

Learn	Java™
GUI	Applications

A	JFC	Swing	NetBeans	Tutorial

8th	Edition

Philip	Conrod	&	Lou	Tylee

KIDWARE	SOFTWARE,	LLC
PO	Box	701

Maple	Valley,	WA	98038
www.computerscienceforkids.com

www.kidwaresoftware.com

http://www.computerscienceforkids.com
http://www.kidwaresoftware.com

Copyright	©	2015	by	Kidware	Software	LLC.	All	rights	reserved	Published	by:
Kidware	Software,	LLC
PO	Box	701
Maple	Valley,	Washington	98038
1.425.413.1185
www.kidwaresoftware.com
www.computerscienceforkids.com

All	Rights	Reserved.	No	part	of	the	contents	of	this	book	may	be	reproduced	or	transmitted	in	any	form	or
by	any	means	without	the	written	permission	of	the	publisher.

Printed	 in	 the	 United	 States	 of	 America	 ISBN-13	 978-1-937161-13-2	 (Print	 Edition)	 ISBN-13	 978-1-
937161-26-2	 (Electronic	 Edition)	 Cover	 Illustration	 by	 Kevin	 Brockschmidt	 Copy	 Editors:	 Stephanie
Conrod	&	Jessica	Conrod	Compositor:	Michael	Rogers

Previous	edition	published	as	“Learn	Java	GUI	Applications	–	7th	Edition”	by	Kidware	Software	LLC

This	copy	of	the	Learn	Java	GUI	Applications	Tutorial	and	the	associated	software	is	licensed	to	a	single
user.	Copies	of	the	course	are	not	to	be	distributed	or	provided	to	any	other	user.	Multiple	copy	licenses	are
available	for	educational	institutions.	Please	contact	Kidware	Software	for	school	site	license	information.

This	guide	was	developed	for	the	course,	“Learn	Java	GUI	Applications,”	produced	by	Kidware	Software
LLC,	Maple	Valley,	Washington.	It	is	not	intended	to	be	a	complete	reference	to	the	Java	language.	Please
consult	 the	 Oracle	 website	 for	 detailed	 reference	 information.	 This	 guide	 refers	 to	 several	 software	 and
hardware	 products	 by	 their	 trade	 names.	 These	 references	 are	 for	 informational	 purposes	 only	 and	 all
trademarks	 are	 the	 property	 of	 their	 respective	 companies	 and	 owners.	 Oracle	 and	 Java	 are	 registered
trademarks	of	Oracle	Corporation	and/or	its	affiliates.	JCreator	is	a	trademark	product	of	XINOX	Software.
Microsoft	Word,	Excel,	and	Windows	are	all	 trademark	products	of	 the	Microsoft	Corporation.	All	other
trademarks	are	the	property	of	their	respective	owners,	and	Kidware	Software	makes	no	claim	of	ownership
by	the	mention	of	products	that	contain	these	marks.	Kidware	Software	is	not	associated	with	any	products
or	vendors	mentioned	in	this	book.	Kidware	Software	cannot	guarantee	the	accuracy	of	this	information.

The	example	companies,	organizations,	products,	domain	names,	 e-mail	 addresses,	 logos,	people,	places,
and	 events	 depicted	 are	 fictitious.	No	 association	with	 any	 real	 company,	 organization,	 product,	 domain
name,	e-mail	address,	logo,	person,	place,	or	event	is	intended	or	should	be	inferred.

This	book	expresses	the	author’s	views	and	opinions.	The	information	in	this	book	is	distributed	on	an	"as
is"	 basis,	 without	 and	 expresses,	 statutory,	 or	 implied	 warranties.	 Neither	 the	 author(s)	 nor	 Kidware
Software	LLC	shall	have	any	liability	to	any	person	or	entity	with	respect	to	any	loss	nor	damage	caused	or
alleged	to	be	caused	directly	or	indirectly	by	the	information	contained	in	this	book.

This	eBook	was	posted	by	AlenMiler!

http://www.kidwaresoftware.com
http://www.computerscienceforkids.com

Many	Interesting	eBooks	You	can	also	Download	from	my	Blog:	Click	Here!

Mirror:	Click	Here!

https://tr.im/fgrfegtr
https://tr.im/geresttre

About	The	Authors	Philip	Conrod	holds	a	BS	in	Computer
Information	Systems	and	a	Master's	certificate	in	the	Essentials	of	Business
Development	from	Regis	University.	Philip	has	been	programming	computers
since	1978.	He	has	authored,	coauthored	and	edited	numerous	beginning
computer	programming	books	for	kids,	teens	and	adults.	Philip	has	also	held
various	Information	Technology	leadership	roles	in	companies	like	Sundstrand
Aerospace,	Safeco	Insurance	Companies,	FamilyLife,	Kenworth	Truck
Company,	and	PACCAR.	Today,	Philip	serves	as	the	Chief	Information	Officer
for	a	large	manufacturing	company	based	in	Seattle,	Washington.	In	his	spare
time,	Philip	serves	as	the	President	of	Kidware	Software	LLC.	He	makes	his
home	with	his	lovely	family	in	Maple	Valley,	Washington.

Lou	Tylee	holds	BS	and	MS	degrees	in	Mechanical	Engineering	and	a	PhD	in
Electrical	Engineering.	Lou	has	been	programming	computers	since	1969	when
he	 took	 his	 first	 Fortran	 course	 in	 college.	He	 has	written	 software	 to	 control
suspensions	for	high	speed	ground	vehicles,	monitor	nuclear	power	plants,	lower
noise	levels	in	commercial	jetliners,	compute	takeoff	speeds	for	jetliners,	locate
and	 identify	 air	 and	ground	 traffic	 and	 to	 let	 kids	 count	 bunnies,	 learn	how	 to
spell	and	do	math	problems.	He	has	written	several	online	texts	teaching	Visual
Basic,	Visual	C#	and	Java	to	thousands	of	people.	He	taught	a	beginning	Visual
Basic	course	for	over	15	years	at	a	major	university.	Currently,	Lou	works	as	an
engineer	at	a	major	Seattle	aerospace	firm.	He	is	the	proud	father	of	five	children
and	 proud	 husband	 of	 his	 special	 wife.	 Lou	 and	 his	 family	 live	 in	 Seattle,
Washington.

Acknowledgements

I	want	 to	 thank	my	 three	wonderful	 daughters	 -	 Stephanie,	 Jessica	 and	Chloe,
who	 helped	 with	 various	 aspects	 of	 the	 book	 publishing	 process	 including
software	 testing,	 book	 editing,	 creative	 design	 and	 many	 other	 more	 tedious
tasks	 like	 finding	all	our	 typos.	 I	could	not	have	accomplished	 this	without	all
your	hard	work,	love	and	support.	I	also	want	to	thank	by	best	friend	Jesus	who
is	always	stands	by	my	side.

Last	 but	 definitely	not	 least,	 I	want	 to	 thank	my	multi-talented	 co-author,	Lou
Tylee,	 for	 doing	 all	 the	 real	 hard	work	 necessary	 to	 develop,	 test,	 debug,	 and
keep	 current	 all	 the	 ‘kid-friendly’	 applications,	 games	 and	 base	 tutorial	 text
found	 in	 this	 book.	Lou	 has	 tirelessly	 poured	 his	 heart	 and	 soul	 into	 so	many
previous	 versions	 of	 this	 tutorial	 and	 there	 are	 so	 many	 beginners	 who	 have
benefited	from	his	work	over	the	years.	Lou	is	by	far	one	of	the	best	application
developers	 and	 tutorial	 writers	 I	 have	 ever	 worked	 with.	 Thanks	 Lou	 for
collaborating	with	me	on	this	book	project.

	

Table	of	Contents

Course	Description

Course	Prerequisites

System	Requirements

Installing	and	Using	the	Downloadable	Solution	Files

Installing	Learn	Java

How	To	Take	the	Course

Forward	by	Alan	Payne,	A	Computer	Science	Teacher

1.	Introduction	to	Java

Preview

Course	Objectives

What	is	Java?

What	is	a	GUI	Application?

A	Brief	Look	at	Object-Oriented	Programming	(OOP)

Downloading	and	Installing	Java	and	NetBeans

Testing	the	Installation

Getting	Help	with	a	Java	Program

Structure	of	a	Java	Program

Structure	of	a	Java	GUI	Application

Swing	Controls

Creating	a	Java	Project	with	Netbeans

Create	a	Frame

Saving	Java	Projects	with	Netbeans

Netbeans	and	Java	Files

Create	the	User	Interface

Example	1-1:	Stopwatch	Application	-	Adding	Controls

Adding	Event	Methods

Variables

Java	Data	Types

Variable	Declaration

Arrays

Constants

Variable	Initialization

Example	1-2:	Stopwatch	Application	-	Writing	Code

Class	Review

Practice	Problems	1

Problem	1-1.	Beep	Problem

Problem	1-2.	Caption	Problem

Problem	1-3.	Enabled	Problem

Problem	1-4.	Date	Problem

Exercise	1:	Calendar/Time	Display

2.	The	Java	Language

Review	and	Preview

A	Brief	History	of	Java

Rules	of	Java	Programming

Java	Statements	and	Expressions

Type	Casting

Java	Arithmetic	Operators

Comparison	and	Logical	Operators

Concatenation	Operators

Strings	to	Numbers	to	Strings

Java	String	Methods

Dates	and	Times

Random	Number	Generator

Math	Functions

Example	2-1:	Savings	Account

Focus	Traversal

Example	2-2:	Savings	Accounts	–	Setting	Focus

Improving	a	Java	Application

Java	Decisions	-	if	Statements

Switch	Statement	-	Another	Way	to	Branch

Control	Focus

Input	Validation

Example	2-3:	Savings	Account	–	Input	Validation

Java	Looping

Java	Counting

Example	2-4:	Savings	Account	-	Decisions

Class	Review

Practice	Problems	2

Problem	2-1.	Random	Number	Problem

Problem	2-2.	Price	Problem

Problem	2-3.	Odd	Integers	Problem

Problem	2-4.	Pennies	Problem

Problem	2-5.	Code	Problem

Exercise	2-1:	Computing	a	Mean	and	Standard	Deviation

Exercise	2-2:	Flash	Card	Addition	Problems

3.	Java	Swing	Controls

Review	and	Preview

Function	Overloading

Confirm	Dialog	(JOptionPane)

Font	Object

Color	Object

JFrame	Object

Frame	Layout	and	Centering

JButton	Control

JLabel	Control

JTextField	Control

JTextArea	Control

Example	3-1:	Password	Validation

JCheckBox	Control

JRadioButton	Control

JPanel	Control

Handling	Multiple	Events	in	a	Single	Procedure

Control	Arrays

Example	3-2:	Pizza	Order

JList	Control

JScrollPane	Control

JComboBox	Control

Example	3-3:	Flight	Planner

Class	Review

Practice	Problems	3

Problem	3-1.	Message	Box	Problem

Problem	3-2.	Tray	Problem

Problem	3-3.	List	Box	Problem

Problem	3-4.	Combo	Box	Problem

Exercise	3:	Customer	Database	Input	Screen

4.	More	Java	Swing	Controls

Review	and	Preview

JSpinner	Control

Example	4-1:	Date	Input	Device

JScrollBar	Control

JSlider	Control

Example	4-2:	Temperature	Conversion

JLabel	Control	(Revisited)

Example	4-3:	“Find	the	Burger”	Game

JFileChooser	Control	(Open	Files)

Example	4-4:	Image	Viewer

Class	Review

Practice	Problems	4

Problem	4-1.	Number	Guess	Problem

Problem	4-2.	RGB	Color	Problem

Problem	4-3.	Tic-Tac-Toe	Problem

Problem	4-4.	File	Times	Problem

Exercise	4:	Student	Database	Input	Screen

5.	Java	GUI	Application	Design	and	Distribution

Review	and	Preview

Application	Design	Considerations

JTabbedPane	Control

Example	5-1:	Shopping	Cart

Using	General	Methods	in	Applications

Example	5-2:	Average	Value

Returning	Multiple	Values	from	General	Methods

Example	5-3:	Circle	Geometry

Adding	Menus	to	Java	Applications

Example	5-4:	Note	Editor

Distribution	of	a	Java	GUI	Application

Executable	(jar)	Files

Creating	a	Manifest	File	in	NetBeans

Creating	a	jar	File	in	Netbeans

Application	Icons

Using	IconEdit

Running	a	Project	on	Another	Computer

Class	Review

Practice	Problems	5

Problem	5-1	Tabbed	Pane	Problem

Problem	5-2	Note	Editor	About	Box	Problem

Problem	5-3	Normal	Numbers	Problem

Exercise	5:	US/World	Capitals	Quiz

6.	Exception	Handling,	Debugging	and	Sequential
Files

Review	and	Preview

Program	Errors

Exception	Handling

Debugging	Java	Programs

Simple	Debugging

Example	6-1:	Debugging	Example

Using	the	Java	Debugger

Using	the	Debugging	Tools

Debugging	Strategies

Sequential	Files

Sequential	File	Output	(Variables)

Example	6-2:	Writing	Variables	to	Sequential	Files

Sequential	File	Input	(Variables)

Example	6-3:	Reading	Variables	from	Sequential	Files

Parsing	Data	Lines

Example	6-4.	Parsing	Data	Lines

Reading	Tokenized	Lines

Example	6-5.	Reading	Tokenized	Data	Lines

Building	Data	Lines

Example	6-6:	Building	Data	Lines

Configuration	Files

Example	6-7:	Configuration	Files

Writing	and	Reading	Text	Using	Sequential	Files

JFileChooser	Control	(Save	Files)

Example	6-8:	Note	Editor	-	Reading	and	Saving	Text	Files

Class	Review

Practice	Problems	6

Problem	6-1.	Debugging	Problem

Problem	6-2.	Option	Saving	Problem

Problem	6-3.	Text	File	Problem

Problem	6-4.	Data	File	Problem

Exercise	6-1:	Information	Tracking

Exercise	6-2:	‘Recent	Files’	Menu	Option

7.	Graphics	Techniques	with	Java

Review	and	Preview

Simple	Animation

Example	7-1:	Simple	Animation

Timer	Object

Example	7-2:	Timer	Example

Basic	Animation

Example	7-3:	Basic	Animation

Random	Numbers	(Revisited)	and	Games

Randomly	Sorting	Integers

Example	7-4:	Random	Integers

Java	2D	Graphics

Graphics2D	Object

Stroke	and	Paint	Objects

Shapes	and	Drawing	Methods

Line2D	Shape

Graphics	Demonstration

Persistent	Graphics

Example	7-5:	Drawing	Lines

Rectangle2D	Shape

RoundRectangle2D	Shape

Example	7-6:	Drawing	Rectangles

Ellipse2D	Shape

Example	7-7:	Drawing	Ellipses

Arc2D	Shape

Example	7-8:	Drawing	Pie	Segments

Pie	Charts

Line	Charts	and	Bar	Charts

Coordinate	Conversions

Example	7-9:	Line,	Bar	and	Pie	Charts

Class	Review

Practice	Problems	7

Problem	7-1.	Dice	Rolling	Problem

Problem	7-2.	Shape	Guessing	Problem

Problem	7-3.	Pie	Chart	Problem

Problem	7-4.	Plotting	Problem

Exercise	7:	Information	Tracking	Plotting

8.	More	Graphics	Techniques	and	Multimedia
Effects

Review	and	Preview

Mouse	Events

Example	8-1:	Blackboard

Persistent	Graphics,	Revisited	(Vector	Class)

Example	8-2:	Blackboard	(Revisited)

More	Graphics	Methods

Point2D	Object

GeneralPath	Object

Drawing	Polygons

Example	8-3:	Drawing	Polygons

Drawing	Curves

Example	8-4:	Drawing	Curves

Example	8-5:	Animated	Curves

GradientPaint	Object

Example	8-6:	Gradient	Paint

TexturePaint	Object

Example	8-7:	Texture	Paint

drawString	Method

Multimedia	Effects

Animation	with	drawImage	Method

Example	8-8:	Bouncing	Ball

Scrolling	Backgrounds

Example	8-9:	Horizontally	Scrolling	Background

Sprite	Animation

Keyboard	Methods

Example	8-10:	Sprite	Animation

Collision	Detection

Example	8-11:	Collision	Detection

Sounds	in	Java

Example	8-12:	Playing	Sounds

Example	8-13:	Bouncing	Ball	with	Sound!

Class	Review

Practice	Problems	8

Problem	8-1.	Blackboard	Problem

Problem	8-2.	Rubber	Band	Problem

Problem	8-3.	Plot	Labels	Problem

Problem	8-4.	Bouncing	Balls	Problem

Problem	8-5.	Moon	Problem

Exercise	8:	The	Original	Video	Game	-	Pong!

9.	Other	Java	Topics

Review	and	Preview

Other	Controls

JTextPane	Control

Example	9-1:	Note	Editor	(Revisited)

JToolBar	Control

Example	9-2:	Note	Editor	Toolbar

More	Swing	Controls

Even	More	Controls

Calendar	Control

Example	9-3:	Date	Selection

Printing	with	Java

Printing	Pages	of	a	Document

Printing	Text

Printing	Lines	and	Rectangles

Printing	Swing	Components

pageDialog	Method

printDialog	Method

Example	9-4:	Printing

Creating	a	Help	System

Creating	Topic	Files

Creating	a	Map	File

Creating	a	Table	of	Contents	File

Creating	a	Help	Set	File

Displaying	the	Help	System

Example	9-5:	Help	System	Display

Class	Review

Course	Summary

Practice	Problems	9

Problem	9-1.	Loan	Printing	Problem

Problem	9-2.	Plot	Printing	Problem

Problem	9-3.	Note	Editor	Help	Problem

Exercise	9-1:	Phone	Directory

Exercise	9-2:	The	Ultimate	Application

Appendix	I.	General	Purpose	Methods	and	Classes

average

BarChartPanel

blankLine

circleGeometry

degFTodegC

GraphicsPanel

LineChartPanel

loanPayment

midLine

PieChartPanel

PrintUtilities

randomNormalNumber

rectangleInfo

sortIntegers

soundEx

standardDeviation

Transparency

validateDecimalNumber

validateIntegerNumber

xPhysicalToxUser

yPhysicalToyUser

Appendix	II.	Brief	Primer	on	Classes	and	Objects

Introduction

Objects	in	Java

Adding	a	Class	to	a	Java	Project

Declaring	and	Constructing	an	Object

Adding	Properties	to	a	Class

Another	Way	to	Add	Properties	to	a	Class

Validating	Class	Properties

Adding	Constructors	to	a	Class

Adding	Methods	to	a	Class

Inheritance

Example	II-1.	Savings	Account

Inheriting	from	Java	Controls

Building	a	Custom	Control

Adding	New	Properties	to	a	Control

Adding	Control	Methods

Example	II-2.	Savings	Account	(Revisited)

Class	Review

Appendix	III.	Installing	Java	and	NetBeans	for
Windows	Linux	or	MAC	OS	X

More	Self-Study	or	Instructor-Led	Computer
Programming	Tutorials	by	Kidware	Software

The	following	solutions	are	included	in	the	digital	download	file
available	from	the	Publisher’s	website	after	book	registration:

Practice	Problems	Solutions	(Part	1:	Classes	1	to
5)

Practice	Problems	Solutions	(Part	2:	Classes	6	to
9)

Exercise	Solutions	(Part	1:	Classes	1	to	5)

Exercise	Solutions	(Part	2:	Classes	6	to	9)

Course	Description	Learn	Java	GUI	Applications	is	a	self-
paced	overview	of	the	Java	programming	language,	with	specific	attention	to
graphic	user	interface	(GUI)	applications.	Upon	completion	of	the	course,	you
will:	1.		Understand	the	benefits	of	using	Java	as	a	GUI	application	development
tool.

2.	 	Understand	 the	 Java	 event-driven	programming	concepts,	 terminology,	 and
available	Swing	controls.

3.		Learn	the	fundamentals	of	designing,	implementing,	and	distributing	a	wide
variety	of	Java	GUI	applications.

Learn	Java	GUI	Applications	is	presented	using	a	combination	of	course	notes
(written	 in	 Microsoft	 Word	 format)	 over	 1100	 pages	 of	 Java	 examples	 and
applications.

Course	Prerequisites	To	grasp	the	concepts	presented	in
Learn	Java	GUI	Applications,	you	should	possess	a	working	knowledge	of
your	particular	operating	system	(Windows,	Linux,	MacOS).	You	should	know
how	to	locate,	copy,	move	and	delete	files.	You	should	be	familiar	with	the
simple	tasks	of	using	menus,	toolbars,	resizing	windows,	and	moving	windows
around.

You	 should	 have	 had	 some	 exposure	 to	 the	 Java	 programming	 language.	You
should	understand	enough	Java	to	build	simple	console	applications.	We	offer	a
companion	course,	Beginning	Java	 (or	Java	for	Kids,	 if	you’re	a	kid),	which
will	provide	this	background.

You	will	also	need	 the	ability	 to	view	and	print	documents	saved	 in	Microsoft
Word	 format.	 This	 can	 be	 accomplished	 in	 one	 of	 two	 ways.	 The	 first,	 and
easiest,	is	that	you	already	have	Microsoft	Word	on	your	computer.	The	second
way,	 and	 a	 bit	 more	 difficult,	 is	 that	 you	 can	 download	 the	 Microsoft	 Word
Viewer.	This	is	a	free	Microsoft	product	that	allows	viewing	Word	documents.

Finally,	and	most	obvious,	you	need	to	have	Java.	This	is	a	FREE	product	that
can	 be	 downloaded	 from	 the	 Java	 website.	 The	 website	 is:
http://www.oracle.com/technetwork/java/javase/downloads/index.html

This	 site	 contains	 complete	 downloading	 and	 installation	 instructions	 for	 the
latest	version	of	Java.	You	can	also	download	all	Java	documentation	from	this
same	site.	Look	for	the	Standard	Edition	(Java	SE).	You	need	to	download	the
corresponding	Java	Development	Kit	(JDK).	The	current	version	is	JDK	8.

Our	 tutorials	use	NetBeans	 as	 the	 IDE	(Integrated	Development	Environment)
for	building	and	 testing	Java	applications.	This	 is	also	a	 free	product	available
for	download	at:	http://www.Netbeans.com

This	 site	 contains	downloading	and	 installation	 instructions	 for	Netbeans.	The
notes	and	code	use	Version	8.0.	Detailed	downloading	instructions	can	be	found
in	the	Appendix	located	at	the	end	of	this	tutorial.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.Netbeans.com

System	Requirements	You	will	need	the	following	software
to	complete	the	exercises	in	this	book:

Oracle	Java	Standard	Edition	JDK8
NetBeans	8.0

Installing	and	Using	the	Downloadable
Solution	Files

If	 you	 purchased	 this	 directly	 from	 our	website	 you	 received	 an	 email	with	 a
special	and	individualized	internet	download	link	where	you	could	download	the
compressed	Program	Solution	Files.	 If	 you	 purchased	 this	 book	 through	 a	 3rd
Party	 Book	 Store	 like	 Amazon.com,	 the	 solutions	 files	 for	 this	 tutorial	 are
included	 in	 a	 compressed	ZIP	 file	 that	 is	 available	 for	download	directly	 from
our	website	at:

http://www.kidwaresoftware.com/learnjava8-registration.htm

Complete	the	online	web	form	at	this	webpage	above	with	your	name,	shipping
address,	 email	 address,	 the	exact	 title	of	 this	book,	date	of	purchase,	online	or
physical	 store	 name,	 and	 your	 order	 confirmation	 number	 from	 that	 store.	We
also	ask	you	to	include	the	last	4	digits	of	your	credit	card	so	we	can	match	it	to
the	credit	card	 that	was	used	 to	purchase	 this	 tutorial.	After	we	receive	all	 this
information	we	will	 email	 you	 a	 download	 link	 for	 the	 Source	Code	 Solution
Files	associated	with	this	book.

Warning:	 If	 you	 purchased	 this	 book	 “used”	 or	 “second	 hand”	 you	 are	 not
licensed	or	entitled	to	download	the	Program	Solution	Files.	However,	you	can
purchase	the	Digital	Download	Version	of	this	book	at	a	highly	discounted	price
which	 allows	you	 access	 to	 the	 digital	 source	 code	 solutions	 files	 required	 for
completing	this	tutorial.

http://www.Amazon.com
http://www.kidwaresoftware.com/learnjava8-registration.htm

Using	Learn	Java	GUI	Applications	The
course	notes	and	code	for	Learn	Java	GUI	Applications	are	included	in	one	or
more	ZIP	file(s).	Use	your	favorite	‘unzipping’	application	to	write	all	files	to
your	computer.	(If	you’ve	received	the	course	on	CD-ROM,	the	files	are	not
zipped	and	no	unzipping	is	needed.)	The	course	is	included	in	the	folder	entitled
LearnJava.	This	folder	contains	two	other	folders:	LJ	Notes	and	LJ	Code.	The
LJ	Code	folder	includes	all	the	Java	applications	developed	during	the	course.
The	applications	are	further	divided	into	Class	folders.	Each	class	folder
contains	the	Java	project	folders.

How	To	Take	the	Course	Learn	Java	GUI
Applications	is	a	self-paced	course.	The	suggested	approach	is	to	do	one	class	a
week	for	nine	weeks.	Each	week’s	class	should	require	about	4	to	10	hours	of
your	time	to	grasp	the	concepts	completely.	Prior	to	doing	a	particular	week’s
work,	open	the	class	notes	file	for	that	week	and	print	it	out.	Then,	work	through
the	notes	at	your	own	pace.	Try	to	do	each	example	as	they	are	encountered	in
the	notes.	If	you	need	any	help,	all	solved	examples	are	included	in	the	LJ	Code
folder.

After	completing	each	week’s	notes,	practice	problems	and	homework	exercise
(sometimes,	two)	is	given;	covering	many	of	the	topics	taught	that	in	that	class.
Like	 the	 examples,	 try	 to	 work	 through	 the	 practice	 problems	 and	 homework
exercise,	 or	 some	 variation	 thereof,	 on	 your	 own.	 Refer	 to	 the	 completed
exercise	in	the	LJ	Code	folder,	if	necessary.	This	is	where	you	will	learn	to	be	a
Java	programmer.	You	only	 learn	how	 to	build	applications	and	write	code	by
doing	lots	of	it.	The	problems	and	exercises	give	you	that	opportunity.	And,	you
learn	 coding	 by	 seeing	 lots	 of	 code.	 Programmers	 learn	 to	 program	 by	 seeing
how	other	people	do	things.	Feel	free	to	‘borrow’	code	from	the	examples	 that
you	can	adapt	to	your	needs.	I	think	you	see	my	philosophy	here.	I	don’t	think
you	can	teach	programming.	I	do,	however,	think	you	can	teach	people	how	to
become	programmers.	This	course	includes	numerous	examples,	problems,	and
exercises	to	help	you	toward	that	goal.	We	show	you	how	to	do	lots	of	different
things	in	the	code	examples.	You	will	learn	from	the	examples!

Forward	By	Alan	Payne,	Computer	Science	Teacher

What	is	“Learn	Java	GUI	Applications”	...	and	how	it	works.

The	 lessons	are	 a	highly	organized	and	well-indexed	 set	of	 tutorials	meant	 for
high	 school	 students	 and	 young	 adults.	 Netbeans,	 a	 specific	 IDE	 (Integrated
Development	 Environment)	 is	 used	 to	 create	 GUI	 (Graphical	 User	 Interface
applications)	 by	 employing	 the	 Swing	 Controls	 of	 Java	 Development	 Kit
Version	8.

The	 tutorials	 provide	 the	benefit	 of	 completed	 age-appropriate	 applications	 for
high	 school	 students	 -	 fully	 documented	 projects	 from	 the	 teacher's	 point	 of
view.	 That	 is,	 while	 full	 solutions	 are	 provided	 for	 the	 adult’s	 benefit,	 the
projects	 are	 presented	 in	 an	 easy-to-follow	 set	 of	 lessons	 explaining	 object-
oriented	programming	concepts,	 Java	Swing	controls,	 the	 rational	 for	 the	 form
layout,	coding	design	and	conventions,	and	specific	code	related	to	the	problem.
High	 school	 learners	may	 follow	 tutorials	 at	 their	 own	 pace.	 Every	 bit	 of	 the
lesson	is	remembered	as	it	contributes	to	the	final	solution.	The	finished	product
is	the	reward,	but	the	student	is	fully	engaged	and	enriched	by	the	process.	This
kind	of	 learning	 is	often	 the	 focus	of	 teacher	 training.	Every	computer	 science
teacher	knows	what	a	great	deal	of	preparation	is	required	for	projects	 to	work
for	senior	students.	With	these	tutorials,	the	research	behind	the	projects	is	done
by	an	author	who	understands	the	classroom	experience.	That	is	extremely	rare!

Graduated	Lessons	 for	Every	Project	…	Lessons,	examples,	problems	and
projects.	Graduated	learning.	Increasing	and	appropriate	difficulty...	Great
results.

With	 these	 projects,	 there	 are	 lessons	 providing	 a	 comprehensive,	 student-
friendly	background	on	 the	programming	 topics	 to	be	covered.	Object-oriented
concepts	 are	 stressed.	 Once	 understood,	 concepts	 are	 easily	 applicable	 to	 a
variety	of	applications.

The	 “Learn	 Java	 GUI	 Applications”	 tutorials	 are	 organized	 by	 presenting
relevant	programming	concepts	first,	fully	drawn	out	examples	second,	followed
by	 short	 problems	 where	 the	 student	 must	 recall	 the	 required	 programming

concept	 with	 correct	 language	 syntax.	 Finally,	 exercises	 in	 the	 form	 of
summative	 projects	 are	 presented	 at	 the	 end	 of	 the	 lesson.	 This	 graduated
approach	to	problems	leads	to	a	high	level	of	retention.

By	presenting	lessons	in	this	graduated	manner,	students	are	fully	engaged	and
appropriately	challenged	to	become	independent	thinkers	who	can	come	up	with
their	 own	 project	 ideas	 and	 design	 their	 own	GUIs	 and	 do	 their	 own	 coding.
Once	the	process	is	 learned,	 then	student	engagement	is	unlimited!	I	have	seen
literacy	 improve	 dramatically	 because	 students	 cannot	 get	 enough	 of	 what	 is
being	presented.

Indeed,	 lessons	encourage	accelerated	 learning	-	 in	 the	sense	 that	 they	provide
an	 enriched	 environment	 to	 learn	 computer	 science,	 but	 they	 also	 encourage
accelerating	 learning	 because	 students	 cannot	 put	 the	 lessons	 away	 once	 they
start!	Computer	science	provides	 this	unique	opportunity	 to	challenge	students,
and	 it	 is	 a	 great	 testament	 to	 the	 authors	 that	 they	 are	 successful	 in	 achieving
such	levels	of	engagement	with	consistency.

My	History	with	Kidware	Software	products.

I	have	used	Kidware’s	Programming	Tutorials	for	over	a	decade	to	keep	up	my
own	learning.	By	using	these	lessons,	I	am	able	to	spend	time	on	things	which
will	 pay	 off	 in	 the	 classroom.	 I	 do	 not	 waste	 valuable	 time	 ensconced	 in
language	 reference	 libraries	 for	 programming	 environments	 –	 help	 screens
which	 can	 never	 be	 fully	 remembered!	 These	 projects	 are	 examples	 of	 how
student	 projects	 should	 be	 as	 final	 products	 -	 thus,	 the	 pathway	 to	 learning	 is
clear	and	immediate	in	every	project.

If	I	want	to	use	or	expand	upon	some	of	the	projects	for	student	use,	then	I	take
advantage	 of	 site-license	 options.	 I	 have	 found	 it	 very	 straight	 forward	 to
emphasize	the	fundamental	computer	science	topics	that	form	the	basis	of	these
projects	 when	 using	 them	 in	 the	 classroom.	 I	 can	 list	 some	 computer	 science
topics	which	 everyone	will	 recognize,	 regardless	 of	where	 they	 teach	 –	 topics
which	are	covered	expertly	by	these	tutorials:

•	Data	Types	and	Ranges

•	Scope	of	Variables

•	Naming	Conventions

•	Decision	Making

•	Looping

•	Language	Functions	–	String,	Date,	Numerical

•	Arrays

•	Writing	Your	own	Methods	(subroutines)

•	Writing	Your	Own	Classes	(stressing	object-oriented	concepts)

•	Understanding	 the	Swing	Controls	 in	 the	Java	Software	Development	Kit
Version	 8,	 for	 Java	 for	GUI	 applications,	 and	more…	 it’s	 all	 integrated
into	the	tutorials.

In	many	States	or	Provinces,	the	above-listed	topics	would	certainly	be	formally
introduced	in	High	School	computer	science,	and	would	form	the	basis	of	most
projects	undertaken	by	students.	With	these	tutorials,	you	as	the	teacher	or	parent
may	 choose	 where	 to	 put	 the	 emphasis,	 to	 be	 sure	 to	 cover	 the	 curricular
expectations	of	your	curriculum	documents.

Any	 further	 High	 School	 computer	 programming	 topics	 derive	 directly	 from
those	 listed	above.	Nothing	 is	 forgotten.	All	can	be	 integrated	with	 the	 lessons
provided.

Quick	learning	curve	for	teachers!	How	teachers	can	use	the	product:

Having	 projects	 completed	 ahead	 of	 time	 can	 allow	 the	 teacher	 to	 present	 the
design	 aspect	 of	 the	 project	 FIRST,	 and	 then	 have	 students	 do	 all	 of	 their
learning	in	the	context	of	what	is	required	in	the	finished	product.	This	is	a	much
faster	 learning	 curve	 than	 if	 students	 designed	 all	 of	 their	 own	 projects	 from
scratch.	Streamlined	lessons	focusing	on	a	unified	outcome	engages	students,	as
they	complete	more	projects	within	a	short	period	of	time	and	there	is	a	context
for	everything	that	is	learned.

With	 the	 Learn	 Java	 GUI	 Applications	 tutorials,	 sound	 advice	 regarding
generally	accepted	coding	strategies	(“build	and	test	your	code	in	stages”,	“learn
input,	 output,	 formatting	 and	 data	 storage	 strategies	 for	 different	 data	 types”,
build	 graphical	 components	 from	 Java’s	 Swing	 Control	 class	 libraries,	 etc..)
encourage	independent	thought	processes	among	learners.	After	mastery,	then	it
is	much	more	 likely	 that	 students	 can	create	 their	own	problems	and	 solutions
from	scratch.	Students	are	ready	to	create	their	own	summative	projects	for	your
computer	 science	 course	 –	 or	 just	 for	 fun,	 and	 they	may	 think	 of	 projects	 for
their	other	courses	as	well!

Meets	State	and	Provincial	Curriculum	Expectations	and	More

Different	 states	 and	 provinces	 have	 their	 own	 curriculum	 requirements	 for
computer	 science.	 With	 the	 Kidware	 Software	 products,	 you	 have	 at	 your
disposal	 a	 series	 of	 projects	 which	 will	 allow	 you	 to	 pick	 and	 choose	 from
among	those	which	best	suit	your	curriculum	needs.	Students	focus	upon	design
stages	 and	 sound	 problem-solving	 techniques	 from	 a	 computer-science,
problem-solving	 perspective.	 Students	 become	 independent	 problem-solvers,
and	will	exceed	the	curricular	requirements	of	their	computer	science	curriculum
in	all	jurisdictions.

Useable	projects	-	Out	of	the	box!

The	specific	projects	covered	 in	 the	Learn	Java	GUI	Applications	 tutorials	are
suitable	for	students	in	grades	11	to	12.	Specific	senior	student-friendly	tutorials
and	projects	are	found	in	the	Contents	document,	and	include

Stop	Watch	Application
Calendar/Time	Display
Savings	Calculator
Computing	a	Mean	and	Standard	Deviation
Flash	Card	Addition	Problems
Password	Validation	Program
Pizza	Ordering	Program
Flight	Planner
Customer	Database	Input	Screen

Temperature	Conversion	Application
Image	Viewer
Student	Database	Input	Screen
Debugging	Strategies
Reading	and	Writing	Variables	using	Sequential	Access	Files
Reading	and	Writing	Text	using	Sequential	Access	Files
Information	Tracking
Recent	Files	Menu	Option
Timers
Basic	Animation
Graphics	 Applications	 such	 as	 Dice	 Rolling,	 Shapes,	 Pie	 Charts,	 Blackjack,
Plotting
Multimedia	Application	in	The	Original	Video	Game	of	Pong
And	more	Swing	controls	in	these	applications:
Biorhythms,	Loan	Printing,	Plot	Printing,	Note	Editor,	Phone	Directory

As	 you	 can	 see,	 there	 is	 a	 high	 degree	 of	 care	 taken	 so	 that	 projects	 are	 age-
appropriate,	and	completely	appropriate	for	high	school	computer	science.

You	as	a	parent	or	 teacher	can	begin	 teaching	 the	projects	on	 the	first	day.	 It's
easy	for	the	adult	to	have	done	their	own	learning	by	starting	with	the	solution
files.	Then,	they	will	see	how	all	of	the	parts	of	the	lesson	fall	into	place.	Even	a
novice	could	make	use	of	the	accompanying	lessons.

How	to	teach	students	to	use	the	materials.

In	a	school	situation,	teachers	might	be	tempted	to	spend	considerable	amounts
of	time	at	the	projector	or	computer	screen	going	over	the	tutorial	–	but	the	best
strategy	 is	 to	 present	 the	 finished	 product	 first!	 That	 way,	 provided	 that	 the
teacher	 has	 covered	 the	 basic	 concepts	 listed	 in	 the	 table	 of	 contents,	 then
students	will	quickly	grasp	how	to	use	the	written	lessons	on	their	own.	Lessons
will	be	fun,	and	the	pay-off	for	younger	students	is	that	there	is	always	a	finished
product	which	is	fun	to	use!

Highly	organized	reference	materials	for	student	self-study!

Materials	 already	 condense	 what	 is	 available	 from	 the	 Java	 SDK	 help	 files
(which	 tends	 to	 be	 written	 for	 adults)	 and	 in	 a	 context	 and	 age-appropriate
manner,	so	that	students	remember	what	they	learn.

The	time	savings	for	parents,	teachers	and	students	is	enormous	as	they	need	not
sift	through	pages	and	pages	of	on-line	help	to	find	what	they	need.

How	to	mark	the	projects.

In	a	classroom	environment,	it	is	possible	for	teachers	to	mark	student	progress
by	asking	questions	during	 the	various	problem	design	and	coding	stages.	 It	 is
possible	 for	 teachers	 can	make	 their	 own	 oral,	 pictorial	 review	 or	written	 pop
quizzes	 easily	 from	 the	 reference	material	 provided	 as	 a	 review	 strategy	 from
day	 to	 day.	 I	 have	 found	 the	 requirement	 of	 completing	 projects	 (mastery)
sufficient	 for	 gathering	 information	 about	 student	 progress	 -	 especially	 in	 the
later	grades.

Lessons	encourage	your	own	programming	extensions.

Once	concepts	are	learned,	it	is	difficult	to	NOT	know	what	to	do	for	your	own
projects.	This	is	true	especially	at	the	High	School	level	–	where	applications	can
be	made	in	as	short	as	10	minutes	(a	high-low	guessing	game,	or	a	temperature
conversion	 program,	 for	 example),	 or	 1	 period	 in	 length	 –	 if	 one	 wished	 to
expand	upon	any	of	the	projects	using	the	“Other	Things	to	Try”	suggestions.

Having	used	Kidware	Software	tutorials	for	the	past	decade,	I	have	to	say	that	I
could	not	have	achieved	the	level	of	success	which	is	now	applied	in	the	variety
of	many	programming	environments	which	are	currently	of	considerable	interest
to	 kids!	 I	 thank	Kidware	 Software	 and	 its	 authors	 for	 continuing	 to	 stand	 for
what	is	right	in	the	teaching	methodologies	which	work	with	kids	-	even	today's
kids	where	competition	for	their	attention	is	now	so	much	an	issue.

Regards,
Alan	Payne
TA	Blakelock	High	School
Oakville,	Ontario
http://chatt.hdsb.ca/~paynea

http://chatt.hdsb.ca/~paynea

1

Introduction	to	Java

Preview
In	this	first	class,	we	will	do	an	overview	of	how	to	build	a	GUI	(graphic
user	 interface)	 application	using	 Java.	You’ll	 learn	a	new	vocabulary,	 a
new	 approach	 to	 programming,	 and	 how	 to	 use	 a	 development
environment.	Once	 finished,	 you	will	 have	written	 your	 first	 Java	GUI

program.

Course	Objectives
•	 Understand	 the	 benefits	 of	 using	 Java	 as	 a	 GUI	 (graphic	 user	 interface)
application	 tool	 •	 Understand	 Java	 event-driven	 programming	 concepts	 and
object-oriented	 programming	 terminology	 •	 Learn	 the	 fundamentals	 of
designing,	 implementing,	 and	distributing	 a	 Java	GUI	 application	 •	Learn	 to
use	Java	Swing	controls	and	the	Abstract	Windowing	Toolkit	(AWT)	•	Learn
to	modify	control	properties	and	use	of	control	event	methods	•	Use	menu	and
toolbar	 design	 tools	 •	 Learn	 how	 to	 read	 and	 write	 sequential	 files	 •
Understand	 proper	 debugging	 and	 error-handling	 procedures	 •	 Gain	 an
understanding	of	graphic	methods	and	simple	animations	•	Learn	how	to	print
text	 and	 graphics	 from	 a	 Java	 application	 •	 Gain	 skills	 to	 develop	 and
implement	an	application	help	system

What	is	Java	?
If	 you’re	 taking	 this	 course,	 you	 should	 already	 know	 the	 answer	 to	 this
question.	We	answer	it	here	to	give	you	an	idea	of	how	we	feel	about	Java.	So
how	much	Java	do	you	need	to	know?	You	should	have	a	basic	understanding	of
the	Java	language	and	its	syntax,	understand	the	structure	of	a	Java	application,
how	to	write	and	use	Java	methods	and	how	to	run	a	Java	console	application.
We	review	each	of	these	topics	in	the	course,	but	it	 is	a	cursory	review.	If	you
haven’t	 used	 Java	 before,	 we	 suggest	 you	 try	 one	 of	 our	 two	 beginning	 Java
tutorials:	Java	for	Kids	or	Beginning	Java.	See	our	website	 for	details.	Now,
on	to	our	answer	to	the	question	…

Java	 is	 a	 computer	 programming	 language	 developed	 by	 Sun	Microsystems
(now	 owned	 by	 Oracle).	 Java	 is	 a	 relatively	 new	 language,	 being	 created	 in
1995,	and	has	been	very	successful	for	many	reasons.

The	first	 reason	for	Java’s	popularity	 is	 its	cost	–	absolutely	FREE!!	A	second
reason	for	 the	popularity	of	Java	 is	 that	a	Java	program	can	run	on	almost	any
computer	-	it	is	platform-independent.

Java	can	be	used	to	develop	many	types	of	applications.	There	are	simple	text-
based	 programs	 called	console	applications.	 These	 programs	 just	 support	 text
input	 and	 output	 to	 your	 computer	 screen.	 You	 can	 also	 build	 graphic	 user
interface	(GUI,	pronounced	‘gooey’)	applications.	These	are	applications	with
menus,	 toolbars,	 buttons,	 scroll	 bars,	 and	 other	 controls	 which	 depend	 on	 the
computer	 mouse	 for	 input.	 A	 last	 application	 that	 can	 be	 built	 with	 Java	 are
applets.	In	this	class,	we	concentrate	on	GUI	applications.

Another	popular	feature	of	Java	is	that	it	is	object-oriented.	What	this	means	to
you,	 the	 Java	 programmer,	 is	 that	 you	 can	 build	 and	 change	 large	 programs
without	a	 lot	of	additional	complication.	As	you	work	through	this	course,	you
will	hear	the	word	object	many,	many	times.

A	 last	 advantage	 of	 Java	 is	 that	 it	 is	 a	 simple	 language.	 Compared	 to	 other
languages,	 there	 is	 less	 to	 learn.	This	simplicity	 is	necessary	 to	help	 insure	 the
platform-independence	 (ability	 to	 run	 on	 any	 computer)	 of	 Java	 applications.

But,	just	because	it	is	a	simple	language	doesn’t	mean	it	lacks	capabilities.	You
can	 do	 anything	 with	 Java	 that	 you	 can	 with	 any	 of	 the	 more	 complicated
languages.

What	is	a	GUI	Application?
As	 mentioned,	 this	 course	 will	 emphasize	 graphic	 user	 interface	 (GUI)
applications.	 In	 such	 applications,	 users	 interact	 with	 a	 set	 of	 visual	 controls
(buttons,	labels,	text	boxes,	tool	bars,	menu	items)	to	make	an	application	do	its
required	tasks.	The	applications	have	a	familiar	appearance	to	the	user.	As	you
develop	 as	 a	 Java	 programmer,	 you	 will	 begin	 to	 look	 at	 applications	 in	 a
different	 light.	 You	 will	 recognize	 and	 understand	 how	 various	 elements	 of
programs	 like	 Word,	 Excel,	 Access	 and	 other	 applications	 work.	 You	 will
develop	a	new	vocabulary	to	describe	the	elements	of	GUI	applications.

Java	 GUI	 applications	 are	 event-driven,	 meaning	 nothing	 happens	 until	 an
application	 is	 called	 upon	 to	 respond	 to	 some	 event	 (button	 pressing,	 menu
selection,	 ...).	GUI	applications	are	governed	by	event	 listeners	–	they	“listen”
for	events	to	occur.	Nothing	happens	until	an	event	is	detected.	Once	an	event	is
detected,	a	corresponding	event	method	is	located	and	the	instructions	provided
by	 that	method	are	executed.	Those	 instructions	are	 the	actual	code	written	by
the	programmer	-	code	written	using	the	Java	language.	Once	an	event	method	is
completed,	 program	 control	 is	 returned	 to	 the	 event	 listener:	

All	GUI	applications	are	event-driven.	For	example,	nothing	happens	in	a	word
processor	until	you	click	on	a	button,	 select	a	menu	option,	or	 type	some	 text.
Each	of	these	actions	is	an	event.

The	event-driven	nature	of	GUI	applications	developed	with	Java	makes	it	very
easy	 to	work	with.	 As	 you	 develop	 a	 Java	 application,	 event	methods	 can	 be
built	 and	 tested	 individually,	 saving	 development	 time.	 And,	 often	 event
methods	are	similar	in	their	coding,	allowing	re-use	(and	lots	of	copy	and	paste).

Here’s	 an	 example	 of	 a	 simple	 Java	 GUI	 application,	 a	 computer	 stopwatch:	

This	 frame	 hosts,	 or	 contains,	 several	 different	controls.	 There	 are	 buttons	 to
click,	labels	displaying	information,	and	empty	text	areas.	When	a	user	clicks	the
button	that	says	Start	Timing,	an	event	is	generated.	The	application	processes
the	method	associated	with	that	event	and	starts	a	timer,	displaying	the	start	time
in	 the	 corresponding	 text	 area.	 Similarly,	 when	 Stop	 Timing	 is	 clicked,	 the
event	method	 associated	with	 this	 button	 control’s	 click	 event	 is	 processed.	 In
this	method,	the	timing	is	stopped,	the	stop	time	is	displayed,	the	elapsed	time	is
computed	and	displayed.	An	Exit	button	is	used	to	stop	the	application.	Here’s	a
finished	 run	 of	 this	 GUI	 application:	

You	 will	 see	 that	 GUI	 applications	 offer	 flexibility,	 ease	 of	 use,	 familiarity
(every	 user	 has	 used	 a	 GUI	 application	 before),	 and	 they’re	 nice	 to	 look	 at.
You’ll	see	this	stopwatch	example	again,	very	soon.	You	will	build	it	before	this
first	class	is	over.

The	fundamental	elements	need	to	create	a	Java	GUI	application	will	come	from
two	 packages:	 the	 Abstract	 Windowing	 Toolkit	 (AWT)	 and	 Swing.	 These
packages	will	be	imported	into	every	application	we	build.

AWT	was	 the	 first	 attempt	 by	 Java	 to	 create	 tools	 for	 GUI	 applications.	 The
Swing	package	provides	updated	GUI	components	using	what	is	known	as	Java
Foundation	Classes	(JFC).	Swing	still	depends	on	AWT,	so	we	need	both.	In	this
class,	the	controls	we	use	will	be	Swing	components.

A	Brief	Look	at	Object-Oriented
Programming	(OOP)
Java	is	fully	object-oriented.	For	this	particular	course,	we	don’t	have	to	worry
much	about	just	what	that	means	(many	sizeable	tomes	have	been	written	about
OOP).	What	we	need	to	know	is	that	each	application	we	write	will	be	made	up
of	objects.	 Just	what	 is	 an	object?	 It	 can	be	many	 things:	 a	variable,	 a	 font,	 a
graphics	 region,	 a	 rectangle,	 a	 printed	document.	Controls	 in	 a	GUI	 frame	 are
objects.	 The	 key	 thing	 to	 remember	 is	 that	 these	 objects	 represent	 reusable
entities	that	are	used	to	develop	an	application.	This	‘reusability’	makes	our	job
much	easier	as	a	programmer.	The	Java	language	has	many	objects	we	can	use
to	build	our	applications.

In	Java,	there	are	two	terms	we	need	to	be	familiar	with	in	working	with	object-
oriented	 programming:	Class	 and	Object.	Objects	 are	what	 are	 used	 to	 build
our	 application.	 We	 will	 learn	 about	 many	 objects	 throughout	 this	 course.
Objects	 are	 derived	 from	 classes.	 Think	 of	 classes	 as	 general	 descriptions	 of
objects,	which	are	then	specific	implementations	of	a	class.	For	example,	a	class
could	be	a	general	description	of	a	car,	where	an	object	from	that	class	would	be
a	specific	car,	say	a	red	1965	Ford	Mustang	convertible	(a	nice	object!).

For	 this	 course,	 if	 you	 remember	 class	 and	 object,	 you	 have	 sufficient	 OOP
knowledge	to	build	applications.	Once	you	complete	this	course,	you	can	further
delve	 into	 the	world	of	OOP.	Then,	 you’ll	 be	 able	 to	 throw	around	 terms	 like
inheritance,	 polymorphism,	 overloading,	 encapsulation,	 and	 overriding.
Appendix	II	presents	a	brief	primer	on	classes	and	objects	in	Java.

Downloading	and	Installing	Java	and
NetBeans
To	write	 and	 run	 programs	 using	 Java,	 you	 need	 the	 Java	 Development	Kit
(JDK)	and	the	NetBeans	Integrated	Development	Environment	(IDE).	These
are	free	products	that	you	can	download	from	the	Internet.	Complete	download
and	installation	instructions	are	provided	in	the	Appendix	(Installing	Java	and
NetBeans)	included	with	these	notes.

Testing	the	Installation
We’ll	use	NetBeans	to	load	a	Java	project	and	to	run	a	project.	This	will	give	us
some	assurance	we	have	everything	installed	correctly.	This	will	let	us	begin	our
study	of	the	Java	programming	language.

Once	installed,	to	start	NetBeans:

*	Click	on	the	Start	button	on	the	Windows	task	bar.
*	Select	All	Programs,	then	NetBeans	*	Click	on	NetBeans	IDE	8.0

(Some	of	the	headings	given	here	may	differ	slightly	on	your	computer,	but	you
should	have	no	 trouble	finding	 the	correct	ones.)	 If	you	put	a	shortcut	on	your
desktop	 in	 the	 installation,	 you	 can	 also	 start	NetBeans	by	double-clicking	 the
correct	 icon.	The	NetBeans	program	should	start.	Several	windows	will	appear
on	the	screen.

Upon	 starting	 (after	 clearing	 the	 Start	 Page),	 my	 screen	 shows:	

This	 screen	 displays	 the	 NetBeans	 Integrated	 Development	 Environment

(IDE).	We’re	going	to	use	it	to	test	our	Java	installation	and	see	if	we	can	get	a
program	up	and	running.	Note	the	location	of	the	file	view	area,	editor	area	and
the	main	menu.	The	 file	view	 tells	you	what	 Java	programs	are	available,	 the
editor	area	is	used	to	view	the	actual	code	and	the	main	menu	is	used	to	control
file	access	and	file	editing	functions.	It	is	also	used	to	run	the	program.

What	 we	 want	 to	 do	 right	 now	 is	 open	 a	 project.	 Computer	 programs
(applications)	written	using	Java	are	referred	to	as	projects.	Projects	include	all
the	information	in	files	we	need	for	our	computer	program.	Java	projects	are	in
project	groups.	Included	with	these	notes	are	many	Java	projects	you	can	open
and	use.	Let’s	open	one	now.

Make	sure	NetBeans	 is	 running.	The	 first	 step	 to	opening	a	project	 is	 to	open
the	project	group	containing	the	project	of	interest.	Follow	these	steps:	Choose
the	File	menu	 option	 and	 click	 on	Project	Groups	 option.	 This	window	will

appear:	

All	 projects	 in	 these	 notes	 are	 saved	 in	 a	 folder	 named	 \LearnJava\LJ	Code.
Projects	are	further	divided	by	classes	–	the	projects	for	this	first	class	are	in	the
project	group	Class	1.	Click	New	Group,	select	Folder	of	Projects,	Browse	to
that	folder	as	shown.	Click	Create	Group.

When	you	return	to	the	Select	Group	window,	select	your	new	program	group
(Class	1).

There	will	 be	many	projects	 listed	 in	 the	 file	 view	area	 in	NetBeans.	Find	 the
project	named	Welcome.	Right-click	that	project	name	and	choose	Set	as	Main
Project.	 Expand	 the	 Welcome	 project	 node	 by	 clicking	 the	 plus	 sign.	 Open
Source	Packages,	 then	welcome.	Note	there	 is	one	file	named	Welcome.java.
If	the	file	contents	do	not	appear	in	the	editor	view	area,	double-click	that	file	to
open	it.

You	now	finally	see	your	first	Java	program:	We’ll	learn	what	these	few	lines	of
code	 do	 in	 the	 next	 class.	 Right	 now,	 we	 just	 want	 to	 see	 if	 we	 can	 get	 this

program	running.

Are	you	ready	to	finally	run	your	first	project?	To	do	this,	choose	Run	from	the
menu	and	select	Run	Main	Project	(or	alternately	press	<F6>	on	your	keyboard
or	click	the	green	Run	arrow	on	the	toolbar).	An	Output	window	should	open
and	 you	 should	 see	 the	 following	 Welcome	 message:	

If	you’ve	gotten	this	far,	everything	has	been	installed	correctly.	If	you	don’t	see
the	Welcome	message,	 something	has	not	been	 installed	correctly.	You	should
probably	 go	 back	 and	 review	 all	 the	 steps	 involved	 with	 installing	 Java	 and
NetBeans	and	make	sure	all	steps	were	followed	properly.

To	 stop	 this	 project,	 you	 click	 the	 boxed	X	 in	 the	 upper	 right	 corner	 of	 the
window.	To	stop	NetBeans	(don’t	do	this	right	now,	though):

➢	Select	File	in	the	main	menu.
➢	Select	Exit	(at	the	end	of	the	File	menu).

NetBeans	will	close	all	open	windows	and	you	will	be	returned	to	the	Windows
desktop.	Like	with	 stopping	a	project,	 an	 alternate	way	 to	 stop	NetBeans	 is	 to
click	on	the	close	button	in	the	upper	right	hand	corner	of	the	main	window.

Getting	Help	With	a	Java	Program
As	you	build	Java	programs,	 there	will	be	 times	when	you	get	stuck.	You	will
not	know	how	to	do	a	certain	task	using	Java	or	you	will	receive	error	messages
while	compiling	or	running	your	program	that	you	do	not	understand.	What	do
you	do	in	these	cases?	There	are	several	options	for	getting	help.

A	highly	recommended	help	method	is	to	ask	someone	else	if	they	know	how	to
help	 you.	 Other	 Java	 programmers	 love	 to	 share	 their	 skills	 with	 people	 just
learning	the	language.	A	second	option	is	to	look	at	one	of	the	many	Java	books
out	there	(you	are	reading	one	of	them).	If	you	have	questions	about	these	notes,
just	e-mail	us	(support@kidwaresoftware.com)	and	we’ll	try	to	help.

The	 Java	 website	 (http://www.oracle.com/technetwork/java/index.html)	 has	 a
wealth	of	information	that	could	possibly	help.	The	problem	with	the	website	is
that	 there	 is	 so	much	 information,	 it	can	be	overwhelming.	There	are	 tutorials,
example,	 forums,	 …	 The	 Java	 API	 (application	 programming	 interface)
documentation	(on-line	at	the	Sun	website)	is	a	great	place	to	get	help	if	you	can
wade	through	the	difficult	format.	The	Java	website	does	offer	search	facilities.	I
often	type	in	a	few	keywords	and	find	topics	that	help	in	my	pursuit	of	answers.

There	 are	 also	 hundreds	 of	 other	 Java	 websites	 out	 in	 WWW-land.	 Many
websites	offer	forums	where	you	can	ask	other	Java	programmers	questions	and
get	quick	answers.	A	good	way	to	find	them	is	to	use	a	search	utility	like	Google
or	Yahoo.	Again,	type	in	a	few	keywords	and	many	times	you’ll	find	the	answer
you	are	looking	for.

As	you	progress	as	a	Java	programmer,	you	will	develop	your	own	methods	of
solving	 problems	 you	 encounter.	 One	 day,	 you’ll	 be	 the	 person	 other
programmers	come	to	for	their	answers.

mailto:support@kidwaresoftware.com
http://www.oracle.com/technetwork/java/index.html

Structure	of	a	Java	Program
Java,	 like	 any	 language	 (computer	 or	 spoken),	 has	 a	 terminology	 all	 its	 own.
Let’s	 look	 at	 the	 structure	 of	 a	 Java	 program	 and	 learn	 some	 of	 this	 new
terminology.	A	Java	program	(or	project)	is	made	up	of	a	number	of	files.	These
files	 are	 called	 classes.	 Each	 of	 these	 files	 has	 Java	 code	 that	 performs	 some
specific	 task(s).	 Each	 class	 file	 is	 saved	 with	 the	 file	 extension	 .java.	 The
filename	 used	 to	 save	 a	 class	 must	 match	 the	 class	 name.	 One	 class	 in	 each
project	will	 contain	 something	 called	 the	main	method.	Whenever	 you	 run	 a
Java	 program,	 your	 computer	 will	 search	 for	 the	main	 method	 to	 get	 things
started.	Hence,	 to	 run	a	program,	you	refer	directly	 to	 the	class	containing	 this
main	method.

Let’s	 see	 how	 this	 relates	 to	Welcome	 project.	 This	 particular	 project	 has	 a
single	 file	 named	 Welcome.java.	 Notice,	 as	 required,	 the	 name	 Welcome
matches	the	class	name	seen	in	the	code	(public	class	Welcome).	If	no	code	is
seen,	 simply	 double-click	 on	 the	 filename	Welcome.java.	 If	 the	 project	 had
other	classes,	they	would	be	listed	under	the	Welcome	project	folder.	Notice	too
in	the	code	area	the	word	main.	This	is	the	main	method	we	need	in	one	of	the
project’s	classes.

That’s	 really	 all	we	 need	 to	 know	 about	 the	 structure	 of	 a	 Java	 program.	 Just
remember	a	program	(or	project,	we’ll	use	both	terms)	is	made	up	of	files	called
classes	 that	 contain	 actual	 Java	 code.	 One	 class	 is	 the	 main	 class	 where
everything	 starts.	 And,	 one	 more	 thing	 to	 remember	 is	 that	 projects	 are	 in
project	groups.

NetBeans	uses	a	very	specific	directory	structure	for	saving	all	of	the	files	for	a
particular	 application.	When	 you	 start	 a	 new	 project,	 it	 is	 placed	 in	 a	 specific
folder	 in	 a	 specific	 project	 group.	 That	 folder	 will	 be	 used	 to	 store	 all	 files
needed	 by	 the	 project.	We’ll	 take	 another	 look	 at	 the	 NetBeans	 file	 structure
when	we	create	our	first	project.	You	can	stop	NetBeans	now,	if	you’d	like.

Structure	of	a	Java	GUI	Application
We	 want	 to	 get	 started	 building	 our	 first	 Java	 GUI	 application.	 To	 do	 this,
though,	requires	covering	lots	of	new	material.	And,	to	build	a	Java	application,
you	need	to	know	the	Java	code	that	does	the	building.	We’re	kind	of	putting	the
“cart	 before	 the	 horse”	 here.	 We’ll	 just	 give	 you	 the	 Java	 code	 to	 do	 the
necessary	steps.	You	have	 to	 trust	us	 right	now	–	as	you	 learn	more	Java,	you
will	be	able	to	write	such	code	yourself.	You	should	see,	however,	that	the	code
is	not	really	that	hard	to	understand.

Let’s	look	at	the	structure	of	a	Java	GUI	application.	In	these	notes,	we	tend	to
use	 the	 terms	 application,	 program	 and	 project	 synonymously.	 A	 GUI
application	consists	of	a	frame,	with	associated	controls	and	code.	Pictorially,

this	is:	

Application	(Project)	is	made	up	of:

➢	Frame	 -	window	that	you	create	 for	user	 interface	(also	referred	 to	as	a
form)	➢	Controls	-	Graphical	features	positioned	on	frame	to	allow	user
interaction	 (text	 boxes,	 labels,	 scroll	 bars,	 buttons,	 etc.)	 (frames	 and
controls	are	objects.)	Controls	are	briefly	discussed	next.

➢	Properties	 -	Every	characteristic	of	a	 frame	or	control	 is	 specified	by	a
property.	 Example	 properties	 include	 names,	 captions,	 size,	 color,
position,	 and	 contents.	 Java	 applies	 default	 properties.	 You	 can	 change
properties	when	designing	the	application	or	even	when	an	application	is
executing.

➢	Methods	-	Built-in	procedures	that	can	be	invoked	to	impart	some	action
to	or	change	or	determine	a	property	of	a	particular	object.

➢	Event	Methods	-	Code	related	to	some	object	or	control.	This	is	the	code
that	is	executed	when	a	certain	event	occurs.	In	our	applications,	this	code
will	 be	 written	 in	 the	 Java	 language	 (covered	 in	 detail	 in	 Chapter	 2	 of
these	notes).

➢	 General	 Methods	 -	 Code	 not	 related	 to	 objects.	 This	 code	 must	 be
invoked	or	called	in	the	application.

The	application	displayed	above	has	a	single	form,	or	frame.	As	we	progress	in
this	 course,	we	will	 build	 applications	with	multiple	 forms.	The	 code	 for	 each
form	will	usually	be	stored	in	its	own	file	with	a	.java	extension.

We	will	follow	three	steps	in	building	a	Java	GUI	application:

1.	Create	the	frame.
2.	Create	the	user	interface	by	placing	controls	on	the	frame.
3.	Write	code	for	control	event	methods	(and	perhaps	write	other	methods).

These	 same	 steps	 are	 followed	 whether	 you	 are	 building	 a	 very	 simple
application	or	one	involving	many	controls	and	many	lines	of	code.	Recall,	the
GUI	 applications	 we	 build	 will	 use	 the	 Java	 Swing	 and	 AWT	 (Abstract
Windows	Toolkit)	components.

Each	of	 these	steps	 require	us	 to	write	 Java	code,	and	sometimes	 lots	of	code.
The	 event-driven	 nature	 of	 Java	 applications	 allows	 you	 to	 build	 your
application	in	stages	and	test	it	at	each	stage.	You	can	build	one	method,	or	part
of	a	method,	at	a	time	and	try	it	until	it	works	as	desired.	This	minimizes	errors
and	gives	you,	the	programmer,	confidence	as	your	application	takes	shape.

As	 you	 progress	 in	 your	 programming	 skills,	 always	 remember	 to	 take	 this
sequential	 approach	 to	 building	 a	 Java	 application.	 Build	 a	 little,	 test	 a	 little,
modify	a	little	and	test	again.	You’ll	quickly	have	a	completed	application.	This
ability	to	quickly	build	something	and	try	it	makes	working	with	Java	fun	–	not	a
quality	found	in	some	programming	environments!

Swing	Controls
The	 controls	 we	 use	 in	 GUI	 applications	 will	 be	 Swing	 components.	 These
components	 are	 defined	 in	 the	 javax.swing	 package	 and	 all	 have	 names
beginning	with	J.	Here,	we	briefly	look	at	several	controls	to	give	you	an	idea	of
what	they	are,	what	they	look	like	and	what	they	do.	In	the	first	two	classes,	we
will	use	four	controls:	a	frame	(JFrame),	a	button	(JButton),	a	label	(JLabel)
and	a	text	field	(JTextField).	We	will	code	them	in	our	applications	without	a
lot	of	discussion	on	how	to	use	them	(and,	as	mentioned	earlier,	you	should	see
the	 code	 is	 easy	 to	 follow).	 The	 properties	 of	 and	 events	 associated	 with	 the
different	controls	will	be	covered	in	detail	in	Class	3	and	4.

JFrame	control:

The	frame	control	is	the	basic	‘container’	for	other	controls.	It	is	the	framework
for	a	Java	project.	The	title	property	establishes	the	caption	information.	Every
application	 we	 build	 will	 start	 by	 building	 a	 class	 that	 extends	 the	 JFrame
control.

JButton	control:	

The	 button	 control	 is	 used	 to	 start	 some	 action.	 The	 text	 property	 is	 used	 to
establish	the	caption.

JLabel	control:	

The	 label	 control	 allows	 placement	 of	 formatted	 text	 information	 on	 a	 frame
(text	property).

JTextField	control:	

The	 text	 field	 control	 accepts	 a	 single	 line	 of	 typed	 information	 from	 the	 user
(text	property).

JTextArea	control:	

The	text	area	control	accepts	multiple	lines	of	scrollable	typed	information	(text
property).

JCheckBox	control:	

The	check	box	control	is	used	to	provide	a	yes	or	no	answer	to	a	question.

JRadioButton	control:	

The	 radio	 button	 control	 is	 used	 to	 select	 from	 a	mutually	 exclusive	 group	 of
options.	You	always	work	with	a	group	of	radio	buttons.

JComboBox	control:	

Combo	box	controls	are	very	common	in	GUI	applications.	Users	can	choose	an
item	from	a	drop	down	list	(states,	countries,	product).

JList	control:	

A	list	control	is	like	a	combo	box	with	the	list	portion	always	visible.	Multiple

selections	can	be	made	with	a	list	control.

JScroll	control:	

A	 scroll	 bar	 control	 is	 used	 to	 select	 from	a	 range	of	values.	The	 scroll	 bar	 is
always	“buddied”	with	another	control	related	to	the	scroll	bar	selection.

Now,	we’ll	start	NetBeans	and	look	at	each	step	in	the	application	development
process,	including	using	Swing	controls

Creating	a	Java	Project	with	NetBeans
We	 will	 now	 start	 building	 our	 first	 Java	 GUI	 application	 (a	 computer
stopwatch).	It	might	seem	like	a	slow,	long	process.	But,	it	has	to	be	in	order	to
cover	 all	 the	necessary	material.	The	more	projects	you	build,	 the	 simpler	 this
process	will	become.	We	begin	by	creating	a	new	project	and	creating	a	frame.
We	will	store	all	created	projects	in	a	separate	project	group	named	LJProjects.
Create	 that	 folder	now.	 If	using	Windows,	you	can	use	Windows	Explorer	or
My	Computer	to	that	task.

If	 it’s	 not	 already	 running,	 start	NetBeans.	 The	 project	 group	 containing	 the
Welcome	project	should	still	be	there.	We	are	going	to	replace	this	project	group
with	a	new	one.	(You	should	only	use	the	LJ	Code	project	group	when	you	want
to	refer	to	the	code	included	with	the	class	notes.	For	all	your	projects,	you	will
use	your	own	project	group).

Now,	create	your	project	group	–	select	LJProjects.	Choose	File	from	the	main
menu	and	select	Project	Group	The	Manage	Groups	window	appears	–	choose
New	 Group	 to	 see	

As	 shown,	 click	Folder	of	Projects,	 then	Browse	 to	 your	LJProjects	 folder.
Click	Create	Group.	The	project	group	is	displayed	in	the	file	view	area	(it	 is
empty).

Now,	we	want	to	add	a	project	to	the	project	group.	Pay	close	attention	to	these
steps	 because	 you	will	 repeat	 them	 every	 time	 you	 need	 to	 create	 a	 new	 Java
project.	 Right-click	 the	 project	 group	 area	 in	 the	 file	 view	 and	 choose	 New
Project	 to	 see:	

Select	Java	in	Categories	and	Java	Application	in	Projects.	Click	Next.

This	window	appears:

Type	 Stopwatch	 in	 the	Project	Name	 box	 (as	 shown	 above).	 Browse	 to	 the
LJProjects	folder	for	Project	Location.	Click	Finish	to	create	the	project.	Once
created,	click	Finish	in	the	resulting	window.

The	project	group	view	window	should	now	show	a	project	(Stopwatch)	in	the

project	group	(I’ve	expanded	all	the	folders):	

NetBeans	 uses	 a	 particular	 structure	 for	 each	 project	 you	 create.	 Under	 the
Project	main	folder	is	a	folder	(Source	Packages)	with	a	package	 it	names	(in
this	 case,	 stopwatch).	 In	 that	 package	 folder	 are	 the	 class	 files	 (java	 files)

needed	for	your	project.	It	creates	a	default	class	file	(the	one	with	your	project
name,	Stopwatch.java	in	this	case).	You	do	not	have	to	accept	the	default	name
(or	 default	 package	 name)	 –	 you	 can	 change	 it	 when	 creating	 the	 project,	 if
desired.	Just	make	sure	there	is	a	main	class	with	the	matching	filename.

Double-click	on	 the	Stopwatch.java	 file	 to	see	a	 framework	 for	 the	 file	 in
the	 editor	 view	 area:	

The	default	code	created	by	NetBeans	is:

/	*

*	 To	 change	 this	 license	 header,	 choose	 License	 Headers	 in	 Project
Properties.
*	 To	 change	 this	 template	 file,	 choose	 Tools	 |	 Templates	 *	 and	 open	 the
template	in	the	editor.

*/

package	stopwatch;

/	**

*

*	@author	tyleel

*/

public	class	Stopwatch

{

/	**

*	@param	args	the	command	line	arguments

*/

public	static	void	main(String[]	args)

{

//	TODO	code	application	logic	here

}

}

We	will	always	replace	this	default	code	with	our	own	code	(or	you	can	modify
it	if	you	want	to	avoid	a	little	typing).	Delete	the	default	code.

As	mentioned	earlier,	we	will	just	be	giving	you	code	to	type	here.	What	all	this
code	means	will	become	more	apparent	as	you	work	through	the	course.	There
are	a	few	rules	to	pay	attention	to	as	you	type	Java	code	(we	will	go	over	these
rules	again	in	the	next	class):

➢	Java	code	requires	perfection.	All	words	must	be	spelled	correctly.
➢	Java	is	case-sensitive,	meaning	upper	and	lower	case	letters	are	considered
to	 be	 different	 characters.	When	 typing	 code,	make	 sure	 you	 use	 upper
and	lower	case	letters	properly	➢	Java	ignores	any	“white	space”	such	as
blanks.	We	will	often	use	white	space	to	make	our	code	more	readable.

➢	Curly	braces	are	used	for	grouping.	They	mark	the	beginning	and	end	of

programming	 sections.	 Make	 sure	 your	 Java	 programs	 have	 an	 equal
number	 of	 left	 and	 right	 braces.	 We	 call	 the	 section	 of	 code	 between
matching	braces	a	block.

➢	It	is	good	coding	practice	to	indent	code	within	a	block.	This	makes	code
easier	to	follow.	NetBeans	automatically	indents	code	in	blocks	for	you.

➢	 Every	 Java	 statement	 will	 end	 with	 a	 semicolon.	 A	 statement	 is	 a
program	 expression	 that	 generates	 some	 result.	 Note	 that	 not	 all	 Java
expressions	 are	 statements	 (for	 example,	 the	 line	 defining	 the	 main
method	has	no	semicolon).

Create	a	Frame
The	first	step	in	building	a	Java	GUI	application	is	creating	a	frame.	At	the	same
time	 we	 create	 the	 frame,	 we	 establish	 the	 basic	 framework	 for	 the	 entire
program.	 The	 code	 (Stopwatch.java)	 that	 creates	 a	 frame	 within	 this	 basic
framework	is	defined	by	a	Java	class	of	the	same	name:	/	*
*	Stopwatch

*/

package	stopwatch;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
public	class	Stopwatch	extends	JFrame

{

public	static	void	main(String	args[])

{

//	Construct	the	frame
new	Stopwatch().show();

}

public	Stopwatch()

{

//	Frame	constructor
setTitle("Stopwatch	Application");
setSize(300,	100);

}

}

Type	one	line	at	a	time,	paying	close	attention	that	you	type	everything	as	shown
(use	the	rules).

As	you	type,	notice	after	you	type	each	left	brace	({),	the	NetBeans	editor	adds	a
corresponding	 right	 brace	 (})	 and	 automatically	 indents	 the	 next	 line.	 This
follows	the	rule	of	indenting	each	code	block.	Like	the	braces,	when	you	type	a
left	 parenthesis,	 a	 matching	 right	 parenthesis	 is	 added.	 Also,	 another	 thing	 to
notice	 is	 that	 the	 editor	 uses	 different	 colors	 for	 different	 things	 in	 the	 code.
Green	text	represents	comments.	Code	is	in	black	and	keywords	are	in	blue.	This
coloring	sometimes	helps	you	identify	mistakes	you	may	have	made	in	typing.

When	done	typing,	you	should	see:

This	code	creates	the	frame	by	extending	the	Swing	JFrame	object,	meaning	it
takes	on	all	characteristics	of	such	a	frame.	The	code	has	a	constructor	for	the
Stopwatch	object.	You	should	see	it	executes	two	methods:	one	to	set	 the	title
(setTitle)	and	one	to	set	the	size	(setSize).	The	constructor	is	called	in	the	main
method	 to	 create	 the	 frame.	 We	 will	 use	 this	 same	 basic	 structure	 in	 every
project	 built	 in	 this	 course.	 A	 constructor	 for	 the	 frame	 and	 all	 associated
controls	and	control	events	will	be	built.	The	frame	will	be	created	in	the	main
method.

Run	the	project	(press	<F6>,	click	the	Run	arrow	in	the	toolbar	or	choose	Run,
then	 Run	 Main	 Project	 in	 the	 menu).	 You	 will	 see	 your	 first	 frame:	

To	stop	choose	Run,	then	Stop	Build/Run.

Saving	Java	Projects	with	NetBeans
Whenever	you	run	a	Java	project,	NetBeans	automatically	saves	both	the	source
files	and	the	compiled	code	files	for	you.	So,	most	of	the	time,	you	don't	need	to
worry	about	saving	your	projects	-	it's	taken	care	of	for	you.	If	you	want	to	save
code	you	are	 typing	 (before	 running),	 simply	choose	File	 from	 the	main	menu

and	click	Save	All.	Or,	just	click	the	Save	All	button	on	the	toolbar:	

You	do	need	to	save	the	project	group	anytime	you	make	a	change,	for	example,
if	 you	 add/delete	 files	 from	 a	 project	 or	 add/delete	 projects.	 This	 is	 also	 done
using	 the	 Save	 All	 option.	 If	 you	 try	 to	 exit	 NetBeans	 and	 have	 not	 saved
projects,	NetBeans	will	pop	up	dialog	boxes	to	inform	you	of	such	and	give	you
an	opportunity	to	save	files	before	exiting.

NetBeans	and	Java	Files
So,	how	does	all	this	information	about	program	structure,	files,	compiling	and
running	fit	in	with	NetBeans,	our	development	environment.	We	have	seen	that
Java	 projects	 are	 grouped	 in	 project	 groups.	 And	 projects	 are	 made	 up	 of
different	folders	and	files.

Using	My	Computer	or	Windows	Explorer	(if	using	Windows),	go	to	the	folder
containing	 the	 Stopwatch	 project	 you	 just	 built.	 There	 are	 many	 folders	 and
files.	In	the	src/stopwatch	folder,	you	will	see	Stopwatch.java

This	is	the	source	code	that	appears	in	the	editor	view	area	of	NetBeans.	In	the
build/classes/stopwatch	folder	is	Stopwatch.class.	This	the	compiled	version	of
Stopwatch.java	(this	is	the	file	needed	by	the	Java	virtual	machine).	Most	of	the
other	 files	are	used	by	NetBeans	used	 to	keep	 track	of	what	 files	make	up	 the
project.

Be	 aware	 that	 the	 only	 true	 Java	 files	 here	 are	 the	 ones	with	 .java	 and	 .class
extensions.	 The	 other	 files	 are	 created	 and	 modified	 by	 our	 particular
development	 environment,	NetBeans.	 If	 you	want	 to	 share	 your	 Java	 program
with	a	friend	or	move	your	Java	program	to	another	development	environment,
the	only	 files	you	 really	need	 to	 transfer	are	 the	 .java	 files.	These	 files	can	be
used	by	any	Java	programmer	or	programming	environment	to	create	a	running
program.

Create	the	User	Interface
Having	created	a	frame,	we	now	create	the	user	interface	by	“placing”	controls
in	the	frame.	This	placement	simply	involves	several	lines	of	logical	Java	code
per	control	desired.

An	object	called	a	 layout	manager	determines	how	controls	are	arranged	 in	a
frame.	Some	of	the	layout	managers	and	their	characteristics	are:

FlowLayout Places	controls	in	successive	rows,	fitting	as
many	as	possible	in	a	given	row.

BorderLayout Places	controls	against	any	of	the	four	frame
borders.

CardLayout Places	controls	on	top	of	each	other	like	a	deck	of
cards.

GridLayout Places	controls	within	a	specified	rectangular
grid.

GridBagLayout Places	controls	with	a	specified	very	flexible
rectangular	grid.

BoxLayout Arranges	controls	either	in	a	row	or	column.
SpringLayout Arranges	controls	with	positions	defined	by

sprints	and	struts.

In	this	class,	we	will	use	the	GridBagLayout.	In	our	opinion,	it	offers	the	nicest
interface	appearance.	As	we	work	 through	 the	course,	you	will	 learn	more	and
more	capabilities	of	this	manager.	Study	the	other	layout	managers	if	you’d	like.

A	frame	 is	actually	made	up	of	several	different	panes.	Controls	are	placed	 in
the	 content	 pane	 of	 the	 frame.	 The	 GridBagLayout	 manager	 divides	 the
content	 pane	 into	 a	 grid	 of	 rows	 and	 columns:	

The	top	row	is	Row	0	and	row	number	increases	as	you	go	down	the	grid.	The
left	column	is	Column	0	and	column	number	increases	as	you	move	to	the	right
in	the	grid.

The	GridBagConstraints	object	 is	used	 for	control	placement	and	positioning
within	the	various	grid	elements.	Controls	are	placed	in	this	grid	by	referring	to	a
particular	column	(gridx	location)	and	row	(gridy	location).	Rows	and	columns
both	 start	 at	 zero	 (0).	 The	 grid	 does	 not	 have	 to	 be	 (but	 can	 be)	 sized.	 It
automatically	grows	as	controls	are	added.	We	will	see	that	the	GridBagLayout
manager	is	very	flexible.	Controls	can	span	more	than	one	column/row	and	can
be	spaced	(using	insets)	anywhere	within	a	grid	element.

A	single	line	of	code	in	our	frame	constructor	is	needed	to	specify	we	are	using
the	 GridBagLayout	 in	 the	 frame	 content	 pane:
getContentPane().setLayout(new	GridBagLayout());

To	place	a	control	in	the	GridBagLayout	grid,	we	follow	these	steps:

➢	Declare	the	control.
➢	Create	the	control.
➢	Establish	desired	control	properties.
➢	Add	the	control	to	the	layout	content	pane	at	the	desired	position.

In	 the	 projects	 we	 build,	 all	 controls	 will	 be	 declared	 with	 class	 level	 scope,
meaning	the	controls	and	associated	properties	and	methods	will	be	available	to
any	method	 in	 the	class.	Hence,	all	controls	will	be	declared	following	 the	 left
opening	brace	of	the	class,	before	the	first	method.

We	will	 also	give	meaningful	names	 to	controls.	Accepted	practice	 is	 to	give

the	 control	 a	 name	 beginning	 with	 some	 description	 of	 its	 purpose,	 then
concatenating	 the	 type	 of	 control	 at	 the	 end	 of	 the	 name.	 Such	 a	 naming
convention	makes	reading	and	writing	your	Java	code	much	easier.	Examples	of
names	 for	 button,	 label	 and	 text	 field	 controls	 (the	 ones	 we	 use	 with	 our
stopwatch	example):	startButton

stopButton
elapsedLabel
startTextField

To	declare	a	control,	you	type	the	statement:

ControlType	controlName;

In	the	Swing	library,	a	button	control	is	of	type	JButton.	Hence,	to	declare	our
startButton,	we	use:	JButton	startButton;

To	create	a	previously	declared	control,	use:

controlName	=	new	ControlType();

For	our	start	timing	button,	the	Java	code	is:

startButton	=	new	JButton();

The	process	of	declaring	and	creating	a	control	can	be	combined	into	a	single
line	of	 code.	We	will	 always	do	 this.	For	our	 example,	 the	 control	declaration
would	be:	JButton	startButton	=	new	JButton();

The	next	step	is	to	set	any	desired	control	properties.	The	format	for	such	code
is:	controlName.setPropertyName(PropertyValue);

where	setPropertyName	is	a	method	to	set	a	desired	property.	When	we	discuss
controls	 in	detail,	we	will	cover	many	of	 these	methods.	For	now,	we	will	 just
give	 them	 to	you.	As	an	example,	 to	 set	 the	 text	 appearing	on	 the	 start	 timing
button	 to	 “Start	 Timing,”	 you	 would	 use:	 startButton.setText(“Start
Timing”);

The	next	step	(yes,	I	know	there	are	lots	of	steps)	is	to	position	the	control	in	the
GridBagLayout	 grid.	 First,	 we	 need	 to	 declare	 an	 object	 of	 type
GridBagConstraints	 to	 allow	 positioning.	 Assuming	 this	 object	 is	 named
gridConstraints,	 the	 declaration	 is:	GridBagConstraints	 gridConstraints	 =
new

GridBagConstraints();

This	statement	is	placed	near	the	top	of	the	frame	constructor	code.

Now,	we	use	a	three-step	process	to	place	each	control	in	the	grid.	Decide	on	an
x	location	(desiredColumn)	and	a	y	location	(desiredRow).	Then,	use	this	code
for	 a	 sample	 control	 named	 controlName):	 gridConstraints.gridx	 =
desiredColumn;

gridConstraints.gridy	=	desiredRow;
getContentPane().add(controlName,	gridConstraints);	We	will	place	 the

start	 timing	 button	 in	 the	 upper	 left	 corner	 of	 the	 grid,	 so	 we	 use:
gridConstraints.gridx	=	0;

gridConstraints.gridy	=	0;
getContentPane().add(startButton,	 gridConstraints);	 To	 finalize

placement	of	controls	in	the	frame,	execute	a	pack	method:	pack();

This	“packs”	the	grid	layout	onto	the	frame	and	makes	the	controls	visible.

In	 summary,	 decide	 what	 controls	 you	 want	 to	 place	 in	 a	 frame.	 For	 each
control,	you	need:

➢	a	declaration	and	creation	statement	(class	 level)	➢	 three	 lines	of	code
for	placement	(in	constructor	method)

Once	all	controls	are	in	the	frame,	you	must	execute	a	pack	method	to	finalize
placement.	We’ll	clear	this	up	(hopefully)	with	an	example.

Example	1-1
Stopwatch	Application	–	Adding

Controls
Continue	with	 the	 Stopwatch	 example	where	we	 created	 a	 frame.	We	want	 to

build	this	frame:	

1.	We	will	place	nine	controls	in	the	frame:	three	buttons	(JButton	class),	three
labels	 (JLabel	 class)	 and	 three	 text	 fields	 (JTextField	 class).	 The	 buttons
will	start	and	stop	the	timing.	The	labels	and	text	fields	will	be	used	to	display
the	 timing	 results:	 We	 will	 place	 these	 controls	 in	 a	 3	 x	 3	 array:	

Properties	we	will	set	in	code:

startButton:
text Start	Timing
gridx 0
gridy 0

stopButton	:
text Stop	Timing
gridx 0
gridy 1

exitButton	:
text Exit
gridx 0
gridy 2

startLabel	:
text Start	Time
gridx 1
gridy 0

stopLabel	:
text End	Time
gridx 1
gridy 1

elapsedLabel	:
text Elapsed	Time	(sec)
gridx 1
gridy 2

startTextField	:
text [Blank]
columns 15
gridx 2
gridy 0

stopTextField	:
text [Blank]
columns 15
gridx 2
gridy 1

elapsedTextField	:
text [Blank]
columns 15

gridx 2
gridy 2

2.	First,	type	the	code	to	declare	the	nine	controls	(recall	these	lines	go	after	the
opening	 left	 brace	 for	 the	 class	 definition:	 JButton	 startButton	 =	 new
JButton();

JButton	stopButton	=	new	JButton();
JButton	exitButton	=	new	JButton();
JLabel	startLabel	=	new	JLabel();
JLabel	stopLabel	=	new	JLabel();
JLabel	elapsedLabel	=	new	JLabel();;
JTextField	startTextField	=	new	JTextField();
JTextField	stopTextField	=	new	JTextField();
JTextField	elapsedTextField	=	new	JTextField();

3.	 Replace	 the	 setSize	 line	 with	 the	 line	 establishing	 the	 grid	 layout:
getContentPane().setLayout(new	GridBagLayout());

4.	 The	 code	 to	 set	 properties	 of	 and	 place	 each	 of	 the	 nine	 controls:
GridBagConstraints	gridConstraints	=	new

GridBagConstraints();
startButton.setText("Start	Timing");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(startButton,	 gridConstraints);
stopButton.setText("Stop	Timing");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(stopButton,	gridConstraints);

exitButton.setText("Exit");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;

getContentPane().add(exitButton,	gridConstraints);

startLabel.setText("Start	Time");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
getContentPane().add(startLabel,	gridConstraints);

stopLabel.setText("Stop	Time");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
getContentPane().add(stopLabel,	gridConstraints);

elapsedLabel.setText("Elapsed	Time	(sec)");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	2;
getContentPane().add(elapsedLabel,	 gridConstraints);
startTextField.setText("");
startTextField.setColumns(15);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
getContentPane().add(startTextField,	 gridConstraints);
stopTextField.setText("");
stopTextField.setColumns(15);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
getContentPane().add(stopTextField,	 gridConstraints);
elapsedTextField.setText("");
elapsedTextField.setColumns(15);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
getContentPane().add(elapsedTextField,	gridConstraints);	pack();

Notice	how	each	control	is	located	within	the	grid.	Notice,	too,	how	we	set	the
number	of	columns	for	the	text	field	controls.	If	we	didn’t	do	this,	you	wouldn’t

see	the	controls.	I	know	there’s	lots	of	code	here	(and	there	will	always	be	lots	of
code	 for	GUI	 interfaces).	You	 can	 choose	 to	 type	 the	 code	 or	 copy	 and	 paste
from	these	notes	into	NetBeans.	If	you	choose	to	type	the	code,	notice	much	of
the	code	is	similar,	so	copy	and	paste	operations	come	in	very	handy.

For	 reference,	 here	 is	 the	 complete	Stopwatch.java	 code	 at	 this	 point	 (newly
added	code	is	shaded	–	the	line	setting	the	frame	size	has	been	deleted):	/	*
*	Stopwatch.java

*/

package	stopwatch;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
public	class	Stopwatch	extends	JFrame

{

//	declare	controls	used
JButton	startButton	=	new	JButton();
JButton	stopButton	=	new	JButton();
JButton	exitButton	=	new	JButton();
JLabel	startLabel	=	new	JLabel();
JLabel	stopLabel	=	new	JLabel();
JLabel	elapsedLabel	=	new	JLabel();;
JTextField	startTextField	=	new	JTextField();
JTextField	stopTextField	=	new	JTextField();
JTextField	elapsedTextField	=	new	JTextField();
public	static	void	main(String	args[])

{

//	Construct	frame
new	Stopwatch().show();

}

}

public	Stopwatch()

{

//	Frame	constructor
setTitle("Stopwatch	Application");
getContentPane().setLayout(new	GridBagLayout());	//	add	controls
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();

startButton.setText("Start	Timing");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(startButton,	gridConstraints);

stopButton.setText("Stop	Timing");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(stopButton,	gridConstraints);

exitButton.setText("Exit");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
getContentPane().add(exitButton,	gridConstraints);

startLabel.setText("Start	Time");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
getContentPane().add(startLabel,	new	GridBagConstraints());

stopLabel.setText("Stop	Time");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
getContentPane().add(stopLabel,	gridConstraints);

elapsedLabel.setText("Elapsed	Time	(sec)");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	2;
getContentPane().add(elapsedLabel,	gridConstraints);

startTextField.setText("");
startTextField.setColumns(15);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
getContentPane().add(startTextField,	gridConstraints);

stopTextField.setText("");
stopTextField.setColumns(15);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
getContentPane().add(stopTextField,	gridConstraints);

elapsedTextField.setText("");
elapsedTextField.setColumns(15);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
getContentPane().add(elapsedTextField,	gridConstraints);	pack();

}

}

Run	 the	 project.	 The	 interface	 should	 look	 like	 this:	

Notice	how	each	control	is	located	and	sized	in	the	layout	of	the	frame.	Save	this
project	 (saved	as	Example1-1	 project	 in	 \LearnJava\LJ	Code\Class1\	 project
group).	 We	 have	 no	 code	 to	 stop	 this	 project.	 To	 do	 this,	 select	Run	 in	 the
NetBeans	menu	and	choose	Stop	Build/Run.

Adding	Event	Methods
At	 this	 point,	 our	 interface	 has	 a	 finished	 look.	 What	 is	 missing	 is	 the	 code
behind	the	control	events.	The	next	step	in	building	a	Java	GUI	application	is	to
add	this	code.	But,	 to	add	 the	code,	we	need	a	place	 to	put	 it.	We	need	 to	add
event	methods	 and	 their	 corresponding	 listeners	 to	 our	 application.	 There	 are
two	 ways	 to	 add	 listeners,	 one	 for	AWT	 objects	 and	 one	 for	 Swing	 objects.
Listeners	are	added	in	the	frame	constructor	code.

Java	event	listeners	for	AWT	objects	(primarily	those	for	mouse	and	keyboard
inputs)	 are	 implemented	using	 something	 called	adapters	 (also	 available	 from
the	AWT).	 The	 best	way	 to	 see	 how	 to	 add	 such	 a	 listener	 is	 by	 example.	 In
every	project	we	build,	we	need	to	“listen”	for	the	event	when	the	user	closes	the
window.	The	 adapter	 that	 implements	 events	 for	 the	 frame	 (window)	 is	 called
the	WindowAdapter	and	it	works	with	the	WindowListener.	There	are	certain
window	events	that	can	be	“listened	for.”	In	our	case,	we	want	to	listen	for	the
windowClosing	event.	The	code	that	adds	this	event	method	to	our	application
is:	addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

[Java	code	for	window	closing]

}

});

This	 is	 actually	 one	 very	 long	 Java	 statement	 over	 several	 lines.	 It	 calls	 the
addWindowListener	method	and,	as	an	argument	(all	in	parentheses),	includes
a	new	instance	of	a	WindowAdapter	event	method	(the	windowClosing	event).
It’s	really	not	that	hard	to	understand	when	you	look	at	it,	just	very	long!!

In	 the	windowClosing	method,	we	would	write	 the	 code	 to	 execute	when	 the

window	 is	 closing.	 The	windowClosing	method	must	 have	 a	 single	 argument
(WindowEvent	e).	We	can	use	this	argument	to	determine	just	what	event	has
occurred.	In	the	stopwatch	example,	we	assume	a	window	closing	event.

For	 Swing	 components,	 like	 the	 button,	 label	 and	 text	 field	 used	 here,	 event
methods	 (actionPerformed)	 are	 added	 using	 the	 ActionListener.	 If	 the
component	 is	 named	 controlName,	 the	 method	 is	 added	 using:
controlName.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

[Java	code	to	execute]

}

});

Again,	 note	 this	 is	 just	 one	 long	 line	 of	 Java	 code.	 The	 method	 has	 a	 single
argument	(ActionEvent	e),	which	tells	us	what	particular	event	occurred	(each
control	can	respond	to	a	number	of	events).	For	our	stopwatch	example,	we	will
assume	click	events	for	the	three	button	controls.

Note	when	we	add	a	listener,	we	also	need	to	add	code	for	the	event	method.	We
could	type	the	code	at	the	same	time	we	add	the	listener,	but	we	take	a	different
approach.	When	a	method	is	added,	the	method	code	will	be	a	single	line	of	code
invoking	an	“external”	method	where	the	actual	code	will	reside.	This	separates
the	coding	of	method	events	from	the	code	building	the	frame	and	makes	for	a
“cleaner”	 code.	 For	 Swing	 components,	 we	will	 name	 these	 external	methods
using	 a	 specific	 convention	 –	 the	 control	 name	 and	method	 name	 will	 be
concatenated	 into	 a	 new	 method	 name.	 Similar	 conventions	 are	 followed	 for
AWT	events.	For	our	example	above,	the	code	adding	such	a	method	would	be:
controlName.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

controlNameActionPerformed(e);

}

}

});

Once	 the	 method	 is	 added,	 the	 actual	 code	 is	 written	 in	 a	 method	 defined
elsewhere	 in	 the	 program.	 The	 form	 for	 this	 method	 must	 be:	 private	 void
controlNameActionPerformed(ActionEvent	e)	{

[Java	code	to	execute]

}

By	 separating	 the	 event	 method	 code	 from	 the	 code	 constructing	 the	 frame,
editing,	modifying	and	testing	a	Java	GUI	application	is	much	easier.	And,	 the
naming	convention	selected	makes	it	easier	to	find	the	event	method	associated
with	a	particular	control.	The	control	event	methods	are	usually	placed	after	the
constructor	method.

Let’s	summarize	the	many	steps	to	place	a	control	(named	controlName	of	type
controlType)	 in	 a	 frame	 and	 add	 an	 event	method:	➢	Declare	 and	 create	 the
control	(class	level	scope):	ControlType	controlName	=	new	ControlType();

➢	Position	the	control:	gridConstraints.gridx	=	desiredColumn;
gridConstraints.gridy	=	desiredRow;
getContentPane().add(controlName,	 gridConstraints);	 (assumes	 a
gridConstraints	object	has	been	created).

➢	Add	the	control	listener:	controlName.addActionListener(new
ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

controlNameActionPerformed(e);

}

});

➢	Write	the	control	event	method:	private	void
controlNameActionPerformed(ActionEvent	e)	{

[Java	code	to	execute]

}

The	first	few	times	you	add	controls,	this	will	seem	to	be	a	tedious	process.	As
you	 develop	 more	 and	 more	 GUI	 applications,	 such	 additions	 will	 become
second	nature	(and,	you’ll	get	very	good	at	using	the	copy	and	paste	features	of
NetBeans).

Variables
We’re	now	ready	to	write	code	for	our	application.	We	can	now	add	any	event
methods	(for	events	we	want	our	application	to	respond	to).	We	then	simply	add
code	to	these	methods.	But	before	we	do	this,	we	need	to	discuss	variables.

Variables	 are	 used	 by	 Java	 to	 hold	 information	 needed	 by	 an	 application.
Variables	must	be	properly	named.	Rules	used	in	naming	variables:

➢	 They	 may	 include	 letters,	 numbers,	 and	 underscore	 (_),	 though	 the
underscore	 is	 rarely	 used	➢	 The	 first	 character	must	 be	 a	 letter	➢	You
cannot	use	a	reserved	word	(keywords	used	by	Java)

Use	meaningful	variable	names	that	help	you	(or	other	programmers)	understand
the	 purpose	 of	 the	 information	 stored	 by	 the	 variable.	 By	 convention,	 Java
variable	 names	 begin	 with	 a	 lower	 case	 letter.	 If	 a	 variable	 name	 consists	 of
more	than	one	word,	the	words	are	joined	together,	and	each	word	after	the	first
begins	with	an	uppercase	letter.

Examples	of	acceptable	variable	names:

startingTime interestValue letter05
johnsAge numberOfDays timeOfDay

Java	Data	Types
Each	variable	is	used	to	store	information	of	a	particular	type.	Java	has	a	wide
range	of	data	types.	You	must	always	know	the	type	of	information	stored	in	a
particular	variable.

boolean	variables	can	have	one	of	two	different	values:	true	or	false	(reserved
words	in	Java).	boolean	variables	are	helpful	in	making	decisions.

If	 a	 variable	 stores	 a	 whole	 number	 (no	 decimal),	 there	 are	 three	 data	 types
available:	short,	int	or	long.	Which	type	you	select	depends	on	the	range	of	the
value	stored	by	the	variable:

Data	Type Range
short -32,678	to	32,767
int -2,147,483,648	to	2,147,483,647
long -9,223,372,036,854,775,808	to

9,223,372,036,854,775,807

We	will	almost	always	use	 the	 int	 type	in	our	work	when	working	with	whole
numbers.

If	a	variable	stores	a	decimal	number,	there	are	two	data	types:	float	or	double.
The	double	uses	twice	as	much	storage	as	float,	providing	more	precision	and	a
wider	range.	Examples:

Data	Type Value
float 3.14
double 3.14159265359

We	will	usually	use	the	double	type	to	represent	decimal	numbers.

Java	 is	 a	 popular	 language	 for	 performing	 string	 manipulations.	 These
manipulations	are	performed	on	variables	of	type	String.	A	string	variable	is	just
that	 -	 a	 string	 (list)	 of	 various	 characters.	 In	 Java,	 string	 variable	 values	 are

enclosed	in	quotes.	Examples	of	string	variables:

“Java	is	fun!” “012345” “Title Author”

Single	 character	 string	 variables	 have	 a	 special	 type,	 type	 char,	 for	 character
type.	Char	types	are	enclosed	in	single	quotes.	Examples	of	character	variables:

‘a’ ‘1’ ‘V’ ‘*’

A	 last	 data	 type	 is	 type	Object.	 That	 is,	 we	 can	 actually	 define	 a	 variable	 to
represent	any	Java	object,	 like	a	button	or	frame.	We	will	see	 the	utility	of	 the
Object	type	as	we	progress	in	the	course.

Variable	Declaration
Once	we	have	decided	on	a	variable	name	and	the	type	of	variable,	we	must	tell
our	 Java	application	what	 that	name	and	 type	are.	We	say,	we	must	explicitly
declare	the	variable.

To	 explicitly	 declare	 a	 variable,	 you	 must	 first	 determine	 its	 scope.	 Scope
identifies	 how	widely	disseminated	we	want	 the	variable	 value	 to	 be.	We	will
use	three	levels	of	scope:

➢	Loop	level
➢	Method	level
➢	Class	level

The	values	of	loop	level	variables	are	only	available	within	a	computation	loop.
The	use	of	such	variables	will	be	discussed	in	more	detail	in	Class	2.

The	values	of	method	level	variables	are	only	available	within	a	method.	Such
variables	are	declared	within	a	method	using	the	variable	type	as	a	‘declarer’:	int
myInt;

double	myDouble;
String	myString,	yourString;

Class	 level	variables	 retain	 their	value	 and	are	 available	 to	 all	methods	within
that	 class.	 If	 any	method	changes	 a	 class	 level	variable’s	value,	 that	 change	 is
seen	 throughout	 the	 class.	 Class	 level	 variables	 are	 declared	 immediately
following	 the	opening	 left	brace	of	 the	class	definition,	outside	of	all	methods.
Examples:	int	myInt;

Date	myDate;
long	bigInteger;

Arrays
Java	has	powerful	facilities	for	handling	arrays,	which	provide	a	way	to	store	a
large	 number	 of	 variables	 under	 the	 same	 name.	 Each	 variable,	 called	 an
element,	 in	 an	 array	must	 have	 the	 same	data	 type,	 and	 they	 are	distinguished
from	 each	 other	 by	 an	 array	 index	 (contained	within	 square	 brackets).	 In	 this
course,	we	work	with	one-dimensional	arrays,	although	multi-dimensional	arrays
are	possible.

We	usually	declare	and	create	arrays	in	the	same	line	of	code.	For	example,	 to
declare	an	integer	array	named	'item',	with	dimension	9,	at	the	method	level,	we
use:	int[]	item	=	new	int[9];

At	the	class	level:	int[]	item	=	new	int[9];

The	 index	on	 an	 array	variable	begins	 at	 0	 and	ends	 at	 the	dimensioned	value
minus	 1.	 Hence,	 the	 item	 array	 in	 the	 above	 examples	 has	 nine	 elements,
ranging	 from	 item[0]	 to	 item[8].	 You	 use	 array	 variables	 just	 like	 any	 other
variable	-	just	remember	to	include	its	name	and	its	index.

To	 refer	 to	 the	 last	 element	 in	 this	 example	 array,	 you	 write:	 item[8]	 =
newValue;

To	sum	the	first	three	elements,	use:

sum	=	item[0]	+	item[1]	+	item[2];

It	 is	 also	 possible	 to	 have	 arrays	 of	 controls.	 For	 example,	 to	 have	 20	 button
types	available	use:	Button[]	myButtons	=	new	Button[20];

The	utility	of	such	a	declaration	will	become	apparent	in	later	classes.

The	length	of	an	array	is	found	using	the	length	property:	myArray.length

Constants
You	can	also	define	constants	for	use	in	Java.	The	format	for	defining	a	constant
named	numberOfUses	with	a	value	200	is:	final	int	numberOfUses	=	200;

The	 scope	 of	 user-defined	 constants	 is	 established	 the	 same	 way	 a	 variables’
scope	 is.	 That	 is,	 if	 defined	within	 a	method,	 they	 are	 local	 to	 the	method.	 If
defined	in	the	top	region	of	a	class	definition,	they	are	‘global’	to	the	class.

If	you	attempt	to	change	the	value	of	a	defined	constant,	your	program	will	stop
with	an	error	message.

Variable	Initialization
Any	declared	numeric	variables	are	 initialized	at	whatever	value	happens	to	be
in	 the	 assigned	 memory	 location.	 If	 desired,	 Java	 lets	 you	 initialize	 variables
(and	sometimes	 insists	you	do)	at	 the	 same	 time	you	declare	 them.	 Just	 insure
that	the	type	of	initial	value	matches	the	variable	type	(i.e.	don’t	assign	a	string
value	to	an	integer	variable).

Examples	of	variable	initialization:

int	myInt	=	23;
String	myString	=	“Java	is	fun!”;
double	myDouble	=	7.28474746464;
char	myChar	=	‘#’;

You	 can	 even	 initialize	 arrays	with	 this	 technique.	You	must,	 however,	 delete
the	 explicit	 dimension	 (number	 of	 elements)	 and	 let	 Java	 figure	 it	 out	 by
counting	the	number	of	elements	used	to	initialize	the	array.	An	example	is:	int[]
item	=	{0,	1,	2,	3,	4,	5,	6,	7,	8,	9};

Java	will	know	this	array	has	10	elements	(a	dimension	of	10).

Example	1-2
Stopwatch	Application	-	Writing	Code

All	 that’s	 left	 to	do	 is	write	 code	 for	 the	application.	We	write	 code	 for	 every
event	a	 response	 is	needed	 for.	 In	 this	application,	 there	are	 three	such	events:
clicking	on	each	of	the	buttons.

1.	 Under	 the	 lines	 declaring	 the	 frame	 controls,	 declare	 three	 class	 level
variables:	long	startTime;

long	stopTime;
double	elapsedTime;

This	establishes	startTime,	endTime,	and	elapsedTime	as	variables	with	class
level	scope.

2.	 In	 the	 frame	constructor,	add	 the	windowClosing	 event	method	 (every	GUI
project	 will	 need	 this	 code	 -	 place	 it	 after	 line	 establishing	 frame	 title):
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

And,	add	the	corresponding	event	method	code:

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

This	method	is	placed	before	the	final	right	closing	brace	of	the	Stopwatch	class
(the	 normal	 place	 for	methods).	 This	 one	 line	 of	 code	 tells	 the	 application	 to
stop.

3.	Let’s	create	an	actionPerformed	event	for	the	startButton.	Add	the	listener
(I	 place	 this	 after	 the	 code	 placing	 the	 control	 on	 the	 frame):
startButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

startButtonActionPerformed(e);

}

});

Then,	 add	 the	 event	 method	 after	 the	 constructor	 method:	 private	 void
startButtonActionPerformed(ActionEvent	e)	{

//	click	of	start	timing	button
startTime	=	System.currentTimeMillis();
startTextField.setText(String.valueOf(startTime));
stopTextField.setText("");
elapsedTextField.setText("");

}

In	this	procedure,	once	the	Start	Timing	button	is	clicked,	we	read	the	current
time	using	a	 system	function	 (in	milliseconds,	by	 the	way)	and	put	 it	 in	a	 text
field	using	 the	setText	method.	We	also	blank	out	 the	other	 text	 fields.	 In	 the
code	above	(and	in	all	code	in	these	notes),	any	line	beginning	with	two	slashes
(//)	is	a	comment.	You	decide	whether	you	want	to	type	these	lines	or	not.	They

are	not	needed	for	proper	application	operation.

4.	 Now,	 add	 a	 listener	 for	 the	 actionPerformed	 event	 method	 for	 the
stopButton:	stopButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

stopButtonActionPerformed(e);

}

});

Then,	 add	 this	 event	 method	 after	 the	 startButtonActionPerformed	 method:
private	void	stopButtonActionPerformed(ActionEvent	e)	{

//	click	of	stop	timing	button
stopTime	=	System.currentTimeMillis();
stopTextField.setText(String.valueOf(stopTime));	 elapsedTime	 =
(stopTime	-	startTime)	/	1000.0;
elapsedTextField.setText(String.valueOf(elapsedTime));	}

Here,	 when	 the	 Stop	 Timing	 button	 is	 clicked,	 we	 read	 the	 current	 time
(stopTime),	compute	the	elapsed	time	(in	seconds),	and	put	both	values	in	their
corresponding	text	field	controls.

5.	 Finally,	 we	 need	 code	 in	 the	 actionPerformed	 method	 for	 the	 exitButton
control.	 Add	 the	 listener:	 exitButton.addActionListener(new
ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

exitButtonActionPerformed(e);

}

});

});

Now,	add	the	method:

private	void	exitButtonActionPerformed(ActionEvent	e)	{
System.exit(0);

}

This	routine	simply	closes	the	frame	once	the	Exit	button	is	clicked.

For	reference,	the	complete,	final	Stopwatch.java	code	is	(newly	added	code	is
shaded):	/	*
*	Stopwatch.java
*/	package	stopwatch;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	Stopwatch	extends	JFrame

{

//	declare	controls	used
JButton	startButton	=	new	JButton();
JButton	stopButton	=	new	JButton();
JButton	exitButton	=	new	JButton();
JLabel	startLabel	=	new	JLabel();
JLabel	stopLabel	=	new	JLabel();
JLabel	elapsedLabel	=	new	JLabel();;
JTextField	startTextField	=	new	JTextField();
JTextField	stopTextField	=	new	JTextField();
JTextField	elapsedTextField	=	new	JTextField();

//	declare	class	level	variables
long	startTime;

long	stopTime;
double	elapsedTime;

public	static	void	main(String	args[])

{

new	Stopwatch().show();

}

public	Stopwatch()

{

//	frame	constructor
setTitle("Stopwatch	Application");
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	//	add	controls
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();

startButton.setText("Start	Timing");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(startButton,	gridConstraints);
startButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

startButtonActionPerformed(e);

}

});

stopButton.setText("Stop	Timing");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(stopButton,	gridConstraints);
stopButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

stopButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
getContentPane().add(exitButton,	gridConstraints);
exitButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

exitButtonActionPerformed(e);

}

});

});

startLabel.setText("Start	Time");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
getContentPane().add(startLabel,	new	GridBagConstraints());

stopLabel.setText("Stop	Time");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
getContentPane().add(stopLabel,	gridConstraints);

elapsedLabel.setText("Elapsed	Time	(sec)");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	2;
getContentPane().add(elapsedLabel,	gridConstraints);

startTextField.setText("");
startTextField.setColumns(15);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
getContentPane().add(startTextField,	new	GridBagConstraints());

stopTextField.setText("");
stopTextField.setColumns(15);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
getContentPane().add(stopTextField,	gridConstraints);

elapsedTextField.setText("");
elapsedTextField.setColumns(15);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
getContentPane().add(elapsedTextField,	gridConstraints);	pack();

}

private	void	startButtonActionPerformed(ActionEvent	e)	{
//	click	of	start	timing	button

startTime	=	System.currentTimeMillis();
startTextField.setText(String.valueOf(startTime));

stopTextField.setText("");
elapsedTextField.setText("");

}

	
private	void	stopButtonActionPerformed(ActionEvent	e)	{

//	click	of	stop	timing	button
stopTime	=	System.currentTimeMillis();
stopTextField.setText(String.valueOf(stopTime));	elapsedTime	=

(stopTime	-	startTime)	/	1000.0;
elapsedTextField.setText(String.valueOf(elapsedTime));	}

	
private	void	exitButtonActionPerformed(ActionEvent	e)	{

System.exit(0);

}

	
private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Study	this	code	to	see	where	all	the	methods	go.

Now,	 run	 the	 application	 (press	 <F6>).	 Try	 it	 out.	 If	 your	 application	 doesn’t
run,	recheck	to	make	sure	the	code	is	typed	properly.	Save	your	application.	This

is	 saved	 in	 the	Example1-2	 project	 in	 \LearnJava\LJ	 Code\Class	 1\	 project
group.	 Here’s	 what	 I	 got	 when	 I	 tried:	

If	you	have	the	time,	here	are	some	other	things	you	may	try	with	the	Stopwatch
Application.	To	make	these	changes	will	require	research	on	your	part	(use	web
sites,	other	books,	other	programmers)	to	find	answers.	This	is	an	important	skill
to	have	–	how	to	improve	existing	applications	by	discovering	new	things.	The
solutions	 to	 the	problems	and	exercises	at	 the	end	of	 this	class’	notes	can	also
shed	some	light	on	these	challenges:

A.	Try	changing	the	frame	background	color.

B.	Notice	you	can	press	the	‘Stop	Timing’	button	before	the	‘Start	Timing’
button.	This	shouldn’t	be	so.	Change	the	application	so	you	can’t	do	this.
And	make	 it	 such	 that	 you	 can’t	 press	 the	 ‘Start	Timing’	 until	 ‘Stop
Timing’	has	been	pressed.	Hint:	Look	at	the	button	enabled	property.

C.	Can	you	think	of	how	you	can	continuously	display	the	‘End	Time’	and
‘Elapsed	Time’?	This	is	a	little	tricky	because	of	the	event-driven	nature
of	Java.	Look	at	the	Timer	class	(do	a	little	Java	research).	By	setting	the
delay	property	of	this	class	to	1000,	it	will	generate	its	own	events	every
one	 second.	 Put	 code	 similar	 to	 that	 in	 the	 event	 method	 for	 the
stopButton	in	the	Timer	class’	actionPerformed	method	and	see	what
happens.	Also,	 see	 the	 exercise	 at	 the	 end	 of	 the	 class	 for	 help	 on	 this
one.

Class	Review
After	completing	this	class,	you	should	understand:

➢	 What	 a	 Java	 GUI	 application	 is	 ➢	 The	 concept	 of	 an	 event-driven
application	➢	What	object-oriented	programming	(OOP)	is	about	➢	How
to	use	NetBeans	to	build	and	run	an	application	➢	The	structure	of	a	Java
GUI	application	➢	The	three	steps	in	building	a	Java	GUI	application	➢
How	to	create	a	frame	➢	How	to	place	a	control	on	the	frame	using	the
GridBagLayout	➢	Proper	control	naming	convention	➢	How	to	add	event
listeners	 and	 event	 methods	 ➢	 Proper	 variable	 naming	 and	 typing
procedures	➢	The	concept	of	variable	scope	➢	How	to	properly	declare	a
variable	➢	How	to	declare	an	array	➢	How	to	define	a	constant	➢	How	to
add	code	to	event	methods

Practice	Problems	1*
Problem	1-1.	Beep	Problem.	Build	an	application	with	a	single	button.	When
the	 button	 is	 clicked,	 make	 the	 computer	 beep	 (use	 the
Toolkit.getDefaultToolkit().beep()	method).

Problem	1-2.	Text	Problem.	Build	an	application	with	a	 single	button.	When
the	button	is	clicked,	change	the	button’s	text	property.	This	allows	a	button	to
be	 used	 for	multiple	 purposes.	 If	 you	want	 to	 change	 the	 button	 caption	 back
when	you	click	again,	you’ll	need	an	if	statement.	We’ll	discuss	this	statement	in
the	next	class,	but,	if	you’re	adventurous,	give	it	a	try.

Problem	1-3.	Enabled	Problem.	Build	an	application	with	two	buttons.	When
you	 click	 one	 button,	 make	 it	 disabled	 (enabled	 =	 false)	 and	make	 the	 other
button	enabled	(enabled	=	true).

Problem	 1-4.	 Date	 Problem.	 Build	 an	 application	 with	 a	 button.	 When	 the
button	 is	 clicked,	 have	 the	 computer	 display	 the	 current	 date	 in	 a	 text	 field
control.	You’ll	need	to	study	the	Date	class.

*Note:	Practice	 Problems	 are	 given	 after	 each	 class	 to	 give	 you	 practice	 in
writing	 code	 for	 your	 Java	 applications.	 These	 are	 meant	 to	 be	 quick	 and,
hopefully,	short	exercises.	The	NetBeans	environment	makes	it	easy	to	build	and
test	 quick	 applications	 –	 in	 fact,	 programmers	 develop	 such	 examples	 all	 the
time	 to	 test	 some	 idea	 they	might	 have.	Use	 your	 imagination	 in	working	 the
problems	–	modify	them	in	any	way	you	want.	You	learn	programming	by	doing
programming!	The	more	you	program,	the	better	programmer	you	will	become.
Our	 solutions	 to	 the	Practice	Problems	 are	 provided	 as	 an	 addenda	 to	 these
notes.

Exercise	1*
Calendar/Time	Display

Design	a	window	that	displays	 the	current	month,	day,	and	year.	Also,	display
the	 current	 time,	 updating	 it	 every	 second	 (look	 into	 the	 Date	 and	 Timer
classes).	Make	the	window	look	something	like	a	calendar	page.

*Note:	 After	 completing	 each	 class’	 notes,	 a	 homework	 exercise	 (and,
sometimes,	 more)	 is	 given,	 covering	 many	 of	 the	 topics	 taught.	 Try	 to	 work
through	 the	 homework	 exercise	 on	 your	 own.	 This	 is	 how	 programming	 is
learned	–	solving	a	particular	problem.	For	reference,	solutions	to	all	Exercises
are	 provided	 as	 an	 addenda	 to	 these	 notes.	 In	 our	 solutions,	 you	 may
occasionally	 see	 something	 you	 don’t	 recognize.	 When	 this	 happens,	 use	 the
usual	 help	 avenues	 (websites,	 other	 programmers,	 other	 texts)	 to	 learn	what’s
going	 on.	 This	 is	 another	 helpful	 skill	 –	 understanding	 other	 people’s
applications	and	code.

2

The	Java	Language

Review	and	Preview
In	 the	 first	 class,	 we	 found	 there	 were	 three	 primary	 steps	 involved	 in
developing	a	GUI	application	using	Java:	1)	Create	 the	 frame.	2)	Create
the	 user	 interface	 by	 placing	 controls	 in	 the	 frame.	 3)	 Write	 code	 for
control	event	methods.

In	 this	 class,	 we	 are	 primarily	 concerned	 with	 Step	 3,	 writing	 code.	We	 will
become	more	familiar	with	event	methods	and	review	some	of	 the	elements	of
the	Java	language.

A	Brief	History	of	Java
It’s	 interesting	 to	 see	 just	where	 the	 Java	 language	 fits	 in	 the	 history	 of	 some
other	computer	languages.	You	will	see	just	how	new	Java	is!

In	 the	 early	 1950’s	 most	 computers	 were	 used	 for	 scientific	 and	 engineering
calculations.	 The	 programming	 language	 of	 choice	 in	 those	 days	 was	 called
FORTRAN.	FORTRAN	was	the	first	modern	language	and	is	still	in	use	to	this
day	(after	going	through	several	updates).	In	the	late	1950’s,	bankers	and	other
business	people	got	into	the	computer	business	using	a	language	called	COBOL.
Within	a	few	years	after	its	development,	COBOL	became	the	most	widely	used
data	processing	language.	And,	like	FORTRAN,	it	is	still	being	used	today.

In	 the	 1960’s,	 two	 professors	 at	 Dartmouth	 College	 decided	 that	 “everyday”
people	needed	 to	have	 a	 language	 they	 could	use	 to	 learn	programming.	They
developed	BASIC	(Beginner’s	All-Purpose	Symbolic	Instruction	Code).	BASIC
(and	its	successors,	GW-Basic,	Visual	Basic,	Visual	Basic	.NET,	Small	Basic)	is
probably	the	most	widely	used	programming	language.	Many	dismiss	it	as	a	“toy
language,”	but	BASIC	was	the	first	product	developed	by	a	company	you	may
have	heard	of	–	Microsoft!	And,	BASIC	has	been	used	to	develop	thousands	of
commercial	applications.

Java	 had	 its	 beginnings	 in	 1972,	 when	 AT&T	 Bell	 Labs	 developed	 the	 C
programming	 language.	 It	 was	 the	 first,	 new	 scientific	 type	 language	 since
FORTRAN.	If	you’ve	every	seen	a	C	program,	you	will	notice	many	similarities
between	Java	and	C.	Then,	with	object-oriented	capabilities	added,	came	C++	in
1986	(also	from	Bell	Labs).	This	was	a	big	step.

On	 May	 23,	 1995,	 Sun	 Microsystems	 released	 the	 first	 version	 of	 the	 Java
programming	language.	It	represented	a	streamlined	version	of	C	and	C++	with
capabilities	 for	 web	 and	 desktop	 applications	 on	 any	 kind	 of	 computer.	 No
language	before	it	had	such	capabilities.	Since	this	introduction,	just	a	few	years
ago,	millions	of	programmers	have	added	Java	capabilities	to	their	programming
skills.	Improvements	are	constantly	being	made	to	Java	and	there	is	a	wealth	of
support	 to	 all	 programmers,	 even	 beginners	 like	 yourself,	 from	 the	 vast	 Java
community

Rules	of	Java	Programming
Before	starting	our	review	of	the	Java	language,	let’s	review	some	of	the	rules	of
Java	programming	seen	in	the	first	class:

➢	Java	code	requires	perfection.	All	words	must	be	spelled	correctly.
➢	Java	is	case-sensitive,	meaning	upper	and	lower	case	letters	are	considered	to
be	 different	 characters.	 When	 typing	 code,	 make	 sure	 you	 use	 upper	 and
lower	case	letters	properly.

➢	Java	ignores	any	“white	space”	such	as	blanks.	We	will	often	use	white	space
to	make	our	code	more	readable.

➢	 Curly	 braces	 are	 used	 for	 grouping.	 They	 mark	 the	 beginning	 and	 end	 of
programming	sections.	Make	sure	your	Java	programs	have	an	equal	number
of	left	and	right	braces.	We	call	the	section	of	code	between	matching	braces
a	block.

➢	 It	 is	 good	 coding	 practice	 to	 indent	 code	within	 a	 block.	 This	makes	 code
easier	to	follow.	NetBeans	automatically	indents	code	in	blocks	for	you.

➢	Every	 Java	 statement	will	 end	with	a	 semicolon.	A	statement	 is	 a	program
expression	 that	 generates	 some.	 Note	 that	 not	 all	 Java	 expressions	 are
statements	 (for	 example,	 the	 line	 defining	 the	 main	 method	 has	 no
semicolon).

Java	Statements	and	Expressions
The	simplest	(and	most	common)	statement	in	Java	is	the	assignment	statement.
It	consists	of	a	variable	name,	followed	by	the	assignment	operator	(=),	followed
by	some	sort	of	expression,	followed	by	a	semicolon	(;).	The	expression	on	the
right	 hand	 side	 is	 evaluated,	 then	 the	 variable	 on	 the	 left	 hand	 side	 of	 the
assignment	operator	is	replaced	by	that	value	of	the	expression.

Examples:

startTime	=	now;
explorer	=	"Captain	Spaulding";
bitCount	=	byteCount	*	8;
energy	=	mass	*	LIGHTSPEED	*	LIGHTSPEED;
netWorth	=	assets	–	liabilities;

The	assignment	statement	stores	information.

Statements	 normally	 take	 up	 a	 single	 line.	 Since	 Java	 ignores	 white	 space,
statements	 can	 be	 stacked	 using	 a	 semicolon	 (;)	 to	 separate	 them.	 Example:
startTime	=	now;	endTime	=	startTime	+	10;

The	 above	 code	 is	 the	 same	 as	 if	 the	 second	 statement	 followed	 the	 first
statement.	The	only	place	we	 tend	 to	use	 stacking	 is	 for	quick	 initialization	of
like	variables.

If	a	statement	is	very	long,	it	may	be	continued	to	the	next	line	without	any	kind
of	 continuation	 character.	 Again,	 this	 is	 because	 Java	 ignores	 white	 space.	 It
keeps	processing	a	statement	until	it	finally	sees	a	semicolon.	Example:	months
=	Math.log(final	*	intRate	/	deposit	+	1)	/	Math.log(1	+	intRate);

This	 statement,	 though	 on	 two	 lines,	 will	 be	 recognized	 as	 a	 single	 line.	We
usually	write	each	statement	on	a	single	line.	Be	aware	that	long	lines	of	code	in
the	notes	many	times	wrap	around	to	the	next	line	(due	to	page	margins).

Comment	statements	begin	with	 the	 two	slashes	 (//).	For	example:	 //	This	 is	a
comment
x	=	2	*	y	//	another	way	to	write	a	comment

You,	 as	 a	 programmer,	 should	 decide	 how	 much	 to	 comment	 your	 code.
Consider	such	 factors	as	 reuse,	your	audience,	and	 the	 legacy	of	your	code.	 In
our	notes	and	examples,	we	try	to	insert	comment	statements	when	necessary	to
explain	 some	 detail.	 You	 can	 also	 have	 a	 multiple	 line	 comment.	 Begin	 the
comment	with	/	*	and	end	it	with	*/.	Example:	/	*

This	is	a	very	long
comment	over
a	few	lines

*/

Type	Casting
In	each	assignment	statement,	it	is	important	that	the	type	of	data	on	both	sides
of	 the	 operator	 (=)	 is	 the	 same.	 That	 is,	 if	 the	 variable	 on	 the	 left	 side	 of	 the
operator	is	an	int,	the	result	of	the	expression	on	the	right	side	should	be	int.

Java	(by	default)	will	try	to	do	any	conversions	for	you.	When	it	can’t,	an	error
message	will	 be	 printed.	 In	 those	 cases,	 you	 need	 to	 explicitly	cast	 the	 result.
This	means	convert	the	right	side	to	the	same	side	as	the	left	side.	Assuming	the
desired	type	is	type,	the	casting	statement	is:	leftSide	=	(type)	rightSide;

You	 can	 cast	 from	any	basic	 type	 (decimal	 and	 integer	 numbers)	 to	 any	other
basic	 type.	 Be	 careful	 when	 casting	 from	 higher	 precision	 numbers	 to	 lower
precision	numbers.	Problems	arise	when	you	are	outside	the	range	of	numbers.

Java	Arithmetic	Operators
Operators	 modify	 values	 of	 variables.	 The	 simplest	 operators	 carry	 out
arithmetic	operations.	There	are	five	arithmetic	operators	in	Java.

Addition	 is	 done	 using	 the	 plus	 (+)	 sign	 and	 subtraction	 is	 done	 using	 the
minus	(-)	sign.	Simple	examples	are:

Operation Example Result
Addition 7	+	2 9
Addition 3.4	+	8.1 11.5
Subtraction 6	-	4 2
Subtraction 11.1	–	7.6 3.5

Multiplication	is	done	using	the	asterisk	(*)	and	division	is	done	using	the	slash
(/).	Simple	examples	are:

Operation Example Result
Multiplication 8	*	4 32
Multiplication 2.3	*	12.2 28.06
Division 12	/	2 6
Division 45.26	/	6.2 7.3

The	 last	 operator	 is	 the	 remainder	 operator	 represented	 by	 a	 percent	 symbol
(%).	 This	 operator	 divides	 the	 whole	 number	 on	 its	 left	 side	 by	 the	 whole
number	on	its	right	side,	ignores	the	main	part	of	the	answer,	and	just	gives	you
the	remainder.	It	may	not	be	obvious	now,	but	the	remainder	operator	is	used	a
lot	in	computer	programming.	Examples	are:

Operation Example Division	Result Operation
Result

Remainder 7	%	4 1	Remainder	3 3
Remainder 14	%	3 4	Remainder	2 2
Remainder 25	%	5 5	Remainder	0 0

The	mathematical	operators	have	the	following	precedence	indicating	the	order
they	are	evaluated	without	specific	groupings:	Multiplication	(*)	and	division	(/)
Remainder	(%)
Addition	(+)	and	subtraction	(-)

If	 multiplications	 and	 divisions	 or	 additions	 and	 subtractions	 are	 in	 the	 same
expression,	 they	 are	 performed	 in	 left-to-right	 order.	 Parentheses	 around
expressions	are	used	to	force	some	desired	precedence.

Comparison	and	Logical	Operators
There	are	 six	comparison	 operators	 in	 Java	used	 to	compare	 the	value	of	 two
expressions	(the	expressions	must	be	of	the	same	data	type).	These	are	the	basis
for	making	decisions:

Operator Comparison
		> Greater	than
		< Less	than
		>= Greater	than	or	equal	to
		<= Less	than	or	equal	to
		== Equal	to
		!= Not	equal	to

It	should	be	obvious	that	the	result	of	a	comparison	operation	is	a	boolean
value	(true	or	false).	Examples:	a	=	9.6,	b	=	8.1,	a	>	b	returns	true	a	=	14,	b	=
14,	a	<	b	returns	false	a	=	14,	b	=	14,	a	>=	b	returns	true	a	=	7,	b	=	11,	a	<=	b
returns	true	a	=	7,	b	=	7,	a	==	b	returns	true	a	=	7,	b	=	7,	a	!=	b	returns	false
Logical	operators	operate	on	boolean	data	types,	providing	a	boolean	result.
They	are	also	used	in	decision	making.	We	will	use	three	logical	operators

Operator Operation
		! Logical	Not
		&& Logical	And
		|| Logical	Or

The	 Not	 (!)	 operator	 simply	 negates	 a	 boolean	 value.	 It	 is	 very	 useful	 for
‘toggling’	boolean	variables.	Examples:	If	a	=	true,	then	!a	=	false	If	a	=	false,
then	 !a	=	 true	The	And	 (&&)	 operator	 checks	 to	 see	 if	 two	different	boolean
data	types	are	both	true.	If	both	are	true,	the	operator	returns	a	true.	Otherwise,	it
returns	a	false	value.	Examples:	a	=	true,	b	=	true,	then	a	&&	b	=	true	a	=	true,	b
=	false,	then	a	&&	b	=	false	a	=	false,	b	=	true,	then	a	&&	b	=	false	a	=	false,	b	=
false,	 then	a	&&	b	=	 false	The	Or	 (||)	operator	 (typed	as	 two	“pipe”	symbols)
checks	 to	 see	 if	 either	 of	 two	boolean	 data	 types	 is	 true.	 If	 either	 is	 true,	 the
operator	returns	a	true.	Otherwise,	it	returns	a	false	value.	Examples:	a	=	true,	b

=	true,	then	a	||	b	=	true	a	=	true,	b	=	false,	then	a	||	b	=	true	a	=	false,	b	=	true,
then	a	||	b	=	true	a	=	false,	b	=	false,	then	a	||	b	=	false	Logical	operators	follow
arithmetic	operators	in	precedence.	Use	of	these	operators	will	become	obvious
as	we	delve	further	into	coding.

Concatenation	Operators
To	concatentate	two	string	data	types	(tie	them	together),	use	the	+	symbol,	the
string	 concatenation	 operator:	 currentTime	 =	 "The	 current	 time	 is	 "	 +
"9:30";
textSample	=	"Hook	this	"	+	"to	this";

Java	offers	other	concatenation	operators	that	perform	an	operation	on	a	variable
and	assign	the	resulting	value	back	to	the	variable.	Hence,	the	operation	a	=	a	+
2;

Can	be	written	using	the	addition	concatenation	operator	(+=)	as:	a	+=	2;

This	says	a	is	incremented	by	2.

Other	concatenation	operators	and	their	symbols	are:

Operator	Name Operator	Symbol Operator	Task
String a	+=	b; a	=	a	+	b;
Addition a	+=	b; a	=	a	+	b;
Subtraction a	-=	b; a	=	a	–	b;
Multiplication a	*=	b; a	=	a	*	b;
Division a	/=	b; a	=	a	/	b;

We	often	increment	and	decrement	by	one.	There	are	operators	for	this	also.	The
increment	operator:

a++; is	equivalent	to: a	=	a	+	1;

Similarly,	the	decrement	operator:

a--; is	equivalent	to: a	=	a	–	1;

Strings	to	Numbers	to	Strings
In	Java	GUI	applications,	string	variables	are	used	often.	The	text	displayed	in
the	label	control	and	the	text	field	control	are	string	types.	You	will	find	you	are
constantly	 converting	 string	 types	 to	 numeric	 data	 types	 to	 do	 some	math	 and
then	converting	back	to	strings	to	display	the	information.	Let’s	look	at	each	of
these	 operations.	 First,	 from	 string	 to	 number	 –	 the	 process	 is:	

To	retrieve	the	text	value	in	a	control,	use	the	getText	method.	In	this	example,
myString	=	myControl.getText();

To	convert	a	string	type	to	a	numeric	value,	use	the	valueOf	function.	We	will
look	 at	 two	 examples.	To	 convert	 a	 string	 (myString)	 to	 an	 int	 (myInt),	 use:
myInt	=	Integer.valueOf(myString).intValue();

To	convert	a	string	(myString)	to	a	double	type	(myDouble),	use:	myDouble	=
Double.valueOf(myString).doubleValue();	You	need	 to	be	 careful	with	 these
methods	–	if	the	string	is	empty	or	contains	unrecognizable	characters,	an	error
will	occur.

Now,	 the	 conversion	 process	 from	 number	 to	 string	 is:	

There	 are	 two	 ways	 to	 convert	 a	 numeric	 variable	 to	 a	 string.	 The	 valueOf
function	does	the	conversion	with	no	regard	for	how	the	result	is	displayed.	This
bit	of	code	can	be	used	to	convert	the	numeric	variable	myNumber	 to	a	string
(myString):	myNumber	=	3.1415926;
myString	=	String.valueOf(MyNumber);

In	this	case,	myString	will	be	“3.1415926”	-	if	you	need	to	control	the	number
of	 decimal	 points,	 the	 format	 function	 is	 used.	 As	 an	 example,	 to	 display
myNumber	 with	 no	 more	 than	 two	 decimal	 points,	 use:	 myNumber	 =
3.1415926;
myString	=	new	DecimalFormat(“0.00”).format(MyNumber);	In	the

display	string	(“0.00”),	the	pound	signs	represent	place	holders.	myString	is
now	“3.14”	Using	this	format	function	requires	that	the	java.text.*	package	be
imported	into	your	application.

To	set	the	text	value	displayed	in	a	control,	use	the	setText	method.	If	you	want
to	display	myString	in	myControl,	use:	myControl.setText(myString);

Java	String	Methods
In	 addition	 to	 methods	 for	 strings	 associated	 with	 controls,	 Java	 offers	 a
powerful	set	of	methods	to	work	with	string	type	variables.	You	should	become
familiar	with	these	methods.

To	compare	two	strings	for	equality,	you	can’t	use	the	“equals	to”	operator	(==).
A	common	error	 is	 forgetting	 this.	The	 reason	we	can’t	use	 this	operator	 is	 in
how	 Java	 stores	 strings.	 Say	we	 have	 two	String	 type	 variables,	 aString	 and
bString.	Writing:	aString	==	bString

checks	 to	see	 if	each	of	 these	strings	 is	stored	 in	 the	same	memory	 location	 in
memory.	That’s	not	what	we	want	to	do.

To	 properly	 compare	 two	 strings	 for	 equality,	we	 use	 the	String	 class	 equals
method.	This	method	does	 just	what	we	want	–	compares	 two	strings	 to	see	 if
they	have	 the	same	characters	 in	 them.	The	code	 that	does	 this	comparison	for
our	example	strings	is:	aString.equals(bString)

This	method	returns	the	boolean	result	of	true	if	the	aString	and	bString	are	the
same	length,	 that	 is	have	the	same	number	of	characters,	and	each	character	 in
one	 string	 is	 identical	 to	 the	 corresponding	 character	 in	 the	 other.	 And,	 the
comparison	 is	 case-sensitive.	 To	 ignore	 case	 in	 the	 comparison,	 use:
aString.equalsIgnoreCase(bString)

We	can	also	 see	 if	one	 string	 is	 “less	 than”	or	 “greater	 than”	another	 string	 to
allow	sorting.	This	requires	the	compareTo	method.	With	our	example	strings,
the	syntax	is:	aString.compareTo(bString)

This	method	will	return	one	of	three	integer	values:

Returned	value Meaning
			-1 aString	is	less	than	bString	in	alphabetical	order
			0 aString	is	equal	to	bString	(same	as	equals	method)
			1 aString	is	greater	than	bString	in	alphabetical	order

To	determine	the	number	of	characters	in	(or	length	of)	a	string	variable,	we	use
the	 length	 method.	 Using	myString	 as	 example:	myString	 =	 “Read	 Learn
Java!”;
lenString	=	myString.length();

lenString	will	have	a	value	of	16.	The	location	of	characters	in	the	string	is	zero-
based.	That	is,	the	individual	characters	for	this	string	start	at	character	0	and	end
at	character	15.

Many	 times,	 you	 need	 to	 extract	 single	 characters	 from	 string	 variables.	 The
charAt	 method	 does	 this.	 You	 specify	 the	 string	 and	 the	 desired	 character
position.	 Recall,	 characters	 in	 a	 string	 start	 at	 character	 0	 and	 extend	 to	 the
length	of	the	string	minus	1.	To	determine	the	character	(myChar)	at	position	n
in	a	string	myString,	use:	myChar	=	myString.charAt(n);

For	example:

myString	=	“Read	Learn	Java!”;
myChar	=	myString.charAt(5);

will	return	the	character	‘L’	in	the	variable	myChar.

You	can	also	extract	substrings	of	characters.	The	substring	method	is	used	for
this	 task.	You	 specify	 the	 string,	 the	 starting	 position	 and	 one	 beyond	 the	 last
character	 in	 the	 substring.	 This	 example	 starts	 at	 character	 2	 and	 extracts	 the
characters	“up	to”	character	8:	myString	=	“Read	Learn	Java!”;
midString	=	myString.substring(2,	8);

The	midString	variable	is	equal	to	“ad	Lea”

Perhaps,	you	 just	want	a	far	 left	portion	of	a	string.	Use	 the	substring	method
with	 a	 starting	 position	 of	 0.	 This	 example	 extracts	 the	 3	 left-most	 characters
from	a	string:	myString	=	“Read	Learn	Java!”;
leftString	=	myString.substring(0,	3);

The	leftString	variable	is	equal	to	“Rea”

Getting	 the	 far	 right	 portion	 of	 a	 string	 with	 the	 substring	 method	 is	 easy.
Simply	specify	the	character	you	wish	to	start	at	and	the	function	will	return	all
characters	from	that	point	on.	To	get	the	6	characters	at	the	end	of	our	example,
you	would	use:	myString	=	“Read	Learn	Java!”
rightString	=	myString.substring(10);

The	 rightString	 variable	 is	 equal	 to	 “	 Java!”	 If	 general,	 if	 you	 want	 the	 N
“rightmost”	characters	 in	a	 string	variable	 (myString),	you	use:	rightString	=
myString.substring(myString.length()	 –	 N);	 To	 locate	 a	 substring	 within	 a
string	variable,	use	the	indexOf	method.	Three	pieces	of	information	are	needed:
string1	 (the	variable),	string2	 (the	substring	to	find),	and	a	starting	position	in
string1	(optional).	The	method	will	work	left-to-right	and	return	the	location	of
the	first	character	of	the	substring	(it	will	return	-1	if	the	substring	is	not	found).
For	our	example:	myString	=	“Read	Learn	Java!”;
location	=	myString.indexOf(“ea”,	3);

This	 says	 find	 the	 substring	 “ea”	 in	myString,	 starting	 at	 character	 3.	 The
returned	 location	 will	 have	 a	 value	 of	 6.	 If	 the	 starting	 location	 argument	 is
omitted,	0	is	assumed,	so	if:	myString	=	“Read	Learn	Java!”;
location	=	myString.indexOf(“ea”);

location	will	have	value	of	1.

Related	 to	 the	 indexOf	method	 is	 the	 lastIndexOf	method.	 This	method	 also
identifies	 substrings	 using	 identical	 arguments,	 but	 works	 right-to-left,	 or	 in
reverse.	So,	with	our	example	string:	myString	=	“Read	Learn	Java!”;
location	=	myString.lastIndexOf(“ea”);

This	says	find	the	substring	“ea”	in	myString,	starting	at	the	right	and	working
left.	The	returned	location	will	have	a	value	of	6.	Note	when	we	used	indexOf
(without	a	starting	location),	the	returned	location	was	2.

Many	 times,	 you	 want	 to	 convert	 letters	 to	 upper	 case	 or	 vice	 versa.	 Java
provides	 two	methods	 for	 this	 purpose:	 toUpperCase	 and	 toLowerCase.	 The
toUpperCase	method	will	convert	all	 letters	 in	a	string	variable	 to	upper	case,
while	the	toLowerCase	function	will	convert	all	letters	to	lower	case.	Any	non-
alphabetic	characters	are	ignored	in	the	conversion.	And,	if	a	letter	is	already	in

the	 desired	 case,	 it	 is	 left	 unmodified.	 For	 our	 example	 (modified	 a	 bit):
myString	=	“Read	Learn	Java	in	2010!”;
a	=	myString.toUpperCase();
b	=	myString.toLowerCase();

The	 first	 conversion	 using	 toUpperCase	will	 result	 in:	A	=	 “READ	LEARN
JAVA	IN	2010!”

And	the	second	conversion	using	toLowerCase	will	yield:	B	=	“read	learn	java
in	2010!”

There	are	a	couple	of	ways	to	modify	an	existing	string.	If	you	want	to	replace	a
certain	 character	 within	 a	 string,	 use	 the	 replace	 method.	 You	 specify	 the
character	 you	 wish	 to	 replace	 and	 the	 replacing	 character.	 An	 example:
myString	=	“Read	Learn	Java!”;
myString	=	myString.replace(‘	’,	‘*’);

This	 will	 replace	 every	 space	 in	 myString	 with	 an	 asterisk.	 myString	 will
become	 “Read*Learn*Java!”.	 To	 remove	 leading	 and	 trailing	 spaces	 from	 a
string,	use	the	trim	method.	Its	use	is	obvious:	myString	=	“	Read	Learn	Java!
”;
myString	=	myString.trim();

After	this,	myString	=	“Read	Learn	Java!”	–	the	spaces	are	removed.

You	can	 convert	 a	 string	variable	 to	 an	 array	of	char	 type	variables	using	 the
toCharArray	method.	Here’s	an	example:	myString	=	“Learn	Java”;
char[]	myArray	=	myString.toCharArray();

After	 this,	 the	 array	 myArray	 will	 have	 10	 elements,	 myArray[0]	 =	 ‘L’,
myArray[1]	=	‘e’,	and	so	on.	You	only	need	declare	myArray,	you	do	not	need
to	create	(size)	it.

You	 can	 also	 convert	 an	 array	 of	 char	 types	 to	 a	 single	 string	 variable.	 The
copyValueOf	method	does	this.	An	example:	char[]	myArray	=	{‘H’,	‘o’,	‘w’,
‘	 ’,	 ‘a’,	 ‘r’,	 ‘e’,	 ‘	 ’,	 ‘y’,	 ‘o’,	 ‘u’,	 ‘?’};	 myString	 =
String.copyValueOf(myArray);

After	this,	myString	=	“How	are	you?”.

Every	‘typeable’	character	has	a	numeric	representation	called	a	Unicode	value.
To	 determine	 the	 Unicode	 (myCode)	 value	 for	 a	 char	 type	 variable	 (named
myChar),	 you	 simply	 cast	 the	 character	 to	 an	 int	 type:	 myCode	 =	 (int)
myChar;

For	example:

myCode	=	(int)	‘A’;

returns	the	Unicode	value	(myCode)	for	the	upper	case	A	(65,	by	the	way).	To
convert	 a	 Unicode	 value	 (myValue)	 to	 the	 corresponding	 character,	 cast	 the
value	to	a	char	type::	myChar	=	(char)	myCode;

For	example:

myChar	=	(char)	49;

returns	 the	 character	 (myChar)	 represented	by	 a	Unicode	value	of	49	 (a	 “1”).
Unicode	values	are	related	to	ASCII	(pronounced	“askey”)	codes	you	may	have
seen	 in	 other	 languages.	 I	 think	 you	 see	 that	 there’s	 lots	 to	 learn	 about	 using
string	variables	in	Java.

Dates	and	Times
Working	with	 dates	 and	 times	 in	 computer	 applications	 is	 a	 common	 task.	 In
Class	1,	we	used	the	Date	data	type	and	the	currentTimeMillis	method	without
much	 discussion.	We	 use	 these	 to	 specify	 and	 determine	 dates,	 times	 and	 the
difference	between	dates	and	times.	The	information	covered	here	requires	two
imported	files:	import	java.util.Date;
import	java.text.DateFormat;

These	statements	are	placed	with	other	import	statements	in	your	code.

The	Date	data	type	is	used	to	hold	a	date	and	a	time.	And,	even	though	that’s	the
case,	you’re	usually	only	interested	in	the	date	or	the	time.	To	initialize	a	Date
variable	 (myDate)	 to	 a	 specific	 date,	 use:	 Date	 myDate	 =	 new	 Date(year,
month,	day);

where	year	is	the	desired	year	(less	1900,	that	is,	a	value	of	0	represents	the	year
1900)	 (int	 type),	month	 the	desired	month	(int	 type),	and	day	 the	desired	day
(int	type).	The	month	‘numbers’	run	from	0	(January)	to	11	(December),	not	1	to
12.	As	an	example,	if	you	use:	myDate	=	new	Date(50,	6,	19);

then,	 display	 the	 result	 (after	 converting	 it	 to	 a	 string)	 in	 some	 control	 using:
String.valueOf(myDate)

you	would	get:

Wed	Jul	19	00:00:00	GMT-08:00	1950

This	 is	my	 birthday	 (July	 19,	 1950),	 by	 the	way.	 The	 time	 is	 set	 to	 a	 default
value	since	only	a	date	was	specified.

The	DateFormat	class	is	used	to	display	the	date	in	other	formats.	To	format	the
object	 (myDate)	 just	 created,	 use:
DateFormat.getDateInstance(DateFormatValue).format(myDate))	 The
DateFormatValue	 can	 take	on	one	of	 four	different	 values.	Those	values	 and
examples	of	the	results	are:

Value Displayed	Date
DateFormat.FULL Wednesday,	July	19,	1950
DateFormat.LONG July	19,	1950
DateFormat.MEDIUM Jul	19,	1950
DateFormat.SHORT 7/19/50

Individual	parts	of	a	Date	object	can	be	retrieved.	Examples	include:

myDate.getMonth() //	returns	6
myDate.getDate() //	returns	19
myDate.getDay() //	returns	3

Notice	the	getDay	method	yields	a	value	from	0	(Sunday)	to	6	(Saturday),	so	the
3	above	represents	a	Wednesday.

Java	 also	 allows	you	 to	 retrieve	 the	 current	date	 and	 time	using	 the	Date	 data
type.	To	place	the	current	date	in	a	variable	use	the	‘default’	constructor:	Date
myToday	=	new	Date();

The	variable	myToday	will	hold	today’s	date	with	the	current	time.	Doing	this
as	I	originally	wrote	this,	I	get:	String.valueOf(myToday)	//	returns	Mon	Feb
28	20:13:18	GMT-08:00	2005

To	 represent	 dates	 in	 Java,	 a	 common	 and	 convenient	method	 is	 to	 use	 string
variables	 in	 a	 format	 similar	 to	 the	 SHORT	 format	 above.	 For	 example,	 we
could	have	a	string	representation	of	myDate:	myDate	=	“4/7/03”;

To	use	such	a	string	representation	of	a	date	with	dates	represented	by	the	Date
class	(for	example,	to	subtract	two	dates	or	display	the	string	version	of	the	date
in	another	format),	we	need	to	convert	the	string	to	a	Date	type.	In	Java	terms,
we	want	 to	parse	 the	string	representation	of	a	SHORT	date	 to	a	Date	object.
To	do	this	requires	another	type	of	Java	structure,	the	Try/Catch	structure.	This
is	used	 to	“catch”	errors	 that	might	occur	 in	a	 Java	program.	We	won’t	worry
much	 about	 it	 here,	 other	 than	 recognizing	 the	 parsing	must	 be	within	 such	 a
structure	(a	requirement	of	Java).

The	 code	 to	 convert	 the	 string	myDate	 to	 a	Date	 class	display	 is:	 //	 convert

string	date	to	Date	class	for	display	try

{

display	=
DateFormat.getDateInstance(DateFormat.SHORT).parse(myDate)	;	}
catch(java.text.ParseException	e)

{

System.out.println(“Error	parsing	date”	+	e);

}

After	this	code	is	executed,	display	is	a	Date	object	containing	the	date.	We	can
display	this	object	using	any	format	and	we	can	do	“date	math”	discussed	next.

A	 common	 task	 is	 to	 subtract	 two	 dates	 to	 determine	 the	 number	 of	 days
between	the	dates.	We	can	use	this	to	find	out	how	old	someone	is,	see	how	old
a	 loan	 is	 and	 to	 see	how	many	days	 remain	 in	a	current	year.	To	 subtract	 two
date	objects,	we	first	convert	the	dates	to	a	time	value	using:	myDate.getTime()

This	 yields	 a	millisecond	 representation	 (long	 type	 variable)	 of	 the	 date.	 You
would	 use	 a	 similar	 statement	 to	 get	 a	millisecond	 representation	 of	 a	 second
date.	Then	 to	 subtract	 the	dates	 and	obtain	 the	 result	 in	days,	 you	 subtract	 the
millisecond	representations	and	divide	the	result	by	the	number	of	milliseconds
in	a	day	(60	60	24	*	1000).	This	value	comes	from	the	fact	there	are	60	seconds
in	a	minute,	60	minutes	in	an	hour,	24	hours	in	a	day	and	1000	milliseconds	in	a
second.	As	an	example,	to	subtract	myDate	from	today,	use:	(today.getTime()
–	 myDate.getTime())	 /	 (60	 60	 24	 *	 1000)	 Notice	 that	 by	 changing	 the
denominator	 in	 this	 formula,	 you	 could	 also	 find	 out	 the	 number	 of	 seconds,
minutes	or	hours	between	two	dates.

As	 an	 example,	 let’s	 use	 today’s	 date	 (myToday)	 and	 the	 example	 date
(myDate,	 my	 birthday)	 to	 see	 how	 long	 I’ve	 been	 alive.:	 (today.getTime()	 –
myDate.getTime())	 /	 (60	 60	 24	 *	 1000)	 //	 returns	 19948	 days
(today.getTime()	–	myDate.getTime())	/	(60	60	1000)	//	returns	478772	hours
The	tells	me	I’ve	been	alive	19,948	days	or	478,772	hours.	Looks	like	I	should
be	getting	ready	to	celebrate	my	20,000	days	birthday!!

In	Class	 1,	we	 saw	another	way	 to	 find	 the	difference	between	 two	 times,	 the
currentTimeMillis	 method.	 It	 is	 a	 system	 method	 and	 is	 referenced	 using:
System.currentTimeMillis()

This	method	 returns	 the	 current	 time	 in	milliseconds.	 The	 returned	 value	 is	 a
long	 integer.	 To	 use	 this	method,	 first	 declare	 a	 variable	 to	 store	 the	 returned
value:	long	myTime;

Then,	the	time	(in	milliseconds)	is	given	by:

myTime	=	System.currentTimeMillis();

By	 obtaining	 a	 value	 at	 a	 later	 time	 and	 subtracting	 the	 two	 values,	 you	will
obtain	 an	 elapsed	 time	 in	milliseconds,	which	 could	be	 converted	 to	 any	units
desired.	Note	this	approach	can	be	used	without	a	need	to	use	the	Date	data	type.
It	is	usually	used	for	fairly	short	time	periods.

We	 have	 introduced	 the	Date	 data	 type	 and	 currentTimeMillis	 method.	 You
will	 find	 these	 very	 useful	 as	 you	 progress	 in	 your	 programming	 studies.	 Do
some	 research	 on	 your	 own	 to	 determine	 how	 best	 to	 use	 dates	 and	 times	 in
applications	you	build.

Random	Number	Generator
In	writing	games	and	 learning	software,	we	use	a	 random	number	generator	 to
introduce	 unpredictability.	 This	 insures	 different	 results	 each	 time	 you	 try	 a
program.	Java	has	several	methods	for	generating	random	numbers.	We	will	use
just	one	of	them	–	a	random	generator	of	integers.	The	generator	uses	the	Java
Random	object.	This	object	is	part	of	the	java.util.Random	package.

To	 use	 the	 Random	 object,	 it	 is	 first	 created	 using	 the	 object	 constructor:
Random	myRandom	=	new	Random();

This	statement	is	placed	with	the	variable	declaration	statements.

Once	created,	when	you	need	a	random	integer	value,	use	the	nextInt	method	of
this	Random	object:	myRandom.nextInt(limit)

This	statement	generates	a	random	integer	value	that	is	greater	than	or	equal	to	0
and	 less	 than	 limit.	 Note	 it	 is	 less	 than	 limit,	 not	 equal	 to.	 For	 example,	 the
method:	myRandom.nextInt(5)

will	generate	random	integers	from	0	to	4.	The	possible	values	will	be	0,	1,	2,
3	and	4.

As	 other	 examples,	 to	 roll	 a	 six-sided	 die,	 the	 number	 of	 spots	 would	 be
computed	using:	numberSpots	=	myRandom.nextInt(6)	+	1;

To	 randomly	 choose	 a	 number	 between	 100	 and	 200,	 use:	 number	 =
myRandom.nextInt(101)	+	100;

Math	Functions
A	last	 set	of	 functions	we	need	are	mathematical	 functions	 (yes,	programming
involves	 math!)	 Java	 provides	 a	 set	 of	 functions	 that	 perform	 tasks	 such	 as
square	roots,	trigonometric	relationships,	and	exponential	functions.

Each	of	the	Java	math	functions	comes	from	the	Java	Math	class.	This	means	is
that	 each	 function	 name	must	 be	 preceded	 by	Math.	 (say	Math-dot)	 to	 work
properly.	Some	of	these	functions	and	the	returned	values	are:

Math	Function Value	Returned
Math.abs Returns	the	absolute	value	of	a	specified	number
Math.acos Returns	a	double	value	containing	the	angle	whose

cosine	is	the	specified	number
Math.asin Returns	a	double	value	containing	the	angle	whose

sine	is	the	specified	number
Math.atan Returns	a	double	value	containing	the	angle	whose

tangent	is	the	specified	number
Math.cos Returns	a	double	value	containing	the	cosine	of	the

specified	angle
Math.E A	constant,	the	natural	logarithm	base
Math.exp Returns	a	double	value	containing	e	(the	base	of

natural	logarithms)	raised	to	the	specified	power
Math.log Returns	a	double	value	containing	the	natural

logarithm	of	a	specified	number
Math.max Returns	the	larger	of	two	numbers
Math.min Returns	the	smaller	of	two	numbers
Math.PI A	constant	that	specifies	the	ratio	of	the

circumference	of	a	circle	to	its	diameter
Math.pow Returns	the	result	of	raising	the	first	argument	to	the

power	of	the	second	argument	–	an	exponentiation.
Math.round Returns	the	number	nearest	the	specified	value
Math.sign Returns	an	Integer	value	indicating	the	sign	of	a

number

Math.sin Returns	a	double	value	containing	the	sine	of	the
specified	angle

Math.sqrt Returns	a	double	value	specifying	the	square	root	of	a
number

Math.tan Returns	a	double	value	containing	the	tangent	of	an
angle

Examples:

Math.abs(-5.4)	returns	the	absolute	value	of	–5.4	(returns	5.4)	Math.cos(2.3)
returns	the	cosine	of	an	angle	of	2.3	radians	Math.max(7,	10)	returns	the	larger
of	the	two	numbers	(returns	10)	Math.pow(4,	3)	returns	4	raised	to	the	3rd	power
Math.sign(-3)	returns	the	sign	on	–3	(returns	a	–1)	Math.sqrt(4.5)	returns	the
square	root	of	4.5

Example	2-1
Savings	Account

Start	a	new	project	in	NetBeans.	Name	the	project	Savings.	Delete	default	code
in	Savings.java	file.	The	idea	of	this	project	is	to	determine	how	much	you	save
by	 making	 monthly	 deposits	 into	 a	 savings	 account.	 For	 those	 interested,	 the
mathematical	formula	used	is:	F	=	D	[(1	+	I)M	-	1]	/	I	where

F	-	Final	amount
D	-	Monthly	deposit	amount
I	-	Monthly	interest	rate
M	-	Number	of	months

The	finished	frame	will	look	like	this:

1.	 We	 will	 place	 4	 labels,	 4	 text	 fields,	 and	 2	 buttons	 on	 the	 frame.	 The
arrangement	in	the	GridBagLayout	will	be.

Properties	set	in	code:

Savings	Frame:
title Savings	Account

depositLabel:
text Monthly	Deposit
gridx 0
gridy 0

interestLabel:
text Yearly	Interest
gridx 0
gridy 1

monthsLabel:
text Number	of	Months
gridx 0
gridy 2

finalLabel:
text Final	Balance
gridx 0
gridy 3

depositTextField:
text [Blank]
columns 10
gridx 2
gridy 0

interestTextField:
text [Blank]
columns 10
gridx 2

gridy 1

monthsTextField:
text [Blank]
columns 10
gridx 2
gridy 2

finalTextField:
text [Blank]
Columns 10
gridx 2
gridy 3

calculateButton:
text Calculate
gridx 1
gridy 4

exitButton:
text Exit
gridx 1
gridy 5

2.	We	will	 build	 the	 project	 in	 three	 stages	 –	 frame,	 controls,	 code.	Type	 this
basic	framework	code	to	establish	the	frame	and	its	windowClosing	event:	/
*

*	Savings.java

*/

package	savings;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	Savings	extends	JFrame

{

public	static	void	main(String	args[])

{

//construct	frame
new	Savings().show();

}

public	Savings()

{

//	code	to	build	the	form
setTitle("Savings	Account");
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	}
private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

}

Run	 the	code	 to	 insure	 the	 frame	appears	 (it	will	be	very	 small	 and	empty	–	 I

resized	it	so	I	could	see	the	title):	

3.	Now,	we	add	the	controls	and	empty	event	methods.	Declare	and	create	the	10
controls	as	class	level	objects	(these	lines	go	after	the	opening	brace	at	the	top
of	the	Savings	class):	JLabel	depositLabel	=	new	JLabel();

JLabel	interestLabel	=	new	JLabel();
JLabel	monthsLabel	=	new	JLabel();
JLabel	finalLabel	=	new	JLabel();
JTextField	depositTextField	=	new	JTextField();	JTextField

interestTextField	=	new	JTextField();	JTextField	monthsTextField	=	new
JTextField();
JTextField	finalTextField	=	new	JTextField();
JButton	calculateButton	=	new	JButton();
JButton	exitButton	=	new	JButton();

Position	 and	 add	 each	 control.	 Add	 methods	 for	 controls	 we	 need	 events	 for
(calculateButton	and	exitButton	in	this	case).	This	code	goes	at	the	bottom	of
the	Savings	constructor	method:	//	position	controls	(establish	event	methods)
GridBagConstraints	gridConstraints	=	new
GridBagConstraints();
depositLabel.setText("Monthly	Deposit");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(depositLabel,	gridConstraints);

interestLabel.setText("Yearly	Interest");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(interestLabel,	gridConstraints);

monthsLabel.setText("Number	of	Months");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
getContentPane().add(monthsLabel,	gridConstraints);

finalLabel.setText("Final	Balance");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
getContentPane().add(finalLabel,	gridConstraints);

depositTextField.setText("");
depositTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
getContentPane().add(depositTextField,	gridConstraints);

interestTextField.setText("");
interestTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
getContentPane().add(interestTextField,	gridConstraints);

monthsTextField.setText("");
monthsTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
getContentPane().add(monthsTextField,	gridConstraints);

finalTextField.setText("");
finalTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	3;
getContentPane().add(finalTextField,	gridConstraints);

calculateButton.setText("Calculate");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	4;
getContentPane().add(calculateButton,	gridConstraints);

calculateButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

calculateButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	5;
getContentPane().add(exitButton,	gridConstraints);

exitButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

exitButtonActionPerformed(e);

}

});

pack();

Lastly,	 add	 the	 two	 methods	 (empty	 for	 now)	 needed	 (place	 after	 the	 frame
constructor):	private	void	calculateButtonActionPerformed(ActionEvent	e)	{

}

private	void	exitButtonActionPerformed(ActionEvent	e)	{

}

Run	to	see	the	finished	control	placement:

4.	 Finally,	 we	 write	 code	 for	 the	 two	 event	 methods.	 First,	 the
calculateButtonActionPerformed	method.

private	void	calculateButtonActionPerformed(ActionEvent	e)	{
double	deposit;
double	interest;
double	months;
double	finalBalance;
double	monthlyInterest;
//	read	values	from	text	fields
deposit	=

Double.valueOf(depositTextField.getText()).doubleValue();	interest	=
Double.valueOf(interestTextField.getText()).doubleValue();

monthlyInterest	=	interest	/	1200;
months	=

Double.valueOf(monthsTextField.getText()).doubleValue();	//	compute
final	value	and	put	in	text	field;

finalBalance	=	deposit	*	(Math.pow((1	+
monthlyInterest),	months)	-	1)	/	monthlyInterest;

finalTextField.setText(new
DecimalFormat("0.00").format(finalBalance));

}

This	code	reads	the	three	input	values	(monthly	deposit,	interest	rate,	number	of
months)	 from	 the	 text	 fields	 using	 the	 getText	 method,	 converts	 those	 string
variables	 to	 numbers	 using	 the	 valueOf	 method,	 converts	 the	 yearly	 interest

percentage	 to	 monthly	 interest	 (monthlyInterest),	 computes	 the	 final	 balance
using	the	provided	formula,	and	puts	that	result	in	a	text	field	(after	converting	it
back	to	a	string	variable).	You	need	to	import	the	java.text.*	components	to	use
the	format	method.

