
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Learning	MySQL	and	MariaDB

Russell	J.T.	Dyer

Beijing	•	Cambridge	•	Farnham	•	Köln	•	Sebastopol	•	Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

To	Fortunata	Serio,	my	mother,	who	gave	me	life,	taught	me	to	be	kind	and	loving,	and	to
speak	—	which	is	a	precursor	to	being	a	writer.

And	to	Andrew	Gambos,	who	had	the	thankless	job	of	being	my	stepfather,	but	taught	me
how	to	assert	myself	in	life	and	in	my	career.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Special	Upgrade	Offer
If	you	purchased	this	ebook	directly	from	oreilly.com,	you	have	the	following	benefits:

DRM-free	ebooks	—	use	your	ebooks	across	devices	without	restrictions	or	limitations
Multiple	formats	—	use	on	your	laptop,	tablet,	or	phone
Lifetime	access,	with	free	updates
Dropbox	syncing	—	your	files,	anywhere

If	you	purchased	this	ebook	from	another	retailer,	you	can	upgrade	your	ebook	to	take
advantage	of	all	these	benefits	for	just	$4.99.	Click	here	to	access	your	ebook	upgrade.
Please	note	that	upgrade	offers	are	not	available	from	sample	content.

www.it-ebooks.info

http://oreilly.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Foreword
Before	you	begin	to	read	the	main	chapters	of	this	book	to	learn	about	MySQL	and
MariaDB,	it	might	be	useful	to	understand	what	we	were	trying	to	accomplish	when	we
first	created	MySQL	about	20	years	ago	and	MariaDB	about	5	years	ago,	as	well	as	the
current	state	of	these	database	systems	and	my	expectations	of	them	going	forward.	And
I’d	like	to	encourage	you	in	your	decision	to	learn	these	database	systems	and	to	assure
you	that	they	will	be	in	use	for	a	long	time	and	that	you	will	benefit	from	the	time	and
energy	you	put	into	reading	this	book	and	learning	what	it	has	to	teach	you.

www.it-ebooks.info

http://www.it-ebooks.info/

Origins	of	MySQL
When	my	business	partner	David	Axmark	and	I	started	MySQL,	there	weren’t	any	good,
free,	open	source	database	systems.	There	was	mSQL,	which	wasn’t	open	source,	but	it
inspired	us	to	create	a	new	database	system	for	our	clients,	which	would	later	become
MySQL.	We	had	no	plans	to	do	anything	more	with	this	embryo	of	MySQL	other	than
satisfy	the	needs	of	our	clients.	We	were	learning,	discovering,	and	creating	out	of
practical	concerns	and	needs,	much	as	you	might	and	perhaps	should	be	doing	as	a	reader
of	this	book	and	a	newcomer	to	MySQL	and	MariaDB.

Although	we	had	accomplished	our	task	in	creating	a	straightforward	database	to	meet	our
requirements,	it	wasn’t	long	before	we	noticed	that	there	were	many	other	organizations
that	were	looking	for	a	solution	similar	to	what	we	had	already	developed.	So	we	decided
to	make	the	software	available	to	the	public	and	we	named	it	MySQL.

Part	of	our	motivation	for	doing	this	was	that	we	felt	that	it	was	a	way	in	which	we	could
give	something	back	to	the	open	source	community	that	would	be	very	useful.	Most	open
source	projects	at	that	time	weren’t	as	useful.	We	wanted	to	make	the	world	a	little	better
—	we	had	no	idea	at	that	time	how	much	of	an	impact	MySQL	would	have	on	the	world.
At	the	same	time,	we	were	hoping	that	by	going	public	with	the	software,	it	might	finance
further	development	of	MySQL	for	as	long	as	we	might	want.	We	had	expectations	of
getting	rich	from	MySQL.	We	hoped	only	to	be	able	to	work	full-time	on	this	project
because	we	believed	in	it.	The	result,	though,	was	that	we	contributed	much	to	the	world
—	much	more	than	we	thought	possible.

Given	the	fact	that	over	80%	of	the	websites	in	the	world	are	now	running	on	MySQL,
one	could	easily	argue	that	we	accelerated	the	growth	of	the	internet	and	almost
everything	that	has	grown	out	of	it.	The	impact	it’s	had	is	immeasurable.	Many	of	the	sites
and	businesses	that	have	been	successful,	including	the	ones	that	are	now	huge,	probably
would	never	have	started	if	it	were	not	for	MySQL	being	free	and	dependable.	At	that
time,	those	founders	and	startup	companies	just	didn’t	have	the	financial	resources	to	start
their	sites.	The	cost	of	commercial	database	software	was	a	barrier	to	some	of	the	most
creative	web-based	organizations	being	launched,	including	organizations	like	Google,
Wikipedia,	and	Facebook.	Plus,	the	commercial	database	systems	posed	other	problems
for	startups	of	that	time.	First,	they	were	too	slow	—	they	weren’t	optimized	for	the	Web
and	that	was	critical	for	organizations	like	these.	The	commecial	alternatives	were	also	too
difficult	to	use	and	manage,	requiring	higher	paid	developers.

Because	of	these	factors,	we	were	able	to	give	fledgling	organizations	what	they	needed	to
become	the	significant	components	of	the	Internet	and	a	major	part	of	the	lives	of	most
people	in	the	world	today.	We	were	a	critical	component	of	the	development	of	the
Internet	and	we	still	are.	There’s	nothing	to	indicate	that	we	won’t	continue	to	be	so.	The
growth	of	MySQL	and	especially	of	MariaDB	is	increasing.	It’s	not	decreasing	as	some
people	expected	with	the	introduction	of	new	databases	systems	and	methods	such	as
NoSQL.

MySQL	became	a	dominant	database	system	long	ago.	Once	something	becomes
dominant,	it’s	difficult	to	replace	it.	Even	if	something	better	comes	along,	people	prefer
what’s	already	familiar	to	them	and	what	they	already	know	and	are	using.	For	something

www.it-ebooks.info

http://www.it-ebooks.info/

to	replace	MySQL	as	the	dominant	open	source	database,	it	would	have	to	be	not	only
critically	better,	but	also	offer	a	way	for	people	to	migrate	without	much	effort,	and
without	wasting	all	of	the	knowledge	they	accumulated	from	their	current	system.	This	is
why	MariaDB	can	replace	MySQL:	it’s	basically	the	same	thing,	but	with	more	features
and	more	potential	for	the	future.

www.it-ebooks.info

http://www.it-ebooks.info/

State	of	MySQL	and	MariaDB
MySQL	and	MariaDB	aren’t	perfect	—	no	database	is	that,	nor	will	ever	be	that	—	but
MySQL	and	MariaDB	are	good	enough	for	most	people	and	they’re	excellent	in	many
ways.	The	balance	we	strive	for	is	to	develop	a	database	system	that	works	easily	on	the
Web	and	has	one	of	the	fastest	connectors.	Thanks	to	the	fact	that	we’re	using	threads,	we
can	handle	much	higher	loads	than	other	database	systems.	We	used	some	of	the	most
advanced	technologies	available	when	we	started	MySQL	and	we	have	always	striven	to
adapt	to	new	hardware	and	to	optimize	the	software	for	all	commonly	used	systems	and
methods	of	deployment.	Because	we’re	continuously	improving	the	software,	we	can	have
a	new	release	each	month	for	the	community	edition	and	we	can	have	a	new	version	every
year.	That’s	an	indication	that	things	are	happening	and	improving	regularly.

As	someone	learning	and	intending	to	use	MySQL	and	MariaDB,	you	can	take	comfort	in
that	we	are	always	improving	and	adjusting	for	a	changing	environment.	You	can	count	on
us	for	the	future.	I	think	that’s	the	main	thing:	people	like	that	they	can	depend	on	us.
Although	it	may	be	fun	and	exciting	to	learn	something	new,	after	a	while	it	can	become
tiresome	to	have	to	learn	a	totally	new	system	every	couple	of	years.	You	won’t	have	to	do
that	with	MySQL	and	MariaDB.

I	mentioned	before	about	how	difficult	it	is	to	supplant	a	dominant	software.	In	the	case	of
MariaDB,	it’s	not	much	of	a	change	in	practice	for	those	who	have	been	using	MySQL.
As	a	result,	most	people	can	migrate	to	MariaDB	without	the	usual	obstacles,	but	they	can
take	advantage	of	the	new	features	included	in	MariaDB	and	the	ones	that	are	planned
when	they’re	added.	MariaDB	is	relevant	because	we	continue	to	make	improvements	and
we	care	about	giving	developers	what	they	need	to	get	the	most	out	of	their	databases.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond	the	Server
In	addition	to	web	usage,	MySQL	and	MariaDB	can	be	used	for	stand-alone	applications,
embedded	with	other	software.	Embedded	MySQL	and	MariaDB	are	growing	more	than
ever.	Many	applications	are	moving	to	cloud	environments,	but	database	systems	that
many	businesses	used	in	the	past	are	typically	too	expensive	to	use	in	a	cloud
environment.	As	a	result,	they	need	an	inexpensive	database	system	that	is	easily	deployed
in	a	cloud	environment.	For	this	situation,	MySQL	and	MariaDB	are	the	obvious	choices.

The	use	of	mobile	devices	and	websites	and	applications	through	mobile	devices	has
increased	dramatically;	for	some	sites,	it	now	exceeds	access	and	usage	through	desktop
computers.	For	sites	and	applications	that	run	on	mobile	devices	and	use	a	database
located	in	the	cloud	or	in	house,	we’re	the	best	choice	among	all	the	open	source	and
commercial	database	systems.	We	have	the	best	scale-out	technologies	for	when	your	site
or	application	experiences	major	spikes	in	traffic	or	rapid	growth	in	business.	With	the
encryption	that	we’re	adding	in	version	10.1	of	MariaDB,	you	can	be	assured	that	your
databases	will	be	very	secure	by	default.	Most	other	database	systems	don’t	have
encryption	by	default.

www.it-ebooks.info

http://www.it-ebooks.info/

MariaDB:	The	Differences	and	Expectations
Regarding	my	hopes	and	expectations	for	the	MariaDB	database	system,	I’m	working	at
the	foundation	to	ensure	that	we	get	more	companies	actively	involved	in	the	development
of	MariaDB.	That’s	something	we	lacked	during	the	history	of	MySQL.	We	want	to
develop	something	that	will	satisfy	everyone	—	not	only	now,	but	for	the	future.	To	do
that,	we	need	more	organizations	involved.	We’re	happy	to	see	Google	involved	in	the
MariaDB	Foundation.	I’d	like	to	see	10	or	15	companies	as	significant	as	Google
involved.	That’s	something	they’ve	managed	to	do	at	FOSS,	the	Free	and	Open	Source
Software	Foundation.	They	have	several	companies	that	assist	in	development.	That’s
their	strength.	Their	weakness	is	that	they	don’t	have	one	company	coordinating	the
development	of	software.	My	hope	is	that	the	MariaDB	Foundation	will	act	as	a
coordinator	for	the	effort,	but	with	many	companies	helping.	That	would	benefit	everyone.
It	is	this	collaborative	effort	that	I	don’t	expect	from	Oracle	regarding	MySQL.	That’s	the
difference	and	advantage	of	MariaDB.	With	Oracle,	there’s	no	certainty	in	the	future	of
the	open	source	code	of	MySQL.	With	MariaDB,	by	design	it	will	always	be	open	source
and	everything	they	do	will	be	open	source.	The	foundation	is	motivated	and	truly	want	to
be	more	closely	aligned	with	open	source	standards.

The	MariaDB	Foundation	was	created	to	be	a	sanctuary.	If	something	goes	wrong	in	the
MariaDB	Corporation,	the	Foundation	can	guarantee	that	the	MariaDB	software	will
remain	open	—	always.	That’s	its	main	role.	The	other	role	is	to	ensure	that	companies
that	want	to	participate	in	developing	MariaDB	software	can	do	so	on	equal	terms	as
anyone	else	because	the	foundation	is	there.	So	if	someone	creates	and	presents	a	patch	for
MariaDB	software,	they	can	submit	it	to	be	included	in	the	next	release	of	MariaDB.	With
many	other	open	source	projects,	it’s	difficult	to	get	a	patch	included	in	the	software.	You
have	to	struggle	and	learn	how	to	conform	to	their	coding	style.	And	it’s	even	harder	to	get
the	patch	accepted.	In	the	case	of	MySQL	with	Oracle,	it	could	be	blocked	by	Oracle.	The
situation	is	inherently	different	with	MariaDB.

For	example,	if	Percona,	a	competitor	of	MariaDB	Corporation,	wants	to	add	a	patch	to
MariaDB	software	that	will	help	their	background	program	XtraBackup	to	run	better,	but
the	management	of	MariaDB	Corporation	doesn’t	like	that	it	would	be	helping	their
competitor,	it	doesn’t	matter.	MariaDB	Corporation	has	no	say	in	which	patches	are
adopted.	If	the	Foundation	accepts	the	patch,	it’s	added	to	the	software.	The	Foundation
review	patches	on	their	technical	merits	only,	not	based	on	any	commercial	agenda.

The	open	source	projects	that	survived	are	those	that	were	created	for	practical	reasons.
MySQL	wasn’t	in	the	beginning	the	best	database	solution.	People	complained	that	it
didn’t	have	many	features	at	that	time.	However,	it	was	always	practical.	It	solved
problems	and	met	the	needs	of	developers	and	others.	And	it	did	so	better	than	other
solutions	that	were	supposedly	better	choices.	We	did	that	by	actively	listening	to	people
and	with	a	willingness	to	make	changes	to	solve	problems.	Our	goal	with	MariaDB	is	to
get	back	to	those	roots	and	be	more	interactive	with	customers	and	users.	By	this	method,
we	can	create	something	that	might	not	be	perfect	for	everyone,	but	pretty	good.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Future	of	MySQL	and	MariaDB
As	for	the	future,	if	you	want	MariaDB	to	be	part	of	your	professional	life,	I	can	assure
you	that	we	will	do	everything	possible	to	support	and	develop	the	software.	We	have
many	brilliant	people	who	will	help	to	ensure	MariaDB	has	a	long	future.

In	the	near	term,	I	think	that	MariaDB	version	10.1	will	play	a	large	role	in	securing	the
future	of	MariaDB.	It	offers	full	integration	with	Galera	cluster	—	an	add-on	for	MariaDB
for	running	multiple	database	servers	for	better	performance	—	because	of	the	new
encryption	features.	That’s	important.	In	recent	months,	all	other	technologies	have	been
overshadowed	with	security	concerns	because	the	systems	of	some	governments	and
major	companies	have	been	hacked.	Having	good	encryption	could	have	stopped	most	of
those	attacks	from	achieving	anything.	These	improvements	will	change	the	perception
that	open	source	databases	are	not	secure	enough.	Many	commercial	database	makers
have	said	that	MySQL	and	MariaDB	are	not	secure,	and	they	have	been	able	to	convince
some	businesses	to	choose	a	commercial	solution	instead	as	a	result.	With	MariaDB	10.1,
though,	we	can	prove	easily	that	their	argument	is	not	true.	So	that’s	good.	If	you’ve
chosen	to	use	MariaDB,	you	can	make	this	point	when	you’re	asked	about	the	difference
between	MySQL	and	MariaDB,	and	you	can	feel	good	about	your	choice	over	the	long
term	for	this	same	reason.

Looking	at	the	future,	many	companies	are	leery	about	using	commercial	database
software	because	they	don’t	know	for	sure	if	the	compiled	code	contains	backdoors	for
accessing	the	data	or	if	there	is	some	special	way	in	which	the	software	is	using
encryption	that	could	allow	hackers	to	get	at	their	databases.	On	the	other	hand,	countries
like	Russia	and	China	question	whether	open	source	databases	are	secure.	The	only	way
we	can	assure	them	of	that	is	to	provide	access	to	the	source	code,	and	that	means	they
must	use	open	source	software.	So	I	do	hope	and	expect	that	in	the	future	we	will	see
MySQL	and	MariaDB	growing	rapidly	in	these	countries	and	similar	organizations,
because	we	can	address	their	concerns	when	commercial	solutions	cannot.	Ironically,	a
more	transparent	software	system	is	preferred	by	a	less	transparent	government.	It’s	better
not	only	for	less	transparent	organizations,	but	also	for	those	that	want	to	keep	their
databases	more	secure.	This	applies	to	an	organization	that	wants	to	keep	their	data	private
and	doesn’t	want	someone	else	such	as	a	hacker,	or	a	competitor,	a	government	to	have
access	to	their	data.

www.it-ebooks.info

http://www.it-ebooks.info/

Your	Future	in	Learning	MySQL	and	MariaDB
Both	MySQL	and	MariaDB	follow	the	SQL	convention	for	database	languages,	which
was	created	about	30	years	ago.	The	nice	thing	about	SQL	is	that	it	hasn’t	changed	much
in	the	last	30	years.	Mostly,	one	can	do	more	with	it.	So	if	you	learn	one	SQL	system	well,
you	can	easily	make	a	transition	to	another.	The	basic	concepts	that	you’ll	acquire	in
learning	an	SQL	system	like	MySQL	or	MariaDB,	will	be	useful	for	your	entire	career	as
a	database	developer	or	administrator.	There’s	nothing	to	indicate	that	MySQL	or
MariaDB	will	go	away	for	the	next	50	years.	All	of	the	concepts	for	the	past	20	years	of
MySQL	are	the	same	as	they	are	today	and	will	probably	be	the	same	for	the	next	several
decades.	There	are	just	some	new	features	and	tools	to	be	able	to	do	extra	tasks.	But	the
skills	you	always	need	are	basic	ones	and	they’re	contained	in	this	book.	These	skills	are
ones	that	will	always	be	of	benefit	to	you.

www.it-ebooks.info

http://www.it-ebooks.info/

Advice	on	Learning	MySQL	and	MariaDB
You	shouldn’t	just	read	this	book.	You	should	install	MySQL	or	MariaDB,	try	executing
the	examples	given,	and	complete	the	exercises	at	the	end	of	each	chapter.	You	should	also
try	to	do	something	useful	with	the	software	and	the	SQL	statements	and	functions
described	in	each	chapter.	You	should	use	the	tools	or	utilities	presented.	If	you	don’t	get
practical	experience,	any	book	like	this	one	will	be	useless	to	you.	If	you’re	not	sure	what
you	can	do	to	get	practical	experience,	perhaps	you	could	try	to	build	a	website	using
MySQL	or	MariaDB.	Try	to	solve	some	data-related	problem	with	one	of	these	database
systems.	Begin	to	make	it	part	of	your	life.	Then	what	you’re	learning	may	help	you
immediately	in	some	way.	By	this	method,	you	will	become	more	excited	by	what	you’re
learning.	You	will	better	learn	the	basics	by	using	the	software	from	almost	the	beginning.

Another	way	to	learn	more,	as	well	as	make	yourself	known	in	the	community	and	to
develop	a	business	network	that	could	lead	to	more	work	and	better	jobs,	is	by
participating	in	the	forums	and	mailing	lists	and	IRC	channels	for	MySQL	and	MariaDB.
By	using	what	you’re	learning	to	help	others,	you’ll	not	only	become	popular,	but	you’ll
learn	more	in	the	process	of	having	to	explain	the	concepts	you’ll	learn	in	this	book.

—	Monty	Widenius

Málaga,	Spain,	January	2015

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
MySQL	is	the	most	popular	open	source	database	system	available.	It’s	particularly	useful
for	public	websites	that	require	a	fast	and	stable	database.	Even	if	you’re	not	familiar	with
MySQL,	you’ve	used	it	many	times.	You	use	it	when	you	use	Google,	Amazon,	Facebook,
Wikipedia,	and	many	other	popular	websites.	It’s	the	keeper	of	the	data	behind	huge
websites	with	thousands	of	pages	of	data,	and	small	sites	with	only	a	few	pages.	It’s	also
used	in	many	non-web-based	applications.	It’s	fast,	stable,	and	small	when	needed.

The	software	was	started	by	Michael	“Monty”	Widenius	and	David	Axmark	in	1995	and
is	licensed	under	the	GNU	General	Public	License.	In	time,	they	founded	the	Swedish
company	MySQL	Ab	(the	Ab	stands	for	aktiebolag,	or	stock	company),	which	years	later
became	MySQL,	Inc.,	incorporated	in	the	United	States.	In	January	2008,	the	company
was	acquired	by	Sun	Microsystems,	which	seemed	promising	for	the	future	of	the
software.	But	in	April	2009	Oracle	—	a	major	competitor	of	MySQL	that	offers	closed
source	database	software	—	acquired	Sun.	Many	worried	at	the	time	that	this	acquisition
would	eventually	end	MySQL	software	as	a	free,	open	source	alternative	on	which	much
of	the	Web	and	many	sites	that	have	changed	the	world	were	built.	Five	years	after	the
acquisition,	this	hasn’t	proved	to	be	the	case.	Many	new	features	have	been	added	to
MySQL	and	the	number	of	MySQL	developers	within	and	outside	of	Oracle	has	increased.

Displeased	that	Oracle	took	control	of	MySQL	software,	Monty	started	a	new	company
(Monty	Program	Ab)	that	has	developed	a	fork	of	the	software	called	MariaDB.[1]
Because	MySQL	software	is	licensed	with	the	GPL,	it	is	possible	to	freely	and	legally	use
the	MySQL	software	and	add	to	it.	At	the	same	time,	Ulf	Sandberg,	the	former	Senior
Vice	President	of	Services	at	MySQL,	Inc.,	along	with	other	former	employees	of
MySQL,	left	Sun	and	Oracle	and	started	SkySQL	Ab,	providing	support,	consulting,
training,	and	other	services	related	to	MySQL	and	MariaDB	software.	As	of	October
2013,	Monty	Program	has	merged	into	SkySQL,	which	was	renamed	to	MariaDB	Ab	in
October	2014.	The	software	license,	though,	is	now	held	by	the	MariaDB	Foundation	so
that	it	cannot	be	bought	by	Oracle	or	any	other	corporation.

As	for	the	community	related	to	the	software,	some	have	been	migrating	to	MariaDB,
preferring	software	not	associated	with	a	large	proprietary	software	company.	Many
operating	systems	distributors,	hardware	makers,	and	software	packagers	are	now
shipping	their	products	with	MariaDB,	either	together	with	MySQL	or	without	it.	Many
websites	that	used	MySQL	software	have	switched	to	MariaDB.	It’s	easy	to	do,	and	for
most	sites	it	requires	no	changes	to	applications	that	use	MySQL	—	not	a	single	line	of
code	needs	to	be	changed	to	switch	to	MariaDB.	If	you	want	to	take	advantage	of	new,
advanced	features	of	MariaDB,	it	is	necessary	to	add	or	change	code	in	an	application	that
previously	used	MySQL,	bu	the	rest	is	the	same.

Although	ownership,	company	names,	and	even	the	name	of	the	software	has	changed,	the
vision	that	began	almost	30	years	ago	and	the	spirit	that	has	grown	strong	and	vibrant	in
the	community	is	the	same	and	continues	in	MariaDB.

If	you	want	to	learn	about	MySQL	and	MariaDB	software,	you	can	do	it.	It’s	not	difficult
to	understand	or	to	use.	This	book	has	been	written	to	be	a	primer	for	newcomers	to

www.it-ebooks.info

http://www.it-ebooks.info/

MySQL	and	MariaDB,	to	get	you	started	and	help	you	be	productive	quickly.	It’s	also
useful	for	beginners	who	have	learned	only	parts	of	MySQL	and	feel	that	there	may	be
key	aspects	used	commonly	that	they	don’t	know,	that	they	somehow	missed	or	skipped
over	when	first	learning	it.	At	the	beginner	level,	there	is	no	difference	between	MySQL
and	MariaDB.	So	when	you	learn	one,	you	learn	the	other.	Because	of	this,	the	names
MySQL	and	MariaDB	are	used	interchangeably.

www.it-ebooks.info

http://www.it-ebooks.info/

Reading	Strategy
The	chapters	of	this	book	are	written	and	ordered	based	on	the	assumption	that	the	reader
will	read	them	in	order.	This	does	not	assume	that	some	chapters	won’t	be	skipped;	it’s
assumed	that	most	will	skip	Part	I.	For	instance,	in	addition	to	skipping	Chapter	1,	the
introductory	chapter,	if	MySQL	is	already	installed	on	your	computer,	you	would	probably
skip	Chapter	2,	which	covers	installing	MySQL	and	MariaDB.	If	you’ve	never	used
MySQL,	you	probably	should	read	Chapter	3,	The	Basics	and	the	mysql	Client.	After	that,
all	readers	should	read	sequentially	the	chapters	contained	in	the	Parts	II,	III,	and	IV.	The
remaining	chapters,	contained	in	Part	V,	relate	to	administration	and	not	all	of	those	may
be	of	use	to	you	early	on.

Most	of	the	chapters	conclude	with	a	set	of	exercises.	The	exercises	are	designed	to	help
you	think	through	what	you’ve	read	in	the	chapter.	Working	through	the	exercises	will
help	reinforce	what	you	should	have	learned	from	the	examples	in	the	chapter.
Incidentally,	it’s	useful	to	try	entering	the	examples	throughout	the	chapters	for	more
practice.	The	exercises	at	the	end	of	the	chapters	depend	on	a	building	of	knowledge,	if
not	from	one	chapter	to	the	next,	at	least	from	previous	chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

Text-Based	Interface	and	Operating	Systems
Many	people	feel	that	graphical	user	interfaces	(GUIs)	are	faster	when	using	a	complex
software	program	or	system.	This	accounts	for	the	popularity	of	Windows	programs.
However,	while	it	is	said	that	a	picture	is	worth	a	thousand	words,	when	you	want	to	say
only	one	word,	you	don’t	need	to	draw	a	picture.	You	don’t	need	to	use	an	elaborate	GUI
to	make	a	minute	change	to	a	database.

In	particular,	I	don’t	like	GUIs	for	controlling	a	server	or	MySQL.	Interfaces	tend	to
change	between	versions	of	the	interface.	Command-line	utilities	are	very	stable	and	their
basic	commands	don’t	usually	change.	If	you	know	how	to	configure	a	server	at	the
command	line,	it	matters	little	what	kind	of	server	you’re	entering	commands	on.	Any
examples	in	this	book	that	are	executed	within	MySQL	are	universal.	Examples	shown	at
the	command	line	are	for	Unix-like	operating	systems	(e.g.,	Linux).	I	leave	it	to	readers	to
make	the	necessary	adjustments	for	their	particular	operating	systems	(i.e.,	how	to	get	to
the	command	prompt).

www.it-ebooks.info

http://www.it-ebooks.info/

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.
Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program	elements
such	as	variable	or	function	names,	databases,	data	types,	environment	variables,
statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.
Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values	determined
by	context.

TIP

This	icon	signifies	a	tip,	suggestion,	or	general	note.

CAUTION

This	icon	indicates	a	warning	or	caution.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	Code	Examples
All	of	the	scripts	and	programs	shown	in	the	book	are	available	for	you	to	easily	copy	and
modify	for	your	own	use.	They	can	be	found	on	the	Web	at
http://mysqlresources.com/files.

This	book	is	here	to	help	you	learn	MySQL	and	MariaDB	and	to	get	your	job	done	in
relation	to	this	software.	In	general,	if	this	book	includes	code	examples,	you	may	use	the
code	in	your	programs	and	documentation.	You	do	not	need	to	contact	us	for	permission
unless	you’re	reproducing	a	significant	portion	of	the	code.	For	example,	writing	a
program	that	uses	several	chunks	of	code	from	this	book	does	not	require	permission.
Selling	or	distributing	a	CD-ROM	of	examples	from	O’Reilly	books	does	require
permission.	Answering	a	question	by	citing	this	book	and	quoting	example	code	does	not
require	permission.	Incorporating	a	significant	amount	of	example	code	from	this	book
into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the	title,
author,	publisher,	and	ISBN.	For	example:	“Learning	MySQL	and	MariaDB	by	Russell
J.T.	Dyer	(O’Reilly).	Copyright	2015	Russell	J.T.	Dyer,	978-1-449-36290-4.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission	given	above,
you	may	contact	us	at	permissions@oreilly.com	to	request	special	permission.

www.it-ebooks.info

http://mysqlresources.com/files
mailto:permissions@oreilly.com
http://www.it-ebooks.info/

Safari®	Books	Online
NOTE

Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert	content	in	both	book	and	video	form	from	the
world’s	leading	authors	in	technology	and	business.

Technology	professionals,	software	developers,	web	designers,	and	business	and	creative
professionals	use	Safari	Books	Online	as	their	primary	resource	for	research,	problem
solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,	government,
education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and	prepublication
manuscripts	in	one	fully	searchable	database	from	publishers	like	O’Reilly	Media,
Prentice	Hall	Professional,	Addison-Wesley	Professional,	Microsoft	Press,	Sams,	Que,
Peachpit	Press,	Focal	Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan
Kaufmann,	IBM	Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more
information	about	Safari	Books	Online,	please	visit	us	online.

www.it-ebooks.info

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://www.it-ebooks.info/

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/lrng_mysql_and_mariadb.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our	website	at
http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

www.it-ebooks.info

http://bit.ly/lrng_mysql_and_mariadb
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.it-ebooks.info/

Acknowledgments
Thanks	to	my	colleagues	Colin	Charles,	Kenneth	Dyer,	Chad	Hudson,	Caryn-Amy	Rose,
and	Sveta	Smirnova	for	reviewing	this	book	for	technical	accuracy	and	for	advice	and
other	information	critical	to	its	creation.	Thanks	to	my	editor,	Andy	Oram,	for	his	help	and
his	confidence	in	me	over	the	many	years	I’ve	known	him.	Thanks	to	my	two	bosses	from
the	MySQL	and	MariaDB	world:	Ulf	Sandberg	and	Max	Mether,	both	of	whom	worked	at
MySQL	AB	and	SkySQL/MariaDB	Ab.	Both	of	them	have	been	very	encouraging	and
excellent	managers.	Thanks	also	to	my	friend	and	coworker,	Rusty	Osborne	Johnson	for
her	friendship	and	patience	while	working	on	this	book.

[1]	Incidentally,	MySQL	is	named	for	Monty	Widenius’	first	daughter,	My	Widenius.	MariaDB	is	named	for	his	second
daughter,	Maria	Widenius.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part	I.	The	Software
At	the	heart	of	what	is	collectively	known	as	MySQL	and	MariaDB	is	the	server.	The	term
server	in	this	context	refers	to	software,	not	a	primary	computer	on	which	it	may	be
running.	The	server	maintains,	controls,	and	protects	your	data,	storing	it	in	files	on	the
computer	where	the	server	is	running	in	various	formats.	The	server	listens	for	requests
from	other	software	that	is	running	(called	clients	in	this	context).	The	term	client	refers	to
software,	not	a	computer.	A	client	and	server	software	may	be	running	on	the	same
computer,	which	can	be	a	personal	laptop	computer.

We’ll	start	by	using	a	command-line	client	where	you	type	in	requests	manually.	Then
we’ll	graduate	to	issuing	the	requests	from	programs	that	can	back	up	web	servers	and
other	uses	for	the	data.	It’s	not	necessary	for	you	to	know	all	of	the	files	and	programs	that
make	up	MySQL.	There	are,	though,	a	few	key	ones	of	which	you	should	be	aware.

One	key	program	is	the	server	itself,	mysqld	(the	d	stands	for	daemon	and	is	a	common
term	for	a	server).	The	name	is	the	same	in	both	MySQL	and	MariaDB.	This	daemon	must
be	running	in	order	for	users	to	be	able	to	access	data	and	make	changes.	As	an
administrator,	you	have	the	ability	to	configure	and	set	mysqld	to	suit	your	database
system	needs.	The	daemon	is	mentioned	where	relevant	in	various	chapters	throughout
this	book.

Another	key	program,	used	extensively	through	this	book,	is	the	basic	MySQL	client,
called	simply,	mysql.	With	it,	you	can	interact	with	the	mysqld	daemon,	and	thereby	the
databases.	It’s	a	textual	user	interface.	There’s	nothing	fancy	about	it	—	a	mouse	is	not
needed	to	use	it.	You	simply	type	in	the	SQL	statements	that	you	will	learn	about	in	this
book.	The	results	of	queries	are	displayed	in	ASCII	text.	It’s	very	clean	looking,	but	no
graphics	are	involved.	It’s	also	very	fast,	as	there’s	nothing	but	text	(i.e.,	there	are	no
binaries	or	image	files).	We’ll	cover	this	in	Chapter	3.	There	are	GUI	clients	available,	but
because	most	MySQL	developers	and	administrators	prefer	the	mysql	client,	and	what	you
type	in	mysql	is	the	same	as	what	is	passed	to	the	server	by	a	GUI	client,	I	cover	it
exclusively.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	1.	Introduction
MySQL	is	an	open	source,	multithreaded,	relational	database	management	system	created
by	Michael	“Monty”	Widenius	in	1995.	In	2000,	MySQL	was	released	under	a	dual-
license	model	that	permitted	the	public	to	use	it	for	free	under	the	GNU	General	Public
License	(GPL).	All	of	this,	in	addition	to	its	many	features	and	stability,	caused	its
popularity	to	soar.

It	has	been	estimated	that	there	are	more	than	six	million	installations	of	MySQL
worldwide,	and	reports	of	over	50,000	downloads	a	day	of	MySQL	installation	software.
The	success	of	MySQL	as	a	leading	database	is	due	not	only	to	its	price	—	after	all,	other
cost-free	and	open	source	databases	are	available	—	but	also	its	reliability,	performance,
and	features.	MariaDB	is	rapidly	becoming	the	replacement	to	MySQL,	and	is	seen	by
many	as	the	heir	apparent	to	the	spirit	of	the	MySQL	community.

If	you’re	embarking	on	a	career	in	computer	programming,	web	development,	or
computer	technology	more	generally,	learning	MySQL	and	MariaDB	will	prove	useful.
Many	businesses	develop	and	maintain	custom	software	with	MySQL.	Additionally,	many
of	the	most	popular	websites	and	software	use	MySQL	for	their	database	—	or	they	use
another	SQL	database	system	that	you	can	learn	once	you	understand	MySQL.	It’s	highly
likely	that	you	will	be	required	to	know	or	will	benefit	from	knowing	MySQL	during	the
course	of	working	as	a	database	or	website	developer.	Therefore,	learning	MySQL	and
MariaDB	is	a	good	foundation	for	your	career	in	computer	technology.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Value	of	MySQL	and	MariaDB
Many	features	contribute	to	MySQL’s	standing	as	a	superb	database	system.	Its	speed	is
one	of	its	most	prominent	features	(refer	to	its	benchmarks	page	for	its	performance	over
time).	MySQL	and	MariaDB	are	remarkably	scalable,	and	are	able	to	handle	tens	of
thousands	of	tables	and	billions	of	rows	of	data.	They	can	also	manage	small	amounts	of
data	quickly	and	smoothly,	making	them	convenient	for	small	businesses	or	amateur
projects.

The	critical	software	in	any	database	management	system	is	its	storage	engine,	which
manages	queries	and	interfaces	between	a	user’s	SQL	statements	and	the	database’s	back-
end	storage.	MySQL	and	MariaDB	offer	several	storage	engines	with	different
advantages.	Some	are	transaction-safe	storage	engines	that	allow	for	rollback	of	data	(i.e.,
the	often	needed	undo	feature	so	familiar	in	desktop	software).	Additionally,	MySQL	has	a
tremendous	number	of	built-in	functions,	which	are	detailed	in	several	chapters	of	this
book.	MariaDB	offers	the	same	functions	and	a	few	more.	MySQL	and	MariaDB	are	also
very	well	known	for	rapid	and	stable	improvements.	Each	new	release	comes	with	speed
and	stability	improvements,	as	well	as	new	features.

www.it-ebooks.info

http://www.mysql.com/it-resources/benchmarks
http://www.it-ebooks.info/

Mailing	Lists	and	Forums
When	learning	MySQL	and	MariaDB,	and	especially	when	first	using	MySQL	for	your
work,	it’s	valuable	to	know	where	to	find	help	when	you	have	problems	with	the	software
and	your	databases.	For	problems	that	you	may	have	with	your	databases,	you	can	receive
assistance	from	the	MySQL	community	at	no	charge	through	several	Oracle-hosted
forums.	You	should	start	by	registering	on	the	forums	so	that	you	may	ask	questions,	as
well	as	help	others.	You	can	learn	much	when	helping	others,	as	it	forces	you	to	refine
what	you	know	about	MySQL.	You	can	find	similar	resources	related	to	MariaDB	on
MariaDB	Ab’s	website.

When	you	have	a	problem	with	MySQL,	you	can	search	the	forums	for	messages	from
others	who	may	have	described	the	same	problem	that	you	are	trying	to	resolve.	It’s	a
good	idea	to	search	the	forums	and	the	documentation	before	starting	a	new	topic	in	the
forums.	If	you	can’t	find	a	solution	after	searching,	post	a	question.	Be	sure	to	post	your
question	in	the	forum	related	to	your	particular	topic.

www.it-ebooks.info

http://forums.mysql.com/
https://mariadb.com/resources/community-tools
http://www.it-ebooks.info/

Other	Books	and	Other	Publications
MariaDB	provides	online	documentation	of	their	software	that	generally	applies	to
MySQL	software.	Oracle	provides	extensive	online	documentation	for	the	MySQL	server
and	all	of	the	other	software	it	distributes.	The	documentation	is	organized	by	version	of
MySQL.	You	can	read	the	material	online	or	download	it	in	a	few	different	formats	(e.g.,
HTML,	PDF,	EPUB).	In	PDF	and	EPUB,	you	can	download	a	copy	to	an	ereader.	I
maintain	a	website	that	contains	some	documentation	and	examples	derived	from	my
book,	MySQL	in	a	Nutshell	(2008).	Other	people	have	also	contributed	examples	and	other
materials	to	the	site.

In	addition	to	the	book	that	you’re	now	reading,	O’Reilly	publishes	a	few	other	MySQL
books	worth	adding	to	your	library.	O’Reilly’s	mainline	reference	book	on	MySQL	is
written	by	me,	MySQL	in	a	Nutshell.	For	solving	common	practical	problems,	there’s
MySQL	Cookbook	(2006)	by	Paul	DuBois.	For	advice	on	optimizing	MySQL	and
performing	administrative	tasks,	such	as	backing	up	databases,	O’Reilly	has	published
High	Performance	MySQL	(2012)	by	Baron	Schwartz,	Peter	Zaitsev,	and	Vadim
Tkachenko.	At	MySQL,	Inc.,	I	worked	with	the	writers	of	both	MySQL	Cookbook	and
High	Performance	MySQL,	and	they	are	authorities	on	the	topic	and	well	respected	in	the
MySQL	community.

O’Reilly	also	publishes	several	books	about	the	MySQL	application	programming
interfaces	(APIs).	For	PHP	development	with	MySQL,	there’s	Learning	PHP,	MySQL,
JavaScript,	CSS,	and	HTML5	(2014)	by	Robin	Nixon.	For	interfacing	with	Perl	to	MySQL
and	other	database	systems,	there’s	Programming	the	Perl	DBI	(published	in	2000	and
still	very	useful)	by	Alligator	Descartes	and	Tim	Bunce.	To	interface	to	MySQL	with	Java,
you	can	use	the	JDBC	and	JConnector	drivers;	George	Reese’s	book,	Database
Programming	with	JDBC	&	Java	(2000)	is	a	useful	resource	on	this	topic.

In	addition	to	published	books	on	MySQL,	a	few	websites	offer	brief	tutorials	on	using
MySQL.	Incidentally,	I’ve	contributed	a	few	articles	to	O’Reilly	blogs	and	several	other
publications	on	MySQL	and	related	topics.	MySQL’s	site	also	provides	some	in-depth
articles	on	MySQL.	Many	of	these	articles	deal	with	new	products	and	features,	making
them	ideal	if	you	want	to	learn	about	using	the	latest	releases	available	even	while	they’re
still	in	the	testing	stages.	All	of	these	online	publications	are	available	for	no	cost,	except
the	time	invested	in	reading	them.	If	you	are	a	MySQL	support	customer,	though,	you	can
get	information	about	MySQL	from	their	private	Knowledge	Base,	of	which	I	was	the
editor	for	many	years.

Once	you’ve	mastered	the	material	in	this	book,	if	you	require	more	advanced	training	on
MySQL,	MariaDB,	or	related	topics,	MariaDB	Ab	offers	training	courses.	Some	are	for
one	or	two	days,	others	are	week-long	courses	offered	in	locations	around	the	world.	You
can	find	a	list	of	courses	and	when	they’re	offered	on	MariaDB	Ab’s	training	page.	I’m
currently	the	Curriculum	Manager	for	MariaDB	Ab.

www.it-ebooks.info

https://mariadb.com/kb/en/mariadb/documentation/
http://dev.mysql.com/doc
http://mysqlresources.com
http://shop.oreilly.com/product/9780596514334.do
http://shop.oreilly.com/product/0636920032274.do
http://shop.oreilly.com/product/0636920022343.do
http://shop.oreilly.com/product/0636920036463.do
http://shop.oreilly.com/product/9781565926998.do
http://shop.oreilly.com/product/9781565926165.do
http://dev.mysql.com/tech-resources/articles
http://www.skysql.com/products/mysql-training
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	2.	Installing	MySQL	and
MariaDB
The	MySQL	and	MariaDB	database	server	and	client	software	works	on	several	different
operating	systems,	notably	several	distributions	of	Linux,	Mac	OS	X,	FreeBSD,	Sun
Solaris,	and	Windows.

This	chapter	briefly	explains	briefly	the	process	of	installing	MySQL	or	MariaDB	on
Linux,	Mac	OS	X,	and	Windows	operating	systems.	For	some	operating	systems,	this
chapter	has	additional	sections	for	different	distribution	formats.	For	any	one	platform,
you	can	install	MySQL	by	reading	just	three	sections	of	this	chapter:	the	next	section	on
choosing	a	distribution;	the	section	that	applies	to	the	distribution	that	you	choose;	and
Post-Installation	at	the	end	of	the	chapter.	There’s	no	need	to	read	how	to	install	every
version	of	MySQL.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Installation	Packages
The	MySQL	and	MariaDB	packages	come	with	several	programs.	Foremost	is	the	server,
represented	by	the	mysqld	daemon.[2]	It	has	the	same	name	in	both	MySQL	and	MariaDB.
This	daemon	is	the	software	that	actually	stores	and	maintains	control	over	all	of	the	data
in	the	databases.	The	mysqld	daemon	listens	for	requests	on	a	particular	port	(3306,	by
default)	by	which	clients	submit	queries.	The	standard	MySQL	client	program	is	called
simply	mysql.	With	this	text-based	interface,	a	user	can	log	in	and	execute	SQL	queries.
This	client	can	also	accept	queries	from	text	files	containing	queries,	and	thereby	execute
them	on	behalf	of	the	user	or	other	software.	However,	most	MySQL	interaction	is	done
by	programs	using	a	variety	of	languages.	The	interfaces	for	Perl,	PHP,	and	others	are
discussed	in	Chapter	16.

A	few	wrapper	scripts	for	mysqld	come	with	the	server	installation.	The	mysqld_safe	script
is	the	most	common	way	to	start	mysqld,	because	this	script	can	restart	the	daemon	if	it
crashes.	This	helps	ensure	minimal	downtime	for	database	services.	You	don’t	need	to
know	the	details	of	how	all	of	this	works	if	you’re	just	starting	to	learn	MySQL	and
MariaDB,	but	it	gives	you	a	sense	of	how	powerful	and	versatile	this	database	system	can
be.

MySQL,	and	thereby	MariaDB,	also	comes	with	a	variety	of	utilities	for	managing	the
server.	The	mysqlaccess	tool	creates	user	accounts	and	sets	their	privileges.	The
mysqladmin	utility	can	be	used	to	manage	the	database	server	itself	from	the	command
line.	This	kind	of	interaction	with	the	server	includes	checking	a	server’s	status	and	usage,
and	shutting	down	a	server.	The	mysqlshow	tool	may	be	used	to	examine	a	server’s	status,
as	well	as	information	about	databases	and	tables.	Some	of	these	utilities	require	Perl,	or
ActivePerl	for	Windows,	to	be	installed	on	the	server.	See	the	Perl	site	to	download	and
install	a	copy	of	Perl	on	non-Windows	systems,	and	the	ActivePerl	site	to	download	and
install	a	copy	of	ActivePerl	on	Windows	systems.

MySQL	and	MariaDB	also	come	with	a	few	utilities	for	importing	and	exporting	data
from	and	to	databases.	The	mysqldump	utility	is	the	most	popular	one	for	exporting	data
and	table	structures	to	a	plain-text	file,	known	as	a	dump	file.	This	can	be	used	for	backing
up	data	or	for	copying	databases	between	servers.	The	mysql	client	can	be	used	to	import
the	data	back	to	MySQL	from	a	dump	file.	These	topics	and	utilities	are	explained	in
detail	in	Part	I.

You	can	opt	not	to	install	the	helper	utilities.	However,	there’s	no	cost	for	them	and	they’re
not	large	files.	So	you	may	as	well	install	and	use	them.

www.it-ebooks.info

http://www.perl.org
http://www.activestate.com/activeperl
http://www.it-ebooks.info/

Licensing
Although	MySQL	can	be	used	for	free	and	is	open	source,	the	company	that	develops
MySQL	—	currently	Oracle	—	holds	the	copyright	to	the	source	code.	The	company
offers	a	dual-licensing	program	for	its	software:	one	allows	cost-free	use	through	the	GPL
under	certain	common	circumstances,	and	the	other	is	a	commercial	license	requiring	the
payment	of	a	fee.	They’re	both	the	same	software,	but	each	has	a	different	license	and
different	privileges.	The	website	for	the	Free	Software	Foundation,	which	created	the
GPL,	has	details	on	the	license.

Oracle	allows	you	to	use	the	software	under	the	GPL	if	you	use	it	without	redistributing	it,
or	if	you	redistribute	it	only	with	software	that	is	licensed	under	the	GPL.	You	can	even
use	the	GPL	if	you	redistribute	MySQL	with	software	that	you	developed,	as	long	as	you
distribute	your	software	under	the	GPL	as	well.	This	is	how	MariaDB	was	created	and
why	it	is	a	legal	fork	of	MySQL.

However,	if	you	have	developed	an	application	that	requires	MySQL	for	its	functionality
and	you	want	to	sell	your	software	with	MySQL	under	a	non-free	license,	you	must
purchase	a	commercial	license	from	Oracle.	There	are	other	scenarios	in	which	a
commercial	license	may	be	required.	For	details	on	when	you	must	purchase	a	license,	see
the	MySQL	legal	site.

Besides	holding	the	software	copyright,	Oracle	also	holds	the	MySQL	trademark.	As	a
result,	you	cannot	distribute	software	that	includes	MySQL	in	its	name.	None	of	this	is
important	to	learning	how	to	use	MySQL,	but	it’s	good	for	you	to	be	aware	of	these	things
for	when	you	become	an	advanced	MySQL	developer.

www.it-ebooks.info

http://www.fsf.org/licenses/license-list.html
http://www.mysql.com/about/legal
http://www.it-ebooks.info/

Finding	the	Software
You	can	obtain	a	copy	of	MySQL	from	MySQL’s	site,	which	requires	an	Oracle	login	but
is	still	free,	or	from	one	of	its	mirror	sites.	You	can	instead	download	MariaDB,	which
contains	the	latest	release	of	MySQL	and	some	additional	features.	You	can	get	a	copy	of
MariaDB	from	the	MariaDB	Foundation	site,	which	is	also	free	and	requires	registration.

When	downloading	the	software	on	both	sites,	you’ll	have	to	provide	some	information
about	yourself,	your	organization,	and	how	you	intend	to	use	the	software.	They’re
collecting	information	to	understand	how	the	software	is	used	and	to	give	to	their	sales
department.	But	if	you	indicate	that	you	don’t	want	to	be	contacted,	you	can	just	download
the	software	and	not	have	to	interact	further	with	them.

If	your	server	or	local	computer	has	MySQL	or	MariaDB	installed	on	it,	you	can	skip	this
chapter.	If	you’re	not	sure	whether	MySQL	or	MariaDB	is	running	on	the	computer	you’re
using,	you	could	enter	something	like	this	from	the	command	line	of	a	Linux	or	Mac
machine:

ps	aux	|	grep	mysql

If	MySQL	is	running,	the	preceding	command	should	produce	results	like	the	following:
2763	?								00:00:00	mysqld_safe

2900	?								5-23:48:51	mysqld

On	a	Windows	computer,	you	can	use	the	tasklist	tool	to	see	whether	MySQL	is	running.
Enter	something	like	the	following	from	the	command	line:

tasklist	/fi	"IMAGENAME	eq	mysqld"

If	it’s	running,	you	will	get	results	like	this:
Image	Name										PID		Session	Name					Session#			Mem	Usage

==============		=======		==============		=========		==========

mysqld.exe									1356		Services																0							212	K

If	it’s	not	running,	you	may	get	results	like	this	from	tasklist:
INFO:		No	tasks	are	running	which	match	the	specified	criteria.

This	isn’t	conclusive	proof	that	you	don’t	have	MySQL	installed.	It	just	shows	that	the
daemon	isn’t	running.	You	might	try	searching	your	computer	for	mysqld,	using	a	file
manager	or	some	other	such	program.	You	might	also	try	running	mysqladmin,	assuming
it’s	installed	on	your	server,	and	use	the	first	line	shown	here	to	test	MySQL	(an	example
of	the	results	you	should	see	follow):

mysqladmin	-p	version	status

mysqladmin		Ver	9.0	Distrib	5.5.33a-MariaDB,	for	Linux	on	i686

Copyright	(c)	2000,	2013,	Oracle,	Monty	Program	Ab	and	others.

Server	version										5.5.33a-MariaDB

Protocol	version								10

Connection														Localhost	via	UNIX	socket

UNIX	socket													/var/lib/mysql/mysql.sock

Uptime:																	30	days	23	hours	37	min	12	sec

Threads:	4		Questions:	24085079		Slow	queries:	0		Opens:	10832		Flush	tables:	3

Open	tables:	400		Queries	per	second	avg:	8.996	Uptime:	2677032		Threads:	4

Questions:	24085079		Slow	queries:	0		Opens:	10832		Flush	tables:	3

Open	tables:	400		Queries	per	second	avg:	8.996

If	one	of	these	tests	shows	that	MySQL	is	running	on	your	computer,	you	may	move	onto

www.it-ebooks.info

http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/mirrors.html
https://downloads.mariadb.org/mariadb/
http://www.it-ebooks.info/

Chapter	3.	If	MySQL	is	not	running,	it	may	be	just	that	you	need	to	start	it.	That’s	covered
in	this	chapter,	at	the	end	of	each	section	for	each	version	of	MySQL.	Look	for	the	section
related	to	your	distribution	of	MySQL	or	MariaDB	(e.g.,	Mac	OS	X)	and	skip	to	the	end
of	that	section	to	see	how	to	start	the	daemon.	Try	then	to	start	it.	If	it	starts,	skip	to	the
end	of	this	chapter	and	read	Post-Installation.	There	are	a	few	important	points	made	in
that	section,	in	particular	some	security	steps	you	should	follow.	If	you’re	unable	to	start
the	daemon,	though,	read	the	whole	section	for	the	distribution	you	choose.

www.it-ebooks.info

http://www.it-ebooks.info/

Choosing	a	Distribution
Before	beginning	to	download	an	installation	package,	you	must	decide	which	version	of
MySQL	or	MariaDB	to	install.	For	MySQL,	the	best	choice	is	usually	the	latest	stable
version	recommended	by	Oracle	on	its	site,	the	version	called	the	generally	available	(GA)
release.	This	is	the	best	way	to	go	if	you’re	new	to	MySQL.	There’s	no	need	as	a	beginner
to	use	a	beta	version,	or	a	development	release.	Unless	you	have	a	support	contract	with
Oracle,	which	would	provide	you	access	to	the	Enterprise	version	of	MySQL,	you	will
have	to	use	the	MySQL	Community	Server	version.	For	a	beginner,	it’s	essentially	the
same	as	the	Enterprise	version.

For	MariaDB,	the	latest	GA	release	will	be	the	current	stable	version.	You	can	download	it
from	the	MariaDB	Foundation’s	download	page.

When	installing	one	of	these	database	systems,	you	also	have	the	option	of	using	either	a
source	distribution	or	a	binary	distribution.	The	binary	distribution	is	easier	to	install	and
is	recommended.	Use	a	source	distribution	only	if	you	have	special	configuration
requirements	that	must	be	set	during	the	installation	or	at	compile	time.	You	may	also
have	to	use	a	source	distribution	if	a	binary	distribution	isn’t	available	for	your	operating
system.	Otherwise,	install	the	binary;	there’s	no	need	to	make	installation	difficult	when
your	goal	at	this	point	should	be	to	learn	the	basics	of	MySQL.

www.it-ebooks.info

https://downloads.mariadb.org/mariadb/
http://www.it-ebooks.info/

The	_AMP	Alternatives
The	following	sections	describe	different	methods	for	downloading	and	installing	MySQL
or	MariaDB	for	different	operating	systems,	in	different	formats.	An	easy	method,	though,
is	to	use	one	of	the	_AMP	packages.	These	letters	stand	for	Apache,	MySQL/MariaDB,
and	PHP/Perl/Python.	Apache	is	the	most	popular	web	server.	PHP	is	the	most	popular
programming	language	used	with	MySQL.	An	AMP	package	or	stack	is	based	on	an
operating	system:	the	Linux	stack	is	called	LAMP,	the	Macintosh	stack	is	called	MAMP,
and	the	Windows	stack	is	called	WAMP.	If	you	download	and	install	one	of	these	stacks,	it
will	install	Apache,	MySQL,	PHP,	and	any	software	upon	which	they	depend	on	your
local	computer	or	server.	It’s	a	simple,	turnkey	method.	If	you	install	MySQL	using	a
stack	installation,	you	still	need	to	make	some	post-installation	adjustments.	They’re
explained	in	the	last	section	of	this	chapter.	So	after	installing,	skip	ahead	to	it.

Sites	for	these	packages	include:

The	Apache	XAMPP	site	for	the	latest	Linux	version	(the	extra	P	in	LAMPP	stands	for
Perl).	Even	though	the	site	calls	the	package	XAMPP	instead	of	LAMPP,	it’s	the	same
thing.
The	SourceForge	MAMP	site	for	the	latest	Mac	version.
The	EasyPHP	WAMP	site	for	the	latest	Windows	vision.

All	of	these	packages	have	easy-to-follow	installation	programs.	The	default	installation
options	are	usually	fine.

Linux	Binary	Distributions
If	your	server	is	running	on	a	version	of	Linux	that	installs	software	through	the	RPM
package	format	(where	RPM	originally	stood	for	RedHat	Package	Manager)	or	the	DEB
package	format	(where	DEB	stands	for	Debian	Linux),	it	is	recommended	that	you	use	a
binary	package	instead	of	a	source	distribution.	Linux	binaries	are	provided	based	on	a
few	different	Linux	distributions:	various	versions	of	Red	Hat,	Debian,	SuSE	Linux.	For
all	other	distributions	of	Linux,	there	are	generic	Linux	packages	for	installing	MySQL.
There	are	also	different	versions	of	a	distribution	related	to	the	type	of	processor	used	by
the	server	(e.g.,	32-bit	or	64-bit).

Before	proceeding,	though,	if	you	have	the	original	installation	disks	for	Linux,	you	may
be	able	to	use	its	installation	program	to	easily	install	MySQL	from	the	disks.	In	this	case,
you	can	skip	the	remainder	of	this	section	and	proceed	to	Post-Installation.	If	your
installation	disks	are	old,	though,	they	may	not	have	the	latest	version	of	MySQL.	So	you
may	want	to	install	MySQL	using	the	method	described	in	the	following	paragraphs.

For	each	version	of	MySQL,	there	are	a	few	binary	installation	packages	that	you	can
download:	the	MySQL	Server,	the	Shared	Components,	the	Compatibility	Libraries,	Client
Utilities,	Embedded,	and	the	Test	Suite.	The	most	important	ones	are	the	Server,	the	Client
Utilities,	and	the	Shared	Components.	In	addition	to	these	main	packages,	you	may	also
want	to	install	the	one	named	Shared	Libraries.	It	provides	the	files	necessary	for
interacting	with	MySQL	from	programming	languages	such	as	PHP,	Perl,	and	C.	The
other	packages	are	for	advanced	or	special	needs	that	won’t	be	discussed	in	this	book	and
that	you	may	not	need	to	learn	until	you’re	a	more	advanced	MySQL	developer.

www.it-ebooks.info

http://www.apachefriends.org/en/xampp-linux.html
http://sourceforge.net/projects/mamp/
http://www.easyphp.org/download.php
http://www.it-ebooks.info/

The	naming	scheme	for	these	packages	is	generally	MySQL-server-version.rpm,	MySQL-
client-version.rpm	and	MySQL-shared-version.rpm,	where	version	is	the	actual	version
number.	The	corresponding	package	names	for	Debian-based	distributions	end	in	.deb
instead	of	.rpm.

To	install	.rpm	files	after	downloading	them	to	your	server,	you	can	use	the	rpm	utility	or
something	more	comprehensive	like	yum.	yum	is	better	about	making	sure	you’re	not
installing	software	that	conflicts	with	other	things	on	your	server.	It	also	upgrades	and
installs	anything	that	might	be	missing	on	your	server.	In	addition,	it	can	be	used	to
upgrade	MySQL	for	newer	editions	as	they	become	available.	On	Debian-based	systems,
apt-get	is	similar	to	yum.	For	MySQL,	Oracle	provides	a	yum	repository	and	an	apt
repository.	For	MariaDB,	there	is	a	repository	configuration	tool	for	each	operating
system.

To	install	the	binary	installation	files	for	MySQL	using	yum,	you	would	enter	something
like	the	following	from	the	command	line	on	the	server:

yum	install	MySQL-server-version.rpm	\

MySQL-client-version.rpm	MySQL-shared-version.rpm

You	would,	of	course,	modify	the	names	of	the	RPM	or	DEB	files	to	the	precise	name	of
the	packages	you	want	to	install.	The	yum	utility	will	take	you	through	the	installation
steps,	asking	you	to	confirm	the	installation,	any	removals	of	conflicting	software,	and	any
upgrades	needed.	Unless	the	server	is	a	critical	one	for	use	in	business,	you	can	probably
agree	to	let	it	do	what	it	wants.

To	install	the	binary	installation	files	for	MariaDB	using	yum,	you	would	enter	something
like	the	following	from	the	command	line	on	the	server:

yum	install	MariaDB-server	MariaDB-client

To	install	MySQL	or	MariaDB	using	the	rpm	utility,	enter	something	like	the	following
from	the	command	line	in	the	directory	where	the	RPM	files	are	located:

rpm	-ivh	MySQL-server-version.rpm	\

MySQL-client-version.rpm	MySQL-shared-version.rpm

If	an	earlier	version	of	MySQL	is	already	installed	on	the	server,	you	will	receive	an	error
message	stating	this	problem,	and	the	installation	will	be	canceled.	If	you	want	to	upgrade
an	existing	installation,	you	can	replace	the	-i	option	in	the	example	with	an	upper	case	-
U	like	so:

rpm	-Uvh	MySQL-server-version.rpm

MySQL-client-version.rpm	MySQL-shared-version.rpm

When	the	RPM	files	are	installed,	the	mysqld	daemon	will	be	started	or	restarted
automatically.	Once	MySQL	is	installed	and	running,	you	need	to	make	some	post-
installation	adjustments,	as	explained	in	Post-Installation.	So	skip	ahead	to	it.

Mac	OS	X	Distributions
Recent	versions	of	Mac	OS	X	no	longer	come	with	MySQL	installed,	but	previous	ones
did	—	they	stopped	shipping	it	after	Oracle	took	over	MySQL.	If	your	computer	started
with	an	older	version,	it	may	already	be	installed,	but	not	running.	To	see	if	you	have
MySQL	installed	on	your	system,	open	the	Terminal	application	(located	in
Applications/Utilities).	Once	you	have	a	command	prompt,	enter	the	first	line	shown	here

www.it-ebooks.info

http://dev.mysql.com/downloads/repo/yum/
http://dev.mysql.com/downloads/repo/apt/
https://downloads.mariadb.org/mariadb/repositories/
http://www.it-ebooks.info/

(the	results	you	should	see	are	on	lines	2–4):
whereis	mysql	mysqld	mysqld_safe

/usr/bin/mysql

/usr/bin/mysqld

/usr/bin/mysqld_safe

If	you	get	the	results	just	shown,	MySQL	is	installed	on	your	computer.	Check	now
whether	the	MySQL	daemon	(mysqld)	is	running.	Enter	the	following	from	the	command
line:

ps	aux	|	grep	mysql

If	it	shows	that	mysqld	is	running,	you	don’t	need	to	install	it,	but	skip	instead	to	Post-
Installation.

If	the	daemon	is	present	on	your	system	but	not	running,	enter	the	following	from	the
command	line	as	root	to	start	it:

/usr/bin/mysqld_safe	&

If	MySQL	is	not	installed	on	your	Mac	system	or	you	want	to	upgrade	your	copy	of
MySQL	by	installing	the	latest	release,	directions	are	included	in	the	remainder	of	this
section.	If	MySQL	isn’t	already	installed	on	your	system,	you	may	need	to	create	a	system
user	named	mysql	before	installing	MySQL.	Oracle’s	MySQL	package	automatically
creates	a	user	called	_mysql.

Binary	file	packages	(DMG	files)	are	available	for	installing	MySQL.	For	Mac	servers
that	do	not	have	a	GUI	or	a	desktop	manager,	or	for	when	you	want	to	install	it	remotely,
there	are	TAR	files	for	installing	MySQL.[3]	Whether	you	will	be	downloading	a	DMG
file	or	a	TAR	file,	be	sure	to	download	the	package	related	to	the	type	of	processor	on
your	server	(e.g.,	32-bit	or	64-bit),	and	for	the	minimum	version	of	the	server’s	operating
system	(e.g.,	Mac	OS	X,	version	10.6	or	higher).

If	an	older	version	of	MySQL	is	already	installed	on	your	server,	you	will	need	to	shut
down	the	MySQL	service	before	installing	and	running	the	newer	version	or	replacing	it
with	MariaDB.	You	can	do	this	with	the	MySQL	Manager	Application,	which	is	a	GUI
application	that	was	probably	installed	when	the	operating	system	was	first	installed	along
with	MySQL.	It’s	typically	installed	on	recent	versions	of	Mac	OS	X	by	default.	If	your
server	doesn’t	have	the	MySQL	Manager	Application,	you	can	enter	the	following	from
the	command	line	to	shut	down	the	MySQL	service:

/usr/sbin/mysqladmin	-u	root	-p	shutdown

If	you’ve	never	used	MySQL	and	didn’t	set	the	password,	it’s	probably	blank.	When
you’re	prompted	for	it	after	entering	the	preceding	command,	just	press	the	Enter	key.

To	install	the	MySQL	package	file,	from	the	Finder	desktop	manager,	double-click	on	the
disk	image	file	(the	DMG	file)	that	you	downloaded.	This	will	reveal	the	disk	image	file’s
contents.	Look	for	the	PKG	files;	there	will	be	two.	Double-click	on	the	one	named
mysql-version.pkg	(e.g.,	mysql-5.5.29-osx10.6-x86.pkg).	This	will	begin	the	installation
program.	The	installer	will	take	you	through	the	installation	steps	from	there.	The	default
settings	are	recommended	for	most	users	and	developers.

To	have	MySQL	started	at	boot	time,	add	a	startup	item.	Within	the	disk	image	file	that

www.it-ebooks.info

http://www.it-ebooks.info/

you	downloaded,	you	should	see	an	icon	labeled	MySQLStartupItem.pkg.	Just	double-
click	it,	and	it	will	create	a	startup	item	for	MySQL.	You	should	also	install	the	MySQL
preferences	pane	so	that	you	can	start	and	stop	MySQL	easily	from	Systems	Preferences
in	the	Mac	system,	as	well	as	set	it	to	start	automatically	at	start	up	time.	To	do	this,	click
on	the	icon	labeled	MySQL.prefPane.	If	you	have	problems	using	the	installer,	read	the
ReadMe.txt	file	included	in	the	DMG	image	file.

There	is	not	yet	an	official	installer	for	MariaDB	on	a	Mac	machine.	However,	you	can
use	homebrew	to	download	and	install	the	needed	packages,	including	required	libraries.
The	homebrew	utility	works	much	like	yum	does	on	Linux	systems,	but	is	made	for	Mac
OS	X.	After	you	install	homebrew,	you	can	run	the	following	from	the	command	line	to
install	MariaDB:

brew	install	mariadb

To	install	MySQL	with	the	TAR	package	instead	of	the	DMG	package,	download	the	TAR
file	from	Oracle’s	site	and	move	it	to	the	/usr/local	directory,	then	change	to	that	directory.
Next,	untar	and	unzip	the	installation	program	like	so:

cd	/usr/local

tar	xvfz	mysql-version.tar.gz

Change	the	name	of	the	installation	package	in	the	example	to	the	actual	name.	From	here,
create	a	symbolic	link	for	the	installation	directory,	and	then	run	the	configuration
program.	Here	is	an	example	of	how	you	might	do	this:

ln	-s	/usr/local/mysql-version	/usr/local/mysql

cd	/usr/local/mysql

./configure	--prefix=/usr/local/mysql	\

		--with-unix-socket-path=/usr/local/mysql/mysql_socket	\

		--with-mysqld-user=mysql

The	first	line	creates	the	symbolic	link	to	give	MySQL	a	universal	location	regardless	of
future	versions;	change	version	to	the	actual	version	number.	By	making	a	symbolic	link
to	a	generic	directory	of	/usr/local/mysql,	you’ll	always	know	where	to	find	MySQL	when
you	need	it.	You	could	also	just	rename	the	directory	with	the	version	name	to	just	mysql.
But	then	you	can’t	test	new	versions	and	keep	old	versions	when	upgrading.

With	the	second	line,	you	enter	the	directory	where	the	installation	files	are	now	located.
The	third	line	runs	the	configuration	program	to	install	MySQL.	I’ve	included	a	few
options	that	I	think	will	be	useful	for	solving	some	problems	in	advance.	Depending	on
your	needs,	you	might	provide	more	options	than	these	few.	However,	for	most	beginners,
these	should	be	enough.

Next,	you	should	set	who	owns	the	files	and	directories	created,	and	which	group	has
rights	to	them.	Set	both	the	user	and	group	to	mysql,	which	should	have	been	created	by
the	installation	program.	For	some	systems,	you	may	have	to	enable	permissions	for	the
hard	drive	or	volume	first.	To	do	that,	use	the	vsdbutil	utility.	If	you	want	to	check	whether
permissions	are	enabled	on	the	volume	first,	use	the	-c	option;	to	just	enable	it,	use	-a
option	for	vsdbutil.	You	should	also	make	a	symbolic	link	from	the	/usr/bin	directory	to
the	mysql	and	mysqladmin	clients:

vsdbutil	-a	/Volumes/Macintosh\	HD/

sudo	chown	-R	_mysql	/usr/local/mysql/.

www.it-ebooks.info

http://brew.sh/
http://www.it-ebooks.info/

alias	mysql=/usr/local/mysql/bin/mysql

alias	mysqladmin=/usr/local/mysql/bin/mysqladmin

The	first	line	of	this	example	enables	the	main	drive	of	the	Mac	machine.	The	name	of	the
drive	on	which	you	locate	MySQL	may	be	different	on	your	server.	The	second	line
changes	the	owner	to	the	user	mysql.	The	last	two	lines	create	aliases	for	the	two	key
MySQL	clients	mentioned	earlier	so	that	you	can	run	them	from	anywhere	on	your
system.

At	this	point,	you	should	be	able	to	start	the	daemon	and	log	into	MySQL	or	MariaDB.	If
you	installed	the	preference	pane	for	MySQL	with	the	installer,	you	can	go	to	the	Systems
Preference	of	the	operating	system	and	start	it	there	instead:

sudo	/usr/bin/mysqld_safe	&

mysql	-u	root	-p

Depending	on	the	release	of	MySQL,	the	file	path	for	a	dmg	installation	may	be	different
from	what	is	shown	in	the	first	line	here.	An	ampersand	(&)	sends	the	process	to	the
background.	The	second	line	will	start	the	mysql	client	and	let	you	log	in	as	root,	the
MySQL	user	who	is	in	control	of	the	whole	server	—	MySQL	users	are	different	from
operating	system	users,	so	the	root	user	is	also	different	even	though	the	name	is	the	same.
The	command	will	prompt	you	for	a	password,	which	will	probably	be	blank.	So	you	can
just	press	Enter	for	the	password	and	you’ll	be	in.

Success	here	simply	shows	that	you	can	connect	to	the	MySQL	or	MariaDB	server	and
that	you	have	correctly	added	the	symbolic	links	for	the	mysql	client.	There’s	more	to	do
before	you	start	trying	MySQL.	So	type	exit	and	press	Enter	to	exit	the	mysql	client.

Now	that	MySQL	or	MariaDB	is	installed	and	running,	you	need	to	make	some	post-
installation	adjustments,	as	explained	in	Post-Installation.	Skip	ahead	to	that	section.

Windows	Distributions
Installing	MySQL	or	MariaDB	on	a	server	using	Microsoft	Windows	is	fairly	easy.
MySQL’s	website	now	provides	one	installation	package	for	everything,	offering	different
methods	and	versions	to	meet	your	needs	and	preference.	The	MariaDB	Foundation’s
website	provides	installation	packages	for	installing	MariaDB	on	servers	using	Windows.
The	easiest	and	best	choice	for	installing	MySQL	is	to	download	and	use	the	MySQL
Installer	for	Windows.	It’s	a	single	file	that	does	everything	for	you.	There	are	also	older
versions	still	available	that	may	be	downloaded	in	a	TAR	file,	but	the	new	installer	is
easier	and	will	give	you	the	latest	version.	For	both	the	installer	packages	and	the	TAR
packages,	there	are	32-bit	and	64-bit	versions,	which	you	would	choose	based	on	which
kind	of	processor	is	in	your	server.

Both	the	installer	and	TAR	packages	contain	the	essential	files	for	running	MySQL	or
MariaDB,	including	all	of	the	command-line	utilities	covered	in	this	book	(e.g.,	mysql,
mysqladmin,	mysqlbackup),	some	useful	scripts	for	handling	special	needs,	and	the
libraries	for	APIs.	They	also	contain	the	/usr/local/mysql/docs	directory	for	the	version
that	you	download.

If	you	decide	to	use	the	TAR	package	for	Windows,	because	it	does	not	include	an
installer	to	handle	everything	for	you,	you	will	have	to	do	a	few	things	manually	at	the
beginning.	First,	you	will	need	to	unzip	the	TAR	file	to	get	at	the	installation	files.	To	do

www.it-ebooks.info

http://www.it-ebooks.info/

this,	you	need	WinZip	or	another	utility	that	you	might	have	installed	on	your	server	to
uncompress	the	files.	These	files	need	to	be	copied	into	the	c:\mysql	directory.	You’ll	have
to	create	that	directory	if	it	does	not	already	exist	on	your	server.	Then,	using	a	plain-text
editor	(e.g.,	Notepad)	you	must	create	a	configuration	file	that	is	generally	called	my.ini	in
the	c:\windows	directory.	Several	examples	of	this	configuration	file	are	provided	with	the
distribution	package.	Once	you	have	the	files	in	the	appropriate	place,	you	can	run	the
setup	program.	It	does	provide	some	assistance,	but	not	as	much	as	the	installer.

Before	running	the	installer	or	the	setup	program,	if	MySQL	is	already	installed	and
running	on	your	server,	and	you	want	to	install	a	newer	version,	you	will	first	need	to	shut
down	the	one	that’s	currently	running	on	your	server.	For	server	versions	of	Windows,	it’s
generally	installed	as	a	service.	You	can	enter	something	like	the	following	within	a
command	window	to	shut	down	the	service	and	remove	it:

mysqld	-remove

If	MySQL	is	running	on	your	server,	but	not	as	a	service,	you	can	enter	the	following
within	a	command	window	to	shut	it	down:

msyqladmin	-u	root	-p	shutdown

If	that	returns	an	error	message,	you	may	have	to	figure	out	the	absolute	path	for
mysqladmin.	Try	entering	something	like	the	following,	adjusting	the	file	path	to	wherever
mysqladmin	is	located:

"C:\Program	Data\MySQL\MySQL	Server	5.1\bin\mysqladmin"	-u	root	-p	shutdown

After	you	download	the	MySQL	Installer	for	Windows	from	the	Windows	desktop,
double-click	on	the	file’s	icon	and	the	Windows	Installer	program	will	start.	If	you’re
installing	from	a	ZIP	package,	look	for	the	file	named	setup.exe	wherever	you	put	the
MySQL	installation	files.	Double-click	on	it	to	start	the	installation.	From	this	point,	the
installation	process	is	pretty	much	the	same	for	both	types	of	packages.

After	you’ve	started	the	installation,	once	you	get	past	the	licensing	question	and	so	forth,
you	will	be	given	a	few	choices	of	which	type	of	installation.	The	Developer	choice	is	the
recommended	one.	However,	it	will	not	install	the	files	need	for	an	API,	or	some	other
utilities.	It	will	install	the	MySQL	server,	libraries,	and	several	MySQL	clients	on	your
computer.	This	is	probably	the	best	choice.	However,	if	you’re	installing	the	software	on	a
server	and	you	will	be	connecting	to	it	from	a	different	computer	such	as	your	deskop,	you
could	select	“Server	only”	to	install	the	MySQL	server	on	your	server.	If	you	do	so,	run
the	installer	on	your	desktop	machine	and	select	“Client	only”	to	install	only	the	MySQL
clients	locally.	The	MySQL	files	aren’t	very	large,	though.	You	could	also	install	the
“Server	only”	on	your	server	and	the	Developer	package	on	your	desktop.	This	would
allow	you	to	use	your	desktop	as	a	development	environment	to	learn	and	test	a	database
before	uploading	it	to	your	server	and	making	it	active.	Choose	the	packages	and
combinations	that	work	best	for	you.	Just	be	sure	to	have	both	the	MySQL	server	and	the
MySQL	clients	installed	somewhere	that	you	can	access	them.

On	the	same	screen	where	you	choose	the	setup	type,	there	will	be	two	boxes	for	file
paths:	one	where	you	install	the	utilities	and	the	other	where	MySQL	stores	your	data.	You
can	accept	the	default	paths	for	these	or	change	them,	if	you	want	to	use	a	different	hard
drive	or	location.	The	default	settings	are	usually	fine.	Just	make	a	copy	of	the	paths

www.it-ebooks.info

http://www.winzip.com
http://www.it-ebooks.info/

somewhere,	because	you	may	want	to	know	this	information	later.	You	can	find	it	later	in
the	configuration	file	for	MySQL,	but	while	it’s	handy	now,	copy	it	down:	it	might	save
you	some	time	later.

Next,	the	installer	will	check	whether	your	computer	has	the	required	additional	files,
besides	the	MySQL	package.	Allow	it	to	install	whatever	files	it	says	you	need.	For	the
TAR	package,	you	will	have	to	decide	which	directory	to	use	and	put	the	files	where	you
want	them.	A	typical	choice	is	C:\Program	Data\MySQL\	for	the	installation	path,	and
C:\Program	Data\MySQL\MySQL	Server	version\data\	for	the	data	path,	where	the	word
version	is	replaced	with	the	version	number.

The	last	section	before	the	installer	finishes	is	the	Configuration	screen,	where	you	can	set
some	configuration	options.	If	you	want	to	set	options,	you	can	check	the	box	labeled
Advanced	Configuration,	but	because	you’re	still	learning	about	MySQL,	you	should
leave	this	unchecked	and	accept	the	basic	default	settings	for	now.	You	can	change	the
server	settings	later.

If	you’re	installing	the	MySQL	server	on	this	machine	and	not	just	the	clients,	you	will	see
a	“Start	the	MySQL	Server	at	System	Startup”	checkbox.	It	is	a	good	idea	to	check	that
box.	In	the	Configuration	section,	you	can	also	enter	the	password	for	the	MySQL	root
user.	Enter	a	secure	password	and	don’t	forget	it.	You	can	also	add	another	user.	We’ll
cover	that	in	Post-Installation.	But	if	you	want	to	make	that	process	easier,	you	can	add	a
user	here	for	yourself	—	but	I	recommend	waiting	and	using	MySQL	to	add	users,	so	you
learn	that	important	skill.	As	for	the	rest	of	the	choices	that	the	installer	gives	you,	you	can
probably	accept	the	default	settings.

In	this	book,	you	will	be	working	and	learning	from	the	command	line,	so	you	will	need	to
have	easy	access	to	the	MySQL	clients	that	work	from	the	command	line.	To	invoke	the
command-line	utilities	without	having	to	enter	the	file	path	to	the	directory	containing
them,	enter	the	following	from	the	command	line,	from	any	directory:

PATH=%PATH%;C:\Program	Data\MySQL\MySQL	Server	version\bin

export	PATH

Replace	the	word	version	with	the	version	number	and	make	sure	to	enter	the	actual	path
where	MySQL	is	installed.	If	you	changed	the	location	when	you	installed	MySQL,	you
need	to	use	the	path	that	you	named.	The	line	just	shown	will	let	you	start	the	client	by
entering	simply	mysql	and	not	something	like,	C:\Program	Data\MySQL\MySQL	Server
version\bin\mysql	each	time.	For	some	Windows	systems,	you	may	need	to	change	the
start	of	the	path	to	C:\Program	Files\.	You’ll	have	to	search	your	system	to	see	where	the
binary	files	for	MySQL	were	installed	—	look	for	the	bin\	subdirectory.	Any	command
windows	you	may	already	have	open	won’t	get	the	new	path.	So	be	sure	to	close	them	and
open	a	new	command	window.

Once	you’ve	finished	installing	MySQL	and	you’ve	set	up	the	configuration	file,	the
installer	will	start	the	MySQL	server	automatically.	If	you’ve	installed	MySQL	manually
without	an	installer,	enter	something	like	the	following	from	a	command	window:

mysqld	--install

net	start	mysql

Now	that	MySQL	is	installed	and	running,	you	need	to	make	some	post-installation
adjustments,	as	explained	in	Post-Installation.	So	jump	ahead	to	the	last	couple	of	pages	of

www.it-ebooks.info

http://www.it-ebooks.info/

this	chapter.

FreeBSD	and	Sun	Solaris	Distributions
Installing	MySQL	or	MariaDB	with	a	binary	distribution	is	easier	than	using	a	source
distribution.	If	a	binary	distribution	is	available	for	your	platform,	it’s	the	recommended
choice.	For	Sun	Solaris	distributions,	there	are	PKG	files	for	MySQL	on	Oracle’s	site	and
PKG	files	for	MariaDB	on	the	MariaDB	Foundation’s	site.	For	MySQL,	you	will	have	to
decide	between	32-bit,	64-bit,	and	SPARC	versions,	depending	on	the	type	of	processor
used	on	your	server.	For	MariaDB,	there	is	only	a	64-bit	version.

There	are	also	TAR	files,	combining	the	MySQL	files.	The	FreeBSD	files	are	available
only	in	TAR	packages	and	only	for	MySQL.	For	MariaDB,	you	will	have	to	compile	the
source	files.	If	you	download	the	TAR	files,	you	will	need	a	copy	of	GNU’s	tar	and
GNU’s	gunzip	to	unpack	the	installation	files.	These	tools	are	usually	included	on	Sun
Solaris	and	FreeBSD	systems.	If	your	system	doesn’t	have	them,	though,	you	can
download	them	from	the	GNU	Foundation	site.

Once	you’ve	chosen	and	downloaded	an	installation	package,	enter	something	like	the
following	from	the	command	line	as	root	to	begin	the	installation	process:

groupadd	mysql

useradd	-g	mysql	mysql

cd	/usr/local

tar	xvfz	/tmp/mysql-version.tar.gz

These	commands	are	the	same	for	both	MySQL	and	MariaDB.	The	first	command	creates
the	user	group,	mysql.	The	second	creates	the	user,	mysql,	and	adds	it	to	the	mysql	group	at
the	same	time.	The	next	command	changes	to	the	directory	where	the	MySQL	files	are
about	to	be	extracted.	The	last	line	uses	the	tar	utility	(along	with	gunzip	via	the	z	option)
to	unzip	and	extract	the	distribution	files.	The	word	version	in	the	name	of	the	installation
file	should	be	replaced	with	the	version	number	—	that	is	to	say,	use	the	actual	file	path
and	name	of	the	installation	file	that	you	downloaded	as	the	second	argument	of	the	tar
command.	For	Sun	Solaris	systems,	you	should	use	gtar	instead	of	tar.

After	running	the	previous	commands,	you	need	to	create	a	symbolic	link	to	the	directory
created	by	tar	in	/usr/local:

ln	-s	/usr/local/mysql-version	/usr/local/mysql

This	creates	/usr/local/mysql	as	a	link	to	/usr/local/mysql-version,	where	mysql-version
is	the	actual	name	of	the	subdirectory	that	tar	created	in	/usr/local.	The	link	is	necessary,
because	MySQL	is	expecting	the	software	to	be	located	in	/usr/local/mysql	and	the	data	to
be	in	/usr/local/mysql/data	by	default.

At	this	point,	MySQL	or	MariaDB	is	basically	installed.	Now	you	must	generate	the	initial
user	privileges	or	grant	tables,	and	change	the	file	ownership	of	the	related	programs	and
data	files.	To	do	these	tasks,	enter	the	following	from	the	command	line:

cd	/usr/local/mysql

./scripts/mysql_install_db

chown	-R	mysql	/usr/local/mysql

chgrp	-R	mysql	/usr/local/mysql

The	first	command	changes	to	the	directory	containing	MySQL’s	files.	The	second	line
uses	a	script	provided	with	the	distribution	to	generate	the	initial	privileges	or	grant	tables,

www.it-ebooks.info

http://www.gnu.org
http://www.it-ebooks.info/

which	consist	of	the	mysql	database	with	MySQL’s	superuser,	root.	This	is	the	same	for
MariaDB.	The	third	line	changes	the	ownership	of	the	MySQL	directories	and	programs	to
the	filesystem	user,	mysql.	The	last	line	changes	the	group	owner	of	the	same	directory
and	files	to	the	user,	mysql.

With	the	programs	installed	and	their	ownerships	set	properly,	you	can	start	MySQL.	This
can	be	done	in	several	ways.	To	make	sure	that	the	daemon	is	restarted	in	the	event	that	it
crashes,	enter	the	following	from	the	command	line:

/usr/local/mysql/bin/mysqld_safe	&

The	mysqld_safe	daemon,	started	by	this	command,	will	in	turn	start	the	MySQL	server
daemon,	mysqld.	If	the	mysqld	daemon	crashes,	mysqld_safe	will	restart	it.	The	ampersand
at	the	end	of	the	line	instructs	the	shell	to	run	the	command	in	the	background.	This	way
you	can	exit	the	server	and	it	will	continue	to	run	without	you	staying	connected.

To	have	MySQL	or	MariaDB	start	at	boot	time,	copy	the	mysql.server	file	located	in	the
support-files	subdirectory	of	/usr/local/mysql	to	the	/etc/init.d	directory.	To	do	this,	enter
the	following	from	the	command	line:

cp	support-files/mysql.server	/etc/init.d/mysql

chmod	+x	/etc/init.d/mysql

chkconfig	--add	mysql

The	first	line	follows	a	convention	of	placing	the	start	up	file	for	the	server	in	the	server’s
initial	daemons	directory	with	the	name,	mysql.	The	second	line	makes	the	file	executable.
The	third	sets	the	run	level	of	the	service	for	startup	and	shutdown.

Now	that	MySQL	or	MariaDB	is	installed	and	running,	you	need	to	make	some	post-
installation	adjustments,	as	explained	in	Post-Installation.

Source	Distributions
Although	a	binary	distribution	of	MySQL	and	MariaDB	is	recommended,	sometimes	you
may	want	to	use	a	source	distribution,	either	because	binaries	are	not	available	for	your
server’s	operating	system,	or	because	you	have	some	special	requirements	that	require
customizing	the	installation.	The	steps	for	installing	the	source	files	of	MySQL	or
MariaDB	on	all	Unix	types	of	operating	systems	are	basically	the	same.	This	includes
Linux,	FreeBSD,	and	Sun	Solaris.	These	steps	are	explained	in	this	section.

To	install	a	source	distribution,	you	will	need	copies	of	GNU	gunzip,	GNU	tar,	GNU	gcc
(at	least	Version	2.95.2),	and	GNU	make.	These	tools	are	usually	included	in	Linux
systems	and	most	Unix	systems.	If	your	system	doesn’t	have	them,	you	can	download
them	from	the	GNU	Foundation	site.

Once	you’ve	chosen	and	downloaded	the	source	distribution	files	for	MySQL	or
MariaDB,	enter	the	following	commands	as	root	from	the	directory	where	you	want	the
source	files	stored:

groupadd	mysql

useradd	-g	mysql	mysql

tar	xvfz	/tmp/mysql-version.tar.gz

cd	mysql-version

These	commands	are	the	same	for	installing	MariaDB,	except	that	the	name	of	the
installation	package	file	will	be	something	like	mariadb-5.5.35.tar.gz	and	the	name	of	the

www.it-ebooks.info

http://www.gnu.org
http://www.it-ebooks.info/

directory	created	when	expanding	the	TAR	file	will	be	different.	The	first	line	creates	the
filesystem	user	group,	mysql.	The	second	creates	the	system	user,	mysql,	and	adds	it	to	the
mysql	group	at	the	same	time.	The	next	command	uses	the	tar	utility	(along	with	gunzip
via	the	z	option)	to	unzip	and	extract	the	source	distribution	file	you	downloaded.	Replace
the	word	version	with	the	version	number.	Use	the	actual	file	path	and	name	of	the
installation	file	that	you	downloaded	for	the	second	argument	of	the	tar	command.	The
last	command	changes	the	directory	to	the	one	created	by	tar	in	the	previous	line.	That
directory	contains	the	files	needed	to	configure	MySQL.

This	brings	you	to	the	next	step,	which	is	to	configure	the	source	files	to	prepare	them	for
building	the	binary	programs.	This	is	where	you	can	add	any	special	build	requirements
you	may	have.	For	instance,	if	you	want	to	change	the	default	directory	from	where
MySQL	or	MariaDB	is	installed,	use	the	--prefix	option	with	a	value	set	to	equal	the
desired	directory.	To	set	the	Unix	socket	file’s	path,	use	--with-unix-socket-path.	If
you	would	like	to	use	a	different	character	set	from	the	default	of	latin1,	use	--with-
charset	and	name	the	character	set	you	want	as	the	default.	Here	is	an	example	of	how
you	might	configure	MySQL	with	these	particular	options	before	building	the	binary	files:

./configure	--prefix=/usr/local/mysql	\

												--with-unix-socket-path=/tmp	\

												--with-charset=latin2

You	can	enter	this	command	on	one	line	without	the	backslashes.	Several	other
configuration	options	are	available.	To	get	a	complete	and	current	listing	of	options
permitted	with	the	installation	package	you	downloaded,	enter	the	following	from	the
command	line:

./configure	--help

You	may	also	want	to	look	at	the	latest	online	documentation	for	compiling	MySQL.

Once	you’ve	decided	on	any	options	that	you	want,	run	the	configure	script	with	those
options.	It	will	take	quite	a	while	to	run,	and	it	will	display	a	great	amount	of	information,
which	you	can	ignore	usually	if	it	ends	successfully.	After	the	configure	script	finishes,	the
binaries	will	need	to	be	built	and	MySQL	needs	to	be	initialized.	To	do	this,	enter	the
following:

make

make	install

cd	/usr/local/mysql

./scripts/mysql_install_db

The	first	line	here	builds	the	binary	programs.	There	may	be	plenty	of	text	displayed	after
that	line	and	the	next	one,	but	I	omitted	that	output	to	save	space.	If	the	command	is
successful,	you	need	to	enter	the	second	line	to	install	the	binary	programs	and	related
files	in	the	appropriate	directories.	The	third	line	changes	to	the	directory	where	MySQL
was	installed.	If	you	configured	MySQL	to	be	installed	in	a	different	directory,	you’ll	have
to	use	that	directory	path	instead.	The	last	command	uses	a	script	provided	with	the
distribution	to	generate	the	initial	user	privileges	or	grant	tables.

All	that	remains	is	to	change	the	ownership	of	the	MySQL	programs	and	directories.	You
can	do	this	by	entering	the	following:

chown	-R	mysql	/usr/local/mysql

chgrp	-R	mysql	/usr/local/mysql

www.it-ebooks.info

http://bit.ly/compiling_mysql
http://www.it-ebooks.info/

The	first	line	here	changes	ownership	of	the	MySQL	directories	and	programs	to	the
filesystem	user,	mysql.	The	second	line	changes	the	group	owner	of	the	same	directories
and	files	to	the	group	mysql.	These	file	paths	may	be	different	depending	on	the	version	of
MySQL	you	installed	and	whether	you	configured	MySQL	for	different	paths.

With	the	programs	installed	and	their	file	ownerships	set	properly,	you	can	start	the
daemon.	You	can	do	this	in	several	ways.	To	make	sure	that	the	daemon	is	restarted	in	the
event	that	it	crashes,	enter	the	following	from	the	command	line:

/usr/local/mysql/bin/mysqld_safe	&

This	method	is	the	same	for	both	MySQL	and	MariaDB,	and	it	starts	the	mysqld_safe
daemon,	which	will	in	turn	start	the	server	daemon,	mysqld.	If	the	mysqld	daemon	crashes,
mysqld_safe	will	restart	it.	The	ampersand	at	the	end	of	the	line	instructs	the	shell	to	run
the	daemon	in	the	background.	This	way	you	can	exit	the	server	and	it	will	continue	to	run
without	you	staying	connected.

To	have	MySQL	or	MariaDB	started	at	boot	time,	copy	the	mysql.server	file,	located	in
the	support-files	subdirectory	of	/usr/local/mysql,	to	the	/etc/init.d	directory.	To	do	this,
enter	the	following	from	the	command	line:

cp	support-files/mysql.server	/etc/init.d/mysql

chmod	+x	/etc/init.d/mysql

chkconfig	--add	mysql

The	first	line	follows	a	convention	of	placing	the	startup	file	for	the	server	in	the	server’s
initial	daemons	directory	with	the	name,	mysql.	The	second	command	makes	the	file
executable.	The	third	sets	the	run	level	of	the	service	for	startup	and	shutdown.	All	of	this
is	the	same	for	MariaDB.

At	this	point,	MySQL	or	MariaDB	is	installed	and	running.	All	that	remains	now	are	some
post-installation	adjustments,	as	explained	in	the	next	section.

www.it-ebooks.info

http://www.it-ebooks.info/

Post-Installation
After	you’ve	finished	installing	MySQL	or	MariaDB	on	your	server,	you	should	perform	a
few	tasks	before	allowing	others	to	begin	using	the	service.	You	may	want	to	change	the
server’s	default	behavior	by	making	changes	to	the	configuration	file.	At	a	minimum,	you
should	change	the	password	for	the	database	administrator,	root,	and	add	some
nonadministrative	users.	Some	versions	of	MySQL	have	some	anonymous	users	initially,
and	you	should	delete	them.	This	section	will	explain	these	tasks.

Although	the	creators	of	MySQL	and	MariaDB	have	set	the	server	daemon	to	the
recommended	configuration,	you	may	want	to	change	one	or	more	settings.	For	instance,
you	may	want	to	turn	on	error	logging.

Special	Configuration
To	enable	error	logging	and	other	such	settings,	you	will	need	to	edit	the	main
configuration	file	for	MySQL.	On	Unix-like	systems,	this	file	is	/etc/my.cnf.	On	Windows
systems,	the	main	configuration	file	is	usually	either	c:\windows\my.ini	or	c:\my.cnf.	The
configuration	file	is	a	text	file	that	you	can	edit	with	a	plain-text	editor	—	don’t	use	a	word
processor,	as	it	will	introduce	hidden	binary	characters	that	will	cause	problems.

The	configuration	file	is	organized	into	sections	or	groups	under	a	heading	name
contained	within	square	brackets.	For	instance,	settings	for	the	server	daemon,	mysqld,	are
listed	under	the	group	heading,	[mysqld].	Under	this	heading	you	could	add	something
like	log	=	/var/log/mysql	to	enable	logging	and	to	set	the	directory	for	the	log	files.
You	can	list	many	options	in	the	file	for	a	particular	group.	Here	is	an	example	of	how	a
server	configuration	file	might	look:

[mysqld]

datadir=/data/mysql

user=mysql

default-character-set=utf8

log-bin=/data/mysql/logs/binary_log

max_allowed_packet=512M

[mysqld_safe]

ulimit	-d	256000

ledir=/usr/sbin

mysqld=mysqld

log-error=/var/log/mysqld.log

pid-file=/data/mysql/mysqld.pid

[mysql.client]

default-character-set=utf8

As	a	beginner,	you	probably	won’t	need	to	make	any	changes	to	the	server’s	configuration
file.	For	now,	just	know	that	the	configuration	file	exists,	where	it’s	located	on	your	server,
and	how	to	change	settings.	What	is	necessary	is	to	set	the	password	for	the	MySQL	user,
root.	It’s	initially	blank.

Setting	Initial	Password	for	root
You	can	change	the	password	for	the	root	user	in	MySQL	in	a	few	ways.	One	way	is	to
use	the	administration	utility,	mysqladmin.	Enter	the	following	from	the	command	line:

mysqladmin	-u	root	-p	flush-privileges	password	"new_pwd"

Replace	the	word	new_pwd	in	quotes	with	a	strong	password	that	you	want	to	use	for	root.

www.it-ebooks.info

http://www.it-ebooks.info/

If	you	get	a	message	saying	something	like,	mysqladmin	command	is	not	found,	it	may	be
because	you	didn’t	make	a	symbolic	link	to	the	MySQL	directory	where	mysqladmin	is
located	or	you	haven’t	added	it	to	your	command	path.	See	the	instructions	for	the
distribution	you	installed	on	how	to	do	one	or	the	other.	For	now,	you	can	just	add	the	file
path	to	the	preceding	line	and	re-enter	it.	On	Linux	and	other	Unix	like	systems,	try
running	the	command	as	/usr/local/mysql/bin/mysqladmin.	On	a	Windows	system,	try
c:\mysql\bin\mysqladmin.

If	you’re	working	on	a	networked	server,	though,	it’s	better	not	to	enter	a	password	in	this
way.	Someone	might	be	looking	over	your	shoulder	or	may	find	it	in	the	server	logs	later.
As	of	version	5.5.3	of	MySQL,	you	can	and	should	enter	it	like	this:

mysqladmin	-u	root	-p	flush-privileges	password

After	entering	this	line,	you	will	be	prompted	for	the	old	password,	which	will	be	initially
blank,	so	press	the	Enter	key.	Then	you	will	be	prompted	to	enter	the	new	password	twice.
By	this	method,	the	password	you	enter	won’t	be	displayed	on	the	screen	as	you	type	it.	If
everything	was	installed	properly	and	if	the	mysqld	daemon	is	running,	you	should	not	get
any	message	in	response.

The	MySQL	user	root	is	completely	different	from	the	operating	system’s	root	user,	even
though	it	has	the	same	name.	It	is	meaningful	only	within	MySQL	or	MariaDB.
Throughout	this	book,	I	will	be	referring	to	this	MySQL	user	by	default	when	I	use	the
term	root.	On	the	rare	occasion	where	I	have	to	refer	to	the	operating	system	root	user,	I
will	explain	that.

More	on	Passwords	and	Removing	Anonymous	Users
Privileges	in	MySQL	are	set	based	on	a	combination	of	the	user’s	name	and	the	user’s
host.	For	instance,	the	user	root	is	allowed	to	do	everything	from	the	localhost,	but	very
little	or	nothing	from	a	remote	location.	This	is	for	security.	Therefore,	there	may	be	more
than	one	username/host	combination	for	root.	Using	mysqladmin,	you	changed	the
password	for	root	on	the	localhost,	as	you	would	have	executed	it	while	logged	into	the
server	where	MySQL	is	located	locally.	Now	you	should	set	the	password	for	all	of	the
username/host	combinations	for	root.	To	get	a	list	of	username	and	host	combinations	on
the	server,	execute	the	following	from	the	command	line:

mysql	-u	root	-p	-e	"SELECT	User,Host	FROM	mysql.user;"

+------+-----------------------+

|	User	|	Host																		|

+------+-----------------------+

|	root	|	127.0.0.1													|

|	root	|	localhost													|

|	root	|	%																					|

|						|	localhost													|

+------+-----------------------+

If	this	didn’t	work	for	you,	it	may	be	that	you	don’t	have	the	mysql	client	in	your
command	path.	You	may	have	to	preface	mysql	with	/bin/	or	/usr/bin/,	or	the	path	for
wherever	the	binary	files	for	MySQL	are	installed.	The	command	will	be	the	same	for
MariaDB.	The	results	here	are	contrived.	It’s	unlikely	you	will	see	exactly	these	results.
But	there	are	versions	of	MySQL	whose	host	for	root	is	%,	which	is	a	wildcard	meaning
any	host.	This	is	not	good	for	security,	because	it	allows	anybody	to	claim	to	be	root	and
to	gain	access	from	any	location.	And	there	have	been	versions	of	MySQL	in	which	the

www.it-ebooks.info

http://www.it-ebooks.info/

username	is	left	blank,	meaning	that	any	username	from	the	localhost	is	accepted.	This
is	an	anonymous	user.	All	of	the	users	you	will	see	in	the	results,	though,	will	initially
have	no	password.	You	should	delete	any	unnecessary	users	and	set	passwords	for	those
that	you	want	to	keep.	Although	127.0.0.1	and	localhost	translate	to	the	same	host,	the
password	should	be	changed	for	both.	To	change	the	root	user’s	password	for	the	first	two
entries	shown	in	the	previous	example	and	to	delete	the	second	two	user/host
combinations	shown,	you	would	enter	the	following	at	the	command	prompt:

mysql	-u	root	-p	-e	"SET	PASSWORD	FOR	'root'@'127.0.0.1'	PASSWORD('new_pwd');"

mysql	-u	root	-p	-e	"SET	PASSWORD	FOR	'root'@'localhost'	PASSWORD('new_pwd');"

mysql	-u	root	-p	-e	"DROP	USER	'root'@'%';"

mysql	-u	root	-p	-e	"DROP	USER	''@'localhost';"

When	you’ve	finished	making	changes	to	the	initial	batch	of	users,	you	should	flush	the
user	privileges	so	that	the	new	passwords	will	take	effect.	Enter	the	following	from	the
command	line:

mysqladmin	-u	root	-p	flush-privileges

From	this	point	on,	you’ll	have	to	use	the	new	password	for	the	user,	root.

Creating	a	User
The	next	step	regarding	users	is	to	create	at	least	one	user	for	general	use.	It’s	best	not	to
use	the	root	user	for	general	database	management.	To	create	another	user,	enter
commands	like:

mysql	-u	root	-p	-e	"GRANT	USAGE	ON	*.*

TO	'russell'@'localhost'

IDENTIFIED	BY	'Rover#My_1st_Dog&Not_Yours!';"

These	lines	create	the	user	russell	and	allow	him	to	access	MySQL	from	the	localhost.
The	*.*	means	all	databases	and	all	tables.	We’ll	cover	this	in	more	depth	later	in	the
book.	The	statement	also	sets	his	password	as	Rover#My_1st_Dog&Not_Yours!.

This	user	has	no	privileges,	actually:	he	can’t	even	view	the	databases,	much	less	enter
data.	When	you	set	up	a	new	user,	you	should	consider	which	privileges	to	allow	the	user.
If	you	want	her	to	be	able	only	to	view	data,	enter	something	like	the	following	from	the
command	line:

mysql	-u	root	-p	-e	"GRANT	SELECT	ON	*.*	TO	'russell'@'localhost';"

In	this	line,	the	user	russell	may	use	only	the	SELECT	statement,	a	command	for	viewing
data.	If	you	would	like	to	see	the	privileges	granted	to	a	user,	you	could	enter	something
like	this	from	the	command	line:

mysql	-u	root	-p	-e	"SHOW	GRANTS	FOR	'russell@'localhost'	\G"

***************************	1.	row	***************************

Grants	for	russell@localhost:

GRANT	SELECT	ON	*.*	TO	'russell'@'localhost'

IDENTIFIED	BY	PASSWORD	'*B1A8D5415ACE5AB4BBAC120EC1D17766B8EFF1A1'

These	results	show	that	the	user	is	granted	only	privileges	to	use	the	SELECT	statement	for
viewing	data.	We’ll	cover	this	in	more	depth	later	in	the	book.	Notice	that	the	password	is
returned	encrypted.	There’s	no	way	to	retrieve	someone’s	password	unencrypted	from
MySQL.

The	user	in	the	previous	example,	russell	on	localhost,	cannot	add,	change,	or	delete
data.	If	you	want	to	give	a	user	more	than	viewing	privileges,	you	should	add	additional

www.it-ebooks.info

http://www.it-ebooks.info/

privileges	to	the	SELECT	command,	separated	by	commas.	That	is	covered	in	Chapter	13.
For	now,	to	give	a	user	all	privileges,	replace	SELECT	with	ALL.	Here’s	another	example
using	the	ALL	setting:

mysql	-u	root	-p	-e	"GRANT	ALL	ON	*.*	TO	'russell'@'localhost';"

The	user	in	this	example,	russell	on	localhost,	has	all	basic	privileges.	So	that	you	can
experiment	while	reading	this	book,	you	should	create	a	user	with	full	privileges,	but	use	a
name	other	than	mine,	something	that	better	suits	you.

With	the	MySQL	or	MariaDB	installation	software	downloaded	and	installed,	all	of	the
binary	files	and	minimal	data	in	place	and	properly	set,	and	a	full	privileged	user	created,
the	database	system	is	now	ready	to	use	and	you	can	begin	learning	how	to	use	it.

[2]	A	daemon	is	a	background	process	that	runs	continuously;	a	Unix	term	for	what	most	people	call	a	“server.”

[3]	
tar	is	an	archive	tool	developed	on	Unix,	but	its	format	is	understood	by	many	archiving	tools	on	many	operating

systems.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	3.	The	Basics	and	the	mysql
Client
There	are	various	methods	of	interacting	with	a	MySQL	or	MariaDB	server	to	develop	or
work	with	a	database.	A	program	that	interfaces	with	the	server	is	known	as	a	MySQL
client.	There	are	many	such	clients,	but	this	book	focuses	on	one	that	best	serves	the	need
of	interactive	users,	a	text-based	client	known	simply	as	mysql.	It’s	the	most	commonly
used	interface,	recommended	for	beginners	and	preferred	by	advanced	users.

There	are	alternative	clients	with	GUIs,	but	in	the	long	run	they’re	not	as	useful.	First,	you
don’t	learn	as	much	while	using	them.	Because	they	give	you	visual	hints	about	what	to
do,	you	may	be	able	to	carry	out	some	basic	queries	quickly,	but	you	won’t	be	as	well
prepared	for	advanced	work.	The	text-based	mysql	client	causes	you	to	think	and
remember	more	—	and	it’s	not	that	difficult	to	use	or	confusing.	More	importantly,	GUIs
tend	to	change	often.	When	they	do,	you	will	need	to	learn	where	to	find	what	you	want	in
the	new	version.	If	you	change	jobs	or	go	to	a	customer’s	site,	or	for	whatever	reason	use
someone	else’s	system,	they	may	not	use	the	same	GUI	with	which	you	are	familiar.
However,	they	will	always	have	the	mysql	client,	because	it’s	installed	with	the	MySQL
server.	So	all	examples	in	this	book	assume	that	this	is	the	client	you	will	use.	I
recommend	that	when	examples	are	shown,	that	you	try	entering	them	on	your	computer
with	the	mysql	client	so	that	you	can	reinforce	what	you’re	learning.

www.it-ebooks.info

http://www.it-ebooks.info/

The	mysql	Client
With	the	mysql	client,	you	may	interact	with	the	MySQL	or	MariaDB	server	from	either
the	command	line	or	within	an	interface	environment	called	the	monitor.	The	command-
line	method	of	using	mysql	allows	you	to	interact	with	the	server	without	much	overhead.
It	also	allows	you	to	enter	MySQL	commands	in	scripts	and	other	programs.	For	instance,
you	can	put	lines	in	cron	to	perform	maintenance	tasks	and	make	backups	automatically	of
databases.	The	monitor	is	an	ASCII	display	of	mysql	that	makes	the	text	a	little	more
organized	and	provides	more	information	about	commands	you	execute.	Almost	all	of	the
examples	in	this	book	are	taken	from	the	monitor	display.	If	they’re	not,	I	will	note	that
they	are	from	the	command	line.

If	MySQL	or	MariaDB	was	installed	properly	on	your	server,	mysql	should	be	available
for	you	to	use.	If	not,	see	Post-Installation	to	make	sure	everything	is	configured	correctly
on	your	system	and	make	sure	you	created	the	necessary	symbolic	links	or	aliases.	The
mysql	client	should	be	in	the	/bin/	or	/usr/bin/	directory.	Windows,	Macs,	and	other
operating	systems	with	GUIs	have	file	location	utilities	for	finding	a	program.	Look	for
the	directory	containing	the	mysql	client	and	the	other	binary	files	for	MySQL.

Assuming	that	everything	is	working,	you	will	need	a	MySQL	username	and	password	to
be	able	to	connect	to	MySQL,	even	with	the	mysql	client.	If	you’re	not	the	administrator,
you	must	obtain	these	credentials	from	the	appointed	person.	If	MySQL	or	MariaDB	was
just	installed	and	the	root	password	is	not	set	yet,	its	password	is	blank	—	that	is	to	say,
just	press	the	Enter	key	when	prompted	for	the	password.	To	learn	how	to	set	the	root
password	and	to	create	new	users	and	grant	them	privileges,	see	Post-Installation	for
starting	pointers	and	Chapter	13	for	more	advanced	details.

www.it-ebooks.info

http://www.it-ebooks.info/

Connecting	to	the	Server
Once	you	know	your	MySQL	username	and	password,	you	can	connect	to	the	MySQL
server	with	the	mysql	client.	For	instance,	I	gave	myself	the	username	russell	so	I	can
connect	as	follows	from	a	command	line:

mysql	-u	russell	-p

It’s	useful	to	understand	each	element	of	the	previous	line.	The	-u	option	is	followed	by
your	username.	Notice	that	the	option	and	name	are	separated	by	a	space.	You	would
replace	russell	here	with	whatever	username	you’ve	created	for	yourself.	This	is	the
MySQL	user,	not	the	user	for	the	operating	system.	Incidentally,	it’s	not	a	good	security
practice	to	use	the	root	user,	unless	you	have	a	specific	administrative	task	to	perform	for
which	only	root	has	the	needed	privileges.	So	if	you	haven’t	created	another	user	for
yourself,	go	back	and	do	that	now.	To	log	into	MariaDB,	you	would	enter	the	same
command	and	options	as	for	MySQL.

The	-p	option	instructs	the	mysql	client	to	prompt	you	for	the	password.	You	could	add	the
password	to	the	end	of	the	-p	option	(e.g.,	-pRover#My_1st_Dog&Not_Yours!,	where	the
text	after	-p	is	the	password).	If	you	do	this,	leave	no	space	between	-p	and	the	password.
However,	entering	the	password	on	the	command	line	is	not	a	good	security	practice
either,	because	it	displays	the	password	on	the	screen	(which	others	standing	behind	you
may	see),	and	it	transmits	the	password	as	clear	text	through	the	network,	as	well	as
making	it	visible	whenever	someone	gets	a	list	of	processes	that	are	running	on	the	server.
It’s	better	to	give	the	-p	option	without	the	password	and	then	enter	the	password	when
asked	by	the	server.	Then	the	password	won’t	be	displayed	on	the	screen	or	saved
anywhere.

If	you’re	logged	into	the	server	filesystem	with	the	same	username	as	you	created	for
MySQL,	you	won’t	need	the	-u	option;	the	-p	is	all	you’ll	need.	You	could	then	just	enter
this:

mysql	-p

Once	you’ve	entered	the	proper	mysql	command	to	connect	to	the	server,	along	with	the
password	when	prompted,	you	will	be	logged	into	MySQL	or	MariaDB	through	the	client.
You	will	see	something	that	looks	like	this:

Welcome	to	the	MySQL	monitor.		Commands	end	with	;	or	\g.

Your	MySQL	connection	id	is	1419341

Server	version:	5.5.29	MySQL	Community	Server	(GPL)

Type	'help;'	or	'\h'	for	help.	Type	'\c'	to	clear	the	current	input	statement.

mysql>

If	MariaDB	is	installed	on	your	server,	you	will	see	something	like	the	following:
Welcome	to	the	MariaDB	monitor.		Commands	end	with	;	or	\g.

Your	MariaDB	connection	id	is	360511

Server	version:	5.5.33a-MariaDB	MariaDB	Server,	wsrep_23.7.6.rXXXX

Copyright	(c)	2000,	2013,	Oracle,	Monty	Program	Ab	and	others.

Type	'help;'	or	'\h'	for	help.	Type	'\c'	to	clear	the	current	input	statement.

MariaDB	[(none)]>>

The	first	line,	after	“Welcome	to	the	MySQL/MariaDB	monitor,”	says	that	commands	end

www.it-ebooks.info

http://www.it-ebooks.info/

with	a	semicolon	(;)	or	a	slash-g	(\g).	When	you	enter	a	command,	or	rather	an	SQL
statement,	you	can	press	Enter	at	any	point	to	go	to	the	next	line	and	continue	entering
more	text.	Until	you	enter	either	;	or	\g,	the	mysql	client	will	not	transmit	what	you’ve
entered	to	the	MySQL	server.	If	you	use	\G,	with	an	uppercase	G,	you’ll	get	a	different
format.	We’ll	cover	that	format	later.	For	now,	just	use	the	semicolon.

The	second	line	in	the	output	shown	tells	you	the	identification	number	for	your
connection	to	the	server.	One	day	you	may	get	in	trouble	and	need	to	know	that.	For	now
you	can	ignore	it.

The	third	line	tells	you	which	version	of	MySQL	or	MariaDB	is	installed	on	the	server.
That	can	be	useful	when	you	have	problems	and	discover	in	reading	the	online
documentation	that	the	problem	is	in	a	particular	version,	or	when	you	want	to	upgrade	the
server	but	need	to	know	which	version	you	have	now	before	upgrading.

The	next	line	talks	about	getting	online	help.	It	provides	help	for	all	of	the	SQL	statements
and	functions.	Try	entering	these	commands	to	see	what	the	client	returns:
help

This	command	provides	help	on	using	the	mysql	client.
help	contents

This	command	shows	you	a	list	of	categories	for	help	on	major	aspects	of	MySQL	or
MariaDB.	In	that	list,	you	will	see	one	of	the	categories	is	called	Data	Manipulation.
These	are	SQL	statements	related	to	inserting,	updating,	and	deleting	data.

hep	Data	Manipulation

This	command	will	display	all	of	those	statements	for	which	help	is	available	from	the
client.	One	of	those	SQL	statements	is	SHOW	DATABASES.

help	SHOW	DATABASES

This	command	shows	how	to	retrieve	the	help	information	related	to	that	SQL
statement.	As	you	can	see,	there	is	plenty	of	useful	information	accessible	within	the
client.	If	you	can’t	quite	remember	the	syntax	of	an	SQL	statement,	it’s	a	quick	way	to
retrieve	the	information.

The	first	help	command	provides	help	on	using	the	mysql	client.	The	second	help
command	shows	you	a	list	of	categories	for	help	on	major	aspects	of	MySQL	or	MariaDB.
In	that	list,	you	will	see	one	of	the	categories	is	called,	Data	Manipulation.	These	are	SQL
statements	related	to	inserting,	updating,	and	deleting	data.	The	third	help	command	will
display	all	of	those	statements	for	which	help	is	available	from	the	client.	One	of	those
SQL	statements	is	SHOW	DATABASES.	The	last	help	command	shows	how	to	retrieve	the
help	information	related	to	that	SQL	statement.	As	you	can	see,	there	is	plenty	of	useful
information	accessible	within	the	client.	If	you	can’t	quite	remember	the	syntax	of	an	SQL
statement,	it’s	a	quick	way	to	retrieve	the	information.

A	minor	but	sometimes	useful	tip	is	included	in	the	third	line	of	the	opening	results:	to
cancel	an	SQL	statement	once	you’ve	started	typing	it,	enter	\c	and	press	Enter	without	a
closing	semicolon.	It	will	clear	whatever	you	have	been	entering,	even	on	previous	lines,
from	the	buffer	of	the	mysql	client,	and	return	you	to	the	mysql>	prompt.

www.it-ebooks.info

http://www.it-ebooks.info/

The	very	last	line,	the	mysql>,	is	known	as	the	prompt.	It’s	prompting	you	to	enter	a
command,	and	is	where	you’ll	operate	during	most	of	this	book.	If	you	press	Enter	without
finishing	a	command,	the	prompt	will	change	to	->	to	indicate	that	the	client	hasn’t	yet
sent	the	SQL	statement	to	the	server.	On	MariaDB,	the	default	prompt	is	different.	It
shows	MariaDB	[(none)]>>	to	start.	When	you	later	set	the	default	database	to	be	used,
the	none	will	be	changed	to	the	name	of	the	current	default	database.

Incidentally,	it	is	possible	to	change	the	prompt	to	something	else.	To	do	so,	enter	the
client	command	prompt	followed	by	the	text	you	want	to	display	for	the	prompt.	There	are
a	few	special	settings	(e.g.,	\d	for	default	database).	Here’s	how	you	might	change	the
prompt:

prompt	SQL	Command	\d>_

And	here’s	how	the	prompt	will	look	after	you	run	the	preceding	command	to	change	it:
SQL	Command	(none)>

Right	now	you	have	no	default	database.	So	now	that	you	have	the	mysql	client	started,
let’s	start	exploring	databases.

www.it-ebooks.info

http://www.it-ebooks.info/

Starting	to	Explore	Databases
The	next	few	chapters	cover	how	to	create	databases,	add	data	to	them,	and	run	queries	to
find	interesting	relationships.	In	this	chapter,	while	you’re	logged	into	MySQL	or
MariaDB	with	the	mysql	client,	let’s	get	familiar	with	the	core	aspects	of	the	database
system.	We’ll	consider	a	few	basic	concepts	of	databases	so	that	you	may	enter	a	few
commands	within	the	mysql	monitor.	This	will	help	you	get	comfortable	with	the	mysql
client.	Because	you	may	be	in	a	very	early	stage	of	learning,	we’ll	keep	it	simple	for	now.

In	SQL	terminology,	data	is	always	stored	in	a	table,	a	term	that	reflects	the	way	a	user
generally	views	the	data.	In	a	table	about	movies,	for	example,	you	might	see	a	horizontal
row	about	each	movie,	with	the	title	as	one	column,	and	other	columns	to	indicate	more
information	on	each	movie:

+----------+--------------------+--------+

|	movie_id	|	title															|	rating	|

+----------+---------------------+--------+

|								1	|	Casablanca										|	PG					|

|								2	|	The	Impostors							|	R						|

|								3	|	The	Bourne	Identity	|	PG-13		|

+----------+--------------------+--------+

That’s	just	a	simple	example.	Don’t	try	to	create	that	table.	Let’s	first	take	a	look	at	what
you	already	have	on	your	server,	to	see	these	elements.	From	the	mysql>	prompt,	enter	the
following	and	press	the	Enter	key:

SHOW	DATABASES;

The	following	output	(or	something	similar)	should	be	displayed	in	response:
+--------------------+

|	Database											|

+--------------------+

|	information_schema	|

|	mysql														|

|	test															|

+--------------------+

First,	let	me	mention	a	book	convention.	MySQL	is	not	case	sensitive	when	you	enter
keywords	such	as	SHOW.	You	could	just	as	well	enter	show	or	even	sHoW.	However,	the
names	of	databases,	tables,	and	columns	may	be	case	sensitive,	especially	on	an	operating
system	that	is	case	sensitive,	such	as	Mac	OS	X	or	Linux.	Most	books	and	documentation
use	all	upper	case	letters	to	indicate	keywords	while	respecting	the	case	of	the	things	that
you	can	change.	We	use	all	lower	case	letters	for	database,	table,	and	column	names
because	it’s	easier	on	the	eyes	and	easier	to	type,	and	mostly	because	it’s	easier	for	the
reader	to	distinguish	between	what	is	set	by	the	SQL	convention	and	what	is	flexible.

The	list	just	displayed	shows	that	you	have	three	databases	at	the	start	of	using	MySQL,
created	automatically	during	installation.	The	information_schema	database	contains
information	about	the	server.	The	next	database	in	the	list	is	mysql,	which	stores
usernames,	passwords,	and	user	privileges.	When	you	created	a	user	for	yourself	at	the
end	of	Chapter	2,	this	is	where	that	information	was	stored.	You	may	have	noticed	that
some	commands	shown	in	Chapter	2	referenced	this	database.	Don’t	try	to	change	the
mysql	database	directly.	Later,	I’ll	show	you	commands	for	manipulating	this	database.	At
least	for	now,	access	the	mysql	database	only	through	administrative	functions	and
utilities.	The	last	database	listed	is	called	test.	That’s	there	for	you	to	test	things	and	to
use	when	learning.	Let’s	use	that	for	a	bit	in	this	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

First	SQL	Commands
The	test	database	is	initially	empty;	it	contains	no	tables.	So	let’s	create	one.	Don’t	worry
about	understanding	what	you’re	doing	in	detail.	I’ll	introduce	concepts	gradually	as	we
go	along.

So	enter	the	following	in	the	mysql	client	(remember	the	terminating	semicolon):
CREATE	TABLE	test.books	(book_id	INT,	title	TEXT,	status	INT);

This	is	your	first	SQL	statement.	It	creates	a	table	in	the	test	database	and	names	it
books.	We	specified	the	name	of	the	database	and	table	with	test.books	(i.e.,	the	format
is	database.table).	We	also	defined,	within	the	parentheses,	three	columns	for	the	table.
We’ll	talk	about	that	in	more	depth	later.

If	you	correctly	type	that	SQL	statement,	you’ll	receive	a	reply	like	this:
Query	OK,	0	rows	affected	(0.19	sec)

This	is	a	message	from	the	server	reporting	how	things	went	with	the	SQL	statement	you
sent.	What	you	need	to	take	from	the	message	is	that	everything	is	OK.	With	that,	let’s	see
the	results	of	what	we	did.	To	see	a	list	of	tables	within	the	test	database,	enter:

SHOW	TABLES	FROM	test;

The	output	should	be:
+----------------+

|	Tables_in_test	|

+----------------+

|	books										|

+----------------+

1	row	in	set	(0.01	sec)

You	now	have	one	table,	books.	Notice	that	the	results	are	enclosed	with	ASCII	text	to
look	like	a	table	of	data,	as	you	might	draw	it	on	a	piece	of	paper.	Notice	also	the	message
after	the	table.	It	says	that	one	row	is	in	the	set,	meaning	that	books	is	the	only	table	in	the
database.	The	time	in	parentheses	that	you	will	see	after	running	every	SQL	statement
indicates	how	long	it	took	for	the	server	to	process	the	request.	In	this	case,	it	took	my
server	0.01	seconds.	I	ran	that	statement	from	my	home	computer	in	Milan,	Italy,	but
using	my	server	in	Tampa,	Florida	in	the	U.S.	That’s	a	pretty	quick	response.	Sometimes
it’s	even	faster	and	shows	0.00	seconds,	because	the	lapse	in	time	was	not	enough	to
register.

From	this	point	forward,	I	will	leave	out	these	lines	of	status	to	save	space	and	to	keep	the
clutter	down,	unless	there’s	something	relevant	to	discuss.	For	the	same	reason,	I’m	not
including	the	mysql>	prompts.	You’ll	have	to	learn	when	something	is	entered	from	the
mysql	client	versus	the	operating	system	shell	—	although	I	will	usually	indicate	when	to
enter	something	from	the	operating	system	shell.	So	from	now	on,	I’ll	combine	input	and
output	like	this:

SHOW	TABLES	FROM	test;

+----------------+

|	Tables_in_test	|

+----------------+

|	books										|

+----------------+

You	can	tell	what	you’re	supposed	to	enter	because	it’s	bold,	whereas	the	output	is	not.

www.it-ebooks.info

http://www.it-ebooks.info/

For	each	of	these	SQL	statements,	we	have	to	specify	the	database	name.	If	you	will	be
working	mainly	in	one	database	(you	usually	will	be),	you	can	set	the	default	database	so
that	you	don’t	have	to	specify	the	database	each	time.	To	do	this,	enter	a	USE	command:

USE	test

NOTE

Incidentally,	if	your	server	doesn’t	have	the	test	database,	you	can	create	it	by	just	entering	CREATE	DATABASE	test;
on	the	server	first.

Because	this	is	an	instruction	for	the	mysql	client	and	not	the	server,	the	usual	ending
semicolon	is	not	needed.	The	client	will	change	the	default	database	on	the	server	for	the
client	to	the	one	given,	making	it	unnecessary	to	specify	table	names	without	a	preceding
database	name	—	unless	you	want	to	execute	an	SQL	statement	for	a	table	in	another
database.	After	entering	the	USE	command,	you	can	re-enter	the	earlier	SQL	statement	to
list	the	tables	in	the	database	without	specifying	that	you	want	test.	It’s	taken	for	granted:

SHOW	TABLES;

+----------------+

|	Tables_in_test	|

+----------------+

|	books										|

+----------------+

Now	that	we’ve	peeked	at	a	database,	which	is	not	much	more	than	a	grouping	of	tables
(in	this	example,	only	one	table),	and	created	a	table,	let’s	look	inside	the	table	that	we
created.	To	do	that,	we’ll	use	the	SQL	statement	DESCRIBE,	like	so:

DESCRIBE	books;

+---------+---------+------+-----+---------+-------+

|	Field			|	Type				|	Null	|	Key	|	Default	|	Extra	|

+---------+---------+------+-----+---------+-------+

|	book_id	|	int(11)	|	YES		|					|	NULL				|							|

|	title			|	text				|	YES		|					|	NULL				|							|

|	status		|	int(11)	|	YES		|					|	NULL				|							|

+---------+---------+------+-----+---------+-------+

In	these	results	you	can	see	that	we	created	three	fields	for	entering	data,	named	book_id,
title,	and	status.	That’s	pretty	limited,	but	we’re	keeping	things	simple	in	this	chapter.
The	first	and	third	fields,	book_id	and	status,	are	integer	types,	meaning	they	can	contain
only	numbers.	We	stipulated	that	when	we	created	the	table	by	adding	the	INT	keyword
when	specifying	those	columns.	The	other	field,	title,	can	contain	text,	which	includes
anything	you	can	type	at	the	keyboard.	We	set	that	earlier	with	the	TEXT	keyword.	Don’t
worry	about	remembering	any	of	this	now.	We’re	just	looking	around	to	get	a	feel	for	the
system	and	the	mysql	client.

Inserting	and	Manipulating	Data
Let’s	put	some	data	in	this	table.	Enter	the	following	three	SQL	statements	within	the
mysql	client:

INSERT	INTO	books	VALUES(100,	'Heart	of	Darkness',	0);

INSERT	INTO	books	VALUES(101,	'The	Catcher	of	the	Rye',	1);

INSERT	INTO	books	VALUES(102,	'My	Antonia',	0);

All	three	lines	use	the	SQL	statement	INSERT	to	insert,	or	add	data,	to	the	books	table.
Each	line	will	be	followed	by	a	status	message	(or	an	error	message	if	you	mistype
something),	but	I	didn’t	bother	to	include	those	messages	here.	Notice	that	numbers	don’t

www.it-ebooks.info

http://www.it-ebooks.info/

need	to	be	within	quotes,	but	text	does.	The	syntax	of	SQL	statements	like	this	one	is
pretty	structured	—	hence	the	name	Structured	Query	Language.	You	can	be	casual	about
spacing	between	elements	of	the	statements,	but	you	must	enter	everything	in	the	right
order	and	use	the	parentheses,	commas,	and	semicolons	as	shown.	Keeping	SQL
statements	structured	makes	queries	predictable	and	the	database	faster.

The	previous	examples	insert	the	values	given	in	parentheses	into	the	table.	The	values	are
given	in	the	same	order	and	format	as	we	told	MySQL	to	expect	when	we	created	the
table:	three	fields,	of	which	the	first	and	third	will	be	numbers,	and	the	second	will	be	any
kind	of	text.	Let’s	ask	MySQL	to	display	the	data	we	just	gave	it	to	see	how	it	looks:

SELECT	*	FROM	books;

+---------+------------------------+--------+

|	book_id	|	title																		|	status	|

+---------+------------------------+--------+

|					100	|	Heart	of	Darkness						|	0						|

|					101	|	The	Catcher	of	the	Rye	|	1						|

|					102	|	My	Antonia													|	0						|

+---------+------------------------+--------+

In	this	table,	you	can	see	more	easily	why	they	call	records	rows	and	fields	columns.	We
used	the	SELECT	statement	to	select	all	columns	—	the	asterisk	(*)	means	“everything”	—
from	the	table	named.	In	this	example,	book_id	functions	as	a	record	identification
number,	while	title	and	status	contain	the	text	and	numbers	we	want	to	store.	I
purposely	gave	status	values	of	0	or	1	to	indicate	status:	0	means	inactive	and	1	means
active.	These	are	arbitrary	designations	and	mean	nothing	to	MySQL	or	MariaDB.
Incidentally,	the	title	of	the	second	book	is	not	correct,	but	we’ll	use	it	later	as	an	example
of	how	to	change	data.

Let’s	play	with	these	values	and	the	SELECT	statement	to	see	how	it	works.	Let’s	add	a
WHERE	clause	to	the	SQL	statement:

SELECT	*	FROM	books	WHERE	status	=	1;

+---------+------------------------+--------+

|	book_id	|	title																		|	status	|

+---------+------------------------+--------+

|		101				|	The	Catcher	of	the	Rye	|						1	|

+---------+------------------------+--------+

In	these	results,	we’ve	selected	only	rows	in	which	status	equals	1	(i.e.,	only	records	that
are	active).	We	did	this	using	the	WHERE	clause.	It’s	part	of	the	SELECT	statement	and	not	an
SQL	statement	on	its	own.	Let’s	try	another	SQL	statement	like	this	one,	but	ask	for	the
inactive	records:

SELECT	*	FROM	books	WHERE	status	=	0	\G

***************************	1.	row	***************************

book_id:	100

		title:	Heart	of	Darkness

	status:	0

***************************	2.	row	***************************

book_id:	102

		title:	My	Antonia

	status:	0

Notice	that	this	time	we	changed	the	ending	of	the	SQL	statement	from	a	semicolon	to	\G.
This	was	mentioned	earlier	in	this	chapter	as	an	option.	It	shows	the	results	not	in	a	table
format,	but	as	a	batch	of	lines	for	each	record.	Sometimes	this	is	easier	to	read,	usually
when	the	fields	are	so	long	that	a	tabular	format	would	be	too	wide	for	your	screen	and

www.it-ebooks.info

http://www.it-ebooks.info/

would	wrap	around.	It’s	a	matter	of	preference	for	each	situation.

We’ve	added	data	to	this	minimal	table.	Now	let’s	change	the	data	a	little.	Let’s	change	the
status	of	one	of	the	rows.	To	do	this,	we	will	use	the	UPDATE	statement.	It	produces	two
lines	of	status	output:

UPDATE	books	SET	status	=	1	WHERE	book_id	=	102;

Query	OK,	1	row	affected	(0.18	sec)

Rows	matched:	1		Changed:	1		Warnings:	0

You	can	learn	how	to	read	and	remember	SQL	statement	syntax	better	if	you	read	and
interpret	them	in	the	way	and	order	they’re	written.	Let’s	do	that	with	this	SQL	statement,
the	first	line	in	the	preceding	code	block.	It	says	to	update	books	by	setting	the	value	of
status	to	1	for	all	rows	where	book_id	equals	102.	In	this	case,	there	is	only	one	record
with	that	value,	so	the	message	that	follows	says	that	one	row	was	affected,	and	only	one
was	changed	or	updated	—	however	you	want	to	say	that.	To	see	the	results,	run	the
SELECT	statement	shown	earlier,	the	one	where	we	check	for	active	status:

SELECT	*	FROM	books	WHERE	status	=	1;

+---------+------------------------+--------+

|	book_id	|	title																		|	status	|

+---------+------------------------+--------+

|					101	|	The	Catcher	of	the	Rye	|	1						|

|					102	|	My	Antonia													|	1						|

+---------+------------------------+--------+

Thanks	to	our	update,	we	get	two	rows	back	this	time,	where	the	rows	have	a	status	of
active.	If	we	execute	the	UPDATE	statement	again,	but	for	a	different	book_id,	we	can
change	the	book,	The	Catcher	in	the	Rye	to	inactive:

UPDATE	books	SET	status	=	0	WHERE	book_id	=	101;

SELECT	*	FROM	books	WHERE	status	=	0;

+---------+------------------------+--------+

|	book_id	|	title																		|	status	|

+---------+------------------------+--------+

|					100	|	Heart	of	Darkness						|	0						|

|					101	|	The	Catcher	of	the	Rye	|	0						|

+---------+------------------------+--------+

Let’s	enter	one	more	UPDATE	statement	so	you	can	see	how	to	do	more	with	just	one
statement.	As	I	mentioned	earlier,	the	title	of	this	book	is	not	correct.	It’s	not	The	Catcher
of	the	Rye.	The	correct	title	is	The	Catcher	in	the	Rye.	Let’s	change	that	text	in	the	title
column,	while	simultaneously	setting	the	value	of	status	back	to	1.	We	could	do	this	with
two	SQL	statements,	but	let’s	do	it	in	one	like	so:

UPDATE	books

SET	title	=	'The	Catcher	in	the	Rye',	status	=	1

WHERE	book_id	=	101;

Notice	that	we’ve	given	the	same	syntax	as	before	with	the	UPDATE	statement,	but	we’ve
given	two	pairs	of	columns	and	values	to	set.	That’s	easier	than	entering	the	UPDATE
statement	twice.	It	also	saves	some	network	traffic	when	communicating	with	a	server	on
another	continent.

A	Little	Complexity
Let’s	increase	the	pace	a	little.	Let’s	create	another	table	and	insert	a	couple	of	rows	of
data	in	it.	Enter	these	two	SQL	statements	from	within	the	mysql	client:

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE	TABLE	status_names	(status_id	INT,	status_name	CHAR(8));

INSERT	INTO	status_names	VALUES(0,	'Inactive'),	(1,'Active');

Now	we’ve	created	the	table	status_names,	but	with	only	two	columns.	The	CREATE
TABLE	statement	is	similar	to	the	one	we	used	to	create	the	first	table.	There’s	one
difference	I’d	like	you	to	notice:	instead	of	using	the	column	type	of	TEXT,	we’re	using	the
column	type	of	CHAR,	which	stands	for	“character.”	We	can	add	text	to	this	column,	but	its
size	is	limited:	each	row	can	have	only	a	maximum	of	eight	characters	in	this	column.
That	makes	a	smaller	field	and	therefore	a	smaller	and	faster	table.	It	doesn’t	matter	in	our
examples	here,	as	we’re	not	entering	much	data,	but	little	specifications	like	this	will	make
a	huge	performance	difference	in	large	databases.	It’s	good	for	you	to	start	thinking	this
way	from	the	beginning.

The	second	SQL	statement	added	two	sets	of	values.	Doing	multiple	sets	of	values	in	one
INSERT	is	allowed,	and	is	easier	than	entering	a	separate	line	for	each.	Here’s	how	the	data
looks	in	that	table:

SELECT	*	FROM	status_names;

+-----------+-------------+

|	status_id	|	status_name	|

+-----------+-------------+

|									0	|	Inactive				|

|									1	|	Active						|

+-----------+-------------+

That’s	probably	a	seemingly	useless	table	of	data.	But	let’s	combine	this	table	with	the
first	table,	books,	to	see	a	glimpse	of	the	potential	of	database	system	like	MariaDB.	We’ll
use	the	SELECT	statement	to	join	both	tables	together	to	get	nicer	results,	and	we’ll	be
selective	about	which	data	is	displayed.	Try	this	on	your	computer:

SELECT	book_id,	title,	status_name

FROM	books	JOIN	status_names

WHERE	status	=	status_id;

+---------+------------------------+-------------+

|	book_id	|	title																		|	status_name	|

+---------+------------------------+-------------+

|					100	|	Heart	of	Darkness						|	Inactive				|

|					101	|	The	Catcher	in	the	Rye	|	Active						|

|					102	|	My	Antonia													|	Active						|

+---------+------------------------+-------------+

First,	notice	that	I	broke	this	SQL	statement	over	three	lines.	That’s	allowed.	Nothing	is
processed	until	you	type	a	semicolon	and	then	press	the	Enter	key.	Breaking	apart	a
statement	like	this	makes	it	easier	to	read,	but	has	no	effect	on	MySQL.	In	this	SQL
statement,	the	first	line	selects	book_id	and	title,	which	are	both	in	books,	and
status_name,	which	is	in	the	status_names	table.	Notice	that	we	didn’t	use	an	asterisk	to
select	all	of	the	columns,	but	named	the	specific	ones	we	want.	We	also	chose	columns
from	two	tables.

On	the	second	line,	we	say	to	select	these	columns	listed	from	books	and	from
status_names.	The	JOIN	clause	is	where	we	named	the	second	table.

In	the	WHERE	clause,	on	the	third	line,	we	tell	MySQL	to	match	the	values	of	the	status
column	from	books	to	the	values	of	the	status_id	column	from	the	status_names	table.
This	is	the	point	in	which	the	rows	from	each	will	be	joined.	If	the	idea	of	joining	tables
seems	difficult,	don’t	worry	about	it	at	this	point.	I’ve	included	it	just	to	show	you	what

www.it-ebooks.info

http://www.it-ebooks.info/

can	be	done	with	MySQL	and	MariaDB.	I’ll	explain	joins	more	fully	later.

When	we	created	books,	we	could	have	made	status	a	text	or	character	field	and	entered
the	words	Active	or	Inactive	for	each	row.	But	if	you	have	a	table	with	thousands	or	maybe
millions	of	rows	of	data,	entering	0	or	1	is	much	easier	and	you’re	less	likely	to	make
typos	(e.g.,	you	might	enter	Actve	sometimes).	Databases	are	tedious,	but	creating	tables
with	better	structures	and	using	better	written	SQL	statements	makes	them	less	tedious
and	helps	you	to	leverage	your	time	and	resources.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
There’s	plenty	more	you	can	do	to	explore	the	simple	tables	we’ve	created,	but	in	this
chapter	I	wanted	just	to	give	you	an	overview	of	MySQL	and	MariaDB,	and	to	show	you
around.	The	chapters	in	Part	II	will	delve	into	details,	starting	with	Chapter	4,	which	will
cover	creating	tables	in	detail.

Before	jumping	ahead,	you	might	want	to	reinforce	what	you	just	learned	from	this
chapter.	A	few	exercises	follow	for	you	to	play	some	more	on	your	own	with	the	test
database	and	the	mysql	client.	When	you’re	finished,	to	exit	mysql,	type	quit	or	exit,	and
press	the	Enter	key.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises
In	addition	to	logging	into	MySQL	or	MariaDB	with	the	mysql	client	and	entering	the
SQL	statements	shown	already	in	this	chapter,	here	are	a	few	exercises	to	get	some	more
practice	playing	with	the	mysql	client	and	to	help	you	better	understand	the	basics.	Rather
than	use	generic	names	like	books	and	book_id,	you’re	asked	to	use	more	realistic	names.
In	that	same	spirit,	use	fairly	realistic	data	(e.g.,	“John	Smith”	for	a	person’s	name)	when
entering	data	in	these	exercises.

1.	 Log	into	MySQL	or	MariaDB	using	the	mysql	client	and	switch	the	default	database
to	the	database,	test.	Create	two	tables	called	contacts	and	relation_types.	For
both	tables,	use	column	type	INT	for	number	columns	and	CHAR	for	character
columns.	Specify	the	maximum	number	of	characters	you	want	with	CHAR	—
otherwise	MySQL	wills	set	a	maximum	of	one	character,	which	is	not	very	useful.
Make	sure	that	you	allow	for	enough	characters	to	fit	the	data	you	will	enter	later.	If
you	want	to	allow	characters	between	numbers	(e.g.,	hyphens	for	a	telephone
number),	use	CHAR.	For	the	contacts,	you	will	need	six	columns:	name,	phone_work,
phone_mobile,	email,	relation_id.	For	the	relation_types	table,	there	should	be
only	two	columns:	relation_id	and	relationship.
When	you’re	finished	creating	both	tables,	use	the	DESCRIBE	statement	to	see	how
they	look.

