	than	21,	then	the	code	within	the	curvy	brackets	should	proceed,
and	 the	 program	will	 continue	 to	 run	until	 the	 last	 code	 line.	Anything	you	 include	 the
curvy	brackets	will	only	take	effect	IF	the	condition	has	been	fulfilled,	and	this	condition
is	confined	within	the	rounded	brackets.

	

Another	symbol	 that	we	can	use	 is	 the	greater	 than	symbol	 (>).	The	IF	statement	above
could	be	changed	a	bit	to	check	if	the	user	is	greater	than	21.

	

if	(user	>	21)	{

//DISPLAY	MESSAGE

}

	

The	only	change	we	have	done	so	far	in	the	code	is	to	change	the	less	than	symbol	(<)	to
greater	than	symbol	(>).	The	IF	statement	will	now	check	if	the	user	is	greater	than	21.

	

However,	this	code	will	not	check	for	users	who	are	specifically	21	and	not	those	who	are
greater	than	21.	If	you	need	to	check	for	users	who	are	21	or	greater,	you	can	include	the
equals	symbol.	Thus:

	

if	(user	>=	21)	{

//DISPLAY	MESSAGE

}

	

Similarly,	you	can	check	for	the	less	than	or	equal	to	sign	in	a	similar	manner:

	

if	(user	<=	21)	{

//DISPLAY	MESSAGE

}

	

The	code	above	contains	the	less	than	sign	(<)	and	the	equals	symbol	(=).

	

Now,	we	can	try	this	code	in	a	basic	program.

	

Begin	 a	new	project.	You	can	name	 the	package	 and	class	name	anything	you	 like.	We
have	named	the	package	IFStatements	while	the	class	is	conditionlogic.

	

We	have	established	an	integer	variable,	and	defined	the	value	20.	The	IF	statement	will
check	for	“less	than	21”.	Hence,	the	message	within	the	curvy	brackets	will	be	displayed.

	

You	can	now	run	the	program.	If	you	will	notice,	NetBeans	runs	the	program	in	box	text
in	 the	Projects	screen	and	not	 the	code	you	have	shown.	 In	order	 to	 run	 the	code	 in	 the
coding	screen,	just	right	click	in	the	code	area.	A	popup	list	will	appear.	Choose	Run	File.
You	can	see	this	in	the	Output	screen:

	

	

Next,	change	the	user	variable	value	from	20	to	21.	Run	it,	and	you	must	see	this:

The	program	is	running	fine,	and	it	has	no	error	messages.	However,	there ’ s	no	print	out,
because	 the	message	within	 the	 curvy	 brackets	 of	 the	 IF	 Statement,	 which	 is	 checking
values	 less	 than	21.	The	condition	 is	not	 fulfilled	so	Java	 is	 ignoring	 the	curvy	brackets
and	proceeds	with	the	rest	of	the	code.

	

Now,	 try	 replacing	 <	with	 <	 =	 symbols.	Also	 change	 the	message	 that	 is	 suitable	 such
as “ user	is	less	than	or	equal	to	21 ” .	Run	the	program.	What	message	do	you	see?

	

Next,	you	can	change	the	user	value	to	22,	and	run	the	program.	Is	the	message	still	there?

	

You	can	also	have	several	IF	Statements	in	the	code.	Try	this	one:

At	this	point,	we	have	two	IF	Statements.	The	first	checks	for	values	that	are	less	than	or
equal	to	21.	The	second	IF	statement	checks	for	values	that	are	greater	than	21.	Once	you
run	the	code	with	the	value	21	or	less	for	the	variable	user,	the	Output	will	be:

	

	

	

Change	the	value	of	the	variable	user	to	22	and	the	Output	will	be	like	this:

	

	
Hence,	 only	 one	 of	 the	 IF	 statements	 will	 print	 out	 a	message	 in	 the	 display.	 And	 the
message	will	depend	on	the	value	provided	in	the	user	variable.

	

IF…ELSE	STATEMENTS

	

Rather	than	using	two	IF	Statements,	it	 is	easier	to	use	an	IF…Else	Statement.	Below	is
the	format	of	an	IF…Else	statement:

	

if	(condition)	{

}
else	{

}

	

It	begins	with	the	“if”	code	and	then	rounded	brackets	containing	the	condition	that	you
like	 to	 check.	 Remember	 to	 use	 curvy	 brackets	 to	 chunk	 off	 the	 several	 options.	 The
second	option	goes	after	“else”	and	confined	with	its	own	curvy	brackets.	Again,	here	is
the	code,	which	tests	the	age	of	the	user:

	

	

Now	we	only	have	two	options:	either	the	user	is	21	or	less	than	or	the	user	is	greater	than
that.	Change	your	code	so	it	will	resemble	the	screenshot	above,	and	run	it.	You	will	find
that	the	first	message	will	be	displayed.	You	can	change	the	value	of	the	user	variable	to
22	and	run	it	again.	The	text	between	the	curvy	brackets	after	the	ELSE	will	be	shown	in
the	Output	Screen.

	

IF…ELSE	IF

	

It	is	possible	to	check	for	several	options.	For	instance,	let’s	say	that	we	like	to	check	for
more	age	ranges	such	as	20	to	40,	and	41	and	beyond?	For	more	than	two	options,	we	can
use	the	If…Else	If	statement.	The	format	of	the	If…Else	If	statement	is	this:

if	(condition_1)	{

}
else	if	(condition_2)	{

}
else	{

}

This	is	the	new	part:

else	if	(condition_2)	{

}

	

Hence,	the	first	IF	checks	for	the	condition_1	(21	or	under,	for	instance).	Then	the	else	if
followed	by	rounded	brackets.	Condition_2	is	confined	inside	the	new	rounded	brackets.
Any	 information	 not	 confined	 by	 the	 first	 2	 conditions	 will	 be	 confined	 in	 the	 else	 if.
Remember,	your	 code	 should	be	 chunked	off	 through	 the	 curvy	brackets,	with	 every	 if,
else	 if,	 or	 else,	 with	 its	 own	 set	 of	 curvy	 brackets.	 Delete	 one	 bracket,	 and	 an	 error
message	will	show.

	

Before	running	this	code,	it	is	important	first	to	learn	other	operators	for	conditional	logic.
So	far,	we	have	used	the	following:

	

Less	Than	(<)

Greater	Than	(>)

Less	Than	or	Equal	To	(<=)

Greater	Than	or	Equal	To	(>=)

	

Here	are	four	more	operators	that	we	can	use:

And	(&&)

Not	(!)

Or	(||)

Has	the	value	(==)

	

The	And	operator	 is	 composed	of	 two	 ampersands	 (&&),	 and	 can	be	used	 to	 check	 for
more	 than	 one	 condition	 simultaneously.	We	 could	 use	 this	 to	 check	 for	 two	 ranges	 of
ages:

	

else	if	(user	>	21	&&	user	<	60)

	

At	this	point,	we	intent	to	test	if	the	user	is	greater	than	21	but	less	than	60.	Take	note	that
we	are	trying	to	test	what	is	contained	in	the	user	variable.	The	first	condition	is	“greater
than	21”	(user	>	21),	and	the	second	condition	is	“less	than	60”	(user	<	60).	Between	these
two,	we	have	the	&&	operator.	Hence,	the	whole	code	line	means	“else	if	user	is	greater
than	21	AND	user	is	less	than	60.”

	

We	will	try	the	other	conditional	operators	in	the	later	sections.	First,	let’s	try	a	new	code:

	

Run	the	program	and	test	it.	By	now,	you	should	have	developed	the	skill	to	guess	exactly
what	will	the	print	out	will	be	before	you	run	the	code.	Since	we	have	a	value	21	for	the
variable	 user	 the	 message	 confined	 between	 the	 curvy	 brackets	 of	 else	 will	 show	 the
Output	screen.

	

Change	the	value	of	the	user	variable	from	21	to	50.	The	display	for	the	else	section	of	the
code	must	now	show.

	

You	have	the	freedom	to	add	as	many	else	if	sections.	Let’s	say	that	we	like	to	test	if	the
user	was	either	50	or	55.	Now	we	can	use	the	other	operators.	We	can	test	if	the	variable
for	the	user	has	value	50	or	has	value	55.

	

else	if	(user	==	50	||	user	==	55)

	

Use	two	equal	signs	to	check	if	the	user	variable	has	value	something.	Take	note	that	there
should	be	no	space	between	the	equal	signs.	Java	will	check	for	this	value	only.	Since	we
like	 to	 check	 for	 the	 user	 being	 55	 also,	we	 could	 include	 another	 condition	within	 the
same	rounded	brackets:	user==55.	This	will	instruct	Java	to	check	if	the	user	variable	has
value	 55.	 Notice	 that	 between	 these	 two	 conditions,	 we	 have	 added	 the	 operator	 OR.
Remember,	 there	 should	 be	 no	 space	 between	 the	 two	 characters.	 The	 entire	 line	 code
means	“Else	if	the	user	has	value	55	OR	the	user	has	value	55”.

	

Below	is	the	code	with	the	added	new	else	part.

	
Now,	change	the	user	variable	value	to	55	and	run	the	code.	Next,	change	it	to	60	and	run
the	code.	In	either	case,	the	new	message	should	be	displayed.

	

Try	 it	 out	 for	 yourself.	Change	 the	 value	 of	 the	 user	 variable	 to	 45	 and	 run	 your	 code.
Then	change	it	to	50	and	re-run	the	code.	In	both	cases	the	new	message	should	display.

	

It	can	be	tricky	to	use	the	different	conditional	operators.	However,	we	are	just	checking	a
variable	 for	 a	 certain	 condition.	 This	 is	 just	 basically	 about	 choosing	 the	 suitable
conditional	operator	for	the	function	you	like.

	

NESTED	STATEMENTS

	

It	is	possible	to	nest	conditional	logic	statements.	Nesting	means	confining	one	statement
between	another.	For	instance,	if	we	like	to	check	if	a	user	is	less	than	21	years	old,	but
greater	than	18	years	old,	we	can	display	a	different	message	for	the	over	18.	We	can	start
with	the	first	IF	statement:

if	(user	<	21)	{
System.out.println(“21	or	younger”);
}

	

In	order	 to	 test	 for	over	18,	you	could	add	a	 second	 statement	within	 the	 first	one.	The
structure	is	still	the	same:

	

if	(user	<	22)	{
if	(user	>	18	&&	user	<	22)	{
System.out.println(“You	are	18	or	22”);
}
}

	

Hence,	 the	 first	 statement	 covers	 the	 variable	 user	 if	 it	 is	 lower	 than	 22.	 The	 second
statement	will	confine	the	user	variable	down	for	value	more	than	18	and	lower	than	22.
To	 print	 out	 separate	 messages,	 you	 can	 use	 the	 If…else	 statement	 rather	 than	 the	 If
statement	as	shown	above.