5.	Now,	write	code	for	the	exitButtonActionPerformed	event.

private	void	exitButtonActionPerformed(ActionEvent	e)	{
System.exit(0);

}

You’re	done.	For	reference,	here	is	the	complete	Savings.java	code	listing	(code
added	to	basic	frame	code	is	shaded):	/	*
*	Savings.java

*/

package	savings;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.text.*;

public	class	Savings	extends	JFrame

{

JLabel	depositLabel	=	new	JLabel();
JLabel	interestLabel	=	new	JLabel();
JLabel	monthsLabel	=	new	JLabel();
JLabel	finalLabel	=	new	JLabel();
JTextField	depositTextField	=	new	JTextField();	JTextField

interestTextField	=	new	JTextField();	JTextField	monthsTextField	=	new
JTextField();
JTextField	finalTextField	=	new	JTextField();

JButton	calculateButton	=	new	JButton();
JButton	exitButton	=	new	JButton();

public	static	void	main(String	args[])

{

//construct	frame
new	Savings().show();

}

public	Savings()

{

//	code	to	build	the	form
setTitle("Savings	Account");
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	position	controls	(establish	event	methods)
GridBagConstraints	gridConstraints	=	new

GridBagConstraints();
depositLabel.setText("Monthly	Deposit");

gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(depositLabel,	gridConstraints);

interestLabel.setText("Yearly	Interest");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(interestLabel,	gridConstraints);

monthsLabel.setText("Number	of	Months");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
getContentPane().add(monthsLabel,	gridConstraints);

finalLabel.setText("Final	Balance");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
getContentPane().add(finalLabel,	gridConstraints);

depositTextField.setText("");
depositTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
getContentPane().add(depositTextField,	gridConstraints);

interestTextField.setText("");
interestTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
getContentPane().add(interestTextField,	gridConstraints);

monthsTextField.setText("");
monthsTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
getContentPane().add(monthsTextField,	gridConstraints);

finalTextField.setText("");
finalTextField.setColumns(10);
gridConstraints.gridx	=	2;

gridConstraints.gridy	=	3;
getContentPane().add(finalTextField,	gridConstraints);

calculateButton.setText("Calculate");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	4;
getContentPane().add(calculateButton,	gridConstraints);

calculateButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

calculateButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	5;
getContentPane().add(exitButton,	gridConstraints);

exitButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

exitButtonActionPerformed(e);

}

});

pack();

}

private	void	calculateButtonActionPerformed(ActionEvent	e)	{
double	deposit;

double	interest;
double	months;
double	finalBalance;
double	monthlyInterest;
//	read	values	from	text	fields
deposit	=

Double.valueOf(depositTextField.getText()).doubleValue();	interest	=
Double.valueOf(interestTextField.getText()).doubleValue();
monthlyInterest	=	interest	/	1200;

months	=
Double.valueOf(monthsTextField.getText()).doubleValue();	//	compute	final
value	and	put	in	text	field;

finalBalance	=	deposit	*	(Math.pow((1	+	monthlyInterest),	months)	-
1)	/	monthlyInterest;	finalTextField.setText(new
DecimalFormat("0.00").format(finalBalance));

}

private	void	exitButtonActionPerformed(ActionEvent	e)	{
System.exit(0);

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	the	program.	Make	sure	it	works	properly.	Here’s	a	run	I	tried	–	see	if	you

get	the	same	numbers:	

Save	 the	 project	 (Example2-1	 project	 in	 the	 \LearnJava\LJ	 Code\Class	 2\
project	group).

Focus	Traversal
When	you	run	Example	2-1,	notice	the	cursor	appears	in	the	top	text	field	where
you	 enter	 the	Monthly	 Deposit.	 Then,	 upon	 successive	 presses	 of	 the	 <Tab>
key,	you	move	from	one	control	to	the	next.

When	interacting	with	a	Java	GUI	application,	we	can	work	with	a	single	control
at	a	time.	That	is,	we	can	click	on	a	single	button	or	type	in	a	single	text	field.
We	can’t	be	doing	two	things	at	once.	The	control	we	are	working	with	is	known
as	 the	active	control	or	we	say	 the	control	has	 focus.	 In	our	Savings	Account
example,	when	the	cursor	is	in	a	particular	text	field,	we	say	that	text	field	has
focus.	 In	 a	 properly	 designed	 application,	 focus	 is	 shifted	 from	one	 control	 to
another	(in	a	predictable,	orderly	fashion)	using	the	<Tab>	key.	Focus	can	only
be	given	 to	controls	 that	allow	user	 interaction	–	buttons	and	 text	 fields	 in	our
example,	but	not	labels.

Java	does	a	good	job	of	defining	an	orderly	tab	sequence	using	something	called
the	FocusTransversalPolicy.	 Essentially,	 the	 tab	 sequence	 starts	 in	 the	 upper
left	corner	of	the	GridBagLayout	and	works	its	way	across	a	row.	It	then	moves
down	 to	 the	next	 row	and	continues	until	 it	 reaches	 the	 last	column	of	 the	 last
row.	At	that	point,	the	sequence	begins	again.	The	process	can	be	reversed	using
<Tab>in	combination	with	the	<Shift>	key.

There	 are	 times	 you	 would	 like	 to	 remove	 a	 control	 from	 the	 tab	 sequence
(transversal	policy).	For	example,	in	the	savings	account,	there	is	no	need	for	the
focus	 to	 go	 to	 the	 finalTextField	 control,	 since	 it	 is	 not	 editable.	 And	 we
wouldn’t	want	control	to	go	to	the	Exit	button	to	avoid	inadvertent	stopping	of
the	program.	To	remove	a	control	(named	myControl)	from	the	sequence,	use:
myControl.setFocusable(false);

It	is	also	possible	to	reorder	the	tab	sequence,	but	that	is	beyond	the	scope	of	this
course.

Example	2-2
Savings	Account	–	Setting	Focus

This	will	be	a	quick	modification	 to	our	Savings	Account	 example	 to	 remove
the	finalTextField	and	exitButton	controls	from	the	tab	sequencing.

1.	Modify	the	code	segment	adding	the	finalTextField	to	the	form	so	it	is	now
(new	line	is	shaded):	finalTextField.setText("");

finalTextField.setFocusable(false);
finalTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	3;
getContentPane().add(finalTextField,	gridConstraints);	2.	Modify	the
code	segment	adding	the	exitButton	to	the	form	so	it	reads	(new	line	is
shaded):	exitButton.setText("Exit");

exitButton.setFocusable(false);
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	5;
getContentPane().add(exitButton,	gridConstraints);	Rerun	the	project.
Notice	how	the	two	controls	now	longer	receive	focus.	When	the	Calculate
button	has	focus,	you	can	press	the	space	bar	to	‘click’	the	button.	This	is
saved	as	Example2-2	project	in	the	\LearnJava\LJ	Code\Class	2\	project
group.

Improving	a	Java	Application
In	 the	 previous	 section,	 we	 noted	 a	 weakness	 in	 the	 savings	 application
(undesirable	tab	sequencing)	and	fixed	the	problem,	improving	the	performance
of	our	application.	This	is	something	you,	as	a	programmer,	will	do	a	lot	of.	You
will	 build	 an	 application	 and	 while	 running	 it	 and	 testing	 it,	 will	 uncover
weaknesses	that	need	to	be	eliminated.	These	weaknesses	could	be	actual	errors
in	the	application	or	just	things	that,	if	eliminated,	make	your	application	easier
to	use.

You	will	 find,	 as	 you	progress	 as	 a	 programmer,	 that	 you	will	 spend	much	of
your	 time	 improving	 your	 applications.	 You	 will	 always	 find	 ways	 to	 add
features	to	an	application	and	to	make	it	more	appealing	to	your	user	base.	You
should	never	be	satisfied	with	your	first	solution	to	a	problem.	There	will	always
be	 room	 for	 improvement.	 And	 Java	 provides	 a	 perfect	 platform	 for	 adding
improvements	to	an	application.	You	can	easily	add	features	and	test	them	to	see
if	the	desired	performance	enhancements	are	attained.

If	 you	 run	 the	 savings	 application	 a	 few	more	 times,	 you	 can	 identify	 further
weaknesses:

➢	For	example,	what	happens	if	you	input	a	zero	interest?	The	program	will
stop	with	 an	 error	message	 because	 the	 formula	 that	 computes	 the	 final
balance	will	not	work	with	zero	interest.

➢	As	a	convenience,	it	would	be	nice	if	when	you	hit	the	<Enter>	key	after
typing	a	number,	the	focus	would	move	to	the	next	control.

➢	Notice	you	can	type	any	characters	you	want	in	the	text	fields	when	you
should	just	be	limited	to	numbers	and	a	single	decimal	point	–	any	other
characters	will	cause	 the	program	to	stop	with	an	error	message	because
the	string	cannot	be	converted	to	numbers.

We	 can	 (and	 will)	 address	 each	 of	 these	 points	 as	 we	 improve	 the	 savings
application.	But,	to	do	so,	requires	learning	more	Java	coding.	We’ll	address	the
zero	interest	problem	first.	To	solve	this	problem,	we	need	to	be	able	to	make	a
decision.	If	the	interest	is	zero,	we’ll	do	one	computation.	If	it’s	not	zero,	we’ll
use	another.	One	mechanism	for	making	decisions	with	Java	is	the	if	statement.

Java	Decisions	-	if	Statements
The	concept	of	an	if	statement	for	making	a	decision	is	very	simple.	We	check	to
see	if	a	particular	boolean	condition	is	true.	If	so,	we	take	a	certain	action.	If	not,
we	 do	 something	 else.	 if	 statements	 are	 also	 called	 branching	 statements.
Branching	 statements	 are	 used	 to	 cause	 certain	 actions	within	 a	 program	 if	 a
certain	condition	is	met.

The	simplest	form	for	the	Java	if	statement	is:	if	(condition)

{

[process	this	code]

}

Here,	 if	condition	 is	 true,	 the	code	bounded	by	 the	 two	braces	 is	executed.	 If
condition	 is	 false,	 nothing	 happens	 and	 code	 execution	 continues	 after	 the
closing	right	brace.

Example:

if	(balance	-	check	<	0)

{

trouble	=	true;
sendLettertoAccount();

}

In	 this	 case,	 if	balance	 -	 check	 is	 less	 than	 zero,	 two	 lines	of	 information	 are
processed:	 trouble	 is	 set	 to	 true	 and	 a	method	 sending	 a	 letter	 to	 the	 account
holder	 (sendLettertoAccount)	 is	 executed.	Notice	 the	 indentation	 of	 the	 code
between	 the	 two	braces.	NetBeans	 (and	most	 IDE’s)	will	automatically	do	 this
indentation.	 It	 makes	 understanding	 (and	 debugging)	 your	 code	 much	 easier.
You	can	adjust	the	amount	of	indentation	NetBeans	uses	if	you	like.

What	if	you	want	to	do	one	thing	if	condition	is	true	and	another	if	it	is	false?
Use	an	if/else	block:	if	(condition)

{

[process	this	code]

}

else

{

[process	this	code]

}

In	 this	 block,	 if	 condition	 is	 true,	 the	 code	 between	 the	 first	 two	 braces	 is
executed.	 If	 condition	 is	 false,	 the	 code	 between	 the	 second	 set	 of	 braces	 is
processed.

Example:

if	(balance	-	check	<	0)

{

trouble	=	true;
sendLettertoAccount();

}

else

{

trouble	=	false;

}

Here,	the	same	two	lines	are	executed	if	you	are	overdrawn	(balance	-	check	<
0),	but	if	you	are	not	overdrawn	(else),	the	trouble	flag	is	turned	off.

Lastly,	 we	 can	 test	 multiple	 conditions	 by	 adding	 the	 else	 if	 statement:	 if
(condition1)

{

[process	this	code]

}

else	if	(condition2)

{

[process	this	code]

}

else	if	(condition3)

{

[process	this	code]

}

else

{

[process	this	code]

}

In	this	block,	if	condition1	is	true,	the	code	between	the	if	and	first	else	if	line	is
executed.	If	condition1	is	false,	condition2	is	checked.	If	condition2	is	true,	the
indicated	 code	 is	 executed.	 If	 condition2	 is	 not	 true,	 condition3	 is	 checked.
Each	 subsequent	 condition	 in	 the	 structure	 is	 checked	 until	 a	 true	 condition	 is

found,	an	else	statement	is	reached	or	the	last	closing	brace	is	reached.

Example:

if	(balance	-	check	<	0)

{

trouble	=	true;
sendLettertoAccount();

}

else	if	(balance	–	check	==	0)

{

trouble	=	false;
sendWarningLetter();

}

else

{

trouble	=	false;

}

Now,	 one	 more	 condition	 is	 added.	 If	 your	 balance	 equals	 the	 check	 amount
[else	 if	 (balance	 -	 check	 ==	 0)],	 you’re	 still	 not	 in	 trouble,	 but	 a	 warning	 is
mailed.

In	using	branching	statements,	make	sure	you	consider	all	viable	possibilities	in
the	if/else	if	structure.	Also,	be	aware	that	each	if	and	else	if	in	a	block	is	tested
sequentially.	The	first	time	an	if	test	is	met,	the	code	block	associated	with	that
condition	is	executed	and	the	if	block	is	exited.	If	a	later	condition	is	also	true,	it
will	never	be	considered.

Switch	Statement	-	Another	Way	to
Branch
In	addition	to	if/else	if/else	type	statements,	the	switch	format	can	be	used	when
there	are	multiple	selection	possibilities.	switch	is	used	to	make	decisions	based
on	the	value	of	a	single	variable.	The	structure	is:	switch	(variable)

{

case	[variable	has	this	value]:
[process	this	code]
break;

case	[variable	has	this	value]:
[process	this	code]
break;

case	[variable	has	this	value]:
[process	this	code]
break;

default:
[process	this	code]
break;

}

The	 way	 this	 works	 is	 that	 the	 value	 of	 variable	 is	 examined.	 Each	 case
statement	 is	 then	 sequentially	 examined	 until	 the	 value	 matches	 one	 of	 the
specified	 cases.	 Once	 found,	 the	 corresponding	 code	 is	 executed.	 If	 no	 case
match	is	found,	the	code	in	the	default	segment	(if	there)	is	executed.	The	break
statements	 transfer	 program	 execution	 to	 the	 line	 following	 the	 closing	 right
brace.	These	statements	are	optional,	but	will	almost	always	be	there.	If	a	break
is	 not	 executed,	 all	 code	 following	 the	 case	 processed	 will	 also	 be	 processed
(until	 a	break	 is	 seen	or	 the	 end	of	 the	 structure	 is	 reached).	This	 is	 different
behavior	than	if	statements	where	only	one	‘case’	could	be	executed.

As	an	example,	say	we've	written	this	code	using	the	if	statement:	if	(age	==	5)

{

category	=	"Kindergarten";

}

else	if	(age	==	6)

{

category	=	"First	Grade";

}

else	if	(age	==	7)

{

category	=	"Second	Grade";

}

else	if	(age	==	8)

{

category	=	"Third	Grade";

}

else	if	(age	==	9)

{

category	=	"Fourth	Grade";

}

else

{

category	=	“Older	Child”;

}

This	will	work,	but	it	is	ugly	code	and	difficult	to	maintain.

The	corresponding	code	with	switch	is	‘cleaner’:	switch	(age)

{

case	5:
category	=	"Kindergarten";
break;

case	6:
category	=	"First	Grade";
break;

case	7:
category	=	"Second	Grade";
break;

case	8:
category	=	"Third	Grade";
break;

case	9:
category	=	"Fourth	Grade";
break;

default:
category	=	“Older	Child”;
break;

}

Control	Focus
Earlier	 we	 saw	 that,	 in	 a	 running	 application,	 only	 one	 control	 can	 have	 user
interaction	at	any	one	time.	We	say	that	control	has	focus.	A	text	field	with	the
cursor	has	focus	–	if	the	user	begins	typing,	the	typed	characters	go	in	that	text
box.	If	a	button	control	has	focus,	that	button	can	be	‘clicked’	by	simply	pressing
the	space	bar.

We	also	saw	that	the	<Tab>	key	could	be	used	to	move	from	control	to	control,
shifting	the	focus.	Many	times,	you	might	like	to	move	focus	from	one	control	to
another	 in	 code,	 or	 programmatically.	 For	 example,	 in	 our	 savings	 example,
once	 the	user	 types	 in	 a	Deposit	Amount,	 it	would	be	nice	 if	 focus	would	be
moved	to	the	Interest	text	field	if	the	user	presses	<Enter>.

To	programmatically	give	focus	to	a	control	(myControl),	use	the	requestFocus
method:	myControl.requestFocus();

To	move	 from	 the	 current	 control	 to	 the	 next	 control	 in	 the	 tab	 sequence,	 use
transferFocus:	myControl.transferFocus();

To	move	from	the	current	control	to	the	previous	control	in	the	tab	sequence,	use
transerFocusBackward:	myControl.transferFocusBackward();

So,	where	does	 this	 code	go	 in	our	 example?	When	a	 text	 field	has	 focus	 and
<Enter>	 is	pressed,	 the	actionPerformed	method	 is	 invoked.	Hence,	 for	 each
text	 field	where	we	want	 to	move	 focus	 based	 on	 keyboard	 input,	we	 add	 an
event	method	and	place	the	needed	code	there.	Adding	event	methods	for	a	text
field	is	identical	to	adding	methods	for	other	Swing	components.	For	a	text	field
named	myTextField,	use:	MyField.addActionListener(new	ActionListener	()
{

public	void	actionPerformed(ActionEvent	e)

{

myFieldActionPerformed(e);

}

}

});

and	the	corresponding	event	method	code	to	move	focus	would	be:	private	void
myTextFieldActionPerformed(ActionEvent	e)	{

myTextField.transferFocus();

}

Input	Validation
Recall	in	the	savings	example,	there	is	nothing	to	prevent	the	user	from	typing	in
meaningless	 characters	 (for	 example,	 letters)	 into	 the	 text	 fields	 expecting
numerical	data.	We	want	to	keep	this	from	happening	–	if	the	input	is	not	a	valid
number,	 it	 cannot	 be	 converted	 from	 a	 string	 to	 a	 number.	Whenever	 getting
input	 from	 a	 user	 using	 a	 text	 field	 control,	 we	 need	 to	 validate	 the	 typed
information	 before	 using	 it.	 Validation	 rules	 differ	 depending	 on	 what
information	you	want	from	the	user.

In	 this	 example,	 we	 will	 perform	 input	 validation	 in	 a	 Java	 method	 (named
validateDecimalNumber)	we	write.	The	method	will	examine	the	text	property
of	 a	 text	 field,	 trimming	 off	 leading	 and	 trailing	 spaces	 and	 checking	 that	 the
field	contains	only	numbers	and	a	single	decimal	point.	It	will	return	a	boolean
value	 indicating	 if	a	valid	number	 is	 found.	 If	 the	number	 is	valid,	 the	method
will	return	a	true	value.	If	not	valid,	the	method	will	return	a	false	value.	It	will
also	blank	out	the	text	field	and	give	that	control	focus,	indicating	the	user	needs
to	retype	his/her	input.

Here’s	 the	 method	 that	 accomplishes	 that	 task	 (this	 uses	 some	 of	 the	 string
functions	we	have	seen):	public	boolean	validateDecimalNumber(JTextField
tf)	{

//	checks	to	see	if	text	field	contains
//	valid	decimal	number	with	only	digits	and	a	single	decimal	point

String	s	=	tf.getText().trim();
boolean	hasDecimal	=	false;
boolean	valid	=	true;
if	(s.length()	==	0)

{

valid	=	false;

}

else

{

for	(int	i	=	0;	i	<	s.length();	i++)

{

char	c	=	s.charAt(i);
if	(c	>=	'0'	&&	c	<=	'9')

{

continue;

}

else	if	(c	==	'.'	&&	!hasDecimal)

{

hasDecimal	=	true;

}

else

{

//	invalid	character	found
valid	=	false;

}

}

}

if	(valid)

{

tf.setText(s);

}

else

{

tf.setText("");
tf.requestFocus();

}

return	(valid);

}

You	 should	 be	 able	 to	 see	 how	 this	works.	 The	 text	 field	 (tf)	 text	 property	 is
stored	 in	 the	 string	 s	 (after	 trimming	 off	 leading	 and	 trailing	 spaces).	 Each
character	in	this	string	is	evaluated	to	see	if	it	contains	only	allows	number	and	a
single	decimal	point.	If	only	numbers	and	a	decimal	are	found,	valid	is	true	and
things	proceed.	If	valid	is	false,	indicating	invalid	characters	or	an	empty	string,
the	text	field	is	blanked	and	given	focus	to	allow	reentry	of	the	input	value.

To	 use	 the	method	 on	 a	 sample	 text	 field	myTextField,	 the	 code	 is:	boolean
isOK	=	 validateDecimalNumber(myTextField);	 If	 isOk	 is	 true,	 no	 action	 is
taken	–	calculations	can	proceed.	If	isOk	is	false,	the	user	needs	to	try	again.

To	 make	 this	 a	 more	 general	 validation	 routine,	 you	 might	 also	 allow	 the
negative	sign	(if,	of	course,	your	application	uses	negative	numbers).	To	do	this,
you	need	to	check	that,	if	there	is	such	a	sign,	it	only	appears	in	the	first	position
in	the	input,	or	else	it	is	also	an	invalid	character.

You’ll	 see	 how	 all	 this	 (control	 focus,	 input	 validation)	works	 as	we	 continue
working	with	the	saving	account	example.

Example	2-3
Savings	Account	–	Input	Validation

We	modify	 the	Savings	Account	 example	 to	handle	 a	 zero	 interest	 value.	We
also	add	code	so	if	<Enter>	is	pressed,	focus	is	passed	to	the	next	control.	And,
we	validate	the	input	values	to	only	allow	numbers	and	a	decimal	point.

1.	Add	 a	 listener	 for	 the	actionPerformed	 event	 for	 the	depositTextField	 (to
allow	focus	to	move).	Place	this	code	after	the	lines	placing	the	control	in	the
frame:	depositTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

depositTextFieldActionPerformed(e);

}

});

And,	 add	 the	 corresponding	 event	 method	 that	 transfers	 focus:	 private	 void
depositTextFieldActionPerformed(ActionEvent	e)	{

depositTextField.transferFocus();

}

2.	 Add	 a	 listener	 for	 the	 actionPerformed	 event	 for	 the	 interestTextField.
Place	 this	 code	 after	 the	 lines	 placing	 the	 control	 in	 the	 frame:
interestTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

interestTextFieldActionPerformed(e);

}

});

And,	 add	 the	 corresponding	 event	 method	 that	 transfers	 focus:	 private	 void
interestTextFieldActionPerformed(ActionEvent	e)	{

interestTextField.transferFocus();

}

3.	Add	a	listener	for	the	actionPerformed	event	for	the	monthsTextField.	Place
this	 code	 after	 the	 lines	 placing	 the	 control	 in	 the	 frame:
monthsTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

monthsTextFieldActionPerformed(e);

}

});

And,	 add	 the	 corresponding	 event	 method	 that	 transfers	 focus:	 private	 void
monthsTextFieldActionPerformed(ActionEvent	e)	{

monthsTextField.transferFocus();

}

4.	Modify	the	calculateButtonActionPerformed	event	code	to	accommodate	a
zero	 interest	 input.	 Also,	 add	 code	 to	 validate	 the	 values	 typed	 in	 the	 text
fields	(we	use	the	validateDecimalNumber	method).	The	modified	routine	is
(new	 code	 shaded):	 private	 void
calculateButtonActionPerformed(ActionEvent	e)	{

double	deposit;
double	interest;
double	months;

double	finalBalance;
double	monthlyInterest;
//	make	sure	each	is	a	valid	number
if	(!validateDecimalNumber(monthsTextField)	||

!validateDecimalNumber(interestTextField)	||
!validateDecimalNumber(depositTextField))

{

//	if	one	or	more	fields	not	valid	number,	then	exit	method	return;

}

//	read	values	from	text	fields
deposit	=

Double.valueOf(depositTextField.getText()).doubleValue();	interest	=
Double.valueOf(interestTextField.getText()).doubleValue();

monthlyInterest	=	interest	/	1200;
months	=

Double.valueOf(monthsTextField.getText()).doubleValue();	//	compute
final	value	and	put	in	text	field;

if	(interest	==	0)

{

finalBalance	=	deposit	*	months;

}

else

{

finalBalance	=	deposit	*	(Math.pow((1	+	monthlyInterest),
months)	-	1)	/	monthlyInterest;	}

finalTextField.setText(new

DecimalFormat("0.00").format(finalBalance));

}

In	 this	 code,	 notice	 each	 typed	 value	 is	 checked	 for	 proper	 format.	 Any	 text
fields	with	improper	values	are	cleared	and	given	focus	to	allow	the	user	to	try
again.	 Calculations	 do	 not	 proceed	 until	 all	 inputs	 are	 valid.	 Also,	 notice	 if
interest	is	zero,	the	final	balance	is	just	the	deposited	amount	times	the	number
of	months.

5.	Add	 the	validateDecimalNumber	method	 for	 input	validation	 (type	 it	 after
the	other	methods):	public	boolean	validateDecimalNumber(JTextField	tf)
{

//	checks	to	see	if	text	field	contains
//	valid	decimal	number	with	only	digits	and	a	single	decimal	point

String	s	=	tf.getText().trim();
boolean	hasDecimal	=	false;
boolean	valid	=	true;
if	(s.length()	==	0)

{

valid	=	false;

}

else

{

for	(int	i	=	0;	i	<	s.length();	i++)

{

char	c	=	s.charAt(i);
if	(c	>=	'0'	&&	c	<=	'9')

{

continue;

}

else	if	(c	==	'.'	&&	!hasDecimal)

{

hasDecimal	=	true;

}

else

{

//	invalid	character	found
valid	=	false;

}

}

}

if	(valid)

{

tf.setText(s);

}

else

{

tf.setText("");
tf.requestFocus();

}

return	(valid);

}

The	modified	Savings.java	code	listing	(newly	added	code	is	shaded):	/	*
*	Savings.java

*/

package	savings;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.text.*;

public	class	Savings	extends	JFrame

{

JLabel	depositLabel	=	new	JLabel();
JLabel	interestLabel	=	new	JLabel();
JLabel	monthsLabel	=	new	JLabel();
JLabel	finalLabel	=	new	JLabel();
JTextField	depositTextField	=	new	JTextField();	JTextField

interestTextField	=	new	JTextField();	JTextField	monthsTextField	=	new
JTextField();
JTextField	finalTextField	=	new	JTextField();
JButton	calculateButton	=	new	JButton();
JButton	exitButton	=	new	JButton();

public	static	void	main(String	args[])

{

//construct	frame
new	Savings().show();

}

public	Savings()

{

//	code	to	build	the	form
setTitle("Savings	Account");
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	//	position
controls	(establish	event	methods)

GridBagConstraints	gridConstraints	=	new	GridBagConstraints();
depositLabel.setText("Monthly	Deposit");

gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(depositLabel,	gridConstraints);

interestLabel.setText("Yearly	Interest");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(interestLabel,	gridConstraints);

monthsLabel.setText("Number	of	Months");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
getContentPane().add(monthsLabel,	gridConstraints);

finalLabel.setText("Final	Balance");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
getContentPane().add(finalLabel,	gridConstraints);

depositTextField.setText("");
depositTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
getContentPane().add(depositTextField,	gridConstraints);
depositTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

depositTextFieldActionPerformed(e);

}

});

interestTextField.setText("");
interestTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
getContentPane().add(interestTextField,	gridConstraints);
interestTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

interestTextFieldActionPerformed(e);

}

});

monthsTextField.setText("");
monthsTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
getContentPane().add(monthsTextField,	gridConstraints);
monthsTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

monthsTextFieldActionPerformed(e);

}

});

finalTextField.setText("");
finalTextField.setFocusable(false);
finalTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	3;
getContentPane().add(finalTextField,	gridConstraints);

calculateButton.setText("Calculate");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	4;
getContentPane().add(calculateButton,	gridConstraints);

calculateButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

calculateButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
exitButton.setFocusable(false);
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	5;
getContentPane().add(exitButton,	gridConstraints);

exitButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

exitButtonActionPerformed(e);

}

});

pack();

}

private	void	depositTextFieldActionPerformed(ActionEvent	e)	{
depositTextField.transferFocus();

}

	
private	void	interestTextFieldActionPerformed(ActionEvent	e)	{

interestTextField.transferFocus();

}

	
private	void	monthsTextFieldActionPerformed(ActionEvent	e)	{

monthsTextField.transferFocus();

}

private	void	calculateButtonActionPerformed(ActionEvent	e)	{
double	deposit;
double	interest;
double	months;
double	finalBalance;
double	monthlyInterest;
//	make	sure	each	is	a	valid	number
if	(!validateDecimalNumber(monthsTextField)	||

!validateDecimalNumber(interestTextField)	||
!validateDecimalNumber(depositTextField))	{

//	if	one	or	more	fields	not	valid	number,	then	exit	method	return;

}

//	read	values	from	text	fields
deposit	=

Double.valueOf(depositTextField.getText()).doubleValue();	interest	=
Double.valueOf(interestTextField.getText()).doubleValue();
monthlyInterest	=	interest	/	1200;

months	=
Double.valueOf(monthsTextField.getText()).doubleValue();	//	compute	final
value	and	put	in	text	field;

if	(interest	==	0)

{

finalBalance	=	deposit	*	months;

}

else

{

finalBalance	=	deposit	*	(Math.pow((1	+	monthlyInterest),

months)	-	1)	/	monthlyInterest;	}
finalTextField.setText(new

DecimalFormat("0.00").format(finalBalance));

}

private	void	exitButtonActionPerformed(ActionEvent	e)	{
System.exit(0);

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

public	boolean	validateDecimalNumber(JTextField	tf)	{
//	checks	to	see	if	text	field	contains
//	valid	decimal	number	with	only	digits	and	a	single	decimal	point

String	s	=	tf.getText().trim();
boolean	hasDecimal	=	false;
boolean	valid	=	true;
if	(s.length()	==	0)

{

valid	=	false;

}

else

{

for	(int	i	=	0;	i	<	s.length();	i++)

{

char	c	=	s.charAt(i);
if	(c	>=	'0'	&&	c	<=	'9')

{

continue;

}

else	if	(c	==	'.'	&&	!hasDecimal)

{

hasDecimal	=	true;

}

else

{

//	invalid	character	found
valid	=	false;

}

}

}

if	(valid)

{

}

tf.setText(s);

}

else

{

tf.setText("");
tf.requestFocus();

}

return	(valid);

}

}

Rerun	 the	 application	 and	 test	 the	 input	 validation	 performance.	 If	 you	 type
anything	 other	 than	 numbers	 and	 a	 single	 decimal	 point,	 upon	 clicking
Calculate,	 the	 improper	 input	 box	 should	 be	 pointed	 out	 to	 you.	Watch	 how
focus	moves	from	control	to	control	upon	pressing	<Enter>.	Make	sure	you	get
a	correct	answer	with	zero	interest.	Save	the	application	(Example2-3	project	in
the	\LearnJava\LJ	Code\Class	2\	project	group).

Java	Looping
Many	applications	require	repetition	of	certain	code	segments.	For	example,	you
may	want	 to	 roll	 a	 die	 (simulated	 die	 of	 course)	 until	 it	 shows	 a	 six.	Or,	 you
might	generate	financial	results	until	a	certain	sum	of	returns	has	been	achieved.
This	idea	of	repeating	code	is	called	iteration	or	looping.

In	 Java,	 looping	 is	 done	with	 one	 of	 two	 formats.	The	 first	 is	 the	while	 loop:
while	(condition)

{

[process	this	code]

}

In	 this	 structure,	 the	code	block	 in	braces	 is	 repeated	 ‘as	 long	as’	 the	boolean
expression	condition	 is	 true.	Note	a	while	 loop	structure	will	not	execute	even
once	if	the	while	condition	is	false	the	first	time	through.	If	we	do	enter	the	loop,
it	is	assumed	at	some	point	condition	will	become	false	to	allow	exiting.	Notice
there	is	no	semicolon	after	the	while	statement.

This	brings	up	a	very	important	point	–	if	you	use	a	loop,	make	sure	you	can	get
out	 of	 the	 loop!!	 It	 is	 especially	 important	 in	 the	 event-driven	 environment	 of
Java	GUI	applications.	As	long	as	your	code	is	operating	in	some	loop,	no	events
can	be	processed.	You	can	also	exit	a	loop	using	the	break	statement.	This	will
get	you	out	of	a	loop	and	transfer	program	control	to	the	statement	following	the
loop’s	closing	brace.	Of	course,	you	need	logic	in	a	loop	to	decide	when	a	break
is	appropriate.

You	 can	 also	 use	 a	 continue	 statement	 within	 a	 loop.	 When	 a	 continue	 is
encountered,	all	 further	 steps	 in	 the	 loop	are	skipped	and	program	operation	 is
transferred	to	the	top	of	the	loop.

Example:

counter	=	1;
while	(counter	<=	1000)

{

counter	+=	1;

}

This	loop	repeats	as	long	as	(while)	the	variable	counter	is	less	than	or	equal	to
1000.

Another	example:

rolls	=	0;
counter	=	0;
while	(counter	<	10)

{

//	Roll	a	simulated	die
roll	+=	1;
if	(myRandom.nextInt(6)	+	1	==	6)

{

counter	+=	1;

}

}

This	 loop	 repeats	 while	 the	 counter	 variable	 is	 less	 than10.	 The	 counter
variable	is	incremented	each	time	a	simulated	die	rolls	a	6.	The	roll	variable	tells
you	how	many	rolls	of	the	die	were	needed	to	reach	10	sixes.

A	do/while	structure:	do

{

{

[process	this	code]

}

while	(condition);

This	loop	repeats	‘as	long	as’	the	boolean	expression	condition	is	true.	The	loop
is	 always	 executed	 at	 least	 once.	 Somewhere	 in	 the	 loop,	 condition	 must	 be
changed	 to	 false	 to	 allow	 exiting.	 Notice	 there	 is	 a	 semicolon	 after	 the	 while
statement.

Examples:

sum	=	0;
do

{

sum	+=	3;

}

while	(sum	<=	50);

In	this	example,	we	increment	a	sum	by	3	until	that	sum	exceeds	50	(or	while
the	sum	is	less	than	or	equal	to	50).

Another	example:

sum	=	0;
counter	=	0;
do

{

//	Roll	a	simulated	die
sum	+=	myRandom.nextInt(6)	+	1;

counter	+=	1;

}

while	(sum	<=	30);

This	loop	rolls	a	simulated	die	while	the	sum	of	the	rolls	does	not	exceed	30.	It
also	keeps	track	of	the	number	of	rolls	(counter)	needed	to	achieve	this	sum.

Again,	make	sure	you	can	always	get	out	of	a	loop!	Infinite	loops	are	never	nice.
Sometimes	the	only	way	out	is	rebooting	your	machine!

Java	Counting
With	while	and	do/while	structures,	we	usually	didn’t	know,	ahead	of	time,	how
many	times	we	execute	a	loop	or	iterate.	If	you	know	how	many	times	you	need
to	iterate	on	some	code,	you	want	to	use	Java	counting.	Counting	is	useful	for
adding	items	to	a	list	or	perhaps	summing	a	known	number	of	values	to	find	an
average.

Java	 counting	 is	 accomplished	 using	 the	 for	 loop:	 for	 (initialization;
expression;	update)

{

[process	this	code]

}

The	 initialization	 step	 is	 executed	 once	 and	 is	 used	 to	 initialize	 a	 counter
variable.	The	expression	 step	 is	executed	before	each	repetition	of	 the	 loop.	 If
expression	is	true,	the	code	is	executed;	if	false,	the	loop	is	exited.	The	update
step	 is	 executed	 after	 each	 loop	 iteration.	 It	 is	 used	 to	 update	 the	 counter
variable.

Example:

for	(degrees	=	0;	degrees	<=	360;	degrees	+=	10)	{
//	convert	to	radians
r	=	degrees	*	Math.PI	/	180;
a	=	Math.Sin(r);
b	=	Math.Cos(r);
c	=	Math.Tan(r);

}

In	 this	 example,	we	compute	 trigonometric	 functions	 for	 angles	 from	0	 to	360
degrees	 in	increments	of	10	degrees.	It	 is	assumed	that	all	variables	have	been

properly	declared.

Another	Example:

for	(countdown	=	10;	countdown	<=	0;	countdown--)	{
timeTextField.setText(String.valueOf(countdown));	}

NASA	called	and	asked	us	to	format	a	text	field	control	to	count	down	from	10
to	 0.	 The	 loop	 above	 accomplishes	 the	 task.	 Note	 the	 use	 of	 the	 decrement
operator.

And,	Another	Example:

double[]	myValues	=	new	double[100];
sum	=	0;
for	(int	i	=	0;	i	<	100;	i++)

{

sum	+=	myValues[i];

}

average	=	sum	/	100;

This	code	finds	the	average	value	of	100	numbers	stored	in	the	array	myValues.
It	 first	 sums	each	of	 the	values	 in	a	 for	 loop.	That	sum	 is	 then	divided	by	 the
number	 of	 terms	 (100)	 to	 yield	 the	 average.	 Note	 the	 use	 of	 the	 increment
operator.	Also,	notice	the	counter	variable	i	is	declared	in	the	initialization	step.
This	 is	 a	 common	 declaration	 in	 a	 loop.	 Such	 loop	 level	 variables	 lose	 their
values	once	the	loop	is	completed.

You	 may	 exit	 a	 for	 loop	 early	 using	 a	 break	 statement.	 This	 will	 transfer
program	control	to	the	statement	following	the	closing	brace.	Use	of	a	continue
statement	 will	 skip	 all	 statements	 remaining	 in	 the	 loop	 and	 return	 program
control	to	the	for	statement.

Example	2-4
Savings	Account	-	Decisions

As	 built,	 our	 Savings	 Account	 application	 is	 useful,	 but	 we	 can	 add	 more
capability.	 For	 example,	 what	 if	 we	 know	 how	 much	 money	 we	 need	 in	 a
number	of	months	and	the	interest	our	deposits	can	earn.	It	would	be	nice	if	the
program	could	calculate	the	needed	month	deposit.	Or,	what	if	we	want	to	know
how	long	it	will	take	us	to	reach	a	goal,	knowing	how	much	we	can	deposit	each
month	and	the	related	interest.	Here,	we	modify	the	Savings	Account	project	to
allow	entering	any	three	values	and	computing	the	fourth.

1.	First,	add	a	third	button	control	that	will	clear	all	of	the	text	fields.	Assign	the
following	properties:

clearButton:
text Clear
focusable false
gridx 2
gridy 4

Add	 the	 code	 to	 declare	 and	 create	 this	 button.	The	 code	 to	 position	 it	 on	 the
form	and	add	a	listener	is:	clearButton.setText("Clear");
clearButton.setFocusable(false);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	4;
getContentPane().add(clearButton,	gridConstraints);

clearButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

clearButtonActionPerformed(e);

}

}

});

and	the	method	that	clears	the	text	fields	is:

private	void	clearButtonActionPerformed(ActionEvent	e)	{
//	clear	text	fields
depositTextField.setText("");
interestTextField.setText("");
monthsTextField.setText("");
finalTextField.setText("");
depositTextField.requestFocus();

}

This	 code	 simply	 blanks	 out	 the	 four	 text	 boxes	 when	 the	 Clear	 button	 is
clicked.	It	then	redirects	focus	to	the	depositTextField	control.

2.	We	will	now	(sometimes)	type	information	into	the	Final	Balance	text	field.
Related	 to	 this,	 change	 the	 focusable	 property	 to	 true.	 We	 also	 need	 a
actionPerformed	 event	 method	 for	 the	 finalTextField	 control.	 Add	 the
listener:	finalTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

finalTextFieldActionPerformed(e);

}

});

and	the	method	moving	focus	is:

private	void	finalTextFieldActionPerformed(ActionEvent	e)	{
finalTextField.transferFocus();

}

Recall,	we	need	this	code	because	we	can	now	enter	information	into	the	Final
Balance	text	field.	It	is	very	similar	to	the	other	methods.	This	code	moves	focus
to	the	calculateButton	control	if	<Enter>	is	hit.

3.	We	need	 to	modify	 the	actionPerformed	method	of	 the	calculateButton	 to
compute	 the	 information	in	 the	“empty”	 text	field.	We	also	need	to	validate
the	finalTextField	input.	The	modified	code	is	(new	code	is	shaded):	private
void	calculateButtonActionPerformed(ActionEvent	e)	{

double	deposit;
double	interest;
double	months;
double	finalBalance;
double	monthlyInterest;
double	finalCompute,	intChange;
int	intDirection;
//	make	sure	each	is	a	valid	number
//	Determine	which	box	is	blank
//	Compute	that	missing	value	and	put	in	text	box	if

(depositTextField.getText().trim().equals(""))	{
//	deposit	missing
//	read	other	values	from	text	fields
//	make	sure	valid	before	computing
if	(!validateDecimalNumber(monthsTextField)	||

!validateDecimalNumber(interestTextField)	||
!validateDecimalNumber(finalTextField))

{

//	if	one	or	more	fields	not	valid	number,	then	exit	method
return;

}

interest	=
Double.valueOf(interestTextField.getText()).doubleValue();

monthlyInterest	=	interest	/	1200;
months	=

Double.valueOf(monthsTextField.getText()).doubleValue();	finalBalance
=
Double.valueOf(finalTextField.getText()).doubleValue();	if	(interest	==	0)

{

deposit	=	finalBalance	/	months;

}

else

{

deposit	=	finalBalance	((Math.pow((1	+	monthlyInterest),
months)	-	1)	monthlyInterest);	}

depositTextField.setText(new
DecimalFormat("0.00").format(deposit));

}

else	if	(interestTextField.getText().trim().equals(""))	{
//	interest	missing	-	requires	iterative	solution	//	intChange	is	how

much	we	change	interest	each	step	//	intDirection	is	direction	(+	or	-)	we
change	interest	//	read	other	values	from	text	fields

//	make	sure	valid	before	computing
if	(!validateDecimalNumber(monthsTextField)	||

!validateDecimalNumber(depositTextField)	||
!validateDecimalNumber(finalTextField))

{

//	if	one	or	more	fields	not	valid	number,	then	exit	method
return;

}

deposit	=
Double.valueOf(depositTextField.getText()).doubleValue();	months	=
Double.valueOf(monthsTextField.getText()).doubleValue();	finalBalance	=
Double.valueOf(finalTextField.getText()).doubleValue();	interest	=	0;

intChange	=	1;
intDirection	=	1;
do

{

interest	+=	intDirection	*	intChange;
monthlyInterest	=	interest	/	1200;
finalCompute	=	deposit	*	(Math.pow((1	+	monthlyInterest),

months)	-	1)	/	monthlyInterest;	if	(intDirection	==	1)

{

if	(finalCompute	>	finalBalance)

{

intDirection	=	-1;
intChange	/=	10;

}

}

else

{

if	(finalCompute	<	finalBalance)

{

intDirection	=	1;

intChange	/=	10;

}

}

}

while	(Math.abs(finalCompute	-	finalBalance)	>=	0.005);
interestTextField.setText(new
DecimalFormat("0.00").format(interest));

}

else	if	(monthsTextField.getText().trim().equals(""))	{
//	months	missing
//	read	other	values	from	text	fields
//	make	sure	valid	before	computing
if	(!validateDecimalNumber(depositTextField)	||

!validateDecimalNumber(interestTextField)	||
!validateDecimalNumber(finalTextField))

{

//	if	one	or	more	fields	not	valid	number,	then	exit	method
return;

}

deposit	=
Double.valueOf(depositTextField.getText()).doubleValue();	interest	=
Double.valueOf(interestTextField.getText()).doubleValue();

monthlyInterest	=	interest	/	1200;
finalBalance	=

Double.valueOf(finalTextField.getText()).doubleValue();	if	(interest	==	0)

{

months	=	finalBalance	/	deposit;

}

else

{

months	=	Math.log(finalBalance	*	monthlyInterest	deposit	+	1)
Math.log(1	+	monthlyInterest);	}

monthsTextField.setText(new
DecimalFormat("0.00").format(months));

}

else	if	(finalTextField.getText().trim().equals(""))	{
//	Final	value	missing
//	compute	final	value	and	put	in	text	field;
//	read	other	values	from	text	fields
//	make	sure	valid	before	computing
if	(!validateDecimalNumber(monthsTextField)	||

!validateDecimalNumber(interestTextField)	||
!validateDecimalNumber(depositTextField))

{

//	if	one	or	more	fields	not	valid	number,	then	exit	method
return;

}

deposit	=
Double.valueOf(depositTextField.getText()).doubleValue();	interest	=
Double.valueOf(interestTextField.getText()).doubleValue();

monthlyInterest	=	interest	/	1200;
months	=

Double.valueOf(monthsTextField.getText()).doubleValue();	if	(interest	==

0)

{

finalBalance	=	deposit	*	months;

}

else

{

finalBalance	=	deposit	*	(Math.pow((1	+	monthlyInterest),
months)	-	1)	/	monthlyInterest;	}

finalTextField.setText(new
DecimalFormat("0.00").format(finalBalance));

}

}

In	 this	 code,	 first,	we	 validate	 the	 input	 information.	Then,	we	 reread	 the	 text
information	from	all	four	text	boxes	and	based	on	which	one	is	blank	(the	trim
method	strips	off	leading	and	trailing	blanks),	compute	the	missing	information
and	display	it	in	the	corresponding	text	box.

Let’s	 look	 at	 the	math	 involved	 in	 solving	 for	missing	 information.	Recall	 the
equation	 given	 in	Example	 2-1:	 F	=	D	 [(1	+	 I)M	 -	 1]	 /	 I	where	F	 is	 the	 final
amount,	D	the	deposit,	I	the	monthly	interest,	and	M	the	number	of	months.	This
is	 the	 equation	we’ve	 been	using	 to	 solve	 for	 finalBalance	 and	we	 still	 use	 it
here	 if	 the	 finalBalance	 field	 is	 empty,	 unless	 the	 interest	 is	 zero.	 For	 zero
interest,	we	use:	F	=	DM,	if	interest	is	zero	See	if	you	can	find	these	equations
in	the	code.

If	 the	 deposit	 field	 is	 empty,	 we	 can	 solve	 the	 equation	 for	 D	 (the	 needed
quantity):	D	=	F/	{[(1	+	I)M	-	1]	/	I}

If	the	interest	is	zero,	this	equation	will	not	work.	In	that	case,	we	use:	D	=	F/M,
if	interest	is	zero	You	should	be	able	to	find	these	equations	in	the	code	above.

Solving	for	missing	months	 information	requires	knowledge	of	logarithms.	I’ll
just	give	you	the	equation:	M	=	log	(FI	D	+	1)	log	(1	+	I)

In	this	Java,	the	logarithm	(log)	function	is	one	of	the	math	functions,	Math.log.
Like	the	other	cases,	we	need	a	separate	equation	for	zero	interest:	M	=	F/D,	if
interest	is	zero	Again,	see	if	you	can	find	these	equations	in	the	code.

If	 the	 interest	value	 is	missing,	we	need	to	resort	 to	a	widely	used	method	for
solving	 equations	 –	we’ll	 guess!	But,	we’ll	 use	 a	 structured	 guessing	method.
Here’s	 what	 we’ll	 do.	We’ll	 start	 with	 a	 zero	 interest	 and	 increase	 it	 by	 one
percent	 until	 the	 computed	 final	 amount	 is	 larger	 than	 the	 displayed	 final
amount.	 At	 that	 point,	 we	 know	 the	 interest	 is	 too	 high	 so,	 we	 decrease	 the
interest	by	a	smaller	amount	(0.1	percent)	until	the	computed	final	amount	is	less
than	 the	 displayed	 final	 amount,	 meaning	 the	 interest	 is	 too	 low.	 We	 start
increasing	the	interest	again	(this	time	by	0.01	percent).	We’ll	repeat	this	process
until	the	computed	final	amount	is	within	1/2	cent	of	the	displayed	amount.	This
kind	of	process	is	called	iteration	and	is	used	often	in	computer	programs.	You
should	be	able	to	see	each	step	in	the	code	–	a	good	example	of	a	do	loop.

Don’t	be	 intimidated	by	 the	code	 in	 this	example.	 I’ll	admit	 there’s	a	 lot	of	 it!
Upon	 study,	 though,	 you	 should	 see	 that	 it	 is	 just	 a	 straightforward	 list	 of
instructions	for	the	computer	to	follow	based	on	input	from	the	user.

For	reference,	the	final	Savings.java	code	listing	(newly	added	code	is	shaded)
is:	/	*
*	Savings.java

*/

package	savings;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.text.*;
public	class	Savings	extends	JFrame

{

JLabel	depositLabel	=	new	JLabel();
JLabel	interestLabel	=	new	JLabel();
JLabel	monthsLabel	=	new	JLabel();
JLabel	finalLabel	=	new	JLabel();
JTextField	depositTextField	=	new	JTextField();	JTextField

interestTextField	=	new	JTextField();	JTextField	monthsTextField	=	new
JTextField();
JTextField	finalTextField	=	new	JTextField();
JButton	calculateButton	=	new	JButton();
JButton	exitButton	=	new	JButton();
JButton	clearButton	=	new	JButton();
public	static	void	main(String	args[])

{

//construct	frame
new	Savings().show();

}

public	Savings()

{

//	code	to	build	the	form
setTitle("Savings	Account");
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	//	position
controls	(establish	event	methods)

GridBagConstraints	gridConstraints	=	new	GridBagConstraints();
depositLabel.setText("Monthly	Deposit");

gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(depositLabel,	gridConstraints);

interestLabel.setText("Yearly	Interest");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(interestLabel,	gridConstraints);

monthsLabel.setText("Number	of	Months");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
getContentPane().add(monthsLabel,	gridConstraints);

finalLabel.setText("Final	Balance");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
getContentPane().add(finalLabel,	gridConstraints);

depositTextField.setText("");
depositTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
getContentPane().add(depositTextField,	gridConstraints);

depositTextField.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

depositTextFieldActionPerformed(e);

}

});

});

interestTextField.setText("");
interestTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
getContentPane().add(interestTextField,	gridConstraints);

interestTextField.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

interestTextFieldActionPerformed(e);

}

});

monthsTextField.setText("");
monthsTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
getContentPane().add(monthsTextField,	gridConstraints);

monthsTextField.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

monthsTextFieldActionPerformed(e);

}

});

finalTextField.setText("");
finalTextField.setFocusable(true);
finalTextField.setColumns(10);

gridConstraints.gridx	=	2;
gridConstraints.gridy	=	3;
getContentPane().add(finalTextField,	gridConstraints);
finalTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

finalTextFieldActionPerformed(e);

}

});

calculateButton.setText("Calculate");
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	4;
getContentPane().add(calculateButton,	gridConstraints);

calculateButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

calculateButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
exitButton.setFocusable(false);
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	5;
getContentPane().add(exitButton,	gridConstraints);

exitButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

{

exitButtonActionPerformed(e);

}

});

clearButton.setText("Clear");
clearButton.setFocusable(false);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	4;
getContentPane().add(clearButton,	gridConstraints);

clearButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

clearButtonActionPerformed(e);

}

});

pack();

}

private	void	depositTextFieldActionPerformed(ActionEvent	e)	{
depositTextField.transferFocus();

}

private	void	interestTextFieldActionPerformed(ActionEvent	e)	{
interestTextField.transferFocus();

}

private	void	monthsTextFieldActionPerformed(ActionEvent	e)	{

monthsTextField.transferFocus();

}

private	void	finalTextFieldActionPerformed(ActionEvent	e)	{
finalTextField.transferFocus();

}

private	void	calculateButtonActionPerformed(ActionEvent	e)	{
double	deposit;
double	interest;
double	months;
double	finalBalance;
double	monthlyInterest;
double	finalCompute,	intChange;
int	intDirection;
//	make	sure	each	is	a	valid	number
//	Determine	which	box	is	blank
//	Compute	that	missing	value	and	put	in	text	box	if

(depositTextField.getText().trim().equals(""))	{
//	deposit	missing
//	read	other	values	from	text	fields
//	make	sure	valid	before	computing
if	(!validateDecimalNumber(monthsTextField)	||

!validateDecimalNumber(interestTextField)	||
!validateDecimalNumber(finalTextField))

{

//	if	one	or	more	fields	not	valid	number,	then	exit	method
return;

}

interest	=
Double.valueOf(interestTextField.getText()).doubleValue();
monthlyInterest	=	interest	/	1200;

months	=
Double.valueOf(monthsTextField.getText()).doubleValue();	finalBalance	=
Double.valueOf(finalTextField.getText()).doubleValue();	if	(interest	==	0)

{

deposit	=	finalBalance	/	months;

}

else

{

deposit	=	finalBalance	((Math.pow((1	+	monthlyInterest),
months)	-	1)	monthlyInterest);	}

depositTextField.setText(new
DecimalFormat("0.00").format(deposit));

}

else	if	(interestTextField.getText().trim().equals(""))	{
//	interest	missing	-	requires	iterative	solution	//	intChange	is	how

much	we	change	interest	each	step	//	intDirection	is	direction	(+	or	-)	we
change	interest	//	read	other	values	from	text	fields

//	make	sure	valid	before	computing
if	(!validateDecimalNumber(monthsTextField)	||

!validateDecimalNumber(depositTextField)	||
!validateDecimalNumber(finalTextField))

{

//	if	one	or	more	fields	not	valid	number,	then	exit	method
return;

}

}

deposit	=
Double.valueOf(depositTextField.getText()).doubleValue();	months	=
Double.valueOf(monthsTextField.getText()).doubleValue();	finalBalance	=
Double.valueOf(finalTextField.getText()).doubleValue();	interest	=	0;

intChange	=	1;
intDirection	=	1;
do

{

interest	+=	intDirection	*	intChange;
monthlyInterest	=	interest	/	1200;
finalCompute	=	deposit	*	(Math.pow((1	+	monthlyInterest),

months)	-	1)	/	monthlyInterest;	if	(intDirection	==	1)

{

if	(finalCompute	>	finalBalance)

{

intDirection	=	-1;
intChange	/=	10;

}

}

else

{

if	(finalCompute	<	finalBalance)

{

intDirection	=	1;

intChange	/=	10;

}

}

}

while	(Math.abs(finalCompute	-	finalBalance)	>=	0.005);
interestTextField.setText(new
DecimalFormat("0.00").format(interest));

}

else	if	(monthsTextField.getText().trim().equals(""))	{
//	months	missing
//	read	other	values	from	text	fields
//	make	sure	valid	before	computing
if	(!validateDecimalNumber(depositTextField)	||

!validateDecimalNumber(interestTextField)	||
!validateDecimalNumber(finalTextField))

{

//	if	one	or	more	fields	not	valid	number,	then	exit	method
return;

}

deposit	=
Double.valueOf(depositTextField.getText()).doubleValue();	interest	=
Double.valueOf(interestTextField.getText()).doubleValue();
monthlyInterest	=	interest	/	1200;

finalBalance	=
Double.valueOf(finalTextField.getText()).doubleValue();	if	(interest	==	0)

{

months	=	finalBalance	/	deposit;

}

else

{

months	=	Math.log(finalBalance	*	monthlyInterest	deposit	+	1)
Math.log(1	+	monthlyInterest);	}

monthsTextField.setText(new
DecimalFormat("0.00").format(months));

}

else	if	(finalTextField.getText().trim().equals(""))	{
//	Final	value	missing
//	compute	final	value	and	put	in	text	field;
//	read	other	values	from	text	fields
//	make	sure	valid	before	computing
if	(!validateDecimalNumber(monthsTextField)	||

!validateDecimalNumber(interestTextField)	||
!validateDecimalNumber(depositTextField))

{

//	if	one	or	more	fields	not	valid	number,	then	exit	method
return;

}

deposit	=
Double.valueOf(depositTextField.getText()).doubleValue();	interest	=
Double.valueOf(interestTextField.getText()).doubleValue();
monthlyInterest	=	interest	/	1200;

months	=
Double.valueOf(monthsTextField.getText()).doubleValue();	 if	 (interest	 ==

0)

{

finalBalance	=	deposit	*	months;

}

else

{

finalBalance	=	deposit	*	(Math.pow((1	+	monthlyInterest),
months)	-	1)	/	monthlyInterest;	}

finalTextField.setText(new
DecimalFormat("0.00").format(finalBalance));

}

}

private	void	exitButtonActionPerformed(ActionEvent	e)	{
System.exit(0);

}

private	void	clearButtonActionPerformed(ActionEvent	e)	{
//	clear	text	fields
depositTextField.setText("");
interestTextField.setText("");
monthsTextField.setText("");
finalTextField.setText("");
depositTextField.requestFocus();

}

private	void	exitForm(WindowEvent	e)

{

{

System.exit(0);

}

public	boolean	validateDecimalNumber(JTextField	tf)	{
//	checks	to	see	if	text	field	contains
//	valid	decimal	number	with	only	digits	and	a	single	decimal	point

String	s	=	tf.getText().trim();
boolean	hasDecimal	=	false;
boolean	valid	=	true;
if	(s.length()	==	0)

{

valid	=	false;

}

else

{

for	(int	i	=	0;	i	<	s.length();	i++)

{

char	c	=	s.charAt(i);
if	(c	>=	'0'	&&	c	<=	'9')

{

continue;

}

else	if	(c	==	'.'	&&	!hasDecimal)

{

hasDecimal	=	true;

}

else

{

//	invalid	character	found
valid	=	false;

}

}

}

if	(valid)

{

tf.setText(s);

}

else

{

tf.setText("");
tf.requestFocus();

}

return	(valid);

}

}

Run	the	application.	Try	successively	providing	three	pieces	of	information	and
seeing	how	the	program	computes	the	missing	value.	Here’s	a	run	I	made	(note

the	new	Clear	button):	

When	 done	 testing,	 save	 your	 application	 (Example2-4	 project	 in	 the
\LearnJava\LJ	Code\Class	2\	project	group).	Now,	relax!.

Class	Review
After	completing	this	class,	you	should	understand:

➢	 Java	 statements	 and	 their	 use	 ➢	 The	 Java	 assignment	 operator,
mathematics	operators,	comparison	and	logic	operators	and	concatenation
operators	➢	The	wide	variety	of	built-in	 Java	methods,	especially	 string
methods,	 the	 random	 number	 generator,	 and	 mathematics	 methods	 ➢
How	 to	 manage	 the	 tab	 transversal	 policy	➢	 The	 if	 structure	 used	 for
branching	 and	 decisions	 ➢	 The	 switch	 decision	 structure	 ➢	 How	 to
validate	input	from	text	field	controls	➢	The	concept	of	control	focus	and
how	to	assign	focus	in	code	➢	How	the	do	structure	is	used	in	conjunction
with	the	while	statements	➢	How	the	for	loop	is	used	for	counting

Practice	Problems	2
Problem	 2-1.	 Random	 Number	 Problem.	 Build	 an	 application	 where	 each
time	a	button	is	clicked,	a	random	number	from	1	to	100	is	displayed.

Problem	 2-2.	 Price	 Problem.	 The	 neighborhood	 children	 built	 a	 lemonade
stand.	 The	 hotter	 it	 is,	 the	 more	 they	 can	 charge.	 Build	 an	 application	 that
produces	the	selling	price,	based	on	temperature:

Temperature Price
<50 Don’t	bother
50	–	60 20	Cents
61	–	70 25	Cents
71	–	80 30	Cents
81	–	85 40	Cents
86	–	90 50	Cents
91	–	95 55	Cents
96	–	100 65	Cents
>100 75	Cents

Problem	 2-3.	 Odd	 Integers	 Problem.	 Build	 an	 application	 that	 adds
consecutive	odd	integers	(starting	with	one)	until	the	sum	exceeds	a	target	value.
Display	the	sum	and	how	many	integers	were	added.

Problem	2-4.	Pennies	Problem.	Here’s	an	old	problem.	Today,	I’ll	give	you	a
penny.	Tomorrow,	I’ll	give	you	two	pennies.	I’ll	keep	doubling	the	amount	I’ll
give	you	for	30	days.	How	much	will	you	have	at	the	end	of	the	month	(better
use	a	long	integer	type	to	keep	track)?

Problem	 2-5.	 Code	 Problem.	 Build	 an	 application	 with	 a	 text	 field	 and	 two
buttons.	 Type	 a	 word	 or	 words	 in	 the	 text	 field.	 Click	 one	 of	 the	 buttons.
Subtract	 one	 from	 the	Unicode	 value	 for	 each	 character	 in	 the	 typed	word(s),
then	redisplay	it.	This	is	a	simple	encoding	technique.	When	you	click	the	other
button,	reverse	the	process	to	decode	the	word.

Exercise	2-1
Computing	a	Mean	and	Standard

Deviation
Develop	 an	 application	 that	 allows	 the	 user	 to	 input	 a	 sequence	 of	 numbers.
When	done	inputting	the	numbers,	the	program	should	compute	the	mean	of	that
sequence	and	the	standard	deviation.	If	N	numbers	are	input,	with	the	ith	number

represented	by	xi,	the	formula	for	the	mean	(x)	is:	

and	to	compute	the	standard	deviation	(s),	take	the	square	root	of	this	equation:	

The	Greek	sigmas	in	the	above	equations	simply	indicate	that	you	add	up	all	the
corresponding	 elements	 next	 to	 the	 sigma.	 If	 the	 standard	 deviation	 equation
scares	 you,	 just	 write	 code	 to	 find	 the	 average	 value	 –	 you	 should	 have	 no
trouble	with	that	one.

Exercise	2-2
Flash	Card	Addition	Problems

Write	 an	 application	 that	 generates	 random	 addition	 problems.	 Provide	 some
kind	of	feedback	and	scoring	system	as	the	problems	are	answered.

3

Java	Swing	Controls

Review	and	Preview
We	have	now	learned	and	practiced	the	three	steps	in	developing	a	Java
GUI	 application	 (frame,	 controls,	 code)	 and	 have	 reviewed	 the	 Java
language.	 In	 this	class,	we	begin	 to	 look	(in	detail)	at	controls	available
from	the	Java	Swing	library.

We	will	revisit	some	controls	we	already	know	and	learn	a	lot	of	new	controls.
Examples	of	how	to	use	each	control	will	be	presented.

Function	Overloading
As	we	delve	further	into	Java,	we	will	begin	to	use	many	of	its	built-in	methods
for	dialog	boxes,	drawing	graphics,	and	other	tasks.	Before	using	these	methods
(we	will	use	the	method	to	display	an	confirm	dialog	soon),	you	need	be	aware
of	an	object-oriented	concept	known	as	overloading.

Overloading	lets	a	method	vary	its	behavior	based	on	its	input	arguments.	Java
will	 have	multiple	 methods	 with	 the	 same	 name,	 but	 with	 different	 argument
lists.	The	different	argument	lists	may	have	different	numbers	of	arguments	and
different	types	of	arguments.

What	are	 the	 implications	of	overloading?	What	 this	means	 to	us	 is	 that	when
using	a	Java	method,	there	will	be	several	different	ways	to	use	that	method.	In
these	notes,	we	will	 show	you	a	 few	ways,	but	not	all.	You	are	encouraged	 to
investigate	all	ways	to	use	a	method.

Overloading	 is	 a	 powerful	 feature	 of	 Java.	 You	 will	 quickly	 become
accustomed	to	using	multiple	definitions	of	methods.

Confirm	Dialog	(JOptionPane)
An	 often	 used	 dialog	 box	 in	 Java	GUI	 applications	 is	 a	 confirm	 dialog	 (also
known	as	 a	message	box).	This	dialog	 lets	you	display	messages	 to	your	user
and	 receive	 feedback	 for	 further	 information.	 It	 can	 be	 used	 to	 display	 error
messages,	 describe	 potential	 problems	 or	 just	 to	 show	 the	 result	 of	 some
computation.	 A	 confirm	 dialog	 is	 implemented	 with	 the	 Java	 Swing
JOptionPane	 class.	The	confirm	dialog	 is	versatile,	with	 the	ability	 to	display
any	message,	an	optional	icon,	and	a	selected	set	of	buttons.	The	user	responds
by	clicking	a	button	in	the	confirm	dialog	box.

You've	seen	confirm	dialog	boxes	if	you've	ever	used	a	Windows	(or	other	OS)
application.	Think	of	all	the	examples	you've	seen.	For	example,	confirm	dialogs
are	used	to	ask	you	if	you	wish	to	save	a	file	before	exiting	and	to	warn	you	if	a
disk	drive	 is	not	 ready.	For	example,	 if	while	writing	 these	notes	 in	Microsoft
Word,	 I	 attempt	 to	 exit,	 I	 see	 this	 confirm	 dialog:	

In	this	confirm	dialog	box,	the	different	parts	that	you	control	have	been	labeled.
You	will	see	how	you	can	format	a	confirm	dialog	box	any	way	you	desire.

To	 use	 the	 confirm	 dialog	 method,	 you	 decide	 what	 the	message	 should	 be,
what	title	you	desire,	and	what	icon	and	buttons	are	appropriate.	To	display	the
confirm	dialog	box	in	code,	you	use	the	showConfirmDialog	method.

The	showConfirmDialog	method	is	overloaded	with	several	ways	to	implement
the	 dialog	 box.	 Some	 of	 the	 more	 common	 ways	 are:
JOptionPane.showConfirmDialog(null,	message);
JOptionPane.showConfirmDialog(null,	message,	title,	buttons);

JOptionPane.showConfirmDialog(null,	message,	title,	buttons,	icon);	In
these	implementations,	if	icon	is	omitted,	a	question	mark	is	displayed.	If
buttons	is	omitted,	Yes,	No,	Cancel	buttons	are	displayed.	And,	if	title	is
omitted,	a	title	of	“Select	an	Option”	is	displayed.	The	first	argument	(null)
must	be	there	–	it	indicates	the	confirm	dialog	box	is	associated	with	the
current	frame.

As	mentioned,	you	decide	what	you	want	 for	 the	 confirm	dialog	message	 and
title	information	(string	data	types).	Be	aware	there	is	no	limit	to	how	long	the
message	can	be.	If	you	have	a	long	message,	use	the	new	line	character	(\n)	to
break	the	message	into	multiple	lines.

The	 other	 arguments	 are	 defined	 by	 Java	 JOptionPane	 predefined	 constants.
The	buttons	constants	are	defined	by:

Member Description
DEFAULT_OPTION Displays	an	OK	button
OK_CANCEL_OPTION Displays	OK	and	Cancel	buttons
YES_NO_CANCEL_OPTIONDisplays	Yes,	No	and	Cancel	buttons
YES_NO_OPTION Displays	Yes	and	No	buttons

The	 syntax	 for	 specifying	 a	 choice	 of	 buttons	 is	 the	 usual	 dot-notation:
JOptionPane.Member

So,	 to	 display	 an	 OK	 and	 Cancel	 button,	 the	 constant	 is:
JOptionPane.OK_CANCEL_OPTION

The	displayed	icon	is	established	by	another	set	of	constants:

Member Description
PLAIN_MESSAGE Display	no	icon
INFORMATION_MESSAGEDisplays	an	information	icon
ERROR_MESSAGE Displays	an	error	icon
WARNING_MESSAGE Displays	an	exclamation	point	icon
QUESTION_MESSAGE Displays	a	question	mark	icon

To	specify	an	icon,	the	syntax	is:

JOptionPane.Member

To	display	an	error	icon,	use:

JOptionPane.ERROR_MESSAGE

When	 you	 invoke	 the	 showOptionDialog	 method,	 the	 method	 returns	 a
JOptionPane	constant	(an	int	type)	indicating	the	user	response.	The	available
members	are:

Member Description
CLOSED_OPTION Window	closed	without	pressing	button
OK_OPTION The	OK	button	was	selected
YES_OPTION The	Yes	button	was	selected
NO_OPTION The	No	button	was	selected
CANCEL_OPTION The	Cancel	button	was	selected

Confirm	 Dialog	 Example:	 This	 little	 code	 snippet	 (the	 second	 line	 is	 very
long):	int	response;
response	=	JOptionPane.showConfirmDialog(null,	"This	is	an	example	of
an	confirm	dialog	box.",	"Example",	JOptionPane.YES_NO_OPTION,
JOptionPane.INFORMATION_MESSAGE);
if	(response	==	JOptionPane.YES_OPTION)

{

//	Pressed	Yes

}

else	if	(response	==	JOptionPane.NO_OPTION)

{

//	Pressed	No

}

else

{

//	Closed	window	without	pressing	button

}

displays	this	message	box:

Of	 course,	 you	 would	 need	 to	 add	 code	 for	 the	 different	 tasks	 depending	 on
whether	Yes	or	No	is	clicked	by	the	user	(or	the	window	is	simply	closed).

Another	Confirm	Dialog	 Example:	 Many	 times,	 you	 just	 want	 to	 display	 a
quick	message	to	the	user	with	no	need	for	feedback	(just	an	OK	button).	This
code	 does	 the	 job:	 JOptionPane.showConfirmDialog(null,	 "Quick	 message
for	 you.",	 "Hey	 you!!",	 JOptionPane.DEFAULT_OPTION,
JOptionPane.PLAIN_MESSAGE);	The	resulting	message	box:

Notice	 there	 is	no	 icon	and	 the	OK	button	 is	 shown.	Also,	notice	 in	 the	code,
there	is	no	need	to	read	the	returned	value	–	we	know	what	it	is!	You	will	find	a
lot	of	uses	for	this	simple	form	of	the	message	box	(with	perhaps	some	kind	of
icon)	as	you	progress	in	Java.

We	 almost	 ready	 to	 start	 our	 study	 of	 the	 Java	 Swing	 controls,	 looking	 at
important	properties,	methods	and	events	for	many	controls.	But,	before	starting,
let’s	 look	at	 two	concepts	 that	 help	us	 “dress	up”	our	GUI	applications	–	 font
and	color	objects.

Font	Object
In	all	of	the	GUI	applications	we	have	built	so	far,	we	have	used	the	default	font
associated	with	 the	 Swing	 controls	 (buttons,	 labels	 and	 text	 fields).	 Using	 the
default	font	is	limiting	–	and	boring.	Let’s	see	how	to	modify	the	font	used	by	a
control	to	display	information.

To	 change	 the	 default	 font	 assigned	 to	 a	 control,	we	 introduce	 the	 idea	 of	 the
Font	 object.	 The	 font	 object	 is	 the	 structure	 used	 by	 Java	 to	 define	 all
characteristics	 of	 a	 particular	 font	 (name,	 style,	 size).	 To	 change	 the	 font
associated	 with	 a	 control	 named	 myControl,	 use	 the	 setFont	 method:
myControl.setFont(new	Font(fontName,	fontStyle,	 fontSize));	 In	 this	 line	of
code,	fontName	is	a	string	variable	defining	the	name	of	the	font	and	fontSize	is
an	integer	value	defining	the	font	size	in	points.

The	fontStyle	argument	is	a	Font	constant	defining	the	style	of	the	font.	It	has
three	possible	values:

Value Description
PLAIN Regular	text
BOLD Bold	text
ITALIC Italic	text

The	basic	(no	effects)	font	 is	defined	by	Font.PLAIN.	To	add	any	effects,	use
the	corresponding	constant.	If	the	font	has	more	than	one	effect,	combine	them
using	 a	 plus	 sign	 (+).	 For	 example,	 if	 you	 want	 an	 italicized,	 bold	 font,	 the
fontStyle	 argument	 in	 the	 Font	 constructor	 would	 be:	 Font.ITALIC	 +
Font.BOLD

Let’s	look	at	a	couple	of	examples.	To	change	a	button	control	(myButton)	font
to	 Arial,	 Bold,	 Size	 24,	 use:	 myButton.setFont(new	 Font(“Arial”,
Font.BOLD,	 24));	 or,	 to	 change	 the	 font	 in	 a	 text	 field	 (myTextField)	 to
Courier	 New,	 Italic,	 Bold,	 Size	 12,	 use:	 myTextField.setFont(new
Font(“Courier	New”,	Font.ITALIC	+	FontStyle.BOLD,	 12));	You	 can	 also
define	a	variable	to	be	of	type	Font.	Declare	the	variable	according	to	the	usual
scope	considerations:	Font	myFont;

Then,	 assign	 a	 font	 to	 that	 variable	 for	 use	 in	 other	 controls:	myFont	 =	 new
Font(“Courier	New”,	Font.PLAIN,	12);
thisControl.setFont(myFont);
thatControl.setFont(myFont);

The	above	can	be	shortened	by	defining	the	font	at	the	same	time	it	is	declared:
Font	myFont	=	new	Font(“Courier	New”,	Font.PLAIN,	12);

Color	Object
Colors	 play	 a	 big	 part	 in	 Java	GUI	 applications.	 The	 background	 color	 of	 the
frame	and	other	controls	can	be	set	to	a	particular	color.	The	text	color	in	these
controls	is	set	by	the	foreground	color.	Later,	when	we	study	graphics	methods,
we	will	 see	 that	 lines,	 rectangles,	 ovals	 can	 all	 be	 drawn	 and	 filled	 in	 various
colors.	These	colors	must	be	defined	in	Java	code.	How	do	we	do	this?	There	are
two	approaches	we	will	take:	(1)	use	built-in	colors	and	(2)	create	a	color.

The	 colors	 built	 into	 Java	 are	 specified	 by	 the	Color	 object.	 Such	 a	 color	 is
specified	using:	Color.colorName

where	 colorName	 is	 a	 reserved	 color	 name.	 There	 are	 thirteen	 standard	 color

names:	

If	 for	 some	 reason,	 the	 selections	 built	 into	 the	Color	 object	 do	 not	 fit	 your
needs,	 you	 can	 create	 your	 own	 color	 using	 one	 of	 over	 16	 million	 different
combinations.	 The	 code	 to	 create	 an	 RGB	 color	 named	myColor	 is:	 Color
myColor	=	new	Color(redValue,	 greenValue,	 blueValue);	where	 redValue,
greenValue,	 and	 blueValue	 are	 integer	 measures	 of	 intensity	 of	 the
corresponding	primary	colors.	These	measures	can	range	from	0	(least	intensity)
to	 255	 (greatest	 intensity).	For	 example,	new	Color(255,	 255,	 0)	will	 produce
yellow.

It	 is	easy	 to	specify	colors	using	 the	Color	object.	Any	time	you	need	a	color,
just	use	one	of	the	built-in	colors	or	create	your	own	using	different	red,	green,
and	blue	values.	These	techniques	can	be	used	anywhere	Java	requires	a	color.
For	 example,	 to	 change	 a	 frame’s	 (myFrame)	 background	 color,	 we	 use:
myFrame.getContentPane().setBackground(Color.colorName);	We	color	the

content	pane	since	this	is	the	pane	controls	are	placed	on.	So,	you	get	a	yellow
background	 with:
myFrame.getContentPane().setBackground(Color.YELLOW);	 Or	 knowing
some	red,	green	and	blue	combination:

myFrame.getContentPane().setBackground(new	 Color(redValue,
greenValue,	blueValue));	You	can	also	change	the	background	and	foreground
colors	 of	 controls.	To	 get	white	writing	 on	 a	 blue	 button	 control	 (myButton),
you	would	use:	myButton.setBackground(Color.BLUE);
myButton.setForeground(Color.WHITE);

Some	 controls	 are	 transparent	 by	 default,	 meaning	 any	 background	 color
assigned	will	not	appear.	To	change	this,	we	need	to	set	such	a	control’s	opaque
property	 to	 true.	 For	 example,	 to	 set	 the	 background	 color	 of	 a	 label	 ,	 named
myLabel,	to	white,	you	need	two	lines	of	code:	myLabel.setOpaque(true);
myLabel.setBackground(Color.WHITE);

We’ll	start	using	colors	in	our	examples	to	show	you	further	uses	of	color.

You	can	also	define	variables	that	take	on	color	values.	Say	we	want	to	define	a
variable	named	myRed	to	represent	the	color	red.	First,	declare	your	variable	to
be	of	type	Color:	Color	myRed;

Then,	define	your	color	in	code	using:

myRed	=	Color.RED;

From	this	point	on,	you	can	use	myRed	anywhere	the	red	color	is	desired.	You
can	declare	and	define	colors	in	the	same	line	of	code,	if	you	like.	For	the	above
example,	you	would	write:	Color	myRed	=	Color.RED;

Now,	let’s	start	looking	at	the	Swing	controls.	First,	we	study	the	most	important
‘control,’	the	frame.

JFrame	Object

The	frame	 is	 the	object	where	 the	user	 interface	 is	built.	Every	application	we
build	 extends	 the	 JFrame	 object,	 meaning	 our	 applications	 acquire	 all	 the
characteristics	 of	 a	 frame.	 It	 is	 central	 to	 the	 development	 of	 Java	 GUI
applications.	The	frame	is	a	container	object,	since	it	‘holds’	other	controls.	One
feature	 of	 a	 container	 object	 is	 that	 if	 its	 visible	 property	 is	 set	 to	 false,	 all
controls	will	become	invisible.

Here,	 we	 present	 some	 of	 the	 more	 widely	 used	 Properties,	Methods	 and
Events	for	the	frame.	Recall	properties	describe	the	appearance	and	value	of	a
control,	methods	are	actions	you	can	impose	on	controls	and	events	occur	when
something	is	done	to	the	control	(usually	by	a	user).	This	is	not	an	exhaustive	list
–	consult	other	Java	resources	for	such	a	list.	You	may	not	recognize	all	of	these
terms	now.	They	will	be	clearer	as	you	progress	in	the	course.	The	same	is	true
for	the	remaining	controls	presented	in	this	chapter.

Frame	Properties:

title Frame	window	title.
font Font	name,	style,	size.
background Frame	background	color.
foreground Color	of	text	or	graphics.
x Distance	from	left	of	screen	to	left	edge	of	frame,	in	pixels.
y Distance	from	top	of	screen	to	top	edge	of	frame,	in	pixels.
width Width	of	frame	in	pixels.
height Height	of	frame	in	pixels.
resizable Boolean	value	indicating	if	frame	is	fixed	size	or	resizable.
visible If	false,	hides	the	frame	(and	all	its	controls).

Frame	Methods:

setTitle Sets	the	frame	window	title.
setFont Sets	font	name,	style,	size.
setBackground Sets	the	frame	background	color.
setForeground Sets	color	of	text	or	graphics.
getX Gets	distance	from	left	of	screen	to	left	edge	of	frame,	in

pixels.
getY Gets	distance	from	top	of	screen	to	top	edge	of	frame,	in

pixels.
getWidth Gets	width	of	frame	in	pixels.
getHeight Gets	height	of	frame	in	pixels.
setBounds Used	to	position	frame	on	screen.
setResizable Sets	boolean	value	indicating	if	frame	is	fixed	size	or

resizable.
setVisible Sets	boolean	value	to	indicate	if	frame	is	visible	or	not.

Frame	Event:

windowClosing Occurs	(WindowEvent)	when	the	form	is	closing.	Added
with	WindowListener	using	WindowAdapter.

The	 listener	 for	 the	windowClosing	 event	 is	 added	 in	 the	 frame	 constructor
method	using:	addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

And,	the	usual	exitForm	method	is:	private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

Typical	use	of	frame	object	(for	each	control	in	this,	and	following	chapters,	we
will	provide	information	for	how	that	control	or	object	is	typically	used):

➢	Create	frame	object,	employing	the	usual	frame	constructor	method.
➢	Set	the	title	property.
➢	Center	the	frame	in	the	middle	of	the	screen	(we’ll	talk	about	how	to	do
this	next).

➢	Set	resizable	property	to	false.	You	can	have	resizable	forms	in	Java	GUI
applications,	but	we	will	not	use	resizable	forms	in	this	course.

➢	Add	listener	for	windowClosing	event.
➢	 Attach	 GridBagLayout	 manager.	 Place	 controls	 in	 the	 grid	 layout
manager	and	execute	a	pack	method.

A	 general	 framework	 of	 Java	 code	 to	 perform	 these	 steps	 for	 a	 frame	 named
MyFrame	(file	must	be	saved	in	a	package	folder	myframe	as	MyFrame.java)
is:	/	*
*	MyFrame.java

*/

package	myframe;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	MyFrame	extends	JFrame

{

public	static	void	main(String	args[])

{

//construct	frame
new	MyFrame().show();

}

public	MyFrame()

{

//	code	to	build	the	form
setTitle("My	Frame");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());
//	code	to	position	controls	follows

.

.

.
pack();

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Frame	Layout	and	Centering
Have	 you	 noticed	 how,	 in	 every	 application	we’ve	 built	 so	 far,	 that	 the	 frame
always	starts	out	in	the	upper	left	corner	of	your	screen?	It	would	be	nice	if	the
frame	were	centered	 in	 the	screen	when	the	application	begins.	Here,	we	show
you	how	to	do	that	and	more.	First,	let’s	see	how	the	frame	size	is	established	by
the	GridBagLayout	manager.

We	use	the	GridBagLayout	manager	to	set	up	our	GUI	applications	(you	can,
of	 course,	 choose	 to	 use	 any	 layout	 manager	 you	 want).	 Recall,	 with	 this
manager,	 a	 grid	 is	 used	 to	 place	 controls:	

The	GridBagConstraints	object	 is	used	 for	control	placement	and	positioning
within	the	various	grid	elements.	Controls	are	placed	in	this	grid	by	referring	to	a
particular	column	(gridx	location)	and	row	(gridy	location).	We	have	seen	that
the	grid	(and	frame)	automatically	grows	as	controls	are	added.	Column	widths
are	set	by	the	“widest”	control	in	a	particular	column.	And,	row	heights	are	set
by	the	“tallest”	control	in	a	particular	row.

There	are	other	variables	associated	with	GridBagConstraints	that	can	be	used
to	 adjust	 control	 size	 and,	 hence,	 associated	 column,	 row,	 and	 frame	 size.	 A
control	 can	 occupy	 more	 than	 one	 column	 or	 row.	 The	 number	 of	 columns
spanned	 by	 a	 control	 is	 set	 with	 the	 gridwidth	 variable;	 the	 number	 of	 rows
spanned	 is	set	with	 the	gridheight	variable.	By	default,	a	control	 fills	one	row
and	 one	 column.	 If	 we	 have	 a	 GridBagConstraints	 object	 named
gridConstraints,	a	control	will	occupy	two	rows	and	three	columns,	starting	in
the	 second	 column	 (gridx	 =	 1)	 and	 fourth	 row	 (gridy	 =	 3),	 with	 this	 code:
gridConstraints.gridx	=	1;

gridConstraints.gridy	=	3;
gridConstraints.gridheight	=	2;
gridConstraints.gridwidth	=	3;

In	our	example	grid,	this	control	would	be	placed	like	this:	

A	particular	control	may	completely	fill	 its	 region	or	may	not.	 If	 the	control	 is
smaller	than	its	allocated	region,	its	dimensions	may	be	adjusted	to	fill	the	region
–	use	the	fill	variable.	There	are	four	values:

GridBagConstraints.NONE Control	is	not	resized	(default
value)

GridBagConstraints.HORIZONTALControl	width	fills	display	area.
GridBagConstraints.VERTICAL Control	height	fills	display

area.
GridBagConstraints.BOTH Control	fills	entire	display	area.

With	our	example	gridConstraints	object,	a	control	will	grow	to	fill	the
region	width	using:	gridConstraints.fill	=
GridBagConstraints.HORIZONTAL;	This	control	would	look	like	this	in

its	grid	region:	

Smaller	 changes	 in	 control	 size	 can	 be	 made	 using	 the	 ipadx	 and	 ipady
variables.	These	determine	how	much	a	control	size	is	to	be	increased	beyond	its
minimum	size	(in	each	direction).	To	add	five	pixels	to	the	width	and	height	of	a

control	using	our	gridConstraints	example:	gridConstraints.ipadx	=	5;
gridConstraints.ipady	=	5;

If	 you	 choose	 not	 to	 expand	 a	 control	 to	 fill	 its	 area,	 its	 position	 within	 its
allocated	area	is	set	with	the	anchor	variable.	There	are	nine	possible	values:

GridBagConstraints.NORTH Control	is	centered	at	top
GridBagConstraints.NORTHEAST Control	is	in	upper	right	corner
GridBagConstraints.EAST Control	is	at	right,	centered

vertically
GridBagConstraints.SOUTHEAST Control	is	in	lower	right	corner
GridBagConstraints.SOUTH Control	is	centered	at	bottom
GridBagConstraints.SOUTHWEST Control	is	in	lower	left	corner
GridBagConstraints.WEST Control	is	at	left,	centered

vertically
GridBagConstraints.NORTHWESTControl	is	in	upper	left	corner
GridBagConstraints.CENTER Control	is	centered	horizontally

and	vertically

To	center	a	control	(in	both	directions)	in	its	display	area,	use:
gridConstraints.anchor	=	GridBagConstraints.CENTER;	This	control

would	look	like	this	in	its	grid	region:	

If	 a	 control	 completely	 fills	 its	 allocated	 display	 area,	 a	 border	 region	 (free
space)	can	be	established	around	the	control	using	the	Insets	object.	Four	values
are	used	to	define	the	top,	left,	bottom	and	right	side	margins	from	the	side	of	the
display	area.	The	default	is	Insets(0,	0,	0,	0).	With	our	example,	if	we	want	10
pixels	 of	 space	 at	 the	 top	 and	 bottom,	 20	 on	 the	 left	 and	 30	 on	 the	 right,	we
would	 use:	gridConstraints.insets	=	new	 Insets(10,	 20,	 10,	 30);	 This	 control
would	 look	 something	 like	 this	 in	 its	 grid	 region:	

Once	the	gridConstraints	are	established	for	a	control,	it	is	added	to	the	frame’s
content	pane	using	the	add	method.	If	the	control	is	myControl,	the	code	syntax
is:	getContentPane().add(myControl,	gridConstraints);

I	think	you	are	starting	to	see	the	flexibility	available	with	the	GridBagLayout
manager.	 Remember	 to	 establish	 all	 grid	 constraint	 values	 before	 adding	 a
control	to	the	grid.	We	will	start	using	some	of	these	new	concepts	in	building
our	example	applications.	You,	too,	are	encouraged	to	learn	these	ideas	and	use
them	to	“beautify”	your	GUI	interfaces.

Building	an	interface	is	an	“art,”	not	a	science.	You	will	see	the	process	involves
lots	 of	 trial	 and	 error	 and	 adjustments.	 And	 sometimes,	 you	 get	 results	 you
would	 never	 expect	 –	 components	 may	 not	 appear	 as	 you	 wish	 or	 may	 not
appear	 at	 all!	 The	 bottom	 line	 is	 –	 once	 all	 adjustments	 are	made,	 your	 final
frame	size	is	established	and	we	can	finally	learn	how	to	do	the	task	we	started
out	with	–	centering	the	frame	in	the	screen.

First,	to	place	a	frame	(width	by	height	in	size)	at	a	horizontal	position	left	and
vertical	position	top,	we	use	the	setBounds	method:	setBounds(left,	top,	width,
height);

All	the	dimensions	are	int	types	and	measured	in	pixels.	To	center	a	frame	in
the	computer	screen,	we	need	to	know	find	left	and	top.

To	find	the	centering	position,	we	need	two	things:	the	dimensions	of	the	frame
(use	getWidth	and	getHeight	methods)	and	 the	dimensions	of	 the	screen.	The
dimensions	of	the	screen	are	held	in	the	frame’s	‘toolkit’.	A	Dimension	object
holds	 the	 information	 we	 need.	 To	 retrieve	 this	 object,	 use:	 Dimension
screenSize	=
Toolkit.getDefaultToolkit().getScreenSize();

With	this,	screenSize.width	holds	the	screen	width	and	screenSize.height
holds	the	screen	height.	So,	the	code	to	center	the	frame	using	setBounds	is:

setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5
(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	This	code
needs	to	be	after	the	pack	method	in	the	code	establishing	the	frame,	so	that
proper	frame	size	is	used.	We’ll	use	this	centering	code	in	every	application
built	in	the	remainder	of	this	course.	Any	initializations	for	a	project	will	be
placed	after	this	line	in	the	frame	constructor.

JButton	Control

We've	seen	the	button	control	before.	It	is	probably	the	most	widely	used	Java
GUI	control.	It	is	used	to	begin,	interrupt,	or	end	a	particular	process.	Here,	we
provide	 some	 of	 the	more	widely	 used	 properties,	methods	 and	 events	 for	 the
button	control.

Button	Properties:

text String	displayed	on	button.
font Font	name,	style,	size.
background Button	background	color.
foreground Color	of	text.
icon Picture	displayed	on	button
enabled If	false,	button	is	visible,	but	cannot	accept	clicks.
visible If	false,	hides	the	button.

Button	Methods:

setText Sets	the	button	text.
setFont Sets	font	name,	style,	size.
setBackground Sets	the	button	background	color.
setForeground Sets	color	of	text.
setEnabled Sets	boolean	value	to	indicate	if	button	is	clickable	or

not.
setVisible Sets	boolean	value	to	indicate	if	button	is	visible	or

not.
doClick Generates	a	click	event	for	a	button.

Button	Event:

actionPerformed Event	(ActionEvent)	triggered	when	button	is

selected	either	by	clicking	on	it	or	by	pressing	the
space	bar.	Added	with	ActionListener.

To	 add	 a	 listener	 for	 the	 actionPerformed	 event	 for	 a	 button	 control	 named
myButton,	use:	myButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

myButtonActionPerformed(e);

}

});

And,	the	corresponding	event	code	would	be	placed	in	a
myButtonActionPerformed	method:	private	void
myButtonActionPerformed(ActionEvent	e)	{

[method	code]

}

Typical	 use	 of	 button	 control:	 Declare	 and	 create	 button,	 assigning	 an
identifiable	name.	For	myButton,	 the	statement	 is:	JButton	myButton	=	new
JButton();

➢	Set	text	property.
➢	Place	control	within	layout	manager.
➢	Add	listener	for	and	write	code	in	the	button’s	actionPerformed	event.
➢	 You	 may	 also	 want	 to	 change	 the	 font,	 background	 and	 foreground
properties.

JLabel	Control

A	label	control	is	used	to	display	text	that	a	user	can't	edit	directly.	The	text	of	a
label	control	can	be	changed	in	response	to	events.

Label	Properties:

text String	displayed	in	label.
font Font	name,	style,	size.
background Label	background	color.
foreground Color	of	text.
opaque Determines	whether	the	control	is	opaque	or	not.
horizontalAlignmentHorizontal	position	of	text
verticalAlignment Vertical	position	of	text
border Type	of	border	used	(if	any)

Label	Methods:

setText Sets	the	label	text.
setFont Sets	font	name,	style,	size.
setBackground Sets	the	label	background	color.
setForeground Sets	color	of	text.
setOpaque If	true,	background	colors	can	be	applied.
setHorizontalAlignment Sets	horizontal	position	of	text
setVerticalAlignment Sets	vertical	position	of	text
setBorder Used	to	establish	border	(if	any)	around	label

(see	BorderFactory	class)

Label	Event:

mouseClicked Event	(MouseEvent)	triggered	when	label	is

clicked	by	mouse	(useful	for	selecting	among
label	choices).	Added	with	MouseListener	using
MouseAdapter.

The	 code	 to	 add	 the	 mouseClicked	 event	 for	 a	 label	 named	 myLabel	 is:
myLabel.addMouseListener(new	MouseAdapter()

{

public	void	mouseClicked(MouseEvent	e)

{

myLabelMouseClicked(e);

}

});

And,	the	myLabelMouseClicked	method	is:	private	void
myLabelMouseClicked(MouseEvent	e)

{

[Method	code]

}

There	are	three	possible	values	for	the	label	text	horizontalAlignment:

SwingConstants.LEFT Text	left	justified
SwingConstants.CENTER Text	center	justified
SwingConstants.RIGHT Text	right	justified

and	there	are	three	values	for	verticalAlignment:

SwingConstants.TOP Text	is	‘top’	justified
SwingConstants.CENTER Text	is	center	justified	vertically
SwingConstants.BOTTOM Text	is	‘bottom’	justified

So,	you	can	see	there	are	nine	possible	alignments.

A	border	is	sometimes	added	to	a	label	control	“mimic”	the	beveled	appearance
of	 the	 text	 field.	 To	 add	 such	 a	 border	 to	 a	 label	 named	 myLabel,	 use:
myLabel.setBorder(BorderFactory.createLoweredBevelBorder());	 There
are	many	 other	 possible	 borders.	 Consult	 the	 usual	 references	 for	 help	 on	 the
BorderFactory.

Typical	use	of	label	control	for	static,	unchanging	display:

➢	Declare	 and	 create	 label,	 assigning	 an	 identifiable	name.	 For	myLabel,
the	statement	is:	JLabel	myLabel	=	new	JLabel();

➢	Set	the	text	property	when	frame	is	created.
➢	Place	control	within	layout	manager.
➢	 You	 may	 also	 want	 to	 change	 the	 font,	 background	 and	 foreground
properties.

Typical	use	of	label	control	for	changing	display:

➢	Declare	 and	 create	 label,	 assigning	 an	 identifiable	name.	 For	myLabel,
the	statement	is:	JLabel	myLabel	=	new	JLabel();

➢	Initialize	text	to	desired	string.
➢	Set	text	property	(String	type)	in	code	where	needed.
➢	Place	control	within	layout	manager.
➢	 You	 may	 also	 want	 to	 change	 the	 font,	 background	 and	 foreground
properties.

JTextField	Control

A	 text	 field	 control	 is	 used	 to	 display	 a	 single	 line	 of	 information	 initialized
when	the	frame	is	created,	entered	by	a	user	at	run-time,	or	assigned	within	code.
The	displayed	text	may	be	edited.

Text	Field	Properties:

text String	displayed	in	text	field.
font Font	name,	style,	size.
background Text	field	background	color.
foreground Color	of	text.
columns Displayed	width	of	text	field.
horizontalAlignmentHorizontal	position	of	text
editable Indicates	whether	text	in	the	text	field	is	read-

only.

Text	Field	Methods:

setText Sets	the	text	field	text.
getText Retrieves	the	text	field	text.
setFont Sets	font	name,	style,	size.
setBackground Sets	the	text	field	background	color.
setForeground Sets	color	of	text.
setColumns Sets	the	number	of	columns.
setHorizontalAlignment Sets	the	horizontal	alignment.
setEditable If	set	to	false,	text	field	cannot	be	edited.

Text	Field	Event:

actionPerformed Occurs	(ActionEvent)	when	the	user	presses
<Enter>.	Added	with	ActionListener.

To	 add	 a	 listener	 for	 the	 actionPerformed	 event	 for	 a	 button	 control	 named
myTextField,	use:	myTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

myTextFieldActionPerformed(e);

}

});

And,	the	corresponding	event	code	would	be	placed	in	a
myTextFieldActionPerformed	method:	private	void
myTextFieldActionPerformed(ActionEvent	e)	{

[method	code]

}

There	are	three	possible	values	for	horizontalAlignment:

SwingConstants.LEFT Text	left	justified
SwingConstants.CENTER Text	center	justified
SwingConstants.RIGHT Text	right	justified

Typical	use	of	text	field	control	as	display	control:

➢	 Declare	 and	 create	 text	 field,	 assigning	 an	 identifiable	name.	 Assign	 a
columns	 value.	 For	 myTextField,	 the	 statement	 is:	 JTextField
myTextField	=	new	JTextField();

➢	Initialize	text	property	to	desired	string.
➢	Set	editable	property	to	false.
➢	Set	text	property	in	code	where	needed.
➢	Place	control	within	layout	manager.
➢	 You	 may	 also	 want	 to	 change	 the	 font,	 background	 and	 foreground
properties.

Typical	use	of	text	field	control	as	input	device:

➢	 Declare	 and	 create	 text	 field,	 assigning	 an	 identifiable	name.	 Assign	 a
columns	 value.	 For	 myTextField,	 the	 statement	 is:	 JTextField
myTextField	=	new	JTextField();

➢	Initialize	text	property	to	desired	string.
➢	Place	control	within	layout	manager.
➢	Add	listener	for	actionPerformed	event.
➢	 In	code,	give	focus	 (use	requestFocus	method)	to	control	when	needed.
Read	text	property	when	actionPerformed	event	occurs.

➢	 You	 may	 also	 want	 to	 change	 the	 font,	 background	 and	 foreground
properties.

Use	of	 the	 text	 field	control	 (and	any	control	where	 the	user	 types	 something)
should	be	minimized	 if	possible.	Whenever	you	give	a	user	 the	option	 to	 type
something,	 it	 makes	 your	 job	 as	 a	 programmer	 more	 difficult.	 You	 need	 to
validate	 the	 information	 they	 type	 to	 make	 sure	 it	 will	 work	 with	 your	 code
(recall	the	Savings	Account	example	in	the	last	class,	where	we	needed	to	make
sure	 valid	 decimal	 numbers	 were	 being	 entered).	 There	 are	 many	 controls	 in
Java	 that	 are	 ‘point	 and	 click,’	 that	 is,	 the	 user	 can	make	 a	 choice	 simply	 by
clicking	 with	 the	 mouse.	 We’ll	 look	 at	 such	 controls	 through	 the	 course.
Whenever	these	‘point	and	click’	controls	can	be	used	to	replace	a	text	field,	do
it!

JTextArea	Control

The	text	field	control	(JTextField)	can	only	display	a	single	line	of	information.
A	related	control	which	allows	multiple	lines	of	text	(in	a	single	font)	is	the	text
area	control.	Like	the	text	field,	this	control	can	be	used	to	display	information
initialized	when	the	frame	is	created,	entered	by	a	user	at	run-time,	or	assigned
within	code.	The	displayed	text	may	be	edited.

Text	Area	Properties:

text String	displayed	in	text	area.
font Font	name,	style,	size.
background Text	area	background	color.
foreground Color	of	text.
columns Displayed	width	of	text	area.
rows Displayed	height	of	text	area.
lineCount Number	of	lines	of	text.
lineWrap Boolean	variable	indicating	if	text	should	be

“word	wrapped”	–	default	is	false.
wrapStyleWord If	true	(and	lineWrap	is	true),	words	are	wrapped

at	word	boundaries.
editable Indicates	whether	text	in	the	text	area	is	read-

only.

Text	Area	Methods:

setText Sets	the	text	area	text.
getText Retrieves	the	text	area	text.
setFont Sets	font	name,	style,	size.

setBackground Sets	the	text	area	background	color.
setForeground Sets	color	of	text.
setColumns Sets	the	number	of	columns.
setRows Sets	the	number	of	rows.
setLineWrap Turns	line	wrap	on	and	off.
setWrapStyleWord Turns	wrap	style	on	and	off.
setEditable If	set	to	false,	text	area	cannot	be	edited.

Typical	use	of	text	area	control	as	display	control:

➢	 Declare	 and	 create	 text	 area,	 assigning	 an	 identifiable	 name.	 Assign
columns	and	rows	values.	For	myTextArea,	the	statement	is:	JTextArea
myTextArea	=	new	JTextArea();

➢	Set	lineWrap	and	wrapStyleWord	to	true.
➢	Initialize	text	property	to	desired	string.
➢	Set	editable	property	to	false.
➢	Set	text	property	in	code	where	needed.
➢	Place	control	within	layout	manager.
➢	 You	 may	 also	 want	 to	 change	 the	 font,	 background	 and	 foreground
properties.

Typical	use	of	text	area	control	as	input	device:

➢	 Declare	 and	 create	 text	 area,	 assigning	 an	 identifiable	 name.	 Assign
columns	and	rows	values.	For	myTextArea,	the	statement	is:	JTextArea
myTextArea	=	new	JTextArea();

➢	Set	lineWrap	and	wrapStyleWord	to	true.
➢	Initialize	text	property	to	desired	string.
➢	Place	control	within	layout	manager.
➢	 In	code,	give	focus	 (use	requestFocus	method)	to	control	when	needed.
Read	text	property	when	actionPerformed	event	occurs.

➢	 You	 may	 also	 want	 to	 change	 the	 font,	 background	 and	 foreground
properties.

When	you	begin	to	use	the	text	area	control,	you	will	notice	there	is	no	scrolling

available.	 Fortunately,	 it	 is	 easy	 to	 embed	 a	 JTextArea	 control	 into	 another
Swing	component,	 the	JScrollPane	 (discussed	later	 in	 this	class)	 to	 implement
both	horizontal	and	vertical	scroll	bars.

Example	3-1
Password	Validation

Start	 a	 new	 project	 in	NetBeans.	 Name	 the	 project	Password.	 Delete	 default
code	in	Java	file	named	Password.	The	idea	of	this	project	is	to	ask	the	user	to
input	a	password.	If	correct,	a	confirm	dialog	box	appears	to	validate	the	user.	If
incorrect,	 other	 options	 are	 provided.	 This	 example	 will	 use	 another	 control,
JPasswordField	 to	 input	 the	 password.	 This	 control	 is	 nearly	 identical	 to	 the
JTextField	 control	 with	 one	 major	 difference.	 When	 a	 user	 types	 in	 the
password	 field	 an	 echoChar	 is	 seen,	 masking	 the	 typed	 entry.	 The	 default
echoChar	 is	 an	 asterisk	 (*).	 The	 finished	 frame	 will	 be:	

1.	We	place	two	buttons,	a	label	control,	and	a	password	field	on	the	frame.	The

GridBagLayout	arrangement	is:	

Properties	set	in	code:

Password	Frame:
title Password	Validation
resizable false
background YELLOW

passwordLabel:
text Please	Enter	Your	Password:
opaque true
background WHITE
border Lower	beveled
font Arial,	BOLD,	14
setHorizontalAlignment CENTER
insets (5,	20,	5,	20)
ipadx 30
ipady 20
gridx 0
gridy 0

inputPasswordField:
text [blank]
columns 15
font Arial,	PLAIN,	14
gridx 0
gridy 1

validButton:
text Validate
gridx 0
gridy 2

exitButton:
text Exit
gridx 0
gridy 3

2.	We	will	 build	 the	 project	 in	 the	 usual	 three	 stages	 –	 frame,	 controls,	 code.
Type	this	basic	framework	code	to	build	and	center	the	frame:	/	*

*	Password.java

*/

*/

package	password;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	Password	extends	JFrame

{

public	static	void	main(String	args[])

{

//construct	frame
new	Password().show();

}

public	Password()

{

//	code	to	build	the	form
setTitle("Password	Validation");
getContentPane().setBackground(Color.YELLOW);
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());
pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	*	(screenSize.width	-

getWidth())),	(int)	(0.5	*	(screenSize.height	-
getHeight())),	getWidth(),	getHeight());

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	the	code	to	make	sure	the	frame	(at	least,	what	there	is	of	it	at	this	point)
appears	and	is	centered	in	the	screen	(it	is	also	fixed	size	–	the	‘expand’	button

in	the	title	area	is	grayed	out):	

Note	(in	the	code)	we	set	the	background	color	of	the	content	pane	to	yellow.
This	can	be	barely	seen.	It	will	be	more	apparent	when	the	controls	are	added.

3.	Now,	we	can	add	the	controls	and	empty	event	methods.	Declare	and	create
the	 four	 controls	 as	 class	 level	 objects:	 JLabel	 passwordLabel	 =	 new
JLabel();

JPasswordField	inputPasswordField	=	new	JPasswordField();	JButton
validButton	=	new	JButton();
JButton	exitButton	=	new	JButton();

Position	and	add	each	control.	Add	methods	for	controls	we	need	events	for
(inputPasswordField,	validButton,	exitButton).	Note	a	new
gridConstraints	is	created	for	each	control	–	this	makes	sure	no	values	from
previous	controls	“leak	over”	to	the	next	control	(this	code	immediately
precedes	the	pack()	statement):	//	position	controls
GridBagConstraints	gridConstraints;
passwordLabel.setText("Please	Enter	Your	Password:");
passwordLabel.setOpaque(true);
passwordLabel.setBackground(Color.white);
passwordLabel.setFont(new	Font("Arial",	Font.BOLD,	14));
passwordLabel.setBorder(BorderFactory.createLoweredBevelBorder());
passwordLabel.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.ipadx	=	30;
gridConstraints.ipady	=	20;
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(5,	20,	5,	20);
getContentPane().add(passwordLabel,	gridConstraints);
inputPasswordField.setText("");
inputPasswordField.setFont(new	Font("Arial",	Font.PLAIN,	14));
inputPasswordField.setColumns(15);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(inputPasswordField,	gridConstraints);
inputPasswordField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

inputPasswordFieldActionPerformed(e);

}

});

validButton.setText("Validate");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
getContentPane().add(validButton,	gridConstraints);
validButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

validButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
getContentPane().add(exitButton,	gridConstraints);
exitButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

exitButtonActionPerformed(e);

}

});

Lastly,	add	the	three	empty	methods:

private	void	inputPasswordFieldActionPerformed(ActionEvent	e)	{

}

private	void	validButtonActionPerformed(ActionEvent	e)	{

}

private	void	exitButtonActionPerformed(ActionEvent	e)	{

}

Run	the	project	to	see	the	finished	control	arrangement:	

4.	 Now,	 we	 write	 code	 for	 the	 events.	 First,	 the
inputPasswordFieldActionPerformed	 method:	 private	 void
inputPasswordFieldActionPerformed(ActionEvent	e)	{

validButton.doClick();

}

When	<Enter>	is	pressed,	the	Validate	button	is	clicked.

5.	Now,	 the	 code	 for	 the	validButtonActionPerformed	method:	private	 void
validButtonActionPerformed(ActionEvent	e)	{

final	String	THEPASSWORD	=	"LetMeIn";
//This	procedure	checks	the	input	password
int	response;
if	(inputPasswordField.getText().equals(THEPASSWORD))	{

//	If	correct,	display	message	box
JOptionPane.showConfirmDialog(null,	"You've	passed	security!",

"Access	Granted",	JOptionPane.DEFAULT_OPTION,
JOptionPane.WARNING_MESSAGE);	}

else

{

//	If	incorrect,	give	option	to	try	again
response	=	JOptionPane.showConfirmDialog(null,	"Incorrect

password	-	Try	Again?",	"Access	Denied",
JOptionPane.YES_NO_OPTION,	JOptionPane.ERROR_MESSAGE);	if
(response	==	JOptionPane.YES_OPTION)

{

inputPasswordField.setText("");
inputPasswordField.requestFocus();

}

else

{

exitButton.doClick();

}

}

}

This	code	checks	the	input	password	to	see	if	it	matches	the	stored	value	(set
as	a	constant	THEPASSWORD	=	“LetMeIn”-	change	if	if	you	want).	If
correct,	it	prints	an	acceptance	message.	If	incorrect,	it	displays	a	confirm
dialog	box	to	that	effect	and	asks	the	user	if	they	want	to	try	again.	If	Yes,
another	try	is	granted.	If	No,	the	program	is	ended.

6.	Use	the	following	code	in	the	exitButtonActionPerformed	method:	private
void	exitButtonActionPerformed(ActionEvent	e)	{

System.exit(0);

}

•	For	reference,	here	is	the	complete	Password.java	code	listing	(code	added	to
basic	frame	code	is	shaded):	/	*

*	Password.java

*/

package	password;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	Password	extends	JFrame

{

JLabel	passwordLabel	=	new	JLabel();
JPasswordField	inputPasswordField	=	new	JPasswordField();	JButton

validButton	=	new	JButton();
JButton	exitButton	=	new	JButton();

public	static	void	main(String	args[])

{

//construct	frame
new	Password().show();

}

public	Password()

{

//	code	to	build	the	form

setTitle("Password	Validation");
setResizable(false);
getContentPane().setBackground(Color.yellow);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());
//	position	controls
GridBagConstraints	gridConstraints;
passwordLabel.setText("Please	Enter	Your	Password:");

passwordLabel.setOpaque(true);
passwordLabel.setBackground(Color.white);
passwordLabel.setFont(new	Font("Arial",	Font.BOLD,	14));

passwordLabel.setBorder(BorderFactory.createLoweredBevelBorde	r());
passwordLabel.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();

gridConstraints.ipadx	=	30;
gridConstraints.ipady	=	20;
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(5,	20,	5,	20);

getContentPane().add(passwordLabel,	gridConstraints);
inputPasswordField.setText("");

inputPasswordField.setFont(new	Font("Arial",	Font.PLAIN,	14));
inputPasswordField.setColumns(15);

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(inputPasswordField,	gridConstraints);

inputPasswordField.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

inputPasswordFieldActionPerformed(e);

}

});

validButton.setText("Validate");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
getContentPane().add(validButton,	gridConstraints);

validButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

validButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
getContentPane().add(exitButton,	gridConstraints);

exitButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

exitButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}
private	void	inputPasswordFieldActionPerformed(ActionEvent	e)	{

validButton.doClick();

}

private	void	validButtonActionPerformed(ActionEvent	e)	{
final	String	THEPASSWORD	=	"LetMeIn";

//This	procedure	checks	the	input	password
int	response;
if	(inputPasswordField.getText().equals(THEPASSWORD))	{

//	If	correct,	display	message	box
JOptionPane.showConfirmDialog(null,	"You've	passed

security!",	"Access	Granted",	JOptionPane.DEFAULT_OPTION,
JOptionPane.WARNING_MESSAGE);	}

else

{

//	If	incorrect,	give	option	to	try	again
response	=	JOptionPane.showConfirmDialog(null,	"Incorrect

password	-	Try	Again?",	"Access	Denied",

JOptionPane.YES_NO_OPTION,	JOptionPane.ERROR_MESSAGE);	if
(response	==	JOptionPane.YES_OPTION)

{

inputPasswordField.setText("");
inputPasswordField.requestFocus();

}

else

{

exitButton.doClick();

}

}

}

private	void	exitButtonActionPerformed(ActionEvent	e)	{
System.exit(0);

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

•	 Run	 the	 program.	 You	 may	 receive	 a	 warning	 that	 “Password.java	 uses	 or
overrides	 a	 deprecated	API.”	 If	 so,	 that’s	 okay,	 just	 ignore	 it	 (we’ll	 tell	 you
why	we	 get	 this	message	 in	 a	 bit).	Run	 the	 program.	Here’s	 a	 run	 I	made:	

Notice	the	echo	characters	(*)	when	I	typed	a	password.

Try	both	options:	input	correct	password	(note	it	is	case	sensitive)	–	you

should	see	this:	

and	input	incorrect	password	to	see:

Save	your	project	(saved	as	Example3-1	project	in	the	\LearnJava\LJ
Code\Class	3\	project	group).

If	you	have	time,	define	a	constant,	tryMax	=	3,	and	modify	the	code	to	allow
the	user	to	have	just	tryMax	attempts	to	get	the	correct	password.	After	the	final
try,	inform	the	user	you	are	logging	him/her	off.	You’ll	also	need	a	variable	that
counts	the	number	of	tries	(make	it	a	class	level	variable).

Remember	 that	“deprecated	error?”	The	reason	we	got	 this	 is	because	we	used
the	 getText	 method	 to	 retrieve	 the	 typed	 password.	 This	 method	 is	 not	 the
preferred	 way	 to	 do	 this	 retrieval,	 hence	 the	 deprecated	 (not	 recommended)
message.	The	password	field	control	offers	a	preferred	method	for	retrieving	the

password	 -	 the	 getPassword	 method.	 This	 returns	 a	 char	 array	 with	 the
password.	 From	 this	 array,	 you	 can	 reconstruct	 the	 typed	 password.	 The
advantage	 to	 this	 method	 is	 you	 can	 destroy	 the	 password	 (character	 by
character)	once	 it	 is	entered.	You	can’t	change	a	string	variable	–	we	say	such
variables	are	immutable.	Try	modifying	the	code	to	use	getPassword	instead	of
getText.

JCheckBox	Control

As	mentioned	earlier,	Java	features	many	‘point	and	click’	controls	 that	 let	 the
user	 make	 a	 choice	 simply	 by	 clicking	 with	 the	 mouse.	 These	 controls	 are
attractive,	familiar	and	minimize	the	possibility	of	errors	in	your	application.	We
will	see	many	such	controls.	The	first,	the	check	box	control,	is	examined	here.

The	check	box	control	provides	a	way	to	make	choices	from	a	list	of	potential
candidates.	Some,	all,	or	none	of	the	choices	in	a	group	may	be	selected.	Check
boxes	are	used	in	almost	all	GUI	applications.	Examples	of	their	use	would	be	to
turn	options	on	and	off	in	an	application	or	to	select	from	a	‘shopping’	list.

Check	Box	Properties:

text String	displayed	next	to	check	box.
font Font	name,	style,	size.
background Check	box	background	color.
foreground Color	of	text.
selected Indicates	if	box	is	selected	or	not.

Check	Box	Methods:

setText Sets	the	check	box	text.
setFont Sets	font	name,	style,	size.
setBackground Sets	the	check	box	background	color.
setForeground Sets	color	of	text.
setOpaque If	true,	background	colors	can	be	applied.
setSelected Sets	whether	box	is	selected	or	not.
isSelected If	true,	check	box	is	selected.
doClick Generates	a	click	event	for	a	check	box.

Check	Box	Event:

actionPerformed Occurs	(ActionEvent)	when	check	box	is	clicked.
Added	with	ActionListener.

To	add	a	listener	for	the	actionPerformed	event	for	a	check	box	control	named
myCheckBox,	use:	myCheckBox.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

myCheckBoxActionPerformed(e);

}

});

And,	the	corresponding	event	code	would	be	placed	in	a
myCheckBoxActionPerformed	method:	private	void
myCheckBoxActionPerformed(ActionEvent	e)	{

[method	code]

}

When	a	check	box	is	clicked,	if	there	is	no	check	mark	there	(isSelected	=	false),
Java	will	place	a	check	there	and	change	the	selected	property	to	true.	If	clicked
and	 a	 check	 mark	 is	 there	 (isSelected	 =	 true),	 then	 the	 check	 mark	 will
disappear	and	the	selected	property	will	be	changed	to	false.

Typical	use	of	check	box	 control:	Declare	 and	create	 check	box,	 assigning	an
identifiable	name.	For	myCheckBox,	the	statement	is:

JCheckBox	myCheckBox	=	new	JCheckBox();

➢	Set	the	text	property.	Initialize	the	selected	property	to	desired	value.
➢	Place	control	within	layout	manager.
➢	Add	listener	for	and	monitor	actionPerformed	event	 to	determine	when
check	box	is	clicked.	At	any	time,	read	selected	property	(use	isSelected
method)	to	determine	check	box	state.

➢	 You	 may	 also	 want	 to	 change	 the	 font,	 background	 and	 foreground

properties.

JRadioButton	Control

Radio	 button	 controls	 provide	 the	 capability	 to	make	 a	 “mutually	 exclusive”
choice	among	a	group	of	potential	candidate	choices.	This	simply	means,	radio
buttons	work	as	a	group,	only	one	of	which	can	be	selected.	Radio	buttons	are
seen	in	many	GUI	applications.	They	are	called	radio	buttons	because	they	work
like	 a	 tuner	 on	 a	 car	 radio	 –	 you	 can	 only	 listen	 to	 one	 station	 at	 a	 time!
Examples	 for	 radio	 button	 groups	 would	 be	 twelve	 buttons	 for	 selection	 of	 a
month	in	a	year,	a	group	of	buttons	to	let	you	select	a	color	or	buttons	to	select
the	difficulty	in	a	game.

Radio	Button	Properties:

text String	displayed	next	to	radio	button.
font Font	name,	style,	size.
background Radio	button	background	color.
foreground Color	of	text.
selected Indicates	if	button	is	selected	or	not.

Radio	Button	Methods:

setText Sets	the	radio	button	text.
setFont Sets	font	name,	style,	size.
setBackground Sets	the	button	background	color.
setForeground Sets	color	of	text.
setOpaque If	true,	background	colors	can	be	applied.
setSelected Sets	whether	button	is	selected	or	not.
isSelected If	true,	radio	button	is	selected.
doClick Generates	a	click	event	for	a	radio	button.

Radio	Button	Event:

actionPerformed Occurs	(ActionEvent)	when	radio	button	is
clicked.	Added	with	ActionListener.

To	 add	 a	 listener	 for	 the	 actionPerformed	 event	 for	 a	 radio	 button	 control
named	 myRadioButton,	 use:	 myRadioButton.addActionListener(new
ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

myRadioButtonActionPerformed(e);

}

});

And,	the	corresponding	event	code	would	be	placed	in	a
myRadioButtonActionPerformed	method:	private	void
myRadioButtonActionPerformed(ActionEvent	e)	{

[method	code]

}

Notice	 radio	buttons	 always	work	 as	 a	group,	 guaranteeing	 that	 no	more	 than
one	 button	 from	 that	 group	 can	 be	 selected	 at	 a	 time.	 How	 do	 you	 define	 a
‘group’	 of	 radio	 buttons?	 Groups	 of	 radio	 buttons	 are	 defined	 using	 the
ButtonGroup	 class.	 A	 group	 is	 created	 and	 buttons	 are	 added	 to	 that	 group
using	 the	ButtonGroup	add	method.	As	an	example,	 say	we	have	 three	 radio
buttons:	 firstRadioButton,	 secondRadioButton,	 thirdRadioButton,	 and	 we
want	 them	 to	 be	 part	 of	 myGroup.	 The	 code	 that	 accomplishes	 this	 is:
ButtonGroup	myGroup	=	new	ButtonGroup();
myGroup.add(firstRadioButton);
myGroup.add(secondRadioButton);
myGroup.add(thirdRadioButton);

When	a	radio	button	is	clicked,	it’s	selected	property	is	automatically	set	to
true,	filling	the	circle	next	to	the	selected	button.	And,	all	other	radio	buttons
in	that	button’s	group	will	have	a	selected	property	of	false.

Typical	use	of	radio	button	controls:

➢	Declare	and	create	a	group	of	radio	buttons.	For	myGroup,	the	statement
is:	ButtonGroup	myGroup	=	new	ButtonGroup();

➢	For	each	button	in	the	group,	declare	and	create	the	button,	assigning	an
identifiable	name	(give	each	button	a	similar	name	to	identify	them	with
the	 group).	 For	 myRadioButton,	 the	 statement	 is:	 JRadioButton
myRadioButton	=	new	JRadioButton();

➢	Set	the	text	property.	You	may	also	want	to	change	the	font,	background
and	foreground	properties.

➢	Initialize	the	selected	property	on	one	button	to	true.
➢	Add	control	to	layout	manager.
➢	Add	 listener	 for	 and	monitor	actionPerformed	 event	 of	 each	 button	 to
determine	when	button	 is	 clicked.	The	 ‘last	 clicked’	button	 in	 the	group
will	always	have	a	selected	property	of	true.

JPanel	Control

We've	seen	that	radio	buttons	(and,	many	times,	check	boxes)	work	as	a	group.
Often	in	GUI	applications,	there	are	logical	groupings	of	controls.	For	example,
you	may	have	a	scroll	device	setting	the	value	of	a	displayed	number.	The	panel
control	 provides	 a	 convenient	way	 of	 grouping	 related	 controls	 in	 a	 Java	GUI
application.

Panel	Properties:

enabled Indicates	whether	the	panel	is	enabled.	If	false,	all
controls	in	the	panel	are	disabled.

visible If	false,	hides	the	panel	(and	all	its	controls).

Panel	Methods:

setBorder Establishes	the	panel’s	border	(if	any).
setOpaque If	true,	background	colors	can	be	applied.
setEnabled Sets	whether	panel	is	enabled.
setVisible Sets	whether	panel	is	visible.

The	panel	 control	 is	 a	container	 control	 like	 the	 frame.	Hence,	 the	process	of
placing	 controls	 in	 a	 panel	 control	 is	 identical	 to	 the	 process	 used	 to	 place
controls	in	a	frame.	Each	panel	control	has	its	own	layout	manager	(we	will	still
use	 the	GridBagLayout).	So,	controls	are	placed	on	 the	panel	using	 its	 layout
manager.	Panels	are	placed	on	the	frame	using	the	frame’s	layout	manager.	Let’s
look	 at	 a	 simple	 example	 of	 placing	 one	 control	 (myControl)	 on	 a	 panel
(myPanel)	 that	 is	 in	myFrame.	We’ll	assume	myControl	and	myFrame	have
been	declared	and	created.	So,	we	need	to	declare	and	create	the	panel:	JPanel
myPanel	=	new	JPanel();

Then,	assign	a	layout	manager	(GridBagLayout	here):
myPanel.setLayout(new	GridBagLayout());

Place	the	control	on	the	panel	(after	setting	desired	gridConstraints):
myPanel.add(myControl,	gridConstraints);

Add	any	other	controls	to	panel,	then	add	panel	to	frame	using	the	frame’s	set
of	constraints:	getContentPane().add(myPanel,	gridConstraints);

A	titled	border	is	often	added	to	a	panel	control.	The	code	to	add	such	a	border
with	 the	 title	 “My	 Panel”	 to	 our	 sample	 panel	 is:
myPanel.setBorder(BorderFactory.createTitledBorder("My	 Panel"));	 The
titled	panel	will	look	something	like	this:

Other	(overloaded)	versions	of	the	createTitledBorder	method	allow	you	to
set	the	title	font	and	color.

Typical	use	of	panel	control:

➢	 Declare	 and	 create	 the	 panel,	 assigning	 an	 identifiable	 name.	 For
myPanel,	the	code	is:	JPanel	myPanel	=	new	JPanel();

➢	Add	a	border	if	desired.
➢	Place	desired	controls	in	panel.	Monitor	events	of	controls	in	panel	using
usual	techniques.

➢	Add	panel	to	frame	layout	manager.

Handling	Multiple	Events	in	a	Single
Event	Method
In	the	few	applications	we’ve	built	in	this	course,	each	event	method	handles	a
single	event	for	a	single	control.	Now	that	we	are	grouping	controls	like	check
boxes	 and	 radio	 buttons,	 it	 would	 be	 nice	 if	 a	 single	 procedure	 could	 handle
multiple	events.	For	example,	 if	we	have	4	radio	buttons	in	a	group,	when	one
button	 is	 clicked,	 it	 would	 be	 preferable	 to	 have	 a	 single	 method	 where	 we
decide	which	 button	was	 clicked,	 as	 opposed	 to	 having	 to	monitor	 4	 separate
event	methods.	Let’s	see	how	to	do	this.

We	 use	 the	 radio	 button	 example	 to	 illustrate.	 Assume	 we	 have	 four	 radio
buttons	 (radioButton1,	 radioButton2,	 radioButton3,	 radioButton4).
Assigning	each	button	 to	 the	same	event	method	 is	 simple.	 In	 the	code	adding
event	 listeners	 for	 each	 button,	 just	make	 sure	 each	 button	 refers	 to	 the	 same
actionPerformed	 event.	 The	 code	 for	 the	 first	 example	 button	 would	 be:
radioButton1.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

radioButtonActionPerformed(e);

}

});

Use	similar	code	for	the	other	three	buttons,	making	sure	each	refers	to	the
method	named	radioButtonActionPerformed.	Hence,	if	any	of	the	four	radio
buttons	are	clicked,	this	method	will	be	invoked.

If	we	have	a	single	method	responding	to	events	from	multiple	controls,	how	do
we	determine	which	particular	event	from	which	particular	control	 invoked	the
method?	 In	 our	 example	with	 a	 single	method	 handling	 the	actionPerformed
event	for	4	radio	buttons,	how	do	we	know	which	of	the	4	buttons	was	clicked	to
enter	 the	method?	The	e	argument	of	 the	event	procedure	provides	 the	answer.

Examining	 the	 string	 value	 returned	 by	 the	 e.getActionCommand()	 method
tells	us	the	text	property	of	the	selected	button.

For	 our	 radio	 button	 example,	 we	 could	 use	 code	 like	 this	 in	 the
radioButtonActionPerformed	 method:	 private	 void
radioButtonActionPerformed(ActionEvent	e)	{

String	choice	=	e.getActionCommand();

}

In	this	code,	we	define	a	string	variable	(choice)	to	receive	the	value	returned
by	e.getActionCommand().	This	variable	will	have	the	text	shown	on	the
selected	button.	With	this	information,	we	now	know	which	particular	button
was	clicked	and	we	can	process	any	code	associated	with	clicking	on	this
radio	button.

Control	Arrays
When	using	controls	that	work	in	groups,	like	check	boxes	and	radio	buttons,	it
is	sometimes	desirable	to	have	some	way	to	quickly	process	every	control	in	that
group.	A	concept	of	use	in	this	case	is	that	of	a	control	array.

We	have	seen	variable	arrays	–	variables	 referred	by	name	and	 index	 to	allow
quick	processing	of	large	amounts	of	data.	The	same	idea	applies	here.	We	can
define	an	array	of	controls,	using	the	same	statements	used	to	declare	a	variable
array.	For	example,	to	declare	an	array	of	20	buttons,	use:	JButton[]	myButton
=	new	JButton[20];

Recall	indices	will	start	at	0	and	go	to	19.	This	array	declaration	is	placed
according	to	desired	scope,	just	like	variables.	For	class	level	scope,	it	is
outside	all	other	methods.	For	method	level	scope,	place	it	in	the	respective
method.	Once	the	array	has	been	declared,	each	element	of	the	‘control	array’
can	be	referred	to	by	its	name	(myButton)	and	index.	An	example	will	clarify
the	advantage	of	such	an	approach.

Say	 we	 have	 10	 check	 boxes	 (chkBox0,	 chkBox1,	 chkBox2,	 chkBox3,
chkBox4,	chkBox5,	chkBox6,	chkBox7,	chkBox8,	chkBox9)	 on	 a	 frame	 and
we	need	to	examine	each	check	box’s	selected	property.	If	that	property	is	true,
we	 need	 to	 process	 30	 lines	 of	 additional	 code.	 For	 one	 check	 box,	 that	 code
would	be:	if	(chkBox0.isSelected())

{

[do	these	30	lines	of	code]

}

We	would	need	to	repeat	this	9	more	times	(for	the	nine	remaining	check
boxes),	yielding	a	total	of	32	x	10	=	320	lines	of	code.	And,	if	we	needed	to
add	a	few	lines	to	the	code	being	processed,	we	would	need	to	add	these	lines
in	10	different	places	–	a	real	maintenance	headache.	Let’s	try	using	an	array
of	check	boxes	to	minimize	this	headache.

Here’s	 the	 solution.	 Define	 an	 array	 of	 10	 check	 box	 controls	 and	 assign	 the
array	 values	 to	 existing	 controls:	 JCheckBox[]	 myCheck	 =	 new
JCheckBox[10];
myCheck[0]	=	chkBox0;
myCheck[1]	=	chkBox1;
myCheck[2]	=	chkBox2;
myCheck[3]	=	chkBox3;
myCheck[4]	=	chkBox4;
myCheck[5]	=	chkBox5;
myCheck[6]	=	chkBox6;
myCheck[7]	=	chkBox7;
myCheck[8]	=	chkBox8;
myCheck[9]	=	chkBox9;

Again,	make	sure	the	declaration	statement	is	properly	located	for	proper
scope.	Having	made	these	assignments,	the	code	for	examining	the	selected
property	of	each	has	been	reduced	to	these	few	lines:	for	(int	i	=	0;	i	<	10;
i++)

{

if	(myCheck[I].isSelected())

{

[do	these	30	lines	of	code]

}

}

The	320	lines	of	code	have	been	reduced	to	about	45	(including	all	the
declarations)	and	code	maintenance	is	now	much	easier.

Obviously,	 it	 is	 not	 necessary	 to	 use	 control	 arrays,	 but	 they	 do	 have	 their
advantages.	 You	 will	 start	 to	 see	 such	 arrays	 in	 the	 course	 examples	 and
problems,	so	you	should	understand	their	use.

Example	3-2
Pizza	Order

Start	a	new	project	in	NetBeans.	Name	the	project	Pizza.	Delete	default	code	in
Java	file	named	Pizza.	We'll	build	a	frame	where	a	pizza	order	can	be	entered	by
simply	clicking	on	check	boxes	and	radio	buttons.	The	finished	frame	will	look

like	this:	

1.	Begin	by	adding	three	panel	controls,	two	radio	buttons	and	two	buttons	on	a
frame.	 The	 GridBagLayout	 arrangement	 for	 these	 controls	 is:	

Set	the	properties	of	the	frame	and	each	control.

Pizza	Frame:
title Pizza	Order
resizable false

sizePanel:
title Size
gridx 0

gridy 0

crustPanel:
title Crust	Type
gridx 0
gridy 1

toppingsPanel:
title Toppings
gridx 1
gridy 0
gridwidth 2

eatInRadioButton:
text Eat	In
group whereButtonGroup
selected true
gridx 1
gridy 1

takeOutRadioButton:
text Take	Out
group whereButtonGroup
gridx 2
gridy 1

buildButton:
text Build	Pizza
gridx 1
gridy 2

exitButton:
text Exit
gridx 2
gridy 1

The	layout	of	the	sizePanel:	

smallRadioButton	:
text Small
group sizeButtonGroup
selected true
gridx 0
gridy 0
anchor WEST

mediumRadioButton:
text Medium
group sizeButtonGroup
gridx 0
gridy 1
anchor WEST

largeRadioButton:
text Large
group sizeButtonGroup
gridx 0
gridy 2
anchor WEST

The	layout	of	the	crustPanel:	

thinRadioButton	:
text Thin	Crust

group crustButtonGroup
selected true
gridx 0
gridy 0
anchor WEST

thickRadioButton:
text Thick	Crust
group crustButtonGroup
gridx 0
gridy 1
anchor WEST

The	layout	of	the	toppingsPanel:	

cheeseCheckBox	:
text Extra	Cheese
gridx 0
gridy 0
anchor WEST

mushroomsCheckBox:
text Mushrooms
gridx 0
gridy 1
anchor WEST

olivesCheckBox:
text Black	Olives
gridx 0

gridy 2
anchor WEST

onionsCheckBox:
text Onions
gridx 1
gridy 0
anchor WEST

peppersCheckBox:
text Green	Peppers
gridx 1
gridy 1
anchor WEST

tomatoesCheckBox:
text Tomatoes
gridx 1
gridy 2
anchor WEST

2.	Build	the	basic	framework	first:	/	*

*	Pizza.java

*/

package	pizza;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	Pizza	extends	javax.swing.JFrame

{

public	static	void	main(String	args[])

{

//	construct	frame
new	Pizza().show();

}

public	Pizza()

{

setTitle("Pizza	Order");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());
pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	*	(screenSize.width	-

getWidth())),	(int)	(0.5	*	(screenSize.height	-
getHeight())),	getWidth(),	getHeight());

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	to	make	sure	the	frame	appears.

3.	Let’s	build	each	panel	separately.	First,	we’ll	build	the	Size	panel.	Add	these
as	class	level	declarations:	JPanel	sizePanel	=	new	JPanel();

ButtonGroup	sizeButtonGroup	=	new	ButtonGroup();
JRadioButton	smallRadioButton	=	new	JRadioButton();	JRadioButton
mediumRadioButton	=	new	JRadioButton();	JRadioButton
largeRadioButton	=	new	JRadioButton();	Position	and	add	each	control,
adding	needed	events	(goes	immediately	before	the	pack()	statement:	//
position	controls
GridBagConstraints	gridConstraints;
sizePanel.setLayout(new	GridBagLayout());
sizePanel.setBorder(BorderFactory.createTitledBorder("Size	"));
smallRadioButton.setText("Small");
smallRadioButton.setSelected(true);
sizeButtonGroup.add(smallRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.WEST;
sizePanel.add(smallRadioButton,	gridConstraints);
smallRadioButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

sizeRadioButtonActionPerformed(e);

}

});

mediumRadioButton.setText("Medium");
sizeButtonGroup.add(mediumRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.anchor	=	GridBagConstraints.WEST;
sizePanel.add(mediumRadioButton,	gridConstraints);
mediumRadioButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

sizeRadioButtonActionPerformed(e);

}

});

largeRadioButton.setText("Large");
largeRadioButton.setSelected(true);
sizeButtonGroup.add(largeRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.anchor	=	GridBagConstraints.WEST;
sizePanel.add(largeRadioButton,	gridConstraints);
largeRadioButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

sizeRadioButtonActionPerformed(e);

}

});

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(sizePanel,	gridConstraints);

Add	an	empty	sizeRadioButtonActionPerformed	method:	private	void
sizeRadioButtonActionPerformed(ActionEvent	e)	{

}

Save,	run	the	project.	You	should	see	the	first	panel:	

4.	 Now,	 we’ll	 build	 the	 Crust	 panel.	 Add	 these	 as	 class	 level	 declarations:
JPanel	crustPanel	=	new	JPanel();

ButtonGroup	crustButtonGroup	=	new	ButtonGroup();
JRadioButton	thinRadioButton	=	new	JRadioButton();	JRadioButton
thickRadioButton	=	new	JRadioButton();	Position	and	add	each	control,
adding	needed	events:	crustPanel.setLayout(new	GridBagLayout());
crustPanel.setBorder(BorderFactory.createTitledBorder("Cru	st"));
thinRadioButton.setText("Thin	Crust");
thinRadioButton.setSelected(true);
crustButtonGroup.add(thinRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;

gridConstraints.anchor	=	GridBagConstraints.WEST;
crustPanel.add(thinRadioButton,	gridConstraints);
thinRadioButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

crustRadioButtonActionPerformed(e);

}

});

thickRadioButton.setText("Thick	Crust");
crustButtonGroup.add(thickRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.anchor	=	GridBagConstraints.WEST;
crustPanel.add(thickRadioButton,	gridConstraints);
thickRadioButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

crustRadioButtonActionPerformed(e);

}

});

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(crustPanel,	gridConstraints);	Add	an	empty
crustRadioButtonActionPerformed	method:	private	void
crustRadioButtonActionPerformed(ActionEvent	e)	{

}

Save,	run	the	project.	You	should	see	the	added	panel:	

5.	Next,	we’ll	build	 the	Toppings	panel.	Add	 these	as	class	 level	declarations:
JPanel	toppingsPanel	=	new	JPanel();

JCheckBox	cheeseCheckBox	=	new	JCheckBox();
JCheckBox	mushroomsCheckBox	=	new	JCheckBox();
JCheckBox	olivesCheckBox	=	new	JCheckBox();
JCheckBox	onionsCheckBox	=	new	JCheckBox();
JCheckBox	peppersCheckBox	=	new	JCheckBox();
JCheckBox	tomatoesCheckBox	=	new	JCheckBox();

Position	and	add	each	control	(there	are	no	methods	for	the	check	boxes):
toppingsPanel.setLayout(new	GridBagLayout());
toppingsPanel.setBorder(BorderFactory.createTitledBorder("
Toppings"));	cheeseCheckBox.setText("Extra	Cheese");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.WEST;
toppingsPanel.add(cheeseCheckBox,	gridConstraints);
mushroomsCheckBox.setText("Mushrooms");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;

gridConstraints.anchor	=	GridBagConstraints.WEST;
toppingsPanel.add(mushroomsCheckBox,	gridConstraints);
olivesCheckBox.setText("Olives");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.anchor	=	GridBagConstraints.WEST;
toppingsPanel.add(olivesCheckBox,	gridConstraints);
onionsCheckBox.setText("Onions");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.WEST;
toppingsPanel.add(onionsCheckBox,	gridConstraints);
peppersCheckBox.setText("Green	Peppers");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
gridConstraints.anchor	=	GridBagConstraints.WEST;
toppingsPanel.add(peppersCheckBox,	gridConstraints);
tomatoesCheckBox.setText("Tomatoes");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	2;
gridConstraints.anchor	=	GridBagConstraints.WEST;
toppingsPanel.add(tomatoesCheckBox,	gridConstraints);	gridConstraints
=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.gridwidth	=	2;
getContentPane().add(toppingsPanel,	gridConstraints);	Save,	run	the
project.	You	should	see	the	newly	added	panel:	

6.	Finally,	we	add	 the	 four	controls	not	 in	panels,	 two	more	 radio	buttons	and
two	buttons.	Declare	the	controls:	ButtonGroup	whereButtonGroup	=	new
ButtonGroup();

JRadioButton	eatInRadioButton	=	new	JRadioButton();	JRadioButton
takeOutRadioButton	=	new	JRadioButton();	JButton	buildButton	=	new
JButton();
JButton	exitButton	=	new	JButton();

Position	and	add	each	control	and	their	methods:

eatInRadioButton.setText("Eat	In");
eatInRadioButton.setSelected(true);
whereButtonGroup.add(eatInRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(eatInRadioButton,	gridConstraints);
eatInRadioButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

whereRadioButtonActionPerformed(e);

}

});

takeOutRadioButton.setText("Take	Out");
whereButtonGroup.add(takeOutRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(takeOutRadioButton,	gridConstraints);
takeOutRadioButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

whereRadioButtonActionPerformed(e);

}

});

buildButton.setText("Build	Pizza");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	2;
getContentPane().add(buildButton,	gridConstraints);
takeOutRadioButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

buildButtonActionPerformed(e);

}

});

exitButton.setText("Exit");

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
getContentPane().add(exitButton,	gridConstraints);
takeOutRadioButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

exitButtonActionPerformed(e);

}

});

Add	the	thee	empty	methods:

private	void	whereRadioButtonActionPerformed(ActionEvent	e)	{

}

private	void	buildButtonActionPerformed(ActionEvent	e)	{

}

private	void	exitButtonActionPerformed(ActionEvent	e)	{

}

Save,	run	the	project.	You	will	see	the	finished	control	arrangement.	Try	out
the	radio	buttons	to	see	how	they	work	as	groups:	

7.	Now,	we	add	code	 for	 the	event	methods.	Declare	 four	variables	with	class
level	scope:	String	pizzaSize;

String	pizzaCrust;
String	pizzaWhere;
JCheckBox[]	topping	=	new	JCheckBox[6];

This	makes	the	size,	crust,	and	location	variables	global	to	the	class.	The	array
of	check	box	controls	will	help	us	determine	which	toppings	are	selected.	As
mentioned	in	the	notes,	it	is	common	to	use	‘control	arrays’	when	working
with	check	boxes	and	radio	buttons.

8.	Add	 this	 code	 at	 the	 end	of	 the	 frame	constructor.	This	 initializes	 the	pizza
size,	crust,	eating	location	and	topping	controls.

//	Initialize	parameters
pizzaSize	=	smallRadioButton.getText();
pizzaCrust	=	thinRadioButton.getText();
pizzaWhere	=	eatInRadioButton.getText();
//	Define	an	array	of	topping	check	boxes
topping[0]	=	cheeseCheckBox;
topping[1]	=	mushroomsCheckBox;
topping[2]	=	olivesCheckBox;
topping[3]	=	onionsCheckBox;
topping[4]	=	peppersCheckBox;

topping[5]	=	tomatoesCheckBox;

Here,	the	form	level	variables	are	initialized	to	their	default	values,
corresponding	to	the	default	radio	buttons.	The	topping	variables	are	set	to
their	values.

9.	Use	 this	 code	 in	 the	methods	 for	 each	of	 the	 three	groups	of	 radio	buttons:
private	void	sizeRadioButtonActionPerformed(ActionEvent	e)	{

pizzaSize	=	e.getActionCommand();

}

private	void	crustRadioButtonActionPerformed(ActionEvent	e)	{
pizzaCrust	=	e.getActionCommand();

}

private	void	whereRadioButtonActionPerformed(ActionEvent	e)	{
pizzaWhere	=	e.getActionCommand();

}

In	each	of	these	routines,	when	an	radio	button	is	clicked	(changing	the
selected	property),	the	value	of	the	corresponding	button’s	text	is	loaded	into
the	respective	variable.

10.	Use	this	code	in	the	buildButtonActionPerformed	method.

private	void	buildButtonActionPerformed(ActionEvent	e)	{
//	This	procedure	builds	a	confirm	dialog	box	that	displays	your	pizza
type	String	message;
message	=	pizzaWhere	+	"\n";
message	+=	pizzaSize	+	"	Pizza"	+	"\n";
message	+=	pizzaCrust	+	"\n";
//	Check	each	topping	using	the	array	we	set	up
for	(int	i	=	0;	i	<	6;	i++)

{

if	(topping[i].isSelected())

{

message	+=	topping[i].getText()	+	"\n";

}

}

JOptionPane.showConfirmDialog(null,	message,	"Your	Pizza",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	}

This	code	forms	the	first	part	of	a	message	for	a	message	box	by
concatenating	the	pizza	size,	crust	type,	and	eating	location	(recall	\n	is	a
character	sequence	representing	a	‘new	line’	that	puts	each	piece	of	ordering
information	on	a	separate	line).	Next,	the	code	cycles	through	the	six	topping
check	boxes	(defined	by	our	topping	array)	and	adds	any	checked	information
to	the	message.	The	code	then	displays	the	pizza	order	in	a	confirm	message
box.

11.	Use	this	code	in	the	exitButtonActionPerformed	event.

private	void	exitButtonActionPerformed(ActionEvent	e)	{
System.exit(0);

}

For	 reference,	 here	 is	 the	 final	 Pizza.java	 code	 listing	 (code	 added	 to	 basic
frame	is	shaded):	/	*
*	Pizza.java

*/

package	pizza;
import	javax.swing.*;

import	java.awt.*;
import	java.awt.event.*;
public	class	Pizza	extends	javax.swing.JFrame

{

JPanel	sizePanel	=	new	JPanel();
ButtonGroup	sizeButtonGroup	=	new	ButtonGroup();
JRadioButton	smallRadioButton	=	new	JRadioButton();	JRadioButton
mediumRadioButton	=	new	JRadioButton();	JRadioButton
largeRadioButton	=	new	JRadioButton();	JPanel	crustPanel	=	new
JPanel();
ButtonGroup	crustButtonGroup	=	new	ButtonGroup();
JRadioButton	thinRadioButton	=	new	JRadioButton();	JRadioButton
thickRadioButton	=	new	JRadioButton();	JPanel	toppingsPanel	=	new
JPanel();
JCheckBox	cheeseCheckBox	=	new	JCheckBox();
JCheckBox	mushroomsCheckBox	=	new	JCheckBox();
JCheckBox	olivesCheckBox	=	new	JCheckBox();
JCheckBox	onionsCheckBox	=	new	JCheckBox();
JCheckBox	peppersCheckBox	=	new	JCheckBox();
JCheckBox	tomatoesCheckBox	=	new	JCheckBox();
ButtonGroup	whereButtonGroup	=	new	ButtonGroup();
JRadioButton	eatInRadioButton	=	new	JRadioButton();	JRadioButton
takeOutRadioButton	=	new	JRadioButton();	JButton	buildButton	=	new
JButton();
JButton	exitButton	=	new	JButton();

String	pizzaSize;
String	pizzaCrust;
String	pizzaWhere;
JCheckBox[]	topping	=	new	JCheckBox[6];

public	static	void	main(String	args[])

{

{

//	construct	frame
new	Pizza().show();

}

public	Pizza()

{

setTitle("Pizza	Order");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	position	controls
GridBagConstraints	gridConstraints;
sizePanel.setLayout(new	GridBagLayout());

sizePanel.setBorder(BorderFactory.createTitledBorder("Size"))	;

smallRadioButton.setText("Small");
smallRadioButton.setSelected(true);
sizeButtonGroup.add(smallRadioButton);
gridConstraints	=	new	GridBagConstraints();

gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.WEST;
sizePanel.add(smallRadioButton,	gridConstraints);
smallRadioButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

sizeRadioButtonActionPerformed(e);

}

});

mediumRadioButton.setText("Medium");
sizeButtonGroup.add(mediumRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.anchor	=	GridBagConstraints.WEST;
sizePanel.add(mediumRadioButton,	gridConstraints);
mediumRadioButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

sizeRadioButtonActionPerformed(e);

}

});

largeRadioButton.setText("Large");
largeRadioButton.setSelected(true);
sizeButtonGroup.add(largeRadioButton);
gridConstraints	=	new	GridBagConstraints();

gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.anchor	=	GridBagConstraints.WEST;
sizePanel.add(largeRadioButton,	gridConstraints);
largeRadioButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

sizeRadioButtonActionPerformed(e);

}

});

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(sizePanel,	gridConstraints);

crustPanel.setLayout(new	GridBagLayout());

crustPanel.setBorder(BorderFactory.createTitledBorder("Crust"));
thinRadioButton.setText("Thin	Crust");

thinRadioButton.setSelected(true);
crustButtonGroup.add(thinRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.WEST;
crustPanel.add(thinRadioButton,	gridConstraints);
thinRadioButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

crustRadioButtonActionPerformed(e);

}

});

thickRadioButton.setText("Thick	Crust");
crustButtonGroup.add(thickRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.anchor	=	GridBagConstraints.WEST;
crustPanel.add(thickRadioButton,	gridConstraints);
thickRadioButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

crustRadioButtonActionPerformed(e);

}

});

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(crustPanel,	gridConstraints);
toppingsPanel.setLayout(new	GridBagLayout());

toppingsPanel.setBorder(BorderFactory.createTitledBorder("Top	pings"));
cheeseCheckBox.setText("Extra	Cheese");

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.WEST;

toppingsPanel.add(cheeseCheckBox,	gridConstraints);
mushroomsCheckBox.setText("Mushrooms");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.anchor	=	GridBagConstraints.WEST;
toppingsPanel.add(mushroomsCheckBox,	gridConstraints);
olivesCheckBox.setText("Olives");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.anchor	=	GridBagConstraints.WEST;
toppingsPanel.add(olivesCheckBox,	gridConstraints);
onionsCheckBox.setText("Onions");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.WEST;
toppingsPanel.add(onionsCheckBox,	gridConstraints);
peppersCheckBox.setText("Green	Peppers");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
gridConstraints.anchor	=	GridBagConstraints.WEST;
toppingsPanel.add(peppersCheckBox,	gridConstraints);
tomatoesCheckBox.setText("Tomatoes");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	2;
gridConstraints.anchor	=	GridBagConstraints.WEST;
toppingsPanel.add(tomatoesCheckBox,	gridConstraints);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;

gridConstraints.gridy	=	0;
gridConstraints.gridwidth	=	2;
getContentPane().add(toppingsPanel,	gridConstraints);
eatInRadioButton.setText("Eat	In");
eatInRadioButton.setSelected(true);
whereButtonGroup.add(eatInRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(eatInRadioButton,	gridConstraints);
eatInRadioButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

whereRadioButtonActionPerformed(e);

}

});

takeOutRadioButton.setText("Take	Out");
whereButtonGroup.add(takeOutRadioButton);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
gridConstraints.anchor	=	GridBagConstraints.WEST;
getContentPane().add(takeOutRadioButton,	gridConstraints);
takeOutRadioButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

whereRadioButtonActionPerformed(e);

}

}

});

buildButton.setText("Build	Pizza");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	2;
getContentPane().add(buildButton,	gridConstraints);
buildButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

buildButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
getContentPane().add(exitButton,	gridConstraints);
exitButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

exitButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=
Toolkit.getDefaultToolkit().getScreenSize();	setBounds((int)	(0.5

(screenSize.width	-	getWidth())),	(int)	(0.5	(screenSize.height	-	getHeight())),
getWidth(),	getHeight());

//	Initialize	parameters
pizzaSize	=	smallRadioButton.getText();
pizzaCrust	=	thinRadioButton.getText();
pizzaWhere	=	eatInRadioButton.getText();
//	Define	an	array	of	topping	check	boxes
topping[0]	=	cheeseCheckBox;
topping[1]	=	mushroomsCheckBox;
topping[2]	=	olivesCheckBox;
topping[3]	=	onionsCheckBox;
topping[4]	=	peppersCheckBox;
topping[5]	=	tomatoesCheckBox;

}

private	void	sizeRadioButtonActionPerformed(ActionEvent	e)	{
pizzaSize	=	e.getActionCommand();

}

private	void	crustRadioButtonActionPerformed(ActionEvent	e)	{
pizzaCrust	=	e.getActionCommand();

}

private	void	whereRadioButtonActionPerformed(ActionEvent	e)	{
pizzaWhere	=	e.getActionCommand();

}

private	void	buildButtonActionPerformed(ActionEvent	e)	{

//	This	procedure	builds	a	confirm	dialog	box	that	displays	your	pizza
type	String	message;

message	=	pizzaWhere	+	"\n";
message	+=	pizzaSize	+	"	Pizza"	+	"\n";
message	+=	pizzaCrust	+	"\n";
//	Check	each	topping	using	the	array	we	set	up
for	(int	i	=	0;	i	<	6;	i++)

{

if	(topping[i].isSelected())

{

message	+=	topping[i].getText()	+	"\n";

}

}

JOptionPane.showConfirmDialog(null,	message,	"Your	Pizza",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	}

private	void	exitButtonActionPerformed(ActionEvent	e)	{
System.exit(0);

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	the	application.	There’s	a	lot	of	code	here,	you	may	have	to	compile	a	few
times	 to	 eliminate	 errors.	Notice	 how	 the	 different	 radio	 buttons	work	 in	 their
individual	 groups.	 Here’s	 a	 run	 I	 made	 –	 first,	 my	 choices:	

Then,	when	I	click	Build	Pizza,	I	see:	

Save	your	project	(saved	as	Example3-2	project	in	the	\LearnJava\LJ
Code\Class	3\	project	group).	If	you	have	time,	try	these	modifications:

A.	Add	a	new	program	button	that	resets	the	order	form	to	the	initial	default
values.	You’ll	have	to	reinitialize	the	three	class	level	variables,	reset	all
check	boxes	to	unchecked,	and	reset	all	three	radio	button	groups	to	their
default	values.

B.	Modify	the	code	so	that	if	no	toppings	are	selected,	the	message	“Cheese
Only”	appears	on	the	order	form.	You’ll	need	to	figure	out	a	way	to	see	if
no	check	boxes	were	checked.

JList	Control

Check	boxes	are	useful	controls	for	selecting	items	from	a	list.	But,	what	if	your
list	has	100	items?	Do	you	want	100	check	boxes?	No,	but	fortunately,	there	is	a
tool	that	solves	this	problem.	A	list	control	displays	a	list	of	items	(with	as	many
items	as	you	like)	from	which	the	user	can	select	one	or	more	items.	Both	single
item	and	multiple	item	selections	are	supported.

List	Properties:

model Establishes	the	items	in	the	list.
font Font	name,	style,	size.
background List	background	color.
foreground Color	of	text.
visibleRowCount Number	of	rows	to	display.
selectedIndex Zero-based	index	of	the	currently	selected	item	in	a

list.
selectedIndices Zero-based	array	of	indices	of	all	currently	selected

items	in	the	list.
selectedValue Currently	selected	item	in	the	list.
selectedValues Array	of	selected	items	in	list.
selectionMode Gets	or	sets	the	method	in	which	items	are	selected	in

list	(allows	single	or	multiple	selections).
selectionEmpty Boolean	variable	indicating	if	any	items	are	selected.

List	Methods:

setFont Sets	font	name,	style,	size.
setBackground Sets	the	list	background	color.

setForeground Sets	color	of	text.
setVisibleRowCount Sets	number	of	rows	to	display.
clearSelection Unselects	specified	in	the	list.
getSelectedIndex Returns	a	value	indicating	whether	the	specified	item	is

selected.
getSelectedIndices Returns	an	integer	array	of	indices	of	selected	items.
setSelectedIndex Selects	specified	item	in	a	list.
setSelectionMode Establishes	selection	mode.
isSelectionEmpty Checks	to	see	if	any	items	are	selected.

List	Event:

valueChanged Event	(ListSelectionEvent)	triggered	when	any
selections	in	the	list	change.	Added	with
ListSelectionListener	(requires	importation	of
javax.swing.event.*	files).

The	valueChanged	event	is	new	in	our	work.	To	add	a	listener	for	such	an	event
to	 a	 list	 control	 named	 myList,	 use:	 myList.addListSelectionListener(new
ListSelectionListener()	{
public	void	valueChanged(ListSelectionEvent	e)

{

myListValueChanged(e);

}

});

And,	the	corresponding	event	code	would	be	placed	in	a	myListValueChanged
method:	private	void	myListValueChanged(ListSelectionEvent	e)	{
[method	code]

}

The	 items	 listed	 in	 the	 list	 control	 are	 defined	 using	 the	 DefaultListModel

object.	This	model	manages	a	 resizable	array	of	 information,	such	as	 that	used
with	 the	 list	 control	 Such	 a	 model	 (myListModel)	 is	 created	 using:
DefaultListModel	 myListModel	 =	 new	 DefaultListModel();	 Once	 created,
items	are	added	to	the	list	using	the	addElement	or	insertElementAt	methods:

Add	Item: myListModel.addElement(itemToAdd);
myListModel.insertElementAt(itemToAdd,	index);

With	 addElement,	 the	 item	 is	 added	 to	 the	 end	 of	 the	 list.	 With
insertElementAt	the	item	will	be	added	at	the	given	index	value.

List	 controls	 normally	 list	 string	 data	 types,	 though	 other	 types	 are	 possible.
Many	times,	you	want	the	items	in	a	list	control	to	be	sorted,	or	in	alphabetical
order.	 There	 are	 no	 automatic	 capabilities	 within	 the	 list	 control	 to	 maintain
sorted	lists.	If	you	want	such	capability,	you	need	to	do	this	yourself	using	your
Java	coding	skills.

To	 remove	 items	 from	 the	 list,	 there	 are	 three	 methods:	 removeElement,
removeElementAt,	 or	 removeAllElements.	 For	 our	 example	 list	 box,	 the
respective	commands	are:

Delete	Item: myListModel.removeElement(itemToRemove);
myListModel.removeElementAt(index);

Clear	list: myListModel.removeAllElements();

Note,	when	removing	items,	that	indices	for	subsequent	items	in	the	list	change
following	a	removal.

To	refer	 to	an	individual	element	 in	 the	model,	use	 the	getElementAt	method:
myListModel.getElementAt(index)

and	 the	 number	 of	 elements	 in	 the	 list	 is	 given	 by	 the	 getSize	 method:
myListModel.getSize();

To	 view,	 the	 last	 item	 in	 this	 list	 (zero-based),	 you	 would	 use:
myListModel.getElementAt(myListModel.getSize()	–	1)	Once	a	 list	model	 is
established,	 it	 is	 assigned	 to	 the	 list	 control	 (myList)	 using	 the	 setModel
method:	myList.setModel(myListModel);

Always	be	aware	of	when	to	work	with	the	list	control	and	when	to	work	with
the	 list	model.	 The	 primary	 thing	 to	 remember	 is	 that	 items	 are	 added	 to	 and
deleted	from	the	list	model	using	indices	provided	by	the	list	control.

The	selectionMode	property	specifies	whether	you	want	single	item	selection	or
multiple	 selections.	 The	 choices	 are	 from	 the	 ListSelectionModel	 class	 and
there	are	three	possible	values:

MULTIPLE_INTERVAL_SELECTIONAllows	selection	of	several	ranges
at	a	time.

SINGLE_INTERVAL_SELECTION Allows	selection	of	one	range.
SINGLE_SELECTION Allows	selection	of	one	item.

The	 default	 value	 allows	 multiple	 range	 selection.	 To	 change	 to	 single	 item
selection	 in	 the	 myList	 control,	 use:
myList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
Typical	use	of	list	control:

➢	 Declare	 and	 create	 list	 control,	 assigning	 an	 identifiable	 name.	 For
myList,	the	code	is:	JList	myList	=	new	JList();

➢	 Set	 selectionMode	 property	 and	 populate	 the	 list	 using	 the	 list	 model
object	(usually	in	the	frame	constructor).

➢	Add	control	to	layout	manager.
➢	Monitor	valueChanged	event	for	individual	selections.
➢	 Use	 selectedIndex	 and	 selectIndices	 properties	 to	 determine	 selected
items.

Notice	 one	 thing	 we	 haven’t	 discussed	 with	 the	 list	 control	 is	 what	 happens
when	there	are	more	items	in	the	list	than	the	control	can	display?	The	answer	is
nothing	–	you	will	 not	 see	 the	 items	“off	 the	 list.”	The	JList	 control	does	not
have	any	scrolling	capabilities.	To	add	such	capabilities,	we	use	another	Swing
component,	 the	 JScrollPane	 to	 implement	 both	 horizontal	 and	 vertical	 scroll
bars.	Let’s	look	at	that	component.

JScrollPane	Control

A	very	useful	container	control	is	the	scroll	pane.	This	control	is	like	the	panel
control	with	 the	added	capability	of	being	able	 to	scroll	any	component	placed
on	the	scroll	pane.	Hence,	a	large	component	can	be	placed	on	a	small	“piece	of
real	 estate”	 in	 a	GUI	 frame.	Several	Swing	 controls	 rely	 on	 the	 scroll	 pane	 to
provide	scrolling	capabilities,	including	the	JTextArea	control	described	earlier
and	the	JList	component	just	studied.	Both	horizontal	and	vertical	scrolling	of	a
control	is	possible.

Scroll	Pane	Properties:

enabled Indicates	whether	the	scroll	pane	is
enabled.	If	false,	the	component	in	the
pane	is	disabled.

preferredSize Specified	size	(width,	height)	of	scroll
pane.

horizontalScrollBarPolicy Determines	how	horizontal	scroll	bar	is
displayed.

verticalScrollBarPolicy Determines	how	vertical	scroll	bar	is
displayed.

Scroll	Pane	Methods:

setEnabled Sets	whether	panel	is	enabled.
setPreferredSize Establishes	size	of	scroll	pane.
setViewportView Establishes	component	“hosted”	by	the

scroll	pane.
setHorizontalScrollBarPolicy Establishes	how	horizontal	scroll	bar	(if

any)	is	displayed.

setVerticalScrollBarPolicy Establishes	how	horizontal	scroll	bar	(if
any)	is	displayed.

Using	 a	 scroll	 pane	 is	 relatively	 easy.	 Since	 the	 idea	 of	 the	 pane	 is	 to	 hold	 a
component	larger	than	the	pane	itself,	you	need	to	establish	how	large	you	want
the	pane	 to	be.	This	 is	done	using	 the	setPreferredSize	method,	which	 in	 turn
uses	the	Dimension	object.	What	all	this	means	is	to	set	the	size	of	a	scroll	pane,
myPane,	use:	JScrollPane	myPane	=	new	JScrollPane();
myPane.setPreferredSize(new	Dimension(width,	height));	where	width
and	height	are	the	desired	dimensions	in	pixels.	Once	the	pane	is	established
and	sized,	you	can	add	components	to	it.	A	scroll	pane	can	have	a	layout
manager	like	other	controls,	but	usually	you	just	add	a	single	control	to	the
pane	(this	control	might	be	a	panel	control	with	many	controls).	A	component
(myControl)	is	added	to	the	scroll	pane	using	the	setViewportView	method.

myPane.setViewportView(myControl);

At	this	point,	the	added	control	can	be	scrolled	in	the	scroll	pane	–	it’s	that
easy!	Of	course,	you	need	to	add	the	scroll	pane	to	the	frame	(with	associated
gridConstraints)	to	make	this	happen:	getContentPane().add(myPane,	new
gridConstraints());	This	is	the	first	time	we	have	set	“preferred	sizes”	for
components.	Up	to	now,	we	have	let	the	grid	layout	manager	determine
component	size	and	it	seems	to	have	worked	just	fine.	Once	you	start	setting
sizes	for	components,	occasional	strange	behavior	is	seen	(you’ll	see	it	in
Example	3-3).	Sometimes,	controls	don’t	show	up	as	you	would	expect.
Many	times,	if	you	set	the	preferred	size	for	a	control	in	one	grid	location,	you
need	to	set	sizes	for	all	components	on	the	grid.	You’ll	start	developing	your
own	ways	to	handle	these	strange	behaviors.	If	something	doesn’t	appear	as	it
should,	the	preferred	size	method	is	a	place	to	start	looking.

Scroll	bars	may	or	may	not	appear	in	the	scroll	pane,	depending	on	settings	for
the	 “scroll	 bar	 policy.”	 To	 establish	 the	 horizontal	 scrollbar	 policy,	 use	 the
setHorizontalScrollBarPolicy	 with	 one	 of	 three	 constants	 from	 the
ScrollPaneConstants:	HORIZONTAL_SCROLLBAR_AS_NEEDED	 Scroll
bar	appears	when	hosted	component	is	wider	than	allocated	space	(default).
HORIZONTAL_SCROLLBAR_ALWAYS	Scroll	bar	always	appears.
HORIZONTAL_SCROLLBAR_NEVER	Scroll	bar	never	appears.

To	 establish	 the	 vertical	 scrollbar	 policy,	 use	 the	 setVerticalScrollBarPolicy
with	 one	 of	 three	 constants	 from	 the	 ScrollPaneConstants:
VERTICAL_SCROLLBAR_AS_NEEDED	 Scroll	 bar	 appears	 when	 hosted
component	is	wider	than	allocated	space	(default).
VERTICAL_SCROLLBAR_ALWAYS	Scroll	bar	always	appears.
VERTICAL_SCROLLBAR_NEVER	Scroll	bar	never	appears.

You	don’t	need	any	code	to	make	the	scroll	bars	work	–	that	capability	comes
along	with	the	scroll	pane.

Typical	use	of	scroll	pane	control:

➢	 Declare	 and	 create	 the	 scroll	 pane,	 assigning	 an	 identifiable	name.	 For
myScrollPane,	 the	 code	 is:	 JScrollPane	 myScrollPane	 =	 new
JScrollPane();

➢	Set	the	scroll	pane	preferred	size	and,	perhaps,	set	scroll	bar	policies.
➢	Establish	the	scroll	pane	viewport	view.
➢	Add	scroll	pane	to	proper	layout	manager.
➢	Monitor	events	of	the	hosted	control(s)	in	pane	using	usual	techniques.

