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Preface

Mathematics is undoubtedly the key to state-of-the-art high technology. It is
an international technical language and proves to be an eternally young science
to those who have learned its ways. Long an indispensable part of research
thanks to modeling and simulation, mathematics is enjoying particular vital-
ity now more than ever. Nevertheless, this stormy development is resulting
in increasingly high requirements for students in technical disciplines, while
general interest in mathematics continues to wane at the same time. This
book and its appendices on the Internet seek to deal with this issue, helping
students master the difficult transition from the receptive to the productive
phase of their education.

The author has repeatedly held a three-semester introductory course en-
titled Higher Mathematics at the University of Stuttgart and used a series of
“handouts” to show further aspects, make the course contents more motivat-
ing, and connect with the mechanics lectures taking place at the same time.
One part of the book has more or less evolved from this on its own. True to
the original objective, this part treats a variety of separate topics of varying
degrees of difficulty; nevertheless, all these topics are oriented to mechanics.

Another part of this book seeks to offer a selection of understandable realis-
tic models that can be implemented directly from the multitude of mathemati-
cal resources. The author does not attempt to hide his preference of Numerical
Mathematics and thus places importance on careful theoretical preparation.
Proofs are only shown when they are necessary for comprehension; additional
proofs are available on the Web pages that are part of this book. Overall, the
book is divided into four parts of varying lengths:

• a summary of the aids used in the book,
• general methods and mathematical methods in particular,
• the fascinating topic of mechanics from a mathematician’s point of view,
• a survey of tensor calculus.

Physics programs at the university levels have always focused on the real ex-
periment and continue to do so in the age of virtual worlds while experiments
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have been a rare exception in lectures on numerical and applied mathematics.
This was at the great expense of comprehension, much like the way that read-
ing music is a sorry substitute for the sound produced or even for one’s own
intonation. However, the situation has changed fundamentally in the last two
decades. Problems that no one would have dared to imagine in the past can
now be solved on a laptop, and these days anyone can test numerical methods
themselves. Taking into account this development, the book provides exper-
iments for all of the numerical methods that it treats. If more complex case
studies are involved, bear in mind that it is a difficult road from the formula
to the illustration and that detailed instructions are required here. Many well-
established algorithms are known not to develop the performance required of
them until after they have been subjected to careful parameter tuning, which
is something that the computer cannot do. Sheer lack of space does not per-
mit simultaneous treatment of theory and numerics in their entirety, and still
maintain clarity. In order to deal with this dilemma, the author has relegated
many proofs and all the algorithms to the internet. An extensive library of
Matlab programs are available there that is continually supplemented and
expanded. The development environment of Matlab allows algorithms to be
displayed without all the unnecessary ballast in a clearly structured form that
is often more impressive than a longwinded description and that — by the
way – unconvers all errors without shred of mercy. These programs and the
way the materials are presented are not only meant to unite reader’s desire
to play with their inherent curiosity but also to break a lance for the exper-
iment in mathematics as the way to indings. In extreme cases, the user can
even experience a certain esthetic charm from the algorithm itself and start
viewing the problem from an entirely different angle.

All the illustrations and charts can be reproduced by readers themselves if
they download the appropriate programs.

The first chapter introduces the mathematical toolbox. Terms are defined
for later use, and some calculus topics are reviewed and worked through.

The second chapter provides concise treatment of the classic problems of
numerical mathematics, in particular inital and boundary value problems for
ordinary differential systems .

The third and fourth chapters focus on optimization and its sister in the
continuum, control theory. Many questions in technical disciplines and busi-
ness alike lead quite naturally to an extremal problem with constraints. For-
mulation as an optimization problem is often the last resort when a numerical
approximation problem refuse to be solved in the usual way. Incidentally,
optimization under constraints follows its own laws, which can be tracked
throughout the whole of theoretical mechanics. In control theory, the calculus
of variations and the Lagrange theory enter into a fruitful symbiosis. Con-
crete problems are solved numerically after discretization using the discrete
optimization methods treated.

The fifth chapter attempts to make theory of branching and path continu-
ation understandable for practically oriented users. This basically involves the
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task of calculating non-trivial solutions of a system when they exist simulta-
neously alongside the trivial solution, as in the case of the classical eigenvalue
problem. The methods discussed provide accesss to new, somewhat exotic
types of solutions that remain unattainable under the usual assumptions on
existence and uniqueness. For numerical approximation, the trivial solution
has an almost irresistible power of attraction that must be overcome. The use-
fulness of the numerical methods presented here is tested by means of some
benchmark problems from the literature.

Chapters six and seven treat problems known from introductory mechanics
such as planetary orbits, n-body problem, gyroscope theory, and framing.
These chapters also place particular value on visualization that readers can
comprehend.

Chapter eight presents the fundamentals of continuum theory for later use,
allowing readers to understand how differential systems such as the Poisson

equation and the Navier-Stokes equations evolved from conservation laws.
Chapter nine uses numerical methods to solve problems in continuum me-

chanics for solids and incompressible flow. At first, some general aspects of the
finite element method are considered. Then its implementation by fundamen-
tal matrices and by shape functions is elaborated more thoroughly, and some
special examples from the family of finite elements are presented in detail. For
the numerical treatment of the Navier-Stokes equations, stream-function
vorticity form with the most simple triangular elements is chosen for the most
part; although it places high demands on the smoothness of the solution, it
allows easier access to related problems such as convection and mass trans-
port (and is also not as bad as its reputation would suggest, by the way).
A selection of algorithm examples available on the Internet provides further
explanations.

Everone lives with at least two sets of coordinate systems, the absolute
coordinate system and one’s own relative system; other systems are added
constantly. Switching back and forth between coordinate systems has to be
described mathematically, leading to tensor calculus and differential geometry.
The tenth chapter introduces the disciplines, applying dual pairing of vector
spaces.

The eleventh chapter includes, in addition to a model-like example from
gas dynamics and three examples of multibody problems, a section on rolling
discs and cogwheels with its numeric implementation on the corresponding
Web page.

Many innovative impulses for Numerical Mathematics originate from the
engineering fields. The author hopes that this book will raise interest in the
numerical components of technical and physical problems and encourage read-
ers to do some experimenting of their own.

The book is strictly divided into topics, and the individual parts are pre-
sented as separately from each other as possible to allow the book to serve as
a reference volume and maintain clarity despite the multitude of material. It
should more or less build a bridge from introductory studies to the require-
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ments of advanced studies that paves the way to the “upper class” of the
community.

The finite elements presented for the static problems are for the major part
Matlab versions of Fortran programs from the books by H.R. Schwarz.
Their reliability has made them a great help over the course of developing
and testing further elements, and they should also be made accessible to the
Matlab community in this way.

Warning: As the interest in experimenting grows, readers will observe that
every numerical method can be undermined by a suitable example. For many
problems such as non-convex optimization problems, convergence is not a mat-
ter of course and extreme caution is advised; even for bifurcation problems,
iteration can quickly lead to non-realistic regions or go back to zero; spectac-
ular accidents have been known to happen when finite elements are used in a
wrong way. This is why results always need to be checked carefully.

Hint for using the Matlab programs: make first the directory AAMESH
permanent.

Reutlingen, July 2008 Eckart W. Gekeler
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1

Mathematical Auxiliaries

This chapter is meant as a brief, independent compendium of the mathemat-
ical tools used in the following chapters, so that the reader may easily refer
to them. It contains many well-known results from calculus and other results
which are less familiar or lead a somewhat hidden life in literature. Accord-
ing to the intentions of this book, not only a rather comprehensive collection
of formulas of vector and tensor analysis in R

n is contained but also linear
differential equations of any “couleur” since they occupy a large area of the
engineering sciences. Some general properties of vector fields are briefly stud-
ied and modern notations and concepts of functional analysis are introduced
in compact form. Weak and strong derivatives play a fundamental role in
technical applications from variational calculus to numerical approaches in
continuum theory. Convex sets and functions are an equally important tool
in any form of optimization. On the other side, numerical devices for solving
linear systems of equations are almost entirely omitted here and in the next
chapter because the user may consult the Matlab suite here directly. A final
section is dedicated to quadratic forms in Hilbert space deserving particular
interest as indispensable preparation for the finite element method, which is
widely used in today’s technical applications.

1.1 Matrix Computations

Notations

Greek letters: scalars or scalar fields
lowercase letters: coefficients, points (position vectors)
underlined lowercase: vectors and vector fields
capitals or bold-faced letters: matrices or tensor fields

.

Points resp. their associated position vectors are not underlined when a dis-
tinction has to be made between points and vectors; cf. Chap. 10.
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(a) Vector and Matrix Products
(a1) To conform with the notations in general tensor calculus — and with
the view to Matlab implementations — we distinguish clearly between row
vectors and column vectors: For a (m,n)-matrix A ∈ R

m
n we write

A =

⎡
⎢⎣
a1

...
am

⎤
⎥⎦ = [a1, . . . , an] = [ai

j ] , i row index ,

with m rows ai (index above) and n columns aj (index below) . By this way,

a column vector a ∈ R
m

1 =: R
m has the “rows” ai ∈ R for elements

a row vector a ∈ R
1
n =: Rn has the “columns” ai ∈ R for elements

.

(a2) The scalar product of two vectors a , b is geometrically, i.e., without
using a coordinate system, defined by

a · b := |a| |b| cosϕ(a, b) ∈ R , (1.1)

where ϕ is the smaller of the two positive taken angles between a and b ; then
−|a| |b| ≤ a ·b ≤ |a| |b| . For two vectors in the space of coordinates, a , b ∈ R

n,
we have a · b = aT b =

∑
i=1:na

i bi ∈ R .
(a3) The matrix product of two matrices

A = [ai
j ] =

⎡
⎢⎣
a1

...
am

⎤
⎥⎦ ∈ R

m
p and B = [bjk] = [b1, . . . , bn] ∈ R

p
n

is defined by

C = [cik] = AB ∈ R
m

n , cik = ai bk :=
p∑

j=1

ai
jb

j
k .

Note that the multiplication point is reserved for the scalar product and not
used in any matrix product. The requirement of compatibility, namely the
equality of the column number of the left factor with the row number of the
right factor, must always be observed. The matrix product is not commutative;
note in particular, for a , b ∈ R

3 , the difference between

a · b = aT b = bTa ∈ R and a bT =

⎡
⎣
a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

⎤
⎦ ∈ R

3
3

where the second special matrix product carries the name dyadic product or
simply dyade because of its importance. A quadratic matrix A is regular if it
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has an inverse A−1 , AA−1 = I (I unit matrix), otherwise it is singular. The
inverse is uniquely determined in case of existence, in particular, left inverse
equals right inverse.

(a4) The trace of a (quadratic) matrix is the sum of its diagonal elements
(trace(AB) = trace(BA)). The scalar product or tensor product of two
matrices of the same dimension is defined by

A : B = B : A := trace(ATB) = trace(BTA) =
∑
i,k

ai
kb

i
k ∈ R , (1.2)

cf. e.g., (1.21) for application; note that A : B = AT : B if B is symmetric.
(a5) The vector space R

n of n-tuples is called the space of coordinates.
Its canonical basis is formed by the unit vectors ei , i = 1 : n , i.e., the
columns of the unit matrix I. In general, a coordinate system in R

n is called
cartesian (COS) if the vectors of its basis are normed to have length unity,
are perpendicular to each other (both in the sense of the canonical scalar
product), and form a right oriented system with a positive determinant.

Let F = [f
1
, . . . , f

n
] and G = [g

1
, . . . , g

n
] now be arbitrary regular ma-

trices; then their respective columns also form bases of R
n, and we have

g
k

=
∑

i=1:nf i
di

k , k = 1 : n , or G = F D with a regular transformation
matrix D ∈ R

n
n . If both bases are cartesian, D is orthogonal with positive

determinant. Of course every vector v ∈ R
n can be written in both bases with

different components:

v =
n∑

k=1

g
k
yk ≡ Gy = Fx = F DD−1x = GD−1x =⇒ y = D−1x .

The contrary behavior of basis and components under transformation, namely
G = F D and y = D−1x, is a fundamental aspect of general tensor calculus
and justifies, in addition to other aspects, the different position of the indices.
For a more general treatment of scalar product spaces we refer to Chap. 10.

(a6) The vector product or cross product a×b of two (column) vectors
a , b ∈ R

3 is a vector perpendicular to a and b with the geometric properties

{a , b , a× b} form a right oriented system and |a× b| = |a| |b| sin(ϕ)

where the angle ϕ has the same meaning as in (1.1). For a representation in
coordinate space (with canonical basis {ei}), it follows that

a× b =

⎡
⎣
a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

⎤
⎦ =

∣∣∣∣∣∣
e1 a1 b1

e2 a2 b2

e3 a3 b3

∣∣∣∣∣∣
.

The second rule is to be understood as memo rule with the formal determinant
| . . . | and the canonical basis {e1, e2, e3} in R

3 (more suggestive than Sarrus’
rule). The vector product is linear in each argument but skew-symmetric, i.e.,
b× a = −a× b ; in particular, we have a× a = 0 hence (a+ b) × b = a× b .
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Furthermore, the expansion theorem (Graßmann identity)

a× (b× c) = (a · c) b− (a · b) c
(a× b) × c = (a · c) b− (b · c) a (1.3)

has to be mentioned and the sometimes useful formula

|a× b|2 = |a|2|b|2 − (a · b)2 .

Example 1.1. A force k , attacking at a point P of a rigid body, yields the

moment (of force) mQ =
−→
QP × k at each point Q of the body, and

mQ =
(

−→
QP + t k

)
× k =

−→
QP × k + t k × k =

−→
QP × k

for all t ∈ R . The vector (of force) k is sometimes called aligned in this context
because it may be shifted arbitrarily along its “action line”.

If we operate in the plane, the third components of k and of
−→
QP are zero;

hence the first both components of mQ are likewise zero. In this case the
remaining nontrivial third component of mQ ,

e3 ·mQ = [mQ]3 = [
−→
QP ]1 k2 − [

−→
QP ]2 k1 ∈ R ,

is frequently called moment of the force k with a slight abuse of notation.

Example 1.2. For two vectors a , b ∈ R
n , the vector

ab =
a · b
b · b b

is the projection of a onto b (without using the angle ϕ explicitly), and a =
ab + (a− ab) =: ab + an is the orthogonal decomposition of a into direction of
b (called Huygens’ decomposition in the case of the acceleration vector). By
(1.3) we have b× (a× b) = (b · b)a− (a · b)b ; hence

an = a− ab =
1
b · b b× (a× b) .

a

b

a
b

a
n

Figure 1.1. Projection of a onto b



1.1 Matrix Computations 5

(b) Determinants and Cofactors Let A = [ai
k] = [a1, a2, a3] ∈ R

3
3 be

a matrix with columns ai then

det(A) = < a1, a2, a3 >= a1 · (a2 × a3) = (a1 × a2) · a3

is the determinant of A and |det(A)| is the volume of the parallelepiped (spat)
spanned by the vectors ai , i = 1 : 3 . More generally, let A = [ai

k] ∈ R
n

n be
a quadratic matrix of order n and let A′

ik be the matrix of dimension n − 1
obtained by deleting the i-th row and k-th column of A . Then cof A = [di

k] ∈
R

n
n with the components

di
k = (−1)i+k det(A′

ik)

is called the cofactor matrix of A. By Cramer’s rule we obtain the explicit
representation of the inverse of a regular matrix A :

A−1 =
1

det(A)
[cof A]T ;

hence cof A = det(A)A−T with the notation A−T = [A−1]T = [AT ]−1 . In
particular,

[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
,

and in the likewise important case n = 3 ,

di
k = ai+1

k+1a
i+2

k+2 − ai+1
k+2a

i+2
k+1 , i, k = 1 : 3

(counting indices modulo 3 , no summation).
Rules for computation (cf. (1.2)):

det(A) = det(AT ) , det(AB) = det(A) det(B) ,
cof(AT ) = cof(A)T , cof(AB) = cof(A) cof(B) ,

d

dt
det A(t) =

[
d

dt
A(t)

]
: cof A(t) . (1.4)

To prove the last rule for A(t) ∈ R
3
3 , let B = [b1, b2, b3] = cof A(t) then

d

dt
det(A(t)) = det[ȧ1, a2, a3] + det[a1, ȧ2, a3] + det[a1, a2, ȧ3]

= ȧT
1 b1 = ȧT

2 b2 + ȧT
3 b3 = trace(ȦTB) .

(c) Eigenvalues and Eigenvectors
(c1) A pair (λ, a) with a �= 0 and Aa = λa is called a characteristic pair
of the (quadratic) matrix A with eigenvalue λ and eigenvector a, the null
vector never being an eigenvector. The eigenvalues of A ∈ R

n
n are exactly



6 1 Mathematical Auxiliaries

the n roots of the characteristic polynomial p(λ) := det(A − λI) (counting
multiplicities). Because of det(QAQ−1) = det(A) for every regular matrix Q ,
the coefficients of p(λ) and thus also the eigenvalues of a matrix are invariant
under transformations of the coordinate system; therefore the components are
sometimes called principal invariants of A . Using cofactor and determinant
we can write them explicitly for A ∈ R

3
3:

det(A− λI) = −λ3 + p1λ
2 − p2λ+ p3 ,

p1 = trace(A) = λ1 + λ2 + λ3 ,

p2 = trace cof(A) = [(traceA)2 − trace(A2)]/2 = λ1λ2 + λ1λ3 + λ2λ3 ,

p3 = det(A) = [(traceA)3 − 3 trace(A) trace(A2) + 2 trace(A3)]/6

= λ1λ2λ3 .