	

if	(user	<	22)	{

if	(user	>	18	&&	user	<	22)	{
System.out.println(“You	are	18	or	22”);
}
else	{
System.out.println(“18	or	younger”);
}

}

	

Take	note	of	 the	 location	of	 the	curvy	brackets:	misplace	one	bracket	and	your	program
will	not	run.

	

The	 nested	 IF	 statements	 could	 be	 tricky.	 However,	 we	 are	 trying	 to	 narrow	 down	 the

options.

	

BOOLEAN	VALUES	IN	JAVA	PROGRAMMING

A	 Boolean	 value	 is	 one	 of	 the	 two	 options:	 1	 or	 0,	 yes	 or	 no,	 true	 or	 false.	 In	 Java
programming,	there’s	a	variable	type	for	Boolean:

	

boolean	user	=	true;

	

Hence,	rather	than	entering	string	or	double	or	int,	you	can	use	boolean	(with	a	small	b).
After	the	variable	name,	you	can	define	value	true	or	false.	Take	note	that	the	assignment
operator	 refers	 to	 one	 equals	 sign	 (=).	 If	 you	 need	 to	 test	 if	 a	 variable	 “has	 value”
something,	you	can	use	double	equals	sign	(==).

	

You	can	try	this	basic	code:

	

boolean	user	=	true;

if	(user	==	true)	{
System.out.println(“it’s	true”);
}
else	{
System.out.println(“it’s	false”);
}

	

Hence,	the	first	statement	tests	if	the	value	of	user	variable	is	true.	The	else	part	tests	if	the
value	is	false.	There	is	no	need	to	express	“else	if	(user==false)”,	because	if	it	is	not	true,
then	it	is	false.	Therefore,	we	can	just	use	else.	There	are	only	two	options	when	it	comes
to	boolean	values.

	

The	 other	 operator	 on	 our	 option	 is	 the	 NOT	 operator.	We	 coul	 use	 this	 with	 boolean
value.	Observe	this	code:

	

boolean	user	=	true;

if	(!user)	{
System.out.println(“it’s	flase”);
}
else	{
System.out.println(“it’s	true”);
}

	

This	is	almost	similar	to	the	other	boolean	value,	but	for	this	one:

	

if	(!user)	{

	

But	 at	 this	 point,	we	 can	use	 the	operator	NOT	prior	 to	 the	user	 variable.	The	operator
NOT	is	one	exclamation	point	(!)	and	it	is	placed	prior	to	the	variable	that	you	are	trying
to	check.	This	is	checking	for	negation	that	means	that	it	is	checking	for	the	opposite	of
the	actual	value.	Since	the	variable	user	has	been	established	to	be	true,	then	the	operator	!
will	check	for	false	values.	If	the	user	has	been	established	to	false,	then	the	operator	!	will
check	for	true	values.	To	put	it	simply,	if	a	value	is	NOT	true,	then	what	will	it	be?	Or	if	a
value	is	NOT	false,	then	what	it	is?

	

JAVA	SWITCH	STATEMENTS

	

Switch	 statements	 are	 also	 used	 to	 control	 the	 flow	 of	 programs.	 These	 statements
provides	you	the	choice	to	check	for	a	range	of	values	for	the	variables.	You	can	use	them
rather	 than	 the	 lengthy,	 sophisticated	 if…else	 if	 statements.	 This	 is	 the	 format	 of	 the
switch	statement:

	

switch	(variable_2_check)	{
case	value:	
code_here;
break;
case	value:	
code_here;
break;
default:
values_not_caught_above;

}

	

Begin	with	 the	word	 switch	and	 follow	 it	with	a	pair	of	 rounded	brackets.	The	variable
that	you	like	to	test	should	be	confined	between	the	rounded	brackets	of	the	switch.	Then,
add	 a	 pair	 of	 curvy	 brackets.	 The	 other	 sections	 of	 the	 switch	 statement	 should	 all	 go
within	the	two	curvy	brackets.	You	should	use	the	word	case	for	each	value	that	you	like
to	test.	You	can	then	test	this	value:

	

case	value:

	

The	case	value	should	be	followed	by	a	colon.	Then,	you	can	place	what	you	need	to	see	if
they	can	match	values.	This	is	the	code	that	you	like	to	run.	The	break	keyword	should	be
used	to	break	out	every	case	of	the	statement.

	

It	is	optional	to	include	the	standard	value.	You	can	place	it	if	there	are	other	values,	which
could	be	stored	in	variable,	but	that	you	have	not	tested	anywhere	in	the	statement.

	

If	you	are	confused	by	this,	you	can	try	this	code.	You	can	begin	a	new	project	for	this,	or
you	can	add	a	new	comment.	A	fast	way	to	comment	out	the	code	within	NetBeans	is	to
click	the	comment	icon	found	at	the	toolbar.	The	first	step	is	to	highlight	the	code	that	you
like	to	comment	out.	The	next	step	is	to	click	the	icon	for	comment.

	

	

Now	here	is	the	code:

	

This	code	will	define	a	value	that	you	need	to	check.	We	have	now	established	an	integer
variable	and	referred	to	it	as	user.	We	have	defined	the	value	to	18.	The	statement	will	test
the	variable	user	and	check	the	value.	This	will	then	pass	through	every	statement.	Once	it
finds	one	that	agrees	with,	the	code	will	pause	and	run	for	that	case	and	will	then	break	the
statement.

	

You	can	try	running	this	program.	Type	in	the	different	values	for	the	variable	user	and	see
what	will	happen.

	

Unfortunately,	there	is	no	way	to	check	for	a	values	range	after	the	case.	Hence,	you	can
check	for	a	single	value	only.	Therefore,	it	is	not	possible	to	do	this	code:

	

case	(user	<=	21):

	

Meanwhile,	it	is	possible	to	perform	this:

case	1:	case	2:	case	3:	case	4:

	

The	test	above	will	check	for	the	range	of	values	from	one	to	four.	However,	you	need	to

specify	every	value.	Be	sure	to	take	note	of	the	placement	of	all	the	case	and	colons.

	

JAVA	LOOPS

	

So	far,	 the	programming	that	we	have	been	doing	now	is	sequential.	 It	 runs	from	top	 to
bottom	with	each	code	line	being	run,	except	when	you	include	a	section	that	tells	Java	not
to	read	that	code.

	

In	the	previous	section,	using	IF	statements	to	chunk	off	code	areas	is	a	method	to	instruct
Java	not	to	read	each	line.

	

Another	method	to	disrupt	the	flow	from	top	to	bottom	is	through	loops.	In	programming,
a	loop	is	one	that	forces	the	program	to	run	code	lines	again	and	again.

	

For	instance,	let’s	say	that	we	intend	to	add	the	numbers	11	to	20.	You	can	easily	compute
that	in	Java	such	as	this:

	

int	addition	=	11	+	12	+	13	+	14	+	15	+	16	+	17	+	18	+	19	+	20;

	

However,	using	this	method	to	add	up	a	long	string	of	numbers	such	as	1	to	10,000	is	time
consuming.	An	easier	method	is	to	use	a	loop	to	return	the	line	code	again	and	again	until
you	have	reached	10,000.	You	can	then	exit	the	loop	and	move	on.

	

A	common	type	of	loops	is	called	For	Loops.	Below	is	the	format	of	this	LOOP:

	

for	(start_value;	end_value;	increment_number)	{

//INSERT_CODE_HERE

}

	

The	 keyword	 for	 is	 followed	 by	 rounded	 brackets	 containing	 three	 elements:	 the	 start
value,	the	end	value,	and	the	method	to	obtain	from	one	number	to	another.	This	is	known
as	the	increment	number,	and	often	the	value	of	one.	You	have	the	freedom	to	choose	the
increment.

	

Next	to	the	rounded	brackets	are	the	curvy	brackets,	which	are	employed	to	chunk	off	the
code	that	you	need	to	run	again	and	again.	Confused?	Here	is	an	example	code.

	

Start	 a	 new	 project,	 and	 name	 the	 project	 and	 class	 anything	 you	 like.	 For	 this,	 I	 have
named	the	project	ForLoops	and	the	class	JavaLoops.	Next,	add	the	code	below:

	

We	can	begin	by	defining	an	integer	variable	that	we	have	named	as	loopVal.	The	second
line	defines	another	int	variable,	which	we	can	use	for	the	loop’s	end	value,	which	is	set	to
21.	What	we	intend	to	do	is	to	loop	around	to	print	out	the	numbers	from	zero	o	21.

	

We	have	the	following	code	within	the	rounded	brackets	of	the	for	loop:

	

loopVal	=0;	loopVal	<	end_value;	loopVal++

	

The	first	chunk	instructs	Java	to	start	at	this	value	in	looping.	In	this,	we	are	defining	zero
value	to	the	variable	loopVal.	This	will	be	used	as	the	first	number	in	the	loop.	The	next
chunk	employs	a	conditional	logic.

	

loopVal	<	end_value

	

The	above	line	means	that	“loopVal	is	less	than	the	end_value”.	The	for	loop	will	then	run
and	run	if	the	value	of	the	variable	loopVal	is	still	lower	compared	to	the	value	defined	in
the	end_value	variable.	Java	will	keep	on	running	over	the	code	confined	inside	the	curvy
brackets	 as	 long	 as	 the	 value	 of	 the	 loopVal	 is	 still	 less	 than	 the	 value	 of	 the	 variable
end_value.

	

Below	is	the	last	chunk	inside	the	rounded	brackets	of	the	for	loop

	

loopVal++

	

At	this	point,	we	are	instructing	Java	the	method	we	like	it	to	follow	to	go	from	the	start
value	in	the	loopVal	to	the	next	number	in	the	series.	We	intend	to	count	from	zero	to	20.
The	next	number	is	1.	The	code	loopVal++	simply	means	“add	an	increment	of	1	to	 the
variable	value.

	

Rather	than	expressing	loopkVal++,	we	could	have	written	this:

	

loopVal	=	loopVal	+	1

	

After	the	loopVal+1,	Java	will	add	an	increment	of	1	to	anything	that	is	presently	stored	in
variable	loopVal.	After	it	has	added	one	to	this	value,	it	will	hold	the	result	within	variable
before	the	equals	symbol.	Again,	this	is	the	variable	loopVal.	The	outcome	is	that	1	will
keep	getting	added	to	the	loopVal.	This	is	referred	to	as	incrementing	the	variable.	This	is
so	common	in	programming	that	the	variable	notation	signified	by	two	plus	symbols	(++)
was	developed	for	this:

	

int	set_number	=	0;
set_number++;

	

The	value	of	set_number	is	1	once	you	run	the	code.	This	is	the	short	hand	of	expressing
this:

	

int	set_number	=	0;
set_number	=	set_number	+	1;

	

In	summary,	the	for	loop	refers	to	this:

	

Loop	Start	value:	0
Keep	Looping	until:	Start	value	is	less	than	21
Method	to	progress	the	end	value:	Keep	adding	1	to	the	start	value

	

We	have	this	curvy	brackets	of	the	for	loop:

	

System.out.println(“Loop	Value	=	”	+	loopVal);

Anything	 that	 is	 presently	 confined	 the	 loopVal	 variable	 could	 be	 printed	 out	with	 any
message.

