
Learn Android
Studio 3

Efficient Android App Development
—
Ted Hagos

Learn Android Studio 3

Efficient Android App Development

Ted Hagos

Learn Android Studio 3: Efficient Android App Development

Ted Hagos 					
Manila, National Capital Region, Philippines		

ISBN-13 (pbk): 978-1-4842-3155-5			 ISBN-13 (electronic): 978-1-4842-3156-2
https://doi.org/10.1007/978-1-4842-3156-2

Library of Congress Control Number: 2018933042

Copyright © 2018 by Ted Hagos

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to readers
on GitHub via the book's product page, located at www.apress.com/9781484231555. For more detailed
information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3156-2
mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/
rights-permissions
http://www.apress.com/
rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484231555
http://www.apress.com/source-code

For Adrianne and Stephanie.

v

Table of Contents

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

■■Chapter 1: Introduction�� 1

History��� 1

Statistics��� 2

Operating System�� 3

■■Chapter 2: Android Studio�� 5

Android Studio Setup�� 6

macOS��� 6

Windows�� 6

Linux�� 7

Configuring Android Studio��� 8

Hardware Acceleration�� 14

The Android Studio IDE�� 15

vi ﻿ Table of Contents

■■Chapter 3: Application Fundamentals�� 19

Creating a Project�� 19

Using Android Studio��� 24

Compilation and Runtime�� 34

Android Components��� 35

Components�� 36

Activities�� 38

Services��� 38

Content Providers�� 39

Broadcast Receivers�� 39

■■Chapter 4: Activities and Layouts��� 41

Building the Hello Screen�� 41

The Layout File�� 42

Main Java Program�� 45

Views and Layout�� 48

■■Chapter 5: Handling Events�� 55

Overview of Event Handling�� 55

Declarative Event Handling��� 57

Programmatic Event Handling��� 59

Working with Text and Buttons�� 64

More Event Handling Code�� 70

Using an Inner Class as a Listener�� 72

Using MainActivity as the Listener�� 76

■■Chapter 6: Working with Multiple Activities��� 83

Component Activation��� 83

Launching a Specific Activity�� 85

Demo Project��� 85

Pass Data to Another Activity�� 95

About the GCF Algorithm��� 95

Returning Results from Other Activities�� 107

vii﻿ Table of Contents

Implicit Intents�� 114

Demo Project��� 115

Opening an http Request��� 117

Activity Life Cycle ��� 120

■■Chapter 7: UI Elements��� 125

UI Elements��� 125

Themes and Colors�� 125

Colors�� 126

Themes�� 130

AppBar��� 132

Demo App�� 134

Fragments��� 142

Project Setup��� 144

Adding Fragments Programmatically�� 151

■■Chapter 8: Running in the Background�� 157

Long Running Tasks�� 157

Demo Project��� 158

AsyncTask �� 162

■■Chapter 9: Debugging��� 169

Syntax Errors �� 170

Runtime Exceptions��� 171

Logic Errors��� 173

■■Chapter 10: Data Persistence��� 177

SharedPreferences�� 178

Demo Project��� 179

Verifying the File�� 185

Application Level SharedPreferences�� 187

Internal Storage��� 195

How to Work with Internal Storage�� 195

Demo Project��� 196

viii ﻿ Table of Contents

■■Chapter 11: App Distribution�� 203

Preparing the App for Release��� 204

Prepare Materials and Assets for Release �� 204

Configure the App for Release��� 204

Build a Release-Ready Application�� 205

Releasing the App��� 210

■■Appendix A: Introduction to Java��� 213

The Java Language��� 213

Virtual Machine��� 214

Editions��� 214

Setup��� 215

Hello World�� 216

Program Structure��� 218

Other Considerations��� 222

Variables and Data Types�� 223

Primitive Types�� 224

Reference Types�� 224

Operators��� 225

Program Flow�� 228

Decisions��� 228

Loops��� 232

Simple Application of Control Structures�� 234

The FizzBuzz Problem��� 234

How to Print a 5×5 Multiplication Table�� 235

Methods�� 236

Object Oriented Programming��� 239

More Details on Classes�� 242

Constructors�� 243

Overloading��� 244

ix﻿ Table of Contents

Packages��� 245

Multiple Types in a Package�� 246

When We Don’t Need “import”�� 246

Inheritance�� 247

Object as the Root Class�� 248

Single Rooted Class Inheritance�� 249

Polymorphism�� 249

Interfaces�� 250

Multiple Inheritance��� 251

Exceptions��� 252

Index�� 255

xi

About the Author

Ted Hagos is the CTO of RenditionDigital International, a software development company
based out of Dublin. Before he joined RDI, he had various software development roles
and also spent time as trainer at IBM Advanced Career Education, Ateneo ITI, and Asia
Pacific College. He spent many years in software development dating back to Turbo C,
Clipper, dBase IV, and Visual Basic. Eventually, he found Java and spent many years there.
Nowadays, he’s busy with full-stack Javascript and Android.

xiii

About the Technical
Reviewer

Wallace Jackson has been writing for leading multimedia publications about his work in
new media content development since the advent of Multimedia Producer Magazine nearly
two decades ago. He has authored a half-dozen Android book titles for Apress, including
four titles in the popular Pro Android series. Wallace received his undergraduate degree in
business economics from the University of California at Los Angeles and a graduate degree
in MIS design and implementation from the University of Southern California. He is currently
the CEO of Mind Taffy Design, a new media content production and digital campaign design
and development agency.

xv

Acknowledgments

I don’t think a lot of people read the acknowledgement section of any book, probably not
even the people I’m going to thank. But just in case they do read this book (and this section),
I’d like to extend my thanks to them.

Thanks to Mark Powers and Matthew Moodie for guiding me through the manuscript
development process. I used to have a romantic notion of the writing life; now I know better.
Thanks also to Wallace Jackson, who did the technical review, and to Massimo Nardone,
who helped out in the author review of the last four chapters. Special thanks to Steve Anglin,
who got me into Apress.

Thanks to Steph and Adrianne for understanding why I skipped some of my house chores
while writing this book.

Covering a topic as vast as Android and a tool as rich as Android Studio requires the effort
of many individuals whom I haven’t really met and know personally, but they do deserve
gratitude. This is a tough section to make because I know I am bound to miss some names,
so if I miss some, it’s not because of ingratitude, it’s because of ignorance.

xvii

Introduction

Welcome to Learn Android Studio 3. This book will help you get started in your programming
journey with the little green robot. You already bought the book, so you don’t need to be
convinced that programming for the mobile platform offers a lot of opportunity for software
developers.

While the book is aimed at beginning Android programmers, it isn’t for people who are
completely new to programming. The book assumes that you have prior coding experience
with any of the CFOL (C family of languages, e.g., C, C++, Java, C#, JavaScript). Ideally,
you are already a Java programmer trying to get your feet wet in Android; in case you’re not,
don’t worry. Basic Java programming is covered in the Appendix, and you can refer to that
as you try to feel your way into the language.

The book covers two fronts: the fundamentals of Android programming and the use of
Android Studio 3. Android programming concepts and the use of the IDE are explained using
a combination of graphics and code walkthroughs: there’s plenty of those in the book.

Chapter Overviews
Chapter 1 - Introduces Android. It deals with a bit of Android’s history and the technical
makeup of its OS.

Chapter 2 - Walks you through to the setup of Android Studio and its requisite software.
Whether you use macOS, Linux, or Windows, this chapter has you covered.

Chapter 3 - We start dipping our toes into Android programming. We’ll start with creating a
basic project and then run it on an emulator. This activity is something that you will do many
times in the course of your Android programming career. Well finish up with a discussion of
what makes up an Android application and how it is different from a desktop application.

Chapter 4 - This chapter deals with building user interfaces, one of the most basic and
probably widely used components in Android.

http://dx.doi.org/10.1007/978-1-4842-3156-2_1
http://dx.doi.org/10.1007/978-1-4842-3156-2_2
http://dx.doi.org/10.1007/978-1-4842-3156-2_3
http://dx.doi.org/10.1007/978-1-4842-3156-2_4

xviii Introduction

Chapter 5 - Continuing from Chapter 4, after you’ve built some UIs, you might want it to
actually do something. This chapter deals with how to respond to user-generated events.

Chapter 6 - This chapter deals with Intents. We’ve used Intents in the previous chapter, but
this chapter digs in deeper. Intents are uniquely an Android thing; it truly embraces loose
coupling. The chapter shows plenty of examples on how to use Intents for component
activation on a multiactivity application and how to pass data between activities.

Chapter 7 - This chapter is shorter than the rest but it will help you put a bit of polish into
your app. It deals with UI design, themes, styles, the AppBar, and Fragments.

Chapter 8 - Android is very protective of the user experience; it doesn’t allow apps to freeze
the UI leaving the user clueless as to what to do next. If you’ve seen ANR (Application Not
Responding) errors before, this chapter shows you how to avoid these things.

Chapter 9 - Shows some of the things you can do to debug your apps in Android Studio 3.
It goes through a list of the kinds of errors you might encounter while coding and what you
can do in Android Studio to respond them.

Chapter 10 - At some point in time, you need to be able to save all the data you’ve created
in the application. This chapter shows you the basics of saving data using a file, shared
preferences, and the internal storage.

Chapter 11 - When you’re ready to distribute your app, you’ll need to sign it and list it in a
marketplace like Google Play. This chapter walks you through the steps on how to do it.

Appendix - This chapter breezes through the Java language. It deals with some of the basic
language concepts you will need to get started in Android programming.

http://dx.doi.org/10.1007/978-1-4842-3156-2_5
http://dx.doi.org/10.1007/978-1-4842-3156-2_4
http://dx.doi.org/10.1007/978-1-4842-3156-2_6
http://dx.doi.org/10.1007/978-1-4842-3156-2_7
http://dx.doi.org/10.1007/978-1-4842-3156-2_8
http://dx.doi.org/10.1007/978-1-4842-3156-2_9
http://dx.doi.org/10.1007/978-1-4842-3156-2_10
http://dx.doi.org/10.1007/978-1-4842-3156-2_11

1© Ted Hagos 2018
T. Hagos, Learn Android Studio 3, https://doi.org/10.1007/978-1-4842-3156-2_1

Chapter 1
Introduction
Most people would think of Android as a phone or tablet; or at least, that is what end users
would think. A developer would probably think of Android as an operating system (OS), and
for the most part, it is. Android was designed originally to work as a mobile OS, but as it
progressed, it found its way to some other places like TVs, car systems, watches, e-readers,
netbooks, game consoles, and so forth.

Android includes quite a bit of stuff. It is a comprehensive platform. Apart from the OS
and prebuilt applications, it includes a very capable software development kit, libraries,
application frameworks, and reference design. We will explore some of them in considerable
detail in the coming chapters. In the meantime, we’ll look at Android’s history, some
statistics, and the Android platform architecture.

History
Android has an interesting and very colorful history. It first came to life in 2003 when a
company called Android Inc. was founded by Andy Rubin. Android Inc. was backed by
Google, but they did not own it yet. In 2005, Google bought Android Inc. to the tune of
50M+ dollars. Sometime in 2007, the Open Handset Alliance was born, and the Android OS
has been officially open sourced. At this point, Android had not even reached version 1.0
and it was far from mainstream; it reached V1.0 sometime in 2008, but they had not thought
about dessert names just yet.

The year 2009 up to 2010 saw a torrent of rapid releases. Android was picking up steam.
Cupcake, Donut, Froyo, éclair, and Gingerbread were released during this two-year period.
2011 is a major milestone because up until this point, the Android OS remained confined to
mobile phones. Honeycomb, the successor to Gingerbread, was the first Android version
to be installed on tablets. There was a bit of controversy with Honeycomb because Google
did not release its code to open source immediately. The following is a quick summary of
Android’s history.

https://doi.org/10.1007/978-1-4842-3156-2_1

2 CHAPTER 1: Introduction

2003 Android Inc., founded by Andy Rubin and backed by Google, was born

2005 Google bought Android Inc.

2007 Android was officially open sourced. Google turned over its ownership to the Open
Handset Alliance (OHA)

2008 version 1.0 was released

2009 versions 1.1, 1.5 (Cupcake), 1.6 (Donut), and 2.0 (Eclair) were released

2010 versions 2.2 (Froyo) and 2.3 (Gingerbread) were released

2011 3.0 (Honeycomb) and 4.0 (Ice Cream Sandwich) were released

2012 version 4.1 (Jellybean)

2013 version 4.4 (KitKat)

2014 versions 5.0–5.1 (Lollipop); Android became 64-bit

2015 version 6.0 (Marshmallow)

2016 version 7.0-7.1.2 (Nougat)

2017 version 8 (Oreo)

One other thing that makes Android’s history colorful is the lawsuits. Sometime in the past,
Oracle sued Google, alleging that the latter infringed some copyrights of Java. But the
Java implementation of Android isn’t based on Oracle’s Java language implementation; it is
instead based on OpenJDK. Before Android Studio 2.2, installation of a separate Java SDK
was a prerequisite for Android Studio; that is no longer the case because OpenJDK is now
part of the installation. Then, there were the lawsuits between Apple and Samsung; the main
part of all that was about Android. There were some bumps in the past but the little robot
marched on.

Statistics
7.2 billion

Number of Android devices. It already has exceeded the total number of people in the planet

3

Number of decades it took for mobile devices to go from zero to 7.2 billion

1.5 million

Number of Android devices being activated daily

2,617

Number of times users touch their mobile devices in a day

2 billion

Number of active Android users monthly

87

3CHAPTER 1: Introduction

Percentage of share of Android in the mobile OS market

I know you are already into Android development; you are reading this book after all. If you
weren’t aware of these statistics before, I hope this gives you extra motivation to continue
your journey toward mobile development. Mobile computing usage is growing at a rapid
pace, and Android has the lion’s share of it.

Operating System
The most visible part of Android, at least for developers, is its OS. An OS is a complex
thing, but for the most part, it is what stands between a user and the hardware. That is an
oversimplification, but it will suffice for our purposes. By “user,” I don’t literally mean an end
user or a person. What I mean by it is an application, a piece of code that a programmer
creates, like a word processor or an e-mail client.

Take the e-mail app, for example; as you type each character on the keys, the app needs
to communicate to the hardware for the message to make its way to your screen and hard
drive and eventually send it to the cloud via your network. It is a more involved process than
I describe it here, but that is the basic idea. At its simplest, an OS does three things:

	manages hardware on behalf of applications

	provides services to applications like networking, security and memory
management, and so forth

	manages execution of applications; this is the part that allows us to run
multiple applications (seemingly) almost at the same time

Figure 1-1 shows a logical diagram of Android’s system architecture; it is far from complete,
since it doesn’t show all the apps, components, and libraries in the Android platform, but it
should give you an idea on how things are organized.

browser email your apps

content
providers

view
system

MANAGERS
activity location package notification

resource telephony window

webkit, media framework, open media libc, etc

android
runtime

core
libraries

LIBRARIES

hardware
drivers

power
mgt

memory
mgt

process
mgt etc LINUX KERNEL

APPLICATIONS
FRAMEWORK

APPLICATIONS

Figure 1-1.  Platform architecture

4 CHAPTER 1: Introduction

The lowest level in the diagram is the one responsible for interfacing with the hardware,
various services like memory management, and executions of processes. It should sound
familiar because these were the three things I said that OSes do. This part of the Android
OS is Linux. Linux is a very stable OS and is quite ubiquitous itself. You can find it in many
places like server hardware on data centers, appliances, medical devices, and so forth.
Android has an embedded Linux inside it which handles hardware interfacing and some
other kernel functions.

On top of the Linux kernel are low-level libraries like SQLite, OpenGL, and so on. These are
not part of the Linux kernel but are still low level and as such, are written mostly in C/C++.
On the same level, you will find the Android runtime (Android class libraries + Dalvik virtual
machine), which is where Android applications are run. Unlike other Java programs, Android
executables are not .class files; they are .dex files. Dex files are not run on a typical Java
virtual machine (JVM) like the one installed on your desktop. The dex files are meant to run
on a VM that is optimized for low-powered handheld devices. The compilation cycle could
be summed to the following: .java files (source code) ➤ Java compiler (.class) ➤ dex
compiler (.dex) ➤ packaging (.apk)

Next up is the application framework layer. It sits on top of both the low-level libraries and
the Android runtime because it needs both. This is the layer that we will interact with as an
application developer because it contains all the libraries we need to write apps.

Finally, on top is the application layer. This is where all our apps reside, both the ones we
write and the ones that comes prebuilt with the OS. It should be pointed out that prebuilt
applications which come with the device do not have any special privileges over the ones we
will write. If you don’t like the e-mail app of the phone, you can write your own and replace
it. Android is democratic like that.

Note  The Dalvik VM was written by Dan Borstein; the VM was named after a fishing village in
Iceland.

5© Ted Hagos 2018
T. Hagos, Learn Android Studio 3, https://doi.org/10.1007/978-1-4842-3156-2_2

Chapter 2
Android Studio
Developing applications for Android was not always as convenient as today. When
Android 1.0 was released sometime in 2008, what developers got by way of a development
kit was no more than a bunch of command-line tools and ant build scripts. Building
apps with vim, ant, and some command-line tools, that wasn’t so bad if you were used
to that kind of thing, but many developers were not. The lack of integrated development
environment (IDE) capabilities like code hinting, project setups, and integrated debugging
was somewhat a barrier to entry.

Thankfully, the Android development tools (ADT) for the Eclipse IDE was released, also
in 2008. Eclipse was, and still is, a favorite and dominant choice of IDE for many Java
developers. It felt very natural that it would also be the go-to IDE for Android developers.

From 2009 up until 2012, Eclipse remained to be choice of IDE for development. The
Android SDK has also undergone both major and incremental changes in structure and in
scope. In 2009, the SDK manager was released; we use this to download tools, individual
SDK versions, and Android images that we can use for the emulator. In 2010, additional
images were released for the ARM processor and X86 CPUs. 2012 was a big year because
Eclipse and ADT were finally bundled; this was a big deal because until that time, developers
had to install Eclipse and the ADT separately, and the installation process wasn’t always
smooth. So, the bundling of the two together made it a whole lot easier to get started with
Android development. 2012 was also a big year because it marked the last year of Eclipse
being the dominant IDE for Android.

In 2013, Android Studio was released. To be sure, it was still on beta, but the writing on the
wall was clear. It will be the official IDE for Android development. Android Studio is based
on Jetbrain’s IntelliJ. IntelliJ is a commercial Java IDE that also has a community (nonpaid)
version. This is the version that would serve as the base for Android Studio. In this chapter,
we will cover the following.

	Setup

	Configuration

https://doi.org/10.1007/978-1-4842-3156-2_2

6 CHAPTER 2: Android Studio

	Hardware acceleration

	Some basic parts of Android Studio 3

Android Studio Setup
The AS3 installer is available for macOS, Windows, and Linux. The download page detects
the OS you are using, so you should be able to spot the download button fairly quickly.
You will be asked to agree to some terms and conditions before you can proceed with the
download. Read it, understand it, and agree to it so you can carry on. After that, the AS3
installed will be downloaded in a zipped file.

If you have an existing installation of Android Studio, you can keep using that version and
still install the preview edition. AS3 can coexist with your existing version of Android Studio;
its settings will be kept in a different directory.

macOS
You must have seen the installation instruction after the terms and conditions screen; if you
haven’t or you skipped through it, I suggest that you give it a once-over, because there is an
installation warning in case you have an existing version of Android Studio. It says that if you
downloaded Android Studio version 2.3 or earlier, the application name on macOS installer
does not include the version number. So, you may want to rename your existing Android
Studio prior to installing the preview version. You can rename your existing Android Studio
installation by opening a finder window; then, select “Applications” from the sidebar, find
Android Studio, activate the context menu (press Ctrl + mouse click), and choose rename.
The installation notes for AS3 are at https://developer.android.com/studio/preview/
install-preview.html

1.	 Unpack the zipped file

2.	 Drag the application file into the Applications folder

3.	 Launch AS3

4.	 AS3 will prompt you to import some settings; if you have a previous
installation, you can import that (it is the default option)

Windows
1.	 Unzip the installer file

2.	 Move it to a folder location of your choice (e.g., C:\AndroidStudio).
Drill down to this folder

Note  Before you can install Android Studio, you need the Java 8 JDK. JDK installation instructions
are in the appendix.

https://developer.android.com/studio/preview/install-preview.html
https://developer.android.com/studio/preview/install-preview.html

7CHAPTER 2: Android Studio

3.	 Inside, you will find a bin folder; inside it, you will find studio64.exe.
This file is what you need to launch. If you are on a 32-bit Windows,
the launcher file is named studio.exe

Linux
The Linux installation requires a bit more work than simply double-clicking and following the
installer prompts. In future releases of Ubuntu and its derivatives, this might change and
become as simple and frictionless as its Windows and macOS counterparts, but for now, we
need to do some tweaking. The extra activities on Linux are mostly because AS3 needs
some 32-bit libraries and hardware acceleration.

To start pulling the 32 bit libraries for Linux, run the following commands on a terminal
window.

sudo apt-get update && sudo apt-get upgrade -y
sudo dpkg --add-architecture i386
sudo apt-get install libncurses5:i386 libstdc++6:i386 zlib1g:i386

When all the prep work is done, the AS3 installation can be managed using the following
steps.

1.	 Unpack the downloaded installer file. You can unpack the file using
command-line tools or using the GUI tools; you can, for example,
right-click the file and select the “Unpack here” option, if your file
manager has that option

2.	 After unzipping the file, rename the folder to AndroidStudio

3.	 Move the folder to a location where you have read, write, and
execute privileges. Alternatively, you can also move it to /usr/local/
AndroidStudio

Tip  If you right-click studio64.exe and choose Pin to Start Menu, you can make AS3 available
from the Windows Start menu; alternatively, you can pin it to the Taskbar.

Note  The installation instructions in this section are meant for Ubuntu 64-bit and other Ubuntu
derivatives: Linux Mint, Lubuntu, Xubuntu, Ubuntu MATE, and so forth. I chose this distribution
because I assumed that it is a very common Linux flavor, hence, readers of this book will be using
that distribution.

If you are running a 64-bit version of Ubuntu, you will need to pull some 32-bit libraries in order for
AS to function well.

8 CHAPTER 2: Android Studio

4.	 Open a terminal window and go to the AndroidStudio/bin and
execute ./studio.sh

5.	 At first launch, AS3 will ask you if you want to import some settings;
if you have installed a previous version of Android Studio, you may
want to import those settings into AS3

Configuring Android Studio
Before we can dive into programming, we need to do a couple of things to complete the
development setup. We need to

	Get some more software so we start creating programs that target a
specific version of Android

	Make sure we have all the SDK tools we need, and optionally

	Change the way we get updates for AS3

Launch AS3 if you haven’t done so yet. From the opening dialog, click “Configure” and
choose “SDK Manager” from the drop-down list. This should take you to a window where
you can select the SDK platforms to download (Figure 2-1).

Figure 2-1.  Preferences window

9CHAPTER 2: Android Studio

When you get to the SDK window, enable the “Show Package Details” option so you can
see a more detailed view of each API level. We don’t need to download everything in the
SDK window. We will get only the items we need.

SDK levels or platform numbers are specific versions of Android. Android 8 or Android “O”
is API level 26, and Nougat is API level 24 and 25. You don’t need to memorize the platform
numbers anymore, because AS3 shows the platform number with the corresponding
Android nickname.

If you have a pretty fast Internet connection, you may choose to download everything. That
way, you can create projects that target multiple versions of Android all the way down to
Eclair. For our purposes, we will only download Nougat (platforms 24 and 25) and Oreo
(platform 26). Make sure that together with the platforms, you will also download “Google
APIs Intel x86 Atom_64 System Image”. We will need those when we get to the part where
we test run our applications.

Once you have completed the selection, click the “OK” button to start the download process
(Figure 2-2).

Note  Another way to build applications for earlier Android versions without having to download
all the API levels is to use the Android Support Libraries; these libraries afford us backward
compatibility.

10 CHAPTER 2: Android Studio

Next, we head to the “SDK Tools” tab. This is in the same section on the Preferences
window; just click the tab in the middle to view the details of the tools (Figure 2-3).

Figure 2-2.  SDK platforms

11CHAPTER 2: Android Studio

You don’t generally have to change anything on this window, but it wouldn’t hurt to check
that you have the following packages.

Android SDK Platform Tools This contains important tools like adb, which will help us do
diagnostics and debugging, and sqlite3, which we can use when
we create applications that use databases, plus a couple of other
tools.

Android SDK Tools This includes essential Android tools like ProGuard. You don’t need
to deep dive into the details of these tools (for now). Just make
sure this box is ticked and you’re good to go.

Android Emulator You will definitely use this. This is a device emulation tool. We will
use this to test our applications in a virtual device.

Figure 2-3.  SDK tools

12 CHAPTER 2: Android Studio

Support Repository If you want to write code that targets Android Wear, Android TV, or
Google Cast, you want to download this. This also contains local
Maven repository for support libraries. The support repository also
allows you to use new features on older Android versions.

HAXM Installer If you are using a macOS, or a PC with Intel processor, you can
use this. It is an accelerator for the Android Emulator.

After you’ve downloaded some target platforms and checked the SDK Tools, we can move
on to the last configuration item, which is the “Update Channel”. You can change this setting
from the “Preferences” dialog window. From the opening dialog window, choose “Configure”
and then “Preferences” (Figure 2-4).

Note  If you are on the Linux platform, you cannot use HAXM even if you have an Intel processor.
KVM will be used in Linux instead of HAXM.

Figure 2-4.  Preferences

13CHAPTER 2: Android Studio

On the left side of “Default Preferences”, choose “Updates” (Figure 2-5).

Figure 2-5.  Update Channel

AS3, just like any Android Studio installation is configured by default to get updates from the
channel where you originally downloaded the installer. At the time of this writing, AS3 was
downloaded from the “Canary” Channel (also known as the Preview Channel), hence, it gets
the update from the Canary Channel by default. You can change the channel to any one of
these four:

	Canary Channel: This has bleeding-edge releases; it could be updated
every week. You don’t want to use this for production codes

	Dev Channel: Just like the Canary Channel but a bit more stable. You
still don’t want to use this for production

	Beta Channel: This contains release candidates. The devs are basically
waiting for feedback before they get fed to the Stable Channel

	Stable Channel: This is the official stable release and is suited for
production work

14 CHAPTER 2: Android Studio

Hardware Acceleration
As you write your app, it will be useful to test and run it from time to time in order to get
immediate feedback and find out if it is running as expected, or if it is running at all. To do this,
you will use either a physical or a virtual device. Each option has its pros and cons, and you
don’t have to choose one over the other; in fact, you will have to use both options eventually.

Running on an emulator can sometimes be slow;, this why Google and Intel came up with
HAXM. It is an emulator acceleration tool that makes testing your app a bit more bearable.
This is definitely a boon to developers, that is, if you are using a machine that has an Intel
processor which supports virtualization and that you are not on Linux. But don’t worry
if you’re not lucky enough to fall into that category; there are other ways to speed up
emulation, and we will cover them in this section.

macOS users probably have it the easiest because HAXM is automatically installed with
AS3. They don’t have to do anything to get it; the AS3 installer took care of that for them.

Windows users can get HAXM in one of these ways:

	Downloading it from https://software.intel.com/en-us/android.
Install it like you would any other Windows software, double-click, and
follow the prompts.

	Alternatively, you can get HAXM via AS3’s SDK manager; this is the
recommended method.

For Linux users, the recommended software is KVM instead. KVM (Kernel-based Virtual
Machine), is a virtualization solution for Linux. It contains virtualization extensions (Intel VT or
AMD-V).

To get KVM, we need to pull some software from the repos. But before doing anything else,
you need to do two things.

1.	 Make sure that virtualization is enabled on your BIOS or UEFI
settings. Consult your hardware manual on how to get to these
settings. It usually involves shutting down the PC, restarting it, and
pressing an interrupt key like F2 or Del as soon as you hear the chime
of your system speaker, but like I said, consult your hardware manual

Note  The “Preferences” window can be accessed within AS3 when a project is opened in full
view. You don’t always have to launch it from the AS3 opening window. When you’re inside AS3,
follow the next instructions to launch “Preferences”:

	For macOS: on the menu bar, Android Studio ➤ Preferences, then on the left pane select
Appearance & Behavior ➤ System Settings ➤ Updates

	For Windows: on the menu bar, File ➤ Settings, then on the left pane select Appearance &
Behavior ➤ System Settings ➤ Updates

https://software.intel.com/en-us/android

15CHAPTER 2: Android Studio

2.	 Once you made your changes, and rebooted to Linux, find out if your
system can run virtualization. This can be accomplished by running
the following command from a terminal egrep –c '(vmx|svm)'
/proc/cpuinfo. If the result is a number higher than zero, that means
you can go ahead with the installation

sudo apt-get install qemu-kvm libvirt-bin ubuntu-vm-builder bridge-utils
sudo adduser your_user_name kvm
sudo adduser your_user_name libvirtd

You may have to reboot the system to complete the installation.

The Android Studio IDE
The following section points out some common features of AS3. We will create our first
project in the next chapter, so you may want to refer back to this section once we’ve started
creating some projects. For now, let’s just familiarize ourselves with AS3.

AS3 is based on Jetbrain’s IntelliJ IDE, so if you have occasion to use that, AS3 will be very
familiar. Even if you are coming from another IDE such as Eclipse or Netbeans, a lot of AS3
features should be very familiar. Figure 2-6 shows some of the basic parts of AS3.

Note  There are other ways to check if virtualization is available on your Linux machine. You can
run the following command on a terminal. You will need to run this command as root

 grep --color vmx /proc/cpuinfo

Another way is to is to use “cpu-checker”, which you will need to get it from the repos. See the
following command

 sudo apt-get update
 sudo apt-get install cpu-checker

Now you can check if the CPU has acceleration capabilities

 kvm-ok

If the acceleration is available, you should see something like

 INFO: /dev/kvm exists
 KVM acceleration can be used

16 CHAPTER 2: Android Studio

Editor window This is the most prominent window and it has the most screen real estate. The editor
window is where you can create and modify project files. It changes in appearance
depending on what you are editing. If you are working on a program source file, this
window will show just the source files. If you are editing layout files, you may see
either the raw XML file or a visual rendering of the layout, just like you what you have
seen in the last chapter

Navigation bar This allows you to navigate the project files. It is just a more compact view of the
“Project files” window. It’s a horizontally arranged collection of arrow boxes which
resembles some sort of breadcrumb navigation that you can find on some web
sites. You can open your project files through the navigation bar or through the
project tool window

Toolbar The toolbar lets you do a wide range of actions: save files, run the app, open the
AVD (Android virtual device) manager, open the SDK manager, undo/redo actions,
and so on.

Tool windows The tool windows gives you access to very specific tasks: look at the project files,
view all the TODO annotations, view the logcat window, access the profiler, and
so on. Each of the tool windows is expandable and collapsible. You can pop them
open when you need them then tuck them away when you’re done

Tool window bar The tool window bar runs along the perimeter of the IDE window. It contains the
individual buttons you need to activate specific tool windows

Status bar This part of the IDE shows what’s going on with your project and with AS3 itself. It
displays context-sensitive messages such as error messages, running processes,
repository messages, and so on.

Figure 2-6.  Android Studio IDE

17CHAPTER 2: Android Studio

AS3 offers many ways to navigate the IDE, as you have seen in Figure 2-6, but the primary
way of navigating AS3 is through the main menu bar. This bar sits at the top of the IDE, and
it is the most complete and comprehensive way to navigate it (Figures 2-7 and 2-8).

Figure 2-7.  Main menu bar in macOS

Figure 2-8.  Main menu bar in Windows

19© Ted Hagos 2018
T. Hagos, Learn Android Studio 3, https://doi.org/10.1007/978-1-4842-3156-2_3

Chapter 3
Application Fundamentals
We will create a simple project. It will not do anything but simply display a text field. The point
of the exercise is to familiarize ourselves with the Android Studio development environment.

Creating a Project
Launch the Android Studio IDE if it isn’t open yet. You will be greeted by the opening screen
(Figure 3-1).

Figure 3-1.  Welcome to Android Studio

https://doi.org/10.1007/978-1-4842-3156-2_3

20 CHAPTER 3: Application Fundamentals

There are a couple of things you can do from this opening dialog window, but the only
thing we will do is to start a new Android project. We will explore the other options as we
go further along. Click the “Start a new Android Studio Project” to launch the new project
wizard. Before you go further, make sure that you are connected to the Internet. Android
Studio uses a build tool called gradle. It pulls several files from Internet repositories
whenever you create a new project (Figure 3-2).

Figure 3-2.  Create new project

You will need to provide a couple of things for the wizard. You need to type in the application
name and the company domain.

The wizard shown in Figure 3-2 will accept input about the details of the project you want to
create; it will be filled with default values which you may accept or edit if you wish.

21CHAPTER 3: Application Fundamentals

application name What you want to call the application. This is known also as the project name.
The application name not only becomes not only the name of the top-level
folder which contains all the project files in your disk, but also becomes a part
of your application’s identity should you release it in Google Play

company domain This is your organization or company’s domain name in reverse DNS notation.
If you don’t have a company name, just type anything that resembles a web
domain name (e.g., myname.com). Since we are just trying to get started for
now and we won’t release this application to Google Play, it doesn’t matter if
the company domain is real or not

package name This is the company domain plus the application name. This will uniquely
identify your application should you choose to release it in Google Play. You
will not input this field; this is automatically constructed from the application
name and company domain. The wizard will fill this up automatically for you
but you can edit it if you wish. Generally, it is best just to leave this alone

project location This is a place in your disk drive where the project files will be kept. It is
almost similar to the workspace idea of Eclipse, if you have used that. Unlike
Eclipse though, the project location is simply that, a location for your project
files. It does not contain settings information like in Eclipse

We need to specify which version of Android we would like to target (Figure 3-3). We’ll just
choose Marshmallow for now (API level 23). This doesn’t mean that our application will run
only on Marshmallow; instead, it means our app will run on devices that have Marshmallow
or higher versions. The minimum sdk entry in this screen will dictate the lowest version
of Android that our app will support. There is no hard-and-fast rule on how to select the
minimum sdk, but it’s enough to remember that the lower the sdk version, the more devices
your app can support. Best keep in mind also that lower Android versions may offer fewer
application features. On the other hand however, the support libraries allow us to use
new features on older Android versions. Selecting a min sdk could be more of a business
decision rather than a technical one because you need to consider how wide your audience
of target users will be.

22 CHAPTER 3: Application Fundamentals

Leave the other check boxes untouched. We are only interested in the phone/tablet
application for the moment.

Next thing to do is choose a type of activity. An activity is an Android component that
facilitates user interaction. It is the visible part of your application. There are many kinds of
activities, as you can see on the wizard options in Figure 3-4, but for our purpose, we will
select the “empty activity” option.

Figure 3-3.  Select target version

23CHAPTER 3: Application Fundamentals

Choosing the “empty activity” option does not mean we won’t get any activity class. The
wizard will generate an activity class for us, but it will be empty. It won’t have any widget or
controls except for a single text field that says “Hello World”. The empty activity is the basic
building block of other activities. It is a good idea to be acquainted with this most basic
version of the Activity class.

Figure 3-4.  Choose type of activity

24 CHAPTER 3: Application Fundamentals

Once we’ve chosen the type of activity, there are two other inputs that remain: the activity
name and layout name (Figure 3-5). The activity name will be used to generate a Java file
which will contain all the program logic for this activity. The layout name will be used to
generate an XML file that will contain the user interface definition.

When you click the “Finish” button, AS3 will kick into high gear to generate the project. You
need to be connected to the Internet when this is happening because AS3 will pull quite a
few resources from the Web.

During the very first run of AS3, you may see some error messages; that’s just a result of the
building process. AS3 will usually give you directions on how to correct those errors. It may
be as simple as clicking a link at the top right of the IDE in yellow, which shows the error
message itself.