(c2) A matrix A ∈ R
n

n is diagonalizable if it can be changed into diagonal
form by a similarity transformation, i.e., if there exists a regular matrix U such
that U−1AU = Λ is a diagonal matrix. This implies, on the one hand, that
there exists a (not necessarily cartesian) system of coordinates in which all
off-diagonal elements of A disappear, and on the other side that the matrix
A ∈ R

n
n has n linear independent column eigenvectors, namely, the columns of

U . The rows of U−1 are row or left-eigenvectors, and the respective eigenvalues
are the diagonal elements of Λ. The (canonical) decomposition

A = UΛV , V = U−1 , V AU = Λ

is called Jordan decomposition of the matrix A . In other words, a diagonal-
izable matrix can be written as a sum of dyades, A =

∑
i=1:nλi ui v

i , with
eigenvalues λi , column (or right-)eigenvectors ui and row (or left-)eigenvectors
vi of A , yet both have to satisfy vi ui = 1 , i = 1 : n . Exactly normal matrices
with the property ATA = AAT are diagonalizable with orthogonal eigenvec-
tors, in particular symmetric matrices (Stoer).

(c3) If a matrix A ∈ R
n

n is not diagonalizable, there exist less than n
linearly independent eigenvectors, and they have to be completed to a full
basis of R

n with generalized eigenvectors or principal vectors . These principal
vectors uk with the property

(A− λI)kuk = 0 , (A− λI)k−1uk �= 0 , k = 1, . . . , u1 = u ,

have to be determined for every characteristic pair (λ, u) . They are obtained
by solving successively the linear systems of equations

(A− λI)uk+1 = uk, k = 1, . . . , u1 = u ,

(I unit matrix), the leading matrix A − λI being singular. Therefore the
elements of such a chain of principal vectors are never determined uniquely
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and the chain breaks down if the system becomes unsolvable. Now the Jordan

decomposition may be written in the form

A = U(Λ+ T )V , V = U−1 (1.5)

with a matrix T having zeros everywhere apart from the first upper diagonal
where the elements are zero or one. Consequently the matrix Λ + T is now
a block-diagonal matrix with so-called Jordan blocks in the main diagonal,
every single block corresponding to a chain of principal vectors. If no chain of
principal vectors exists for a characteristic pair, the associated Jordan block
consists of the scalar eigenvalue λ only. Because every eigenvector generates a
Jordan block, possibly of dimension one only, the number of Jordan blocks
equals the number of linearly independent eigenvectors appertaining to the
eigenvalue λ. This number is called the geometric multiplicity of λ in contrast
to the algebraic multiplicity, namely the multiplicity of λ as a root of the
characteristic polynomial. Besides, the Jordan decomposition is uniquely
determined up to permutations of columns of U and corresponding rows of V
so that different eigenvalues in Λ can be ordered in an arbitrary way.

Example 1.3. We suppose that the matrix A ∈ R
5
5 has the double eigenvalue

λ and the triple eigenvalue μ and that both eigenvalues possess only one
eigenvector. Then there exists one chain of principal vectors of length two for
λ and one chain of length three for μ . Accordingly, the Jordan decomposition
of A has up to permutations the form

A = [u1, u2, v1, v2, v3]

⎡
⎢⎢⎢⎢⎣

λ 1 0 0 0
0 λ 0 0 0
0 0 μ 1 0
0 0 0 μ 1
0 0 0 0 μ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u2

u1

v3

v2

v1

⎤
⎥⎥⎥⎥⎦
, ui , vk columns , ui , vk rows

where
{u1, u2} column chain for (λ, u1)
{v1, v2, v3} column chain for (μ, v1)
{u1, u2} row chain for (λ, u1)
{v1, v2, v3} row chain for (μ, v1) .

The nilpotent matrix T satisfies Tn = 0 ∈ R
n

n and has in this example the
form

T =
[
T1 O
O T2

]
, T1 =

[
0 1
0 0

]
, T 2

1 = 0 ∈ R
2
2 , T2 =

⎡
⎣

0 1 0
0 0 1
0 0 0

⎤
⎦ , T 3

2 = 0 ∈ R
3
3 .

If ẋ = Ax is now a differential system with the above matrix A , then a
fundamental system of solutions is found immediately:
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x1(t) = u1e
λt , x2(t) = eλt(u2 + t u1)

x3(t) = v1e
μt , x4(t) = eμt(v2 + t v1) , x5(t) = eμt

(
v3 + t v2 +

t2

2
v1

)
;

cf. Sect. 1.5(b).
(c4) By means of the Jordan decomposition it can be shown that the

eigenvalues of a matrix A essentially govern the convergence limn→∞An of
the important sequence {An}∞n=1 . To this end we introduce some

Further Notations:

(1◦) An arbitrary vector norm ‖ ◦ ‖ generates the operator norm ‖A‖ =
max{‖Ax‖ ; ‖x‖ = 1} ; other matrix norms are not necessarily submulti-
plicative, ‖AB‖ ≤ ‖A‖‖B‖ .

(2◦) The set σ(A) of eigenvalues of a quadratic matrix A is called the spectrum
of (A) .

(3◦) The radius �(A) of the smallest circle with the center at the origin con-
taining all eigenvalues of A is called the spectral radius of A .

(4◦) An eigenvalue is called semi-simple if it has only eigenvectors and no
principal vectors. Then all associated Jordan blocks consist of only one
element.

(5◦) A quadratic matrix A is called an M-matrix if all eigenvalues λ with a
maximum absolute value |λ| = �(A) are semi-simple. (This notion is,
however, also used in a different context; cf. (Ortega), Def. 2.4.7.)

Theorem 1.1. Let A be a quadratic matrix. Then

(1◦) �(A) ≤ ‖A‖ .
(2◦) For every ε > 0 there exists an operator norm ‖ ◦ ‖A, ε depending on A

and ε such that
�(A) ≤ ‖A‖A, ε ≤ �(A) + ε .

(3◦) limn→∞ ‖A‖n = 0 ⇐⇒ �(A) < 1 .
(4◦) ∃ K > 0 ∀ n ∈ N : ‖A‖n ≤ K ⇐⇒ �(A) < 1 or (�(A) = 1 and A is a

M-matrix).

For the proof cf., e.g., (Stoer), Sect. 6.9.
Because of ‖An‖ ≤ ‖A‖n, the sequence xn+1 = Axn = An+1x0 , n =

0, 1, . . . , converges to the null vector for arbitrary x0 if the first condition in
(4◦) is fulfilled, and it always remains bounded if the second condition in (4◦)
is fulfilled.

Solving linear systems of equations Ax = b with a regular matrix A has
always been and is up to this day one of the main subjects dealt with in
numerical mathematics and there is a grat number of communications and
monographs on this field. The reason for these permanent activities lies in
the fact that “regularity” is an algebraic property of a matrix which can-
not be transposed simply to numerical computations. Let, e.g., eps be the
smallest number that 1 + eps > 1 on the computer; then the Matlab ma-
trix [1, 0; 0, eps] is regular in the algebraic sense but the use of its inverse is
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rather daring. Instead, the condition of a matrix A is revealed to be the crucial
criterium for an acceptable result in numerical computations — and it can
be arbitrarily bad in dependence of the desired accuracy of the underlying
analytical problem. Usually it is defined by the ratio of the largest absolute
value and the smallest absolute value of all eigenvalues of that matrix A .
Every algorithm for solving linear systems breaks down for a properly cho-
sen counterexample. In ill-conditioned systems, direct methods such as the
Gauß algorithm and its related, on the on hand, and iterative methods, on
the other hand, have been standing forever in noble contest with each other.
Fortunately, the direct methods presented by Matlab have a high degree of
perfection and yield respectable results over a large range. If they break down
one has to switch to iterative methods, some of which are offered by Matlab,
too. These latter methods are frequently of the form

xn+1 = xn − C(Axn − b) , n = 0, 1, . . . ,

and have the advantage that, in case of convergence, arising rounding errors
etc. are ruled out again during computation. By Theorem 1.1, the method
is convergent to the solution A−1b (for arbitrary initial vector) if and only
if the spectral radius of the matrix I − C A is less than one. Essentially, the
individual iterative methods differ from each other by the choice of the pre-
conditioner C or a sequence of matrices C in order to satisfy this convergence
criterium under more or less vague knowledge of the leading matrix A .

(d) Decompositions of a Matrix For an arbitrary, sufficiently smooth
vector field we have by Taylor

w(x+ h) = w(x) + gradw(x)h+ o(|h|) ;

hence the gradient of w describes the local or infinitisimal variation of w .
Three decompositions of A := gradw(x) =: ∇w(x) ∈ R

3
3 play a particular

role in the mechanics of continua.
(d1) In the decomposition into a symmetric and a skew-symmetric com-

ponent,

A = D + S , D =
1
2
[∇w(x) + ∇w(x)T ] , S =

1
2
[∇w(x) − ∇w(x)T ] ,

the symmetric matrix D describes the local dilatation, or rather, compression
of the vector field w in the direction of the principal axes of D. On the other
hand, the skew-symmetric matrix S describes the local rotation of w because

rotw(x) × (y − x) = [∇w(x) − ∇w(x)T ](y − x) .

(d2) For A = I + ∇v(x) ∈ R
3
3 an expansion of det(A) yields

det(A) = 1 + trace(A) + h.o.t.

(h.o.t. = higher order terms = terms of higher order in the components of A).
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Therefore, in the decomposition

A = A′ +
1
3

trace(A)I , A′ = A− 1
3

trace(A)I , I ∈ R
3
3 unit matrix,

(trace(A′) = 0) the matrix A′ describes the local variation of the shape of A
and trace(A)I/3 the local variation of the volume of A .

(d3) Besides the above additive decompositions of a quadratic matrix —
and triangular factorizations not mentioned here — there is a further factor-
ization originally due to Finger 1892, see also (Ciarlet93), that plays a crucial
role in the characterization of material frame-indifference in stress tensors.

Lemma 1.1. (Polar Factorization) Let A be a real and regular matrix then
there exist uniquely orthogonal matrices P , Q and unique symmetric positive
definite matrices U , V so that

A = P U = V Q .

It can be shown that det(P ) = 1 for det(A) > 0 . Then the result says that
a regular matrix A can always be considered as a dilatation followed by a
rotation or vice versa.

(e) Linear Systems of Equations
(e1) Let A ∈ R

m
n be a matrix of arbitrary dimension, let

RangeA = {y ∈ R
m, ∃ x ∈ R

n : y = Ax} ∈ R
m the range or image of A ,

KerA = {x ∈ R
n, Ax = 0} ∈ R

n the null space or kernel of A ,

(both are vector spaces), and let

U⊥ := {v ∈ R
n, ∀ u ∈ U : vTu = 0}

be the orthogonal complement of a set U ⊂ R
n; U⊥ is a vector space if U is a

vector space. Obviously, a linear system Ax = b is solvable if and only if the
right side b is contained in the range of A . The set of all these right sides is
characterized by the following important Range Theorem.

Theorem 1.2. Let A ∈ R
m

n be an arbitrary matrix, then

[RangeA]⊥ = KerAT .

Proof.
0 �= y ∈ [RangeA]⊥ ⇐⇒ yTAx = 0 ∀ x ∈ R

n

⇐⇒ yTA = 0 ⇐⇒ AT y = 0 ⇐⇒ y ∈ KerAT .

��
Formulating the result for the orthogonal complement immediately yields

RangeA =
[
KerAT

]⊥
.

In other words, the range of a matrix is the orthogonal complement of the
null space of the transposed matrix; see also generalizations in Sect. 1.9(a).
Some fundamental inferences follow at once:
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Corollary 1.1. (1◦)

RangeA = R
m ⇐⇒ KerAT = {0} ∈ R

m . (1.6)

(2◦) For quadratic A , the system Ax = b has by (1.6) a unique solution if
and only if the system Ax = 0 has only the trivial solution (Fredholm’s
alternative).
(3◦)

dim KerA+ dim RangeA = n . (1.7)

(4◦) For quadratic A ,

KerA ∩ RangeA = {0} ⇐⇒ A diagonalizable . (1.8)

Proof of (3◦). It follows from Theorem 1.2 that [RangeAT ]⊥ = KerA hence

dim KerA = dim[RangeAT ]⊥ = codim RangeAT = n− dim RangeAT .

But as row rank equals column rank in a matrix, we have dim RangeAT =
dim RangeA. ��

(e2) In optimization and mechanics of continua one frequently encounters
linear systems of equations with a Lagrange matrix

L =
[
A BT

B 0

]
, (1.9)

which is often indefinite — also if A is symmetric positive definite.

Lemma 1.2. Let A ∈ R
n

n be symmetric positive semi-definite. The La-

grange matrix (1.9) is regular if and only if B ∈ R
m

n satisfies the following
three conditions:
(1◦) m ≤ n ;
(2◦) Rank(B) = m , i.e. B has maximum rank;
(3◦) A is positive definite on the kernel of B , i.e.

Bx = 0 , x �= 0 =⇒ xTAx > 0 .

Proof. We show that Lz �= 0 for z �= 0 . Necessity of (1◦) and (2◦) follows in
a simple way. Let now z = [x, y]T then Lz �= 0 if Bx �= 0 . By Bx = 0 , x �= 0
and Lz = 0 , it follows that

Ax+BT y = 0 =⇒ xTAx+ xTBT y = 0 ,

yielding xTBy < 0 because xTAx > 0 . This is a contradiction of the assump-
tion that Bx = 0 and x �= 0 . The same argumentation shows that (3◦) is
necessary. ��

(e3) Sometimes, as for instance in the complete cubic element of Sect.
9.4(a), a linear system is to be reduced by eliminating some components of
the solution. This procedure is called condensation. Consider the system
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[
A B
C D

][
x
y

]
=
[
f
g

]

and suppose that D is regular. Then we may insert the solution y = D−1[g−
Cx of the second row into the first row and obtain a smaller system where,
however, y has been cancelled out completely:

[A−BD−1C]x = f −BD−1g .

(f) Projectors and Reflectors
(f1) Projectors For a , b ∈ R

n , the projection of a onto b can be written as
a matrix-vector product,

ab =
a · b
b · b b =

aT b

bT b
b =

b bT

bT b
a =: Pa ;

cf. (a), Example 1.2. Let more generally U ⊂ R
n be a subspace with basis

{b1, . . . , bm} and let B = [b1, . . . , bm] ∈ R
n

m be the matrix with columns bi
then B has maximum rank. The matrix

P = B(BTB)−1BT

projects every vector x ∈ R
n onto U and is, moreover, symmetric and idem-

potent, P 2 = P . Every matrix with these two properties is called a projector.

(f2) Reflectors Let 0 �= u ∈ R
n , let H := {x ∈ R

n, uTx = 0} be
a hyperplane through the origin and P a point with position vector p . By
subtracting the projection p

u
of p onto u from p twice , the point P is reflected

at the plane H into the point Q with position vector q :

q = p− 2p
u

=
(
I − 2

uuT

uTu

)
p =: Sp ;

cf. Figure 1.2. The reflection matrix S is also called a reflector. On the other
hand, if p and q are given and the reflection plane H is sought then we have
to set u = ±(p− q); the sign is cancelled in the reflection matrix.

(f3) The QR algorithm Let A = [a1, . . . , am] ∈ R
n

m be a matrix which
is to be factorized into A = QR with orthogonal matrix Q and upper triangu-
lar R . In the first step of the QR algorithm we choose p = a1 and q = ±|a1|e1 ,
with e1 being the first unit vector, and form again A(1) = S A. For reasons of
numerical stability the sign of q is chosen such that no subtraction appears in
u = ±(p−q) . The same operation is then repeated on the remaining matrices
(of lower dimension) until complete factorization is attained.

A QR decomposition can be obtained also by means of simple rota-
tions preserving the orientation of the columns in A. The Matlab algo-
rithm [Q,R] = qr(A), however, uses the above reflection matrices S with
det(S) = −1
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det(A) = det(Q) · det(R) = ±det(R)

which has to be observed, e.g., in continuation methods; cf. Sect. 5.8.

|p|e
1

− |p|e
1

p
u

−

H
−

u
+

H
+

Figure 1.2. Reflection

(g) The Moore-Penrose Inverse (Pseudo-inverse) For an arbitrary ma-
trix A ∈ R

m
n , the (non-negative) roots of the eigenvalues of the semi-definite

matrix ATA ∈ R
n

n are called singular values of A .

Theorem 1.3. For every matrix A ∈ R
m

n there exist orthogonal matrices
U ∈ R

m
m and V ∈ R

n
n such that

UTAV = S ∈ R
m

n (1.10)

is a diagonal matrix. The diagonal of S contains the singular values σ1, . . . , σn

of A .

Proof. Without loss of generality let m ≥ n ; otherwise consider AT instead of
A . Let V ∗ ∈ R

n
n be an orthogonal matrix transforming ATA into diagonal

form and let AV ∗ = QR be a QR decomposition of AV ∗ . Then one can
choose V = V ∗ and U = Q in (1.10). For the proof consider the identity
UTAV = QTAV ∗ = R . By definition of V we have

V TATAV = V TATUUTAV = RTR = diag(σ2
1 , . . . , σ

2
n) ;

hence R must be a diagonal matrix and thus R = S . ��
If A has rank r ≤ min{m,n} then, without loss of generality, S is a

diagonal matrix of the form

S =
[
D 0
0 0

]
∈ R

m
n

where either D empty or D = [σ1, . . . , σp] is a regular diagonal matrix with
p ≤ n. Define
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S+ :=
[
D−1 0
0 0

]
∈ R

n
m

then the matrix A+ = V S+UH ∈ R
n

m is called the Moore-Penrose inverse
of A , being uniquely determined up to representation.