JComboBox	Control

The	 list	 control	 is	 equivalent	 to	 a	 group	 of	 check	 boxes	 (allowing	 multiple
selections	in	a	long	list	of	items).	The	equivalent	control	for	a	long	list	of	radio
buttons	 is	 the	 combo	 box	 control.	 The	 combo	 box	 allows	 the	 selection	 of	 a
single	 item	 from	 a	 drop-down	 list.	 And,	 if	 desired,	 the	 user	 can	 type	 in	 an
alternate	 response.	 The	 combo	 box	 uses	 its	 own	 “list	 model”	 allowing	 direct
addition	and	removal	of	items	from	the	drop-down	list.	It	also	provides	its	own
scrolling	capabilities	–	no	need	for	a	scroll	pane.

Combo	Box	Properties:

model Establishes	the	items	in	the	drop-down	list
portion.

itemCount Number	of	items	in	combo	box.
font Font	name,	style,	size.
background Combo	box	background	color.
foreground Color	of	text.
editable Specifies	if	selection	can	be	typed	by	user

(default	is	false).
maximumRowCountNumber	of	rows	to	display	in	drop-down	box

(scroll	bar	will	automatically	appear	if	there	are
more	items	than	space).

selectedIndex Zero-based	index	of	the	currently	selected	item
in	combo	box.

selectedItem Currently	selected	item	in	the	combo	box.

Combo	Box	Methods:

setEditable Establishes	whether	selected	item	can	be
edited.

getItemCount Gets	number	of	items	in	combo	box.

setMaximumRowCount Sets	number	of	items	to	display	in	drop-down
box.

setFont Sets	font	name,	style,	size.
setBackground Sets	the	combo	box	background	color.
setForeground Sets	color	of	text.
getSelectedItem Retrieves	the	selected	item.
setSelectedIndex Selects	specified	item	in	combo	box.

Combo	Box	Event:

actionPerformed Event	triggered	when	user	makes	a	selection	or
presses	<Enter>.	Added	with	ActionListener.

To	add	a	listener	for	the	actionPerformed	event	for	a	combo	box	control	named
myComboBox,	use:	myComboBox.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

myComboBoxActionPerformed(e);

}

});

And,	the	corresponding	event	code	would	be	placed	in	a
myComboBoxActionPerformed	method:	private	void
myComboBoxActionPerformed(ActionEvent	e)	{

[method	code]

}

The	combo	box	has	 its	own	list	model	for	adding	and	removing	items	from	its
drop-down	list,	making	list	management	easier	than	that	of	the	list	control.	Items
are	 added	 to	 the	 combo	 box	 (myComboBox)	 using	 the	 addItem	 or

insertItemAt	methods:

Add	Item: myComboBox.addItem(itemToAdd);
myComboBox.insertItemAt(itemToAdd,	index);

With	addItem,	the	item	will	be	added	at	the	end	of	the	list.	With
insertItemAt	the	item	will	be	added	at	the	given	index	value.

Like	list	controls,	there	is	no	capability	for	sorted	lists	–	for	such	lists,	you
need	to	add	that	capability	using	code.

To	 remove	 items	 from	 the	 combo	 box,	 there	 are	 three	methods:	 removeItem,
removeItemAt,	or	removeAllItems.	For	our	example	combo	box,	the	respective
commands	are:

Delete	Item: myComboBox.removeItem(itemToRemove);
myComboBox.removeItemAt(index);

Clear	list: myComboBox.removeAllItems();

Note,	when	removing	items,	that	indices	for	subsequent	items	in	the	list
change	following	a	removal.

To	 refer	 to	 an	 individual	 item	 in	 the	 combo	 box,	 use	 the	 getItemAt	 method:
myComboBox.getItemAt(index)

and	the	number	of	items	in	the	combo	box	is	given	by	the	getItemCount
method:	myComboBox.getItemCount();

To	view,	the	last	item	in	this	list,	you	would	use:
myComboBox.getItemAt(myComboBox.getItemCount()	–	1)	Typical	use
of	combo	box	control:

➢	 Declare	 and	 create	 combo	 box	 control,	 assigning	 an	 identifiable	name.
For	 myComboBox,	 the	 code	 is:	 JComboBox	 myComboBox	 =	 new
JComboBox();

➢	Set	editable	property	and	add	 items	 to	 the	combo	box	(usually	 in	frame
constructor).

➢	Place	control	within	layout	manager.
➢	Monitor	actionPerformed	event	for	selections.
➢	Read	selectedItem	property	to	identify	choice.

Let’s	try	to	clear	up	all	this	new	information	about	list	controls,	scroll	panes	and
combo	boxes	with	an	example.

Example	3-3
Flight	Planner

Start	a	new	empty	project	in	NetBeans.	Name	the	project	Flight.	Delete	default
code	in	Java	file	named	Flight.	In	this	example,	you	select	a	destination	city,	a
seat	location,	and	a	meal	preference	for	airline	passengers.	The	finished	product

will	look	like	this:	

1.	Place	a	 scroll	pane	 (which	will	hold	a	 list	 control),	 two	combo	boxes,	 three
labels	 and	 two	buttons	 on	 the	 frame.	The	GridBagLayout	 arrangement	 for
these	 controls	 should	 be:	

Set	the	frame	and	control	properties:

Flight	Frame:
title Flight	Planner
resizable false

citiesLabel:
text Destination	City

gridx 0
gridy 0
insets (10,	0,	0,	0)

citiesScrollPane:
preferredSize 150,	100
viewportView citiesList	(JList	control)
gridx 0
gridy 1
insets (10,	10,	10,	10)

seatLabel:
text Seat	Location
gridx 1
gridy 0
insets (10,	0,	0,	0)

seatComboBox:
background WHITE
gridx 1
gridy 1
insets (10,	10,	0,	10)
anchor NORTH

mealLabel:
text Meal	Preference
gridx 2
gridy 0
insets (10,	0,	0,	0);

mealComboBox:
editable true
gridx 2
gridy 1

insets (10,	10,	0,	10)
anchor NORTH

assignButton:
text Assign
gridx 1
gridy 2
insets (0,	0,	10,	0)

exitButton:
text Exit
gridx 2
gridy 2
insets (0,	0,	10,	0)

2.	We	will	build	the	project	in	the	usual	stages	–	first	code	to	establish	the	basic
framework:	/	*

*	Flight.java

*/

package	flight;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
public	class	Flight	extends	JFrame

{

public	static	void	main(String	args[])

{

//	construct	frame
new	Flight().show();

}

}

public	Flight()

{

//	create	frame
setTitle("Flight	Planner");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	*	(screenSize.width	-

getWidth())),	(int)	(0.5	*	(screenSize.height	-
getHeight())),	getWidth(),	getHeight());

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	to	make	sure	the	frame	appears.

3.	We	will	 first	add	 the	scroll	pane	with	 the	cities	 list	control.	Add	 these	class
level	declarations:	JLabel	citiesLabel	=	new	JLabel();

JList	citiesList	=	new	JList();
JScrollPane	citiesScrollPane	=	new	JScrollPane();

Position	and	add	each	control	to	the	frame	(note	how	the	cities	list	control	is
placed	in	scroll	pane):	GridBagConstraints	gridConstraints;
citiesLabel.setText("Destination	City");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
getContentPane().add(citiesLabel,	gridConstraints);
citiesScrollPane.setPreferredSize(new	Dimension(150,	100));
citiesScrollPane.setViewportView(citiesList);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(citiesScrollPane,	gridConstraints);	Now,	at	the	end
of	the	frame	constructor,	use	this	code	to	add	elements	to	the	cities	list	control
and	initialize	the	choice	to	the	top	element:	DefaultListModel
citiesListModel	=	new	DefaultListModel();
citiesListModel.addElement("San	Diego");
citiesListModel.addElement("Los	Angeles");
citiesListModel.addElement("Orange	County");
citiesListModel.addElement("Ontario");
citiesListModel.addElement("Bakersfield");

citiesListModel.addElement("Oakland");
citiesListModel.addElement("Sacramento");
citiesListModel.addElement("San	Jose");
citiesListModel.addElement("San	Francisco");
citiesListModel.addElement("Eureka");
citiesListModel.addElement("Eugene");
citiesListModel.addElement("Portland");
citiesListModel.addElement("Spokane");
citiesListModel.addElement("Seattle");
citiesList.setModel(citiesListModel);
citiesList.setSelectedIndex(0);

Run	the	project	–	the	city	selection	list	will	appear:	

Try	scrolling	through	the	cities	using	the	scroll	pane.	Do	you	see	how	easy	it
was	to	add	scrolling	capability?

4.	 Now,	 we’ll	 add	 the	 combo	 box	 for	 picking	 a	 seat.	 Add	 these	 class	 level
declarations:	JLabel	seatLabel	=	new	JLabel();

JComboBox	seatComboBox	=	new	JComboBox();

Position	and	add	each	control	to	the	frame:

seatLabel.setText("Seat	Location");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;

gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
getContentPane().add(seatLabel,	gridConstraints);
seatComboBox.setBackground(Color.WHITE);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);	gridConstraints.anchor
=	GridBagConstraints.NORTH;	getContentPane().add(seatComboBox,
gridConstraints);	Add	code	to	the	frame	constructor	to	“populate”	the	combo
box:	seatComboBox.addItem("Aisle");
seatComboBox.addItem("Middle");
seatComboBox.addItem("Window");
seatComboBox.setSelectedIndex(0);

Rerun	the	project.	Here’s	what	I	get:

Wait	a	minute!!	What	happened	to	the	cities	list	control?	As	mentioned
earlier,	when	we	start	setting	preferred	sizes,	odd	things	can	happen.	And	this
is	one	of	them.	We	set	a	preferred	size	for	the	scroll	pane	holding	the	cities	list
control,	but	not	for	the	combo	box.	The	GridBagLayout	has	trouble	with	this.
The	solution?	Set	a	preferred	size	for	the	combo	box.	I	used	100	by	25:
seatComboBox.setPreferredSize(new	Dimension(100,	25));	With	this
additional	property,	if	you	rerun,	things	should	appear	properly:	

You	can	now	pick	a	city	and	a	seat.	The	moral	here:	when	you’re	setting
preferred	sizes	on	some	controls,	but	not	others,	weird	things	may	happen.
Fortunately,	the	only	time	we	usually	need	to	set	preferred	sizes	is	when	using
scroll	panes.

5.	 Now,	 let’s	 add	 the	meal	 combo	 box	 and	 the	 two	 buttons	 (along	with	 their
methods).	 Add	 the	 class	 level	 declarations:	 JLabel	 mealLabel	 =	 new
JLabel();

JComboBox	mealComboBox	=	new	JComboBox();
JButton	assignButton	=	new	JButton();
JButton	exitButton	=	new	JButton();

Use	this	code	to	position	and	add	the	controls	(and	events):
mealLabel.setText("Meal	Preference");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
getContentPane().add(mealLabel,	gridConstraints);
mealComboBox.setEditable(true);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);	gridConstraints.anchor
=	GridBagConstraints.NORTH;	getContentPane().add(mealComboBox,
gridConstraints);	assignButton.setText("Assign");

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(0,	0,	10,	0);
getContentPane().add(assignButton,	gridConstraints);
assignButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

assignButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(0,	0,	10,	0);
getContentPane().add(exitButton,	gridConstraints);
exitButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

exitButtonActionPerformed(e);

}

});

Use	this	code	in	the	frame	constructor	to	add	choices	to	the	meal	combo	box:
mealComboBox.addItem("Chicken");

mealComboBox.addItem("Mystery	Meat");
mealComboBox.addItem("Kosher");
mealComboBox.addItem("Vegetarian");
mealComboBox.addItem("Fruit	Plate");
mealComboBox.setSelectedItem("No	Preference");

And,	finally,	add	the	two	empty	button	events:

private	void	assignButtonActionPerformed(ActionEvent	e)	{

}

private	void	exitButtonActionPerformed(ActionEvent	e)	{

}

Rerun	to	see	the	finished	control	arrangement.	Notice	we	didn’t	need	to	set	a
preferred	size	for	the	meal	combo	box	–	it	shows	up	just	as	expected	without
messing	up	any	of	the	other	controls:	

6.	We	can	now	add	code	to	the	two	event	methods.	First,	the	actionPerformed
event	 for	 the	 assignButton:	 private	 void
assignButtonActionPerformed(ActionEvent	e)	{

//	Build	message	box	that	gives	your	assignment
String	message;
message	=	"Destination:	"	+

citiesList.getSelectedValue()	+	"\n";

message	+=	"Seat	Location:	"	+
seatComboBox.getSelectedItem()	+	"\n";

message	+=	"Meal:	"	+	mealComboBox.getSelectedItem()	+	"\n";
JOptionPane.showConfirmDialog(null,	message,	"Your	Assignment",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	}

When	the	Assign	button	is	clicked,	this	code	forms	a	confirm	dialog	box
message	by	concatenating	the	selected	city	(from	citiesList),	seat	choice
(from	seatComboBox),	and	the	meal	preference	(from	mealComboBox).

7.	 And,	 the	 code	 for	 the	 exitButton:	 private	 void
exitButtonActionPerformed(ActionEvent	e)	{

System.exit(0);

}

For	reference	purposes,	here	is	the	final	Flight.java	code	listing	(code	added	to
basic	framework	is	shaded):	/	*
*	Flight.java

*/

package	flight;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	Flight	extends	JFrame

{

JLabel	citiesLabel	=	new	JLabel();
JList	citiesList	=	new	JList();
JScrollPane	citiesScrollPane	=	new	JScrollPane();	JLabel	seatLabel	=

new	JLabel();

JComboBox	seatComboBox	=	new	JComboBox();
JLabel	mealLabel	=	new	JLabel();
JComboBox	mealComboBox	=	new	JComboBox();
JButton	assignButton	=	new	JButton();
JButton	exitButton	=	new	JButton();

public	static	void	main(String	args[])

{

//	construct	frame
new	Flight().show();

}

public	Flight()

{

//	create	frame
setTitle("Flight	Planner");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	position	controls
GridBagConstraints	gridConstraints;
citiesLabel.setText("Destination	City");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);

getContentPane().add(citiesLabel,	gridConstraints);
citiesScrollPane.setPreferredSize(new	Dimension(150,	100));
citiesScrollPane.setViewportView(citiesList);

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);

getContentPane().add(citiesScrollPane,	gridConstraints);
seatLabel.setText("Seat	Location");

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);

getContentPane().add(seatLabel,	gridConstraints);
seatComboBox.setBackground(Color.WHITE);

seatComboBox.setPreferredSize(new	Dimension(100,	25));
gridConstraints	=	new	GridBagConstraints();

gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);

gridConstraints.anchor	=	GridBagConstraints.NORTH;
getContentPane().add(seatComboBox,	gridConstraints);
mealLabel.setText("Meal	Preference");

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);

getContentPane().add(mealLabel,	gridConstraints);
mealComboBox.setEditable(true);

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	0,	10);

gridConstraints.anchor	=	GridBagConstraints.NORTH;
getContentPane().add(mealComboBox,	gridConstraints);
assignButton.setText("Assign");

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(0,	0,	10,	0);

getContentPane().add(assignButton,	gridConstraints);
assignButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

assignButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(0,	0,	10,	0);

getContentPane().add(exitButton,	gridConstraints);
exitButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

exitButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());
//	populate	cities
DefaultListModel	citiesListModel	=	new	DefaultListModel();

citiesListModel.addElement("San	Diego");
citiesListModel.addElement("Los	Angeles");
citiesListModel.addElement("Orange	County");
citiesListModel.addElement("Ontario");
citiesListModel.addElement("Bakersfield");
citiesListModel.addElement("Oakland");
citiesListModel.addElement("Sacramento");
citiesListModel.addElement("San	Jose");
citiesListModel.addElement("San	Francisco");
citiesListModel.addElement("Eureka");
citiesListModel.addElement("Eugene");
citiesListModel.addElement("Portland");
citiesListModel.addElement("Spokane");
citiesListModel.addElement("Seattle");
citiesList.setModel(citiesListModel);
citiesList.setSelectedIndex(0);

//	populate	seats
seatComboBox.addItem("Aisle");
seatComboBox.addItem("Middle");
seatComboBox.addItem("Window");

seatComboBox.setSelectedIndex(0);

//	meals
mealComboBox.addItem("Chicken");
mealComboBox.addItem("Mystery	Meat");
mealComboBox.addItem("Kosher");
mealComboBox.addItem("Vegetarian");
mealComboBox.addItem("Fruit	Plate");
mealComboBox.setSelectedItem("No	Preference");

}

private	void	assignButtonActionPerformed(ActionEvent	e)	{
//	Build	message	box	that	gives	your	assignment
String	message;
message	=	"Destination:	"	+	citiesList.getSelectedValue()	+	"\n";

message	+=	"Seat	Location:	"	+	seatComboBox.getSelectedItem()	+	"\n";
message	+=	"Meal:	"	+	mealComboBox.getSelectedItem()	+	"\n";
JOptionPane.showConfirmDialog(null,	message,	"Your	Assignment",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	}
private	void	exitButtonActionPerformed(ActionEvent	e)	{

System.exit(0);

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	 the	 application.	 You	 may	 have	 to	 correct	 some	 compilation	 errors.	 My

finished	 screen	 with	 choices	 I	 made	 shows:	

And,	after	clicking	Assign,	I	see:	

Save	the	project	(saved	as	Example3-3	project	in	\LearnJava\LJ	Code\Class
3\	project	group).

Class	Review
After	completing	this	class,	you	should	understand:

➢	How	 to	use	 the	 confirm	dialog	box	 (message	box),	 assigning	messages,
icons	and	buttons	➢	Useful	properties,	events,	and	methods	for	the	frame,
button,	text	field,	label,	check	box,	and	radio	button	controls	➢	Where	the
above	listed	controls	can	and	should	be	used	➢	How	the	panel	control	is
used	 to	group	 controls,	 particularly	 radio	buttons	➢	How	several	 events
can	 be	 handled	 by	 a	 single	 event	 procedure	➢	 The	 concept	 of	 ‘control
arrays’	 and	 how	 to	 use	 them	➢	 How	 to	 use	 list	 box	 and	 combo	 box
controls	➢	How	the	scroll	pane	can	add	scrolling	capabilities	to	a	control

Practice	Problems	3
Problem	 3-1.	Message	 Box	 Problem.	 Build	 an	 application	 that	 lets	 you	 see
what	various	message	boxes	(confirm	dialog	boxes)	look	like.	Allow	selection	of
icon,	buttons	displayed,	and	input	message.	Provide	feedback	on	button	clicked
on	displayed	message	box.

Problem	3-2.	Tray	Problem.	Here’s	a	sheet	of	cardboard	(L	units	long	and	W
units	 wide).	 A	 square	 cut	 X	 units	 long	 is	 made	 in	 each	 corner:	

If	you	cut	out	the	four	shaded	corners	and	fold	the	resulting	sides	up	along	the
dotted	 lines,	 a	 tray	 is	 formed.	 Build	 an	 application	 that	 lets	 a	 user	 input	 the
length	(L)	and	width	(W).	Have	the	application	decide	what	value	X	should	be
such	that	the	tray	has	the	largest	volume	possible.

Problem	3-3.	List	Problem.	Build	an	application	with	two	list	controls.	Select
items	from	one	box.	Click	a	button	to	move	selected	items	to	the	other	list	box.
If	you	then	click	an	item	in	the	second	list	box	and	click	a	button,	have	it	return
to	the	first	box.	Insure	the	items	in	the	first	box	are	always	in	alphabetical	order.

Problem	 3-4.	 Combo	 Box	 Problem.	 Build	 an	 application	 with	 an	 editable
combo	box.	Populate	with	some	kind	of	information.	If	the	user	decides	to	type
in	their	own	selection	(that	is,	they	don’t	choose	one	of	the	listed	items),	add	that
new	item	to	the	drop-down	list	portion	of	the	combo	box.

Exercise	3
Customer	Database	Input	Screen

A	 new	 sports	 store	 wants	 you	 to	 develop	 an	 input	 screen	 for	 its	 customer
database.	The	required	input	information	is:	1.	Name
2.	Age
3.	City	of	Residence
4.	Sex	(Male	or	Female)
5.	 Activities	 (Running,	 Walking,	 Biking,	 Swimming,	 Skiing	 and/or	 In-Line
Skating)	6.	Athletic	Level	(Extreme,	Advanced,	Intermediate,	or	Beginner)	Set
up	 the	 screen	 so	 that	only	 the	Name	and	Age	 (use	 text	 fields)	 and,	perhaps,
City	(use	a	combo	box)	need	to	be	typed;	all	other	 inputs	should	be	set	with
check	 boxes	 and	 radio	 buttons.	When	 a	 screen	 of	 information	 is	 complete,
display	 the	 summarized	 profile	 in	 a	message	 box.	This	 profile	message	 box

should	resemble	this:	

4

More	Java	Swing	Controls

Review	and	Preview
In	this	class,	we	continue	looking	at	Java	Swing	controls.	We	will	look	at
spinners,	 scroll	 bars,	 sliders,	 labels	 (again,	 for	 displaying	 graphics)	 and
file	 chooser	 dialogs	 that	 allow	direct	 interaction	with	 drives,	 directories,
and	files.

In	 the	 examples,	 you	 should	 start	 trying	 to	 do	 as	 much	 of	 the	 building	 and
programming	of	 the	 applications	you	 can	with	minimal	 reference	 to	 the	notes.
This	will	help	you	build	your	programming	skills.

JSpinner	Control

The	 spinner	 control	 is	 like	 a	 combo	box	 control	with	 no	 drop-down	 list.	 It	 is
used	to	choose	items	from	relatively	short	lists.	Using	different	models,	different
information	 can	 be	 “spun	 through.”	We	will	 look	 at	 two	 cases.	We	 look	 at	 a
number	spinner,	which	uses	a	number	model,	and	a	list	spinner,	which	uses	a
list	model.

The	 number	 spinner	 looks	 like	 a	 text	 field	 control	 with	 two	 small	 arrows.
Clicking	the	arrows	changes	the	displayed	value,	which	ranges	from	a	specified
minimum	to	a	specified	maximum.	The	user	can	even	type	in	a	value,	if	desired.
Such	controls	are	useful	for	supplying	a	date	in	a	month	or	are	used	as	volume
controls	in	some	multimedia	applications.

The	list	spinner	is	similar	in	appearance	to	the	number	spinner.	The	difference	is
that	 the	 list	 spinner	 displays	 a	 list	 of	 string	 items	 (rather	 than	 numbers)	 as
potential	 choices.	 The	 control	 is	 usually	 reserved	 for	 relatively	 small	 lists.
Examples	of	use	are	selecting	a	state	 in	 the	United	States	 for	an	address	book,
selecting	a	month	for	a	calendar	input	or	selecting	a	name	from	a	short	list.

Spinner	Properties:

model Model	used	to	supply	information	for	the	spinner
value Current	value	displayed	in	spinner	control.
font Font	name,	style,	size.
background Spinner	background	color.
foreground Color	of	text.

Spinner	Methods:

getValue Determine	current	value	of	spinner.
setModel Establish	model	to	use	in	spinner	control
setFont Sets	font	name,	style,	size.

setBackground Sets	the	spinner	background	color.
setForeground Sets	color	of	text.

Spinner	Event:

stateChanged Event	(ChangeEvent)	triggered	when	the	spinner
value	changes.	Added	with
ChangeEventListener	(requires	importation	of
javax.swing.event.*	files).

The	stateChanged	event	is	new	in	our	work.	To	add	a	listener	for	such	an	event
to	 a	 spinner	 control	 named	 mySpinner,	 use:
mySpinner.addChangeListener(new	ChangeListener()	{

public	void	stateChanged(ChangeEvent	e)	{
mySpinnerStateChanged(e);

}

});

And,	 the	 corresponding	 event	 code	 would	 be	 placed	 in	 a
mySpinnerStateChanged	 method:	 private	 void
mySpinnerStateChanged(ChangeEvent	e)	{

[method	code]

}

Special	 constructors	 are	 used	 to	 assign	 a	 model	 to	 the	 spinner	 control.	 For	 a
number	spinner,	the	model	comes	from	the	SpinnerNumberModel	class.	The
syntax	 to	 assign	 a	 number	 model	 to	 a	 spinner	 (mySpinner)	 is:
mySpinner.setModel(new	 SpinnerNumberModel(value,	 minimum,
maximum,	stepSize));	where:

value Initial	number	to	display
minimum Minimum	value	to	display
maximum Maximum	value	to	display
stepSize Amount	to	increment	or	decrement	the	displayed

value	when	one	of	the	arrows	is	clicked.

In	our	work,	all	values	will	be	int	types.	The	model	also	allows	double	types	for
value,	minimum,	maximum,	and	stepSize.	The	value	for	a	number	spinner	can
be	changed	by	clicking	either	of	the	arrows	or,	optionally,	by	typing	a	value.	If
using	the	arrows,	the	value	will	always	lie	between	minimum	and	maximum.	If
the	 user	 types	 in	 a	 value,	 you	 have	 no	 control	 over	 what	 value	 is	 typed.
However,	 no	 adjustments	 to	 the	 number	 spinner	 can	 be	 made	 as	 long	 as	 the
displayed	 value	 is	 outside	 the	 acceptable	 range	 (between	 minimum	 and
maximum).

To	 recover	 the	 numeric	 value	 of	 the	 spinner	 (for	 mathematical	 operations)
requires	a	bit	of	 tricky	code.	The	value	returned	by	the	getValue	method	is	an
object	that	can’t	be	converted	to	an	integer	type.	So,	we	take	a	two	step	process
of	first	converting	the	object	to	a	string,	then	converting	the	string	to	an	int	type.
If	 the	 recovered	value	 is	myValue,	 the	code	 that	does	all	 this	 for	our	example
spinner	(mySpinner)	is:	myValue	=
Integer.valueOf(mySpinner.getValue().toString()).intValue();	For	a	list
spinner,	the	information	to	be	displayed	is	stored	in	a	String	type	array.	The
array	is	then	assigned	to	the	spinner	using	the	SpinnerListModel	class.	The
syntax	to	assign	an	array	(myArray)	to	a	spinner	(mySpinner)	is:
mySpinner.setModel(new	SpinnerListModel(myArray));	Like	the	number
spinner,	the	value	property	(a	String	type	here)	can	be	changed	by	clicking
either	of	the	arrows	or,	optionally,	by	typing	a	value.	If	the	user	types	in	a
value,	you	have	no	control	over	what	value	is	typed.	If	an	illegal	value	is
typed,	no	stateChanged	event	is	registered	until	the	value	displayed	matches
one	of	the	values	in	the	spinner’s	list.

You	may	have	noticed	that,	compared	to	other	controls,	the	spinner	control	has
no	font,	background,	foreground,	or	alignment	properties.	Does	this	mean	we	are
stuck	with	 default	 values?	No,	 it	 just	means	we	 need	 to	 take	 another	 route	 to
change	the	properties.	The	display	element	of	the	spinner	control	is	a	text	field
managed	by	the	control’s	editor.	To	change	one	of	the	specified	properties,	we
directly	 access	 the	 text	 field	 through	 this	 editor.	 For	 our	 example	 spinner
(mySpinner),	to	change	the	font	to	myFont,	use:	((JSpinner.DefaultEditor)
mySpinner.getEditor()).getTextField().setFont(myFont);	To	change	the
background	color	to	myColor,	use:	((JSpinner.DefaultEditor)
mySpinner.getEditor()).getTextField().setBackground(myColor);	To

change	the	foreground	color	to	myColor,	use:	((JSpinner.DefaultEditor)
mySpinner.getEditor()).getTextField().setForeground(myColor);	And,	to
change	the	alignment	to	myAlignment,	use:	((JSpinner.DefaultEditor)
mySpinner.getEditor()).getTextField().setHorizontalAlignment(myAlignment);
These	changes	must	be	made	after	the	spinner	model	is	established.

Typical	use	of	spinner	control:

➢	 Declare	 and	 create	 spinner	 control,	 assigning	 an	 identifiable	name.	 For
mySpinner,	the	code	is:	JSpinner	mySpinner	=	new	JSpinner();

➢	 Decide	whether	 you	 are	 using	 a	number	 or	 list	 spinner.	 For	 a	 number
spinner,	 choose	 values	 for	 value,	minimum,	 maximum	 and	 stepSize.
Assign	 number	 model	 to	 spinner	 control:	 mySpinner.setModel(new
SpinnerNumberModel(value,	minimum,	maximum,	stepSize);

For	 a	 list	 spinner,	 create	 an	 array	 of	 the	 items	 to	 display	 in	 the	 list	 spinner.
Assign	that	array	(myArray)	to	spinner	control:

mySpinner.setModel(new	 SpinnerListModel(myArray));	 ➢	 Place
control	in	layout	manager.

➢	Add	listener	for	and	monitor	stateChanged	event	for	changes	in	value.
➢	Use	getValue	method	to	determine	current	value.
➢	You	may	also	 choose	 to	 change	 the	 font,	background	 and	 foreground
properties	of	the	spinner	control.

Example	4-1
Date	Input	Device

Start	 a	new	project	 in	NetBeans.	Name	 the	project	DateInput.	Delete	code	 in
Java	 file	 named	DateInput.	 In	 this	 project,	 we’ll	 use	 two	 spinner	 controls	 to
select	 a	 month	 and	 day	 of	 the	 year.	 The	 finished	 frame	 will	 be:	

1.	 Place	 two	 spinner	 controls	 and	 a	 label	 control	 on	 the	 frame.	 The
GridBagLayout	 arrangement	 is:	

Properties	set	in	code:

DateInput	Frame:
title Date	Input
resizable false

monthSpinner:
model SpinnerListModel	(array	monthNames)
preferredSize (150,	30)
font Arial,	PLAIN,	18
foreground BLUE
gridx 0
gridy 0

insets (10,	10,	10,	10)

daySpinner:
model SpinnerNumberModel
value 1
minimum 1
maximum 31
stepSize 1
preferredSize (100,	30)
font Arial,	PLAIN,	18
foreground BLUE
horizontalAlignment CENTER
gridx 1
gridy 0
insets (10,	10,	10,	10)

dateLabel:
text January	1
font Arial,	BOLD,	18
foreground BLUE
horizontalAlignment CENTER
gridx 0
gridy 1
gridwidth 2
insets (0,	0,	10,	0)

2.	We	first	build	the	framework:	/	*

*	DateInput.java

*/

package	dateinput;
import	javax.swing.*;
import	javax.swing.event.*;

import	java.awt.*;
import	java.awt.event.*;

public	class	DateInput	extends	JFrame	{
public	static	void	main(String	args[])	{

//	create	frame
new	DateInput().show();

}

public	DateInput()

{

//	frame	constructor
setTitle("Date	Input");
setResizable(false);
addWindowListener(new	WindowAdapter()	{

public	void	windowClosing(WindowEvent	evt)	{
exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());	pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	 setBounds((int)	 (0.5
(screenSize.width	 -	getWidth())),	 (int)	 (0.5	 (screenSize.height	 -	getHeight())),
getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	evt)	{
System.exit(0);

}

}

Run	to	make	sure	the	frame	appears.

3.	 Declare	 the	 monthNames	 array	 as	 a	 class	 level	 variable:	 String[]
monthNames	 =	 new	 String[12];	 In	 the	 frame	 constructor	 method,	 add
elements	to	this	array:	//	add	month	names

monthNames[0]	=	"January";
monthNames[1]	=	"February";
monthNames[2]	=	"March";
monthNames[3]	=	"April";
monthNames[4]	=	"May";
monthNames[5]	=	"June";
monthNames[6]	=	"July";
monthNames[7]	=	"August";
monthNames[8]	=	"September";
monthNames[9]	=	"October";
monthNames[10]	=	"November";
monthNames[11]	=	"December";

4.	 Next,	 add	 the	 controls	 and	 the	 event	 method.	 Declare	 and	 create	 the	 three
controls:	 JSpinner	 monthSpinner	 =	 new	 JSpinner();	 JSpinner
daySpinner	=	new	JSpinner();	JLabel	dateLabel	=	new	JLabel();

Position	and	add	each	control.	Add	a	change	event	for	the	two	spinner	controls:
GridBagConstraints	 gridConstraints;	 monthSpinner.setPreferredSize(new
Dimension(150,	 30));	 monthSpinner.setModel(new
SpinnerListModel(monthNames));	((JSpinner.DefaultEditor)
monthSpinner.getEditor()).getTextField().setFont(new	Font("Arial",
Font.PLAIN,	18));	((JSpinner.DefaultEditor)
monthSpinner.getEditor()).getTextField().setForeground(Col	or.BLUE);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(monthSpinner,	gridConstraints);
monthSpinner.addChangeListener(new	ChangeListener()	{

public	void	stateChanged(ChangeEvent	e)	{
dateStateChanged(e);

}

});

daySpinner.setPreferredSize(new	Dimension(100,	30));
SpinnerNumberModel	dayNumberModel	=	new
SpinnerNumberModel(1,	1,	31,	1);
daySpinner.setModel(dayNumberModel);	((JSpinner.DefaultEditor)
daySpinner.getEditor()).getTextField().setHorizontalAlignm
ent(SwingConstants.CENTER);	((JSpinner.DefaultEditor)
daySpinner.getEditor()).getTextField().setFont(new	Font("Arial",
Font.PLAIN,	18));	((JSpinner.DefaultEditor)
daySpinner.getEditor()).getTextField().setForeground(Color	.BLUE);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(daySpinner,	gridConstraints);
daySpinner.addChangeListener(new	ChangeListener()	{

public	void	stateChanged(ChangeEvent	e)	{
dateStateChanged(e);

}

});

dateLabel.setText("January	1");
dateLabel.setFont(new	Font("Arial",	Font.BOLD,	24));
dateLabel.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(0,	0,	10,	0);
getContentPane().add(dateLabel,	gridConstraints);	5.	We’ll	skip	checking

the	project	at	this	point	and	go	right	to	adding	the	code	–	there’s	only	one
line!!	Use	this	code	in	the	dateStateChanged	event:	private	void
dateStateChanged(ChangeEvent	e)	{

dateLabel.setText(monthSpinner.getValue()	+	"	"	+
daySpinner.getValue());	}

This	code	simply	updates	the	displayed	date	when	either	 the	selected	month	or
day	changes.

The	 final	 DateInput.java	 code	 listing	 (code	 added	 to	 basic	 framework	 is
shaded):	/	*
*	DateInput.java

*/

package	dateinput;
import	javax.swing.*;
import	javax.swing.event.*;
import	java.awt.*;
import	java.awt.event.*;
public	class	DateInput	extends	JFrame	{
JSpinner	monthSpinner	=	new	JSpinner();	JSpinner	daySpinner	=	new
JSpinner();	JLabel	dateLabel	=	new	JLabel();
String[]	monthNames	=	new	String[12];
public	static	void	main(String	args[])	{

//	create	frame
new	DateInput().show();

}

public	DateInput()

{

//	frame	constructor
setTitle("Date	Input");

setResizable(false);
addWindowListener(new	WindowAdapter()	{

public	void	windowClosing(WindowEvent	evt)	{
exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
//	position	controls
GridBagConstraints	gridConstraints;
monthSpinner.setPreferredSize(new	Dimension(150,	30));
monthSpinner.setModel(new	SpinnerListModel(monthNames));
((JSpinner.DefaultEditor)

monthSpinner.getEditor()).getTextField().setFont(new	 Font("Arial",
Font.PLAIN,	18));	((JSpinner.DefaultEditor)
monthSpinner.getEditor()).getTextField().setForeground(Color.	 BLUE);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;

gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(monthSpinner,	gridConstraints);
monthSpinner.addChangeListener(new	ChangeListener()	{

public	void	stateChanged(ChangeEvent	e)	{
dateStateChanged(e);

}

});

daySpinner.setPreferredSize(new	Dimension(100,	30));
SpinnerNumberModel	dayNumberModel	=	new
SpinnerNumberModel(1,	1,	31,	1);
daySpinner.setModel(dayNumberModel);	((JSpinner.DefaultEditor)

daySpinner.getEditor()).getTextField().setHorizontalAlignment
(SwingConstants.CENTER);	((JSpinner.DefaultEditor)

daySpinner.getEditor()).getTextField().setFont(new	 Font("Arial",
Font.PLAIN,	18));	((JSpinner.DefaultEditor)
daySpinner.getEditor()).getTextField().setForeground(Color.BL	 UE);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	1;

gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(daySpinner,	gridConstraints);
daySpinner.addChangeListener(new	ChangeListener()	{

public	void	stateChanged(ChangeEvent	e)	{
dateStateChanged(e);

}

});

dateLabel.setText("January	1");
dateLabel.setFont(new	Font("Arial",	Font.BOLD,	24));
dateLabel.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	1;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(0,	0,	10,	0);
getContentPane().add(dateLabel,	gridConstraints);
pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	 setBounds((int)	 (0.5
(screenSize.width	 -	getWidth())),	 (int)	 (0.5	 (screenSize.height	 -	getHeight())),
getWidth(),	getHeight());

//	add	month	names
monthNames[0]	=	"January";
monthNames[1]	=	"February";
monthNames[2]	=	"March";
monthNames[3]	=	"April";
monthNames[4]	=	"May";

monthNames[5]	=	"June";
monthNames[6]	=	"July";
monthNames[7]	=	"August";
monthNames[8]	=	"September";
monthNames[9]	=	"October";
monthNames[10]	=	"November";
monthNames[11]	=	"December";

}

private	void	dateStateChanged(ChangeEvent	e)	{
dateLabel.setText(monthSpinner.getValue()	+	"	"	+

daySpinner.getValue());	}
private	void	exitForm(WindowEvent	evt)	{

System.exit(0);

}

}

Run	 the	 program.	 Scroll	 through	 the	 month	 names.	 Scroll	 through	 the	 day
values,	 noticing	 how	 the	 displayed	 date	 changes.	 Here’s	 what	 I	 see:	

Save	 the	 project	 (saved	 as	 Example4-1	 project	 in	 the	 \LearnJava\LJ
Code\Class	4\	project	group).	Do	you	notice	that	you	could	enter	April	31	as	a
date,	 even	 though	 it’s	not	 a	 legal	value?	Can	you	 think	of	how	 to	modify	 this
example	 to	make	 sure	 you	 don’t	 exceed	 the	 number	 of	 days	 in	 any	 particular
month?	And,	how	would	you	handle	February	–	you	need	to	know	if	it’s	a	leap
year.

JScrollBar	Control

The	 number	 spinner	 control	 is	 useful	 for	 relatively	 small	 ranges	 of	 numeric
input.	It	wouldn’t	work	well	for	large	number	ranges	–	you’d	spend	a	lot	of	time
clicking	 those	 little	 arrows.	 For	 large	 ranges	 of	 numbers,	 we	 use	 scroll	 bar
controls.	Scroll	bars	are	widely	used	in	GUI	applications.	Scroll	bars	provide	an
intuitive	way	to	move	through	a	list	of	information	and	make	great	input	devices.
Here,	we	use	a	scroll	bar	to	obtain	a	whole	number	(int	data	type).

Scroll	 bars	 are	 comprised	 of	 three	 areas	 that	 can	 be	 clicked,	 or	 dragged,	 to
change	 the	 scroll	 bar	 value.	 Those	 areas	 are:	

Clicking	an	end	arrow	 increments	 the	scroll	box	a	small	amount,	clicking	 the
bar	area	increments	the	scroll	box	a	large	amount,	and	dragging	the	scroll	box
(thumb)	provides	continuous	motion.	Using	the	properties	of	scroll	bars,	we	can
completely	 specify	 how	one	works.	The	 scroll	 box	 position	 is	 the	 only	 output
information	from	a	scroll	bar.

Scroll	Bar	Properties:

preferredSize Specified	size	(width,	height)	of	scroll	bar.
value Current	position	of	the	scroll	box	(thumb)	within

the	scroll	bar.	If	you	set	this	in	code,	Java	moves
the	scroll	box	to	the	proper	position.

minimum The	minimum	possible	scroll	bar	value.
maximum The	maximum	possible	scroll	bar	value.
unitIncrement The	increment	added	to	or	subtracted	from	the

scroll	bar	value	property	when	either	of	the	scroll
arrows	is	clicked.

blockIncrement Increment	added	to	or	subtracted	from	the	scroll
bar	value	property	when	the	bar	area	is	clicked.

extent Width	of	scroll	box.
orientation Determines	whether	the	scroll	bar	lies

horizontally	or	vertically.

Scroll	Bar	Methods:

setPreferredSize Establishes	size	of	scroll	bar.
setValue Sets	current	value.
getValue Determines	current	value.
setMinimum Establish	minimum	value.
setMaximum Establish	minimum	value.
setUnitIncrement Establish	unitIncrement	property.
setBlockIncrement Establish	blockIncrement	property.
setVisibleAmount Sets	width	(extent)	of	scroll	box.
getVisibleAmount Determines	width	(extent)	of	scroll	box.
setOrientation Sets	orientation	of	scroll	bar

(JScrollBar.HORIZONTAL	for	horizontal
scroll	bar,	JScrollBar.VERTICAL	for	vertical
scroll	bar).

Scroll	Bar	Event:

adjustmentValueChanged Event	(AdjustmentEvent)	triggered	when
the	scroll	bar	value	changes.	Added	with
AdjustmentEventListener	(requires
importation	of	javax.swing.event.*	files).

Location	 of	 properties	 for	 horizontal	 scroll	 bar:	

Location	 of	 properties	 for	 vertical	 scroll	 bar:	

A	couple	of	important	notes	about	scroll	bar	properties:

1.	 Notice	 the	 vertical	 scroll	 bar	 has	 its	 minimum	 at	 the	 top	 and	 its
maximum	 at	 the	 bottom.	 This	 may	 be	 counter-intuitive	 in	 some
applications.	That	is,	users	may	expect	things	to	‘go	up’	as	they	increase.
You	can	give	this	appearance	of	going	up	by	defining	another	variable	that
varies	‘negatively’	with	the	scroll	bar	value	property.

2.	If	you	ever	change	the	value,	minimum,	or	maximum	properties	in	code,
make	sure	value	 is	at	all	 times	between	minimum	and	maximum	or	 the
program	will	stop	with	an	error	message.

To	add	a	listener	for	the	adjustmentValueChanged	event	to	a	scroll	bar	control
named	 myScrollBar,	 use:	 myScrollBar.addAdjustmentListener(new
AdjustmentListener()	{

public	void	adjustmentValueChanged(AdjustmentEvent	e)	{
myScrollBarAdjustmentValueChanged(e);	}

});

And,	the	corresponding	event	code	would	be	placed	in	a
myScrollBarAdjustmentValueChanged	method:	private	void
myScrollBarAdjustmentValueChanged	(AdjustmentEvent	e)	{

[method	code]

}

}

Typical	use	of	scroll	bar	control:	Declare	and	create	scroll	bar	control,	assigning
a	meaningful	name.	For	myScrollBar,	the	code	is:	JScrollBar	myScrollBar	=
new	 JScrollBar();	 Set	 the	 minimum,	 maximum,	 unitIncrement,
blockIncrement,	and	orientation	properties.	Initialize	value	property.
Place	control	in	grid	layout.
Add	 listener	 for	 and	monitor	adjustmentValueChanged	 event	 for	 changes	 in
value.

A	Note	on	the	maximum	Property:	Due	to	the	width	of	the	scroll	box	(extent),
the	maximum	value	cannot	be	achieved	by	clicking	the	end	arrows,	the	bar	area
or	moving	the	scroll	box.	The	maximum	achievable	value,	via	mouse	operations,
is	 given	 by	 the	 relation:	 “achievable”	maximum	 =	maximum	 –	 extent	 where
extent	 is	 the	 width	 of	 the	 scroll	 box.	 What	 does	 this	 mean?	 To	 meet	 an
“achievable”	maximum,	you	need	to	set	the	scroll	bar	maximum	property	using
this	 equation:	maximum	=	 “achievable”	maximum	+	extent	To	get	 the	extent
(or	width	of	the	scroll	box),	use	the	getVisibleAmount	method.	For	example,	if
you	 want	 a	 scroll	 bar	 (myScrollBar)	 to	 be	 able	 to	 reach	 100,	 set	maximum
using:	myScrollBar.setMaximum(100	+
myScrollBar.getVisibleAmount());

JSlider	Control

The	slider	control	is	similar	to	the	scroll	bar	with	a	different	interface.	It	is	used
to	establish	numeric	input	(usually	a	fairly	small	range).	It	can	be	oriented	either
horizontally	or	vertically.	Clicking	on	 the	 slider,	 scrolling	 the	pointer,	 clicking
the	cursor	control	keys	or	pressing	<PgUp>	or	<PgDn>	changes	the	slider	value.
The	change	increments	are	set	by	the	slider	control	and	cannot	be	changed.	The
smallest	increment	is	one.	The	largest	increment	is	one-tenth	of	the	slider	range
(this	 increment	 is	 added/subtracted	 from	 the	 value	 by	 pressing	 <PgUp>	 or
<PgDn>).

Slider	Properties:

preferredSize Specified	size	(width,	height)	of	slider.
value Current	position	of	the	pointer	within	the	slider.	If

you	set	this	in	code,	Java	moves	the	pointer	to	the
proper	position.

minimum The	minimum	possible	slider	value.
maximum The	maximum	possible	slider	value.
paintTicks Used	to	establish	if	major	and	minor	tick	marks

are	drawn.
majorTickSpacing Repetition	rate	of	major	tick	marks.
minorTickSpacing Repetition	rate	of	minor	tick	marks.
paintLabels Used	to	add	labels	to	slider	values.
inverted Boolean	value	indicating	direction	pointer	moves.

If	false,	pointer	increments	from	left	to	right	or
from	bottom	to	top;	if	true,	pointer	increments
from	right	to	left	or	top	to	bottom.

orientation Determines	whether	the	slider	lies	horizontally	or
vertically.

Slider	Methods:

setPreferredSize Establishes	size	of	slider.
setValue Sets	current	value.
getValue Determines	current	value.
setMinimum Establish	minimum	value.
setMaximum Establish	minimum	value.
setPaintTicks If	true,	tick	marks	are	drawn.
setMajorTickSpacing Set	repetition	rate	of	major	tick	marks	(use	zero

for	no	major	ticks).
setMinorTickSpacing Set	repetition	rate	of	minor	tick	marks	(use	zero

for	no	minor	ticks).
setPaintLabels If	true,	labels	are	added	to	slider.
setinverted Boolean	value	indicating	direction	pointer

moves.
If	false,	pointer
increments	from	left	to
right	or	from

setOrientation	Sets

orientation	of	slider	(JSlider.HORIZONTAL
for	horizontal	slider,	JScrollBar.VERTICAL
for	vertical	slider).

Scroll	Event:

stateChanged Event	(ChangeEvent)	triggered	when	the	slider
value	changes.	Added	with	ChangeListener
(requires	of	javax.swing.event.*	files).

To	 add	 a	 listener	 for	 the	 stateChanged	 event	 to	 a	 slider	 control	 named
mySlider,	use:	mySlider.addChangeListener(new	ChangeListener()	{

public	void	stateChanged(ChangeEvent	e)	{
mySliderStateChanged(e);

}

});

And,	 the	 corresponding	 event	 code	 would	 be	 placed	 in	 a

mySliderStateChanged	 method:	 private	 void	 mySliderStateChanged
(ChangeEvent	e)	{

[method	code]

}

A	couple	of	important	notes	about	slider	properties:

1.	Notice	the	slider	can	have	the	maximum	or	minimum	at	either	end	of	the
control.	This	is	different	than	the	scroll	bar	control.

2.	If	you	ever	change	the	value,	minimum,	or	maximum	properties	in	code,
make	sure	value	 is	at	all	 times	between	minimum	and	maximum	or	 the
program	will	stop	with	an	error	message.

3.	The	 track	bar	maximum	property	can	be	achieved	 in	code	or	via	mouse
operations.	 It	 does	 not	 exhibit	 the	 behavior	 noted	 with	 the	 scroll	 bar
control	(meaning	the	achievable	maximum	and	maximum	property	value
are	the	same).

Typical	use	of	slider	control:

➢	 Declare	 and	 create	 slider	 control,	 assigning	 a	 meaningful	 name.	 For
mySlider,	the	code	is:	JSlider	mySlider	=	new	JSlider	();

➢	Set	the	minimum,	maximum,	and	orientation	properties.	Initialize	value
property.	Choose	tick	marks	and	labels,	if	desired.

➢	Place	control	in	grid	layout.
➢	Add	listener	for	and	monitor	stateChanged	event	for	changes	in	value.

Example	4-2
Temperature	Conversion

Start	a	new	project	in	NetBeans.	Name	the	project	Temperature.	Delete	code	in
Java	 file	 named	 Temperature.	 In	 this	 project,	 we	 convert	 temperatures	 in
degrees	 Fahrenheit	 (set	 using	 a	 horizontal	 scroll	 bar)	 to	 degrees	 Celsius.	 The
formula	for	converting	Fahrenheit	(F)	to	Celsius	(C)	is:	C	=	(F	-	32)	*	5	/	9

Temperatures	will	be	adjusted	and	displayed	 in	 tenths	of	degrees.	The	finished

frame	will	look	like	this:	

1.	Place	a	panel	 (will	hold	 the	scroll	bar	and	will	change	colors	at	a	particular
temperature),	 two	 labels,	 and	 two	 text	 fields	 on	 the	 frame.	 The
GridBagLayout	 arrangement	 for	 the	 controls	 is:	

Set	the	properties	of	the	frame	and	each	control:

Temperature	Frame:
title Temperature	Conversion
resizable false

degreesFLabel:
text Fahrenheit
gridx 0

gridy 0
insets (0,	10,	0,	0)

degreesFTextField:
text 32.0
columns 10
editable false
background WHITE
horizontalAlignment CENTER
gridx 1
gridy 0

degreesCLabel:
text Fahrenheit
gridx 0
gridy 2
insets (0,	10,	0,	0)

degreesCTextField:
text 0.0
columns 10
editable false
background WHITE
horizontalAlignment CENTER
gridx 1
gridy 2

colorPanel:
preferredSize (280,	40)
background BLUE
gridx 0
gridy 1
gridwidth 2

temperatureScrollBar:
preferredSize (200,	30)
minimum -600
maximum 1200	(“achievable”	maximum)
blockIncrement 10
unitIncrement 1
value 320
orientation HORIZONTAL

Note	 the	 scroll	 bar	properties	 (value,	minimum,	maximum,	blockIncrement,
unitIncrement)	are	in	tenths	of	degrees.	The	initial	temperatures	are	initialized
at	32.0	F	(value	=	320	tenths	of	degrees)	and	0.0	C,	known	values.

We	want	an	“achievable	maximum”	of	120.0	degrees	or	a	value	of	1200.	So,	in
code	 we	 will	 set	 the	 maximum	 using:
temperatureScrollBar.setMaximum(1200	+
temperatureScrollBar.getVisibleAmount());	2.	As	usual,	build	the	basic
framework:	/	*
*	Temperature.java

*/

package	temperature;
import	javax.swing.*;
import	javax.swing.event.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.text.*;

public	class	Temperature	extends	JFrame	{

public	static	void	main(String	args[])	{
//	create	frame
new	Temperature().show();

}

}

public	Temperature()

{

//	frame	constructor
setTitle("Temperature	Conversion");	setResizable(false);
addWindowListener(new	WindowAdapter()	{

public	void	windowClosing(WindowEvent	evt)	{
exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());	pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	setBounds((int)	(0.5	*
(screenSize.width	-
getWidth())),	(int)	(0.5	*	(screenSize.height	-
getHeight())),	getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	evt)	{
System.exit(0);

}

}

Run	to	make	sure	things	are	okay.

3.	Now,	we	add	controls.	First,	declare	and	create	the	label	and	text	field	for	the
Fahrenheit	temperature:	JLabel	degreesFLabel	=	new	JLabel();	JTextField
degreesFTextField	=	new	JTextField();	Position	and	add	 these	controls	 to
the	 frame:	 GridBagConstraints	 gridConstraints;
degreesFLabel.setText("Fahrenheit");	 gridConstraints	 =	 new
GridBagConstraints();	gridConstraints.gridx	=	0;

gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(0,	10,	0,	0);
getContentPane().add(degreesFLabel,	gridConstraints);
degreesFTextField.setText("32.0");	degreesFTextField.setColumns(10);
degreesFTextField.setHorizontalAlignment(SwingConstants.CENTER);
degreesFTextField.setEditable(false);
degreesFTextField.setBackground(Color.WHITE);	gridConstraints	=
new	GridBagConstraints();	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
getContentPane().add(degreesFTextField,	gridConstraints);	Run	to	see:

4.	Now,	declare	and	create	 the	 label	and	 text	 field	for	 the	Celsius	 temperature:
JLabel	degreesCLabel	=	new	JLabel();	JTextField	degreesCTextField	=
new	 JTextField();	 Position	 and	 add	 these	 controls	 to	 the	 frame:
degreesCLabel.setText("Celsius");	 gridConstraints	 =	 new
GridBagConstraints();	gridConstraints.gridx	=	0;

gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(0,	10,	0,	0);
getContentPane().add(degreesCLabel,	gridConstraints);
degreesCTextField.setText("0.0");	degreesCTextField.setColumns(10);
degreesCTextField.setHorizontalAlignment(SwingConstants.CENTER);
degreesCTextField.setEditable(false);
degreesCTextField.setBackground(Color.WHITE);	gridConstraints	=
new	GridBagConstraints();	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	2;
getContentPane().add(degreesCTextField,	gridConstraints);	Run	to	see:

5.	Finally,	add	the	panel	and	scroll	bar	(with	an	empty	event	for	the	scroll	bar).
Declare	 and	 create	 the	 controls:	 JPanel	 colorPanel	 =	 new	 JPanel();

JScrollBar	 temperatureScrollBar	 =	 new	 JScrollBar();	 Position	 and	 add
controls	 to	 frame.	 Add	 scroll	 bar	 adjustmentValueChanged	 method:
colorPanel.setBackground(Color.BLUE);
colorPanel.setPreferredSize(new	Dimension	(280,	40));	gridConstraints	=
new	GridBagConstraints();	gridConstraints.gridx	=	0;

gridConstraints.gridy	=	1;
gridConstraints.gridwidth	=	2;
getContentPane().add(colorPanel,	gridConstraints);
temperatureScrollBar.setMinimum(-600);
temperatureScrollBar.setMaximum(1200	+
temperatureScrollBar.getVisibleAmount());
temperatureScrollBar.setBlockIncrement(10);
temperatureScrollBar.setUnitIncrement(1);
temperatureScrollBar.setValue(320);
temperatureScrollBar.setOrientation(JScrollBar.HORIZONTAL);
temperatureScrollBar.setPreferredSize(new	Dimension	(200,	30));
colorPanel.add(temperatureScrollBar);
temperatureScrollBar.addAdjustmentListener(new	AdjustmentListener()
{

public	void	adjustmentValueChanged(AdjustmentEvent	e)	{
temperatureScrollBarAdjustmentValueChanged(e);	}

});

Add	the	empty	event	method:

private	void
temperatureScrollBarAdjustmentValueChanged(AdjustmentEvent	e)	{

}

Run	 the	 project	 to	 see	 the	 finished	 control	 arrangement:	

6.	 Now,	we’ll	 write	 the	 code.	We	 need	 a	 single	 class	 level	 variable:	boolean
isHot	=	false;

7.	Use	this	code	for	the	adjustmentValueChanged	event	method:	private	void
temperatureScrollBarAdjustmentValueChanged(AdjustmentEvent	e)	{

double	tempF,	tempC;
//	Read	F	and	convert	to	C	-	divide	by	10	needed	since	value	is	tenths
of	degrees	tempF	=	(double)	temperatureScrollBar.getValue()	/	10;
//check	to	see	if	changed	from	hot	to	cold	or	vice	versa	if	(isHot	&&
tempF	<	70)	{

//	changed	to	cold
isHot	=	false;
colorPanel.setBackground(Color.BLUE);	}

else	if	(!isHot	&&	tempF	>=	70)	{
//changed	to	hot
isHot	=	true;
colorPanel.setBackground(Color.RED);	}

degreesFTextField.setText(new
DecimalFormat("0.0").format(tempF));	tempC	=	(tempF	-	32.0)	*	5.0	/
9.0;	degreesCTextField.setText(new
DecimalFormat("0.0").format(tempC));	}

This	code	determines	the	scroll	bar	value	as	it	changes,	takes	that	value	as
Fahrenheit	temperature,	computes	Celsius	temperature,	and	displays	both
values.	A	blue	panel	is	displayed	used	for	cold	temperatures,	a	red	panel	for
warm	temperatures	(yes,	70	degrees	is	considered	warm	in	Seattle!).

The	complete	Temperature.java	code	listing	(code	added	to	basic	framework	is
shaded):	/	*

*	Temperature.java

*/

package	temperature;
import	javax.swing.*;
import	javax.swing.event.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.text.*;
public	class	Temperature	extends	JFrame	{
JLabel	degreesFLabel	=	new	JLabel();	JTextField	degreesFTextField	=
new	JTextField();	JPanel	colorPanel	=	new	JPanel();	JScrollBar
temperatureScrollBar	=	new	JScrollBar();	JLabel	degreesCLabel	=	new
JLabel();	JTextField	degreesCTextField	=	new	JTextField();	boolean
isHot	=	false;
public	static	void	main(String	args[])	{

//	create	frame
new	Temperature().show();

}

public	Temperature()

{

//	frame	constructor
setTitle("Temperature	Conversion");	setResizable(false);
addWindowListener(new	WindowAdapter()	{

public	void	windowClosing(WindowEvent	evt)	{
exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	position	controls
GridBagConstraints	gridConstraints;
degreesFLabel.setText("Fahrenheit");	gridConstraints	=	new
GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(0,	10,	0,	0);
getContentPane().add(degreesFLabel,	gridConstraints);
degreesFTextField.setText("32.0");
degreesFTextField.setColumns(10);
degreesFTextField.setHorizontalAlignment(SwingConstants.CENTER);
degreesFTextField.setEditable(false);
degreesFTextField.setBackground(Color.WHITE);	gridConstraints	=
new	GridBagConstraints();	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
getContentPane().add(degreesFTextField,	gridConstraints);
degreesCLabel.setText("Celsius");	gridConstraints	=	new
GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(0,	10,	0,	0);
getContentPane().add(degreesCLabel,	gridConstraints);
degreesCTextField.setText("0.0");
degreesCTextField.setColumns(10);
degreesCTextField.setHorizontalAlignment(SwingConstants.CENTER);
degreesCTextField.setEditable(false);
degreesCTextField.setBackground(Color.WHITE);	gridConstraints	=
new	GridBagConstraints();	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	2;
getContentPane().add(degreesCTextField,	gridConstraints);
colorPanel.setBackground(Color.BLUE);
colorPanel.setPreferredSize(new	Dimension	(280,	40));
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	1;
gridConstraints.gridwidth	=	2;
getContentPane().add(colorPanel,	gridConstraints);
temperatureScrollBar.setMinimum(-600);

temperatureScrollBar.setMaximum(1200	+
temperatureScrollBar.getVisibleAmount());
temperatureScrollBar.setBlockIncrement(10);
temperatureScrollBar.setUnitIncrement(1);
temperatureScrollBar.setValue(320);
temperatureScrollBar.setOrientation(JScrollBar.HORIZONTAL);
temperatureScrollBar.setPreferredSize(new	Dimension	(200,	30));
colorPanel.add(temperatureScrollBar);
temperatureScrollBar.addAdjustmentListener(new
AdjustmentListener()	{

public	void	adjustmentValueChanged(AdjustmentEvent	e)	{
temperatureScrollBarAdjustmentValueChanged(e);	}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	 setBounds((int)	 (0.5
(screenSize.width	 -	getWidth())),	 (int)	 (0.5	 (screenSize.height	 -	getHeight())),
getWidth(),	getHeight());	}
private	void

temperatureScrollBarAdjustmentValueChanged(AdjustmentEvent	e)	{
double	tempF,	tempC;
//	Read	F	and	convert	to	C	-	divide	by	10	needed	since	value	is	tenths

of	degrees	tempF	=	(double)	temperatureScrollBar.getValue()	/	10;	//check
to	see	if	changed	from	hot	to	cold	or	vice	versa	if	(isHot	&&	tempF	<	70)	{

//	changed	to	cold
isHot	=	false;
colorPanel.setBackground(Color.BLUE);	}

else	if	(!isHot	&&	tempF	>=	70)	{
//changed	to	hot
isHot	=	true;
colorPanel.setBackground(Color.RED);	}

degreesFTextField.setText(new
DecimalFormat("0.0").format(tempF));	tempC	=	(tempF	-	32.0)	*	5.0	/	9.0;

degreesCTextField.setText(new
DecimalFormat("0.0").format(tempC));	}
private	void	exitForm(WindowEvent	evt)	{

System.exit(0);

}

}

Run	 the	program.	Make	sure	 it	provides	correct	 information	at	obvious	points.
For	example,	32.0	F	better	always	be	the	same	as	0.0	C!	What	happens	around

70	F?	Here’s	run	I	made:	

Save	 the	 project	 (saved	 as	 Example4-2	 project	 in	 the	 \LearnJava\LJ
Code\Class	4\	project	group).

Can	you	find	a	point	where	Fahrenheit	temperature	equals	Celsius	temperature?
If	you	don't	know	this	off	the	top	of	your	head,	it's	obvious	you've	never	lived	in
extremely	cold	climates.	 I've	actually	witnessed	one	of	 those	bank	 temperature
signs	 flashing	 degrees	 F	 and	 degrees	 C	 and	 seeing	 the	 same	 number!	 Ever
wonder	why	body	 temperature	 is	 that	 odd	 figure	of	 98.6	degrees	F?	Can	your
new	application	give	you	some	insight	to	an	answer	to	this	question?

JLabel	Control	(Revisited)

Java	has	powerful	features	for	graphics.	In	Classes	7	and	8,	we	will	look	in	detail
at	most	 of	 those	 features.	As	 an	 introduction	 to	 Java	graphics,	we	 look	 at	 one
capability	of	the	label	control	not	examined	in	the	previous	class	–	its	ability	to
display	graphics	files.

The	label	control	icon	property	specifies	the	graphics	file	to	display.	Three	types
of	graphics	files	can	be	viewed	in	a	label:

File Type Description
JPEG JPEG (Joint	Photographic	Experts	Group)	is	a	compressed	bitmap	format

which	supports	8	and	24	bit	color.	It	is	popular	on	the	Internet	and
is	a	common	format	for	digital	cameras.	JPEG	filenames	have	a
.jpg	extension.

	 	 	
GIF GIF (Graphic	Interchange	Format)	is	a	compressed	bitmap	format

originally	developed	by	CompuServe.	It	supports	up	to	256	colors
and	is	also	popular	on	the	Internet.	GIF	filenames	have	a	.gif
extension.

	 	 	
PNG PNG (Portable	Network	Graphics)	format	is	a	popular	format	for

transferring	graphics	files	among	different	platforms.	PNG
filenames	have	.png	extension.

If	 you	 wish	 to	 display	 a	 graphics	 file	 not	 in	 one	 of	 these	 formats,	 there	 are
several	 commercial	 products	 that	 will	 convert	 one	 format	 to	 another.	We	 use
Paint	Shop	Pro	by	JASC	Software.

The	 displayed	 images	 are	 ImageIcon	 objects.	 To	 create	 an	 image	 named
myImage	 from	 a	 file	 named	 myFile,	 use:	 ImageIcon	 myImage	 =	 new
ImageIcon(myFile);	The	argument	 (a	String	value)	 in	 the	ImageIcon	method
must	be	a	legal	path	to	an	existing	graphics	file,	or	the	image	will	not	be	created.

When	accessing	files	in	Java,	references	Java	are	relative	to	the	project	directory.
Hence,	if	only	a	file	name	is	given,	it	is	assumed	that	file	is	located	in	the	project
directory.	For	example,	say	we	have	graphic	of	a	hamburger	(burger.gif)	stored
in	 the	 project	 directory.	 To	 load	 that	 graphic	 into	myImage,	 you	 would	 use:
ImageIcon	 myImage	 =	 new	 ImageIcon("burger.gif");	 If	 we	 have	 all	 our
graphics	stored	in	a	project	subfolder	named	myGraphics,	the	same	file	would
be	loaded	using:	ImageIcon	myImage	=	new
ImageIcon("myGraphics/burger.gif");	Or,	we	could	always	provide	a
complete,	fully	qualified	path	to	the	file:	ImageIcon	myImage	=	new
ImageIcon("c:/myProject/myGraphics/burger.gif");	You	will	know	if	your
graphics	are	loading	acceptably	–	they	will	appear!	If	they	don’t	appear,	check
to	make	sure	the	path	is	correct	and	that	the	corresponding	file	is	in	the	correct
location.	One	other	thing	to	notice	is	that	Java	uses	the	slash	(/)	character	to
separate	folder	names	and	file	names.	This	is	contrary	to	Windows	standards
of	using	a	backslash	(\).	If	you	use	the	backslash,	you	will	receive	an	“illegal
escape	character”	error	message.

Once	created,	you	often	need	to	know	the	width	and	height	of	the	image.	These
properties	 are	 obtained	 using	 the	 getIconWidth	 and	 getIconHeight	 methods.
For	our	example:	width	=	myImage.getIconWidth();
height	=	myImage.getIconHeight();	To	assign	an	ImageIcon	object	to	the
label	control,	you	use	the	setIcon	method.	For	a	label	named	myLabel,	the
proper	code	is:	myLabel.setIcon(myImage);

To	 clear	 an	 image	 from	 a	 label,	 simply	 set	 the	 icon	 property	 to	 null	 (a	 Java
keyword).	This	disassociates	 the	 icon	property	 from	the	 last	 loaded	 image.	For
our	example,	the	code	is:	myLabel.setIcon(null);

What	determines	how	the	image	is	displayed	in	the	label	control?	If	no	preferred
size	is	specified	for	the	label	control,	it	will	take	on	the	size	of	the	graphic	file.
For	 example,	 here	 is	 a	 burger	 graphic	 (burger.gif,	 150	 pixels	 x	 117	 pixels),

displayed	in	a	label	control	in	a	frame:	

If	 a	 preferred	 size	 is	 assigned	 to	 the	 label	 control,	 the	 vertical	 and	 horizontal
alignments	specify	location	of	the	graphic	in	the	label.	If	the	label	is	smaller	than
the	 graphic,	 the	 graphic	 will	 be	 “cropped.”	 For	 example,	 here	 is	 the	 burger

graphic	in	a	smaller	label	(with	a	left,	top	alignment):	

And,	 if	 the	 label	 is	 larger	 than	 the	graphic,	 there	will	be	“white”	space.	Here’s
the	 burger	 centered	 (vertically	 and	 horizontally)	 in	 a	 large	 label:	

The	 label	 control	 will	 only	 display	 graphics	 in	 their	 original	 sizes.	 In	 later
chapters,	we	will	learn	how	to	shrink/enlarge	a	graphic	to	fill	any	sized	space.	If
you	wish	to	display	a	large	graphic	in	a	small	label,	one	possible	approach	is	to
resize	 and	 resave	 (use	 a	 different	 name,	 if	 you	want)	 the	 original	 file	 using	 a
commercial	product	such	as	Paint	Shop	Pro	mentioned	earlier.

A	common	use	for	label	images	is	to	represent	something:	a	file,	a	game	choice,
or	 a	 location.	And,	 a	 common	 task	 is	 to	 click	 on	 this	 graphic	 for	 a	 selection.
Hence,	 the	 mouseClicked	 event	 is	 monitored	 to	 see	 if	 a	 graphic	 (label)	 is

selected.	The	code	to	add	the	mouseClicked	event	for	a	label	named	myLabel
is:	myLabel.addMouseListener(new	MouseAdapter()	{

public	void	mouseClicked(MouseEvent	e)	{
myLabelMouseClicked(e);

}

});

And,	 the	 myLabelMouseClicked	 method	 is:	 private	 void
myLabelMouseClicked(MouseEvent	e)	{

[Method	code]

}

In	this	method,	you	can	determine	the	name	of	the	clicked	component	(control)
using	 the	 getComponent	 method:	 Component	 clickedComponent	 =
e.getComponent();	Typical	use	of	label	control	graphic	display:

➢	Declare	 and	 create	 label,	 assigning	 an	 identifiable	name.	 For	myLabel,
the	statement	is:	JLabel	myLabel	=	new	JLabel();

➢	Place	control	within	layout	manager.
➢	Assign	ImageIcon	using	setIcon	method.
➢	Add	listener	for	and	monitor	mouseClicked	event	for	label	selection.

Example	4-3
“Find	the	Burger”	Game

Start	a	new	project	in	NetBeans.	Name	the	project	FindBurger.	Delete	code	in
Java	file	named	FindBurger.	In	this	project,	a	burger	will	be	hidden	behind	one
of	 three	boxes.	You	 click	on	 the	boxes	 trying	 to	 find	 the	burger.	The	 finished
game	 (with	 the	 burger	 uncovered)	 will	 look	 like	 this:	

The	 graphic	 used	 for	 the	 burger	 is	 burger.gif	 and	 is	 located	 in	 the
\LearnJava\LJ	Code\Class	4\Example4-3\	folder.	Copy	this	file	to	your	project

folder:	

1.	Place	3	labels	and	a	button	control	on	a	frame.	The	GridBagLayout	for	these
controls	 is:	

Also	add	an	image	icon	object	(burger).

Set	the	properties	of	the	frame	and	each	control:

FindBurger	Frame:
title Find	the	Burger
resizable false

label0:
preferredSize (burger.getWidth(),	burger.getHeight())
opaque true
background red
insets (10,	10,	10,	10)
gridx 0
gridy 0

label1:
preferredSize (burger.getWidth(),	burger.getHeight())
opaque true
background red
insets (10,	10,	10,	10)
gridx 1
gridy 0

label2:
preferredSize (burger.getWidth(),	burger.getHeight())
opaque true
background red
insets (10,	10,	10,	10)
gridx 2
gridy 0

newButton:
text Play	Again
insets (10,	10,	10,	10)
gridx 1

gridy 1

2.	Build	the	basic	framework:	/	*

*	FindBurger.java

*/

package	findburger;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.util.Random;

public	class	FindBurger	extends	JFrame	{

public	static	void	main(String	args[])	{
//	create	frame
new	FindBurger().show();

}

public	FindBurger()

{

//	frame	constructor
setTitle("Find	the	Burger");
setResizable(false);
addWindowListener(new	WindowAdapter()	{

public	void	windowClosing(WindowEvent	evt)	{
exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());	pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	setBounds((int)	(0.5	*
(screenSize.width	-
getWidth())),	(int)	(0.5	*	(screenSize.height	-
getHeight())),	getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	evt)	{
System.exit(0);

}

}

Run	to	make	sure	the	frame	appears.

3.	 We	 now	 add	 the	 controls	 and	 establish	 methods.	 Add	 these	 class	 level
declarations:	JLabel	label0	=	new	JLabel();

JLabel	label1	=	new	JLabel();
JLabel	label2	=	new	JLabel();
JLabel[]	choiceLabel	=	new	JLabel[3];	ImageIcon	burger	=	new
ImageIcon("burger.gif");	JButton	newButton	=	new	JButton();	Position
and	add	controls,	along	with	events:	GridBagConstraints	gridConstraints;
choiceLabel[0]	=	label0;
choiceLabel[1]	=	label1;
choiceLabel[2]	=	label2;
for	(int	i	=	0;	i	<	3;	i++)

{

gridConstraints	=	new	GridBagConstraints();
choiceLabel[i].setPreferredSize(new
Dimension(burger.getIconWidth(),	burger.getIconHeight()));
choiceLabel[i].setOpaque(true);
choiceLabel[i].setBackground(Color.RED);	gridConstraints.gridx	=	i;
gridConstraints.gridy	=	0;

gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(choiceLabel[i],	gridConstraints);
choiceLabel[i].addMouseListener(new	MouseAdapter()	{

public	void	mouseClicked(MouseEvent	e)	{
labelMouseClicked(e);

}

});

}

newButton.setText("Play	Again");
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(newButton,	gridConstraints);
newButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
newButtonActionPerformed(e);

}

});

And,	 add	 the	 two	 empty	 event	 methods:	 private	 void
labelMouseClicked(MouseEvent	e)	{

}

private	void	newButtonActionPerformed(ActionEvent	e)	{

}

Run	 to	 check	 the	 control	 layout.	 You	 should	 see:	

4.	Now,	we	write	code	for	the	event	methods.	We	need	two	class	level	variables,
one	 to	 track	 the	 correct	 answer	 and	 one	 to	 generate	 a	 random	 number:	 int
burgerLocation;

Random	myRandom	=	new	Random();

5.	 Add	 this	 code	 to	 the	 newButtonActionPerformed	 event:	 private	 void
newButtonActionPerformed(ActionEvent	e)	{

//	clear	boxes	and	hide	burger
for	(int	i	=	0;	i	<	3;	i++)

{

choiceLabel[i].setIcon(null);
choiceLabel[i].setBackground(Color.RED);	}

burgerLocation	=	myRandom.nextInt(3);
newButton.setEnabled(false);

}

This	 code	 clears	 the	 three	 label	 boxes,	 restores	 the	 color	 to	 red	 and	 picks	 a
random	location	for	the	burger.

6.	 And,	 use	 this	 code	 in	 the	 labelMouseClicked	 event:	 private	 void
labelMouseClicked(MouseEvent	e)	{

Component	clickedComponent	=	e.getComponent();	int	choice;
for	(choice	=	0;	choice	<	3;	choice++)	{

if	(clickedComponent	==	choiceLabel[choice])	{
break;

}

}

choiceLabel[choice].setBackground(Color.WHITE);	if	(choice	==
burgerLocation)

{

choiceLabel[choice].setIcon(burger);	newButton.setEnabled(true);

}

}

This	 code	 is	 executed	 when	 any	 of	 the	 three	 labels	 is	 clicked.	 The	 code
determines	 which	 label	 was	 clicked	 and	 sees	 if	 it	 is	 the	 one	 with	 the	 burger
hiding	behind	 it.	You	keep	guessing	until	you	fin	 the	burger.	Once	 it	 is	 found,
you	are	given	the	chance	to	play	again.

7.	Lastly,	add	this	single	line	of	code	in	the	frame	constructor	(after	creating	the
frame	controls)	to	initialize	the	first	game:	newButton.doClick();

Here	 is	 the	 complete	FindBurger.java	 file	 (code	added	 to	basic	 framework	 is
shaded):	/	*
*	FindBurger.java

*/

package	findburger;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.util.Random;

public	class	FindBurger	extends	JFrame	{
JLabel	label0	=	new	JLabel();
JLabel	label1	=	new	JLabel();
JLabel	label2	=	new	JLabel();
JLabel[]	choiceLabel	=	new	JLabel[3];	ImageIcon	burger	=	new
ImageIcon("burger.gif");	JButton	newButton	=	new	JButton();	int
burgerLocation;
Random	myRandom	=	new	Random();

public	static	void	main(String	args[])	{
//	create	frame
new	FindBurger().show();

}

public	FindBurger()

{

//	frame	constructor
setTitle("Find	the	Burger");
setResizable(false);
addWindowListener(new	WindowAdapter()	{

public	void	windowClosing(WindowEvent	evt)	{
exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	position	controls
GridBagConstraints	gridConstraints;	choiceLabel[0]	=	label0;
choiceLabel[1]	=	label1;
choiceLabel[2]	=	label2;

for	(int	i	=	0;	i	<	3;	i++)

{

gridConstraints	=	new	GridBagConstraints();
choiceLabel[i].setPreferredSize(new
Dimension(burger.getIconWidth(),	burger.getIconHeight()));
choiceLabel[i].setOpaque(true);
choiceLabel[i].setBackground(Color.RED);	gridConstraints.gridx
=	i;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(choiceLabel[i],	gridConstraints);
choiceLabel[i].addMouseListener(new	MouseAdapter()	{

public	void	mouseClicked(MouseEvent	e)	{
labelMouseClicked(e);

}

});

}

newButton.setText("Play	Again");
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
1;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(newButton,	gridConstraints);
newButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
newButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	 setBounds((int)	 (0.5
(screenSize.width	 -	getWidth())),	 (int)	 (0.5	 (screenSize.height	 -	getHeight())),
getWidth(),	getHeight());

//	start	first	game
newButton.doClick();

}

private	void	labelMouseClicked(MouseEvent	e)	{
Component	clickedComponent	=	e.getComponent();	int	choice;
for	(choice	=	0;	choice	<	3;	choice++)	{

if	(clickedComponent	==	choiceLabel[choice])	{
break;

}

}

choiceLabel[choice].setBackground(Color.WHITE);	if	(choice	==
burgerLocation)

{

choiceLabel[choice].setIcon(burger);
newButton.setEnabled(true);

}

}

private	void	newButtonActionPerformed(ActionEvent	e)	{
//	clear	boxes	and	hide	burger
for	(int	i	=	0;	i	<	3;	i++)

{

choiceLabel[i].setIcon(null);
choiceLabel[i].setBackground(Color.RED);	}

burgerLocation	=	myRandom.nextInt(3);
newButton.setEnabled(false);

}

private	void	exitForm(WindowEvent	evt)	{
System.exit(0);

}

}

Run	the	application.	Click	on	 the	boxes	 trying	 to	find	 the	burger.	 If	 the	burger
graphic	 does	 not	 appear	 behind	 any	 of	 the	 boxes,	 make	 sure	 you	 copied	 the
graphics	 file	 to	 your	 project	 directory,	 as	 explained	 in	 the	 beginning	 of	 this
example.	 Here’s	 a	 run	 I	 made,	 where	 I	 found	 the	 burger	 on	 my	 second	 try:	

Save	the	project	(saved	as	Example4-3	project	in	\LearnJava\LJ	Code\Class	4\
project	group).

JFileChooser	Control	(Open	Files)
Note	 that	 to	set	 the	 icon	property	of	 the	 label	control,	you	need	 the	name	of	a
graphics	file	to	load.	What	if	you	wanted	the	user	to	choose	this	file	from	his/her
computer?	 The	 user	 would	 need	 to	 provide	 the	 path	 and	 filename	 for	 the
graphics	file.	How	can	you	get	this	from	a	user?	One	possibility	would	be	to	use
a	text	field	control,	asking	the	user	to	type	in	the	desired	information.	This	is	just
asking	for	 trouble.	Even	the	simplest	of	paths	 is	difficult	 to	 type,	remembering
drive	names,	proper	folder	names,	file	names	and	extensions,	and	where	all	the
slashes	 go.	 And	 then	 you,	 the	 programmer,	 must	 verify	 that	 the	 information
typed	contains	a	valid	path	and	valid	file	name.

I	think	you	see	that	asking	a	user	to	type	a	path	and	file	name	is	a	bad	idea.	We
want	a	‘point	and	click’	type	interface	to	get	a	file	name.	Every	GUI	application
provides	such	an	interface	for	opening	files.	For	example,	click	on	the	Open	File
toolbar	 button	 in	 NetBeans	 and	 this	 dialog	 box	 will	 appear:	

Java	 lets	 us	 use	 this	 same	 interface	 in	 our	 applications	 via	 the	 JFileChooser
control.	 This	 control	 is	 one	 of	 a	 suite	 of	 dialog	 controls	 we	 can	 add	 to	 our

applications.	 There	 are	 also	 dialog	 controls	 to	 save	 files	 (an	 option	 of
JFileChooser),	 change	 fonts,	 change	 colors,	 and	 perform	 printing	 operations.
We’ll	look	at	other	dialog	controls	as	we	work	through	the	course.

What	 we	 learn	 here	 is	 not	 just	 limited	 to	 opening	 graphics	 files	 for	 the	 label
control.	There	are	many	times	in	application	development	where	we	will	need	a
file	name	 from	a	user.	Applications	often	 require	data	 files,	 initialization	 files,
configuration	files,	sound	files	and	other	graphic	files.	The	JFileChooser	control
will	also	be	useful	in	these	cases.

File	Chooser	Properties:

approveButtonText Text	that	appears	on	the	‘approve’	button
–	by	default,	the	value	is	Open.

currentDirectory The	selected	directory.
dialogTitle Title	that	appears	in	the	title	area	of	the

dialog.
dialogType By	default,	an	Open	dialog

(JFileChooser.OPEN_DIALOG),	set	to
JFileChooser.SAVE_DIALOG	for	a	save
dialog	control.

fileFilter Used	to	limit	types	of	files	displayed.
selectedFile The	currently	selected	file.

File	Chooser	Methods:

showOpenDialog Displays	the	dialog	box	for	opening	files.
Returned	value	indicates	which	button	was
clicked	by	user	(Open	or	Cancel).

setApproveButtonText Sets	the	text	that	appears	on	the	‘approve’
button.

getCurrentDirectory Retrieves	the	selected	directory.
setDialogTitle Sets	the	dialog	title.
setDialogType Sets	the	dialog	type.
setFileFilter Sets	the	filter	to	limit	types	of	files

displayed.

addChoosableFileFilter Add	a	file	filter	to	file	chooser.
getSelectedFile Retrieves	the	currently	selected	file.
listFiles Used	to	obtain	list	of	files	(File	object)

from	current	directory.

File	Chooser	Events:

actionPerformed Event	(ActionEvent)	triggered	when
approve	or	cancel	button	is	selected.
Added	with	ActionListener.	Usually
monitored	when	file	chooser	is	embedded
in	application.

propertyChange Invoked	whenever	a	property	in	the	file
chooser	changes.	Usually	used	to	detect	a
change	in	selected	file.

The	 file	 chooser	 control	 can	 be	 added	 to	 an	 application	 like	 any	 control,
embedded	in	the	frame.	Or,	it	can	be	displayed	as	needed,	as	a	dialog	box.	You
usually	only	monitor	events	when	the	file	chooser	is	embedded	in	an	application.

To	 add	 a	 listener	 for	 the	 actionPerformed	 event	 for	 a	 file	 chooser	 named
myChooser,	use:	myChooser.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
myChooserActionPerformed(e);

}

});

And,	 the	 corresponding	 event	 code	 would	 be	 placed	 in	 a
myChooserActionPerformed	 method:	 private	 void
myChooserActionPerformed(ActionEvent	e)	{

[method	code]

}

In	 this	 event,	 you	usually	 check	 to	 see	 if	 the	 approve	 (Open)	 button	has	been

clicked.	The	code	segment	that	does	this	is:	if
(e.getActionCommand().equals(JFileChooser.APPROVE_SELECTIO
N))	{

[code	to	process]

}

The	propertyChange	 event	 is	 added	using	 the	PropertyChangeListener.	 For
myChooser,	 use:	 myChooser.addPropertyChangeListener(new
PropertyChangeListener()

{

public	void	propertyChange(PropertyChangeEvent	e)	{
myChooserPropertyChange(e);

}

});

The	 corresponding	 event	 code	 would	 be	 placed	 in	 a
myChooserPropertyChange	 method:	 private	 void
myChooserPropertyChange(PropertyChangeEvent	e)	{

[method	code]

}

In	 this	 method,	 we	 usually	 want	 to	 make	 sure	 the	 changed	 property	 is	 the
selected	 file.	 To	 determine	 the	 property	 change	 that	 “calls”	 this	 event,	 use:
String	 pName	 =	 e.getPropertyName();	 If	 pName	 is	 equal	 to
JFileChooser.SELECTED_FILE_CHANGED_PROPERTY,	 we	 have	 the
property	change	we	are	interested	in.

To	 display	 the	 file	 chooser	 as	 an	 open	 dialog	 box,	 use	 the	 showOpenDialog
method.	 If	 the	 chooser	 is	 named	 myChooser,	 the	 format	 is:
myChooser.showOpenDialog(this);

where	this	is	a	keyword	referring	to	the	current	frame.	The	displayed	dialog	box

is:	

The	user	selects	a	file	using	the	dialog	control	(or	types	a	name	in	the	File	Name
box).	The	file	type	is	selected	from	the	Files	of	Type	box	(values	here	set	with
the	Filter	property).	Once	selected,	 the	Open	button	 is	clicked.	Cancel	can	be
clicked	to	cancel	the	open	operation.	The	showOpenDialog	method	returns	the
clicked	 button.	 This	 method	 will	 return	 one	 of	 two	 values:
JFileChooser.APPROVE_OPTION	 –	 Approve	 (Open)	 button	 clicked
JFileChooser.CANCEL_OPTION	 –	 Cancel	 button	 clicked	 If	 the	 user	 has
selected	the	Open	button,	we	can	determine	the	selected	file.	This	value	is	given
by:	myChooser.getSelectedFile()

Many	 controls	 require	 this	 name	 to	 be	 a	 String	 type	 (the	 ImageIcon,	 for
example).	 This	 conversion	 is	 done	 using:
myChooser.getSelectedFile().toString()	 The	 nice	 thing	 about	 this	 control	 is
that	it	can	validate	the	file	name	before	it	is	returned	to	the	application.

The	fileFilter	property	is	set	by	the	FileNameExtensionFilter	constructor.	The
form	for	this	constructor	is	FileNameExtensionFilter(description,	extension1,
extension2,	 ...)	 Here,	 description	 is	 the	 description	 that	 appears	 in	 the	 file
chooser	window,	each	extension	is	an	acceptable	file	extension	type	to	display.
Each	argument	 is	 a	string	 type.	To	use	 this	 constructor,	you	need	 this	 import
statement	 in	 your	 java	 class:	 import	 javax.swing.filechooser.*;	 File	 Filter

Example:	 Let’s	 do	 an	 example	 for	 two	 types	 of	 graphics	 files	 (gif,	 jpg)	 to
illustrate.	The	code	to	add	such	a	filter	 to	a	file	chooser	named	myChooser	 is:
myChooser.addChoosableFileFilter(new
FileNameExtensionFilter("Graphics	Files	 (.gif,	 .jpg)",	 "gif",	 "jpg"));	With
such	 code,	 the	 chooser	 will	 appear	 as:	

Only	files	with	gif	and	jpg	extensions	are	shown.

Typical	use	of	file	chooser	control	(embedded)	to	open	files:

➢	Declare	 and	 create	 file	 chooser	 control,	 assigning	 an	 identifiable	name.
For	 myChooser,	 the	 code	 is:	 JFileChooser	 myChooser	 =	 new
JFileChooser();	➢	Set	the	dialogTitle	property.

➢	Add	a	file	filter.
➢	Place	control	in	layout	manager.
➢	 Add	 listener	 for	 and	 monitor	 actionPerformed	 event	 for	 button	 click
event,	or	use	propertyChange	event	to	detect	changes	in	selected	file.

➢	Use	getSelectedFile	method	to	determine	file.

Typical	use	of	file	chooser	control	(dialog	box)	to	open	files:

➢	Declare	 and	 create	 file	 chooser	 control,	 assigning	 an	 identifiable	name.

For	 myChooser,	 the	 code	 is:	 JFileChooser	 myChooser	 =	 new
JFileChooser();	➢	Set	the	dialogTitle	property.

➢	Add	a	file	filter.
➢	Use	showOpenDialog	method	to	display	dialog	box.
➢	Use	getSelectedFile	method	to	determine	file.

Example	4-4
Image	Viewer

Start	a	new	project	in	NetBeans.	Name	the	project	ImageViewer.	Delete	default
code	 in	 Java	 file	 named	 ImageViewer.	 In	 this	 application,	 we	 search	 our
computer's	file	structure	for	graphics	files	and	display	the	results	of	our	search	in
an	image	control.	We	will	use	an	embedded	file	chooser.	The	finished	frame	will

be:	

1.	 The	 application	 just	 needs	 two	 controls:	 a	 file	 chooser	 and	 a	 label.	 The
GridBagLayout	 arrangement	 is:	

Properties	for	the	controls:

ImageViewer	Frame:
title Image	Viewer
resizable false

imageChooser:
gridx 0
gridy 0

imageLabel:
preferredSize (270,	300)
border RED	line
opaque true
background WHITE
horizontalAlignment CENTER
verticalAlignment CENTER
gridx 1
gridy 0
insets (10,	10,	10,	10);

2.	As	usual,	build	a	framework	to	start	with:	/	*

*	ImageViewer.java

*/

package	imageviewer;
import	javax.swing.filechooser.*;	import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
public	class	ImageViewer	extends	JFrame	{

public	static	void	main(String	args[])	{
//construct	frame
new	ImageViewer().show();

}

public	ImageViewer()

{

//	create	frame
setTitle("Image	Viewer");
setResizable(false);
addWindowListener(new	WindowAdapter()	{

public	void	windowClosing(WindowEvent	e)	{
exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	setBounds((int)	(0.5	*
(screenSize.width	-
getWidth())),	(int)	(0.5	*	(screenSize.height	-
getHeight())),	getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	e)	{
System.exit(0);

}

}

Run	to	see	the	frame	centered	on	your	screen.

3.	 Create	 controls	 with	 these	 class	 level	 declarations:	 JFileChooser
imageChooser	=	new	JFileChooser();	JLabel	imageLabel	=	new	JLabel();
Position	 controls	 and	 add	 event	 listener	 for	 file	 chooser:
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();

String[]	ext	=	new	String[]	{"gif",	"jpg"};
imageChooser.addChoosableFileFilter(new	ExampleFileFilter(ext,
"Graphics
Files"));gridConstraints.gridx	=	0;	gridConstraints.gridy	=	0;
getContentPane().add(imageChooser,	gridConstraints);
imageChooser.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
imageChooserActionPerformed(e);

}

});

imageLabel.setPreferredSize(new	Dimension(270,	300));
imageLabel.setBorder(BorderFactory.createLineBorder(Color.
RED));	imageLabel.setOpaque(true);
imageLabel.setBackground(Color.white);
imageLabel.setHorizontalAlignment(SwingConstants.CENTER);
imageLabel.setVerticalAlignment(SwingConstants.CENTER);
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(imageLabel,	gridConstraints);	4.	We’ll	go	right
to	adding	code	to	the	imageChooserActionPerformed	event:	private
void	imageChooserActionPerformed(ActionEvent	e)	{
//	create	and	display	graphic	if	open	selected	if
(e.getActionCommand().equals(JFileChooser.APPROVE_SELECTIO
N))	{

ImageIcon	myImage	=	new
ImageIcon(imageChooser.getSelectedFile().toString());
imageLabel.setIcon(myImage);

}

}

In	 this	 code,	 if	 the	 user	 clicks	 the	Open	 button,	 the	 selected	 file	 is	 used	 to
establish	the	ImageIcon	to	display	in	the	imageLabel	control.

The	complete	ImageViewer.java	code	is	(code	added	to	framework	is	shaded):	/
*
*	ImageViewer.java

*/

package	imageviewer;
import	javax.swing.filechooser.*;	import	javax.swing.*;
import	java.awt.*;

import	java.awt.event.*;

public	class	ImageViewer	extends	JFrame	{
JFileChooser	imageChooser	=	new	JFileChooser();	JLabel	imageLabel	=
new	JLabel();

public	static	void	main(String	args[])	{
//construct	frame
new	ImageViewer().show();

}

public	ImageViewer()

{

//	create	frame
setTitle("Image	Viewer");
setResizable(false);
addWindowListener(new	WindowAdapter()	{

public	void	windowClosing(WindowEvent	e)	{
exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	position	controls	(establish	event	methods)	GridBagConstraints
gridConstraints	=	new	GridBagConstraints();
imageChooser.addChoosableFileFilter(new
FileNameExtensionFilter("Graphics	Files	(.gif,	.jpg)",	"gif",	"jpg"));
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(imageChooser,	gridConstraints);
imageChooser.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
imageChooserActionPerformed(e);

}

});

imageLabel.setPreferredSize(new	Dimension(270,	300));
imageLabel.setBorder(BorderFactory.createLineBorder(Color.RED
));	imageLabel.setOpaque(true);
imageLabel.setBackground(Color.white);
imageLabel.setHorizontalAlignment(SwingConstants.CENTER);
imageLabel.setVerticalAlignment(SwingConstants.CENTER);
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(imageLabel,	gridConstraints);

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	 setBounds((int)	 (0.5
(screenSize.width	 -	getWidth())),	 (int)	 (0.5	 (screenSize.height	 -	getHeight())),
getWidth(),	getHeight());	}
private	void	imageChooserActionPerformed(ActionEvent	e)	{

//	create	and	display	graphic	if	open	selected	if
(e.getActionCommand().equals(JFileChooser.APPROVE_SELECTION))
{

ImageIcon	myImage	=	new
ImageIcon(imageChooser.getSelectedFile().toString());
imageLabel.setIcon(myImage);

}

}

private	void	exitForm(WindowEvent	e)	{
System.exit(0);

}

}

Run	the	application.	Find	gif	files	and	JPEGs	(an	example	of	each	is	included	in
the	 project	 folder).	 Here’s	 how	 the	 form	 should	 look	 when	 displaying	 the
example	 JPEG	 file	 (a	 photo	 from	 my	 Mexican	 vacation):	

Save	your	project	(saved	as	Example4-4	project	in	\LearnJava\LJ	Code\Class
4\	 project	 group).	 One	 possible	 modification	 would	 be	 to	 use	 the
propertyChange	 event	 to	 detect	when	 a	 new	 file	 is	 selected	 and	 immediately
display	the	new	graphics	(as	opposed	to	clicking	Open).

Class	Review
After	completing	this	class,	you	should	understand:

➢	Useful	properties,	events,	methods	and	typical	uses	for	the	spinner	control,
both	for	numbers	and	lists	➢	Properties,	events,	methods,	and	uses	for	the
scroll	bar	and	slider	controls	➢	The	three	types	of	graphics	files	that	can
be	 displayed	 by	 the	 label	 control	➢	How	 to	 recognize	mouse	 clicks	 on
label	controls	➢	How	to	load	image	files	as	ImageIcon	objects	➢	How	to
use	the	file	chooser	control	to	obtain	file	names	for	opening	files

Practice	Problems	4
Problem	4-1.	Number	Guess	Problem.	Build	a	game	where	the	user	guesses	a
number	between	1	and	100.	Use	a	scroll	bar	for	entering	the	guess	and	change
the	extreme	limits	(minimum	and	maximum	properties)	with	each	guess	to	help
the	user	adjust	their	guess.

Problem	 4-2.	 RGB	 Color	 Problem.	 Build	 an	 application	 with	 three	 slider
controls	 and	 a	 label	 control.	 Use	 the	 sliders	 to	 adjust	 the	 red,	 green	 and	 blue
contributions	to	create	a	color	using	the	Color	class.	Let	the	background	color	of
the	label	control	be	set	by	those	contributions.

Problem	 4-3.	 Tic-Tac-Toe	 Problem.	 Build	 a	 simple	 Tic-Tac-Toe	 game.	 Use
‘skinny’	 label	 controls	 for	 the	grid	 and	 label	 controls	with	 images	 for	markers
(use	different	pictures	to	distinguish	players).	Click	the	label	controls	to	add	the
markers.	Can	you	write	logic	to	detect	a	win?

Problem	4-4.	File	Times	Problem.	Use	the	file	chooser	control	to	lists	all	files
in	a	particular	directory.	For	every	file,	find	what	time	the	file	was	modified	(use
the	lastModified	method	to	get	time	details).	Determine	the	most	popular	hours
of	the	day	for	modifying	files.

Exercise	4
Student	Database	Input	Screen

You	did	so	well	with	last	chapter’s	assignment	that,	now,	a	school	wants	you	to
develop	the	beginning	structure	of	an	input	screen	for	its	students.	The	required
input	information	is:

1.	Student	Name
2.	Student	Grade	(1	through	6)
3.	Student	Sex	(Male	or	Female)
4.	Student	Date	of	Birth	(Month,	Day,	Year)	5.	Student	Picture	(Assume	they
can	be	loaded	as	jpeg	files)

Set	up	the	screen	so	that	only	the	name	needs	to	be	typed;	all	other	inputs	should
be	set	with	option	buttons,	scroll	bars,	spinners	and	file	choosers.	When	a	screen
of	 information	 is	 complete,	 display	 the	 summarized	 profile	 in	 a	message	 box.
This	 profile	 message	 box	 should	 resemble	 this:	

Note	the	student’s	age	must	be	computed	from	the	input	birth	date	-	watch	out
for	pitfalls	in	doing	the	computation.	The	student’s	picture	does	not	appear	in	the
profile,	only	on	the	input	screen.

5

Java	GUI	Application	Design	and
Distribution

Review	and	Preview
We've	 finished	 looking	 at	 many	 of	 the	 Java	 controls	 and	 have	 been
introduced	 to	most	of	 the	Java	 language	features.	 In	 this	class,	we	 learn
how	 to	 enhance	 our	 application	 design	 using	 tabbed	 panes,	 general
methods	and	menus.	And,	we	learn	some	ways	to	distribute	the	finished

product	to	our	user	base.

Application	Design	Considerations
1.	Before	beginning	the	actual	process	of	building	your	Java	application	by
designing	the	GUI	interface,	setting	the	control	properties,	and	writing	the
Java	 code,	 many	 things	 should	 be	 considered	 to	 make	 your	 application
useful.	A	 first	 consideration	 should	 be	 to	 determine	what	 processes	 and
functions	you	want	your	application	 to	perform.	What	are	 the	 inputs	and
outputs?	 Develop	 a	 framework	 or	 flow	 chart	 of	 all	 your	 application's
processes.

2.	Decide	what	controls	you	need.	Do	 the	built-in	Java	Swing	controls	and
methods	 meet	 your	 needs?	 Do	 you	 need	 to	 develop	 some	 controls	 or
methods	of	your	own?	You	can	design	and	build	your	own	controls	using
Java	 –	 a	 topic	 beyond	 the	 scope	 of	 this	 class,	 but	 not	 that	 difficult.
Appendix	II	provides	an	introduction	to	this	topic.

3.	Design	your	 user	 interface.	What	 do	you	want	 your	 frame	 to	 look	 like?
Consider	appearance	and	ease	of	use.	Make	 the	 interface	consistent	with
other	 GUI	 applications.	 Familiarity	 is	 good	 in	 program	 design.	 Don’t
“reinvent	 the	 wheel.”	 Many	 applications	 you	 build	 are	 similar	 to	 other
applications.	Reuse	code	whenever	possible.

4.	Write	 your	 code.	Make	 your	 code	 readable	 and	 traceable	 -	 future	 code
modifiers	 (including	 yourself)	 will	 thank	 you.	 Consider	 developing
reusable	 code	 -	 methods	 with	 utility	 outside	 your	 current	 development.
This	will	save	you	time	in	future	developments.

5.	 Make	 your	 code	 'user-friendly.'	 Make	 operation	 of	 your	 application
obvious	 to	 the	 user.	 Step	 the	 user	 through	 its	 use.	 Try	 to	 anticipate	 all
possible	ways	a	user	can	mess	up	in	using	your	application.	It's	fairly	easy
to	write	an	application	that	works	properly	when	the	user	does	everything
correctly.	 It's	 difficult	 to	 write	 an	 application	 that	 can	 handle	 all	 the
possible	wrong	things	a	user	can	do	and	still	not	bomb	out.

6.	Debug	your	code	completely	before	distributing	it.	There's	nothing	worse
than	having	a	user	call	you	to	point	out	flaws	in	your	application.	A	good
way	to	find	all	the	bugs	is	to	let	several	people	try	the	code	-	a	mini	beta-

testing	program.

JTabbedPane	Control

The	 tabbed	 pane	 control	 provides	 an	 easy	 way	 to	 present	 several	 panels	 of
information	in	a	single	frame	-	it	is	similar	to	having	a	multi-frame	application.
This	is	the	same	interface	seen	in	many	commercial	GUI	applications.

The	 tabbed	 pane	 control	 provides	 a	 group	 of	 tabs,	 each	 of	 which	 can	 hold	 a
single	component	(almost	always	a	panel	control).	Only	one	tab	can	be	active	at
a	 time.	 Navigation	 from	 one	 tab	 to	 the	 next	 is	 simple:	 just	 click	 on	 the
corresponding	 tab.	 Using	 this	 control	 is	 easy.	 Build	 each	 tab	 component	 as	 a
separate	panel:	add	controls,	set	properties,	and	write	code	 like	you	do	for	any
panel.	Then,	add	each	panel	 to	 the	 tabbed	pane.	Since	most	of	 the	coding	is	 in
the	 panels	 attached	 to	 the	 tabbed	 pane,	 there	 are	 relatively	 few	 properties	 and
methods	associated	with	the	tabbed	pane.

Tabbed	Pane	Properties:

font Font	used	for	displayed	tab	headings.
selectedIndex Currently	“active”	tab.
tabLayoutPolicy Controls	how	tabs	are	displayed	when	there	are

many	tabs.

Tabbed	Pane	Methods:

setFont Used	to	set	font	property.
setSelectedIndex Used	to	programmatically	change	displayed	tab.
getSelectedIndex Used	to	determine	“active”	tab.
addTab Adds	tabs	and	associated	components	to	control.
setTabLayoutPolicy Used	to	establish	tab	layout

(JTabbedPane.SCROLL_TAB_LAYOUT
restricts	tabs	to	a	single,	scrollable	row,
JTabbedPane.WRAP_TAB_LAYOUT	will	stack
tabs.)

Tabbed	Pane	Event:

stateChanged Event	(ChangeEvent)	triggered	when	the
selected	tab	changes.	Added	with
ChangeEventListener	(requires	importation	of
javax.swing.event.*	files).

To	 add	 a	 listener	 for	 the	 stateChanged	 event	 to	 a	 tabbed	pane	 control	 named
myTabbedPane,	 use:	 myTabbedPane.addChangeListener(new
ChangeListener()	{

public	void	stateChanged(ChangeEvent	e)

{

myTabbedPaneStateChanged(e);

}

});

And,	 the	 corresponding	 event	 code	 would	 be	 placed	 in	 a
myTabbedPaneStateChanged	 method:	 private	 void
myTabbedPaneStateChanged(ChangeEvent	e)	{

[method	code]

}

Using	 the	 tabbed	pane	control	 is	 straightforward.	 It	 is	 created	and	placed	on	a
frame	in	the	usual	manner.	The	tabbed	pane	can	take	up	the	entire	frame	of	be
one	of	several	displayed	controls.

As	mentioned,	each	tab	on	the	control	 is	a	separate	panel	control.	Recall	panel
controls	are	containers	for	other	controls	and	have	their	own	grid	layout	manager

for	control	placement.	The	process	for	using	a	tabbed	pane	control	is	to	create	a
separate	panel	for	each	tab.	The	panels	are	then	added	to	the	tabbed	pane	using
the	addTab	method.	For	example,	 to	add	a	panel	named	myPanel	 to	a	 tabbed
pane	 control	 named	 myTabbedPane,	 you	 would	 use:
myTabbedPane.addTab(tabTitle,	myPanel);

where	tabTitle	is	a	string	value	representing	the	text	that	will	appear	on	the	tab
associated	with	myPanel.	The	tabbed	pane	control	will	“grow”	to	fit	the	largest
panel	added	to	it.

As	 the	programmer,	you	need	 to	know	which	 tab	 is	active.	To	do	 this,	use	 the
getSelectedIndex	 method	 in	 the	 stateChanged	 event	 for	 the	 tabbed	 pane
control.	And,	you	need	to	keep	track	of	which	controls	are	available	with	each
tab	page	(panel).

Typical	use	of	tabbed	pane	control:

➢	 Declare	 and	 create	 the	 tabbed	 pane	 control,	 assigning	 an	 identifiable
name.	 The	 code	 to	 create	 myTabbedPane	 is:	 JTabbedPane
myTabbedPane	 =	 new	 JTabbedPane();	➢	 Create	 a	 panel	 control	 for
each	tab.	Add	controls	and	write	code	for	each	panel.

➢	Add	panels	to	tabbed	pane.
➢	 Add	 listener	 for	 and	 monitor	 stateChanged	 event	 to	 determine	 when
active	tab	is	changed.

Example	5-1
Shopping	Cart

Start	a	new	empty	project	in	NetBeans.	Name	the	project	ShoppingCart.	Delete
default	 code	 in	 Java	 file	 named	ShoppingCart.	We	 will	 build	 a	 tabbed	 pane
application	 that	provides	a	good	start	 for	 a	 simple	 ‘on-line’	commerce	 system.
One	tab	will	be	used	to	enter	a	mailing	address	and	add	items	to	a	shopping	cart.
Other	 tabs	will	 display	 the	 current	 contents	of	 the	 shopping	cart	 and	display	 a
mailing	 label.	We’ll	build	 each	 tab	panel	 separately.	The	 finished	product	will
look	 like	 this:	 1.	 The	 frame	 will	 hold	 a	 single	 tabbed	 pane	 (shoppingPane)
control.	 The	 tabbed	 pane	 will	 hold	 three	 panels	 (orderPanel,	 cartPanel	 and
addressPanel).	 We	 design	 each	 panel	 separately.	 First,	 we	 design	 the	 panel
(orderPanel)	 to	 obtain	 the	 order	 information.	 The	 GridBagLayout	 is:	

Properties:

orderLabel:
text Order	Address:
anchor WEST
gridx 0
gridy 0
insets (10,	10,	0,	0)

orderTextArea:
columns 30
rows 6
gridx 0
gridy 1
insets (10,	10,	10,	10)

orderSpinner:
model SpinnerListModel	(array	product)
preferredSize (150,	25)
gridx 0
gridy 2

addButton:
text Add	to	Order
gridx 0
gridy 3
insets (5,	0,	5,	0)

numberTextField:
setText Items	Ordered:	0
columns 20
editable false
background WHITE
horizontalAlignment CENTER
gridx 0
gridy 4
insets (5,	0,	5,	0)

newButton:
text New	Order
gridx 0
gridy 5
insets (5,	0,	5,	0)

exitButton:
text Exit
gridx 0
gridy 6
insets (5,	0,	5,	0)

Now,	 we	 design	 the	 panel	 (cartPanel)	 that	 will	 display	 the	 shopping	 cart

contents.	Its	GridBagLayout	is:	

Properties:

cartPane:
preferredSize (250,	150)
viewportView cartTextArea	(JTextArea	control)
gridx 0
gridy 0
insets (10,	10,	10,	10)

costTextField:
text Total	Cost:
columns 20
editable false
background WHITE
gridx 0
gridy 1
insets (5,	0,	5,	0)

Lastly,	we	design	 the	panel	 (addressPanel)	 that	will	display	 the	mailing	 label.

Its	GridBagLayout	is:	

Properties:

addressPane:
preferredSize (250,	150)
viewportView addressTextArea	(JTextArea	control)
gridx 0
gridy 0
insets (10,	10,	10,	10)

2.	Now,	we’ll	write	the	code.	First,	we	build	the	basic	framework	with	the	single
tabbed	 pane	 (shoppingPane)	 control.	 The	 tabbed	 pane	will	 have	 an	 empty
stateChanged	event.	The	code	to	do	this	is:	/	*

*	ShoppingCart.java

*/

package	shoppingcart;
import	javax.swing.*;
import	javax.swing.event.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.text.*;

public	class	ShoppingCart	extends	JFrame	{

JTabbedPane	shoppingPane	=	new	JTabbedPane();	public	static	void
main(String	args[])

{

//construct	frame
new	ShoppingCart().show();

}

public	ShoppingCart()

{

//	code	to	build	the	form
setTitle("Shopping	Cart");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)	{
exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	//	position
tabbed	pane

GridBagConstraints	gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;

gridConstraints.gridy	=	0;
getContentPane().add(shoppingPane,	gridConstraints);

shoppingPane.addChangeListener(new	ChangeListener()	{
public	void	stateChanged(ChangeEvent	e)

{

shoppingPaneStateChanged(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	setBounds((int)	(0.5

(screenSize.width	-getWidth())),	(int)	(0.5	(screenSize.height	-getHeight())),
getWidth(),	getHeight());	}

private	void	shoppingPaneStateChanged(ChangeEvent	e)	{

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	 the	 code	 to	 make	 sure	 the	 frame	 appears	 (the	 tabbed	 pane	 will	 be	 very
small).

3.	We’ll	now	add	the	orderPanel.	Add	these	class	level	declarations	for	controls
and	variables:	JPanel	orderPanel=	new	JPanel();

JLabel	orderLabel	=	new	JLabel();
JTextArea	orderTextArea	=	new	JTextArea();	JSpinner	orderSpinner	=

new	JSpinner();
JButton	addButton	=	new	JButton();
JTextField	numberTextField	=	new	JTextField();	JButton	newButton	=

new	JButton();
JButton	exitButton	=	new	JButton();

final	int	numberProducts	=	10;
String[]	product	=	new	String[numberProducts];	double[]	cost	=	new

double[numberProducts];	int[]	ordered	=	new	int[numberProducts];	int
itemsOrdered;

Add	 these	 lines	 of	 code	 (establish	 product	 names	 and	 costs)	 at	 the	 top	 of	 the
frame	constructor	method:	product[0]	=	"Tricycle"	;	cost[0]	=	50;
product[1]	=	"Skateboard"	;	cost[1]	=	60;	product[2]	=	"In-Line	Skates"

;	cost[2]	=	100;	product[3]	=	"Magic	Set"	;	cost[3]	=	15;	product[4]	=
"Video	Game"	;	cost[4]	=	45;	product[5]	=	"Helmet"	;	cost[5]	=	25;
product[6]	=	"Building	Kit"	;	cost[6]	=	35;	product[7]	=	"Artist	Set"	;

cost[7]	=	40;	product[8]	=	"Doll	Baby"	;	cost[8]	=	25;	product[9]	=
"Bicycle"	;	cost[9]	=	150;

Now,	in	the	constructor	code,	position	the	controls,	add	event	listeners	and	add
the	panel	to	the	tabbed	pane:	//	order	panel
orderPanel.setLayout(new	GridBagLayout());	gridConstraints	=	new

GridBagConstraints();	orderLabel.setText("Order	Address:");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);	gridConstraints.anchor

=	GridBagConstraints.WEST;	orderPanel.add(orderLabel,
gridConstraints);	gridConstraints	=	new	GridBagConstraints();
orderTextArea.setColumns(30);
orderTextArea.setRows(6);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);

orderPanel.add(orderTextArea,	gridConstraints);	gridConstraints	=	new
GridBagConstraints();	orderSpinner.setModel(new
SpinnerListModel(product));	orderSpinner.setPreferredSize(new
Dimension(150,	25));	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
orderPanel.add(orderSpinner,	gridConstraints);	gridConstraints	=	new

GridBagConstraints();	addButton.setText("Add	to	Order");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);	orderPanel.add(addButton,

gridConstraints);	addButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

addButtonActionPerformed(e);

}

});

gridConstraints	=	new	GridBagConstraints();
numberTextField.setColumns(20);
numberTextField.setEditable(false);
numberTextField.setBackground(Color.WHITE);

numberTextField.setHorizontalAlignment(SwingConstants.CENTER);
numberTextField.setText("Items	Ordered:	0");	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	4;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);

orderPanel.add(numberTextField,	gridConstraints);
newButton.setText("New	Order");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	5;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);

orderPanel.add(newButton,	gridConstraints);
newButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
newButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	6;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);	orderPanel.add(exitButton,

gridConstraints);	exitButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

exitButtonActionPerformed(e);

}

});

shoppingPane.addTab("Order	Form",	orderPanel);	And,	three	empty

event	methods	for	the	three	button	controls:	private	void
addButtonActionPerformed(ActionEvent	e)	{

}

private	void	newButtonActionPerformed(ActionEvent	e)	{

}

private	void	exitButtonActionPerformed(ActionEvent	e)	{

}

Run	to	see	the	first	tabbed	panel:

4.	 Now,	 we	 follow	 similar	 steps	 to	 add	 the	 cartPanel.	 Add	 class	 level
declarations	for	the	needed	controls:	JPanel	cartPanel	=	new	JPanel();

JScrollPane	cartPane	=	new	JScrollPane();	JTextArea	cartTextArea	=
new	JTextArea();	JTextField	costTextField	=	new	JTextField();	Add
positioning	code:

//	cart	panel
cartPanel.setLayout(new	GridBagLayout());
cartPane.setPreferredSize(new	Dimension	(250,	150));
cartPane.setViewportView(cartTextArea);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
cartPanel.add(cartPane,	gridConstraints);	gridConstraints	=	new
GridBagConstraints();	costTextField.setColumns(20);
costTextField.setEditable(false);
costTextField.setBackground(Color.WHITE);
costTextField.setText("Total	Cost:");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
cartPanel.add(costTextField,	gridConstraints);
shoppingPane.addTab("Shopping	Cart",	cartPanel);	Resave,	recompile
and	rerun.	Click	the	newly	added	tab	to	see:	

5.	 Now,	 the	 addressPanel	 to	 complete	 the	 project	 controls.	 The	 class	 level
declarations:	JPanel	addressPanel	=	new	JPanel();

JScrollPane	addressPane	=	new	JScrollPane();	JTextArea
addressTextArea	=	new	JTextArea();	And,	the	positioning	code:

//	address	panel
addressPanel.setLayout(new	GridBagLayout());
addressPane.setPreferredSize(new	Dimension	(250,	150));
addressPane.setViewportView(addressTextArea);	gridConstraints.gridx
=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
addressPanel.add(addressPane,	gridConstraints);
shoppingPane.addTab("Mailing	Label",	addressPanel);	Resave,
recompile,	rerun	to	see	the	newly	added	tab:	

6.	 Now,	 let’s	 write	 the	 code.	 First	 the	 addButtonActionPerformed	 event:
private	void	addButtonActionPerformed(ActionEvent	e)	{

int	selectedProduct;
//	increment	selected	product	by	one
for	(selectedProduct	=	0;	selectedProduct	<	numberProducts;
selectedProduct++)	{

if	(product[selectedProduct].equals(orderSpinner.getValue().t
oString()))	{

break;

}

}

ordered[selectedProduct]++;
itemsOrdered++;
numberTextField.setText("Items	Ordered:	"	+	itemsOrdered);	}

This	code	adds	a	selected	item	to	the	shopping	cart.

7.	 The	 newButtonActionPerformed	 event:	 private	 void
newButtonActionPerformed(ActionEvent	e)	{

//	clear	form
orderTextArea.setText("");
itemsOrdered	=	0;
numberTextField.setText("Items	Ordered:	0");	for	(int	i	=	0;	i	<
numberProducts;	i++)	{

ordered[i]	=	0;

}

orderSpinner.setValue(product[0]);	}
This	code	clears	the	form	for	a	new	order.

8.	Use	this	code	in	the	exitButtonActionPerformed	procedure	which	stops	the
application:	private	void	exitButtonActionPerformed(ActionEvent	e)	{

System.exit(0);

}

9.	 The	 last	 event	 method	 is	 shoppingPaneStateChanged	 (this	 replaces	 the
empty	 method	 added	 when	 we	 first	 built	 the	 frame):	 private	 void

shoppingPaneStateChanged(ChangeEvent	e)	{

switch	(shoppingPane.getSelectedIndex())

{

case	0:
break;

case	1:
if	(itemsOrdered	==	0)

{

JOptionPane.showConfirmDialog(null,	"No	items	have
been	ordered.",	"Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	shoppingPane.setSelectedIndex(0);

}

else

{

double	totalCost	=	0.00;
String	order	=	"";
//load	in	ordered	items
for	(int	i	=	0;	i	<	numberProducts;	i++)	{

if	(ordered[i]	!=	0)

{

order	+=	ordered[i]	+	"	"	+	product[i].toString()	+
"\n";	totalCost	+=	ordered[i]	*	cost[i];

}

}

cartTextArea.setText(order);

costTextField.setText("Total	Cost:	$"	+	new
DecimalFormat("0.00").format(totalCost));	}

break;
case	2:

//	establish	address	and	show	label	form
if	(orderTextArea.getText().equals(""))

{

JOptionPane.showConfirmDialog(null,	"Address	is
blank.",	"Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	shoppingPane.setSelectedIndex(0);

}

else

{

//form	label
addressTextArea.setText("My	Company\n"	+	"My

Address\n"	+	"My	City,	State,	Zip\n\n\n"	+	orderTextArea.getText());	}
break;

}

}

In	 this	 code,	 if	 the	 cart	 tab	 is	 selected,	 the	 contents	 of	 the	 shopping	 cart	 are
displayed.	If	the	label	tab	is	selected,	the	mailing	label	is	formed.

The	 application	 is,	 at	 long	 last,	 complete.	 The	 complete	 ShoppingCart.java
code	listing	is	(code	added	to	framework	is	shaded):	/	*
*	ShoppingCart.java

*/

package	shoppingcart;

import	javax.swing.*;
import	javax.swing.event.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.text.*;
public	class	ShoppingCart	extends	JFrame

{

JTabbedPane	shoppingPane	=	new	JTabbedPane();	JPanel	orderPanel	=
new	JPanel();
JLabel	orderLabel	=	new	JLabel();
JTextArea	orderTextArea	=	new	JTextArea();	JSpinner	orderSpinner	=
new	JSpinner();
JButton	addButton	=	new	JButton();
JTextField	numberTextField	=	new	JTextField();	JButton	newButton	=
new	JButton();
JButton	exitButton	=	new	JButton();
JPanel	cartPanel	=	new	JPanel();
JScrollPane	cartPane	=	new	JScrollPane();	JTextArea	cartTextArea	=
new	JTextArea();	JTextField	costTextField	=	new	JTextField();	JPanel
addressPanel	=	new	JPanel();
JScrollPane	addressPane	=	new	JScrollPane();	JTextArea
addressTextArea	=	new	JTextArea();	final	int	numberProducts	=	10;
String[]	product	=	new	String[numberProducts];	double[]	cost	=	new
double[numberProducts];	int[]	ordered	=	new	int[numberProducts];
int	itemsOrdered;
public	static	void	main(String	args[])

{

//construct	frame
new	ShoppingCart().show();

}

public	ShoppingCart()

{

//	define	products	and	cost
product[0]	=	"Tricycle"	;	cost[0]	=	50;
product[1]	=	"Skateboard"	;	cost[1]	=	60;	product[2]	=	"In-Line
Skates"	;	cost[2]	=	100;	product[3]	=	"Magic	Set"	;	cost[3]	=	15;
product[4]	=	"Video	Game"	;	cost[4]	=	45;	product[5]	=	"Helmet"	;
cost[5]	=	25;
product[6]	=	"Building	Kit"	;	cost[6]	=	35;	product[7]	=	"Artist	Set"	;
cost[7]	=	40;	product[8]	=	"Doll	Baby"	;	cost[8]	=	25;
product[9]	=	"Bicycle"	;	cost[9]	=	150;
//	code	to	build	the	form
setTitle("Shopping	Cart");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	//	position
controls	(establish	event	methods)	GridBagConstraints
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	0;
getContentPane().add(shoppingPane,	gridConstraints);
shoppingPane.addChangeListener(new	ChangeListener()	{

public	void	stateChanged(ChangeEvent	e)

{

shoppingPaneStateChanged(e);

}

});

//	order	panel
orderPanel.setLayout(new	GridBagLayout());	gridConstraints	=	new
GridBagConstraints();	orderLabel.setText("Order	Address:");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	0,	0);
gridConstraints.anchor	=	GridBagConstraints.WEST;
orderPanel.add(orderLabel,	gridConstraints);	gridConstraints	=	new
GridBagConstraints();	orderTextArea.setColumns(30);
orderTextArea.setRows(6);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
orderPanel.add(orderTextArea,	gridConstraints);	gridConstraints	=
new	GridBagConstraints();	orderSpinner.setModel(new
SpinnerListModel(product));	orderSpinner.setPreferredSize(new
Dimension(150,	25));	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
orderPanel.add(orderSpinner,	gridConstraints);	gridConstraints	=
new	GridBagConstraints();	addButton.setText("Add	to	Order");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
orderPanel.add(addButton,	gridConstraints);
addButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{

addButtonActionPerformed(e);

}

});

gridConstraints	=	new	GridBagConstraints();
numberTextField.setColumns(20);
numberTextField.setEditable(false);
numberTextField.setBackground(Color.WHITE);
numberTextField.setHorizontalAlignment(SwingConstants.CENTER)
;	numberTextField.setText("Items	Ordered:	0");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	4;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
orderPanel.add(numberTextField,	gridConstraints);
newButton.setText("New	Order");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	5;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
orderPanel.add(newButton,	gridConstraints);
newButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
newButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	6;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
orderPanel.add(exitButton,	gridConstraints);
exitButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{

exitButtonActionPerformed(e);

}

});

shoppingPane.addTab("Order	Form",	orderPanel);	//	cart	panel
cartPanel.setLayout(new	GridBagLayout());
cartPane.setPreferredSize(new	Dimension	(250,	150));
cartPane.setViewportView(cartTextArea);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
cartPanel.add(cartPane,	gridConstraints);	gridConstraints	=	new
GridBagConstraints();	costTextField.setColumns(20);
costTextField.setEditable(false);
costTextField.setBackground(Color.WHITE);
costTextField.setText("Total	Cost:");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
cartPanel.add(costTextField,	gridConstraints);
shoppingPane.addTab("Shopping	Cart",	cartPanel);	//	address	panel
addressPanel.setLayout(new	GridBagLayout());
addressPane.setPreferredSize(new	Dimension	(250,	150));
addressPane.setViewportView(addressTextArea);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
addressPanel.add(addressPane,	gridConstraints);
shoppingPane.addTab("Mailing	Label",	addressPanel);
pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	 setBounds((int)	 (0.5
(screenSize.width	 -	getWidth())),	 (int)	 (0.5	 (screenSize.height	 -	getHeight())),
getWidth(),	getHeight());	}

private	void	shoppingPaneStateChanged(ChangeEvent	e)	{
switch	(shoppingPane.getSelectedIndex())

{

case	0:
break;

case	1:
if	(itemsOrdered	==	0)

{

JOptionPane.showConfirmDialog(null,	"No	items	have
been	ordered.",	"Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	shoppingPane.setSelectedIndex(0);

}

else

{

double	totalCost	=	0.00;
String	order	=	"";
//load	in	ordered	items
for	(int	i	=	0;	i	<	numberProducts;	i++)	{

if	(ordered[i]	!=	0)

{

order	+=	ordered[i]	+	"	"	+	product[i].toString()
+	"\n";	totalCost	+=	ordered[i]	*	cost[i];

}

}

cartTextArea.setText(order);

costTextField.setText("Total	Cost:	$"	+	new
DecimalFormat("0.00").format(totalCost));	}

break;
case	2:

//	establish	address	and	show	label	form
if	(orderTextArea.getText().equals(""))

{

JOptionPane.showConfirmDialog(null,	"Address	is
blank.",	"Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	shoppingPane.setSelectedIndex(0);

}

else

{

//form	label
addressTextArea.setText("My	Company\n"	+	"My

Address\n"	+	"My	City,	State,	Zip\n\n\n"	+	orderTextArea.getText());	}
break;

}

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

private	void	addButtonActionPerformed(ActionEvent	e)	{

int	selectedProduct;
//	increment	selected	product	by	one
for	(selectedProduct	=	0;	selectedProduct	<	numberProducts;

selectedProduct++)	{
if

(product[selectedProduct].equals(orderSpinner.getValue().toSt	ring()))	{
break;

}

}

ordered[selectedProduct]++;
itemsOrdered++;
numberTextField.setText("Items	Ordered:	"	+	itemsOrdered);

}

private	void	newButtonActionPerformed(ActionEvent	e)	{
//	clear	form
orderTextArea.setText("");
itemsOrdered	=	0;
numberTextField.setText("Items	Ordered:	0");	for	(int	i	=	0;	i	<
numberProducts;	i++)	{

ordered[i]	=	0;

}

orderSpinner.setValue(product[0]);

}

private	void	exitButtonActionPerformed(ActionEvent	e)	{
System.exit(0);

}

}

Run	the	project.	Notice	how	the	shopping	cart	works	and	how	the	different	tabs
work	 together.	 Here’s	 a	 run	 I	 made,	 first	 entering	 an	 order:	

With	 such	 an	 order,	 the	 shopping	 cart	 appears	 as:	

And,	the	mailing	label	is:

Save	 the	 project	 (saved	 as	 Example5-1	 project	 in	 the	 \LearnJava\LJ
Code\Class	5\	project	group).

As	mentioned,	this	is	a	start	to	an	e-commerce	type	system.	If	you’re	interested
in	such	projects,	you	can	expand	this	to	meet	your	needs.

Using	General	Methods	in	Applications
So	far	in	this	class,	with	few	exceptions,	the	only	methods	we	have	studied	are
the	event	methods	associated	with	 the	various	controls.	Most	applications	have
tasks	not	related	to	controls	that	require	some	code	to	perform	these	tasks.	Such
tasks	are	usually	coded	in	a	general	method	(essentially	the	same	as	a	function
in	other	languages).	A	method	performs	a	specific	task,	returning	some	value.

Using	 general	 methods	 can	 help	 divide	 a	 complex	 application	 into	 more
manageable	units	of	code.	This	helps	meet	the	earlier	stated	goals	of	readability
and	 reusability.	 As	 you	 build	 applications,	 it	 will	 be	 obvious	 where	 such	 a
method	is	needed.	Look	for	areas	in	your	application	where	code	is	repeated	in
different	places.	 It	would	be	best	 (shorter	 code	and	easier	maintenance)	 to	put
this	repeated	code	in	a	method.	And,	 look	for	places	in	your	application	where
you	want	to	do	some	long,	detailed	task	–	this	is	another	great	use	for	a	general
method.	It	makes	your	code	much	easier	to	follow.

The	 form	 for	 a	 general	 method	 named	 myMethod	 is:	 public	 type
myMethod(arguments)	//	definition	header	{

[method	code]
return(returnedValue)

}

The	 definition	 header	 names	 the	method,	 specifies	 its	 type	 (the	 type	 of	 the
returned	value	–	if	no	value	is	returned,	use	the	keyword	void)	and	defines	any
input	 arguments	 passed	 to	 the	 method.	 The	 keyword	 public	 indicates	 the
method	can	be	called	from	anywhere	in	the	project.

Arguments	 are	 a	 comma-delimited	 list	 of	 variables	 passed	 to	 the	 method.	 If
there	are	arguments,	we	need	to	take	care	in	how	they	are	declared	in	the	header
statement.	In	particular,	we	need	to	be	concerned	with:

➢	Number	of	arguments	➢	Order	of	arguments	➢	Type	of	arguments

We	will	address	each	point	separately.

The	number	of	arguments	is	dictated	by	how	many	variables	the	method	needs
to	do	its	job.	You	need	a	variable	for	each	piece	of	input	information.	You	then
place	these	variables	in	a	particular	order	for	the	argument	list.

Each	variable	 in	 the	argument	 list	will	be	a	particular	data	type.	This	must	be
known	for	each	variable.	In	Java,	all	variables	are	passed	by	value,	meaning	their
value	cannot	be	changed	in	the	method.	Variables	are	declared	in	the	argument
list	using	standard	notation:	type	variableName

The	variable	name	(variableName)	is	treated	as	a	local	variable	in	the	method.

Arrays	can	also	be	used	as	input	arguments.	To	declare	an	array	as	an	argument,
use:	type[]	arrayName

The	brackets	indicate	an	array	is	being	passed.

To	use	a	general	method,	simply	refer	to	it,	by	name,	in	code	(with	appropriate
arguments).	Wherever	 it	 is	used,	 it	will	 be	 replaced	by	 the	computed	value.	A
function	can	be	used	to	return	a	value:	rtnValue	=	myFunction(arguments);

or	in	an	expression:

thisNumber	=	7	*	myFunction(arguments)	/	anotherNumber;	Let’s	build	a
quick	example	that	converts	Fahrenheit	temperatures	to	Celsius	(remember
the	example	in	Class	4?)	Here’s	such	a	function:	public	double
degFTodegC(double	tempF)

{

double	tempC;
tempC	=	(tempF	–	32)	*	5	/	9;
return(tempC);

}

The	method	 is	 named	degFTodegC.	 It	 has	 a	 single	 argument,	 tempF,	 of	 type
double.	It	returns	a	double	data	type.	This	code	segment	converts	45.7	degrees
Fahrenheit	to	the	corresponding	Celsius	value:	double	t;

.

.
t	=	degFTodegC(45.7);

After	this,	t	will	have	a	value	of	7.61	degrees	C.

To	 put	 a	 general	 method	 in	 a	 Java	 application,	 simply	 type	 it	 with	 the	 event
methods	 associated	with	 controls.	 Just	make	 sure	 it	 is	 before	 the	 final	 closing
brace	 for	 the	 Java	class	defining	 the	project.	Type	 the	header,	 the	opening	 left
brace,	the	code	and	the	closing	right	brace.

Every	method	developed	in	this	class	that	has	some	general	purpose,	that	is	can
be	used	outside	of	a	particular	application,	is	listed	in	Appendix	I.	The	method
degFTodegC	 can	 be	 found	 in	 that	 appendix.	You	will	 also	 find	 two	methods
developed	in	Class	2	to	validate	decimal	(validateDecimalNumber	–	Example
2-3)	and	integer	(validateIntegerNumber	–	Exercise	2-2)	numbers	in	text	field
controls.	And,	there	is	a	copy	of	the	code	for	the	ExampleFileFilter	class	used
in	Class	4.	We	will	be	adding	more.

Example	5-2
Average	Value

Start	 a	 new	 empty	 project	 in	 NetBeans.	 Name	 the	 project	 Average.	 Delete
default	 code	 in	 Java	 file	 named	Average.	 This	will	 be	 an	 application	where	 a
user	 inputs	 a	 list	 of	 numbers.	 Once	 complete,	 the	 average	 value	 of	 the	 input
numbers	is	computed	using	a	general	method.	This	example	illustrates	the	use	of
arrays	 in	 argument	 lists.	 The	 finished	 project	 will	 look	 like	 this:	

1.	Place	label,	two	text	fields,	three	button	controls	and	a	scroll	pane	control	on
the	 frame.	 The	 GridBagLayout	 arrangement	 for	 the	 controls	 is:	

Properties:

Average	Frame:
title Average	Value
resizable false

enterLabel:
text Enter	Number
gridx 0
gridy 0

enterTextField:
text [blank]
columns 15
gridx 0
gridy 1
insets (0,	10,	0,	10);

addButton:
text Add	to	List
gridx 0
gridy 2
insets (10,	0,	0,	0);

listPane:

preferredSize (150,150)
viewportView valueList	(JList	control)
gridx 0
gridy 3
insets (10,	10,	10,	10);

clearButton:
text Clear	List
gridx 0
gridy 4

averageTextField:
text [blank]
columns 15
editable false
background WHITE
horizontalAlignment CENTER
gridx 0
gridy 5
insets (10,	0,	0,	0)

computeButton:
text Compute	Average
gridx 0
gridy 6
insets (10,	0,	10,	0)

2.	First,	build	the	basic	framework.	The	code	to	do	this	is:	/	*

*	Average.java
*/	package	average;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

import	java.text.*;
public	class	Average	extends	JFrame

{

public	static	void	main(String	args[])

{

//construct	frame
new	Average().show();

}

public	Average()

{

//	code	to	build	the	form
setTitle("Average	Value");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	setBounds((int)	(0.5
(screenSize.width	-getWidth())),	(int)	(0.5	(screenSize.height	-getHeight())),

getWidth(),	getHeight());	}
private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

3.	 Now,	 add	 controls	 and	 events.	 Add	 these	 class	 level	 declarations:	 JLabel
enterLabel	=	new	JLabel();

JTextField	enterTextField	=	new	JTextField();	JButton	addButton	=	new
JButton();
JScrollPane	listPane	=	new	JScrollPane();	JList	valueList	=	new	JList();
DefaultListModel	valueListModel	=	new	DefaultListModel();	JButton
clearButton	=	new	JButton();
JTextField	averageTextField	=	new	JTextField();	JButton	computeButton
=	new	JButton();

Position	 and	 add	 each	 control	 and	 events	 to	 the	 frame:	 //	 position	 controls
(establish	 event	 methods)	 GridBagConstraints	 gridConstraints	 =	 new
GridBagConstraints();	enterLabel.setText("Enter	Number");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(enterLabel,	gridConstraints);
enterTextField.setText("");
enterTextField.setColumns(15);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(0,	10,	0,	10);
getContentPane().add(enterTextField,	gridConstraints);
enterTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
enterTextFieldActionPerformed(e);

}

});

addButton.setText("Add	to	List");
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
getContentPane().add(addButton,	gridConstraints);
addButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
addButtonActionPerformed(e);

}

});

valueList.setModel(valueListModel);
listPane.setPreferredSize(new	Dimension	(150,	150));
listPane.setViewportView(valueList);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(listPane,	gridConstraints);
clearButton.setText("Clear	List");
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	4;
getContentPane().add(clearButton,	gridConstraints);

clearButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

clearButtonActionPerformed(e);

}

});

averageTextField.setText("");
averageTextField.setColumns(15);
averageTextField.setEditable(false);
averageTextField.setBackground(Color.WHITE);
averageTextField.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	5;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
getContentPane().add(averageTextField,	gridConstraints);
computeButton.setText("Compute	Average");	gridConstraints	=	new
GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	6;
gridConstraints.insets	=	new	Insets(10,	0,	10,	0);
getContentPane().add(computeButton,	gridConstraints);
computeButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
computeButtonActionPerformed(e);

}

});

And,	add	the	empty	event	methods:

private	void	enterTextFieldActionPerformed(ActionEvent	e)	{

}

private	void	addButtonActionPerformed(ActionEvent	e)	{

}

private	void	clearButtonActionPerformed(ActionEvent	e)	{

}

private	void	computeButtonActionPerformed(ActionEvent	e)	{

}

Run	to	make	sure	all	the	controls	appear	as	desired.

4.	Now,	we	add	code.	First,	 the	general	method	that	computes	an	average.	The
numbers	 it	 averages	 are	 in	 the	 0-based	 array	 values.	 There	 are
numberValues	 elements	 in	 the	 array:	 public	 double	 average(int
numberValues,	double[]	values)	{

//	find	average
double	sum	=	0.0;

for	(int	i	=	0;	i	<	numberValues;	i++)	{
sum	+=	values[i];

}

return(sum	/	numberValues);

}

Type	this	after	 the	event	methods.	Notice	how	the	array	(values)	is	passed	into
the	method.	This	method	has	been	placed	in	Appendix	I.

5.	 Use	 this	 code	 in	 the	 enterTextFieldActionPerformed	 event:	 private	 void
enterTextFieldActionPerformed(ActionEvent	e)	{

addButton.doClick();

}

This	code	simply	‘clicks’	the	Add	to	List	button	when	<Enter>	is	pressed.

6.	 Use	 this	 code	 for	 the	 addButtonActionPerformed	 event:	 private	 void
addButtonActionPerformed(ActionEvent	e)	{

//	check	for	valid	number
if	(!validateDecimalNumber(enterTextField))	{

return;

}

}

//	add	value	to	list	control
valueListModel.addElement(enterTextField.getText());
enterTextField.setText("");
enterTextField.requestFocus();

}

This	adds	the	validated,	entered	value	to	the	list	box.	The	validation	is	done	with
the	validateDecimalNumber	method	(copy	from	Appendix	I):	public	boolean
validateDecimalNumber(JTextField	tf)	{

//	checks	to	see	if	text	field	contains
//	valid	decimal	number	with	only	digits	and	a	single	decimal	point	//

or	negative	sign
String	s	=	tf.getText().trim();
boolean	hasDecimal	=	false;
boolean	valid	=	true;
if	(s.length()	==	0)

{

valid	=	false;

}

else

{

for	(int	i	=	0;	i	<	s.length();	i++)

{

char	c	=	s.charAt(i);
if	((c	>=	'0'	&&	c	<=	'9')	||	(c	==	'-'	&&	i	==	0))	{

continue;

}

}

else	if	(c	==	'.'	&&	!hasDecimal)	{
hasDecimal	=	true;

}

else

{

//	invalid	character	found
valid	=	false;

}

}

}

if	(valid)

{

tf.setText(s);

}

else

{

tf.setText("");
tf.requestFocus();

}

return	(valid);

}

7.	Use	 this	 code	 in	 the	clearButtonActionPerformed	 event	–	 it	 clears	 the	 list
box	 for	 another	 average:	 private	 void
clearButtonActionPerformed(ActionEvent	e)	{

//	resets	form	for	another	average
valueListModel.removeAllElements();
averageTextField.setText("");
enterTextField.setText("");
enterTextField.requestFocus();

}

8.	Use	 this	code	for	 the	computeButtonActionPerformed	event:	private	void
computeButtonActionPerformed(ActionEvent	e)	{

int	count	=	valueListModel.getSize();
//	make	sure	numbers	have	been	entered
if	(count	!=	0)

{

double[]	myValues	=	new	double[count];
double	myAverage;
//	load	values	in	array	and	compute	average	for	(int	i	=	0;	i	<
count;	i++)

{

myValues[i]	=
Double.valueOf(valueListModel.getElementAt(i).toString()).
doubleValue();	}

myAverage	=	average(count,	myValues);
averageTextField.setText(new
DecimalFormat("0.00").format(myAverage));	}

enterTextField.requestFocus();

}

This	takes	the	values	from	the	list	control	and	finds	the	average	value.

Here	 is	 the	 complete	Average.java	 code	 (code	 added	 to	 basic	 framework	 is
shaded):	/	*
*	Average.java
*/	package	average;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.text.*;

public	class	Average	extends	JFrame

{

JLabel	enterLabel	=	new	JLabel();
JTextField	enterTextField	=	new	JTextField();	JButton	addButton	=	new

JButton();
JScrollPane	listPane	=	new	JScrollPane();	JList	valueList	=	new	JList();
DefaultListModel	valueListModel	=	new	DefaultListModel();	JButton

clearButton	=	new	JButton();
JTextField	averageTextField	=	new	JTextField();	JButton

computeButton	=	new	JButton();

public	static	void	main(String	args[])

{

//construct	frame
new	Average().show();

}

public	Average()

{

//	code	to	build	the	form
setTitle("Average	Value");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	position	controls	(establish	event	methods)	GridBagConstraints
gridConstraints	=	new	GridBagConstraints();
enterLabel.setText("Enter	Number");	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(enterLabel,	gridConstraints);
enterTextField.setText("");
enterTextField.setColumns(15);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(0,	10,	0,	10);
getContentPane().add(enterTextField,	gridConstraints);
enterTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
enterTextFieldActionPerformed(e);

}

});

addButton.setText("Add	to	List");
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
getContentPane().add(addButton,	gridConstraints);
addButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
addButtonActionPerformed(e);

}

});

valueList.setModel(valueListModel);
listPane.setPreferredSize(new	Dimension	(150,	150));
listPane.setViewportView(valueList);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(listPane,	gridConstraints);
clearButton.setText("Clear	List");
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	4;
getContentPane().add(clearButton,	gridConstraints);
clearButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
clearButtonActionPerformed(e);

}

});

averageTextField.setText("");

averageTextField.setColumns(15);
averageTextField.setEditable(false);
averageTextField.setBackground(Color.WHITE);
averageTextField.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	5;
gridConstraints.insets	=	new	Insets(10,	0,	0,	0);
getContentPane().add(averageTextField,	gridConstraints);
computeButton.setText("Compute	Average");	gridConstraints	=	new
GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	6;
gridConstraints.insets	=	new	Insets(10,	0,	10,	0);
getContentPane().add(computeButton,	gridConstraints);
computeButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
computeButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	 setBounds((int)	 (0.5
(screenSize.width	 -	getWidth())),	 (int)	 (0.5	 (screenSize.height	 -	getHeight())),
getWidth(),	getHeight());	}
private	void	enterTextFieldActionPerformed(ActionEvent	e)	{

addButton.doClick();

}

private	void	addButtonActionPerformed(ActionEvent	e)	{
//	check	for	valid	number
if	(!validateDecimalNumber(enterTextField))	{

return;

}

//	add	value	to	list	control
valueListModel.addElement(enterTextField.getText());
enterTextField.setText("");
enterTextField.requestFocus();

}

private	void	clearButtonActionPerformed(ActionEvent	e)	{
//	resets	form	for	another	average
valueListModel.removeAllElements();
averageTextField.setText("");
enterTextField.setText("");
enterTextField.requestFocus();

}

private	void	computeButtonActionPerformed(ActionEvent	e)	{
int	count	=	valueListModel.getSize();
//	make	sure	numbers	have	been	entered
if	(count	!=	0)

{

double[]	myValues	=	new	double[count];
double	myAverage;
//	load	values	in	array	and	compute	average	for	(int	i	=	0;	i	<
count;	i++)

{

myValues[i]	=
Double.valueOf(valueListModel.getElementAt(i).toString()).dou
bleValue();	}

myAverage	=	average(count,	myValues);

averageTextField.setText(new
DecimalFormat("0.00").format(myAverage));	}

enterTextField.requestFocus();

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

public	double	average(int	numberValues,	double[]	values)	{
//	find	average
double	sum	=	0.0;
for	(int	i	=	0;	i	<	numberValues;	i++)	{

sum	+=	values[i];

}

return(sum	/	numberValues);

}

public	boolean	validateDecimalNumber(JTextField	tf)	{
//	checks	to	see	if	text	field	contains
//	valid	decimal	number	with	only	digits	and	a	single	decimal	point	//

or	negative	sign
String	s	=	tf.getText().trim();
boolean	hasDecimal	=	false;
boolean	valid	=	true;
if	(s.length()	==	0)

{

valid	=	false;

}

else

{

for	(int	i	=	0;	i	<	s.length();	i++)

{

char	c	=	s.charAt(i);
if	((c	>=	'0'	&&	c	<=	'9')	||	(c	==	'-'	&&	i	==	0))	{

continue;

}

else	if	(c	==	'.'	&&	!hasDecimal)	{
hasDecimal	=	true;

}

else

{

//	invalid	character	found
valid	=	false;

}

}

}

if	(valid)

{

tf.setText(s);

}

else

{

tf.setText("");
tf.requestFocus();

}

return	(valid);

}

}

Run	the	application	and	try	different	values.	This	averaging	method	might	come
in	handy	for	some	task	you	may	have.	Here’s	a	run	I	made	averaging	the	first	10

integers:	

Save	 the	 application	 (saved	 as	 Example5-2	 project	 in	 \LearnJava\LJ
Code\Class	5\	project	group).

Returning	Multiple	Values	from	General
Methods	You	may	have	noticed	a	general	method	can	only	return	a
single	value	(or	no	value).	What	if	you	need	to	compute	and	return	multiple
values?	Can	a	method	still	be	used?	There	are	two	possible	approaches	to	this
situation,	depending	on	the	types	of	information	being	returned.

If	 the	returned	values	are	of	different	 types,	you	would	need	 to	add	class	 level
variables	 for	 all	 additional	 computed	 values.	 Then,	 these	 values	 would	 be
available	where	needed	in	the	project.	This	works,	but	is	not	ideal	since	it	tends
to	 destroy	 the	 “portability”	 of	 a	method.	 This	 portability	 is	 destroyed	 because
you	need	to	make	sure	users	of	your	method	know	what	the	class	level	variables
are	and	make	sure	they	include	the	needed	declarations	in	their	project.

If	 the	 returned	 values	 are	 all	 of	 the	 same	 type,	 there	 is	 a	 better	 solution	 that
maintains	the	portability	of	methods.	In	this	situation,	simply	return	an	array	of
output	 values.	With	 such	 an	 approach,	 no	 class	 level	 variables	 are	needed	 and
the	 users	 don’t	 need	 to	 add	 any	 extra	 declarations.	 They	 just	 need	 to	 use	 the
method.

An	 example	 of	 this	 second	 approach	 should	make	 things	 clearer.	Assume	you
are	a	carpet	layer	and	always	need	the	perimeter	and	area	for	a	rectangle.	We’ll
build	a	method	 that	helps	you	with	 the	computations.	We	need,	 for	 inputs,	 the
length	and	width	of	the	rectangle.	The	output	information	will	be	an	array	with
the	 perimeter	 and	 area.	Here	 is	 the	method	 that	 does	 the	 job:	public	double[]
rectangleInfo(double	length,	double	width)	{

double[]	info	=	new	double[2];
info[0]	=	2	*	(length	+	width);	//	perimeter	info[1]	=	length	*	width;	//
area
return(info);

}

The	method	is	named	rectangleInfo.	It	has	two	arguments,	both	of	type	double.
The	 two	arguments	are	 length	and	width.	Notice	how	the	computed	perimeter
and	area	are	placed	in	the	info	array	returned	by	the	method.	Make	sure	the	type

in	the	header	statement	indicates	an	array	is	returned	(double[]	in	this	case).	This
method	is	in	Appendix	I.

This	code	segment	will	call	our	method:

double	l;
double	w;
double[]	carpet	=	new	double[2];

.

.
l	=	6.2;
w	=	2.3;
carpet	=	rectangleInfo(l,	w);

Once	this	code	 is	executed,	 the	variable	carpet[0]	will	have	 the	perimeter	of	a
rectangle	of	length	6.2	and	width	2.3	(17.0).	The	variable	carpet[1]	will	have	the
area	of	the	same	rectangle	(14.26).	Notice	there	is	no	reason	for	the	variables	in
the	calling	argument	sequence	 to	have	 the	same	names	assigned	 in	 the	method
declaration.	The	location	of	each	variable	in	the	calling	sequence	defines	which
variable	is	which	(that’s	why	order	of	arguments	is	important).

Example	5-3
Circle	Geometry

Start	a	new	empty	project	in	NetBeans.	Name	the	project	Circle.	Delete	default
code	in	Java	file	named	Circle.	This	will	be	a	simple	application	that	illustrates
use	of	a	method	that	returns	an	array.	The	procedure	will	compute	the	area	and
circumference	of	a	circle,	given	its	diameter.	The	finished	project	will	look	like

this:	

1.	 Add	 three	 labels,	 three	 text	 fields	 and	 a	 button	 control	 to	 the	 frame.	 The
GridBagLayout	 is:	

Properties:

Circle	Frame:
title Circle	Geometry
resizable false

diameterLabel:
text Enter	Diameter

gridx 0
gridy 0
insets (5,	5,	5,	5)

diameterTextField:
text [blank]
columns 15
gridx 1
gridy 0
insets (5,	5,	5,	5)

computeButton:
text Compute
gridx 0
gridy 1
gridwidth 2
insets (5,	5,	5,	5)

circumferenceLabel:
text Computed	Circumference
gridx 0
gridy 2
insets (5,	5,	5,	5)

circumferenceTextField:
text [blank]
columns 15
editable false
background YELLOW
horizontalAlignment CENTER
gridx 1
gridy 2
insets (5,	5,	5,	5)

areaLabel:
text Computed	Area
gridx 0
gridy 3
insets (5,	5,	5,	5)

areaTextField:
text [blank]
columns 15
editable false
background YELLOW
horizontalAlignment CENTER
gridx 1
gridy 3
insets (5,	5,	5,	5)

2.	Build	the	basic	framework:	/	*

*	Circle.java
*	KIDware

*/

package	circle;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.text.*;

public	class	Circle	extends	JFrame

{

public	static	void	main(String	args[])

{

//construct	frame
new	Circle().show();

}

public	Circle()

{

//	code	to	build	the	form
setTitle("Circle	Geometry");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	setBounds((int)	(0.5
(screenSize.width	-getWidth())),	(int)	(0.5	(screenSize.height	-getHeight())),
getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	to	check	things	out.

3.	Now,	 add	 controls	 and	 events.	Class	 level	 declarations	 for	 controls:	JLabel
diameterLabel	=	new	JLabel();

JTextField	diameterTextField	=	new	JTextField();	JButton
computeButton	=	new	JButton();
JLabel	circumferenceLabel	=	new	JLabel();	JTextField
circumferenceTextField	=	new	JTextField();	JLabel	areaLabel	=	new
JLabel();
JTextField	areaTextField	=	new	JTextField();	Position	controls	and	add
event	methods:

GridBagConstraints	gridConstraints	=	new	GridBagConstraints();
diameterLabel.setText("Enter	Diameter");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(diameterLabel,	gridConstraints);
diameterTextField.setText("");
diameterTextField.setColumns(15);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(diameterTextField,	gridConstraints);
diameterTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
diameterTextFieldActionPerformed(e);

}

});

computeButton.setText("Compute");

gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(computeButton,	gridConstraints);
computeButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
computeButtonActionPerformed(e);

}

});

circumferenceLabel.setText("Computed	Circumference");
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(circumferenceLabel,	gridConstraints);
circumferenceTextField.setText("");
circumferenceTextField.setColumns(15);
circumferenceTextField.setEditable(false);
circumferenceTextField.setBackground(Color.YELLOW);
circumferenceTextField.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(circumferenceTextField,	gridConstraints);
areaLabel.setText("Computed	Area");
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(areaLabel,	gridConstraints);
areaTextField.setText("");
areaTextField.setColumns(15);
areaTextField.setEditable(false);

areaTextField.setBackground(Color.YELLOW);
areaTextField.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(areaTextField,	gridConstraints);	Add	two	empty
event	methods	(one	for	the	diameter	text	field	and	one	for	the	compute
button):	private	void	diameterTextFieldActionPerformed(ActionEvent	e)
{

}

private	void	computeButtonActionPerformed(ActionEvent	e)	{

}

Run	to	check	the	control	alignment.

4.	Let’s	 add	 the	 code.	Add	 a	 general	method	 (circleGeometry)	 that	 computes
the	 circumference	 and	 area	 of	 a	 circle:	 public	 double[]
circleGeometry(double	diameter)	{

double	[]	geometry	=	new	double[2];
geometry[0]	=	Math.PI	*	diameter;	//	circumference	geometry[1]	=
Math.PI	*	diameter	*	diameter	4;	/	area	return(geometry);

}

Notice	 the	 variable	 diameter	 is	 input	 and	 an	 array	 (geometry)	 contains	 the
outputs.	geometry[0]	holds	 the	circumference	and	geometry[1]	holds	 the	area.
This	procedure	can	be	found	in	Appendix	I.

5.	 Use	 this	 code	 in	 the	 diameterTextFieldActionPerformed	 event:	 private
void	diameterTextFieldActionPerformed(ActionEvent	e)	{

computeButton.doClick();

}

This	code	simply	‘clicks’	the	Compute	button	when	<Enter>	is	pressed.

6.	Use	 this	code	for	 the	computeButtonActionPerformed	event:	private	void
computeButtonActionPerformed(ActionEvent	e)	{

//	check	for	valid	number
if	(!validateDecimalNumber(diameterTextField))	{

return;

}

double[]	info	=	new	double[2];
double	d	=

Double.valueOf(diameterTextField.getText()).doubleValue();	info	=
circleGeometry(d);

circumferenceTextField.setText(new
DecimalFormat("0.00").format(info[0]));	areaTextField.setText(new
DecimalFormat("0.00").format(info[1]));	}

This	 reads	 the	 validated	 diameter	 and	 computes	 the	 circle	 geometry.	 The
validation	 is	 done	 with	 the	 validateDecimalNumber	 method	 (copy	 from
Appendix	I):	public	boolean	validateDecimalNumber(JTextField	tf)	{

//	checks	to	see	if	text	field	contains
//	valid	decimal	number	with	only	digits	and	a	single	decimal	point	//

or	negative	sign
String	s	=	tf.getText().trim();

oolean	hasDecimal	=	false;
oolean	valid	=	true;

if	(s.length()	==	0)

{

valid	=	false;

}

else

{

for	(int	i	=	0;	i	<	s.length();	i++)

{

char	c	=	s.charAt(i);
if	((c	>=	‘0’	&&	c	<=	‘9’)	||	(c	==	‘-‘	&&	i	==	0))	{

continue;

}

else	if	(c	==	‘.’	&&	!hasDecimal)	{
hasDecimal	=	true;

}

else

{

//	invalid	character	found
valid	=	false;

}

}

}

if	(valid)

{

tf.setText(s);

}

else

{

{

tf.setText(“”);
tf.requestFocus();

}

return	(valid);

}

The	final	Circle.java	code	listing	(with	code	added	to	basic	framework	shaded):
/	*
*	Circle.java

*/

package	circle;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.text.*;

public	class	Circle	extends	JFrame

{

JLabel	diameterLabel	=	new	JLabel();
JTextField	diameterTextField	=	new	JTextField();	JButton

computeButton	=	new	JButton();
JLabel	circumferenceLabel	=	new	JLabel();	JTextField

circumferenceTextField	=	new	JTextField();	JLabel	areaLabel	=	new
JLabel();
JTextField	areaTextField	=	new	JTextField();

public	static	void	main(String	args[])

{

//construct	frame
new	Circle().show();

}

public	Circle()

{

//	code	to	build	the	form
setTitle("Circle	Geometry");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());
//	position	controls	(establish	event	methods)	GridBagConstraints
gridConstraints	=	new	GridBagConstraints();
diameterLabel.setText("Enter	Diameter");	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(diameterLabel,	gridConstraints);
diameterTextField.setText("");
diameterTextField.setColumns(15);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
1;
gridConstraints.gridy	=	0;

gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(diameterTextField,	gridConstraints);
diameterTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
diameterTextFieldActionPerformed(e);

}

});

computeButton.setText("Compute");
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	1;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(computeButton,	gridConstraints);
computeButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
computeButtonActionPerformed(e);

}

});

circumferenceLabel.setText("Computed	Circumference");
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(circumferenceLabel,	gridConstraints);
circumferenceTextField.setText("");
circumferenceTextField.setColumns(15);
circumferenceTextField.setEditable(false);
circumferenceTextField.setBackground(Color.YELLOW);
circumferenceTextField.setHorizontalAlignment(SwingConstants.CENTER);

gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
1;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(circumferenceTextField,	gridConstraints);
areaLabel.setText("Computed	Area");
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(areaLabel,	gridConstraints);
areaTextField.setText("");
areaTextField.setColumns(15);
areaTextField.setEditable(false);
areaTextField.setBackground(Color.YELLOW);
areaTextField.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();	gridConstraints.gridx	=
1;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(areaTextField,	gridConstraints);

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	 setBounds((int)	 (0.5
(screenSize.width	 -	getWidth())),	 (int)	 (0.5	 (screenSize.height	 -	getHeight())),
getWidth(),	getHeight());	}
private	void	diameterTextFieldActionPerformed(ActionEvent	e)	{

computeButton.doClick();

}

private	void	computeButtonActionPerformed(ActionEvent	e)	{
//	check	for	valid	number
if	(!validateDecimalNumber(diameterTextField))	{

return;

}

double[]	info	=	new	double[2];
double	d	=

Double.valueOf(diameterTextField.getText()).doubleValue();	 info	 =
circleGeometry(d);

circumferenceTextField.setText(new
DecimalFormat("0.00").format(info[0]));	areaTextField.setText(new
DecimalFormat("0.00").format(info[1]));	}

public	double[]	circleGeometry(double	diameter)	{
double	[]	geometry	=	new	double[2];
geometry[0]	=	Math.PI	*	diameter;	//	circumference	geometry[1]	=
Math.PI	*	diameter	*	diameter	4;	/	area	return(geometry);

}

public	boolean	validateDecimalNumber(JTextField	tf)	{
//	checks	to	see	if	text	field	contains
//	valid	decimal	number	with	only	digits	and	a	single	decimal	point	//

or	negative	sign
String	s	=	tf.getText().trim();
boolean	hasDecimal	=	false;
boolean	valid	=	true;
if	(s.length()	==	0)

{

valid	=	false;

}

else

{

for	(int	i	=	0;	i	<	s.length();	i++)

{

char	c	=	s.charAt(i);
if	((c	>=	'0'	&&	c	<=	'9')	||	(c	==	'-'	&&	i	==	0))	{

continue;

}

else	if	(c	==	'.'	&&	!hasDecimal)	{
hasDecimal	=	true;

}

else

{

//	invalid	character	found
valid	=	false;

}

}

}

if	(valid)

{

tf.setText(s);

}

else

{

tf.setText("");
tf.requestFocus();

}

return	(valid);

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	the	application	and	try	some	different	diameters.	Here’s	what	I	got	when	I

used	a	diameter	of	23.24:	

Save	the	project	(saved	as	Example5-3	project	in	\LearnJava\LJ	Code\Class	5\
project	group).

Adding	Menus	to	Java	Applications
As	 the	 applications	 you	 build	 become	 more	 and	 more	 detailed,	 with	 more
features	 for	 the	 user,	 you	 will	 need	 some	 way	 to	 organize	 those	 features.	 A
menu	provides	such	organization.	Menus	are	a	part	of	most	applications.	They
provide	 ways	 to	 navigate	 within	 an	 application	 and	 access	 desired	 features.
Menus	 are	 easily	 incorporated	 into	 Java	 GUI	 programs	 using	 three	 Swing
objects:	menu	bars,	menus,	and	menu	items.

The	JMenuBar	 object	 is	 placed	 at	 the	 top	 of	 a	 frame	 and	 is	 used	 to	 hold	 the
menu.	The	JMenu	object	is	a	labeled	menu	item,	within	the	menu	bar,	that	when
clicked	displays	a	pull-down	menu.	And,	a	JMenuItem	 is	a	simple	menu	item
that	when	clicked	results	in	some	program	action.	JMenuItem	objects	appear	in
the	pull-down	menus	of	JMenu	objects.	Menu	items	can	be	simply	text	or	even
radio	buttons	and	check	boxes.

A	good	way	to	think	about	elements	of	a	menu	structure	is	to	consider	them	as	a
hierarchical	list	of	button-type	controls	that	only	appear	when	pulled	down	from
the	menu.	When	you	click	on	a	menu	item,	some	action	is	taken.	Like	buttons,
menu	items	are	named,	have	properties	and	events.	The	best	way	to	learn	to	use
all	these	objects	is	to	build	an	example	menu.	The	menu	structure	we	will	build

is:	

The	level	of	indentation	indicates	position	of	a	menu	item	within	the	hierarchy.
For	example,	New	is	a	sub-element	of	the	File	menu.	The	line	under	Save	in	the
File	menu	is	a	separator	bar	(separates	menu	items).

The	 three	 headings,	 File,	Edit	 and	 Format,	 will	 be	 JMenu	 objects	 within	 a
JMenuBar	object.	With	this	structure,	the	menu	would	display	as:

File Edit Format

The	 sub-menus	 appear	 when	 one	 of	 these	 ‘top’	 level	 menu	 items	 is	 selected.
Note	the	Size	sub-menu	under	Format	has	another	level	of	hierarchy.	It	is	good
practice	to	not	use	more	than	two	levels	in	menus.	Each	menu	item	will	have	an
actionPerformed	event	associated	with	it.	This	event	is	invoked	when	the	user
clicks	the	corresponding	item.

When	designing	your	menus,	follow	formats	used	by	standard	GUI	applications.
For	 example,	 if	 your	 application	works	with	 files,	 the	 first	 heading	 should	 be
File	 and	 the	 last	 element	 in	 the	 sub-menu	 under	File	 should	 be	Exit.	 If	 your
application	uses	editing	 features	 (cutting,	pasting,	copying),	 there	should	be	an
Edit	heading.	By	doing	this,	you	insure	your	user	will	be	comfortable	with	your
application.	Of	course,	 there	will	be	times	your	application	has	unique	features
that	 do	 not	 fit	 a	 ‘standard’	 menu	 item.	 In	 such	 cases,	 choose	 headings	 that
accurately	describe	such	unique	features.