Using Android Studio
When things have finally settled, you will see a screen similar to Figure 3-6.

Figure 3-5.  Configure activity

25CHAPTER 3: Application Fundamentals

On the far left of AS3 main window, you will see a section with a tree-like layout where the
files and folders of our app are displayed (see Figure 3-7). You can use this to navigate the
project and open a file by double-clicking it.

Figure 3-6.  Main AS3 window

Figure 3-7.  Project window

The main editing area uses tabs. When you open a file for editing, it becomes a tab in here.
You can use the tabs to switch from one file to another. There are two tabs currently open:
choose the activity_main.xml tab so we can view how our app looks (Figure 3-8).

26 CHAPTER 3: Application Fundamentals

You will notice that when you switched to view activity_main, the context of AS3 changed
as well. Once the UI layout became available for editing, the “Palette” became visible as
well. What we are seeing in Figure 3-9 is a rendering of our app’s user interface. This UI is
defined on an XML file (activity_main.xml) . As you can see, there isn’t much on it yet but a
simple “Hello World” that the wizard built for us.

Figure 3-8.  Tabbed editing area

Figure 3-9.  activity_main.xml

27CHAPTER 3: Application Fundamentals

The “Palette” area contains all the views or widgets that we can use for our app. The basic
idea is to simply drag and drop views from this palette and onto the design canvas.

While you are still viewing activity_main, you will notice that there are two tabs the lower
left part of AS3. These tabs correspond to two modes of viewing the layout screen. The
“Design” mode shows a visual rendering of the UI, and the “Text” mode shows us the XML
code. The layout file can be manipulated either way. Switching between design and textual
mode is a great way to learn and familiarize yourself with the XML markup.

Figure 3-10.  Palette

Figure 3-11.  viewing modes of activity_main.xml

Figure 3-12 shows the XML markup content of the layout file (activity_main.xml).

28 CHAPTER 3: Application Fundamentals

We don’t need to add or do anything else to this app. The purpose of this first exercise is to
simply get acquainted with the most common features of AS3. The steps we did so far are
quite boilerplate. Most of the applications you will create will go through the same steps.

The next thing to do is run the application. We will execute the app inside an AVD (Android
virtual device). The AVD is an emulator; it runs an actual image of an Android OS rather than
just simulating its behavior. To run the app, click the “Run” button on the toolbar.

Figure 3-12.  Textual view of activity_main.xml

Figure 3-13.  Run button

AS3 will look for either a connected physical device or an already running emulator. Since
we have neither one, none are listed in “Connected Devices”. There are a couple of entries
already in “Available Virtual Devices” because I have created them already. Your setup will be
quite empty since you have not created an AVD before.

Create a new emulator by clicking “Create New Virtual Device” as shown in Figure 3-14.

29CHAPTER 3: Application Fundamentals

Choose a device definition. In this example, I chose the 4.7" Nexus 4. Click “Next”.

Figure 3-14.  Deployment target

Figure 3-15.  AVD configuration

30 CHAPTER 3: Application Fundamentals

We should choose an OS image for our new emulator. This project was created with a min
sdk of 23 (Marshmallow), so we will choose API 23 as the system image as well. In your
workstation, the Marshmallow entry might appear with a clickable “Download” link; if that
is the case, just click “Download” so that the OS image will be downloaded. When that is
done, click “Next” to configure the new emulator.

Figure 3-16.  Select system image

You can change the name of the newly created emulator, or you could just accept the
default name. Click the “Show Advanced Settings” if you want to see some more options for
configuration.

31CHAPTER 3: Application Fundamentals

You can change a couple more options when advanced settings are visible. You can tweak
these values later depending on the needs of your app. You can give your emulator more
memory or internal storage space if you need to test that in your app. For now, we will
simply accept the default values. Once the AVD is created, you should be back the “Select
Deployment Target” screen.

Figure 3-17.  AVD configuration

32 CHAPTER 3: Application Fundamentals

Figure 3-18.  Advanced settings

Select the newly created emulator, and then click “OK”. It could take a while for the emulator
to start, but when it finishes, you should see (Figure 3-20) a virtual machine representation of
the Nexus 4 running on a separate window.

33CHAPTER 3: Application Fundamentals

Figure 3-19.  Select deployment target

Go back to AS3 and click the “Run” button so we can run the app on the emulator with our
“Hello World” application running.

34 CHAPTER 3: Application Fundamentals

Compilation and Runtime
Android components are written using either the Java or Kotlin language; this is why AS3
ships with its own embedded JDK. The compilation process however, is not the same as
what you might have been used to with either Java SE or Java EE.

Android executables are dex files and not class files. Program compilation is a two-step
process in Android. The java source files are first compiled into class files, just what you did
in Java SE/EE. After that, the resulting class files are converted into to dex files by the dx
tool. Dex files are the ones that are run inside the Android runtime (ART).

Figure 3-20.  Hello World running in the emulator

35CHAPTER 3: Application Fundamentals

Figure 3-21.  Compilation and runtime

Android Components
Applications in Android are not quite the same as apps written for the desktop. They might
have some striking similarities as far as appearances go, but structurally they differ quite a
lot. Desktop apps are pretty much self-contained. The exe files contain all needed routines
and subroutines within them. From time to time, it may rely on some dynamically loaded
library, but pretty much the exe is self-sufficient. That is not the case with Android apps.

An Android app is not a monolithic package like an EXE file in Windows. It is a bundle of
loosely related or loosely coupled components and other resources, and they are held
together inside an APK file (Android package file).

Figure 3-22.  Logical view of an Android app

36 CHAPTER 3: Application Fundamentals

Table 3-1 describes an Android app and its composition in detail.

Table 3-1.  An Android App

APK file The Android package file has extension of .apk. It basically a form of archive that
was based on the jar (Java archive), which in turn was based on a zipped file. It
holds everything together in an Android app. This file is what is downloaded on a
user’s device when they install an app

Resources You may include other resources like audio, video, or pictures in your app

Manifest The Android manifest is an XML file. It defines quite a few things: for example,
what the application can do, what kinds of requests or “Intents” can it respond
to, what makes it up, whether it can go to the Internet, and so on. Here are some
other things you will find on the manifest file:

•	 The name of the application

•	 Which screen will show up first when a user clicks the application

•	 What kinds of components does the app have? Does it have Activities?
What are their names? Does it have BroadcastReceivers Services, Content
Providers?

•	 What kinds of things can it do with the mobile device? Can it access
the network? The Internet? The camera? Will it record GPS locations?
Can other applications interact with this application? If so, what kinds of
permissions should these other applications have?

•	 Does the application use external libraries (usually jar files that another
programmer wrote)?

•	 What versions of Android will this application run on?

Components Components are application building blocks. They are quite unique to Android’s
architecture because the other mobile computing platforms do not build their
applications the same way. A component can be created to do one thing: show a
screen, run a background process, provide data, and so on. This component can
make the functionality or behavior available to other components (even to other
applications outside its APK). This kind of loose coupling makes it possible to
achieve reuse at an application level

Intents If components make loose coupling possible in Android, Intents are what connects
these components. We will use intents in lots of ways: for example, to call another
screen, to respond to some other application or another component, or to pass
data from one component to another (or to another application)

Components
Components are key building blocks for any Android application. They are high-level
abstractions of useful things like showing a screen to the user, running a background task,
broadcasting an event, and so on. They are precoded Java classes with very specific
behavior. We need to extend them, of course, so we can add functionality that is unique to
our application.

37CHAPTER 3: Application Fundamentals

Think of building an Android application like it is building a house. Some people build
houses the traditional way: they assemble beams, struts, floor panels, and so forth. They
build the doors and other fittings from raw materials, by hand like an artisan. If we built
Android applications this way, it would take us a long time and it could be quite difficult.
The skill necessary to build applications from the scratch could be out of reach for
many programmers. In Android, applications are built using components. Think of it as
prefabricated pieces of a house. The parts manufactured in advance and all it requires is
assembly. We don’t build the house from raw materials. Instead we use prebuilt components
and assemble them together. If you could remember the parts of the Android operating
system from Chapter 1, the OS includes quite a lot of things, not only hardware drivers and
applications, it also includes prebuilt components. We can build our own applications on
top of these components, thus saving us valuable amounts of time. Figure 3-23 shows a
logical representation of the Android architecture.

browser email your apps

content
providers

view
system

MANAGERS
activity location package notification

resource telephony window

webkit, media framework, open media libc, etc

android
runtime

core
libraries

LIBRARIES

hardware
drivers

power
mgt

memory
mgt

process
mgt etc LINUX KERNEL

APPLICATIONS
FRAMEWORK

APPLICATIONS

Figure 3-23.  Android architecture

http://dx.doi.org/10.1007/978-1-4842-3156-2_1

38 CHAPTER 3: Application Fundamentals

Table 3-2.  Android Components

Component What It Does Example

Activity

base class:
android.app.Activity

Holds, displays the user
interface elements (View
and ViewGroups). It’s a
focused thing a user can do
with your application

View a single e-mail message,
take notes

Service

base class:
android.app.Service

Run a process in the
background

Download a large file from the
Internet, play background music

BroadcastReceiver

base class:
android.content.BroadcastReceiver

Receive messages either
from the Android system or
from applications

Display a warning message
when the device battery dips to
below 10%

ContentProvider

base class:
android.content.ContentProvider

Store and retrieve data, like
a database

Contacts or address book on
your phone. Any application
can look up and add data to the
phonebook

Activities
An activity is a single focused thing that a user can do (this definition is from the Android
developer web site, developer.android.com). It’s a very succinct definition of the Activity
component because it is exactly that, a focused thing that interacts with a user. The
equivalent of an Activity in your PC desktop would be a window that is blown up in full
screen. It grabs your attention and gets you focused.

The activity component is part of the applications framework, as shown in Figure 3-1. The
basic idea to use this component is to extend (inherit) from the class android.app.Activity
and then compose the user interface by aggregating UI elements (text fields, buttons, etc.)
inside the activity class. All of these user interface elements are capable of reacting to events
such as click and swipe.

Some applications have only one Activity, and some other applications will have more than
one screen. For applications that have more than one screen, you will need a way to launch
activities. There are also times when you will need to pass data from one activity to another.
We will address those needs by using Intents.

Services
Sometimes you will need to write code that is invisible to the user, one that doesn’t have
a user interface. Surely you will need to launch it somehow from an Activity, but once
launched, the application just keeps on running, even if the UI that launched it has already
disappeared from view. A music player is such an example of this kind of app. A GPS-
enabled application which updates your location every now and then is another example.

39CHAPTER 3: Application Fundamentals

If you need to build these kinds of apps, you will use Services. These are long running
operations that are executed in the background. A Service is independent of the Activity that
launched. Even if the UI screen that was used to launch the service has already died, the
Service code just keeps on going.

Content Providers
Each application runs on its own process: its own virtual machine. This behavior of Android
protects each application. If one badly written application goes wonky, it cannot bring the
other running applications down. It is good for application stability. But this makes it nearly
impossible for one application to access data from another.

Content Providers solves the problem of data sharing between applications. It is possible
for you to write an application and share whatever data it has with other applications.
The Contacts and Calendar apps in Android are good examples of apps that use Content
Providers.

Don’t confuse Content Provider with your own database. If you create an application that
uses a SQLite database, of course your application can access that. If, for example, you
want to allow other applications to gain access to your app’s data, you can build a Content
Provider. Your application will make the data available to other apps using standard URIs.

Broadcast Receivers
Broadcast receivers are used if you want to execute some program logic in your app as
a response to events generated by either the Android system or other applications. You
can, for example, initiate a database write when the phone receives an SMS message. You
probably want to examine the SMS message and if it fits certain criteria, you will record it to
the database. This is one example of how to use Broadcast receivers.

You can make your application listen to certain events. To do this, you need to register your
application to listen to a specific event. It is the same concept when you subscribe to a
mailing list. When there is a new mail, you get notified.

Apart from listening to broadcasted events, you can also make your application
broadcast specific events. To do that, you will extend a specific Android class called the
BroadcastReceiver.

BroadcastReceivers typically don’t have user interfaces. But you can create notifications
that will show up on the status bar.

41© Ted Hagos 2018
T. Hagos, Learn Android Studio 3, https://doi.org/10.1007/978-1-4842-3156-2_4

Chapter 4
Activities and Layouts
Most apps will need one or more screens that they will use to communicate with the user. It
is possible to write applications that don’t need a UI (e.g., apps that run in the background),
but for the most part, when you create an application it will need a user interface, and
for this reason, we need to understand activities. Building user interfaces is one of the
fundamental skills that an Android programmer must have. In this chapter, we will take a
look at how to build an app with a single and simple user interface. You have already created
such an app back in Chapter 3, but we did not take a closer look at the activity component.

Our goals for this chapter are the following:

	Understand the basic things that make up an application with a user
interface: these are activities, View objects, and layout (view groups)

	Understand the basic relationship between an activity and a layout file

	Understand the basics of ConstraintLayout

Building the Hello Screen
Back in Chapter 3, we built a project with an empty activity. This new project will be very
similar to that one. If you want to work on this code sample, you can use the project
information in Table 4-1; that way, it will be easier to follow.

https://doi.org/10.1007/978-1-4842-3156-2_4
http://dx.doi.org/10.1007/978-1-4842-3156-2_3
http://dx.doi.org/10.1007/978-1-4842-3156-2_3

42 CHAPTER 4: Activities and Layouts

Once the creation wizard finishes, you will have quite a few files in the project folder, but only
two of them are important for us right now: we are particularly interested in MainActivity.
java and activity_main.xml (Table 4-2, for details).

Table 4-1.  Project Information

Application name Hello

Company domain Use your web site, or invent something; remember that this is in reverse DNS
notation

Project location This usually best left alone; use the default value, but make sure to take note
of this location in case the need to access it arises. Ignore the C++ and Kotlin
support

Form factor Phone and tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name If you leave the default alone it alone, this will be MainActivity, which is fine

Layout name If you leave the default alone it alone, this will be activity_main, which is fine

Table 4-2.  Important files for this project

File Location Purpose

Layout file app/src/main/res/layout/
activity_main.xml

This is the layout file of our application. All user interface
elements are written in here. Whenever you drag and
drop any element from the palette, this file gets updated
to reflect what you changed in design view

Program file app/src/main/java/
MainActivity.java

This Java file is the main program; all the program
logic goes in here. If you want to do something as a
reaction to some user-generated event, this will be the
place to write that code

The Layout File
Open activity_main if it isn’t already open yet; in case it isn’t or if you closed the tab
previously, you can launch it from the project tool window.

The project tool window shows us a tree-like structure of our project files. When you double-
click any file, it will be launched and opened as a tab in the main editor.

The project tool window allows you to change perspectives or views. Most developers just
leave the view to “Android” as shown in Figure 4-1, but you can switch the view to Project,
Packages, Scratches, Project Files, and so on. Try to open the different views by clicking the
spinner button right beside “Android” so you can explore each view for yourself.

When the layout file is opened in main editor, you may view it in design mode (wysiwyg) or
text mode. In design mode, you may see both the design and blueprint of the layout file.

43CHAPTER 4: Activities and Layouts

You can switch between design and text mode while editing the layout file by clicking either
“text” or “design” tab; you can find these tabs somewhere in the lower left portion of the
main editor. These tabs appear only when you are editing the layout file (i.e., they are context
sensitive). Figure 4-2 shows the layout file in “design” mode.

Note  The AS3 UI elements in your installation may not be consistent with what's shown in
Figure 4-1. AS3 is progressing at a rapid pace, and your version of AS3 may not be the same as
what's been used in this book.

Figure 4-1.  Project tool window

44 CHAPTER 4: Activities and Layouts

Table 4-3 describes the elements of the Design editor

There may be two windows represented in the design editor: as you can see in Figure 4-2,
both of these two windows are actually representations of the same layout file (our activity_
main). The design view shows a color preview of the layout file, while the blueprint view
shows only the outline. You can choose to switch off either of these views or you can view
them both.

Figure 4-2.  Design editor

Table 4-3.  Elements of the Design Editor

show design view Toggles between showing and hiding the design view (see Figure 4-2)

show blueprint view Toggles between showing and hiding the blueprint view

change orientation Changes the orientation of the layout. This will be useful if you are trying
to simulate what the layout would look like if the user switches between
portrait and landscape orientation

device type and size Selects the device type, whether it's a phone, tablet, TV, or Android wear.
You can also change the screen configuration (size and density)

api version Selects the version of Android you would like to preview the app

design view Shows a color preview of the layout

blueprint view Shows an outline preview of the layout

increase zoom Increases the magnification of the layout on the design editor

decrease zoom Decreases the magnification of the layout on the design editor

45CHAPTER 4: Activities and Layouts

Listing 4-1 shows the layout file in “text mode”. In this mode, you could see XML code that
AS3 generates as you make changes to the layout in design mode. This process of wysiwyg
to code generation is bidirectional: if you edit the xml directly, the changes will be reflected
almost instantaneously back to the design view, although I don’t imagine that you would like
to build the UI by editing the XML directly.

Listing 4-1.  app/src/main/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout 
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.ted.hello.MainActivity">

 <TextView 
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>

</android.support.constraint.ConstraintLayout>

 The root node of the XML file, this line defines the layout for this activity to be a ConstraintLayout

 Defines TextView widget as the first child of the root node. A TextView is a noneditable text
widget, which are commonly used as labels

In most situations, you won’t need to mess around with the xml code of the layout file
because the design editor is sufficient for designing and building the user interface.

Main Java Program
The other file of interest is the main program. If it isn’t opened in the main editor yet, launch
MainActivity.java from the project tool window.

Figure 4-3 shows the main program in the editor window. You will see a bunch of visual
guides in here, including code folding outline, line numbers in the gutter, and icons of related
files (when applicable).

46 CHAPTER 4: Activities and Layouts

The code folding outline is useful when you are editing large source files; folding certain
blocks of code can help to better show the structure of the program (and sometimes, it
can also help you hunt down some missing curly braces). Code folding can be enabled
or disabled in “Settings” (Windows and Linux) or “Preferences” (macOS) window. To go
to the “Settings” window, press Ctrl + Alt + S. To go to the “Preferences” window press
Command + , (comma)

Figure 4-3.  app/src/main/java/MainActivity.java

Table 4-4.  Keyboard Shortcuts for Code Folding

Task Windows or Linux macOS

Open Settings or Preferences dialog Ctrl + Alt + S ⌘ + ',' (comma)

Expand code block Ctrl + Shift + '+' (plus) ⌘ + '+' (plus)

Collapse code block Ctrl + Shift + '-' (minus) ⌘ + '-' (minus)

AS3 lets you view the program source file in a variety of modes: normal mode, presentation
view, distraction free, and fullscreen mode. There are overlaps between some of the modes,
so it might be best to try out all of them and see which one you prefer for yourself (see
Table 4-5).

47CHAPTER 4: Activities and Layouts

Listing 4-2 shows the full code for MainActivity.java and highlights some parts of it.

Listing 4-2.  app/src/main/java/MainActivity.java

package com.example.ted.hello; 

import android.support.v7.app.AppCompatActivity; 
import android.os.Bundle; 

public class MainActivity extends AppCompatActivity { 

 @Override 
 protected void onCreate(Bundle savedInstanceState) { 
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main); 
 }
}

 This package statement was taken from the wizard input screen when you created the project
(company domain field); this is usually your company or personal web site written in reverse DNS
notation

 We’re importing AppCompatActivity into this source file (MainActivity.java) because we’re going
to use it later

 Same stuff as number 2; we’re importing the Bundle object because we will reference it later in
this source file

 To build an activity component, we need to inherit from android.app.Activity or one its child
classes. AppCompatActivity is a child class of FragmentActivity which in turn is a child class of
Activity. AppCompatActivity lets us add an ActionBar to our activity

 The @Override is an annotation which just helps clarify our intent that we are truly overriding the
method onCreate() in AppCompatActivity. It’s just one of the safeguards of the Java compiler

Table 4-5.  View Modes

Normal mode This is the default mode when AS3 opens. Toolbars are all visible, editor
fonts are normal size, and AS3 isn't occupying the whole screen real
estate

Presentation view This is designed for delivering presentations: the toolbar disappears and
the font size is bigger than usual

Fullscreen mode AS3 will span the full screen area. In macOS, it will take the application
screen to another desktop. The editor window practically remains
unchanged, the font sizes are of normal size, and the toolbars are visible

Distraction free mode It hides all the toolbars, and what remains is just the editor. This won't
enter fullscreen mode (although you can if you want to; just activate both
distraction free and fullscreen. They are not mutually exclusive)

48 CHAPTER 4: Activities and Layouts

 onCreate() is a lifecycle method of the Activity class. This method gets called by the Android
runtime whenever an application has been started for the first time. The method takes in a Bundle
object as argument

 setContentView(R.layout.activity_main) is the method call which associates our main Java
program to the layout file (activity_main). What this method does is to inflate the XML, which
will add all the view objects (Buttons, TextView, etc.) to the activity. The runtime will parse
the XML file, create all the view and viewgroup objects as defined in the XML, and add them
programmatically to the activity class

Views and Layout
Now that we understand the layout and main program file a bit better, we will remove the
textView object that the wizard generated for us and replace it with some controls of our
own design.

Select the activity_main in the main editor (make sure you are in the design view). Select
the existing “Hello World” textView by clicking it. A selected view object appears like the
one in shown in Figure 4-4. Delete it.

Figure 4-4.  Select the “Hello World” textView

Alternatively, you can also delete a view object directly in the XML file. While layout file is
selected in main editor, switch to “text” mode. Select the entire node entry of the TextView
by clicking and dragging on the editor as shown in Figure 4-5. XML entries are quite finicky;
if you so much as leave out or delete an extra character as shown in Figure 4-5, the XML will
be malformed and AS3 won’t be able to parse it properly. So you need to take care to get it
right. Once it is selected, delete the selected text.

49CHAPTER 4: Activities and Layouts

Switch back to “design” mode so we can start adding new view objects. We will need a
textView, editText, and a Button view object.

Figure 4-5.  Text mode of activity_main

50 CHAPTER 4: Activities and Layouts

You can place view objects onto the layout by clicking and dragging them individually from
the palette. The palette is categorized, but you can view all of them in a single list if you click
the “All” option up top, as shown in Figure 4-6.

At the moment, we haven’t defined any constraints for any of the new view objects we
added. That will be a problem during runtime because the absence of any constraint means
every view object will be positioned to location 0,0, or topmost and leftmost on the screen.
See Figure 4-7.

Figure 4-6.  editText (PlainText), textView, and Button view objects

Figure 4-7.  Hello app on the AVD

51CHAPTER 4: Activities and Layouts

To remedy this, we’ll put some constraints on each of the view objects.

The basic idea behind a ConstraintLayout is that you don’t define absolute positions for
each of the view objects but instead, define some sort of rules or guidelines for the layout
and then let the Android runtime figure it out how to best arrange your widgets. It sounds like
a terrible idea at first because you are relinquishing creative control and relegating it to the
runtime, but it actually makes sense because it is very difficult to design for an application
that may be viewed in different screen sizes, form factors, and orientation. ConstraintLayout
is trying to solve this problem.

In a ConstraintLayout, each view is given some sort of rule, guide, or constraint; an example
of a constraint would be always maintaining a left margin of 20dp from the container and a
top margin of 40dp from whatever is on top of this view. Let’s see how to do that in AS3.

In the main editor, click the editText view to select it. Notice that when a view object is
selected, you can see both the sizing handles and the constraint handles (see Figure 4-8).
You can experiment on the sizing handles, but our concern right now is the constraint handle.

Figure 4-8.  Constraint handles and sizing handles

Figure 4-9.  Autoconnect inspector

To define a left and top margin constraint for our object, do the following.

1.	 Make sure that the “Autoconnect” inspector is not turned off
(Figure 4-9)

2.	 Click the top constraint handle and drag it all the way to the top of
the container. An arrow pointing upward will appear from the top
constraint handle; keep dragging it until it sticks to the top of the
container as shown in Figure 4-10

52 CHAPTER 4: Activities and Layouts

3.	 Do the same thing for the left constraint handle: click and drag it up
until it sticks to the left side of the container. Don’t worry too much
about grayed out numbers on the margin; you can fix that to precise
values in the properties inspector

4.	 You can change the values of the margin constraints in the attributes
inspector as shown in Figure 4-11. Click the constraint values, which
will become editable. You can choose any value from the drop-down
or simply type the precise amount of margin (in dp) and then press ↵
(Enter)

Figure 4-10.  Edit Text with constraints

Figure 4-11.  Attributes inspector

53CHAPTER 4: Activities and Layouts

You can do this for the remaining two view objects in our layout. But as you will soon find
out, layout work can be as time-consuming—if not more—than writing codes. Alternatively,
instead of defining constraints for each of the component, you can let AS3 do all the work
and define the constraints for you. To do that, follow these steps.

1.	 Remove all the constraints by clicking the “Clear constraints button”
(see Figure 4-12)

2.	 Move view objects roughly to the positions you want them to be,
relative to each other and relative to the container, just like playing
with a paint program

3.	 Let AS3 define the constraints automatically by clicking the “Infer
constraints” button (see Figure 4-12)

Note  dp stands for device-independent pixel. It varies based on screen density. In a 160dpi
screen, 1 dp = 1 pixel. dp is a commonly used unit of measurement in AS3

Figure 4-12.  Constraint inspectors

54 CHAPTER 4: Activities and Layouts

Launch an emulator to test the app; make sure that the AVD is also API level 23
(Marshmallow) because that is the min SDK we defined for this project. Run the application
from the main menu or click the “Run app” button on the toolbar. You should see something
like Figure 4-13.

Figure 4-13.  Hello app, inferred constraints

In the next chapter, we will add event handling capabilities to the Hello app.

55© Ted Hagos 2018
T. Hagos, Learn Android Studio 3, https://doi.org/10.1007/978-1-4842-3156-2_5

Chapter 5
Handling Events
Event handling is basically just writing program logic in response to a user action. This program
logic is written usually as part of Java methods. There are two ways you can handle events: you
can do it either declaratively or programmatically. This chapter explores both ways.

Overview of Event Handling
The process of handling events declaratively can be broken down as follows.

1.	 Define the view object (e.g., a Button view). This can be done in
either design or text mode

<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginStart="27dp"
 android:layout_marginTop="141dp"
 android:onClick="sayHello"
 android:tag="mybutton"
 android:text="Button"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 tools:layout_editor_absoluteX="27dp"
 tools:layout_editor_absoluteY="141dp"/>

2.	 Choose which event you want the program to respond to: for
example, a click event (some view objects can respond to range of
events: long-click, swipe, and so on

https://doi.org/10.1007/978-1-4842-3156-2_5

56 CHAPTER 5: Handling Events

3.	 Associate the event with a Java method: for example, add the
onClick attribute on the Button view XML element

 android:onClick="sayHello"

Alternatively, you can associate a view object to a method in the attributes
inspector

4.	 Implement the Java method in the main program file (MainActivity.java).
The name of the method needs to be the same as the one defined in
the attribute inspector

 void sayHello(View v) {
 System.out.println("Hello");
 }

To handle events programmatically, the steps can be broken down as follows.

1.	 Define the view object (e.g., a Button view)

2.	 Inside the main program, declare a variable to hold a Button view
object

 Button objButton;

3.	 Get a programmatic reference to the Button view object defined in
the layout file

 objButton = (Button) findViewById(R.layout.button)

4.	 Decide which event you want to respond to and specify the listener
object for it (e.g., Click)

 objButton.setOnClickListener(new View.OnClickListener(){
});

5.	 Override the onClick method: you can now implement the program
logic here. Do what you want to do in response to the user action

 void onClick(View v) {
 // do something in here
 }

We will look at both techniques a bit closer in the following sections.

57CHAPTER 5: Handling Events

Declarative Event Handling
Open the Hello project from the last chapter, if it isn’t opened yet. Open the layout file
(activity_main) from the project tool window and view it in design mode.

1.	 Select the Button view

2.	 While the Button is selected, go to the Attributes inspector and find
the onClick attribute

3.	 Type the text sayHello as shown in Figure 5-1

Listing 5-1.  app/src/main/res/layout/activity_main.xml

<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginStart="27dp"
 android:layout_marginTop="141dp"
 android:onClick="sayHello" ❶
 android:text="Button"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 tools:layout_editor_absoluteX="27dp"
 tools:layout_editor_absoluteY="141dp"/>

❶ This was added automatically by AS3 when you wrote sayHello on the onClick attribute. The
update works both ways: you could have edited this XML directly and the update would have
been reflected in the attribute inspector. When you run this app, the Android runtime will look
for the method sayHello in MainActivity.java; at the moment, we don’t have it yet, but we will
implement that method in a little while.

Filling up the entry of the onClick attribute means that you want something to happen when
the Button view is clicked; the attribute entry becomes the name of a method which the
Android runtime will look for when a click event happens on the Button. To implement the
sayHello method, let’s open the MainActivity.java in the main editor and write our method.

Figure 5-1.  onClick attribute

58 CHAPTER 5: Handling Events

Listing 5-2.  sayHello Method

 void sayHello(View v) {
 System.out.println("Hello");
 }

The method is simple, but there are a couple of things in it that need to be pointed out
(Table 5-1).

Run the application in an AVD so we can see how it behaves and we can test how our event
handler works. Once the AVD is up and running, let’s open the Logcat tool window so we
can see a console dump of all the events in the emulator.

To launch the Logcat tool window, click the “Logcat” launcher; it is located somewhere in
the bottom left of the AS3 application window, as shown in Figure 5-2.

Tip  While you are typing the code, some keywords may appear to be unrecognized. That is
probably because you just haven’t imported the proper classes yet. AS3 has a quickfix feature
(Alt+Enter or Option+Enter). If you hover your mouse over the unrecognized keyword, AS3 will
automatically import the necessary classes for you.

Table 5-1.  Parts of sayHello method

Item Code artifact Comment

Return type void We don’t need to return anything to our caller, so this is
declared void

Method name sayHello() This needs to be the same as it is written in the onClick
attribute of the Button

Arguments or parameters View object Every event handler needs to accept a View object
argument. This argument is filled up by the Android
runtime. If you need to know which View object was
clicked, you can use this parameter

Figure 5-2.  Logcat window

59CHAPTER 5: Handling Events

Go to the emulator and click the Button on our app. While you are doing that, try to watch
the Logcat window (Figure 5-3).

The output of System.out will not be on the activity; instead, it is redirected to the console
Logcat window.

Programmatic Event Handling
It might be best to create a new project for this exercise, so you can keep the last project as
reference. Create a new project with the information in Table 5-2.

Same as for the Hello project from the last section, put editText, textView, and Button view
objects in the layout file and just use the “infer constraints” to put some design semblance in
your project. Your layout file should look something like Listing 5-2.

Figure 5-3.  System.out on Logcat

Table 5-2.  Project information for Hello2

Application name Hello2

Company domain Use your web site, or invent something; remember that this is in reverse DNS
notation

Project location This usually best left alone. Use the default value, but make sure to take note
of this location in case the need to access it arises. Ignore the C++ and Kotlin
support

Form factor Phone and tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name If you leave the default alone it alone, this will be MainActivity, which is fine

Layout name If you leave the default alone, this will be activity_main, which is fine

60 CHAPTER 5: Handling Events

Listing 5-3.  app/src/main/res/layout/activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.ted.hello2.MainActivity">

 <EditText
 android:id="@+id/editText"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:ems="10"
 android:inputType="textPersonName"
 android:text="Name"
 tools:layout_editor_absoluteX="30dp"
 tools:layout_editor_absoluteY="44dp"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 android:layout_marginTop="44dp"
 android:layout_marginStart="30dp"
 android:layout_marginBottom="31dp"
 app:layout_constraintBottom_toTopOf="@+id/textView"/>

 <TextView
 android:id="@+id/textView"
 android:layout_width="0dp"
 android:layout_height="0dp"
 android:text="TextView"
 tools:layout_editor_absoluteX="30dp"
 tools:layout_editor_absoluteY="121dp"
 app:layout_constraintTop_toBottomOf="@+id/editText"
 android:layout_marginBottom="27dp"
 app:layout_constraintEnd_toEndOf="@+id/editText"
 app:layout_constraintBottom_toTopOf="@+id/button"
 app:layout_constraintStart_toStartOf="@+id/button"
 android:layout_marginEnd="1dp"/>

 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Button"
 tools:layout_editor_absoluteX="30dp"
 tools:layout_editor_absoluteY="170dp"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintBottom_toBottomOf="parent"
 android:layout_marginStart="30dp"
 app:layout_constraintTop_toBottomOf="@+id/textView"
 android:layout_marginBottom="293dp"/>
</android.support.constraint.ConstraintLayout>

61CHAPTER 5: Handling Events

When you handle events programmatically, you will work almost exclusively in the main
program file. Open MainActivity.java if it isn’t opened yet, so we can add some event
handling codes.

Listing 5-4.  Main Program File

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 // Write your event handling codes below this line
 }
}

We will add all our event handling code right after the setContentView method; we need this
method call to complete so that all the objects in the layout file finish the inflation process.
The inflation process creates all the View and ViewGroup objects as Java objects which
we can then reference programmatically in the main program. The whole exercise can be
summarized as follows.

1.	 Get a programmatic reference to the Button view

2.	 Set a Listener object for it

3.	 Override the abstract method defined on the listener object and
provide program logic in response to a user action

Getting a programmatic reference to the Button view can be done with the following
statement.

Button objButton = (Button) findViewById(R.id.button);

You may notice that as you type the preceding statement, AS3 tries to infer and offer
some autocompletion options. Autocompletion can save you time in programming, and
it gives you some confidence that you’re on the right track—if things don’t show up in
autocompletion, it usually means you’re doing something wrong because AS3 doesn’t
recognize it.

In Figure 5-4, as the word “Button” was being typed, there were a couple of entries in the
autocompletion prompts. Whenever this prompt appears, you can use the arrow keys to
choose from any of the entries. If you press the Enter key, whatever is the highlighted entry
in the autocompletion popup will be put in place of the current cursor position.

62 CHAPTER 5: Handling Events

Another thing you may have noticed is that all the instances of the word Button are in
red; if you hover the mouse over “Button”, AS3 will inform you via the tool tip dialog that
“it cannot resolve the symbol Button” (see Figure 5-5). This error is appearing and AS3 is
mildly reminding us about it because we need to import the Button definition into the current
source file, and we haven’t done it yet.

To resolve the error, we need to import the android.view.Button into the main program
by typing the import statement anywhere in the source file before the class declaration for
MainActivity. See the following example code.

import android.view.Button;
public class MainActivity extends AppCompatActivity {
}

Alternatively, you could hover the mouse over “Button” as shown in Figure 5-5, and then
perform a quick fix by typing ⌥ (Option) + ↵ (Enter) if you are on macOS. If you are
on Windows or Linux, the quick fix key is Alt + ↵ (Enter). Quick fixes solve a range of
coding problems; missing import statements is one of them. After the quick fix, the import
statement for the Button view will appear on top of the source file, together with the other
import statements.

The next thing we need is to select a listener for the Button view, create a listener object for
it, and finally, override the necessary abstract method defined by listener object. You can use
the autocompletion facility as you type this construct.

Notice that as you type the codes (Figure 5-6), which will create the listener object, there are
several possible matches for it. What we want in this case is the second entry from the top,
the one with the ellipsis enclosed in a pair of curly braces. This is actually a code snippet. If
we choose this, what we will get is the code in Listing 5-5.

Figure 5-4.  Autocomplete

Figure 5-5.  AS3 warnings and errors

63CHAPTER 5: Handling Events

Listing 5-5.  Code Snippet for View.OnClickListener

objButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {

 }
});

After this, all we need to do is write our program logic inside the body of the onClick()
method.

Listing 5-6 is the complete code listing for the main program.