Lemma 1.3. (Properties) For A ∈ R
m

n

A++ = A, (A+)T = (AT )+,
A+A = (A+A)T , AA+ = (AA+)T ,

AA+A = A, A+AA+ = A+,
(ATA)+AT = A+.

P := AA+ is projector of R
m onto Range(A),

Q := A+A is projector of R
n onto Ker(A)⊥ = Range(AT ).

Lemma 1.4. Letting ‖x‖2 = xTx , the vector x∗ = A+b satisfies
(1◦) ∀ x ∈ R

n : ‖Ax∗ − b‖ ≤ ‖Ax− b‖ ,
(2◦) ‖Ax∗ − b‖ = ‖Ax− b‖ =⇒ ‖x∗‖ ≤ ‖x‖ .

Proof (Stoer), Sect. 4.8.5 and SUPPLEMENT\chap01a.
In other words, x∗ = A+b is the solution to the problem ‖Ax − b‖ =

min! with minimum norm property (2◦); Matlab computes this solution by
x = pinv(A)*b; the solution is unique for m ≥ n , A having maximum rank.

(h) Over- and Underdetermined Systems Look for a “solution” of
Ax = b where A ∈ R

m
n is a matrix of arbitrary dimension.

(h1) If A is quadratic and singular, the Matlab algorithms x = A\b and

[Q,R] = qr(A); y = Q’*b; x = R\y

do not provide a solution and an estimation of the condition of A is put out.
(h2) If A is not quadratic, both algorithms supply the same solution of

‖Ax − b‖ = min!, also in the case that the rank of A is not maximum. But,
in the normal case, the solution does not have the minimum norm property
of Lemma 1.4.

(h3) In continuation methods and in the solution of periodic boundary
value problems, the QR decomposition of a maximum rank matrix A ∈ R

n
n+1

is of particular interest, but the application of x = pinv(A)*b is mostly too
laborious. The following Matlab algorithm uses the QR decomposition of A
without storage of the matrix Q being fully occupied in general; cf. (Hoellig),
Sect. 3.2.
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function x = mpsolv(A,b);
% computes solution x = mpinv(A)*b
% for (n,n+1)-matrix A of maximum rank
[m,n] = size(A);
if n ~= m+1 disp(’A no (n,n+1)-matrix’), return
end
R = triu(qr([A,b]));
C = R(1:m,m+2); T = R(1:m,m+1); S = R(1:m,1:m);
G = [-T,C]; U = S\G;
V = -[U(:,1);1]\[U(:,2);0];
x = [U(:,1);1]*V + [U(:,2);0];

(i) Rotations in R
3. We consider the rotation of a point x about a

normed rotation axis a , |a| = 1 , (both are position vectors with common tail
in origin). Recall that xa = (x ·a)a = [a aT ]x is the projection of x onto a and
that the axis a is the only vector unchanged under rotation. Then xa , x− xa

and a × x form a local cartesian coordinate system and rotation about the
angle ϕ has the form

y = xa + cos(ϕ)(x− xa) + sin(ϕ)(a× x)
= cos(ϕ)x+ (1 − cos(ϕ))a aTx+ sin(ϕ)(a× x) .

(1.11)

Now, introduce the skew-symmetric matrix C ,

Cax = a× x =

⎡
⎣

0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤
⎦ x .

If, conversely, C = [cik] ∈ R
3
3 is a skew-symmetric matrix then

C x = a× x , a =

⎡
⎣

−c23

c13

−c12

⎤
⎦ .

Because of a× a = 0 and the representation formula,

a× (b× c) = (a · c)b− (a · b)c , a, b, c ∈ R
3 ,

applied to C2
a x = CaCa x = a× (a× x) we have

aTCa = 0 , Ca a = 0, C2
a = a aT − |a|2I (1.12)

(I unit matrix).
Suppose that ϕ(t) = ωt is the rotation angle with angular velocity ω then

the rotated vector x0 = x(0) has, by (1.11), the form x(t) = D(a, ωt)x0 with
the rotation matrix D(a, ωt) :
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D(a, ωt) = cos(ωt)I + (1 − cos(ωt))a aT + sin(ωt)Ca ,

Ḋ(a, ωt) = ω
[
− sin(ωt)I + sin(ωt)a aT + cos(ωt)Ca

]
.

(1.13)

Using (1.12) one computes Ḋ = ωCD = ωDC ; therefore, it follows that

ẋ(t) = ω CaD(a, ωt)x0 = ω a× x(t) . (1.14)

In other words, the vector field ω a×x(t) is the velocity field of rotation about
a , |a| = 1 , with constant angular velocity ω .

Conversely, if D = [di
k] �= I ∈ R

3
3 is an orthogonal matrix with positive

determinant, it is a rotation matrix. From the representation (1.13) we obtain
the following formulas for the rotation angle 0 ≤ ϕ , ϕ �= π , and the rotation
axis a

cosϕ =
1
2
(traceD − 1) , a =

1
2 sinϕ

[
d3

2 − d2
3, d

1
3 − d3

1, d
2
1 − d1

2

]T
;

cf., e.g., (Meyberg), Sect. 6.6.4. Furthermore, from Ḋ = ωCD = ωDC , the
relations

ωC = Ḋ DT = −D ḊT = DT Ḋ = −ḊTD (1.15)

are derived, being used in the theory of top as well as the following result.

Lemma 1.5. Let D be a rotation matrix; then Db×Dc = D(b× c) for
b , c ∈ R

3 .

Proof. For a , b , c ∈ R
3 the determinant is the parallepiped product,

det(a, b, c) = aT (b× c) . For a matrix C ∈ R
3
3 it follows that

det(a,Cb, Cc) = det(CC−1a,Cb, Cc) = det(C) det(C−1a, b, c)
= < det(C)C−1a, b, c >=< (cof CT )a, b, c >
= aT (cof C)(b× c) .

cf. (b). Substituting the rotation matrix D with cof D = (detD)D−T = D
for C, we obtain

a · (Db×Dc) = a ·D(b× c) .

This proves the assertion because a ∈ R
3 has been chosen arbitrarily. ��

Lemma 1.5 describes the geometrically obvious fact that a rotated vector
product is equal to the product of the rotated vectors.

Remember once again that exactly all orthogonal matrices D with pos-
itive determinant are rotation matrices and that their product yields again
a rotation. But the angle and axis of the composed rotation are difficult to
calculate by using matrices of the above form. To this end we refer the reader
to Sect. 12.7 on quaternions.

(j) Matrices with Definite Real Part For symmetric matrices B , C ∈
R

n
n one usually writes B ≥ C in the case where xT (B − C)x ≥ 0 holds for

all x ∈ R
n .
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Lemma 1.6. Let A ∈ R
n

n , α > 0 , and let Re(A) :=
1
2
(A+AT ) ≥ α I , then

A is regular and ‖A−1‖2 ≤ α−1. Moreover, the sequence

y
n+1

= y
n
− h

2
(Ay

n+1
+Ay

n
) , n = 0, 1, . . . , y

0
∈ R

n , h > 0 ,

is bounded.

Cf. the trapezoidal rule for the differential system ẋ + Ax = 0 in Sect. 2.4,
Example 2.12. Note that A is not supposed to be diagonalizable; convergence
instead of boundedness is, however, difficult to verify under the above weak
assumptions.

Proof. (1◦) Let A ∈ R
n

n and x ∈ R
n ; then xT Re(A)x =

1
2
xT (A + AT )x =

xTAx . The assumption 0 < αxTx ≤ xTAx , x �= 0 , yields a contradiction if
A is singular and an eigenvector belonging to the eigenvalue null is substituted
for x.
(2◦) Using x = A−1y and the Cauchy-Schwarz inequality we obtain

αxTx = α‖A−1y‖2
2 ≤ (A−1y)T Re(A)(A−1y) = (A−1y)TA(A−1y)

= (A−1y)T y ≤ ‖A−1y‖2‖y‖2 ,

hence ∀ y : ‖A−1y‖2 ≤ α−1‖y‖2 .
(3◦) Let h/2 = 1 without loss of generality, then A(y

n+1
+ y

n
) = y

n
− y

n+1

and, by assumption,

0 ≤ (y
n
+y

n+1
)TA(y

n
+y

n+1
) = (y

n
+y

n+1
)T (y

n
−yn+1) = ‖y

n
‖2
2−‖y

n+1
‖2
2 .

1.2 Brief on Vector Analysis

In this section we compile a collection of formulas of vector analysis in co-
ordinate space R

3. All these formulas hold also in n dimensions as long as
the rotation operator does not occur. The computational rules are preferably
written here with matrix multiplication and not with scalar product because
the latter does not apply in Matlab. For a more general treatment of the
matter discussed here, we refer to Chap. 10.

(a) Notations and Definitions Let x ∈ R
3 be a point or position vector

and let ∂i = ∂/∂xi be the operator of partial derivation w.r.t. the i-th com-
ponent. Let ϕ , χ , ψ be scalar fields, e.g., ϕ : R

3 � x �→ ϕ(x) ∈ R , let u , v , w
column vector fields, e.g.

v : R
3 � x �→ v(x) =

⎡
⎣
v1(x)
v2(x)
v3(x)

⎤
⎦ = [v1(x), v2(x), v3(x)]T ∈ R

3 ,
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and let R , S , T tensor fields, e.g. R : R
3 � x �→ R(x) = [ri

j(x)] ∈ R
3
3 ;

frequently rij is written instead of ri
j .

(a1) Gradient, Gradient Field:

gradϕ : x �→ gradϕ(x) := [∂1ϕ(x), ∂2ϕ(x), ∂3ϕ(x)] ∈ R
3

row vector field,

grad v : x �→ grad v(x) ∈ R
3
3 tensor field,

grad v(x) :=

⎡
⎣
∂1v

1 ∂2v
1 ∂3v

1

∂1v
2 ∂2v

2 ∂3v
2

∂1v
3 ∂2v

3 ∂3v
3

⎤
⎦ (x) =

⎡
⎣

grad v1(x)
grad v2(x)
grad v3(x)

⎤
⎦ = [∂1v, ∂2v, ∂3v] (x) ,

gradT (x) = [∂1T (x), ∂2T (x), ∂3T (x)] ∈ R
3
9 .

The gradient of a mapping v : R
n → R

m at point x is a (m,n)-
matrix, in particular a row vector for m = 1 , but note that sometimes
(not in this volume) the transposed matrix [grad v(x)]T is defined for
“gradient”.

If f : R
3
3 � S �→ f(S) ∈ R is a scalar function with tensor argument S = [si

j ] ,

grad f(S) =
∂f

∂S
(S) =

[
∂f

∂si
j
(S)

]
∈ R

3
3 ,

and the directional derivative is a tensor product,

d

dt
f(S + tT )

∣∣∣
t=0

= [grad f(S)] : T .

(a2) Divergence:

div v : x �→ div v(x) := ∂1v
1(x) + ∂2v

2(x) + ∂3v
3(x) ∈ R scalar field,

divR : x �→ divR(x) ∈ R
3 column vector field,

divR(x) :=

⎡
⎣
∂1r11 + ∂2r12 + ∂3r13
∂1r21 + ∂2r22 + ∂3r23
∂1r31 + ∂2r32 + ∂3r33

⎤
⎦ (x) =

⎡
⎣

div r1(x)
div r2(x)
div r3(x)

⎤
⎦

= [∂1r1 + ∂2r2 + ∂3r3] (x) .

Accordingly, the divergence is applied row by row in tensor divergence.
(a3) Vorticity, Curl, Rotation of a Vector Field, cf. also Sect. 1.1(a6):

rot v : x �→ rot v(x) ∈ R
3 column vector field,

rot v(x) :=

⎡
⎣
∂2v

3(x) − ∂3v
2(x)

∂3v
1(x) − ∂1v

3(x)
∂1v

2(x) − ∂2v
1(x)

⎤
⎦ =

∣∣∣∣∣∣
e1 ∂1 v

1

e2 ∂2 v
2

e3 ∂3 v
3

∣∣∣∣∣∣
(x) .
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As already mentioned, the second formula is to be understood as a memo rule.
If v is a vector field in the plane, the first two components of its vorticity field
disappear and then one often writes often with a slight abuse of notation

rot v := eT
3 rot v = v2

x − v1
y ∈ R . (1.16)

The notion “rotation of a vector field” stems from the important example

w(x) = a× x =⇒ rotw = 2a ;

cf. (1.14). Sometimes also the notation

curlϕ(x, y) = [ϕy, −ϕx]T ∈ R
2

is used for a tangent vector of an implicitely defined curve ϕ(x, y) = c in the
plane where the sign is not fixed.

Formal notations with the nabla operator ∇:

∇ := (∂1, ∂2, ∂3) formal row vector (!),
∇ϕ := gradϕ , ∇v := grad v ,
∇ · v := div v ,
∇ × v := rot v , (also∇ ∧ v),
v · ∇ : ϕ �→ (v · ∇)ϕ := (∇ϕ)v ,
v · ∇ : w �→ (v · ∇)w := (∇w)v .

The notation for the operator v · ∇ is somewhat confusing, one should prefer
instead ∂vϕ = (gradϕ)v :

v · ∇ := ∂v := v1∂1 + v2∂2 + v3∂3

∂v w = v1∂1w + v2∂2w + v3∂3w = (∇w)v .

Representations with the Jacobi matrix ∇v :

div v(x) = trace(∇v)(x) ,
(rot v(x)) × w = [∇v(x) − (∇v(x))T ]w .

(a4) Laplace Operator :

Δϕ : x �→ Δϕ(x) := ∂2
1ϕ(x) + ∂2

2ϕ(x) + ∂2
3ϕ(x)

= div gradϕ(x) ∈ R scalar field,

Δv : x �→ Δv(x) :=

⎡
⎣
Δv1(x)
Δv2(x)
Δv3(x)

⎤
⎦

= div grad v(x) ∈ R
3 vector field.
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(b) Differential Rules Note that all arguments have to be sufficiently
smooth in the following formulas!

(b1) The operators grad, div and rot are linear, e.g.

rot(α v + β w) = α rot v + β rotw , α, β ∈ R .

(b2) Chain rule:

grad(w ◦ v)(x) = gradw(v(x)) grad v(x) .

(b3) Further Computational Rules: As already announced, matrix multi-
plication is used in the subsequent rules instead of the scalar product because
the latter does not apply in Matlab.
Product Rules:

grad(ϕψ) = ϕ gradψ + ψ gradϕ row vector field
grad(vTw) = vT gradw + wT grad v row vector field
grad(ϕv) = v gradϕ+ ϕ grad v tensor field
div(ϕv) = ϕ div v + (gradϕ)v scalar field
rot(ϕv) = ϕ rot v + (gradϕ)T × v column vector field
div(ϕT ) = ϕ div T + T (gradϕ)T column vector field
div(Sv) = [div(ST )]T v + ST : grad v scalar field
div(vTS) = div(ST v) = vT divS + grad v : S scalar field
div(S T ) = [grad ([si]T ) : T ]3i=1 + S div T column vector field
div(v wT ) = (grad v)w + v divw column vector field

div(v × w) = wT rot v − vT rotw
rot(v × w) = (divw)v − (div v)w + (grad v)w − (gradw)v .

Twofold Applications:

(grad div v)T =

⎡
⎣
∂2
11v

1 + ∂2
12v

2 + ∂2
13v

3

∂2
21v

1 + ∂2
22v

2 + ∂2
23v

3

∂2
31v

1 + ∂2
32v

2 + ∂2
33v

3

⎤
⎦ =

⎡
⎣
∂1 div v
∂2 div v
∂3 div v

⎤
⎦ ,

div rot v = 0 , smooth rotational field has no sources
rot gradϕ = 0 , smooth gradient field has no rotations
(grad div v)T = Δv + rot rot v ,
div(ϕ gradψ) = ϕΔψ + (grad ϕ) grad ψT

div([grad v]T ) = [grad div v]T

rot(Δv) = Δ(rot v) .

Observe that the nabla operator (gradient) “ ∇ ” is not a vector and is used
only for abbreviation hence e.g.

[∇(vTw)]T = (∇v)Tw + (∇w)T v .
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Furthermore, using (w · ∇)v = (∇v)w = [grad v]w , we have

(∇v)Tw = [∇v)T − ∇v]w + (∇v)w = −[∇v − (∇v)T ]w + (∇v)w
= −(rot v) × w + (w · ∇)v = w × rot v + (w · ∇)v ;

hence

(∇(vTw))T = (v · ∇)w + (w · ∇)v + v × rotw + w × rot v .

We especially obtain hereby the formula

1
2
[∇(uTu)]T = u× rotu+ (u · ∇)u . (1.17)

(c) Integral Rules Let V ⊂ R
3 be an open, bounded set with sufficiently

smooth boundary ∂V and let F ∈ R
3 be a regular piece of area (surface) with

piecewise smooth boundary ∂F .
(c1) Elementary Differentials: Cf. Chap. 10. For the substitution

(x1, x2) = (f(u, v), g(u, v)) , let

∂(x1, x2)
∂(u, v)

=
∣∣∣∣
fu fv

gu gv

∣∣∣∣ (u, v) := det
[
fu fv

gu gv

]
(u, v) .