2.	 Enter	data	in	the	two	tables	created	in	the	previous	exercise.	Enter	data	in	the	second
table,	relation_types	first.	Enter	three	rows	of	data	in	it.	Use	single-digit,
sequential	numbers	for	the	first	column,	but	the	following	text	for	the	second
column:	Family,	Friend,	Colleague.	Now	enter	data	in	the	table	named	contacts.
Enter	at	least	five	fictitious	names,	telephone	numbers,	and	email	addresses.	For	the
last	column,	relation_id,	enter	single	digits	to	correspond	with	the	relation_id
numbers	in	the	table,	relation_types.	Make	sure	you	have	at	least	one	row	for	each
of	the	three	potential	values	for	relation_id.

3.	 Execute	two	SELECT	statements	to	retrieve	all	of	the	columns	of	data	from	both
tables	that	you	created	and	filled	with	data	from	the	previous	two	exercises.	Then
run	a	SELECT	statement	that	retrieves	only	the	person’s	name	and	email	address	from
the	table	named	contacts.

4.	 Change	some	of	the	data	entered	in	the	previous	exercises,	using	the	UPDATE
statement.	If	you	don’t	remember	how	to	do	that,	refer	back	to	the	examples	in	this
chapter	on	how	to	change	data	in	a	table.	First,	change	someone’s	name	or	telephone
number.	Next,	change	someone’s	email	address	and	his	or	her	relationship	to	you
(i.e.,	relation_id).	Do	this	in	one	UPDATE	statement.

5.	 Run	a	SELECT	statement	that	joins	both	tables	created	in	the	first	exercise.	Use	the
JOIN	clause	to	do	this	(the	JOIN	clause	was	covered	in	this	chapter,	so	look	back	at
the	example	if	you	don’t	remember	how	to	use	it).	Join	the	tables	on	the	common
column	named	relation_id	—	this	will	go	in	the	WHERE	clause.	To	help	you	with
this,	here’s	how	the	clauses	for	the	tables	should	look:

...

FROM	contacts	JOIN	relation_types

WHERE	contacts.relation_id	=	relation_types.relation_id

...

www.it-ebooks.info

http://www.it-ebooks.info/

Select	the	columns	name	and	phone_mobile,	but	only	for	contacts	who	are	marked	as
a	Friend	—	you’ll	have	to	add	this	to	the	WHERE	with	AND.	Try	doing	this	based	on
the	value	of	relation_id	and	then	again	based	on	the	value	of	the	relationship
column.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part	II.	Database	Structures
The	primary	organizational	structure	in	MySQL	and	MariaDB	is	the	database.	Separate
databases	are	usually	created	for	each	separate	business	or	organization,	or	for	individual
departments	or	projects.	The	basis	by	which	you	might	want	to	create	separate	databases	is
mostly	based	on	your	personal	preference.	It	does	allow	a	convenient	method	of	providing
different	permissions	and	privileges	to	different	users	or	groups	of	users.	However,	for	a
beginner,	one	database	for	one	organization	is	enough	on	which	to	learn.

As	explained	in	Starting	to	Explore	Databases,	databases	contain	tables	that	contain	one
row	or	record	for	each	item	of	data,	and	information	about	that	item	in	columns	or	fields.
Compared	to	databases,	there	are	well-established,	practical	considerations	for
determining	what	separate	tables	to	create.	Although	some	beginners	may	create	one	large
table	within	a	database,	a	table	with	many	columns,	it	is	almost	always	an	inefficient
method	of	handling	data.	There	is	almost	never	a	situation	in	which	it	makes	sense	to	have
only	one	table.	So	expect	to	create	many	small	tables	and	not	a	few	wide	tables	(a	wide
table	is	one	with	many	columns).

When	creating	a	table,	you	specify	the	fields	or	columns	to	be	created,	called	the	table’s
schema.	When	specifying	the	columns	of	a	table	being	created,	you	may	specify	various
properties	of	each	column.	At	a	minimum,	you	must	specify	the	type	of	column	to	create:
whether	it	contains	characters	or	just	integers;	whether	it	is	to	contain	date	and	time
information;	or	possibly	binary	data.	When	first	creating	a	column,	you	may	also	specify
how	the	data	to	be	contained	in	the	column	is	indexed,	if	it	is	to	be	collated	based	on
particular	alphabets	(e.g.,	Latin	letters	or	Chinese	characters),	and	other	factors.

The	first	chapter	of	this	part,	Chapter	4,	covers	how	to	create	a	database	—	a	very	simple
task	—	and	how	to	create	a	table.	I	also	touch	on	how	to	put	data	into	a	table	and	retrieve
it,	topics	to	be	greatly	expanded	in	later	chapters.	Presenting	only	how	to	create	a	table
without	showing	you	how	to	use	it	would	be	a	very	dry	approach.	It’s	better	to	show	you
quickly	the	point	of	why	you	would	create	a	table	before	moving	on	to	other	details
related	to	tables.

When	you	first	create	tables,	especially	as	a	beginner,	it’s	difficult	to	know	exactly	what	to
put	in	each	table’s	schema.	Invariably,	you	will	want	to	change	a	table’s	structure	after	the
table	is	created.	Thus,	in	Chapter	5	we’ll	look	at	how	to	alter	tables	after	they	have	been
created.	I	could	have	placed	the	chapter	on	altering	tables	after	the	chapters	on
manipulating	data,	but	you	would	inevitably	need	to	jump	ahead	to	it	at	some	point	when
you	realize	that	you	created	a	table	incorrectly	while	experimenting	with	MySQL.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	4.	Creating	Databases	and	Tables
In	order	to	be	able	to	add	and	manipulate	data,	you	first	have	to	create	a	database.	There’s
not	much	to	this.	You’re	creating	just	a	container	in	which	you	will	add	tables.	Creating	a
table	is	more	involved	and	offers	many	choices.	There	are	several	types	of	tables	from
which	to	choose,	some	with	unique	features.	When	creating	tables,	you	must	also	decide
on	the	structure	of	each	table:	the	number	of	columns,	the	type	of	data	each	column	may
hold,	how	the	tables	will	be	indexed,	and	several	other	factors.	However,	while	you’re	still
learning,	you	can	accept	the	default	setting	for	most	of	the	options	when	creating	tables.

There	are	a	few	basic	things	to	decide	when	creating	a	structure	for	your	data:

The	number	of	tables	to	include	in	your	database,	as	well	as	the	table	names
For	each	table,	the	number	of	columns	it	should	contain,	as	well	as	the	column	names
For	each	column,	what	kind	of	data	is	to	be	stored

For	the	last	part,	in	the	beginning,	we’ll	use	just	four	types	of	columns:	columns	that
contain	only	numbers;	columns	that	contain	alphanumeric	characters,	but	not	too	many
(i.e.,	a	maximum	of	255	characters);	columns	that	contain	plenty	of	text	and	maybe	binary
files;	and	columns	for	recording	date	and	time	information.	This	is	a	good	starting	point
for	creating	a	database	and	tables.	As	we	get	further	along,	we	can	expand	that	list	of
column	data	types	to	improve	the	performance	of	your	databases.

This	chapter	contains	examples	of	how	to	create	a	database	and	tables.	The	text	is	written
on	the	assumption	that	you	will	enter	the	SQL	statements	shown	on	your	server,	using	the
mysql	client.	The	exercises	at	the	end	of	this	chapter	will	require	that	you	make	some
changes	and	additions	to	the	database	and	its	tables	on	your	computer.	So,	when
instructed,	be	sure	to	try	all	of	the	examples	on	your	computer.

The	database	and	the	tables	that	we	create	in	this	chapter	will	be	used	in	several	chapters
in	this	book,	especially	in	Part	III.	In	those	later	chapters,	you	will	be	asked	to	add,
retrieve,	and	change	data	from	the	tables	you	create	in	this	chapter.	Exercises	in
subsequent	chapters	assume	that	you	have	created	the	tables	you	are	asked	to	create	in	this
chapter.	Thus,	in	order	to	get	the	most	value	possible	from	this	book,	it’s	important	that
you	complete	the	exercises	included	for	each	chapter.	It	will	help	reinforce	what	you	read,
and	you	will	learn	more.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	a	Database
Creating	a	database	is	simple,	mostly	because	there’s	nothing	much	to	it.	Use	the	SQL
statement	CREATE	DATABASE.	You	will	have	to	provide	a	name	for	the	database	with	this
SQL	statement.	You	could	call	it	something	bland	like	db1.	However,	let’s	do	something
more	realistic	and	interesting.	I’m	a	fan	of	birds,	so	I’ve	used	a	database	of	a	fictitious
bird-watching	website	for	the	examples	in	this	book.	Some	birds	live	in	groups,	or	a
colony	called	a	rookery.	To	start,	let’s	create	a	database	that	will	contain	information	about
birds	and	call	it	rookery.	To	do	this,	enter	the	following	from	within	the	mysql	client:

CREATE	DATABASE	rookery;

As	previously	mentioned,	this	very	minimal,	first	SQL	statement	will	create	a	subdirectory
called	rookery	on	the	filesystem	in	the	data	directory	for	MySQL.	It	won’t	create	any
data.	It	will	just	set	up	a	place	to	add	tables,	which	will	in	turn	hold	data.	Incidentally,	if
you	don’t	like	the	keyword	DATABASE,	you	can	use	SCHEMA	instead:	CREATE	SCHEMA
database_name.	The	results	are	the	same.

You	can,	though,	do	a	bit	more	than	the	SQL	statement	shown	here	for	creating	a	database.
You	can	add	a	couple	of	options	in	which	you	can	set	the	default	types	of	characters	that
will	be	used	in	the	database	and	how	data	will	be	sorted	or	collated.	So,	let’s	drop	the
rookery	database	and	create	it	again	like	so:

DROP	DATABASE	rookery;

CREATE	DATABASE	rookery

CHARACTER	SET	latin1

COLLATE	latin1_bin;

The	first	line	in	this	SQL	statement	is	the	same	as	the	earlier	one	—	remember,	all	of	this
is	one	SQL	statement	spread	over	two	lines,	ending	with	the	semicolon.	The	second	line,
which	is	new,	tells	MySQL	that	the	default	characters	that	will	be	used	in	tables	in	the
database	are	Latin	letters	and	other	characters.	The	third	line	tells	MySQL	that	the	default
method	of	sorting	data	in	tables	is	based	on	binary	Latin	characters.	We’ll	discuss	binary
characters	and	binary	sorting	in	a	later	chapter,	but	it’s	not	necessary	to	understand	that	at
this	point.	In	fact,	for	most	purposes,	the	minimal	method	of	creating	a	database	without
options,	as	shown	earlier,	is	fine.	You	can	always	change	these	two	options	later	if
necessary.	I’m	only	mentioning	the	options	here	so	that	you	know	they	exist	if	you	need	to
set	them	one	day.

Now	that	we’ve	created	a	database,	let’s	confirm	that	it’s	there,	on	the	MySQL	server.	To
get	a	list	of	databases,	enter	the	following	SQL	statement:

SHOW	DATABASES;

+--------------------+

|	Database											|

+--------------------+

|	information_schema	|

|	rookery												|

|	mysql														|

|	test															|

+--------------------+

The	results	here	show	the	rookery	database,	and	three	other	databases	that	were	created
when	MySQL	was	installed	on	the	server.	We	saw	the	other	three	in	Starting	to	Explore
Databases,	and	we’ll	cover	them	in	later	chapters	of	this	book	as	needed.

www.it-ebooks.info

http://www.it-ebooks.info/

Before	beginning	to	add	tables	to	the	rookery	database,	enter	the	following	command	into
the	mysql	client:

USE	rookery

This	little	command	will	set	the	new	database	that	was	just	created	as	the	default	database
for	the	mysql	client.	It	will	remain	the	default	database	until	you	change	it	to	a	different
one	or	until	you	exit	the	client.	This	makes	it	easier	when	entering	SQL	statements	to
create	tables	or	other	SQL	statements	related	to	tables.	Otherwise,	when	you	enter	each
table-related	SQL	statement,	you	would	have	to	specify	each	time	the	database	where	the
table	is	located.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	Tables
The	next	step	for	structuring	a	database	is	to	create	tables.	Although	this	can	be
complicated,	we’ll	keep	it	simple	to	start.	We’ll	initially	create	one	main	table	and	two
smaller	tables	for	reference	information.	The	main	table	will	have	a	bunch	of	columns,	but
the	reference	tables	will	have	only	a	few	columns.

For	our	fictitious	bird-watchers	site,	the	key	interest	is	birds.	So	we	want	to	create	a	table
that	will	hold	basic	data	on	birds.	For	learning	purposes,	we	won’t	make	this	an	elaborate
table.	Enter	the	following	SQL	statement	into	mysql	on	your	computer:

CREATE	TABLE	birds	(

bird_id	INT	AUTO_INCREMENT	PRIMARY	KEY,

scientific_name	VARCHAR(255)	UNIQUE,

common_name	VARCHAR(50),

family_id	INT,

description	TEXT);

This	SQL	statement	creates	the	table	birds	with	five	fields,	or	columns,	with	commas
separating	the	information	about	each	column.	Note	that	all	the	columns	together	are
contained	in	a	pair	of	parentheses.	For	each	colum,	we	specify	the	name,	the	type,	and
optional	settings.	For	instance,	the	information	we	give	about	the	first	column	is:

The	name,	bird_id
The	type,	INT	(meaning	it	has	to	contain	integers)
The	settings,	AUTO_INCREMENT	and	PRIMARY	KEY

The	names	of	the	columns	can	be	anything	other	than	words	that	are	reserved	for	SQL
statements,	clauses,	and	functions.	Actually,	you	can	use	a	reserve	word,	but	it	must
always	be	given	within	quotes	to	distinguish	it.	You	can	find	a	list	of	data	types	from
which	to	choose	on	the	websites	of	MySQL	and	MariaDB,	or	in	my	book,	MySQL	in	a
Nutshell.

We	created	this	table	with	only	five	columns.	You	can	have	plenty	of	columns	(up	to	255),
but	you	shouldn’t	have	too	many.	If	a	table	has	too	many	columns,	it	can	be	cumbersome
to	use	and	the	table	will	be	sluggish	when	it’s	accessed.	It’s	better	to	break	data	into
multiple	tables.

The	first	column	in	the	birds	table	is	a	simple	identification	number,	bird_id.	It	will	be
the	primary	key	column	on	which	data	will	be	indexed	—	hence	the	keywords,	PRIMARY
KEY.	We’ll	discuss	the	importance	of	the	primary	key	later.

The	AUTO_INCREMENT	option	tells	MySQL	to	automatically	increment	the	value	of	this
field.	It	will	start	with	the	number	1,	unless	we	specify	a	different	number.

The	next	column	will	contain	the	scientific	name	of	each	bird	(e.g.,	Charadrius	vociferus,
instead	of	Killdeer).	You	might	think	that	the	scientific_name	column	would	be	the	ideal
identifier	to	use	as	the	primary	key	on	which	to	index	the	birds	table,	and	that	we
wouldn’t	need	the	bird_id	column.	But	the	scientific	name	can	be	very	long	and	usually
in	Latin	or	Greek	(or	sometimes	a	mix	of	both	languages),	and	not	everyone	is
comfortable	using	words	from	these	languages.	In	addition,	would	be	awkward	to	enter
the	scientific	name	of	a	bird	when	referencing	a	row	in	the	table.	We’ve	set	the
scientific_name	column	to	have	a	variable-width	character	data	type	(VARCHAR).	The	255
that	we	specify	in	the	parentheses	after	it	sets	the	maximum	size	(255	should	be	sufficient

www.it-ebooks.info

http://shop.oreilly.com/product/9780596514334.do
http://www.it-ebooks.info/

for	the	long	names	we’ll	need	to	accommodate).

If	the	scientific	name	of	a	bird	has	fewer	than	255	characters,	the	storage	engine	will
reduce	the	size	of	the	column	for	the	row.	This	is	different	from	the	CHAR	column	data
type.	If	the	data	in	a	CHAR	column	is	less	than	its	maximum,	space	is	still	allocated	for	the
full	width	that	you	set.	There	are	trade-offs	with	these	two	basic	character	data	types.	If
the	storage	engine	knows	exactly	what	to	expect	from	a	column,	tables	run	faster	and	can
be	indexed	more	easily	with	a	CHAR	column.	However,	a	VARCHAR	column	can	use	less
space	on	the	server’s	hard	drive	and	is	less	prone	to	fragmentation.	That	can	improve
performance.	When	you	know	for	sure	that	a	column	will	have	a	set	number	of	characters,
use	CHAR.	When	the	width	may	vary,	use	VARCHAR.

Next,	we	set	the	column	data	type	for	the	common_name	of	each	bird	to	a	variable-width
character	column	of	only	50	characters	at	most.

The	fourth	column	(family_id)	will	be	used	as	identification	numbers	for	the	family	of
birds	to	which	each	bird	belongs.	They	are	integer	data	types	(i.e.,	INT).	We’ll	create
another	table	for	more	information	on	the	families.	Then,	when	manipulating	data,	we	can
join	the	two	tables,	use	a	number	to	identify	each	family,	and	link	each	bird	to	its	family.

The	last	column	is	for	the	description	of	each	bird.	It’s	a	TEXT	data	type,	which	means	that
it’s	a	variable-width	column,	and	it	can	hold	up	65,535	bytes	of	data	for	each	row.	This
will	allow	us	to	enter	plenty	of	text	about	each	bird.	We	could	write	multiple	pages
describing	a	bird	and	put	it	in	this	column.

There	are	additional	factors	to	consider	when	searching	for	a	bird	in	a	database,	so	there
are	many	columns	we	could	add	to	this	table:	information	about	migratory	patterns,
notable	features	for	spotting	them	in	the	wild,	and	so	on.	In	addition,	there	are	many	other
data	types	that	may	be	used	for	columns.	We	can	have	columns	that	allow	for	larger	and
smaller	numbers,	or	for	binary	files	to	be	included	in	each	row.	For	instance,	you	might
want	a	column	with	a	binary	data	type	to	store	a	photograph	of	each	bird.	However,	this
basic	table	gives	you	a	good	sampling	of	the	possibilities	when	creating	tables.

To	see	how	the	table	looks,	use	the	DESCRIBE	statement.	It	displays	information	about	the
columns	of	a	table,	or	the	table	schema	—	not	the	data	itself.	To	use	this	SQL	statement	to
get	information	on	the	table	we	just	created,	you	would	enter	the	following	SQL
statement:

DESCRIBE	birds;

+-----------------+--------------+------+-----+---------+----------------+

|	Field											|	Type									|	Null	|	Key	|	Default	|	Extra										|

+-----------------+--------------+------+-----+---------+----------------+

|	bird_id									|	int(11)						|	NO			|	PRI	|	NULL				|	auto_increment	|

|	scientific_name	|	varchar(255)	|	YES		|	UNI	|	NULL				|																|

|	common_name					|	varchar(50)		|	YES		|					|	NULL				|																|

|	family_id							|	int(11)						|	YES		|					|	NULL				|																|

|	description					|	text									|	YES		|					|	NULL				|																|

+-----------------+--------------+------+-----+---------+----------------+

Notice	that	these	results	are	displayed	in	a	table	format	made	with	ASCII	characters.	It’s
not	very	slick	looking,	but	it’s	clean,	quick,	and	provides	the	information	requested.	Let’s
study	this	layout,	not	the	content,	per	se.

The	first	row	of	this	results	set	contains	column	headings	describing	the	rows	of

www.it-ebooks.info

http://www.it-ebooks.info/

information	that	follow	it.	In	the	first	column	of	this	results	set,	Field	contains	the	fields	or
columns	of	the	table	created.

The	second	column,	Type,	lists	the	data	type	for	each	field.	Notice	that	for	the	table’s
columns	in	which	we	specified	the	data	type	VARCHAR	with	the	specific	widths	within
parentheses,	those	settings	are	shown	here	(e.g.,	varchar(255)).	Where	we	didn’t	specify
the	size	for	the	INT	columns,	the	defaults	were	assumed	and	are	shown	here.	We’ll	cover
later	what	INT(11)	means	and	discuss	the	other	possibilities	for	integer	data	types.

The	third	column	in	the	preceding	results,	Null,	indicates	whether	each	field	may	contain
NULL	values.	NULL	is	nothing;	it’s	nonexistent	data.	This	is	different	from	blank	or
empty	content	in	a	field.	That	may	seem	strange:	just	accept	that	there’s	a	difference	at	this
point.	You’ll	see	that	in	action	later	in	this	book.

The	fourth	column,	Key,	indicates	whether	a	field	is	a	key	field	—	an	indexed	column.	It’s
not	an	indexed	column	if	the	result	is	blank,	as	it	is	with	common_name.	If	a	column	is
indexed,	the	display	will	say	which	kind	of	index.	Because	of	the	limited	space	permitted
in	the	display,	it	truncates	the	words.	In	the	example	shown,	the	bird_id	column	is	a
primary	key,	shortened	to	PRI	in	this	display.	We	set	scientific_name	to	another	type	of
key	or	index,	one	called	UNIQUE,	which	is	abbreviated	UNI	here.

The	next-to-last	column	in	the	display,	Default,	would	contain	any	default	value	set	for
each	field.	We	didn’t	set	any	when	creating	the	birds	table,	but	we	could	have	done	so.
We	can	do	that	later.

The	last	column,	Extra,	provides	any	extra	information	the	table	maintains	on	each
column.	In	the	example	shown,	we	can	see	that	the	values	for	bird_id	will	be
incremented	automatically.	There’s	usually	nothing	else	listed	in	this	column.

If	we	don’t	like	something	within	the	structure	of	the	table	we	created,	we	can	use	the
ALTER	TABLE	statement	to	change	it	(this	SQL	statement	is	covered	in	Chapter	5).	If	you
made	some	mistakes	and	just	want	to	start	over,	you	can	delete	the	table	and	try	again	to
create	it.	To	delete	a	table	completely	(including	its	data),	you	can	use	the	DROP	TABLE
statement,	followed	by	the	table	name.	Be	careful	with	this	SQL	statement,	as	it’s	not
reversible	and	it	deletes	any	data	in	the	table.

NOTE

Incidentally,	when	using	the	mysql	client,	you	can	press	the	up	arrow	on	your	keyboard	to	get	to	the	previous	lines
you	entered.	So	if	you	create	a	table,	then	run	the	DESCRIBE	statement	and	catch	a	mistake,	you	can	just	drop	the	table,
and	use	the	up	arrow	to	go	back	to	your	previous	entry	in	which	you	created	the	table.	Use	the	left	arrow	to	move	the
cursor	over	to	the	text	you	want	to	change	and	fix	it.	When	you’ve	finished	modifying	the	CREATE	TABLE	statement,
press	Enter.	The	modified	CREATE	TABLE	statement	will	then	be	sent	to	the	server.

www.it-ebooks.info

http://www.it-ebooks.info/

Inserting	Data
Those	were	a	lot	of	details	to	absorb	in	the	last	section.	Let’s	take	a	break	from	creating
tables	and	enter	data	in	the	birds	table.	We’ll	use	an	INSERT	statement,	which	was
covered	briefly	in	Chapter	3,	and	will	be	covered	in	more	detail	in	the	next	section.	For
now,	don’t	worry	too	much	about	understanding	all	of	the	possibilities	with	the	INSERT
statement.	Just	enter	the	following	on	your	server	using	the	mysql	client:

INSERT	INTO	birds	(scientific_name,	common_name)

VALUES	('Charadrius	vociferus',	'Killdeer'),

('Gavia	immer',	'Great	Northern	Loon'),

('Aix	sponsa',	'Wood	Duck'),

('Chordeiles	minor',	'Common	Nighthawk'),

('Sitta	carolinensis',	'	White-breasted	Nuthatch'),

('Apteryx	mantelli',	'North	Island	Brown	Kiwi');

This	will	create	six	rows	of	data	for	six	birds.	Enter	the	following	from	the	mysql	client	to
see	the	contents	of	the	table:

SELECT	*	FROM	birds;

+---------+----------------------+-------------------+-----------+-------------+

|	bird_id	|	scientific_name						|	common_name							|	family_id	|	description	|

+---------+----------------------+-------------------+-----------+-------------+

|							1	|	Charadrius	vociferus	|	Killdeer										|						NULL	|	NULL								|

|							2	|	Gavia	immer										|	Great	Northern…	|						NULL	|	NULL								|

|							3	|	Aix	sponsa											|	Wood	Duck									|						NULL	|	NULL								|

|							4	|	Chordeiles	minor					|	Common	Nighthawk		|						NULL	|	NULL								|

|							5	|	Sitta	carolinensis			|	White-breasted…	|						NULL	|	NULL								|

|							6	|	Apteryx	mantelli					|	North	Island…			|						NULL	|	NULL								|

+---------+----------------------+-------------------+-----------+-------------+

As	you	can	see	from	the	results,	MySQL	put	values	in	the	two	columns	we	gave	it,	and	set
the	other	columns	to	their	default	values	(i.e.,	NULL).	We	can	change	those	values	later.

Let’s	create	another	table	for	a	different	database.	We	have	information	on	birds	in	the
rookery	database.	Let’s	create	another	database	that	contains	information	about	people
who	are	interested	in	bird-watching.	We’ll	call	it	birdwatchers	and	we’ll	create	one	table
for	it	that	we’ll	call	humans,	to	correlate	with	the	name	of	birds	table:

CREATE	DATABASE	birdwatchers;

CREATE	TABLE	birdwatchers.humans

(human_id	INT	AUTO_INCREMENT	PRIMARY	KEY,

formal_title	VARCHAR(25),

name_first	VARCHAR(25),

name_last	VARCHAR(25),

email_address	VARCHAR(255));

This	isn’t	much	of	a	table;	we’re	not	collecting	much	information	on	members,	but	it	will
do	well	for	now.	Let’s	enter	some	data	into	this	table.	The	following	adds	four	people	to
our	table	of	members	of	the	site:

INSERT	INTO	birdwatchers.humans

(name_first,	name_last,	email_address)

VALUES

('Mr.',	'Russell',	'Dyer',	'russell@mysqlresources.com'),

('Mr.',	'Richard',	'Stringer',	'richard@mysqlresources.com'),

('Ms.',	'Rusty',	'Osborne',	'rusty@mysqlresources.com'),

('Ms.',	'Lexi',	'Hollar',	'alexandra@mysqlresources.com');

This	enters	information	for	four	humans.	Notice	that	we	left	the	first	column	NULL	so	that
MySQL	can	assign	an	identification	number	automatically	and	incrementally.

We’ve	created	some	simple	tables.	We	could	do	more,	but	this	is	enough	for	now	to	better

www.it-ebooks.info

http://www.it-ebooks.info/

understand	tables	and	their	structure.

www.it-ebooks.info

http://www.it-ebooks.info/

More	Perspectives	on	Tables
Besides	the	DESCRIBE	statement,	there’s	another	way	to	look	at	how	a	table	is	structured.
You	can	use	the	SHOW	CREATE	TABLE	statement.	This	basically	shows	how	you	might	enter
the	CREATE	TABLE	to	create	an	existing	table,	perhaps	in	a	different	database.	What’s
particularly	interesting	and	useful	about	the	SHOW	CREATE	TABLE	statement	is	that	it	shows
the	default	settings	assumed	by	the	server,	ones	that	you	might	not	have	specified	when
you	ran	the	CREATE	TABLE	statement.	Here’s	how	you	would	enter	this	statement,	with	the
results	shown	after	it:

SHOW	CREATE	TABLE	birds	\G

***************************	1.	row	***************************

							Table:	birds

Create	Table:	CREATE	TABLE	`birds`	(

		`bird_id`	int(11)	NOT	NULL	AUTO_INCREMENT,

		`scientific_name`	varchar(255)	COLLATE	latin1_bin	DEFAULT	NULL,

		`common_name`	varchar(50)	COLLATE	latin1_bin	DEFAULT	NULL,

		`family_id`	int(11)	DEFAULT	NULL,

		`description`	text	COLLATE	latin1_bin,

		PRIMARY	KEY	(`bird_id`),

		UNIQUE	KEY	`scientific_name`	(`scientific_name`)

)	ENGINE=MyISAM	DEFAULT	CHARSET=latin1	COLLATE=latin1_bin

As	mentioned	earlier,	there	are	more	options	that	you	can	set	for	each	column;	if	you	don’t
specify	them,	the	server	will	use	the	default	choices.	Here	you	can	see	those	default
settings.	Notice	that	we	did	not	set	a	default	value	for	any	of	the	fields	(except	the	first	one
when	we	said	to	use	an	automatically	incremented	number),	so	it	set	each	column	to	a
default	of	NULL.	For	the	third	column,	the	common_name	column,	the	server	set	the	set	of
characters	(i.e.,	the	alphabet,	numbers,	and	other	characters)	by	which	it	will	collate	the
data	in	that	column	to	latin1_bin	(i.e.,	Latin	binary	characters).	The	server	did	the	same
for	three	other	columns.	That’s	because	of	how	we	set	the	database	at	the	beginning	of	this
chapter,	in	the	second	CREATE	DATABASE	statement.	This	is	where	that	comes	into	play.	We
could	set	a	column	to	a	different	one	from	the	one	we	set	for	the	database	default,	but	it’s
usually	not	necessary.

You	may	have	noticed	in	looking	at	the	results	that	the	options	for	the	bird_id	column
don’t	indicate	that	it’s	a	primary	key,	although	we	specified	that	in	CREATE	TABLE.	Instead,
the	list	of	columns	is	followed	by	a	list	of	keys	or	indexes	used	in	the	table.	Here	it	lists
the	primary	key	and	specifies	that	that	index	is	based	on	bird_id.	It	then	shows	a	unique
key.	For	that	kind	of	key,	it	gives	a	name	of	the	index,	scientific_name,	which	is	the
same	as	the	column	it	indexes,	and	it	then	shows	in	parentheses	a	lists	of	columns	from
which	the	index	is	drawn.	That	could	be	more	than	one	column,	but	it’s	just	one	here.
We’ll	cover	indexes	in	Chapter	5	(see	Indexes).

There’s	one	more	aspect	you	should	note	in	the	results	of	SHOW	CREATE	TABLE.	Notice	that
the	last	line	shows	a	few	other	settings	after	the	closing	parentheses	for	the	set	of	columns.
First	is	the	type	of	table	used,	or	rather	the	type	of	storage	engine	used	for	this	table.	In
this	case,	it’s	MyISAM,	which	is	the	default	for	many	servers.	The	default	for	your	server
may	be	different.	Data	is	stored	and	handled	in	different	ways	by	different	storage	engines.
There	are	advantages	and	disadvantages	to	each.

The	other	two	settings	are	the	default	character	set	(latin1)	and	the	default	collation
(latin1_bin)	in	the	table.	These	come	from	the	default	values	when	the	database	was

www.it-ebooks.info

http://www.it-ebooks.info/

created,	or	rather	they	came	indirectly	from	there.	You	can	set	a	different	character	and
collation,	and	you	can	even	set	a	different	character	set	and	collation	for	an	individual
column.

Let	me	give	you	an	example	where	setting	explicit	values	for	the	character	set	and
collation	might	be	useful.	Suppose	you	have	a	typical	database	for	a	bird-watcher	group
located	in	England	with	most	of	its	common	names	written	in	English.	Suppose	further
that	the	site	attracts	bird-watchers	from	other	countries	in	Europe,	so	you	might	want	to
include	common	bird	names	in	other	languages.	Let’s	say	that	you	want	to	set	up	a	table
for	the	Turkish	bird-watchers.	For	that	table,	you	would	use	a	different	character	set	and
collation,	because	the	Turkish	alphabet	contains	both	Latin	and	other	letters.	For	the
character	set,	you	would	use	latin5,	which	has	both	Latin	and	other	letters.	For	collation,
you	would	use	latin5_turkish_ci,	which	orders	text	based	on	the	order	of	the	letters	in
the	Turkish	alphabet.	To	make	sure	you	don’t	forget	to	use	this	character	set	and	collation
when	adding	columns	to	this	table	later,	you	could	set	the	CHARSET	and	COLLATE	for	the
table	to	these	values.

Before	moving	on,	let	me	make	one	more	point	about	the	SHOW	CREATE	TABLE	statement:
if	you	want	to	create	a	table	with	plenty	of	special	settings	different	from	the	default,	you
can	use	the	results	of	the	SHOW	CREATE	TABLE	statement	as	a	starting	point	for	constructing
a	more	elaborate	CREATE	TABLE	statement.	Mostly	you	would	use	it	to	see	the	assumptions
that	the	server	made	when	it	created	a	table,	based	on	the	default	settings	during
installation.

The	next	table	we’ll	create	for	the	examples	in	this	book	is	bird_families.	This	will	hold
information	about	bird	families,	which	are	groupings	of	birds.	This	will	tie	into	the
family_id	column	in	the	birds	table.	The	new	table	will	save	us	from	having	to	enter	the
name	and	other	information	related	to	each	family	of	birds	for	each	bird	in	the	birds
table:

CREATE	TABLE	bird_families	(

family_id	INT	AUTO_INCREMENT	PRIMARY	KEY,

scientific_name	VARCHAR(255)	UNIQUE,

brief_description	VARCHAR(255));

We’re	creating	three	columns	in	the	table.	The	first	is	the	most	interesting	for	our	purposes
here.	It’s	the	column	that	will	be	indexed	and	will	be	referenced	by	the	birds	table.	That
sounds	like	there	is	a	physical	connection	or	something	similar	within	the	birds	table,	but
that’s	not	what	will	happen.	Instead,	the	connection	will	be	made	only	when	we	execute	an
SQL	statement,	a	query	referencing	both	tables.	With	such	SQL	statements,	we’ll	join	the
bird_families	table	to	the	birds	table	based	on	the	family_id	columns	in	both.	For
instance,	we	would	do	this	when	we	want	a	list	of	birds	along	with	their	corresponding
family	names,	or	maybe	when	we	want	to	get	a	list	of	birds	for	a	particular	family.

Now	we	can	put	all	the	information	we	want	about	a	family	of	birds	in	one	row.	When	we
enter	data	in	the	birds	table,	we’ll	include	the	family_id	identification	number	that	will
reference	a	row	of	the	bird_families	table.	This	also	helps	to	ensure	consistency	of	data:
there’s	less	chance	of	spelling	deviations	when	you	only	enter	a	number	and	not	a	Latin
name.	It	also	saves	space	because	you	can	store	information	in	one	row	of	bird_families
and	refer	to	it	from	hundreds	of	rows	in	birds.	We’ll	see	soon	how	this	works.

The	scientific_name	column	will	hold	the	scientific	name	of	the	family	of	birds	(e.g.,

www.it-ebooks.info

http://www.it-ebooks.info/

Charadriidae).	The	third	column	is	basically	for	the	common	names	of	families	(e.g.,
Plovers).	But	people	often	associate	several	common	names	to	a	family	of	birds,	as	well	as
vague	names	for	the	types	of	birds	contained	in	the	family.	So	we’ll	just	call	the	column
brief_description.

Let’s	next	create	a	table	for	information	about	the	orders	of	the	birds.	This	is	a	grouping	of
families	of	birds.	We’ll	name	it	bird_orders.	For	this	table,	let’s	try	out	some	of	the	extra
options	mentioned	earlier.	Enter	the	following	SQL	statement:

CREATE	TABLE	bird_orders	(

		order_id	INT	AUTO_INCREMENT	PRIMARY	KEY,

		scientific_name	VARCHAR(255)	UNIQUE,

		brief_description	VARCHAR(255),

		order_image	BLOB

)	DEFAULT	CHARSET=utf8	COLLATE=utf8_general_ci;

This	SQL	statement	creates	a	table	named	bird_orders	with	four	columns	to	start.	The
first	one,	order_id,	is	the	key	in	which	rows	will	be	referenced	from	the	bird_families
table.	This	is	followed	by	scientific_name	for	the	scientific	name	of	the	order	of	birds,
with	a	data	type	of	VARCHAR.	We’re	allowing	the	maximum	number	of	characters	for	it.	It’s
more	than	we’ll	need,	but	there	won’t	be	many	entries	in	this	table	and	it’s	difficult	to
guess	what	what	the	longest	description	will	be.	So	we’ll	set	it	to	the	maximum	allowed
for	that	data	type.	We’re	naming	this	column	brief_description,	as	we	did	in	the	earlier
bird_families	table.

Because	all	three	tables	that	we’ve	created	so	far	have	similar	names	for	some	of	the
columns	(e.g.,	scientific_name),	that	may	cause	us	a	little	trouble	later	if	we	try	to	join
all	of	these	tables	together.	It	might	seem	simpler	to	use	distinct	names	for	these	columns
in	each	of	these	tables	(e.g.,	order_scientific_name).	However,	we	can	resolve	that
ambiguity	easily	when	necessary.

In	the	previous	SQL	statement,	notice	that	we	have	a	column	for	an	image	to	represent	the
order	of	birds.	We	might	put	a	photo	of	the	most	popular	bird	of	the	order	or	a	drawing	of
several	birds	from	the	order.	Notice	that	for	this	image	file,	the	data	type	we’re	using	is	a
BLOB.	While	the	name	is	cute	and	evocative,	it	also	stands	for	binary	large	object.	We	can
store	an	image	file,	such	as	a	JPEG	file,	in	the	column.	That’s	not	always	a	good	idea.	It
can	make	the	table	large,	which	can	be	a	problem	when	backing	up	the	database.	It	might
be	better	to	store	the	image	files	on	the	server	and	then	store	a	file	path	or	URL	address	in
the	database,	pointing	to	where	the	image	file	is	located.	I’ve	included	a	BLOB	here,
though,	to	show	it	as	a	possibility.

After	the	list	of	columns,	we’ve	included	the	default	character	set	and	collation	to	be	used
when	creating	the	columns.	We’re	using	UTF-8	(i.e.,	UCS	Transformation	Format,	8-bit),
because	some	of	the	names	may	include	characters	that	are	not	part	of	the	default	latin1
character	set.	For	instance,	if	our	fictitious	bird-watcher	site	included	German	words,	the
column	brief_description	would	be	able	to	accept	the	letters	with	umlauts	over	them
(i.e.,	ä).	The	character	set	utf8	allows	for	such	letters.

For	a	real	bird-watching	database,	both	the	bird_families	and	bird_orders	tables	would
have	more	columns.	There	would	also	be	several	more	tables	than	the	few	we’re	creating.
But	for	our	purposes,	these	few	tables	as	they	are	here	will	be	fine	for	now.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
You	have	many	more	possibilities	when	creating	tables.	There	are	options	for	setting
different	types	of	storage	engines.	We	touched	on	that	in	this	chapter,	but	there’s	much
more	to	that.	You	can	also	create	some	tables	with	certain	storage	engines	that	will	allow
you	to	partition	the	data	across	different	locations	on	the	server’s	hard	drives.	The	storage
engine	can	have	an	impact	on	the	table’s	performance.	Some	options	and	settings	are
rarely	used,	but	they’re	there	for	a	reason.	For	now,	we’ve	covered	enough	options	and
possibilities	when	creating	tables.

What	we	have	covered	in	this	chapter	may	actually	be	a	bit	overwhelming,	especially	the
notion	of	reference	tables	like	bird_families	and	bird_orders.	Their	purpose	should
become	clearer	in	time.	Chapter	5	provides	some	clarification	on	tables,	and	will	show
you	how	to	alter	them.	There	are	additional	examples	of	inserting	and	selecting	data
interspersed	throughout	that	chapter.	Before	moving	on,	make	sure	to	complete	the
exercises	in	the	following	section.	They	should	help	you	to	better	understand	how	tables
work	and	are	used.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises
Besides	the	SQL	statements	you	entered	on	your	MySQL	server	while	reading	this
chapter,	here	are	a	few	exercises	to	further	reinforce	what	you’ve	learned	about	creating
databases	and	tables.	In	some	of	these	exercises,	you	will	be	asked	to	create	tables	that
will	be	used	in	later	chapters,	so	it’s	important	that	you	complete	the	exercises	that	follow.

1.	 Use	the	DROP	TABLE	statement	to	delete	the	table	bird_orders	that	we	created
earlier	in	this	chapter.	Look	for	the	CREATE	TABLE	statement	that	we	used	to	create
that	table.	Copy	or	type	it	into	a	text	editor	and	make	changes	to	that	SQL	statement:
change	the	brief_description	column	to	TEXT	column	type.	Watch	out	for	extra
commas	when	you	remove	columns	from	the	list.	When	you’re	finished,	copy	that
modified	SQL	statement	into	the	mysql	monitor	on	your	computer	and	press	Enter	to
execute	it.
If	you	get	an	error,	look	at	the	error	message	(which	will	probably	be	confusing)	and
then	look	at	the	SQL	statement	in	your	text	editor.	Look	where	you	made	changes
and	see	if	you	have	any	mistakes.	Make	sure	you	have	keywords	and	values	in	the
correct	places	and	there	are	no	typos.	Fix	any	mistakes	you	find	and	try	running	the
statement	again.	Keep	trying	until	you	succeed.

2.	 I	mentioned	in	this	chapter	that	we	might	want	to	store	data	related	to	identifying
birds.	Instead	of	putting	that	data	in	the	birds	table,	create	a	table	for	that	data,
which	will	be	a	reference	table.	Try	creating	that	table	with	the	CREATE	TABLE
statement.	Name	it	birds_wing_shapes.	Give	it	three	columns:	the	first	column
should	be	named	wing_id	with	a	data	type	of	CHAR	with	the	maximum	character
width	set	to	2.	Make	that	column	the	index,	as	a	UNIQUE	key,	but	not	an
AUTO_INCREMENT.	We’ll	enter	two-letter	codes	manually	to	identify	each	row	of	data
—	a	feasible	task	because	there	will	be	probably	only	six	rows	of	data	in	this	table.
Name	the	second	column	wing_shape	and	set	its	data	type	to	CHAR	with	the
maximum	character	width	set	to	25.	This	will	be	used	to	describe	the	type	of	wings	a
bird	may	have	(e.g.,	tapered	wings).	The	third	column	should	be	called
wing_example	and	make	it	a	BLOB	column	for	storing	example	images	of	the	shapes
of	wings.

3.	 After	creating	the	birds_wing_shapes	table	in	the	previous	exercise,	run	the	SHOW
CREATE	TABLE	statement	for	that	table	in	mysql.	Run	it	twice:	once	with	the	semi-
colon	at	the	end	of	the	SQL	statement	and	another	time	with	\G	to	see	how	the
different	displays	can	be	useful	given	the	results.
Copy	the	results	of	the	second	statement,	the	CREATE	TABLE	statement	it	returns.
Paste	that	into	a	text	editor.	Then	use	the	DROP	TABLE	statement	to	delete	the	table
birds_wing_shapes	in	mysql.
In	your	text	editor,	change	a	few	things	in	the	CREATE	TABLE	statement	you	copied.
First,	change	the	storage	engine	—	the	value	of	ENGINE	for	the	table	—	to	a
MyISAM	table,	if	it’s	not	already.	Next,	change	the	character	set	and	collation	for
the	table.	Set	the	character	set	to	utf8	and	the	collation	to	utf8_general_ci.
Now	copy	the	CREATE	TABLE	statement	you	modified	in	your	text	editor	and	paste	it
into	the	mysql	monitor	and	press	[Enter]	to	run	it.	If	you	get	an	error,	look	at	the
confusing	error	message	and	then	look	at	the	SQL	statement	in	your	text	editor.	Look
where	you	made	changes	and	see	if	you	have	any	mistakes.	Make	sure	you	have

www.it-ebooks.info

http://www.it-ebooks.info/

keywords	and	values	in	the	correct	places	and	there	are	no	typos.	Fix	any	mistakes
you	find	and	try	running	the	statement	again.	Keep	trying	to	fix	it	until	you’re
successful.	Once	you’re	successful,	run	the	DESCRIBE	statement	for	the	table	to	see
how	it	looks.

4.	 Create	two	more	tables,	similar	to	birds_wing_shapes.	One	table	will	store
information	on	the	common	shapes	of	bird	bodies,	and	the	other	will	store
information	on	the	shapes	of	their	bills.	They	will	also	be	used	for	helping	bird-
watchers	to	identify	birds.	Call	these	two	tables	birds_body_shapes	and
birds_bill_shapes.
For	the	birds_body_shapes	table,	name	the	first	column	body_id,	set	the	data	type
to	CHAR(3),	and	make	it	a	UNIQUE	key	column.	Name	the	second	column	body_shape
with	CHAR(25),	and	the	third	column	body_example,	making	it	a	BLOB	column	for
storing	images	of	the	bird	shapes.
For	the	birds_bill_shapes	table,	create	three	similar	columns:	bill_id	with
CHAR(2)	and	UNIQUE;	bill_shape	with	CHAR(25);	and	bill_example,	making	it	a
BLOB	column	for	storing	images	of	the	bird	shapes.	Create	both	tables	with	the
ENGINE	set	to	a	MyISAM,	the	DEFAULT	CHARSET,	utf8,	and	the	COLLATE	as
utf8_general_ci.	Run	the	SHOW	CREATE	TABLE	statement	for	each	table	when
you’re	finished	to	check	your	work.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	5.	Altering	Tables
Despite	the	best	planning,	you	will	need	occasionally	to	change	the	structure	or	other
aspects	of	your	tables.	We	cannot	imagine	everything	that	we	might	want	to	do	with	a
table,	or	how	the	data	might	look	when	it’s	entered.	Altering	a	table,	though,	is	not	very
difficult.	Because	of	these	factors,	you	shouldn’t	worry	too	much	about	getting	the	table
structure	exactly	right	when	creating	a	table.	You	should	see	tables	as	more	fluid.	Perhaps
the	term	table	structure	makes	that	difficult	to	accept:	the	words	table	and	structure	have
such	rigid	senses	to	them.	To	offset	these	images,	perhaps	a	modified	version	of	a	cliché
would	be	useful	to	give	you	a	truer	sense	of	the	reality	of	table	structures:	they’re	not
made	of	stone	or	wood,	but	of	digital	confines	that	are	easily	altered.	I	suspect	that
sentence	won’t	be	quoted	much,	but	it’s	a	useful	perspective.

In	this	chapter,	we	will	explore	the	ways	to	alter	tables:	how	to	add	and	delete	columns,
how	to	change	their	data	types,	how	to	add	indexes,	and	how	to	change	table	and	column
options.	This	chapter	will	also	include	some	precautions	about	potential	data	problems	you
can	cause	when	altering	a	table	containing	data.

www.it-ebooks.info

http://www.it-ebooks.info/

Prudence	When	Altering	Tables
Before	doing	any	structural	changes	to	a	table,	especially	if	it	contains	data,	you	should
make	a	backup	of	the	table	to	be	changed.	You	should	do	this	even	if	you’re	making
simple	changes.	You	might	lose	part	of	the	data	if	you	inadvertently	change	the	column	to
a	different	size,	and	may	lose	all	of	the	data	contained	in	a	column	if	you	change	the
column	type	to	one	that’s	incompatible	(e.g.,	from	a	string	to	a	numeric	data	type).

If	you’re	altering	only	one	table,	you	can	make	a	copy	of	the	table	within	the	same
database	to	use	as	a	backup	in	case	you	make	a	mistake	and	want	to	restore	the	table	to
how	it	was	before	you	started.	A	better	choice	would	be	to	make	a	copy	of	the	table	and
then	alter	the	copy.	You	may	even	want	to	put	the	copy	in	the	test	database	and	alter	the
table	there.	When	you’re	finished	altering	it,	you	can	use	it	to	replace	the	original	table.
We’ll	cover	this	method	in	more	detail	later	in	this	chapter.

The	best	precaution	to	take,	in	addition	to	working	with	copies	of	tables,	would	be	to	use
the	mysqldump	utility	to	make	a	backup	of	the	tables	you’re	altering	or	the	whole
database.	This	utility	is	covered	in	Chapter	14	.	However,	to	make	it	easier	for	you,	here	is
an	example	of	what	you	should	enter	from	the	command	line	—	not	from	the	mysql	client
—	to	make	a	backup	of	the	birds	table	with	mysqldump	(you’ll	need	to	have	read	and
write	permission	for	the	directory	where	you’re	executing	it;	it’s	set	to	the	/tmp	directory
here,	but	you	should	change	that	to	a	different	directory,	perhaps	one	to	which	only	you
have	access	and	the	filesystem	mysql	user	has	read	and	write	permission):

mysqldump	--user='russell'	-p	\

rookery	birds	>	/tmp/birds.sql

As	you	can	see,	the	username	is	given	on	the	first	line	(you	would	enter	your	username
instead	of	mine)	within	single	or	double	quotes,	with	the	-p	option	to	tell	mysqldump	to
prompt	you	for	the	password.	There	are	many	other	mysqldump	options,	but	for	our
purposes,	these	are	all	that	are	necessary.	Incidentally,	this	statement	can	be	entered	in	one
line	from	the	command	line,	or	it	can	be	entered	on	multiple	lines	as	shown	here	by	using
the	back-slash	(\)	to	let	the	shell	know	that	more	is	to	follow.	On	the	second	line	in	the
preceding	code	block,	the	database	name	is	given,	followed	by	the	table	name.	The
redirect	(>)	tells	the	shell	to	send	the	results	of	the	dump	to	a	text	file	called	birds.sql	in
the	/tmp	directory.

The	previous	example	makes	a	backup	of	just	the	birds	table.	It	may	be	best	to	make	a
backup	of	the	whole	rookery	database.	To	do	this	with	mysqldump,	enter	the	following
from	the	command	line:

mysqldump	--user='russell'	-p	\

rookery	>	rookery.sql

You	should	definitely	do	this,	because	having	a	backup	of	the	rookery	database	will	be
helpful	in	case	you	accidentally	delete	one	of	the	tables	or	its	data	and	then	get	confused
later	when	you’re	working	on	the	exercises	in	later	chapters.	In	fact,	it’s	a	good	idea	to
make	a	backup	of	the	rookery	database	at	the	end	of	each	chapter.	Each	dump	file	should
be	named	according	to	its	chapter	name	(e.g.,	rookery-ch1-end.sql,	rookery-ch2-end.sql,
etc.)	so	that	you	can	rewind	to	a	specific	point	in	the	book.

Later	on,	if	you	have	a	problem	and	need	to	restore	the	database	back	to	where	you	were

www.it-ebooks.info

http://www.it-ebooks.info/

at	the	end	of	a	chapter,	you	would	enter	something	like	the	following	from	the	command
line:

mysql	--user='russell'	-p	\

rookery	<	rookery-ch2-end.sql

Notice	that	this	line	does	not	use	the	mysqldump	utility.	We	have	to	use	the	mysql	client	at
the	command	line	to	restore	a	dump	file.	When	the	dump	file	(rookery-ch2-end.sql)	is	read
into	the	database,	it	will	delete	the	rookery	database	with	its	tables	and	data	before
restoring	the	back	up	copy	with	its	tables	and	data.	Any	data	that	users	entered	in	the
interim	into	the	rookery	database	will	be	lost.	Notice	that	to	restore	from	the	dump	file,
we’re	using	a	different	redirect,	the	less-than	sign	(<)	to	tell	mysql	to	take	input	from	the
contents	of	the	text	file,	rookery-ch2-end.sql.	It’s	possible	to	restore	only	a	table	or	to	set
other	limits	on	what	is	restored	from	a	back	up	file.	You	can	read	about	how	to	do	that	in
Chapter	14.	Let’s	move	on	to	learning	the	essentials	of	altering	tables	in	MySQL	and
MariaDB.

www.it-ebooks.info

http://www.it-ebooks.info/

Essential	Changes
After	you	have	created	a	table,	entered	data	into	it,	and	begun	to	use	it,	you	will	invariably
need	to	make	changes	to	the	table.	You	may	need	to	add	another	column,	change	the	data
type	of	the	column	(e.g.,	to	allow	for	more	characters),	or	perhaps	rename	a	column	for
clarity	of	purpose	or	to	align	the	columns	better	with	columns	in	other	tables.	To	improve
the	speed	at	which	data	is	located	in	the	column	(i.e.,	make	queries	faster),	you	might	want
to	add	or	change	an	index.	You	may	want	to	change	one	of	the	default	values	or	set	one	of
the	options.	All	of	these	changes	can	be	made	through	the	ALTER	TABLE	statement.

The	basic	syntax	for	the	ALTER	TABLE	is	simple:
ALTER	TABLE	table_name	changes;

Replace	table_name	with	the	name	of	the	table	you	want	to	change.	Enter	the	changes	you
want	to	make	on	the	rest	of	the	line.	We’ll	cover	the	various	changes	possible	with	the
ALTER	TABLE	statement	one	at	a	time	in	this	chapter.

This	SQL	statement	starts	simply.	It’s	the	specifics	of	the	changes	that	can	make	it
confusing.	Actually,	that	isn’t	always	the	reason	for	the	confusion.	The	reason	many
developers	have	trouble	with	the	ALTER	TABLE	statement	is	because	they	most	likely	don’t
use	it	often.	When	you	need	to	make	a	change	to	a	table,	you	will	probably	look	in	a	book
or	in	the	documentation	to	see	how	to	make	a	change,	enter	it	on	your	server,	and	then
forget	what	you	did.	In	contrast,	because	you	will	frequently	use	the	SQL	statements	for
entering	and	retrieving	data	(i.e.,INSERT	and	SELECT),	their	syntax	will	be	easier	to
remember.	So	it’s	natural	that	database	developers	don’t	always	remember	how	to	make
some	of	the	changes	possible	with	the	ALTER	TABLE	statement.

One	of	the	most	common	alterations	you	will	need	to	make	to	a	table	is	adding	a	column.
To	do	this,	include	the	ADD	COLUMN	clause	as	the	changes	at	the	end	of	the	syntax	shown
earlier.	As	an	example	of	this	clause,	let’s	add	a	column	to	the	bird_families	table	to	be
able	to	join	it	to	the	bird_orders	table.	You	should	have	created	these	two	tables	in
Chapter	4.	We’ll	name	the	column	order_id,	the	same	as	in	the	bird_orders	table.	It’s
acceptable	and	perhaps	beneficial	for	it	to	have	the	same	name	as	the	related	column	in	the
bird_orders	table.	To	do	this,	enter	the	following	from	the	mysql	client:

ALTER	TABLE	bird_families

ADD	COLUMN	order_id	INT;

This	is	pretty	simple.	It	adds	a	column	to	the	table	with	the	name	order_id.	It	will	contain
integers,	but	it	will	not	increment	automatically	like	its	counterpart	in	the	bird_orders
table.	You	don’t	want	automatic	increments	for	the	column	being	added	to
bird_families,	because	you’re	just	referring	to	existing	orders,	not	adding	new	ones.

As	another	example	of	this	clause,	let’s	add	a	couple	of	columns	to	the	birds	table	to	be
able	to	join	it	to	the	two	tables	you	should	have	created	in	the	exercises	at	the	end	of
Chapter	4	(i.e.,	birds_wing_shapes	and	birds_body_shapes).	Before	we	do	that,	let’s
make	a	copy	of	the	table	and	alter	the	copy	instead	of	the	original.	When	we’re	finished,
we’ll	use	the	table	we	altered	to	replace	the	original	table.

To	make	a	copy	of	the	birds	table,	we’ll	use	the	CREATE	TABLE	statement	with	the	LIKE
clause.	This	was	covered	in	Chapter	4)	In	fact,	let’s	create	the	new	table	in	the	test

www.it-ebooks.info

http://www.it-ebooks.info/

database	just	to	work	separately	on	it	(this	isn’t	necessary,	but	it’s	a	good	practice	to	have
a	development	database	separate	from	the	live	one.	To	do	this,	enter	the	following	in
mysql	on	your	server:

CREATE	TABLE	test.birds_new	LIKE	birds;

Next,	enter	the	following	two	lines	in	mysql	to	switch	the	default	database	of	the	client	and
to	see	how	the	new	table	looks:

USE	test

DESCRIBE	birds_new;

This	DESCRIBE	statement	will	show	you	the	structure	of	the	new	table.	Because	we	copied
only	the	structure	of	the	birds	table	when	we	created	the	new	table,	there	is	no	data	in	this
table.	To	do	that,	we	could	use	an	INSERT	statement	coupled	with	a	SELECT	like	so:

INSERT	INTO	birds_new

SELECT	*	FROM	rookery.birds;

This	will	work	fine.	However,	there’s	another	method	that	creates	a	table	based	on	another
table	and	copies	over	the	data	in	the	process:

CREATE	TABLE	birds_new_alternative

SELECT	*	FROM	rookery.birds;

This	will	create	the	table	birds_new_alternative	with	the	data	stored	in	it.	However,	if
you	execute	a	DESCRIBE	statement	for	the	table,	you	will	see	that	it	did	not	set	the	bird_id
column	to	a	PRIMARY	KEY	and	did	not	set	it	to	AUTO_INCREMENT.	So	in	our	situation,	the
first	method	we	used	to	create	the	table	is	preferred,	followed	by	an	INSERT	INTO…SELECT
statement.	Enter	the	following	to	delete	the	alternative	table:

DROP	TABLE	birds_new_alternative;

Be	careful	with	the	DROP	TABLE	statement.	Once	you	delete	a	table,	there	is	usually	no
way	(or	at	least	no	easy	way)	to	get	it	back,	unless	you	have	a	backup	copy	of	the
database.	That’s	why	I	suggested	that	you	make	a	backup	at	the	beginning	of	this	chapter.

Let’s	now	alter	the	new	table	and	add	a	column	named	wing_id	to	be	able	to	join	the	table
to	the	birds_wing_shapes	table.	To	add	the	column,	enter	the	following	SQL	statement	in
mysql:

ALTER	TABLE	birds_new

ADD	COLUMN	wing_id	CHAR(2);

This	will	add	a	column	named	wing_id	to	the	table	with	a	fixed	character	data	type	and	a
maximum	width	of	two	characters.	I	have	made	sure	to	give	the	column	the	exact	same
data	type	and	size	as	the	corresponding	column	in	birds_wing_shapes,	because	that
enables	us	to	refer	to	the	column	in	each	table	to	join	the	tables.

Let’s	look	at	the	structure	of	the	birds_new	table	to	see	how	it	looks	now.	Enter	the
following	in	your	mysql	client:

DESCRIBE	birds_new;

+-----------------+--------------+------+-----+---------+----------------+

|	Field											|	Type									|	Null	|	Key	|	Default	|	Extra										|

+-----------------+--------------+------+-----+---------+----------------+

|	bird_id									|	int(11)						|	NO			|	PRI	|	NULL				|	auto_increment	|

|	scientific_name	|	varchar(100)	|	YES		|	UNI	|	NULL				|																|

|	common_name					|	varchar(50)		|	YES		|					|	NULL				|																|

|	family_id							|	int(11)						|	YES		|					|	NULL				|																|

|	description					|	text									|	YES		|					|	NULL				|																|

www.it-ebooks.info

http://www.it-ebooks.info/

|	wing_id									|	char(2)						|	YES		|					|	NULL				|																|

+-----------------+--------------+------+-----+---------+----------------+

Looking	over	the	results	set	for	the	table,	you	should	recognize	the	first	six	columns.
They’re	based	on	the	birds	table	that	we	created	in	Chapter	4.	The	only	change	is	the
addition	we	just	made.	Notice	that	the	new	column,	wing_id,	was	added	to	the	end	of	the
table.	Where	a	column	is	located	matters	little	to	MySQL	or	MariaDB.	However,	it	may
matter	to	you	as	a	developer,	especially	when	working	with	wider	tables	or	with	tables	that
have	many	columns.	Let’s	try	adding	this	column	again,	but	this	time	tell	MySQL	to	put	it
after	the	family_id.	First,	we’ll	delete	the	column	we	just	added.	Because	it’s	a	new
column,	we	can	do	this	without	losing	data.

ALTER	TABLE	birds_new

DROP	COLUMN	wing_id;

This	was	even	simpler	than	adding	the	column.	Notice	that	we	don’t	mention	the	column
data	type	or	other	options.	The	command	doesn’t	need	to	know	that	in	order	to	drop	a
column.	The	DROP	COLUMN	clause	removes	the	column	and	all	of	the	data	contained	in	the
column	from	the	table.	There’s	no	UNDO	statement	in	MySQL	or	in	MariaDB,	so	be	careful
when	working	with	a	live	table.

Let’s	add	the	wing_id	column	again:
ALTER	TABLE	birds_new

ADD	COLUMN	wing_id	CHAR(2)	AFTER	family_id;

This	will	put	the	wing_id	column	after	the	family_id	in	the	table.	Run	the	DESCRIBE
statement	again	to	see	for	yourself.	By	the	way,	to	add	a	column	to	the	first	position,	you
would	use	the	keyword	FIRST	instead	of	AFTER.	FIRST	takes	no	column	name.

With	the	ADD	COLUMN	clause	of	the	ALTER	TABLE	statement,	we	can	add	more	than	one
column	at	a	time	and	specify	where	each	should	go.	Let’s	add	three	more	columns	to	the
birds_new	table.	We’ll	add	columns	to	join	the	table	to	the	birds_body_shapes	and
birds_bill_shapes	tables	we	created	in	the	exercises	at	the	end	of	Chapter	4.	We’ll	also
add	a	field	to	note	whether	a	bird	is	an	endangered	species.	While	we’re	making	changes,
let’s	change	the	width	of	the	common_name	column.	It’s	only	50	characters	wide	now.	That
may	not	be	enough	for	some	birds	that	have	lengthy	common	names.	For	that	change,
we’ll	use	the	CHANGE	COLUMN	clause.	Enter	the	following	in	mysql:

ALTER	TABLE	birds_new

ADD	COLUMN	body_id	CHAR(2)	AFTER	wing_id,

ADD	COLUMN	bill_id	CHAR(2)	AFTER	body_id,

ADD	COLUMN	endangered	BIT	DEFAULT	b'1'	AFTER	bill_id,

CHANGE	COLUMN	common_name	common_name	VARCHAR(255);

This	is	similar	to	the	previous	ALTER	TABLE	examples	using	the	ADD	COLUMN	clause.	There
are	a	few	differences	to	note.	First,	we	entered	the	ADD	COLUMN	clause	three	times,
separated	by	commas.	You	might	think	you	should	be	able	to	specify	the	ADD	COLUMN
keywords	once,	and	then	have	each	column	addition	listed	after	it,	separated	by	commas.
This	is	a	common	mistake	that	even	experienced	developers	make.	You	can	include
multiple	clauses	in	ALTER	TABLE,	but	each	clause	must	specify	just	one	column.	This
restriction	may	seem	unnecessary,	but	altering	a	table	can	cause	problems	if	you	enter
something	incorrectly.	Being	emphatic	like	this	is	a	good	precaution.

In	one	of	the	columns	added	here,	the	endangered	column,	we’re	using	a	data	type	we
haven’t	used	yet	in	this	book:	BIT.	This	stores	one	bit,	which	takes	a	values	of	either	set	or

www.it-ebooks.info

http://www.it-ebooks.info/

unset	—	basically,	1	or	0.	We’ll	use	this	to	indicate	whether	a	species	is	endangered	or	not.
Notice	that	we	specified	a	default	value	for	this	column	with	the	DEFAULT	keyword
followed	by	the	default	value.	Notice	also	that	to	set	the	bit,	we	put	the	letter	b	in	front	of
the	value	in	quotes.	There	is	one	quirk	—	a	bug	with	this	data	type.	It	stores	the	bit	fine,
but	it	does	not	display	the	value.	If	the	value	is	unset	(o),	it	shows	a	blank	space	in	the
results	of	a	SELECT	statement.	If	the	value	is	set,	it	does	not	show	anything,	causing	the
ASCII	format	of	the	results	set	to	be	indented	by	one	space	to	the	left.	It’s	a	bug	in
MySQL	that	they’ll	resolve	eventually	—	it	may	even	be	fixed	by	the	time	you	read	this.
We	can	still	use	the	data	type	just	fine	with	this	bug.	We’ll	see	this	in	action	after	we	finish
loading	the	data	into	the	table.

As	for	the	CHANGE	COLUMN	clause,	notice	that	we	listed	the	name	of	the	common_name
column	twice.	The	first	time	is	to	name	the	column	that	is	to	be	changed.	The	second	time
is	to	provide	the	new	name,	if	we	wanted	to	change	it.	Even	though	we’re	not	changing
the	name,	we	still	must	list	it	again.	Otherwise,	it	will	return	an	error	message	and	reject
the	SQL	statement.	After	the	column	names,	you	must	give	the	data	type.	Even	if	you
were	using	the	CHANGE	COLUMN	statement	to	change	only	the	name	of	the	column,	you
must	give	the	data	type	again.	Basically,	when	you	type	CHANGE	COLUMN,	the	server
expects	you	to	fully	specify	the	new	column,	even	if	some	parts	of	the	specification
remain	the	same.

There	is	one	more	thing	to	note	about	the	previous	ALTER	TABLE	example.	Notice	that	we
told	the	server	where	to	locate	each	of	columns	that	it’s	adding	using	the	AFTER	clause.	We
did	this	previously.	However,	what’s	different	is	that	for	the	second	column,	where	we’re
adding	bill_id,	we	said	to	locate	it	after	body_id.	You	might	imagine	that	would	cause	an
error	because	we’re	adding	the	body_id	column	in	the	same	statement.	However,	MySQL
executes	the	clauses	of	an	ALTER	TABLE	statement	in	the	order	that	they	are	given.
Depending	on	the	version	and	operation,	it	creates	a	temporary	copy	of	the	table	and	alters
that	copy	based	on	the	ALTER	TABLE	statement’s	instructions,	one	clause	at	a	time,	from
left	to	right	(or	top	to	bottom	in	our	layout).	When	it’s	finished,	if	there	are	no	errors,	it
then	replaces	the	original	table	with	the	altered	temporary	table	—	much	like	we’re	doing
here,	but	rapidly	and	behind	the	scenes.

If	there	are	errors	in	processing	any	clause	of	the	ALTER	TABLE	statement,	it	just	deletes
the	temporary	table	and	leaves	the	original	table	unchanged,	and	then	returns	an	error
message	to	the	client.	So	in	the	previous	example,	in	the	temporary	table	that	MySQL
creates,	it	first	added	the	column	body_id.	Once	that	was	done,	it	then	added	the	bill_id
column	and	put	it	after	the	body_id	column	in	that	temporary	table.	Your	tendency	might
have	been	to	have	entered	AFTER	wing_id	at	the	end	of	each	of	the	ADD	COLUMN	clauses.
That	would	have	worked,	but	the	columns	would	have	been	in	reverse	order	(i.e.,	wing_id,
endangered,	bill_id,	body_id).	So	if	we	want	body_id	to	be	located	after	wing_id,	and
bill_id	to	be	located	after	body_id,	and	so	on,	we	have	to	say	so	in	the	SQL	statement	as
shown.

Let’s	change	now	the	value	of	the	endangered	column.	The	table	only	has	five	rows	in	it
at	the	moment	and	none	of	the	birds	they	represent	are	endangered.	Still,	let’s	set	the	value
of	the	endangered	column	to	0	for	four	of	them.	To	do	this,	we	use	the	UPDATE	statement
(you’ll	learn	more	about	it	in	Chapter	8,	so	don’t	worry	if	this	is	unfamiliar):

www.it-ebooks.info

http://www.it-ebooks.info/

UPDATE	birds_new	SET	endangered	=	0

WHERE	bird_id	IN(1,2,4,5);

This	will	set	the	value	of	the	endangered	column	to	0,	or	rather	unset	it,	for	the	rows	in
which	the	bird_id	column	has	one	of	the	values	listed	within	the	parentheses.	Basically,
we’ll	change	four	rows	of	data,	but	leave	the	one	unchanged	where	bird_id	equals	3.
Remember	that	when	we	created	the	endangered	column,	we	gave	a	default	of	b'1',
meaning	the	bit	is	set	by	default.	The	preceding	statement	is	unsetting	that	column	for	the
four	rows	identified	in	the	WHERE	clause.

Now	we’ll	retrieve	data	using	the	SELECT	statement	(covered	in	Chapters	3	and	7),	based
on	whether	the	endangered	column	is	set.	Because	the	birds_new	table	is	now	wider,
we’ll	enter	the	following	SQL	statement	using	the	\G	for	an	easier-to-read	display:

SELECT	bird_id,	scientific_name,	common_name

FROM	birds_new

WHERE	endangered	\G

***************************	1.	row	***************************

								bird_id:	3

scientific_name:	Aix	sponsa

				common_name:	Wood	Duck

***************************	2.	row	***************************

								bird_id:	6

scientific_name:	Apteryx	mantelli

				common_name:	North	Island	Brown	Kiwi

Notice	that	in	the	WHERE	clause	of	the	SELECT	statement	we	are	selecting	rows	where	the
endangered	column	has	a	value.	For	the	column	data	type	of	BIT,	this	is	all	that’s	needed,
and	it	has	the	same	effect	as	if	we	specified	WHERE	endangered	=	1.	To	filter	on	the
reverse	—	to	select	rows	in	which	the	bit	for	the	endangered	column	is	not	set	—	use	the
NOT	operator	like	so:

SELECT	*	FROM	birds_new

WHERE	NOT	endangered	\G

After	looking	over	the	display	for	the	Wood	Duck	and	that	Kiwi	bird,	maybe	we	should
allow	for	other	values	for	the	endangered	column.	There	are	several	degrees	of
endangerment	for	birds.	We	could	and	should	create	a	separate	reference	table	for	the
possibilities,	but	let’s	just	enumerate	the	choices	in	the	column	attributes	so	you	can	see
how	that’s	done.	While	we’re	at	it,	we’ll	also	relocate	the	column	to	just	after	the
family_id	column.	For	this,	we’ll	use	a	new	clause,	MODIFY	COLUMN:

ALTER	TABLE	birds_new

MODIFY	COLUMN	endangered

ENUM('Extinct',

					'Extinct	in	Wild',

					'Threatened	-	Critically	Endangered',

					'Threatened	-	Endangered',

					'Threatened	-	Vulnerable',

					'Lower	Risk	-	Conservation	Dependent',

					'Lower	Risk	-	Near	Threatened',

					'Lower	Risk	-	Least	Concern')

AFTER	family_id;

Notice	that	the	syntax	for	the	MODIFY	COLUMN	clause	lists	the	name	of	the	column	once.
That’s	because	the	clause	does	not	allow	you	to	change	the	column	name.	For	that,	you
must	use	the	CHANGE	COLUMN	clause.	Notice	also	that	we	used	a	new	column	data	type	that
lets	us	enumerate	a	list	of	acceptable	values:	the	ENUM	data	type.	The	values	are	enclosed
in	quotes,	separated	by	commas,	and	the	set	is	contained	within	a	pair	of	parentheses.

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s	run	the	SHOW	COLUMNS	statement	with	the	LIKE	clause	to	see	just	the	column	settings
for	the	endangered	column:

SHOW	COLUMNS	FROM	birds_new	LIKE	'endangered'	\G

***************************	1.	row	***************************

		Field:	endangered

			Type:	enum('Extinct','Extinct	in	Wild',

														'Threatened	-	Critically	Endangered',

														'Threatened	-	Endangered',

														'Threatened	-	Vulnerable',

														'Lower	Risk	-	Conservation	Dependent',

														'Lower	Risk	-	Near	Threatened',

														'Lower	Risk	-	Least	Concern')

			Null:	YES

				Key:

Default:	NULL

		Extra:	

In	addition	to	the	values	enumerated,	notice	that	a	NULL	value	is	allowed	and	is	the
default.	We	could	have	disallowed	NULL	values	by	including	a	NOT	NULL	clause.

If	we	want	to	add	another	value	to	the	enumerated	list,	we	would	use	the	ALTER	TABLE
statement	again	with	the	MODIFY	COLUMN	clause,	without	the	AFTER	clause	extension	—
unless	we	want	to	relocate	the	column	again.	We	would	have	to	list	all	of	the	enumerated
values	again,	with	the	addition	of	the	new	one.

To	set	the	values	in	a	column	that	has	an	enumerated	list,	you	can	either	give	a	value
shown	in	the	list,	or	refer	to	the	value	numerically,	if	you	know	the	order	of	the	values.
The	first	enumerated	value	would	be	1.	For	instance,	you	could	do	an	UPDATE	statement
like	this	to	set	all	birds	in	the	table	to	Lower	Risk	-	Least	Concern,	the	seventh	value:

UPDATE	birds_new

SET	endangered	=	7;

I	said	earlier	that	using	the	ENUM	data	type	can	be	an	alternative	to	a	reference	table	when
there	are	a	few	values.	However,	the	endangered	column	as	shown	in	this	example	is
cumbersome	and	not	professional.	We	could	still	do	a	reference	table	in	addition	to	this
enumerated	list	within	the	table.	The	reference	table	would	have	a	row	for	each	of	these
choices,	but	with	extra	columns	that	would	provide	more	information	for	them,	for	when
we	wanted	to	display	more	information.	Based	on	that,	we	could	change	the	values	in	the
enumerated	list	in	the	birds	table	to	something	easier	to	type	(e.g.,	LR-LC	for	Lower	Risk
-	Least	Concern)	and	then	put	the	lengthier	description	in	the	reference	table	that	we’d
create.

It	will	be	simpler,	however,	to	treat	the	endangered	column	like	the	other	reference	tables
that	we’ve	created	(e.g.,	birds_wing_shapes)	and	use	numbers	for	the	values	in	the	birds
table.	We	should	change	the	column	and	create	another	reference	table	for	it.	We’ll	do	that
later,	though.

Dynamic	Columns
We	just	covered	ENUM,	so	let’s	digress	from	ALTER	TABLE	for	a	moment	to	cover	dynamic
columns.	This	is	something	that	is	available	only	in	MariaDB,	as	of	version	5.3.	It’s
similar	to	an	ENUM	column,	but	with	key/value	pairs	instead	of	a	plain	list	of	options.	That
will	initially	sound	confusing,	but	it	make	more	sense	when	we	look	at	some	examples.	So
let’s	create	a	few	tables	with	dynamic	columns.

www.it-ebooks.info

http://www.it-ebooks.info/

To	make	the	bird-watchers	site	more	interesting,	suppose	we’ve	decided	to	do	some
surveys	of	the	preferences	of	bird-watchers.	We’ll	ask	the	members	to	rate	birds	they	like
the	most.	That	will	be	a	simple	start.	In	time,	we	might	ask	them	to	rate	the	best	places	to
see	birds	in	an	area,	or	maybe	binocular	makers	and	models	they	like	the	best.	For	this
scenario,	let’s	create	a	set	of	tables.

If	you’re	not	using	MariaDB	and	don’t	want	to	replace	MySQL	with	it,	just	read	along.	If
you	do	have	MariaDB	installed	on	your	server,	enter	the	following:

USE	birdwatchers;

CREATE	TABLE	surveys

(survey_id	INT	AUTO_INCREMENT	KEY,

survey_name	VARCHAR(255));

CREATE	TABLE	survey_questions

(question_id	INT	AUTO_INCREMENT	KEY,

survey_id	INT,

question	VARCHAR(255),

choices	BLOB);

CREATE	TABLE	survey_answers

(answer_id	INT	AUTO_INCREMENT	KEY,

human_id	INT,

question_id	INT,

date_answered	DATETIME,

answer	VARCHAR(255));

The	first	table	we	created	here	will	contain	a	list	of	surveys.	The	second	table	is	where
we’ll	put	the	questions.	Because	we	intend	to	do	only	polls,	the	choices	column	will
contain	the	survey	choices.	We	defined	it	with	a	very	generic	type,	BLOB,	but	we’ll	use	it	to
store	a	dynamic	column.	The	data	type	used	has	to	be	able	to	hold	the	data	that	will	be
given	to	it	when	we	create	the	dynamic	column.	BLOB	can	be	a	good	choice	for	that.

The	third	table	is	where	we	will	store	the	answers	to	the	survey	questions.	This	time	we
define	a	VARCHAR	column	to	hold	the	dynamic	column.	We	will	link	survey_answers	to
survey_questions	based	on	the	question_id,	and	survey_questions	to	surveys	based
on	the	survey_id.

Now	let’s	put	some	data	in	these	tables.	If	you’re	using	MariaDB,	enter	the	following	SQL
statements	to	add	SQL	statements:

INSERT	INTO	surveys	(survey_name)

VALUES("Favorite	Birding	Location");

INSERT	INTO	survey_questions

(survey_id,	question,	choices)

VALUES(LAST_INSERT_ID(),

"What's	your	favorite	setting	for	bird-watching?",

COLUMN_CREATE('1',	'forest',	'2',	'shore',	'3',	'backyard'));

INSERT	INTO	surveys	(survey_name)

VALUES("Preferred	Birds");

INSERT	INTO	survey_questions

(survey_id,	question,	choices)

VALUES(LAST_INSERT_ID(),

"Which	type	of	birds	do	you	like	best?",

COLUMN_CREATE('1',	'perching',	'2',	'shore',	'3',	'fowl',	'4',	'rapture'));

That	created	two	surveys:	one	with	a	set	of	choices	about	where	the	birders	like	to	watch
birds;	the	second	with	a	simple,	not	comprehensive	set	of	bird	types	they	prefer.	We	used
COLUMN_CREATE()	to	create	the	enumerated	lists	of	choices:	each	choice	has	a	key	and	a
value.	Thus,	in	survey_questions,	choice	1	is	“forest,”	choice	2	is	“shore,”	and	choice	3

www.it-ebooks.info

http://www.it-ebooks.info/

is	“backyard.”	Starting	with	MariaDB	version	10.0.1,	you	can	give	strings	for	the	keys
instead	of	numbers.

Let’s	see	now	how	data	may	be	retrieved	from	a	dynamic	column:
SELECT	COLUMN_GET(choices,	3	AS	CHAR)

AS	'Location'

FROM	survey_questions

WHERE	survey_id	=	1;

+----------+

|	Location	|

+----------+

|	backyard	|

+----------+

This	returns	the	third	choice.	We	used	the	COLUMN_GET()	function	to	get	the	dynamic
column	within	the	column	given	as	the	first	argument.	The	second	argument	specifies	the
key	to	use	to	get	the	data.	We	also	included	AS	to	indicate	the	type	of	data	type	it	should
use	(i.e.,	CHAR)	to	cast	the	value	it	returns.

Now	let’s	enter	a	bunch	of	answers	for	our	members.	If	you’re	using	an	electronic	version
of	this	book,	just	copy	and	paste	the	following	into	your	MariaDB	server:

INSERT	INTO	survey_answers

(human_id,	question_id,	date_answered,	answer)

VALUES

(29,	1,	NOW(),	2),

(29,	2,	NOW(),	2),

(35,	1,	NOW(),	1),

(35,	2,	NOW(),	1),

(26,	1,	NOW(),	2),

(26,	2,	NOW(),	1),

(27,	1,	NOW(),	2),

(27,	2,	NOW(),	4),

(16,	1,	NOW(),	3),

(3,	1,	NOW(),	1),

(3,	2,	NOW(),	1);

This	isn’t	many	rows,	but	it’s	enough	for	now.	Let’s	count	the	votes	for	the	first	survey
question	by	executing	the	following:

SELECT	IFNULL(COLUMN_GET(choices,	answer	AS	CHAR),	'total')

AS	'Birding	Site',	COUNT(*)	AS	'Votes'

FROM	survey_answers

JOIN	survey_questions	USING(question_id)

WHERE	survey_id	=	1

AND	question_id	=	1

GROUP	BY	answer	WITH	ROLLUP;

+--------------+-------+

|	Birding	Site	|	Votes	|

+--------------+-------+

|	forest							|					2	|

|	shore								|					3	|

|	backyard					|					1	|

|	total								|					6	|

+--------------+-------+

In	the	WHERE	clause,	survey_id	chose	the	survey	we	want	from	survey_questions	while
question_id	chose	the	question	we	want	from	survey_answers.	We	retrieve	all	the
answers,	group	them,	and	count	the	rows	for	each	answer	to	see	how	many	bird-watchers
voted	for	each	one.

That’s	not	much	data,	though.	I’ll	add	more	answers	to	give	us	a	larger	table	with	which	to
work.	You	can	download	the	table	from	my	site.	We’ll	use	it	in	examples	later	in	this
book.	Dynamic	columns	are	still	new	and	very	much	under	development,	so	this	brief	a

www.it-ebooks.info

http://mysqlresources.com/files
http://www.it-ebooks.info/

review	will	suffice	for	now.	Let’s	now	get	back	to	more	standard	table-related	topics.

www.it-ebooks.info

http://www.it-ebooks.info/

Optional	Changes
In	addition	to	the	most	common	uses	for	the	ALTER	TABLE	statement	(i.e.,	adding	and
renaming	columns),	you	can	use	it	to	set	some	of	the	options	of	an	existing	table	and	its
columns.	You	can	also	use	the	ALTER	TABLE	statement	to	set	the	value	of	table	variables,
as	well	as	the	default	value	of	columns.	This	section	covers	how	to	change	those	settings
and	values,	as	well	as	how	to	rename	a	table.	Additionally,	you	can	change	indexes	in	a
table.	That	is	covered	in	the	section	on	Indexes.

Setting	a	Column’s	Default	Value
You	may	have	noticed	that	the	results	of	the	DESCRIBE	statements	shown	in	earlier
examples	have	a	heading	called	Default.	You	may	have	also	noticed	that	almost	all	of	the
fields	have	a	default	value	of	NULL.	This	means	that	when	the	user	does	not	enter	a	value
for	the	column,	the	value	of	NULL	will	be	used.	If	you	would	like	to	specify	a	default
value	for	a	column,	though,	you	could	have	done	so	when	creating	the	table.	For	an
existing	table,	you	can	use	the	ALTER	TABLE	statement	to	specify	a	default	value	other	than
NULL.	This	won’t	change	the	values	of	existing	rows	—	not	even	ones	that	previously
used	a	default	value.	You	would	use	either	the	CHANGE	clause	or	the	ALTER	clause.	Let’s
look	at	an	example	of	using	the	CHANGE	clause	first.

Suppose	that	most	of	the	birds	that	we	will	list	in	our	database	would	have	a	value	of
Lower	Risk	-	Least	Concern	in	the	endangered	column.	Rather	than	enter	Lower	Risk	-
Least	Concern	or	its	numeric	equivalent	in	each	INSERT	statement	(which	inserts	data	into
a	table),	we	could	change	the	default	value	of	the	endangered	column.	Let’s	do	that	and
change	the	column	from	an	ENUM	to	an	INT	data	type	to	prepare	for	the	creation	of	a
reference	table	for	the	conservation	status	of	birds.	Let’s	also	make	this	a	little	more
interesting	by	creating	the	reference	table	and	inserting	all	of	the	data	we	had	enumerated
in	the	settings	for	the	endangered.	We’ll	start	by	entering	the	following	in	mysql	to	create
the	reference	table:

CREATE	TABLE	rookery.conservation_status

(status_id	INT	AUTO_INCREMENT	PRIMARY	KEY,

conservation_category	CHAR(10),

conservation_state	CHAR(25));

We	named	the	reference	table	conservation_status,	which	is	a	better	description	than
endangered.	Notice	that	we	split	each	status	into	two	columns.	A	value	like	Lower	Risk	-
Least	Concern	was	meant	to	indicate	the	state	of	Least	Concern	in	the	category	Lower
Risk.	So	we	created	two	columns	for	those	values.	We’ll	put	Lower	Risk	in	the
conservation_category	column	and	Least	Concern	in	another	column	called,
conservation_category.

Now	let’s	insert	all	of	the	data	into	this	new	reference	table.	We’ll	use	the	INSERT
statement	(covered	briefly	in	Chapter	3):

INSERT	INTO	rookery.conservation_status

(conservation_category,	conservation_state)

VALUES('Extinct','Extinct'),

('Extinct','Extinct	in	Wild'),

('Threatened','Critically	Endangered'),

('Threatened','Endangered'),

('Threatened','Vulnerable'),

('Lower	Risk','Conservation	Dependent'),

('Lower	Risk','Near	Threatened'),

www.it-ebooks.info

http://www.it-ebooks.info/

('Lower	Risk','Least	Concern');

If	you	find	this	SQL	statement	confusing,	just	enter	it	and	rest	assured	we’ll	cover	such
statements	in	detail	in	Chapter	6.	For	now,	though,	I	wanted	to	show	you	a	reference	table
with	data	in	it.	Let’s	use	the	SELECT	statement	to	select	all	of	the	rows	of	data	in	the	table.
Enter	just	the	SQL	statement	(shown	in	bold),	not	the	results	that	follow	it:

SELECT	*	FROM	rookery.conservation_status;

+-----------+-----------------------+------------------------+

|	status_id	|	conservation_category	|	conservation_state					|

+-----------+-----------------------+------------------------+

|									1	|	Extinct															|	Extinct																|

|									2	|	Extinct															|	Extinct	in	Wild								|

|									3	|	Threatened												|	Critically	Endangered		|

|									4	|	Threatened												|	Endangered													|

|									5	|	Threatened												|	Vulnerable													|

|									6	|	Lower	Risk												|	Conservation	Dependent	|

|									7	|	Lower	Risk												|	Near	Threatened								|

|									8	|	Lower	Risk												|	Least	Concern										|

+-----------+-----------------------+------------------------+

The	first	column	gets	default	values,	incrementing	automatically	as	we	asked	when	we
created	the	table,	while	the	other	two	columns	get	the	values	we	specified	during	our
insert.

Notice	that	we	have	been	prefixing	the	table	name	with	the	database	name	(i.e.,
rookery.conservation_status).	That’s	because	we	had	set	the	default	database	to	test
with	USE.	Going	back	to	the	birds_new	table,	we’re	ready	to	change	the	endangered
column.	We	decided	earlier	that	we	wanted	to	set	the	default	value	of	this	column	to
Lower	Risk	-	Least	Concern,	or	rather	to	the	value	of	the	status_id	for	that	combination
of	columns	in	the	conservation_status	table.	Looking	at	the	results,	you	can	see	that	the
value	for	the	status_id	we	want	for	the	default	is	8.	We	can	change	the	endangered
column’s	name	and	default	value	by	entering	the	following	on	the	server:

ALTER	TABLE	birds_new

CHANGE	COLUMN	endangered	conservation_status_id	INT	DEFAULT	8;

The	syntax	of	this	is	mostly	the	same	as	previous	examples	in	this	chapter	that	use	the
CHANGE	clause	(i.e.,	list	the	name	of	the	column	twice	and	restate	the	data	types,	even	if
you	don’t	want	to	change	them).	The	difference	in	this	case	is	that	we’ve	added	the
keyword	DEFAULT	followed	by	the	default	value	—	if	the	default	value	were	a	string,	you
would	put	it	within	quotes.	The	example	also	changed	the	column	name.	But	if	we	wanted
only	to	set	the	default	value	for	a	column,	we	could	use	the	ALTER	clause	of	the	ALTER
TABLE	statement.	Let’s	change	the	default	of	conservation_status_id	to	7:

ALTER	TABLE	birds_new

ALTER	conservation_status_id	SET	DEFAULT	7;

This	is	much	simpler.	It	only	sets	the	default	value	for	the	column.	Notice	that	the	second
line	starts	with	ALTER	and	not	CHANGE.	It’s	then	followed	by	the	column	name,	and	the	SET
subclause.	Let’s	see	how	that	column	looks	now,	running	the	SHOW	COLUMNS	statement
only	for	that	column:

SHOW	COLUMNS	FROM	birds_new	LIKE	'conservation_status_id'	\G

***************************	1.	row	***************************

		Field:	conservation_status_id

			Type:	int(11)

			Null:	YES

				Key:

Default:	7

www.it-ebooks.info

http://www.it-ebooks.info/

		Extra:

As	you	can	see,	the	default	value	is	now	7.	If	we	change	our	minds	about	having	a	default
value	for	conservation_status_id,	we	would	enter	the	following	to	reset	it	back	to
NULL,	or	whatever	the	initial	default	value	would	be	based	on	the	data	type	of	the
column:

ALTER	TABLE	birds_new

ALTER	conservation_status_id	DROP	DEFAULT;

This	particular	usage	of	the	DROP	keyword	doesn’t	delete	data	in	the	columns.	It	just	alters
the	column	settings	so	there	is	no	default	value.	Run	the	SHOW	COLUMNS	statement	again	on
your	computer	to	see	that	the	default	has	been	reset.	Then	put	the	default	back	to	7.

Setting	the	Value	of	AUTO_INCREMENT
Many	of	the	main	tables	in	a	database	will	have	a	primary	key	that	uses	the
AUTO_INCREMENT	option.	That	creates	an	AUTO_INCREMENT	variable	in	the	table	called
tables	in	the	information_schema	database.	You	may	recognize	that	database	name.	We
saw	the	information_schema	database	in	the	results	of	the	SHOW	DATABASE	statement	in
Starting	to	Explore	Databases.	When	you	create	a	table,	MySQL	adds	a	row	to	the	table
called	tables	in	the	information_schema	database.	One	of	the	columns	of	that	table	is
called	auto_increment.	That	is	where	you	can	find	the	value	of	the	next	row	to	be	created
in	a	table.	This	is	initially	set	to	a	value	of	1,	unless	you	set	it	to	a	different	number	when
creating	the	table.	Let’s	run	a	SELECT	statement	to	get	that	value	from	the
information_schema	database,	from	the	tables	table:

SELECT	auto_increment

FROM	information_schema.tables

WHERE	table_name	=	'birds';

+----------------+

|	auto_increment	|

+----------------+

|														7	|

+----------------+

Because	we	entered	data	for	only	six	birds	in	the	birds	table,	and	the	value	of
AUTO_INCREMENT	was	not	set	when	the	table	was	created,	it	started	at	1	and	now	has	a
value	of	7.	That	means	the	next	row	we	add	to	the	table	will	have	7	in	the	column.

If	you	would	like	to	change	the	value	of	AUTO_INCREMENT	for	a	particular	table,	you	can	do
so	with	the	ALTER	TABLE	statement.	Let’s	set	the	value	of	AUTO_INCREMENT	for	the	birds
table	to	10,	just	to	see	how	to	change	it	this	way.	While	we’re	at	it,	let’s	switch	the	default
database	back	to	rookery.	Enter	the	following	in	mysql:

USE	rookery

ALTER	TABLE	birds

AUTO_INCREMENT	=	10;

This	will	cause	the	bird_id	to	be	set	to	10	for	the	next	row	of	data	on	a	bird	that	we	enter
into	the	birds	table.	Changing	the	auto-increment	value	is	not	usually	necessary,	but	it’s
good	to	know	that	you	can	do	even	this	with	ALTER	TABLE.

Another	Method	to	Alter	and	Create	a	Table
There	may	be	times	when	you	realize	that	you’ve	created	a	table	that	is	too	wide,	with	too
many	columns.	Perhaps	some	columns	would	be	handled	better	in	a	separate	table.	Or

www.it-ebooks.info

http://www.it-ebooks.info/

perhaps	you	started	adding	new	columns	to	an	existing	table	and	found	it	became	unruly
over	time.	In	either	case,	you	could	create	a	smaller	table	and	then	move	data	from	the
larger	table	into	the	new,	smaller	one.	To	do	this,	you	can	create	a	new	table	with	the	same
settings	for	the	columns	you	want	to	move,	then	copy	the	data	from	the	first	table	to	the
new	table,	and	then	delete	the	columns	you	no	longer	need	from	the	first	table.	If	you
wanted	to	make	this	transition	by	the	method	just	described,	the	individual	column
settings	will	need	to	be	same	in	the	new	table	to	prevent	problems	or	loss	of	data.

An	easier	method	for	creating	a	table	based	on	another	table	is	to	use	the	CREATE	TABLE
with	the	LIKE	clause.	Let’s	try	that	to	create	a	copy	of	the	birds	table.	Enter	the	following
in	mysql	on	your	server:

CREATE	TABLE	birds_new	LIKE	birds;

This	creates	an	identical	table	like	the	birds	table,	but	with	the	name	birds_new.	If	you
enter	the	SHOW	TABLES	statement	in	mysql,	you	will	see	that	you	now	have	a	birds	table
and	a	new	table,	birds_new.

NOTE

You	can	use	an	underscore	(i.e.,	_)	in	a	table	name,	but	you	may	want	to	avoid	using	hyphens.	MySQL	interprets	a
hyphen	as	a	minus	sign	and	tries	to	do	a	calculation	between	the	two	words	given,	which	causes	an	error.	If	you	want
to	use	a	hyphen,	you	must	always	reference	the	table	name	within	quotes.

Execute	the	following	three	SQL	statements	to	see	what	you	now	have:
DESCRIBE	birds;

DESCRIBE	birds_new;

SELECT	*	FROM	birds_new;

Empty	set	(0.00	sec)

The	first	two	SQL	statements	will	show	you	the	structure	of	both	tables.	They	will	confirm
that	they	are	identical	except	for	their	names.	To	save	space,	I	didn’t	include	the	results	of
those	two	SQL	statements	here.

The	third	SQL	statement	should	show	you	all	of	the	rows	of	data	in	the	birds_new	table.
Because	we	copied	only	the	structure	of	the	birds	table	when	we	created	the	new	table,
there	is	no	data	—	as	indicated	by	the	message	returned.	We	could	copy	the	data	over
when	we’re	finished	altering	the	table	if	that’s	what	we	want	to	do.

This	method	can	also	be	used	when	making	major	modifications	to	a	table.	In	such	a
situation,	it’s	good	to	work	from	a	copy	of	the	table.	You	would	then	use	the	ALTER	TABLE
statement	to	change	the	new	table	(e.g.,	birds_new).	When	you’re	finished	making	the
changes,	you	would	then	copy	all	of	the	data	from	the	old	table	to	the	new	table,	delete	the
original	table,	and	then	rename	the	new	table.

In	such	a	situation,	you	may	have	one	minor	problem.	I	said	earlier	that	the	tables	are
identical	except	for	the	table	names,	but	that’s	not	exactly	true.	There	may	be	one	other
difference.	If	the	table	has	a	column	that	uses	AUTO_INCREMENT	for	the	default	value,	the
counter	will	be	set	to	0	for	the	new	table.	You	must	determine	the	current	value	of
AUTO_INCREMENT	for	the	birds	table	to	be	assured	that	the	rows	in	the	new	table	have	the
correct	identification	numbers.	Enter	the	following	SQL	statement	in	mysql:

SHOW	CREATE	TABLE	birds	\G

www.it-ebooks.info

http://www.it-ebooks.info/

In	the	results,	which	are	not	shown,	the	last	line	will	reveal	the	current	value	of	the
AUTO_INCREMENT	variable.	For	instance,	the	last	line	may	look	as	follows:

...

)	ENGINE=MyISAM	AUTO_INCREMENT=6	DEFAULT	CHARSET=latin1	COLLATE=latin1_bin

In	this	excerpt	of	the	results,	you	can	see	that	the	variable,	AUTO_INCREMENT	is	currently	6.
Set	AUTO_INCREMENT	to	the	same	value	in	the	birds_new	table	by	entering	the	following
SQL	statement	in	mysql:

ALTER	TABLE	birds_new

AUTO_INCREMENT	=	6;

When	you’re	ready	to	copy	the	data	from	one	table	to	the	other,	you	can	use	the	INSERT…
SELECT	syntax.	This	is	covered	in	Other	Possibilities.

Instead	of	copying	the	data	after	you’re	finished	modifying	the	new	table,	you	can	copy
the	data	while	creating	the	new	table.	This	might	be	useful	when	you	want	to	move	only
certain	columns	with	their	data	to	a	new	table,	without	any	alterations	to	the	columns.	To
do	this,	you	would	still	use	the	CREATE	TABLE	statement,	but	with	a	slightly	different
syntax.

Let’s	suppose	that	we	have	decided	that	we	want	to	create	a	new	table	for	details	about
each	bird	(e.g.,	migratory	patterns,	habitats,	etc.).	Looking	at	the	birds	table,	though,	we
decide	that	the	description	column	and	its	data	belong	in	this	new	table.	So	we’ll	create
a	new	table	and	copy	that	column’s	settings	and	data,	as	well	as	the	bird_id	into	the	new
table.	We	can	do	that	by	entering	the	following	from	mysql	to	get	the	table	started:

CREATE	TABLE	birds_details

SELECT	bird_id,	description

FROM	birds;

This	creates	the	birds_details	table	with	two	columns,	based	on	the	same	columns	in	the
birds	table.	It	also	copies	the	data	from	the	two	columns	in	the	birds	table	into	the
birds_details	table.	There	is	one	minor,	but	necessary,	difference	in	one	of	the	columns
in	the	new	table.	The	difference	has	to	do	with	AUTO_INCREMENT	again,	but	not	in	the	same
way	as	earlier	examples.	Enter	the	DESCRIBE	statement	to	see	the	difference:

DESCRIBE	birds_details;

+-------------+---------+------+-----+---------+-------+

|	Field							|	Type				|	Null	|	Key	|	Default	|	Extra	|

+-------------+---------+------+-----+---------+-------+

|	bird_id					|	int(11)	|	NO			|					|	0							|							|

|	description	|	text				|	YES		|					|	NULL				|							|

+-------------+---------+------+-----+---------+-------+

The	difference	here	is	that	the	bird_id	does	not	use	AUTO_INCREMENT.	This	is	good
because	we	have	to	manually	set	the	value	of	the	bird_id	for	each	row	that	we	enter.	We
won’t	have	details	for	each	bird,	though,	and	we	won’t	necessarily	be	entering	them	in	the
same	order	as	we	will	in	the	birds	table.	We	could	change	the	bird_id	column	in	this
table	to	an	AUTO_INCREMENT	column,	but	that	would	cause	problems	—	trying	to	keep	it	in
line	with	the	birds	table	would	be	maddening.	We	could,	however,	make	an	index	for	the
bird_id	column	in	the	birds_details	table	by	using	the	ALTER	TABLE	statement	and
setting	the	column	to	a	UNIQUE	key.	That	would	allow	only	one	entry	per	bird,	which	may
be	a	good	idea.	This	is	covered	in	Indexes.

The	CREATE	TABLE…SELECT	statement	created	the	birds_details	table	with	only	two

www.it-ebooks.info

http://www.it-ebooks.info/

columns.	We	said,	though,	that	we	want	more	columns	for	keeping	other	information	on
birds.	We’ll	add	those	additional	columns	later	with	the	ALTER	TABLE	statement,	in	the
exercises	at	the	end	of	the	chapter.	For	now,	let’s	remove	the	column	description	from
the	birds	table	by	entering	this	from	mysql:

ALTER	TABLE	birds

DROP	COLUMN	description;

This	will	delete	the	column	and	the	data	in	that	column.	So	be	careful	using	it.	This	clause
will	be	covered	in	more	depth	in	Chapter	6.

Renaming	a	Table
Earlier	sections	covered	how	to	make	changes	to	the	columns	in	a	table.	This	included
renaming	columns.	Sometimes,	though,	you	may	want	to	rename	a	table.	You	may	do	this
for	style	reasons	or	to	change	the	name	of	a	table	to	something	more	explanatory.	You	may
do	it	as	a	method	of	replacing	an	existing	table,	by	deleting	the	existing	table	first	and	then
renaming	the	replacement	table	to	the	deleted	table’s	name.	This	is	the	situation	in	some	of
the	examples	in	the	previous	section.

We	created	a	copy	of	the	birds	table	that	we	called	birds_new	in	the	test	database.	Our
plan	was	to	modify	the	birds_new	table,	then	to	delete	the	birds	table	from	the	rookery
database	and	replace	it	with	birds_new	table	from	the	test	database.	To	fully	replace	the
birds	table,	in	this	case,	we	will	rename	birds_new	to	birds.	This	is	not	done	through	the
ALTER	TABLE	statement.	That’s	used	only	for	altering	the	structure	of	columns	in	a	table,
not	for	renaming	a	table.	Instead,	we	will	use	the	RENAME	TABLE	statement.	Let’s	wait
before	doing	that.	For	now,	a	generic	example	follows	of	how	you	would	rename	a	table.
Do	not	enter	this	statement,	though:

RENAME	TABLE	table1_altered

TO	table1;

This	SQL	statement	would	rename	the	table1_altered	table	to	table1.	This	assumes	that
a	table	named	table1	doesn’t	already	exist	in	the	database.	If	it	does,	it	won’t	overwrite
that	table.	Instead,	you’ll	get	an	error	message	and	the	table	won’t	be	renamed.

The	RENAME	TABLE	statement	can	also	be	used	to	move	a	table	to	another	database.	This
can	be	useful	when	you	have	a	table	that	you’ve	created	in	one	database,	as	we	did	in	the
test	database,	and	now	want	to	relocate	it	to	a	different	database.	Because	you	can	both
rename	and	relocate	a	table	in	the	same	RENAME	TABLE	statement,	let’s	do	that	with	our
example	instead	of	using	the	previous	syntax.	(Incidentally,	relocating	a	table	without
renaming	it	is	also	allowed.	You	would	give	the	name	of	the	new	database,	with	the	same
table	name.)	In	our	examples,	we	will	have	to	either	delete	or	rename	the	unaltered	table
in	the	rookery	database	first.	Renaming	the	table	that’s	being	replaced	is	a	safer	choice,	so
we’ll	go	with	that	option.

Let’s	rename	the	birds	table	in	the	rookery	database	to	birds_old	and	then	rename	and
relocate	the	birds_new	table	from	the	test	database	to	birds	in	the	rookery	database.	To
do	all	of	this	in	one	SQL	statement,	enter	the	following:

RENAME	TABLE	rookery.birds	TO	rookery.birds_old,

test.birds_new	TO	rookery.birds;

If	there	was	a	problem	in	doing	any	of	these	changes,	an	error	message	would	be

www.it-ebooks.info

http://www.it-ebooks.info/

generated	and	none	of	the	changes	would	be	made.	If	all	of	it	went	well,	though,	we
should	have	two	tables	in	the	rookery	database	that	are	designed	to	hold	data	on	birds.

Let’s	run	the	SHOW	TABLES	statement	to	see	the	tables	in	the	rookery	database.	We’ll
request	only	tables	starting	with	the	word	birds	by	using	the	LIKE	clause	with	the
wildcard,	%.	Enter	the	following	in	mysql:

SHOW	TABLES	IN	rookery	LIKE	'birds%';

+----------------------------+

|	Tables_in_rookery	(birds%)	|

+----------------------------+

|	birds																						|

|	birds_bill_shapes										|

|	birds_body_shapes										|

|	birds_details														|

|	birds_new																		|

|	birds_old																		|

|	birds_wing_shapes										|

+----------------------------+

The	birds	table	used	to	be	the	birds_new	table	that	we	altered	in	the	test	database.	The
original	birds	table	has	been	renamed	to	birds_old.	The	other	tables	in	the	results	set
here	are	the	ones	we	created	earlier	in	this	chapter.	Because	their	names	start	with	birds,
they’re	in	the	results.	After	running	a	SELECT	statement	to	ensure	that	you	haven’t	lost	any
data,	you	might	want	to	delete	the	birds_old	table.	You	would	delete	the	birds_old	table
with	the	DROP	TABLE	statement	in	mysql.	It	would	look	like	the	following,	but	don’t	enter
this:

DROP	TABLE	birds_old;

Reordering	a	Table
The	SELECT	statement,	which	is	used	to	retrieve	data	from	a	table,	has	an	ORDER	BY	clause
that	may	be	used	to	sort	or	order	the	results	of	the	statement.	This	is	useful	when
displaying	data,	especially	when	viewing	a	table	with	many	rows	of	data.	Although	it’s	not
necessary,	there	may	be	times	in	which	it	would	be	desirable	to	resort	the	data	within	a
table.	You	might	do	this	with	tables	in	which	the	data	is	rarely	changed,	such	as	a
reference	table.	It	can	sometimes	make	a	sequential	search	of	the	table	faster,	but	a	good
index	will	work	fine	and	is	usually	better.

As	an	example	of	how	to	reorder	a	table,	if	you	go	to	my	website,	you	will	find	a	table
listing	country	codes.	We	might	use	such	a	table	in	conjunction	with	members	of	the	site
or	maybe	to	have	a	list	of	birds	spotted	in	each	country.	The	country_codes	table	contains
two-character	country	codes,	along	with	the	names	of	the	countries.	Rather	than	type	the
name	of	the	country	for	each	record	in	a	related	table	for	members	or	bird	spottings,	we
could	enter	a	two-character	code	for	the	country	(e.g.,	us	for	United	States	of	America).
The	table	is	already	in	alphabetical	order	by	name,	but	you	might	want	to	reorder	that
table	to	put	rows	in	alphabetical	order.	Or	perhaps	you	want	to	add	a	new	country	to	the
list,	perhaps	a	disputed	territory	that	you	want	to	recognize.	You	might	want	to	reorder	the
list	after	making	the	addition.

First,	let’s	see	how	the	data	in	the	table	looks	now.	Let’s	enter	the	following	SELECT
statement	in	mysql,	limiting	the	results	to	the	first	five	rows	of	data:

SELECT	*	FROM	country_codes

LIMIT	5;

www.it-ebooks.info

http://www.it-ebooks.info/

+--------------+----------------+

|	country_code	|	country_name			|

+--------------+----------------+

|	af											|	Afghanistan				|

|	ax											|	Åland	Islands		|

|	al											|	Albania								|

|	dz											|	Algeria								|

|	as											|	American	Samoa	|

+--------------+----------------+

As	you	can	see,	the	data	is	already	in	alphabetical	order	based	on	the	values	in	the
country_name	column.	Let’s	use	the	ALTER	TABLE	statement	with	its	ORDER	BY	clause	to
reorder	the	data	in	the	table	based	on	the	country_code	column.	We	would	probably	not
want	the	table	in	this	order,	but	let’s	do	it	just	to	experiment	with	this	clause	of	the	ALTER
TABLE	statement.	We	can	change	it	back	afterwards.	Enter	the	following	in	mysql:

ALTER	TABLE	country_codes

ORDER	BY	country_code;

That	should	have	been	processed	quickly.	Let’s	run	the	SELECT	statement	again	to	see	what
the	first	five	rows	in	the	table	now	contain:

SELECT	*	FROM

country_codes	LIMIT	5;

+--------------+----------------------+

|	country_code	|	country_name									|

+--------------+----------------------+

|	ac											|	Ascension	Island					|

|	ad											|	Andorra														|

|	ae											|	United	Arab	Emirates	|

|	af											|	Afghanistan										|

|	ag											|	Antigua	and	Barbuda		|

+--------------+----------------------+

Notice	that	the	results	are	different	and	that	the	rows	are	now	sorted	on	the	country_code
columns	without	having	to	specify	that	order	in	the	SELECT	statement.	To	put	the	rows
back	in	order	by	country_name,	enter	the	ALTER	TABLE	statement,	but	with	the
country_name	column	instead	of	the	country_code	column.

Again,	reordering	a	table	is	rarely	necessary.	You	can	order	the	results	of	a	SELECT
statement	with	the	ORDER	BY	clause	like	so:

SELECT	*	FROM	country_codes

ORDER	BY	country_name

LIMIT	5;

The	results	of	this	SQL	statement	are	the	same	as	the	previous	SELECT	statement,	and	the
difference	in	speed	is	usually	indiscernible.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexes
One	of	the	most	irritating	tasks	for	beginners	in	using	the	ALTER	TABLE	statement	is
having	to	use	it	to	change	an	index.	If	you	try	to	rename	a	column	that	is	indexed	by	using
only	an	ALTER	TABLE	statement,	you	will	get	a	frustrating	and	confusing	error	message.
For	instance,	suppose	we	decide	to	rename	the	primary	key	column	in	the
conservation_status	table	from	status_id	to	conservation_status_id.	To	do	so,	we
might	try	an	SQL	statement	like	this:

ALTER	TABLE	conservation_status

CHANGE	status_id	conservation_status_id	INT	AUTO_INCREMENT	PRIMARY	KEY;

ERROR	1068:	Multiple	primary	key	defined

When	you	first	try	doing	this,	you	will	probably	think	that	you’re	remembering	the	syntax
incorrectly.	So	you’ll	try	different	combinations,	but	nothing	will	work.	To	avoid	this	and
to	get	it	right	the	first	time,	you	will	need	to	understand	indexes	better	and	understand	that
an	index	is	separate	from	the	column	upon	which	the	index	is	based.

Indexes	are	used	by	MySQL	to	locate	data	quickly.	They	work	very	much	like	the	index	in
the	back	of	a	book.	Let’s	use	that	metaphor	to	compare	methods	of	searching	this	book.
For	example,	if	you	want	to	find	the	syntax	for	the	ALTER	TABLE	statement,	you	could	start
at	the	beginning	of	this	book	and	flip	through	the	pages	rapidly	and	sequentially	—
assuming	you	have	a	print	version	of	this	book	—	until	you	spot	those	keywords.	That
would	be	searching	for	data	without	an	index.	Instead,	you	could	flip	to	the	beginning	of
the	book	and	search	the	Table	of	Contents,	which	is	a	broader	index,	for	a	chapter	title
using	the	words	alter	table	and	then	search	within	the	chapters	containing	those	words	in
their	title.	That’s	an	example	of	a	simple	or	poor	index.	A	better	choice	would	be	to	go	to
the	index	at	the	back	of	this	book,	look	for	the	list	of	pages	in	which	ALTER	TABLE	can	be
found,	and	go	straight	to	those	pages	to	find	what	you	want.

An	index	in	MySQL	works	similarly	to	the	last	example.	Without	an	index,	rows	are
searched	sequentially.	Because	an	index	is	smaller	and	is	structured	to	be	traversed
quickly,	it	can	be	searched	rapidly	and	then	MySQL	can	jump	directly	to	the	row	that
matches	the	search	pattern.	So	when	you	create	a	table,	especially	one	that	will	hold	many
rows	of	data,	create	it	with	an	index.	The	database	will	run	faster.

With	this	metaphor	of	a	book	index	in	mind,	you	can	better	understand	that	an	index	is	not
the	same	as	a	column,	although	it	is	related	to	columns.	To	illustrate	this	in	a	MySQL
table,	let’s	look	at	the	index	for	the	humans	table	we	created	in	Chapter	4,	by	using	the
SHOW	INDEX	statement.	Enter	the	following	from	mysql:

SHOW	INDEX	FROM	birdwatchers.humans	\G

***************************	1.	row	***************************

							Table:	humans

		Non_unique:	0

				Key_name:	PRIMARY

Seq_in_index:	1

	Column_name:	human_id

			Collation:	A

	Cardinality:	0

				Sub_part:	NULL

						Packed:	NULL

								Null:

		Index_type:	BTREE

					Comment:

www.it-ebooks.info

http://www.it-ebooks.info/

The	output	shows	that	behind	the	scenes	there	is	an	index	associated	with	the	human_id
(look	in	the	preceding	output	where	it	says,	Column_name).	The	human_id	column	is	not
the	index,	but	the	data	from	which	the	index	is	drawn.	The	name	of	the	column	and	name
of	the	index	are	the	same	and	the	index	is	bound	to	the	column,	but	they	are	not	the	same.
Let’s	alter	this	table	and	add	another	index	to	make	this	clearer.

Suppose	that	users	of	the	humans	table	sometimes	search	based	on	the	last	name	of	the
member.	Without	an	index,	MySQL	will	search	the	last_name	column	sequentially.	Let’s
confirm	that	by	using	the	EXPLAIN	statement,	coupled	with	the	SELECT	statement.	This	will
return	information	on	how	the	SELECT	statement	searches	the	table	and	on	what	basis.	It
will	explain	what	the	server	did	when	executing	the	SELECT	statement	—	so	it	won’t	return
any	rows	from	the	table,	but	information	on	how	the	index	would	be	used	had	you
executed	only	the	SELECT	statement.	Enter	the	following	in	mysql:

EXPLAIN	SELECT	*	FROM	birdwatchers.humans

WHERE	name_last	=	'Hollar'	\G

***************************	1.	row	***************************

											id:	1

		select_type:	SIMPLE

								table:	humans

									type:	ALL

possible_keys:	NULL

										key:	NULL

						key_len:	NULL

										ref:	NULL

									rows:	4

								Extra:	Using	where

The	EXPLAIN	statement	here	analyzes	the	SELECT	statement	given,	which	is	selecting	all	of
the	columns	in	the	humans	table	where	the	value	for	the	name_last	column	equals	Hollar.
What	is	of	interest	to	us	in	the	results	is	the	possible_keys	field	and	the	key	field	—	a
key	is	the	column	on	which	a	table	is	indexed.	However,	the	words	key	and	index	are
fairly	interchangeable.	The	possible_keys	field	would	show	the	keys	that	the	SELECT
statement	could	have	used.	In	this	case,	there	is	no	index	related	to	the	name_last	column.
The	key	would	list	the	index	that	the	statement	actually	used.	Again,	in	this	case	there
were	none,	so	it	shows	a	value	of	NULL.	There	are	only	four	names	in	this	table,	so	an
index	would	not	make	a	noticeable	difference	in	performance.	However,	if	this	table	might
one	day	have	thousands	of	names,	an	index	will	greatly	improve	the	performance	of	look-
ups	on	people’s	names.

In	addition	to	sometimes	searching	the	humans	table	based	on	the	member’s	last	name,
suppose	that	users	sometimes	search	based	on	the	first	name,	and	sometimes	based	on
both	the	first	and	last	names.	To	prepare	for	those	possibilities	and	to	improve
performance	for	a	time	when	the	table	will	have	many	records,	let’s	create	an	index	that
combines	the	two	columns.	To	do	this,	we	will	use	the	ALTER	TABLE	statement	with	the
ADD	INDEX	clause	like	so:

ALTER	TABLE	birdwatchers.humans

ADD	INDEX	human_names	(name_last,	name_first);

Now	let’s	run	the	SHOW	CREATE	TABLE	statement	to	see	how	the	index	looks	from	that
perspective:

SHOW	CREATE	TABLE	birdwatchers.humans	\G

***************************	1.	row	***************************

							Table:	humans

www.it-ebooks.info

http://www.it-ebooks.info/

Create	Table:	CREATE	TABLE	`humans`	(

		`human_id`	int(11)	NOT	NULL	AUTO_INCREMENT,

		`formal_title`	varchar(25)	COLLATE	latin1_bin	DEFAULT	NULL,

		`name_first`	varchar(25)	COLLATE	latin1_bin	DEFAULT	NULL,

		`name_last`	varchar(25)	COLLATE	latin1_bin	DEFAULT	NULL,

		`email_address`	varchar(255)	COLLATE	latin1_bin	DEFAULT	NULL,

		PRIMARY	KEY	(`human_id`),

		KEY	`human_names`	(`name_last`,`name_first`)

)	ENGINE=MyISAM	DEFAULT	CHARSET=latin1	COLLATE=latin1_bin

The	results	show	a	new	KEY	after	the	list	of	columns.	The	key,	or	index,	is	called
human_names	and	is	based	on	the	values	of	the	two	columns	listed	in	parentheses.	Let’s	use
another	SQL	statement	to	see	more	information	about	this	new	index.	We’ll	use	the	SHOW
INDEX	statement	like	so:

SHOW	INDEX	FROM	birdwatchers.humans

WHERE	Key_name	=	'human_names'	\G

***************************	1.	row	***************************

							Table:	humans

		Non_unique:	1

				Key_name:	human_names

Seq_in_index:	1

	Column_name:	name_last

			Collation:	A

	Cardinality:	NULL

				Sub_part:	NULL

						Packed:	NULL

								Null:	YES

		Index_type:	BTREE

					Comment:

***************************	2.	row	***************************

							Table:	humans

		Non_unique:	1

				Key_name:	human_names

Seq_in_index:	2

	Column_name:	name_first

			Collation:	A

	Cardinality:	NULL

				Sub_part:	NULL

						Packed:	NULL

								Null:	YES

		Index_type:	BTREE

					Comment:	

This	SQL	statement	shows	the	components	of	the	human_names	index.	The	results	show
two	rows	with	information	on	the	columns	that	were	used	to	create	the	index.	There’s
plenty	of	information	here	about	this	index.	It’s	not	important	that	you	understand	what	it
all	means	at	this	point	in	learning	MySQL	and	MariaDB.	What	I	want	you	to	see	here	is
that	the	name	of	the	index	is	different	from	the	columns	upon	which	it’s	based.	When
there’s	only	one	column	in	the	index	and	the	index	for	it	has	the	same	name,	it	doesn’t
mean	that	they	are	the	same	thing.

Let’s	try	the	EXPLAIN…SELECT	again	to	see	the	difference	from	earlier	when	we	didn’t	have
the	human_names	index:

EXPLAIN	SELECT	*	FROM	birdwatchers.humans

WHERE	name_last	=	'Hollar'	\G

***************************	1.	row	***************************

											id:	1

		select_type:	SIMPLE

								table:	humans

									type:	ref

possible_keys:	human_names

										key:	human_names

						key_len:	28

										ref:	const

									rows:	1

www.it-ebooks.info

http://www.it-ebooks.info/

								Extra:	Using	where

As	shown	in	the	results,	this	time	the	possible_keys	field	indicates	that	the	human_names
key	could	be	used.	If	there	were	more	than	one	possible	key	that	could	be	used,	the	line
would	list	them	here.	In	line	with	the	index’s	presence	in	possible_keys,	the	key	shows
that	the	human_names	index	was	actually	used.	Basically,	when	a	SELECT	is	run	in	which
the	user	wants	to	search	the	table	based	on	the	person’s	last	name,	MySQL	will	use	the
human_names	index	that	we	created,	and	not	search	the	name_last	column	sequentially.
That’s	what	we	want.	That	will	make	for	a	quicker	search.

Now	that	you	hopefully	have	a	better	understanding	of	indexes	in	general	and	their
relation	to	columns,	let’s	go	back	to	the	earlier	task	of	renaming	the	column	in	the
conservation_status	table	from	status_id	to	conservation_status_id.	Because	the
index	is	associated	with	the	column,	we	need	to	remove	that	association	in	the	index.
Otherwise,	the	index	will	be	associated	with	a	column	that	does	not	exist	from	its
perspective:	it	will	be	looking	for	the	column	by	the	old	name.	So,	let’s	delete	the	index
and	rename	the	column,	and	then	add	a	new	index	based	on	the	new	column	name.	To	do
that,	enter	the	following	SQL	statement	in	mysql:

ALTER	TABLE	conservation_status

DROP	PRIMARY	KEY,

CHANGE	status_id	conservation_status_id	INT	PRIMARY	KEY	AUTO_INCREMENT;

The	clauses	must	be	in	the	order	shown,	because	the	index	must	be	dropped	before	the
column	with	which	it’s	associated	can	be	renamed.	Don’t	worry	about	losing	data:	the	data
in	the	columns	is	not	deleted,	only	the	index,	which	will	be	re-created	easily	by	MySQL.
We	don’t	have	to	give	the	name	of	the	associated	column	when	dropping	a	PRIMARY	KEY.
There	is	and	can	be	only	one	primary	key.

At	this	point,	you	should	have	a	better	sense	of	indexes	and	the	procedure	for	changing
them	with	the	ALTER	TABLE	statement.	The	order	in	which	you	make	changes	to	indexes
and	the	columns	on	which	they	are	based	matters.	Why	it	matters	should	be	clear	now.	So
that	you	can	get	more	practice	with	these	concepts	and	syntax,	though,	in	one	of	the
exercises	at	the	end	of	the	chapter	you	will	be	asked	to	change	some	columns	and	indexes.
Be	sure	to	complete	all	of	the	exercises.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
Good	planning	is	certainly	key	to	developing	an	efficient	database.	However,	as	you	can
see	from	all	of	the	examples	of	how	to	use	the	ALTER	TABLE	statement,	MySQL	is
malleable	enough	that	a	database	and	its	tables	can	be	reshaped	without	much	trouble.	Just
be	sure	to	make	a	backup	before	restructuring	a	database,	and	work	from	a	copy	of	a	table
before	altering	it.	Check	your	work	and	the	data	when	you’re	finished,	before	committing
the	changes	made.

With	all	of	this	in	mind,	after	having	had	some	experience	altering	tables	in	this	chapter,
you	should	feel	comfortable	in	creating	tables,	as	you	now	know	that	they	don’t	have	to	be
perfect	from	the	beginning.	You	should	also	have	a	good	sense	of	the	options	available
with	columns	and	how	to	set	them.	And	you	should	have	a	basic	understanding	of	indexes,
how	they’re	used,	and	how	they	may	be	created	and	changed.

If	you	have	found	this	chapter	confusing,	though,	it	may	be	that	you	need	more	experience
using	tables	with	data.	In	the	next	part	of	this	book,	you	will	get	plenty	of	experience
working	with	tables,	inserting	data	into	columns,	and	changing	the	data.	When	you	see
how	the	data	comes	together,	you’ll	have	a	better	understanding	of	how	to	structure	a	table
and	how	to	set	columns	in	preparation	for	data.	You’ll	have	a	better	appreciation	of	how
multiple	tables	may	be	joined	together	to	get	the	results	you	want.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises
Besides	the	SQL	statements	you	entered	on	your	MySQL	or	MariaDB	server	while
reading	this	chapter,	here	are	a	few	practice	exercises	to	further	strengthen	what	we’ve
covered.	They’re	related	to	creating	and	altering	tables.	We’ll	use	these	tables	with	the
modifications	you’ll	make	in	later	chapters,	so	make	sure	to	complete	all	of	the	exercises
here.

1.	 Earlier	in	this	chapter,	we	created	a	table	called	birds_details.	We	created	the	table
with	two	columns:	bird_id	and	description.	We	took	these	two	columns	from	the
birds	table.	Our	intention	in	creating	this	table	was	to	add	columns	to	store	a
description	of	each	bird,	notes	about	migratory	patterns,	areas	in	which	they	can	be
found,	and	other	information	helpful	in	locating	each	bird	in	the	wild.	Let’s	add	a
couple	of	columns	for	capturing	some	of	that	information.
Using	the	ALTER	TABLE	statement,	alter	the	birds_details	table.	In	one	SQL
statement,	add	two	columns	named	migrate	and	bird_feeder,	making	them	both
integer	(INT)	columns.	These	will	contain	values	of	1	or	0	(i.e.,	Yes	or	No).	In	the
same	SQL	statement,	using	the	CHANGE	COLUMN	clause,	change	the	name	of	the
column,	description	to	bird_description.
When	you’re	finished	altering	the	table,	run	the	SHOW	CREATE	TABLE	statement	for
this	table	to	see	the	results.

2.	 Using	the	CREATE	TABLE	statement,	create	a	new	reference	table	named,
habitat_codes.	Create	this	table	with	two	columns:	name	the	first	column
habitat_id	and	make	it	a	primary	key	using	AUTO_INCREMENT	and	the	column	type
of	INT.	Name	the	second	column	habitat	and	use	the	data	type	VARCHAR(25).	Enter
the	following	SQL	statement	to	add	data	to	the	table:

INSERT	INTO	habitat_codes	(habitat)

VALUES('Coasts'),	('Deserts'),	('Forests'),

('Grasslands'),	('Lakes,	Rivers,	Ponds'),

('Marshes,	Swamps'),	('Mountains'),	('Oceans'),

('Urban');

Execute	a	SELECT	statement	for	the	table	to	confirm	that	the	data	was	entered
correctly.	It	should	look	like	this:

+------------+----------------------+

|	habitat_id	|	habitat														|

+------------+----------------------+

|										1	|	Coasts															|

|										2	|	Deserts														|

|										3	|	Forests														|

|										4	|	Grasslands											|

|										5	|	Lakes,	Rivers,	Ponds	|

|										6	|	Marshes,	Swamps						|

|										7	|	Mountains												|

|										8	|	Oceans															|

|										9	|	Urban																|

+------------+----------------------+

Create	a	second	table	named	bird_habitats.	Name	the	first	column	bird_id	and
the	second	column	habitat_id.	Set	the	column	type	for	both	of	them	to	INT.	Don’t
make	either	column	an	indexed	column.
When	you’re	finished	creating	both	of	these	tables,	execute	the	DESCRIBE	and	SHOW

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE	TABLE	statements	for	each	of	the	two	tables.	Notice	what	information	is
presented	by	each	statement,	and	familiarize	yourself	with	the	structure	of	each	table
and	the	components	of	each	column.
Use	the	RENAME	TABLE	statement	to	rename	the	bird_habitats	to	birds_habitats
(i.e.,	make	bird	plural).	This	SQL	statement	was	covered	in	Renaming	a	Table.

3.	 Using	the	ALTER	TABLE	statement,	add	an	index	based	on	both	bird_id	and	the
habitat_id	columns	combined	(this	was	covered	in	Indexes).	Instead	of	using	the
INDEX	keyword,	use	UNIQUE	so	that	duplicates	are	not	allowed.	Call	the	index
birds_habitats.
Execute	the	SHOW	CREATE	TABLE	statement	for	this	table	when	you’re	finished
altering	it.
At	this	point,	you	should	enter	some	data	in	the	birds_habitats	table.	Execute
these	two	SELECT	statements,	to	see	what	data	you	have	in	the	birds	and
habitat_codes	tables:

SELECT	bird_id,	common_name

FROM	birds;

SELECT	*	FROM	habitat_codes;

The	results	of	the	first	SELECT	statement	should	show	you	a	row	for	a	loon	and	one
for	a	duck,	along	with	some	other	birds.	Both	the	loon	and	the	duck	can	be	found	in
lakes,	but	ducks	can	also	be	found	in	marshes.	So	enter	one	row	for	the	loon	and	two
rows	for	the	duck	in	the	birds_habitats	table.	Give	the	value	of	the	bird_id	for	the
loon,	and	the	value	of	habitat_id	for	Lakes,	Rivers,	Ponds.	Then	enter	a	row	giving
the	bird_id	for	the	duck,	and	the	value	again	of	the	habitat_id	for	lakes.	Then
enter	a	third	row	giving	again	the	bird_id	for	the	duck	and	this	time	the	habitat_id
for	Marshes,	Swamps.	If	you	created	the	index	properly,	you	should	not	get	an	error
about	duplicate	entries.	When	you’re	done,	execute	the	SELECT	statement	to	see	all
of	the	values	of	the	table.

4.	 Using	the	ALTER	TABLE	statement,	change	the	name	of	the	index	you	created	for
birds_habitats	in	the	previous	exercise	(this	was	covered	near	the	end	of	this
chapter).	The	index	is	now	called	birds_habitats.	Rename	it	to	bird_habitat.

5.	 Using	the	ALTER	TABLE	statement	again,	add	three	columns	to	the	humans	table	in	the
birdwatchers	database.	Use	a	single	ALTER	TABLE	statement	to	add	all	three	of	these
columns.	Add	one	column	named	country_id	to	contain	two-character	codes
representing	the	country	where	each	member	is	located.	Add	another	column	named
membership_type	with	enumerated	values	of	basic	and	premium.	Add	a	third
column	named	membership_expiration	with	a	data	type	of	DATE	so	that	we	can
track	when	the	membership	of	premium	members	will	expire.	These	members	will
have	special	privileges	on	the	site	and	discounts	for	items	that	we	sell	related	to	bird-
watching.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part	III.	Basics	of	Handling	Data
The	main	point	of	a	database	is	data.	In	Part	II,	you	learned	how	to	create	and	alter	tables.
As	interesting	as	that	may	have	been,	the	data	that	will	go	in	tables	is	essential.	If	you	felt
a	little	confused	when	creating	and	altering	tables	in	the	previous	chapters,	it	may	be
because	it’s	difficult	to	envision	how	tables	and	their	columns	will	come	into	play	with
data,	without	having	more	experience	adding	data.

In	this	part,	we	will	explore	some	of	the	fundamental	ways	in	which	data	may	be	entered
into	a	database	and	inserted	into	tables.	This	will	be	covered	in	Chapter	6,	Inserting	Data.
It	primarily	involves	the	INSERT	statement.	The	SQL	statement	for	retrieving	data	from
tables	is	the	SELECT	statement,	which	is	covered	extensively	in	Chapter	7,	Selecting	Data.
You’ve	seen	both	of	these	SQL	statements	in	use	several	times	in	the	previous	chapters.
However,	in	the	next	two	chapters	you	will	learn	more	about	the	various	syntax	and
options	for	each	of	them,	and	you	will	be	given	plenty	of	practical	examples	of	their	use.

Data	often	needs	to	be	changed	and	sometimes	deleted,	so	in	Chapter	8,	Updating	and
Deleting	Data	we’ll	take	a	look	at	how	to	update	and	delete	data.	This	chapter	will	help
you	to	learn	how	to	use	the	UPDATE	and	the	DELETE	statements	to	do	these	common	tasks.
These	are	important	for	managing	data	in	a	database.

The	final	chapter	of	this	part,	Chapter	9,	Joining	and	Subquerying	Data,	is	an	advanced
one.	It’s	not	too	difficult	to	follow,	but	you	should	definitely	not	rush	through	it.	In	it,	you
will	learn	how	to	select	data	from	one	or	more	tables,	and	to	use	that	data	as	a	basis	for
inserting,	selecting,	updating,	or	deleting	data	in	other	tables.	Thus,	you	should	make	sure
that	you’ve	mastered	the	material	in	the	previous	chapters	before	skipping	ahead	to
Chapter	9.

In	each	chapter	of	this	part,	there	are	practical	examples	that	are	used	to	explain	the
various	SQL	statements	and	related	factors.	You	should	enter	those	examples	into	your
server.	Even	if	you	are	reading	this	book	from	a	digital	version	on	your	computer,	I
recommend	highly	that	you	manually	type	all	of	the	SQL	statements	you	are	instructed	to
enter.	It	may	seem	like	a	little	thing,	but	the	process	of	typing	them	will	aid	your	learning
process	and	help	you	remember	the	syntax	and	the	deviations	of	each	SQL	statement.
When	you	make	a	mistake	and	type	something	incorrectly,	you’ll	get	an	error	message.
Deciphering	error	messages	is	part	of	being	a	good	MySQL	and	MariaDB	developer.	If
you	copy	and	paste	everything	as	I	present	it	to	you,	you	will	only	confirm	the	accuracy	of
the	book’s	examples,	and	you	will	learn	only	a	little.	It’s	easy	to	learn	when	you	don’t
make	any	mistakes.	It’s	more	difficult,	but	you	will	learn	more	when	you	manually	enter
the	SQL	statements	and	get	errors	and	then	have	to	determine	where	you	went	wrong.

At	the	end	of	each	chapter	of	this	part,	as	with	almost	all	of	the	chapters	in	this	book,	there
are	exercises.	For	the	same	reasons	that	you	should	enter	the	SQL	statements	in	the
examples	throughout	the	chapters,	you	should	also	complete	the	exercises.	This	is	not	just
a	book	to	be	read.	It’s	meant	to	be	a	tool	to	help	you	to	learn	MySQL	and	MariaDB.	To
accomplish	that,	you	must	do	more	than	just	read	the	chapters:	you	need	to	participate,
experiment,	and	research.	If	you	make	this	kind	of	effort,	you	will	benefit	greatly	from	this
book.	This	is	probably	the	most	essential	part	of	the	book,	so	you	should	fully	engage	with
these	concluding	chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	6.	Inserting	Data
After	you	have	created	a	database	and	tables,	the	next	step	is	to	insert	data.	I’m
intentionally	using	the	word	insert	because	the	most	common	and	basic	way	to	enter	data
into	a	table	is	with	the	SQL	statement	INSERT.	It’s	easier	to	learn	the	language	of	MySQL
and	MariaDB,	if	you	use	the	keywords	to	describe	what	you	are	doing.	In	this	chapter,	we
will	cover	the	INSERT	statement,	its	different	syntax,	and	many	of	its	options.	We’ll	use	the
tables	that	we	created	in	Chapter	4	and	altered	in	Chapter	5.	We’ll	also	look	at	some
related	statements	on	retrieving	or	selecting	data,	but	they	will	be	covered	in	greater	detail
in	Chapter	7.

When	going	through	this	chapter,	participate.	When	examples	are	given	showing	the
INSERT	statement	and	other	SQL	statements,	try	entering	them	on	your	server	using	the
mysql	client.	At	the	end	of	the	chapter	are	some	exercises	—	do	them.	They	require	you	to
enter	data	in	the	tables	that	you	created	in	Chapter	4.	In	doing	the	exercises,	you	may	have
to	refer	back	to	the	examples	in	this	chapter	and	in	Chapter	4.	This	will	help	to	reinforce
what	you’ve	read.	When	you’re	done,	you	should	feel	comfortable	entering	data	in
MySQL	and	MariaDB.

www.it-ebooks.info

http://www.it-ebooks.info/

The	Syntax
The	INSERT	statement	adds	rows	of	data	into	a	table.	It	can	add	a	single	row	or	multiple
rows	at	a	time.	The	basic	syntax	of	this	SQL	statement	is:

INSERT	INTO	table	[(column,	…)]

		VALUES	(value,	…),	(…),	…;

The	keywords	INSERT	INTO	are	followed	by	the	name	of	the	table	and	an	optional	list	of
columns	in	parentheses.	(Square	brackets	in	a	syntax	indicate	that	the	bracketed	material	is
optional.)	Then	comes	the	keyword	VALUES	and	a	pair	of	parentheses	containing	a	list	of
values	for	each	column.	There	are	several	deviations	of	the	syntax,	but	this	is	the	basic
one.	Commas	separate	the	column	names	within	the	first	list,	and	the	values	within	the
second.

Let’s	go	through	some	examples	that	will	show	a	few	of	the	simpler	syntaxes	for	the
INSERT	statement.	Don’t	try	to	enter	these	on	your	system.	These	are	generic	examples
using	INSERT	to	add	data	to	nonexistent	tables.

Here’s	a	generic	example	of	the	INSERT	statement	with	the	minimum	required	syntax:
INSERT	INTO	books

VALUES('The	Big	Sleep',	'Raymond	Chandler',	'1934');

This	example	adds	text	to	a	table	called	books.	This	table	happens	to	contain	only	three
columns,	so	we	don’t	bother	to	list	the	columns.	But	because	there	are	three	columns,	we
have	to	specify	three	values,	which	will	go	into	the	columns	in	the	order	that	the	columns
were	defined	in	CREATE	TABLE.	So	in	our	example,	The	Big	Sleep	will	be	inserted	into	the
first	column	of	the	table,	Raymond	Chandler	will	go	into	the	second	column,	and	1934
will	go	into	the	third.

For	columns	that	have	a	default	value	set,	you	can	rely	on	the	server	to	use	that	value	and
omit	the	column	from	your	INSERT	statement.	One	way	to	do	this	is	by	entering	a	value	of
DEFAULT	or	NULL,	as	shown	in	the	following	example:

INSERT	INTO	books

VALUES('The	Thirty-Nine	Steps',	'John	Buchan',	DEFAULT);

MySQL	will	use	the	default	value	for	the	third	column.	If	the	default	value	is	NULL	—
the	usual	default	value	if	none	is	specified	—	that’s	what	the	statement	will	put	in	the
column	for	the	row.	For	a	column	defined	with	AUTO_INCREMENT,	the	server	will	put	the
next	number	in	the	sequence	for	that	column.

Another	way	to	use	defaults	is	to	list	just	the	columns	into	which	you	want	to	enter	non-
default	data,	like	so:

INSERT	INTO	books

(author,	title)

VALUES('Evelyn	Waugh','Brideshead	Revisited');

Note	that	this	example	lists	just	two	columns	within	parentheses.	It’s	also	significant	that
the	statement	lists	them	in	a	different	order.	The	list	of	values	must	match	the	order	of	the
list	of	columns.	For	the	third	column	(i.e.,	year)	of	this	table,	the	default	value	will	be
inserted.

When	you	have	many	rows	of	data	to	insert	into	the	same	table,	it	can	be	more	efficient	to
insert	all	of	the	rows	in	one	SQL	statement.	To	do	this,	you	need	to	use	a	slightly	different

www.it-ebooks.info

http://www.it-ebooks.info/

syntax	for	the	INSERT	statement.	Just	add	more	sets	of	values	in	parentheses,	each	set
separated	by	a	comma.	Here’s	an	example	of	this:

INSERT	INTO	books

(title,	author,	year)

VALUES('Visitation	of	Spirits','Randall	Kenan','1989'),

						('Heart	of	Darkness','Joseph	Conrad','1902'),

						('The	Idiot','Fyodor	Dostoevsky','1871');

This	SQL	statement	enters	three	rows	of	data	into	the	books	table.	Notice	that	the	set	of
column	names	and	the	VALUES	keyword	appear	only	once.	Almost	all	SQL	statements
allow	only	one	instance	of	each	clause	(the	VALUES	clause	in	this	case),	although	that
clause	may	contain	multiple	items	and	lists	as	it	does	here.

www.it-ebooks.info

http://www.it-ebooks.info/

Practical	Examples
Let’s	get	back	to	the	rookery	database	that	we	created	and	altered	in	Chapters	4	and	5	for
more	involved	examples	of	inserting	data	into	tables.	If	you	haven’t	created	those	tables
yet,	I	recommend	you	go	back	and	do	that	before	proceeding	with	this	chapter.

Your	natural	tendency	when	putting	data	into	a	database	will	be	to	start	by	adding	data	to
the	main	or	primary	table	of	the	database	first	and	to	worry	about	ancillary	or	reference
tables	later.	That	will	work	well	enough,	but	you	may	be	creating	more	work	for	yourself
than	needed.	Starting	with	the	main	table	is	more	interesting,	and	entering	data	in
reference	tables	is	more	tedious.	But	that’s	the	way	of	databases:	they	are	tedious.	It’s
inescapable.

Nevertheless,	we	don’t	have	to	create	all	of	the	tables	we	will	need	for	a	database	before
entering	data;	we	don’t	need	to	enter	data	into	all	of	the	secondary	tables	before	working
on	the	primary	tables.	It	will	be	difficult	to	plan	ahead	for	all	of	the	possible	tables	that
will	be	needed.	Instead,	database	development	is	generally	always	a	work	in	progress.	You
will	often	add	more	tables,	change	the	schema	of	existing	tables,	and	shift	large	blocks	of
data	from	one	table	to	another	to	improve	performance	and	to	make	the	management	of
the	database	easier.	That	takes	some	of	the	tediousness	out	of	databases	and	makes
database	management	interesting.