We’re	 ready	 to	 build	 this	 sample	 menu,	 step-by-step.	 Start	 a	 new	 project	 in
NetBeans.	Name	the	project	MenuExample.	Delete	default	code	in	file	named
MenuExample.	Use	this	code	to	create	an	empty	frame:	/	*
*	MenuExample.java

*/

package	menuexample
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
public	class	MenuExample	extends	JFrame

{

public	static	void	main(String	args[])

{

//	construct	frame
new	MenuExample().show();

}

public	MenuExample()

{

//	frame	constructor
setTitle("Menu	Example");
setSize(400,	200);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

Run	 to	 make	 sure	 the	 empty	 frame	 appears:	

We	first	add	a	menu	bar	and	the	three	main	headings.	We	will	name	our	menu
bar	 exampleMenuBar.	 To	 create	 this,	 use:	 JMenuBar	 exampleMenuBar	 =
new	JMenuBar();	This	declaration	and	creation	is	usually	at	class	level.	To	add
this	 menu	 bar	 to	 the	 existing	 frame,	 use	 the	 JFrame	 setJMenuBar	 method:
setJMenuBar(exampleMenuBar);

Then,	each	heading	(JMenu	object)	needs	a	declaration	and	creation	statement.
When	the	heading	 is	created,	you	add	 the	 text	 that	 is	displayed	 in	 the	heading.
For	our	three	headings,	the	statements	(again,	class	level	declarations)	would	be:
JMenu	fileMenu	=	new	JMenu(“File”);
JMenu	editMenu	=	new	JMenu(“Edit”);
JMenu	formatMenu	=	new	JMenu(“Format”);

These	 menu	 objects	 are	 added	 to	 the	 menu	 bar	 with	 the	 add	 method:
exampleMenuBar.add(fileMenu);
exampleMenuBar.add(editMenu);
exampleMenuBar.add(formatMenu);

Here	is	the	frame	code	modified	(modifications	shaded)	to	add	the	menu	bar	and
three	headings:	/	*
*	MenuExample.java

*/

package	menuexample;
import	javax.swing.*;
import	java.awt.*;

import	java.awt.event.*;
public	class	MenuExample	extends	JFrame

{

JMenuBar	exampleMenuBar	=	new	JMenuBar();	JMenu	fileMenu	=
new	JMenu("File");
JMenu	editMenu	=	new	JMenu("Edit");
JMenu	formatMenu	=	new	JMenu("Format");
public	static	void	main(String	args[])

{

//	construct	frame
new	MenuExample().show();

}

public	MenuExample()

{

//	frame	constructor
setTitle("Menu	Example");
setSize(400,	200);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

//	build	menu
setJMenuBar(exampleMenuBar);
exampleMenuBar.add(fileMenu);
exampleMenuBar.add(editMenu);
exampleMenuBar.add(formatMenu);

}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

Run	the	project	to	see	the	menu	appear:

Now,	we	add	menu	items	to	each	of	the	main	headings.	Each	element	is	added	in
the	same	manner.	Say	we	have	an	item	named	myItem	with	a	label	myText.	To
declare	 and	 create	 this	 item,	 use:	 JMenuItem	 myItem	 =	 new
JMenuItem(myText);	 Then,	 this	 is	 added	 to	 the	 desired	 menu	 object
(myMenu)	using	the	add	method:	myMenu.add(myItem);

Add	the	items	in	the	order	you	want	them	to	appear	in	the	pull-down	menu.	To
add	 a	 separator	 bar	 to	 a	 menu,	 use	 the	 addSeparator	 method:

myMenu.addSeparator();

Here	is	the	modified	code	(modifications	shaded)	with	pull-down	menus	added
to	the	File	and	Edit	menus	(we	will	do	the	Format	menu	separately):	/	*
*	MenuExample.java

*/

package	menuexample;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
public	class	MenuExample	extends	JFrame

{

JMenuBar	exampleMenuBar	=	new	JMenuBar();	JMenu	fileMenu	=
new	JMenu("File");
JMenuItem	newMenuItem	=	new	JMenuItem("New");	JMenuItem
openMenuItem	=	new	JMenuItem("Open");	JMenuItem
saveMenuItem	=	new	JMenuItem("Save");	JMenuItem
exitMenuItem	=	new	JMenuItem("Exit");
JMenu	editMenu	=	new	JMenu("Edit");
JMenuItem	cutMenuItem	=	new	JMenuItem("Cut");	JMenuItem
copyMenuItem	=	new	JMenuItem("Copy");	JMenuItem
pasteMenuItem	=	new	JMenuItem("Paste");
JMenu	formatMenu	=	new	JMenu("Format");

public	static	void	main(String	args[])

{

//	construct	frame
new	MenuExample().show();

}

public	MenuExample()

{

//	frame	constructor
setTitle("Menu	Example");
setSize(400,	200);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

//	build	menu
setJMenuBar(exampleMenuBar);
exampleMenuBar.add(fileMenu);
fileMenu.add(newMenuItem);
fileMenu.add(openMenuItem);
fileMenu.add(saveMenuItem);
fileMenu.addSeparator();
fileMenu.add(exitMenuItem);
exampleMenuBar.add(editMenu);
editMenu.add(cutMenuItem);
editMenu.add(copyMenuItem);
editMenu.add(pasteMenuItem);
exampleMenuBar.add(formatMenu);

}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

Run.	 Here	 is	 the	 expanded	 File	 menu:	

And,	 here	 is	 the	 expanded	 Edit	 menu:	

The	Format	menu	will	 be	 different	 in	 several	ways.	Recall	 it	 has	 options	 for
Bold,	Italic	and	Size.	The	Size	menu	has	another	pull-down	menu.	When	a	user
selects	either	Bold	or	Italic,	we	would	like	some	indication	if	either	of	these	has
already	been	 selected.	To	do	 this,	we	will	use	check	boxes	 as	 the	menu	 items
(JCheckBoxMenuItem).	Two	arguments	are	used	in	creating	such	an	object	–
the	menu	item	label	and	a	boolean	value	indicating	if	the	box	should	be	initially
checked.	 To	 create	 the	 Bold	 menu	 item	 (with	 no	 check	 mark),	 use:
JCheckBoxMenuItem	boldMenuItem	=	new

JCheckBoxMenuItem(“Bold”,	false);

Once	created,	the	menu	item	is	added	to	the	desired	menu	object	(formatMenu
in	this	case)	with	the	same	add	method.	Similar	code	is	used	to	create	the	Italic
menu	item.

The	 Size	 element	 in	 the	 Format	 menu	 is	 another	 menu	 object.	 It	 is	 created
using:	JMenu	sizeMenu	=	new	JMenu(“Size”);

Then,	it	is	added	to	the	Format	menu	object	using	the	add	method.	But,	now	it
needs	a	pull-down	menu.	The	pull-down	menu	offers	three	choices	for	size:	10,
15	or	20.	Only	one	size	can	be	selected	–	we	will	use	radio	button	menu	items
(JRadioButtonMenuItem).	 Such	 menu	 items	 are	 created	 similarly	 to	 radio
buttons.	Like	the	check	box	menu	item,	two	arguments	are	used	in	creating	such
an	object	–	the	menu	item	label	and	a	boolean	value	indicating	if	the	box	should
be	 initially	 selected.	 To	 create	 the	 10	 menu	 item	 (initially	 selected),	 use:
JRadioButtonMenuItem	 size10MenuItem	 =	 new
JRadioButtonMenuItem(“10”,	true);

Once	 created,	 the	menu	 item	 is	 added	 to	 the	 sizeMenu	 menu	 object	 with	 the
same	add	method.	You	also	need	to	add	the	radio	buttons	to	a	button	group	to
insure	 they	 act	 as	 a	 group.	The	modifications	 to	 our	 example	 should	make	 all
this	clear.

The	modified	code	adding	the	Format	menu	is:	/	*
*	MenuExample.java

*/

package	menuexample;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
public	class	MenuExample	extends	JFrame

{

JMenuBar	exampleMenuBar	=	new	JMenuBar();	JMenu	fileMenu	=
new	JMenu("File");
JMenuItem	newMenuItem	=	new	JMenuItem("New");	JMenuItem
openMenuItem	=	new	JMenuItem("Open");	JMenuItem
saveMenuItem	=	new	JMenuItem("Save");	JMenuItem
exitMenuItem	=	new	JMenuItem("Exit");	JMenu	editMenu	=	new
JMenu("Edit");
JMenuItem	cutMenuItem	=	new	JMenuItem("Cut");	JMenuItem
copyMenuItem	=	new	JMenuItem("Copy");	JMenuItem
pasteMenuItem	=	new	JMenuItem("Paste");	JMenu	formatMenu	=
new	JMenu("Format");
JCheckBoxMenuItem	boldMenuItem	=	new

JCheckBoxMenuItem("Bold",	false);	JCheckBoxMenuItem
italicMenuItem	=	new	JCheckBoxMenuItem("Italic",	false);	JMenu
sizeMenu	=	new	JMenu("Size");

ButtonGroup	sizeGroup	=	new	ButtonGroup();
JRadioButtonMenuItem	size10MenuItem	=	new
JRadioButtonMenuItem("10",	true);	JRadioButtonMenuItem
size15MenuItem	=	new	JRadioButtonMenuItem("15",	false);
JRadioButtonMenuItem	size20MenuItem	=	new
JRadioButtonMenuItem("20",	false);
public	static	void	main(String	args[])

{

//	construct	frame
new	MenuExample().show();

}

public	MenuExample()

{

//	frame	constructor
setTitle("Menu	Example");
setSize(400,	200);

addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

//	build	menu
setJMenuBar(exampleMenuBar);
exampleMenuBar.add(fileMenu);
fileMenu.add(newMenuItem);
fileMenu.add(openMenuItem);
fileMenu.add(saveMenuItem);
fileMenu.addSeparator();
fileMenu.add(exitMenuItem);
exampleMenuBar.add(editMenu);
editMenu.add(cutMenuItem);
editMenu.add(copyMenuItem);
editMenu.add(pasteMenuItem);
exampleMenuBar.add(formatMenu);
formatMenu.add(boldMenuItem);
formatMenu.add(italicMenuItem);
formatMenu.add(sizeMenu);
sizeMenu.add(size10MenuItem);
sizeMenu.add(size15MenuItem);
sizeMenu.add(size20MenuItem);
sizeGroup.add(size10MenuItem);
sizeGroup.add(size15MenuItem);

sizeGroup.add(size20MenuItem);

}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

Run	the	application.	See	how	the	check	boxes	and	radio	buttons	in	the	Format
menu	work.	Here’s	the	expanded	menu,	where	I’ve	selected	Italic	and	size	15:	

We’re	 getting	 close	 to	 finishing	 the	 menu	 structure,	 but	 there	 are	 still	 a	 few
things	 to	 consider.	Most	menus	 feature	 shortcuts	 that	 allow	 a	 user	 to	 select	 a
menu	 from	 the	menu	 bar	 using	 the	 keyboard.	 In	Windows,	 a	 typical	 shortcut
would	be	 to	hold	 the	<Alt>	key	while	pressing	some	 letter.	To	access	 the	File
menu	 here,	 we	 would	 use	 <Alt>-F.	 A	 shortcut	 is	 added	 to	 a	 menu	 using	 the
setMnemonic	 method.	 Three	 shortcuts	 assigned	 for	 our	 menu	 would	 be:
fileMenu.setMnemonic('F');
editMenu.setMnemonic('E');
formatMenu.setMnemonic('O');

Note	a	unique	letter	must	be	selected	for	each	shortcut.

Add	 these	 three	 lines	 after	 the	 code	 setting	 the	 menu	 bar,	 then	 rerun	 to	 see:	

The	 shortcut	 keys	 are	 underlined.	 Try	 them	 (hold	 <Alt>	 plus	 the	 underlined
key).	The	setMnemonic	method	works	on	other	controls	(JButton,	JCheckBox,
JRadioButton).	You	might	 like	 to	consider	adding	shortcuts	 to	 these	controls.
This	allows	the	user	to	cause	events	on	certain	controls	from	the	keyboard.

An	accelerator	 is	a	key	combination	 that	 lets	you	 immediately	 invoke	a	menu
item	 without	 navigating	 the	 menu	 structure).	 In	Windows,	 the	 <Ctrl>	 key	 is
often	used	with	another	letter	as	an	accelerator.	To	set	such	an	accelerator,	use
the	setAccelerator	method.	For	 the	New	menu	 item	 (under	 the	File	menu),	 to
assign	 an	 accelerator	 of	 <Ctrl>-N,	 use:
newMenuItem.setAccelerator(KeyStroke.getKeyStroke('N',
Event.CTRL_MASK));	 In	 this	expression,	 the	KeyStroke	class	defines	a	key
combination.	 getKeyStroke	 returns	 the	 key	 stroke	 corresponding	 to	 the	 two
arguments.	The	 first	 argument	 is	 the	key	and	 the	 second	 is	 the	key	being	held
down.

Adding	this	single	line	of	code	to	our	example	and	expanding	the	File	menu	(try
the	 <Alt>-F	 combination)	 shows:	

Notice	how	the	accelerator	combination	is	shown	next	to	the	menu	item.

For	our	example	menu	structure	(exampleMenuBar),	I	used	these	accelerators:

Text Name Accelerator
File fileMenu N/A

New newMenuItem <Ctrl>-N
Open openMenuItem <Ctrl>-O
Save saveMenuItem <Ctrl>-S
Exit exitMenuItem None

Edit editMenu N/A
Cut cutMenuItem <Ctrl>-X
Copy copyMenuItem <Ctrl>-C
Paste pasteMenuItem <Ctrl>-V

Format formatMenu N/A
Bold boldMenuItem	(CheckBox) <Ctrl>-B
Italic italicMenuItem	(CheckBox) <Ctrl>-I
Size sizeMenu N/A
10 size10MenuItem	(RadioButton) <Ctrl>-0
15 size15MenuItem	(RadioButton) <Ctrl>-1
20 size20MenuItem	(RadioButton) <Ctrl>-2

Make	sure	all	accelerator	keys	are	unique.

These	are	the	lines	of	code	that	add	these	accelerators	(place	this	after	the	lines
setting	 the	 shortcuts):
newMenuItem.setAccelerator(KeyStroke.getKeyStroke('N',
Event.CTRL_MASK));
openMenuItem.setAccelerator(KeyStroke.getKeyStroke('O',
Event.CTRL_MASK));
saveMenuItem.setAccelerator(KeyStroke.getKeyStroke('S',
Event.CTRL_MASK));
cutMenuItem.setAccelerator(KeyStroke.getKeyStroke('X',
Event.CTRL_MASK));
copyMenuItem.setAccelerator(KeyStroke.getKeyStroke('C',
Event.CTRL_MASK));
pasteMenuItem.setAccelerator(KeyStroke.getKeyStroke('V',
Event.CTRL_MASK));

boldMenuItem.setAccelerator(KeyStroke.getKeyStroke('B',
Event.CTRL_MASK));
italicMenuItem.setAccelerator(KeyStroke.getKeyStroke('I',
Event.CTRL_MASK));
size10MenuItem.setAccelerator(KeyStroke.getKeyStroke('0',
Event.CTRL_MASK));
size15MenuItem.setAccelerator(KeyStroke.getKeyStroke('1',
Event.CTRL_MASK));
size20MenuItem.setAccelerator(KeyStroke.getKeyStroke('2',
Event.CTRL_MASK));	 Rerun.	 I’ve	 expanded	 the	Format	menu	 to	 show	 the

accelerators:	

Try	the	accelerator	keys	to	see	how	options	can	be	selected	and	unselected	using
keystroke	combinations.

You	might	 think	we’re	finally	done,	but	we’re	not.	We	still	need	to	write	code
for	menu	item	events.	You	need	to	add	a	listener	for	the	actionPerformed	event
for	each	menu	item.	This	event	is	invoked	whenever	a	menu	item	is	selected	(via
mouse	 or	 via	 an	 accelerator).	 For	 a	 menu	 item	 named	 myMenuItem,	 use:
myMenuItem.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
myMenuItemActionPerformed(e);

}

});

And,	 the	 corresponding	 event	 code	 would	 be	 placed	 in	 a
myMenuItemActionPerformed	 method:	 private	 void
myMenuItemActionPerformed(ActionEvent	e)	{

[method	code]

}

You	 often	 assign	 several	 menu	 items	 to	 the	 same	 method,	 using	 the	 event’s
getActionCommand	to	determine	which	menu	item	was	selected.

We	will	not	add	any	methods	at	this	point.	See	Example	5-1	for	typical	ways	to
add	 methods	 to	 menu	 items.	 For	 reference,	 the	 menu	 example	 is	 saved	 as
MenuExample	in	the	\LearnJava\LJ	Code\Class	5\	project	group.

Example	5-4
Note	Editor

Start	 a	 new	empty	project	 in	NetBeans.	Name	 the	project	NoteEditor.	Delete
default	code	in	Java	file	named	NoteEditor.	We	will	use	this	application	the	rest
of	this	class.	We	will	build	a	note	editor	with	a	menu	structure	that	allows	us	to
control	 the	 appearance	 of	 the	 text	 in	 the	 editor	 box.	The	 finished	 product	will

look	like	this:	

1.	Place	a	scroll	pane	and	 text	area	on	 the	frame.	The	GridBagLayout	 is	very

simple:	

Properties:

NoteEditor	Frame:
title Note	Editor
resizable false

editorScrollPane:
preferredSize (300,	150)
viewportView editorTextArea	(JTextArea	control)
gridx 0

gridy 0
editorTextArea:

font Arial,	PLAIN,	18
lineWrap true
wrapStyleWord true

We	will	add	this	menu	structure	to	the	Note	Editor:

File Format
New Bold
____ Italic
Exit Size

Small
Medium
Large

Names	and	accelerator	keys	for	this	menu	bar	(editorMenuBar):

Text Name Accelerator
File fileMenu N/A
New newMenuItem <Ctrl>-N
Exit exitMenuItem None
Format formatMenu N/A
Bold boldMenuItem	(CheckBox) <Ctrl>-B
Italic italicMenuItem	(CheckBox) <Ctrl>-I
Size sizeMenu N/A
Small smallMenuItem	(RadioButton	-	sizeGroup) <Ctrl>-S
Medium mediumMenuItem	(RadioButton	-	sizeGroup) <Ctrl>-M
Large largeMenuItem	(RadioButton	-	sizeGroup) <Ctrl>-L

2.	Let’s	 build	 the	 usual	 basic	 framework.	You	have	 probably	 started	 to	 notice
that	 many	 GUI	 applications	 look	 like	 other	 GUI	 applications.	 Look	 how
similar	 the	 menu	 structure	 here	 is	 to	 the	 menu	 structure	 we	 built	 in	 our
example	menu.	The	differences?	There	are	no	Open	and	Save	options	under
the	File	menu,	there	is	no	Edit	menu	at	all,	and	the	names	and	accelerators	on

the	Size	choices	are	different.

Rather	 than	start	 from	scratch,	we	will	modify	 the	MenuExample	 to	build	 the
framework	for	our	Note	Editor	project.	In	NetBeans,	open	the	MenuExample
and	open	the	MenuExample.java	file.	Select	the	entire	file	and	copy	it	(choose
Edit,	 then	 Copy).	 Now,	 move	 to	 the	 empty	 NoteEditor.java	 file	 in	 the
NoteEditorProject.	 Paste	 the	 copied	 code	 into	 this	 file	 (choose	 Edit,	 then
Paste).	Now,	make	these	changes:

➢	Change	all	instances	of	MenuExample	to	NoteEditor	(there	are	4	places
you	need	to	do	this).

➢	Change	the	frame	title	to	Note	Editor.
➢	Set	the	frame	resizable	property	to	false.
➢	 Rename	 exampleMenuBar	 to	 editorMenuBar	 and	 change	 code	where
needed.

➢	Delete	code	creating	and	adding	openMenuItem	and	saveMenuItem.
➢	 Delete	 code	 creating	 and	 adding	 editMenu	 and	 associated	 menu	 items
(cutMenuItem,	copyMenuItem,	pasteMenuItem).

➢	Change	names	and	accelerators	(as	noted	above)	of	font	size	menu	items.

After	 these	 changes,	 the	 basic	 framework	 code	 (modifications	 are	 shaded	 and
lines	associated	with	openMenuItem,	saveMenuItem,	editMenu	and	its	menu
items	have	been	deleted):	/	*
*	NoteEditor.java

*/

package	noteeditor;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
public	class	NoteEditor	extends	JFrame

{

JMenuBar	editorMenuBar	=	new	JMenuBar();

JMenu	fileMenu	=	new	JMenu("File");
JMenuItem	newMenuItem	=	new	JMenuItem("New");	JMenuItem
exitMenuItem	=	new	JMenuItem("Exit");	JMenu	formatMenu	=	new
JMenu("Format");
JCheckBoxMenuItem	boldMenuItem	=	new

JCheckBoxMenuItem("Bold",	false);	JCheckBoxMenuItem
italicMenuItem	=	new	JCheckBoxMenuItem("Italic",	false);	JMenu
sizeMenu	=	new	JMenu("Size");

ButtonGroup	sizeGroup	=	new	ButtonGroup();
JRadioButtonMenuItem	smallMenuItem	=	new

JRadioButtonMenuItem("Small",	true);	JRadioButtonMenuItem
mediumMenuItem	=	new	JRadioButtonMenuItem("Medium",	false);
JRadioButtonMenuItem	largeMenuItem	=	new
JRadioButtonMenuItem("Large",	false);

public	static	void	main(String	args[])

{

//	construct	frame
new	NoteEditor().show();

}

public	NoteEditor()

{

//	frame	constructor
setTitle("Note	Editor");
setResizable(false);
setSize(400,	200);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

{

exitForm(e);

}

});

//	build	menu
setJMenuBar(editorMenuBar);
fileMenu.setMnemonic('F');
formatMenu.setMnemonic('O');
newMenuItem.setAccelerator(KeyStroke.getKeyStroke('N',

Event.CTRL_MASK));
boldMenuItem.setAccelerator(KeyStroke.getKeyStroke('B',
Event.CTRL_MASK));
italicMenuItem.setAccelerator(KeyStroke.getKeyStroke('I',
Event.CTRL_MASK));
smallMenuItem.setAccelerator(KeyStroke.getKeyStroke('S',
Event.CTRL_MASK));
mediumMenuItem.setAccelerator(KeyStroke.getKeyStroke('M',
Event.CTRL_MASK));
largeMenuItem.setAccelerator(KeyStroke.getKeyStroke('L',
Event.CTRL_MASK));	editorMenuBar.add(fileMenu);

fileMenu.add(newMenuItem);
fileMenu.addSeparator();
fileMenu.add(exitMenuItem);
editorMenuBar.add(formatMenu);
formatMenu.add(boldMenuItem);
formatMenu.add(italicMenuItem);
formatMenu.add(sizeMenu);
sizeMenu.add(smallMenuItem);
sizeMenu.add(mediumMenuItem);
sizeMenu.add(largeMenuItem);
sizeGroup.add(smallMenuItem);

sizeGroup.add(mediumMenuItem);
sizeGroup.add(largeMenuItem);

}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

Run	to	view	the	modified	menu	structure:

I’ve	expanded	 the	Format	menu.	Make	sure	all	 shortcuts	and	accelerator	keys
work	 as	 needed.	 Do	 you	 see	 how	 much	 easier	 it	 is	 to	 adapt	 an	 existing
application	rather	than	start	over	from	scratch?	Always	look	for	applications	that
look	 similar	 to	 any	 new	 ones	 you	 build.	Much	 of	 the	work	may	 have	 already
been	done	for	you.	We	briefly	addressed	this	“don’t	reinvent	the	wheel”	concept
at	the	beginning	of	this	class.

3.	Now,	let’s	add	the	two	controls.	Delete	the	line	of	code	setting	the	frame	size.
The	 controls	 will	 now	 establish	 size.	 The	 class	 level	 declarations:
JScrollPane	editorPane	=	new	JScrollPane();	JTextArea	editorTextArea
=	new	JTextArea();	And	the	code	adding	the	layout	manager	and	positioning
the	 controls:	 getContentPane().setLayout(new	 GridBagLayout());	 //

position	scroll	pane	and	text	box

GridBagConstraints	gridConstraints	=	new	GridBagConstraints();
editorPane.setPreferredSize(new	Dimension(300,	150));
editorPane.setViewportView(editorTextArea);	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(editorPane,	gridConstraints);	pack();

Run	again	to	see	the	finished	frame.

4.	 Now,	 we	 need	 add	 listeners	 (and	 code)	 for	 event	 methods	 we	 need	 when
corresponding	 menu	 items	 are	 selected.	 We	 need	 listeners	 for	 events	 for:
newMenuItem,	 exitMenuItem,	 boldMenuItem,	 italicMenuItem,
smallMenuItem,	mediumMenuItem	and	largeMenuItem.	We’ll	do	the	two
items	under	the	File	menu	first.	Code	to	add	listeners	for	the	newMenuItem
and	 exitMenuItem	 (place	 after	 code	 positioning	 the	 controls):
newMenuItem.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
newMenuItemActionPerformed(e);

}

});

exitMenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

exitMenuItemActionPerformed(e);

}

});

If	newMenuItem	is	clicked,	the	program	checks	to	see	if	the	user	really	wants	a
new	file	and,	if	so	(the	default	response),	clears	out	the	text	box.	That	method	is:
private	void	newMenuItemActionPerformed(ActionEvent	e)	{

//	if	user	wants	new	file,	clear	out	text	if
(JOptionPane.showConfirmDialog(null,	"Are	you	sure	you	want	to
start	a	new	file?",	"New	File",	JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE)	==
JOptionPane.YES_OPTION)	{

editorTextArea.setText("");

}

}

If	 exitMenuItem	 is	 clicked,	 the	 program	 ends:	 private	 void
exitMenuItemActionPerformed(ActionEvent	e)	{

System.exit(0);

}

If	you	want,	rerun	at	this	time	to	make	sure	these	two	menu	items	work	properly.

5.	Now,	we	need	events	and	code	for	items	under	the	Format	menu.	Items	here
will	 be	 changing	 the	 appearance	 (Font)	 of	 the	 text	 displayed	 in	 the	 editor.
They	 will	 all	 refer	 to	 the	 same	 event	 method
(formatMenuItemActionPerformed).	 The	 listeners	 are	 added	 using:
boldMenuItem.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
formatMenuItemActionPerformed(e);

}

});

italicMenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

formatMenuItemActionPerformed(e);

}

});

smallMenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

formatMenuItemActionPerformed(e);

}

});

mediumMenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

formatMenuItemActionPerformed(e);

}

});

largeMenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

formatMenuItemActionPerformed(e);

}

});

And,	the	event	method	code	is:

private	void	formatMenuItemActionPerformed(ActionEvent	e)	{
//	Put	together	font	based	on	menu	selections	int	newFont	=
Font.PLAIN;

int	fontSize	=	12;
if	(boldMenuItem.isSelected())

{

newFont	+=	Font.BOLD;

}

if	(italicMenuItem.isSelected())

{

newFont	+=	Font.ITALIC;

}

if	(smallMenuItem.isSelected())

{

fontSize	=	12;

}

else	if	(mediumMenuItem.isSelected())

{

fontSize	=	18;

}

else

{

fontSize	=	24;

}

editorTextArea.setFont(new	Font("Arial",	newFont,	fontSize));	}

This	routine	sets	the	text	area	font	based	on	the	choices	under	the	Format	menu.

The	 final	 NoteEditor.java	 code	 listing	 (with	 modifications	 since	 basic
framework	shaded):	/	*
*	NoteEditor.java
*/	package	noteeditor;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
public	class	NoteEditor	extends	JFrame

{

JMenuBar	editorMenuBar	=	new	JMenuBar();
JMenu	fileMenu	=	new	JMenu("File");
JMenuItem	newMenuItem	=	new	JMenuItem("New");	JMenuItem
exitMenuItem	=	new	JMenuItem("Exit");	JMenu	formatMenu	=	new
JMenu("Format");
JCheckBoxMenuItem	boldMenuItem	=	new

JCheckBoxMenuItem("Bold",	false);	JCheckBoxMenuItem	italicMenuItem
=	new	JCheckBoxMenuItem("Italic",	false);	JMenu	sizeMenu	=	new
JMenu("Size");
ButtonGroup	sizeGroup	=	new	ButtonGroup();	JRadioButtonMenuItem

smallMenuItem	=	new	JRadioButtonMenuItem("Small",	true);
JRadioButtonMenuItem	mediumMenuItem	=	new
JRadioButtonMenuItem("Medium",	false);	JRadioButtonMenuItem
largeMenuItem	=	new	JRadioButtonMenuItem("Large",	false);
JScrollPane	editorPane	=	new	JScrollPane();	JTextArea	editorTextArea
=	new	JTextArea();

public	static	void	main(String	args[])

{

//	construct	frame

new	NoteEditor().show();

}

public	NoteEditor()

{

//	frame	constructor
setTitle("Note	Editor");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

//	build	menu
setJMenuBar(editorMenuBar);
fileMenu.setMnemonic('F');
formatMenu.setMnemonic('O');
newMenuItem.setAccelerator(KeyStroke.getKeyStroke('N',

Event.CTRL_MASK));
boldMenuItem.setAccelerator(KeyStroke.getKeyStroke('B',
Event.CTRL_MASK));
italicMenuItem.setAccelerator(KeyStroke.getKeyStroke('I',
Event.CTRL_MASK));
smallMenuItem.setAccelerator(KeyStroke.getKeyStroke('S',
Event.CTRL_MASK));
mediumMenuItem.setAccelerator(KeyStroke.getKeyStroke('M',

Event.CTRL_MASK));
largeMenuItem.setAccelerator(KeyStroke.getKeyStroke('L',
Event.CTRL_MASK));	editorMenuBar.add(fileMenu);

fileMenu.add(newMenuItem);
fileMenu.addSeparator();
fileMenu.add(exitMenuItem);
editorMenuBar.add(formatMenu);
formatMenu.add(boldMenuItem);
formatMenu.add(italicMenuItem);
formatMenu.add(sizeMenu);
sizeMenu.add(smallMenuItem);
sizeMenu.add(mediumMenuItem);
sizeMenu.add(largeMenuItem);
sizeGroup.add(smallMenuItem);
sizeGroup.add(mediumMenuItem);
sizeGroup.add(largeMenuItem);

newMenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

newMenuItemActionPerformed(e);

}

});

exitMenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

exitMenuItemActionPerformed(e);

}

});

boldMenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

formatMenuItemActionPerformed(e);

}

});

italicMenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

formatMenuItemActionPerformed(e);

}

});

smallMenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

formatMenuItemActionPerformed(e);

}

});

mediumMenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

formatMenuItemActionPerformed(e);

}

});

largeMenuItem.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

formatMenuItemActionPerformed(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	//	position	scroll

pane	and	text	box
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();

editorPane.setPreferredSize(new	Dimension(300,	150));
editorPane.setViewportView(editorTextArea);	editorTextArea.setFont(new
Font("Arial",	Font.PLAIN,	12));	editorTextArea.setLineWrap(true);

editorTextArea.setWrapStyleWord(true);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(editorPane,	gridConstraints);	pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	 setBounds((int)	 (0.5
(screenSize.width	 -	getWidth())),	 (int)	 (0.5	 (screenSize.height	 -	getHeight())),
getWidth(),	getHeight());	}
private	void	newMenuItemActionPerformed(ActionEvent	e)	{

//	if	user	wants	new	file,	clear	out	text	if
(JOptionPane.showConfirmDialog(null,	"Are	you	sure	you	want	to
start	a	new	file?",	"New	File",	JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE)	==
JOptionPane.YES_OPTION)	{

editorTextArea.setText("");

}

}

private	void	exitMenuItemActionPerformed(ActionEvent	e)	{
System.exit(0);

}

private	void	formatMenuItemActionPerformed(ActionEvent	e)	{
//	Put	together	font	based	on	menu	selections	int	newFont	=
Font.PLAIN;
int	fontSize	=	12;
if	(boldMenuItem.isSelected())

{

{

newFont	+=	Font.BOLD;

}

if	(italicMenuItem.isSelected())

{

newFont	+=	Font.ITALIC;

}

if	(smallMenuItem.isSelected())

{

fontSize	=	12;

}

else	if	(mediumMenuItem.isSelected())

{

fontSize	=	18;

}

else

{

fontSize	=	24;

}

editorTextArea.setFont(new	Font("Arial",	newFont,	fontSize));	}

private	void	exitForm(WindowEvent	e)

{

{

System.exit(0);

}

}

Run	 the	 application.	 Test	 out	 all	 the	 options.	 Notice	 how	 the	 toggling	 of	 the
check	marks	works.	 Try	 the	 shortcut	 and	 accelerator	 keys.	Here’s	 some	 text	 I
wrote	 –	 note	 the	 appearance	 of	 the	 scroll	 bar	 since	 the	 text	 exceeds	 the	 size

allotted	to	the	pane:	

Save	 your	 application	 (saved	 as	 Example5-4	 project	 in	 \LearnJava\LJ
Code\Class	5\	project	group).	We	will	use	it	again	in	Class	6	where	we’ll	learn
how	to	save	and	open	text	files	created	with	the	Note	Editor.

Notice	whatever	formatting	is	selected	is	applied	to	all	 text	in	the	control.	You
cannot	 selectively	 format	 text	 in	 a	 text	 box	 control.	 In	 Class	 9,	 we	 look	 at
another	control	that	allows	selective	formatting.

Distribution	of	a	Java	GUI	Application
I	bet	you’re	ready	to	show	your	friends	and	colleagues	some	of	the	applications
you	have	 built	 using	 Java.	 Just	 give	 them	a	 copy	of	 all	 your	 project	 files,	 ask
them	 to	 download	 and	 install	 the	 Java	Development	Kit,	 download	 and	 install
NetBeans	and	learn	how	to	open	and	run	a	project.	Then,	have	them	open	your
project	and	run	the	application.

I	 think	 you’ll	 agree	 this	 is	 asking	 a	 lot	 of	 your	 friends,	 colleagues,	 and,
ultimately,	your	user	base.	Fortunately,	there	are	other	solutions.	In	this	section,
we	will	look	at	one	possibility.	We’ll	use	the	NoteEditor	program	just	built	as
an	example.	You	can	easily	make	needed	modifications	for	other	projects.	The
example	is	built	using.	Similar	steps	can	be	taken	using	other	operating	systems
(Linux,	UNIX,	MacOS).

Executable	(jar)	Files
A	simple	way	to	run	a	Java	application	outside	of	the	IDE	environment	is	with
an	executable	version	of	the	application,	a	so-called	jar	(java	archive)	file.	With
such	 a	 file,	 a	 user	 can	 simply	 double-click	 the	 file	 and	 the	 corresponding
application	will	run.	As	mentioned,	we	will	work	with	the	NoteEditor	saved	as
Example5-4	project	in	\LearnJava\LJ	Code\Class	5\

jar	 files	are	created	using	 the	 Java	 jar.exe	 application.	You	can	make	your	 jar
file	runnable	by	telling	jar.exe	which	class	has	main.	To	do	that,	you	first	need
to	create	a	manifest	file.	A	manifest	is	a	one-line	text	file	with	a	"Main-Class"
directive.

Creating	a	Manifest	File	in	NetBeans
Make	the	Note	Editor	project	the	main	project.	Then,

1.	Right-click	the	project's	name	and	choose	Properties.
2.	Select	the	Run	category	and	noteeditor.NoteEditor	in	the	Main	Class
field.

3.	Click	OK	to	close	the	Project	Properties	dialog	box.

Creating	a	jar	File	in	NetBeans
Now	that	you	have	your	sources	ready	and	your	project	configured,	it	is	time	to
build	your	project.	To	build	the	project:

•	Choose	Run	>	Build	Project	•	Alternatively,	right-click	the	project's	name
in	the	Projects	window	and	choose	Build.

When	you	build	your	project,	a	jar	file	containing	your	project	is	created	inside
the	project’s	/dist	folder.

With	Windows	Explorer,	 go	 to	 your	 project	 folder.	Open	 the	dist	 folder.	 The
NoteEditor.jar	 file	 will	 be	 there.	 Double-click	 that	 file	 and	 the	NoteEditor

program	will	appear:	

Notice	the	file	has	a	“plain	vanilla”	Java	frame	icon	in	the	title	bar	area	–	we	will
change	that	soon.

So,	to	distribute	a	Java	project	 to	other	users,	you	need	to	give	them	a	copy	of
the	project’s	jar	 file	and	copies	of	any	additional	files	 the	project	needs	 to	run
(data	files,	graphics	files,	sound	files).	These	files	can	be	copied	to	a	floppy	disk
or	CD-ROM	and	transferred	to	other	users.

For	another	user	 to	 run	 the	project	on	his/her	computer,	 they	need	 to	copy	 the
files	you	give	them	to	a	folder	they	create.	To	run	the	project,	they	would	then
navigate	 to	 that	 folder	 and	 double-click	 the	 jar	 file	 (just	 like	 we	 did	 for	 the
NoteEditor).	Alternatively,	 the	user	 could	create	 a	 shortcut	 to	 the	 jar	 file	 and
place	 it	 on	 their	 desktop	 or	Programs	 file	menu.	We	will	 see	 how	 to	 do	 this

soon,	but	first	let’s	“dress	up”	our	application	a	bit.

One	more	thing	before	moving	on	–	Note	Editor	runs	on	my	computer	(and	will
work	 on	 yours)	 because	 I	 have	 the	 Java	 Run-Time	 Environment	 (JRE)
installed	(it	is	installed	when	Java	is	installed).	Every	Java	application	needs	the
JRE	 to	 be	 installed	 on	 the	 hosting	 computer.	 Installing	 the	 JRE	 is	 similar	 to
installing	 the	 Java	 SDK.	 Full	 details	 can	 be	 found	 at:
http://java.com/en/download/index.jsp

So,	in	addition	to	our	application’s	files,	we	also	need	to	point	potential	users	to
the	 JRE	 and	 ask	 them	 to	 download	 and	 install	 the	 environment	 on	 their
computer.

http:////java.com/en/download/index.jsp

Application	Icons
Recall	there	is	a	plain	Java	icon	that	appears	in	the	upper	left	hand	corner	of	the
frame.	Icons	are	also	used	to	represent	programs	in	the	Programs	menu	and	to
represent	 programs	 on	 the	 desktop.	 The	 default	 icons	 are	 ugly!	We	 need	 the
capability	to	change	them.	The	icon	associated	with	the	frame	is	different	from
the	 icons	used	 to	 represent	 the	application	 in	 the	Windows	menu	and	desktop.
We	discuss	both.

The	icon	associated	with	a	frame	is	based	on	a	graphics	file.	Changing	this	icon
is	simple.	The	idea	is	to	assign	a	unique	icon	to	indicate	the	frame’s	function.	To
assign	an	icon,	use	this	line	of	code	when	the	frame	(myFrame	in	this	example)
is	 first	 created:	 myFrame.setIconImage(new	 ImageIcon(icon).getImage());
where	icon	is	some	graphics	file.

Open	the	NoteEditor	project	in	NetBeans.	We	will	use	the	notepad.gif	graphic
(in	Example5-4	folder	in	\LearnJava\LJ	Code\Class	5\)	for	the	icon.	Add	the
shaded	 line	 of	 code	 to	 the	 top	 of	 the	 frame	 constructor	 code:	 public
NoteEditor()

{

//	frame	constructor
setTitle("Note	Editor");
setIconImage(new	ImageIcon("notepad.gif").getImage());
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

}

});

//	build	menu
setJMenuBar(editorMenuBar);
.
.

Save,	 run	 the	 project	 again.	 The	 cute	 little	 icon	 appears:	

At	this	point,	rebuild	the	jar	file	for	the	project	so	the	icon	is	included.	To	do	this
in	NetBeans,	just	click	the	tool	button	defined	earlier.

Icons	associated	with	the	program	menu	and	desktop	are	Windows	icon	files	(ico
extension).	 They	 are	 special	 32	 x	 32	 graphics.	 The	 Internet	 and	 other	 sources
offer	a	wealth	of	such	icon	files	from	which	you	can	choose.	But,	it’s	also	fun	to
design	your	own	icon	to	add	that	personal	touch.

Using	IconEdit
A	few	years	ago,	PC	Magazine	offered	a	free	utility	called	IconEdit	that	allows
you	to	design	and	save	icons.	Included	with	these	notes	is	this	program	and	other
files	 (folder	 \LearnJava\LJ	Code\IconEdit\).	To	run	IconEdit,	click	Start	on
the	Windows	task	bar,	then	click	Run.	Find	the	IconEdit	program	(use	Browse
mode),	 then	click	OK.	When	the	IconEdit	program	window	appears,	click	 the
File	 menu	 heading,	 then	 choose	 New	 (we	 are	 creating	 a	 new	 icon).	 The
following	 editor	 window	 will	 appear:	

The	editor	window	displays	 two	representations	of	 the	 icon:	a	 large	zoomed-in
square	(a	32	x	32	grid)	that’s	eight	times	bigger	than	the	actual	icon,	and	a	small
square	 to	 its	 right	 that’s	 actual	 size.	 The	 zoomed	 square	 is	 where	 the	 editing
takes	 place.	New	 icons	 appear	 as	 solid	 green	with	 a	 black	 square	 surrounding
each	pixel	representation.	The	pixels	(small	squares)	are,	of	course,	eight	times
actual	 size	 like	 the	 square	 itself	 for	 ease	 of	 editing.	 The	 green	 color	 is	 not
actually	 the	 starting	 color	 of	 the	 icon,	 but	 instead	 represents	 the	 transparent
“color”	(whatever	is	behind	this	green	color	on	the	screen	will	be	seen).

The	basic	idea	of	IconEdit	is	to	draw	an	icon	in	the	32	x	32	grid	displayed.	You

can	draw	single	points,	lines,	open	rectangles	and	ovals,	and	filled	rectangles	and
ovals.	Various	colors	are	available.	Once	completed,	 the	icon	file	can	be	saved
for	 attaching	 to	 a	 form.	 IconEdit	 has	 a	 tool	 bar	 that	 consists	 of	 eight	 tools:
capture	 (we	 won’t	 talk	 about	 this	 one),	 pencil,	 fill,	 line,	 hollow	 and	 filled
rectangle,	 and	hollow	and	 filled	 ellipse.	These	will	 be	 familiar	 to	 anyone	who
has	 used	 a	 paint	 program	and	on-line	 help	 is	 available.	The	 default	 tool	when
you	start	editing	an	icon	is	the	pencil,	since	this	is	the	tool	you’ll	probably	use
the	 most.	 The	 pencil	 let’s	 you	 color	 one	 pixel	 at	 a	 time.	 To	 change	 a	 pixel,
simply	place	the	point	of	the	pencil	cursor	over	a	pixel	in	the	big	editing	square
and	 click.	 You	 can	 pencil-draw	 several	 pixels	 at	 once	 by	 dragging	 the	 pencil
over	an	area.

To	change	editing	tools,	simply	click	the	tool	button	of	your	choice.	The	fill	tool
(represented	 by	 a	 paint	 can)	will	 color	 the	 pixel	 you	 point	 to	 and	 all	 adjacent
pixels	of	the	same	color	with	the	color	you’ve	selected.	The	remaining	five	tools
all	operate	in	the	same	way.	You	click	and	hold	the	mouse	button	at	the	starting
pixel	 position,	 drag	 the	 mouse	 to	 an	 ending	 position,	 and	 release	 the	 mouse
button.	 For	 example,	 to	 draw	 a	 line,	 click	 and	 hold	 the	 mouse	 button	 on	 the
starting	point	for	the	line	and	drag	to	the	ending	point.	As	you	drag,	the	line	will
stretch	between	where	you	 started	and	 the	 current	 ending	position.	Only	when
you	release	the	mouse	button	will	the	line	be	permanently	drawn.	For	a	rectangle
or	an	ellipse,	drag	from	one	corner	to	the	opposite	corner.	You	control	the	color
that	the	tool	uses	by	pressing	either	the	left	or	right	mouse	button.

The	 two	 large	color	squares	 right	under	 the	 tools	are	 the	current	colors	 for	 the
left	 and	 right	 mouse	 buttons,	 respectively.	 When	 you	 start	 IconEdit,	 the	 left
mouse	 button	 color	 is	 black	 and	 the	 right	mouse	 button	 color	 is	white.	 If	 you
click	with	the	left	mouse	button	on	a	pixel	with	the	pencil	tool,	for	example,	the
pixel	will	 turn	black.	Click	with	 the	right	mouse	button	and	 the	pixel	will	 turn
white.	To	change	the	default	colors,	click	on	one	of	the	16	colors	in	the	palette
just	 below	 the	 current	 color	 boxes	 with	 either	 the	 left	 or	 right	 mouse	 button.
Clicking	on	a	palette	color	with	the	left	button	will	change	the	left	button	color
and	 a	 right	 button	 click	 will	 change	 the	 right	 button	 color.	 You	 can	 pick	 the
transparent	 “color”	 at	 the	 bottom	 of	 the	 editor	 if	 you	 want	 a	 pixel	 to	 be
transparent.

Try	 drawing	 an	 icon	 using	 IconEdit.	 It’s	 really	 pretty	 easy.	 Once	 you	 have
finished	your	icon,	save	it.	Click	File,	then	Save.	Icon	files	are	special	graphics

files	 saved	 with	 an	 ico	 extension.	 The	 save	 window	 is	 just	 like	 the	 window
you’ve	 used	 to	 save	 files	 in	 other	Windows	 programs.	 Remember	 where	 you
saved	your	icon	(usually	in	your	project	folder).

With	 IconEdit,	 you	 can	 now	 customize	 your	 programs	 with	 your	 own	 icons.
And,	another	fun	thing	to	do	is	load	in	other	icon	files	you	find	(click	File,	then
Open)	 and	 see	how	much	artistic	 talent	 really	goes	 into	creating	an	 icon.	You
can	even	modify	these	other	icons	and	save	them	for	your	use.

I	 found	 an	 icon	 on	 the	 Internet	 to	 use	 with	 the	NoteEditor	 project.	 The	 file
note.ico	 is	 included	 in	 Example5-4	 folder	 in	 \LearnJava\LJ	 Code\Class	 5\
folder.	When	you	open	this	file	in	IconEdit,	you	can	see	the	detail	in	the	icon:	

We’ll	now	use	this	icon	to	help	your	user	run	the	program.

Running	a	Project	on	Another
Computer
As	mentioned,	users	of	your	program	need	to	copy	the	files	you	give	them	into	a
folder	of	 their	choice.	Once	done,	 they	should	do	one	or	both	of	 these	steps	 to
make	it	easier	to	run	the	project:

1.	Add	a	shortcut	to	the	computer	desktop.
2.	Add	a	shortcut	to	the	All	Programs	item	on	the	Start	menu.

Let’s	 see	 how	 to	 do	 both	 of	 these	 steps	 with	 our	 example.	 We	 do	 this	 for
Windows	7.	The	steps	are	similar	for	other	versions	of	Windows.

I	copied	all	 the	needed	files	to	a	folder	named	My	Editor	(in	this	case,	 the	gif
file,	 the	 ico	 file	 and	 the	 jar	 file)	 on	my	computer.	Examining	 the	 files	 in	 that
folder,	 I	 see:	

To	create	a	shortcut	to	the	executable	file,	right-click	NoteEditor.jar	and	choose
Create	 Shortcut.	 The	 shortcut	 will	 appear	 in	 the	 folder:	

Give	the	shortcut	an	appropriate	name	(I	used	NoteEditor).

To	move	the	shortcut	to	the	desktop,	right-click	the	shortcut	and	choose	Copy.
Then,	navigate	to	your	computer’s	desktop.	Right-click	the	desktop	and	choose

Paste.	The	shortcut	will	appear	on	the	desktop:	

Let’s	 change	 the	 icon.	 Right-click	 the	 shortcut	 and	 choose	 Properties.	 This

window	appears:	

Click	 the	Change	 Icon	 button.	Navigate	 to	 your	 project	 folder	 and	 select	 the
note.ico	 file.	Close	out	 the	properties	window	and	 the	desktop	shortcut	 should

now	appear	as:	

If	you	double-click	this	icon,	the	NoteEditor	will	begin.

To	add	the	program	shortcut	to	the	All	Programs	item	on	the	Start	menu,	Click
Start,	then	select	All	Programs.	Right-click	All	Programs	and	select	Open.

Open	 the	Programs	 folder.	 All	 programs	 in	 the	All	 Programs	 menu	 will	 be
listed.	Copy	and	paste	the	desktop	shortcut	to	NoteEditor	into	this	folder.

The	Start	menu	will	now	contain	the	project	shortcut.	To	see	it,	click	Start,	then

choose	All	Programs:	

Click	NoteEditor	and	the	program	begins.

Your	 user	 now	 has	 two	 ways	 to	 run	 the	 project	 on	 their	 computer	 –	 via	 the
desktop	or	via	the	Programs	menu.	If	you	ever	modify	your	program,	you	will
need	 to	provide	your	user	with	 a	new	copy	of	 the	 jar	 file	 (and	 any	 additional
files	that	may	have	changed).

Class	Review
After	completing	this	class,	you	should	understand:

➢	How	to	work	with	the	JTabbedPane	control	in	a	Java	application	➢	How
to	 use	 general	 methods	 in	 a	 Java	 application	➢	 How	 to	 add	 a	 menu
structure	 to	 a	 Java	 application	 using	 the	 JMenuBar,	 JMenu	 and
JMenuItem	objects.

➢	Potential	ways	to	distribute	a	Java	application	to	your	user	base.

Practice	Problems	5
Problem	5-1.	Tabbed	Pane	Problem.	Build	an	application	with	three	tabs	on	a
tabbed	pane.	On	each	tab,	have	radio	buttons	that	set	the	background	color	of	the
corresponding	tab	panel.

Problem	5-2.	Note	Editor	About	Box	Problem.	Most	applications	have	a	Help
menu	heading.	When	you	click	on	this	heading,	at	the	bottom	of	the	menu	is	an
About	item.	Choosing	this	item	causes	a	dialog	box	to	appear	that	provides	the
user	with	 copyright	 and	 other	 application	 information.	 Prepare	 and	 implement
such	an	About	box	for	the	Note	Editor	we	build	in	this	chapter	(Example	5-4).

Problem	 5-3.	 Normal	 Numbers	 Problem.	 There	 are	 other	 random	 number
generators	 in	 Java.	 One	 is	 nextDouble	 that	 returns	 a	 double	 type	 number
between	 0	 and	 1.	 These	 numbers	 produce	 what	 is	 known	 as	 a	 uniform
distribution,	meaning	each	number	comes	up	with	equal	probability.	Statisticians
often	need	a	‘bell-shaped	curve’	to	do	their	work.	This	curve	is	what	is	used	in
schools	when	they	‘grade	on	a	curve.’	Such	a	‘probability	distribution’	is	spread
about	a	mean	with	some	values	very	likely	(near	the	mean)	and	some	not	very
likely	 (far	 from	 the	 mean).	 Such	 distributions	 (called	 normal	 or	 Gaussian
distributions)	 have	 a	 specified	 mean	 and	 a	 specified	 standard	 deviation
(measure	 of	 how	 far	 spread	 out	 possible	 values	 are).	 To	 simulate	 a	 single
‘normally	distributed’	number	using	the	‘uniformly	distributed’	random	number
generator,	we	sum	twelve	random	numbers	(from	the	nextDouble	method)	and
subtract	six	from	the	sum.	That	value	is	approximately	‘normal’	with	a	mean	of
zero	and	a	standard	deviation	of	one.	See	if	such	an	approximation	really	works
by	 first	writing	 a	 general	method	 that	 computes	 a	 single	 ‘normally	 distributed
number.’	 Then,	 write	 general	 methods	 to	 compute	 the	 mean	 (average)	 and
standard	 deviation	 of	 an	 array	 of	 values	 (the	 equations	 are	 found	 back	 in
Exercise	2-1).	See	if	the	described	approximation	is	good	by	computing	a	large
number	of	‘normally	approximate’	numbers.	If	you	do	a	little	research,	you	will
find	 there	 is	 actually	 a	 Java	method	 that	 returns	 normally	 distributed	 numbers
(nextGaussian),	so	the	approximation	method	used	here	is	not	really	needed!

Exercise	5
US/World	Capitals	Quiz

Develop	an	application	 that	quizzes	a	user	on	states	and	capitals	 in	 the	United
States	or	capitals	of	world	countries.	Or,	if	desired,	quiz	a	user	on	any	matching
pairs	 of	 items	 –	 for	 example,	 words	 and	 meanings,	 books	 and	 authors,	 or
inventions	 and	 inventors.	 Use	 a	menu	 structure	 that	 allows	 the	 user	 to	 decide
whether	they	want	to	name	states	(countries)	or	capitals	and	whether	they	want
multiple	 choice	 or	 type-in	 answers.	 Thoroughly	 test	 your	 application.	 If	 you
want,	give	your	program	to	someone	else	(with	the	JRE	on	their	computer)	and
let	him	or	her	enjoy	your	nifty	little	program.

6

Exception	Handling,	Debugging,
Sequential	Files

Review	and	Preview
In	 this	 class,	 we	 expand	 our	 Java	 knowledge	 from	 past	 classes	 and
examine	a	few	new	topics.	We	first	look	at	what	to	do	about	errors	(also
called	 exceptions)	 in	 programs,	 using	 both	 exception	 handling	 and
debugging	techniques.	We	then	study	reading	and	writing	sequential	disk

files.

Program	Errors
No	matter	how	hard	we	try,	errors	do	creep	into	our	programs.	These	errors	can
be	grouped	into	three	categories:

1.	Syntax	errors	2.	Run-time	errors	(also	called	exceptions)	3.	Logic	errors

Syntax	 errors	 occur	 when	 you	 mistype	 a	 command,	 leave	 out	 an	 expected
argument,	 use	 improper	 case	 in	 variable	 or	 method	 names	 or	 omit	 needed
punctuation.	You	 cannot	 run	 a	 Java	 program	until	 all	 syntax	 errors	 have	 been
corrected.	Syntax	errors	are	the	easiest	to	identify	and	eliminate.	The	NetBeans
development	environment	is	a	big	help	in	finding	syntax	errors.	When	you	try	to
compile	 a	 program	with	 a	 syntax	 error,	NetBeans	will	 point	 out	 the	 offending
line	and	provide	some	explanation	of	 the	problem.	Probably	 the	most	common
syntax	error	is	a	‘cannot	resolve	symbol	error.’	It	means	one	of	just	a	few	things.
If	 involving	 a	 variable,	 it	 means	 you	 have	 misspelled	 a	 properly	 declared
variable	(check	upper	and	lower	case	letters)	or	you	have	forgotten	to	declare	a
variable.	 If	 the	 message	 involves	 a	 method	 or	 function,	 it	 means	 you	 have
misspelled	the	function	name	(again,	check	upper	and	lower	case	letters)	or	have
not	 provided	 it	 to	 your	 class.	 Other	 common	 syntax	 errors	 are	 forgetting
semicolons,	having	unmatched	parentheses	and	having	unmatched	curly	braces.

Run-time	 errors	 (or	 exceptions)	 are	 usually	 beyond	 your	 program's	 control.
Examples	 include:	 when	 a	 variable	 takes	 on	 an	 unexpected	 value	 (divide	 by
zero),	when	 a	 disk	 is	 not	 accessible,	 or	when	 a	 file	 is	 not	 found.	 Java	 lets	 us
handle	such	errors	(using	the	concept	of	exception	handling)	and	make	attempts
to	 correct	 them.	 Doing	 so	 precludes	 our	 program	 from	 unceremoniously
stopping.	Users	do	not	like	programs	that	stop	unexpectedly!

Logic	errors	are	 the	most	difficult	 to	find.	With	 logic	errors,	 the	program	will
usually	run,	but	will	produce	incorrect	or	unexpected	results.	Logic	errors	must
be	eliminated	using	debugging	techniques.

Some	ways	to	minimize	errors	in	programs	are:

➢	 Design	 your	 application	 carefully.	 More	 design	 time	 means	 less
debugging	time.

➢	 Use	 comments	 where	 applicable	 to	 help	 you	 remember	 what	 you	were
trying	to	do.

➢	 Use	 consistent	 and	 meaningful	 naming	 conventions	 for	 your	 variables,
controls,	objects,	and	methods.

Exception	Handling
Run-time	 errors	 (referred	 to	 in	 Java	 as	 exceptions)	 are	 “catchable.”	 That	 is,
Java	 recognizes	 an	 error	 has	 occurred	 and	 enables	 you	 to	 catch	 it	 and	 take
corrective	action	(handle	the	error).	As	mentioned,	if	an	error	occurs	and	is	not
caught,	your	program	will	usually	end	in	a	rather	unceremonious	manner.	Most
run-time	errors	occur	when	your	application	is	working	with	files,	either	trying
to	open,	read,	write	or	save	a	file.	Other	common	run-time	errors	are	divide	by
zero,	overflow	(exceeding	a	data	type’s	range)	and	improper	data	types.

Java	 uses	 a	 structured	 approach	 to	 catching	 and	 handling	 exceptions.	 The
structure	is	referred	to	as	a	try/catch/finally	block.	And	the	annotated	syntax	for
using	this	block	is:	try

{

//	here	is	code	you	try	where	some	kind	of
//	error	may	occur

}

catch	(ExceptionType	ex)

{

//	if	error	described	by	exception	of	ExceptionType
//	occurs,	process	this	code

}

catch	(Exception	ex)

{

//	if	any	other	error	occurs,	process	this	code

}

finally

{

//	Execute	this	code	whether	error	occurred	or	not
//	this	block	is	optional

}

//	Execution	continues	here

The	above	code	works	 from	the	 top,	down.	 It	 ‘tries’	 the	code	between	 try	and
the	first	catch	statement.	If	no	error	is	encountered,	any	code	in	the	finally	block
will	be	executed	and	the	program	will	continue	after	the	right	brace	closing	the
try/catch/finally	block.	If	an	exception	(error)	occurs,	the	program	will	look	to
find,	 if	 any,	 the	 first	catch	 statement	 (you	 can	have	multiple	catch	 statements
and	must	have	at	 least	one)	 that	matches	 the	exception	 that	occurred.	 If	one	 is
found,	 the	 code	 in	 that	 respective	block	 is	 executed	 (code	 to	help	 clear	up	 the
error	–	the	exception	handling),	then	the	code	in	the	finally	block,	then	program
execution	continues	after	the	closing	brace.	If	an	error	occurs	that	doesn’t	match
a	 particular	 exception,	 the	 code	 in	 the	 ‘generic’	 catch	 block	 is	 executed,
followed	 by	 the	 code	 in	 the	 finally	 block.	 And,	 program	 execution	 continues
after	the	closing	brace.

This	structure	can	be	used	to	catch	and	handle	any	of	the	exceptions	defined	in
the	Java	Exception	 class.	There	are	hundreds	of	possible	exceptions	 related	 to
data	 access,	 input	 and	 output	 functions,	 graphics	 functions,	 data	 types	 and
numerical	computations.	Here	is	a	list	of	example	exception	types	(their	names
are	descriptive	of	the	corresponding	error	condition):

IllegalArgumentException NullPointerException
IndexOutofBoundsException ArithmeticException
NegativeArraySizeException Exception
EOFException FileNotFoundException
IOException RunTimeException

Let’s	take	a	closer	look	at	the	catch	block.	When	you	define	a	catch	block,	you
define	 the	 exception	 type	 you	want	 to	 catch.	 For	 example,	 if	 want	 to	 catch	 a

divide	 by	 zero	 condition,	 an	 ArithmeticException,	 we	 use:	 catch
(ArithmeticException	ex)

{

//	Code	to	execute	if	divide	by	zero	occurs

}

If	 in	 the	 try	 block,	 a	 divide	 by	 zero	 occurs,	 the	 code	 following	 this	 catch
statement	will	be	executed.	You	would	probably	put	a	message	box	here	to	tell
the	user	what	happened	and	provide	him	or	her	with	options	of	how	to	 fix	 the
problem.	To	help	with	 the	messaging	capability,	 the	variable	you	define	as	 the
exception	(ex,	in	this	case)	has	a	message	property	you	can	use.	The	message	is
retrieved	using	ex.getMessage().

A	try	block	may	be	exited	using	the	break	statement.	Be	aware	any	code	in	the
finally	 block	 will	 still	 be	 executed	 even	 if	 break	 is	 encountered.	 Once	 the
finally	code	is	executed,	program	execution	continues	after	the	brace	closing	the
try	block.

Example	of	try	block	to	catch	a	“file	not	found”	error:	try

{

//	Code	to	open	file

}

catch	(FileNotFoundException	ex)

{

//	message	box	describing	the	error
JOptionPane.showConfirmDialog(null,	ex.getMessage(),

"Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);

}

finally

{

//Code	to	close	file	(even	if	error	occurred)

}

Example	of	a	generic	error	catching	routine:	try

{

//	Code	to	try

}

catch	(Exception	ex)

{

//	message	box	describing	the	error
JOptionPane.showConfirmDialog(null,	ex.getMessage(),

"Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);

}

finally

{

//Code	to	finish	the	block

}

We’ve	 only	 taken	 a	 brief	 look	 at	 the	 structured	 run-time	 exception	 handling
capabilities	of	Java.	It	is	difficult	to	be	more	specific	without	knowing	just	what
an	 application’s	 purpose	 is.	 You	 need	 to	 know	 what	 type	 of	 errors	 you	 are
looking	 for	 and	 what	 corrective	 actions	 should	 be	 taken	 if	 these	 errors	 are
encountered.	As	 you	 build	 and	 run	 your	 own	 applications,	 you	will	 encounter

run-time	errors.	These	errors	may	be	due	to	errors	in	your	code.	If	so,	fix	them.
But,	they	may	also	be	errors	that	arise	due	to	some	invalid	inputs	from	your	user,
because	a	file	does	not	meet	certain	specifications	or	because	a	disk	drive	is	not
ready.	 You	 need	 to	 use	 exception	 handling	 to	 keep	 such	 errors	 from	 shutting
down	your	application,	leaving	your	user	in	a	frustrated	state.

You	will	find	many	Java	methods	(for	instance,	file	methods	studied	next)	must
be	used	within	try	blocks.	This	helps	to	minimize	errors.	In	such	methods,	you
will	know	the	 types	of	exceptions	you	are	 looking	for.	The	method	will	define
them	for	you.

Debugging	Java	Programs
We	 now	 consider	 the	 search	 for,	 and	 elimination	 of,	 logic	 errors.	 These	 are
errors	 that	 don’t	 prevent	 an	 application	 from	 running,	 but	 cause	 incorrect	 or
unexpected	 results.	 Logic	 errors	 are	 sometimes	 difficult	 to	 find;	 they	 may	 be
very	subtle.	Eliminating	logic	errors	is	known	as	debugging	your	program.

A	typical	logic	error	could	involve	an	if	structure.	Look	at	this	example:	if	(a	>	5
&&	b	<	4)

{

..//	do	this	code

}

else	if	(a	==	6)

{

//	do	this	code

}

In	 this	 example,	 if	a	 is	 6	 and	b	 is	 2,	 the	 else	 if	 statement	 (which	 you	wanted
executed	if	a	is	6)	will	never	be	seen.	In	this	case,	swap	the	two	if	clauses	to	get
the	 desired	 behavior.	Or,	 another	 possible	 source	 of	 a	 logic	 error:	 ImageIcon
myImage	=	new
ImageIcon(imageChooser.getSelectedFile().toString());

In	this	little	‘snippet’	from	Class	4,	the	user	has	selected	a	file	to	display	as	an
image.	The	code	looks	okay,	but	what	if	the	user	selected	a	file	that	really	wasn’t
meant	to	be	used	as	an	image.	You	would	not	see	anything	displayed	–	another
logic	error.

Debugging	code	is	an	art,	not	a	science.	There	are	no	prescribed	processes	that
you	can	follow	to	eliminate	all	logic	errors	in	your	program.	The	usual	approach

is	 to	eliminate	them	as	they	are	discovered.	We	will	 look	at	 two	approaches	to
debugging	a	Java	program	–	a	simple	method	that	prints	out	information	from	a
program	and	 a	more	 involved	method	which	uses	 the	 Java	debugger	 that	was
installed	on	your	computer	when	you	installed	Java.

Simple	Debugging
The	 simplest	 approach	 to	 debugging	 a	 Java	 program	 is	 to	 print	 information
(usually	variable	values)	directly	 to	 the	output	window	while	an	application	 is
running.	 Sometimes,	 this	 is	 all	 the	 debugging	 you	may	 need.	A	 few	 carefully
placed	 print	 statements	 can	 sometimes	 clear	 up	 all	 logic	 errors,	 especially	 in
small	applications.

The	output	window	is	used	in	Java	console	applications	to	display	output	results.
It	can	also	be	used	in	GUI	applications.	To	write	to	the	output	window,	use	the
println	 method	 of	 the	 System.out	 object	 (the	 output	 window):
System.out.println(stringData);

This	will	write	the	string	information	stringData	as	a	line	in	the	output	window.
Hence,	 the	 output	 window	 can	 be	 used	 as	 a	 kind	 of	 scratch	 pad	 for	 your
application.	If	the	argument	in	the	println	method	contains	numeric	information,
Java	will	convert	it	to	strings.	Be	careful	using	concatenation	operators	however.
Sometimes,	 there	 is	 confusion	 between	 numeric	 addition	 and	 string
concatenation.

Example	6-1
Debugging	Example

This	example	simply	has	a	frame	with	two	button	controls	used	to	execute	some
code.	 There	 is	 no	 need	 to	 build	 this	 example	 -	 just	 load	 the	 project	 from	 the
course	 notes	 (saved	 as	Example6-1	 project	 in	 \LearnJava\LJ	 Code\Class	 6\

project	group).	The	finished	project	is	simply:	

Here	is	the	complete	Debugging.java	code	listing:	/	*
*	Debugging.java

*/

package	debugging;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
public	class	Debugging	extends	JFrame

{

JButton	procedure1Button	=	new	JButton();
JButton	procedure2Button	=	new	JButton();
int	xCount	=	0,	ySum	=	0;
public	static	void	main(String	args[])

{

//	construct	frame

new	Debugging().show();

}

public	Debugging()

{

//	frame	constructor
setTitle("Debug");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	add	buttons	and	method	listeners
GridBagConstraints	gridConstraints	=	new

GridBagConstraints();
procedure1Button.setText("Run	Procedure	1");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(20,	30,	0,	30);
getContentPane().add(procedure1Button,	gridConstraints);
procedure1Button.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

procedure1ButtonActionPerformed(e);

}

});

procedure2Button.setText("Run	Procedure	2");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(0,	30,	20,	30);
getContentPane().add(procedure2Button,	gridConstraints);
procedure2Button.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

procedure2ButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}

private	void	procedure1ButtonActionPerformed(ActionEvent	e)

{

{

int	x1	=	-1,	y1;
do

{

x1++;
y1	=	fcn(x1);
xCount++;
ySum	+=	y1;

}

while	(x1	<	20);

}

private	void	procedure2ButtonActionPerformed(ActionEvent	e)

{

int	x2,	y2;
for	(x2	=	-10;	x2	<=	10;	x2++)

{

y2	=	5	*	fcn(x2);
xCount++;
ySum	+=	y2;

}

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

public	int	fcn(int	x)

{

double	value;
value	=	0.1	*	x	*	x;
return	((int)	value);

}

}

A	few	notes	about	the	program:

The	 application	 has	 two	 variables	 with	 class	 level	 scope:	 xCount	 and	 ySum.
xCount	 keeps	 track	 of	 the	 number	 of	 times	 each	 of	 two	 counter	 variables	 is
incremented.	ySum	sums	all	computed	y	values.

Procedure	1	uses	a	do/while	structure	to	increment	the	counter	variable	x1	from
0	to	20.	For	each	x1,	a	corresponding	y1	is	computed	using	the	general	method
fcn.	 In	 each	 cycle	 of	 the	do/while	 loop,	 the	 class	 level	 variables	xCount	 and
ySum	are	adjusted	accordingly.

The	general	method	(fcn)	used	by	this	procedure	computes	an	‘integer	parabola.’
No	need	to	know	what	that	means.	Just	recognize,	given	an	x	value,	it	computes
and	returns	a	y.

Procedure	2	is	similar	to	Procedure	1.	It	uses	a	for	structure	to	increment	the
counter	variable	x2	from	-10	to	10.	For	each	x2,	a	corresponding	y2	is	computed
using	the	same	general	method	fcn.	In	each	cycle	of	the	for	loop,	the	class	level
variables	xCount	and	ySum	are	adjusted	accordingly.

Run	the	application	code	 to	make	sure	 it	works.	The	running	application	 looks

like	this:	

Notice	 not	 much	 happens	 if	 you	 click	 either	 button.	 Admittedly,	 this	 code
doesn’t	do	much,	especially	without	any	output,	but	it	makes	a	good	example	for
debugging	practice.

System.out.println	Example:

1.	Modify	the	Procedure	1	code	in	Example	6-1	by	including	the	shaded	line:
private	void	procedure1ButtonActionPerformed(ActionEvent	e)

{

int	x1	=	-1,	y1;
do

{

x1++;
y1	=	fcn(x1);
System.out.println(x1	+	"	"	+	y1);
xCount++;
ySum	+=	y1;

}

while	(x1	<	20);

}

Run	the	application.	Click	the	Run	Procedure	1	button.

2.	 Examine	 the	 output	 window.	 You	 should	 see	 this:	

Note	how,	at	each	iteration	of	the	loop,	 the	program	prints	 the	value	of	x1	and
y1.	 You	 can	 use	 this	 information	 to	 make	 sure	 x1	 is	 incrementing	 correctly,
ending	at	the	proper	value	and	that	y1	values	look	acceptable.	You	can	get	a	lot
of	information	using	println.

3.	If	needed,	you	can	add	additional	text	information	in	the	println	argument	to
provide	specific	details	on	what	is	printed	(variable	names,	procedure	names,
etc.).	Say,	we	also	want	the	values	of	x2	and	y2	in	Procedure	2.	Modify	the
two	 procedures	 with	 the	 shaded	 lines:	 private	 void
procedure1ButtonActionPerformed(ActionEvent	e)

{

int	x1	=	-1,	y1;
do

{

x1++;
y1	=	fcn(x1);
System.out.println("In	Procedure	1,	x1="	+	x1	+	"	y1="	+	y1);
xCount++;
ySum	+=	y1;

}

while	(x1	<	20);

}

private	void	procedure2ButtonActionPerformed(ActionEvent	e)

{

int	x2,	y2;
for	(x2	=	-10;	x2	<=	10;	x2++)

{

y2	=	5	*	fcn(x2);
System.out.println("In	Procedure	2,	x2="	+	x2	+	"	y2="	+	y2);
xCount++;
ySum	+=	y2;

}

}

Run.	Click	both	buttons	and	notice	how	you	get	a	listing	of	the	variable	values.
Here	 is	 a	 segment	 of	 that	 output	 window:	

Again,	 notice	 how	 you	 can	 get	 a	 lot	 of	 information	 from	 just	 two	 println
statements.	Stop	the	program	and	delete	the	println	statements.

Using	the	Java	Debugger
There	are	times	when	only	using	println	statements	is	not	sufficient	for	finding
bugs	in	your	program.	More	elaborate	search	methods	are	needed	to	find	subtle
logic	errors.	Java	provides	a	set	of	debugging	tools	to	aid	in	this	search.

When	you	downloaded	and	installed	Java	back	in	Class	1,	you	also	downloaded
and	installed	the	Java	debugger	(jdb.exe).	This	debugger	can	be	used	outside	of
a	design	 environment,	 but	 the	process	 is	 cumbersome.	More	desirable	 is	 to	be
able	to	use	the	debugger	within	your	design	environment.	The	good	news	is	that
this	can	be	done	with	NetBeans.

What	 we’ll	 do	 here	 is	 present	 the	 debugging	 tools	 available	 in	 the	 Java
environment	 and	 describe	 their	 use	 with	 our	 example.	 You,	 as	 the	 program
designer,	 should	 select	 the	 debugging	 approach	 and	 tools	 you	 feel	 most
comfortable	with.	The	more	you	use	the	debugger,	the	more	you	will	learn	about
it.	Fortunately,	 the	 simpler	 tools	will	 accomplish	 the	 tasks	 for	most	debugging
applications.

Most	 of	 the	 Java	 debugger	 features	 are	 implemented	 in	 the	 NetBeans	Debug
menu.	 Debug	 options	 can	 be	 accessed	 from	 this	 menu	 or	 by	 pressing	 certain
function	keys.	All	debugging	is	done	when	your	application	is	 in	break	mode.
Following	program	compilation,	to	enter	break	mode,	you	start	your	application
using	 the	 debugger.	 This	 is	 done	 by	 choosing	 the	Debug	 menu,	 then	Debug
Main	Project	(or	press	<Ctrl>-<F5>).

The	debugger	can	be	used	to:

➢	Set	breakpoints
➢	Determine	values	of	variables
➢	 Manually	 control	 the	 application	➢	 Determine	 which	 procedures	 have
been	called

To	 stop	 the	 debugger,	 press	 <Shift>-<F5>	 or	 choose	 Finish	 Debug	 Session
under	the	NetBeans	Debug	menu.	The	best	way	to	learn	proper	debugging	is	do
an	example.	We’ll	continue	with	the	same	example	program.

Using	the	Debugging	Tools
There	 are	 several	 debugging	 tools	 available	 for	 use	 in	 Java.	 Access	 to	 these
tools	is	provided	via	both	menu	options	and	function	keys:

➢	Breakpoints	which	let	us	stop	our	application.
➢	 ‘Mouse	 hover’	 that	 lets	 you	 examine	 variable	 values	 by	 holding	 your
mouse	over	a	variable	name.

➢	Step	into,	step	over	and	step	out	which	provide	manual	execution	of	our
code.

Breakpoints:

Notice	 when	 we	 used	 println	 for	 debugging,	 the	 program	 ran	 to	 completion
before	we	could	 look	at	 the	output	window.	 In	many	applications,	we	want	 to
stop	 the	 application	 while	 it	 is	 running,	 examine	 variables	 and	 then	 continue
running.	This	can	be	done	with	breakpoints.	A	breakpoint	marks	a	line	in	code
where	 you	 want	 to	 stop	 (temporarily)	 program	 execution,	 that	 is	 force	 the
program	into	break	mode.	One	way	to	set	a	breakpoint	is	to	put	the	cursor	in	the
line	of	code	you	want	to	break	at	and	press	<Ctrl>-<F8>	(or	select	 the	Debug
menu,	 then	Toggle	Breakpoint).	 Or,	 right-click	 the	 desired	 line	 of	 code	 and
choose	Toggle	Breakpoint	from	the	drop-down	menu.	Or	simply	click	the	line
number	 in	 the	 left	 side	 of	 the	 editor.	 Once	 set,	 a	 red	 square	 marks	 the	 line:	

To	 remove	 a	 breakpoint,	 repeat	 the	 above	 process.	 Breakpoints	 can	 be
added/deleted	at	any	time.	When	you	run	your	application	in	the	debugger	(press
<Ctrl>-<F5>	or	choose	Debug	from	the	menu,	then	Debug	Main	Project),	Java
will	stop	when	it	reaches	lines	with	breakpoints	and	allow	you	to	check	variables

and	expressions.	To	continue	program	operation	after	a	breakpoint,	press	<F5>
or	choose	Continue	from	the	Debug	menu.

Breakpoint	Example:	1.	Set	a	breakpoint	on	the	xCount++;	line	in	Procedure
1	(as	demonstrated	above).	Run	the	debugger	(<Ctrl>-<F5>)	and	click	the	Run
Procedure	1	button.	A	Debug	Output	window	will	appear	in	NetBeans	and	the
program	 will	 stop	 at	 the	 desired	 line	 (it	 will	 have	 a	 little	 arrow	 and	 be
highlighted):	

At	 this	point,	you	can	determine	 the	value	of	any	variable	by	 simply	hovering
over	the	variable	name	with	the	mouse.	Try	it	with	x1,	you	should	see	x1	=	0:	

You	can	highlight	any	variable	 in	 this	procedure	 to	see	 its	value.	 If	you	check
values	on	lines	prior	to	the	line	with	the	breakpoint,	you	will	be	given	the	current
value.	If	you	check	values	on	lines	at	or	after	the	breakpoint,	you	will	get	their
last	computed	value.

2.	 Continue	 running	 the	 program	 (choose	 Continue	 from	 the	 Debug	 menu
button	or	press	<F5>).	The	program	will	again	stop	at	 this	 line,	but	x1	will
now	 be	 equal	 to	 1.	 Check	 it:	

3.	Continue	running	the	program,	examining	x1	and	y1	(and	xCount	and	ySum
too).	 Procedure	 level	 variable	 values	 can	 also	 be	 viewed	 in	 the	Variables
Window:	

4.	Try	other	breakpoints	 in	 the	application	 if	you	have	 time.	Once	done,	make
sure	 you	 clear	 all	 the	 breakpoints	 you	 used.	 To	 stop	 the	 debugger,	 choose
Debug	and	Finish	Debugger	Session,	or	press	<Shift>-<F5>.

Single	Stepping	(Step	Into)	An	Application:

A	 powerful	 feature	 of	 the	 Java	 debugger	 is	 the	 ability	 to	 manually	 control
execution	of	the	code	in	your	application.	The	Step	Into	option	lets	you	execute
your	program	one	line	at	a	time.	It	lets	you	watch	how	variables	change	or	how
your	 code	 executes,	 one	 step	 at	 a	 time.	This	 feature	 is	 very	useful	 for	making
sure	loop	and	decision	structures	are	implemented	correctly.

Once	in	break	mode	(at	a	breakpoint),	you	can	use	Step	Into	by	pressing	<F7>,
choosing	the	Step	Into	option	in	the	Debug	menu.

Step	Into	Example:

1.	Set	 a	breakpoint	 at	 the	For	X2	=	 -	10	To	10	 line	 in	Procedure	2.	Run	 the

application	in	the	debugger.	Click	Run	Procedure	2.	The	program	will	stop
and	 the	 line	 will	 be	 marked:	

2.	Use	the	Step	Into	feature	(press	<F7>	to	single	step	through	the	program.	It’s
fun	to	see	the	program	logic	being	followed.	At	any	point,	you	may	use	the
mouse	 or	Variables	 window	 to	 check	 a	 variable	 value.	 When	 you	 are	 in
Procedure	2,	you	can	check	x2	and	y2.	When	in	the	function,	you	can	check
x	and	value.

3.	At	 some	 point,	 remove	 the	 breakpoint	 and	 continue	 (<F5>).	 The	 procedure
will	finish	its	for	loop	without	stopping	again	and	the	frame	will	reappear.

Method	Stepping	(Step):

Did	you	notice	in	the	example	just	studied	that,	after	a	while,	it	became	annoying
to	 have	 to	 single	 step	 through	 the	 function	 evaluation	 at	 every	 step	 of	 the	 for
loop?	While	single	stepping	your	program,	if	you	come	to	a	method	call	that	you
know	 operates	 properly,	 you	 can	 perform	 method	 stepping.	 This	 simply
executes	the	entire	method	at	once,	treating	as	a	single	line	of	code,	rather	than
one	step	at	a	time.

To	move	through	a	method	in	this	manner,	while	in	break	mode,	press	<F8>,	or
choose	Step	Over	from	the	Debug	menu.

Step	Example:

1.	Run	the	previous	example.	Single	step	through	it	a	couple	of	times.

2.	 One	 time	 through,	 when	 you	 are	 at	 the	 line	 calling	 the	Fcn	 method,	 press
<F8>	button.	Notice	how	the	program	did	not	single	step	through	the	method
as	it	did	previously.

Method	Exit	(Step	Out):

While	stepping	through	your	program,	if	you	wish	to	complete	the	execution	of	a
method	you	are	in,	without	stepping	through	it	line-by-line,	choose	the	Step	Out
option.	The	method	will	be	completed	and	you	will	be	 returned	 to	 the	method
accessing	that	method.

To	 perform	 this	 step	 out,	 press	 <Ctrl>+<F7>	 or	 choose	 Step	Out	 from	 the
Debug	menu.

Step	Out	Example:

1.	Run	the	previous	example.	Single	step	through	it	a	couple	of	times.	Also,	try
stepping	over	the	method.

2.	At	some	point,	while	single	stepping	through	the	method,	press	<Ctrl>-<F7>
(Step	 Out).	 Notice	 how	 control	 is	 immediately	 returned	 to	 the	 calling
procedure	(Procedure	2).

3.	At	some	point,	while	in	Procedure	2,	press	<Ctrl>-<F7>.	The	procedure	will
be	completed.

Debugging	Strategies
We’ve	 looked	 at	 each	 debugging	 feature	 briefly.	 Be	 aware	 this	 is	 a	 cursory
introduction.	 Other	 useful	 debugging	 features	 are	 the	Call	 Stack	 and	Watch
points.	Go	 to	 the	 Java	and	NetBeans	websites	 to	delve	 into	 the	details	of	each
feature	described.

Only	 through	 lots	 of	 use	 and	 practice	 can	 you	 become	 a	 proficient	 debugger.
There	 are	 some	common	sense	guidelines	 to	 follow	when	debugging.	My	 first
suggestion	is:	keep	it	simple.	Many	times,	you	only	have	one	or	two	bad	lines	of
code.	And	you,	knowing	your	code	best,	can	usually	quickly	narrow	down	 the
areas	with	 bad	 lines.	Don’t	 set	 up	 some	 elaborate	 debugging	procedure	 if	 you
haven’t	tried	a	simple	approach	to	find	your	error(s)	first.	Many	times,	just	a	few
intelligently-placed	println	statements	or	a	few	examinations	of	variable	values
with	debugger,	will	solve	the	problem.

A	tried	and	true	approach	 to	debugging	can	be	called	Divide	and	Conquer.	 If
you’re	 not	 sure	 where	 your	 error	 is,	 guess	 somewhere	 in	 the	 middle	 of	 your
application	 code.	Set	 a	breakpoint	 there.	 If	 the	 error	hasn’t	 shown	up	by	 then,
you	know	it’s	in	the	second	half	of	your	code.	If	it	has	shown	up,	it’s	in	the	first
half.	Repeat	this	division	process	until	you’ve	narrowed	your	search.

And,	of	course,	the	best	debugging	strategy	is	to	be	careful	when	you	first	design
and	write	your	application	to	minimize	searching	for	errors	later.

Sequential	Files
In	 many	 applications,	 it	 is	 helpful	 to	 have	 the	 capability	 to	 read	 and	 write
information	 to	 a	 disk	 file.	 This	 information	 could	 be	 some	 computed	 data	 or
perhaps	 information	 needed	 by	 your	 Java	 project.	 Java	 supports	 several	 file
formats.	We	will	look	at	the	most	common	format:	sequential	files.

A	 sequential	 file	 is	 a	 line-by-line	 list	of	data	 that	 can	be	viewed	with	any	 text
editor.	 Sequential	 access	 easily	 works	 with	 files	 that	 have	 lines	 with	 mixed
information	 of	 different	 lengths.	 Hence,	 sequential	 files	 can	 include	 both
variables	 and	 text	 data.	 When	 using	 sequential	 files,	 it	 is	 helpful,	 but	 not
necessary,	to	know	the	order	data	was	written	to	the	file	to	allow	easy	retrieval.

The	ability	to	read	and	generate	sequential	files	is	a	very	powerful	capability	of
Java.	This	single	capability	is	the	genesis	of	many	applications	I’ve	developed.
Let’s	 examine	a	 few	possible	 applications	where	we	could	use	 such	 files.	One
possibility	 is	 to	 use	 sequential	 files	 to	 provide	 initialization	 information	 for	 a
project.	Such	a	file	is	called	a	configuration	or	initialization	file	and	almost	all
applications	 use	 such	 files.	 Here	 is	 the	 idea:	

In	 this	 diagram,	 the	 configuration	 file	 (a	 sequential	 file)	 contains	 information
that	 can	 be	 used	 to	 initialize	 different	 parameters	 (control	 properties,	 variable
values)	 within	 the	 Java	 application.	 The	 file	 is	 opened	 when	 the	 application
begins,	the	file	values	are	read	and	the	various	parameters	established.	Similarly,
when	we	exit	an	application,	we	could	have	it	write	out	current	parameter	values
to	 an	 output	 configuration	 file:	

This	output	file	could	then	become	an	input	file	the	next	time	the	application	is
executed.	We	will	look	at	how	to	implement	such	a	configuration	file	in	a	Java

application.

Many	 data-intensive,	 or	 not-so	 intensive,	 applications	 provide	 file	 export
capabilities.	For	example,	you	can	save	data	 from	a	spreadsheet	program	to	an
external	file.	The	usual	format	for	such	an	exported	data	file	is	a	CSV	(comma
separated	variables)	sequential	file.	You	can	write	a	Java	application	that	reads
this	exported	file	and	performs	some	kind	of	analysis	or	further	processing	of	the

data:	

In	the	above	example,	the	results	of	the	Java	program	could	be	displayed	using
GUI	 controls	 (text	 areas,	 list	 controls,	 labels)	 or	 the	 program	 could	 also	write
another	 sequential	 file	 that	 could	 be	 used	 by	 some	 other	 application	 (say	 a
database	application	or	word	processor).	This	task	is	actually	more	common	than
you	 might	 think.	 Many	 applications	 support	 exporting	 data.	 And,	 many
applications	support	importing	data	from	other	sources.	A	big	problem	is	that	the
output	file	from	one	application	might	not	be	an	acceptable	input	file	to	another
application.	 Java	 to	 the	 rescue:	

In	this	diagram,	Application	#1	writes	an	exported	data	file	that	 is	read	by	the
Java	application.	This	application	writes	a	data	file	 in	an	 input	format	required
by	Application	#2.

You	will	find	that	you	can	use	Java	to	read	a	sequential	file	in	any	format	and,
likewise,	write	a	file	in	any	format.	As	we	said,	the	ability	to	read	and	generate
sequential	files	is	a	very	powerful	capability	of	Java.

Sequential	File	Output	(Variables)
We	will	first	 look	at	writing	values	of	variables	 to	sequential	files.	The	initial
step	 in	 accessing	 any	 sequential	 file	 (either	 for	 input	 or	 output)	 is	 to	 open	 the
file,	 knowing	 the	 name	 of	 the	 file.	 To	 open	 a	 file	 for	 output	 requires	 the
“nesting”	of	three	different	Java	classes.	To	use	these	classes	requires	importing
the	java.io.*	package.	The	innermost	class	is	the	FileWriter	–	a	useful	class	for
writing	 character	 data	 (such	 as	 variables).	The	FileWriter	 constructor	we	will
use	is:	new	FileWriter(myFile)

where	myFile	is	a	legal	filename.	Recall	file	references	are	relative	to	the	project
directory.	 Hence,	 if	 only	 a	 filename	 is	 given,	 the	 file	 will	 be	 located	 in	 the
project	directory.	For	our	work,	this	is	acceptable.	For	other	tasks,	you	may	need
to	use	fully	qualified	filename	paths,	including	drive	and	directory	structure.

The	 next	 class	 used	 is	 the	 BufferedWriter	 –	 this	 class	 provides	 optimized
writing	 of	 data	 to	 files.	 Its	 constructor	 uses	 the	 FileWriter	 object	 as	 an
argument:	new	BufferedWriter(new	FileWriter(myFile))

The	 “outside”	 class	 that	 controls	 the	 writing	 of	 information	 to	 the	 file	 is	 the
PrintWriter	 class.	 It	 uses	 the	BufferedWriter	 object	 as	 its	 argument.	Hence,
the	 complete	 constructor	 for	 opening	 a	 sequential	 file	 (myFile)	 for	 output	 is:
PrintWriter	outputFile	=	new	PrintWriter(new
BufferedWriter(new	FileWriter(myFile)));

where	myFile	 is	 the	name	 (a	String)	of	 the	 file	 to	open	and	outputFile	 is	 the
returned	PrintWriter	object	used	to	write	variables	to	disk.

A	word	of	warning	-	when	you	open	a	file	using	the	PrintWriter	method,	if	the
file	already	exists,	it	will	be	erased	immediately!	So,	make	sure	you	really	want
to	overwrite	the	file.	Using	the	JFileChooser	control	(discussed	in	Class	4)	can
prevent	accidental	overwriting.	Just	be	careful.

You	 can	 append	 to	 an	 existing	 sequential	 file	 by	 opening	 it	 using	 a	 boolean
append	 argument.	 That	 syntax	 is:	 PrintWriter	 outputFile	 =	 new
PrintWriter(new

BufferedWriter(new	FileWriter(myFile,	append)));

If	 append	 is	 true,	 the	 file	 will	 be	 opened	 in	 an	 ‘append’	mode.	 If	 the	 file	 to
append	doesn’t	exist	or	can’t	be	found,	it	will	be	created	as	an	empty	file.

The	 code	 opening	 a	 file	 for	 output	 must	 be	 within	 a	 try	 block	 for	 exception
handling	 or	 you	 will	 receive	 a	 syntax	 error.	 For	 our	 example,	 a	 minimum
structure	 for	 handling	 potential	 input/output	 exceptions	 (IOException)	 is:	 //
open	file
try

{

PrintWriter	outputFile	=	new	PrintWriter(new	BufferedWriter(new
FileWriter(myFile)));
//	code	to	write	to	file

}

catch	(IOException	ex)

{

//	print	any	error	encountered
System.out.println(ex.getMessage());

}

When	done	writing	to	a	sequential	file,	it	must	be	flushed	(information	placed	on
disk)	and	closed.	The	syntax	for	our	example	file	is:	outputFile.flush();
outputFile.close();

Once	a	file	is	closed,	it	is	saved	on	the	disk	under	the	path	(if	different	from	the
project	path)	and	filename	used	to	open	the	file.

Information	 (variables	 or	 text)	 is	 written	 to	 a	 sequential	 file	 in	 an	 appended
fashion.	Separate	Java	statements	are	required	for	each	appending.	There	are	two
different	ways	to	write	variables	to	a	sequential	file.	You	choose	which	method

you	want	based	on	your	particular	application.

The	 first	method	 uses	 the	print	method.	 For	 a	 file	 opened	 as	outputFile,	 the
syntax	 is	 to	 print	 a	 variable	 named	 myVariable	 is:
outputFile.print(myVariable);

This	 statement	 will	 append	 the	 specified	 variable	 to	 the	 current	 line	 in	 the
sequential	file.	If	you	only	use	print	for	output,	everything	will	be	written	in	one
very	 long	 line.	And,	 if	no	other	characters	 (delimiters)	 are	entered	 to	 separate
variables,	they	will	all	be	concatenated	together.

Example	using	print	method:	int	a;
String	b;
double	c,	e;
boolean	d;
try

{

PrintWriter	outputFile	=	new	PrintWriter(new
BufferedWriter(new	FileWriter(“testout.txt”)));

outputFile.print(a);
outputFile.print(b);
outputFile.print(c);
outputFile.print(d);
outputFile.print(e);
outputFile.flush();
outputFile.close();

}

catch	(IOException	ex)

{

System.out.println(ex.getMessage());

}

}

After	 this	 code	 runs,	 the	 file	 testout.txt	 (in	 the	 project	 directory)	 will	 have	 a
single	line	with	all	five	variables	(a,	b,	c,	d,	e)	concatenated	together.

The	other	way	to	write	variables	to	a	sequential	file	is	println,	the	companion	to
print.	Its	syntax	is:	outputFile.println(myVariable);

This	 method	 works	 identically	 to	 the	 print	 method	 with	 the	 exception	 that	 a
‘carriage	return’	is	added,	placing	the	variables	on	a	single	line	in	the	file.	It	can
be	used	to	insert	blank	lines	by	omitting	the	variable.

Example	using	PrintLine	function:	int	a;
String	b;
double	c,	e;
boolean	d;
try

{

PrintWriter	outputFile	=	new	PrintWriter(new
BufferedWriter(new	FileWriter(“testout.txt”)));

outputFile.println	(a);
outputFile.println	(b);
outputFile.println	(c);
outputFile.println	(d);
outputFile.println	(e);
outputFile.flush();
outputFile.close();

}

catch	(IOException	ex)

{

System.out.println(ex.getMessage());

}

After	this	code	runs,	the	file	testout.txt	will	have	five	lines,	each	of	the	variables
(a,	b,	c,	d,	e)	on	a	separate	line.

Example	6-2
Writing	Variables	to	Sequential	Files

Start	 a	 new	 empty	 project	 in	NetBeans.	 Name	 the	 project	VariableWriting.
Delete	default	code	in	Java	file	named	VariableWriting.	We	will	build	a	simple
Java	 console	 application	 that	 writes	 data	 to	 sequential	 files	 using	 each	 of	 the
methods	for	doing	such	writing.

The	complete	code	for	VariableWriting.java:	/	*
*	VariableWriting.java
*/	package	variablewriting;
import	java.io.*;
public	class	VariableWriting

{

public	static	void	main(String	args[])

{

//	variables
int	v1	=	5;
String	v2	=	"Learn	Java	is	fun";
double	v3	=	1.23;
int	v4	=	-4;
boolean	v5	=	true;
String	v6	=	"Another	string	type";

//	open	and	write	file	for	print	method
try

{

PrintWriter	outputFile1	=	new	PrintWriter(new
BufferedWriter(new	FileWriter("test1.txt")));

outputFile1.print(v1);
outputFile1.print(v2);
outputFile1.print(v3);
outputFile1.print(v4);
outputFile1.print(v5);
outputFile1.print(v6);
outputFile1.flush();
outputFile1.close();

}

catch	(IOException	ex)

{

System.out.println(ex.getMessage());

}

//	open	and	write	file	for	println	method
try

{

PrintWriter	outputFile2	=	new	PrintWriter(new
BufferedWriter(new	FileWriter("test2.txt")));

outputFile2.println(v1);
outputFile2.println(v2);
outputFile2.println(v3);
outputFile2.println(v4);
outputFile2.println(v5);
outputFile2.println(v6);
outputFile2.flush();
outputFile2.close();

}

catch	(IOException	ex)

{

System.out.println(ex.getMessage());

}

}

}

This	code	writes	six	variables	of	different	types	to	two	different	sequential	files
(using	the	two	different	printing	methods).

Save	 the	 application	 (saved	 as	 Example6-2	 project	 in	 \LearnJava\LJ
Code\Class	6\	project	group).	Then,	run	it.	If	no	exceptions	occurred,	two	files
will	 be	written	 to	 the	 project	 folder.	 In	 that	 folder	will	 be	 two	 files:	 test1.txt
(written	using	print	method)	and	test2.txt	(written	using	println	method).	Open
each	 file	using	a	 text	editor	 (Notepad	 in	Windows	works	 fine)	and	notice	how
each	file	is	different.

My	files	look	like	this:

test1.txt	(uses	print)	

Notice	how	 the	variables	are	 just	“glommed”	 together.	To	 read	 these	variables
back	 into	 an	 application	would	 require	 a	bit	 of	 tricky	programming.	Later,	we

discuss	the	use	of	delimiters	to	separate	variables,	so	individual	variables	can	be
easily	identified.

test2.txt	(uses	println)	

Having	each	variable	on	a	separate	line	makes	each	variable	easily	identifiable.
This	is	the	preferred	way	of	writing	variables	to	disk.

Sequential	File	Input	(Variables)
In	the	previous	section,	we	saw	that	if	the	print	method	is	used	to	write	variables
to	 disk,	 you	 obtain	 one	 long	 concatenated	 line.	 We	 need	 to	 use	 special
techniques	 (parsing)	 to	 recover	 variable	 values	 from	 such	 a	 line.	 We	 discuss
those	methods	next.	In	this	section,	we	discuss	reading	variables	written	to	a	file
using	the	println	method,	a	single	variable	on	each	line.	To	read	variables	from
a	sequential	file,	we	essentially	reverse	the	write	procedure.	First,	open	the	file
using	 a	 nesting	 of	 the	 FileReader	 object	 in	 the	 BufferedReader	 object:
BufferedReader	inputFile	=	new	BufferedReader(new	FileReader(myFile));
where	inputFile	is	the	returned	file	object	and	myFile	is	a	valid	path	to	the	file
(whether	relative	to	the	project	file	or	a	complete	qualified	path).

If	 the	 file	 you	 are	 trying	 to	 open	 does	 not	 exist,	 an	 error	will	 occur.	 Like	 the
output	file,	opening	an	input	file	must	be	within	a	try	structure,	hence	such	an
exception	will	be	caught.	A	way	to	minimize	errors	is	to	use	the	JFileChooser
control	to	insure	the	file	exists	before	trying	to	open	it.

When	 all	 values	 have	 been	 read	 from	 the	 sequential	 file,	 it	 is	 closed	 using:
inputFile.close();

Variables	 are	 read	 from	 a	 sequential	 file	 in	 the	 same	 order	 they	were	written.
Hence,	to	read	in	variables	from	a	sequential	file,	you	need	to	know:

➢	How	many	variables	are	in	the	file	➢	The	order	the	variables	were	written
to	the	file	➢	The	type	of	each	variable	in	the	file

If	you	developed	the	structure	of	the	sequential	file	(say	for	a	configuration	file),
you	 obviously	 know	 all	 of	 this	 information.	And,	 if	 it	 is	 a	 file	 you	 generated
from	another	source	(spreadsheet,	database),	 the	 information	should	be	known.
If	the	file	is	from	an	unknown	source,	you	may	have	to	do	a	little	detective	work.
Open	the	file	in	a	text	editor	and	look	at	the	data.	See	if	you	can	figure	out	what
is	in	the	file.

Many	times,	you	may	know	the	order	and	type	of	variables	in	a	sequential	file,
but	 the	 number	 of	 variables	may	 vary.	 For	 example,	 you	may	 export	monthly

sales	 data	 from	 a	 spreadsheet.	One	month	may	 have	 30	 variables,	 the	 next	 31
variables,	and	February	would	have	28	or	29.	In	such	a	case,	you	can	examine
the	ready	property	of	the	BufferedReader	object.	If	the	property	is	true,	there
are	still	values	to	read.	If	false,	you	have	reached	the	end-of-file.	If	you	don’t	do
such	 a	 check,	 an	EOFException	 is	 “thrown.”	 You	 can	 use	 a	 catch	 block	 to
know	when	this	occurs.

Variables	are	read	from	a	sequential	file	using	the	readLine	method.	The	syntax
for	our	example	file	is:	myVariableString	=	inputFile.readLine();

where	myVariableString	is	the	String	representation	of	the	variable	being	read.
To	retrieve	the	variable	value	from	this	string,	we	need	to	convert	 the	string	to
the	 proper	 type.	 Conversions	 for	 int,	 double	 and	 boolean	 variables	 are:
myintVariable	=
Integer.valueOf(myVariableString).intValue();
mydoubleVariable	=
Double.valueOf(myVariableString).doubleValue();
mybooleanVariable	=
Boolean.valueOf(myVariableString).booleanValue();

Example	using	readLine	method:	int	a;
String	b;
double	c,	e;
boolean	d;
try

{

BufferedReader	inputfile	=	new	BufferedReader(new
FileReader(“testout.txt”));

a	=	Integer.valueOf(inputFile.readLine()).intValue();
b	=	inputFile.readLine();
c	=	Double.valueOf(inputFile.readLine()).doubleValue();
d	=	Boolean.valueOf(inputFile.readLine()).booleanValue();
e	=	Double.valueOf(inputFile.readLine()).doubleValue();

inputFile.close();

}

catch	(IOException	ex)

{

System.out.println(ex.getMessage());

}

This	code	opens	the	file	testout.txt	(in	the	project	folder)	and	sequentially	reads
five	 variables.	Notice	 how	 the	 readLine	method	 is	 nested	 in	 the	 conversions.
Also	notice,	the	string	variable	b	(obviously)	requires	no	conversion.

Example	6-3
Reading	Variables	from	Sequential	Files
Start	 a	 new	 empty	 project	 in	NetBeans.	 Name	 the	 project	VariableReading.
Delete	 default	 code	 in	 Java	 file	 named	 VariableReading.	 We	 will	 build	 a
console	application	that	opens	and	reads	in	the	data	file	written	with	println	in
Example	6-2.

The	complete	VariableReading.java	code	listing	is:	/	*
*	VariableReading.java

*/

package	variablereading;
import	java.io.*;
public	class	VariableReading

{

public	static	void	main(String	args[])

{

int	v1;
String	v2;
double	v3;
int	v4;
boolean	v5;
String	v6;

//	open	file
try

{

{

BufferedReader	inputFile	=	new	BufferedReader(new
FileReader("test2.txt"));	v1	=
Integer.valueOf(inputFile.readLine()).intValue();

v2	=	inputFile.readLine();
v3	=	Double.valueOf(inputFile.readLine()).doubleValue();
v4	=	Integer.valueOf(inputFile.readLine()).intValue();
v5	=	Boolean.valueOf(inputFile.readLine()).booleanValue();
v6	=	inputFile.readLine();
System.out.println("v1	=	"	+	v1);
System.out.println("v2	=	"	+	v2);
System.out.println("v3	=	"	+	v3);
System.out.println("v4	=	"	+	v4);
System.out.println("v5	=	"	+	v5);
System.out.println("v6	=	"	+	v6);
inputFile.close();

}

catch	(IOException	ex)

{

System.out.println(ex.getMessage());

}

}

}

This	code	opens	the	file,	then	reads	and	converts	the	six	variables.	The	variable
values	are	written	in	the	output	window.

Save	 the	 application	 (saved	 as	 Example6-3	 project	 in	 \LearnJava\LJ
Code\Class	 6\	 project	 group).	Run	 the	 application.	You	will	 probably	 get	 this
error	 message	 in	 the	 output	 window:	

Exception	handling	works!	Remember	 that	 the	project	expects	 the	 input	 file	 to
be	 in	 the	 project	 directory.	 We	 need	 to	 copy	 that	 file	 (from	 our	 previous
example’s	directory)	into	this	example’s	directory.	Do	that	now.	Copy	test2.text
(from	Example	6-2)	into	the	project	folder	for	Example	6-3.

Now,	try	running	again.	You	should	see:

Notice	how	each	of	the	six	variables	was	read	in	and	properly	converted.

Parsing	Data	Lines
In	Example	6-2,	we	saw	that	variables	written	to	sequential	files	using	the	print
method	 are	 concatenated	 in	 one	 long	 line.	Many	 times,	 data	 files	 you	 receive
from	other	applications	will	also	have	several	variables	in	one	line.	How	can	we
read	 variables	 in	 such	 formats?	One	 possible	 correction	 for	 this	 problem	 is	 to
restructure	 the	file	so	each	variable	 is	on	a	single	 line	and	it	can	be	read	using
techniques	like	those	in	Example	6-3.	But,	many	times	this	is	not	possible.	If	the
file	 is	coming	from	a	source	you	have	no	control	over,	you	need	 to	work	with
what	you	are	given.	But,	there’s	still	hope.	You	can	do	anything	with	Java!

The	approach	we	take	is	called	parsing	a	line.	We	read	in	a	single	line	as	a	long
string.	 Then,	 we	 successively	 remove	 substrings	 from	 this	 longer	 line	 that
represent	each	variable.	To	do	 this,	we	still	need	 to	know	how	many	variables
are	 in	 a	 line,	 their	 types	 and	 their	 location	 in	 the	 line.	 The	 location	 can	 be
specified	 by	 some	kind	 of	 delimiter	 (a	 quote,	 a	 space,	 a	 slash)	 or	 by	 an	 exact
position	within	 the	 line.	All	of	 this	 can	be	done	with	 the	 Java	 string	 functions
(you	 may	 want	 to	 review	 these	 –	 they	 are	 in	 Class	 2).	 Though	 here	 we	 are
concerned	with	 lines	 read	 from	 a	 sequential	 file,	 note	 these	 techniques	 can	 be
applied	to	any	string	data	type	in	Java.

The	first	thing	we	need	to	do	is	open	the	file	with	the	lines	to	be	parsed	and	read
in	each	line	as	a	string.	This	is	exactly	what	we	did	in	reading	variables	written
to	a	file	using	the	println	method.	The	file	is	opened	using	BufferedReader	and
FileReader	objects.	Once	the	file	(inputFile)	is	opened	a	line	is	read	using	the
readLine	method:	myLine	=	inputFile.readLine();

Once	we	have	the	line	(myLine)	to	parse,	what	we	do	with	it	depends	on	what
we	 know.	 The	 basic	 idea	 is	 to	 determine	 the	 bounding	 character	 positions	 of
each	 variable	within	 the	 line.	 Character	 location	 is	 zero-based,	 hence	 the	 first
character	in	a	string	is	character	0.	If	the	first	position	is	fp	and	the	last	position
is	lp,	the	substring	representation	of	this	variable	(variableString)	can	be	found
using	the	Java	substring	method:	variableString	=	myLine.substring(fp,	lp	+
1);

Recall	 this	 says	 return	 the	 substring	 in	myLine	 that	 starts	 at	 position	 fp	 and

ends	at	character	lp	(the	method	requires	you	input	the	character	one	beyond	the
last	character,	lp	+1).	Once	we	have	extracted	variableString,	we	convert	it	 to
the	proper	data	type.

So,	how	do	you	determine	 the	starting	and	ending	positions	 for	a	variable	 in	a
line?	 The	 easiest	 case	 is	 when	 you	 are	 told	 by	 those	 providing	 the	 file	 what
‘columns’	 bound	 certain	 data.	 This	 is	 common	 in	 engineering	 data	 files.
Otherwise,	you	must	know	what	 ‘delimits’	variables.	You	can	search	 for	 these
delimiters	using	the	indexOf	and	lastIndexOf	methods.	A	common	delimiter	is
just	a	lot	of	space	between	each	variable	(you	may	have	trouble	retrieving	strings
containing	 space).	Other	 delimiters	 include	 slashes,	 commas,	 pound	 signs	 and
even	exclamation	points.	The	power	of	Java	allows	you	to	locate	any	delimiters
and	extract	the	needed	information	As	variables	are	extracted	from	the	input	data
line,	we	 sometimes	 shorten	 the	 line	 (excluding	 the	 extracted	 substring)	 before
looking	for	the	next	variable	To	do	this,	we	use	another	version	of	the	substring
method.	 If	 lp	was	 the	 last	 position	 of	 the	 substring	 removed	 from	 left	 side	 of
myLine,	we	shorten	this	line	using:	myLine	=	myLine.substring(lp	+	1);

This	 removes	 the	 first	 lp	 characters	 from	 the	 left	 side	 of	myLine.	 Notice	 by
shortening	 the	 string	 in	 this	 manner,	 the	 first	 position	 for	 finding	 each
subsequent	substring	will	always	be	0	(fp	=	0).

Example	6-4
Parsing	Data	Lines

Start	 a	 new	 empty	 project	 in	 NetBeans.	 Name	 the	 project	 Parsing.	 Delete
default	code	in	Java	file	named	Parsing.	We	will	build	an	application	that	opens
and	reads	in	the	single	line	data	file	written	with	the	print	method	in	Example	6-
2.	We	will	 then	parse	that	 line	to	extract	all	 the	variables.	As	a	first	step,	copy
the	test1.txt	file	from	that	example	into	your	new	project’s	folder.

The	Parsing.java	code	listing	is:	/	*
*	Parsing.java

*/

package	parsing;
import	java.io.*;

public	class	Parsing

{

public	static	void	main(String	args[])

{

int	v1;
String	v2;
double	v3;
int	v4;
boolean	v5;
String	v6;
String	myLine	=	"";

//	open	file
try

{

BufferedReader	inputFile	=	new	BufferedReader(new
FileReader("test1.txt"));

myLine	=	inputFile.readLine();
inputFile.close();

}

catch	(IOException	ex)

{

System.out.println(ex.getMessage());

}

v1	=	Integer.valueOf(myLine.substring(0,	1)).intValue();
v2	=	myLine.substring(1,	18);
v3	=	Double.valueOf(myLine.substring(18,	22)).doubleValue();
v4	=	Integer.valueOf(myLine.substring(22,	24)).intValue();
v5	=	Boolean.valueOf(myLine.substring(24,	28)).booleanValue();
v6	=	myLine.substring(28);

System.out.println("v1	=	"	+	v1);
System.out.println("v2	=	"	+	v2);
System.out.println("v3	=	"	+	v3);
System.out.println("v4	=	"	+	v4);
System.out.println("v5	=	"	+	v5);
System.out.println("v6	=	"	+	v6);

}

}

This	code	opens	 the	 file	and	 reads	 the	 single	 line	as	a	 string	data	 type.	 It	 then
extracts	 each	 variable	 from	 that	 line.	 It	 uses	 position	 within	 the	 data	 line	 to
extract	 the	 variables.	 You	 should	 be	 able	 to	 figure	 out	 this	 code.	 Look	 at	 the
single	data	line	(test1.txt)	and	see	how	I	determined	the	arguments	used	in	the
substring	methods.

Save	 the	 application	 (saved	 as	 Example6-4	 project	 in	 \LearnJava\LJ
Code\Class	6\	project	group).	Run	the	application.	If	you	get	a	‘file	not	found,’
error,	make	sure	 the	data	 file	 is	 in	your	project	 folder.	Once	 the	program	runs,
you	 should	 see	 the	 six	 variables	 display	 correctly	 in	 the	 output	 window:	

Parsing	a	data	line	using	character	positions	is	tedious	and	assumes	the	variables
are	 always	 the	 same	 length	 –	 not	 necessarily	 a	 good	 assumption.	 It	 would	 be
preferable	 if	multiple	 variable	 values	 in	 a	 single	 line	were	 separated	 by	 some
kind	 of	 delimiter.	 Then,	 these	 delimiters	 could	 be	 used	 to	 identify	 where
variables	start	and	end.	Let’s	 try	 that.	Open	 test1.txt	 in	a	 text	editor	and	place
exclamation	 points	 (!)	 between	 each	 of	 the	 variables.	My	 file	 looks	 like	 this:	

Resave	 the	 file	 as	 test1mod.txt.	We	 could	 have	 also	 added	 these	 exclamation
points	when	we	 originally	wrote	 the	 file	 to	 disk	 by	 inserting	print	 statements
(printing	exclamation	points)	between	each	print	statement	printing	a	variable.

The	exclamation	points	(delimiters)	now	define	starting	and	ending	positions	for
each	variable.	By	 locating	 successive	delimiters,	we	can	 retrieve	 the	variables.

To	determine	the	location	of	an	exclamation	point	in	a	string	(myString),	use	the
indexOf	method:	myString.indexOf(“!”,	sp)

This	returns	the	character	location	of	the	exclamation	point,	starting	at	sp	(a	–1
is	returned	if	none	is	found).

To	parse	the	new	line,	modify	the	Parsing.java	code	as	shaded	(we	essentially
replace	 the	 ‘hard-coded’	 string	 positions	 with	 the	 locations	 of	 exclamation
points):	/	*
*	Parsing.java

*/

package	parsing;
import	java.io.*;
import	java.text.*;

public	class	Parsing

{

public	static	void	main(String	args[])

{

int	v1;
String	v2;
double	v3;
int	v4;
boolean	v5;
String	v6;
String	myLine	=	"";
int	ep1,	ep2;

//	open	file
try

{

BufferedReader	inputFile	=	new
BufferedReader(new	FileReader("test1mod.txt"));

myLine	=	inputFile.readLine();
inputFile.close();

}

catch	(IOException	ex)

{

System.out.println(ex.getMessage());

}

ep2	=	myLine.indexOf("!");
v1	=	Integer.valueOf(myLine.substring(0,	ep2)).intValue();
ep1	=	ep2;
ep2	=	myLine.indexOf("!",	ep1	+	1);
v2	=	myLine.substring(ep1	+	1,	ep2);
ep1	=	ep2;
ep2	=	myLine.indexOf("!",	ep1	+	1);
v3	=	Double.valueOf(myLine.substring(ep1	+	1,	ep2)).doubleValue();
ep1	=	ep2;
ep2	=	myLine.indexOf("!",	ep1	+	1);
v4	=	Integer.valueOf(myLine.substring(ep1	+	1,	ep2)).intValue();	ep1
=	ep2;
ep2	=	myLine.indexOf("!",	ep1	+	1);
v5	=	Boolean.valueOf(myLine.substring(ep1	+	1,
ep2)).booleanValue();	ep1	=	ep2;
v6	=	myLine.substring(ep1	+	1);
System.out.println("v1	=	"	+	v1);
System.out.println("v2	=	"	+	v2);

System.out.println("v3	=	"	+	v3);
System.out.println("v4	=	"	+	v4);
System.out.println("v5	=	"	+	v5);
System.out.println("v6	=	"	+	v6);

}

}

This	 code	 simply	 finds	 delimiters	 (exclamation	 points)	 bounding	 the	 six
variables.	The	variables	ep1	and	ep2	are	used	to	identify	left	and	right	delimiter
locations,	 respectively.	Recompile	 and	 rerun	 to	 see	 the	 variables.	Notice	 there
are	no	specific	numbers	 in	 the	method	arguments.	This	makes	your	 job	easier,
especially	when	variables	may	have	different	lengths	in	different	files.	You	still
need	 to	know	how	many	variables	and	what	 type	of	variables	are	 in	each	 line,
but	 the	 coding	 is	 simpler.	Next,	we’ll	 look	at	 another	way	 to	 find	variables	 in
‘tokenized’	lines	–	those	with	variables	separated	by	delimiters.

Reading	Tokenized	Lines
The	parsing	methods	just	discussed	will	work	with	any	data	line	and	any	token,
even	 if	 there	 are	different	 tokens	 in	 a	data	 line.	The	process	uses	 the	 indexOf
method	to	identify	the	bounding	tokens,	then	the	substring	method	to	extract	the
variable.	 If	 a	 data	 line	 contains	 the	 same	 delimiter	 to	 bound	 variable	 values,
there	 is	 another	 set	 of	 Java	 methods	 that	 will	 make	 your	 programming	 tasks
easier.

Assume	we	have	a	 line	of	 text	with	 the	variables	separated	by	some	delimiter.
Such	 lines	 are	 easily	 created	 using	 the	 print	 method,	 just	 ‘print’	 a	 delimiter
between	each	variable.	We	call	each	variable	in	such	a	line	a	token	–	something
to	 be	 retrieved.	 If	 this	 line	 is	myLine	 and	 the	 delimiter	 is	 a	 character	 d,	 the
tokenized	 version	 of	 the	 line	 (myLineToken)	 is	 formed	 using	 the
StringTokenizer	 object:	 StringTokenizer	 myLineToken	 =	 new
StringTokenizer(myLine,	d);

The	 tokens	 (string	 representations	 of	 the	 variables)	 can	now	be	 retrieved	 from
myLineToken.	 To	 use	 these	 tokenizers,	 you	 need	 to	 import	 the	 java.util.*
package.

The	number	of	variables	(tokens)	in	the	line	is	given	by:

myLineToken.countTokens()

You	need	to	be	careful	using	this	result.	The	count	will	decrease	as	you	extract
tokens.

Subsequent	variables	(tokens)	are	extracted	from	the	tokenized	string	using	the
nextToken	method:	variableString	=	myLineToken.nextToken();

You	 repeat	 this	 extraction	 for	 each	 token	 in	 the	 line
(myLineToken.countTokens()	 times).	 Once	 extracted,	 the	 string
(variableString)	must	still	be	converted	to	the	proper	type.

Example	6-5
Reading	Tokenized	Data	Lines

Start	a	new	empty	project	in	NetBeans.	Name	the	project	Tokens.	Delete	default
code	 in	Java	 file	named	Tokens.	We	will	modify	 the	previous	application	 that
opens	and	reads	in	the	single	line	data	file	(test1mod.txt,	the	one	with	variables
separated	by	exclamation	points)..	The	modifications	will	use	token	methods	to
extract	 all	 the	 variables.	 As	 a	 first	 step,	 copy	 the	 test1mod.txt	 file	 from	 that
example	into	your	new	project’s	folder.

The	Tokens.java	code	listing	is	(modifications	to	Example	6-4	are	shaded):	/	*
*	Tokens.java

*/

package	tokens;
import	java.io.*;
import	java.util.*;
public	class	Tokens

{

public	static	void	main(String	args[])

{

int	v1;
String	v2;
double	v3;
int	v4;
boolean	v5;
String	v6;
String	myLine	=	"";

//	open	file
try

{

BufferedReader	inputFile	=	new	BufferedReader(new
FileReader("test1mod.txt"));

myLine	=	inputFile.readLine();
inputFile.close();

}

catch	(IOException	ex)

{

System.out.println(ex.getMessage());

}

StringTokenizer	myLineToken	=	new	StringTokenizer(myLine,	"!");
v1	=	Integer.valueOf(myLineToken.nextToken()).intValue();
v2	=	myLineToken.nextToken();
v3	=	Double.valueOf(myLineToken.nextToken()).doubleValue();
v4	=	Integer.valueOf(myLineToken.nextToken()).intValue();
v5	=	Boolean.valueOf(myLineToken.nextToken()).booleanValue();
v6	=	myLineToken.nextToken();
System.out.println("v1	=	"	+	v1);
System.out.println("v2	=	"	+	v2);
System.out.println("v3	=	"	+	v3);
System.out.println("v4	=	"	+	v4);
System.out.println("v5	=	"	+	v5);
System.out.println("v6	=	"	+	v6);

}

}

}

Notice	 how	 much	 easier	 the	 code	 is	 to	 read.	 The	 tokenizers	 take	 care	 of
determining	where	all	the	exclamation	points	(delimiters)	are	located.

Run	to	see	that	this,	too,	extracts	all	six	variables	correctly.	We	suggest	that	you
always	 use	 these	 tokenizer	 methods	 if	 each	 data	 line	 has	 the	 same	 delimiter.
Save	 this	project	 (saved	as	Example6-5	project	 in	 \LearnJava\LJ	Code\Class
6\	project	group).

Building	Data	Lines
Code	similar	to	that	used	to	parse,	or	break	up,	a	line	of	data	can	also	be	used	to
build	 a	 line	 of	 data	 that	 can	 then	 be	 used	 in	 a	 control	 such	 as	 a	 text	 area	 or
written	 to	 a	 sequential	 file.	 A	 primary	 application	 for	 such	 lines	 is	 to	 write
precisely	 formatted	 data	 files.	 It	 allows	 left	 justification,	 centering	 and	 right
justification	of	values.	It	also	allows	positioning	data	in	any	‘column’	desired.

You	 might	 think	 you	 could	 just	 directly	 modify	 the	 contents	 of	 some	 string
variable	 to	 accomplish	 this	 task.	 Unfortunately,	 string	 variables	 in	 Java	 are
immutable	–	 they	cannot	be	modified	directly.	We	take	another	approach.	We
will	build	the	data	line	as	an	array	of	characters.	Then,	we	will	convert	that	array
to	 a	 string	 for	 output.	We	will	 build	 a	 couple	 of	 general	methods	 that	 help	 in
building	data	lines.

A	 first	 step	 in	 building	 data	 lines	 is	 to	 choose	 the	 maximum	 number	 of
characters	 that	 will	 be	 in	 each	 line.	 This	 length	 is	 usually	 established	 by	 the
width	of	a	displaying	control	or	the	width	of	a	printed	page	(we’ll	look	at	this	in
Class	9).	Once	this	maximum	width	is	selected,	each	line	is	initialized	as	a	blank
character	array	of	that	length.	We	will	use	a	general	method	to	initialize	such	an
array	 to	 all	 blank	 spaces.	 The	 method	 (blankLine)	 is:	 public	 void
blankLine(char[]	charLine)

{

for	(int	i	=	0;	i	<	charLine.length;	i++)

{

charLine[i]	=	'	';

}

}

The	method	simply	takes	an	input	character	array	(charLine)	and	changes	each
element	in	the	array	to	a	blank	character	(space).

Once	 the	 blank	 line	 is	 established,	 the	 spaces	 are	 replaced	 with	 specified
substrings	 at	 specific	 locations.	 We	 create	 a	 general	 method	 (midLine)	 to
accomplish	 this	 task:	public	 void	midLine(String	 inString,	 char[]	 charLine,
int	pos)	{

for	(int	i	=	pos;	i	<	pos	+	inString.length();	i++)

{

charLine[i]	=	inString.charAt(i	-	pos);

}

}

This	method	takes	the	contents	of	the	string	inString	and	places	its	characters	in
the	array	charLine,	starting	at	position	pos.	Hence,	to	left	justify	mySubString
in	myCharLine	at	position	lp,	use:	midLine(mySubString,	myCharLine,	lp);

When	doing	these	replacements,	always	make	sure	you	are	within	the	bounding
length	of	the	myCharLine	array.

Once	 the	 line	 of	 data	 represented	 by	 the	 character	 array	 is	 as	 desired,	 it	 is
converted	 to	 a	 String	 type	 line	 (myLine)	 using:	 myLine	 =
String.copyValueOf(myCharLine);

This	line	can	then	be	printed	for	a	sequential	file	or	used	for	other	purposes.	The
general	methods	blankLine	and	midLine	have	been	added	to	Appendix	I.

So,	 to	build	a	 line	of	variable	data,	we	decide	what	variables	we	want	 in	each
line	 and	where	we	want	 to	 position	 them.	We	 then	 successively	 convert	 each
variable	to	a	string	and	place	it	in	a	character	array	using	the	midLine	method.
When	 this	 array	 is	 complete,	 it	 is	 converted	 to	 a	 data	 line,	 and,	 if	 it	 is	 for	 a
sequential	 file,	 it	 is	 printed	 to	 the	 file	 (outputFile)	 using	 the	println	method:
outputFile.println(myLine);

We	don’t	have	to	use	the	newly	constructed	line	in	a	data	file.	It	could	also	be
added	 to	 the	 text	property	of	any	control.	 In	 such	a	case,	 if	you	want	 the	new
line	 on	 its	 own	 separate	 line,	 be	 sure	 to	 append	 the	 proper	 line	 feed	 character

(\n).

We	saw	how	to	left	justify	a	substring	in	a	data	line	represented	by	a	character
array.	We	can	also	center	justify	and	right	justify.	To	right	justify	mySubString
in	myCharLine	at	location	rp,	use:	midLine(mySubString,	myCharLine,	rp	+
1	–	mySubString.Length());	And	to	center	mySubString	in	myCharLine,	use:
midLine(mySubString,	 myCharLine,	 (int)	 (0.5	 *	 (myCharLine.length	 –
mySubString.length())));	Of	course,	to	center	justify	a	substring,	the	substring
must	be	 shorter	 than	 the	 line	 it	 is	being	centered	 in.	To	see	how	both	of	 these
replacements	work,	just	go	through	an	example	and	you’ll	see	the	logic.

Most	of	what	is	presented	here	works	best	with	fixed	width	fonts	(each	character
is	the	same	width).	I	usually	use	Courier	New.	You	will	have	to	experiment	if
using	proportional	fonts	to	obtain	desired	results.

Example	6-6
Building	Data	Lines

Start	a	new	empty	project	in	NetBeans.	Name	the	project	BuildingData.	Delete
default	code	in	Java	file	named	BuildingData.	We	will	build	an	application	that
lets	 a	 user	 enter	 a	minimum	and	maximum	circle	 diameter.	The	 program	 then
computes	perimeter	and	area	for	twenty	circles	between	those	two	input	values.
We	will	use	 the	circleGeometry	 procedure	developed	 in	Example	5-3	 for	 the
computations.	The	computed	results	are	displayed	in	tabular	form.	The	finished

frame	looks	like	this:	

Place	 two	 labels,	 two	 text	 fields,	 a	 button	 and	 a	 scroll	 pane	 in	 the	 frame.	The

GridBagLayout	will	look	like	this:	

Properties:

Building	Frame:
title Circle	Geometries

resizable false

minLabel:
text Minimum	Diameter
gridx 0
gridy 0
insets (5,	5,	5,	5)

minTextField:
text [Blank]
columns 15
gridx 1
gridy 0
insets (5,	5,	5,	5)

maxLabel:
text Maximum	Diameter
gridx 0
gridy 1
insets (5,	5,	5,	5)

maxTextField:
text [Blank]
gridx 1
gridy 1
insets (5,	5,	5,	5)

computeButton:
text Compute	Geometries
gridx 0
gridy 2
insets (5,	5,	5,	5)

resultsScrollPane:
viewPortView resultsTextArea

gridx 0
gridy 3
gridwidth 2
insets (5,	5,	5,	5)

resultsTextArea
columns 45
rows 10
font Courier	New,	PLAIN,	12

Build	the	basic	framework	with	this	code:

/	*

*	BuildingData.java

*/

package	buildingdata;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.text.*;

public	class	BuildingData	extends	JFrame

{

public	static	void	main(String	args[])

{

//construct	frame
new	BuildingData().show();

}

public	BuildingData()

{

//	code	to	build	the	form
setTitle("Circle	Geometries");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());
pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	*	(screenSize.width	-

getWidth())),	(int)	(0.5	*	(screenSize.height	-
getHeight())),	getWidth(),	getHeight());

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	to	test	the	code.

Next,	we’ll	add	the	controls	and	associated	event	methods.	Use	these	class	level
declarations:	JLabel	minLabel	=	new	JLabel();
JTextField	minTextField	=	new	JTextField();
JLabel	maxLabel	=	new	JLabel();
JTextField	maxTextField	=	new	JTextField();
JButton	computeButton	=	new	JButton();
JScrollPane	resultsScrollPane	=	new	JScrollPane();
JTextArea	resultsTextArea	=	new	JTextArea();

And,	 this	 code	 to	 place	 all	 the	 controls	 and	 establish	 methods:	 //	 position
controls	(establish	event	methods)
GridBagConstraints	gridConstraints	=	new
GridBagConstraints();
minLabel.setText("Minimum	Diameter");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(minLabel,	gridConstraints);
minTextField.setText("");
minTextField.setColumns(15);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(minTextField,	gridConstraints);

maxLabel.setText("Maximum	Diameter");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;

gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(maxLabel,	gridConstraints);
maxTextField.setText("");
maxTextField.setColumns(15);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(maxTextField,	gridConstraints);

computeButton.setText("Compute	Geometries");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.gridwidth	=	2;
getContentPane().add(computeButton,	gridConstraints);
computeButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

computeButtonActionPerformed(e);

}

});

resultsTextArea.setColumns(45);
resultsTextArea.setRows(10);
resultsTextArea.setFont(new	Font("Courier	New",	Font.PLAIN,	12));
resultsScrollPane.setViewportView(resultsTextArea);
gridConstraints.gridx	=	0;

gridConstraints.gridy	=	3;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(resultsScrollPane,	gridConstraints);

Lastly,	an	empty	method	for	clicking	on	the	button	control:

private	void	computeButtonActionPerformed(ActionEvent	e)

{

}

Run	to	see	the	finished	control	layout:

Lastly,	 we	 write	 the	 code.	 Add	 the	 two	 general	 methods	 developed	 earlier
(blankLine	 and	midLine)	 for	 building	 the	 data	 lines	 using	 a	 character	 array:
public	void	blankLine(char[]	charLine)

{

for	(int	i	=	0;	i	<	charLine.length;	i++)

{

charLine[i]	=	'	';

}

}

public	void	midLine(String	inString,	char[]	charLine,	int	pos)	{
for	(int	i	=	pos;	i	<	pos	+	inString.length();	i++)

{

charLine[i]	=	inString.charAt(i	-	pos);

}

}

Add	the	circleGeometries	general	method	from	Example	5-3	(in	Appendix	I):
public	double[]	circleGeometry(double	diameter)

{

double	[]	geometry	=	new	double[2];
geometry[0]	=	Math.PI	*	diameter;	//	circumference
geometry[1]	=	Math.PI	diameter	diameter	4;	/	area	return(geometry);

}

Use	 this	 code	 in	 the	 computeButtonActionPerformed	 event:	 private	 void
computeButtonActionPerformed(ActionEvent	e)

{

double	d,	delta;
double[]	values	=	new	double[2];
String	myLine;
String	mySubString;
final	int	numberValues	=	20;
final	int	lineWidth	=	36;
char[]	buildLine	=	new	char[lineWidth];

//	read	min/max	and	increment
double	dMin	=

Double.valueOf(minTextField.getText()).doubleValue();
double	dMax	=

Double.valueOf(maxTextField.getText()).doubleValue();
if	(dMin	>=	dMax)

{

JOptionPane.showConfirmDialog(null,	"Maximum	must	be	less
than	minimum.",	"Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	minTextField.requestFocus();

return;

}

delta	=	(dMax	-	dMin)	/	numberValues;
//	center	header
blankLine(buildLine);
mySubString	=	"Circle	Geometries";
midLine(mySubString,	buildLine,	(int)	(0.5	*	(lineWidth	-
mySubString.length())));	myLine	=	String.copyValueOf(buildLine);
resultsTextArea.setText(myLine	+	"\n");
resultsTextArea.setText(resultsTextArea.getText()	+	"Diameter
Perimeter	Area\n");	for	(d	=	dMin;	d	<=	dMax;	d	+=	delta)

{

values	=	circleGeometry(d);
//	right	justify	three	values	with	two	decimals
blankLine(buildLine);
mySubString	=	new	DecimalFormat("0.00").format(d);
midLine(mySubString,	buildLine,	8	-mySubString.length());
mySubString	=	new	DecimalFormat("0.00").format(values[0]);
midLine(mySubString,	buildLine,	22	-mySubString.length());

mySubString	=	new	DecimalFormat("0.00").format(values[1]);
midLine(mySubString,	buildLine,	36	-mySubString.length());
myLine	=	String.copyValueOf(buildLine);
resultsTextArea.setText(resultsTextArea.getText()	+	myLine	+

"\n");	}
minTextField.requestFocus();

}

This	 code	 reads	 the	 input	 values	 and	 determines	 the	 diameter	 range.	 It	 writes
some	 header	 information	 and	 then,	 for	 each	 diameter,	 computes	 and	 prints
geometries.	Values	are	right	justified.

The	 complete	BuildingData.java	 code	 listing	 (changes	 to	 original	 framework
are	shaded):	/	*
*	BuildingData.java

*/

package	buildingdata;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.text.*;

public	class	BuildingData	extends	JFrame

{

JLabel	minLabel	=	new	JLabel();
JTextField	minTextField	=	new	JTextField();
JLabel	maxLabel	=	new	JLabel();
JTextField	maxTextField	=	new	JTextField();
JButton	computeButton	=	new	JButton();
JScrollPane	resultsScrollPane	=	new	JScrollPane();

JTextArea	resultsTextArea	=	new	JTextArea();
public	static	void	main(String	args[])

{

//construct	frame
new	BuildingData().show();

}

public	BuildingData()

{

//	code	to	build	the	form
setTitle("Circle	Geometries");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	position	controls	(establish	event	methods)
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();
minLabel.setText("Minimum	Diameter");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;

gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(minLabel,	gridConstraints);
minTextField.setText("");
minTextField.setColumns(15);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(minTextField,	gridConstraints);

maxLabel.setText("Maximum	Diameter");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(maxLabel,	gridConstraints);
maxTextField.setText("");
maxTextField.setColumns(15);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(maxTextField,	gridConstraints);

computeButton.setText("Compute	Geometries");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.gridwidth	=	2;
getContentPane().add(computeButton,	gridConstraints);
computeButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

computeButtonActionPerformed(e);

}

});

resultsTextArea.setColumns(45);
resultsTextArea.setRows(10);
resultsTextArea.setFont(new	Font("Courier	New",	Font.PLAIN,
12));	resultsScrollPane.setViewportView(resultsTextArea);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.gridwidth	=	2;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(resultsScrollPane,	gridConstraints);

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}
private	void	computeButtonActionPerformed(ActionEvent	e)

{

double	d,	delta;
double[]	values	=	new	double[2];
String	myLine;
String	mySubString;
final	int	numberValues	=	20;
final	int	lineWidth	=	36;

char[]	buildLine	=	new	char[lineWidth];
//	read	min/max	and	increment
double	dMin	=

Double.valueOf(minTextField.getText()).doubleValue();
double	dMax	=

Double.valueOf(maxTextField.getText()).doubleValue();
if	(dMin	>=	dMax)

{

JOptionPane.showConfirmDialog(null,	"Maximum	must	be	less
than	minimum.",	"Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	minTextField.requestFocus();

return;

}

delta	=	(dMax	-	dMin)	/	numberValues;
//	center	header
blankLine(buildLine);
mySubString	=	"Circle	Geometries";
midLine(mySubString,	buildLine,	(int)	(0.5	*	(lineWidth	-

mySubString.length())));	myLine	=	String.copyValueOf(buildLine);
resultsTextArea.setText(myLine	+	"\n");
resultsTextArea.setText(resultsTextArea.getText()	+	"Diameter
Perimeter	Area\n");	for	(d	=	dMin;	d	<=	dMax;	d	+=	delta)

{

values	=	circleGeometry(d);
//	right	justify	three	values	with	two	decimals
blankLine(buildLine);
mySubString	=	new	DecimalFormat("0.00").format(d);
midLine(mySubString,	buildLine,	8	-mySubString.length());
mySubString	=	new	DecimalFormat("0.00").format(values[0]);

midLine(mySubString,	buildLine,	22	-mySubString.length());
mySubString	=	new	DecimalFormat("0.00").format(values[1]);
midLine(mySubString,	buildLine,	36	-mySubString.length());
myLine	=	String.copyValueOf(buildLine);
resultsTextArea.setText(resultsTextArea.getText()	+	myLine	+

"\n");	}
minTextField.requestFocus();

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

public	double[]	circleGeometry(double	diameter)

{

double	[]	geometry	=	new	double[2];
geometry[0]	=	Math.PI	*	diameter;	//	circumference
geometry[1]	=	Math.PI	diameter	diameter	4;	/	area	return(geometry);

}

public	void	blankLine(char[]	charLine)

{

for	(int	i	=	0;	i	<	charLine.length;	i++)

{

charLine[i]	=	'	';

}

}

public	void	midLine(String	inString,	char[]	charLine,	int	pos)	{
for	(int	i	=	pos;	i	<	pos	+	inString.length();	i++)

{

charLine[i]	=	inString.charAt(i	-	pos);

}

}

}

Run	the	project.	When	I	used	30	and	70	for	minimum	and	maximum	diameters,
respectively,	 I	 obtain	 this	 neatly	 formatted	 table	 of	 results:	

Save	 the	 application	 (saved	 as	 Example6-6	 project	 in	 \LearnJava\LJ
Code\Class	6\	project	group).

Configuration	Files
Earlier	in	this	class,	we	discussed	one	possible	application	for	a	sequential	file	-
an	initialization	or	configuration	file.	These	files	are	used	to	save	user	selected
options	 from	 one	 execution	 of	 an	 application	 to	 the	 next.	With	 such	 files,	 the
user	 avoids	 the	 headache	 of	 re-establishing	 desired	 values	 each	 time	 an
application	is	run.

Every	GUI	application	uses	configuration	files.	For	example,	a	word	processor
remembers	your	favorite	page	settings,	what	font	you	like	to	use,	what	toolbars
you	want	 displayed,	 and	many	other	 options.	How	does	 it	 do	 this?	When	 you
start	the	program,	it	opens	and	reads	the	configuration	file	and	sets	your	choices.
When	 you	 exit	 the	 program,	 the	 configuration	 file	 is	 written	 back	 to	 disk,
making	note	of	any	changes	you	may	have	made	while	using	the	word	processor.

You	can	add	the	same	capability	to	Java	GUI	applications.	How	do	you	decide
what	your	configuration	file	will	contain	and	how	it	will	be	formatted?	That	 is
completely	up	 to	you,	 the	application	designer.	Typical	 information	stored	 in	a
configuration	 file	 includes:	 current	 dates	 and	 times,	 check	 box	 settings,	 radio
button	 settings,	 selected	 colors,	 font	 name,	 font	 style,	 font	 size,	 and	 selected
menu	options.	You	decide	what	 is	 important	 in	your	 application.	You	develop
variables	to	save	information	and	read	and	write	these	variables	from	and	to	the
sequential	configuration	file.	There	is	usually	one	variable	(numeric,	string,	date,
boolean)	for	each	option	being	saved.	And,	I	usually	place	each	variable	on	its
own	line	in	the	configuration	file.	That	way,	no	‘tokenizing’	is	required.

Once	you’ve	decided	on	values	to	save	and	the	format	of	your	file,	how	do	you
proceed?	A	 first	 step	 is	 to	 create	 an	 initial	 file	 using	 a	 text	 editor.	 Save	 your
configuration	 file	 in	 your	 application’s	 project	 folder.	 Configuration	 files	 will
always	be	kept	in	the	application	path.	And,	the	usual	three	letter	file	extension
for	 a	 configuration	 file	 is	 ini	 (for	 initialization).	 When	 distributing	 your
application	to	other	users,	be	sure	to	include	a	copy	of	the	configuration	file.

Once	 you	have	 developed	 the	 configuration	 file,	 you	 need	 to	write	 code	 to	 fit
this	 framework:	

When	 your	 application	 begins	 (in	 the	 class	 constructor;	 after	 code	 adding
controls	to	frame),	open	and	read	the	configuration	file	and	use	the	variables	to
establish	the	respective	options.	Establishing	options	involves	things	like	setting
font	 objects,	 establishing	 colors,	 simulating	 click	 events	 on	 check	 boxes	 and
radio	buttons,	and	setting	properties.

When	your	application	ends	(exitForm	method	in	our	applications),	examine	all
options	to	be	saved,	establish	respective	variables	to	represent	these	options,	and
open	 and	write	 (println	method,	 usually)	 the	 configuration	 file.	And,	we	will
need	 to	make	 one	 other	 change	 (perhaps)	 to	 our	 applications.	Many	 times,	 an
application	will	have	an	Exit	button	or	an	Exit	option	in	the	menu	structure.	We
need	to	make	sure	the	event	method	for	this	option	is	always:	exitForm(null);

and	not	a	direct	call	to	close	the	form.	That	way,	no	matter	how	the	application	is
stopped,	either	with	the	Exit	button	or	by	clicking	the	X	in	the	upper	right	corner
of	 the	 frame,	 the	 code	 in	 the	 exitForm	 event	 method	 (including	 writing	 the
configuration	file)	will	be	executed.

Example	6-7
Configuration	Files

We	 will	 modify	 the	 Note	 Editor	 built	 in	 Class	 5	 to	 save	 three	 pieces	 of
information	 in	 a	 configuration	 file:	 bold	 status,	 italic	 status,	 and	 selected	 font
size.	Open	the	Note	Editor	project.	Use	either	the	project	from	Example	5-4	or
Problem	5-1,	if	you	did	that	problem.	I	use	Problem	5-1	(it	includes	an	About
message	box).	The	needed	modifications	are	listed.

1.	Add	this	line	to	import	the	java.io.*	package:	import	java.io.*;

2.	Use	this	code	at	the	end	of	the	frame	constructor::	int	fontSize;

try

{

//	Open	configuration	file	and	set	font	values
BufferedReader	inputFile	=	new	BufferedReader(new
FileReader("note.ini"));
boldMenuItem.setSelected(Boolean.valueOf(inputFile.readLin
e()).booleanValue());
italicMenuItem.setSelected(Boolean.valueOf(inputFile.readL
ine()).booleanValue());	fontSize	=

Integer.valueOf(inputFile.readLine()).intValue();
inputFile.close();

}

catch	(IOException	ex)

{

JOptionPane.showConfirmDialog(null,	ex.getMessage(),	"Error	Reading
Configuration	File",	JOptionPane.DEFAULT_OPTION,

JOptionPane.ERROR_MESSAGE);
System.exit(0);	}
switch	(fontSize)

{

case	1:
smallMenuItem.doClick();
break;

case	2:
mediumMenuItem.doClick();
break;

case	3:
largeMenuItem.doClick();
break;

}

In	this	code,	the	configuration	file	(named	note.ini)	is	opened.	We	first	read	two
boolean	 values.	These	 establish	whether	 checks	 should	be	next	 to	bold	 and/or
italic	in	the	menu	structure.	Then,	an	integer	is	read	and	used	to	set	font	size	(1-
small,	2-medium,	3-large).	Note	use	of	the	doClick	method	to	simulate	clicking
on	 the	 corresponding	 font	 size	 menu	 option.	 If	 an	 error	 occurs,	 a	 message
appears	and	the	application	stops.

3.	 Use	 this	 code	 in	 the	 exitForm	 event	 method	 (again,	 modifications	 are
shaded):	private	void	exitForm(WindowEvent	e)

{

try

{

//	Open	configuration	file	and	write
PrintWriter	outputFile	=	new	PrintWriter(new

BufferedWriter(new	FileWriter("note.ini")));

outputFile.println(boldMenuItem.isSelected());
outputFile.println(italicMenuItem.isSelected());
if	(smallMenuItem.isSelected())

{

outputFile.println("1");

}

else	if	(mediumMenuItem.isSelected())

{

outputFile.println("2");

}

else	if	(largeMenuItem.isSelected())

{

outputFile.println("3");

}

outputFile.flush();
outputFile.close();

}

catch	(IOException	ex)

{

JOptionPane.showConfirmDialog(null,	ex.getMessage(),	"Error
Writing	Configuration	File",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	}

finally

{

{

System.exit(0);

}

}

This	 code	 does	 the	 ‘inverse’	 of	 the	 procedure	 followed	 in	 the	 constructor
method.	 The	 configuration	 file	 is	 opened	 for	 output.	 Two	 boolean	 variables
representing	current	status	of	the	bold	and	italic	menu	options	are	written	to	the
file.	 Then,	 an	 integer	 representing	 the	 selected	 font	 size	 is	 written	 prior	 to
closing	and	saving	the	file.

4.	Lastly,	modify	the	exitMenuItemActionPerformed	method.	Rather	than	exit,
this	 routine	 now	 calls	 the	 exitForm	 method:	 private	 void
exitMenuItemActionPerformed(ActionEvent	e)

{

exitForm(null);

}

Save	 the	 application	 (saved	 as	 Example6-7	 project	 in	 \LearnJava\LJ
Code\Class	6\	project	group).	Run	and	compile	 the	modified	project.	You	will

see	this	error	message:	

This	message	is	telling	us	that	the	configuration	file	cannot	be	found.	Of	course,
it	 can’t	–	we	 forgot	 to	create	 it!	 If	you	are	using	configuration	 files,	you	must
always	 create	 an	 initial	 version.	Open	 a	 text	 editor	 (With	Windows,	Notepad
will	work)	and	type	these	three	lines:	false
false

1

This	says	that	bold	and	italic	will	be	unchecked	(false)	and	the	font	size	will	be
small	(represented	by	the	1	in	last	line).	Save	this	file	as	note.ini	in	the	project
folder.	Try	running	it	again	and	things	should	be	fine.	Try	changing	any	of	the
saved	options	and	exit	the	program.	Run	it	again	and	you	should	see	the	selected
options	 are	 still	 there.	 Any	 text	 typed	 will	 have	 disappeared.	We’ll	 solve	 the
‘disappearing	 text’	 problem	 next	 when	 we	 look	 at	 how	 to	 save	 text	 in	 a
sequential	file.

Let’s	 look	 at	 one	 other	way	 to	 solve	 the	 ‘missing	 configuration	 file’	 problem.
Many	 times,	 program	 users	 looking	 around	 in	 their	 computer	 directories	 will
delete	 any	 file	 they	 don’t	 recognize.	 Configuration	 files	 may	 sometimes	 fall
victim	to	these	haphazard	deletions.	If	the	configuration	file	in	our	note	editor	is
deleted,	 a	message	 is	 displayed	 to	 that	 effect.	But,	 that	message	may	 have	 no
meaning	 to	 a	 user.	 A	 better	 solution	 would	 be	 to	 just	 ‘reconstruct’	 the
configuration	file	without	the	user	even	knowing	anything.

Let’s	modify	the	Note	Editor	application	(again)	so	that	if	the	configuration	file
cannot	be	found,	the	program	will	still	run.	If	the	file	can’t	be	found	(causing	an
exception),	 we’ll	 establish	 values	 for	 the	 three	 missing	 format	 variables	 and
continue.

The	 modified	 (changes	 shaded)	 to	 the	 configuration	 code	 at	 the	 end	 of	 the
constructor	that	accomplishes	this	task	is:	int	fontSize;
try

{

//	Open	configuration	file	and	set	font	values
BufferedReader	inputFile	=	new	BufferedReader(new

FileReader("note.ini"));
boldMenuItem.setSelected(Boolean.valueOf(inputFile.readLin
e()).booleanValue());
italicMenuItem.setSelected(Boolean.valueOf(inputFile.readL
ine()).booleanValue());	fontSize	=
Integer.valueOf(inputFile.readLine()).intValue();

inputFile.close();

}

catch	(IOException	e)

{

JOptionPane.showConfirmDialog(null,	e.getMessage(),	"Error
Reading	Configuration	File",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);

boldMenuItem.setSelected(false);
italicMenuItem.setSelected(false);
fontSize	=	1;

}

switch	(fontSize)

{

case	1:
smallMenuItem.doClick();
break;

case	2:
mediumMenuItem.doClick();
break;

case	3:
largeMenuItem.doClick();
break;

}

In	 this	code,	 if	 the	 file	 is	not	 found,	 the	catch	block	establishes	values	 for	 the
bold	 and	 italic	 status	 (both	 false)	 and	 a	 font	 size	 (1	 is	 small).	 This	 allows	 the
program	to	run	to	completion.

Delete	the	note.ini	file	from	the	project	directory	(you	need	to	do	this	to	test	our
new	reconstruction	code).	Resave,	recompile	and	rerun	the	project.	You	should

see:	

If	 you	 don’t	 get	 this	 message	 and	 the	 program	 runs,	 stop	 the	 application	 and
delete	the	note.ini	 file	from	the	project	folder.	Then,	run	again	and	you	should
see	the	above	message	box	generated	in	the	catch	block.

Choose	some	formatting	features,	stop	the	application	and	run	it	again.	The	error
message	box	will	not	be	seen	–	why?	The	reason	you	don’t	see	the	error	message
again	is	that	when	you	exited	the	program,	it	wrote	the	note.ini	file	in	the	proper
folder.	The	neat	 thing	 about	 such	 code	 is	 that	we	 fixed	 a	problem	without	 the
user	 even	 knowing	 there	 was	 a	 problem.	 In	 fact,	 you	 can	 delete	 the	 code
displaying	 the	 message	 box	 –	 the	 user	 doesn’t	 need	 to	 know	 anything	 has
happened!

Writing	and	Reading	Text	Using
Sequential	Files
In	 many	 applications,	 we	 would	 like	 to	 be	 able	 to	 save	 text	 information	 and
retrieve	it	for	later	reference.	This	information	could	be	a	text	file	created	by	an
application	 or	 the	 contents	 of	 a	 Swing	 text	 area	 control.	Writing	 and	 reading
text	using	sequential	files	involves	methods	we	have	already	seen	and	a	few	new
ones.

To	write	a	sequential	text	file,	we	follow	the	simple	procedure:	open	the	file	for
output,	write	the	file,	close	the	file.	If	the	file	is	a	line-by-line	text	file,	each	line
of	the	file	is	written	to	disk	using	a	single	print	or	println	statement.	Use	print
if	a	line	already	has	a	new	line	(\n)	character	appended	to	it.	Use	println	if	there
is	 no	 such	 character.	 So,	 to	 write	 myLine	 to	 outputFile,	 use	 either:
outputFile.print(myLine);

or

outputFile.println(myLine);

This	 assumes	 you	 have	 somehow	 generated	 the	 string	 myLine.	 How	 you
generate	this	data	depends	on	your	particular	application.	You	may	have	lines	of
text	or	may	form	the	lines	using	techniques	just	discussed.	The	print	or	println
statement	 should	be	 in	 a	 loop	 that	 encompasses	 all	 lines	of	 the	 file.	You	must
know	 the	 number	 of	 lines	 in	 your	 file,	 beforehand.	A	 typical	 code	 segment	 to
accomplish	this	task	is:	PrintWriter	outputFile	=	new	PrintWriter(new
BufferedWriter(new	FileWriter(myFile)));
for	(int	i	=	o;	i	<	numberLines;	i++)

{

..//	need	code	here	to	generate	string	data	myLine

..outputFile.println(myLine);

}

outputFile.flush();
outputFile.close();

This	code	writes	numberLines	text	lines	to	the	sequential	file	myFile,	located	in
the	project	folder.

If	we	want	 to	write	 the	contents	of	 the	text	property	of	a	Swing	text	area,	we
use	some	special	properties	of	 that	control	 (these	properties	 requires	 importing
the	javax.swing.text.*	package):

lineCount Number	of	lines	in	text	area	control
lineStartOffset(i) Starting	character	position	of	line	i
lineEndOffset(i) Ending	character	position	of	line	i

So,	 we	 recover	 each	 line	 from	 the	 control’s	 text	 property	 using	 character
positions	 and	 the	 substring	method.	These	 recovered	 lines	 are	 then	written	 to
the	file	(using	print,	since	each	line	will	have	a	new	line	character).	A	sample
code	 snippet	 that	 accomplishes	 this	 task	 for	 myTextArea	 is:	 PrintWriter
outputFile	=	new	PrintWriter(new
BufferedWriter(new	FileWriter(myFile)));
for	(int	i	=	0;	i	<	myTextArea.getLineCount();	i++)

{

fp	=	myTextArea.getLineStartOffset(i);
lp	=	myTextArea.getLineEndOffset(i);
outputFile.print(myTextArea.getText().substring(fp,	lp));

}

outputFile.flush();
outputFile.close();

This	code	opens	myFile	for	output.	It	 then	cycles	through	each	line	in	the	text
area	control.	For	each	line,	it	finds	the	first	position	(fp)	and	last	position	(lp).
The	bounded	substring	is	then	extracted	from	the	text	property	to	form	the	line
for	 output	 to	 outputFile.	 This	 code	 must	 be	 in	 a	 try	 block	 that	 handles	 a

BadLocationException	error	(in	case	a	bad	position	is	referenced).

To	read	 the	contents	of	a	previously-saved	text	file,	we	follow	similar	steps	to
the	writing	process:	open	the	file,	read	the	file,	close	the	file.	If	the	file	is	a	text
file,	 we	 read	 each	 individual	 line	 with	 the	 readLine	 method:	 myline	 =
inputFile.readLine();

This	line	is	usually	placed	in	a	while	structure	that	is	repeated	until	all	lines	of
the	file	are	read	in.	A	null	line	can	be	used	to	detect	an	end-of-file	condition,	if
you	 don’t	 know,	 beforehand,	 how	 many	 lines	 are	 in	 the	 file.	 A	 typical	 code
segment	 to	 accomplish	 this	 task	 is:	 BufferedReader	 inputFile	 =	 new
BufferedReader(new
FileReader(myFile));
editorTextArea.setText("");
while	((myLine	=	inputFile.readLine())	!=	null)

{

//	do	something	with	myLine	here

}

inputFile.close();

This	code	reads	text	lines	from	the	sequential	file	myFile	until	the	end-of-file	is
reached.	You	could	put	a	counter	in	the	loop	to	count	lines	if	you	like.

To	place	the	contents	of	a	sequential	text	file	into	a	text	area	control,	a	similar
process	 is	 followed:	open	 the	file,	 read	 the	 lines,	place	 the	 lines	 in	 the	control,
close	 the	 file.	 When	 the	 lines	 are	 added	 to	 the	 control	 (using	 the	 append
method),	 you	 need	 to	 add	 a	 new	 line	 character	 (\n)	 to	 each	 line	 because	 the
readLine	 method	 ignores	 such	 characters	 if	 they	 are	 there.	 So,	 to	 place	 the
contents	of	a	previously	saved	sequential	file	(myFile)	into	the	text	property	of	a
text	 area	 control	 named	 myTextArea,	 we	 need	 this	 code:	 BufferedReader
inputFile	=	new	BufferedReader(new
FileReader(myFile));
myTextArea.setText("");
while	((myLine	=	inputFile.readLine())	!=	null)

{

myTextArea.append(myLine	+	"\n");

}

inputFile.close();

JFileChooser	Control	(Save	Files)
As	mentioned	when	we	first	discussed	sequential	files,	when	a	file	is	opened	for
output,	 if	 the	file	being	opened	already	exists,	 it	 is	 first	erased.	This	 is	fine	for
files	 like	 configuration	 files.	We	 want	 to	 overwrite	 these	 files.	 But,	 for	 other
files,	 this	 might	 not	 be	 desirable	 behavior.	 Hence,	 prior	 to	 overwriting	 a
sequential	 file,	we	want	 to	make	sure	 it	 is	acceptable.	Using	 the	JFileChooser
control	 (introduced	 in	Class	4)	 to	obtain	 filenames	 for	 saving	will	provide	 this
“safety	 factor.”	This	 control,	 along	with	 a	 bit	 of	 coding,	 insures	 that	 any	 path
selected	for	saving	a	file	exists	and	that	if	an	existing	file	is	selected,	the	user	has
agreed	to	overwriting	that	file.

File	Chooser	Properties:

approveButtonText Text	that	appears	on	the	‘approve’
button	–	for	a	save	dialog,	the	value	is
Save.

currentDirectory The	selected	directory.
dialogTitle Title	that	appears	in	the	title	area	of

the	dialog.
dialogType By	default,	an	Open	dialog,	set	to
JFileChooser.SAVE_DIALOG for	a	save	dialog	control.
fileFilter Used	to	limit	types	of	files	displayed.
selectedFile The	currently	selected	file.

File	Chooser	Methods:

showSaveDialog Displays	the	dialog	box	for	saving	files.
Returned	value	indicates	which	button	was
clicked	by	user	(Save	or	Cancel).

setApproveButtonText Sets	the	text	that	appears	on	the	‘approve’
button.

getCurrentDirectory Retrieves	the	selected	directory.
setDialogTitle Sets	the	dialog	title.
setDialogType Sets	the	dialog	type.

setFileFilter Sets	the	filter	to	limit	types	of	files
displayed.

addChoosableFileFilter Add	a	file	filter	to	file	chooser.
getSelectedFile Retrieves	the	currently	selected	file.

File	Chooser	Events:

actionPerformed Event	(ActionEvent)	triggered	when
approve	or	cancel	button	is	selected.
Added	with	ActionListener.	Usually
monitored	when	file	chooser	is	embedded
in	application.

The	 file	 chooser	 control	 can	 be	 added	 to	 an	 application	 like	 any	 control,
embedded	in	the	frame.	Or,	it	can	be	displayed	as	needed,	as	a	dialog	box.	You
usually	only	monitor	events	when	the	file	chooser	is	embedded	in	an	application.

To	 add	 a	 listener	 for	 the	 actionPerformed	 event	 for	 a	 file	 chooser	 named
myChooser,	use:	myChooser.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

myChooserActionPerformed(e);

}

});

And,	 the	 corresponding	 event	 code	 would	 be	 placed	 in	 a
myChooserActionPerformed	 method:	 private	 void
myChooserActionPerformed(ActionEvent	e)

{

[method	code]

}

In	 this	 event,	 you	 usually	 check	 to	 see	 if	 the	 approve	 (Save)	 button	 has	 been
clicked.	The	code	segment	that	does	this	is:	if
(e.getActionCommand().equals(JFileChooser.APPROVE_SELECTIO
N))	{

[code	to	process]

}

To	 display	 the	 file	 chooser	 as	 a	 save	 dialog	 box,	 use	 the	 showSaveDialog
method.	 If	 the	 chooser	 is	 named	 myChooser,	 the	 format	 is:
myChooser.showSaveDialog(this);

where	this	is	a	keyword	referring	to	the	current	frame.	The	displayed	dialog	box

is:	

The	user	selects	a	file	using	the	dialog	control	(or	types	a	name	in	the	File	Name
box).	The	file	type	is	selected	from	the	Files	of	Type	box	(values	here	set	with
the	Filter	 property).	Once	 selected,	 the	Save	 button	 is	 clicked.	Cancel	 can	be
clicked	 to	cancel	 the	open	operation.	The	showSaveDialog	method	 returns	 the
clicked	 button.	 This	 method	 will	 return	 one	 of	 two	 values:
JFileChooser.APPROVE_OPTION	 –	 Approve	 (Save)	 button	 clicked

JFileChooser.CANCEL_OPTION	 –	 Cancel	 button	 clicked	 If	 the	 user	 has
selected	the	Save	button,	we	can	determine	the	selected	file.	This	value	is	given
by:	myChooser.getSelectedFile()

Many	methods	 require	 this	name	 to	be	a	String	 type.	This	 conversion	 is	done
using:	myChooser.getSelectedFile().toString()

There	is	no	built-in	capability	to	prevent	a	user	from	overwriting	an	existing	file.
You	 need	 to	 write	 code	 to	 do	 this.	 The	 exists	 method	 can	 be	 applied	 to	 the
selected	 file	 to	 see	 if	 it	 already	 exists.	 If	 it	 does,	 you	 display	 a	 message	 box
asking	 the	 user	 if	 they	 really	 want	 to	 overwrite	 the	 file.	 The	 code	 that
accomplishes	this	for	myChooser	is:	if	(myChooser.getSelectedFile().exists())

{

int	response;
response	=	JOptionPane.showConfirmDialog(null,

myChooser.getSelectedFile().toString()	+	"	exists.	Overwrite?",	"Confirm
Save",	JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE);	if	(response	==
JOptionPane.NO_OPTION)

{

return;

}

}

//	continue	with	code	to	save	file

If	 you	 try	 to	 save	 a	 file	 that	 exists,	 you	 will	 see	 a	 dialog	 similar	 to	 this:	

The	 types	 of	 files	 that	 can	 be	 saved	 can	 be	 established	 using	 the	 fileFilter
property.	 The	 fileFilter	 property	 is	 set	 by	 the	 FileNameExtensionFilter
constructor.	If	you	choose	to	limit	the	extensions	used	to	save	a	file,	you	need	to
write	code	to	insure	the	extension	added	by	the	user	is	acceptable.	And,	you	may
want	to	add	an	extension	if	one	is	not	included.	The	Java	string	methods	can	be
used	to	accomplish	these	tasks.

Typical	use	of	file	chooser	control	(embedded)	to	save	files:

➢	Declare	 and	 create	 file	 chooser	 control,	 assigning	 an	 identifiable	name.
For	myChooser,	the	code	is:	JChooser	myChooser	=	new	JChooser();

➢	Set	the	dialogTitle	property.
➢	Add	a	file	filter	(if	desired).
➢	Place	control	in	layout	manager.
➢	 Add	 listener	 for	 and	 monitor	 actionPerformed	 event	 for	 button	 click
event	(actionPerformed).

➢	Use	getSelectedFile	method	 to	 determine	 file.	 If	 file	 exists,	 ask	 user	 if
overwriting	is	desired.

Typical	use	of	file	chooser	control	(dialog	box)	to	save	files:

➢	Declare	 and	 create	 file	 chooser	 control,	 assigning	 an	 identifiable	name.
For	myChooser,	the	code	is:	JChooser	myChooser	=	new	JChooser();

➢	Set	the	dialogTitle	property.
➢	Add	a	file	filter	(if	desired).
➢	Use	showSaveDialog	method	to	display	dialog	box.
➢	Use	getSelectedFile	method	 to	 determine	 file.	 If	 file	 exists,	 ask	 user	 if
overwriting	is	desired.

Example	6-8
Note	Editor	-	Reading	and	Saving	Text

Files
We’ll	now	add	the	capability	to	read	in	and	save	the	contents	of	the	text	area	in
the	Note	Editor	application	we	modified	in	Example	6-7.	Load	that	application
(saved	as	Example6-7	project	in	\LearnJava\LJ	Code\Class	6\	project	group).

1.	Add	these	lines	to	import	the	needed	packages:	import	javax.swing.text.*;

import	javax.swing.filechooser.*;

2.	Modify	the	File	menu	in	your	application,	such	that	Open	and	Save	options
are	included.	The	File	menu	should	now	read:

File
New
Open (openMenuItem)
Save (saveMenuItem)

Exit

These	new	menu	options	(plus	the	needed	file	chooser	object)	require	the	class
level	declarations:	JMenuItem	openMenuItem	=	new	JMenuItem("Open");
JMenuItem	saveMenuItem	=	new	JMenuItem("Save");
JFileChooser	myChooser	=	new	JFileChooser();

and	 code	 to	 place	 the	 options	 in	 the	 menu	 (in	 frame	 constructor):
fileMenu.add(openMenuItem);
fileMenu.add(saveMenuItem);

and	 code	 to	 add	 the	 event	 methods	 (also,	 in	 frame	 constructor):

openMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

openMenuItemActionPerformed(e);

}

});

saveMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

saveMenuItemActionPerformed(e);

}

});

3.	 The	 two	 new	 menu	 options	 need	 code.	 Use	 this	 code	 in	 the
openMenuItemActionPerformed	 method:	 private	 void
openMenuItemActionPerformed(ActionEvent	e)

{

String	myLine;
myChooser.setDialogType(JFileChooser.OPEN_DIALOG);
myChooser.setDialogTitle("Open	Text	File");
myChooser.addChoosableFileFilter(new

FileNameExtensionFilter("Text	Files",	"txt"));

if	(myChooser.showOpenDialog(this)	==
JFileChooser.APPROVE_OPTION)

{

try

{

//	Open	input	file
BufferedReader	inputFile	=	new	BufferedReader(new

FileReader(myChooser.getSelectedFile().toString()));
editorTextArea.setText("");

while	((myLine	=	inputFile.readLine())	!=	null)

{

editorTextArea.append(myLine	+	"\n");

}

inputFile.close();

}

catch	(IOException	ex)

{

JOptionPane.showConfirmDialog(null,	ex.getMessage(),
"Error	Opening	File",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	}

}

}

This	code	uses	a	file	chooser	to	select	a	file	name,	then	the	file	is	read	into	the
text	area	control	one	line	at	a	time.