The term dx1 ∧ dx2 then stands for the computational device: Integrate over
x1 and x2 if x1 and x2 are the independent variables, otherwise set

dx1 ∧ dx2 =
∂(x1, x2)
∂(u, v)

(u, v) du ∧ dv ;

the same device holds for

dx1 ∧ dx2 ∧ dx3 =
∂(x1, x2, x3)
∂(u, v, w)

(u, v, w) du ∧ dv ∧ dw ;

in both cases the determinant must be positive. Then there is

dV = dx1 ∧ dx2 ∧ dx3 the volume element
dO = (dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2)T the vector area (surface) element
dO = |dO| the scalar area (surface) element
dx = (dx1, dx2, dx3)T the vector line element
n = dO/|dO| the normalized normal vector

If D ⊂ R
2 open and F := {x(u, v), (u, v) ∈ D} ⊂ R

3 is a piece of area, we
have in explicit form with unnormalized normal vector of area (surface)

ñ(u, v) =
(
∂x

∂u
× ∂x

∂v

)
(u, v) ≡

[
∂(x2, x3)
∂(u, v)

,
∂(x3, x1)
∂(u, v)

,
∂(x1, x2)
∂(u, v)

]T

,

dO = |ñ(u, v)| dudv , dO =
ñ(u, v)
|ñ(u, v)| |ñ(u, v)| dudv = n(u, v)dO .
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(c2) The Integral Theorems,

Divergence Theorem of Gauß in R
3

∫

V

div v dV =
∮

∂V

v · dO

Rotation Theorem of Stokes in R
3

∫

F

(rot v) · dO =
∮

∂F

v · dx
,

suppose always that v is a continuously differentiable vector field and V resp.
F are “regular” volumes resp. surfaces. Of course, both theorems hold also for
planar vector fields. However, one uses here the notation (1.16) for vorticity
in plane, and

t =
(
dx1, dx2

)
, n =

(
−dx2, dx1

)

for tangent and normal vector of the positive oriented planar boundary curve
∂F of F ⊂ R

2. The normal vector of area is now n = [0, 0, 1]T , and we obtain
Divergence Theorem of Gauß in R

2:

∫

F

(
∂1v

1 + ∂2v
2
)
dF =

∮

∂F

(
−v1dx2 + v2dx1

)
ds ,

Rotation Theorem of Stokes in R
2:

∫

F

(
∂1v

2 − ∂2v
1
)
dF =

∮

∂F

(
v1dx1 + v2dx2

)
ds .

The subsequent two formulas follow easily from the Theorem of Gauß:
∫

V

(gradϕ)T dV =
∮

∂V

ϕdO =
∮

∂V

ϕndO ∈ R
3 ,

∫

V

rot v dV =
∮

∂V

dO × v = −
∮

∂V

v × ndO ∈ R
3 .

(1.18)

The first one follows from the Divergence Theorem by substituting v = ϕ a
with arbitrary a and the second if a× v is substituted for v .

The Theorem of Stokes yields
∫

F

dO × (gradϕ)T =
∮

∂F

ϕdx ∈ R
3 . (1.19)

It follows by substituting v = ϕa with arbitrary a and observing the relation
(u× v) · w = u · (v × w). See SUPPLEMENT\chap01a.

By using div(ϕv) = ϕ div v + gradϕ · v , the Theorem of Gauß leads to
∮

∂V

ϕv · dO =
∫

V

[ϕ div v + gradϕ · v] dV . (1.20)
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If now T is a tensor field with rows ti , an elementwise application of (1.20)
with ϕ = vi and v = ti yields the crucial relation

∫

V

[
v · div T + grad v : T

]
dV =

∮

∂V

v · T n dO . (1.21)

Because of div(ϕ gradψ) = ϕΔψ + gradϕ · gradψ , an application of the
Theorem of Gauß yields the First Theorem of Green:
∮

∂V

ϕ
∂ψ

∂n
dO =

∫

V

[
ϕΔψ + gradϕ · gradψ

]
dV ,

∂ψ

∂n
:= gradψ · n . (1.22)

Exchanging ϕ and ψ and subtracting the new result from the old yields the
Second Theorem of Green:

∮

∂V

[
ϕ
∂ψ

∂n
+ ψ

∂ϕ

∂n

]
dO =

∫

V

[ϕΔψ − ψΔϕ] dV (1.23)

from which a further interesting result is derived by inserting ψ ≡ 1 .
(d) Coordinate-Free Definitions Let Kr(x) be a ball with center x ,

radius r and surface Sr , and let n(y) , |n(y)| = 1 , be the normal vector of Sr

in y pointing outward. Then

div v(x) = lim
r �→0

1
|Kr|

∮

Sr

(v · n) dO ;

hence div v is also called source intensity of v .
On the other side, let S ⊂ R

3 be a surface with x ∈ S and let Sr be cut
out from S by Kr(x) then, applying the Theorem of Stokes,

(rot v · n)(x) = lim
r �→0

1
|Sr|

∮

∂Sr

v · dx = lim
r �→0

1
|Sr|

∮

Sr

(rot v) · ndO .

The right side is called vorticity v about n and becomes maximum for rot v
parallel to n , and u = rot v is again the vorticity field or rotational field of
v . Conversely, v with rot v = u is called a vector potential of u (not uniquely
determined).

(e) Potentials and Vector Fields An open, connecting set Ω ⊂ R
n is

called domain, and a domain Ω is called simply connected if every closed curve
C ⊂ Ω can be contracted to a point in Ω without leaving Ω. A domain Ω is
star-shaped if

∃ z ∈ Ω ∀ x ∈ Ω : [z, x] ⊂ Ω

([z, x] straight line segment between z and x), the point z is then called a
center of Ω. For instance, a disc in R

2 without center is not simply connected
whereas a ball in R

3 without center is simply connected.
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Theorem 1.4. (Potential Criterium) Let Ω ⊂ R
n be a simply connected do-

main and v : Ω → R
n a continuously differentiable vector field. Then there

exists a potential ϕ : Ω → R with v = gradϕ if and only if grad v(x) is
symmetric,

∀ x ∈ Ω : grad v(x) = [grad v(x)]T ;

this condition is equivalent to rot v(x) = 0 for n = 2, 3 .

Proof (Meyberg) Vol. I, Sect. 8.2 and SUPPLEMENT\chap01a.
In the present case, v is called potential field or conservative vector field and

exactly the rotation-free vector fields are potential fields in simply connected
domains of R

3 .

Theorem 1.5. Let Ω ⊂ R
3 be a star-shaped domain and v : Ω → R

3 con-
tinuously differentiable. Then the vector field v has a vector potential w with
v = rotw if and only if div v = 0 in Ω.

In other words, exactly the divergence-free vector fields have a vector potential
in star-shaped domains of R

3. (A divergence-free vector field is also called
solenoidal vector field.)

If z is a center of Ω , a vector potential w of v can be given as

w(x) =
∫ 1

0

tv(z + t(x− z)) × (x− z) dt .

Two vector potentials of a vector field differ only by an additive gradient
field or, in other words, a vector potential of a divergence-free vector field is
uniquely determined only up to an additive gradient field. Therefore we have
in star-shaped domains

v = rot(w + gradϕ)

with arbitrary ϕ for divergence-free vector fields v . If the domain Ω is “regu-
lar” in some sense to be specified more exactly, then ϕ may be chosen so that
div(w + gradϕ) = 0 :

Theorem 1.6. Let Ω be “regular” and let v : Ω → R
3 be a divergece-free

vector field then v has a divergence-free vector potential.

The next result says that, in normal case, a vector field can be decomposed
into the sum of a divergence-free and a vorticity-free vector field.

Theorem 1.7. (Helmholtz’ Decomposition Theorem) Let Ω ⊂ R
3 be “reg-

ular” and let v : Ω → R
3 be continuously differentiable then there exists a

scalar field ϕ and a vector field w so that

v = gradϕ+ rotw .
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The vector field w can be chosen here that divw = 0 and rotw · n = 0 on the
boundary ∂Ω. The decomposition is then unique up to an additive constant
in ϕ. As div rotw = 0, the first Theorem of Green yields now, substituting
u = rotw ,

∫

Ω

gradϕ · u dV = −
∫

Ω

ϕdiv u dV +
∮

∂Ω

ϕu · ndO = 0 .

By this way a vector field v is decomposed into two parts being “orthogonal”
to each other w.r.t. the scalar product (u, v) =

∫
Ω
u(x)T v(x) dV . This decom-

position is sometimes applied in numerical approximations of the Navier-

Stokes equations.
Proof of the results in (e) see SUPPLEMENT\chap01a; cf. also (Burg), Bd.

IV.

1.3 Curves in R
3

Let x : R ⊃ [a , b] � t �→ x(t) ∈ R
3 be a curve with graph {(t , x(t)), t ∈

[a , b]} being likewise called curve. The curve x is regular if the function x is
continuously differentiable and if always ẋ(t) �= 0 . But note that there may
exist regular and irregular parametrizations for the same graph.

Notations:

s(t) =
∫ t

a

|ẋ(t)| dt arc length

ds := |ẋ(t)| dt scalar differential (or element) of arc length

dx := ẋ(t) dt vectorial differential (or element) of arc length

t(t) :=
1

|ẋ(t)| ẋ(t) tangent vector (normed)

n(t) :=
1

|ṫ(t)|
ṫ(t) normal vector (normed)

b(t) := t(t) × n(t) binormal vector (normed)

.

The sign of n is handled differently in mechanics! Because

t(t)T t(t) = 1 =⇒ ṫ(t)T t(t) + t(t)T ṫ(t) = 2 ṫ(t)T t(t) = 0 ,

the normal vector n(t) is perpendicular to the tangent vector t(t). The right
oriented system {t , n , b}(t) is called accompanying trihedron of the curve x
in point x(t) . Curvature vector and torsion vector are the variation of t and
b relative to the arc length, respectively:
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vector of curvature : lim
h→0

1
s(t+ h) − s(t)

[t(t+ h) − t(t)] =
1
ṡ(t)

ṫ(t)

vector of torsion: lim
h→0

1
s(t+ h) − s(t)

[b(t+ h) − b(t)] =
1
ṡ(t)

ḃ(t)
.

The curvature κ(t) is the length of the curvature vector (here without sign)
and the absolute value of the torsion τ(t) is the length of the torsion vector.
The radius of the circle of curvature in point x(t) is the reciprocal of the
curvature.

By the chain rule we obtain for y(s) := x(t(s))

d

dt
y(s) = ẋ(t(s))

dt

ds
= ẋ(t)/

ds

dt
= ẋ(t)/|ẋ(t)| ,

therefore the tangent vector has always unit length if arc length is chosen for
parameter (!) hence it offers itself for parametrization in canonical way.

By means of tangent and normal vector, the osculating plane S is described
at the point x(t) of the curve:

S = {y ∈ R
3, y = x(t) + λ t(t) + μn(t) , λ, μ ∈ R} ,

and its normal vector is the binormal vector b(t) . Using ẋ(t) = |ẋ(t)| t(t) =
ṡ(t) t(t) , one finds

ẍ(t) = s̈(t) t(t) + ṡ(t) ṫ(t) = s̈(t) t(t) + ṡ(t)2
|ṫ(t)|
ṡ(t)

ṫ(t)
|ṫ(t)|

= s̈(t) t(t) + ṡ(t)2κ(t)n(t) .
(1.24)

As ẋ(t) is parallel to t , there follows ẋ(t) × ẍ(t) = 0 + ṡ(t)3κ(t) (t × n)(t) .
Hence, because b = t× n and |b| = 1 , we have

κ(t) =
|ẋ(t) × ẍ(t)|

|ẋ(t)|3 ≥ 0 .

For computation, the following formulas are chosen in case the denominator
is not zero:

t(t) =
ẋ(t)
|ẋ(t)| , b(t) =

ẋ(t) × ẍ(t)
|ẋ(t) × ẍ(t)| , n(t) = b(t) × t(t) ,

κ(t) =
|ẋ(t) × ẍ(t)|

|ẋ(t)|3 , τ(t) =
det(ẋ, ẍ, ...x )(t)
|ẋ(t) × ẍ(t)|2

; (1.25)

cf. SUPPLEMENT\chap01a. If the denominator disappears for some t then the
limit values are to be considered at this point. The torsion disappears in the
plane as well as the first and second component of ẋ × ẍ whereas the third
component is the curvature with sign in this case. Choosing the cartesian
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x-coordinate for parameter of the curve in R
2 , we obtain the well-known

relation

κ(x) =
f ′′(x)

(1 + f ′(x)2)3/2
.

If arc length s is chosen for parameter, of course s′ = 1 and s′′ = 0 .
Writing y(s) = x(t(s)) there follows then t = y′ , t′ = κn , b′ = −τ n , and
thus, recalling n = b× t ,

n′ = b′ × t+ b× t′ = −τ (n× t) + κ (b× n) = τ b− κ t .

The formulas of Frenet

t′ = κn

n′ = −κ t +τ b
b′ = −τ n

(1.26)

constitute a differential system for the computation of the accompanying tri-
hedron of a curve if curvature and torsion are prescribed in dependence of s
(Fig. 1.3).
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Figure 1.3. Osculating plane

1.4 Linear Differential Equations

Hint: a, b, c, d, e, p, q, r, s are always real numbers in this section.
(a) Homogenous Linear Differential Equations with Constant Co-

efficients
(a1) Find the general real solution (GRSH) y(x) of the homogenous differ-
ential equation

ay′′ + by′ + cy = 0 , a �= 0
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where “homogenous” says that the right side is zero. Compute the zeros α , β
of the characteristic polynomial p(λ) = aλ2 + bλ+ c then GRSH for

α , β ∈ R , α �= β : y(x) = p eαx + q eβx

α , β ∈ R , α = β : y(x) = p eαx + q x eαx

α = β = μ+ i ν ∈ C : y(x) = eμx
[
p cos(νx) + q sin(νx)

]
, p , q ∈ R .

(a2) Find GRSH y(x) of the homogenous equation

ay′′′ + by′′ + cy′ + dy = 0 , a �= 0 .

Compute the zeros α, β, γ of the characteristic polynomial
p(λ) = aλ3 + bλ2 + cλ+ d , then GRSH for p, q, r ∈ R:

α, β, γ ∈ R , all distinct : y(x) = p eαx + q eβx + r eγx

α, β, γ ∈ R , β = γ : y(x) = p eαx + q eβx + r x eβx

β = γ = μ+ i ν ∈ C : y(x) = p eαx + eμx
[
q cos(νx) + r sin(νx)

]
.

(a3) Find GRSH y(x) of the homogenous equation

ay(4) + by′′′ + cy′′ + dy′ + ey = 0 , a �= 0 .

Compute the zeros αi , i = 1 : 4 of the characteristic polynomial
p(λ) = aλ4 + bλ3 + cλ2 + dλ+ e , then GRSH for αi ∈ R , all distinct:

y(x) = p1 e
α1x + p2 e

α2x + p3 e
α3x + p4 e

α4x

αi ∈ R , α3 = α4 :

y(x) = p1 e
α1x + p2 e

α2x + p3 e
α3x + p4 x e

α4x

αi ∈ R , α2 = α3 = α4 :

y(x) = p1 e
α1x + p2 e

α2x + p3 x e
α2x + p4 x

2 eα2x

αi ∈ R , all equal α :

y(x) = p1 e
αx + p2 x e

αx + p3 x
2 eαx + p4 x

3 eαx

α1 �= α2 ∈ R , α3 = α4 = μ+ i ν ∈ C :

y(x) = p1 e
α1x + p2 e

α2x + eμx
[
p3 cos(νx) + p4 sin(νx)

]

α1 = α2 ∈ R , α3 = α4 = μ+ i ν ∈ C :

y(x) = p1 e
α1x + p2 x e

α1x + eμx
[
p3 cos(νx) + p4 sin(νx)

]
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α1 = α2 = μ+ iν ∈ C :

y(x) = eμx
[
(p1 + p2 x) cos(νx) + (p3 + p4 x) sin(νx)

]
;

and so on.
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Figure 1.4. y1 = xe−x and y2 = x2e−x

(b) Inhomogenous Linear Differential Equations with Constant
Coefficients and Special Right Sides Let the differential operator D be
defined by Dy(x) = y′(x) , let Dky(x) = y(k)(x) , and let p(λ) ∈ Πm be a real
polynomial of exact degree m . Then a general linear differential equation of
order m with constant coefficients and right side f(x) has the form

p (D)y = f(x) .

A particular solution (PSI) z(x) of this inhomogenous equation can be found
in the following cases:

(b1) α = μ+ i ν, μ, ν ∈ R is a k-fold zero of p(λ) and

f(x) = a eαx = a e(μ+iν)x = a eμx[cos(νx) + i sin(νx)] , a ∈ R .

Then PSI (possibly complex)

z(x) = b xkeαx, b =
a

p(k)(α)
.

Case 1: α real then z(x) real.
Case 2: g(x) = Re f(x) = a eμx cos(νx) then

Re z(x) is a solution of P (D)y = g(x) ≡ Re f(x) = a eμx cos(νx) .

Case 3: h(x) = Im f(x) = a eμx sin(νx) then

Im z(x) is a solution of P (D)y = h(x) = Im f(x) = a eμx sin(νx) .