With	that	approach	in	mind,	we’ll	enter	data	in	some	of	the	tables,	using	some	simple
logic	to	decide	which	table	to	work	on	first.	Remember	how	we	are	categorizing	birds:	a
bird	species	is	a	member	of	a	bird	family,	and	a	bird	family	is	part	of	a	bird	order.	The
birds	table	needs	the	family_id	to	join	with	the	bird_families	table,	and	the
bird_families	table	needs	an	order_id	from	the	bird_orders	table	to	join	with	it.	So,
we’ll	add	data	to	bird_orders	first,	then	to	bird_families,	and	then	to	birds.

Most	people	don’t	know	the	scientific	names	of	birds,	bird	families,	and	bird	orders.
However,	you	can	find	this	information	on	Wikipedia	and	sites	dedicated	specifically	to
bird-watching	and	ornithology.	But	there’s	no	need	for	you	to	do	research	about	birds	to
participate	in	this	book.	I’ll	provide	you	with	the	information	to	enter	a	few	rows	for	each
table,	and	you	can	download	complete	tables	from	my	website.

The	Table	for	Bird	Orders
Before	entering	data	in	the	bird_orders	table,	let’s	remind	ourselves	of	the	structure	of
the	table	by	executing	the	following	SQL	statement:

DESCRIBE	bird_orders;

+-------------------+--------------+------+-----+---------+----------------+

|	Field													|	Type									|	Null	|	Key	|	Default	|	Extra										|

+-------------------+--------------+------+-----+---------+----------------+

|	order_id										|	int(11)						|	NO			|	PRI	|	NULL				|	auto_increment	|

|	scientific_name			|	varchar(255)	|	YES		|	UNI	|	NULL				|																|

|	brief_description	|	varchar(255)	|	YES		|					|	NULL				|																|

|	order_image							|	blob									|	YES		|					|	NULL				|																|

+-------------------+--------------+------+-----+---------+----------------+

As	you	can	see,	this	table	has	only	four	columns:	an	identification	number	that	will	be
used	by	the	bird_families	to	join	to	this	table,	a	column	for	the	scientific	name	of	the
bird	order,	a	column	for	the	description	of	the	order;	and	a	column	with	an	image

www.it-ebooks.info

http://mysqlresources.com/files
http://www.it-ebooks.info/

representing	each	order	of	birds.	The	order_id	column	starts	with	1	for	the	first	bird	order
and	is	set	automatically	to	the	next	number	in	sequence	each	time	we	add	a	bird	order
(unless	we	told	MySQL	otherwise).

Before	entering	the	orders	of	birds,	let’s	prime	the	order_id	by	initially	setting	the
AUTO_INCREMENT	variable	to	100,	so	that	all	of	the	bird	order	identification	numbers	will
be	at	least	three	digits	in	length.	The	numbering	means	nothing	to	MySQL;	it’s	only	a
matter	of	personal	style.	To	do	this,	we’ll	use	the	ALTER	TABLE	statement	(covered	in
Chapter	5).	Enter	the	following	in	the	mysql	client:

ALTER	TABLE	bird_orders

AUTO_INCREMENT	=	100;

This	SQL	statement	alters	the	table	bird_orders,	but	only	the	value	set	on	the	server	for
the	AUTO_INCREMENT	variable	for	the	specified	table.	This	will	set	the	order_id	to	100	for
the	first	order	that	we	enter	in	our	bird_orders	table.

Let’s	now	enter	the	orders	of	birds.	We	can	quickly	enter	a	bunch	of	orders	using	the
multiple-row	syntax	for	the	INSERT	statement.	Because	there	are	only	29	modern	orders	of
birds,	let’s	enter	all	of	them.	The	following	gigantic	SQL	statement	is	what	I	used	to	insert
data	into	the	bird_orders	table;	you	can	download	the	table	from	my	site	or	enter	the
SQL	statement	in	mysql	(perhaps	by	cutting	and	pasting	it	from	an	ebook):

INSERT	INTO	bird_orders	(scientific_name,	brief_description)

VALUES('Anseriformes',	"Waterfowl"),

						('Galliformes',	"Fowl"),

						('Charadriiformes',	"Gulls,	Button	Quails,	Plovers"),

						('Gaviiformes',	"Loons"),

						('Podicipediformes',	"Grebes"),

						('Procellariiformes',	"Albatrosses,	Petrels"),

						('Sphenisciformes',	"Penguins"),

						('Pelecaniformes',	"Pelicans"),

						('Phaethontiformes',	"Tropicbirds"),

						('Ciconiiformes',	"Storks"),

						('Cathartiformes',	"New-World	Vultures"),

						('Phoenicopteriformes',	"Flamingos"),

						('Falconiformes',	"Falcons,	Eagles,	Hawks"),

						('Gruiformes',	"Cranes"),

						('Pteroclidiformes',	"Sandgrouse"),

						('Columbiformes',	"Doves	and	Pigeons"),

						('Psittaciformes',	"Parrots"),

						('Cuculiformes',	"Cuckoos	and	Turacos"),

						('Opisthocomiformes',	"Hoatzin"),

						('Strigiformes',	"Owls"),

						('Struthioniformes',	"Ostriches,	Emus,	Kiwis"),

						('Tinamiformes',	"Tinamous"),

						('Caprimulgiformes',	"Nightjars"),

						('Apodiformes',	"Swifts	and	Hummingbirds"),

						('Coraciiformes',	"Kingfishers"),

						('Piciformes',	"Woodpeckers"),

						('Trogoniformes',	"Trogons"),

						('Coliiformes',	"Mousebirds"),

						('Passeriformes',	"Passerines");

As	large	as	that	statement	was,	it	inserted	only	two	of	the	four	columns	into	each	row.	I
left	out	order_id,	which	I	know	will	be	assigned	by	the	server	with	a	value	that	starts	at
what	I	asked	for,	100,	and	increments	for	each	row.	The	default	of	NULL	will	be	assigned
to	the	order_image	column,	and	we	can	insert	images	later	if	we	want.	However,	we	can’t
pretend	the	columns	don’t	exist.	If	we	enter	an	INSERT	statement	and	don’t	provide	data
for	one	or	more	of	the	columns	that	we	specify,	MySQL	will	reject	the	SQL	statement	and
return	an	error	message	like	this	one:

ERROR	1136	(21S01):

www.it-ebooks.info

http://www.it-ebooks.info/

Column	count	doesn't	match	value	count	at	row	1

This	indicates	that	we	didn’t	give	the	server	the	number	of	columns	it	was	expecting.

By	now,	I	hope	you	see	why	I	created	a	special	table	dedicated	to	orders	and	made	it	so
you	have	to	enter	each	name	only	here,	and	not	on	every	single	bird	in	the	main	table.
Given	the	bird_orders	table,	you	can	use	numbers	in	the	order_id	column	to	represent	a
bird	order	in	the	bird_families	table.	This	is	one	of	the	benefits	of	a	reference	table.
Typing	in	numbers	is	easier	than	typing	in	a	scientific	name	each	time,	and	should	reduce
the	frequency	of	typos.

The	Table	for	Bird	Families
Now	that	the	bird_orders	table	is	filled	with	data,	let’s	next	add	some	data	to	the
bird_families	table.	First,	execute	the	following	statement:

DESCRIBE	bird_families;

This	SQL	statement	will	show	you	the	layout	of	the	columns	for	the	bird_families	table.
We	also	need	to	know	the	order_id	for	the	order	of	the	families	we	will	enter.	To	start,
we’ll	enter	a	row	for	the	Gaviidae	bird	family.	This	happens	to	be	the	family	to	which	the
Great	Northern	Loon	belongs	—	a	bird	we	entered	already	in	the	birds	table.	The
Gaviidae	family	is	part	of	the	Gaviiformes	order	of	birds.	So	enter	the	following	on	your
server	to	determine	the	order_id	for	that	order:

SELECT	order_id	FROM	bird_orders

WHERE	scientific_name	=	'Gaviiformes';

+----------+

|	order_id	|

+----------+

|						103	|

+----------+

Now	let’s	enter	the	Gaviidae	family	in	the	bird_families	table.	We’ll	do	that	like	so:
INSERT	INTO	bird_families

VALUES(100,	'Gaviidae',

"Loons	or	divers	are	aquatic	birds	found	mainly	in	the	Northern	Hemisphere.",

103);

This	adds	the	name	and	description	of	the	bird	family,	Gaviidae,	into	the	bird_families
table.	You	may	have	noticed	that	although	the	family_id	column	is	set	to	increment
automatically,	I	put	a	value	of	100	here.	That’s	not	necessary,	but	it’s	another	way	of
instituting	my	style	of	starting	with	an	identification	number	that	has	a	few	digits.	A
family_id	of	1	for	an	elegant	and	ancient	bird	family	like	that	of	the	loons	sounds	either
presumptuous	or	lame	to	me.	By	giving	it	a	specific	value,	I’ll	not	only	give	an	ID	of	100
to	Gaviidae,	but	ensure	that	the	server	will	give	101	to	the	next	family	I	insert.

If	we	try	to	enter	the	INSERT	statement	with	the	correct	number	of	columns,	but	not	in	the
order	the	server	expects	to	receive	the	data	based	on	the	schema	for	the	table,	the	server
may	accept	the	data.	It	will	generate	a	warning	message	if	the	data	given	for	the	columns
don’t	match	the	column	types.	For	instance,	suppose	we	had	tried	to	add	another	row	to
the	same	table	—	this	one	for	the	bird	family,	Anatidae,	the	family	for	the	Wood	Duck,
another	bird	we	entered	already	in	the	birds	table.	Suppose	further	that	we	had	tried	to
give	the	data	in	a	different	order	from	the	way	the	columns	are	organized	in	the	table.	The
server	would	accept	the	SQL	statement	and	process	the	data	as	best	it	can,	but	it	would	not
work	the	way	we	might	want.	The	following	example	shows	such	a	scenario:

www.it-ebooks.info

http://www.it-ebooks.info/

INSERT	INTO	bird_families

VALUES('Anatidae',	"This	family	includes	ducks,	geese	and	swans.",	NULL,	103);

Query	OK,	1	row	affected,	1	warning	(0.05	sec)

Notice	that	in	this	SQL	statement	we	put	the	family’s	name	first,	then	the	description,	then
NULL	for	the	family_id,	and	103	for	the	order_id.	MySQL	is	expecting	the	first	column
to	be	a	number	or	DEFAULT	or	NULL.	Instead,	we	gave	it	text.	Notice	that	the	status	line
returned	by	mysql	after	the	INSERT	statement	says,	Query	OK,	1	row	affected,	1	warning.
That	means	that	one	row	was	added,	but	a	warning	message	was	generated,	although	it
wasn’t	displayed.	We’ll	use	the	SHOW	WARNINGS	statement	like	so	to	see	the	warning
message:

SHOW	WARNINGS	\G

***************************	1.	row	***************************

		Level:	Warning

			Code:	1366

Message:	Incorrect	integer	value:	'Anatidae'	for	column	'family_id'	at	row	1

1	row	in	set	(0.15	sec)

Here	we	can	see	the	warning	message:	the	server	was	expecting	an	integer	value,	but
received	text	for	the	column,	family_id.	Let’s	run	the	SELECT	statement	to	see	what	we
have	now	in	the	bird_families	table:

SELECT	*	FROM	bird_families	\G

***************************	1.	row	***************************

								family_id:	100

		scientific_name:	Gaviidae

brief_description:	Loons	or	divers	are	aquatic	birds

																			found	mainly	in	the	Northern	Hemisphere.

									order_id:	103

***************************	2.	row	***************************

								family_id:	101

		scientific_name:	This	family	includes	ducks,	geese	and	swans.

brief_description:	NULL

									order_id:	103

The	first	row	is	fine;	we	entered	it	correctly,	before.	But	because	MySQL	didn’t	receive	a
good	value	for	the	family_id	column	for	the	row	we	just	entered,	it	ignored	what	we	gave
it	and	automatically	set	the	column	to	101	—	the	default	value	based	on	AUTO_INCREMENT.
It	took	the	description	text	that	was	intended	for	brief_description	column	and	put	that
in	the	scientific_name	column.	It	put	the	NULL	we	meant	for	the	family_id	column
and	put	it	in	the	brief_description	column.	This	row	needs	to	be	fixed	or	deleted.	Let’s
delete	it	and	try	again.	We’ll	use	the	DELETE	statement	like	this:

DELETE	FROM	bird_families

WHERE	family_id	=	101;

This	will	delete	only	one	row:	the	one	where	the	family_id	equals	101.	Be	careful	with
the	DELETE	statement.	There’s	no	UNDO	statement,	per	se,	when	working	with	the	data	like
this.	If	you	don’t	include	the	WHERE	clause,	you	will	delete	all	of	the	data	in	the	table.	For
this	table,	which	has	only	two	rows	of	data,	it’s	not	a	problem	to	re-enter	the	data.	But	on	a
server	with	thousands	of	rows	of	data,	you	could	lose	plenty	of	data	—	permanently,	if
you	don’t	have	a	backup	copy.	Even	if	you	do	have	a	backup	of	the	data,	you’re	not	going
to	be	able	to	restore	the	data	quickly	or	easily.	So	be	careful	with	the	DELETE	statement	and
always	use	a	WHERE	clause	that	limits	greatly	the	data	that’s	to	be	deleted.

Let’s	re-enter	the	data	for	the	duck	family,	Anatidae,	but	this	time	we’ll	try	a	different
syntax	for	the	INSERT	statement	so	that	we	don’t	have	to	give	data	for	all	of	the	columns

www.it-ebooks.info

http://www.it-ebooks.info/

and	so	that	we	can	give	data	in	a	different	order	from	how	it’s	structured	in	the	table:
INSERT	INTO	bird_families

(scientific_name,	order_id,	brief_description)

VALUES('Anatidae',	103,	"This	family	includes	ducks,	geese	and	swans.");

To	let	us	give	only	three	columns	in	this	SQL	statement,	and	in	a	different	order,	we	put
the	names	of	the	columns	in	parentheses	before	the	set	of	values.	Listing	the	names	of	the
columns	is	optional,	provided	data	is	in	the	correct	format	for	all	of	the	columns	and	in
order.	Because	we	are	not	doing	that	with	this	SQL	statement,	we	had	to	list	the	columns
for	which	we	are	giving	data,	matching	the	order	that	the	data	is	given	in	the	VALUES
clause	in	the	set	of	values	and	in	parentheses.	Basically,	we’re	telling	the	server	what	each
value	represents;	we’re	mapping	the	data	to	the	correct	columns	in	the	table.	Again,	for	the
columns	that	we	don’t	provide	data	or	don’t	name	in	the	SQL	statement,	the	server	will
use	the	default	values.	Let’s	see	what	we	have	now	for	data	in	the	bird_families	table:

SELECT	*	FROM	bird_families	\G

***************************	1.	row	***************************

								family_id:	100

		scientific_name:	Gaviidae

brief_description:	Loons	or	divers	are	aquatic	birds

																			found	mainly	in	the	Northern	Hemisphere.

									order_id:	103

***************************	2.	row	***************************

								family_id:	102

		scientific_name:	Anatidae

brief_description:	This	family	includes	ducks,	geese	and	swans.

									order_id:	103

That’s	better.	Notice	that	the	server	put	the	family	name,	Anatidae,	in	the
scientific_name	column,	per	the	mapping	instructions	stipulated	in	the	INSERT
statement.	It	also	assigned	a	number	to	the	family_id	column.	Because	the	family_id	for
the	previous	row	was	set	to	101,	even	though	we	deleted	it,	the	server	remembers
elsewhere	in	MySQL	that	the	count	is	now	at	101.	So	it	incremented	that	number	by	1	to
set	this	new	row	to	102.	You	could	change	the	value	of	this	row	and	reset	the	counter	(i.e.,
the	AUTO_INCREMENT	variable	for	the	column	of	the	table),	but	it’s	generally	not	important.

Let’s	prepare	now	to	enter	some	more	bird	families.	We’ll	keep	the	data	simple	this	time.
We’ll	give	only	the	scientific	name	and	the	order	identification	number.	To	do	that,	we
need	to	know	the	order_id	of	each	order.	We’ll	execute	this	SQL	statement	to	get	the	data
we	need:

SELECT	order_id,	scientific_name	FROM	bird_orders;

+----------+---------------------+

|	order_id	|	scientific_name					|

+----------+---------------------+

|						100	|	Anseriformes								|

|						101	|	Galliformes									|

|						102	|	Charadriiformes					|

|						103	|	Gaviiformes									|

|						104	|	Podicipediformes				|

|						105	|	Procellariiformes			|

|						106	|	Sphenisciformes					|

|						107	|	Pelecaniformes						|

|						108	|	Phaethontiformes				|

|						109	|	Ciconiiformes							|

|						110	|	Cathartiformes						|

|						111	|	Phoenicopteriformes	|

|						112	|	Falconiformes							|

|						113	|	Gruiformes										|

|						114	|	Pteroclidiformes				|

|						115	|	Columbiformes							|

www.it-ebooks.info

http://www.it-ebooks.info/

|						116	|	Psittaciformes						|

|						117	|	Cuculiformes								|

|						118	|	Opisthocomiformes			|

|						119	|	Strigiformes								|

|						120	|	Struthioniformes				|

|						121	|	Tinamiformes								|

|						122	|	Caprimulgiformes				|

|						123	|	Apodiformes									|

|						124	|	Coraciiformes							|

|						125	|	Piciformes										|

|						126	|	Trogoniformes							|

|						127	|	Coliiformes									|

|						128	|	Passeriformes							|

+----------+---------------------+

Now	let’s	enter	one	hefty	INSERT	statement	to	insert	a	bunch	of	bird	families	into	the
bird_families	table.	We	just	list	each	set	of	data	within	its	own	parentheses,	separated	by
commas.	After	consulting	our	bird-watching	guides,	we	determine	which	families	belong
to	which	orders	and	then	enter	this	in	the	mysql	client:

INSERT	INTO	bird_families

(scientific_name,	order_id)

VALUES('Charadriidae',	109),

						('Laridae',	102),

						('Sternidae',	102),

						('Caprimulgidae',	122),

						('Sittidae',	128),

						('Picidae',	125),

						('Accipitridae',	112),

						('Tyrannidae',	128),

						('Formicariidae',	128),

						('Laniidae',	128);

This	statement	enters	10	rows	of	data	in	one	batch.	Notice	that	we	didn’t	have	to	list	the
names	of	the	columns	for	each	row.	Notice	also	that	we	didn’t	mention	the	family_id
column	in	this	SQL	statement.	The	server	will	assign	automatically	the	next	number	in	the
column’s	sequence	for	that	field.	And	we	didn’t	give	the	statement	any	text	for	the
brief_description	column.	We	can	enter	that	later	if	we	want.

If	you	want	a	heftier	bird_family	table	with	more	rows	and	the	brief	descriptions,	you
can	download	it	later	from	my	site.	This	is	enough	data	for	now.	Let’s	execute	the	SELECT
statement	to	get	the	family_id	numbers.	We’ll	need	them	when	we	enter	birds	in	the
birds	table:

SELECT	family_id,	scientific_name

FROM	bird_families

ORDER	BY	scientific_name;

+-----------+-----------------+

|	family_id	|	scientific_name	|

+-----------+-----------------+

|							109	|	Accipitridae				|

|							102	|	Anatidae								|

|							106	|	Caprimulgidae			|

|							103	|	Charadriidae				|

|							111	|	Formicariidae			|

|							100	|	Gaviidae								|

|							112	|	Laniidae								|

|							104	|	Laridae									|

|							108	|	Picidae									|

|							107	|	Sittidae								|

|							105	|	Sternidae							|

|							110	|	Tyrannidae						|

+-----------+-----------------+

I	added	an	extra	tweak	to	the	previous	SELECT	statement:	an	ORDER	BY	clause,	ensuring
that	the	results	would	be	ordered	alphabetically	by	the	scientific	name	of	the	order.	We’ll

www.it-ebooks.info

http://www.it-ebooks.info/

cover	the	ORDER	BY	clause	in	more	depth	in	Chapter	7.

We’re	now	ready	to	enter	data	in	the	birds	table.	The	table	already	has	a	Killdeer,	a	small
shore	bird	that	is	part	of	the	Charadriidae	family.	Let’s	prepare	to	enter	a	few	more	shore
birds	from	the	same	family	as	the	Killdeer.	Looking	at	the	preceding	results,	we	can
determine	that	the	family_id	is	103,	because	the	Killdeer	is	in	the	Charadriidae	family.
Incidentally,	the	values	for	the	family_id	column	might	be	different	on	your	server.

Now	that	we	have	the	family_id	for	shore	birds,	let’s	look	at	the	columns	in	the	birds
table	and	decide	which	ones	we’ll	set.	To	do	that,	let’s	use	the	SHOW	COLUMNS	statement
like	this:

SHOW	COLUMNS	FROM	birds;

+------------------------+--------------+------+-----+-------+----------------+

|	Field																		|	Type									|	Null	|	Key	|Default|	Extra										|

+------------------------+--------------+------+-----+-------+----------------+

|	bird_id																|	int(11)						|	NO			|	PRI	|	NULL		|	auto_increment	|

|	scientific_name								|	varchar(100)	|	YES		|	UNI	|	NULL		|																|

|	common_name												|	varchar(255)	|	YES		|					|	NULL		|																|

|	family_id														|	int(11)						|	YES		|					|	NULL		|																|

|	conservation_status_id	|	int(11)						|	YES		|					|	NULL		|																|

|	wing_id																|	char(2)						|	YES		|					|	NULL		|																|

|	body_id																|	char(2)						|	YES		|					|	NULL		|																|

|	bill_id																|	char(2)						|	YES		|					|	NULL		|																|

|	description												|	text									|	YES		|					|	NULL		|																|

+------------------------+--------------+------+-----+-------+----------------+

The	results	are	the	same	as	for	the	DESCRIBE	statement.	However,	with	SHOW	COLUMNS,	you
can	retrieve	a	list	of	columns	based	on	a	pattern.	For	instance,	suppose	you	just	want	a	list
of	reference	columns	—	columns	that	we	labeled	with	the	ending,	_id.	You	could	enter
this:

SHOW	COLUMNS	FROM	birds	LIKE	'%id';

+------------------------+---------+------+-----+---------+----------------+

|	Field																		|	Type				|	Null	|	Key	|	Default	|	Extra										|

+------------------------+---------+------+-----+---------+----------------+

|	bird_id																|	int(11)	|	NO			|	PRI	|	NULL				|	auto_increment	|

|	family_id														|	int(11)	|	YES		|					|	NULL				|																|

|	conservation_status_id	|	int(11)	|	YES		|					|	NULL				|																|

|	wing_id																|	char(2)	|	YES		|					|	NULL				|																|

|	body_id																|	char(2)	|	YES		|					|	NULL				|																|

|	bill_id																|	char(2)	|	YES		|					|	NULL				|																|

+------------------------+---------+------+-----+---------+----------------+

We	used	the	percent	sign	(%)	as	a	wildcard	—	the	asterisks	won’t	work	here	—	to	specify
the	pattern	of	any	text	that	starts	with	any	characters	but	ends	with	_id.	For	a	large	table,
being	able	to	refine	the	results	like	this	might	be	useful.	When	naming	your	columns,	keep
in	mind	that	you	can	search	easily	based	on	a	naming	pattern	(e.g.,	%_id).	Incidentally,	if
you	add	the	FULL	flag	to	this	SQL	statement	(e.g.,	SHOW	FULL	COLUMNS	FROM	birds;),	you
can	get	more	information	on	each	column.	Try	that	on	your	system	to	see	the	results.

The	Table	for	Birds
That	was	interesting,	but	let’s	get	back	to	data	entry	—	the	focus	of	this	chapter.	Now	that
we	have	been	reminded	of	the	columns	in	the	birds	table,	let’s	enter	data	on	some	of
shore	birds.	Enter	the	following	in	mysql:

INSERT	INTO	birds

(common_name,	scientific_name,	family_id)

VALUES('Mountain	Plover',	'Charadrius	montanus',	103);

www.it-ebooks.info

http://www.it-ebooks.info/

This	adds	a	record	for	the	Mountain	Plover.	Notice	that	I	mixed	up	the	order	of	the
columns,	but	it	still	works	because	the	order	of	the	values	agrees	with	the	order	of	the
columns.	We	indicate	that	the	bird	is	in	the	family	of	Charadriidae	by	giving	a	value	of
103	for	the	family_id.	There	are	more	columns	that	need	data,	but	we’ll	worry	about	that
later.	Let’s	now	enter	a	few	more	shore	birds,	using	the	multiple-row	syntax	for	the	INSERT
statement:

INSERT	INTO	birds

(common_name,	scientific_name,	family_id)

VALUES('Snowy	Plover',	'Charadrius	alexandrinus',	103),

('Black-bellied	Plover',	'Pluvialis	squatarola',	103),

('Pacific	Golden	Plover',	'Pluvialis	fulva',	103);

In	this	example,	we’ve	added	three	shore	birds	in	one	statement,	all	of	the	same	family	of
birds.	This	is	the	same	method	that	we	used	earlier	to	enter	several	bird	families	in	the
bird_families	table	and	several	bird	orders	in	the	bird_orders	table.	Notice	that	the
number	for	the	family_id	is	not	enclosed	here	within	quotes.	That’s	because	the	column
holds	integers,	using	the	INT	data	type.	Therefore,	we	can	pass	exposed	numbers	like	this.
If	we	put	them	in	quotes,	MySQL	treats	them	first	like	characters,	but	then	analyzes	them
and	realizes	that	they	are	numbers	and	stores	them	as	numbers.	That’s	the	long
explanation.	The	short	explanation	is	that	it	doesn’t	usually	matter	whether	numbers	are	in
quotes	or	not.

Now	that	we	have	entered	data	for	a	few	more	birds,	let’s	connect	a	few	of	our	tables
together	and	retrieve	data	from	them.	We’ll	use	a	SELECT	statement,	but	we’ll	give	a	list	of
the	tables	to	merge	the	data	in	the	results	set.	This	is	much	more	complicated	than	any	of
the	previous	SELECT	statements,	but	I	want	you	to	see	the	point	of	creating	different	tables,
especially	the	reference	tables	we	have	created.	Try	entering	the	following	SQL	statement
on	your	server:

SELECT	common_name	AS	'Bird',

							birds.scientific_name	AS	'Scientific	Name',

							bird_families.scientific_name	AS	'Family',

							bird_orders.scientific_name	AS	'Order'

FROM	birds,

					bird_families,

					bird_orders

WHERE	birds.family_id	=	bird_families.family_id

AND	bird_families.order_id	=	bird_orders.order_id;

+-----------------------+----------------------+--------------+---------------+

|	Bird																		|	Scientific	Name						|	Family							|	Orders								|

+-----------------------+----------------------+--------------+---------------+

|	Mountain	Plover							|	Charadrius	montanus		|	Charadriidae	|	Ciconiiformes	|

|	Snowy	Plover										|	Charadrius	alex…			|	Charadriidae	|	Ciconiiformes	|

|	Black-bellied	Plover		|	Pluvialis	squatarola	|	Charadriidae	|	Ciconiiformes	|

|	Pacific	Golden	Plover	|	Pluvialis	fulva						|	Charadriidae	|	Ciconiiformes	|

+-----------------------+----------------------+--------------+---------------+

In	this	SELECT	statement,	we	are	connecting	together	three	tables.	Before	looking	at	the
columns	selected,	let’s	look	at	the	FROM	clause.	Notice	that	all	three	tables	are	listed,
separated	by	commas.	To	assist	you	in	making	sense	of	this	statement,	I’ve	added	some
indenting.	The	table	names	don’t	need	to	be	on	separate	lines,	as	I	have	laid	them	out.

MySQL	strings	these	three	tables	together	based	on	the	WHERE	clause.	First,	we’re	telling
MySQL	to	join	the	birds	table	to	the	bird_families	table	where	the	family_id	from
both	tables	equal	or	match.	Using	AND,	we	then	give	another	condition	in	the	WHERE	clause.
We	tell	MySQL	to	join	the	bird_families	table	to	the	bird_orders	table	where	the

www.it-ebooks.info

http://www.it-ebooks.info/

order_id	from	both	tables	are	equal.

That	may	seem	pretty	complicated,	but	if	you	had	a	sheet	of	paper	in	front	of	you	showing
thousands	of	birds,	and	a	sheet	of	paper	containing	a	list	of	bird	families,	and	another
sheet	with	a	list	of	orders	of	birds,	and	you	wanted	to	type	on	your	screen	a	list	of	bird
with	their	names,	along	with	the	family	and	order	to	which	each	belonged,	you	would	do
the	same	thing	with	your	fingers,	pointing	from	keywords	on	one	sheet	to	the	keyword	on
the	other.	It’s	really	intuitive	when	you	think	about	it.

Let’s	look	now	at	the	columns	we	have	selected.	We	are	selecting	the	common_name	and
scientific_name	columns	from	the	birds	table.	Again,	I’ve	added	indenting	and	put
these	columns	on	separate	lines	for	clarity.	Because	all	three	tables	have	columns	named
scientific_name,	we	must	include	the	table	name	for	each	column	(e.g.,
birds.scientific_name)	to	eliminate	ambiguity.	I’ve	added	also	an	AS	clause	to	each
column	selected	to	give	the	results	table	nicer	column	headings.	The	AS	clause	has	nothing
to	do	with	the	tables	on	the	server;	it	affects	only	what	you	see	in	your	output.	So	you	can
choose	the	column	headings	in	the	results	through	the	string	you	put	after	the	AS	keyword.

Let’s	take	a	moment	to	consider	the	results.	Although	we	entered	the	scientific	name	of
each	family	and	order	referenced	here	only	once,	MySQL	can	pull	them	together	easily	by
way	of	the	family_id	and	order_id	columns	in	the	tables.	That’s	economical	and	very
cool.

As	I	said	before,	the	SQL	statement	I’ve	just	shown	is	much	more	complicated	than
anything	we’ve	looked	at	before.	Don’t	worry	about	taking	in	too	much	of	it,	though.
We’ll	cover	this	kind	of	SQL	statement	in	Chapter	7.	For	now,	just	know	that	this	is	the
point	of	what	we’re	doing.	The	kind	of	inquiries	we	can	make	of	data	this	way	is	so	much
better	than	one	big	table	with	columns	for	everything.	For	each	shore	bird,	we	had	to	enter
only	103	for	the	family_id	column	and	didn’t	have	to	type	the	scientific	name	for	the
family,	or	enter	the	scientific	name	of	the	order	for	each	bird.	We	don’t	have	to	worry	so
much	about	typos.	This	leverages	your	time	and	data	efficiently.

www.it-ebooks.info

http://www.it-ebooks.info/

Other	Possibilities
A	few	times	in	this	chapter,	I	mentioned	that	the	INSERT	statement	offers	extra	options.	In
this	section,	we’ll	cover	some	of	them.	You	may	not	use	these	often	in	the	beginning,	but
you	should	know	about	them.

Inserting	Emphatically
Besides	the	basic	syntax	of	the	INSERT	statement,	there	is	a	more	emphatic	syntax	that
involves	mapping	individual	columns	to	data	given.	Here’s	an	example	in	which
information	on	another	bird	family	is	inserted	into	the	bird_families	table;	enter	it	in
mysql	to	see	how	you	like	the	visceral	feel	of	this	syntax:

INSERT	INTO	bird_families

SET	scientific_name	=	'Rallidae',

order_id	=	113;

This	syntax	is	somewhat	awkward.	However,	there’s	less	likelihood	of	making	a	mistake
with	this	syntax,	or	at	least	it’s	less	likely	that	you	will	enter	the	column	names	or	the	data
in	the	wrong	order,	or	not	give	enough	columns	of	data.	Because	of	its	rigidity,	most
people	don’t	normally	use	this	syntax.	But	the	precision	it	offers	makes	it	a	preferred
syntax	for	some	people	writing	automated	scripts.	It’s	primarily	popular	because	the
syntax	calls	for	naming	the	column	and	assigning	a	value	immediately	afterwards,	in	a
key/value	pair	format	found	in	many	programming	languages.	This	makes	it	easier	to
visually	troubleshoot	a	programming	script.	Second,	if	the	name	of	a	column	has	been
changed	or	deleted	since	the	creation	of	a	script	using	this	syntax,	the	statement	will	be
rejected	by	the	server	and	data	won’t	be	entered	into	the	wrong	columns.	But	it	doesn’t
add	any	functionality	to	the	standard	syntax	that	we’ve	used	throughout	the	chapter,	as
long	as	you	list	the	columns	explicitly	in	the	standard	syntax.	Plus,	you	can	insert	only	one
row	at	a	time	with	this	syntax

Inserting	Data	from	Another	Table
INSERT	can	be	combined	with	a	SELECT	statement	(we	covered	this	briefly	in	Chapter	5).
Let’s	look	at	an	example	of	how	it	might	be	used.	Before	you	do,	I’ll	warn	you	that	the
examples	in	this	section	get	complicated.	You’re	not	expected	to	do	the	examples	in	this
section;	just	read	along.

Earlier	in	this	chapter,	we	entered	data	for	a	few	bird	families	—	13	so	far.	You	have	the
option	of	downloading	the	table	filled	with	data	from	my	site,	but	I	had	to	get	the	data
elsewhere	(or	endure	manually	entering	228	rows	of	data	on	bird	families).	So	I	went	to
Cornell	University’s	website.	The	Cornell	Lab	of	Ornithology	teaches	ornithology	and	is	a
leading	authority	on	the	subject.	On	their	site,	I	found	a	table	of	data	that’s	publicly
available.	I	loaded	the	table	into	the	rookery	database	on	my	server	and	named	it
cornell_birds_families_orders.	Here’s	how	the	table	is	structured	and	how	the	data
looks:

DESCRIBE	cornell_birds_families_orders;

+-------------+--------------+------+-----+---------+----------------+

|	Field							|	Type									|	Null	|	Key	|	Default	|	Extra										|

+-------------+--------------+------+-----+---------+----------------+

|	fid									|	int(11)						|	NO			|	PRI	|	NULL				|	auto_increment	|

|	bird_family	|	varchar(255)	|	YES		|					|	NULL				|																|

|	examples				|	varchar(255)	|	YES		|					|	NULL				|																|

www.it-ebooks.info

http://www.it-ebooks.info/

|	bird_order		|	varchar(255)	|	YES		|					|	NULL				|																|

+-------------+--------------+------+-----+---------+----------------+

SELECT	*	FROM	cornell_birds_families_orders

LIMIT	1;

+-----+---------------+----------+------------------+

|	fid	|	bird_family			|	examples	|	bird_order							|

+-----+---------------+----------+------------------+

|			1	|	Struthionidae	|	Ostrich		|	Struthioniformes	|

+-----+---------------+----------+------------------+

This	is	useful.	I	can	take	the	family	names,	use	the	examples	for	the	brief	description,	and
use	them	both	to	finish	the	data	in	the	bird_families	table.	I	don’t	need	their
identification	number	(i.e.,	fid)	for	each	bird	family	—	I’ll	use	my	own.	What	I	need	is	a
way	to	match	the	value	of	the	bird_order	column	in	this	table	to	the	scientific_name	in
the	bird_orders	table	so	that	I	can	put	the	correct	order_id	in	the	bird_families	table.

There	are	a	couple	of	ways	I	could	do	that.	For	now,	I’ll	add	another	column	to	my
bird_families	table	to	take	in	the	bird_order	column	from	this	table	from	Cornell.	I’ll
use	the	ALTER	TABLE	statement,	as	described	in	Chapter	5,	and	enter	the	following	on	my
server:

ALTER	TABLE	bird_families

ADD	COLUMN	cornell_bird_order	VARCHAR(255);

With	this	change,	I	can	now	execute	the	following	SQL	statement	to	copy	the	data	from
the	Cornell	table	to	my	table	containing	data	on	bird	families:

INSERT	IGNORE	INTO	bird_families

(scientific_name,	brief_description,	cornell_bird_order)

SELECT	bird_family,	examples,	bird_order

FROM	cornell_birds_families_orders;

Look	closely	at	this	syntax.	It	may	be	useful	to	you	one	day.	It	starts	with	the	normal
syntax	of	the	INSERT	statement,	but	where	we	would	put	the	VALUES	clause,	we	instead	put
a	complete	SELECT	statement.	The	syntax	of	the	SELECT	portion	is	the	same	as	we’ve	used
so	far	in	other	examples	in	this	book.	It’s	simple,	but	neat	and	very	powerful.

Conceptually,	you	can	think	of	the	embedded	SELECT	statement	creating	multiple	rows,
each	containing	values	in	the	order	you	specify	in	the	SELECT.	These	values	work	just	like
a	VALUES	clause,	feeding	values	into	the	parent	INSERT	statement	and	filling	the	columns	I
carefully	specify	in	the	right	order.

One	thing	is	different	at	the	start	of	the	previous	INSERT	statement.	I’ve	added	the	IGNORE
option.	I	used	this	because	the	bird_families	table	already	had	data	in	it.	Because	the
scientific_name	column	is	set	to	UNIQUE,	it	does	not	permit	duplicate	values.	If	a
multiple-row	INSERT	statement	like	this	encounters	any	errors,	it	will	fail	and	return	an
error	message.	The	IGNORE	flag	instructs	the	server	to	ignore	any	errors	it	encounters	while
processing	the	SQL	statement,	and	to	insert	the	rows	that	may	be	inserted	without
problems.	Instead	of	failing	and	showing	an	error	message,	warning	messages	are	stored
on	the	server	for	you	to	look	at	later.	When	the	server	is	finished,	if	you	want,	you	can	run
the	SHOW	WARNINGS	statement	to	see	which	rows	of	data	weren’t	inserted	into	the	table.
This	is	a	graceful	solution	if	you	just	want	the	server	to	process	the	rows	that	aren’t
duplicates	and	to	ignore	the	duplicates.

Now	that	the	data	has	been	inserted,	I’ll	run	the	following	SQL	statement	from	mysql	to
look	at	the	last	row	in	the	table	—	the	first	rows	contain	the	data	I	entered	previously:

www.it-ebooks.info

http://www.it-ebooks.info/

SELECT	*	FROM	bird_families

ORDER	BY	family_id	DESC	LIMIT	1;

+-----------+-----------------+-----------------+----------+-------------------+

|	family_id	|	scientific_name	|brief_description|	order_id	|	cornell_bird_order|

+-----------+-----------------+-----------------+----------+-------------------+

|							330	|	Viduidae								|	Indigobirds					|					NULL	|	Passeriformes					|

+-----------+-----------------+-----------------+----------+-------------------+

In	the	SELECT	statement	here,	I	added	an	ORDER	BY	clause	to	order	the	results	set	by	the
value	of	the	family_id.	The	DESC	after	it	indicates	that	the	rows	should	by	ordered	in
descending	order	based	on	the	value	of	family_id.	The	LIMIT	clause	tells	MySQL	to	limit
the	results	to	only	one	row.	Looking	at	this	one	row	of	data,	we	can	see	that	the	INSERT
INTO…SELECT	statement	worked	well.

A	Digression:	Setting	the	Right	ID
Our	INSERT	from	the	previous	section	helped	me	fill	my	table	with	data	I	took	from	a	free
database,	but	it’s	still	missing	data:	the	bird	order	for	each	bird.	I	defined	my	own	orders
of	birds	in	the	bird_orders	table,	giving	each	order	an	arbitrary	order_id.	However,	the
Cornell	data	had	nothing	to	do	with	the	numbers	assigned	when	I	created	my	bird_orders
table.	So	now	I	need	to	set	the	value	of	the	order_id	column	to	the	right	order_id	from
the	bird_orders	table	—	and	to	figure	out	that	value,	I	have	to	find	the	order	in	the
cornell_bird_order	column.

This	is	a	bit	complicated,	but	I	am	showing	my	process	here	to	illustrate	the	power	of
relational	databases.	Basically,	I’ll	join	my	own	bird_orders	table	to	the	data	I	got	from
Cornell.	I	loaded	the	bird	orders	from	Cornell	into	a	cornell_bird_order	field.	I	have	the
exact	same	orders	in	the	scientific_name	field	of	my	bird_orders	table.	But	I	don’t
want	to	use	the	scientific	name	itself	when	I	label	each	individual	bird:	instead,	I	want	a
number	(an	order_id)	to	assign	to	that	bird.

I	need	to	set	the	value	of	the	order_id	column	to	the	right	order_id	from	the
bird_orders	table.	To	figure	out	that	value,	I	have	to	find	the	order	in	the
cornell_bird_order	column.

For	that,	I’ll	use	the	UPDATE	statement.	Before	I	change	any	data	with	UPDATE,	though,	I’ll
construct	a	SELECT	statement	for	testing.	I	want	to	make	sure	my	orders	properly	match	up
with	Cornell’s.	So	I’ll	enter	this	on	my	server:

SELECT	DISTINCT	bird_orders.order_id,

cornell_bird_order	AS	"Cornell's	Order",	

bird_orders.scientific_name	AS	'My	Order'

FROM	bird_families,	bird_orders

WHERE	bird_families.order_id	IS	NULL

AND	cornell_bird_order	=	bird_orders.scientific_name

LIMIT	5;

+----------+------------------+------------------+

|	order_id	|	Cornell's	Order		|	My	Order									|

+----------+------------------+------------------+

|						120	|	Struthioniformes	|	Struthioniformes	|

|						121	|	Tinamiformes					|	Tinamiformes					|

|						100	|	Anseriformes					|	Anseriformes					|

|						101	|	Galliformes						|	Galliformes						|

|						104	|	Podicipediformes	|	Podicipediformes	|

+----------+------------------+------------------+

We’re	testing	a	WHERE	clause	here	that	we’ll	use	later	when	updating	our	bird_families
table.	It’s	worth	looking	at	what	a	WHERE	clause	give	us	before	we	put	all	our	trust	in	it	and

www.it-ebooks.info

http://www.it-ebooks.info/

use	it	in	an	UPDATE	statement.

This	WHERE	clause	contains	two	conditions.	First,	it	changes	the	bird_families	table	only
where	the	order_id	hasn’t	been	set	yet.	That’s	kind	of	a	sanity	check.	If	I	already	set	the
order_id	field,	there	is	no	reason	to	change	it.

After	the	AND	comes	the	second	condition,	which	is	more	important.	I	want	to	find	the	row
in	my	bird_orders	table	that	has	the	right	scientific	name,	the	scientific	name	assigned	by
Cornell.	So	I	check	where	cornell_bird_order	equals	the	scientific_name	in	the
bird_orders	table.

This	shows	how,	if	you	want	to	change	data	with	INSERT…SELECT,	REPLACE,	or	UPDATE,	you
can	test	your	WHERE	clause	first	with	a	SELECT	statement.	If	this	statement	returns	the	rows
you	want	and	the	data	looks	good,	you	can	then	use	the	same	WHERE	clause	with	one	of	the
other	SQL	statements	to	change	data.

The	SELECT	statement	just	shown	is	similar	to	the	one	we	executed	in	the	previous	section
of	this	chapter	when	we	queried	the	birds,	bird_families,	and	bird_orders	tables	in	the
same	SQL	statement.	There	is,	however,	an	extra	option	added	to	this	statement:	the
DISTINCT	option.	This	selects	only	rows	in	which	all	of	the	columns	are	distinct.
Otherwise,	because	more	than	five	bird	families	are	members	of	the	Struthioniformes
order,	and	I	limited	the	results	to	five	rows	(i.e.,	LIMIT	5),	we	would	see	the	first	row
repeated	five	times.	Adding	the	DISTINCT	flag	returns	five	distinct	permutations	and	is
thereby	more	reassuring	that	the	WHERE	clause	is	correct.

Because	the	results	look	good,	I’ll	use	the	UPDATE	statement	to	update	the	data	in	the
bird_families	table.	With	this	statement,	you	can	change	or	update	rows	of	data.	The
basic	syntax	is	to	name	the	table	you	want	to	update	and	use	the	SET	clause	to	set	the	value
of	each	column.	This	is	like	the	syntax	for	the	SELECT	statement	in	Inserting	Emphatically.
Use	the	WHERE	clause	you	tested	to	tell	MySQL	which	rows	to	change:

UPDATE	bird_families,	bird_orders

SET	bird_families.order_id	=	bird_orders.order_id

WHERE	bird_families.order_id	IS	NULL

AND	cornell_bird_order	=	bird_orders.scientific_name;

This	is	fairly	complicated,	so	let’s	reiterate	what’s	happening	here:	the	UPDATE	statement
tells	MySQL	to	set	the	order_id	in	the	bird_families	table	to	the	value	of	the	order_id
of	the	corresponding	row	in	the	bird_orders	table	—	but	thanks	to	the	AND	clause,	I	do
the	update	only	where	the	cornell_bird_order	equals	the	scientific_name	in	the
bird_orders	table.

That’s	plenty	to	take	in,	I	know.	We’ll	cover	this	statement	in	more	detail	in	Chapter	8.

Let’s	see	the	results	now.	We’ll	execute	the	same	SQL	statement	we	did	earlier,	but	limit	it
to	four	rows	this	time	to	see	a	bit	more:

SELECT	*	FROM	bird_families

ORDER	BY	family_id	DESC	LIMIT	4;

+-----------+-----------------+---------------------+----------+

|	family_id	|	scientific_name	|	brief_description			|	order_id	|

+-----------+-----------------+---------------------+----------+

|							330	|	Viduidae								|	Indigobirds									|						128	|

|							329	|	Estrildidae					|	Waxbills	and	Allies	|						128	|

|							328	|	Ploceidae							|	Weavers	and	Allies		|						128	|

|							327	|	Passeridae						|	Old	World	Sparrows		|						128	|

+-----------+-----------------+---------------------+----------+

www.it-ebooks.info

http://www.it-ebooks.info/

That	seems	to	have	worked.	The	order_id	column	for	the	Viduidae	bird	family	now	has	a
value	other	than	NULL.	Let’s	check	the	bird_orders	to	see	whether	that’s	the	correct
value:

SELECT	*	FROM	bird_orders

WHERE	order_id	=	128;

+----------+-----------------+-------------------+-------------+

|	order_id	|	scientific_name	|	brief_description	|	order_image	|

+----------+-----------------+-------------------+-------------+

|						128	|	Passeriformes			|	Passerines								|	NULL								|

+----------+-----------------+-------------------+-------------+

That’s	correct.	The	order_id	of	128	is	for	Passeriformes,	which	is	what	the	Cornell	table
said	is	the	order	of	the	Viduidae	family.	Let’s	see	whether	any	rows	in	bird_families	are
missing	the	order_id:

SELECT	family_id,	scientific_name,	brief_description

FROM	bird_families

WHERE	order_id	IS	NULL;

+-----------+-------------------+----------------------+

|	family_id	|	scientific_name			|	brief_description				|

+-----------+-------------------+----------------------+

|							136	|	Fregatidae								|	Frigatebirds									|

|							137	|	Sulidae											|	Boobies	and	Gannets		|

|							138	|	Phalacrocoracidae	|	Cormorants	and	Shags	|

|							139	|	Anhingidae								|	Anhingas													|

|							145	|	Cathartidae							|	New	World	Vultures			|

|							146	|	Sagittariidae					|	Secretary-bird							|

|							147	|	Pandionidae							|	Osprey															|

|							148	|	Otididae										|	Bustards													|

|							149	|	Mesitornithidae			|	Mesites														|

|							150	|	Rhynochetidae					|	Kagu																	|

|							151	|	Eurypygidae							|	Sunbittern											|

|							172	|	Pteroclidae							|	Sandgrouse											|

|							199	|	Bucconidae								|	Puffbirds												|

|							200	|	Galbulidae								|	Jacamars													|

|							207	|	Cariamidae								|	Seriemas													|

+-----------+-------------------+----------------------+

For	some	reason,	the	data	didn’t	match	the	15	rows	in	the	bird_orders	table.	I	had	to
determine	why	these	didn’t	match.	Let’s	look	at	how	I	resolved	a	couple	of	them.

I	looked	up	the	name	of	the	order	to	which	the	Osprey	belongs	and	found	that	there	are
two	possible	names:	Accipitriformes	and	Falconiformes.	Cornell	used	the	Accipitriformes,
whereas	my	bird_orders	table	has	the	Falconiformes	(i.e.,	order_id	112).	I’ll	use	that
one	and	update	the	bird_families	table:

UPDATE	bird_families

SET	order_id	=	112

WHERE	cornell_bird_order	=	'Accipitriformes';

I	could	have	used	the	family_id	in	the	WHERE	clause,	but	by	doing	what	I	did	here,	I
discovered	two	more	bird	families	that	are	in	the	Accipitriformes	order	and	updated	all
three	in	one	SQL	statement.	Digging	some	more,	I	found	that	four	of	these	bird	families
are	part	of	a	new	order	called	Suliformes.	So	I	added	that	order	to	the	bird_orders	table
and	then	updated	the	rows	for	those	families	in	the	bird_families	table.	This	method	of
clean-up	is	common	when	creating	a	database	or	when	importing	large	amounts	of	data
from	another	database.

Next,	I’ll	do	some	clean-up	by	dropping	the	extra	column	I	added	(cornell_bird_order)
to	the	bird_families	table	and	the	cornell_birds_families_orders	table:

ALTER	TABLE	bird_families

www.it-ebooks.info

http://www.it-ebooks.info/

DROP	COLUMN	cornell_bird_order;

DROP	TABLE	cornell_birds_families_orders;

That	set	of	examples	was	complicated,	so	don’t	be	discouraged	if	you	were	confused	by	it.
In	time,	you	will	be	constructing	more	complex	SQL	statements	on	your	own.	In	fact,	you
will	come	to	look	at	what	I	did	here	and	realize	that	I	could	have	performed	the	same	tasks
in	fewer	steps.	For	now,	I	wanted	to	show	you	the	power	of	MySQL	and	MariaDB,	as	well
as	their	communities.	I	mention	the	communities	because	in	the	MySQL	and	MariaDB
communities,	you	can	sometimes	find	tables	with	data	like	this	that	you	can	download	for
free	and	then	manipulate	for	your	own	use,	thus	saving	you	plenty	of	work	and	taking
some	of	the	ever	pesky	tediousness	out	of	database	management.	There	are	other	methods
for	bulk	importing	data,	even	when	it’s	not	in	a	MySQL	table.	They’re	covered	in
Chapter	15.

Replacing	Data
When	you’re	adding	massive	amounts	of	data	to	an	existing	table	and	you’re	using	the
multiple-row	syntax,	you	could	have	a	problem	if	one	of	the	fields	you’re	importing	gets
inserted	into	a	key	field	in	the	table,	as	in	the	preceding	example	with	the	bird_families
table.	In	that	example,	the	scientific_name	column	was	a	key	field,	set	to	UNIQUE	so	that
there	is	only	one	entry	in	the	birds_families	table	for	each	bird	family.	When	MySQL
finds	a	duplicate	key	value	while	running	an	INSERT	statement,	an	error	is	generated	and
the	entire	SQL	statement	will	be	rejected.	Nothing	will	be	inserted	into	the	table.

You	would	then	have	to	edit	the	INSERT	statement,	which	might	be	lengthy,	to	remove	the
duplicate	entry	and	run	the	statement	again.	If	there	are	many	duplicates,	you’d	have	to
run	the	SQL	statement	many	times,	watch	for	error	messages,	and	remove	duplicates	until
it’s	successful.	We	avoided	this	problem	in	the	previous	example	by	using	the	IGNORE
option	with	the	INSERT	statement.	It	tells	MySQL	to	ignore	the	errors,	not	insert	the	rows
that	are	duplicates,	and	insert	the	ones	that	aren’t.

There	may	be	times,	though,	when	you	don’t	want	to	ignore	the	duplicate	rows,	but
replace	duplicate	rows	in	the	table	with	the	new	data.	For	instance,	in	the	UPDATE	example
in	the	previous	section,	we	have	newer	and	better	information,	so	we	prefer	to	overwrite
duplicate	rows.	In	situations	such	as	this,	instead	of	using	INSERT,	you	could	use	the
REPLACE	statement.	With	it,	new	rows	of	data	will	be	inserted	as	they	would	with	an
INSERT	statement.	Any	rows	with	the	same	key	value	(e.g.,	same	scientific_name	code)
will	replace	the	matching	row	already	in	the	table.	This	can	be	very	useful,	and	not
difficult.	Let’s	look	at	an	example:

REPLACE	INTO	bird_families

(scientific_name,	brief_description,	order_id)

VALUES('Viduidae',	'Indigobirds	&	Whydahs',	128),

('Estrildidae',	'Waxbills,	Weaver	Finches,	&	Allies',	128),

('Ploceidae',	'Weavers,	Malimbe,	&	Bishops',	128);

Query	OK,	6	rows	affected	(0.39	sec)

Records:	3		Duplicates:	3		Warnings:	0

Notice	that	the	syntax	is	the	same	as	an	INSERT	statement.	The	options	all	have	the	same
effect	as	well.	Also,	multiple	rows	may	be	inserted,	but	there’s	no	need	for	the	IGNORE
option	because	duplicates	are	just	overwritten.

Actually,	when	a	row	is	replaced	using	the	REPLACE	statement,	it’s	first	deleted	completely

www.it-ebooks.info

http://www.it-ebooks.info/

and	the	new	row	is	then	inserted.	For	any	columns	without	values,	the	default	values	for
the	columns	will	be	used.	None	of	the	previous	values	are	kept.	So	be	careful	that	you
don’t	replace	a	row	that	contains	some	data	that	you	want.	When	you	update	a	row	with
REPLACE,	you	can’t	choose	to	replace	some	columns	and	leave	the	others	unchanged.
REPLACE	replaces	the	whole	row,	unlike	UPDATE.	To	change	just	specific	columns,	use	the
UPDATE	statement.

There	are	a	couple	of	things	that	you	should	notice	about	this	REPLACE	statement	and	the
content	we	entered.	You	can	see	something	unusual	in	the	results	message.	It	says	that	six
rows	were	affected	by	this	SQL	statement:	three	new	records	and	three	duplicates.	The
value	of	six	for	the	number	of	rows	affected	may	seem	strange.	What	happened	is	that
because	three	rows	had	the	same	value	for	the	scientific_name,	they	were	deleted.	And
then	three	new	rows	were	added	with	the	new	values,	the	replacements.	That	gives	a	total
of	six	affected	rows:	three	deleted	and	three	added.

The	results	contain	no	warnings,	so	all	went	well	as	far	as	MySQL	knows.	Let’s	look	at
the	data	for	one	of	the	bird	families	we	changed	in	the	bird_families	table,	the	Viduidae
family:

SELECT	*	FROM	bird_families

WHERE	scientific_name	=	'Viduidae'	\G

***************************	1.	row	***************************

								family_id:	331

		scientific_name:	Viduidae

brief_description:	Indigobirds	&	Whydahs

									order_id:	128

It	may	not	be	apparent,	but	everything	was	replaced.	This	row	has	a	new	value	in	the
family_id	column.	If	you	look	earlier	in	this	chapter	at	the	row	for	this	family,	you’ll	see
that	the	family_id	was	330.	Because	it	was	the	last	row	in	the	table,	when	a	new	row	was
created	for	its	replacement,	331	was	assigned	to	it.	The	brief_description	has	the	new
value;	it	said	before	only	Indigobirds.

The	REPLACE	statement	is	useful	for	replacing	all	of	the	data	for	a	duplicate	row	and
inserting	new	rows	of	data	for	data	that	isn’t	already	in	a	given	table.	It	has	the	potential
problem	of	replacing	all	of	the	columns	when	you	might	want	to	replace	only	some	of
them.	Also,	in	the	previous	examples,	if	the	scientific_name	column	was	not	UNIQUE	or
otherwise	a	key	column,	new	rows	would	be	created	for	the	three	families	we	tried	to
replace	with	the	REPLACE	statement.

Priorities	When	Inserting	Data
On	a	busy	MySQL	or	MariaDB	server,	there	will	be	times	when	many	people	will	access
the	server	at	the	same	time.	There	will	be	times	when	SQL	statements	are	entered
simultaneously	from	different	sources,	perhaps	many	at	the	same	instant.	The	server	must
decide	which	statements	to	process	first.

Statements	that	change	data	(INSERT,	UPDATE,	and	DELETE)	take	priority	over	read
statements	(SELECT	statements).	Someone	who	is	adding	data	to	the	server	seems	to	be
more	important	than	someone	reading	data.	One	concern	is	that	the	one	inserting	data
might	lose	the	connection	and	lose	its	opportunity.	The	user	retrieving	data,	in	contrast,
can	generally	wait.	For	example,	on	a	website	that	uses	MySQL	to	store	purchases,	a
customer	entering	an	order	will	take	priority	over	another	customer	who	is	just	browsing

www.it-ebooks.info

http://www.it-ebooks.info/

through	the	list	of	products.

When	the	server	is	executing	an	INSERT	statement	for	a	client,	it	locks	the	related	tables
for	exclusive	access	and	forces	other	clients	to	wait	until	it’s	finished.	This	isn’t	the	case
with	InnoDB:	it	locks	the	rows,	rather	than	the	entire	table.	On	a	busy	MySQL	server	that
has	many	simultaneous	requests	for	data,	locking	a	table	could	cause	users	to	experience
delays,	especially	when	someone	is	entering	many	rows	of	data	by	using	the	multiple-row
syntax	of	the	INSERT	statement.

Rather	than	accept	the	default	priorities	in	MySQL,	you	can	instead	set	the	priority	for	an
INSERT.	You	can	decide	which	SQL	statements	need	to	be	entered	as	soon	as	possible	and
which	can	wait.	To	specify	you	preferences,	the	INSERT	statement	offers	priority	options.
Enter	them	between	the	INSERT	keyword	and	the	INTO	keyword.	There	are	three	of	them:
LOW_PRIORITY,	DELAYED,	and	HIGH_PRIORITY.	Let’s	look	at	each	of	them.

Lowering	the	priority	of	an	insert

For	an	example	of	LOW_PRIORITY,	suppose	that	we’ve	just	received	a	file	from	a	large
bird-watcher	group	with	thousands	of	rows	of	data	related	to	bird	sightings.	The	table	is	a
MySQL	dump	file,	a	simple	text	file	containing	the	necessary	SQL	statements	to	insert	the
data	into	a	table	in	MySQL.	We	open	the	dump	file	with	a	text	editor	and	see	that	it
contains	one	huge	INSERT	statement	that	will	insert	all	of	the	bird	sightings	(i.e.,
bird_sightings)	with	one	SQL	statement	into	a	table	on	our	server.	We	haven’t	created	a
table	like	this	yet,	but	you	can	imagine	what	it	might	contain.

When	the	INSERT	statement	in	the	dump	file	from	the	large	bird-watcher	group	is	run,	it
might	tie	up	our	server	for	quite	a	while.	If	there	are	users	who	are	in	the	middle	of
retrieving	data	from	the	bird_sightings	table,	we	might	prefer	that	those	processes	finish
before	starting	our	huge	INSERT	statement.	The	LOW_PRIORITY	option	instructs	MySQL	to
enter	the	rows	when	it’s	finished	with	whatever	else	it’s	doing.	Here’s	an	abbreviated
version	of	how	we	would	do	that:

INSERT	LOW_PRIORITY	INTO	bird_sightings

…

Of	course,	a	real	INSERT	will	have	all	the	column	and	value	listings	you	want	where	I	left
the	ellipsis	(three	dots).

The	LOW_PRIORITY	flag	puts	the	INSERT	statement	in	a	queue,	waiting	for	all	of	the	current
and	pending	requests	to	be	completed	before	it’s	performed.	If	new	requests	are	made
while	a	low	priority	statement	is	waiting,	they	are	put	ahead	of	it	in	the	queue.	MySQL
does	not	begin	to	execute	a	low	priority	statement	until	there	are	no	other	requests	waiting.

The	table	is	locked	and	any	other	requests	for	data	from	the	table	that	come	in	after	the
INSERT	statement	starts	must	wait	until	it’s	completed.	MySQL	locks	the	table	once	a	low
priority	statement	has	begun	so	it	will	prevent	simultaneous	insertions	from	other	clients.
The	server	doesn’t	stop	in	the	middle	of	an	insert	to	allow	for	other	changes	just	because
of	the	LOW_PRIORITY	setting.	Incidentally,	LOW_PRIORITY	and	HIGH_PRIORITY	aren’t
supported	by	InnoDB	tables.	It’s	unnecessary	because	it	doesn’t	lock	the	table,	but	locks
the	relevant	rows.

One	potential	inconvenience	with	an	INSERT	LOW_PRIORITY	statement	is	that	your	mysql
client	will	be	tied	up	waiting	for	the	statement	to	be	completed	successfully	by	the	server.

www.it-ebooks.info

http://www.it-ebooks.info/

So	if	you’re	inserting	data	into	a	busy	server	with	a	low	priority	setting	using	the	mysql
client,	your	client	could	be	locked	up	for	minutes,	maybe	even	hours,	depending	on	how
busy	the	server	is	at	the	time.	Using	LOW_PRIORITY	causes	your	client	to	wait	until	the
server	starts	the	insert,	and	then	the	client	is	locked,	as	well	as	the	related	tables	on	the
server	are	locked.

Delaying	an	INSERT

As	an	alternative,	you	can	use	the	DELAYED	option	instead	of	the	LOW_PRIORITY	option.
This	is	deprecated	in	5.6.6	of	MySQL.	However,	if	you’re	using	an	older	version,	this	is
how	you	would	use	it:

INSERT	DELAYED	INTO	bird_sightings

…

This	is	very	similar	to	LOW_PRIORITY;	MySQL	will	take	the	request	as	a	low-priority	one
and	put	it	on	its	list	of	tasks	to	perform	when	it	has	a	break.	The	difference	and	advantage
is	that	it	will	release	the	mysql	client	immediately	so	that	the	client	can	go	on	to	enter
other	SQL	statements	or	even	exit.	Another	advantage	of	this	method	is	that	multiple
INSERT	DELAYED	requests	are	batched	together	for	block	insertion	when	there	is	a	gap	in
server	traffic,	making	the	process	potentially	faster	than	INSERT	LOW_PRIORITY.

The	drawback	to	this	choice	is	that	the	client	is	never	informed	whether	the	delayed
insertion	is	actually	made.	The	client	gets	back	error	messages	when	the	statement	is
entered	—	the	statement	has	to	be	valid	before	it	will	be	queued	—	but	it’s	not	told	of
problems	that	occur	after	the	SQL	statement	is	accepted	by	the	server.

This	brings	up	another	drawback:	delayed	insertions	are	stored	in	the	server’s	memory.	So
if	the	MySQL	daemon	dies	or	is	manually	killed,	the	inserts	are	lost	and	the	client	is	not
notified	of	the	failure.	You’ll	have	to	manually	check	the	database	or	the	server’s	logs	to
determine	whether	the	inserts	failed.	As	a	result,	the	DELAYED	option	is	not	always	a	good
alternative.

Raising	the	priority	of	an	INSERT

The	third	priority	option	for	the	INSERT	statement	is	HIGH_PRIORITY.	INSERT	statements	by
default	are	usually	given	higher	priority	over	read-only	SQL	statements	so	there	would
seem	to	be	no	need	for	this	option.	However,	the	default	of	giving	write	statements
priority	over	read	statements	(e.g.,	INSERT	over	SELECT)	can	be	removed.	Post-Installation
touched	on	the	configuration	of	MySQL	and	MariaDB.	One	of	the	server	options	that	may
be	set	is	--low-priority-updates.	This	will	make	write	statements	by	default	a	low
priority	statement,	or	at	least	equal	to	read-only	SQL	statements.	If	a	server	has	been	set	to
this	default	setting,	you	can	add	the	HIGH_PRIORITY	option	to	an	INSERT	statement	to
override	the	default	setting	of	LOW_PRIORITY	so	that	it	has	high	priority	over	read
statements.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
At	this	point,	you	should	have	a	good	understanding	of	MySQL	and	MariaDB.	You	should
understand	the	basic	structure	of	a	database	and	its	tables.	You	should	now	see	the	value	of
having	smaller	multiple	tables.	You	should	no	longer	envision	a	database	as	one	large
table	or	like	a	spreadsheet.	You	should	have	a	good	sense	of	columns	and	how	to	enter
data	into	them,	especially	if	you	have	done	all	of	the	exercises	at	the	end	of	the	previous
two	chapters.	You	should	not	be	overwhelmed	at	this	point.

Chapter	7	delves	more	deeply	into	how	to	retrieve	data	from	tables	using	the	SELECT
statement.	We	have	already	touched	on	this	SQL	statement	several	times.	However,	you
saw	only	a	sampling	of	how	you	might	use	SELECT	in	this	chapter	and	in	previous	ones,	to
give	you	a	sense	of	why	we	were	creating	and	adding	data	the	way	we	did	to	tables.	The
next	chapter	will	cover	the	SELECT	statement	in	much	more	detail.

The	INSERT,	SELECT,	and	the	UPDATE	statements	are	the	most	used	SQL	statements.	If	you
want	to	learn	MySQL	and	MariaDB	well,	you	need	to	know	these	statements	well.	You
need	to	know	how	to	do	the	basics,	as	well	as	be	familiar	with	the	more	specialized
aspects	of	using	SELECT.	You’ll	accomplish	that	in	the	next	chapter.

Before	moving	on	to	the	next	chapter,	though,	complete	the	following	exercises.	They	will
help	you	to	retain	what	you’ve	learned	about	the	INSERT	statement	in	this	chapter.	Don’t
skip	them.	This	is	useful	and	necessary	to	building	a	solid	foundation	in	learning	MySQL
and	MariaDB.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises
Here	are	some	exercises	to	get	practice	using	the	INSERT	statement	and	a	few	others	that
we	covered	in	this	chapter.	So	that	these	exercises	won’t	be	strictly	mundane	data	entry,	a
couple	of	them	call	for	you	to	create	some	tables	mentioned	in	this	chapter.	The	practice	of
creating	tables	will	help	you	to	understand	data	entry	better.	The	process	of	entering	data
will	help	you	to	become	wiser	when	creating	tables.	Both	inform	each	other.

1.	 In	the	exercises	at	the	end	of	Chapter	4,	you	were	asked	to	create	a	table	called
birds_body_shapes.	This	table	will	be	used	for	identifying	birds.	It	will	be
referenced	from	the	birds	table	by	way	of	the	column	called	body_id.	The	table	is
to	contain	descriptions	of	body	shapes	of	birds,	which	is	a	key	factor	in	identifying
birds:	if	it	looks	like	a	duck,	walks	like	a	duck,	and	quacks	like	a	duck,	it	may	be	a
goose	—	but	it’s	definitely	not	a	hummingbird.	Here	is	an	initial	list	of	names	for
general	shapes	of	birds:

Hummingbird

Long-Legged	Wader

Marsh	Hen

Owl

Perching	Bird

Perching	Water	Bird

Pigeon

Raptor

Seabird

Shore	Bird

Swallow

Tree	Clinging

Waterfowl

Woodland	Fowl

Construct	an	INSERT	statement	using	the	multiple-row	syntax	—	not	the	emphatic
method	—	for	inserting	data	into	the	birds_body_shapes	table.	You’ll	have	to	set
the	body_id	to	a	three-letter	code.	You	decide	on	that,	but	you	might	base	it
somewhat	on	the	names	of	the	shapes	themselves	(e.g.,	Marsh	Hen	might	be	MHN
and	Owl	might	be	simply	OWL).	Just	make	sure	each	ID	is	unique.	For	the
body_shape	column,	use	the	text	I	have	just	shown,	or	reword	it	if	you	want.	For
now,	skip	the	third	column,	body_example.

2.	 You	were	asked	also	in	the	exercises	at	the	end	of	Chapter	4	to	create	another	table
for	identifying	birds,	called	birds_wing_shapes.	This	describes	the	shapes	of	bird
wings.	Here’s	an	initial	list	of	names	for	general	wing	shapes:

Broad

Rounded

Pointed

www.it-ebooks.info

http://www.it-ebooks.info/

Tapered

Long

Very	Long

Construct	an	INSERT	statement	to	insert	these	items	into	the	birds_wing_shapes
table	using	the	emphatic	syntax	—	the	method	that	includes	the	SET	clause.	Set	the
wing_id	to	a	two-letter	code.	You	decide	these	values,	as	you	did	earlier	for
body_id.	For	the	wing_shape	column,	use	the	text	just	shown.	Don’t	enter	a	value
for	the	wing_example	column	yet.

3.	 The	last	bird	identification	table	in	which	to	enter	data	is	birds_bill_shapes.	Use
the	INSERT	statement	to	insert	data	into	this	table,	but	whichever	multiple-row
method	you	prefer.	You	determine	the	two-letter	values	for	bill_id.	Don’t	enter
values	for	bill_example.	Use	the	following	list	of	bill	shapes	for	the	value	of
bill_shape:

All	Purpose

Cone

Curved

Dagger

Hooked

Hooked	Seabird

Needle

Spatulate

Specialized

4.	 Execute	a	SELECT	statement	to	view	the	row	from	the	birds_body_shapes	table
where	the	value	of	the	body_shape	column	is	Woodland	Fowl.	Then	replace	that	row
with	a	new	value	for	the	body_shape	column.	Replace	it	with	Upland	Ground	Birds.
To	do	this,	use	the	REPLACE	statement,	covered	in	Replacing	Data.	In	the	VALUES
clause	of	the	REPLACE	statement,	provide	the	same	value	previously	set	for	the
body_id	so	that	it	is	not	lost.
After	you	enter	the	REPLACE	statement,	execute	a	SELECT	statement	to	retrieve	all	the
rows	of	data	in	the	birds_body_shapes	table.	Look	how	the	data	changed	for	the
row	you	replaced.	Make	sure	it’s	correct.	If	not,	try	again	either	using	REPLACE	or
UPDATE.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	7.	Selecting	Data
Previous	chapters	discussed	the	important	topics	of	organizing	your	tables	well	and	getting
data	in	to	them.	In	this	chapter,	we	will	cover	a	key	objective	that	makes	the	others	pay
off:	retrieving	the	data	stored	in	a	database.	This	is	commonly	called	a	database	query.

The	simplest	way	to	retrieve	data	from	a	MySQL	or	MariaDB	database	—	to	select	data
—	is	to	use	the	SQL	statement,	SELECT.	We	used	this	SQL	statement	a	few	times	in
previous	chapters.	In	this	chapter,	we	will	cover	it	in	greater	detail.	It’s	not	necessary	to
know	or	use	all	of	the	may	options,	but	some	techniques	such	as	joining	tables	together	are
basic	to	using	relational	databases.

We’ll	begin	this	chapter	by	reviewing	the	basics	of	the	SELECT	statement,	and	then
progress	to	more	involved	variants.	When	you	finish	this	chapter,	you	will	hopefully	have
a	good	understanding	of	how	to	use	SELECT	for	most	of	your	needs	as	you	start	out	as	a
database	developer,	as	well	as	be	prepared	for	the	many	possibilities	and	special	situations
that	may	arise	over	the	years	of	developing	databases	with	MySQL	and	MariaDB.

In	previous	chapters,	especially	in	the	exercises,	you	were	asked	to	enter	data	into	the
tables	that	we	created	and	altered	in	the	chapters	of	the	previous	part	of	this	book.
Entering	data	on	your	own	was	good	for	training	purposes,	but	we	now	need	much	more
data	in	our	database	to	better	appreciate	the	examples	in	this	chapter.	If	you	haven’t	done
so	already,	go	to	this	book’s	website	and	download	the	dump	files	that	contain	tables	of
data.

Download	rookery.sql	to	get	the	whole	rookery	database,	with	plenty	of	data	for	use	in
our	explorations.	Once	you	have	the	dump	file	on	your	system	(let’s	assume	you	put	it	in
/tmp/rookery.sql),	enter	the	following	from	the	command	line:

mysql	--user='your_name'	-p	\

rookery	<	/tmp/rookery.sql

The	command	prompts	for	your	password,	logs	you	in	using	the	username	assigned	to
you,	and	runs	the	statements	in	the	rookery.sql	file	on	the	rookery	database.	If	everything
goes	well,	there	should	be	no	message	in	response,	just	the	command-line	prompt	when
it’s	finished.

www.it-ebooks.info

http://mysqlresources.com/files
http://www.it-ebooks.info/

Basic	Selection
The	basic	elements	of	the	syntax	for	the	SELECT	statement	are	the	SELECT	keyword,	the
column	you	want	to	select,	and	the	table	from	which	to	retrieve	the	data:

SELECT	column	FROM	table;

If	you	want	to	select	more	than	one	column,	list	them	separated	by	commas.	If	you	want	to
select	all	of	the	columns	in	a	table,	you	can	use	the	asterisk	as	a	wildcard	instead	of	listing
all	of	the	columns.	Let’s	use	the	rookery	database	you	just	loaded	with	data	to	see	a
practical	example	of	this	basic	syntax.	Enter	the	following	SQL	statement	in	mysql	to	get	a
list	of	all	of	the	columns	and	rows	in	the	birds	table:

USE	rookery;

SELECT	*	FROM	birds;

This	is	the	most	minimal	SELECT	statement	that	you	can	execute	successfully.	It	tells
MySQL	to	retrieve	all	of	the	data	contained	in	the	birds	table.	It	displays	the	columns	in
the	order	you	defined	them	in	the	table’s	CREATE	or	ALTER	statements,	and	displays	rows	in
the	order	they	are	found	in	the	table,	which	is	usually	the	order	that	the	data	was	entered
into	the	table.

To	select	only	certain	columns,	do	something	like	this:
SELECT	bird_id,	scientific_name,	common_name

FROM	birds;

This	SELECT	statement	selects	only	three	columns	from	each	row	found	in	the	birds	table.
There	are	also	many	ways	to	choose	particular	rows,	change	the	order	in	which	they	are
displayed,	and	limit	the	number	shown.	These	are	covered	in	the	following	sections	of	this
chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting	by	a	Criteria
Suppose	that	we	want	to	select	only	birds	of	a	certain	family,	say	the	Charadriidae	(i.e.,
Plovers).	Looking	in	the	bird_families	table,	we	find	that	its	family_id	is	103.	Using	a
WHERE	clause	with	the	SELECT	statement,	we	can	retrieve	a	list	of	birds	from	the	birds
table	for	this	particular	family	of	birds	like	so:

SELECT	common_name,	scientific_name

FROM	birds	WHERE	family_id	=	103

LIMIT	3;

+----------------------+-------------------------+

|	common_name										|	scientific_name									|

+----------------------+-------------------------+

|	Mountain	Plover						|	Charadrius	montanus					|

|	Snowy	Plover									|	Charadrius	alexandrinus	|

|	Black-bellied	Plover	|	Pluvialis	squatarola				|

+----------------------+-------------------------+

This	SELECT	statement	requests	two	columns,	in	a	different	order	from	the	way	the	data	is
listed	in	the	table	—	in	the	table	itself,	scientific_name	precedes	common_name.	I	also
added	the	LIMIT	clause	to	keep	the	results	down	to	the	first	three	rows	in	the	table.	We’ll
talk	more	about	the	LIMIT	clause	in	a	little	while.

NOTE

Because	we	separated	families	into	a	separate	table,	you	had	to	look	at	the	bird_families	table	to	get	the	right	ID
before	selecting	birds	from	the	birds	table.	That	seems	round-about.	There	is	a	streamlined	way	to	ask	for	a	family
name	such	as	Charadriidae	instead	of	a	number.	They’re	called	joins.	We’ll	cover	them	later.

This	is	all	fairly	straightforward	and	in	line	with	what	we’ve	seen	in	several	other
examples	in	previous	chapters.	Let’s	move	on	and	take	a	look	at	how	to	change	the	order
of	the	results.

www.it-ebooks.info

http://www.it-ebooks.info/

Ordering	Results
The	previous	example	selected	specific	columns	from	the	birds	table	and	limited	the
results	with	the	LIMIT	clause.	However,	the	rows	were	listed	in	whatever	order	they	were
found	in	the	table.	We’ve	decided	to	see	only	a	tiny	subset	of	the	birds	in	the	Charadriidae
family,	so	ordering	can	make	a	difference.	If	we	want	to	put	the	results	in	alphabetical
order	based	on	the	values	of	the	common_name	column,	we	add	an	ORDER	BY	clause	like
this:

SELECT	common_name,	scientific_name

FROM	birds	WHERE	family_id	=	103

ORDER	BY	common_name

LIMIT	3;

+-----------------------+----------------------+

|	common_name											|	scientific_name						|

+-----------------------+----------------------+

|	Black-bellied	Plover		|	Pluvialis	squatarola	|

|	Mountain	Plover							|	Charadrius	montanus		|

|	Pacific	Golden	Plover	|	Pluvialis	fulva						|

+-----------------------+----------------------+

Notice	that	the	ORDER	BY	clause	is	located	after	the	WHERE	clause	and	before	the	LIMIT
clause.	Not	only	will	this	statement	display	the	rows	in	order	by	common_name,	but	it	will
retrieve	only	the	first	three	rows	based	on	the	ordering.	That	is	to	say,	MySQL	will	first
retrieve	all	of	the	rows	based	on	the	WHERE	clause,	store	those	results	in	a	temporary	table
behind	the	scenes,	order	the	data	based	on	the	ORDER	BY	clause,	and	then	return	to	the
mysql	client	the	first	three	rows	found	in	that	temporary	table	based	on	the	LIMIT	clause.
This	activity	is	the	reason	for	the	positioning	of	each	clause.

By	default,	the	ORDER	BY	clause	uses	ascending	order,	which	means	from	A	to	Z	for	an
alphabetic	column.	If	you	want	to	display	data	in	descending	order,	add	the	DESC	option,
as	in	ORDER	BY	DESC.	There’s	also	a	contrasting	ASC	option,	but	you	probably	won’t	need
to	use	it	because	ascending	order	is	the	default.

To	order	by	more	than	one	column,	give	all	the	columns	in	the	ORDER	BY	clause	in	a
comma-separated	list.	Each	column	can	be	sorted	in	ascending	or	descending	order.	The
clause	sorts	all	the	data	by	the	first	column	you	specify,	and	then	within	that	order	by	the
second	column,	etc.	To	illustrate	this,	we’ll	select	another	column	from	the	birds	table,
family_id,	and	we’ll	get	birds	from	a	few	more	families.	We’ll	select	some	other	types	of
shore	birds:	Oystercatchers	(i.e.,	Haematopodidae),	Stilts	(e.g.,	Recurvirostridae),	and
Sandpipers	(e.g.,	Scolopacidae).	First,	we	need	the	family_id	for	each	of	these	families.
Execute	the	following	on	your	server:

SELECT	*	FROM	bird_families

WHERE	scientific_name

IN('Charadriidae','Haematopodidae','Recurvirostridae','Scolopacidae');

+-----------+------------------+------------------------------+----------+

|	family_id	|	scientific_name		|	brief_description												|	order_id	|

+-----------+------------------+------------------------------+----------+

|							103	|	Charadriidae					|	Plovers,	Dotterels,	Lapwings	|						102	|

|							160	|	Haematopodidae			|	Oystercatchers															|						102	|

|							162	|	Recurvirostridae	|	Stilts	and	Avocets											|						102	|

|							164	|	Scolopacidae					|	Sandpipers	and	Allies								|						102	|

+-----------+------------------+------------------------------+----------+

In	this	SELECT	statement,	we	added	another	item	to	the	WHERE	clause,	the	IN	operator.	It
lists,	within	parentheses,	the	various	values	we	want	in	the	scientific_name	column.

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s	use	the	IN	operator	again	to	get	a	list	of	birds	and	also	test	the	LIMIT	clause:
SELECT	common_name,	scientific_name,	family_id

FROM	birds

WHERE	family_id	IN(103,	160,	162,	164)

ORDER	BY	common_name

LIMIT	3;

+-------------+--------------------------------+-----------+

|	common_name	|	scientific_name																|	family_id	|

+-------------+--------------------------------+-----------+

|													|	Charadrius	obscurus	aquilonius	|							103	|

|													|	Numenius	phaeopus	phaeopus					|							164	|

|													|	Tringa	totanus	eurhinus								|							164	|

+-------------+--------------------------------+-----------+

Notice	that	we	didn’t	put	the	numeric	values	in	quotes	as	we	did	with	the	family	names	in
the	previous	SQL	statement.	Single	or	double	quotes	are	necessary	for	strings,	but	they’re
optional	for	numeric	values.	However,	it’s	a	better	practice	to	not	use	quotes	around
numeric	values.	They	can	affect	performance	and	cause	incorrect	results	if	you	mix	them
with	strings.

There	is	one	odd	thing	about	the	results	here:	there	aren’t	any	common	names	for	the	birds
returned.	That’s	not	a	mistake.	About	10,000	birds	in	the	birds	table	are	true	species	of
birds,	and	about	20,000	are	subspecies.	Many	subspecies	don’t	have	a	unique	common
name.	With	about	30,000	species	and	subspecies	of	birds,	with	all	of	the	minor	nuances
between	the	subspecies	bird	families,	there	just	aren’t	common	names	for	all	of	them.
Each	bird	has	a	scientific	name	assigned	by	ornithologists,	but	everyday	people	who	use
the	common	names	for	birds	don’t	see	the	subtle	distinctions	that	ornithologists	see.	This
is	why	the	scientific_name	column	is	necessary	and	why	the	common_name	column
cannot	be	a	key	column	in	the	table.

Let’s	execute	that	SQL	statement	again,	but	add	another	factor	to	the	WHERE	clause	to	show
only	birds	with	a	value	for	the	common_name	column:

SELECT	common_name,	scientific_name,	family_id

FROM	birds

WHERE	family_id	IN(103,	160,	162,	164)

AND	common_name	!=	''

ORDER	BY	common_name

LIMIT	3;

+-----------------------+-----------------------+-----------+

|	common_name											|	scientific_name							|	family_id	|

+-----------------------+-----------------------+-----------+

|	African	Oystercatcher	|	Haematopus	moquini				|							160	|

|	African	Snipe									|	Gallinago	nigripennis	|							164	|

|	Amami	Woodcock								|	Scolopax	mira									|							164	|

+-----------------------+-----------------------+-----------+

In	the	WHERE	clause,	we	added	the	AND	logical	operator	to	specify	a	second	filter.	For	a	row
to	match	the	WHERE	clause,	the	family_id	must	be	one	in	the	list	given	and	the
common_name	must	not	be	equal	to	a	blank	value.

Nonprogrammers	will	have	to	learn	a	few	conventions	to	use	large	WHERE	clauses.	We’ve
seen	that	an	equals	sign	says,	“The	column	must	contain	this	value,”	but	the	!=	construct
says,	“The	column	must	not	contain	this	value.”	And	in	our	statement,	we	used	''	to	refer
to	an	empty	string.	So	we’ll	get	the	rows	where	the	common	name	exists.

In	this	case,	we	couldn’t	ask	for	non-NULL	columns.	We	could	have	set	up	the	table	so
that	birds	without	common	names	had	NULL	in	the	common_name	column,	but	we	chose	to

www.it-ebooks.info

http://www.it-ebooks.info/

instead	use	empty	strings.	That’s	totally	different	in	meaning:	NULL	means	there	is	no
value,	whereas	the	empty	string	is	still	a	string	even	if	there	are	no	characters	in	it.	We
could	have	used	NULL,	but	having	chosen	the	empty	string,	we	must	use	the	right	value
in	our	WHERE	clause.

Incidentally,	!=	is	the	same	as	<>	(i.e.,	less-than	sign	followed	by	greater-than	sign).

www.it-ebooks.info

http://www.it-ebooks.info/

Limiting	Results
The	birds	table	has	nearly	30,000	rows,	so	selecting	data	without	limits	can	return	more
rows	than	you	might	want	to	view	at	a	time.	We’ve	already	used	the	LIMIT	clause	to
resolve	this	problem.	We	limited	the	results	of	the	SELECT	statement	to	three	rows,	the	first
three	rows	based	on	the	WHERE	and	ORDER	BY	clauses.	If	we’d	like	to	see	the	subsequent
rows,	maybe	the	next	two	based	on	the	criteria	we	gave	previously,	we	could	change	the
LIMIT	clause	to	show	five	rows.	But	an	alternative,	which	is	often	a	better	choice,	is	to	do
something	like	this:

SELECT	common_name,	scientific_name,	family_id

FROM	birds

WHERE	family_id	IN(103,	160,	162,	164)

AND	common_name	!=	''

ORDER	BY	common_name

LIMIT	3,	2;

+------------------------+-------------------------+-----------+

|	common_name												|	scientific_name									|	family_id	|

+------------------------+-------------------------+-----------+

|	American	Avocet								|	Recurvirostra	americana	|							162	|

|	American	Golden-Plover	|	Pluvialis	dominica						|							103	|

+------------------------+-------------------------+-----------+

This	LIMIT	clause	has	two	values:	the	point	where	we	want	the	results	to	begin,	then	the
number	of	rows	to	display.	The	result	is	to	show	rows	3	and	4.	Incidentally,	LIMIT	3	used
previously	is	the	same	as	LIMIT	0,	3:	the	0	tells	MySQL	not	to	skip	any	rows.

www.it-ebooks.info

http://www.it-ebooks.info/

Combining	Tables
So	far	in	this	chapter	we’ve	been	working	with	just	one	table.	Let’s	look	at	some	ways	to
select	data	from	more	than	one	table.	To	do	this,	we	will	have	to	tell	MySQL	the	tables
from	which	we	want	data	and	how	to	join	them	together.

For	an	example,	let’s	get	a	list	of	birds	with	their	family	names.	To	keep	the	query	simple,
we’ll	select	birds	from	different	families,	but	all	in	the	same	order	of	birds.	In	earlier
examples	where	we	got	a	list	of	shore	birds,	they	all	had	the	same	order_id	of	102.	We’ll
use	that	value	again.	Enter	this	SELECT	statement	on	your	server:

SELECT	common_name	AS	'Bird',

bird_families.scientific_name	AS	'Family'

FROM	birds,	bird_families

WHERE	birds.family_id	=	bird_families.family_id

AND	order_id	=	102

AND	common_name	!=	''

ORDER	BY	common_name	LIMIT	10;

+------------------------+------------------+

|	Bird																			|	Family											|

+------------------------+------------------+

|	African	Jacana									|	Jacanidae								|

|	African	Oystercatcher		|	Haematopodidae			|

|	African	Skimmer								|	Laridae										|

|	African	Snipe										|	Scolopacidae					|

|	Aleutian	Tern										|	Laridae										|

|	Amami	Woodcock									|	Scolopacidae					|

|	American	Avocet								|	Recurvirostridae	|

|	American	Golden-Plover	|	Charadriidae					|

|	American	Oystercatcher	|	Haematopodidae			|

|	American	Woodcock						|	Scolopacidae					|

+------------------------+------------------+

This	SELECT	statement	returns	one	column	from	the	birds	table	and	one	from	the
bird_families	table.	This	is	a	hefty	SQL	statement,	but	don’t	let	it	fluster	you.	It’s	like
previous	statements	in	this	chapter,	but	with	some	minor	changes	and	one	significant	one.
First,	let’s	focus	on	the	one	significant	change:	how	we’ve	drawn	data	from	two	tables.

The	FROM	clause	lists	the	two	tables,	separated	by	a	comma.	In	the	WHERE	clause,	we
indicated	that	we	want	rows	in	which	the	value	of	family_id	in	the	two	tables	is	equal.
Otherwise,	we	would	have	duplicate	rows	in	the	results.	Because	those	columns	have	the
same	name	(family_id)	in	both	tables,	to	prevent	ambiguity,	we	put	the	table	name	before
the	colum	name,	separated	by	a	dot	(e.g.,	birds.family_id).	We	did	the	same	thing	for
the	scientific	name	in	the	column	list	(bird_families.scientific_name).	If	we	don’t	do
that,	MySQL	would	be	confused	as	to	whether	we	want	the	scientific_name	from	the
birds	or	the	bird_families	table.	This	would	generate	an	error	like	this:

ERROR	1052	(23000):	Column	'scientific_name'	in	field	list	is	ambiguous

You	may	have	noticed	that	another	new	item	was	added	to	the	SELECT	statement:	the	AS
keyword.	This	specifies	a	substitute	name,	or	alias,	for	the	heading	in	the	results	set	for
the	column.	Without	the	AS	keyword	for	the	column	containing	the	family	names,	the
heading	would	say	bird_families.scientific_name.	That’s	not	as	attractive.	This	is
another	style	factor,	but	it	can	have	more	practical	aspects	that	we’ll	see	later.	The
keyword	AS	can	also	be	used	to	specify	a	table	name	like	so:

SELECT	common_name	AS	'Bird',

families.scientific_name	AS	'Family'

FROM	birds,	bird_families	AS	families

WHERE	birds.family_id	=	families.family_id

www.it-ebooks.info

http://www.it-ebooks.info/

AND	order_id	=	102

AND	common_name	!=	''

ORDER	BY	common_name	LIMIT	10;

In	this	example,	we	provided	an	alias	for	the	bird_families	table.	We	set	it	to	the	shorter
name	families.	Note	that	aliases	for	table	names	must	not	be	in	quotes.

After	setting	the	alias,	we	must	use	it	wherever	we	want	to	refer	to	the	table.	So	we	have
to	change	the	column	selected	in	the	field	list	from	bird_families.scientific_name	to
families.scientific_name.	We	also	have	to	change	the	column	name
bird_families.family_id	in	the	WHERE	clause	to	families.family_id.	If	we	don’t	make
this	final	change,	we’ll	get	the	following	error:

ERROR	1054	(42S22):

Unknown	column	'bird_families.family_id'	in	'where	clause'

Let’s	add	a	third	table	to	the	previous	SQL	statement,	to	get	the	name	of	the	order	of	birds
to	which	the	birds	belong.	You	can	do	that	by	entering	this	SQL	statement	on	your	server:

SELECT	common_name	AS	'Bird',

families.scientific_name	AS	'Family',

orders.scientific_name	AS	'Order'

FROM	birds,	bird_families	AS	families,	bird_orders	AS	orders

WHERE	birds.family_id	=	families.family_id

AND	families.order_id	=	orders.order_id

AND	families.order_id	=	102

AND	common_name	!=	''

ORDER	BY	common_name	LIMIT	10,	5;

+------------------+------------------+-----------------+

|	Bird													|	Family											|	Order											|

+------------------+------------------+-----------------+

|	Ancient	Murrelet	|	Alcidae										|	Charadriiformes	|

|	Andean	Avocet				|	Recurvirostridae	|	Charadriiformes	|

|	Andean	Gull						|	Laridae										|	Charadriiformes	|

|	Andean	Lapwing			|	Charadriidae					|	Charadriiformes	|

|	Andean	Snipe					|	Scolopacidae					|	Charadriiformes	|

+------------------+------------------+-----------------+

Let’s	look	at	the	changes	from	the	previous	statement	to	this	one.	We	added	the	third	table
to	the	FROM	clause	and	gave	it	an	alias	of	orders.	To	properly	connect	the	third	table,	we
had	to	add	another	evaluator	to	the	WHERE	clause:	families.order_id	=
orders.order_id.	This	allows	the	SELECT	to	retrieve	the	right	rows	containing	the
scientific	names	of	the	orders	that	correspond	to	the	rows	we	select	from	the	families.	We
also	added	a	column	to	the	field	list	to	display	the	name	of	the	order.	Because	the	families
we’ve	selected	are	all	from	the	same	order,	that	field	seems	a	little	pointless	in	these
results	but	can	be	useful	as	we	search	more	orders	in	the	future.	We	gave	a	starting	point
for	the	LIMIT	clause	so	that	we	could	see	the	next	five	birds	in	the	results.

NOTE

It’s	not	necessary	to	put	the	field	alias	name	for	a	column	in	quotes	if	the	alias	is	only	one	word.	However,	if	you	use
a	reserved	word	(e.g.,	Order),	you	will	need	to	use	quotes.

www.it-ebooks.info

http://www.it-ebooks.info/

Expressions	and	the	Like
Let’s	change	the	latest	SELECT	statement	to	include	birds	from	multiple	orders.	To	do	this,
we’ll	focus	in	on	the	operator	in	the	WHERE	clause	for	the	common_name:

AND	common_name	!=	''

We’ll	change	the	simple	comparison	here	(i.e.,	the	LIKE	operator,	which	we	saw	in
Chapter	6)	to	select	multiple	names	that	are	similar.	Among	many	families	of	birds,	there
are	often	bird	species	that	are	similar	but	have	different	sizes.	The	smallest	is	sometimes
referred	to	as	the	least	in	the	common	name.	So	let’s	search	the	database	for	birds	with
Least	in	their	name:

SELECT	common_name	AS	'Bird',

families.scientific_name	AS	'Family',

orders.scientific_name	AS	'Order'

FROM	birds,	bird_families	AS	families,	bird_orders	AS	orders

WHERE	birds.family_id	=	families.family_id

AND	families.order_id	=	orders.order_id

AND	common_name	LIKE	'Least%'

ORDER	BY	orders.scientific_name,	families.scientific_name,	common_name

LIMIT	10;

+------------------+---------------+------------------+

|	Bird													|	Family								|	Order												|

+------------------+---------------+------------------+

|	Least	Nighthawk		|	Caprimulgidae	|	Caprimulgiformes	|

|	Least	Pauraque			|	Caprimulgidae	|	Caprimulgiformes	|

|	Least	Auklet					|	Alcidae							|	Charadriiformes		|

|	Least	Tern							|	Laridae							|	Charadriiformes		|

|	Least	Sandpiper		|	Scolopacidae		|	Charadriiformes		|

|	Least	Seedsnipe		|	Thinocoridae		|	Charadriiformes		|

|	Least	Flycatcher	|	Tyrannidae				|	Passeriformes				|

|	Least	Bittern				|	Ardeidae						|	Pelecaniformes			|

|	Least	Honeyguide	|	Indicatoridae	|	Piciformes							|

|	Least	Grebe						|	Podicipedidae	|	Podicipediformes	|

+------------------+---------------+------------------+

In	the	preceding	example,	using	the	LIKE	operator,	MySQL	selected	rows	in	which	the
common_name	starts	with	Least	and	ends	with	anything	(i.e.,	the	wildcard,	%).	We	also
removed	the	families.order_id	=	102	clause,	so	that	we	wouldn’t	limit	the	birds	to	a
single	order.	The	results	now	have	birds	from	a	few	different	orders.

We	also	changed	the	ORDER	BY	clause	to	have	MySQL	order	the	results	in	the	temporary
table	first	by	the	bird	order’s	scientific	name,	then	by	the	bird	family’s	scientific	name,
and	then	by	the	bird’s	common	name.	If	you	look	at	the	results,	you	can	see	that’s	what	it
did:	it	sorted	the	orders	first.	If	you	look	at	the	rows	for	the	Charadriiformes,	you	can	see
that	the	families	for	that	order	are	in	alphabetical	order.	The	two	birds	in	the
Caprimulgidae	family	are	in	alphabetical	order.

NOTE

You	cannot	use	alias	names	for	columns	in	the	ORDER	BY	clause,	but	you	can	use	alias	table	names.	In	fact,	they’re
required	if	you’ve	used	the	aliases	in	the	FROM	clause.

The	previous	example	used	the	LIKE	operator,	which	has	limited	pattern	matching
abilities.	As	an	alternative,	you	can	use	REGEXP,	which	has	many	pattern	matching
characters	and	classes.	Let’s	look	at	a	simpler	example,	of	the	previous	SELECT	statement,
but	using	REGEXP.	In	the	previous	example	we	searched	for	small	birds,	birds	with	a
common	name	starting	with	the	word	Least.	The	largest	bird	in	a	family	is	typically	called
Great.	To	add	these	birds,	enter	the	following	SQL	statement	on	your	server:

www.it-ebooks.info

http://www.it-ebooks.info/

SELECT	common_name	AS	'Birds	Great	and	Small'

FROM	birds

WHERE	common_name	REGEXP	'Great|Least'

ORDER	BY	family_id	LIMIT	10;

+-----------------------------+

|	Birds	Great	and	Small							|

+-----------------------------+

|	Great	Northern	Loon									|

|	Greater	Scaup															|

|	Greater	White-fronted	Goose	|

|	Greater	Sand-Plover									|

|	Great	Crested	Tern										|

|	Least	Tern																		|

|	Great	Black-backed	Gull					|

|	Least	Nighthawk													|

|	Least	Pauraque														|

|	Great	Slaty	Woodpecker						|

+-----------------------------+

The	expression	we’re	giving	with	REGEXP,	within	the	quote	marks,	contains	two	string
values:	Great	and	Least.	By	default,	MySQL	assumes	the	text	given	for	REGEXP	is	meant
to	be	for	the	start	of	the	string.	To	be	emphatic,	you	can	insert	a	carat	(i.e.,	^)	at	the	start	of
these	string	values,	but	it’s	unnecessary.	The	vertical	bar	(i.e.,	|)	between	the	two
expressions	signifies	that	either	value	is	acceptable	—	it	means	or.

In	the	results,	you	can	see	some	common	bird	names	starting	with	Greater,	not	just	Great.
If	we	don’t	want	to	include	the	Greater	birds,	we	can	exclude	them	with	the	NOT	REGEXP
operator.	Enter	the	following	on	your	server:

SELECT	common_name	AS	'Birds	Great	and	Small'

FROM	birds

WHERE	common_name	REGEXP	'Great|Least'

AND	common_name	NOT	REGEXP	'Greater'

ORDER	BY	family_id	LIMIT	10;

+--------------------------+

|	Birds	Great	and	Small				|

+--------------------------+

|	Great	Northern	Loon						|

|	Least	Tern															|

|	Great	Black-backed	Gull		|

|	Great	Crested	Tern							|

|	Least	Nighthawk										|

|	Least	Pauraque											|

|	Great	Slaty	Woodpecker			|

|	Great	Spotted	Woodpecker	|

|	Great	Black-Hawk									|

|	Least	Flycatcher									|

+--------------------------+

Using	NOT	REGEXP	eliminated	all	of	the	Greater	birds.	Notice	that	it	was	included	with
AND,	and	not	as	part	of	the	REGEXP.

Incidentally,	we’re	ordering	here	by	family_id	to	keep	similar	birds	together	in	the	list
and	to	have	a	good	mix	of	Great	and	Least	birds.	The	results	may	seem	awkward,	though,
as	the	names	of	the	birds	are	not	ordered.	We	could	add	another	column	to	the	ORDER	BY
clause	to	alphabetize	them	within	each	family.

REGEXP	and	NOT	REGEXP	are	case	insensitive.	If	we	want	an	expression	to	be	case	sensitive,
we’ll	need	to	add	the	BINARY	option.	Let’s	get	another	list	of	birds	to	see	this.	This	time
we’ll	search	for	Hawks,	with	the	first	letter	in	uppercase.	This	is	because	we	want	only
Hawks	and	not	other	birds	that	have	the	word,	hawk	in	their	name,	but	are	not	a	Hawk.	For
instance,	we	don’t	want	Nighthawks	and	we	don’t	want	Hawk-Owls.	The	way	the	data	is
in	the	birds	table,	each	word	of	a	common	name	starts	with	an	uppercase	letter	—	the

www.it-ebooks.info

http://www.it-ebooks.info/

names	are	in	title	case.	So	we’ll	eliminate	birds	such	as	Nighthawks	by	using	the	BINARY
option	to	require	that	“Hawk”	be	spelled	with	an	uppercase	H	and	the	other	letters	in
lowercase.	We’ll	use	NOT	REGEXP	to	not	allow	Hawk-Owls.	Try	the	following	on	your
server:

SELECT	common_name	AS	'Hawks'

FROM	birds

WHERE	common_name	REGEXP	BINARY	'Hawk'

AND	common_name	NOT	REGEXP	'Hawk-Owl'

ORDER	BY	family_id	LIMIT	10;

+-------------------+

|	Hawks													|

+-------------------+

|	Red-tailed	Hawk			|

|	Bicolored	Hawk				|

|	Common	Black-Hawk	|

|	Cuban	Black-Hawk		|

|	Rufous	Crab	Hawk		|

|	Great	Black-Hawk		|

|	Black-faced	Hawk		|

|	White-browed	Hawk	|

|	Ridgway's	Hawk				|

|	Broad-winged	Hawk	|

+-------------------+

I	stated	that	REGEXP	and	NOT	REGEXP	are	case	insensitive,	unless	you	add	the	BINARY	option
as	we	did	to	stipulate	the	collating	method	as	binary	(e.g.,	the	letter	H	has	a	different
binary	value	fromn	the	letter	h).	For	the	common_name	column,	though,	we	didn’t	need	to
add	the	BINARY	option	because	the	column	has	a	binary	collation	setting.	We	did	this
unknowingly	when	we	created	the	rookery	database	near	the	beginning	of	Chapter	4.	See
how	we	created	the	database	by	entering	this	from	the	mysql	client:

SHOW	CREATE	DATABASE	rookery	\G

***************************	1.	row	***************************

							Database:	rookery

Create	Database:	CREATE	DATABASE	`rookery`	/*!40100	DEFAULT

																	CHARACTER	SET	latin1	COLLATE	latin1_bin	*/

The	COLLATE	clause	is	set	to	latin1_bin,	meaning	Latin1	binary.	Any	columns	that	we
create	in	tables	in	the	rookery	database,	unless	we	specify	otherwise,	will	be	collated
using	latin1_bin.	Execute	the	following	statement	to	see	how	the	common_name	column
in	the	birds	table	is	set:

SHOW	FULL	COLUMNS

FROM	birds	LIKE	'common_name'	\G

***************************	1.	row	***************************

					Field:	common_name

						Type:	varchar(255)

	Collation:	latin1_bin

						Null:	YES

							Key:

			Default:	NULL

					Extra:

Privileges:	select,insert,update,references

			Comment:	

This	shows	information	just	on	the	common_name	column.	Notice	that	the	Collation	is
latin1_bin.	Because	of	that,	regular	expressions	using	REGEXP	are	case	sensitive	without
having	to	add	the	BINARY	option.

Looking	through	the	birds	table,	we	discover	some	common	names	for	birds	that	contain
the	words,	“Hawk	Owls,”	without	the	hyphen	in	between.	We	didn’t	allow	for	that	in	the

www.it-ebooks.info

http://www.it-ebooks.info/

expression	we	gave.	We	discover	also	that	there	are	birds	in	which	the	word	“Hawk”	is	not
in	title	case	—	so	we	can’t	count	on	looking	for	the	uppercase	letter,	H.	Our	previous
regular	expression	left	those	birds	out	of	the	results.	So	we’ll	have	to	change	the
expression	and	try	a	different	method.	Enter	this	on	your	server:

SELECT	common_name	AS	'Hawks'

FROM	birds

WHERE	common_name	REGEXP	'[[:space:]]Hawk|[[.hyphen.]]Hawk'

AND	common_name	NOT	REGEXP	'Hawk-Owl|Hawk	Owl'

ORDER	BY	family_id;

This	first,	rather	long	REGEXP	expression	uses	a	character	class	and	a	character	name.	The
format	of	character	classes	and	character	names	is	to	put	the	type	of	character	between	two
sets	of	double	brackets.	A	character	class	is	given	between	a	pair	of	colons	(e.g.,
[[:alpha:]]	for	alphabetic	characters).	A	character	name	is	given	between	two	dots	(e.g.,
[[.hyphen.]]	for	a	hyphen).	Looking	at	the	first	expression,	you	can	deduce	that	we	want
rows	in	which	the	common_name	contains	either	“Hawk”	or	“-Hawk”	—	that	is	to	say,
Hawk	preceded	by	a	space	or	a	hyphen.	This	won’t	allow	for	Hawk	preceded	by	a	letter
(e.g.,	Nighthawk).	The	second	expression	excludes	Hawk-Owl	and	Hawk	Owl.

Pattern	matching	in	regular	expressions	in	MySQL	tends	to	be	more	verbose	than	they	are
in	other	languages	like	Perl	or	PHP.	But	they	do	work	for	basic	requirements.	For
elaborate	regular	expressions,	you’ll	have	to	use	an	API	like	the	Perl	DBI	to	process	the
data	outside	of	MySQL.	Because	that	may	be	a	performance	hit,	it’s	better	to	try	to
accomplish	such	tasks	within	MySQL	using	REGEXP.

www.it-ebooks.info

http://www.it-ebooks.info/

Counting	and	Grouping	Results
In	many	of	our	examples,	we	displayed	only	a	few	rows	of	data	because	the	results	could
potentially	contain	thousands	of	rows.	Suppose	we’d	like	to	know	how	many	are
contained	in	the	table.	We	can	do	that	by	adding	a	function	to	the	statement.	In	this	case,
we	want	the	COUNT()	function.	Let’s	see	how	that	would	work:

SELECT	COUNT(*)	FROM	birds;

+----------+

|	COUNT(*)	|

+----------+

|				28891	|

+----------+

We	put	an	asterisk	within	the	parentheses	of	the	function	to	indicate	that	we	want	all	of	the
rows.	We	could	put	a	column	name	instead	of	an	asterisk	to	count	only	rows	that	have
data.	Using	a	column	prevents	MySQL	from	counting	rows	that	have	a	NULL	value	in
that	column.	But	it	will	count	rows	that	have	a	blank	or	empty	value	(i.e.,	'').

It’s	nice	to	know	how	many	rows	are	in	the	birds	table,	but	suppose	we’d	like	to	break
apart	that	count.	Let’s	use	COUNT()	to	count	the	number	of	rows	for	a	particular	family	of
birds,	the	Pelecanidae	—	those	are	Pelicans.	Enter	this	SQL	statement	in	the	mysql	client
on	your	server:

SELECT	families.scientific_name	AS	'Family',

COUNT(*)	AS	'Number	of	Birds'

FROM	birds,	bird_families	AS	families

WHERE	birds.family_id	=	families.family_id

AND	families.scientific_name	=	'Pelecanidae'

+-------------+-----------------+

|	Family						|	Number	of	Birds	|

+-------------+-----------------+

|	Pelecanidae	|														10	|

+-------------+-----------------+

As	you	can	see,	there	are	10	bird	species	recorded	for	the	Pelecanidae	family	in	the	birds
table.	In	this	example,	we	used	the	WHERE	clause	to	limit	the	results	to	the	Pelecanidae
family.	Suppose	we	want	to	know	the	number	of	birds	for	other	bird	families	in	the	same
order	to	which	Pelicans	belong,	to	the	order	called	Pelecaniformes.	To	do	this,	we’ll	add
the	bird_orders	table	to	the	previous	SELECT	statement.	Enter	the	following	from	the
mysql	client:

SELECT	orders.scientific_name	AS	'Order',

families.scientific_name	AS	'Family',

COUNT(*)	AS	'Number	of	Birds'

FROM	birds,	bird_families	AS	families,	bird_orders	AS	orders

WHERE	birds.family_id	=	families.family_id

AND	families.order_id	=	orders.order_id

AND	orders.scientific_name	=	'Pelecaniformes';

+----------------+-------------+-----------------+

|	Order										|	Family						|	Number	of	Birds	|

+----------------+-------------+-----------------+

|	Pelecaniformes	|	Pelecanidae	|													224	|

+----------------+-------------+-----------------++

This	tells	us	that	there	are	224	birds	in	the	birds	table	that	belong	to	Pelecaniformes.
There	are	five	families	in	that	order	of	birds,	but	it	returned	only	the	first	family	name
found.	If	we	want	to	know	the	name	of	each	family	and	the	number	of	birds	in	each
family,	we	need	to	get	MySQL	to	group	the	results.	To	do	this,	we	have	to	tell	it	the

www.it-ebooks.info

http://www.it-ebooks.info/

column	by	which	to	group.	This	is	where	the	GROUP	BY	clause	comes	in.	This	clause	tells
MySQL	to	group	the	results	based	on	the	columns	given	with	the	clause.	Let’s	see	how
that	might	look.	Enter	the	following	on	your	server:

SELECT	orders.scientific_name	AS	'Order',

families.scientific_name	AS	'Family',

COUNT(*)	AS	'Number	of	Birds'

FROM	birds,	bird_families	AS	families,	bird_orders	AS	orders

WHERE	birds.family_id	=	families.family_id

AND	families.order_id	=	orders.order_id

AND	orders.scientific_name	=	'Pelecaniformes'

GROUP	BY	Family;

+----------------+-------------------+-----------------+

|	Order										|	Family												|	Number	of	Birds	|

+----------------+-------------------+-----------------+

|	Pelecaniformes	|	Ardeidae										|													157	|

|	Pelecaniformes	|	Balaenicipitidae		|															1	|

|	Pelecaniformes	|	Pelecanidae							|														10	|

|	Pelecaniformes	|	Scopidae										|															3	|

|	Pelecaniformes	|	Threskiornithidae	|														53	|

+----------------+-------------------+-----------------+

We	gave	the	GROUP	BY	clause	the	Family	alias,	which	is	the	scientific_name	column
from	the	bird_families	table.	MySQL	returns	one	results	set	for	all	five	families,	for	one
SELECT	statement.

The	GROUP	BY	clause	is	very	useful.	You’ll	use	it	often,	so	learn	it	well.	This	clause	and
related	functions	are	covered	in	greater	detail	in	Chapter	12.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
The	SELECT	statement	offers	quite	a	number	of	parameters	and	possibilities	that	I	had	to
skip	to	keep	this	chapter	from	becoming	too	lengthy	and	too	advanced	for	a	learning	book.
For	instance,	there	are	several	options	for	caching	results	and	a	clause	for	exporting	a
results	set	to	a	text	file.	You	can	learn	about	these	from	other	sources	if	you	need	them.

At	this	point,	make	sure	you’re	comfortable	with	the	SELECT	statement	and	its	main
components:	choosing	columns	and	using	field	aliases;	choosing	multiple	tables	in	the
FROM	clause;	how	to	construct	a	WHERE	clause,	including	the	basics	of	regular	expressions;
using	the	ORDER	BY	and	the	GROUP	BY	clauses;	and	limiting	results	with	the	LIMIT	clause.
It	will	take	time	and	practice	to	become	very	comfortable	with	all	of	these	components.
Before	moving	on	to	Chapter	8,	make	sure	to	complete	the	exercises	in	the	next	section.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises
The	following	exercises	will	help	cement	your	understanding	of	the	SELECT	statement.	The
act	of	typing	SQL	statements,	especially	ones	that	you	will	use	often	like	SELECT,	helps
you	to	learn,	memorize,	and	know	them	well.

1.	 Construct	a	SELECT	statement	to	select	the	common	names	of	birds	from	the	birds
table.	Use	the	LIKE	operator	to	select	only	Pigeons	from	the	table.	Order	the	table	by
the	common_name	column,	but	give	it	a	field	alias	of	Bird'.	Don’t	limit	the	results;	let
MySQL	retrieve	all	of	the	rows	that	match.	Execute	the	statement	on	your	server	and
look	over	the	results.
Next,	use	the	same	SELECT	statement,	but	add	a	LIMIT	clause.	Limit	the	results	to	the
first	ten	rows	and	execute	it.	Compare	the	results	to	the	previous	SELECT	statement	to
make	sure	the	results	show	the	1st	through	10th	row.	Then	modify	the	SELECT
statement	again	to	display	the	next	10	rows.	Compare	these	results	to	the	results
from	the	first	SELECT	statement	to	make	sure	you	retrieved	the	11th	through	20th
row.	If	you	didn’t,	find	your	mistake	and	correct	it	until	you	get	it	right.

2.	 In	this	exercise,	you’ll	begin	with	a	simple	SELECT	statement	and	then	make	it	more
complicated.	To	start,	construct	a	SELECT	statement	in	which	you	select	the
scientific_name	and	the	brief_description	from	the	bird_orders	table.	Give	the
field	for	the	scientific_name	an	alias	of	Order	—	and	don’t	forget	to	put	quotes
around	it	because	it’s	a	reserved	word.	Use	an	alias	of	Types	of	Birds	in	Order	for
brief_description.	Don’t	limit	the	results.	When	you	think	that	you	have	the
SELECT	statement	constructed	properly,	execute	it.	If	you	have	errors,	try	to
determine	the	problem	and	fix	the	statement	until	you	get	it	right.
Construct	another	SELECT	statement	in	which	you	retrieve	data	from	the	birds	table.
Select	the	common_name	and	the	scientific_name	columns.	Give	them	field	aliases:
Common	Name	of	Bird	and	Scientific	Name	of	Bird.	Exclude	rows	in	which	the
common_name	column	is	blank.	Order	the	data	by	the	common_name	column.	Limit	the
results	to	25	rows	of	data.	Execute	the	statement	until	it	works	without	an	error.
Merge	the	first	and	second	SELECT	statements	together	to	form	one	SELECT	statement
that	retrieves	the	same	four	columns	with	the	same	alias	from	the	same	two	tables
(this	was	covered	in	Combining	Tables).	It	involves	giving	more	than	one	table	in
the	FROM	clause	and	providing	value	pairs	in	the	WHERE	clause	for	temporarily
connecting	the	tables	to	each	other.	This	one	may	seem	tricky.	So	take	your	time	and
don’t	get	frustrated.	If	necessary,	refer	back	to	Combining	Tables.
Limit	the	results	to	25	rows.	If	you	do	it	right,	you	should	get	the	same	25	birds	from
the	second	SELECT	of	this	exercise,	but	with	two	more	fields	of	data.	Be	sure	to
exclude	rows	in	which	the	common_name	column	is	blank.

3.	 Use	the	SELECT	statement	in	conjunction	with	REGEXP	in	the	WHERE	clause	to	get	a	list
of	birds	from	the	birds	table	in	which	the	common_name	contains	the	word	“Pigeon”
or	“Dove”	(this	was	covered	in	Expressions	and	the	Like).	Give	the	field	for	the
common_name	column	the	alias	>Type	of	Columbidae	—	that’s	the	name	of	the	family
to	which	Doves	and	Pigeons	belong.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	8.	Updating	and	Deleting	Data
Data	in	databases	will	change	often.	There’s	always	something	to	change,	some	bit	of
information	to	add,	some	record	to	delete.	For	these	situations	in	which	you	want	to
change	or	add	pieces	of	data,	you	will	mostly	use	the	UPDATE	statement.	For	situations	in
which	you	want	to	delete	an	entire	row	of	data,	you’ll	primarily	use	the	DELETE	statement.
Both	of	these	SQL	statements	are	covered	extensively	in	this	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Updating	Data
The	UPDATE	statement	changes	the	data	in	particular	columns	of	existing	records.	The
basic	syntax	is	the	UPDATE	keyword	followed	by	the	table	name,	then	a	SET	clause.
Generally	you	add	a	WHERE	clause	so	as	not	to	update	all	of	the	data	in	a	given	table.	Here
is	a	generic	example	of	this	SQL	statement:

UPDATE	table

SET	column	=	value,	...	;

This	syntax	is	similar	to	the	emphatic	version	of	the	INSERT	statement,	which	also	uses	the
SET	clause.	There	isn’t	a	less	emphatic	syntax	for	UPDATE,	as	there	is	with	INSERT.	An
important	distinction	is	that	there	is	no	INTO	clause.	Instead,	the	name	of	the	affected	table
is	just	given	immediately	after	the	UPDATE	keyword.

Let’s	look	at	an	example	of	the	UPDATE	statement.	In	Chapter	5,	we	created	a	database
called	birdwatchers	and	a	table	within	it	called	humans	that	would	contain	data	about
people	who	watch	birds	and	use	the	rookery	site.	We	then	entered	information	on	some	of
those	people.	In	one	of	the	exercises	at	the	end	of	Chapter	5,	we	added	a	column
(country_id)	which	contains	the	country	code	where	the	member	resides.	Suppose	that	of
the	few	members	that	we’ve	entered	already	in	the	table,	all	of	them	live	in	the	United
States.	We	could	set	the	default	value	for	the	country_id	column	to	us,	but	we’re
expecting	most	of	our	members	to	be	in	a	few	countries	of	Europe.	For	now,	we	just	want
to	update	all	of	the	rows	in	the	humans	table	to	set	the	country_id	to	us.	Execute	an
UPDATE	statement	like	this:

UPDATE	birdwatchers.humans

SET	country_id	=	'us';

This	statement	will	set	the	value	for	the	country_id	for	all	of	the	rows	in	the	table.	All	of
them	had	a	NULL	value	before	this,	but	if	they	had	some	other	value	—	a	different
country	code	—	those	values	would	be	changed	to	us.	That’s	a	very	broad	and
comprehensive	action.	Once	you	do	this,	there’s	generally	no	way	to	undo	it	—	unless	you
do	so	in	an	InnoDB	table	and	do	it	as	part	of	a	transaction.	So	be	careful	when	you	use	the
UPDATE	statement.	Use	a	WHERE	clause	to	pinpoint	the	rows	you	want	to	change,	and	test	it
first,	as	we	will	soon	see.

Note	that	the	previous	UPDATE	statement	included	the	name	of	the	database,	because	in
previous	chapters	we	set	the	mysql	client	to	use	rookery	as	the	default	database.	Because
all	of	the	examples	in	this	chapter	will	use	the	birdwatchers	database,	let’s	change	the
default	database	to	it	with	USE:

USE	birdwatchers;

For	the	remainder	of	the	examples	in	this	chapter,	you	should	download	the	rookery	and
the	birdwatchers	databases	from	the	MySQL	Resources	site.	They	will	provide	you
larger	tables	on	which	to	work.

Updating	Specific	Rows
Most	of	the	time,	when	you	use	the	UPDATE	statement	you	will	need	to	include	the	WHERE
clause	to	stipulate	which	rows	are	updated	by	the	values	in	the	SET	clause.	The	conditions
of	a	WHERE	clause	in	an	UPDATE	statement	are	the	same	as	that	of	a	SELECT	statement.	In
fact,	because	they’re	the	same,	you	can	use	the	SELECT	statement	to	test	the	conditions	of

www.it-ebooks.info

http://mysqlresources.com/files
http://www.it-ebooks.info/

the	WHERE	clause	before	using	it	in	the	UPDATE	statement.	We’ll	see	examples	of	that	soon
in	this	chapter.	For	now,	let’s	look	at	a	simple	method	of	conditionally	updating	a	single
row.

The	humans	table	contains	a	row	for	a	young	woman	named	Rusty	Osborne.	She	was
married	recently	and	wants	to	change	her	last	name	to	her	husband’s	name,	Johnson.	We
can	do	this	with	the	UPDATE	statement.	First,	let’s	retrieve	the	record	for	her.	We’ll	select
data	based	on	her	first	and	last	name.	There	may	be	only	one	Rusty	Osborne	in	the
database,	but	there	may	be	a	few	members	with	the	family	name	of	Osborne.	So	we	would
enter	this	in	the	mysql	client:

SELECT	human_id,	name_first,	name_last

FROM	humans

WHERE	name_first	=	'Rusty'

AND	name_last	=	'Osborne';

+----------+------------+-----------+

|	human_id	|	name_first	|	name_last	|

+----------+------------+-----------+

|								3	|	Rusty						|	Osborne			|

+----------+------------+-----------+

Looking	at	the	results,	we	can	see	that	there	is	indeed	only	Rusty	Osborne,	and	that	the
value	of	her	human_id	is	3.	We’ll	use	that	value	in	the	UPDATE	statement	to	be	sure	that	we
update	only	this	one	row.	Let’s	enter	the	following:

UPDATE	humans

SET	name_last	=	'Johnson'

WHERE	human_id	=	3;

SELECT	human_id,	name_first,	name_last

FROM	humans

WHERE	human_id	=	3;

+----------+------------+-----------+

|	human_id	|	name_first	|	name_last	|

+----------+------------+-----------+

|								3	|	Rusty						|	Johnson			|

+----------+------------+-----------+

That	worked	just	fine.	It’s	easy	to	use	the	UPDATE	statement,	especially	when	you	know	the
identification	number	of	the	key	column	for	the	one	row	you	want	to	change.	Let’s
suppose	that	two	of	our	members	who	are	married	women	have	asked	us	to	change	their
title	from	Mrs.	to	Ms.	(this	information	is	contained	in	an	enumerated	column	called
formal_title).	After	running	a	SELECT	statement	to	find	their	records,	we	see	that	their
human_id	numbers	are	24	and	32.	We	could	then	execute	the	following	UPDATE	statement
in	MySQL:

UPDATE	humans

SET	formal_title	=	'Ms.'

WHERE	human_id	IN(24,	32);

Things	get	slightly	more	complicated	when	you	want	to	change	more	than	one	row,	but
it’s	still	easy	if	you	know	the	key	values.	In	this	example,	we	used	the	IN	operator	to	list
the	human_id	numbers	to	match	specific	rows	in	the	table.

Suppose	that	after	updating	the	title	for	the	two	women	just	shown,	we	decide	that	we
want	to	make	this	change	for	all	married	women	in	the	database,	to	get	with	the	modern
times.	We	would	use	the	UPDATE	statement	again,	but	we’ll	have	to	modify	the	WHERE
clause.	There	may	be	too	many	women	with	the	formal_title	of	Mrs.	in	the	table	to
manually	enter	the	human_id	for	all	of	them.	Plus,	there’s	an	easier	way	to	do	it.	First,	let’s

www.it-ebooks.info

http://www.it-ebooks.info/

see	how	the	formal_title	column	looks	now:
SHOW	FULL	COLUMNS

FROM	humans

LIKE	'formal_title'	\G

***************************	1.	row	***************************

					Field:	formal_title

						Type:	enum('Mr.','Miss','Mrs.','Ms.')

	Collation:	latin1_bin

						Null:	YES

							Key:

			Default:	NULL

					Extra:

Privileges:	select,insert,update,references

			Comment:	

Looking	at	the	enumerated	values	of	this	column,	we	decide	that	the	choices	seem
somewhat	sexist	to	us.	We	have	one	choice	for	boys	and	men,	regardless	of	their	age	and
marital	status,	and	three	choices	for	women.	We	also	don’t	have	other	genderless	choices
like	Dr.,	but	we	decide	to	ignore	those	possibilities	for	now.	In	fact,	we	could	eliminate	the
column	so	as	not	to	be	gender	biased,	but	we	decide	to	wait	before	making	that	decision.
At	this	point,	we	want	to	change	our	schema	so	it	limits	the	list	of	choices	in	the	column	to
Mr.	or	Ms.	however,	we	should	not	make	that	change	to	the	schema	until	we	fix	all	the
existing	values	in	the	column.	To	do	that,	we’ll	enter	this	UPDATE	statement:

UPDATE	humans

SET	formal_title	=	'Ms.'

WHERE	formal_title	IN('Miss','Mrs.');

Now	that	all	of	the	members	have	either	a	value	of	Mr.	or	Ms.	in	the	formal_title
column,	we	can	change	the	settings	of	that	column	to	eliminate	the	other	choices.	We’ll
use	the	ALTER	TABLE	statement	covered	in	Chapter	4.	Enter	the	following	to	change	the
table	on	your	server:

ALTER	TABLE	humans

CHANGE	COLUMN	formal_title	formal_title	ENUM('Mr.','Ms.');

Query	OK,	62	rows	affected	(0.13	sec)

Records:	62		Duplicates:	0		Warnings:	0

As	you	can	see	from	the	message	in	the	results,	the	column	change	went	well.	However,	if
we	had	forgotten	to	change	the	data	for	one	of	the	rows	(e.g.,	didn’t	change	Miss	to	Ms.
for	one	person),	the	Warnings	would	show	a	value	of	1.	In	that	case,	you	would	then	have
to	execute	the	SHOW	WARNINGS	statement	to	see	this	warning:

SHOW	WARNINGS	\G

***************************	1.	row	***************************

		Level:	Warning

			Code:	1265

Message:	Data	truncated	for	column	'formal_title'	at	row	44

This	tells	us	that	MySQL	eliminated	the	value	for	the	formal_title	column	of	the	44th
row.	We’d	then	have	to	use	the	UPDATE	statement	to	try	to	set	the	formal_title	for	the
person	whose	title	was	clobbered	and	hope	we	set	the	title	correctly.	That’s	why	it’s
usually	better	to	update	the	data	before	altering	the	table.

Sometimes,	when	changing	bulk	data,	you	have	to	alter	the	table	before	you	can	do	the
update.	For	example,	suppose	that	we	decide	that	we	prefer	to	have	the	enumerated	values
of	the	formal_title	set	to	Mr	or	Ms,	without	any	periods.	To	do	this,	we	would	need	to
add	that	pair	of	choices	to	the	ENUM	column	before	we	eliminate	the	old	values.	Then	we

www.it-ebooks.info

http://www.it-ebooks.info/

can	easily	change	the	data	to	the	new	values.	In	this	situation,	we	can	tweak	the	criteria	of
the	WHERE	clause	of	the	UPDATE	statement.	The	values	have	a	pattern:	the	new	values	are
the	same	as	the	first	two	characters	of	the	old	value.	So	we	can	use	a	function	to	extract
that	part	of	the	string.	We	would	do	something	like	this:

ALTER	TABLE	humans

CHANGE	COLUMN	formal_title	formal_title	ENUM('Mr.','Ms.','Mr','Ms');

UPDATE	humans

SET	formal_title	=	SUBSTRING(formal_title,	1,	2);

ALTER	TABLE	humans

CHANGE	COLUMN	formal_title	formal_title	ENUM('Mr','Ms');

The	first	ALTER	TABLE	statement	adds	the	two	new	choices	of	titles	without	a	period	to	the
column,	without	yet	eliminating	the	previous	two	choices	because	existing	table	contents
use	them.	The	final	ALTER	TABLE	statement	removes	the	two	old	choices	of	titles	with	a
period	from	the	column.	Those	two	SQL	statements	are	fine	and	not	very	interesting.	The
second	one	is	more	interesting,	the	UPDATE.

In	the	SET	clause,	we	set	the	value	of	the	formal_title	column	to	a	substring	of	its
current	value.	We’re	using	the	SUBSTRING()	function	to	extract	the	text.	Within	the
parentheses,	we	give	the	column	from	which	to	get	a	string	(formal_title).	Then	we	give
the	start	of	the	substring	we	want	to	extract:	1,	meaning	the	first	character	of	the	original
string.	We	specify	the	number	of	characters	we	want	to	extract:	2.	So	wherever
SUBSTRING()	encounters	“Mr.”	it	will	extract	“Mr”,	and	wherever	it	encounters	“Ms.”	it
will	extract	“Ms”.

It’s	critical	to	note	that	fuctions	don’t	change	the	data	in	the	table.	SUBSTRING()	simply
gives	you	back	the	substring.	In	order	to	actually	change	the	column,	you	need	the	SET
formal_title	=	clause.	That	changes	formal_title	to	the	value	you	got	back	from
SUBSTRING().	Note	that,	if	you	wanted,	you	could	just	as	easily	have	run	SUBSTRING()	on
one	column	and	used	it	to	set	the	value	of	a	different	one.

In	this	chapter,	we’ll	work	with	a	few	string	functions	that	are	useful	with	the	UPDATE
statement.	We’ll	cover	many	more	string	functions	in	Chapter	10.

Limiting	Updates
As	mentioned	near	the	beginning	of	this	chapter,	UPDATE	can	be	a	powerful	tool	for
quickly	changing	large	amounts	of	data	in	a	MySQL	database.	As	a	result,	you	should
almost	always	use	a	WHERE	clause	with	an	UPDATE	statement	to	limit	updates	to	rows	based
on	certain	conditions.	There	are	times	when	you	might	also	want	to	limit	updates	to	a
specific	number	of	rows.	To	do	this,	use	the	LIMIT	clause	with	the	UPDATE	statement.	This
clause	functions	the	same	as	in	the	SELECT	statement,	but	its	purpose	is	different	with
UPDATE.	Let’s	look	at	an	example	of	how	and	why	you	might	use	the	LIMIT	clause	with	the
UPDATE	statement.

Suppose	that	we	decide	to	offer	a	small	prize	each	month	to	two	of	the	members	of	our
site	to	encourage	people	to	join.	Maybe	we’ll	offer	them	the	choice	of	a	booklet	with	a	list
of	birds	found	in	their	area,	a	nice	pen	with	the	Rookery	name	on	it,	or	a	water	bottle	with
a	bird	image	on	it.	Suppose	also	that	we	want	a	person	to	win	only	once,	and	we	want	to
make	sure	that	everyone	wins	eventually.	To	keep	track	of	the	winners,	let’s	create	a	table
to	record	who	won	and	when,	as	well	as	what	prize	they	were	sent	and	when.	We’ll	use	the

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE	TABLE	statement	like	so:
CREATE	TABLE	prize_winners

(winner_id	INT	AUTO_INCREMENT	PRIMARY	KEY,

	human_id	INT,

	winner_date	DATE,

	prize_chosen	VARCHAR(255),

	prize_sent	DATE);

In	this	statement,	we	created	a	table	called	prize_winners	and	gave	it	five	columns:	the
first	(winner_id)	is	a	standard	identifier	for	each	row;	the	second	(human_id)	is	to
associate	the	rows	in	this	table	to	the	humans	table;	the	third	column	(winner_date)	is	to
record	the	date	that	the	winner	was	determined;	the	next	(prize_chosen)	is	the	prize	the
member	chose	ultimately;	and	the	last	column	(prize_sent)	is	to	record	the	date	the	prize
was	sent	to	the	winner.

NOTE

The	IDs	in	this	table	may	be	a	bit	confusing.	winner_id	will	be	used	to	select	items	from	this	table,	such	as	the	prize
and	the	dates.	human_id	will	be	used	to	find	data	about	the	winner	in	the	humans	table.	You	might	think	that	there	is
no	need	for	two	IDs,	as	they	both	refer	to	the	same	person.	But	think	back	to	the	ways	we	used	IDs	to	link	birds,	bird
families,	and	bird	orders.	Giving	each	table	its	own	identifier	is	more	robust.

We	could	have	set	the	prize_chosen	column	to	an	enumerated	list	of	the	choices,	but	the
choices	may	change	over	time.	We	may	eventually	create	another	table	containing	a	list	of
the	many	prizes	and	replace	this	column	with	a	column	that	contains	a	reference	number
to	a	table	listing	prizes.	For	now,	we’ll	use	a	large	variable	character	column.

Because	we	want	to	make	sure	every	member	wins	eventually,	we’ll	enter	a	row	in	the
prize_winners	table	for	each	member.	Otherwise,	we	would	enter	a	row	only	when	the
member	won.	This	is	probably	the	better	choice	for	maintaining	the	data,	but	we’ll	use	the
more	straightforward	method	of	inserting	an	entry	for	each	member	in	the	prize_winners
table.	We’ll	use	an	INSERT…SELECT	statement	to	select	the	winners	and	insert	them	in	the
new	table	(this	type	of	SQL	statement	was	covered	in	Inserting	Data	from	Another	Table):

INSERT	INTO	prize_winners

(human_id)

SELECT	human_id

FROM	humans;

This	inserted	a	row	in	the	prize_winners	table	for	each	member	in	the	humans	table.	It
added	only	the	value	of	the	human_id	column,	because	that’s	all	we	need	at	this	point	as
no	one	has	yet	to	win	anything.	The	statement	also	automatically	sets	the	winner_id
column,	thanks	to	its	AUTO_INCREMENT	modifier,	giving	it	a	unique	value	for	each	human.
There	is	no	reason	this	ID	should	be	the	same	as	the	human_id	column,	because	we’ll	use
the	human_id	column	whenever	we	need	information	from	it.	The	other	columns	currently
have	NULL	for	their	values.	We’ll	update	those	values	when	someone	wins	a	prize.

Now	that	we	have	a	separate	table	for	recording	information	about	winners	and	their
prizes	each	month,	let’s	pick	some	winners.	We’ll	do	that	in	the	next	subsection.

Ordering	to	Make	a	Difference
In	the	previous	subsection,	we	decided	to	award	prizes	to	members	so	as	to	encourage	new
people	to	join	the	Rookery	site,	as	well	as	to	make	current	members	feel	good	about
continuing	their	membership.	So	that	new	and	old	members	have	an	equal	chance	of
winning,	we’ll	let	MySQL	randomly	choose	the	winners	each	month.	To	do	this,	we’ll	use

www.it-ebooks.info

http://www.it-ebooks.info/

the	UPDATE	statement	with	the	ORDER	BY	clause	and	the	RAND()	function.	This	function
picks	an	arbitrary	floating-point	number	for	each	row	found	by	the	SQL	statement	in
which	it’s	used.	By	putting	this	function	in	the	ORDER	BY	clause,	we	will	order	the	results
based	on	the	random	values	chosen	for	each	row.	If	we	couple	that	with	the	LIMIT	clause,
we	can	limit	the	results	to	a	different	pair	of	rows	each	month	we	select	winners:

UPDATE	prize_winners

SET	winner_date	=	CURDATE()

WHERE	winner_date	IS	NULL

ORDER	BY	RAND()

LIMIT	2;

There	are	flaws	in	the	RAND()	function.	It’s	not	so	random	and	can	sometimes	return	the
same	results.	So	be	careful	about	when	you	use	it	and	for	what	purpose.

Let’s	start	at	the	bottom	of	this	UPDATE	statement.	The	ORDER	BY	clause	is	a	bit	ironic	here
because	the	order	it	puts	the	columns	in	is	random.	The	LIMIT	clause	limits	the	results	to
only	two	rows.	So	everyone	has	an	equal	chance	of	being	one	of	our	two	winners.

We	can’t	be	sure	that	the	top	two	rows	are	new	winners,	though;	we	might	happen	to
choose	the	same	person	through	a	random	process	on	different	months.	So	we	add	a	WHERE
clause	to	update	only	rows	in	which	winner_date	has	a	value	of	NULL,	which	indicates
that	the	member	hasn’t	won	previously.	Finally,	at	the	top	of	the	statement,	we	set	the
winner_date	column	for	the	winner	to	the	current	date,	using	a	function	we’ll	learn	about
in	Chapter	11.

However,	there	are	some	problems	with	this	SQL	statement	that	may	not	be	obvious.	First,
the	use	of	the	RAND()	function	in	an	ORDER	BY	clause	can	be	absurdly	slow.	You	won’t
notice	the	difference	when	used	on	a	small	table,	but	it	performs	poorly	on	an	extremely
large	table	that	is	used	by	a	very	active	server.	So,	be	mindful	of	which	tables	and
situations	you	use	the	RAND()	function	within	the	ORDER	BY	clause.	Second,	using	the
ORDER	BY	clause	with	a	LIMIT	clause	can	cause	problems	if	you	use	MySQL	replication,
unless	you	use	row-based	replication.	This	is	a	feature	that	allows	you	to	have	a	master
server	and	slave	servers	that	replicate	or	copy	exactly	the	databases	on	the	master.	That’s
an	advanced	topic,	but	I	want	to	mention	this	potential	problem	because	when	you	use	this
combination	of	clauses	with	the	UPDATE	statement,	you’ll	see	a	warning	message	like	this:

SHOW	WARNINGS	\G

***************************	1.	row	***************************

		Level:	Warning

			Code:	1592

Message:	Statement	is	not	safe	to	log	in	statement	format.

If	you’re	not	using	MySQL	replication,	you	can	ignore	this	warning.	If	you	are	using	it,
though,	you’ll	have	a	situation	in	which	one	slave	may	update	its	data	differently	from	the
data	on	the	master	or	the	other	slaves	—	especially	if	you	use	the	RAND()	function	(i.e.,	the
slave	will	have	different	random	results).	Again,	at	this	stage	of	learning	MySQL,	you	can
probably	ignore	this	warning,	and	can	safely	use	these	clauses	and	this	function.	What’s
important	is	that	you’re	aware	of	these	potential	problems	and	that	you	get	of	a	sense	of
how	extensive	MySQL	is.

Updating	Multiple	Tables
Thus	far	in	this	chapter,	we	have	updated	only	one	table	at	a	time	with	the	UPDATE

www.it-ebooks.info

http://www.it-ebooks.info/

statement.	We’ve	also	made	updates	based	on	the	values	of	the	table	for	which	the	changes
were	made.	You	can	also	update	values	in	one	table	based	on	values	in	another	table.	And
it’s	possible	to	update	more	than	one	table	with	one	UPDATE	statement.	Let’s	look	at	some
examples	of	how	and	why	you	might	do	this.

Suppose	that	we’ve	been	giving	out	prizes	for	a	couple	of	years	now	and	that	we’ve
decided	we	want	to	make	a	special	bid	to	recruit	and	retain	members	from	the	United
Kingdom.	To	do	this,	we’ve	decided	to	give	four	prizes	each	month	to	members	of	the
Rookery	site:	two	prizes	to	members	in	the	U.K,	and	two	prizes	to	members	in	all	other
countries.	We’ll	announce	this	change	so	that	our	skewing	will	be	perceived	fairly	by
members	of	the	site.	We’ll	even	allow	U.K.	members	who	won	previously	to	win	again.
For	this	last	component,	we’ll	need	to	reset	the	values	of	rows	in	the	prize_winners	table
based	on	the	value	of	the	country_id	in	the	humans	table.	Let’s	see	how	that	would	look:

UPDATE	prize_winners,	humans

SET	winner_date	=	NULL,

				prize_chosen	=	NULL,

				prize_sent	=	NULL

WHERE	country_id	=	'uk'

AND	prize_winners.human_id	=	humans.human_id;

This	SQL	statement	checks	rows	in	one	table,	associates	those	rows	to	the	related	rows	in
another	table,	and	changes	those	rows	in	that	second	table.	Notice	that	we	listed	the	two
tables	involved	in	a	comma-separated	list.	We	then	used	the	SET	clause	to	set	the	values	of
the	columns	related	to	winning	a	prize	to	NULL.	In	the	WHERE	clause,	we	give	the
condition	that	the	country_id	from	the	humans	table	has	a	value	of	uk	and	that	the
human_id	in	both	tables	equal.