	

Now,	run	the	program	and	this	message	should	appear	in	the	Output	screen:

	

	
Hence,	we	have	confined	the	program	in	a	loop,	and	instructed	it	to	run	round	and	round.
Every	loop,	an	increment	of	1	will	be	added	to	the	variable	loopVal.	This	loop	will	keep
running	again	and	again	while	the	value	of	the	loopVal	is	lower	than	the	value	defined	in
the	end_value.	Anything	within	the	curvy	brackets	of	the	loops	refers	to	the	code	that	will
run	again	and	again.	This	is	the	whole	idea	of	the	loop:	to	run	the	curly	bracket	code	over
and	over	again.

	

Here	is	a	code	that	will	allow	you	to	add	the	numbers	0	to	20.	Have	a	go:

The	result	that	must	be	shown	in	the	Output	screen	is	210.	More	or	less,	the	code	itself	is
similar	to	the	past	for	loop.	You	have	the	same	set	of	variables	written	at	the	top	–	loopVal
and	 end_value.	 Then,	 we	 have	 added	 another	 int	 variable	 that	 we	 have	 refered	 to	 as
addition.	This	will	store	the	value	of	the	sum	of	0	to	20.

	

Within	the	rounded	brackets	of	the	loop,	it	is	also	similar	for	the	previous	code.	We	have
looped	 while	 the	 value	 of	 the	 loopVal	 variable	 is	 lower	 than	 the	 value	 defined	 in	 the
end_value.	Meanwhile,	we	were	adding	the	increment	of	1	to	the	variable	loopVal	every
time	the	loop	runs	(loopVal++).

	

Inside	the	curvy	brackets,	we	now	have	a	single	code	line:

	

addition	=	addition	+	loopVal;

	

This	one	code	line	adds	the	numbers	from	0	to	20.	If	you	are	still	not	clear	on	how	this	one
works,	you	can	start	next	to	the	equals	symbol:

	

addition	+	loopVal;

	

The	first	round	of	 the	loop	defined	the	variable	addition,	which	is	storing	0	as	 its	value.
Meanwhile,	 the	 loopVal	 variable,	 is	 still	 storing	 value	 1	 (its	 beginning	 value).	 The
program	will	add	0	to	1,	and	will	keep	the	answer	to	the	variable	before	the	equals	symbol.
Remember,	this	is	the	variable	addition.	Any	value	that	was	stored	in	the	previous	codes
will	be	eliminated	and	will	be	replaced	with	the	new	value.

	

The	second	round	of	the	loop,	the	variable	values	will	be	new	agains.

	

addition	(1)	+	loopVal	(2);

	

Of	course,	the	answer	is	3.	Hence,	this	new	value	will	be	held	to	the	variable	before	the
equals	symbol.

	

These	are	now	then	values	of	the	loop	for	the	third	round.

	

addition	(3)	+	loopVal	(3);

	

The	 program	will	 add	 values	 and	will	 store	 the	 result	 to	 the	 variable	 before	 the	 equals
symbol.	This	will	keep	running	again	and	again	until	 the	 loop	ends.	The	final	answer	 is
210.

	

Take	note	that	the	line	for	print	is	located	outside	the	for	loop,	following	the	final	curvy
bracket	for	the	loop.

	

	

	

	

WHILE	LOOPS

	

Another	kind	of	loop,	which	you	can	use	in	Java	is	known	as	the	while	loop.	You	will	find
that	while	 loops	are	easier	 to	 learn	compared	to	for	 loops.	Here	is	 the	format	of	a	while
loop:

	

while	(condition)	{

}

	

We	will	begin	with	the	keyword	while	in	small	caps.	The	condition	that	you	like	to	check
for	will	be	confined	inside	the	rounded	brackets.	This	will	be	followed	by	a	pair	of	curvy
brackets	as	well	as	the	code	that	you	like	to	run.	Here	is	a	while	loop,	which	prints	out	a
message.	Try	this	one:

	

int	loopVal	=	0;

while	(loopVal	<	10)	{
System.out.println(“Display	Some	Message”);
loopVal++;
}

	

The	 condition	 to	 check	 is	 confined	 between	 the	 rounded	 brackets.	 We	 intend	 to	 keep
looping	until	 the	value	stored	 in	 the	 loopVal	variable	 is	 lower	 than	10.	Within	 the	curly
brackets,	our	program	will	display	a	line	of	message.	We	can	then	increment	the	value	of
the	variable	loopVal.	Without	defining	this,	we	will	have	an	infinite	loop,	because	there’s
no	way	for	the	loopVal	variable	to	obtain	a	value	beyond	its	start	value	of	zero.

	

Even	though	we	have	used	a	counter	to	proceed	to	the	end	condition,	while	loops	are	ideal
to	 use	 if	 you	 really	 don’t	 need	 a	 counting	 value,	 but	 instead	 just	 a	 value	 to	 check.	 For
instance,	 it	 is	 fine	 to	 keep	 the	 loop	while	 the	 user	 is	 still	 not	 pressing	 any	 key.	This	 is
helpful	 in	 programming	 games.	A	 specific	 key	 could	 be	 pressed	 to	 exit	 the	while	 loop.
This	 is	better	known	as	 the	game	 loop,	 and	 therefore	 could	be	 the	game	 itself.	Another
good	example	 is	 looping	around	 the	 text	 file	while	 the	program	has	not	yet	 reached	 the
end	of	the	file.

	

DO…WHILE

	

Do…While	is	related	to	the	while	loop.	The	format	is	this:

	

int	loopVal	=	0;

do	{
System.out.println(“Display	Some	Message”);
loopVal++;
}
while	(loopVal	<	10);

	

Take	note	that	the	program	will	loop	again	and	again	until	you	meet	the	end	condition.	At
this	point,	the	while	part	is	located	at	the	bottom.	However,	the	condition	is	similar:	just
keep	on	looping	while	the	value	of	the	loopVal	variable	is	less	than	10.

	

The	main	distinction	between	the	two	is	that	the	code	inside	the	curvy	brackets	for	do…
while	 could	 be	 run	 at	 least	 once.	 Using	 the	 while	 loop,	 the	 condition	 can	 easily	 be
fulfilled.	The	program	will	just	exit	the	loop,	and	not	even	run	the	code	inside	the	curvy
bracket.	To	check	this,	you	can	try	first	 the	while	loop.	You	can	change	the	value	of	the
variable	 loopVal	 to	10,	and	 then	 run.	You	will	 find	 that	 the	message	doesn’t	get	printed
out.	Now,	you	can	try	the	do	loop	with	the	defined	value	of	5	for	loopVal.	The	message
will	be	displayed	once,	and	then	Java	will	exit	out	the	loop.

	

In	the	next	chapter,	we	will	learn	more	about	Java	Arrays.

	

	

Chapter	5	–	Java	Arrays

	

A	programming	concept	that	you	need	to	learn	in	order	to	effectively	code	is	the	array.	It	is
a	crucial	concept,	so	it	deserves	its	own	chapter.

	

WHAT	IS	A	JAVA	ARRAY?

	

At	 this	 point,	 we	 have	 been	 coding	 with	 variables	 that	 store	 single	 values.	 The	 string
variables	 we	 have	 set	 up	 only	 holds	 a	 long	 string	 of	 text,	 while	 the	 int	 variables	 have
stored	only	a	single	number.	 In	order	 to	hold	more	 than	one	value	at	 the	same	 time,	we
need	to	use	an	array.	This	is	similar	to	the	list	of	items.	An	array	is	similar	to	the	columns
in	 your	 spreadsheet	 software.	 A	 spreadsheet	 can	 be	 composed	 of	 a	 single	 column	 or
several	columns.	The	data	stored	in	a	single-list	array	may	look	like	this:

	

	

Similar	to	a	spreadsheet,	arrays	include	a	position	number	for	every	row.	The	positions	in
an	 array	 begin	 at	 zero	 and	will	 sequentially	 increase.	 Every	 position	 in	 the	 array	 could
then	store	a	value.	In	the	screenshot	above	the	position	array	0	is	storing	value	10,	position
array	1	is	holding	14,	and	array	position	2	is	holding	value	36,	and	so	on	and	so	forth.

	

In	order	to	establish	an	array	of	number	similar	to	this	screenshot,	we	need	to	instruct	Java
the	 type	of	data	will	be	 in	 the	array	 (boolean	values,	 strings,	 integers,	and	more).	Then,
you	need	to	say	how	many	array	positions.	The	format	is	like	this:

	

int[]	numArry;

	

The	main	distinction	between	defining	a	normal	integer	variable	and	an	array	is	a	pair	of
square	brackets	right	after	 the	 type	of	data.	The	square	brackets	are	sufficient	enough	to
command	 Java	 that	 you	 like	 to	 establish	 an	 array.	 The	 name	 of	 our	 array	 above	 is
numArry.	Similar	to	regular	variables,	you	have	the	freedom	to	name	the	variable	anyway
you	like.

	

However,	this	will	instruct	Java	that	you	intend	to	establish	an	array	integer.	It	will	not	say
how	many	 positions	 the	 array	must	 store.	 In	 order	 to	 do	 this,	we	 need	 to	 define	 a	 new
object	array:

	

numArry	=	new	int[5];

	

We	will	begin	with	the	name	of	the	array	and	then	equals	sign.	Next	to	the	equals	symbol,
we	add	the	keyword	new,	and	then	the	type	of	data.	Next	to	the	type	of	data	is	a	pair	of
square	brackets.	Within	these	brackets,	we	need	to	indicate	the	array	size.	The	size	is	how
many	positions	the	array	must	store.

	

We	can	write	them	all	in	a	single	line:

	

int[]	numArry	=	new	int[6];

	

We	are	commanding	Java	to	establish	an	array	with	five	positions	in	it.	Once	this	line	is
run,	 Java	 can	 specify	 default	 array	 values.	 Since	 we	 have	 already	 specified	 an	 array
integer,	the	default	values	for	the	five	positions	will	be	0.

In	order	to	define	values	to	the	different	positions	in	an	array,	we	can	do	it	in	the	regular
method:

	

numArry[0]	=	5;

	

In	 this	 line,	we	 are	 assigning	 the	value	of	 5	 to	position	0	 in	 the	 array	named	numArry.
Remember,	we	are	using	 the	 square	brackets	 to	 refer	 to	every	position.	 If	you	 intend	 to
define	value	25	to	position	1,	the	code	should	be	like	this:

	

numArry[1]	=	25;

	

Meanwhile,	we	can	assign	value	50	to	array	position	2	through	this:

	

numArry[2]	=	50;

	

Take	note,	 since	arrays	begin	at	0,	 the	 third	position	 in	 the	array	 includes	 the	number	2
index.