Of course the cases μ = 0 and/or ν = 0 are admitted here, too.
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(b2) α = μ + i ν, μ, ν ∈ R is a k-fold zero of p(λ) , q(x) ∈ Πn is a real
polynomial of exact degree n , and

f(x) = q(x) eαx = q(x) e(μ+iν)x = q(x) eμx[cos(νx) + i sin(νx)] .

Then a PSI z(x) has the form (“ansatz of type of the right side”):

z(x) = Q(x)xkeαx, Q(x) ∈ Πn .

Accordingly, the polynomial Q(x) must have the same degree as q(x) . The
polynomial R(x) := Q(x)xk (!) must be a solution of the algebraic equation

M∑
j=k

p(j)(α)
j!

R(j)(x) = q(x) , M = min{m, n+ k} .

The unknown coefficients of Q(x) are computed from this equation by com-
parison of coefficients.

Hint: If α is complex then the polynomial Q(x) has to be substituted with
complex coefficients.
Case 1: α real, then z(x) is real and solution of the inhomogenous equation.
Case 2: α complex, then

Re z(x) = Re R(x)eμx cos(νx) − Im R(x)eμx sin(νx)

is solution of P (D)y = Re f(x) = q(x) eμx cos(νx) and

Im z(x) = Re R(x)eμx sin(νx) + Im R(x)eμx cos(νx)

is solution of P (D)y = Im f(x) = q(x) eμx sin(νx) .
By this way, solutions of the equation

P (D)y = g(x) with g(x) = q(x) eμx cos(νx) resp. with g(x) = q(x) eμx sin(νx)

can be computed as well as arbitrary linear combinations of these both types.
(c) The general solution of p(D)y = f(x) . Let u(x) be the general

solution of p(D)y = 0 and let v(x) be a particular solution of p(D)y = f(x) ;
then y(x) = u(x) + v(x) is the general solution of the affine linear equation
p(D)y = f(x) .

(d) Example The oscillator,

ẍ+ a ẋ+ b2x = 0 , a ≥ 0 , 0 < b fixed ,

has a quadratic characteristic polynomial with zeros

λ1,2(a) =
1
2

(
−a± (a2 − 4b2)1/2

)
.
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This yields four possibilities:

a = 0 : λ1 = λ2 ∈ iR oscillation without damping

0 < a < 2b : λ1 = λ2 ∈ C damped oscillation

a > 2b : λ2 < λ1 < 0 strong damping without oscillation.

In the critical fourth case a = 2b we have λ := λ1,2 = −a/2 < 0 and the
general solution has the form

x(t) = eλt(α+ β t) , α, β ∈ R .

It is illustrated in Figure 1.5 that this limit case yields the most damped
solution without oscillation (b = 1/2) :
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Figure 1.5. Damped oscillation, eigenvalues

1.5 Linear Differential Systems of First Order

Let I be an open interval, let A : I � t �→ A(t) ∈ R
n

n be a continuous tensor
field and c : I � t �→ c(t) ∈ R

n a continuous vector field. We seek the general
solution x : t �→ x(t) of

ẋ(t) = A(t)x(t) + c(t) , (1.27)

resp. a solution with given inital or boundary conditions.
(a) Autonomous Homogenous Systems with Diagonalizable Ma-

trix Here, the matrix A is constant and c = 0 ; hence

ẋ(t) = Ax(t) . (1.28)

For every characteristic pair (λ, u) of the matrix A , there exists a solution of
(1.28) with four different possibilities:

Case 1: λ ∈ R is a simple eigenvalue, then x(t) = eλtu is a solution of
(1.28).
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Case 2: λ ∈ R is a m-fold eigenvalue with linearly independent eigenvectors
u1, . . . , um , then xi(t) = eλtui , i = 1 : m , are linearly independent solutions
of (1.28).

Case 3: λ = μ+i ν ∈ C , ν > 0 , is a simple eigenvalue with eigenvector u =
v+ i w ∈ C

n , then (λ, u) is also a characteristic pair and x(t) = eλtu , x(t) =
eλtu are two conjugate complex solutions of (1.28). Their real and imaginary
part,

Re x(t) = eμt
[
v cos(νt) − w sin(νt)

]
, Im x(t) = eμt

[
v sin(νt) + w cos(νt)

]

constitute two linearly independent real solutions of (1.28).
Case 4: As Case 3 but λ is an m-fold eigenvalue with m (complex) linearly

independent eigenvectors ui then, accordingly,

Re xi(t) = Re
(
eλtui

)
, Im xi(t) = Im

(
eλtui

)
, i = 1 : m,

are 2m linearly independent real solutions of (1.28).
Repeating this process for all eigenvalues of the matrix A yields together

a fundamental system x1, . . . , xn of n linearly independent real solutions, and
the general solution of (1.28) is an arbitrary linear combination

x(t) = a1 x1(t) + . . .+ an xn(t) , ai ∈ R .

(b) Autonomous Homogenous Systems with Undiagonalizable
Matrix Here we need the Jordan decomposition of the leading matrix A
and, using the same notations as in Sect. 1.1(c3), we write

ẋ(t) = Ax(t) = U(Λ+ T )V x(t) , V = U−1 . (1.29)

Let now exp(Λt) = diag (exp(λ1t) , . . . , exp(λnt)) be a diagonal matrix and

eA = lim
n→∞

n∑
k=1

Ak

k!
.

Then we obtain by the nilpotence of the matrix T , i.e., Tn = 0 ,

e(Λ+T )t = eΛt
n∑

k=0

tk

k!
T k , eAt = Ue(Λ+T )tV ,

d

dt
eAt = U(Λ+ T )e(Λ+T )tV .

The general solution of the homogenous system (1.28) thus has the form

x(t) = UeΛt
n∑

k=0

tk

k!
T ka , a ∈ R

n . (1.30)
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Example 1.4. We choose the matrix A ∈ R
5
5 as in the example of Sect. 1.1(c3)

but with one eigenvalue λ = μ and two eigenvectors u1 and v1. Then T 3 = 0 ,

T =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
, T 2 =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦
,

and

S(t) :=
2∑

k=0

tk

k!
T k =

⎡
⎢⎢⎢⎢⎣

1 t 0 0 0
0 1 0 0 0
0 0 1 t t2/2
0 0 0 1 t
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
, eΛtS(t)a = eλt

⎡
⎢⎢⎢⎢⎣

a1 + a2t
a2

a3 + a4t+ a5t2/2
a4 + a5t
a5

⎤
⎥⎥⎥⎥⎦
.

Using the same notations as in Sect. 1.1(c3) for the eigen- and principal
vectors, the general solution of the homogenous system now reads as follows:

x(t)

= eλt

[
u1

(
a1 + a2t

)
+ u2a

2 + v1

(
a3 + a4t+ a5 t

2

2

)
+ v2 (a4 + a5t) + v3a5

]

= eλt

[
a1u1 + a2 (u2 + tu1) + a3v1 + a4 (v2 + tv1) + a5

(
v3 + tv2 +

t2

2
v1

)]
.

(c) On Stability The system (1.28) is called stable if the absolute dif-
ference of every two solutions remains bounded for every t-interval, and it is
called asymptotically stable if the difference of every two solutions tends to
zero for t → ∞ . Then the following result is an immediate inference of (1.30)
and Theorem 1.1.

Theorem 1.8. (1◦) The system (1.28) is stable if all eigenvalues of A have
non-positive real part and all purely imaginary eigenvalues as well as the pos-
sible eigenvalue null are semi-simple, i.e., have no principal vectors.
(2◦) The system (1.28) is asymptotically stable if all eigenvalues of A have
negative real part.

(d) General Linear Systems If the system ẋ = A(t)x has dimension
n then arbitrary n linearly independent solutions x1, . . . , xn are called funda-
mental system constituting a basis of the vector space of solutions. In order
to show the independence, it is sufficient by a famous result of Liouville to
verify the regularity of the fundamental matrix X(t) = [x1(t), . . . , xn(t)] in
only one point t0 of the interval I . The general solution is then x(t) = X(t)a
with arbitrary vector a , and a change of basis is obtained in the same way as
in R

n by multiplication X(t) from right with a constant regular matrix.
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Theorem 1.9. (Unique Existence) Let B ∈ R
n

n be an arbitrary regular ma-
trix then, for every t0 ∈ I , there exists a unique continuously differentiable
fundamental system X(t) of (1.27) such that X(t0) = B .

The Wronski matrix

W : I × I � (s, t) �→ W (s, t) = X(s)X(t)−1 ∈ R
n

n ,

is continuously differentiable in both arguments and has the properties

Wt(t, t0) = A(t)W (t, t0)
W (s, t)W (t, t0) = W (s, t0)

W (t, t0) regular for all t, t0 ∈ I ,

in particular, W (s, t)W (t, s) = W (s, s) = I identity. By means of the Wron-

ski matrix, the general solution (or also the flux) of (1.27) can be written
explicitly depending on all variables:

x(t; t0, x0) = W (t, t0)x0 +
∫ t

t0

W (t, s)c(s) ds . (1.31)

Accordingly, the set of solutions of the initial value problem for (1.27) con-
stitutes an affine vector space of dimension n , and the solution x depends
continuously differentiable on the initial values (t0, x0) . If a fundamental ma-
trix X with X(t0) = I is known, the solution (1.31) has the somewhat simpler
form

x(t; t0, x0) = X(t)x0 +X(t)
∫ t

t0

X(s)−1c(s) ds , X(t0) = I . (1.32)

(e) Special Right Sides Inhomogenous systems (1.27) with constant
matrix A allow the computation of particular solutions z(t) for a large class
of right sides as in the scalar case but here the Jordan decomposition A =
U(Λ + T )V is a necessary tool. Using (1.30) we obtain by (1.32) the general
representation

z(t) = Ue(Λ+T )t

∫ t

t0

e−(Λ+T )sV c(s) ds = U

∫ t

t0

e(Λ+T )(t−s)V c(s) ds .

(e1) Let the right side be c(t) = c eαt then

z(t) = Ue(Λ+T )t

∫ t

t0

e−(Λ+T )sV c(s) ds = Ue(Λ+T )t

(∫ t

t0

e(αI−Λ−T )s ds

)
V c

where I is the unit matrix again. This result holds also in case of resonance,
i.e. if α is single or multiple eigenvalue of the matrix A .
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(e2) Let the right side be c(t) = c eμt cos(νt) resp. c(t) = c eμt sin(νt) with
real vector c then we proceed as in (e1) but substituting a complex right side
c e(μ+i ν)t . Ensuing Re z(t) resp. Im z(t) is a particular real solution of (1.27).

(e3) Let the right be c(t) = c tk eαt with real vector c and real α or —
after complexification — complex α , then

z(t) = Ue(Λ+T )t

∫ t

t0

e−(Λ+T )sV c(s) ds = Ue(Λ+T )t

(∫ t

t0

sk e(αI−Λ−T )s ds

)
V c .

The appearing integrals can be found explicitly in each case by multiple partial
integration. Ensuing, Re z(t) resp. Im z(t) is a particular real solution of (1.27)
again.

Example 1.5. Let the constant matrix A be diagonalizable and let c(t) = c eαt .
If α is not an eigenvalue of A (no resonance), then

z(t) = U DV c , D = (αI − Λ)−1
[
e(αI−Λ)t

]
diagonal matrix

is a particular solution. If α is single or multiple eigenvalue (resonance), all
those diagonal elements of D must be replaced by t eα t whose denominator is
zero.

(f) Boundary Value Problems We consider the general linear boundary
value problem

Lx := ẋ−A(t)x = c(t), R0x(0) +R1x(1) = d ∈ R
m , m ≤ n , (1.33)

in interval I = [0, 1] where R0 , R1 ∈ R
m

n are arbitrary matrices for the
present. The general solution of Lx = c has the form

x(t) = X(t)a+ z(t) , a ∈ R
n,

with an arbitrary fundamental matrix X(t) , a particular solution z(t) of the
inhomogenous system, and an arbitrary vector a . Substitution into the bound-
ary conditions yields a linear system of equations for the constant vector a ,

R0z(0) +R1z(1) + [R0X(0) +R1X(1)]a = d ∈ R
m . (1.34)

The rank of the characteristic matrix

C := R0X(0) +R1X(1) ∈ R
m

n (1.35)

is determined uniquely and the system (1.34) has a unique solution a for
regular C which implies that m must be equal to n .

Let now w be a continuous differentiable function satisfying the boundary
conditions,

R0w(0) +R1w(1) = d ,
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and let v be a solution of the semi-homogenous boundary value problem

Lv = c− Lw , R0v(0) +R1v(1) = 0 (1.36)

with homogeneous boundary conditions and inhomogenous right side, then
x = v + w is a solution of (1.33). If a ∈ Ker(C) , then x : t �→ X(t)a is
a solution of the full homogenous boundary problem and, conversely, every
solution x(t) = X(t)a of the full homogenous problem must satisfy Ca = 0 .
Because dim Ker(C) + rank(C) = n , we thus obtain the following result:

Theorem 1.10. (1◦) The boundary value problem (1.33) has a unique solu-
tion for all right sides c(t) if an only if the characteristic matrix C is regular.
(2◦) The full homogenous problem has n− rank(C) linearly independent solu-
tions.

Example 1.6. The scalar boundary problem ẍ+ λ2x = 0 , x(0) = 0 , x(1) = d
is equivalent to the system

u̇ = v
v̇ = −λ2u

, u(0) = 0 , u(1) = d ,

with solution u(t) = γ sin(λt) , v = u̇ (Z entire numbers).

λ /∈ πZ =⇒ sinλ �= 0 , γ = d/ sinλ unique solution
λ ∈ πZ =⇒ sinλ = 0 , d �= 0 no solution

d = 0 infinitely number of solutions.

(g) Periodic Solutions A linear system

ẋ(t) = A(t)x(t) + c(t) (1.37)

is called T -periodic, if both A and c are T -periodic and everywhere continuous.
By means of (1.31) we obtain immediately:

Lemma 1.7. The system (1.37) has a T -periodic solution if and only if the
mapping

ξ �→ W (T, 0)ξ +
∫ T

0

W (t, s)c(s) ds

has a fixed point ξ∗.

If y : t �→ y(t) is a T -periodic solution, y : t �→ y(t + α) is also a T -periodic
solution for every α ∈ R ; hence T -periodic solutions are never determined
uniquely which leads to apparent difficulties in their numerical computation.

(g1) The real system (1.37) with constant matrix A and c(t) ≡ 0 has a
T -periodic solution by (a) if and only if λ = 2π i/T is eigenvalue of A. More
general, let again σ(A) be the spectrum of A in the complex plane and let the
neutral spectrum be σn(A) := σ(A)∩ iR , i.e., the intersection of the spectrum
with the imaginary axis. If A is real then σn(A) may contain the eigenvalue
zero as well as conjugate complex, purely imaginary eigenvalues, or it can be
empty. By (a) and Fredholm’s alternative we obtain
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Lemma 1.8. (1◦) If σn(A) �= ∅ , the homogenous T -periodic system (1.37)
has periodic solutions.
(2◦) If

σ(A) ∩ 2π i
T

Z = ∅ ,

the inhomogenous T -periodic system (1.37) has at least one T -periodic solu-
tion.
(3◦) If σn(A) = ∅ , the inhomogenous T -periodic system (1.37) has exactly
one T -periodic solution.

Proof see e.g. (Amann), Sect. 20, 22.
The solution x(t) in Lemma 1.8(3◦) can be displayed explicitly if the matrix

A is diagonalizable. Let

σs(A) = {λ ∈ σ(A) , Reλ < 0} the stable spectrum
σu(A) = {λ ∈ σ(A) , Reλ > 0} the unstable spectrum

{u1, . . . , up} = a basis of the subspace U of all eigenvectors
belonging to eigenvalues of σs(A)

{v1, . . . , vq} = a basis of the subspace V of all eigenvectors
belonging to eigenvalues of σu(A)

and let

U = [u1, . . . up] , P = U [UTU ]−1UT projector onto U
V = [v1, . . . , v] , Q = V [V TV ]−1V T projector onto V .

By assumption, p+ q must be equal to the dimension n of the system. With
these notations it follows that

x(t) =
∫ t

−∞
e(t−s)AP c(s) ds−

∫ ∞

t

e(t−s)AQc(s) ds .

(g2) Periodic solutions of the non-autonomic T -periodic system (1.37)
can be obtained explicitly only if all solutions of the homogenous system
ẋ = A(t)x are known explicitly. Let W (s, t) be the Wronski matrix of (b)
then, by the property W (r, s)W (s, t) = W (r, t) , W (r, r) = I , there follows
at first W (t+ T, T ) = W (t+ T, 0)W (0, T ) and then, by the periodicity of A,
on the one side,

d

dt
W (t+ T, T ) =

d

dt
W (t+ T, 0)W (0, T ) = A(t+ T )W (t+ T, 0)W (0, T )

= A(t)W (t+ T, 0)W (0, T ) = A(t)W (t+ T, T ) ,

W (0 + T, T ) = I , and on the other side

d

dt
W (t, 0) = A(t)W (t, 0) , W (0, 0) = I .
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Because of the unique existence of a solution of the initial value problem, we
thus find that

W (t+ T, 0)W (0, T ) = W (t+ T, T ) = W (t, 0) ;

hence with inversion

W (t+ T, 0) = W (t, 0)W (T, 0) .