Now	that	we’ve	reset	the	prize	information	for	the	U.K.	members,	we’re	ready	to	award
prizes	for	the	new	month.	Let’s	try	the	UPDATE	statement	that	we	used	previously	to
randomly	select	winners,	but	this	time	we’ll	straddle	both	the	humans	and	prize_winners
tables	by	entering	the	following:

UPDATE	prize_winners,	humans

SET	winner_date	=	CURDATE()

WHERE	winner_date	IS	NULL

AND	country_id	=	'uk'

AND	prize_winners.human_id	=	humans.human_id

ORDER	BY	RAND()

LIMIT	2;

ERROR	1221	(HY000):	Incorrect	usage	of	UPDATE	and	ORDER	BY

You	would	expect	this	to	work	well,	but	it	doesn’t	work	at	all.	Instead,	it	fails	and	returns
the	error	message	shown.	When	using	the	multiple-table	syntax	of	UPDATE,	it	causes
problems	for	MySQL	if	you	include	an	ORDER	BY	or	a	LIMIT	clause	—	those	clauses	apply
to	one	table,	not	to	multiple	tables	as	in	this	UPDATE.	Limitations	like	this	can	be
frustrating,	but	there	are	ways	around	them.	For	our	current	task,	because	the	ORDER	BY
RAND()	and	LIMIT	clauses	work	with	one	table	without	problems,	we	can	use	a	subquery
(i.e.,	a	query	within	a	query)	to	randomly	select	the	winners	from	the	humans	table	and
then	update	the	prize_winners	table.	Let’s	see	how	we	would	do	that	in	this	situation:

UPDATE	prize_winners

SET	winner_date	=	CURDATE()

WHERE	winner_date	IS	NULL

AND	human_id	IN

		(SELECT	human_id

			FROM	humans

			WHERE	country_id	=	'uk'

www.it-ebooks.info

http://www.it-ebooks.info/

			ORDER	BY	RAND())

LIMIT	2;

That	may	seem	pretty	complicated,	but	if	we	pull	it	apart,	it’s	not	too	difficult.	First,	let’s
look	at	the	inner	query,	the	SELECT	statement	contained	within	the	parentheses.	It’s
selecting	the	human_id	for	all	members	in	the	humans	table,	where	the	country_id	has	a
value	of	uk,	and	randomly	ordering	the	results.	Notice	that	we’re	selecting	all	rows	for
U.K.	members	and	we’re	not	distinguishing	whether	the	member	was	a	previous	winner.
That’s	because	the	inner	query	cannot	query	the	table	that	is	the	target	of	the	UPDATE.	So
we	have	to	separate	the	conditions	like	we’re	doing	here:	in	the	WHERE	clause	of	the
UPDATE,	we’re	updating	only	rows	in	which	the	value	of	the	winner_date	is	NULL.	That
will	be	all	of	the	U.K.	members.But	we	could	change	the	statement	to	select	non-U.K.
members	simply	by	changing	the	operator	in	the	subquery	to	!=.

In	the	UPDATE	statement,	using	the	IN	operator,	we	specify	that	only	rows	whose	human_id
is	in	the	results	of	the	subquery	should	be	updated.	The	LIMIT	clause	says	to	update	only
two	rows.	The	LIMIT	clause	here	is	part	of	the	UPDATE,	not	the	subquery	(i.e.,	the	SELECT).

Because	MySQL	executes	the	subquery	first,	and	separately	from	the	UPDATE,	there’s	no
problem	with	using	the	ORDER	BY	clause	in	it.	Because	the	LIMIT	clause	is	in	an	UPDATE
that’s	not	using	the	multiple-table	syntax,	there’s	no	problem	using	it	either.

The	preceding	example	may	seem	cumbersome,	but	it	solves	the	problem.	When	you	can’t
do	something	the	way	you	would	think	in	MySQL,	you	can	sometimes	accomplish	a	task
with	methods	like	using	a	subquery.	Subqueries	are	covered	extensively	in	Chapter	9.

Handling	Duplicates
In	Chapter	6,	we	covered	the	INSERT	statement	in	detail.	We	saw	several	variants	on	its
syntax	and	interesting	ways	to	use	it.	This	included	INSERT…SELECT,	a	combination	of	the
INSERT	and	SELECT	statements.	There	is	another	combination	related	to	updating	rows,
INSERT…ON	DUPLICATE	KEY	UPDATE.

When	inserting	multiple	rows	of	data,	you	may	attempt	inadvertently	to	insert	rows	that
would	be	duplicates:	that	is	to	say,	rows	with	the	same	value	that	is	supposed	to	be	unique.
With	the	INSERT	statement,	you	can	add	the	IGNORE	flag	to	indicate	that	duplicate	rows
should	be	ignored	and	not	inserted.	With	the	REPLACE	statement,	MySQL	will	replace	the
existing	rows	with	the	new	data,	or	rather	it	will	delete	the	existing	rows	and	insert	the
new	rows.	As	an	alternative,	you	might	want	to	keep	the	existing	rows,	but	make	a
notation	to	them	in	each	row.	Such	a	situation	is	when	INSERT…ON	DUPLICATE	KEY	UPDATE
is	useful.	This	will	make	more	sense	with	an	example.

Suppose	there	is	another	bird-watchers	website	similar	to	ours	that’s	called	Better	Birders.
Because	that	site	has	become	inactive	and	the	owner	wants	to	close	it,	he	contacts	us	and
offers	to	redirect	the	site’s	traffic	to	our	domain	if	we’ll	add	its	members	to	our
membership.	We	accept	this	offer,	so	he	gives	us	a	plain-text	file	with	a	list	of	each
member’s	name	and	email	address.	There	are	a	few	ways	we	might	import	those	names;
some	are	covered	in	Chapter	15.	But	because	some	of	the	members	of	the	other	site	may
already	be	members	of	our	site,	we	don’t	want	to	import	them	and	have	duplicate	entries.
However,	we	do	want	to	make	note	of	those	people	as	being	members	of	the	other	site	in
case	we	want	that	information	later.	Let’s	try	using	INSERT…ON	DUPLICATE	KEY	UPDATE	to

www.it-ebooks.info

http://www.it-ebooks.info/

do	that.	First	we’ll	add	a	column	to	indicate	that	a	member	came	from	the	Better	Birders
site	by	using	the	ALTER	TABLE	statement	like	so:

ALTER	TABLE	humans

ADD	COLUMN	better_birders_site	TINYINT	DEFAULT	0;

This	statement	added	a	column	named	better_birders_site	with	a	default	value	of	0.	If
someone	is	a	member	of	the	Better	Birders	site,	we’ll	set	the	column	to	1.	We’ll	set	the
column	to	a	value	of	2	to	indicate	they	are	a	member	of	both	sites.	Because	two	people	can
have	the	same	name,	we	use	the	email	address	to	determine	whether	a	row	is	a	duplicate.
In	the	humans	table,	the	email_address	column	is	already	set	to	UNIQUE.	It	will	be	the
basis	by	which	rows	will	be	updated	with	the	combined	SQL	statement	we’ll	use.	With
these	factors	in	mind,	let’s	try	to	insert	a	few	members:

INSERT	INTO	humans

(formal_title,	name_first,	name_last,	email_address,	better_birders_site)

VALUES('Mr','Barry','Pilson',	'barry@gomail.com',	1),

						('Ms','Lexi','Hollar',	'alexandra@mysqlresources.com',	1),

						('Mr','Ricky','Adams',	'ricky@gomail.com',	1)

ON	DUPLICATE	KEY

UPDATE	better_birders_site	=	2;

Because	of	the	ON	DUPLICATE	KEY	component,	when	there	are	rows	with	the	same	email
address,	the	better_birders_site	column	will	be	set	to	2.	The	rest	will	be	inserted	with
their	better_birders_site	column	set	to	1.	That’s	what	we	wanted.

We	now	need	to	insert	rows	for	these	new	members	in	the	prize_winners	table.	We’ll	use
the	INSERT…SELECT	statement	as	we	did	earlier,	but	this	time	we’ll	just	insert	rows	where
the	value	of	the	better_birders_site	column	is	1:

INSERT	INTO	prize_winners

(human_id)

SELECT	human_id

FROM	humans

WHERE	better_birders_site	=	1;

Although	these	two	SQL	statements	worked	well,	it’s	possible	that	there	might	be	two
entries	for	someone	in	the	humans	table	if	they	used	a	different	email	address	on	the	other
site.	That	possibility	may	already	exist	with	our	existing	members	if	they	registered	on	the
site	more	than	once.	Let’s	check	for	this	possibility	and	add	a	column	to	note	it.	We’ll
enter	the	following	SQL	statements	to	prepare:

ALTER	TABLE	humans

ADD	COLUMN	possible_duplicate	TINYINT	DEFAULT	0;

CREATE	TEMPORARY	TABLE	possible_duplicates

(name_1	varchar(25),	name_2	varchar(25));

The	first	statement	added	a	column	to	the	humans	table	to	note	a	row	as	a	possible
duplicate	entry.	The	second	creates	a	temporary	table.	A	temporary	table	is	accessible	only
to	your	MySQL	client	connection.	When	you	exit	from	the	client,	the	temporary	table	will
be	dropped	automatically.	Because	we	cannot	update	the	same	table	for	which	we’re
checking	for	duplicates,	we	can	note	them	in	this	temporary	table.	We’ll	use	INSERT…
SELECT	to	do	this:

INSERT	INTO	possible_duplicates

SELECT	name_first,	name_last

FROM

		(SELECT	name_first,	name_last,	COUNT(*)	AS	nbr_entries

			FROM	humans

			GROUP	BY	name_first,	name_last)	AS	derived_table

WHERE	nbr_entries	>	1;

www.it-ebooks.info

http://www.it-ebooks.info/

This	statement	uses	a	subquery	that	selects	the	names	and	counts	the	number	of	entries
based	on	the	GROUP	BY	clause.	We	saw	how	to	use	GROUP	BY	and	COUNT()	together	in
Counting	and	Grouping	Results,	but	their	use	here	calls	for	a	reiteration	of	how	they	work.
The	subquery	selects	name_first	and	name_last,	and	groups	them	so	that	any	rows
containing	the	same	first	and	last	names	will	be	grouped	together.	They	can	then	be
counted.	We	give	the	result	of	COUNT(*)	an	alias	of	nbr_entries	so	that	we	can	reference
it	elsewhere.

Back	in	the	main	SQL	statement,	the	WHERE	clause	selects	only	rows	from	the	subquery	in
which	there	are	more	than	one	entry	(i.e.,	nbr_entries	is	greater	than	1).	These	are
duplicate	entries.	This	SQL	statement	will	insert	a	row	into	the	temporary	table	for	rows
found	in	the	humans	table	that	have	the	same	first	and	last	name.	It	should	enter	only	one
row	in	the	temporary	table	for	each	person.

Now	that	we	have	a	list	of	possible	duplicates	in	the	temporary	table,	let’s	update	the
humans	table	to	note	them:

UPDATE	humans,	possible_duplicates

SET	possible_duplicate	=	1

WHERE	name_first	=	name_1

AND	name_last	=	name_2;

That	will	set	the	value	of	the	possible_duplicate	column	to	1	where	the	names	in	the
humans	table	match	the	names	in	possible_duplicates.	When	we’re	ready,	we	can	send
an	email	to	these	members	telling	them	that	we	have	two	entries	for	their	names	and
asking	if	the	entries	are	duplicates.	If	they	are,	we	might	be	able	to	merge	the	information
together	(such	as	by	creating	another	column	for	a	second	email	address)	and	delete	the
duplicate	rows.	As	for	the	temporary	table,	it	will	be	deleted	when	we	close	the	MySQL
client.

www.it-ebooks.info

http://www.it-ebooks.info/

Deleting	Data
With	most	databases,	you	will	eventually	need	to	delete	rows	from	a	table.	To	do	this,	you
can	use	the	DELETE	statement.	As	mentioned	a	few	times	earlier	in	this	book,	there	is	no
UNDELETE	or	UNDO	statement	for	restoring	rows	that	you	delete.	You	can	recover	data	from
backups,	if	you’re	making	backups	as	you	should,	but	it’s	not	quick	and	easy	to	restore
data	from	them.	If	you	use	a	storage	engine	like	InnoDB,	there	is	a	method	for	wrapping
SQL	statements	in	a	transaction	that	can	be	rolled	back	after	you	delete	rows.	However,
once	you	commit	such	a	transaction,	you’ll	have	to	look	to	backups	or	other	cumbersome
methods	to	restore	deleted	data.	Thus,	you	should	alwaysbe	careful	when	using	the	DELETE
statement.

The	DELETE	statement	works	much	like	the	SELECT	statement	in	that	you	may	delete	rows
based	on	conditions	in	the	WHERE	clause.	You	should	always	use	the	WHERE	clause,	unless
you	really	want	to	leave	an	empty	table	with	no	rows.	You	may	also	include	an	ORDER	BY
clause	to	specify	the	order	in	which	rows	are	deleted,	and	a	LIMIT	clause	to	limit	the
number	of	rows	deleted	in	a	table.	The	basic	syntax	of	the	DELETE	statement	is:

DELETE	FROM	table

[WHERE	condition]

[ORDER	BY	column]

[LIMIT	row_count];

As	the	formatting	indicates	with	square	brackets,	the	WHERE,	ORDER	BY,	and	LIMIT	clauses
are	optional.	There	are	additional	options	that	may	be	given	and	deviations	to	the	syntax
for	deleting	rows	in	multiple	tables	and	for	deletions	based	on	multiple	tables.	Let’s	look
at	an	example	using	this	simpler	syntax	for	now.

Suppose	after	sending	out	a	notice	to	members	who	we	suspect	of	having	duplicate	entries
in	the	humans	table,	one	of	them	confirms	that	her	membership	has	been	duplicated.	The
member,	Elena	Bokova	from	Russia,	asks	us	to	delete	the	entry	that	uses	her	old
yahoo.com	email	address.	To	do	that,	we	could,	but	we	won’t,	enter	this	SQL	statement:

DELETE	FROM	humans

WHERE	name_first	=	'Elena'

AND	name_last	=	'Bokova'

AND	email_address	LIKE	'%yahoo.com';

This	SQL	statement	will	delete	any	rows	in	which	the	criteria	expressed	in	the	WHERE
clause	are	met.	Notice	that	for	checking	the	email	address,	we	used	the	LIKE	operator	and
the	wildcard	(i.e.,	%)	to	match	any	email	ending	with	yahoo.com.

The	statement	just	shown	would	work	fine,	but	we	also	need	to	delete	the	related	entry	in
the	prize_winners	table.	So	we	should	first	get	the	human_id	for	this	row	before	deleting
it.	That’s	why	I	said	we	won’t	enter	this	SQL	statement.	It’s	tedious,	though,	to	execute
one	SQL	statement	to	retrieve	the	human_id,	then	another	to	delete	the	row	in	the	humans
table,	and	then	execute	a	third	SQL	statement	to	delete	the	related	row	in	the
prize_winners	table.	Instead,	it	would	be	better	to	change	the	DELETE	statement	to	include
both	tables,	deleting	the	desired	rows	from	both	in	one	SQL	statement.	We’ll	cover	that	in
the	next	subsection.

Deleting	in	Multiple	Tables
There	are	many	situations	where	data	in	one	table	is	dependent	on	data	in	another	table.	If

www.it-ebooks.info

http://www.it-ebooks.info/

you	use	DELETE	to	delete	a	row	in	one	table	on	which	a	row	in	another	table	is	dependent,
you’ll	have	orphaned	data.	You	could	execute	another	DELETE	to	remove	that	other	row,
but	it’s	usually	better	to	delete	rows	in	both	tables	in	the	same	DELETE	statement,
especially	when	there	may	be	many	rows	of	data	to	delete.

The	syntax	for	the	DELETE	that	deletes	rows	in	multiple	tables	is:
DELETE	FROM	table[,	table]

USING	table[,		.	.	.]

[WHERE	condition];

In	the	FROM	clause,	list	the	tables	in	a	comma-separated	list.	The	USING	clause	specifies
how	the	tables	are	joined	together	(e.g.,	based	on	human_id).	The	WHERE	clause	is	optional.
Like	the	UPDATE	statement,	because	this	syntax	includes	multiple	tables,	the	ORDER	BY	and
LIMIT	clauses	are	not	permitted.	This	syntax	can	be	tricky,	but	how	much	so	may	not	be
evident	from	looking	at	the	syntax.	Let’s	look	at	an	example.

In	the	example	at	the	end	of	the	previous	subsection,	we	needed	to	delete	rows	from	two
tables	that	are	related.	We	want	to	delete	the	rows	for	Elena	Bokova	in	which	she	has	a
yahoo.com	email	address	in	both	the	humans	and	the	prize_winners	tables.	To	do	that
efficiently,	we’ll	enter	this	from	the	mysql	client:

DELETE	FROM	humans,	prize_winners

USING	humans	JOIN	prize_winners

WHERE	name_first	=	'Elena'

AND	name_last	=	'Bokova'

AND	email_address	LIKE	'%yahoo.com'

AND	humans.human_id	=	prize_winners.human_id;

This	DELETE	statement	is	similar	to	other	data	manipulation	statements	(e.g.,	SELECT,
UPDATE).	However,	there	is	a	difference	in	the	syntax	that	may	be	unexpected	and
confusing.	The	FROM	clause	lists	the	tables	from	which	data	is	to	be	deleted.	There	is	also	a
USING	clause	that	lists	the	tables	again	and	how	they	are	joined.	What	is	significant	about
this	distinction	is	that	we	must	list	the	tables	in	which	rows	are	to	be	deleted	in	the	FROM
clause.	If	we	did	not	include	prize_winners	in	that	list,	no	rows	would	be	deleted	from	it
—	only	rows	from	humans	would	be	deleted.

There	are	several	contortions	and	options	in	the	syntax	for	DELETE.	However,	at	this	stage,
the	methods	we	reviewed	in	this	chapter	will	serve	well	for	almost	all	situations	you	will
encounter	as	a	MySQL	and	MariaDB	developer	or	administrator.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
The	UPDATE	and	DELETE	statements	are	very	useful	for	changing	data	in	tables;	they	are
essential	to	managing	a	MySQL	or	MariaDB	database.	They	have	many	possibilities	for
effecting	changes	to	tables	with	ease.	You	can	construct	very	complex	SQL	statements
with	them	to	change	precisely	the	data	you	want	to	change	or	to	delete	exactly	the	rows
you	want	to	delete.	However,	it	can	be	confusing	and	difficult	at	times.	So	be	careful	and
learn	these	SQL	statements	well.

If	you’re	nervous	at	times	about	using	the	UPDATE	and	DELETE	statements,	it’s	because	you
should	be.	You	can	change	all	of	the	rows	in	a	table	with	one	UPDATE	statement,	and	you
can	delete	all	of	the	rows	in	a	table	with	one	DELETE	statement.	On	a	huge	database,	that
could	be	thousands	of	rows	of	data	changed	or	deleted	in	seconds.	This	is	why	good
backups	are	always	necessary.	Whenever	using	these	two	SQL	statements,	take	your	time
to	be	sure	you’re	right	before	you	execute	them.	While	you’re	still	learning	especially,	it
can	be	a	good	idea	to	make	a	duplicate	of	a	table	with	its	data	using	the	CREATE	TABLE…
SELECT	statement	before	updating	or	deleting	data.	This	SQL	statement	was	covered	in
Essential	Changes.	This	way	if	you	make	a	major	mistake,	you	can	put	the	data	back	as	it
was	before	you	started.

Because	of	the	problems	you	can	cause	yourself	and	others	who	will	use	the	databases	on
which	you	will	work,	practice	using	the	UPDATE	and	DELETE	statements.	More	than	any
other	chapter	in	this	book	so	far,	you	should	make	sure	to	complete	the	exercises	in	the
next	section.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises
Exercises	follow	for	you	to	practice	using	the	UPDATE	and	DELETE	statements.	If	you
haven’t	already,	download	the	rookery	and	the	birdwatchers	databases	from	the	MySQL
Resources	site).	This	will	give	you	some	good-sized	tables	on	which	to	practice	these	SQL
statements.

1.	 Use	the	CREATE	TABLE…SELECT	statement	(see	Essential	Changes)	to	make	a	copies
of	the	humans	and	the	prize_winners	tables.	Name	the	new	tables	humans_copy	and
prize_winners_copy.	Once	you’ve	created	the	copies,	use	the	SELECT	statement	to
view	all	of	the	rows	in	both	of	the	new	tables.	You	should	see	the	same	values	as	are
contained	in	the	original	tables.

2.	 After	you’ve	done	the	previous	exercise,	use	the	SELECT	statement	to	select	all	of	the
members	from	Austria	in	the	humans	table.	You’ll	need	to	use	a	WHERE	clause	for	that
SQL	statement.	The	country_id	for	Austria	is	au.	If	you	have	problems,	fix	the	SQL
statement	until	you	get	it	right.
Next,	using	the	same	WHERE	clause	from	the	SELECT	statement,	construct	an	UPDATE
statement	to	change	the	value	of	the	membership_type	column	for	Austrian	members
to	premium.	In	the	same	UPDATE	statement,	set	the	value	of	the
membership_expiration	to	one	year	from	the	date	you	execute	the	SQL	statement.
You	will	need	to	use	the	CURDATE()	function	inside	the	DATE_ADD()	function.	The
DATE_ADD()	function	was	shown	in	an	example	earlier	in	this	chapter	(see	Updating
Specific	Rows).	The	CURDATE()	has	no	arguments	to	it,	nothing	to	go	inside	its
parentheses.	Both	functions	are	covered	in	Chapter	11.	If	you	can’t	figure	out	how	to
combine	these	function,	you	can	enter	the	date	manually	(e.g.,	‘2014-11-03’	for
November	3,	2014;	include	the	quote	marks).	Use	the	SELECT	statement	to	check	the
results	when	you’re	done.

3.	 Using	the	DELETE	statement,	delete	the	rows	associated	with	the	member	named
Barry	Pilson	from	the	humans	and	prize_winners	tables.	This	was	explained,	along
with	an	example	showing	how	to	do	it,	in	Deleting	in	Multiple	Tables.	After	you	do
this,	use	the	SELECT	statement	to	view	all	of	the	rows	in	both	tables	to	make	sure	you
deleted	both	rows.

4.	 Using	the	DELETE	statement,	delete	all	of	the	rows	in	the	humans	table.	Then	delete
all	of	the	rows	of	data	in	the	prize_winners	tables.	Use	the	SELECT	statement	to
confirm	that	both	tables	are	empty.
Now	copy	all	of	the	data	from	the	humans_copy	and	prize_winners_copy	tables	to
the	humans	and	prize_winners	tables.	Do	this	with	the	INSERT…SELECT	statement
(covered	in	Inserting	Data	from	Another	Table).
After	you’ve	restored	the	data	by	this	method,	execute	the	SELECT	statement	again	to
confirm	that	both	tables	now	have	all	of	the	data.	If	you	were	successful,	use	the
DROP	TABLE	statement	to	eliminate	the	humans_copy	and	prize_winners_copy
tables.	This	SQL	statement	was	covered	in	Chapters	4	and	5.	If	you	drop	the	wrong
tables	or	if	you	delete	data	from	the	wrong	tables,	you	can	always	download	the
whole	database	again	from	the	MySQL	Resources	site.

www.it-ebooks.info

http://mysqlresources.com/files
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	9.	Joining	and	Subquerying	Data
Most	of	the	examples	used	in	this	book	thus	far	have	intentionally	involved	one	table	per
SQL	statement	in	order	to	allow	you	to	focus	on	the	basic	syntax	of	each	SQL	statement.
When	developing	a	MySQL	or	MariaDB	database,	though,	you	will	often	query	multiple
tables.	There	are	a	few	methods	by	which	you	may	do	that	—	you’ve	seen	some	simple
examples	of	them	in	previous	chapters.	This	chapter	covers	how	to	merge	results	from
multiple	SQL	statements,	how	to	join	tables,	and	how	to	use	subqueries	to	achieve	similar
results.

www.it-ebooks.info

http://www.it-ebooks.info/

Unifying	Results
Let’s	start	this	chapter	by	looking	at	a	simple	method	of	unifying	results	from	multiple
SQL	statements.	There	may	be	times	when	you	just	want	the	unified	results	of	two	SELECT
statements	that	don’t	interact	with	each	other.	In	this	situation,	you	can	use	the	UNION
operator,	which	merges	two	SELECT	statements	to	form	a	unified	results	set.	You	can
merge	many	SELECT	statements	together	simply	by	placing	the	UNION	between	them	in	a
chain.	Let’s	look	at	an	example.

In	Counting	and	Grouping	Results,	we	queried	the	birds	table	to	get	a	count	of	the
number	of	birds	in	the	Pelecanidae	family	(i.e.,	Pelicans).	Suppose	we	want	to	also	know
how	many	birds	are	in	the	Ardeidae	family	(i.e.,	Herons).	That’s	easy	to	do:	we’d	use	a
copy	of	the	same	SELECT,	but	change	the	value	in	the	WHERE	clause.	Suppose	further	that
we	want	to	merge	the	results	of	the	SELECT	statement	counting	Pelicans	with	the	results	of
a	SELECT	counting	Herons.	We’ll	do	this	with	a	UNION	operator,	so	we	can	enter	two
complete	SELECT	statements	and	unite	them	into	one	results	set.	Enter	the	following	in	the
mysql	client:

		SELECT	'Pelecanidae'	AS	'Family',

				COUNT(*)	AS	'Species'

				FROM	birds,	bird_families	AS	families

				WHERE	birds.family_id	=	families.family_id

				AND	families.scientific_name	=	'Pelecanidae'

UNION

		SELECT	'Ardeidae',

				COUNT(*)

				FROM	birds,	bird_families	AS	families

				WHERE	birds.family_id	=	families.family_id

				AND	families.scientific_name	=	'Ardeidae';

+-------------+---------+

|	Family						|	Species	|

+-------------+---------+

|	Pelecanidae	|						10	|

|	Ardeidae				|					157	|

+-------------+---------+

First	notice	that	the	column	headings	in	the	results	is	taken	only	from	the	first	SELECT
statement.	Next	notice	that	for	the	first	fields	in	both	SELECT	statements,	we	didn’t
reference	a	column.	Instead,	we	gave	plain	text	within	quotes:	'Pelecanidae'	and
'Ardeidae'.	That’s	an	acceptable	choice	in	MySQL	and	MariaDB.	It	works	well	when
you	want	to	fill	a	field	with	text	like	this.	Notice	that	we	gave	field	aliases	for	the	columns
in	the	first	SELECT	statement,	but	not	in	the	second	one.	MySQL	uses	the	first	ones	it’s
given	for	the	column	headings	of	the	results	set	when	using	the	UNION	operator.	It	ignores
any	field	aliases	in	subsequent	SELECT	statements,	so	they’re	not	needed.	If	you	don’t	give
aliases,	it	uses	the	column	names	of	the	first	SQL	statement	of	the	UNION.

The	reason	a	UNION	was	somewhat	necessary	in	the	preceding	example	is	because	we’re
using	an	aggregate	function,	COUNT()	with	GROUP	BY.	We	can	group	by	multiple	columns,
but	to	get	results	like	this	which	show	separate	counts	for	two	specific	values	of	the	same
column,	a	UNION	or	some	other	method	is	necessary.

There	are	a	few	minor	things	to	know	about	using	a	UNION.	It’s	used	only	with	SELECT
statements.	The	SELECT	statements	can	select	columns	from	different	tables.	Duplicate
rows	are	combined	into	a	single	column	in	the	results	set.

You	can	use	the	ORDER	BY	clause	to	order	the	unified	results.	If	you	want	to	order	the

www.it-ebooks.info

http://www.it-ebooks.info/

results	of	a	SELECT	statements,	independently	of	the	unified	results,	you	have	to	put	that
SELECT	statement	within	parentheses	and	add	an	ORDER	BY	clause	to	it.	When	specifying
the	columns	in	the	ORDER	BY	clauses,	you	cannot	preface	column	names	with	the	table
names	(e.g.,	families.scientific_name).	If	using	the	column	names	would	be
ambiguous,	you	should	instead	use	column	aliases.	Let’s	expand	our	previous	example	to
better	illustrate	how	to	use	the	ORDER	BY	clause	with	UNION.	Let’s	get	a	count	for	each	bird
family	within	two	orders:	Pelecaniformes	and	Suliformes.	Enter	the	following:

		SELECT	families.scientific_name	AS	'Family',

				COUNT(*)	AS	'Species'

				FROM	birds,	bird_families	AS	families,	bird_orders	AS	orders

				WHERE	birds.family_id	=	families.family_id

				AND	families.order_id	=	orders.order_id

				AND	orders.scientific_name	=	'Pelecaniformes'

				GROUP	BY	families.family_id

UNION

		SELECT	families.scientific_name,	COUNT(*)

				FROM	birds,	bird_families	AS	families,	bird_orders	AS	orders

				WHERE	birds.family_id	=	families.family_id

				AND	families.order_id	=	orders.order_id

				AND	orders.scientific_name	=	'Suliformes'

				GROUP	BY	families.family_id;

+-------------------+---------+

|	Family												|	Species	|

+-------------------+---------+

|	Pelecanidae							|						10	|

|	Balaenicipitidae		|							1	|

|	Scopidae										|							3	|

|	Ardeidae										|					157	|

|	Threskiornithidae	|						53	|

|	Fregatidae								|						13	|

|	Sulidae											|						16	|

|	Phalacrocoracidae	|						61	|

|	Anhingidae								|							8	|

+-------------------+---------+

The	first	five	rows	are	are	Pelecaniformes	and	the	remaining	rows	are	Suliformes.	The
results	are	not	in	alphabetical	order,	but	in	the	order	of	each	SELECT	statement	and	the
order	that	server	found	the	rows	for	each	SELECT	statement	based	on	the	family_id.	If	we
want	to	order	the	results	alphabetically	by	the	family	name,	we	have	to	use	an	ORDER	BY
clause,	but	after	the	unified	results	are	generated.	To	do	this,	we’ll	wrap	the	results	set	in
parentheses	to	tell	MySQL	to	treat	it	as	a	table.	Then	we’ll	select	all	of	the	columns	and
rows	of	that	results	set	and	use	the	ORDER	BY	clause	to	order	them	based	on	the	family
name.	To	avoid	confusion,	we’ll	add	the	name	of	the	order	to	the	results.	Enter	the
following:

		SELECT	*	FROM

(

				SELECT	families.scientific_name	AS	'Family',

				COUNT(*)	AS	'Species',

				orders.scientific_name	AS	'Order'

				FROM	birds,	bird_families	AS	families,	bird_orders	AS	orders

				WHERE	birds.family_id	=	families.family_id

				AND	families.order_id	=	orders.order_id

				AND	orders.scientific_name	=	'Pelecaniformes'

				GROUP	BY	families.family_id

UNION

		SELECT	families.scientific_name,	COUNT(*),	orders.scientific_name

				FROM	birds,	bird_families	AS	families,	bird_orders	AS	orders

				WHERE	birds.family_id	=	families.family_id

				AND	families.order_id	=	orders.order_id

				AND	orders.scientific_name	=	'Suliformes'

				GROUP	BY	families.family_id)	AS	derived_1

ORDER	BY	Family;

+-------------------+---------+----------------+

www.it-ebooks.info

http://www.it-ebooks.info/

|	Family												|	Species	|	Order										|

+-------------------+---------+----------------+

|	Anhingidae								|							8	|	Suliformes					|

|	Ardeidae										|					157	|	Pelecaniformes	|

|	Balaenicipitidae		|							1	|	Pelecaniformes	|

|	Fregatidae								|						13	|	Suliformes					|

|	Pelecanidae							|						10	|	Pelecaniformes	|

|	Phalacrocoracidae	|						61	|	Suliformes					|

|	Scopidae										|							3	|	Pelecaniformes	|

|	Sulidae											|						16	|	Suliformes					|

|	Threskiornithidae	|						53	|	Pelecaniformes	|

+-------------------+---------+----------------+

In	these	examples,	it	may	seem	to	be	a	lot	of	typing	to	achieve	very	little.	But	there	are
times	—	albeit	rare	times	—	when	UNION	is	the	best	or	simplest	choice.	It’s	more	useful
when	you	retrieve	data	from	very	distinct,	separate	sources	or	other	situations	that	would
require	contortions	to	fit	into	a	single	SELECT	statement	and	are	executed	more	easily	as
separate	ones,	still	giving	you	a	unified	results	set.

You	can	get	the	same	results	as	the	previous	examples,	though,	with	less	effort	by	using	a
subquery.	Actually,	when	we	put	the	UNION	within	parentheses,	that	became	a	subquery,
just	not	much	of	one.	We’ll	cover	subqueries	later	in	this	chapter.	For	now,	let’s	consider
how	to	join	multiple	tables	in	one	SQL	statement.

www.it-ebooks.info

http://www.it-ebooks.info/

Joining	Tables
The	JOIN	clause	links	two	tables	together	in	a	SELECT,	UPDATE,	or	DELETE	statement.	JOIN
links	tables	based	on	columns	with	common	data	for	purposes	of	selecting,	updating,	or
deleting	data.	In	A	Little	Complexity,	for	instance,	we	joined	two	tables	named	books	and
status_names,	taking	advantage	of	the	design	that	put	identical	values	in	the	status
column	of	books	and	the	status_id	column	of	status_names.	That	way,	we	could	show
data	from	each	table	about	the	same	book:

SELECT	book_id,	title,	status_name

FROM	books	JOIN	status_names

WHERE	status	=	status_id;

Let’s	review	the	way	a	join	works,	using	this	example.	The	status	and	status_id	fields
both	contain	numbers	that	refer	to	a	status.	In	the	books	table,	the	numbers	have	no
intrinsic	meaning.	But	the	status_names	table	associates	the	numbers	with	meaningful
text.	Thus,	by	joining	the	tables,	you	can	associate	a	book	with	its	status.

Sometimes	there	are	alternatives	to	the	JOIN	clause.	For	instance,	when	constructing	an
SQL	statement	that	includes	multiple	tables,	a	simple	method	is	to	list	the	tables	in	a
comma-separated	list	in	the	appropriate	position	of	the	SQL	statement	—	for	a	SELECT
statement,	you	would	list	them	in	the	FROM	clause	—	and	to	provide	pairing	of	columns	in
the	WHERE	clause	on	which	the	tables	will	be	joined.	This	is	the	method	we	have	used
several	times	in	the	previous	chapters.	Although	this	method	works	fine	and	would	seem
fairly	straightforward,	a	more	agreeable	method	is	to	use	a	JOIN	clause	to	join	both	tables
and	to	specify	the	join	point	columns.	When	you	have	an	error	with	an	SQL	statement,
keeping	these	items	together	and	not	having	part	of	them	in	the	WHERE	clause	makes
troubleshooting	SQL	statements	easier.

With	JOIN,	tables	are	linked	together	based	on	columns	with	common	data	for	purposes	of
selecting,	updating,	or	deleting	data.	The	JOIN	clause	is	entered	in	the	relevant	statement
where	tables	referenced	are	specified	usually.	This	precludes	the	need	to	join	the	tables
based	on	key	columns	in	the	WHERE	clause.	The	ON	operator	is	used	to	indicate	the	pair	of
columns	by	which	the	tables	are	to	be	joined	(indicated	with	the	equals-sign	operator).	If
needed,	you	may	specify	multiple	pairs	of	columns,	separated	by	AND.	If	the	column	names
by	which	the	two	tables	are	joined	are	the	same	in	both	tables,	as	an	alternative	method,
the	USING	operator	may	be	given	along	with	a	comma-separated	list	of	columns	that	both
tables	have	in	common,	contained	within	parentheses.	The	columns	must	be	contained	in
each	table	that	is	joined.	To	improve	performance,	join	to	a	column	that	is	indexed.

Here	is	how	the	first	of	these	two	syntax	looks	using	a	JOIN:
SELECT	book_id,	title,	status_name

FROM	books

JOIN	status_names	ON(status	=	status_id);

This	is	the	same	example	as	before,	but	without	the	WHERE	clause.	It	doesn’t	need	it,
because	it	uses	ON	instead	to	indicate	the	join	point.	If	we	were	to	alter	the	books	table	to
modify	the	name	of	the	status	column	to	be	status_id,	so	that	the	names	of	both
columns	on	which	we	join	these	two	tables	are	the	same,	we	could	do	the	join	like	this:

SELECT	book_id,	title,	status_name

FROM	books

JOIN	status_names	USING(status_id);

www.it-ebooks.info

http://www.it-ebooks.info/

Here	we	use	the	keyword	USING	in	the	JOIN	clause	to	indicate	the	identical	column	by
which	to	join.

These	syntaxes	are	only	two	of	a	few	possible	with	the	JOIN.	They	show	how	you	might
construct	a	SELECT	statement	using	a	JOIN.	It’s	basically	the	same	for	the	UPDATE	and
DELETE	statements.	In	the	next	subsections,	we’ll	consider	the	methods	for	using	JOIN	with
each	of	these	three	SQL	statements,	and	look	at	some	examples	for	each.

Selecting	a	Basic	Join
Suppose	we	want	to	get	a	list	of	species	of	Geese	whose	existence	is	Threatened	—	that’s
a	category	of	conservation	states.	We	will	need	to	construct	a	SELECT	statement	that	takes
data	from	the	birds	table	and	the	conservation_status	table.	The	shared	data	in	the
birds	and	the	conservation_status	tables	is	the	conservation_status_id	column	of
each	table.	We	didn’t	have	to	give	the	column	the	same	name	in	each	table,	but	doing	so
makes	it	easier	to	know	where	to	join	them.

Enter	the	following	in	the	mysql	client:
SELECT	common_name,	conservation_state

FROM	birds

JOIN	conservation_status

ON(birds.conservation_status_id	=	conservation_status.conservation_status_id)

WHERE	conservation_category	=	'Threatened'

AND	common_name	LIKE	'%Goose%';

+----------------------------+--------------------+

|	common_name																|	conservation_state	|

+----------------------------+--------------------+

|	Swan	Goose																	|	Vulnerable									|

|	Lesser	White-fronted	Goose	|	Vulnerable									|

|	Hawaiian	Goose													|	Vulnerable									|

|	Red-breasted	Goose									|	Endangered									|

|	Blue-winged	Goose										|	Vulnerable									|

+----------------------------+--------------------+

The	ON	operator	specifies	the	conservation_status_id	columns	from	each	table	as	the
common	item	on	which	to	join	the	tables.	MySQL	knows	the	proper	table	in	which	to	find
the	conservation_category	and	common_name	columns,	and	pulls	the	rows	that	match.

That	works	fine,	but	it’s	a	lot	to	type.	Let’s	modify	this	statement	to	use	the	USING
operator,	specifing	conservation_status_id	just	once	to	make	the	join.	MySQL	will
understand	what	to	do.	Here’s	that	same	SQL	statement,	but	with	the	USING	operator:

SELECT	common_name,	conservation_state

FROM	birds

JOIN	conservation_status

USING(conservation_status_id)

WHERE	conservation_category	=	'Threatened'

AND	common_name	LIKE	'%Goose%';

Now	let’s	modify	the	SQL	statement	to	include	the	bird	family.	To	do	that,	we’ll	have	to
add	another	table,	the	bird_families.	Let’s	also	include	Ducks	in	the	list.	Try	executing
the	following:

SELECT	common_name	AS	'Bird',

bird_families.scientific_name	AS	'Family',	conservation_state	AS	'Status'

FROM	birds

JOIN	conservation_status	USING(conservation_status_id)

JOIN	bird_families	USING(family_id)

WHERE	conservation_category	=	'Threatened'

AND	common_name	REGEXP	'Goose|Duck'

ORDER	BY	Status,	Bird;

www.it-ebooks.info

http://www.it-ebooks.info/

+----------------------------+----------+-----------------------+

|	Bird																							|	Family			|	Status																|

+----------------------------+----------+-----------------------+

|	Laysan	Duck																|	Anatidae	|	Critically	Endangered	|

|	Pink-headed	Duck											|	Anatidae	|	Critically	Endangered	|

|	Blue	Duck																		|	Anatidae	|	Endangered												|

|	Hawaiian	Duck														|	Anatidae	|	Endangered												|

|	Meller's	Duck														|	Anatidae	|	Endangered												|

|	Red-breasted	Goose									|	Anatidae	|	Endangered												|

|	White-headed	Duck										|	Anatidae	|	Endangered												|

|	White-winged	Duck										|	Anatidae	|	Endangered												|

|	Blue-winged	Goose										|	Anatidae	|	Vulnerable												|

|	Hawaiian	Goose													|	Anatidae	|	Vulnerable												|

|	Lesser	White-fronted	Goose	|	Anatidae	|	Vulnerable												|

|	Long-tailed	Duck											|	Anatidae	|	Vulnerable												|

|	Philippine	Duck												|	Anatidae	|	Vulnerable												|

|	Swan	Goose																	|	Anatidae	|	Vulnerable												|

|	West	Indian	Whistling-Duck	|	Anatidae	|	Vulnerable												|

|	White-headed	Steamer-Duck		|	Anatidae	|	Vulnerable												|

+----------------------------+----------+-----------------------+

We	gave	two	JOIN	clauses	in	this	SQL	statement.	It	doesn’t	usually	matter	which	table	is
listed	where.	For	instance,	although	bird_families	is	listed	just	after	the	join	for	the
conservation_statustable,	MySQL	determined	that	bird_families	is	to	be	joined	to	the
birds	table.	Without	using	JOIN,	we	would	have	to	be	more	emphatic	in	specifying	the
join	points,	and	we	would	have	to	list	them	in	the	WHERE	clause.	It	would	have	to	be
entered	like	this:

SELECT	common_name	AS	'Bird',

bird_families.scientific_name	AS	'Family',	conservation_state	AS	'Status'

FROM	birds,	conservation_status,	bird_families

WHERE	birds.conservation_status_id	=	conservation_status.conservation_status_id

AND	birds.family_id	=	bird_families.family_id

AND	conservation_category	=	'Threatened'

AND	common_name	REGEXP	'Goose|Duck'

ORDER	BY	Status,	Bird;

That’s	a	very	cluttered	WHERE	clause,	making	it	difficult	to	see	clearly	the	conditions	by
which	we’re	selecting	data	from	the	tables.	Using	JOIN	clauses	is	much	tidier.

Incidentally,	the	SQL	statement	with	two	JOIN	clauses	used	a	regular	expression	—	the
REGEXP	operator	in	the	WHERE	clause	—	to	specify	that	the	clause	find	either	Goose	or	Duck.
We	also	added	an	ORDER	BY	clause	to	order	first	by	Status,	then	by	Bird	name.

In	this	example,	though,	there’s	little	point	in	listing	the	bird	family	name,	because	the
birds	are	all	of	the	same	family.	Plus,	there	may	be	similar	birds	that	we	might	like	to	have
in	the	list,	but	that	don’t	have	the	words	Goose	or	Duck	in	their	name.	So	let’s	change	that
in	the	SQL	statement.	Let’s	also	order	the	results	differently	and	list	birds	from	the	least
endangered	to	the	most	endangered.	Enter	the	following:

SELECT	common_name	AS	'Bird	from	Anatidae',

conservation_state	AS	'Conservation	Status'

FROM	birds

JOIN	conservation_status	AS	states	USING(conservation_status_id)

JOIN	bird_families	USING(family_id)

WHERE	conservation_category	=	'Threatened'

AND	bird_families.scientific_name	=	'Anatidae'

ORDER	BY	states.conservation_status_id	DESC,	common_name	ASC;

+----------------------------+-----------------------+

|	Bird	from	Anatidae									|	Conservation	Status			|

+----------------------------+-----------------------+

|	Auckland	Islands	Teal						|	Vulnerable												|

|	Blue-winged	Goose										|	Vulnerable												|

|	Eaton's	Pintail												|	Vulnerable												|

|	Hawaiian	Goose													|	Vulnerable												|

|	Lesser	White-fronted	Goose	|	Vulnerable												|

www.it-ebooks.info

http://www.it-ebooks.info/

|	Long-tailed	Duck											|	Vulnerable												|

|	Marbled	Teal															|	Vulnerable												|

|	Philippine	Duck												|	Vulnerable												|

|	Salvadori's	Teal											|	Vulnerable												|

|	Steller's	Eider												|	Vulnerable												|

|	Swan	Goose																	|	Vulnerable												|

|	West	Indian	Whistling-Duck	|	Vulnerable												|

|	White-headed	Steamer-Duck		|	Vulnerable												|

|	Bernier's	Teal													|	Endangered												|

|	Blue	Duck																		|	Endangered												|

|	Brown	Teal																	|	Endangered												|

|	Campbell	Islands	Teal						|	Endangered												|

|	Hawaiian	Duck														|	Endangered												|

|	Meller's	Duck														|	Endangered												|

|	Red-breasted	Goose									|	Endangered												|

|	Scaly-sided	Merganser						|	Endangered												|

|	White-headed	Duck										|	Endangered												|

|	White-winged	Duck										|	Endangered												|

|	White-winged	Scoter								|	Endangered												|

|	Baer's	Pochard													|	Critically	Endangered	|

|	Brazilian	Merganser								|	Critically	Endangered	|

|	Crested	Shelduck											|	Critically	Endangered	|

|	Laysan	Duck																|	Critically	Endangered	|

|	Madagascar	Pochard									|	Critically	Endangered	|

|	Pink-headed	Duck											|	Critically	Endangered	|

+----------------------------+-----------------------+

An	obvious	change	to	this	example	is	the	elimination	of
bird_families.scientific_name	from	the	list	of	selected	columns,	so	only	two	columns
appear	in	the	output.	Another	change,	which	is	cosmetic,	is	to	provide	the	alias	states	to
the	conservation_status	table	so	we	could	refer	to	the	short	alias	later	instead	of	the
long	name.

Finally,	the	ORDER	BY	clause	orders	the	output	by	conservation_status_id,	because	that
value	happens	to	be	in	the	order	of	severity	in	the	conservation_status	table.	We	want	to
override	the	default	order,	which	puts	the	most	threatened	species	first,	so	we	add	the	DESC
option	to	put	the	least	threatened	first.	We’re	still	ordering	results	secondarily	by	the
common	name	of	the	birds,	but	using	the	actual	column	name	this	time	instead	of	an	alias.
This	is	because	we	changed	the	alias	for	the	common_name	column	from	Birds	to	Birds
from	Anatidae,	because	all	the	results	are	in	that	family.	We	could	have	used	'Birds
from	Anatidae'	in	the	ORDER	BY	clause,	but	that’s	bothersome	to	type.

Let’s	look	at	one	more	basic	example	of	a	JOIN.	Suppose	we	wanted	to	get	a	list	of
members	located	in	Russia	(i.e.,	where	country_id	has	a	value	of	ru)	who	have	reported
sighting	a	bird	from	the	Scolopacidae	family	(shore	and	wader	birds	like	Sandpipers	and
Curlews).	Information	on	bird	sightings	is	stored	in	the	bird_sightings	table.	It	includes
GPS	coordinates	recorded	from	a	bird	list	application	on	the	member’s	mobile	phone
when	they	note	the	sighting.	Enter	this	SQL	statement:

SELECT	CONCAT(name_first,	'	',	name_last)	AS	Birder,

common_name	AS	Bird,	location_gps	AS	'Location	of	Sighting'

FROM	birdwatchers.humans

JOIN	birdwatchers.bird_sightings	USING(human_id)

JOIN	rookery.birds	USING(bird_id)

JOIN	rookery.bird_families	USING(family_id)

WHERE	country_id	=	'ru'

AND	bird_families.scientific_name	=	'Scolopacidae'

ORDER	BY	Birder;

+-------------------+-------------------+---------------------------+

|	Birder												|	Bird														|	Location	of	Sighting						|

+-------------------+-------------------+---------------------------+

|	Anahit	Vanetsyan		|	Bar-tailed	Godwit	|	42.81958072;	133.02246094	|

|	Elena	Bokova						|	Eurasian	Curlew			|	51.70469364;	58.63746643		|

|	Elena	Bokova						|	Eskimo	Curlew					|	66.16051056;	-162.7734375	|

www.it-ebooks.info

http://www.it-ebooks.info/

|	Katerina	Smirnova	|	Eurasian	Curlew			|	42.69096856;	130.78185081	|

+-------------------+-------------------+---------------------------+

This	SQL	statement	joins	together	four	tables,	two	from	the	birdwatchers	database	and
two	from	the	birds	database.	Look	closely	at	this	SQL	statement	and	consider	the	purpose
of	including	each	of	those	four	tables.	All	of	them	were	needed	to	assemble	the	results
shown.	Incidentally,	we	used	the	CONCAT()	function	to	concatenate	together	the	member’s
first	and	last	name	for	the	Birder	field	in	the	results.

There	are	other	types	of	joins	besides	a	plain	JOIN.	Let’s	do	another	SELECT	using	another
type	of	JOIN.	For	an	example	of	this,	we’ll	get	a	list	of	Egrets	and	their	conservation
status.	Enter	the	following	SQL	statement:

SELECT	common_name	AS	'Bird',

conservation_state	AS	'Status'

FROM	birds

LEFT	JOIN	conservation_status	USING(conservation_status_id)

WHERE	common_name	LIKE	'%Egret%'

ORDER	BY	Status,	Bird;

+--------------------+-----------------+

|	Bird															|	Status										|

+--------------------+-----------------+

|	Great	Egret								|	NULL												|

|	Cattle	Egret							|	Least	Concern			|

|	Intermediate	Egret	|	Least	Concern			|

|	Little	Egret							|	Least	Concern			|

|	Snowy	Egret								|	Least	Concern			|

|	Reddish	Egret						|	Near	Threatened	|

|	Chinese	Egret						|	Vulnerable						|

|	Slaty	Egret								|	Vulnerable						|

+--------------------+-----------------+

This	SELECT	statement	is	like	the	previous	examples,	except	that	instead	of	using	a	JOIN,
we’re	using	a	LEFT	JOIN.	This	type	of	join	selects	rows	in	the	table	on	the	left	(i.e.,	birds)
regardless	of	whether	there	is	a	matching	row	in	the	table	on	the	right	(i.e.,
conservation_status).	Because	there	is	no	match	on	the	right,	MySQL	returns	a	NULL
value	for	columns	it	cannot	reconcile	from	the	table	on	the	right.	You	can	see	this	in	the
results.	The	Great	Egret	has	a	value	of	NULL	for	its	Status.	This	is	because	no	value
was	entered	in	the	conservation_status_id	column	of	the	row	related	to	that	bird
species.	It	would	return	NULL	if	the	value	of	that	column	is	NULL,	blank	if	the	column
was	set	to	empty	(e.g.,	''),	or	any	value	that	does	not	match	in	the	right	table.

Because	of	the	LEFT	JOIN,	the	results	show	all	birds	with	the	word	Egret	in	the	common
name	even	if	we	don’t	know	their	conservation	status.	It	also	indicates	which	Egrets	need
to	set	the	value	of	conservation_status_id.	We’ll	need	to	update	that	row	and	others
like	it.	An	UPDATE	statement	with	this	same	LEFT	JOIN	can	easily	do	that.	We’ll	show	a
couple	in	the	next	section.

Updating	Joined	Tables
If	you	want	to	use	the	UPDATE	statement	to	change	the	data	in	multiple	tables,	or	change
data	in	a	table	based	on	criteria	from	multiple	tables,	you	can	use	the	JOIN	clause.	The
syntax	of	the	JOIN	clause	for	UPDATE	is	the	same	as	it	is	for	SELECT.	So	let’s	go	straight	to
some	practical	examples.	We’ll	start	with	the	example	at	the	end	of	the	previous
subsection.

Let’s	use	UPDATE	with	LEFT	JOIN	to	locate	rows	in	the	birds	table	that	don’t	have	a	value
in	conservation_status_id.	We	could	update	all	of	the	rows,	but	let’s	do	only	rows	for

www.it-ebooks.info

http://www.it-ebooks.info/

one	bird	family,	Ardeidae	(i.e.,	Herons,	Egrets,	and	Bitterns).	First,	execute	this	SELECT
statement	to	test	our	joins	and	WHERE	clause:

SELECT	common_name,

conservation_state

FROM	birds

LEFT	JOIN	conservation_status	USING(conservation_status_id)

JOIN	bird_families	USING(family_id)

WHERE	bird_families.scientific_name	=	'Ardeidae';

If	you’re	working	from	the	data	from	the	MySQL	Resources	site,	you	should	have	over
150	rows	in	the	results.	You’ll	notice	that	many	of	the	rows	have	nothing	in	the
common_name	field.	That’s	because	there	are	many	bird	species	for	which	there	are
scientific	names,	but	no	common	names.	Those	rows	also	have	no	value	for	the
conservation_status_id.	There	are	also	a	few	rows	for	bird	species	that	do	have
common	names.

Let’s	add	another	row	to	the	conservation_status,	one	for	an	unknown	state.	We’ll	set
these	unknown	rows	to	that	state.	Enter	these	two	SQL	statements:

INSERT	INTO	conservation_status	(conservation_state)

VALUES('Unknown');

SELECT	LAST_INSERT_ID();

+------------------+

|	LAST_INSERT_ID()	|

+------------------+

|																9	|

+------------------+

In	the	first	SQL	statement	here	we	entered	only	a	value	for	conservation_state.	The
defaults	for	the	other	columns	are	fine.	We’ll	use	the	UPDATE	statement	to	set	the	rows	for
the	birds	in	Ardeidae	to	this	new	state,	so	we	want	to	know	the	conservation_status_id
for	it.	To	get	that	value,	we	issue	a	SELECT	statement	with	the	LAST_INSERT_ID()	function.
It	returns	the	identifier	generated	from	the	previous	SQL	statement	entered,	which	added	a
row	for	the	current	client	connection	(i.e.,	just	us).	Let’s	use	that	number	to	set	the
conservation_status_id	in	the	birds	table	for	bird	species	in	Ardeidae.	If	your
identification	number	is	different,	use	what	you	received	in	the	following	SQL	statement:

UPDATE	birds

LEFT	JOIN	conservation_status	USING(conservation_status_id)

JOIN	bird_families	USING(family_id)

SET	birds.conservation_status_id	=	9

WHERE	bird_families.scientific_name	=	'Ardeidae'

AND	conservation_status.conservation_status_id	IS	NULL;

This	UPDATE	statement	should	have	changed	almost	100	rows	on	your	server.	The	joins
here	are	the	same	as	we	used	in	the	previous	SELECT	statement,	in	which	we	discovered
that	we	did	not	have	a	conservation	status	set	for	the	Great	Egret.	Notice	in	the	WHERE
clause	here	that	one	of	the	conditions	is	that
conservation_status.conservation_status_id	has	a	value	of	NULL.	We	could	have
removed	the	LEFT	JOIN	to	the	conservation_status	table	and	then	updated	simply	all	of
the	rows	for	the	Ardeidae	birds	that	have	a	NULL	value	in	the	conservation_status_id
column.	But	that	would	not	have	included	any	rows	that	might	have	other	nonmatching
values	(e.g.,	a	blank	column).	By	including	this	LEFT	JOIN,	we	updated	all	of	these
possibilities.	However,	it	requires	the	condition	that	the
conservation_status.conservation_status_id	is	NULL,	the	column	from	the	right
table	—	it	will	be	assumed	NULL	if	not	matched.

www.it-ebooks.info

http://www.it-ebooks.info/

Because	the	method	of	joining	tables	is	the	same	for	both	the	SELECT	statement	and	the
UPDATE	statement,	you	can	easily	test	the	JOIN	clauses	and	WHERE	clause	using	a	SELECT
first.	When	that’s	successful,	you	can	then	execute	an	UPDATE	statement	with	the	same
JOIN	and	WHERE	clauses.	That’s	the	best	procedure	to	follow	to	ensure	proper	updating	of
data	when	joining	multiple	tables.

Deleting	Within	Joined	Tables
Having	used	JOIN	with	SELECT	and	UPDATE	statements,	let’s	look	at	some	practical
examples	using	DELETE.	In	Deleting	in	Multiple	Tables,	we	saw	an	example	of	DELETE
with	a	JOIN.	In	that	example,	we	wanted	to	delete	the	rows	where	the	member	Elena
Bokova	has	a	yahoo.com	email	address	from	both	the	humans	and	the	prize_winners
tables	from	the	birdwatchers	database.	For	that	purpose,	we	constructed	a	DELETE
statement	that	worked	fine,	but	there	was	potentially	a	problem	with	it.	Here	is	that	SQL
statement	again:

DELETE	FROM	humans,	prize_winners

USING	humans	JOIN	prize_winners

WHERE	name_first	=	'Elena'

AND	name_last	=	'Bokova'

AND	email_address	LIKE	'%yahoo.com'

AND	humans.human_id	=	prize_winners.human_id;

Compared	to	the	JOIN	clauses	we’ve	been	using,	the	syntax	here	may	look	strange.	This	is
how	it	works	with	a	DELETE	statement.	Tables	from	which	data	is	deleted	are	listed	in	the
FROM	clause,	while	tables	used	in	the	WHERE	clause	to	provide	filters	to	determine	which
rows	to	delete	are	listed	in	a	USING	clause.	The	clause	“USING	humans	JOIN
prize_winners”	just	tells	the	server	that	those	two	tables	provide	the	columns	in	the
WHERE	clause.

NOTE

Don’t	confuse	a	USING	clause,	which	has	JOIN	subclauses,	with	the	USING	operator,	which	can	be	used	in	a	JOIN
clause.

As	the	preceding	DELETE	SQL	statement	is	constructed,	if	MySQL	finds	a	row	in	the
humans	table	where	the	name	and	email	information	match,	there	has	to	be	a	matching	row
in	the	prize_winners	table	for	the	human_id.	If	there’s	not	a	row	in	both,	MySQL	won’t
delete	the	row	in	the	humans	table	and	no	error	will	be	returned	—	you	might	not	realize	it
failed.	To	allow	for	this	possibility,	we	could	use	a	LEFT	JOIN	like	so:

DELETE	FROM	humans,	prize_winners

USING	humans	LEFT	JOIN	prize_winners

ON	humans.human_id	=	prize_winners.human_id

WHERE	name_first	=	'Elena'

AND	name_last	=	'Bokova'

AND	email_address	LIKE	'%yahoo.com';

Notice	that	for	this	syntax	we	moved	the	valuation	of	the	human_id	columns	to	the	USING
clause,	adding	a	LEFT	JOIN	and	an	ON	operator	to	replace	that	condition	in	the	WHERE
clause.	That’s	necessary	because	if	there’s	not	a	match	in	the	other	table,	the	WHERE	clause
won’t	include	that	row	in	the	results	to	be	deleted.	With	the	LEFT	JOIN,	all	of	the	rows	in
both	the	humans	and	the	prize_winners	tables	that	match	the	criteria	given	to	it	will	be
deleted,	and	any	rows	found	in	the	humans	table	for	which	there	isn’t	a	match	in	the
prize_winners	table,	but	which	match	the	criteria	of	the	WHERE	clause	will	be	deleted	also.
This	prevents	what	are	known	as	orphaned	rows.

www.it-ebooks.info

http://www.it-ebooks.info/

For	general	maintenance,	we	should	check	occasionally	to	see	if	there	are	rows	in	the
prize_winners	table	that	don’t	have	matching	rows	in	the	humans	table,	and	then	delete
them.	Someone	might	have	had	us	delete	their	account,	but	we	may	have	forgotten	to
remove	entries	for	them	in	related	tables.	To	handle	that	possibility,	we	could	use	RIGHT
JOIN	instead	of	LEFT	JOIN.	We	could	enter	something	like	this:

DELETE	FROM	prize_winners

USING	humans	RIGHT	JOIN	prize_winners

ON	humans.human_id	=	prize_winners.human_id

WHERE	humans.human_id	IS	NULL;

In	this	DELETE	statement,	we	listed	only	the	prize_winners	table	in	the	FROM	clause
because	that’s	the	only	one	from	which	we	want	to	delete	rows.	It’s	a	good	policy	not	to
list	tables	that	are	not	to	be	affected	in	the	FROM	clause	of	a	DELETE	statement,	even	if	you
think	there’s	no	possible	way	that	there	is	a	row	that	would	be	deleted	in	the	other	tables.

Because	we	put	the	humans	table	first	in	the	USING	clause	and	the	prize_winners	table
second,	we’re	doing	a	RIGHT	JOIN	so	that	columns	from	the	table	on	the	right
(prize_winners)	will	be	deleted	even	if	there	is	no	value	in	the	table	on	the	left.	If	we
reversed	the	order	of	the	tables,	we	would	then	need	a	LEFT	JOIN	for	this	task.

It’s	worth	focusing	for	a	moment	on	the	final	clause	of	the	previous	DELETE	statement,	a
WHERE	clause	checking	for	NULLs	in	one	column.	As	we	saw	earlier,	a	LEFT	JOIN	or
RIGHT	JOIN	can	return	rows	where	there	was	nothing	in	the	column	you’re	doing	the	join
on.	The	results	contain	NULL	for	the	missing	value.	So	in	the	WHERE	clause	here,	we’re
using	that	as	the	condition	for	finding	the	orphaned	rows	in	the	prize_winners	table.

There	are	many	contortions	to	the	JOIN	clause.	The	basic	JOIN	syntaxes	that	we	covered	in
Selecting	a	Basic	Join	are	worth	learning	well;	they	will	be	the	ones	you	will	use
primarily.	You	will	sometimes	have	a	need	for	using	a	LEFT	JOIN	or	a	RIGHT	JOIN.	Let’s
move	on	to	a	related	topic	that	can	be	valuable	in	many	situations:	subqueries.

www.it-ebooks.info

http://www.it-ebooks.info/

Subqueries
A	subquery	is	a	query	within	another	query,	a	SELECT	statement	within	another	SQL
statement.	A	subquery	returns	a	single	value,	a	row	of	data,	a	single	column	from	several
rows,	or	several	columns	from	several	rows.	These	are	known	respectively	as	scalar,
column,	row,	and	table	subqueries.	I’ll	refer	to	these	distinctions	later	in	this	chapter.

Although	the	same	results	can	be	accomplished	by	using	the	JOIN	clause	and	sometimes
the	UNION,	depending	on	the	situation,	subqueries	are	a	cleaner	approach.	They	make	a
complex	query	more	modular,	which	makes	it	easier	to	create	and	to	troubleshoot
problems.	Here	are	two	generic	examples	of	subqueries	(we	also	used	a	few	subqueries	in
Chapter	8):

UPDATE	table_1

SET	col_5	=	1

WHERE	col_id	=

		SELECT	col_id

		FROM	table_2

		WHERE	col_1	=	value;

SELECT	column_a,	column_1

FROM	table_1

JOIN

		(SELECT	column_1,	column_2

			FROM	table_2

			WHERE	column_2	=	value)	AS	derived_table

USING(col_id);

In	the	first	example,	the	SELECT	statement	is	an	inner	query.	The	UPDATE	statement	is
referred	to	as	the	main	or	outer	query.	In	the	second	example,	the	SELECT	within
parentheses	is	the	inner	query	and	the	SELECT	outside	of	the	parentheses	is	the	outer	query.
An	outer	query	containing	a	subquery	can	be	a	SELECT,	INSERT,	UPDATE,	DELETE,	DO,	or
even	a	SET	statement.	There	are	some	limitations,	though.	An	outer	query	cannot	generally
select	data	or	modify	data	from	the	same	table	of	an	inner	query.	This	doesn’t	apply
though	if	the	subquery	is	part	of	a	FROM	clause.

These	generic	examples	may	be	confusing.	Generic	examples	aren’t	usually	easy	to
follow.	I’d	rather	present	first	the	syntax	for	subqueries,	but	there	is	no	syntax	per	se	for
the	use	of	subqueries	—	other	than	the	syntax	inherent	in	the	SQL	statements	used	for	the
inner	and	outer	queries.	Subqueries	are	rather	a	method	of	constructing	combinations	of
SQL	statements.	As	such,	you	need	only	to	make	sure	of	two	basic	factors	with
subqueries.

The	first	factor	of	which	you	need	to	be	mindful	is	how	a	subquery	is	contained	within	an
outer	query,	where	you	position	it.	For	instance,	if	you	construct	an	outer	query	which	is
an	UPDATE	statement,	you	could	place	a	subquery	in	the	WHERE	clause	to	provide	a	set	of
values	to	which	a	column	is	equal	(e.g.,	as	in	the	first	generic	example).	Or	you	might
locate	a	subquery	in	the	FROM	clause	of	an	outer,	SELECT	statement	(e.g.,	as	in	the	second
generic	example).	These	are	where	subqueries	may	be	positioned.	You	can	have	multiple
subqueries	within	an	outer	query,	but	they	will	be	positioned	generally	within	the	FROM
clause	or	the	WHERE	clause.

The	second	factor	is	whether	the	results	returned	from	a	subquery	are	in	keeping	with	the
expectations	of	the	outer	query.	For	instance,	in	the	first	generic	example,	the	UPDATE
clause	has	a	WHERE	clause	that	expects	a	single	value	from	the	subquery.	If	the	subquery

www.it-ebooks.info

http://www.it-ebooks.info/

returns	several	values,	a	row	of	columns,	or	a	table	of	results,	it	will	confuse	MySQL	and
cause	an	error.	So	you	need	to	be	sure	that	the	subquery	you	construct	will	return	the	type
of	values	required	by	the	outer	query	as	you	constructed	it.

You’ll	better	understand	these	factors	as	we	look	at	examples	of	them.	As	mentioned	at	the
start	of	this	section,	the	different	types	of	subqueries	are	scalar,	column,	row,	and	table
subqueries.	In	the	following	subsections,	we’ll	look	at	each	of	these	types,	along	with
examples	of	them.

Scalar	Subqueries
The	most	basic	subquery	is	one	that	returns	a	single	value,	a	scalar	value.	This	type	of
subquery	is	particularly	useful	in	a	WHERE	clause	in	conjunction	with	an	=	operator,	or	in
other	instances	where	a	single	value	from	an	expression	is	permitted.	Let’s	look	at	simple
example	of	this.	Let’s	get	a	list	of	bird	families	that	are	members	of	the	Galliformes	bird
order	(i.e.,	Grouse,	Partridges,	Quails,	and	Turkeys).	This	can	be	done	easily	with	a	JOIN
in	which	we	join	the	birds	and	bird_families	tables	together	based	on	the	order_id	for
Galliformes.	We’ll	use	instead	a	scalar	subquery	to	get	the	order_id	we	need.	Enter	this	in
mysql:

SELECT	scientific_name	AS	Family

FROM	bird_families

WHERE	order_id	=

		(SELECT	order_id

			FROM	bird_orders

			WHERE	scientific_name	=	'Galliformes');

+----------------+

|	Family									|

+----------------+

|	Megapodiidae			|

|	Cracidae							|

|	Numididae						|

|	Odontophoridae	|

|	Phasianidae				|

+----------------+

The	inner	query	(i.e.,	the	subquery	here)	returns	one	value,	the	order_id.	That’s	used	to
complete	the	WHERE	clause	of	the	outer	query.	That	was	pretty	simple.	Let’s	look	at	another
example	of	a	scalar	subquery.

We	had	an	example	earlier	in	this	chapter,	in	the	section	related	to	using	a	JOIN,	in	which
we	selected	members	from	Russia	who	had	sighted	birds	of	the	family	Scolopacidae.	To
thank	members	in	Russia	for	using	our	telephone	application	for	recording	sightings,
we’re	going	to	give	a	one-year	premium	membership	to	one	of	those	members.	Enter	this
hefty	SQL	statement	in	mysql:

UPDATE	humans

SET	membership_type	=	'premium',

membership_expiration	=	DATE_ADD(IFNULL(membership_expiration,	

		CURDATE()),	INTERVAL	1	YEAR)

WHERE	human_id	=

		(SELECT	human_id

			FROM

					(SELECT	human_id,	COUNT(*)	AS	sightings,	join_date

						FROM	birdwatchers.bird_sightings

						JOIN	birdwatchers.humans	USING(human_id)

						JOIN	rookery.birds	USING(bird_id)

						JOIN	rookery.bird_families	USING(family_id)

						WHERE	country_id	=	'ru'

						AND	bird_families.scientific_name	=	'Scolopacidae'

						GROUP	BY	human_id)	AS	derived_1

			WHERE	sightings	>	5

www.it-ebooks.info

http://www.it-ebooks.info/

			ORDER	BY	join_date	ASC

			LIMIT	1);

The	most	inner	query	here	is	basically	the	same	as	the	one	in	the	example	mentioned
earlier.	The	difference	is	that	here	we’re	not	selecting	the	names	involved.	Instead,	we’re
selecting	the	human_id	and	the	join_date	(i.e.,	the	date	that	the	member	joined).	With	the
GROUP	BY	clause,	we’re	grouping	members	based	on	the	human_id	to	get	a	count	with	the
COUNT()	function.	Put	another	way,	we’re	counting	the	number	of	entries	of	each
human_id	in	the	bird_sightings	table	for	the	bird	family	and	member	country	we
specified.	That	subquery	will	return	a	table	of	results;	it’s	a	table	subquery.	We’ll	talk
more	about	that	type	of	subquery	later	in	this	chapter.

The	query	wrapped	around	the	most	inner	query,	which	is	also	a	subquery,	selects	only
rows	where	the	number	of	sightings	is	more	than	five.	It	orders	the	rows	with	newer
members	first	based	on	the	date	the	members	joined	—	we	want	the	newest	Russian
member	reporting	several	Curlews	and	the	like	to	be	awarded	a	year	of	premium
membership.	This	subquery	is	limited	to	one	row	with	one	column.	It’s	a	scalar	query.

The	main	query	in	the	preceding	example	is	using	the	single	value	from	the	scalar	query	to
determine	which	member	to	give	one	year	of	premium	membership.	If	we	hadn’t	added
the	LIMIT	to	the	scalar	query,	it	would	have	returned	more	than	one	value	—	it	then
wouldn’t	have	been	a	scalar	query.	Based	on	the	operator	in	the	WHERE	clause	of	its	outer
query,	MySQL	would	have	returned	an	error	message	like	this:

ERROR	1242	(ER_SUBSELECT_NO_1_ROW)

SQLSTATE	=	21000

Message	=	"Subquery	returns	more	than	1	row"

As	with	all	subqueries,	there’s	always	a	way	to	get	the	same	results	without	a	subquery,
using	JOIN	or	some	other	method	to	bring	results	together	in	complex	ways.	To	some
extent,	it’s	a	matter	of	style	which	method	you	decide	to	use.	I	generally	prefer	subqueries,
especially	when	using	them	in	applications	I	develop	in	PHP	or	Perl.	They’re	easier	for	me
to	decipher	months	or	years	later	when	I	want	to	make	changes	to	a	program	I’ve	written.

Column	Subqueries
In	the	preceding	subsection,	we	discussed	instances	in	which	one	scalar	value	was
obtained	in	a	WHERE	clause.	However,	there	are	times	when	you	may	want	to	match
multiple	values.	For	those	situations,	you	will	need	to	use	the	subquery	in	conjunction
with	an	operator	such	as	IN,	which	is	used	to	specify	a	comma-separated	list	of	values.
Let’s	look	at	an	example	of	this.

In	one	of	the	examples	in	the	previous	subsection,	we	used	a	scalar	subquery	to	get	a	list
of	bird	families	for	the	bird	order	Galliformes.	Suppose	that	we	also	want	the	common
name	of	one	bird	species	from	each	family	in	the	order;	we	want	to	randomly	select	a	bird
name	from	each.	To	do	this,	we	will	create	a	subquery	that	will	select	a	list	of	bird	family
names	for	the	order.	Enter	the	following	SQL	statement:

SELECT	*	FROM

		(SELECT	common_name	AS	'Bird',

			families.scientific_name	AS	'Family'

			FROM	birds

			JOIN	bird_families	AS	families	USING(family_id)

			JOIN	bird_orders	AS	orders	USING(order_id)

			WHERE	common_name	!=	''

			AND	families.scientific_name	IN

www.it-ebooks.info

http://www.it-ebooks.info/

					(SELECT	DISTINCT	families.scientific_name	AS	'Family'

						FROM	bird_families	AS	families

						JOIN	bird_orders	AS	orders	USING(order_id)

						WHERE	orders.scientific_name	=	'Galliformes'

						ORDER	BY	Family)

			ORDER	BY	RAND())	AS	derived_1

GROUP	BY	(Family);

+------------------------+----------------+

|	Bird																			|	Family									|

+------------------------+----------------+

|	White-crested	Guan					|	Cracidae							|

|	Forsten's	Scrubfowl				|	Megapodiidae			|

|	Helmeted	Guineafowl				|	Numididae						|

|	Mountain	Quail									|	Odontophoridae	|

|	Gray-striped	Francolin	|	Phasianidae				|

+------------------------+----------------+

In	this	example,	we	have	two	subqueries,	a	subquery	within	a	subquery,	within	an	outer
query.	The	most	inner	subquery	is	known	as	a	nested	subquery.	The	subqueries	here	are
executed	before	the	outer	query,	so	the	results	will	be	available	before	the	WHERE	clause	of
the	outer	query	is	executed.	In	that	vein,	the	nested	subquery	will	be	executed	before	the
subquery	in	which	it	is	contained.	In	this	example,	the	nested	query	is	contained	within	the
parentheses	of	the	IN	operator	—	the	most	indented	query.	That	SQL	statement	selects	the
bird	family	name	where	the	name	of	the	order	is	Galliformes.	The	DISTINCT	flag	by	the
alias	Family	instructs	MySQL	to	return	only	one	entry	for	each	distinct	family	name.	If	we
had	manually	entered	that	information,	it	would	look	like	this:
(‘Cracidae’,‘Megapodiidae’,‘Numididae’,‘Odontophoridae’,‘Phasianidae’).	This
subquery	is	a	multiple-field	or	column	subquery.

The	inner	subquery	in	the	preceding	example	is	a	table	subquery.	It	selects	a	list	of	all
birds	that	are	in	the	list	of	bird	families	provided	by	its	subquery.	We	could	just	select	one
bird	for	each	family	at	this	level	using	a	GROUP	BY	clause	to	group	by	the	Family	name	to
get	one	bird	species	per	family.	But	that	would	select	the	first	rows	found	and	the	results
would	be	the	same	every	time.	We	want	to	select	randomly	each	time	this	SQL	statement
is	executed.	To	do	that,	we’re	selecting	all	of	the	birds	for	each	bird	family	and	then	using
ORDER	BY	RAND()	to	randomly	order	the	rows	of	the	results	table.	Then	we’re	wrapping
that	in	another	query,	the	outer	query	to	GROUP	BY	the	bird	family.	That	will	give	us	one
entry	for	each	bird	family.

Row	Subqueries
Row	subqueries	retrieve	a	single	row	of	data	that	is	then	used	by	the	outer	query.	It’s	used
in	a	WHERE	clause	to	compare	one	row	of	columns	to	one	row	of	columns	selected	in	the
subquery.	Let’s	consider	an	example	of	this	and	then	we’ll	discuss	it	more.	Suppose
another	bird-watcher	site	closes,	this	one	in	Eastern	Europe.	They	send	us	their	database,
which	contains	a	table	with	the	names	of	their	members,	and	another	table	with
information	members	provided	related	to	birds	they	spotted.	We	put	both	of	these	tables	in
the	birdwatchers	database	to	import	into	our	tables.	In	the	process	of	importing	these
members	into	our	humans	table,	we	discover	people	who	are	already	members	of	our	site.
That’s	OK:	we	know	how	to	avoid	importing	the	duplicates.	Now	we	want	to	import	the
table	of	birds	spottings.	Because	there	were	duplicate	members,	maybe	those	members
have	logged	information	on	birds	they	saw	in	the	wild	on	this	Eastern	European	site.	So
we	want	to	check	that	each	entry	is	not	a	duplicate	and	then	import	it.	Look	at	this	SQL
statement:

www.it-ebooks.info

http://www.it-ebooks.info/

INSERT	INTO	bird_sightings

(bird_id,	human_id,	time_seen,	location_gps)

VALUES

		(SELECT	birds.bird_id,	humans.human_id,

			date_spotted,	gps_coordinates

			FROM

					(SELECT	personal_name,	family_name,	science_name,	date_spotted,

						CONCAT(latitude,	';	',	longitude)	AS	gps_coordinates

						FROM	eastern_birders

						JOIN	eastern_birders_spottings	USING(birder_id)

						WHERE

										(personal_name,	family_name,

											science_name,	CONCAT(latitude,	';	',	longitude))

								NOT	IN

										(SELECT	name_first,	name_last,	scientific_name,	location_gps

											FROM	humans

											JOIN	bird_sightings	USING(human_id)

											JOIN	rookery.birds	USING(bird_id)))	AS	derived_1

			JOIN	humans

			ON(personal_name	=	name_first

						AND	family_name	=	name_last)

			JOIN	rookery.birds

			ON(scientific_name	=	science_name));

This	looks	very	complicated	and	can	be	difficult	to	understand	or	construct	correctly.	Let’s
discern	the	major	elements	here.	Look	first	at	the	subquery	in	parentheses,	the	nested
subquery.	We’re	selecting	data	from	tables	in	our	database:	the	names	of	each	person,	the
bird	species	and	where	the	member	sighted	it.	This	nested	subquery	is	contained	within
the	WHERE	clause	of	another	subquery,	a	row	subquery.	Notice	that	a	list	of	columns	from
the	tables	of	the	row	subquery	is	given	in	parentheses.	So	the	condition	of	the	WHERE
clause	is	that	the	values	of	those	columns	for	each	row	of	the	joined	tables	are	compared
to	the	values	of	the	columns	for	each	row	from	joined	tables	in	its	subquery.	The	outer
query	inserts	the	relevant	values	into	the	bird_sightings	table.

The	preceding	example	is	certainly	an	odd	one	and	seemingly,	unnecessarily	complex.	But
there	are	times	when	a	row	query	like	this	can	be	useful.	To	put	our	example	more	simply,
if	there’s	a	row	with	the	same	human	name	who	spotted	the	same	bird	species	at	the	exact
same	map	coordinates,	don’t	import	it.	If	all	of	those	values	are	not	the	same,	then	insert	it
into	the	bird_sightings	table.	There	are	other	ways,	though,	you	can	accomplish	this
task.	For	instance,	you	might	do	this	in	stages	with	multiple	SQL	statements	and	a
temporary	table.	You	could	also	do	it	in	stages	within	a	program	using	one	of	the
languages	like	Perl	and	an	API	like	the	Perl	DBI.	But	it’s	good	to	know	you	have	the
option	of	doing	it	within	one	SQL	statement	if	that’s	what	you	want.

Table	Subqueries
A	subquery	can	be	used	to	generate	a	results	set,	a	table	from	which	an	outer	query	can
select	data.	That	is	to	say,	a	subquery	can	be	used	in	a	FROM	clause	as	if	it	were	another
table	in	a	database.	It	is	said	to	be	a	derived	table.

There	are	a	few	rules	related	to	table	subqueries.	Each	derived	table	must	be	assigned	an
alias	—	any	unique	name	is	fine.	You	can	use	the	keyword	AS	for	assigning	an	alias.	Each
column	in	a	subquery	that	is	in	part	of	a	FROM	clause	must	have	a	unique	name.	For
instance,	if	you	select	the	same	column	twice	in	a	subquery,	you	have	to	assign	at	least	one
of	them	an	alias	that	is	unique.	A	subquery	contained	in	a	FROM	clause	cannot	generally	be
a	correlated	subquery;	it	cannot	reference	the	same	table	as	the	outer	query.

For	an	example	of	a	table	subquery,	let’s	use	the	example	near	the	beginning	of	this

www.it-ebooks.info

http://www.it-ebooks.info/

chapter	that	used	a	UNION.	In	that	example,	we	had	two	SELECT	statements	which	counted
the	number	of	rows	for	birds	in	two	bird	families:	Pelecanidae	and	Ardeidae.	With	a
UNION,	the	results	were	merged	into	one	results	set.	That	was	a	bulky	method.	We	can	do
better	with	a	table	subquery.	The	subquery	we’ll	use	will	select	just	the	bird	family	name
for	each	bird	of	the	two	families	that	we	wanted	to	count.	That	may	seem	silly,	to	list	the
bird	family	name	multiple	times,	especially	when	we	already	know	the	name	of	the	bird
families	we	want	to	count.	But	that’s	how	we	can	count	them	and	use	the	name	for	our
results	set.	MySQL	won’t	display	the	names	multiple	times	—	that	will	go	on	behind	the
scenes.	It	will	display	only	one	entry	per	family	because	of	the	GROUP	BY	clause.	Enter	the
following:

SELECT	family	AS	'Bird	Family',

COUNT(*)	AS	'Number	of	Birds'

FROM

		(SELECT	families.scientific_name	AS	family

			FROM	birds

			JOIN	bird_families	AS	families	USING(family_id)

			WHERE	families.scientific_name	IN('Pelecanidae','Ardeidae'))	AS	derived_1

GROUP	BY	family;

+-------------+-----------------+

|	Bird	Family	|	Number	of	Birds	|

+-------------+-----------------+

|	Ardeidae				|													157	|

|	Pelecanidae	|														10	|

+-------------+-----------------+

This	a	much	better	way	to	form	this	unified	results	set	than	using	a	UNION.	We	could	add
more	bird	family	names	to	the	WHERE	clause	in	the	subquery	to	get	more	rows	in	the	results
set,	instead	of	having	to	copy	the	SELECT	statement	for	each	family	we	add.

You	can	see	in	this	example	that	a	table	subquery	is	the	same	as	a	table	in	the	FROM	clause.
We	can	even	give	it	an	alias	(e.g.,	derived_1)	as	we	can	with	a	normal	table.	The
subquery	returns	a	table	of	results	(i.e.,	the	bird	family	names).	The	GROUP	BY	clause	tells
MySQL	to	group	the	results	based	on	the	family	field,	the	alias	in	the	subquery	for	the
scientific_name	column	of	the	bird_families	table.	We	used	that	same	alias	to	select
that	field	in	the	column	list	of	the	outer	query.	When	a	column	in	a	subquery	is	set	to	an
alias,	you	have	to	use	the	alias;	the	column	name	becomes	inaccessible	outside	the
subquery	when	an	alias	is	given.

Performance	Considerations	with	Subqueries
Performance	problems	can	occur	with	subqueries	if	they	are	not	well	constructed.	There
can	be	a	performance	drain	when	a	subquery	is	placed	within	an	IN()	operator	as	part	of	a
WHERE	clause	of	the	outer	query.	It’s	generally	better	to	use	instead	the	=	operator,	along
with	AND	for	each	column=value	pair.	For	situations	in	which	you	suspect	poor
performance	with	a	subquery,	try	reconstructing	the	SQL	statement	with	JOIN	and
compare	the	differences	between	the	two	SQL	statements	using	the	BENCHMARK()	function.
For	ideas	on	improving	subquery	performance,	Oracle	has	tips	on	their	site	for	Optimizing
Subqueries.

www.it-ebooks.info

http://bit.ly/optimizing_subqueries
http://www.it-ebooks.info/

Summary
Many	developers	prefer	subqueries	—	I	do.	They’re	easier	to	construct	and	decipher	when
you	have	problems	later.	If	you	work	on	a	database	that	is	very	large	and	has	a	huge
amount	of	activity,	subqueries	may	not	be	a	good	choice	because	they	can	sometimes
affect	performance.	For	small	databases,	though,	they’re	fine.	You	should	learn	to	use
subqueries	and	learn	how	to	work	without	them	(i.e,	use	JOIN)	so	you	can	handle	any
situation	presented	to	you.	You	cannot	be	sure	which	method	your	next	employer	and
team	of	developers	may	being	using.	It’s	best	to	be	versatile.

As	for	learning	to	use	JOIN,	that’s	hardly	optional.	Very	few	developers	don’t	use	JOIN.
Even	if	you	prefer	subqueries,	they	still	call	for	JOIN.	You	can	see	this	in	almost	all	of	the
examples	of	subqueries	in	this	chapter.	You	may	rarely	use	UNION.	But	there’s	not	much	to
learn	there.	However,	you	should	be	proficient	in	using	JOIN.	So	don’t	avoid	them;
practice	manually	entering	SQL	statements	that	use	them.	The	act	of	typing	them	helps.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises
The	goal	of	the	following	exercises	is	to	give	you	practice	assembling	tables	using	JOIN
and	creating	subqueries.	In	the	process	of	doing	these	exercises,	think	about	how	tables
and	data	come	together.	Try	to	envision	each	table	as	a	separate	piece	of	paper	with	a	list
of	data	on	it,	and	how	you	might	place	them	on	a	desk	to	find	information	on	them	in
relation	to	each	other.	In	such	a	scenario,	you	might	tend	to	place	your	left	index	finger	at
one	point	on	a	page	on	the	left	and	your	right	index	finger	on	a	point	on	another	page	on
your	right.	That’s	a	join.	Where	you	point	on	each	are	the	join	points.	As	you	type	the
SQL	statements	in	these	exercises,	think	of	this	scene	and	say	aloud	what	you’re	doing,
what	you’re	telling	MySQL	to	do.	It	helps	to	better	understand	the	joining	of	tables	and
creating	of	subqueries.

1.	 In	the	birdwatchers	database,	there	is	a	table	called	bird_sightings	in	which	there
are	records	of	birds	that	members	have	seen	in	the	wild.	Suppose	we	have	a	contest
in	which	we	will	award	a	prize	based	on	the	most	sightings	of	birds	from	the	order
Galliformes.	A	member	gets	one	point	for	each	sighting	of	birds	in	this	order.
Construct	an	SQL	statement	to	count	the	number	of	entries	from	each	member.
There	should	be	two	fields	in	the	results	set:	one	containing	the	human_id	with
Birder	as	the	alias;	and	the	second	field	containing	the	number	of	entries	with
Entries	as	its	alias.	To	accomplish	this,	join	the	bird_sightings	table	to	birds,
bird_families,	and	bird_orders.	Remember	that	these	tables	are	in	a	different
database.	You	will	have	to	use	the	COUNT()	function	and	a	GROUP	BY	clause.	Do	all	of
this	with	JOIN	and	not	with	subqueries.	Your	results	should	look	like	the	following:

+--------+---------+

|	Birder	|	Entries	|

+--------+---------+

|					19	|							1	|

|					28	|							5	|

+--------+---------+

When	you	have	successfully	constructed	this	SQL	statement,	modify	it	to	join	in	the
humans	table.	In	the	column	list,	replace	the	field	for	human_id	with	the	first	and	last
name	of	the	member.	Use	the	CONCAT()	function	to	put	them	together	into	a	single
field	(with	a	space	in	between	the	names),	with	the	same	alias.	Once	you	make	the
needed	changes	and	execute	it,	the	results	should	look	like	this,	but	the	number	of
names	and	points	may	be	different:

+--------------+--------+

|	Birder							|	Points	|

+--------------+--------+

|	Elena	Bokova	|						4	|

|	Marie	Dyer			|						8	|

+--------------+--------+

2.	 In	the	preceding	exercises,	you	were	asked	to	count	the	number	of	bird	species	the
members	sighted	from	the	Galliformes.	So	that	the	contest	is	more	fun,	instead	of
giving	one	point	for	each	bird	species	in	that	order,	give	a	point	for	only	one	bird
species	per	bird	family	in	the	bird	order.	That	means	that	a	member	doesn’t	get	more
points	for	sighting	the	same	bird	species	multiple	times.	A	member	also	doesn’t	get
more	points	for	spotting	several	birds	in	the	same	family.	Instead,	the	member	has	to
look	through	bird	guides	to	find	a	species	for	each	species	and	then	go	looking	for

www.it-ebooks.info

http://www.it-ebooks.info/

one	from	each	in	their	area.	This	should	make	the	contest	more	of	an	adventure	for
the	members.
To	allow	for	the	change	to	the	contest,	you	will	need	to	modify	the	SQL	statement
you	constructed	at	the	end	of	the	previous	exercise.	First,	you	will	need	to	add	a
DISTINCT	to	the	start	of	the	column	list	in	the	outer	query.	You’ll	need	to	remove	the
CONCAT()	and	GROUP	BY.	When	you’ve	done	that,	execute	the	SQL	statement	to
make	sure	you	have	no	errors.	You	should	get	a	results	set	that	shows	multiple
entries	for	some	members.	Next,	place	the	whole	SQL	statement	inside	another	SQL
statement	to	make	it	a	subquery.	The	new,	outer	query	should	include	CONCAT()	and
GROUP	BY	so	that	it	can	count	the	single	entries	from	each	family	for	each	member.	It
should	return	results	like	this:

+--------------+--------+

|	Birder							|	Points	|

+--------------+--------+

|	Elena	Bokova	|						1	|

|	Marie	Dyer			|						5	|

+--------------+--------+

3.	 There	are	five	families	in	the	Galliformes	bird	order.	For	the	contest	described	in	the
last	two	exercises,	the	most	points	that	a	member	could	achieve	therefore	is	5.
Change	the	SQL	statement	you	entered	at	the	end	of	the	previous	exercise	to	list
only	members	who	have	5	points.	To	do	this,	you	will	need	to	wrap	the	previous
SQL	statement	inside	another,	creating	a	nested	query.	When	you	execute	the	full
SQL	statement,	the	results	should	look	like	this:

+------------+--------+

|	Birder					|	Points	|

+------------+--------+

|	Marie	Dyer	|						5	|

+------------+--------+

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part	IV.	Built-In	Functions
MySQL	has	many	built-in	functions	that	can	be	used	to	manipulate	data	contained	within
columns.	With	these	functions,	you	can	format	data,	extract	text,	or	create	search
expressions.	In	and	of	themselves,	functions	do	not	affect	data	within	columns.	Instead,
they	manipulate	data	within	results	of	queries.	However,	when	used	properly	within	SQL
statements	such	as	UPDATE,	they	can	be	a	tool	for	changing	data	within	columns.
Incidentally,	functions	can	be	used	for	processing	plain	text	or	numbers	—	they	don’t
require	that	data	come	from	a	column.

There	are	three	major	groupings	of	functions:	string	functions;	date	and	time	functions;
and	numeric	or	arithmetic	functions.	String	functions	are	functions	that	relate	to
formatting	and	converting	text,	as	well	as	finding	and	extracting	text	from	columns.	These
are	covered	in	Chapter	10.

Date	and	time	functions	are	covered	in	Chapter	11.	These	functions	can	be	used	for
formatting	date	and	time	values,	as	well	as	extracting	specific	values	from	a	given	date	or
time.	They	can	also	be	used	to	get	date	and	time	values	from	the	system	to	use	for
inserting	or	updating	data	in	columns	of	a	table.

The	numeric	or	arithmetic	functions	are	used	for	mathematical	or	statistical	calculations
on	data.	They	are	covered	in	Chapter	12.

These	three	chapters	will	include	the	most	popular	and	more	useful	functions	from	these
three	major	groups	of	functions,	but	not	all	functions	from	these	categories.	As	part	of
learning	and	developing	MySQL	and	MariaDB,	you	should	be	aware	of	these	functions,
and	learn	them	well.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	10.	String	Functions
A	string	is	a	value	that	can	contain	alphabetical	characters,	digits,	and	other	characters
(e.g.,	the	ampersand,	the	dollar	sign).	Although	a	string	can	contain	numbers,	they	are	not
considered	numeric	values.	It’s	a	matter	of	context	and	perspective.	For	instance,	postal
codes	in	the	United	States	are	all	digits,	but	you	shouldn’t	store	them	as	integers	because
the	postal	code	for	02138	would	become	2138.	You	should	use	a	string	to	store	the	postal
code.

To	make	the	handling	of	strings	easier,	MySQL	provides	many	built-in	functions.	You	can
format	text	for	nicer	results,	make	better	expressions	in	a	WHERE	clause,	or	otherwise
extract	and	manipulate	data	from	a	string	or	column.	Therefore,	in	this	chapter,	we’ll	go
through	several	string	functions,	grouping	them	by	similar	features,	and	provide	examples
of	how	they	might	be	used.

BASIC	RULES	FOR	USING	FUNCTIONS

There	are	a	few	things	to	remember	when	using	functions.	String	functions	also	have	some	conventions	of	their	own.
Some	of	these	rules	can	be	different	depending	on	how	your	server	is	configured:

The	basic	syntax	of	a	function	is	to	a	keyword	immediately	followed	by	arguments	in	parentheses.	You	cannot
generally	have	a	space	between	the	keyword	and	the	opening	parenthesis	like	you	can	with	operators	in	SQL
statements	(e.g.,	IN	()	within	a	WHERE	clause).
Some	functions	take	no	arguments,	such	as	NOW(),	which	returns	the	current	date	or	time.	Other	functions	accept
a	particular	number	of	arguments.	Arguments	are	generally	separated	by	commas,	and	some	arguments	can	be
augmented	with	keywords.
When	you	pass	text	as	an	argument	to	a	string	function,	put	the	text	in	single	or	double	quotes.
When	giving	a	column	as	an	argument,	you	generally	don’t	use	single	quotes	around	the	column	name	—	if	you
do,	MySQL	will	think	you	mean	the	literal	text	given.	You	can	use	backticks	around	the	column	name	if	the	name
is	a	reserved	word	or	contains	a	character	that	might	cause	other	problems.
If	by	chance	a	string	function	tries	to	return	a	value	that	is	larger	(i.e.,	more	characters)	than	allowed	by	the
system	settings	(set	by	the	max_allowed_packet	configuration	option),	MySQL	will	return	NULL	instead.
Some	arguments	to	string	functions	represent	positions	within	the	strings.	The	first	character	in	a	string	is
numbered	1,	not	0.	Some	functions	let	you	count	back	from	the	end	of	the	string,	using	negative	integers.	In	these
arguments,	-1	refers	to	the	last	character.
Some	string	functions	call	for	a	character	length	as	an	argument.	If	you	give	a	fractional	value	to	these	functions,
MySQL	will	round	that	value	to	the	nearest	integer.

www.it-ebooks.info

http://www.it-ebooks.info/

Formatting	Strings
Several	string	functions	can	format	or	reconstitute	text	for	a	better	display.	They	allow	you
to	store	data	in	columns	in	a	raw	form	or	in	separate	components	and	then	create	the
display	you	want	when	you	retrieve	the	data.

For	instance,	in	the	humans	table,	we	are	able	to	store	each	member’s	title,	first	name,	and
last	name	in	separate	columns	because	we	can	put	them	together	when	needed.	Breaking
apart	the	names	allows	us	to	sort	easily	based	on	last	name	or	first	name.	You’ll	see	how
this	is	done	in	the	next	subsection.

Concatenating	Strings
The	CONCAT()	function	is	very	useful	for	pasting	together	the	contents	of	different
columns,	or	adding	some	other	text	to	the	results	retrieved	from	a	column.	This	is
probably	the	most	used	string	function	—	we’ve	already	used	it	in	several	examples	in
previous	chapters.	Within	the	parentheses	of	the	function,	in	a	comma-separated	list,	you
give	the	strings,	columns,	and	other	elements	that	you	want	to	merge	together	into	one
string.

Let’s	look	at	an	example	of	how	it	might	be	used	within	a	SELECT	statement.	Suppose	we
want	to	get	a	list	of	a	few	members	and	birds	that	they’ve	seen.	We	could	enter	an	SQL
statement	like	this:

SELECT	CONCAT(formal_title,	'.	',	name_first,	SPACE(1),	name_last)	AS	Birder,

CONCAT(common_name,	'	-	',	birds.scientific_name)	AS	Bird,

time_seen	AS	'When	Spotted'

FROM	birdwatchers.bird_sightings

JOIN	birdwatchers.humans	USING(human_id)

JOIN	rookery.birds	USING(bird_id)

GROUP	BY	human_id	DESC

LIMIT	4;

+----------------------+----------------------------------+--------------------+

|	Birder															|	Bird																													|	When	Spotted							|

+----------------------+----------------------------------+--------------------+

|	Ms.	Marie	Dyer							|	Red-billed	Curassow	-	Crax	blu…|	2013-10-02	07:39:44|

|	Ms.	Anahit	Vanetsyan	|	Bar-tailed	Godwit	-	Limosa	lap…|	2013-10-01	05:40:00|

|	Ms.	Katerina	Smirnova|	Eurasian	Curlew	-	Numenius	arq…|	2013-10-01	07:06:46|

|	Ms.	Elena	Bokova					|	Eskimo	Curlew	-	Numenius	borea…|	2013-10-01	05:09:27|

+----------------------+----------------------------------+--------------------+

The	first	field	displayed	by	this	SQL	statement	is	not	a	single	column	from	the	table,	but	a
CONCAT()	function	that	merges	the	bird-watcher’s	title,	first	name,	and	last	name.	We
added	a	period	in	quotes	after	the	title,	as	we’ve	decided	to	store	the	titles	without	a
period.	We	used	quote	marks	to	add	spaces	where	needed.	For	the	second	field,	we
concatenated	the	common	name	of	each	bird	species	with	the	scientific	name,	and	put
spaces	and	a	hyphen	between	them.

Without	CONCAT(),	we	might	be	tempted	to	combine	text	in	one	column	that	really	should
be	separated.	For	instance,	we	might	put	the	common	and	scientific	names	of	bird	species
in	one	column.	Keeping	values	in	separate	columns	makes	a	database	more	efficient	and
flexible.	String	functions	like	CONCAT()	alleviate	the	need	to	do	otherwise.

A	less	common	concatenating	function	is	CONCAT_WS().	It	puts	together	columns	with	a
separator	between	each.	The	first	argument	is	the	element	you	want	to	use	as	a	separator
(e.g.,	a	space)	and	the	rest	of	the	arguments	are	the	values	to	be	separated.	This	can	be

www.it-ebooks.info

http://www.it-ebooks.info/

useful	when	making	data	available	for	other	programs.

For	instance,	suppose	we	have	embroidered	patches	made	with	the	name	of	the	Rookery
site	on	them	and	we	want	to	mail	one	to	each	premium	member.	To	do	this,	we	use	an
advertising	and	marketing	agency	that	will	handle	the	mailing.	The	agency	needs	the
names	and	addresses	of	members,	and	would	like	that	data	in	a	text	file,	with	the	values	of
each	field	separated	by	vertical	bars.	To	do	this,	we’ll	run	mysql	on	the	command	line,
passing	a	single	statement	to	it:

mysql	-p	--skip-column-names	-e	\

"SELECT	CONCAT_WS('|',	formal_title,	name_first,	name_last,

street_address,	city,	state_province,	postal_code,	country_id)

FROM	birdwatchers.humans	WHERE	membership_type	=	'premium'

AND	membership_expiration	>	CURDATE();"	>	rookery_patch_mailinglist.txt

This	example	uses	mysql	with	several	options.	The	--skip-column-names	option	tells
MySQL	not	to	display	the	column	headings	—	we	want	just	the	data	separated	by	bars.
The	-e	option	says	that	what	follows	within	quotes	is	to	be	executed.	We	then	put	the	SQL
statement	within	double	quotes.	The	first	argument	to	CONCAT_WS()	is	the	vertical	bar	that
the	company	wants	as	a	separator.	The	remaining	arguments	are	the	columns	to	be	strung
together.	After	the	closing	double	quotes,	we	use	>	to	redirect	the	results	to	a	text	file	that
we’ll	email	to	the	agency.	There	is	a	potential	problem	with	the	SQL	statement	we	used.	If
a	column	has	a	NULL	value,	nothing	will	be	exported	and	no	bar	will	be	put	in	the	file	to
indicate	an	empty	field.	Here’s	an	example	of	how	the	text	file	would	look:

Ms|Rusty|Osborne|ch

Ms|Elena|Bokova|ru

We	have	only	four	fields	for	these	members,	although	we	told	MySQL	to	export	eight
fields.	If	these	two	records	were	in	the	midst	of	thousands	of	records,	they	would	cause
errors	that	might	not	be	obvious	when	imported.	Although	it’s	more	cumbersome,	we
should	wrap	each	column	name	in	an	IFNULL()	function.	Then	we	can	give	a	value	to
display	if	the	column	is	NULL,	such	as	the	word	unknown	or	a	blank	space.	Here’s	the
same	example	again,	but	with	the	IFNULL()	function:

mysql	-p	--skip-column-names	-e	\

"SELECT	CONCAT_WS('|',	IFNULL(formal_title,	'	'),	IFNULL(name_first,	'	'),

IFNULL(name_last,	'	'),	IFNULL(street_address,	'	'),

IFNULL(city,	'	'),	IFNULL(state_province,	'	'),

IFNULL(postal_code,	'	'),	IFNULL(country_id,	'	'))

FROM	birdwatchers.humans	WHERE	membership_type	=	'premium'

AND	membership_expiration	>	CURDATE();"	>	rookery_patch_mailinglist.txt

It	looks	daunting	and	excessive,	but	it’s	simple	to	MySQL.	The	new	contents	of	the	text
file	follow:

Ms|Rusty|Osborne|	|	|	|	|ch

Ms|Elena|Bokova|	|	|	|	|ru

That’s	a	manageable	data	file.	When	the	results	are	like	this,	the	marketing	company	can
import	all	of	the	records	without	errors	and	then	contact	us	to	try	to	get	the	missing
information.	They	can	add	it	to	their	system	without	having	to	reimport	the	text	file.

Setting	Case	and	Quotes
Occasionally,	you	might	want	to	convert	the	text	from	a	column	to	either	all	lowercase
letters	or	all	uppercase	letters.	For	these	situations,	there	are	LOWER()	and	UPPER(),	which
can	also	be	spelled	LCASE()	and	UCASE(),	respectively.	In	the	example	that	follows,	the

www.it-ebooks.info

http://www.it-ebooks.info/

output	of	the	first	column	is	converted	to	lowercase	and	the	second	to	uppercase:
SELECT	LCASE(common_name)	AS	Species,

UCASE(bird_families.scientific_name)	AS	Family

FROM	birds

JOIN	bird_families	USING(family_id)

WHERE	common_name	LIKE	'%Wren%'

ORDER	BY	Species

LIMIT	5;

+-------------------------+---------------+

|	Species																	|	Family								|

+-------------------------+---------------+

|	apolinar's	wren									|	TROGLODYTIDAE	|

|	band-backed	wren								|	TROGLODYTIDAE	|

|	banded	wren													|	TROGLODYTIDAE	|

|	bar-winged	wood-wren				|	TROGLODYTIDAE	|

|	bar-winged	wren-babbler	|	TIMALIIDAE				|

+-------------------------+---------------+

The	QUOTE()	function	takes	a	string	and	returns	it	enclosed	in	single	quotes.	But	it	does	a
good	deal	more:	it	makes	it	input-safe	by	marking	certain	characters	that	could	cause
trouble	in	SQL	statements	or	other	programming	languages.	These	characters	are	single
quotes,	backslashes,	null	(zero)	bytes,	and	Ctrl-Z	characters.	The	QUOTE()	function
precedes	each	of	these	with	a	backslash	so	that	they	won’t	be	interpreted	in	some	way	or
(in	the	case	of	a	single	quote)	cause	SQL	to	prematurely	terminate	the	string.

In	the	following	example,	we’re	selecting	a	list	of	bird	species	named	for	a	Prince	or
Princess:

SELECT	QUOTE(common_name)

FROM	birds

WHERE	common_name	LIKE	"%Prince%"

ORDER	BY	common_name;

+----------------------------------+

|	QUOTE(common_name)															|

+----------------------------------+

|	'Prince	Henry\'s	Laughingthrush'	|

|	'Prince	Ruspoli\'s	Turaco'							|

|	'Princess	Parrot'																|

+----------------------------------+

Notice	in	the	results	that	because	of	the	QUOTE()	function,	the	strings	returned	are
enclosed	in	single	quotes,	and	any	single	quotes	within	the	strings	are	escaped	with	a
backslash.	This	can	prevent	errors	if	the	value	is	passed	to	another	program.

Trimming	and	Padding	Strings
One	of	the	problems	with	allowing	the	public	to	enter	data	into	a	website	is	that	they’re
not	always	careful.	They	do	things	like	adding	spaces	before	and	after	the	text.	There	are	a
few	functions	for	trimming	any	leading	or	trailing	spaces	from	the	values	of	a	column.
The	LTRIM()	function	eliminates	any	leading	spaces	to	the	left.	For	columns	with	spaces
on	the	right,	RTRIM()	will	remove	them.	A	more	versatile	trimming	function,	though,	is
TRIM().	With	it,	you	can	trim	both	left	and	right	spaces.

These	trim	functions	can	be	useful	for	cleaning	data	with	the	UPDATE	statement.	Let’s	look
at	an	example	of	their	use.	In	these	SQL	statements,	we’ll	use	LTRIM()	and	RTRIM()	to
eliminate	both	leading	and	trailing	spaces:

UPDATE	humans

SET	name_first	=	LTRIM(name_first),

name_last	=	LTRIM(name_last);

www.it-ebooks.info

http://www.it-ebooks.info/

UPDATE	humans

SET	name_first	=	RTRIM(name_first),

name_last	=	RTRIM(name_last);

In	this	example,	we	trimmed	the	leading	spaces	with	the	first	UPDATE	and	the	trailing
spaces	with	the	second	one.	Notice	that	we	set	the	value	of	the	columns	to	the	same
values,	but	with	the	strings	trimmed.	We	can	combine	these	functions	into	one	SQL
statement	like	so:

UPDATE	humans

SET	name_first	=	LTRIM(RTRIM(name_last)),

name_last	=	LTRIM(RTRIM(name_last));

You	can	always	combine	functions	like	this	for	a	more	dynamic	result.	In	this	case,
though,	the	TRIM()	function	is	a	better	alternative.	Here’s	the	same	SQL	statement	using
it:

UPDATE	humans

SET	name_first	=	TRIM(name_first),

name_last	=	TRIM(name_last);

The	TRIM()	function	also	offers	more	options.	You	can	specify	something	other	than
spaces	to	remove.	For	instance,	suppose	we	receive	a	small	table	with	bird	sightings	from
another	bird-watcher	club,	as	we	did	in	Row	Subqueries.	However,	in	this	table,	the
scientific	names	of	bird	species	are	within	double	quotes.	If	we	wanted	to	insert	that	data
into	our	bird_sightings	table,	we	could	use	the	same	SQL	query	as	we	did	before,	with
the	addition	of	the	TRIM()	function.	Here	is	the	relevant	excerpt,	the	last	lines	on	which
we	join	their	table	to	our	birds	table:

…

JOIN	rookery.birds

ON(scientific_name	=	TRIM(BOTH	'"'	FROM	science_name)));

It	may	be	difficult	to	see,	but	we’re	enclosing	the	character	that	we	want	trimmed	—	a
double	quote	—	within	single	quotes.	The	keyword	BOTH	isn’t	actually	necessary	because
it’s	the	default	—	that’s	why	we	didn’t	specify	it	in	the	previous	example.	If	you	don’t
want	to	remove	the	string	given	from	one	end	or	the	other,	you	can	specify	LEADING	or
TRAILING,	thus	making	TRIM()	work	like	LTRIM()	or	RTRIM().	The	default	string	to	trim	is
a	space,	as	we	have	seen.

When	displaying	data	in	web	forms	and	other	such	settings,	it’s	sometimes	useful	to	pad
the	data	displayed	with	dots	or	some	other	filler.	This	can	be	necessary	when	dealing	with
VARCHAR	columns	where	the	width	varies.	Padding	the	results	of	a	column	selected	can
help	the	user	to	see	the	column	limits.	There	are	two	functions	that	may	be	used	for
padding:	LPAD()	and	RPAD().	There	is	also	SPACE(),	which	pads	the	string	with	spaces:

SELECT	CONCAT(RPAD(common_name,	20,	'.'),

RPAD(Families.scientific_name,	15,	'.'),

Orders.scientific_name)	AS	Birds

FROM	birds

JOIN	bird_families	AS	Families	USING(family_id)

JOIN	bird_orders	AS	Orders

WHERE	common_name	!=	''

AND	Orders.scientific_name	=	'Ciconiiformes'

ORDER	BY	common_name	LIMIT	3;

+--+

|	Birds																																												|

+--+

|	Abbott's	Babbler….Pellorneidae…Ciconiiformes	|

|	Abbott's	Booby…...Sulidae….....Ciconiiformes	|

|	Abbott's	Starling…Sturnidae…...Ciconiiformes	|

+--+

www.it-ebooks.info

http://www.it-ebooks.info/

Notice	how	all	the	bird	families	and	orders	are	aligned	vertically.	This	is	because	we
padded	each	value	out	to	its	maximum	width	using	RPAD().	The	first	argument	was	the
column	to	read,	the	second	was	the	total	size	of	the	resulting	string	we	want,	and	the	third
was	a	period	so	that	periods	apear	for	columns	that	have	less	text.	This	happens	to	work
because	MySQL	uses	a	fixed-width	font.	We	could	uses	spaces	instead	of	dots	for	a
similar	effect.	For	web	display,	we	might	use	 	as	padding	element	for	non-breaking
spaces.

www.it-ebooks.info

http://www.it-ebooks.info/

Extracting	Text
There	are	a	few	functions	for	extracting	a	piece	of	text	from	a	string.	You	indicate	the
point	from	which	to	start	selecting	text	and	how	much	text	you	want.	There	are	four	such
functions:	LEFT(),	MID(),	RIGHT(),	and	SUBSTRING().	The	SUBSTRING_INDEX()	function	is
also	related.	We’ll	look	at	each	one	here.

Let’s	look	at	the	LEFT(),	MID(),	and	RIGHT()	functions	first.	Suppose	our	marketing
agency	acquires	a	table	called	prospects	containing	a	list	of	people	who	are	known	to	be
bird-watchers.	Each	person’s	title	and	first	and	last	name	is	stored	in	a	column	called
prospect_name,	with	email	addresses	in	another	column.	The	prospect_name	column	is	a
fixed	character	length	data	type,	CHAR(54).	The	marketing	agency	tells	us	that	the	title	is
contained	in	the	first	four	characters,	the	first	name	in	the	next	25,	and	the	last	name	in	the
remaining	25.	For	the	titles,	they’re	using	only	Mr.	and	Ms.	with	a	space	after	each	—
hence	the	first	four	characters	—	but	we	will	extract	just	the	first	two	characters	for	our
tables.	Let’s	see	how	that	column	looks	by	executing	a	simple	SELECT	to	retrieve	four
names:

SELECT	prospect_name

FROM	prospects	LIMIT	4;

+--+

|	prospect_name																																										|

+--+

|	Ms.	Caryn-Amy																Rose																						|

|	Mr.	Colin																				Charles																			|

|	Mr.	Kenneth																		Dyer																						|

|	Ms.	Sveta																				Smirnova																		|

+--+

As	you	can	see,	the	data	is	a	fixed	width	for	each	element.	Normally,	with	a	CHAR	column,
MySQL	would	not	store	the	trailing	spaces.	Whoever	created	this	table	enforced	the	rigid
format	(4,	25,	and	25	characters)	by	executing	SET	sql_mode	=
'PAD_CHAR_TO_FULL_LENGTH';	before	inserting	data	into	the	column.

With	an	INSERT	INTO…SELECT	statement	and	a	few	functions,	we	can	extract	and	separate
the	data	we	need	and	put	these	prospects	in	a	new	table	we	created	that	we	call
membership_prospects.	Let’s	execute	the	SELECT	first	to	test	our	organization	of	the
functions	before	we	insert	the	data:

SELECT	LEFT(prospect_name,	2)	AS	title,

MID(prospect_name,	5,	25)	AS	first_name,

RIGHT(prospect_name,	25)	AS	last_name

FROM	prospects	LIMIT	4;

+-------+---------------------------+---------------------------+

|	title	|	first_name																|	last_name																	|

+-------+---------------------------+---------------------------+

|	Ms				|	Caryn-Amy																	|	Rose																						|

|	Mr				|	Kenneth																			|	Dyer																						|

|	Mr				|	Colin																					|	Charles																			|

|	Ms				|	Sveta																					|	Smirnova																		|

+-------+---------------------------+---------------------------+

In	the	example’s	LEFT()	function,	the	starting	point	for	extracting	data	is	the	first
character.	The	number	we	gave	as	an	argument	(i.e.,	2),	is	the	number	of	characters	we
want	to	extract	starting	from	the	first.	The	RIGHT()	function	is	similar,	but	it	starts	from
the	last	character	on	the	right,	counting	left.	The	MID()	function	is	a	little	different.	With
it,	you	can	specify	the	starting	point	(i.e.,	the	fifth	character	in	our	example)	and	how

www.it-ebooks.info

http://www.it-ebooks.info/

many	characters	you	want	(i.e.,	25	characters).

The	SUBSTRING()	function	is	synonymous	with	MID()	and	their	syntax	is	the	same.	By
default,	if	the	number	of	characters	to	capture	isn’t	specified,	it’s	assumed	that	all	the
remaining	ones	are	to	be	extracted.	This	makes	these	functions	work	like	the	LEFT()
function.	If	the	second	argument	to	SUBSTRING()	or	MID()	is	a	negative	number,	the
function	will	start	from	the	end	of	the	string,	making	it	like	the	RIGHT()	function.

Because	the	SUBSTRING()	function	is	so	versatile,	we	can	use	it	to	accomplish	all	the	text
extraction	in	the	previous	example.	The	equivalent	SELECT	would	look	like	this:

SELECT	SUBSTRING(prospect_name,	1,	2)	AS	title,

SUBSTRING(prospect_name	FROM	5	FOR	25)	AS	first_name,

SUBSTRING(prospect_name,	-25)	AS	last_name

FROM	prospects	LIMIT	3;

This	example	shows	three	ways	to	use	SUBSTRING():
SUBSTRING(prospect_name,	1,	2)	AS	title

This	has	the	same	syntax	we	have	used	for	other	functions	in	this	section:	three
arguments	to	specify	the	column	with	the	text,	the	starting	point	for	extracting	text,	and
the	number	of	characters	to	extract.

SUBSTRING(prospect_name	FROM	5	FOR	25)	AS	first_name

This	shows	a	different,	wordier	syntax.	The	starting	point	here	is	5	and	the	number	of
characters	to	extract	is	25.

SUBSTRING(prospect_name,	-25)	AS	last_name

This	specifies	a	starting	point	of	−25	characters.	Because	it	doesn’t	specify	how	many
to	extract,	MySQL	takes	the	remaining	characters	from	that	starting	point.

You	can	use	whatever	style	you	prefer.

The	SUBSTRING_INDEX()	is	similar	to	the	previous	functions,	but	looks	for	elements	that
separate	data	within	a	string.	For	example,	suppose	the	prospect_name	column	was
constructed	differently.	Suppose	that	instead	of	having	fixed	width	for	the	title	and	names,
the	text	had	vertical	bars	between	them.	This	would	be	odd	for	data	in	a	column,	but	it	is
possible.	Here’s	how	we	could	separate	the	same	column	containing	the	vertical	bar
character	as	the	separator	(the	first	and	third	third	lines	using	SUBSTRING_INDEX()	are
fairly	understandable,	but	the	second	one	is	more	complex):

SELECT	SUBSTRING_INDEX(prospect_name,	'|',	1)	AS	title,

SUBSTRING_INDEX(SUBSTRING_INDEX(prospect_name,	'|',	2),	'|',	-1)	AS	first_name,

SUBSTRING_INDEX(prospect_name,	'|',	-1)	AS	last_name

FROM	prospects	WHERE	prospect_id	=	7;

The	second	argument	to	SUBSTRING_INDEX()	tells	MySQL	how	to	break	the	string	into	the
pieces	of	text	we	want.	In	our	example,	we	use	'|'	to	specify	the	vertical	bar.	The	number
in	the	third	argument	tells	how	many	elements	to	take.	So	in	the	first	line	here	we’re
saying	to	get	the	first	element.	In	the	third	line,	because	it	has	a	negative	sign	in	front	of
the	number,	we’re	saying	to	count	from	the	end	and	get	one	element	there.	In	the	second
line,	we’re	using	SUBSTRING_INDEX()	twice,	one	call	embedded	inside	the	other.	The	inner
call	extracts	the	first	two	elements.	Using	those	results,	we	then	use	an	outer	call	to	extract
its	first	element	starting	from	the	end.

www.it-ebooks.info

http://www.it-ebooks.info/

Using	SUBSTRING()	is	much	nicer,	but	you	need	to	know	the	starting	point	and	how	many
characters	to	take.	In	our	vertical	bar	example,	we’d	need	to	know	exactly	where	the
vertical	bars	are	in	each	name.	To	do	that,	you	will	need	to	use	other	functions	to	search
strings.	Those	are	covered	in	the	next	section.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching	Strings	and	Using	Lengths
MySQL	and	MariaDB	do	not	have	comprehensive	functions	for	searching	string	based	on
patterns.	Yes,	there’s	the	REGEXP	operator	that	permits	some	pattern	matching.	But	this
isn’t	as	robust	and	isn’t	fine	tuned	as	easily	as	the	capabilities	offered	by	programming
languages	like	PHP	and	Perl.	But	there	are	a	few	functions	that	assist	in	searching	strings.
We’ll	look	at	some	of	them	in	this	section.

Locating	Text	Within	a	String
MySQL	and	MariaDB	have	a	few	built-in	functions	that	can	find	characters	within	a
string.	These	functions	return	the	location	where	the	search	parameter	was	found.

The	LOCATE()	function	returns	the	numeric	starting	point	just	left	of	the	first	occurrence	of
a	given	substring	in	a	given	string.	It	does	not	search	beyond	this	point.	Let’s	look	at	an
example.	Suppose	we	want	a	list	of	Avocet	birds	—	they’re	a	type	of	shore	birds	that	is
part	of	the	Recurvirostridae	family.	We	could	enter	something	like	this:

SELECT	common_name	AS	'Avocet'

FROM	birds

JOIN	bird_families	USING(family_id)

WHERE	bird_families.scientific_name	=	'Recurvirostridae'

AND	birds.common_name	LIKE	'%Avocet%';

+-------------------+

|	Avocet												|

+-------------------+

|	Pied	Avocet							|

|	Red-necked	Avocet	|

|	Andean	Avocet					|

|	American	Avocet			|

+-------------------+

Now	suppose	we	want	to	eliminate	the	word	Avocet	from	the	names	returned.	There	are	a
few	ways	we	might	do	that:	one	way	is	to	use	the	LOCATE()	function	to	find	the	word
Avocet,	and	extract	all	text	before	it	with	the	SUBSTRING()	function:

SELECT

SUBSTRING(common_name,	1,	LOCATE('	Avocet',	common_name))	AS	'Avocet'

FROM	birds

JOIN	bird_families	USING(family_id)

WHERE	bird_families.scientific_name	=	'Recurvirostridae'

AND	birds.common_name	LIKE	'%Avocet%';

+-------------+

|	Avocet						|

+-------------+

|	Pied								|

|	Red-necked		|

|	Andean						|

|	American				|

+-------------+

That’s	a	cumbersome	example,	but	it	shows	you	how	you	can	use	LOCATE()	in	conjunction
with	other	functions	to	get	what	you	want	from	a	string.	Let’s	look	at	another	example.

Earlier	in	this	chapter,	in	Trimming	and	Padding	Strings,	we	had	some	examples	involving
merging	data	from	another	bird-watcher	group.	That	included	using	the	TRIM()	function	to
remove	quotes	from	around	the	scientific	names	of	birds	spotted	by	people	in	that	group.
Let’s	use	that	column	again,	but	assume	that	it	doesn’t	have	quotes.	Instead,	the	bird
species	is	given	with	its	bird	family	in	this	format:	bird	species	-	bird	family.	For
this,	we	can	use	the	LOCATE()	function	to	locate	the	hyphen	and	then	the	SUBSTRING()	to

www.it-ebooks.info

http://www.it-ebooks.info/

get	the	family	name	for	the	JOIN	clause	in	that	earlier	example.	Here’s	just	the	excerpt
from	the	JOIN	clause:

…

JOIN	rookery.birds

ON(scientific_name	=	SUBSTRING(science_name,	LOCATE('	-	',	science_name)	+	3));

Let’s	pull	this	apart	to	understand	it	better.	First,	let’s	focus	on	the	inner	function,	the
LOCATE().	The	search	parameter	it’s	given	is	a	hyphen	surrounded	by	spaces.	The
science_name	column	is	the	string	to	search.	This	function	will	return	the	position	in	the
string	where	the	search	parameter	is	found.	We’re	adding	3	to	that	because	the	search
parameter	is	three	characters	long	—	in	other	words,	LOCATE()	gives	us	the	point	before
the	separator	and	we	want	to	get	the	substring	after	the	end	of	the	separator.	So	the	results
of	LOCATE()	+	3	is	given	as	the	starting	point	for	the	SUBSTRING()	function.	Because	we’re
not	specifying	how	many	characters	we	want,	MySQL	will	extract	the	remaining
characters.	That	will	give	us	the	scientific	name	of	the	bird	in	the	table	we’re	joining	to
birds.

The	POSITION()	function	works	like	LOCATE(),	except	that	it	takes	the	keyword	IN	instead
of	a	comma	between	the	substring	you’re	searching	for	and	the	containing	string:

POSITION('	-	'	IN	science_name)

In	addition,	LOCATE()	accepts	an	optional	argument	to	indicate	the	starting	point	for	the
search,	which	is	not	available	in	POSITION().

Another	function	for	searching	a	string	is	FIND_IN_SET().	If	you	have	a	string	that
contains	several	pieces	of	data	separated	by	commas,	this	function	tells	you	which	element
in	that	set	of	data	contains	the	search	pattern	you	give	it.	To	understand	this	better,
suppose	that	we	want	to	get	a	list	of	members	from	Russia,	but	ordered	by	the	date	when
the	members	joined.	We	would	enter	this:

SELECT	human_id,

CONCAT(name_first,	SPACE(1),	name_last)	AS	Name,

join_date

FROM	humans

WHERE	country_id	=	'ru'

ORDER	BY	join_date;

+----------+-------------------+------------+

|	human_id	|	Name														|	join_date		|

+----------+-------------------+------------+

|							19	|	Elena	Bokova						|	2011-05-21	|

|							27	|	Anahit	Vanetsyan		|	2011-10-01	|

|							26	|	Katerina	Smirnova	|	2012-02-01	|

+----------+-------------------+------------+

Now	suppose	that	we	want	to	know	the	position	of	the	member	Anahit	Vanetsyan	in	the
list	of	Russian	members.	We	can	see	easily	from	the	results	just	shown	that	she	is	the	third
member	from	Russia	to	join.	That’s	because	there	are	very	few	results	here.	Imagine	if	the
results	contained	hundreds	of	names.	We	could	use	FIND_IN_SET()	with	a	subquery	to
determine	this:

SELECT	FIND_IN_SET('Anahit	Vanetsyan',	Names)	AS	Position

		FROM

				(SELECT	GROUP_CONCAT(Name	ORDER	BY	join_date)	AS	Names

					FROM

							(SELECT	CONCAT(name_first,	SPACE(1),	name_last)	AS	Name,

									join_date

									FROM	humans

									WHERE	country_id	=	'ru')

							AS	derived_1)

www.it-ebooks.info

http://www.it-ebooks.info/

				AS	derived_2;

+----------+

|	Position	|

+----------+

|								2	|

+----------+

This	is	a	pretty	complex	SQL	statement.	The	innermost	SELECT	is	essentially	the	query	we
saw	earlier,	but	returning	just	the	full	name	and	join	date	for	each	Russian	person.	These
results	are	fed	to	GROUP_CONCAT,	which	produces	a	single	huge	string	containing	all	the
names.	The	outermost	SELECT	finds	the	name	we	want	and	returns	its	position.

NOTE

When	you	put	a	SELECT	statement	inside	parentheses	and	derive	a	table	from	it	that	you	will	use	with	an	outer
statement,	you	must	give	that	derived	table	a	name	using	AS.	For	naming	simplicity,	we’ve	named	the	derived	tables
in	this	chapter	derived_1	and	derived_2.	Almost	any	unique	name	is	fine.

The	statement	can	be	useful	if	we	associate	it	with	a	user	profile	page	on	the	Rookery
website.	We	might	want	to	use	it	to	show	members	where	they	rank	in	different	lists,	such
as	most	sightings	of	birds	or	most	sightings	of	birds	in	a	particular	category.

FIND_IN_SET()	returns	0	if	the	string	is	not	found	in	the	set	or	if	the	string	list	is	empty.	It
returns	NULL	if	the	value	of	either	argument	is	NULL.

String	Lengths
There	will	be	times	you	want	to	know	how	long	a	string	is.	There	are	a	few	functions	that
return	the	character	length	of	a	string.	This	can	be	useful	when	adjusting	formatting	or
making	other	decisions	related	to	a	string,	and	they	are	commonly	used	with	functions	like
LOCATE()	and	SUBSTRING().

The	CHAR_LENGTH()	or	CHARACTER_LENGTH()	function	returns	the	number	of	characters	in
a	string.	This	could	be	helpful	when	different	rows	have	different-length	strings	in	a
particular	column.

For	instance,	suppose	we	want	to	display	on	the	Rookery	website	a	list	of	the	birds	most
recently	sighted	by	members,	as	recorded	in	the	bird_sightings	table.	We’ll	include	the
common	and	scientific	name	and	other	information	about	the	bird	species.	Suppose	that
we	want	to	also	include	the	comments	that	the	member	entered	when	they	recorded	the
sighting.	Because	this	column	can	contain	a	lot	of	text,	we	want	to	know	how	many
characters	it	contains	when	displaying	it.	If	there’s	too	much	(i.e.,	more	than	100
characters),	we’ll	limit	the	text	and	include	a	link	on	the	web	page	to	view	all	of	the	text.
To	check	the	length,	we	could	construct	an	SQL	statement	like	this	that	would	be	part	of	a
program:

SELECT	IF(CHAR_LENGTH(comments)	>	100),	'long',	'short')

FROM	bird_sightings

WHERE	sighting_id	=	2;

Here	we’re	using	CHAR_LENGTH()	to	count	the	number	of	characters	in	the	comments
column	for	the	row	selected.	We’re	using	the	IF()	function	to	determine	whether	the
character	length	of	the	comments	is	greater	than	100	characters.	If	it	is,	the	function	will
return	the	word	long.	If	not,	it	will	return	short.	If	this	SQL	statement	was	used	in	an	API
script,	the	value	in	the	WHERE	clause	for	the	sighting_id	could	be	dynamically	replaced

www.it-ebooks.info

http://www.it-ebooks.info/

for	each	bird	sighting.

CHAR_LENGTH()	understands	the	character	set	in	current	use,	as	we	touched	on	in	Creating
a	Database.	Characters	that	take	up	multiple	bytes	—	usually	present	in	Asian	languages
—	are	still	considered	one	character.	In	contrast,	the	LENGTH()	function	returns	the	number
of	bytes	in	a	given	string.	Note	that	there	are	eight	bits	to	a	byte	and	that	Western
languages	normally	use	one	byte	for	each	letter.	If	you	want	to	count	the	number	of	bits,
use	the	BIT_LENGTH()	function.

As	an	example,	suppose	we	notice	that	the	comments	column	of	the	bird_sightings	table
contains	some	odd	binary	characters.	They	have	been	entered	into	the	column	through	the
mobile	application	we	provide	to	members.	To	narrow	the	list	of	rows	that	have	these	odd
characters	so	that	we	can	remove	them,	we	can	execute	the	following	SQL	statement:

SELECT	sighting_id

FROM	bird_sightings

WHERE	CHARACTER_LENGTH(comments)	!=	LENGTH(comments);

This	will	give	us	the	sighting_id	for	the	rows	in	which	the	number	of	characters	does	not
equal	the	number	of	bytes	in	the	comments	column.

Comparing	and	Searching	Strings
The	previous	subsection	used	the	output	of	CHAR_LENGTH()	as	input	to	an	IF()	statement
so	that	we	had	a	choice	of	what	to	return.	In	this	subsection,	we’ll	look	at	some	functions
that	compare	strings,	which	can	also	be	handy	when	used	with	a	logical	function	such	as
IF()	or	in	a	WHERE	clause.

Let’s	consider	a	situation	where	we	might	use	one	of	these	functions	—	specifically,	the
STRCMP()	function.	The	name	of	the	function,	in	the	manner	much	loved	by	computer
programmers,	is	a	compressed	version	of	“string	compare.”

Email	addresses	are	critical	for	communicating	with	members	so	we	decide	to	require	new
members	to	enter	their	email	address	twice	during	the	registration	process	to	ensure
accuracy.	However,	in	case	the	connection	is	lost	in	the	process	or	the	joining	member
does	not	correct	a	problem	with	their	email	address,	we	want	to	keep	both	addresses	until
they	do.	So	we’ll	add	a	row	to	the	humans	table	to	store	whatever	information	they	give	us,
and	then	store	both	email	addresses	in	another	table	to	compare	them.	For	that
comparison,	we	could	use	the	STRCMP()	function	in	an	SQL	statement.

This	scenario	is	the	kind	of	situation	that	you	would	automate	with	an	API	program,	a
program	you	would	create	to	interface	with	MySQL	or	MariaDB.	It	would	store	the	SQL
statements	needed	for	processing	the	information	the	new	member	enters	from	the
website.	To	start	the	process	related	to	checking	the	email,	we	might	create	a	table	that
will	store	the	member’s	identification	number	and	the	two	email	addresses.	We	could	do
that	like	so:

CREATE	TABLE	possible_duplicate_email

(human_id	INT,

email_address1	VARCHAR(255),

email_address2	VARCHAR(255),

entry_date	datetime);

Now	when	new	members	register,	after	their	information	has	been	stored	in	the	humans
table,	our	web	interface	can	store	conditionally	the	two	email	addresses	provided	in	the

www.it-ebooks.info

http://www.it-ebooks.info/

possible_duplicate_email	table.	It	might	look	like	this:
INSERT	IGNORE	INTO	possible_duplicate_email

(human_id,	email_address_1,	email_address_2,	entry_date)

VALUES(LAST_INSERT_ID(),	'bobyfischer@mymail.com',	'bobbyfischer@mymail.com')

WHERE	ABS(STRCMP('bobbyrobin@mymail.com',	'bobyrobin@mymail.com'))	=	1	;

For	the	email	addresses,	I’ve	displayed	the	plain	text.	But	in	a	more	realistic	example,	this
SQL	statement	might	be	embedded	in	a	PHP	script	and	would	refer	to	variables	(e.g.,
$email_1	and	$email_2)	where	the	email	addresses	are	here.

Using	the	STRCMP()	in	the	WHERE	clause,	if	the	email	addresses	match,	STRCMP()	returns	0.
If	the	addresses	don’t	match,	it	will	return	1	or	-1.	It	returns	-1	if	the	first	value	is
alphabetically	before	the	second.	To	allow	for	that	possibility,	we	put	it	inside	of	ABS(),
which	changes	the	value	to	the	absolute	value	—	it	makes	negative	values	positive.	So,	if
the	two	email	addresses	don’t	match,	the	statement	will	insert	the	addresses	into	the
possible_duplicate_email	table	for	an	administrator	to	review.	Incidentally,	that	would
normally	return	an	error	message,	but	IGNORE	flag	tells	MySQL	to	ignore	errors.

Another	comparison	function	is	MATCH()	AGAINST(),	which	searches	for	a	string	and
returns	matching	rows	from	the	table.	It	even	ranks	the	rows	by	relevance,	but	that	is
beyond	the	scope	of	this	chapter.	Among	the	complications	of	MATCH()	AGAINST(),	it
works	only	on	columns	that	have	been	indexed	with	a	special	FULLTEXT	index.	To	test	this
function,	we’ll	first	add	a	FULLTEXT	index	to	the	bird_sightings	table,	basing	it	on	the
comments	column	because	that’s	a	TEXT	column:

CREATE	FULLTEXT	INDEX	comment_index

ON	bird_sightings	(comments);

Now	you	can	use	MATCH()	AGAINST().	It	is	commonly	found	in	WHERE	clauses	as	a
condition	to	find	columns	containing	a	given	string.	Text	in	the	given	string,	which	is
delimited	by	spaces	or	quotes,	is	parsed	into	separate	words.	Small	words	(i.e.,	three
characters	or	fewer)	are	generally	ignored.	Here	is	an	example:

SELECT	CONCAT(name_first,	SPACE(1),	name_last)	AS	Name,

common_name	AS	Bird,

SUBSTRING(comments,	1,	25)	AS	Comments

FROM	birdwatchers.bird_sightings

JOIN	birdwatchers.humans	USING(human_id)

JOIN	rookery.birds	USING(bird_id)

WHERE	MATCH	(comments)	AGAINST	('beautiful');

+-------------------+-----------------+---------------------------+

|	Name														|	Bird												|	Comments																		|

+-------------------+-----------------+---------------------------+

|	Elena	Bokova						|	Eskimo	Curlew			|	It	was	a	major	effort	get	|

|	Katerina	Smirnova	|	Eurasian	Curlew	|	Such	a	beautiful	bird.	I		|

+-------------------+-----------------+---------------------------+

In	the	WHERE	clause,	we’re	able	now	to	match	the	comments	column	against	the	string
beautiful.	The	comments	column	from	the	birdwatchers.bird_sightings	is	combined
in	the	results	with	three	other	columns:	common_name	from	rookery.birds	and
name_first	and	name_last	from	birdwatchers.humans.

We’re	using	the	SUBSTRING	function	to	limit	the	amount	of	text	displayed.	This	cuts	off	the
text	abruptly.	You	could	use	the	CONCAT()	function	to	append	ellipses	to	indicate	there	is
more	text.	You	might	also	use	the	IF()	function	to	determine	whether	there	is	more	text
before	appending	ellipses.	There	are	other	functions	you	can	use	for	locating	the
beautiful	within	the	column	so	that	you	can	display	only	the	text	around	it.	We’ll	cover

www.it-ebooks.info

http://www.it-ebooks.info/

that	kind	of	function	later	in	this	chapter.

Replacing	and	Inserting	into	Strings
If	you	want	to	insert	or	replace	certain	text	from	a	column	(but	not	all	of	its	contents),	you
could	use	the	INSERT()	function.	Don’t	confuse	this	with	the	INSERT	statement.	The
syntax	of	this	function	consists	of	the	string	or	column	into	which	you	want	to	insert	text,
followed	by	the	position	in	which	to	insert	text.	You	may	specify	also	how	much	text	to
delete	from	that	point,	if	you	want.	Finally,	you	give	the	text	to	insert.	Let’s	look	at	some
examples	of	this	function.

We’ll	start	with	a	simple	example.	Suppose	that	on	a	page	of	the	Rookery	site,	we	are
thinking	of	adding	some	text	to	the	common	names	of	bird	species	with	the	word	Least	in
their	name.	We	want	to	explain	that	it	means	Smallest,	so	that	uninformed	birders	don’t
think	it	means	these	birds	are	the	least	important.	To	test	this,	we	enter	this	SQL	statement:

SELECT	INSERT(common_name,	6,	0,	'	(i.e.,	Smallest)')

AS	'Smallest	Birds'

FROM	birds

WHERE	common_name	LIKE	'Least	%'	LIMIT	1;

+------------------------------+

|	Smallest	Birds															|

+------------------------------+

|	Least	(i.e.,	Smallest)	Grebe	|

+------------------------------+

The	first	argument	is	the	column	containing	the	string	we’re	manipulating.	The	second
argument	is	the	starting	point	for	inserting	text.	Based	on	the	WHERE	clause,	we’re	looking
for	common	names	that	start	with	Least.	That’s	5	characters.	We	add	1	to	that	because	the
starting	point	for	INSERT	is	1.	The	third	argument	specifies	how	many	characters	after	the
starting	point	should	be	replaced.	In	this	case,	we’re	just	inserting	text,	not	replacing	any.

The	SQL	statement	uses	INSERT()	to	change	the	results	set,	not	the	data	in	the	table.	So
we	could	use	the	INSERT()	function	to	display	the	common	names	like	this	to	new
members	for	the	first	month	who	have	identified	themselves	as	new	to	bird-watching.	We
would	have	to	construct	a	more	complex	SQL	statement	to	check	who	is	new,	but	this
example	shows	you	how	to	insert	text	within	a	string.	Let’s	look	now	at	an	example	in
which	we	will	replace	data	using	INSERT().

Suppose	we	discover	that	parts	of	some	of	the	common	bird	species	names	are	abbreviated
in	the	birds	table	(e.g.,	Great	is	abbreviated	as	Gt.).	We	prefer	not	to	have	any
abbreviations	for	the	common	names.	Before	changing	the	data,	we’ll	execute	a	SELECT
statement	to	test	our	use	of	the	INSERT()	function:

SELECT	common_name	AS	Original,

INSERT(common_name,	LOCATE('Gt.',	common_name),	3,	'Great')	AS	Adjusted

FROM	birds

WHERE	common_name	REGEXP	'Gt.'	LIMIT	1;

+------------------+--------------------+

|	Original									|	Adjusted											|

+------------------+--------------------+

|	Gt.	Reed-Warbler	|	Great	Reed-Warbler	|

+------------------+--------------------+

We’ve	already	reviewed	the	arguments	of	the	INSERT()	function	in	the	previous	example.
The	extra	twist	here	is	in	the	second	argument,	which	contains	the	LOCATE().	We’re	using
that	function	to	determine	the	position	in	the	string	where	text	is	to	be	replaced.	In	the

www.it-ebooks.info

http://www.it-ebooks.info/

previous	example,	we	assumed	that	the	common	name	would	start	with	the	string	we
wanted	to	modify.	In	this	case,	we’re	not	assuming	the	position	of	the	string	within	the
column.	Instead,	we’re	letting	MySQL	find	it	for	us.