Listing 5-6.  MainActivity.java

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 Button objButton = (Button) findViewById(R.id.button); ❶
 assert objButton != null; ❷
 objButton.setOnClickListener(new View.OnClickListener() { ❸
 @Override ❹
 public void onClick(View view) { ❺
 System.out.println("Hello World");
 }
 });
 }
}

Figure 5-6.  Autocompletion for listener object

64 CHAPTER 5: Handling Events

❶ Get a programmatic reference to our Button object. findViewById will locate the exact Button
view object for us. R.id.button is the key to finding this object. When the Android runtime inflates
the layout file, it generates a class named R.java; all the Java object representations of all view
objects defined in the layout file will be defined there. We are using the R.class (Resources) to
locate our button programmatically

❷ This is just some defensive programming; we’re trying to make sure that the findViewById
method returned an actual object and that it isn’t null. If you have ever encountered a
NullPointerException in Java before, that may happen here. If the findViewById does not return
an object, your program will crash during runtime

❸ We want to respond to a click action; that’s why the method we chose is setOnClickListener.
This method requires an instance of a listener object as the argument. We implemented the
listener object inline and as an anonymous class—see the section “The Java Language” on
anonymous classes in Appendix A

❹ @Override is an annotation; it tells the compiler that we intend to override a method in
the AppCompatActivity superclass and that we’re not defining a new onCreate method in
MainActivity. The annotation simply clarifies our intent for the compiler

❺ onClick is an abstract method defined by the View.OnClickListener interface. It needs to be
overridden for our implementation

Run the program in the emulator and open the Logcat tool window so that you can see the
console dumps when you click the Button view.

Working with Text and Buttons
Among the user interface elements in Android, text and button elements are probably the
most common. In this section, we’ll dive into a small sample application that will give us a
chance to work with these two elements. The project details are as shown in Table 5-3.

Tip  When you have started the emulator and deployed the app to it, you can use the “Apply
changes” button to quickly update the emulator without building a new APK and pushing it to
emulator (Figure 5-7). This makes for a faster workflow when you are making small code or layout
changes.

Figure 5-7.  Apply changes button

65CHAPTER 5: Handling Events

Figure 5-8 shows the UI for the project.

Table 5-3.  Project Information

Application name NumberGuess

Project location Leave the default

Form factor Phone and tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity (default)

Layout name activity_main (default)

Figure 5-8.  View elements for NumberGuess

66 CHAPTER 5: Handling Events

There were a few cosmetic and aesthetic tweaks on the elements to make them appear a bit
more pleasing to the eyes.

 <EditText
 android:id="@+id/editText"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="26dp"
 android:ems="10"
 android:gravity="center_vertical|center_horizontal" ❶
 android:hint="guess a number" ❷
 android:inputType="number" ❸
 app:layout_constraintBottom_toTopOf="@+id/button"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 tools:layout_editor_absoluteX="84dp"
 tools:layout_editor_absoluteY="106dp"/>

❶ This entry aligns the text inside the plain text view both vertically and horizontally

❷ The hint attribute makes the text “guess a number” appear grayed out; it’s good technique to use
instead of an actual label, like a text view

❸ This restricts the input to numbers. If you don’t add this attribute, the user will be free to type any
alphanumeric character in the field; then, you might need to handle the validation of the input
using some regular expression techniques. This approach is so much easier

We are still using a constraint layout, so you need to take care of putting constraints on each
of the UI elements. Like in the past projects, this can be managed without much difficulty by
positioning all the UI elements by hand, placing them in the approximate location where you
want them to appear, and then using the tools in the constraint inspector. Use the “pack”
tool to distribute them horizontally, and then use the “infer constraints”. That should take
care of the layout.

The basic flow of this application is the following:

1.	 When the application starts, a random number from 100 to 150 will
be generated

2.	 The user will guess what number was generated by inputting that
number in the text field

3.	 If the user’s guess is higher than the random number, we will display
“Guess lower” using the static text view

Note  All the preceding tweaks can also be done in design mode. You can set these values in the
attributes inspector.

67CHAPTER 5: Handling Events

4.	 If the user’s guess is lower than the random number, we will display
“Guess higher” using the static text view

5.	 If the user guessed the number correctly, we will display the random
number and a congratulatory note in the text field

Listing 5-7.  MainActivity Event Handling Code (Folded Methods)

public class MainActivity extends AppCompatActivity
 implements View.OnClickListener {

 int numberToGuess = 0;
 EditText e;
 TextView t;

 @Override
 protected void onCreate(Bundle savedInstanceState) { ... }

 @Override
 public void onClick(View view) { ... }

 int initNumberToGuess() { ... }

}

You may notice that the event handling approach for this project isn’t using an anonymous
or an inner class; it’s not that there’s anything wrong with those approaches, but making
MainActivity the listener object provides some convenience for this situation. The main
logic of getting the user input and comparing it to the generated random number will reside
in the onClick method. If this method was inside an anonymous or an inner class, then it
would have necessitated that the variables holding EditText and TextView be declared final.
That’s just one of the Java rules about inner classes; it’s okay to reference any variable on its
outer class, provided it is final. And that would have made the code a bit more complicated
than how it is structured as shown in Listing 5-7.

The following sections shows the code listing of onCreate, onClick, and initNumberToGuess,
starting with Listing 5-8.

Listing 5-8.  onCreate

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 numberToGuess = initNumberToGuess(); ❶
 e = (EditText) findViewById(R.id.editText); ❷
 t = (TextView) findViewById(R.id.textView); ❸
 Button b = (Button) findViewById(R.id.button);
 b.setOnClickListener(this);

 }

68 CHAPTER 5: Handling Events

❶ The numberToGuess is initialized during onCreate but it was declared as a member variable and
not a local variable of onCreate. We need to reference this variable from the onClick method;
that’s the reason it was declared as a member variable

❷ The variable e is also initialized here but declared as a member variable as well; like
numberToGuess, we need to reference this variable from the onClick method

❸ Same case as in the variable t; we also need to reference this from the onClick method

Listing 5-9.  onClick

 @Override
 public void onClick(View view) {
 int number = Integer.parseInt(e.getText().toString()); ❶
 if (number == numberToGuess) {
 t.setText(number + " is the right number");
 }
 else if (number < numberToGuess) {
 t.setText("Guess higher");
 }
 else if (number > numberToGuess) {
 t.setText("Guess lower");
 }
 Log.i("Ted", numberToGuess + "");
 }

❶ The getText method of the EditText returns anEditable object type; it’s almost like text, but it’s
mutable, unlike a String. The Integer.parseInt, however, expects a String parameter; that’s why
we needed to convert the return value of getText using the toString method

Listing 5-10.  initNumberToGuess

int initNumberToGuess() {
 Random r = new Random(); ❶
 numberToGuess = r.nextInt(100) + 50; ❷
 Log.i("Ted", numberToGuess + "");
 return numberToGuess;
}

❶ The Random class is from java.util. Make sure you import this package. Alternatively, when
it turns red on the main editor, hover your mouse around it and use the quick fix (Alt + Enter for
Windows and Linux | opt + enter for macOS)

❷ This sets the range of the random number to be from 100 to 150

Listing 5-11 shows the full code for MainActivity, for your reference.

69CHAPTER 5: Handling Events

Listing 5-11.  The Full MainActivity

package com.ted.numberguess;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

import java.util.Random;

public class MainActivity extends AppCompatActivity
 implements View.OnClickListener {

 int numberToGuess = 0;
 EditText e;
 TextView t;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 numberToGuess = initNumberToGuess();

 e = (EditText) findViewById(R.id.editText);
 t = (TextView) findViewById(R.id.textView);

 Button b = (Button) findViewById(R.id.button);
 b.setOnClickListener(this);

 }

 @Override
 public void onClick(View view) {
 int number = Integer.parseInt(e.getText().toString());
 if (number == numberToGuess) {
 t.setText(number + " is the right number");
 }
 else if (number < numberToGuess) {
 t.setText("Guess higher");
 }
 else if (number > numberToGuess) {
 t.setText("Guess lower");
 }
 Log.i("Ted", numberToGuess + "");
 }

70 CHAPTER 5: Handling Events

 int initNumberToGuess() {
 Random r = new Random();
 numberToGuess = r.nextInt(100) + 50;
 Log.i("Ted", numberToGuess + "");
 return numberToGuess;
 }
}

More Event Handling Code
Using anonymous classes for event handling codes should solve a wide range of
programming challenges for you, but anonymous classes are not the only way to handle
events. In this section, we’ll take a look at two other ways to go about this.

For this exercise, we will create a new project. Use the information in Table 5-4 to create the
project.

Add three button views to the layout. In this example, they are vertically aligned to each
other and are constrained to stay on the center of the screen. The easiest way to achieve
this layout is to position the buttons by hand, approximating the location you want them
to be at runtime. Next, select all of them by clicking and dragging around all three buttons’
views, and then use the tools on the constraint inspector to fine-tune the alignment and the
constraints.

You can use the “Pack” button (as shown in Figure 5-9) to distribute the views vertically.
After that, use the “Infer” constraints to automatically align the views to each other and to
the container.

Table 5-4.  Project Information

Application name EventHandling1

Company domain Leave the default

Project location Leave the default

Form factor Phone and tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

71CHAPTER 5: Handling Events

Figure 5-10 shows how the layout might look.

The IDs of the button views have been changed to button1, button2, and button3
accordingly, so we can refer to them later in the code quite easily. You can use other names,
of course; view ids are simply identifiers that you, the programmer, will ultimately decide on.
But for this project, they are named like so. Listing 5-6 shows the XML code for our layout.

Figure 5-9.  Pack vertically

Figure 5-10.  activity_main in design view for EventHandling1

72 CHAPTER 5: Handling Events

Listing 5-12.  activity_main.xml in Text View

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.thelogbox.eventhandling1.MainActivity">

 <Button
 android:id="@+id/button1"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="48dp"
 android:text="1"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>

 <Button
 android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="4dp"
 android:text="2"
 app:layout_constraintStart_toStartOf="@+id/button1"
 app:layout_constraintTop_toBottomOf="@+id/button1"/>

 <Button
 android:id="@+id/button3"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="12dp"
 android:text="3"
 app:layout_constraintStart_toStartOf="@+id/button2"
 app:layout_constraintTop_toBottomOf="@+id/button2"/>
</android.support.constraint.ConstraintLayout>

Using an Inner Class as a Listener
We can define another class that is nested inside MainActivity which can serve as our
listener object (Listing 5-13). Java allows classes to be nested, so we will take advantage
of this; there a few rules to observe when defining an inner class, and we’ll discuss them as
they become necessary.

73CHAPTER 5: Handling Events

Listing 5-13.  An Inner Class Within MainActivity

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) { . . . } ❶

 private class ButtonHandler implements View.OnClickListener { ❷

 }
}

❶ This line shows the onCreate method in a folded mode. The code folding capabilities of AS3 are
quite useful when you’re working with a lot of codes; it declutters the main editor and helps you
to focus

❷ Our inner class as it sits inside MainActivity. We defined it as private because it doesn’t need
to be visible from outside MainActivity. The same as our anonymous class in the previous
sections, this too needs to implement the View.OnClickListener interface because we will use it
as the listener for button clicks

Listing 5-14.  ButtonHandler Implementation

 private class ButtonHandler implements View.OnClickListener {

 @Override
 public void onClick(View view) { ❶
 switch (view.getId()){ ❷
 case R.id.button1: ❸
 show("Button One"); ❹
 break;
 case R.id.button2:
 show("Button Two");
 break;
 case R.id.button3:
 show("Button Three”);
 break;
 default:
 show("This should not happen");
 }
 }
 }

Note  You may see some warnings and errors on AS3 as you add the event handling code. These
are most likely missing import statements; just hover your mouse on the squiggly lines and use the
quick fix (Option + Enter for macOS | Alt + Enter for Windows and Linux). It is should import all the
necessary packages.

74 CHAPTER 5: Handling Events

❶ We’re overriding the onClick method of the View.OnClickListener; when any of the three
buttons are clicked, this method gets called, just like in our anonymous class code from previous
sections. The runtime will populate the View parameter with the object reference of the actual
button that was clicked. That is what we’re going to use to identify which button exactly was
clicked using the Android Toast class

❷ The getId method of the View object returns an integer value which corresponds to ID of button
as it is defined in the R.class. Remember that layout files are inflated during runtime to produce
the actual Java objects which correspond to View element described in the layout. The runtime
generates the R.class, which we can use to programmatically refer to objects defined in the
layout file

❸ We’re simply checking if whatever value we got from view.getId is any one of our Buttons; in this
line, we’re checking if it is R.id.button1

❹ If button1 was clicked, we call a method named show() and pass a String to it. We haven’t
defined the show method yet

Listing 5-15.  show( ) Method

void show(String message) {
 Toast.makeText(this, message, Toast.LENGTH_LONG).show(); ❶
 Log.i(getClass().getName(), message); ❷
}

❶ We are displaying a Toast message. Toast provides a small feedback in the form of a small
popup. It appears as an overlay in the current activity, and the appearance is for a certain
duration only so it doesn’t obscure the current activity. It’s an unobtrusive way to display status
messages

❷ The Log class lets us create log entries pretty much like System.out.println, but it is more
appropriate to use the Log class to output debugging and diagnostic messages. You can view log
entries created by the Log class in the Logcat tool window

The show method (Listing 5-15) is a member of MainActivity. The ButtonHandler has
access to methods (or variables) that are defined in its enclosing class. We could have
defined this method inside the ButtonHandler class, and that would have been fine too.

Figure 5-11.  Toast message

75CHAPTER 5: Handling Events

Complete code for MainActivity is found in Listing 5-16.

Listing 5-16.  Complete Code for MainActivity

package com.example.ted.eventhandling1;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.Toast;

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 ButtonHandler bh = new ButtonHandler();
 findViewById(R.id.button1).setOnClickListener(bh);
 findViewById(R.id.button2).setOnClickListener(bh);
 findViewById(R.id.button3).setOnClickListener(bh);

 }

 private class ButtonHandler implements View.OnClickListener {

 @Override
 public void onClick(View view) {
 switch (view.getId()){
 case R.id.button1:
 show("Button One");
 break;
 case R.id.button2:
 show("Button Two");
 break;
 case R.id.button3:
 show("Button 3");
 break;
 default:
 show("This should not happen");
 }
 }
 }

 void show(String message) {
 Toast.makeText(this, message, Toast.LENGTH_LONG).show();
 Log.i(getClass().getName(), message);
 }
}

76 CHAPTER 5: Handling Events

Using MainActivity as the Listener
Another way of handling events for the three buttons would be to use the MainActivity
class as the listener object. We don’t want to change the main program file as it stands right
now; that way, we can refer to it later. We can define another class that will serve as our main
program file; that way, it can be side by side with the original main program within the same
project. From the main menu bar, click File ➤ New ➤ Java class and fill it up as shown in
Figure 5-13. Alternatively, you can also right-click the folder that holds MainActivity and use
the context-sensitive menu to add a class.

We’ll name the new class MainActivity2. It extends the same superclass as the original
main program. Leave the “interfaces” field blank, and leave the default entry on the
“Package”. Public visibility and no modifiers should be fine for our setting.

You might see some warnings in the editor window of the newly created program file;
they are simply warning us that the new class is not registered in the AndroidManifest file
(Figure 5-13).

Figure 5-12.  Create new class dialog

77CHAPTER 5: Handling Events

Leave this for now; we will fix that later. At the moment, our new program file doesn’t have
everything it needs to be a proper Activity class, it doesn’t override the onCreate method
and it doesn’t have any layout file associated with it. Let’s fix that by supplying the missing
code.

Listing 5-17.  MainActivity2 Program File

public class MainActivity2 extends AppCompatActivity {

 @Override
 protected void onCreate(@Nullable Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
}

You could simply copy the code in Listing 5-17 into your own project, or you could try out
some more AS3 tools. While you are editing MainActivity2, position the cursor somewhere
inside the main class block and press Ctrl + O (same keyboard shortcut for Windows,
Linux, and macOS). This will launch a dialog window where you can choose to override the
method of a class. It’s context sensitive: it knows that you’re editing an AppCompatActivity
class, so it shows only the methods of that class (see Figure 5-14). Alternatively, you can
access the override dialog window from the main menu bar Code ➤ Override Methods.

Figure 5-13.  MainActivity2

78 CHAPTER 5: Handling Events

Using the dialog window is (sometimes) much easier than directly writing the code. If you
are not quite familiar with the syntax of the method and all its attendant parameters and
annotations, the dialog window will happily supply all of them. Listing 5-18 shows the
(folded) MainActivity2 in its entirety.

Listing 5-18.  MainActivity2

public class MainActivity2 extends AppCompatActivity
 implements View.OnClickListener { ❶

 @Override
 protected void onCreate(@Nullable Bundle savedInstanceState) { ... } ❷

 @Override
 public void onClick(View view) { ... } ❸

 void show(String message) { ... } ❹
}

Figure 5-14.  Override dialog window

79CHAPTER 5: Handling Events

❶ You need to add the implements directive on the class. What this signifies is that the
MainActivity2 class is bound to behave as if it were an OnClickListener object. That’s what it
means to implement any interface. We basically agree to a certain object contract that whatever
behaviors the interface exhibits, we will behave the same way too

❷ The onCreate method contains the same code as the one in the original main program
(MainActivity.java); of course we still should add the setContentView statement and the view
registrations—we’ll get to that shortly. You may notice the @Nullable decorator on the Bundle
parameter; this simply means that the Bundle object, in case is null, isn’t a big deal and that it
can be safely ignored

❸ The overridden onClick method of the OnClickListener interface is now implemented as a
member method of MainActivity2

❹ This is the same implementation of the show method as we’ve seen in original MainActivity

Listing 5-19.  View Registrations

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 Button b1 = (Button) findViewById(R.id.button1);
 Button b2 = (Button) findViewById(R.id.button2);
 Button b3 = (Button) findViewById(R.id.button3);

 ButtonListener blistener = new ButtonListener();
 b1.setOnClickListener(blistener);
 b2.setOnClickListener(blistener);
 b3.setOnClickListener(blistener);

 }

The onCreate method in the preceding code sample isn’t that much different from our event
handling codes; the only thing different is that we are using the same object to handle the
events for all three buttons. None of the buttons have its own dedicated listener, as was the
case with the use of anonymous classes. In this approach, the program logic is routed inside
the listener object (ButtonHandler).

package com.example.ted.eventhandling1;

import android.os.Bundle;
import android.support.annotation.Nullable;
import android.support.v7.app.AppCompatActivity;
import android.util.Log;
import android.view.View;
import android.widget.Toast;

/**
 * Created by ted on 06/10/2017.
 */

80 CHAPTER 5: Handling Events

public class MainActivity2 extends AppCompatActivity implements View.OnClickListener {

 @Override
 protected void onCreate(@Nullable Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 @Override
 public void onClick(View view) {
 switch (view.getId()){
 case R.id.button1:
 show("Button One");
 break;
 case R.id.button2:
 show("Button Two");
 break;
 case R.id.button3:
 show("Button Three");
 break;
 default:
 show("This should not happen");
 }
 }
 void show(String message) {
 Toast.makeText(this, message, Toast.LENGTH_LONG).show();
 Log.i(getClass().getName(), message);
 }
}

Listing 5-20.  Complete Code for MainActivity2

package com.example.ted.eventhandling1;

import android.os.Bundle;
import android.support.annotation.Nullable;
import android.support.v7.app.AppCompatActivity;
import android.util.Log;
import android.view.View;
import android.widget.Toast;

public class MainActivity2 extends AppCompatActivity
 implements View.OnClickListener {

 @Override
 protected void onCreate(@Nullable Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 @Override
 public void onClick(View view) {

81CHAPTER 5: Handling Events

 switch (view.getId()){
 case R.id.button1:
 show("Button One");
 break;
 case R.id.button2:
 show("Button Two");
 break;
 case R.id.button3:
 show("Button Three”);
 break;
 default:
 show("This should not happen");
 }
 }
 void show(String message) {
 Toast.makeText(this, message, Toast.LENGTH_LONG).show();
 Log.i(getClass().getName(), message);
 }
}

To test our code, we need to make a slight change in the AndroidManifest file. At the
moment, the declared activity class in the manifest is MainActivity, our original main
program file. When the Android runtime launches an application, it takes a look at the activity
declaration in the manifest and runs that program. We need to change that entry so that the
Android runtime launches MainActivity2 instead of MainActivity.

Open the AndroidManifest.xml file from the project tool window. It should be in
App ➤ manifests ➤ AndroidManifest.xml.

Listing 5-21.  Activity Entry in the Manifest File

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.example.ted.eventhandling1"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity android:name=".MainActivity2"> ❶
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>
</manifest>

82 CHAPTER 5: Handling Events

❶ This entry is what tells the Android runtime which java file is the main program or the startup
file for the application. Change the value of the activity element to “.MainActivity2”, as shown in
Listing 5-13

Now you can run it in the emulator.

83© Ted Hagos 2018
T. Hagos, Learn Android Studio 3, https://doi.org/10.1007/978-1-4842-3156-2_6

Chapter 6
Working with Multiple
Activities
In this chapter, we will take a look at some ways on how to work with multiple screens.
Some applications may not need more than one Activity but some apps may require
several. You will soon, no doubt, encounter the need to work with multiple Activities. It’s not
particularly difficult to work with multiscreen applications, but we need to backtrack a little
bit to consider how Android applications are architected.

Component Activation
The Android platform is gung-ho on loose coupling. An application is nothing more than a
collection of components held together by a manifest file, and each of these components
can be activated by sending a message to it. If you want to show (activate) an Activity, you
need to create a message, send it to the runtime, and let the runtime activate it for you.
You cannot deal with a component directly. Listing 6-1 shows a pseudocode on how other
platforms might show a second screen—many developers are quite familiar with this idiom,
but unfortunately, it won’t work in Android.

Listing 6-1.  FirstActivity.java

class FirstActivity extends AppCompatActivity
 implements View.OnClickListener {

 public void onClick(View v) {
 SecondActivity second = new SecondActivity(); // WON'T WORK
 }
}

class SecondActivity extends AppCompatActivity {
}

https://doi.org/10.1007/978-1-4842-3156-2_6

84 CHAPTER 6: Working with Multiple Activities

To activate a component, like an Activity, we need to do the following.

1.	 Create an Intent object

2.	 Specify what we want to do or maybe even how to do it

3.	 Send the Intent object to the runtime and let it take care of
component activation

Intents can activate components in the Android platform; they’re a message passing
mechanism that you can use if you want to work with an activity, service, content provider,
or broadcast receiver.

Intents have a very crucial role in the Android platform, and their capabilities go beyond just
launching another Activity. Some of the capabilities of Intents may be a bit advanced for a
beginner book and hence will not be discussed here. But in this chapter, we’ll take a look at
a couple of interesting things about intents and activities. For example:

	Launching another Activity using an explicit intent

	Passing data from one activity to another

	Returning data from a second activity to the main activity

	Life cycle methods of activities

	A little bit of Fragments

An implicit intent is like asking someone (in our case, this is the Android runtime) to buy
some sugar. It doesn’t really matter where he gets it: he could go to convenience store
nearby or buy it from a superstore across town. We don’t really care as long as we get the
sugar. An explicit intent, on the other hand, is asking somebody to get us some sugar, and
he needs to buy on a 7/11 3 blocks away.

Going back to our pseudocode (Listing 6-1), if we know that we want to launch a specific
activity (SecondActivity), we can use an explicit intent. The following pseudocode shows
how to accomplish this.

// FirstActivity.java
class FirstActivity extends AppCompatActivity
 implements View.OnClickListener {

 public void onClick(View v) {
 Intent intent = new Intent(this, SecondActivity.class);
 startActivity(intent);
 }
}

// SecondActivity.java
class SecondActivity extends AppCompatActivity {

}

The next few sections will go into some details illustrating how to work with activities and
intents.

85CHAPTER 6: Working with Multiple Activities

Launching a Specific Activity
When you want to launch another activity (or any component), you will need to use explicit
intents. This intent object is created and launched (usually) in the activity that wants to
initiate the activation; this a two-step process. Firstly, we must create the intent object.

Intent intent = new Intent(<Context>, <Target>);

The Context object is simply a reference to the state of the component that wants to initiate
or launch the intent: this is usually the this keyword, or, if you are creating the intent from
within an inner class, it will be ActivityName.this (where ActivityName is the name of your
Activity, e.g., MainActivity).

The Target is the name of the Activity that you want to launch; this is usually written
NameOfActivity.class.

After the intent object has been created, it can now be launched with the following
command:

startActivity(intent);

If, for example, we want to launch an activity named SecondActivity from MainActivity.java,
we can manage this with the following code:

Intent intent = new Intent(MainActivity.this, SecondActivity.class);
startActivity(intent);

At this point, The Android runtime would have resolved the intent, and if it finds
SecondActivity.class, it will be opened. The MainActivity will go out of focus and won’t be
visible to the user because SecondActivity will occupy the whole device screen. The user
will only be able to navigate back to MainActivity if (1) the user uses the back button, (2)
SecondActivity is terminated, or (3) a return button is coded in the SecondActivity that calls
MainActivity using another Intent object (which we won’t do in this project).

Let’s put all these things together in a demo project.

Demo Project
In this section we’ll take a look at one of the fundamental uses of an Intent object. We will
launch a subactivity (second activity) from the main activity.

1.	 Create a new project

2.	 Remove the generated textView from activity_main and place a
Button view instead. We will use the button to launch the second
activity, we will refer to it as subactivity

86 CHAPTER 6: Working with Multiple Activities

3.	 Create a new empty Activity from the AS3 File menu

4.	 Place a button in the second activity layout. We will use this button to
shut down or close the activity

5.	 Go to main activity, create the handler, create the intent, fire up the
AVD, launch the second activity

6.	 Go to second activity

7.	 Create a button, create a handler, implement the function (finish( ))

Create a new project using the following information (see Table 6-1).

Go to actvity_main.xml on the main editor window and remove the generated textView
(Hello) object. Place a Button view into the layout by clicking and dragging the Button view
from the palette. Place the Button anywhere you like and click “Infer constraints” on the
constraint inspector as shown in Figure 6-1.

Table 6-1.  Project Details for FirstIntent

Application Name FirstIntent

Company domain Use your web site, or invent something; remember that this is in reverse
DNS notation

Project location Leave the default value. Ignore the C++ and Kotlin support

Form factor Phone and tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity

Layout name activity_main

87CHAPTER 6: Working with Multiple Activities

Change the text (label) of the Button: you can do this either by editing the activity_main.
xml directly or by changing the text attribute of the Button on the attribute inspector (see
Figure 6-2).

Figure 6-1.  activity_main with Button view

Figure 6-2.  Attributes inspector

88 CHAPTER 6: Working with Multiple Activities

Alternatively, you may switch to “text mode” and edit the layout file directly as shown in
Listing 6-2.

Listing 6-2.  Editing the Label of the Button View

 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Launch Sub Activity" å
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 tools:layout_editor_absoluteY="201dp"/>

å The android:text attribute is the label of the Button view. This is what the user will see written on
the Button

The next thing is to create another activity component. You can do this by selecting the
“app” folder in the project tool window (as shown in Figure 6-3), then New ➤ Activity ➤
Empty Activity. Similarly, you can also achieve the same thing by going to the main menu
bar File ➤ Activity ➤ Empty Activity; just make sure that in either case, you have selected
the “app” folder in the project tool window.

Figure 6-3.  New Activity

89CHAPTER 6: Working with Multiple Activities

Figure 6-4 shows the creation dialog for the second activity component. Change the name
to SecondActivity and the name of the layout to activity_second; we will accept the
default for the package name because we want it on the same package as the main activity.

Listing 6-3.  Entry of SecondActivity on the AndroidManifest

<manifest package="com.example.ted.firstintent"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme">
 <activity android:name=".MainActivity">

Note  All activity components in an application must be registered in the AndroidManifest
file. One of the advantages of using the Activity wizard is that it also automatically updates the
AndroidManifest file, thus adding a declaration for the newly created Activity. You can view the
AndroidManifest.xml at app/manifests/AndroidManifest.xml.

Figure 6-4.  Second Activity

90 CHAPTER 6: Working with Multiple Activities

 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 <activity android:name=".SecondActivity"> å
 </activity>
 </application>

</manifest>

å The Activity wizard added this declaration to the AndroidManifest. Had we not used the wizard to
create the second activity, it will be our responsibility to manually add this entry to the manifest:
this is one good reason to always use wizards when one is available

Now that the second activity has been created, we can add the event handling code to
our main Activity. As you may recall from the last chapter, there are two ways to add event
handling capability to our app; while we can do it either programmatically or declaratively,
we will choose the latter.

Open the main layout file (activity_main) in design mode, select the button, and set its
“onClick” attribute to the value “launchSecondActivity” (you can do this on the attribute
inspector while the button is selected: see Figure 6-5).

Listing 6-4.  activity_main with the onClick Handler

<Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

Figure 6-5.  FirstActivity, attributes inspector

91CHAPTER 6: Working with Multiple Activities

 android:layout_marginTop="96dp"
 android:onClick="launchSecondActivity" å
 android:text="Launch Sub Activity"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 tools:layout_editor_absoluteY="96dp"/>

å When you set the onClick attribute of the Button view on the inspector, the layout file will be
automatically updated. Conversely, you can go directly to this layout file and add the onClick
attribute as seen on this code example

The next step is to actually implement the launchSecondActivity method on the associated
activity file (MainActivity.java).

TWO PARTS OF AN ACTIVITY

Remember that an Activity component has two parts, a layout file (xml) and a program file (Java). Now that we
have two activity components, we have a total of four files to work with:

Layout file Program file

activity_main.xml MainActivity.java

activity_second.xml SecondActivity.java

If there is any action that you want to happen as a result of a user-generated event on activity_main, you
should code that in MainActivity.java. Similarly, if the event is triggered from activity_second, that
code goes into SecondActivity.java.

Listing 6-5.  Event Handling Code for launchSecondActivity

package com.example.ted.firstintent;

import android.content.Intent;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

92 CHAPTER 6: Working with Multiple Activities

 Button objButton = (Button) findViewById(R.id.button);
 }

 public void launchSecondActivity(View v) { å
 Intent i = new Intent(this, SecondActivity.class); ç é è
 startActivity(i); ê
 }
}

å Like in the last chapter, make sure that the name of the method is spelled exactly as it written on
onClick attribute of the Button view. Also, make sure that the method takes in a View argument

ç An Intent object is created and assigned to a variable. The intent constructor takes in two
arguments

é The first argument is a context object; generally it is referring to the object that wants to start or
launch the intent. The this keyword is used because we want to launch the intent from within
the MainActivity, and since the event handling method (launchSecondActivity) is a member of
the MainActivity, we can simply use the this keyword—if you want to be precise, you could
substitute the this keyword with the more verbose and explicit MainActivity.this

è The second argument of the intent constructor is the component class of the activity which you
actually want to launch. This is generally constructed as the name of the program file appended
with .class, which references the Java byte code (compiled) version of the class; hence in this
case, it is SecondActivity.class. This is an example of an explicit intent because the exact name
of the intent’s target activity is hard-coded. Implicit intents, by contrast, do not specify the exact
activity it wants to launch; instead, it relies on the Android runtime to resolve the intent so that it
can launch the component that best matches it

ê To finally launch the second activity, we call the startActivity method passing the intent as
the argument. You cannot simply create an instance of the SecondActivity class to launch it.
Remember that an Android application is a bunch of loosely coupled components that are
held together by at least two things, namely, the AndroidManifest and Intents. The startActivity
method simply tells the Android runtime that we want to activate another component and that
we are using an intent object to help the runtime resolve the request

If we run this application right now, what we will see is the main activity with a single button;
when the button is clicked, the screen will change and display the second activity. That
behavior should be fine but to really complete the exercise, we will add a button to the
second activity which will function as a “close” button. When it is clicked, it should shut
down and kill the second activity, which will remove it on the screen stack, thus making our
main activity visible to the user again.

Go to the layout file of the second activity (activity_second.xml) and add a Button view to it
(see Figure 6-5). Like our main activity, keep it simple; place the button where you want it to
appear and use the “Infer constraints” on the constraint inspector for an easy and automatic
layout.

Set the text attribute of the Button to “Close” (Figure 6-6) but leave the onClick handler
blank. We’ll handle the event programmatically in the associated Java file.

93CHAPTER 6: Working with Multiple Activities

Listing 6-6.  Button on activity_second

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.ted.firstintent.SecondActivity">

 <Button
 android:id="@+id/button2" å
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="68dp"
 android:text="Close" ç
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 tools:layout_editor_absoluteY="68dp"/>
</android.support.constraint.ConstraintLayout>

Figure 6-6.  activity_second with the Close button

94 CHAPTER 6: Working with Multiple Activities

å If you did not change the id attribute of the Button, it will be button2, since this is the second
Button view on the entire project. You can change this value either here on the layout file or in the
attribute inspector, but we will just leave it as the default; button2 should be fine

ç Change the text label of the Button to “Close” to make it a bit descriptive. Again, this can be
done either directly here in the XML file or in the attribute inspector (See Figure 6-5)

The last thing to do before we test the app is to implement some event handling code in
response to the button click. See Listing 6-7 for the full code of SecondActivity.java.

Listing 6-7.  Full Code of SecondActivity.java

package com.example.ted.firstintent;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;

public class SecondActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_second); å

 Button secondButton = (Button) findViewById(R.id.button2); ç
 assert secondButton != null; é
 secondButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 finish(); è
 }
 });
 }
}

å We already know what this does; this is the glue code that associates this Java file to a layout
file. The runtime will inflate the XML layout file, update the R.class, and create the actual Java
objects which represent the view objects of the layout file, thus in turn making these Java objects
available for us to reference in our code. It comprises the “screen” for the Activity object

ç findViewById is a locator method; it tries to find the Java object that was created during the
inflation process. If it is found, the address of that object will be stored in the variable named
secondButton

é This is just defensive coding; we’re just making sure that secondButton actually contains the
address of an object, and that it isn’t null or empty

è This is the important code. When the finish method is called against an Activity object, it
effectively destroys the activity and closes it. Destroying the Activity removes it from memory

95CHAPTER 6: Working with Multiple Activities

Pass Data to Another Activity
In this section, we will explore how to pass data from the main activity to a second activity.
While we’re doing this, we’ll practice a little bit of math programming. We will try to calculate
the GCF (greatest common factor) of two numbers. We will create two activities (MainActivity
and Calculate). The MainActivity will do the following

1.	 Wait for user input (two numbers), so we’ll create two plain text view
objects

2.	 Restrict the inputs to only digits; it doesn’t make sense to accept
alphanumeric inputs

3.	 Check if the text fields are empty; we only want to proceed if they are
properly filled with numbers

4.	 Create an intent, and then we’ll piggyback on that it so we can get
the two inputted numbers to the Calculate activity

The second activity (Calculate) is the workhorse. It will be the one to do the
number-crunching. Here’s a breakdown of its tasks:

1.	 Get the intent that was passed from MainActivity

2.	 Check if there’s some data piggybacking on it

3.	 If there’s data, we will extract it so we can use it for calculation

4.	 When the calculation is done, we will display the results in a text view
object

About the GCF Algorithm
There are quite a few ways on how to calculate GCF, but the most well-known is probably
Euclid’s algorithm. We will implement it this way.

1.	 Get the input of two numbers

2.	 Find the larger number

3.	 Divide the larger number using the smaller number

	If the remainder of step no. 3 is zero, then the GCF is the smaller number

	On the other hand, if the remainder is not zero, do the following:

	Assign the value of the smaller number to the larger number, then assign
the value of the remainder to the smaller number

	Repeat step no. 3 (until the remainder is zero)

96 CHAPTER 6: Working with Multiple Activities

Let’s create a new project for the GCF exercise; see Table 6-2 for details.

This project will have a second activity. When the project has done creating the activity and
gradle is done on the build, add the second activity. On the project tool window, right-click
app ➤ Activity ➤ Empty activity. Use the details in Table 6-3 for the newly created activity.