The eigenvalues of the T -translation or monodromy matrix W (T, 0) are called
Floquet multipliers ; they are independent of the variable t ! If λ = 1 is a
Floquet multiplier, there exists a vector a �= 0 with W (T, 0)a = W (0, 0)a =
a . Accordingly,

y(t+ T ) := W (t+ T, 0)a = W (t, 0)a = y(t) ,

and thus y(t) is a T -periodic solution of the homogenous system. In inho-
mogenous systems Fredholm’s alternative may be applied again and yields:

Lemma 1.9. (1◦) The homogenous T -periodic system ẋ = A(t)x has a non-
trivial T -periodic solution if and only if unity is a Floquet multiplier.
(2◦) The inhomogenous T -periodic system ẋ = A(t)x+ c(t) has a
T -periodic solution if and only if unity is not a Floquet multiplier.

References: (Amann).

1.6 The Flux Integral and its Vector Field

Hint: The notation “flux integral” is introduced here for abbreviation and
does appear seldom in the literature with the same meaning.

(a) The Flux Integral Let I ⊆ R be an open interval, let Ω ⊆ R
n

be an open, connected set (domain) and v : I × Ω → R
n a Cr vector field,

v ∈ Cr(I ×Ω; Rn), with r ≥ 1. (See Sect. 1.7 for the notation Cr).

Theorem 1.11. (Unique Existence) For every pair (t0, x0) ∈ I × Ω there
exists a unique solution Φ(t; t0, x0) of the initial value problem

ẋ = v(t, x) , x(t0) = x0 , (1.38)

with the following properties:

(1◦) Φ(t0; t0, x0) = x0 ;
(2◦) Φ approaches the boundary of I ×Ω arbitrary close — but not necessarily

the ends of the interval I — (“cannot be continued further”);
(3◦) Φ is (r + 1)-times continuously differentiable w.r.t. t ;
(4◦) Φ is r-times continuously differentiable w.r.t. t0 and w.r.t. x0 .
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Proof see, e.g., (Arnold80).
The mapping

Φ : It0 × I ×Ω � (t; t0, x0) �→ Φ(t; t0, x0) ∈ R
n , It0 ⊂ I maximum

is called flux integral of the vector field v in the sequel. It describes all solutions
of the initial value problem (1.38) together and thus contains its complete
information. One writes also briefly

Φ(t; t0, x0) = x0 +
∫ t

t0

v(τ, x) dτ for Φ(t; t0, x0) = x0 +
∫ t

t0

v(τ, Φ(τ ; t0, x0) dτ .

(b) A Stationary Vector Field does not depend explicitly on the inde-
pendent variable t . Then initial time is frequently set equal to zero, t0 = 0 ,
and this argument is entirely dropped in the integral Φ which is briefly called
flux in this case. The mapping Φ( ◦ , x) : I � t �→ Φ(t, x) is called phase curve
through x and Φ(I, x) orbit of x (set of points of a phase curve) where x is
supposed to be fixed both times.

Some properties:

(1◦) Because

v(x) :=
∂Φ

∂t
(0, x) =⇒ ∂Φ

∂t
(t, x) = v(Φ(t, x)) ,

v(x) is the phase velocity vector (tangent vector) of Φ .
(2◦) For s , t with s+ t ∈ I , the following holds

Φ(s+ t, · ) = Φ(t+ s, · ) = Φ(s, · ) ◦ Φ(t, · ) ≡ Φ(s, Φ(t, · )) ,

Φ(0, · ) = identity, and Φ reveals to be a (local) transformation group in
mathematical sense; see also Sect. 10.6.

(3◦) Let F : Φ(I×Ω)∩Ω → R
n be a reversible mapping being smooth in both

directions (diffeomorphism) then Ψ = F ◦Φ is a flux with vector field w ,

∂

∂t
Ψ(t, x)

∣∣∣
t=0

= ∇F (Φ(t, x))
∂

∂t
Φ(t, x)

∣∣∣
t=0

= ∇F (x)v(x) ,

because Φ(0, x) = x , and thus

∀ x ∈ Ω : w(x) = ∇F (x)v(x) .

(4◦) A fixed point x of Φ with x = Φ(t, x) ∀ t ∈ I yields v(x) = 0 by (1.38). All
points with this property are constant solutions and are called equilibrium
points or singular points of the vector field; points with v(x) �= 0 are
regular points of v . Since exactly one phase curve passes through every
point of the domain of v ∈ C1 by Theorem 1.11 on unique existence,
singular points are isolated solutions which can never be reached by other
solutions in finite time; nevertheless they are sometimes called bifurcation
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points . A solution passing to a singular point in the limit |t| → ∞ is
called separatrix if that singular point is not a center. The next result
shows that the global behavior of a vector field is determined qualitatively
by its singular points and their topological character.

(c) Straightening of Vector Fields A nonlinear vector field v in a
canonical coordinate system of coordinate space R

n has curvilinear phase
curves for solutions. All these solutions together constitute the flux Φ of v .
Of course, a fixed vector v(x0) can always be moved into, e.g., the first unit
vector e1 by rotation or reflection. The question is now whether there exists
locally a unique mapping F of which the gradient ∇F (x) has this property for
all x in a full neighborhood of x0. The columns of the (regular) matrix ∇F (x)
then constitute a curvilinear coordinate system (moving frame) along of which
v(x) = e1 is constant in a suitable neighborhood U of x0 . If such a mapping
exists between two general vector fields, they are called local similar. The
following result is sometimes called Main Theorem of Ordinary Differential
Systems (Arnold80).

Theorem 1.12. (Straightening Theorem) Let v : Ω → R
n be a conservative

vector field, let x0 ∈ Ω , v(x0) �= 0 , and let e1 = [1, 0, . . . , 0]T ∈ R
n . Then

there exists an open set U with x0 ∈ U ⊂ R
n and a diffeomorphism F : U → U

so that
∀ x ∈ U : e1 = ∇F (x)v(x) . (1.39)

Proof see SUPPLEMENT\chap01a for n = 3; cf. also (Arnold80).

Corollary 1.2. All smooth, conservative vector fields v are local similar in
regular points x with v(x) �= 0 .

In other words, if v and w are stationary, continuously differentiable vector
fields and v(x0) �= 0, w(x0) �= 0 , there exists a an open neighborhood U of x0

and a diffeomorphism H so that w(x) = ∇H(x)v(x) for all x ∈ U .
If v : (t, x) �→ v(t, x) is a non-conservative vector field, we introduce the

independent variable t for new dependent variable and consider the system

ẏ =
[

1
v(y)

]
, y = (t, x) .

Corollary 1.3. Let v(t0, x0) �= 0 ∈ R
n then there exists an open set (t0, x0) ∈

V ⊂ R
n+1 and a diffeomorphism G : V → V so that

∀ (t, x) ∈ V : e1 = ∇G(t, x)
[

1
v(t, x)

]
∈ R

n+1 ,

hence ṫ = 1 , ẋ = v(t, x) is local similar to the system ẏ1 = 1 , ẏi = 0 , i = 2 :
n+ 1 in every point (t0, x0) and, besides, t remains unchanged.
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(d) Invariants A mapping F : Φ(I ×Ω) → R is called an invariant of Φ
or a first integral if

∀ t ∈ I ∀ x ∈ Ω : F (Φ(t, x)) = F (x)
(

= F (Φ(0, x))
)
.

In other words, F ist constant on every orbit of Φ . A mapping F is called
invariant of a conservative vector field v if

∀ x ∈ Ω : ∇F (x)v(x) = 0 ∈ R .

(∇F (x) is a row vector again.)

Theorem 1.13. Let Φ be a flux with conservative vector field v then F is
invariant of Φ if and only if F is invariant of v .

Proof. “=⇒” clear!. “⇐=” with (g′(t) = 0 =⇒ g(t) = c). ��
Let for instance

ẋ = Hy(x, y) ∈ R , ẏ = −Hx(x, y) ∈ R ,

be a Hamilton system then H is an invariant (implicit representation of the
solution). Of course, one invariant suffices for implicit representation of the so-
lution of a differential system with two equations and two dependent variables.
More generally, n− 1 invariants are necessary for the implicit representation
in a system ẋ = v(x) with x(t) ∈ R

n.

Definition 1.1. Let Ω ⊂ R
n be open and let f ∈ C1(Ω; Rm). Then the com-

ponents f i of f are functionally dependent if

∀ x ∈ Ω ∃ U ⊂ R
n open ∃ 0 �= G ∈ C1(f(Ω); R) ∀ x ∈ U : G(f(x)) = 0 ;

otherwise they are functionally independent.

Lemma 1.10. Let f ∈ C1(Ω; Rm) then the components f i of f are function-
ally independent if and only if ∇f(x) has rank m for all x ∈ Ω .

Let v : Ω → R
n be a vector field and let f1, . . . , fk be the maximum number

of functionally independent invariants then the most general invariant is given
by Ψ(f1, . . . , fk) with arbitrary Ψ ∈ C1.

The following lemma supplies the desired information about the local ex-
istence of invariants.

Lemma 1.11. Let v : R
n ⊃ Ω → R

n be a conservative C1 vector field and let
v(x0) �= 0 . Then there exist exactly n− 1 functionally independent invariants
F i ∈ C1(U ; R) in a suitable open neighborhood x0 ∈ U ⊂ Ω .
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Proof. (1◦) Let v(x) = e1 . Then the simple mappings F i : x �→ xi , i = 2 : n ,
are invariants and functionally independent.
(2◦) Let v be general with v(x0) �= 0 , let F be the local straightening mapping
so that (1.39) holds. Then the i-th component F i of F is an invariant for
i = 2 : n . Namely, if v1(x0) �= 0 without loss of generality,

F i(Φ(t,X)) = const ⇐⇒ (F i ◦ Φ)t(t,X) = 0

⇐⇒ ∇F i(Φ(t,X)) · Φt(t,X) = 0 ⇐⇒ [∇F (x)]i · v(x) = 0 , i = 2 : n ,

for x = Φ(t,X) ∈ U(x0) . But we have

∇F (x)v(x) = e1 , x ∈ U(x0)

by assumption, hence the assertion is proved. ��
(e) Transformation Let once more F : R

n(x) ⊃ Ω → R
n(y) be a diffeo-

morphism writing y = F (x) , x = F−1(y) , and let Ψ(t, x) = F (Φ(t, x)) be the
flux Ψ with vector field w(x) = ∇F (x)v(x) under the mapping F , then y =
Ψ(0, x) = F (Φ(0, x)) = F (x) . What does the flux Ψ look like in y-coordinates,
i.e., if the x-coordinates are transformed by F , too? Of course it is the flux
Ψ̃(t, y) = Ψ(t, F−1(y)) with vector field w̃(y) = ∇F (x)v(x) , x = F−1(y) .
One verifies easily the flux properties:

Ψ̃(0, y) = Ψ(0, F−1(y)) = F (Φ(0, F−1(y))) = F (F−1(y)) = y

and, using x = F−1(y) ,

Ψ̃(s+ t, y) = Ψ(s+ t, x) = F (Φ(s+ t, x)) = F (Φ(s, Φ(t, x)))

= Ψ(s, F−1(F (Φ(t, x))) = Ψ̃(s, F (Φ(t, x))) = Ψ̃(s, Ψ(t, x))

= Ψ̃(s, Ψ(t, F−1(y)) = Ψ̃(s, Ψ̃(t, y)) .

(f) Examples

Example 1.7. The system ẋ = λx has the general solution x(t) = ceλ t. A
substitution of x(t0) = x0 yields the flux

Φ(t; t0, x0) = x0e
λ(t−t0) .

Example 1.8. The autonomeous system ẋ1 = x2(1 − x1) , ẋ2 = −x1(1 − x2)
has the critical points x = (0, 0) and x = (1, 1) and the first integral (implicit
solution)

F (x, y) = ln |y − 1| + ln |1 − x| + y + x = c .

Example 1.9. The differential equation ẋ = ex sin t has the general solution
x(t) = − ln(cos t + c) . By substitution of (t0, x0) we obtain again the flux
integral

Φ(t; t0, x0) = − ln(cos t+ exp(−x0) − cos t0) .

However, the solutions exist for all t ∈ R only on and below the bold curve in
Fig. 1.7.
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Example 1.10. For displaying the flux integral of ẋ = (t− x+ 3)2 , we have to
decompose the (t, x)-plane into
Ω1 = {(t, x) , |t− x+ 3| < 1} , Ω2 = {(t, x) , t− x+ 3 < −1} ,
Ω3 = {(t, x) , t− x+ 3 > 1}. One computes then

Φ(t; t0, x0) = t+ 3 − (t0 − x0 + 4)e2t + (t0 − x0 + 2)e2t0

(t0 − x0 + 4)e2t − (t0 − x0 + 2)e2t0

for (t0, x0) ∈ Ω2 ∪Ω3 and

Φ(t; t0, x0) = t+ 3 − (t0 − x0 + 4)e2t − (t0 − x0 + 2)e2t0

(t0 − x0 + 4)e2t + (t0 − x0 + 2)e2t0

for (t0, x0) ∈ Ω1 ; the solutions exist only in Ω1 for all t ∈ R .

Example 1.11. The Hamilton system ẋ = y(1 − x2) , ẏ = x(y2 − 1) has the
critical points

x0 = (0, 0) , x1 = (1 , 1) , x2 = (1 , −1) , x3 = (−1 , 1) , x4 = (−1 , −1) ,

and for invariant the Hamilton function

H(x, y) =
1
2
(
x2 + y2 − x2y2

)
= d .

All separatrices are straight line segments and can be found explicitly. For
instance, inserting x = 1 yields

ẋ = 0 , ẏ = y2 − 1 ⇐⇒ ẏ

y2 − 1
= 1 .

Separation of variables yields with partial fraction expansion

ẏ

y − 1
− ẏ

y + 1
= 2 .

Therefore

ln |y − 1| − ln |y + 1| = ln
|y − 1|
|y + 1| = 2t+ c1 =⇒ |y − 1|

|y + 1| = c e2t

where c = 1 without loss of generality.

y > 1 : y(t) =
1 + e2t

1 − e2t
, −∞ < t < 0 , lim

t→−∞
y(t) = 1 , lim

t→0−
y(t) = ∞

y < −1 : y(t) =
1 + e2t

1 − e2t
, 0 < t < ∞ , lim

t→∞
y(t) = −1 , lim

t→0+
y(t) = −∞

|y| < 1 : y(t) =
1 − e2t

1 + e2t
, −∞ < t < ∞ , lim

t→∞
y(t) = −1 , lim

t→−∞
y(t) = 1 .
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Figure 1.8. Example 1.10

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 1.9. Example 1.11

Singular values for the restricted three-body problem are computed in Sect.
6.5.

References: (Amann), (Arnold80).
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1.7 Vector Spaces

Let Ω ⊂ R
n be a bounded, open and connected set (bounded domain) with

continuous, piecewise smooth boundary Γ = ∂Ω , and let Ω = Ω ∪ ∂Ω be
the closure of Ω .

(a) Spaces of Continuous Functions

C(a, b) := C((a, b),R) := vector space of continuous functions
f : (a, b) → R

C[a, b] := C([a, b],R) := vector space of continuous functions f : [a, b] → R

Cs(a, b) := subspace of functions in C(a, b)
with continuous derivatives up to order s ≥ 1

Cs[a, b] := subspace of functions in C[a, b]
which together with their derivatives up to order s
can be continued on [a, b] to continuous functions

C∞(a, b) := subspace of functions in C(a, b)
having derivatives of arbitrary order .

(1.40)
In these examples, the null element is the constant function u(x) = 0 for
x ∈ (a, b) or x ∈ [a, b] , respectively. The spaces C(Ω) , C(Ω) , Cs(Ω) , Cs(Ω)
C∞(Ω) are defined as in (1.40) with “derivative” replaced by “partial deriva-
tive” and “order” by “total order” in the sense of the subsequent Example
1.12.

(b) Banach Spaces As well known, a sequence {xn} in a (real) normed
vector space X is called Cauchy sequence if ∀ ε > 0 ∃ Nε ∀ m,n > Nε :
‖xm−xn‖ < ε . By the following result, every Cauchy sequence is convergent
to an element in X independent of the just applied norm in case X is finite-
dimensional.

Theorem 1.14. (Norm Equivalence Theorem) Let dim(X ) < ∞ and let
‖◦‖α , ‖◦‖β be two norms in X then there exist uniform constants 0 < m ≤ M
such that

∀ x ∈ X : m ‖x‖α ≤ ‖x‖β ≤ M ‖x‖α .

Proof see (Stoer), Sect. 4.4.
However, this result is no longer valid in spaces X of infinite dimension

as, e.g., C(a, b) with the maximum norm. A normed vector space X is called
Banach space if every Cauchy sequence with elements in X does converge
to an element belonging to X . In this case, a subset M ⊂ X as well as X is
called closed or complete w.r.t. the present norm. The two notions differ from
each other only in more general topological vector spaces.

Example 1.12. The spaces of functions C(Ω) and Cs(Ω) are Banach spaces
with the supremum norm

‖f‖C := sup
x∈Ω

|f(x)| , and ‖f‖Cs := sup{|Dσf(x)|, x ∈ Ω, |σ| ≤ s} ,
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respectively, where x = (x1, . . . , xn) , σi ∈ N0 := N ∪ {0} , σ = (σ1, . . . , σn) ,
|σ| = σ1 + · · · + σn , and

Dσf =
∂|σ|f

(∂x1)σ1 · · · (∂xn)σn
.