Another	difference	in	this	example	is	the	third	element:	we’re	telling	the	function	to
replace	three	characters	(i.e.,	the	length	of	Gt.)	from	the	starting	point	with	the	text	given
for	the	fourth	argument	(i.e.,	Great).	Although	the	text	we’re	adding	is	more	than	three
characters,	it’s	fine	because	when	we	update	the	table	later,	we’re	updating	a	column	with
plenty	of	space	to	hold	the	results.

If	LOCATE()	does	not	find	the	string	we	give	it,	it	returns	0.	A	value	of	0	for	the	position	in
the	INSERT()	function	negates	it	and	returns	the	value	of	common_name	unchanged.	So	with
this	usage	of	INSERT(),	because	of	the	inclusion	of	LOCATE()	for	the	starting	location,	the
WHERE	clause	is	unnecessary	—	except	to	see	that	it	works	where	we	want	it	to.

Now	that	we’ve	verified	that	our	combination	of	functions	works	correctly,	we	can	update
the	data	by	entering	the	following	SQL	statement:

UPDATE	birds

SET	common_name	=	INSERT(common_name,	LOCATE('Gt.',	common_name),	3,	'Great')

WHERE	common_name	REGEXP	'Gt.';

There	is	an	alternative	to	using	INSERT()	for	replacing	text	in	a	string.	In	the	previous
example,	we	had	to	use	the	LOCATE()	function	to	determine	the	location	of	the	text	where
we	wanted	to	insert	text	and	we	had	to	tell	it	how	many	characters	to	replace.	A	simpler
function	for	replacing	text	is	REPLACE().	We	could	use	this	function	to	replace	all
occurrences	of	Gt.	with	Great	in	the	common_name	column.	Let’s	test	that	with	a	SELECT
statement	like	so:

SELECT	common_name	AS	Original,

REPLACE(common_name,	'Gt.',	'Great')	AS	Replaced

FROM	birds

WHERE	common_name	REGEXP	'Gt.'	LIMIT	1;

+------------------+--------------------+

|	Original									|	Replaced											|

+------------------+--------------------+

|	Gt.	Reed-Warbler	|	Great	Reed-Warbler	|

+------------------+--------------------+

This	works	much	better.	We	can	use	the	REPLACE()	with	the	arguments	we	have	here	and
enter	the	following	UPDATE	to	change	the	data	in	the	table:

UPDATE	birds

SET	common_name	=	REPLACE(common_name,	'Gt.',	'Great');

Query	OK,	8	rows	affected	(0.23	sec)

Rows	matched:	28891		Changed:	8		Warnings:	0

Notice	that	we	didn’t	include	the	WHERE	clause,	but	the	results	message	says	that	only	eight
rows	were	changed.	This	is	because	there	were	only	eight	rows	that	contained	Gt.	in	the
common_name	column.	Updating	data	in	a	table	with	that	many	rows	is	intimidating	and
dangerous	without	a	WHERE	clause.	That’s	why	it’s	good	to	use	them	and	to	test	the
parameters	with	a	SELECT	statement	first.

www.it-ebooks.info

http://www.it-ebooks.info/

Converting	String	Types
There	may	be	times	when	you	will	have	to	work	with	tables	created	by	people	who	might
not	have	made	the	best	choices	for	column	data	types.	Sometimes	you	can	alter	the	tables,
but	sometimes	you	may	not	be	allowed	to	do	so.	For	manipulating	data	from	such	tables	or
for	importing	data	from	them,	you	can	use	the	CAST()	or	CONVERT()	functions	to	change
the	data	type	of	columns.	The	effect	just	takes	place	within	your	SQL	statement,	not	the
database	itself.	Let’s	look	at	some	examples	of	how	and	why	you	might	use	these	two
functions,	which	are	basically	synonymous	except	for	a	minor	syntax	difference.

Suppose	we’re	given	a	table	containing	images	of	birds	in	a	particular	area,	showing
female,	male,	and	juvenile	color	patterns.	One	of	the	columns	contains	numbers	for
ordering	birds	based	loosely	on	the	type	of	bird	and	the	date	when	usually	seen	in	the	area.
This	column	isn’t	a	numeric	data	type	like	INT,	but	is	CHAR.	When	we	sort	the	data	based
on	this	column,	MySQL	will	sort	the	rows	lexically,	not	numerically.	Here’s	an	example	of
how	that	might	look:

SELECT	sorting_id,	bird_name,	bird_image

FROM	bird_images

ORDER	BY	sorting_id

LIMIT	5;

+------------+-----------------+----------------------------+

|	sorting_id	|	bird_name							|	bird_image																	|

+------------+-----------------+----------------------------+

|	11									|	Arctic	Loon					|	artic_loon_male.jpg								|

|	111								|	Wilson's	Plover	|	wilson_plover_male.jpg					|

|	112								|	Wilson's	Plover	|	wilson_plover_female.jpg			|

|	113								|	Wilson's	Plover	|	wilson_plover_juvenile.jpg	|

|	12									|	Pacific	Loon				|	pacific_loon_male.jpg						|

+------------+-----------------+----------------------------+

Notice	that	the	rows	with	a	sorting_id	starting	with	11n	are	listed	before	one	with	the
value	of	12.	That’s	because	MySQL	is	reading	the	data	as	characters	and	not	numbers.	The
two	Loons	should	be	together,	before	the	Plovers	are	listed.

We	can	use	the	CAST()	function	to	cast	the	values	taken	from	sorting_id	into	the	INT	data
type:

SELECT	sorting_id,	bird_name,	bird_image

FROM	bird_images	ORDER	BY	CAST(sorting_id	AS	INT)	LIMIT	5;

+------------+-----------------+----------------------------+

|	sorting_id	|	bird_name							|	bird_image																	|

+------------+-----------------+----------------------------+

|	11									|	Arctic	Loon					|	artic_loon_male.jpg								|

|	12									|	Pacific	Loon				|	pacific_loon_male.jpg						|

|	111								|	Wilson's	Plover	|	wilson_plover_male.jpg					|

|	112								|	Wilson's	Plover	|	wilson_plover_female.jpg			|

|	113								|	Wilson's	Plover	|	wilson_plover_juvenile.jpg	|

+------------+-----------------+----------------------------+

That	worked	correctly.	Let’s	suppose	now	that	we	don’t	want	to	use	sorting_id,	but
instead	the	gender_age	column.	This	is	an	ENUM	column	specifying	that	the	image	file	is
for	a	male,	female,	or	a	juvenile.	The	color	patterns	of	most	birds	deviate	based	on	these
factors.	Let’s	see	how	the	results	will	look	if	we	sort	based	on	this	column:

SELECT	bird_name,	gender_age,	bird_image

FROM	bird_images

WHERE	bird_name	LIKE	'%Plover%'

ORDER	BY	gender_age

LIMIT	5;

www.it-ebooks.info

http://www.it-ebooks.info/

+-----------------+------------+----------------------------+

|	bird_name							|	gender_age	|	bird_image																	|

+-----------------+------------+----------------------------+

|	Wilson's	Plover	|	male							|	wilson_plover_male.jpg					|

|	Snowy	Plover				|	male							|	snowy_plover_male.jpg						|

|	Wilson's	Plover	|	female					|	wilson_plover_female.jpg			|

|	Snowy	Plover				|	female					|	snowy_plover_female.jpg				|

|	Wilson's	Plover	|	juvenile			|	wilson_plover_juvenile.jpg	|

+-----------------+------------+----------------------------+

Notice	that	the	rows	are	grouped	together	based	on	the	gender_age	column,	but	those
values	are	not	in	alphabetical	order	(i.e.,	female	rows	should	be	before	male	rows).	This	is
because	of	how	the	enumerated	values	are	listed	in	the	gender_age	column:

SHOW	COLUMNS	FROM	bird_images	LIKE	'gender_age'	\G

***************************	1.	row	***************************

		Field:	gender_age

			Type:	enum('male','female','juvenile')

			Null:	YES

				Key:

Default:	NULL

		Extra:

To	MySQL,	the	value	of	male	for	the	gender_age	column	is	stored	as	1,	and	female	as	2.
This	controls	the	order	of	the	display,	even	though	the	values	are	rendered	as	text.	If	we
use	though	the	CAST()	or	the	CONVERT()	function	in	the	ORDER	BY	clause,	MySQL	will	sort
the	results	based	on	their	rendered	values	and	not	their	column	values.	Here’s	how	that
would	look:

SELECT	bird_name,	gender_age,	bird_image

FROM	bird_images

WHERE	bird_name	LIKE	'%Plover%'

ORDER	BY	CONVERT(gender_age,	CHAR)

LIMIT	5;

+-----------------+------------+----------------------------+

|	bird_name							|	gender_age	|	bird_image																	|

+-----------------+------------+----------------------------+

|	Wilson's	Plover	|	female					|	wilson_plover_female.jpg			|

|	Snowy	Plover				|	female					|	snowy_plover_female.jpg				|

|	Wilson's	Plover	|	juvenile			|	wilson_plover_juvenile.jpg	|

|	Snowy	Plover				|	juvenile			|	snowy_plover_juvenile.jpg		|

|	Wilson's	Plover	|	male							|	wilson_plover_male.jpg					|

+-----------------+------------+----------------------------+

Notice	that	for	the	CONVERT()	function,	a	comma	is	used	to	separate	the	string	given	from
the	data	type	instead	of	the	AS	keyword.	The	data	type	given	as	the	second	argument	can
be	BINARY,	CHAR,	DATE,	DATETIME,	SIGNED	[INTEGER],	TIME,	or	UNSIGNED	[INTEGER].
BINARY	converts	a	string	to	a	binary	string.	You	can	add	also	CHARACTER	SET	to	use	a
different	character	set	from	the	default	for	the	value	given.	To	convert	the	character	set	of
a	given	string	to	another,	you	have	to	use	the	USING	option,	like	so:

SELECT	bird_name,	gender_age,	bird_image

FROM	bird_images

WHERE	bird_name	LIKE	'%Plover%'

ORDER	BY	CONVERT(gender_age	USING	utf8)

LIMIT	5;

www.it-ebooks.info

http://www.it-ebooks.info/

Compressing	Strings
Some	column	data	types	allow	large	amounts	of	data.	For	instance,	the	BLOB	column	can
store	plenty.	To	reduce	the	size	of	tables	that	use	this	column	data	type,	you	can	compress
the	data	it	contains	when	inserting	the	data.	The	COMPRESS()	function	compresses	a	string
and	the	UNCOMPRESS()	function	decompresses	a	compressed	string.	If	you	want	to	use
them,	MySQL	has	to	have	been	compiled	with	a	compression	library	(i.e.,	zlib).	If	it
wasn’t,	a	NULL	value	will	be	returned	when	using	COMPRESS().	Let’s	look	at	some
examples	of	their	use.

The	humans	table	has	a	column	for	birding_background	which	is	a	BLOB.	Members	can
write	as	much	as	they	like	about	themselves,	which	could	result	in	pages	of	information	on
their	experiences	and	education	as	bird-watchers.	This	could	potentially	slow	down
queries	and	updates	if	many	members	do	this.	So	we	decide	to	use	COMPRESS()	to
compress	the	member’s	background	when	inserting	it	into	the	humans	table.	Here’s	how
that	might	look:

INSERT	INTO	humans

(formal_title,	name_first,	name_last,	join_date,	birding_background)

VALUES('Ms',	'Melissa',	'Lee',	CURDATE(),	COMPRESS("lengthy	background…"));

This	SQL	statement	inserts	a	new	member’s	information	into	the	humans	table	—	it	has
more	columns	than	shown	here,	but	we’re	trying	to	keep	this	example	simple.	The
statement	uses	the	COMPRESS()	function	to	compress	the	background	information	given
(which	isn’t	much	for	this	simple	example).	You	would	normally	get	such	data	from	an
API	variable	using	something	like	PHP	to	store	text	entered	by	the	user	through	a	web
page.	So	instead	of	the	text	shown	here,	you	would	use	a	variable	(e.g.,
$birding_background).

To	see	how	the	data	looks	in	the	compressed	form,	we	could	do	this:
SELECT	birding_background	AS	Background

FROM	humans

WHERE	name_first	=	'Melissa'	AND	name_last	=	'Lee'	\G

***************************	1.	row	***************************

Background:				x#####/ɨTHJL##/########	Z######

Notice	that	the	results	are	not	normal	text.	The	mysql	client	substitutes	a	hash	sign	(#)	for
binary	values.	In	order	to	see	the	text	contained	in	this	compressed	format,	we	would	use
UNCOMPRESS().	It	returns	NULL	if	the	string	is	not	compressed	or	if	MySQL	wasn’t
compiled	with	zlib:

SELECT	UNCOMPRESS(birding_background)	AS	Background

FROM	humans

WHERE	name_first	=	'Melissa'	AND	name_last	=	'Lee'	\G

***************************	1.	row	***************************

Background:	lengthy	background…

For	small	amounts	of	text	like	this,	compression	takes	more	space	than	the	plain	text.	But
for	large	amounts	of	text,	it	will	save	plenty	of	space.	So	use	it	sparingly	and	where
appropriate.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
There	are	more	string	functions	available	in	MySQL	and	MariaDB.	A	few	of	the	functions
mentioned	here	have	aliases	or	close	alternatives.	There	are	also	functions	for	converting
between	ASCII,	binary,	hexadecimal,	and	octal	strings.	And	there	are	also	string	functions
related	to	text	encryption	and	decryption	that	were	not	mentioned.	However,	I	think	this
chapter	has	given	you	a	good	collection	of	common	string	functions	that	will	assist	you	in
building	more	powerful	SQL	statements	and	formatting	results	to	be	more	attractive.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises
String	functions	are	very	necessary	to	developing	databases	in	MySQL	and	MariaDB.	You
need	to	know	them	well.	To	become	an	expert,	you	need	to	practice	using	them,	so	be	sure
to	complete	all	of	the	following	exercises.

1.	 One	of	the	most	commonly	used	string	functions	is	CONCAT().	Construct	a	SELECT
statement	to	query	the	humans	table.	Use	the	CONCAT()	function	to	merge	together
values	from	the	name_first	column	with	the	name_last	column.	Use	the	SPACE()
function	to	put	a	space	between	them	in	the	results.	Give	that	field	an	alias	of	Full
Name	—	and	remember	to	put	quotes	around	this	alias,	as	it	contains	a	space.	Limit
the	results	to	four	people.	Execute	it	to	be	sure	it	has	no	errors.
Add	a	WHERE	clause	to	that	SELECT	statement.	For	the	condition	of	the	WHERE	clause,
copy	the	CONCAT()	you	just	assembled.	List	rows	where	the	name	is	in	a	set	of	the
following	names:	Lexi	Hollar,	Michael	Zabalaoui,	and	Rusty	Johnson.
After	you	successfully	execute	the	SELECT	with	that	WHERE	clause,	add	an	ORDER	BY
clause	to	sort	the	data	based	on	the	concatenated	name.	Do	it	without	using
CONCAT().

2.	 Construct	a	SELECT	statement	that	selects,	from	the	birds	table,	the	common_name
and	the	scientific_name.	Use	a	string	function	to	change	the	scientific_name	to
all	lowercase	letters.	Use	the	CONCAT()	function	to	put	them	into	one	field,	with	a
space	after	the	common	name,	followed	by	the	scientific	name	in	parentheses	—	for
example,	African	Desert	Warbler	(sylvia	deserti).	Don’t	use	the	SPACE()	function.
Instead,	put	the	spaces	and	parentheses	within	single	quote	marks	within	the
CONCAT().	Give	the	resulting	field	an	alias	of	Bird	Species.	Limit	the	results	to	10
rows.
After	you’ve	successfully	executed	that	SQL	statement,	modify	that	statement	to	join
in	the	bird_families	and	the	bird_orders	tables.	The	JOIN	statement	was	covered
extensively	in	Unifying	Results.	Then	add	the	scientific_name	columns	from	both
of	these	tables	to	the	fields	returned.
Execute	this	modified	statement	to	make	sure	your	joins	are	correct.	When	they	are,
move	the	scientific_name	columns	for	the	two	additional	tables	into	the	CONCAT().
Using	the	RPAD()	function,	put	dots	after	the	bird	species	name,	before	the	bird
family	and	the	bird	order	names.	The	results	for	a	field	will	look	like	this:

Speckled	Warbler	(pyrrholaemus	sagittatus)...Acanthizidae…Passeriformes

This	will	probably	require	you	to	use	CONCAT()	twice.	Use	a	WHERE	clause	to	list	only
Warblers.	Limit	the	results	to	10	rows.

3.	 Construct	another	SELECT	statement	to	list	all	of	the	common	names	of	bird	species
from	the	birds	table,	where	the	common	name	contains	the	word	Shrike.	When	you
execute	that	statement	you	should	see	some	names	with	a	hyphen	after	the	word
Shrike.	Add	the	REPLACE()	function	to	the	SELECT	statement	to	replace	those
hyphens	with	a	space	in	the	results,	and	then	execute	the	SQL	statement	again.

4.	 Some	of	the	names	of	the	birds	in	the	results	from	the	SELECT	statement	in	the
previous	exercise	have	more	than	one	hyphen	(e.g.,	Yellow-browed	Shrike-Vireo).
Redo	that	SQL	statement	to	replace	only	the	hyphens	after	the	word	Shrike	(e.g.,	to

www.it-ebooks.info

http://www.it-ebooks.info/

look	like	this:	Yellow-browed	Shrike	Vireo).	In	order	to	do	this,	use	LOCATE()	with
REPLACE().	You	will	need	to	use	LOCATE()	twice:	one	within	another.

5.	 True	Shrikes	are	of	the	Laniidae	family.	Construct	another	SELECT	to	select	the
common	bird	names	with	the	word	Shrike,	but	belonging	to	Laniidae.	This	will
require	a	join	to	the	bird_families	table.	Use	one	of	the	substring	functions	like
SUBSTRING()	to	extract	the	words	before	Shrike.	To	do	this,	you	will	need	to	use
LOCATE()	or	a	similar	function.	Then	use	CONCAT()	to	display	that	value	extracted
after	Shrike	with	a	comma	and	space	in	between.	The	results	for	each	field	should
look	like	this:	Shrike,	Rufous-tailed.	Give	the	field	an	alias	of	Shrikes.

6.	 The	humans	table	contains	entries	in	which	the	member	used	either	all	lowercase
letters	or	all	uppercase	letters	to	enter	their	first	and	last	names	(e.g.,	andy	oram	and
MICHAEL	STONE).	Use	UPDATE	to	change	the	names	to	title	case	(i.e.,	the	first	letter
capital	and	the	rest	lowercase).	First	experiment	with	SELECT	to	make	sure	you	have
the	functions	organized	properly.	Use	the	UCASE()	and	LCASE()	functions	to	set	the
cases.	You	will	need	to	use	SUBSTRING()	or	a	similar	function	a	few	times,	and
CONCAT()	a	couple	of	times.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	11.	Date	and	Time	Functions
For	many	of	us,	there	is	a	morning	and	an	afternoon	in	each	day.	Days	are	measured	in
either	two	12-hour	blocks	or	one	24-hour	block.	There	are	12	months	in	a	year,	with	each
month	consisting	of	30	or	31	days,	except	for	one	month	which	usually	contains	28	days,
but	once	every	four	years	it	contains	29.	While	this	all	may	be	rather	natural	or	at	least
familiar	to	humans,	putting	it	in	terms	a	computer	can	manipulate	can	make	it	seem	very
unnatural	and	frustrating.	However,	the	recording	and	manipulating	of	date	and	time	in	a
database	is	a	very	common	requirement.

For	storing	dates	and	times,	known	as	temporal	data,	one	needs	to	know	which	type	of
column	to	use	in	a	table.	More	important	is	knowing	how	to	record	chronological	data	and
how	to	retrieve	it	in	various	formats.	Although	this	seems	to	be	basic,	there	are	many
built-in	time	functions	that	can	be	used	for	more	accurate	SQL	statements	and	better
formatting	of	data.	In	this	chapter,	we	will	explore	these	various	aspects	of	date	and	time
functions	in	MySQL	and	MariaDB.

www.it-ebooks.info

http://www.it-ebooks.info/

Date	and	Time	Data	Types
Because	dates	and	times	are	ultimately	just	strings	containing	numbers,	they	could	be
stored	in	a	regular	character	column.	However,	there	are	data	types	designed	specifically
for	dates	and	times.	By	using	temporal	data	type	columns,	you	can	make	use	of	several
built-in	functions	offered	by	MySQL	and	MariaDB.	So	before	we	start	learning	about	the
date	and	time	functions,	let’s	look	at	the	data	types	that	are	available	for	recording	date
and	time.

There	are	five	temporal	data	types	in	MySQL	and	MariaDB:	DATE	for	storing	dates,	TIME
for	storing	time,	DATETIME	and	TIMESTAMP	for	both	date	and	time,	and	YEAR	for	a	year:
DATE

This	records	the	date	only,	in	the	format	yyyy-mm-dd.	You	may	prefer	a	different	format
(e.g.,	02-14-2014	for	St.	Valentine’s	Day),	but	you	can’t	change	how	the	date	is	stored
—	at	least	not	without	changing	the	source	code	of	MySQL.	But	other	functions
discussed	in	this	chapter	let	you	display	the	date	in	the	format	you	like.

This	data	type	has	a	limit	to	the	range	of	dates	it	will	accept.	It	allows	dates	from	as
early	as	1000-01-01	to	as	late	as	9999-12-31.	That’s	far	into	the	future,	but	you
wouldn’t	use	this	for	recording	historical	dates	in	the	first	millennium.

TIME

This	records	time	in	the	format	hhh:mm:ss.	It	accepts	times	ranging	from	-838:59:59	to
838:59:59.	If	you	give	it	a	time	outside	of	that	range	or	in	some	way	not	valid,	it
records	the	time	as	all	zeros.

You	may	be	wondering	how	you	could	have	a	time	in	which	you	need	three	digits	for
the	hour.	This	is	so	that	you	can	record	how	much	time	has	elapsed	for	an	event	or	when
comparing	two	times,	rather	than	just	recording	the	time	of	day.	For	instance,	you	might
want	to	note	that	something	took	120	hours	to	complete.	You	could	do	this	with	two
columns,	one	for	recording	the	start	time	and	the	other	the	end	time,	and	then	compare
them	as	needed.	But	this	data	type	allows	you	to	record	the	difference	in	one	column,
rather	than	recalculate	each	time	you	want	that	result.

DATETIME

This	records	a	combination	of	date	and	time	in	the	format	yyyy-mm-dd	hh:mm:ss.	It
accepts	dates	and	times	from	1000-01-01	00:00:00	to	9999-12-31	23:59:59.	That’s
the	same	range	as	DATE,	but	with	the	addition	of	the	full	range	of	a	24-hour	day.	As	of
version	5.6	of	MySQL,	fractions	of	a	second	are	possible.

TIMESTAMP

www.it-ebooks.info

http://www.it-ebooks.info/

This	is	similar	to	DATETIME,	but	more	limited	in	its	range	of	allowable	time.	Despite	the
name,	it’s	not	limited	to	time,	but	covers	a	range	of	dates	from	1970-01-01	00:00:01
UTC	to	2038-01-19	03:14:07	UTC.	It’s	meant	for	relatively	current	dates	and
corresponds	to	the	“epoch”	chosen	by	the	designers	of	the	Unix	operating	system.	As	of
version	5.6	of	MySQL,	fractions	of	a	second	are	possible.

Although	you	can	set	the	value	of	a	column	manually	using	this	data	type,	whenever
you	insert	a	row	or	update	a	row	without	specifying	an	explicit	value,	MySQL
automatically	updates	the	column’s	value	to	the	current	date	and	time.	That	can	be	very
convenient	for	some	applications	such	as	logging,	but	can	cause	you	problems	if	you’re
unaware	of	it	or	don’t	allow	for	it.	This	is	only	for	the	first	column	in	a	table	which	uses
TIMESTAMP.	For	subsequent	TIMESTAMP	columns,	you	would	have	to	specify	a	couple	of
options	to	have	the	same	effect:	ON	UPDATE	CURRENT_TIMESTAMP	and	ON	INSERT
CURRENT_TIMESTAMP.

YEAR

This	records	just	a	year	in	a	column,	in	the	format	yyyy.	It	could	be	set	to	two	digits	(by
defining	the	column	as	YEAR(2)	with	an	explicit	number),	but	that’s	deprecated	and
causes	problems.	So	don’t	record	years	in	two-digit	formats	with	this	data	type.	This
data	type	is	also	meant	for	birth	years;	it	allows	years	from	1901	to	2155.	If	you	give	it
an	invalid	value	or	a	year	outside	of	the	allowed	range,	it	records	the	year	as	0000.

NOTE

Given	some	of	the	limitations	of	these	data	types,	you	may	need	to	use	a	nontemporal	data	type	for	dates	outside	of
the	allowed	ranges.	You	could	use	the	INT	data	type	to	store	each	component	of	a	date,	or	CHAR	data	type	to	store
dates	in	a	fixed	width.	For	instance,	you	might	have	one	INT	column	for	storing	the	month,	another	for	the	day,	and
one	CHAR(4)	column	to	store	years	before	the	20th	century.

That	can	work	generally,	but	it	can	be	a	problem	when	you	try	to	do	a	calculation	with	these	data	types.	Suppose	you
want	to	store	February	15	in	two	INT	columns:	2	in	my_month	and	15	in	my_day.	If	you	were	to	add	20	days	to	the
value	of	my_day,	you	would	get	an	invalid	date	of	February	35.	To	deal	with	this,	you	would	have	to	construct	a
complex	SQL	statement	to	adjust	the	my_day	and	the	my_month	columns.	Plus,	you’d	have	to	update	the	column	you
create	for	the	year	value	when	a	date	change	pushes	the	values	into	a	different	year.	You’d	have	similar	problems	if
you	tried	to	use	INT	to	store	times.	All	of	this	complexity	is	eliminated	by	using	temporal	data	types	for	columns,	so
that	you	can	use	date	functions	provided	with	MySQL	and	MariaDB.	These	types	have	built-into	complex
calculations	so	that	you	don’t	have	to	worry	about	that.

Now	that	you’re	familiar	with	the	temporal	data	types	in	MySQL	and	MariaDB	(and
hopefully,	appreciate	them),	let’s	look	at	some	examples	of	how	you	might	use	them	with
date	and	time	functions.	For	some	of	the	examples	in	this	chapter,	we’ll	use	the	tables
we’ve	already	created,	which	have	columns	with	these	data	types.

www.it-ebooks.info

http://www.it-ebooks.info/

Current	Date	and	Time
The	most	basic	date	and	time	functions	are	those	related	to	the	current	date	and	time.	They
may	be	used	for	recording	the	current	date	and	time	in	a	column,	for	modifying	results
based	on	the	current	date	and	time,	or	for	displaying	the	date	and	time	in	a	results	set.
Let’s	start	with	the	simplest	one,	NOW(),	which	determines	what	time	it	is	when	you
execute	the	statement.	Enter	the	first	line	shown	here	in	mysql	(an	example	of	the	results
follow):

SELECT	NOW();

+---------------------+

|	NOW()														|

+---------------------+

|	2014-02-08	09:43:09	|

+---------------------+

As	you	can	see,	that	returns	the	date	and	time	on	a	server	in	a	format	that	matches	the
format	of	the	DATETIME	data	type	So	if	you	have	a	column	in	a	table	that	uses	that	data
type,	you	can	use	the	NOW()	function	to	conveniently	insert	the	current	date	and	time	into
the	column.	The	bird_sightings	table	has	a	column	that	uses	the	DATETIME	data	type,	the
time_seen	column.	Here’s	an	example	of	how	we	might	enter	a	row	into	that	table	using
NOW():

INSERT	INTO	bird_sightings

(bird_id,	human_id,	time_seen,	location_gps)

VALUES	(104,	34,	NOW(),	'47.318875;	8.580119');

This	function	can	also	be	used	with	an	application,	or	with	a	script	for	a	web	interface	so
that	the	user	can	record	bird	sightings	without	having	to	enter	the	time	information.

NOTE

There	are	a	few	synonyms	for	the	NOW()	function:	CURRENT_TIMESTAMP(),	LOCALTIME(),	and	LOCALTIMESTAMP().
They	return	the	exact	same	results.	Synonyms	such	as	these	are	provided	so	that	MySQL	and	MariaDB	will	conform
to	functions	in	other	SQL	database	systems.	This	way,	if	you	have	an	application	that	uses	another	database	(e.g.,
PostgreSQL,	Sybase,	Oracle),	you	can	more	easily	replace	it	with	MySQL	without	having	to	change	the	code	in	your
applications.

The	NOW()	function	returns	the	date	and	time	at	the	start	of	the	SQL	statement	containing
it.	For	most	purposes,	this	is	fine:	the	difference	between	the	time	at	the	start	and	at	the
completion	of	an	SQL	statement	is	usually	minimal	and	irrelevant.	But	you	may	have	a
situation	in	which	an	SQL	statement	takes	a	long	time	to	execute,	and	you	want	to	record
the	time	at	a	certain	point	in	that	process.	The	SYSDATE()	function	records	the	time	at
which	the	function	is	executed,	not	the	end	of	the	statement.	To	see	the	difference,	we	can
introduce	the	SLEEP()	function	to	tell	MySQL	to	pause	execution	for	a	given	number	of
seconds.	Here’s	a	simple	example	showing	the	difference	between	NOW()	and	SYSDATE():

SELECT	NOW(),	SLEEP(4)	AS	'Zzz',	SYSDATE(),	SLEEP(2)	AS	'Zzz',	SYSDATE();

+---------------------+-----+---------------------+-----+---------------------+

|	NOW()															|	Zzz	|	SYSDATE()											|	Zzz	|	SYSDATE()											|

+---------------------+-----+---------------------+-----+---------------------+

|	2014-02-21	05:44:57	|			0	|	2014-02-21	05:45:01	|			0	|	2014-02-21	05:45:03	|

+---------------------+-----+---------------------+-----+---------------------+

1	row	in	set	(6.14	sec)

Notice	that	the	difference	between	the	time	returned	for	NOW()	and	for	the	first	SYSDATE()
is	four	seconds,	the	amount	given	with	the	first	execution	of	SLEEP().	The	time	between

www.it-ebooks.info

http://www.it-ebooks.info/

the	two	executions	of	SYSDATE()	is	two	seconds,	the	amount	given	with	SLEEP()	the
second	time.	Notice	also	that	the	message	after	the	results	shows	it	took	a	tad	more	than
six	seconds	to	execute	this	SQL	statement.	You	probably	won’t	use	SYSDATE()	often	—
maybe	never.	It’s	useful	primarily	when	you	execute	very	complex	SQL	statements	or	for
more	advanced	usage	(e.g.,	within	stored	procedures	and	triggers).	Let’s	move	on	to	more
common	usage	of	functions	related	to	the	current	date	and	time.

If	the	data	type	for	a	column	is	not	DATETIME,	you	can	still	use	the	NOW()	to	get	and	store
the	values	you	need.	For	instance,	if	the	time_seen	column	had	a	data	type	of	DATE	and
you	entered	the	preceding	INSERT	statement,	you’d	get	a	warning	saying	data	truncated
for	column.	However,	it	would	still	store	the	date	correctly.	A	similar	effect	would	occur
on	a	TIME	column:	you’d	get	a	warning,	but	the	time	would	be	recorded	correctly.	It’s
better,	though,	to	use	the	correct	function.	For	DATE	columns,	use	CURDATE().	For	TIME
columns,	use	CURTIME().	The	following	example	compares	these	temporal	functions:

SELECT	NOW(),	CURDATE(),	CURTIME();

+---------------------+------------+--------------+

|	NOW()															|	CURDATE()		|	CURTIME()	|

+---------------------+------------+--------------+

|	2014-02-08	10:23:32	|	2014-02-08	|	10:23:32					|

+---------------------+------------+--------------+

All	three	of	these	functions	and	their	synonyms	use	formats	readable	or	easily
understandable	by	humans.	There	are,	however,	built-in	functions	that	return	the	Unix
time,	which	is	the	number	of	seconds	since	the	“epoch”	mentioned	earlier.	These	can	be
useful	when	comparing	two	temporal	values.	The	following	example	shows	the	equivalent
of	NOW()	as	a	TIMESTAMP:

SELECT	UNIX_TIMESTAMP(),	NOW();

+------------------+---------------------+

|	UNIX_TIMESTAMP()	|	NOW()													|

+------------------+---------------------+

|							1391874612	|	2014-02-08	10:50:12	|

+------------------+---------------------+

This	returns	the	number	of	seconds	since	since	January	1,	1970.	Let’s	test	that.	Here’s	a
simple	calculation	to	determine	the	number	of	years	since	the	start	of	1970,	and	a	more
complicated	way	of	determining	it:

SELECT	(2014	-	1970)	AS	'Simple',

UNIX_TIMESTAMP()	AS	'Seconds	since	Epoch',

ROUND(UNIX_TIMESTAMP()	/	60	/	60	/	24	/	365.25)	AS	'Complicated';

+--------+---------------------+-------------+

|	Simple	|	Seconds	since	Epoch	|	Complicated	|

+--------+---------------------+-------------+

|					44	|										1391875289	|										44	|

+--------+---------------------+-------------+

This	was	run	near	the	start	of	the	year	2014	so	we	used	the	ROUND()	function	to	round
down	the	number	of	years	for	a	simple	comparison.	It’s	good	to	do	exercises	like	this	to
confirm	and	to	better	know	functions	like	this	one.	It	helps	you	to	understand	and	trust
them.

Let’s	look	at	a	more	meaningful	example	in	which	you	might	want	to	use	Unix	time.
Suppose	you	want	to	know	how	many	days	ago	our	bird-watchers	spotted	a	particular
bird,	a	Black	Guineafowl	(bird_id	309).	To	do	this,	we	can	use	a	join	like	so:

SELECT	CONCAT(name_first,	SPACE(1),	name_last)	AS	'Birdwatcher',

www.it-ebooks.info

http://www.it-ebooks.info/

ROUND((UNIX_TIMESTAMP()	-	UNIX_TIMESTAMP(time_seen))	/	60	/	60	/	24)

			AS	'Days	Since	Spotted'

FROM	bird_sightings	JOIN	humans	USING(human_id)

WHERE	bird_id	=	309;

+-------------+--------------------+

|	Birdwatcher	|	Days	Since	Spotted	|

+-------------+--------------------+

|	Marie	Dyer		|																129	|

+-------------+--------------------+

In	this	example,	we	used	CONCAT()	to	put	together	the	bird-watcher’s	first	and	last	name.
We	issued	the	first	UNIX_TIMESTAMP()	with	no	argument,	so	it	used	the	current	date	and
time.	The	second	UNIX_TIMESTAMP()	specifies	a	column	(time_seen)	containing	the	date
our	bird-watchers	spotted	each	bird.	The	function	changed	the	value	to	a	Unix	timestamp
so	that	we	could	do	a	comparison

There	are	other	ways	and	other	functions	that	may	be	used	to	compare	dates	and	times.
We’ll	look	at	those	later	in	this	chapter.	Let’s	look	next	at	how	to	extract	the	date	and	time
components.

www.it-ebooks.info

http://www.it-ebooks.info/

Extracting	Date	and	Time	Components
Temporal	data	types	store	more	information	than	you	may	sometimes	want.	There	will	be
situations	in	which	you	don’t	want	a	full	date	or	a	time	to	the	second.	Because	of	this,
there	are	functions	that	will	extract	any	component	of	a	temporal	value	you	may	want,	as
well	as	some	common	permutations.	Let’s	look	first	at	some	basic	functions	for	extracting
just	the	date	and	just	the	time,	then	we’ll	look	at	ones	for	each	component.

A	DATETIME	column,	as	the	name	implies,	contains	both	the	date	and	the	time.	If	you	want
to	extract	just	the	date	from	such	a	value,	you	can	use	the	DATE()	function.	To	extract	just
the	time,	use	TIME().	Let’s	look	at	an	example	of	these	two.	We’ll	again	select	the
time_seen	value	for	sightings	of	a	Black	Guineafowl:

SELECT	CONCAT(name_first,	SPACE(1),	name_last)	AS	'Birdwatcher',

time_seen,	DATE(time_seen),	TIME(time_seen)

FROM	bird_sightings

JOIN	humans	USING(human_id)

WHERE	bird_id	=	309;

+-------------+---------------------+-----------------+-----------------+

|	Birdwatcher	|	time_seen											|	DATE(time_seen)	|	TIME(time_seen)	|

+-------------+---------------------+-----------------+-----------------+

|	Marie	Dyer		|	2013-10-02	07:39:44	|	2013-10-02						|	07:39:44								|

+-------------+---------------------+-----------------+-----------------+

That	was	easy:	DATE()	returned	just	the	date	from	time_seen	and	TIME()	just	the	time.
However,	you	may	want	to	extract	just	one	component	of	a	date	or	time.	You	can	do	this
with	all	of	the	temporal	data	types,	as	long	as	the	column	contains	the	component	you
want	—	you	can’t	get	the	hour	from	a	YEAR	column.

To	extract	only	the	hour	of	a	time	saved	in	a	column,	the	HOUR()	function	could	be	used.
For	the	minute	and	second,	there’s	MINUTE()	and	SECOND().	These	may	be	used	with
DATETIME,	TIME,	and	TIMESTAMP	columns.	Let’s	see	how	the	results	from	them	might	look.
Enter	the	following	in	mysql:

SELECT	CONCAT(name_first,	SPACE(1),	name_last)	AS	'Birdwatcher',

time_seen,	HOUR(time_seen),	MINUTE(time_seen),	SECOND(time_seen)

FROM	bird_sightings	JOIN	humans	USING(human_id)

WHERE	bird_id	=	309	\G

***************************	1.	row	***************************

						Birdwatcher:	Marie	Dyer

								time_seen:	2013-10-02	07:39:44

		HOUR(time_seen):	7

MINUTE(time_seen):	39

SECOND(time_seen):	44

These	functions	will	allow	you	to	use,	assess,	and	compare	each	component	of	the	time	for
a	column.	You	can	break	apart	a	date,	as	well.

To	extract	the	year,	month,	and	day,	you	could	use	the	YEAR(),	MONTH(),	and	DAY()
functions.	You	have	to	give	a	date	value	as	the	argument	for	each	function.	This	can	be	a
column	that	contains	a	date,	or	a	string	value	that	contains	a	date	(e.g.,	‘2014-02-14’,
including	the	quotes).	It	cannot	be	a	number,	unless	the	number	is	properly	ordered.	For
instance,	the	numeric	value	20140214	is	acceptable,	but	not	2014-02-14	(without	quotes)
or	2014	02	14	(with	spaces).	Here’s	the	same	SQL	statement	as	before,	but	using	these
functions	instead:

SELECT	CONCAT(name_first,	SPACE(1),	name_last)	AS	'Birdwatcher',

time_seen,	YEAR(time_seen),	MONTH(time_seen),	DAY(time_seen),

MONTHNAME(time_seen),	DAYNAME(time_seen)

www.it-ebooks.info

http://www.it-ebooks.info/

FROM	bird_sightings	JOIN	humans	USING(human_id)

WHERE	bird_id	=	309	\G

***************************	1.	row	***************************

									Birdwatcher:	Marie	Dyer

											time_seen:	2013-10-02	07:39:44

					YEAR(time_seen):	2013

				MONTH(time_seen):	10

						DAY(time_seen):	2

MONTHNAME(time_seen):	October

		DAYNAME(time_seen):	Wednesday

This	example	has	a	couple	of	other	date	functions:	MONTHNAME()	to	get	the	name	of	the
month	for	the	date;	and	DAYNAME()	to	get	the	name	of	the	day	of	the	week	for	the	date.
Using	all	of	these	functions,	you	can	put	together	nicer	looking	results	or	easily	check	date
information.	Let’s	look	at	how	you	might	use	the	date	and	time	functions	to	re-order	date
results.	Here’s	an	example	that	retrieves	a	list	of	endangered	birds	spotted	by	the	members
of	the	site:

SELECT	common_name	AS	'Endangered	Bird',

CONCAT(name_first,	SPACE(1),	name_last)	AS	'Birdwatcher',

CONCAT(DAYNAME(time_seen),	',	',	MONTHNAME(time_seen),	SPACE(1),

		DAY(time_seen),	',	',	YEAR(time_seen))	AS	'Date	Spotted',

CONCAT(HOUR(time_seen),	':',	MINUTE(time_seen),

		IF(HOUR(time_seen)	<	12,	'	a.m.',	'	p.m.'))	AS	'Time	Spotted'

FROM	bird_sightings

JOIN	humans	USING(human_id)

JOIN	rookery.birds	USING(bird_id)

JOIN	rookery.conservation_status	USING(conservation_status_id)

WHERE	conservation_category	=	'Threatened'	LIMIT	3;

+---------------------+--------------+----------------------------+-----------+

|	Endangered	Bird					|	Birdwatcher		|	Date	Spotted															|	Time						|

+---------------------+--------------+----------------------------+-----------+

|	Eskimo	Curlew							|	Elena	Bokova	|	Tuesday,	October	1,	2013			|	5:9	a.m.		|

|	Red-billed	Curassow	|	Marie	Dyer			|	Wednesday,	October	2,	2013	|	7:39	a.m.	|

|	Red-billed	Curassow	|	Elena	Bokova	|	Wednesday,	October	2,	2013	|	8:41	a.m.	|

+---------------------+--------------+----------------------------+-----------+

This	is	a	very	cluttered	SQL	statement.	Yes,	because	it	involves	using	JOIN	a	few	times,
it’s	lengthy	as	one	would	expect.	But	using	CONCAT()	twice	with	so	many	date	and	time
functions	clutters	it	unnecessarily.	Notice	that	5:9	is	displayed	for	the	hours	and	minutes,
instead	of	5:09.	That’s	because	the	function,	MINUTE()	doesn’t	pad	with	zeroes.	We	could
fix	that	by	using	the	LPAD()	function,	but	that	would	be	more	clutter.	We	complicated	the
statement	even	further	by	using	the	IF()	function	to	label	the	time	morning	or	evening
(i.e.,	a.m.	or	p.m.).

There’s	a	cleaner,	easier	way	to	reformat	dates	and	times	using	date	and	time	formatting
functions,	which	are	described	in	the	next	section.	Meanwhile,	you	can	reduce	the	number
of	date	and	extraction	functions	to	a	single	one:	EXTRACT().

The	EXTRACT()	function	can	be	used	to	extract	any	component	of	a	date	or	time.	The
syntax	is	simple	and	a	little	verbose:	EXTRACT(interval	FROM	date_time).	The	intervals
given	are	similar	to	the	names	of	the	date	and	time	extraction	functions	we’ve	already
reviewed:	MONTH	for	month,	HOUR	for	hour,	and	so	on.	There	are	also	some	combined	ones
such	as	YEAR_MONTH	and	HOUR_MINUTE.	For	a	list	of	intervals	allowed	with	EXTRACT()	and
similar	date	and	time	functions,	see	Table	11-1.

www.it-ebooks.info

http://www.it-ebooks.info/

Table	11-1.	Date	and	time	intervals	and	formats

INTERVAL Format	for	given	values

DAY dd

DAY_HOUR ‘dd	hh’

DAY_MICROSECOND ‘dd.nn’

DAY_MINUTE ‘dd	hh:mm’

DAY_SECOND ‘dd	hh:mm:ss’

HOUR hh

HOUR_MICROSECOND ‘hh.nn’

HOUR_MINUTE ‘hh:mm’

HOUR_SECOND ‘hh:mm:ss’

MICROSECOND nn

MINUTE mm

MINUTE_MICROSECOND ‘mm.nn’

MINUTE_SECOND ‘mm:ss’

MONTH mm

QUARTER qq

SECOND ss

SECOND_MICROSECOND ’ss.nn’

WEEK ww

YEAR yy

YEAR_MONTH ‘yy-mm’

Let’s	look	at	a	simple	example	of	this	function	by	redoing	the	example	that	queried	for	the
bird-watchers	who	saw	the	Black	Guineafowl.	Here	it	is	again	with	EXTRACT():

SELECT	time_seen,

EXTRACT(YEAR_MONTH	FROM	time_seen)	AS	'Year	&	Month',

EXTRACT(MONTH	FROM	time_seen)	AS	'Month	Only',

EXTRACT(HOUR_MINUTE	FROM	time_seen)	AS	'Hour	&	Minute',

EXTRACT(HOUR	FROM	time_seen)	AS	'Hour	Only'

FROM	bird_sightings	JOIN	humans	USING(human_id)

www.it-ebooks.info

http://www.it-ebooks.info/

LIMIT	3;

+---------------------+--------------+------------+---------------+-----------+

|	time_seen											|	Year	&	Month	|	Month	Only	|	Hour	&	Minute	|	Hour	Only	|

+---------------------+--------------+------------+---------------+-----------+

|	2013-10-01	04:57:12	|							201310	|									10	|											457	|									4	|

|	2013-10-01	05:09:27	|							201310	|									10	|											509	|									5	|

|	2013-10-01	05:13:25	|							201310	|									10	|											513	|									5	|

+---------------------+--------------+------------+---------------+-----------+

As	you	can	see,	when	you	use	EXTRACT()	with	single	intervals,	it	works	fine	as	a
consistent	substitute	for	the	other	temporal	extraction	functions.	Asking	for	HOUR_MINUTE
doesn’t	produce	very	nice	results,	because	there	is	no	colon	between	the	hour	and	minute
(for	instance,	4:57	is	shown	as	457).	When	you	use	EXTRACT()	with	combined	intervals,	it
returns	results	combined	together	with	no	formatting.	That	may	be	what	you	want
sometimes,	but	other	times	you	might	want	to	format	a	date	or	time.	Once	again,	you’ll
need	the	date	and	time	formatting	functions	in	the	next	section.

www.it-ebooks.info

http://www.it-ebooks.info/

Formatting	Dates	and	Time
In	the	first	section	of	this	chapter,	we	looked	briefly	at	the	temporal	data	types	in	MySQL
and	MariaDB,	including	the	formats	in	which	dates	and	times	are	stored.	I	mentioned	that
if	you	don’t	like	those	formats,	there	are	built-in	functions	that	may	be	used	to	return
temporal	data	in	different	formats.	The	most	useful	is	the	DATE_FORMAT()	function,	and	a
similar	one,	TIME_FORMAT().	You	can	use	these	to	format	date	and	time	values	taken	from
a	column,	a	string,	or	another	function.	With	these	two	functions,	you	can	specify	the
format	you	want	with	simple	formatting	codes.	Let’s	redo	the	SQL	statement	from	the
example	at	the	end	of	the	previous	section,	using	these	functions:

SELECT	common_name	AS	'Endangered	Bird',

CONCAT(name_first,	SPACE(1),	name_last)	AS	'Birdwatcher',

DATE_FORMAT(time_seen,	'%W,	%M	%e,	%Y')	AS	'Date	Spotted',

TIME_FORMAT(time_seen,	'%l:%i	%p')	AS	'Time	Spotted'

FROM	bird_sightings

JOIN	humans	USING(human_id)

JOIN	rookery.birds	USING(bird_id)

JOIN	rookery.conservation_status	USING(conservation_status_id)

WHERE	conservation_category	=	'Threatened'	LIMIT	3;

+---------------------+--------------+----------------------------+-----------+

|	Endangered	Bird					|	Birdwatcher		|	Date	Spotted															|	Time						|

+---------------------+--------------+----------------------------+-----------+

|	Eskimo	Curlew							|	Elena	Bokova	|	Tuesday,	October	1,	2013			|	5:09	AM			|

|	Red-billed	Curassow	|	Marie	Dyer			|	Wednesday,	October	2,	2013	|	7:39	AM			|

|	Red-billed	Curassow	|	Elena	Bokova	|	Wednesday,	October	2,	2013	|	8:41	AM			|

+---------------------+--------------+----------------------------+-----------+

This	is	still	a	hefty	SQL	statement,	but	the	portions	related	to	formatting	the	date	and	time
is	more	straightforward.	With	the	DATE_FORMAT()	and	the	TIME_FORMAT()	functions,	you
give	the	column	to	format	as	the	first	argument	and	then	provide	a	string	in	quotes	that
contains	formatting	codes	and	text	to	lay	out	how	you	want	the	date	and	time	formatted.
Incidentally,	the	DATE_FORMAT()	function	will	return	times	in	addition	to	dates.	So	there’s
really	no	need	to	use	TIME_FORMAT().	It’s	just	a	matter	of	style.

The	problems	we	had	in	the	previous	two	examples	(i.e.,	lack	of	padding	for	minutes,	no
colon,	and	the	need	for	IF()	to	indicate	morning	or	evening),	doesn’t	exist	here.	We	took
care	of	all	of	that	by	using	the	'%l:%i	%p'	formatting	codes.	If	we	were	willing	to	include
the	seconds,	we	could	replace	those	three	formatting	codes	with	just	'%r'.	Table	11-2
shows	a	list	of	formatting	codes	and	what	they	return.

Table	11-2.	Date	and	time	formatting	codes

Code Description Results

%a Abbreviated	weekday	name (Sun…Sat)

%b Abbreviated	month	name (Jan…Dec)

%c Month	(numeric) (1…12)

%d Day	of	the	month	(numeric) (00…31)

%D Day	of	the	month	with	English	suffix (1st,	2nd,	3rd,	etc.)

www.it-ebooks.info

http://www.it-ebooks.info/

%e Day	of	the	month	(numeric) (0…31)

%f Microseconds	(numeric) (000000…999999)

%h Hour (01…12)

%H Hour (00…23)

%i Minutes	(numeric) (00…59)

%I Hour (01…12)

%j Day	of	the	year (001…366)

%k Hour (0…23)

%l Hour (1…12)

%m Month	(numeric) (01…12)

%M Month	name (January…December)

%p AM	or	PM AM	or	PM

%r Time,	12-hour (hh:mm:ss	[AP]M)

%s Seconds (00…59)

%S Seconds (00…59)

%T Time,	24-hour (hh:mm:ss)

%u Week,	where	Monday	is	the	first	day	of	the	week (0…52)

%U Week,	where	Sunday	is	the	first	day	of	the	week (0…52)

%v Week,	where	Monday	is	the	first	day	of	the	week;	used	with	`%x’ (1…53)

%V Week,	where	Sunday	is	the	first	day	of	the	week;	used	with	`%X’ (1…53)

%w Day	of	the	week (0=Sunday…
6=Saturday)

%W Weekday	name (Sunday…Saturday)

%x Year	for	the	week,	where	Monday	is	the	first	day	of	the	week	(numeric,	four	digits);
used	with	`%v’

(yyyy)

%X Year	for	the	week,	where	Sunday	is	the	first	day	of	the	week	(numeric,	four	digits);	used
with	`%V’

(yyyy)

www.it-ebooks.info

http://www.it-ebooks.info/

%y Year	(numeric,	two	digits) (yy)

%Y Year	(numeric,	four	digits) (yyyy)

%% A	literal	`%’

Different	places	in	the	world	prefer	various	standards	for	formatting	the	date	and	time.	In
the	next	section,	we’ll	look	at	this	and	how	to	adjust	to	the	time	zones	of	other	regions.

www.it-ebooks.info

http://www.it-ebooks.info/

Adjusting	to	Standards	and	Time	Zones
There	a	few	standards	for	formatting	the	date	and	time.	For	instance,	the	last	day	of
December	and	the	year	could	be	written	numerically	as	12-31-2014	or	31-12-2014.	Which
standard	you	will	use	on	a	server	may	be	based	on	where	you’re	located	in	the	world,	or
your	employer	and	client	preferences,	or	some	other	factor.	To	get	the	date	format	for	a
particular	standard,	you	can	use	GET_FORMAT().	Enter	the	following	to	try	this:

SELECT	GET_FORMAT(DATE,	'USA');

+-------------------------+

|	GET_FORMAT(DATE,	'USA')	|

+-------------------------+

|	%m.%d.%Y																|

+-------------------------+

As	the	name	implies,	GET_FORMAT()	checks	for	a	particular	place	or	locale	and	returns	the
string	that	can	be	used	in	DATE_FORMAT()	to	produce	the	desired	format.	It	might	be	a	bit
surprising	that	the	U.S.	format	uses	periods	instead	of	hyphens	to	separate	elements	of	the
date.	In	GET_FORMAT,	the	first	argument	indicates	whether	you	want	the	date,	the	time,	or
both	(i.e.,	DATE,	TIME,	or	DATETIME).	The	second	argument	specifies	the	date	or	time
standard,	and	can	be	one	of	the	following:

EUR	for	Europe
INTERNAL	for	the	format	in	which	time	is	stored,	without	punctuation
ISO	for	ISO	9075	standard
JIS	for	Japanese	Industrial	Standard
USA	for	United	States

The	ISO	standard	(yyyy-mm-dd	hh:mm:ss)	is	the	default	for	displaying	the	date	and	time	in
MySQL.

Enter	this	simple	example	that	uses	GET_FORMAT():
SELECT	GET_FORMAT(DATE,	'USA'),	GET_FORMAT(TIME,	'USA');

+-------------------------+-------------------------+

|	GET_FORMAT(DATE,	'USA')	|	GET_FORMAT(TIME,	'USA')	|

+-------------------------+-------------------------+

|	%m.%d.%Y																|	%h:%i:%s	%p													|

+-------------------------+-------------------------+

Try	running	GET_FORMAT	for	various	standards	in	order	to	become	familiar	with	the
different	layouts	—	or	check	the	documentation.	After	you’ve	done	that,	execute	the
following	SQL	statement	to	see	how	this	function	works	in	conjunction	with
DATE_FORMAT():

SELECT	DATE_FORMAT(CURDATE(),	GET_FORMAT(DATE,'EUR'))

			AS	'Date	in	Europe',

DATE_FORMAT(CURDATE(),	GET_FORMAT(DATE,'USA'))

			AS	'Date	in	U.S.',

REPLACE(DATE_FORMAT(CURDATE(),	GET_FORMAT(DATE,'USA')),	'.',	'-')

			AS	'Another	Date	in	U.S.';

+----------------+--------------+----------------------+

|	Date	in	Europe	|	Date	in	U.S.	|	Another	Date	in	U.S.	|

+----------------+--------------+----------------------+

|	18.02.2014					|	02.18.2014			|	02-18-2014											|

+----------------+--------------+----------------------+

Because	I	don’t	agree	that	U.S.	dates	should	use	periods,	the	last	field	shows	how	to	use

www.it-ebooks.info

http://bit.ly/get_format
http://www.it-ebooks.info/

the	REPLACE()	function	to	replace	the	periods	with	dashes.	GET_FORMAT()	isn’t	a	function
you’ll	use	often,	but	it’s	good	to	know	about	it.	A	more	useful	and	somewhat	similar
function	is	CONVERT_TZ().

CONVERT_TZ()	converts	a	time	to	a	given	time	zone.	Before	we	can	convert	to	a	given	time
zone,	though,	we	need	to	know	which	time	zone	our	server	is	using.	We	can	determine	this
by	entering	the	following	from	the	mysql	client:

SHOW	VARIABLES	LIKE	'time_zone';

+---------------+--------+

|	Variable_name	|	Value		|

+---------------+--------+

|	time_zone					|	SYSTEM	|

+---------------+--------+

This	shows	that	my	server	is	using	the	filesystem	time,	which	is	probably	the	same	time
zone	where	it’s	located.	Suppose	the	server	we	use	for	our	bird-watching	site	is	located	in
Boston,	Massachusetts,	which	is	in	the	U.S.	Eastern	Time	Zone.	If	a	member	enters
information	in	the	morning	about	a	bird	sighting	in	Rome,	Italy,	which	is	in	the	Central
European	Time	Zone,	we	don’t	want	them	to	see	the	time	in	Boston	after	they	save	the
entry.	We	would	want	the	time	adjusted	for	the	time	zone	in	which	the	bird	was	sighted.
Otherwise	people	in	the	United	States	might	think	that	Italians	often	see	birds	during	the
night	and	nocturnal	birds	such	as	owls	during	the	day.	So	we’ll	use	CONVERT_TZ()	to
adjust	the	times	appropriately.

The	syntax	for	CONVERT_TZ()	requires	three	arguments:	the	date	and	time	to	convert,	the
time	zone	from	whence	the	time	came,	and	the	time	zone	to	which	to	convert.	Let’s	look	at
an	example:

SELECT	common_name	AS	'Bird',

CONCAT(name_first,	SPACE(1),	name_last)	AS	'Birdwatcher',

DATE_FORMAT(time_seen,	'%r')	AS	'System	Time	Spotted',

DATE_FORMAT(CONVERT_TZ(time_seen,	'US/Eastern',	'Europe/Rome'),	'%r')	

		AS	'Birder	Time	Spotted'

FROM	bird_sightings

JOIN	humans	USING(human_id)

JOIN	rookery.birds	USING(bird_id)

JOIN	rookery.conservation_status	USING(conservation_status_id)	LIMIT	3;

+----------------+------------------+-------------------+---------------------+

|	Bird											|	Birdwatcher						|System	Time	Spotted|	Birder	Time	Spotted	|

+----------------+------------------+-------------------+---------------------+

|	Whimbrel							|	Richard	Stringer	|	04:57:12	AM							|	10:57:12	AM									|

|	Eskimo	Curlew		|	Elena	Bokova					|	05:09:27	AM							|	11:09:27	AM									|

|	Marbled	Godwit	|	Rusty	Osborne				|	05:13:25	AM							|	11:13:25	AM									|

+----------------+------------------+-------------------+---------------------+

Notice	that	the	time	zones	on	the	system	are	six	hours	earlier	than	the	converted	times.	Of
course,	this	is	assuming	that	everyone	is	located	in	the	same	time	zone	as	Rome.	What	we
could	do	is	add	a	column	to	the	humans	table	to	include	the	time	zone	in	which	the	user	is
located	or	prefers.	When	a	user	registers,	we	can	guess	at	their	time	zone	based	on	what
their	web	browser	tells	us	or	some	other	clever	method.	But	then	we	could	give	the	user	an
option	of	choosing	another	time	zone	in	case	we	guessed	wrong.	However	you	determine
and	store	the	time	zone,	you	would	modify	the	preceding	SQL	statement	to	change	the
time	to	which	CONVERT_TZ()	converts	to	that	value.

Notice	that	the	time	zones	we’re	giving	for	CONVERT_TZ()	are	not	limited	to	three-
character	code	(e.g.,	CET	for	Central	European	time).	They’re	based	on	the	time	zone

www.it-ebooks.info

http://www.it-ebooks.info/

names	in	MySQL,	which	include	CET.	If	you	ran	the	preceding	SQL	statement	and	it
returned	null	values	for	the	field	containing	CONVERT_TZ(),	it	may	be	because	the	time
zone	information	hasn’t	been	loaded.	When	MySQL	or	MariaDB	are	installed,	on	Unix-
type	systems	you	will	find	the	time	zone	files	in	the	/usr/share/zoneinfo	directory.	If	you
get	a	listing	of	that	directory,	you’ll	see	the	names	that	may	be	used	for	the	time	zone
arguments	in	CONVERT_TZ().	For	instance,	you	will	see	a	directory	named	US.	Within	it
will	be	a	file	named	Eastern.	It’s	from	these	two	pieces	of	information	that	we	get	the
value	US/Eastern.	To	install	the	time	zone	file,	enter	the	following,	changing	the	file	path
to	wherever	the	time	zone	files	are	located:

mysql_tzinfo_to_sql	/usr/share/zoneinfo	|	mysql	-p	-u	root	mysql

If	your	server	runs	on	Windows,	you	may	have	to	go	to	Oracle’s	site	to	download	time
zone	tables).	That	web	page	will	provide	some	instructions	on	installing	the	package	you
download.	After	you’ve	installed	the	time	zone	files,	try	the	previous	SQL	statement	again
to	be	sure	everything	was	installed	properly.

Rather	than	use	the	time	zone	where	our	web	server	happens	to	be	located,	we	could	use
some	other	time	zone.	We	could	change	the	time	zone	for	the	server,	without	having	to
relocate	it	or	change	the	filesystem	clock.	We	could	set	the	server	to	a	more	global	time
zone	such	as	Greenwich	Mean	Time	(GMT	or	UTC).	Because	birdwatching	has	some
roots	in	England	thanks	to	botanists	like	Joseph	Banks	and	Charles	Darwin,	let’s	use
GMT.	To	set	the	time	zone,	we	can	use	the	SET	statement	like	so:

SET	GLOBAL	time_zone	=	'GMT';

If	we	wanted	to	set	only	the	time	zone	for	the	current	session,	we	wouldn’t	include	the
GLOBAL	flag.	It	would	be	better	to	set	this	value	globally	in	the	server’s	configuration	file
(i.e.,	my.cnf	or	my.ini)	so	it	isn’t	reset	when	the	server	is	rebooted.	To	do	that,	add	this	line
to	the	[mysqld]	section:

default-time-zone='GMT'

If	you	use	that	method,	instead	of	using	SET,	you’ll	have	to	restart	the	server	for	it	to	take
effect.	Once	you’ve	done	that,	run	the	SHOW	VARIABLES	statement	again	to	see	the	results.

Setting	the	time	zone	on	a	server,	knowing	the	user’s	time	zone,	and	adjusting	times	using
CONVERT_TZ()	helps	the	user	to	feel	he	is	part	of	the	community	of	a	website.	Otherwise,
the	times	shown	will	make	the	user	feel	like	he	is	an	outsider.	So	learn	to	use
CONVERT_TZ()	so	that	your	sites	and	services	will	be	part	of	the	global	community.

www.it-ebooks.info

http://dev.mysql.com/downloads/timezones.html
http://www.it-ebooks.info/

Adding	and	Subtracting	Dates	and	Time
MySQL	and	MariaDB	include	several	built-in	functions	that	may	be	used	to	change	a
given	date	or	time.	You	can	use	them	to	change	a	date	to	a	future	one	by	adding	time,	or
change	a	date	to	a	past	one	by	subtracting	time.	The	main	functions	that	do	this,	or	perhaps
the	most	popular	ones,	are	DATE_ADD()	and	DATE_SUB().	The	syntax	for	both	of	these	is
the	same:	the	first	argument	is	the	date	to	be	modified	and	the	second	argument	is	the
amount	of	time.	The	amount	of	time	is	presented	with	the	keyword	INTERVAL,	followed	by
a	count	of	intervals,	followed	by	the	date	or	time	factor	(e.g.,	INTERVAL	1	DAY).

Let’s	look	at	an	example	using	DATE_ADD().	Suppose	we	want	to	extend	the	membership
of	all	of	our	members	who	live	in	the	United	Kingdom	by	three	months.	To	do	this,	we
would	enter	the	following:

UPDATE	humans

SET	membership_expiration	=	DATE_ADD(membership_expiration,	INTERVAL	3	MONTH)

WHERE	country_id	=	'uk'

AND	membership_expiration	>	CURDATE();

In	this	example,	we’re	adding	three	months	to	the	current	membership_expiration,	but
just	for	members	who	are	in	the	U.K.,	but	not	for	those	whose	membership	has	already
expired.	Notice	that	we’re	using	a	simpler	operator,	in	this	case	the	greater-than	sign	(>),
to	compare	two	day	values	in	the	WHERE	clause.	Notice	also	how	we	had	to	set	the
membership_expiration	column	equal	to	the	modified	value	of	itself.	Date	and	time
functions	don’t	change	the	value	of	columns	simply	by	being	executed.	You	have	to	use
them	in	conjunction	with	other	methods	for	them	to	affect	stored	data.	For	a	list	of
intervals	allowed	with	DATE_ADD()	and	similar	date	and	time	functions,	see	Table	11-1.

Let’s	look	at	another	example	using	DATE_SUB().	Suppose	a	member	named	Melissa	Lee
renewed	her	membership	for	two	years,	but	meant	to	renew	it	for	only	one	year.	You	could
enter	the	following	SQL	statement	to	make	that	adjustment:

UPDATE	humans

SET	membership_expiration	=	DATE_SUB(membership_expiration,	INTERVAL	1	YEAR)

WHERE	CONCAT(name_first,	SPACE(1),	name_last)	=	'Melissa	Lee';

Because	there	may	be	more	than	one	Melissa	Lee	in	our	database,	we	should	have	first
determined	her	human_id	and	used	that	in	the	WHERE	clause.

DATE_ADD()	is	a	very	useful	function	so	let’s	look	at	some	more	examples	using	it.	First,
let’s	redo	the	previous	example	to	use	DATE_ADD()	instead	of	DATE_SUB().	You	would
enter	it	like	this:

UPDATE	humans

SET	membership_expiration	=	DATE_ADD(membership_expiration,	INTERVAL	-1	YEAR)

WHERE	CONCAT(name_first,	SPACE(1),	name_last)	=	'Melissa	Lee';

This	is	exactly	the	same	as	the	previous	example,	except	that	we’re	using	DATE_ADD()	and
we	changed	the	count	of	the	interval	to	a	negative	number	to	indicate	that	one	year	should
be	subtracted	and	not	added,	despite	the	name	of	the	function.

Let’s	look	at	another	example	with	DATE_ADD().	Suppose	one	of	the	members	of	our	site
recorded	a	bird	sighting	in	the	bird_sightings	table,	but	for	some	reason	the	day	and
time	is	off.	She	lets	us	know	that	the	entry	in	time_seen	should	be	set	to	one	day	and	two
hours	later.	After	we	have	determined	the	sighting_id,	we	can	execute	this	SQL
statement	to	update	the	date	and	time:

www.it-ebooks.info

http://www.it-ebooks.info/

UPDATE	bird_sightings

SET	time_seen	=	DATE_ADD(time_seen,	INTERVAL	'1	2'	DAY_HOUR)

WHERE	sighting_id	=	16;

In	this	example,	the	argument	for	the	interval	count	is	a	combination	of	two	intervals,
DAY_HOUR	for	both	DAY	and	HOUR.	We	list	the	counts	in	the	same	order,	and	put	them	within
quotes.	If	we	want	to	subtract	the	intervals	(i.e.,	one	day	and	two	hours	earlier),	we	would
put	a	negative	sign	within	the	quotes	before	one	of	the	values.	Incidentally,	you	can’t	do	a
combination	of	subtracting	and	adding	within	the	same	DATE_ADD().	You’d	have	to	do
either	two	passes	at	the	column,	or	embed	one	call	within	the	other.	Table	11-1	lists	other
acceptable	combined	intervals.

When	we	use	DATE_ADD()	and	similar	functions	to	have	MySQL	calculate	a	new	date	or
time,	it	goes	through	a	process	behind	the	scenes	to	determine	the	new	result	that	is
requested.	Basically,	it	counts	the	number	of	seconds	between	dates	and	times,	and	then
returns	the	new	date	and	time.	There	may	be	situations	in	which	you	want	to	determine	the
method	of	those	calculations,	when	you	want	more	control	over	those	calculations.	For
those	situations,	there	are	the	TIME_TO_SEC()	and	SEC_TO_TIME()	functions.

The	TIME_TO_SEC()	function	converts	a	time	to	seconds	so	that	a	calculation	may	be
performed	easily.	If	you	give	it	a	date	and	time	value,	it	uses	only	the	time	portion.	Let’s
look	at	a	very	simple	example	of	this	to	see	what	the	results	from	it	mean:

SELECT	TIME(NOW()),

TIME_TO_SEC(NOW()),

TIME_TO_SEC(NOW())	/	60	/60	AS	'Hours';

+---------------------+--------------------+------------+

|	NOW()															|	TIME_TO_SEC(NOW())	|	Hours						|

+---------------------+--------------------+------------+

|	2014-02-18	03:30:00	|														12600	|	3.50000000	|

+---------------------+--------------------+------------+

For	the	first	field	here,	we’re	getting	the	current	time.	Notice	that	the	time	portion	is
exactly	3:30	a.m.	For	the	second	field,	we’re	using	TIME_TO_SEC()	to	get	the	number	of
seconds	for	that	time:	three	and	a	half	hours	into	the	day.	The	third	field	is	a	calculation	to
confirm	that:	12,600	seconds	equals	3.5	hours.

Conversely,	if	you	know	the	number	of	seconds	that	have	elapsed	since	the	start	of	an
event	—	whether	it	be	the	start	of	a	day	or	an	action	—	you	can	use	the	SEC_TO_TIME()
function	to	give	you	a	time.	Suppose	you	have	two	events	and	you	want	to	know	how
much	time	elapsed	between	them.	For	instance,	we	might	have	a	bird	identification	test
online.	The	user	would	be	presented	with	an	image	of	a	bird	and	asked	to	identify	it.	We
would	record	the	time	when	the	image	is	displayed.	When	the	user	enters	the	correct
identification,	that	time	is	recorded	in	another	column	in	the	same	table.	We	could	use
SEC_TO_TIME()	to	get	the	difference	between	the	two	times,	but	in	a	time	format	(i.e.,
hh:mm:ss).	Let’s	create	an	example	of	that	by	first	creating	a	table	to	record	each	bird-
watcher’s	test	results:

CREATE	TABLE	bird_identification_tests

(test_id	INT	AUTO_INCREMENT	KEY,

	human_id	INT,	bird_id	INT,

	id_start	TIME,

	id_end	TIME);

There’s	not	much	to	this	table:	we	just	want	to	record	the	human_id	for	the	member,	the
bird_id	for	the	image	presented	to	the	member,	and	then	the	start	and	completion	times.

www.it-ebooks.info

http://www.it-ebooks.info/

We	don’t	care	about	the	date,	just	how	long	it	took	the	member	to	identify	the	bird.	Let’s
insert	some	data	into	that	table,	just	one	row	of	data	so	that	we’ll	be	able	to	try	the
SEC_TO_TIME()	function:

INSERT	INTO	bird_identification_tests

VALUES(NULL,	16,	125,	CURTIME(),	NULL);

Notice	that	we	didn’t	provide	a	value	for	the	id_end	column.	That	will	be	set	when	the
member	completes	the	identification.	We’re	simulating	this	scenario,	but	if	we	were	doing
this	for	a	site,	we	would	embed	this	INSERT	statement	in	a	script	that’s	executed	when	the
user	is	shown	a	bird	image.	Another	script	containing	an	UPDATE	statement	would	be
executed	when	the	user	identifies	the	bird.	So,	to	continue	this	simulation,	wait	a	bit	and
then	enter	this	SQL	statement	to	set	the	time	for	the	id_end	column:

UPDATE	bird_identification_tests

SET	id_end	=	CURTIME();

We’ve	now	updated	the	one	row	in	the	table	by	setting	the	value	of	the	id_end	column	to
the	current	time.	Now	we	can	execute	a	SELECT	using	the	SEC_TO_TIME()	function	to	see
how	that	function	works:

SELECT	CONCAT(name_first,	SPACE(1),	name_last)

			AS	'Birdwatcher',

common_name	AS	'Bird',

SEC_TO_TIME(TIME_TO_SEC(id_end)	-	TIME_TO_SEC(id_start))

			AS	'Time	Elapsed'

FROM	bird_identification_tests

JOIN	humans	USING(human_id)

JOIN	rookery.birds	USING(bird_id);

+-------------+------------------+--------------+

|	Birdwatcher	|	Bird													|	Time	Elapsed	|

+-------------+------------------+--------------+

|	Ricky	Adams	|	Crested	Shelduck	|	00:01:21					|

+-------------+------------------+--------------+

As	nice	as	this	SQL	statement	is,	a	problem	arises	when	the	two	times	are	in	different
days,	such	as	when	the	bird-watcher	starts	the	test	before	midnight	and	finishes	after
midnight.	Then	the	value	of	id_end	is	less	than	id_start,	occurring	seemingly	before	the
event	started.	To	allow	for	that	possibility,	you	have	to	construct	a	much	more	complex
SQL	statement	to	include	the	IF()	function	to	test	for	that	rare	occurrence.	But	that
doesn’t	allow	for	when	someone	starts	the	test	and	waits	to	respond	until	more	than	24
hours	later.	For	that,	you	might	want	to	cancel	the	session	using	other	methods	than	those
provided	by	MySQL.	But	there	may	be	situations	in	which	you	will	be	comparing	times
that	you	will	expect	to	be	more	than	a	day	apart.	For	those	situations,	you	would	do	better
to	use	the	DATETIME	data	type	along	with	other	functions	for	comparing	dates	and	times.
Those	are	covered	in	the	next	section.

Let’s	look	at	one	more	function	related	to	adding	and	subtracting	dates.	The	PERIOD_ADD()
function	takes	a	date	as	the	first	argument	and	adds	a	specified	number	of	months	given	as
the	second	argument.	It	can	be	used	also	to	subtract	months	from	a	date,	if	the	count	given
for	the	second	argument	is	a	negative	value.

PERIOD_ADD()	is	a	bit	of	an	oddball	in	this	chapter	because	it	takes	a	string	as	an	argument
instead	of	a	date,	and	returns	a	string	in	the	same	format.	The	string	consists	of	a	year	as
either	two	or	four	digits,	followed	by	a	month	as	two	digits	(e.g.,	April	2014	could	be
either	1404	or	201404).	Let’s	try	out	this	function	with	the	birdwatchers	database.

www.it-ebooks.info

http://www.it-ebooks.info/

Suppose	we	want	a	count	of	bird	sightings	recorded	by	each	member,	but	just	for	the
previous	quarter.	This	seems	like	it	would	be	simple	to	do,	just	by	using	QUARTER()	in	the
WHERE	clause	of	a	SELECT	statement.	Such	an	SQL	statement	might	look	like	this:

SELECT	CONCAT(name_first,	SPACE(1),	name_last)	AS	'Birdwatcher',

COUNT(time_seen)	AS	'Sightings	Recorded'

FROM	bird_sightings

JOIN	humans	USING(human_id)

WHERE	QUARTER(time_seen)	=	(QUARTER(CURDATE())	-	1)

AND	YEAR(time_seen)	=	(YEAR(CURDATE())	-	1)

GROUP	BY	human_id	LIMIT	5;

Empty	set	(0.14	sec)

An	empty	set	was	returned.	This	is	because	the	result	of	QUARTER(CURDATE())	is	1,
because	I	happened	to	execute	this	example	during	the	first	quarter	of	the	year.	So,
QUARTER(CURDATE())	-	1	equals	0.	Because	all	of	the	rows	will	have	a	date	in	quarters	1
through	4	(i.e.,	QUARTER(time_seen)),	none	will	match.	If	I	entered	this	statement	during	a
different	quarter,	it	would	return	results	for	the	wrong	quarter	(the	previous	one).

Therefore,	we	have	to	adjust	this	SQL	statement.	We	can	do	this	by	using	PERIOD_ADD()	a
couple	of	times,	along	with	a	few	other	date	functions	we	covered	earlier.	Here’s	how	we
could	get	the	list	of	people	and	the	number	of	sightings	they	recorded	for	last	quarter,
regardless	of	the	quarter	in	which	it’s	executed:

SELECT	CONCAT(name_first,	SPACE(1),	name_last)	AS	'Birdwatcher',

COUNT(time_seen)	AS	'Sightings	Recorded'

FROM	bird_sightings

JOIN	humans	USING(human_id)

WHERE	CONCAT(QUARTER(time_seen),	YEAR(time_seen))	=

CONCAT(

			QUARTER(

						STR_TO_DATE(

									PERIOD_ADD(EXTRACT(YEAR_MONTH	FROM	CURDATE()),	-3),

																													'%Y%m')),

			YEAR(

						STR_TO_DATE(

									PERIOD_ADD(EXTRACT(YEAR_MONTH	FROM	CURDATE()),	-3),

																													'%Y%m')))

GROUP	BY	human_id	LIMIT	5;

+-------------------+--------------------+

|	Birdwatcher							|	Sightings	Recorded	|

+-------------------+--------------------+

|	Richard	Stringer		|																		1	|

|	Rusty	Osborne					|																		1	|

|	Elena	Bokova						|																		3	|

|	Katerina	Smirnova	|																		3	|

|	Anahit	Vanetsyan		|																		1	|

+-------------------+--------------------+

I	indented	this	SQL	statement	plenty	to	make	it	easier	to	read.	We’re	using	EXTRACT()	to
extract	the	year	and	month	from	the	CURDATE()	and	to	put	it	in	the	format	we	need	for
PERIOD_ADD()	(i.e.,	yyyymm).	The	first	time	we	use	PERIOD_ADD(),	it’s	getting	the	number
of	the	previous	quarter.	The	second	time	we	use	this	function,	it’s	getting	the	year	of	that
previous	quarter.	We	use	STR_TO_DATE	to	convert	the	result	of	PERIOD_ADD	to	a	date.

Then	we’re	using	CONCAT()	to	put	the	quarter	and	year	together.	We’ll	compare	that	to	the
quarter	and	year	we’ll	concatenate	from	time_seen.	This	process	would	be	simpler	if
EXTRACT()	had	an	option	of	YEAR_QUARTER.	Then	we	wouldn’t	need	to	determine	the	date
of	the	previous	quarter	twice,	extract	the	year	and	month	separately,	and	concatenate	them.
Sometimes	we	push	the	limits	of	MySQL	and	MariaDB.	But	they	occasionally	add	new
features	and	options.	For	now,	there	are	ways	to	accomplish	what	you	want	with	more

www.it-ebooks.info

http://www.it-ebooks.info/

complex	SQL	statements.

www.it-ebooks.info

http://www.it-ebooks.info/

Comparing	Dates	and	Times
We’ve	seen,	in	a	few	examples	in	this	book,	some	ways	to	compare	values	containing
dates	and	times.	Several	functions	are	designed	specifically	for	this	task.	The	most
straightforward	ones	are	DATEDIFF()	and	TIMEDIFF().	With	these,	you	can	easily	compare
two	dates	or	times.	Let’s	look	at	some	examples	of	how	you	might	use	them.

The	humans	table	contains	a	column	holding	the	date	in	which	a	person’s	membership
expires,	membership_expiration.	Suppose	that	we	want	to	display	the	number	of	days
until	their	membership	expires	on	the	member’s	profile	page,	to	remind	them.	For	that
requirement,	we	can	use	the	DATEDIFF()	function	in	an	SQL	statement	similar	to	the
following:

SELECT	CURDATE()	AS	'Today',

DATE_FORMAT(membership_expiration,	'%M	%e,	%Y')

			AS	'Date	Membership	Expires',

DATEDIFF(membership_expiration,	CURDATE())

			AS	'Days	Until	Expiration'

FROM	humans

WHERE	human_id	=	4;

+------------+-------------------------+-----------------------+

|	Today						|	Date	Membership	Expires	|	Days	Until	Expiration	|

+------------+-------------------------+-----------------------+

|	2014-02-13	|	September	22,	2013						|																		-144	|

+------------+-------------------------+-----------------------+

Notice	that	the	result	here	from	DATEDIFF()	is	a	negative	amount.	That’s	because	the	date
contained	in	membership_expiration	is	a	date	before	the	current	date,	the	date	when
CURDATE()	was	executed.	If	you	swapped	the	two	values	given	for	DATEDIFF(),	the	results
would	be	positive.	If	you	want	to	know	only	the	number	of	days	apart	the	two	dates	are,
and	don’t	care	which	comes	first,	you	can	use	ABS()	with	DATEDIFF()	to	get	the	absolute
value	no	matter	how	you	order	them.	Incidentally,	although	you	may	give	values	in	date
and	time	formats,	only	the	date	portions	are	used	for	determining	the	difference.

Similar	to	DATEDIFF(),	you	can	get	the	difference	between	time	values	using	the
TIMEDIFF()	function.	Before	looking	at	an	example	of	it,	let’s	create	a	new	table	that	uses
dates	and	times.	Suppose	we’ve	decided	to	organize	and	sponsor	birding	events,	outings	in
which	bird-watchers	will	go	together	to	look	for	interesting	birds.	To	store	that
information,	we’ll	create	a	table	called	birding_events	in	the	birdwatchers	database:

CREATE	TABLE	birding_events

(event_id	INT	AUTO_INCREMENT	KEY,

	event_name	VARCHAR(255),

	event_description	TEXT,

	meeting_point	VARCHAR(255),

	event_date	DATE,

	start_time	TIME);

For	the	examples	in	this	section,	the	column	in	this	table	with	which	we’re	mostly
concerned	is	start_time.	Let’s	add	a	birding	event	to	birding_events	by	entering	the
following:

INSERT	INTO	birding_events

VALUES	(NULL,	'Sandpipers	in	San	Diego',

"Birdwatching	Outing	in	San	Diego	to	look	for	Sandpipers,

Curlews,	Godwits,	Snipes	and	other	shore	birds.

Birders	will	walk	the	beaches	and	surrounding	area	in	groups	of	six.

A	light	lunch	will	be	provided.",

"Hotel	del	Coronado,	the	deck	near	the	entrance	to	the	restaurant.",

	'2014-06-15',	'09:00:00');

www.it-ebooks.info

http://www.it-ebooks.info/

Now	we	can	try	using	TIMEDIFF().	Enter	the	following	to	determine	how	many	days	and
how	much	time	until	the	start	of	the	event:

SELECT	NOW(),	event_date,	start_time,

DATEDIFF(event_date,	DATE(NOW()))	AS	'Days	to	Event',

TIMEDIFF(start_time,	TIME(NOW()))	AS	'Time	to	Start'

FROM	birding_events;

+---------------------+------------+------------+-------------+---------------+

|	NOW()															|	event_date	|	start_time	|Days	to	Event|	Time	to	Start	|

+---------------------+------------+------------+-------------+---------------+

|	2014-02-14	06:45:24	|	2014-06-15	|	09:00:00			|									121	|	02:14:36						|

+---------------------+------------+------------+-------------+---------------+

The	event	will	start	in	121	days,	2	hours,	14	minutes,	and	36	seconds	from	the	time	this
SQL	statement	was	executed.	That’s	correct,	but	the	results	displayed	for	Time	to	Start
seem	more	like	a	time	of	day,	rather	than	a	count	of	hours,	minutes,	and	seconds
remaining.	Let’s	use	DATE_FORMAT()	for	a	nicer	display.	Let’s	also	use	CONCAT()	to	put	the
number	of	days	together	with	the	time	remaining:

SELECT	NOW(),	event_date,	start_time,

CONCAT(

			DATEDIFF(event_date,	DATE(NOW())),	'	Days,	',

			DATE_FORMAT(TIMEDIFF(start_time,	TIME(NOW())),	'%k	hours,	%i	minutes'))

			AS	'Time	to	Event'

FROM	birding_events;

+---------------------+------------+----------+-------------------------------+

|	NOW()															|	event_date	|start_time|	Time	to	Event																	|

+---------------------+------------+----------+-------------------------------+

|	2014-02-14	06:46:25	|	2014-06-15	|	09:00:00	|	121	Days,	2	hours,	13	minutes	|

+---------------------+------------+----------+-------------------------------+

You	have	to	carefully	check	the	parentheses	on	that	statement	to	execute	it	successfully.
We	embed	NOW()	in	the	DATE()	and	TIME()	functions.	These	in	turn	are	embedded	in
DATEDIFF()	and	TIMEDIFF()	to	get	the	difference	from	the	date	and	time	stored	in	the
database.	TIMEDIFF()	is	embedded	in	DATE_FORMAT(),	and	all	those	functions	are
embedded	in	CONCAT().

After	looking	at	these	results,	we	decide	that	it	would	be	much	simpler	if	we	change	the
table	to	use	a	single	column	to	record	the	date	and	time	of	the	event.	I	said	in	the	first
section	of	this	chapter	that	we	would	cover	some	examples	of	how	to	change	temporal
data	types	for	a	column.	Let’s	do	that	now.	Let’s	create	a	new	column,	event_datetime,
using	the	DATETIME	data	type:

ALTER	TABLE	birding_events

ADD	COLUMN	event_datetime	DATETIME;

That	adds	the	new	column	to	contain	the	date	and	time.	Now	let’s	update	the	table	to
combine	them	into	event_datetime:

UPDATE	birding_events

SET	event_datetime	=	CONCAT(event_date,SPACE(1),	start_time);

The	CONCAT()	function	merges	the	date	and	time	together	as	a	string.	MySQL	will
automatically	convert	that	string	into	a	date,	and	then	set	the	value	of	event_datetime	to	a
date	and	time	value.	Let’s	execute	a	SELECT	statement	to	see	how	the	data	looks	now:

SELECT	event_date,	start_time,	event_datetime

FROM	birding_events;

+------------+------------+---------------------+

|	event_date	|	start_time	|	event_datetime						|

+------------+------------+---------------------+

|	2014-06-15	|	09:00:00			|	2014-06-15	09:00:00	|

www.it-ebooks.info

http://www.it-ebooks.info/

+------------+------------+---------------------+

The	UPDATE	worked	fine.	Let’s	try	now	to	get	the	formatting	we	want	for	the	time
remaining	until	the	event,	but	from	the	new	column.	Enter	the	following:

SELECT	NOW(),	event_datetime,

CONCAT(DATEDIFF(event_datetime,	NOW()),	'	Days,	',

							TIME_FORMAT(TIMEDIFF(TIME(event_datetime),	CURTIME()),

																				'%k	hours,	%i	minutes'))

			AS	'Time	to	Event'

FROM	birding_events;

+---------------------+---------------------+-------------------------------+

|	NOW()															|	event_datetime						|	Time	to	Event																	|

+---------------------+---------------------+-------------------------------+

|	2014-02-14	05:48:55	|	2014-06-15	09:00:00	|	121	Days,	3	hours,	11	minutes	|

+---------------------+---------------------+-------------------------------+

That	looks	fine	and	it’s	much	better	than	having	the	date	and	time	in	separate	columns.	We
can	now	alter	birding_events	to	drop	the	two	columns	for	date	and	time	that	we	no
longer	need:

ALTER	TABLE	birding_events

DROP	COLUMN	event_date,

DROP	COLUMN	start_time;

We’ve	successfully	completed	the	process	of	migrating	the	date	and	time	from	two
columns	into	one.	You	probably	would	have	initially	chosen	to	create	one	column	instead
of	two,	as	we	did	in	these	examples.	But	you	won’t	always	choose	though	the	best
temporal	data	type	for	a	column.	That’s	why	I	wanted	to	walk	you	through	the	process	of
how	to	migrate	between	temporal	data	types:	to	prepare	you	for	what	to	do	when	you
don’t	make	the	best	choice	the	first	time.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
We’ve	covered	almost	all	of	the	date	and	time	functions	in	MySQL	and	MariaDB	in	this
chapter.	There	are	only	a	few	more.	We	skipped	the	aliases	(e.g.,	ADDDATE()	for
DATE_ADD(),	SUBDATE()	for	DATE_SUB()).	There	are	also	a	few	other	functions	for
specialized	needs,	which	you	can	learn	as	you	need	them.	You’ve	learned	plenty	in	this
chapter,	and	the	information	here	should	come	in	handy	for	many	years.

The	primary	reason	we	went	through	so	many	date	and	time	functions	is	because	the	date
and	time	is	a	major	part	of	most	cultures:	when	something	has	happened,	when	something
will	happen,	making	appointments,	and	how	much	time	has	passed	are	common	concerns
when	people	interact	with	one	another.	This	information	is	therefore	a	significant
component	of	a	database.	I	want	you	to	be	familiar	with	the	temporal	functions	and	to
have	a	firm	grasp	on	what	tools	are	available.	To	that	end,	work	through	the	exercises	in
the	following	section.	You’ll	retain	more	of	what	you	learned	in	this	chapter	if	you	do.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises
Here	are	some	exercises	to	practice	using	date	and	time	functions	and	a	few	of	the	string
functions	that	we	covered	in	Chapter	10.	Some	require	you	to	use	UPDATE	to	change	the
date	values	in	tables.	By	updating	data	with	date	and	time	functions,	you	will	gain	a	better
understanding	of	the	potential	of	these	functions.	The	UPDATE	statement	is	covered	in
Chapter	8.

1.	 Construct	an	SQL	statement	to	select	a	list	of	members	from	the	humans	table	who
live	in	the	United	Kingdom.	Select	first	and	last	names,	concatenating	them.	Include
the	date	they	joined	and	when	their	membership	expires.	Use	the	DATE_FORMAT()
function	to	format	the	result	for	each	date	to	look	like	this:	Sun.,	Feb.	2,	1979.	Be
sure	to	include	all	of	the	punctuations	(i.e.,	the	comma	and	the	periods	after	the
abbreviations,	but	not	at	the	end,	and	the	comma).	Refer	to	Table	11-2	for	the
formatting	codes.
When	you’re	finished,	execute	the	SQL	statement	to	check	the	results	are	correct.	If
they’re	not,	modify	the	statement	until	you	get	the	right	results.

2.	 Execute	the	SELECT	statement	to	get	a	list	of	members	and	their	expiration	dates,
ordering	the	results	by	membership_expiration.	Then	use	the	UPDATE	statement	to
change	the	values	in	the	membership_expiration	column	of	the	humans	table.	Use
the	ADDDATE()	function	to	extend	the	membership	of	all	members	by	1	month	and	15
days,	but	only	for	those	whose	membership	has	not	yet	expired	as	of	June	30,	2014.
Refer	to	Table	11-1	to	find	the	interval	codes	you	will	need.	You	will	also	need	to
use	a	string	in	the	WHERE	clause.	When	finished,	execute	SELECT	again	and	compare
the	results	to	the	previous	ones	to	confirm	you	were	successful	in	changing	the
expiration	dates	for	the	correct	members.
When	you’ve	finished	extending	the	memberships,	use	DATESUB()	to	change
membership_expiration	to	five	days	less	for	those	same	members	as	you	did
before.	When	that’s	done,	execute	SELECT	again	and	compare	the	results	to	the
previous	results.
Change	the	expiration	date	one	more	time,	but	this	time	use	ADD_DATE()	to	change
the	expiration	date	to	10	days	less.	Remember,	this	will	require	you	to	use	a	negative
value.	After	you’ve	done	that,	execute	SELECT	again	to	check	the	results.

3.	 In	Adjusting	to	Standards	and	Time	Zones,	we	created	a	new	table	called
bird_identification_tests.	We	added	one	row	of	data	to	it	for	testing.	For	this
exercise,	insert	at	least	five	more	rows	into	that	table.	Make	entries	for	two	other
human_id	values	and	a	few	other	bird_id	values.	While	doing	this,	as	shown	in	the
example	in	that	same	section,	enter	a	time	value	for	id_start	using	CURTIME(),	but
enter	NULL	for	id_end.	Then	run	an	UPDATE	statement	after	each	INSERT	to	set	the
time	for	id_end,	using	CURTIME()	again	so	that	the	times	will	be	different.	Wait	a
short	amount	of	time	between	the	INSERT	and	the	UPDATE	for	each	row.
After	you’ve	entered	several	more	rows	to	bird_identification_tests,	construct	a
SELECT	statement	using	the	TIMEDIFF()	function	to	compare	the	difference	in	the
times	of	id_start	and	id_end	for	each	row.	Be	sure	to	put	the	columns	in	the
correct	order	within	TIMEDIFF()	so	that	the	results	do	not	show	negative	values.
Include	the	first	name	of	each	person	in	the	SQL	statement.	You’ll	need	to	use	JOIN
to	do	that	(covered	in	Joining	Tables).

www.it-ebooks.info

http://www.it-ebooks.info/

4.	 Put	together	another	SELECT	statement	to	get	common_name	from	the	birds	table,	and
the	id_start	and	id_end	columns	from	the	birdwatchers	table.	Use	the
TIMEDIFF()	function	to	compare	the	differences	in	time	between	the	two	columns
containing	times.	When	you	join	the	two	tables,	remember	to	adjust	the	JOIN	to
reflect	that	they	are	in	separate	databases.	When	that’s	finished,	execute	the	SELECT
statement	to	be	sure	it’s	constructed	properly.	Then	add	a	GROUP	BY	clause	to	group
by	bird_id,	and	wrap	TIMEDIFF()	in	AVG()	to	get	the	average	time.	Give	that	field
an	alias	of	Avg.	Time	or	something	similar.	Run	that	statement	to	see	the	results.	The
results	for	the	average	time	field	should	include	a	number	with	four	decimal	places,
all	zeros	(e.g.,	219.0000	for	2	minutes,	19	seconds).
Next,	redo	the	SELECT	statement	to	convert	the	average	time	from	a	number	with
four	decimal	places	to	the	TIME	format.	To	do	this,	first	use	the	TRIM()	function	with
the	TRAILING	option	and	give	it	a	string	of	.0000	to	trim	that	string	from	the	end	of
the	average	time.	Run	the	SELECT	to	see	the	results	of	that	addition.	Then,	wrap	all	of
that	in	LPAD()	to	make	sure	there’s	enough	zeros	to	conform	to	this	format:	hhmmss.
Run	the	SELECT	statement	again	to	see	the	improvements	in	the	results.	Both	of	these
string	functions	were	covered	in	Trimming	and	Padding	Strings.
Finally,	use	STR_TO_DATE()	to	convert	the	padded	number	(e.g.,	000219)	to	a	time.
Refer	to	Table	11-2	to	get	the	formatting	codes	for	the	hhmmss	format.	If	you	provide
only	formatting	codes	for	time	elements,	STR_TO_DATE()	will	return	only	time
information,	which	is	what	we	want	for	this	exercise.	Execute	the	SELECT	when
you’re	finished	to	make	sure	it’s	correct.	Make	corrections	until	you	get	it	to	work.

5.	 Redo	the	SELECT	you	constructed	successfully	at	the	end	of	the	previous	exercise.
Put	what	you	assembled	for	the	average	time	field	into	DATE_FORMAT().	Change	the
format	to	display	like	this:	01	minute(s),	21	seconds.	When	finished,	execute	the
SQL	statement.	For	extra	points,	use	a	string	function	to	remove	the	leading	zero	for
minutes,	and	when	they	occur,	for	the	seconds.	Use	the	IF()	function	to	set	minute
or	minutes	as	needed,	and	second	and	seconds.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	12.	Aggregate	and	Numeric
Functions
Databases	will	always	include	numbers:	there’s	always	something	to	value,	count,	or
calculate.	And	you	may	want	to	round	the	results	from	those	numbers	to	conform	to
personal	preferences.	There	are	numeric	and	arithmetic	functions	to	do	these	things	in
MySQL	and	MariaDB.	Some	are	known	as	aggregate	functions.	We	will	cover	almost	all
of	the	aggregate	and	many	numeric	functions	in	this	chapter.	We	won’t	cover	the	more
advanced	functions	related	to	statistics,	or	the	mathematical	functions	related	to	calculus
and	geometry.	Instead,	we	will	cover	the	most	useful	and	most	used	functions	and	leave
the	others	for	you	to	learn	later	on	your	own	as	you	need	them.

www.it-ebooks.info

http://www.it-ebooks.info/

Aggregate	Functions
Statistics	can	provide	us	with	useful	information	about	a	database.	If	a	database	includes
information	about	the	activities	of	an	organization,	we	can	determine	some	statistical
information	about	those	activities.	If	a	database	includes	numeric	values	associated	with
items	an	organization	sells	or	tracks,	statistics	can	provide	us	with	information	for	making
decisions	about	those	items.

In	our	birdwatchers	database,	we	can	use	aggregate	functions	to	understand	the	behavior
of	our	members	in	relation	to	our	bird-watchers	website,	the	events	they	attend,	and	other
activities.	For	our	rookery	database,	we	can	ascertain	some	information	about	birds	using
aggregate	functions.	That	can	be	useful	to	our	members	related	to	searching	for	birds	in
the	wild,	as	well	as	their	concerns	for	the	well-being	of	birds.	We	can	ascertain
information	about	where	birds	are	seen	in	the	wild	by	our	members.

In	this	section,	we	will	look	at	aggregate	functions	that	will	help	us	to	determine	this	kind
of	information.	In	order	to	aggregate	data	together	to	calculate	statistical	values	of	sorts,
we	sometimes	must	use	the	GROUP	BY	clause.	Some	of	the	aggregate	functions,	such	as	the
COUNT()	function	we’ve	used	in	earlier	chapters	for	counting	rows	in	a	table,	do	not
require	this	clause,	at	least	under	certain	conditions.	We’ll	start	with	COUNT()	and	then
look	at	functions	for	simple	statistics,	such	as	determining	an	average	for	a	set	of	numbers.

Counting	Values
One	of	the	simplest	calculations	we	can	do	is	to	count.	We	learn	it	as	children	as	an
introduction	to	mathematics.	So	let’s	start	with	counting,	the	COUNT()	function.

Suppose	we	want	to	know	how	many	birds	are	in	the	birds	table.	To	do	that,	enter	the
folowing	in	mysql:

SELECT	COUNT(*)

FROM	birds;

+----------+

|	COUNT(*)	|

+----------+

|				28891	|

+----------+

Notice	that	we	didn’t	have	to	include	the	GROUP	BY	clause	for	this	simple	SQL	statement.
That’s	because	we	wanted	MySQL	to	count	all	of	the	rows	in	the	table.	We	didn’t	need
GROUP	BY	because	we	didn’t	want	it	to	separate	the	rows	into	separate	groups	—	there’s
just	one	group	here.	Notice	also	that	we’re	giving	COUNT()	an	asterisk	as	the	argument.
That’s	a	wildcard	to	tell	MySQL	that	we	want	to	count	all	of	the	rows	found.	Because	we
don’t	have	a	WHERE	clause,	all	of	the	rows	will	be	selected.

Many	of	the	bird	species	lack	common	names.	So	the	common_name	column	in	birds	is
blank	for	these	species.	COUNT()	has	a	special	convention:	if	you	pass	a	column	name
instead	of	an	asterisk	as	its	argument,	it	counts	only	the	columns	that	are	not	NULL.	Let’s
change	that	data	and	then	see	how	it	might	look.	Enter	these	two	SQL	statements:

UPDATE	birds

SET	common_name	=	NULL

WHERE	common_name	=	'';

SELECT	COUNT(common_name)

FROM	birds;

www.it-ebooks.info

http://www.it-ebooks.info/

+--------------------+

|	COUNT(common_name)	|

+--------------------+

|															9553	|

+--------------------+

That’s	the	number	of	birds	with	a	common	name	in	the	table.	We	could	have	gotten	the
same	results	with	a	WHERE	clause,	and	without	having	modified	the	data	as	we	did.	This
lets	us	select	only	rows	where	the	common_name	does	not	equal	''.	We’ve	changed	those
values	to	NULL,	though,	so	let’s	use	the	WHERE	clause	to	see	how	that	would	look	based
on	NULL	values.	Enter	the	following:

SELECT	COUNT(*)	FROM	birds

WHERE	common_name	IS	NULL;

+----------+

|	COUNT(*)	|

+----------+

|				19338	|

+----------+

This	gave	us	a	different	number.	That’s	because	we’re	counting	the	rows	where	the
common_name	is	NULL	—	we	used	the	operator	IS	NULL.	Before,	we	counted	the	rows
where	the	common_name	was	not	NULL.	We	can	count	those	with	the	WHERE	clause	like	so:

SELECT	COUNT(*)	FROM	birds

WHERE	common_name	IS	NOT	NULL;

+----------+

|	COUNT(*)	|

+----------+

|					9553	|

+----------+

That’s	the	answer	we	got	before.	It	just	required	us	to	use	the	IS	NOT	NULL	operator.

As	useful	as	all	of	this	may	be,	let’s	get	some	more	interesting	results.	Let’s	count	the
number	of	birds	within	each	family	of	birds.	To	do	that,	we	have	to	use	the	GROUP	BY
clause.	We’ll	enter	the	following	to	get	a	count	of	the	number	of	birds	in	each	family:

SELECT	COUNT(*)

FROM	birds

GROUP	BY	family_id;

+----------+

|	COUNT(*)	|

+----------+

|								5	|

|								6	|

|						248	|

|						119	|

|						168	|

|							39	|

|						223	|

|						...	|

+----------+

227	rows	in	set	(0.15	sec)

In	this	example,	we	told	MySQL	to	GROUP	BY	the	family_id.	So	it	sorted	the	rows	by	the
family_id	and	counted	the	number	of	rows	for	each	group.	Because	the	results	here
would	take	up	227	rows,	I’ve	removed	some	of	the	results	to	save	space.	This	SQL
statement	did	what	we	asked,	but	it’s	not	very	useful	or	interesting.	It	would	be	better	to
get	the	name	of	the	bird	families	to	go	with	these	counts.	To	do	this,	we’ll	have	to	use	a
JOIN	to	include	the	bird_families	table.	Here’s	how	we	would	do	that:

www.it-ebooks.info

http://www.it-ebooks.info/

SELECT	bird_families.scientific_name	AS	'Bird	Family',

COUNT(*)	AS	'Number	of	Species'

FROM	birds	JOIN	bird_families	USING(family_id)

GROUP	BY	birds.family_id;

+--------------------+-------------------+

|	Bird	Family								|	Number	of	Species	|

+--------------------+-------------------+

|	Gaviidae											|																	6	|

|	Anatidae											|															248	|

|	Charadriidae							|															119	|

|	Laridae												|															168	|

|	Sternidae										|																39	|

|	Caprimulgidae						|															223	|

|	Sittidae											|																92	|

|	...																|																			|

+--------------------+-------------------+

225	rows	in	set	(0.17	sec)

That’s	nicer	looking,	and	the	results	are	more	interesting.	I’ve	shortened	the	results	again,
but	notice	that	we	now	have	only	225	rows.	That’s	because	we	have	some	rows	in	the
birds	table	in	which	the	family_id	is	NULL.	When	using	a	database,	watch	for
discrepancies	like	this;	don’t	ignore	them	just	because	you	weren’t	looking	for	problems.
They	can	help	you	catch	problems	you	overlooked.

Let’s	modify	the	SELECT	statement	to	show	the	number	of	rows	in	birds	that	do	not	have
matching	values	in	bird_families.	We’ll	do	this	with	a	LEFT	JOIN	(covered	in	Joining
Tables,	which	included	examples,	but	let’s	apply	that	concept	again	here):

SELECT	bird_families.scientific_name	AS	'Bird	Family',

COUNT(*)	AS	'Number	of	Species'

FROM	birds	LEFT	JOIN	bird_families	USING(family_id)

GROUP	BY	birds.family_id;

+--------------------+-------------------+

|	Bird	Family								|	Number	of	Species	|

+--------------------+-------------------+

|	NULL															|																	4	|

|	NULL															|																	1	|

|	Gaviidae											|																	6	|

|	Anatidae											|															248	|

|	Charadriidae							|															119	|

|	Laridae												|															168	|

|	Sternidae										|																39	|

|	Caprimulgidae						|															223	|

|	Sittidae											|																92	|

|	...																|																			|

+--------------------+-------------------+

225	rows	in	set	(0.17	sec)

Some	of	these	rows	may	have	a	family_id	of	NULL,	and	one	may	have	a	family_id	not
contained	in	bird_families.	To	resolve	this	problem,	we	would	run	a	SELECT	to	list	rows
where	the	bird_id	is	not	included	in	bird_families.	But	this	is	getting	away	from
learning	about	aggregate	functions.	Let’s	assume	that	we’ve	found	the	rows	with	missing
data	and	fixed	them	so	that	we	can	move	on.

In	the	results	for	the	last	two	examples,	you	may	have	noticed	that	the	names	of	the	bird
families	are	not	listed	alphabetically.	That’s	because	GROUP	BY	orders	rows	based	on	the
columns	by	which	it	is	grouping	(i.e.,	family_id).	If	we	want	to	order	the	results	based	on
the	family	name,	the	scientific_name	in	the	bird_families	table,	we’d	have	to	change
the	GROUP	BY	clause	to	group	by	that	column.	Try	entering	this:

SELECT	bird_families.scientific_name	AS	'Bird	Family',

COUNT(*)	AS	'Number	of	Species'

www.it-ebooks.info

http://www.it-ebooks.info/

FROM	birds	LEFT	JOIN	bird_families	USING(family_id)

GROUP	BY	bird_families.scientific_name;

+--------------------+-------------------+

|	Bird	Family								|	Number	of	Species	|

+--------------------+-------------------+

|	Acanthisittidae				|																	9	|

|	Acanthizidae							|															238	|

|	Accipitridae							|															481	|

|	Acrocephalidae					|															122	|

|	Aegithalidae							|																49	|

|	Aegithinidae							|																20	|

|	Aegothelidae							|																21	|

|	Alaudidae										|															447	|

|	...																|																			|

+--------------------+-------------------+

That’s	better.	What	would	be	nicer	is	if	those	results	also	showed	the	total	number	of	birds
at	the	bottom.	We	can	get	that	from	a	separate	SQL	statement,	but	to	get	the	total	in	the
same	results	set,	we	would	add	WITH	ROLLUP	to	the	GROUP	BY	clause	like	so:

SELECT	bird_families.scientific_name	AS	'Bird	Family',

COUNT(*)	AS	'Number	of	Species'

FROM	birds	JOIN	bird_families	USING(family_id)

GROUP	BY	bird_families.scientific_name	WITH	ROLLUP;

+--------------------+-------------------+

|	Bird	Family								|	Number	of	Species	|

+--------------------+-------------------+

|	Acanthisittidae				|																	9	|

|	Acanthizidae							|															238	|

|	Accipitridae							|															481	|

|	Acrocephalidae					|															122	|

|	Aegithalidae							|																49	|

|	Aegithinidae							|																20	|

|	Aegothelidae							|																21	|

|	Alaudidae										|															447	|

|	...																|																			|

|	NULL															|													28891	|

+--------------------+-------------------+

The	total	is	on	the	last	line	and	is	equal	to	the	count	we	did	in	the	first	example	of	this
section.	In	the	results	here,	the	NULL	value	for	the	first	field	doesn’t	refer	to	rows	that
don’t	have	a	value	for	family_id.	Instead,	this	is	the	total	line.	MySQL	just	doesn’t	have	a
value	to	put	in	that	field	as	a	label,	so	it	uses	NULL.	We	can	tweak	that,	though,	to	give	it
a	label.	While	we’re	doing	that,	let’s	include	counts	by	orders	of	birds.	Enter	the
following:

SELECT	IFNULL(bird_orders.scientific_name,	'')	AS	'Bird	Order',

IFNULL(bird_families.scientific_name,	'Total:')	AS	'Bird	Family',

COUNT(*)	AS	'Number	of	Species'

FROM	birds

JOIN	bird_families	USING(family_id)

JOIN	bird_orders	USING(order_id)

GROUP	BY	bird_orders.scientific_name,	bird_families.scientific_name

WITH	ROLLUP;

+---------------------+--------------------+-------------------+

|	Bird	Order										|	Bird	Family								|	Number	of	Species	|

+---------------------+--------------------+-------------------+

|	Anseriformes								|	Anhimidae										|																	3	|

|	Anseriformes								|	Total:													|																	3	|

|	Apodiformes									|	Apodidae											|															316	|

|	Apodiformes									|	Hemiprocnidae						|																16	|

|	Apodiformes									|	Trochilidae								|															809	|

|	Apodiformes									|	Total:													|														1141	|

|	Caprimulgiformes				|	Aegothelidae							|																21	|

|	Caprimulgiformes				|	Caprimulgidae						|															224	|

|	Caprimulgiformes				|	Nyctibiidae								|																17	|

|	Caprimulgiformes				|	Podargidae									|																26	|

|	...																	|																				|																			|

|																					|	Total:													|													28890	|

www.it-ebooks.info

http://www.it-ebooks.info/

+---------------------+--------------------+-------------------+

Besides	adding	another	field	to	get	the	number	of	birds	within	an	order	of	birds,	we	used
the	IFNULL()	function	to	wrap	the	fields	for	the	bird	order	counts	and	family	counts.	This
function	tells	MySQL	that	if	the	value	for	the	field	will	be	NULL,	it	should	be	replaced
with	the	value	or	string	given	—	else	it	should	return	the	count.	Because	the	statement
calculates	first	the	primary	totals	(i.e.,	the	totals	for	each	family	of	birds),	and	then
calculates	the	secondary	totals	(i.e.,	the	totals	for	each	order	of	birds),	this	works.

The	results	in	the	previous	example	aren’t	marvelous,	but	you	can	easily	use	this	method
in	conjunction	with	a	script	that	will	display	these	results	on	a	web	page.	You	can	use	an
API	to	check	for	a	value	of	Total:	in	the	second	field	and	then	adjust	for	that.	You	could
instead	do	these	simple	calculations	in	an	API	script,	rather	than	have	MySQL	do	them.
However,	sometimes	it’s	better	to	do	calculations	at	the	database	system	level.	I	have
found	often	that	better	SQL	statements	make	for	tighter	and	easier	to	maintain	API	scripts.
All	right;	enough	of	that.	Let’s	move	on	to	more	aggregate	functions,	besides	just	counting
the	number	of	rows.

Calculating	a	Group	of	Values
In	Chapter	11,	we	created	a	new	table,	bird_identification_tests,	for	recording	fun
tests	members	could	do	online	to	try	their	skills	at	identifying	birds.	Suppose	we	want	to
tell	the	member	how	long	it	takes	them	on	average	to	identify	birds.	A	simple	calculation
would	be	to	get	the	total	time	elapsed	(i.e.,	subtracting	id_end	from	id_start)	for	each
row	and	then	adding	those	differences	together	to	get	the	sum	of	all	rows.	We	would	then
divide	that	sum	by	the	number	of	rows.	To	get	the	sum,	we	can	use	the	SUM()	function.

Before	we	jump	too	far	ahead,	though,	let’s	look	at	some	entries	for	one	of	the	members	to
remember	and	know	what	to	do.	We’ll	use	the	TIMEDIFF()	function	to	determine	the
difference	between	the	time	the	test	started	and	when	it	ended	(covered	in	the	section
Comparing	Dates	and	Times).	Enter	the	following:

SELECT	common_name	AS	'Bird',

TIME_TO_SEC(TIMEDIFF(id_end,	id_start))

			AS	'Seconds	to	Identify'

FROM	bird_identification_tests

JOIN	humans	USING(human_id)

JOIN	rookery.birds	USING(bird_id)

WHERE	name_first	=	'Ricky'	AND	name_last	=	'Adams';

+--------------------+---------------------+

|	Bird															|	Seconds	to	Identify	|

+--------------------+---------------------+

|	Crested	Shelduck			|																		81	|

|	Moluccan	Scrubfowl	|																	174	|

|	Indian	Pond-Heron		|																	181	|

+--------------------+---------------------+

Because	we	need	the	total	number	of	seconds	for	each	test	in	order	to	add	the	values
together	to	get	to	an	average,	we	used	TIME_TO_SEC()	to	convert	the	results	from
TIMEDIFF()	(e.g.,	to	convert	from	121,	for	1	minute	and	21	seconds,	to	81	seconds).	We
did	this	extra	step	just	to	see	how	these	values	come	more	easily	together	with	SUM()	and
to	better	understand	the	time	functions	in	the	following	SQL	statement:

SELECT	CONCAT(name_first,	SPACE(1),	name_last)

			AS	'Birdwatcher',

SUM(TIME_TO_SEC(TIMEDIFF(id_end,	id_start)))

			AS	'Total	Seconds	for	Identifications'

FROM	bird_identification_tests

www.it-ebooks.info

http://www.it-ebooks.info/

JOIN	humans	USING(human_id)

JOIN	rookery.birds	USING(bird_id)

WHERE	name_first	=	'Ricky'	AND	name_last	=	'Adams';

+-------------+-----------------------------------+

|	Birdwatcher	|	Total	Seconds	for	Identifications	|

+-------------+-----------------------------------+

|	Ricky	Adams	|																															436	|

+-------------+-----------------------------------+

That	gives	us	the	correct	number	of	seconds	that	Ricky	Adams	spent	identifying	three
birds.	Notice	that	this	is	another	aggregate	function	that	doesn’t	require	the	GROUP	BY
clause.	Now	let’s	change	the	SQL	statement	to	calculate	the	average	time	(e.g.,	426
seconds	divided	by	3	entries).	To	do	this,	we’ll	use	an	absurdly	complex	and	inefficient
method.	We’ll	create	a	subquery	to	get	each	value	to	calculate	the	average.	You	don’t	have
to	enter	this	one.	Just	look	it	over:

SELECT	Identifications,	Seconds,

(Seconds	/	Identifications)	AS	'Avg.	Seconds/Identification'

FROM

		(SELECT	human_id,	COUNT(*)	AS	'Identifications'

				FROM	bird_identification_tests

				JOIN	humans	USING(human_id)

				JOIN	rookery.birds	USING(bird_id)

				WHERE	name_first	=	'Ricky'	AND	name_last	=	'Adams')

							AS	row_count

		JOIN

		(SELECT	human_id,	CONCAT(name_first,	SPACE(1),	name_last)

							AS	'Birdwatcher',

				SUM(TIME_TO_SEC(TIMEDIFF(id_end,	id_start)))

							AS	'Seconds'

				FROM	bird_identification_tests

				JOIN	humans	USING(human_id)

				JOIN	rookery.birds	USING(bird_id))

							AS	second_count

		USING(human_id);

+-----------------+---------+-----------------------------+

|	Identifications	|	Seconds	|	Avg.	Seconds/Identification	|

+-----------------+---------+-----------------------------+

|															3	|					436	|																				145.3333	|

+-----------------+---------+-----------------------------+

That	was	a	lot	of	work	for	something	that	should	be	simple	—	and	it	can	be.	Let’s	change
that	to	use	AVG():

SELECT	CONCAT(name_first,	SPACE(1),	name_last)

			AS	'Birdwatcher',

AVG(TIME_TO_SEC(TIMEDIFF(id_end,	id_start)))

			AS	'Avg.	Seconds	per	Identification'

FROM	bird_identification_tests

JOIN	humans	USING(human_id)

JOIN	rookery.birds	USING(bird_id)

WHERE	name_first	=	'Ricky'	AND	name_last	=	'Adams';

+-------------+---------------------------------+

|	Birdwatcher	|	Avg.	Seconds	per	Identification	|

+-------------+---------------------------------+

|	Ricky	Adams	|																								145.3333	|

+-------------+---------------------------------+

That	was	much	easier,	and	without	any	subqueries.	If	we	remove	the	WHERE	clause,	we
would	get	the	average	time	for	all	of	the	members.	Let’s	do	that	and	change	the	formatting
of	the	time	to	minutes	and	seconds,	not	just	the	average	of	total	seconds.	We’ll	use
SEC_TO_TIME()	to	do	that,	reversing	the	results	of	TIME_TO_SEC()	now	that	we’ve
calculated	the	average.	Enter	this	on	your	server:

SELECT	CONCAT(name_first,	SPACE(1),	name_last)

			AS	'Birdwatcher',

www.it-ebooks.info

http://www.it-ebooks.info/

COUNT(*)	AS	'Birds',

TIME_FORMAT(

					SEC_TO_TIME(AVG(TIME_TO_SEC(TIMEDIFF(id_end,	id_start)))),

					'%i:%s')

			AS	'Avg.	Time'

FROM	bird_identification_tests

JOIN	humans	USING(human_id)

JOIN	rookery.birds	USING(bird_id)

GROUP	BY	human_id	LIMIT	3;

+---------------+-------+-----------+

|	Birdwatcher			|	Birds	|	Avg.	Time	|

+---------------+-------+-----------+

|	Rusty	Osborne	|					2	|	01:59					|

|	Lexi	Hollar			|					3	|	00:23					|

|	Ricky	Adams			|					3	|	02:25					|

+---------------+-------+-----------+

This	time	we	included	more	members	—	but	limited	the	results	to	three	—	and	include	the
number	of	birds	that	each	member	identified.	We	also	formatted	the	average	time	better.
We	can	see	that	Ricky	Adams	took	much	longer	on	average	than	Lexi	Hollar.	It	may	be
that	Lexi	is	quicker	or	that	Ricky	was	distracted	when	he	was	identifying	birds.

Because	we	used	the	LIMIT	clause,	we	can’t	determine	the	longest	and	quickest	average
times	from	these	results.	To	know	that,	we	need	to	remove	the	LIMIT	and	then	make	the
SQL	statement	a	subquery	of	another	in	which	we	will	add	an	ORDER	BY	clause.
Essentially,	the	inner	SELECT	returns	a	list	with	each	bird-watcher	and	their	average	time,
which	the	outer	SELECT	puts	in	the	order	we	want:

SELECT	Birdwatcher,	avg_time	AS	'Avg.	Time'

FROM

		(SELECT	CONCAT(name_first,	SPACE(1),	name_last)	AS	'Birdwatcher',

			COUNT(*)	AS	'Birds',

			TIME_FORMAT(SEC_TO_TIME(AVG(

																		TIME_TO_SEC(TIMEDIFF(id_end,	id_start)))

),'%i:%s')	AS	'avg_time'

				FROM	bird_identification_tests

				JOIN	humans	USING(human_id)

				JOIN	rookery.birds	USING(bird_id)

				GROUP	BY	human_id)	AS	average_times

ORDER	BY	avg_time;

+-------------------+-----------+

|	Birdwatcher							|	Avg.	Time	|

+-------------------+-----------+

|	Lexi	Hollar							|	00:23					|

|	Geoffrey	Dyer					|	00:25					|

|	Katerina	Smirnova	|	00:48					|

|	Rusty	Osborne					|	01:59					|

|	Ricky	Adams							|	02:25					|

|	Anahit	Vanetsyan		|	03:20					|

+-------------------+-----------+

Now	we	know	that	Lexi	is	the	quickest	and	Anahit	was	the	slowest.	We	had	to	use	a
subquery	because	you	can’t	generally	put	a	GROUP	BY	and	an	ORDER	BY	clause	in	the	same
SQL	statement.	You	have	to	do	what	we	did	here	instead.

If	we	don’t	want	to	know	the	names	of	who	had	the	minimum	average	and	who	had	the
maximum,	we	could	use	the	MAX()	and	MIN()	functions.	Let’s	redo	the	previous	SQL
statement	to	include	those	aggregate	functions.	Try	this	on	your	server:

SELECT	MIN(avg_time)	AS	'Minimum	Avg.	Time',

MAX(avg_time)	AS	'Maximum	Avg.	Time'

FROM	humans

JOIN

	(SELECT	human_id,	COUNT(*)	AS	'Birds',

		TIME_FORMAT(

					SEC_TO_TIME(AVG(

www.it-ebooks.info

http://www.it-ebooks.info/

								TIME_TO_SEC(TIMEDIFF(id_end,	id_start)))

),	'%i:%s')	AS	'avg_time'

		FROM	bird_identification_tests

		JOIN	humans	USING(human_id)

		JOIN	rookery.birds	USING(bird_id)

		GROUP	BY	human_id)	AS	average_times;

+-------------------+-------------------+

|	Minimum	Avg.	Time	|	Maximum	Avg.	Time	|

+-------------------+-------------------+

|	00:23													|	03:20													|

+-------------------+-------------------+

Comparing	these	results	to	the	previous	ones,	we	can	see	that	they	are	correct.	If	we	want
to	see	the	minimum	and	maximum	time	for	each	person,	instead	of	the	averages,	we	could
do	this:

SELECT	CONCAT(name_first,	SPACE(1),	name_last)	AS	'Birdwatcher',

TIME_FORMAT(SEC_TO_TIME(

														MIN(TIME_TO_SEC(TIMEDIFF(id_end,	id_start)))

),%i:%s')		AS	'Minimum	Time',

TIME_FORMAT(SEC_TO_TIME(

														MAX(TIME_TO_SEC(TIMEDIFF(id_end,	id_start)))

),	'%i:%s')	AS	'Maximum	Time'

FROM	bird_identification_tests

JOIN	humans	USING(human_id)

JOIN	rookery.birds	USING(bird_id)

GROUP	BY	Birdwatcher;

+-------------------+--------------+--------------+

|	Birdwatcher							|	Minimum	Time	|	Maximum	Time	|

+-------------------+--------------+--------------+

|	Anahit	Vanetsyan		|	00:20								|	08:48								|

|	Geoffrey	Dyer					|	00:09								|	00:42								|

|	Katerina	Smirnova	|	00:22								|	01:02								|

|	Lexi	Hollar							|	00:11								|	00:39								|

|	Ricky	Adams							|	01:21								|	03:01								|

|	Rusty	Osborne					|	01:50								|	02:08								|

+-------------------+--------------+--------------+

This	shows	an	alphabetic	list	of	members	and	each	one’s	minimum	and	maximum	time	to
identify	a	bird.	Essentially,	once	you	group	items	by	the	bird-watcher,	you	can	run
aggregate	functions	such	as	AVG()	and	MAX()	on	them.	We	removed	the	field	counting	the
number	of	identifications	they	made.

We	could	play	with	this	more	to	see	which	birds	take	the	longest	to	identify	and	which
take	the	least	amount	of	time.	We	could	mark	ones	that	are	most	difficult	to	identify	for
more	advanced	members.	Some	members	may	have	a	low	average	time	if	it	were	not	for
one	bird	that	was	particularly	difficult	to	identify.	For	those	entries,	we	could	use	the
aggregate	functions	for	more	advanced	statistical	calculations	to	remove	them,	functions
like	STDDEV()	and	VARIANCE().	As	a	beginner,	you	probably	won’t	need	to	know	them.
Just	know	that	they	exist	in	case	one	day	you	do.

Before	moving	on,	let’s	look	at	one	more	example	using	MIN()	and	MAX(),	an	example	that
uses	values	other	than	time	values.	The	bird_sightings	table	contains	information	on
birds	that	our	members	saw	in	the	field.	It	includes	the	GPS	coordinates	where	each	bird
was	seen:	the	location_gps	column.	This	column	contains	two	11-digit	numbers:	the
latitude	and	the	longitude	on	the	globe.	Because	birds	tend	to	migrate	between	north	and
south,	suppose	we	want	to	know	the	farthest	north	and	south	that	birds	were	seen.	We
could	use	SUBSTRING()	to	extract	the	latitude,	the	MAX()	function	to	determine	which
value	is	farthest	north,	and	MIN()	to	determine	which	is	the	farthest	south.	We	would	do
this	like	so:

www.it-ebooks.info

http://www.it-ebooks.info/

SELECT	common_name	AS	'Bird',

MAX(SUBSTRING(location_gps,	1,	11))	AS	'Furthest	North',

MIN(SUBSTRING(location_gps,	1,	11))	AS	'Furthest	South'

FROM	birdwatchers.bird_sightings

JOIN	rookery.birds	USING(bird_id)

WHERE	location_gps	IS	NOT	NULL

GROUP	BY	bird_id	LIMIT	3;

+-----------------+----------------+----------------+

|	Bird												|	Furthest	North	|	Furthest	South	|

+-----------------+----------------+----------------+

|	Eskimo	Curlew			|	66.16051056				|	66.16051056				|

|	Whimbrel								|	30.29138551				|	30.29138551				|

|	Eurasian	Curlew	|	51.70469364				|	42.69096856				|

+-----------------+----------------+----------------+

In	these	results,	because	there	was	only	one	sighting	of	the	first	two	birds,	the	values	for
both	fields	are	the	same.	But	for	the	Eurasian	Curlew,	you	can	see	that	it	shows	the
farthest	north	and	south	that	the	bird	was	seen	by	our	members.

Concatenating	a	Group
There	is	one	more	aggregate	function	that	I	want	to	cover	before	finishing	with	them.	The
GROUP_CONCAT()	function	is	not	used	much,	but	it	can	be	handy	for	particular	situations.
It’s	used	to	concatenate	together	the	values	for	a	group	into	a	comma-separated	list.
Without	it,	you	would	need	to	do	a	subquery	and	use	CONCAT_WS()	to	concatenate	the
results	of	a	field.

To	list	the	bird	families	for	a	particular	order	of	birds,	we	could	issue	a	simple	SELECT
statement.	Now	suppose	we	want	a	list	of	bird	orders	and	bird	families	together,	but	we
want	one	of	the	fields	in	the	results	to	contain	all	of	the	bird	families	for	each	bird	order.
That	would	be	cumbersome	to	do	without	GROUP_CONCAT().	Let’s	see	what	it	can	do	for
us,	using	this	supposition.	Enter	the	following	on	your	server:

SELECT	bird_orders.scientific_name	AS	'Bird	Order',

GROUP_CONCAT(bird_families.scientific_name)

AS	'Bird	Families	in	Order'

FROM	rookery.bird_families

JOIN	rookery.bird_orders	USING(order_id)

WHERE	bird_orders.scientific_name	=	'Charadriiformes'

GROUP	BY	order_id	\G

***************************	1.	row	***************************

												Bird	Order:	Charadriiformes

Bird	Families	in	Order:

Charadriidae,Laridae,Sternidae,Burhinidae,Chionidae,Pluvianellidae,

Dromadidae,Haematopodidae,Ibidorhynchidae,Recurvirostridae,

Jacanidae,Scolopacidae,Turnicidae,Glareolidae,Pedionomidae,

Thinocoridae,Rostratulidae,Stercorariidae,Alcidae

I	limited	the	results	to	one	particular	family	to	save	space	here.	To	get	lists	of	orders	for	all
families,	just	remove	the	WHERE	clause:

SELECT	bird_orders.scientific_name	AS	'Bird	Order',

GROUP_CONCAT(bird_families.scientific_name	SEPARATOR	',	')

AS	'Bird	Families	in	Order'

FROM	rookery.bird_families

JOIN	rookery.bird_orders	USING(order_id)

GROUP	BY	order_id	\G

If	you	tried	that,	you	saw	that	the	SEPARATOR	clause	of	the	GROUP_CONCAT()	added	a
comma	and	a	space	after	each	family	name.

www.it-ebooks.info

http://www.it-ebooks.info/

Numeric	Functions
Numeric	functions	are	functions	that	change	numbers	in	some	way.	They	don’t	do	a
calculation,	per	se.	That	would	be	arithmetic	functions.	Instead,	they	help	you	simplify	the
numeric	result	of	a	query.	You	might	want	to	round	a	number	up	or	down,	or	get	the
absolute	value.	These	actions	can	be	done	easily	with	numeric	functions.	We’ll	look	at
them	in	this	section.

Rounding	Numbers
Computers	are	very	precise,	so	when	we	ask	them	to	do	a	calculation,	they	will	sometimes
return	a	number	with	many	decimal	places.	That	may	not	matter	to	you,	especially	if	the
number	is	not	displayed	and	used	just	by	other	functions	for	processing,	either	now	or
later.	However,	as	humans,	we	tend	to	be	more	comfortable	with	rounded	numbers.	We’re
usually	not	as	precise	as	computers.	To	that	end,	there	are	a	few	numeric	functions	that
may	be	used	for	rounding.

In	Dynamic	Columns,	we	created	some	tables	with	dynamic	columns	in	MariaDB.	These
included	surveys	of	members	about	their	bird-watching	preferences.	Let’s	use	those	tables
and	the	data	they	contain	to	test	some	numeric	functions.	If	you	didn’t	create	those	survey
tables	or	if	you	aren’t	using	MariaDB,	you	won’t	be	able	to	participate	in	these	examples.

To	start,	let’s	look	at	one	of	the	SQL	statements	we	used	in	that	section.	We’ll	run	it	again,
but	with	more	data	from	my	site:

SELECT	IFNULL(COLUMN_GET(choices,	answer	AS	CHAR),	'total')

AS	'Birding	Site',	COUNT(*)	AS	'Votes'

FROM	survey_answers

JOIN	survey_questions	USING(question_id)

WHERE	survey_id	=	1

AND	question_id	=	1

GROUP	BY	answer	WITH	ROLLUP;

+--------------+-------+

|	Birding	Site	|	Votes	|

+--------------+-------+

|	forest							|				30	|

|	shore								|				42	|

|	backyard					|				14	|

|	total								|				86	|

+--------------+-------+

This	shows	us	the	number	of	votes	from	members	for	the	types	of	locations	they	prefer	for
watching	birds.	Let’s	calculate	the	percentages	to	go	with	these	results.	To	do	this,	we
need	first	to	count	the	number	of	votes	for	all	of	the	choices.	We	could	put	that	in	a
subquery,	but	let’s	keep	it	simpler	by	executing	a	SELECT	statement	first	to	get	that	value.
We’ll	create	a	user-defined	variable	in	which	to	temporarily	store	that	number.	A	user
variable	is	temporary	and	will	last	only	for	the	current	client	session.	It	can	be	accessed
only	by	the	user	that	creates	it.	You	would	use	the	SET	statement	to	create	a	user	variable.
The	variable	name	must	start	with	@,	followed	by	the	equals	sign,	and	then	a	value,	an
expression,	or	an	SQL	statement	that	will	determine	the	value	of	the	user-defined	variable.
Let’s	create	one	now	for	our	example.	Enter	the	following	on	your	MariaDB	server:

SET	@fav_site_total	=

(SELECT	COUNT(*)

FROM	survey_answers

JOIN	survey_questions	USING(question_id)

WHERE	survey_id	=	1

AND	question_id	=	1);

www.it-ebooks.info

http://www.it-ebooks.info/

SELECT	@fav_site_total;

+-----------------+

|	@fav_site_total	|

+-----------------+

|														86	|

+-----------------+

Because	I	added	plenty	more	rows	to	the	survey_answers	table,	this	result	is	now	higher
than	previously.	You’ll	see	that	the	total	is	correct	in	the	results	of	the	next	example.	Let’s
use	the	variable	we	created	as	the	denominator	for	calculating	the	percentage	of	votes	for
each	choice:

SELECT	COLUMN_GET(choices,	answer	AS	CHAR)

		AS	'Birding	Site',

COUNT(*)	AS	'Votes',

(COUNT(*)	/	@fav_site_total)	AS	'Percent'

FROM	survey_answers

JOIN	survey_questions	USING(question_id)

WHERE	survey_id	=	1

AND	question_id	=	1

GROUP	BY	answer;

+--------------+-------+---------+

|	Birding	Site	|	Votes	|	Percent	|

+--------------+-------+---------+

|	forest							|				30	|		0.3488	|

|	shore								|				42	|		0.4884	|

|	backyard					|				14	|		0.1628	|

+--------------+-------+---------+

In	this	example,	we’re	dividing	the	number	of	votes	for	each	choice	by	the	variable
containing	the	total	number	of	votes.	That	gives	us	numbers	with	four	decimal	places.
Let’s	change	those	numbers	to	read	as	percentages	by	multiplying	them	by	100	and	using
the	ROUND()	function	to	get	rid	of	the	decimals.	We’ll	use	CONCAT()	to	paste	a	percent	sign
to	the	end	of	the	number:

SELECT	COLUMN_GET(choices,	answer	AS	CHAR)

		AS	'Birding	Site',

COUNT(*)	AS	'Votes',

CONCAT(ROUND((COUNT(*)	/	@fav_site_total)	*	100),	'%')

		AS	'Percent'

FROM	survey_answers

JOIN	survey_questions	USING(question_id)

WHERE	survey_id	=	1

AND	question_id	=	1

GROUP	BY	answer;

+--------------+-------+---------+

|	Birding	Site	|	Votes	|	Percent	|

+--------------+-------+---------+

|	forest							|				30	|	35%					|

|	shore								|				42	|	49%					|

|	backyard					|				14	|	16%					|

+--------------+-------+---------+

Notice	that	the	ROUND()	function	rounded	the	first	two	numbers	up	and	the	last	one	down.
That’s	how	rounding	goes.	Let’s	change	the	results	to	show	one	decimal	place:

SELECT	COLUMN_GET(choices,	answer	AS	CHAR)

AS	'Birding	Site',

COUNT(*)	AS	'Votes',

CONCAT(ROUND((COUNT(*)	/	@fav_site_total)	*	100,	1),	'%')	AS	'Percent'

FROM	survey_answers

JOIN	survey_questions	USING(question_id)

WHERE	survey_id	=	1

AND	question_id	=	1

GROUP	BY	answer;

+--------------+-------+---------+

www.it-ebooks.info

http://www.it-ebooks.info/

|	Birding	Site	|	Votes	|	Percent	|

+--------------+-------+---------+

|	forest							|				30	|	34.9%			|

|	shore								|				42	|	48.8%			|

|	backyard					|				14	|	16.3%			|

+--------------+-------+---------+

The	ROUND()	function	rounded	up	and	down	to	the	first	decimal	place	based	on	the	true
value,	which	includes	multiple	decimal	places.	Suppose	we	want	to	be	conservative	and
round	all	values	down,	or	all	values	up.	For	that,	we	need	other	functions.

Rounding	Only	Down	or	Up
To	round	only	down,	use	the	FLOOR()	function.	To	round	only	up,	use	the	CEILING()
function.	Let’s	use	the	previous	example	to	see	how	we	would	round	down	the	results:

SELECT	COLUMN_GET(choices,	answer	AS	CHAR)

		AS	'Birding	Site',

COUNT(*)	AS	'Votes',

CONCAT(FLOOR((COUNT(*)	/	@fav_site_total)	*	100),	'%')

		AS	'Percent'

FROM	survey_answers

JOIN	survey_questions	USING(question_id)

WHERE	survey_id	=	1

AND	question_id	=	1

GROUP	BY	answer;

+--------------+-------+---------+

|	Birding	Site	|	Votes	|	Percent	|

+--------------+-------+---------+

|	forest							|				30	|	34%					|

|	shore								|				42	|	48%					|

|	backyard					|				14	|	16%					|

+--------------+-------+---------+

In	this	example,	we	replaced	ROUND()	with	FLOOR()	so	that	the	results	would	be	rounded
down.	The	FLOOR()	function	doesn’t	allow	for	specifying	the	number	of	decimal	places.
Instead,	it	rounds	down	to	the	integer	value.

If	we	want	to	round	only	up,	we	would	use	the	CEILING()	function	like	so:
SELECT	COLUMN_GET(choices,	answer	AS	CHAR)

AS	'Birding	Site',

COUNT(*)	AS	'Votes',

CONCAT(CEILING((COUNT(*)	/	@fav_site_total)	*	100),	'%')	AS	'Percent'

FROM	survey_answers

JOIN	survey_questions	USING(question_id)

WHERE	survey_id	=	1

AND	question_id	=	1

GROUP	BY	answer;

+--------------+-------+---------+

|	Birding	Site	|	Votes	|	Percent	|

+--------------+-------+---------+

|	forest							|				30	|	35%					|

|	shore								|				42	|	49%					|

|	backyard					|				14	|	17%					|

+--------------+-------+---------+

That	rounded	up	all	of	the	values.	If	a	value	has	no	decimal	places,	it	wouldn’t	change	the
value.

Truncating	Numbers
If	we	don’t	want	to	round	a	number	up	or	down,	but	we	just	want	to	eliminate	the	extra
decimal	places,	we	can	use	TRUNCATE().	Let’s	see	how	that	looks	with	the	same	SQL
statement	we’ve	been	modifying:

www.it-ebooks.info

http://www.it-ebooks.info/

SELECT	COLUMN_GET(choices,	answer	AS	CHAR)

		AS	'Birding	Site',

COUNT(*)	AS	'Votes',

CONCAT(TRUNCATE((COUNT(*)	/	@fav_site_total)	*	100,	1),	'%')

		AS	'Percent'

FROM	survey_answers

JOIN	survey_questions	USING(question_id)

WHERE	survey_id	=	1

AND	question_id	=	1

GROUP	BY	answer;

+--------------+-------+---------+

|	Birding	Site	|	Votes	|	Percent	|

+--------------+-------+---------+

|	forest							|				30	|	34.8%			|

|	shore								|				42	|	48.8%			|

|	backyard					|				14	|	16.2%			|

+--------------+-------+---------+

As	the	name	of	the	function	implies,	it	truncated	the	value	after	the	number	of	decimal
places	specified	(i.e.,	1	in	this	example).

Eliminating	Negative	Numbers
Sometimes	when	we’re	working	with	numbers	in	functions,	we	get	them	in	the	wrong
order	and	the	result	is	a	number	with	a	negative	sign.	If	we’re	trying	to	find	only	the
difference	between	two	numbers,	we	can	use	ABS()	to	return	the	absolute	value,	the	value
without	a	negative	sign.	Absolute	values	are	also	important	for	certain	mathematical
calculations.

We’ll	try	this	function	by	using	part	of	some	examples	from	the	previous	section,	where
we	determined	the	total	number	of	seconds	each	member	took	to	identify	birds.	This	time
we’ll	just	calculate	a	total	for	all	rows,	not	grouping	by	human_id:

SELECT

SUM(TIME_TO_SEC(TIMEDIFF(id_start,	id_end)))

			AS	'Total	Seconds	for	All',

ABS(SUM(TIME_TO_SEC(TIMEDIFF(id_start,	id_end))))

			AS	'Absolute	Total'

FROM	bird_identification_tests;

+-----------------------+----------------+

|	Total	Seconds	for	All	|	Absolute	Total	|

+-----------------------+----------------+

|																	-1689	|											1689	|

+-----------------------+----------------+

There’s	not	much	to	this	function	and	example.	The	first	field	has	a	negative	sign	because
we	put	the	id_start	before	the	id_end	within	TIMEDIFF().	We	could	just	reverse	the
order,	but	there	will	be	situations	in	which	you	won’t	know	which	value	will	be	greater
than	the	other.	For	this,	you	may	need	ABS().