Figures 6-7 and 6-8 show the layout of files for activity_main and activity_calculate.

Table 6-2.  GCF Project Details

Application name GCF

Company domain Use your web site, or invent something; remember that this is in reverse
DNS notation

Project location Leave the default

Form factor Phone and tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity (default)

Layout name activity_main (default)

Table 6-3.  Second Activity

Activity name Calculate

Layout name activity_calculate

Figure 6-7.  activity_main layout

97CHAPTER 6: Working with Multiple Activities

Listing 6-8.  activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.ted.gcf.MainActivity">

 <EditText
 android:id="@+id/firstno"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="63dp"
 android:ems="10"
 android:gravity="center_vertical|center_horizontal" å
 android:inputType="number" ç
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>

 <EditText
 android:id="@+id/secondno"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="28dp"
 android:ems="10"
 android:gravity="center"
 android:inputType="number"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/firstno"/>

Figure 6-8.  activity_calculate layout

98 CHAPTER 6: Working with Multiple Activities

 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="29dp"
 android:text="calculate"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/secondno"/>
</android.support.constraint.ConstraintLayout>

å Set the gravity attribute to center vertical and horizontal to center align the text inside

ç This restricts the input to numbers only

Tip

1.	� You can set the gravity attribute of the EditText in the attributes inspector. While the
EditText is selected in the design mode editor, click the “View all attributes” button in the
inspector, as shown in Figure 6-9

2.	� You can set the input type of the EditText on the attributes inspector by clicking the
ellipsis (…) beside “input type”. The choices for input types will be visible on a popup
(see Figure 6-10)

Figure 6-9.  View all attributes in the inspector

99CHAPTER 6: Working with Multiple Activities

We can now move on to the layout details of activity_calculate. The UI elements of the
second activity are very simple; there is only one TextView element in. The XML file of the
activity_calculate is shown in Listing 6-9.

Listing 6-9.  Layout File of Calculate Activity

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.ted.gcf.Calculate">

 <TextView
 android:id="@+id/textView"
 android:layout_width="176dp"
 android:layout_height="76dp"
 android:layout_marginTop="113dp"
 android:gravity="center"
 android:text="TextView"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>
</android.support.constraint.ConstraintLayout>

Figure 6-10.  Input type attribute on the inspector

100 CHAPTER 6: Working with Multiple Activities

The details on how to set the constraints will be left to you already. We’ve already seen
detailed examples on how to work with the constraint layout. The quickest way to have a
decent layout is to do the following:

1.	 Drag and position each view object to the approximate location
where you want them to show

2.	 Use the “pack” and “align” tools in the constraint inspector
(see Figure 6-11)

Now that we have a basic UI design, let’s take a look at how we can write codes that
accessed these user interface elements.

Listing 6-10.  MainActivity.java

public class MainActivity extends AppCompatActivity implements View.OnClickListener {

 private EditText fno;
 private EditText sno;
 private Button btn;

 @Override
 protected void onCreate(Bundle savedInstanceState) { ... }

 @Override
 protected void onStart() { ... }

 public void onClick(View v) { ... }

}

Figure 6-11.  Constraint inspector

101CHAPTER 6: Working with Multiple Activities

The preceding listing shows the skeleton structure of the MainActivity. The variables fno,
sno are defined as class members because we will reference them from both the onClick
and onCreate methods. The MainActivity is the listener object; that’s why the onClick
method is overridden in the body of the MainActivity.

Listing 6-11.  onCreate Method

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 fno = (EditText) findViewById(R.id.firstno);
 sno = (EditText) findViewById(R.id.secondno);
 btn = (Button) findViewById(R.id.button);
 btn.setOnClickListener(this);
 }

This is very typical code for the onCreate method. Most of our code samples will look almost
identical to this.

Listing 6-12.  onClick Method

 public void onClick(View v) {

 boolean a = TextUtils.isEmpty(fno.getText()); å
 boolean b = TextUtils.isEmpty(sno.getText());

 if (!a & !b) { ç

 int firstnumber = Integer.parseInt(fno.getText().toString()); é
 int secondnumber = Integer.parseInt(sno.getText().toString());

 Intent intent = new Intent(this, Calculate.class); è
 Bundle bundle = new Bundle(); ê
 bundle.putInt("fno", firstnumber); ë
 bundle.putInt("sno", secondnumber);
 intent.putExtra("gcfdata", bundle); í
 startActivity(intent); ì

 }
 }

Note  As you begin to write the codes, AS3 might indicate that there are warnings and errors by
displaying some bulb icons and squiggly lines. These are most likely because of missing import
statements and method (yet) to be overridden. Use the quick fix to solve these warnings and errors:
(Alt + Enter for Windows and Linux | Option + Enter for macOS)

102 CHAPTER 6: Working with Multiple Activities

å TextUtils can check if a TextView object doesn’t have any text inside it. You can check for an
empty text field some other way by extracting the string inside it and checking if the length is
greater than zero, but TextUtils is a more succinct way to do it

ç Let’s make sure that both text fields are not empty. If one of them is empty, all the codes inside
this block will simply be sidestepped, so no harm no foul. The app will dutifully wait for user
input

é The getText() method returns an Editable object, which is not compatible with the parseInt
method of the Integer class. The toString method should convert the Editable object to a
regular String

è This line creates an Intent object. The first argument to the Intent constructor is a context object.
The intent needs to know from where it is being launched, hence the this keyword; we are
launching the intent from ourselves (MainActivity). The second argument to the constructor is
the target activity that we want to launch

ê We are going to piggyback some data into the intent object, so we will need a container for this
data. A Bundle object is like a dictionary; it stores data in key/value pairs

ë The Bundle object supports a bunch of put methods that take care of populating the bundle. The
Bundle can store a variety of data, not only integers. If we wanted to put a string into the Bundle,
we could say bundle.putString() or bundle.putBoolean() if we wanted to store boolean data

í After we’ve populated the Bundle object, we can now piggyback on the Intent object by calling
the putExtra method. Similar to Bundle object, the Intent also uses the key/value pair for
populating and accessing the extras. In this case, “gcfdata”. We need to use the same key later
(in the second activity) to retrieve the bundle

ì This statement will launch the Activity

Listing 6-13.  onStart Method

 @Override
 protected void onStart() {
 super.onStart();
 fno.setText("");
 sno.setText("");
 }

The onStart method of MainActivity may be called many times over in the life cycle of the
application. It will be called for the first time when we launch the application (after onCreate),
and subsequently every time another activity grabs the focus and then the user navigates
back to MainActivity. Every time that happens, we’re simply clearing out the contents of the
text fields. Listing 6-14 shows the full code for MainActivity.

Listing 6-14.  MainActivity

package com.example.ted.gcf;

import android.content.Intent;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

103CHAPTER 6: Working with Multiple Activities

import android.text.TextUtils;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class MainActivity extends AppCompatActivity implements View.OnClickListener {

 private EditText fno;
 private EditText sno;
 private Button btn;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 fno = (EditText) findViewById(R.id.firstno);
 sno = (EditText) findViewById(R.id.secondno);
 btn = (Button) findViewById(R.id.button);
 btn.setOnClickListener(this);
 }

 @Override
 protected void onStart() {
 super.onStart();
 fno.setText("");
 sno.setText("");
 }

 public void onClick(View v) {

 boolean a = TextUtils.isEmpty(fno.getText());
 boolean b = TextUtils.isEmpty(sno.getText());

 if (!a & !b) {

 int firstnumber = Integer.parseInt(fno.getText().toString());
 int secondnumber = Integer.parseInt(sno.getText().toString());

 Intent intent = new Intent(this, Calculate.class);
 Bundle bundle = new Bundle();
 bundle.putInt("fno", firstnumber);
 bundle.putInt("sno", secondnumber);
 intent.putExtra("gcfdata", bundle);
 startActivity(intent);

 }
 }
}

104 CHAPTER 6: Working with Multiple Activities

MainActivity.java is mostly boilerplate code. It only takes care of the input and launching
the second activity. The real work of the GCF happens inside the Calculate activity. Let’s
walk through the code of Calculate.java.

After MainActivity passes some data using the Intent and Bundle objects, the first few
things we should take care of inside the Calculate activity is to extract that bundle data and
eventually extract the key/value pairs of data inside the bundle.

Intent intent = getIntent(); å
Bundle bundle = intent.getBundleExtra("gcfdata"); ç

å This code will be called inside the onCreate method of the Calculate activity; the getIntent
statement here will return whatever was the intent object that was used to launch this activity

ç The getBundleExtra returns the bundle object which we passed to the intent object in
MainActivity. Remember that when we inserted the bundle object in MainActivity, we used the
key “gcfdata”; hence, we need to use the same key here in extracting the bundle

Once we have successfully extracted the bundle, we can get the two integer values that we
stashed in it earlier.

int first = bundle.getInt("fno", 1);
int second = bundle.getInt("sno", 1);

The first parameter of the getInt method is simply the key. This has to be the same key that
we used in the putInt method (back in MainActivity). The optional second parameter is
simply a default value, in case the key is not found in the bundle. The next steps will be to
start calculating the GCF.

Listing 6-15.  GCF Logic

 int bigno, smallno = 0;
 int rem = 1;

 if (first > second) { å
 bigno = first;
 smallno = second;
 }
 else {
 bigno = second;
 smallno = first;
 }

 while ((rem = bigno % smallno) != 0) { ç
 bigno = smallno;
 smallno = rem;
 }
 gcftext.setText(String.format("GCF = %d", smallno)); é

105CHAPTER 6: Working with Multiple Activities

å Were trying to find out which is the larger number, a simple if statement and some assignments to
bigno and smallno variable should take care of it

ç There are two things going on in this statement. First, we are dividing bigno with smallno and
we are assigning the remainder to the rem variable. Next, this whole expression is being tested
to determine if the result is zero, because if it is, we should exit the while loop. It means we
have already found the GCF. If it is not equal to zero, change the values of bigno and smallno
according to Euclid’s algorithm

é Once we found the GCF, we will set its value as the text of the TextView object

Listing 6-16.  Full Code for Calculate.java

package com.example.ted.gcf;

import android.content.Intent;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.widget.TextView;

public class Calculate extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_calculate);

 int bigno, smallno = 0;
 int rem = 1;

 TextView gcftext = (TextView) findViewById(R.id.textView);
 Intent intent = getIntent();
 Bundle bundle = intent.getBundleExtra("gcfdata");

 if ((bundle != null) & !bundle.isEmpty()) {

 int first = bundle.getInt("fno", 1);
 int second = bundle.getInt("sno", 1);

 if (first > second) {
 bigno = first;
 smallno = second;
 }
 else {
 bigno = second;
 smallno = first;
 }

106 CHAPTER 6: Working with Multiple Activities

 while ((rem = bigno % smallno) != 0) {
 bigno = smallno;
 smallno = rem;
 }
 gcftext.setText(String.format("GCF = %d", smallno));
 }

 }
}

Figures 6-12 and 6-13 show the GCF application in action.

Figure 6-12.  GCF MainActivity

107CHAPTER 6: Working with Multiple Activities

Returning Results from Other Activities
In the previous section, we launched a subactivity and we passed it some data. In this
section, we’ll take a look at how to return data from a subactivity. Figure 6-14 shows the
sequence of events on how to go about this.

Figure 6-13.  GCF Result

Figure 6-14.  Sequence of events

108 CHAPTER 6: Working with Multiple Activities

We will launch a subactivity from the MainActivity. This can be managed by creating an
explicit intent object and calling startActivityForResult. An activity may launch multiple
other activities, and each of them could return some results. When these results come back,
they will all be inside the onActivityResult method, so we need to know from which activity
each result is coming from; the REQUEST_CODE will help us out with that.

Intent intent = new Intent(MainActivity.this, SubActivity.class);
startActivityForResult(intent, REQUEST_CODE)

When the runtime resolves the intent, the SubActivity gets created and will become
visible. By then, it will be able to create its own data, perhaps via a user input. If it wants to
return data back to MainActivity, it needs to create an intent object send the data back to
MainActivity by piggybacking on the intent object.

String data = "Data to send back";
intent.putExtra("key", data);
setResult(Activity.RESULT_OK, intent);
finish();

When SubActivity calls the finish method, it will be destroyed, and MainActivity
will then go back to the top of the activity stack. The runtime will call MainActivity’s
onActivityResult; this is where we can extract the data that SubActivity sent back.

Let’s set up a demo project so that we can explore these concepts and see what they look
like in code.

Project Setup
Create a new project using the details in Table 6-4.

Table 6-4.  Details for GetResultsSubActivity

Application name GetResultsSubActivity

Project location Leave the default

Form factor Phone and tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity (default)

Layout name activity_main (default)

This project will have a second activity. When the project has finished creating the activity
and gradle is done on the build, add the second activity. On the project tool window,
right-click app ➤ Activity ➤ Empty activity. Use the details in Table 6-5 to create the
new activity.

109CHAPTER 6: Working with Multiple Activities

Listing 6-17.  activity_main

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.ted.getresultssubactivity.MainActivity">

 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="296dp"
 android:gravity="center"
 android:text="Launch 2nd Activity"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/textView"/>

 <TextView
 android:id="@+id/textView"
 android:layout_width="211dp"

Table 6-5.  SecondActivity

Activity name SecondActivity

Layout name activity_second

Figure 6-15.  UI elements of the activities

110 CHAPTER 6: Working with Multiple Activities

 android:layout_height="0dp"
 android:layout_marginBottom="40dp"
 android:layout_marginTop="80dp"
 android:gravity="center"
 android:text="TextView"
 app:layout_constraintBottom_toTopOf="@+id/button"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>
</android.support.constraint.ConstraintLayout>

Listing 6-18.  activity_second

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.ted.getresultssubactivity.SeconActivity">

 <EditText
 android:id="@+id/editText"
 android:layout_width="262dp"
 android:layout_height="0dp"
 android:layout_marginBottom="27dp"
 android:layout_marginTop="90dp"
 android:ems="10"
 android:gravity="center"
 android:hint="Type something"
 android:inputType="text"
 app:layout_constraintBottom_toTopOf="@+id/button2"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>

 <Button
 android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="301dp"
 android:gravity="center"
 android:text="Close"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/editText"/>
</android.support.constraint.ConstraintLayout>

111CHAPTER 6: Working with Multiple Activities

Program Files

Listing 6-19.  MainActivity

public class MainActivity extends AppCompatActivity
 implements View.OnClickListener{

 private static final int REQUEST_CODE = 1000; å
 Button b;
 TextView t;

 @Override
 protected void onCreate(Bundle savedInstanceState) { ... } ç

 public void onClick(View v) { ... } é

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) { ... }
}

å The request code can be any value; we just need to mark each activity that will send data back to us

ç This will contain all our initialization codes, as usual

é When the button is clicked, we will launch SecondActivity

Listing 6-20.  onClick Method

@Override
public void onClick(View v) {
 Intent intent = new Intent(this, SecondActivity.class); å
 startActivityForResult(intent, REQUEST_CODE); ç
}

å This creates just the usual explicit intent object

ç The startActivity method will simply launch another screen; we are using the
startActivityForResult method because we expect the target activity to return some data to
us. The request code will serve as a marker that we can use later when the result comes back
to us, and we can use that value to route program logic, in case our application starts several
activities

We go over to SecondActivity, where an edit text awaits input. When the button is clicked,
we’ll just retrieve the contents of text field and inject it to an Intent object. Listing 6-21
shows the code for that.

112 CHAPTER 6: Working with Multiple Activities

Listing 6-21.  SecondActivity

b.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Intent intent = new Intent();
 EditText e = (EditText) findViewById(R.id.editText);
 String data = e.getText().toString(); //
 intent.putExtra("secondactivity", data); å
 setResult(Activity.RESULT_OK, intent); ç
 finish(); é
 }
});

å We inject the contents of the data variable into the intent object using the putExtra method. We’re
assigning it a key of “secondactivity”, and we need to use the same key when we retrieve it later

ç This will prepare the data we are about to return

é This will kill SecondActivity. As soon as it dies, the runtime will call MainActivity’s onActivityResult

We now scoot back over to MainActivity after SecondActivity is killed. Because
SecondActivity set the result code and has pushed some data back to MainActivity, the
onActivityResult is called by the runtime. Listing 6-22 walks through the code.

Listing 6-22.  When the Result Comes Back

@Override
protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);

 if((requestCode == REQUEST_CODE) &&
 (resultCode == Activity.RESULT_OK)) { å

 t.setText(data.getStringExtra("secondactivity")); ç

 }
}

å We check if the request code is from an activity we’re interested in. Also, we need to check if the
result code is RESULT_OK, which means the operation has succeeded. Otherwise, you might
need to add, at the very least, some logging codes here

ç We pull the data using the key “secondactivity”; this is the same key that we used back in
SecondActivity, when we injected the data into the intent

113CHAPTER 6: Working with Multiple Activities

Listing 6-23.  Complete Code for MainActivity

package com.example.ted.getresultssubactivity;

import android.app.Activity;
import android.content.Intent;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;

public class MainActivity extends AppCompatActivity
 implements View.OnClickListener{

 private static final int REQUEST_CODE = 1000;
 Button b;
 TextView t;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 b = (Button) findViewById(R.id.button);
 t = (TextView) findViewById(R.id.textView);
 b.setOnClickListener(this);
 }

 @Override
 public void onClick(View v) {
 Intent intent = new Intent(this, SecondActivity.class);
 startActivityForResult(intent, REQUEST_CODE);
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 super.onActivityResult(requestCode, resultCode, data);

 if((requestCode == REQUEST_CODE) &&
 (resultCode == Activity.RESULT_OK)) {

 t.setText(data.getStringExtra("secondactivity"));

 }
 }
}

114 CHAPTER 6: Working with Multiple Activities

Listing 6-24.  Complete Code for SecondActivity

package com.example.ted.getresultssubactivity;

import android.app.Activity;
import android.content.Intent;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;

public class SecondActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_second);

 Button b = (Button) findViewById(R.id.button2);
 b.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Intent intent = new Intent();
 EditText e = (EditText) findViewById(R.id.editText);
 String data = e.getText().toString();
 intent.putExtra("secondactivity", data);
 setResult(Activity.RESULT_OK, intent);
 finish();
 }
 });
 }
}

Implicit Intents
Android’s approach to program interactivity is quite unique because it’s very user-centric.
It gives the user a lot of power to make choices on how they manipulate and create data.
Let’s take a common usage scenario for an Android device. A user opens the “Contacts”
application and chooses the contact detail of John Doe, for example. This contact could
have an e-mail address, a mobile phone, and a Twitter name, for example. The user could
tap on each and every one of John’s contact points, and each time, Android will launch a
different application, the default e-mail client, a dialer, and a downloaded Twitter app. The
user probably doesn’t care which application was launched or how many applications are
currently open; he just wants to send a message. If this user doesn’t like the e-mail app or
the default Twitter app, he could delete these apps and replace them with something else,
and he should be back in business.

For this kind of program interaction to happen, Android needed to architect the platform
focusing heavily on loose coupling and plugability. A component (like the contacts app)
should not know any specific detail about what app it should use when an e-mail address or

115CHAPTER 6: Working with Multiple Activities

a mobile phone number is tapped. The resolution for what kind of app to use for a specific
kind of data should not be hardwired into the contacts app; otherwise, the user won’t be
able to use his choice of e-mail or Twitter app.

This is where intents come in; the basic idea is that when a component has data or
information that is beyond its capability to service, it can go out to the Android platform—
using intents— and ask around if there’s any application that can (or wants to) do that.

Intents allow us to utilize the capabilities of other application simply by creating and
launching the intent, without specifying the target component— if you specify the target
component, that will become an explicit intent. The general syntax for creating implicit
intents is as follows:

Intent intent = new Intent(); å
intent.setAction(ACTION); ç
intent.setData(DATA); é
startActivity(intent); è

å Create the intent object

ç Specify the action. These actions are constants of the Intent class: for example, Intent.ACTION_
VIEW

é Specify the data, if there’s any

è Launch the activity

Let’s explore implicit intents in a demo project and see how these things come together in
code.

Demo Project
Let’s create a demo project, Table 6-6 shows the details for this project.

Table 6-6.  ImplicitIntents Project Details

Application name ImplicitIntents

Project location Leave the default value. Ignore the C++ and Kotlin support

Form factor Phone and tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity (default)

Layout name activity_main (default)

116 CHAPTER 6: Working with Multiple Activities

You can refer to Listing 6-25 and Figure 6-16 for the UI details.

Listing 6-25.  activity_layout

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.ted.implicitintents.MainActivity">

 <Button
 android:id="@+id/btnwebaddress"
 android:layout_width="126dp"
 android:layout_height="0dp"
 android:layout_marginBottom="80dp"
 android:layout_marginTop="69dp"
 android:text="Web address"
 app:layout_constraintBottom_toTopOf="@+id/btnphonenumber"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>

Figure 6-16.  Implicit Intents

117CHAPTER 6: Working with Multiple Activities

 <Button
 android:id="@+id/btnmap"
 android:layout_width="127dp"
 android:layout_height="48dp"
 android:layout_marginTop="24dp"
 android:text="Map"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/btnwebaddress"/>

 <Button
 android:id="@+id/btnphonenumber"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="264dp"
 android:layout_marginTop="24dp"
 android:text="Phone Number"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/btnmap"/>
</android.support.constraint.ConstraintLayout>

Listing 6-26.  Skeleton of MainActivity

public class MainActivity extends AppCompatActivity
 implements View.OnClickListener{

 @Override
 protected void onCreate(Bundle savedInstanceState) { ... }

 @Override
 public void onClick(View v) { ... }

}

This is a very basic structure for the main program. We will use MainActivity as the listener
object and then we’ll implement onClick as an overridden member method. There are three
buttons in the application. The “web address” button tries to resolve an http request, the
“map” button tries to resolve a geo code, and the “phone number” button tries to resolve a
telephone number.

Opening an http Request
To handle an http request, like what our “web address” button will try to do, we need to do a
couple of things. Firstly, we’ll need a URI object; this can be managed by the following code

Uri uri = Uri.parse("http://www.apress.com");

118 CHAPTER 6: Working with Multiple Activities

The parse method of the Uri object should be able to take a String object specifying a web
URL and return a proper URI object to us. The next step is to create an intent. We can use
the no-arg constructor of the Intent to do this.

Intent intent = new Intent();

After the intent is created, we can now set its action using the following code.

intent.setAction(Intent.ACTION_VIEW);

Setting the action of the intent helps the Android runtime to choose which application within
our device can best handle the request;ACTION _VIEW is one of the constants defined in
Intent class, and it’s what you might use if you want to handle a web URL. You can find more
information about some of the most common Intent actions from the official Android web site
(see Figure 6-17).

After setting the action of the Intent, we should now set its data, so it knows where to go
when it launches the browser. This can be done with the following code.

intent.setData(uri);

Lastly, we need to launch the intent object.

startActivity(intent);

Figure 6-17.  Common Intents documentation from the official Android site

119CHAPTER 6: Working with Multiple Activities

We can shorten the code by passing the Uri and the action to the Intent constructor.

Uri uri = Uri.parse("http://www.apress.com");
Intent intent = new Intent(Intent.ACTION_VIEW, uri);
startActivity(intent);

Listing 6-27.  Complete Code for MainActivity

package com.example.ted.implicitintents;

import android.content.Intent;
import android.net.Uri;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;

public class MainActivity extends AppCompatActivity
 implements View.OnClickListener{

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 findViewById(R.id.btnwebaddress).setOnClickListener(this);
 findViewById(R.id.btnmap).setOnClickListener(this);
 findViewById(R.id.btnphonenumber).setOnClickListener(this);

 }

 @Override
 public void onClick(View v) {

 Uri uri = null;
 Intent intent = null;

 switch(v.getId()) {
 case R.id.btnwebaddress:
 uri = Uri.parse("http://www.apress.com");
 intent = new Intent(Intent.ACTION_VIEW,uri); å
 startActivity(intent);
 break;
 case R.id.btnmap:
 uri = Uri.parse("geo:40.7113399,-74.0263469");
 intent = new Intent(Intent.ACTION_VIEW, uri); ç
 startActivity(intent);
 break;
 case R.id.btnphonenumber:
 uri = Uri.parse("tel:639285083333");
 intent = new Intent(Intent.ACTION_DIAL, uri); é
 startActivity(intent);
 break;

120 CHAPTER 6: Working with Multiple Activities

 default:
 Log.i(getClass().getName(), "Cannot resolve button click");
 }
 }
}

å Launches a browser and grabs the web site www.apress.com (see Figure 6-18)

ç Opens Google Maps and shows the location of the specified geo code (see Figure 6-18)

é Launches the dialer app (see Figure 6-18)

Activity Life Cycle
Mobile apps aren’t really desktop apps running on a smaller screen. We don’t use mobile
apps the way we use desktop apps. When we use a desktop app, it usually stays open and
active for quite some time because we are focused on the task at hand. Mobile apps, on
the other hand, have a shorter life span. We usually take it out of the pocket, do something
quick, and then put it back. Sometimes even, when we are using a particular app, we might
get interrupted by another app (e.g., a phone call), so the original app we were looking at
would be eclipsed by the interrupting app. All the activation and juggling of these apps are
managed by the Android runtime.

As a developer, you are not in control of the life cycle of the app; the user is. You cannot
assume that the user will not be interrupted in the middle of inputting data to your app.
You also cannot assume that your app will always exit gracefully; it could get killed without
getting the chance to properly shut down. You need to be defensive in designing your code
and consider that these things can happen. Fortunately, the Android runtime notifies us

Figure 6-18.  Output of the application

http://www.apress.com/

121CHAPTER 6: Working with Multiple Activities

whenever something happens to our components (like the activity). This section explores
the various events that can happen to an activity throughout its life cycle, from the point of
creation to its eventual destruction. Figure 6-19 show the activity life cycle.

Figure 6-19.  Activity Life cycle

Table 6-7.  Callback Methods

Event Description

onCreate Called when the activity is first created; you can put your initialization codes here

onRestart When the activity has been stopped and restarted again. This is always followed
by onStart

onStart When the activity is starting to become visible to the user

onResume The activity is ready to interact with the user, at this point; the activity is at the top
of the activity stack, and it occupies the whole screen

onPause When the activity is about to go to the background; this can happen when
another activity grabs the focus

onStop When the activity is no longer visible to the user

onDestroy Called when the activity is destroyed. For the application to come back, it needs
to be created again

122 CHAPTER 6: Working with Multiple Activities

Listing 6-28 shows the overridden life-cycle methods for an Activity.

Listing 6-28.  MainActivity, Life-Cycle Methods

package com.example.ted.activitylifecycle;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;

public class MainActivity extends AppCompatActivity {

 private String TAG;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 TAG = getClass().getSimpleName();
 Log.i(TAG, "onCreate");
 }

 @Override
 protected void onStart() {
 super.onStart();
 Log.i(TAG, "onStart");
 }

 @Override
 protected void onResume() {
 super.onResume();
 Log.i(TAG, "onResume");

 }

 @Override
 protected void onPause() {
 super.onPause();
 Log.i(TAG, "onPause");

 }

 @Override
 protected void onStop() {
 super.onStop();
 Log.i(TAG, "onStop");

 }

123CHAPTER 6: Working with Multiple Activities

 @Override
 protected void onDestroy() {
 super.onDestroy();
 Log.i(TAG, "onDestroy");

 }
}

You can view the log messages in the Logcat tool window.

Tip  If you want to see the onDestroy message, you can use the “Recent apps” button of the
device (if it has one) to see all the running apps (Figure 6-20). You can kill the application from
there.

Figure 6-20.  Recent apps button

125© Ted Hagos 2018
T. Hagos, Learn Android Studio 3, https://doi.org/10.1007/978-1-4842-3156-2_7

Chapter 7
UI Elements

UI Elements
As of this writing, there are 3.3 million apps in the Google play store. That’s a lot of apps and
lot of developers to compete with.

If you’re going to publish your app in the store, we need to at least make sure that the app
can stand toe to toe with professionally done applications. It needs to have a little bit of
polish.

Google has published a set of guidelines for UI approach; it’s called material design, and
you can read more about it in their web site https://material.io. It’s a big topic and we
don’t intend to cover it here. But in this chapter, we will discuss three things that can get
you started and point you in the direction for further investigation. These are the themes and
colors, the AppBar, and Fragments.

Themes and Colors
When AS3 creates a project with an empty activity, it does quite a few things for you, and
we’ve seen some of those affordances in the past couple of sample applications we’ve
worked on. In this chapter, we’ll focus a little bit on aesthetics. We won’t do a deep dive
into UI design because it’s a big area, and quite beyond the scope of this book—and my
expertise; I haven’t been a UI guy. But we’ll look at some quick and easy things to make our
apps look decent.

Let’s create a new project with an empty activity and name it StylesAndThemes; leave the
default form factor to "Phone and Tablets".

Note  A style is a collection of attributes that specify the look and format for an individual view
object; a style refers to height, color, font, and so on. A theme, on the other hand, is a style applied
to entire Activity or application

https://doi.org/10.1007/978-1-4842-3156-2_7
https://material.io/

126 CHAPTER 7: UI Elements

We’ve never messed around with these colors in our past applications; we simply let AS3
decide for us how our app would look (Figure 7-1 shows the default theme for an app),
at least as far as color is concerned. If you want to do a bit of branding and give your
application some identity, we can start by customizing the color and the theme.

Colors
While it’s possible to specify the color for every part of the application, that may prove to
be tedious and time-consuming. An easier way would be to work with themes. The overall
theme for an application is controlled by the AndroidManifest (you can open the manifest file
from the project tool window, app ➤ manifests ➤ AndroidManifest).

Android makes heavy use of XML, as you can probably tell by now. Also, the practice of
referencing values, whether string, color, style, or something else, is very prevalent—you will
find it everywhere. Let’s look at two entries in the manifest file (see Listing 7-1).

Action Bar with
the AppName

Default colors
for body and
the ActionBar

Figure 7-1.  activity_main

127CHAPTER 7: UI Elements

Listing 7-1.  AndroidManifest

<?xml version="1.0" encoding="utf-8"?>
<manifest package="com.ted.stylesandthemes"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name" 
 android:roundIcon="@mipmap/ic_launcher_round"
 android:supportsRtl="true"
 android:theme="@style/AppTheme"> 
 <activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>

 <category android:name="android.intent.category.LAUNCHER"/>
 </intent-filter>
 </activity>
 </application>

</manifest>

 The @string notation means we are referencing this value from app/res/values/strings.xml.
This is the preferred way of defining strings in your app. Writing the strings in a resource affords
us the ability to manage the string resources from a central location; it facilitates ease of change
and localization as well. The strings and styles resources can be opened from the project tool
window (see Figure 7-2).

app/res/values/strings.xml

<resources>

 <string name="app_name">StylesAndThemes</string>

</resources>

 The @style notation means we are referencing this entry from the app/res/values/styles.xml
file. Inside that file, there should be a definition for AppTheme

In Listing 7-2, the AppTheme value which is referenced from the manifest file is defined. Firstly,
it wasn’t built from scratch; it is inheriting from the DarkActionBar theme, but it allows us to
customize a couple of colors. There are three colors defined in the styles, but you can add
more if you want to. We will just work with these three for now.

Note  In previous versions of Android Studio, you may have needed to create /res/styles.xml file.
In AS3, when we created the empty activity, the styles resource file was automatically generated.

128 CHAPTER 7: UI Elements

Listing 7-2.  /app/res/values/colors.xml

<resources>

 <!-- Base application theme. -->
 <style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
 <!-- Customize your theme here. -->
 <item name="colorPrimary">@color/colorPrimary</item>
 <item name="colorPrimaryDark">@color/colorPrimaryDark</item>
 <item name="colorAccent">@color/colorAccent</item>
 </style>

</resources>

colorPrimary, colorPrimaryDark, and colorAccent are not (really) defined in styles.xml;
instead, we find another indirection referring us to yet another resource file. It can get
annoying sometimes, but these indirections are necessary all in the name of manageability.
So, you need to get used to it.

Listing 7-3.  /app/res/values/colors.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="colorPrimary">#3F51B5</color>
 <color name="colorPrimaryDark">#303F9F</color>
 <color name="colorAccent">#FF4081</color>
</resources>

If you open colors.xml, we can finally see the hex values of the colors. AS3 shows you
the colors in the gutter of the editor; the color changes immediately when you change the
hex values (Figure 7-3). If you want to change the tint of the app, you can start by making
changes to this file.

Figure 7-2.  colors.xml

129CHAPTER 7: UI Elements

If you need help the with the hex values of colors, there are plenty of web resources for
that; colorhexa.com is one such site (www.color.hexa.com), showing you related colors and
gradients of specific colors, so it’s good to use when you want to work with color hex values.
Color scheming, however, is a big area, and there are quite a few principles and guidelines
involved. Another good resource for colors is Materialpalette (www.materialpalette.com,
shown in Figure 7-4).

Figure 7-3.  colors.xml in the main editor

Figure 7-4.  Materialpalette.com

www.color.hexa.com
www.materialpalette.com

130 CHAPTER 7: UI Elements

Materialpalette is geared toward Android design, specifically material design. The basic idea
is to choose two colors and the site builds a palette for you. Now we can simply copy the
hex values of primary, dark primary, accent, and light primary colors.

Listing 7-4.  Customized colors.xml

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="colorPrimary">#009688</color>
 <color name="colorPrimaryDark">#00796B</color>
 <color name="colorAccent">#CDDC39</color>
 <color name="colorPrimaryLight">#B2DFDB</color>
</resources>

Switch the main editor to the activity_main tab to see the new look of our app (Figure 7-5).

Figure 7-5.  activity_main with customized colors

Themes
Android’s look and feel have evolved throughout the years. As newer devices and newer
Android versions came in, this also ushered in new look and feel for the apps. Figure 7-6
shows some snapshots of the themes over the years.

131CHAPTER 7: UI Elements

Table 7-1 lists some of the more important and milestone themes of Android.

Table 7-1.  Android Themes

Theme Description

Theme.Light This was used by Android versions 2 and below (API 10 and below);
e.g., Gingerbread

Theme.Holo.Light Android 3 (API 11 and above)

Theme.Holo.DarkActionBar API 14 onward

Theme.AppCompat API 7

android:Theme.Material API 21 (Lollipop) onward

Original Holo Material

Figure 7-6.  Various Android themes

The default theme for the past couple of projects we’ve created is Theme.AppCompat.Light.
DarkActionBar. It’s a decent theme, and if your needs are quite simple, there may be no
need to do further work on this theme. But if you want to tweak the look and feel of your
app, you can start trying out various themes. You can do this by editing the parent theme in
styles.xml (as shown in Figure 7-7).

132 CHAPTER 7: UI Elements

Try changing the theme a couple of times and then go back to activity_main (design mode)
so you can explore the various Android themes.

AppBar
Menus are very important in UI design, and they are indispensable tools in the programmer’s
arsenal. Menu systems allow the user to get to an app’s functionality. Traditionally, menu
systems are organized hierarchically and intro groups. Android’s menu system, at some
point in time, has behaved exactly like that—grouped and hierarchical. But that was in the
past. Android’s approach to menus has changed dramatically over the course of its lifetime.

Before API 11 (Honeycomb), Android menus relied on hardware buttons (like the ones you
see in Figure 7-8). Developers could rely on the home buttons (plus some others, like the
option button) always being there. And we built our apps per those assumptions, because
those assumptions were reasonable at the time. Of course, times have changed. Screen
resolutions have increased dramatically, and the hardware buttons have disappeared.
Fortunately, Android’s approach to menus has also changed and kept up with the state of
hardware capabilities.

Figure 7-7.  Edit themes

133CHAPTER 7: UI Elements

A new kind of menu system has been added to Android starting from API 11. Apps that are
built with a min SDK of 11 can use the ActionBar (see an example in Figure 7-9).