(c) Linear Mappings Let X and Y be normed vector spaces, then a
linear mapping A : X → Y is continuous if and only if it is bounded, i.e.,

∃ κ > 0 ∀ x ∈ X : ‖Ax‖ ≤ κ‖x‖ .
If the image space Y is a Banach-Raum, the vector space L(X ,Y) of contin-
uous linear mappings X in Y with the operator norm

‖A‖ = sup
‖x‖=1

‖Ax‖
(

= sup
‖x‖≤1

‖Ax‖ = sup
x�=0

‖Ax‖
‖x‖

)

is also a Banach space.
(d) Linear Functionals and Hyperplanes Of course, R with the ab-

solute value for norm is a Banach space hence the vector space L(X ,R) of
continuous linear functionals f : X → R is a Banach space by (c).

Example 1.13. Let f(x) =
∫ b

a
x(t) dt , x continuous and let

‖x‖ = sup a≤t≤b|x(t)| , then

‖f‖ = sup
‖x‖=1

∣∣∣∣∣
∫ b

a

x(t) dt

∣∣∣∣∣ ≤ sup
‖x‖=1

‖x‖(b− a) = b− a .

Let now U ⊂ X be a linear subspace and let 0 �= v ∈ X be arbitrary then

V = v + U := {x ∈ X , x− v ∈ U}
is called an affine (linear) subspace. Here, U is determined uniquely whereas
v can be chosen arbitrarily in V . The maximum affine subspaces V with the
property

∃ w ∈ X : (w /∈ V) ∧ (X = span{w,V})
are called hyperplanes. In other words, there is no “place” for a further sub-
space W “between” a hyperplane V ⊂ X and the vector space X itself:

V ⊂ W ⊂ X =⇒ (V = W) ∧ (W = X ) .

The following result displays the strong connection between linear functionals
and hyperplanes.

Lemma 1.12. (1◦) H ⊂ X is a hyperplane if and only if

∃ 0 �= f : X → R linear ∃ c ∈ R : H = {x ∈ X , f(x) = c} .
(2◦) If 0 /∈ H ⊂ X is a hyperplane, there exists a unique linear functional
f : X → R with H = {x ∈ X , f(x) = 1} .
(3◦) If 0 �= f : X → R is linear and H = {x ∈ X , f(x) = c} is a hyperplane,
then H = H closed if and only if the mapping f is continuous.
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Proof (Luenberger) and SUPPLEMENT\chap01a.
Let H ⊂ X be a hyperplane then either H closed, H = H , or H dense in

X , H = X ; hence, e.g., the set of continuous functions is a hyperplane in the
space of functions being quadratic integrable in Lebesgue sense.

(e) Dual Spaces The vector space L(X ,R) of continuous linear func-
tionals on X is called (topological) dual space Xd of X . Xd is always a Ba-

nach space also if X is only a normed vector space. Roughly spoken we have
X ⊂ (Xd)d and, again roughly spoken, Banach spaces with the property
X = (Xd)d are called reflexive.

Example 1.14. Let Πn be the space of real polynomials of degree ≤ n with
dimension (n + 1) and let xi ∈ R , i = 1 : n + 1 , be n + 1 arbitrary different
numbers. Then the dual space [Πn]d of Πn is defined by an arbitrary basis F
of functionals, e.g.,

F := {fi(p) := p(xi) , i = 1 : n+ 1} .

Choose for Πn the basis E of the Lagrange fundamental polynomials
p1, . . . , pn+1 with the property

pi(xk) = δi
k (Kronecker symbol)

then fi(pk) = δi
k and F reveals to be a dual basis to E ; see also Chap. 10.

(f) Hilbert Spaces A scalar product in X is a positive definite symmetric
bilinear form, i.e., a bilinear mapping (�, ◦) : X × X → R with the properties

∀ x ∈ X : (x, ◦) : X → R linear
∀ y ∈ X : (�, y) : X → R linear

∀ x, y ∈ X : (x, y) = (y, x)
(x, x) = 0 ⇐⇒ x = 0; ∀ 0 �= x ∈ X : (x, x) > 0 .

By means of the Cauchy-Schwarz inequality,

∀ x, y ∈ X : 0 ≤ (x, y)2 ≤ (x, x) (y, y) ,

it can be shown easily that a scalar product defines a norm on X by ‖x‖2 =
(x, x) .

In general, there are arbitrary many scalar products in a vector space. If
the norm is defined by special selected canonical scalar product, the space X
is called scalar product space or pre-Hilbert space. If, additionally, the space
is complete w.r.t. this canonical norm, it is called a Hilbert space.

Conversely, suppose that the vector space is normed and that the par-
allelogram identity ‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2) is valid for
all elements x , y then a scalar product can be defined in that space by
(x, y) :=

(
‖x+ y‖2 − ‖x− y‖2

)
/4 .

(g) Sobolev Spaces In this subsection we are forced to make use of
the Lebesgue-Integral (L-Integral). The main reason that this integral is
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preferred over the Riemann integral in theoretical investigations is a property
of completeness namely that appropriate limits of integrable functions are
integrable again. However, we do not pursue this concept further but refer,
e.g., to (Halmos) for details. The L-integral may be conceived as generalization
of the Riemann-Integral (R-Integral) to a larger class of functions (with less
smoothness). A set Ω ⊂ R

n with L-Integral
∫

Ω
dx = 0 has per definitionem

the Lebesgue measure zero; see also Sect. 12.5. Lebesgue integrals do not
make a difference between functions which are identical almost everwhere
(a.e.), i.e., which differ only on sets of L-measure zero. Every proper R-Integral
is also a L-integral but the converse is not true. For instance, let f be the
Dirichlet function satisfying f(x) = 1 for rational x ∈ (0, 1) and f(x) = 0
for irrational x ∈ (0, 1) then

R-integral
∫ 1

0

f(x) dx not defined, L-Integral
∫ 1

0

f(x) dx = 0 .

However, sets of L-measure zero can be much larger than the countable set
of rational numbers in [0, 1] .

In the below described properties of some commonly used Hilbert spaces,
the continuous and piecewise smooth boundary of the bounded domain Ω
must satisfy an additional regularity condition (“cone condition”) cf., e.g.
(Agmon), on which we refer simply by the adjective “regular”. The boundary
of the domain Ω is always denoted by ∂Ω or simply by Γ .

Further notations:

L̃2(Ω) = {f : Ω → R,

∫

Ω

|f(x)|2 dx exists finitely in L-sense}
set of quadratically integrable functions on Ω in L-sense

M2(Ω) = {f ∈ L̃2(Ω),
∫

Ω

|f(x)|2 dx = 0} set of functions

being zero almost everywhere (a.e.) on Ω in L-sense
L2(Ω) = L̃2(Ω)/M2(Ω) classes of functions being a.e. identical on Ω

Sup(f) = {x ∈ Rn, f(x) �= 0} support of f : R
n → R

Cs
0(Ω) = {f ∈ Cs(Ω) ,Dσf = 0 on Γ for all |σ| ≤ s}

C∞
0 (Ω) = {f ∈ C∞(Ω), Sup(f) ⊂ Ω}

.

By Sup(f) ⊂ Ω, it follows that f = 0 on Γ . The bilinear form

(f, g)0 :=
∫

Ω

f(x)g(x) dx (1.41)

is a scalar product on L2(Ω) , and the space is complete w.r.t. the norm
‖f‖ = (f, f)1/2

0 , hence a Hilbert space. However, the space C(Ω) is not
complete w.r.t. this norm , hence not a Hilbert space; equally,
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(f, g)s := (f, g)0 +
∑

1≤|σ|≤s

(Dσf,Dσg)0

is a scalar product on Cs(Ω) but, again, the space is not Hilbert space. We
write

|f |s :=
[ ∑
|σ|=s

(Dσf,Dσf)0
]1/2

, ‖f‖s := (f, f)1/2
s (“Sobolev norm”).

(1.42)
Then, of course, the closures w.r.t. ‖ ◦ ‖s , i.e.,

Hs(Ω) := Cs(Ω)
‖·‖s

, Hs
0(Ω) := Cs

0(Ω)
‖·‖s

, (1.43)

are Hilbert spaces with the scalar product (�, ◦)s (Sobolev spaces, the
letter H in honor of Hilbert). All these spaces need the Lebesgue inte-
gral in the bilinear form (1.41) for completeness, therefore this concept is an
indispensable tool in the theory of elliptic boundary value problems.

(h) On Boundary Values The elements of H1(Ω) are not necessarily
continuous and, by the way, only defined a.e. in Lebesgue sense. It is therefore
to be explained which values they take on the boundary Γ of Ω .

Theorem 1.15. (Trace Theorem) Let Ω be a bounded, regular domain. Then
(1◦) ∃ 0 < M(Ω) ∀ f ∈ Cs(Ω) ∀ |σ| ≤ s− 1 :

[∫

Γ

|Dσf |2 ds
]1/2

≤ M(Ω)‖Dσf‖1,Ω .

(2◦) There exists a unique continuous linear mapping (trace operator)

Trσ : Hs(Ω) → L2(Γ ) , |σ| ≤ s− 1 ,

with the property
∀ f ∈ Cs(Ω) : Trσf = Dσf

∣∣∣
Γ
.

(3◦) If M(Ω) is the constant of (1◦) ,

∀ f ∈ Cs(Ω) ∀ |σ| ≤ s− 1 : ‖Trσ(f)‖0,Γ ≤ M(Ω)‖Dσf‖1,Ω .

Accordingly, at first the trace operator Trσ is defined by means of functions
f ∈ Cs(Ω) and then the boundary values of functions f ∈ Hs(Ω) are defined
by means of the trace operator, e.g., f

∣∣∣
Γ

= Tr0(f) .

Corollary 1.4.

f ∈ Hs
0(Ω) ⇐⇒ f ∈ Hs(Ω) and ∀ |σ| ≤ s− 1 : Trσ(f) = 0 .
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(i) Properties of Hs
0(Ω) and Hs(Ω). Up to now, the spaces (1.43) are

only known as closures w.r.t. some norm. For a better understanding we need
the concept of weak derivative:

f (σ) is the weak σ-derivative of f if, in L-sense,

∀ ϕ ∈ C|σ|
0 (Ω) :

∫

Ω

f (σ)ϕdx = (−1)|σ|
∫

Ω

fDσϕdx
.

By using the vector spaces

Ws(Ω) := {f ∈ L2(Ω), f (σ) ∈ L2(Ω) for |σ| ≤ s} ,
Ws

0(Ω) := {f ∈ W s(Ω), f (σ) = 0 on Γ for |σ| ≤ s} ,

we can now present a result of (Meyers) which supplies the crucial information
about the Sobolev spaces Hs and Hs

0 :

Theorem 1.16. Let Ω ⊂ R
n be an arbitrary open set and s ∈ N0 = N ∪ {0} ,

then
Ws(Ω) = Hs(Ω), Ws

0(Ω) = Hs
0(Ω) .

Further information on the smoothness of the elements of these spaces is
supplied by the famous imbedding theorem of Sobolev, cf. (Agmon):

Theorem 1.17. (1◦) Let Ω ⊂ R
n be a bounded set and s > n/2

then Hs
0(Ω) ⊂ C(Ω) and

∃ κ(Ω) > 0 ∀ f ∈ Hs
0(Ω) : ‖f‖C ≤ κ(Ω) ‖f‖s .

(2◦) Let Ω be regular and s > n/2 then Hs(Ω) ⊂ C(Ω) and

∃ κ(Ω) > 0 ∀ f ∈ Hs(Ω) : ‖f‖C ≤ κ(Ω) ‖f‖s .

(3◦) Let Ω be regular and r − s > n/2 then Hr(Ω) ⊂ Cs(Ω) and

∃ κ(Ω) > 0 ∀ f ∈ Hs(Ω) : ‖f‖Cs ≤ κ(Ω) ‖f‖s .

More precisely, all these three inclusions A ⊂ B are valid only w.r.t. to
a suitable imbedding. For n = 2 , H1(Ω) ⊂ C(Ω) is not correct but only
H1(Ω) ⊂ L2(Ω) (Theorem of Rellich).

Also a further connection between the spaces Hs(Ω) und Hs
0(Ω) can be

realized by means of weak derivatives. For this, let n be the normed normal
vector a.e. on the boundary Γ showing in “outer” space, and let (∂n)rf denote
the r-th directional derivative in weak sense, (∂n)0f = f . Then

Hs
0(Ω) = {f ∈ Hs(Ω), (∂n)rf = 0, r = 0 : s− 1, on Γ} , (1.44)

hence, in particular,

H2
0(Ω) = {f ∈ H2(Ω), f = ∂nf = 0 on Γ} .
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(j) Equivalent Norms on Hs
0(Ω) and Hs(Ω). Note that |p|s = 0 for

all polynomials p ∈ Πs−1 of degree less than or equal s − 1 hence |f |s is
only a semi-norm on Hs(Ω) . For the considerations in Sect. 9.1 we have to
modify the functional | ◦ |s such that it becomes a norm on Hs(Ω) with the
equivalence relation

∃ 0 < m(Ω) < M(Ω) ∀ f ∈ Hs(Ω) : m(Ω)‖f‖s ≤ |f |s ≤ M(Ω)‖f‖s .

(1.45)
In the case of the space Hs

0(Ω), these inequalities can be verified in a rather
simple way by partial integration because all boundary terms disappear; cf.,
e.g., (Braess), Sect. 2.1:

Lemma 1.13. (Poincaré-Friedrichs Inequality) Let Ω be a bounded do-
main then (1.45) holds for Hs

0(Ω) in place of Hs(Ω) .

For Hs(Ω), the right inequality follows at once by definition of the Sobolev

norm but the left inequality reveals to be less accessible like all estimations
from below. The following result can be proved only by applying some deeper
auxiliaries of functional analysis; see e.g. (Velte), Sect. 2.2.

Theorem 1.18. Let Ω ⊂ R
n be a bounded regular domain and let | ◦ |Π be an

arbitrary norm on Πs−1 being at least a semi-norm on Hs(Ω) then

∃ 0 < m(Ω) ∀ f ∈ Hs(Ω) : m(Ω)‖f‖s ≤ ‖f‖

for the norm on Hs(Ω) defined by ‖f‖2 = |f |2Π + |f |2s .

Example 1.15. (1◦) The choice |f |2Π = ‖f‖2
0 =

∫
Ω
f2 dV yields a norm on

Hs(Ω) therefore

∃ 0 < m(Ω) ∀ f ∈ Hs(Ω) : m(Ω)‖f‖2
s ≤ ‖f‖2

0 + |f |2s . (1.46)

(2◦) Let ΓD ⊂ Γ be a part of the boundary satisfying
∫

ΓD
dO > 0 then

|f |2Π =
∫

ΓD
f2 dO is a norm on Π0 which is a semi-norm on H1(Ω) , hence

∃ 0 < m(Ω) ∀ f ∈ Hs(Ω) : m(Ω)‖f‖2
1 ≤

∫

ΓD

f2 dO + |f |21 . (1.47)

(3◦) By

|f |2Π =
∑

|σ|≤s−1

(∫

Ω

Dσf dx

)2

,

a norm is defined on Πs−1 being a semi-norm on Hs(Ω) , hence

∃ 0 < m(Ω) ∀ f ∈ Hs(Ω) : m(Ω)‖f‖2
s ≤

∑
|σ|≤s−1

(∫

Ω

Dσf dx

)2

+ |f |2s .

(1.48)
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Corollary 1.5. Let Ω ⊂ R
n be a bounded, regular domain with piecewise

smooth boundary Γ = ∂Ω .
(1◦) The set

{f ∈ Hs(Ω) , ‖f‖0 = 0} ⊂ Hs(Ω)

is a closed subspace, hence a Hilbert space.
(2◦) Let ΓD be a subset of the boundary such that

∫
ΓD

dO > 0 then the set

{f ∈ H1(Ω) , f = 0 on ΓD ⊂ Γ} ⊂ Hs(Ω)

is a closed subspace, hence a Hilbert space.
(3◦) The set

{f ∈ Hs(Ω),
∫

Ω

Dσf dx = 0, |σ| ≤ s− 1} ⊂ Hs(Ω)

is a closed subspace, hence a Hilbert space.

The proof of closure is managed in a simple way by means of Schwarz’
inequality, and in (2◦) by an additional application of the trace theorem; cf.
(Velte).

References: (Agmon), (Braess), (Brenner), (Evans), (Michlin), (Taylor),
(Velte), (Wloka).

1.8 Derivatives

(a) Gâteaux and Fréchet Derivative Let X , Y be real vector spaces and
D ⊂ X an arbitrary subset.

Notations:

(1◦) A point x ∈ D is called radial point of D in direction h ∈ X if

∃ ε(h) > 0 ∀ 0 ≤ ε < ε(h) : x+ εh ∈ D ;

x is called interior point of D in direction h ∈ X if

∃ ε(h) > 0 ∀ 0 ≤ |ε| < ε(h) : x+ εh ∈ D .

(2◦) Let Y be normed, let f : D → Y be a mapping, x radial point of D in
direction h, and let the limit

δf(x;h)+ :=
d

dε
f(x+ εh)|ε=0+ := lim

ε→0+
ε−1[f(x+ εh) − f(x)] (1.49)

exist finitely, then δf(x;h)+ is called one-sided first variation (one-sided
Gâteaux variation) of f at the point x in direction h .
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(3◦) Let Y be normed, let f : D → Y be a mapping, x interior point of D in
direction h , and let

δf(x;h) := limε→0 ε
−1[f(x+ εh) − f(x)] (1.50)

exist finitely, then δf(x;h) is called first variation (Gâteaux variation)
of f at the point x in direction h .