4.	And	for	the	saveMenuItemActionPerformed	method,	use	this	code:	private
void	saveMenuItemActionPerformed(ActionEvent	e)

{

myChooser.setDialogType(JFileChooser.SAVE_DIALOG);
myChooser.setDialogTitle("Save	Text	File");
myChooser.addChoosableFileFilter(new

FileNameExtensionFilter("Text	Files",	"txt"));	int	fp,	lp;
if	(myChooser.showSaveDialog(this)	==

JFileChooser.APPROVE_OPTION)

{

//	see	if	file	already	exists
if	(myChooser.getSelectedFile().exists())

{

int	response;
response	=	JOptionPane.showConfirmDialog(null,

myChooser.getSelectedFile().toString()	+	"	exists.	Overwrite?",	"Confirm
Save",	JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE);	if	(response	==
JOptionPane.NO_OPTION)

{

return;

}

}

//	make	sure	file	has	txt	extension
//	strip	off	any	extension	that	might	be	there
//	then	tack	on	txt
String	fileName	=

myChooser.getSelectedFile().toString();
int	dotlocation	=	fileName.indexOf(".");
if	(dotlocation	==	-1)

{

//	no	extension
fileName	+=	".txt";

}

else

{

//	make	sure	extension	is	txt
fileName	=	fileName.substring(0,	dotlocation)	+	".txt";

}

try

{

//	Open	output	file	and	write
PrintWriter	outputFile	=	new	PrintWriter(new

BufferedWriter(new	FileWriter(fileName)));	for	(int	i	=	0;	i	<
editorTextArea.getLineCount();	i++)

{

fp	=	editorTextArea.getLineStartOffset(i);
lp	=	editorTextArea.getLineEndOffset(i);

outputFile.print(editorTextArea.getText().substring(fp,	lp));

}

outputFile.flush();

outputFile.close();

}

catch	(BadLocationException	ex)

{

}

catch	(IOException	ex)

{

JOptionPane.showConfirmDialog(null,
ex.getMessage(),"Error	Writing	File",
JOptionPane.DEFAULT_OPTION,	JOptionPane.ERROR_MESSAGE);
}

}

}

There’s	lots	going	on	here.	Make	sure	you	understand	each	step.	Once	a	file	is
selected	from	the	file	chooser	control,	if	it	exists,	the	user	is	asked	if	overwriting
is	acceptable.	Then,	the	txt	extension	is	added.	Then,	each	line	of	the	text	area
control	is	retrieved	and	written	to	the	selected	file.

For	reference,	here	is	the	complete	NoteEditor.java	code	listing	(modifications
made	to	include	the	configuration	file	and	open/save	features	have	been	shaded):
/	*
*	NoteEditor.java

*/

package	noteeditor;
import	javax.swing.*;
import	javax.swing.text.*;
import	javax.swing.filechooser.*;

import	java.awt.*;
import	java.awt.event.*;
import	java.io.*;
public	class	NoteEditor	extends	JFrame

{

JMenuBar	editorMenuBar	=	new	JMenuBar();
JMenu	fileMenu	=	new	JMenu("File");
JMenuItem	newMenuItem	=	new	JMenuItem("New");
JMenuItem	openMenuItem	=	new	JMenuItem("Open");
JMenuItem	saveMenuItem	=	new	JMenuItem("Save");
JMenuItem	exitMenuItem	=	new	JMenuItem("Exit");
JMenu	formatMenu	=	new	JMenu("Format");
JCheckBoxMenuItem	boldMenuItem	=	new

JCheckBoxMenuItem("Bold",	false);
JCheckBoxMenuItem	italicMenuItem	=	new

JCheckBoxMenuItem("Italic",	false);
JMenu	sizeMenu	=	new	JMenu("Size");

ButtonGroup	sizeGroup	=	new	ButtonGroup();
JRadioButtonMenuItem	smallMenuItem	=	new

JRadioButtonMenuItem("Small",	true);
JRadioButtonMenuItem	mediumMenuItem	=	new

JRadioButtonMenuItem("Medium",	false);
JRadioButtonMenuItem	largeMenuItem	=	new

JRadioButtonMenuItem("Large",	false);
JMenu	helpMenu	=	new	JMenu("Help");
JMenuItem	aboutMenuItem	=	new	JMenuItem("About	Note	Editor");
JScrollPane	editorPane	=	new	JScrollPane();
JTextArea	editorTextArea	=	new	JTextArea();
JFileChooser	myChooser	=	new	JFileChooser();

public	static	void	main(String	args[])

{

//	construct	frame
new	NoteEditor().show();

}

public	NoteEditor()

{

//	frame	constructor
setTitle("Note	Editor");

setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

//	build	menu
setJMenuBar(editorMenuBar);
fileMenu.setMnemonic('F');
formatMenu.setMnemonic('O');
helpMenu.setMnemonic('H');
newMenuItem.setAccelerator(KeyStroke.getKeyStroke('N',

Event.CTRL_MASK));
boldMenuItem.setAccelerator(KeyStroke.getKeyStroke('B',
Event.CTRL_MASK));

italicMenuItem.setAccelerator(KeyStroke.getKeyStroke('I',
Event.CTRL_MASK));
smallMenuItem.setAccelerator(KeyStroke.getKeyStroke('S',
Event.CTRL_MASK));
mediumMenuItem.setAccelerator(KeyStroke.getKeyStroke('M',
Event.CTRL_MASK));
largeMenuItem.setAccelerator(KeyStroke.getKeyStroke('L',
Event.CTRL_MASK));	editorMenuBar.add(fileMenu);

fileMenu.add(newMenuItem);
fileMenu.add(openMenuItem);
fileMenu.add(saveMenuItem);
fileMenu.addSeparator();
fileMenu.add(exitMenuItem);
editorMenuBar.add(formatMenu);
formatMenu.add(boldMenuItem);
formatMenu.add(italicMenuItem);
formatMenu.add(sizeMenu);
sizeMenu.add(smallMenuItem);
sizeMenu.add(mediumMenuItem);
sizeMenu.add(largeMenuItem);
sizeGroup.add(smallMenuItem);
sizeGroup.add(mediumMenuItem);
sizeGroup.add(largeMenuItem);
editorMenuBar.add(helpMenu);
helpMenu.add(aboutMenuItem);

newMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

newMenuItemActionPerformed(e);

}

});

openMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

openMenuItemActionPerformed(e);

}

});

saveMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

saveMenuItemActionPerformed(e);

}

});

exitMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

exitMenuItemActionPerformed(e);

}

});

boldMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

formatMenuItemActionPerformed(e);

}

});

italicMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

formatMenuItemActionPerformed(e);

}

});

smallMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

formatMenuItemActionPerformed(e);

}

});

mediumMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

formatMenuItemActionPerformed(e);

}

});

largeMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

formatMenuItemActionPerformed(e);

}

});

aboutMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

aboutMenuItemActionPerformed(e);

}

});

getContentPane().setLayout(new	GridBagLayout());
//	position	scroll	pane	and	text	box
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();

editorPane.setPreferredSize(new	Dimension(300,	150));
editorPane.setViewportView(editorTextArea);
editorTextArea.setFont(new	Font("Arial",	Font.PLAIN,	12));
editorTextArea.setLineWrap(true);
editorTextArea.setWrapStyleWord(true);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(editorPane,	gridConstraints);

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());

int	fontSize;
try

{

//	Open	configuration	file	and	set	font	values
BufferedReader	inputFile	=	new	BufferedReader(new

FileReader("note.ini"));
boldMenuItem.setSelected(Boolean.valueOf(inputFile.readLine()
).booleanValue());
italicMenuItem.setSelected(Boolean.valueOf(inputFile.readLine
()).booleanValue());	fontSize	=
Integer.valueOf(inputFile.readLine()).intValue();

inputFile.close();

}

catch	(IOException	ex)

{

JOptionPane.showConfirmDialog(null,	ex.getMessage(),
"Error	Reading	Configuration	File",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	boldMenuItem.setSelected(false);

italicMenuItem.setSelected(false);
fontSize	=	1;

}

switch	(fontSize)

{

case	1:
smallMenuItem.doClick();
break;

case	2:
mediumMenuItem.doClick();
break;

case	3:
largeMenuItem.doClick();
break;

}

}

private	void	newMenuItemActionPerformed(ActionEvent	e)

{

//	if	user	wants	new	file,	clear	out	text

if	(JOptionPane.showConfirmDialog(null,	"Are	you	sure	you	want	to
start	a	new	file?",	"New	File",	JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE)	==	JOptionPane.YES_OPTION)	{

editorTextArea.setText("");

}

}

private	void	openMenuItemActionPerformed(ActionEvent	e)

{

String	myLine;
myChooser.setDialogType(JFileChooser.OPEN_DIALOG);
myChooser.setDialogTitle("Open	Text	File");

myChooser.addChoosableFileFilter(new	FileNameExtensionFilter("Text
Files",	"txt"));	if	(myChooser.showOpenDialog(this)	==
JFileChooser.APPROVE_OPTION)

try

{

//	Open	input	file
BufferedReader	inputFile	=	new	BufferedReader(new

FileReader(myChooser.getSelectedFile().toString()));
editorTextArea.setText("");

while	((myLine	=	inputFile.readLine())	!=	null)

{

editorTextArea.append(myLine	+	"\n");

}

inputFile.close();

}

catch	(IOException	ex)

{

JOptionPane.showConfirmDialog(null,	ex.getMessage(),
"Error	Opening	File",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	}

}

}

private	void	saveMenuItemActionPerformed(ActionEvent	e)

{

myChooser.setDialogType(JFileChooser.SAVE_DIALOG);
myChooser.setDialogTitle("Save	Text	File");
myChooser.addChoosableFileFilter(new

FileNameExtensionFilter("Text	Files",	"txt"));
int	fp,	lp;
if	(myChooser.showSaveDialog(this)	==

JFileChooser.APPROVE_OPTION)

{

//	see	if	file	already	exists
if	(myChooser.getSelectedFile().exists())

{

int	response;
response	=	JOptionPane.showConfirmDialog(null,

myChooser.getSelectedFile().toString()	+	"	exists.	Overwrite?",	"Confirm
Save",	JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE);	if	(response	==
JOptionPane.NO_OPTION)

{

{

return;

}

}

//	make	sure	file	has	txt	extension
//	strip	off	any	extension	that	might	be	there
//	then	tack	on	txt
String	fileName	=

myChooser.getSelectedFile().toString();
int	dotlocation	=	fileName.indexOf(".");
if	(dotlocation	==	-1)

{

//	no	extension
fileName	+=	".txt";

}

else

{

//	make	sure	extension	is	txt
fileName	=	fileName.substring(0,	dotlocation)	+	".txt";

}

try

{

//	Open	output	file	and	write
PrintWriter	outputFile	=	new	PrintWriter(new

BufferedWriter(new	FileWriter(fileName)));	for	(int	i	=	0;	i	<

editorTextArea.getLineCount();	i++)

{

fp	=	editorTextArea.getLineStartOffset(i);
lp	=	editorTextArea.getLineEndOffset(i);

outputFile.print(editorTextArea.getText().substring(fp,	lp));

}

outputFile.flush();
outputFile.close();

}

catch	(BadLocationException	ex)

{

}

catch	(IOException	ex)

{

JOptionPane.showConfirmDialog(null,	ex.getMessage(),
"Error	Writing	File",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	}

}

}

private	void	exitMenuItemActionPerformed(ActionEvent	e)

{

exitForm(null);

}

private	void	formatMenuItemActionPerformed(ActionEvent	e)

{

//	Put	together	font	based	on	menu	selections
int	newFont	=	Font.PLAIN;
int	fontSize	=	12;
if	(boldMenuItem.isSelected())

{

newFont	+=	Font.BOLD;

}

if	(italicMenuItem.isSelected())

{

newFont	+=	Font.ITALIC;

}

if	(smallMenuItem.isSelected())

{

fontSize	=	12;

}

else	if	(mediumMenuItem.isSelected())

{

fontSize	=	18;

}

else

{

fontSize	=	24;

}

editorTextArea.setFont(new	Font("Arial",	newFont,	fontSize));	}

private	void	aboutMenuItemActionPerformed(ActionEvent	e)

{

JOptionPane.showConfirmDialog(null,	"About	Note
Editor\nCopyright	2003",	"Note	Editor",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	}

private	void	exitForm(WindowEvent	e)

{

try

{

//	Open	configuration	file	and	write
PrintWriter	outputFile	=	new	PrintWriter(new

BufferedWriter(new	FileWriter("note.ini")));
outputFile.println(boldMenuItem.isSelected());

outputFile.println(italicMenuItem.isSelected());
if	(smallMenuItem.isSelected())

{

outputFile.println("1");

}

else	if	(mediumMenuItem.isSelected())

{

outputFile.println("2");

}

else	if	(largeMenuItem.isSelected())

{

outputFile.println("3");

}

outputFile.flush();
outputFile.close();

}

catch	(IOException	ex)

{

JOptionPane.showConfirmDialog(null,	ex.getMessage(),	"Error
Writing	Configuration	File",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	}

finally

{

System.exit(0);

}

}

}

Save	 your	 application	 (saved	 as	 Example6-8	 project	 in	 the	 \LearnJava\LJ
Code\Class	 6\	 project	 group).	 Run	 it	 and	 test	 the	Open	 and	 Save	 functions.
Check	 out	 the	 “overwrite	 protection”	 when	 saving	 an	 existing	 file.	 Note	 you
have	to	save	a	file	before	you	can	open	one.	Here’s	a	run	with	the	new	File	menu

expanded:	

Note,	 too,	 that	 after	 opening	 a	 file,	 text	 is	 displayed	 based	 on	 current	 format
settings.	It	would	be	nice	to	save	formatting	information	along	with	the	text.	You
could	do	 this	 by	 saving	 an	 additional	 file	with	 the	 format	 settings	 (bold,	 italic
status	and	font	size).	Then,	when	opening	the	text	file,	open	the	accompanying
format	 file	 and	 set	 the	 saved	 format.	 Note	 this	 is	 much	 like	 having	 a
configuration	 file	 for	 each	 saved	 text	 file.	 See	 if	 you	 can	 make	 these
modifications.

Another	 thing	you	could	 try:	Add	a	message	box	 that	appears	when	you	 try	 to
Exit.	Have	it	ask	if	you	wish	to	save	your	file	before	exiting	-	provide	Yes,	No,
Cancel	buttons.	Program	the	code	corresponding	to	each	possible	response.	Use
calls	to	existing	methods,	if	possible.

Class	Review
After	completing	this	class,	you	should	understand:

➢	How	to	implement	run-time	exception	handling	in	a	Java	method	➢	How
to	use	the	various	capabilities	of	the	Java	debugger	to	find	and	eliminate
logic	errors	➢	How	to	read	and	write	sequential	files	(and	the	difference
between	using	print	and	println	 functions)	➢	How	to	parse	and	build	a
text	 string	 ➢	 How	 to	 read	 tokenized	 lines	 of	 data	 ➢	 How	 to	 use
configuration	 files	 in	 an	 application	➢	 How	 to	 use	 the	 JFileChooser
control	 to	save	files	➢	How	to	save	and	write	the	text	property	of	a	text
area	control

Practice	Problems	6
Problem	 6-1.	 Debugging	 Problem.	 Load	 the	 Problem6-1	 project	 in	 the
\LearnJava\LJ	 Code\Class	 6\	 project	 group.	 It’s	 the	 temperature	 conversion
example	 from	 Class	 4	 with	 some	 errors	 introduced.	 Run	 the	 application.	 It
shouldn’t	run.	Debug	the	program	and	get	it	running	correctly.

Problem	 6-2.	 Option	 Saving	 Problem.	 Load	 Problem3-1	 project	 (in	 the
\LearnJava\LJ	 Code\Class	 3\	 project	 group),	 the	 practice	 problem	 used	 to
examine	sample	message	boxes.	Modify	this	program	to	allow	saving	of	the	user
inputs	when	application	ends.	Use	a	text	file	to	save	the	information.	When	the
application	begins,	it	should	reflect	this	set	of	saved	inputs.

Problem	 6-3.	 Text	 File	 Problem.	 Build	 an	 application	 that	 lets	 you	 look
through	your	computer	directories	 for	 text	 files	 (.txt	extension)	and	view	 those
files	in	a	text	area	control.	The	image	viewer	(Example	4-4)	built	in	Class	4	is	a
good	starting	point.

Problem	 6-4.	 Data	 File	 Problem.	 In	 the	 \LearnJava\LJ	 Code\Class
6\Problem6-4\	 project	 folder	 is	 a	 file	 entitled	MAR95.DAT.	 Open	 this	 file
using	the	a	text	editor.	The	first	several	lines	of	the	file	are:

144
"4/27/95","Detroit ",2,3,0,"Opening	Night	"
"4/28/95","Detroit ",2,8,2,"	"
"4/29/95","Detroit ",2,11,1,"	"
"4/30/95","Detroit ",2,1,10,"	"
"5/1/95","Texas ",1,4,1,"	"
"5/2/95","Texas ",1,15,3,"	"
"5/3/95","Texas ",1,5,1,"	"
"5/5/95","California ",1,0,10,"	"
"5/6/95","California ",1,5,7,"	"
"5/7/95","California ",1,3,2,"	"

This	 file	 chronicles	 the	 strike-shortened	 1995	 season	 of	 the	 Seattle	 Mariners
baseball	team,	their	most	exciting	year	up	until	2001.	(Our	apologies	to	foreign
readers	 who	 don’t	 understand	 the	 game	 of	 baseball!)	 The	 first	 line	 tells	 how
many	lines	are	in	the	file.	Each	subsequent	line	represents	a	single	game.

There	are	six	variables	on	each	line:

Variable	Number Variable	Type Description
1 String Date	of	Game
2 String Opponent
3 Integer (1-Away	game,	2-Home	game)
4 Integer Mariners	runs
5 Integer Opponent	runs
6 String Comment

Write	an	application	that	reads	this	file,	determines	which	team	won	each	game
and	outputs	 to	 another	 file	 (a	 comma-separated,	or	csv,	 file)	 the	game	number
and	current	Mariners	winning	or	losing	streak	(consecutive	wins	or	losses).	Use
positive	integers	for	wins,	negative	integers	for	losses.

As	 an	 example,	 the	 corresponding	 output	 file	 for	 the	 lines	 displayed	 above
would	be:	1,1	(a	win)
2,2	(a	win)
3,3	(a	win)
4,-1	(a	loss)
5,1	(a	win)
6,2	(a	win)
7,3	(a	win)
8,-1	(a	loss)
9,-2	(a	loss)
10,1	(a	win)

There	will	be	144	lines	in	this	output	file.	Load	the	resulting	file	in	a	spreadsheet
application	(Excel	will	work)	and	obtain	a	bar	chart	for	the	output	data.

Exercise	6-1
Information	Tracking

Design	and	develop	an	application	that	allows	the	user	to	enter	(on	a	daily	basis)
some	piece	of	 information	 that	 is	 to	 be	 saved	 for	 future	 review	and	 reference.
Examples	 could	 be	 stock	 price,	 weight,	 or	 high	 temperature	 for	 the	 day.	 The
input	 screen	 should	 display	 the	 current	 date	 and	 an	 input	 box	 for	 the	 desired
information.	All	values	should	be	saved	on	disk	for	future	retrieval	and	update.
A	scroll	bar	should	be	available	for	reviewing	all	previously-stored	values.

Exercise	6-2
‘Recent	Files’	Menu	Option

Under	the	File	menu	on	nearly	every	application	(that	opens	files)	is	a	list	of	the
four	most	recently-used	files	(usually	right	above	the	Exit	option).	Modify	your
information	 tracker	 to	 implement	 such	a	 feature.	This	 is	not	 trivial	 --	 there	are
lots	of	 things	 to	consider.	For	example,	you’ll	need	a	 file	 to	store	 the	 last	 four
file	 names.	 You	 need	 to	 open	 that	 file	 and	 initialize	 the	 corresponding	 menu
entries	when	you	 run	 the	application	 --	you	need	 to	 rewrite	 that	 file	when	you
exit	 the	 application.	You	need	 logic	 to	 re-order	 file	 names	when	 a	 new	 file	 is
opened	or	saved.	You	need	 logic	 to	establish	new	menu	 items	as	new	files	are
used.	You’ll	need	additional	exception	handling	in	the	open	procedure,	in	case	a
file	selected	from	the	menu	no	longer	exists.	Like	I	said,	a	lot	to	consider	here.

7

Graphics	Techniques	with	Java

Review	and	Preview
In	Class	4,	we	looked	at	using	the	label	control	to	display	graphics	files.
In	this	class,	we	extend	our	graphics	programming	skills	to	learn	how	to
perform	simple	animations,	build	little	games,	draw	lines,	rectangles	and
ellipses	and	do	some	basic	plotting	of	lines,	bars	and	pie	segments.

Most	of	the	examples	in	this	class	will	be	relatively	short.	We	show	you	how	to
do	many	graphics	tasks.	You	can	expand	the	examples	to	fit	your	needs.

Simple	Animation
One	 of	 the	 more	 fun	 things	 to	 do	 with	 Java	 programs	 is	 to	 create	 animated
graphics.	We'll	look	at	a	few	simple	animation	techniques	here.	In	Class	8,	we
look	at	more	detailed	animations.

One	 of	 the	 simplest	 animation	 effects	 is	 achieved	 by	 toggling	 between	 two
images.	For	example,	you	may	have	a	picture	of	a	stoplight	with	a	red	light.	By
quickly	changing	 this	picture	 to	one	with	a	green	 light,	we	achieve	a	dynamic
effect	 -	 animation.	Other	 two	 image	 animations	 could	 be	 open	 and	 closed	 file
drawers,	open	and	closed	mail	or	smiling	and	frowning	faces.	The	label	control
is	used	to	achieve	this	animated	effect	using	ImageIcon	objects.

The	idea	here	is	simple.	The	approach	is	to	create	an	image	icon	object	for	each
picture	in	the	animation	sequence	(here,	just	two	pictures).	Recall	(from	Class	4)
the	 code	 to	 do	 this	 (for	 object	 myImage)	 is:	 ImageIcon	 myImage	 =	 new
ImageIcon(myFile);

where	myFile	 is	 the	 file	 with	 the	 displayed	 graphic	 (either	 a	 gif	 or	 jpg	 file).
Initialize	 the	 “viewing”	 label	 control’s	 icon	 property	 to	 the	 first	 image	 icon
object.	 The	 code	 to	 do	 this	 for	 a	 label	 control	 named	 myLabel	 is:
myLabel.setIcon(myImage);

Upon	 detection	 of	 some	 toggling	 event	 (clicking	 on	 the	 label	 control	 or	 a
button),	simply	set	the	icon	property	of	this	displaying	control	to	the	image	icon
object	of	the	other	picture.

The	Java	code	for	‘two-state’	simple	animation	is	straightforward.	Define	a	class
level	scope	variable	(pictureNumber)	that	keeps	track	of	the	currently	displayed
picture	(either	a	0	or	1).

int	pictureNumber;

Then,	in	the	toggling	event	procedure	use	this	code	(myLabel	is	the	displaying
control,	myImage0	is	the	first	graphic	(an	ImageIcon	object),	myImage1	is	the
‘toggled’	graphic):	if	(pictureNumber	==	0)

{

myLabel.setIcon(myImage0);
pictureNumber	=	1;

}

else

{

myLabel.setIcon(myImage1);
pictureNumber	=	0;

}

One	 question	 you	 may	 be	 asking	 is	 where	 do	 I	 get	 the	 graphics	 for	 toggling
pictures?	Search	web	sites	and	find	graphics	files	available	for	purchase.	You’ve
probably	seen	the	CD-ROM	sets	with	100,000	graphics!	Also,	 look	for	gif	and
jpg	files	installed	on	your	computer	by	other	applications.

Example	7-1
Simple	Animation

Start	 a	 new	 empty	 project	 in	NetBeans.	 Name	 the	 project	SimpleAnimation.
Delete	 the	 default	 code	 in	 Java	 file	 named	 SimpleAnimation.	 We’ll	 build	 a
simple	 two-picture	 animation	 example	 showing	 mail	 entering	 a	 mailbox.	 The

initial	finished	frame	looks	like	this:	

The	 graphics	 used	 are	 image0.gif	 and	 image1.gif	 and	 are	 located	 in	 the
\LearnJava\LJ	Code\Class	7\Example7-1\	folder.	Copy	these	graphic	files	into

your	project’s	folder:	

Place	 a	 single	 label	 control	 in	 a	 frame.	 The	 GridBagLayout	 is:	

Also	 include	 two	 image	 icon	 objects	 (image0	 and	 image1).	 Set	 the	 following
properties:

SimpleAnimation	Frame:
resizable false

image0:
ImageIcon image0.gif

image1:
ImageIcon image1.gif

displayLabel:
preferredSize (image0.getIconWidth(),	image0.getIconHeight())
icon image0
gridx 0
gridy 0
insets (10,	10,	10,	10)

Build	the	basic	framework:

/	*

*	SimpleAnimation.java

*/

package	simpleanimation;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
public	class	SimpleAnimation	extends	JFrame

{

public	static	void	main(String	args[])

{

//	create	frame
new	SimpleAnimation().show();

}

public	SimpleAnimation()

{

//	frame	constructor
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());	pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-getWidth())),	(int)	(0.5

(screenSize.height	-getHeight())),	getWidth(),	getHeight());	}
private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

Run	to	test.

We	will	add	the	controls	and	write	all	 the	code	at	once	(since	 the	code	 is	very
simple).	Use	 these	class	 level	 scope	declarations:	JLabel	displayLabel	=	new
JLabel();
ImageIcon	image0	=	new	ImageIcon("image0.gif");	ImageIcon	image1	=
new	ImageIcon("image1.gif");	int	pictureNumber	=	0;

This	 establishes	 the	 displaying	 label	 control	 and	 the	 images	 to	 display.	 Now,
position	and	initialize	the	label	control:	GridBagConstraints	gridConstraints	=
new
GridBagConstraints();
displayLabel.setPreferredSize(new
Dimension(image0.getIconWidth(),	image0.getIconHeight()));
displayLabel.setIcon(image0);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(displayLabel,	gridConstraints);
displayLabel.addMouseListener(new	MouseAdapter()	{

public	void	mouseClicked(MouseEvent	e)

{

displayMouseClicked(e);

}

});

Use	 the	 following	 code	 in	 the	 displayMouseClicked	 method	 that	 toggles	 the
display:	private	void	displayMouseClicked(MouseEvent	e)	{

if	(pictureNumber	==	0)

{

displayLabel.setIcon(image0);
pictureNumber	=	1;

}

else

{

displayLabel.setIcon(image1);

pictureNumber	=	0;

}

}

The	 final	 SimpleAnimation.java	 code	 listing	 (changes	 to	 framework	 are
shaded):	/	*
*	SimpleAnimation.java

*/

package	simpleanimation;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
public	class	SimpleAnimation	extends	JFrame

{

JLabel	displayLabel	=	new	JLabel();
ImageIcon	image0	=	new	ImageIcon("image0.gif");	ImageIcon	image1	=
new	ImageIcon("image1.gif");	int	pictureNumber	=	0;
public	static	void	main(String	args[])

{

//	create	frame
new	SimpleAnimation().show();

}

public	SimpleAnimation()

{

//	frame	constructor
setResizable(false);

addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
//	position	controls
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();

displayLabel.setPreferredSize(new	Dimension(image0.getIconWidth(),
image0.getIconHeight()));	displayLabel.setIcon(image0);

gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(displayLabel,	gridConstraints);
displayLabel.addMouseListener(new	MouseAdapter()	{

public	void	mouseClicked(MouseEvent	e)

{

displayMouseClicked(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}
private	void	displayMouseClicked(MouseEvent	e)	{

if	(pictureNumber	==	0)

{

displayLabel.setIcon(image0);
pictureNumber	=	1;

}

else

{

displayLabel.setIcon(image1);
pictureNumber	=	0;

}

}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

Run	 the	project.	Click	 the	mailbox	graphic	and	watch	 the	 letter	go	 in	and	out.

Here’s	the	sequence:	

Save	the	project	(saved	as	Example7-1	project	in	\LearnJava\LJ	Code\Class	7\
program	group).

Timer	Object
If	want	to	expand	simple	animation	to	more	than	two	graphics,	the	first	step	is	to
add	additional	 images	 to	 the	sequence.	But,	 then	how	do	we	cycle	 through	 the
images?	We	could	ask	a	user	to	keep	clicking	on	a	button	or	image	to	see	all	the
images.	That’s	one	solution,	but	perhaps	not	a	desirable	one.	What	would	be	nice
is	to	have	the	images	cycle	without	user	interaction.	To	do	this,	we	need	to	have
the	capability	to	generate	events	without	user	interaction.	The	Java	timer	object
(looked	 at	 very	 briefly	 way	 back	 in	 a	 Class	 1	 problem)	 provides	 such	 a
capability.

A	 timer	 generates	 an	 event	 every	delay	milliseconds.	 The	 code	 in	 the	 timer’s
corresponding	actionPerformed	method	is	executed	with	each	such	event.	The
timer	object	is	very	easy	to	implement	and	provides	useful	functionality	beyond
simple	 animation	 tasks.	 Other	 control	 events	 can	 be	 detected	 while	 the	 timer
control	processes	events	in	the	background.	This	multi-tasking	allows	more	than
one	thing	to	be	happening	in	your	application.

Timer	Properties:

delay Number	of	milliseconds	(there	are	1000
milliseconds	in	one	second)	between	each
invocation	of	the	timer	object’s	actionPerformed
method.

running Boolean	value	indicating	if	timer	is	running.

Timer	Methods:

start Used	to	start	timer	object.
stop Used	to	stop	timer.
isRunning Method	that	returns	boolean	value	indicating

whether	timer	is	running	(generating	events).

Timer	Events:

actionPerformed Event	method	invoked	every	delay	milliseconds
while	timer	object’s	running	property	is	true.

To	use	a	timer	object,	you	first	declare	it	using	the	standard	syntax.	For	a	timer
named	myTimer,	the	code	is:	Timer	myTimer;

The	 constructor	 for	 the	 timer	 object	 specifies	 the	 delay	 and	 adds	 the	 event
(actionPerformed)	 method,	 using	 an	 ActionListener,	 in	 a	 single	 step.	 The
syntax	is:	myTimer	=	new	Timer(delay,	new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

myTimerActionPerformed(e);

}

});

And,	 the	 corresponding	 event	 code	 would	 be	 placed	 in	 a
myTimerActionPerformed	 method:	 private	 void
myTimerActionPerformed(ActionEvent	e)	{

[method	code]

}

To	use	the	timer	object,	we	add	it	to	our	application	the	same	as	any	object.	You
write	code	in	the	timer	object’s	actionPerformed	method.	This	is	the	code	you
want	to	repeat	every	delay	milliseconds.	In	the	animation-sequencing	example,
this	is	where	you	would	change	the	label	control’s	icon	property.

You	‘turn	on’	a	timer	in	code	using	the	start	method:	myTimer.start();

and	it	is	turned	off	using	the	stop	method:	myTimer.stop();

To	check	if	the	timer	is	on,	use	the	isRunning	method:	myTimer.isRunning();

If	 this	method	 returns	 a	boolean	 true,	 the	 timer	 is	 on.	When	 first	 created,	 the

timer	is	off.

Applications	 can	 (and	many	 times	 do)	 have	multiple	 timer	 objects.	 You	 need
separate	 timer	 objects	 (and	 event	methods)	 if	 you	 have	 events	 that	 occur	with
different	 regularity	 (different	 delay	 values).	 Timer	 objects	 are	 used	 for	 two
primary	purposes.	First,	you	use	timer	objects	to	periodically	repeat	some	code
segment.	This	is	like	our	animation	example.	Second,	you	can	use	a	timer	object
to	 implement	 some	 ‘wait	 time’	established	by	 the	delay	 property.	 In	 this	 case,
you	 simply	 start	 the	 timer	 and	 when	 the	 delay	 is	 reached,	 have	 the
actionPerformed	event	turn	its	corresponding	timer	off.

Typical	use	of	timer	object:

➢	 Declare	 timer,	 assigning	 an	 identifiable	 name.	 For	 myTimer,	 the
statement	is:	Timer	myTimer;

➢	 Establish	 a	 delay	 value.	 Create	 the	 timer	 using	 specified	 constructor,
adding	the	actionPerformed	method.	Write	the	method	code.

➢	At	some	point	in	your	application,	start	the	timer.	Also,	have	capability	to
turn	the	timer	off,	when	desired.

Example	7-2
Timer	Example

Start	 a	 new	 empty	 project	 in	NetBeans.	 Name	 it	TimerExample.	 Delete	 the
default	 code	 in	 Java	 file	 named	TimerExample.	We	want	 an	 application	 that

generates	a	beep	every	second.	The	finished	frame	appears	as:	

1.	 Place	 a	 single	 button	 control	 on	 the	 frame.	 The	 GridBagLayout	 is:	

Also	include	a	timer	object	(beepTimer).	Set	the	following	properties:

TimerExample	Frame:
resizable false

beepButton:
text Start	Beeping
gridx 0
gridy 0
insets (10,	10,	10,	10)

beepTimer:
delay 1000

We	don’t	build	this	short	example	in	steps.	We	just	present	the	code,	shading	the
portions	 establishing	 the	 timer	 and	 button	 control,	 with	 their	 corresponding
methods.	 You	 should	 be	 able	 to	 follow	 this	 code.	 The	 complete
TimerExample.java	code	listing:	/	*

*	TimerExample.java

*/

package	timerexample;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
public	class	TimerExample	extends	JFrame

{

Timer	beepTimer;
JButton	beepButton	=	new	JButton();
public	static	void	main(String	args[])

{

//	create	frame
new	TimerExample().show();

}

public	TimerExample()

{

//	frame	constructor
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
//	position	controls

GridBagConstraints	gridConstraints	=	new
GridBagConstraints();	 beepButton.setText("Start	 Beeping");
gridConstraints.gridx	=	0;

gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(beepButton,	gridConstraints);
beepButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

beepButtonActionPerformed(e);

}

});

beepTimer	=	new	Timer(1000,	new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

beepTimerActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();

setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5
(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}
private	void	beepButtonActionPerformed(ActionEvent	e)	{

//	toggle	timer	and	button	text
if	(beepTimer.isRunning())

{

beepTimer.stop();
beepButton.setText("Start	Beeping");

}

else

{

beepTimer.start();
beepButton.setText("Stop	Beeping");

}

}

private	void	beepTimerActionPerformed(ActionEvent	e)	{
Toolkit.getDefaultToolkit().beep();

}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

In	particular,	notice	the	code	constructing	the	timer	(beepTimer)	with	a	delay	of
one	 second	 (1000	 milliseconds):	 beepTimer	 =	 new	 Timer(1000,	 new
ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

beepTimerActionPerformed(e);

}

});

And	 notice	 how	 the	 timer	 is	 toggled	 on	 and	 off	 in	 the
beepButtonActionPerformed	 method:	 private	 void
beepButtonActionPerformed(ActionEvent	e)	{

//	toggle	timer	and	button	text
if	(beepTimer.isRunning())

{

beepTimer.stop();
beepButton.setText("Start	Beeping");

}

else

{

beepTimer.start();
beepButton.setText("Stop	Beeping");

}

}

Run	the	project.	Start	and	stop	the	beeping	until	you	get	tired	of	hearing	it.	If	you
don’t	hear	a	beep,	it’s	probably	because	your	computer	has	no	internal	speaker.

The	beep	sound	does	not	usually	play	through	sound	cards.	Save	the	application
(saved	 as	 Example7-2	 project	 in	 \LearnJava\LJ	 Code\Class	 7\	 program
group).

Basic	Animation
We	return	 to	 the	question	of	how	to	do	animation	with	more	 than	 two	 images.
More	detailed	animations	are	obtained	by	rotating	through	several	images	-	each
a	slight	change	in	the	previous	picture.	This	is	the	principle	motion	pictures	are
based	on.	In	a	movie,	pictures	flash	by	us	at	24	frames	per	second	and	our	eyes
are	tricked	into	believing	things	are	smoothly	moving.

Basic	animation	is	done	in	a	Java	application	by	creating	image	icon	objects	for
each	picture	in	the	animation	sequence.	A	timer	object	changes	the	display	in	a
label	control.	With	each	actionPerformed	event,	a	new	image	is	seen.	Once	the
end	of	the	sequence	is	reached,	you	can	‘loop’	back	to	the	first	image	and	repeat
or	 you	 can	 simply	 stop.	 To	 achieve	 this	 effect	 in	 code,	we	 have	 a	 class	 level
scope	variable	 that	keeps	 track	of	 the	 currently	displayed	pictureNumber:	 int
pictureNumber;

You	need	to	initialize	this	at	some	point,	either	in	this	declaration	or	when	you
start	the	timer.

Assume	we	have	n	pictures	to	cycle	through.	We	will	have	n	image	icon	objects
with	the	respective	animation	pictures	(from	graphics	files,	numbered	0	to	n-1).
If	displayLabel	 is	 the	 displaying	 label	 control	 and	 image0	 through	 imagen-1
are	 the	 animation	 images,	 the	 code	 in	 the	 timer	 object’s	 actionPerformed
method	is:	switch	(pictureNumber)

{

case	0:
displayLabel.setIcon(image0);
break;

case	1:
displayLabel.setIcon(image1);
break;

case	2:
displayLabel.setIcon(image2);

break;
.
//	there	will	be	a	case	for	each	image	up	to	n-1
.

}

pictureNumber++;

You	need	to	check	when	pictureNumber	reaches	n.	When	it	does,	you	can	stop
the	sequence	(stop	 the	 timer).	Or,	you	can	reset	pictureNumber	 to	0	 to	 repeat
the	animation	sequence.

Example	7-3
Basic	Animation

Start	 a	 new	 empty	 project	 in	 NetBeans.	 Name	 the	 project	 SpinningEarth.
Delete	 the	 default	 code	 in	 Java	 file	 named	 SpinningEarth.	 We’ll	 build	 an
animation	example	 that	uses	 the	 timer	control	 to	display	a	 spinning	earth!	The

frame	will	look	like	this:	

The	graphics	used	are	earth0.gif,	earth1.gif,	earth2.gif,	earth3.gif,	earth4.gif,
and	earth5.gif	and	are	located	in	the	\LearnJava\LJ	Code\Class	7\Example7-
3\	 folder.	 Copy	 these	 graphic	 files	 into	 your	 project’s	 folder:	

1.	Place	a	label	control	and	a	button	control	on	the	frame.	The	GridBagLayout

is:	

Add	a	timer	object	(earthTimer)	and	six	image	icon	objects	(image0,	image1,
image2,	image3,	image4,	image5).

Set	the	following	properties:

SpinningEarth	Frame:
resizable false

displayLabel:
preferredSize (image0.getIconWidth(),

image0.getIconHeight())
icon image0
gridx 0
gridy 0
insets (10,	10,	10,	10)

earthButton:
text Start	Spinning
gridx 0
gridy 1
insets (10,	10,	10,	10)

earthTimer:
delay 500

image0:
ImageIcon earth0.gif

image1:
ImageIcon earth1.gif

image2:
ImageIcon earth2.gif

image3:
ImageIcon earth3.gif

image4:
ImageIcon earth4.gif

image5:

ImageIcon earth5.gif

2.	Build	the	basic	framework:	/	*

*	SpinningEarth.java

*/

package	spinningearth;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
public	class	SpinningEarth	extends	JFrame

{

public	static	void	main(String	args[])

{

//	create	frame
new	SpinningEarth().show();

}

public	SpinningEarth()

{

//	frame	constructor
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());	pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-getWidth())),	(int)	(0.5

(screenSize.height	-getHeight())),	getWidth(),	getHeight());	}
private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

Run	to	test.

3.	Now,	add	controls	and	other	objects	and	establish	methods.	Add	 these	class
level	declarations:	JLabel	displayLabel	=	new	JLabel();

JButton	earthButton	=	new	JButton();
ImageIcon	image0	=	new	ImageIcon("earth0.gif");	ImageIcon	image1	=
new	ImageIcon("earth1.gif");	ImageIcon	image2	=	new
ImageIcon("earth2.gif");	ImageIcon	image3	=	new
ImageIcon("earth3.gif");	ImageIcon	image4	=	new
ImageIcon("earth4.gif");	ImageIcon	image5	=	new
ImageIcon("earth5.gif");	Timer	earthTimer;

Position	 and	 add	 controls;	 create	 timer	 object:	 GridBagConstraints
gridConstraints	=	new
GridBagConstraints();
displayLabel.setPreferredSize(new

Dimension(image0.getIconWidth(),	image0.getIconHeight()));
displayLabel.setIcon(image0);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(displayLabel,	gridConstraints);	gridConstraints	=
new	GridBagConstraints();
earthButton.setText("Start	Spinning");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(earthButton,	gridConstraints);
earthButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

earthButtonActionPerformed(e);

}

});

earthTimer	=	new	Timer(500,	new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

earthTimerActionPerformed(e);

}

});

And,	add	two	empty	event	methods:

private	void	earthButtonActionPerformed(ActionEvent	e)	{

}

}

private	void	earthTimerActionPerformed(ActionEvent	e)	{

}

Run	to	check	the	control	layout:

4.	 Now,	 we	 write	 code	 for	 the	 event	 methods:	 Use	 this	 class	 level	 scope
declaration	that	declares	and	initializes	pictureNumber:	int	pictureNumber
=	0;

5.	 Use	 the	 following	 code	 in	 the	 earthButtonActionPerformed	 method	 to
toggle	 the	 timer:	private	 void	 earthButtonActionPerformed(ActionEvent
e)	{

//	toggle	timer	and	button	text
if	(earthTimer.isRunning())

{

earthTimer.stop();
earthButton.setText("Start	Spinning");

}

else

{

earthTimer.start();

earthButton.setText("Stop	Spinning");

}

}

6.	Use	 this	code	 in	 the	earthTimerActionPerformed	method	 to	cycle	 through
the	 different	 pictures	 (I	 choose	 to	 repeat	 the	 sequence	 when	 the	 end	 is
reached):	private	void	earthTimerActionPerformed(ActionEvent	e)	{

switch	(pictureNumber)

{

case	0:
displayLabel.setIcon(image0);
break;

case	1:
displayLabel.setIcon(image1);
break;

case	2:
displayLabel.setIcon(image2);
break;

case	3:
displayLabel.setIcon(image3);
break;

case	4:
displayLabel.setIcon(image4);
break;

case	5:
displayLabel.setIcon(image5);
break;

}

pictureNumber++;

if	(pictureNumber	==	6)

{

pictureNumber	=	0;

}

}

The	complete	SpinningEarth.java	code	(code	added	to	framework	is	shaded):	/
*
*	SpinningEarth.java

*/

package	spinningearth;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	SpinningEarth	extends	JFrame

{

JLabel	displayLabel	=	new	JLabel();
JButton	earthButton	=	new	JButton();
ImageIcon	image0	=	new	ImageIcon("earth0.gif");	ImageIcon	image1	=
new	ImageIcon("earth1.gif");	ImageIcon	image2	=	new
ImageIcon("earth2.gif");	ImageIcon	image3	=	new
ImageIcon("earth3.gif");	ImageIcon	image4	=	new
ImageIcon("earth4.gif");	ImageIcon	image5	=	new
ImageIcon("earth5.gif");	Timer	earthTimer;
int	pictureNumber	=	0;

public	static	void	main(String	args[])

{

//	create	frame
new	SpinningEarth().show();

}

public	SpinningEarth()

{

//	frame	constructor
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	position	controls

GridBagConstraints	gridConstraints	=	new	GridBagConstraints();
displayLabel.setPreferredSize(new	Dimension(image0.getIconWidth(),
image0.getIconHeight()));	displayLabel.setIcon(image0);

gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(displayLabel,	gridConstraints);
gridConstraints	=	new	GridBagConstraints();
earthButton.setText("Start	Spinning");

gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(earthButton,	gridConstraints);
earthButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

earthButtonActionPerformed(e);

}

});

earthTimer	=	new	Timer(500,	new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

earthTimerActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}

private	void	earthButtonActionPerformed(ActionEvent	e)	{
//	toggle	timer	and	button	text
if	(earthTimer.isRunning())

{

earthTimer.stop();
earthButton.setText("Start	Spinning");

}

else

{

earthTimer.start();
earthButton.setText("Stop	Spinning");

}

}

private	void	earthTimerActionPerformed(ActionEvent	e)	{
switch	(pictureNumber)

{

case	0:
displayLabel.setIcon(image0);
break;

case	1:
displayLabel.setIcon(image1);
break;

case	2:
displayLabel.setIcon(image2);
break;

case	3:
displayLabel.setIcon(image3);
break;

case	4:
displayLabel.setIcon(image4);
break;

case	5:
displayLabel.setIcon(image5);
break;

}

pictureNumber++;
if	(pictureNumber	==	6)

{

pictureNumber	=	0;

}

}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

Run	 the	application.	Start	and	stop	 the	 timer	and	watch	 the	earth	spin!	Here	 is

my	spinning	earth	showing	Australia:	

Save	the	project	(saved	as	Example7-3	project	in	\LearnJava\LJ	Code\Class	7\
program	group).

Random	Numbers	(Revisited)	and
Games
A	fun	 thing	 to	do	with	Java	 is	 to	create	games.	You	can	write	games	 that	you
play	against	the	computer	or	against	another	opponent.	Graphics	and	animations
play	 a	 big	 part	 in	most	 games.	 And	 each	 time	we	 play	 a	 game,	 we	want	 the
response	to	be	different.	It	would	be	boring	playing	a	game	like	Solitaire	if	the
same	 cards	 were	 dealt	 each	 time	 you	 played.	 Here,	 we	 review	 the	 random
number	generator	introduced	back	in	Class	2.

To	 introduce	 chaos	 and	 randomness	 into	 games,	 we	 use	 random	 numbers.
Random	numbers	are	used	to	have	the	computer	roll	a	die,	deal	a	deck	of	cards,
and	 draw	 bingo	 numbers.	 Java	 develops	 random	 numbers	 using	 a	 built-in
random	number	generator.	There	are	several	such	generators	in	Java	–	we	use
one	that	generates	random	integer	values.	All	random	generators	are	part	of	the
java.util.Random	package.

The	random	number	generator	in	Java	must	be	initialized	by	creating	a	Random
object.	The	statement	to	do	this	is:	Random	myRandom	=	new	Random();

This	statement	is	placed	with	the	variable	declaration	statements.

Once	created,	when	you	need	a	random	integer	value,	use	the	nextInt	method	of
this	Random	object:	myRandom.nextInt(limit)

This	statement	generates	a	random	integer	value	that	is	greater	than	or	equal	to	0
and	 less	 than	 limit.	 Note	 it	 is	 less	 than	 limit,	 not	 equal	 to.	 For	 example,	 the
method:	myRandom.nextInt(5)

will	generate	random	numbers	from	0	to	4.	The	possible	values	will	be	0,	1,	2,	3
and	4.

Random	 Examples:	 To	 roll	 a	 six-sided	 die,	 the	 number	 of	 spots	 would	 be
computed	using:	numberSpots	=	myRandom.nextInt(6)	+	1;

To	randomly	choose	a	card	from	a	deck	of	52	cards	(indexed	from	0	to	51),	use:
cardValue	=	myRandom.nextInt(52);

To	pick	a	number	from	0	to	100,	use:

number	=	myRandom.nextInt(101);

Let’s	use	our	new	animation	skills	and	random	numbers	to	build	a	little	game.

Randomly	Sorting	Integers
In	many	games,	we	have	the	need	to	randomly	sort	a	sequence	of	integers.	For
example,	to	shuffle	a	deck	of	cards,	we	sort	the	integers	from	0	to	51	(giving	us
52	 integers	 to	 represent	 the	 cards).	 To	 randomly	 sort	 the	 state	 names	 in	 a
states/capitals	game,	we	would	randomize	the	values	from	0	to	49.

Randomly	 sorting	n	 integers	 is	 a	 common	 task.	Here	 is	 a	 general	method	 that
does	that	task.	The	method	has	a	single	argument	-	n	(the	number	of	integers	to
be	 sorted).	 The	method	 (sortIntegers)	 returns	 an	 integer	 array	 containing	 the
random	 integers.	 The	 returned	 array	 is	 zero-based,	 returning	 random	 integers
from	0	to	n	-	1,	not	1	to	n.	If	you	need	integers	from	1	to	n,	just	simply	add	1	to
each	value	in	the	returned	array!	The	code	is:	public	int[]	sortIntegers(int	n)

{

/	*

*	Returns	n	randomly	sorted	integers	0	->	n	-	1

*/

int	nArray[]	=	new	int[n];
int	temp,	s;
Random	myRandom	=	new	Random();
//	initialize	array	from	0	to	n	-	1
for	(int	i	=	0;	i	<	n;	i++)

{

nArray[i]	=	i;

}

//	i	is	number	of	items	remaining	in	list
for	(int	i	=	n;	i	>=	1;	i--)

{

{

s	=	myRandom.nextInt(i);
temp	=	nArray[s];
nArray[s]	=	nArray[i	-	1];
nArray[i	-	1]	=	temp;

}

return(nArray);

}

Look	at	the	code,	one	number	is	pulled	from	the	original	sorted	array	and	put	at
the	bottom	of	 the	array.	Then	a	number	 is	pulled	 from	 the	 remaining	unsorted
values	 and	 put	 at	 the	 ‘new’	 bottom.	 This	 selection	 continues	 until	 all	 the
numbers	 have	 been	 sorted.	 This	 routine	 has	 been	 called	 a	 ‘one	 card	 shuffle’
because	it’s	like	shuffling	a	deck	of	cards	by	pulling	one	card	out	of	the	deck	at	a
time	and	laying	it	aside	in	a	pile.

Note	 this	method	 uses	 a	 random	 number	 object;	 hence	 the	 java.util.Random
package	must	be	imported	to	projects	using	this	method.	This	method	has	been
added	 to	Appendix	I,	our	collection	of	general	methods.	This	procedure	has	a
wide	range	of	applications.	I’ve	used	it	to	randomize	the	letters	of	the	alphabet,
scramble	words	 in	spelling	games,	 randomize	answers	 in	multiple	choice	 tests,
and	even	playback	compact	disc	songs	in	random	order	(yes,	you	can	build	a	CD
player	with	Java).

Example	7-4
Random	Integers

Start	 a	 new	 empty	 project	 in	NetBeans.	 Name	 the	 project	RandomIntegers.
Delete	 the	 default	 code	 in	 Java	 file	 named	 RandomIntegers.	 We	 want	 an
application	that	randomly	sorts	a	selected	number	of	integers.	The	finished	frame

will	look	like	this:	

1.	Add	 a	 scroll	 pane,	 a	 spinner	 control	 and	 a	button	 control	 to	 the	 frame.	The
GridBagLayout	 looks	 like	 this:	

Set	the	following	properties:

RandomIntegers	Frame:
resizable false

randomScrollPane:
viewPortView randomTextArea

gridx 0
gridy 0
insets (5,	5,	5,	5)

randomTextArea:
columns 6
rows 10
lineWrap true

randomSpinner:
model SpinnerNumberModel
value 2
minimum 2
maximum 100
stepSize 1
gridx 0
gridy 1
insets (5,	0,	5,	0)

randomButton:
text Sort	Integers
gridx 0
gridy 2
insets (5,	0,	5,	0)

2.	Build	the	basic	framework:	/	*

*	RandomIntegers.java

*/

package	randomintegers;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

import	java.util.Random;
public	class	RandomIntegers	extends	JFrame

{

public	static	void	main(String	args[])

{

//construct	frame
new	RandomIntegers().show();

}

public	RandomIntegers()

{

//	code	to	build	the	form
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-getWidth())),	(int)	(0.5

(screenSize.height	-getHeight())),	getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	to	test	the	framework.

3.	 Establish	 the	 class	 level	 control	 declarations:	 JScrollPane
randomScrollPane	 =	 new	 JScrollPane();	JTextArea	 randomTextArea	=
new	JTextArea();

JSpinner	randomSpinner	=	new	JSpinner();
JButton	randomButton	=	new	JButton();

Position	controls	and	add	events:

GridBagConstraints	gridConstraints	=	new
GridBagConstraints();
randomTextArea.setColumns(6);
randomTextArea.setRows(10);
randomTextArea.setLineWrap(true);
randomScrollPane.setViewportView(randomTextArea);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(randomScrollPane,	gridConstraints);
randomSpinner.setModel(new	SpinnerNumberModel(2,	2,	100,	1));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
getContentPane().add(randomSpinner,	gridConstraints);

randomButton.setText("Sort	Integers");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
getContentPane().add(randomButton,	gridConstraints);
randomButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

randomButtonActionPerformed(e);

}

});

Add	the	one	empty	event	method:

private	void	randomButtonActionPerformed(ActionEvent	e)	{

}

Run	to	test	the	control	layout:

4.	 Now,	 we	 add	 the	 code.	 First,	 add	 the	 sortIntegers	 general	 method	 public
int[]	sortIntegers(int	n)

{

/	*

*	Returns	n	randomly	sorted	integers	0	->	n	-	1

*/

int	nArray[]	=	new	int[n];
int	temp,	s;
Random	myRandom	=	new	Random();
//	initialize	array	from	0	to	n	-	1
for	(int	i	=	0;	i	<	n;	i++)

{

nArray[i]	=	i;

}

//	i	is	number	of	items	remaining	in	list
for	(int	i	=	n;	i	>=	1;	i--)

{

s	=	myRandom.nextInt(i);
temp	=	nArray[s];
nArray[s]	=	nArray[i	-	1];
nArray[i	-	1]	=	temp;

}

return(nArray);

}

5.	Use	this	code	in	the	randomButtonActionPerformed	event	method:	private
void	randomButtonActionPerformed(ActionEvent	e)	{

int	arraySize	=
Integer.valueOf(randomSpinner.getValue().toString()).intVa	lue();	int[]

integerArray	=	new	int[arraySize];
//	Clear	text	area
randomTextArea.setText("");
//	sort	integers
integerArray	=	sortIntegers(arraySize);
//	display	sorted	integers
for	(int	i	=	0	;	i	<	arraySize;	i++)

{

randomTextArea.append(String.valueOf(integerArray[i])	+	"\n");
}

}

This	 code	 reads	 the	 value	 of	 the	 spinner	 control,	 establishes	 the	 array
(integerArray)	 and	 calls	 sortIntegers.	 The	 sorted	 values	 are	 displayed	 in	 the
text	area.

The	 complete	RandomIntegers.java	 code	 listing	 (additions	 to	 framework	 are
shaded):	/	*
*	RandomIntegers.java

*/

package	randomintegers;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.util.Random;

public	class	RandomIntegers	extends	JFrame

{

JScrollPane	randomScrollPane	=	new	JScrollPane();	JTextArea
randomTextArea	=	new	JTextArea();
JSpinner	randomSpinner	=	new	JSpinner();
JButton	randomButton	=	new	JButton();

public	static	void	main(String	args[])

{

//construct	frame
new	RandomIntegers().show();

}

public	RandomIntegers()

{

//	code	to	build	the	form
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	position	controls	(establish	event	methods)	GridBagConstraints

gridConstraints	=	new
GridBagConstraints();

randomTextArea.setColumns(6);
randomTextArea.setRows(10);
randomTextArea.setLineWrap(true);
randomScrollPane.setViewportView(randomTextArea);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(randomScrollPane,	gridConstraints);
randomSpinner.setModel(new	SpinnerNumberModel(2,	2,	100,	1));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
getContentPane().add(randomSpinner,	gridConstraints);
randomButton.setText("Sort	Integers");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
getContentPane().add(randomButton,	gridConstraints);
randomButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

randomButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}

private	void	randomButtonActionPerformed(ActionEvent	e)	{
int	arraySize	=

Integer.valueOf(randomSpinner.getValue().toString()).intValue();	 int[]
integerArray	=	new	int[arraySize];

//	Clear	text	area
randomTextArea.setText("");
//	sort	integers
integerArray	=	sortIntegers(arraySize);
//	display	sorted	integers
for	(int	i	=	0	;	i	<	arraySize;	i++)

{

randomTextArea.append(String.valueOf(integerArray[i])	+
"\n");	}

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

public	int[]	sortIntegers(int	n)

{

/	*

*	Returns	n	randomly	sorted	integers	0	->	n	-	1

*/

int	nArray[]	=	new	int[n];
int	temp,	s;
Random	myRandom	=	new	Random();
//	initialize	array	from	0	to	n	-	1
for	(int	i	=	0;	i	<	n;	i++)

{

nArray[i]	=	i;

}

//	i	is	number	of	items	remaining	in	list
for	(int	i	=	n;	i	>=	1;	i--)

{

s	=	myRandom.nextInt(i);
temp	=	nArray[s];
nArray[s]	=	nArray[i	-	1];
nArray[i	-	1]	=	temp;

}

return(nArray);

}

}

Run	 the	 project.	 Try	 sorting	 different	 numbers	 of	 integers.	 Notice	 you	 get
different	 results	every	 time	you	do	a	sort.	Here’s	a	 few	runs	 I	made	 to	sort	10
integers	 (0	 to	 9):	

Save	the	project	(saved	as	Example7-4	project	in	\LearnJava\LJ	Code\Class	7\
program	group).

Java	2D	Graphics
We	now	know	how	 to	display	graphics	 files	 (images)	 in	 Java	applications	and
how	to	do	basic	animations.	Java	also	offers	a	wealth	of	graphics	methods	that
let	 us	 draw	 lines,	 rectangles,	 ellipses,	 pie	 shapes	 and	 polygons.	 With	 these
methods,	you	can	draw	anything!

Graphics	 can	 be	 created	 using	 either	 or	 both	 the	 Java	Graphics	 class	 and	 the
Java	2D	Graphics2D	class,	an	 improved	graphics	environment.	 In	 these	notes,
we	 work	 solely	 with	 the	 Graphics2D	 class,	 meaning	 graphics	 methods	 are
applied	 to	 Graphics2D	 objects.	 Be	 aware	 that	 Java	 references	 to	 graphics
objects	 are	 usually	 passed	 as	 Graphics	 objects,	 so	 casting	 to	 Graphics2D
objects	will	often	be	required.	This	will	all	become	clear	as	we	delve	further	into
graphics.

Using	graphics	objects	is	a	little	detailed,	but	worth	the	time	to	learn.	There	is	a
new	vocabulary	with	many	new	objects	 to	 study.	We’ll	 cover	 every	 step.	The
basic	approach	to	drawing	with	graphics	objects	will	always	be:

➢	Create	a	Graphics2D	object.
➢	Establish	the	Stroke	and	Paint	objects	needed	for	drawing.
➢	Establish	the	Shape	object	for	drawing.
➢	Draw	shape	to	Graphics2D	object	using	drawing	methods	➢	Dispose	of
graphics	object	when	done.

All	 the	graphics	methods	we	study	are	overloaded	methods.	Recall	 this	means
there	are	many	ways	to	invoke	a	method,	using	different	numbers	and	types	of
arguments.	 For	 each	 drawing	 method,	 we	 will	 look	 at	 one	 or	 two
implementations	of	that	particular	method.	You	are	encouraged	to	examine	other
implementations	using	the	usual	Java	resources.

In	this	class,	we	will	learn	about	Graphics2D	objects,	Stroke	and	Paint	objects
(use	of	colors)	and	Shape	objects.	We’ll	learn	how	to	draw	lines,	draw	and	fill
rectangles,	 draw	 and	 fill	 ellipses	 and	 draw	 and	 fill	 arc	 segments.	 We’ll	 use
these	skills	to	build	basic	plotting	packages	and,	in	Class	8,	a	simple	paintbrush
program.	There’s	a	lot	to	learn	here,	so	let’s	get	started.

Graphics2D	Object
As	 mentioned,	 graphics	 methods	 (drawing	 methods)	 are	 applied	 to	 graphics
objects.	Graphics2D	objects	 provide	 the	 “surface”	 for	 drawing	methods.	You
can	 draw	 on	many	 of	 the	 Swing	 components.	 In	 this	 course,	 we	 will	 use	 the
panel	control	for	drawing.

A	Graphics2D	object	 (g2D)	 is	created	using:	Graphics	g2D	=	(Graphics2D)
hostControl.getGraphics();	 where	 hostControl	 is	 the	 control	 hosting	 the
graphics	 object.	Note	 the	getGraphics	method	 returns	 a	Graphics	 object	 that
must	 be	 cast	 (converted)	 to	 a	Graphics2D	 object.	Placement	 of	 this	 statement
depends	 on	 scope.	 Place	 it	 in	 a	method	 for	method	 level	 scope.	 Place	 it	 with
other	class	level	declarations	for	class	level	scope.

Once	a	graphics	object	is	created,	all	graphics	methods	are	applied	to	this	object.
Hence,	 to	 apply	a	drawing	method	named	drawingMethod	 to	 the	g2D	 object,
use:	g2D.drawingMethod(arguments);

where	arguments	are	any	needed	arguments.

Once	 you	 are	 done	 drawing	 to	 an	 object	 and	 need	 it	 no	 longer,	 it	 should	 be
properly	disposed	to	clear	up	system	resources.	The	syntax	for	disposing	of	our
example	graphics	object	uses	the	dispose	method:	g2D.dispose();

Stroke	and	Paint	Objects
The	 attributes	 of	 lines	 (either	 lines	 or	 borders	 of	 shapes)	 drawn	 using
Graphics2D	objects	are	specified	by	the	stroke.	Stroke	can	be	used	to	establish
line	style,	such	as	solid,	dashed	or	dotted	lines,	line	thickness	and	line	end	styles.
By	default,	a	solid	line,	one	pixel	in	width	is	drawn.	In	this	class,	we	will	only
look	at	how	to	change	the	line	thickness.	Stroke	is	changed	using	the	setStroke
method.	To	set	the	thickness	(width)	of	the	line	for	a	graphics	object	g2D,	use	a
BasicStroke	object:	g2D.setStroke(new	BasicStroke(width));

After	this	method,	all	lines	will	be	drawn	with	the	new	width	attribute.

To	 change	 the	 color	 of	 lines	 being	 drawn,	 use	 the	 setPaint	 method.	 For	 our
example	graphics	object,	the	color	is	changed	using:	g2D.setPaint(color);

where	color	is	either	a	built-in	color	or	one	set	using	RGB	values.	After	this	line
of	code,	all	lines	are	drawn	with	the	new	color.

The	setPaint	method	can	also	be	used	to	establish	the	color	and	pattern	used	to
fill	 a	graphics	 region.	 In	 this	 class,	we	will	 fill	 such	 regions	with	 solid	 colors.
Simply	specifying	the	desired	color	in	the	setPaint	method	will	accomplish	this.
In	Class	8,	we	will	look	at	ways	to	fill	a	region	with	textures	and	patterns.

Shapes	and	Drawing	Methods
We	 will	 learn	 to	 draw	 various	 shapes.	 Shapes	 will	 include	 lines,	 rectangles,
ellipses	and	arcs.	The	classes	used	to	do	this	drawing	are	in	the	java.awt.geom.*
package,	so	we	need	to	include	an	import	statement	for	this	package.

Shape	 objects	 are	 specified	with	 the	user	 coordinates	 of	 the	 hosting	 control:	

The	 host	 dimensions,	 hostControl.getWidth()	 and	 hostControl.getHeight()
represent	the	“graphics”	region	of	the	control	hosting	the	graphics	object.

Points	 in	 user	 coordinates	 are	 referred	 to	 by	 a	 Cartesian	 pair,	 (x,	 y).	 In	 the
diagram,	note	 the	x	 (horizontal)	coordinate	runs	from	left	 to	right,	starting	at	0
and	extending	 to	hostControl.getWidth()	 -	1.	The	y	 (vertical)	coordinate	goes
from	top	to	bottom,	starting	at	0	and	ending	at	hostControl.getHeight()	-	1.	All
measurements	are	integers	and	in	units	of	pixels.	Later,	we	will	see	how	we	can
use	any	coordinate	system	we	want.

Once	a	shape	object	 is	created	 (we	will	 see	how	 to	do	 that	next),	 the	shape	 is
drawn	 using	 the	 draw	 method.	 For	 a	 shape	 myShape	 using	 our	 example
graphics	object	(g2D),	the	code	is:	g2D.draw(myShape);

The	shape	will	be	drawn	using	the	current	stroke	and	paint	attributes.

For	shape	objects	that	encompass	some	two-dimensional	region,	that	region	can
be	filled	using	the	fill	method.	For	our	example,	the	code	is:	g2D.fill(myShape);

The	shape	will	be	filled	using	the	current	paint	attribute.

Let’s	define	our	first	shape	–	a	line	–	yes,	a	line	is	a	shape.

Line2D	Shape
The	 first	 shape	we	 learn	 to	draw	 is	a	 line,	or	 the	Line2D	 shape.	This	 shape	 is
used	 to	 connect	 two	 Cartesian	 points	 with	 a	 straight-line	 segment:	

If	we	wish	 to	 connect	 the	 point	 (x1,	y1)	with	 (x2,	y2),	 the	 shape	 (myLine)	 is
created	using:	Line2D.Double	myLine	=	new	Line2D.Double(x1,	y1,	x2,	y2);
Each	 coordinate	 value	 is	 a	 double	 type	 (there	 is	 also	 a	Line2D.Float	 shape,
where	 each	 coordinate	 is	 a	 float	 type).	 Once	 created,	 the	 line	 is	 drawn	 (in	 a
previously	 created	 Graphics2D	 object,	 g2D)	 using	 the	 draw	 method:
g2D.draw(myLine);

The	line	will	be	drawn	using	the	current	stroke	and	paint	attributes.

Say	 we	 have	 a	 panel	 control	 (myPanel)	 of	 dimension	 (300,	 200).	 To	 draw	 a
black	 line	 (myLine)	 in	 that	 panel,	with	 a	 line	width	 of	1	 (the	default	 stroke)
from	 (20,	 20)	 to	 (280,	 180),	 the	 Java	 code	 would	 be:	 Graphics2D	 g2D	 =
(Graphics2D)	 myPanel.getGraphics();	 Line2D.Double	 myLine	 =	 new
Line2D.Double(20,	20,	280,	180);	g2D.setPaint(Color.BLACK);
g2D.draw(myLine);

This	produces:

For	every	line	segment	you	need	to	draw,	you	will	need	a	separate	Line2D	shape
and	draw	 statement.	Of	 course,	 you	 can	 choose	 to	 change	 color	 (setPaint)	 or
width	(setStroke)	at	any	time	you	wish.

Graphics	Demonstration
Before	 continuing,	 let’s	 look	 at	 a	 little	 example	 to	 demonstrate	 some	 of	 the
things	 we’ve	 learned	 about	 2D	 graphics	 in	 Java.	 Open	 the	 \LearnJava\LJ
Code\Class	7\	 program	group	 in	NetBeans.	Make	GraphicsDemo1	 the	 active
project.	Open	the	GraphicsDemonstration.java	file.	The	finished	interface	for
this	 application	 has	 a	 panel	 for	 drawing	 and	 a	 button	 control:	

When	we	click	 the	button,	we	want	 to	draw	a	blue	 line	on	 the	panel	 from	 the
upper	left	corner	to	the	lower	right	corner.	When	we	click	the	button	again,	we
want	the	line	to	disappear.	The	complete	code	listing	is:	/	*
*	GraphicsDemonstration.java

*/

package	graphicsdemonstration;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.geom.*;
import	java.awt.event.*;

public	class	GraphicsDemonstration	extends	JFrame	{

JPanel	myPanel	=	new	JPanel();
JButton	myButton	=	new	JButton();
boolean	lineThere	=	false;
public	static	void	main(String	args[])

{

//construct	frame
new	GraphicsDemonstration().show();

}

public	GraphicsDemonstration()

{

//	code	to	build	the	form
setTitle("Graphics	Demo");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	//	position
controls	(establish	event	methods)	GridBagConstraints
gridConstraints	=	new	GridBagConstraints();
myPanel.setPreferredSize(new	Dimension(300,	200));
myPanel.setBackground(Color.WHITE);

gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(myPanel,	gridConstraints);
myButton.setText("Draw	Line");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(0,	0,	10,	0);
getContentPane().add(myButton,	gridConstraints);
myButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

myButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-getWidth())),	(int)	(0.5

(screenSize.height	-getHeight())),	getWidth(),	getHeight());	}
private	void	myButtonActionPerformed(ActionEvent	e)	{

//	toggle	button	text	property
if	(myButton.getText().equals("Draw	Line"))

{

myButton.setText("Clear	Line");
lineThere	=	true;

}

else

{

myButton.setText("Draw	Line");
lineThere	=	false;

}

Graphics2D	g2D	=	(Graphics2D)	myPanel.getGraphics();
Line2D.Double	myLine	=	new	Line2D.Double(0,	0,
myPanel.getWidth(),	myPanel.getHeight());	if	(lineThere)

{

g2D.setPaint(Color.BLUE);

}

else

{

g2D.setPaint(myPanel.getBackground());

}

g2D.draw(myLine);
g2D.dispose();

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

}

Since	 this	 is	 the	 first	 graphics	 code	 we’ve	 seen,	 let’s	 look	 at	 it	 closely.	 You
should	 recognize	 all	 the	 code	 that	 creates	 and	 places	 the	 controls.	 Especially,
note	 the	 line	 importing	 java.awt.geom.*.	The	code	 that	does	 the	drawing	 is	 in
the	myButtonActionPerformed	method	(shaded	in	 the	 listing).	This	code	first
‘toggles’	the	button’s	text	property	and	establishes	a	value	for	lineThere.	It	then
creates	 the	 Graphics2D	 object	 g2D	 using	 the	 panel	 (myPanel)	 as	 the	 host
control.	The	Line2D	shape	(myLine)	is	then	created	(the	line	starts	in	the	upper
left	corner	of	the	panel	and	ends	in	the	lower	right	corner).	Next,	the	code	checks
the	status	of	lineThere	to	determine	if	we’re	drawing	a	line	or	clearing	the	line.
If	drawing	(lineThere	is	true),	a	blue	line	is	drawn.	If	clearing,	a	line	the	same
color	 as	 the	 background	 of	 the	 panel	 is	 drawn,	 essentially	 erasing	 the	 line.
Before	leaving	the	method,	the	object	is	disposed.

Run	this	little	project	and	click	the	button	one	time.	You	should	see	something

like	this:	

Your	first	line!!	Click	the	button	to	watch	the	line	disappear.	Click	the	button	a
few	times	to	see	the	toggling	feature.

After	all	this	hard	work,	let’s	look	at	a	“feature”	of	graphics	methods.	Make	sure
a	 line	 appears	 on	 the	 panel	 and	 reduce	 the	 frame	 to	 an	 icon	 by	 clicking	 the
Minimize	button	(the	one	with	an	underscore	character)	in	the	upper	right-hand
corner	of	the	form.	Or,	cover	the	frame	with	another	window.	Now,	restore	the
frame	 to	 the	 screen	 by	 clicking	 the	 corresponding	 entry	 on	 your	 task	 bar	 (or
make	 the	 window	 appear	 again).	 Here’s	 what	 you	 should	 see:	

The	button	control	is	still	there,	but	the	line	we	carefully	drew	has	disappeared!
What	happened?	We’ll	answer	that	question	next.

Persistent	Graphics
Why	did	the	line	disappear	in	our	little	example	when	the	frame	went	away	for	a
bit?	Java	graphics	objects	have	no	memory.	They	only	display	what	has	been	last
drawn	on	them.	If	you	reduce	your	frame	to	an	icon	(or	it	becomes	obscured	by
another	 frame)	 and	 restore	 it,	 the	 graphics	 object	 cannot	 remember	 what	 was
displayed	previously	–	it	will	be	cleared.	Similarly,	if	you	switch	from	an	active
Java	application	to	some	other	application,	your	Java	form	may	become	partially
or	fully	obscured.	When	you	return	to	your	Java	application,	the	obscured	part	of
any	graphics	object	will	 be	 erased.	Again,	 there	 is	no	memory.	Notice	 in	both
these	 cases,	however,	 all	 controls	 are	 automatically	 restored	 to	 the	 form.	Your
application	 remembers	 these,	 fortunately!	 The	 controls	 are	 persistent.	We	 also
want	persistent	graphics.

To	 maintain	 persistent	 graphics,	 we	 need	 to	 build	 memory	 into	 our	 graphics
objects	using	code.	In	this	code,	we	must	be	able	to	recreate,	when	needed,	the
current	 state	 of	 a	 graphics	 object.	 This	 ‘custom’	 code	 is	 placed	 in	 the	 host
control’s	paintComponent	 method.	 This	 event	method	 is	 called	whenever	 an
obscured	 object	 becomes	 unobscured.	 The	 paintComponent	 method	 will	 be
called	 for	 each	 object	 when	 a	 frame	 is	 first	 activated	 and	 when	 a	 frame	 is
restored	from	an	icon	or	whenever	an	obscured	object	is	viewable	again.

How	do	we	access	the	paintComponent	method	for	a	control?	For	such	access,
we	 need	 to	 create	 a	 separate	 class	 for	 the	 control	 that	 extends	 the	 particular
control.	Creating	the	class	is	a	simple	task	(see	Appendix	II	for	a	brief	primer
on	 the	 subject).	We	define	a	GraphicsPanel	 class	 (a	JPanel	 control	hosting	a
graphics	 object)	 using	 the	 following	 code	 segment:	 class	 GraphicsPanel
extends	JPanel

{

public	GraphicsPanel()

{

}

public	void	paintComponent(Graphics	g)

{

[Painting	code	goes	here]

}

}

This	class	is	placed	after	the	main	class	in	our	program.	A	GraphicsPanel	object
is	 then	 declared	 and	 created	 using:	 GraphicsPanel	 myPanel	 =	 new
GraphicsPanel();

With	 this	 declaration,	 the	 “painting”	 of	 the	 control	 is	 now	 handled	 by	 the
paintComponent	method.	Notice	this	method	passes	a	Graphics	object	g.	The
first	step	in	painting	the	component	is	to	cast	this	object	to	a	Graphics2D	object:
Graphics2D	g2D	=	(Graphics2D)	g;

After	 this,	 we	 place	 code	 in	 the	 paintComponent	 method	 that	 describes	 the
current	state	of	the	graphics	object.	In	particular,	make	sure	the	first	statement	is:
super.paintComponent(g2D);

This	 will	 reestablish	 any	 background	 color	 (the	 keyword	 super	 refers	 to	 the
‘inherited’	control,	the	panel	in	this	case).

Maintaining	 persistent	 graphics	 does	 require	 a	 bit	 of	 work	 on	 your	 part.	 You
need	 to	always	know	what	 is	 in	your	graphics	objects	and	how	 to	 recreate	 the
objects,	when	needed.	This	usually	involves	developing	some	program	variables
that	 describe	 how	 to	 recreate	 the	 graphics	 object.	 And,	 you	 usually	 need	 to
develop	 some	 ad	 hoc	 rules	 for	 recreation.	 As	 you	 build	 your	 first	 few
paintComponent	 events,	 you	 will	 begin	 to	 develop	 your	 own	 ways	 for
maintaining	persistent	graphics.	At	certain	times,	you’ll	need	to	force	a	“repaint”
of	 your	 control.	 To	 do	 this,	 for	 a	 host	 control	 named	 hostControl	 use:
hostControl.repaint();

You	 will	 often	 need	 to	 have	 your	 paintComponent	 method	 access	 variables
from	your	main	class.	If	your	main	class	is	named	mainClass	and	you	want	the
value	of	myVariable,	the	variable	is	accessed	using:	mainClass.myVariable

Any	variables	 accessed	 in	 this	manner	must	 have	 class	 level	 scope	 and,	when
declared,	 be	 prefaced	 with	 the	 keyword	 static.	 This	 is	 due	 to	 the	 way	 the
paintComponent	method	works.

This	 all	 may	 sound	 difficult,	 but	 it	 really	 isn’t	 and	 an	 example	 should	 clear
things	 up.	 Let’s	 see	 how	 to	 maintain	 persistent	 graphics	 in	 our	 graphics
demonstration.	First,	add	the	framework	for	the	GraphicsPanel	class	at	the	end
of	 the	 main	 class	 (GraphicsDemonstration)	 code:	 class	 GraphicsPanel
extends	JPanel

{

public	GraphicsPanel()

{

}

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);

}

}

Change	the	line	of	code	creating	myPanel	 to:	GraphicsPanel	myPanel	=	new
GraphicsPanel();

Next,	move	all	 the	graphics	 statements	out	of	 the	myButtonActionPerformed
event	method	into	the	paintComponent	method.	The	paintComponent	method
will	be	(the	added	lines	are	shaded	–	make	sure	these	lines	are	no	longer	in	the
button	action	method):	public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;

super.paintComponent(g2D);
Graphics2D	g2D	=	(Graphics2D)	myPanel.getGraphics();
Line2D.Double	myLine	=	new	Line2D.Double(0,	0,
myPanel.getWidth(),	myPanel.getHeight());
if	(lineThere)

{

g2D.setPaint(Color.BLUE);

}

else

{

g2D.setPaint(myPanel.getBackground());

}

g2D.draw(myLine);
g2D.dispose();

}

We	need	to	make	a	few	modifications	to	make	this	code	work:

➢	 Delete	 the	 line	 creating	 g2D	 using	myPanel.	 This	 line	 is	 not	 needed
because	the	graphics	object	is	provided	when	the	method	is	called.

➢	 Remove	 the	 references	 to	myPanel	 in	 code	 creating	 the	Line2D	 object
and	code	setting	the	background	color.	The	use	of	this	control	is	implicit
in	the	class	definition.

➢	 The	 lineThere	 variable	 is	 from	 the	 main	 class.	 Hence,	 change	 the
lineThere	 reference	 to	GraphicsDemonstration.lineThere.	Also,	 in	 the
main	class,	preface	the	declaration	for	lineThere	with	static.

The	modified	method	is	(changes	are	shaded):

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
Line2D.Double	myLine	=	new	Line2D.Double(0,	0,	getWidth(),
getHeight());	if	(GraphicsDemonstration.lineThere)

{

g2D.setPaint(Color.BLUE);

}

else

{

g2D.setPaint(getBackground());

}

g2D.draw(myLine);
g2D.dispose();

}

With	 this	 code,	 the	 line	 will	 be	 drawn	 when	 lineThere	 is	 true,	 else	 the	 line
object	will	be	cleared.

Run	 the	 application	with	 these	 changes	 in	 place.	 Click	 the	 button.	 There’s	 no
line	 there!	 Keep	 clicking	 the	 button.	 No	 matter	 what	 you	 do,	 a	 line	 is	 never
drawn.	 Why?	 Look	 at	 the	 modified	 myButtonActionPerformed	 method:
private	void	myButtonActionPerformed(ActionEvent	e)	{

//	toggle	button	text	property
if	(myButton.getText().equals("Draw	Line"))

{

{

myButton.setText("Clear	Line");
lineThere	=	true;

}

else

{

myButton.setText("Draw	Line");
lineThere	=	false;

}

}

We	 have	 moved	 the	 commands	 to	 draw	 and	 clear	 the	 line	 into	 the
paintComponent	 method,	 but	 there	 is	 no	 code	 in	 the
myButtonActionPerformed	method	that	can	access	that	code.	Add	this	line	as
the	 last	 line	 in	 this	 method	 (before	 the	 closing	 brace,	 of	 course):
myPanel.repaint();

This	 will	 force	 a	 “repaint”	 of	 the	 frame	 before	 toggling,	 meaning	 the
paintComponent	 method	 will	 be	 invoked.	 This	 is	 just	 what	 we	 were	 doing
before	 adding	 the	 paintComponent	 method	 –	 we	 toggled	 the	 button	 text
property,	set	the	lineThere	property,	then	drew	or	cleared	the	line.

Run	the	application	again.	No	line	–	yeah!	Things	should	be	working	like	they
should.	Click	the	button	a	few	times	to	become	convinced	that	 this	 is	 the	case.
Then,	 try	 minimizing	 or	 obscuring	 the	 form.	 Restore	 the	 form.	 The	 graphics
should	be	persistent,	meaning	 the	 line	will	be	 there	when	 it’s	 supposed	 to	 and
not	 there	when	 it’s	 not	 supposed	 to	 be	 there.	The	 last	 incarnation	of	 this	 little
graphics	example	is	saved	as	the	GraphicsDemo2	project	in	the	\LearnJava\LJ
Code\Class	7\	program	group.

So,	 to	use	persistent	graphics,	you	need	 to	do	a	 little	work.	Once	you’ve	done
that	work,	make	sure	you	truly	have	persistent	graphics.	Perform	checks	similar
to	 those	we	did	 for	our	 little	 example	here.	The	NetBeans	 environment	makes

doing	these	checks	very	easy.	It’s	simple	to	make	changes	and	immediately	see
the	 effects	 of	 those	 changes.	 A	 particular	 place	 to	 check	 is	 to	 make	 sure	 the
initial	 loading	 of	 graphics	 objects	 display	 correctly.	 Sometimes,
paintComponent	events	cause	incorrect	results	the	first	time	they	are	invoked.

And,	though,	including	paintComponent	methods	in	a	Java	application	require
extra	coding,	it	also	has	the	advantage	of	centralizing	all	graphics	operations	in
one	procedure.	This	usually	helps	to	simplify	the	tasks	of	code	modification	and
maintenance.	 I’ve	 found	 that	 the	 persistent	 graphics	 problem	 makes	 me	 look
more	deeply	at	my	code.	In	the	end,	I	write	better	code.	I	believe	you’ll	find	the
same	is	true	with	your	applications.	Most	graphics	applications	we	build	will	use
a	GraphicsPanel	 object	with	 corresponding	paintComponent	methods.	Study
these	examples	to	become	familiar	with	the	idea	of	persistent	graphics.	A	basic
framework	for	the	GraphicsPanel	class	has	been	added	to	Appendix	I	to	these
notes.	If	you	have	an	application	that	uses	more	than	one	panel	to	host	graphics,
you	will	need	to	create	GraphicsPanel	type	objects	for	each.	Each	panel	would
have	a	different	class	name,	but	 the	same	structure	as	 the	GraphicsPanel	used
here,	each	with	a	unique	paintComponent	method.

Example	7-5
Drawing	Lines

Start	a	new	empty	project	in	NetBeans.	Name	the	project	DrawingLines.	Delete
the	default	code	in	Java	file	named	DrawingLines.	 In	this	application,	we	will
draw	 random	 line	 segments	 in	 a	 panel	 control	 using	 Line2D	 shapes.	 The

finished	frame	looks	like	this:	

1.	 Add	 a	 panel	 control	 and	 two	 button	 controls	 to	 the	 frame.	 The

GridBagLayout	is:	

PictureBox1

Set	the	following	properties:

DrawingLines	Frame:
title Drawing	Lines

resizable false

panelDraw	(a	GraphicsPanel	object):
preferredSize (300,	200)
background WHITE
gridx 0
gridy 0
insets (10,	10,	10,	10)

drawButton:
text Draw	Lines
gridx 0
gridy 1

clearButton:
text Clear	Lines
gridx 0
gridy 2
insets (5,	0,	5,	0)

2.	Build	the	basic	framework	code:	/	*

*	DrawingLines.java

*/

package	drawinglines;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.geom.*;
import	java.awt.event.*;
import	java.util.Random;

public	class	DrawingLines	extends	JFrame

{

public	static	void	main(String	args[])

{

//construct	frame
new	DrawingLines().show();

}

public	DrawingLines()

{

//	code	to	build	the	form
setTitle("Drawing	Lines");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-getWidth())),	(int)	(0.5

(screenSize.height	-getHeight())),	getWidth(),	getHeight());	}
private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	to	check	the	code.

3.	 Now,	 we	 add	 controls	 and	 methods.	 Add	 these	 class	 level	 declarations:
GraphicsPanel	drawPanel	=	new	GraphicsPanel();	JButton	drawButton
=	new	JButton();

JButton	clearButton	=	new	JButton();

Position	and	add	controls	and	event	methods:

GridBagConstraints	gridConstraints	=	new
GridBagConstraints();
drawPanel.setPreferredSize(new	Dimension(300,	200));
drawPanel.setBackground(Color.WHITE);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(drawPanel,	gridConstraints);
drawButton.setText("Draw	Lines");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(drawButton,	gridConstraints);
drawButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

drawButtonActionPerformed(e);

}

});

clearButton.setText("Clear	Lines");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
getContentPane().add(clearButton,	gridConstraints);
clearButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

clearButtonActionPerformed(e);

}

});

And,	add	the	two	empty	event	methods:

private	void	drawButtonActionPerformed(ActionEvent	e)	{

}

private	void	clearButtonActionPerformed(ActionEvent	e)	{

}

4.	Add	the	GraphicsPanel	class	(from	Appendix	I)	after	the	main	class	to	allow
for	 persistent	 graphics	 using	 the	 paintComponent	 method:	 class
GraphicsPanel	extends	JPanel

{

public	GraphicsPanel()

{

}

}

public	void	paintComponent(Graphics	g)

{

}

}

Run	to	check	control	layout:

The	panel	appears	gray	because	we	haven’t	coded	the	paintComponent	method
yet.	We’ll	do	that	now.

5.	Use	 these	 class	 level	 variable	 declarations	 (to	 keep	 track	 of	what	 has	 been
drawn):	static	int	numberPoints	=	0;

static	int[]	x	=	new	int[50];
static	int[]	y	=	new	int[50];
final	int	maxPoints	=	50;
Random	myRandom	=	new	Random();

Note	 three	 variables	 (numberPoints,	x,	y)	 are	 prefaced	with	 static	 since	 they

will	be	used	in	the	paintComponent	method.

6.	 Use	 this	 code	 in	 the	 drawButtonActionPerformed	 event	 method:	 private
void	drawButtonActionPerformed(ActionEvent	e)	{

//	add	new	random	point	to	line	array	and	redraw	//	create	two	points
first	time	through
do

{

x[numberPoints]	=
myRandom.nextInt(drawPanel.getWidth());

y[numberPoints]	=
myRandom.nextInt(drawPanel.getHeight());

numberPoints++;

}

while	(numberPoints	<	2);
drawPanel.repaint();
//	no	more	clicks	if	maxpoints	exceeded
if	(numberPoints	==	maxPoints)

{

drawButton.setEnabled(false);

}

}

With	each	click	of	the	button,	a	new	point	is	added	to	the	array	to	draw.

7.	 Use	 this	 code	 in	 clearButtonActionPerformed	 event	 –	 this	 clears	 the
graphics	 object	 and	 allows	 new	 line	 segments	 to	 be	 drawn:	 private	 void
clearButtonActionPerformed(ActionEvent	e)	{

//	clear	region
numberPoints	=	0;
drawButton.setEnabled(true);
drawPanel.repaint();

}

8.	Use	 this	 code	 in	 the	paintComponent	method	 in	 the	GraphicsPanel	 class.
This	code	draws	the	line	segments	defined	by	the	x	and	y	arrays:	public	void
paintComponent(Graphics	g)

{

//	create	graphics	object	and	connect	points	in	x,	y	arrays
Line2D.Double	myLine;	Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
g2D.setPaint(Color.BLUE);
g2D.setStroke(new	BasicStroke(3));
if	(DrawingLines.numberPoints	!=	0)

{

for	(int	i	=	1;	i	<	DrawingLines.numberPoints;	i++)	{
myLine	=	new	Line2D.Double(DrawingLines.x[i	-	1],

DrawingLines.y[i	-	1],	DrawingLines.x[i],	DrawingLines.y[i]);
g2D.draw(myLine);

}

}

g2D.dispose();

}

Notice	we	draw	blue	lines	(setPaint),	3	pixels	wide	(setStroke).

The	final	DrawingLines.java	code	listing	(code	added	to	framework	is	shaded):

/	*
*	DrawingLines.java

*/

package	drawinglines;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.geom.*;
import	java.awt.event.*;
import	java.util.Random;
public	class	DrawingLines	extends	JFrame

{

GraphicsPanel	drawPanel	=	new	GraphicsPanel();	JButton	drawButton
=	new	JButton();
JButton	clearButton	=	new	JButton();
static	int	numberPoints	=	0;
static	int[]	x	=	new	int[50];
static	int[]	y	=	new	int[50];
final	int	maxPoints	=	50;
Random	myRandom	=	new	Random();
public	static	void	main(String	args[])

{

//construct	frame
new	DrawingLines().show();

}

public	DrawingLines()

{

//	code	to	build	the	form
setTitle("Drawing	Lines");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());
//	position	controls	(establish	event	methods)	GridBagConstraints
gridConstraints	=	new	GridBagConstraints();
drawPanel.setPreferredSize(new	Dimension(300,	200));
drawPanel.setBackground(Color.WHITE);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(drawPanel,	gridConstraints);
drawButton.setText("Draw	Lines");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(drawButton,	gridConstraints);
drawButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

drawButtonActionPerformed(e);

}

});

clearButton.setText("Clear	Lines");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
getContentPane().add(clearButton,	gridConstraints);
clearButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

clearButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}
private	void	drawButtonActionPerformed(ActionEvent	e)	{

//	add	new	random	point	to	line	array	and	redraw	//	create	two	points
first	time	through
do

{

x[numberPoints]	=
myRandom.nextInt(drawPanel.getWidth());

y[numberPoints]	=
myRandom.nextInt(drawPanel.getHeight());

numberPoints++;

}

while	(numberPoints	<	2);
drawPanel.repaint();
//	no	more	clicks	if	maxpoints	exceeded
if	(numberPoints	==	maxPoints)

{

drawButton.setEnabled(false);

}

}

private	void	clearButtonActionPerformed(ActionEvent	e)	{
//	clear	region
numberPoints	=	0;
drawButton.setEnabled(true);
drawPanel.repaint();

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

class	GraphicsPanel	extends	JPanel

{

public	GraphicsPanel()

{

}

public	void	paintComponent(Graphics	g)

{

//	create	graphics	object	and	connect	points	in	x,	y	arrays
Line2D.Double	myLine;

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
g2D.setPaint(Color.BLUE);
g2D.setStroke(new	BasicStroke(3));
if	(DrawingLines.numberPoints	!=	0)

{

for	(int	i	=	1;	i	<	DrawingLines.numberPoints;	i++)	{
myLine	=	new	Line2D.Double(DrawingLines.x[i	-	1],

DrawingLines.y[i	-	1],	DrawingLines.x[i],	DrawingLines.y[i]);
g2D.draw(myLine);

}

}

g2D.dispose();

}

}

Run	 the	 project.	 Try	 drawing	 (click	Draw	Lines	 several	 times)	 and	 clearing
random	 line	 segments.	Note	 that	 the	graphics	 are	persistent.	Try	obscuring	 the
form	 to	 prove	 this.	 Here’s	 a	 run	 I	 made	 drawing	 several	 line	 segments:	

Save	 the	 project	 application	 (saved	 as	Example7-5	 project	 in	 \LearnJava\LJ
Code\Class	7\	program	group).

Rectangle2D	Shape
We	 now	 begin	 looking	 at	 two-dimensional	 shapes.	 The	 first	 is	 a	 rectangle,
represented	by	the	Rectangle2D	shape.	To	specify	this	shape,	you	need	to	know
the	Cartesian	location	of	the	upper	left	corner	of	the	rectangle	(x,	y),	the	width	of
the	 rectangle,	 w,	 and	 the	 rectangle	 height,	 h:	

If	 the	 rectangle	 is	 named	 myRectangle,	 the	 corresponding	 shape	 is	 created
using:	Rectangle2D.Double	myRectangle	=	new	Rectangle2D.Double(x,	y,	w,
h);	 Each	 argument	 value	 is	 a	double	 type	 (there	 is	 also	 a	Rectangle2D.Float
shape,	where	each	argument	is	a	float	type).	Once	created,	the	rectangle	is	drawn
(in	 a	 previously	 created	 Graphics2D	 object,	 g2D)	 using	 the	 draw	 method:
g2D.draw(myRectangle);

The	rectangle	will	be	drawn	using	the	current	stroke	and	paint	attributes.

Say	 we	 have	 a	 panel	 (myPanel)	 of	 dimension	 (300,	 200).	 To	 draw	 a	 black
rectangle	 (myRectangle)	 in	 that	 panel,	 with	 a	 line	 width	 of	 1	 (the	 default
stroke),	 starting	 at	 (40,	 40),	 with	width	 150	 and	 height	 100,	 the	 Java	 code
would	 be:	 Graphics2D	 g2D	 =	 (Graphics2D)	 myPanel.getGraphics();
Rectangle2D.Double	myRectangle	=	new
Rectangle2D.Double(40,	40,	150,	100);
g2D.setPaint(Color.BLACK);
g2D.draw(myRectangle);
g2D.dispose();

This	produces:

The	 rectangle	 we	 just	 drew	 is	 pretty	 boring.	 It	 would	 be	 nice	 to	 have	 the
capability	 to	 fill	 it	 with	 a	 color	 and/or	 pattern.	 Filling	 of	 shapes	 in	 Java	 2D
graphics	is	done	with	the	fill	method.	If	the	graphics	object	is	g2D,	and	the	shape
myShape,	the	syntax	to	fill	the	shape	is:	g2D.fill(myRectangle);

The	rectangle	will	be	filled	with	the	current	paint	attribute.	For	now,	we	will	just
fill	 the	 shapes	 with	 solid	 colors.	 In	 Class	 8,	 we	 will	 learn	 how	 to	 fill	 with
patterns	and	textures.

To	 fill	 our	 example	 rectangle	with	 red,	we	 use	 this	 code:	Graphics2D	g2D	=
(Graphics2D)	myPanel.getGraphics();	Rectangle2D.Double	myRectangle	 =
new
Rectangle2D.Double(40,	40,	150,	100);
g2D.setPaint(Color.RED);
g2D.fill(myRectangle);
g2D.dispose();

This	produces:

Notice	the	fill	method	fills	 the	entire	region	with	the	selected	color.	If	you	had
previously	used	the	draw	method	to	form	a	bordered	rectangle,	the	fill	will	blot
out	that	border.	If	you	want	a	bordered,	filled	region,	do	the	fill	operation	first,
then	the	draw	operation.

RoundRectangle2D	Shape
There	 is	 one	 other	 ‘rectangle’	 shape,	 the	 RoundRectangle2D.	 It	 is	 like	 the
rectangle,	 with	 rounded	 corners.	 It	 is	 created	 with	 a	 constructor	 similar	 to
Rectangle2D	with	 two	additional	arguments,	 the	corner	width	(cw)	and	corner

height	(cw):	

If	 the	 rectangle	 is	 named	 myRoundRectangle,	 the	 corresponding	 shape	 is
created	 using:	 RoundRectangle2D.Double	 myRoundRectangle	 =	 new
RoundRectangle2D.Double(x,	y,	w,	h,	cw,	ch);

Each	argument	value	is	a	double	type	(there	is	also	a	RoundRectangle2D.Float
shape,	where	each	argument	is	a	float	type).

Once	created,	the	round	rectangle	is	drawn	(in	a	previously	created	Graphics2D
object,	g2D)	using	the	draw	method:	g2D.draw(myRoundRectangle);

The	rectangle	will	be	drawn	using	 the	current	stroke	and	paint	attributes.	The
rectangle	is	filled	with	the	fill	method:	g2D.fill(myRoundRectangle);

The	rectangle	is	filled	using	the	current	paint	attribute.

Let’	s	return	to	our	example	panel	(myPanel)	of	dimension	(300,	200).	To	draw
a	 black	 bordered,	 green	 filled	 round	 rectangle	 (myRectangle)	 in	 that	 panel,
with	 a	 line	width	 of	 3,	 starting	 at	 (40,	 40),	 with	width	 150	 and	 height	 100,
corner	width	30	 and	corner	height	20,	 the	Java	code	would	be:	Graphics2D
g2D	 =	 (Graphics2D)	 myPanel.getGraphics();	 RoundRectangle2D.Double

myRoundRectangle	=	new	RoundRectangle2D.Double(40,	40,	150,	100,	30,
20);	g2D.setPaint(Color.GREEN);
g2D.fill(myRoundRectangle);
g2D.setStroke(new	BasicStroke(3));
g2D.setPaint(Color.BLACK);
g2D.draw(myRoundRectangle);
g2D.dispose();

This	produces:

Notice	we	filled	the	shape	before	drawing	it	to	maintain	the	border.

Example	7-6
Drawing	Rectangles

Start	a	new	empty	project	in	NetBeans.	Name	the	project	DrawingRectangles.
Delete	 the	 default	 code	 in	 Java	 file	 named	 DrawingRectangles.	 In	 this
application,	we	will	draw	and	 fill	 random	rectangles	and	 round	 rectangles	 in	a
panel	 control.	 The	 rectangles	 will	 be	 filled	 with	 random	 colors.	 The	 finished

frame:	

1.	 Add	 a	 panel	 control	 and	 three	 button	 controls	 to	 the	 frame.	 The

GridBagLayout	is:	

Set	the	following	properties:

DrawingRectangles	Frame:
title Drawing	Rectangles
resizable false

panelDraw	(a	GraphicsPanel	class):
preferredSize (300,	200)
background WHITE
gridx 0
gridy 0
insets (10,	10,	10,	10)

drawButton:
text Draw	Rectangle
gridx 0
gridy 1

fillButton:
text Fill	Rectangle
enabled false
gridx 0
gridy 2
insets (5,	0,	0,	0)

clearButton:
text Clear	Rectangle
enabled false
gridx 0
gridy 2
insets (5,	0,	5,	0)

2.	Build	the	basic	framework	code:	/	*

*	DrawingRectangles.java

*/

package	drawingrectangles;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.geom.*;
import	java.awt.event.*;
import	java.util.Random;
public	class	DrawingRectangles	extends	JFrame

{

public	static	void	main(String	args[])

{

//construct	frame
new	DrawingRectangles().show();

}

public	DrawingRectangles()

{

//	code	to	build	the	form
setTitle("Drawing	Rectangles");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

});

getContentPane().setLayout(new	GridBagLayout());	pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-getWidth())),	(int)	(0.5

(screenSize.height	-getHeight())),	getWidth(),	getHeight());	}
private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	to	check	the	code.

3.	 Now,	 we	 add	 controls	 and	 methods.	 Add	 these	 class	 level	 declarations:
GraphicsPanel	drawPanel	=	new	GraphicsPanel();	JButton	drawButton
=	new	JButton();

JButton	fillButton	=	new	JButton();
JButton	clearButton	=	new	JButton();
static	Rectangle2D.Double	myRectangle;
static	RoundRectangle2D.Double	myRoundRectangle;	Position	and	add
controls	and	event	methods:

GridBagConstraints	gridConstraints	=	new
GridBagConstraints();
drawPanel.setPreferredSize(new	Dimension(300,	200));
drawPanel.setBackground(Color.WHITE);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(drawPanel,	gridConstraints);
drawButton.setText("Draw	Rectangle");

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(drawButton,	gridConstraints);
drawButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

drawButtonActionPerformed(e);

}

});

fillButton.setText("Fill	Rectangle");
fillButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(5,	0,	0,	0);
getContentPane().add(fillButton,	gridConstraints);
fillButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

fillButtonActionPerformed(e);

}

});

clearButton.setText("Clear	Rectangle");
clearButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;

gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
getContentPane().add(clearButton,	gridConstraints);
clearButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

clearButtonActionPerformed(e);

}

});

And,	add	the	three	empty	event	methods:

private	void	drawButtonActionPerformed(ActionEvent	e)	{

}

private	void	fillButtonActionPerformed(ActionEvent	e)	{

}

private	void	clearButtonActionPerformed(ActionEvent	e)	{

}

4.	Add	the	GraphicsPanel	class	(from	Appendix	I)	after	the	main	class	to	allow
for	 persistent	 graphics	 using	 the	 paintComponent	 method:	 class
GraphicsPanel	extends	JPanel

{

public	GraphicsPanel()

{

}

public	void	paintComponent(Graphics	g)

{

}

}

Run	to	test	the	control	layout:

The	panel	appears	gray	because	we	haven’t	coded	the	paintComponent	method
yet.	We’ll	do	that	now.

5.	Use	these	class	level	variable	declarations:	static	boolean	isRound	=	false;

static	boolean	isDrawn	=	false;
static	boolean	isFilled	=	false;
static	int	fillRed,	fillGreen,	fillBlue;
Random	myRandom	=	new	Random();

6.	 Use	 this	 code	 in	 the	 drawButtonActionPerformed	 event	 method:	 private
void	drawButtonActionPerformed(ActionEvent	e)	{

//	generate	new	random	rectangle
//	rectangle	is	centered,	taking	up	20	to	90	percent	of	each	dimension

int	w	=	(myRandom.nextInt(71)	+	20)	*	drawPanel.getWidth()	/	100;	int	h
=	(myRandom.nextInt(71)	+	20)	*	drawPanel.getHeight()	/	100;	int	x	=
(int)	(0.5	*	(drawPanel.getWidth()	-	w));	int	y	=	(int)	(0.5	*
(drawPanel.getHeight()	-	h));	//	50	percent	chance	of	rounded	rectangle

if	(myRandom.nextInt(100)	<=	49)

{

isRound	=	true;
//	corner	width	and	heights	are	10	to	30	percent	of	corresponding

values	int	cw	=	(myRandom.nextInt(21)	+	10)	*	drawPanel.getWidth()	/
100;	int	ch	=	(myRandom.nextInt(21)	+	10)	*	drawPanel.getHeight()	/
100;	myRoundRectangle	=	new	RoundRectangle2D.Double(x,	y,	w,	h,	cw,
ch);	}

else

{

isRound	=	false;
myRectangle	=	new	Rectangle2D.Double(x,	y,	w,	h);	}

isDrawn	=	true;
isFilled	=	false;
drawButton.setEnabled(false);
fillButton.setEnabled(true);
clearButton.setEnabled(true);
drawPanel.repaint();

}

This	code	establishes	either	a	rectangle	or	round	rectangle	shape	and	draws	that
shape.

7.	Use	this	code	in	the	fillButtonActionPerformed	event	method:	private	void
fillButtonActionPerformed(ActionEvent	e)	{

//	fill	rectangle
isFilled	=	true;
drawButton.setEnabled(false);
//	pick	colors	at	random
fillRed	=	myRandom.nextInt(256);
fillGreen	=	myRandom.nextInt(256);
fillBlue	=	myRandom.nextInt(256);
drawPanel.repaint();

}

Here,	random	colors	are	picked	and	the	existing	rectangle	is	filled.

8.	 Use	 this	 code	 in	 clearButtonActionPerformed	 method	 –	 this	 clears	 the
graphics	 object	 and	 allows	 another	 rectangle	 to	 be	 drawn:	 private	 void
clearButtonActionPerformed(ActionEvent	e)	{

//	clear	region
isDrawn	=	false;
isFilled	=	false;
drawButton.setEnabled(true);
fillButton.setEnabled(false);
clearButton.setEnabled(false);
drawPanel.repaint();

}

9.	Use	 this	 code	 in	 the	paintComponent	method	 in	 the	GraphicsPanel	 class.
This	 code	 draws/fills	 the	 rectangle	 if	 it	 is	 in	 the	 panel	 control:	public	 void
paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
//	fill	before	draw	to	keep	border

if	(DrawingRectangles.isFilled)

{

//	fill	with	random	color
g2D.setPaint(new	Color(DrawingRectangles.fillRed,

DrawingRectangles.fillGreen,	DrawingRectangles.fillBlue));	if
(DrawingRectangles.isRound)

{

g2D.fill(DrawingRectangles.myRoundRectangle);

}

else

{

g2D.fill(DrawingRectangles.myRectangle);

}

}

if	(DrawingRectangles.isDrawn)

{

//	draw	with	pen	3	pixels	wide
g2D.setStroke(new	BasicStroke(3));
g2D.setPaint(Color.BLACK);
if	(DrawingRectangles.isRound)

{

g2D.draw(DrawingRectangles.myRoundRectangle);

}

else

{

g2D.draw(DrawingRectangles.myRectangle);

}

}

g2D.dispose();

}

Notice	we	draw	black	border	lines	(setPaint),	3	pixels	wide	(setStroke).

The	 final	DrawingRectangles.java	 code	 listing	 (code	 added	 to	 framework	 is
shaded):	/	*
*	DrawingRectangles.java

*/

package	drawingrectangles;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.geom.*;
import	java.awt.event.*;
import	java.util.Random;
public	class	DrawingRectangles	extends	JFrame

{

GraphicsPanel	drawPanel	=	new	GraphicsPanel();	JButton	drawButton
=	new	JButton();
JButton	fillButton	=	new	JButton();
JButton	clearButton	=	new	JButton();
static	Rectangle2D.Double	myRectangle;

static	RoundRectangle2D.Double	myRoundRectangle;	static	boolean
isRound	=	false;
static	boolean	isDrawn	=	false;
static	boolean	isFilled	=	false;
static	int	fillRed,	fillGreen,	fillBlue;
Random	myRandom	=	new	Random();
public	static	void	main(String	args[])

{

//construct	frame
new	DrawingRectangles().show();

}

public	DrawingRectangles()

{

//	code	to	build	the	form
setTitle("Drawing	Rectangles");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());
//	position	controls	(establish	event	methods)	GridBagConstraints

gridConstraints	=	new
GridBagConstraints();
drawPanel.setPreferredSize(new	Dimension(300,	200));
drawPanel.setBackground(Color.WHITE);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(drawPanel,	gridConstraints);
drawButton.setText("Draw	Rectangle");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(drawButton,	gridConstraints);
drawButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

drawButtonActionPerformed(e);

}

});

fillButton.setText("Fill	Rectangle");
fillButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(5,	0,	0,	0);
getContentPane().add(fillButton,	gridConstraints);
fillButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

fillButtonActionPerformed(e);

}

});

clearButton.setText("Clear	Rectangle");
clearButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
getContentPane().add(clearButton,	gridConstraints);
clearButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

clearButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}
private	void	drawButtonActionPerformed(ActionEvent	e)	{

//	generate	new	random	rectangle
//	rectangle	is	centered,	taking	up	20	to	90	percent	of	each	dimension

int	w	=	(myRandom.nextInt(71)	+	20)	*	drawPanel.getWidth()	/	100;	int	h	=
(myRandom.nextInt(71)	+	20)	*	drawPanel.getHeight()	/	100;	int	x	=	(int)
(0.5	*	(drawPanel.getWidth()	-	w));	int	y	=	(int)	(0.5	*
(drawPanel.getHeight()	-	h));	//	50	percent	chance	of	rounded	rectangle

if	(myRandom.nextInt(100)	<=	49)

{

isRound	=	true;
//	corner	width	and	heights	are	10	to	30	percent	of	corresponding

values	int	cw	=	(myRandom.nextInt(21)	+	10)	*	drawPanel.getWidth()	/
100;	int	ch	=	(myRandom.nextInt(21)	+	10)	*	drawPanel.getHeight()	/	100;
myRoundRectangle	=	new	RoundRectangle2D.Double(x,	y,	w,	h,	cw,	ch);	}

else

{

isRound	=	false;
myRectangle	=	new	Rectangle2D.Double(x,	y,	w,	h);	}

isDrawn	=	true;
isFilled	=	false;
drawButton.setEnabled(false);
fillButton.setEnabled(true);
clearButton.setEnabled(true);
drawPanel.repaint();

}

private	void	fillButtonActionPerformed(ActionEvent	e)	{
//	fill	rectangle
isFilled	=	true;
drawButton.setEnabled(false);
//	pick	colors	at	random
fillRed	=	myRandom.nextInt(256);
fillGreen	=	myRandom.nextInt(256);
fillBlue	=	myRandom.nextInt(256);
drawPanel.repaint();

}

private	void	clearButtonActionPerformed(ActionEvent	e)	{
//	clear	region

isDrawn	=	false;
isFilled	=	false;
drawButton.setEnabled(true);
fillButton.setEnabled(false);
clearButton.setEnabled(false);
drawPanel.repaint();

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

class	GraphicsPanel	extends	JPanel

{

public	GraphicsPanel()

{

}

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
//	fill	before	draw	to	keep	border
if	(DrawingRectangles.isFilled)

{

{

//	fill	with	random	color
g2D.setPaint(new	Color(DrawingRectangles.fillRed,

DrawingRectangles.fillGreen,	DrawingRectangles.fillBlue));	if
(DrawingRectangles.isRound)

{

g2D.fill(DrawingRectangles.myRoundRectangle);

}

else

{

g2D.fill(DrawingRectangles.myRectangle);

}

}

if	(DrawingRectangles.isDrawn)

{

//	draw	with	pen	3	pixels	wide
g2D.setStroke(new	BasicStroke(3));
g2D.setPaint(Color.BLACK);
if	(DrawingRectangles.isRound)

{

g2D.draw(DrawingRectangles.myRoundRectangle);

}

else

{

g2D.draw(DrawingRectangles.myRectangle);

}

}

g2D.dispose();

}

}

Run	 the	 project.	 Try	 drawing	 and	 filling	 rectangles.	 Notice	 how	 the	 random
colors	work.	Notice	how	the	button	controls	are	enabled	and	disabled	at	different
points.	Note	that	 the	graphics	are	persistent.	Here’s	a	rounded	rectangle	I	drew

and	filled:	

Save	the	project	(saved	as	Example7-6	project	in	\LearnJava\LJ	Code\Class	7\
program	group

Ellipse2D	Shape
Ellipses	can	be	defined,	drawn	and	filled	using	methods	nearly	 identical	 to	 the
rectangle	methods.	 To	 specify	 an	 ellipse,	 you	 describe	 an	 enclosing	 rectangle,
specifying	 the	upper	 left	 corner	 (x,	y),	 the	width	 (w)	 and	 the	height	 (h)	of	 the

enclosing	rectangle:	

If	 the	 ellipse	 is	 named	myEllipse,	 the	 corresponding	 shape	 is	 created	 using:
Ellipse2D.Double	 myEllipse	 =	 new	 Ellipse2D.Double(x,	 y,	 w,	 h);	 Each
argument	value	is	a	double	type	(there	is	also	an	Ellipse2D.Float	shape,	where
each	argument	is	a	float	type).	Once	created,	the	ellipse	is	drawn	(in	a	previously
created	 Graphics2D	 object,	 g2D)	 using	 the	 draw	 method:
g2D.draw(myEllipse);

The	ellipse	will	be	drawn	using	the	current	stroke	and	paint	attributes.

Again,	we	have	a	panel	 (myPanel)	of	dimension	 (300,	200).	To	draw	a	black
ellipse	 (myEllipse)	 in	 that	 panel,	 with	 a	 line	width	 of	 1	 (the	 default	 stroke),
starting	 at	 (40,	 40),	with	width	150	 and	height	100,	 the	 Java	 code	would	 be:
Graphics2D	g2D	=	(Graphics2D)	myPanel.getGraphics();	Ellipse2D.Double
myEllipse	 =	 new	 Ellipse2D.Double(40,	 40,	 150,	 100);
g2D.setPaint(Color.BLACK);
g2D.draw(myEllipse);
g2D.dispose();

This	produces:

The	surrounding	 rectangle	 is	not	drawn.	 It	 is	 shown	 to	display	how	 the	ellipse
fits.

The	ellipse	is	filled	with	the	fill	method:	g2D.fill(myEllipse);

The	shape	will	be	filled	with	the	current	paint	attribute.

To	 fill	our	example	ellipse	with	yellow,	we	use	 this	code:	Graphics2D	g2D	=
(Graphics2D)	 myPanel.getGraphics();	 Ellipse2D.Double	 myEllipse	 =	 new
Ellipse2D.Double(40,	40,	150,	100);	g2D.setPaint(Color.YELLOW);
g2D.fill(myEllipse);
g2D.dispose();

This	produces:

Like	the	rectangle	methods,	notice	the	fill	operation	erases	any	border	that	may
have	been	there	after	a	draw	operation.	For	a	bordered,	filled	ellipse,	do	the	fill,
then	the	draw.

Example	7-7
Drawing	Ellipses

Start	 a	 new	 empty	 project	 in	NetBeans.	 Name	 the	 project	DrawingEllipses.
Delete	the	default	code	in	Java	file	named	DrawingEllipses.	This	example	will
be	nearly	identical	to	Example	7-6,	so	rather	than	build	everything	from	scratch,
we	 will	 modify	 that	 example.	 In	 this	 project,	 we	 will	 draw	 and	 fill	 random
ellipses	 in	 a	panel	 control.	The	ellipses	will	 be	 filled	with	 random	colors.	The

finished	frame	will	look	like	this:	

Copy	 the	 code	 from	 DrawingRectangles.java	 into	 the	 empty
DrawingEllipses.java	file.	Make	these	changes:

➢	 Change	 all	 instances	 of	DrawingRectangles	 to	DrawingEllipses.	 I	 found
fifteen	such	instances.

➢	 Replace	 the	 two	 statements	 creating	 rectangle	 shapes	 with	 one	 creating	 an
ellipse	shape:	static	Ellipse2D.Double	myEllipse;

Delete	the	statement	declaring	the	isRound	variable.

➢	Change	the	frame	title	to	Drawing	Ellipses.
➢	Change	the	word	Rectangle	to	Ellipse	on	the	three	button	controls.
➢	 Change	 the	 drawButtonActionPerformed	 method	 (we	 removed	 code	 for
round	 rectangles	 and	 changed	 rectangle	 references	 to	 ellipse	 references):
private	void	drawButtonActionPerformed(ActionEvent	e)	{

//	generate	new	random	ellipse
//	ellipse	is	centered,	taking	up	20	to	90	percent	of	each	dimension	int
w	=	(myRandom.nextInt(71)	+	20)	*	drawPanel.getWidth()	/	100;	int	h
=	(myRandom.nextInt(71)	+	20)	*	drawPanel.getHeight()	/	100;	int	x	=
(int)	(0.5	*	(drawPanel.getWidth()	-	w));	int	y	=	(int)	(0.5	*
(drawPanel.getHeight()	-	h));	myEllipse	=	new	Ellipse2D.Double(x,	y,
w,	h);
isDrawn	=	true;
isFilled	=	false;
drawButton.setEnabled(false);
fillButton.setEnabled(true);
clearButton.setEnabled(true);
drawPanel.repaint();

}

➢	In	fillButtonActionPerformed	method,	change	the	rectangle	reference	in	the
comment	to	ellipse.

➢	 Modify	 the	 paintComponent	 method	 (again,	 round	 rectangle	 drawing	 is
deleted	 and	 rectangle	 references	 are	 changed	 to	 ellipse	 references):	 public
void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
//	fill	before	draw	to	keep	border
if	(DrawingEllipses.isFilled)

{

//	fill	with	random	color
g2D.setPaint(new	Color(DrawingEllipses.fillRed,
DrawingEllipses.fillGreen,	DrawingEllipses.fillBlue));
g2D.fill(DrawingEllipses.myEllipse);

}

if	(DrawingEllipses.isDrawn)

{

//	draw	with	pen	3	pixels	wide
g2D.setStroke(new	BasicStroke(3));
g2D.setPaint(Color.BLACK);
g2D.draw(DrawingEllipses.myEllipse);

}

g2D.dispose();

}

The	 complete	 DrawingEllipses.java	 code	 (modifications	 to
DrawingRectangles.java	are	shaded):	/	*
*	DrawingEllipses.java
*/	package	drawingellipses;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.geom.*;
import	java.awt.event.*;
import	java.util.Random;

public	class	DrawingEllipses	extends	JFrame

{

GraphicsPanel	drawPanel	=	new	GraphicsPanel();	JButton	drawButton	=

new	JButton();
JButton	fillButton	=	new	JButton();
JButton	clearButton	=	new	JButton();
static	Ellipse2D.Double	myEllipse;
static	boolean	isDrawn	=	false;
static	boolean	isFilled	=	false;
static	int	fillRed,	fillGreen,	fillBlue;
Random	myRandom	=	new	Random();

public	static	void	main(String	args[])

{

//construct	frame
new	DrawingEllipses().show();

}

public	DrawingEllipses()

{

//	code	to	build	the	form
setTitle("Drawing	Ellipses");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

});

getContentPane().setLayout(new	GridBagLayout());	//	position
controls	(establish	event	methods)	GridBagConstraints
gridConstraints	=	new

GridBagConstraints();
drawPanel.setPreferredSize(new	Dimension(300,	200));
drawPanel.setBackground(Color.WHITE);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(drawPanel,	gridConstraints);
drawButton.setText("Draw	Ellipse");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(drawButton,	gridConstraints);
drawButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

drawButtonActionPerformed(e);

}

});

fillButton.setText("Fill	Ellipse");
fillButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(5,	0,	0,	0);
getContentPane().add(fillButton,	gridConstraints);
fillButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

fillButtonActionPerformed(e);

}

});

clearButton.setText("Clear	Ellipse");
clearButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
getContentPane().add(clearButton,	gridConstraints);
clearButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

clearButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}

private	void	drawButtonActionPerformed(ActionEvent	e)	{
//	generate	new	random	ellipse
//	ellipse	is	centered,	taking	up	20	to	90	percent	of	each	dimension

int	w	=	(myRandom.nextInt(71)	+	20)	*	drawPanel.getWidth()	/	100;
int	h	=	(myRandom.nextInt(71)	+	20)	*	drawPanel.getHeight()	/	100;
int	x	=	(int)	(0.5	*	(drawPanel.getWidth()	-	w));	int	y	=	(int)	(0.5	*
(drawPanel.getHeight()	-	h));
myEllipse	=	new	Ellipse2D.Double(x,	y,	w,	h);
isDrawn	=	true;
isFilled	=	false;
drawButton.setEnabled(false);
fillButton.setEnabled(true);
clearButton.setEnabled(true);
drawPanel.repaint();

}

private	void	fillButtonActionPerformed(ActionEvent	e)	{
//	fill	ellipse
isFilled	=	true;
drawButton.setEnabled(false);
//	pick	colors	at	random
fillRed	=	myRandom.nextInt(256);
fillGreen	=	myRandom.nextInt(256);
fillBlue	=	myRandom.nextInt(256);
drawPanel.repaint();

}

private	void	clearButtonActionPerformed(ActionEvent	e)	{
//	clear	region
isDrawn	=	false;
isFilled	=	false;
drawButton.setEnabled(true);
fillButton.setEnabled(false);
clearButton.setEnabled(false);
drawPanel.repaint();

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

class	GraphicsPanel	extends	JPanel

{

public	GraphicsPanel()

{

}

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
//	fill	before	draw	to	keep	border
if	(DrawingEllipses.isFilled)

{

//	fill	with	random	color
g2D.setPaint(new	Color(DrawingEllipses.fillRed,

DrawingEllipses.fillGreen,	DrawingEllipses.fillBlue));
g2D.fill(DrawingEllipses.myEllipse);

}

if	(DrawingEllipses.isDrawn)

{

//	draw	with	pen	3	pixels	wide
g2D.setStroke(new	BasicStroke(3));
g2D.setPaint(Color.BLACK);
g2D.draw(DrawingEllipses.myEllipse);

}

g2D.dispose();

}

}

Run	the	project.	Try	drawing	and	filling	ellipses.	Notice	how	the	random	colors
work.	 Notice	 how	 the	 button	 controls	 are	 enabled	 and	 disabled	 at	 different
points.	Note	that	the	graphics	are	persistent.	Here’s	a	blue	filled	ellipse	I	drew:	

Save	the	project	(saved	as	Example7-7	project	in	\LearnJava\LJ	Code\Class	7\
program	group).

Arc2D	Shape
Arc	segments	can	be	defined	using	the	Arc2D	shape.	To	specify	an	arc,	you	first
describe	an	enclosing	rectangle,	specifying	the	upper	left	corner	(x,	y),	the	width
(w)	and	the	height	(h)	of	the	enclosing	rectangle.	You	then	specify	a	start	angle
(in	 degrees),	 the	 angular	 extent	 of	 the	 arc	 (in	 degrees)	 and	 the	 arcType.	 A
diagram	 illustrates:	

If	 the	 arc	 is	 named	 myArc,	 the	 corresponding	 shape	 is	 created	 using:
Arc2D.Double	 myArc	 =	 new	 Arc2D.Double(x,	 y,	 w,	 h,	 start,	 extent,
arcType);	Each	argument	value	is	a	double	type	(there	is	also	an	Arc2D.Float
shape,	where	each	argument	is	a	float	type).

The	 start	 angle	 is	measured	 counter-clockwise	 from	 the	horizontal	 axis	 to	 the
first	 side	 of	 the	 arc.	extent	 is	 the	 counter-clockwise	 angle	 starting	 at	 start	 and
ending	at	 the	second	side	of	 the	arc.	Notice	 if	start	=	0	and	extent	=	360,	 the
Arc2D	shape	is	the	same	figure	as	Ellipse2D	(you	get	the	whole	ellipse!).

There	are	three	different	values	for	the	arcType:

Arc2D.OPEN Ends	of	arc	are	not	connected
Arc2D.CHORD Ends	of	arc	are	connected	by	a	straight	line
Arc2D.PIE Ends	of	arc	are	connected	by	straight	lines	to

center	of	bounding	ellipse	forming	a	pie	segment.

We	will	usually	use	Arc2D.PIE	to	draw	and	fill	pie	segments.

Once	created,	the	arc	is	drawn	(in	a	previously	created	Graphics2D	object,	g2D)
using	the	draw	method:	g2D.draw(myArc);

The	arc	will	be	drawn	using	the	current	stroke	and	paint	attributes.

We	 use	 a	 panel	 (myPanel)	 of	 dimension	 (200,	 200).	 To	 draw	 a	 black	 pie
segment	(myArc)	in	that	panel,	with	a	line	width	of	1	(the	default	stroke),	using
a	start	angle	of	20,	an	extent	of	45,	the	Java	code	would	be:	Graphics2D	g2D	=
(Graphics2D)	 myPanel.getGraphics();	 Arc2D.Double	 myArc	 =	 new
Arc2D.Double(0,	 0,	 200,	 200,	 20,	 45,	 Arc2D.PIE);
g2D.setPaint(Color.BLACK);
g2D.draw(myArc);
g2D.dispose();

This	produces:

The	pie	segment	(arc)	is	filled	with	the	fill	method:	g2D.fill(myArc);

The	shape	will	be	filled	with	the	current	paint	attribute.

To	fill	our	example	segment	with	magenta,	we	use	this	code:	Graphics2D	g2D
=	 (Graphics2D)	 myPanel.getGraphics();	 Arc2D.Double	 myArc	 =	 new

Arc2D.Double(0,	 0,	 200,	 200,	 20,	 45,	 Arc2D.PIE);
g2D.setPaint(Color.MAGENTA);
g2D.fill(myArc);
g2D.dispose();

This	produces:

Like	 the	 rectangle	 and	 ellipse	 methods,	 notice	 the	 fill	 operation	 erases	 any
border	 that	may	have	been	 there	after	a	draw	operation.	For	a	bordered,	 filled
pie	segment,	do	the	fill,	then	the	draw.

Example	7-8
Drawing	Pie	Segments

Start	a	new	empty	project	 in	NetBeans.	Name	 the	project	DrawingPie.	Delete
the	 default	 code	 in	 Java	 file	 named	DrawingPie.	 In	 this	 application,	 we	 will
draw	an	ellipse	(in	a	panel	control)	and	fill	it	with	a	random	number	(2	to	6)	of
pie	segments.	Each	segment	will	be	a	different	color.	The	finished	frame	looks

like	this:	

1.	 Add	 a	 panel	 control	 and	 two	 button	 controls	 to	 the	 frame.	 The

GridBagLayout	is:	

PictureBox1

Set	the	following	properties:

DrawingPie	Frame:
title Drawing	Pie	Segments
resizable false

panelDraw	(a	GraphicsPanel	class):
preferredSize (250,	250)
background WHITE
gridx 0
gridy 0
insets (10,	10,	10,	10)

drawButton:
text Draw/Fill	Pie
gridx 0
gridy 1

clearButton:
text Clear	Pie
enabled false
gridx 0
gridy 2
insets (5,	0,	5,	0)

2.	Build	the	basic	framework	code:	/	*

*	DrawingPie.java

*/

package	drawingpie;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.geom.*;
import	java.awt.event.*;
import	java.util.Random;

public	class	DrawingPie	extends	JFrame

{

public	static	void	main(String	args[])

{

//construct	frame
new	DrawingPie().show();

}

public	DrawingPie()

{

//	code	to	build	the	form
setTitle("Drawing	Pie	Segments");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-getWidth())),	(int)	(0.5

(screenSize.height	-getHeight())),	getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	to	check	the	code.

3.	 Now,	 we	 add	 controls	 and	 methods.	 Add	 these	 class	 level	 declarations:
GraphicsPanel	drawPanel	=	new	GraphicsPanel();	JButton	drawButton
=	new	JButton();

JButton	clearButton	=	new	JButton();

Position	and	add	controls	and	event	methods:

GridBagConstraints	gridConstraints	=	new
GridBagConstraints();
drawPanel.setPreferredSize(new	Dimension(250,	250));
drawPanel.setBackground(Color.WHITE);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(drawPanel,	gridConstraints);
drawButton.setText("Draw/Fill	Pie");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(drawButton,	gridConstraints);
drawButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

drawButtonActionPerformed(e);

}

});

clearButton.setText("Clear	Pie");
clearButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
getContentPane().add(clearButton,	gridConstraints);
clearButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

clearButtonActionPerformed(e);

}

});

And,	add	the	two	empty	event	methods:

private	void	drawButtonActionPerformed(ActionEvent	e)	{

}

private	void	clearButtonActionPerformed(ActionEvent	e)	{

}

4.	Add	the	GraphicsPanel	class	(from	Appendix	I)	after	the	main	class	to	allow
for	 persistent	 graphics	 using	 the	 paintComponent	 method:	 class
GraphicsPanel	extends	JPanel

{

{

public	GraphicsPanel()

{

}

public	void	paintComponent(Graphics	g)

{

}

}

Run	to	check	control	layout:

The	panel	appears	gray	because	we	haven’t	coded	the	paintComponent	method
yet.	We’ll	do	that	now.

5.	 Use	 these	 class	 level	 variable	 declarations:	 static	 Ellipse2D.Double
myEllipse;

static	int	numberSlices;
static	double[]	extent	=	new	double[6];
static	Color[]	myColors	=	new	Color[6];
static	boolean	isDrawn	=	false;
Random	myRandom	=	new	Random();

6.	Add	 these	 lines	 of	 code	 at	 the	 end	 of	 the	 constructor	 code	 to	 initialize	 the
bounding	ellipse	and	set	colors:	myEllipse	=	new	Ellipse2D.Double(20,	20,
drawPanel.getWidth()	 -	 40,	drawPanel.getHeight()	 -	 40);	myColors[0]	=
Color.RED;

myColors[1]	=	Color.GREEN;
myColors[2]	=	Color.YELLOW;
myColors[3]	=	Color.BLUE;
myColors[4]	=	Color.MAGENTA;
myColors[5]	=	Color.CYAN;

7.	 Use	 this	 code	 in	 the	 drawButtonActionPerformed	 event	 method:	 private
void	drawButtonActionPerformed(ActionEvent	e)	{

//	new	pie	-	get	number	of	slices	(2-6),	sweep	angles	and	draw	it	double
degreesRemaining	=	360;	//	choose	2	to	6	slices	at	random
numberSlices	=	myRandom.nextInt(5)	+	2;
//	for	each	slice	choose	an	extent	angle
for	(int	n	=	0;	n	<	numberSlices;	n++)

{

if	(n	<	numberSlices	-	1)

{

extent[n]	=	myRandom.nextInt((int)	(degreesRemaining	-	1))	+
1;	}

else

{

extent[n]	=	degreesRemaining;

}

degreesRemaining	-=	extent[n];

}

isDrawn	=	true;
drawButton.setEnabled(false);
clearButton.setEnabled(true);
drawPanel.repaint();

}

This	code	establishes	the	pie	segments	and	draws	them.

8.	 Use	 this	 code	 in	 clearButtonActionPerformed	 event	 –	 this	 clears	 the
graphics	 object	 and	 allows	 new	 pie	 segments	 to	 be	 drawn:	 private	 void
clearButtonActionPerformed(ActionEvent	e)	{

//	clear	region
isDrawn	=	false;
drawButton.setEnabled(true);
clearButton.setEnabled(false);
drawPanel.repaint();

}

9.	Use	 this	 code	 in	 the	paintComponent	method	 in	 the	GraphicsPanel	 class.
This	code	draws/fills	an	ellipse	with	pie	segments	if	it	is	in	the	panel	control:
public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
if	(DrawingPie.isDrawn)

{

//	draw	pie
double	startAngle	=	0;
//	for	each	slice	fill	and	draw
for	(int	n	=	0;	n	<	DrawingPie.numberSlices;	n++)	{

Arc2D.Double	myArc	=	new
Arc2D.Double(DrawingPie.myEllipse.x,
DrawingPie.myEllipse.y,
DrawingPie.myEllipse.width,
DrawingPie.myEllipse.height,	startAngle,
DrawingPie.extent[n],	Arc2D.PIE);

g2D.setPaint(DrawingPie.myColors[n]);
g2D.fill(myArc);
g2D.setPaint(Color.BLACK);
g2D.draw(myArc);
startAngle	+=	DrawingPie.extent[n];

}

//	draw	bounding	ellipse
g2D.draw(DrawingPie.myEllipse);

}

g2D.dispose();

}

Notice	how	we	accessed	the	bounding	ellipse	geometry.

The	final	DrawingPie.java	code	listing	(code	added	to	framework	is	shaded):	/
*
*	DrawingPie.java

*/

package	drawingpie;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.geom.*;
import	java.awt.event.*;
import	java.util.Random;

public	class	DrawingPie	extends	JFrame

{

GraphicsPanel	drawPanel	=	new	GraphicsPanel();	JButton	drawButton
=	new	JButton();
JButton	clearButton	=	new	JButton();
static	Ellipse2D.Double	myEllipse;
static	int	numberSlices;
static	double[]	extent	=	new	double[6];
static	Color[]	myColors	=	new	Color[6];
static	boolean	isDrawn	=	false;
Random	myRandom	=	new	Random();

public	static	void	main(String	args[])

{

//construct	frame
new	DrawingPie().show();

}

public	DrawingPie()

{

//	code	to	build	the	form
setTitle("Drawing	Pie	Segments");

setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	position	controls	(establish	event	methods)
GridBagConstraints	gridConstraints	=	new

GridBagConstraints();
drawPanel.setPreferredSize(new	Dimension(250,	250));
drawPanel.setBackground(Color.WHITE);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(drawPanel,	gridConstraints);
drawButton.setText("Draw/Fill	Pie");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(drawButton,	gridConstraints);
drawButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

drawButtonActionPerformed(e);

}

});

clearButton.setText("Clear	Pie");
clearButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
getContentPane().add(clearButton,	gridConstraints);
clearButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

clearButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());
//	define	bounding	ellipse	and	colors
myEllipse	=	new	Ellipse2D.Double(20,	20,	drawPanel.getWidth()	-	40,

drawPanel.getHeight()	-	40);	myColors[0]	=	Color.RED;
myColors[1]	=	Color.GREEN;
myColors[2]	=	Color.YELLOW;
myColors[3]	=	Color.BLUE;
myColors[4]	=	Color.MAGENTA;
myColors[5]	=	Color.CYAN;

}

private	void	drawButtonActionPerformed(ActionEvent	e)	{

//	new	pie	-	get	number	of	slices	(2-6),	sweep	angles	and	draw	it
double	degreesRemaining	=	360;

//	choose	2	to	6	slices	at	random
numberSlices	=	myRandom.nextInt(5)	+	2;
//	for	each	slice	choose	an	extent	angle
for	(int	n	=	0;	n	<	numberSlices;	n++)

{

if	(n	<	numberSlices	-	1)

{

extent[n]	=	myRandom.nextInt((int)	(degreesRemaining	-	1))	+
1;	}

else

{

extent[n]	=	degreesRemaining;

}

degreesRemaining	-=	extent[n];

}

isDrawn	=	true;
drawButton.setEnabled(false);
clearButton.setEnabled(true);
drawPanel.repaint();

}

private	void	clearButtonActionPerformed(ActionEvent	e)	{
//	clear	region
isDrawn	=	false;
drawButton.setEnabled(true);
clearButton.setEnabled(false);
drawPanel.repaint();

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

class	GraphicsPanel	extends	JPanel

{

public	GraphicsPanel()

{

}

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
if	(DrawingPie.isDrawn)

{

//	draw	pie
double	startAngle	=	0;
//	for	each	slice	fill	and	draw
for	(int	n	=	0;	n	<	DrawingPie.numberSlices;	n++)	{

Arc2D.Double	myArc	=	new
Arc2D.Double(DrawingPie.myEllipse.x,	DrawingPie.myEllipse.y,
DrawingPie.myEllipse.width,	DrawingPie.myEllipse.height,	startAngle,
DrawingPie.extent[n],	Arc2D.PIE);
g2D.setPaint(DrawingPie.myColors[n]);

g2D.fill(myArc);
g2D.setPaint(Color.BLACK);
g2D.draw(myArc);
startAngle	+=	DrawingPie.extent[n];

}

//	draw	bounding	ellipse
g2D.draw(DrawingPie.myEllipse);

}

g2D.dispose();

}

}

Run	 the	 project.	 Click	Draw/Fill	Pie	 to	 draw	 a	 segmented	 pie.	 Try	 several	 –
each	will	be	different.	Note	that	the	graphics	are	persistent.	Here’s	a	run	I	made:	

Save	 the	 project	 application	 (saved	 as	Example7-8	 project	 in	 \LearnJava\LJ
Code\Class	7\	program	group).

Pie	Charts
The	 example	 just	 discussed	 suggests	 an	 immediate	 application	 for	 such
capabilities	–	drawing	pie	charts.	Pie	charts	are	used	to	compare	values	of	like
information	or	to	show	what	makes	up	a	particular	quantity.	For	example,	a	pie
chart	could	illustrate	what	categories	your	monthly	expenses	fit	into.	Or,	here	is
a	 pie	 chart	 with	 12	 segments	 illustrating	 monthly	 rainfall	 (in	 inches)	 for	 my
hometown	 of	 Seattle	 (the	 segments	 for	 the	 winter	 months	 are	 very	 big!):	

This	chart	was	created	with	Java,	by	the	way.

The	steps	for	drawing	a	pie	chart	are	straightforward.	Assume	you	have	n	pieces
of	data	 (monthly	 rainfall,	categorized	expenditures,	 seasonal	air	 traffic,	various
income	sources).	Follow	these	steps	to	create	a	pie	chart	using	the	Java	graphics
methods:

➢	Generate	n	 pieces	 of	 data	 to	 be	 plotted.	Store	 this	 data	 in	 an	 n	 element
array	y	(a	0-based	array).

➢	Sum	the	n	elements	of	the	y	array	to	obtain	a	total	value.
➢	Divide	 each	y	 element	 by	 the	 computed	 total	 to	 obtain	 the	 proportional
contributions	of	each.

➢	Multiply	each	proportion	by	360	degrees	–	the	resulting	values	will	be	the
extent	arguments	in	the	Arc2D	shape	constructor.

➢	Define	and	draw	each	pie	segment	(pick	a	unique,	identifying	color)	using
Arc2D,	 fill	 and	draw	 (fill	 then	draw	 to	maintain	 border).	 Initialize	 the
start	angle	at	zero.	After	drawing	each	segment,	the	next	start	angle	will
be	the	previous	start	value	incremented	by	the	its	corresponding	extent.

The	following	is	a	general	class	(PieChartPanel)	to	draw	a	pie	chart	in	a	panel
control	 (it	 is	 in	 Appendix	 I	 and	 saved	 as	 PieChartPanel.java	 in	 the
\LearnJava\LJ	 Code\Class	 7\	 folder).	 It	 is	 a	 simple	 extension	 of	 the
GraphicsPanel	 we	 have	 been	 using.	 You	 should	 be	 able	 to	 see	 how	 input
variables	are	used	and	identify	each	of	the	steps	listed	above	to	draw	a	pie	chart
(see	the	paintComponent	method).	The	constructor	requires	four	arguments:

border Rectangle	(within	the	panel)	describing	the	border
region	for	the	pie	chart	(Rectangle2D.Double
type).	Using	such	a	rectangle	leaves	space,	if
desired,	in	the	panel	for	labeling	and	other
information.

nSegments Number	of	pie	segments	(int	data	type)
yValues Array	of	data	(double	data	type)
colorValues Array	of	pie	segment	colors	(Color	type)

The	class	code	(PieChartPanel.java)	is:	import	javax.swing.*;
import	java.awt.geom.*;
import	java.awt.*;
public	class	PieChartPanel	extends	JPanel

{

private	Rectangle2D.Double	borderRectangle;
private	int	n;
private	double[]	y;
private	Color[]	c;

public	PieChartPanel()

{

//	default	constructor	for	initialization

}

public	PieChartPanel(Rectangle2D.Double	border,	int	nSegments,
double[]	yValues,	Color[]	colorValues)	{

this.borderRectangle	=	border;
this.n	=	nSegments;
this.y	=	yValues;
this.c	=	colorValues;

}

public	void	paintComponent(Graphics	g)

{

//	Draws	a	pie	chart
//	borderRectangle	-	rectangle	object	to	draw	chart	//	n	-	number
of	pie	segments	to	draw
//	y	-	array	of	points	(Double	type)	to	chart	(lower	index	is	1,	upper
index	is	N)	//	c	-	color	of	pie	segments
Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
double	sum	=	0.0;
for	(int	i	=	0;	i	<	n;	i++)

{

sum	+=	y[i];

}

//	draw	pie
double	startAngle	=	0;
Arc2D.Double	myArc;
//	for	each	slice	fill	and	draw

for	(int	i	=	0;	i	<	n;	i++)

{

myArc	=	new	Arc2D.Double(borderRectangle.x,
borderRectangle.y,	borderRectangle.width,	borderRectangle.height,
startAngle,	360	*	y[i]	/	sum,	Arc2D.PIE);	g2D.setPaint(c[i]);

g2D.fill(myArc);
g2D.setPaint(Color.BLACK);
g2D.draw(myArc);
startAngle	+=	360	*	y[i]	/	sum;

}

g2D.dispose();

}

}

Using	this	class	to	draw	a	pie	chart	is	simple.	First,	include	the	class	code	in	your
project.	 Second,	 declare	 and	 initialize	 a	PieChartPanel	 object	 using	 the	 usual
syntax.	If	that	panel	is	myPieChart,	the	code	is:	PieChartPanel	myPieChart	=
new	 PieChartPanel();	 Placement	 of	 this	 declaration	 depends	 on	 the	 desired
scope	for	 the	panel.	The	panel	 is	positioned	 in	a	 frame	(and	properties	are	set)
just	like	any	JPanel	control,	since	we	are	extending	that	class.	It	seems	to	work
best	when	positioned	within	another	JPanel	control.

Once	you	have	decided	on	the	input	arguments	(bounding	rectangle	myBorder,
number	of	segments	n,	data	value	array	y,	and	color	array	c),	the	pie	chart	object
is	 constructed	using:	myPieChart	=	new	PieChartPanel(myBorder,	n,	 y,	 c);
After	 this	 line	 of	 code,	 the	 pie	 chart	 will	 appear	 in	 the	 corresponding
PieChartPanel	object.	See	Example	7-9	for	an	example	of	using	this	class	and
corresponding	object.

Line	Charts	and	Bar	Charts
In	addition	to	pie	charts,	two	other	useful	data	display	tools	are	line	charts	and
bar	charts.	Line	charts	are	used	to	plot	Cartesian	pairs	of	data	(x,	y)	generated
using	some	function.	They	are	useful	for	seeing	trends	in	data.	As	an	example,
you	 could	 plot	 your	 weight	 while	 following	 a	 diet	 and	 exercise	 regime.	 And,
here	 is	 a	 line	 chart	 (created	 with	 Java)	 of	 yearly	 attendance	 at	 the	 Seattle
Mariners	 baseball	 games:	

You	can	see	there	was	increased	interest	in	the	team	after	the	1995	year	(that’s
the	exciting	year	we’ve	alluded	to	 in	some	of	our	problems	–	for	example,	see
Problem	7-4	at	the	end	of	this	class).

The	Java	Line2D	shape	and	draw	method	can	be	used	to	create	line	charts.	The
steps	for	generating	such	a	chart	are	simple:

➢	 Generate	 n	 Cartesian	 pairs	 of	 data	 to	 be	 plotted.	 Store	 the	 horizontal
values	in	an	n	element	array	x	and	the	corresponding	vertical	values	in	an
n	element	array	y	(both	0-based	arrays).

➢	 Loop	 through	 all	n	 points,	 connecting	 consecutive	 points	 using	Line2D

shapes	and	the	draw	method.

Bar	 charts	 plot	 values	 as	 horizontal	 or	 vertical	 bars	 (referenced	 to	 some	 base
value,	many	 times	 zero).	 They	 can	 also	 be	 used	 to	 see	 trends	 and	 to	 compare
values,	like	pie	charts.	Here’s	a	vertical	bar	chart	(drawn	with	Java	methods)	of
the	same	attendance	data	 in	 the	 line	chart	above	 (the	base	value	 is	1	million):	

The	 increase	 in	 attendance	 after	 1995	 is	 very	 pronounced.	 And,	 here’s	 a	 bar
chart	(base	value	of	zero)	of	Seattle’s	monthly	rainfall	(again,	note	how	big	the

‘winter’	bars	are):	

Yes,	this,	too,	was	created	with	Java.

The	Rectangle2D	shape	and	fill	method	can	be	used	for	bar	charts.	The	steps	for
generating	a	vertical	bar	chart:

➢	Generate	n	 pieces	of	 data	 to	be	plotted.	Store	 this	 data	 in	 an	n	 element
array	y	(a	0-based	array).

➢	 Determine	 the	width	 of	 each	 bar,	 using	width	 of	 the	 plotting	 area	 as	 a
guide.	I	usually	allow	some	space	between	each	bar.

➢	Select	a	base	value	(the	value	at	the	bottom	of	the	bar).	This	is	often	zero.
➢	For	each	bar,	determine	horizontal	position	based	on	bar	width	and	current
bar	 being	 drawn.	 Draw	 each	 bar	 (pick	 a	 unique,	 identifying	 color,	 if
desired)	 using	Rectangle2D	 shapes	 and	 the	 fill	method.	 The	 bar	 height
begins	at	the	base	value	and	ends	at	the	respective	y	value.

At	 this	 point,	 similar	 to	 what	 we	 did	 for	 pie	 charts,	 we	 could	 write	 code	 to
implement	 general	 classes	 for	 drawing	 line	 and	 bar	 charts.	 But,	 there’s	 a
problem.	And,	that	problem	relates	to	the	user	coordinates	used	by	the	graphics
objects.	 Let	 me	 illustrate.	 Say	 we	 wanted	 to	 draw	 a	 very	 simple	 line	 chart
described	 by	 the	 four	 Cartesian	 points	 given	 by:	

In	 this	 plot,	 the	 horizontal	 axis	 (which	 increases	 from	 left	 to	 right)	 value	 (x)
begins	 at	 0	 and	 reaches	 a	 maximum	 of	 6.	 The	 vertical	 axis	 value	 (y)	 has	 a
minimum	value	of	2,	a	maximum	of	13.	And,	y	increases	in	an	upward	direction.

Say,	we	want	to	plot	this	in	a	Rectangle2D	object,	myRectangle,	within	a	panel
(a	 typical	 thing	 to	 do).	 Graphically,	 we	 have:	

Note	 the	 user	 coordinates	 of	 the	 rectangle	 object	 have	 an	 origin	 of
(myRectangle.x,	 myRectangle.y)	 at	 the	 upper	 left	 corner.	 The	 maximum	 x
value	 is	myRectangle.x	 +	myRectangle.width	 –	 1,	 the	 maximum	 y	 value	 is
myRectangle.y	 +	 myRectangle.height	 –1	 and	 y	 increases	 in	 a	 downward
direction.	Hence,	 to	 plot	 our	 data,	we	need	 to	 first	 compute	where	 each	 (x,	 y)
pair	 in	 our	 ‘physical-coordinates’	 fits	 within	 the	 dimensions	 of	 the	 rectangle
object	specified	by	the	myRectangle	object	properties.	This	is	a	straightforward
coordinate	conversion	computation.

Coordinate	Conversions
Drawing	 in	 graphics	 object	 is	 done	 in	user	 coordinates	 (measured	 in	 pixels).
Data	 for	 plotting	 line	 and	 bar	 charts	 is	 usually	 in	 some	 physically	meaningful
units	(inches,	degrees,	dollars)	we’ll	call	physical	coordinates.	In	order	to	draw
a	 line	or	bar	chart,	we	need	 to	be	able	 to	convert	 from	physical	coordinates	 to
user	coordinates.	We	will	assume	the	‘user’	space	is	a	rectangle	object	(r)	with
upper	left	corner	at	(x,	y)	and	w	by	h	 in	size.	We	will	do	each	axis	(horizontal
and	vertical)	separately.

The	horizontal	 (xUser	 axis)	 in	user	coordinates	 is	w	pixels	wide.	The	 far	 left
pixel	 is	 at	 xUser	 =	 r.x	 and	 the	 far	 right	 is	 at	 xUser	 =	 r.x	 +	 r.w	 –	 1.	 xUser
increases	 from	 left	 to	 right:	

Assume	 the	 horizontal	 data	 (xPhysical	 axis)	 in	 our	 physical	 coordinates	 runs
from	a	minimum,	xMin,	at	the	left	to	a	maximum,	xMax,	at	the	right.	Thus,	the
first	pixel	on	 the	horizontal	axis	of	our	physical	coordinates	will	be	xMin	 and
the	 last	 will	 be	 xMax:	

With	these	two	depictions,	we	can	compute	the	xUser	value	corresponding	to	a
given	 xPhysical	 value	 using	 simple	 proportions,	 dividing	 the	 distance	 from
some	point	on	the	axis	to	the	minimum	value	by	the	total	distance.	The	process
is	 also	 called	 linear	 interpolation.	 These	 proportions	 show:	

Solving	this	for	xUser	yields	the	desired	conversion	from	a	physical	value	on	the
horizontal	axis	(xUser)	to	a	user	value	for	plotting:	xUser	=	r.x	+	(xPhysical	–
xMin)(r.w	 –	 1)/(xMax	 –	 Xmin)	 You	 can	 see	 this	 is	 correct	 at	 each	 extreme
value.	When	xPhysical	=	Xmin,	xUser	=	r.x.	When	xPhysical	=	xMax,	xUser
=	r.x	+	r.w	–	1.

Now,	we	find	the	corresponding	conversion	for	the	vertical	axis.	We’ll	place	the
two	 axes	 side-by-side	 for	 easy	 comparison:	

The	vertical	 (yUser	 axis)	 in	user	coordinates	 is	r.h	 pixels	 high.	The	 topmost
pixel	 is	 at	 yUser	 =	 r.y	 and	 the	 bottom	 is	 at	 yUser	 =	 r.y	 +	 r.h	 –	 1.	 yUser
increases	from	top	to	bottom.	The	vertical	data	(yPhysical	axis)	in	our	physical
coordinates,	runs	from	a	minimum,	yMin,	at	the	bottom,	to	a	maximum,	yMax,
at	the	top.	Thus,	the	top	pixel	on	the	vertical	axis	of	our	physical	coordinates	will
be	 yMax	 and	 the	 bottom	 will	 be	 yMin	 (note	 our	 physical	 axis	 increases	 up,
rather	than	down).

With	these	two	depictions,	we	can	compute	the	yUser	value	corresponding	to	a
given	 yPhysical	 value	 using	 linear	 interpolation.	 The	 computations	 show:	

Solving	this	for	yUser	yields	the	desired	conversion	from	a	physical	value	on	the
horizontal	 axis	 (yPhysical)	 to	 a	 user	 value	 for	 plotting	 (this	 requires	 a	 bit
algebra,	 but	 it’s	 straightforward):	 yUser	 =	 r.y	 +	 (yMax	 -	 yPhysical)(r.h	 –
1)/(yMax	–	yMin)	Again,	check	the	extremes.	When	yPhysical	=	yMin,	yUser
=	r.y	+	r.h	–	1.	When	yPhysical	=	yMax,	yUser	=	r.y.	It	looks	good.

Whenever	we	need	to	plot	real,	physical	data	in	a	graphics	object,	we	will	need
coordinate	 conversions.	 In	 these	 notes,	we	 use	 two	 general	methods	 to	 do	 the
conversions	(both	of	these	functions	are	in	Appendix	I).	First,	for	the	horizontal

axis,	we	 use	xPhysicaltoxUser.	 This	 function	 has	 four	 input	 arguments:	 r	 the
rectangle	 object	 (Rectangle2D	 object)	 that	 the	 conversion	 is	 based	 on,	 the
xPhysical	value,	 the	minimum	physical	value,	xMin,	and	 the	maximum	value,
xMax.	 All	 values	 are	 of	 double	 data	 type.	 The	 method	 returns	 the	 user
coordinate	 (a	 double	 type):	 private	 double
xPhysicalToxUser(Rectangle2D.Double	 r,	 double	 xPhysical,	 double	 xMin,
double	xMax)	{

return(r.x	+	(xPhysical	-	xMin)	*	(r.width	-	1)	/	(xMax	-	xMin));	}

For	 the	 vertical	 axis,	 we	 use	 yPhysicalToyUser.	 This	 function	 has	 four	 input
arguments:	 r	 the	 rectangle	 object	 (Rectangle2D	 object)	 that	 the	 conversion	 is
based	 on,	 the	 yPhysical	 value,	 the	 minimum	 physical	 value,	 yMin,	 and	 the
maximum	value,	yMax.	All	values	are	of	double	data	type.	The	method	returns
the	 user	 coordinate	 (a	 double	 type):	 private	 double
yPhysicalToyUser(Rectangle2D.Double	 r,	 double	 yPhysical,	 double	 yMin,
double	yMax)	{

return(r.y	+	(yMax	-	yPhysical)	*	(r.height	-	1)	/	(yMax	-	yMin));	}

With	the	ability	to	transform	coordinates,	we	can	now	develop	general-purpose
line	 and	 bar	 chart	 classes,	 similar	 to	 that	 developed	 for	 the	 pie	 chart.	 The
modified	steps	to	create	a	line	chart	are:

➢	 Generate	 n	 Cartesian	 pairs	 of	 data	 to	 be	 plotted.	 Store	 the	 horizontal
values	in	an	n	element	array	x,	 the	corresponding	vertical	values	in	an	n
element	array	y	(both	0-based	arrays).

➢	Loop	 through	 all	n	 points	 to	 determine	 the	minimum	 and	maximum	x
and	y	values.

➢	 Again,	 loop	 through	 all	 n	 points.	 For	 each	 point,	 convert	 the	 x	 and	 y
values	 to	 user	 coordinates,	 then	 connect	 the	 current	 point	 with	 the
previous	point	using	the	Line2D	shape	and	draw	method.

The	 following	 is	 a	 general	 class	 (LineChartPanel)	 to	 draw	 a	 line	 chart	 in	 a
panel	 control	 (it	 is	 in	Appendix	 I	 and	 saved	 as	LineChartPanel.java	 in	 the
\LearnJava\LJ	Code\Class	7\	folder).	You	should	be	able	to	identify	the	chart
building	steps	(most	involve	finding	minimum	and	maximum	values).	The	class
includes	the	coordinate	conversions.	The	constructor	requires	five	arguments:

border Rectangle	(within	the	panel)	describing	the	border

region	for	the	line	chart	(Rectangle2D.Double
type).	Using	such	a	rectangle	leaves	space,	if
desired,	in	the	panel	for	labeling	and	other
information.

nPoints Number	of	data	points	(int	data	type)
xValues Array	of	horizontal	values	(double	data	type)
yValues Array	of	vertical	values,	corresponding	to

xValues	array	(double	data	type)
colorValue Color	of	line	in	chart	(Color	type)

The	class	code	(LineChartPanel.java)	is:	import	javax.swing.*;
import	java.awt.geom.*;
import	java.awt.*;
public	class	LineChartPanel	extends	JPanel

{

private	Rectangle2D.Double	borderRectangle;

private	int	n;

private	double[]	x;

private	double[]	y;

private	Color	c;
public	LineChartPanel()

{

//	default	constructor	for	initialization

}

public	LineChartPanel(Rectangle2D.Double	border,	int	nPoints,
double[]	xValues,	double[]	yValues,	Color	colorValue)	{

this.borderRectangle	=	border;

this.n	=	nPoints;
this.x	=	xValues;
this.y	=	yValues;
this.c	=	colorValue;

}

public	void	paintComponent(Graphics	g)

{

//	Draws	a	line	chart	-	pairs	of	(x,y)	coordinates	//	borderRectangle
-	rectangle	region	to	draw	plot	//	n	-	number	of	points	to	plot
//	x	-	array	of	x	points	(lower	index	is	0,	upper	index	is	n-1)	//	y	-
array	of	y	points	(lower	index	is	0,	upper	index	is	n-1)	//	c	-	color	of
line
//	Need	at	least	2	points	to	plot
if	(n	<	2)

{

return;

}

double	xMin	=	x[0];	double	xMax	=	x[0];
double	yMin	=	y[0];	double	yMax	=	y[0];
//	find	minimums	and	maximums
for	(int	i	=	1;	i	<	n;	i++)

{

xMin	=	Math.min(xMin,	x[i]);
xMax	=	Math.max(xMax,	x[i]);
yMin	=	Math.min(yMin,	y[i]);
yMax	=	Math.max(yMax,	y[i]);

}

}

//	Extend	y	values	a	bit	so	lines	are	not	right	on	borders	yMin	=	(1
-	0.05	Double.compare(yMin,	0))	yMin;	yMax	=	(1	+	0.05
Double.compare(yMax,	0))	yMax;	Graphics2D	g2D	=	(Graphics2D)
g;
super.paintComponent(g2D);
Line2D.Double	myLine;
g2D.setPaint(c);
for	(int	i	=	0;	i	<	n	-	1;	i++)

{

//	plot	in	user	coordinates
myLine	=	new

Line2D.Double(xPhysicalToxUser(borderRectangle,	x[i],	xMin,	xMax),
yPhysicalToyUser(borderRectangle,	y[i],	yMin,	yMax),
xPhysicalToxUser(borderRectangle,	x[i	+	1],	xMin,	xMax),
yPhysicalToyUser(borderRectangle,	y[i	+	1],	yMin,	yMax));
g2D.draw(myLine);

}

//	draw	border
g2D.setPaint(Color.BLACK);
g2D.draw(borderRectangle);
g2D.dispose();

}

private	double	xPhysicalToxUser(Rectangle2D.Double	r,	double
xPhysical,	double	xMin,	double	xMax)	{

return(r.x	+	(xPhysical	-	xMin)	*	(r.width	-	1)	/	(xMax	-	xMin));	}
private	double	yPhysicalToyUser(Rectangle2D.Double	r,	double

yPhysical,	double	yMin,	double	yMax)	{
return(r.y	+	(yMax	-	yPhysical)	*	(r.height	-	1)	/	(yMax	-	yMin));	}

}

To	use	this	class	to	draw	a	line	chart,	first,	include	the	class	code	in	your	project.
Second,	declare	and	initialize	a	LineChartPanel	object	using	the	usual	syntax.
If	 that	 panel	 is	myLineChart,	 the	 code	 is:	LineChartPanel	myLineChart	 =
new	LineChartPanel();	 Placement	 of	 this	 declaration	 depends	 on	 the	 desired
scope	for	 the	panel.	The	panel	 is	positioned	 in	a	 frame	(and	properties	are	set)
just	like	any	JPanel	control,	since	we	are	extending	that	class.	It	seems	to	work
best	when	positioned	within	another	JPanel	control.

Once	you	have	decided	on	the	input	arguments	(bounding	rectangle	myBorder,
number	of	points	n,	data	value	arrays	x	and	y,	and	 line	color	c),	 the	 line	chart
object	 is	constructed	using:	myLineChart	=	new	LineChartPanel(myBorder,
n,	x,	y,	c);	After	this	line	of	code,	the	line	chart	will	appear	in	the	corresponding
LineChartPanel	object.	See	Example	7-9	for	an	example	of	using	this	class	and
corresponding	object.

The	modified	steps	to	create	a	bar	chart	are:

➢	Generate	n	 pieces	of	 data	 to	be	plotted.	Store	 this	 data	 in	 an	n	 element
array	y	(a	0-based	array).

➢	 Determine	 the	width	 of	 each	 bar,	 using	width	 of	 the	 plotting	 area	 as	 a
guide.	I	usually	allow	some	space	between	each	bar.

➢	Loop	 through	 all	n	 points	 to	 determine	 the	minimum	 and	maximum	y
value.

➢	Select	a	base	value	(the	value	at	the	bottom	of	the	bar).	This	is	often	zero.
Convert	the	base	value	to	user	coordinates.

➢	For	each	bar,	determine	horizontal	position	based	on	bar	width	and	current
bar	 being	 drawn.	 Draw	 each	 bar	 (pick	 a	 unique,	 identifying	 color,	 if
desired)	 using	Rectangle2D	 objects	 and	 the	 fill	method.	The	 bar	 height
begins	at	the	base	value	and	ends	at	the	respective	y	value	(converted	to
user	coordinates.

The	following	is	a	general	class	(BarChartPanel)	to	draw	a	bar	chart	in	a	panel
control	 (it	 is	 in	 Appendix	 I	 and	 saved	 as	 BarChartPanel.java	 in	 the
\LearnJava\LJ	Code\Class	7\	folder).	You	should	be	able	to	identify	the	chart
building	 steps	 (most	 involve	 finding	 minimum	 and	 maximum	 values).	 Note
different	 coding	 is	 needed	depending	whether	 the	bar	 value	 is	 higher	or	 lower
than	the	base	value	(i.e.,	whether	the	bar	goes	up	or	down).The	class	includes	the
coordinate	conversions.	The	constructor	requires	five	arguments:

border Rectangle	(within	the	panel)	describing	the	border
region	for	the	bar	chart	(Rectangle2D.Double
type).	Using	such	a	rectangle	leaves	space,	if
desired,	in	the	panel	for	labeling	and	other
information.

nPoints Number	of	data	points	(int	data	type)
yValues Array	of	data	values	(double	data	type)
base Base	value	(double	type)
colorValue Color	of	line	in	chart	(Color	type)

The	class	code	(BarChartPanel.java)	is:	import	javax.swing.*;
import	java.awt.geom.*;
import	java.awt.*;
public	class	BarChartPanel	extends	JPanel

{

private	Rectangle2D.Double	borderRectangle;
private	int	n;
private	double[]	y;
private	double	b;
private	Color	c;
public	BarChartPanel()

{

//	default	constructor	for	initialization

}

public	BarChartPanel(Rectangle2D.Double	border,	int	nPoints,
double[]	yValues,	double	base,	Color	colorValue)	{

this.borderRectangle	=	border;
this.n	=	nPoints;
this.y	=	yValues;
this.b	=	base;

this.c	=	colorValue;

}

public	void	paintComponent(Graphics	g)

{

//	Draws	a	bar	chart
//	borderRectangle	-	rectangle	region	to	draw	plot	//	n	-	number	of
points	to	plot
//	y	-	array	of	y	points	(lower	index	is	0,	upper	index	is	n-1)	//	c	-
color	of	bars
double	yMin	=	y[0];	double	yMax	=	y[0];
//	find	minimums	and	maximums
for	(int	i	=	1;	i	<	n;	i++)

{

yMin	=	Math.min(yMin,	y[i]);
yMax	=	Math.max(yMax,	y[i]);

}

//	Extend	y	values	a	bit	so	bars	are	not	right	on	borders	yMin	=	(1
-	0.05	Double.compare(yMin,	0))	yMin;	yMax	=	(1	+	0.05
Double.compare(yMax,	0))	yMax;	Graphics2D	g2D	=	(Graphics2D)
g;
super.paintComponent(g2D);
//	Find	bar	width	in	client	coordinates
//	use	half	bar-width	as	margins	between	bars
double	barWidth	=	2	(borderRectangle.width	-	1)	/	(3	n	+	1);	double
clientBase	=	yPhysicalToyUser(borderRectangle,	b,	yMin,	yMax);
Rectangle2D.Double	myRectangle;
for	(int	i	=	0;	i	<	n;	i++)

{

//	draw	bars
if	(y[i]	>	b)

{

myRectangle	=	new
Rectangle2D.Double(borderRectangle.x	+	(1.5	i	+	0.5)	barWidth,
yPhysicalToyUser(borderRectangle,	y[i],	yMin,	yMax),	barWidth,
clientBase	-yPhysicalToyUser(borderRectangle,	y[i],	yMin,	yMax));	}

else

{

myRectangle	=	new
Rectangle2D.Double(borderRectangle.x	+	(1.5	i	+	0.5)	barWidth,
clientBase,	barWidth,	yPhysicalToyUser(borderRectangle,	y[i],	yMin,
yMax)	-clientBase);	}

g2D.setPaint(c);
g2D.fill(myRectangle);

}

//	draw	border
g2D.setPaint(Color.BLACK);
g2D.draw(borderRectangle);
//	line	at	base
g2D.draw(new	Line2D.Double(borderRectangle.x,	clientBase,

borderRectangle.x	+	borderRectangle.width	-	1,	clientBase));
g2D.dispose();

}

private	double	xPhysicalToxUser(Rectangle2D.Double	r,	double
xPhysical,	double	xMin,	double	xMax)	{

return(r.x	+	(xPhysical	-	xMin)	*	(r.width	-	1)	/	(xMax	-	xMin));	}
private	double	yPhysicalToyUser(Rectangle2D.Double	r,	double

yPhysical,	double	yMin,	double	yMax)	{

return(r.y	+	(yMax	-	yPhysical)	*	(r.height	-	1)	/	(yMax	-	yMin));	}

}

To	use	this	class	to	draw	a	bar	chart,	first,	include	the	class	code	in	your	project.
Second,	declare	and	initialize	a	BarChartPanel	object	using	the	usual	syntax.	If
that	 panel	 is	myBarChart,	 the	 code	 is:	BarChartPanel	myBarChart	 =	 new
BarChartPanel();	 Placement	 of	 this	 declaration	 depends	 on	 the	 desired	 scope
for	the	panel.	The	panel	is	positioned	in	a	frame	(and	properties	are	set)	just	like
any	 JPanel	 control,	 since	 we	 are	 extending	 that	 class.	 It	 seems	 to	 work	 best
when	positioned	within	another	JPanel	control.