	

If	you	know	values	that	you	like	to	include	in	the	array,	you	can	write	them	up	like	this:

	

int[]	numArry	=	{	1,	2,	3,	4	};

	

This	manner	of	establishing	an	array	uses	curvy	brackets	next	to	the	equal	symbol.	Within
the	curvy	brackets,	we	can	specify	values	that	each	array	can	store.	The	first	value	could
be	position	0	while	 the	 second	value	position	1,	 etc.	Remember,	you	 should	add	 square
brackets	 next	 the	 int,	 but	 not	 on	 the	 keyword	 new	or	 the	 cycle	 of	 the	 type	 of	 data	 and
square	 brackets.	 However,	 this	 is	 just	 for	 data	 types	 of	 char	 values,	 string,	 and	 int.
Otherwise,	you	will	need	to	use	the	keyword	new.	Hence,	you	can	write	this:

	

String[]	stringsArry	=	{“Harry”,	“Ron”,	“Hermione”,	“Snape”	};

	

But	not	this:

	

boolean[]	boolsArry	=	{true,	false,	true,	false};

	

In	order	to	establish	an	array	boolean,	we	still	need	to	use	the	keyword	new:

	

boolean[]	boolsArry=	new	boolean[]	{true,	false,	true,	false};

	

To	move	at	values	stored	in	the	array,	we	can	write	the	array	name	and	include	the	position
array	in	square	brackets	such	as	this:

	

System.out.println(numArry[3]);

	

This	code	will	display	whatever	value	is	stored	at	array	position	3	in	the	array	named	as
numArry.	Let’s	do	some	exercise.

	

Begin	a	new	project	and	name	it	anything	you	like.	Be	sure	to	choose	a	new	name	for	the
Class.	Enter	the	code	below	into	the	new	Main	method:

	
Once	we	run	the	program,	the	Output	screen	should	look	like	this:

	

	

Try	changing	 the	array	position	 in	 the	number	within	 the	 line	print	 from	2	 to	4,	 and	25
should	be	displayed	instead.

	

LOOPS	AND	ARRAYS

	

Arrays	naturally	have	their	own	loops.	In	the	previous	section,	the	code	below	is	used	to
assign	values	to	array	positions:

	

numArry[0]	=	5;

	

However,	 this	 is	 not	 recommended	 if	 you	have	 a	 long	 list	 of	 numbers	 that	 you	need	 to
assign	 to	an	array.	For	example,	 let’s	 say	we	need	 to	develop	a	 lottery	program	and	we
need	 to	 assign	 the	 numbers	 1	 to	 60	 to	 positions	 in	 an	 array.	 Rather	 than	 encoding	 an
exhaustive	list	of	positions	with	their	values,	we	can	instead	use	a	loop.	Below	is	a	code	to
work	it	out:

	

	

In	this	code,	we	have	defined	an	array	to	store	60	int	values.	Then,	we	added	a	loop	code.
Take	note	of	the	loop’s	end	condition:

	

i	<	lottery_numbers.length

	

Length	 refers	 to	 the	property	of	array	objects,	which	you	can	use	so	you	can	obtain	 the
array	 size	 or	 the	 number	 of	 positions.	 Hence,	 this	 loop	 will	 keep	 running	 while	 the
variable	value	in	i	is	lower	compared	to	the	array	size.

	

The	code	below	is	used	to	define	values	for	every	array	position:

	

lottery_numbers[i]	=	i	+	1;

	

Rather	 than	 the	hard-code	value	within	 the	 square	brackets	 of	 name	array,	we	use	 the	 i
variable,	which	increases	by	value	one	every	time	the	loop	runs.	We	can	then	access	every
array	position	by	utilizing	value	loop.	The	value	that	we	are	assigning	to	every	position	is
I	plus	1.	Hence,	this	is	an	example	of	incremental	value	in	a	loop	but	with	1	added.	Since
the	value	of	the	loop	starts	at	0,	this	will	provide	you	the	numbers	1	to	60.

	

The	added	line	in	the	loop	will	just	display	the	value	in	every	array	position.	If	you	like,
you	can	even	type	a	code	to	mix	up	the	array	numbers.	When	you	have	mixed	up	values,
you	can	then	get	the	first	six	so	you	can	assign	them	as	lotto	numbers.	Then	type	another
block	of	code,	which	compares	the	number	of	the	users	with	the	assigned	winning	nums
and	you	will	now	have	a	lotto	code!

	

ARRAY	SORTING

	

There	 are	 java	methods	 that	 you	 can	 use	 for	 array	 sorting.	 In	 order	 to	 use	 this	 sorting
method,	it	is	important	first	to	reference	a	library	known	as	Arrays.	You	can	do	this	using
the	 import	 statement.	You	 can	 use	 the	 numArry	 program	 and	 add	 the	 import	 statement
below:

	

import	java.util.Arrays;

	

The	code	must	look	like	this	screenshot:

	

After	importing	the	library	Arrays,	we	can	use	now	the	sorting	method.	You	should	find
this	easy.

	

Arrays.sort(numArry);

	

The	 first	 step	 is	 to	 encode	 the	 word	 “Arrays	 followed	 by	 a	 period.	 Once	 you	 add	 the
period,	the	program	will	show	a	list	of	options	that	you	can	do	with	arrays.	Just	enter	the
word:	sort.	Within	the	rounded	brackets,	place	the	name	of	the	array	that	you	like	to	sort.
Take	note	that	there	is	no	need	to	use	any	square	brackets	after	the	name	of	the	array.

	

And	voila!	You	can	now	sort	the	array.	Try	the	code	below	to	see	this	work:

	

The	for	 loop	added	the	end	of	 the	line	will	run	again	and	again	to	display	values	within
every	array	position.	Once	the	code	has	been	run,	the	Output	screen	should	look	like	this:

	

	
As	you	will	see,	the	program	sorted	the	array	in	ascending	order.

If	 you	 like	 to	 sort	 out	 in	 descending	 order,	we	 need	 to	write	 down	 the	 sorting	 code,	 or
transform	 the	array	 to	 int	objects	 then	 import	 from	 the	 library	Collections.	Below	 is	 the
code	if	you	like	to	sort	in	the	descending	order:

	

	
The	code	above	can	be	a	bit	messy,	but	it	can	do	the	job.

	

STRINGS	AND	ARRAYS

	

The	next	 concept	 to	 learn	 is	how	 to	put	 text	 strings	within	 arrays.	You	can	also	do	 this
using	the	similar	method	of	processing	integers:

	

String[]	stringArry	=	new	String[5]	;

stringArry[0]	=	“What”;
stringArry[1]	=	“does”;
stringArry[2]	=	“the”;
stringArry[3]	=	“fox”;
stringArry[4]	=	“say”;

	

This	 code	 defines	 an	 array	 string	with	 five	 positions.	A	 specific	 text	 is	 then	 defined	 to
every	array	position.

	

Below	is	a	loop,	which	runs	round	all	the	array	positions,	which	can	display	the	message
for	every	position:

	

int	i;
for	(i=0;	i	<	stringArry.length;	i++)	{
System.out.println(stringArry[i]);
}

	

This	loop	will	keep	on	running	as	long	as	the	value	in	variable	known	as	i	is	lower	than
the	length	of	the	array	known	as	stringArry.

	

Once	you	run	this	program,	the	Output	screen	must	look	like	this:

	

It	 is	 also	 possible	 to	 sort	 array	 strings,	 similar	 to	 what	 we	 have	 done	 with	 integers.

However,	take	note	that	the	sorting	will	be	alphabetical.	Hence,	a	will	come	before	b.	Java
is	using	Unicode	texts	 to	do	a	comparison	of	a	 letter	 to	 the	string.	Hence,	 the	uppercase
letters	will	come	before	the	lowercase	letters.	Take	a	look	at	the	code	below:

	

Once	you	run	this	code,	the	Output	screen	must	look	like	this:

	

Even	though	we	have	already	sorted	the	array,	the	word	“What”	is	still	placed	first.	If	this
is	an	alphabetical	sort,	we	are	expecting	the	word	“does”	to	be	printed	first.	This	will	be
true	if	all	the	letters	are	in	small	caps.	In	the	code,	try	changing	the	capital	“W”	of	“What”
to	a	small	“w”.	Run	the	code	again.	The	output	screen	should	now	be	like	this:

	

	

At	this	point,	the	word	“what”	is	now	placed	last.	We	will	learn	more	about	strings	in	the
next	section.

	

JAVA	MULTI-DIMENSIONAL	ARRAYS

	

The	arrays	that	we	have	been	using	so	far	have	only	stored	one	data	column.	However,	we
can	still	define	an	array	to	store	several	columns.	These	are	known	as	multi-dimensional
arrays.	For	example,	consider	an	excel	file	with	columns	and	rows.	If	you	have	five	rows
and	six	columns,	then	the	excel	file	can	store	30	values	such	as	this:

	

	

Multi-dimensional	arrays	could	store	all	values	above.	In	order	to	set	up	these	arrays,	use
the	code	below:

	

int[][]	numArrays	=	new	int[5][6];

	

These	are	defined	similarly	as	a	regular	array,	except	you	have	two	pairs	of	square	braces.
The	first	pair	of	square	braces	are	for	the	rows	and	the	second	pair	of	braces	are	for	the
columns.	 In	 the	 code	 line	 above,	we	are	 instructing	 Java	 to	 establish	 an	 array	with	 five
columns	and	six	rows.	In	order	to	establish	values	within	a	multi-dimensional	array,	you
need	 to	 track	 the	 columns	 and	 rows.	Here	 is	 the	 code	 to	 assign	 the	 first	 rows	 from	 the
excel	screenshot.

	

numArrays[0][0]	=	50;
numArrays[0][1]	=	18;
numArrays[0][2]	=	64;
numArrays[0][3]	=	63;
numArrays[0][4]	=	15;

numArrays[0][5]	=	75;

	

Hence,	the	first	row	is	row	0.	The	columns	will	then	go	from	zero	to	5,	which	is	6	items.
In	order	to	fill	out	the	next	row,	we	need	to	write	the	following	lines:

	

numArrays[1][0]	=	34;

numArrays[1][1]	=	88;
numArrays[1][2]	=	43;
numArrays[1][3]	=	46;
numArrays[1][4]	=	19;

numArrays[1][5]	=	14;

	

	

Take	note	that	the	number	of	the	columns	is	still	the	same,	but	the	number	of	rows	is	now
assigned	to	1.