Figure 7-8.  API 10 (Gingerbread)

Figure 7-9.  ActionBar

The ActionBar is a dedicated area at the top of the screen and is persistent throughout the
app. It’s a lot like the main menu bar of AS3 if you think about it. You can generally use the
ActionBar to display the most important features of your app and make them accessible in
a predictable way; for instance, putting a permanent Search widget on top, and so forth. It
creates a cleaner look by removing clutter in your menus; if not all items in the menu can
be accommodated on the screen, the ActionBar will display an overflow icon—this is the
vertical ellipsis, three dots arranged vertically, which is always found on the far right of the
bar. It also displays the name of the application, so it reinforces the brand identity of the app.

134 CHAPTER 7: UI Elements

Nowadays, the ActionBar has fallen a bit out of fashion and has been eclipsed by the
Toolbar, the new kid on the block. The Toolbar is a bit more versatile because it’s not
permanently clipped on top of the screen, you can place it anywhere you want and it has a
few more capabilities. The ActionBar, however, remains a viable solution for simple menu
systems. In fact, nothing stops you from using both the ActionBar and the Toolbar; just work
with the best tools you have.

Demo App
Create a new project with the following details (Table 7-2).

Table 7-2.  ActionBar Project Details

Application name ActionBar

Project location Use the default

Form factor Phone and tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity (default)

Layout name activity_main (default)

To use the ActionBar, the minimum SDK should be set to API 11; this makes Honeycomb a
cut-off. If a project has a minimum SDK of 11 or above, it means it can handle the ActionBar.

After creating the project, make sure that the theme is set to "AppTheme". After that, create
a menu folder under the res folder. In the project tool window, right-click the res folder
New ➤ Android Resource Directory (see Figure 7-10).

135CHAPTER 7: UI Elements

Create a menu file under the newly created menu directory. Right-click the menu folder,
New ➤ Menu Resource File (see Figure 7-11).

Figure 7-10.  Create a new resource directory

Figure 7-11.  Create a menu folder

Name the new resource file as "main_menu", as shown in Figure 7-12.

136 CHAPTER 7: UI Elements

Double-click the main_menu resource file from the project tool window. Let’s add some menu
items as shown in Listing 7-5. The main_menu.xml file will be created in the folder /app/res/
values/menu/main_menu.xml.

Listing 7-5.  main_menu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">

 <item android:id="@+id/menuFile" 
 android:title="@string/menuFile"/> 
 <item android:id="@+id/menuEdit"
 android:title="@string/menuEdit"/>
 <item android:id="@+id/menuHelp"
 android:title="@string/menuHelp"/>
 <item android:id="@+id/menuExit"
 android:title="@string/menuExit"/>
</menu>

 The @id+ notation means that we would like create an ID for this item; this is the same ID that
we’ll use later when we reference it from our program using the findViewById method

 The title attribute is the one that will be displayed on the menu. We could write it just a simple
string here, but that would be tantamount to hard-coding that value in this file. That’s generally
a bad idea. The @string notations means we are referencing the title from the /app/res/values/
strings.xml file. The first time you type title, AS3 will show it as an error because the string
resource is not yet created in strings.xml. Select the value of the title attribute
(@string/menuFile) and use the quick fix (Alt + Enter in Windows/Linux | Option + Enter
in macOS) so you can create the resource file. See Figure 7-13

Figure 7-12.  New à Menu resource file

137CHAPTER 7: UI Elements

Switch over to MainActivity so we can add the newly created main_menu to the AppBar. To
do this, we need to override the onCreateOptions method of the MainActivity. You can use
the override methods facility of AS3 to do this, from the main menu bar, Code → Override
Methods.

@Override
public boolean onCreateOptionsMenu(Menu menu) {
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.main_menu, menu);
 return true;
}

If you run the application on the emulator, you will see something that looks like Figure 7-14.

Figure 7-14.  Menu items in ActionBar (when the action overflow is clicked)

Figure 7-13.  Create a new String resource item

Let’s use some images on the menu. AS3 comes with a lot of images that you can use for a
wide range of applications. Before we can use any image, we should add it to our resources
folder. You can use either rasterized (bitmapped) or vector assets for images. In this
example, we’ll use vector assets.

138 CHAPTER 7: UI Elements

On the project tool window, right-click /app/res ➤ New ➤ Vector asset (Figure 7-15).

Figure 7-15.  Add a vector asset to the project

Click the icon so you can find images that will suit your needs (Figure 7-16).

Figure 7-16.  Configure vector asset dialog

139CHAPTER 7: UI Elements

To use the images in the app, we need to associate them with each item on main_menu
resource file. See Listing 7-6 on how to do this.

Listing 7-6.  New main_menu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/menuFile"
 android:title="@string/menuFile"
 android:icon="@drawable/ic_attach_file_black_24dp" 
 app:showAsAction="ifRoom"/> 
 <item android:id="@+id/menuEdit"
 android:title="@string/menuEdit"
 android:icon="@drawable/ic_edit_black_24dp"
 app:showAsAction="always"/> 
 <item android:id="@+id/menuHelp"
 android:title="@string/menuHelp"
 android:icon="@drawable/ic_help_black_24dp"
 app:showAsAction="ifRoom"/>
 <item android:id="@+id/menuExit"
 android:title="@string/menuExit"
 android:icon="@drawable/ic_power_settings_new_black_24dp"
 app:showAsAction="always"/>
</menu>

Figure 7-17.  Select icon dialog

140 CHAPTER 7: UI Elements

 The vector assets we added were saved in /app/res/drawable

 If showAsAction attribute is ifRoom, the icon will be shown only if there is enough room in the
ActionBar; otherwise, users will only see it when they click the action overflow button

 If showAsAction attribute is set to always, the icon will always be visible to the user. Be careful to
use this sparingly; if all your icons are specified as "always" the runtime decides which of your
icons will be shown, and they may not be all visible.

Figure 7-18.  Icons on the ActionBar

To handle the events for each menu item, we can either use the android:onClick attribute
on each item or override the onOptionsItemSelected method in MainActivity.

If you want to go the onClick route, add the onClick attribute to an item in main_menu, like
the following:

<item android:id="@+id/menuEdit"
 android:title="@string/menuEdit"
 android:icon="@drawable/ic_edit_black_24dp"
 app:showAsAction="always"
 android:onClick="mnuEdit"/>

Then, in MainActivity, implement the mnuEdit method:

public void mnuEdit(MenuItem item) {
 Toast.makeText(this, "Edit", Toast.LENGTH_SHORT).show();
}

The other way of handling events for menu items is to override the onOptionItemSelected in
MainActivity.

141CHAPTER 7: UI Elements

public boolean onOptionsItemSelected(MenuItem item) {

 switch(item.getItemId()){ 
 case R.id.menuFile: 
 showMessage("File");
 break;
 case R.id.menuEdit:
 showMessage("Edit");
 break;
 case R.id.menuHelp:
 showMessage("Help");
 break;
 case R.id.menuExit:
 showMessage("Exit");
 break;
 default:
 showMessage("Default");
 }
 return true;
}

 getItemId returns which among the menu item was clicked. We will use this to route program
logic inside the switch structure

 We’re comparing the value of getItemId with each menu item

Listing 7-7.  Complete Code for MainActivity

package com.example.ted.actionbar;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuInflater;
import android.view.MenuItem;
import android.widget.Toast;

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // return super.onCreateOptionsMenu(menu);
 MenuInflater inflater = getMenuInflater();
 inflater.inflate(R.menu.main_menu, menu);
 return true;
 }

142 CHAPTER 7: UI Elements

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 //return super.onOptionsItemSelected(item);
 switch(item.getItemId()){
 case R.id.menuFile:
 showMessage("File");
 break;
 case R.id.menuEdit:
 showMessage("Edit");
 break;
 case R.id.menuHelp:
 showMessage("Help");
 break;
 case R.id.menuExit:
 showMessage("Exit");
 break;
 default:
 showMessage("Default");
 }
 return true;
 }

 private void showMessage(String msg) {
 Toast.makeText(this, msg, Toast.LENGTH_SHORT).show();
 }
}

Fragments
In the early days of Android, when it ran only on phones and there weren’t any high-
resolution screens, activities were sufficient as a way of composing the UI and interacting
with the user. Then came the tablets and high-resolution screens; it became increasingly
difficult to create applications that can run (well) on both phone and tablets. Developers
were faced with hard choices. Either we create the applications choosing the least capable
hardware as the target, making it like the least common denominator approach; or we craft
the application to adapt to a range of form factors by removing and adding UI elements in
response to the device’s capability (which proved very difficult to do manually). Android’s
solution to this problem was Fragments; this was introduced sometime in 2011 when API 11
was released (Honeycomb).

Fragments are quite an advanced concept, and beginning programmers may approach it
with trepidation, but the basic concept behind it is quite simple. If we think of an activity as a
composition unit for our UI, think of a fragment as a miniactivity—it’s a smaller composition
unit. You will usually show (and hide) fragments during runtime in response to something that
a user did; for example, tilting the device, switching from portrait to landscape orientation
and thus making more screen space available. You may even use fragments as a strategy to
adapt to device form factors; when the app is running on smaller screen, you will show only
some of the fragments.

143CHAPTER 7: UI Elements

A fragment, like an activity, is comprised of two parts—a Java program and a layout file. The
idea is almost the same: define the UI elements in an XML file and then inflate the XML file
in the Java program so that all the view objects in the XML will become a Java object. After
that, we can reference each view object in the XML using the R.class. Once we’ve wrapped
our brains around that concept, just think of a fragment as an ordinary view object that we
can drag and drop on the main layout file—except, of course, fragments aren’t ordinary
views (but they are views).

The following workflow summarizes the steps on how to get started using Fragments.
We will explore them in more detail in the demo project.

1.	 Create an Activity

2.	 Create a Fragment class (Java file) and a fragment layout resource
(XML file)

3.	 In the fragment layout resource, compose the UI by dragging
and dropping view elements in it—like how we do it in an activity
resource file

4.	 In the Fragment class, override the onCreateView method and inflate
the XML file

5.	 To add the fragment to the activity statically, add a fragment element
to activity_main and associate this element to Fragment class

6.	 To add the fragment during runtime;

a.	 In the activity_main layout file, insert a ViewGroup object that
will act as a placeholder for the fragment

b.	 In MainActivity.java, create an instance of the Fragment class

c.	 Get a FragmentManager object; the getManager() method of the
Activity class should do that

d.	 Get a FragmentTransaction object by calling the
beginTransaction() method of the fragment manager

e.	 Add the fragment to the activity by calling the add() method of
the transaction object

The topic of fragments is a big one, but we will try to cover at least the basic techniques of
composition both at design time and during runtime.

Note  The transaction object is what you will use to manage the availability and visibility of
fragments. Use the add and remove methods to attach and detach fragments to/from the activity.

144 CHAPTER 7: UI Elements

Project Setup
Let’s create a project to demonstrate fragments:

1.	 Create a new project with the following details (Table 7-3).

Table 7-3.  Fragments App, Project Details

Application name Fragments

Project location Use the default

Form factor Phone and tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity (default)

Layout name activity_main (default)

2.	 Create a new class, from the main menu bar, File ➤ New ➤ Java
class. Name it FragmentA and extend the Fragment class. Make sure
it is on the same package as the MainActivity class.

package com.example.ted.fragments;
import android.app.Fragment;

public class FragmentA extends Fragment {

}

3.	 Create a new layout file; this will be the layout file for the Fragment
class. You can do this from project tool window. Right-click the res
folder, New ➤ Layout Resource file. Name the new file fragment_a,
leave the default root element, and make sure it is on the "layout"
directory (see Figures 7-19 and 7-20).

Note  As you type the code snippet extends Fragment, AS3 will suggest two possible
packages for it. One is android.app.Fragment (this is the one we want), and the other is
android.support.v4.app.Fragment (we don’t need this). The latter package is just in case
you intend to run this application on Android versions below API 11, but our app’s min SDK is API 23,
so we don’t need the support library for v4.

145CHAPTER 7: UI Elements

4.	 Put a TextView object on fragment_a. A fragment resource file is not
that much different from the resource file of our MainActivity. They
are both Viewgroups, and as such, they are meant to contain other
view objects. So, all the techniques we’ve learned on how to compose
view objects in a layout resource file apply to fragments as well. The
fragment is using a constraint layout (same as activity_main), so
you can use the constraint inspector and the attributes inspector to
customize the look of the fragment. The appearance of the TextView
has been tweaked a little bit in this example. Listing 7-1 shows the
XML code for the fragment resource, and Figure 7-21 shows how it
looks on design mode

Figure 7-19.  Create a new layout resource file

Figure 7-20.  New layout resource file dialog for fragment_a

146 CHAPTER 7: UI Elements

Listing 7-8.  /app/res/layout/fragment_a

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView
 android:id="@+id/textView"
 android:layout_width="203dp"
 android:layout_height="78dp"
 android:layout_marginTop="94dp"
 android:gravity="center"
 android:text="Hello"
 android:textSize="18sp"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>
</android.support.constraint.ConstraintLayout>

5.	 Associate the fragment layout file with the Fragment class. In
FragmentA.java, we will override the onCreateViewMethod and inflate
the fragment resource file.

Figure 7-21.  fragment_a layout file

147CHAPTER 7: UI Elements

Listing 7-9.  onCreateView Method of FragmentA

public View onCreateView(LayoutInflater inflater, @Nullable ViewGroup container, Bundle
savedInstanceState) {

 View v = inflater.inflate(R.layout.fragment_a,container,attachToRoot:false);
 return v;

}

Like the setContentView method of the Activity, inflate reads the XML
resource file (1st parameter), creates the actual Java objects so that we
can reference them later in the R.class, and then attaches the created Java
objects to the wherever the fragment is embedded (2nd parameter)—in this
case, the container object is our Activity. The last statement in the callback
is to simply return the View object which the inflater has created.

6.	 We will put the fragment resource file inside the activity_main layout
file, just like it is another view object (e.g., TextView or Button). Open
activity_main in design mode. From the palette, go to Layouts ➤
<fragment> (Figure 7-22).

Figure 7-22.  Embed the fragment layout file in activity_main

148 CHAPTER 7: UI Elements

7.	 Choose the Fragment we created from the dialog window (Figure 7-23).

Figure 7-23.  Choose the fragment

8.	 The fragment is a ViewGroup object, which means it’s just another
view object. You can move it around in activity_main just like any
other widget. Move it to its approximate position and use the tools in
the constraint inspector to fix its position (Figure 7-24).

Position the fragment in
relation to other view
objects in activity_main

Figure 7-24.  activity_main with the fragment layout file

149CHAPTER 7: UI Elements

If you run the app, you should see something like Figure 7-25.

Text View

Fragment

Figure 7-25.  Fragments app, running

The complete code listings for FragmentA, activity_main.xml, and MainActivity are shown
in Listings 7-10, 7-11, and 7-12, respectively. The complete code listing for fragment_a is
shown in Listing 7-10.

Listing 7-10.  Complete Code Listing for FragmentA.java

package com.example.ted.fragments;

import android.app.Fragment;
import android.os.Bundle;
import android.support.annotation.Nullable;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class FragmentA extends Fragment {

 @Nullable
 @Override
 �public View onCreateView(LayoutInflater inflater, @Nullable ViewGroup container,
Bundle savedInstanceState) {

 View v = inflater.inflate(R.layout.fragment_a,container,false);
 return v;

 }
}

150 CHAPTER 7: UI Elements

Listing 7-11.  Complete Code Listing for activity_main

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.ted.fragments.MainActivity">

 <TextView
 android:id="@+id/textView2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintVertical_bias="0.101"/>

 <fragment
 android:id="@+id/fragment"
 android:name="com.example.ted.fragments.FragmentA"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="15dp"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/textView2"/>

</android.support.constraint.ConstraintLayout>

Listing 7-12.  Code Listing for MainActivity.java

package com.example.ted.fragments;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }
}

151CHAPTER 7: UI Elements

We did not have to do anything in our MainActivity.java because the fragment was added
statically or declaratively. What we did was to simply embed the fragment in activity_main,
as it was just another View object.

Adding Fragments Programmatically
While we can construct UIs with Fragments during design time, adding Fragments at runtime
makes our application more responsive. You can hide or show Fragments depending on the
screen size of the device or its current orientation. To add fragments at runtime, we will need
the FragmentManager and FragmentTransaction objects. A fragment transaction object is the
one responsible for adding and removing fragments from an activity, and to get a fragment
transaction, we need a fragment manager.

Let’s create a new project for this exercise so that you can keep the previous project for
reference. See Table 7-4 for the project details.

Table 7-4.  Fragments2 App, Project Details

Application name Fragments2

Project location Use the default

Form factor Phone and tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity (default)

Layout name activity_main (default)

This project will use the same files that we used in the previous project (Fragments). Before
we can proceed, you need to do the following.

1.	 Create a fragment class, FragmentA.java (same as in the previous
project)

2.	 Create a layout file for the fragment, fragment_a (same as in the
previous project), but don’t add the fragment layout in activity_main.
Instead, we will add the fragment from with MainActivity.java

The codes for fragment_a.xml, FragmentA.java, and activity_main.xml are shown in
Listings 7-13, 7-14, and 7-15, respectively.

Listing 7-13.  fragment_a

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"

152 CHAPTER 7: UI Elements

 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <TextView
 android:id="@+id/textView"
 android:layout_width="203dp"
 android:layout_height="78dp"
 android:layout_marginTop="94dp"
 android:gravity="center"
 android:text="Hello"
 android:textSize="18sp"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>
</android.support.constraint.ConstraintLayout>

Listing 7-14.  FragmentA.java

package com.example.ted.fragments;

import android.app.Fragment;
import android.os.Bundle;
import android.support.annotation.Nullable;
import android.view.LayoutInflater;
import android.view.View;
import android.view.ViewGroup;

public class FragmentA extends Fragment {

 @Nullable
 @Override
 �public View onCreateView(LayoutInflater inflater, @Nullable ViewGroup container,
Bundle savedInstanceState) {

 // return super.onCreateView(inflater, container, savedInstanceState);

 View v = inflater.inflate(R.layout.fragment_a,container,false);
 return v;

 }
}

Listing 7-15.  activity_main

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.ted.fragments.MainActivity">

153CHAPTER 7: UI Elements

 <TextView
 android:id="@+id/textView2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 app:layout_constraintVertical_bias="0.101"/>

</android.support.constraint.ConstraintLayout>

Now that the setup is done, we can start adding the fragment to the Activity at runtime.
These codes will reside in MainActivity.java.

Listing 7-16.  MainActivity.java

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 FragmentA f = new FragmentA(); 
 FragmentManager fm = getFragmentManager(); 
 FragmentTransaction ft = fm.beginTransaction(); 
 ft.add(R.id.frag_placeholder,f,s:""); 
 ft.commit(); 
 }
}

 Create an instance of FragmentA

 Get the fragment manager for this activity (MainActivity)

 When a fragment manager begins a transaction, that call will return a TransactionManager object

 We can now add our fragment during runtime using the add method. This method takes in three
parameters, but only the first two are important for us. The first parameter is a view resource ID
(we haven’t created that yet; we will create it in Listing 7-17), and the second parameter is the
instance of our fragment class (FragmentA)

 We should call commit() method so that the fragment will be visible in the activity

Important  When adding a fragment during runtime, the activity_main layout MUST have
a view object inside it which will act as a placeholder for the fragment. In our example, this is a
Frame layout view (id: frag_placeholder).

154 CHAPTER 7: UI Elements

Listing 7-17.  activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.ted.fragments2.MainActivity">

 <TextView
 android:id="@+id/textView2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="245dp"
 android:text="Hello World!"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/frag_placeholder"/>

 <FrameLayout 
 android:id="@+id/frag_placeholder" 
 android:layout_width="368dp"
 android:layout_height="0dp"
 android:layout_marginBottom="8dp"
 android:layout_marginTop="8dp"
 app:layout_constraintBottom_toTopOf="@+id/textView2"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent">

 </FrameLayout>

</android.support.constraint.ConstraintLayout>

 This will become a placeholder for our fragment. The contents of our fragments cannot be seen
in design mode because the frame layout doesn’t contain anything. You can see the contents of
the fragment at runtime

 This is the ID we will use when the fragment transaction object adds the fragment

155CHAPTER 7: UI Elements

Figure 7-26 shows the Fragments2 app running.

That concludes the chapter on UI elements. We barely scratched the surface of UI design,
but adding themes and colors, using the AppBar, and judicious use of Fragments should
add some polish to your apps.

Figure 7-26.  Fragments2, running

157© Ted Hagos 2018
T. Hagos, Learn Android Studio 3, https://doi.org/10.1007/978-1-4842-3156-2_8

Chapter 8
Running in the Background
Now that we know a bit about UI elements and screens, we need to make them responsive.
Responsiveness isn’t really about just speed—how much work can you do in a period of time.
What’s it’s more about is how fast the app feels. When people say that an app is responsive,
most often what they mean is that the app doesn’t stop them from doing what they are trying
to do. It doesn’t get in their way. If you’ve ever used an application that just froze when a
certain button is clicked, you can appreciate what we’re talking about. It doesn’t block.

Think of blocking like calling someone on the phone. When you dial, you hear the ringing and
you wait for the other person to pick up. Unless the other person picks up, the call cannot
proceed. We can say that a phone call is a blocking operation because things have to happen
in sequence. You dial, phone rings, the other person picks it up, then you talk. None of these
things can happen at the same time. All the steps involve some form of “waiting”—or, in
computing terminology, blocking. In this chapter, we will take a look at what happens when
some tasks takes a long time to finish and what we can do to avoid these problems.

Long Running Tasks
Users might be able to tolerate blocking in their day-to-day life, like standing in line to renew
licenses or get groceries, or waiting for somebody to pick up the phone, and so forth. But
they might be less tolerant when using your app. Even the Android platform will not tolerate
your app if it takes too much time in doing whatever it is its doing: the WindowManager
and ActivityManager of Android are the policemen for responsiveness. When a user clicks
a button, or interacts with any view that triggers an event, your application doesn’t have a
lot of time to finish what it’s supposed to do; in fact, it has at most 5 seconds before it gets
killed by the runtime. And by then, you will see the infamous ANR error (application not
responding). Think of it as Android’s BSOD (blue screen of death).

According to the Android guidelines, an application has anywhere from 100ms to 200ms to
complete a task in an event handler—that’s not a lot of time, so we really need to make sure
we don’t do anything too crazy inside an event handler. But that’s easier said than done, and
there are a couple of scenarios where we won’t be in total control of the things we do inside
an event handler. We can list of couple of them here.

https://doi.org/10.1007/978-1-4842-3156-2_8

158 CHAPTER 8: Running in the Background

	When we read a file—Our programs need to save data or read
them at some point in time. The file IO operation can be notoriously
unpredictable sometimes; you just don’t know how large that file will be.
If it’s too large, it may take you more than 200ms to complete the tasks

	When we interact with a database—We interact with a database by
giving it commands for reading, updating, creating, and deleting data.
Like files, sometimes, we might issue a command that will return lots of
data; it could take us a while to process these records

	When we interact with the network—When we get data in and out of
network sockets, we are at the mercy of the network’s condition. If it’s
not congested or down, that’s good for us. But it’s not always up and it’s
not always fast; if you write codes that deal with the network inside an
event handler, you run the risk of the ANR

	When we use other people’s code—We are increasingly relying on APIs
to build our applications, and for good reason: they save us time. But
we just cannot always know how these APIs are built and what kinds
of operations they have under the hood (do you really always read the
source code of all the APIs you use?)

So, what should we do so our apps don’t run into an ANR? We certainly can’t avoid the
things listed in the preceding because most modern (and useful) applications will need to
do one or more (or all) of these things. The answer, as it turns out, is to run things in the
background. There are a couple of ways to do this, but in this section, we’ll look at running
our codes in an AsyncTask.

Demo Project
Details of the project for this chapter are as follows.

Application name Async

Project location Use the default

Form factor Phone and tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity (default)

Layout name activity_main (default)

This project is intended to break and have performance problems. When the user clicks
“long running task”, it will simulate a long running task, but all we’re doing is counting from 1
to 15; each tick of the count takes 2 seconds. We are effectively holding the user hostage for
at least 30 seconds, during which he can’t do much else in the app.

159CHAPTER 8: Running in the Background

Figure 8-1 shows how our screen will look like, and Listing 8-1 shows the XML definition for
the layout file.

Listing 8-1.  activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.ted.async.MainActivity">

 <Button
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="317dp"
 android:gravity="center"
 android:text="Long running task"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/textView"/>

Figure 8-1.  activity_main (design mode)

160 CHAPTER 8: Running in the Background

 <TextView
 android:id="@+id/textView"
 android:layout_width="184dp"
 android:layout_height="0dp"
 android:layout_marginBottom="55dp"
 android:layout_marginTop="34dp"
 android:gravity="center"
 android:text="TextView"
 android:textSize="18sp"
 app:layout_constraintBottom_toTopOf="@+id/button"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>

 <Button
 android:id="@+id/button2"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Click"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>
</android.support.constraint.ConstraintLayout>

Listing 8-2.  MainActivity

package com.example.ted.async;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;

public class MainActivity extends AppCompatActivity
 implements View.OnClickListener{

 private String TAG;
 TextView tv;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

161CHAPTER 8: Running in the Background

 Button b = (Button) findViewById(R.id.button);
 Button b2 = (Button) findViewById(R.id.button2);
 tv = (TextView) findViewById(R.id.textView);
 TAG = getClass().getSimpleName();

 b.setOnClickListener(this);
 b2.setOnClickListener(new View.OnClickListener(){
 public void onClick(View v) {
 Log.i(TAG, "Clicked");
 }
 });
 }

 public void onClick(View v) { ❶
 int i = 0;
 while (i < 15) {
 try {
 Thread.sleep(2000); ❷
 tv.setText(String.format("Value of i = %d", i)); ❸
 Log.i(TAG, String.format("value of i = %d", i++));
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}

❶ This whole code block is designed to simulate a time-consuming activity inside an event handler

❷ This will halt execution for 10 seconds

❸ Every 10 seconds, we write the value of i to the UI

This code won’t get very far. It will soon encounter an ANR error (Figure 8-2) if you click the
“long running task” button and then click the other button. You will notice that you won’t be
able to click it because the UI thread is waiting for the “long running task to finish”—the UI is
no longer responsive.

162 CHAPTER 8: Running in the Background

AsyncTask
In the previous section, the problem we encountered was that when an event handler
does something lengthy, the whole UI freezes and the user can’t do much else—the user
is blocked. AsyncTask was meant to solve these kinds of problems. It was designed to
make the UI responsive, even when doing operations that takes quite some time. Figure 8-3
depicts the role of the AsyncTask in this solution.

Figure 8-2.  ANR error

163CHAPTER 8: Running in the Background

Here’s what happens in this approach.

1.	 MainActivity creates an AsyncTask object (we basically create a
class that extends an AsyncTask)

2.	 Call the execute method of the AsyncTask; in this method, we will
pass to the AsyncTask the object references of the UI element we
want to update

3.	 There are various life-cycle methods of the AsyncTask, but the only
mandatory callback to override is doInBackground()—we will write all
the lengthy operations in here

4.	 At this point, AsyncTask will create a background thread, but this
thread is transparent to us; we don’t care about it because AsyncTask
will be the one to manage it, not us

Figure 8-3.  AsyncTask and MainActivity

164 CHAPTER 8: Running in the Background

Inside the doInBackground() method, we can periodically call publishProgress(). Each time
we do, the runtime will call the onProgressUpdate() method of the AsyncTask, and it will be
done in thread-safe manner. It is inside this method that we can do some UI updates.

Let’s revise the AsyncTask project. Firstly, we need to create a new class that extends from
AsyncTask.

Listing 8-3.  Worker.java (Shell)

package com.example.ted.async;
import android.os.AsyncTask;
public class Worker extends AsyncTask<TextView, String, Boolean> { ❶
 @Override
 protected Boolean doInBackground(TextView... textViews) { ... } ❷
 @Override
 protected void onProgressUpdate(String... values) { ... } ❸
}

❶ The AsyncTask is parameterized; it’s a generic type, so we need to pass arguments to it. These
parameters are <Params,Progress, Result>; see Table 8-1 for more information

❷ This is the only method we are obliged to override. Inside this is where we should put the
program logic, which may take some time to complete

❸ Use this method to communicate progress to the user

Note  A thread is a sequence of instructions much like the sequence of instructions we’ve been
writing inside methods. A thread however, is executed in a special way: it is executed in the
background so that it doesn’t block whatever is running in the foreground (the UI thread). This is the
reason why we need to write instructions that take a long time to finish in threads.

Table 8-1.  Arguments to the AsyncTask Class

Parameter Description

1st arg (Params) What information do you want to pass to the background thread? This is
usually the UI element(s) that you want to update. When you call execute from
MainActivity, you will need to pass this parameter to the AsyncTask. This param
automatically makes its way to the doInBackground method. In our example, this
is a text view object. We want the background thread to have access to this UI
element as it does its work

2nd arg (Progress) What type of information do you want the background thread to pass back
to onProgressUpdate method so you can specify the status of a long running
operation to the user? In our case, we want to update the text attribute of the
text view, so this is a String object

3rd param (Result) What kind of data do you want to use to specify the status of doInBackground
when it finishes the task? In our case, I just wanted it to return true if everything
went well, so the third parameter is a Boolean

165CHAPTER 8: Running in the Background

Listing 8-4.  Worker Class Shell

public class Worker extends AsyncTask<TextView, String, Boolean> {

 private String TAG;
 private TextView tv; ❶

 @Override
 protected Boolean doInBackground(TextView... textViews) {
 tv = textViews[0]; ❷
 TAG = getClass().getSimpleName();
 int i = 0;
 while (i++ < 15) {
 try {
 Thread.sleep(2000);
 publishProgress(String.format("Value of i = %d", i)); ❸
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 return true;
 }

 @Override
 protected void onProgressUpdate(String... values) { ... }
}

❶ The text view is declared at the top of the class so can we access it from onProgressUpdate;
we can’t define it yet because we will only get object reference to this text view when
doInBackground gets called

❷ Now we can define the text view; it was already passed to us when MainActivity called the
execute() method. The parameter of this method is an array, but we know that we only passed
one UI object (the text view), so we get only the first element of the array. We can now store that
reference to TextView (tv) variable that we hoisted up in ❶

❸ On each tick, we will call publishProgress, so it can update the UI

Next, let’s implement the onProgressUpdate method.

Listing 8-5.  onProgressUpdate

protected void onProgressUpdate(String... values) {
 tv.setText(values[0]);
 Log.i(TAG, String.format(values[0]));

}

This method will catch whatever values we passed to the publishProgress method. The
parameter of this method is, again, an array. And since we passed only one string to it, we’ll
only get the first element and set its value as the text attribute of the text view object.

166 CHAPTER 8: Running in the Background

We’ve basically relocated the time-consuming task in the MainActivity and put it inside the
Worker class. The next step is to update the codes in MainActivity.

Listing 8-6.  MainActivity

package com.example.ted.async;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;

public class MainActivity extends AppCompatActivity
 implements View.OnClickListener{

 private String TAG;
 TextView tv;

 @Override
 protected void onCreate(Bundle savedInstanceState) { ❶
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 Button b = (Button) findViewById(R.id.button);
 Button b2 = (Button) findViewById(R.id.button2);
 tv = (TextView) findViewById(R.id.textView);
 TAG = getClass().getSimpleName();

 b.setOnClickListener(this);
 b2.setOnClickListener(new View.OnClickListener(){
 public void onClick(View v) {
 Log.i(TAG, "Clicked");
 }
 });

 }

 public void onClick(View v) {
 Worker worker = new Worker(); ❷
 worker.execute(tv); ❸
 }
}

167CHAPTER 8: Running in the Background

❶ The onCreate block remains unchanged from the previous section; we just set the event handlers
in here

❷ Create an instance of AsyncTask Worker class. Note that the background execution of the
AsyncTask isn’t started by merely creating an instance of it

❸ The execute method starts the background operation. In this method, we pass whatever we
want to update to the AsyncTask. Note that you can pass more than one UI element to the
execute method, since it will be passed as an array in the doInBackground method of the
AsyncTask

Note  The AsyncTask is not meant to run very lengthy operations, things in the order of minutes.
Generally, the AsyncTask is used only for operations that last a couple of seconds. Any longer than
that and WindowManager/ActivityManager may still kill the app. For long running operations, you
need to use Services, but that is beyond the scope of this book.

169© Ted Hagos 2018
T. Hagos, Learn Android Studio 3, https://doi.org/10.1007/978-1-4842-3156-2_9

Chapter 9
Debugging
The examples we’ve been working on so far haven’t been very complex; this is an
introductory book on Android programming using AS3 after all, but soon enough your code
will grow bigger and more complex. As that happens, the chances introducing errors into
your code increase and they will become harder to spot.

There are a couple of ways (and tools) to debug a program: deciding which one to use
depends on what kinds of error you are trying to troubleshoot. Having said that, let’s try to
go over some the most common errors you will encounter.

	Syntax errors. These are produced by the Java compiler; it happens
because you made a mistake in the code. These errors could be simple
ones, like forgetting the semicolon at the end of the statement, or it
could be as complex as type incompatibilities when passing parameters
to a certain method. When these errors happen, AS3 gives you plenty
of visual cues and textual information as to what’s wrong with your
code. Most of the time, it will even point you to the exact location of the
problem

	Runtime exceptions. These are produced by the runtime. They happen
because there is something in the runtime environment that you have
not anticipated and your program cannot proceed; for example, if
you tried to open a specific file but during runtime the file isn’t where
your program expected it to be. When you encounter these errors, the
runtime prints out information that will be helpful in troubleshooting
where the error occurred, or possibly what caused it. You will then walk
through to the code and perform your analysis. You can insert various
print statements in critical junctions of the code to validate and confirm
your path analysis of your code, or alternatively, you can use the AS3
interactive debugger. The debugger lets you walk through your code and
step through it as it executes

https://doi.org/10.1007/978-1-4842-3156-2_9

170 CHAPTER 9: Debugging

	Logic errors. These are probably the most difficult to solve; they’re
caused by you. When the program compiles and runs without problems
but it isn’t behaving as you expected, that is a logic error. You need
to perform code analysis and then insert print statements at critical
junctures of your code or use the interactive debugger (or both)

Syntax Errors
Syntax errors are the easiest to spot among the three kinds of errors, most of the time
anyway; that is because AS3 has done most of the heavy lifting already when comes to
spotting these kinds of errors. The main editor window gives plenty of visual cues and
textual information as to what’s wrong with your code.

Figure 9-1 shows how AS3 helps us spot coding errors; the code is missing semicolons on
two statements. The first things you will notice when you have syntax errors are squiggly
red lines in the main editor; note the squiggly lines on the spot where the semicolons are
missing. AS3 gives you enough visual cues that something is not right with your code. If
you hover your mouse long enough on top of the squiggly lines, AS3 will pop up useful
messages in the form of tool tips.

If you try to “Make” or build the project, AS3 will spew out the compiler errors in the
Messages tool window. If you double-click error icons (the red exclamation marks), most of
the time it will take your cursor directly to the offending line in the main editor.

Syntax errors aren’t always simple to solve, Figure 9-2 shows a very colorful display of AS3
while it’s trying very hard to figure out what’s wrong with the code, but in this case neither the
squiggly lines nor the actual error messages are very helpful. What’s wrong with the code is a
missing opening curly brace on the if statement, but the error messages don’t point to it. If you
encounter these kinds of errors, you can still double-click the exclamation mark, and while it
will not point you to the exact error, you can start in that general area. Usually, the error will be
located prior to the location of the error message: broaden your search and practice looking at
your code critically. Look for structural issues like missing parens or curly braces.

Figure 9-1.  Syntax error example

171CHAPTER 9: Debugging

Runtime Exceptions
Runtime exceptions happen when your program runs into a condition in the environment
which it doesn’t expect. When this happens, the runtime prints out a message that includes
the name of the exception, the line number in the program where the exception happened,
and a bunch of stack trace. The stack trace includes the method that was running before the
exception happened, who called that method, the method that called that method that was
called, and so on and so forth. A prudent step to take is to look where in the program the
error occurred and walk through your code from there.