Once	you	have	decided	on	the	input	arguments	(bounding	rectangle	myBorder,
number	of	points	n,	data	value	array	y,	base	value	b	 and	 line	color	c),	 the	bar
chart	 object	 is	 constructed	 using:	 myBarChart	 =	 new
BarChartPanel(myBorder,	n,	y,	b,	c);	After	this	line	of	code,	the	bar	chart	will
appear	 in	 the	 corresponding	BarChartPanel	 object.	 See	Example	 7-9	 for	 an
example	of	using	this	class	and	corresponding	object.

Example	7-9
Line,	Bar	and	Pie	Charts

Start	 a	 new	 empty	 project	 in	 NetBeans.	 Name	 the	 project	 ChartExamples.
Delete	the	default	code	in	Java	file	named	ChartExamples.	Here,	we’ll	use	the
classes	we	developed	and	presented	to	plot	line,	bar	and	pie	charts.	The	data	for
the	plots	will	be	random.

Copy	 the	 three	 class	 files,	 PieChartPanel.java,	 LineChartPanel.java	 and
BarChartPanel.java	 (from	 \LearnJava\LJ	 Code\Class	 7\	 folder)	 to	 your
project’s	 source	 folder	 (the	 one	where	ChartExamples.java	 is	 located).	Open
each	 of	 the	 added	 files	 and	 place	 this	 line	 at	 the	 top	 of	 each	 file	 package
chartexamples;

This	“connects”	these	classes	to	your	project.

The	finished	frame	will	appear	as:

1.	 Put	 a	 panel	 control	 and	 four	 buttons	 on	 a	 frame.	 The	GridBagLayout	 is:	

Set	these	properties:

ChartExamples	Frame:
title Chart	Examples
resizable false

myPanel:
preferredSize (400,	300)
background WHITE
gridx 0
gridy 0
gridwidth 4
insets (10,	10,	10,	10)

lineButton:
text Line
preferredSize (100,	25)
gridx 0
gridy 1
insets (5,	5,	5,	5)

spiralButton:
text Spiral
preferredSize (100,	25)
gridx 1
gridy 1
insets (5,	5,	5,	5)

barButton:

text Bar
preferredSize (100,	25)
gridx 2
gridy 1
insets (5,	5,	5,	5)

pieButton:
text Pie
preferredSize (100,	25)
gridx 3
gridy 1
insets (5,	5,	5,	5)

2.	Build	the	basic	framework:	/	*

*	ChartExamples.java

*/

package	chartexamples;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.util.Random;
import	java.awt.geom.*;
public	class	ChartExamples	extends	JFrame

{

public	static	void	main(String	args[])

{

//	create	frame
new	ChartExamples().show();

}

public	ChartExamples()

{

//	frame	constructor
setTitle("Chart	Examples");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());	pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-getWidth())),	(int)	(0.5

(screenSize.height	-getHeight())),	getWidth(),	getHeight());	}
private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	to	check	the	framework.

3.	Class	level	control	declarations:	JPanel	myPanel	=	new	JPanel();

JButton	lineButton	=	new	JButton();
JButton	spiralButton	=	new	JButton();
JButton	barButton	=	new	JButton();
JButton	pieButton	=	new	JButton();

Position	controls	and	add	event	methods:

myPanel.setPreferredSize(new	Dimension(400,	300));
myPanel.setBackground(Color.WHITE);
GridBagConstraints	gridConstraints	=	new
GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.gridwidth	=	4;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(myPanel,	gridConstraints);
lineButton.setText("Line");
lineButton.setPreferredSize(new	Dimension	(100,25));	gridConstraints	=
new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(lineButton,	gridConstraints);
lineButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

lineButtonActionPerformed(e);

}

});

spiralButton.setText("Spiral");
spiralButton.setPreferredSize(new	Dimension	(100,25));	gridConstraints

=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(spiralButton,	gridConstraints);
spiralButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

lineButtonActionPerformed(e);

}

});

barButton.setText("Bar");
barButton.setPreferredSize(new	Dimension	(100,25));	gridConstraints	=
new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(barButton,	gridConstraints);
barButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

barButtonActionPerformed(e);

}

});

pieButton.setText("Pie");
pieButton.setPreferredSize(new	Dimension	(100,25));	gridConstraints	=
new	GridBagConstraints();

gridConstraints.gridx	=	3;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(pieButton,	gridConstraints);
pieButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

pieButtonActionPerformed(e);

}

});

Add	three	empty	methods:

private	void	lineButtonActionPerformed(ActionEvent	e)	{

}

private	void	barButtonActionPerformed(ActionEvent	e)	{

}

private	void	pieButtonActionPerformed(ActionEvent	e)	{

}

Run	to	check	the	control	layout:

4.	 Now,	 we	 add	 code.	 Class	 level	 variable	 declarations:	 double[]	 x	 =	 new
double[200];

double[]	y	=	new	double[200];
double[]	yd	=	new	double[200];
Color[]	plotColor	=	new	Color[10];
Random	myRandom	=	new	Random();

5.	Add	this	code	to	the	constructor	code.	This	sets	colors	to	use:	plotColor[0]	=
Color.YELLOW;

plotColor[1]	=	Color.BLUE;
plotColor[2]	=	Color.GREEN;
plotColor[3]	=	Color.CYAN;
plotColor[4]	=	Color.RED;
plotColor[5]	=	Color.MAGENTA;
plotColor[6]	=	Color.ORANGE;
plotColor[7]	=	Color.DARK_GRAY;
plotColor[8]	=	Color.GRAY;

plotColor[9]	=	Color.BLACK;

6.	 Add	 this	 code	 to	 the	 lineButtonActionPerformed	 method	 (handles	 both
drawing	 of	 line	 and	 spiral	 plots).	 This	 code	 generates	 random	 data	 to	 plot
using	 the	 LineChartPanel	 class:	 private	 void
lineButtonActionPerformed(ActionEvent	e)	{

//	Draws	line	and	spiral	charts
//	Create	a	sinusoid	with	200	points
double	alpha	=	0.1	-	myRandom.nextDouble()	*	0.2;	double	beta	=
myRandom.nextDouble()	*	10	+	5;
for	(int	i	=	0;	i	<	200;	i++)

{

x[i]	=	i;
y[i]	=	Math.exp(-alpha	i)	Math.sin(Math.PI	*	i	/	beta);	yd[i]	=

Math.exp(-alpha	i)	(Math.PI	*	Math.cos(Math.PI	i	beta)	beta	-	alpha
Math.sin(Math.PI	*	i	/	beta));	}

//	Draw	plots
Rectangle2D.Double	borderRectangle	=	new	Rectangle2D.Double(20,

20,	360,	260);	LineChartPanel	myLineChart	=	new	LineChartPanel();	if
(e.getActionCommand().equals(lineButton.getText()))	{

myLineChart	=	new	LineChartPanel(borderRectangle,	200,	x,	y,
plotColor[myRandom.nextInt(10)]);	}

else

{

myLineChart	=	new	LineChartPanel(borderRectangle,	200,	y,	yd,
plotColor[myRandom.nextInt(10)]);	}

myLineChart.setPreferredSize(new	Dimension	(400,	300));
myLineChart.setBackground(Color.WHITE);
myPanel.removeAll();
myPanel.add(myLineChart);
this.pack();

}

}

Note,	in	particular,	how,	once	the	line	chart	object	is	created,	it	is	placed	on	the
panel	control	(myPanel).

7.	 Add	 this	 code	 to	 the	 barButtonActionPerformed	 method.	 This	 code
generates	random	data	 to	plot	using	the	BarChartPanel	class:	private	void
barButtonActionPerformed(ActionEvent	e)	{

//	generate	5-10	bars	with	values	from	-10	to	10	and	draw	bar	chart
int	numberBars	=	myRandom.nextInt(6)	+	5;
for	(int	i	=	0;	i	<	numberBars;	i++)

{

y[i]	=	myRandom.nextDouble()	*	20	-	10;

}

//	Draw	chart
Rectangle2D.Double	borderRectangle	=	new	Rectangle2D.Double(20,

20,	360,	260);	BarChartPanel	myBarChart	=	new
BarChartPanel(borderRectangle,	numberBars,	y,	0.0,
plotColor[myRandom.nextInt(10)]);	myBarChart.setPreferredSize(new
Dimension	(400,	300));	myBarChart.setBackground(Color.WHITE);

myPanel.removeAll();
myPanel.add(myBarChart);
this.pack();

}

8.	 Add	 this	 code	 to	 the	 pieButtonActionPerformed	 method.	 This	 code
generates	 random	data	 to	plot	 using	 the	PieChartPanel	 class:	private	void
pieButtonActionPerformed(ActionEvent	e)	{

//	Generate	3	to	10	slices	at	random	with	values	from	1	to	5
int	numberSlices	=	myRandom.nextInt(8)	+	3;
for	(int	i	=	0;	i	<	numberSlices;	i++)

{

{

y[i]	=	myRandom.nextDouble()	*	5	+	1;

}

Rectangle2D.Double	borderRectangle	=	new	Rectangle2D.Double(70,
20,	260,	260);	PieChartPanel	myPieChart	=	new
PieChartPanel(borderRectangle,	numberSlices,	y,	plotColor);
myPieChart.setPreferredSize(new	Dimension	(400,	300));
myPieChart.setBackground(Color.WHITE);

myPanel.removeAll();
myPanel.add(myPieChart);
this.pack();

}

The	 complete	ChartExamples.java	 code	 listing	 (code	 added	 to	 framework	 is
shaded):	/	*
*	ChartExamples.java

*/

package	chartexamples;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.util.Random;
import	java.awt.geom.*;

public	class	ChartExamples	extends	JFrame

{

JPanel	myPanel	=	new	JPanel();
JButton	lineButton	=	new	JButton();
JButton	spiralButton	=	new	JButton();

JButton	barButton	=	new	JButton();
JButton	pieButton	=	new	JButton();
//	data	arrays
double[]	x	=	new	double[200];
double[]	y	=	new	double[200];
double[]	yd	=	new	double[200];
Color[]	plotColor	=	new	Color[10];
Random	myRandom	=	new	Random();

public	static	void	main(String	args[])

{

//	create	frame
new	ChartExamples().show();

}

public	ChartExamples()

{

//	frame	constructor
setTitle("Chart	Examples");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

});

getContentPane().setLayout(new	GridBagLayout());

myPanel.setPreferredSize(new	Dimension(400,	300));
myPanel.setBackground(Color.WHITE);
GridBagConstraints	gridConstraints	=	new

GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.gridwidth	=	4;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(myPanel,	gridConstraints);
lineButton.setText("Line");
lineButton.setPreferredSize(new	Dimension	(100,25));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(lineButton,	gridConstraints);
lineButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

lineButtonActionPerformed(e);

}

});

spiralButton.setText("Spiral");
spiralButton.setPreferredSize(new	Dimension	(100,25));
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);

getContentPane().add(spiralButton,	gridConstraints);
spiralButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

lineButtonActionPerformed(e);

}

});

barButton.setText("Bar");
barButton.setPreferredSize(new	Dimension	(100,25));	gridConstraints
=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(barButton,	gridConstraints);
barButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)

{

barButtonActionPerformed(e);

}

});

pieButton.setText("Pie");
pieButton.setPreferredSize(new	Dimension	(100,25));	gridConstraints
=	new	GridBagConstraints();
gridConstraints.gridx	=	3;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(5,	5,	5,	5);
getContentPane().add(pieButton,	gridConstraints);

pieButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

pieButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	//	colors	to	use
plotColor[0]	=	Color.YELLOW;
plotColor[1]	=	Color.BLUE;
plotColor[2]	=	Color.GREEN;
plotColor[3]	=	Color.CYAN;
plotColor[4]	=	Color.RED;
plotColor[5]	=	Color.MAGENTA;
plotColor[6]	=	Color.ORANGE;
plotColor[7]	=	Color.DARK_GRAY;
plotColor[8]	=	Color.GRAY;
plotColor[9]	=	Color.BLACK;

}

private	void	lineButtonActionPerformed(ActionEvent	e)	{
//	Draws	line	and	spiral	charts
//	Create	a	sinusoid	with	200	points
double	alpha	=	0.1	-	myRandom.nextDouble()	*	0.2;	double	beta	=
myRandom.nextDouble()	*	10	+	5;
for	(int	i	=	0;	i	<	200;	i++)

{

x[i]	=	i;
y[i]	=	Math.exp(-alpha	i)	Math.sin(Math.PI	*	i	/	beta);	yd[i]	=

Math.exp(-alpha	i)	(Math.PI	*	Math.cos(Math.PI	i	beta)	beta	-	alpha
Math.sin(Math.PI	*	i	/	beta));	}

//	Draw	plots
Rectangle2D.Double	borderRectangle	=	new

Rectangle2D.Double(20,	20,	360,	260);
LineChartPanel	myLineChart	=	new	LineChartPanel();	if
(e.getActionCommand().equals(lineButton.getText()))	{

myLineChart	=	new	LineChartPanel(borderRectangle,	200,	x,	y,
plotColor[myRandom.nextInt(10)]);	}

else

{

myLineChart	=	new	LineChartPanel(borderRectangle,	200,	y,	yd,
plotColor[myRandom.nextInt(10)]);	}

myLineChart.setPreferredSize(new	Dimension	(400,	300));
myLineChart.setBackground(Color.WHITE);
myPanel.removeAll();
myPanel.add(myLineChart);
this.pack();

}

	
private	void	barButtonActionPerformed(ActionEvent	e)	{

//	generate	5-10	bars	with	values	from	-10	to	10	and	draw	bar	chart
int	numberBars	=	myRandom.nextInt(6)	+	5;
for	(int	i	=	0;	i	<	numberBars;	i++)

{

y[i]	=	myRandom.nextDouble()	*	20	-	10;

}

//	Draw	chart
Rectangle2D.Double	borderRectangle	=	new

Rectangle2D.Double(20,	20,	360,	260);
BarChartPanel	myBarChart	=	new

BarChartPanel(borderRectangle,	 numberBars,	 y,	 0.0,
plotColor[myRandom.nextInt(10)]);

myBarChart.setPreferredSize(new	Dimension	(400,	300));
myBarChart.setBackground(Color.WHITE);
myPanel.removeAll();
myPanel.add(myBarChart);
this.pack();

}

	
private	void	pieButtonActionPerformed(ActionEvent	e)	{

//	Generate	3	to	10	slices	at	random	with	values	from	1	to	5
int	numberSlices	=	myRandom.nextInt(8)	+	3;
for	(int	i	=	0;	i	<	numberSlices;	i++)

{

y[i]	=	myRandom.nextDouble()	*	5	+	1;

}

Rectangle2D.Double	borderRectangle	=	new
Rectangle2D.Double(70,	20,	260,	260);

PieChartPanel	myPieChart	=	new
PieChartPanel(borderRectangle,	 numberSlices,	 y,	 plotColor);
myPieChart.setPreferredSize(new	 Dimension	 (400,	 300));

myPieChart.setBackground(Color.WHITE);
myPanel.removeAll();
myPanel.add(myPieChart);
this.pack();

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	the	project.	Try	all	the	plotting	options.	Each	time	you	draw	any	plot	it	will
be	 different	 because	 of	 the	 randomness	 programmed	 in.	Here’s	 an	 example	 of
each	plot	type:

Line	Chart:	

Spiral	Chart:	

Bar	Chart:	

Pie	Chart:	

You’re	 ready	 to	 tackle	 any	 plotting	 job	 now.	 Save	 the	 project	 (saved	 as
Example7-9	project	in	\LearnJava\LJ	Code\Class	7\	program	group).

These	routines	just	call	out	for	enhancements.	Some	things	you	might	try:

a.	 Draw	 grid	 lines	 on	 the	 plots.	 Use	 dotted	 or	 dashed	 lines	 at	 regular
intervals.

b.	 Modify	 the	 line	 and	 chart	 routines	 to	 allow	 plotting	 more	 than	 one
function.	Use	 colors	 or	 different	 line	 styles	 to	 differentiate	 the	 lines	 and
bars.	Add	a	legend	defining	each	plot.

c.	 Label	 the	 plot	 axes.	 Put	 titling	 information	 on	 the	 axes	 and	 the	 plot.
Consult	the	drawString	method	described	in	Class	8.

Class	Review
After	completing	this	class,	you	should	understand:

➢	How	to	do	simple	animation	with	the	label	control.
➢	 How	 the	 timer	 object	 works	 –	 its	 properties	 and	 its	 actionPerformed
method.

➢	The	basics	of	simple	games	using	the	random	number	generator.
➢	The	Java	2D	graphics	methods	and	objects	that	allow	drawing	directly	to
the	graphics	object.

➢	How	to	draw	line,	rectangle,	ellipse	and	arc	shapes.
➢	 The	 concept	 of	 persistent	 graphics	 and	 use	 of	 the	 paintComponent
method.

➢	 The	 difference	 between	 user	 coordinates	 and	 physical	 coordinates	 and
conversion	from	one	to	the	other.

➢	How	to	draw	simple	line	charts,	bar	charts	and	pie	charts.

Practice	Problems	7
Problem	7-1.	Dice	Rolling	Problem.	 Build	 an	 application	 that	 rolls	 two	 dice
and	 displays	 the	 results	 (graphics	 of	 the	 six	 die	 faces	 are	 included	 in	 the
\LearnJava\LJ	Code\Class	7\Problem7-1\	folder).	Have	each	die	‘stop	rolling’
at	different	times.

Problem	 7-2.	 Shape	 Guessing	 Problem.	 Build	 a	 game	 where	 the	 user	 is
presented	with	 three	different	 shapes.	Give	 the	user	 one	 shape	name	and	have
them	identify	the	matching	shape.

Problem	7-3.	Pie	Chart	Problem.	Build	an	application	where	the	user	can	enter
a	list	of	numbers	and	build	a	pie	chart	from	that	list.

Problem	7-4.	Plotting	Problem.	Build	an	application	that	opens	the	output	file
created	in	Problem	6-4	(the	Mariners	win	streak	file	–	saved	as	MAR95.CSV	in
the	\LearnJava\LJ	Code\Class	6\Problem6-4\	folder)	and	plots	the	information
as	a	bar	chart	in	a	panel	control.	You’ll	want	to	first	copy	the	CSV	file	into	the
project	folder	of	this	new	application.

Exercise	7-1
Information	Tracking	Plotting

Add	 plotting	 capabilities	 to	 the	 information	 tracker	 you	 developed	 in	Class	 6.
Plot	whatever	information	you	stored	versus	the	date.	Use	a	line	or	bar	chart.

8

More	Graphics	Techniques	and
Multimedia	Effects

Review	and	Preview
In	 the	 last	 class,	 we	 learned	 a	 lot	 about	 graphics	methods	 in	 Java.	Yet,
everything	we	drew	was	static;	there	was	no	user	interaction.	In	this	class,
we	 extend	 our	 graphics	 methods	 knowledge	 by	 learning	 how	 to	 detect
mouse	events.	An	example	paintbrush	program	 is	built.	We	 look	at	new

paint	methods	and	how	to	‘draw’	text.

We	then	are	introduced	to	concepts	needed	for	multimedia	(game)	programming
–	animation,	collision	detection,	and	sounds.	Like	Class	7,	we	will	build	lots	of
relatively	 short	 examples	 to	 demonstrate	 concepts.	 You’ll	 learn	 to	modify	 the
examples	for	your	needs.

Mouse	Events
In	Class	7,	we	learned	about	the	Graphics2D	object,	the	shape	object	and	many
drawing	 methods.	We	 learned	 how	 to	 draw	 lines,	 rectangles,	 ellipses	 and	 pie
segments.	 We	 learned	 how	 to	 incorporate	 these	 drawing	 elements	 into
procedures	for	line	charts,	bar	charts	and	pie	charts.	Everything	drawn	with	these
elements	was	static;	there	was	no	user	interaction.	We	set	the	parameters	in	code
and	drew	our	 shapes	or	plots.	We	 (the	users)	 just	 sat	 there	and	watched	pretty
things	appear.

In	 this	 class,	 the	 user	 becomes	 involved.	 To	 provide	 user	 interaction	 with	 an
application,	 we	 can	 use	 the	 mouse	 as	 an	 interface	 for	 drawing	 graphics	 with
Java.	To	do	this,	we	need	to	understand	mouse	events.	Mouse	events	are	similar
to	 control	 events.	 Certain	 event	 procedures	 are	 invoked	 when	 certain	 mouse
actions	are	detected.	Here,	we	see	how	to	use	mouse	events	for	drawing	on	panel
controls.

We’ve	 used	 the	mouse	 to	 click	 on	 controls	 in	 past	 applications.	 For	 example,
we’ve	written	code	for	many	events	resulting	from	clicking	on	button	controls.
And	we’ve	used	the	mouseClicked	event	in	some	games.	To	use	the	mouse	for
drawing	purposes,	 however,	 a	 simple	 click	 event	 is	 not	 sufficient.	We	need	 to
know	not	only	 that	 a	control	was	clicked,	but	also	need	 to	know	where	 it	was
clicked	 to	 provide	 a	 point	 to	 draw	 to.	 The	 mouse	 event	 that	 provides	 this
information	 is	 the	mousePressed	 event.	 The	mousePressed	 event	 method	 is
triggered	whenever	a	mouse	button	is	pressed	while	the	mouse	cursor	is	over	a
control.	 The	 form	 of	 this	 method	 must	 be:	 public	 void
mousePressed(MouseEvent	e)

{

[Java	code]

}

The	 MouseEvent	 argument	 e	 reveals	 which	 button	 was	 clicked	 and	 the
coordinate	of	mouse	cursor	when	button	was	pressed.	Useful	methods	are:

e.getButton() Returns	mouse	button	pressed.	Possible	values
are:	MouseEvent.BUTTON1	(left	button),
MouseEvent.BUTTON2	(middle	button),
MouseEvent.BUTTON3	(right	button)

e.getX() Returns	X	coordinate	of	mouse	cursor	when
mouse	was	clicked

e.getY() Returns	Y	coordinate	of	mouse	cursor	when
mouse	was	clicked

To	add	a	 listener	 for	 the	mousePressed	event	 for	a	control	named	myControl
(usually	a	panel),	use:	myPanel.addMouseListener(new	MouseAdapter()

{

public	void	mousePressed(MouseEvent	e)

{

myControlMousePressed(e);

}

});

And,	 the	 corresponding	 event	 code	 is	 placed	 in	 the	myControlMousePressed
method:	private	void	myControlMousePressed(MouseEvent	e)

{

[method	code]

}

In	 drawing	 applications,	 the	 mousePressed	 method	 is	 used	 to	 initialize	 a
drawing	process.	The	point	clicked	is	used	to	start	drawing	a	line	and	the	button
clicked	is	often	used	to	select	line	color.

Another	common	 task	 for	drawing	with	 the	mouse	 is	moving	 the	mouse	while
holding	down	a	mouse	button.	The	mouse	event	that	provides	this	information	is

the	mouseDragged	 event.	 The	mouseDragged	 event	 method	 is	 continuously
triggered	whenever	the	mouse	is	being	dragged	over	a	control.	The	form	of	this
method	is:	public	void	mouseDragged(MouseEvent	e)

{

[Java	code]

}

The	 methods	 associated	 with	 the	MouseEvent	 e	 are	 identical	 to	 those	 of	 the
mousePressed	event:

e.getButton() Returns	mouse	button	held	while	mouse	is
dragging.	Possible	values	are:
MouseEvent.BUTTON1	(left	button),
MouseEvent.BUTTON2	(middle	button),
MouseEvent.BUTTON3	(right	button)

e.getX() Returns	X	coordinate	of	mouse	cursor	when	drag
event	invoked.

e.getY() Returns	Y	coordinate	of	mouse	cursor	when	drag
event	invoked.

To	add	a	listener	for	the	mouseDragged	event	for	a	control	named	myControl,
use:	myPanel.addMouseMotionListener(new	MouseMotionAdapter()	{

public	void	mouseDragged(MouseEvent	e)

{

myControlMouseDragged(e);

}

});

And,	 the	corresponding	event	code	is	placed	in	 the	myControlMouseDragged
method:	private	void	myControlMouseDragged(MouseEvent	e)

{

[method	code]

}

In	 drawing	 processes,	 the	 mouseDragged	 event	 is	 used	 to	 detect	 the
continuation	 of	 a	 previously	 started	 line.	 If	 drawing	 is	 continuing,	 the	 current
point	is	connected	to	the	previous	point	using	a	line	shape	object.

Lastly,	we	would	 like	 to	 be	 able	 to	 detect	 the	 release	 of	 a	mouse	 button.	The
mouseReleased	event	is	the	opposite	of	the	mousePressed	event.	It	is	triggered
whenever	a	previously	pressed	mouse	button	is	released.	The	method	outline	is:
public	void	mouseReleased(MouseEvent	e)

{

[Java	code]

}

The	 methods	 associated	 with	 the	MouseEvent	 e	 are	 identical	 to	 those	 of	 the
other	mouse	events:

e.getButton() Returns	mouse	button	released.	Possible	values
are:	MouseEvent.BUTTON1	(left	button),
MouseEvent.BUTTON2	(middle	button),
MouseEvent.BUTTON3	(right	button)

e.getX() Returns	X	coordinate	of	mouse	cursor	when
mouse	button	released.

e.getY() Returns	Y	coordinate	of	mouse	cursor	when
mouse	button	released.

To	add	a	listener	for	the	mouseReleased	event	for	a	control	named	myControl,
use:	myPanel.addMouseListener(new	MouseAdapter()

{

public	void	mouseReleased(MouseEvent	e)

{

myControlMouseReleased(e);

}

});

And,	the	corresponding	event	code	is	placed	in	the	myControlMouseReleased
method:	private	void	myControlMouseReleased(MouseEvent	e)

{

[method	code]

}

In	 a	 drawing	 program,	 the	mouseReleased	 event	 signifies	 the	 halting	 of	 the
current	 drawing	 process.	 We’ll	 find	 the	mousePressed,	mouseDragged	 and
mouseReleased	events	are	integral	parts	of	any	Java	drawing	program.	We	use
them	now	(in	conjunction	with	the	Line2D	shape	and	draw	method)	to	build	a
paintbrush	program	called	the	Blackboard.

Example	8-1
Blackboard

Start	a	new	empty	project	 in	NetBeans.	Name	 the	project	Blackboard.	Delete
default	code	 in	Java	file	named	Blackboard.	Here,	we	will	build	a	blackboard
we	 can	 scribble	 on	with	 the	mouse	 (using	 colored	 ‘chalk’).	 The	 left	 and	 right
mouse	buttons	will	draw	with	different	(selectable)	colors.	The	finished	project
will	 look	 like	 this:	

1.	Place	a	large	panel	control,	two	label	controls	and	a	panel	(with	8	small	label
controls).	 The	 GridBagLayout	 is:	

Add	a	Menu	Bar	control	(mainMenuBar)	with	this	simple	structure:

File
New

Exit

Properties	for	these	menu	items	should	be:

Text Name
File fileMenu
New newMenuItem
Exit exitMenuItem

Now,	set	the	following	properties:

Blackboard	Frame:
title Blackboard
resizable false

drawPanel:
preferredSize (500,	400)
background BLACK
gridx 0
gridy 0
gridheight 2
insets (10,	10,	10,	10)

leftColorLabel:
preferredSize (40,	40)
opaque true
gridx 1
gridy 0
anchor NORTH
insets (10,	5,	10,	10)

rightColorLabel:
preferredSize (40,	40)
opaque true
gridx 2
gridy 0
anchor NORTH
insets (10,	5,	10,	10)

colorPanel:
preferredSize (80,	160)
border TitledBorder("Colors")
gridx 1
gridy 1
gridwidth 2
anchor NORTH
insets (10,	10,	10,	10)

The	 layout	 of	 colorPanel:	

colorLabel[0]:
preferredSize (30,	30)
opaque true
background GRAY
gridx 0
gridy 0

colorLabel[1]:
preferredSize (30,	30)

opaque true
background BLUE
gridx 0
gridy 1

colorLabel[2]:
preferredSize (30,	30)
opaque true
background GREEN
gridx 0
gridy 2

colorLabel[3]:
preferredSize (30,	30)
opaque true
background CYAN
gridx 0
gridy 3

colorLabel[4]:
preferredSize (30,	30)
opaque true
background RED
gridx 1
gridy 0

colorLabel[5]:
preferredSize (30,	30)
opaque true
background MAGENTA
gridx 1
gridy 1

colorLabel[6]:
preferredSize (30,	30)

opaque true
background YELLOW
gridx 1
gridy 2

colorLabel[7]:
preferredSize (30,	30)
opaque true
background WHITE
gridx 1
gridy 3

2.	Build	the	basic	framework:	/	*

*	Blackboard.java

*/

package	blackboard;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.awt.geom.*;
public	class	Blackboard	extends	JFrame

{

public	static	void	main(String	args[])

{

//	construct	frame
new	Blackboard().show();

}

public	Blackboard()

{

//	frame	constructor
setTitle("Blackboard");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-getWidth())),	(int)	(0.5

(screenSize.height	-getHeight())),	getWidth(),	getHeight());	}
private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	to	check.

3.	Add	declarations	for	controls	and	menu	items:	JMenuBar	mainMenuBar	=

new	JMenuBar();

JMenu	fileMenu	=	new	JMenu("File");
JMenuItem	newMenuItem	=	new	JMenuItem("New");
JMenuItem	exitMenuItem	=	new	JMenuItem("Exit");
JPanel	drawPanel	=	new	JPanel();
JLabel	leftColorLabel	=	new	JLabel();
JLabel	rightColorLabel	=	new	JLabel();
JPanel	colorPanel	=	new	JPanel();
JLabel[]	colorLabel	=	new	JLabel[8];

Add	 menu,	 position	 and	 add	 controls,	 including	 event	 methods:
setJMenuBar(mainMenuBar);
fileMenu.setMnemonic('F');
mainMenuBar.add(fileMenu);
fileMenu.add(newMenuItem);
fileMenu.addSeparator();
fileMenu.add(exitMenuItem);
newMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

newMenuItemActionPerformed(e);

}

});

exitMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

exitMenuItemActionPerformed(e);

}

});

drawPanel.setPreferredSize(new	Dimension(500,	400));
drawPanel.setBackground(Color.BLACK);
GridBagConstraints	gridConstraints	=	new
GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.gridheight	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(drawPanel,	gridConstraints);
drawPanel.addMouseListener(new	MouseAdapter()

{

public	void	mousePressed(MouseEvent	e)

{

drawPanelMousePressed(e);

}

});

drawPanel.addMouseMotionListener(new	MouseMotionAdapter()	{
public	void	mouseDragged(MouseEvent	e)

{

drawPanelMouseDragged(e);

}

}

});

drawPanel.addMouseListener(new	MouseAdapter()

{

public	void	mouseReleased(MouseEvent	e)

{

drawPanelMouseReleased(e);

}

});

leftColorLabel.setPreferredSize(new	Dimension(40,	40));
leftColorLabel.setOpaque(true);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.NORTH;
gridConstraints.insets	=	new	Insets(10,	5,	10,	10);
getContentPane().add(leftColorLabel,	gridConstraints);
rightColorLabel.setPreferredSize(new	Dimension(40,	40));
rightColorLabel.setOpaque(true);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.NORTH;
gridConstraints.insets	=	new	Insets(10,	5,	10,	10);
getContentPane().add(rightColorLabel,	gridConstraints);
colorPanel.setPreferredSize(new	Dimension(80,	160));
colorPanel.setBorder(BorderFactory.createTitledBorder("Colors"));
gridConstraints	=	new	GridBagConstraints();

gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
gridConstraints.gridwidth	=	2;
gridConstraints.anchor	=	GridBagConstraints.NORTH;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(colorPanel,	gridConstraints);
colorPanel.setLayout(new	GridBagLayout());
int	j	=	0;
for	(int	i	=	0;	i	<	8;	i++)

{

colorLabel[i]	=	new	JLabel();
colorLabel[i].setPreferredSize(new	Dimension(30,	30));
colorLabel[i].setOpaque(true);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	j;
gridConstraints.gridy	=	i	-	j	*	4;
colorPanel.add(colorLabel[i],	gridConstraints);
if	(i	==	3)

{

j++;

}

colorLabel[i].addMouseListener(new	MouseAdapter()

{

public	void	mousePressed(MouseEvent	e)

{

colorMousePressed(e);

}

}

});

}

//	set	color	labels
colorLabel[0].setBackground(Color.GRAY);
colorLabel[1].setBackground(Color.BLUE);
colorLabel[2].setBackground(Color.GREEN);
colorLabel[3].setBackground(Color.CYAN);
colorLabel[4].setBackground(Color.RED);
colorLabel[5].setBackground(Color.MAGENTA);
colorLabel[6].setBackground(Color.YELLOW);
colorLabel[7].setBackground(Color.WHITE);
leftColor	=	colorLabel[0].getBackground();
leftColorLabel.setBackground(leftColor);
rightColor	=	colorLabel[7].getBackground();
rightColorLabel.setBackground(rightColor);

And,	add	these	empty	methods:

private	void	newMenuItemActionPerformed(ActionEvent	e)

{

}

private	void	exitMenuItemActionPerformed(ActionEvent	e)	{

}

private	void	colorMousePressed(MouseEvent	e)

{

}

private	void	drawPanelMousePressed(MouseEvent	e)

{

}

private	void	drawPanelMouseDragged(MouseEvent	e)

{

}

private	void	drawPanelMouseReleased(MouseEvent	e)

{

}

Run	to	check	control	layout.

4.	Now,	we	write	code.	Use	these	class	level	variables:	Graphics2D	g2D;

double	xPrevious,	yPrevious;
Color	drawColor,	leftColor,	rightColor;

These	are	used	to	do	the	drawing.

5.	Use	this	code	in	each	indicated	method.

Add	this	code	at	the	end	of	the	constructor	to	establish	graphics	object:	//
create	graphics	object
g2D	=	(Graphics2D)	drawPanel.getGraphics();

Code	for	newFileMenuActionPerformed	method	where	we	check	to	see	if	the
drawing	should	be	erased.

private	void	newMenuItemActionPerformed(ActionEvent	e)

{

int	response;
response	=	JOptionPane.showConfirmDialog(null,	"Are	you	sure	you

want	to	start	a	new	drawing?",	"New	Drawing",
JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE);	if	(response	==
JOptionPane.YES_OPTION)

{

g2D.setPaint(drawPanel.getBackground());
g2D.fill(new	Rectangle2D.Double(0,	0,	drawPanel.getWidth(),

drawPanel.getHeight()));	}

}

In	exitMenuItemActionPerformed,	make	sure	the	user	really	wants	to	stop	the
application.

private	void	exitMenuItemActionPerformed(ActionEvent	e)	{
int	response;

response	=	JOptionPane.showConfirmDialog(null,	"Are	you	sure	you
want	to	exit	the	Blackboard	program?",	"Exit	Program",
JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE);	if	(response	==
JOptionPane.NO_OPTION)

{

return;

}

else

{

exitForm(null);

}

}

Add	a	 single	 line	 (shaded)	 to	 the	exitForm	method	 to	dispose	of	 the	graphics
object:	private	void	exitForm(WindowEvent	e)

{

g2D.dispose();
System.exit(0);

}

Code	for	colorMousePressed	method	to	select	color	(handles	clicking	on	any	of
eight	color	choice	label	controls).

private	void	colorMousePressed(MouseEvent	e)

{

//	decide	which	color	was	selected	and	which	button	was	used
Component	clickedColor	=	e.getComponent();	//	Make	audible	tone
and	set	drawing	color
Toolkit.getDefaultToolkit().beep();
if	(e.getButton()	==	MouseEvent.BUTTON1)

{

leftColor	=	clickedColor.getBackground();
leftColorLabel.setBackground(leftColor);

}

else	if	(e.getButton()	==	MouseEvent.BUTTON3)

{

rightColor	=	clickedColor.getBackground();
rightColorLabel.setBackground(rightColor);

}

}

When	a	mouse	button	is	clicked	(left	or	right	button),	drawing	is	initialized	at	the
mouse	cursor	location	with	the	respective	color	in	the	drawPanelMousePressed
method.

private	void	drawPanelMousePressed(MouseEvent	e)

{

//	if	left	button	or	right	button	clicked,	set	color	and	start	drawing
process	if	(e.getButton()	==	MouseEvent.BUTTON1	||	e.getButton()
==	MouseEvent.BUTTON3)	{

xPrevious	=	e.getX();
yPrevious	=	e.getY();
if	(e.getButton()	==	MouseEvent.BUTTON1)

{

drawColor	=	leftColor;

}

else

{

drawColor	=	rightColor;

}

}

}

While	 mouse	 is	 being	 dragged,	 draw	 lines	 in	 current	 color	 in
drawPanelMouseDragged	method.

private	void	drawPanelMouseDragged(MouseEvent	e)

{

//	if	drawing,	connect	previous	point	with	new	point
Line2D.Double	myLine	=	new	Line2D.Double(xPrevious,	yPrevious,
e.getX(),	e.getY());	g2D.setPaint(drawColor);
g2D.draw(myLine);
xPrevious	=	e.getX();
yPrevious	=	e.getY();

}

When	 a	 mouse	 button	 is	 released,	 stop	 drawing	 current	 line	 in	 the
drawPanelMouseReleased	method.

private	void	drawPanelMouseReleased(MouseEvent	e)

{

{

//	if	left	or	button	released,connect	last	point
if	(e.getButton()	==	MouseEvent.BUTTON1	||	e.getButton()	==
MouseEvent.BUTTON3)	{

Line2D.Double	myLine	=	new	Line2D.Double(xPrevious,
yPrevious,	e.getX(),	e.getY());	g2D.setPaint(drawColor);
g2D.draw(myLine);

}

}

The	 complete	Blackboard.java	 code	 listing	 (additions	 to	 framework	 code	 are
shaded):	/	*
*	Blackboard.java

*/

package	blackboard;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.awt.geom.*;
public	class	Blackboard	extends	JFrame

{

JMenuBar	mainMenuBar	=	new	JMenuBar();
JMenu	fileMenu	=	new	JMenu("File");
JMenuItem	newMenuItem	=	new	JMenuItem("New");
JMenuItem	exitMenuItem	=	new	JMenuItem("Exit");
JPanel	drawPanel	=	new	JPanel();
JLabel	leftColorLabel	=	new	JLabel();
JLabel	rightColorLabel	=	new	JLabel();
JPanel	colorPanel	=	new	JPanel();

JLabel[]	colorLabel	=	new	JLabel[8];
Graphics2D	g2D;
double	xPrevious,	yPrevious;
Color	drawColor,	leftColor,	rightColor;
public	static	void	main(String	args[])

{

//	construct	frame
new	Blackboard().show();

}

public	Blackboard()

{

//	frame	constructor
setTitle("Blackboard");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	build	menu
setJMenuBar(mainMenuBar);

fileMenu.setMnemonic('F');
mainMenuBar.add(fileMenu);
fileMenu.add(newMenuItem);
fileMenu.addSeparator();
fileMenu.add(exitMenuItem);
newMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

newMenuItemActionPerformed(e);

}

});

exitMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

exitMenuItemActionPerformed(e);

}

});

drawPanel.setPreferredSize(new	Dimension(500,	400));
drawPanel.setBackground(Color.BLACK);
GridBagConstraints	gridConstraints	=	new

GridBagConstraints();
gridConstraints.gridx	=	0;

gridConstraints.gridy	=	0;
gridConstraints.gridheight	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(drawPanel,	gridConstraints);
drawPanel.addMouseListener(new	MouseAdapter()

{

public	void	mousePressed(MouseEvent	e)

{

drawPanelMousePressed(e);

}

});

drawPanel.addMouseMotionListener(new	MouseMotionAdapter()	{
public	void	mouseDragged(MouseEvent	e)

{

drawPanelMouseDragged(e);

}

});

drawPanel.addMouseListener(new	MouseAdapter()

{

public	void	mouseReleased(MouseEvent	e)

{

drawPanelMouseReleased(e);

}

});

leftColorLabel.setPreferredSize(new	Dimension(40,	40));
leftColorLabel.setOpaque(true);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.NORTH;
gridConstraints.insets	=	new	Insets(10,	5,	10,	10);
getContentPane().add(leftColorLabel,	gridConstraints);
rightColorLabel.setPreferredSize(new	Dimension(40,	40));
rightColorLabel.setOpaque(true);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.NORTH;
gridConstraints.insets	=	new	Insets(10,	5,	10,	10);
getContentPane().add(rightColorLabel,	gridConstraints);
colorPanel.setPreferredSize(new	Dimension(80,	160));

colorPanel.setBorder(BorderFactory.createTitledBorder("Colors"));
gridConstraints	=	new	GridBagConstraints();

gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
gridConstraints.gridwidth	=	2;
gridConstraints.anchor	=	GridBagConstraints.NORTH;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(colorPanel,	gridConstraints);

colorPanel.setLayout(new	GridBagLayout());
int	j	=	0;
for	(int	i	=	0;	i	<	8;	i++)

{

colorLabel[i]	=	new	JLabel();
colorLabel[i].setPreferredSize(new	Dimension(30,	30));
colorLabel[i].setOpaque(true);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	j;
gridConstraints.gridy	=	i	-	j	*	4;
colorPanel.add(colorLabel[i],	gridConstraints);
if	(i	==	3)

{

j++;

}

colorLabel[i].addMouseListener(new	MouseAdapter()

{

public	void	mousePressed(MouseEvent	e)

{

colorMousePressed(e);

}

});

}

//	set	color	labels
colorLabel[0].setBackground(Color.GRAY);
colorLabel[1].setBackground(Color.BLUE);
colorLabel[2].setBackground(Color.GREEN);
colorLabel[3].setBackground(Color.CYAN);
colorLabel[4].setBackground(Color.RED);

colorLabel[5].setBackground(Color.MAGENTA);
colorLabel[6].setBackground(Color.YELLOW);
colorLabel[7].setBackground(Color.WHITE);
leftColor	=	colorLabel[0].getBackground();
leftColorLabel.setBackground(leftColor);
rightColor	=	colorLabel[7].getBackground();
rightColorLabel.setBackground(rightColor);

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());
//	create	graphics	object
g2D	=	(Graphics2D)	drawPanel.getGraphics();

}

private	void	newMenuItemActionPerformed(ActionEvent	e)

{

int	response;
response	=	JOptionPane.showConfirmDialog(null,	"Are	you	sure	you

want	to	start	a	new	drawing?",	"New	Drawing",
JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE);	if	(response	==
JOptionPane.YES_OPTION)

{

g2D.setPaint(drawPanel.getBackground());
g2D.fill(new	Rectangle2D.Double(0,	0,	drawPanel.getWidth(),
drawPanel.getHeight()));	}

}

private	void	exitMenuItemActionPerformed(ActionEvent	e)	{
int	response;
response	=	JOptionPane.showConfirmDialog(null,	"Are	you	sure	you

want	to	exit	the	Blackboard	program?",	"Exit	Program",
JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE);	if	(response	==
JOptionPane.NO_OPTION)

{

return;

}

else

{

exitForm(null);

}

}

private	void	colorMousePressed(MouseEvent	e)

{

//	decide	which	color	was	selected	and	which	button	was	used
Component	clickedColor	=	e.getComponent();
//	Make	audible	tone	and	set	drawing	color
Toolkit.getDefaultToolkit().beep();
if	(e.getButton()	==	MouseEvent.BUTTON1)

{

leftColor	=	clickedColor.getBackground();
leftColorLabel.setBackground(leftColor);

}

}

else	if	(e.getButton()	==	MouseEvent.BUTTON3)

{

rightColor	=	clickedColor.getBackground();
rightColorLabel.setBackground(rightColor);

}

}

private	void	drawPanelMousePressed(MouseEvent	e)

{

//	if	left	button	or	right	button	clicked,	set	color	and	start	drawing
process	if	(e.getButton()	==	MouseEvent.BUTTON1	||	e.getButton()	==
MouseEvent.BUTTON3)	{

xPrevious	=	e.getX();
yPrevious	=	e.getY();
if	(e.getButton()	==	MouseEvent.BUTTON1)

{

drawColor	=	leftColor;

}

else

{

drawColor	=	rightColor;

}

}

}

}

private	void	drawPanelMouseDragged(MouseEvent	e)

{

//	if	drawing,	connect	previous	point	with	new	point
Line2D.Double	myLine	=	new	Line2D.Double(xPrevious,	yPrevious,

e.getX(),	e.getY());	g2D.setPaint(drawColor);
g2D.draw(myLine);
xPrevious	=	e.getX();
yPrevious	=	e.getY();

}

private	void	drawPanelMouseReleased(MouseEvent	e)

{

//	if	left	or	button	released,connect	last	point
if	(e.getButton()	==	MouseEvent.BUTTON1	||	e.getButton()	==

MouseEvent.BUTTON3)	{
Line2D.Double	myLine	=	new	Line2D.Double(xPrevious,

yPrevious,	e.getX(),	e.getY());	g2D.setPaint(drawColor);
g2D.draw(myLine);

}

}

private	void	exitForm(WindowEvent	e)

{

g2D.dispose();
System.exit(0);

}

}

}

Run	the	project.	Try	drawing.	The	left	mouse	button	draws	with	one	color	and
the	right	button	draws	with	another.	The	current	drawing	colors	are	displayed	at
the	 top	 right	 corner	 of	 the	 form.	 To	 change	 a	 color,	 left	 or	 right	 click	 on	 the
desired	 color	 in	 the	 Colors	 panel.	 Fun,	 huh?	 Here’s	 one	 of	 my	 sketches:	

Save	 the	 application	 (saved	 as	 Example8-1	 project	 in	 \LearnJava\LJ
Code\Class	8\	program	group).	This	is	a	neat	application,	but	there’s	a	problem.
Draw	a	little	something	and	then	reduce	the	project	to	an	icon.	When	the	frame
is	 restored,	 your	masterpiece	 is	 gone!	The	graphics	here	 are	not	 persistent.	To
add	 persistence	 (as	 we	 did	 in	 Class	 7),	 we	 need	 to	 use	 the	 panel	 control’s
paintComponent	method	(using	the	GraphicsPanel	class	we	created).	We	need
a	way	to	somehow	store	every	point	and	every	color	used	in	the	picture.	Then,	in
the	paintComponent	method,	every	drawing	step	taken	by	the	user	would	need
to	be	reproduced.	This	is	a	slightly	difficult	problem.	Fortunately,	Java	provides
a	class	that	provides	a	solution.	We’ll	look	at	that	next.

Persistent	Graphics,	Revisited	(Vector
Class)
To	add	persistence	to	our	Blackboard	example,	we	need	to	do	two	things	(well,
more	 than	 two,	 but	 two	 for	 now).	 First,	 we	 create	 the	 drawing	 area	 from	 the
GraphicsPanel	 class	 (in	Appendix	 I)	 developed	 in	 Class	 7.	 Recall	 this	 class
extends	 the	 JPanel	 control,	 adding	 a	 paintComponent	 method:	 class
GraphicsPanel	extends	JPanel

{

public	GraphicsPanel()

{

}

public	void	paintComponent(Graphics	g)

{

}

}

Second,	 in	 the	 paintComponent	 method,	 we	 need	 to	 be	 able	 to	 describe	 the
current	contents	of	the	panel.	To	do	this,	we	need	to	know	every	line	drawn	on
the	blackboard	and	every	color	used.	This	may	sound	 like	a	daunting	 task,	but
it’s	not	too	bad	(fortunately).

The	Java	Vector	class	stores	a	collection	of	objects	that	works	like	an	array,	but
has	a	special	feature	of	being	able	to	grow	and	shrink	as	needed.	We	will	use	a
Vector	 object	 to	 store	 every	 colored	 line	 drawn	 in	 our	 blackboard	 example.
Then,	when	needed,	the	paintComponent	method	will	use	this	vector	object	to
recreate	the	colored	lines.	Let’s	look	at	how	to	use	the	Vector	class.	First,	you
need	to	import	the	java.util.*	package	which	contains	the	Vector	class.

If	 I	 am	 storing	 a	 vector	 of	 lines	 called	myLines,	 the	 required	 vector	 object	 is
created	using	this	constructor:	Vector	myLines	=	new	Vector(200,	100);

This	will	create	a	vector	of	200	initial	elements,	with	100	elements	added	every
time	new	elements	are	needed	 (these	numbers	can	be	changed	 if	desired).	The
size	of	myLines	 is	handled	by	Java	–	you	never	have	to	worry	about	it,	unlike
arrays.

Once	 created,	 a	 line	 is	 added	 to	 the	 vector	 using	 the	 add	 method.	 If	 the	 line
object	 to	 add	 is	 named	 myColoredLine,	 the	 syntax	 is:
myLines.add(myColoredLine);

The	vector	object	(myLines)	keeps	every	object	stored	and	accounted	for.

In	the	paintComponent	method,	we	need	to	recover	all	of	the	colored	lines	we
have	stored	so	they	can	be	redrawn	on	the	graphics	panel.	To	do	this,	we	need	to
know	how	many	objects	there	are	and	how	to	recover	each	one.	The	number	of
elements	in	a	vector	object	is	given	by	the	size	property.	For	our	example	object
(myLines),	that	value	is	found	using:	myLines.size()

The	objects	 are	 stored	 like	a	zero-based	array,	 ranging	 from	object	0	 to	object
size	 –	 1.	 To	 retrieve	 object	n	 from	 our	 example,	 use	 the	 elementAt	 method:
myColoredLine	=	myLines.elementAt(n);

Having	retrieved	the	colored	line	object,	we	can	redraw	it	in	the	graphics	panel
control.

One	 last	 thing	you	might	 like	 to	do	with	 the	vector	object	 is	 to	 remove	all	 the
elements	 to	do	a	reinitialization.	We	would	do	this	 in	our	blackboard	when	we
erase.	The	code	that	does	this	is:	myLine.removeAllElements();

This	 line	 should	 be	 followed	 by	 a	 repaint	 of	 the	 control	 hosting	 the	 graphics
panel.

So,	we	 can	 now	 use	 a	 vector	 object	 to	 store	 and	 retrieve	 colored	 lines	 in	 our
blackboard	example.	One	question	that	remains	is	how	to	specify	a	‘colored	line’
object.	 We	 draw	 our	 lines	 using	 a	 Line2D	 object.	 This	 object	 specifies	 the
coordinates	 used	 to	 draw	 a	 line,	 but	 has	 no	 color	 information.	 To	 store	 (and

retrieve)	a	colored	line,	we	will	define	a	ColoredLine	class.	The	ColoredLine
class	 defines	 a	 colored	 line	 object	 with	 two	 arguments:	 a	 Line2D	 object
(theLine)	that	defines	the	connecting	points	and	a	Color	object	(theColor)	that
defines	the	color.	That	class	is:	class	ColoredLine

{

public	Line2D.Double	theLine;
public	Color	theColor;
public	ColoredLine(Line2D.Double	theLine,	Color	theColor)	{

this.theLine	=	theLine;
this.theColor	=	theColor;

}

}

To	 use	 this	 class	 in	 a	 project,	 place	 it	 after	 the	main	 class.	 In	 our	 blackboard
example,	we	will	also	add	the	GraphicsPanel	class.

Note	 the	 constructor	 for	 a	 colored	 line	 object	 has	 two	 arguments:	 public
ColoredLine(Line2D.Double	 theLine,	 Color	 theColor)	 Hence,	 to	 create	 a
colored	line	object	(made	up	of	myLine,	a	Line2D	object,	and	myColor),	use:
ColoredLine	myColoredLine	=	new	ColoredLine(myLine,	myColor);	In	our
blackboard	example,	 every	 time	a	 line	 is	drawn,	we	will	 create	 such	a	colored
line	object	and	store	it	in	our	vector	class.

To	 reconstruct	 a	 blackboard	 drawing,	 in	 the	 paintComponent	 method,	 we
retrieve	 the	 Line2D	 object	 (theLine)	 and	 Color	 object	 (theColor)	 from	 the
array	 of	 colored	 lines	 objects	 to	 redraw	 the	 graphics	 panel.	 If	 the	 retrieved
colored	 line	 is	myColoredLine,	 the	 corresponding	Line2D	 and	Color	 objects
are	defined	by:	myLine	=	myColoredLine.theLine;
myColor	=	myColoredLine.theColor;

This	 information	 is	 then	 used	 to	 redraw	myLine	 in	myColor	 using	 graphics
methods.

Storing	 the	 colored	 lines	 in	 a	 vector	 object	 also	makes	 it	 possible	 to	 save	 and

retrieve	 previous	 drawings	 from	 disk	 files.	 This	 requires	 something	 called
serializable	objects.	Using	such	objects	is	beyond	the	scope	of	this	course,	but
you	might	 like	 to	 study	 their	use	 if	you	want	 to	 save	drawings.	For	now,	 let’s
modify	our	Blackboard	to	add	persistence.

Example	8-2
Blackboard	(Revisited)

Here,	we	will	modify	 the	Blackboard	 example	 so	 the	 graphics	 are	 persistent.
That	 way,	 you’ll	 never	 lose	 your	 masterpiece!	 The	 modifications	 are	 fairly
simple.	Load	the	project	from	Example	8-1.

➢	 First,	 add	 the	GraphicsPanel	 (in	Appendix	 I)	 and	ColoredLine	 classes	 to
the	 project	 (after	 the	main	 class).	Also,	 add	 a	 line	 importing	 the	 java.util.*
package.

➢	 Change	 the	 declaration	 for	 the	 drawPanel	 object	 to	 a	 GraphicsPanel:
GraphicsPanel	drawPanel	=	new	GraphicsPanel();

➢	Add	a	class	 level	declaration	 for	 the	vector	class:	static	Vector	myLines	=
new	Vector(200,	100);

The	static	preface	is	needed	because	it	is	used	in	the	paintComponent
method.

➢	Modify	the	‘erase’	procedure	in	the	newMenuItemActionPerformed	method
so	it	removes	all	elements	from	the	myLines	vector	object	and	repaints	(new
lines	 are	 shaded):	 private	 void
newMenuItemActionPerformed(ActionEvent	e)

{

int	response;
response	=	JOptionPane.showConfirmDialog(null,	"Are	you	sure	you

want	to	start	a	new	drawing?",	"New	Drawing",
JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE);	if	(response	==
JOptionPane.YES_OPTION)

{

myLines.removeAllElements();
drawPanel.repaint();

}

}

➢	 Add	 a	 single	 line	 (shaded)	 to	 the	 drawPanelMouseDragged	 and
drawPanelMouseReleased	methods	 to	save	 the	colored	line	object:	private
void	drawPanelMouseDragged(MouseEvent	e)

{

//	if	drawing,	connect	previous	point	with	new	point
Line2D.Double	myLine	=	new	Line2D.Double(xPrevious,	yPrevious,

e.getX(),	e.getY());	g2D.setPaint(drawColor);
g2D.draw(myLine);
xPrevious	=	e.getX();
yPrevious	=	e.getY();
myLines.add(new	ColoredLine(myLine,	drawColor));

}

private	void	drawPanelMouseReleased(MouseEvent	e)

{

//	if	left	or	button	released,connect	last	point
if	(e.getButton()	==	MouseEvent.BUTTON1	||	e.getButton()	==

MouseEvent.BUTTON3)	{
Line2D.Double	myLine	=	new	Line2D.Double(xPrevious,

yPrevious,	e.getX(),	e.getY());	g2D.setPaint(drawColor);
g2D.draw(myLine);
myLines.add(new	ColoredLine(myLine,	drawColor));

}

}

}

➢	Use	this	paintComponent	method	in	the	GraphicsPanel	class	to	recreate	all
colored	 line	 objects	when	 needed:	public	 void	 paintComponent(Graphics
g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
for	(int	i	=	0;	i	<	Blackboard.myLines.size();	i++)

{

ColoredLine	thisLine	=	(ColoredLine)
Blackboard.myLines.elementAt(i);

g2D.setColor(thisLine.theColor);
g2D.draw(thisLine.theLine);

}

g2D.dispose();

}

Study	 this	code.	 It	goes	 through	all	 elements	of	 the	myLines	object	 (note	 it	 is
prefaced	with	 the	main	 class	 name	Blackboard	 since	 it	 is	 an	object	 from	 that
class).	In	each	step,	it	retrieves	a	colored	line	from	the	vector	object.	It	uses	the
corresponding	Line2D	and	Color	objects	to	draw	the	line	in	the	proper	color.

That’s	 all	 the	 changes	 needed.	 The	 modified	 Blackboard.java	 code	 listing
(changes	are	shaded):	/	*
*	Blackboard.java

*/

package	blackboard;
import	javax.swing.*;
import	java.awt.*;

import	java.awt.event.*;
import	java.awt.geom.*;
import	java.util.*;

public	class	Blackboard	extends	JFrame

{

JMenuBar	mainMenuBar	=	new	JMenuBar();
JMenu	fileMenu	=	new	JMenu("File");
JMenuItem	newMenuItem	=	new	JMenuItem("New");
JMenuItem	exitMenuItem	=	new	JMenuItem("Exit");
GraphicsPanel	drawPanel	=	new	GraphicsPanel();
JLabel	leftColorLabel	=	new	JLabel();
JLabel	rightColorLabel	=	new	JLabel();
JPanel	colorPanel	=	new	JPanel();
JLabel[]	colorLabel	=	new	JLabel[8];
Graphics2D	g2D;
double	xPrevious,	yPrevious;
Color	drawColor,	leftColor,	rightColor;
static	Vector	myLines	=	new	Vector(200,	100);

public	static	void	main(String	args[])

{

//	construct	frame
new	Blackboard().show();

}

public	Blackboard()

{

//	frame	constructor

setTitle("Blackboard");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	build	menu
setJMenuBar(mainMenuBar);
fileMenu.setMnemonic('F');
mainMenuBar.add(fileMenu);
fileMenu.add(newMenuItem);
fileMenu.addSeparator();
fileMenu.add(exitMenuItem);
newMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

newMenuItemActionPerformed(e);

}

});

exitMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

exitMenuItemActionPerformed(e);

}

});

drawPanel.setPreferredSize(new	Dimension(500,	400));
drawPanel.setBackground(Color.BLACK);
GridBagConstraints	gridConstraints	=	new

GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.gridheight	=	2;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(drawPanel,	gridConstraints);
drawPanel.addMouseListener(new	MouseAdapter()

{

public	void	mousePressed(MouseEvent	e)

{

drawPanelMousePressed(e);

}

});

drawPanel.addMouseMotionListener(new	MouseMotionAdapter()	{

public	void	mouseDragged(MouseEvent	e)

{

drawPanelMouseDragged(e);

}

});

drawPanel.addMouseListener(new	MouseAdapter()

{

public	void	mouseReleased(MouseEvent	e)

{

drawPanelMouseReleased(e);

}

});

leftColorLabel.setPreferredSize(new	Dimension(40,	40));
leftColorLabel.setOpaque(true);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.NORTH;
gridConstraints.insets	=	new	Insets(10,	5,	10,	10);
getContentPane().add(leftColorLabel,	gridConstraints);
rightColorLabel.setPreferredSize(new	Dimension(40,	40));
rightColorLabel.setOpaque(true);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
gridConstraints.anchor	=	GridBagConstraints.NORTH;

gridConstraints.insets	=	new	Insets(10,	5,	10,	10);
getContentPane().add(rightColorLabel,	gridConstraints);
colorPanel.setPreferredSize(new	Dimension(80,	160));

colorPanel.setBorder(BorderFactory.createTitledBorder("Colors"));
gridConstraints	=	new	GridBagConstraints();

gridConstraints.gridx	=	1;
gridConstraints.gridy	=	1;
gridConstraints.gridwidth	=	2;
gridConstraints.anchor	=	GridBagConstraints.NORTH;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(colorPanel,	gridConstraints);

colorPanel.setLayout(new	GridBagLayout());
int	j	=	0;
for	(int	i	=	0;	i	<	8;	i++)

{

colorLabel[i]	=	new	JLabel();
colorLabel[i].setPreferredSize(new	Dimension(30,	30));
colorLabel[i].setOpaque(true);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	j;
gridConstraints.gridy	=	i	-	j	*	4;
colorPanel.add(colorLabel[i],	gridConstraints);
if	(i	==	3)

{

j++;

}

colorLabel[i].addMouseListener(new	MouseAdapter()

{

{

public	void	mousePressed(MouseEvent	e)

{

colorMousePressed(e);

}

});

}

//	set	color	labels
colorLabel[0].setBackground(Color.GRAY);
colorLabel[1].setBackground(Color.BLUE);
colorLabel[2].setBackground(Color.GREEN);
colorLabel[3].setBackground(Color.CYAN);
colorLabel[4].setBackground(Color.RED);
colorLabel[5].setBackground(Color.MAGENTA);
colorLabel[6].setBackground(Color.YELLOW);
colorLabel[7].setBackground(Color.WHITE);
leftColor	=	colorLabel[0].getBackground();
leftColorLabel.setBackground(leftColor);
rightColor	=	colorLabel[7].getBackground();
rightColorLabel.setBackground(rightColor);

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	//	create
graphics	object

g2D	=	(Graphics2D)	drawPanel.getGraphics();

}

private	void	newMenuItemActionPerformed(ActionEvent	e)

{

int	response;
response	=	JOptionPane.showConfirmDialog(null,	"Are	you	sure	you

want	to	start	a	new	drawing?",	"New	Drawing",
JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE);	if	(response	==
JOptionPane.YES_OPTION)

{

myLines.removeAllElements();
drawPanel.repaint();

}

}

private	void	exitMenuItemActionPerformed(ActionEvent	e)	{
int	response;
response	=	JOptionPane.showConfirmDialog(null,	"Are	you	sure	you

want	to	exit	the	Blackboard	program?",	"Exit	Program",
JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE);	if	(response	==
JOptionPane.NO_OPTION)

{

return;

}

else

{

exitForm(null);

}

}

private	void	colorMousePressed(MouseEvent	e)

{

//	decide	which	color	was	selected	and	which	button	was	used
Component	clickedColor	=	e.getComponent();
//	Make	audible	tone	and	set	drawing	color
Toolkit.getDefaultToolkit().beep();
if	(e.getButton()	==	MouseEvent.BUTTON1)

{

leftColor	=	clickedColor.getBackground();
leftColorLabel.setBackground(leftColor);

}

else	if	(e.getButton()	==	MouseEvent.BUTTON3)

{

rightColor	=	clickedColor.getBackground();
rightColorLabel.setBackground(rightColor);

}

}

private	void	drawPanelMousePressed(MouseEvent	e)

{

//	if	left	button	or	right	button	clicked,	set	color	and	start	drawing

process	if	(e.getButton()	==	MouseEvent.BUTTON1	||	e.getButton()	==
MouseEvent.BUTTON3)	{

xPrevious	=	e.getX();
yPrevious	=	e.getY();
if	(e.getButton()	==	MouseEvent.BUTTON1)

{

drawColor	=	leftColor;

}

else

{

drawColor	=	rightColor;

}

}

}

private	void	drawPanelMouseDragged(MouseEvent	e)

{

//	if	drawing,	connect	previous	point	with	new	point
Line2D.Double	myLine	=	new	Line2D.Double(xPrevious,	yPrevious,

e.getX(),	e.getY());	g2D.setPaint(drawColor);	g2D.draw(myLine);
xPrevious	=	e.getX();
yPrevious	=	e.getY();
myLines.add(new	ColoredLine(myLine,	drawColor));

}

private	void	drawPanelMouseReleased(MouseEvent	e)

{

//	if	left	or	button	released,connect	last	point
if	(e.getButton()	==	MouseEvent.BUTTON1	||	e.getButton()	==

MouseEvent.BUTTON3)	{
Line2D.Double	myLine	=	new	Line2D.Double(xPrevious,

yPrevious,	e.getX(),	e.getY());	g2D.setPaint(drawColor);
g2D.draw(myLine);
myLines.add(new	ColoredLine(myLine,	drawColor));

}

}

private	void	exitForm(WindowEvent	e)

{

g2D.dispose();
System.exit(0);

}

}

class	GraphicsPanel	extends	JPanel

{

public	GraphicsPanel()

{

}

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
for	(int	i	=	0;	i	<	Blackboard.myLines.size();	i++)

{

ColoredLine	thisLine	=	(ColoredLine)
Blackboard.myLines.elementAt(i);

g2D.setColor(thisLine.theColor);
g2D.draw(thisLine.theLine);

}

g2D.dispose();

}

}

class	ColoredLine

{

public	Line2D.Double	theLine;
public	Color	theColor;
public	ColoredLine(Line2D.Double	theLine,	Color	theColor)	{

this.theLine	=	theLine;
this.theColor	=	theColor;

}

}

Rerun	 the	 project.	 Try	 drawing.	 Once	 you	 have	 a	 few	 lines	 (with	 different
colors)	 on	 the	 blackboard,	 reduce	 the	 program	 to	 an	 icon.	 Restore	 the
application.	Your	picture	is	still	there!	The	graphics	are	persistent.	As	more	lines

are	 drawn,	 you	may	 notice	 the	 redraw	 process	may	 slow	 –	 this	 is	 a	 result	 of
needing	 to	 store	 and	 retrieve	 lots	 of	 information.	 Save	 the	 project	 (saved	 as
Example8-2	project	in	\LearnJava\LJ	Code\Class	8\	program	group).

More	Graphics	Methods
In	Class	7,	we	learned	about	the	Java	2D	graphics	object	and	several	shapes	and
drawing	 methods.	We	 learned	 how	 to	 draw	 lines,	 rectangles,	 ellipses	 and	 pie
segments.	 We	 learned	 how	 to	 incorporate	 these	 drawing	 elements	 into
procedures	 for	 line	 charts,	 bar	 charts	 and	 pie	 charts.	 The	 Java	 2D	 graphics
package	is	vast	and	offers	many	graphics	methods.

Here,	we	look	a	few	more	graphics	methods	to	use	in	our	applications.	We	learn
how	 to	 draw	 and	 fill	 more	 complex	 shapes	 like	 polygons	 and	 closed	 curves.
And,	we	learn	about	non-solid	fills	and	how	to	add	text	to	a	graphics	object.

The	steps	for	drawing	here	are	exactly	the	same	as	those	followed	in	Class	7:

➢	Create	a	Graphics2D	object.
➢	Establish	the	Stroke	and	Paint	objects	needed	for	drawing.
➢	Establish	the	Shape	object	for	drawing.
➢	Draw	shape	to	Graphics2D	object	using	drawing	methods	➢	Dispose	of
graphics	object	when	done.

Before	 studying	 the	 new	 methods,	 we	 look	 at	 another	 graphics	 object,	 the
Point2D	object.

Point2D	Object
We	 will	 look	 at	 shape	 objects	 that	 describe	 line	 and	 curve	 segments	 by
connecting	points.	In	order	to	reconstruct	such	shapes	using	a	paintComponent
method,	 it	 is	 helpful	 to	 have	 a	 convenient	 way	 to	 store	 points	 in	 a	 Vector
collection.	 The	Point2D	 object,	 which	 specifies	 a	 Cartesian	 point,	 offers	 this
convenience.	 The	 Point2D	 object	 has	 just	 two	 properties:	 x,	 the	 horizontal
coordinate,	 and	 y,	 the	 vertical	 coordinate.	 To	 create	 a	 point	 object	 named
myPoint,	you	use:	Point2D.Double	myPoint	=	new	Point2D.Double(x,	y);

Each	argument	value	is	a	double	type	(there	is	also	a	Point2D.Float	object	with
float	type	arguments).

To	retrieve	the	x	and	y	coordinates	of	a	Point2D	object	(myPoint),	you	use	one
of	two	methods.	To	retrieve	the	x	coordinate,	use:	myPoint.getX()

and	to	retrieve	the	y	coordinate:	myPoint.getY()

GeneralPath	Object
In	 Class	 7,	 we	 looked	 at	 how	 to	 draw	 ‘normal’	 shapes	 like	 rectangles	 and
ellipses.	To	draw	more	complex	shapes,	we	use	a	GeneralPath	object.	Such	an
object	 is	used	 to	 specify	 segments	of	 a	path	 to	 follow.	These	 segments	can	be
straight	lines	(for	drawing	polygons)	or	curves	(for	drawing	free	form	shapes).

A	general	path	object	named	myPath	is	created	using:	GeneralPath	myPath	=
new	GeneralPath();

As	 always,	 placement	 of	 such	 a	 statement	 depends	 on	 desired	 scope	 for	 the
object.

Once	created,	the	first	point	in	the	path	is	specified	using	the	moveTo	method.	If
the	desired	point	is	(x,	y),	the	syntax	is:	myPath.moveTo(x,	y);

Note	 the	 coordinates	here	 (and	 for	 all	 path	methods)	 are	of	 type	 float.	 If	 your
application	uses	some	other	type	for	coordinates,	the	arguments	need	to	be	cast
to	float	type.

Following	 this	 initialization,	 segments	 can	 be	 added	 to	 the	 path	 using	 several
different	methods.	The	syntax	for	each	method	is	(again,	all	arguments	are	float
type):

Method Description
lineTo(x,y) Connects	current	path	point	to	(x,

y)	using	a	straight	line	segment.
quadTo(x1,y1,x2,y2) Connects	current	path	point	to	(x2,

y2)	using	a	quadratic	curve
segment	with	‘control	point’	(x1,
y1)

curveTo(x1,y1,x2,y2,x3,y3) Connects	current	path	point	to	(x3,
y3)	using	a	cubic	curve	segment
with	‘control	points’	(x1,	y1)	and
(x2,	y2)

closePath() Connects	current	point	to	point
established	by	last	moveTo	method
with	a	straight	line	segment.	To
close	with	a	curve,	use	quadTo	or
curveTo.

The	meanings	and	uses	of	each	of	 these	drawing	methods	will	be	explained	 in
more	 detail	 in	 the	 next	 few	 sections.	Once	 a	GeneralPath	 object	 (a	 shape)	 is
complete,	it	is	drawn	with	the	usual	Graphics2D	draw	and	fill	methods.	If	our
object	is	myPath	and	the	graphics	object	is	g2D,	the	proper	syntax	for	drawing
and	filling	is:	g2D.draw(myPath);
g2D.fill(myPath);

When	 general	 path	 objects	 have	 intersecting	 sides,	 a	winding	 rule	 is	 used	 to
decide	which	areas	should	be	filled	and	which	shouldn’t.	There	are	just	two	such
rules.	We	use	the	default	rule,	called	the	non-zero	winding	rule.	To	use	the	other
rule	(even-odd	rule),	you	need	to	use	a	different	constructor	for	the	path	object.
We	won’t	go	into	details	here	about	the	different	rules.	They	don’t	even	matter	if
your	shapes	don’t	have	many	areas	to	fill.	Consult	the	usual	Java	references	for
more	information	on	the	two	possible	rules.

Drawing	Polygons
Using	the	general	path	methods	for	constructing	straight-line	segments	allows	us
to	 create	 and	 draw	 polygons	 as	 shapes.	 The	 process	 is	 for	 a	 path	 named
myPolygon	is:

➢	Declare	path	using:

GeneralPath	myPolygon	=	new	GeneralPath();

➢	Initialize	polygon	at	one	of	its	vertices	(corners):	myPolygon.moveTo(x,
y);

➢	 For	 each	 side	 of	 the	 polygon,	 draw	 a	 line	 to	 the	 next	 vertex	 using:
myPolygon.lineTo(x,	y);

➢	Once,	you	have	drawn	a	 line	 to	 the	 last	vertex,	complete	 the	path	using:
myPolygon.closePath();

➢	 Draw	 the	 path	 (after	 setting	 stroke	 and	 paint	 attributes,	 if	 needed),
assuming	a	graphics	object	g2D:	g2D.draw(myPolygon);

Let’s	 draw	 a	 polygon	 in	 a	 panel	 (myPanel)	 of	 dimension	 (300,	 200).	 The
polygon	will	have	a	red	outline	with	a	line	width	of	1	(the	default	stroke).	The
vertices	of	 the	polygon	(five	sides,	a	pentagon)	are:	 (50,	100),	 (100,	20),	 (270,
80),	 (250,	150),	 (100,	170)	 Following	 the	 steps	 outlined	 above,	 the	 Java	 code
would	be:	Graphics2D	g2D	=	(Graphics2D)	myPanel.getGraphics();
GeneralPath	myPolygon	=	new	GeneralPath();
myPolygon.moveTo(50,	100);
myPolygon.lineTo(100,	20);
myPolygon.lineTo(270,	80);
myPolygon.lineTo(250,	150);
myPolygon.lineTo(100,	170);
myPolygon.closePath();
g2D.setPaint(Color.RED);
g2D.draw(myPolygon);

This	produces:

The	polygon	is	filled	with	the	fill	method:

g2D.fill(myPolygon);

The	shape	will	be	filled	with	the	current	paint	attribute.

To	fill	our	example	polygon	with	yellow,	the	shaded	code	is	added:	Graphics2D
g2D	=	(Graphics2D)	myPanel.getGraphics();
GeneralPath	myPolygon	=	new	GeneralPath();
myPolygon.moveTo(50,	100);
myPolygon.lineTo(100,	20);
myPolygon.lineTo(270,	80);
myPolygon.lineTo(250,	150);
myPolygon.lineTo(100,	170);
myPolygon.closePath();

g2D.setPaint(Color.YELLOW);

g2D.fill(myPolygon);
g2D.setPaint(Color.RED);
g2D.draw(myPolygon);
g2D.dispose();

This	produces:

Notice	that,	to	preserve	the	red	border,	we	did	the	fill	operation	before	the	draw.

Example	8-3
Drawing	Polygons

Start	 a	 new	 empty	 project	 in	NetBeans.	 Name	 the	 project	DrawingPolygons.
Delete	 default	 code	 in	 Java	 file	 named	DrawingPolygons.	 In	 this	 application,
the	user	will	click	on	a	panel	specifying	a	set	of	points.	These	points	will	be	used
to	 draw	 a	 polygon	 or	 a	 filled	 (random	 color)	 polygon.	The	 finished	 frame	 is:	

1.	 Add	 a	 panel	 control	 and	 two	 button	 controls	 to	 the	 frame.	 The

GridBagLayout	is:	

Set	the	following	properties:

DrawingPolygons	Frame:

title Drawing	Polygons
resizable false

panelDraw	(a	GraphicsPanel	class):
preferredSize (350,	250)
background WHITE
gridx 0
gridy 0
insets (10,	10,	10,	10)

drawButton:
text Draw	Polygon
enabled false
gridx 0
gridy 1

fillButton:
text Fill	Polygon
enabled false
gridx 0
gridy 2
insets (5,	0,	0,	0)

2.	Build	the	basic	framework:	/	*

*	DrawingPolygons.java

*/

package	drawingpolygons;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.geom.*;
import	java.awt.event.*;
import	java.util.*;

import	java.util.Random;

public	class	DrawingPolygons	extends	JFrame

{

public	static	void	main(String	args[])

{

//construct	frame
new	DrawingPolygons().show();

}

public	DrawingPolygons()

{

//	code	to	build	the	form
setTitle("Drawing	Polygons");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

pack();

Dimension	screenSize	=
Toolkit.getDefaultToolkit().getScreenSize();

setBounds((int)	(0.5	(screenSize.width	-getWidth())),	(int)	(0.5
(screenSize.height	-getHeight())),	getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	to	check	the	framework.

3.	 Now,	 we	 add	 controls	 and	 methods.	 Add	 class	 level	 declarations:
GraphicsPanel	drawPanel	=	new

GraphicsPanel();
JButton	drawButton	=	new	JButton();
JButton	fillButton	=	new	JButton();

Positon	and	add	controls	and	event	methods:

GridBagConstraints	gridConstraints	=
new	GridBagConstraints();
drawPanel.setPreferredSize(new	Dimension(350,	250));
drawPanel.setBackground(Color.WHITE);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(drawPanel,	gridConstraints);
drawPanel.addMouseListener(new	MouseAdapter()

{

public	void	mousePressed(MouseEvent	e)

{

drawPanelMousePressed(e);

}

});

drawButton.setText("Draw	Polygon");
drawButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(drawButton,	gridConstraints);
drawButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

drawButtonActionPerformed(e);

}

});

fillButton.setText("Fill	Polygon");
fillButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
getContentPane().add(fillButton,	gridConstraints);

fillButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

fillButtonActionPerformed(e);

}

});

Add	three	empty	methods.

private	void	drawPanelMousePressed(MouseEvent	e)

{

}

private	void	drawButtonActionPerformed(ActionEvent	e)

{

}

private	void	fillButtonActionPerformed(ActionEvent	e)

{

}

4.	Add	the	GraphicsPanel	class	(from	Appendix	I)	after	the	main	class	to	allow
for	persistent	graphics	in	the	paintComponent	method:	class	GraphicsPanel
extends	JPanel

{

public	GraphicsPanel()

{

}

public	void	paintComponent(Graphics	g)

{

}

}

Run	to	check	control	layout:

The	panel	is	gray	because	we	haven’t	coded	the	paintComponent	method.	And,
yes,	the	buttons	should	not	be	enabled.

5.	Now,	we	write	code.	Use	these	class	level	scope	declarations:	static	boolean
shapeDrawn	=	true;

//set	to	true	for	proper	initialization

static	boolean	shapeFilled	=	false;
static	Color	fillColor;
static	Vector	myPoints	=	new	Vector(50,	10);
Random	myRandom	=	new	Random();

6.	Use	 this	 code	 in	 the	drawPanelMousePressed	method.	 It	 saves	 the	clicked
points	 and	 marks	 them	 with	 a	 red	 dot:	 private	 void
drawPanelMousePressed(MouseEvent	e)

{

if	(shapeDrawn)

{

//	starting	over	with	new	drawing
drawButton.setEnabled(false);
fillButton.setEnabled(false);
shapeDrawn	=	false;
shapeFilled	=	false;
myPoints.removeAllElements();

}

//	Save	clicked	point	and	mark	with	red	dot
Point2D.Double	myPoint	=	new	Point2D.Double(e.getX(),	e.getY());
myPoints.add(myPoint);
if	(myPoints.size()	>	2)

{

drawButton.setEnabled(true);

}

drawPanel.repaint();

}

7.	 Use	 this	 code	 in	 the	 drawButtonActionPerformed	 event	 method:	 private
void	drawButtonActionPerformed(ActionEvent	e)

{

//	connect	lines
drawButton.setEnabled(false);
fillButton.setEnabled(true);	//	allow	filling	polygon
shapeDrawn	=	true;
drawPanel.repaint();

}

This	code	connects	the	points	and	draws	a	polygon.

8.	Use	this	code	in	the	fillButtonActionPerformed	event	method:	private	void
fillButtonActionPerformed(ActionEvent	e)

{

//	fill	polygon
fillColor	=	new	Color(myRandom.nextInt(256),

myRandom.nextInt(256),	myRandom.nextInt(256));
shapeFilled	=	true;
drawPanel.repaint();

}

The	closed	polygon	is	filled	with	a	random	color.

9.	Use	 this	 code	 in	 the	paintComponent	method	 in	 the	GraphicsPanel	 class.
This	code	draws	and	fills	the	polygon,	as	needed.	Note,	in	particular,	how	the
saved	 points	 (Point2D	 objects)	 are	 retrieved	 from	 the	 myPoints	 vector
collection:	public	void	paintComponent(Graphics	g)

{

//	create	graphics	object	and	connect	points	in	x,	y	arrays	GeneralPath

myShape	=	new	GeneralPath();
Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
if	(DrawingPolygons.myPoints.size()	==	0)

{

return;

}

for	(int	i	=	0;	i	<	DrawingPolygons.myPoints.size();	i++)	{
Point2D.Double	myPoint	=	(Point2D.Double)

DrawingPolygons.myPoints.elementAt(i);
if	(!DrawingPolygons.shapeDrawn)

{

//	points	only
g2D.setPaint(Color.RED);
g2D.fill(new	Ellipse2D.Double(myPoint.getX()	-	1,

myPoint.getY()	-	1,	3,	3));	}
else

{

//	build	the	path	for	drawing	and	or	filling
if	(i	==	0)

{

myShape.moveTo((float)	myPoint.getX(),	(float)
myPoint.getY());	}

else

{

myShape.lineTo((float)	myPoint.getX(),	(float)

myPoint.getY());	}

}

}

if	(DrawingPolygons.shapeDrawn)

{

//	fill	then	redraw
myShape.closePath();
if	(DrawingPolygons.shapeFilled)

{

g2D.setPaint(DrawingPolygons.fillColor);
g2D.fill(myShape);

}

g2D.setStroke(new	BasicStroke(2));
g2D.setPaint(Color.BLUE);
g2D.draw(myShape);

}

g2D.dispose();

}

The	 complete	DrawingPolygons.java	 code	 (additions	 to	 basic	 framework	 are
shaded):	/	*
*	DrawingPolygons.java

*/

package	drawingpolygons;
import	javax.swing.*;

import	java.awt.*;
import	java.awt.geom.*;
import	java.awt.event.*;
import	java.util.*;
import	java.util.Random;

public	class	DrawingPolygons	extends	JFrame

{

GraphicsPanel	drawPanel	=	new	GraphicsPanel();
JButton	drawButton	=	new	JButton();
JButton	fillButton	=	new	JButton();
static	boolean	shapeDrawn	=	true;	//set	to	true	for	proper	initialization

static	boolean	shapeFilled	=	false;
static	Color	fillColor;
static	Vector	myPoints	=	new	Vector(50,	10);
Random	myRandom	=	new	Random();

public	static	void	main(String	args[])

{

//construct	frame
new	DrawingPolygons().show();

}

public	DrawingPolygons()

{

//	code	to	build	the	form
setTitle("Drawing	Polygons");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	position	controls	(establish	event	methods)
GridBagConstraints	gridConstraints	=	new

GridBagConstraints();
drawPanel.setPreferredSize(new	Dimension(350,	250));
drawPanel.setBackground(Color.WHITE);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(drawPanel,	gridConstraints);
drawPanel.addMouseListener(new	MouseAdapter()

{

public	void	mousePressed(MouseEvent	e)

{

drawPanelMousePressed(e);

}

});

drawButton.setText("Draw	Polygon");

drawButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(drawButton,	gridConstraints);
drawButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

drawButtonActionPerformed(e);

}

});

fillButton.setText("Fill	Polygon");
fillButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
getContentPane().add(fillButton,	gridConstraints);
fillButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

fillButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}
private	void	drawPanelMousePressed(MouseEvent	e)

{

if	(shapeDrawn)

{

//	starting	over	with	new	drawing
drawButton.setEnabled(false);
fillButton.setEnabled(false);
shapeDrawn	=	false;
shapeFilled	=	false;
myPoints.removeAllElements();

}

//	Save	clicked	point	and	mark	with	red	dot
Point2D.Double	myPoint	=	new	Point2D.Double(e.getX(),	e.getY());

myPoints.add(myPoint);
if	(myPoints.size()	>	2)

{

drawButton.setEnabled(true);

}

drawPanel.repaint();

}

}

private	void	drawButtonActionPerformed(ActionEvent	e)

{

//	connect	lines
drawButton.setEnabled(false);
fillButton.setEnabled(true);	//	allow	filling	polygon
shapeDrawn	=	true;
drawPanel.repaint();

}

private	void	fillButtonActionPerformed(ActionEvent	e)

{

//	fill	polygon
fillColor	=	new	Color(myRandom.nextInt(256),

myRandom.nextInt(256),	myRandom.nextInt(256));
shapeFilled	=	true;
drawPanel.repaint();

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

class	GraphicsPanel	extends	JPanel

{

public	GraphicsPanel()

{

}

public	void	paintComponent(Graphics	g)

{

//	create	graphics	object	and	connect	points	in	x,	y	arrays
GeneralPath	myShape	=	new	GeneralPath();

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
if	(DrawingPolygons.myPoints.size()	==	0)

{

return;

}

for	(int	i	=	0;	i	<	DrawingPolygons.myPoints.size();	i++)	{
Point2D.Double	myPoint	=	(Point2D.Double)

DrawingPolygons.myPoints.elementAt(i);	if
(!DrawingPolygons.shapeDrawn)

{

//	points	only
g2D.setPaint(Color.RED);
g2D.fill(new	Ellipse2D.Double(myPoint.getX()	-	1,

myPoint.getY()	-	1,	3,	3));	}
else

{

//	build	the	path	for	drawing	and	or	filling
if	(i	==	0)

{

myShape.moveTo((float)	myPoint.getX(),	(float)
myPoint.getY());	}

else

{

myShape.lineTo((float)	myPoint.getX(),	(float)
myPoint.getY());	}

}

}

if	(DrawingPolygons.shapeDrawn)

{

//	fill	then	redraw
myShape.closePath();
if	(DrawingPolygons.shapeFilled)

{

g2D.setPaint(DrawingPolygons.fillColor);
g2D.fill(myShape);

}

g2D.setStroke(new	BasicStroke(2));
g2D.setPaint(Color.BLUE);
g2D.draw(myShape);

}

g2D.dispose();

}

}

Run	the	application.	Try	drawing	points	(just	click	the	frame	with	any	button	of
the	mouse)	and	polygons.	Fill	the	polygons.	Notice	how	the	random	colors	work.
Notice	how	the	button	controls	are	enabled	and	disabled	at	different	points.	To
start	 a	 new	 drawing,	 just	 click	 the	 frame	 with	 a	 new	 starting	 point.	 Try
overlapping	 points	 to	 see	 some	 nice	 effects.	 Here’s	 a	 polygon	 I	 drew:	

Save	the	project	(saved	as	Example8-3	project	in	\LearnJava\LJ	Code\Class	8\
program	group)

Drawing	Curves
The	GeneralPath	 object	 can	 also	 be	 used	 to	 draw	 curved	 segments.	Drawing
curves	 is	 a	 little	 more	 detailed	 than	 drawing	 polygons	 and	 involves	 a	 little
mathematical	 jargon.	 We’ll	 try	 not	 to	 overwhelm	 you	 with	 the	 math.	 We’ll
develop	the	steps	needed	to	fill	a	polygonal	region	with	a	smooth	curve.

There	are	two	methods	that	allow	the	drawing	of	curved	segments:	quadTo	and
curveTo.	First,	let’s	look	at	quadTo.	For	the	mathematically	inclined,	quadTo
constructs	 a	 quadratic	 (second-order	 polynomial	 –	 you	 may	 remember	 the
quadratic	formula	from	ninth	grade	algebra)	curve	segment	between	the	current
path	 point	 and	 a	 new	 point	 using	 a	 specified	 ‘control’	 point.	 The	 segment	 is
constructed	such	that	tangents	(straight	lines	just	touching	the	curve)	to	the	two
curve	points	intersect	at	the	control	point.	You	don’t	have	to	know	what	all	this
means	 –	 here’s	 a	 picture	 of	 what	 quadTo	 does:	

In	this	picture,	(x1,	y1)	is	the	current	path	point	(last	point	drawn	to),	(x2,	y2)	is
the	 new	 point	 to	 add	 to	 the	 path	 and	 (xc,	 yc)	 is	 the	 control	 point.	 If	 the
GeneralPath	 object	 we	 are	 constructing	 is	myCurve,	 the	 code	 to	 draw	 this
quadratic	segment	is:	myCurve.quadTo(xc,	yc,	x2,	y2);

Notice	(x1,	y1)	does	not	appear	in	the	method	–	it	is	assumed	to	be	the	last	point
drawn	to	in	the	path	construction.	Quadratic	curves	smoothly	transition	from	one
point	to	the	next.

The	 curveTo	 method	 requires	 two	 control	 points	 for	 each	 curve	 segment.	 In
mathematical	terms,	curveTo	constructs	a	cubic	(third-order)	curve,	also	known
as	a	Bezier	curve,	between	the	current	path	point	and	a	new	point	using	the	two
control	points.	The	segment	is	constructed	such	that	the	tangent	from	each	curve
point	 goes	 through	 its	 corresponding	 control	 point.	 Pictorially,	 the	 resulting

segment	is:	

where	(x1,	y1)	is	the	current	path	point	with	control	point	(x1c,	y1c)	and	(x2,	y2)
is	the	new	point	to	add	with	control	point	(x2c,	y2c).	The	code	to	draw	this	cubic
segment	is:	myCurve.curveTo(x1c,	y1c,	x2c,	y2c,	x2,	y2);

Again,	(x1,	y1)	is	implicit	in	the	path	construction.	Cubic	curves	are	seen	to	be	a
bit	“curvier.”	This	is	because	we	can	work	with	two	control	points.

As	mentioned	 earlier,	we	 don’t	want	 to	 overwhelm	 you	with	 the	mathematics
behind	quadratic	and	cubic	curves.	To	draw	general	curved	shapes	requires	some
knowledge	 of	 calculus	 and	 optimization	 techniques	 for	 proper	 placement	 of
curve	and	control	points.	We’ll	 show	you	how	 to	draw	a	general	 shape	 (using
quadTo)	using	only	addition	and	division	skills.	The	approach	we	 take	 is	 fit	a
curved	shape	within	a	polygon.	The	vertices	of	the	polygon	will	be	the	control
points	for	the	curved	path.	The	midpoints	of	the	sides	of	the	polygon	will	be	the
curve	points.	You’ll	see	that	this	technique	draws	a	pretty	nice	closed	curve.

Let’s	 work	 through	 an	 example.	 Here’s	 the	 polygon	 we	 used	 as	 a	 previous
example,	 with	 the	 vertices	 labeled:	

We	 want	 to	 draw	 a	 curve	 in	 the	 interior	 of	 this	 polygon.	 As	 mentioned,	 the
identified	vertices	will	be	the	control	points	to	use	with	the	quadTo	method.

The	curve	points	will	be	the	midpoints	of	the	sides	of	the	polygon.	How	do	you
find	 these	points?	This	 is	where	 the	 addition	 and	division	 skills	 are	needed.	 If
(x1,	y1)	is	the	coordinate	at	one	end	of	a	side	and	(x2,	y2)	is	the	coordinate	at	the
other	end,	the	midpoint	(xm,	ym)	is	just	the	average	of	the	x	values	and	y	values:
(xm,	ym)	=	(0.5	(x1	+	x2),	0.5	(y1	+	y2))

So,	 here	 is	 the	 polygon	 with	 all	 midpoints	 added	 and	 labeled:	

Make	sure	you	see	how	we	got	all	these	values.

With	all	these	points,	we	can	now	construct	the	interior	curve.	Recall	the	vertices
are	control	points	and	 the	midpoints	are	curve	points.	We	will	 start	at	 (75,	60)
and	move	counterclockwise,	connecting	the	curve	points	using	the	control	points
in	a	quadTo	method.	The	code	to	draw	the	interior	curve	(in	a	panel	myPanel,
in	 red	 with	 width	 3)	 is:	 Graphics2D	 g2D	 =	 (Graphics2D)
myPanel.getGraphics();
GeneralPath	myCurve	=	new	GeneralPath();
g2D.setStroke(new	BasicStroke(3));
myCurve.moveTo(75,	60);
myCurve.quadTo(100,	20,	185,	50);
myCurve.quadTo(270,	80,	260,	115);
myCurve.quadTo(250,	150,	175,	160);
myCurve.quadTo(100,	170,	75,	135);
myCurve.quadTo(50,	100,	75,	60);
g2D.setColor(Color.RED);
g2D.draw(myCurve);
g2D.dispose();

This	 yields	 (we	 also	 drew	 the	 border	 so	 you	 can	 see	 how	 the	 curve	 fits):	

For	clarity,	we	didn’t	relabel	all	the	points,	but	you	should	be	able	to	see	how	the
curve	travels	through	the	specified	midpoints.	Notice	we	don’t	use	the	closePath
method	 here	 to	 connect	 the	 last	 point	 with	 the	 first	 point	 (like	 we	 did	 for	 a
polygon).	The	closePath	method	uses	a	straight	line	for	connection.	Instead,	we
need	 one	 last	 quadTo	 method	 to	 connect	 the	 points	 using	 the	 corresponding
control	point.

The	curve	can	be	filled	with	the	fill	method:

g2D.fill(myCurve);

The	shape	will	be	filled	with	the	current	paint	attribute.

To	 fill	 our	 example	 curve	with	 cyan,	 the	 shaded	 code	 is	 added:	Graphics2D
g2D	=	(Graphics2D)	myPanel.getGraphics();
GeneralPath	myCurve	=	new	GeneralPath();
g2D.setStroke(new	BasicStroke(3));
myCurve.moveTo(75,	60);
myCurve.quadTo(100,	20,	185,	50);
myCurve.quadTo(270,	80,	260,	115);
myCurve.quadTo(250,	150,	175,	160);
myCurve.quadTo(100,	170,	75,	135);
myCurve.quadTo(50,	100,	75,	60);
g2D.setColor(Color.CYAN);

g2D.fill(myCurve);
g2D.setColor(Color.RED);
g2D.draw(myCurve);
g2D.dispose();

This	 produces	 (again,	 we’ve	 left	 the	 bordering	 polygon):	

Notice	that,	to	preserve	the	red	border,	we	did	the	fill	operation	before	the	draw.

I	 think	 you’ll	 agree	 this	 simple	 approach	 (no	 calculus!)	 yields	 a	 pretty	 nice
curved	shape.	Even	if	the	segments	of	the	surrounding	polygon	overlap,	you	get
a	neat	curve.	Let’s	summarize	the	steps	to	create	a	curved	region	(myCurve):

➢	Declare	path	using:

GeneralPath	myCurve	=	new	GeneralPath();

➢	Determine	vertices	and	midpoints	of	surrounding	polygon.
➢	 Initialize	 the	 curve	 at	 some	 midpoint	 (this	 establishes	 the	 ‘current’
drawing	point):	myCurve.moveTo(x,	y);

➢	 Following	 the	 path	 of	 the	 surrounding	 polygon,	 for	 each	 subsequent
midpoint,	 including	 the	 initial	 point,	 draw	 a	 curve	 segment	 using:
myPolygon.quadTo(xc,	yc,	x,	y);

where	(xc,	yc)	(the	control	point)	is	the	vertex	between	the	midpoint	(x,	y)	and
the	previous	curve	point.

➢	 Draw	 the	 curve	 (after	 setting	 stroke	 and	 paint	 attributes,	 if	 needed),
assuming	a	graphics	object	g2D:	g2D.draw(myCurve);

You	should	be	able	to	identify	each	of	these	steps	in	the	little	example	we	did.
Now,	 let’s	 use	 this	 technique	 to	 replicate	Example	 8-3	with	 curves	 instead	 of
polygons.

Example	8-4
Drawing	Curves

Start	 a	 new	 empty	 project	 in	 NetBeans.	 Name	 the	 project	 DrawingCurves.
Delete	default	code	in	Java	file	named	DrawingCurves.	In	this	application,	the
user	will	click	on	a	panel	control	specifying	a	set	of	points.	These	points	will	be
used	to	a	curve	or	a	filled	(random	color)	curve.	This	example	is	essentially	the
same	as	Example	8-3.	Because	of	this,	we	will	simply	modify	that	example.

Open	Example	 8-3	 (DrawingPolygons)	 and	 open	 the	DrawingPolygons.java
file.	 Copy	 the	 contents	 of	 that	 file	 into	 the	DrawingCurves.java	 file.	 Make
these	changes:

➢	Change	all	 instances	of	DrawingPolygons	 to	DrawingCurves	–	I	found
11	such	instances.

➢	Change	the	frame	title	to	Drawing	Curves.
➢	Change	 the	drawButton	 text	 to	Draw	Curve	➢	Change	 the	 fillButton
text	to	Fill	Curve.

➢	 Change	 the	 paintComponent	 method	 in	 GraphicsClass	 to	 (modified
code	is	shaded):	public	void	paintComponent(Graphics	g)

{

//	create	graphics	object	and	connect	points	in	x,	y	arrays
GeneralPath	myCurve	=	new	GeneralPath();

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
int	numberPoints	=	DrawingCurves.myPoints.size();
if	(numberPoints	==	0)

{

return;

}

}

//	array	for	control	points
Point2D[]	controlPoint	=	new	Point2D[numberPoints];
for	(int	i	=	0;	i	<	numberPoints;	i++)

{

controlPoint[i]	=	(Point2D.Double)
DrawingCurves.myPoints.elementAt(i);

if	(!DrawingCurves.shapeDrawn)

{

//	points	only
g2D.setPaint(Color.RED);
g2D.fill(new	Ellipse2D.Double(controlPoint[i].getX()	-	1,

controlPoint[i].getY()	-	1,	3,	3));	}

}

if	(DrawingCurves.shapeDrawn)

{

//	array	for	curve	points
Point2D[]	curvePoint	=	new	Point2D[numberPoints];
//	establish	last	point	first
curvePoint[numberPoints	-	1]	=	new	Point2D.Double(0.5

(controlPoint[numberPoints	-	1].getX()	+	controlPoint[0].getX()),	0.5
(controlPoint[numberPoints	-	1].getY()	+	controlPoint[0].getY()));
myCurve.moveTo((float)	curvePoint[numberPoints	-1].getX(),	(float)
curvePoint[numberPoints	-	1].getY());	for	(int	i	=	0;	i	<	numberPoints;
i++)

{

if	(i	<	numberPoints	-	1)

{

{

curvePoint[i]	=	new	Point2D.Double(0.5
(controlPoint[i].getX()	+	controlPoint[i	+	1].getX()),	0.5
(controlPoint[i].getY()	+	controlPoint[i	+	1].getY()));	}

myCurve.quadTo((float)	controlPoint[i].getX(),	(float)
controlPoint[i].getY(),	(float)	curvePoint[i].getX(),	(float)
curvePoint[i].getY());	}

if	(DrawingCurves.shapeFilled)

{

g2D.setPaint(DrawingCurves.fillColor);
g2D.fill(myCurve);

}

g2D.setStroke(new	BasicStroke(2));
g2D.setPaint(Color.BLUE);
g2D.draw(myCurve);

}

g2D.dispose();

}

The	 complete	 DrawingCurves.java	 code	 listing	 (changes	 to
DrawingPolygons.java	are	shaded):	/	*
*	DrawingCurves.java

*/

package	drawingcurves;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.geom.*;
import	java.awt.event.*;

import	java.util.*;
import	java.util.Random;

public	class	DrawingCurves	extends	JFrame

{

GraphicsPanel	drawPanel	=	new	GraphicsPanel();
JButton	drawButton	=	new	JButton();
JButton	fillButton	=	new	JButton();

static	boolean	shapeDrawn	=	true;	//set	to	true	for	proper	initialization
static	boolean	shapeFilled	=	false;
static	Color	fillColor;
static	Vector	myPoints	=	new	Vector(50,	10);
Random	myRandom	=	new	Random();

public	static	void	main(String	args[])

{

//construct	frame
new	DrawingCurves().show();

}

public	DrawingCurves()

{

//	code	to	build	the	form
setTitle("Drawing	Curves");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());
//	position	controls	(establish	event	methods)
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();

drawPanel.setPreferredSize(new	Dimension(350,	250));
drawPanel.setBackground(Color.WHITE);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(drawPanel,	gridConstraints);
drawPanel.addMouseListener(new	MouseAdapter()

{

public	void	mousePressed(MouseEvent	e)

{

drawPanelMousePressed(e);

}

});

drawButton.setText("Draw	Curve");
drawButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;

gridConstraints.gridy	=	1;
getContentPane().add(drawButton,	gridConstraints);
drawButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

drawButtonActionPerformed(e);

}

});

fillButton.setText("Fill	Curve");
fillButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
getContentPane().add(fillButton,	gridConstraints);
fillButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

fillButtonActionPerformed(e);

}

});

pack();

Dimension	screenSize	=
Toolkit.getDefaultToolkit().getScreenSize();

setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5
(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}

private	void	drawPanelMousePressed(MouseEvent	e)

{

if	(shapeDrawn)

{

//	starting	over	with	new	drawing
drawButton.setEnabled(false);
fillButton.setEnabled(false);
shapeDrawn	=	false;
shapeFilled	=	false;
myPoints.removeAllElements();

}

//	Save	clicked	point	and	mark	with	red	dot
Point2D.Double	myPoint	=	new	Point2D.Double(e.getX(),	e.getY());

myPoints.add(myPoint);
if	(myPoints.size()	>	2)

{

drawButton.setEnabled(true);

}

drawPanel.repaint();

}

private	void	drawButtonActionPerformed(ActionEvent	e)

{

//	connect	lines
drawButton.setEnabled(false);
fillButton.setEnabled(true);	//	allow	filling	polygon
shapeDrawn	=	true;
drawPanel.repaint();

}

private	void	fillButtonActionPerformed(ActionEvent	e)

{

//	fill	polygon
fillColor	=	new	Color(myRandom.nextInt(256),

myRandom.nextInt(256),	myRandom.nextInt(256));
shapeFilled	=	true;
drawPanel.repaint();

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

class	GraphicsPanel	extends	JPanel

{

public	GraphicsPanel()

{

{

}

public	void	paintComponent(Graphics	g)

{

//	create	graphics	object	and	connect	points	in	x,	y	arrays
GeneralPath	myCurve	=	new	GeneralPath();

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
int	numberPoints	=	DrawingCurves.myPoints.size();
if	(numberPoints	==	0)

{

return;

}

//	array	for	control	points
Point2D[]	controlPoint	=	new	Point2D[numberPoints];
for	(int	i	=	0;	i	<	numberPoints;	i++)

{

controlPoint[i]	=	(Point2D.Double)
DrawingCurves.myPoints.elementAt(i);	if
(!DrawingCurves.shapeDrawn)

{

//	points	only
g2D.setPaint(Color.RED);
g2D.fill(new	Ellipse2D.Double(controlPoint[i].getX()	-	1,

controlPoint[i].getY()	-	1,	3,	3));	}

}

if	(DrawingCurves.shapeDrawn)

{

//	array	for	curve	points
Point2D[]	curvePoint	=	new	Point2D[numberPoints];
//	establish	last	point	first
curvePoint[numberPoints	-	1]	=	new	Point2D.Double(0.5

(controlPoint[numberPoints	-	1].getX()	+	controlPoint[0].getX()),	0.5
(controlPoint[numberPoints	-1].getY()	+	controlPoint[0].getY()));
myCurve.moveTo((float)	curvePoint[numberPoints	-1].getX(),	(float)
curvePoint[numberPoints	-	1].getY());	for	(int	i	=	0;	i	<	numberPoints;
i++)	{

if	(i	<	numberPoints	-	1)

{

curvePoint[i]	=	new	Point2D.Double(0.5
(controlPoint[i].getX()	+	controlPoint[i	+	1].getX()),	0.5
(controlPoint[i].getY()	+	controlPoint[i	+	1].getY()));	}

myCurve.quadTo((float)	controlPoint[i].getX(),	(float)
controlPoint[i].getY(),	(float)	curvePoint[i].getX(),	(float)
curvePoint[i].getY());	}

if	(DrawingCurves.shapeFilled)

{

g2D.setPaint(DrawingCurves.fillColor);
g2D.fill(myCurve);

}

g2D.setStroke(new	BasicStroke(2));
g2D.setPaint(Color.BLUE);
g2D.draw(myCurve);

}

g2D.dispose();

}

}

Run	the	project.	Try	drawing	closed	curves.	Fill	 the	closed	curves.	Notice	how
the	 random	 colors	 work.	 Notice	 how	 the	 button	 controls	 are	 enabled	 and
disabled	at	different	points.	To	start	a	new	drawing	once	complete,	just	click	the
form	with	a	new	starting	point.	Try	overlapping	points	to	see	some	nice	effects.

Here’s	a	curve	I	drew:	

Save	the	project	(saved	as	Example8-4	project	in	\LearnJava\LJ	Code\Class	8\
program	group).	Try	the	next	example	if	you	want	to	see	something	cool!!

Example	8-5
Animated	Curves

Start	 a	 new	 empty	 project	 in	NetBeans.	 Name	 the	 project	AnimatedCurves.
Delete	default	code	in	Java	file	named	AnimatedCurves.	In	this	application,	the
user	will	click	on	a	panel	control	specifying	a	set	of	points.	These	points	will	be
used	to	draw	a	curve	or	a	filled	(random	color)	curve.	Once	filled,	the	shape	will
change	itself	over	time!

We	 will	 just	 modify	 the	 previous	 example.	 Open	 Example	 8-4
(DrawingCurves)	and	open	the	DrawingCurves.java	file.	Copy	the	contents	of
that	file	into	the	AnimatedCurves.java	file.	Make	these	changes:

➢	 Change	 all	 instances	 of	DrawingCurves	 to	AnimatedCurves–	 I	 found	 10
such	instances.

➢	Change	the	frame	title	to	Animated	Curves.
➢	Add	a	timer	object	declaration:	myTimer	javax.swing.Timer;

We	need	to	preface	this	with	javax.swing	because	there	is	also	a	timer	object	in
the	java.util	package.

➢	In	the	frame	constructor,	create	and	add	a	method	for	the	myTimer	object.

myTimer	=	new	javax.swing.Timer(100,	new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

myTimerActionPerformed(e);

}

});

➢	In	the	drawPanelMousePressed	method,	when	a	new	drawing	is	started,	add

a	line	of	code	to	turn	off	the	timer:	myTimer.stop();
➢	In	the	fillButtonActionPerformed	method,	add	a	line	of	code	to	turn	on	the
timer	object:	myTimer.start();

➢	 Add	 this	 myTimerActionPerformed	 method:	 private	 void
myTimerActionPerformed(ActionEvent	e)

{

//	tweak	all	the	control	points	a	bit
for	(int	i	=	0;	i	<	myPoints.size();	i++)

{

Point2D.Double	myPoint	=	(Point2D.Double)
myPoints.elementAt(i);	myPoint.x	+=	myRandom.nextDouble()	*
20.0	-	10.0;
myPoint.y	+=	myRandom.nextDouble()	*	20.0	-	10.0;
myPoints.setElementAt(myPoint,i);

}

drawPanel.repaint();

}

In	 this	method,	we	 go	 through	 the	 list	 of	 control	 points	 and	 randomly	 change
them.	 This	 will	 ‘perturb’	 the	 displayed	 curve	 a	 little	 and	 give	 the	 effect	 of
animation.

The	complete	AnimatedCurves.java	code	(changes	to	DrawingCurves.java	are
shaded):	/	*
*	AnimatedCurves.java

*/

package	animatedcurves;
import	javax.swing.*;
import	java.awt.*;

import	java.awt.geom.*;
import	java.awt.event.*;
import	java.util.*;
import	java.util.Random;

public	class	AnimatedCurves	extends	JFrame

{

GraphicsPanel	drawPanel	=	new	GraphicsPanel();
JButton	drawButton	=	new	JButton();
JButton	fillButton	=	new	JButton();
javax.swing.Timer	myTimer;

static	boolean	shapeDrawn	=	true;	//set	to	true	for	proper	initialization
static	boolean	shapeFilled	=	false;
static	Color	fillColor;
static	Vector	myPoints	=	new	Vector(50,	10);
Random	myRandom	=	new	Random();

public	static	void	main(String	args[])

{

//construct	frame
new	AnimatedCurves().show();

}

public	AnimatedCurves()

{

//	code	to	build	the	form
setTitle("Animated	Curves");
setResizable(false);

addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	position	controls	(establish	event	methods)
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();

drawPanel.setPreferredSize(new	Dimension(350,	250));
drawPanel.setBackground(Color.WHITE);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(drawPanel,	gridConstraints);
drawPanel.addMouseListener(new	MouseAdapter()

{

public	void	mousePressed(MouseEvent	e)

{

drawPanelMousePressed(e);

}

});

drawButton.setText("Draw	Curve");

drawButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(drawButton,	gridConstraints);
drawButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

drawButtonActionPerformed(e);

}

});

fillButton.setText("Fill	Curve");
fillButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(5,	0,	5,	0);
getContentPane().add(fillButton,	gridConstraints);
fillButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

fillButtonActionPerformed(e);

}

});

myTimer	=	new	javax.swing.Timer(100,	new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)

{

myTimerActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5
(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}

private	void	drawPanelMousePressed(MouseEvent	e)

{

if	(shapeDrawn)

{

//	starting	over	with	new	drawing
myTimer.stop();
drawButton.setEnabled(false);
fillButton.setEnabled(false);
shapeDrawn	=	false;
shapeFilled	=	false;
myPoints.removeAllElements();

}

//	Save	clicked	point	and	mark	with	red	dot
Point2D.Double	myPoint	=	new	Point2D.Double(e.getX(),	e.getY());

myPoints.add(myPoint);
if	(myPoints.size()	>	2)

{

drawButton.setEnabled(true);

}

drawPanel.repaint();

}

private	void	drawButtonActionPerformed(ActionEvent	e)

{

//	connect	lines
drawButton.setEnabled(false);
fillButton.setEnabled(true);	//	allow	filling	polygon
shapeDrawn	=	true;
drawPanel.repaint();

}

private	void	fillButtonActionPerformed(ActionEvent	e)

{

//	fill	polygon
myTimer.start();
fillColor	=	new	Color(myRandom.nextInt(256),

myRandom.nextInt(256),	myRandom.nextInt(256));
shapeFilled	=	true;
drawPanel.repaint();

}

private	void	myTimerActionPerformed(ActionEvent	e)

{

//	tweak	all	the	control	points	a	bit
for	(int	i	=	0;	i	<	myPoints.size();	i++)

{

Point2D.Double	myPoint	=	(Point2D.Double)
myPoints.elementAt(i);	myPoint.x	+=	myRandom.nextDouble()	*	20.0	-
10.0;

myPoint.y	+=	myRandom.nextDouble()	*	20.0	-	10.0;
myPoints.setElementAt(myPoint,i);

}

drawPanel.repaint();

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

class	GraphicsPanel	extends	JPanel

{

public	GraphicsPanel()

{

{

}

public	void	paintComponent(Graphics	g)

{

//	create	graphics	object	and	connect	points	in	x,	y	arrays	GeneralPath
myCurve	=	new	GeneralPath();

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
int	numberPoints	=	AnimatedCurves.myPoints.size();
if	(numberPoints	==	0)

{

return;

}

//	array	for	control	points
Point2D[]	controlPoint	=	new	Point2D[numberPoints];
for	(int	i	=	0;	i	<	numberPoints;	i++)

{

controlPoint[i]	=	(Point2D.Double)
AnimatedCurves.myPoints.elementAt(i);	if
(!AnimatedCurves.shapeDrawn)

{

//	points	only
g2D.setPaint(Color.RED);
g2D.fill(new	Ellipse2D.Double(controlPoint[i].getX()	-	1,

controlPoint[i].getY()	-	1,	3,	3));	}

}

if	(AnimatedCurves.shapeDrawn)

{

//	array	for	curve	points
Point2D[]	curvePoint	=	new	Point2D[numberPoints];
//	establish	last	point	first
curvePoint[numberPoints	-	1]	=	new	Point2D.Double(0.5

(controlPoint[numberPoints	-	1].getX()	+	controlPoint[0].getX()),	0.5
(controlPoint[numberPoints	-1].getY()	+	controlPoint[0].getY()));
myCurve.moveTo((float)	curvePoint[numberPoints	-1].getX(),	(float)
curvePoint[numberPoints	-	1].getY());	for	(int	i	=	0;	i	<	numberPoints;
i++)

{

if	(i	<	numberPoints	-	1)

{

curvePoint[i]	=	new	Point2D.Double(0.5
(controlPoint[i].getX()	+	controlPoint[i	+	1].getX()),	0.5
(controlPoint[i].getY()	+	controlPoint[i	+	1].getY()));	}

myCurve.quadTo((float)	controlPoint[i].getX(),	(float)
controlPoint[i].getY(),	(float)	curvePoint[i].getX(),	(float)
curvePoint[i].getY());	}

if	(AnimatedCurves.shapeFilled)

{

g2D.setPaint(AnimatedCurves.fillColor);
g2D.fill(myCurve);

}

g2D.setStroke(new	BasicStroke(2));
g2D.setPaint(Color.BLUE);

g2D.draw(myCurve);

}

g2D.dispose();

}

}

Run.	Create	and	fill	a	curve.	Once	filled,	be	amazed	at	its	animated	performance.
You	might	 like	 to	 also	 change	 colors	 as	 the	 animation	 is	 going	 on.	 Save	 the
project	(saved	as	Example8-5	project	in	\LearnJava\LJ	Code\Class	8\	program
group).

GradientPaint	Object
The	 filled	 polygons	 and	 filled	 curves	 are	 pretty,	 but	 it	 would	 be	 nice	 to	 have
them	 filled	with	 something	 other	 than	 a	 solid	 color.	 Java	 provides	 other	 paint
classes	that	provide	interesting	fill	effects.	The	GradientPaint	class	fills	a	shape
with	a	blending	of	two	colors.	It	starts	with	one	color	and	gradually	‘becomes’
the	other	color	 in	a	specified	direction.	You	specify	the	colors	and	direction	of
the	‘gradient.’

To	create	a	GradientPaint	object,	you	specify	a	gradient	line,	which	begins	at
a	Point2D	object	p1	with	color	c1,	and	ends	at	a	Point2D	object	p2	with	color
c2.	 Then,	 as	 you	 move	 along	 this	 gradient	 line	 from	 p1	 to	 p2,	 the	 color
transitions	 from	 c1	 to	 c2.	 The	GradientPaint	 object	 creates	 parallel	 bands	 of
color	 perpendicular	 to	 the	 gradient	 line.	 Here	 is	 a	 gradient	 line	 that	 runs
diagonally	 from	 p1,	 color	 yellow,	 to	 p2,	 color	 dark	 gray:	

By	 changing	p1	 and	p2,	 you	 can	 set	 up	 gradients	 in	 any	direction	 you	desire.
The	 paint	 displayed	 above	 is	 acyclic.	 In	 an	 acyclic	 gradient	 paint	 object,	 any
points	beyond	the	ends	of	the	gradient	line	are	the	same	color	as	the	endpoints.

The	GradientPaint	object	can	also	be	cyclic.	In	a	cyclic	object,	the	gradient	line
is	repeated	in	both	directions	of	the	extended	gradient	line.	Here	is	the	previous

gradient	with	cyclic	behavior:	

To	 create	 a	 GradientPaint	 object	 (gPaint),	 we	 use	 this	 constructor:
GradientPaint	gPaint	=	new	GradientPaint(p1,	c1,	p2,	c2,	cyclic);	where:

p1 Point2D	object	that	defines	the	starting	point	with	color	c1
p2 Point2D	object	that	defines	the	ending	point	with	color	c2
cyclicBoolean	value	that	specifies	whether	the	color	‘cycles.’	If	true,	a

cyclic	object	is	created.

The	color	arguments	can	be	one	of	the	built-in	colors	or	one	generated	with	red,
green	 and	 blue	 contributions.	 Once	 established,	 use	 the	 new	 paint	 with	 the
setPaint	method	and	it	becomes	the	new	paint	attribute.

Example	8-6
Gradient	Paint

Start	 a	 new	 empty	 project	 in	NetBeans.	 Name	 the	 project	GradientPainting.
Delete	default	code	in	Java	file	named	GradientPainting.	In	this	application,	we
will	 view	 gradient	 paint	 directions,	 colors	 and	 sizes.	 The	 finished	 frame	 is:	

1.	Add	two	labels,	 two	combo	box	controls,	a	check	box,	a	button	and	a	panel
control	 to	 the	 frame.	 The	 GridBagLayout	 is:	

Set	the	following	properties:

GradientPainting	Frame:

title Gradient	Painting
resizable false

point1Label:
text Point	1:	(xxx,xxx)
preferredSize (120,	20)
horizontalAlignment CENTER
gridx 0
gridy 0
insets (10,	5,	0,	0)

color1ComboBox:
background WHITE
gridx 0
gridy 1
insets (10,	5,	0,	0)

point2Label:
text Point	2:	(xxx,xxx)
preferredSize (120,	20)
horizontalAlignment CENTER
gridx 0
gridy 2
insets (10,	5,	0,	0)

color2ComboBox:
background WHITE
gridx 0
gridy 3
insets (10,	5,	0,	0)

cyclicCheckBox:
text Cyclic
gridx 0

gridy 4
insets (10,	5,	0,	0)

paintButton:
text Paint
enabled false
gridx 0
gridy 5
insets (5,	5,	0,	0)

paintPanel:
preferredSize (350,	250)
background WHITE
gridx 1
gridy 0
gridheight 6
insets (10,	10,	10,	10)

2.	Build	the	basic	framework:	/	*

*	GradientPainting.java

*/

package	gradientpainting;
import	javax.swing.*;
import	javax.swing.event.*;
import	java.awt.*;
import	java.awt.geom.*;
import	java.awt.event.*;

public	class	GradientPainting	extends	JFrame

{

public	static	void	main(String	args[])

{

//construct	frame
new	GradientPainting().show();

}

public	GradientPainting()

{

//	code	to	build	the	form
setTitle("Gradient	Paint");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	*	(screenSize.width	-

getWidth())),	(int)	(0.5	*	(screenSize.height	-
getHeight())),	getWidth(),	getHeight());

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	to	check.

3.	 Add	 these	 class	 level	 declarations	 for	 the	 controls:	 JLabel	 point1Label	 =
new	JLabel();

JLabel	point2Label	=	new	JLabel();
JComboBox	color1ComboBox	=	new	JComboBox();
JComboBox	color2ComboBox	=	new	JComboBox();
JCheckBox	cyclicCheckBox	=	new	JCheckBox();
JButton	paintButton	=	new	JButton();
JPanel	paintPanel	=	new	JPanel();

Position	 and	 add	 controls	 and	 methods	 in	 frame	 constructor:
point1Label.setText("Point	1:	(xxx,xxx)");
point1Label.setPreferredSize(new	Dimension(120,	20));
point1Label.setHorizontalAlignment(SwingConstants.CENTER);
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	5,	0,	0);
getContentPane().add(point1Label,	gridConstraints);

color1ComboBox.setBackground(Color.WHITE);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;

gridConstraints.insets	=	new	Insets(10,	5,	0,	0);
getContentPane().add(color1ComboBox,	gridConstraints);
color1ComboBox.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

paintButtonActionPerformed(e);

}

});

point2Label.setPreferredSize(new	Dimension(120,	20));
point2Label.setText("Point	2:	(xxx,xxx)");
point2Label.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	5,	0,	0);
getContentPane().add(point2Label,	gridConstraints);

color2ComboBox.setBackground(Color.WHITE);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(10,	5,	0,	0);
getContentPane().add(color2ComboBox,	gridConstraints);
color2ComboBox.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

{

paintButtonActionPerformed(e);

}

});

cyclicCheckBox.setText("Cyclic");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	4;
gridConstraints.insets	=	new	Insets(10,	5,	0,	0);
getContentPane().add(cyclicCheckBox,	gridConstraints);
cyclicCheckBox.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

paintButtonActionPerformed(e);

}

});

paintButton.setText("Paint");
paintButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	5;
gridConstraints.insets	=	new	Insets(5,	5,	0,	0);
getContentPane().add(paintButton,	gridConstraints);
paintButton.addActionListener(new	ActionListener()

{

{

public	void	actionPerformed(ActionEvent	e)

{

paintButtonActionPerformed(e);

}

});

paintPanel.setPreferredSize(new	Dimension(350,	250));
paintPanel.setBackground(Color.WHITE);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.gridheight	=	6;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(paintPanel,	gridConstraints);
paintPanel.addMouseListener(new	MouseAdapter()

{

public	void	mousePressed(MouseEvent	e)

{

paintPanelMousePressed(e);

}

});

Add	empty	methods:

private	void	paintPanelMousePressed(MouseEvent	e)

{

}

private	void	paintButtonActionPerformed(ActionEvent	e)

{

}

Run	to	check	control	layout.	My	frame	looks	like	this:

4.	Now,	write	code.	Use	these	class	level	variables:	Graphics2D	g2D;

Rectangle2D.Double	myPanel;
Color[]	colorArray	=	{Color.BLACK,	Color.BLUE,
Color.GREEN,	Color.CYAN,	Color.RED,	Color.MAGENTA,
Color.YELLOW,	Color.WHITE};
String[]	colorName	=	{"Black",	"Blue",	"Green",	"Cyan",	"Red",
"Magenta",	"Yellow",	"White"};
int	pointNumber	=	0;

Point2D.Double	p1;
Point2D.Double	p2;

boolean	loading	=	true;

5.	Add	this	code	at	the	end	of	the	constructor.	This	sets	up	the	combo	boxes	(feel
free	to	change	colors	if	you	like):	//	set	up	graphics	object

g2D	=	(Graphics2D)	paintPanel.getGraphics();
myPanel	=	new	Rectangle2D.Double(0,	0,
paintPanel.getWidth(),	paintPanel.getHeight());
//	add	colors	to	combo	boxes
for	(int	i	=	0;	i	<	colorArray.length;	i++)

{

color1ComboBox.addItem(colorName[i]);
color2ComboBox.addItem(colorName[i]);

}

color2ComboBox.setSelectedIndex(7);
loading	=	false;

6.	 Use	 this	 code	 in	 the	 paintPanelMousePressed	 method.	 This	 code	 detects
mouse	 clicks	 that	 define	 the	 gradient	 line:	 private	 void
paintPanelMousePressed(MouseEvent	e)

{

if	(pointNumber	==	0)

{

//	getting	first	gradient	point
g2D.setPaint(paintPanel.getBackground());
g2D.fill(myPanel);
point1Label.setText("Point	1:	("	+	e.getX()	+	","	+	e.getY()	+	")");

point2Label.setText("Point	2:	(xxx,xxx)");
p1	=	new	Point2D.Double(e.getX(),	e.getY());
g2D.setPaint(Color.RED);
g2D.fill(new	Ellipse2D.Double(e.getX()	-	1,	e.getY()	-1,	3,	3));

paintButton.setEnabled(false);
pointNumber	=	1;

}

else	if	(pointNumber	==	1)

{

//	getting	second	gradient	point
point2Label.setText("Point	2:	("	+	e.getX()	+	","	+	e.getY()	+	")");

p2	=	new	Point2D.Double(e.getX(),	e.getY());
g2D.setPaint(Color.RED);
g2D.fill(new	Ellipse2D.Double(e.getX()	-	1,	e.getY()	-1,	3,	3));

Line2D.Double	gradientLine	=	new	Line2D.Double(p1,	p2);
g2D.setPaint(Color.BLACK);	g2D.draw(gradientLine);

paintButton.setEnabled(true);
pointNumber	=	0;

}

}

7.	Use	 this	 code	 in	 the	paintButtonActionPerformed	method	 (also	 handles	 a
change	to	any	of	the	combo	boxes	or	check	box).	This	paints	the	frame	using
the	 specified	 choices:	 private	 void
paintButtonActionPerformed(ActionEvent	e)

{

//	don't	try	painting	when	loading	array	elements
if	(loading)

{

return;

}

//	paint	the	panel
Color	c1	=	colorArray[color1ComboBox.getSelectedIndex()];	Color	c2

=	colorArray[color2ComboBox.getSelectedIndex()];	GradientPaint
gPaint	=	new	GradientPaint(p1,	c1,	p2,	c2,	cyclicCheckBox.isSelected());
g2D.setPaint(gPaint);

g2D.fill(myPanel);

}

The	final	GradientPainting.java	code	(additions	to	framework	are	shaded):	/	*
*	GradientPainting.java

*/

package	gradientpainting;
import	javax.swing.*;
import	javax.swing.event.*;
import	java.awt.*;
import	java.awt.geom.*;
import	java.awt.event.*;
public	class	GradientPainting	extends	JFrame

{

JLabel	point1Label	=	new	JLabel();
JLabel	point2Label	=	new	JLabel();
JComboBox	color1ComboBox	=	new	JComboBox();
JComboBox	color2ComboBox	=	new	JComboBox();
JCheckBox	cyclicCheckBox	=	new	JCheckBox();
JButton	paintButton	=	new	JButton();
JPanel	paintPanel	=	new	JPanel();

	
Graphics2D	g2D;
Rectangle2D.Double	myPanel;
Color[]	colorArray	=	{Color.BLACK,	Color.BLUE,	Color.GREEN,

Color.CYAN,	Color.RED,	Color.MAGENTA,	Color.YELLOW,
Color.WHITE};	String[]	colorName	=	{"Black",	"Blue",	"Green",
"Cyan",	"Red",	"Magenta",	"Yellow",	"White"};	int	pointNumber	=	0;
Point2D.Double	p1;
Point2D.Double	p2;
boolean	loading	=	true;

public	static	void	main(String	args[])

{

//construct	frame
new	GradientPainting().show();

}

public	GradientPainting()

{

//	code	to	build	the	form
setTitle("Gradient	Paint");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	position	controls	(establish	event	methods)
point1Label.setText("Point	1:	(xxx,xxx)");
point1Label.setPreferredSize(new	Dimension(120,	20));

point1Label.setHorizontalAlignment(SwingConstants.CENTER);
GridBagConstraints	 gridConstraints	 =	 new	 GridBagConstraints();
gridConstraints.gridx	=	0;

gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	5,	0,	0);
getContentPane().add(point1Label,	gridConstraints);

color1ComboBox.setBackground(Color.WHITE);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	5,	0,	0);
getContentPane().add(color1ComboBox,	gridConstraints);
color1ComboBox.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

paintButtonActionPerformed(e);

}

});

point2Label.setPreferredSize(new	Dimension(120,	20));
point2Label.setText("Point	2:	(xxx,xxx)");

point2Label.setHorizontalAlignment(SwingConstants.CENTER);
gridConstraints	=	new	GridBagConstraints();

gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
gridConstraints.insets	=	new	Insets(10,	5,	0,	0);
getContentPane().add(point2Label,	gridConstraints);

color2ComboBox.setBackground(Color.WHITE);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
gridConstraints.insets	=	new	Insets(10,	5,	0,	0);
getContentPane().add(color2ComboBox,	gridConstraints);
color2ComboBox.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

paintButtonActionPerformed(e);

}

});

cyclicCheckBox.setText("Cyclic");
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	4;
gridConstraints.insets	=	new	Insets(10,	5,	0,	0);
getContentPane().add(cyclicCheckBox,	gridConstraints);
cyclicCheckBox.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

paintButtonActionPerformed(e);

}

});

paintButton.setText("Paint");
paintButton.setEnabled(false);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	5;
gridConstraints.insets	=	new	Insets(5,	5,	0,	0);
getContentPane().add(paintButton,	gridConstraints);
paintButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

paintButtonActionPerformed(e);

}

});

paintPanel.setPreferredSize(new	Dimension(350,	250));
paintPanel.setBackground(Color.WHITE);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.gridheight	=	6;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(paintPanel,	gridConstraints);

paintPanel.addMouseListener(new	MouseAdapter()

{

public	void	mousePressed(MouseEvent	e)

{

paintPanelMousePressed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());
//	set	up	graphics	object
g2D	=	(Graphics2D)	paintPanel.getGraphics();
myPanel	=	new	Rectangle2D.Double(0,	0,	paintPanel.getWidth(),

paintPanel.getHeight());	//	add	colors	to	combo	boxes
for	(int	i	=	0;	i	<	colorArray.length;	i++)

{

color1ComboBox.addItem(colorName[i]);
color2ComboBox.addItem(colorName[i]);

}

color2ComboBox.setSelectedIndex(7);
loading	=	false;

}

private	void	paintPanelMousePressed(MouseEvent	e)

{

if	(pointNumber	==	0)

{

//	getting	first	gradient	point
g2D.setPaint(paintPanel.getBackground());
g2D.fill(myPanel);
point1Label.setText("Point	1:	("	+	e.getX()	+	","	+	e.getY()	+

")");	point2Label.setText("Point	2:	(xxx,xxx)");
p1	=	new	Point2D.Double(e.getX(),	e.getY());
g2D.setPaint(Color.RED);
g2D.fill(new	Ellipse2D.Double(e.getX()	-	1,	e.getY()	-1,	3,	3));

paintButton.setEnabled(false);
pointNumber	=	1;

}

else	if	(pointNumber	==	1)

{

//	getting	second	gradient	point
point2Label.setText("Point	2:	("	+	e.getX()	+	","	+	e.getY()	+
")");	p2	=	new	Point2D.Double(e.getX(),	e.getY());
g2D.setPaint(Color.RED);
g2D.fill(new	Ellipse2D.Double(e.getX()	-	1,	e.getY()	-1,	3,	3));
Line2D.Double	gradientLine	=	new	Line2D.Double(p1,	p2);
g2D.setPaint(Color.BLACK);
g2D.draw(gradientLine);
paintButton.setEnabled(true);
pointNumber	=	0;

}

}

	
private	void	paintButtonActionPerformed(ActionEvent	e)

{

//	don't	try	painting	when	loading	array	elements
if	(loading)

{

return;

}

//	paint	the	panel
Color	c1	=	colorArray[color1ComboBox.getSelectedIndex()];	Color
c2	=	colorArray[color2ComboBox.getSelectedIndex()];	GradientPaint
gPaint	=	new	GradientPaint(p1,	c1,	p2,	c2,
cyclicCheckBox.isSelected());	g2D.setPaint(gPaint);
g2D.fill(myPanel);

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	the	project.	Choose	colors	and	decide	on	the	cyclic	value.	Click	the	panel	in
two	 places	 to	 define	 the	 gradient	 line	 (direction	 and	 size	 of	 gradient)	 –	 the
coordinates	of	 the	 two	points	will	be	displayed.	Click	Paint	 to	 see	 the	painted

effect.	 Select	 different	 gradient	 directions	 (just	 click	 panel	 to	 redefine	 the
gradient	line)	and	colors.	Notice	how	the	gradient	line	size	and	cyclic	selection
can	provide	interesting	effects.	Once	any	combo	box	is	active,	you	can	use	the
cursor	arrows	on	the	keyboard	to	‘scroll’	 through	the	colors.	Here’s	one	of	my

results:	

Save	the	project	(saved	as	Example8-6	project	in	\LearnJava\LJ	Code\Class	8\
program	group).	Note	for	this	simple	example,	we	did	not	use	a	graphics	panel;
hence	the	painting	is	not	persistent.

TexturePaint	Object
Another	painting	object	 available	 in	 Java	2D	 is	 the	TexturePaint	 object.	This
object	 paints	 an	 area	 with	 a	 repeated	 rectangular	 region	 (a	BufferedImage	 –
we’ll	see	what	this	is).	This	gives	the	filled	region	a	‘tiled’	effect	like	a	kitchen
floor.	The	rectangular	 tile	can	be	something	you	create	using	drawing	methods
or	a	graphic	file	(gif	or	jpg	file).

To	create	a	TexturePaint	object	(tPaint),	we	use	this	constructor:	TexturePaint
tPaint	=	new	TexturePaint(tImage,	tRect);

where:

tImage BufferedImage	object	that	defines	painting	‘tile’
tRect Rectangle2D	object	the	size	of	the	tile	when	painted	in	the

graphics	object.

We	won’t	go	 into	a	 lot	of	details	about	a	BufferedImage,	 just	 think	of	 it	 as	a
rectangular	 picture	 (use	 requires	 the	 java.awt.image.*	 package	 be	 imported).
We	will	look	at	how	to	create	our	own	BufferedImage	for	texture	paint	and	how
to	 create	 one	 from	 a	 graphics	 file.	 Also	 note	 if	 the	 size	 of	 the	 image	 object
differs	from	the	size	of	the	tRect	object,	the	image	will	be	scaled	up	or	down	in
size,	accordingly.

To	 create	 your	 own	BufferedImage,	 by	 drawing	 to	 a	 graphics	 object,	 follow
these	steps:

➢	 Create	 the	 image	 (tImage)	 using:	 BufferedImage	 tImage	 =	 new
BufferedImage(w,	h,
BufferedImage.TYPE_INT_RGB);

where	w	is	the	image	width	and	h	the	image	height.	The	third	argument	is	a
constant	specifying	we	are	drawing	with	8	bit	colors.

➢	 Get	 the	 corresponding	 graphics	 object	 (g2DtImage):	 Graphics2D
g2DtImage	=	(Graphics2D)

tImage.getGraphics();
➢	 Draw	 to	 the	 graphics	 object	 using	 path	 objects,	 shape	 objects,	 stroke
objects	and	paint	objects.	Create	whatever	tile	you	want.

Once	 you	 are	 done	 drawing	 to	 the	 buffered	 image	 (tImage)	 graphic	 object
(g2DtImage),	you	create	the	TexturePaint	object.	Decide	on	a	size	(tRect)	for
your	tile	when	it	is	painted	(usually	the	same	size	as	the	BufferedImage	object).
Create	 the	 TexturePaint	 object	 using:	 TexturePaint	 tPaint	 =	 new
TexturePaint(tImage,	tRect);

This	paint	object	can	be	used	in	the	setPaint	method	to	establish	a	paint
attribute	(usually	used	for	filling	a	region).

Let’s	do	an	example	to	illustrate	the	steps.	We	will	build	a	tile	30	x	30	in	size.	It
will	be	filled	with	a	gradient	paint	(yellow	to	red)	running	diagonally	from	top,
left	to	bottom,	right.	There	will	be	a	small,	dark	gray	ellipse	in	the	middle	of	the
tile.	 An	 expanded	 version	 of	 the	 tile	 is:	

Here	are	the	steps:

➢	Create	the	BufferedImage	and	Graphics2D	object,	30	units	wide	by	30
units	high:	BufferedImage	tImage	=	new	BufferedImage(30,	30,
BufferedImage.TYPE_INT_RGB);
Graphics2D	g2DtImage	=	(Graphics2D)
tImage.getGraphics();

➢	Create	a	Rectangle2D	object	the	size	of	the	image:	Rectangle2D.Double
tRect	=	new	Rectangle2D.Double(0,	0,
tImage.getWidth(),	tImage.getHeight());

➢	 Establish	 a	 gradient	 paint,	 as	 described,	 and	 fill	 the	 image:

g2DtImage.setPaint(new	GradientPaint(0,	0,	Color.YELLOW,
tImage.getWidth()	-	1,
tImage.getHeight()	-	1,
Color.RED,	false));
g2DtImage.fill(tRect);

Note	we	have	used	a	GradientPaint	constructor	that	allows	direct
specification	of	the	coordinates	(without	using	Point	objects).

➢	 Draw	 a	 small,	 dark	 gray	 ellipse	 near	 the	 center	 of	 the	 image:
Ellipse2D.Double	tEllipse	=	new	Ellipse2D.Double(8,	10,	13,	10);
g2DtImage.setPaint(Color.DARK_GRAY);
g2DtImage.fill(tEllipse);

➢	 Establish	 the	 TexturePaint	 object:	 TexturePaint	 tPaint	 =	 new
TexturePaint(tImage,	tRect);

Here’s	a	frame	painted	with	our	new	tiles:

Creating	a	TexturePaint	object	from	a	graphics	file	involves	a	few	more	steps.
To	create	the	buffered	image	object:

➢	Load	the	image	(myImage)	from	a	file	(imageFile,	a	gif	or	jpg	file),	then
create	 the	 buffered	 image	 (tImage):	 Image	 myImage	 =	 new
ImageIcon(imageFile).getImage();
BufferedImage	tImage	=	new
BufferedImage(myImage.getWidth(this),
myImage.getHeight(this),	BufferedImage.TYPE_INT_RGB);

➢	 Get	 the	 corresponding	 graphics	 object	 (g2DtImage):	 Graphics2D
g2DtImage	=	(Graphics2D)

tImage.getGraphics();
➢	Draw	the	image	(myImage)	to	the	graphics	object	using	the	drawImage
method:	g2DtImage.drawImage(myImage,	0,	0,	this);

This	 completes	 creation	 of	 the	 buffered	 image	 object.	 Now,	 create	 the
TexturePaint	 object.	Decide	on	a	 size	 (tRect)	 for	your	 tile	when	 it	 is	painted
(for	 graphics	 files,	 this	 is	 many	 times	 a	 scaling	 of	 the	BufferedImage	 object
size).	 Create	 the	 TexturePaint	 object	 using:	 TexturePaint	 tPaint	 =	 new
TexturePaint(tImage,	tRect);

This	paint	object	can	be	used	in	the	setPaint	method	to	establish	a	paint	attribute
(usually	used	for	filling	a	region).

Let’s	do	an	example	to	illustrate	the	steps.	We	will	build	a	texture	paint	made	up

of	small	hamburgers	(burger.gif):	

Here	are	the	steps:

➢	Create	 the	BufferedImage	 and	Graphics2D	 object:	 Image	myImage	=
new	ImageIcon("burger.gif").getImage();
BufferedImage	tImage	=	new
BufferedImage(myImage.getWidth(this),
myImage.getHeight(this),	BufferedImage.TYPE_INT_RGB);
Graphics2D	g2DtImage	=	(Graphics2D)
tImage.getGraphics();
g2DtImage.drawImage(myImage,	0,	0,	this);

➢	Create	a	Rectangle2D	object	40	by	40	units	in	size:	Rectangle2D.Double
tRect	 =	 new	 Rectangle2D.Double(0,	 0,	 40,	 40);	 ➢	 Establish	 the
TexturePaint	object:	TexturePaint	tPaint	=	new	TexturePaint(tImage,
tRect);

Here’s	a	frame	painted	with	our	new	tiles:

Example	8-7
Texture	Paint

Start	 a	 new	 empty	 project	 in	NetBeans.	 Name	 the	 project	 TexturePainting.
Delete	default	code	in	Java	file	named	TexturePainting.

In	 this	 application,	 we	 will	 view	 different	 texture	 paints	 (using	 gif	 and	 jpg
images).	 The	 finished	 frame	 appears	 as:	

1.	 The	 application	 just	 needs	 two	 controls:	 a	 file	 chooser	 and	 a	 panel.	 The
GridBagLayout	 arrangement	 is:	

Properties	for	the	controls:

TexturePainting	Frame:
title Texture	Painting
resizable false

paintChooser:
gridx 0

gridy 0

paintPanel:
preferredSize (270,	300)
background WHITE
gridx 1
gridy 0
insets (10,	10,	10,	10);

2.	As	usual,	build	a	framework	to	start	with:	/	*

*	TexturePainting.java

*/

package	texturepainting;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.awt.image.*;
import	java.awt.geom.*;

public	class	TexturePainting	extends	JFrame

{

public	static	void	main(String	args[])

{

//construct	frame
new	TexturePainting().show();

}

public	TexturePainting()

{

//	create	frame
setTitle("Texture	Painting");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-getWidth())),	(int)	(0.5

(screenSize.height	-getHeight())),	getWidth(),	getHeight());	}
private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	to	see	the	frame	centered	on	your	screen.

3.	 Create	 controls	 with	 these	 class	 level	 declarations:	 JFileChooser
paintChooser	=	new	JFileChooser();

JPanel	paintPanel	=	new	JPanel();

Position	 controls	 and	 add	 event	 listener	 for	 file	 chooser:	GridBagConstraints
gridConstraints	=	new
GridBagConstraints();
paintChooser.addChoosableFileFilter(new
FileNameExtensionFilter("Graphics	Files",	"gif",	"jpg"));
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(paintChooser,	gridConstraints);
paintChooser.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

paintChooserActionPerformed(e);

}

});

paintPanel.setPreferredSize(new	Dimension(270,	300));
paintPanel.setBackground(Color.white);
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(paintPanel,	gridConstraints);

4.	We’ll	go	 right	 to	adding	code	 to	 the	paintChooserActionPerformed	 event:
private	void	paintChooserActionPerformed(ActionEvent	e)	{

//	create	paint
if
(e.getActionCommand().equals(JFileChooser.APPROVE_SELECTIO

N))	{
Image	myImage	=	new

ImageIcon(paintChooser.getSelectedFile().toString()).getIm	age();
BufferedImage	tImage	=	new	BufferedImage(myImage.getWidth(this),
myImage.getHeight(this),	BufferedImage.TYPE_INT_RGB);
Graphics2D	g2DtImage	=	(Graphics2D)	tImage.getGraphics();
g2DtImage.drawImage(myImage,	0,	0,	this);

//	use	full	size	graphic	for	paint
Rectangle2D.Double	tRect	=	new	Rectangle2D.Double(0,	0,

myImage.getWidth(this),	myImage.getHeight(this));	TexturePaint	tPaint
=	new	TexturePaint(tImage,	tRect);	//	paint	panel

Graphics2D	g2D	=	(Graphics2D)	paintPanel.getGraphics();
Rectangle2D.Double	myRectangle	=	new	Rectangle2D.Double(0,	0,
paintPanel.getWidth(),	paintPanel.getHeight());	g2D.setPaint(tPaint);

g2D.fill(myRectangle);

}

}

In	 this	 code,	 if	 the	 user	 clicks	 the	Open	 button,	 the	 selected	 file	 is	 used	 to
establish	 the	 BufferedImage	 to	 use	 as	 a	 textured	 paint	 in	 the	 paintPanel
control.

The	 complete	 TexturePainting.java	 code	 is	 (code	 added	 to	 framework	 is
shaded):	/	*
*	TexturePainting.java

*/

package	texturepainting;
import	javax.swing.*;
import	javax.swing.filechooser.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.awt.image.*;

import	java.awt.geom.*;

public	class	TexturePainting	extends	JFrame

{

JFileChooser	paintChooser	=	new	JFileChooser();
JPanel	paintPanel	=	new	JPanel();

public	static	void	main(String	args[])

{

//construct	frame
new	TexturePainting().show();

}

public	TexturePainting()

{

//	create	frame
setTitle("Texture	Painting");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	position	controls	(establish	event	methods)
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();

paintChooser.addChoosableFileFilter(new
FileNameExtensionFilter("Graphics	Files",	"gif",	"jpg"));
gridConstraints.gridx	=	0;

gridConstraints.gridy	=	0;
getContentPane().add(paintChooser,	gridConstraints);
paintChooser.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

paintChooserActionPerformed(e);

}

});

paintPanel.setPreferredSize(new	Dimension(270,	300));
paintPanel.setBackground(Color.white);
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(paintPanel,	gridConstraints);

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}
private	void	paintChooserActionPerformed(ActionEvent	e)	{

//	create	paint
if

(e.getActionCommand().equals(JFileChooser.APPROVE_SELECTION))	{
Image	myImage	=	new

ImageIcon(paintChooser.getSelectedFile().toString()).getImage	 ();
BufferedImage	tImage	=	new
BufferedImage(myImage.getWidth(this),
myImage.getHeight(this),	BufferedImage.TYPE_INT_RGB);

Graphics2D	g2DtImage	=	(Graphics2D)
tImage.getGraphics();

g2DtImage.drawImage(myImage,	0,	0,	this);
//	use	full	size	graphic	for	paint
Rectangle2D.Double	tRect	=	new	Rectangle2D.Double(0,	0,

myImage.getWidth(this),	myImage.getHeight(this));	TexturePaint	tPaint
=	new	TexturePaint(tImage,	tRect);	//	paint	panel

Graphics2D	g2D	=	(Graphics2D)	paintPanel.getGraphics();
Rectangle2D.Double	myRectangle	=	new	Rectangle2D.Double(0,	0,
paintPanel.getWidth(),	paintPanel.getHeight());	g2D.setPaint(tPaint);

g2D.fill(myRectangle);

}

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	the	project.	Choose	a	gif	or	jpg	file	(there	are	a	few	in	the	\LearnJava\LJ

Code\Class	 8\Example8-7\	 folder).	 Click	Open	 to	 see	 the	 panel	 painted	with
the	 selected	 graphic.	 Here’s	 some	 “beany	 wallpaper”:	

Save	the	project	(saved	as	Example8-7	project	in	\LearnJava\LJ	Code\Class	8\
program	group).	Note	the	graphics	are	not	persistent.

drawString	Method
The	last	drawing	method	we	study	‘draws’	text	information	on	a	graphics	object.
Text	adds	useful	 information	to	graphics	objects,	especially	for	plots.	The	line,
bar	and	pie	chart	examples	built	 in	Class	7	are	 rather	boring	without	 the	usual
titles,	 labels	 and	 legends.	 The	drawString	method	will	 let	 us	 add	 text	 to	 any
graphic	object.

The	drawString	method	is	easy	to	use.	You	need	to	know	what	text	you	want	to
draw	(myString,	a	String	type)	and	where	you	want	to	locate	the	text	(x,	y).	The
method	operates	on	a	previously	 created	graphics	object	 (g2D).	The	 syntax	 is:
g2D.drawString(myString,	x,	y);

The	string	will	be	drawn	using	the	current	font	and	paint	attributes.	Note	(x,	y)	is
the	Cartesian	coordinate	(int	type)	specifying	location	of	the	lower	left	corner	of

the	text	string’s	“baseline”:	

The	baseline	is	the	line	we	were	taught	to	write	on	in	grade	school.	Notice	some
letters	may	descend	below	the	baseline.

Let’s	look	at	an	example.	Can	you	see	what	this	code	will	produce?

g2D.setFont(new	Font("Arial",	Font.BOLD,	48));
g2D.setPaint(Color.RED);
g2D.drawString("Hello	Java!",	10,	40);

This	 says	 print	 the	 string	 “Hello	 Java!”	 using	 an	Arial,	BOLD,	 Size	48	 font
with	a	red	paint	attribute.	The	baseline	begins	at	(x	=	10,	y	=	40)	of	the	graphics
object	g2D.

Using	 this	 code	 with	 a	 panel	 form	 as	 the	 graphics	 object,	 we	 would	 see	

Simple,	 huh?	 This	 example	 is	 saved	 as	 the	DrawStringDemo	 project	 in	 the
\LearnJava\LJ	Code\Class	8\	program	group.

A	key	decision	in	using	drawString	is	placement.	That	is,	what	x	and	y	values
should	 you	 use?	 To	 help	 in	 this	 decision,	 it	 is	 helpful	 to	 know	 what	 size	 a
particular	text	string	is.	If	we	know	how	wide	and	how	tall	(in	pixels)	a	string	is,
we	can	perform	precise	placements,	including	left,	center	and	right	justifications.

The	Java	method	getStringBounds	gives	us	the	width	and	height	of	a	particular
string.	The	method	returns	a	Rectangle2D	object	that	bounds	the	given	string.	If
the	 current	 font	 is	myFont,	 the	 graphics	 object	 g2D,	 and	 the	 string	 we	 are
measuring	 is	myString,	 the	 bounding	 rectangle	 (stringRect)	 is	 returned	with:
Rectangle2D	 stringRect	 =	 myFont.getStringBounds(myString,
g2D.getFontRenderContext());	This	particular	method	requires	 importation	of
the	 java.awt.font.*	 package.	 The	 getFontRenderContext	 method	 provides
information	about	the	current	font.	Once	the	bounding	rectangle	is	obtained,	the
height	of	myString	is	given	by:	stringRect.getHeight()

and	the	width	is	given	by:

stringRect.getWidth()

The	height	of	a	string	lets	us	know	how	much	to	increment	the	desired	vertical
position	 after	 printing	 each	 line	 in	multiple	 lines	of	 text.	Or,	 it	 can	be	used	 to
‘vertically	 justify’	 a	 string	 within	 a	 control	 hosting	 a	 graphics	 object.	 For
example,	assume	we	have	found	the	height	of	a	string	(stringRect.getHeight())
using	 the	 getStringBounds	 method.	 To	 vertically	 justify	 this	 string	 in	 a	 host

control	(myControl)	for	a	graphics	object,	the	y	coordinate	(converted	to	an	int
type	needed	by	drawString)	would	be:	y	=	(int)	(0.5	*	(myControl.getHeight()
+	 stringRect.getHeight()));	 This	 assumes	 the	 string	 is	 ‘shorter’	 than
myControl.

Similarly,	 the	width	 of	 a	 string	 lets	 us	 define	margins	 and	 left,	 right	 or	 center
justify	 a	 string	 within	 the	 client	 rectangle	 of	 a	 graphics	 object.	 For	 left
justification,	establish	a	left	margin	and	set	the	x	coordinate	to	this	value	in	the
drawString	method.	If	we	know	the	width	of	a	string	(stringRect.getWidth()),
it	is	centered	justified	in	a	graphics	object’s	host	control	myControl	using	an	x
value	 of	 (again	 converted	 to	 int):	 x	 =	 (int)	 (0.5	 *	 (myControl.getWidth()	 -
stringRect.getWidth()));	To	right	justify	the	same	string,	use:

x	=	(int)	(myControl.getWidth()	-	stringRect.getWidth());	Both	of	the
above	equations,	of	course,	assume	the	string	is	‘narrower’	than	myControl.

Let’s	go	back	and	apply	these	relations	to	our	“Hello	Java!”	example.	The	text
vertically	 and	 center	 justified	 looks	 like	 this:	

The	 text	 is	 a	 little	 below	 the	 perceived	 center	 line	 because	 the	 bounding
rectangle	includes	space	above	the	string	for	potential	“ascent”	characters	(such
as	carets,	apostrophes,	asterisks).

Right	 justified	 with	 y	 =	 40,	 the	 text	 appears	 like	 this:	

Even	more	 interesting	 effects	 can	be	obtained	using	other	 paint	 attributes.	Try
drawing	 strings	 with	 gradient	 and	 texture	 paints.	 Here’s	 the	 “Hello	 Java!”

example	with	a	gradient	paint:	

And,	 here’s	 the	 “Hello	 Java!”	 example	 with	 a	 ‘denim’	 textured	 paint:	

Modify	 the	 DrawStringDemo	 project	 to	 see	 if	 you	 can	 achieve	 the	 above
effects.	 A	 ‘denim’	 graphic	 (denim.gif)	 is	 included	 in	 the	 DrawStringDemo
folder.

We	won’t	do	much	more	with	the	drawString	method	here.	You	will,	however,

see	 the	 drawString	 method	 again	 in	 Class	 9.	 This	 method	 is	 integral	 in
obtaining	printed	information	from	a	Java	application.	And,	you	will	see	its	use
is	identical.	You	need	to	determine	what	to	print,	in	what	font,	with	what	paint
and	where	on	the	page	it	needs	to	be.

Multimedia	Effects
Everywhere	 you	 look	 in	 the	 world	 of	 computers	 today,	 you	 see	multimedia
effects.	 Computer	 games,	 web	 sites	 and	 meeting	 presentations	 are	 filled	 with
animated	graphics	and	fun	sounds.	It	is	relatively	easy	to	add	such	effects	to	our
Java	applications.

In	Class	 7,	we	 achieved	 simple	 animation	 effects	 by	 changing	 the	 image	 in	 a
label	control.	Sophisticated	animation	 relies	on	 the	ability	 to	change	and	move
several	 changing	 objects	 over	 a	 changing	 background.	 To	 achieve	 more
sophisticated	animation,	we	will	use	the	Java	drawImage	method.

Animation	 requires	 the	 moving	 of	 rectangular	 regions	 (often	 defined	 by
Rectangle2D	 objects).	We	 need	ways	 to	move	 these	 rectangular	 regions.	 The
mouse	 (using	 mouse	 methods)	 is	 one	 option.	 Another	 option	 considered	 is
movement	using	keyboard	methods.	And,	many	times	we	want	to	know	if	these
rectangular	 regions	overlap	 to	detect	 things	 like	 files	 reaching	 trash	cans,	balls
hitting	 paddles	 or	 little	 creatures	 eating	 power	 pellets.	 We	 will	 learn	 how	 to
detect	if	two	rectangles	intersect.

Multimedia	presentations	also	use	sounds.	We	will	see	how	to	use	Java	to	play
sounds	represented	by	au	and	wav	files.

Animation	with	drawImage	Method
To	achieve	animation	in	a	Java	application,	whether	 it	 is	background	scrolling,
sprite	 animation,	 or	 other	 special	 effects,	 we	 use	 the	 drawImage	 graphics
method.	In	its	simplest	form,	this	method	draws	an	image	object	at	a	particular
position	 in	 a	 graphics	 object.	 Changing	 and/or	 moving	 the	 image	 within	 the
graphics	 object	 achieves	 animation.	 And,	 multiple	 images	 can	 be
moved/changed	within	the	graphics	object.	There	are	many	overloaded	versions
of	drawImage.	We	will	look	a	few	of	them	in	this	class.	We	encourage	you	to
study	the	other	forms,	as	you	need	them.

Before	using	drawImage,	you	need	two	things:	a	graphics	object	(g2D)	to	draw
to	 and	 an	 image	 object	 to	 draw.	 We	 create	 the	 graphics	 object	 (assume
myControl	 is	 the	 host	 control):	 Graphics2D	 g2D	 =	 (Graphics2D)
myControl.getGraphics();

The	Image	object	(myImage)	is	usually	created	from	a	graphics	file:	Image
myImage	=	new	ImageIcon(imageFile).getImage();

where	imageFile	is	the	graphics	file	describing	the	image	to	draw.	At	this	point,
we	can	draw	myImage	 in	g2D.	To	retrieve	the	width	and	height	of	this	object,
use:	width	=	myImage.getWidth(this);
height	=	myImage.getHeight(this);

One	form	of	the	drawImage	method	is:	g2D.drawImage(myImage,	x,	y,	w,	h,
this);

In	this	method,	the	image	will	be	positioned	at	(x,	y)	with	width	w	and	height	h.
The	final	argument	refers	to	the	ImageObserver	object	used	to	draw	the	image
–	we	use	the	keyword	this	to	indicate	the	current	graphics	object	is	the	observer.
The	width	and	height	arguments	are	optional	and	can	be	the	original	image	size
or	scaled	up	or	down.	It’s	your	choice.	To	draw	the	image	at	(x,	y)	in	its	original
size,	simply	use:	g2D.drawImage(myImage,	x,	y,	this);

A	 picture	 illustrates	 what’s	 going	 on	 with	 drawImage:	

Note	 how	 the	 transfer	 of	 the	 rectangular	 region	 occurs.	 Successive	 transfers
gives	 the	 impression	 of	motion,	 or	 animation.	Recall	w	 and	h	 in	 the	 graphics
object	 do	 not	 have	 to	 necessarily	 match	 the	 width	 and	 height	 of	 the	 image
object.	Scaling	(up	or	down)	is	possible.

Example	8-8
Bouncing	Ball

Start	a	new	empty	project	in	NetBeans.	Name	the	project	BouncingBall.	Delete
default	code	in	Java	file	named	BouncingBall.	We’ll	build	an	application	with	a
ball	bouncing	from	the	top	to	the	bottom	(and	back)	as	an	illustration	of	the	use

of	drawImage.	The	finished	frame	will	look	like	this:	

The	 graphic	 file	 used	 is	 earth.gif	 and	 is	 located	 in	 the	 \LearnJava\LJ
Code\Class	 8\Example8-8\	 folder.	 Copy	 this	 graphic	 file	 into	 your	 project’s

folder:	

1.	Add	 a	panel	 control	 (will	 display	 the	 animation)	 and	 a	 button	 to	 the	 frame.

The	GridBagLayout	is:	

Also	include	an	image	object	(myBall)	and	a	timer	object	(ballTimer).	Set	these
properties:

BouncingBall	Frame:
resizable false

displayPanel	(a	GraphicsPanel	class):
preferredSize (100,	400)
background WHITE
gridx 0
gridy 0
insets (10,	10,	10,	10)

startButton:
text Start
gridx 0
gridy 1
insets (10,	10,	10,	10)

ballTimer:
delay 100

myBall:
image earth.gif

2.	Build	the	basic	framework:	/	*

*	BouncingBall.java

*/

package	bouncingball;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.awt.geom.*;
public	class	BouncingBall	extends	JFrame

{

public	static	void	main(String	args[])

{

//	create	frame
new	BouncingBall().show();

}

public	BouncingBall()

{

//	frame	constructor
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-getWidth())),	(int)	(0.5

(screenSize.height	-getHeight())),	getWidth(),	getHeight());	}
private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

Run	to	test.

3.	 Now,	 we	 add	 controls	 and	 methods.	 Add	 these	 class	 level	 declarations:
GraphicsPanel	displayPanel	=	new	GraphicsPanel();

JButton	startButton	=	new	JButton();
static	Image	myBall	=	new
ImageIcon("earth.gif").getImage();
static	Timer	ballTimer;

myBall	is	used	in	the	paintComponent	method,	hence	is	prefaced	with	static.

Position	and	add	controls	and	methods:

GridBagConstraints	gridConstraints	=	new
GridBagConstraints();
displayPanel.setPreferredSize(new	Dimension(100,	400));
displayPanel.setBackground(Color.WHITE);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);

getContentPane().add(displayPanel,	gridConstraints);

gridConstraints	=	new	GridBagConstraints();
startButton.setText("Start");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(startButton,	gridConstraints);
startButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

startButtonActionPerformed(e);

}

});

ballTimer	=	new	Timer(100,	new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

ballTimerActionPerformed(e);

}

});

And,	add	two	empty	event	methods:

private	void	startButtonActionPerformed(ActionEvent	e)

{

}

private	void	ballTimerActionPerformed(ActionEvent	e)

{

}

4.	Add	the	GraphicsPanel	class	(from	Appendix	I)	after	 the	main	class:	class
GraphicsPanel	extends	JPanel

{

public	GraphicsPanel()

{

}

public	void	paintComponent(Graphics	g)

{

}

}

Run	to	check	control	layout:

The	panel	is	gray	because	we	have	no	code	in	the	paintComponent	method.