	

	

In	order	to	access	the	items	within	the	multi-dimensional	array,	the	strategy	is	to	employ	a
single	loop	within	another.	Here	is	the	code	to	access	the	number	from	above.	It	will	use
two	for	loops:

	

	

	

The	 first	 loop	 will	 be	 used	 for	 the	 rows,	 while	 the	 second	 loop	 will	 be	 used	 for	 the
columns.	On	the	first	run	of	the	first	loop,	the	value	of	the	i	variable	is	0.	The	code	within
the	for	 loop	 is	also	a	 loop.	The	entire	second	 loop	will	 run	as	 long	as	 the	value	of	 the	 i
variable	is	0.	The	second	for	loop	uses	the	j	variable.	The	variables	j	and	i	could	then	be
used	to	access	the	array.

numArrays[i][j]

	

Hence,	 the	 dual	 loop	 system	 is	 used	 to	 access	 all	 values	 within	 the	 multi-dimensional
array,	row	after	row.

	

JAVA	ARRAY	LISTING

	

If	you	are	not	certain	about	the	numbers	you	need	to	store	in	the	array,	it	is	ideal	to	use	an
ArrayList.	This	data	structure	 is	dynamic,	which	means	the	items	could	be	included	and
eliminated	from	list.	A	regular	java	array	is	static	structure	as	you	have	to	deal	with	fixed
array	size.

	

To	define	an	ArrayList,	it	is	important	first	to	define	an	import	package	sourced	out	from
the	library	java.util:

	

import	java.util.ArrayList;

	

Next,	we	need	to	make	a	new	object	ArrayList	using	this	code:

	

ArrayList	listTest	=	new	ArrayList();

	

Take	note,	we	don’t	need	any	squared	braces	at	this	point.

	

When	we	create	ArrayList,	we	can	then	start	adding	elements	using	the	method	add:

	

listTest.add(“item	one”);
listTest.add(“item	two”);
listTest.add(“item	three”);
listTest.add(8);

	

Within	the	rounded	brackets	of	the	add	method,	we	need	to	place	the	text	or	number	that
we	like	to	include	in	the	ArrayList.	However,	we	can	only	include	objects.	Notice	that	the
first	3	objects	that	we	have	included	on	the	list	are	Strings,	while	the	last	object	is	a	certain
number.	However,	take	note	that	this	would	be	an	object	number	of	integer	type	and	not
primitive	type	data	int.

	

These	listings	could	be	referenced	using	index	number	as	well	as	through	the	utilization	of
the	method	get:

	

listTest.get(3)

	

This	 code	 could	 obtain	 the	 object	 at	 position	 3	 index	 on	 this	 list.	 Remember,	 index
numbers	begin	at	zero,	hence	this	could	be	item	four.

	

It	is	also	possible	to	get	rid	of	an	item	from	the	array	listing.	You	can	use	this	list	value:

	

listTest.remove(“item	one”);

	

Or	this	one:

	

listTest.remove(1);

	

Once	you	remove	the	item,	the	ArrayList	will	be	resized.	Hence,	you	must	take	extra	care
in	getting	an	object	from	the	list	if	you	are	using	the	number	index.	In	this	example,	if	you
remove	 item	 1,	 then	 the	 list	will	 contain	 only	 three	 items.	Getting	 the	 object	 using	 the
number	2	index	will	then	yield	back	an	error.

	

In	order	to	access	every	item	in	the	ArrayList,	we	can	add	an	Iterator,	which	is	also	located
in	the	library:	java.util:

	

import	java.util.Iterator;

	

The	next	step	is	to	attach	the	ArrayList	to	the	new	object	Iterator:

	

Iterator	it	=	listTest.iterator();

	

This	will	add	a	new	object	Iterator,	which	can	be	used	to	access	the	objects	in	the	listing
named	as	listTest.	It	is	ideal	to	use	the	Iterator	object	because	it	comes	with	the	methods
known	as	hasNext	and	next,	which	you	can	employ	in	a	loop.

	

while	(it.hasNext())	{
System.out.println(it.next());
}

	

The	hasNext	method	will	yield	a	Bolean	value.	This	value	should	be	false	once	there	are

no	remaining	objects	within	the	ArrayList.	We	can	use	the	method	next	to	access	all	 the
objects	in	the	listing.

	

You	can	check	this	theory	by	using	the	code	below:

Take	note	of	the	line,	which	displays	the	whole	listing:

	

System.out.println(“Whole	list=”	+	listTest);

	

Through	this,	you	can	get	a	glimpse	of	the	items	that	are	included	on	the	list.

	

	

Remember,	 the	ArrayList	 is	useful	 if	you	are	not	certain	of	 the	number	of	elements	 that
should	be	stored	in	the	item	lists.

Chapter	5	–	Java	String	Methods

	

Not	similar	to	double	variables	and	int	variables,	strings	are	objects,	so	you	can	do	certain
things	 with	 text	 strings	 which	 you	 cannot	 do	 with	 double	 or	 int	 variables.	 The	 same
principle	 applies	 to	 primitive	 types	 such	 as	 short,	 long,	 float,	 chart,	 single,	 byte,	 and
boolean.

	

Before	we	discuss	the	manipulation	of	text	strings,	let’s	first	discuss	basic	strings.

	

HOW	JAVA	HANDLES	STRINGS

	

String	refers	to	a	sequence	of	Unicode	characters	held	within	a	name	variable.	Take	note
of	the	string	below:

	

String	sampleText	=	“Ron”;

	

This	 instructs	 Java	 to	 establish	 a	 string	 object	 with	 three	 characters:	 R,	 o,	 and	 n.	 In
Unicode	character	 set,	 these	values	are	U+0052,	U+006F,	and	U+006E.	Unicode	values
are	 handled	 as	 hexadecimals.	 In	 the	 past	 section,	we	worked	 on	 an	 array	 that	 held	 text
strings	that	we	have	sorted:

Once	you	run	the	program,	the	output	screen	will	be	this:

	

We	have	noticed	that	the	word	“What”	is	listed	first.	If	the	array	is	arranged	alphabetically,
the	 word	 “does”	 should	 come	 first.	 However,	 “d”	 has	 a	 hexadecimal	 value	 of	 u\0064,
which	 is	 the	 decimal	 number	 100.	Uppercase	 “W”	 has	 a	 hexadecimal	 value	 of	 u\0057,
which	is	the	decimal	number	87.	87	is	less	than	100,	so	the	“W”	will	be	listed	first.

Now,	it’s	time	to	manipulate	some	texts.

	

Upper	and	Lower	Case

	

Transforming	text	Java	strings	to	upper	or	lower	case	is	quite	straightforward.	You	can	use
the	pre-existing	methods	toUpperCase	and	toLowerCase.

	

Initiate	a	new	project	and	type	in	the	following	code:

	

	

The	 function	of	 the	 code’s	 first	 two	 lines	 is	 to	 set	 up	 a	 variable	String	 to	 store	 the	 text
“object	to	change”,	and	then	print	it	out.	The	next	line	sets	another	variable	String	known
as	result.	Then,	we	have	another	line	to	help	us	in	conversion:

	

result	=	caseChange.toUpperCase();

In	order	to	use	a	string	method,	we	first	need	to	encode	the	string	that	we	like	to	work	on.
In	this	case,	we	are	using	the	variable	string	we	named	caseChange.	 Include	a	dot	after
the	name	variable	and	a	list	of	available	methods	will	appear,	which	you	can	use	on	the
string.	 Choose	 toUpperCase.	 Remember,	 the	 method	 still	 requires	 the	 empty	 rounded
brackets.	Once	Java	has	converted	the	word	to	uppercase	text,	we	will	store	the	new	string
in	variable	string.	

	

Once	you	run	the	program,	the	Output	screen	will	be	like	this:

	

	

However,	we	don’t	need	to	hold	 the	changed	text	 into	another	variable.	The	code	below
will	just	work	as	fine:

	

System.out.println(caseChange.toUpperCase());

	

At	this	point,	Java	will	proceed	with	the	string	conversion	without	the	need	to	assign	the
result	to	another	variable.

	

If	you	need	to	transform	to	lowercase,	you	can	use	the	method	toLowerCase.	You	could
use	this	in	precisely	the	same	way	as	toUpperCase.

	

	

Strings	Comparison

	

It	 is	 possible	 to	 do	 a	 comparison	 of	 strings.	 In	 comparison,	 Java	will	 utilize	 the	 hexa-
decimal	values	instead	of	the	letters.	For	instance,	if	you	like	to	compare	the	terms	Map
and	Man	 to	know	which	will	be	 listed	first,	you	could	utilize	a	string	method	known	as
compareTo.	Check	how	this	one	works.

	

There	is	no	need	to	begin	a	project.	You	can	just	delete	or	comment	out	the	code	that	we
have	written.	Then,	type	in	the	code	below:

	

We	have	established	two	variable	strings	to	hold	the	words	“Map”	and	“Lap”.	The	method
compareTo	is	the	code	below:

	

result	=	Word1.compareTo(Word2);

	

The	method	compareTo	returns	a	value.	The	value,	which	is	returned	will	be	higher	than

0,	 lower	than	0,	or	zero	as	 its	value.	When	Word1	is	 listed	before	Word2,	 the	value	that
will	be	returned	is	lower	than	zero.	When	Word1	is	listed	after	Word2,	then	the	value	that
will	be	returned	is	higher	than	zero.	If	the	words	are	the	same,	then	a	the	return	value	will
be	zero.

	

Hence,	it	is	important	to	define	the	value	that	the	method	compareTo	returns	to	a	variable.
We	can	assign	value	for	an	 int	variable	known	as	 result.	 In	 this	code,	 the	IF	Statements
basically	checks	the	variable	result.

	

But	if	we	compare	a	text	string	with	another,	Java	will	compare	their	hexadecimal	values
instead	 of	 the	 actual	 letters.	 Since	 uppercase	 letters	 have	 lesser	 hexadecimal	 value
compared	to	lowercase	letter,	an	uppercase	letter	“M”	in	“Map”	will	be	listed	before	the
lowercase	letter	“m”	in	man.	You	can	check	it	out.	Change	“Map”	to	“map”	in	your	code.
You	will	get	an	output	 that	shows	Word1	is	higher	 than	Word2”,	which	means	that	Java
will	list	map	after	the	word	man	in	alphabetical	order.

	

In	 order	 to	 resolve	 this	 problem,	 we	 can	 use	 a	 similar	 method	 known	 as
compareToIgnoreCase.	As	you	might	guess,	the	program	will	ignore	the	uppercase	and
lowercase	letters.	Using	this,	“man	“will	come	first.