As you walk through the codes, you will recognize some areas where you are pretty sure you
know what’s going on and some areas where you are less sure. In these cases, you might want
to drop some print statements into the areas where you are less certain about the path your
code will take; the print statements will help you validate if your path assumptions are consistent
with the code’s behavior at runtime. You can use either the “System.out.println” statement of
Java, which is a favorite among coders, but since we are on Android, it’s preferable to use the
“Log” class. The Log class has five static methods that you can use for logging.

	Log.v(String, String) (verbose)

	Log.d(String, String) (debug)

	Log.i(String, String) (information)

Figure 9-2.  A more challenging syntax error

172 CHAPTER 9: Debugging

	Log.w(String, String) (warning)

	Log.e(String, String) (error)

The Log methods take two string arguments. The first one is a tag, and the second is the
actual message you want to log. The “tag” will be useful later when you try to filter through
all the messages that the runtime outputs; it spits out everything that is happening in the
Android runtime. The “tag” will help you wade through the flood of messages later on. The
following code shows an example on how to use one of the Log methods.

private final String TAG = "My Application";
Log.i(TAG, "I got in here");

When you run your app, you can look at the log messages in the Logcat tool window
(Figure 9-3). You can launch it either by clicking its tab in the menu strip at the bottom of the
AS3 window or from the main menu bar, View ➤ Tool Windows ➤ Logcat.

Figure 9-3.  Logcat messages

173CHAPTER 9: Debugging

The Logcat window shows all the messages (default setting) in the Android runtime
(Figure 9-4). You can adjust the log level to either “verbose” (default) which shows all the
messages, or any of the other four levels: “debug”, “info”, “warning”, “error”, or “assert”.

Figure 9-4.  Logcat tool window

Logic Errors
Logic errors are the hardest to find, because neither the compiler nor the runtime can give
you information as to what’s going wrong. The only way you can tell that there is something
wrong is because the program is not behaving as it should. As you progress in your
programming career, you will run into the concept, and hopefully the practice, of unit testing;
this is usually the first line of defense against these kinds of errors, but unfortunately, unit
testing is not within the scope of this book. However, we will discuss a technique that can
also help you solve logic errors.

AS3 includes an interactive debugger which allows you to walk and step through your
code as it is running. To get started on interactive debugging, stop your app if it is currently
running. From the main menu bar, click Run ➤ Debug App.

174 CHAPTER 9: Debugging

After the app is started in debug mode, you can now set breakpoints. Breakpoints are
created by clicking the gutter along the margin of the editor (Figure 9-5). Breakpoints can
be set on lines that have executable statements. You can start adding breakpoints in those
areas of your code where you aren’t sure what’s happening.

Figure 9-5.  Debugger window

Note  Running the app in debug mode isn’t the only way to debug the app. You can also attach
the debugger process in a currently running application. There are situations where this second
technique is useful; for example, when the bug you are trying to solve occurs on very specific
conditions, you may want to run the app for a while, and when you think you are close to the point
of error, you can then attach the debugger.

When you set a breakpoint, there will be a pink circle icon in the gutter, and the whole line
is lit in pink. At this point, your app is already running, and when the execution comes to a
line where you set a breakpoint, the line where the breakpoint is set turns to blue. At this
point, the debugger window opens, the execution of the program is halted, and AS3 enters
the interactive debugging mode. While you are in this state, the state of the application is
displayed in the Debug tool window. During this time, you can inspect values of variables
and even see the threads running in the app.

175CHAPTER 9: Debugging

In the watch window (or variables view, shown in Figure 9-5), you can add a variable, or an
expression, to watch by clicking the plus sign with the spectacles icon. There will be a text
field where you can enter any valid java expression. When you press Enter, the expression
will be evaluated and you will be able to see the result of the expression. To remove a watch
expression, select the expression and click the minus sign icon on the watch window.

To resume program execution, you can click the “Resume program” button at the top
of debugger toolbar, alternatively; you can do it also from the main menu bar, Run ➤
Resume Program. If you want to halt the program before it finishes naturally, you can
click the “Stop app” button on the debugger toolbar: it’s the red square icon. Alternatively,
you can do this also from the main menu bar, Run ➤ Stop app.

177© Ted Hagos 2018
T. Hagos, Learn Android Studio 3, https://doi.org/10.1007/978-1-4842-3156-2_10

Chapter 10
Data Persistence
When applications create or capture data from user inputs, those data will only be available
during the lifetime of the application. You only have access to that data as long as the
application is not yet killed by the runtime. When the application is shut down, all the data
that has been created while the application was running will be lost. Android offers a variety
of ways for us to persist data so that it can outlive the application lifetime and allow us
access to the same data across application life cycles. The storage options available to use
are listed in Table 10-1.

Table 10-1.  Storage options

SharedPreferences This is the simplest form of storage. It’s just a dictionary object that uses
the key/value pair idiom. This is useful if your data is simple enough to be
structured as a dictionary object (key/value pairs). Android stores these
files internally as XML files. SharedPrefs only stores simple data types
(e.g., String and primitive data types). It cannot store more complex data

Internal or external storage Stores data in the device storage (internal) or media storage like
SDCARD (external). If you need to store data that is more complex in
structure than a dictionary can afford (e.g., audio, video files), you may
want to consider using this type of persistence mechanism

SQLite database This one uses a relational database. If you have worked with other
databases before—MS SQL server, MySQL, PostgreSQL, or any other
relational database—this is essentially the same. Data is stored in tables,
and you need to use SQL statements to create, read, update, and delete
data

Network If you can assume that your users will always have Internet access and
you have a database server that is hosted on the Internet, then you can
use this option. This setup can get a bit complicated because you will
need to host the database somewhere (Amazon, Google, any other cloud
provider), provide a REST interface for the data, and use an HTTP library
as a client in the Android app. We won’t cover this topic in this book

(continued)

https://doi.org/10.1007/978-1-4842-3156-2_10

178 CHAPTER 10: Data Persistence

In this chapter, we will look at using the shared preferences and internal storage.

SharedPreferences
SharedPreferences is the simplest and fastest way to persist data in Android. The creation
and retrieval of data uses the dictionary idiom of key/value pair. There are other things in
Android that use this idiom in managing data; some of them you’ve already seen in the past
projects we worked on (e.g., Intents and Bundles). Working with SharedPreferences should
feel very familiar to us.

To create a SharedPreferences file, we need to use the getPreferences method while inside
an Activity class and then specify the mode of access for the file.

SharedPreferences sp = getPreferences(CONTEXT.MODE_PRIVATE);

As per Android documentation, Context.MODE_PRIVATE is what we are supposed to use
because the public mode has already been deprecated since API level 17. Next, we need an
Editor object so we can start modifying data in the newly created file.

SharedPreferences.Editor editor = sp.edit();

Now we can start putting in some data.

edit.putString("name","Gandalf the Grey");
edit.putInt("age", 2019);

The first parameter to the put commands is always the key, and the second parameter is the
value. In the preceding example, “name” and “age” are the keys and “Gandalf the Grey” and
2019 are values, respectively. The put commands, by themselves, do not save the data to
the file, so we need to use either the apply or the commit method.

editor.apply(); // or
editor.commit();

Either the commit or apply method will save the information and persist it in an XML file;
there are only slight differences between these two methods.

	commit—this is synchronous and returns a boolean value, it returns true
if the write operation succeeded

	apply—this also saves the data but does not return any value. It is
executed asynchronously

Content Providers Content Provider is another component on the Android platform; it’s
right up there with Activities, Services, and Broadcast receivers. This
component makes data available to applications other than itself. Think
of it like a database that has public HTTP API layer. Any application that
communicates over HTTP can read and write data to it

Table 10-1.  (continued)

179CHAPTER 10: Data Persistence

Retrieving data from a shared preferences file is just as easy as creating it. To access the
created shared preferences file, we use the same syntax when we created the file in the first
place.

SharedPreferences sp = getPreferences(CONTEXT.MODE_PRIVATE);

The getPreferences method returns an instance of a SharedPreferences object. The first time this
method is called, it will look for an XML file bearing the same name as the activity from which the
method was called; if it doesn’t find that file, it will be created, but if the file already exist, it will be
used instead. Since we already created the file the first time we called getPreferences, Android
won’t be creating a new file, nor will it overwrite what we created before.

Once we have a shared preferences object, we can extract data from it.

sp.getString("name", "default value");
sp.getInt("age", 0);

Demo Project
The project details are as follows.

Note  You don’t need to specify a file name for the shared preferences file; the Android runtime
will automatically assign a name for the newly created file. By convention, the newly created file
follows the name of the activity class from where getPreferences was called from; for example, if
you called getPreferences from MainActivity.java, the name of the shared preferences file will be
MainActivity.xml

Table 10-2.  Project details for SharedPreferences

Application name SharedPreferences

Company domain Use your web site, or invent something; remember that this is in reverse DNS
notation

Project location Use the default

Form factor Phone and tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity (default)

Layout name activity_main (default)

180 CHAPTER 10: Data Persistence

The UI details for the main layout file are shown in Figure 10-1.

The corresponding XML definition is shown in Listing 10-1.

Listing 10-1.  activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.ted.sharedpref.MainActivity"
 tools:layout_editor_absoluteY="81dp">

 <Button
 android:id="@+id/btnload"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="24dp"
 android:text="load"
 app:layout_constraintStart_toStartOf="@+id/etlastname"
 app:layout_constraintTop_toBottomOf="@+id/etlastname"/>

 <Button
 android:id="@+id/btnsave"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

Figure 10-1.  activity_main layout file

181CHAPTER 10: Data Persistence

 android:layout_marginTop="24dp"
 android:text="save"
 app:layout_constraintEnd_toEndOf="@+id/etlastname"
 app:layout_constraintTop_toBottomOf="@+id/etlastname"/>

 <EditText
 android:id="@+id/etfirstname"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginBottom="212dp"
 android:layout_marginTop="36dp"
 android:ems="10"
 android:gravity="center"
 android:hint="Last name"
 android:inputType="textPersonName"
 app:layout_constraintBottom_toTopOf="@+id/textView"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>

 <EditText
 android:id="@+id/etlastname"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginTop="18dp"
 android:ems="10"
 android:gravity="center"
 android:hint="First name"
 android:inputType="textPersonName"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/etfirstname"/>

 <TextView
 android:id="@+id/textView"
 android:layout_width="320dp"
 android:layout_height="0dp"
 android:layout_marginBottom="146dp"
 android:gravity="center"
 android:text="TextView"
 android:textSize="20sp"
 android:textStyle="bold"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/etfirstname"/>
</android.support.constraint.ConstraintLayout>

182 CHAPTER 10: Data Persistence

The basic workflow for this app is as follows:

1.	 Type the last name and first name information in the two text fields
(Figure 10-1)

2.	 When the “SAVE” button is clicked, extract the string values from the
text fields

	Create a shared preferences files (if one does not exist yet)

	Push the last name and first name data into the shared pref file by using one
of the put methods of editor object

	Save the changes

3.	 When the “LOAD” button is clicked

	Retrieve the shared preferences file using the same syntax as when it was
created

	Retrieve the data on the file using one of the get methods

	Show the retrieved data by setting the text attribute of a TextView object

Listing 10-2 shows the MainActivity class with the folded event handlers.

Listing 10-2.  MainActivity with Folded Event Handlers

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 Button btnsave = (Button) findViewById(R.id.btnsave);
 Button btnload = (Button) findViewById(R.id.btnload);

 final EditText etlastname = (EditText) findViewById(R.id.etlastname);
 final EditText etfirstname = (EditText) findViewById(R.id.etfirstname);
 final TextView tv = (TextView) findViewById(R.id.textView);

 btnsave.setOnClickListener(new View.OnClickListener() { ... });

 btnload.setOnClickListener(new View.OnClickListener(){ ... });

 }
}

The object references for the view objects (EditText, TextView, and Button) are all defined
within the onCreate method. We can do this because the event handlers for both our buttons
are created using inner (anonymous classes). This is also the reason why the two EditTexts
and the TextView are declared final. Whenever an inner class will use a member variable of
its enclosing class, that variable needs to be declared final.

183CHAPTER 10: Data Persistence

Listing 10-3.  Save Button

btnsave.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {

 SharedPreferences sp = getPreferences(Context.MODE_PRIVATE); ❶
 SharedPreferences.Editor edit = sp.edit(); ❷

 String lname = etlastname.getText().toString(); ❸
 String fname = etfirstname.getText().toString();

 edit.putString("lname", lname); ❹
 edit.putString("fname", fname);
 edit.apply(); ❺

 Toast.makeText(MainActivity.this, "Saved it", Toast.LENGTH_SHORT).show();
 }
});

❶ Creates the shared preferences file, if one doesn’t exist yet

❷ We can’t save data to the shared preferences file (yet); we need an interface object for it. The
editor objects will do that job

❸ Retrieve whatever the user has typed on the EditText objects and assign them to String variables

❹ Use the editor object to persist data into the shared preferences file

❺ Commit the changes to the file

Listing 10-4.  Load Button

btnload.setOnClickListener(new View.OnClickListener(){
@Override
public void onClick(View view) {
 SharedPreferences sp = getPreferences(Context.MODE_PRIVATE); ❶
 String lname = sp.getString("lname", "na"); ❷
 String fname = sp.getString("fname", "na");
 tv.setText(String.format("%s , %s", lname, fname)); ❸
}
});

❶ Retrieve the shared preferences object by getting a reference to it. The syntax for creating a
shared preferences object is the same as that for retrieving it. Android is clever enough to figure
out that if the file doesn’t exist, you want to create, and if it does exist, you want to retrieve it

❷ Get the data out of the shared pref file using one of the get methods; store it in a String variable

❸ Set the text of the TextView object using the retrieved data from the shared pref file

184 CHAPTER 10: Data Persistence

Listing 10-5.  Complete Code for MainActivity

package com.example.ted.sharedpref;

import android.content.Context;
import android.content.SharedPreferences;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;
import android.widget.Toast;

import org.w3c.dom.Text;

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 Button btnsave = (Button) findViewById(R.id.btnsave);
 Button btnload = (Button) findViewById(R.id.btnload);

 final EditText etlastname = (EditText) findViewById(R.id.etlastname);
 final EditText etfirstname = (EditText) findViewById(R.id.etfirstname);
 final TextView tv = (TextView) findViewById(R.id.textView);

 btnsave.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {

 SharedPreferences sp = getPreferences(Context.MODE_PRIVATE);
 SharedPreferences.Editor edit = sp.edit();

 String lname = etlastname.getText().toString();
 String fname = etfirstname.getText().toString();

 edit.putString("lname", lname);
 edit.putString("fname", fname);
 edit.apply();

 Toast.makeText(MainActivity.this, "Saved it", Toast.LENGTH_SHORT).show();
 }
 });

185CHAPTER 10: Data Persistence

 btnload.setOnClickListener(new View.OnClickListener(){

 @Override
 public void onClick(View view) {
 SharedPreferences sp = getPreferences(Context.MODE_PRIVATE);
 String lname = sp.getString("lname", "na");
 String fname = sp.getString("fname", "na");
 tv.setText(String.format("%s , %s", lname, fname));
 }
 });

 }
}

The XML file that was created is safely tucked away in the internal storage of the Android
device.

Verifying the File
If you want to peek and verify this file, you can use the “Android Device Monitor” tool.
You can launch it from the main menu bar Tools ➤ Android ➤ Android Device Monitor
(shown in Figure 10-2).

Figure 10-2.  Android Device Monitor

186 CHAPTER 10: Data Persistence

The Android Device Monitor is used as a debugging and analysis tool, but we will use it to
take a peek at the preferences file we just created. Go to the File Explorer. From there, drill
down to the folder data ➤ data ➤ fully qualified name of the project, which in my case is
“com.ted.example.sharedpref”. Inside that folder, you will find a folder named “shared_prefs”.
There you will find the file “MainActivity.xml”, which was created by the application. You
cannot open the xml file from within Android Device Monitor, but you can download it to your
computer by pulling the file from the device (see Figure 10-3).

After downloading the file, you can use whatever XML editing tool you wish to open the file.

Listing 10-6.  Contents of the XML File

<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
 <string name="fname">James</string>
 <string name="lname">Gosling</string>
</map>

Note  On the Windows platform, if you encounter some problems launching the Android Device
Monitor, you can shut down AS3 and then launch it again as Administrator.

Note  Files that are created using getPreferences(Context.MODE_PRIVATE) can only be accessed
by the Activity where they were created. You cannot get to that file from another activity. If you
need to share the preferences file across activities, you will need to create “Application Level
SharedPreferences”.

Figure 10-3.  Download a file to your PC

187CHAPTER 10: Data Persistence

Application Level SharedPreferences
It’s not difficult to make the shared preferences file available to other activities; the code
needed to accomplish this isn’t very different from our previous example.

In Figure 10-4, we use the getSharedPreferences method instead of getPreferences (as in
the previous section). The method requires two parameters: the first is the file name and the
second is the mode of access. This method looks for a file name as specified by the first
parameter. If it doesn’t find the file, it will be created for the first time.

SharedPreferences sp = getSharedPreferences(filename, Context.MODE);

Next, we get an editor object using the shared preferences object and start putting some
data to the file using some variation of the put command. After that, we can save the file.

Editor edit = sp.edit();
edit.putString("name", "Gandalf the grey");
edit.apply();

At this point, we launch a second activity by creating an explicit intent and calling
startActivity.

When the second activity is created, we can open the shared preferences file to start the
data retrieval process.

SharedPreferences sp = getSharedPreferences(file, Context.MODE_PRIVATE);
String lname = sp.getString("name", "na");

The getSharedPreferences method looks for the file name as specified in the first argument
of the method. Since we’ve already created this file back in the MainActivity, instead of
creating a new one, the existing file will be opened.

Figure 10-4.  Sequence of events

188 CHAPTER 10: Data Persistence

We can explore this further on a demo project. We could create an entirely new project but
since the difference of the new project from the previous project will be very small, you might
want to just make a copy of the previous project and do some minor edits. Follow the next
step to copy the previous project.

1.	 Close any open project in AS3; from the main menu bar File ➤ Close
project

2.	 Use the file manager of your OS (Finder for macOS, Explorer for
Windows) and copy the folder SharedPref to SharedPref2. If you
need the location of the project file, AS3 displays the location in the
Project tool window (Figure 10-5)

3.	 Open the project from the main menu bar File ➤ Open. You may see
some warnings like those shown in Figure 10-6. Click OK

Figure 10-5.  Project location

Figure 10-6.  Warning

189CHAPTER 10: Data Persistence

4.	 You will need to change some identifiers in the new project; at the
very least, change the package name to sharedpref2. Let’s use the
refactoring facilities of AS3 to facilitate this change. Highlight the
package name as shown in Figure 10-7: right-click Refactor ➤
Rename

5.	 Some warnings will be shown by AS3 (Figure 10-8); click Rename
package

Figure 10-7.  Refactor

Figure 10-8.  Refactor warning

190 CHAPTER 10: Data Persistence

6.	 AS3 will ask for the new name of the package We want to rename
it to sharedpref2 (Figure 10-9). Type in the new name and click
Refactor

7.	 Some more warnings will appear from AS3 before doing the refactor
(Figure 10-10). Review the message, then click Do Refactor

8.	 AS3 will show some warnings. Our name change messed up the
build system a bit. Click Sync Now (Figure 10-11) to fix the gradle
issue

Figure 10-9.  Refactor to new name

Figure 10-10.  Some more warnings

Figure 10-11.  Gradle warning

191CHAPTER 10: Data Persistence

9.	 When all the errors and warnings have settled in, we need to clean
the project. From the main menu bar, click Build ➤ Clean Project.
Then rebuild the project by clicking Build ➤ Rebuild Project

10.	 The next step is to run the project in the emulator. We need to be
sure that it’s still running before we make any changes to it

11.	 Create a second, empty activity for this project (Table 10-3)

Listing 10-7 shows the layout file for the app.

Listing 10-7.  activity_second.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.ted.sharedpref2.Second">

 <TextView
 android:id="@+id/textView2"
 android:layout_width="305dp"
 android:layout_height="65dp"
 android:gravity="center"
 android:text="TextView"
 android:textSize="20sp"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintRight_toRightOf="parent"
 tools:layout_editor_absoluteY="97dp"/>
</android.support.constraint.ConstraintLayout>

Figure 10-12 shows the UI.

Table 10-3.  Details of New Activity

Activity name Second

Layout name activity_second (default)

192 CHAPTER 10: Data Persistence

The only view object in the Second Activity is a TextView. We will use this to display the
contents of the shared preferences xml file.

Let’s take a look at how to create the shared file from MainActivity.java.

Listing 10-8.  Creation of SharedPref File (SAVE Button)

btnsave.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {

 String file = getPackageName() + "myFile"; ❶
 SharedPreferences sp = getSharedPreferences(file, Context.MODE_PRIVATE); ❷
 SharedPreferences.Editor edit = sp.edit();

 String lname = etlastname.getText().toString();
 String fname = etfirstname.getText().toString();

 edit.putString("lname", lname);
 edit.putString("fname", fname);
 edit.apply();

 Toast.makeText(MainActivity.this, "Saved it", Toast.LENGTH_SHORT).show();
 }
});

Figure 10-12.  activity_second

193CHAPTER 10: Data Persistence

❶ The file name for a sharedpref should ideally be <package name of project> + <filename>. The
getPackage( ) method should return the package name

❷ Pass the file name and the mode to the getSharedPreferences method in order to create the file

Let’s change the for the LOAD button. Instead of opening the shared pref file, let’s open the
Second Activity.

Listing 10-9.  Code for LOAD Button

btnload.setOnClickListener(new View.OnClickListener(){

 @Override
 public void onClick(View view) {
 Intent intent = new Intent(MainActivity.this, Second.class);
 startActivity(intent);
 }
});

We will open the shared pref file from within the second activity, and we’ll do it with the
onCreate method.

Listing 10-10.  Complete Code for Second Activity

package com.example.ted.sharedpref2;

import android.content.Context;
import android.content.SharedPreferences;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.widget.TextView;

public class Second extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_second);

 TextView tv = (TextView) findViewById(R.id.textView2);
 String file = getPackageName() + "myFile";
 SharedPreferences sp = getSharedPreferences(file, Context.MODE_PRIVATE);

 String lname = sp.getString("lname", "na");
 String fname = sp.getString("fname", "na");
 tv.setText(String.format("%s , %s", lname, fname)) ;

 }
}

The complete code listing for MainActivity is shown in Listing 10-11 for your reference.

194 CHAPTER 10: Data Persistence

Listing 10-11.  Complete Code for MainActivity

package com.example.ted.sharedpref2;

import android.content.Context;
import android.content.Intent;
import android.content.SharedPreferences;
import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.View;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;
import android.widget.Toast;

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 Button btnsave = (Button) findViewById(R.id.btnsave);
 Button btnload = (Button) findViewById(R.id.btnload);

 final EditText etlastname = (EditText) findViewById(R.id.etlastname);
 final EditText etfirstname = (EditText) findViewById(R.id.etfirstname);
 final TextView tv = (TextView) findViewById(R.id.textView);

 btnsave.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {

 String file = getPackageName() + "myFile";
 SharedPreferences sp = getSharedPreferences(file, Context.MODE_PRIVATE);
 SharedPreferences.Editor edit = sp.edit();

 String lname = etlastname.getText().toString();
 String fname = etfirstname.getText().toString();

 edit.putString("lname", lname);
 edit.putString("fname", fname);
 edit.apply();

 Toast.makeText(MainActivity.this, "Saved it", Toast.LENGTH_SHORT).show();
 }
 });

 btnload.setOnClickListener (new View.OnClickListener(){

 @Override
 public void onClick(View view) {

195CHAPTER 10: Data Persistence

 /*
 SharedPreferences sp = getPreferences(Context.MODE_PRIVATE);
 String lname = sp.getString("lname", "na");
 String fname = sp.getString("fname", "na");
 tv.setText(String.format("%s , %s", lname, fname));
 */
 Intent intent = new Intent(MainActivity.this, Second.class);
 startActivity(intent);
 }
 });

 }
}

Using shared preferences is the easiest and quickest way to save application data, but it
has some limitations. You can only save primitive types and string types; if you need to work
with more complex file types (e.g., audio, video or image), you cannot accomplish that with
shared preferences.

Internal Storage
When you need to work with more complex types like audio, video, or images, you can
use either the internal storage (internal memory of device) or the external storage (publicly
accessible memory, e.g., SDCARD).

An external storage can

	be accessed by the app that created it, other apps, and even the user

	outlive the app, even after it has been uninstalled

An internal storage

	can only be accessed by app that created it; no other app can access it

	will be deleted when the app is uninstalled

In this chapter, we will only work with internal storage.

How to Work with Internal Storage
To save data to an internal storage, we first need to create a FileInputStream object; this
can be managed by the openFileInput method of the Activity class. When a file is opened
for writing, all the previous contents of the file will be discarded. It is possible, however, to
open a file such that we can append new contents, thus preserving the previous contents.

FileOutputStream fout = openFileOutput(<name of file>, Context.MODE_APPEND);

If you don’t want to open the file in append mode, simply pass Context.MODE_PRIVATE as the
second parameter instead.

196 CHAPTER 10: Data Persistence

Once the file is prepared, we can write data to it.

fout.write(<String data>);

The methods openFileOutput and write may both throw Exceptions, and as such they need
to be handled either by rethrowing the Exception or handling it using a try-catch construct.
In our example, we used the try-catch blocks to handle the possible Exceptions.

Reading data from an internal storage is equally simple. It’s a lot like the process of writing
data; we simply need to prepare a FileInputStream and then read from it.

FileInputStream fin = openFileInput(<name of file>);

The file input is a stream. The basic idea is to read bytes from it a chunk at a time until we
reach the end of the file.

Let’s explore the details in a demo project.

Demo Project
We will show how to develop the Internal Storage Application as shown in Table 10-4.

The details for setting up the only layout file (activity_main) are shown in Figure 10-13 and
Listing 10-12.

Table 10-4.  Project details for InternalStorage

Application name InternalStorage

Project location Use the default

Form factor Phone and tablet only

Minimum SDK API 23 Marshmallow

Type of activity Empty

Activity name MainActivity (default)

Layout name activity_main (default)

197CHAPTER 10: Data Persistence

The layout file is typical of our usual demo project, but the following needs to be pointed out.

1.	 The EditText is supposed to capture multiple lines of text, so you
need to set its “inputType” attribute to “textMultiline”. You can do
this in the attribute inspector window while in design mode, or
alternatively, you can write in the XML file directly, as shown in
Listing 10-12.

2.	 We are not going to handle the click events programmatically, so
we’ve set the values for the “onClick” attributes of both buttons

Listing 10-12.  activity_main.xml

<?xml version="1.0" encoding="utf-8"?>
<android.support.constraint.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 tools:context="com.example.ted.internalstorage.MainActivity">

Figure 10-13.  activity_main

198 CHAPTER 10: Data Persistence

 <EditText
 android:id="@+id/edittext"
 android:layout_width="359dp"
 android:layout_height="193dp"
 android:layout_marginEnd="16dp"
 android:layout_marginLeft="16dp"
 android:layout_marginTop="16dp"
 android:ems="10"
 android:inputType="textMultiLine" //This makes it multiline
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintTop_toTopOf="parent"/>

 <Button
 android:id="@+id/btnsave"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginLeft="24dp"
 android:layout_marginTop="11dp"
 android:onClick="saveData"
 android:text="Save"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/edittext"/>

 <Button
 android:id="@+id/btnload"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_marginStart="21dp"
 android:layout_marginTop="11dp"
 android:onClick="loadData"
 android:text="Load"
 app:layout_constraintStart_toEndOf="@+id/btnsave"
 app:layout_constraintTop_toBottomOf="@+id/edittext"/>

 <TextView
 android:id="@+id/textview"
 android:layout_width="360dp"
 android:layout_height="0dp"
 android:layout_marginBottom="9dp"
 android:layout_marginLeft="16dp"
 android:layout_marginTop="14dp"
 android:text="TextView"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintLeft_toLeftOf="parent"
 app:layout_constraintTop_toBottomOf="@+id/btnsave"/>
</android.support.constraint.ConstraintLayout>

Listing 10-13 shows the structure for MainActivity. The saveData method is associated to the
“SAVE” button, and loadData is associated to the “LOAD” button.

199CHAPTER 10: Data Persistence

Listing 10-13.  Overview of MainActivity

public class MainActivity extends AppCompatActivity {

 EditText editText; ❶
 private String filename = "myfile.txt"; ❷

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 editText = (EditText) findViewById(R.id.edittext);

 }

 public void saveData(View v) { ... }

 public void loadData(View v) { ... }

}

❶ editText is defined as a member variable because we will need to reference this from both
saveData and loadData

❷ File name is defined as a member variable for the same reason as in no. 1

Listing 10-14.  Code for saveData

public void saveData(View v) {
 String str = editText.getText().toString();

 FileOutputStream out = null;
 try {
 out = openFileOutput(filename, Context.MODE_APPEND); ❶
 out.write(str.getBytes()); ❷
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 // You should do more logging here
 } catch (IOException e) {
 e.printStackTrace();
 }
 finally {
 if (out != null) { ❸
 try {
 out.close(); ❹
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }

}

200 CHAPTER 10: Data Persistence

❶ openFileOutput gets a file ready for writing. The first argument is the name of the file to be
created, and the second argument decides whether we can append to the file, or whether it will it
be overwritten each time we open the file. In this case, we chose to go with the append mode so
we can retain the original contents of the file. This method may throw a “FileNotFoundException”;
that’s why it needs to be surrounded in a try-catch block

❷ Performs the actual writing of the data to the disk. It can only work with bytes, though; that’s
why we needed the getBytes method. This method may throw an “IOException”; that’s why we
needed to specify it in the catch clause

❸ We need to know that the FileOutputStream object is not null, before we proceed any further

❹ This closes the file and releases any system resources associated with it. This method may throw
an “IOException”, hence the need for a nested try-catch construction

Listing 10-15.  Code for loadData

public void loadData(View v) {

 TextView tv = (TextView) findViewById(R.id.textview);
 FileInputStream in = null;
 StringBuilder sb = new StringBuilder();

 try {
 in = openFileInput(filename); ❶

 int read = 0;
 while((read = in.read()) != -1) { ❷
 sb.append((char) read); ❸
 }
 tv.setText(sb.toString()); ❹

 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 finally {
 if (in != null) {
 try {
 in.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 }
}

201CHAPTER 10: Data Persistence

❶ Get the file ready for reading. This method may throw a “FileNotFoundException”; that’s why it
needs to be surrounded in a try-catch block, like openFileOuput

❷ The read method of the input stream reads one byte of data at a time, and when it reaches the
end of the file where there’s nothing more to read, it will return -1

❸ The in.read( ) method returns an int; we need to cast it to a char so we can use for the
StringBuilder

❹ When we get to the end of the file, we can convert the StringBuilder object to String and set it as
the text for Text View

You can inspect the contents of the internal storage file(s) by using the Android Device
Monitor. The file is located in data ➤ data ➤ <project package + name>.

203© Ted Hagos 2018
T. Hagos, Learn Android Studio 3, https://doi.org/10.1007/978-1-4842-3156-2_11

Chapter 11
App Distribution
At some point, you might want to distribute your application to a wide audience. Android
apps can be distributed quite freely and without many restrictions: you can make it available
as a download in your web site or even e-mail the app directly to the users, but many
developers choose to distribute their app on a marketplace like Google or Amazon to
maximize reach. Regardless of how you intend to distribute, there are certain steps you need
to perform, or at least be mindful of, before you can release the app to the public.

Publishing an application can be a very involved activity, and it’s not limited to the technical
and procedural aspects of app distribution such as creating an account on developer.
android.com, making polished icons, and signing your app. It involves creating copy
and promotional text, social media activities, and many other things that are not at all
technological in nature. This chapter will only focus on the technical requirements of app
distribution. Log in to the Google Account that will act as the Account Owner for your
Developer Account.

There are roughly two stages to publishing an application; they are briefly discussed in the
following.

	1.	 Preparing the app for release. In this stage, you need to clean up
your application and sanitize it before release. You’ll want to remove
debug information, settings, and logs which were used during
development. You will also need to think about icons and other
visual assets for the app. During this stage, it’s a good idea to test
your app on an actual device; on a tablet or a phone, or on both.
Most importantly, you will need to sign the application with a digital
certificate

	2.	 Releasing the app. During this stage, you’ll need to publicize, sell,
and distribute it. If you intend to release your app in the Google
marketplace, you’ll need to sign up for a publisher account and use
the developer console of Google Play to publish

http://agilemanifesto.org/
http://developer.android.com/
http://developer.android.com/

204 CHAPTER 11: App Distribution

Preparing the App for Release
This section outlines and discusses some important things to consider before releasing an
app for distribution. The following list gives us an idea of the things we need to consider.

1.	 Prepare materials and assets for release

2.	 Configure the app for release

3.	 Build a release-ready application

Prepare Materials and Assets for Release
An application is more than just the program code. You need to start thinking about
application icons and other graphical assets for your app if you want to give it a bit of
professional polish. An application icon helps the users identify your app as it sits on
the device’s home screen. This icon also appears in a couple of other areas, such as the
launcher window and the downloads section; more importantly, if you are publishing your
app in the Google marketplace, this icon will be displayed there too. The app icon may play
a major role in creating the first impressions to your would-be users, so it is a good idea to
put some work into this and to read Google’s guidelines for app icons, which can be found
here: http://bit.ly/androidreleaseiconguidelines.

Other things to consider if you will publish the app in Google’s marketplace are graphical
assets like screen captures and the text for promotional copy. Make sure to read
Google’s guidelines for graphical assets, which can be found here: http://bit.ly/
androidreleasegraphicassets.

Configure the App for Release
Once you are ready with the application assets, you can now make changes to the app’s
configuration to gear it up for a proper release. The things mentioned in this section are
by no means mandatory, but it’s a good idea to go through them before building a release
version.

Check the package name. In previous chapters, you may not have paid attention to the
package name because we were building apps that were never intended to be released:
those apps were our playground. That needs to change when you intend to release the app
in a marketplace. The package name makes the app unique across the marketplace, and
once you have decided on a package name, you will not be able to change it anymore, so
give it some thought.

Remove logging and debugging information. Debugging and logging information are very
useful, indispensable even, during development, but when you are about to release the app,
you should strip it of all debugging and logging information. The debugging information
is easy enough to deal with; you simply need to remove the android:debuggable attribute

http://bit.ly/androidreleaseiconguidelines
http://bit.ly/androidreleasegraphicassets
http://bit.ly/androidreleasegraphicassets

205CHAPTER 11: App Distribution

in the <application> tag of the Manifest file. The same cannot be said about the logging
information, unfortunately. There are various approaches to the log issue: the solutions can
be as simple (but tedious) as manually removing all Log statements or as sophisticated as
writing sed or awk programs to automatically strip away the Log calls. Some people deal
with the log issues by configuring ProGuard (which is outside the scope of this book), and
some others would go as far as using a third-party library like Timber (a GitHub project) to
replace Android’s Log class. Regardless of what approach you take, just be mindful that you
need to strip away the Log statements before you build for release.

Check the application permissions. Sometime during development, you may have
experimented on some features of the application, and you may have set permissions on the
manifest like permission to use the network, write to external storage, and so forth. Review
the <uses-permission> tag on the manifest and make sure that you don’t grant permissions
that the application does not need.

Remote servers and URLs. If your application relies on web APIs or cloud services, make
sure that the release build of the app is using production URLs and not test paths. You may
have been given sandboxes and test URLs during development; you need to switch them up
to the production version.