5.	 Use	 these	 class	 level	 variable	 declarations	 (declares	 movement	 variables):
static	int	ballSize,	ballX,	ballY,	ballDir;

6.	Add	these	lines	of	code	to	the	constructor	(initializes	ball	position):	ballSize	=
50;

ballX	=	(int)	(0.5	*	(displayPanel.getWidth()	-	ballSize));	ballY	=	0;
ballDir	=	1;
displayPanel.repaint();

7.	 Write	 a	 startButtonActionPerformed	 event	 method	 to	 toggle	 the	 timer:
private	void	startButtonActionPerformed(ActionEvent	e)

{

if	(ballTimer.isRunning())

{

ballTimer.stop();
startButton.setText("Start");

}

else

{

ballTimer.start();
startButton.setText("Stop");

}

}

8.	The	ballTimerActionPerformed	method	controls	the	bouncing	ball	position:
private	void	ballTimerActionPerformed(ActionEvent	e)

{

//	determine	ball	position	and	draw	it
ballY	=	(int)	(ballY	+	ballDir	*

displayPanel.getHeight()	/	50);
//check	for	bounce
if	(ballY	<	0)

{

ballY	=	0;
ballDir	=	1;

}

else	if	(ballY	+	ballSize	>	displayPanel.getHeight())	{

ballY	=	displayPanel.getHeight()	-	ballSize;
ballDir	=	-1;

}

displayPanel.repaint();

}

9.	 And,	 the	 paintComponent	 method	 in	 the	 GraphicsPanel	 class	 does	 the
actual	image	drawing:	public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
//	draw	ball
g2D.drawImage(BouncingBall.myBall,	BouncingBall.ballX,

BouncingBall.ballY,	BouncingBall.ballSize,	BouncingBall.ballSize,	this);
g2D.dispose();

}

The	 complete	 BouncingBall.java	 code	 listing	 (changes	 to	 framework	 are
shaded):	/	*
*	BouncingBall.java

*/

package	bouncingball;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.awt.geom.*;
public	class	BouncingBall	extends	JFrame

{

GraphicsPanel	displayPanel	=	new	GraphicsPanel();
JButton	startButton	=	new	JButton();
static	Image	myBall	=	new

ImageIcon("earth.gif").getImage();
Timer	ballTimer;

static	int	ballSize,	ballX,	ballY,	ballDir;
public	static	void	main(String	args[])

{

//	create	frame
new	BouncingBall().show();

}

public	BouncingBall()

{

//	frame	constructor
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
//	position	controls

GridBagConstraints	gridConstraints	=
new	GridBagConstraints();

displayPanel.setPreferredSize(new	Dimension(100,	400));
displayPanel.setBackground(Color.WHITE);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(displayPanel,	gridConstraints);

gridConstraints	=	new	GridBagConstraints();
startButton.setText("Start");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(startButton,	gridConstraints);
startButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

startButtonActionPerformed(e);

}

});

ballTimer	=	new	Timer(100,	new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

ballTimerActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());
//	initialize	variables/set	up	graphics	objects
//	horizontally	center	ball	in	display	panel
ballSize	=	50;
ballX	=	(int)	(0.5	*	(displayPanel.getWidth()	-ballSize));	ballY	=	0;
ballDir	=	1;
displayPanel.repaint();

}

private	void	startButtonActionPerformed(ActionEvent	e)

{

if	(ballTimer.isRunning())

{

ballTimer.stop();
startButton.setText("Start");

}

else

{

ballTimer.start();

startButton.setText("Stop");

}

}

private	void	ballTimerActionPerformed(ActionEvent	e)

{

//	determine	ball	position	and	draw	it
ballY	=	(int)	(ballY	+	ballDir	*	displayPanel.getHeight()	/	50);	//check

for	bounce
if	(ballY	<	0)

{

ballY	=	0;
ballDir	=	1;

}

else	if	(ballY	+	ballSize	>	displayPanel.getHeight())	{
ballY	=	displayPanel.getHeight()	-	ballSize;
ballDir	=	-1;

}

displayPanel.repaint();

}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

class	GraphicsPanel	extends	JPanel

{

public	GraphicsPanel()

{

}

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
//	draw	ball
g2D.drawImage(BouncingBall.myBall,	BouncingBall.ballX,

BouncingBall.ballY,	BouncingBall.ballSize,	BouncingBall.ballSize,	this);
g2D.dispose();

}

}

Run	and	compile	the	finished	project.	Follow	the	bouncing	ball!!

Save	 the	 project	 (saved	 as	 Example8-8	 project	 in	 the	 \LearnJava\LJ
Code\Class	8\	program	group).

Scrolling	Backgrounds
Most	action	arcade	games	employ	scrolling	or	moving	backgrounds.	What	looks
like	 a	 very	 sophisticated	 effect	 is	 really	 just	 a	 simple	 application	 of	 the
drawImage	 method.	 The	 idea	 is	 that	 we	 have	 a	 large	 image	 representing	 the
background	“world”	we	want	 to	move	around	 in.	At	any	point,	we	can	view	a
small	 region	 of	 that	 world	 in	 our	 graphics	 object.	 Pictorially,	 we	 have:	

The	boxed	area	represents	the	area	of	our	world	we	can	see	at	any	one	time.	By
varying	x	and	y	(leaving	w	and	h	fixed),	we	can	move	around	in	this	world.	As	x
and	y	vary,	 if	we	draw	 the	“viewable	area”	 into	a	graphics	object	of	 the	 same
size,	we	obtain	the	moving	background	effect.	To	accomplish	this	task,	we	need
a	 form	of	 the	drawImage	method	 that	allows	drawing	a	portion	of	a	“source”
image.	But,	first,	we	need	to	review	the	steps	needed	to	use	drawImage.

Before	using	drawImage,	we	need:	a	graphics	object	to	draw	to	and	an	image
object	to	draw	from.	We	create	the	graphics	object	(g2D	-	assume	myControl	is
the	host	control):	Graphics2D	g2D	=	(Graphics2D)	myControl.getGraphics();

The	 image	 object	 (myImage)	 is	 usually	 created	 from	 a	 graphics	 file:	 Image
myImage	=	new	ImageIcon(imageFile).getImage();

where	imageFile	is	the	graphics	file	describing	the	image	to	draw.

To	draw	a	portion	of	the	source	image	(myImage)	in	the	graphics	object	(g2D),
we	use	another	version	of	the	drawImage	method:	g2D.DrawImage(myImage,
dx1,	dy1,	dx2,	dy2,	sx1,	sy1,	sx2,	sy2,	this);	where:

(dx1,dy1) Coordinate	of	the	upper	left	corner	within	the	graphics	object
(the	destination	rectangle)	where	the	image	will	be	drawn.

(dx2,dy2) Coordinate	of	the	lower	right	corner	within	the	graphics	object
(the	destination	rectangle)	where	the	image	will	be	drawn.

(sx1,sy1) Coordinate	of	the	upper	left	corner	of	the	image	object	(the
source	rectangle)	defining	the	portion	of	the	image	to	draw	in
the	graphics	object.

(sx2,sy2) Coordinate	of	the	upper	right	corner	of	the	image	object	(the
source	rectangle)	defining	the	portion	of	the	image	to	draw	in
the	graphics	object.

For	 scrolling	 backgrounds,	 the	 ‘destination’	 rectangle	 encompasses	 the	 entire
control	 (myControl)	 hosting	 the	 graphics	 object	 used	 as	 the	 viewing	 area.
Hence,	the	corresponding	coordinates	are:	(dx1,dy1)	=	(0,	0)
(dx2,dy2)	=	(myControl.getWidth()	-1,
myControl.getHeight()	-	1)

The	 ‘source’	 rectangle	contains	 the	portion	of	 the	 image	we	want	 to	copy	 into
the	graphics	object.	This	rectangle	has	the	same	dimensions	(width	and	height)
as	the	destination	rectangle,	with	the	corners	shifted	by	a	desired	position	(x,	y)
within	the	source	image:	(sx1,sy1)	=	(x,	y)
(sx2,sy2)	=	(x	+	myControl.getWidth()	-	1,	y	+
myControl.getHeight()	-	1)

An	example	using	our	beach	photo	should	clear	things	up	(hopefully).	Applying
the	drawImage	method	using	myImage	will	 result	 in	 the	 following	display	 in

g2D:	

In	 this	 picture,	w	 is	 the	width	 (myControl.getWidth())	 of	 the	 graphics	 object
host	control	and	h	is	the	height	of	that	control	(myControl.getHeight()).

Hence,	 the	 process	 for	moving	 (or	 scrolling)	 backgrounds	 is	 simple	 (once	 the
image	is	available):

➢	Decide	on	the	desired	viewing	area	(set	width	w	and	height	h).
➢	Choose	a	mechanism	for	varying	x	and	y.	Scroll	bars	and	cursor	control
keys	are	often	used,	or	they	can	be	varied	using	timer	objects.

➢	As	x	and	y	vary,	use	drawImage	to	draw	the	current	“viewable	area”	of
the	source	image	into	the	viewer	(graphics	object).

Example	8-9
Horizontally	Scrolling	Background

Start	 a	 new	 empty	 project	 in	NetBeans.	 Name	 the	 project	 Scrolling.	 Delete
default	 code	 in	 Java	 file	 named	 Scrolling.	 In	 this	 project,	 we’ll	 view	 a
horizontally	 scrolling	 seascape.	 The	 finished	 frame	 will	 appear	 as:	

The	graphic	 file	used	 for	 the	background	 is	undersea.gif	 and	 is	 located	 in	 the
\LearnJava\LJ	Code\Class	 8\Example8-9\	 folder.	Copy	 this	 graphic	 file	 into
your	 project’s	 folder:	

As	x	increases,	the	background	appears	to	scroll	to	the	left.	Note	as	x	reaches	the
end	of	this	source	image,	we	need	to	copy	a	little	of	both	ends	to	the	destination
graphics	object	to	have	the	background	“wrap-around.”	The	graphic	is	500	x	130
in	size.	The	“viewing	area”	will	be	a	square	130	x	130	in	size.

1.	 Add	 a	 panel	 and	 scroll	 bar	 to	 a	 frame.	 The	 GridBagLayout	 will	 be:	

Also	 include	 an	 image	 object	 (backgroundImage)	 and	 a	 timer	 object
(scrollTimer).	Set	these	properties:

Scrolling	Frame:
resizable false
background BLUE

displayPanel:
preferredSize (130,	130)
gridx 0
gridy 0
insets (10,	10,	10,	10)

backgroundScrollBar:
preferredSize (130,	20)
minimum 0
maximum 20	(“achievable”	maximum)
blockIncrement 2
unitIncrement 1
value 0
orientation HORIZONTAL
gridx 0
gridy 1
insets (10,	10,	10,	10)

scrollTimer:
delay 50

backgroundImage:
image undersea.gif

2.	Build	the	framework:

/	*

*	Scrolling.java

*/

package	scrolling;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.awt.geom.*;
public	class	Scrolling	extends	JFrame

{

public	static	void	main(String	args[])

{

//	create	frame
new	Scrolling().show();

}

public	Scrolling()

{

//	frame	constructor
setResizable(false);
getContentPane().setBackground(Color.BLUE);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-getWidth())),	(int)	(0.5

(screenSize.height	-getHeight())),	getWidth(),	getHeight());	}
private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

Run	to	check.

3.	Add	class	level	object	declarations:	JPanel	displayPanel	=	new	JPanel();

JScrollBar	backgroundScrollBar	=	new	JScrollBar();
Image	backgroundImage	=	new
ImageIcon("undersea.gif").getImage();
Timer	scrollTimer;

Position	and	add	controls.

GridBagConstraints	gridConstraints	=	new
GridBagConstraints();

displayPanel.setPreferredSize(new	Dimension(imageSize,	imageSize));
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(displayPanel,	gridConstraints);

gridConstraints	=	new	GridBagConstraints();
backgroundScrollBar.setPreferredSize(new
Dimension(imageSize,	20));
backgroundScrollBar.setMinimum(0);
backgroundScrollBar.setMaximum(20	+
backgroundScrollBar.getVisibleAmount());
backgroundScrollBar.setBlockIncrement(2);
backgroundScrollBar.setUnitIncrement(1);
backgroundScrollBar.setValue(0);
backgroundScrollBar.setOrientation(JScrollBar.HORIZONTAL);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(backgroundScrollBar,	gridConstraints);
scrollTimer	=	new	Timer(50,	new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

scrollTimerActionPerformed(e);

}

});

Add	a	single	empty	method:

private	void	scrollTimerActionPerformed(ActionEvent	e)

{

}

Run	to	check	control	layout:

4.	 Now,	 add	 code.	 Use	 these	 class	 level	 declarations	 (declares	 objects	 and
movement	variables):	int	scrollX	=	0;

int	imageSize	=	130;
Graphics2D	g2D;

5.	Add	 two	 lines	of	code	 to	 the	end	of	 the	constructor	 (creates	graphics	object
and	 starts	 timer)	 after	 frame	 is	 created:	 g2D	 =	 (Graphics2D)
displayPanel.getGraphics();

scrollTimer.start();

6.	 The	 scrollTimerActionPerformed	 method	 controls	 scrolling.	 At	 each
program	cycle,	we	update	the	position	on	the	background	image	and	draw	the
result.

private	void	scrollTimerActionPerformed(ActionEvent	e)

{

int	addedWidth;

//	Find	next	location	on	background
scrollX	+=	backgroundScrollBar.getValue();
if	(scrollX	>	backgroundImage.getWidth(this))

{

scrollX	=	0;

}

//	When	x	is	near	right	edge,	we	need	to	copy
//	two	segments	of	the	background	into	display	panel
if	(scrollX	>	(backgroundImage.getWidth(this)	-imageSize))	{

addedWidth	=	backgroundImage.getWidth(this)	-	scrollX;
g2D.drawImage(backgroundImage,	0,	0,	addedWidth	-	1,

imageSize	-	1,	scrollX,	0,	scrollX	+	addedWidth	-	1,	imageSize	-	1,	this);
g2D.drawImage(backgroundImage,	addedWidth,	0,	imageSize	-	1,
imageSize	-	1,	0,	0,	imageSize	-	addedWidth	-	1,	imageSize	-	1,	this);	}

else

{

g2D.drawImage(backgroundImage,	0,	0,	imageSize	-	1,	imageSize	-
1,	scrollX,	0,	scrollX	+	imageSize	-	1,	imageSize	-	1,	this);	}

}

Note	how	the	“wrap	around”	is	implemented.

The	complete	Scrolling.java	code	listing	(changes	to	framework	are	shaded):	/	*
*	Scrolling.java

*/

package	scrolling;
import	javax.swing.*;
import	java.awt.*;

import	java.awt.event.*;
import	java.awt.geom.*;

public	class	Scrolling	extends	JFrame

{

JPanel	displayPanel	=	new	JPanel();
JScrollBar	backgroundScrollBar	=	new	JScrollBar();
Image	backgroundImage	=	new

ImageIcon("undersea.gif").getImage();
Timer	scrollTimer;

int	scrollX	=	0;
int	imageSize	=	130;
Graphics2D	g2D;

public	static	void	main(String	args[])

{

//	create	frame
new	Scrolling().show();

}

public	Scrolling()

{

//	frame	constructor
setResizable(false);
getContentPane().setBackground(Color.BLUE);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	position	controls
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();

displayPanel.setPreferredSize(new	Dimension(imageSize,	imageSize));
gridConstraints.gridx	=	0;

gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(displayPanel,	gridConstraints);

gridConstraints	=	new	GridBagConstraints();
backgroundScrollBar.setPreferredSize(new	Dimension(imageSize,

20));	backgroundScrollBar.setMinimum(0);
backgroundScrollBar.setMaximum(20	+

backgroundScrollBar.getVisibleAmount());
backgroundScrollBar.setBlockIncrement(2);

backgroundScrollBar.setUnitIncrement(1);
backgroundScrollBar.setValue(0);

backgroundScrollBar.setOrientation(JScrollBar.HORIZONTAL);
gridConstraints.gridx	=	0;

gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(backgroundScrollBar,	gridConstraints);
scrollTimer	=	new	Timer(50,	new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

scrollTimerActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());

g2D	=	(Graphics2D)	displayPanel.getGraphics();
scrollTimer.start();

}

private	void	scrollTimerActionPerformed(ActionEvent	e)

{

int	addedWidth;
//	Find	next	location	on	background
scrollX	+=	backgroundScrollBar.getValue();
if	(scrollX	>	backgroundImage.getWidth(this))

{

scrollX	=	0;

}

//	When	x	is	near	right	edge,	we	need	to	copy

//	two	segments	of	the	background	into	display	panel
if	(scrollX	>	(backgroundImage.getWidth(this)	-imageSize))	{

addedWidth	=	backgroundImage.getWidth(this)	-	scrollX;
g2D.drawImage(backgroundImage,	0,	0,	addedWidth	-	1,

imageSize	-	1,	scrollX,	0,	scrollX	+	addedWidth	-	1,	imageSize	-	1,	this);
g2D.drawImage(backgroundImage,	addedWidth,	0,	imageSize	-	1,
imageSize	-	1,	0,	0,	imageSize	-	addedWidth	-	1,	imageSize	-	1,	this);	}

else

{

g2D.drawImage(backgroundImage,	0,	0,	imageSize	-	1,	imageSize
-	1,	scrollX,	0,	scrollX	+	imageSize	-	1,	imageSize	-	1,	this);	}

}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

Run	the	project.	Watch	the	sea	go	by.	The	scroll	bar	is	used	to	control	the	speed
of	the	scrolling	(the	amount	x	increases	each	time	a	timer	event	occurs).	Here’s

my	sea	scrolling:	

Save	 the	 project	 (saved	 as	 Example8-9	 project	 in	 the	 \LearnJava\LJ
Code\Class	 8\	 program	 group).	 Notice	 the	 graphics	 appear	 persistent,	 even
though	there	is	no	paintComponent	method.	The	reason	this	occurs	is	because
the	 timer	 object	 is	 automatically	 updating	 the	 displayed	 picture	 20	 times	 each
second.

Sprite	Animation
Using	 the	drawImage	 method	 to	 draw	 a	 scrolling	 background	 leads	 us	 to	 an
obvious	 question.	 Can	 we	make	 an	 object	 move	 across	 the	 background	 –	 the
kind	of	effect	you	see	 in	video	games?	Yes	we	can	–	 it	 just	 takes	a	 little	more
effort.	 The	 moving	 picture	 is	 called	 a	 sprite.	 Working	 with	 the	 previous
example,	 say	we	want	 a	 fish	 to	 bob	up	 and	down	 through	 the	moving	waters.
The	first	thing	we	need	is	a	picture	of	a	fish	–	draw	one	with	a	painting	program
or	 borrow	 one	 from	 somewhere	 and	 convert	 it	 to	 gif	 format	 (gif	 extension).

Here’s	one	(fish.gif)	I	came	up	with:	

This	 is	 included	in	 the	 \LearnJava\LJ	Code\Example8-10	 folder.	 If	you	copy
this	picture	onto	the	background	using	the	drawImage	method,	the	fish	will	be
there,	but	the	background	will	be	gray.	We	could	paint	the	background	the	same
color	as	the	water	and	things	would	look	OK,	but	what	if	the	fish	jumps	out	of
the	 water	 or	 swims	 near	 the	 rocks?	 The	 background	 is	 obliterated.	 We	 want
whatever	background	the	fish	is	swimming	in	to	“come	through.”	To	do	this,	we
want	to	define	the	gray	color	in	the	background	to	be	transparent.	Let’s	look	at
two	ways	of	doing	this.

Many	graphics	 programs	 allow	you	 to	define	 a	 color	within	 a	gif	 image	 to	 be
transparent.	A	program	I	use	 to	do	 this	 is	Corel’s	Paint	Shop	Pro.	 If	you	have
such	software,	you	can	load	the	fish	image	and	define	the	gray	background	to	be
transparent,	the	resave	the	image.

We’ll	 take	 another	 approach	 -	 using	 Java	 code	 to	 define	 an	 image	 with	 a
transparent	 color.	 Doing	 an	 Internet	 search	 turned	 up	 this	 cool	 Java	 class
(Transparency.java,	saved	in	the	\LearnJava\LJ	Code\Class	8	folder):	/	*
*	From:
*	http://www.rgagnon.com/javadetails/java-0265.html

*

*/

http://www.rgagnon.com/javadetails/java-0265.html

import	java.awt.*;
import	java.awt.image.*;

public	class	Transparency

{

public	static	Image	makeColorTransparent(Image	im,	final	Color
color)	{

ImageFilter	filter	=	new	RGBImageFilter()

{

//	the	color	we	are	looking	for...	Alpha	bits	are	set	to	opaque
public	int	markerRGB	=	color.getRGB()	|	0xFF000000;

public	final	int	filterRGB(int	x,	int	y,	int	rgb)

{

if	((rgb	|	0xFF000000)	==	markerRGB)

{

//	Mark	the	alpha	bits	as	zero	-	transparent
return	0x00FFFFFF	&	rgb;

}

else

{

//	nothing	to	do
return	rgb;

}

}

};

};

ImageProducer	ip	=	new
FilteredImageSource(im.getSource(),	filter);

return	Toolkit.getDefaultToolkit().createImage(ip);

}

}

This	 Transparency	 class	 allows	 the	 creation	 of	 an	 Image	 object	 with	 a
transparent	 color.	 Look	 through	 the	 code	 if	 you’d	 like.	 It	 does	 some	 ‘bitwise’
math	to	define	a	transparent	color	in	an	image.

To	use	the	Transparency	class,	assume	you	have	an	image	(myImage)	with	a
background	 color	 (myColor)	 you	want	 changed	 to	 transparent.	 The	 following
line	of	code	will	return	the	same	image,	with	the	input	background	color	set	to
transparent	(myTransparentImage):	myTransparentImage	=
Transparency.makeColorTransparent(myImage,	myColor);

We	 have	 noted	 one	 problem	with	 using	 the	Transparency	 class.	 Though	 the
returned	 image	 retains	 the	 size	 of	 the	 original	 image,	 the	 width	 and	 height
information	 are	 destroyed.	 So,	 to	 obtain	 the	 width	 and	 height	 of	 your	 image,
always	refer	to	the	original	image.

One	 question	 is	 lingering	 –	 how	 do	 you	 determine	 the	 desired	 color	 to	make
transparent?	 In	 our	 fish	 example,	 it	 is	 a	 gray,	 but	 that’s	 not	 a	 real	 definite
specification.	The	argument	used	 in	 the	makeColorTransparent	method	must
be	a	 Java	Color	object,	using	values	 for	 the	 red,	green	and	blue	contributions.
How	do	 you	 come	up	with	 such	 values?	 I’ll	 give	 you	 one	 approach	 using	 the
little	fish	image	as	an	example.

Here’s	 a	 snippet	 of	 code	 to	 identify	 the	 background	 color	 in	 the	 fish	 image	 (I
also	found	this	code	on	the	Internet	–	there’s	lots	of	neat	code	out	there):	Image
fishTemp=	new	ImageIcon("fish.gif").getImage();
BufferedImage	fishTempB	=	new
BufferedImage(fishTemp.getWidth(null),
fishTemp.getHeight(null),	BufferedImage.TYPE_INT_RGB);

//	Copy	image	to	buffered	image
Graphics	g	=	fishTempB.createGraphics();
//	Paint	the	image	onto	the	buffered	image
g.drawImage(fishTemp,	0,	0,	null);
int	c	=	fishTempB.getRGB(0,	0);
int	red	=	(c	&	0x00ff0000)	>>	16;
int	green	=	(c	&	0x0000ff00)	>>	8;
int	blue	=	c	&	0x000000ff;
System.out.println("red	"	+	red);
System.out.println("green	"	+	green);
System.out.println("blue	"	+	blue);

First,	the	fish	image	is	loaded	from	its	file.	Next,	the	Image	object	(fishTemp)	is
converted	to	a	BufferedImage	object	(fishTempB).	We	can	determine	the	color
of	individual	pixels	in	such	objects.	That	is	what	is	done	in	the	remaining	lines
of	code	–	we	read	the	color,	using	getRGB,	of	the	pixel	in	the	upper	left	corner
of	 fishTempB	 (part	 of	 the	 background),	 convert	 it	 to	 its	 red,	 green	 and	 blue
components	and	print	these	to	the	output	window.

Running	this	snippet	results	in:

This	 tells	 us	 the	 red,	 green	 and	 blue	 contributions	 are	 each	 192.	 Hence,	 the
transparent	background	color	can	be	represented	by:	new	Color(192,	192,	192)

This	is	the	color	argument	we	would	use	in	the	makeColorTransparent	method
to	make	the	background	of	the	fish	transparent.

We’ll	place	the	fish	in	our	scrolling	background	soon,	but	first	let’s	look	at	ways
to	move	the	fish	once	it’s	in	the	picture.

Keyboard	Methods
In	multimedia	applications,	particularly	games,	you	often	need	to	move	objects
around.	This	movement	can	be	automatic	(using	the	timer	object)	for	animation
effects.	But	 then	 there	are	 times	you	want	 the	user	 to	have	 the	ability	 to	move
objects.	One	possibility	(studied	earlier	in	this	class)	is	using	the	mouse	and	the
corresponding	 mouse	 methods.	 Here,	 we	 consider	 an	 alternate	 movement
technique:	 keyboard	 methods.	 Just	 one	 keyboard	 method	 is	 studied:	 the
keyPressed	 method,	 which	 we	 will	 see	 is	 very	 similar	 to	 the	mousePressed
method.

In	a	GUI	application,	many	objects	can	recognize	keyboard	events.	Yet,	only	the
object	 that	 has	 focus	 can	 receive	 a	 keyboard	 event.	 When	 trying	 to	 detect	 a
keyboard	 event	 for	 a	 particular	 control,	we	 need	 to	make	 sure	 the	 control	 has
focus.	Recall	the	code	to	apply	focus,	assuming	a	control	named	myControl,	is:
myControl.requestFocus();

This	 command	 in	 Java	 will	 give	 the	 control	 focus,	 allowing	 it	 to	 recognize
keyboard	events.	We	use	the	requestFocus	method	with	the	keyPressed	method
to	insure	proper	execution	of	each	event.

A	control’s	keyPressed	event	has	the	ability	to	detect	the	pressing	of	any	key	on
the	 computer	 keyboard.	 It	 can	 detect:	 Special	 combinations	 of	 the	Shift,	Ctrl,
and	Alt	keys	Insert,	Del,	Home,	End,	PgUp,	PgDn	keys	Cursor	control	keys
Numeric	 keypad	 keys	 (it	 can	 distinguish	 these	 numbers	 from	 those	 on	 the	 top
row	of	the	keyboard)	Function	keys
Letter,	number	and	character	keys

The	keyPressed	event	 is	 triggered	whenever	a	key	 is	pressed.	The	form	of	 the
corresponding	method	must	be:	public	void	keyPressed(KeyEvent	e)

{

[Java	code	for	keyPressed	event]

}

The	KeyEvent	argument	e	tells	us	which	key	was	pressed	by	providing	what	is
called	a	key	code.	There	is	a	key	code	value	for	each	key	on	the	keyboard.	By
evaluating	 the	 e.getKeyCode()	 argument,	 we	 can	 determine	 which	 key	 was
pressed.	There	are	over	100	values,	some	of	which	are:

e.getKeyCode() Description
e.VK_BACK_SPACE The	BACKSPACE	key.
e.VK_CANCEL The	CANCEL	key.
e.VK_DELETE The	DEL	key.
e.VK_DOWN The	DOWN	ARROW	key.
e.VK_ENTER The	ENTER	key.
e.VK_ESCAPE The	ESC	key.
e.VK_F1 The	F1	key.
e.VK_HOME The	HOME	key.
e.VK_LEFT The	LEFT	ARROW	key.
e.VK_NUMPAD0 The	0	key	on	the	numeric	keypad.
e.VK_PAGE_DOWN The	PAGE	DOWN	key.
e.VK_PAGE_UP The	PAGE	UP	key.
e.VK_RIGHT The	RIGHT	ARROW	key.
e.VK_SPACE The	SPACEBAR	key.
e.VK_TAB The	TAB	key.
e.VK_UP The	UP	ARROW	key.
e.VK_G The	letter	G.
e.VK_4 The	number	4.

The	status	of	other	keys	(Alt,	Ctrl,	Shift	and	others)	can	be	determined	using	the
e.getModifiers()	method.	The	values	are:

e.getKeyModifiers() Description
e.ALT_MASK The	ALT	key.
e.CTRL_MASK The	CTRL	key.
e.SHIFT_MASK The	SHIFT	key.

To	 add	 a	 listener	 for	 the	 keyPressed	 event	 for	 a	 control	 named	myControl
(often	a	panel),	use:	myControl.addKeyListener(new	KeyAdapter()

{

public	void	keyPressed(KeyEvent	e)

{

myControlKeyPressed(e)

}

});

And,	 the	 corresponding	 event	 code	 is	 placed	 in	 the	 myControlKeyPressed
method:	private	void	myControlKeyPressed(KeyEvent	e)

{

[method	code]

}

There	is	often	a	lot	of	work	involved	in	interpreting	the	information	provided	in
the	 keyPressed	 event.	 For	 example,	 the	 keyPressed	 event	 cannot	 distinguish
between	 an	 upper	 and	 lower	 case	 letter.	You	 need	 to	make	 that	 distinction	 in
your	Java	code.	You	usually	use	an	 if	structure	(based	on	e.getKeyCode()	and
e.getKeyModifiers())	to	determine	which	key	was	pressed.

Example	8-10
Sprite	Animation

1.	In	this	application,	we	will	add	a	swimming	fish	to	the	scrolling	background
implemented	in	Example	8-9.	And,	we	use	cursor	control	keys	to	move	the
fish	 up	 and	 down.	We	 just	 need	 to	make	 a	 couple	 of	 changes	 to	 the	 code.
Open	Example	8-9.

2.	Add	the	Transparency.java	file	(in	\LearnJava\LJ	Code\Class	8	folder)	to
the	project	source	folder.	Include	a	package	scrolling;	statement	at	the	top	of
the	file.

3.	 In	 the	 \LearnJava\LJ	Code\Class	 9\Example8-10	 folder	 is	 a	 graphics	 file
named	 fish.gif.	 This	 is	 the	 fish	 graphics.	 Copy	 this	 file	 into	 your	 project
folder.

4.	Add	 these	 ‘fish’	variables	 to	 the	class	 level	declarations:	Image	 fishTemp=
new	ImageIcon("fish.gif").getImage();

Image	fishImage	=
Transparency.makeColorTransparent(fishTemp,	new	Color(192,	192,
192));	int	fishW	=	37,	fishH=38;
int	fishX,	fishY;

These	 lines	 load	 in	 a	 temporary	 image	 (fishTemp).	Then	we	 create	 the	 image
(fishImage)	with	a	transparent	background	using	the	Transparency	class.	Next,
dimensions	and	position	of	the	fish	(width,	height,	x	position	and	y	position)	are
declared.

5.	Add	this	code	to	the	frame	constructor	after	code	placing	displayPanel	on	the
frame	 (adds	 a	 listener	 for	 the	 cursor	 keys):
displayPanel.addKeyListener(new	KeyAdapter()

{

public	void	keyPressed(KeyEvent	e)

{

displayPanelKeyPressed(e);

}

});

6.	Add	this	code	to	the	frame	constructor	prior	to	the	line	starting	the	timer.	This
code	is	used	to	initialize	the	‘fish’	variables	and	give	the	display	panel	focus
to	 recognize	 cursor	 keys:	 fishX	 =	 (int)	 (0.5	 *	 (displayPanel.getWidth()	 -
fishW));	 fishY	 =	 (int)	 (0.5	 *	 (displayPanel.getHeight()	 -	 fishH));
displayPanel.requestFocus();

7.	Add	this	line	at	the	end	of	the	scrollTimerActionPerformed	method	to	draw
the	fish	on	the	background:	g2D.drawImage(fishImage,	fishX,	fishY,	this);

8.	Use	 this	 code	 in	 the	displayPanelKeyPressed	method	 (new	 code):	private
void	displayPanelKeyPressed(KeyEvent	e)

{

if	(e.getKeyCode()	==	e.VK_UP)

{

fishY	-=	5;

}

else	if	(e.getKeyCode()	==	e.VK_DOWN)

{

fishY	+=	5;

}

}

This	moves	the	fish	up	(up	cursor	key)	and	down	(down	cursor	key).

The	modified	Scrolling.java	code	listing	(changes	are	shaded):	/	*
*	Scrolling.java

*/

package	scrolling;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.awt.geom.*;

public	class	Scrolling	extends	JFrame

{

JPanel	displayPanel	=	new	JPanel();
JScrollBar	backgroundScrollBar	=	new	JScrollBar();
Image	backgroundImage	=	new

ImageIcon("undersea.gif").getImage();
Timer	scrollTimer;
Image	fishTemp=	new	ImageIcon("fish.gif").getImage();
Image	fishImage	=

Transparency.makeColorTransparent(fishTemp,	 new	 Color(192,	 192,
192));	int	fishW	=	37,	fishH=38;	int	fishX,	fishY;
int	scrollX	=	0;
int	imageSize	=	130;
Graphics2D	g2D;

public	static	void	main(String	args[])

{

//	create	frame

new	Scrolling().show();

}

public	Scrolling()

{

//	frame	constructor
setResizable(false);
getContentPane().setBackground(Color.BLUE);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	position	controls

GridBagConstraints	gridConstraints	=	new
GridBagConstraints();

displayPanel.setPreferredSize(new	Dimension(imageSize,	imageSize));
gridConstraints.gridx	=	0;

gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(displayPanel,	gridConstraints);
displayPanel.addKeyListener(new	KeyAdapter()

{

{

public	void	keyPressed(KeyEvent	e)

{

displayPanelKeyPressed(e);

}

});

gridConstraints	=	new	GridBagConstraints();
backgroundScrollBar.setPreferredSize(new	Dimension(imageSize,

20));	backgroundScrollBar.setMinimum(0);
backgroundScrollBar.setMaximum(20	+

backgroundScrollBar.getVisibleAmount());
backgroundScrollBar.setBlockIncrement(2);

backgroundScrollBar.setUnitIncrement(1);
backgroundScrollBar.setValue(0);

backgroundScrollBar.setOrientation(JScrollBar.HORIZONTAL);
gridConstraints.gridx	=	0;

gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(backgroundScrollBar,	gridConstraints);

scrollTimer	=	new	Timer(50,	new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

scrollTimerActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	g2D	=
(Graphics2D)	displayPanel.getGraphics();

fishX	=	(int)	(0.5	*	(displayPanel.getWidth()	-	fishW));	fishY	=	(int)
(0.5	*	(displayPanel.getHeight()	-	fishH));
displayPanel.requestFocus();
scrollTimer.start();

}

private	void	scrollTimerActionPerformed(ActionEvent	e)

{

int	addedWidth;
//	Find	next	location	on	background
scrollX	+=	backgroundScrollBar.getValue();
if	(scrollX	>	backgroundImage.getWidth(this))

{

scrollX	=	0;

}

//	When	x	is	near	right	edge,	we	need	to	copy
//	two	segments	of	the	background	into	display	panel
if	(scrollX	>	(backgroundImage.getWidth(this)	-	imageSize))	{

addedWidth	=	backgroundImage.getWidth(this)	-	scrollX;
g2D.drawImage(backgroundImage,	0,	0,	addedWidth	-	1,	imageSize	-	1,
scrollX,	0,	scrollX	+	addedWidth	-	1,	imageSize	-	1,	this);
g2D.drawImage(backgroundImage,	addedWidth,	0,	imageSize	-	1,

imageSize	-	1,	0,	0,	imageSize	-	addedWidth	-	1,	imageSize	-	1,	this);	}
else

{

g2D.drawImage(backgroundImage,	0,	0,	imageSize	-	1,	imageSize	-
1,	scrollX,	0,	scrollX	+	imageSize	-	1,	imageSize	-	1,	this);	}

g2D.drawImage(fishImage,	fishX,	fishY,	this);

}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

private	void	displayPanelKeyPressed(KeyEvent	e)

{

if	(e.getKeyCode()	==	e.VK_UP)

{

fishY	-=	5;

}

else	if	(e.getKeyCode()	==	e.VK_DOWN)

{

fishY	+=	5;

}

}

}

Run	 the	 application	 and	 save	 it	 (saved	 as	 Example8-10	 project	 in	 the
\LearnJava\LJ	Code\Class	8\	program	group).	Use	the	up	cursor	key	to	move
the	 fish	 up	 and	 the	down	 cursor	 key	 to	move	 the	 fish	 down.	 Notice	 that,	 no
matter	where	 the	 fish	 is,	 the	background	shows	 through.	Here’s	 the	 fish	 in	 the

middle	of	the	water:	

Here’s	the	fish	down	by	the	rocks:

And,	here’s	a	fabulous	flying	fish:

You	 now	 know	 the	 secrets	 of	 doing	 animations	 in	 video	 games	 –	 scrolling
backgrounds	and	the	use	of	sprites.

Collision	Detection
As	objects	move	in	a	multimedia	presentation	or	video	game,	we	need	some	way
to	see	 if	 two	 items	collide	or	overlap.	For	example,	 in	a	basketball	game,	you
need	to	see	if	the	ball	goes	in	the	hoop.	In	a	solitaire	card	game,	you	need	to	see
if	a	card	 is	placed	on	another	card	properly.	 In	a	 file	disposal	application,	you
want	 to	know	when	 the	 file	 reaches	 the	 trashcan.	Rectangular	 regions	describe
all	 the	moving	objects	 in	a	multimedia	application.	Hence,	we	want	to	know	if
two	 rectangles	 intersect.	 In	 Java,	 this	 test	 can	 be	 accomplished	 using	 the
createIntersection	method	of	the	Rectangle2D	shape	we’ve	seen	before.

To	use	the	createIntersection	method,	we	need	three	Rectangle2D	shapes.	The
first	 two	 (call	 them	 rectangle1	 and	 rectangle2)	 describe	 the	 rectangles	 being
checked	for	 intersection.	The	rectangle	describing	 the	 intersection	of	 these	 two
rectangles	 (collided)	 is	 then	 defined	 by:	 collided	 =
rectangle1.createIntersection(rectangle2);

Once	 the	 intersection	 (or	 collision)	 rectangle	 is	 created	 using
createIntersection,	 we	 check	 the	 intersection	 by	 examining	 the	 isEmpty
Boolean	property:	collided.isEmpty()

If	this	property	is	true,	there	is	no	intersection	or	collision.	If	isEmpty	is	false,
there	is	intersection	and	properties	(x,	y,	width,	height)	of	the	collided	rectangle
define	that	intersection	region.

Just	because	two	rectangles	intersect,	you	may	not	want	to	declare	a	collision.	In
many	cases,	 it	 is	prudent	 to	check	for	 intersection	and,	once	detected,	see	how
large	 the	 intersection	 area	 is.	 If	 this	 intersection	 area	 is	 small	 compared	 to	 the
size	of	the	compared	rectangles,	you	might	not	allow	the	collision.	Or,	you	might
want	 different	 response	 depending	 on	 location	 of	 the	 intersection	 region.	 For
example,	if	a	ball	hits	(collides	with)	a	paddle	on	one	side,	the	ball	will	go	in	one
direction.	 If	 the	 ball	 hits	 the	 paddle	 on	 the	 other	 side,	 a	 different	 rebound
direction	is	assumed.

Example	8-11
Collision	Detection

Start	 a	 new	 empty	 project	 in	 NetBeans.	 Name	 the	 project	Collision.	 Delete
default	code	in	Java	file	named	Collision.	In	this	application,	we	will	use	cursor
control	 keys	 to	 move	 one	 rectangle	 around	 and	 see	 when	 it	 collides	 with	 a
second	 rectangle.	 The	 finished	 frame	 appears	 as:	

1.	 Place	 a	 panel	 control	 on	 a	 frame,	 a	 very	 simple	 GridBagLayout:	

Set	these	properties:

Intersection	Frame:
title No	Collision
resizable false

displayPanel:
preferredSize (400,	200)
background WHITE
gridx 0

gridy 0
insets (10,	10,	10,	10)

2.	Build	a	basic	framework	to	establish	the	frame:	/	*

*	Collision.java

*/

package	collision;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.awt.geom.*;
public	class	Collision	extends	JFrame

{

public	static	void	main(String	args[])

{

//	create	frame
new	Collision().show();

}

public	Collision()

{

//	frame	constructor
setTitle("No	Collision");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-getWidth())),	(int)	(0.5

(screenSize.height	-getHeight())),	getWidth(),	getHeight());	}
private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

Run	to	check	the	code.

3.	 Add	 controls	 and	 methods.	 Add	 this	 class	 level	 declaration:	 JPanel
displayPanel	=	new	JPanel();

Position	panel	control	and	create	method:

GridBagConstraints	gridConstraints	=	new
GridBagConstraints();
displayPanel.setPreferredSize(new	Dimension(400,	200));
displayPanel.setBackground(Color.WHITE);

gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(displayPanel,	gridConstraints);
displayPanel.addKeyListener(new	KeyAdapter()

{

public	void	keyPressed(KeyEvent	e)

{

displayPanelKeyPressed(e);

}

});

Add	 empty	 keyPressed	 method:	 private	 void
displayPanelKeyPressed(KeyEvent	e)

{

}

Run	to	check	the	control	(one	panel)	layout:

4.	 Use	 these	 class	 level	 variable	 declarations	 (declaring	 the	 rectangles	 and
graphics	object):	Rectangle2D.Double	rect1;

Rectangle2D.Double	rect2;
Graphics2D	g2D;

5.	Use	this	code	at	the	end	of	the	constructor	to	initialize	the	rectangle	objects:
g2D	=	(Graphics2D)	displayPanel.getGraphics();

rect1	=	new	Rectangle2D.Double(10,	10,	80,	40);
g2D.setPaint(Color.BLUE);
g2D.fill(rect1);
rect2	=	new	Rectangle2D.Double(160,	80,	80,	40);
g2D.setPaint(Color.RED);
g2D.fill(rect2);
displayPanel.requestFocus();

6.	Use	 this	code	 in	 the	displayPanelKeyPressed	method.	This	moves	 the	blue
rectangle	around	and	checks	for	collisions.	Collision	status	(including	the	area
of	the	intersection	region)	is	displayed	in	the	title	property	of	the	frame.	This
is	the	information	appearing	in	the	title	bar	area.

private	void	displayPanelKeyPressed(KeyEvent	e)

{

double	rectX	=	rect1.getX();
double	rectY	=	rect1.getY();
//	erase	blue	rectangle
g2D.setColor(displayPanel.getBackground());
g2D.fill(rect1);
//	see	which	way	box	moved
if	(e.getKeyCode()	==	e.VK_LEFT)

{

rectX	-=	5;

}

else	if	(e.getKeyCode()	==	e.VK_RIGHT)

{

rectX	+=	5;

}

else	if	(e.getKeyCode()	==	e.VK_UP)

{

rectY	-=	5;

}

else	if	(e.getKeyCode()	==	e.VK_DOWN)

{

rectY	+=	5;

}

g2D.setPaint(Color.RED);
g2D.fill(rect2);
//	establish	rectangle	position	and	redraw
rect1.setRect(rectX,	rectY,	80,	40);
g2D.setPaint(Color.BLUE);
g2D.fill(rect1);
Rectangle2D.Double	rect3	=	(Rectangle2D.Double)

rect1.createIntersection(rect2);
//	check	for	collision
if	(rect3.isEmpty())

{

this.setTitle("No	Collision");

}

else

{

//	determine	percentage	of	overlap
double	overlap	=	100	rect3.getWidth()	rect3.getHeight()	/

(rect1.getWidth()	*	rect1.getHeight());	this.setTitle(overlap	+	"%
Collision!!");

}

}

The	complete	Collision.java	code	listing	(changes	to	framework	are	shaded):	/	*
*	Collision.java

*/

package	collision;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.awt.geom.*;
public	class	Collision	extends	JFrame

{

JPanel	displayPanel	=	new	JPanel();
Rectangle2D.Double	rect1;
Rectangle2D.Double	rect2;
Graphics2D	g2D;
public	static	void	main(String	args[])

{

{

//	create	frame
new	Collision().show();

}

public	Collision()

{

//	frame	constructor
setTitle("No	Collision");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
//	position	controls
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();
displayPanel.setPreferredSize(new	Dimension(400,	200));
displayPanel.setBackground(Color.WHITE);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(displayPanel,	gridConstraints);
displayPanel.addKeyListener(new	KeyAdapter()

{

{

public	void	keyPressed(KeyEvent	e)

{

displayPanelKeyPressed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());
g2D	=	(Graphics2D)	displayPanel.getGraphics();
rect1	=	new	Rectangle2D.Double(10,	10,	80,	40);
g2D.setPaint(Color.BLUE);
g2D.fill(rect1);
rect2	=	new	Rectangle2D.Double(160,	80,	80,	40);
g2D.setPaint(Color.RED);
g2D.fill(rect2);
displayPanel.requestFocus();

}

private	void	displayPanelKeyPressed(KeyEvent	e)

{

double	rectX	=	rect1.getX();
double	rectY	=	rect1.getY();
//	erase	blue	rectangle
g2D.setColor(displayPanel.getBackground());

g2D.fill(rect1);
//	see	which	way	box	moved
if	(e.getKeyCode()	==	e.VK_LEFT)

{

rectX	-=	5;

}

else	if	(e.getKeyCode()	==	e.VK_RIGHT)

{

rectX	+=	5;

}

else	if	(e.getKeyCode()	==	e.VK_UP)

{

rectY	-=	5;

}

else	if	(e.getKeyCode()	==	e.VK_DOWN)

{

rectY	+=	5;

}

g2D.setPaint(Color.RED);
g2D.fill(rect2);
//	establish	rectangle	position	and	redraw
rect1.setRect(rectX,	rectY,	80,	40);
g2D.setPaint(Color.BLUE);

g2D.fill(rect1);
Rectangle2D.Double	rect3	=	(Rectangle2D.Double)

rect1.createIntersection(rect2);
//	check	for	collision
if	(rect3.isEmpty())

{

this.setTitle("No	Collision");

}

else

{

//	determine	percentage	of	overlap
double	overlap	=	100	rect3.getWidth()	rect3.getHeight()	/

(rect1.getWidth()	*	rect1.getHeight());	this.setTitle(overlap	+	"%
Collision!!");	}

}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

Run	the	project.	Notice	we	haven’t	bothered	to	make	the	graphics	persistent.	If
the	boxes	don’t	appear	initially,	press	a	cursor	control	key	and	they’ll	show	up.
Use	 the	keyboard	cursor	control	 arrows	 to	move	 the	blue	 rectangle	around	 the
frame.	We	check	to	see	when	the	blue	rectangle	collides	with	the	red	rectangle
(see	 title	 bar	 of	 frame).	 Notice	 how	 collisions	 are	 detected	 no	 matter	 which
direction	 you	 approach	 the	 red	 rectangle	 from.	 Here’s	 a	 collision	 I	 made:	

Save	 the	 project	 (saved	 as	 Example8-11	 project	 in	 the	 \LearnJava\LJ
Code\Class	8\	program	group).

Sounds	in	Java
There	 is	 only	 one	 sound	 available	 with	 Java,	 a	 simple	 beep	 generated	 using:
Toolkit.getDefaultToolkit().beep();

This	unexciting	sound	plays	through	the	computer’s	built-in	speaker,	if	there	is
one.	 Multimedia	 presentations	 and	 games	 feature	 elaborate	 sounds	 that	 take
advantage	of	stereo	sound	cards.	To	play	such	sounds	in	Java	involves	just	a	bit
of	trickery.

We	 look	 at	 playing	 two	 particular	 types	 of	 sounds:	AU	 files	 (a	 common	 Java
audio	 format)	 and	 WAV	 files.	 Most	 sounds	 you	 hear	 played	 in	 Windows
applications	are	saved	as	WAV	files.	These	are	the	files	formed	when	you	record
using	one	of	the	many	sound	recorder	programs	available.

The	Java	sound	capabilities	are	part	of	the	java.applet.*	package.	This	package
is	used	to	implement	Java	applications	on	the	Internet.	But	we	can	still	use	these
capabilities	in	our	GUI	applications.	It	just	requires	a	little	work.	There	are	two
steps	involved	in	playing	sound	files:	(1)	load	the	sound	as	an	audio	clip	and	(2)
play	the	sound.

A	sound	file	is	loaded	using	the	newAudioClip	method.	If	we	name	the	sound
mySound,	 the	 sound	 is	 loaded	 using:	 mySound	 =
Applet.newAudioClip(mySoundURL);

where	mySoundURL	is	the	“address”	of	the	sound	file.	You	may	note	that	URL
is	 an	 Internet	 address	 (universal	 resource	 locator)	 –	 this	 is	 because	 the	 sound
utilities	are	part	of	the	applet	package.	Does	this	mean	our	sounds	must	be	stored
on	the	Internet	somewhere?	No.	By	forming	a	special	URL	as	the	argument,	we
can	 load	sound	files	 from	our	project	 folder,	 just	 like	we	have	 loaded	graphics
files.

A	URL	 for	 use	 in	 the	newAudioClip	 method	 is	 formed	 using	 the	 Java	URL
method	 (in	 the	 java.net.URL	 package).	 If	 the	 sound	 file	 is	 mySoundFile
(String	 type),	 the	URL	is	formed	with:	mySoundURL	=	new	URL("file:	"	+
mySoundFile);	The	addition	of	 the	“file:”	string	tells	Java	the	sound	is	 loaded

from	a	file	rather	than	the	Internet.	This	assumes	the	sound	file	is	located	in	the
project	folder.	If	it	is	in	another	folder,	you	need	to	“prepend”	the	file	name	with
the	appropriate	directory	information.

We	 need	 to	 consider	 one	 last	 thing.	 The	 URL	 can	 only	 be	 formed	 within	 a
try/catch	loop	to	catch	potential	exceptions.	Hence,	the	complete	code	segment
to	load	a	sound	(mySound)	from	a	file	(mySoundFile)	is:	try

{

mySound	=	Applet.newAudioClip(new	URL("file:	"	+	mySoundFile));
}
catch	(Exception	ex)

{

[Error	message]

}

Such	code	to	create	sounds	is	usually	placed	at	the	end	of	the	class	constructor
code	with	all	sounds	declared	as	class	level	variables.

Once	we	have	created	a	sound	clip,	there	are	three	methods	used	to	play	or	stop
the	 corresponding	 sound.	 To	 play	mySound	 one	 time,	 use	 the	 play	 method:
mySound.play();

To	play	the	sound	in	a	continuous	loop,	use	the	loop	method:	mySound.loop();

To	stop	the	sound	from	playing,	use	the	stop	method:	mySound.stop();

It’s	that	easy.

It	is	normal	practice	to	include	any	sound	files	an	application	uses	in	the	project
folder.	 This	 makes	 them	 easily	 accessible.	 As	 such,	 when	 distributing	 your
application	to	other	users,	you	must	remember	to	include	the	sound	files	in	the
package.

Example	8-12
Playing	Sounds

Start	a	new	empty	project	 in	NetBeans.	Name	 the	project	PlaySounds.	Delete
default	code	in	Java	file	named	PlaySounds.

We’ll	build	a	little	example	that	lets	us	hear	AU	and	WAV	files.	We	will	use	an
embedded	 file	 chooser.	 The	 finished	 frame	 will	 be:	

1.	The	application	 just	needs	one	control:	 a	 file	 chooser.	The	GridBagLayout

arrangement	is:	

PlaySounds	Frame:
title Playing	Sounds
resizable false

soundChooser:
gridx 0
gridy 0

2.	As	usual,	build	a	framework	to	start	with:	/	*

*	PlaySounds.java

*/

package	playsounds;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.net.URL;
import	java.applet.*;
public	class	PlaySounds	extends	JFrame

{

public	static	void	main(String	args[])

{

//construct	frame
new	PlaySounds().show();

}

public	PlaySounds()

{

//	create	frame
setTitle("Playing	Sounds");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-getWidth())),	(int)	(0.5

(screenSize.height	-getHeight())),	getWidth(),	getHeight());	}
private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	to	see	the	frame	centered	on	your	screen.

3.	Create	control	with	this	class	level	declarations:	JFileChooser	soundChooser
=	new	JFileChooser();

Position	 controls	 and	 add	 event	 listener	 for	 file	 chooser:	GridBagConstraints
gridConstraints	=	new
GridBagConstraints();
soundChooser.addChoosableFileFilter(new

FileNameExtensionFilter("Sound	Files",	"au",	"wav"));
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(soundChooser,	gridConstraints);
soundChooser.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

soundChooserActionPerformed(e);

}

});

4.	We’ll	go	right	to	adding	code	to	the	soundChooserActionPerformed	event:
private	void	soundChooserActionPerformed(ActionEvent	e)	{

//	load	and	play	sound	if	open	selected
if

(e.getActionCommand().equals(JFileChooser.APPROVE_SELECTIO
N))	{

AudioClip	mySound	=	null;
try

{

mySound	=	Applet.newAudioClip(new	URL("file:"+
soundChooser.getSelectedFile().toString()));	}

catch	(Exception	ex)

{

System.out.println("Error	loading	sound.");

}

mySound.play();

}

}

In	 this	 code,	 if	 the	 user	 clicks	 the	Open	 button,	 the	 selected	 file	 is	 used	 to
establish	a	sound	clip	that	is	played.

The	complete	PlaySounds.java	code	is	(code	added	to	framework	is	shaded):	/	*
*	PlaySounds.java

*/

package	playsounds;
import	javax.swing.*;
import	javax.swing.filechooser.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.net.URL;
import	java.applet.*;
public	class	PlaySounds	extends	JFrame

{

JFileChooser	soundChooser	=	new	JFileChooser();

public	static	void	main(String	args[])

{

//construct	frame
new	PlaySounds().show();

}

public	PlaySounds()

{

//	create	frame
setTitle("Playing	Sounds");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	position	controls	(establish	event	methods)
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();

soundChooser.addChoosableFileFilter(new
FileNameExtensionFilter("Sound	Files",	"au",	"wav"));
gridConstraints.gridx	=	0;

gridConstraints.gridy	=	0;
getContentPane().add(soundChooser,	gridConstraints);
soundChooser.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

soundChooserActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}
private	void	soundChooserActionPerformed(ActionEvent	e)	{

//	load	and	play	sound	if	open	selected
if

(e.getActionCommand().equals(JFileChooser.APPROVE_SELECTION))	{
AudioClip	mySound	=	null;
try

{

mySound	=	Applet.newAudioClip(new	URL("file:"+
soundChooser.getSelectedFile().toString()));	}

catch	(Exception	ex)

{

System.out.println("Error	loading	sound.");

}

mySound.play();

}

}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	 the	 project.	 Find	 a	 sound	 file	 and	 listen	 to	 the	 lovely	 results.	 There	 are
several	 WAV	 files	 in	 the	 project	 folder	 (\LearnJava\LJ	 Code\Class
8\Example8-12)	 to	 listen	 to.	 Here’s	 the	 screen	 when	 I	 played	 the	 cheering

sound:	

Save	 the	 application	 and	 run	 it	 (saved	 as	 Example8-12	 project	 in	 the
\LearnJava\LJ	Code\Class	8\	program	group).

Example	8-13
Bouncing	Ball	with	Sound!

Let’s	add	sound	to	the	bouncing	ball	example	(Example	8-8).	Start	a	new	empty
project	 in	NetBeans.	Name	the	project	BallSound.	Delete	default	code	in	Java
file	named	BallSound	and	rename	 the	 file	BouncingBall.	Copy	 the	code	from
BouncingBall.java	(in	Example	8-8)	to	this	empty	file.	We	will	modify	the	file
to	 add	 sound	 when	 the	 ball	 bounces.	 In	 the	 \LearnJava\LJ	 Code\Class
8\Example8-13	is	a	bouncing	sound	(bong.wav).	Copy	the	file	to	your	project’s
folder.	Also	copy	the	earth.gif	file	(the	bouncing	ball)	to	the	same	folder.

Make	 these	 changes	 to	BouncingBall.java	 to	 add	 sound:	 1.	 Add	 the	 needed
import	statements:	import	java.net.URL;
import	java.applet.*;

2.	 Declare	 a	 class	 level	 variable	 (bounceSound)	 for	 the	 sound	 clip:	 static
AudioClip	bounceSound;

3.	 Add	 code	 to	 the	 constructor	 to	 load	 the	 sound	 (place	 code	 before	 line
repainting	the	panel):	try

{

bounceSound	=	Applet.newAudioClip(new
URL("file:"+"bong.wav"));

}

catch	(Exception	ex)

{

System.out.println("Error	loading	sound");

}

4.	 Add	 code	 to	 the	ballTimerActionPerformed	 method	 to	 play	 the	 ‘bounce’
sound	 when	 needed	 (added	 code	 is	 shaded):	 private	 void
ballTimerActionPerformed(ActionEvent	e)

{

//	determine	ball	position	and	draw	it
ballY	=	(int)	(ballY	+	ballDir	*

displayPanel.getHeight()	/	50);
//check	for	bounce
if	(ballY	<	0)

{

ballY	=	0;
ballDir	=	1;
bounceSound.play();

}

else	if	(ballY	+	ballSize	>	displayPanel.getHeight())	{
ballY	=	displayPanel.getHeight()	-	ballSize;
ballDir	=	-1;
bounceSound.play();

}

displayPanel.repaint();

}

For	 reference,	 here	 is	 the	 modified	 BouncingBall.java	 code	 listing
(modifications	are	shaded):	/	*
*	BouncingBall.java

*/

package	bouncingball;

import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.awt.geom.*;
import	java.net.URL;
import	java.applet.*;
public	class	BouncingBall	extends	JFrame

{

GraphicsPanel	displayPanel	=	new	GraphicsPanel();
JButton	startButton	=	new	JButton();
static	Image	myBall	=	new

ImageIcon("earth.gif").getImage();
Timer	ballTimer;
AudioClip	bounceSound;
static	int	ballSize,	ballX,	ballY,	ballDir;
public	static	void	main(String	args[])

{

//	create	frame
new	BouncingBall().show();

}

public	BouncingBall()

{

//	frame	constructor
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
//	position	controls
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();
displayPanel.setPreferredSize(new	Dimension(100,	400));
displayPanel.setBackground(Color.WHITE);
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(displayPanel,	gridConstraints);

gridConstraints	=	new	GridBagConstraints();
startButton.setText("Start");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(startButton,	gridConstraints);
startButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

startButtonActionPerformed(e);

}

});

ballTimer	=	new	Timer(100,	new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

ballTimerActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	//	initialize
variables/set	up	graphics	objects

//	horizontally	center	ball	in	display	panel
ballSize	=	50;
ballX	=	(int)	(0.5	*	(displayPanel.getWidth()	-ballSize));	ballY	=	0;
ballDir	=	1;
try

{

bounceSound	=	Applet.newAudioClip(new
URL("file:"+"bong.wav"));	}

catch	(Exception	ex)

{

System.out.println("Error	loading	sound");

}

}

displayPanel.repaint();

}

private	void	startButtonActionPerformed(ActionEvent	e)

{

if	(ballTimer.isRunning())

{

ballTimer.stop();
startButton.setText("Start");

}

else

{

ballTimer.start();
startButton.setText("Stop");

}

}

private	void	ballTimerActionPerformed(ActionEvent	e)

{

//	determine	ball	position	and	draw	it
ballY	=	(int)	(ballY	+	ballDir	*	displayPanel.getHeight()	/	50);	//check

for	bounce
if	(ballY	<	0)

{

ballY	=	0;
ballDir	=	1;
bounceSound.play();

}

else	if	(ballY	+	ballSize	>	displayPanel.getHeight())	{
ballY	=	displayPanel.getHeight()	-	ballSize;
ballDir	=	-1;
bounceSound.play();

}

displayPanel.repaint();

}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

class	GraphicsPanel	extends	JPanel

{

public	GraphicsPanel()

{

}

public	void	paintComponent(Graphics	g)

{

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
//	draw	ball
g2D.drawImage(BouncingBall.myBall,	BouncingBall.ballX,

BouncingBall.ballY,	BouncingBall.ballSize,	BouncingBall.ballSize,	this);
g2D.dispose();

}

}

Rerun	the	project.	Each	time	the	ball	bounces,	you	should	hear	a	bonk!	Save	the
project	 (saved	 as	Example8-13	 project	 in	 the	 \LearnJava\LJ	 Code\Class	 8\
program	group).

Class	Review
After	completing	this	class,	you	should	understand:

➢	How	 to	 detect	 and	 use	mouse	methods	➢	How	 to	 draw	 lines,	 polygons
and	 filled	 polygons	 ➢	 How	 to	 draw	 curves,	 closed	 curves	 and	 filled
closed	 curves	➢	How	 to	 use	 gradient	 and	 texture	 paints	➢	How	 to	 add
text	 to	 a	 graphics	 object	➢	 How	 to	 do	 animation	 using	drawImage	➢
How	to	work	with	scrolling	backgrounds	➢	How	to	use	keyboard	events
and	detect	collision	of	two	rectangular	regions	➢	How	to	play	sound	files

Practice	Problems	8
Problem	 8-1.	 Blackboard	 Problem.	 Modify	 the	 Blackboard	 application
(Example	8-2)	to	allow	adjustable	line	width	while	drawing.

Problem	 8-2.	 Rubber	 Band	 Problem.	 Build	 an	 application	 where	 the	 user
draws	 a	 ‘rubber	 band’	 rectangle	 in	 a	 panel.	 Let	 a	 left-click	 start	 drawing
(defining	 upper	 left	 corner).	 Then	 move	 the	 mouse	 until	 the	 rectangle	 is	 as
desired	and	release	the	mouse	button.	When	the	‘rubber	band’	is	complete,	draw
an	ellipse	in	the	defined	region.

Problem	 8-3.	 Plot	 Labels	 Problem.	 In	Problem	 7-4,	 we	 built	 a	 project	 that
plotted	the	win	streak	for	the	Seattle	Mariners	1995	season.	Use	the	drawString
method	to	add	any	labeling	information	desired.

Problem	8-4.	Bouncing	Balls	Problem.	Build	an	application	with	two	bouncing
balls.	When	 they	 collide	make	 them	 disappear	with	 some	 kind	 of	 sound.	Add
any	other	effects	you	might	like.

Problem	 8-5.	 Moon	 Problem.	 In	 the	 \LearnJava\Java	 Code\Class
8\Problem8-5\	 folder	 is	 a	 graphics	 file	 named	THEMOON.GIF.	 It	 is	 a	 large
(450	pixels	high,	640	pixels	wide)	lunar	landscape.	Build	an	application	that	lets
you	traverse	this	landscape	in	a	small	viewing	window.	Use	cursor	control	keys
to	move	horizontally	and	vertically.

Exercise	8
The	Original	Video	Game	-	Pong!

In	 the	 early	 1970’s,	 Nolan	 Bushnell	 began	 the	 video	 game	 revolution	 with
Atari’s	Pong	 game	 --	 a	 very	 simple	Ping-Pong	kind	 of	 game.	Try	 to	 replicate
this	 game	using	 Java.	 In	 the	 game,	 a	 ball	 bounces	 from	one	 end	 of	 a	 court	 to
another,	bouncing	off	sidewalls.	Players	try	to	deflect	the	ball	at	each	end	using	a
controllable	paddle.	Use	sounds	where	appropriate.

9

Other	Java	Topics

Review	and	Preview
In	this	final	class,	we	conclude	our	discussion	of	Java	GUI	applications.
We	 look	 at	 some	 other	 controls,	 action	 objects,	 how	 to	 print	 from	 an
application	and	how	to	add	help	systems	to	our	applications.

Other	Controls
In	 the	 past	 several	 classes,	 we’ve	 looked	 at	 many	 of	 the	 controls	 in	 the	 Java
Swing	 library.	 But,	 there	 are	 still	 others.	 We	 will	 look	 at	 a	 couple	 of	 these
controls	 in	 this	 class.	 For	 each	 control,	 we	 will	 build	 a	 short	 example	 to
demonstrate	its	use.	With	your	programming	skills,	you	should	be	able	to	expand
these	examples	to	fit	your	particular	needs.

What	 if	you	can’t	 find	 the	exact	Swing	control	you	need	 for	a	particular	 task?
There	are	 two	possible	answers	 to	 this	question.	First,	a	skill	you	can	develop,
using	the	knowledge	gained	in	this	course,	is	the	ability	to	build	and	deploy	your
own	Java	controls.	You	can	modify	an	existing	control,	build	a	control	made	up
of	several	existing	controls	or	create	an	entirely	new	control.	Building	your	own
controls	is	beyond	the	scope	of	this	course.	There	are	several	excellent	texts	and
websites	that	address	this	topic.

Another	way	 to	find	other	controls	 is	 to	 take	advantage	of	other	programmers’
work.	Many	Java	programmers	create	controls	and	make	 them	available	 to	 the
Java	 community	 via	 downloads	 from	 the	 Internet.	 These	 controls	 are	 usually
very	low	cost	or	even	free.	We’ll	look	how	to	use	one	of	these	controls.

JTextPane	Control

In	 Class	 5,	 we	 built	 a	 note	 editor	 (using	 a	 text	 area	 control)	 that	 allowed
formatting	of	the	typed	text.	The	formatting,	though,	affected	all	displayed	text.
The	JTextPane	 control	 allows	 the	 user	 to	 enter	 and	 edit	 text,	 providing	more
advanced	 formatting	 features	 than	 the	 conventional	 text	 area	 control.	You	 can
use	 different	 fonts	 and	 font	 styles	 for	 different	 text	 sections.	 You	 can	 even
change	 alignment,	 control	 indents,	 hanging	 indents,	 and	 bulleted	 paragraphs.
Possible	 uses	 for	 this	 control	 include:	 reading	 and	 viewing	 large	 text	 files
(including	 HTML	 files)	 or	 implementing	 a	 full-featured	 text	 editor	 into	 any
applications.	 Hosting	 the	 text	 pane	 in	 a	 scroll	 pane	 control	 provides	 scrolling
capabilities.

Text	Pane	Properties:

text String	displayed	in	text	pane.
background Text	pane	background	color.
editable Indicates	whether	text	in	the	text	pane	is	read-

only.

Text	Pane	Methods:

setText Sets	the	text	pane	text.
getText Retrieves	the	text	pane	text.
setBackground Sets	the	text	pane	background	color.
setEditable If	set	to	false,	text	pane	cannot	be	edited.

Notice	that	the	text	pane	control	has	relatively	few	properties	and	methods.	The

formatting	 features	 of	 the	 control	 are	 handled	 using	 Action	 objects.	 These
objects	 (from	 the	 javax.swing.text.*	package)	are	very	convenient	when	using
menus	 and	 toolbars	 and	 provide	 “pre-coded”	 methods	 for	 common	 editing
events.	The	text	pane	control	hosts	many	action	objects.	We	will	look	at	a	few	of
the	action	objects	associated	with	certain	editing	features:	bold,	italic,	underline
and	setting	font	size.

By	default,	the	JTextPane	control	uses	the	StyledEditorKit	class	to	implement
its	 actions	 (there	 are	 other	 editor	 kits,	 too).	 Let’s	 look	 at	 the	 steps	 needed	 to
create	 an	 action	 and	 assign	 it	 to	 a	menu	 item.	As	 an	 example,	we	will	 add	 an
action	and	menu	item	to	make	selected	text	bold	face.	The	steps:

➢	 Create	 the	 action	 object:	 Action	 boldAction	 =	 new
StyledEditorKit.BoldAction();

➢	Assign	a	text	value	(NAME)	to	the	action	(for	display	in	the	menu	item):
boldAction.putValue(Action.NAME,	“Bold”);

➢	 Add	 action	 object	 to	 the	 desired	 menu	 object	 (myMenu):
myMenu.add(boldAction);

Using	action	objects	 eliminates	 the	need	 for	menu	 item	objects	 and	 associated
actionPerformed	 methods.	 Once	 an	 action	 object	 is	 added	 to	 a	menu,	 use	 is
simple:	 select	 some	 text	 in	 the	 text	 pane	 and	 choose	 a	 menu	 item	 with	 an
assigned	action.	Once	chosen,	the	indicated	action	is	taken	–	you	don’t	need	to
write	any	code!!

The	above	example	shows	hold	to	set	text	to	bold.	Other	actions	we	can	use	are:

ItalicAction() italicize	text
UnderlineAction() underline	text

Note	we	couldn’t	underline	text	with	the	text	area	control.

To	change	the	selected	text	font	size,	we	use	the	FontSizeAction.	There	are	two
steps	(here,	we	change	the	size	to	12):

➢	 Create	 the	 action	 object	 (include	 text	 value	 for	 menu	 item):	 Action
smallAction	 =	 new	 StyledEditorKit.FontSizeAction(“Small”,	 12);	➢
Add	 action	 object	 to	 your	 desired	 menu	 (myMenu):

myMenu.add(smallAction);

Action	 objects	 can	 also	 have	 assigned	 accelerator	 keys.	 The	 syntax	 uses	 the
putValue	 method.	 If	 the	 action	 is	myAction,	 an	 accelerator	 key	 is	 assigned
using	 myAction.putValue(Action.ACCELERATOR_KEY,	 keyStroke);
where	keyStroke	is	the	desired	KeyStroke	object.

Saving	 and	 opening	 files	with	 the	 text	 pane	 control	 uses	 simple	 coding	when
compared	to	the	text	area,	where	we	needed	to	count	lines.	To	save	the	text	in	a
text	pane	control	(myTextPane)	in	a	file	named	as	myFile,	use	(in	a	try/catch
loop,	of	course):	myWriter	=	new	FileWriter(myFile);
myTextPane.write(myWriter);

and	to	open	such	a	file	and	load	the	contents	into	the	control,	use:	myReader	=
new	FileReader(myFile);
myTextPane.read(myReader,	null);

But,	wait	there	is	a	problem!	This	code	will	not	preserve	any	formatting	applied
to	the	text,	it	will	only	save	and	read	the	actual	text.	Some	tricky	code	is	required
to	save	both	the	text	and	the	formatting	features.

The	use	 of	 actions	 and	how	 to	 open	 and	 save	 files	with	 a	 text	 pane	 control	 is
illustrated	in	Example	9-1	that	follows.	We	have	only	scratched	the	surface	for
using	 the	 text	 pane	 control.	 If	 you	 are	 interested	 in	 such	 a	 control,	 do	 some
further	research.	One	topic	we	don’t	address	is	how	to	save,	and	then	reopen	a
text	file	(including	formatting)	created	using	the	text	pane	control.

Typical	use	of	text	area	control	as	input	device:

➢	 Declare	 and	 create	 text	 area,	 assigning	 an	 identifiable	 name.	 For
myTextPane,	 the	 statement	 is:	 JTextPane	 myTextPane	 =	 new
JTextPane();

➢	Place	text	pane	control	in	properly	sized	scroll	pane	control.
➢	Initialize	text	property	to	desired	string.
➢	Place	control	within	layout	manager.
➢	 In	code,	give	focus	 (use	requestFocus	method)	to	control	when	needed.
Read	text	property	when	desired.

➢	You	may	also	want	to	change	the	background	property.

Example	9-1
Note	Editor	(Revisited)

In	 this	 project,	we	will	modify	 the	 last	 incarnation	of	 the	Note	Editor	 project
(Example	6-8)	to	allow	selective	formatting	of	text	(bold,	italic,	underline,	font
size).	The	text	area	control	will	be	replaced	by	a	text	pane	control.	Follow	these
steps	 for	 modification:	 1.	 Open	 Example	 6-8	 in	 NetBeans.	 Open
NoteEditor.java,	 highlight	 the	 contents	of	 the	 entire	 file,	 select	Edit	 from	 the
menu	 and	 choose	 Copy.	 At	 this	 point,	 a	 copy	 of	 the	 Java	 code	 is	 on	 your
clipboard.

2.	Start	 a	 new	empty	project	 in	NetBeans.	Name	 the	project	NewNoteEditor.
Delete	 default	 code	 in	 Java	 file	 named	NewNoteEditor	 –	 rename	 the	 file
NoteEditor.	 Go	 to	 that	 empty	 file,	 select	Edit	 from	 the	menu	 and	 choose
Paste.	You	now	have	a	copy	of	the	file	to	modify	in	your	new	project.

Try	compiling	and	running	the	project	to	make	sure	it	copied	successfully.	It

should	look	like	this:	

Review	how	any	text	formatting	affects	all	text	in	the	text	area.

3.	 Now,	 we	 will	 modify	 the	 code.	 Add	 this	 import	 statement:	 import
javax.swing.text.*;

4.	Change	 the	 text	 area	object	 to	 a	 text	pane	with	 this	declaration:	JTextPane
editorTextPane	=	new	JTextPane();

Correspondingly,	 change	all	 references	 to	editorTextArea	 to	editorTextPane.
Remove	lines	setting	lineWrap	and	wrapStyleWord	properties	of	old	text	area
control	(these	properties	are	not	used	by	the	text	pane).

5.	Rewrite	 the	code	to	open	a	file	(openMenuItemActionPerformed	method).
The	new	code	(try	 loop	portion,	the	only	part	with	changes)	is	(changes	are
shaded):	try

{

//	Open	output	file	and	write
FileWriter	outputFile	=	new	FileWriter(fileName);
editorTextPane.write(outputFile);
outputFile.flush();
outputFile.close();

}

Also,	 delete	 these	 three	 lines	 from	 the	 existing	 method:	 catch
(BadLocationException	ex)

{

}

6.	Rewrite	 the	 code	 to	 save	 a	 file	 (saveMenuItemActionPerformed	method).
The	new	code	(try	 loop	portion,	the	only	part	with	changes)	is	(changes	are
shaded):	try

{

//	Open	output	file	and	write
FileWriter	outputFile	=	new	FileWriter(fileName);
editorTextPane.write(outputFile);
outputFile.flush();
outputFile.close();

}

7.	 Delete	 code	 associated	 with	 reading	 and	 writing	 the	 configuration	 file	 (in
constructor	and	exitForm	methods).	Such	a	file	is	no	longer	needed	since	we
are	selectively	formatting	text.	The	modified	methods	will	be	very	short	–	just
one	or	two	lines	each.

8.	 For	 each	 of	 the	 following	 menu	 items	 objects:	 boldMenuItem,
italicMenuItem,	smallMenuItem,	mediumMenuItem,	largeMenuItem,	do
the	 following:	 (1)	delete	 the	 line	creating	 the	menu	 item,	 (2)	delete	 the	 line
assigning	an	accelerator	key,	 (3)	delete	 the	 line	adding	 the	menu	 item	to	 its
respective	menu	object,	 and	 (4)	delete	 the	 code	adding	an	action	 listener	 to
each	menu	 item.	Also,	 delete	 the	 sizeGroup	 button	 group	 object	 and	 lines
referring	 to	 this	group.	And,	delete	 the	 formatMenuItemActionPerformed
method.	 Next,	 all	 of	 these	 deletions	 will	 be	 replaced	 using	 newly	 defined
Action	objects.

9.	 In	 code	 constructing	 the	 NoteEditor	 object,	 after	 the	 line	 adding	 the
formatMenu	to	the	menu	bar,	add	these	lines	of	code	(new	code	is	shaded):
editorMenuBar.add(formatMenu);

Action	boldAction	=	new	StyledEditorKit.BoldAction();
boldAction.putValue(Action.NAME,	"Bold");
boldAction.putValue(Action.ACCELERATOR_KEY,
KeyStroke.getKeyStroke('B',	Event.CTRL_MASK));
formatMenu.add(boldAction);
Action	italicAction	=	new	StyledEditorKit.ItalicAction();
italicAction.putValue(Action.NAME,	"Italic");
italicAction.putValue(Action.ACCELERATOR_KEY,
KeyStroke.getKeyStroke('I',	Event.CTRL_MASK));
formatMenu.add(italicAction);
Action	underlineAction	=	new	StyledEditorKit.UnderlineAction();
underlineAction.putValue(Action.NAME,	"Underline");
underlineAction.putValue(Action.ACCELERATOR_KEY,
KeyStroke.getKeyStroke('U',	Event.CTRL_MASK));
formatMenu.add(underlineAction);

Then,	 after	 the	 sizeMenu	 is	 added	 to	 the	 formatMenu,	 add	 these	 lines	 (new
code	is	shaded):	formatMenu.add(sizeMenu);

Action	smallAction	=	new	StyledEditorKit.FontSizeAction("Small",	12);
smallAction.putValue(Action.ACCELERATOR_KEY,
KeyStroke.getKeyStroke('S',	Event.CTRL_MASK));
sizeMenu.add(smallAction);
Action	mediumAction	=	new
StyledEditorKit.FontSizeAction("Medium",	18);
mediumAction.putValue(Action.ACCELERATOR_KEY,
KeyStroke.getKeyStroke('M',	Event.CTRL_MASK));
sizeMenu.add(mediumAction);
Action	largeAction	=	new	StyledEditorKit.FontSizeAction("Large",	24);
largeAction.putValue(Action.ACCELERATOR_KEY,
KeyStroke.getKeyStroke('L',	Event.CTRL_MASK));
sizeMenu.add(largeAction);

This	code	creates	each	menu	item	(Bold,	Italic,	Underline,	a	new	item,	Small,
Medium,	Large),	places	 them	in	 the	menu	structure	and	assigns	an	action	and
accelerator	key.

For	 reference,	 the	 modified	 NoteEditor.java	 code	 listing	 (all	 new	 code	 is
shaded	–	obviously	all	the	deleted	code	is	missing):	/	*
*	NoteEditor.java

*/

package	noteeditor;
import	javax.swing.*;
import	javax.swing.filechooser.*;
import	javax.swing.text.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.io.*;
public	class	NoteEditor	extends	JFrame

{

JMenuBar	editorMenuBar	=	new	JMenuBar();

JMenu	fileMenu	=	new	JMenu("File");
JMenuItem	newMenuItem	=	new	JMenuItem("New");
JMenuItem	openMenuItem	=	new	JMenuItem("Open");
JMenuItem	saveMenuItem	=	new	JMenuItem("Save");
JMenuItem	exitMenuItem	=	new	JMenuItem("Exit");
JMenu	formatMenu	=	new	JMenu("Format");
JMenu	sizeMenu	=	new	JMenu("Size");
JMenu	helpMenu	=	new	JMenu("Help");
JMenuItem	aboutMenuItem	=	new	JMenuItem("About	Note	Editor");

JScrollPane	editorPane	=	new	JScrollPane();
JTextPane	editorTextPane	=	new	JTextPane();
JFileChooser	myChooser	=	new	JFileChooser();
public	static	void	main(String	args[])

{

//	construct	frame
new	NoteEditor().show();

}

public	NoteEditor()

{

//	frame	constructor
setTitle("Note	Editor");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

//	build	menu
setJMenuBar(editorMenuBar);
fileMenu.setMnemonic('F');
formatMenu.setMnemonic('O');
helpMenu.setMnemonic('H');
newMenuItem.setAccelerator(KeyStroke.getKeyStroke('N',

Event.CTRL_MASK));	editorMenuBar.add(fileMenu);
fileMenu.add(newMenuItem);
fileMenu.add(openMenuItem);
fileMenu.add(saveMenuItem);
fileMenu.addSeparator();
fileMenu.add(exitMenuItem);
editorMenuBar.add(formatMenu);
Action	boldAction	=	new	StyledEditorKit.BoldAction();
boldAction.putValue(Action.NAME,	"Bold");
boldAction.putValue(Action.ACCELERATOR_KEY,

KeyStroke.getKeyStroke('B',	Event.CTRL_MASK));
formatMenu.add(boldAction);

Action	italicAction	=	new	StyledEditorKit.ItalicAction();
italicAction.putValue(Action.NAME,	"Italic");
italicAction.putValue(Action.ACCELERATOR_KEY,

KeyStroke.getKeyStroke('I',	Event.CTRL_MASK));
formatMenu.add(italicAction);

Action	underlineAction	=	new	StyledEditorKit.UnderlineAction();
underlineAction.putValue(Action.NAME,	"Underline");

underlineAction.putValue(Action.ACCELERATOR_KEY,
KeyStroke.getKeyStroke('U',	Event.CTRL_MASK));
formatMenu.add(underlineAction);

formatMenu.add(sizeMenu);
Action	smallAction	=	new	StyledEditorKit.FontSizeAction("Small",

12);	smallAction.putValue(Action.ACCELERATOR_KEY,

KeyStroke.getKeyStroke('S',	Event.CTRL_MASK));
sizeMenu.add(smallAction);

Action	mediumAction	=	new
StyledEditorKit.FontSizeAction("Medium",	18);
mediumAction.putValue(Action.ACCELERATOR_KEY,
KeyStroke.getKeyStroke('M',	Event.CTRL_MASK));
sizeMenu.add(mediumAction);

Action	largeAction	=	new	StyledEditorKit.FontSizeAction("Large",
24);	largeAction.putValue(Action.ACCELERATOR_KEY,
KeyStroke.getKeyStroke('L',	Event.CTRL_MASK));
sizeMenu.add(largeAction);
editorMenuBar.add(helpMenu);
helpMenu.add(aboutMenuItem);
newMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

newMenuItemActionPerformed(e);

}

});

openMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

openMenuItemActionPerformed(e);

}

});

});

saveMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

saveMenuItemActionPerformed(e);

}

});

exitMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

exitMenuItemActionPerformed(e);

}

});

aboutMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

aboutMenuItemActionPerformed(e);

}

});

});

getContentPane().setLayout(new	GridBagLayout());
//	position	scroll	pane	and	text	box
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();

editorPane.setPreferredSize(new	Dimension(300,	150));
editorPane.setViewportView(editorTextPane);
editorTextPane.setFont(new	Font("Arial",	Font.PLAIN,	12));
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(editorPane,	gridConstraints);
pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}
private	void	newMenuItemActionPerformed(ActionEvent	e)	{

//	if	user	wants	new	file,	clear	out	text
if	(JOptionPane.showConfirmDialog(null,	"Are	you	sure	you	want	to

start	a	new	file?",	"New	File",	JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE)	==	JOptionPane.YES_OPTION)	{

editorTextPane.setText("");

}

}

private	void	openMenuItemActionPerformed(ActionEvent	e)	{
String	myLine;
myChooser.setDialogType(JFileChooser.OPEN_DIALOG);
myChooser.setDialogTitle("Open	Text	File");
myChooser.addChoosableFileFilter(new

FileNameExtensionFilter("Text	Files",	"txt"));	if
(myChooser.showOpenDialog(this)	==	JFileChooser.APPROVE_OPTION)
{

try

{

//	Open	input	file
FileReader	inputFile	=	new

FileReader(myChooser.getSelectedFile().toString());
editorTextPane.read(inputFile,	null);

inputFile.close();

}

catch	(IOException	ex)

{

JOptionPane.showConfirmDialog(null,	ex.getMessage(),
"Error	Opening	File",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	}

}

}

private	void	saveMenuItemActionPerformed(ActionEvent	e)	{
myChooser.setDialogType(JFileChooser.SAVE_DIALOG);
myChooser.setDialogTitle("Save	Text	File");
myChooser.addChoosableFileFilter(new

FileNameExtensionFilter("Text	Files",	"txt"));	int	fp,	lp;
if	(myChooser.showSaveDialog(this)	==

JFileChooser.APPROVE_OPTION)	{
//	see	if	file	already	exists
if	(myChooser.getSelectedFile().exists())

{

int	response;
response	=	JOptionPane.showConfirmDialog(null,

myChooser.getSelectedFile().toString()	+	"	exists.	Overwrite?",	"Confirm
Save",	JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE);	if	(response	==
JOptionPane.NO_OPTION)

{

return;

}

}

//	make	sure	file	has	txt	extension
//	strip	off	any	extension	that	might	be	there
//	then	tack	on	txt
String	fileName	=	myChooser.getSelectedFile().toString();	int

dotlocation	=	fileName.indexOf(".");
if	(dotlocation	==	-1)

{

//	no	extension
fileName	+=	".txt";

}

else

{

//	make	sure	extension	is	txt
fileName	=	fileName.substring(0,	dotlocation)	+	".txt";	}

try

{

//	Open	output	file	and	write
FileWriter	outputFile	=	new	FileWriter(fileName);

editorTextPane.write(outputFile);
outputFile.flush();
outputFile.close();

}

catch	(IOException	ex)

{

JOptionPane.showConfirmDialog(null,
ex.getMessage(),"Error	Writing	File",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	}

}

}

private	void	exitMenuItemActionPerformed(ActionEvent	e)	{
exitForm(null);

}

private	void	aboutMenuItemActionPerformed(ActionEvent	e)	{
JOptionPane.showConfirmDialog(null,	"About	Note

Editor\nCopyright	2003",	"Note	Editor",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	}
private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	the	modified	Note	Editor.	Type	some	text	in	the	text	pane.	Select	a	section

of	 text	 and	 change	 the	 style	 or	 size.	 Notice	 you	 can	 format	 as	 many	 text
selections	 as	your	desire.	Try	 the	menu	 items	and	 the	accelerator	keys.	Notice
we	 never	 wrote	 any	 code	 to	 do	 any	 formatting	 –	 the	 Action	 objects	 are
automatic,	 like	magic.	 Try	 saving	 and	 opening	 files	 –	 note,	 as	mentioned,	 the
formatting	is	not	saved.	Here’s	some	text	I	formatted	with	the	different	features:	

Save	 your	 project	 (saved	 as	 Example9-1	 project	 in	 the	 \LearnJava\LJ
Code\Class	9\	project	group).	Run	the	application.

JToolBar	Control

Almost	 all	GUI	applications	 these	days	use	 toolbars.	A	 toolbar	provides	quick
access	 to	 the	 most	 frequently	 used	 menu	 commands	 in	 an	 application.	 The
JToolBar	 control	 provides	 everything	 you	 need	 to	 design	 and	 implement	 a
toolbar	 into	 your	 application.	 Possible	 uses	 for	 this	 control	 include:	 provide	 a
consistent	 interface	 between	 applications	 with	 matching	 toolbars,	 place
commonly	used	 functions	 in	an	easily-accessed	space	and	provide	an	 intuitive,
graphical	interface	for	your	application.

Toolbar	Properties:

background Toolbar	background	color.
floatable Indicates	whether	toolbar	is	fixed	in	position	or

can	be	repositioned	by	the	user.

Toolbar	Methods:

add Add	components	to	toolbar.
setBackground Sets	the	text	pane	background	color.
setFloatable If	set	to	false,	toolbar	cannot	be	moved.

Toolbars	are	container	objects	that	can	hold	other	controls,	usually	holding	just
button	controls.	Clicking	a	button	causes	some	action	to	occur.	The	buttons	on	a
toolbar	 feature	a	graphic	 icon	depicting	 the	corresponding	action	and	a	 tooltip
that	describes	what	the	button	does.	Tooltips	are	text	prompts	that	appear	when
the	mouse	hovers	over	a	control	for	a	couple	of	seconds.	We	will	look	at	how	to
add	 icons	 and	 tooltips	 to	 button	 controls,	 then	 how	 to	 place	 the	 button	 on	 a
toolbar.	 We	 will	 also	 look	 at	 how	 to	 assign	 some	 action	 or	 code	 to	 a
corresponding	 button.	 Since	 toolbar	 buttons	 provide	 quick	 access	 to	 already
coded	menu	options,	we	can	just	use	existing	code	or	Action	objects.	We	look	at
two	approaches:	(1)	add	a	button	with	no	corresponding	Action	object;	(2)	add	a
button	with	an	Action	object.

If	 a	 toolbar	 button	 is	 to	 represent	 a	menu	 item	with	 no	 action	 object,	we	 first
create	a	button	object	and	set	the	Icon	and	ToolTipText	properties.	If	the	button
is	 named	myButton,	 the	 code	 that	 does	 these	 steps	 is:	 JButton	myButton	 =
new	 JButton(new	 ImageIcon(myImage));
myButton.setToolTipText(myText);

In	this	code,	myImage	is	the	graphic	file	containing	the	image	to	display	on	the
button	and	myText	(String)	is	the	corresponding	tooltip	text.	Once	created,	the
button	is	added	to	the	toolbar	(myToolbar)	in	the	desired	position	using	the	add
method:	myToolbar.add(myButton);

Buttons	are	added	to	a	toolbar	in	the	desired	order.	Lastly,	to	connect	the	button
to	 code	 with	 the	 desired	 action,	 a	 typical	 listener	 is	 needed:
myButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

[Java	code]

}

});

Again,	 since	 toolbar	 buttons	 replicate	 existing	 menu	 items,	 the	 code	 in	 this
method	 would	 simply	 be	 an	 application	 of	 the	 doClick	 method	 on	 the
corresponding	menu	item.

If	 a	 toolbar	 button	 is	 to	 represent	 a	menu	 item	with	 an	 already	 defined	 action
object,	our	task	is	a	bit	easier.	The	action	object	may	or	may	not	have	an	icon	or
tooltip	defined.	If	it	does,	great.	If	not,	follow	these	two	steps	to	add	an	icon	and
tooltip	 to	 an	 existing	 action	 (myAction):
myAction.putValue(Action.SMALL_ICON,	 new	 ImageIcon(myImage));
myAction.putValue(Action.SHORT_DESCRIPTION,	myText);

Then,	you	add	the	action	to	the	toolbar:

myToolbar.add(myAction);

This	will	create	a	button	and	assign	the	corresponding	action	to	that	button.
No	coding	is	needed!	That’s	the	beauty	of	action	objects.

Many	 times,	 you	 like	 to	 have	 some	 space	 between	 groups	 of	 toolbar	 buttons.
Such	 space	 is	 obtained	 using	 the	 addSeparator	 method:
myToolbar.addSeparator();

You	may	be	wondering	where	the	toolbar	graphics	come	from.	Each	icon	should
be	 a	 16	 x	 16	 or	 24	 x	 24	 gif	 file.	 You	 can	 create	 such	 a	 file	 in	 a	 paintbrush
program	 or	 borrow	 someone	 else’s	 icons.	 In	 these	 notes,	we	will	 use	 a	 set	 of
icons	created	by	the	folks	at	Java	that	meet	what	they	call	their	“look	and	feel”
standards.	 Such	 standards	 were	 developed	 to	 give	 a	 common	 look	 to	 GUI
applications,	no	matter	what	platform	they	run	on.	These	graphics	can	be	found
at:	http://www.oracle.com/technetwork/java/index-138612.html

You	can	copy	and	paste	the	files	from	this	website	to	your	computer.	I	usually
store	my	 toolbar	 icons	 in	 the	 corresponding	project	 folder	–	you	decide	where
you	want	to	store	them,	adjusting	your	code	to	point	to	the	proper	folder.

Typical	use	of	Toolbar	control:

➢	 Declare	 and	 create	 toolbar,	 assigning	 an	 identifiable	 name.	 For
myToolbar,	the	statement	is:	JToolbar	myToolbar	=	new	JToolbar();

➢	Add	buttons	using	above	described	procedures	(use	appropriate	icon	and
tooltips	and	method	code,	if	needed).

➢	 Place	 control	within	 layout	manager.	 It	 is	 usually	 placed	 just	 under	 the
menu	bar,	filling	the	entire	width	of	the	frame.

➢	You	may	also	want	to	change	the	background	property.

http://www.oracle.com/technetwork/java/index-138612.html

Example	9-2
Note	Editor	Toolbar

In	this	example,	we’ll	add	a	toolbar	to	our	Note	Editor,	by	modifying	Example
9-1.	The	 toolbar	will	have	six	buttons:	one	 to	create	a	new	 file,	one	 to	open	a
file,	 one	 to	 save	 a	 file,	 one	 to	 bold	 text,	 one	 to	 italicize	 text	 and	 one	 to
underline	 text.	 All	 the	 graphics	 files	 are	 included	 in	 the	 \LearnJava\LJ
Code\Class	 9\Example9-2\	 folder.	 Copy	 these	 graphic	 files	 (from	 the	 Java
website)	 into	 your	 project’s	 folder:	

Load	 Example	 9-1.	 We	 will	 list	 the	 needed	 modifications.	 The	 finished

application	will	look	like	this:	

1.	 Add	 a	 toolbar	 control	 to	 the	 frame.	 The	 new	 GridBagLayout	 is:	

Set	the	following	new	properties	(modified	values	are	shaded):

editorToolbar:

background BLUE
floatable false
fill HORIZONTAL
gridx 0
gridy 0

editorTextPane:
gridy 1

To	 do	 this,	 first	 add	 a	 class	 level	 declaration	 for	 the	 toolbar:	 JToolBar
editorToolBar	=	new	JToolBar();

Then,	 in	 the	 NoteEditor	 constructor,	 use	 this	 code	 (new	 code	 is	 shaded):
getContentPane().setLayout(new	GridBagLayout());
//	position	scroll	pane	and	text	box
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();
editorPane.setPreferredSize(new	Dimension(300,	150));
editorPane.setViewportView(editorTextPane);
editorTextPane.setFont(new	Font("Arial",	Font.PLAIN,	12));
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(editorPane,	gridConstraints);

editorToolBar.setFloatable(false);
editorToolBar.setBackground(Color.BLUE);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.fill	=	GridBagConstraints.HORIZONTAL;
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(editorToolBar,	gridConstraints);

2.	Add	six	buttons	to	the	toolbar.	The	first	three	buttons	will	be	actual	controls;
the	 last	 three	will	 be	 created	 from	Action	 objects.	 The	 two	 groups	will	 be
separated.	The	first	three	will	have	these	properties:

newButton:
ImageIcon new.gif
ToolTipText New	File

openButton:
ImageIcon open.gif
ToolTipText Open	File

saveButton:
ImageIcon save.gif
ToolTipText Save	File

To	 add	 these	 to	 the	 toolbar,	 first	 use	 these	 class	 level	 declarations:	 JButton
newButton	=	new	JButton(new	ImageIcon("new.gif"));	JButton	openButton
=	 new	 JButton(new	 ImageIcon("open.gif"));	 JButton	 saveButton	 =	 new
JButton(new	 ImageIcon("save.gif"));	 Then,	 for	 each	 button,	 set	 the	 tooltip,
add	the	button	to	the	toolbar	and	add	an	event	listener	(clicking	the	appropriate
menu	 item).	 This	 code	 is	 placed	 after	 the	 toolbar	 is	 positioned	 in	 the	 grid:
newButton.setToolTipText("New	File");
editorToolBar.add(newButton);
newButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

newMenuItem.doClick();

}

});

openButton.setToolTipText("Open	File");
editorToolBar.add(openButton);
openButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

openMenuItem.doClick();

}

});

saveButton.setToolTipText("Save	File");
editorToolBar.add(saveButton);
saveButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

saveMenuItem.doClick();

}

});

3.	Now,	add	the	‘buttons’	represented	by	existing	action	objects.	The	properties
are:

boldButton:
ImageIcon bold.gif
ToolTipText Bold	selected	text

italicButton:
ImageIcon italic.gif
ToolTipText Italicize	selected	text

underlineButton:
ImageIcon underline.gif
ToolTipText Underline	selected	text

For	each	button,	establish	the	action	icon	and	tooltip,	and	add	the	action	to	the
toolbar:	 boldAction.putValue(Action.SMALL_ICON,	 new
ImageIcon("bold.gif"));
boldAction.putValue(Action.SHORT_DESCRIPTION,	 "Bold	 selected
text");	editorToolBar.add(boldAction);

italicAction.putValue(Action.SMALL_ICON,	new
ImageIcon("italic.gif"));
italicAction.putValue(Action.SHORT_DESCRIPTION,	"Italicize
selected	text");	editorToolBar.add(italicAction);

underlineAction.putValue(Action.SMALL_ICON,	new
ImageIcon("underline.gif"));
underlineAction.putValue(Action.SHORT_DESCRIPTION,	"Underline
selected	text");	editorToolBar.add(underlineAction);

Recall	the	add	method	will	create	a	button	to	represent	the	corresponding	action.

The	modified,	complete	NoteEditor.java	code	listing	(changes	are	shaded):	/	*
*	NoteEditor.java

*/

package	noteeditor;
import	javax.swing.*;
import	javax.swing.filechooser.*;
import	javax.swing.text.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.io.*;

public	class	NoteEditor	extends	JFrame

{

JMenuBar	editorMenuBar	=	new	JMenuBar();
JMenu	fileMenu	=	new	JMenu("File");
JMenuItem	newMenuItem	=	new	JMenuItem("New");
JMenuItem	openMenuItem	=	new	JMenuItem("Open");
JMenuItem	saveMenuItem	=	new	JMenuItem("Save");
JMenuItem	exitMenuItem	=	new	JMenuItem("Exit");
JMenu	formatMenu	=	new	JMenu("Format");
JMenu	sizeMenu	=	new	JMenu("Size");
JMenu	helpMenu	=	new	JMenu("Help");
JMenuItem	aboutMenuItem	=	new	JMenuItem("About	Note	Editor");

JScrollPane	editorPane	=	new	JScrollPane();
JTextPane	editorTextPane	=	new	JTextPane();
JFileChooser	myChooser	=	new	JFileChooser();
JToolBar	editorToolBar	=	new	JToolBar();
JButton	newButton	=	new	JButton(new	ImageIcon("new.gif"));	JButton

openButton	=	new	JButton(new	ImageIcon("open.gif"));	JButton
saveButton	=	new	JButton(new	ImageIcon("save.gif"));
public	static	void	main(String	args[])

{

//	construct	frame
new	NoteEditor().show();

}

public	NoteEditor()

{

//	frame	constructor
setTitle("Note	Editor");

setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

//	build	menu
setJMenuBar(editorMenuBar);
fileMenu.setMnemonic('F');
formatMenu.setMnemonic('O');
helpMenu.setMnemonic('H');
newMenuItem.setAccelerator(KeyStroke.getKeyStroke('N',

Event.CTRL_MASK));	editorMenuBar.add(fileMenu);
fileMenu.add(newMenuItem);
fileMenu.add(openMenuItem);
fileMenu.add(saveMenuItem);
fileMenu.addSeparator();
fileMenu.add(exitMenuItem);
editorMenuBar.add(formatMenu);
Action	boldAction	=	new	StyledEditorKit.BoldAction();
boldAction.putValue(Action.NAME,	"Bold");
boldAction.putValue(Action.ACCELERATOR_KEY,

KeyStroke.getKeyStroke('B',	Event.CTRL_MASK));
formatMenu.add(boldAction);

Action	italicAction	=	new	StyledEditorKit.ItalicAction();
italicAction.putValue(Action.NAME,	"Italic");

italicAction.putValue(Action.ACCELERATOR_KEY,

KeyStroke.getKeyStroke('I',	Event.CTRL_MASK));
formatMenu.add(italicAction);

Action	underlineAction	=	new	StyledEditorKit.UnderlineAction();
underlineAction.putValue(Action.NAME,	"Underline");

underlineAction.putValue(Action.ACCELERATOR_KEY,
KeyStroke.getKeyStroke('U',	Event.CTRL_MASK));
formatMenu.add(underlineAction);
formatMenu.add(sizeMenu);
Action	smallAction	=	new	StyledEditorKit.FontSizeAction("Small",

12);	smallAction.putValue(Action.ACCELERATOR_KEY,
KeyStroke.getKeyStroke('S',	Event.CTRL_MASK));
sizeMenu.add(smallAction);

Action	mediumAction	=	new
StyledEditorKit.FontSizeAction("Medium",	18);
mediumAction.putValue(Action.ACCELERATOR_KEY,
KeyStroke.getKeyStroke('M',	Event.CTRL_MASK));
sizeMenu.add(mediumAction);

Action	largeAction	=	new	StyledEditorKit.FontSizeAction("Large",
24);	largeAction.putValue(Action.ACCELERATOR_KEY,
KeyStroke.getKeyStroke('L',	Event.CTRL_MASK));
sizeMenu.add(largeAction);

editorMenuBar.add(helpMenu);
helpMenu.add(aboutMenuItem);
newMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

newMenuItemActionPerformed(e);

}

});

openMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

openMenuItemActionPerformed(e);

}

});

saveMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

saveMenuItemActionPerformed(e);

}

});

exitMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

exitMenuItemActionPerformed(e);

}

});

aboutMenuItem.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

aboutMenuItemActionPerformed(e);

}

});

getContentPane().setLayout(new	GridBagLayout());
//	position	scroll	pane	and	text	box
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();

editorPane.setPreferredSize(new	Dimension(300,	150));
editorPane.setViewportView(editorTextPane);

editorTextPane.setFont(new	Font("Arial",	Font.PLAIN,	12));
gridConstraints.gridx	=	0;

gridConstraints.gridy	=	1;
getContentPane().add(editorPane,	gridConstraints);

editorToolBar.setFloatable(false);
editorToolBar.setBackground(Color.BLUE);
gridConstraints	=	new	GridBagConstraints();
gridConstraints.fill	=	GridBagConstraints.HORIZONTAL;
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(editorToolBar,	gridConstraints);
newButton.setToolTipText("New	File");
editorToolBar.add(newButton);
newButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

{

newMenuItem.doClick();

}

});

openButton.setToolTipText("Open	File");
editorToolBar.add(openButton);
openButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

openMenuItem.doClick();

}

});

saveButton.setToolTipText("Save	File");
editorToolBar.add(saveButton);
saveButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

saveMenuItem.doClick();

}

});

editorToolBar.addSeparator();

boldAction.putValue(Action.SMALL_ICON,	new
ImageIcon("bold.gif"));
boldAction.putValue(Action.SHORT_DESCRIPTION,	"Bold	selected
text");	editorToolBar.add(boldAction);

italicAction.putValue(Action.SMALL_ICON,	new
ImageIcon("italic.gif"));
italicAction.putValue(Action.SHORT_DESCRIPTION,	"Italicize	selected
text");	editorToolBar.add(italicAction);

underlineAction.putValue(Action.SMALL_ICON,	new
ImageIcon("underline.gif"));
underlineAction.putValue(Action.SHORT_DESCRIPTION,	"Underline
selected	text");	editorToolBar.add(underlineAction);

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}

private	void	newMenuItemActionPerformed(ActionEvent	e)	{
//	if	user	wants	new	file,	clear	out	text
if	(JOptionPane.showConfirmDialog(null,	"Are	you	sure	you	want	to

start	a	new	file?",	"New	File",	JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE)	==	JOptionPane.YES_OPTION)	{

editorTextPane.setText("");

}

}

private	void	openMenuItemActionPerformed(ActionEvent	e)	{
String	myLine;
myChooser.setDialogType(JFileChooser.OPEN_DIALOG);

myChooser.setDialogTitle("Open	Text	File");
myChooser.addChoosableFileFilter(new

FileNameExtensionFilter("Text	Files",	"txt"));	if
(myChooser.showOpenDialog(this)	==	JFileChooser.APPROVE_OPTION)
{

try

{

//	Open	input	file
FileReader	inputFile	=	new

FileReader(myChooser.getSelectedFile().toString());
editorTextPane.read(inputFile,	null);

inputFile.close();

}

catch	(IOException	ex)

{

JOptionPane.showConfirmDialog(null,	ex.getMessage(),
"Error	Opening	File",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	}

}

}

private	void	saveMenuItemActionPerformed(ActionEvent	e)	{
myChooser.setDialogType(JFileChooser.SAVE_DIALOG);
myChooser.setDialogTitle("Save	Text	File");
myChooser.addChoosableFileFilter(new
FileNameExtensionFilter("Text	Files",	"txt"));	int	fp,	lp;
if	(myChooser.showSaveDialog(this)	==

JFileChooser.APPROVE_OPTION)	{

//	see	if	file	already	exists

if	(myChooser.getSelectedFile().exists())

{

int	response;
response	=	JOptionPane.showConfirmDialog(null,

myChooser.getSelectedFile().toString()	+	"	exists.	Overwrite?",	"Confirm
Save",	JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE);	if	(response	==
JOptionPane.NO_OPTION)

{

return;

}

}

//	make	sure	file	has	txt	extension
//	strip	off	any	extension	that	might	be	there
//	then	tack	on	txt
String	fileName	=	myChooser.getSelectedFile().toString();	int

dotlocation	=	fileName.indexOf(".");
if	(dotlocation	==	-1)

{

//	no	extension
fileName	+=	".txt";

}

else

{

//	make	sure	extension	is	txt
fileName	=	fileName.substring(0,	dotlocation)	+	".txt";	}

try

{

//	Open	output	file	and	write
FileWriter	outputFile	=	new	FileWriter(fileName);
editorTextPane.write(outputFile);
outputFile.flush();
outputFile.close();

}

catch	(IOException	ex)

{

JOptionPane.showConfirmDialog(null,
ex.getMessage(),"Error	Writing	File",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	}

}

}

private	void	exitMenuItemActionPerformed(ActionEvent	e)	{
exitForm(null);

}

private	void	aboutMenuItemActionPerformed(ActionEvent	e)	{
JOptionPane.showConfirmDialog(null,	"About	Note

Editor\nCopyright	2003",	"Note	Editor",
JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	the	new	project.	Make	sure	all	the	toolbar	buttons	work	properly.	Check	out
how	the	tool	tips	work.	Notice	you	now	have	three	ways	to	format	–	menu	items,
toolbar	 buttons,	 and	 accelerator	 keys.	 Here	 is	 some	 formatting	 I	 did:	

Save	 the	 project	 (saved	 as	 Example9-2	 project	 in	 the	 \LearnJava\LJ
Code\Class	9\	project	group).

More	Swing	Controls
This	completes	our	look	at	Swing	controls	for	this	particular	class.	We	covered
most,	 but	 not	 all,	 of	 the	 controls.	Here,	we	 briefly	 describe	 some	 of	 the	 other
Swing	controls	available.	You	decide	 if	you’d	 like	 to	 learn	more	about	how	to
use	such	controls.	The	code	for	 the	examples	shown	is	available	from	the	Java
website:
http://download.oracle.com/javase/tutorial/uiswing/components/index.html

The	JSplitPane	control	displays	two	components,	either	side	by	side	or	one	on
top	of	the	other.	By	dragging	the	divider	that	appears	between	the	components,
the	 user	 can	 specify	 how	 much	 of	 the	 split	 pane's	 total	 area	 goes	 to	 each
component.	Here's	a	picture	of	an	application	that	uses	a	split	pane	to	display	a
list	 and	 an	 image	 side	 by	 side:	

A	 layered	 pane	 is	 a	 Swing	 container	 that	 provides	 a	 third	 dimension	 for
positioning	 components:	 depth,	 also	 known	 as	 Z	 order.	 When	 adding	 a
component	to	a	layered	pane,	you	specify	its	depth	as	an	integer.	The	higher	the
number,	 the	 higher	 the	 depth.	 If	 components	 overlap,	 components	 at	 a	 higher
depth	 are	 drawn	 on	 top	 of	 components	 at	 a	 lower	 depth.	 The	 relationship
between	components	at	 the	 same	depth	 is	determined	by	 their	positions	within
the	 depth.	 Here's	 a	 picture	 of	 an	 application	 that	 creates	 a	 layered	 pane	 and
places	 overlapping,	 colored	 labels	 at	 different	 depths:	

http://download.oracle.com/javase/tutorial/uiswing/components/index.html

With	 the	 JInternalFrame	 control	 you	 can	 display	 a	 JFrame	 window	 within
another	window.	Here	is	a	picture	of	an	application	that	has	two	internal	frames
(one	 of	 which	 is	 iconified)	 inside	 a	 regular	 frame:	

Sometimes	a	 task	running	within	a	program	might	 take	a	while	 to	complete.	A
user-friendly	 program	 provides	 some	 indication	 to	 the	 user	 that	 the	 task	 is
occurring,	how	long	the	task	might	take,	and	how	much	work	has	already	been
done.	One	way	of	indicating	work,	and	perhaps	the	amount	of	progress,	is	to	use
an	animated	image	in	a	progress	bar	control.	Here's	a	picture	of	a	small	demo
application	 that	 uses	 a	 progress	 bar	 to	 measure	 the	 progress	 of	 a	 task:	

With	 the	 JTree	 control,	 you	 can	 display	 hierarchical	 data.	 A	 JTree	 object
doesn't	actually	contain	your	data;	it	simply	provides	a	view	of	the	data.	The	tree
gets	 data	 by	 querying	 something	 called	 a	 data	model.	 Here	 is	 a	 picture	 of	 an
application,	 the	 top	 half	 of	 which	 displays	 a	 tree	 in	 a	 scroll	 pane:	

With	the	JTable	control	you	can	display	tables	of	data,	optionally	allowing	the
user	to	edit	the	data.	JTable	doesn't	contain	or	cache	data;	it's	simply	a	view	of
your	 data.	 Here's	 a	 picture	 of	 a	 typical	 table	 displayed	 within	 a	 scroll	 pane:	

Use	 the	 JColorChooser	 control	 to	 provide	 users	 with	 a	 palette	 of	 colors	 to

choose	 from.	 A	 color	 chooser	 is	 a	 component	 that	 you	 can	 place	 anywhere
within	your	program's	GUI.	Here's	a	picture	of	an	application	that	uses	a	color
chooser	 to	 set	 the	 text	 color	 in	 a	 banner:	

Even	More	Controls
If	you	can’t	find	a	Swing	control	that	does	a	task	you	need,	there	is	a	wealth	of
other	 controls	 out	 there	 in	 “Internet	 world”	 for	 your	 use.	 Java	 developers	 are
always	creating	controls	for	others	to	use	and	often	the	price	is	right	–	free!	The
controls	 other	 users	 create	 can	 be	 used	 like	 any	 Swing	 control	 –	 they	 can	 be
placed	in	a	form,	with	desired	properties	and	have	event	methods.	How	do	you
find	 these	controls?	Use	a	 search	engine	 like	Google	or	Yahoo.	Use	keywords
for	the	task	you	are	trying	to	accomplish.

Once	 you	 find	 a	 control	 you	would	 like	 to	 try,	 how	do	 you	 use	 it?	Here,	 you
need	 to	 rely	on	documentation	 (if	any)	provided	by	 the	control	developer.	The
documentation	 should	 tell	 you	 what	 packages	 you	 need	 to	 import	 into	 your
project,	 how	 to	 construct	 the	 control,	 how	 to	 set	 basic	 properties	 and	 how	 to
access	 event	 methods.	 Most	 developers	 do	 a	 good	 job	 of	 documenting	 their
controls.	 Many	 do	 not.	 I’d	 stay	 away	 from	 controls	 without	 proper
documentation.	If	the	developer	didn’t	have	time	to	properly	document	his	or	her
work,	 they	 probably	 didn’t	 take	 the	 time	 to	 make	 sure	 their	 control	 works
properly.

More	often	than	not	a	user-developed	control	is	provided	in	what	is	called	a	jar
(Java	archive)	file	that	you	download	from	the	Internet.	This	is	a	library	file	that
contains	any	code	you	need	 to	use	 the	control.	You	need	 to	make	your	project
aware	of	the	fact	you	will	be	using	such	a	jar	file.	In	the	next	example,	we	will
be	using	a	calendar	control	that	is	packaged	in	a	file	named	jcalendar-1.3.3.jar
(located	at	\JCalendar\lib\	on	my	computer	–	you	may	place	it	elsewhere).	Let’s
look	at	how	to	make	a	project	aware	of	such	a	file.	First,	we	need	to	make	the	jar
file	available	in	your	IDE.	We’ll	show	you	how	with	NetBeans.	If	you	are	using
another	IDE,	consult	its	documentation	to	see	how	to	add	jar	files	to	a	project.

In	NetBeans,	the	steps	to	add	a	jar	file	to	its	available	library	are:	In	the	menu,
choose	 Tools,	 then	 Libaries	 to	 see:	

Click	 New	 Library	 and	 name	 it	 Calendar:	

Click	OK	to	accept	name.	In	next	window,	click	Add	JAR/Folder.	Navigate	to
jar	 location:	

Click	Add	JAR/Folder.

Library	is	now	there:

The	Calendar	library	can	now	be	added	to	any	project	that	needs	it.	Click	OK.

To	 add	 an	 archived	 library	 to	 a	 project,	 follow	 these	 steps:	 In	 file	 view	 area,
right-click	 the	 project	 name	 and	 click	 Properties.	 In	 the	 properties	 window,
choose	 the	 Libraries	 category:	

Click	Add	Library	to	see	

Choose	Calendar,	 then	 click	Add	Library.	 Click	OK	 when	 returned	 to	 the
Properties	window.

Now,	the	library	file(s)	and	any	associated	controls	or	code	can	be	used	by	your
project.	You	will	also	need	to	add	an	import	statement	to	your	Java	code	to	use
the	control	–	consult	the	control’s	documentation	for	the	form	of	that	statement.

When	using	controls	from	other	programmers,	always	be	aware	they	may	not	be
complete	 or	 even	 correct.	 Carefully	 read	 the	 documentation	 provided	 by	 the
programmer	to	insure	you	are	using	their	control	correctly.	Most	controls	work
just	fine,	but	be	careful.	If	something	is	free,	many	times	you	get	what	you	pay
for.	 The	 control	 we	 present	 here	 seems	 to	 work	 well.	 There	 are	 a	 few	minor
annoyances,	but	again	it	is	a	free	product.

Calendar	Control

The	Java	Swing	library	does	not	have	a	control	that	allows	selection	of	a	date.	A
quick	search	of	 the	 Internet	will	 find	several	Java	controls	 that	perform	such	a
task.	 The	 calendar	 control	 we	 present	 here	 is	 described	 at:
http://www.toedter.com/

It	is	written	by	Kai	Toedter	and	is	free.	This	JCalendar	control	allows	a	user	to
select	a	date.	It	is	a	very	easy	to	use	interface	–	just	point	and	click.	This	control
is	useful	 for	ordering	 information,	making	 reservations	or	choosing	 the	current
date.

To	add	the	control	to	your	computer,	go	to	the	above	referenced	website.	On	the
page,	 you	 will	 find	 a	 link	 to	 download	 the	 zipped	 control	 (a	 file	 named
jcalendar-1.3.3.zip	 –	 there	may	 be	 a	 newer	 version).	The	 zip	 file	 can	 also	 be
found	in	the	\LearnJava\LJ	Code\Class	9	folder.	Download	the	file	and	extract
(unzip)	the	files	to	a	directory	on	your	computer	(I	used	c:\JCalendar\).	Many
files	will	be	written	to	your	computer,	including	documentation	and	source	files.
The	actual	 jar	 file	 (jcalendar-1.3.3.jar)	will	be	 in	 the	 lib	 subfolder.	Using	 the
steps	in	the	last	section,	add	this	file	to	the	available	libraries	in	NetBeans.	It	can
then	 be	 used	 in	 any	 of	 your	 Java	 projects.	 To	 use	 the	 calendar	 requires	 this
import	statement:	import	com.toedter.calendar.*;

The	 calendar	 control	 is	 made	 up	 of	 three	 components	 a	MonthChooser,	 a
DayChooser	 and	 a	 YearChooser:	

http://http://www.toedter.com/

Operation	 is	 simple.	A	month	 is	 selected	either	 from	the	drop-down	box	or	by
clicking	the	spinner	arrows.	A	day	is	selected	by	clicking	the	desired	box.	A	year
is	selected	using	the	spinner	arrows	or	by	typing	a	value.	By	default,	a	calendar
for	the	current	month	is	displayed	initially.

Calendar	Properties:

font Font	name,	style,	size.
background Calendar	background	color.

Calendar	Methods:

setFont Sets	font	name,	style,	size.
setBackground Sets	the	calendar	background	color.
getDayChooser Returns	calendar	DayChooser
getMonthChooser Returns	calendar	MonthChooser.
getYearChooser Returns	calendar	YearChooser.

Calendar	Event:

propertyChange Event	(PropertyChangeEvent)	triggered	when
the	selected	date	changes.	Added	with
PropertyChangeListener	(requires	importation
of	java.beans.*	files).

To	add	a	listener	for	such	a	propertyChange	event	to	a	calendar	control	named
myCalendar,	 use:	 myCalendar.addPropertyChangeListener(new
PropertyChangeListener()	{

public	void	propertyChange(PropertyChangeEvent	e)

{

myCalendarPropertyChange(e);

}

});

And,	 the	 corresponding	 event	 code	 would	 be	 placed	 in	 a
myCalendarPropertyChange	 method:	 private	 void
myCalendarPropertyChange(PropertyChangeEvent	e)	{

[method	code]

}

Two	 tasks	 you	 usually	 want	 to	 do	 with	 a	 calendar	 control	 are	 to	 retrieve	 the
displayed	 date	 and	 to	 set	 the	 date.	 The	 three	 components	 of	 the	 date	 (month,
day,	 year)	 are	 individually	 retrieved	 and	 set,	 allowing	 flexibility	 in	 how	 the
values	are	used.	To	 retrieve	 the	displayed	month	 for	 a	 calendar	 control	named
myCalendar,	use:	myCalendar.getMonthChooser().getMonth();

This	method	 returns	an	 integer	value	 from	0	 (January)	 to	11	 (December).	This
value	can	be	used	to	establish	a	month	name	or	a	month	value	for	other	Java	date
methods.	Java	methods	usually	expect	a	month	value	to	go	from	1	to	12,	not	0	to
11	 –	 be	 aware	 (this	 is	 one	 of	 the	 things	 I	 don’t	 like	 about	 this	 control).	 To
retrieve,	 the	 day	 value	 (an	 int	 type),	 use:
myCalendar.getDayChooser().getDay();

And,	 the	 year	 (int)	 is	 retrieved	 using:
myCalendar.getYearChooser().getYear();

A	 calendar	 date	 is	 established	 using	 the	 setMonth,	 setDay	 and	 setYear
methods:	myCalendar.getMonthChooser().setMonth(myMonth);
myCalendar.getDayChooser().setDay(myDay);
myCalendar.getYearChooser().setYear(myYear);

where	myMonth,	myDay	and	myYear	are	all	int	types.	Recall	myMonth
must	lie	between	0	and	11.

Typical	use	of	Calendar	control:

➢	Declare	and	create	calendar	control,	assigning	an	 identifiable	name.	For
myCalendar,	the	code	is:	JCalendar	myCalendar	=	new	JCalendar();

➢	Place	control	in	layout	manager.
➢	Initialize	date	if	desired	(default	display	is	today’s	date).
➢	Add	listener	for	and	monitor	propertyChange	event	for	changes	in	value.
➢	Use	getMonth,	getDay	and	getYear	methods	to	determine	selected	date.
➢	You	may	also	choose	 to	change	 the	 font	 and	background	properties	of
the	calendar	control.

Example	9-3
Date	Selection

Start	a	new	empty	project	in	NetBeans.	Name	the	project	DateSelection.	Delete
default	code	in	Java	file	named	DateSelection.	In	this	project,	we’ll	look	at	date
selection	using	the	JCalendar	controls.	The	finished	project	will	look	like	this:	

Make	 sure	 you	 have	 downloaded	 and	 unzipped	 the	 jcalendar-1.3.3.zip	 file.
Make	 sure	 you	 have	 also	made	 the	 archive	 (jcalendar-1.3.3.jar)	 available	 for
use	 in	your	Java	projects.	Follow	these	steps	 to	make	 the	calendar	available	 in
the	Date	Selection	 project:	 In	 file	 view	 area,	 right-click	 the	 project	 name	 and
click	 Properties.	 In	 the	 properties	 window,	 choose	 the	 Libraries	 category.
Click	 Add	 Library.	 Choose	 Calendar,	 then	 click	 Add	 Library.	 Click	OK
when	returned	to	the	Properties	window.	Expand	the	project	folder	structure	to

see	the	added	library	is	there	

Place	 a	 label	 control	 and	 calendar	 control	 on	 the	 frame.	 The	GridBagLayout

arrangement	is:	

Properties	set	in	code:

DateSelection	Frame:
title Date	Selection
resizable false

dateLabel:
font Arial,	PLAIN,	18
gridx 0
gridy 0
insets (10,	10,	10,	10)

myCalendar:
gridx 0
gridy 1
insets (10,	10,	10,	10)

1.	We	first	build	the	framework:	/	*

*	DateSelection.java
*/	package	dateselection;
import	java.awt.*;
import	java.awt.event.*;
import	javax.swing.*;
import	java.beans.*;
import	com.toedter.calendar.*;
public	class	DateSelection	extends	JFrame

{

public	static	void	main(String	args[])

{

//	construct	frame
new	DateSelection().show();

}

public	DateSelection()

{

//	frame	constructor
setTitle("Date	Selection");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-getWidth())),	(int)	(0.5

(screenSize.height	-getHeight())),	getWidth(),	getHeight());	}
private	void	exitForm(WindowEvent	e)

{

{

System.exit(0);

}

}

Run	to	make	sure	the	frame	appears.

2.	Next,	add	the	controls	and	the	single	event	method.	Declare	and	create	the	two
controls:	JLabel	dateLabel	=	new	JLabel();

JCalendar	myCalendar	=	new	JCalendar();

Position	and	add	the	control	and	change	event:

GridBagConstraints	gridConstraints	=	new	GridBagConstraints();
dateLabel.setFont(new	Font("Arial",	Font.PLAIN,	18));
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(dateLabel,	gridConstraints);

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(myCalendar,	gridConstraints);
myCalendar.addPropertyChangeListener(new	PropertyChangeListener()
{

public	void	propertyChange(PropertyChangeEvent	e)

{

myCalendarPropertyChange(e);

}

});

3.	We’ll	skip	checking	the	project	at	this	point	and	go	right	to	adding	the	code	–
there	are	only	two	lines.	Use	this	code	in	the	propertyChange	event:	private
void	myCalendarPropertyChange(PropertyChangeEvent	e)	{

String[]	monthNames	=	{"January",	"February",	"March",	"April",
"May",	"June",	"July",	"August",	"September",	"October",
"November",	"December"};
dateLabel.setText(monthNames[myCalendar.getMonthChooser().
getMonth()]	+	"	"	+	myCalendar.getDayChooser().getDay()	+	",	"	+
myCalendar.getYearChooser().getYear());	}

This	code	simply	updates	the	displayed	date	when	either	the	selected	month,	day
or	year	changes.	Note	 the	use	of	 the	monthNames	 array	 to	convert	month	 int
value	to	a	name.

The	 final	DateSelection.java	 code	 listing	 (code	 added	 to	 basic	 framework	 is
shaded):	/	*
*	DateSelection.java

*/

package	dateselection;
import	java.awt.*;
import	java.awt.event.*;
import	javax.swing.*;
import	java.beans.*;
import	com.toedter.calendar.*;

public	class	DateSelection	extends	JFrame

{

JLabel	dateLabel	=	new	JLabel();
JCalendar	myCalendar	=	new	JCalendar();

public	static	void	main(String	args[])

{

//	construct	frame
new	DateSelection().show();

}

public	DateSelection()

{

//	frame	constructor
setTitle("Date	Selection");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	e)

{

exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());

//	Position	calendar
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();

dateLabel.setFont(new	Font("Arial",	Font.PLAIN,	18));
gridConstraints.gridx	=	0;

gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);

getContentPane().add(dateLabel,	gridConstraints);

gridConstraints	=	new	GridBagConstraints();
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(myCalendar,	gridConstraints);
myCalendar.addPropertyChangeListener(new

PropertyChangeListener()	{
public	void	propertyChange(PropertyChangeEvent	e)

{

myCalendarPropertyChange(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());	}
private	void	myCalendarPropertyChange(PropertyChangeEvent	e)	{
String[]	monthNames	=	{"January",	"February",	"March",	"April",
"May",	"June",	"July",	"August",	"September",	"October",
"November",	"December"};
dateLabel.setText(monthNames[myCalendar.getMonthChooser().get
Month()]	+	"	"	+	myCalendar.getDayChooser().getDay()	+	",	"	+
myCalendar.getYearChooser().getYear());	}

private	void	exitForm(WindowEvent	e)

{

System.exit(0);

}

}

Run	 the	 project.	 Notice	 how	 easy	 it	 is	 to	 select	 dates	 for	 your	 applications.

Here’s	my	birthday	(yes,	I’m	an	old	guy):	

Save	 your	 project	 (saved	 as	 Example9-3	 project	 in	 the	 \LearnJava\LJ
Code\Class	9\	project	group).

Printing	with	Java
Any	serious	Java	application	will	use	a	printer	 to	provide	the	user	with	a	hard
copy	 of	 any	 results	 (text	 or	 graphics)	 they	might	 need.	 Printing	 is	 one	 of	 the
more	 tedious	 programming	 tasks	 within	 Java.	 But,	 fortunately,	 it	 is
straightforward	 and	 there	 are	 dialog	 boxes	 that	 help	 with	 the	 tasks.	 We	 will
introduce	lots	of	new	topics	here.	All	steps	will	be	reviewed.

To	 perform	 printing	 in	 Java,	 we	 use	 the	 java.awt.print.*	 package.	 The
PrinterJob	 class	 from	 this	package	controls	 the	printing	process.	This	class	 is
used	to	start	or	cancel	a	printing	job.	It	can	also	be	used	to	display	dialog	boxes
when	needed.	The	Printable	interface	from	this	package	is	used	to	represent	the
item	(document)	to	be	printed.

The	steps	to	print	a	document	(which	may	include	text	and	graphics)	using	the
PrinterJob	class	are:

➢	Declare	and	create	a	PrinterJob	object.
➢	Point	the	PrinterJob	object	to	a	Printable	class	(containing	code	to	print
the	desired	document)	using	 the	setPrintable	method	of	 the	PrinterJob
object.

➢	Print	the	document	using	the	print	method	of	the	PrinterJob	object.

These	 steps	 are	 straightforward.	 To	 declare	 and	 create	 a	 PrinterJob	 object
named	 myPrinterJob,	 use:	 PrinterJob	 myPrinterJob	 =
PrinterJob.getPrinterJob();	If	the	Printable	class	is	named	MyDocument,	the
PrinterJob	is	associated	with	this	class	using:	myPrinterJob.setPrintable(new
MyDocument);

Once	 associated,	 the	 printing	 is	 accomplished	 using	 the	 print	 method:
myPrinterJob.print();

This	 print	 method	 must	 be	 enclosed	 in	 a	 try/catch	 (catching	 a
PrinterException)	block.

The	 key	 to	 printing	 is	 the	 establishment	 of	 the	 Printable	 class,	 called

MyDocument	 here.	 This	 class	 describes	 the	 document	 to	 be	 printed	 and	 is
placed	 after	 the	 main	 class.	 The	 form	 of	 this	 class	 is:	 class	 MyDocument
implements	Printable

{

public	int	print(Graphics	g,	PageFormat	pf,	int	pageIndex)	{
Graphics2D	g2D	=	(Graphics2D)	g;

.

.

.

}

}

This	class	has	a	single	method,	print,	which	is	called	whenever	the	PrinterJob
object	needs	information	to	do	its	job.	In	this	method,	you	‘construct’	each	page
(using	 Java	 code)	 that	 is	 to	 be	 printed.	 You’ll	 see	 the	 code	 in	 this	method	 is
familiar.

Note	 the	print	method	has	 three	 arguments.	The	 first	 argument	 is	 a	Graphics
object	 g.	 Something	 familiar!	 The	 Printable	 interface	 provides	 us	 with	 a
graphics	 object	 to	 ‘draw’	 each	 page	 we	 want	 to	 print.	 We	 cast	 this	 to	 a
Graphics2D	object,	noting	this	is	the	same	graphics	object	we	used	in	Classes	7
and	 8	 to	 draw	 lines,	 curves,	 rectangles,	 ellipses,	 text	 and	 images.	And,	 all	 the
methods	we	learned	there	apply	here!	We’ll	look	at	how	to	do	this	in	detail	next.
The	second	argument	is	a	PageFormat	object	pf,	which	describes	the	size	and
orientation	of	the	paper	being	used	(we’ll	see	how	to	modify	this	later).	Finally,
the	pageIndex	 argument	 is	 the	 number	 of	 the	 page	 to	 print.	 This	 argument	 is
zero-based,	meaning	the	first	page	has	a	value	of	zero.

The	print	method	can	return	one	of	two	constant	values:

PAGE_EXISTS returned	if	pageIndex	refers	to	an	existing	page
NO_SUCH_PAGE returned	if	pageIndex	refers	to	a	non-existing

page

It	 is	 very	 important	 that	NO_SUCH_PAGE	 is	 returned	 at	 some	point	 or	 your
program	will	assume	there	are	an	infinite	number	of	pages	to	print!!

Another	 important	 thing	 to	 remember	 is	 that	 the	print	 method	may	 be	 called
more	 than	 once	 per	 printed	 page,	 as	 the	 output	 is	 buffered	 to	 the	 printer.	 So,
don’t	build	in	any	assumptions	about	how	often	print	is	called	for	a	given	page.

Summarizing	 the	printing	steps,	here	 is	basic	 Java	code	 (PrintingExample)	 to
print	a	document	described	by	a	class	MyDocument:	import	javax.swing.*;
import	java.awt.*;
import	java.awt.print.*;

public	class	PrintingExample

{

public	static	void	main(String[]	args)

{

PrinterJob	myPrinterJob	=	PrinterJob.getPrinterJob();
myPrinterJob.setPrintable(new	MyDocument());
try

{

myPrinterJob.print();

}

catch	(PrinterException	ex)

{

JOptionPane.showConfirmDialog(null,	ex.getMessage(),	"Print
Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	}

}

}

class	MyDocument	implements	Printable

{

public	int	print(Graphics	g,	PageFormat	pf,	int	pageIndex)	{
Graphics2D	g2D	=	(Graphics2D)	g;

.

.

.

}

}

Let’s	 see	how	 to	develop	code	 for	 the	Printable	 interface	print	method	 to	do
some	printing.

Printing	Pages	of	a	Document
The	 Printable	 interface	 provides	 (in	 its	 print	 method)	 a	 graphics	 object	 (g,
which	 we	 cast	 to	 a	Graphics2D	 object,	 g2D)	 for	 ‘drawing’	 our	 pages.	 And,
that’s	 just	what	we	 do	 using	 familiar	 graphics	methods.	 For	 each	 page	 in	 our
printed	document,	we	draw	 the	desired	 text	 information	 (drawString	method),
any	shapes	(draw	method),	or	graphics	(using	a	GraphicsPanel	object).

Once	a	page	is	completely	drawn	to	the	graphics	object,	we	‘tell’	the	PrinterJob
object	 to	 print	 it.	We	 repeat	 this	 process	 for	 each	 page	 we	 want	 to	 print.	 As
noted,	 the	pageIndex	 argument	 (in	 conjunction	with	 the	 return	 value)	 of	 the
print	method	helps	with	this	effort.	This	does	require	a	little	bit	of	work	on	your
part.	 You	must	 know	 how	many	 pages	 your	 document	 has	 and	what	 goes	 on
each	page.

Let’s	look	at	the	coordinates	and	dimensions	of	the	graphics	object	for	a	single
page.

This	becomes	our	palette	for	positioning	items	on	a	page.	Horizontal	position	is
governed	by	X	(increases	from	0	to	the	right)	and	vertical	position	is	governed
by	Y	(increases	from	0	to	the	bottom).	All	dimensions	are	type	double,	in	units
of	1/72	inch.	A	standard	sheet	of	8.5	inch	by	11-inch	paper	(with	zero	margins)
would	have	a	width	and	height	of	612	and	792,	respectively.

The	imageable	area	rectangle	is	described	by	the	PageFormat	argument	(pf)	of
the	 Printable	 class	 print	 method.	 The	 origin	 can	 be	 determined	 using:
pf.getImageableX();
pf.getImageableY();

These	 values	 define	 the	 right	 and	 top	 margins,	 respectively.	 The	 width	 and
height	 of	 the	 imageable	 area,	 respectively,	 are	 found	 using:
pf.getImageableWidth();
pf.getImageableHeight();

The	returned	values	are	double	types	in	units	of	1/72	inch.

The	process	for	each	page	is	to	decide	“what	goes	where”	and	then	position	the
desired	information	using	the	appropriate	graphics	method.	Any	of	the	graphics
methods	we	have	learned	can	be	used	to	put	information	on	the	graphic	object.
Here,	 we	 limit	 the	 discussion	 to	 printing	 text,	 lines,	 rectangles	 and	 Swing
components.

Printing	Text
To	 place	 text	 on	 the	 graphics	 object	 (g2D),	 use	 the	 drawString	 method
introduced	in	Class	8.	To	place	the	string	myString	at	position	(x,	y),	the	syntax
is:	g2D.drawString(myString,	x,	y);

The	 string	 is	 printed	 using	 the	 current	 font	 and	 paint	 attributes.	 With	 this
statement,	you	can	place	any	 text,	anywhere	you	 like,	with	any	font	and	paint.
You	just	need	to	make	the	desired	specifications.	Each	line	of	text	on	a	printed
page	will	 require	a	drawString	statement.	Note	x	and	y	 in	 this	method	are	 int
types,	not	double,	hence	type	casting	of	page	dimensions	is	usually	needed.

Also	 in	 Class	 8,	 we	 saw	 how	 to	 determine	 the	 width	 and	 height	 of	 strings
(knowing	 the	 font	 object	 myFont).	 This	 is	 helpful	 for	 both	 vertical	 and
horizontal	 placement	 of	 text	 on	 a	 page.	 This	 information	 is	 returned	 in	 a
Rectangle2D	 structure	 (stringRect),	 using:	 Rectangle2D	 stringRect	 =
myFont.getStringBounds(myString,	 g2D.getFontRenderContext());	 The
height	 and	width	 of	 the	 returned	 stringRect	 structure	 yield	 the	 string	 size	 (in
units	 of	 1/72	 inch).	 These	 two	 properties	 are	 useful	 for	 justifying	 (left,	 right,
center,	vertical)	text	strings.

Here	 is	 a	 class	 (MyDocument)	 that	 will	 print	 the	 text	 “Here	 is	 a	map!!”	 in
Bold,	Arial,	Size	36	font.	The	text	will	be	centered	horizontally	and	two	inches
below	the	top	margin.

class	MyDocument	implements	Printable

{

public	int	print(Graphics	g,	PageFormat	pf,	int	pageIndex)	{
if	(pageIndex	>	0)

{

return	NO_SUCH_PAGE;

}

Graphics2D	g2D	=	(Graphics2D)	g;
//	Center	text	string	near	top	of	page
String	myString	=	"Here	is	a	map!!";
Font	myFont	=	new	Font("Arial",	Font.BOLD,	36);
g2D.setFont(myFont);
Rectangle2D	stringRect	=	myFont.getStringBounds(myString,

g2D.getFontRenderContext());	g2D.drawString(myString,	(int)
(pf.getImageableX()	+	0.5	(pf.getImageableWidth()	-
stringRect.getWidth())),	(int)	(pf.getImageableY()	+	2	72));	return
PAGE_EXISTS;

}

}

Notice	how	the	returned	value	is	used	with	pageIndex	to	specify	there	is	a	single
page	to	print	(NO_SUCH_PAGE	is	returned	if	pageIndex	is	greater	than	zero).

The	resulting	page	will	be:

Printing	Lines	and	Rectangles
Many	times,	you	use	lines	in	a	document	to	delineate	various	sections.	To	draw	a
line	on	the	graphics	object,	use	the	draw	method	and	Line2D	shape	(from	Class
7):	 Line2D.Double	 myLine	 =	 new	 Line2D.Double(x1,	 y1,	 x2,	 y2);
g2D.draw(myLine);	This	 statement	will	draw	a	 line	 from	 (x1,	y1)	 to	 (x2,	y2)
using	the	current	stroke	and	paint	attributes.

To	draw	a	rectangle	(used	with	tables	or	graphics	regions),	use	the	Rectangle2D
shape	 (from	 Class	 7):	 Rectangle2D.Double	 myRectangle	 =	 new
Rectangle2D.Double(x,	y,	w,	h);	g2D.draw(myRectangle);

This	 statement	will	 draw	a	 rectangle	with	upper	 left	 corner	 at	 (x,	y),	width	w,
and	 height	h.	 The	 rectangle	will	 be	 drawn	 using	 the	 current	 stroke	 and	paint
attributes.

We’ve	 only	 looked	 at	 printing	 lines	 and	 rectangles.	 It’s	 just	 as	 easy	 to	 print
rounded	 rectangles,	 ellipses	 and	 pie	 segments.	 Simply	 define	 the	 appropriate
shape	object	and	use	the	draw	method.

Here	 is	 a	 modified	 version	 of	 the	MyDocument	 class	 we	 just	 saw	 with	 a
rectangle	 (2	 inches	by	6	 inches)	drawn	around	 the	 text	 string	and	a	 line	 in	 the
middle	of	 the	page	 (the	changes	are	 shaded):	class	MyDocument	 implements
Printable

{

public	int	print(Graphics	g,	PageFormat	pf,	int	pageIndex)	{
if	(pageIndex	>	0)

{

return	NO_SUCH_PAGE;

}

Graphics2D	g2D	=	(Graphics2D)	g;

g2D.setPaint(Color.BLACK);
//	Center	text	string	near	top	of	page
String	myString	=	"Here	is	a	map!!";
Font	myFont	=	new	Font("Arial",	Font.BOLD,	36);
g2D.setFont(myFont);
Rectangle2D	stringRect	=	myFont.getStringBounds(myString,

g2D.getFontRenderContext());	g2D.drawString(myString,	(int)
(pf.getImageableX()	+	0.5	(pf.getImageableWidth()	-
stringRect.getWidth())),	(int)	(pf.getImageableY()	+	2	72));

//	Draw	rectangle	around	text
Rectangle2D.Double	myRectangle=new

Rectangle2D.Double(pf.getImageableX(),	pf.getImageableY()	+	72,
pf.getImageableWidth(),	2	*	72);	g2D.draw(myRectangle);

//	Draw	line	at	middle	of	page
Line2D.Double	myLine	=	new	Line2D.Double(pf.getImageableX(),

5.5	*	72,	pf.getImageableX()	+	pf.getImageableWidth(),	5.5	*	72);
g2D.draw(myLine);

return	PAGE_EXISTS;

}

}

The	resulting	printed	page	is:

The	 code	 that	 does	 this	 printing	 is	 saved	 as	 the	PrintingDemo	 project	 in	 the
\LearnJava\LJ	Code\Class	9\	project	group).

Printing	Swing	Components
One	of	the	trickier	tasks	in	Java	is	printing	graphics.	The	approach	we	take	is	to
assume	 the	 graphics	 to	 be	 printed	 are	 hosted	 in	 a	 Swing	 component	 in	 your
project.	To	print	such	a	component,	we	will	“borrow”	code	from	open	sources.

We	will	use	a	modified	version	of	a	class	named	PrintUtilities	(included	in	the
\LearnJava\LJ	 Code\Class	 9\	 folder).	 The	 complete	 code	 is	 (also	 placed	 in
Appendix	I):	import	java.awt.*;
import	javax.swing.*;
import	java.awt.print.*;

public	class	PrintUtilities	implements	Printable	{
private	Component	componentToBePrinted;

public	static	void	printComponent(Component	c)	{
new	PrintUtilities(c).print();

}

public	PrintUtilities(Component	componentToBePrinted)	{
this.componentToBePrinted	=	componentToBePrinted;

}

public	void	print()	{
PrinterJob	printJob	=	PrinterJob.getPrinterJob();
printJob.setPrintable(this);
try	{

printJob.print();
}	catch(PrinterException	pe)	{

System.out.println("Error	printing:	"	+	pe);

}

}

public	int	print(Graphics	g,	PageFormat	pageFormat,	int	pageIndex)
{

if	(pageIndex	>	0)	{
return(NO_SUCH_PAGE);

}	else	{
Graphics2D	g2d	=	(Graphics2D)g;
g2d.translate(pageFormat.getImageableX(),

pageFormat.getImageableY());
disableDoubleBuffering(componentToBePrinted);

componentToBePrinted.paint(g2d);
enableDoubleBuffering(componentToBePrinted);
return(PAGE_EXISTS);

}

}

/	**	The	speed	and	quality	of	printing	suffers	dramatically	if	*	any	of
the	containers	have	double	buffering	turned	on.
*	So	this	turns	if	off	globally.
*	@see	enableDoubleBuffering

*/

public	static	void	disableDoubleBuffering(Component	c)	{
RepaintManager	currentManager	=

RepaintManager.currentManager(c);
currentManager.setDoubleBufferingEnabled(false);

}

/	**	Re-enables	double	buffering	globally.	*/

public	static	void	enableDoubleBuffering(Component	c)	{
RepaintManager	currentManager	=

RepaintManager.currentManager(c);
currentManager.setDoubleBufferingEnabled(true);

}

}

We	won’t	go	into	detail	about	what	goes	on	in	this	class.	It	basically	redraws	any
control	 on	 the	 printer	 graphics	 object	 (and	 it	 also	 toggles	 something	 called
double-buffering	to	insure	good	quality	printing).

Use	of	the	PrintUtilities	class	is	simple.	If	the	Swing	component	(control)	you
want	to	print	is	named	myComponent,	it	is	printed	with	the	single	line	of	code:
PrintUtilities.printComponent(myComponent);

The	 component	 will	 be	 printed	 on	 its	 own	 page	 in	 the	 size	 defined	 in	 your
project	(scaling	and	integrating	a	component	within	a	page	is	a	difficult	task	we
won’t	 discuss).	Many	 times	 the	 component	 to	 be	 printed	 is	 a	GraphicsPanel
object	(recall	this	was	defined	in	Class	7	to	allow	persistent	graphics).	We	will
see	how	this	is	done	in	Example	9-4.

The	best	way	to	learn	how	to	print	in	Java	is	to	do	lots	of	it.	You’ll	develop	your
own	approaches	and	techniques	as	you	gain	familiarity.	You	might	want	to	see
how	 some	 of	 the	 other	 graphics	methods	 (ellipses,	 pie	 segments)	 might	 work
with	printing.	Or,	look	at	different	paint	and	stroke	attributes.

Recall	 when	 doing	 persistent	 graphics	 back	 in	 Class	 7	 and	 8	 using	 the
paintComponent	 method,	 any	 variable	 needed	 by	 that	 method	 needed	 to	 be
prefaced	by	the	keyword	static.	That	is	also	needed	here.	Any	class	level	object
referred	to	in	the	print	method	must	also	be	declared	with	a	static	preface.

Many	print	 jobs	 just	 involve	 the	user	clicking	a	button	marked	‘Print’	and	 the
results	appear	on	the	printed	page	with	no	further	interaction.	If	more	interaction
is	desired,	there	are	two	methods	associated	with	the	PrinterJob	object	that	help
specify	 desired	 printing	 job	 properties:	 pageDialog	 and	 printDialog.	 Using
these	 methods	 adds	 more	 code	 to	 your	 application.	 You	 must	 take	 any	 user
inputs	 and	 implement	 these	 values	 in	 your	 program.	 We’ll	 show	 what	 each
method	can	do	and	let	you	decide	if	you	want	to	use	them	in	your	work

pageDialog	Method
The	pageDialog	method	 allows	 the	 user	 to	 set	 various	 parameters	 regarding	 a
printing	 task.	 Users	 can	 set	 border	 and	 margin	 adjustments,	 paper	 size,	 and
portrait	 vs.	 landscape	 orientation.	 The	 Windows	 version	 of	 the	 page	 dialog

appears	as:	

The	 method	 returns	 page	 format	 information	 to	 be	 used	 by	 the	 PrinterJob
object.	Here	 is	 a	 code	 snippet	 that	 uses	 the	pageDialog	method	 to	 establish	 a
new	 page	 format	 (it	 uses	 a	 different	 version	 of	 the	 setPrintable	 method):
PrinterJob	 myPrinterJob	 =	 PrinterJob.getPrinterJob();	 PageFormat
myFormat	=	myPrinterJob.defaultPage();
myFormat	=	myPrinterJob.pageDialog(myFormat);
myPrinterJob.setPrintable(new	MyDocument(),	myFormat);	In	this	code,
the	defaultPage	method	returns	a	reference	to	the	default	settings.	This
default	settings	are	passed	to	the	page	dialog	where	they	is	replaced	with	any
new	settings.

printDialog	Method
The	 printDialog	 method	 displays	 a	 dialog	 box	 that	 allows	 the	 user	 to	 select
which	printer	to	use,	choose	page	orientation,	printed	page	range	and	number	of
copies.	 This	 is	 the	 same	 dialog	 box	 that	 appears	 in	 many	 applications.	 The
Windows	 version	 of	 the	 print	 dialog	 is:	

The	printDialog	method	returns	true	if	the	user	clicked	the	OK	button	to	leave
the	dialog	and	false	otherwise.	After	the	method	returns	a	value,	you	don’t	have
to	 do	 anything	 to	 retrieve	 the	 parameters	 the	 user	 selected.	 The	 PrinterJob
object	is	automatically	updated	with	the	selections!

A	 modified	 code	 snippet	 to	 incorporate	 the	 printDialog	 method	 is:	 if
(myPrinterJob.printDialog())

{

try

{

myPrinterJob.print();

}

catch	(PrinterException	ex)

{

JOptionPane.showConfirmDialog(null,	ex.getMessage(),	"Print
Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	}

}

In	this	modified	code,	the	job	is	not	printed	unless	the	user	clicks	OK	in	the	print
dialog.

Example	9-4
Printing

Start	 a	 new	 empty	 project	 in	NetBeans.	 Name	 the	 project	Countries.	 Delete
default	 code	 in	 Java	 file	 named	Countries.	Add	 the	PrintUtilities.java	 file	 to
your	 project	 source	 folder	 (located	 in	 \LearnJava\LJ	Code\Class	 9\	 folder)	 –
add	 the	 package	 countries;	 line	 at	 the	 top	 of	 the	 file.	 In	 this	 project,	 we’ll
demonstrate	many	of	the	skills	just	presented	by	printing	out	a	list	of	countries
and	capitals,	along	with	a	map	of	the	world.	The	finished	project	will	look	like

this:	

The	 graphic	 file	 used	 is	 world.gif	 and	 is	 located	 in	 the	 \Learn	 Java\LJ
Code\Class	 9\Example9-4\	 folder.	 Copy	 this	 graphic	 file	 into	 your	 project’s
folder.

1.	Add	a	panel	control	(will	display	the	graphic)	and	a	button	to	the	frame.	The

GridBagLayout	is:	

Also	include	an	image	object	(myWorld).	Set	these	properties:

Countries	Frame:
resizable false
title Countries

mapPanel(a	GraphicsPanel	class)::
preferredSize (250,	500)
gridx 0
gridy 0
insets (10,	10,	10,	10)

printButton:
text Print
gridx 0
gridy 1
insets (10,	10,	10,	10)

myWorld:
image world.gif

2.	Build	the	basic	framework:	/	*

*	Countries.java

*/

package	countries;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.awt.geom.*;

public	class	Countries	extends	JFrame

{

public	static	void	main(String	args[])

{

//	create	frame
new	Countries().show();

}

public	Countries()

{

//	frame	constructor
setTitle("Countries");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-getWidth())),	(int)	(0.5

(screenSize.height	-getHeight())),	getWidth(),	getHeight());	}
private	void	exitForm(WindowEvent	evt)

{

{

System.exit(0);

}

}

Run	to	test.

3.	 Now,	 we	 add	 controls	 and	 methods.	 Add	 these	 class	 level	 declarations:
GraphicsPanel	mapPanel	=	new	GraphicsPanel();

JButton	printButton	=	new	JButton();
static	Image	myWorld	=	new	ImageIcon("world.gif").getImage();	We	are
printing	the	image,	hence	the	static	preface.

Position	and	add	controls	and	methods:

GridBagConstraints	gridConstraints	=	new	GridBagConstraints();
mapPanel.setPreferredSize(new	Dimension(500,	250));
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(mapPanel,	gridConstraints);

gridConstraints	=	new	GridBagConstraints();
printButton.setText("Print");
gridConstraints.gridx	=	0
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(printButton,	gridConstraints);
printButton.addActionListener(new	ActionListener()

{

public	void	actionPerformed(ActionEvent	e)

{

printButtonActionPerformed(e);

}

});

And,	add	an	empty	event	method:

private	void	printButtonActionPerformed(ActionEvent	e)	{

}

4.	Add	the	GraphicsPanel	class	(from	Appendix	I)	after	 the	main	class:	class
GraphicsPanel	extends	JPanel

{

public	GraphicsPanel()

{

}

public	void	paintComponent(Graphics	g)

{

}

}

At	 this	 point,	 compile	 and	 check	 for	 control	 layout	 (there	 will	 be	 no	 map
displayed).

5.	Use	 these	class	 level	variable	declarations	(all	static	 since	used	 in	printing):
static	final	int	numCountries	=	62;

static	final	int	countriesPerPage	=	25;

static	String[]	country	=	new	String[numCountries];
static	String[]	capital	=	new	String[numCountries];
static	int	lastPage	=	(int)	((numCountries	-	1)	/	countriesPerPage);	6.	Use
the	following	code	at	the	end	of	the	constructor	(loads	country/capital
arrays):	country[0]	=	"Afghanistan"	;	capital[0]	=	"Kabul";
country[1]	=	"Albania"	;	capital[1]	=	"Tirane";
country[2]	=	"Australia"	;	capital[2]	=	"Canberra";
country[3]	=	"Austria"	;	capital[3]	=	"Vienna";
country[4]	=	"Bangladesh"	;	capital[4]	=	"Dacca";
country[5]	=	"Barbados"	;	capital[5]	=	"Bridgetown";
country[6]	=	"Belgium"	;	capital[6]	=	"Brussels";
country[7]	=	"Bulgaria"	;	capital[7]	=	"Sofia";
country[8]	=	"Burma"	;	capital[8]	=	"Rangoon";
country[9]	=	"Cambodia"	;	capital[9]	=	"Phnom	Penh";
country[10]	=	"China"	;	capital[10]	=	"Peking";
country[11]	=	"Czechoslovakia"	;	capital[11]	=	"Prague";	country[12]	=
"Denmark"	;	capital[12]	=	"Copenhagen";	country[13]	=	"Egypt"	;
capital[13]	=	"Cairo";
country[14]	=	"Finland"	;	capital[14]	=	"Helsinki";
country[15]	=	"France"	;	capital[15]	=	"Paris";
country[16]	=	"Germany"	;	capital[16]	=	"	Berlin";
country[17]	=	"Greece"	;	capital[17]	=	"Athens";
country[18]	=	"Hungary"	;	capital[18]	=	"Budapest";
country[19]	=	"Iceland"	;	capital[19]	=	"Reykjavik";
country[20]	=	"India"	;	capital[20]	=	"New	Delhi";
country[21]	=	"Indonesia"	;	capital[21]	=	"Jakarta";
country[22]	=	"Iran"	;	capital[22]	=	"Tehran";
country[23]	=	"Iraq"	;	capital[23]	=	"Baghdad";
country[24]	=	"Ireland"	;	capital[24]	=	"Dublin";
country[25]	=	"Israel"	;	capital[25]	=	"Jerusalem";
country[26]	=	"Italy"	;	capital[26]	=	"Rome";
country[27]	=	"Japan"	;	capital[27]	=	"Tokyo";
country[28]	=	"Jordan"	;	capital[28]	=	"Amman";

country[29]	=	"Kuwait"	;	capital[29]	=	"Kuwait";
country[30]	=	"Laos"	;	capital[30]	=	"Vientiane";
country[31]	=	"Lebanon"	;	capital[31]	=	"Beirut";
country[32]	=	"Luxembourg"	;	capital[32]	=	"Luxembourg";	country[33]
=	"Malaysia"	;	capital[33]	=	"Kuala	Lumpur";	country[34]	=
"Mongolia"	;	capital[34]	=	"Ulaanbaatar";	country[35]	=	"Nepal"	;
capital[35]	=	"Katmandu";
country[36]	=	"Netherlands"	;	capital[36]	=	"Amsterdam";	country[37]	=
"New	Zealand"	;	capital[37]	=	"Wellington";	country[38]	=	"North
Korea"	;	capital[38]	=	"Pyongyang";	country[39]	=	"Norway"	;
capital[39]	=	"Oslo";
country[40]	=	"Oman"	;	capital[40]	=	"Muscat";
country[41]	=	"Pakistan"	;	capital[41]	=	"Islamabad";	country[42]	=
"Philippines"	;	capital[42]	=	"Manila";	country[43]	=	"Poland"	;
capital[43]	=	"Warsaw";
country[44]	=	"Portugal"	;	capital[44]	=	"Lisbon";
country[45]	=	"Romania"	;	capital[45]	=	"Bucharest";
country[46]	=	"Russia"	;	capital[46]	=	"Moscow";
country[47]	=	"Saudi	Arabia"	;	capital[47]	=	"Riyadh";	country[48]	=
"Singapore"	;	capital[48]	=	"Singapore";	country[49]	=	"South	Korea"	;
capital[49]	=	"Seoul";
country[50]	=	"Spain"	;	capital[50]	=	"Madrid";
country[51]	=	"Sri	Lanka"	;	capital[51]	=	"Colombo";
country[52]	=	"Sweden"	;	capital[52]	=	"Stockholm";
country[53]	=	"Switzerland"	;	capital[53]	=	"Bern";
country[54]	=	"Syria"	;	capital[54]	=	"Damascus";
country[55]	=	"Taiwan"	;	capital[55]	=	"Taipei";
country[56]	=	"Thailand"	;	capital[56]	=	"Bangkok";
country[57]	=	"Turkey"	;	capital[57]	=	"Ankara";
country[58]	=	"United	Kingdom"	;	capital[58]	=	"London";	country[59]
=	"Vietnam"	;	capital[59]	=	"Hanoi";
country[60]	=	"Yemen"	;	capital[60]	=	"Sana";
country[61]	=	"Yugoslavia"	;	capital[61]	=	"Belgrade";	7.	Add	this	code	to
the	paintComponent	method	of	the	GraphicsPanel	object.	This	code	‘paints’

the	map	in	the	panel:	public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
//	draw	map
g2D.drawImage(Countries.myWorld,	0,	0,	500,	250,	this);
g2D.dispose();

}

8.	Use	this	code	in	the	printButtonActionPerformed	method	(sets	up	document
for	printing,	printing	countries	and	capitals	first,	then	the	map):	private	void
printButtonActionPerformed(ActionEvent	e)	{

//	print	countries	and	capitals	first	-	defined	in	MyDocument
PrinterJob	myPrinterJob	=	PrinterJob.getPrinterJob();
myPrinterJob.setPrintable(new	MyDocument());

if	(myPrinterJob.printDialog())

{

try

{

myPrinterJob.print();

}

catch	(PrinterException	ex)

{

JOptionPane.showConfirmDialog(null,	ex.getMessage(),	"Print
Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	}

}

//	print	world	map
PrintUtilities.printComponent(mapPanel);

}

9.	Lastly,	 use	 this	Printable	 interface	 to	define	MyDocument.	On	pages	with
countries	and	capitals,	this	code	prints	the	headings	and	then	the	listings.

class	MyDocument	implements	Printable

{

public	int	print(Graphics	g,	PageFormat	pf,	int	pageIndex)	{
Font	printFont;
Rectangle2D	stringRect;
String	myString;
int	y;
int	iEnd;
Graphics2D	g2D	=	(Graphics2D)	g;
//	here	you	decide	what	goes	on	each	page	and	draw	it	there	//

print	countries/capitals	and	map	on	different	pages	if	(pageIndex	>
Countries.lastPage)

{

return	NO_SUCH_PAGE;

}

//	put	titles	and	countries/capitals
printFont	=	new	Font("Arial",	Font.BOLD,	20);
g2D.setFont(printFont);
myString	=	"Countries	and	Capitals	-	Page	"	+

String.valueOf(pageIndex	+	1);	stringRect	=
printFont.getStringBounds(myString,	g2D.getFontRenderContext());
g2D.drawString(myString,	(int)	(pf.getImageableX()	+	0.5	*
(pf.getImageableWidth()	-	stringRect.getWidth())),	(int)

(pf.getImageableY()	+	stringRect.getHeight()));	//	starting	y	position
printFont	=	new	Font("Arial",	Font.ITALIC,	14);
g2D.setFont(printFont);
myString	=	"Country";
stringRect	=	printFont.getStringBounds(myString,

g2D.getFontRenderContext());	y	=	(int)	(pf.getImageableX()	+	4	*
stringRect.getHeight());	g2D.drawString(myString,	(int)
pf.getImageableX(),	y);	myString	=	"Capital";

g2D.drawString(myString,	(int)	(pf.getImageableX()	+	0.5	*
pf.getImageableWidth()),	y);	y	+=	(int)	(2	*	stringRect.getHeight());

printFont	=	new	Font("Arial",	Font.PLAIN,	14);
stringRect	=	printFont.getStringBounds("Test	String",

g2D.getFontRenderContext());	g2D.setFont(printFont);
iEnd	=	Countries.countriesPerPage	*	(pageIndex	+	1);
if	(iEnd	>	Countries.numCountries)

{

iEnd	=	Countries.numCountries;

}

for	(int	i	=	0	+	Countries.countriesPerPage	*	pageIndex;	i	<	iEnd;
i++)	{

g2D.drawString(Countries.country[i],	(int)
(pf.getImageableX()),	y);	g2D.drawString(Countries.capital[i],	(int)
(pf.getImageableX()	+	0.5	*	pf.getImageableWidth()),	y);	y	+=	(int)
(stringRect.getHeight());

}

return	PAGE_EXISTS;

}

}

The	complete	Countries.java	code	listing	(changes	to	framework	are	shaded):	/
*
*	Countries.java

*/

package	countries;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.awt.geom.*;
import	java.awt.print.*;

public	class	Countries	extends	JFrame

{

GraphicsPanel	mapPanel	=	new	GraphicsPanel();
JButton	printButton	=	new	JButton();
static	Image	myWorld	=	new	ImageIcon("world.gif").getImage();	static

final	int	numCountries	=	62;
static	final	int	countriesPerPage	=	25;
static	String[]	country	=	new	String[numCountries];
static	String[]	capital	=	new	String[numCountries];
static	int	lastPage	=	(int)	((numCountries	-	1)	/	countriesPerPage);

public	static	void	main(String	args[])

{

//	create	frame
new	Countries().show();

}

public	Countries()

{

//	frame	constructor
setTitle("Countries");
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

});

getContentPane().setLayout(new	GridBagLayout());
//	position	controls
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();

mapPanel.setPreferredSize(new	Dimension(500,	250));
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(mapPanel,	gridConstraints);

gridConstraints	=	new	GridBagConstraints();
printButton.setText("Print");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(printButton,	gridConstraints);
printButton.addActionListener(new	ActionListener()

{

{

public	void	actionPerformed(ActionEvent	e)

{

printButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-	getWidth())),	(int)	(0.5

(screenSize.height	-	getHeight())),	getWidth(),	getHeight());

//	Load	country/capital	arrays
country[0]	=	"Afghanistan"	;	capital[0]	=	"Kabul";
country[1]	=	"Albania"	;	capital[1]	=	"Tirane";
country[2]	=	"Australia"	;	capital[2]	=	"Canberra";
country[3]	=	"Austria"	;	capital[3]	=	"Vienna";
country[4]	=	"Bangladesh"	;	capital[4]	=	"Dacca";
country[5]	=	"Barbados"	;	capital[5]	=	"Bridgetown";
country[6]	=	"Belgium"	;	capital[6]	=	"Brussels";
country[7]	=	"Bulgaria"	;	capital[7]	=	"Sofia";
country[8]	=	"Burma"	;	capital[8]	=	"Rangoon";
country[9]	=	"Cambodia"	;	capital[9]	=	"Phnom	Penh";
country[10]	=	"China"	;	capital[10]	=	"Peking";
country[11]	=	"Czechoslovakia"	;	capital[11]	=	"Prague";	country[12]
=	"Denmark"	;	capital[12]	=	"Copenhagen";	country[13]	=	"Egypt"	;
capital[13]	=	"Cairo";
country[14]	=	"Finland"	;	capital[14]	=	"Helsinki";
country[15]	=	"France"	;	capital[15]	=	"Paris";
country[16]	=	"Germany"	;	capital[16]	=	"	Berlin";

country[17]	=	"Greece"	;	capital[17]	=	"Athens";
country[18]	=	"Hungary"	;	capital[18]	=	"Budapest";
country[19]	=	"Iceland"	;	capital[19]	=	"Reykjavik";
country[20]	=	"India"	;	capital[20]	=	"New	Delhi";
country[21]	=	"Indonesia"	;	capital[21]	=	"Jakarta";
country[22]	=	"Iran"	;	capital[22]	=	"Tehran";
country[23]	=	"Iraq"	;	capital[23]	=	"Baghdad";
country[24]	=	"Ireland"	;	capital[24]	=	"Dublin";
country[25]	=	"Israel"	;	capital[25]	=	"Jerusalem";
country[26]	=	"Italy"	;	capital[26]	=	"Rome";
country[27]	=	"Japan"	;	capital[27]	=	"Tokyo";
country[28]	=	"Jordan"	;	capital[28]	=	"Amman";
country[29]	=	"Kuwait"	;	capital[29]	=	"Kuwait";
country[30]	=	"Laos"	;	capital[30]	=	"Vientiane";
country[31]	=	"Lebanon"	;	capital[31]	=	"Beirut";
country[32]	=	"Luxembourg"	;	capital[32]	=	"Luxembourg";
country[33]	=	"Malaysia"	;	capital[33]	=	"Kuala	Lumpur";
country[34]	=	"Mongolia"	;	capital[34]	=	"Ulaanbaatar";	country[35]
=	"Nepal"	;	capital[35]	=	"Katmandu";
country[36]	=	"Netherlands"	;	capital[36]	=	"Amsterdam";
country[37]	=	"New	Zealand"	;	capital[37]	=	"Wellington";
country[38]	=	"North	Korea"	;	capital[38]	=	"Pyongyang";
country[39]	=	"Norway"	;	capital[39]	=	"Oslo";
country[40]	=	"Oman"	;	capital[40]	=	"Muscat";
country[41]	=	"Pakistan"	;	capital[41]	=	"Islamabad";	country[42]	=
"Philippines"	;	capital[42]	=	"Manila";	country[43]	=	"Poland"	;
capital[43]	=	"Warsaw";
country[44]	=	"Portugal"	;	capital[44]	=	"Lisbon";
country[45]	=	"Romania"	;	capital[45]	=	"Bucharest";
country[46]	=	"Russia"	;	capital[46]	=	"Moscow";
country[47]	=	"Saudi	Arabia"	;	capital[47]	=	"Riyadh";	country[48]	=
"Singapore"	;	capital[48]	=	"Singapore";	country[49]	=	"South
Korea"	;	capital[49]	=	"Seoul";
country[50]	=	"Spain"	;	capital[50]	=	"Madrid";

country[51]	=	"Sri	Lanka"	;	capital[51]	=	"Colombo";
country[52]	=	"Sweden"	;	capital[52]	=	"Stockholm";
country[53]	=	"Switzerland"	;	capital[53]	=	"Bern";
country[54]	=	"Syria"	;	capital[54]	=	"Damascus";
country[55]	=	"Taiwan"	;	capital[55]	=	"Taipei";
country[56]	=	"Thailand"	;	capital[56]	=	"Bangkok";
country[57]	=	"Turkey"	;	capital[57]	=	"Ankara";
country[58]	=	"United	Kingdom"	;	capital[58]	=	"London";
country[59]	=	"Vietnam"	;	capital[59]	=	"Hanoi";
country[60]	=	"Yemen"	;	capital[60]	=	"Sana";
country[61]	=	"Yugoslavia"	;	capital[61]	=	"Belgrade";

}

private	void	printButtonActionPerformed(ActionEvent	e)	{
//	print	countries	and	capitals	first	-	defined	in	MyDocument
PrinterJob	myPrinterJob	=	PrinterJob.getPrinterJob();
myPrinterJob.setPrintable(new	MyDocument());
if	(myPrinterJob.printDialog())

{

try

{

myPrinterJob.print();

}

catch	(PrinterException	ex)

{

JOptionPane.showConfirmDialog(null,	ex.getMessage(),
"Print	Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.ERROR_MESSAGE);	}

}

//	print	world	map
PrintUtilities.printComponent(mapPanel);

}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

class	GraphicsPanel	extends	JPanel

{

public	GraphicsPanel()

{

}

public	void	paintComponent(Graphics	g)

{

Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);
//	draw	map
g2D.drawImage(Countries.myWorld,	0,	0,	500,	250,	this);
g2D.dispose();

}

}

class	MyDocument	implements	Printable

{

public	int	print(Graphics	g,	PageFormat	pf,	int	pageIndex)	{
Font	printFont;
Rectangle2D	stringRect;
String	myString;
int	y;
int	iEnd;
Graphics2D	g2D	=	(Graphics2D)	g;

//	here	you	decide	what	goes	on	each	page	and	draw	it	there	//	print
countries/capitals	and	map	on	different	pages	if	(pageIndex	>
Countries.lastPage)

{

return	NO_SUCH_PAGE;

}

//	put	titles	and	countries/capitals
printFont	=	new	Font("Arial",	Font.BOLD,	20);
g2D.setFont(printFont);
myString	=	"Countries	and	Capitals	-	Page	"	+

String.valueOf(pageIndex	+	1);	stringRect	=
printFont.getStringBounds(myString,	g2D.getFontRenderContext());
g2D.drawString(myString,	(int)	(pf.getImageableX()	+	0.5	*
(pf.getImageableWidth()	-	stringRect.getWidth())),	(int)
(pf.getImageableY()	+	stringRect.getHeight()));	//	starting	y	position

printFont	=	new	Font("Arial",	Font.ITALIC,	14);
g2D.setFont(printFont);
myString	=	"Country";

stringRect	=	printFont.getStringBounds(myString,
g2D.getFontRenderContext());	y	=	(int)	(pf.getImageableX()	+	4	*
stringRect.getHeight());	g2D.drawString(myString,	(int)
pf.getImageableX(),	y);	myString	=	"Capital";

g2D.drawString(myString,	(int)	(pf.getImageableX()	+	0.5	*
pf.getImageableWidth()),	y);	y	+=	(int)	(2	*	stringRect.getHeight());

printFont	=	new	Font("Arial",	Font.PLAIN,	14);
stringRect	=	printFont.getStringBounds("Test	String",

g2D.getFontRenderContext());	g2D.setFont(printFont);
iEnd	=	Countries.countriesPerPage	*	(pageIndex	+	1);
if	(iEnd	>	Countries.numCountries)

{

iEnd	=	Countries.numCountries;

}

for	(int	i	=	0	+	Countries.countriesPerPage	*	pageIndex;	i	<	iEnd;
i++)	{

g2D.drawString(Countries.country[i],	(int)	(pf.getImageableX()),
y);	g2D.drawString(Countries.capital[i],	(int)	(pf.getImageableX()	+	0.5	*
pf.getImageableWidth()),	y);	y	+=	(int)	(stringRect.getHeight());

}

return	PAGE_EXISTS;

}

}

Run	and	compile	the	finished	project.	You	will	see:

Click	Print	 to	 get	 the	 hard-copy	 output	 (notice	 the	 dialog	 box	 controlling	 the
printing).	You	should	get	three	pages	of	country/capital	listings	and	a	final	page

with	the	world	map:	

Save	 the	 project	 (saved	 as	Example9-4	 in	 the	 \LearnJava\LJ	Code\Class	 9\
project	group).