	

The	METHOD	indexOf

	

To	find	a	string	or	character	inside	another	string,	we	could	use	the	method	indexOf.	For
instance,	we	can	use	this	to	check	if	there’s	at	sign	(@)	in	a	given	email	address.	We	can
use	this	example	in	a	code.	Take	note	that	you	can	comment	out	or	delete	the	code	that	we
have	written.	Below	is	a	code	you	can	try:

	

	

We	need	 to	 test	 if	 the	 at	 sign	 (@)	 is	 present	 in	 the	 e-mail	 add.	Hence,	we	 first	 need	 to
assign	a	variable	char	and	define	value	@.	Take	note	 that	we	have	used	a	pair	of	single
quotations	 in	 the	 variable	 char.	 After	 specifying	 an	 e-mail	 add,	 we	 have	 included	 a
variable	 result,	 which	 is	 a	 variable	 int.	 You	 might	 be	 wondering	 the	 code	 yielded	 an
integer.	The	method	indexOf	will	provide	a	value.	This	could	return	the	number	position
of	the	character	ampersand	in	the	e-mail_address	string.	Below	is	a	related	code:

	

result	=	email_address.indexOf(ampersand);

	

The	textstring	that	we	are	trying	to	find	will	be	listed	first.	Next	to	the	dot,	we	have	the
method	indexOf.	Within	the	rounded	braces	of	indexOf,	we	can	add	some	options	such	as
typing	 a	 symbol	 or	 the	 variable	 char.	 In	 this	 example,	 we	 are	 placing	 the	 variable
ampersand	within	 the	 rounded	 brackets	 of	 the	 indexOf.	 Then,	 Java	will	 position	 the	@
sign	in	the	e-mail	add	and	will	hold	the	value	in	variable	result.

Once	this	code	is	run,	the	output	should	be	11.		You	might	be	thinking	that	the	at	symbol	is
the	12th	 character	 of	 the	 string	 e-mail	 add.	However,	 indexOf	 begins	 at	 zero.	When	 the
character	 isn’t	 located	within	 the	string	 that	you	are	searching,	 the	method	 indexOf	will

show	 a	 result	 of	 negative	 one	 (-1).	 To	 check	 this	 out,	 erase	 the	 at	 sign	 from	 the	 string
email_address.	Then	run	again	the	code.	The	result	should	be	negative	one	(-1).

	

We	can	use	 the	value	of	negative	1	 to	our	benefit.	Below	 is	 the	code,	but	 this	 time,	we
have	an	IF	statement,	which	analyzes	the	value	within	the	variable	result.

	

	

Hence,	the	indexOf	result	is	negative	1.	Else	will	permit	the	user	to	proceed.	If	you	like	to
check	for	more	characters,	we	could	also	utilize	indexOf.	Below	is	a	code	to	check	the	e-
mail	add	if	this	is	ending	with	.com.

	

In	this	code,	we	are	utilizing	a	variable	String	to	store	the	text	that	we	like	to	test	(.com)
and	not	a	variable	char.

	

Remember,	 you	 will	 get	 a	 -1	 result	 if	 the	 object	 you	 are	 looking	 is	 not	 located	 in	 the
String,	which	comes	prior	to	the	period	of	indexOf.	Or	else,	indexOf	will	yield	a	position
in	 the	 first	 character	 that	matches.	 In	 the	 above	 code,	 the	 period	 is	 the	 8th	 character	 of
“hogwarts.com”	if	you	begin	counting	from	zero.

	

We	can	also	define	a	beginning	position	for	the	searches.	In	the	example	above,	we	could
begin	looking	for	.com	next	to	the	at	sign.	Below	is	the	code:

	

result	=	email_address.indexOf(dotCom,	atPos);

	

The	difference	 is	 the	 inclusion	of	an	added	variable	within	 the	 indexOf	brackets.	We	no
obtained	 the	 string	 that	 we	 like	 to	 look	 for,	 which	 refers	 to	 the	 text	 that	 is	 inside	 the
variable	dotcom.	However,	we	have	now	a	beginning	search	position.	This	 refers	 to	 the
value	of	the	variable	named	atPos.	We	obtain	the	atPos	value	through	the	indexOf	to	find
the	position	of	the	at	sign	in	the	e-mail	add.	Java	can	initiate	the	search	originating	from
the	position,	instead	of	beginning	at	zero	that	is	the	default	set	up.

	

Ends	With…Starts	With

	

In	the	above	program,	we	can	utilize	the	endsWith	method:

	

Boolean	ending	=	email_address.endsWith(dotcom);

	

We	can	define	a	Boolean	var	for	the	endsWith,	since	the	method	will	return	a	true-	false
answer.	 The	 string	 that	 we	 need	 to	 check	 is	 within	 the	 rounded	 brackets	 of	 endsWith.
Hence,	the	object	that	we	are	searching	will	go	prior	to	it.	When	the	character	is	inside	the
string	search,	 then	 the	 true	value	will	be	 returned,	or	else	 it	could	be	 false.	So,	you	can
include	an	if…else	statement	for	value	checking.

	

if	(ending	==	false)	{

System.out.println(“Email	Add	is	Invalid”);

}

else	{

System.out.println(“Email	Add	is	Fine	”);

}

The	startsWith	method	can	be	utilized	in	a	same	manner:

	

Boolean	startVal	=	email_address.startsWith(dotcom);

	

Remember,	the	return	value	is	Boolean	true-false.

	

SUBSTRING	METHOD

Substring	is	another	useful	method	in	Java	programming.	This	method	will	let	you	obtain
a	section	of	text	from	other	strings.	In	the	previous	program,	we	can	obtain	the	final	five
letter	or	signs	from	this	address	and	check	if	this	is	co.us.

	

To	 try	 a	 substring,	 we	 can	 create	 a	 simple	 Name	 Swapper	 program.	 For	 this,	 we	 can
transform	the	first	2	characters	of	the	surname	and	change	them	with	the	first	2	letters	of	a
first	name,	and	the	other	way	around.	Let’s	say	we	have	the	name:

	

“Harry	Potter”

We	will	 then	change	 the	“Po”	of	 “Potter”	with	 the	“Ha”	of	 “Harry”	 to	get	 “Hatter.	The
“Ha”	of	“Harry”	could	be	exchanged	with	the	“Po”	of	“Potter”	to	get	“Porry”.	The	result
printed	will	be	“Porry	Hatter”.

We	can	use	substring	such	as	below:

String	FullName	=	“Harry	Potter”;

String	FirstNameChars	=	””;

FirstNameChars	=	FullName.substring(0,	2);

	

We	 can	 establish	 a	 string	 that	will	 look,	 in	 this	 example	 the	 string	 “Harry	 Potter”.	 The
string	 that	 we	 are	 trying	 to	 locate	 will	 be	 written	 after	 the	 equals	 symbol.	 Next	 to	 the
period,	write	the	name	of	the	substring	method.	We	have	two	methods	in	using	substring,
and	their	distinction	is	the	occupying	numbers	within	the	rounded	brackets.	In	this	code,
there	are	two	numbers:	zero	and	2.	We	are	telling	Java	to	obtain	the	chars	occupying	pos	1
in	the	string	and	pause	harvesting	if	we	have	collected	two.	The	two	characters	will	then
be	returned	and	positioned	in	the	FirstNameChars	variable.	If	you	like	to	go	to	the	right	to
the	string	end,	we	can	include	this	line:

	

String	test	=	FullName.substring(2);

	

At	this	point,	we	have	only	one	number	within	the	rounded	braces	of	substring.	So,	Java
can	begin	at	character	2	in	the	FirstName	string,	and	then	obtain	the	characters	from	pos	2
next	to	the	string	end.

	

To	check	this	out,	initiate	a	new	project	and	at	the	end,	include	a	print	line.

	

The	method	substring	will	allow	you	to	obtain	the	first	two	chars	of	the	name	“Harry”.

	

To	obtain	 the	 first	 chars,	0	 and	2	 should	be	assigned	 inside	 the	 rounded	brackets	of	 the
substring.	You	might	be	thinking	that	to	obtain	the	“Po”	of	“Potter”	we	can	instead	include
this	line:

=	FullName.substring(5,	2);

	

After	all,	we	intend	to	get	two	characters.	But	at	this	point,	the	5	will	instruct	Java	to	begin
from	 the	 “P”	 of	 “Potter”.	 Take	 note	 that	 the	 1st	 position	 in	 a	 string	 is	 zero	 and	 not	 1.
Hence,	begin	at	pos	5	within	the	string	&	obtain	two	characters.

	

But	 running	 this	 code	 will	 return	 an	 error.	 This	 is	 because	 the	 2nd	 number	 within	 the
rounded	substring	braces	will	not	signify	the	number	of	characters	we	intend	to	obtain.	It
signifies	the	string	position,	which	we	like	to	terminate.	In	assigning	2,	we	are	instructing
Java	 to	 terminate	at	 the	character	 located	 in	position	2	of	 the	string.	Because	we	cannot
move	from	pos	6	in	reverse	towards	position	2,	we	will	result	to	an	error	message.

	

Take	note	that	if	we	begin	counting	at	zero	in	the	string	“Harry”	you	may	think	that	pos	2
is	 the	 letter	“r”.	You	are	correct.	However,	 the	substring	begins	prior	 to	 the	character	at
this	position	and	not	next	to	it.

	

Hence,	to	obtain	the	“Po”	of	“Potter”,	we	can	do	this	code:

	

FullName.substring(5,	FullName.length()	-	3);

	

Now,	 the	2nd	number	 refers	 to	 string	 length,	which	 is	 for	 this	 example	 is	 -3	characters.
The	 string	 length	 refers	 to	 the	 number	 of	 characters	 a	 text	 has.	 “Harry	 Potter”	 has	 12
characters,	 which	 includes	 the	 space.	 Eliminate	 3	 and	 we	 have	 9.	 Hence,	 we	 are
instructing	substring	to	begin	at	char	5	and	terminate	at	char	7.

	

We	should	also	take	note	of	the	space	position	between	the	names.	The	two	chars	that	we
like	to	obtain	from	the	2nd	name	will	be	placed	next	to	the	character	space.	We	need	some
code,	which	obtains	these	first	two	chars	next	to	the	space.

	

You	can	use	the	indexOf	to	take	note	of	the	space	position:

	

int	spacePos	=	FullName.indexOf(”	“);

	

To	define	a	character	 space,	we	can	 include	a	space	 in	between	 the	double	quotes.	This
will	then	go	within	the	indexOf	rounded	braces.	The	value	that	will	be	displayed	could	be
an	 integer,	 and	 this	 is	 the	 location	 of	 the	 first	 occurrence	 of	 the	 character	 space	 in	 the
FullName	 string.	 Check	 it	 by	 inserting	 the	 code	 above.	 Include	 a	 line	 print	 to	 test	 the
Output.