Build a Release-Ready Application
Up until this point, the way we deployed applications to either a mobile device or an
emulator was very straightforward: we wrote the codes, clicked “Run”, and then saw the app
running on the target device. All files are packaged into an APK file and deployed without
much intervention from the programmer. What you may not be aware of is that AS3 performs
the important task of signing the APK with a certificate before delivering it to the target
device. This certificate, however, is a debug certificate, and while it’s good for purposes of
testing, it’s not good for production use, and most app stores, including Google, will not
accept an application that is signed with a debug certificate for publishing. To distribute
an app, it needs to be signed with a digital certificate, and we will use AS3 to generate it.
This certificate does not need to be signed by a certificate authority like Verisign or Thawte;
Android allows us to use a self-signed certificate. This section will detail the steps on how to
generate a signed APK and how to create a self-signed certificate.

206 CHAPTER 11: App Distribution

Click “Next”.

Figure 11-1.  Select the module

Figure 11-2.  Keystore dialog

From the main menu, click Build ➤ Generate Signed APK.

207CHAPTER 11: App Distribution

We don’t have a JKS (Java key store) file yet; we will create a new one. Click the “Create
new …” button.

In the next dialog window, provide all necessary information.

Note  A JKS is a repository of certificates where private keys and symmetric keys are also stored.
When created, this is typically a file.

Figure 11-3.  New KeyStore

Keystore

	Key store path—The location where you want to keep the keystore

	Password—This is the password for the keystore

Key

	Alias—This alias identifies the key

	Password—Password for the key; this is not the same password as the
keystore’s, but you can use the same password if you like

208 CHAPTER 11: App Distribution

	Validity (years)—The default is 25 years; just accept this default. If you
want to publish on Google Play, the certificate must be valid until the
end of October 2033, so, the 25-year default value should be fine

	Other information—Only the first and last name fields are required

Click “OK” to proceed to the next dialog.

Figure 11-4.  Keystore window

Now that the JKS file is created, the keystore dialog window is populated with it. Click
“Next”.

209CHAPTER 11: App Distribution

Figure 11-5.  Signed APK dialog

Remember the APK destination folder; this is where you will find the generated and signed
APK later. Also, make sure that the build type is set to “release”.

Figure 11-6.  Location of the signed APK

At this point, you have an APK file that users can install on their devices. The file
“app-release.apk” as shown in Figure 11-6 is the actual file you will submit to Google’s
marketplace.

210 CHAPTER 11: App Distribution

Figure 11-7.  Sign up for a developer account

Releasing the App
Before you can submit your app to Google Play, you will need a developer account. If you
don’t have one yet, you can sign up at https://developer.android.com; then head over to
the Play Console.

Sign in with a Google account, read and agree to the developer agreement, and finally,
proceed to payment.

https://developer.android.com/

211CHAPTER 11: App Distribution

Figure 11-8.  Google Play Console sign-up

212 CHAPTER 11: App Distribution

Once you have completed the registration and payment, you will now have access to the
Google Play Console.

Figure 11-9.  Play Console

This is where you can start the process of submitting your app to the store. Click the “Create
application” button to get started.

213© Ted Hagos 2018
T. Hagos, Learn Android Studio 3, https://doi.org/10.1007/978-1-4842-3156-2

Appendix A
Introduction to Java
The Java platform consists of a couple of things: a programming language, the virtual
machine, and a set of built-in libraries and technology frameworks. I would imagine
that most people would think of Java only as the programming language: that is quite
understandable since the language is probably the most prominent part of the platform and
hence has the most mind share. Just remember that Java is an umbrella term we use to refer
to the platform.

The Java Language
The Java language is not so old, as far as programming languages go. James Gosling
worked on it in the early part of the 90s and released it in 1995. It is barely 22 years old at
the time of this writing. In contrast, the C language is almost 47 years old (C was released in
1969).

If you have background in other languages such as JavaScript, C++, or C#, Java may look
familiar because all of them share some semblance to the C language. By the way, Java is
in no way related to JavaScript. JavaScript is not a derivative of Java nor was it inspired by
Java. Java is related to JavaScript the same way as car is related to carpet. They just have
common letters in their names.

Java is a high-level language. It provides a fair amount of abstraction above the physical
machine that it runs on. But you can dive down and perform some decent low-level
operations on the bit level if you want to. It is also a general-purpose language. It wasn’t
designed just to program web applications or anything specific. It is not a domain-specific
language the way Sinatra (Ruby) or Express (NodeJS) is. You can build pretty much anything
you can imagine.

https://doi.org/10.1007/978-1-4842-3156-2

214 APPENDIX A: Introduction to Java

Virtual Machine
Java is a compiled language. Like other languages such as C or C++, you will write your
programming instructions in a source file using a somewhat English-like language. This
source file will be compiled into an object file. An object file contains a set of instructions
that a machine can understand and execute. In Java, an object file or executable file is
called byte code. The byte code is what a Java virtual machine, or JVM, can execute.

Byte codes, however, cannot be executed directly by the operating system (OS). They
do not contain the same instructions, nor are they structured like the regular EXE files or
other forms of portable executable. The OS does not know what to do with byte code.
They should be executed within a virtual machine. The Java runtime engine (JRE) is such a
machine.

Java is portable at the byte code level. You can write and compile your program in one
OS, say Windows, and run it on another OS without requiring any modification. Sun
Microsystems, the former custodian of the Java technology, came up with the WORA (Write
Once Run Anywhere) slogan during the early days of Java.

The basic idea is to write the program source in a file that has a .java extension. A
compilation process which results in a byte code (.class file) happens. The byte code is
executed within a JRE. A JRE is also known as a JVM. Each operating system has its own
version of the virtual machine, but what runs on one virtual machine will run on all.

Editions
You can use Java to build applications for a variety of architectures. Java comes in several
editions. The Java SE (Java Standard Edition), which is the topic of this book, can be used
to build desktop applications. Java Enterprise Edition (Java EE) can be used to build web
applications, web services, high-availability back-end processes, and so on. Java Mobile
Edition (Java ME) can be used to build apps for mobile or embedded devices. However, for
mobile devices like Android phones/tablets, you might want to consider the Android SDK.
By the way, the native language for the Android platform is Java.

Figure A-1.  Work cycle

215APPENDIX A: Introduction to Java

Setup
The JDK installer is available for Windows, Linux, and macOS. The installer package can be
downloaded from the Oracle download page for Java. Currently, the stable version of the
JDK is v8.

www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

You must agree to the license agreement before you can download the installer.

To install the JDK on macOS, double-click the downloaded dmg file and follow the prompts.
The installer takes care of updating the system path, so you don’t need to perform any
action after the installation.

To install the JDK on Windows, double-click the downloaded zipped file and follow the
prompts. Unlike in macOS, you must perform extra configuration after the setup. You need
to (1) include java/bin in your OS system path and (2) include a CLASSPATH definition in the
System Path.

1.	 Click Start ➤ Control Panel ➤ System

2.	 Click Advanced ➤ Environment Variables

3.	 Add the location of the bin folder to the system “PATH” variable.

4.	 It is typical for the PATH variable to look like the following

5.	 C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files\Java\
jdk1.8.0\bin;

If you are a Linux user, you may have seen the tar ball and rpm options on the download;
you may use them and install it like you would install any other software on your Linux
platform. Alternatively, you may install the JDK from the repositories. This instruction applies
to Debian and its derivatives: Ubuntu, Mint, and so on.

sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java8-installer
sudo update-alternatives --config java

Tip  If you want to be able to invoke the JDK tools from anywhere in your system, add the full path
of “JDK\bin” to the system PATH variable. If you accepted the default settings during the JDK setup,
it would have been installed on “C:\Program Files\Java\jdk.18.0\bin”. Here is how to set the path
variable in Windows 10.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

216 APPENDIX A: Introduction to Java

Hello World
We’ll start with the basic task of writing a simple program. This may seem like a silly program
that lacks any real-world value, but it does have some educational value. The program is
instructive on how to compile and run Java programs. There will be a couple of things that
may not be immediately obvious nor will they make sense when we write the code, but we
won’t be bogged down by those details (at least not yet). We will sidestep some details and
behaviors of the program, but we will circle back to them in later sections.

Here’s what you will need for this exercise:

	A programmer’s editor. It doesn’t have to be very advanced or fancy.
Notepad, GEdit, or TextEdit would do but there are plenty of other
choices for a decent programmer’s editor: Sublime, Atom, and
Visual Studio Code are decent choices. If you are already using a
programmer’s editor and it’s not on this list, use that. Go with the one
you are most familiar with

	A terminal application. For Linux and macOS users, go for the terminal
of your choice. For Windows users, this will be cmd.exe. You can launch
this by clicking “Start”; then type cmd.exe and press Enter

Choose a folder where you can save program source files. The best location is one where
you have read/write and execute permissions; this location is most likely your home folder.

Windows \Users\yourUserName

macOS /Users/yourUserName

Linux /home/yourUserName

1.	 Launch a terminal window and go to your home folder

2.	 Create a folder named “practice”. You can do this with the
commands md practice and mkdir practice, for Windows and Linux/
macOS, respectively

3.	 Switch to the “practice” directory you that you just created—cd
practice

4.	 Create a file named “Hello.java”; this can be done with the command
touch Hello.java. There is no simple way for Windows to create a
named empty file, so you may just have to create the file using your
program editor and save the file in the “practice” folder

5.	 Edit “Hello.java” and write our first program

This program, while short and simple, is hard to explain to beginners because it contains
language elements that can be dense if you deal with them with sufficient detail. So, we
need to take this at face value for now and trust that this is how things are done in Java.
Nevertheless, we will skim through some of program elements.

217APPENDIX A: Introduction to Java

Listing A-1.  /practice/Hello.java

class Hello { 
 // Let's print something to STDOUT 
 public static void main(String[] args) { 
 System.out.println("Hello World\n"); 
 }
}

 class is special word. This means you want to create a class. “Hello” is the name of that class. It
is a name chosen by the programmer (us)

 This line begins with //, which is a comment. Anything after the slashes until the end of the line is
ignored by the compiler. So, this is a good way to leave breadcrumbs of information inside your
program

 main is function, but Java doesn’t call them as such. Instead, functions are called methods; let’s
get used to that. A method is a named collection of executable statements. You will create lots of
methods in the future but just remember that the main method as shown here is special. It is the
entry point to the program. All programs must have entry points. If a program does not have an
entry point, the runtime engine will complain and you will get a runtime error

 println is a method that takes a String argument (it also takes other kinds of arguments, but in
this case, it took a String) and prints it on the screen. Inside the println method are the worlds
“Hello World” enclosed in double quotes. In Java, words like these are called Strings and make
up a kind of data that we will use quite a lot. Also, this line is a good example of what a statement
looks like. Note that this statement was terminated with a semicolon. Statements in Java are
like sentences; they need to be punctuated. The Java compiler knows that you are finished with
the statement when it sees the semicolon. We could have written more println statements in this
example, but we only wrote one. It needs only one for now

The only interesting piece of code in Listing A-1 is the one that outputs something onscreen.
The rest of the code is just scaffolding, but the scaffolding is necessary. We cannot do
away with it. The next steps are to compile and run the program; you can do that with the
following commands.

javac Hello.java
java Hello

The first command reads the Hello.java source file, compiles it to byte code, and produces
the executable file named “Hello.class”. If you look inside the “practice” folder, you will find
this class file. The second command launches the JVM and runs the “Hello” program inside
it. Notice that we didn’t include the .class extension when we ran our program.

This is a good time to mention that Java is case sensitive, so "java hello" is lexically and
materially different than "java Hello". The latter would run and work as expected and the
former will result in a runtime error.

If you typed the sample code as shown in Listing A-1, you should not encounter any kind of
error and the program would have worked as expected. You should be able to see the string
“Hello World” on your screen.

218 APPENDIX A: Introduction to Java

Program Structure
When you are learning a foreign language, you probably started with the parts of its speech,
what kind of rules govern them, how you can put things together, how are they punctuated,
and so forth. When learning a programming language, we will have similar concerns. We
need to learn what the parts are, along with how they are organized and put together.

Statements Statements are the equivalent of sentences in the English language. These are
executable statements in Java. Statements are terminated by a semicolon. In our
earlier example, you have seen System.out.println(“Hello World”);—such is an
example of a statement. Not all statements are as simple as that; some statements
may contain multiple expressions joined by multiple operators

Comments Comments are ignored by the compiler. It’s a good way to document program
code and it can benefit other people who read your code. It can even benefit you.
Comments allow us to dump our thought processes and intentions at the time of
writing the code. There are three ways to comment codes

// THIS IS A COMMENT

A single line comment, sometimes called an inline comment. The compiler will
ignore everything to the right of the two forward slashes until the end of the line

/*
 Statement here

 Another statement

*/

This is the C-style comment. It is called that because it came primarily from the C
language. You can use this multiline style to comment multiple lines of statements

/**

 Statement here

 Another statement

*/

This is almost the same as the C-style multiline comment. This type of comment,
though, can be used to generate Java API style documentation

219APPENDIX A: Introduction to Java

White space Java is tokenized language; it doesn’t care about white or blank space, so you can
write your code like this

class Hello { public static void main (String [] args) { System.out.
println("Hello\n");}}

Or like this

class Hello {

public static void main (String [] args) {

System.out.println("Hello\n");

}

}

The compiler doesn’t care. So, write your codes for the benefit of humans who may
be unlucky enough to maintain our programs. Forget the compiler; it doesn’t care
about spaces anyway. Use white spaces to beautify the code and make it extremely
readable, something like this:

class Hello {

 public static void main (String [] args) {

 System.out.println("Hello\n");

 }

}

Blocks Oftentimes, you may need to write a bunch of statements and you will need to
group them together. Blocks allow us to do just that. The lexical symbol for blocks
are a pair of French braces; they are also sometimes called curly or squiggly braces.
Blocks are used by classes, interfaces, and methods. Occasionally, they are also
used to define static and instance blocks; these last two are not very common but
you may need them from time to time

220 APPENDIX A: Introduction to Java

Variables A variable is something that we use to manipulate data, or more precisely a value.
Values are things that you can store, manipulate, print, or push or pull from the
network. For us to be able to work with values, we need to put them inside variables.

String name;

The preceding statement declares a variable named “name”, supposedly to hold
the value of a person’s name. In Java, when we declare a variable we must tell the
compiler what kind of value it is expected to hold. In this case, it’s a String value.

name = "John Doe";

The preceding statement defines the “name” variable; we assigned it the literal
String value “John Doe”. The assignment of value was facilitated by the equal sign
(assignment operator). The declaration and definition of variables could be done as
a two-step process, as you have seen in the preceding, but it doesn’t have to be.
The declaration and definition can be written in a single statement.

String name = "John Doe";

int age = 35;

String email = "jdoe@gmail.com"

The concept of variable as they relate to values might be easier to grasp if you
visualize the variables as some sort of a named location and the location is a box,
the contents of which holds the value

Operators Operators are easy to grasp because what they do will look immediately obvious.
They behave like how you would expect them to. There are various kinds of
operators in Java: some you can use for arithmetic, some are used for testing
equalities (or inequalities), and some are even used for low-level data manipulation.

assignment =

arithmetic + - / * %

unary + - ++ — !

equality and relational == < > >= <= !=

conditional && || ? :

bitwise and bit shift ~ >> << >>> & | ^

Figure A-2.  Variable representation

221APPENDIX A: Introduction to Java

Methods Methods a.k.a. functions are a collection of executable statements. Java
programmers don’t refer to these as functions, so you better get used to calling
them methods. Anyway, these collections of statements are packaged as one unit,
and whenever you need to execute those collection statements, you only need to
invoke the name of the method. Methods may or may not return values; they may or
may not also accept arguments.

Listing A-2.

public static void main (String []args) {

}

The method as shown in Listing A-2 accepts arguments, an array of Strings to be
specific:

Listing A-3.

int getSum(int a, int b) {

 int result = a + b;

 return result;

}

The method shown in Listing A-3 accepts two integer arguments and returns an
integer result

Classes The class is a collection of variable and method declarations. When classes are
instantiated, objects are created as a result; this is the reason why classes are
sometimes called object factories

Listing A-4.

class Person {

 String fname;

 String lname;

}

Person p1 = new Person();

Listing A-4 defines a new data structure called Person by declaring a class with
the same name. It has two properties, “lname” and “fname”, for last name and
first name, respectively. An object named “p1” is created from the definition of the
Person class

222 APPENDIX A: Introduction to Java

keywords There are several reserved words in the Java language. You cannot use these words
in your program because they have been, well, reserved. They mean something
special when the compiler sees them in your program. Best not to use them as
class, method, or variable name.

Table A-1. Java Reserved Words

byte for Protected this break

short if Package super continue

int else import final strictfp

long switch extends throw synchronized

float class implements throws new

double interface try transient native

char abstract catch volatile assert

boolean void finally static const

while public Instanceof enum goto

do private Return case default

Other Considerations
Let’s consider some programming good practice and update some of the previous example
(Listing A-5).

Listing A-5.  Hello.java

class Hello {
 // Let's print something to STDOUT
 public static void main(String[] args) {
 System.out.println("Hello World\n");
 }
}

It is written in a file named “Hello.java” and it bears the same name as that of the name of
the class. It is considered good practice that the name in the class definition is the same
name as that of the file which contains it. You can however, choose not to follow this
practice. Listing A-6 demonstrates this.

Listing A-6.  Hello.java

class World {
 // Let's print something to STDOUT
 public static void main(String[] args) {
 System.out.println("Hello World\n");
 }
}

223APPENDIX A: Introduction to Java

This code will still compile but it will not produce “Hello.class”; instead, it will yield the file
“World.class”. So, the way to execute it is not java Hello, but rather java World.

You may have also noticed that in all our code samples, there is only one class defined
inside a Java source file. This too is considered good practice. Again, you may choose not
to adhere to this practice. Listing A-7 shows how to do this.

Listing A-7.  Hello.java

class Hello {
 String text = "Hello";
}

class World {
 String text = "World";
}

When you compile this code with javac Hello.java, it will result in two class files named
“Hello.class” and “World.class”.

Having shown you the two ways in which you can break away from what is considered good
practice, I urge you not to do it. The reason these deviations were shown here is because it
is instructive to understand the rules behind source compilation.

Variables and Data Types
A programming language like Java relies on its ability to create, store, and edit values; these
values need to be manipulated arithmetically or by some other means. Java allows us to
work these values by storing them in variables; so, put simply, a variable is a named storage
for values or data. A variable is created using a two-step process. First, you need to declare
a variable, like so:

int num;

In the preceding statement, “num” is the variable and “int” is what we call a type. A type
determines the variable’s size in memory and what kinds of operations you can do with
them. In our preceding example, you can add, multiply, divide, or subtract from “num”
because Java defined the arithmetic operators to work numeric types like “int”.

The next step after declaring a variable is to define it. Defining a variable assigns a value to
it.

num = 10;

In the preceding statement, the integer literal “10” is on the right-hand side of the equal sign,
which effectively assigns its value to the variable “num”.

Alternatively, we can declare and define a variable on the same line, like so.

int num = 10;

224 APPENDIX A: Introduction to Java

After a variable has been declared and defined, you can change its value at any later time.

int num = 10;
num = 20;

What you cannot do, however, is to assign a value to “num” that isn’t an “int”, like so.

int num = 10;
num = "Hello";

We cannot assign the String “Hello” to num, because we’ve already declared it as an “int”
type. Java, being a strongly typed language, does not allow type coercions like this.

Primitive Types
Java has two data types: primitive and Reference. The primitive types are the ones that are
built into the language; Java has eight of those.

Type Size in Bits Sample Literals

byte 8 –128 to 127

short 16 –32,768 to 32,767

int 32 2,147,483,648 to 2,147,483,647

long 64 –9,223,372,036,854,775,808 to

9,223,372,036,854,807

float 32 1.23e100f, –1.23e-100f, .3f, 3.14F

double 64 1.23456e300d, –1.23456e-300d, 1e1d

char 16 0–65535 or \u0000–\uFFFF

boolean 1 true, false

Java is a statically typed language; this is why we need to declare the types of variables
before we can use them in our program.

Reference Types
A reference type value is anything that is not a primitive. Reference type values are created
by instantiating classes, which means that reference type values are objects. Some
examples of reference types are String and java.util.Date. When you create a class or an
interface, you are creating a new reference type.

Creating a reference type value is not that much different from creating a primitive type
value; it also involves the two-step process of declaring the variable and then defining it, for
example.

Date date;
date = new Date();

225APPENDIX A: Introduction to Java

In the preceding statement, the variable name is “date” and the type is “Date”; more
specifically, it’s “java.util.Date”, which is one of the classes in the Java platform that comes
with the installation of the JDK. The date object is created by using the “new” keyword
plus the name of the class (Date) with parens. The name of the class plus parens is called a
constructor method. This will be discussed in the section titled “Classes and Objects”. When
this statement finishes, the “date” variable will contain a reference to the location of a newly
created Date object.

Constructors are not always empty; sometimes you can pass values inside the parens. See
the following example.

String hello = new String("Hello");

The preceding statement creates a new String by passing a series of characters enclosed
in double quotes to the String constructor. Strings values are very common in programming
and are quite indispensable, but despite that, Java did not make it a part of the primitive
types—String is a reference type. Another way to create String objects is shown in the
following.

String world = "World";

In the preceding statement, we did not need to call the constructor of String to create a new
object. We simply assigned a String literal the char variables “World”.

Operators
Like many programming languages, Java programs are composed of variables, operators,
and statements that are put together in a way that achieves very specific goals. Something
you would commonly do in programming is to perform operations on values or data;
sometimes you may need to do arithmetic operations, and other times, perhaps compare
one value to another. Java has a rich set of operators that we can use to perform those
functions.

Operators allow us to create expressions and statements which will be the building blocks
of methods and classes later. This section details the various operators that you can use in
Java.

226 APPENDIX A: Introduction to Java

Assignment The equal sign (=) is used for simple assignment operations. The value on the RHS
(right-hand side) will be assigned to the variable on the LHS (left-hand side)

Arithmetic Arithmetic operators are straightforward. They do what you expect them to do

+ Addition. Works for number types (byte, short, int, long, double, and float)

int a = 1 + 2; // adds two int literals

String a = "Hello";

String b = "World";

String c = a + b;

The additive operator also works on Strings. It results in concatenation

- Subtraction

* Multiplication

/ Division

% Modulo operator is used to get the remainder

int a = 11 % 2; // results to 1

Unary Unary operators work on a single operand. When used, it changes either the sign
or the value of the operand

+ Signifies that the number is positive, which is the default, however,
so numbers are positive even if you don’t explicitly say they are by
prepending them with a plus sign

- The unary minus negates an expression

++ Increment operator. Increases the value of a variable by 1

int counter = 0;

counter++; // add 1 to the value of counter var

- - Decrement operator. Decreases the value of the variable by 1

int counter = 100;

counter -; // subtract 1 from counter

! Logical complement operator. Inverts the value of a boolean variable

227APPENDIX A: Introduction to Java

Equality and
Relational

== The double equals checks for equality of two operands, e.g.

int a = 1;

int b = 1;

if(a == b) {

// True

 }

Take care not to confuse single equals with double equals: the former
is used to assign a value to a variable and the latter is used to test for
equality. The equality operator works on all the primitive types (byte,
short, int, long, double, float, char, and boolean). Confusingly, it also
works on String values

String a = "Hello World";

String b = "Hello";

String c = "World";

If ((b + c) == a) {

// statement

 }

The code above will compile without problems, but it is not working the
way you think it works. This is not the proper way to compare String
values

!= The not equal operator. Does the opposite of ==

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Conditional Conditional operators are also known as logical or boolean operators. Its basic
form is as follows

A operator B

Where operands A and B are boolean types. The logical operator joins and
combines two boolean values into a single boolean value.

& Logical AND. Operation will return true if A and B are both true

| Logical OR. Operation will return true if either A or B is true

&& Conditional AND. This is the same as &, but if the operand on its left side
is false, it will return false right away and it will not evaluate the other
operand any longer. That’s why this is called a short circuit operator

|| Conditional OR. Same as logical OR, but if the operand on its left is true,
it will immediately return true and won’t be bothered to evaluate the
second operand

228 APPENDIX A: Introduction to Java

Type
Comparison

All the operators available in Java generally work only for the primitive types.
You cannot compare reference types using equality operators, not without some
serious work involving some method overrides. But there is one operator we can
use that works for reference types: the instanceof operator. Its basic form is as
follows

A instanceof B

Where A is an object reference variable and B is either a class or an interface,
instanceof will be true if

A is an object that was created using the constructor of B

A was instantiated using the constructor of one of B’s subclasses

A was instantiated using the constructor of a class which implements B (if B was
an interface)

Bitwise and Bit
Shifting

Bitwise and bit shifting operators are used if you need to work with data at the bit
level. This is low-level programming. It is usually employed if you need to squeeze
out every ounce of performance from your code. Working at the bit level makes
the expression or operation very performant, but these kinds of code aren’t very
common among application developers because these codes tend to look pretty
terse

Program Flow
Program statements are executed sequentially by default, one after the other, in a linear
fashion. There are some statements in Java that can cause programs to deviate from a linear
flow. Some statements can cause the flow to fork or to branch, and others can cause it to go
around in circles, like in a loop. These statements are the subject of this section.

Decisions
These control structures allow the programmer to execute some statements when certain
conditions are true and optionally run some statements when the same condition is untrue.
There are two statements we can use for program decision making.

if then else
This construct is straightforward to implement: if a condition is met, do one thing, if not, then
do another. The simplest form of the if construct is as follows:

if (<expression>) {
 STATEMENT
 STATEMENT
}

229APPENDIX A: Introduction to Java

Where

	expression is mandatory. You cannot have an if statement with an empty
pair of parens

	expression must resolve to a boolean value. This means you can put
anything inside the parens as long as it resolves to a boolean value:
for example, a method that resolves to either true or false, an equality
expression, a variable that holds either a true or false value, and even
the true or false literal

The following are some examples on how to construct expressions that test for equality.
Remember that the single equal sign (=) is the assignment operator, it is what you will use
when you want to assign a value to a variable. Confusing the equal sign with the double
equal sign is a rookie mistake, and quite a common one.

a == b // a is exactly equal to b
a != b // a is not equal to b
a > b // a is greater than b
a < b // a is less than b
a >= b // a is greater than or equal to b
a <= b // a is less than or equal to b

If you need to account for multiple pathways, the if-then construct can handle that too by
using the optional else if clause.

Listing A-8.  else if Clause

import java.util.*;

 class Elif {
 public static void main(String[] args) {

 /*
 What the next 4 lines do:
 1. Create a calendar object
 2. Create a date object, which holds
 the current date
 3. Get the current day of the week which
 is basically an int 1..7
 */
 Calendar c = Calendar.getInstance();
 Date d = new Date();
 c.setTime(d);
 int dayOfWeek = c.get(Calendar.DAY_OF_WEEK);

230 APPENDIX A: Introduction to Java

 // Next, print out the friendly name for the
 // current day of week

 if (dayOfWeek == 1) {
 System.out.println("Sunday");
 }
 else if (dayOfWeek == 2) {
 System.out.println("Monday");
 }
 else if (dayOfWeek == 3) {
 System.out.println("Tuesday");
 }
 else if (dayOfWeek == 4) {
 System.out.println("Wednesday");
 }
 else if (dayOfWeek == 5) {
 System.out.println("Thursday");
 }
 else if (dayOfWeek == 6) {
 System.out.println("Friday");
 }
 else if (dayOfWeek == 7) {
 System.out.println("Saturday");
 }

 }
 }

switch Statement
The switch statement has a slightly different structure from the if-then statement, which
makes it in some cases more readable than an if-then construct that needs to handle
multiple pathways. The basic form of the switch statement is as follows:

switch(expr) {
 case value:
 STATEMENT;
 break;
 case value:
 STATEMENT;
 break;
 default:
 STATEMENT;
}

231APPENDIX A: Introduction to Java

Where expr is either of type byte, short, char, and int. When JDK 1.7 was introduced, the
String type was added to the capabilities of the switch statement . Listing A-9 shows an
example of how to use the switch statement.

Listing A-9.  Switch Statement

import java.util.Calendar;
import java.util.Date;

class Switch {

 public static void main(String[] args) {

 Calendar c = Calendar.getInstance();
 Date d = new Date();
 c.setTime(d);

 int dayOfWeek = c.get(Calendar.DAY_OF_WEEK);

 String day = "";

 switch(dayOfWeek) {
 case 1:
 day = "Sunday";
 break;
 case 2:
 day = "Monday";
 break;
 case 3:
 day = "Tuesday";
 break;
 case 4:
 day = "Wednesday";
 break;
 case 5:
 day = "Thursday";
 break;
 case 6:
 day = "Friday";
 break;
 case 7:
 day = "Saturday";
 break;
 default:
 day = "Dunno";
 }

 System.out.printf("Today is %s", day);
 }
}

232 APPENDIX A: Introduction to Java

Loops
When you need to execute some statements repeatedly, you can use any one of the three
looping constructs: the while, do-while, and for statements.

while statement The while statement allows us to execute a group of statements while some
conditions are true. The basic form of the while loop is as follows:

while (cond) {

 STATEMENTS

}

Where cond can be a variable, literal, or expression that resolves to a boolean
value. While cond is true, all the statements inside the block will be executed. You
need to take care and be mindful that there is something in your code which will
make cond untrue (or false) at some point in time, lest you will have a loop that
does not terminate.

Listing A-10. Simple Use of While Loop

class While {

 public static void main(String[] args) {

 int count = 0; 

 while(count < 11) { 

 System.out.println(count);

 count++; // 

 } 

 }

}

 A countervariable is initialized to zero

 The guard condition of the while loop is evaluated for the first time; at this
point, the value of the count variable is zero, the condition evaluates to true,
and we enter the loop’s body

 The count variable is incremented using one of the shorthand operators;
count is now equal to 1

 We reach the closing curly brace, which is the end of the while loop. Program
control goes back to the beginning of the loop, and the condition is evaluated
for the second time. The count variable is still less than 11, so we enter the
loop again. This will go on until the value of count will be equal to 11, at which
point, we will no longer enter the body of the loop and program control will
transfer to line number 10 (the closing curly brace of the main method)

233APPENDIX A: Introduction to Java

do-while
statement

The do-while statement is almost the same in format and in function as the
while statement, with the important distinction that in the do-while construct, the
condition is checked after the body of the loop. This has an important effect on
your execution; the statements in the loop body are guaranteed to be executed at
least once, no matter if the condition is true or false.

Listing A-11. do-while Sample

class DoWhile {

 public static void main(String[] args) {

 int i = 0;

 do {

 System.out.println(i++);

 } while (i < 0);

 }

}

The preceding code will still print out one output even if it fails the condition test.

for statement The basic form of the for loop is as follows

for (<initial value>;<condition>;<increment/decrement>) {

 STATEMENT

}

Where

“initial value” is a statement that sets or defines the initial value of a counter

“condition” is an expression that will be evaluated every time the loop completes
or circles back. As long as this condition is evaluating to true, all the statements
inside the loop block will be executed. Again, you need to be mindful that this
condition will result to false at some point in time

“increment/decrement” is a statement that increases or decreases the value of a
counter

Listing A-12. For Loop Sample

class For {

 public static void main(String[] args) { /

 for(int count = 0; count < 11; count++) {   

 System.out.println(count); 

 }

 }

}

234 APPENDIX A: Introduction to Java

 A counter variable named count is initialized to zero

 A conditional expression (count < 11) is set to determine how many times we
will go inside the loop

 The count variable’s value is increased by 1 using one of the shorthand
operators

 Value of count is printed on the screen

Simple Application of Control Structures
Let’s see an example of control structures in action.

The FizzBuzz Problem
This is a popular exercise for beginning programmers. You may encounter many variations
of this problem, but the basic idea is to use a branching control structure which routes logic
when a number is either odd or even. The basic version of this problem is as follows:

1.	 Count from 1 to 100

2.	 If the current value of counter is exactly divisible by 3, print “Fizz” to
the screen

3.	 If the current value of the counter is exactly divisible by 5, print
“Buzz” to the screen

4.	 If the current value of the counter is exactly divisible by both 3 and 5,
print “FizzBuzz” to the screen

Listing A-13.  FizzBuzz.java

class FizzBuzz {

 public static void main (String [] args){

 for (int i = 1; i <= 100 ; i++) { 

 if (i % 15 == 0) {
 System.out.printf("FizzBuzz %d ", i); 
 }
 else if (i % 5 == 0) { 
 System.out.printf("Buzz %d ", i);
 }
 else if(i % 3 == 0) { 
 System.out.printf("Fizz %d ", i);
 }
 }

 }
}

235APPENDIX A: Introduction to Java

 Count from 1 to 100; that’s easy enough to do with a for loop

 Check if the current value of i is divisible by both 3 and 5, if it is, print “FizzBuzz”

 If the number is not divisible by 3×5, is it divisible just by 3 then? If it is, print “Fizz”

 If the number is not divisible by 3×5 and not divisible by 3, is divisible by 5? If it is, print “Buzz”.
This is the last condition that we will check, because only these three conditions are stated on
the problem

How to Print a 5×5 Multiplication Table
This is an exercise on nested loops. The goal is output something like this:

1 × 1 = 1 1 × 2 = 2 1 × 3 = 3 1 × 4 = 4 1 × 5 = 5

2 × 1 = 2 2 × 2 = 4 2 × 3 = 6 2 × 4 = 8 2 × 5 = 10

3 × 1 = 3 3 × 2 = 6 3 × 3 = 9 3 × 4 = 12 3 × 5 = 15

4 × 1 = 4 4 × 2 = 8 4 × 3 = 12 4 × 4 = 16 4 × 5 = 20

5 × 1 = 5 5 × 2 = 10 5 × 3 = 15 5 × 4 = 20 5 × 5 = 25

Listing A-14.  Multiplication.java

class Multiplication {

 public static void main(String[] args) {

 for (int i = 1; i <= 5; i++) {
 for (int j = 1; j <= 5; j++) {
 //System.out.printf("%d\t", i * j);
 System.out.printf("%d x %d = %d\n", i, j, i*j);
 }
 System.out.println("----------");
 }
 }
}

The code doesn’t need a lot of commentary. There are two loops; one is embedded on the
other to generate the matrix of values in a 5×5 multiplication table.

236 APPENDIX A: Introduction to Java

Methods
A method is a named collection of statements. Think of it like a heading for a bunch of
executable statements such that when you call the heading, you get to execute all the
statements that are inside it. It’s some sort of a shorthand. A method definition looks
something like the following:

[access modifier] [special modifiers]
 <return type> <method name> ([parameters ...]) {

}

The access modifier (optional), when defined, could be either public, private, or protected.
When it is not defined explicitly, the method has package access. We’ll discuss access
modifiers in the “Object Oriented Programming” section.

The special modifier(s), when defined, could be something like static, transient, volatile,
synchronized, and so forth. We will discuss the static keyword in the “Object Oriented
Programming” section. The other special keywords mentioned will be important to you when
you’re dealing with concurrency, but that is beyond the scope of this book.

A method must always declare a return type. This type can be primitive (byte, short, int,
long, double, float, char, boolean) or a reference type (e.g., String, Date, Math, or a custom
type). If the method is not expected to return anything, you can use void as the return type.

A method must have a name. This name identifies the method uniquely within the class
where it is defined.

A method may or may not accept parameters. When it does accept parameters, it will
always be passed by value, meaning that the method creates a copy of the passed
parameter within the method. So, any change you make to the value of the parameter while
within the scope of method doesn’t affect the original variable outside the method. Of
course, this is true only if the parameter is a primitive type. If the parameter is of a reference
type, that’s a different story.

It may seem from the preceding list that we need to keep a lot of things in mind when
constructing and working with method—and there will be quite a few more—but this next
rule about methods should be probably on the top of our list. You need to always remember
that methods are part of either an object or a class. Whenever a method is called, it is
never invoked in a vacuum; it is always invoked from a context. In OOP, methods constitute
the behaviors of objects. So, they always linked to objects (or classes). We’ll discuss this
dichotomy of classes and objects in the next section, but for now let’s deal with the context
issue.