In	other	situations,	you	want	to	know	whether	a	value	is	positive	or	negative.	For	this,	you
can	use	the	SIGN()	function.	It	returns	a	value	of	1	if	the	argument	given	results	in	a
positive	number,	-1	if	it	results	in	a	negative	number,	and	0	if	it’s	given	a	value	of	zero.

As	an	example,	let’s	go	back	to	our	bird	identification	tests.	Suppose	we	want	a	list	of
birds	that	members	identified	in	less	time	than	the	average.	We	calculated	the	minimum
average	earlier	in	Calculating	a	Group	of	Values.	We’ll	reuse	part	of	that	SQL	statement,
but	save	the	results	to	a	user-defined	variable	and	use	that	variable	to	compare	each	row	in
bird_identification_tests	so	we	can	list	only	rows	in	which	the	time	it	took	to	identify
the	bird	was	less	than	average.	Set	up	that	variable	and	test	it	by	entering	this	on	your

www.it-ebooks.info

http://www.it-ebooks.info/

server:
SET	@min_avg_time	=

(SELECT	MIN(avg_time)	FROM

		(SELECT	AVG(TIME_TO_SEC(TIMEDIFF(id_end,	id_start)))

					AS	'avg_time'

			FROM	bird_identification_tests

			GROUP	BY	human_id)	AS	average_times);

SELECT	@min_avg_time;

+---------------+

|	@min_avg_time	|

+---------------+

|							23.6667	|

+---------------+

That’s	about	right.	We	had	a	value	of	23	seconds	before,	but	that’s	because	we	rounded	it
with	TIME_FORMAT().	This	is	more	accurate.	Let’s	use	that	variable	now	to	do	a
comparison	using	SIGN()	in	the	WHERE	clause.	Enter	this	on	your	server:

SELECT	CONCAT(name_first,	SPACE(1),	name_last)

			AS	'Birdwatcher',

common_name	AS	'Bird',

ROUND(@min_avg_time	-	TIME_TO_SEC(TIMEDIFF(id_end,	id_start)))

			AS	'Seconds	Less	than	Average'

FROM	bird_identification_tests

JOIN	humans	USING(human_id)

JOIN	rookery.birds	USING(bird_id)

WHERE	SIGN(TIME_TO_SEC(TIMEDIFF(id_end,	id_start)	-	@min_avg_time))	=	-1;

+-------------------+----------------------+---------------------------+

|	Birdwatcher							|	Bird	Identified						|	Seconds	Less	than	Average	|

+-------------------+----------------------+---------------------------+

|	Lexi	Hollar							|	Blue	Duck												|																									3	|

|	Lexi	Hollar							|	Trinidad	Piping-Guan	|																								13	|

|	Geoffrey	Dyer					|	Javan	Plover									|																								15	|

|	Katerina	Smirnova	|	Blue	Duck												|																									2	|

|	Anahit	Vanetsyan		|	Great	Crested	Grebe		|																									4	|

+-------------------+----------------------+---------------------------+

The	use	of	SIGN()	in	the	WHERE	clause	selects	rows	in	which	the	member	took	less	than	the
average	time.	That’s	a	function	that	would	be	difficult	to	duplicate	in	MySQL	by	any	other
method.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
Although	we	didn’t	cover	all	of	the	aggregate	and	numeric	functions,	we	covered	most	of
them	—	including	the	ones	that	are	used	most	often.	We	primarily	skipped	the	statistics
functions.	We	didn’t	cover	many	arithmetic	functions,	but	those	are	pretty	straightforward
(e.g.,	POWER(2,	8)	returns	2	to	the	eighth	power,	or	256),	or	they’re	specialized	(e.g.,	PI()
returns	π,	or	3.141593).	What’s	important	is	that	you	feel	comfortable	with	aggregate
functions	and	using	the	GROUP	BY	clause	—	you’ll	use	them	often	—	and	that	you	have	a
firm	grasp	on	the	numeric	functions	covered	in	this	chapter.	Several	other	numeric
functions	exist,	in	case	you	ever	need	them.	If	you	want	to	learn	about	these	other
functions,	you	can	check	the	MySQL	documentation	or	the	MariaDB	documentation.

www.it-ebooks.info

http://bit.ly/group_by
http://bit.ly/mariadb_docs
http://www.it-ebooks.info/

Exercises
Numeric	functions	are	pretty	easy,	once	you	know	what	each	does.	You	probably	didn’t
have	any	trouble	following	the	sections	on	them	in	this	chapter.	Aggregate	functions,
though,	can	be	a	little	bothersome.	Therefore,	while	some	exercises	in	this	section	require
you	to	use	numeric	functions,	most	include	aggregate	functions.	Some	call	for	you	to
combine	numeric	and	aggregate	functions.	These	should	help	you	to	retain	what	you
learned	in	this	chapter.	There	aren’t	many	exercises	for	this	chapter,	though,	so	it	shouldn’t
take	you	much	time	to	complete	all	of	them.

1.	 Construct	a	simple	SELECT	statement	that	counts	the	number	of	rows	in	the	birds
table	where	the	common_name	contains	the	word	Least.	Execute	that	to	make	sure
you	did	it	correctly.	Next,	modify	that	SQL	statement	to	count	the	rows	in	which	the
common_name	contains	the	word	Great.	You’ll	do	this	by	using	the	LIKE	operator	in
the	WHERE	clause.

2.	 In	Calculating	a	Group	of	Values,	we	covered	how	to	group	columns	for	counting.
Combine	the	two	SQL	statements	you	constructed	in	the	previous	exercise	and	make
one	SQL	statement	using	GROUP	BY	to	produce	one	field	in	the	results	that	shows	the
number	of	birds	with	a	common_name	containing	Least	and	another	field	that	shows
the	number	of	birds	that	are	Great.

3.	 In	some	of	the	examples	in	this	chapter	(see	Counting	Values),	we	had	MySQL	count
the	number	of	birds	in	each	species	and	in	each	bird	family.	For	this	exercise,	you
may	want	to	refer	to	those	examples.
Construct	a	SELECT	statement	to	query	the	birds	table,	with	three	fields	in	the	results
set:	the	name	of	the	bird	species,	the	number	of	birds	in	that	species,	and	the
percentage	that	species	represents	of	the	total	number	of	species.	Let	MySQL
calculate	the	total	number	of	species;	don’t	enter	that	value	manually	in	the	SQL
statement.
After	you’ve	successfully	executed	this	SQL	statement,	modify	the	SQL	statement
using	one	of	the	numeric	functions	to	round	to	one	decimal	place	the	field	that
contains	the	percentage	value.

4.	 Do	the	previous	exercise	again,	but	this	time	create	another	SELECT	statement	that
retrieves	only	the	total	number	of	bird	species.	With	the	SET	statement,	create	a	user
variable	to	store	that	value	taken	by	MySQL	from	the	SELECT	statement.	You	may
give	any	name	you	want	for	that	variable.
Now	change	the	SELECT	statement	you	created	in	the	previous	exercise,	but	use	the
variable	you	created	for	determining	the	percentage	of	total	birds	in	the	table.	Once
you	have	it	executed	correctly,	exit	the	mysql	client	and	log	back	in.
Run	the	same	SQL	statement	to	create	the	user	variable	and	the	second	SQL
statement	for	this	exercise	again.	Notice	the	time	it	takes	to	execute	in	the	results
statement.	Then	execute	again	the	SELECT	statement	from	the	previous	exercise,	the
one	that	doesn’t	use	a	user	variable.	Notice	how	long	it	took	to	execute	compared	to
the	SELECT	statement	that	uses	a	user	variable.

5.	 In	the	humans	table,	the	membership_expiration	column	contains	date	values.	Put
together	a	SELECT	statement	in	which	you	determine	the	number	of	months	after	the
date	2014-01-01	until	each	member’s	membership	will	expire.	If	you’re	not	sure
how	to	do	this,	refer	to	Comparing	Dates	and	Times.	Use	the	SIGN()	function	in	the

www.it-ebooks.info

http://www.it-ebooks.info/

WHERE	clause	to	determine	whether	a	membership	has	expired.	List	only	unexpired
memberships.	This	was	covered	in	Eliminating	Negative	Numbers.	Remember	to	use
the	IF	NOT	NULL	operator	in	the	WHERE	clause	to	exclude	those	members	who	don’t
have	a	paid	membership	(i.e.,	no	expiration	date).	Label	the	field	as	Months	to
Expiration.

6.	 Modify	the	SQL	statement	you	created	for	the	previous	exercise.	Don’t	exclude
expired	memberships	this	time	—	but	still	exclude	those	without	a	paid	membership.
Use	the	CONCAT()	function	to	append	“	-	expired”	to	the	number	of	months
remaining	or	past	due.	Don’t	append	the	text	if	the	membership	hasn’t	expired.
You’ll	have	to	use	the	IF()	function	to	test	that	for	the	field	containing	the	number
of	months.	You’ll	also	have	to	use	the	ABS()	function	to	remove	the	negative	sign
from	the	value.

7.	 Based	on	the	SQL	statement	you	constructed	in	the	previous	exercises,	create	a	new
one	to	determine	the	average	number	of	months	until	expiration	for	all	paid	members
in	one	field,	and	the	average	number	of	months	past	expiration,	based	on	the	date	of
2014-01-01.	You	will	need	to	use	the	AVG()	function	to	calculate	these	averages.
Once	you	have	that	working,	add	fields	to	determine	the	minimum	and	maximum
number	of	months,	using	MIN()	and	MAX(),	and	the	GROUP	BY	clause.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Part	V.	Administration	and	Beyond
In	this	final	part,	we	will	cover	some	administrative	activities	of	MySQL	and	MariaDB.
These	are	activities	that	are	not	necessarily	related	to	the	development	of	databases,	but
are	still	related	to	the	management	of	data.	Some	of	these	are	routine	activities	and	some
are	only	occasionally	performed.	And	we’ll	cover	some	aspects	that	go	beyond	MySQL
and	MariaDB.

First,	in	Chapter	13,	we’ll	cover	the	management	of	user	accounts	and	their	privileges.	We
covered	this	briefly	at	the	start	of	this	book,	but	in	this	chapter	we	will	discuss	it	in	more
depth.	We’ll	go	through	how	to	be	more	precise	about	which	privileges	are	given	to	each
user	and	for	which	databases	and	tables.

In	Chapter	14,	we’ll	discuss	how	to	make	backups	of	databases.	This	is	a	very	important
administrative	duty.	Related	to	that,	we	will	cover	the	less	routine	administrative	activity
of	restoring	a	backup.	When	this	is	needed,	it’s	usually	critical	and	urgent.	You’re	always
encouraged	to	complete	the	exercises	at	the	end	of	each	chapter,	but	because	this	chapter
covers	such	an	important	topic,	the	exercises	here	are	particularly	essential.

Chapter	15	explains	the	administrative	task	of	importing	large	amounts	of	data.	The	bulk
importing	of	data	from	another	database	or	from	another	format	(e.g.,	from	a	spreadsheet
or	a	text	file	containing	comma-separated	values)	may	not	be	something	you	will	do	often.
However,	knowing	how	to	do	it	when	needed	can	be	very	useful	and	save	you	plenty	of
time	and	frustration.

The	book	concludes	with	Chapter	16,	which	briefly	covers	a	few	APIs.	These	include
examples	for	connecting	and	querying	MySQL	and	MariaDB	with	PHP	and	a	few	other
programming	languages.	Almost	all	databases	are	interfaced	with	an	API,	as	it	allows	for
greater	control	and	security−and	doesn’t	require	users	to	know	anything	about	using	a
database.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	13.	User	Accounts	and	Privileges
We’ve	addressed	user	accounts	and	privileges	a	few	times	up	until	this	point,	but	in	this
chapter	we’re	going	to	thoroughly	discuss	this	crucial	topic.	Given	the	importance	of
security	in	any	data-related	activity,	some	readers	might	feel	that	this	topic	should	have
been	covered	thoroughly	at	the	beginning	of	the	book,	and	there’s	some	logic	to	support
that	approach.	But	it’s	much	more	interesting	to	work	with	databases	first	before	spending
a	lot	of	time	on	the	less	exciting	administrative	tasks	such	as	user	privileges	and	security.
Plus,	it’s	easier	to	understand	the	importance	of	user	privileges,	and	to	think	about	the
various	ways	to	set	privileges,	after	you	have	a	firm	understanding	of	tables	and	other
elements	of	a	database.	You’re	now	ready	to	consider	user	accounts	and	related	topics,	and
will	have	a	better	appreciation	of	what’s	covered	here	than	you	would	have	if	we	had
explored	this	subject	earlier	in	the	book.

We’ll	start	by	looking	at	the	basics	of	creating	a	user	account	and	granting	privileges.
Then	we’ll	go	through	the	details	of	restricting	access	and	granting	privileges	for	various
database	components.	Once	you	understand	these	ways	to	restrict	access,	we’ll	look	at
what	privileges	to	give	some	common	administrative	user	accounts.	We’ll	then	look	at
how	to	revoke	privileges	and	delete	user	accounts,	as	well	as	how	to	change	passwords
and	rename	user	accounts.

www.it-ebooks.info

http://www.it-ebooks.info/

User	Account	Basics
In	this	book,	I	have	used	the	term	user	account	several	times	instead	of	just	user.	This	was
done	to	distinguish	a	person	from	the	combination	of	a	username	and	the	location	or	host
from	which	the	user	may	access	the	MySQL	or	MariaDB	server.

For	instance,	the	root	user	has	full	access	to	all	databases	and	all	privileges,	but	only	when
connecting	from	the	localhost.	The	root	user	is	not	allowed	to	access	the	server	through
a	remote	host,	such	as	through	the	Internet.	That	would	be	a	major	security	vulnerability.
At	a	minimum,	access	and	privileges	are	based	on	the	combination	of	the	user	and	its
host,	which	is	called	the	user	account.

As	the	root	user,	you	can	create	a	user	account	with	the	CREATE	USER	statement.	Here’s	an
example	using	this	SQL	statement	to	create	a	user	account	for	a	woman	named	Lena
Stankoska:

CREATE	USER	'lena_stankoska';

In	this	example,	we’re	just	creating	the	user	account	without	giving	it	any	privileges.	To
see	the	privileges	a	user	account	has,	use	the	SHOW	GRANTS	statement	like	this:

SHOW	GRANTS	FOR	'lena_stankoska';

+--+

|	Grants	for	lena_stankoska@%																|

+--+

|	GRANT	USAGE	ON	*.*	TO	'lena_stankoska'@'%'	|

+--+

Notice	that	these	results	are	in	the	form	of	an	SQL	statement.	Instead	of	using	the	CREATE
USER	statement,	you	can	enter	a	GRANT	statement	exactly	as	shown	in	the	results.	Let’s	pull
apart	the	results	here,	but	a	bit	in	reverse	order.

The	user	is	lena_stankoska	and	the	host	is	the	wildcard,	%.	The	wildcard	was	used	because
we	didn’t	specify	a	host	when	we	created	the	user.	Any	privileges	that	will	be	granted	to
this	user	account	will	be	permitted	from	any	host.	This	is	not	a	good	idea.	You	should
always	specify	a	host.	For	our	examples,	to	start,	we’ll	use	localhost.	We’ll	look	at	setting
the	host	in	the	next	section.

The	*.*	part	in	the	results	says	that	usage	is	granted	for	all	databases	and	tables	—	the
part	before	the	period	refers	to	databases,	and	the	part	after	the	period	refers	to	tables.	In
order	to	limit	usage	to	a	specific	database	or	table,	you	would	have	to	change	that	part	to
database.table.	We’ll	look	at	that	in	a	bit.

Once	you	create	a	user	account,	you	would	generally	then	give	it	privileges.	If	you	want	to
give	an	existing	user	account	all	privileges	to	be	able	to	use	all	SQL	statements	from	the
localhost,	you	would	execute	the	GRANT	statement	like	this:

GRANT	ALL	ON	rookery.*

TO	'lena_stankoska'@'localhost';

SHOW	GRANTS	FOR	'lena_stankoska'@'localhost';

+---+

|	Grants	for	lena_stankoska@localhost																																	|

+---+

|	GRANT	USAGE	ON	*.*	TO	'lena_stankoska'@'localhost'																		|

|	GRANT	ALL	PRIVILEGES	ON	`rookery`.*	TO	'lena_stankoska'@'localhost'	|

+---+

www.it-ebooks.info

http://www.it-ebooks.info/

Notice	that	the	results	of	the	SHOW	GRANTS	statement	for	the	lena_stankoska@localhost
user	account	now	shows	two	rows:	one	similar	to	the	result	shown	previously,	but	with	the
host	as	localhost,	and	the	new	SQL	statement	we	executed.	This	user	account	now	has	all
of	the	privileges	allowed	on	the	rookery	database,	except	the	ability	to	give	privileges	to
others.	We’ll	cover	that	one	and	the	many	privileges	that	may	be	given	to	a	user	account
later	in	this	chapter.

Because	we	didn’t	specify	a	password	for	this	user	account,	it	can	be	accessed	without	a
password.	That	makes	this	user	account	a	high	security	risk:	it	can	allow	anyone	who	gets
on	to	the	server	to	do	almost	anything	to	the	database,	and	it	doesn’t	require	a	password.
Because	we	created	it	only	to	see	how	granting	and	showing	privileges	works,	let’s
remove	it.	We’ll	create	this	user	account	again	later.

User	accounts	are	removed	through	the	DROP	USER	statement.	However,	removing	the	user
accounts	for	Lena	isn’t	as	straightforward	as	you	might	think.	When	we	executed	the
CREATE	USER	statement	and	didn’t	specify	a	host,	we	created	one	user	account	—	one	with
the	wildcard	for	the	host.	When	we	executed	the	GRANT	statement	to	give	privileges	to	the
same	user,	but	with	the	host	of	localhost,	a	second	user	account	was	created.	To
understand	this	better,	let’s	look	at	what	is	stored	in	the	user	table	in	the	mysql	database.
That’s	where	this	user	account	information	is	stored.	Execute	the	following	SQL	statement
from	your	server:

SELECT	User,	Host

FROM	mysql.user

WHERE	User	LIKE	'lena_stankoska';

+----------------+-----------+

|	User											|	Host						|

+----------------+-----------+

|	lena_stankoska	|	%									|

|	lena_stankoska	|	localhost	|

+----------------+-----------+

As	you	can	see	here,	there	are	two	user	accounts,	although	we	sought	to	create	only	one.	If
you	had	not	understood	before	the	distinction	between	a	user	and	a	user	account,	I	hope
you	do	now.

WARNING

Although	you	may	be	able	to	access	the	user	account	privileges	directly	in	the	mysql	database,	you	should	never	use
that	method	to	make	changes	to	user	account	data.	Although	the	examples	so	far	have	been	simple,	there	are
situations	in	which	user	permissions	will	affect	several	tables	in	the	mysql	database.	If	you	attempt	to	insert,	update,
or	delete	a	user	account	in	the	user	table	using	the	INSERT,	UPDATE,	or	DELETE	statements	instead	of	the	appropriate
user	account	statements	described	in	this	chapter,	you	may	not	make	the	changes	the	way	you	want	and	may	orphan
entries	in	other	tables.

To	eliminate	both	of	the	user	accounts	that	we	created	for	Lena,	we	will	have	to	execute
the	DROP	USER	statement	twice,	like	this:

DROP	USER	'lena_stankoska'@'localhost';

DROP	USER	'lena_stankoska'@'%';

This	eliminates	both	user	accounts	for	Lena.	We’ll	create	more	user	accounts	for	her	in	the
next	sections.	In	doing	so,	though,	we	will	look	more	closely	at	how	to	restrict	access	of
user	accounts,	rather	than	give	her	all	privileges	and	access	from	anywhere	and	without	a
password.

www.it-ebooks.info

http://www.it-ebooks.info/

Restricting	the	Access	of	User	Accounts
As	a	database	administrator,	you	may	give	users	full	access	to	databases	from	anywhere,
or	you	can	limit	them	based	on	various	aspects	of	the	connection	and	the	database.	Put
simply,	you	can	restrict	user	access	and	privileges	based	on	the	username	and	host,	the
database	components	(e.g.,	tables)	the	user	account	may	access,	and	the	SQL	statements
and	functions	that	may	be	used	on	those	database	components.	We’ll	address	these
restrictions	in	this	section.

Username	and	Host
When	you	create	user	accounts,	consider	both	who	needs	access	and	from	where.	First,
let’s	define	who.	This	can	represent	a	person	or	a	group	of	people.	You	can	give	an
individual	a	username	—	which	might	be	related	to	their	actual	name,	such	as
lena_stankoska	for	Lena	Stankoska	—	or	define	a	username	to	a	group	of	people,	such	as
sales_dept	for	the	Sales	Department.	You	could	also	create	a	user	account	based	on	a
function	or	use.	In	that	case,	one	person	might	have	several	user	accounts.

If	Lena	Stankoska	is	a	database	administrator	of	the	rookery	and	birdwatchers	databases,
she	might	have	multiple	usernames,	perhaps	all	from	the	localhost,	for	example,
lena_stankoska,	for	personal	use;	admin_backup,	for	when	she	makes	backups;
admin_restore,	for	when	she	restores	backups;	and	admin_import,	if	she	regularly	imports
large	amounts	of	data.

Let’s	first	create	the	personal	accounts	for	Lena	Stankoska.	We’ll	create	the	administrative
accounts	later.	For	her	personal	username,	lena_stankoska,	let’s	give	her	two	user
accounts:	one	from	localhost	and	another	from	a	remote	location.	We’ll	give	her	more
privileges	when	she’s	logged	into	the	localhost,	but	less	when	she	accesses	the	server
remotely	—	from	her	home	if	she	has	a	static	IP	address.	Let’s	create	for	her
lena_stankoska@localhost	and	lena_stankoska@lena_stankoska_home.

The	hostname	for	a	user	account	can	be	a	name	that	a	DNS	can	translate	to	an	IP	address
or	it	can	be	an	actual	IP	address.	The	DNS	could	be	the	server’s	external	DNS,	which
translates	Internet	domain	names	to	an	IP	address.	Or	you	can	use	the	bind	system	and	put
the	name	in	the	server’s	hosts	file	(e.g.,	/etc/hosts	on	a	Linux	system).	If	you	do	that,
you’ll	have	to	restart	MySQL	for	it	to	take	effect.

Let’s	create	these	two	personal	user	accounts	for	Lena.	Enter	the	following	SQL
statements	on	your	server:

CREATE	USER	'lena_stankoska'@'localhost'

IDENTIFIED	BY	'her_password_123';

GRANT	USAGE	ON	*.*	TO	'lena_stankoska'@'lena_stankoska_home'

IDENTIFIED	BY	'her_password_123';

These	examples	used	the	CREATE	USER	and	the	GRANT	statements	to	create	the	user
accounts.	If	you	enter	GRANT	and	specify	a	username	that	doesn’t	exist,	it	automatically
creates	the	user	—	and	remember	that	each	combination	of	user	and	hostname	is	a	unique
user	account.	However,	it’s	recommended	that	you	start	with	CREATE	USER	to	create	the
user	account	and	then	grant	privileges.	We	added	the	IDENTIFIED	BY	clauses	in	each	of
these	SQL	statements	to	set	the	passwords	for	each	user	account.

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s	see	how	one	of	Lena’s	user	accounts	looks	at	this	point.	Enter	the	following	on	your
server:

SHOW	GRANTS	FOR	'lena_stankoska'@'localhost'	\G

***************************	1.	row	***************************

Grants	for	admin_backup@localhost:

					GRANT	USAGE	ON	*.*	TO	'lena_stankoska'@'localhost'

					IDENTIFIED	BY	PASSWORD	'	*B1A8D5415ACE5AB4BBAC120EC1D17766B8EFF1A1'

Notice	that	the	password	is	encrypted	in	the	results.	There	isn’t	a	way	within	MySQL	to
retrieve	the	password	in	plain	text,	to	decrypt	it.	Also	notice	that	the	encrypted	password	is
preceded	by	the	PASSWORD	keyword.	If	you	don’t	want	to	enter	someone’s	password	with
clear	text	as	we	did	in	the	earlier	commands,	you	could	encrypt	the	password	on	a
different	computer	with	the	PASSWORD()	function	and	then	copy	the	results	to	the	server
using	the	GRANT	statement.	You	would	do	that	like	this:

SELECT	PASSWORD('her_password_123');

+---+

|	PASSWORD('its_password_123')														|

+---+

|	*B1A8D5415ACE5AB4BBAC120EC1D17766B8EFF1A1	|

+---+

The	encrypted	text	is	identical	to	the	one	in	the	results	of	the	earlier	SHOW	GRANTS
statement.	If	your	server	is	logging	all	transactions,	you	may	want	to	encrypt	passwords
on	your	personal	computer	by	this	method	and	use	the	results	for	entering	the	passwords
on	your	server	so	no	one	else	will	know	the	password	for	a	user	account.	Starting	with
MySQL	version	5.6,	any	SQL	statement	that	contains	the	reserved	word	PASSWORD	will	not
be	logged.

At	this	point,	Lena	can	log	into	the	server	with	any	one	of	these	user	accounts	—	one
allows	her	to	do	so	only	from	home,	and	the	other	four	only	when	logging	in	from	the
server.	But	she	can’t	access	any	database,	other	than	the	default	ones	(i.e.,	test	and
information_schema)	and	not	always	those.	This	allows	her	to	do	anything	she	wants	in
the	test	database,	including	creating	tables	and	selecting,	updating,	and	deleting	data.	She
can’t	access	or	even	see	the	other	databases,	and	she	can’t	create	another	database.	She	is
greatly	limited	with	these	user	accounts.	Let’s	proceed	to	the	next	section	to	learn	more
about	what	a	user	account	may	access	and	then	give	Lena	access	to	more	than	the	test
database.

SQL	Privileges
Lena	needs	more	than	access	to	the	databases	to	be	able	to	perform	her	duties.	We	have	to
grant	her	the	privileges	to	execute	various	tasks,	such	as	reading	and	writing	data	on	the
rookery	and	birdwatchers	databases.	At	this	point,	we	need	to	give	the
lena_stankoska@localhost	user	account	the	SELECT,	INSERT,	and	UPDATE	privileges	for
both	of	our	databases.	To	give	a	user	account	multiple	privileges,	list	the	privileges	in	a
comma-separated	list.	Enter	this	on	the	server:

GRANT	SELECT,	INSERT,	UPDATE	ON	rookery.*

TO	'lena_stankoska'@'localhost';

GRANT	SELECT,	INSERT,	UPDATE	ON	birdwatchers.*

TO	'lena_stankoska'@'localhost';

SHOW	GRANTS	FOR	'lena_stankoska'@localhost	\G

www.it-ebooks.info

http://www.it-ebooks.info/

***************************	1.	row	***************************

Grants	for	lena_stankoska@localhost:	

GRANT	USAGE	ON	*.*	

TO	'lena_stankoska'@'localhost'

***************************	2.	row	***************************

Grants	for	lena_stankoska@localhost:	

GRANT	SELECT,	INSERT,	UPDATE	ON	`birdwatchers`.*	

TO	'lena_stankoska'@'localhost'

***************************	3.	row	***************************

Grants	for	lena_stankoska@localhost:	

GRANT	SELECT,	INSERT,	UPDATE	ON	`rookery`.*	

TO	'lena_stankoska'@'localhost'

Some	privileges	cover	more	than	one	SQL	statement.	For	a	list	of	privileges,	see	Table	13-
1.

Although	we	gave	lena_stankoska@localhost	enough	privileges	to	manipulate	data	on	our
two	databases,	we	didn’t	give	it	the	ability	to	delete	data.	To	add	privileges	to	a	user
account,	you	don’t	have	to	list	again	all	of	the	privileges	it	already	has.	Just	execute	the
GRANT	statement	with	the	new	privileges	and	the	system	will	add	them	to	the	user
account’s	privileges	list.	Do	that	like	so:

GRANT	DELETE	ON	rookery.*

TO	'lena_stankoska'@'localhost';

GRANT	DELETE	ON	birdwatchers.*

TO	'lena_stankoska'@'localhost';

SHOW	GRANTS	FOR	'lena_stankoska'@localhost	\G

***************************	1.	row	***************************

Grants	for	lena_stankoska@localhost:	

GRANT	USAGE	ON	*.*	

TO	'lena_stankoska'@'localhost'

***************************	2.	row	***************************

Grants	for	lena_stankoska@localhost:	

GRANT	SELECT,	INSERT,	UPDATE,	DELETE	ON	`birdwatchers`.*	

TO	'lena_stankoska'@'localhost'

***************************	3.	row	***************************

Grants	for	lena_stankoska@localhost:	

GRANT	SELECT,	INSERT,	UPDATE,	DELETE	ON	`rookery`.*	

TO	'lena_stankoska'@'localhost'

Now	Lena	can	manipulate	data	in	all	of	the	basic	ways	on	our	two	databases,	but	only
from	the	localhost.	She	still	can’t	do	anything	from	home.	We’ll	give	her	privileges	from
home	later.

Table	13-1.	Privileges	for	GRANT	and	REVOKE	statements

Privilege Description

ALL
[PRIVILEGES]

Grants	all	of	the	basic	privileges.	Does	not	include	the	GRANT	OPTION.

ALTER Allows	use	of	the	ALTER	TABLE	statement,	but	requires	also	the	CREATE	and	INSERT	privileges.	DROP	is
also	needed	to	rename	a	table.	This	is	a	security	risk:	someone	could	rename	a	table	to	get	access	to	it.

ALTER
ROUTINE

Allows	user	account	to	alter	or	drop	stored	routines.	This	includes	the	ALTER	FUNCTION	and	ALTER
PROCEDURE	statements,	as	well	as	the	DROP	FUNCTION	and	DROP	PROCEDURE	statements.

CREATE Allows	use	of	the	CREATE	TABLE	statement.	Needs	INDEX	privilege	to	define	indexes.

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE
ROUTINE

Allows	user	account	to	create	stored	routines.	This	includes	the	CREATE	FUNCTION	and	CREATE
PROCEDURE	statements.	Gives	the	user	has	ALTER	ROUTINE	privileges	to	any	routine	he	creates.

CREATE
TEMPORARY
TABLES

Allows	the	CREATE	TEMPORARY	TABLES	statement	to	be	used.

CREATE
USER

Allows	the	user	account	the	ability	to	execute	several	user	account	management	statements:	CREATE
USER,	RENAME	USER,	REVOKE	ALL	PRIVILEGES,	and	the	DROP	USER	statements.

CREATE
VIEW

Permits	the	CREATE	VIEW	statement.

DELETE Allows	the	DELETE	statement	to	be	used.

DROP Permits	the	user	to	execute	DROP	TABLE	and	TRUNCATE	statements.

EVENT Allows	the	user	account	to	create	events	for	the	event	scheduler.	It	allows	the	use	of	the	CREATE
EVENT,	ALTER	EVENT,	and	the	DROP	EVENT	statements.

EXECUTE Allows	the	execution	of	stored	procedures,	the	EXECUTE	statement.

FILE Allows	the	use	of	SELECT…INTO	OUTFILE	and	LOAD	DATA	INFILE	statements	to	export	and	import	to
and	from	a	filesystem.	This	is	a	security	risk.	It	can	be	limited	to	specific	directories	with	the
secure_file_priv	variable.

INDEX Grants	the	use	of	the	CREATE	INDEX	and	DROP	INDEX	statements.

INSERT Permits	the	use	of	INSERT	statements.	It’s	required	to	execute	ANALYZE	TABLE,	OPTIMIZE	TABLE,	and
REPAIR	TABLE	statements.

LOCK
TABLES

Allows	the	use	of	LOCK	TABLES	statements	for	tables	for	which	the	user	has	SELECT	privileges.

PROCESS Allows	the	use	of	the	SHOW	PROCESSLIST	and	SHOW	ENGINE	statements.

RELOAD Allows	the	FLUSH	statement	to	be	issued.

REPLICATION
CLIENT

Allows	the	user	to	query	master	and	slave	servers	for	status	information,	the	SHOW	MASTER	STATUS
and	SHOW	SLAVE	STATUS	statements,	as	well	as	the	SHOW	BINARY	LOGS	statement.

REPLICATION
SLAVE

Required	for	replication	slave	servers,	this	allows	binary	log	events	to	be	read	from	the	master	server.

SELECT Allows	the	use	of	the	SELECT	statement.

SHOW
DATABASES

Permits	the	use	of	the	SHOW	DATABASES	statement	for	all	databases,	not	just	the	ones	for	which	the
user	has	privileges.

SHOW	VIEW Allows	the	use	of	the	SHOW	CREATE	VIEW	statement.

www.it-ebooks.info

http://www.it-ebooks.info/

SHUTDOWN Allows	the	use	of	the	shutdown	option	with	the	mysqladmin	utility.

SUPER Grants	use	of	CHANGE	MASTER	TO,	KILL,	PURGE	BINARY	LOGS,	and	SET	GLOBAL	statements,	and	the
debug	option	with	the	command-line	utility	mysqladmin.

TRIGGER This	privilege	allows	the	user	account	the	ability	to	create	and	drop	triggers,	using	the	CREATE
TRIGGER	and	the	DROP	TRIGGER	statements.

UPDATE Allows	the	UPDATE	statement	to	be	used.

USAGE Included	to	create	a	user	without	privileges,	or	to	modify	an	existing	one	without	affecting	the
existing	privileges.

Database	Components	and	Privileges
Now	we’ll	turn	to	the	parts	of	the	database	a	user	account	can	access.	A	user	account	can
be	given	access	to	all	of	the	databases	on	a	server,	or	limited	to	specific	databases,	specific
tables,	and	even	specific	columns.	Let’s	first	see	how	to	limit	user	accounts	to	specific
databases,	and	then	how	to	limit	user	accounts	to	tables	and	columns.

NOTE

We’ve	given	Lena	more	restrictions	when	she’s	at	home	than	when	she’s	at	work.	Of	course,	if	she	really	wants
access	to	more	information	at	home,	she	can	first	log	into	the	server	at	the	operating	system	level	using	ssh	and	then
log	into	MySQL	from	there	using	her	lena_stankoska@localhost	user	account.	This	may	be	fine,	because	we	can
more	easily	control	security	at	the	operating	system	level,	and	we’re	assuring	that	sensitive	data	isn’t	being	passed
unencrypted	through	the	Internet	by	adding	extra	restrictions	to	the	home	account.	But	on	the	operating	system	level,
if	you	want,	you	can	restrict	use	of	ssh	to	prevent	Lena	from	getting	around	security.

Restricting	to	specific	databases

In	order	to	limit	the	lena_stankoska@lena_stankoska_home	user	account	to	the	rookery
database,	we	would	have	to	do	something	like	this:

GRANT	USAGE	ON	rookery.*

TO	'lena_stankoska'@'lena_stankoska_home'

IDENTIFIED	BY	'her_password_123';

SHOW	GRANTS	FOR	'lena_stankoska'@'lena_stankoska_home'	\G

***************************	1.	row	***************************

Grants	for	lena_stankoska@lena_stankoska_home:

				GRANT	USAGE	ON	*.*	TO	'lena_stankoska'@'lena_stankoska_home'

				IDENTIFIED	BY	PASSWORD	'*B1A8D5415ACE5AB4BBAC120EC1D17766B8EFF1A1'

Here	we’re	limiting	this	user	account’s	access	on	the	server	to	the	rookery	database.
However,	we	can	see	from	the	results	of	the	SHOW	GRANTS	statement	that	she	still	has
global	usage.	If	she	were	to	access	the	server	from	her	home	to	get	a	list	of	databases,	this
is	what	she’d	see:

mysql	--user	lena_stankoska	--password='her_password_123'	\

						--host	rookery.eu	--execute='SHOW	DATABASES'

+--------------------+

|	Database											|

+--------------------+

|	information_schema	|

|	test															|

+--------------------+

She	still	can’t	see	the	rookery	database.	This	is	because	she	can’t	do	anything	on	that

www.it-ebooks.info

http://www.it-ebooks.info/

database.	She	can’t	even	execute	a	SHOW	TABLES	statement	or	a	SELECT	statement	for	that
database.	To	do	that,	we	need	to	give	her	privileges	other	than	hollow	access	to	the
rookery	database.	Let’s	start	by	giving	her	the	SELECT	privilege	for	the	rookery	database.
We’ll	do	that	by	executing	the	following:

GRANT	SELECT	ON	rookery.*

TO	'lena_stankoska'@'lena_stankoska_home';

SHOW	GRANTS	FOR	'lena_stankoska'@'lena_stankoska_home';

+---+

|	Grants	for	lena_stankoska@lena_stankoska_home																													|

+---+

|	GRANT	USAGE	ON	*.*	TO	'lena_stankoska'@'lena_stankoska_home'														|

|	IDENTIFIED	BY	PASSWORD	'...'																																														|

|	GRANT	SELECT	ON	`rookery`.*	TO	'lena_stankoska'@'lena_stankoska_home'					|

+---+

You	can’t	specify	just	the	database	name	in	the	GRANT	statement;	you	have	to	specify	a
table	too.	That’s	why	we	added	.*	to	refer	to	all	tables	in	the	rookery	database.

In	the	results,	notice	that	there	is	still	the	row	granting	global	usage	for	this	user	account.
Following	that	is	an	entry	related	to	the	rookery	database.	To	make	the	results	fit	on	the
page	here,	I	replaced	the	password	with	an	ellipsis.	Lena	can	now	access	the	rookery
database	from	her	home,	although	she	can	only	select	data.	Here’s	what	she	sees	from	her
home	when	she	executes	SHOW	DATABASES	and	a	SELECT	statement	to	get	a	list	of	Avocet
birds	from	the	command	line:

mysql	--user	lena_stankoska	--password='her_password_123'	--host	rookery.eu	\

						--execute="SHOW	DATABASES;	\

																	SELECT	common_name	AS	'Avocets'

																	FROM	rookery.birds	\

																	WHERE	common_name	LIKE	'%Avocet%';"

+--------------------+

|	Database											|

+--------------------+

|	information_schema	|

|	rookery												|

|	test															|

+--------------------+

+---------------------+

|	Avocets													|

+---------------------+

|	Pied	Avocet									|

|	Red-necked	Avocet			|

|	Andean	Avocet							|

|	American	Avocet					|

|	Mountain	Avocetbill	|

+---------------------+

Restricting	to	specific	tables

At	this	point,	Lena	has	sufficient	access	to	the	two	databases	when	at	her	office.	However,
although	she	can	select	data	on	the	rookery	database	from	home,	she	can’t	access	the
birdwatchers	databases	from	home.	Let’s	give	her	the	SELECT	privilege	for	that	database,
but	only	for	certain	tables.

If	we	want	to	give	Lena	access	only	to	the	bird_sightings	table	in	the	birdwatchers
database	from	home,	we	would	enter	the	following:

GRANT	SELECT	ON	birdwatchers.bird_sightings

TO	'lena_stankoska'@'lena_stankoska_home';

SHOW	GRANTS	FOR	'lena_stankoska'@'lena_stankoska_home';

www.it-ebooks.info

http://www.it-ebooks.info/

+---+

|	Grants	for	lena_stankoska@lena_stankoska_home																													|

+---+

|	GRANT	USAGE	ON	*.*	TO	'lena_stankoska'@'lena_stankoska_home'														|

|	IDENTIFIED	BY	PASSWORD	'...'																																														|

|	GRANT	SELECT	ON	`rookery`.*	TO	'lena_stankoska'@'lena_stankoska_home'					|

|	GRANT	SELECT	ON	`birdwatchers`.`bird_sightings`																											|

|	TO	'lena_stankoska'@'lena_stankoska_home'																																	|

+---+

Now	Lena	can	see	only	that	one	table	in	the	birdwatchers	database.	Here	is	what	happens
if	she	executes	the	following	from	her	home	computer:

mysql	--user	lena_stankoska	--password='her_password_123'	--host	rookery.eu	\

						--execute="SHOW	TABLES	FROM	birdwatchers;"

+------------------------+

|	Tables_in_birdwatchers	|

+------------------------+

|	bird_sightings									|

+------------------------+

To	give	her	access	to	more	tables	in	the	birdwatchers	database,	we	could	execute	a	GRANT
statement	for	each	table.	That	can	be	tedious	with	a	database	that	has	many	tables,	to	give
her	access	to	many	of	them	but	not	all.	But	there’s	no	simple	way	around	it.	I	have
requested	while	writing	this	chapter	that	a	feature	be	added	to	MariaDB	to	specify
multiple	tables	in	a	single	GRANT	statement.	So	maybe	one	day	there	will	be	an	easy	way	to
do	it	with	MariaDB.	For	now,	you	can	either	manually	enter	the	GRANT	statement	many
times,	or	you	can	create	a	short	script	to	do	it.

For	example,	suppose	that	we	want	to	give	Lena	access	to	all	of	the	tables	in	the
birdwatchers	database,	except	ones	with	personal	and	sensitive	information.	The	tables
to	exclude	would	be	the	humans	table	and	the	two	tables	containing	information	about
children,	the	birder_families	and	birding_events_children	tables.	Here’s	how	such	a
shell	script	might	look:

#!/bin/sh

mysql_connect="mysql	--user	root	-pmy_pwd"

results=`$mysql_connect	--skip-column-names	\

									--execute	'SHOW	TABLES	FROM	birdwatchers;'`

items=$(echo	$results	|	tr	"	"	"\n")

for	item	in	$items

do

		if	[$item	=	'humans']	||

					[$item	=	'birder_families']	||

					[$item	=	'birding_events_children']

		then

				continue

		fi

		`$mysql_connect	--execute	"GRANT	SELECT	ON	birdwatchers.$item	\

																													TO	'lena_stankoska'@'lena_stankoska_home'"`

done

exit

This	simple	shell	script	gets	a	list	of	tables	using	the	SHOW	TABLES	statement.	The	script
then	goes	through	the	list	to	execute	a	GRANT	statement	for	each	table	name	in	the	results,
but	skipping	the	three	sensitive	tables.

www.it-ebooks.info

http://www.it-ebooks.info/

At	this	point,	Lena	can	do	plenty	from	her	office	and	check	on	things	from	her	home.	If
she	needs	to	do	more	than	this,	it	will	probably	be	because	she	is	performing	an
administrative	task	like	making	a	backup	or	importing	large	amounts	of	data.	When	she
does	those	tasks,	she’ll	use	one	of	the	three	administrative	user	accounts	we	created	for
her.	Let’s	give	those	three	accounts	the	necessary	privileges	so	that	Lena	can	perform	the
tasks	required	of	her.

Restricting	to	specific	columns

To	give	a	user	account	access	only	to	specific	columns,	issue	a	GRANT	statement	listing	all
of	the	columns	permitted	for	the	table	within	parentheses,	in	a	comma-separated	list	after
the	privilege	for	which	they	apply.	This	will	make	more	sense	when	you	see	an	example.
If	you’re	granting	many	privileges,	this	can	be	an	excessively	long	SQL	statement.

In	the	previous	section,	as	a	security	precaution,	we	didn’t	give	Lena	access	to	the	humans
table	in	the	birdwatchers	database	from	home.	Suppose	we	changed	our	mind	about	that.
Suppose	we	want	her	to	have	access	to	most	of	the	humans	table	when	she	works	at	home,
but	not	to	the	contact	information	of	our	clients	(e.g.,	email	addresses).	Looking	at	the
columns	in	the	humans	table,	we	decide	she	needs	access	to	the	human_id	column	to	be
able	to	join	to	other	tables,	and	the	formal_title,	name_first,	and	name_last	columns,
as	well	as	membership_type.	The	other	columns	either	contain	sensitive	information	or	are
unnecessary	for	her	duties.

Based	on	the	list	of	columns	we	want	to	permit	Lena	to	access	from	home,	let’s	enter	the
following:

GRANT	SELECT	(human_id,	formal_title,	name_first,

name_last,	membership_type)

ON	birdwatchers.humans

TO	'lena_stankoska'@'lena_stankoska_home';

Now	Lena	can	access	the	humans	table	from	home	to	get	the	names	of	members,	as	well	as
the	type	of	membership	each	has.

www.it-ebooks.info

http://www.it-ebooks.info/

Administrative	User	Accounts
Earlier,	I	mentioned	that	we	need	to	create	three	administrative	accounts	for	Lena	to	use	in
performing	her	duties	as	a	database	administrator	from	the	localhost:	admin_backup,
admin_restore,	and	admin_import.	These	are	common	administrative	user	accounts	that
you	may	need	to	create	and	use.	You’ll	use	them	in	examples	and	exercises	in	Chapter	14
(which	covers	backing	up	and	restoring),	and	Chapter	15	(importing	data).	In	this	section,
we’ll	create	these	administrative	user	accounts	and	look	at	the	privileges	needed	for	them,
as	well	as	another	one	for	granting	privileges	to	other	user	accounts.

User	Account	for	Making	Backups
The	admin_backup	user	account	will	be	used	with	the	mysqldump	utility	to	make	back-ups
of	the	rookery	and	birdwatchers	databases.	This	is	covered	in	Chapter	14.	Just	a	few
privileges	are	needed	to	accomplish	these	tasks:

At	a	minimum,	it	will	need	the	SELECT	privilege	to	read	our	two	databases.	You	should
limit	an	administrative	account	to	the	databases	it	needs	to	backup.	In	particular,	you
should	not	let	it	have	SELECT	privileges	for	the	mysql	database,	because	that	contains
user	passwords.
To	lock	the	tables	when	making	a	backup,	the	LOCK	TABLES	privilege	is	required.
If	a	database	contains	views	and	triggers,	which	we	didn’t	cover	in	this	book,	the	user
account	will	need	the	SHOW	VIEW	and	TRIGGER	privileges,	respectively.

Based	on	those	considerations,	let’s	create	the	admin_backup@localhost	user	account	and
give	it	the	SELECT	and	LOCK	TABLES	privileges,	but	only	for	the	rookery	and
birdwatchers	databases.	Do	that	by	executing	the	following	SQL	statement:

CREATE	USER	'admin_backup'@'localhost'

IDENTIFIED	BY	'its_password_123';

GRANT	SELECT,	LOCK	TABLES

ON	rookery.*

TO	'admin_backup'@'localhost';

GRANT	SELECT,	LOCK	TABLES

ON	birdwatchers.*

TO	'admin_backup'@'localhost';

This	allows	Lena	to	use	this	admin_restore	account	to	make	backups	of	our	databases.
We	created	another	account	for	restoring	data,	so	let’s	give	that	account	the	privileges	it
needs.

User	Account	for	Restoring	Backups
Although	you	could	create	one	administrative	user	account	for	both	making	backups	and
restoring	them,	you	might	want	to	use	separate	user	accounts	for	those	tasks.	The	main
reason	is	that	the	task	of	making	backups	is	usually	one	handled	by	scripts	that	run
automatically.	But	the	task	of	restoring	data	is	generally	run	manually	and	can	overwrite
or	destroy	data	on	a	live	server.	You	might	not	want	the	user	account	with	those	privileges
to	be	the	same	one	for	which	you	use	in	a	script	containing	its	password.	For	our	examples
in	this	chapter,	let’s	give	the	admin_restore@localhost	user	account	the	privileges	needed
for	restoring	data	to	our	databases:

At	a	minimum,	a	user	account	for	restoring	a	dump	file	needs	the	INSERT	privilege	to

www.it-ebooks.info

http://www.it-ebooks.info/

insert	data	into	tables.
It	should	also	have	the	LOCK	TABLES	privilege	to	lock	the	tables	while	inserting	data.
It	will	need	the	CREATE	privilege	to	create	tables	and	INDEX	to	create	indexes.
Because	a	dump	file	can	include	SQL	statements	to	alter	tables	to	set	the	collation,	the
ALTER	privilege	may	be	needed.
Depending	on	the	method	Lena	uses	to	restore	tables,	she	might	also	want	to	restore
them	to	temporary	tables.	For	that,	she	will	need	the	CREATE	TEMPORARY	TABLES
privilege.	Temporary	tables	are	dropped	when	the	client	connection	is	closed.
If	a	database	has	views	and	triggers,	the	CREATE	VIEW	and	TRIGGER	privileges	are
required.

For	our	database	usage,	we	won’t	need	CREATE	VIEW	or	TRIGGER,	but	we	will	need	the
other	privileges.	Create	the	admin_restore@localhost	user	account	and	give	it	the
necessary	privileges	by	entering	the	following	on	your	server:

CREATE	USER	'admin_restore'@'localhost'

IDENTIFIED	BY	'different_pwd_456';

GRANT	INSERT,	LOCK	TABLES,	CREATE,

CREATE	TEMPORARY	TABLES,	INDEX,	ALTER

ON	rookery.*

TO	'admin_restore'@'localhost';

GRANT	INSERT,	LOCK	TABLES,	CREATE,

CREATE	TEMPORARY	TABLES,	INDEX,	ALTER

ON	birdwatchers.*

TO	'admin_restore'@'localhost';

With	those	privileges,	Lena	should	have	what	she	needs	to	restore	any	of	the	data	in	the
rookery	and	birdwatchers	databases.

User	Account	for	Bulk	Importing
The	last	administrative	user	we	need	to	create	for	Lena	is	admin_import.	She’ll	use	this
user	account	to	import	large	data	text	files	into	our	databases.	This	is	covered	in
Chapter	15.	For	this	method	of	importing	data,	she’ll	use	the	LOAD	DATA	INFILE
statement.	That	requires	just	the	FILE	privilege.

WARNING

The	FILE	privilege	is	a	security	risk	because	it	has	the	ability	to	read	data	from	any	file	on	the	server	to	which
MySQL	has	rights.	This	is	why	it	is	especially	important	that	this	privilege	be	given	only	to	a	user	account	designated
for	importing	files.	The	password	for	that	user	account	should	be	given	only	to	someone	who	is	trusted.	You	can
restrict	the	directory	from	which	files	may	be	loaded	with	the	secure_file_priv	variable.	That	will	minimize	the
security	risk	to	the	filesystem.	You	can	also	revoke	this	privilege	when	it’s	not	in	use	and	grant	it	again	when	needed
to	minimize	risk	to	the	databases.

The	FILE	privilege	cannot	be	given	for	specific	databases	or	components.	It’s	a	global
privilege.	If	we	give	it	to	the	admin_import@localhost	user	account,	it	can	import	data
into	any	database	—	and	it	can	export	data	from	any	database,	including	the	mysql
database.	So	be	careful	who	gets	this	privilege	and	never	allow	it	with	a	remote	host.	Still,
create	admin_import@localhost	and	give	it	this	privilege	by	entering	the	following	on	the
server:

CREATE	USER	'admin_import'@'localhost'

IDENTIFIED	BY	'another_pwd_789';

GRANT	FILE	ON	*.*

TO	'admin_import'@'localhost';

www.it-ebooks.info

http://www.it-ebooks.info/

We	have	created	all	of	Lena’s	administrative	user	accounts	and	set	each	one	with	the
necessary	privileges	(no	more	and	no	less)	for	her	to	perform	her	duties	related	to	our
databases.	Let’s	create	one	more	administrative	user	account,	though,	that	may	be	of	use	to
you.

User	Account	to	Grant	Privileges
Another	user	account	that	you	might	need	is	one	for	creating	other	users.	You	could	use
root	for	that,	but	to	continue	the	policy	of	using	limited	administrative	user	accounts	for
separate	functions,	we	should	create	a	separate	user	account	for	user	and	privilege
maintenance.	Besides,	this	task	might	be	given	to	someone	who	we	don’t	want	to	have
complete	control	over	our	database	system.

To	create	a	user	account	with	the	ability	to	create	other	user	accounts	and	grant	those	other
user	accounts	privileges,	the	GRANT	statement	has	to	include	the	GRANT	OPTION	clause.
This	clause	allows	the	user	to	grant	the	same	privileges	it	has	to	other	users	—	but	only
the	precise	privileges	granted	in	this	GRANT	statement.	If	we	limit	the	privileges	in	the
GRANT	statement	to	our	two	databases,	the	user	account	cannot	grant	privileges	to	other
databases.	For	instance,	execute	the	following	on	your	server	to	create	this	user	account
and	give	it	the	GRANT	OPTION	for	our	two	databases:

GRANT	ALL	PRIVILEGES	ON	rookery.*

TO	'admin_granter'@'localhost'

IDENTIFIED	BY	'avocet_123'

WITH	GRANT	OPTION;

GRANT	ALL	PRIVILEGES	ON	birdwatchers.*

TO	'admin_granter'@'localhost'

IDENTIFIED	BY	'avocet_123'

WITH	GRANT	OPTION;

This	creates	the	admin_granter@localhost	user	account,	which	has	the	privilege	of
granting	privileges	on	the	rookery	and	birdwatchers	databases	to	other	user	accounts.

This	user	account’s	privileges	are	still	fairly	limited	if	we	want	it	to	be	used	to	manage
other	user	accounts.	Suppose	we	want	this	user	account	to	create	and	drop	user	accounts
for	our	databases.	To	do	that,	we	need	to	grant	the	CREATE	USER	privilege	globally	to
admin_granter@localhost.	So	that	this	user	account	can	execute	the	SHOW	GRANTS
statement,	it	will	also	need	the	SELECT	privilege	on	the	mysql	database.	This	is	another
security	risk,	so	be	careful	who	gets	this	privilege.	Enter	these	two	SQL	statements	to	give
this	user	account	these	two	additional	privileges:

GRANT	CREATE	USER	ON	*.*

TO	'admin_granter'@'localhost';

GRANT	SELECT	ON	mysql.*

TO	'admin_granter'@'localhost';

Now	the	admin_granter@localhost	user	account	has	the	privileges	to	perform	its	tasks	of
managing	user	accounts	on	our	databases.	Let’s	test	it	by	entering	the	first	line	in	the
following	example	from	the	command	line	to	log	into	MySQL,	then	the	following	SQL
statements	from	within	the	mysql	client:

mysql	--user	admin_granter	--password=avocet_123

SELECT	CURRENT_USER()	AS	'User	Account';

+-------------------------+

|	User	Account												|

www.it-ebooks.info

http://www.it-ebooks.info/

+-------------------------+

|	admin_granter@localhost	|

+-------------------------+

CREATE	USER	'bird_tester'@'localhost';

GRANT	SELECT	ON	birdwatchers.*

TO	'bird_tester'@'localhost';

SHOW	GRANTS	FOR	'bird_tester'@'localhost';

+---+

|	Grants	for	bird_tester@localhost																														|

+---+

|	GRANT	USAGE	ON	*.*	TO	'bird_tester'@'localhost'															|

|	GRANT	SELECT	ON	`birdwatchers`.*	TO	'bird_tester'@'localhost'	|

+---+

DROP	USER	'bird_tester'@'localhost';

That	worked	well.	We	logged	in	with	the	admin_granter@localhost	user	account	and	used
the	CURRENT_USER()	to	confirm	the	user	account.	Then	we	created	a	user	with	the	SELECT
privilege	on	the	birdwatchers	database.	We	were	able	to	execute	SHOW	GRANTS	to	verify
this	and	then	successfully	issued	DROP	USER	to	delete	the	user	account.	We	can	give	this
user	account	to	someone	on	our	staff	whose	responsibility	will	be	to	manage	user	accounts
for	our	databases.

www.it-ebooks.info

http://www.it-ebooks.info/

Revoking	Privileges
So	far	in	this	chapter	we	have	been	giving	privileges	to	user	accounts.	But	there	may	also
be	times	when	you	want	to	revoke	a	privilege	that	you	gave	to	a	user	account.	Maybe	you
gave	a	privilege	by	mistake,	or	you’ve	changed	your	mind	about	which	tables	you	want
the	user	account	to	have	access,	or	changed	your	policy	about	which	tables	you	want	to
protect.

The	REVOKE	statement	revokes	all	or	certain	privileges	that	were	granted	to	a	user	account.
There	are	two	forms	of	syntax	to	do	this:	one	to	revoke	all	privileges	and	another	for
specific	privileges.	Let’s	look	at	examples	for	both	syntaxes.

Suppose	we	have	a	user,	Michael	Stone,	who	is	taking	a	leave	of	absence	for	a	few
months,	and	there	is	no	chance	he	will	access	the	database	while	he’s	gone.	We	could
delete	his	user	account,	but	instead	we	decide	to	revoke	his	user	account	privileges.	We’ll
add	them	back	when	he	returns.	To	do	this,	we	would	enter	something	like	this:

REVOKE	ALL	PRIVILEGES

ON	rookery.*

FROM	'michael_stone'@'localhost';

REVOKE	ALL	PRIVILEGES

ON	birdwatchers.*

FROM	'michael_stone'@'localhost';

The	syntax	is	similar	to	the	GRANT	statement	that	grants	all	privileges.	The	main	difference
is	that	instead	of	an	ON	clause,	there’s	a	FROM	to	revoke	privileges	from	a	user	account.
Although	Michael	may	have	had	privileges	for	only	certain	tables	in	the	two	databases,
this	removes	them	all.	We	don’t	have	to	remove	the	specific	privileges	with	multiple	SQL
statements	for	each	table.	To	give	privileges	again	to	the	user	account,	though,	we	may
have	to	use	the	GRANT	statement	many	times	as	we	would	for	a	new	user	account.

The	second	syntax	can	be	used	to	revoke	only	some	privileges.	The	specific	privileges
have	to	be	given	in	a	comma-separated	list	after	the	keyword	REVOKE.	The	privileges	for
REVOKE	are	the	same	as	for	GRANT	(see	Table	13-1).	You	can	specify	one	table	per	REVOKE
statement,	or	revoke	privileges	on	all	tables	of	a	database	by	putting	an	asterisk	in	as	the
table	name.	To	revoke	privileges	for	specific	columns,	list	them	within	parentheses	in	a
comma-separated	list	—	the	same	as	with	the	GRANT	statement.	Let’s	look	at	an	example	of
this	second	syntax.

To	keep	security	tight,	suppose	we	have	a	policy	of	removing	any	privileges	not	needed	by
user	accounts.	When	we	granted	privileges	to	the	admin_restore@localhost	user	account,
we	included	the	ALTER	privilege.	Suppose	we	have	found	that	ALTER	is	never	needed.	We
can	revoke	it	like	so:

REVOKE	ALTER

ON	rookery.*

FROM	'admin_restore'@'localhost';

REVOKE	ALTER

ON	birdwatchers.*

FROM	'admin_restore'@'localhost';

www.it-ebooks.info

http://www.it-ebooks.info/

Deleting	a	User	Account
The	DROP	USER	statement	deletes	a	user	account.	Let’s	look	at	an	example	of	how	this	is
done.	Suppose	Michael	Stone	tells	us	that	he	won’t	return	from	his	leave	of	absence
because	he	has	found	a	new	job.	We	would	execute	the	following	to	delete	his	user
account:

DROP	USER	'michael_stone'@'localhost';

TIP

If	you	use	an	older	version	of	MySQL	(i.e.,	before	5.0.2),	you	must	first	revoke	all	privileges	before	you	drop	the	user
account.	This	requires	executing	REVOKE	ALL	ON	*.*	FROM	'user'@'host'	and	then	DROP	USER	'user'@'host'.

Some	users,	like	Lena,	may	have	more	than	one	personal	user	account.	So	we	should
check	to	see	whether	there	are	any	other	accounts	associated	with	Michael	Stone.
Unfortunately,	there	isn’t	a	SHOW	USERS	statement.	Instead,	we’ll	have	to	check	the	user
table	in	the	mysql	database	like	this:

SELECT	User,	Host

FROM	mysql.user

WHERE	User	LIKE	'%michael%'

OR	User	LIKE	'%stone%';

+---------------------+-------------+

|	User																|	Host								|

+---------------------+-------------+

|	mstone														|	mstone_home	|

|	michael_zabbalaoui		|	localhost			|

+---------------------+-------------+

It	seems	that	Michael	Stone	has	another	user	account	related	to	his	home	IP	address.	After
confirming	that	it’s	his	user	account,	we’ll	drop	it	like	so:

DROP	USER	'mstone'@'mstone_home';

When	you	drop	a	user	account,	if	the	user	account	is	logged	in	and	has	active	sessions
running,	it	won’t	stop	the	sessions.	The	active	sessions	will	continue	for	the	user	account
until	the	user	exits	or	they’ve	been	idle	so	long	that	they	end.	However,	you	can	shut	down
a	user’s	activities	sooner.	First,	you	will	need	to	get	the	process	identifier	for	the	session.
You	can	do	this	be	executing	the	following:

SHOW	PROCESSLIST;

...

***************************	4.	row	***************************

						Id:	11482

				User:	mstone

				Host:	mstone_home

						db:	NULL

	Command:	Query

				Time:	78

			State:	init

				Info:	SELECT	*	FROM	`birds`

Progress:	0.000

These	are	trimmed	results,	but	we	can	see	that	mstone@mstone_home	has	an	active
connection	even	though	we’ve	dropped	this	user	account.	We’re	concerned	that	he’s
selecting	data	from	our	databases	from	his	home,	even	though	he	no	longer	works	for	us
and	isn’t	intending	on	returning.	We	can	kill	this	process	by	executing	the	following:

KILL	11482;

Notice	that	we	used	the	process	identification	number	from	the	results	of	the	SHOW

www.it-ebooks.info

http://www.it-ebooks.info/

PROCESSLIST	statement.	The	SHOW	PROCESSLIST	statement	requires	the	PROCESS	privilege,
and	the	KILL	statement	requires	the	user	account	to	have	the	SUPER	privilege	to	execute	it.
Now	that	that	session	has	been	killed	and	his	user	accounts	have	been	dropped,	he	can	no
longer	access	our	databases.	For	good	measure,	we	should	remove	his	account	from	our
server	at	the	operating	system	level,	a	topic	beyond	the	scope	of	this	book.

www.it-ebooks.info

http://www.it-ebooks.info/

Changing	Passwords	and	Names
For	better	security,	it’s	a	good	idea	to	change	the	passwords	for	user	accounts	regularly,
especially	for	accounts	with	administrative	privileges.	How	to	change	passwords	is
covered	in	the	next	subsection.	A	user	may	ask,	or	you	may	want	to	rename	a	user
account.	This	isn’t	done	as	often,	although	it	could	be	another	security	precaution.
However,	when	you	change	a	name	or	a	password,	you	should	be	mindful	of	whether	the
user	account	name	and	password	are	incorporated	into	any	scripts,	in	particular	ones	that
run	automatically	to	make	backups	of	the	databases.	You’ll	have	to	change	them	in	those
scripts,	as	well.

Setting	a	User	Account	Password
In	the	examples	throughout	this	chapter,	we	have	created	user	accounts	without	passwords
or	given	them	passwords	when	creating	the	user	accounts.	You	will	occasionally	need	to
change	the	password	for	a	user	account,	and	actually	should	do	so	regularly	for	good
security.	To	do	this,	use	the	SET	PASSWORD	statement	with	the	PASSWORD()	function	to
encrypt	the	password	given.

TIP

As	of	version	5.6,	you	can	force	a	user	to	change	their	password	by	expiring	it.	For	this,	you	would	use	the	ALTER
USER	statement	with	the	PASSWORD	EXPIRE	clause	like	this:

ALTER	USER	'admin_granter'@'localhost'	PASSWORD	EXPIRE;

The	next	time	the	user	tries	to	log	in	or	execute	an	SQL	statement,	he	will	receive	an	error	message	instructing	him	to
change	his	password.	He’ll	have	to	use	the	SET	PASSWORD	statement	to	do	that,	before	any	other	SQL	statements	can
be	executed.

Let’s	change	the	password	for	the	admin_granter@localhost	user	account:
SET	PASSWORD	FOR	'admin_granter'@'localhost'	=	PASSWORD('some_pwd_123');

That’s	not	a	very	good	password.	Let’s	change	the	password	to	something	more
complicated,	such	as	P1ed_Avoce7-79873.	For	an	extra	security	measure,	we’ll	use	our
personal	computer	to	encrypt	that	password	before	logging	onto	the	server	to	set	it	in
MySQL.	From	a	local	computer,	we’ll	execute	the	following	from	the	command	line,
assuming	MySQL	is	running	on	it:

mysql	-p	--skip-column-names	--silent	\

						--execute="SELECT	PASSWORD('P1ed_Avoce7-79873')"

*D47F09D44BA0456F55A2F14DBD22C04821BCC07B

The	result	returned	by	the	statement	is	the	encrypted	password.	We’ll	copy	that,	log	into
the	server,	and	use	it	to	change	the	password	for	admin_granter@localhost,	like	so:

SET	PASSWORD	FOR	'admin_granter'@'localhost'	=

'*D47F09D44BA0456F55A2F14DBD22C04821BCC07B';

This	will	immediately	update	the	privileges	cache	for	the	new	password.	Try	that	on	your
server	and	then	see	whether	you	can	log	in	with	the	P1ed_Avoce7-79873	password.

www.it-ebooks.info

http://www.it-ebooks.info/

TIP

If	you	forget	the	root	password,	there’s	an	easy	way	to	reset	it.	First,	create	a	simple	text	file	with	this	text,	each	SQL
statement	on	one	line:

UPDATE	mysql.user	SET	Password=PASSWORD('new_pwd')	WHERE	User='root';

FLUSH	PRIVILEGES;

Name	this	file	something	like	rt-reset.sql	and	put	it	in	a	protected	directory.	Then	start	MySQL	from	the	command
line	using	the	--init-file	option	like	so:

mysqld_safe	--init-file=/root/rt-reset.sql	&

Once	it’s	started,	log	into	MySQL	to	confirm	the	password	has	changed.	You	can	change	it	again,	if	you	want.	Then
delete	the	rt-reset.sql	file,	and	if	you	want,	restart	MySQL	without	the	--init-file	option.

Renaming	a	User	Account
A	username	can	be	changed	with	the	RENAME	USER	statement.	This	SQL	statement	can
change	the	username	and	the	host	for	the	user	account.	The	user	account	that	you	use	to
rename	another	user	account	needs	to	have	the	CREATE	USER	privilege,	as	well	as	the
UPDATE	privilege	for	the	mysql	database.

In	order	to	see	how	the	RENAME	USER	statement	works,	let’s	rename	the
lena_stankoska@lena_stankoska_home	user	account	to	lena@stankoskahouse.com,
assuming	she	is	the	owner	of	that	domain	and	will	access	our	databases	from	it.	Do	that	by
entering	the	following:

RENAME	USER	'lena_stankoska'@'lena_stankoska_home'

TO	'lena'@'stankoskahouse.com';

When	you	do	this,	all	of	the	privileges	related	to	lena_stankoska@lena_stankoska_home
will	be	changed	for	the	new	username	and	host.	Let’s	check	that	by	executing	the
following:

SHOW	GRANTS	FOR	'lena'@'stankoskahouse.com';

+--+

|	Grants	for	lena@stankoskahouse.com																																											|

+--+

|	GRANT	USAGE	ON	*.*	TO	'lena'@'...'	IDENTIFIED	BY	PASSWORD	'...'														|

|	GRANT	SELECT	ON	`rookery`.*	TO	'lena'@'...'																																		|

|	GRANT	SELECT	ON	`birdwatchers`.`eastern_birders_spottings`	TO	'lena'@'...'			|

|	GRANT	SELECT	ON	`birdwatchers`.`membership_prospects`	TO	'lena'@'...'								|

|	GRANT	SELECT	ON	`birdwatchers`.`survey_answers`	TO	'lena'@'...'														|

|	GRANT	SELECT	ON	`birdwatchers`.`surveys`	TO	'lena'@'...'																					|

|	GRANT	SELECT	ON	`birdwatchers`.`survey_questions`	TO	'lena'@'...'												|

|	GRANT	SELECT	ON	`birdwatchers`.`eastern_birders`	TO	'lena'@'...'													|

|	GRANT	SELECT	ON	`birdwatchers`.`prospects`	TO	'lena'@'...'																			|

|	GRANT	SELECT	ON	`birdwatchers`.`prize_winners`	TO	'lena'@'...'															|

|	GRANT	SELECT	ON	`birdwatchers`.`possible_duplicate_email`	TO	'lena'@'...'				|

|	GRANT	SELECT	ON	`birdwatchers`.`birdwatcher_prospects_import`	TO	'lena'@'...'|

|	GRANT	SELECT	(membership_type,	human_id,	name_last,	formal_title,	name_first)|

|							ON	`birdwatchers`.`humans`	TO	'lena'@'...'																													|

|	GRANT	SELECT	ON	`birdwatchers`.`bird_identification_tests`	TO	'lena'@'...'			|

|	GRANT	SELECT	ON	`birdwatchers`.`birdwatcher_prospects`	TO	'lena'@'...'							|

|	GRANT	SELECT	ON	`birdwatchers`.`bird_sightings`	TO	'lena'@'...'														|

|	GRANT	SELECT	ON	`birdwatchers`.`birding_events`	TO	'lena'@'...'														|

|	GRANT	SELECT	ON	`birdwatchers`.`random_numbers`	TO	'lena'@'...'														|

+--+

This	user	account	has	many	entries	in	the	grants	tables.	This	is	because	we	gave	it	some
privileges	based	on	the	tables	and	one	based	on	columns,	in	addition	to	privileges	at	the
database	level.	What’s	important	here	is	that	all	of	these	privileges	have	been	changed	for
the	user	account	when	we	renamed	it	and	changed	the	host	for	it.

www.it-ebooks.info

http://www.it-ebooks.info/

User	Roles
Creating	multiple	user	accounts	for	one	person	is	a	bit	tiresome.	Imagine	if	you	were	the
administrator	for	an	organization	with	many	users	similar	to	Lena	Stankoska.	You	would
have	to	create	a	few	user	accounts	for	each	of	them.	If	a	user	needed	certain	privileges	for
a	short	period	of	time,	perhaps	covering	for	someone	on	vacation,	you	would	have	to	grant
them	extra	privileges	and	later	revoke	the	privileges.	It	can	be	plenty	of	work	to	manage
user	accounts	like	these,	leading	eventually	to	sloppy	security	policies	(e.g.,	granting	too
many	privileges)	and	ineffective	controls	(e.g.,	poor	monitoring	of	user	accounts).	There’s
a	better	way	to	do	this.

An	alternative	method,	called	user	roles,	was	introduced	in	version	10.0.5	of	MariaDB.
It’s	not	available	in	MySQL.	User	roles	allow	you	to	a	create	a	higher-level	concept,	a
role,	and	grant	it	to	specific	user	accounts.	The	user	accounts	would	have	their	normal
privileges	for	daily	use,	but	when	they	need	to	perform	an	unusual	task	requiring	special
privileges,	they	can	temporarily	assume	the	role	you’ve	created	for	them.	When	they’re
done,	they	can	unassume	the	role.	It’s	very	convenient.	Let’s	look	at	an	example	of	how
you	would	do	this.

Earlier,	we	created	for	Lena	a	user	account	called	admin_import	with	the	FILE	privilege
for	her	to	be	able	to	execute	the	LOAD	DATA	INFILE	statement.	She’ll	use	this	to	import
data	from	text	files	into	our	databases.	This	SQL	statement	and	the	process	involved	is
covered	in	Chapter	15.	Suppose	there	are	two	other	users	—	Max	Mether	and	Ulf
Sandberg	—	who	occasionally	need	to	do	this	task.	Rather	than	create	extra	user	accounts
for	Max	and	Ulf,	in	addition	to	Lena,	we	could	give	Max	and	Ulf	the	password	for
admin_import.	But	that	would	be	an	unprofessional	security	method.	Instead,	we’ll	use	the
CREATE	ROLE	statement	to	create	a	role	that	we’ll	name,	admin_import_role	and	then	grant
that	role	to	Max	and	Ulf.

Enter	the	following	if	you	have	MariaDB	installed	on	your	server:
CREATE	ROLE	'admin_import_role';

GRANT	FILE	ON	*.*

TO	'admin_import_role'@localhost;

The	first	SQL	statement	creates	the	role.	The	next	uses	the	GRANT	statement	to	grant	the
FILE	privilege	that	this	role	will	need	to	import	files	into	the	databases.	Now	let’s	grant
this	role	to	Max	and	Ulf	—	assuming	they	already	have	user	accounts.	We	would	enter
this	on	the	MariaDB	server:

GRANT	'admin_import_role'	TO	'max'@localhost;

GRANT	'admin_import_role'	TO	'ulf'@localhost;

Now	Max	and	Ulf	can	assume	the	role	of	admin_import_role	when	they	need	it.	Max,	for
instance,	would	enter	the	following	while	he’s	logged	into	MariaDB	to	do	this:

SET	ROLE	'admin_import_role';

LOAD	DATA	INFILE…

SET	ROLE	NONE;

As	you	can	see	here,	Max	set	his	role	to	admin_import_role	and	then	executed	the	LOAD
DATA	INFILE	statement	—	I	removed	the	details	of	that	SQL	statement	and	any	others	he
might	execute	so	that	we	can	focus	just	on	the	user	role.	Then	Max	set	his	role	to	NONE	to

www.it-ebooks.info

http://www.it-ebooks.info/

unassume	the	role.

NOTE

One	drawback	with	roles	is	that	they	may	be	used	only	for	the	current	session.	This	makes	it	difficult	to	use	with	an
external	utility	such	as	mysqldump.	If	you	run	the	mysql	client	from	the	command	line	to	set	the	role	for	your	user
account	and	then	exit	mysql	or	open	a	different	terminal	to	execute	the	mysqldump,	the	dump	would	be	in	a	new	client
session	and	wouldn’t	have	the	assumed	role.	So	you	wouldn’t	have	the	privileges	you	need.

User	roles	work	well	and	are	much	easier	than	creating	many	user	accounts	and	setting
passwords	and	privileges	for	each.	They’re	ideal	for	granting	someone	a	role	temporarily.
They	make	the	management	of	user	accounts	and	privileges	easier	for	you	as	an
administrator.	For	users,	they	will	need	to	enter	only	one	username	and	password	for	all	of
their	activities.	They	will	need	only	to	assume	a	role	when	necessary.	Of	course,	you	will
have	to	rely	on	each	user	to	assume	the	role	only	when	necessary,	and	to	reset	the	role	to
NONE	afterward.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
When	you	first	start	as	a	database	administrator,	you	may	have	a	tendency	to	create	a
minimal	number	of	user	accounts	—	you	may	even	try	to	use	only	the	root	user	account.
However,	you	should	learn	not	to	use	root	and	to	instead	use	various	user	accounts.	You
should	also	learn	to	give	each	person	at	least	one	personal	user	account	—	try	not	to	allow
sharing	of	user	accounts,	if	practical.	Additionally,	learn	to	give	access	only	to	databases
and	tables	that	are	needed	by	each	user	account	and	only	the	privileges	needed.	This	may
be	tedious,	but	it’s	a	good	security	practice	—	not	just	to	protect	sensitive	data,	but	to
protect	data	from	being	lost	and	schema	being	changed	or	deleted	inadvertently.

There	are	several	options	related	to	user	accounts	and	security	that	we	did	not	discuss.
Some	options	limit	the	number	of	connections	at	a	time	or	per	hour	for	a	user	account.
There	are	several	functions	for	encrypting	and	decrypting	strings	that	may	be	used	for
passwords.	You	probably	won’t	need	these	often,	especially	not	as	a	newcomer	to	MySQL
and	MariaDB.	However,	you	can	find	more	information	on	them	in	my	book,	MySQL	in	a
Nutshell,	or	on	the	MySQL	Resources	site.

www.it-ebooks.info

http://bit.ly/mysql-nutshell-2e
http://mysqlresources.com
http://www.it-ebooks.info/

Exercises
Although	you	can	easily	refer	back	to	this	chapter	for	the	syntax	for	using	CREATE	USER,
GRANT,	REVOKE,	and	DROP	USER,	you	should	try	to	learn	them	well	without	having	to	do	so
every	time.	The	SHOW	GRANTS	statement	can	help	you	to	remember	the	syntax.	Still,	if	you
know	these	SQL	statements	well,	you	will	be	more	likely	to	tweak	user	account	privileges.
Otherwise,	you	might	resort	to	using	the	same	user	accounts	for	everyone	in	your	database
department	and	giving	each	user	account	all	privileges.	The	exercises	here	are	therefore
intended	to	make	you	more	familiar	and	comfortable	with	these	SQL	statements.
However,	you	will	need	to	discipline	yourself	to	always	maintain	good	policies	about
managing	user	accounts	and	privileges.

1.	 Log	onto	your	server	and	use	the	CREATE	USER	statement	to	create	an	administrative
user	account	with	the	username	admin_boss	and	the	host	localhost.
Then	use	the	GRANT	statement	to	give	this	account	ALL	privileges	on	the	rookery	and
birdwatchers	databases,	and	the	SUPER	privilege	to	be	able	to	change	server
settings.	Also	give	the	account	the	GRANT	OPTION	rights,	covered	in	User	Account	to
Grant	Privileges.	You	may	have	to	use	the	GRANT	statement	more	than	once.	Be	sure
to	use	the	IDENTIFIED	BY	clause	at	least	once	to	set	the	password	for	the	user
account.
When	you’ve	finished	creating	this	user	account,	exit	MySQL	and	try	to	log	in	again
with	the	admin_boss	user	account	to	be	sure	the	password	was	entered	correctly.	Try
using	this	user	account	instead	of	root	for	now	on.

2.	 While	logged	into	the	server	as	admin_boss,	use	the	GRANT	statement	to	create	a	user
named	sakari	for	the	localhost.	Assign	the	user	account	only	the	SELECT,	INSERT,
and	UPDATE	privileges	on	the	rookery	and	birdwatchers	databases.	Be	sure	to	give
the	user	account	a	password.	Do	all	of	this	in	one	GRANT	statement.	When	you’re
finished,	exit	MySQL.
Log	into	MySQL	with	the	sakari@localhost	user	account	you	created.	Execute	the
SHOW	DATABASES	statement	to	make	sure	you	see	only	the	two	default	databases	and
our	two	databases.	Execute	a	SELECT	to	get	a	list	of	rows	from	the	humans	table	in
the	birdwatchers	database.	Use	the	INSERT	statement	to	insert	one	row	with
minimal	data.	Then	use	the	UPDATE	statement	to	change	the	data	in	at	least	one
column	for	the	row	you	added.	You	should	be	able	to	do	all	of	this.	If	you	can’t,	log
in	as	admin_boss	and	use	SHOW	GRANTS	to	see	how	the	permissions	look	for
sakari@localhost.	Fix	whatever	is	wrong	or	missing	and	test	the	user	account	again.
Now	try	to	delete	the	row	you	added	with	DELETE,	while	logged	in	with	the
sakari@localhost	user	account	—	not	admin_boss.	You	shouldn’t	be	able	to	do	that
with	this	user	account.

3.	 While	logged	into	the	server	as	admin_boss,	use	the	REVOKE	statement	to	revoke	the
INSERT	and	UPDATE	privileges	from	the	sakari@localhost	user	account	you	created	in
the	second	exercise.	When	finished,	exit	MySQL.
Log	into	MySQL	with	the	sakari@localhost	user	account.	Try	to	use	the	INSERT
statement	to	insert	another	row	in	the	humans	table.	You	shouldn’t	be	able	to	do	this.
If	sakari	still	has	the	user	privilege,	log	back	into	MySQL	with	admin_boss	and
determine	what	you	did	wrong	when	you	executed	the	REVOKE	statement	and	fix	it.
Then	try	again	to	insert	a	row	using	sakari.

www.it-ebooks.info

http://www.it-ebooks.info/

4.	 Log	into	the	server	with	admin_boss	and	change	the	password	for	the
sakari@localhost	user	account	(this	was	covered	in	Changing	Passwords	and
Names).	When	finished,	log	out	of	MySQL.
Log	in	with	sakari,	using	the	new	password.	Then	press	the	up	arrow	key	on	your
keyboard	a	few	times.	Check	whether	you	can	you	see	the	sakari@localhost
password	in	one	of	the	entries.	If	so,	this	means	that	other	users	may	also	be	able	to
see	the	password.	Exit	MySQL	when	finished	checking.
From	the	command	line	using	the	mysql	client	on	your	personal	computer	—
preferably	not	on	the	server	—	execute	the	SET	statement,	using	the	PASSWORD()
function	to	get	an	encrypted	password	for	sakari@localhost.	Set	a	different
password.	For	an	example	of	how	to	do	this,	refer	to	Changing	Passwords	and
Names.
Log	into	the	server	with	admin_boss	and	change	the	password	for	sakari@localhost
using	the	encrypted	password	without	the	PASSWORD()	function	and	plain	text	this
time.	Then	log	out	and	back	in	as	sakari	with	the	new	password.	Press	the	up	arrow
a	few	times	to	see	that	it	shows	the	new	password	encrypted	and	not	in	plain	text	this
time.

5.	 Log	into	the	server	with	admin_boss	and	use	the	DROP	USER	statement	to	drop	the
sakari@localhost	user	account.	Then	log	out	and	try	logging	in	as	sakari.	You
shouldn’t	be	able	to	do	that.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	14.	Backing	Up	and	Restoring
Databases
A	database	is	often	the	culmination	of	the	work	of	many	people,	sometimes	thousands	of
people.	The	organization	creating	the	database	employs	developers	and	administrators.
Then	there	are	people	who	contribute	content,	and	who	may	be	employees	or	members	of
the	organization.	But	much	of	the	content	of	a	database	can	come	from	other	people,	such
as	clients,	and	unknown	people	providing	content	through	a	website.	The	amount	of	data
can	be	enormous.	It’s	not	unusual	for	even	a	small	site	to	accumulate	thousands	of	rows	of
data.	A	large	site	could	easily	have	millions	of	rows	of	data.	All	of	this	content	—	all	of
this	work	from	hundreds	or	thousands	of	people	—	can	be	lost	easily,	through	something
as	simple	as	the	failure	of	a	hard	drive	on	the	server.	Because	of	this,	it’s	essential	to	make
backups	regularly	and	correctly:	too	many	and	too	much	depend	on	it.

If	you’re	going	to	be	a	database	administrator,	you	will	need	to	understand	how	to	make
backups	and	restore	them.	You	will	need	to	develop	a	plan	of	what	will	be	backed	up,	as
well	as	when	and	where.	In	addition,	you	will	need	to	check	occasionally	that	backups	are
not	failing.	You	shouldn’t	wait	until	you	need	to	restore	data	to	find	that	the	backups
haven’t	been	working.	And	you	will	need	practice	restoring	backups	so	that	you	will	be
ready	when	you	need	to	quickly	restore	them.	We	will	cover	all	of	this	in	this	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Making	Backups
One	of	the	best	utilities	you	can	use	to	make	backup	copies	of	data	in	MySQL	or	MariaDB
is	mysqldump.	It’s	included	with	both	servers	and	it	costs	you	nothing.	You	probably
already	have	it	installed	on	your	server.	Best	of	all,	it	doesn’t	require	you	to	shut	down
MySQL	services	to	make	a	backup,	although	you	might	restrict	access	to	the	backup
utility	for	better	consistency	of	data.	There	are	other	backup	utilities	(e.g.,	MySQL
Enterprise	Backup	and	Percona	XtraBackup),	some	with	a	GUI	and	some	that	are	more
comprehensive.	You	can	learn	about	other	types	of	backups	and	tools	in	the	book	MySQL
Troubleshooting	(O’Reilly)	by	Sveta	Smirnova.	However,	mysqldump	is	the	most	popular
one,	and	as	a	new	administrator,	you	should	know	how	to	use	it,	even	if	you	later	will	use
one	of	the	commercial	releases.	We	will	use	this	utility	for	the	examples	in	this	chapter.

The	mysqldump	utility	works	very	simply:	it	queries	the	server	for	the	schema	and	data	of
each	database	and	table	and	exports	all	of	this	to	a	text	file.	The	default	text	file	it	creates,
which	is	known	as	a	dump	file,	includes	the	SQL	statements	necessary	to	reconstruct	the
databases	and	data.	If	you	were	to	open	a	dump	file	generated	by	mysqldump,	you	would
see	CREATE	TABLE	statements	and	a	multitude	of	INSERT	statements.	That	may	seem
cumbersome,	but	it’s	simple	and	manageable.

The	mysqldump	utility	offers	many	options.	You	can	make	a	backup	of	all	of	the
databases,	or	only	specific	ones.	You	can	also	back	up	just	specific	tables.	In	this	section,
we’ll	look	at	many	of	the	available	options	and	go	through	some	examples	of
combinations	for	common	uses.

Backing	Up	All	Databases
The	simplest	way	to	make	a	backup	is	to	dump	all	of	the	databases	with	all	of	the	tables
and	their	data.	You	can	do	this	easily	with	mysqldump.	Try	executing	something	like	the
following	at	the	command	line	on	your	server,	using	the	administrative	user	you	created	in
Chapter	13.	You’ll	have	to	change	the	path	given	from	/data/backups/,	to	a	path	on	your
server.	Or	you	can	omit	it	and	the	dump	file	will	be	created	in	the	current	directory:

mysqldump	--user=admin_backup	\

										--password	--lock-all-tables	

										--all-databases	>	/data/backups/all-dbs.sql

The	options	used	here	include	the	following:
--user=admin_backup

Tells	the	utility	to	act	as	the	user	named	admin_backup	when	interacting	with	the
MySQL	server.	I	showed	how	to	create	this	user	in	Restricting	the	Access	of	User
Accounts,	so	create	a	special	user	with	the	right	privileges	now	if	you	have	not	already
done	so.	Although	you	might	be	tempted	to	use	the	root	user	for	backups,	you	should
always	use	a	special	administrative	user,	as	we’re	doing	here.	The	user	just	needs	the
proper	permissions	to	lock	tables	and	read	data	from	all	the	databases	and	tables.

--password

www.it-ebooks.info

http://bit.ly/mysql-trouble
http://www.it-ebooks.info/

Tells	the	utility	that	the	user	needs	to	be	prompted	for	a	password,	which	will	have	to	be
typed	in	on	the	next	line	when	asked.	This	acts	the	same	way	as	the	mysql	client.	If	the
backup	is	to	be	executed	by	cron	through	a	shell	script,	this	option	can	be	changed	to	--
password=my_pwd,	where	my_pwd	is	the	password.	That	means,	though,	that	the
password	will	be	in	crontab	in	plain	text.	This	is	a	good	example	of	why	you	shouldn’t
use	the	root	user.

--lock-all-tables

Makes	MySQL	lock	all	of	the	tables	before	performing	the	backup.	The	lock	won’t	be
released	until	the	process	is	finished.	For	a	busy	database	with	many	users,	locking	all
of	the	tables	for	a	lengthy	period	of	time	can	create	problems.	We’ll	look	at	alternatives
in	a	bit.

--all-databases

Specifies	that	all	of	the	databases	are	to	be	exported.	In	the	next	subsection,	in	which
we	will	backup	only	some	databases,	we’ll	replace	this	option	with	another	so	that	we
may	specify	the	databases	to	backup.

The	greater-than	sign	in	the	command	line	shown	here	is	a	shell	redirect	of	the	standard
output	(STDOUT)	to	the	path	and	filename	given	after	it.	Set	the	path	and	filenames	to	suit
your	system	and	preferences.

The	resulting	dump	file	will	generally	contain	separate	INSERT	statements	for	each	row	or
each	table.	To	bundle	INSERT	statements	into	one	statement	for	each	table	in	the	dump	file,
include	the	--extended-insert	option.	This	will	make	a	smaller	dump	file.	Additionally,
the	combined	INSERT	statements	will	execute	faster	when	you	have	to	restore	a	database.
If	your	server	generates	extended	inserts	in	a	dump	file	by	default,	but	you	prefer	them	as
separate	statements,	use	the	--skip-extended-insert	option.

The	INSERT	statements	don’t	include	the	column	names	—	it	just	lists	the	values	in	the
same	order	as	the	columns.	If	you	want	the	column	names	included,	though,	you	would
add	the	--complete-insert	option.

NOTE

You	can	put	the	options	in	any	order	after	the	mysqldump	command.	You	just	have	to	put	any	values	you	want	to	pass
to	an	option	immediately	after	it.	The	only	other	order	requirement	is	the	final	piece,	the	shell	redirect	—	but	that’s
actually	a	shell	operator	and	isn’t	part	of	the	mysqldump	command.	Basically,	the	ordering	of	options	is	very	much
like	any	command.

MySQL	utilities	used	to	offer	shorter,	single-hyphen	options,	such	as	-u	for	--user.	But
the	short	names	are	being	deprecated	and	may	not	be	available	in	the	future.

TIP

When	making	backups	of	InnoDB	or	other	transactional	tables	with	mysqldump,	it’s	best	to	include	the	--single-
transaction	option.	This	will	keep	the	data	more	consistent.	It	won’t	change	between	the	tables	until	the	dump	is
finished.	However,	that	option	will	cancel	the	--lock-tables	option.	This	means	that	a	backup	of	MyISAM	tables	in
the	same	database	could	be	inconsistent.	You	can	avoid	this	potential	problem	by	either	using	the	same	storage	engine
for	all	of	the	tables	in	a	database,	or	making	separate	backups	of	InnoDB	tables	and	MyISAM	tables.

Backing	up	all	of	the	databases	at	once	with	mysqldump	may	result	in	one	large	dump	file.
For	smaller	databases	and	as	part	of	a	regular	routine,	this	is	fine	and	managable.

www.it-ebooks.info

http://www.it-ebooks.info/

However,	for	larger	databases,	this	method	could	take	much	longer	to	complete	the
backup,	disrupting	traffic	while	tables	are	locked,	and	later	it	may	make	restoration
bothersome.	Instead,	you	can	construct	a	more	adept	backup	method.	For	instance,	it
might	be	useful	to	perform	a	separate	backup	for	each	large	database,	leaving	several
smaller	dump	files.	You	could	also	back	up	larger	and	more	active	databases	during	slower
traffic	times	so	that	you	don’t	diminish	database	and	web	services.	We’ll	discuss	later	how
to	specify	which	databases	to	back	up	and	some	backup	strategies.	For	now,	let’s	take
some	time	to	become	familiar	with	dump	files.

WARNING

There’s	a	security	concern	about	making	backups	of	all	of	the	databases,	as	it	could	include	the	user	table	in	the
mysql	database.	This	table	contains	usernames	and	passwords.	You	can	eliminate	it	from	a	backup	by	adding	--
ignore-table=mysql.user	to	the	mysqldump	at	the	command	line	when	creating	the	dump	file.	To	make	a	backup
occasionally	of	just	the	mysql.user,	though,	you	might	use	a	different	user	account	for	the	backup	and	write	the
dump	files	to	a	protected	directory	or	somewhere	safe.

Understanding	Dump	Files
After	the	mysqldump	command	in	the	previous	section	has	finished	running,	use	a	simple
text	editor	to	open	the	dump	file	that	it	generated.	Scroll	through	the	file	to	examine	the
contents.	You’ll	notice	quite	a	few	things:	the	utility	annotates	the	dump	file,	sets	certain
variables,	then	lists	CREATE	DATABASE,	CREATE	TABLE,	and	many	INSERT	statements.	Let’s
review	a	few	of	those	entries	so	you’ll	have	a	better	understanding	of	dump	files.	This	will
be	useful	later	when	you	need	to	restore	a	database.

First,	let’s	look	at	the	header.	Here’s	an	example	of	the	first	few	lines	in	a	dump	file
generated	by	mysqldump	using	the	settings	from	the	previous	example:

--	MySQL	dump	10.14		Distrib	5.5.39-MariaDB,	for	Linux	(i686)—--	Host:	localhost				Database:	

rookery—--—Server	version							5.5.39-MariaDB

The	first	line	of	the	dump	file	lists	the	version	of	mysqldump	that	was	used	and	the
distribution	of	MySQL,	or	in	this	case,	MariaDB,	and	on	which	operating	system	the
command	was	executed.	Next,	we	see	that	the	dump	was	executed	while	logged	into	the
server,	from	the	local	host.	On	the	same	line,	we	find	the	name	of	the	first	database	to	be
backed	up.	The	next	line,	after	some	dashes	for	nicer	formatting,	is	the	version	number	of
MariaDB	—	that	was	given	in	the	line	showing	the	distribution,	but	here	it’s	more	clearly
listed.

Next	in	the	dump	file	come	a	batch	of	SET	statements	that	look	something	like
Example	14-1.

Example	14-1.	Conditional	SET	commands	in	dump	file
/*!40101	SET	@OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT	*/;

/*!40101	SET	@OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS	*/;

/*!40101	SET	@OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION	*/;

/*!40101	SET	NAMES	utf8	*/;

/*!40103	SET	@OLD_TIME_ZONE=@@TIME_ZONE	*/;

/*!40103	SET	TIME_ZONE='+00:00'	*/;

/*!40014	SET	@OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS,	UNIQUE_CHECKS=0	*/;

/*!40014	SET	@OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS,	FOREIGN_KEY_CHECKS=0	*/;

/*!40101	SET	@OLD_SQL_MODE=@@SQL_MODE,	SQL_MODE='NO_AUTO_VALUE_ON_ZERO'	*/;

/*!40111	SET	@OLD_SQL_NOTES=@@SQL_NOTES,	SQL_NOTES=0	*/;

The	way	these	SET	statements	are	enclosed	between	/*	and	*/,	they	may	seem	to	be
comments	that	won’t	be	processed.	However,	they’re	SQL	statements	or	tokens	that	will

www.it-ebooks.info

http://www.it-ebooks.info/

will	executed	conditionally	based	on	the	version	of	MySQL	or	MariaDB	that	is	installed
on	the	server.	That’s	why	the	lines	start	with	/*!	and	not	just	/*.	Within	the	dump	file,
comment	lines	are	prefaced	instead	with	--.

You	can	reduce	the	size	of	the	dump	file	by	including	one	or	more	of	the	following
options	when	running	mysqldump:
--skip-add-drop-table

Leave	out	DROP	TABLE	statements	that	clean	up	old	tables.
--skip-add-locks

Dump	without	first	locking	each	table.
--skip-comments

Suppress	comments	in	the	file.
--skip-disable-keys

Suppress	commands	that	manipulate	the	indexes	in	the	tables.
--skip-set-charset

Suppress	SET	NAMES	statements	that	control	the	character	set	in	use.
--compact

Use	all	of	the	previous	options	in	this	list.

Some	of	the	options	in	the	preceding	list	have	potentially	risky	consequences.	For
instance,	if	you	don’t	set	the	character	set,	you	may	end	up	with	the	wrong	one,	and	if	you
don’t	lock	the	tables	while	the	server	is	running,	it	could	make	changes	while	you’re
dumping	and	end	up	with	an	inconsistent	table	in	the	backup.

Because	a	dump	file	may	be	used	to	copy	databases	from	one	server	to	another,	and	not
just	for	backup	and	recovery	on	the	same	server,	the	conditional	statements	are	used	to
check	that	the	server	for	which	the	SQL	statements	in	the	dump	file	will	be	executed.	This
is	necessary	so	that	there	won’t	be	any	problems	when	starting	to	execute	the	SQL
statements	that	create	tables	and	insert	data.	When	the	dump	file	is	executed,	it	will	restore
or	re-create	the	databases	and	tables	exactly	as	they	were	at	the	time	of	the	dump.

Let’s	look	back	at	the	first	SET	command:
/*!40101	SET	@OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT	*/;

This	line	starts	by	specifying	that	the	command	will	be	executed	only	if	the	version	of
MySQL	or	MariaDB	is	at	least	4.01.01.	mysqldump	makes	sure	in	this	way	that	it	won’t
try	to	invoke	a	feature	on	old	versions	of	databases	that	don’t	support	the	feature.	It’s
assumed	that	once	a	feature	is	supported,	all	future	versions	of	the	server	will	continue	to
support	it.	The	SQL	statement	that	follows	saves	the	current	value	of	the
CHARACTER_SET_CLIENT	global	variable.	If	you	look	back	at	Example	14-1,	you’ll	see	that
the	subsequent	lines	save	CHARACTER_SET_RESULTS	and	COLLATION_CONNECTION	as	well.
The	fourth	line	then	sets	all	three	variables	to	utf8	with	NAMES	—	that’s	an	abbreviation
for	these	three	variables.

If	you	skip	to	the	very	end	of	the	dump	file,	you’ll	see	a	similar	batch	of	SQL	statements

www.it-ebooks.info

http://www.it-ebooks.info/

that	look	like	this:
/*!40103	SET	TIME_ZONE=@OLD_TIME_ZONE	*/;

/*!40101	SET	SQL_MODE=@OLD_SQL_MODE	*/;

/*!40014	SET	FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS	*/;

/*!40014	SET	UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS	*/;

/*!40101	SET	CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT	*/;

/*!40101	SET	CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS	*/;

/*!40101	SET	COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION	*/;

/*!40111	SET	SQL_NOTES=@OLD_SQL_NOTES	*/;

--	Dump	completed	on	2014-09-14		6:13:40

These	conditional	SQL	statements	reverse	the	first	batch	of	conditional	SQL	statements.
They	use	the	variables	that	were	created	at	the	start	to	set	the	global	variables	back	to	their
old	settings.	You’ll	see	many	conditional	statements	like	these	throughout	the	dump	file.
This	resetting	of	key	characteristics	makes	it	important	to	lock	tables	when	restoring	a
dump	file,	so	that	the	results	of	such	SET	statements	won’t	affect	any	data	changes	that
users	might	make	during	the	restoration	of	a	database.

Let’s	go	back	to	the	start	of	the	dump	file	and	look	at	the	lines	that	follow	the	initial
conditional	SQL	statements.	You	should	see	something	like	this:

--—Current	Database:	`rookery`—

CREATE	DATABASE	/*!32312	IF	NOT	EXISTS*/	`rookery`

/*!40100	DEFAULT	CHARACTER	SET	latin1	COLLATE	latin1_bin	*/;

USE	`rookery`;

The	first	three	lines	present	a	header	comment	so	that	when	you	review	the	dump	file,	you
will	know	that	this	is	the	start	of	the	section	related	to	the	rookery	database.	The	first	SQL
statement,	reasonably	enough,	is	a	CREATE	DATABASE	statement.	It	can	look	a	bit	confusing
because	it	contains	a	couple	of	conditional	components,	which	are	related	to	the	version	of
MySQL	or	MariaDB	on	which	the	statement	will	later	be	executed.	Let’s	look	at	one	of
those	components.

In	this	SQL	statement,	IF	NOT	EXISTS	will	be	executed	if	the	server	is	running	at	least
version	3.23.12	of	MySQL.	That’s	quite	an	old	version	of	MySQL,	but	this	option	was
introduced	in	that	version	and	release	of	MySQL	and	hasn’t	changed	since.	It’s	unlikely
that	a	server	anywhere	in	the	world	is	still	using	such	an	early	version,	but	this	is	the
nature	of	mysqldump,	to	be	ready	for	any	conflict.	More	important	is	the	option	itself.	If
the	rookery	database	already	exists,	it	won’t	be	created	with	this	CREATE	DATABASE
statement	and	it	won’t	be	overwritten.	Incidentally,	if	you	want	to	create	a	dump	file
without	CREATE	DATABASE	and	without	CREATE	TABLE	statements,	you	can	add	the	--no-
create-info	option	when	running	mysqldump.

The	last	SQL	statement	in	the	previous	snippet	switches	the	default	database	to	use	to
rookery.	You	may	wonder	why	the	utility	uses	the	USE	statement	instead	of	just	including
the	database	name	in	the	subsequent	SQL	statements	(e.g.,	it	doesn’t	have	statements	like,
INSERT	INTO	`rookery`.`bird_families`...).	That	would	seem	to	me	more
dependable	of	a	method,	but	the	method	used	has	an	advantage.	When	executing	a	dump
table,	if	you	want	to	create	a	new	database	on	the	same	server,	but	with	all	of	the	tables
and	data	the	same,	you	can	simply	edit	the	USE	statement	in	the	dump	file	and	change	the
database	name	(e.g.,	change	rookery	to	rookery_backup)	in	one	place.	Then	the	original
will	be	preserved	and	you’ll	have	an	identical	copy.	We’ll	talk	more	about	this	later.	Let’s

www.it-ebooks.info

http://www.it-ebooks.info/

look	at	what’s	next	in	the	dump	file.

The	next	section	of	the	dump	file	deals	with	the	first	table	of	the	rookery	database.	As	the
following	excerpt	shows,	it’s	the	table	structure	of	the	bird_families	table:

--—Table	structure	for	table	`bird_families`—

DROP	TABLE	IF	EXISTS	`bird_families`;

/*!40101	SET	@saved_cs_client					=	@@character_set_client	*/;

/*!40101	SET	character_set_client	=	utf8	*/;

CREATE	TABLE	`bird_families`	(

		`family_id`	int(11)	NOT	NULL	AUTO_INCREMENT,

		`scientific_name`	varchar(100)	COLLATE	latin1_bin	DEFAULT	NULL,

		`brief_description`	varchar(255)	COLLATE	latin1_bin	DEFAULT	NULL,

		`order_id`	int(11)	DEFAULT	NULL,

		PRIMARY	KEY	(`family_id`),

		UNIQUE	KEY	`scientific_name`	(`scientific_name`)

)	ENGINE=MyISAM	AUTO_INCREMENT=334	DEFAULT	CHARSET=latin1	COLLATE=latin1_bin;

/*!40101	SET	character_set_client	=	@saved_cs_client	*/;

The	first	SQL	statement	here	may	concern	you.	It	should.	It’s	a	DROP	TABLE	statement	that
will	delete	the	bird_families	table.	No	data	ought	to	be	lost	because	the	following	SQL
lines	will	re-create	the	table	and	insert	data	into	it	from	the	time	the	dump	file	was	created.
However,	if	there	have	been	changes	to	the	data	in	the	bird_families	table	since	the
dump	file	was	created,	those	changes	will	be	lost	when	the	table	is	restored	to	its	previous
state.	For	such	a	situation,	there	are	other	methods	you	can	resort	to	besides	the	bulk
clobbering	of	tables.	One	method	uses	the	suggestion	made	previously	to	alter	the	USE
statement	to	point	all	schema	and	data	statements	to	a	different,	temporary	database.	Then
you	can	attempt	to	merge	the	old	and	new	data	together.	Depending	on	the	situation,	you
might	be	able	to	do	this	by	changing	the	INSERT	to	a	REPLACE	statement.	Another	method
would	be	to	remove	the	DROP	TABLE	statement	and	change	the	name	of	CREATE	TABLE
statement	that	follows	to	create	a	new	table	name.	We’ll	cover	such	techniques	later	in	this
chapter	in	Restoring	Backups.

The	IF	EXISTS	option	ensures	that	a	restore	will	drop	the	table	only	if	it	exist.	If	this
statement	was	omitted,	a	restore	would	probably	try	to	run	the	statement	when	the	table
didn’t	exist,	and	thus	generate	an	error	that	could	abort	the	restore.

After	the	DROP	TABLE	statement,	there	are	more	conditional	SQL	statements	for	variables
related	to	the	table	and	the	client.	These	are	followed	by	the	CREATE	TABLE	statement,
which	matches	the	results	of	a	SHOW	CREATE	TABLE	statement	for	the	table.	This	section
ends	by	returning	the	variable	changed	to	its	previous	setting.

Now	the	bird_families	table	is	ready	for	the	data.	The	next	set	of	entries	in	the	dump	file
are:

--—Dumping	data	for	table	`bird_families`—

LOCK	TABLES	`bird_families`	WRITE;

/*!40000	ALTER	TABLE	`bird_families`	DISABLE	KEYS	*/;

INSERT	INTO	`bird_families`	VALUES

...

/*!40000	ALTER	TABLE	`bird_families`	ENABLE	KEYS	*/;

UNLOCK	TABLES;

After	the	comment	appears	a	LOCK	TABLES	statement	to	lock	the	bird_families	table.	It

www.it-ebooks.info

http://www.it-ebooks.info/

includes	the	WRITE	option	so	that	the	data	in	the	table	cannot	be	changed	during	the
restoration	of	the	table.	Users	can’t	read	the	table	either.	Another	thought	may	have
occurred	to	you	now:	mysqldump	is	write-locking	tables	one	at	a	time,	as	needed.	That
may	be	what	you	want,	making	other	tables	available	for	reading	and	writing	when	they’re
not	being	dumped.	However,	this	may	cause	a	problem	with	the	consistency	of	the	data.

For	example,	suppose	during	backup	is	at	the	point	where	it	has	preserved	the	contents	of
the	humans	table	but	not	the	bird_sightings	table	in	the	birdwatchers	database.	At	this
point,	you	decided	to	delete	someone	from	the	humans	table	along	with	entries	in	the
bird_sightings	table	for	that	person.	After	that,	mysqldump	backs	up	the
bird_sightings	table.	If	you	were	later	to	restore	the	entire	birdwatchers	database,	you
would	have	an	entries	in	the	bird_sightings	table	for	a	person	who	isn’t	listed	in	the
humans	table.

If	a	database	isn’t	very	active,	the	previous	scenario	is	unlikely.	However,	if	you	want	to
be	assured	of	the	consistency	of	your	data,	when	executing	the	mysqldump	utility,	you
could	add	the	--lock-tables	option.	This	locks	all	tables	in	a	database	before	backing	it
up,	and	leaves	them	locked	until	the	backup	of	the	database	is	completed.	When	making	a
backup	of	multiple	databases,	this	option	still	locks	only	the	tables	in	one	database	at	a
time,	releasing	them	before	starting	the	next	database.	If	you’re	concerned	about
consistency	between	databases	—	that	is	to	say,	if	data	in	one	database	depends	on	data	in
another	database	—	use	the	--lock-all-tables	option	to	lock	all	of	the	tables	in	all	of
the	databases	until	the	dump	is	completed.

In	the	previous	excerpt,	the	LOCK	TABLES	statement	is	followed	by	a	conditional	statement
(i.e.,	ALTER	TABLE…DISABLE	KEYS)	to	alter	the	bird_families	table	so	as	to	disable	the
keys.	This	can	save	time	when	the	table	is	restored.	When	the	INSERT	statement	that
follows	—	truncated	in	the	example	to	save	space	—	is	executed,	data	will	be	inserted
much	faster	if	MySQL	doesn’t	have	to	index	all	of	the	data	as	it’s	inserted.	Instead,
another	ALTER	TABLE	statement	will	be	executed	conditionally	to	enable	the	keys	again.
When	that	occurs,	the	table	will	be	indexed.	This	method	uses	a	special	algorithm	that	is
generally	much	faster	when	performed	for	the	entire	table	at	once,	rather	than	when	each
row	is	inserted.

TIP

Conditional	components	like	DISABLE	KEYS	are	included	if	the	--disable-keys	option	is	set	by	default	on	the	server.
If	you	don’t	see	them	in	the	dump	files	created	by	mysqldump,	it	isn’t	set	by	default	on	your	system.	It	can	be	added
when	mysqldump	is	executed	at	the	command	line,	or	it	can	be	added	to	the	MySQL	configuration	file	under	the
[mysqldump]	heading.

The	last	line	of	the	previous	excerpt	issues	an	UNLOCK	TABLES	statement	to	unlock	the
tables	that	were	locked	at	the	start	of	this	section	of	the	dump	file.

In	summary,	the	basic	pattern	for	each	table	is	to	establish	the	table	structure	and	then
address	the	data.	To	establish	the	table	structure,	the	dump	file	generally	contains	SQL
statements	to	drop	the	table,	set	related	temporary	variables,	re-create	the	table,	and	then
restore	the	variables.	To	deal	with	the	data	when	it	re-creates	the	table,	it	locks	the	table,
disables	the	keys,	inserts	all	of	the	data,	and	then	re-enables	the	keys	and	unlocks	the
table.	This	pattern	is	repeated	for	each	table	in	the	database.	When	the	command	has
finished	dumping	all	of	the	tables	in	the	database,	it	will	proceed	to	the	next	database,	and

www.it-ebooks.info

http://www.it-ebooks.info/

continue	until	it	has	finished	all	of	the	databases,	because	in	this	example	it	was	instructed
to	make	a	backup	of	all	of	the	databases.

The	contents	of	a	dump	file	created	by	mysqldump	can	vary	depending	on	the	version	of
the	utility	and	the	default	settings.	It	also	can	vary	depending	on	the	databases	it’s
dumping	and	what	instructions	are	given	with	the	options	at	the	command	line.	However,
this	review	of	an	example	of	a	dump	file	should	give	you	a	good	sense	of	how	to	read	one.
Let’s	return	now	to	making	backups	with	mysqldump.

Backing	Up	Specific	Databases
Before	we	concerned	ourselves	so	much	with	the	contents	of	the	dump	file,	we	were
experimenting	with	making	backups,	learning	how	to	back	up	all	databases	on	the	server.
However,	you	may	want	to	export	only	one	database,	or	only	specific	ones.	Let’s	see	how
to	do	that.

To	export	only	one	database	and	not	all,	instead	of	using	the	--all-databases	option,	use
the	--databases	option	followed	by	the	name	of	the	database.	Try	making	a	back-up	of
just	the	rookery	database	by	entering	the	following	on	your	server	from	the	command
line:

mysqldump	--user=admin_backup	--password	--lock-tables	\

										--verbose	--databases	rookery	>	rookery.sql

This	is	basically	the	same	as	the	example	that	dumped	all	of	the	databases,	except	that
we’ve	specified	the	database	to	be	exported,	rookery.	As	mentioned	before,	you	may	want
to	make	separate	backups	of	databases	to	reduce	the	load	on	a	busy	server	and	to	make
restoration	more	manageable.	Incidentally,	if	for	some	reason	you	want	to	make	a	backup
of	a	database’s	schema	without	the	data,	you	can	use	the	--no-data	option.	The	command
would	then	dump	only	the	database	and	table	schemas	and	not	the	rows	of	data.

You	may	have	noticed	in	the	previous	example	that	we	added	the	--verbose	option.	This
option	instructs	the	utility	to	display	messages	regarding	each	major	step	in	the	process	of
querying	the	database	and	creating	the	dump	file.	For	our	database,	running	this	command
produces	messages	like	this:

--	Connecting	to	localhost…—Retrieving	table	structure	for	table	bird_families…—Sending	SELECT	

query…—Retrieving	rows…—Retrieving	table	structure	for	table	bird_images…

...—Disconnecting	from	localhost…

Sometimes	these	messages	can	be	useful,	especially	when	there	are	problems,	to	know
which	tables	are	dumped	successfully	and	when	problems	occur.

To	export	multiple	databases,	just	enter	them	after	the	--databases	option,	separated	by
spaces	—	not	commas	as	you	might	think.	Try	executing	the	following	on	your	server	to
back	up	the	rookery	and	the	birdwatchers	databases:

mysqldump	--user=admin_backup	--password	--lock-tables	\

										--databases	rookery	birdwatchers	>	rookery-birdwatchers.sql

This	will	dump	the	rookery	and	the	birdwatchers	databases	into	one	file	named	rookery-
birdwatchers.sql.	Because	those	two	databases	are	related	and	there	aren’t	any	other
databases	associated	with	them,	this	can	be	useful.	We	can	copy	this	line	into	crontab	or
some	other	scheduling	utility	on	the	server	to	run	automatically	each	day.	However,	each
command	that	runs	will	overwrite	the	dump	file	from	the	previous	day.	If	something

www.it-ebooks.info

http://www.it-ebooks.info/

happens	and	data	is	deleted	accidentally,	but	we	don’t	discover	it	for	a	few	days,	we	won’t
be	able	to	restore	that	data	from	the	backup.	To	allow	for	this	possibility,	we	need	to	create
a	new	dump	file	each	day	with	a	unique	name	so	we	don’t	overwrite	the	previous	dump
files.	Unless	we	intend	to	initiate	the	backups	manually,	we	need	to	be	creative	and
automate	the	process.	We	can	accomplish	this	twist	with	a	shell	script.

Creating	Backup	Scripts
To	automate	many	aspects	of	making	backups	of	databases,	it’s	useful	to	create	a	set	of
scripts	that	will	execute	the	mysqldump	for	the	databases	you	want	with	the	settings	that
you	prefer.	It’s	not	too	difficult	to	do	this.	You	don’t	need	to	be	very	advanced	in
programming	if	you	want	to	do	only	a	few	simple	things,	such	as	varying	the	output
slightly	each	time.

Let’s	use	the	problem	presented	at	the	end	of	the	previous	section	for	an	example	back-up
script.	The	solution	is	to	change	the	name	of	the	dump	file	each	day	to	include	the	current
date	so	that	there	will	a	unique	dump	file	for	each	day.	Here’s	an	example	of	a	very	simple
shell	script	that	may	be	run	on	a	Linux	or	Mac	system	to	do	this:

#!/bin/sh

my_user='admin_back'

my_pwd='my_silly_password'

db1='rookery'

db2='birdwatchers'

date_today=$(date	+%Y-%m-%d)

backup_dir='/data/backup/'

dump_file=$db1-$db2-$date_today'.sql'

/usr/bin/mysqldump	--user=$my_usr	--password=$my_pwd	--lock-tables	\

																			--databases	$db1	$db2	>	$backup_dir$dump_file

exit

This	script	will	execute	the	mysqldump	with	the	same	options	as	in	our	previous	example.
It	starts	by	setting	variables	with	the	username,	password,	and	the	names	of	the	databases.
It	then	uses	the	date	command	to	get	the	numerical	values	for	the	year,	month,	and	day
and	saves	them	with	dashes	in	another	variable	(date_today).	It	uses	the	variables	for	the
database	names	(i.e.,	$db1	and	$db2),	combined	with	$date_today	to	assemble	the	name
of	the	dump	file	(e.g.,	rookery-birdwatchers-2014-10-25.sql).	All	of	these	variables	are
then	used	in	the	mysqldump	command.

Because	the	username	and	password	are	included	in	the	script,	it	can	be	run	automatically
and	daily	by	cron	without	user	intervention.	It	will	create	a	dump	file	with	a	new	name
every	day.	This	script	is	by	no	means	flawless	and	definitely	not	in	good	form.	It	doesn’t
allow	for	errors.	If	the	backup	fails,	it	doesn’t	notify	the	administrator	that	there	was	a
problem.	It	also	doesn’t	address	older	backup	files.	A	good	script	could	remove	the	older
dump	files	after	a	certain	amount	of	time.	Of	course,	having	an	automated	script	delete
files	can	be	a	little	disturbing.	This	script	is	provided	only	to	give	you	an	idea	and	starting
point	for	constructing	your	own	backup	scripts.	The	ones	that	you	create	and	use	should
be	much	more	complex	and	allow	for	many	possibilities,	handle	errors,	and	provide	some
sort	of	reporting.

www.it-ebooks.info

http://www.it-ebooks.info/

Backing	Up	Specific	Tables
For	very	large	and	active	databases,	you	may	want	to	back	up	the	data	for	individual	tables
rather	than	the	whole	database.	You	could	back	up	the	entire	database	weekly,	perhaps	and
then	do	daily	backups	for	tables	whose	data	changes	often.	For	most	databases,	developing
a	strategy	like	this	can	be	prudent.

Take	our	two	databases.	The	data	in	the	rookery	tables	will	rarely	change:	new	species	of
birds	aren’t	discovered	daily,	and	bird	families	and	orders	are	rarely	changed.	Once	we
have	all	of	the	details	for	each	bird	in	each	table	entered,	there	will	hardly	be	any	changes.
Conversely,	if	our	site	is	very	active,	almost	all	of	the	tables	in	the	birdwatchers	database
will	have	new	rows	and	changes	frequently,	so	we	would	want	to	back	up	all	of	its	tables
every	day.	A	reasonable	strategy,	then,	is	to	back	up	the	whole	rookery	database	once	a
week	and	all	of	the	birdwatchers	database	each	day.

Still,	suppose	our	boss	is	overly	concerned	about	losing	any	data	entered	by	our	members.
Suppose	he	insists	that	we	make	a	backup	of	the	humans	table	twice	a	day,	once	at	noon
and	again	at	midnight.	We	could	write	a	shell	script	like	the	one	in	previous	section	to	vary
the	filenames	to	include	the	date	and	just	add	a	bit	more	to	indicate	the	time	during	the	day
when	the	dump	was	made	(e.g.,	birdwatchers-humans-2014-09-14-midday.sql	and
birdwatchers-humans-2014-09-14-midnight.sql).	The	only	other	change	is	to	create	a
mysqldump	command	to	back	up	just	one	table,	humans.	Try	executing	the	following	on
your	server	from	the	command	line:

mysqldump	--user=admin_backup	--password	--lock-tables	\

										--databases	birdwatchers	--tables	humans	>	birdwatchers-humans.sql

This	is	similar	to	the	previous	examples,	but	with	the	addition	of	the	--tables	option
followed	by	the	table	name.	If	you	want	to	make	a	backup	for	more	than	one	table	in	the
same	database,	you	would	just	list	them	after	the	--tables	option,	each	table	name
separated	by	a	space.	But	this	example	is	wordier	than	necessary.	Because	we’re	backing
up	tables	in	only	one	database,	we	don’t	need	the	--databases	option.	We	also	don’t	need
the	--tables	because	mysqldump	assumes	that	any	nonreserved	words	after	the	database
name	are	the	names	of	tables.	So	the	previous	example	can	be	entered	like	this:

mysqldump	--user=admin_backup	--password	--lock-tables	\

										birdwatchers	humans	>	birdwatchers-humans.sql

Although	this	command	is	simpler,	the	previous	one	makes	it	easier	to	discern	what	is	a
database	name	and	what	is	a	table	name.

Let’s	add	another	table	to	the	example	here,	but	from	another	database.	Suppose	that	our
boss	wants	us	also	to	backup	the	birds	table	in	the	rookery	database.	This	possibility	is
not	allowed	with	mysqldump:	you	can’t	list	two	databases	with	the	--tables	option.	You
would	have	to	run	mysqldump	twice.	This	would	create	two	dump	files.	If	you	want	one
dump	file	containing	both	tables,	you	could	do	something	like	this:

mysqldump	--user=admin_backup	--password	--lock-tables	\

										--databases	rookery	--tables	birds	>	birds-humans.sql

mysqldump	--user=admin_backup	--password	--lock-tables	\

										--databases	birdwatchers	--tables	humans	>>	birds-humans.sql

Here	we’re	executing	mysqldump	twice,	but	the	second	time	we’re	setting	the	redirect
(i.e.,	>>)	to	append	to	the	dump	file	instead	of	creating	a	fresh	one.	The	dump	file	will

www.it-ebooks.info

http://www.it-ebooks.info/

have	a	comment	in	the	middle	of	it	saying	that	the	dump	is	completed	and	then	another
starting	header	for	the	second	dump.	Because	those	are	just	comments,	they	will	have	no
effect	if	you	use	the	combined	dump	file	to	restore	the	two	tables.	Nor	will	modifying
variables	twice	using	SET	during	the	execution	of	the	combined	dump	file.	So	it’s	fine	to
append	to	a	dump	file	like	this.

The	mysqldump	utility	is	easy	to	use	and	very	powerful.	We’ve	touched	on	many	options
that	may	be	used	with	it.	However,	there	are	many	more	options.	You	can	find	these	on-
line	on	the	MySQL	and	MariaDB	websites	or	in	my	book,	MySQL	in	a	Nutshell
(O’Reilly).

One	of	the	problem	with	dump	files,	though,	is	that	you	can	clobber	your	databases	when
you	use	them	to	restore	data	if	you’re	not	careful.	Therefore,	you	should	practice	restoring
dump	files	on	a	test	database	or	a	test	server.	Do	this	often	so	that	you	will	be	comfortable
with	making	and	restoring	backups.	Don’t	wait	until	you’ve	lost	data	and	feel	panic	to
restore	it,	because	you	might	make	unrecoverable	errors	or	even	find	out	that	you	haven’t
been	backing	up	your	data	properly.	Develop	these	skills	in	advance	and	in	a	safe	and
controlled	way.	To	learn	how	to	restore	dump	files,	see	the	next	section	on	restoring	data
from	backups.

www.it-ebooks.info

http://bit.ly/mysql-nutshell-2e
http://www.it-ebooks.info/

Restoring	Backups
If	data	is	lost	in	MySQL,	but	you’ve	been	using	mysqldump	to	make	regular	backups	of
the	data,	you	can	use	the	dump	files	to	restore	the	data.	This	is	the	point	of	the	back-ups,
after	all.	Restoring	a	dump	file	made	with	mysqldump	is	just	a	matter	of	using	the	mysql
client	to	execute	all	of	the	SQL	statements	contained	in	the	dump	file.	You	can	restore	all
of	the	databases,	a	single	database,	individual	tables,	or	even	specific	rows	of	data.	We’ll
cover	all	of	these	in	this	section.

Restoring	a	Database
Let’s	look	at	how	to	restore	an	entire	database.	To	be	safe,	as	part	of	experimenting,	we’ll
make	a	fresh	backup	of	the	rookery	database	and	then	restore	it.	Execute	the	following
from	the	command	line	on	your	server:

mysqldump	--user=admin_backup	--password	--lock-tables	\

										--databases	rookery	>	rookery.sql

Before	proceeding,	check	the	contents	of	the	dump	file.	Make	sure	it	contains	the	SQL
statements	for	restoring	the	rookery	database.	If	everything	looks	OK,	delete	the	rookery
database	from	the	server.	This	may	seem	scary,	but	you	just	made	a	good	back-up.	There
will	come	a	time	when	a	database	is	deleted	or	corrupted	unintentionally.	So	it’s	better	to
develop	confidence	in	your	ability	to	restore	a	database	with	a	test	database	like	rookery.
To	get	rid	of	the	database,	you	can	execute	the	following	from	the	command	line:

mysql	--user=admin_maintenance	--password	--execute	"DROP	DATABASE	rookery;"

Here	we’re	using	the	mysql	client	at	the	command	line	to	execute	the	DROP	DATABASE
statement.	You	could	have	done	this	from	within	the	mysql	client,	though.	It’s	done	here
on	the	command	line	with	the	--execute	option.	You’ll	have	to	specify	an	administrative
user	that	has	privileges	to	drop	a	database.	Here	we’re	using	the	admin_restore	user	we
created	in	the	previous	chapter.	After	you’ve	dropped	the	rookery	database,	execute	SHOW
DATABASES	statement	with	the	mysql	client	to	confirm	that	rookery	has	been	deleted.

We’re	now	ready	to	restore	the	rookery	database.	To	do	this,	execute	the	following	from
the	command	line:

mysql	--user=admin_restore	--password		<	rookery.sql

This	uses	the	mysql	client	from	the	command	line	to	execute	the	SQL	statements
contained	in	the	rookery.sql	dump	file.	Notice	that	we’re	using	a	less-than	sign,	the
redirect	for	the	standard	input	(STDIN)	in	the	shell,	to	tell	mysql	to	extract	the	contents	of
the	dump	file	as	an	input	source.	The	command	will	create	the	rookery	database	and	all	of
its	tables	and	insert	all	of	the	data	into	those	tables.	Log	into	MySQL,	switch	to	the
rookery	database,	and	execute	the	SHOW	TABLES	statement	to	see	that	all	of	the	tables	are
there.	Execute	a	few	SELECT	statements	to	see	that	the	data	is	there.	It’s	important	to	do
this	so	that	you’ll	feel	more	confident	about	your	ability	to	restore	a	database.

Restoring	a	Table
The	problem	with	restoring	from	a	dump	file	of	a	whole	database	is	that	you	may
overwrite	tables	that	you	wish	you	hadn’t.	For	instance,	suppose	a	table	was	dropped	by
accident	and	you	want	to	restore	it.	The	other	tables	in	the	database	may	be	fine.	If	the
latest	dump	file	is	several	hours	old	and	the	other	tables	have	been	changed	since	the	last

www.it-ebooks.info

http://www.it-ebooks.info/

update,	you	wouldn’t	want	to	overwrite	those	tables.	That	would	delete	any	new	rows	or
updates	since	the	dump	file	was	created.	If	you	have	a	backup	strategy	of	making	backups
of	tables	separately,	restoring	one	table	would	be	simple.	But	that	might	be	cumbersome	to
maintain.	There	are,	however,	a	few	ways	of	limiting	a	restoration	to	one	table	using	a
dump	file	that	contains	an	entire	database.	Let’s	look	at	those	methods.

Modifying	a	dump	file

As	we	saw	in	Understanding	Dump	Files,	a	database	dump	file	is	a	simple	text	file
containing	SQL	statements	to	create	a	database	and	then	separate	sections	that	restore	each
table,	including	its	data.	One	way	to	restore	a	table	from	a	database	dump	file	is	to	modify
the	dump	file.	You	could	eliminate	all	of	the	SQL	statements	except	the	ones	needed	to
restore	the	table	you	want.

Suppose	you	have	a	dump	file	that	contains	only	the	rookery	database	and	you	need	to
restore	the	conservation_status	table	because	some	of	the	data	has	been	deleted	or
changed	by	mistake.	You	can	make	a	copy	of	the	rookery.sql	dump	file,	open	the	copy
with	a	plain-text	editor,	and	delete	the	sections	that	create	the	other	tables.	Leave	in	the
opening	and	closing	lines	that	set	the	variables,	as	well	as	the	section	for	the
conservation_status	table.	A	similar	method	would	be	to	open	the	dump	file	in	a	text
editor	and	then	copy	and	paste	the	parts	you	need	into	a	new	text	document:	the	opening
and	closing	lines	and	the	section	for	the	conservation_status	table.	Either	of	these
methods	would	result	in	the	same	dump	file	that	you	could	use	to	restore	the	table.

Here	is	an	example	of	how	such	a	trimmed	dump	file	might	look:
--	MySQL	dump	10.14		Distrib	5.5.39-MariaDB,	for	Linux	(i686)—--	Host:	localhost				Database:	

rookery—--—Server	version							5.5.39-MariaDB

/*!40101	SET	@OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT	*/;

/*!40101	SET	@OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS	*/;

/*!40101	SET	@OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION	*/;

/*!40101	SET	NAMES	utf8	*/;

/*!40103	SET	@OLD_TIME_ZONE=@@TIME_ZONE	*/;

/*!40103	SET	TIME_ZONE='+00:00'	*/;

/*!40014	SET	@OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS,	UNIQUE_CHECKS=0	*/;

/*!40014	SET	@OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS,FOREIGN_KEY…=0*/;

/*!40101	SET	@OLD_SQL_MODE=@@SQL_MODE,	SQL_MODE='NO_AUTO_VALUE_ON_ZERO'	*/;

/*!40111	SET	@OLD_SQL_NOTES=@@SQL_NOTES,	SQL_NOTES=0	*/;

—--	Current	Database:	`rookery`—

CREATE	DATABASE	/*!32312	IF	NOT	EXISTS*/	`rookery`

/*!40100	DEFAULT	CHARACTER	SET	latin1	COLLATE	latin1_bin	*/;

USE	`rookery`;

—		[snip]

—--	Table	structure	for	table	`conservation_status`—

DROP	TABLE	IF	EXISTS	`conservation_status`;

/*!40101	SET	@saved_cs_client					=	@@character_set_client	*/;

/*!40101	SET	character_set_client	=	utf8	*/;

CREATE	TABLE	`conservation_status`	(

		`conservation_status_id`	int(11)	NOT	NULL	AUTO_INCREMENT,

		`conservation_category`	char(10)	COLLATE	latin1_bin	DEFAULT	NULL,

		`conservation_state`	char(25)	COLLATE	latin1_bin	DEFAULT	NULL,

		PRIMARY	KEY	(`conservation_status_id`)

)	ENGINE=MyISAM	AUTO_INCREMENT=10

		DEFAULT	CHARSET=latin1	COLLATE=latin1_bin;

/*!40101	SET	character_set_client	=	@saved_cs_client	*/;

—--	Dumping	data	for	table	`conservation_status`—

LOCK	TABLES	`conservation_status`	WRITE;

/*!40000	ALTER	TABLE	`conservation_status`	DISABLE	KEYS	*/;

INSERT	INTO	`conservation_status`	VALUES

(1,'Extinct','Extinct'),

www.it-ebooks.info

http://www.it-ebooks.info/

(2,'Extinct','Extinct	in	Wild'),

(3,'Threatened','Critically	Endangered'),

(4,'Threatened','Endangered'),

(5,'Threatened','Vulnerable'),

(6,'Lower	Risk','Conservation	Dependent'),

(7,'Lower	Risk','Near	Threatened'),

(8,'Lower	Risk','Least	Concern'),

(9,NULL,'Unknown');

/*!40000	ALTER	TABLE	`conservation_status`	ENABLE	KEYS	*/;

UNLOCK	TABLES;

—		[snip]

/*!40103	SET	TIME_ZONE=@OLD_TIME_ZONE	*/;

/*!40101	SET	SQL_MODE=@OLD_SQL_MODE	*/;

/*!40014	SET	FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS	*/;

/*!40014	SET	UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS	*/;

/*!40101	SET	CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT	*/;

/*!40101	SET	CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS	*/;

/*!40101	SET	COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION	*/;

/*!40111	SET	SQL_NOTES=@OLD_SQL_NOTES	*/;

—Dump	completed	on	2014-09-15		6:48:27

This	dump	file	will	restore	the	conservation_status	table.	I	added	a	couple	of	comment
lines	with	[snip]	to	indicate	that	this	is	where	I	cut	lines	of	text	from	the	original	dump
file.	I	also	added	some	hard	returns	so	that	the	lines	would	fit	on	the	printed	page.
Otherwise,	this	is	exactly	the	way	a	dump	file	would	look	if	we	had	backed	up	only	the
conservation_status	table.

This	method	works,	but	it	can	be	tedious	and	you	might	accidentally	delete	a	line	you
shouldn’t	or	include	a	line	you	shouldn’t.	Other	methods	to	restore	just	one	table	are
covered	in	the	next	sections.

Restoring	with	a	temporary	database

Another	way	to	restore	a	single	table	from	a	dump	file	that	contains	a	database	with	many
tables	is	simply	to	change	the	name	of	the	database	in	the	dump	file.	The	dump	file
generally	contains	a	CREATE	DATABASE	statement.	If	you	change	the	name	of	the	database
to	a	unique	name	that’s	not	already	used	on	the	server,	a	new	database	will	be	created	on
the	server	when	the	dump	file	is	run.	Then	you	can	copy	the	table	you	want	from	this
temporary	database	within	MySQL	to	the	original	database.	When	you’re	finished,	you
can	delete	the	temporary	database.	Let’s	look	at	an	example.

Returning	to	the	previous	scenario,	suppose	that	you	have	a	dump	file	containing	the
rookery	database,	from	which	you	need	to	restore	only	the	conservation_status	table.
So	that	you	can	participate,	if	you	don’t	have	a	current	dump	file	of	rookery,	use
mysqldump	to	make	one.

First,	run	SHOW	DATABASES	on	the	server	to	see	the	names	of	the	database	so	that	you	don’t
by	chance	give	the	temporary	database	a	name	that’s	already	in	use.	Next,	open	the	dump
file	in	a	text	editor	and	look	for	the	lines	near	the	top	that	creates	the	database.	Edit	that
section	to	change	the	name	of	the	database.	Here’s	how	that	section	of	the	dump	file	might
look	after	you	edit	it:

--

...—Current	Database:	`rookery`—

CREATE	DATABASE	/*!32312	IF	NOT	EXISTS*/	`rookery_backup`

/*!40100	DEFAULT	CHARACTER	SET	latin1	COLLATE	latin1_bin	*/;

USE	`rookery_backup`;

...

www.it-ebooks.info

http://www.it-ebooks.info/

In	this	excerpt,	you	can	see	that	I	changed	the	name	of	rookery	to	rookery_backup	in	two
places:	the	CREATE	DATABASE	statement	and	the	USE	statement.	That’s	all	that	you	need	to
change.	You	can	save	the	dump	file	now	and	execute	it.	Using	an	administrative	user	that
has	the	CREATE	privilege,	enter	something	like	this	from	the	command	line:

mysql	--user=admin_restore	--password	<	rookery.sql

Once	you’ve	executed	this,	there	should	be	a	new	database	called	rookery_backup.	Log
into	MySQL	through	the	mysql	client	and	set	the	default	database	to	rookery_backup.	Run
the	SHOW	TABLES	statement	and	a	couple	of	SELECT	statements.	You’ll	see	that	the	tables
and	data	are	all	there.	Now	you’re	ready	to	restore	the	table	you	need.

There	are	a	couple	of	ways	you	can	restore	a	table	at	this	point.	Let’s	try	both.	First,	let’s
delete	the	conservation_status	table	in	the	rookery	database.	To	do	this,	execute	the
following	within	the	mysql	client:

DROP	TABLE	rookery.conservation_status;

Now	create	a	new	conservation_status	table	in	rookery.	You	can	do	this	based	on	the
backup	copy	by	using	a	CREATE	TABLE…LIKE	statement,	covered	in	Essential	Changes.
Enter	the	following	on	your	server:

CREATE	TABLE	rookery.conservation_status

LIKE	rookery_backup.conservation_status;

Next,	you	need	to	copy	the	data	from	the	backup	table	to	the	newly	created	table.	You	can
do	that	by	entering	this	SQL	statement	on	your	server:

INSERT	INTO	rookery.conservation_status

SELECT	*	FROM	rookery_backup.conservation_status;

The	INSERT…SELECT	syntax	is	covered	in	Other	Possibilities.	It	will	insert	into	the	original
database’s	table	all	of	the	rows	selected	from	the	backup	table.	When	that’s	finished,
execute	a	SELECT	statement	to	see	that	all	of	the	data	is	in	the	conservation_status	table.
If	everything	is	fine,	delete	the	temporary	database	by	entering	the	following	on	your
server:

DROP	DATABASE	rookery_backup;

This	method	of	restoring	a	single	table	works	nicely.	For	a	large	database,	though,	it	could
take	a	long	time	to	temporarily	import	the	entire	database	into	MySQL.	However,	if	you
have	a	database	this	large,	you	should	make	backups	based	on	tables	or	batches	of	tables
to	make	restoration	more	manageable.	This	method	requires	CREATE	and	DROP	privileges,
which	allow	the	user	account	to	create	new	databases	and	drop	them.

There	is	another	method	for	restoring	a	single	table	that	doesn’t	require	editing	the	dump
file.	That	method	is	explained	in	the	next	section.

Using	a	limited	user	account

A	simple	way	to	restore	only	one	table	is	to	create	a	temporary	user	account	that	has	only
privileges	for	the	table	you	want	to	restore.	When	you	run	the	dump	file,	the	SQL
statements	for	other	tables	will	fail	and	not	be	executed	—	only	the	table	for	which	the
user	account	has	privileges	will	be	restored.	To	create	such	a	user	account,	you	need	the
GRANT	OPTION	privilege.	As	root,	you	will	have	that	privilege.	Let’s	go	through	the	steps
involved	in	this	method,	using	the	previous	example	in	which	we	want	to	restore	the
conservation_status	table.

www.it-ebooks.info

http://www.it-ebooks.info/

WARNING

There	is	a	risk	in	this	method.	If	you’re	not	precise	about	what	privileges	you	grant	the	user	account,	or	if	you	restore
data	from	the	dump	file	inadvertently	using	the	root	user	account	instead	of	the	limited	user	account,	you	will
overwrite	all	of	the	databases	that	were	backed	up	to	the	dump	file.	So	be	careful.

Before	you	start	to	restore	your	data,	delete	the	conservation_status	table	and	change
some	data	in	one	of	the	other	tables	so	that	you	can	see	how	well	this	method	works.	You
can	run	something	like	the	following	from	the	command	line,	using	the	admin_boss	user
account	you	should	have	created	in	the	Chapter	13	exercises:

mysql	--user=admin_boss	--password	\

						--execute	"DROP	TABLE	rookery.conservation_status;

																	INSERT	INTO	rookery.birds	(common_name,description)

																	VALUES('Big	Bird','Large	yellow	bird	found	in	New	York');

																	SELECT	LAST_INSERT_ID();"

That	should	delete	the	conservation_status	table.	To	test	our	restore,	we’ve	also	added	a
row	to	the	birds	table,	which	we	want	to	make	sure	has	not	been	lost	when	we	do	our
restore.	The	last	statement	returns	the	bird_id	for	the	row	inserted.	Log	into	MySQL	and
verify	that	the	conservation_status	table	has	been	deleted	and	use	the	SELECT	statement
to	view	the	row	inserted	into	birds,	where	the	bird_id	equals	the	number	you	were	given
when	you	executed	the	command.	If	everything	looks	as	it	should,	you’re	ready	to
proceed.

Now	you	need	to	create	the	limited	administrative	user.	Enter	the	GRANT	statement	on	your
server	like	this:

GRANT	SELECT

ON	rookery.*	TO	'admin_restore_temp'@'localhost'

IDENTIFIED	BY	'its_pwd';

GRANT	ALL	ON	rookery.conservation_status

TO	'admin_restore_temp'@'localhost';

These	two	SQL	statements	grant	the	temporary	with	the	necessary	SELECT	privilege	on	all
of	the	tables	in	the	rookery	database,	and	ALL	privileges	for	the	conservation_status
table.	When	you	restore	the	database	dump	file	containing	all	of	the	tables	in	the	rookery
database,	using	the	admin_restore_temp	user	account,	only	conservation_status	will	be
replaced.

When	you	execute	the	dump	file	with	this	user	account,	MySQL	will	generate	errors	when
it	tries	to	replace	the	other	tables.	Normally,	that	might	stop	execution	of	the	dump	file.	To
overlook	the	errors	and	to	proceed	with	the	restoration	of	data	for	tables	for	which	no
errors	are	generated,	use	the	--force	option	with	the	mysql	client.