In	this	program,	the	space	is	located	at	position	5	on	the	string.	You	can	use	this	data	to
obtain	the	first	2	chars	of	“Potter”.	You	need	to	instruct	Java	to	run	from	the	1st	char	next
to	the	space	and	terminate	at	the	next	2	chars:

	

FullName.substring(spacePos	+	1,	(spacePos	+	1)	+	2)

	

Hence,	the	2	numbers	that	are	assigned	within	the	rounded	brackets	are	actually	substring
of	these	codes:

	

spacePos	+	1,	(spacePos	+	1)	+	2

	

The	 intention	 is	 to	begin	at	 the	1st	character	after	 the	space	(space	+1),	and	 terminate	2
characters	 after	 the	 position	 –	 (spacePos+1)+2.	 Include	 the	 lines	 in	 the	 code.	 The	 new
method	substring	will	spill	over	the	next	two	line,	but	if	you	like,	you	can	keep	your	own
code.

	

Now	we	have	the	“Ha”	from	Harry	and	the	“Po”	from	Potter.	We	just	need	to	obtain	the
remaining	of	the	text	from	the	2	names	then	do	the	swapping.

	

Remember,	you	could	utilize	the	substring	to	obtain	the	rest	of	the	chars	from	the	1st	name:

	

String	OtherFirstChars	=	””;

OtherFirstChars	=	FullName.substring(2,	spacePos);

System.out.println(OtherFirstChars);

	

As	well	as	the	rest	of	the	chars	originating	from	the	2nd	name:

	

String	OtherSurNameChars	=	””;

OtherSurNameChars	=	FullName.substring((spacePos	+	1)	+	2,

FullName.length());

System.out.println(OtherSurNameChars);

	

We	are	not	looking	for	the	numbers	confined	in	the	rounded	brackets	of	the	substring.	To
obtain	the	1st	name	chars,	you	can	use	the	numbers:

	

2,	spacePos

	

This	is	telling	Java	to	begin	at	pos	2	&	proceed	to	the	space	position.	But	when	it	comes	to
the	remaining	characters	of	the	2nd	name,	it	could	be	a	tricky	code:

	

(spacePos	+	1)	+	2,	FullName.length()

	

Take	note	that	the	(spacePost1+1)+2	signifies	the	beginning	pos	of	the	3rd	char	of	the	2nd
name.	We	can	end	the	string	length	that	could	allow	us	to	run	the	remaining	characters.

	

You	can	eliminate	the	line	prints	and	allow	a	user	to	type	a	first_name	and	family_name.
In	this	new	code,	we	have	added	the	input	from	the	keyboard	that	you	have	learned	in	the
previous	chapters.

	

Of	 course,	 we	 need	 to	 include	 some	 lines	 to	 run	 some	 error	 check.	 However,	 we	 will
presume	 the	 user	will	 type	 in	 a	 first_name	 as	well	 as	 the	 family	 name	with	 a	 space	 in
between	the	names.	Without	the	space,	the	result	will	be	an	error.

	

	

THE	METHOD	EQUALS

	

The	method	known	as	Equals	will	allow	you	to	test	the	strings	if	they’re	alike.	Here	is	a
code	that	you	can	try:

	

	

This	code	will	allow	us	to	test	if	an	e-mail	add	is	similar	to	another	e-mail	add.	The	first	2
code	lines	establish	2	variable	strings	for	every	e-mail	add.	The	next	code	line	establishes
a	variable	Boolean.	The	equals	method	will	yield	value	 true	 |	 false.	Line	4	 signifies	 the
method	function:

	

isMatch	=	email_address1.equals(email_address2);

	

Within	 the	 rounded	 braces	 of	 the	 method	 equals,	 we	 will	 put	 the	 string	 that	 we	 are
checking.	The	second	string	will	go	prior	to	the	method	equals.	Java	will	next	display	true
|	false	if	these	two	strings	are	alike.	The	one	checking	is	the	IF	statement.

However,	 the	 equals	 method	 can	 only	 compare	 objects.	 It	 can	 test	 strings,	 as	 they	 are
objects.	 Still,	 it	 is	 not	 possible	 to	 use	 the	 method	 for	 comparing	 int	 variables.	 As	 an
example,	this	code	will	result	to	an	error	message:

	

int	num1	=	10;

int	num2	=	11

Boolean	isMatch	=	false;

isMatch	=	num1.equals(num2);

	

Remember,	the	variable	int	is	not	an	object	because	it	is	a	primitive	type	data.	Still,	 it	 is
possible	to	convert	a	data	primitive	int	type	within	an	object	through	this	code:

	

int	num1	=	10;

Integer	num_1	=	new	Integer(num1);

	

In	 this	 code,	 the	 variable	 int	 known	 as	 num1	will	 be	 converted	 into	 an	 object	 Integer.
Notice	that	we	have	used	a	keyword.	Within	the	rounded	brackets	for	the	Integer,	we	will
place	the	primitive	data	int	type	that	we	like	to	turn	into	an	object.

	

THE	charAt	METHOD

	

You	can	test	to	see	what	character	is	contained	in	a	specific	string.	In	Java,	we	are	using
the	chartAt	method.	Below	is	a	code	that	you	can	work	on:

	

String	email_address	=	“albus@hogwarts.com”;

char	aChar	=	email_address.charAt(5);

System.out.println(aChar);

	

This	codeline	will	check	the	letter	as	at	position	5	in	string	e-mail	add.	The	value	that	will
be	returned	is	a	char	type	variable.

	

char	aChar	=	email_address.charAt(5);

	

When	you	run	the	code	above,	the	output	will	be	the	at	sign	(@).	The	number	within	the
charAt	rounded	braces	is	the	string	position	that	we	are	trying	to	test.	In	this	codeline,	we
need	to	locate	the	char	in	pos	5	of	the	string:	email_address.	Remember,	the	count	begins
at	0	similar	to	substring.

	

Another	 great	 use	 for	 charAt	 is	 to	 obtain	 a	 character	 from	 a	 variable	 string,	 which	 is
provided	by	the	user,	&	will	be	transforming	it	to	one	variable	character.	For	instance,	we
can	ask	a	user	to	enter	Y	to	proceed	or	N	to	close.

	

It’s	 not	 possible	 to	 directly	 employ	 the	 class	 Scanner	 to	 obtain	 one	 character	 to	 hold	 a
variable	 char.	 Hence,	 we	 can	 utilize	 the	method	 next	 ()	 to	 obtain	 the	 following	 string,
which	the	user	can	input.	Then	we	have	an	integer	next,	then	long,	then	double,	and	even	a
Boolean.	However,	there	is	no	character	next.	This	is	the	case	even	if	user	types	a	char,	it
could	 be	 read	 as	 a	 string,	 not	 as	 char.	 Take	 note	 that	 a	 variable	 char	 holds	 a	 number
Unicode	in	integer	form.

	

You	can	now	use	a	charAt	to	obtain	a	char	coming	from	a	string,	which	the	user	will	input
despite	the	case	that	the	user	types	in	a	letter:

	

char	aChar	=	aString.charAt(1);

	

In	 this	 code,	we	 are	 telling	 Java	 to	 obtain	 the	 char	 at	 pos	0	within	 the	 string	known	as
aString,	then	hold	it	using	the	variable	aChar.

	

We	 also	 included	 the	 IF	 statement	 in	 order	 to	 check	 the	 contents	 of	 the	 variable	 aChar.
Notice	the	use	of	a	pair	of	single	quotations	to	confine	Y.

	

THE	REPLACE	METHOD

	

In	Java,	the	replace	method	is	used	to	replace	all	the	character	occurrences	in	a	particular
string.	Consider	this	sentence:

	

“Where	are	you	wands?”

We	need	to	replace	“you”	with	“your”.

	

There	are	different	ways	to	use	the	replace	method,	and	the	difference	mainly	lies	on	what
you	 place	 within	 the	 rounded	 brackets	 of	 the	 method.	 We	 are	 replacing	 one	 series	 of
characters	 with	 another.	 Consider	 the	 comma	 that	 separates	 the	 two	 as	 the	 term	 with.
Then,	you	will	have	“replace	you	with	your”.

	

We	can	also	replace	a	single	character:

	

aString.replace(‘$’,	‘%’)

	

The	code	above	means	“Replace	$	with	%”.

	

We	 can	 also	 use	 a	 normal	 expression	 in	 the	 replace	 methods,	 but	 that	 is	 beyond	 the
coverage	of	this	ebook.

	

TRIM

We	 can	 trim	 out	 the	white	 space	 from	 the	 strings.	 The	white	 space	 refers	 to	 the	 space
characters,	newline	characters,	and	tabs.	It	is	easy	to	use	the	trim	method:

	

String	amend	=	”	blank	space	“;

amend	=	amend.trim();

	

Hence,	the	trim	method	will	go	after	the	string	we	like	to	change.	The	blank	spaces	before
the	word	“blank”	and	after	“space”	in	the	above	code	should	be	deleted.

	

If	we	are	getting	user	input,	then	it	is	ideal	to	use	trim	method	on	them.

	

	

Chapter	6	–	Java	Methods

	

In	the	previous	chapters,	we	have	been	using	java	methods,	and	at	this	point,	you	should
know	 that	 the	established	ones	are	 really	useful.	Now	 is	 the	 time	 that	you	 learn	how	 to
write	your	own	Java	methods.

	

THE	FORMAT	OF	A	JAVA	METHOD

	

A	method	is	just	a	section	of	a	code,	which	performs	a	certain	task.	However,	methods	are
structured	in	a	specific	format.	It	comes	with	a	method	header	and	a	body.	The	header	will
signify	Java	the	type	of	value	such	as	string,	double,	or	int.	It	also	includes	the	return	type
with	the	name	for	the	method	that	also	included	in	the	header.	You	can	define	values	over
the	methods,	and	they	could	be	written	inside	the	rounded	brackets.	The	body	of	method	is
where	the	code	will	run.

	

	

The	 return	 type	of	 the	Java	method	should	go	 first,	which	 is	an	 int	 type	 in	 the	example
above.	Next	to	this	method	is	a	space	followed	by	the	method	name.	In	the	example,	we
named	it	 total.	Within	 the	rounded	brackets,	we	have	 instructed	Java	 that	we	are	storing
the	method	a	variable	known	as	aNumber,	and	this	can	be	integer.

	

In	order	 to	 chunk	off	 this	method	 from	other	 code,	you	 should	use	 curvy	brackets.	The
code	 for	 the	 method	 should	 be	 confined	 within	 the	 curvy	 brackets.	 Take	 note	 of	 the
keyword	return	 in	the	method.	This	is	clearly	the	value,	which	you	like	a	return	for	the
method	after	you	execute	 the	code.	However,	 it	 should	be	 the	 same	 type	 like	 the	 return
type	 in	 the	 header	method.	Hence,	 the	 return	 value	 cannot	 be	 a	 string	 if	 you	 begin	 the
method	with	the	int	total.