Note  Whenever you create a class or an interface, that becomes a custom type. So, a custom
type is nothing more than a UDT (user-defined type).

237APPENDIX A: Introduction to Java

Listing A-15.  Method from the Same Context

class Test {

 public static void main(String []args) {

 System.out.print("Main");
 Sample obj = new Sample(); 
 obj.one(); 
 }
}

class Sample {

 void one() {
 System.out.print("One");
 two(); 
 }
 void two() {
 System.out.print("Two");
 three(); 
 }
 void three() {
 System.out.print("Three");
 }
}

 The Sample class was instantiated; the object reference was stored in a variable named obj

 Method one was invoked on the Sample object (obj ref variable). There are two statements
defined in method one: the first statement prints out “One”

 The second statement in the method invokes another method named two. It may seem the
invocation for method two is done without a context because nothing is prepended to it. There
is no variable and a dot symbol before the invocation. But this is not true because method
two is being invoked by an instance of the Sample class (the same class where method two is
defined). When the main method of the Test class called method one, it is from the context of
an explicit object reference (the Sample object which is held by the obj variable). When method
two is invoked, it is still from the context of the same Sample object that invoked method one.
We simply don’t need to write this context anymore because method two and method one are
defined on the same class, and method one is invoking method two from example the same
object context

 Method two called three. Method three is also defined within the same class as two and one, so
invoking method three from anywhere in class Sample does not require an explicit object context

238 APPENDIX A: Introduction to Java

Listing A-16.  Method Invocation from a Different Context

class Test {
 public static void main(String[] args) {
 Foo objFoo = new Foo();
 objFoo.doSomething(); 
 }
}

class Foo {
 void doSomething() {
 System.out.print("Foo");
 Bar objBar = new Bar();
 objBar.doSomething(); 
 }
}

class Bar {
 void doSomething() {
 System.out.print("Bar ");
 }
}
// prints out Foo Bar

 Nothing surprising; doSomething is a method defined in another class (Foo). We need to create
an instance of Foo before we can invoke doSomething in it

 We want to invoke doSomething again, but this doSomething is a method defined in a class
other than Foo (it’s in Bar). We need to create an instance of Bar before we can invoke any of its
methods

Listing A-17.  Pass by Value

class Test {

 void fooBar(int a) { 
 a = 3; 
 System.out.printf("fooBar a = %d\n",a); 
 }

 public static void main(String[] args) {
 Test obj = new Test();

 int a = 2;
 System.out.printf("a = %d\n",a); // prints a = 2
 obj.fooBar(a);
 System.out.printf("a = %d\n",a); 
 }
}

239APPENDIX A: Introduction to Java

 The value of the a variable when it was passed from the main function was 2. When fooBar
accepts the integer parameter, fooBar creates a copy of the a variable inside the method body,
and the variable a became an automatic variable (they are called automatic variables because
they are defined by the function automatically, without explicit help from you)

 fooBar alters the value of the a variable, but what it changed is its copy of the variable and not
the a variable as defined inside the main function

 fooBar prints the value of the a variable, and it tries to resolve where it is defined. It will look first
inside the method where println is called; naturally it will find the copy of the “a” variable, so it will
stop looking any further (if println didn’t find the a variable within the method, it will look further
outside the method and into the class body). What follows this statement is already the end of the
fooBar method. Everything that was declared and defined within the method will vanish as soon
as the method reaches its end of definition—programmers would say that the method has already
gone out of scope

 Now that fooBar has gone out of scope, the control passes back to the main method. The next
statement to execute is printing the value of the a variable again. This statement will still print
“a = 2”, because this variable a was practically untouched. Whatever fooBar did to its copy of the
a variable did not affect the original a variable as it was defined in the main method

Object Oriented Programming
Different programming languages organize data and functionalities quite differently from
each other. The way a language handles computations bears a significant influence on how
the programmer designs the code: it affects the way he abstracts the problems and how he
crafts a solution. Some languages use function, modules, or subroutines as a primary means
to organize data. It enables the programmer to decompose a problem into more manageable
chunks. Java is an object oriented language; its primary means of abstraction is by using
objects.

It wouldn’t be wrong to think of an object as a data structure, but that notion of an object
would be incomplete because it is more than just a collection of simple types that’s clumped
up into one.

An object encapsulates data, behavior or operations and usage semantics. If we were to
work on an Account object, we shouldn’t bother how that object was constructed internally,
and we care less about how it does withdrawal or deposit. The only thing we care about is
that we can call the methods deposit and withdraw against an account object.

Account objAccount = new Account();
objAccount.deposit();
objAccount.withdraw();

The user of an object should only focus what he wants done and how it is done. The details
of behavioral implementation and the internal data structure of the object are not the
concern of the object’s users or clients. This characteristic of an object is one of the tenets
of OOP. There are many other characteristics of Java which make it an OOP language, and
they will be pointed out in later sections of this appendix.

240 APPENDIX A: Introduction to Java

Objects are created by instantiating classes. You can think of a class as some sort of a
template for creating objects, because a class’s primary responsibility is to facilitate the
creation of objects. A class is generally constructed like this:

class <Name of Class>  
{ 

} 

 The word class is special: it’s one of Java’s reserved words, and when you use it in a construct
such as the preceding one, it denotes the creation of a new type—a class

 What follows after the class keyword is the name of a class. Most classes in Java require a name
or an identifier which will make it unique and identifiable in the region of your program

 The opening French or curly brace marks the start of the block for the class definition

 The closing French brace closes the block

Listing A-18.  A Real Code Example

class Hello {
 public static void main(String []args) {
 System.out.println("Hello World");
 }
}

Listing A-18 should look familiar because we used this code in earlier sections. It’s a very
basic class definition with a main function.

The source file should be written in a file that has a “.java” as an extension. We could store
this in a file named “Hello.java” but we don’t have to. Unless the class is declared public, the
name of the class and that of the source file where it is written don’t have to be the same.
It is only by convention that this is so. Nonetheless, it is a good practice to observe that the
name of the class definition and the file name are the same. Makes it easier to manage files
because the file name is descriptive of the class it contains

When we compile the code in Listing A-18, it will result in a file named “Hello.class”. The
resulting byte code takes after the name of class definition (class Hello) and not the file name
where the class is stored.

Important  Like all blocks and parens in Java, an opening curly brace must always be paired with
a closing curly brace, lest you will have a hard time with the compiler.

241APPENDIX A: Introduction to Java

It’s generally not a good idea to put more than one class definition in a single source file, but
that is not illegal to do (see Listing A-19).

Listing A-19.  Definition of Three Classes

class Apple {
}
class Banana {
}
class Orange {
}
// When this is compiled, it will produce
// 3 files, "Apple.class", "Banana.class" and "Orange.class"

The foregoing should take care of the basics of class compilation and some basic practices
to observe when creating source files for class definitions. Listing A-20 shows the basic
structure of a fictitious Account object. The code is stripped off any guard conditions or
validations to facilitate the explanation of basic concepts. So, please don’t use this as a
basis for your real-world projects.

Listing A-20.  Definition of an Account Class

class Account {  

 Account() { 
 initialize();
 }

 private String accountNumber; 
 double balance;

 void deposit(double amt) { 
 balance = balance + amt;
 }

 void withdraw(double amt) {
 balance = balance = amt;
 }

 private void initialize() {...} 
}

242 APPENDIX A: Introduction to Java

 class keyword denotes that we want to create a new type

 We’ve given this class the name “Account”

 This called a constructor. It looks like a method but it really is not. This part of an object is
what’s responsible for creations of object. When an object is created, one of the first few things
that gets called is the constructor. This is a good place to write initialization codes

 This class defines an accountNumber property. We marked it as private, which means this
variable can only be accessed from within the class which defined it. This variable is only visible
from within the Account object. By the way, some programmers call a class’s property as
“state.” We can use the two terms interchangeably

 This class also defines some methods. Member methods are bound to the class in which they
are defined. This method can only be called from within the context of an Account object.
Member methods gives the objects their behavior

 Another member method of the Account object, but this one isn’t meant to be called from the
outside; that’s why it was marked private

The creation of an object can be facilitated as shown in the following code snippet:

Account objAccount; 
objAccount = new Account(); 

 Create a variable and declare its type using the name of our Account class

 Define the variable as shown in the preceding. The word new, like the word class, is special. It’s
one of Java’s reserved words. The new keyword will call the constructor of the Account class

More Details on Classes
The foregoing describes the typical creation and use of classes. For the greatest part of your
programming tasks, this is most likely how your code will be structured. However, there will
be times when you will need to use the more advanced facilities of Java for constructing
classes. The following code snippet describes a more detailed form for constructing classes.

[access modifier] [special modifier] class <Name of Class>
 <extends <Name of Another Class>>
 [implements <Name of Interface(s)] {

}

243APPENDIX A: Introduction to Java

	access modifier—a class can specify the region in your program where
it will be bounded or visible. A top-level class (a class that is not nested
in another class) can use the keyword public to increase the scope of
its visibility. The access modifier is optional; when it is not defined, the
default visibility for a class is package-private, which means the class is
only visible from other classes that are on the same package

	special modifiers—a class may be declared as abstract, final, static, or
strictfp. We’ll discuss some of these things in the next sections. Unlike
the access modifier, when a class does not declare any special modifier;
it means it is just a regular concrete class. A concrete class is something
that you can use readily, pretty much how we created the Account
object (e.g., Account objAccount = new Account())

	extends—a class extends the definition of an existing class; it doesn’t
matter if it is a user-defined class or part of the Java library. The
keyword extends is also reserved word. Extending an existing class
means we want to inherit that class. Whatever (nonprivate) variables and
methods it has, we will also have. In OOP, this characteristic is called
inheritance

	implements—the implements keyword, like extends, is used for
inheritance. When we inherit from an interface, we inherit the type (all its
behaviors) but not much else, because the methods of an interface don’t
have any implementation. All its methods are abstract

Constructors
A constructor is an executable code that is called during object creation; each class has at
least one. A basic constructor looks like this.

class Account {
 Account() { 

 }
}

class Person {
 Account acct = new Account(); 
}

244 APPENDIX A: Introduction to Java

 The no-arg (no argument) constructor; it’s called no-arg because the constructor doesn’t take any
argument or parameter. A constructor is named after the class, and it has parens like a method,
but unlike it, it doesn’t have a return type and it contains no “return” statement in its body either

 The “new” keyword calls the no-arg constructor of the Account class

Constructors are so important, that even if you don’t explicitly write your own constructor,
the compiler will provide one for you. See the following code.

class Account {
}

class Person {

 Account acct = new Account(); 

}

 You can still call the no-arg constructor even if you did not explicitly write one. The compiler will
provide the no-arg constructor as a default

Overloading
A constructor may appear more than once in a class definition; this concept is called
overloading. It’s the ability of constructors (and methods) to appear more than once in
source file. When constructors (and methods) are overloaded, they still need to be unique,
and that uniqueness is determined by the constructor’s signature. The uniqueness of a
signature is determined by the number and type of parameters that a constructor accepts.

class Point {
 int x;
 int y;

 Point(int mx, int my) {
 x = mx;
 y = my;
 }

 Point() {
 x = 10;
 y = 10;
 }
}

Point p1 = new Point(20,20); 
Point p2 = new Point(); 
Point p3 = new Point("foo"); 

245APPENDIX A: Introduction to Java

 When we pass two integers to Point, this will match the constructor definition, which takes in two
integer arguments

 This will match the no-arg constructor

 This will be a compilation error because it doesn’t match any constructor definition. We don’t
have any constructor that takes in a String parameter

Packages
Packages are a named collection of related or grouped types. It’s essentially a namespace
that you can use in order group types that are related by function or any other type of
grouping that you want to achieve. A package may contain a combination of classes,
interfaces, and modules (you can embed a package within a package).

To create a class that will be within a package, we will use the package directive.

package com.apress;

class Foo {

}

In the preceding example, the package name is “com.apress”; it is the reverse DNS
equivalent of “apress.com”. We don’t need to use reverse DNS notation but it will be wise
to follow this practice, especially if you want to distribute your Android applications to the
public at some point in time. The package name is usually your company name + project
name in reverse DNS notation. When the preceding code gets compiled, the created class
will be in the folder com/apress/Foo.class. You can no longer use the Foo class using the
simple name (Foo) because it is now part of a package. To use the Foo class, we should use
its fully qualified name “com.apress.Foo”, as shown in the following.

com.apress.Foo foo = new com.apress.Foo();

Note  The no-arg default constructor is only available if we don’t have any constructor definition at
all in our class. Once we implement our own constructor(s), the compiler will no longer provide the
default constructor.

Important  The “package” directive should be written as the first executable statement in a
source file. The only things that can appear before the package statement are comments.

http://apress.com/

246 APPENDIX A: Introduction to Java

Our coding experience would be cumbersome if we always have to use the fully qualified
class name instead of the simple name of classes; thankfully, Java has an “import”
mechanism. To keep using Foo’s simple name, we can use the “import” keyword.

import com.apress.Foo;

Foo foo = new Foo();

Multiple Types in a Package
Packages usually have more than one type in them; as we said earlier, a package is a named
collection of types. Let’s say that our package “com.apress” has two more types in it.

package com.apress;

class Foo { . . . }
class Boo { . . . }
class Goo { . . . }

For us to use the simple names of the types inside this package, we could write an import
statement for each type, like so:

import com.apress.Foo;
import com.apress.Boo;
import com.apress.Goo;

Foo foo = new Foo();
Boo boo = new Boo();
Goo goo = new Goo();

Or, as a shortcut, we can import all the types in the package using a single statement, as
shown in the following:

import com.apress.*;

Foo foo = new Foo();
Boo boo = new Boo();
Goo goo = new Goo();

When We Don’t Need “import”
We don’t need to use the “import” statement when

	1.	 We are referencing types that are on the same package, and when;

	2.	 We are referencing types within the “java.lang” package

247APPENDIX A: Introduction to Java

Let’s look a sample code.

package com.apress;

class Foo { . . . }

class Boo {
 Foo foo = new Foo(); 
}

class Goo {
 Goo() {
 String out = getClass().getSimpleName(); 
 System.out.println(out); 
 }
}

 We don’t need to use the fully qualified name of Foo because we are referencing it from the Boo
class, which is in the same package as Foo. If you need to use types that are within the same
package, you can use the simple name

 If we had to write the fully qualified name of the String class, we would have written this
statement as java.lang.String out = getClass().getSimpleName(); luckily, Java automatically
imports all the types within the “java.lang” package

 The System class is also within the “java.lang” package; that’s why we can use its simple name

Inheritance
As an object oriented language, Java allows us to reuse the capabilities and characteristics
of an existing class: this concept is called inheritance. It involves two classes: the base class
and the derived class, sometimes also known as the parent and the child class, respectively.
Inheritance allows the child class to “inherit” the behavior and properties of the parent and
consequently change or modify them if it needs to provide some specialized behavior. The
child class inherits from the parent class using the “extends” keyword. Let’s see what this
looks like in code.

class Employee {
 String employeeid;
 void doWork() {
 System.out.printf("%s is working\n", getClass().getSimpleName());
 }
}

class Programmer extends Employee { 

}

248 APPENDIX A: Introduction to Java

class Company {
 public static void main(String []args) {
 Employee emp = new Employee();
 Programmer prog = new Programmer();

 emp.doWork(); 
 prog.doWork(); 
 }
}

 The class Programmer inherits from Employee using the “extends” keyword. This means that the
Programmer class automatically inherits the properties (employeeid) and behaviors (doWork) of
Employee

 We invoke “doWork” on the Employee object; it will output “Employee is working”

 We can invoke “doWork” on the Programmer object as well even if we did not define it in the
Programmer class. The “doWork” method was inherited from Employee. This statement outputs
“Programmer is working”

Object as the Root Class
Whenever you create a new class, you have to extend an existing class, because every
class in Java must always have a parent; orphans aren’t allowed. This rule is so important
that even if you don’t explicitly extend a class, the compiler will automatically assume that
want to extend java.lang.Object. This object is what you might call the root class in all of
Java, because every class in the Java library and all the classes that you will create will be a
descendant of java.lang.Object, directly or indirectly.

class Hello extends Object {

}

We don’t have to write extends Object, because the compiler will do that for us

We don’t need to write the fully qualified name of the class (java.lang.Object), because the
package java.lang is implicitly imported for us

249APPENDIX A: Introduction to Java

Single Rooted Class Inheritance
Inheritance is a good mechanism for reusing existing functionality that already resides on
existing classes. However, Java imposes some limitations on this mechanism. A class is
only allowed to extend at most, just one class. You cannot extend multiple classes. So, the
following code would be illegal:

class MultiFunction extends Printer, Fax {

}

Java however, allows us to inherit from more than one interface. So, in order to achieve
multiple inheritances, you need to use interfaces. The following is a pseudocode that depicts
how this might be done:

interface Printer { ... }

interface Fax { ... }

class MultiFunction implements Printer, Fax {

}

Polymorphism
Child classes can provide specialization of behavior by either adding or completely
changing the implementation of their inherited behaviors (methods). This concept is called
polymorphism.

class Employee {
 String employeeid;
 void doWork() {
 System.out.printf("%s is working\n", getClass().getSimpleName());
 }
}

class Programmer extends Employee {
 void doWork() {
 System.out.printf("%s is coding\n", getClass().getSimpleName()); 
 }
}

class Company {
 public static void main(String []args) {
 Employee emp = new Employee();
 Programmer prog = new Programmer();

 emp.doWork(); 
 prog.doWork(); 

 }
}

250 APPENDIX A: Introduction to Java

 The “doWork” method is reimplemented on the Programmer class; this effectively overrides the
inherited “doWork” from Employee

 This still outputs “Employee is working”

 This outputs something else now; it prints “Programmer is coding” because “doWork” was
overridden in the Programmer class

Interfaces
A Java interface is similar to class because it defines a type, but unlike a class, it doesn’t
implement or define any behavior, it only declares it.

interface IPhone { 

 void answerCall(); 
 void dial();

}

 An interface is created by using the “interface” keyword. This declares a new type called IPhone
with two behaviors: “answerCall” and “dial”

 The methods of an interface do not have any implementation; notice that the body of the method
is missing (the pair of curly braces). Instead, method declarations in an interface are terminated
by a semicolon. Methods that don’t have implementation are called abstract methods—all
methods inside an interface are abstract

An interface cannot be instantiated like a class, so you cannot write codes like the one
following:

IPhone phone = new IPhone(); // this is illegal

To use an interface, you should “implement” it in a class. Let’s see how this works:

interface IPhone {
 void answerCall();
 void dial();
}

class SomePhone implements IPhone { 
 public void answerCall() { 
 System.out.println("answering call");
 }
 public void dial(){

 }
}

251APPENDIX A: Introduction to Java

class Test {
 public static void main(String[] args) {
 IPhone phone = new SomePhone(); 
 phone.answerCall();
 }
}

 A class uses an interface by “implementing” it

 The method “answerCall” is overridden in SomePhone, which effectively makes it a concrete
method

 The “phone” variable is declared an IPhone (left-hand side) but ultimately defined as an instance
of SomePhone (right-hand side). This code works because SomePhone is a kind of IPhone.
When SomePhone implemented IPhone, it inherited its type

When a class implements an interface, that class is essentially bound to the interface in
some kind of a contract wherein the class “agrees” to provide concrete behavior to all the
methods declared on the interface. This is the reason why we needed to override all the
methods of IPhone.

Multiple Inheritance
Unlike class extension, we can implement more than one interface in our classes. This is
how Java does multiple inheritance. The following sample code illustrates this.

interface IPhone {
 void answerCall();
 void dial();
}

interface IPrinter {
 void print();
}

class Fax implements IPhone, IPrinter {
 public void answerCall() {}
 public void dial() {}
 public void print() {}
}

Note  Methods in an interface are by default always public, so when they are overridden, they
need to be declared public, because you cannot reduce the visibility of inherited methods.

252 APPENDIX A: Introduction to Java

class Test {
 public static void main(String[] args) {
 Fax fax = new Fax();
 fax.answerCall();
 fax.dial();
 fax.print();
 }
}

The class “Fax” agrees to implement all the behavior or IPhone and IPrinter. When
implementing more than one interface, you need to separate them by comma.

Exceptions
Despite our best efforts get the program right and behaving as predictably as possible, it can
still fail because of various reasons. When a program fails because of abnormal conditions
in its environment, the Java runtime throws an exception. When an exception is thrown,
the normal flow of the program is disrupted, and if the exception is not properly handled,
it may cause the program to terminate in an ungraceful manner. There two ways to handle
exceptions: either we handle it using a try-catch structure or we rethrow it and let it be
somebody else’s problem. In this section, we will look at how to handle exceptions using the
try-catch block.

The general form of the try-catch is as follows.

try {
 // statement that can throw exceptions
}
catch(ExceptionType1 obje) {
 // error handling statement;
}
catch(ExceptionType2 obje) {
 // error handling statement;
}
catch(ExceptionTypen obje) {
 // error handling statement;
}

The try-catch, like the if-else, routes program flow. It branches program control when some
conditions become true. When an exception is raised inside the body of the try block, the
program flow automatically jumps out of that block. The catch blocks will be inspected
one by one until a type of exception thrown is properly matched to any of the catch blocks.
When a match is found, the error handling statements on the matching catch block are
executed. Let’s see how that looks on a real code.

253APPENDIX A: Introduction to Java

String filename = "something.txt";
try {
 java.io.FileReader reader = new java.io.FileReader(filename);
}
catch(FileNotFoundException e) {
 // ask the user to input another filename
}

In the preceding example, we only have one catch block; that’s because the statement
inside the try block can only throw a “FileNotFoundException” and nothing else. If we had
other statements in the try block that can throw other kinds of exception, then we should
write the corresponding catch blocks for those. You might ask “how do we know if an
exception is going to be thrown by a method call?”. The answer to that question is “by
reading the documentation”. If you read the Java language API reference for the FileReader
class, you will learn the details of how it is used and what kinds of exceptions some of
its methods may throw, among other things. Another way you may find out the kinds of
exceptions that can be thrown by the FileReader (or any other method/constructor call) is to
simply write it like a regular statement, that is, without any error handling structure, like so.

java.io.FileReader reader = new java.io.FileReader(filename);

As soon as you try to compile the source program where this line is written, you will find out
that the FileReader constructor may throw a “FileNotFoundException” because the Java
compiler will complain loudly.

The try-catch structure is usable for many situations, but if you want to be thorough in
handling the error, you may to use the more complete try-catch-finally structure. The general
form of try-catch-finally is

try {
 // statement that can throw exceptions
}
catch(ExceptionType obje) {
 // error handling statement;
}
finally {
 // this code will execute
 // with or without encountering
 // an error
}

254 APPENDIX A: Introduction to Java

In a try-catch structure, if an exception happens, the program control will jump out of the
try block, leaving the remaining statements inside the try block unexecuted. If one of those
unexecuted statements is critical to the program, for example, closing a file or database
connection, that may introduce another problem. This is the kind of situation where you
need to use the “finally” clause. The codes written inside a finally clause are guaranteed to
execute whether an exception happens. Let’s see the file reading code sample again, but
this time, with a finally clause.

String filename = "something.txt";
try {
 java.io.FileReader reader = new java.io.FileReader(filename);
}
catch(FileNotFoundException e) {
 // ask the user to input another filename
}
finally {
 // close any connections you may have
 // opened e.g. "reader"
}

255© Ted Hagos 2018
T. Hagos, Learn Android Studio 3, https://doi.org/10.1007/978-1-4842-3156-2

■■A
Access modifier, 243
Activity

component, 83–84
demo project

activity_main with Button view, 87
activity_main with onClick

Handler, 90
activity_second with Close button, 93
AndroidManifest file, 89
app folder, 88
attributes inspector, 87
Button on activity_second, 93
editing, label of Button view, 88
Event Handling code for

launchSecondActivity, 91
FirstActivity, attributes inspector, 90
full code of SecondActivity.java, 94
fundamental uses, intent object, 85
launchSecondActivity, 90–91
layout file (xml) and program file

(Java), 91
project details for FirstIntent, 86
SecondActivity, 89

FirstActivity.java, 83
implicit intents

activity_layout, 116
http request, 117–120
project details, 115
skeleton of MainActivity, 117
syntax for, 115
Twitter app, 114
UI details, 116

intent object, 85
life cycle, 120

MainActivity, 85
pass data

calculate, 95
GCF (see Greatest common factor

(GCF))
MainActivity, 95

program files
MainActivity, 111, 113
onActivityResult, 112
onClick method, 111
SecondActivity, 112, 114

sub activity
activity_main, 109
activity_second, 110
details, GetResultsSubActivity, 108
MainActivity, 108
SecondActivity, 109
sequence of events, 107
UI elements, 109

Android Device Monitor, 201
Android Emulator, 11
Android runtime, 4
Android’s system architecture, 3
Android Studio

Linux, 7–8
macOS, 6
SDK

packages, 11–12
platforms, 8–10
tools, 11

update channel
Beta, 13
Canary, 13
Dev, 13
Stable, 13

Windows, 6

Index

https://doi.org/10.1007/978-1-4842-3156-2

256 Index

Android Studio IDE
basic parts of AS3, 15–16
editor window, 16
macOS, 17
navigation bar, 16
status bar, 16
toolbar, 16
tool windows, 16
Windows, 17

Android Studio project
activity_main.xml, 26
advanced settings, 32
application name and company

domain, 20
AVD configuration, 29, 31
choose type of activity, 22–23
compilation and runtime, 34–35
components

activities, 38
Android app, 36, 37
APK file, 35
broadcast receivers, 38–39
content providers, 38–39
services, 38

configure activity, 24
create new project, 20
deployment target, 29
Hello World running in emulator, 33–34
main AS3 window, 25
Marshmallow, 21
Nexus 4, 29
opening screen, 19
Palette area, 27
project window, 25
Run button, 28
select deployment target, 33
select system image, 30
select target version, 22
tabbed editing area, 26
textual view of activity_main.xml, 28
viewing modes of activity_main.xml, 27
wizard, 20

AppBar, 132–133
App distribution

Google/Amazon, 203
preparation

configuration, 204

materials and assets, 204
release-ready application, 205–209

sign up for developer account, 210–212
Applications layer, 4
Arithmetic operators, 220, 226
Assignment operators, 220, 226
AsyncTask

ANR error, 161–162
arguments, 164
create new class, 164
layout file, 159
long running task, 158
MainActivity, 163
onProgressUpdate method, 165
publishProgress method, 165, 167
worker class shell, 165

■■B
Beta channel, 13
Bitwise and bit shifting operators, 221, 228
Blocks, 219
Booleanoperators. See Conditional

operators
Byte code, 214

■■C
Canary channel, 13
Classes, 221
Colorhexa.com, 129
Conditional operators, 220, 227
Constructor, 243–244
Control structures

FizzBuzz problem, 234–235
if then else condition, 228–230
5×5 multiplication table, 235–236
switch statement, 230, 232

■■D
Data persistence

activity_main.xml, 180–181, 197–198
code for loadData, 200–201
code for saveData, 199–200
external storage, 195
internal storage, 195–196
Load Button, 183

257Index

MainActivity, 182, 184–185, 199
Save Button, 183
SharedPreferences, 178–179
storage options, 177–178
verifying the file, 185–186

Data types, 223–224
Debugging

logic errors, 170, 173–175
runtime exceptions, 169, 171, 173
syntax errors, 169–170

Dev channel, 13
do-while statement, 233

■■E
Eclipse, 5
Equality and relational operators, 220, 227
Event handling

activity_main in design view, 71
activity_main.xml in text view, 72
declarative

app/src/main/res/layout/
activity_main.xml, 57

caption, 58
Logcat window, 58
onClick attribute, 57
sayHello method, 58
System.out on Logcat, 59

inner class
ButtonHandler implementation, 73
MainActivity, 73, 75
show() method, 74
Toast message, 74

MainActivity
AndroidManifest.xml file, 81
ButtonHandler, 79
create new class dialog, 76
MainActivity2, 76–78, 80
onCreate method, 79
override dialog window, 78
view registrations, 79

Pack button, 70
process of, 55
programmatic

apply changes button, 64
app/src/main/res/layout/

activity_main.xml, 60
AS3 warnings and errors, 62

autocomplete, 62
Button view, 61–62
listener object, auto completion, 63
MainActivity.java, 63
Main Program File, 61
project information, 59
setContentView method, 61
View and ViewGroup objects, 61
View.OnClickListener, 63

project information, 70
steps, 56
text and buttons elements

cosmetic and aesthetic tweaks, 66
initNumberToGuess, 68
MainActivity, 67, 69
NumberGuess, 65
onClick, 68
onCreate, 67
project information, 65
UI elements, 65–66

■■F
FizzBuzz problem, 234–235
For loop, 233
Fragments

add fragments at runtime
codes, 151–153, 155
project details, 151

code listing, 150
concept, 142
demo project

choose, 148
complete code, 149–151
create new layout resource file, 145
layout file, 146–148
name new file, 144–145
onCreateViewMethod, 146
project details, 144
run app, 149

parts, 143
Framework layer, 4

■■G
Greatest common factor (GCF)

activity_calculate layout, 97
activity_main layout, 96

258 Index

activity_main.xml, 97
constraint inspector, 100
Euclid’s algorithm, 95
full code for Calculate.java, 105
getInt method, 104
input type attribute, 99
intent and bundle objects, 104
layout file of calculate

activity, 99
logic, 104
MainActivity, 100, 102, 104, 106
onClick method, 101
onCreate method, 101
onStart method, 102
project details, 96
putInt method, 104
result, 107
second activity, 96
View all attributes, 98

■■H
Handling events, see Event handling
HAXM Installer, 12
Hello app

add view objects, 49–50
attributes inspector, 52
autoconnect inspector, 51
on AVD, 50
constraint handles, 51
constraint inspectors, 54
ConstraintLayout, 51
inferred constraints, 54
layout file, 42

code folding, 46
Design editor, 43–44
Java program, 45–46
MainActivity.java, 47–48
project tool window, 42
text mode, 45
view modes, 47

Program file, 42
project information, 42
select textView, 48
sizing handles, 51
text mode of activity_main, 49

■■I
if then else condition, 228–230
Inheritance

"extends" keyword, 247–248
multiple, 251
parent and child class, 247
polymorphism, 249–250
root class, 248
single rooted class, 249

Inline comment, 218
IntelliJ, 5
Interfaces, 250–251

■■J, K
Java

control structures (see Control structures)
editions, 214
exceptions, 252–253
hello world program, 216–217
high-level language, 213
"import" statement, 246–247
inheritance (see Inheritance)
interface, 250–251
JDK installer, 215
JVM, 214
loops

do-while statement, 233
for statement, 233
while statement, 232

methods
different context, 238
pass by value, 238–239
same context, 237

packages, 245–246
program structure

blocks, 219
classes, 221
comments, 218
data types, 223–224
good practices, 222–223
keywords, 222
methods, 221
operators (see (Operators))
primitive types, 224
reference type, 224–225

Greatest common factor (GCF) (cont.)

259Index

statements, 218
variables, 220, 223–224
white space, 219

switch statement, 232
try-catch structure, 252–253

Java runtime engine (JRE), 214
Java virtual machine (JVM), 4, 214

■■L
Layout file, 42–45
Linux, 4, 7–8
Logcat messages, 172
Logical operators, see Conditional operators
Logic errors, 170, 173–175

■■M, N
macOS, 6
Materialpalette.com, 129
mnuEdit method, 140

■■O
Object factories, see Classes
Object Oriented Programming (OOP)

access modifier, 243
Account class, 241–242
characteristic, 239
class, 240
constructor, 243–244
extends, 243
implements, 243
overloading, 244–245
special modifiers, 243

openFileInput method, 195
Open Handset Alliance (OHA), 1
Operating system (OS), 1
Operators

arithmetic, 220, 226
assignment, 220, 226
bitwise and bit shift, 220, 228
conditional, 220, 227
equality and relational, 220, 227
type comparison, 228
unary, 220, 226

Oracle vs. Google, 2
Override methods, 137

■■P, Q
Polymorphism, 249–250
Primitive types, 224

■■R
Reference type, 224–225
Runtime exceptions, 169, 171, 173

■■S
SharedPreferences

activity_second, 191, 192
getSharedPreferences method, 187
gradle warning, 190
LOAD button, 193
MainActivity class, 194
project location, file manager, 188
refactor, 189
second activity class, 193
sequence of events, 187
warning message, 188

SQLite database, 4
Stable channel, 13
Support Repository, 12
switch statement, 230, 232
Syntax errors, 169–170

■■T
Try-catch structure, 252–253

■■U
UI elements

AppBar, 132–134
colors

AndroidManifest, 126–127
AppTheme value, 127
customized colors, 130
Materialpalette.com, 129
.xml in main editor, 129

demo app
create menu file, 135
create new directory, 135
MainActivity, 141–142
main_menu.xml, 136
menu items, 137

260 Index

menu resource file, 136
mnuEdit method, 140
override methods, 137
project details, 134
vector asset, 138, 140

fragments (see Fragments)
StylesAndThemes, 125
themes

Android, 131
edit, 131–132

Unary operators, 220, 226

■■V
Variables, 220,

223–224

■■W, X, Y, Z
while statement, 232
White space, 219
Windows, 7

UI elements (cont.)

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction
	History
	Statistics
	Operating System

	Chapter 2: Android Studio
	Android Studio Setup
	macOS
	Windows
	Linux

	Configuring Android Studio
	Hardware Acceleration
	The Android Studio IDE

	Chapter 3: Application Fundamentals
	Creating a Project
	Using Android Studio
	Compilation and Runtime
	Android Components
	Components
	Activities
	Services
	Content Providers
	Broadcast Receivers

	Chapter 4: Activities and Layouts
	Building the Hello Screen
	The Layout File
	Main Java Program

	Views and Layout

	Chapter 5: Handling Events
	Overview of Event Handling
	Declarative Event Handling
	Programmatic Event Handling
	Working with Text and Buttons
	More Event Handling Code
	Using an Inner Class as a Listener
	Using MainActivity as the Listener

	Chapter 6: Working with Multiple Activities
	Component Activation
	Launching a Specific Activity
	Demo Project
	Pass Data to Another Activity
	About the GCF Algorithm
	Returning Results from Other Activities
	Project Setup
	Program Files

	Implicit Intents
	Demo Project
	Opening an http Request

	Activity Life Cycle

	Chapter 7: UI Elements
	UI Elements
	Themes and Colors
	Colors
	Themes

	AppBar
	Demo App

	Fragments
	Project Setup
	Adding Fragments Programmatically

	Chapter 8: Running in the Background
	Long Running Tasks
	Demo Project
	AsyncTask

	Chapter 9: Debugging
	Syntax Errors
	Runtime Exceptions
	Logic Errors

	Chapter 10: Data Persistence
	SharedPreferences
	Demo Project
	Verifying the File
	Application Level SharedPreferences

	Internal Storage
	How to Work with Internal Storage
	Demo Project

	Chapter 11: App Distribution
	Preparing the App for Release
	Prepare Materials and Assets for Release
	Configure the App for Release
	Build a Release-Ready Application

	Releasing the App

	Appendix A:
Introduction to Java
	The Java Language
	Virtual Machine
	Editions
	Setup
	Hello World
	Program Structure
	Other Considerations
	Variables and Data Types
	Primitive Types
	Reference Types

	Operators
	Program Flow
	Decisions
	if then else
	switch Statement

	Loops

	Simple Application of Control Structures
	The FizzBuzz Problem
	How to Print a 5×5 Multiplication Table

	Methods
	Object Oriented Programming
	More Details on Classes
	Constructors
	Overloading

	Packages
	Multiple Types in a Package
	When We Don’t Need “import”

	Inheritance
	Object as the Root Class
	Single Rooted Class Inheritance
	Polymorphism

	Interfaces
	Multiple Inheritance

	Exceptions

	Index