Let’s	restore	the	table	now.	Enter	the	following	at	the	command	line:
mysql	--user	admin_restore_temp	--password	--force	<	rookery.sql

This	should	work	without	a	problem.	To	verify	that	the	conservation_status	table	has
been	restored,	log	into	MySQL	and	check.	Then	execute	the	SELECT	statement	again	to	see
whether	the	row	you	entered	for	Big	Bird	from	the	command	line	in	the	birds	table	is	still
there.	If	it	is,	that	means	the	birds	table	wasn’t	overwritten	when	you	restored	the	dump
file.	Everything	else	should	be	fine.

Restoring	Only	Rows	or	Columns

www.it-ebooks.info

http://www.it-ebooks.info/

You’ll	rarely	need	to	restore	an	entire	database	or	even	an	entire	table.	It’s	not	often	that	a
database	or	a	table	is	dropped,	or	that	the	data	in	all	of	the	rows	in	a	table	are	changed
accidentally.	It’s	more	common	that	someone	deletes	a	single	row	in	a	table	or	data	in	a
single	column	and	can’t	undo	what	they	did.	In	such	a	situation,	if	the	table	has	many
other	rows	that	were	changed	correctly	since	the	last	backup	was	made,	you	wouldn’t
want	to	restore	the	whole	table	to	fix	one	small	mistake.	Instead,	you	will	want	to	restore
only	one	row	or	column.

This	can	be	done	easily	using	the	method	covered	in	Restoring	with	a	temporary	database.
That	section	described	how	to	modify	the	dump	file	for	the	rookery	database	so	that
MySQL	imports	the	database	into	a	new,	temporary	database	(rookery_backup).	If	you
use	that	method,	you	can	then	use	the	INSERT…SELECT	statement	with	a	WHERE	clause	to
select	only	the	row	or	rows	you	want	to	restore.	Let’s	walk	through	this	process.

Suppose	that	someone	accidentally	deleted	one	of	the	members	(e.g.,	Lexi	Hollar)	and	the
email	address	of	another	member	(e.g.,	Nina	Smirnova)	from	the	humans	table	in	the
birdwatchers	table.	To	be	able	to	follow	along	and	to	set	the	stage,	make	a	backup	of	just
the	birdwatchers	database,	delete	the	entry	for	Lexi	Hollar,	and	Nina	Smirnova’s	email
address	by	executing	the	following	from	the	command	line:

mysqldump	--user=admin_backup	--password	--lock-tables	\

										--databases	birdwatchers	>	birdwatchers.sql

mysql	--user=admin_maintenance	--password	\

						--execute	"DELETE	FROM	birdwatchers.humans

																	WHERE	name_first	=	'Lexi'

																	AND	name_last	=	'Hollar';

																	UPDATE	birdwatchers.humans

																	SET	email_address=''

																	WHERE	name_first	=	'Nina'

																	AND	name_last	=	'Smirnova'"

After	executing	this,	log	into	MySQL	to	confirm	there	is	no	member	with	the	name	Lexi
Hollar	and	no	email	address	for	Nina	Smirnova	in	the	humans	table.	You	should	do	this
even	though	you	may	be	logically	satisfied	that	these	changes	were	made.	It’s	good	to	go
through	the	motions	to	build	more	confidence	in	the	restoration	process.

Now	let’s	import	the	birdwatchers	database	into	a	temporary	table.	Edit	the
birdwatchers.sql	dump	file	you	just	created	and	look	for	the	SQL	statements	that	reference
the	database	—	there	should	be	only	the	CREATE	DATABASE	statement	and	the	USE
statement.	Change	the	database	name	wherever	it	occurs	to	birdwatchers_backup,
assuming	that	this	name	doesn’t	already	exist	on	your	server.	When	you’ve	done	that,	save
the	dump	file	and	exit	it.	From	the	command	line,	execute	the	following	to	import	it:

mysql	--user=admin_maintenance	--password	<	birdwatchers.sql

When	you’ve	finished	importing	the	database,	log	into	MySQL	and	run	SHOW	DATABASES
to	see	that	it	has	been	created.	Now	you’re	ready	to	restore	the	data	in	the	humans	table.
Execute	the	following	from	within	the	mysql	client:

REPLACE	INTO	birdwatchers.humans

SELECT	*	FROM	birdwatchers_backup.humans

WHERE	name_first	=	'Lexi'	AND	name_last	=	'Hollar';

UPDATE	birdwatchers.humans

SET	email_address	=	'bella.nina@mail.ru'

WHERE	name_first	=	'Nina'	AND	name_last	=	'Smirnova';

www.it-ebooks.info

http://www.it-ebooks.info/

That	will	restore	the	row	for	the	member	that	was	deleted,	restore	the	email	address	for	the
other	member,	and	have	no	effect	on	the	other	rows	or	other	tables	in	the	database.	You’ll
notice	I	used	the	REPLACE	statement	instead	of	the	INSERT	statement.	If	MySQL	finds	a
row	that	matches	the	WHERE	clause	and	that	has	the	same	human_id,	it	will	replace	the	row
with	the	matching	row	from	the	backup	table.	Otherwise,	it	will	insert	a	new	row.	Either
way,	it	will	restore	the	row	with	the	same	value	for	the	human_id	column.	That	means	that
any	other	tables	that	reference	that	row	will	have	the	correct	human_id.	Incidentally,	if	you
want	to	generate	a	dump	file	that	uses	REPLACE	instead	of	INSERT	statements,	you	can	do
so	using	the	--replace	option	with	mysqldump.

When	you’re	finished,	you	can	use	the	DROP	DATABASE	statement	to	remove	the
birdwatchers_backup	database.

This	method	is	very	useful	in	restoring	rows	and	columns,	especially	when	you	want	to
restore	data	to	accommodate	someone	without	disturbing	other	users.	It	doesn’t	usually
take	long	to	do	and	it’s	simple.	You	can	restore	rows	based	on	whatever	criteria	you	give
in	the	WHERE	clause.	This	is	a	skill	you	should	learn	well	if	you	want	to	be	a	good	database
administrator:	users	will	herald	you	as	their	hero	when	you	recover	data	without	much
trouble	or	disruption.

Recovering	from	a	Binary	Log
In	the	previous	few	sections,	we	looked	at	how	to	restore	databases	and	tables.	Most	of
those	are	broad	methods	of	restoring	data.	Sometimes	you	need	more	precision,	as	in	the
previous	section,	where	we	restored	a	single	row	and	a	single	column.	You	would	use	that
method	when	you	have	specific	rows	to	restore	and	the	lost	data	is	contained	in	one	of
your	dump	files.	However,	suppose	you	want	to	restore	data	that	was	created	some	time
after	the	last	backup.	This	may	sound	impossible,	but	it	just	requires	care	and	an
understanding	of	MySQL’s	binary	log.	You	can	use	the	binary	logs	to	restore	data	that	was
created	after	the	most	recent	dump	file	was	created,	up	to	a	specific	point	in	time.	This	is
referred	to	as	point-in-time	recovery.

To	do	point-in-time	recoveries,	you	will	have	to	enable	the	binary	logs.	You	can’t	wait
until	you	need	them;	you	have	to	enable	the	binary	logs	before	a	problem	occurs.	To	check
that	it’s	enabled,	execute	the	following	from	the	mysql	client:

SHOW	BINARY	LOGS;

ERROR	1381	(HY000):	You	are	not	using	binary	logging

If	you	get	the	error	message	shown	here,	you	will	need	to	enable	binary	logging.

WARNING

Enabling	the	binary	log	does	add	a	security	vulnerability.	All	of	the	SQL	statements	executed	on	the	server	that
modify	the	data	will	be	recorded	in	the	binary	log.	This	may	include	sensitive	information	(e.g.,	credit	card	numbers,
if	your	server	records	them)	and	passwords.	So	be	sure	that	you	protect	the	log	files	and	the	directory	where	they	are
stored,	and	preferably	don’t	log	changes	to	the	mysql	table.	That’s	where	passwords	for	user	accounts	are	stored,	so
it’s	good	not	to	log	it.	Use	the	--binlog-ignore-db	option	to	omit	databases	from	the	log.

To	enable	binary	logs,	edit	the	configuration	file	for	MySQL	(my.cnf	or	my.ini,	depending
on	your	system).	In	the	[mysqld]	section,	add	the	following	lines:

log-bin

binlog-ignore-db=mysql

www.it-ebooks.info

http://www.it-ebooks.info/

The	log-bin	option	requires	no	equals	sign	or	value.	The	second	line	here	tells	MySQL	to
ignore	any	changes	to	the	mysql	database.	When	you’ve	added	these	entries	to	the
configuration	file,	restart	MySQL	for	it	to	take	effect.	Once	that’s	done,	log	into	MySQL
and	check	again	whether	binary	logs	are	enabled.	This	time,	we’ll	use	the	SHOW	MASTER
STATUS	statement:

SHOW	MASTER	STATUS;

+---------------------------+----------+--------------+------------------+

|	File																						|	Position	|	Binlog_Do_DB	|	Binlog_Ignore_DB	|

+---------------------------+----------+--------------+------------------+

|	mysqlresources-bin.000001	|						245	|														|	mysql												|

+---------------------------+----------+--------------+------------------+

Here	you	can	see	the	name	of	the	current	binary	log	file	and	verify	that	it’s	ignoring
changes	to	the	mysql	table.

Now	that	MySQL	is	recording	all	of	the	SQL	statements	in	the	binary	log,	point-in-time
recovery	is	possible.	To	be	able	to	experiment	with	this,	log	into	MySQL	and	insert	many
rows	of	data	into	a	table.	To	make	this	easier,	you	may	download	two	dump	files	from	the
MySQL	Resources	site	called	birds-simple.sql	and	birds-simple-transactions.sql.	The
birds-simple.sql	dump	file	will	add	the	birds_simple	table	with	data	to	rookery.	The
birds-simple-transactions.sql	file	will	insert	many	rows	of	data	in	birds_simple,	change
several	rows	with	a	single	SQL	statement	—	simulating	an	accident	—	and	then	insert
more	rows.	For	the	example	that	follows,	we	will	restore	everything	up	until	the	offending
SQL	statement	and	all	transactions	after	it	—	skipping	the	bad	statements.	To	participate
in	the	examples,	download	those	two	dump	files	and	execute	the	following	from	the
command	line	in	the	directory	where	you’ve	placed	them:

mysql	--user=admin_maintenance	--password	--database=rookery	<	birds-simple.sql

mysql	--user=root	--password	--silent	\

						--execute="SELECT	COUNT(*)	AS	''	FROM	rookery.birds_simple;"

If	you	didn’t	get	an	error	message,	the	second	line	should	return	the	number	of	rows
contained	in	the	birds_simple	table.	It	should	be	about	28,892.	You	may	have	noticed
that	I	added	the	--database	option,	setting	it	to	rookery.	When	I	generated	the	dump	file,
I	dumped	only	the	birds_simple	table.	As	a	result,	the	dump	file	does	not	contain	a	USE
statement	and	the	table	name	isn’t	prefaced	with	rookery.	So	the	SQL	statements	are	not
specific	to	any	database.	By	adding	it	at	the	command	line	like	I	did	here,	you	can	make
MySQL	execute	all	SQL	statements	contained	in	the	dump	file	in	that	database.

Let’s	move	on	to	messing	with	the	birds_simple	table.	Process	the	birds-simple-
transactions.sql	file,	which	will	add	and	delete	many	rows:

mysql	--user=admin_maintenance	--password	\

						--database=rookery	<	birds-simple-transactions.sql

mysql	--user=root	--password	--silent	\

						--execute="SELECT	COUNT(*)	AS	''	FROM	rookery.birds_simple;"

The	count	of	the	number	of	rows	should	now	be	about	296	fewer.	The	birds-simple-
transactions.sql	dump	file	contains	a	couple	of	DELETE	statements	that	delete	a	lot	of	rows
based	on	the	WHERE	clause.	There	are	also	a	couple	of	INSERT	statements	that	add	more
rows	to	the	same	table.

Now	we’re	ready	to	go	through	the	steps	to	restore	based	on	a	point	in	time.	To	restore

www.it-ebooks.info

http://mysqlresources.com/files
http://www.it-ebooks.info/

everything	to	a	specific	point	in	time,	we	need	to	start	from	the	last	good	backup.	In	this
case,	we’ll	start	by	restoring	the	birds-simple.sql	dump	file:

mysql	--user=admin_maintenance	--password	\

						--database=rookery	<	birds-simple.sql

That	should	have	restored	the	birds_simple	back	to	where	it	was	at	the	time	that	dump
file	was	generated.	If	you	want,	log	into	MySQL	and	get	a	count	of	the	number	of	rows	in
the	birds_simple	table.	It	should	be	back	to	28,892.

The	next	step	is	to	get	the	SQL	statements	that	were	executed	on	the	server	for	the
rookery	database	since	the	time	of	the	dump	file.	That	can	be	a	bit	of	a	bother	to
determine	on	a	very	active	database.	Therefore,	if	you	intend	to	use	mysqldump	in
conjunction	with	mysqlbinlog,	you	should	have	mysqldump	flush	the	logs	when	it
performs	the	backup.	I	did	this	when	I	created	the	birds-simple.sql	dump	file	by	including
the	--flush-logs	option.	So	now	we	need	to	restore	data	from	the	beginning	of	the
current	log	file	to	the	point	at	which	the	DELETE	statements	were	run.	We	can	determine
that	point	in	time	from	the	binary	logs.

We’ll	use	the	mysqlbinlog	utility	to	extract	all	of	the	transactions	from	the	current	binary
log	and	save	them	to	a	text	file.	We’ll	then	examine	that	text	file	to	find	the	exact	point	in
which	the	erroneous	SQL	statements	were	run.

Finding	information	in	the	binary	log

To	get	the	information,	we	need	to	know	the	name	of	the	binary	log	file	that	contains	these
SQL	statements,	as	well	as	where	to	find	that	log	file.	We’ll	run	the	SHOW	MASTER	STATUS
to	get	the	filename.	Its	location	will	be	the	data	directory,	which	we	can	determine	by
executing	the	SHOW	VARIABLES	statement.	Enter	both	of	those	as	you	see	here:

SHOW	MASTER	STATUS;

+---------------------------+----------+--------------+------------------+

|	File																						|	Position	|	Binlog_Do_DB	|	Binlog_Ignore_DB	|

+---------------------------+----------+--------------+------------------+

|	mysqlresources-bin.000002	|		7388360	|														|	mysql												|

+---------------------------+----------+--------------+------------------+

SHOW	VARIABLES	WHERE	Variable_Name	LIKE	'datadir';

+---------------+--------------+

|	Variable_name	|	Value								|

+---------------+--------------+

|	datadir							|	/data/mysql/	|

+---------------+--------------+

The	results	from	the	first	SQL	statement	show	the	name	of	the	current	binary	log	file	(i.e.,
mysqlresources-bin.000002).	The	name	changed	since	we	last	checked	our	server	because
mysqldump	flushed	the	logs	when	the	dump	file	was	made.	The	results	of	the	second	SQL
statement	in	the	previous	listing	shows	that	the	data	directory	is	/data/mysql/.	Check	the
contents	of	that	directory	to	make	sure	that	mysqlresources-bin.000002	is	there.	Assuming
it	is	there,	we’re	now	ready	to	extract	the	transactions	we	need	from	the	binary	log.	Enter
the	following	from	the	command	line:

mysqlbinlog	--database=rookery	\

												/data/mysql/mysqlresources-bin.000002	>	recovery-research.txt

Here	you	can	see	that	I’ve	included	the	--database	option	to	instruct	mysqlbinlog	to
extract	only	transactions	for	the	rookery	database.	If	we	didn’t	do	this,	we	would	get

www.it-ebooks.info

http://www.it-ebooks.info/

transactions	for	other	databases.	On	this	particular	server,	there	are	over	two	dozen
databases,	some	of	them	large	and	very	active.	To	make	restoration	simpler	and	avoid
overwriting	data	in	other	databases,	it’s	best	to	limit	the	results	to	only	what	is	needed.

Next,	we	specify	the	path	and	name	of	the	binary	file.	This	is	followed	by	a	redirect	to
have	the	system	write	the	results	from	mysqlbinlog	to	a	text	file	(recovery-research.txt).

Extracting	and	executing	information	from	the	binary	log

When	mysqlbinlog	has	finished	creating	a	text	file	for	us,	we’ll	open	the	file	with	a	simple
text	editor	and	search	for	the	DELETE	statements.	Because	we	know	that	there	were	only
two	DELETE	statements	that	occurred	together,	this	will	be	easy	to	fix.	Here’s	an	excerpt
from	the	output	of	the	binary	log	showing	these	two	transactions:

#	at	1258707

#140916	13:10:24	server	id	1	end_log_pos	1258778	

Query	thread_id=382	exec_time=0	error_code=0

SET	TIMESTAMP=1410887424/*!*/;

SET	@@session.sql_mode=0/*!*/;

BEGIN

/*!*/;

#	at	1258778

#140916	13:10:24	server	id	1	end_log_pos	1258900	

Query	thread_id=382	exec_time=0	error_code=0

use	`rookery`/*!*/;

SET	TIMESTAMP=1410887424/*!*/;

DELETE	FROM	birds_simple	WHERE	common_name	LIKE	'%Blue%'

/*!*/;

#	at	1258900

#140916	13:10:24	server	id	1	end_log_pos	1258927	Xid	=	45248

COMMIT/*!*/;

...

#	at	1284668

#140916	13:10:28	server	id	1	end_log_pos	1284739	

Query	thread_id=382	exec_time=0	error_code=0

SET	TIMESTAMP=1410887428/*!*/;

SET	@@session.sql_mode=0/*!*/;

BEGIN

/*!*/;

#	at	1284739

#140916	13:10:28	server	id	1	end_log_pos	1284862	

Query	thread_id=382	exec_time=0	error_code=0

SET	TIMESTAMP=1410887428/*!*/;

DELETE	FROM	birds_simple	WHERE	common_name	LIKE	'%Green%'

/*!*/;

#	at	1284862

#140916	13:10:28	server	id	1	end_log_pos	1284889	Xid	=	45553

COMMIT/*!*/;

This	may	seem	very	confusing,	but	it’s	not	too	bad	when	you	understand	how	binary	log
entries	are	organized	and	a	few	things	about	transactions.

Binary	log	entries	always	start	with	two	comment	lines	for	a	header	—	comments	start
with	a	hash	sign	(i.e.,	#).	The	first	comment	line	contains	the	position	number	of	the	entry
after	the	word	at.	This	is	the	number	we	need	to	restore	to	a	specific	point.	The	second
comment	line	of	the	header	provides	the	time	of	the	entry	and	other	information.	A	binary
log	entry	ends	with	/*!*/;.

www.it-ebooks.info

http://www.it-ebooks.info/

A	transaction	is	a	set	of	SQL	statements	that	are	executed	together	and	are	generally
related.	Transactions	are	used	with	transactional	tables	(e.g.,	InnoDB)	and	not	non-
transactional	tables	(e.g.,	MyISAM).	Any	SQL	statements	contained	within	a	transaction
can	be	undone	or	rolled	back	if	they’re	not	yet	committed.	The	binary	log	uses
transactions	so	that	when	data	is	restored,	it	can	be	restored	properly.	This	will	make	more
sense	as	we	look	at	the	components	of	a	transaction	in	the	excerpt	shown.

Transactions	always	start	with	a	BEGIN	statement	and	end	generally	with	a	COMMIT
statement,	which	commits	the	SQL	statements	between	the	two	—	they	can’t	be	rolled
back	or	otherwise	undone	once	they	are	committed.	Near	the	start	of	the	excerpt	from	the
binary	log,	you	can	see	a	BEGIN	statement,	followed	soon	after	by	the	first	DELETE
statement.	Therefore,	the	DELETE	is	in	the	midst	of	a	transaction.

The	position	number	for	the	entry	containing	the	first	DELETE	is	1258778.	However,	we
need	to	go	back	to	the	entry	containing	the	BEGIN	before	it	so	that	we	can	get	the	whole
transaction.	Let’s	look	at	the	header	for	that	entry:

#	at	1258707

#140916	13:10:24	server	id	1	end_log_pos	1258778	Query	thread_id=382

The	position	number	for	that	entry	is	1258707.	The	date	and	time	of	the	entry	is	140916
13:10:24	(i.e.,	2014	September	16	at	1:10	p.m.	and	24	seconds).	We	now	know	the
position	number	and	time	for	the	transaction	that	contains	the	first	DELETE.	You	may	notice
that	the	same	line	has	a	number	following	end_log_pos.	That’s	the	position	number	for
the	next	log	entry	(1258778),	which	is	the	entry	for	the	DELETE.	Don’t	let	that	confuse	you.
Position	numbers	are	based	on	positions	in	the	file;	they’re	not	from	an	incremental
counter.

We	want	to	restore	the	binary	log	from	the	beginning	until	the	start	of	the	transaction
containing	the	first	DELETE,	which	means	until	position	1258707.	We	could	edit	the	text
file	that	we	created	with	mysqlbinlog	(i.e.,	recovery-research.txt)	and	delete	the
transactions	that	we	don’t	want,	and	then	just	execute	the	file	with	the	mysql	client.
However,	there’s	an	easier	and	better	way	to	do	this.	We	can	have	the	mysqlbinlog	export
the	transactions	again,	but	have	it	stop	just	before	position	1258707.	To	do	this,	enter	the
following	at	the	command	line:

mysqlbinlog	--database=rookery		--stop-position="1258707"	\

													/data/mysql/mysqlresources-bin.000002	|

													mysql	--user=admin_maintenance	--password

This	will	extract	the	same	log	entries,	starting	from	the	beginning	of	the	same	binary	log
file,	but	stopping	at	the	position	we	gave	it.

At	this	point,	we’ve	restored	all	of	the	transactions	up	until	the	DELETE	statements	—	but
not	including	them.	Now	we	need	to	restore	all	of	the	transactions	starting	from	the
transaction	immediately	after	the	transaction	containing	the	second	DELETE	statement.

Looking	at	the	binary	log	excerpt	for	the	COMMIT	for	that	transaction	for	the	second	DELETE
statement,	we	see	that	the	end_log_pos	has	a	value	of	1284889.	That	is	the	position	of	the
start	of	the	next	transaction.	We	want	to	restore	from	that	point	forward.	As	for	where	we
want	to	stop	restoring,	we	don’t	need	to	specify	a	position	number	for	it.	Instead,	we’ll	use
the	option	--to-last-log	to	indicate	that	we	want	to	install	to	the	end	of	the	log.	This
may	be	further	than	the	end	of	the	log	file,	if	the	logs	have	been	flushed	and	more	log	files

www.it-ebooks.info

http://www.it-ebooks.info/

were	added.	Given	these	two	factors,	execute	the	following:
mysqlbinlog	--database=rookery		--start-position="1284889"	--to-last-log	\

												/data/mysql/mysqlresources-bin.000002	|

												mysql	--user=admin_maintenance	--password

This	will	restore	all	of	the	remaining	log	entries,	but	omitting	the	DELETE	statements.	This
method	is	very	precise	in	that	it	utilizes	exact	positions	in	the	binary	log	for	specific
transactions.	You	may	also	perform	a	point-in-time	recovery	using	starting	and	ending
times.	To	do	that,	use	the	--start-datetime	and	--stop-datetime	options	with
mysqlbinlog.	Looking	back	at	the	binary	log	excerpts,	you	could	do	the	following	to
accomplish	the	same	point-in-time	recovery	that	we	made:

mysqlbinlog	--database=rookery	--stop-datetime="140916	13:10:24"	\

													/data/mysql/mysqlresources-bin.000002	|

													mysql	--user=admin_maintenance	--password

mysqlbinlog	--database=rookery	--start-datetime="140916	13:10:29"	--to-last-log	\

												/data/mysql/mysqlresources-bin.000002	|

												mysql	--user=admin_maintenance	--password

Our	first	invocation	of	mysqlbinlog	gives	it	the	date	and	time	we	noted	earlier	for	the	stop
point	just	before	the	first	DELETE	statement.	Our	second	invocation	specifies	one	second
past	the	time	of	the	transaction	for	the	second	DELETE	statement	as	the	start	point	for
restoring	data.	This	will	work	just	fine,	but	using	position	numbers	is	more	precise,
because	plenty	can	happen	in	a	second.

NOTE

A	similar	method	of	making	backups	with	the	binary	logs	is	to	use	MySQL	replication.	With	replication,	you	would
have	another	server,	a	slave	that	has	been	continuously	reading	the	binary	log	of	the	main	or	master	server.	The	slave
can	use	the	binary	log	entries	to	maintain	an	exact	duplicate	of	the	databases	on	the	master.	When	you	want	to	make	a
backup,	you	need	only	stop	the	slave	from	replicating	the	master	and	make	a	backup	of	the	databases	on	the	slave.
When	you’re	finished,	begin	replicating	again,	and	within	seconds	the	slave	is	current	again.	This	topic	is	beyond	the
scope	of	this	book.	However,	my	book	MySQL	Replication:	An	Administrator’s	Guide	to	Replication	in	MySQL	(A
Silent	Killdeer	Publishing,	2010)	explains	replication	and	how	to	resolve	problems	with	MySQL.

www.it-ebooks.info

http://www.it-ebooks.info/

Developing	a	Backup	Policy
Knowing	how	to	make	backups	of	databases	and	how	to	restore	them	is	fine.	But	these
skills	will	be	of	no	use	unless	you	put	a	system	in	place	to	make	backups	regularly	and
effectively.	The	value	of	backups	is	greatly	diminished	if	you	can’t	restore	them	without
clobbering	databases	in	the	process,	without	causing	more	loss	of	data,	or	if	you	can’t
quickly	restore	them.	To	be	effective	as	a	database	administrator,	you	should	develop	a
backup	policy	and	and	adhere	to	it.

A	backup	policy	should	be	in	writing,	even	if	it’s	only	for	your	use,	and	it	should	cover	a
variety	of	aspects	of	making	backups	and	being	able	to	restore	them.	You’ll	have	to
develop	your	own	unique	policy	according	to	your	situation,	based	on	the	value	of	the
databases,	the	sensitivity	of	the	information,	and	other	factors.	For	instance,	if	you	have	a
database	for	your	personal	website,	a	database	for	which	you	earn	nothing,	that	no	one
else	depends	upon,	and	one	that	you	change	rarely,	your	policy	might	be	to	make	a
complete	backup	once	a	week	and	keep	backups	for	at	least	a	month.	However,	if	you’re
the	database	administrator	for	a	large	site	with	millions	of	rows	of	data	in	many	tables,	a
database	that	thousands	of	people	use	every	day	and	your	employer	uses	to	store	credit
card	numbers	from	transactions	amounting	to	a	significant	amount	of	revenues,	your
backup	policy	will	be	much	more	elaborate.	You	will	address	security,	the	effect	that
making	a	backup	has	on	user	traffic,	and	how	quickly	data	can	be	restored	when	needed.
For	our	purposes,	we’ll	develop	a	backup	policy	that	is	somewhere	in	between	these	two
extremes	to	give	you	a	sense	of	what	you	should	consider.

The	first	step	is	to	take	inventory	of	the	databases	and	tables	for	which	you’re	responsible.
Let’s	use	the	two	databases	that	we	have	been	using	for	the	examples	throughout	this
book.	However,	so	that	the	scenario	is	more	meaningful,	let’s	suppose	that	a	couple	of
years	have	passed	and	the	bird-watchers	website	has	attracted	many	more	members.	Based
on	that,	I’ve	arbitrarily	increased	the	row	counts	for	most	of	the	tables,	and	eliminated
temporary	tables.	Table	14-1	lists	the	tables,	grouped	by	database	and	sorted
alphabetically,	along	with	an	assessment	of	each	table.

www.it-ebooks.info

http://www.it-ebooks.info/

Table	14-1.	Assessment	of	databases	for	backup	policy

Table Row	Count Changing Active Sensitive

rookery 	 	 	 	

bird_families 229 ✓

bird_images 8

bird_orders 32 ✓

birds 28,892 ✓

birds_bill_shapes 9

birds_body_shapes 14

birds_details 0

birds_habitats 12

birds_wing_shapes 6

habitat_codes 9

	 	 	 	

birdwatchers 	 	 	 	

bird_identification_tests 3,201 ✓ ✓

bird_sightings 12,435 ✓ ✓

birder_families 96 ✓

birding_events 42 ✓

birding_events_children 34 ✓

humans 1822 ✓ ✓ ✓

prize_winners 42 ✓

survey_answers 736

survey_questions 28

surveys 16

This	list	of	tables	for	the	two	databases	indicates	a	few	factors	that	we’ve	decided	are

www.it-ebooks.info

http://www.it-ebooks.info/

important	to	the	policy	we’re	developing:	the	number	of	rows	in	each	table;	whether	a
table	changes	often	(i.e.,	its	data	changes	or	its	schema	is	altered	occasionally);	if	a	table	is
generally	active	or	the	data	is	accessed	often;	and	if	it	contains	sensitive	information.
When	you	develop	a	backup	policy,	you	may	be	concerned	with	other	factors.	However,
for	our	example	here,	these	concerns	will	dictate	how	and	when	we	will	backup	these	two
databases.

We	won’t	bother	making	daily	backups	of	the	tables	that	rarely	change.	We	will	make
backups	of	the	active	tables	each	day,	running	mysqldump	when	they	are	less	in	use.	We
will	make	backups	of	tables	that	contain	sensitive	information	(e.g.,	personal	information
on	members	and	their	children)	with	a	special	user	account	and	store	them	in	a	more
secure	directory.	We	will	also	make	a	full	backup	once	a	week	and	store	those	dump	files
in	the	same	secure	directory	for	the	same	reason.

With	all	of	these	concerns	in	mind,	we	can	begin	to	formulate	a	schedule	for	making
backups	and	where	they	should	be	located.	Table	14-2	groups	backups	based	on	each
database	and	then	groups	tables	based	on	security	and	usage	concerns.	For	each	backup,
there	is	a	list	of	tables,	if	not	all	tables.	The	columns	to	the	right	in	the	table	show	whether
a	backup	should	be	made	daily	or	weekly,	as	well	as	which	days	of	the	week	and	at	what
time	of	the	day.	The	table	also	indicates	whether	the	backup	should	be	made	to	a	secure
directory	and	whether	a	copy	should	be	kept	off	site,	in	addition	to	on	site.

www.it-ebooks.info

http://www.it-ebooks.info/

Table	14-2.	Backup	schedule

Backup Frequency Days Time Secure Off-Site

The	first	day	of	the	week	will	be	Monday.	All	times	are	in	G.M.T.	Backups	containing	sensitive	information	will	be
made	by	a	special	administrator	and	stored	in	a	secure	directory.	Some	backup	files	are	also	stored	offsite.

rookery	-	full	back-up Weekly First 8:00 No Yes

all	tables

(rookery-yyyy-mmm-dd.sql)

	 	 	 	 	

rookery	-	bird	classification Daily Every 9:00 No No

birds,	bird_families,	bird_orders

(rookery-class-yyyy-mmm-dd.sql)

birdwatchers	-	full	back-up Weekly First 8:30 Yes Yes

all	tables

(birdwatchers-yyyy-mmm-dd.sql)

birdwatchers	-	people Daily Every 9:30 Yes No

humans,	birder_families,	birding_events_children

(birdwatchers-people-yyyy-mmm-dd.sql)

birdwatchers	-	activities Daily Every 10:00 No No

bird_sightings,	birding_events,	bird_identification_tests,

prize_winners,	surveys,	survey_answers,	survey_questions

(birdwatchers-activities-yyyy-mmm-dd.sql)

	 	 	 	 	

Notice	that	the	plan	here	is	to	do	a	full	backup	of	each	of	the	two	databases	once	a	week.
You	might	want	to	put	these	backups	into	one	dump	file,	but	I	prefer	them	separate.	It
makes	it	easier	to	restore	one	later.

The	plan	also	calls	for	daily	backups	of	the	tables	that	change	often,	either	in	content	or	in
structure.	Because	the	other	tables	change	rarely,	there’s	no	need	to	make	daily	back-ups
of	them.	However,	because	the	other	tables	are	so	small,	it’s	not	much	of	a	problem	to
make	backups	of	them	each	day	as	well.	For	some	people,	full	backups	every	day	is
easiest	and	preferred.	But	if	you	have	very	large	databases	and	security	and	performance
concerns,	full	backups	might	not	be	the	best	choice.	For	this	example,	I	want	you	to	see
alternative	ways	in	which	you	might	organize	a	backup	schedule.

For	the	fictitious	bird-watchers	website,	our	database	contains	many	members	in	Europe
and	the	United	States.	Because	bird-watching	is	a	hobby	for	most	people,	most	of	our
traffic	will	be	in	the	evenings.	The	times	here	are	all	Greenwich	Mean	Time	and	in	the
morning.	When	it’s	8:00	a.m.	in	London,	the	time	of	our	first	backup,	it	will	be	midnight
in	San	Francisco.	Put	another	way,	when	it’s	late	at	night	for	our	members	that	are	the
furthest	West,	with	the	exception	of	a	few	we	might	have	in	the	Pacific,	we	begin	making

www.it-ebooks.info

http://www.it-ebooks.info/

our	backups.	This	should	be	a	slow	traffic	time	for	our	databases.

We	will	keep	all	backups	on	site	and	on	two	separate	servers.	We’ll	use	cron	to	copy	the
dump	file	automatically	to	the	second	server	across	our	internal	network.	Additionally,	we
will	copy	the	weekly,	full	backups	to	a	cloud	server	like	DropBox	or	Google	Drive	in	case
there	is	a	fire	or	some	other	catastrophe	destroying	our	servers	in	the	same	building.

Now	that	we	have	a	plan	about	what	and	when	we	will	backup,	we	need	a	plan	to	check
those	backups	to	make	sure	they	are	being	performed	correctly	(see	Table	14-3).	This	will
include	not	only	looking	to	see	whether	the	files	are	there,	but	trying	to	restore	them.	This
has	the	added	advantage	of	giving	us	practice	restoring	databases.	As	mentioned	several
times	already,	when	there	is	an	urgent	situation	in	which	you	need	to	restore	data,	you
need	to	be	ready	and	know	what	to	do.	It’s	difficult	to	become	proficient	in	restoring	data
during	a	crisis.

Table	14-3.	Backup	verification	schedule

Back-up Verify Restoration	Tests Retention

Database Tables Rows

Backups	will	be	verified	on	a	regular	basis.	For	testing	and	practicing	purposes,	databases,	tables,	and	rows	will	be
restored	regularly	in	a	test	environment.

rookery	-	full	back-up Weekly Monthly N/A Semi-monthly Two	months

rookery	-	bird	classification Weekly N/A Semi-monthly Semi-monthly One	month

birdwatchers	-	full	back-up Weekly Monthly N/A Semi-monthly Two	months

birdwatchers	-	people Weekly N/A Semi-monthly Semi-monthly One	month

birdwatchers	-	activities Weekly N/A Semi-monthly Semi-monthly One	month

	 	 	 	 	

Let’s	go	through	the	verification	plan	in	this	schedule.	Once	a	week	we	will	inspect	all	of
the	dump	files	made	for	that	week	to	ensure	that	the	back-ups	are	being	made	and	contain
the	tables	that	we	want.	To	carry	out	this	task,	you	could	look	to	see	whether	the	files	are
created	and	check	the	file	sizes	of	each.	You	could	also	open	each	with	a	text	editor	to	see
whether	it	looks	correct.	You	might	also	use	the	grep	command	to	extract	the	table	names
used	with	the	CREATE	TABLE	within	the	dump	file.	If	you	want	to	use	grep,	you	could
execute	something	like	the	following	to	get	a	list	of	tables	the	rookery.sql	dump	file	would
create	if	executed:

grep	'CREATE	TABLE'	rookery.sql	|	grep	-oP	'(?<=CREATE\	TABLE\	\`).*(?=\`)'

bird_families

bird_images

bird_orders

birdlife_list

birds

birds_bill_shapes

birds_body_shapes

birds_details

www.it-ebooks.info

http://www.it-ebooks.info/

birds_habitats

birds_wing_shapes

conservation_status

habitat_codes

The	next	three	columns	of	Table	14-3	are	related	to	testing	and	practicing	restoring	data.
Once	a	month,	we	will	try	to	restore	the	databases	made	in	the	full	backups.	You	could	test
this	by	restoring	each	database	to	a	test	server.	Then	you	can	execute	queries	on	the	live
and	the	test	server	to	compare	the	results.	Just	keep	in	mind	that	the	data	will	be	a	little
different	on	the	live	server.

The	other	backup	dump	files	are	based	on	tables.	These	tables	change	often	or	are	large
and	critical	to	our	bird-watchers	site.	So	we’ll	test	restoring	tables	from	these	dump	files
twice	a	month.	For	all	of	the	backups,	we’ll	try	twice	a	month	to	restore	individual	rows.
This	is	the	type	of	restoration	we	will	be	most	likely	to	do.	It’s	important	that	we	know
how	to	restore	very	specific	data	from	all	of	our	dump	files.	With	this	much	practice,
restoring	a	minor	loss	of	data	when	needed	won’t	be	much	trouble	for	us.

The	last	column	in	the	table	has	to	do	with	retention:	how	long	we	will	retain	the	dump
files.	Our	plan	is	to	keep	the	dump	files	for	the	full	backups	for	two	months	and	the	ones
for	specific	tables	only	one	month.	You	might	not	want	to	keep	them	that	long,	or	maybe
you	will	want	to	keep	them	longer.	Some	people	copy	dump	files	to	CDs	for	each	month
and	then	store	them	for	years.

Tables	14-2	and	14-3	basically	represent	our	backup	policy.	One	table	lists	what	we	will
back	up,	when,	and	where.	The	other	lists	when	we	will	verify	that	the	backups	are
performed	successfully,	when	we	will	perform	restoration	drills,	and	how	long	we	will
retain	the	backups.	There	are	other	factors	you	could	put	into	a	backup	policy	and	much
more	detail.	However,	this	should	give	you	a	sense	of	one	way	you	might	develop	a
backup	policy.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
By	now	you	probably	understand	that	making	backups	is	important.	It	can	save	you	from
plenty	of	problems	and	frustrations.	Being	skilled	in	restoring	backups	can	make	life	as	a
database	administrator	easier,	and	help	you	to	turn	major	problems	into	minor	ones	that
can	be	resolved	easily.	Developing	and	adhering	to	a	good	backup	policy	ensures	that	all
of	your	efforts	and	skills	are	brought	together	in	an	effective	manner.

As	mentioned	near	the	start	of	this	chapter,	there	are	quite	a	few	utilities	that	you	can	use
to	make	backups	of	your	data,	as	well	as	other	methods	(e.g.,	replication).	Using
mysqldump	is	the	easiest	and	in	some	ways	the	best.	As	an	administrator,	you	should	know
how	to	use	it	well	and	how	to	restore	dump	files.	To	that	end,	complete	the	exercises	in	the
next	section	to	get	some	practice.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises
A	few	exercises	follow	to	get	you	more	familiar	with	making	backups	with	mysqldump,	as
well	as	restoring	them.	You	should	try	to	complete	all	of	the	exercises.	However,	there	are
a	couple	that	might	be	too	advanced.	If	you’re	having	difficulty	working	through	them,	try
again	later	when	you	are	more	experienced.

1.	 So	that	you	won’t	cause	yourself	problems	with	the	other	exercises	here,	make	a
couple	of	backups	for	the	first	exercise.	Using	the	mysqldump	utility,	make	a	backup
of	all	of	the	databases.	Then	make	a	backup	of	both	the	rookery	and	the
birdwatchers	databases	in	one	dump	file.	Don’t	use	these	two	dump	files	for	the
remaining	exercises.	Keep	them	in	case	something	goes	wrong	and	you	need	to
restore	something.

2.	 Refer	to	the	backup	schedule	in	Table	14-2.	It	contains	a	list	of	backups	to	be	made
regularly.	There	are	two	full	backups	and	three	backups	based	on	tables.	Make	all
five	backups	in	this	schedule	using	mysqldump	and	name	the	dump	files	in
accordance	with	the	naming	pattern	shown	in	the	table	for	each.

3.	 Write	five	simple	shell	scripts,	each	to	make	a	backup	using	mysqldump	for	each	of
the	backups	listed	in	Table	14-2.	Make	it	so	that	the	names	of	the	dump	files	that	it
creates	conform	automatically	to	the	naming	pattern	based	on	the	current	date,	as
shown	in	Table	14-2.	There	is	a	script	that	can	do	this	in	Creating	Backup	Scripts.
You	can	copy	this	script	and	modify	it,	or	you	can	write	your	own	using	a	scripting
or	programming	language	with	which	you’re	comfortable.
After	you	write	the	five	scripts,	execute	them	and	see	whether	they	create	and	name
the	dump	files	correctly.	If	it	won’t	cause	problems	to	your	server,	add	lines	to
crontab	or	another	scheduling	utility	to	have	the	five	scripts	execute	automatically,
but	at	a	time	not	long	afterwards.	Wait	and	see	if	they	execute	as	scheduled.	You	can
remove	the	entries	from	crontab	after	you’ve	tried	this.

4.	 Modify	the	scripts	that	you	created	in	the	previous	exercise	and	have	the	scripts
remove	older	dump	files,	ones	that	are	older	than	the	amount	of	time	set	in	the
retention	column	for	each	table	in	Table	14-3.	Make	copies	of	the	first	set	of	dump
files	you	created	with	these	scripts,	but	change	the	names	so	that	the	date	part	of	the
filenames	are	further	back	than	the	retention	period.	Make	copies	for	dates	that	are
one	and	two	days	within	the	retention	period	and	dates	that	are	one	and	two	days
outside	of	the	retention	period.
Run	your	scripts	again	to	see	whether	they	delete	the	dump	files	with	the	older
names.	You	may	have	to	try	this	a	few	times	to	get	it	right,	so	that	the	scripts	delete
the	right	dump	files.

5.	 Log	into	MySQL	and	use	the	DROP	TABLE	statement	to	delete	the
birds_bill_shapes	and	birds_body_shapes	tables.
Next,	use	the	dump	file	you	made	in	the	second	exercise	here	to	restore	these	tables
from	the	rookery.sql	dump	file.	When	you	finish,	log	into	MySQL	to	verify	that	they
were	restored	and	contain	the	data.

6.	 Log	into	MySQL	and	use	the	UPDATE	statement	to	change	the	common_name	in	the
birds	table	to	NULL	for	any	rows	where	the	common_name	contains	the	word	Parrot.
There	should	be	about	185	rows.
Make	a	copy	of	the	rookery.sql	dump	file.	Name	it	rookery_temp.sql.	Edit	this	new

www.it-ebooks.info

http://www.it-ebooks.info/

dump	file	to	change	the	name	of	the	database	to	rookery_temp.	This	method	was
described	in	Restoring	Only	Rows	or	Columns.
Next,	use	the	rookery_temp.sql	dump	file	to	create	the	rookery_temp	database	on
your	server.	When	that’s	done,	restore	the	Parrot	common	names	in	rookery.birds
from	rookery_temp.birds	using	the	UPDATE	statement.

7.	 If	you	haven’t	already,	enable	binary	logging	on	your	server	as	described	in
Recovering	from	a	Binary	Log.	Remember	to	restart	the	server	once	you’ve	set	it	to
be	enabled.	Use	mysqldump	to	make	a	backup	of	just	the	birds	table	in	the	rookery
database.	Be	sure	to	include	the	--flush-logs	option.
After	you’ve	enabled	binary	logging	and	made	the	backup	of	the	table,	log	into
MySQL	and	execute	a	DELETE	statement	to	delete	any	birds	with	the	word	Gray.
Then	insert	a	few	rows	of	data	into	the	birds	table.	You	can	just	make	up	values	for
the	common_name	column	and	leave	the	other	columns	blank.
Now	use	the	dump	file	to	restore	the	birds	table.	Using	the	point-in-time	recovery
method	described	in	Recovering	from	a	Binary	Log,	restore	all	of	the	transactions	in
the	binary	logs	up	until	the	DELETE	statement	that	deleted	the	gray	birds	with
mysqlbinlog.	This	will	require	you	to	find	the	position	number	in	the	binary	log
when	the	DELETE	statement	was	executed.
Next,	using	the	position	number	for	the	transaction	immediately	after	the	DELETE
statement	in	the	binary	logs,	restore	the	transactions	from	that	point	until	the	end	of
the	binary	logs.
Log	into	MySQL	to	see	whether	you	were	successful	in	restoring	the	data.	When
you’re	done,	remember	to	disable	binary	logging	if	you	don’t	want	to	continue
logging	transactions.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	15.	Bulk	Importing	Data
You	might	be	asked	one	day	to	create	a	MySQL	or	MariaDB	database	that	will	replace	an
existing	database	that	uses	a	different	database	system	—	or	some	other	format	used	for
storing	data.	Or	you	might	be	asked	to	take	the	data	from	an	application	that	was	not
designed	for	databases,	like	a	spreadsheet.	So	that	you	don’t	have	to	manually	enter	the
data,	there	are	ways	you	can	import	it.	This	chapter	explains	how	to	bulk	import	data	into
a	database.

When	using	other	applications,	export	the	data	from	the	source	application	to	a	format	that
MySQL	can	read,	such	as	a	text	file	containing	data	separated	by	particular	characters.	If
you’re	given	a	large	amount	of	data	to	import,	hopefully	it	will	already	be	well	organized
and	in	a	data	text	file.	Then	you	can	use	the	LOAD	DATA	INFILE	statement	to	import	the
data.

This	isn’t	an	overly	difficult	task,	but	the	processing	of	large	amounts	of	data	can	be
intimidating	the	first	time.	It	can	be	a	barrier	to	migrating	data	to	MySQL	and	MariaDB.
There	are	many	nuances	to	consider	for	a	clean	import,	which	is	especially	important	if
you	want	to	automate	the	process.	There	may	also	be	restraints	to	consider	when
importing	data	onto	a	server	provided	by	a	web	hosting	company.	We’ll	cover	all	of	these
in	this	chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Preparing	to	Import
To	import	data	into	MySQL	or	MariaDB,	the	data	needs	to	be	in	a	compatible	format.
Both	database	systems	will	accept	a	simple	text	file	in	which	the	values	are	delimited	in
some	way.	The	easiest	way	to	deal	with	incompatible	data	in	any	format	is	to	load	it	in	its
original	software	and	to	export	it	to	a	delimited	text	file.	Most	applications	can	do	this.
They	will	usually	separate	field	values	by	commas	and	separate	records	by	hard	returns,
putting	each	row	on	a	separate	line.	Some	applications	will	allow	you	to	set	the	delimiters
to	your	choice.	If	that’s	an	option,	you	might	use	the	bar	(i.e.,	|)	to	separate	fields	because
it	won’t	typically	be	used	within	the	data,	and	separate	records	with	a	new-line.

For	some	examples	related	to	the	rookery	database,	let’s	get	a	large	data	text	file	to	use.
Cornell	University	is	famous	for	ornithology.	They	also	publish	books	on	birds	through
Cornell	University	Press.	One	of	their	publications	is	The	Clements	Checklist	of	World
Birds	by	James	F.	Clements.	The	list	of	birds	from	this	publication	is	on	its	website	in	a
spreadsheet	and	in	a	comma-separated	values	(CSV)	format.	Every	August,	an	updated	list
is	posted	on	the	site	for	people	and	organizations	to	use	freely	on	their	own	sites	and	in
their	databases	to	promote	the	study	and	appreciation	of	birds.

Suppose	we	want	to	compare	the	latest	list	to	our	birds	table	to	see	whether	there	are	any
new	species.	This	may	seem	intimidating,	but	it	can	be	done	without	much	trouble.	To
participate,	download	the	CSV	file	from	Cornell’s	site	or	MySQL	Resources.	For	the
examples	that	follow,	I	downloaded	the	Clements-Checklist-6.9-final.csv	file.

WARNING

If	you	use	FTP	to	upload	a	text	file	to	the	server,	be	sure	to	upload	it	in	ASCII	mode	and	not	binary	mode.	If	the	text
file	was	created	with	a	program	that	uses	binary	characters	or	binary	hard	returns,	these	will	cause	problems	when
loading	the	data.

After	you	download	the	Cornell	data	text	file,	open	it	with	a	text	editor	to	see	how	the
content	looks.	You	will	need	to	know	how	the	lines	and	fields	are	organized	and
delineated.	Some	excerpts	follow	from	the	Cornell	data	file	that	I	downloaded:

sort	6.9,Clements	6.9	change,2014	Text	for	website,

Category,Scientific	name,English	name,Range,

Order,Family,Extinct,Extinction	Year,sort	6.8,sort	6.7,page	6.0,,,,,

...

4073,new	species,"Walters	(1991)	and	Cibois	et	al.	(2012)	proposed

recognition	of	Prosobonia	ellisi	Sharpe	1906,	with	English	name

Moorea	Sandpiper	and	range	""extinct;

formerly	Moorea	(Society	Islands)"".",

species,Prosobonia	ellisi,Moorea	Sandpiper,extinct;	

formerly	Moorea	(Society	Islands),

Charadriiformes,Scolopacidae	(Sandpipers	and	Allies)

		,1,xxxx,,,addition	(2014),,,,,

...

6707,new	species,"Robb	et	al.	(2013)	describe	a	new	species	of	owl,	Omani	Owl

(Strix	omanensis),	from	the	Arabian	Peninsula,	with	range

""central	Al	Hajar	mountains,	northern	Oman"".

Position	Omani	Owl	immediately	following	Hume's	Owl	(Strix	butleri).",

species,	inStrix	omanensis,Omani	Owl,"central	Al	Hajar	mountains,	northern	Oman",

Strigiformes,Strigidae	(Owls),,,,,addition	(2014),,,,,

...

The	CSV	file	contains	about	32,000	lines,	but	I’ve	listed	here	just	a	few	lines	of	interest	as

www.it-ebooks.info

http://www.birds.cornell.edu/clementschecklist/
http://mysqlresources.com/files
http://www.it-ebooks.info/

a	sample.	I	put	hard	returns	within	each	record	to	make	them	easier	to	discuss.	Each
record	in	the	original	file,	though,	is	on	one	long	line	without	breaks.

The	first	record	gives	the	field	names.	Some	of	the	names	are	a	bit	confusing,	as	they	refer
to	earlier	versions	of	the	Clements	list	for	continuity	with	earlier	lists.	The	first	field,	sort
6.9,	is	an	identification	number	for	each	row.	The	sort	6.8	and	sort	6.7	fields	you	see
further	down	are	the	identification	numbers	from	those	earlier	lists.	There	are	several	more
fields,	but	for	the	examples	in	this	chapter	we	care	only	about	the	Clements	6.9	change,
Scientific	name,	English	name,	Order,	and	Family	fields.

The	Clements	6.9	change	field	indicates	the	type	of	change	for	the	bird	since	the	last
Clements	list.	For	the	purpose	of	the	scenario	we’re	concerned	about	now,	we	want	the
new	species	changes.

The	two	records	containing	data	are	the	ones	that	we	want	to	import.	Record	4073	is
related	to	a	new	species	that	was	added	to	the	Clements	list,	the	Prosobonia	ellisi	or
Moorea	Sandpiper.	Unfortunately,	this	bird	is	extinct.	Ornithologists	collect	information
on	all	known	birds,	even	extinct	ones.	For	good	form,	we’ll	add	it	to	the	birds	table,	even
though	none	of	our	birdwatchers	will	see	one.	Record	6707	shows	another	new	species,
the	Strix	omanensis	or	Omani	Owl.	Fortunately,	this	owl	from	the	Arabian	Peninsula	isn’t
extinct.

Before	begining	an	import,	you	will	need	to	put	the	CSV	file	on	the	server	and	in	a
directory	accessible	by	MySQL.	It’s	a	good	security	habit	to	put	data	files	in	non	public
directories.	But	to	keep	it	simple,	for	our	purposes,	we’ll	use	the	/tmp	directory	to	hold
temporarily	the	data	text	files	for	importing.

The	next	task	in	preparing	to	import	the	Clements-Checklist-6.9-final.csv	file	is	to	create	a
table	into	which	to	import	it.	It	contains	more	rows	and	more	columns	than	we	need,	but
importing	32,000	lines	from	a	CSV	file	will	take	only	seconds.	So	the	size	is	not	a
problem.

We	could	import	the	data	directly	into	an	existing	table,	but	it’s	best	to	create	a	new	table
that	we’ll	use	only	for	the	import.	We	can	execute	an	INSERT	INTO…SELECT	statement	later
to	copy	the	data	from	the	import	table	we	create	into	an	existing	table.	Execute	the
following	on	your	server	to	create	the	import	table:

CREATE	TABLE	rookery.clements_list_import

(id	INT,	change_type	VARCHAR(255),

col2	CHAR(0),	col3	CHAR(0),

scientific_name	VARCHAR(255),

english_name	VARCHAR(255),

col6	CHAR(0),	`order`	VARCHAR(255),

family	VARCHAR(255),

col9	CHAR(0),	col10	CHAR(0),

col11	CHAR(0),	col12	CHAR(0),

col13	CHAR(0),	col14	CHAR(0),

col15	CHAR(0),	col16	CHAR(0),	col17	CHAR(0));

This	CREATE	TABLE	statement	creates	a	table	with	one	column	for	each	field	of	a	line	in	the
data	text	file.	The	columns	are	in	the	same	order	as	the	fields	in	the	data	text	file.	For	the
fields	that	we	won’t	need,	we’ve	assigned	generic	names	for	the	related	columns	with	a
data	type	of	CHAR(0)	—	a	fixed	character	field	with	a	width	of	0	characters	—	so	that	the
data	for	those	fields	won’t	be	stored.	There’s	a	better	way	to	do	this.	We	could	just	import
the	columns	we	want.	But	we’ll	cover	that	later	in	this	chapter.	For	this	example,	we’ll	use

www.it-ebooks.info

http://www.it-ebooks.info/

this	simple	method	and	focus	on	the	other	fields.

For	the	fields	we	want,	I’ve	assigned	names	for	the	columns	close	to	the	field	names	from
the	data	text	file	and	a	data	type	of	VARCHAR(255).	Notice	that	we	had	to	put	the	order
field	within	backticks.	That’s	because	the	word	order	is	a	reserved	word	(e.g.,	the	ORDER
BY	clause).	We	can	use	it	for	a	column	name,	as	long	as	we	always	refer	to	it	in	this	way.
Otherwise	it	will	confuse	MySQL	and	cause	an	error.

At	this	point,	we	have	a	good	data	text	file	to	import	and	we	have	placed	the	file	in	an
accessible	directory	on	the	server.	We	have	determined	how	the	data	is	organized	in	the
file.	And	we	have	created	a	table	to	receive	the	data.	We’re	now	ready	to	load	the	data.

www.it-ebooks.info

http://www.it-ebooks.info/

Loading	Data	Basics
To	load	data	into	MySQL	or	MariaDB,	you	need	an	administrative	user	account	that	has
FILE	privileges.	Let’s	use	the	user	account,	admin_import	that	we	created	in	Chapter	13.

The	LOAD	DATA	INFILE	statement	loads	data	from	a	text	file.	It’s	a	versatile	SQL	statement
with	several	options	and	clauses.	We’ll	look	at	them	throughout	this	chapter.	The
following	command	is	the	minimum	we	would	enter	from	the	mysql	client	to	load	the	data
from	the	Clements-Checklist-6.9-final.csv	file	data	file	from	Cornell	into	the
clements_list_import	table:

LOAD	DATA	INFILE	'/tmp/Clements-Checklist-6.9-final.csv'

INTO	TABLE	rookery.clements_list_import

FIELDS	TERMINATED	BY	',';

Notice	in	the	SQL	statement	here	that	the	file	path	and	name	are	enclosed	in	quotes.	You
can	use	single	or	double	quotes.	Notice	also	the	FIELDS	clause.	In	this	clause,	we	define
the	parameters	of	the	fields,	how	they	are	identified.	For	the	CSV	file	we’re	importing,
fields	are	deliminated	from	each	other	with	a	comma.	For	this,	we	add	to	the	FIELDS
clause	the	TERMINATED	BY	subclause	and	a	comma	within	quotes.

There	are	other	subclauses	and	other	clauses,	but	this	is	the	least	required	for	the	LOAD
DATA	INFILE	statement.	However,	this	SQL	statement	as	we’ve	constructed	it	will	cause
problems	and	generate	warning	messages.

Watching	for	Warnings
If	you	ran	the	LOAD	DATA	INFILE	statement	in	the	previous	section,	you	may	have	noticed
many	warnings.	The	following	output	shows	the	message	generated	by	running	that	SQL
statement,	and	the	first	few	warnings:

Query	OK,	32187	rows	affected,	65535	warnings	(0.67	sec)

Records:	32187		Deleted:	0		Skipped:	0		Warnings:	209249

SHOW	WARNINGS;

+---------+------+--+

|	Level			|	Code	|	Message																																																						|

+---------+------+--+

|	Warning	|	1366	|	Incorrect	integer	value:	'sort	6.9'	for	column	'id'	at	row	1	|

|	Warning	|	1265	|	Data	truncated	for	column	'col2'	at	row	1																				|

|	Warning	|	1265	|	Data	truncated	for	column	'col3'	at	row	1																				|

...

You	can	execute	the	SHOW	WARNINGS	statement	to	get	a	list	of	the	warnings.	Because	there
were	209,249	warnings,	I’ve	listed	only	a	few	of	them	here,	just	the	ones	for	the	first	row.
The	warnings	for	all	of	the	other	rows	are	about	the	same.	Most	of	these	warnings
appeared	because	we	have	columns	using	the	CHAR	data	type	with	a	width	of	0.	This	means
that	any	data	in	the	fields	that	corresponds	to	those	columns	will	contain	more	data	than	it
can	hold.	In	such	cases,	the	data	is	truncated	upon	being	loaded	into	the	table	and	the
server	generates	a	warning	for	each	such	column.	Let’s	look	at	a	sample	of	the	data	in	the
table	to	see	more	clearly	what	the	warnings	are	trying	to	tell	us	and	how	well	the	statement
did:

SELECT	*	FROM	rookery.clements_list_import	LIMIT	2	\G;

***************************	1.	row	***************************

													id:	0

				change_type:	Clements	6.9	change

www.it-ebooks.info

http://www.it-ebooks.info/

											col2:

											col3:

scientific_name:	Scientific	name

			english_name:	English	name

											col6:

										order:	Order

									family:	Family

											col9:

										col10:

										col12:

										col13:

										col14:

										col15:

										col16:

										col17:

***************************	2.	row	***************************

													id:	1

				change_type:

											col2:

											col3:

scientific_name:	Struthio	camelus

			english_name:	Ostrich

											col6:

										order:	Struthioniformes

									family:	Struthionidae	(Ostrich)

											col9:

										col10:

										col12:

										col13:

										col14:

										col15:

										col16:

										col17:	

The	LOAD	DATA	INFILE	statement	seems	to	be	working	well.	It	has	inserted	the	fields
correctly	into	the	columns	of	the	table.	The	first	row,	though,	contains	the	field	names.	We
don’t	need	that	row,	but	it	won’t	affect	anything	for	our	scenario.	Looking	at	the	second
row,	you	can	see	that	the	data	we	want	from	the	text	file	went	into	the	right	columns:	we
have	the	scientific	and	common	name	of	the	birds,	as	well	as	the	name	of	the	order	and
family	to	which	they	belong.	For	the	fields	that	we	don’t	want,	the	columns	with	generic
names	have	no	value.	That’s	fine.	As	I	said	before,	there	is	a	more	professional,	cleaner
way	in	which	we	could	have	loaded	the	data.	We’ll	cover	that	method	later.	Let’s	proceed
with	the	next	step	to	add	new	species	to	the	birds	table.

Checking	the	Accuracy	of	the	Import
Before	inserting	data	into	the	birds	table,	let’s	check	a	little	more	closely	the	accuracy	of
the	data	loaded	into	the	clements_list_import	table.	We’ll	use	the	SELECT	statement	to
see	how	the	data	looks	for	the	rows	we	want,	the	new	species.	Enter	the	following	SQL
statement	on	your	server	and	review	the	results:

SELECT	id,	change_type,

scientific_name,	english_name,

`order`,	family

FROM	rookery.clements_list_import

WHERE	change_type	=	'new	species'	LIMIT	2	\G

***************************	1.	row	***************************

													id:	4073

				change_type:	new	species

scientific_name:	species

			english_name:	Prosobonia	ellisi

										order:	extinct;	formerly	Moorea	(Society	Islands)

									family:	Charadriiformes

***************************	2.	row	***************************

													id:	6707

				change_type:	new	species

scientific_name:		from	the	Arabian	Peninsula

www.it-ebooks.info

http://www.it-ebooks.info/

			english_name:		with	range	""central	Al	Hajar	mountains

										order:	species

									family:	Strix	omanensis

The	results	here	are	limited	to	two	rows,	but	you	can	remove	the	LIMIT	clause	to	see	all	of
the	rows.	There	should	be	11	in	all.	These	two	rows	relate	to	the	two	records	in	the	excerpt
from	the	Clements-Checklist-6.9-final.csv	file	shown	earlier	in	this	chapter.	Notice	that
data	isn’t	getting	into	the	correct	columns.	To	determine	where	things	are	going	awry,	let’s
look	closely	at	the	record	for	the	second	row:

6707,

new	species,

"Robb	et	al.	(2013)	describe	a	new	species	of	owl,

	Omani	Owl	(Strix	omanensis),

	from	the	Arabian	Peninsula,

	with	range	""central	Al	Hajar	mountains,

	northern	Oman"".	Position	Omani	Owl	immediately	following

	Hume's	Owl	(Strix	butleri).",

species,

Strix	omanensis,

Omani	Owl,

"central	Al	Hajar	mountains,

northern	Oman",

Strigiformes,

Strigidae	(Owls),

,,,,addition	(2014),,,,,

The	text	that	was	inserted	in	the	columns	is	shown	in	boldface	here.	It	seems	that	MySQL
was	confused	by	the	commas	contained	within	some	of	the	fields.	This	is	because	the	LOAD
DATA	INFILE	we	executed	included	a	FIELDS	clause	that	stipulated	that	they	are
terminated	by	a	comma.	The	result	is	that	text	from	fields	containing	commas	is	being	cut
into	pieces	and	inserted	into	the	subsequent	columns.	We	can	fix	this	problem	by	adding
more	parameters	to	the	FIELDS	clause.

Let’s	delete	the	data	in	the	clements_list_import	table.	This	is	one	of	the	advantages	of
using	a	temporary	table	as	we	have	done:	we	can	delete	everything	and	start	anew.	Then
we’ll	reload	the	data.	Enter	the	following	two	SQL	statements	on	your	server:

DELETE	FROM	rookery.clements_list_import;

LOAD	DATA	INFILE	'/tmp/Clements-Checklist-6.9-final.csv'

INTO	TABLE	rookery.clements_list_import

FIELDS	TERMINATED	BY	','	OPTIONALLY	ENCLOSED	BY	'"'

IGNORE	1	LINES;

The	first	SQL	statement	deletes	all	of	the	data	in	clements_list_import	so	that	we	may
start	with	an	empty	table.	The	second	SQL	statement	is	the	same	as	the	previous	LOAD
DATA	INFILE,	except	that	we’ve	added	the	ENCLOSED	BY	subclause	to	the	FIELDS	clause	to
specify	that	fields	are	enclosed	with	double	quotes.	In	addition,	we’ve	included	the
OPTIONALLY	option	to	that	subclause	to	indicate	that	some	fields	may	not	be	enclosed
within	double	quotes.	That	tells	MySQL	that	if	it	encounters	a	double	quote,	to	look	for	a
second	one	and	to	treat	everything	inside	of	the	pair	of	double	quotes	as	data.	So	if	it	finds
a	comma	within	double	quotes,	it	will	not	consider	it	a	marker	indicating	the	termination
of	a	field.

It	may	seem	strange	that	this	works,	considering	there	is	text	outside	of	the	double	quotes
and	more	than	one	pair	of	double	quotes	in	some	fields,	but	it	does	work.

www.it-ebooks.info

http://www.it-ebooks.info/

TIP

When	loading	data	into	a	table,	it’s	generally	locked	and	other	users	are	prevented	from	accessing	the	table.	However,
you	can	include	the	LOW_PRIORITY	option	to	let	other	clients	read	from	the	table	while	you	are	loading	it:	LOAD	DATA
LOW_PRIORITY	INFILE.	The	execution	of	the	SQL	statement	will	be	delayed	until	no	other	clients	are	reading	the
table.	It	works	only	with	tables	that	use	storage	engines	with	table-level	locking	(e.g.,	MyISAM),	not	with	row-level
locking	tables	(e.g.,	InnoDB).

There	was	another	addition	to	the	LOAD	DATA	INFILE	statement	we	used	here.	We	added
the	IGNORE	clause	to	the	end.	This	tells	MySQL	to	ignore	the	number	of	lines	specified,
starting	from	the	beginning	of	the	data	text	file.	By	specifying	that	the	statement	ignore
one	line,	we	skip	over	the	first	line,	which	is	the	line	containing	the	field	names	that	we
don’t	need.	If	the	data	text	file	has	more	than	one	line	for	the	header,	you	can	tell	it	to
ignore	more	than	one.

Execute	the	earlier	SELECT	statement	again:
SELECT	id,	change_type,

scientific_name,	english_name,

`order`,	family

FROM	rookery.clements_list_import

WHERE	change_type	=	'new	species'	LIMIT	2	\G

***************************	1.	row	***************************

													id:	4073

				change_type:	new	species

scientific_name:	Prosobonia	ellisi

			english_name:	Moorea	Sandpiper

										order:	Charadriiformes

									family:	Scolopacidae	(Sandpipers	and	Allies)

***************************	2.	row	***************************

													id:	6707

				change_type:	new	species

scientific_name:	Strix	omanensis

			english_name:	Omani	Owl

										order:	Strigiformes

									family:	Strigidae	(Owls)

It’s	now	loading	well.	The	scientific	and	common	names	are	in	the	correct	columns,	along
with	the	other	columns	that	we	want.	We’re	ready	to	move	to	the	next	step.

Selecting	Imported	Data
Now	that	we	have	properly	loaded	the	data	from	the	Cornell	data	text	file	into	the
clements_list_import	table,	we	can	use	the	INSERT	INTO…SELECT	statement	to	copy	the
data	we	want	to	the	birds	table.	We’re	learning	and	experimenting,	so	let’s	create	a	table
identical	to	the	birds	table	to	insert	the	data	from	the	clements_list_import	table.
Execute	the	following	on	your	server:

CREATE	TABLE	rookery.birds_new

LIKE	rookery.birds;

Now	let’s	select	the	rows	we	want	from	clements_list_import	and	insert	them	into
birds_new.	Execute	this	on	your	server:

INSERT	INTO	birds_new

			(scientific_name,	common_name,	family_id)

SELECT	clements.scientific_name,	english_name,	bird_families.family_id

		FROM	clements_list_import	AS	clements

		JOIN	bird_families

					ON	bird_families.scientific_name	=

					SUBSTRING(family,	1,	LOCATE('	(',	family))

		WHERE	change_type	=	'new	species';

In	this	SQL	statement,	we’re	inserting	only	two	columns	from	the	clements_list_import

www.it-ebooks.info

http://www.it-ebooks.info/

table	(i.e.,	scientific_name	and	english_name).	We’re	joining	the
clements_list_import	table	to	the	bird_families	table	to	get	the	family_id.	To
determine	the	family_id,	we	have	to	join	on	the	name	of	the	family.	This	is	included	in
the	family	column	of	the	clements_list_import	table,	but	it	has	extra	text	in	parentheses
—	common	names	for	some	of	the	birds	in	the	family.	So	we’re	using	the	SUBSTRING()
and	the	LOCATE()	functions	to	get	all	of	the	text	from	the	start	of	the	string	until	it	finds	a
space	followed	by	an	open	parenthesis,	as	in	Strigidae	(Owls).	In	the	WHERE	clause	here,
we’re	selecting	any	change_type	that	has	a	value	of	new	species.

Let’s	see	how	effective	the	INSERT	INTO…SELECT	statement	was.	Execute	the	following	on
your	server:

SELECT	birds_new.scientific_name,

common_name,	family_id,

bird_families.scientific_name	AS	family

FROM	birds_new

JOIN	bird_families	USING(family_id);

+------------------------+---------------------+-----------+---------------+

|	scientific_name								|	common_name									|	family_id	|	family								|

+------------------------+---------------------+-----------+---------------+

|	Prosobonia	ellisi						|	Moorea	Sandpiper				|							164	|	Scolopacidae		|

|	Strix	omanensis								|	Omani	Owl											|							178	|	Strigidae					|

|	Batrachostomus	chaseni	|	Palawan	Frogmouth			|							180	|	Podargidae				|

|	Erythropitta	yairocho		|	Sulu	Pitta										|							217	|	Pittidae						|

|	Cichlocolaptes	maza…	|	Cryptic	Treehunter		|							223	|	Furnariidae			|

|	Pomarea	nukuhivae						|	Nuku	Hiva	Monarch			|							262	|	Monarchidae			|

|	Pomarea	mira											|	Ua	Pou	Monarch						|							262	|	Monarchidae			|

|	Pnoepyga	mutica								|	Chinese	Cupwing					|							285	|	Pnoepygidae			|

|	Robsonius	thompsoni				|	Sierra	Madre	Gro…	|							290	|	Locustellidae	|

|	Zoothera	atrigena						|	Bougainville	Thrush	|							303	|	Turdidae						|

|	Sporophila	beltoni					|	Tropeiro	Seedeater		|							322	|	Thraupidae				|

+------------------------+---------------------+-----------+---------------+

This	looks	good.	It’s	shows	all	11	new	species	and	we’re	able	to	match	them	to	the
appropriate	bird	families.	Now	we	need	only	run	an	INSERT	INTO…SELECT	to	copy	all	of
this	data	into	the	birds	table.

Although	there	are	plenty	of	records	in	the	CSV	data	text	file,	it	wasn’t	too	difficult	to
load	the	data.	There	are	smoother	ways	we	could	have	loaded	the	data.	And	there	are	some
other	clauses,	subclauses,	and	options	available	for	other	situations.	We’ll	look	at	all	of
these	in	the	next	few	sections.

www.it-ebooks.info

http://www.it-ebooks.info/

Better	Loading
Although	we	have	done	well	at	loading	a	rather	large	data	text	file,	we	could	do	better.
This	section	covers	a	few	ways	we	can	improve	the	method	of	loading	data	with	the	LOAD
DATA	INFILE	statement.

Mapping	Fields
When	we	loaded	the	data	from	the	Cornell	CSV	data	text	file,	we	included	many	fields
containing	data	in	which	we	had	no	interest.	We	dealt	with	this	by	creating	pointless
character	columns	with	no	width	to	store	data.	That	generated	many	warnings,	which	we
ignored.

There’s	a	better	way	to	address	unwanted	fields.	At	the	end	of	the	LOAD	DATA	INFILE
statement,	you	can	add	a	comma-separated	list	of	columns	in	the	table	that	map	to	fields	in
the	original	input.	This	list	can	also	include	user	variables	in	place	of	columns.	There	must
be	a	column	or	a	variable	for	each	field	and	the	columns	must	match	the	order	of	the
fields,	but	the	order	of	columns	in	the	LOAD	DATA	INFILE	can	be	different	from	the	order
the	are	in	the	table.	So	you	can	import	fields	into	a	table	in	any	order	you	want.
Additionally,	you	can	import	fields	you	don’t	want	into	a	temporary	variable	multiple
times	and	their	data	will	be	discarded;	the	variable	itself	disappears	when	the	client
session	is	terminated.

Let’s	drop	the	clements_list_import	table	and	re-create	it	without	the	generic	columns
that	we	don’t	need.	Let’s	also	put	the	columns	in	a	different	order.	Enter	the	following	two
SQL	statements	on	your	server:

DROP	TABLE	rookery.clements_list_import;

CREATE	TABLE	rookery.clements_list_import

(id	INT,	scientific_name	VARCHAR(255),

english_name	VARCHAR(255),	family	VARCHAR(255),

bird_order	VARCHAR(255),	change_type	VARCHAR(255));

Now	we	have	only	the	columns	we	want	in	this	import	table.	We	have	the	family	before
the	bird_order,	and	we	put	the	change_type	last.

Now	let’s	load	the	data	again.	This	time	we’ll	provide	a	list	of	columns	and	variables	to
map	the	fields	where	we	want.	We’ll	direct	data	from	unwanted	fields	to	a	temporary
variable,	@niente.	Any	name	is	fine.	Niente	means	nothing	in	Italian.	Execute	this	SQL
statement	on	your	server:

LOAD	DATA	INFILE	'/tmp/Clements-Checklist-6.9-final.csv'

INTO	TABLE	rookery.clements_list_import

FIELDS	TERMINATED	BY	','	OPTIONALLY	ENCLOSED	BY	'"'

IGNORE	1	LINES

(id,	change_type,	@niente,	@niente,

scientific_name,	english_name,

@niente,	bird_order,	family,	@niente,

@niente,	@niente,	@niente,	@niente,

@niente,	@niente,	@niente,	@niente);

Query	OK,	32180	rows	affected	(0.66	sec)

Records:	32180		Deleted:	0		Skipped:	0		Warnings:	0

The	list	of	columns	and	variables	are	in	the	order	of	the	fields	in	the	CSV	data	text	file.
The	fields	we	want	to	store	in	the	table	have	the	names	of	the	columns	with	which
MySQL	is	to	associate	them.	They’re	in	a	different	order	from	the	table,	but	MySQL	will

www.it-ebooks.info

http://www.it-ebooks.info/

handle	them	the	way	we	want.	The	contents	of	the	fields	we	want	are	stored	in	the
@niente	variable,	replacing	its	value	each	time.	This	works	fine	and	without	any
warnings.	Let’s	select	the	last	two	new	species	from	the	table	to	see	how	the	data	looks
now:

SELECT	*	FROM	rookery.clements_list_import

WHERE	change_type='new	species'

ORDER	BY	id	DESC	LIMIT	2	\G

***************************	1.	row	***************************

													id:	30193

scientific_name:	Sporophila	beltoni

			english_name:	Tropeiro	Seedeater

									family:	Thraupidae	(Tanagers	and	Allies)

					bird_order:	Passeriformes

				change_type:	new	species

***************************	2.	row	***************************

													id:	26879

scientific_name:	Zoothera	atrigena

			english_name:	Bougainville	Thrush

									family:	Turdidae	(Thrushes	and	Allies)

					bird_order:	Passeriformes

				change_type:	new	species

Your	results	might	be	different,	depending	on	which	file	you	downloaded	from	Cornell’s
site.	We	can	see	here,	though,	that	the	data	is	in	the	correct	columns.	We	can	now	simply
run	the	INSERT	INTO…SELECT	statement	to	copy	the	new	bird	species	into	the	birds_new
and	then	to	the	birds	table	—	or	directly	to	the	birds	table	if	we’re	feeling	confident
about	our	abilities	to	import	data.	This	is	much	better	than	our	first	pass	at	loading	the
data,	but	we	can	do	better.	Let’s	try	loading	the	data	again,	but	this	time	let’s	get	rid	of
those	common	names	in	the	family	column.

Setting	Columns
If	you	want	to	process	the	values	found	in	a	field	before	loading	them	into	a	column	in	a
table,	you	can	use	the	SET	clause	of	the	LOAD	DATA	INFILE	statement	to	do	that.	In	the
previous	examples,	we	used	SUBSTRING()	in	the	INSERT	INTO…SELECT	statement	to
eliminate	common	names	contained	within	parentheses	from	the	family	column	in	the
clements_list_import	table.	Let’s	try	loading	the	data	again,	but	this	time	let’s	get	rid	of
those	common	names	when	they’re	loaded	into	the	family	column.	Delete	and	load	the
data	again	by	running	these	two	SQL	statements:

DELETE	FROM	rookery.clements_list_import;

LOAD	DATA	INFILE	'/tmp/Clements-Checklist-6.9-final.csv'

INTO	TABLE	rookery.clements_list_import

FIELDS	TERMINATED	BY	','	OPTIONALLY	ENCLOSED	BY	'"'

IGNORE	1	LINES

(id,	change_type,	@niente,	@niente,

scientific_name,	english_name,

@niente,	bird_order,	@family,	@niente,

@niente,	@niente,	@niente,	@niente,

@niente,	@niente,	@niente,	@niente,	@niente)

SET	family	=	SUBSTRING(@family,	1,	LOCATE('	(',	@family));

This	is	the	same	as	the	previous	LOAD	DATA	INFILE	statement,	except	that	we	are	storing
the	family	name	in	a	variable	called	@family	and	we	added	the	SET	clause.	This	clause
sets	the	value	of	columns	in	the	table	into	which	data	is	loaded.	Here	we	are	setting	the
value	of	the	family	column	to	the	value	returned	by	SUBSTRING(),	which	is	extracting	a
substring	from	the	@family	variable.	Let’s	see	how	well	that	did	by	selecting	just	one	of
the	new	species,	the	Treehunter	bird:

www.it-ebooks.info

http://www.it-ebooks.info/

SELECT	*	FROM	rookery.clements_list_import

WHERE	change_type='new	species'

AND	english_name	LIKE	'%Treehunter%'	\G

***************************	1.	row	***************************

													id:	13864

scientific_name:	Cichlocolaptes	mazarbarnetti

			english_name:	Cryptic	Treehunter

									family:	Furnariidae

					bird_order:	Passeriformes

				change_type:	new	species

We	can	see	here	that	the	data	is	in	the	correct	columns.	In	addition,	the	parenthetical	text
listing	common	names	of	birds	in	the	family	has	been	removed.	If	we	want,	we	can	run	the
INSERT	INTO…SELECT	statement	again	to	copy	the	data	for	new	species	to	the	birds	table.

www.it-ebooks.info

http://www.it-ebooks.info/

More	Field	and	Line	Definitions
Not	all	data	text	files	will	be	constructed	like	the	Cornell	CSV	data	text	file	we	used	in	the
examples	so	far	in	this	chapter.	Some	files	format	the	fields	and	lines	differently.	Let’s
load	a	different	data	text	file	to	learn	about	other	ways	to	define	lines	and	fields	with	the
LOAD	DATA	INFILE	statement.

For	the	examples	in	this	section,	let’s	refer	back	to	an	earlier	example	(Extracting	Text)	in
which	our	marketing	agency	gave	us	a	table	in	a	dump	file	containing	prospects	for	our
site.	This	time,	let’s	assume	the	marketing	agency	gave	us	a	data	text	file.	The	text	file	is
named	birdwatcher-prospects.csv	and	contains	a	list	of	names	and	email	addresses	of
people	who	might	want	to	be	members	of	the	Rookery	site.	You	can	download	a	copy	of
this	file	from	the	MySQL	Resources	site.	Here	are	the	first	few	lines	of	that	text	file:

["prospect	name"|"prospect	email"|"prospect	country"]

["Mr.	Bogdan	Kecman"|"bodgan\@kecman-birds.com"|"Serbia"]

["Ms.	Sveta	Smirnova"|"bettasveta\@gmail.com"|"Russia"]

["Mr.	Collin	Charles"|"callincollin\@gmail.com"|"Malaysia"]

["Ms.	Sveta	A.	Smirnova"|"bettasveta\@gmail.com"|"Russia"]

The	first	line	lists	the	name	of	the	fields.	Lines	start	with	an	opening	bracket	and	end	with
a	closing	bracket.	Fields	are	enclosed	within	double	quotes	and	separated	by	a	vertical	bar.
The	ampersand	is	preceded	with	a	backslash	as	an	escape	character,	to	indicate	that	the
character	that	follows	it	is	a	literal	character.	To	import	the	data,	we’ll	have	to	allow	for	all
of	these	details	so	that	MySQL	knows	when	a	record	starts	and	ends,	when	a	field	starts
and	ends,	and	how	characters	are	escaped.

Starting,	Terminating,	and	Escaping
Before	loading	the	birdwatcher-prospects.csv	file,	let’s	create	a	table	in	which	to	import	its
contents.	In	addition	to	columns	for	each	of	the	three	fields	in	the	data	text	file,	we’ll	add
an	incremental	column	as	the	primary	key.	Because	email	addresses	are	generally	taken	by
individuals,	we’ll	make	the	column	for	the	prospect’s	email	address	a	UNIQUE	key	column.
Execute	the	following	SQL	statement	to	create	this	table:

CREATE	TABLE	birdwatchers.birdwatcher_prospects_import

(prospect_id	INT	AUTO_INCREMENT	KEY,

prospect_name	VARCHAR(255),

prospect_email	VARCHAR(255)	UNIQUE,

prospect_country	VARCHAR(255));

That	creates	the	import	table.	Let’s	load	the	data	from	the	birdwatcher-prospects.csv	file
into	it.	Execute	the	following	SQL	statement:

LOAD	DATA	INFILE	'/tmp/birdwatcher-prospects.csv'

INTO	TABLE	birdwatchers.birdwatcher_prospects_import

FIELDS	TERMINATED	BY	'|'	ENCLOSED	BY	'"'	ESCAPED	BY	'\\'

LINES	STARTING	BY	'['	TERMINATED	BY	']\r\n'

IGNORE	1	LINES

(prospect_name,	prospect_email,	prospect_country);

Although	this	SQL	statement	is	correct,	if	you	loaded	the	birdwatcher-prospects.csv	file,	it
generated	an	error	and	no	data	was	inserted	into	the	table.	We’ll	address	that	error	in	the
next	section.	Let’s	focus	now	on	the	subclauses	of	the	FIELDS	and	LINES	clause	included
in	the	LOAD	DATA	INFILE	statement	here.

First,	let’s	look	at	the	FIELDS	clause:

The	TERMINATED	BY	subclause	says	that	fields	end	with	a	vertical	bar.	The	last	field

www.it-ebooks.info

http://mysqlresources.com/files
http://www.it-ebooks.info/

doesn’t	have	one,	but	because	we’ll	let	the	statement	know	it’s	the	end	of	the	line,
MySQL	will	then	assume	the	last	field	has	ended.
The	ENCLOSED	BY	subclause	says	that	each	field	is	positioned	between	double	quotes.
The	ESCAPED	BY	clause	specified	the	character	that’s	used	to	escape	special	characters.
The	default	is	a	backslash.	So	there’s	no	need	to	include	this	subclause	for	this	data	text
file,	but	I	wanted	you	to	be	aware	that	it	exists.

Let’s	look	now	at	the	LINES	clause:

The	STARTING	BY	subclause	specifies	an	opening	bracket.
The	TERMINATED	BY	subclause	specifies	a	closing	bracket	followed	by	a	carriage	return
and	a	newline.	Normally,	a	newline	is	sufficient.	But	this	data	text	file	was	created	on	a
MS	Windows	computer	with	an	application	that	ends	lines	this	way.

Replacing	Data	Versus	Ignoring	Errors
Let’s	address	the	error	generated	by	executing	the	LOAD	DATA	INFILE	statement	in	the
previous	section.	The	following	error	message	appeared	when	that	SQL	statement	was
run:

ERROR	1062:	Duplicate	entry	'bettasveta@gmail.com'	for	key	'prospect_email'

This	error	was	caused	because	there	are	two	identical	email	addresses	for	Sveta	Smirnova
in	the	data	text	file	and	we	stipulated	that	the	prospect_email	be	unique.	Because	of	the
error,	the	entire	import	was	rolled	back	and	no	data	was	inserted.

We	have	a	few	choices	of	how	to	handle	such	an	error.	We	could	modify	the	table	so	that
the	prospect_email	column	allows	for	duplicate	email	addresses.	Another	choice	would
be	to	tell	MySQL	to	ignore	any	errors	like	this.	To	do	this,	we	would	add	the	IGNORE
option	to	the	LOAD	DATA	INFILE	statement.	Try	entering	this:

LOAD	DATA	INFILE	'/tmp/birdwatcher-prospects.csv'

IGNORE	INTO	TABLE	birdwatchers.birdwatcher_prospects_import

FIELDS	TERMINATED	BY	'|'	ENCLOSED	BY	'"'	ESCAPED	BY	'\\'

LINES	STARTING	BY	'['	TERMINATED	BY	']\r\n'

IGNORE	1	LINES

(prospect_name,	prospect_email,	prospect_country);

Query	OK,	4	rows	affected,	1	warning	(0.02	sec)

Records:	5		Deleted:	0		Skipped:	1		Warnings:	1

SHOW	WARNINGS	\G

***************************	1.	row	***************************

		Level:	Warning

			Code:	1062

Message:	Duplicate	entry	'bettasveta@gmail.com'	for	key	'prospect_email'

This	worked.	Notice	the	results	message.	It	says	one	row	was	skipped	and	there’s	a
warning.	The	warning	in	turn	says	there’s	a	duplicate	entry.	That’s	the	row	it	skipped,	the
second	entry	for	Sveta.	Let’s	execute	a	SELECT	statement	to	see	how	the	row	for	Sveta
looks	now:

SELECT	*	FROM	birdwatchers.birdwatcher_prospects_import

WHERE	prospect_name	LIKE	'%Sveta%'	\G

***************************	1.	row	***************************

					prospect_id:	16

			prospect_name:	Ms.	Sveta	Smirnova

		prospect_email:	bettasveta@gmail.com

prospect_country:	Russia

www.it-ebooks.info

http://www.it-ebooks.info/

This	shows	that	the	first	record	for	Sveta	was	inserted	into	the	table,	but	the	second	one
was	not.	We	know	this	because	the	second	record	included	a	middle	initial	for	her	name.	If
we	prefer	that	duplicate	records	replace	previous	ones,	we	can	replace	the	IGNORE	option
with	the	REPLACE	option.	The	statement	would	then	be	entered	as	follows:

LOAD	DATA	INFILE	'/tmp/birdwatcher-prospects.csv'

REPLACE	INTO	TABLE	birdwatchers.birdwatcher_prospects_import

FIELDS	TERMINATED	BY	'|'	ENCLOSED	BY	'"'	ESCAPED	BY	'\\'

LINES	STARTING	BY	'['	TERMINATED	BY	']\n'

IGNORE	1	LINES

(prospect_name,	prospect_email,	prospect_country);

Query	OK,	6	rows	affected	(0.02	sec)

Records:	5		Deleted:	1		Skipped:	0		Warnings:	0

SELECT	*	FROM	birdwatchers.birdwatcher_prospects_import

WHERE	prospect_name	LIKE	'%Sveta%'	\G

***************************	1.	row	***************************

					prospect_id:	26

			prospect_name:	Ms.	Sveta	A.	Smirnova

		prospect_email:	bettasveta@gmail.com

prospect_country:	Russia

Notice	how	the	results	message	reads	this	time.	It	says	that	no	rows	were	skipped,	but	one
was	deleted.	That’s	the	replacement	of	the	first	entry	for	Sveta.	You	can	see	in	the	results
of	the	SELECT	statement	that	the	record	containing	her	middle	initial	replaced	the	one
without	it.

www.it-ebooks.info

http://www.it-ebooks.info/

Importing	from	Outside	MySQL
So	far	in	this	chapter,	we	have	covered	ways	to	load	from	within	MySQL.	It	is	possible	to
import	data	while	not	logged	into	MySQL,	per	se.	At	a	minimum,	you	can	execute	the
LOAD	DATA	INFILE	statement	through	the	mysql	client	with	the	--execute	option.
However,	there	is	another	client	made	specifically	for	importing	data,	the	mysqlimport
utility.	We’ll	cover	it	in	this	section.	This	utility,	as	well	as	the	LOAD	DATA	INFILE
statement,	require	FILE	privileges.	But	if	you	don’t	have	this	privilege,	there	is	a	way
around	it.	First,	let’s	cover	how	to	load	a	data	text	file	located	locally	without	uploading	it
to	the	server.

Importing	Local	Files
If	you	are	not	allowed	to	upload	a	data	text	file	to	the	server,	you	can	use	LOAD	DATA
INFILE	to	load	it	locally	through	the	mysql	client.	For	this	operation,	add	the	LOCAL	option.
You	don’t	log	onto	the	server	first	and	start	the	mysql	client	on	the	server	with	the	host	as
localhost.	Instead,	you	log	locally	onto	the	server	by	entering	something	like	this	on	your
local	computer:

mysql	--user=admin_import	--password	\

						--host=mysqlresources.com	--database=rookery

Once	you	have	established	the	connection	through	the	local	client,	you	can	execute	the
SQL	statement	like	so:

LOAD	DATA	LOCAL	INFILE	'/tmp/birdwatcher-prospects.csv'

REPLACE	INTO	TABLE	birdwatchers.birdwatcher_prospects_import

FIELDS	TERMINATED	BY	'|'	ENCLOSED	BY	'"'	ESCAPED	BY	'\\'

LINES	STARTING	BY	'['	TERMINATED	BY	']\n'

IGNORE	1	LINES

(prospect_name,	prospect_email,	prospect_country);

Basically,	the	data	text	file	is	read	by	the	client	and	the	contents	sent	to	the	server	to	store
in	the	operating	system’s	temporary	directory	(e.g.,	/tmp).

This	works	only	if	the	server	and	client	have	been	configured	to	allow	the	LOCAL	option.
This	requires	someone	to	add	local-infile=1	to	the	MySQL	configuration	file	on	both
systems.	Additionally,	the	user	account	must	have	FILE	privileges	on	the	server	from	the
remote	location.	Normally,	this	isn’t	given	to	a	user.	But	if	it’s	your	server,	you	can	allow
it.	See	Chapter	13	for	more	information	on	how	to	do	this.

Using	mysqlimport
If	you	regularly	receive	a	data	text	file	in	the	same	format,	you	might	find	it	useful	to
create	a	simple	shell	script	to	load	the	data	into	MySQL.	For	such	a	task,	you	can	use	the
mysqlimport	utility.	It	will	execute	the	LOAD	DATA	INFILE	statement	with	any	options	you
include.

For	an	example	of	how	this	utility	may	be	used,	let’s	use	one	of	the	recent	examples	of	the
LOAD	DATA	INFILE	statement,	where	we	loaded	data	from	the	birdwatcher-prospects.csv
file.	For	this	utility,	though,	we	will	have	to	rename	the	file	to	the	same	as	the	import
table,	so	the	file’s	name	will	be	birdwatcher_prospects.csv.	I’ll	explain	this	in	a	moment.
For	now,	try	executing	the	following	from	the	command	line	on	your	server:

mysqlimport	–user='marie_dyer'	--password='sevenangels'	\

		--replace	--low-priority		--ignore-lines='1'	\

www.it-ebooks.info

http://www.it-ebooks.info/

		--fields-enclosed-by='"'	--fields-terminated-by='|'	--fields-escaped-by='\\'	\

		--lines-terminated-by=']\r\n'	\

		--columns='prospect_name,	prospect_email,	prospect_country'	\

				birdwatchers	'/tmp/birdwatcher_prospects_import.csv'

As	you	can	see,	all	of	the	options	are	the	sames	as	their	counterparts,	but	in	lowercase
letters	and	preceded	by	two	hyphens.	The	order	of	options	doesn’t	matter,	except	that	the
database	and	filename	are	last.	After	the	filename,	you	can	list	multiple	text	files	separated
by	spaces,	and	they	will	be	processed	in	order	by	mysqlimport.

The	prefix	of	the	filename	must	be	the	same	as	the	table	—	the	dot	and	the	extension	are
ignored.	This	rule	lets	the	command	determine	the	table	into	which	to	load	data.	Because
table	names	cannot	include	a	hyphen,	which	could	be	mistaken	for	a	minus	sign,	we	had	to
use	an	underscore.

The	mysqlimport	utility	works	the	same	as	LOAD	DATA	INFILE;	in	fact,	internally	it	calls
that	SQL	statement.	As	mentioned,	you	can	include	it	in	a	shell	script	or	an	entry	in
crontab	to	automate	the	loading	of	data	from	a	data	text	file	that	is	periodically	replaced
on	the	server.

WARNING

You	may	have	noticed	that	the	--lines-starting-by	option	was	not	included	in	the	previous	example.	That’s
because	there	is	no	such	option	for	mysqlimport.	Paul	Dubois,	a	famous	writer	specializing	in	MySQL	software,
reported	this	oversight	in	2006.	So	far,	nothing	has	been	done	to	add	that	option,	which	tells	us	that	this	is	not	a	well-
supported	utility.	In	fact,	in	testing	it	on	my	server,	I	had	difficulty	getting	it	to	work.	If	it	works	on	your	server,
though,	that’s	fine.	If	you’re	constructing	a	script	to	load	data,	you	may	want	instead	to	use	the	LOAD	DATA	INFILE
statement	as	part	of	an	API	script	(see	Chapter	16).	Most	scripting	languages	include	modules	that	can	be	used	to
convert	data	text	files.

Importing	Without	FILE	Privileges
Some	web	hosting	companies	do	not	allow	the	use	of	LOAD	DATA	INFILE	due	to	security
vulnerabilities	it	would	present	for	them.	They	block	its	use	by	not	giving	you	FILE
privileges.	If	your	database	is	located	on	a	server	on	which	you	don’t	have	this	privilege,
it’s	possible	to	get	around	it,	but	that	requires	some	extra	steps.

First,	you	will	need	access	to	another	MySQL	server	on	which	you	do	have	FILE
privileges.	It	could	be	on	your	own	personal	computer.	We’ll	call	whatever	computer	you
use	your	staging	server	and	the	other	the	live	server.	On	the	staging	server,	you	will	need
to	create	a	table	identical	to	the	one	on	the	live	server	into	which	you	want	to	load	the
data.	You	should	also	create	an	import	table	on	the	live	server	as	we	did	in	earlier
examples	in	this	chapter,	rather	than	import	directly	into	the	ultimate	table.

After	you’ve	created	tables	on	the	staging	and	live	server,	execute	the	LOAD	DATA	INFILE
statement	on	the	staging	server	to	load	the	data	from	the	text	file.

Next,	export	the	data	from	the	table	on	the	staging	server	using	the	mysqldump	utility	(this
utility	was	covered	extensively	in	Chapter	14).	Be	sure	to	use	the	--tables	option	so	that
you	dump	only	the	import	table	(see	Backing	Up	Specific	Tables),	and	use	the	--no-
create-info	option	so	that	the	utility	doesn’t	include	CREATE	DATABASE	and	CREATE
TABLE	statements	in	the	dump	file.

After	you’ve	created	the	dump	file	of	the	table,	upload	it	to	the	live	server.	On	the	live
server,	use	the	mysql	client	to	process	the	dump	file	to	insert	the	rows	of	data	into	the

www.it-ebooks.info

http://www.it-ebooks.info/

import	table	on	that	server	(this	method	was	covered	in	Restoring	Backups).	From	there,
you	can	use	the	INSERT	INTO…SELECT	statement	to	copy	the	rows	to	the	appropriate	table.

This	method	is	the	same	as	the	other	methods	for	loading	data,	but	with	the	extra	steps	of
loading	the	data	on	a	staging	server	and	then	using	mysqldump	to	dump	the	data	and	mysql
to	insert	the	data	into	the	appropriate	table	on	the	live	server.	It’s	not	particularly	difficult,
just	more	time	consuming.

www.it-ebooks.info

http://www.it-ebooks.info/

Bulk	Exporting	Data
Thus	far	in	this	chapter	we	have	looked	at	how	to	bulk	import	data	into	MySQL	and
MariaDB	from	data	text	files.	However,	you	may	be	asked	to	do	the	opposite,	and	bulk
export	data	to	provide	someone	with	a	text	file	containing	data	from	your	MySQL
databases.	This	can	be	done	more	easily	than	importing,	so	long	as	you	get	to	decide	the
layout	of	the	data	text	file.

The	easiest	way	to	bulk	export	data	to	a	text	file	is	to	use	the	SELECT	statement	with	the
INTO	OUTFILE	clause.	This	works	similarly	to	the	LOAD	DATA	INFILE	statement,	with	the
same	subclauses	—	except	that	it	exports	instead	of	imports	data.	Let’s	look	at	an
example.

Suppose	we	want	to	give	someone	a	list	of	birds	from	the	rookery	database.	We	want
specifically	to	give	them	a	test	file	containing	a	list	of	birds	in	the	Charadriiformes	—	an
order	of	birds	that	includes	Sea	Gulls	and	Plovers.	We	want	to	export	the	scientific	and
common	name	of	each	bird,	and	the	family	name.

We’ll	do	this	in	stages.	First,	let’s	construct	a	SELECT	statement	to	make	sure	we’re
exporting	the	correct	data.	Execute	this	from	your	server:

SELECT	birds.scientific_name,

IFNULL(common_name,	''),

bird_families.scientific_name

FROM	rookery.birds

JOIN	rookery.bird_families	USING(family_id)

JOIN	rookery.bird_orders	USING(order_id)

WHERE	bird_orders.scientific_name	=	'Charadriiformes'

ORDER	BY	common_name;

This	SELECT	statement	includes	a	JOIN	(covered	extensively	in	Chapter	9).	We’re	joining
together	the	main	three	tables	in	the	rookery	database	to	get	the	bird	names	and	the	family
names	for	the	family	order	that	we	want.	We’re	ordering	the	list	based	on	common_name.
The	SELECT…INTO	OUTFILE	statement	will	generally	convert	NULL	values	to	the	letter	N.
So	we’re	using	IFNULL()	to	change	any	null	values	for	the	common_name	to	a	blank	space.
That	SELECT	statement	works	fine.	If	you	tried	it	on	your	server,	it	should	have	returned
about	718	rows.

To	keep	anyone	receiving	the	data	text	from	being	confused	as	to	what	each	field
represents,	let’s	include	a	first	row	containing	field	names.	The	easiest	way	to	do	this	is	to
just	execute	SELECT	with	a	set	of	strings	like	this:

SELECT	'scientific	name','common	name','family	name';

These	field	names	don’t	have	to	be	the	same	as	the	columns	in	the	tables	for	which	they
will	be	associated,	and	don’t	have	to	conform	to	any	convention	for	our	purposes.	We’ll
join	the	results	of	this	SQL	statement	with	the	previous	one	with	the	UNION,	but	with	the
field	names	first.	This	was	also	covered	in	Chapter	9.

Having	tested	the	SELECT	statements,	we’re	now	ready	to	put	them	together	to	export	data
to	a	text	file.	Execute	the	following	on	your	server:

(SELECT	'scientific	name','common	name','family	name')

UNION

(SELECT	birds.scientific_name,

		IFNULL(common_name,	''),

		bird_families.scientific_name

		FROM	rookery.birds

www.it-ebooks.info

http://www.it-ebooks.info/

		JOIN	rookery.bird_families	USING(family_id)

		JOIN	rookery.bird_orders	USING(order_id)

		WHERE	bird_orders.scientific_name	=	'Charadriiformes'

		ORDER	BY	common_name

		INTO	OUTFILE	'/tmp/birds-list.csv'

		FIELDS	ENCLOSED	BY	'"'	TERMINATED	BY	'|'	ESCAPED	BY	'\\'

		LINES	TERMINATED	BY	'\n');

That	should	have	executed	without	any	problems.	Because	we’ve	already	discussed	the
SELECT	statements	in	general,	let’s	focus	on	the	INTO	OUTFILE	clause	in	the	second	SELECT
statement.	First	notice	that	the	path	for	the	export	file	is	/tmp.	MySQL	will	generally	only
write	to	an	accessible	directory	like	this	one,	one	in	which	everyone	on	the	server	has	full
read	and	write	privileges.	Next	notice	that	the	subclauses	are	listed	after	the	file	path	and
name	—	the	opposite	of	LOAD	DATA	INFILE.	The	subclauses,	though,	are	the	same.

Here	we’re	enclosing	fields	with	double	quotes	and	separating	them	with	a	vertical	bar.
We’re	using	the	backslash	as	the	escape	character.	For	the	SELECT…INTO	OUTFILE
statement,	you	have	to	include	the	ESCAPED	BY	subclause,	because	there	is	no	default
escape	character	for	this	statement.	There	are	two	backslashes	here	because	the	first
escapes	the	second;	a	backslash	by	itself	is	an	escape	character	in	this	command.	Finally,
we’re	terminating	each	line	with	a	newline	character.

Here	are	the	first	few	lines	of	the	file	generated	by	the	previous	SELECT…INTO	OUTFILE
statement:

"scientific	name"|"common	name"|"family	name"

"Charadrius	vociferus"|"Killdeer"|"Charadriidae"

"Charadrius	montanus"|"Mountain	Plover"|"Charadriidae"

"Charadrius	alexandrinus"|"Snowy	Plover"|"Charadriidae"

"Pluvialis	squatarola"|"Black-bellied	Plover"|"Charadriidae"

"Pluvialis	fulva"|"Pacific	Golden	Plover"|"Charadriidae"

"Burhinus	vermiculatus"|"Water	Thick-knee"|"Burhinidae"

"Burhinus	oedicnemus"|"Eurasian	Thick-knee"|"Burhinidae"

...

This	works	nicely.	The	first	line	provides	a	list	of	field	names.	The	lines	that	follow
organize	the	text	from	the	columns	we	selected.	This	is	an	easy	and	simple	way	to	export
data	to	a	text	file	to	give	to	someone	using	a	different	database	system.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
Although	you	may	rarely	use	the	LOAD	DATA	INFILE	statement,	when	you	need	it	and	use
it,	you’ll	find	that	it	saves	you	plenty	of	time.	It	makes	bulk	importing	of	data	and
migrating	to	MySQL	and	MariaDB	much	easier.	Because	the	layout	of	data	text	files	can
vary	so	much,	you	might	need	a	few	attempts	to	load	data	properly.	But	as	long	as	you
create	a	temporary	import	table,	you	can	keep	deleting	the	data	and	trying	again	without
disturbing	anyone	else	or	risking	the	loss	of	other	data.

The	SELECT…INTO	OUTFILE	statement	is	an	excellent	method	for	sharing	data	with	others.
It	may	become	a	regularly	used	tool	for	you	if	you	work	in	an	organization	that	shares	data
with	other	organizations.	So	at	least	be	very	familiar	with	it	in	case	your	situation	calls	for
it.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises
For	the	exercises	in	this	chapter,	you	will	need	to	download	the	employees.csv	and	birder-
list.csv	files	from	the	MySQL	Resources	site.	You	should	copy	it	to	the	/tmp	directory,	or
another	directory	on	your	server	that	is	accessible	by	the	mysql	system	user.

I	generated	the	employees.csv	file	by	using	the	SELECT…INTO	OUTFILE	statement	to	export
data	from	the	employee	database.	This	is	a	large	sample	database	created	originally	by	the
staff	at	MySQL,	and	is	free	for	download.

1.	 Open	the	employees-list.csv	file	with	a	text	editor	to	see	how	it’s	formatted.	Then
create	an	import	table	to	match	it.	When	you’re	finished,	use	the	LOAD	DATA	INFILE
statement	to	load	the	list	of	employees	into	the	import	table	you	created.

2.	 Open	the	birder-list.csv	in	a	text	editor	to	determine	how	it’s	formatted.	It	contains	a
list	of	people	who	live	in	Italy	and	are	prospects	for	our	site.	Create	in	the
birdwatchers	database	an	import	table	with	columns	with	these	names	and	in	this
order:	id,	formal_title,	name_first,	name_last,	country,	and	email.	Make	the	id
column	an	automatically	incremented	key	column.
Construct	a	LOAD	DATA	INFILE	statement	to	load	the	data	from	the	birder-list.csv	file
into	the	import	table	you	create.	Be	sure	to	provide	a	list	of	column	names	with	this
SQL	statement.	Use	the	SET	clause	to	set	the	value	of	formal_title	when	loading
the	data.	Female	Italian	names	generally	end	with	the	letter	a.	Male	Italian	names
end	generally	with	the	letter	o,	but	sometimes	with	i,	or	e.	Use	these	assumptions	to
have	MySQL	make	a	reasonable	guess	as	to	the	person’s	title	of	either	Ms.	or	Mr.
when	loading	the	data.	When	ready,	run	the	LOAD	DATA	INFILE	you	constructed	to
load	the	data	into	the	import	table.
When	finished,	execute	a	SELECT	statement	to	make	sure	the	data	loaded	properly.	If
it	didn’t,	delete	the	data	in	the	import	table	and	try	again	until	you	get	it	right.	Once
you’ve	successfully	loaded	the	data,	run	a	INSERT	INTO…SELECT	statement	to	add	the
names	to	the	humans	table.

3.	 Using	the	SELECT…INTO	OUTFILE	statement,	export	a	list	of	birds	with	the	word	Least
in	their	common	name	to	a	text	file	named	little-birds.csv.	Export	the	common	and
scientific	name	of	the	birds,	as	well	as	the	scientific	names	of	the	family	and	order	to
which	they	belong.	Enclose	the	fields	in	double	quotes,	and	separate	them	with
commas.	End	the	lines	with	a	semicolon,	but	without	a	line	ending	(i.e.,	no	\n	or	\r).
This	should	cause	the	CSV	file	to	write	all	of	the	text	to	one	long	line.	After	you’ve
exported	the	data,	open	the	file	with	a	text	editor	to	verify	that	the	data	is	contained
on	one	line.

4.	 Create	a	table	named	birds_least	in	the	rookery	database.	It	should	have	four
columns:	scientific_name,	common_name,	family_name,	and	order_name.	Load	this
table	with	data	from	the	little-birds.csv	you	generated	in	the	previous	exercise,	using
the	LOAD	DATA	INFILE	statement.	This	may	be	a	little	tricky.	If	you	don’t	do	it	right,
delete	the	data	in	the	import	table	and	load	it	again	until	you	get	the	values	in	the
right	columns.

www.it-ebooks.info

http://mysqlresources.com/files
https://launchpad.net/test-db/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter	16.	Application	Programming
Interfaces
An	API	allows	a	programming	language	to	interface	easily	with	a	computer	software
system.	The	advantage	of	an	API	is	that	you	can	customize	user	interfaces	to	MySQL	and
MariaDB	to	suit	your	needs.	Huge	websites	use	APIs	to	allow	the	public	to	interact	with
their	MySQL	and	MariaDB	databases,	without	the	user	needing	to	know	anything	about
the	databases	they’re	using	or	SQL	statements.

This	chapter	covers	several	APIs	that	may	be	used	to	interface	with	MySQL	and
MariaDB,	so	that	you	may	write	customized	applications	to	interface	with	databases.
There	are	sections	for	the	C	API,	the	Perl	DBI,	the	PHP	API,	the	Connector/Python,	and
the	Ruby	API.	Many	other	programming	languages	have	APIs	for	connecting	to	MySQL;
these	are	just	some	of	the	more	popular	ones.	The	section	on	each	API	and	related	libraries
includes	a	basic	tutorial	on	how	to	connect	to	MySQL	and	MariaDB,	and	how	to	query	a
database	with	the	API.

It’s	unlikely	you	will	need	to	know	more	than	one	API.	Instead,	you	may	want	to	read	the
section	for	the	programming	language	you	know	and	use.	My	preference	is	the	Perl
language	and	the	Perl	DBI.	It’s	most	in	line	with	natural	languages	such	as	English	and
Italian.	If	you	have	no	preference	and	would	like	to	learn	a	MySQL	API,	though,	the	PHP
API	is	very	popular	and	has	many	functions	for	interacting	with	MySQL.	Plus,	PHP	is	a
fairly	easy	language	to	learn	and	you	can	use	snippets	of	code	within	web	pages	and
content	management	systems	like	Wordpress	and	Drupal.

It’s	beyond	the	scope	of	this	book	to	include	a	tutorial	on	any	programming	language.	I
assume	you	can	learn	the	basics	of	the	language	you	choose	among	the	many	books	and
online	resources	available.	These	examples	use	basic	features	of	the	languages	to	show
you	how	database	access	works.

Before	skipping	ahead	to	a	section	about	a	particular	API,	you	should	create	a	couple	of
API	user	accounts	that	you	may	use	in	the	examples	and	in	the	exercises.	The	exercises	at
the	end	of	the	chapter	are	suited	to	whichever	API	you	prefer,	not	to	one	in	particular.

www.it-ebooks.info

http://www.it-ebooks.info/

Creating	API	User	Accounts
Assuming	that	the	programs	that	we’ll	write	may	be	executed	by	the	public,	let’s	create	a
user	account	specifically	for	them	(creating	users	was	covered	in	Chapter	13).	We’ll	call
this	user	account	public_api	and	give	it	only	the	SELECT	privilege	for	the	rookery	and
birdwatchers	databases.	Execute	the	following	on	your	server:

CREATE	USER	'public_api'@'localhost'

IDENTIFIED	BY	'pwd_123';

GRANT	SELECT

ON	rookery.*

TO	'public_api'@'localhost';

GRANT	SELECT

ON	birdwatchers.*

TO	'public_api'@'localhost';

This	creates	the	public_api@localhost	user	account	with	the	password	pwd_123.	You	can
give	it	a	more	secure	and	different	password.	It	has	access	just	to	our	two	databases	from
the	localhost.	It	can	only	execute	SELECT	statements	and	can’t	change	or	delete	data	or	do
anything	else.	We’ll	use	this	user	account	for	the	API	programs	that	we’ll	create,	which
retrieve	data	through	a	public	web	page.

For	some	of	the	API	programs	we	will	write,	we’ll	need	another	administrative	user
account,	admin_members.	It	will	be	designated	for	administering	information	on	members
of	our	site.	Create	that	user	account	by	executing	the	following	SQL	statements:

CREATE	USER	'admin_members'@'localhost'

IDENTIFIED	BY	'doc_killdeer_123';

GRANT	SELECT,	UPDATE,	DELETE

ON	birdwatchers.*

TO	'admin_members'@'localhost';

This	administrative	user	account	can	select,	update,	and	delete	data	only	on	the
birdwatchers	database.	It	mostly	needs	access	to	the	humans	table,	but	may	sometimes
need	access	to	the	other	tables	in	the	database.	It	won’t	use	the	rookery	database,	so	we’re
not	giving	it	access	to	that	database.

www.it-ebooks.info

http://www.it-ebooks.info/

C	API
The	C	language	isn’t	as	popular	as	it	once	was,	but	it’s	still	a	standard.	In	fact,	the	core
software	of	MySQL	is	written	in	C.	The	C	API	is	provided	by	MySQL.	This	section
provides	a	basic	tutorial	on	how	to	connect	to	a	database	and	how	to	query	it	with	C	and
the	C	API,	the	basic	components	and	tasks	you	need	to	know	to	use	this	API.

Connecting	to	MySQL
When	writing	a	C	program	to	interact	with	a	database,	first	we	need	to	prepare	variables
that	will	store	data	on	the	database	connection	and	the	results	of	a	query	we	intend	to
execute.	Then	we	will	need	to	establish	a	connection	to	the	server.	To	do	this	easily,	we’ll
include	a	couple	of	C	header	files:	stdio.h	for	basic	C	functions	and	variables,	and	mysql.h
for	special	MySQL	functions	and	definitions	(these	two	files	come	with	C	and	MySQL,	as
well	as	MariaDB;	you	shouldn’t	have	to	download	them	if	C	and	MySQL	were	installed
properly	on	your	server):

#include	<stdio.h>

#include	"/usr/include/mysql/mysql.h"

int	main(int	argc,	char	*argv[])

{

			MYSQL	*mysql;

			MYSQL_RES	*result;

			MYSQL_ROW	row;

...

The	<	and	>	symbols	surrounding	stdio.h	tells	C	to	look	for	the	file	in	the	default	location
for	C	header	files	(e.g.,	/usr/include),	or	in	the	user’s	path.	Because	mysql.h	may	not	be	in
the	default	locations,	the	absolute	path	is	given	within	double	quotes.	An	alternative	here
would	have	been	<mysql/mysql.h>,	because	the	header	file	is	in	a	subdirectory	of	the
default	C	header	file	directory.

The	standard	main	function	begins	by	preparing	variables	needed	for	the	connection	to
MySQL.	The	first	line	creates	a	pointer	to	the	MYSQL	structure	stored	in	the	mysql	variable.
The	next	line	defines	and	names	a	results	set	based	on	the	definitions	for	MYSQL_RES	in
mysql.h.	The	results	are	to	be	stored	in	the	result	array,	which	will	be	an	array	of	rows
from	MySQL.	The	third	line	of	main	uses	the	definition	for	MYSQL_ROW	to	establish	the	row
variable,	which	will	be	used	later	to	contain	an	array	of	columns	from	MySQL.

Having	included	the	header	files	and	set	the	initial	variables,	we	can	now	set	up	an	object
in	memory	for	interacting	with	the	MySQL	server	using	the	mysql_init()	function:

...

if(mysql_init(mysql)	==	NULL)	{

			fprintf(stderr,	"Cannot	Initialize	MySQL");

			return	1;

}

...

The	if	statement	here	is	testing	whether	a	MySQL	object	can	be	initialized.	If	the
initialization	fails,	a	message	is	printed	and	the	program	ends.	The	mysql_init()	function
initializes	the	MySQL	object	using	the	MYSQL	structure	declared	at	the	beginning	of	the
main	function,	which	is	called	by	convention,	mysql	.	If	C	is	successful	in	initializing	the
object,	it	will	go	on	to	attempt	to	establish	a	connection	to	the	MySQL	server:

...

if(!mysql_real_connect(mysql,"localhost",

		"public_api","pwd_123","rookery",0,NULL,0))

www.it-ebooks.info

http://www.it-ebooks.info/

{

			fprintf(stderr,	"%d:	%s	\n",	mysql_errno(mysql),	mysql_error(mysql));

			return	1;

}

...

The	elements	of	the	mysql_real_connect()	function	here	are	fairly	obvious:	first	the
MySQL	object	is	referenced;	next	the	hostname	or	IP	address;	then	the	username	and
password;	and	finally	the	database	to	use.	For	this	example,	we’re	using	the
public_api@localhost	user	account	we	created	in	the	beginning	of	this	chapter.	The	three
remaining	items	are	the	port	number,	the	socket	filename,	and	a	client	flag,	if	any.	Passing
0	and	NULL	values	tells	the	function	to	use	the	defaults	for	these.

If	the	program	cannot	connect,	it	prints	the	error	message	generated	by	the	server	to	the
standard	error	stream,	along	with	the	MySQL	error	number	(%d),	and	finally	a	string	(%s)
containing	the	MySQL	error	message	and	then	a	newline	(\n).	It	will	get	the	error	number
from	the	mysql_errno()	function	and	the	error	message	from	the	mysql_error()
function.	If	the	program	can	connect	without	an	error,	though,	it	will	return	1	to	indicate
success	and	continue	with	the	program.

Querying	MySQL
The	program	so	far	only	makes	a	connection	to	MySQL.	Now	let’s	look	at	how	you	can
add	code	to	the	program	to	run	an	SQL	statement	with	the	C	API.

If	the	API	program	has	connected	to	MySQL,	it	can	query	the	MySQL	server	with	a	query
function	such	as	mysql_query().	Let’s	use	SELECT	to	get	a	list	of	birds	from	the	birds
table.	The	code	for	doing	this	and	displaying	the	results	is	as	follows:

...

if(mysql_query(mysql,"SELECT	common_name,	scientific_name	FROM	birds"))	{

			fprintf(stderr,	"%d:		%s\n",

			mysql_errno(mysql),	mysql_error(mysql));

}

else	{

			result	=	mysql_store_result(mysql);

			while(row	=	mysql_fetch_row(result)){

						printf("\%s	-	\%s	\n",	row[0],	row[1]);

			}

			mysql_free_result(result);

}

mysql_close(mysql);

return	0;

}

Within	the	if	statement	here,	we’re	using	mysql_query()	to	query	MySQL.	You	could
use	the	mysql_real_query()	function	instead.	It	allows	the	retrieval	of	binary	data,	which
can	be	safer,	but	isn’t	necessary	for	this	simple	example.	The	mysql_query()	function
returns	0	if	it’s	successful	and	nonzero	if	it’s	not.	So	if	the	SQL	statement	contained	within
it	doesn’t	succeed	in	selecting	data	from	MySQL,	an	error	message	will	be	printed.
However,	if	the	query	is	successful,	the	else	statement	will	then	be	executed,	because	the
if	statement	will	have	received	a	value	of	0.

In	the	else	statement	block,	the	first	line	uses	the	mysql_store_result()	function	to
store	the	results	of	the	query	in	the	result	variable.

Before	letting	go	of	the	data,	using	while,	the	code	loops	through	each	row	of	the	results
set.	We’re	using	the	mysql_fetch_row()	function	to	fetch	each	row	and	store	it

www.it-ebooks.info

http://www.it-ebooks.info/

temporarily	in	the	row	variable.	Because	we	know	how	the	data	is	organized	from	the
SELECT	statement,	we	can	use	printf	with	its	formatting	codes	to	display	each	column.
Notice	that	each	column	is	extracted	with	standard	array	syntax	(i.e.,	array	[n]).

Once	C	has	gone	through	each	row	of	the	results,	it	will	stop	processing	and	use
mysql_free_result()	to	free	the	memory	for	result,	concluding	the	else	statement.

We	end	this	brief	program	with	the	mysql_close()	function	to	end	the	MySQL	session
and	to	disconnect	from	MySQL.	The	final	closing	curly	brace	ends	the	main	function.

Complete	Minimal	C	API	Program
It’s	easier	to	explain	the	components	of	a	program	step	by	step	as	I	have	done	here,	but
seeing	even	a	small	program	in	pieces	can	be	confusing.	So	here	it	is	again	in	its	entirety:

#include	<stdio.h>

#include	"/usr/include/mysql/mysql.h"

int	main(int	argc,	char	*argv[])

{

			MYSQL	*mysql;

			MYSQL_RES	*result;

			MYSQL_ROW	row;

			if(mysql_init(mysql)	==	NULL)	{

								fprintf(stderr,	"Cannot	Initialize	MySQL");

								return	1;

			}

			if(!mysql_real_connect(mysql,	"localhost",	"public_api",

						"pwd_123",	"rookery",	0,	NULL,	0))	{

						fprintf(stderr,	"%d:	%s	\n",	mysql_errno(mysql),	mysql_error(mysql));

						return	1;

			}

			if(mysql_query(mysql,"SELECT	common_name,	scientific_name	FROM	birds"))	{

						fprintf(stderr,	"%d:		%s\n",

						mysql_errno(mysql),	mysql_error(mysql));

			}

			else	{

						result	=	mysql_store_result(mysql);

						while(row	=	mysql_fetch_row(result))	{

												printf("\%s	-	\%s	\n",	row[0],	row[1]);

						}

						mysql_free_result(result);

			}

			mysql_close(mysql);

			return	0;

}

Compiling	with	C	Includes
You	can	use	any	compiler	to	compile	the	program	we	wrote,	but	I’ll	show	the	GNU	C
Compiler	(gcc)	here	because	it’s	free	software	and	automatically	loaded	on	some	systems.
To	compile	and	link	the	program,	enter	something	like	the	following	from	the	command
line:

gcc	-c	`mysql_config	--cflags`	mysql_c_prog.c

gcc	-o	mysql_c_prog	mysql_c_prog.o	`mysql_config	--libs`

When	the	compiler	attempts	to	compile	the	program	(mysql_c_prog.c),	it	will	check	for
syntax	errors	in	the	code.	If	it	finds	any,	it	will	fail	to	compile	and	will	display	error
messages.	If	it’s	successful,	the	resulting	compiled	program	(mysql_c_prog)	will	be	ready
to	be	executed.

www.it-ebooks.info

http://www.it-ebooks.info/

Perl	DBI
The	easiest	method	of	connecting	to	MySQL	with	the	Perl	programming	language	is	to
use	the	Perl	DBI	module.	This	section	assumes	that	you	have	a	basic	knowledge	of	the
Perl	language.	We’ll	focus	on	how	to	connect	to	MySQL,	run	SQL	statements,	and
retrieve	data	with	Perl,	rather	than	the	idiosyncrasies	of	Perl	itself.	This	is	meant	to	be	a
simple	tutorial	for	a	Perl	programmer	to	get	started	with	the	Perl	DBI.

For	the	example	in	this	section,	suppose	we	want	to	write	a	program	for	one	of	the
administrators	to	get	a	list	of	members	and	to	optionally	change	the	expiration	of	their
membership.	For	this,	we’ll	use	the	admin_members	user	account	that’s	designated	for
administering	information	on	members.	We	created	that	user	account	at	the	start	of	this
chapter.

Installing
The	Perl	DBI	module	is	part	of	the	core	Perl	installation.	You	can	download	both	Perl	and
the	DBI	module	from	CPAN.

If	your	server	already	has	Perl	installed	on	it,	which	most	do,	you	can	execute	the
following	from	the	command	line	to	install	the	DBI	module:

perl	-MCPAN	-e	'install	DBI'

If	you	don’t	have	Perl	installed	already	on	your	server,	you	can	use	an	installation	utility
like	yum	to	install	the	DBI	module.	If	you	have	yum	on	your	server,	enter	the	following
from	the	command	line	while	logged	in	as	root	or	an	administrative	filesystem	user:

yum	install	perl	perl-mysql

Connecting	to	MySQL
To	interface	with	MySQL,	you	must	first	call	the	DBI	module	and	then	connect	to
MySQL.	To	make	a	connection	to	a	database	using	the	Perl	DBI,	only	the	following	lines
are	needed	in	a	Perl	program	to	connect	to	the	database:

#!/usr/bin/perl	-w

use	strict;

use	DBI;

my	$user	=	'admin_members';

my	$password	=	'doc_killdeer_123';

my	$host	=		'localhost';

my	$database	=	'birdwatchers';

my	$dbh	=	DBI->connect("DBI:mysql:$database:$host",	$user,	$password)

								||	die	"Could	not	connect	to	database:	"	.	DBI->errstr;

...

The	first	two	lines	start	Perl	and	set	a	useful	condition	for	reducing	programming	errors
(i.e.,	use	strict).	The	next	line	calls	the	DBI	module.	Then	we	create	a	set	of	variables
containing	values	for	logging	into	MySQL.	The	next	statement,	which	is	spread	over	two
lines,	sets	up	a	database	handle	($dbh)	that	specifies	the	database	engine	(mysql).	We	give
it	the	login	variables.	The	rest	of	the	statement	relates	to	what	to	do	if	the	program	is
unable	to	connect	to	MySQL.	If	the	connection	is	successful,	though,	the	program	will
continue	on.

www.it-ebooks.info

http://www.cpan.org
http://www.it-ebooks.info/

Querying	MySQL
Making	a	connection	to	MySQL	does	little	good	unless	an	SQL	statement	is	executed.
Any	SQL	statement	can	be	executed	through	an	API.	The	only	restrictions	are	those
imposed	by	the	MySQL	server	on	the	user	account	executing	the	SQL	statements	within
the	application.	If	the	user	account	can	execute	only	SELECT	statements,	that’s	all	that	the
application	may	execute.	Let’s	look	at	some	examples	here	of	how	to	select	and	insert	data
in	MySQL	through	an	application.

Selecting	data

Continuing	the	previous	example,	let’s	execute	a	SELECT	to	get	a	list	of	birds	from	the
birds	table.	Let’s	allow	the	user	of	the	Perl	program	to	specify	a	common	name	of	birds
to	select,	when	executing	it	from	the	command	line.	For	instance,	the	user	might	enter
Avocet	to	get	a	list	of	Avocet	birds.	We’ll	use	a	LIKE	operator	in	the	WHERE	clause	to	allow
for	some	flexibility.	Here’s	how	the	code	for	that	would	look:

...

my	$search_parameter	=	shift;

my	$sql_stmnt	=	"SELECT	human_id,

																	CONCAT(name_first,	SPACE(1),	name_last)	AS	full_name,

																	membership_expiration

																	FROM	humans

																	WHERE	name_last	LIKE	?";

my	$sth	=	$dbh->prepare($sql_stmnt);

$sth->execute("%$search_parameter%");

...

The	first	line	here	sets	up	a	variable,	$search_parameter,	to	store	a	value	from	shift,
which	loads	into	that	variable	the	value	given	by	the	user	when	executing	the	program.	On
the	next	line	of	code,	we	create	the	$sql_stmnt	variable	to	store	the	SQL	statement.
Notice	that	where	we	would	specify	the	last	name	of	the	member	in	the	WHERE	clause,	we
entered	instead	a	question	mark.	This	is	known	as	a	placeholder.	We	will	replace	the
placeholder	with	$search_parameter	two	lines	later.	Placeholders	are	a	good	security
precaution.	For	more	information	on	this,	see	SQL	Injection.

After	creating	the	$sql_stmnt	variable,	we	use	the	prepare()	function	of	the	database
handle	in	order	to	prepare	the	SQL	statement	to	form	an	SQL	statement	handle	($sth).
Then	we	use	the	execute()	function	to	execute	the	statement	handle,	with	the
$search_parameter	to	replace	the	placeholder.	To	replace	multiple	placeholders,	you
would	list	them	in	a	comma-separated	list	within	the	parentheses	of	execute().

Having	connected	to	MySQL	and	invoked	an	SQL	statement,	what	remains	is	to	capture
the	data	results	and	to	display	them	to	the	administrator.	The	fetchrow_array()	function
can	be	used	to	fetch	the	data	one	row	at	a	time.	We’ll	use	that	with	a	while	statement.
Here’s	how	that	would	look:

...

while(my($human_id,$full_name,$membership_expiration)	=	$sth->fetchrow_array())

{

			print	"$full_name	($human_id)	-	$membership_expiration	\n";

}

$sth->finish();

$dbh->disconnect();

www.it-ebooks.info

http://www.it-ebooks.info/

The	while	statement	executes	its	block	of	code	repeatedly	so	long	as	there	are	rows	to
process.	The	value	of	each	element	of	each	array	(i.e.,	each	row)	is	stored	in	the	two
variables	$common_name	and	$scientific_name	—	and	overwritten	by	each	loop	of
while.	Then	the	variables	are	printed	to	the	screen	with	a	newline	character	after	each	pair.

The	second	to	last	line	uses	finish()	to	end	the	SQL	statement	handle.	The	last	line
disconnects	the	database	handle	with	disconnect().	Alternatively,	you	can	leave	open	the
connection	to	MySQL	so	that	you	can	create	and	execute	more	statement	handles	to
interface	with	MySQL.

A	better	method	of	retrieving	data	from	MySQL	perhaps	would	be	to	capture	all	of	the
data	in	memory	for	later	use	in	the	Perl	program,	thus	allowing	the	connection	to	MySQL
to	end	before	processing	the	results.	Putting	MySQL	on	hold	while	processing	each	row	as
shown	earlier	can	slow	down	a	program,	especially	when	dealing	with	large	amounts	of
data.	It’s	sometimes	better	to	create	a	complex	data	structure	(i.e.,	an	array	of	arrays)	and
then	leave	the	data	structure	in	memory	until	needed.	To	do	this,	you’d	use	the
fetchall_arrayref()	method.	It	will	return	the	starting	location	in	memory	of	the	array.
Here’s	an	example	of	this:

...

my	$members	=	$sth->fetchall_arrayref();

$sth->finish();

foreach	my	$member	(@$members){

			my	($human_id,	$full_name,	$membership_expiration)	=	@$member;

			print	"$full_name	($human_id)	-	$membership_expiration	\n";

}

$dbh->disconnect();

The	fetchall_arrayref()	fetches	all	of	the	rows,	stores	them	in	an	array	in	memory,	and
returns	a	reference	to	its	location.	This	is	stored	in	$members.	Using	a	foreach,	we	extract
each	array	within	the	@$members	array	and	store	it	in	$member.	With	the	block	of	the
foreach,	we	extract	each	element	of	the	$member	array	and	store	those	values	in
$human_id,	$full_name,	and	$membership_expiration.	We	then	display	them	using
print.

Notice	that	we	executed	the	finish()	to	end	the	statement	handle	and	to	free	MySQL
resources.	We	could	have	also	put	disconnect()	immediately	after	it	if	we	didn’t	intend
to	create	and	execute	more	SQL	statement	handles.	This	would	have	had	no	effect	on	the
foreach	processing	the	results	fetched	by	fetchall_arrayref().

Updating	data

In	the	previous	examples,	we	saw	how	to	select	data	from	a	table.	Let’s	now	look	at	an
example	that	updates	data	in	a	table.	We’ll	change	the	$sql_statement	to	include	an
UPDATE	statement	that	will	update	the	date	of	membership_expiration	for	a	member	in	the
humans	table.	We	can	do	that	like	this:

...

my	($human_id,	$membership_expiration)	=	(shift,	shift);

$sql_stmnt	=	"UPDATE	humans

														SET	membership_expiration	=	?

														WHERE	human_id	=	?";

$sth	=	$dbh->prepare($sql_stmnt);

www.it-ebooks.info

http://www.it-ebooks.info/

$sth->execute($membership_expiration,$human_id);

...

Here	we’re	using	shift	twice	to	capture	two	values	entered	by	the	user	and	store	them	in
the	$human_id	and	$membership_expiration	variables.	The	$sql_statement	is	given	two
placeholders.	We	replace	those	placeholders	with	the	two	variables,	in	the	proper	order,
when	we	execute	the	SQL	statement	through	the	statement	handle	($sth)	using
execute().

The	end	result	of	this	bit	of	code	is	to	update	the	row	related	to	the	given	$human_id	in	the
humans	table.	Because	this	UPDATE	privilege	is	one	to	which	you	might	not	want	the	public
to	have	access,	it	would	be	best	to	use	this	program	just	internally	from	a	known	IP
address,	and	to	require	a	password.

A	Full	Example	with	Perl	DBI
It’s	easier	to	explain	the	components	of	a	program	step	by	step	as	I	have	done	here,	but
seeing	a	program	in	pieces	can	be	confusing.	Combinig	these	Perl	program	snippets,	we’ll
create	a	program	and	call	it	member_adjust_expiration.plx.	Here’s	how	it	looks:

#!/usr/bin/perl	-w	use	strict;

use	DBI;

my	$search_parameter	=	shift	||	'';

my	$human_id	=	shift	||	'';

my	$membership_expiration	=	shift	||	'';

my	$user	=	'admin_members';

my	$password	=	'doc_killdeer_123';

my	$host	=		'localhost';

my	$database	=	'birdwatchers';

my	$dbh	=	DBI->connect("DBI:mysql:$database:$host",	$user,	$password)

								||	die	"Could	not	connect	to	database:	"	.	DBI->errstr;

if($search_parameter	&&	!$membership_expiration)	{

			my	$sql_stmnt	=	"SELECT	human_id,

																				CONCAT(name_first,	SPACE(1),	name_last)	AS	full_name,

																				membership_expiration

																				FROM	humans

																				WHERE	name_last	LIKE	?";

			my	$sth	=	$dbh->prepare($sql_stmnt);

			$sth->execute("%$search_parameter%");

			my	$members	=	$sth->fetchall_arrayref();

			$sth->finish();

			print	"List	of	Members	-	'$search_parameter'	\n";

			foreach	my	$member	(@$members){

						my	($human_id,	$full_name,	$membership_expiration)	=	@$member;

						print	"$full_name	($human_id)	-	$membership_expiration	\n";

			}

}

if($human_id	&&	$membership_expiration)	{

			$sth	=	$dbh->prepare($sql_stmnt);

			$sql_stmnt	=	"UPDATE	humans

																	SET	membership_expiration	=	?

																	WHERE	human_id	=	?";

			$sth	=	$dbh->prepare($sql_stmnt);

			my	($rc)	=	$sth->execute($email_address,$human_id);

			$sth->finish();

www.it-ebooks.info

http://www.it-ebooks.info/

			if($rc)	{

					print	"Membership	Expiration	Changed.	\n";

			}

			else	{

					print	"Unable	to	change	Membership	Expiration.	\n";

			}

}

$dbh->disconnect();

exit();

If	this	program	is	executed	from	the	command	line,	adding	the	last	name	of	the	Hollar
after	the	name	of	the	program,	it	will	return	the	name	of	Lexi	Hollar	with	her	human_id	in
parentheses,	along	with	the	date	her	membership	expires.	The	following	example	shows
how	a	user	might	execute	the	program,	and	the	results	returned	from	running	it	with	this
user	value:

member_adjust_expiration.plx	Hollar

List	of	Members	-	'Hollar'

Lexi	Hollar	(4)	-	2013-09-22

The	program	can	be	run	again	with	a	new	expiration	date	for	the	member	like	so:
member_adjust_expiration.plx	Hollar	4	2015-06-30

Notice	that	the	program	is	expecting	three	values.	If	it	receives	only	one	value,	the
member’s	last	name,	it	executes	the	SELECT	statement	and	displays	the	user	information.	If
it	receives	three	values,	it	will	execute	the	UPDATE	statement.	Values	must	be	in	the	correct
order	and	format.	The	program	will	display	a	message	indicating	whether	it’s	successful	in
changing	the	membership	expiration	date.

You	could	write	this	program	in	more	elaborate	ways.	You	could	allow	the	user	to	select	a
date,	or	the	number	of	months	or	years	to	add	to	the	expiration	date	using	date	functions.
You	could	change	it	to	run	through	a	web	interface	using	the	CGI	Perl	module	so	that	the
user	can	click	choices	instead	of	typing	them	at	the	command	line.	However,	this	simple
program	gives	you	a	good	idea	of	how	to	get	started	writing	a	Perl	API	to	interface	with
MySQL.

More	Information
To	learn	about	Perl,	see	Learning	Perl	(O’Reilly)	by	Randal	Schwartz,	brian	d	foy,	and
Tom	Phoenix.	For	more	details	on	using	the	Perl	DBI	with	MySQL,	see	Alligator
Descartes	and	Tim	Bunce’s	Programming	the	Perl	DBI	(O’Reilly).	To	learn	more	about
Perl	references	and	other	advanced	Perl	topics,	see	Intermediate	Perl	(O’Reilly)	by	Randal
Schwartz.

www.it-ebooks.info

http://shop.oreilly.com/product/0636920018452.do
http://shop.oreilly.com/product/9781565926998.do
http://shop.oreilly.com/product/0636920012689.do
http://www.it-ebooks.info/

PHP	API
One	of	the	most	popular	programming	language	and	database	engine	combinations	for	the
Web	is	PHP	with	MySQL.	This	combination	works	well	for	many	reasons,	but	primarily
the	speed,	stability,	and	simplicity	that	both	offer.	In	addition,	PHP	scripts	can	be	used
easily	with	HTML	to	generate	web	pages.	This	section	provides	a	basic	tutorial	on	how	to
connect	to	MySQL	and	how	to	query	MySQL	with	PHP	using	the	PHP	API,	all	within	a
web	page.

Installing	and	Configuring
There	are	actually	three	popular	APIs	that	may	be	used	to	connect	to	MySQL	with	PHP.
It’s	recommended	that	you	use	the	mysqli	(MySQL	Improved)	extension,	which	replaces
the	older	mysql	extension.	We’ll	use	the	mysqli	API	for	the	programming	examples	in	this
section.

On	many	Linux	systems,	PHP	is	already	installed.	However,	you	can	use	an	installation
utility	like	yum	to	install	PHP,	as	well	as	the	PHP	API,	mysqli.	You	would	do	that	like
this:

yum	install	php	php-mysql

If	you’ll	be	executing	PHP	code	within	web	pages,	which	is	a	very	nice	feature,	you	may
have	to	make	an	adjustment	to	your	web	server	configuration.	If	you’re	using	Apache,	you
may	have	to	add	the	AddType	directive	to	your	Apache	configuration	to	tell	the	web	server
to	execute	code	snippets	with	PHP.	You	can	either	put	the	following	line	in	the	web
server’s	configuration	file	(httpd.conf)	to	make	it	global,	or	add	it	to	a	.htaccess	file	in	the
directory	where	the	HTML	pages	containing	the	PHP	code	snippets	are	located:

AddType	application/x-httpd-php	.html

If	you	add	this	directive	to	the	httpd.conf	configuration	file,	you’ll	have	to	restart	the
Apache	web	service	for	it	to	take	effect.	You	won’t	have	to	do	that	with	the	.htaccess	file.

To	use	PHP	with	MySQL,	you	may	also	have	to	enable	MySQL	with	PHP	by	configuring
PHP	with	the	--with-mysql=/path_to_mysql	option.	That	won’t	be	necessary,	though,	if
you	installed	the	PHP	API	using	yum.

Connecting	to	MySQL
For	PHP	code	to	interface	with	MySQL,	it	must	first	make	a	connection	to	MySQL	to
establish	a	MySQL	client	session.	This	bit	of	code	will	do	that:

<?php

		$host	=	'localhost';

		$user	=	'public_api';

		$pw	=	'pwd_123';

		$db	=	'rookery';

		$connect	=	new	mysqli($host,	$user,	$pw,	$db);

		if	(mysqli_connect_errno())	{

							printf("Connect	failed:	%s\n",	mysqli_connect_error());

							exit();

		}

?>

www.it-ebooks.info

http://www.it-ebooks.info/

We’ve	enclosed	the	code	within	<?php…?>	tags	so	that	it	may	be	embedded	within	an
HTML	web	page.	If	you	wanted	to	create	a	program	that	is	executed	from	the	command
line	and	not	by	a	web	browser,	it	would	have	to	start	with	#!/usr/bin/php.	For	our
examples,	though,	we’ll	stay	with	writing	code	for	use	in	a	web	page.