There	are	instances	that	you	do	not	like	Java	to	return	any	value	at	all.	A	method	that	will
not	 give	 any	 value	 could	 be	 established	 using	 the	 word	 void.	 In	 this	 case,	 the	method
doesn’t	 require	 the	keyword	return.	Below	 is	 an	 example	of	 a	method,	which	does	not
return	a	value.

	

	

The	method	above	can	print	some	message.	It	could	still	perform	its	function	even	without
value	 so	we	have	 set	 it	 as	 a	void	method.	Remember,	methods	don’t	need	 to	be	passed
with	values.	We	can	just	run	some	code.	Here	is	another	void	method	without	values.

	

	

Here	is	another	int	method	with	no	values	passed:

	

	

Notice	that	the	rounded	brackets	don’t	have	any	values,	yet	they	are	still	crucial.	Without
the	rounded	brackets,	the	code	will	run	into	an	error.

	

	

How	to	Call	Your	Java	Methods

	

Take	note	 that	methods	cannot	do	anything	unless	you	call	 them	 into	action.	Before	we
test	 it	 out,	 add	 a	 new	 class	 to	 the	 project,	 so	we	 can	 place	 all	 the	methods	 rather	 than
cluttering	the	main	class.

	

Begin	a	new	application	project.	As	usual,	provide	a	project	name	and	change	the	name	of
the	 main	 method	 to	 something	 else.	 In	 the	 code	 below,	 we	 have	 called	 our	 projects
projectmethods,	and	the	class	MethodTests.

	

	

To	insert	a	new	class	to	the	project,	choose	New	File	from	the	File	menu	in	the	NetBeans.
A	dialogue	box	will	appear.	In	the	section	for	Categories,	choose	Java,	and	in	the	section
for	File	Types,	choose	Java	Class.	At	the	bottom,	click	the	Next	button.	In	the	second	step,
type	a	title	for	the	new	class.	We	will	call	our	type	SampleMethods.

	

Hence,	we	are	creating	a	second	class	known	as	SampleMethods	that	will	be	in	the	Project
projectmethods.	Just	click	the	Finish	button	and	the	program	will	create	the	new	class	file.
Another	tab	will	appear	with	default	comments	on	how	you	can	change	the	templates.	Just
delete	the	comments.

	

You	will	notice	that	there	is	no	Main	method	in	this	code,	but	a	blank	class	with	the	class
name	 you	 have	 selected	 as	 well	 as	 a	 pair	 of	 curvy	 brackets	 for	 the	 code.	We	 can	 add
another	method.

	

This	is	the	int	method	that	you	have	been	working	earlier	in	the	name	total.	It	doesn’t	have
anything	within	the	rounded	brackets	so	we	are	not	storing	any	value.	The	method	is	just
adding	 up	 values	 5	 +	 5	 and	 handles	 the	 answer	 in	 a	 variable	 known	 as	 a_Value.	 The
method	will	return	this	value,	which	should	match	the	type	return	from	the	header	method.
This	code	is	ok	as	these	values	are	both	int	types.

	

Take	note	that	the	variable	a_Value	should	not	be	seen	outside	the	total	method.	We	can’t
set	up	within	a	method	that	we	can’t	access	outside	the	method.	This	is	called	a	variable
local,	which	is	local	to	the	method.

	

In	order	to	call	the	total	method,	choose	the	TestMethods	tab	in	the	NetBeans,	which	is	the
one	with	the	Main	method.	We	will	call	the	total	method	from	the	Main	method.

	

We	first	need	to	create	a	new	object	from	the	SampleMethods	class.

	

In	 order	 to	make	 a	 new	object	 from	 a	 class,	we	will	 begin	with	 the	 name	 of	 the	 class,
SampleMethods	in	this	example.	This	is	in	place	of	the	String,	double,	or	int	variable.	The
variable	type	that	we	are	creating	is	a	SampleMethods	variable.	Next	to	the	space,	we	are
adding	 a	 title	 for	 the	 new	 SampleMethods	 variable.	 The	 name	 of	 our	 variable	 is	 test1.
Notice	that	it	is	underlined	in	grey	as	we	are	not	yet	adding	any	command.

	

This	will	be	followed	by	 the	equals	symbol	and	 then	 the	keyword:	new,	which	refers	 to
new	 object.	 Next	 to	 this	 keyword,	 add	 a	 space	 followed	 by	 the	 name	 of	 the	 class.
Remember,	the	name	of	the	class	requires	rounded	brackets.	The	line	should	be	ended	as
usual	with	a	semi-colon.

	

Using	this	code,	we	have	created	a	new	SampleMethods	object	using	the	name	test1.	The
total	 method	 within	 the	 class	 SampleMethods	 will	 now	 be	 accessible	 using	 the	 Main
method	of	the	SampleMethods	class.

	

We	are	defining	an	int	variable	using	the	name	aVal.	Next	to	the	equals	symbol	comes	the
name	of	the	test1	class.	In	order	to	access	the	class	methods,	enter	a	period,	and	NetBeans
could	show	a	popup	box	using	the	methods	available:

	

The	total	variable	is	defined	on	the	list,	while	the	other	variables	are	built	in	methods.	The
rounded	brackets	have	no	assigned	values,	because	this	method	will	not	accept	any	value.
However,	the	int	return	type	is	shown	in	the	right.

	

Choose	the	total	by	double	clicking	it	to	add	this	in	the	code.	Next,	add	a	semi-colon	at	the
end	of	the	line.	Then,	we	will	add	a	print	line.

	

In	 order	 to	 call	 a	 method,	 which	 returns	 a	 value,	 take	 note	 of	 the	 value	 that	 is	 being
returned	by	the	method.	Then	define	this	value	to	another	variable,	which	is	aVal	in	this
example.	However,	the	method	must	be	available	if	you	enter	a	period	after	the	name	of

the	object.

	

But	if	the	method	is	a	void	type,	there	is	no	need	to	assign	it	to	another	variable	such	as
aVal.	 You	 can	 switch	 back	 to	 the	 SampleMethods	 class	 and	 include	 the	 method	 void,
which	you	have	already	learned.

	

The	print_text	is	the	new	method.	Notice	that	it	also	has	an	empty	pair	of	rounded	brackets
as	we	don’t	intend	to	store	any	values.	Its	function	is	to	print	out	a	message.	After	adding
the	 void	 method,	 we	 can	 now	 switch	 back	 to	 the	 class	 SampleMethods.	 You	 can	 now
insert	the	line	below:

	

test1.print_text()

	

After	adding	the	period,	we	can	see	the	new	method	on	the	list.

	

These	methods	 are	 now	 included	 in	 the	 list	 –	 print_text	 and	 total.	Values	 that	 they	will
return	will	be	shown	on	the	right,	void	and	int.

	

Since	print_text	is	a	void	method,	there	is	no	need	to	establish	a	return	value.	We	just	need
the	name	of	the	object,	a	period,	and	the	void	method	that	we	like	to	call.	Java	will	just	get
on	with	running	the	code	within	the	method.

	

	

HOW	TO	PASS	VALUES	TO	JAVA	METHODS

	

To	do	something	with	the	value,	we	can	pass	values	to	the	method.	The	value	should	be
written	within	the	pair	of	rounded	brackets	of	the	method.

	

Now	we	have	two	methods	using	total	as	their	name.	The	only	difference	is	that	the	new
method	contains	a	value	within	the	rounded	brackets.	Java	will	let	you	do	this,	through	the
process	method	overloading.	Hence,	you	can	include	as	many	methods	you	like	using	the
same	name	containing	any	value.	But	take	note	that	it	is	not	allowed	to	have	the	same	kind
of	variables	within	the	rounded	brackets.	Hence,	you	can’t	have	two	total	methods,	which
return	 int	 values	 having	 the	 same	 int	 values	 confined	within	 the	 rounded	 brackets.	 For
example,	the	line	below	is	not	allowed:

	

int	total(int	aNumber)	{

int	a_Value	=	aNumber	+	10;

return	a_Value;

}

int	total(int	aNumber)	{

int	a_Value	=	aNumber	+	20;

return	a_Value;

}

	

Even	 though	 the	 two	 methods	 perform	 different	 things,	 they	 still	 have	 similar	 method
headers.

	

Insert	some	comments	first	before	trying	out	the	new	method.

	

The	param	in	the	above	comments	refers	to	parameter,	which	is	the	technical	word	for	the
value	 within	 the	 rounded	 brackets	 of	 the	 method	 headers.	 This	 parameter	 is	 known	 as
aNumber	with	its	integer	values.	Take	note	that	we	are	using	the	at	sign	character	before
the	param	and	return.

	

In	this	code,	we	are	passing	an	integer	value	and	adding	20	to	this	value.	The	return_value
will	be	the	the	sum	of	the	two.

	

The	next	step	is	to	return	to	the	code	and	insert	the	line	below:

	

int	aVal2	=	test1.total(30);

	

Typing	the	period	after	the	object	test1	will	show	a	list	of	options	The	total	method	will	be
included.	Choose	the	new	method.

	

The	 added	comments	 are	now	confined	 in	 the	blue	box	under	 the	method	options.	Any
user	reading	the	method	can	easily	figure	out	what	the	code	is	all	about.	When	you	add	the
method	total2,	insert	the	number	30	inside	the	rounded	brackets.	End	this	line	with	a	semi-
colon.

	

When	you	hand	over	the	value,	the	method	will	perform	its	function.

Include	a	print	line	to	the	code:

System.out.println(“Method	result2=	”	+	aVal2);

Run	the	program.	The	Output	screen	should	be	like	this:

	

	

Conclusion

	
I	hope	this	book	was	able	to	help	you	to	learn	Basic	Java	Programming.

	

The	next	step	is	to	practice	your	Java	programming	skills	and	continue	learning	advanced
skills	including:

	

Writing	your	own	Java	Methods

Writing	your	own	Java	Classes

Handling	Java	Errors

Managing	Java	Text	Files

Form	Controls

Java	Databases

	

Finally,	if	you	enjoyed	this	book,	then	I ’ d	like	to	ask	you	for	a	favor,	would	you	be	kind
enough	to	leave	a	review	for	this	book	on	Amazon?	It ’ d	be	greatly	appreciated!

	

Click	here	to	leave	a	review	for	this	book	on	Amazon!

	

Thank	you	and	good	luck!

	

	

If	you	would	like	to	receive	free	and	bargain	books,	join	this	exclusive	book	club	by
clicking	on	the	image	above.	You	will	receive	free	copies	of	ebooks	in	.pdf	or	.mobi
format.

	

http://forms.aweber.com/form/28/467299328.htm

	Chapter 1 – Introduction to Java Programming
	Chapter 2 – Getting Started
	Chapter 3 – Java Variables
	Chapter 4 – Control Flow
	Chapter 5 – Java Arrays
	Chapter 5 – Java String Methods
	Chapter 6 – Java Methods