Creating	a	Help	System
All	 Java	 applications	 written	 for	 other	 than	 your	 personal	 use	 should	 include
some	form	of	an	on-line	help	system.	It	doesn’t	have	to	be	elegant,	but	it	should
be	there.	Adding	a	help	file	 to	your	Java	application	will	give	it	real	polish,	as
well	as	making	it	easier	to	use.	In	this	section,	we	will	show	you	how	to	build	a
very	 basic	 on-line	 help	 system	 for	 your	 applications.	 This	 system	will	 simply
have	a	list	of	help	topics	the	user	can	choose	from.

A	help	system	is	created	using	Sun’s	JavaHelp	product,	another	free	download.
So,	a	first	step	is	to	download	JavaHelp	and	place	it	on	your	computer.	To	do
this,	go	to:	https://javahelp.java.net/

Search	for	a	link	that	allows	downloading	the	current	JavaHelp.	Click	the	link

and	you	should	see:	

Click	Save	 and	 choose	 a	 location	 to	 save	 the	 downloaded	 file.	 The	 download
progress	window	will	appear.	The	file	is	fairly	small	(8	MB)	so	it	shouldn’t	take
very	long	to	download.

Once	the	file	(a	zip	file)	 is	downloaded,	unzip	the	file	using	your	unzip	utility.
Extract	the	files	to	a	directory	of	your	choice	(I	use	c:\JavaHelp\).	Next,	make
JavaHelp	available	to	your	IDE.	The	steps	using	NetBeans	are:

➢	Select	Tools	menu	item,	then	Libraries.

https://javahelp.java.net/

➢	Click	New	Library	and	name	it	JavaHelp.
➢	Click	the	Add	JAR/Folder	button.
➢	Navigate	to	the	location	of	the	desired	jar	file	(jh.jar).	On	my	computer,	it
is	located	at	c:\JavaHelp\jh2.0\javahelp\lib\.	Select	the	jar	file	and	click
Add	JAR/Folder	and	you	will	see:

The	JavaHelp	library	can	now	be	added	to	any	project	that	needs	it.	Click	OK.
That’s	all	we	need	to	do	for	now,	except	to	remember	to	import	the	javax.help.*
package	in	any	application	using	JavaHelp.

Building	a	help	system	using	JavaHelp	 requires	a	bunch	of	different	files.	We
need	to	create	topic	files	 for	each	topic	 in	our	help	system.	Each	of	 these	files
(.htm	 extension)	 is	 written	 in	 HTML.	 HTML	 stands	 for	 hypertext	markup
language	 and	 is	 the	 ‘programming’	 language	 of	 choice	 for	 generating	 web
pages.	This	 language	will	 be	used	 to	generate	 and	 show	 the	 topics	 in	 the	help
system.	Fortunately,	we	won’t	need	to	learn	much	(if	any)	HTML.

A	map	file	(.jhm	extension)	relates	topics	to	identifying	target	id’s.	A	table	of
contents	 file	 (.xml	 extension)	organizes	 the	 topics	 and	 id’s.	Lastly,	 a	help	 set

file	 (.hs	extension)	provides	 the	 information	needed	by	JavaHelp	 to	create	 the
help	 system.	 Each	 of	 these	 files	 is	 written	 using	 XML	 (extended	 markup
language),	 a	 platform	 independent	 language	 used	 to	 transfer	 data.	 You	 won’t
need	to	know	any	XML	–	we’ll	just	give	you	files	you	can	modify	for	your	use.

In	a	 Java	application,	 it	 is	normal	practice	 to	put	 all	 the	help	 system	 files	 in	a
subdirectory	of	the	directory	containing	the	java	project	files.	I	usually	name	that
subdirectory	HelpFiles.

We	will	build	a	very	basic	help	system	and	one	that	is	familiar	to	a	user.	There
will	be	three	headings,	each	representing	some	topic,	each	with	three	subtopics.
When	one	of	the	topics	or	subtopics	is	clicked,	a	corresponding	help	file	will	be
displayed.	 The	 system	 will	 look	 like	 this:	

The	 left	 frame	 is	 a	 hierarchical	 structure	 of	 clickable	 topics.	 The	 right	 frame
displays	 the	 currently	 selected	 topic	 information.	The	 file	 also	 features	 several
navigation	features	and	print	options.	The	key	point	here	is	that	this	help	system
is	familiar	to	your	user.	No	new	instruction	is	needed	in	how	to	use	online	help.

Creating	Topic	Files
We	begin	our	help	 system	by	creating	our	 topic	 files.	These	 are	 the	 files	your
user	can	view	for	help	on	topics	listed	in	the	contents	region	of	the	help	system.
We	will	have	eight	such	files	in	our	example	(one	for	each	of	the	two	headings
and	 one	 for	 each	 of	 the	 two	 sets	 of	 three	 topics).	 The	 headings	 and
corresponding	htm	files	are:

First	Heading Heading1.htm
Topic	One Topic11.htm
Topic	Two Topic12.htm
Topic	Three Topic13.htm

Second	Heading Heading2.htm
Topic	One Topic21.htm
Topic	Two Topic22.htm
Topic	Three Topic23.htm

Each	 file	 is	 individually	 created	 and	 saved	 as	 an	htm	 file.	One	way	 to	 create
each	file	is	to	use	your	system’s	text	editor	and	write	the	topic	information	using
HTML.	 Let’s	 learn	 a	 little	HTML,	which	 is	 based	 on	 tags.	Most	HTML	 tags
work	 in	 pairs.	The	 first	 tag	 says	 start	 something,	 then	 the	 second	 tag	with	 the
slash	preface	</>	says	stop	something.	The	tags	<BODY>	and	</BODY>	mark
the	 beginning	 and	 end	 of	 the	 text	 displayed	 when	 a	 user	 selects	 a	 particular
heading	topic.	It’s	really	pretty	easy	to	understand	HTML.

It	would	help	 to	know	 just	 a	 little	more	HTML	 to	make	your	 text	have	a	nice
appearance.	 To	 change	 the	 font,	 use	 the	 FONT	 tag:	 	where	FontName	 is	 the	name	of	 the
desired	font	and	FontSize	the	desired	size.	Notice	this	is	very	similar	to	the	Font
constructor	in	Java.	When	you	are	done	with	one	font	and	want	to	specify	a	new
one,	you	must	use	a		tag	before	specifying	the	new	font.	To	bold	text,
use	 the	 	 and	 	 tags.	 To	 delineate	 a	 paragraph	 in
HTML,	use	the	<P>	and	</P>	tags.	To	cause	a	line	break,	use	
.	There	is
no	corresponding	</BR>	tag.

So,	 using	 our	minimal	HTML	 knowledge	 (if	 you	 know	more,	 use	 it),	we	 can
create	 our	 first	 topic	 file.	 The	 HTML	 I	 used	 to	 create	 the	 first	 topic	 file
(Heading1)	is:	<HTML>
<BODY>

This	is	Heading	1

<P>
This	is	where	I	explain	what	the	subtopics	available	under	this	heading
are.
</P>
</BODY>
</HTML>

This	HTML	will	create	this	finished	topic:

When	done	typing	this	first	 topic,	save	the	file	 in	your	text	editor.	Select	a	file
name	 (I	 used	Heading1.htm)	 to	use	 and	 save	 the	 topic	 file.	Of	 course,	 at	 any
time,	you	can	reopen,	modify	and	resave	any	topic	file.

You	repeat	the	above	process	for	every	topic	in	your	help	system.	That	is,	create
a	 new	 file,	 type	 your	 topic	 and	 save	 it.	You	will	 have	 an	HTM	 file	 for	 every
topic	 in	your	help	system.	For	our	example,	create	seven	more	htm	files	using
whatever	text	and	formatting	you	desire.	The	files	I	created	are	saved	as	(saved
in	 \LearnJava\LJ	 Code\Class	 9\Example9-5\HelpFiles\):	 Heading1.htm,
Topic11.htm,	 Topic12.htm,	 Topic13.htm,	 Heading2.htm,	 Topic21.htm,
Topic22.htm,	Topic23.htm.

Creating	HTML	topic	files	using	a	text	editor	is	a	bit	 tedious.	You	need	to	use
HTML	 tags	 and	 don’t	 really	 know	 what	 your	 topic	 file	 will	 look	 like	 until
you’ve	completed	the	help	system.	Using	a	WYSIWYG	(what	you	see	is	what
you	get)	editor	is	a	better	choice.	Such	editors	allow	you	to	create	HTML	files

without	knowing	any	HTML.	You	just	type	the	file	in	a	normal	word	processing-
type	environment,	then	save	it	in	HTML	format.	There	are	several	WYSIWYG
HTML	editors	available.	Check	Internet	download	sites	for	options.	Also,	most
word	processors	offer	an	option	to	save	a	document	as	an	HTML	file.	I	always
use	a	WYSIWYG	editor	for	topic	files.	I	simply	save	each	topic	file	in	the	same
folder	as	my	help	system	files,	just	as	if	I	was	using	a	text	editor.

Next,	we	 create	 a	map	 file,	 a	 table	 of	 contents	 file	 and	 a	help	 set	 file.	 But,
before	leaving	your	topic	files,	make	sure	they	are	as	complete	and	accurate	as
possible.	And,	again,	please	check	for	misspellings	–	nothing	scares	a	user	more
than	 a	 poorly	 prepared	 help	 file.	 They	 quickly	 draw	 the	 conclusion	 that	 if	 the
help	system	is	not	built	with	care,	the	application	must	also	be	sloppily	built.

Creating	a	Map	File
A	map	file	assigns	a	target	identifier	to	each	topic	file.	The	single	line	of	XML
code	 that	 does	 this	 assignment	 is:	 <mapID	 target="targetname"
url="filename"	/>

The	 complete	 map	 file	 (including	 header	 information)	 for	 our	 example	 help
system	 (and	 the	 saved	 topic	 files)	 is:	 <?xml	 version='1.0'	 encoding='ISO-
8859-1'	?>
<!DOCTYPE	map

PUBLIC	"-//Sun	Microsystems	Inc.//DTD	JavaHelp	Map	Version
1.0//EN"

"http://java.sun.com/products/javahelp/map_1_0.dtd">	<map
version="1.0">	<mapID	target="heading1"	url="Heading1.htm"	/>
<mapID	target="topic11"	url="Topic11.htm"	/>	<mapID
target="topic12"	url="Topic12.htm"	/>	<mapID	target="topic13"
url="Topic13.htm"	/>	<mapID	target="heading2"	url="Heading2.htm"
/>	<mapID	target="topic21"	url="Topic21.htm"	/>	<mapID
target="topic22"	url="Topic22.htm"	/>	<mapID	target="topic23"
url="Topic23.htm"	/>	</map>

The	 important	 information	 is	 shaded.	This	 file	 can	be	 created	 and	 saved	using
any	 text	 editor.	Make	 sure	 it	 is	 saved	with	 a	 jhm	 extension.	Mine	 is	 saved	 as
mapHelp.jhm	 (saved	 in	 \LearnJava\LJ	 Code\Class	 9\Example9-
5\HelpFiles\).

Creating	a	Table	of	Contents	File
The	table	of	contents	file	specifies	the	hierarchy	of	topics	to	display	when	the
help	 system	 is	 displayed.	 Like	 the	map	 file,	 this	 file	 is	 written	 in	XML.	 The
XML	code	 to	 specify	 a	 heading	 and	 three	 subtopics	 is:	<tocitem	 text="Main
Heading	Text"	target="main	target">	<tocitem	text="Subheading	1	Text"
target="sub	 topic	 1	 target"/>	 <tocitem	 text="Subheading	 2	 Text"
target="sub	 topic	 2	 target"/>	 <tocitem	 text="Subheading	 3	 Text"
target="sub	topic	3	target"/>	</tocitem>

The	 complete	 table	 of	 contents	 file	 (including	 header	 information)	 for	 our
example	help	system	(using	the	assigned	topic	targets)	is:	<?xml	version='1.0'
encoding='ISO-8859-1'	?>
<!DOCTYPE	toc

PUBLIC	"-//Sun	Microsystems	Inc.//DTD	JavaHelp	TOC	Version
1.0//EN"

"http://java.sun.com/products/javahelp/toc_1_0.dtd">	<toc
version="1.0">

<tocitem	text="First	Heading"	target="heading1">	<tocitem
text="Topic	One"	target="topic11"/>	<tocitem	text="Topic	Two"
target="topic12"/>	<tocitem	text="Topic	Three"	target="topic13"/>
</tocitem>
<tocitem	text="Second	Heading"	target="heading2">	<tocitem
text="Topic	One"	target="topic21"/>	<tocitem	text="Topic	Two"
target="topic22"/>	<tocitem	text="Topic	Three"	target="topic23"/>
</tocitem>

</toc>

The	 important	 information	 is	 shaded.	This	 file	 can	be	 created	 and	 saved	using
any	 text	 editor.	Make	 sure	 it	 is	 saved	with	 a	 jhm	 extension.	Mine	 is	 saved	 as
mapHelp.jhm	 (saved	 in	 \LearnJava\LJ	 Code\Class	 9\Example9-
5\HelpFiles\).

Creating	a	Help	Set	File
The	help	set	 file	 ties	everything	 together	 to	allow	JavaHelp	 to	do	 its	 job.	The
file	 for	 our	 example	 help	 system	 (again,	 in	 XML)	 is:	 <?xml	 version='1.0'
encoding='ISO-8859-1'	?>
<!DOCTYPE	helpset

PUBLIC	"-//Sun	Microsystems	Inc.//DTD	JavaHelp	HelpSet	Version
1.0//EN"

"http://java.sun.com/products/javahelp/helpset_1_0.dtd">	<helpset
version="1.0">

<title>Help	Example</title>	<maps>
<homeID>heading1</homeID>	<mapref	location="mapHelp.jhm"	/>
</maps>

<view>
<name>toc</name>	<label>Table	of	Contents</label>
<type>javax.help.TOCView</type>	<data>tocHelp.xml</data>
</view>

</helpset>

Important	information	is	shaded.	The	title	tag	appears	in	the	title	bar	of	our	help
system.	Under	the	maps	tag,	the	homeId	tag	selects	the	default	topic	to	display,
while	mapref	location	identifies	the	map	file.	Under	the	view	tag,	the	name	tag
says	to	show	the	help	system	with	a	table	of	contents	(toc),	give	it	a	 label,	 tell
what	type	the	help	system	view	is	and	identifies	the	location	of	the	data	(table
of	contents	file).	This	file	can	be	created	and	saved	using	any	text	editor.	Make
sure	 it	 is	 saved	 with	 a	 hs	 extension.	 Mine	 is	 saved	 as	 hsHelp.hs	 (saved	 in
\LearnJava\LJ	Code\Class	9\Example9-5\HelpFiles\).

Displaying	the	Help	System
We	 now	 have	 everything	we	 need	 to	 create	 and	 display	 our	 help	 system.	We
need	 to	connect	our	 Java	application	 to	 the	help	 system	so	 it	 can	be	displayed
when	 a	 user	 clicks	 some	 control	 related	 to	 obtaining	 help	 (menu	 item,	 button
control).

The	key	 to	displaying	 the	help	 system	 is	a	 Java	HelpBroker	object.	The	code
snippet	to	connect	a	set	of	help	system	files	to	a	Swing	component	(myControl)
is:	try

{

URL	url	=	HelpSet.findHelpSet(null,	helpSetFile);
HelpSet	hs	=	new	HelpSet(null,	url);
final	HelpBroker	hb	=	hs.createHelpBroker();
hb.enableHelpOnButton(myControl,	defaultTarget,	hs);

}

catch	(HelpSetException	e)

{

System.out.println("Help	not	found");

}

This	 code	 (usually	placed	 in	 a	 frame’s	 constructor	method)	 requires	 importing
the	 java.net.*	 package.	 The	 first	 line	 of	 this	 code	 forms	 an	 address	 (url)	 that
points	 to	 the	help	set	file	(helpSetFile	 is	a	relative	path	to	 the	hs	 file).	Next,	a
HelpSet	object	(hs)	is	formed	using	this	url.	Then,	a	HelpBroker	object	(hb)	is
formed.	The	next	line	ties	myControl	to	the	help	set	(hs)	and	says	to	display	the
defaultTarget	 upon	 display.	 With	 this	 code,	 whenever	 the	 action	 event
associated	with	myControl	occurs	(for	example,	clicking	a	button	control),	 the
help	system	will	be	displayed.

Important:	the	findHelpSet	method	in	the	code	above	expects	the	help	set	file
(and	all	other	help	files)	to	be	in	the	same	folder	as	the	project	folder	holding	the
class	files.	In	NetBeans	this	is	the	build/classes	folder	in	your	project	folder.	So
any	directory	reference	to	the	help	set	file	must	be	relative	to	this	folder.	See	the
example	for	how	this	all	works.

We	now	tie	everything	we’ve	learned	together	in	a	simple	example.

Example	9-5
Help	System	Display

Start	a	new	empty	project	in	NetBeans.	Name	the	project	HelpExample.	Delete
default	 code	 in	 Java	 file	 named	HelpExample.	 Add	 the	 JavaHelp	 library	 to
your	project.

In	 this	 project,	 when	 you	 click	 a	 button,	 the	 help	 system	 will	 appear.	 The

finished	project	is	simply:	

1.	 Add	 a	 button	 to	 the	 frame.	 The	 GridBagLayout	 is:	

Set	these	properties:

HelpExample	Frame:
resizable false

printButton:
text Help	Me!!
gridx 0
gridy 0
insets (10,	10,	10,	10)

2.	Use	this	code	to	add	the	button	to	 the	frame	and	connect	 the	help	system	to
that	button	(pertinent	code	is	shaded):	/	*

*	HelpExample.java

*/

*/

package	helpexample;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	javax.help.*;
import	java.net.*;

public	class	HelpExample	extends	JFrame

{

JButton	helpButton	=	new	JButton();
public	static	void	main(String	args[])

{

//	create	frame
new	HelpExample().show();

}

public	HelpExample()

{

//	frame	constructor
setResizable(false);
addWindowListener(new	WindowAdapter()

{

public	void	windowClosing(WindowEvent	evt)

{

exitForm(evt);

}

}

});

getContentPane().setLayout(new	GridBagLayout());
GridBagConstraints	gridConstraints	=	new

GridBagConstraints();	helpButton.setText("Help	Me!!");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(10,	10,	10,	10);
getContentPane().add(helpButton,	gridConstraints);

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();
setBounds((int)	(0.5	(screenSize.width	-getWidth())),	(int)	(0.5

(screenSize.height	-getHeight())),	getWidth(),	getHeight());
try

{

URL	url	=	HelpSet.findHelpSet(null,	"HelpFiles/hsHelp.hs");
HelpSet	hs	=	new	HelpSet(null,	url);

final	HelpBroker	hb	=	hs.createHelpBroker();
hb.enableHelpOnButton(helpButton,	"heading1",	hs);

}

catch	(HelpSetException	e)

{

System.out.println("Help	not	found");

}

}

private	void	exitForm(WindowEvent	evt)

{

System.exit(0);

}

}

Note	we	don’t	need	a	listener	for	the	help	button.

3.	 Create	 a	 subdirectory	 named	 HelpFiles	 within	 your
HelpProject\build\classes	 folder	 (this	 is	 where	 the	 findHelpSet	 method
expects	to	find	hsHelp.hs).	You	may	need	to	create	this	folder	if	you	haven’t
run	 the	 project.	 Copy	 the	 eight	 help	 system	 topic	 files,	 map	 file,	 table	 of
contents	file	and	help	set	file	into	this	folder.	You	will	find	these	files	in	the
\LearnJava\LJ	Code\Class	9\Example9-5\HelpFiles\	folder).

Save	(saved	as	Example9-5	project	in	the	\LearnJava\LJ	Code\Class	9\	project
group)	and	run	the	application.	Click	the	button	and	the	help	system	will	appear.
We	did	it!

After	 all	 this	 work,	 you	 still	 only	 have	 a	 simple	 help	 file,	 nothing	 that	 rivals
those	 seen	 in	 most	 applications.	 But,	 it	 is	 a	 very	 adequate	 help	 system.	 To
improve	 your	 help	 system,	 you	 need	 to	 add	 more	 features.	 Investigate	 the
JavaHelp	website	 for	 information	on	 tasks	such	as	adding	an	 index	file,	using

context-sensitive	help,	adding	search	capabilities	and	adding	graphics	to	the	help
system.

Class	Review
After	completing	this	class,	you	should	understand:

➢	 How	 to	 use	 two	 new	 controls,	 the	 JTextEditor	 control	 and	 the
downloaded	calendar	controls	➢	How	to	add	a	toolbar	control	and	tooltips
to	a	Java	application	➢	The	concepts	of	printing	from	a	Java	application,
including	 use	 of	 dialog	 boxes	➢	How	 to	 develop	 a	 simple	 on-line	 help
system	➢	How	to	attach	a	help	file	to	a	Java	application

Course	Summary
That’s	all	I	know	about	Java	and	GUI	applications.	But,	I’m	still	learning,	as	is
every	 Java	 programmer	 out	 there.	 The	 Java	 environment	 is	 vast!	 You	 should
now	have	a	good	breadth	of	knowledge	concerning	Java	and	GUI	applications.
This	 breadth	 should	 serve	 as	 a	 springboard	 into	 learning	more	 as	 you	develop
your	 own	 applications.	 Feel	 free	 to	 contact	me,	 if	 you	 think	 I	 can	 answer	 any
questions	you	might	have.

Where	do	you	go	from	here?	If	the	Internet	is	your	world,	you	should	definitely
extend	your	knowledge	regarding	Web	applications	and	applets.	And,	if	you’re
into	databases,	study	more	on	how	to	build	database	management	systems	using
Java.

Other	 suggestions	 for	 further	 study	 (note	 that	 each	 of	 these	 topics	 could	 be	 a
complete	book	by	itself):

➢	Advanced	graphics	methods	 (including	game	 type	graphics)	➢	Creating
and	deployment	of	your	own	GUI	controls	➢	Creating	and	deployment	of
your	own	objects	➢	Understanding	and	using	object-oriented	concepts	of
overloading,	inheritance,	multithreading

We	have	two	other	GUI	tutorials	that	you	can	work	through.	Kid	Games	with
Java	 builds	 six	 fun	games	 for	kids	 and	 adults.	Home	Projects	with	Java	 has
eight	 useful	 projects	 you	 can	 use	 to	manage	 your	 life.	 Check	 our	website	 for
details.

Practice	Problems	9
Problem	 9-1.	 Loan	 Printing	 Problem.	 .	 The	 two	 lines	 of	 Java	 code	 that
compute	the	monthly	payment	on	an	installment	loan	are:	double	multiplier	=
Math.pow((1	+	interest	/	1200),	months);	payment	=	loan	interest	multiplier	/
(1200	*	(multiplier	-	1));	where:

interest Yearly	interest	percentage
months Number	of	months	of	payments
loan Loan	amount
multiplier Interest	multiplier
payment Computed	monthly	payment

(The	1200	value	 in	 these	equations	converts	yearly	 interest	 to	a	monthly	 rate.)
Use	this	code	to	build	a	general	method	that	computes	payment,	given	the	other
three	variables.

Now,	use	this	method	in	an	application	that	computes	the	payment	after	the	user
inputs	 loan	 amount,	 yearly	 interest	 and	 number	 of	months.	 Allow	 the	 user	 to
print	out	 a	 repayment	 schedule	 for	 the	 loan.	The	printed	 report	 should	 include
the	inputs,	computed	payments,	total	of	payments	and	total	interest	paid.	Then,	a
month-by-month	accounting	of	the	declining	balance,	as	the	loan	is	paid,	should
be	printed.	In	this	accounting,	include	how	much	of	each	payment	goes	toward
principal	and	how	much	toward	interest.

Problem	9-2.	Plot	Printing	Problem.	In	Problem	8-3,	we	built	an	application
that	 displayed	 a	 labeled	 plot	 of	 the	win	 streaks	 for	 the	 Seattle	Mariners	 1995
season.	Build	an	application	that	prints	this	plot	and	its	labeling	information.

Problem	 9-3.	 Note	 Editor	 Help	 Problem.	 Develop	 a	 help	 file	 for	 the	Note
Editor	 application	 (use	 Example	 9-2	 as	 a	 starting	 point).	 Explain	 whatever
topics	you	feel	are	important.	Allow	access	to	this	help	file	via	a	menu	item	and
a	toolbar	button.

Exercise	9-1
Phone	Directory

Develop	 an	 application	 that	 tracks	 people	 and	 phone	 numbers	 (include	 home,
work	 and	 cell	 phones).	 Allow	 sorting,	 editing,	 adding,	 deleting	 and	 saving	 of
entries.	Add	 search	 capabilities.	Allow	printing	of	 listings.	Develop	 an	on-line
help	system.	In	summary,	build	a	full-featured	Java	phone	directory	application.

Exercise	9-2
The	Ultimate	Application

Design	a	GUI	application	using	Java	that	everyone	on	the	planet	wants	to	buy.
Place	 controls,	 assign	 properties,	 and	 write	 code.	 Thoroughly	 debug	 and	 test
your	 application.	 Create	 a	 distribution	 and	 deployment	 package.	 Find	 a
distributor	 or	 distribute	 it	 yourself	 through	 your	 newly	 created	 company.
Become	 fabulously	 wealthy.	 Remember	 those	 who	 made	 it	 all	 possible	 by
rewarding	them	with	jobs	and	stock	options.

Appendix	I.
General	Purpose	Methods	and

Classes

Introduction
In	this	Appendix,	we	provide	code	listings	for	several	general	purpose	methods
and	classes	developed	and	used	in	 this	course.	These	routines	can	be	used	in	a
variety	 of	 applications.	 Use	 them	 as	 you	 wish.	 The	 programs	 are	 listed
alphabetically	by	name:

Method/Class 	
average 	
BarChartPanel 	
blankLine 	
circleGeometry 	
degFTodegC 	
GraphicsPanel 	
LineChartPanel 	
loanPayment 	
midLine 	
PieChartPanel 	
PrintUtilities 	
randomNormalNumber 	
rectangleInfo 	
sortIntegers 	
soundEx 	
standardDeviation 	
Transparency 	

validateDecimalNumber 	
validateIntegerNumber 	
xPhysicalToxUser 	
yPhysicalToyUser 	

average
This	 method	 finds	 the	 average	 value	 of	 an	 array	 of	 numbers.	 The	 method	 is
named	 average.	 There	 are	 two	 arguments.	 The	 first	 is	 numberValues,	 the
number	of	elements	in	the	array,	of	type	int.	The	second	argument	is	the	0-based
array	values.	These	are	the	numbers	being	averaged.	Each	element	of	the	array
is	of	type	double.	The	returned	value	is	the	average,	type	double.

public	double	average(int	numberValues,	double[]	values)	{
if	(numberValues	==	0)	{

return;
}	//	find	average	double	sum	=	0.0;	for	(int	i	=	0;	i	<	numberValues;	i++)	{

sum	+=	values[i];	}
return(sum	/	numberValues);	}

BarChartPanel
This	 class	 draws	 a	 bar	 chart	 in	 a	 panel	 control.	 The	 class	 is	 named
BarChartPanel.	 The	 constructor	 has	 five	 arguments.	 The	 first	 is	border,	 the
rectangle	 (type	Rectangle2D.Double)	 within	 the	 panel	 hosting	 the	 bar	 chart.
Other	arguments	are	nPoints,	 the	number	of	points	 to	plot	 (type	 int),	yValues
the	array	of	values	to	chart	(type	double),	base	the	base	value	(type	double)	and
colorValue	the	color	of	the	bars	(Color	type).

import	 javax.swing.*;	 import	 java.awt.geom.*;	 import	 java.awt.*;	 public
class	BarChartPanel	extends	JPanel	{
private	Rectangle2D.Double	borderRectangle;	private	int	n;	private

double[]	y;	private	double	b;	private	Color	c;	public	BarChartPanel()	{
//	default	constructor	for	initialization	}

public	BarChartPanel(Rectangle2D.Double	border,	int	nPoints,	double[]
yValues,	double	base,	Color	colorValue)	{

this.borderRectangle	=	border;	this.n	=	nPoints;	this.y	=	yValues;
this.b	=	base;	this.c	=	colorValue;	}
public	void	paintComponent(Graphics	g)	{

//	Draws	a	bar	chart	//	borderRectangle	-	rectangle	region	to	draw
plot	//	n	-	number	of	points	to	plot	//	y	-	array	of	y	points	(lower	index	is	0,
upper	index	is	n-1)	//	c	-	color	of	bars	double	yMin	=	y[0];	double	yMax	=
y[0];	//	find	minimums	and	maximums	for	(int	i	=	1;	i	<	n;	i++)	{

yMin	=	Math.min(yMin,	y[i]);	yMax	=	Math.max(yMax,	y[i]);	}
//	Extend	y	values	a	bit	so	bars	are	not	right	on	borders	yMin	=	(1	-
0.05	Double.compare(yMin,	0))	yMin;	yMax	=	(1	+	0.05
Double.compare(yMax,	0))	yMax;	Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);	//	Find	bar	width	in	client	coordinates	//
use	half	bar-width	as	margins	between	bars	double	barWidth	=	2
(borderRectangle.width	-	1)	/	(3	n	+	1);	double	clientBase	=
yPhysicalToyUser(borderRectangle,	b,	yMin,	yMax);
Rectangle2D.Double	myRectangle;	for	(int	i	=	0;	i	<	n;	i++)	{

//	draw	bars
if	(y[i]	>	b)	{

myRectangle	=	new	Rectangle2D.Double(borderRectangle.x	+
(1.5	i	+	0.5)	barWidth,	yPhysicalToyUser(borderRectangle,	y[i],	yMin,
yMax),	barWidth,	clientBase	-yPhysicalToyUser(borderRectangle,	y[i],
yMin,	yMax));	}

else

{

myRectangle	=	new	Rectangle2D.Double(borderRectangle.x	+
(1.5	i	+	0.5)	barWidth,	clientBase,	barWidth,
yPhysicalToyUser(borderRectangle,	y[i],	yMin,	yMax)	-clientBase);	}

g2D.setPaint(c);	g2D.fill(myRectangle);	}
//	draw	border	g2D.setPaint(Color.BLACK);

g2D.draw(borderRectangle);	//	line	at	base	g2D.draw(new
Line2D.Double(borderRectangle.x,	clientBase,	borderRectangle.x	+
borderRectangle.width	-	1,	clientBase));	g2D.dispose();	}
private	double	xPhysicalToxUser(Rectangle2D.Double	r,	double

xPhysical,	double	xMin,	double	xMax)	{
return(r.x	+	(xPhysical	-	xMin)	*	(r.width	-	1)	/	(xMax	-xMin));	}

private	double	yPhysicalToyUser(Rectangle2D.Double	r,	double
yPhysical,	double	yMin,	double	yMax)	{

return(r.y	+	(yMax	-	yPhysical)	*	(r.height	-	1)	/	(yMax	-	yMin));	}

}

blankLine
This	 method	 blanks	 out	 a	 character	 array.	 The	 method	 is	 named	 blankLine.
There	is	one	argument	charLine	–	the	character	array	to	‘blank	out.’	There	is	no
returned	value.

public	void	blankLine(char[]	charLine)	{
for	(int	i	=	0;	i	<	charLine.length;	i++)	{

charLine[i]	=	'	';	}

}

circleGeometry
This	 method	 computes	 the	 circumference	 and	 area	 of	 a	 circle,	 given	 the
diameter.	The	method	 is	named	circleGeometry.	 It	 has	one	argument,	of	 type
double,	the	diameter.	The	method	returns	the	computed	values	circumference
and	area	in	a	double	array	(geometry)	of	dimension	2.

public	double[]	circleGeometry(double	diameter)	{
double	[]	geometry	=	new	double[2];	geometry[0]	=	Math.PI	*	diameter;

//	circumference	geometry[1]	=	Math.PI	*	diameter	*	diameter	4;	/	area
return(geometry);	}

degFTodegC
This	method	converts	Fahrenheit	temperature	to	Celsius.	The	function	is	named
degFTodegC.	It	has	a	single	argument	(the	Fahrenheit	temperature),	tempF,	of
type	double.	It	returns	a	double	data	type,	the	Celsius	temperature.

public	double	degFTodegC(double	tempF)	{
double	tempC;	tempC	=	(tempF	–	32)	*	5	/	9;	return(tempC);	}

GraphicsPanel
This	class	allows	direct	painting	of	a	JPanel	control	(via	the	paintComponent
method).	You	 need	 to	 add	 the	 code	 to	 do	 the	 painting.	 The	paintComponent
method	 passes	 a	 graphic	 object	 (g,	 which	 may	 need	 to	 be	 converted	 to	 a
Graphics2D	object).

class	GraphicsPanel	extends	JPanel	{
public	GraphicsPanel()	{

}

public	void	paintComponent(Graphics	g)	{

}

}

LineChartPanel

This	 class	 draws	 a	 line	 chart	 (y	 vs.	 x)	 in	 a	 panel	 control.	 The	 class	 is	 named
LineChartPanel.	The	 constructor	 has	 five	 arguments.	The	 first	 is	border,	 the
rectangle	 (type	Rectangle2D.Double)	 within	 the	 panel	 hosting	 the	 line	 chart.
Other	arguments	are	nPoints,	 the	number	of	points	 to	plot	 (type	 int),	xValues
the	array	of	x	values	to	plot	(type	double),	yValues	the	array	of	corresponding	y
values	to	plot	(type	double),	and	colorValue	the	color	of	the	line	(type	Color).

import	 javax.swing.*;	 import	 java.awt.geom.*;	 import	 java.awt.*;	 public
class	LineChartPanel	extends	JPanel	{
private	Rectangle2D.Double	borderRectangle;	private	int	n;	private

double[]	x;	private	double[]	y;	private	Color	c;	public	LineChartPanel()	{
//	default	constructor	for	initialization	}

public	LineChartPanel(Rectangle2D.Double	border,	int	nPoints,	double[]
xValues,	double[]	yValues,	Color	colorValue)	{

this.borderRectangle	=	border;	this.n	=	nPoints;	this.x	=	xValues;
this.y	=	yValues;	this.c	=	colorValue;	}
public	void	paintComponent(Graphics	g)	{

//	Draws	a	line	chart	-	pairs	of	(x,y)	coordinates	//	borderRectangle	-
rectangle	region	to	draw	plot	//	n	-	number	of	points	to	plot	//	x	-	array	of	x
points	(lower	index	is	0,	upper	index	is	n-1)	//	y	-	array	of	y	points	(lower
index	is	0,	upper	index	is	n-1)	//	c	-	color	of	line	//	Need	at	least	2	points	to
plot	if	(n	<	2)	{

return;

}

double	xMin	=	x[0];	double	xMax	=	x[0];	double	yMin	=	y[0];	double
yMax	=	y[0];	//	find	minimums	and	maximums	for	(int	i	=	1;	i	<	n;
i++)	{

xMin	=	Math.min(xMin,	x[i]);	xMax	=	Math.max(xMax,	x[i]);
yMin	=	Math.min(yMin,	y[i]);	yMax	=	Math.max(yMax,	y[i]);	}

//	Extend	y	values	a	bit	so	lines	are	not	right	on	borders	yMin	=	(1	-
0.05	Double.compare(yMin,	0))	yMin;	yMax	=	(1	+	0.05

Double.compare(yMax,	0))	yMax;	Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);	Line2D.Double	myLine;
g2D.setPaint(c);	for	(int	i	=	0;	i	<	n	-	1;	i++)	{

//	plot	in	user	coordinates	myLine	=	new
Line2D.Double(xPhysicalToxUser(borderRectangle,	x[i],	xMin,
xMax),	yPhysicalToyUser(borderRectangle,	y[i],	yMin,	yMax),
xPhysicalToxUser(borderRectangle,	x[i	+	1],	xMin,	xMax),
yPhysicalToyUser(borderRectangle,	y[i	+	1],	yMin,	yMax));
g2D.draw(myLine);	}

//	draw	border	g2D.setPaint(Color.BLACK);
g2D.draw(borderRectangle);	g2D.dispose();	}

private	double	xPhysicalToxUser(Rectangle2D.Double	r,	double
xPhysical,	double	xMin,	double	xMax)	{

return(r.x	+	(xPhysical	-	xMin)	*	(r.width	-	1)	/	(xMax	-xMin));	}
private	double	yPhysicalToyUser(Rectangle2D.Double	r,	double

yPhysical,	double	yMin,	double	yMax)	{
return(r.y	+	(yMax	-	yPhysical)	*	(r.height	-	1)	/	(yMax	-	yMin));	}

}

loanPayment
This	method	 returns	 the	monthly	payment	 for	a	 revolving	 loan.	The	method	 is
named	 loanPayment.	 Three	 arguments	 are	 needed:	 loan	 (the	 loan	 amount,
double	 type),	 interest	 (yearly	 interest,	double),	 and	months	 (the	 loan	 term	 in
months,	int	type).	It	returns	a	double	type,	the	payment.

private	double	loanPayment(double	loan,	double	interest,	double	months)	{
//	Compute	loan	payment	method	double	multiplier;	if	(months	==	0)	{

JOptionPane.showConfirmDialog(null,	"Need	non-zero	value	for
Number	of	Months",	"Error",	JOptionPane.DEFAULT_OPTION,
JOptionPane.INFORMATION_MESSAGE);	return(-1);	//	set	negative
value	for	error	flag	}
if	(interest	!=	0)	{

multiplier	=	Math.pow((1	+	interest	/	1200),	months);	return	(loan
interest	multiplier	/	(1200	*	(multiplier	-	1)));	}

else

{

return	(loan	/	months);	}

}

midLine
This	method	places	a	substring	within	a	character	array.	The	method	 is	named
midLine.	 There	 is	 are	 three	 arguments.	 The	 first	 is	 the	 substring	 inString	 (a
String	type),	the	second	(charLine)	the	character	array	to	place	the	substring	in
and	the	final	argument	is	pos	(int	type),	the	starting	position	within	charLine	to
place	inString.	There	is	no	returned	value.

public	void	midLine(String	inString,	char[]	charLine,	int	pos)	{
for	(int	i	=	pos;	i	<	pos	+	inString.length();	i++)	{

charLine[i]	=	inString.charAt(i	-	pos);	}

}

PieChartPanel
This	 procedure	 draws	 a	 pie	 chart	 in	 a	 panel	 control.	 The	 procedure	 is	 named
PieChart.	The	constructor	has	four	arguments.	The	first	is	border,	the	rectangle
(type	 Rectangle2D.Double)	 within	 the	 panel	 hosting	 the	 line	 chart.	 Other
arguments	are	nSegments,	 the	number	of	pie	segments	(type	 int),	yValues	 the
array	of	data	 to	plot	 (type	double),	 and	colorValues	 and	array	of	pie	 segment
colors	(type	Color).

import	 javax.swing.*;	 import	 java.awt.geom.*;	 import	 java.awt.*;	 public
class	PieChartPanel	extends	JPanel	{
private	Rectangle2D.Double	borderRectangle;	private	int	n;	private
double[]	y;	private	Color[]	c;	public	PieChartPanel()	{

//	default	constructor	for	initialization	}
public	PieChartPanel(Rectangle2D.Double	border,	int	nSegments,

double[]	yValues,	Color[]	colorValues)	{
this.borderRectangle	=	border;	this.n	=	nSegments;	this.y	=	yValues;
this.c	=	colorValues;	}

public	void	paintComponent(Graphics	g)	{
//	Draws	a	pie	chart	//	borderRectangle	-	rectangle	object	to	draw
chart	//	n	-	number	of	pie	segments	to	draw	//	y	-	array	of	points
(Double	type)	to	chart	(lower	index	is	1,	upper	index	is	N)	//	c	-	color
of	pie	segments	Graphics2D	g2D	=	(Graphics2D)	g;
super.paintComponent(g2D);	double	sum	=	0.0;	for	(int	i	=	0;	i	<	n;
i++)	{

sum	+=	y[i];

}

//	draw	pie
double	startAngle	=	0;	Arc2D.Double	myArc;	//	for	each	slice	fill	and
draw	for	(int	i	=	0;	i	<	n;	i++)	{

myArc	=	new	Arc2D.Double(borderRectangle.x,
borderRectangle.y,	borderRectangle.width,	borderRectangle.height,
startAngle,	360	*	y[i]	/	sum,	Arc2D.PIE);	g2D.setPaint(c[i]);

g2D.fill(myArc);	g2D.setPaint(Color.BLACK);	g2D.draw(myArc);
startAngle	+=	360	*	y[i]	/	sum;	}

g2D.dispose();	}

}

PrintUtilities
This	 class	 allows	 printing	 of	 any	 Swing	 component.	 The	 class	 is	 named
PrintUtilities.	 It	has	a	 single	method	with	one	argument,	 the	component	 to	be
printed.

import	 java.awt.*;	 import	 javax.swing.*;	 import	 java.awt.print.*;	 public
class	PrintUtilities	implements	Printable	{
private	Component	componentToBePrinted;	public	static	void
printComponent(Component	c)	{

new	PrintUtilities(c).print();	}

public	PrintUtilities(Component	componentToBePrinted)	{
this.componentToBePrinted	=	componentToBePrinted;	}

public	void	print()	{
PrinterJob	printJob	=	PrinterJob.getPrinterJob();
printJob.setPrintable(this);	try	{

printJob.print();	}	catch(PrinterException	pe)	{
System.out.println("Error	printing:	"	+	pe);	}

}

public	int	print(Graphics	g,	PageFormat	pageFormat,	int	pageIndex)	{
if	(pageIndex	>	0)	{

return(NO_SUCH_PAGE);	}	else	{
Graphics2D	g2d	=	(Graphics2D)g;
g2d.translate(pageFormat.getImageableX(),
pageFormat.getImageableY());
disableDoubleBuffering(componentToBePrinted);
componentToBePrinted.paint(g2d);
enableDoubleBuffering(componentToBePrinted);
return(PAGE_EXISTS);	}

}

/	**	The	speed	and	quality	of	printing	suffers	dramatically	if	*	any	of	the
containers	have	double	buffering	turned	on.
*	So	this	turns	if	off	globally.
*	@see	enableDoubleBuffering	*/
public	static	void	disableDoubleBuffering(Component	c)	{

RepaintManager	currentManager	=
RepaintManager.currentManager(c);
currentManager.setDoubleBufferingEnabled(false);	}

/	**	Re-enables	double	buffering	globally.	*/

public	static	void	enableDoubleBuffering(Component	c)	{
RepaintManager	currentManager	=

RepaintManager.currentManager(c);
currentManager.setDoubleBufferingEnabled(true);	}

}

randomNormalNumber	This	method	returns	a	number
with	an	approximate	normal	distribution	(mean	0,	standard	deviation	1).	The
function	is	named	randomNormalNumber.	It	has	no	arguments.	It	returns	a
double	data	type,	the	normal	number.

public	double	randomNormalNumber()	{
//	Sum	12	random	numbers	and	subtract	6
double	number	=	0;	for	(int	i	=	0;	i	<	12;	i++)	{

number	+=	dRand.nextDouble();	}
return	(number	-	6.0);	}

To	use	 this	method,	you	need	a	class	 level	declaration	 for	 the	Random	 object
(dRand):	static	Random	dRand	=	new	Random();

rectangleInfo
This	method	 computes	 the	 perimeter	 and	 area	 of	 a	 rectangle,	 given	 the	 length
and	width.	The	method	 is	named	rectangleInfo.	 It	has	 two	arguments,	of	 type
double.	The	arguments	are	the	input	length	and	width.	The	method	returns	the
computed	values	perimeter	and	area	in	a	double	array	(info)	of	dimension	2.

public	double[]	rectangleInfo(double	length,	double	width)	{
double[]	info	=	new	double[2];	info[0]	=	2	*	(length	+	width);	//	perimeter
info[1]	=	length	*	width;	//	area	return(info);

}

sortIntegers
This	method	randomly	sorts	n	integers.	The	calling	argument	for	the	method	are
n	(the	number	of	integers	to	be	sorted).	The	routine	returns	an	n	element	array
nArray	containing	the	randomly	sorted	integers.	Note	the	procedure	randomizes
the	integers	from	0	to	n	–	1,	not	1	to	n.

public	int[]	sortIntegers(int	n)	{

/	*

*	Returns	n	randomly	sorted	integers	0	->	n	-	1

*/

int	nArray[]	=	new	int[n];	int	temp,	s;
Random	myRandom	=	new	Random();	//	initialize	array	from	0	to	n	-	1
for	(int	i	=	0;	i	<	n;	i++)	{

nArray[i]	=	i;	}
//	i	is	number	of	items	remaining	in	list	for	(int	i	=	n;	i	>=	1;	i--)	{

s	=	myRandom.nextInt(i);	temp	=	nArray[s];	nArray[s]	=	nArray[i	-
1];	nArray[i	-	1]	=	temp;	}

return(nArray);	}

soundEx
This	 function	 computes	 a	 ‘soundex’	 code	 for	 a	 string.	 If	 two	 strings	 have	 the
same	soundex	code,	their	spelling	is	similar.	The	function	is	named	soundEx.	It
has	one	String	type	argument,	w,	which	is	the	input	string.	The	function	returns
the	soundex	code	as	a	string	type.

public	String	soundEx(String	w)	{
//	Generates	Soundex	code	for	W	based	on	Unicode	value	//	Allows

answers	whose	spelling	is	close,	but	not	exact	String	wTemp,	s	=	"";	int	l;
int	wPrev,	wSnd,	cIndex;	//	Load	soundex	function	array	int[]	wSound	=
{0,	1,	2,	3,	0,	1,	2,	0,	0,	2,	2,	4,	5,	5,	0,	1,	2,	6,	2,	3,	0,	1,	0,	2,	0,	2};	wTemp	=
w.toUpperCase();	l	=	w.length();	if	(l	!=	0)

{

s	=	String.valueOf(w.charAt(0));	wPrev	=	0;
if	(l	>	1)

{

for	(int	i	=	1;	i	<	l;	i++)	{
cIndex	=	(int)	wTemp.charAt(i)	-	65;	if	(cIndex	>=	0	&&
cIndex	<=	25)	{

wSnd	=	wSound[cIndex]	+	48;	if	(wSnd	!=	48	&&	wSnd	!=
wPrev)	{

s	+=	String.valueOf((char)	wSnd);	}
wPrev	=	wSnd;

}

}

}

else

s	=	"";

}

return(s);

}

standardDeviation
This	method	finds	the	standard	deviation	of	an	array	of	numbers.	The	method	is
named	 standardDeviation.	 There	 are	 two	 arguments.	 The	 first	 is
numberValues,	 the	 number	 of	 elements	 in	 the	 array,	 of	 type	 int.	 The	 second
argument	 is	 the	 0-based	 array	 values.	 These	 are	 the	 numbers	 being	 analyzed.
Each	element	of	the	array	is	of	type	double.	The	returned	value	is	the	standard
deviation,	type	double.

public	double	standardDeviation(int	numberValues,	double[]	values)	{
double	sumX	=	0;	double	sumX2	=	0;	//	mke	sure	there	are	at	least	two
values	if	(numberValues	<	2)	{

return(0);

}

//	Compute	sums	for	(int	i	=	0;	i	<	numberValues;	i++)	{
sumX	+=	values[i];	sumX2	+=	values[i]	*	values[i];	}

return(Math.sqrt((numberValues	*	sumX2	-	sumX	sumX)	/
(numberValues	(numberValues	-	1))));	}

Transparency
The	 Transparency	 class	 allows	 the	 creation	 of	 an	 Image	 object	 with	 a
transparent	 color.	To	 use	 the	Transparency	 class,	 assume	you	 have	 an	 image
(myImage)	 with	 a	 background	 color	 (myColor)	 you	 want	 changed	 to
transparent.	 The	 following	 line	 of	 code	 will	 return	 the	 same	 image,	 with	 the
input	 background	 color	 set	 to	 transparent	 (myTransparentImage):
myTransparentImage	=
Transparency.makeColorTransparent(myImage,	 myColor);	 import
java.awt.*;	import	java.awt.image.*;	public	class	Transparency	{
public	static	Image	makeColorTransparent(Image	im,	final	Color	color)	{

ImageFilter	filter	=	new	RGBImageFilter()	{
//	the	color	we	are	looking	for...	Alpha	bits	are	set	to	opaque	public

int	markerRGB	=	color.getRGB()	|	0xFF000000;	public	final	int
filterRGB(int	x,	int	y,	int	rgb)	{

if	((rgb	|	0xFF000000)	==	markerRGB)	{
//	Mark	the	alpha	bits	as	zero	-	transparent	return
0x00FFFFFF	&	rgb;	}

else

{

//	nothing	to	do	return	rgb;

}

}

};

ImageProducer	ip	=	new	FilteredImageSource(im.getSource(),	filter);
return	Toolkit.getDefaultToolkit().createImage(ip);	}

}

validateDecimalNumber	This	method	insures	a	value	in	a
text	field	is	a	valid	decimal	number,	including	only	digits,	a	single	decimal	point
or	a	negative	sign.	The	method	is	named	validateDecimalNumber.	There	is	one
argument	of	type	JTextField,	that	being	the	text	field	(tf)	being	examined.	The
method	returns	a	boolean	value	(true	if	the	number	is	valid,	false	if	not).

public	boolean	validateDecimalNumber(JTextField	tf)	{
//	checks	to	see	if	text	field	contains	//	valid	decimal	number	with	only

digits	and	a	single	decimal	point	//	or	negative	sign	String	s	=
tf.getText().trim();	boolean	hasDecimal	=	false;	boolean	valid	=	true;	if
(s.length()	==	0)	{

valid	=	false;	}
else

{

for	(int	i	=	0;	i	<	s.length();	i++)	{
char	c	=	s.charAt(i);	if	((c	>=	'0'	&&	c	<=	'9')	||	(c	==	'-'	&&	i	==
0))	{

continue;

}

else	if	(c	==	'.'	&&	!hasDecimal)	{
hasDecimal	=	true;	}

else

{

//	invalid	character	found	valid	=	false;	}

}

}

if	(valid)

{

tf.setText(s);	}
else

{

tf.setText("");	tf.requestFocus();	}
return	(valid);	}

validateIntegerNumber	This	method	insures	a	value	in	a
text	field	is	a	valid	integer	number,	including	only	digits	and	a	negative	sign.
The	method	is	named	validateIntegerNumber.	There	is	one	argument	of	type
JTextField,	that	being	the	text	field	(tf)	being	examined.	The	method	returns	a
boolean	value	(true	if	the	number	is	valid,	false	if	not).

public	boolean	validateIntegerNumber(JTextField	tf)	{
//	checks	to	see	if	text	field	contains	//	valid	integer	number	with	only
digits	or	negative	sign	String	s	=	tf.getText().trim();	boolean	valid	=	true;
if	(s.length()	==	0)	{

valid	=	false;	}
else

{

for	(int	i	=	0;	i	<	s.length();	i++)	{
char	c	=	s.charAt(i);	if	((c	>=	'0'	&&	c	<=	'9')	||	(c	==	'-'	&&	i	==
0))	{

continue;

}

else

{

//	invalid	character	found	valid	=	false;	}

}

}

if	(valid)

{

tf.setText(s);	}

else

{

tf.setText("");	tf.requestFocus();	}
return	(valid);	}

xPhysicalToxUser
This	method	is	used	to	convert	a	generic	unit	to	a	host	control’s	horizontal	axis.
The	method	is	named	xPhysicalToxUser.	It	has	four	arguments.	r	the	rectangle
object	 (Rectangle2D	 object)	 that	 the	 conversion	 is	 based	 on,	 the	 xPhysical
value,	the	minimum	physical	value,	xMin,	and	the	maximum	value,	xMax.	All
values	are	of	double	data	type.	The	method	returns	the	user	coordinate	(a	double
type).

private	double	 xPhysicalToxUser(Rectangle2D.Double	 r,	double	 xPhysical,
double	xMin,	double	xMax)	{
return(r.x	+	(xPhysical	-	xMin)	*	(r.width	-	1)	/	(xMax	-xMin));	}

yPhysicalToyUser
This	method	 is	 used	 to	 convert	 a	 generic	unit	 to	 a	host	 control’s	 vertical	 axis.
The	method	is	named	yPhysicalToyUser.	It	has	four	arguments.	r	the	rectangle
object	 (Rectangle2D	 object)	 that	 the	 conversion	 is	 based	 on,	 the	 yPhysical
value,	the	minimum	physical	value,	yMin,	and	the	maximum	value,	yMax.	All
values	are	of	double	data	type.	The	method	returns	the	user	coordinate	(a	double
type).

private	double	 yPhysicalToyUser(Rectangle2D.Double	 r,	double	 yPhysical,
double	yMin,	double	yMax)	{
return(r.y	+	(yMax	-	yPhysical)	*	(r.height	-	1)	/	(yMax	-yMin));	}

Appendix	II.
Brief	Primer	on	Classes	and	Objects

Introduction
We	say	Java	is	an	object-oriented	language.	In	this	course,	we	have	used	many
of	the	built-in	objects	included	with	the	Java	Swing	library.	We	have	used	button
objects,	text	field	objects,	label	objects	and	many	other	controls.	We	have	used
graphics	objects,	font	objects,	stroke	objects,	paint	objects,	rectangle	objects	and
point	objects.	Having	used	these	objects,	we	are	familiar	with	such	concepts	as
declaring	 an	 object,	 constructing	 an	 object	 and	 using	 an	 object’s	properties
and	methods.

We	have	 seen	 that	 objects	 are	 just	 things	 that	 have	 attributes	 (properties)	with
possible	 actions	 (methods).	 As	 you	 progress	 in	 your	 programming	 education,
you	may	want	 to	 include	your	own	objects	 in	 applications	you	build.	But,	 it’s
tough	 to	 decide	when	 you	 need	 (if	 ever)	 an	 object.	A	 general	 rule	 is	 that	 you
might	want	to	consider	using	an	object	when	you	are	working	with	some	entity
that	 fits	 the	 structure	 of	 having	 properties	 and	 methods	 and	 has	 some	 re-use
potential.

The	big	advantage	to	objects	(as	seen	with	the	ones	we’ve	used	already)	is	that
they	 can	 be	 used	 over	 and	 over	 again.	 This	 re-use	 can	 be	 multiple	 copies
(instances)	of	a	single	object	within	a	particular	application	or	can	be	the	re-use
of	a	particular	object	in	several	different	applications	(like	the	controls	of	Java).

The	 most	 common	 object	 is	 some	 entity	 with	 several	 describing	 features
(properties).	Such	objects	 in	other	 languages	are	 called	structured	variables.
One	could	be	a	line	object	using	the	end	points,	line	thickness	and	line	color	as
properties.	Or,	a	person	could	be	an	object,	with	name,	address,	phone	number	as
properties.

You	 could	 extend	 these	 simple	 objects	 (properties	 only)	 by	 adding	methods.
Methods	allow	an	object	to	do	something.	With	our	simple	line	object	example,
we	could	add	methods	to	draw	a	line,	erase	a	line,	color	a	line,	and	dot	a	line.	In
the	person	object	 example,	we	 could	have	methods	 to	 sort,	 search	or	 print	 the
person	objects.

I	realize	this	explanation	of	when	to	use	your	own	objects	is	rather	vague.	And,

it	has	 to	be.	Only	 through	experience	can	you	decide	when	you	might	need	an
object.	Look	through	other	texts	and	websites	to	see	how	objects	are	employed
in	Java.	And,	don’t	feel	bad	if	you	never	use	a	custom	object.	The	great	power	of
Java	 is	 that	 you	 can	 do	 many	 things	 just	 using	 the	 built-in	 objects!	 In	 this
appendix,	we’ll	 look	 at	 how	 to	 add	 an	object	 to	 a	 Java	 application,	 discussing
properties,	 constructors	 and	 methods.	 And	 we’ll	 look	 at	 how	 to	 modify	 an
existing	object	(a	Java	control)	to	meet	some	custom	needs.

Objects	in	Java
Before	 getting	 started,	 you	may	 be	 asking	 the	 question	 “If	 Java	 is	 an	 object-
oriented	language,	why	have	we	waited	so	long	to	start	talking	about	using	our
own	objects?”	And,	that’s	a	good	question.	Many	books	on	Java	dive	right	into
building	objects.	We	feel	it’s	best	to	see	objects	and	use	objects	before	trying	to
create	your	own.	Java	is	a	great	language	for	doing	this.	The	wealth	of	existing,
built-in	 objects	 helps	 you	 learn	 about	 object-oriented	 programming	 (OOP)
before	needing	to	build	your	own.

Now,	 let’s	 review	 some	 of	 the	 vocabulary	 of	 object-oriented	 programming.
These	are	terms	you’ve	seen	before	in	working	with	the	built-in	objects	of	Java.
A	class	provides	a	general	description	of	an	object.	All	objects	are	created	from
this	class	description.	The	first	 step	 in	creating	an	object	 is	adding	a	class	 to	a
Java	project.	Every	application	we	have	built	in	this	course	is	a	class	itself.	Note
the	top	line	of	every	application	has	the	keyword	class.

The	 class	 provides	 a	 framework	 for	 describing	 three	 primary	 components:
Properties	 –	 attributes	 describing	 the	 objects	Constructors	 –	 procedures	 that
initialize	 the	 object	Methods	 –	 procedures	 describing	 things	 an	 object	 can	 do
Once	a	class	is	defined,	an	object	can	be	created	or	instantiated	from	the	class.
This	simply	means	we	use	the	class	description	to	create	a	copy	of	the	object	we
can	work	with.	Once	the	instance	is	created,	we	construct	the	finished	object	for
our	use.

One	 last	 important	 term	 to	 define,	 related	 to	 OOP,	 is	 inheritance.	 This	 is	 a
capability	 that	 allows	 one	 object	 to	 ‘borrow’	 properties	 and	 methods	 from
another	 object.	 This	 prevents	 the	 classic	 ‘reinventing	 the	 wheel’	 situation.
Inheritance	is	one	of	the	most	powerful	features	of	OOP.	In	this	chapter,	we	will
see	how	to	use	inheritance	in	a	simple	example	and	how	we	can	create	our	own
control	that	inherits	from	an	existing	control.

Adding	a	Class	to	a	Java	Project
The	 first	 step	 in	 creating	our	own	object	 is	 to	define	 the	 class	 from	which	 the
object	will	 be	 created.	This	 step	 (and	all	 following	 steps)	 is	best	 illustrated	by
example.	In	the	example	here,	we	will	be	creating	Widget	objects	that	have	two
properties:	a	color	and	a	size.	Start	a	new	project	in	Netbeans	–	name	the	project
WidgetTest.	Delete	default	code	in	file	named	WidgetTest.java.	This	will	be	a
simple	 console	 application	 for	 testing	 any	 widgets	 we	 create.	 Use	 this	 initial
code	for	WidgetTest.java:	package	widgettest;	public	class	WidgetTest	{

public	static	void	main(String	args[])	{
System.out.println("Testing	the	Widget!!\n");	}

}

Save	the	project.	Run	the	code	to	make	sure	it	works.	You	should	see	this	output

window:	

We	 need	 to	 add	 a	 class	 to	 this	 project	 to	 allow	 the	 definition	 of	 our	Widget
objects.	We	 could	 add	 the	 class	 in	 the	 existing	 file.	However,	 doing	 so	would
defeat	a	primary	advantage	of	objects,	that	being	re-use.	Hence,	we	will	create	a
separate	 file	 to	 hold	our	 class.	To	do	 this,	 in	Netbeans,	 right-click	 the	 project
name	(WidgetTest)	and	add	another	Java	class	file	to	the	project	(choose	New,
then	 Java	Class	…).	 Name	 that	 file	Widget	 –	 and	 add	 it	 to	 the	widgettest
source	package.	Delete	code	that	appears	in	the	file.	Type	these	lines:	package
widgettest;
public	class	Widget

{

}

All	code	needed	to	define	properties,	constructors	and	methods	for	this	class
will	be	between	the	curly	braces	defining	this	class.

Declaring	and	Constructing	an	Object
We	 now	 have	 a	 class	 we	 can	 use	 to	 create	Widget	 objects.	 Yes,	 it’s	 a	 very
simple	class,	but	 it	will	work.	There	are	 two	steps	 in	creating	an	object	from	a
class	 –	declare	 the	 object,	 then	construct	 the	 object.	Note	 these	 are	 the	 same
steps	we’ve	used	with	the	built-in	Java	objects.

Return	 to	 the	 example	 project.	 The	 Widget	 object	 will	 be	 created	 in	 the
WidgetTest.java	file.	All	the	code	we	write	in	this	example	will	be	in	this	files
main	method.

To	 declare	 a	Widget	 object	 named	myWidget,	 type	 this	 line	 of	 code	 in	 this
method:	Widget	myWidget;

Now,	 to	 construct	 this	 object,	 type	 this	 line	 of	 code:	 myWidget	 =	 new
Widget();

This	line	just	says	“give	me	a	new	widget.”	Our	Widget	object	is	now
complete,	ready	for	use.	The	main	method	should	appear	as:	public	static
void	main(String	args[])	{

System.out.println("Testing	the	Widget!!\n");	Widget	myWidget;
myWidget	=	new	Widget();

}

There’s	not	much	we	can	do	with	it	obviously	–	it	has	no	properties	or
methods,	but	it	does	exist!	You	may	wonder	how	we	can	construct	a	Widget
object	if	we	have	not	defined	a	constructor.	The	line	above	uses	the	default
constructor	automatically	included	with	every	class.	The	default	constructor
simply	creates	an	object	with	no	defined	properties.

Adding	Properties	to	a	Class
There	 are	 two	 ways	 to	 define	 properties	 within	 a	 class	 description:	 creating
direct	public	variables	or	creating	accessor	methods.	We	look	at	the	first	way
here.	Our	Widget	class	will	have	two	properties:	color	(a	String	type)	and	size
(an	 int	 type).	 Class	 properties	 can	 be	 any	 type	 of	 variable	 or	 object	 –	 yes,
properties	can	actually	be	other	objects!

To	define	 these	properties	 in	our	class,	go	 to	 the	Widget.java	 file	and	add	 the
shaded	lines	to	the	file:	public	class	Widget

{

public	String	color;
public	int	size;

}

The	keyword	public	is	used	so	the	properties	are	available	outside	the	class
when	the	object	is	created.

Now,	 return	 to	 the	WidgetTest.java	 file	 so	we	can	provide	some	definition	 to
these	 properties	 in	 our	 instance	 of	 the	 object.	 In	 the	main	 method,	 add	 this
shaded	code	 to	define	and	print	 the	properties:	public	static	void	main(String
args[])	{

System.out.println("Testing	the	Widget!!\n");	Widget	myWidget;
myWidget	=	new	Widget();
myWidget.color	=	"red";
myWidget.size	=	15;
System.out.println("Color	is	"	+	myWidget.color);
System.out.println("Size	is	"	+	myWidget.size);

}

Note,	to	refer	to	an	object	property,	you	use	this	format:

objectName.propertyName

Run	 the	 example	 project.	 In	 the	 output	 window	 you	 should	 see	 the	 two
properties	 printed	 at	 the	 end:	

We’ve	created	and	defined	our	first	object!	There’s	nothing	to	keep	you	from
creating	as	many	widgets	as	you	want.

Another	Way	to	Add	Properties	to	a
Class	We	mentioned	there	are	two	ways	to	add	properties	to	a	class.	Here,
we	will	look	at	the	second	method,	creating	accessor	methods.	The	rationale
behind	this	second	method	is	to	allow	validation	and/or	modification	of
properties,	giving	you	complete	control	over	the	property.	The	Java	swing
controls	use	such	methods	to	get	and	set	properties.

For	each	property	to	be	established	using	a	method,	first	determine	the	property
name	(name)	and	type	(type).	Declare	 the	property	using	the	private	keyword
(rather	 than	 the	 public	 keyword	 used	 now).	 Then	 type	 lines	 similar	 to	 these
inside	the	boundaries	of	your	class:	private	type	name;
public	type	getName()

{

return	name;

}

public	void	setName(type	n)

{

name	=	n;

}

There	are	two	methods	in	this	code:	a	get	method	(called	a	getter	method)	to
determine	the	current	property	value	and	a	set	method	(called	a	setter
method)	to	establish	a	new	property	value.	A	local	variable	(n)	is	used	to	hold
the	property	value.

With	 such	methods,	 a	property	 for	 an	 object	 (objectName)is	 accessed	 using:
property	=	objectName.getName();

And	is	set	using:

objectName.setName(property);

Note	a	user	cannot	directly	access	the	variable	representing	the	property	value.

The	use	of	this	technique	is	best	illustrated	with	example.	For	our	Widget	class,
the	color	property	can	be	established	using:	private	String	color;
public	String	getColor()

{

return	color;

}

public	void	setColor(String	c)

{

color	=	c;

}

In	this	snippet,	color	is	now	a	local	variable	representing	the	Widget	color.
This	variable	cannot	be	accessed	directly.	The	getColor	method	is	used	to
determine	the	widget	color,	while	the	setColor	method	is	used	to	provide	a
color	value.

For	the	size	property	in	our	Widget	class,	we	can	use:	private	int	size;
public	int	getSize()

{

return	size;

}

public	void	setSize(int	s)

{

size	=	s;

}

Go	 to	 the	 Widget.java	 file	 and	 replace	 the	 code	 with	 the	 above	 accessor
methods.	The	file	should	appear	as:	public	class	Widget

{

private	String	color;
public	String	getColor()

{

return	color;

}

public	void	setColor(String	c)

{

color	=	c;

}

private	int	size;
public	int	getSize()

{

return	size;

}

public	void	setSize(int	s)

{

size	=	s;

}

}

Now,	go	to	the	WidgetTest.java	file	and	make	the	shaded	changes	to	use	the	set
and	get	methods:	public	static	void	main(String	args[])	{

System.out.println("Testing	the	Widget!!\n");	Widget	myWidget;
myWidget	=	new	Widget();
myWidget.setColor("red");
myWidget.setSize(15);
System.out.println("Color	is	"	+	myWidget.getColor());
System.out.println("Size	is	"	+	myWidget.getSize());

}

Run	the	project.	You	will	see	the	same	results	in	the	console	window.

As	written,	this	new	code	offers	no	advantage	to	directly	reading	and	writing	the
property	value.	The	real	advantage	to	using	methods	rather	than	public	variables
is	that	property	values	can	be	validated	and	modified.	Let	see	how	to	do	such	a
validation.

Validating	Class	Properties
Validation	of	class	properties	is	done	in	the	set	method	(the	get	method	can	be
used	 to	 modify	 properties	 before	 returning	 values).	 In	 this	 method,	 we	 can
examine	the	value	provided	by	the	user	and	see	if	it	meets	the	validation	criteria
(in	range,	positive,	non-zero,	etc.).

For	 our	Widget	 example,	 let’s	 assume	 there	 are	 only	 three	 color	 possibilities:
red,	white,	or	blue	 and	 that	 the	size	must	be	between	5	 and	40.	Return	 to	 the
example	and	open	the	code	window	for	Widget.java.	Modify	the	setColor	and
setSize	methods	with	the	shaded	changes:	public	class	Widget

{

private	String	color;
public	String	getColor()

{

return	color;

}

public	void	setColor(String	c)

{

if	(c.toUpperCase().equals("RED"))

{

color	=	c;

}

else	if	(c.toUpperCase().equals("WHITE"))	{
color	=	c;

}

else	if	(c.toUpperCase().equals("BLUE"))	{
color	=	c;

}

else

{

System.out.println("Bad	widget	color!");	}

}

private	int	size;
public	int	getSize()

{

return	size;

}

public	void	setSize(int	s)

{

if	(s	>=	5	&&	s	<=	40)	{
size	=	s;

}

else

{

System.out.println("Bad	widget	size!");	}

}

}

Notice	 how	 the	 validation	 works	 –	 a	 message	 will	 appear	 if	 a	 bad	 value	 is
selected.

Return	 to	 the	WidgetTest.java	 code	 and	make	 the	 shaded	 change	 (use	 a	 bad
color):	public	static	void	main(String	args[])	{

System.out.println("Testing	the	Widget!!\n");	Widget	myWidget;
myWidget	=	new	Widget();
myWidget.setColor("green");
myWidget.setSize(15);
System.out.println("Color	is	"	+	myWidget.getColor());
System.out.println("Size	is	"	+	myWidget.getSize());	}

Rerun	the	application	and	a	message	announcing	a	bad	color	property	should

appear:	

Reset	the	color	property	to	a	proper	value,	change	the	size	property	to	a	bad
value	and	make	sure	its	validation	also	works.

We	 suggest	 that,	 except	 in	 very	 simple	 classes,	 you	 always	 use	 the	 method
approach	 to	setting	and	 reading	properties.	This	approach,	 though	a	 little	more
complicated,	 allows	 the	most	 flexibility	 in	 your	 application.	Using	 the	method
approach,	you	can	also	make	properties	read-only	and	write-only.	Consult	Java
documentation	for	information	on	doing	this.

Adding	Constructors	to	a	Class
Once	an	object	is	declared,	it	must	be	created	using	a	constructor.	A	constructor
is	a	method	with	the	same	name	as	the	class	that	provides	a	way	to	initialize	an
object.	Each	class	has	a	default	constructor.	This	is	the	constructor	we	have	been
using	with	our	simple	example.	The	default	constructor	simply	creates	the	object
with	no	properties	at	all.

Constructors	 are	 usually	 used	 to	 establish	 some	 set	 of	 default	 properties.	 A
constructor	that	does	that	is:	public	ClassName()

{

[Set	properties	here]

}

This	code	is	usually	placed	near	the	top	of	the	class	description.

One	way	to	establish	initial	properties	for	our	Widget	class	is:	public	Widget()

{

color	=	"red";
size	=	12;

}

This	will	work,	but	the	properties	would	not	be	checked	in	the	validation	code
just	written.	To	validate	initial	properties,	use	this	code	instead:	public
Widget()

{

this.setColor("red");
this.setSize(12);

}

}

where	the	keyword	this	refers	to	the	current	object.	Type	the	above	code	in
the	Widget	class	example.	Put	the	code	after	the	line	declaring	the	color
variable.	Then,	return	to	the	WidgetTest.java	code,	delete	the	two	lines
setting	the	color	and	size	properties,	and	then	rerun	the	application.	You
should	see	(in	the	console	window)	that	the	color	is	now	red	and	the	size	is
12.

You	can	also	defined	overloaded	constructors.	Such	constructors	still	have	the
class	name,	but	have	different	argument	lists,	providing	the	potential	for	multiple
ways	 to	 initialize	 an	 object.	 We	 have	 seen	 overloaded	 constructors	 with	 the
built-in	Java	objects.	In	our	Widget	example,	say	we	wanted	to	allow	the	user	to
specify	 the	 initial	 color	 and	 size	 at	 the	 same	 time	 the	 object	 is	 created.	 A
constructor	that	does	this	task	is:	public	Widget(String	c,	int	s)

{

this.setColor(c);
this.setSize(s);

}

Type	this	code	below	the	default	constructor,	Widget(),	in	the	Widget.java
code..

Return	to	the	WidgetTest.java	code	and	modify	the	constructor	line	so	it	looks
like	the	shaded	line:	public	static	void	main(String	args[])	{

System.out.println("Testing	the	Widget!!\n");	Widget	myWidget;
myWidget	=	new	Widget("blue",	22);
System.out.println("Color	is	"	+	myWidget.getColor());
System.out.println("Size	is	"	+	myWidget.getSize());	}

This	code	now	uses	the	new	overloaded	constructor,	setting	the	color	to	blue
and	the	size	to	22.

Run	 the	 application	 to	 make	 sure	 it	 works.	 You	 should	 see:	

A	class	can	have	any	number	of	constructors.	The	only	limitation	is	that	no	two
constructors	 can	 have	 matching	 argument	 lists	 (same	 number	 and	 type	 of
arguments).

Adding	Methods	to	a	Class
Class	methods	allow	objects	to	perform	certain	tasks.	Like	constructors,	a	class
can	have	overloaded	methods,	similar	to	the	overloaded	methods	we	have	seen
with	the	built-in	objects	of	Java.

To	 add	 a	 method	 to	 a	 class	 description,	 first	 select	 a	 name	 and	 a	 type	 of
information	 the	 method	 will	 return	 (if	 there	 is	 any	 returned	 value).	 The
framework	for	a	method	named	myMethod	that	returns	a	type	value	is:	public
type	myMethod()

{

}

This	code	is	usually	placed	following	the	property	methods	in	a	class
description.

In	our	Widget	 example,	 say	we	want	 a	method	 that	describes	 the	 color	of	 the
widget.	Such	a	method	would	look	like	this:	public	String	describeWidget()

{

return	("My	widget	is	colored	"	+	color);	}

Type	the	above	code	before	the	closing	brace	for	the	Widget.java	file	in	our
example.

To	 use	 an	 object’s	 method	 in	 code,	 use	 the	 following	 syntax:
objectName.methodName(Arguments)

In	this	syntax,	objectName	is	the	name	of	the	object,	methodName	the	name
of	the	method	and	Arguments	is	a	comma-delimited	list	of	any	arguments
needed	by	the	method.

To	 try	 the	 DescribeWidget	 method	 in	 our	 example,	 return	 to	 the
WidgetTest.java	code	and	modify	the	shaded	line	as	shown:	public	static	void

main(String	args[])	{
System.out.println("Testing	the	Widget!!\n");	Widget	myWidget;
myWidget	=	new	Widget("blue",	22);
System.out.println(myWidget.describeWidget());
System.out.println("Size	is	"	+	myWidget.getSize());	}

In	this	code,	we	now	use	the	method	to	describe	widget	color.	Run	the
application	to	check	that	the	method	works	as	expected.	The	output	window
should	appear	as:	

Let’s	 try	another	method.	This	method	(compareWidget)	compares	a	widget’s
size	to	a	standard	widget	(which	has	size	20):	public	String	compareWidget()

{

int	diff;
diff	=	size	-	20;
if	(diff	>	0)

{

return	("My	widget	is	"	+	String.valueOf(diff)	+	"	units	larger
than	a	standard	widget.");	}

else

{

return	("My	widget	is	"	+	String.valueOf(Math.abs(diff))	+	"	units	smaller
than	a	standard	widget.");	}

}

Type	 the	 CompareWidget	 method	 into	 Widget.java,	 then	 modify
WidgetTest.java	 as	 (shaded	 line	 is	 new):	 public	 static	 void	 main(String
args[])	{

System.out.println("Testing	the	Widget!!\n");	Widget	myWidget;
myWidget	=	new	Widget("blue",	22);
System.out.println(myWidget.describeWidget());
System.out.println("Size	is	"	+	myWidget.getSize());
System.out.println(myWidget.compareWidget());

}

Run	 the	 application	 to	 see	 this	 new	 output	 window:	

Methods	can	also	have	arguments	and	overload	other	methods.	Suppose	 in	our
example,	we	want	to	input	the	size	of	a	widget	(s,	an	int	type)	we	would	like	to
compare	 our	 widget	 to.	 This	 method	 does	 the	 job:	 public	 String
compareWidget(int	s)

{

int	diff;
diff	=	size	-	s;
if	(diff	>	0)

{

return	("My	widget	is	"	+	String.valueOf(diff)	+	"	units	larger
than	your	widget.");	}

else

{

{

return	("My	widget	is	"	+	String.valueOf(Math.abs(diff))	+	"	units
smaller	than	your	widget.");	}

}

Note	this	method	has	the	same	name	as	our	previous	method
(compareWidget),	but	the	different	argument	list	differentiates	this
overloaded	version	from	the	previous	version.

Type	 the	 overloaded	 version	 of	CompareWidget	 into	 the	Widget.java	 class
code.	Then,	modify	the	WidgetTest.java	code	to	use	this	method	(shaded	line	is
new):	public	static	void	main(String	args[])	{

System.out.println("Testing	the	Widget!!\n");	Widget	myWidget;
myWidget	=	new	Widget("blue",	22);
System.out.println(myWidget.describeWidget());
System.out.println("Size	is	"	+	myWidget.getSize());
System.out.println(myWidget.compareWidget()	+	"\n"	+

myWidget.compareWidget(15));

}

Run	 the	 modified	 application	 and	 you	 should	 see:	

Inheritance
The	people	you	built	the	Widget	class	for	are	so	happy	with	it,	they’ve	decided
they	now	want	to	develop	an	‘armed’	widget.	This	new	widget	will	be	just	like
the	old	widget	(have	a	color	and	size),	but	will	also	have	arms.	This	means	this
new	 class	 (ArmedWidget)	will	 have	 one	 additional	 property	 –	 the	 number	 of
arms.

To	build	the	ArmedWidget	class,	we	could	start	from	scratch	–	develop	a	class
with	 three	properties,	 a	method	 that	 describes	 the	 armed	widget	 and	 a	method
that	compares	the	armed	widget.	Or,	we	could	take	advantage	of	a	very	powerful
concept	 in	 object-oriented	 programming,	 inheritance.	 Inheritance	 is	 the	 idea
that	you	can	base	one	class	on	another	existing	class,	 adding	properties	and/or
methods	as	needed.	This	saves	lots	of	work.

Let’s	 see	 how	 inheritance	 works	 with	 our	 widget.	 Return	 to	 the	WidgetTest
project	 we’ve	 been	 using.	 Add	 another	 class	 file	 to	 the	 project,	 naming	 it
ArmedWidget.java	–	and	add	it	to	the	widgettest	source	package.	Delete	code
that	appears	in	the	file.	Use	this	code	for	the	class:	package	widgettest;
public	class	ArmedWidget	extends	Widget	{

private	int	arms;
public	int	getArms()

{

return	arms;

}

public	void	setArms(int	a)

{

arms	=	a;

}

}

}

The	key	line	here	is:

extends	Widget

This	makes	all	the	properties	and	methods	of	the	Widget	class	available	to	our
new	class	(ArmedWidget).	The	remaining	code	simply	adds	the	unvalidated
property	arms.	We	could,	of	course,	add	validation	to	this	property	if	desired.

Now,	 return	 to	 the	WidgetTest.java	 code	 file.	 We	 will	 modify	 the	 code	 to
create,	 define,	 and	 describe	 an	 ArmedWidget	 object.	 The	 modifications	 are
shaded:	public	static	void	main(String	args[])	{

System.out.println("Testing	the	Widget!!\n");	Widget	myWidget;
myWidget	=	new	Widget("blue",	22);
System.out.println(myWidget.describeWidget());
System.out.println("Size	is	"	+	myWidget.getSize());
System.out.println(myWidget.compareWidget()	+	"\n"	+
myWidget.compareWidget(15));
ArmedWidget	myArmedWidget;
myArmedWidget	=	new	ArmedWidget();
myArmedWidget.setColor("white");
myArmedWidget.setSize(33);
myArmedWidget.setArms(11);
System.out.println(myArmedWidget.describeWidget());
System.out.println("My	armed	widget	has	"	+

String.valueOf(myArmedWidget.getArms())	+	"	arms.");
System.out.println("Size	is	"	+
String.valueOf(myArmedWidget.getSize()));
System.out.println(myArmedWidget.compareWidget()	+	"\n"
+	myArmedWidget.compareWidget(15));

}

Run	 the	 application	 and	 view	 the	 output	 window	 to	 see:	

You	see	the	descriptions	of	both	the	old	‘standard’	widget	and	the	new,
improved	‘armed’	widget.

You	may	have	noticed	a	couple	of	drawbacks	 to	 this	 inherited	class.	First,	 the
method	 used	 to	 describe	 the	 widget	 (describeWidget)	 only	 provides	 color
information.	We	 added	 an	 extra	 line	 of	 code	 to	 define	 the	 number	 of	 arms.	 It
would	be	nice	if	this	information	could	be	part	of	the	describeWidget	method.
That	process	is	called	overriding	methods.	Second,	we	need	to	know	how	to	use
the	constructors	developed	for	the	Widget	class	in	our	new	ArmedWidget	class.
Let’s	attack	both	drawbacks.

When	a	class	extends	(or	inherits)	another	class,	it	can	pick	and	choose	what	it
wants	 to	 inherit.	 If	 your	new	class	 has	 a	method	 that	 has	 the	 same	name	 (and
same	argument	 list)	as	a	method	 in	 the	base	class	 (the	class	you	 inherit	 from),
that	new	method	will	override	(or	replace)	the	base	class	method.	An	example
will	make	this	clear.

Go	 to	 the	ArmedWidget.java	 file	and	add	 this	method	 to	 the	class	definition:
public	String	describeWidget()

{

return	("My	armed	widget	is	colored	"	+	this.getColor()	+	"	and	has	"
+	String.valueOf(arms)	+	"	arms.");	}

Some	comments	about	this	method.	This	adds	a	method	describeWidget	to

the	ArmedWidget	class,	allowing	the	number	of	arms	to	be	included	in	the
description.	It	overrides	the	method	in	the	Widget	class.	Since	arms	is	a	local
variable	in	the	class,	it	is	referred	to	by	its	name.	The	color	property	is	not
local	to	the	ArmedWidget	class.	Note,	to	refer	to	properties	inherited	from
the	base	class,	you	use	the	syntax:	this.getPropertyName()

Hence,	in	this	example,	we	use:

this.getColor()

to	refer	to	the	inherited	color	property.

Now,	 rerun	 the	 application	 and	 the	 output	 window	 should	 display:	

The	armed	widget	description	now	includes	the	number	of	arms	(making	the
line	of	code	following	the	describeWidget	method	invocation	redundant).
Any	method	in	the	base	class	can	be	overridden	using	the	same	approach
followed	here.

Before	 leaving	 this	 example,	 let’s	 see	how	constructors	 in	 base	 classes	 can	be
used	in	the	new	class.	Any	base	class	constructor	can	be	called	using	this	syntax:
super();

where	there	may	or	not	be	an	argument	list.	Recall	the	default	constructor	in
the	Widget	class	created	a	red	widget	that	was	12	units	in	size.	To	use	this
constructor	in	the	ArmedWidget	class	(while	at	the	same	time,	setting	the

number	of	arms	to	4),	add	this	constructor	to	that	class	code	file:	public
ArmedWidget()

{

super();
this.setArms(4);

}

This	constructor	will	first	invoke	the	Widget	constructor,	then	add	the	new
property	value.

Now,	 return	 to	 the	WidgetTest.java	 code	 and	 delete	 the	 three	 lines	 defining
properties	 for	 the	ArmedWidget	 and	 the	 line	printing	out	 the	number	of	arms
(since	that	information	is	now	in	the	describeWidget	method).	Run	the	modified
application	 and	 note	 in	 the	 output	 window:	

As	expected,	the	new	default	armed	widget	is	red,	size	12,	and	has	4	arms.

We’re	done	playing	with	our	widget	example.	The	 information	you’ve	 learned
should	help	when	you	want	 to	 implement	 custom	objects	 in	your	 applications.
The	 final	 version	 of	 our	 Widget	 project	 is	 saved	 as	 WidgetTest	 in	 the
\LearnJava\LJ	Code\Appendix	II\	project	group.

Let’s	leave	our	‘make-believe’	widget	world	and	do	a	real-world	OOP	example.
We’ll	rebuild	the	savings	account	example	we	did	way	back	in	Class	2	using	a
Savings	object.

Example	II-1
Savings	Account

Start	 a	 new	 empty	 project	 in	 Netbeans.	 Name	 the	 project	 Savings.	 Delete
default	code	in	Java	file	named	Savings.	The	idea	of	this	project	is	to	determine
how	much	 you	 save	 by	making	monthly	 deposits	 into	 a	 savings	 account.	 For
those	interested,	the	mathematical	formula	used	is:	F	=	D	[(1	+	I)M	-	1]	/	I	where

F	-	Final	amount
D	-	Monthly	deposit	amount
I	-	Monthly	interest	rate
M	-	Number	of	months

The	finished	frame	will	look	like	this:	

We	will	 do	 the	 computation	 using	 object-oriented	 programming	 (OOP),	 rather
than	the	‘sequential’	process	followed	in	Example	2-3.	The	input	values	(D,	I,
M)	will	be	class	properties,	while	the	computation	of	F	should	be	a	class	method.

1.	 We	 will	 place	 4	 labels,	 4	 text	 fields,	 and	 2	 buttons	 on	 the	 frame.	 The
arrangement	in	the	GridBagLayout	will	be.

Properties	set	in	code:

Savings	Frame:
title Savings	Account

depositLabel:
text Monthly	Deposit
gridx 0
gridy 0

interestLabel:
text Yearly	Interest
gridx 0
gridy 1

monthsLabel:
text Number	of	Months
gridx 0
gridy 2

finalLabel:
text Final	Balance
gridx 0
gridy 3

depositTextField:
text [Blank]

columns 10
gridx 2
gridy 0

interestTextField:
text [Blank]
columns 10
gridx 2
gridy 1

monthsTextField:
text [Blank]
columns 10
gridx 2
gridy 2

finalTextField:
text [Blank]
Columns 10
gridx 2
gridy 3

calculateButton:
text Calculate
gridx 1
gridy 4

exitButton:
text Exit
gridx 1
gridy 5

2.	We	will	 build	 the	 project	 in	 three	 stages	 –	 frame,	 controls,	 code.	Type	 this
basic	framework	code	to	establish	the	frame	and	its	windowClosing	event:	/
*

*	Savings.java

*/

package	savings;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	Savings	extends	JFrame

{

public	static	void	main(String	args[])	{
//construct	frame
new	Savings().show();

}

public	Savings()

{

//	code	to	build	the	form
setTitle("Savings	Account");
addWindowListener(new	WindowAdapter()	{

public	void	windowClosing(WindowEvent	e)	{
exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	}
private	void	exitForm(WindowEvent	e)	{

System.exit(0);

}

}

Run	the	code	to	insure	the	frame	appears	(it	will	be	very	small	and	empty):	

3.	Now,	we	add	the	controls	and	empty	event	methods.	Declare	and	create	the	10
controls	as	class	level	objects:	JLabel	depositLabel	=	new	JLabel();

JLabel	interestLabel	=	new	JLabel();	JLabel	monthsLabel	=	new
JLabel();
JLabel	finalLabel	=	new	JLabel();
JTextField	depositTextField	=	new	JTextField();	JTextField
interestTextField	=	new	JTextField();	JTextField	monthsTextField	=	new
JTextField();	JTextField	finalTextField	=	new	JTextField();	JButton
calculateButton	=	new	JButton();	JButton	exitButton	=	new	JButton();

Position	and	add	each	control.	Add	methods	for	controls	we	need	events	for
(calculateButton	and	exitButton	in	this	case):	//	position	controls	(establish
event	methods)	GridBagConstraints	gridConstraints	=	new
GridBagConstraints();
depositLabel.setText("Monthly	Deposit");	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(depositLabel,	gridConstraints);
interestLabel.setText("Yearly	Interest");	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(interestLabel,	gridConstraints);
monthsLabel.setText("Number	of	Months");	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	2;
getContentPane().add(monthsLabel,	gridConstraints);
finalLabel.setText("Final	Balance");	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
getContentPane().add(finalLabel,	gridConstraints);
depositTextField.setText("");
depositTextField.setColumns(10);
gridConstraints.gridx	=	2;

gridConstraints.gridy	=	0;
getContentPane().add(depositTextField,	gridConstraints);
depositTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
depositTextFieldActionPerformed(e);

}

});

interestTextField.setText("");
interestTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
getContentPane().add(interestTextField,	gridConstraints);
interestTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
interestTextFieldActionPerformed(e);	}

});

monthsTextField.setText("");
monthsTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
getContentPane().add(monthsTextField,	gridConstraints);
monthsTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
monthsTextFieldActionPerformed(e);

}

});

finalTextField.setText("");
finalTextField.setFocusable(false);

finalTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	3;
getContentPane().add(finalTextField,	gridConstraints);
calculateButton.setText("Calculate");	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	4;
getContentPane().add(calculateButton,	gridConstraints);
calculateButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
calculateButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
exitButton.setFocusable(false);
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	5;
getContentPane().add(exitButton,	gridConstraints);
exitButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
exitButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=
Toolkit.getDefaultToolkit().getScreenSize();	setBounds((int)	(0.5
(screenSize.width	-	getWidth())),	(int)	(0.5	(screenSize.height	-getHeight())),
getWidth(),	getHeight());	Add	the	methods	that	transfer	focus	from	one	text
field	to	the	next:	private	void
depositTextFieldActionPerformed(ActionEvent	e)	{

depositTextField.transferFocus();

}

private	void	interestTextFieldActionPerformed(ActionEvent	e)	{
interestTextField.transferFocus();

}

private	void	monthsTextFieldActionPerformed(ActionEvent	e)	{
monthsTextField.transferFocus();

}

Lastly,	add	the	two	methods	(empty	for	now)	needed	(place	after	the	frame
constructor):	private	void	calculateButtonActionPerformed(ActionEvent
e)	{

}

private	void	exitButtonActionPerformed(ActionEvent	e)	{

}

Run	to	see	the	finished	control	placement:	

4.	 Add	 the	 validateDecimalNumber	 method	 for	 input	 validation:	 public
boolean	validateDecimalNumber(JTextField	tf)	{

//	checks	to	see	if	text	field	contains	//	valid	decimal	number	with	only
digits	and	a	single	decimal	point	String	s	=	tf.getText().trim();
boolean	hasDecimal	=	false;
boolean	valid	=	true;

if	(s.length()	==	0)

{

valid	=	false;

}

else

{

for	(int	i	=	0;	i	<	s.length();	i++)	{
char	c	=	s.charAt(i);
if	(c	>=	'0'	&&	c	<=	'9')	{

continue;

}

else	if	(c	==	'.'	&&	!hasDecimal)	{
hasDecimal	=	true;

}

else

{

//	invalid	character	found
valid	=	false;

}

}

}

if	(valid)

{

tf.setText(s);

}

else

{

tf.setText("");
tf.requestFocus();

}

return	(valid);

}

5.	Add	a	SavingsAccount.java	class	file	(to	 the	savings	source	package)	from
which	 to	 create	 SavingsAccount	 objects.	 The	 class	 will	 have	 three	 public
properties:	 deposit,	 interest	 and	months,	 all	 double	 types.	 The	 class	 will
have	a	single	method:	computeFinal,	which	will	compute	the	final	amount	(a
double	type).

package	savings;
public	class	SavingsAccount

{

public	double	deposit;
public	double	interest;
public	double	months;

public	double	computeFinal()

{

double	intRate;
if	(interest	==	0)

{

{

//	zero	interest	case
return	(deposit	*	months);

}

else

{

intRate	=	interest	/	1200;
return	(deposit	*	(Math.pow((1	+	intRate),	months)	-1)	/

intRate);	}

}

}

6.	 Write	 code	 for	 the	 btnCalculate	 button	 Click	 event:	 private	 void
calculateButtonActionPerformed(ActionEvent	e)	{

//	make	sure	each	input	is	a	valid	number	if
(!validateDecimalNumber(monthsTextField)	||

!validateDecimalNumber(interestTextField)	||
!validateDecimalNumber(depositTextField))	{

//	if	one	or	more	fields	not	valid	number,	then	exit	method	return;
}

//	create	and	construct	Savings	object	SavingsAccount	mySavings;
mySavings	=	new	SavingsAccount();
//	set	properties	from	text	boxes
mySavings.deposit	=

Double.valueOf(depositTextField.getText()).doubleValue();
mySavings.interest	=
Double.valueOf(interestTextField.getText()).doubleValue();
mySavings.months	=
Double.valueOf(monthsTextField.getText()).doubleValue();	//	compute
final	value	and	put	in	text	box	finalTextField.setText(new

DecimalFormat("0.00").format(mySavings.computeFinal()));	}

In	this	code,	notice	each	typed	value	is	checked	for	proper	format.	Any	text
fields	with	improper	values	are	cleared	and	given	focus	to	allow	the	user	to	try
again.	Calculations	do	not	proceed	until	all	inputs	are	valid.	Then,	the	code
creates	a	mySavings	object	from	the	SavingsAccount	class.	It	then	reads	the
three	input	values	(monthly	deposit,	interest	rate,	number	of	months)	from	the
text	fields,	establishes	the	object	properties,	computes	the	final	balance	(using
the	computeFinal	method)	and	puts	that	result	in	a	text	field.

Compare	this	OOP	code	with	the	more	‘sequential’	code	used	in	Example	2-
3,	where	we	established	three	variables	(deposit,	interest,	months)	and
computed	a	final	amount	using	a	formula	within	the	event	method.	The	two
approaches	are	not	that	different.	The	advantage	to	the	OOP	approach	is	that
the	SavingsAccount	class	can	be	re-used	in	other	applications	and	it	would	be
very	simple	to	model	other	savings	account	objects	within	this	application.

7.	Now,	write	code	for	the	btnExit	button	Click	event.

private	void	exitButtonActionPerformed(ActionEvent	e)	{
System.exit(0);

}

Here	is	the	complete	Savings.java	code	listing	(code	added	to	basic	frame	code
is	shaded):	/	*
*	Savings.java

*/

package	savings;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.text.*;

public	class	Savings	extends	JFrame

{

JLabel	depositLabel	=	new	JLabel();
JLabel	interestLabel	=	new	JLabel();	JLabel	monthsLabel	=	new
JLabel();
JLabel	finalLabel	=	new	JLabel();
JTextField	depositTextField	=	new	JTextField();	JTextField
interestTextField	=	new	JTextField();	JTextField	monthsTextField	=	new
JTextField();	JTextField	finalTextField	=	new	JTextField();	JButton
calculateButton	=	new	JButton();	JButton	exitButton	=	new	JButton();

public	static	void	main(String	args[])	{
//construct	frame
new	Savings().show();

}

public	Savings()

{

//	code	to	build	the	form
setTitle("Savings	Account");
addWindowListener(new	WindowAdapter()	{

public	void	windowClosing(WindowEvent	e)	{
exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());
//	position	controls	(establish	event	methods)	GridBagConstraints
gridConstraints	=	new	GridBagConstraints();
depositLabel.setText("Monthly	Deposit");	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;

getContentPane().add(depositLabel,	gridConstraints);
interestLabel.setText("Yearly	Interest");	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(interestLabel,	gridConstraints);
monthsLabel.setText("Number	of	Months");	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	2;
getContentPane().add(monthsLabel,	gridConstraints);
finalLabel.setText("Final	Balance");	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	3;
getContentPane().add(finalLabel,	gridConstraints);
depositTextField.setText("");
depositTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
getContentPane().add(depositTextField,	gridConstraints);
depositTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
depositTextFieldActionPerformed(e);

}

});

interestTextField.setText("");
interestTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
getContentPane().add(interestTextField,	gridConstraints);
interestTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
interestTextFieldActionPerformed(e);	}

});

monthsTextField.setText("");
monthsTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
getContentPane().add(monthsTextField,	gridConstraints);
monthsTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
monthsTextFieldActionPerformed(e);

}

});

finalTextField.setText("");
finalTextField.setFocusable(false);
finalTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	3;
getContentPane().add(finalTextField,	gridConstraints);
calculateButton.setText("Calculate");	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	4;
getContentPane().add(calculateButton,	gridConstraints);
calculateButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
calculateButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
exitButton.setFocusable(false);
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	5;
getContentPane().add(exitButton,	gridConstraints);

exitButton.addActionListener(new	ActionListener()	{
public	void	actionPerformed(ActionEvent	e)	{

exitButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	 setBounds((int)	 (0.5
(screenSize.width	 -	getWidth())),	 (int)	 (0.5	 (screenSize.height	 -	getHeight())),
getWidth(),	getHeight());

}

private	void	exitForm(WindowEvent	e)	{
System.exit(0);

}

private	void	calculateButtonActionPerformed(ActionEvent	e)	{
//	make	sure	each	input	is	a	valid	number	if
(!validateDecimalNumber(monthsTextField)	||

!validateDecimalNumber(interestTextField)	||
!validateDecimalNumber(depositTextField))	{

//	if	one	or	more	fields	not	valid	number,	then	exit	method	return;

}

//	create	and	construct	Savings	object	SavingsAccount	mySavings;
mySavings	=	new	SavingsAccount();
//	set	properties	from	text	boxes
mySavings.deposit	=

Double.valueOf(depositTextField.getText()).doubleValue();
mySavings.interest	=

Double.valueOf(interestTextField.getText()).doubleValue();
mySavings.months	=
Double.valueOf(monthsTextField.getText()).doubleValue();	//	compute	final
value	 and	 put	 in	 text	 box	 finalTextField.setText(new
DecimalFormat("0.00").format(mySavings.computeFinal()));	}

private	void	exitButtonActionPerformed(ActionEvent	e)	{
System.exit(0);

}

private	void	depositTextFieldActionPerformed(ActionEvent	e)	{
depositTextField.transferFocus();

}

private	void	interestTextFieldActionPerformed(ActionEvent	e)	{
interestTextField.transferFocus();

}

private	void	monthsTextFieldActionPerformed(ActionEvent	e)	{
monthsTextField.transferFocus();

}

public	boolean	validateDecimalNumber(JTextField	tf)	{
//	checks	to	see	if	text	field	contains	//	valid	decimal	number	with	only
digits	and	a	single	decimal	point	String	s	=	tf.getText().trim();
boolean	hasDecimal	=	false;
boolean	valid	=	true;
if	(s.length()	==	0)

{

valid	=	false;

}

else

{

for	(int	i	=	0;	i	<	s.length();	i++)	{
char	c	=	s.charAt(i);
if	(c	>=	'0'	&&	c	<=	'9')	{

continue;

}

else	if	(c	==	'.'	&&	!hasDecimal)	{
hasDecimal	=	true;

}

else

{

//	invalid	character	found
valid	=	false;

}

}

}

if	(valid)

{

tf.setText(s);

}

else

{

tf.setText("");
tf.requestFocus();

}

return	(valid);

}

}

Run	the	code.	Play	with	the	program.	Make	sure	it	works	properly.	Here’s	a	run

I	made:	

Save	 the	 project.	 This	 is	 saved	 as	 the	ExampleII-1	 project	 in	 \LearnJava\LJ
Code\Appendix	II\	project	group.

In	Example	2-4,	we	modified	this	example	such	that	you	could	enter	any	three
values	and	have	the	missing	value	computed.	If	you’re	adventurous,	try	creating
another	 object	 that	 inherits	 from	 the	 SavingsAccount	 class.	 Have	 your	 new
object	 implement	methods	that	compute	the	missing	value.	The	equations	were
given	in	Example	2-4.

Inheriting	from	Java	Controls
We	 saw	 in	 the	Widget	 example	 that	 we	 could	 create	 new,	 enhanced	 widgets
from	an	existing	widget	class.	We	can	do	the	same	with	the	existing	Java	Swing
controls.	 That	 is,	 we	 can	 design	 our	 own	 controls,	 based	 on	 the	 standard
controls,	 with	 custom	 features.	 (Actually,	 you	 can	 design	 controls	 that	 aren’t
based	 on	 existing	 controls,	 but	 that’s	 beyond	 the	 scope	 of	 this	 discussion.)
Inheriting	 from	existing	controls	allow	us	 to:	Establish	new	default	values	 for
properties.	Introduce	new	properties.
Establish	commonly	used	methods.

As	 an	 example,	 note	whenever	 a	 text	 field	 is	 used	 for	 numeric	 input	 (like	 the
Savings	Account	example),	we	need	to	validate	 the	 typed	values	 to	make	sure
only	numeric	input	is	provided.	Wouldn’t	it	be	nice	to	have	a	text	field	control
with	 this	 validation	 “built-in?”	To	demonstrate	 inheritance	 from	 Java	 controls,
we	will	build	just	this	control	–	a	numeric	text	field.

Our	numeric	text	field	control	will	be	built	in	several	stages	to	demonstrate	each
step.	 Once	 done,	 we	 will	 have	 a	 control	 that	 anyone	 can	 add	 to	 their	 “Java
toolbox”	 and	 use	 in	 their	 applications.	The	 specifications	 for	 our	 numeric	 text
field	are:

➢	Blue	background	color	➢	Yellow	foreground	color	➢	Size	14,	Arial	font
➢	Allows	numeric	digits	(0-9)	➢	Allows	a	backspace	➢	Allows	a	single
decimal	 point	 (optional)	➢	Allows	 a	 negative	 sign	 (optional)	➢	 Ignores
all	other	keystrokes

Note	 some	 specifications	 address	 setting	 and	 defining	 properties	 while	 others
(entry	 validation)	 require	 establishing	 a	 common	 control	 event	 method.	 Let’s
start	with	setting	properties.

Building	a	Custom	Control
Let’s	 build	 a	 framework	 to	 out	 the	 new	 control,	 start	 a	 project	 named
NumericTextFieldTest.	Replace	the	default	code	with:	/	*
*	NumericTextFieldTest.java

*/

package	numerictextfieldtest;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	NumericTextFieldTest	extends	JFrame	{

public	static	void	main(String	args[])	{
//construct	frame
new	NumericTextFieldTest().show();

}

public	NumericTextFieldTest()

{

//	code	to	build	the	form
setTitle("Numeric	Text	Field	Test");	addWindowListener(new
WindowAdapter()	{

public	void	windowClosing(WindowEvent	e)	{
exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	//	position

controls
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	setBounds((int)	(0.5
(screenSize.width	-getWidth())),	(int)	(0.5	(screenSize.height	-getHeight())),
getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	e)	{
System.exit(0);

}

}

Run	to	see	an	empty	frame.

Now,	we’ll	build	a	 text	field	control	with	the	desired	background	color	(Blue),
foreground	 color	 (Yellow),	 and	 font	 (Size	 14,	Arial).	 Add	 a	 Java	 class	 filed
named	NumericTextField	to	the	project’s	source	folder.	This	file	will	define	our
new	control.	Type	these	lines	in	this	file:	package	numerictextfieldtest;
import	javax.swing.*;
import	javax.swing.event.*;
import	java.awt.*;
public	class	NumericTextField	extends	JTextField	{

}

Here	we	are	creating	a	new	class	named	NumericTextField	 that	 inherits	 from
the	JTextField	Swing	control.	Since	there	is	no	other	code,	this	new	control	will

act	 and	behave	 just	 like	 a	normal	 text	 field.	Nothing	will	 change	until	we	add
properties	and	methods	of	our	own.

We	want	our	numeric	 text	 field	 to	have	 a	default	 background	 color	 of	blue,	 a
default	 foreground	 color	 of	yellow	 and	 a	 default	 font	 of	 size	14,	Arial.	These
default	 properties	 are	 established	 in	 the	 default	 constructor	 for	 the	 control.
Modify	 the	NumericTextField	 class	 code	with	 the	 shaded	 lines	 to	 implement
such	a	constructor:	package	numerictextfieldtest;
import	javax.swing.*;
import	javax.swing.event.*;
import	java.awt.*;
import	java.awt.event.*;
public	class	NumericTextField	extends	JTextField	{

public	NumericTextField()

{

this.setBackground(Color.BLUE);
this.setForeground(Color.YELLOW);
this.setFont(new	Font("Arial",	Font.PLAIN,	14));	}

}

To	 try	 out	 the	 new	 control,	 add	 the	 shaded	 code	 to	 the
NumericTextFieldTest.java	file.	The	new	code	simply	places	a	single	numeric
text	field	on	a	form:	/	*
*	NumericTextFieldTest.java

*/

package	numerictextfieldtest;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;

public	class	NumericTextFieldTest	extends	JFrame	{

NumericTextField	testTextField	=	new	NumericTextField();

public	static	void	main(String	args[])	{
//construct	frame
new	NumericTextFieldTest().show();

}

public	NumericTextFieldTest()

{

//	code	to	build	the	form
setTitle("Numeric	Text	Field	Test");	addWindowListener(new
WindowAdapter()	{

public	void	windowClosing(WindowEvent	e)	{
exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	//	position
controls
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();
testTextField.setText("A	numeric	text	field!");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(50,	50,	50,	50);
getContentPane().add(testTextField,	gridConstraints);
pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	setBounds((int)	(0.5
(screenSize.width	-getWidth())),	(int)	(0.5	(screenSize.height	-getHeight())),
getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	e)	{

System.exit(0);

}

}

Give	it	a	try.	Run	this	example.	You	should	see:	

Note	the	new	default	colors	and	font	are	apparent.	Save	this	project	–	we	will	be
returning	to	it.

Adding	New	Properties	to	a	Control
Many	times,	when	creating	new	controls,	you	also	want	to	define	new	properties
for	 the	control.	To	make	the	NumericTextField	control	as	general	as	possible,
we	 want	 the	 user	 to	 be	 able	 to	 determine	 if	 they	 want	 decimal	 inputs	 and/or
negative	inputs.

We	will	define	two	boolean	properties	to	allow	these	selections.	If	the	property
hasDecimal	is	true,	a	decimal	point	is	allowed	in	the	input;	if	false,	no	decimal
point	is	allowed.	If	the	property	hasNegative	is	true,	a	minus	sign	is	allowed;	if
false,	no	minus	sign	entry	is	allowed.	Let’s	modify	the	NumericTextField	class
to	allow	setting	and	getting	the	values	of	these	properties.

Return	to	the	NumericTextFieldTest	project.	Open	the	NumericTextField.java
file.	 Define	 two	 private	 scope	boolean	 variables	 to	 represent	 the	hasDecimal
and	hasNegative	properties.	And,	establish	 the	Get	and	Set	methods.	Add	this
code	to	the	class	to	get/set	the	properties:	private	boolean	hasDecimal;
private	boolean	hasNegative;
public	boolean	getHasDecimal()

{

return	hasDecimal;

}

public	void	setHasDecimal(boolean	h)	{
hasDecimal	=	h;

}

public	boolean	getHasNegative()

{

return	hasNegative;

}

}

public	void	setHasNegative(boolean	h)	{
hasNegative	=	h;

}

We	also	need	to	initialize	the	two	new	properties	in	the	constructor	code	(add	the
two	shaded	lines):	public	NumericTextField()

{

this.setBackground(Color.BLUE);
this.setForeground(Color.YELLOW);
this.setFont(new	Font("Arial",	Font.PLAIN,	14));
this.setHasDecimal(true);
this.setHasNegative(false);

}

You	 could	 rerun	 the	 project	 with	 the	 control	 at	 this	 point	 and	 try	 it,	 but	 you
won’t	 notice	 any	 difference	 in	 behavior.	Why?	Well,	 for	 one	 thing,	we	 aren’t
doing	anything	with	the	two	new	properties	(hasDecimal	and	hasNegative).	We
use	them	next	when	writing	the	code	that	validates	input	values.

Adding	Control	Methods
The	major	 impetus	 for	 building	 this	 new	control	 is	 to	 limit	 keystrokes	 to	only
those	that	can	be	used	for	numeric	inputs:	numbers,	decimal	(optional	based	on
hasDecimal	 property),	 and	 a	 negative	 sign	 (optional	 based	 on	 hasNegative
property).

As	in	previous	work	with	text	fields	to	validate	entries,	we	will	write	a	general
method	to	validate	the	text	field	input.	We	will	access	this	method	whenever	the
control	 loses	 focus.	 Return	 to	 the	 NumericTextField.java	 file	 and	 add	 the
shaded	 code	 to	 implement	 the	 listener	 for	 the	 lost	 focus	 event:	 public
NumericTextField()

{

this.setBackground(Color.BLUE);
this.setForeground(Color.YELLOW);
this.setFont(new	Font("Arial",	Font.PLAIN,	14));
this.setHasDecimal(true);
this.setHasNegative(false);

this.addFocusListener(new	FocusAdapter()	{
public	void	focusLost(FocusEvent	e)

{

ValidateText();

}

});

}

When	the	text	field	loses	focus,	it	calls	the	ValidateText	method	to	see	if	the

entries	are	valid.

The	ValidateText	code	is	essentially	the	same	code	used	the	Savings	Account
example.	The	only	modification	is	the	use	of	the	hasDecimal	and	hasNegative
properties.	 Add	 this	 code	 in	 the	 NumericTextField	 class:	 public	 void
ValidateText()

{

//	checks	to	see	if	text	field	contains	//	valid	number	with	only	digits
and	a	single	decimal	point	(optional)	//	or	negative	sign	(optional)
String	s	=	getText().trim();
boolean	decimalThere	=	false;
isValid	=	true;
if	(s.length()	==	0)

{

isValid	=	false;

}

else

{

for	(int	i	=	0;	i	<	s.length();	i++)	{
char	c	=	s.charAt(i);
if	(c	>=	'0'	&&	c	<=	'9')	{

continue;

}

else	if	(hasNegative	&&	(c	==	'-'	&&	i	==	0))	{
continue;

}

else	if	(hasDecimal	&&	(c	==	'.'	&&	!decimalThere))	{
decimalThere	=	true;

}

else

{

//	invalid	character	found
isValid	=	false;

}

}

}

if	(isValid)

{

setText(s);

}

else

{

setText("Invalid");

}

}

Let’s	go	through	this	code	step-by-step	to	understand	just	what’s	going	on.
Checking	for	a	number	is	straightforward.	Note	in	checking	for	a	negative
sign,	we	check	two	conditions	-	we	make	sure	hasNegative	is	true	and	make
sure	the	sign	is	located	at	the	first	character	in	the	text	field.	Similarly	in

checking	for	a	decimal	point,	we	make	sure	hasDecimal	is	true	and	make	sure
there	is	not	a	decimal	point	there	already.

In	 the	ValidateText	method,	 if	 the	 input	 is	valid,	 the	variable	 isValid	 is	set	 to
true.	 If	 the	 input	 is	 not	 valid,	 isValid	 is	 set	 to	 false	 and	 the	 word	 Invalid	 is
placed	in	the	text	field.	We	want	the	isValid	variable	to	be	accessible	to	the	user,
so	 it	must	 be	declared	 as	 a	public	boolean	 variable	 in	 the	NumericTextField
class	 description.	 The	 final	 version	 of	 this	 class	 code	 is	 (the	 code	 added	 for
validation	is	shaded):	package	numerictextfieldtest;
import	javax.swing.*;
import	javax.swing.event.*;
import	java.awt.*;
import	java.awt.event.*;
public	class	NumericTextField	extends	JTextField	{

public	boolean	isValid;

public	NumericTextField()

{

this.setBackground(Color.BLUE);
this.setForeground(Color.YELLOW);
this.setFont(new	Font("Arial",	Font.PLAIN,	14));
this.setHasDecimal(true);
this.setHasNegative(false);
this.addFocusListener(new	FocusAdapter()	{

public	void	focusLost(FocusEvent	e)

{

ValidateText();

}

});

}

}

public	void	ValidateText()

{

//	checks	to	see	if	text	field	contains	//	valid	number	with	only
digits	and	a	single	decimal	point	(optional)	//	or	negative	sign
(optional)
String	s	=	getText().trim();
boolean	decimalThere	=	false;
isValid	=	true;
if	(s.length()	==	0)

{

isValid	=	false;

}

else

{

for	(int	i	=	0;	i	<	s.length();	i++)	{
char	c	=	s.charAt(i);
if	(c	>=	'0'	&&	c	<=	'9')	{

continue;

}

else	if	(hasNegative	&&	(c	==	'-'	&&	i	==	0))	{
continue;

}

else	if	(hasDecimal	&&	(c	==	'.'	&&	!decimalThere))

{

decimalThere	=	true;

}

else

{

//	invalid	character	found
isValid	=	false;

}

}

}

if	(isValid)

{

setText(s);

}

else

{

setText("Invalid");

}

}

private	boolean	hasDecimal;
private	boolean	hasNegative;
public	boolean	getHasDecimal()

{

{

return	hasDecimal;

}

public	void	setHasDecimal(boolean	h)	{
hasDecimal	=	h;

}

public	boolean	getHasNegative()

{

return	hasNegative;

}

public	void	setHasNegative(boolean	h)	{
hasNegative	=	h;

}

}

Let’s	 try	out	 the	validation	 feature.	Return	 to	 the	NumericTextFieldTest.java
file.	Modify	 the	 code	with	 the	 shaded	 changes	 to	 add	 a	 second	 text	 field	 that
allows	negative	 signs	 (allows	us	 to	 shift	 focus	 from	one	 control	 to	 the	next	 to
initiate	the	validation).

/	*

*	NumericTextFieldTest.java

*/

package	numerictextfieldtest;
import	javax.swing.*;
import	java.awt.*;

import	java.awt.event.*;

public	class	NumericTextFieldTest	extends	JFrame	{
NumericTextField	testTextField	=	new	NumericTextField();
NumericTextField	testTextField2	=	new	NumericTextField();

public	static	void	main(String	args[])	{
//construct	frame
new	NumericTextFieldTest().show();

}

public	NumericTextFieldTest()

{

//	code	to	build	the	form
setTitle("Numeric	Text	Field	Test");	addWindowListener(new
WindowAdapter()	{

public	void	windowClosing(WindowEvent	e)	{
exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	//	position
controls
GridBagConstraints	gridConstraints	=	new	GridBagConstraints();
testTextField.setText("A	numeric	text	field!");
gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
gridConstraints.insets	=	new	Insets(50,	50,	50,	50);
getContentPane().add(testTextField,	gridConstraints);
testTextField2.setText("Another	numeric	text	field!");
testTextField2.setHasNegative(true);	gridConstraints.gridx	=	0;

gridConstraints.gridy	=	1;
gridConstraints.insets	=	new	Insets(0,	50,	20,	50);
getContentPane().add(testTextField2,	gridConstraints);
pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	setBounds((int)	(0.5
(screenSize.width	-getWidth())),	(int)	(0.5	(screenSize.height	-getHeight())),
getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	e)	{
System.exit(0);

}

}

Rerun	 the	 example.	 In	 the	 first	 text	 box,	 you	 can	 only	 type	 numbers	 and	 a
decimal	point.	Try	valid	and	invalid	inputs	–	notice	what	happens	when	you	shift
the	focus	to	the	other	text	box.	Here’s	what	happened	when	I	typed	‘A	box’	in
the	 first	 text	 box,	 then	 clicked	 in	 the	 second	 box	 (changed	 focus):	

And,	here’s	an	example	with	valid	inputs	in	both	text	fields:	

In	the	second	text	field,	you	can	type	numbers,	a	negative	sign	and	a	decimal
point.	If	you	like,	stop	the	application,	change	hasDecimal	to	false	in	one	or
both	fields	and	make	sure	that	you	then	can	only	type	integer	values.

This	completes	our	 look	at	 inheriting	from	existing	controls.	The	final	result	 is
saved	 as	 the	NumericTextFieldTest	 in	 the	 \LearnJava\Java	Code\Appendix
II\	project	group.	With	these	new	found	skills,	you	can	probably	think	of	several
ways	you	might	modify	existing	Java	controls	to	fit	your	needs.	Let’s	rebuild	the
Savings	Account	using	the	new	numeric	text	field	controls	to	show	how	things
are	simplified.

Example	II-2
Savings	Account	(Revisited)

Reopen	 the	SavingsProject	 created	 in	Example	 II-1.	 To	 the	 project,	 add	 the
NumericTextField.java	 file	 created	 in	 the	 notes	 (change	 the	 package	 line	 to
package	savings;	–	this	will	allow	us	to	use	this	new	control.

Open	 the	Savings.java	 file.	Delete	 the	validateDecimalNumber	method	 from
this	file.	This	validation	will	now	be	done	in	the	control.

Make	the	shaded	changes	to	the	Savings.java	file:	/	*
*	Savings.java

*/

package	savings;
import	javax.swing.*;
import	java.awt.*;
import	java.awt.event.*;
import	java.text.*;

public	class	Savings	extends	JFrame

{

JLabel	depositLabel	=	new	JLabel();
JLabel	interestLabel	=	new	JLabel();	JLabel	monthsLabel	=	new
JLabel();
JLabel	finalLabel	=	new	JLabel();
NumericTextField	depositTextField	=	new	NumericTextField();
NumericTextField	interestTextField	=	new	NumericTextField();
NumericTextField	monthsTextField	=	new	NumericTextField();
JTextField	finalTextField	=	new	JTextField();	JButton	calculateButton	=

new	JButton();	JButton	exitButton	=	new	JButton();

public	static	void	main(String	args[])	{
//construct	frame
new	Savings().show();

}

public	Savings()

{

//	code	to	build	the	form
setTitle("Savings	Account");
addWindowListener(new	WindowAdapter()	{

public	void	windowClosing(WindowEvent	e)	{
exitForm(e);

}

});

getContentPane().setLayout(new	GridBagLayout());	//	position
controls	(establish	event	methods)	GridBagConstraints
gridConstraints	=	new	GridBagConstraints();
depositLabel.setText("Monthly	Deposit");	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	0;
getContentPane().add(depositLabel,	gridConstraints);
interestLabel.setText("Yearly	Interest");	gridConstraints.gridx	=	0;
gridConstraints.gridy	=	1;
getContentPane().add(interestLabel,	gridConstraints);
monthsLabel.setText("Number	of	Months");	gridConstraints.gridx	=
0;
gridConstraints.gridy	=	2;
getContentPane().add(monthsLabel,	gridConstraints);
finalLabel.setText("Final	Balance");	gridConstraints.gridx	=	0;

gridConstraints.gridy	=	3;
getContentPane().add(finalLabel,	gridConstraints);
depositTextField.setText("");
depositTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	0;
getContentPane().add(depositTextField,	gridConstraints);
depositTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
depositTextFieldActionPerformed(e);

}

});

interestTextField.setText("");
interestTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	1;
getContentPane().add(interestTextField,	gridConstraints);
interestTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
interestTextFieldActionPerformed(e);	}

});

monthsTextField.setText("");
monthsTextField.setColumns(10);
monthsTextField.setHasDecimal(false);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	2;
getContentPane().add(monthsTextField,	gridConstraints);
monthsTextField.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{

monthsTextFieldActionPerformed(e);

}

});

finalTextField.setText("");
finalTextField.setFocusable(false);
finalTextField.setColumns(10);
gridConstraints.gridx	=	2;
gridConstraints.gridy	=	3;
getContentPane().add(finalTextField,	gridConstraints);
calculateButton.setText("Calculate");	gridConstraints.gridx	=	1;
gridConstraints.gridy	=	4;
getContentPane().add(calculateButton,	gridConstraints);
calculateButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
calculateButtonActionPerformed(e);

}

});

exitButton.setText("Exit");
exitButton.setFocusable(false);
gridConstraints.gridx	=	1;
gridConstraints.gridy	=	5;
getContentPane().add(exitButton,	gridConstraints);
exitButton.addActionListener(new	ActionListener()	{

public	void	actionPerformed(ActionEvent	e)	{
exitButtonActionPerformed(e);

}

});

pack();
Dimension	screenSize	=

Toolkit.getDefaultToolkit().getScreenSize();	 setBounds((int)	 (0.5
(screenSize.width	 -	getWidth())),	 (int)	 (0.5	 (screenSize.height	 -	getHeight())),
getWidth(),	getHeight());	}

private	void	exitForm(WindowEvent	e)	{
System.exit(0);

}

private	void	calculateButtonActionPerformed(ActionEvent	e)	{
//	make	sure	each	input	is	a	valid	number
if	(!monthsTextField.isValid()	||

!interestTextField.isValid()	||	!depositTextField.isValid())	{
//	if	one	or	more	fields	not	valid	number,	then	exit	method	return;

}

//	create	and	construct	Savings	object	SavingsAccount	mySavings;
mySavings	=	new	SavingsAccount();
//	set	properties	from	text	boxes
mySavings.deposit	=

Double.valueOf(depositTextField.getText()).doubleValue();
mySavings.interest	=
Double.valueOf(interestTextField.getText()).doubleValue();
mySavings.months	=
Double.valueOf(monthsTextField.getText()).doubleValue();	//	compute	final
value	 and	 put	 in	 text	 box	 finalTextField.setText(new
DecimalFormat("0.00").format(mySavings.computeFinal()));	}

private	void	exitButtonActionPerformed(ActionEvent	e)	{
System.exit(0);

}

private	void	depositTextFieldActionPerformed(ActionEvent	e)	{
depositTextField.transferFocus();

}

private	void	interestTextFieldActionPerformed(ActionEvent	e)	{
interestTextField.transferFocus();

}

private	void	monthsTextFieldActionPerformed(ActionEvent	e)	{
monthsTextField.transferFocus();

}

}

In	 the	modified	code,	we	have	converted	 the	 three	 input	 text	 fields	 to	numeric
text	fields	(adding	their	validity	check	in	the	calculateButtonActionPerformed
method).	We	have	also	disallowed	a	decimal	point	in	the	months	entry.

That’s	all	the	new	coding	that’s	needed.	Rerun	the	program.	Make	sure	it	works

properly.	Here’s	a	run	I	made:	

Save	the	project	This	is	saved	as	the	ExampleII-2	project	in	\LearnJava\LJ
Code\Appendix	II\	project	group.

Class	Review
After	completing	this	class,	you	should	understand:

➢	Creating	classes	and	objects.
➢	Setting	and	validating	object	properties.
➢	Creating	class	methods.
➢	Creating	object	constructors.
➢	How	inheritance	is	used	with	classes.
➢	Extending	Java	Swing	controls	using	inheritance	➢	Adding	properties	to
controls	➢	Overriding	control	methods.

Appendix	III.
Installing	Java	and	NetBeans

Downloading	and	Installing	Java	To	write	and	run	programs	using	Java,
you	 need	 the	 Java	 Development	 Kit	 (JDK)	 and	 the	 NetBeans	 Integrated
Development	 Environment	 (IDE).	 These	 are	 free	 products	 that	 you	 can
download	 from	 the	 Internet.	 This	 simply	means	 we	 will	 copy	 a	 file	 onto	 our
computer	to	allow	installation	of	Java.

1.	Start	up	your	web	browser	(Internet	Explorer,	Chrome,	Firefox,	Safari	or
other	browser)	and	go	to	Java	web	site:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

This	 web	 site	 has	 lots	 of	 useful	 Java	 information.	 As	 you	 become	 more
proficient	in	your	programming	skills,	you	will	go	to	this	site	often	for	answers
to	programming	questions,	interaction	with	other	Java	programmers,	and	lots	of
sample	programs.

2.	On	this	web	page,	you	should	see	a	button	that	looks	something	like	this

NetBeans	with	JDK	8

http://www.oracle.com/technetwork/java/javase/downloads/index.html

This	button	downloads	both	NetBeans	(Version	8.0)	with	JDK	(Version	8).

Once	 on	 the	 page	with	 the	 JDK	download	 links,	 accept	 the	 license	 agreement
and	choose	the	link	corresponding	to	your	computer’s	operating	system.

For	Microsoft	Windows:	click	on	the	Windows	version	that	corresponds	with
your	 specific	 Operating	 System.	 In	 these	 notes,	 I	 will	 be	 downloading	 and
installing	the	Windows	64	bit	version	of	the	JDK	because	I	am	currently	using	a
brand	new	system	with	the	64	Bit	version	of	Windows.	Select	the	Windows	x86
version	if	you	are	using	the	older	32	Bit	version	of	Windows	like	Windows
Vista	on	a	tablet	or	older	PC	or	laptop	computer.

Instructions	for	 installing	Java	on	other	platforms	such	as	Linux	or	Solaris	can
also	be	 found	on	 the	website.	My	screenshots	 in	 these	notes	will	be	Microsoft
Windows.

For	Mac	OS:	click	on	the	Mac	OS	X	x64	click	to	download	for	your	Operating
System.

3.	You	will	be	asked	if	you	want	to	Run	a	file.	Click	Yes.	The	Installation
begins.

4.	The	Java	installer	will	unpack	some	files	and	an	introductory	window	will
appear:

For	Linux	OS:	click	on	 the	Linux	version	 that	corresponds	with	your	specific
Operating	System.	If	you	are	using	Linux	on	a	x64	bit	platform	click	on	Linux
x64.

Click	Next	 to	 start	 the	 installation.	 Several	windows	will	 appear	 in	 sequence.

Accept	the	default	choices	by	clicking	Next	at	each	window.

When	 complete	 (it	 will	 take	 a	 while),	 you	 will	 see	 this	 window:	

Click	Finish	and	the	installation	will	complete.

Running	NetBeans	You	now	have	Java	and	the	NetBeans	IDE	installed	on
your	computer.	All	of	our	programming	work	will	be	done	using	NetBeans.
Let’s	make	sure	NetBeans	installed	correctly.	To	start	using	NetBeans	under
Microsoft	Windows,

•	Click	on	the	Start	button	on	the	Windows	task	bar.
•	Select	All	Programs,	then	NetBeans	•	Click	on	NetBeans	IDE	8.0

To	start	using	NetBeans	under	the	MAC	OS,

•	Click	on	the	Finder	and	go	to	the	Applications	Folder.
•	Open	the	NetBeans	folder	•	Click	on	NetBeans	IDE	8.0

Some	of	the	headings	given	here	may	differ	slightly	on	your	computer,	but	you
should	have	no	trouble	finding	the	correct	ones.	You	can	also	start	NetBeans	by
double-clicking	 the	 desktop	 icon.	 The	NetBeans	 program	 should	 start	 (several
windows	and	menus	will	appear).

We	will	 learn	more	 about	NetBeans	 in	 the	 notes.	 For	 now,	we	want	 to	make
some	formatting	changes.

In	 Java	 programming,	 indentations	 in	 the	 code	we	write	 are	 used	 to	 delineate
common	 blocks.	 The	 NetBeans	 IDE	 uses	 four	 spaces	 for	 indentations	 as	 a
default.	 This	 author	 (and	 these	 notes)	 uses	 two	 spaces.	 To	make	 this	 change,
choose	 the	Tools	 menu	 item	 and	 click	Options.	 In	 the	 window	 that	 appears,
choose	 the	 Editor	 option	 and	 the	 Format	 tab:	

As	 shown,	 choose	 the	 Tabs	 and	 Indents	Category	 and	 set	 the	Number	 of
Spaces	per	Indent	to	2.

Before	 leaving	 this	 window,	 we	 make	 another	 change.	 Braces	 (curly
brackets)	 are	 used	 to	 start	 and	 stop	 blocks	 of	 code.	We	 choose	 to	 have	 these
brackets	always	be	on	a	separate	line	–	it	makes	checking	code	much	easier.

As	 shown,	 choose	 the	Braces	Category	 and	 under	Braces	Placement,	 set	 all
choices	to	New	Line.	Click	Apply,	then	OK.	Stop	NetBeans	–	you’re	ready	to
go!

More	Self-Study	or	Instructor-Led	Computer
Programming	Tutorials	by	Kidware	Software	

JavaTM	 For	Kids	 is	 a	 beginning	 programming	 tutorial	 consisting	 of	 10	 chapters	 explaining	 (in	 simple,
easy-to-follow	terms)	how	to	build	a	Java	application.	Students	learn	about	project	design,	object-oriented
programming,	 console	 applications,	 graphics	 applications	 and	 many	 elements	 of	 the	 Java	 language.
Numerous	 examples	 are	 used	 to	 demonstrate	 every	 step	 in	 the	 building	 process.	 The	 projects	 include	 a
number	guessing	game,	a	card	game,	an	allowance	calculator,	a	state	capitals	game,	Tic-Tac-Toe,	a	simple
drawing	program,	and	even	a	basic	video	game.	Designed	for	kids	ages	12	and	up.

Learn	JavaTM	GUI	Applications	 is	a	9	lesson	Tutorial	covering	object-oriented	programming	concepts,
using	an	integrated	development	environment	to	create	and	test	Java	projects,	building	and	distributing	GUI
applications,	understanding	and	using	the	Swing	control	library,	exception	handling,	sequential	file	access,
graphics,	multimedia,	advanced	topics	such	as	printing,	and	help	system	authoring.	Our	Beginning	Java	or

http://www.computerscienceforkids.com/java/
http://www.computerscienceforkids.com/java/

Java	For	Kids	tutorial	is	a	pre-requisite	for	this	tutorial	
JavaTM	 Homework	 Projects	 is	 a	 Java	 GUI	 Swing	 tutorial	 covering	 object-oriented	 programming
concepts.	 It	 explains	 (in	 simple,	 easy-to-follow	 terms)	 how	 to	 build	 Java	GUI	 project	 to	 use	 around	 the
home.	Students	 learn	about	project	design,	 the	Java	Swing	controls,	many	elements	of	 the	Java	language,
and	how	to	distribute	finished	projects.	The	projects	built	include	a	Dual-Mode	Stopwatch,	Flash	Card	Math
Quiz,	Multiple	 Choice	 Exam,	 Blackjack	 Card	 Game,	Weight	Monitor,	 Home	 Inventory	Manager	 and	 a
Snowball	 Toss	 Game.	 Our	 Learn	 Java	 GUI	 Applications	 tutorial	 is	 a	 pre-requisite	 for	 this	 tutorial	

Beginning	 JavaTM	 is	 a	 semester	 long	 "beginning"	 programming	 tutorial	 consisting	 of	 10	 chapters
explaining	(in	simple,	easy-to-follow	terms)	how	to	build	a	Java	application.	The	tutorial	includes	several
detailed	computer	projects	 for	students	 to	build	and	 try.	These	projects	 include	a	number	guessing	game,
card	game,	allowance	calculator,	drawing	program,	state	capitals	game,	and	a	couple	of	video	games	like
Pong.	We	also	include	several	college	prep	bonus	projects	 including	a	loan	calculator,	portfolio	manager,
and	checkbook	balancer.	Designed	for	students	age	15	and	up.

http://www.computerscienceforkids.com/java/
http://www.computerscienceforkids.com/java/
http://www.computerscienceforkids.com/java/

Programming	Games	with	JavaTM	is	a	semester	long	"intermediate"	programming	tutorial	consisting	of
10	chapters	explaining	(in	simple,	easy-to-follow	terms)	how	to	build	a	Visual	C#	Video	Games.	The	games
built	are	non-violent,	family-friendly	and	teach	logical	thinking	skills.	Students	will	learn	how	to	program
the	 following	 Visual	 C#	 video	 games:	 Safecracker,	 Tic	 Tac	 Toe,	 Match	 Game,	 Pizza	 Delivery,	 Moon
Landing,	 and	Leap	Frog.	This	 intermediate	 level	 self-paced	 tutorial	 can	 be	 used	 at	 home	or	 school.	The
tutorial	 is	 simple	 enough	 for	 kids	 yet	 engaging	 enough	 for	 beginning	 adults.	 Our	 Learn	 Java	 GUI
Applications	tutorial	is	a	required	pre-requisite	for	this	tutorial.

Small	Basic	For	Kids	is	an	illustrated	introduction	to	computer	programming	that	provides	an	interactive,
self-paced	tutorial	to	the	new	Small	Basic	programming	environment.	The	book	consists	of	30	short	lessons
that	explain	how	to	create	and	run	a	Small	Basic	program.	Elementary	students	learn	about	program	design
and	many	elements	of	the	Small	Basic	language.	Numerous	examples	are	used	to	demonstrate	every	step	in
the	 building	 process.	 The	 tutorial	 also	 includes	 two	 complete	 games	 (Hangman	 and	 Pizza	 Zapper)	 for
students	to	build	and	try.	Designed	for	kids	ages	8+.

Programming	Games	with	Microsoft	Small	Basic	 is	a	 self-paced	second	semester	“intermediate"	 level
programming	 tutorial	consisting	of	10	chapters	explaining	 (in	simple,	easy-to-follow	 terms)	how	 to	write
video	games	in	Microsoft	Small	Basic.	The	games	built	are	non-violent,	family-friendly,	and	teach	logical
thinking	skills.	Students	will	learn	how	to	program	the	following	Small	Basic	video	games:	Safecracker,	Tic
Tac	Toe,	Match	Game,	Pizza	Delivery,	Moon	Landing,	and	Leap	Frog.	This	intermediate	level	self-paced
tutorial	can	be	used	at	home	or	school.

http://www.computerscienceforkids.com/microsoft-small-basic
http://www.computerscienceforkids.com/microsoft-small-basic

The	Developer’s	Reference	Guide	to	Microsoft	Small	Basic	While	developing	all	the	different	Microsoft
Small	Basic	tutorials	we	found	it	necessary	to	write	The	Developer's	Reference	Guide	to	Microsoft	Small
Basic.	The	Developer's	Reference	Guide	to	Microsoft	Small	Basic	is	over	500	pages	long	and	includes	over
100	Small	Basic	programming	examples	 for	you	 to	 learn	 from	and	 include	 in	your	own	Microsoft	Small
Basic	programs.	It	is	a	detailed	reference	guide	for	new	developers.

Basic	Computer	Games	-	Small	Basic	Edition	is	a	re-make	of	the	classic	BASIC	COMPUTER	GAMES
book	 originally	 edited	 by	 David	 H.	 Ahl.	 It	 contains	 100	 of	 the	 original	 text	 based	 BASIC	 games	 that
inspired	 a	 whole	 generation	 of	 programmers.	 Now	 these	 classic	 BASIC	 games	 have	 been	 re-written	 in
Microsoft	Small	Basic	 for	 a	new	generation	 to	enjoy!	The	new	Small	Basic	games	 look	and	act	 like	 the
original	text	based	games.	The	book	includes	all	the	original	spaghetti	code	and	GOTO	commands!

The	 Beginning	Microsoft	 Small	 Basic	 Programming	 Tutorial	 is	 a	 self-study	 first	 semester	 "beginner"
programming	 tutorial	consisting	of	11	chapters	explaining	 (in	simple,	easy-to-follow	 terms)	how	 to	write
Microsoft	Small	Basic	programs.	Numerous	examples	are	used	 to	demonstrate	every	step	 in	 the	building

http://www.computerscienceforkids.com/microsoft-small-basic
http://www.computerscienceforkids.com/microsoft-small-basic
http://www.computerscienceforkids.com/microsoft-small-basic

process.	The	 last	 chapter	 of	 this	 tutorial	 shows	 you	 how	 four	 different	 Small	Basic	 games	 could	 port	 to
Visual	Basic,	Visual	C#	and	Java.	This	beginning	level	self-paced	tutorial	can	be	used	at	home	or	at	school.
The	tutorial	is	simple	enough	for	kids	ages	10+	yet	engaging	enough	for	adults.

Programming	Home	Projects	with	Microsoft	Small	Basic	is	a	self-paced	programming	tutorial	explains
(in	 simple,	 easy-to-follow	 terms)	 how	 to	 build	 Small	 Basic	Windows	 applications.	 Students	 learn	 about
program	design,	Small	Basic	objects,	many	elements	of	the	Small	Basic	language,	and	how	to	debug	and
distribute	finished	programs.	Sequential	file	input	and	output	is	also	introduced.	The	projects	built	include	a
Dual-Mode	 Stopwatch,	 Flash	 Card	 Math	 Quiz,	 Multiple	 Choice	 Exam,	 Blackjack	 Card	 Game,	 Weight
Monitor,Home	Inventory	Manager	and	a	Snowball	Toss	Game.

David	Ahl's	Small	Basic	Computer	Adventures	is	a	Microsoft	Small	Basic	re-make	of	the	classic	Basic
Computer	 Games	 programming	 book	 originally	 written	 by	 David	 H.	 Ahl.	 This	 new	 book	 includes	 the
following	classic	adventure	simulations;	Marco	Polo,	Westward	Ho!,	The	Longest	Automobile	Race,	The
Orient	Express,	Amelia	Earhart:	Around	the	World	Flight,	Tour	de	France,	Subway	Scavenger,	Hong	Kong
Hustle,	 and	Voyage	 to	Neptune.	 Learn	 how	 to	 program	 these	 classic	 computer	 simulations	 in	Microsoft
Small	Basic.

http://www.computerscienceforkids.com/microsoft-small-basic
http://www.computerscienceforkids.com/microsoft-small-basic

Visual	 Basic®	 For	 Kids	 is	 a	 beginning	 programming	 tutorial	 consisting	 of	 10	 chapters	 explaining	 (in
simple,	 easy-to-follow	 terms)	 how	 to	 build	 a	 Visual	 Basic	 Windows	 application.	 Students	 learn	 about
project	 design,	 the	 Visual	 Basic	 toolbox,	 and	many	 elements	 of	 the	 BASIC	 language.	 The	 tutorial	 also
includes	several	detailed	computer	projects	for	students	to	build	and	try.	These	projects	include	a	number
guessing	game,	a	card	game,	an	allowance	calculator,	a	drawing	program,	a	state	capitals	game,	Tic-Tac-
Toe	and	even	a	simple	video	game.	Designed	for	kids	ages	12	and	up.

Programming	 Games	 with	 Visual	 Basic®	 is	 a	 semester	 long	 "intermediate"	 programming	 tutorial
consisting	 of	 10	 chapters	 explaining	 (in	 simple,	 easy-to-follow	 terms)	 how	 to	 build	Visual	 Basic	Video
Games.	The	 games	 built	 are	 non-violent,	 family-friendly,	 and	 teach	 logical	 thinking	 skills.	 Students	will
learn	 how	 to	 program	 the	 following	Visual	Basic	 video	 games:	Safecracker,	Tic	Tac	Toe,	Match	Game,
Pizza	Delivery,	Moon	Landing,	and	Leap	Frog.	This	 intermediate	 level	self-paced	 tutorial	can	be	used	at
home	or	school.	The	tutorial	is	simple	enough	for	kids	yet	engaging	enough	for	beginning	adults.

https://www.computerscienceforkids.com/visual-basic/
https://www.computerscienceforkids.com/visual-basic/
https://www.computerscienceforkids.com/visual-basic/

LEARN	VISUAL	BASIC	is	acomprehensive	college	prep	programming	tutorial	covering	object-oriented
programming,	 the	Visual	Basic	 integrated	 development	 environment,	 building	 and	 distributing	Windows
applications	using	the	Windows	Installer,	exception	handling,	sequential	file	access,	graphics,	multimedia,
advanced	 topics	 such	 as	 web	 access,	 printing,	 and	 HTML	 help	 system	 authoring.	 The	 tutorial	 also
introduces	database	applications	(using	ADO	.NET)	and	web	applications	(using	ASP.NET).

Beginning	Visual	Basic®	is	a	semester	long	self-paced	"beginner"	programming	tutorial	consisting	of	10
chapters	 explaining	 (in	 simple,	 easy-to-follow	 terms)	 how	 to	 build	 a	Visual	Basic	Windows	 application.
The	tutorial	includes	several	detailed	computer	projects	for	students	to	build	and	try.	These	projects	include
a	 number	 guessing	 game,	 card	 game,	 allowance	 calculator,	 drawing	 program,	 state	 capitals	 game,	 and	 a
couple	 of	 video	 games	 like	 Pong.	We	 also	 include	 several	 college	 prep	 bonus	 projects	 including	 a	 loan
calculator,	portfolio	manager,	and	checkbook	balancer.	Designed	for	students	age	15	and	up.

Visual	 Basic®	 Homework	 Projects	 is	 a	 semester	 long	 self-paced	 programming	 tutorial	 explains	 (in
simple,	easy-to-follow	terms)	how	to	build	a	Visual	Basic	Windows	project.	Students	 learn	about	project
design,	 the	 Visual	 Basic	 toolbox,	 many	 elements	 of	 the	 Visual	 Basic	 language,	 and	 how	 to	 debug	 and
distribute	 finished	 projects.	 The	 projects	 built	 include	 a	 Dual-Mode	 Stopwatch,	 Flash	 Card	Math	 Quiz,
Multiple	Choice	Exam,	Blackjack	Card	Game,	Weight	Monitor,Home	Inventory	Manager	and	a	Snowball
Toss	Game.

https://www.computerscienceforkids.com/visual-basic/
https://www.computerscienceforkids.com/visual-basic/

VISUAL	BASIC	AND	DATABASES	 is	 a	 tutorial	 that	 provides	 a	 detailed	 introduction	 to	 using	Visual
Basic	for	accessing	and	maintaining	databases	for	desktop	applications.	Topics	covered	 include:	database
structure,	database	design,	Visual	Basic	project	building,	ADO	.NET	data	objects	(connection,	data	adapter,
command,	 data	 table),	 data	 bound	 controls,	 proper	 interface	 design,	 structured	 query	 language	 (SQL),
creating	databases	using	Access,	SQL	Server	and	ADOX,	and	database	reports.	Actual	projects	developed
include	a	book	tracking	system,	a	sales	 invoicing	program,	a	home	inventory	system	and	a	daily	weather
monitor.

Visual	C#®	For	Kids	is	a	beginning	programming	tutorial	consisting	of	10	chapters	explaining	(in	simple,
easy-to-follow	terms)	how	to	build	a	Visual	C#	Windows	application.	Students	learn	about	project	design,
the	Visual	C#	toolbox,	and	many	elements	of	the	C#	language.	Numerous	examples	are	used	to	demonstrate
every	step	in	the	building	process.	The	projects	include	a	number	guessing	game,	a	card	game,	an	allowance
calculator,	a	drawing	program,	a	state	capitals	game,	Tic-Tac-Toe	and	even	a	simple	video	game.	Designed
for	kids	ages	12+.

https://www.computerscienceforkids.com/visual-basic/
https://www.computerscienceforkids.com/visual-c/
https://www.computerscienceforkids.com/visual-c/

Programming	Games	with	Visual	C#®	is	a	semester	long	"intermediate"	programming	tutorial	consisting
of	10	chapters	explaining	 (in	 simple,	easy-to-follow	 terms)	how	 to	build	a	Visual	C#	Video	Games.	The
games	 built	 are	 non-violent,	 family-friendly	 and	 teach	 logical	 thinking	 skills.	 Students	will	 learn	 how	 to
program	 the	 following	Visual	C#	video	 games:	 Safecracker,	Tic	Tac	Toe,	Match	Game,	Pizza	Delivery,
Moon	Landing,	and	Leap	Frog.	This	intermediate	level	self-paced	tutorial	can	be	used	at	home	or	school.

The	tutorial	is	simple	enough	for	kids	yet	engaging	enough	for	beginning	adults	
LEARN	VISUAL	C#	 is	 a	 comprehensive	 college	 prep	 computer	 programming	 tutorial	 covering	 object-
oriented	 programming,	 the	 Visual	 C#	 integrated	 development	 environment	 and	 toolbox,	 building	 and
distributing	Windows	applications	(using	the	Windows	Installer),	exception	handling,	sequential	file	input
and	 output,	 graphics,	 multimedia	 effects	 (animation	 and	 sounds),	 advanced	 topics	 such	 as	 web	 access,
printing,	and	HTML	help	system	authoring.	The	tutorial	also	introduces	database	applications	(using	ADO
.NET)	and	web	applications	(using	ASP.NET).

Beginning	 Visual	 C#®	 is	 a	 semester	 long	 “beginning"	 programming	 tutorial	 consisting	 of	 10	 chapters
explaining	(in	simple,	easy-to-follow	terms)	how	to	build	a	C#	Windows	application.	The	tutorial	includes
several	detailed	computer	projects	for	students	to	build	and	try.	These	projects	include	a	number	guessing
game,	card	game,	allowance	calculator,	drawing	program,	state	capitals	game,	and	a	couple	of	video	games
like	 Pong.	 We	 also	 include	 several	 college	 prep	 bonus	 projects	 including	 a	 loan	 calculator,	 portfolio
manager,	and	checkbook	balancer.	Designed	for	students	ages	15+.

https://www.computerscienceforkids.com/visual-c/
https://www.computerscienceforkids.com/visual-c/

Visual	C#®	Homework	Projects	is	a	semester	long	self-paced	programming	tutorial	explains	(in	simple,
easy-to-follow	terms)	how	to	build	a	Visual	C#	Windows	project.	Students	learn	about	project	design,	the
Visual	C#	 toolbox,	many	 elements	 of	 the	Visual	C#	 language,	 and	how	 to	debug	 and	distribute	 finished
projects.	The	projects	built	include	a	Dual-Mode	Stopwatch,	Flash	Card	Math	Quiz,	Multiple	Choice	Exam,
Blackjack	Card	Game,	Weight	Monitor,Home	Inventory	Manager	and	a	Snowball	Toss	Game.

VISUAL	C#	AND	DATABASES	is	a	tutorial	that	provides	a	detailed	introduction	to	using	Visual	C#	for
accessing	and	maintaining	databases	for	desktop	applications.	Topics	covered	 include:	database	structure,
database	design,	Visual	C#	project	building,	ADO	.NET	data	objects	(connection,	data	adapter,	command,
data	 table),	 data	 bound	 controls,	 proper	 interface	 design,	 structured	 query	 language	 (SQL),	 creating
databases	using	Access,	SQL	Server	and	ADOX,	and	database	reports.	Actual	projects	developed	include	a
book	tracking	system,	a	sales	invoicing	program,	a	home	inventory	system	and	a	daily	weather	monitor.

https://www.computerscienceforkids.com/visual-c/
https://www.computerscienceforkids.com/visual-c/

	Copyright
	About The Authors
	Acknowledgements
	Table of Contents
	Course Description
	Course Prerequisites
	System Requirements
	Installing and Using the Downloadable Solution Files
	Installing Learn Java
	How To Take the Course
	Forward by Alan Payne, A Computer Science Teacher
	1. Introduction to Java
	Preview
	Course Objectives
	What is Java?
	What is a GUI Application?
	A Brief Look at Object-Oriented Programming (OOP)
	Downloading and Installing Java and NetBeans
	Testing the Installation
	Getting Help with a Java Program
	Structure of a Java Program
	Structure of a Java GUI Application
	Swing Controls
	Creating a Java Project with Netbeans
	Create a Frame
	Saving Java Projects with Netbeans
	Netbeans and Java Files
	Create the User Interface
	Example 1-1: Stopwatch Application - Adding Controls
	Adding Event Methods
	Variables
	Java Data Types
	Variable Declaration
	Arrays
	Constants
	Variable Initialization
	Example 1-2: Stopwatch Application - Writing Code
	Class Review
	Practice Problems 1
	Problem 1-1. Beep Problem
	Problem 1-2. Caption Problem
	Problem 1-3. Enabled Problem
	Problem 1-4. Date Problem

	Exercise 1: Calendar/Time Display

	2. The Java Language
	Review and Preview
	A Brief History of Java
	Rules of Java Programming
	Java Statements and Expressions
	Type Casting
	Java Arithmetic Operators
	Comparison and Logical Operators
	Concatenation Operators
	Strings to Numbers to Strings
	Java String Methods
	Dates and Times
	Random Number Generator
	Math Functions
	Example 2-1: Savings Account
	Focus Traversal
	Example 2-2: Savings Accounts – Setting Focus
	Improving a Java Application
	Java Decisions - if Statements
	Switch Statement - Another Way to Branch
	Control Focus
	Input Validation
	Example 2-3: Savings Account – Input Validation
	Java Looping
	Java Counting
	Example 2-4: Savings Account - Decisions
	Class Review
	Practice Problems 2
	Problem 2-1. Random Number Problem
	Problem 2-2. Price Problem
	Problem 2-3. Odd Integers Problem
	Problem 2-4. Pennies Problem
	Problem 2-5. Code Problem

	Exercise 2-1: Computing a Mean and Standard Deviation
	Exercise 2-2: Flash Card Addition Problems

	3. Java Swing Controls
	Review and Preview
	Function Overloading
	Confirm Dialog (JOptionPane)
	Font Object
	Color Object
	JFrame Object
	Frame Layout and Centering
	JButton Control
	JLabel Control
	JTextField Control
	JTextArea Control
	Example 3-1: Password Validation
	JCheckBox Control
	JRadioButton Control
	JPanel Control
	Handling Multiple Events in a Single Procedure
	Control Arrays
	Example 3-2: Pizza Order
	JList Control
	JScrollPane Control
	JComboBox Control
	Example 3-3: Flight Planner
	Class Review
	Practice Problems 3
	Problem 3-1. Message Box Problem
	Problem 3-2. Tray Problem
	Problem 3-3. List Box Problem
	Problem 3-4. Combo Box Problem

	Exercise 3: Customer Database Input Screen

	4. More Java Swing Controls
	Review and Preview
	JSpinner Control
	Example 4-1: Date Input Device
	JScrollBar Control
	JSlider Control
	Example 4-2: Temperature Conversion
	JLabel Control (Revisited)
	Example 4-3: “Find the Burger” Game
	JFileChooser Control (Open Files)
	Example 4-4: Image Viewer
	Class Review
	Practice Problems 4
	Problem 4-1. Number Guess Problem
	Problem 4-2. RGB Color Problem
	Problem 4-3. Tic-Tac-Toe Problem
	Problem 4-4. File Times Problem

	Exercise 4: Student Database Input Screen

	5. Java GUI Application Design and Distribution
	Review and Preview
	Application Design Considerations
	JTabbedPane Control
	Example 5-1: Shopping Cart
	Using General Methods in Applications
	Example 5-2: Average Value
	Returning Multiple Values from General Methods
	Example 5-3: Circle Geometry
	Adding Menus to Java Applications
	Example 5-4: Note Editor
	Distribution of a Java GUI Application
	Executable (jar) Files
	Creating a Manifest File in NetBeans
	Creating a jar File in Netbeans
	Application Icons
	Using IconEdit
	Running a Project on Another Computer
	Class Review
	Practice Problems 5
	Problem 5-1 Tabbed Pane Problem
	Problem 5-2 Note Editor About Box Problem
	Problem 5-3 Normal Numbers Problem

	Exercise 5: US/World Capitals Quiz

	6. Exception Handling, Debugging and Sequential Files
	Review and Preview
	Program Errors
	Exception Handling
	Debugging Java Programs
	Simple Debugging
	Example 6-1: Debugging Example
	Using the Java Debugger
	Using the Debugging Tools
	Debugging Strategies
	Sequential Files
	Sequential File Output (Variables)
	Example 6-2: Writing Variables to Sequential Files
	Sequential File Input (Variables)
	Example 6-3: Reading Variables from Sequential Files
	Parsing Data Lines
	Example 6-4. Parsing Data Lines
	Reading Tokenized Lines
	Example 6-5. Reading Tokenized Data Lines
	Building Data Lines
	Example 6-6: Building Data Lines
	Configuration Files
	Example 6-7: Configuration Files
	Writing and Reading Text Using Sequential Files
	JFileChooser Control (Save Files)
	Example 6-8: Note Editor - Reading and Saving Text Files
	Class Review
	Practice Problems 6
	Problem 6-1. Debugging Problem
	Problem 6-2. Option Saving Problem
	Problem 6-3. Text File Problem
	Problem 6-4. Data File Problem

	Exercise 6-1: Information Tracking
	Exercise 6-2: ‘Recent Files’ Menu Option

	7. Graphics Techniques with Java
	Review and Preview
	Simple Animation
	Example 7-1: Simple Animation
	Timer Object
	Example 7-2: Timer Example
	Basic Animation
	Example 7-3: Basic Animation
	Random Numbers (Revisited) and Games
	Randomly Sorting Integers
	Example 7-4: Random Integers
	Java 2D Graphics
	Graphics2D Object
	Stroke and Paint Objects
	Shapes and Drawing Methods
	Line2D Shape
	Graphics Demonstration
	Persistent Graphics
	Example 7-5: Drawing Lines
	Rectangle2D Shape
	RoundRectangle2D Shape
	Example 7-6: Drawing Rectangles
	Ellipse2D Shape
	Example 7-7: Drawing Ellipses
	Arc2D Shape
	Example 7-8: Drawing Pie Segments
	Pie Charts
	Line Charts and Bar Charts
	Coordinate Conversions
	Example 7-9: Line, Bar and Pie Charts
	Class Review
	Practice Problems 7
	Problem 7-1. Dice Rolling Problem
	Problem 7-2. Shape Guessing Problem
	Problem 7-3. Pie Chart Problem
	Problem 7-4. Plotting Problem

	Exercise 7: Information Tracking Plotting

	8. More Graphics Techniques and Multimedia Effects
	Review and Preview
	Mouse Events
	Example 8-1: Blackboard
	Persistent Graphics, Revisited (Vector Class)
	Example 8-2: Blackboard (Revisited)
	More Graphics Methods
	Point2D Object
	GeneralPath Object
	Drawing Polygons
	Example 8-3: Drawing Polygons
	Drawing Curves
	Example 8-4: Drawing Curves
	Example 8-5: Animated Curves
	GradientPaint Object
	Example 8-6: Gradient Paint
	TexturePaint Object
	Example 8-7: Texture Paint
	drawString Method
	Multimedia Effects
	Animation with drawImage Method
	Example 8-8: Bouncing Ball
	Scrolling Backgrounds
	Example 8-9: Horizontally Scrolling Background
	Sprite Animation
	Keyboard Methods
	Example 8-10: Sprite Animation
	Collision Detection
	Example 8-11: Collision Detection
	Sounds in Java
	Example 8-12: Playing Sounds
	Example 8-13: Bouncing Ball with Sound!
	Class Review
	Practice Problems 8
	Problem 8-1. Blackboard Problem
	Problem 8-2. Rubber Band Problem
	Problem 8-3. Plot Labels Problem
	Problem 8-4. Bouncing Balls Problem
	Problem 8-5. Moon Problem

	Exercise 8: The Original Video Game - Pong!

	9. Other Java Topics
	Review and Preview
	Other Controls
	JTextPane Control
	Example 9-1: Note Editor (Revisited)
	JToolBar Control
	Example 9-2: Note Editor Toolbar
	More Swing Controls
	Even More Controls
	Calendar Control
	Example 9-3: Date Selection
	Printing with Java
	Printing Pages of a Document
	Printing Text
	Printing Lines and Rectangles
	Printing Swing Components
	pageDialog Method
	printDialog Method
	Example 9-4: Printing
	Creating a Help System
	Creating Topic Files
	Creating a Map File
	Creating a Table of Contents File
	Creating a Help Set File
	Displaying the Help System
	Example 9-5: Help System Display
	Class Review
	Course Summary
	Practice Problems 9
	Problem 9-1. Loan Printing Problem
	Problem 9-2. Plot Printing Problem
	Problem 9-3. Note Editor Help Problem

	Exercise 9-1: Phone Directory
	Exercise 9-2: The Ultimate Application

	Appendix I. General Purpose Methods and Classes
	average
	BarChartPanel
	blankLine
	circleGeometry
	degFTodegC
	GraphicsPanel
	LineChartPanel
	loanPayment
	midLine
	PieChartPanel
	PrintUtilities
	randomNormalNumber
	rectangleInfo
	sortIntegers
	soundEx
	standardDeviation
	Transparency
	validateDecimalNumber
	validateIntegerNumber
	xPhysicalToxUser
	yPhysicalToyUser

	Appendix II. Brief Primer on Classes and Objects
	Introduction
	Objects in Java
	Adding a Class to a Java Project
	Declaring and Constructing an Object
	Adding Properties to a Class
	Another Way to Add Properties to a Class
	Validating Class Properties
	Adding Constructors to a Class
	Adding Methods to a Class
	Inheritance
	Example II-1. Savings Account
	Inheriting from Java Controls
	Building a Custom Control
	Adding New Properties to a Control
	Adding Control Methods
	Example II-2. Savings Account (Revisited)
	Class Review

	Appendix III. Installing Java and NetBeans for Windows Linux or MAC OS X
	More Self-Study or Instructor-Led Computer Programming Tutorials by Kidware Software