The	PHP	code	contained	within	the	<?php…?>	tags	creates	variables	containing
information	the	application	will	need	to	connect	to	MySQL	and	select	the	default
database.	After	those	variables,	we’re	using	the	mysqli()	function	to	connect	to	MySQL
with	those	variables.	We’ll	refer	to	that	connection	with	the	variable	we	named	$connect.
If	it’s	unsuccessful,	the	script	dies	with	an	error	message.	If	the	connection	is	successful,
though,	we	can	then	query	the	database.	The	connection	will	stay	open	until	we	close	it.

Querying	MySQL
Let’s	continue	with	our	script	by	retrieving	a	list	of	birds	from	the	birds	table.	The
following	snippet	would	be	placed	after	the	previous	snippet	that	connects	to	MySQL,	but
within	the	same	web	page.	It	will	query	the	database,	fetch	rows	from	the	birds	table,	and
display	them	to	the	user:

<?php

		$sql_stmnt	=	"SELECT	common_name,	scientific_name

																FROM	birds

																WHERE	LOWER(common_name)	LIKE	LOWER(?)";

		$sth	=	$connect->prepare($sql_stmnt);

		$search_parameter	=	$_REQUEST['birdname'];

		$search_parameter	=	"%"	.	$search_parameter	.	"%";

		$sth->bind_param('s',	$search_parameter);

		$sth->execute();

		$sth->bind_result($common_name,	$scientific_name);

while($sth->fetch())	{

		print	"$common_name	-	<i>$scientific_name</i>	
";

}

$sth->close();

$connect->close();

?>

The	first	piece	of	this	creates	a	variable	($sql_stmnt)	containing	the	SQL	statement	we
want	to	execute.	We	then	prepare	that	statement	with	the	prepare()	function	in	relation	to
$connect,	thus	creating	a	statement	handle	($sth).

A	user	would	execute	the	program	we’re	creating	through	a	query	at	the	end	of	the	web
address.	For	instance,	they	would	add	?birdname=Avocet	to	the	web	address	to	query	for	a
list	of	Avocet	birds.

www.it-ebooks.info

http://www.it-ebooks.info/

A	WEB	FORM

A	web	user	wouldn’t	normally	enter	a	variable	name	and	a	search	value	at	the	end	of	a	web	address	in	a	web	browser.
Instead,	this	web	page	we’re	building	would	be	preceded	by	another	web	page	containing	an	HTML	form	for	the	user
to	enter	a	search	parameter.	Here’s	how	that	web	form	would	look:

<h3>Search	Birds	Database</h3>

<form	action="birds.html"	method="post">

<p>Enter	a	parameter	by	which	to	search

the	common	names	of	birds	in	our	database:</p>

<input	type="text"	name="birdname"	/>

<input	type="submit"	/>

</form>

This	form	on	the	preceding	page	calls	the	web	page	we’re	writing,	passing	the	search	parameter	to	it	in	the	proper
format.

In	the	next	pair	of	lines	in	the	example,	we’re	capturing	the	query	request	value	in	a
variable	we	named	$search_parameter.	Because	we	intend	to	use	this	variable	with	a
LIKE	operator,	we	need	to	put	the	%	wildcard	before	and	after	the	variable.

The	next	line	uses	bind_param()	to	bind	the	prepared	statement	to	the
$search_parameter,	specifying	first	that	it’s	a	string	value	with	the	's'.	Then	we	use	the
execute()	function	to	execute	the	completed	statement	handle.

The	bind_result()	prepares	the	variables	that	will	be	used	to	parse	the	array	elements,	or
fields	of	the	results.	Calling	on	the	statement	handle	again,	a	while	statement	loops
through	the	results	using	the	fetch()	function	to	fetch	data	one	row	at	a	time	from	the
results.	Within	the	while	statement	block,	we’re	printing	the	values	with	HTML	tags.
When	it’s	finished,	we	close	the	statement	handle	and	the	connection.

The	output	of	this	script	is	a	line	for	each	bird	based	on	the	search	criteria	in	the	birds
table.	In	this	simple	example,	only	a	few	of	the	many	PHP	functions	for	MySQL	are	used
to	get	and	display	data.	These	snippets	are	shown	here	together	within	a	very	basic	web
page:

<html>

<body>

<?php

		$search_parameter	=	$_REQUEST['birdname'];

		$host	=	'localhost';

		$user	=	'public_api';

		$pw	=	'pwd_123';

		$db	=	'rookery';

		$connect	=	new	mysqli($host,	$user,	$pw,	$db);

		if	(mysqli_connect_errno())	{

							printf("Connect	failed:	%s\n",	mysqli_connect_error());

							exit();

		}

?>

<h3>Birds	-	<?php	echo	$search_parameter	?></h3>

<p>Below	is	a	list	of	birds	in	our	database	based	on	your	search	criteria:</p>

<?php

		$sql_stmnt	=	"SELECT	common_name,	scientific_name

																FROM	birds

																WHERE	common_name	LIKE	?";

		$sth	=	$connect->prepare($sql_stmnt);

		$search_parameter	=	"%"	.	$search_parameter	.	"%";

		$sth->bind_param('s',	$search_parameter);

		$sth->execute();

www.it-ebooks.info

http://www.it-ebooks.info/

		$sth->bind_result($common_name,	$scientific_name);

while($sth->fetch())	{

		print	"$common_name	-	<i>$scientific_name</i>	
";

}

$sth->close();

$connect->close();

?>

</body>

</html>

This	example	is	almost	the	same	as	the	two	major	sections	shown	previously.	We’ve
added	opening	and	closing	HTML	tags	and	some	with	text	in	between	the	two	PHP	code
snippets.	We	also	positioned	a	couple	of	the	lines	in	different	places,	but	it	flows	the	same.
Here’s	the	text	returned	to	the	web	user	when	searching	for	Avocet	birds:

Birds	-	"Avocet"

Below	is	a	list	of	birds	in	our	database	based	on	your	search	criteria:

Pied	Avocet	-	Recurvirostra	avosetta

Red-necked	Avocet	-	Recurvirostra	novaehollandiae

Andean	Avocet	-	Recurvirostra	andina

American	Avocet	-	Recurvirostra	americana

Mountain	Avocetbill	-	Opisthoprora	euryptera

More	Information
If	you	would	like	to	learn	more	about	using	the	PHP	API	mysqli,	there’s	an	extensive
manual	on	the	PHP	site,	including	a	MySQL	Improved	Extension	manual.	You	might	also
like	to	read	Robin	Nixon’s	book,	Learning	PHP,	MySQL	&	Javascript	(O’Reilly)	to	learn
more	about	using	PHP	within	web	pages	to	access	MySQL.

www.it-ebooks.info

http://php.net/manual/en/book.mysqli.php
http://shop.oreilly.com/product/0636920036463.do
http://www.it-ebooks.info/

Python
To	use	Python	with	MySQL,	you	can	you	use	the	MySQL	Connector/Python.	It’s	written
in	Python	and	needs	only	the	Python	libraries	to	function.	It	doesn’t	require	any	Python
modules	besides	what’s	already	part	of	the	Python	standard	library.	Nor	does	it	require	the
MySQL	client	library.

Installing
The	first	thing	you	will	need	to	do	is	install	the	MySQL	Connector/Python	on	your	server.
You	can	do	this	by	using	an	installation	utility	like	yum	on	a	Linux	system.	Python	and	its
libraries	are	probably	already	installed	on	your	server,	but	you	can	try	installing	them	at
the	same	time	to	be	sure.	Execute	this	from	the	command	line:

yum	install	python	python-libs	mysql-connector-python

NOTE

This	section	uses	Version	2	of	Python,	which	is	still	the	most	common	one	installed	on	Linux	and	Mac	systems	at	the
time	of	this	writing.	Version	3	is	becoming	popular,	and	requires	minor	syntax	changes,	but	you	can	read	about	it
elsewhere.	If	you	want	to	use	Version	3,	and	perhaps	another	library	for	connecting	Python	to	MySQL,	you	will
probably	need	only	minor	changes	to	the	code	shown	in	this	section.

Once	you	have	the	connector	installed	on	your	server,	you	can	then	write	and	run	a	Python
program	to	connect	to	MySQL	and	query	databases.	For	the	example	in	this	section,
suppose	the	database	administrator	in	charge	of	managing	MySQL	users	has	asked	us	to
write	a	program	that	would	give	him	a	list	of	user	accounts	and	privileges	for	each.	Let’s
go	through	a	very	simple	program	to	do	this.

Connecting	to	MySQL
To	query	a	database	with	Python,	we	will	need	to	establish	a	connection	with	MySQL.
Here	is	the	beginning	part	of	a	Python	program	to	do	this:

#!/usr/bin/python

import	mysql.connector

config	=	{

				'user':	'admin_granter',

				'password':	'avocet_123',

				'host':	'localhost',

				'database':	'rookery'

}

cnx	=	mysql.connector.connect(**config)

cur	=	cnx.cursor(buffered=True)

The	first	line	is	the	required	line	invoking	Python.	Next	we	import	mysql.connector,	the
MySQL	Connector/Python.	We	then	create	a	hash	to	store	the	login	information	we	will
need	for	connecting	to	MySQL.	We’re	using	the	admin_granter@localhost	user	account
because	it	has	the	privileges	to	execute	the	SHOW	GRANTS	statement	and	to	query	the	mysql
database,	which	contains	user	account	information.	We	created	this	user	in	User	Account
to	Grant	Privileges.

The	final	pair	of	lines	of	the	previous	code	snippet	establishes	the	connection	to	MySQL.
The	first	uses	the	connect()	call	for	the	MySQL	Connector/Python	using	the	values	in	the
config	hash,	loading	its	results	into	the	cnx	variable.	The	second	creates	a	cursor	object

www.it-ebooks.info

http://www.it-ebooks.info/

(cur)	to	use	for	executing	queries	on	the	database.

Querying	MySQL
Because	there	is	no	SHOW	USERS	statement,	we’ll	have	to	query	the	mysql	database	to
select	a	list	of	user	accounts	from	the	user	table.	To	do	this,	we’ll	first	create	a	variable	to
store	the	SELECT	statement	we	want	to	execute.	Then	we’ll	use	the	execute()	call	to
execute	it.	Here’s	how	this	part	of	the	program	would	look:

sql_stmnt	=		("SELECT	DISTINCT	User,	Host	FROM	mysql.db	"

														"WHERE	Db	IN('rookery','birdwatchers')	"

														"ORDER	BY	User,	Host")

cur.execute(sql_stmnt)

So	as	to	fit	the	SELECT	statement	on	the	page,	we’ve	broken	it	onto	multiple	lines.	We	pass
that	variable	to	the	execute()	function	to	execute	the	SQL	statement.	We’re	now	ready	to
fetch	the	rows,	parse	the	fields	from	the	results,	and	display	them:

for	row	in	cur.fetchall()	:

		user_name	=	row[0]

		host_address	=		row[1]

		user_account	=		"'"	+	user_name	+	"'@'"	+	host_address	+	"'"

		print	"%s@%s"	%	(user_name,	host_address)

cur.close()

cnx.close()

We’re	using	a	for	statement	here	to	loop	through	the	results	of	a	fetchall()	call	for	the
cur	cursor	object.	It	takes	the	values	from	each	row	fetched	and	stores	it	in	an	array	we
named	row.	Within	the	statement	block	of	the	for	statement,	we	extract	each	array
element	and	store	the	values	temporarily	in	string	variables,	in	user_name	and
host_address.	Then	we	assemble	them	with	some	text	for	nicer	formatting	and	store	them
in	a	variable	we	named	user_account.	Its	contents	will	look	like
lena_stankoska@localhost.

We	end	this	program	by	displaying	the	user_account	values	to	the	administrator,	and	then
closing	the	cursor	object	and	the	connection	to	MySQL.

Sample	Python	Program
It’s	easier	to	discuss	a	program	by	breaking	it	into	its	components	as	we’ve	just	done,	but
it	can	be	confusing	to	understand	how	it	all	comes	together.	The	following	listing
combines	the	preceding	snippets,	but	with	some	additions	that	make	it	a	bit	more
elaborate:

#!/usr/bin/python

import	re

import	mysql.connector

#	connect	to	mysql

config	=	{

				'user':	'admin_granter',

				'password':	'avocet_123',

				'host':	'localhost',

				'database':	'rookery'

}

cnx	=	mysql.connector.connect(**config)

cur	=	cnx.cursor(buffered=True)

#	query	mysql	database	for	list	of	user	accounts

www.it-ebooks.info

http://www.it-ebooks.info/

sql_stmnt	=		"SELECT	DISTINCT	User,	Host	FROM	mysql.db	"

sql_stmnt	+=	"WHERE	Db	IN('rookery','birdwatchers')	"

sql_stmnt	+=	"ORDER	BY	User,	Host"

cur.execute(sql_stmnt)

#	loop	through	list	of	user	accounts

for	user_accounts	in	cur.fetchall()	:

		user_name	=	user_accounts[0]

		host_address	=		user_accounts[1]

		user_account	=		"'"	+	user_name	+	"'@'"	+	host_address	+	"'"

		#	display	user	account	heading

		print	"\nUser	Account:	%s@%s"	%	(user_name,	host_address)

		print	"--"

		#	query	mysql	for	grants	for	user	account

		sql_stmnt	=	"SHOW	GRANTS	FOR	"	+	user_account

		cur.execute(sql_stmnt)

		#	loop	through	grant	entries	for	user	account

		for	grants	in	cur.fetchall()	:

				#	skip	'usage'	entry

				if	re.search('USAGE',	grants[0])	:

						continue

				#	extract	name	of	database	and	table

				dbtb	=	re.search('ON\s(.*)\.+?(.+?)\sTO',	grants[0])

				db	=	dbtb.group(1)

				tb	=	dbtb.group(2)

				#	change	wildcard	for	tables	to	'all'

				if	re.search('*',	tb)	:

						tb	=	"all"

				#	display	database	and	table	name	for	privileges

				print	"database:	%s;	table:	%s"	%	(db,tb)

				#	extract	and	display	privileges	for	user	account

				#	for	database	and	table

				privs	=	re.search('GRANT\s(.+?)\sON',	grants[0])

				print	"privileges:	%s	\n"	%	(privs.group(1))

cur.close()

cnx.close()

This	program	does	much	more	than	the	previous	snippets.	As	a	result,	I’ve	annotated	it	at
various	points	to	help	you	understand	it.	Still,	let’s	go	through	the	key	points,	especially
the	additions.

First,	the	program	gets	a	list	of	user	accounts,	storing	them	in	an	array	named
user_accounts.	Using	a	for	statement,	it	goes	through	each	row	of	user_accounts	to
extract	each	user_account.	For	each,	it	prints	a	heading	to	display	the	user	account	to	the
administrator.	This	part	is	similar	to	the	previous	excerpts.

We	then	put	a	new	SQL	statement,	SHOW	GRANTS,	in	sql_stmnt	for	each	user_account.
We	execute	and	then	use	another	for	statement	to	go	through	the	results	of	a	fetchall(),
which	we	store	in	a	variable	we’ve	named	grants.	If	a	row	from	grants	contains	the	word
USAGE,	we	skip	displaying	that.	We	then	parse	out	the	database	and	table	name,	store	them
in	variables	named	db	and	tb,	and	display	them.	The	last	pair	of	lines	extracts	the	list	of
privileges	and	displays	them.

Some	of	the	results	of	running	this	Python	program	on	my	system	follow:
User	Account:	lena_stankoska@localhost

--

database:	`rookery`;	table:	all

privileges:	SELECT,	INSERT,	UPDATE,	DELETE

www.it-ebooks.info

http://www.it-ebooks.info/

database:	`birdwatchers`;	table:	all

privileges:	SELECT,	INSERT,	UPDATE

User	Account:	public_api@localhost

--

database:	`birdwatchers`;	table:	all

privileges:	SELECT

database:	`rookery`;	table:	all

privileges:	SELECT

This	is	a	nice	way	for	the	administrator	to	get	a	list	of	users	and	see	what	privileges	they
have	for	particular	databases	and	tables,	especially	because	there	isn’t	a	built-in	function
to	do	what	we	want.

More	Information
If	you	would	like	more	information	on	MySQL	Connector/Python,	there’s	an	extensive
manual	on	MySQL’s	site,	including	a	MySQL	Connector/Python	Developer	Guide.	You
might	also	like	to	read	Mark	Lutz’s	book,	Learning	Python	(O’Reilly).

www.it-ebooks.info

http://bit.ly/mysql-cpdg
http://shop.oreilly.com/product/0636920028154.do
http://www.it-ebooks.info/

Ruby	API
The	Ruby	language	has	become	very	popular	and	can	be	used	to	create	programs	to	access
a	database.	There	are	two	MySQL	modules	for	Ruby.	The	MySQL/Ruby	module	is	built
on	the	MySQL	C	API.	As	such,	it	has	the	same	functions	in	Ruby	as	the	C	API.	This	is	a
nice	feature	if	you	already	know	the	C	API.	The	other	module	is	the	Ruby/MySQL
module	—	this	pairing	and	reverse	pairing	of	the	names	can	be	confusing.	The
Ruby/MySQL	module	is	written	in	Ruby	and	is	included	in	Ruby	on	Rails.	For	the
examples	in	this	section,	we	will	use	the	former,	the	MySQL/Ruby	module.

Installing	and	Preparing	MySQL/Ruby
Before	writing	a	Ruby	program	to	interface	with	MySQL,	let’s	install	the	MySQL/Ruby
module,	which	uses	the	same	functions	as	the	MySQL	C	API.	You	can	do	this	by	using	an
installation	utility	like	yum	on	a	Linux	system.	Execute	the	following	from	the	command
line,	while	logged	in	as	the	root	or	some	other	administrative	filesystem	user:

yum	install	ruby	ruby-mysql

If	you	can’t	use	yum	on	your	server,	you	can	check	MySQL’s	website	to	download	Ruby
modules	and	to	find	instructions	on	installing	them.

Once	you	have	Ruby	and	the	MySQL/Ruby	module	installed	on	your	server,	you	can	then
write	and	run	a	Ruby	program	to	connect	to	MySQL	and	query	the	databases.	Let’s	go
through	a	very	simple	program	to	do	this.	For	this	example	program,	we’ll	use	the
admin_backup@localhost	user	account.	We	created	this	user	account	in	Username	and
Host.	We	will	be	selecting	and	inserting	data	in	a	database	we’ll	call	server_admin.	One
of	the	tables	in	this	database	will	be	backup_policies.	We’ll	then	insert	data	into	this
table	related	to	our	backup	policies	as	a	reference.	We’ll	log	information	about	the
backups,	and	other	server	information	in	that	database.

To	prepare	for	the	program	we’re	about	to	write,	let’s	create	the	server_admin	database
and	the	tables	we	need	for	it.	Create	the	database	and	the	backup_policies	table	by
executing	the	following	SQL	statements:

CREATE	DATABASE	server_admin;

CREATE	TABLE	backup_policies

(policy_id	INT	AUTO_INCREMENT	KEY,

backup_name	VARCHAR(100),

file_format_prefix	VARCHAR(25),

frequency	ENUM('daily','weekly'),

days	ENUM('first','every'),	start_time	TIME,

secure	TINYINT	DEFAULT	0,

location	ENUM('on-site','off-site','both'),

tables_include	VARCHAR(255));

Now	that	we’ve	created	the	backup_policies	table,	let’s	insert	data	in	it	related	to	our
backup	policies	shown	in	Table	14-2.	We’ll	execute	the	following	INSERT	statement:

INSERT	INTO	backup_policies

(backup_name,	file_format_prefix,	frequency,

	days,	start_time,	secure,	location,	tables_include)

VALUES

('rookery	-	full	back-up',	'rookery-',	2,	1,	'08:00:00',	0,	2,	"all	tables"),

('rookery	-	bird	classification',	'rookery-class-',	1,	2,	'09:00:00',	0,	1,

	"birds,	bird_families,	bird_orders"),

('birdwatchers	-	full	back-up',

	'birdwatchers-',	2,	1,	'08:30:00',	1,	2,	"all	tables"),

('birdwatchers	-	people',	'birdwatchers-people-',	1,	2,	'09:30:00',	1,	1,

www.it-ebooks.info

http://dev.mysql.com/downloads/ruby.html
http://www.it-ebooks.info/

	"humans,	birder_families,	birding_events_children"),

('birdwatchers	-	activities',	'birdwatchers-activities-',	1,	2,	'10:00:00',	0,	1,

	"bird_sightings,	birding_events,	bird_identification_tests,

		prize_winners,	surveys,	survey_answers,	survey_questions");

In	addition,	we	will	need	another	table	in	the	server_admin	database.	We’ll	call	it
backup_reports	and	store	reports	in	it	that	will	be	generated	by	the	program	that	we’ll
create.	The	SQL	statement	to	create	this	table	is	as	follows:

CREATE	TABLE	backup_reports

(report_id	INT	AUTO_INCREMENT	KEY,

	report_date	DATETIME,

	admin_name	VARCHAR(100),

	report	TEXT);

This	is	a	simple	table	containing	a	key,	the	date	of	the	report,	the	name	of	the
administrator	generating	the	report,	and	a	TEXT	column	to	store	the	report,	which	will	be
generated	by	the	program	we’ll	create	in	this	section.	Because	we	will	be	using	the
admin_backup	user	account,	we	will	need	to	give	that	account	user	privileges	to	access	the
server_admin	database.	We	can	do	that	by	executing	this	SQL	statement:

GRANT	SELECT,	INSERT	ON	server_admin.*

TO	'admin_backup'@'localhost';

We’re	now	ready	to	create	the	program	for	the	backup	administrator.

Connecting	to	MySQL
To	query	a	database	with	Ruby,	we	will	need	to	establish	a	connection	with	MySQL.
Here’s	the	beginning	part	of	a	Ruby	program	to	do	this:

require	'mysql'

user	=	'admin_backup'

password	=	'its_password_123'

host	=		'localhost'

database	=	'server_admin'

begin

				con	=	Mysql.new	host,	user,	password,	database

#	Database	Queries	Here

#	...

rescue	Mysql::Error	=>	e

				puts	e.errno

				puts	e.error

ensure

				con.close	if	con

end

This	excerpt	of	a	Ruby	program	shows	how	to	connect	and	disconnect	from	MySQL.	The
first	line	is	the	usual	line	to	invoke	Ruby.	The	next	line	calls	the	MySQL	module.	Then
there	is	a	list	of	variables	that	we’ll	use	for	connecting	to	the	server.	The	names	of	these
variables	are	not	important.

This	is	followed	by	a	begin	statement	that	will	include	all	of	the	interactions	with	the
database	server.	The	first	line	establishes	a	new	connection	to	MySQL.	It	includes	the
variables	we	created	for	connecting	to	the	server.	These	variables,	or	values	for	these
parameters,	must	be	in	the	order	shown	here.

Once	you	have	successfully	connected	to	the	database	server,	you	can	execute	SQL
statements.	I	left	out	the	lines	for	querying	the	database	to	keep	this	part	simple.	We’ll

www.it-ebooks.info

http://www.it-ebooks.info/

look	at	that	in	a	bit.

If	the	program	is	not	successful	in	connecting	to	MySQL,	the	rescue	block	will	handle	the
errors	and	display	them	to	the	user	using	puts.	Regardless	of	whether	the	processing	of
the	queries	is	successful,	the	ensure	will	make	sure	that	the	connection	to	MySQL	is
closed	at	the	end	of	the	program.

Querying	MySQL
In	the	previous	section,	we	examined	the	process	for	starting	a	simple	Ruby	program	and
connecting	to	a	MySQL	server,	and	looked	at	how	to	disconnect	from	it.	Let’s	now	see
how	to	query	a	database	while	connected	to	MySQL	or	MariaDB	with	the	Ruby	API.

We’ll	do	a	very	simple	query	to	get	a	list	of	Avocet	birds	from	the	birds	table.	To	do	this,
we’ll	first	create	a	variable	to	store	the	SELECT	statement	we	want	to	execute.	Then	we’ll
execute	it	with	a	query()	call.	Here’s	how	that	part	of	the	program	would	look:

				sql	=	"SELECT	common_name,	scientific_name

											FROM	birds

											WHERE	common_name	LIKE	'%Avocet%'"

				rows	=	con.query(sql)

				rows.each	do	|row|

						common_name	=	row[0]

						scientific_name	=	row[1]

						puts	common_name	+	'	-	'	+	scientific_name

				end

After	the	query(),	you	can	see	that	we’re	using	an	each	statement	to	go	through	each	of
the	rows	of	the	results,	storing	each	row	in	an	array	called	row.	Then	we’re	temporarily
storing	each	element	of	the	row	array	in	the	common_name	and	scientific_name	variables.
We’re	using	puts	to	display	each	variable	with	a	hyphen	between	them	and	a	newline	at
the	end.

Sample	MySQL/Ruby	Program
Although	it’s	easier	to	discuss	the	components	of	a	program	in	separate	pieces,	it	can	be
confusing	to	see	how	they	come	together.	A	complete	Ruby	program	follows	that	uses	the
MySQL/Ruby	module.	This	program	has	a	very	different	purpose	from	the	snippets	we
showed	earlier.	It	will	check	the	backup	directory	for	backup	files	in	accordance	with	our
backup	policy	(this	task	was	discussed	in	Developing	a	Backup	Policy).	The	program	will
display	to	the	administrator	a	list	of	backup	files	for	the	past	several	days.	It	will	also	store
a	report	of	its	findings	in	the	backup_reports	table	in	the	server_admin	database	in
MySQL:

#!/usr/bin/ruby

require	'mysql'

#	create	date	variables

time	=	Time.new

yr	=	time.strftime("%Y")

mn	=	time.strftime("%m")

mon	=	time.strftime("%b")

dy	=	time.strftime("%d")

#	variables	for	connecting	to	mysql

user	=	'admin_backup'

password	=	'its_password_123'

host	=		'localhost'

www.it-ebooks.info

http://www.it-ebooks.info/

database	=	'server_admin'

#	create	other	initial	variables

bu_dir	=	"/data/backup/rookery/"

admin_name	=	"Lena	Stankoska"

bu_report	=		"Back-Up	File	Report\n"

bu_report	+=	"---\n"

puts	bu_report

it	=	0

num	=	7

begin

			#	connect	to	mysql	and	query	database	for	back-up	policies

			con	=	Mysql.new	host,	user,	password,	database

			sql	=	"SELECT	policy_id,	backup_name,	frequency,

										tables_include,	file_format_prefix

										FROM	backup_policies"

			policies	=	con.query(sql)

			policies.each_hash	do	|policy|						#	loop	through	each	row,	each	policy

					#	capture	fields	in	variables

					bu_name	=	policy['backup_name']

					bu_pre	=	policy['file_format_prefix']

					bu_freq	=	policy['frequency']

					#	assemble	header	for	policy

					bu_header	=	"\n"	+	bu_name	+	"	(performed	"	+	bu_freq	+	")\n"

					bu_header	+=	"("	+	bu_pre	+	"yyyy-mmm-dd.sql)	\n"

					bu_header	+=	"---\n"

					bu_report	+=	bu_header

					puts	bu_header

					until	it	>	num	do										#	iterate	through	7	back-up	files	(i.e.,	days)

								bk_day	=	dy.to_i	-	it

								#	assemble	backup	filename

								bu_file_suffix	=	yr	+	"-"	+	mon.downcase	+	"-"	+	bk_day.to_s	+	".sql"

								bu_file	=	bu_pre	+	bu_file_suffix

								bu_path_file	=	bu_dir	+	bu_file

								#	get	info.	on	back-up	file	if	it	exists

								if	File::exists?(bu_path_file)

											bu_size	=	File.size?(bu_path_file)

											bu_size_human	=	bu_size	/	1024

											bu_file_entry	=	bu_file	+	"	("	+	bu_size_human.to_s	+	"k)"

											bu_report	+=	bu_file_entry	+	"\n"

											puts	bu_file_entry

								end

								it	+=1

					end

					it	=	0

		end

end

begin

				#	insert	report	text	accumulated	in	backup_reports	table

				con	=	Mysql.new	host,	user,	password,	database

				sql	=	"INSERT	INTO	backup_reports

											(report_date,	admin_name,	report)

											VALUES	(NOW(),	?,	?)"

				prep_sql	=	con.prepare	sql

				prep_sql.execute(admin_name,bu_report)

rescue	Mysql::Error	=>	e

				puts	e.errno

				puts	e.error

ensure

				con.close	if	con

end

www.it-ebooks.info

http://www.it-ebooks.info/

This	Ruby	program	has	comments	throughout	it	to	explain	the	various	sections	of	the
code.	However,	I’d	like	to	summarize	it	and	highlight	a	few	parts.

First,	we	get	the	current	date	to	create	variables	that	we’ll	use	to	determine	the	name	of
back-up	files.	These	are	based	on	the	backup	policies	shown	in	Table	14-2.

Skipping	ahead,	you	can	see	that	we	create	a	variable,	bu_report,	for	storing	text	for	a
report.	This	report	is	displayed	on	the	screen	for	the	user	as	it	goes	along	and	will	in	the
end	be	inserted	into	the	backup_reports	table.

Going	back	to	the	first	begin	block,	we	execute	a	SELECT	to	get	a	list	of	backup	policies
from	the	backup_policies	table.	This	table	includes	the	file	format	prefix	(e.g.,	rookery-
class-)	used	to	make	each	backup	file.	This	is	followed	by	the	date	format	that	each
filename	uses	(yyyy-mm-dd.sql).	We	store	these	policies	in	a	hash	named	policies.
Using	an	each	statement,	we	go	through	each	policy	to	form	a	header	for	each	and	then
execute	an	until	statement	to	check	for	the	backup	files	on	the	server	for	the	past	week.
For	each	backup	file	found,	the	bu_report	is	appended	with	the	name	of	the	file	and	its
size.

The	next	begin	block	executes	an	INSERT	statement	to	save	the	contents	of	bu_report,
along	with	the	date	and	the	administrator’s	name	in	the	backup_reports	table.	The	results
for	one	sample	row	in	that	table	follow:

***************************	62.	row	***************************

		report_id:	62

report_date:	2014-10-20	14:32:37

	admin_name:	Lena	Stankoska

					report:	Back-Up	File	Report

rookery	-	full	back-up	(performed	weekly)

(rookery-yyyy-mmm-dd.sql)

rookery-2014-oct-20.sql	(7476k)

rookery-2014-oct-13.sql	(7474k)

rookery	-	bird	classification	(performed	daily)

(rookery-class-yyyy-mmm-dd.sql)

rookery-class-2014-oct-20.sql	(2156k)

rookery-class-2014-oct-19.sql	(2156k)

rookery-class-2014-oct-18.sql	(2156k)

rookery-class-2014-oct-17.sql	(2154k)

rookery-class-2014-oct-16.sql	(2154k)

rookery-class-2014-oct-15.sql	(2154k)

rookery-class-2014-oct-14.sql	(2154k)

rookery-class-2014-oct-13.sql	(2154k)

birdwatchers	-	full	back-up	(performed	weekly)

(birdwatchers-yyyy-mmm-dd.sql)

birdwatchers-2014-oct-20.sql	(28k)

birdwatchers-2014-oct-13.sql	(24k)

birdwatchers	-	people	(performed	daily)

(birdwatchers-people-yyyy-mmm-dd.sql)

birdwatchers-people-2014-oct-20.sql	(6k)

birdwatchers-people-2014-oct-19.sql	(6k)

birdwatchers-people-2014-oct-18.sql	(6k)

birdwatchers-people-2014-oct-17.sql	(4k)

birdwatchers-people-2014-oct-16.sql	(4k)

birdwatchers-people-2014-oct-15.sql	(4k)

birdwatchers-people-2014-oct-14.sql	(4k)

birdwatchers-people-2014-oct-13.sql	(4k)

www.it-ebooks.info

http://www.it-ebooks.info/

birdwatchers	-	activities	(performed	daily)

(birdwatchers-activities-yyyy-mmm-dd.sql)

birdwatchers-activities-2014-oct-20.sql	(15k)

birdwatchers-activities-2014-oct-19.sql	(15k)

birdwatchers-activities-2014-oct-18.sql	(15k)

birdwatchers-activities-2014-oct-17.sql	(15k)

birdwatchers-activities-2014-oct-16.sql	(15k)

birdwatchers-activities-2014-oct-15.sql	(13k)

birdwatchers-activities-2014-oct-14.sql	(13k)

birdwatchers-activities-2014-oct-13.sql	(13k)

More	Information
If	you	would	like	to	learn	more	about	using	Ruby	with	MySQL,	there’s	a	manual	provided
by	Tomita	Masahiro,	the	creator	of	the	MySQL	Ruby	module.	You	might	also	find
Learning	Ruby	(O’Reilly)	by	Michael	Fitzgerald	useful.

www.it-ebooks.info

http://www.tmtm.org/en/mysql/ruby/
http://shop.oreilly.com/product/9780596529864.do
http://www.it-ebooks.info/

SQL	Injection
An	API	program	that	accesses	MySQL	or	MariaDB	and	is	available	to	the	public,	on	the
Web	or	from	some	other	public	access	point,	could	be	used	to	attack	the	database	server.
Someone	could	maliciously	manipulate	the	data	given	to	the	web	page	containing	a	script,
or	the	application	that	sends	data	to	the	server	through	an	API.	Specifically,	a	hacker	could
embed	an	SQL	statement	in	the	data	to	be	injected	into	the	database.	This	is	known	as	SQL
injection.	The	purpose	could	be	to	destroy	data,	retrieve	sensitive	or	valuable	information,
or	create	a	user	with	all	privileges	and	then	access	the	server	to	steal	information.

The	vulnerability	is	related	to	the	fact	that	string	values	are	contained	in	quotes.	To	inject
SQL	into	a	string	value,	a	hacker	just	needs	to	close	the	open	quote,	add	a	semicolon,	and
then	start	a	new	SQL	statement.	With	numeric	values,	one	can	add	an	extra	clause	without
a	quote	and	get	at	data.

For	an	example	of	an	SQL	injection,	let’s	look	the	SQL	statement	used	in	the	PHP	API
section,	but	without	a	placeholder.	Suppose	we	embedded	the	$search_parameter
variable	inside	the	SQL	statement	like	this:

$sql_stmnt	=	"SELECT	common_name,	scientific_name

														FROM	birds

														WHERE	common_name	LIKE	'%$search_parameter%'"

Instead	of	entering	a	common	name	of	a	bird,	suppose	that	a	hacker	entered	the	following
when	using	the	API	program,	including	the	single	quotes:

';	GRANT	ALL	PRIVILEGES	ON	*.*	TO	'bad_guy'@'%';	'

That	will	change	our	SQL	statement	to	read	like	this:
SELECT	common_name,	scientific_name	FROM	birds

WHERE	common_name	LIKE	'%';

GRANT	ALL	PRIVILEGES	ON	*.*	TO	'bad_guy'@'%';

'%';

This	results	in	three	SQL	statements	instead	of	just	the	one	intended.	The	hacker	would
receive	a	blank	list	of	birds	for	the	first.	More	important,	based	on	the	second	SQL
statement,	the	system	might	create	for	him	a	user	account	with	all	privileges,	accessible
from	anywhere	and	without	a	password.	If	the	user	account	within	the	API	program	has
GRANT	TO	and	ALL	privileges	for	all	of	the	databases,	the	bad_guy	user	account	would	be
created	and	have	unrestricted	access	and	privileges.	The	last	bit	of	the	malicious	SQL
statement	would	just	return	an	error	because	it’s	incomplete	and	doesn’t	contain	an	SQL
statement.

One	method	of	preventing	SQL	injection	with	a	MySQL	API	is	to	use	placeholders	instead
of	literal	values.	We	used	these	in	previous	examples	in	this	chapter.	This	method	will
isolate	the	data	that	will	be	added	to	the	SQL	statement.	It	does	this	by	escaping	single	and
double	quotes.	It	may	not	seem	like	much,	but	it’s	fairly	effective.

The	previous	SQL	statements	intended	by	the	hacker	will	look	instead	as	follows	if
placeholders	are	used:

SELECT	common_name,	scientific_name	FROM	birds

WHERE	common_name	LIKE	'%\';

GRANT	ALL	PRIVILEGES	ON	*.*	TO	\'bad_guy\'@\'%\';

www.it-ebooks.info

http://www.it-ebooks.info/

%';

Because	the	quote	marks	the	hacker	entered	are	escaped,	MySQL	will	treat	them	as	literal
values	and	won’t	see	them	as	the	end	of	string	values.	Therefore,	it	won’t	start	a	new	SQL
statement	when	it	encounters	the	semicolons	he	entered.	It	won’t	return	the	names	of	any
birds,	because	the	value	won’t	equal	any	rows	in	the	table.	More	important,	a	bad_guy
user	won’t	be	created.

www.it-ebooks.info

http://www.it-ebooks.info/

Summary
An	API	is	very	useful	to	create	programs	for	users	who	don’t	know	how	to	use	MySQL,
or	users	for	whom	you	don’t	want	to	access	MySQL	directly.	It	provides	you	a	much
higher	level	of	security	and	control	over	users,	especially	unknown	users	accessing	your
databases	through	the	Web.	Additionally,	when	MySQL	doesn’t	have	a	function	to	get
information	you	want	from	a	database,	you	can	write	an	API	program	to	accomplish	what
you	want	and	to	supplement	MySQL.	As	a	result,	the	APIs	are	very	powerful	tools	for
customizing	MySQL	and	MariaDB.

The	API	programs	we	reviewed	in	this	chapter	select	data	from	a	database,	and	some
insert	or	update	data	in	a	database.	Some	were	very	simple	and	some	were	much	more
involved.	We	did	very	little	error	checking	and	performed	only	simple	tasks.	Despite	how
basic	and	minimal	some	of	the	examples	were,	they	should	be	sufficient	to	give	you	an
idea	of	how	to	write	an	API	program	to	connect	with	MySQL	and	MariaDB	and	to	query	a
database.	The	rest	is	a	matter	of	knowing	the	related	programming	language	and	MySQL
well,	and	using	the	many	API	functions	available	to	make	better	applications.	To	that	end,
at	the	end	of	each	section,	you	were	given	suggestions	on	learning	more	about	each	API.

www.it-ebooks.info

http://www.it-ebooks.info/

Exercises
For	the	exercises	in	this	chapter,	use	the	API	for	whichever	language	you	prefer.	If	you
have	no	preference,	use	PHP	for	the	exercises.	It’s	the	most	popular	and	probably	the
easiest	to	learn.

1.	 Write	an	API	program	that	connects	to	MySQL	and	queries	the	rookery	database.
Have	the	program	execute	a	SELECT	statement	to	get	a	list	of	birds.	Use	a	JOIN	to
access	the	birds,	bird_families,	and	bird_orders	tables	to	select	the	bird_id,
common_name,	and	scientific_name	from	the	birds	table,	as	well	as	the
scientific_name	from	both	the	bird_families	and	bird_orders	tables.	Joins	were
covered	in	Joining	Tables.	Use	the	LIMIT	clause	to	limit	the	results	to	100	birds.
When	you’re	finished,	execute	the	program	from	the	command	line,	or	a	web
browser	if	using	the	PHP	API.

2.	 Write	an	API	program	that	accepts	data	from	the	user	of	the	program.	It	may	be	from
the	command	line	or	from	a	web	browser,	if	using	the	PHP	API.	Design	the	program
to	connect	to	MySQL	and	the	birdwatchers	database.	Have	it	execute	an	INSERT
statement	to	add	data	given	by	the	user	to	the	humans	table,	just	data	for	the
formal_title,	name_first,	and	name_last	columns.	Set	the	value	for	join_date	by
using	the	CURDATE()	function,	and	set	the	membership_type	column	to	basic.
After	you	write	this	program,	use	it	to	enter	the	names	of	a	few	fictitious	people.
Then	log	into	MySQL	with	the	mysql	client	to	verify	that	it	worked.

3.	 Log	into	MySQL	and	use	the	CREATE	TABLE	statement	to	create	a	table	named
backup_logs	in	the	server_admin	database	(the	CREATE	TABLE	statement	was
covered	in	Creating	Tables).	We	created	the	server_admin	database	at	the	beginning
of	this	chapter.	Design	the	backup_logs	table	however	you	want,	but	be	sure	to
include	columns	to	record	the	date	and	time,	and	the	name	of	a	backup	file.
Use	the	GRANTS	statement	to	give	the	admin_backup	user	account	the	INSERT	and
SELECT	privileges	(at	a	minimum)	for	this	new	table	(this	was	covered	extensively	in
SQL	Privileges).
An	example	of	a	backup	shell	script	was	included	in	Creating	Backup	Scripts.	Try
writing	an	API	program	that	can	be	executed	from	the	command	line,	not	from	a
web	browser,	to	perform	the	same	tasks	as	the	shell	script	shown	in	that	section.
Have	it	call	the	mysqldump	utility	—	don’t	try	to	develop	your	own	backup	utility.
When	you’re	finished,	test	the	program	to	see	whether	it	makes	a	backup	file	and
gives	it	the	correct	name	based	on	the	data.	This	exercise	may	be	beyond	your
abilities,	though.	If	it	is,	skip	this	exercise	and	try	again	in	the	future	when	you’re
much	more	experienced	in	using	the	API.
After	you’ve	verified	that	this	API	program	makes	backups	correctly,	have	it	connect
to	MySQL	to	record	that	it	has	run	successfully.	Use	the	INSERT	statement	to	insert	a
row	with	the	date	the	program	ran	and	the	name	of	the	backup	file	it	created.	When
finished,	run	the	program	again	and	check	the	table	in	MySQL	to	make	sure	it
logged	the	information.
Once	you’re	sure	the	API	program	works	properly,	add	a	line	to	cron	or	another
scheduling	program	to	automatically	execute	the	backup	program	you	wrote.	Set	it
to	run	some	time	soon	so	you	can	verify	it	works	with	cron.	You	can	remove	it	from
cron	when	you’re	finished.

www.it-ebooks.info

http://www.it-ebooks.info/

4.	 Write	an	API	program	that	will	select	a	list	of	bird	families	to	display	to	the	user.
Devise	a	way	for	the	user	to	select	a	bird	family	from	the	results	to	get	a	list	of	birds
in	the	family.	If	you’re	using	an	API	program	like	PHP	that	may	be	used	in	a	web
browser,	create	links	for	the	bird	families	to	take	them	to	the	same	API	program	to
list	the	birds	in	the	family	selected.
If	you’re	writing	an	API	program	that	will	be	executed	from	the	command	line,
provide	the	user	with	the	family_id	next	to	the	name	of	each	bird	family.	Instruct
the	user	to	run	the	program	again,	but	with	the	family_id	entered	after	the	command
to	get	a	list	of	the	birds	for	a	family	chosen.	Create	the	program	in	such	a	way	that	if
no	family_id	is	entered,	the	user	gets	a	list	of	families,	but	if	a	family_id	is
entered,	the	user	gets	a	list	of	birds	in	the	family.	Try	running	the	program	to	make
sure	it	works	properly.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
A	NOTE	ON	THE	DIGITAL	INDEX

A	link	in	an	index	entry	is	displayed	as	the	section	title	in	which	that	entry	appears.	Because	some	sections	have
multiple	index	markers,	it	is	not	unusual	for	an	entry	to	have	several	links	to	the	same	section.	Clicking	on	any	link
will	take	you	directly	to	the	place	in	the	text	in	which	the	marker	appears.

Symbols
!=	construct,	Ordering	Results,	Expressions	and	the	Like

%	(percent	sign),	Renaming	a	Table,	The	Table	for	Bird	Families,	User	Account	Basics

&	(ampersand),	More	Field	and	Line	Definitions

()	(parentheses),	Inserting	and	Manipulating	Data

*	(asterisk),	Inserting	and	Manipulating	Data

,	(comma),	Inserting	and	Manipulating	Data,	Basic	Selection

;	(semicolon),	Connecting	to	the	Server

<>	construct,	Ordering	Results

[]	(square	brackets),	The	Syntax,	More	Field	and	Line	Definitions

^	(caret),	Expressions	and	the	Like

_	(underscore),	Another	Method	to	Alter	and	Create	a	Table

|	(vertical	bar),	Expressions	and	the	Like

A
ABS()	function,	Comparing	and	Searching	Strings,	Eliminating	Negative	Numbers

absolute	values,	Comparing	and	Searching	Strings,	Eliminating	Negative	Numbers

ADD	COLUMN	clause,	ALTER	TABLE	statement,	Essential	Changes,	Essential	Changes

ADD	INDEX	clause,	ALTER	TABLE	statement,	Indexes

adding	dates	and	time,	Adding	and	Subtracting	Dates	and	Time–Adding	and	Subtracting
Dates	and	Time

AddType	directive,	Installing	and	Configuring

administrative	user	accounts

about,	Administrative	User	Accounts

for	bulk	importing,	User	Account	for	Bulk	Importing

for	granting	privileges,	User	Account	to	Grant	Privileges–User	Account	to	Grant
Privileges

for	making	backups,	User	Account	for	Making	Backups

for	restoring	backups,	User	Account	for	Restoring	Backups

www.it-ebooks.info

http://www.it-ebooks.info/

AFTER	keyword,	Essential	Changes

aggregate	functions

about,	Aggregate	Functions

calculating	group	of	values,	Calculating	a	Group	of	Values–Calculating	a	Group	of
Values

concatenating	values	for	groups,	Concatenating	a	Group–Concatenating	a	Group

counting	values,	Counting	Values–Counting	Values

ALL	privileges,	SQL	Privileges,	Using	a	limited	user	account,	SQL	Injection

ALTER	clause,	ALTER	TABLE	statement,	Setting	a	Column’s	Default	Value–Setting	a
Column’s	Default	Value

ALTER	EVENT	statement,	SQL	Privileges

ALTER	FUNCTION	statement,	SQL	Privileges

ALTER	privilege,	SQL	Privileges,	User	Account	for	Restoring	Backups,	Revoking
Privileges

ALTER	PROCEDURE	statement,	SQL	Privileges

ALTER	ROUTINE	privilege,	SQL	Privileges

ALTER	TABLE	statement

about,	Creating	Tables

ADD	COLUMN	clause,	Essential	Changes,	Essential	Changes

ADD	INDEX	clause,	Indexes

ALTER	clause,	Setting	a	Column’s	Default	Value–Setting	a	Column’s	Default	Value

AUTO_INCREMENT	option,	Setting	the	Value	of	AUTO_INCREMENT,	Another
Method	to	Alter	and	Create	a	Table,	The	Table	for	Bird	Orders

basic	syntax,	Essential	Changes

CHANGE	COLUMN	clause,	Essential	Changes,	Setting	a	Column’s	Default	Value–
Setting	a	Column’s	Default	Value,	Updating	Specific	Rows

DROP	COLUMN	clause,	Essential	Changes

DROP	PRIMARY	KEY	clause,	Indexes

dump	files	and,	Understanding	Dump	Files

indexes	and,	Indexes–Indexes

MODIFY	COLUMN	clause,	Essential	Changes

ORDER	BY	clause,	Reordering	a	Table

SQL	privileges	and,	SQL	Privileges

ALTER	USER	statement,	Setting	a	User	Account	Password

www.it-ebooks.info

http://www.it-ebooks.info/

altering	tables

about,	Altering	Tables

additional	method	for,	Another	Method	to	Alter	and	Create	a	Table–Another	Method	to
Alter	and	Create	a	Table

dynamic	columns,	Dynamic	Columns–Dynamic	Columns

essential	changes,	Essential	Changes–Essential	Changes

indexes	and,	Indexes–Indexes

prudence	when,	Prudence	When	Altering	Tables–Prudence	When	Altering	Tables

renaming	tables,	Renaming	a	Table–Renaming	a	Table

reordering	tables,	Reordering	a	Table–Reordering	a	Table

setting	column	default	value,	Setting	a	Column’s	Default	Value–Setting	a	Column’s
Default	Value

setting	value	of	AUTO_INCREMENT,	Setting	the	Value	of	AUTO_INCREMENT

_AMP	packages

about,	The	_AMP	Alternatives

Linux	binary	distributions,	Linux	Binary	Distributions–Linux	Binary	Distributions

Mac	OS	X	distributions,	The	_AMP	Alternatives,	Mac	OS	X	Distributions–Mac	OS	X
Distributions

Windows	distributions,	Windows	Distributions–Windows	Distributions

ampersand	(&),	More	Field	and	Line	Definitions

ANALYZE	TABLE	statement,	SQL	Privileges

AND	operator,	The	Table	for	Birds,	Ordering	Results

anonymous	users,	removing,	More	on	Passwords	and	Removing	Anonymous	Users

APIs	(application	programming	interfaces)

about,	Application	Programming	Interfaces

C	language,	C	API–Compiling	with	C	Includes

creating	user	accounts,	Creating	API	User	Accounts

Perl	DBI	module,	Perl	DBI–More	Information

PHP	language,	PHP	API–More	Information

Python	language,	Python–More	Information

Ruby	language,	Ruby	API–More	Information

SQL	injection,	SQL	Injection–SQL	Injection

apt-get	utility,	Linux	Binary	Distributions

www.it-ebooks.info

http://www.it-ebooks.info/

arguments,	functions	and,	String	Functions

AS	clause,	SELECT	statement,	The	Table	for	Birds,	Combining	Tables

ASC	option,	Ordering	Results

asterisk	(*),	Inserting	and	Manipulating	Data

AUTO_INCREMENT	option

about,	Creating	Tables,	The	Syntax

ALTER	TABLE	statement,	Setting	the	Value	of	AUTO_INCREMENT,	Another
Method	to	Alter	and	Create	a	Table,	The	Table	for	Bird	Orders

setting	value	of,	Setting	the	Value	of	AUTO_INCREMENT

AVG()	function,	Calculating	a	Group	of	Values,	Calculating	a	Group	of	Values

Axmark,	David,	Preface

B
backups

about,	Making	Backups

creating	scripts	for,	Creating	Backup	Scripts–Creating	Backup	Scripts

database,	Prudence	When	Altering	Tables,	Backing	Up	All	Databases–Backing	Up	All
Databases,	Backing	Up	Specific	Databases

developing	policies,	Developing	a	Backup	Policy–Developing	a	Backup	Policy

dump	files	and,	Understanding	Dump	Files–Understanding	Dump	Files

restoring,	Restoring	Backups–Extracting	and	executing	information	from	the	binary	log

table,	Prudence	When	Altering	Tables,	Backing	Up	Specific	Tables–Backing	Up
Specific	Tables

user	accounts	for	making,	User	Account	for	Making	Backups

user	accounts	for	restoring,	User	Account	for	Restoring	Backups

BEGIN	statement,	Extracting	and	executing	information	from	the	binary	log

BENCHMARK()	function,	Performance	Considerations	with	Subqueries

BINARY	data	type,	Converting	String	Types

binary	logs,	recovering	from,	Recovering	from	a	Binary	Log–Extracting	and	executing
information	from	the	binary	log

BINARY	option,	Expressions	and	the	Like

bind_param()	function,	Querying	MySQL

bind_result()	function,	Querying	MySQL

BIT	data	type,	Essential	Changes

www.it-ebooks.info

http://www.it-ebooks.info/

BLOB	data	type,	More	Perspectives	on	Tables,	Dynamic	Columns,	Compressing	Strings

built-in	functions	(see	functions)

bulk	exporting	data,	Bulk	Exporting	Data–Bulk	Exporting	Data

bulk	importing	data

checking	accuracy	of,	Checking	the	Accuracy	of	the	Import–Checking	the	Accuracy	of
the	Import

field	and	line	definitions,	More	Field	and	Line	Definitions–Replacing	Data	Versus
Ignoring	Errors

loading	data	basics,	Loading	Data	Basics–Selecting	Imported	Data

mapping	fields,	Mapping	Fields–Mapping	Fields

from	outside	MySQL,	Importing	from	Outside	MySQL–Importing	Without	FILE
Privileges

preparing	to	import,	Preparing	to	Import–Preparing	to	Import

selecting	imported	data,	Selecting	Imported	Data–Selecting	Imported	Data

setting	columns,	Setting	Columns

user	account	for,	User	Account	for	Bulk	Importing

watching	for	warnings,	Watching	for	Warnings–Watching	for	Warnings

C
C	API

about,	C	API

compiling	with	C	includes,	Compiling	with	C	Includes

complete	minimal	program,	Complete	Minimal	C	API	Program

connecting	to	MySQL,	Connecting	to	MySQL

querying	MySQL,	Querying	MySQL

caret	(^),	Expressions	and	the	Like

case	sensitivity,	Starting	to	Explore	Databases,	Expressions	and	the	Like

case,	setting	for	strings,	Setting	Case	and	Quotes

CAST()	function,	Converting	String	Types–Converting	String	Types

CEILING()	function,	Rounding	Only	Down	or	Up

CHANGE	COLUMN	clause,	ALTER	TABLE	statement,	Essential	Changes,	Setting	a
Column’s	Default	Value–Setting	a	Column’s	Default	Value,	Updating	Specific	Rows

CHANGE	MASTER	TO	statement,	SQL	Privileges

changing	tables	(see	altering	tables)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAR	data	type

CONVERT()	function	and,	Converting	String	Types

space	allocation,	Creating	Tables

storing	dates,	Date	and	Time	Data	Types

character	classes,	Expressions	and	the	Like

character	names,	Expressions	and	the	Like

CHARACTER_LENGTH()	function,	String	Lengths–String	Lengths

CHARACTER_SET_CLIENT	global	variable,	Understanding	Dump	Files

CHARACTER_SET_RESULTS	global	variable,	Understanding	Dump	Files

CHAR_LENGTH()	function,	String	Lengths–String	Lengths

Clements,	James	F.,	Preparing	to	Import

COLLATE	clause,	CREATE	DATABASE	statement,	Expressions	and	the	Like

COLLATION_CONNECTION	global	variable,	Understanding	Dump	Files

column	subqueries,	Column	Subqueries–Column	Subqueries

columns	(tables)

adding,	Essential	Changes

changing	names,	Essential	Changes

changing	width,	Essential	Changes

deleting,	Essential	Changes

dynamic,	Dynamic	Columns–Dynamic	Columns

formatting	elements,	Extracting	Text

restoring,	Restoring	Only	Rows	or	Columns–Restoring	Only	Rows	or	Columns

restricting	access,	Restricting	to	specific	columns

selecting	all,	Inserting	and	Manipulating	Data

selecting	multiple,	Basic	Selection

setting,	Setting	Columns

setting	default	value,	Setting	a	Column’s	Default	Value–Setting	a	Column’s	Default
Value

COLUMN_CREATE()	function,	Dynamic	Columns

COLUMN_GET()	function,	Dynamic	Columns

comma	(,),	Inserting	and	Manipulating	Data,	Basic	Selection

COMMIT	statement,	Extracting	and	executing	information	from	the	binary	log

comparing

www.it-ebooks.info

http://www.it-ebooks.info/

dates	and	times,	Comparing	Dates	and	Times–Comparing	Dates	and	Times

strings,	Comparing	and	Searching	Strings–Comparing	and	Searching	Strings

COMPRESS()	function,	Compressing	Strings

compressing	strings,	Compressing	Strings

CONCAT()	function

about,	Concatenating	Strings–Concatenating	Strings

usage	example,	Selecting	a	Basic	Join,	Comparing	and	Searching	Strings,	Current	Date
and	Time,	Comparing	Dates	and	Times,	Rounding	Numbers

concatenating

strings,	Concatenating	Strings–Concatenating	Strings

values	for	groups,	Concatenating	a	Group–Concatenating	a	Group

CONCAT_WS()	function,	Concatenating	Strings

conditional	SQL	statements,	Understanding	Dump	Files

connect()	function,	Connecting	to	MySQL

CONVERT()	function,	Converting	String	Types–Converting	String	Types

converting

string	types,	Converting	String	Types–Converting	String	Types

text	case,	Setting	Case	and	Quotes

time	zones,	Adjusting	to	Standards	and	Time	Zones–Adjusting	to	Standards	and	Time
Zones

CONVERT_TZ()	function,	Adjusting	to	Standards	and	Time	Zones–Adjusting	to
Standards	and	Time	Zones

Cornell	Lab	of	Ornithology,	Inserting	Data	from	Another	Table–Inserting	Data	from
Another	Table,	Preparing	to	Import

COUNT()	function,	Counting	and	Grouping	Results–Counting	and	Grouping	Results,
Handling	Duplicates,	Counting	Values–Counting	Values

CREATE	DATABASE	statement

basic	syntax,	Creating	a	Database

COLLATE	clause,	Expressions	and	the	Like

creating	test	database,	First	SQL	Commands

dump	files	and,	Understanding	Dump	Files,	Restoring	with	a	temporary	database

restoring	backups	and,	Restoring	Only	Rows	or	Columns

setting	table	columns,	More	Perspectives	on	Tables

CREATE	EVENT	statement,	SQL	Privileges

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE	FUNCTION	statement,	SQL	Privileges

CREATE	INDEX	statement,	SQL	Privileges

CREATE	privilege,	SQL	Privileges,	User	Account	for	Restoring	Backups,	Restoring	with
a	temporary	database

CREATE	PROCEDURE	statement,	SQL	Privileges

CREATE	ROLE	statement,	User	Roles

CREATE	ROUTINE	privilege,	SQL	Privileges

CREATE	SCHEMA	statement,	Creating	a	Database

CREATE	TABLE	statement

basic	syntax,	First	SQL	Commands

bulk	importing	and,	Preparing	to	Import

dump	files	and,	Understanding	Dump	Files,	Developing	a	Backup	Policy

LIKE	clause,	Essential	Changes,	Another	Method	to	Alter	and	Create	a	Table

SELECT	statement	and,	Another	Method	to	Alter	and	Create	a	Table

SQL	privileges	and,	SQL	Privileges

usage	examples,	A	Little	Complexity,	Creating	Tables,	More	Perspectives	on
Tables–More	Perspectives	on	Tables,	Limiting	Updates

CREATE	TEMPORARY	TABLES	privilege,	SQL	Privileges,	User	Account	for	Restoring
Backups

CREATE	TEMPORARY	TABLES	statement,	SQL	Privileges

CREATE	TRIGGER	statement,	SQL	Privileges

CREATE	USER	privilege,	SQL	Privileges,	User	Account	to	Grant	Privileges,	Renaming	a
User	Account

CREATE	USER	statement,	User	Account	Basics,	Username	and	Host,	SQL	Privileges

CREATE	VIEW	privilege,	SQL	Privileges,	User	Account	for	Restoring	Backups

CREATE	VIEW	statement,	SQL	Privileges

crontab	utility,	Backing	Up	Specific	Databases,	Using	mysqlimport

CURDATE()	function,	Adding	and	Subtracting	Dates	and	Time

current	date	and	time,	Current	Date	and	Time–Current	Date	and	Time

CURRENT_TIMESTAMP()	function,	Current	Date	and	Time

CURRENT_USER()	function,	User	Account	to	Grant	Privileges

CURTIME()	function,	Current	Date	and	Time

D

www.it-ebooks.info

http://www.it-ebooks.info/

daemons,	The	Installation	Packages

data	types,	Converting	String	Types

(see	also	specific	data	types)

date	and	time,	Date	and	Time	Data	Types–Date	and	Time	Data	Types

string,	Converting	String	Types–Converting	String	Types

database	queries,	Selecting	Data

databases

backing	up,	Prudence	When	Altering	Tables,	Backing	Up	All	Databases–Backing	Up
All	Databases,	Backing	Up	Specific	Databases

core	aspects,	Starting	to	Explore	Databases–Starting	to	Explore	Databases

creating,	Creating	Databases	and	Tables–Creating	a	Database

inserting	and	manipulating	data,	Inserting	and	Manipulating	Data–A	Little	Complexity

moving	tables	to	other,	Renaming	a	Table

privileges	and,	Database	Components	and	Privileges–Restricting	to	specific	columns

restoring,	Prudence	When	Altering	Tables,	Restoring	a	Database

SQL	command	overview,	First	SQL	Commands–First	SQL	Commands

temporary,	Restoring	with	a	temporary	database–Restoring	with	a	temporary	database

date	and	time	functions

about,	Date	and	Time	Functions

adding	and	subtracting	dates	and	time,	Adding	and	Subtracting	Dates	and	Time–Adding
and	Subtracting	Dates	and	Time

adjusting	to	standards	and	time	zones,	Adjusting	to	Standards	and	Time
Zones–Adjusting	to	Standards	and	Time	Zones

comparing	dates	and	times,	Comparing	Dates	and	Times–Comparing	Dates	and	Times

current	date	and	time,	Current	Date	and	Time–Current	Date	and	Time

data	types	supported,	Date	and	Time	Data	Types–Date	and	Time	Data	Types

extracting	date	and	time	components,	Extracting	Date	and	Time
Components–Extracting	Date	and	Time	Components

formatting	dates	and	time,	Formatting	Dates	and	Time–Formatting	Dates	and	Time

DATE	data	type

www.it-ebooks.info

http://www.it-ebooks.info/

about,	Date	and	Time	Data	Types

CONVERT()	function	and,	Converting	String	Types

GET_FORMAT()	function	and,	Adjusting	to	Standards	and	Time	Zones

NOW()	function	and,	Current	Date	and	Time

DATE()	function,	Extracting	Date	and	Time	Components,	Comparing	Dates	and	Times

DATEDIFF()	function,	Comparing	Dates	and	Times

DATETIME	data	type

about,	Date	and	Time	Data	Types

CONVERT()	function	and,	Converting	String	Types

DATE()	function	and,	Extracting	Date	and	Time	Components

GET_FORMAT()	function	and,	Adjusting	to	Standards	and	Time	Zones

NOW()	function	and,	Current	Date	and	Time

TIME()	function	and,	Extracting	Date	and	Time	Components

DATE_ADD()	function,	Adding	and	Subtracting	Dates	and	Time–Adding	and	Subtracting
Dates	and	Time

DATE_FORMAT()	function,	Formatting	Dates	and	Time–Formatting	Dates	and	Time,
Adjusting	to	Standards	and	Time	Zones,	Comparing	Dates	and	Times

DATE_SUB()	function,	Adding	and	Subtracting	Dates	and	Time–Adding	and	Subtracting
Dates	and	Time

DAY()	function,	Extracting	Date	and	Time	Components

DAYNAME()	function,	Extracting	Date	and	Time	Components

DEB	files,	Linux	Binary	Distributions

DEFAULT	keyword,	Essential	Changes,	The	Syntax

DELAYED	option,	Delaying	an	INSERT

DELETE	privilege,	SQL	Privileges

DELETE	statement

www.it-ebooks.info

http://www.it-ebooks.info/

basic	syntax,	Deleting	Data–Deleting	in	Multiple	Tables

binary	log	and,	Extracting	and	executing	information	from	the	binary	log–Extracting
and	executing	information	from	the	binary	log

changing	user	accounts,	User	Account	Basics

FROM	clause,	Deleting	Within	Joined	Tables

JOIN	clause,	Joining	Tables,	Deleting	Within	Joined	Tables–Deleting	Within	Joined
Tables

LEFT	JOIN	clause,	Deleting	Within	Joined	Tables

LIMIT	clause,	Deleting	Data

ORDER	BY	clause,	Deleting	Data

priorities	when	inserting	data,	Priorities	When	Inserting	Data

RIGHT	JOIN	clause,	Deleting	Within	Joined	Tables

SQL	privileges	and,	SQL	Privileges

subqueries	and,	Subqueries

USING	clause,	Deleting	in	Multiple	Tables,	Deleting	Within	Joined	Tables

WHERE	clause,	The	Table	for	Bird	Families,	Deleting	Data,	Deleting	in	Multiple
Tables,	Deleting	Within	Joined	Tables

deleting

columns	from	tables,	Essential	Changes

rows	from	tables,	Deleting	Data–Deleting	in	Multiple	Tables

tables,	Essential	Changes,	Renaming	a	Table

user	accounts,	Deleting	a	User	Account–Deleting	a	User	Account

within	joined	tables,	Deleting	Within	Joined	Tables–Deleting	Within	Joined	Tables

DESC	option,	Ordering	Results,	Selecting	a	Basic	Join

DESCRIBE	statement

basic	syntax,	Creating	Tables

displaying	table	structure,	First	SQL	Commands,	Essential	Changes

disconnect()	function,	Selecting	data

DISTINCT	flag,	SELECT	statement,	Column	Subqueries

distributions

www.it-ebooks.info

http://www.it-ebooks.info/

_AMP	packages,	The	_AMP	Alternatives

choosing,	Choosing	a	Distribution

FreeBSD,	FreeBSD	and	Sun	Solaris	Distributions–FreeBSD	and	Sun	Solaris
Distributions

Linux	binary,	Linux	Binary	Distributions–Linux	Binary	Distributions

Mac	OS	X,	The	_AMP	Alternatives,	Mac	OS	X	Distributions–Mac	OS	X	Distributions

source,	Source	Distributions–Source	Distributions

Sun	Solaris,	FreeBSD	and	Sun	Solaris	Distributions

Windows,	Windows	Distributions–Windows	Distributions

DMG	files,	Mac	OS	X	Distributions

DO	statement,	Subqueries

DROP	COLUMN	clause,	ALTER	TABLE	statement,	Essential	Changes

DROP	DATABASE	statement,	Creating	a	Database,	Restoring	a	Database

DROP	EVENT	statement,	SQL	Privileges

DROP	FUNCTION	statement,	SQL	Privileges

DROP	INDEX	statement,	SQL	Privileges

DROP	keyword,	Setting	a	Column’s	Default	Value

DROP	PRIMARY	KEY	clause,	ALTER	TABLE	statement,	Indexes

DROP	privilege,	SQL	Privileges,	Restoring	with	a	temporary	database

DROP	PROCEDURE	statement,	SQL	Privileges

DROP	TABLE	statement

about,	Renaming	a	Table

cautions	using,	Essential	Changes

dump	files	and,	Understanding	Dump	Files

SQL	privileges	and,	SQL	Privileges

DROP	TRIGGER	statement,	SQL	Privileges

DROP	USER	statement,	User	Account	Basics,	SQL	Privileges,	Deleting	a	User
Account–Deleting	a	User	Account

Dubois,	Paul,	Using	mysqlimport

dump	files

www.it-ebooks.info

http://www.it-ebooks.info/

about,	Making	Backups,	Understanding	Dump	Files–Understanding	Dump	Files

backing	up	all	databases,	Backing	Up	All	Databases–Backing	Up	All	Databases

backing	up	specific	databases,	Backing	Up	Specific	Databases

backing	up	specific	tables,	Backing	Up	Specific	Tables–Backing	Up	Specific	Tables

backup	scripts	and,	Creating	Backup	Scripts–Creating	Backup	Scripts

limited	user	accounts	and,	Using	a	limited	user	account–Using	a	limited	user	account

modifying,	Modifying	a	dump	file–Modifying	a	dump	file

restoring,	Prudence	When	Altering	Tables

restoring	with	temporary	databases,	Restoring	with	a	temporary	database–Restoring
with	a	temporary	database

dynamic	columns	(tables),	Dynamic	Columns–Dynamic	Columns

E
ENUM	data	type,	Essential	Changes,	Converting	String	Types

EVENT	privilege,	SQL	Privileges

EXECUTE	privilege,	SQL	Privileges

EXECUTE	statement,	SQL	Privileges

execute()	function,	Selecting	data,	Querying	MySQL,	Querying	MySQL

EXPLAIN	statement,	Indexes,	Indexes

exporting	data,	bulk,	Bulk	Exporting	Data–Bulk	Exporting	Data

EXTRACT()	function,	Extracting	Date	and	Time	Components–Extracting	Date	and	Time
Components

extracting

date	and	time	components,	Extracting	Date	and	Time	Components–Extracting	Date	and
Time	Components

text	from	strings,	Extracting	Text–Extracting	Text

F
fetchall()	function,	Querying	MySQL,	Sample	Python	Program

fetchall_arrayref()	method,	Selecting	data

fetchrow_array()	function,	Selecting	data

fields

defining,	More	Field	and	Line	Definitions–Replacing	Data	Versus	Ignoring	Errors

mapping,	Mapping	Fields–Mapping	Fields

FIELDS	clause,	LOAD	DATA	INFILE	statement,	Loading	Data	Basics,	Checking	the

www.it-ebooks.info

http://www.it-ebooks.info/

Accuracy	of	the	Import,	Starting,	Terminating,	and	Escaping

FILE	privilege

about,	SQL	Privileges

bulk	importing	and,	Loading	Data	Basics

importing	without,	Importing	Without	FILE	Privileges

security	considerations,	User	Account	for	Bulk	Importing

user	roles	and,	User	Roles

FIND_IN_SET()	function,	Locating	Text	Within	a	String

finish()	function,	Selecting	data

FIRST	keyword,	Essential	Changes

FLOOR()	function,	Rounding	Only	Down	or	Up

FLUSH	statement,	SQL	Privileges

formatting	dates	and	time

about,	Formatting	Dates	and	Time–Formatting	Dates	and	Time

adjusting	to	standards,	Adjusting	to	Standards	and	Time	Zones

converting	time	zones,	Adjusting	to	Standards	and	Time	Zones–Adjusting	to	Standards
and	Time	Zones

formatting	strings

about,	Formatting	Strings

concatenating	strings,	Concatenating	Strings–Concatenating	Strings

enclosing	strings	in	quotes,	Setting	Case	and	Quotes

padding	strings,	Trimming	and	Padding	Strings

setting	case,	Setting	Case	and	Quotes

trimming	strings,	Trimming	and	Padding	Strings

FreeBSD	platform,	FreeBSD	and	Sun	Solaris	Distributions–FreeBSD	and	Sun	Solaris
Distributions

FROM	clause

DELETE	statement,	Deleting	Within	Joined	Tables

SELECT	statement,	The	Table	for	Birds,	Combining	Tables,	Expressions	and	the	Like,
Joining	Tables

subqueries	and,	Subqueries,	Table	Subqueries

FULLTEXT	indexes,	Comparing	and	Searching	Strings

functions,	String	Functions

www.it-ebooks.info

http://www.it-ebooks.info/

(see	also	specific	functions)

aggregate,	Aggregate	Functions–Concatenating	a	Group

arguments	and,	String	Functions

basic	usage	rules,	String	Functions

date	and	time,	Date	and	Time	Functions–Exercises

numeric,	Numeric	Functions–Eliminating	Negative	Numbers

string,	String	Functions–Exercises

G
gcc	(GNU	C	Compiler),	Source	Distributions,	Compiling	with	C	Includes

GET_FORMAT()	function,	Adjusting	to	Standards	and	Time	Zones–Adjusting	to
Standards	and	Time	Zones

GLOBAL	flag,	SET	statement,	Adjusting	to	Standards	and	Time	Zones,	SQL	Privileges

GNU	C	Compiler	(gcc),	Source	Distributions,	Compiling	with	C	Includes

GNU	General	Public	License	(GPL),	Introduction,	Licensing

GPL	(GNU	General	Public	License),	Introduction,	Licensing

GRANT	OPTION	clause,	GRANT	statement,	User	Account	to	Grant	Privileges

GRANT	OPTION	privilege,	Using	a	limited	user	account

GRANT	statement

GRANT	OPTION	clause,	User	Account	to	Grant	Privileges

limited	user	accounts	and,	Using	a	limited	user	account

SQL	privileges	and,	SQL	Privileges–SQL	Privileges,	Restricting	to	specific	databases,
Restricting	to	specific	tables,	Revoking	Privileges,	User	Roles

usage	example,	User	Account	Basics,	Username	and	Host

grant	tables,	FreeBSD	and	Sun	Solaris	Distributions

GRANT	TO	privilege,	SQL	Injection

grep	command,	Developing	a	Backup	Policy

GROUP	BY	clause

aggregate	functions	and,	Aggregate	Functions–Calculating	a	Group	of	Values

column	subqueries	and,	Column	Subqueries

scalar	subqueries	and,	Scalar	Subqueries

SELECT	statement,	Counting	and	Grouping	Results,	Handling	Duplicates

table	subqueries	and,	Table	Subqueries

GROUP_CONCAT()	function,	Locating	Text	Within	a	String,	Concatenating	a

www.it-ebooks.info

http://www.it-ebooks.info/

Group–Concatenating	a	Group

gtar	command,	FreeBSD	and	Sun	Solaris	Distributions

gunzip	utility,	FreeBSD	and	Sun	Solaris	Distributions,	Source	Distributions

H
help	command,	Connecting	to	the	Server

HIGH_PRIORITY	option,	Raising	the	priority	of	an	INSERT

homebrew	utility,	Mac	OS	X	Distributions

HOUR()	function,	Extracting	Date	and	Time	Components

I
IDENTIFIED	BY	clause,	GRANT	statement,	Username	and	Host

IF	NOT	EXISTS	statement,	Understanding	Dump	Files

IF()	function,	String	Lengths,	Comparing	and	Searching	Strings,	Extracting	Date	and
Time	Components,	Adding	and	Subtracting	Dates	and	Time

IFNULL()	function,	Concatenating	Strings,	Counting	Values,	Bulk	Exporting	Data

IGNORE	option

INSERT	statement,	Inserting	Data	from	Another	Table,	Replacing	Data,	Handling
Duplicates

LOAD	DATA	INFILE	statement,	Checking	the	Accuracy	of	the	Import,	Replacing	Data
Versus	Ignoring	Errors

importing	data,	bulk	(see	bulk	importing	data)

IN	operator,	Ordering	Results,	Column	Subqueries,	Performance	Considerations	with
Subqueries

INDEX	privilege,	SQL	Privileges,	User	Account	for	Restoring	Backups

indexes,	Indexes–Indexes,	Comparing	and	Searching	Strings

information_schema	database,	Starting	to	Explore	Databases

INSERT	INTO…SELECT	statement

altering	tables,	Essential	Changes

bulk	importing,	Selecting	Imported	Data

extracting	text,	Extracting	Text

handling	duplicates,	Handling	Duplicates

inserting	data	from	other	tables,	Inserting	Data	from	Another	Table–Inserting	Data	from
Another	Table

limiting	updates,	Limiting	Updates

mapping	fields,	Mapping	Fields

www.it-ebooks.info

http://www.it-ebooks.info/

INSERT	privilege,	SQL	Privileges,	User	Account	for	Restoring	Backups

INSERT	statement

about,	Inserting	Data

adding	multiple	sets	of	values,	A	Little	Complexity

basic	syntax,	The	Syntax–The	Syntax

changing	user	accounts,	User	Account	Basics

DELAYED	option,	Delaying	an	INSERT

dump	files	and,	Understanding	Dump	Files

emphatic	syntax,	Inserting	Emphatically

HIGH_PRIORITY	option,	Raising	the	priority	of	an	INSERT

IGNORE	option,	Inserting	Data	from	Another	Table,	Replacing	Data,	Handling
Duplicates

INSERT()	function	comparison,	Replacing	and	Inserting	into	Strings

inserting	data	into	tables,	Inserting	and	Manipulating	Data,	Inserting	Data–Inserting
Data

LOW_PRIORITY	option,	Lowering	the	priority	of	an	insert

multiple-row	syntax,	The	Table	for	Bird	Orders,	Inserting	Data	from	Another	Table

ON	DUPLICATE	KEY	UPDATE	clause,	Handling	Duplicates

priorities	inserting	data,	Priorities	When	Inserting	Data–Raising	the	priority	of	an
INSERT

replacing	data	and,	Replacing	Data–Replacing	Data

SQL	privileges	and,	SQL	Privileges,	SQL	Privileges

subqueries	and,	Subqueries

usage	examples,	Practical	Examples–The	Table	for	Birds

VALUES()	function	and,	The	Syntax–The	Syntax,	The	Table	for	Bird	Families–The
Table	for	Bird	Families,	The	Table	for	Birds

INSERT()	function,	Replacing	and	Inserting	into	Strings–Replacing	and	Inserting	into
Strings

installation

choosing	distributions,	Choosing	a	Distribution–Source	Distributions

finding	the	software,	Finding	the	Software–Finding	the	Software

licensing	considerations,	Licensing

packages	overview,	The	Installation	Packages–The	Installation	Packages

post-installation	tasks,	Post-Installation–Creating	a	User

www.it-ebooks.info

http://www.it-ebooks.info/

INT	data	type

storing	dates,	Date	and	Time	Data	Types

usage	example,	First	SQL	Commands,	Creating	Tables

INTERVAL	keyword,	Adding	and	Subtracting	Dates	and	Time–Adding	and	Subtracting
Dates	and	Time

INTO	OUTFILE	clause,	SELECT	statement,	Bulk	Exporting	Data

IS	NOT	NULL	operator,	Counting	Values

IS	NULL	operator,	Counting	Values

J
JOIN	clause

about,	Joining	Tables–Joining	Tables

DELETE	statement,	Joining	Tables,	Deleting	Within	Joined	Tables–Deleting	Within
Joined	Tables

LOCATE()	function	and,	Locating	Text	Within	a	String

scalar	subqueries	and,	Scalar	Subqueries

SELECT	statement,	A	Little	Complexity,	Joining	Tables,	Selecting	a	Basic
Join–Selecting	a	Basic	Join,	Bulk	Exporting	Data

UPDATE	statement,	Joining	Tables,	Updating	Joined	Tables–Updating	Joined	Tables

K
KILL	statement,	Deleting	a	User	Account

L
LAST_INSERT_ID()	function,	Updating	Joined	Tables

latin1	character	set,	More	Perspectives	on	Tables,	Expressions	and	the	Like

LCASE()	function,	Setting	Case	and	Quotes

leading	spaces,	trimming,	Trimming	and	Padding	Strings

LEFT	JOIN	clause

DELETE	statement,	Deleting	Within	Joined	Tables

SELECT	statement,	Selecting	a	Basic	Join,	Counting	Values

UPDATE	statement,	Selecting	a	Basic	Join

LEFT()	function,	Extracting	Text–Extracting	Text

LENGTH()	function,	String	Lengths

lengths,	string,	String	Lengths–String	Lengths

licensing	considerations,	Licensing

www.it-ebooks.info

http://www.it-ebooks.info/

LIKE	clause

CREATE	TABLE	statement,	Essential	Changes,	Another	Method	to	Alter	and	Create	a
Table

SHOW	COLUMNS	statement,	Essential	Changes

SHOW	TABLES	statement,	Renaming	a	Table

LIKE	operator	(WHERE	clause),	Expressions	and	the	Like–Expressions	and	the	Like

LIMIT	clause

DELETE	statement,	Deleting	Data

scalar	subqueries	and,	Scalar	Subqueries

SELECT	statement,	Inserting	Data	from	Another	Table,	Selecting	by	a
Criteria–Limiting	Results,	Calculating	a	Group	of	Values,	Checking	the	Accuracy	of	the
Import

UPDATE	statement,	Limiting	Updates–Ordering	to	Make	a	Difference,	Updating
Multiple	Tables

LINES	clause,	LOAD	DATA	INFILE	statement,	Starting,	Terminating,	and	Escaping

Linux	binary	distributions,	Linux	Binary	Distributions–Linux	Binary	Distributions

LOAD	DATA	INFILE	statement

about,	Loading	Data	Basics

bulk	importing	and,	User	Account	for	Bulk	Importing,	Bulk	Importing	Data

defining	lines	and	fields,	More	Field	and	Line	Definitions–Replacing	Data	Versus
Ignoring	Errors

FIELDS	clause,	Loading	Data	Basics,	Checking	the	Accuracy	of	the	Import,	Starting,
Terminating,	and	Escaping

IGNORE	option,	Checking	the	Accuracy	of	the	Import,	Replacing	Data	Versus	Ignoring
Errors

LINES	clause,	Starting,	Terminating,	and	Escaping

LOCAL	option,	Importing	Local	Files

mapping	fields,	Mapping	Fields

mysqlimport	utility	and,	Using	mysqlimport

REPLACE	option,	Replacing	Data	Versus	Ignoring	Errors

security	considerations,	Importing	Without	FILE	Privileges

SET	clause,	Setting	Columns

SQL	privileges	and,	SQL	Privileges,	User	Roles

watching	for	warnings,	Watching	for	Warnings–Watching	for	Warnings,	Replacing	Data
Versus	Ignoring	Errors

www.it-ebooks.info

http://www.it-ebooks.info/

LOCAL	option,	LOAD	DATA	INFILE	statement,	Importing	Local	Files

LOCALTIME()	function,	Current	Date	and	Time

LOCALTIMESTAMP()	function,	Current	Date	and	Time

LOCATE()	function,	Locating	Text	Within	a	String–Locating	Text	Within	a	String,
Replacing	and	Inserting	into	Strings,	Selecting	Imported	Data

LOCK	TABLES	privilege,	SQL	Privileges,	User	Account	for	Making	Backups,	User
Account	for	Restoring	Backups

LOCK	TABLES	statement,	SQL	Privileges,	Understanding	Dump	Files

LOWER()	function,	Setting	Case	and	Quotes

LOW_PRIORITY	option,	Lowering	the	priority	of	an	insert,	Checking	the	Accuracy	of
the	Import

LPAD()	function,	Trimming	and	Padding	Strings,	Extracting	Date	and	Time	Components

LTRIM()	function,	Trimming	and	Padding	Strings

M
Mac	OS	X	distributions,	The	_AMP	Alternatives,	Mac	OS	X	Distributions–Mac	OS	X
Distributions

mailing	lists	and	forums,	Mailing	Lists	and	Forums

make	tool,	Source	Distributions

mapping	fields,	Mapping	Fields–Mapping	Fields

MariaDB

about,	Preface–Preface,	Introduction

additional	resources,	Other	Books	and	Other	Publications–Other	Books	and	Other
Publications

finding	the	software,	Finding	the	Software

value	of,	The	Value	of	MySQL	and	MariaDB

MATCH()	AGAINST()	function,	Comparing	and	Searching	Strings

MAX()	function,	Calculating	a	Group	of	Values–Calculating	a	Group	of	Values

max_allowed_packet	configuration	option,	String	Functions

MID()	function,	Extracting	Text–Extracting	Text

MIN()	function,	Calculating	a	Group	of	Values–Calculating	a	Group	of	Values

MINUTE()	function,	Extracting	Date	and	Time	Components,	Extracting	Date	and	Time
Components

MODIFY	COLUMN	clause,	ALTER	TABLE	statement,	Essential	Changes

modifying	tables	(see	altering	tables)

www.it-ebooks.info

http://www.it-ebooks.info/

MONTH()	function,	Extracting	Date	and	Time	Components

MONTHNAME()	function,	Extracting	Date	and	Time	Components

MyISAM	storage	engine,	More	Perspectives	on	Tables

MySQL

about,	Preface–Preface,	Introduction

additional	resources,	Other	Books	and	Other	Publications–Other	Books	and	Other
Publications

finding	the	software,	Finding	the	Software

value	of,	The	Value	of	MySQL	and	MariaDB

mysql	client

about,	The	Installation	Packages,	The	Basics	and	the	mysql	Client–The	mysql	Client

connecting	to	server,	Connecting	to	the	Server–Connecting	to	the	Server

—database	option,	Recovering	from	a	Binary	Log

—execute	option,	Setting	a	User	Account	Password

exploring	databases,	Starting	to	Explore	Databases–A	Little	Complexity

—force	option,	Using	a	limited	user	account

Mac	OS	X	distributions,	Mac	OS	X	Distributions

restoring	dump	files,	Prudence	When	Altering	Tables,	Restoring	Backups

Windows	distributions,	Windows	Distributions

mysql	database,	Starting	to	Explore	Databases

MySQL	server,	connecting	to,	Connecting	to	the	Server–Connecting	to	the	Server

mysqlaccess	tool,	The	Installation	Packages

mysqladmin	utility

about,	The	Installation	Packages

finding	installed	software,	Finding	the	Software

setting	initial	root	password,	Setting	Initial	Password	for	root

shutdown	option,	SQL	Privileges

Windows	distributions,	Windows	Distributions

mysqlbinlog	utility

—database	option,	Finding	information	in	the	binary	log,	Extracting	and	executing
information	from	the	binary	log

—start-datetime	option,	Extracting	and	executing	information	from	the	binary	log

—stop-datetime	option,	Extracting	and	executing	information	from	the	binary	log

www.it-ebooks.info

http://www.it-ebooks.info/

mysqld	daemon

about,	The	Installation	Packages

checking	if	installed,	Mac	OS	X	Distributions

Linux	binary	distributions,	Linux	Binary	Distributions

starting,	The	Installation	Packages,	FreeBSD	and	Sun	Solaris	Distributions

mysqldump	utility

about,	The	Installation	Packages,	Making	Backups

—all-databases	option,	Backing	Up	All	Databases,	Backing	Up	Specific	Databases

backup	support,	Prudence	When	Altering	Tables,	Backing	Up	All	Databases–Backing
Up	All	Databases,	Backing	Up	Specific	Databases,	Backing	Up	Specific
Tables–Backing	Up	Specific	Tables

—compact	option,	Understanding	Dump	Files

—complete-insert	option,	Backing	Up	All	Databases

—databases	option,	Backing	Up	Specific	Databases,	Backing	Up	Specific	Tables

—disable-keys	option,	Understanding	Dump	Files

dump	files	and,	Understanding	Dump	Files–Understanding	Dump	Files

—execute	option,	Restoring	a	Database

exporting	data,	Importing	Without	FILE	Privileges

—extended-insert	option,	Backing	Up	All	Databases

—ignore-table	option,	Backing	Up	All	Databases

—lock-all-tables	option,	Backing	Up	All	Databases,	Understanding	Dump	Files

—lock-tables	option,	Backing	Up	All	Databases

—no-create-info	option,	Understanding	Dump	Files,	Importing	Without	FILE
Privileges

—no-data	option,	Backing	Up	Specific	Databases

—password	option,	Backing	Up	All	Databases

—replace	option,	Restoring	Only	Rows	or	Columns

restoring	backups,	Restoring	Backups

scripts	executing,	Creating	Backup	Scripts–Creating	Backup	Scripts

—single-transaction	option,	Backing	Up	All	Databases

—skip-add-drop-table	option,	Understanding	Dump	Files

—skip-add-locks	option,	Understanding	Dump	Files

—skip-comments	option,	Understanding	Dump	Files

www.it-ebooks.info

http://www.it-ebooks.info/

—skip-disable-keys	option,	Understanding	Dump	Files

—skip-extended-insert	option,	Backing	Up	All	Databases

—skip-set-charset	option,	Understanding	Dump	Files

—tables	option,	Backing	Up	Specific	Tables

—user	option,	Backing	Up	All	Databases

user	roles	and,	User	Roles

—verbose	option,	Backing	Up	Specific	Databases

mysqld_safe	daemon,	The	Installation	Packages,	FreeBSD	and	Sun	Solaris	Distributions

mysqli()	function,	Connecting	to	MySQL

mysqlimport	utility,	Using	mysqlimport

mysqlshow	tool,	The	Installation	Packages

mysql_close()	function,	Querying	MySQL

mysql_errno()	function,	Connecting	to	MySQL

mysql_error()	function,	Connecting	to	MySQL

mysql_fetch_row()	function,	Querying	MySQL

mysql_free_result()	function,	Querying	MySQL

mysql_init()	function,	Connecting	to	MySQL

mysql_query()	function,	Querying	MySQL

mysql_real_connect()	function,	Connecting	to	MySQL

mysql_real_query()	function,	Querying	MySQL

mysql_store_result()	function,	Querying	MySQL

N
 	(non-breaking	space),	Trimming	and	Padding	Strings

negative	numbers,	eliminating,	Comparing	and	Searching	Strings,	Eliminating	Negative
Numbers–Eliminating	Negative	Numbers

NOT	NULL	clause,	SHOW	COLUMNS	statement,	Essential	Changes

NOT	REGEXP	operator,	Expressions	and	the	Like

NOW()	function,	Current	Date	and	Time–Current	Date	and	Time,	Comparing	Dates	and
Times

NULL	value

COUNT()	function	and,	Counting	Values

as	default,	Inserting	Data,	Essential	Changes

inserting	data	with,	The	Syntax

www.it-ebooks.info

http://www.it-ebooks.info/

numeric	functions

about,	Numeric	Functions

eliminating	negative	numbers,	Eliminating	Negative	Numbers–Eliminating	Negative
Numbers

rounding	numbers,	Rounding	Numbers–Rounding	Only	Down	or	Up

truncating	numbers,	Truncating	Numbers

O
ON	DUPLICATE	KEY	UPDATE	clause,	INSERT	statement,	Handling	Duplicates

ON	operator,	Joining	Tables,	Deleting	Within	Joined	Tables

OPTIMIZE	TABLE	statement,	SQL	Privileges

ORDER	BY	clause

ALTER	TABLE	statement,	Reordering	a	Table

converting	strings	types	and,	Converting	String	Types

DELETE	statement,	Deleting	Data

RAND()	function	and,	Ordering	to	Make	a	Difference,	Column	Subqueries

SELECT	statement,	Reordering	a	Table,	The	Table	for	Bird	Families,	Inserting	Data
from	Another	Table,	Ordering	Results–Ordering	Results,	Expressions	and	the	Like,
Selecting	a	Basic	Join,	Column	Subqueries,	Calculating	a	Group	of	Values

UPDATE	statement,	Ordering	to	Make	a	Difference,	Updating	Multiple	Tables

P
padding	date	and	time	elements,	Extracting	Date	and	Time	Components

padding	strings,	Trimming	and	Padding	Strings

parentheses	(),	Inserting	and	Manipulating	Data

PASSWORD	EXPIRE	clause,	ALTER	USER	statement,	Setting	a	User	Account	Password

PASSWORD	keyword,	Username	and	Host

PASSWORD()	function,	Username	and	Host,	Setting	a	User	Account	Password

passwords

about,	More	on	Passwords	and	Removing	Anonymous	Users

root,	Setting	Initial	Password	for	root

setting	for	user	accounts,	Setting	a	User	Account	Password

percent	sign	(%),	Renaming	a	Table,	The	Table	for	Bird	Families,	User	Account	Basics

performance	considerations	with	subqueries,	Performance	Considerations	with	Subqueries

PERIOD_ADD()	function,	Adding	and	Subtracting	Dates	and	Time

www.it-ebooks.info

http://www.it-ebooks.info/

Perl	DBI	module

about,	Perl	DBI

additional	information,	More	Information

connecting	to	MySQL,	Connecting	to	MySQL

full	example,	A	Full	Example	with	Perl	DBI–A	Full	Example	with	Perl	DBI

installing,	Installing

querying	MySQL,	Querying	MySQL–Updating	data

PHP	API

about,	PHP	API

additional	information,	More	Information

configuring,	Installing	and	Configuring

connecting	to	MySQL,	Connecting	to	MySQL

installing,	Installing	and	Configuring

querying	MySQL,	Querying	MySQL–Querying	MySQL

PI()	function,	Summary

PKG	files,	FreeBSD	and	Sun	Solaris	Distributions

placeholders,	Selecting	data,	SQL	Injection

point-in-time	recovery,	Recovering	from	a	Binary	Log

policies,	backup,	Developing	a	Backup	Policy–Developing	a	Backup	Policy

POSITION()	function,	Locating	Text	Within	a	String

post-installation	tasks

about,	Post-Installation

creating	users,	Creating	a	User

removing	anonymous	users,	More	on	Passwords	and	Removing	Anonymous	Users

setting	initial	root	password,	Setting	Initial	Password	for	root

special	configuration,	Special	Configuration

POWER()	function,	Summary

prepare()	function,	Selecting	data,	Querying	MySQL

primary	keys

about,	Creating	Tables

AUTO_INCREMENT	option,	Creating	Tables,	Setting	the	Value	of
AUTO_INCREMENT

dropping,	Indexes

www.it-ebooks.info

http://www.it-ebooks.info/

privileges

basis	of,	More	on	Passwords	and	Removing	Anonymous	Users

database	components	and,	Database	Components	and	Privileges–Restricting	to	specific
columns

mysqlaccess	tool	and,	The	Installation	Packages

restricting	user	account	access,	Restricting	the	Access	of	User	Accounts–Restricting	to
specific	columns

revoking,	Revoking	Privileges–Revoking	Privileges

SQL,	SQL	Privileges–SQL	Privileges

user	accounts	for	granting,	User	Account	to	Grant	Privileges–User	Account	to	Grant
Privileges

PROCESS	privilege,	SQL	Privileges,	Deleting	a	User	Account

prompts,	Connecting	to	the	Server

PURGE	BINARY	LOGS	statement,	SQL	Privileges

Python	language

about,	Python

additional	information,	More	Information

connecting	to	MySQL,	Connecting	to	MySQL

installing,	Installing

querying	MySQL,	Querying	MySQL

sample	program,	Sample	Python	Program–Sample	Python	Program

Q
QUARTER()	function,	Adding	and	Subtracting	Dates	and	Time

queries

C	API,	Querying	MySQL

database,	Selecting	Data

Perl	DBI	module,	Querying	MySQL–Updating	data

PHP	API,	Querying	MySQL–Querying	MySQL

Python	language,	Querying	MySQL

Ruby	API,	Querying	MySQL

subqueries,	Subqueries–Performance	Considerations	with	Subqueries

query()	function,	Querying	MySQL

quotation	marks,	enclosing	strings	in,	Setting	Case	and	Quotes

www.it-ebooks.info

http://www.it-ebooks.info/

QUOTE()	function,	Setting	Case	and	Quotes

R
RAND()	function,	Ordering	to	Make	a	Difference,	Column	Subqueries

reference	tables,	Essential	Changes

REGEXP	operator,	Expressions	and	the	Like–Expressions	and	the	Like,	Selecting	a	Basic
Join,	Searching	Strings	and	Using	Lengths

RELOAD	privilege,	SQL	Privileges

RENAME	TABLE	statement,	Renaming	a	Table–Renaming	a	Table

RENAME	USER	statement,	SQL	Privileges,	Renaming	a	User	Account

renaming

tables,	Renaming	a	Table–Renaming	a	Table

user	accounts,	Renaming	a	User	Account

reordering	tables,	Reordering	a	Table–Reordering	a	Table

REPAIR	TABLE	statement,	SQL	Privileges

REPLACE	option,	LOAD	DATA	INFILE	statement,	Replacing	Data	Versus	Ignoring
Errors

REPLACE	statement

about,	Replacing	Data–Replacing	Data

dump	files	and,	Understanding	Dump	Files

restoring	backups	and,	Restoring	Only	Rows	or	Columns

setting	right	ID,	A	Digression:	Setting	the	Right	ID

REPLACE()	function,	Replacing	and	Inserting	into	Strings,	Adjusting	to	Standards	and
Time	Zones

REPLICATION	CLIENT	privilege,	SQL	Privileges

REPLICATION	SLAVE	privilege,	SQL	Privileges

reserved	words,	Preparing	to	Import

restoring

www.it-ebooks.info

http://www.it-ebooks.info/

backups,	User	Account	for	Restoring	Backups,	Restoring	Backups–Extracting	and
executing	information	from	the	binary	log

columns,	Restoring	Only	Rows	or	Columns–Restoring	Only	Rows	or	Columns

databases,	Prudence	When	Altering	Tables,	Restoring	a	Database

dump	files,	Prudence	When	Altering	Tables,	Restoring	Backups

point-in-time	recovery,	Recovering	from	a	Binary	Log

recovering	from	binary	logs,	Recovering	from	a	Binary	Log–Extracting	and	executing
information	from	the	binary	log

rows,	Restoring	Only	Rows	or	Columns–Restoring	Only	Rows	or	Columns

tables,	Restoring	a	Table–Using	a	limited	user	account

REVOKE	ALL	PRIVILEGES	statement,	SQL	Privileges

REVOKE	statement,	SQL	Privileges–SQL	Privileges,	Revoking	Privileges–Revoking
Privileges

RIGHT	JOIN	clause,	DELETE	statement,	Deleting	Within	Joined	Tables

RIGHT()	function,	Extracting	Text–Extracting	Text

root	password,	Setting	Initial	Password	for	root

ROUND()	function,	Current	Date	and	Time,	Rounding	Numbers–Rounding	Numbers

rounding	numbers

about,	Rounding	Numbers–Rounding	Numbers

only	up	or	down,	Current	Date	and	Time,	Rounding	Only	Down	or	Up

truncating	numbers,	Truncating	Numbers

row	subqueries,	Row	Subqueries–Row	Subqueries

rows	(tables)

adding,	The	Syntax

deleting,	Deleting	Data–Deleting	in	Multiple	Tables

handling	duplicates,	Handling	Duplicates–Handling	Duplicates

limiting	updates,	Limiting	Updates–Limiting	Updates

ordering,	Ordering	to	Make	a	Difference

restoring,	Restoring	Only	Rows	or	Columns–Restoring	Only	Rows	or	Columns

selecting	all,	Counting	and	Grouping	Results

updating	specific,	Updating	Specific	Rows–Updating	Specific	Rows

RPAD()	function,	Trimming	and	Padding	Strings

RPM	files,	Linux	Binary	Distributions

www.it-ebooks.info

http://www.it-ebooks.info/

rpm	utility,	Linux	Binary	Distributions

RTRIM()	function,	Trimming	and	Padding	Strings

Ruby	API

about,	Ruby	API

additional	information,	More	Information

connecting	to	MySQL,	Connecting	to	MySQL

installing,	Installing	and	Preparing	MySQL/Ruby

preparing,	Installing	and	Preparing	MySQL/Ruby–Installing	and	Preparing
MySQL/Ruby

querying	MySQL,	Querying	MySQL

sample	program,	Sample	MySQL/Ruby	Program–More	Information

S
scalar	subqueries,	Scalar	Subqueries–Scalar	Subqueries

scripts,	backup,	Creating	Backup	Scripts–Creating	Backup	Scripts

searching	strings

about,	Searching	Strings	and	Using	Lengths

comparing	and,	Comparing	and	Searching	Strings–Comparing	and	Searching	Strings

determining	string	lengths,	String	Lengths–String	Lengths

locating	text	within	strings,	Locating	Text	Within	a	String–Locating	Text	Within	a
String

replacing	and	inserting	into	strings,	Replacing	and	Inserting	into	Strings–Replacing	and
Inserting	into	Strings

SECOND()	function,	Extracting	Date	and	Time	Components

security	considerations

FILE	privilege,	User	Roles

LOAD	DATA	INFILE	statement,	Importing	Without	FILE	Privileges

SELECT	privilege,	User	Account	to	Grant	Privileges

SEC_TO_TIME()	function,	Adding	and	Subtracting	Dates	and	Time,	Calculating	a	Group
of	Values

SELECT	privilege

www.it-ebooks.info

http://www.it-ebooks.info/

about,	SQL	Privileges,	Restricting	to	specific	databases

backups	and,	User	Account	for	Making	Backups

granting,	Creating	API	User	Accounts

limited	user	accounts	and,	Using	a	limited	user	account

security	considerations,	User	Account	to	Grant	Privileges

SELECT	statement,	The	Table	for	Birds

(see	also	INSERT	INTO…SELECT	statement)

AND	operator,	The	Table	for	Birds,	Ordering	Results

AS	clause,	The	Table	for	Birds,	Combining	Tables

basic	syntax,	Basic	Selection

BINARY	option,	Expressions	and	the	Like

BIT	data	type	and,	Essential	Changes

combining	tables,	A	Little	Complexity,	Combining	Tables–Combining	Tables

CONCAT()	function	and,	Selecting	a	Basic	Join,	Concatenating	Strings

COUNT()	function	and,	Counting	and	Grouping	Results–Counting	and	Grouping
Results,	Handling	Duplicates

CREATE	TABLE	statement	and,	Another	Method	to	Alter	and	Create	a	Table

DISTINCT	flag,	Column	Subqueries

EXPLAIN	statement	and,	Indexes,	Indexes

FROM	clause,	The	Table	for	Birds,	Combining	Tables,	Expressions	and	the	Like,
Joining	Tables

GROUP	BY	clause,	Counting	and	Grouping	Results,	Handling	Duplicates

GROUP_CONCAT()	function	and,	Locating	Text	Within	a	String,	Concatenating	a
Group

INTO	OUTFILE	clause,	Bulk	Exporting	Data

JOIN	clause,	A	Little	Complexity,	Joining	Tables,	Selecting	a	Basic	Join–Selecting	a
Basic	Join,	Bulk	Exporting	Data

LAST_INSERT_ID()	function	and,	Updating	Joined	Tables

LEFT	JOIN	clause,	Selecting	a	Basic	Join,	Counting	Values

LIKE	operator	and,	Expressions	and	the	Like–Expressions	and	the	Like

LIMIT	clause,	Inserting	Data	from	Another	Table,	Selecting	by	a	Criteria–Limiting
Results,	Calculating	a	Group	of	Values,	Checking	the	Accuracy	of	the	Import

ORDER	BY	clause,	Reordering	a	Table,	The	Table	for	Bird	Families,	Inserting	Data
from	Another	Table,	Ordering	Results–Ordering	Results,	Expressions	and	the	Like,

www.it-ebooks.info

http://www.it-ebooks.info/

Selecting	a	Basic	Join,	Column	Subqueries,	Calculating	a	Group	of	Values

REGEXP	operator,	Expressions	and	the	Like–Expressions	and	the	Like

REPLACE()	function	and,	Replacing	and	Inserting	into	Strings

SEC_TO_TIME()	function	and,	Adding	and	Subtracting	Dates	and	Time

selecting	all	table	columns,	Inserting	and	Manipulating	Data

setting	right	ID,	A	Digression:	Setting	the	Right	ID–A	Digression:	Setting	the	Right	ID

SQL	privileges	and,	SQL	Privileges,	SQL	Privileges,	Restricting	to	specific	databases

subqueries	and,	Subqueries,	Table	Subqueries

SUBSTRING()	function	and,	Extracting	Text

UNION	operator,	Unifying	Results–Unifying	Results

WHERE	clause,	Inserting	and	Manipulating	Data,	A	Little	Complexity,	Essential
Changes,	The	Table	for	Birds,	A	Digression:	Setting	the	Right	ID,	Selecting	by	a
Criteria,	Ordering	Results–Ordering	Results,	Updating	Specific	Rows,	Joining	Tables,
Selecting	a	Basic	Join

semicolon	(;),	Connecting	to	the	Server

SET	clause,	LOAD	DATA	INFILE	statement,	Setting	Columns

SET	clause,	UPDATE	statement

altering	tables,	Essential	Changes

updating	data,	Updating	Data

updating	multiple	tables,	Updating	Multiple	Tables

updating	specific	rows,	Updating	Specific	Rows–Updating	Specific	Rows

SET	PASSWORD	statement,	Setting	a	User	Account	Password

SET	statement

creating	variables,	Rounding	Numbers

dump	files	and,	Understanding	Dump	Files,	Backing	Up	Specific	Tables

formatting	column	elements,	Extracting	Text

GLOBAL	flag,	Adjusting	to	Standards	and	Time	Zones,	SQL	Privileges

subqueries	and,	Subqueries

SHOW	BINARY	LOGS	statement,	SQL	Privileges,	Recovering	from	a	Binary	Log

SHOW	COLUMNS	statement

LIKE	clause,	Essential	Changes

NOT	NULL	clause,	Essential	Changes

usage	example,	Setting	a	Column’s	Default	Value,	The	Table	for	Bird	Families

www.it-ebooks.info

http://www.it-ebooks.info/

SHOW	CREATE	TABLE	statement,	More	Perspectives	on	Tables–More	Perspectives	on
Tables,	Another	Method	to	Alter	and	Create	a	Table,	Understanding	Dump	Files

SHOW	CREATE	VIEW	statement,	SQL	Privileges

SHOW	DATABASES	privilege,	SQL	Privileges

SHOW	DATABASES	statement

about,	Creating	a	Database,	Restoring	a	Database,	Restoring	with	a	temporary	database

restoring	backups	and,	Restoring	Only	Rows	or	Columns

SQL	privileges	and,	SQL	Privileges,	Restricting	to	specific	databases

SHOW	ENGINE	statement,	SQL	Privileges

SHOW	GRANTS	statement

about,	User	Account	Basics

SQL	privileges	and,	Restricting	to	specific	databases,	User	Account	to	Grant	Privileges

usage	examples,	Username	and	Host,	User	Account	to	Grant	Privileges

SHOW	INDEX	statement,	Indexes–Indexes

SHOW	MASTER	STATUS	statement,	SQL	Privileges,	Recovering	from	a	Binary	Log,
Finding	information	in	the	binary	log

SHOW	PROCESSLIST	statement,	SQL	Privileges,	Deleting	a	User	Account

SHOW	SLAVE	STATUS	statement,	SQL	Privileges

SHOW	TABLES	statement

about,	First	SQL	Commands

LIKE	clause,	Renaming	a	Table

restoring	backups	and,	Restoring	a	Database

SQL	privileges	and,	Restricting	to	specific	databases

SHOW	VARIABLES	statement,	Adjusting	to	Standards	and	Time	Zones,	Finding
information	in	the	binary	log

SHOW	VIEW	privilege,	SQL	Privileges,	User	Account	for	Making	Backups

SHOW	WARNINGS	statement

bulk	importing	and,	Watching	for	Warnings

inserting	data	and,	The	Table	for	Bird	Families,	Inserting	Data	from	Another	Table

updating	data	and,	Updating	Specific	Rows

SHUTDOWN	privilege,	SQL	Privileges

SIGN()	function,	Eliminating	Negative	Numbers

SIGNED	data	type,	Converting	String	Types

www.it-ebooks.info

http://www.it-ebooks.info/

slash-g	(\g),	Connecting	to	the	Server

SLEEP()	function,	Current	Date	and	Time

source	distributions,	Source	Distributions–Source	Distributions

SPACE()	function,	Trimming	and	Padding	Strings

spaces

padding	strings	with,	Trimming	and	Padding	Strings

trimming	in	strings,	Trimming	and	Padding	Strings

SQL	injection,	SQL	Injection–SQL	Injection

SQL	statements

canceling,	Connecting	to	the	Server

clause	execution	order,	Essential	Changes

conditional,	Understanding	Dump	Files

inserting	and	manipulating	data,	Inserting	and	Manipulating	Data–A	Little	Complexity

overview,	First	SQL	Commands–First	SQL	Commands

selecting	multiple	items,	Basic	Selection

structure	of,	Inserting	and	Manipulating	Data

subqueries	and,	Subqueries

unifying	results,	Unifying	Results–Unifying	Results

square	brackets	[],	The	Syntax,	More	Field	and	Line	Definitions

ssh	tool,	Database	Components	and	Privileges

startup	items,	Mac	OS	X	Distributions

statements	(see	SQL	statements)

STDDEV()	function,	Calculating	a	Group	of	Values

storage	engines,	More	Perspectives	on	Tables

STRCMP()	function,	Comparing	and	Searching	Strings–Comparing	and	Searching	Strings

string	functions

about,	String	Functions

compressing	strings,	Compressing	Strings

converting	string	types,	Converting	String	Types–Converting	String	Types

extracting	text	from	strings,	Extracting	Text–Extracting	Text

formatting	strings,	Formatting	Strings–Trimming	and	Padding	Strings

searching	strings	and	using	lengths,	Searching	Strings	and	Using	Lengths–Replacing
and	Inserting	into	Strings

www.it-ebooks.info

http://www.it-ebooks.info/

STR_TO_ADD()	function,	Adding	and	Subtracting	Dates	and	Time

STR_TO_DATE()	function,	Adding	and	Subtracting	Dates	and	Time

subqueries

about,	Subqueries–Subqueries

column,	Column	Subqueries–Column	Subqueries

FIND_IN_SET()	function	and,	Locating	Text	Within	a	String

performance	considerations,	Performance	Considerations	with	Subqueries

row,	Row	Subqueries–Row	Subqueries

scalar,	Scalar	Subqueries–Scalar	Subqueries

table,	Table	Subqueries

SUBSTRING()	function

about,	Extracting	Text–Locating	Text	Within	a	String

usage	examples,	Updating	Specific	Rows,	Calculating	a	Group	of	Values,	Selecting
Imported	Data,	Setting	Columns

SUBSTRING_INDEX()	function,	Extracting	Text

subtracting	dates	and	time,	Adding	and	Subtracting	Dates	and	Time–Adding	and
Subtracting	Dates	and	Time

SUM()	function,	Calculating	a	Group	of	Values

Sun	Solaris	platform,	FreeBSD	and	Sun	Solaris	Distributions–FreeBSD	and	Sun	Solaris
Distributions

SUPER	privilege,	SQL	Privileges,	Deleting	a	User	Account

symbolic	links,	creating,	Mac	OS	X	Distributions

SYSDATE()	function,	Current	Date	and	Time

T
table	subqueries,	Table	Subqueries

tables,	Inserting	and	Manipulating	Data

www.it-ebooks.info

http://www.it-ebooks.info/

(see	also	columns	(tables);	rows	(tables))

about,	Starting	to	Explore	Databases

advanced	settings,	More	Perspectives	on	Tables–More	Perspectives	on	Tables

altering,	Altering	Tables–Exercises

backing	up,	Prudence	When	Altering	Tables,	Backing	Up	Specific	Tables–Backing	Up
Specific	Tables

combining,	A	Little	Complexity,	Combining	Tables–Combining	Tables,	Joining
Tables–Deleting	Within	Joined	Tables

creating,	First	SQL	Commands,	Creating	Databases	and	Tables,	Creating
Tables–Creating	Tables,	Another	Method	to	Alter	and	Create	a	Table–Another	Method
to	Alter	and	Create	a	Table,	Starting,	Terminating,	and	Escaping

deleting,	Renaming	a	Table

handling	duplicate	entries,	Handling	Duplicates–Handling	Duplicates

inserting	data,	Inserting	and	Manipulating	Data–A	Little	Complexity,	Inserting
Data–Inserting	Data

inserting	data	from	other,	Inserting	Data	from	Another	Table–Inserting	Data	from
Another	Table

manipulating	data,	Inserting	and	Manipulating	Data–A	Little	Complexity

moving	to	other	databases,	Renaming	a	Table

reference,	Essential	Changes

renaming,	Renaming	a	Table–Renaming	a	Table

reordering,	Reordering	a	Table–Reordering	a	Table

restoring,	Restoring	a	Table–Using	a	limited	user	account

restricting	access,	Restricting	to	specific	tables–Restricting	to	specific	tables

updating	multiple,	Updating	Multiple	Tables–Updating	Multiple	Tables

TAR	files,	Mac	OS	X	Distributions,	Windows	Distributions,	FreeBSD	and	Sun	Solaris
Distributions

tar	utility,	Mac	OS	X	Distributions,	FreeBSD	and	Sun	Solaris	Distributions,	Source
Distributions

tasklist	tool,	Finding	the	Software

temporary	databases,	restoring	with,	Restoring	with	a	temporary	database–Restoring	with
a	temporary	database

test	database,	Starting	to	Explore	Databases

text

www.it-ebooks.info

http://www.it-ebooks.info/

converting	case,	Setting	Case	and	Quotes

extracting	from	strings,	Extracting	Text–Extracting	Text

locating	within	strings,	Locating	Text	Within	a	String–Locating	Text	Within	a	String

TEXT	data	type,	First	SQL	Commands,	Creating	Tables

TIME	data	type

about,	Date	and	Time	Data	Types

CONVERT()	function	and,	Converting	String	Types

GET_FORMAT()	function	and,	Adjusting	to	Standards	and	Time	Zones

NOW()	function	and,	Current	Date	and	Time

time	functions	(see	date	and	time	functions)

time	zones,	converting,	Adjusting	to	Standards	and	Time	Zones–Adjusting	to	Standards
and	Time	Zones

TIME()	function,	Extracting	Date	and	Time	Components,	Comparing	Dates	and	Times

TIMEDIFF()	function,	Comparing	Dates	and	Times,	Calculating	a	Group	of	Values,
Eliminating	Negative	Numbers

TIMESTAMP	data	type,	Date	and	Time	Data	Types,	Current	Date	and	Time

TIME_FORMAT()	function,	Formatting	Dates	and	Time–Formatting	Dates	and	Time,
Eliminating	Negative	Numbers

TIME_TO_SEC()	function,	Adding	and	Subtracting	Dates	and	Time,	Calculating	a	Group
of	Values

trailing	spaces,	trimming,	Trimming	and	Padding	Strings

transactions,	Extracting	and	executing	information	from	the	binary	log

TRIGGER	privilege,	SQL	Privileges,	User	Account	for	Making	Backups,	User	Account
for	Restoring	Backups

TRIM()	function,	Trimming	and	Padding	Strings,	Locating	Text	Within	a	String

trimming	strings,	Trimming	and	Padding	Strings

TRUNCATE	statement,	SQL	Privileges

TRUNCATE()	function,	Truncating	Numbers

truncating	numbers,	Truncating	Numbers

U
UCASE()	function,	Setting	Case	and	Quotes

UNCOMPRESS()	function,	Compressing	Strings

underscore	(_),	Another	Method	to	Alter	and	Create	a	Table

UNION	operator,	Unifying	Results–Unifying	Results,	Table	Subqueries,	Bulk	Exporting

www.it-ebooks.info

http://www.it-ebooks.info/

Data

UNIQUE	keyword,	Creating	Tables

UNIX_TIMESTAMP()	function,	Current	Date	and	Time

UNLOCK	TABLES	statement,	Understanding	Dump	Files

UNSIGNED	data	type,	Converting	String	Types

UPDATE	privilege,	SQL	Privileges,	Updating	data

UPDATE	statement

basic	syntax,	Updating	Data

changing	user	accounts,	User	Account	Basics

JOIN	clause,	Joining	Tables,	Updating	Joined	Tables–Updating	Joined	Tables

LEFT	JOIN	clause,	Selecting	a	Basic	Join

LIMIT	clause,	Limiting	Updates–Ordering	to	Make	a	Difference,	Updating	Multiple
Tables

ORDER	BY	clause,	Ordering	to	Make	a	Difference,	Updating	Multiple	Tables

priorities	when	inserting	data,	Priorities	When	Inserting	Data

REPLACE	statement	and,	Replacing	Data

SET	clause,	Essential	Changes,	Updating	Data,	Updating	Specific	Rows–Updating
Specific	Rows,	Updating	Multiple	Tables

setting	right	ID,	A	Digression:	Setting	the	Right	ID–A	Digression:	Setting	the	Right	ID

SQL	privileges	and,	SQL	Privileges,	SQL	Privileges

subqueries	and,	Subqueries

SUBSTRING()	function	and,	Updating	Specific	Rows

trimming	strings,	Trimming	and	Padding	Strings

usage	examples,	Inserting	and	Manipulating	Data

WHERE	clause,	Essential	Changes,	A	Digression:	Setting	the	Right	ID,	Updating
Specific	Rows–Updating	Specific	Rows,	Ordering	to	Make	a	Difference,	Updating
Multiple	Tables

UPPER()	function,	Setting	Case	and	Quotes

USAGE	privilege,	SQL	Privileges

USE	statement

about,	First	SQL	Commands,	Creating	a	Database

dump	files	and,	Understanding	Dump	Files,	Restoring	with	a	temporary	database

restoring	backups	and,	Restoring	Only	Rows	or	Columns

www.it-ebooks.info

http://www.it-ebooks.info/

user	accounts

about,	User	Account	Basics–User	Account	Basics

accessing	without	passwords,	User	Account	Basics

administrative,	Administrative	User	Accounts–User	Account	to	Grant	Privileges

basis	of	privileges,	More	on	Passwords	and	Removing	Anonymous	Users

changing	data	in,	User	Account	Basics

creating,	Creating	a	User

creating	for	APIs,	Creating	API	User	Accounts

deleting,	Deleting	a	User	Account–Deleting	a	User	Account

limited,	Using	a	limited	user	account–Using	a	limited	user	account

mysqlaccess	tool	and,	The	Installation	Packages

renaming,	Renaming	a	User	Account

restricting	access,	Restricting	the	Access	of	User	Accounts–Restricting	to	specific
columns

revoking	privileges,	Revoking	Privileges–Revoking	Privileges

setting	passwords,	Setting	a	User	Account	Password

user	roles	and,	User	Roles–User	Roles

user	roles,	User	Roles–User	Roles

USING	clause

DELETE	statement,	Deleting	in	Multiple	Tables,	Deleting	Within	Joined	Tables

USING	operator	comparison,	Deleting	Within	Joined	Tables

USING	operator,	Joining	Tables,	Deleting	Within	Joined	Tables

UTF-8	character	set,	More	Perspectives	on	Tables

V
VALUES()	function,	The	Syntax–The	Syntax,	The	Table	for	Bird	Families–The	Table	for
Bird	Families,	The	Table	for	Birds

VARCHAR	data	type,	Creating	Tables,	Dynamic	Columns

variables,	creating,	Rounding	Numbers

VARIANCE()	function,	Calculating	a	Group	of	Values

vertical	bar	(|),	Expressions	and	the	Like

vsdbutil	utility,	Mac	OS	X	Distributions

W
web	forms,	Querying	MySQL

www.it-ebooks.info

http://www.it-ebooks.info/

WHERE	clause

DELETE	statement,	The	Table	for	Bird	Families,	Deleting	Data,	Deleting	in	Multiple
Tables,	Deleting	Within	Joined	Tables

IN	operator	and,	Ordering	Results,	Performance	Considerations	with	Subqueries

LIKE	operator	and,	Expressions	and	the	Like–Expressions	and	the	Like

MATCH()	AGAINST()	function	and,	Comparing	and	Searching	Strings

QUARTER()	function	and,	Adding	and	Subtracting	Dates	and	Time

SELECT	statement,	Inserting	and	Manipulating	Data,	A	Little	Complexity,	Essential
Changes,	The	Table	for	Birds,	A	Digression:	Setting	the	Right	ID,	Selecting	by	a
Criteria,	Ordering	Results–Ordering	Results,	Updating	Specific	Rows,	Joining	Tables,
Selecting	a	Basic	Join

SIGN()	function	and,	Eliminating	Negative	Numbers

STRCMP()	function	and,	Comparing	and	Searching	Strings

subqueries	and,	Scalar	Subqueries,	Column	Subqueries,	Row	Subqueries,	Table
Subqueries

UPDATE	statement,	Essential	Changes,	A	Digression:	Setting	the	Right	ID,	Updating
Specific	Rows–Updating	Specific	Rows,	Ordering	to	Make	a	Difference,	Updating
Multiple	Tables

Widenius,	Michael	“Monty”,	Preface,	Introduction

Windows	distributions,	Windows	Distributions–Windows	Distributions

WinZip	utility,	Windows	Distributions

Y
YEAR	data	type,	Date	and	Time	Data	Types

YEAR()	function,	Extracting	Date	and	Time	Components

yum	utility,	Linux	Binary	Distributions,	Installing,	Installing,	Installing	and	Preparing
MySQL/Ruby

Z
zeros,	padding	with,	Extracting	Date	and	Time	Components

www.it-ebooks.info

http://www.it-ebooks.info/

About	the	Author
Russell	Dyer	is	a	freelance	writer	specializing	in	MySQL	database	software	and	is	the
editor	of	the	MySQL	Knowledge	Base	(http://www.mysql.com/network/knowledgeba
se.html).	He	is	the	author	of	MySQL	in	a	Nutshell
(http://www.oreilly.com/catalog/mysqlian/)	and	has	writen	articles	for	several	magazines:
Dev	Zone	(a	MySQL	publication),	Linux	Journal,	ONlamp.com,	The	Perl	Journal,	Red
Hat	Magazine,	SysAdmin	Magazine,	Tech	Republic,	Unix	Review,	and	XML.com.	He	has
also	finished	his	first	novel,	“In	Search	of	Kafka”.	More	information	on	Russell,	along
with	a	list	of	his	published	articles	with	links	to	them,	can	be	found	on	his	web	site	at
http://russell.dyerhouse.com

www.it-ebooks.info

http://www.mysql.com/network/knowledgebase.html
http://www.oreilly.com/catalog/mysqlian/
http://russell.dyerhouse.com
http://www.it-ebooks.info/

Colophon
The	animals	on	the	cover	of	Learning	MySQL	and	MariaDB	are	banded	angelfish
(Apolemichthys	arcuatus),	so	named	for	the	black	band	that	runs	on	either	side	of	each
fish’s	body	from	the	eye	to	its	tail.	The	banded	angelfish’s	laterally	svelte	body	and	soft
dorsal	fin	are	typical	of	the	other	marine	angelfish	in	its	Pomacanthidae	family.	Known
also	as	bandit	angelfish,	members	of	this	species	inhabit	the	caves	and	ledges	of	rocky
reefs	found	at	moderate	depths	in	the	waters	around	Hawaii	and	the	Johnson	Atoll.

The	behavior	of	marine	angelfish	differs	widely	between	species,	and	members	of	the
Pomacanthidae	family	are	as	likely	to	form	monogamous	pairs	as	gather	in	groups	of	one
male	marine	angelfish	to	several	females.	As	protogynous	hermaphrodites,	marine
angelfish	are	capable	of	changing	sex	from	female	to	male	when	the	single	male	member
of	such	a	group	dies	or	is	otherwise	removed.

Sponges	constitute	the	bulk	of	the	banded	angelfish’s	diet,	though	it	also	eats	algae	and
certain	invertebrates.	Difficulty	replicating	the	banded	angelfish’s	diet	is	a	major
impediment	to	the	efforts	of	collectors	who	would	keep	banded	angelfish	in	aquaria.
Nevertheless,	commercial	aquarium	fishermen	appear	to	have	thinned	the	population	at
normal	diving	depths	on	certain	reefs.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are	important	to	the
world.	To	learn	more	about	how	you	can	help,	go	to	animals.oreilly.com.

The	cover	image	is	from	Cuvier’s	Animals.	The	cover	fonts	are	URW	Typewriter	and
Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is	Adobe	Myriad
Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

www.it-ebooks.info

http://animals.oreilly.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Special	Upgrade	Offer
If	you	purchased	this	ebook	from	a	retailer	other	than	O’Reilly,	you	can	upgrade	it	for
$4.99	at	oreilly.com	by	clicking	here.

www.it-ebooks.info

http://opds.oreilly.com/buy/9781449362843.EBOOK?source=kindle
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Learning	MySQL	and	MariaDB
Russell	J.T.	Dyer
Editor
Andy	Oram

Revision	History

2015-03-23 First	release

Copyright	©	2015	Russell	Dyer
O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional	use.	Online	editions	are	also	available
for	most	titles	(http://safaribooksonline.com).	For	more	information,	contact	our	corporate/institutional	sales	department:
800-998-9938	or	corporate@oreilly.com.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Learning	MySQL	and	MariaDB,	the	image	of	a
banded	angelfish,	and	related	trade	dress	are	trademarks	of	O’Reilly	Media,	Inc.

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products	are	claimed	as	trademarks.
Where	those	designations	appear	in	this	book,	and	O’Reilly	Media,	Inc.	was	aware	of	a	trademark	claim,	the
designations	have	been	printed	in	caps	or	initial	caps.

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the	information	and	instructions	contained
in	this	work	are	accurate,	the	publisher	and	the	author	disclaim	all	responsibility	for	errors	or	omissions,	including
without	limitation	responsibility	for	damages	resulting	from	the	use	of	or	reliance	on	this	work.	Use	of	the	information
and	instructions	contained	in	this	work	is	at	your	own	risk.	If	any	code	samples	or	other	technology	this	work	contains	or
describes	is	subject	to	open	source	licenses	or	the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure
that	your	use	thereof	complies	with	such	licenses	and/or	rights.

O’Reilly	Media

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

2015-03-28T14:05:40-07:00

www.it-ebooks.info

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://www.it-ebooks.info/

Learning	MySQL	and	MariaDB
Table	of	Contents

Dedication
Special	Upgrade	Offer
Foreword

Origins	of	MySQL
State	of	MySQL	and	MariaDB
Beyond	the	Server
MariaDB:	The	Differences	and	Expectations
The	Future	of	MySQL	and	MariaDB
Your	Future	in	Learning	MySQL	and	MariaDB
Advice	on	Learning	MySQL	and	MariaDB

Preface

Reading	Strategy
Text-Based	Interface	and	Operating	Systems
Conventions	Used	in	This	Book
Using	Code	Examples
Safari®	Books	Online
How	to	Contact	Us
Acknowledgments

www.it-ebooks.info

http://www.it-ebooks.info/

I.	The	Software

1.	Introduction

The	Value	of	MySQL	and	MariaDB
Mailing	Lists	and	Forums
Other	Books	and	Other	Publications

2.	Installing	MySQL	and	MariaDB

The	Installation	Packages
Licensing
Finding	the	Software
Choosing	a	Distribution
The	_AMP	Alternatives

Linux	Binary	Distributions
Mac	OS	X	Distributions
Windows	Distributions
FreeBSD	and	Sun	Solaris	Distributions
Source	Distributions

Post-Installation

Special	Configuration
Setting	Initial	Password	for	root
More	on	Passwords	and	Removing	Anonymous	Users
Creating	a	User

3.	The	Basics	and	the	mysql	Client

The	mysql	Client
Connecting	to	the	Server
Starting	to	Explore	Databases

First	SQL	Commands
Inserting	and	Manipulating	Data
A	Little	Complexity

Summary
Exercises

www.it-ebooks.info

http://www.it-ebooks.info/

II.	Database	Structures

4.	Creating	Databases	and	Tables

Creating	a	Database
Creating	Tables
Inserting	Data
More	Perspectives	on	Tables
Summary
Exercises

5.	Altering	Tables

Prudence	When	Altering	Tables
Essential	Changes

Dynamic	Columns

Optional	Changes

Setting	a	Column’s	Default	Value
Setting	the	Value	of	AUTO_INCREMENT
Another	Method	to	Alter	and	Create	a	Table
Renaming	a	Table
Reordering	a	Table

Indexes
Summary
Exercises

III.	Basics	of	Handling	Data

www.it-ebooks.info

http://www.it-ebooks.info/

6.	Inserting	Data

The	Syntax
Practical	Examples

The	Table	for	Bird	Orders
The	Table	for	Bird	Families
The	Table	for	Birds

Other	Possibilities

Inserting	Emphatically
Inserting	Data	from	Another	Table
A	Digression:	Setting	the	Right	ID
Replacing	Data
Priorities	When	Inserting	Data

Lowering	the	priority	of	an	insert
Delaying	an	INSERT
Raising	the	priority	of	an	INSERT

Summary
Exercises

7.	Selecting	Data

Basic	Selection
Selecting	by	a	Criteria
Ordering	Results
Limiting	Results
Combining	Tables
Expressions	and	the	Like
Counting	and	Grouping	Results
Summary
Exercises

www.it-ebooks.info

http://www.it-ebooks.info/

8.	Updating	and	Deleting	Data

Updating	Data

Updating	Specific	Rows
Limiting	Updates
Ordering	to	Make	a	Difference
Updating	Multiple	Tables
Handling	Duplicates

Deleting	Data

Deleting	in	Multiple	Tables

Summary
Exercises

9.	Joining	and	Subquerying	Data

Unifying	Results
Joining	Tables

Selecting	a	Basic	Join
Updating	Joined	Tables
Deleting	Within	Joined	Tables

Subqueries

Scalar	Subqueries
Column	Subqueries
Row	Subqueries
Table	Subqueries
Performance	Considerations	with	Subqueries

Summary
Exercises

IV.	Built-In	Functions

www.it-ebooks.info

http://www.it-ebooks.info/

10.	String	Functions

Formatting	Strings

Concatenating	Strings
Setting	Case	and	Quotes
Trimming	and	Padding	Strings

Extracting	Text
Searching	Strings	and	Using	Lengths

Locating	Text	Within	a	String
String	Lengths
Comparing	and	Searching	Strings
Replacing	and	Inserting	into	Strings

Converting	String	Types
Compressing	Strings
Summary
Exercises

11.	Date	and	Time	Functions

Date	and	Time	Data	Types
Current	Date	and	Time
Extracting	Date	and	Time	Components
Formatting	Dates	and	Time
Adjusting	to	Standards	and	Time	Zones
Adding	and	Subtracting	Dates	and	Time
Comparing	Dates	and	Times
Summary
Exercises

www.it-ebooks.info

http://www.it-ebooks.info/

12.	Aggregate	and	Numeric	Functions

Aggregate	Functions

Counting	Values
Calculating	a	Group	of	Values
Concatenating	a	Group

Numeric	Functions

Rounding	Numbers
Rounding	Only	Down	or	Up
Truncating	Numbers
Eliminating	Negative	Numbers

Summary
Exercises

V.	Administration	and	Beyond

13.	User	Accounts	and	Privileges

User	Account	Basics
Restricting	the	Access	of	User	Accounts

Username	and	Host
SQL	Privileges
Database	Components	and	Privileges

Restricting	to	specific	databases
Restricting	to	specific	tables
Restricting	to	specific	columns

Administrative	User	Accounts

User	Account	for	Making	Backups
User	Account	for	Restoring	Backups
User	Account	for	Bulk	Importing
User	Account	to	Grant	Privileges

Revoking	Privileges
Deleting	a	User	Account
Changing	Passwords	and	Names

Setting	a	User	Account	Password
Renaming	a	User	Account

User	Roles
Summary
Exercises

www.it-ebooks.info

http://www.it-ebooks.info/

14.	Backing	Up	and	Restoring	Databases

Making	Backups

Backing	Up	All	Databases
Understanding	Dump	Files
Backing	Up	Specific	Databases
Creating	Backup	Scripts
Backing	Up	Specific	Tables

Restoring	Backups

Restoring	a	Database
Restoring	a	Table

Modifying	a	dump	file
Restoring	with	a	temporary	database
Using	a	limited	user	account

Restoring	Only	Rows	or	Columns
Recovering	from	a	Binary	Log

Finding	information	in	the	binary	log
Extracting	and	executing	information	from	the	binary	log

Developing	a	Backup	Policy
Summary
Exercises

www.it-ebooks.info

http://www.it-ebooks.info/

15.	Bulk	Importing	Data

Preparing	to	Import
Loading	Data	Basics

Watching	for	Warnings
Checking	the	Accuracy	of	the	Import
Selecting	Imported	Data

Better	Loading

Mapping	Fields
Setting	Columns

More	Field	and	Line	Definitions

Starting,	Terminating,	and	Escaping
Replacing	Data	Versus	Ignoring	Errors

Importing	from	Outside	MySQL

Importing	Local	Files
Using	mysqlimport
Importing	Without	FILE	Privileges

Bulk	Exporting	Data
Summary
Exercises

www.it-ebooks.info

http://www.it-ebooks.info/

16.	Application	Programming	Interfaces

Creating	API	User	Accounts
C	API

Connecting	to	MySQL
Querying	MySQL
Complete	Minimal	C	API	Program
Compiling	with	C	Includes

Perl	DBI

Installing
Connecting	to	MySQL
Querying	MySQL

Selecting	data
Updating	data

A	Full	Example	with	Perl	DBI
More	Information

PHP	API

Installing	and	Configuring
Connecting	to	MySQL
Querying	MySQL
More	Information

Python

Installing
Connecting	to	MySQL
Querying	MySQL
Sample	Python	Program
More	Information

Ruby	API

Installing	and	Preparing	MySQL/Ruby
Connecting	to	MySQL
Querying	MySQL
Sample	MySQL/Ruby	Program
More	Information

SQL	Injection
Summary
Exercises

www.it-ebooks.info

http://www.it-ebooks.info/

Index
About	the	Author
Colophon
Special	Upgrade	Offer
Copyright

www.it-ebooks.info

http://www.it-ebooks.info/

	Learning MySQL and MariaDB
	Dedication
	Foreword
	Origins of MySQL
	State of MySQL and MariaDB
	Beyond the Server
	MariaDB: The Differences and Expectations
	The Future of MySQL and MariaDB
	Your Future in Learning MySQL and MariaDB
	Advice on Learning MySQL and MariaDB

	Preface
	Reading Strategy
	Text-Based Interface and Operating Systems
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	I. The Software
	1. Introduction
	The Value of MySQL and MariaDB
	Mailing Lists and Forums
	Other Books and Other Publications

	2. Installing MySQL and MariaDB
	The Installation Packages
	Licensing
	Finding the Software
	Choosing a Distribution
	The _AMP Alternatives
	Linux Binary Distributions
	Mac OS X Distributions
	Windows Distributions
	FreeBSD and Sun Solaris Distributions
	Source Distributions

	Post-Installation
	Special Configuration
	Setting Initial Password for root
	More on Passwords and Removing Anonymous Users
	Creating a User

	3. The Basics and the mysql Client
	The mysql Client
	Connecting to the Server
	Starting to Explore Databases
	First SQL Commands
	Inserting and Manipulating Data
	A Little Complexity

	Summary
	Exercises

	II. Database Structures
	4. Creating Databases and Tables
	Creating a Database
	Creating Tables
	Inserting Data
	More Perspectives on Tables
	Summary
	Exercises

	5. Altering Tables
	Prudence When Altering Tables
	Essential Changes
	Dynamic Columns

	Optional Changes
	Setting a Column’s Default Value
	Setting the Value of AUTO_INCREMENT
	Another Method to Alter and Create a Table
	Renaming a Table
	Reordering a Table

	Indexes
	Summary
	Exercises

	III. Basics of Handling Data
	6. Inserting Data
	The Syntax
	Practical Examples
	The Table for Bird Orders
	The Table for Bird Families
	The Table for Birds

	Other Possibilities
	Inserting Emphatically
	Inserting Data from Another Table
	A Digression: Setting the Right ID
	Replacing Data
	Priorities When Inserting Data
	Lowering the priority of an insert
	Delaying an INSERT
	Raising the priority of an INSERT

	Summary
	Exercises

	7. Selecting Data
	Basic Selection
	Selecting by a Criteria
	Ordering Results
	Limiting Results
	Combining Tables
	Expressions and the Like
	Counting and Grouping Results
	Summary
	Exercises

	8. Updating and Deleting Data
	Updating Data
	Updating Specific Rows
	Limiting Updates
	Ordering to Make a Difference
	Updating Multiple Tables
	Handling Duplicates

	Deleting Data
	Deleting in Multiple Tables

	Summary
	Exercises

	9. Joining and Subquerying Data
	Unifying Results
	Joining Tables
	Selecting a Basic Join
	Updating Joined Tables
	Deleting Within Joined Tables

	Subqueries
	Scalar Subqueries
	Column Subqueries
	Row Subqueries
	Table Subqueries
	Performance Considerations with Subqueries

	Summary
	Exercises

	IV. Built-In Functions
	10. String Functions
	Formatting Strings
	Concatenating Strings
	Setting Case and Quotes
	Trimming and Padding Strings

	Extracting Text
	Searching Strings and Using Lengths
	Locating Text Within a String
	String Lengths
	Comparing and Searching Strings
	Replacing and Inserting into Strings

	Converting String Types
	Compressing Strings
	Summary
	Exercises

	11. Date and Time Functions
	Date and Time Data Types
	Current Date and Time
	Extracting Date and Time Components
	Formatting Dates and Time
	Adjusting to Standards and Time Zones
	Adding and Subtracting Dates and Time
	Comparing Dates and Times
	Summary
	Exercises

	12. Aggregate and Numeric Functions
	Aggregate Functions
	Counting Values
	Calculating a Group of Values
	Concatenating a Group

	Numeric Functions
	Rounding Numbers
	Rounding Only Down or Up
	Truncating Numbers
	Eliminating Negative Numbers

	Summary
	Exercises

	V. Administration and Beyond
	13. User Accounts and Privileges
	User Account Basics
	Restricting the Access of User Accounts
	Username and Host
	SQL Privileges
	Database Components and Privileges
	Restricting to specific databases
	Restricting to specific tables
	Restricting to specific columns

	Administrative User Accounts
	User Account for Making Backups
	User Account for Restoring Backups
	User Account for Bulk Importing
	User Account to Grant Privileges

	Revoking Privileges
	Deleting a User Account
	Changing Passwords and Names
	Setting a User Account Password
	Renaming a User Account

	User Roles
	Summary
	Exercises

	14. Backing Up and Restoring Databases
	Making Backups
	Backing Up All Databases
	Understanding Dump Files
	Backing Up Specific Databases
	Creating Backup Scripts
	Backing Up Specific Tables

	Restoring Backups
	Restoring a Database
	Restoring a Table
	Modifying a dump file
	Restoring with a temporary database
	Using a limited user account

	Restoring Only Rows or Columns
	Recovering from a Binary Log
	Finding information in the binary log
	Extracting and executing information from the binary log

	Developing a Backup Policy
	Summary
	Exercises

	15. Bulk Importing Data
	Preparing to Import
	Loading Data Basics
	Watching for Warnings
	Checking the Accuracy of the Import
	Selecting Imported Data

	Better Loading
	Mapping Fields
	Setting Columns

	More Field and Line Definitions
	Starting, Terminating, and Escaping
	Replacing Data Versus Ignoring Errors

	Importing from Outside MySQL
	Importing Local Files
	Using mysqlimport
	Importing Without FILE Privileges

	Bulk Exporting Data
	Summary
	Exercises

	16. Application Programming Interfaces
	Creating API User Accounts
	C API
	Connecting to MySQL
	Querying MySQL
	Complete Minimal C API Program
	Compiling with C Includes

	Perl DBI
	Installing
	Connecting to MySQL
	Querying MySQL
	Selecting data
	Updating data

	A Full Example with Perl DBI
	More Information

	PHP API
	Installing and Configuring
	Connecting to MySQL
	Querying MySQL
	More Information

	Python
	Installing
	Connecting to MySQL
	Querying MySQL
	Sample Python Program
	More Information

	Ruby API
	Installing and Preparing MySQL/Ruby
	Connecting to MySQL
	Querying MySQL
	Sample MySQL/Ruby Program
	More Information

	SQL Injection
	Summary
	Exercises

	Index
	About the Author
	Colophon
	Copyright