(4◦) In the same way, variations of higher order are defined by

δkf(x;h) :=
dk

dεk
f(x+ εh)|ε=0 , k ∈ N .

If X is normed and ‖h‖ = 1 , then (1.50) is the directional derivative; besides,
(1.50) is equivalent to

lim
ε→0

ε−1‖f(x+ εh) − f(x) − εδf(x;h)‖ = 0 .

The limit δf(x;h) is not necessarily additive in the second argument but
homogeneous because, for λ �= 0 ,

δf(x;λh) = limε→0 ε
−1[f(x+ ελh) − f(x)]

= λ limε→0(λε)−1[f(x+ ελh) − f(x)]
= λ limτ→0 τ

−1[f(x+ τh) − f(x)] = λδf(x;h) .

Therefore (1.50) is also equivalent to

lim
ε→0+

ε−1‖f(x+ εh) − f(x) − δf(x; εh)‖ = 0 .

The introduction of one-sided directional derivatives is necessary because D
is not always open and extremals appear frequently on the boundary of the
feasible domain.

The Gâteaux variation is the weakest form of a derivative, in particular,
no norm is required on the space X . The well-known necessary conditions for
stationary points present themselves now in the following form:

Lemma 1.14. Let f : X ⊃ D → R be sufficiently smooth, x∗ ∈ D and
∀ x ∈ D : f(x∗) ≤ f(x) .

(1◦) Let x∗ be interior point of D in direction h then δf(x∗;h) = 0 and
δ2f(x∗;h) ≥ 0 .

(2◦) Let x∗ be radial point of D in direction h then δf(x∗;h)+ ≥ 0 .
(3◦) Let U ⊂ X be a subspace, V = w + U an affine subspace, D ⊂ V open in

V , and let δf(x∗;h) exists for all h ∈ U then ∀ h ∈ U : δf(x∗;h) = 0 ,
i.e., δf(x∗; · ) = 0 in U .
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Differentiating a mapping f : X ⊃ D → Y at a point x ∈ X means that the
linear part of f is filtered out at x. But this part may attain different values
on different curves through x if we do not require some conditions on uniform
approximation.

Let X , Y be normed vector spaces.
(1◦) Let the variation δf(x; ◦ ) : X → Y be linear and continuous
in the second argument for all h ∈ X then f is called Gâteaux

differentiable at the point x , δf(x; ◦) is the Gâteaux derivative of
f in x , and we write ∂f(x;h) = ∂f(x)h .
(2◦) Let the limit δf(x;h) exist uniformly for all h ∈ X , i.e.

lim
‖h‖→0

‖h‖−1‖f(x+ h) − f(x) − δf(x;h)‖ = 0

then δf(x; ◦ ) : X → Y is called Fréchet variation of f at the
point x . If, in addition, δf(x; ◦ ) is linear and continuous in the sec-
ond argument, f is Fréchet differentiable or briefly differentiable
in x , δf(x; ◦ ) is called Fréchet derivative of f in x , and we write
∂f(x;h) = ∇f(x)h or ∂f(x;h) = f ′(x)h .

Let f be continuous in x and let the Fréchet variation be linear, then it is
also continuous in the second argument; cf. (Dieudonné), Sect. 8.1.1.

If G-derivatives or F-derivatives exist, they are determined uniquely and,
of course, a F-derivative is also G-derivative; for X = Y = R both nota-
tions are equivalent. Sometimes the notion “G-differential” is used instead
of “G-variation” but then we have to distinguish between G-differential and
G-differentiability.

Example 1.16. Note that the derivatives are defined as linear mappings here,
hence f = ∇f if f : X → Y is linear and continuous.

Example 1.17. Let f : R
m ⊃ D → R

n and let grad f(x) be the gradient of f
(matrix of partial derivatives, Jacobi matrix). Then f is G-differentiable in
x if and only if ∀ h ∈ R

m ∀ 0 < ε � 1 :

f(x+ ε h) = f(x) + grad f(x)ε h+ r(ε, h) , lim
ε→0+

ε−1r(ε, h) = 0 ;

f is F-differentiable in x if and only if

∀ h ∈ R
m : f(x+ h) = f(x) + grad f(x)h+ r(h) , lim

‖h‖→0
r(h)/‖h‖ = 0 .

(b) Properties and Examples f : R
m → R

n , (m,n) �= (1, 1).

f G-differentiable in x =⇒ grad f exists in x

grad f exists in x �=⇒ f G-differentiable in x

grad f exists continuously in x =⇒ f F-differentiable in x

f F-differentiable in x =⇒ f continuous in x .
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The last property remains valid in Banach spaces.

Lemma 1.15. f : X → Y . (Chain Rule, Mean Value Theorem)
(1◦) Let f be G-differentiable, g F-differentiable, and let g ◦ f exist then g ◦ f
is G-differentiable and

δ(g ◦ f)(x) = ∇g(f(x))δf(x) .

(2◦) Let f be F-differentiable then, using the operator norm,

‖f(x+ h) − f(x)‖ ≤ ‖h‖ sup
0<t<1

‖∇f(x+ th)‖ .

Lemma 1.16. f : X → Y .
(1◦) f has G-variation in x �=⇒ f has G-derivative in x ;
(2◦) f has G-derivative in x �=⇒ f is continuous in x ;
(3◦) f has G-derivative in x �=⇒ f has F-derivative in x ;
(4◦) f and g have both a G-derivative in x �=⇒ g ◦ f has a G-derivative in
x .

In other words, the chain rule does not hold for G-derivatives.

Definition 1.2. Let X , Y be vector spaces and let Y be normed then f : X ⊃
D → Y is h-continuous in x (hemi-continuous) if ∀ h ∈ X ∀ ε > 0 ∃ δ(ε, η) >
0 : |t| ≤ δ and x + th ∈ D =⇒ ‖f(x + th) − f(x)‖ < ε , i.e., f is continuous
on all straight lines through x .

Lemma 1.17. Using the notations of Definition 1.2 we have:
(1◦) Let f be G-differentiable in x . Then f is h-continuous in x .
(2◦) Let D open and f F-differentiable in x . Then f is continuous in x (see
above).

Example 1.18. (Ortega) Let x = (x, y) and

f(x) =
xy2

x2 + y4
for x �= 0 , f(0) = 0 ,

then f has a G-variation in 0 but no G-derivative, moreover f is not continuous
in 0 (Fig. 1.10).

Example 1.19. (Ortega) Let

g(x) =
2y e−1/x2

y2 + e−2/x2 for x �= 0 , g(0) = 0 ,

then g has a G-derivative in 0 , but g is not continuous in 0 .
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Example 1.20. (Ortega) Consider the function

h(x) =
y(x2 + y2)3/2

(x2 + y2)2 + y2
for x �= 0 , h(0) = 0 ,

then h(x, 0) = 0 , h(0, y) = 0 =⇒ hx(0, 0) = 0 , hy(0, 0) = 0 , hence

h(x) = h(0) + ∇h(0)(x− 0) + r(|x|) = 0 + 0 + 0 + r(|x|) .

Applying polar coordinates (x, y) = (r cosϕ, r sinϕ) , we obtain

r(|x|)
|x| =

r4 sinϕ
r5 + r3 sin2 ϕ

−→
r−→0

0

for any fixed angle ϕ hence h has the G-derivative δh = [0, 0] in 0 . But,
substituting ϕ = arcsin r for sufficiently small r , we obtain

r(|x|)
|x| =

r5

r5 + r5
=

1
2
.

Accordingly, h does not have a F-derivative in 0 . For a �= 0 and the straight
line t �→ (t, at) , we have

h(t, at) =
at(t2 + a2t2)3/2

(t2 + a2t2)2 + a2t2
=

t2

a

(1 + a2)3/2

1 +
(
t+ a2t

a2

)2 −→
t−→0

0 ,

hence dh/dt exists in t = 0 on all straight lines through h(0) but the limiting
value zero does not exist uniformly for a �= 0 (Fig. 1.11).
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Figure 1.11. Example 1.20

Example 1.21. Let X = C[0, 1] , f(x) =
∫ 1

0
g(t, x(t)) dt with fixed g and let

∂g/∂x exist continuously in t and x . Then δf(x)h =
∫ 1

0
gx(x, t)h(t) dt and

the G-derivative δf(x) is F-derivative of f at the point x , too.
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Example 1.22. (Craven95) Let X = {x ∈ L2(0, 1) , x bounded} and
f : X � x �→

∫ 1

0
x(t)3 dt , then, for h ∈ X ,

f(x+ h) − f(x) =
∫ 1

0

[3x(t)2h(t) + 3x(t)h(t)2 + h(t)3] dt ,

f(x+ αh) − f(x) =
∫ 1

0

[3αx(t)2h(t) + 3α2x(t)h(t)2 + α3h(t)3] dt

∀ α ∈ R . Accordingly, f has the G-derivative δf(x)h = 3
∫ 1

0

x(t)2h(t) dt in

x ∈ X . But there does not hold in general
∫ 1

0

h(t)3 dt = o(‖h‖) for ‖h‖ → 0 , (1.51)

hence f does not have a F-derivative in x. For proving the negation of (1.51)
choose for instance h(t) = n3/8 for 0 ≤ t ≤ n−1 and h(t) = 0 for n−1 < t ≤ 1 ,
and consider the limit n → ∞ .

References: (Clarke), (Craven95), (Dieudonné), (Luenberger), (Ortega).

1.9 Mappings in Banach Spaces

Let X and Y be real Banach spaces.
(a) Linear Operators. Notations:

(1◦) Let L(X ,Y) be the vector space of linear continuous mappings L : X → Y.
L(X ,Y) is complete w.r.t. the operator norm ‖L‖ = sup ‖x‖=1‖Lx‖ , hence
a Banach space.

(2◦) Let U , V , W ⊂ Y be linear subspaces then W = U ⊕ V is the direct sum
or direct decomposition if

∀ w ∈ W ∃ ! u ∈ U ∃ ! v ∈ V : w = u+ v .

(3◦) See Sect. 1.7(e). Let Xd := L(X ,R) be the dual space of X , let Yd the
dual space of Y , and let L ∈ L(X ,Y) then

xd (x) := yd (Lx) , x ∈ X , yd ∈ Yd ,

is an element xd ∈ Xd. By this way the operator Ld adjoint to L is uniquely
defined,

Ld ◦ yd = yd ◦ L , Ld yd (x) = yd (Lx) ,
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Xd ←− Ld ←− Yd�⏐⏐
�⏐⏐

X −→ L −→ Y
;

in particular, we have ‖L‖ = ‖Ld‖ and 0 = Ldy = yL ∈ Xd for y ∈
Ker(Ld) .

(4◦) To emphasize the dual pairing but also to remember the notations in
Hilbert spaces, we write in Banach spaces also 〈y, x〉 := y(x) for y ∈ Xd

and x ∈ X and, moreover,

S⊥ := {y ∈ Xd, ∀ x ∈ S : 〈y, x〉 = 0}
S⊥

d := {x ∈ X , ∀ y ∈ Sd : 〈y, x〉 = 0} . (1.52)

(5◦) Let U ⊂ X be a closed subspace then X/U is the quotient space of U in X
of equivalence classes with the equivalence relation x ∼ y ⇐⇒ x−y ∈ U .
If X/U is the quotient space, dim(X/U) is called codimension of U .

(6◦) In Hilbert spaces X , Y the adjoint operator Ld is defined in a slightly
different way by

(x, Ldy)X = (y, Lx)Y

using the both scalar products, see also Sect. 1.11(b). For the sake of
accuracy we mention that both definitions do no exactly coincide but only
after some canonical identifications by means of Riesz’ representation
theorem; cf. (Taylor), p. 249.

Example 1.23. Let X = R
n , Y = R

m (columns).

(1◦) Adopt that Xd = Rn , Yd = Rm (row vectors) with the usual matrix
multiplication. Then L = A ∈ R

m
n and

Ld : Yd = Rm � y �→ yA ∈ Rn = Xd , (Ldy)(x) = yAx ∈ R

thus Ld is simply the matrix A with left-multiplication.
(2◦) Let Xd = R

n after canonical identification (Riesz mapping). Then Ld =
AT and (Ldy)(x) = (AT y) · x with the canonical scalar product of vectors
x, y ∈ R

n .

In the following theorem we collect general properties of linear continuous
“operators” L ∈ L(X ,Y) . Some of them have far-reaching consequences in
many fields of applications. Remember that the graph of L is the subset

G(L) = {(x,Lx) , x ∈ X} ⊂ X × Y .

Theorem 1.19. (Properties of L ∈ L(X ,Y))

(1◦) L ∈ L(X ,Y) (continuous) if and only if L (linear) and bounded,

∃ κ > 0 ∀ x ∈ X : ‖Lx‖ ≤ κ‖x‖ .



1.9 Mappings in Banach Spaces 59

(2◦) (Principle of Open Mapping) Let L be surjective. Then L is open, i.e., the
image of every open set is open; in particular RangeL is open.

(3◦) (Inverse Operator Theorem) Let L be bijective. Then L−1 (exists) and is
continuous.

(4◦) (Closed Graph Theorem) Let L : X → Y be linear. Then L is continuous
if and only if the graph G(L) is closed, i.e., is a closed subset of X × Y .

(5◦) (Range Theorem) RangeL = [KerLd]⊥ , [RangeL]⊥ = KerLd .
(6◦) (Range Theorem) RangeLd = [KerL]⊥ , RangeLd

⊥
= KerL .

(7◦) (Closed Range Theorem) The following statements are equivalent:
(7.1◦) RangeL is closed; (7.2◦) RangeLd is closed;
(7.3◦) RangeL = [KerLd]⊥ ; (7.4◦) RangeLd = [KerL]⊥ .

Proofs (Heuser86), Th. 55.7, (Hirzebruch), Th. 25.4, (Luenberger), Th. 6.6.1,
6.6.3, (Wloka), Th. 2.4.12.

For the notations Range and Ker see Sect. 1.1(e). A finite-dimensional
subspace of a Banach space is always closed. Of course, statement (2◦) re-
mains valid if Y is replaced by RangeL and RangeL is closed, as then RangeL
is a Banach space. (Properties (2◦) and (3◦) do not contradict themselves
because they concern different sets.)

The next result of (Decker) is a generalization of Lemma 1.2 to operators
in Banach spaces.

Theorem 1.20. (Bordering Lemma) Let the linear operator E : X × R
m →

Y × R
m be of the form

E =
[
A B
C D

]

where

A : X → Y , B : R
m → Y , C : X → R

m , D : R
m → R

m.

(1◦) Let A bijective. Then E is bijective if and only if D−CA−1B is bijective.
(2◦) Let A be not bijective and dim KerA = codim RangeL = m ≥ 1 . Then

E is bijective if and only if

dim RangeB = m, RangeB ∩ RangeA = {0} ,
dim RangeC = m, KerA ∩ KerC = {0} .

(3◦) Let A be not bijective and dim KerA > m . Then E is not bijective.
(4◦) Let X = Y = R

n and A , F = (D − CA−1B)−1 are regular. Then

E−1 =
[
A−1[I +BFCA−1] −A−1BF

−FCA−1 F

]
.

Proof in SUPPLEMENT\chap01b.
In a Lagrange-Matrix E we have C = BT and D = 0 but the matrix A

is frequently singular; see Lemma 1.2. Suppose that D = 0 and A regular then
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the inverse of E exists if and only if the Schur complement S := BA−1BT

is regular; to this end the matrix B must have maximum rank. Suppose in
particular that m = 1 and recall Ker(A) = [Range(Ad)]T , then the regularity
condition (2◦) reduces to B /∈ Range(A) , C /∈ Range(Ad) and this condition
is equivalent to

〈v, B〉 �= 0 , for Adv = 0 , v �= 0
Cu �= 0 , for Au = 0 , u �= 0 . (1.53)

(b) Projectors More generally as in Sect. 1.1(f1), a not necessarily con-
tinuous mapping P : X → X is called projector if P is idempotent, i.e., if
P ◦P = P . The projector is linear if and only if RangeP is a linear subspace
of X which is always supposed in the sequel; then KerP is also a subspace.
Let P be a projector in X and I be the identity then I−P is also a projector.
It then follows immediately from the identity x = Px+ (x− Px) that
(1◦)

RangeP = {x ∈ X , Px = x} , KerP = {x− Px, x ∈ X}
Range(I − P ) = KerP , Ker(I − P ) = RangeP

.

(2◦) Every (linear) projector P yields a direct decomposition of its domain by

X = RangeP ⊕ KerP . (1.54)

Theorem 1.21. (1◦) For every linear subspace U ⊂ X there exists a linear
projector P in X with RangeP = U .
(2◦) Let P be a continuous (linear) projector in X . Then RangeP is closed.
(3◦) Let P is a (linear) projector in X and let RangeP and KerP both closed.
Then P is continuous.

Proof see (Taylor).
By (1.54), every linear subspace U ⊂ X yields a direct decomposition

X = U ⊕ V, dimV = codimU . (1.55)

The space V is uniquely determined in finite-dimensional spaces. However, if
X is an infinite-dimensional Banach space, there does not always exist a con-
tinuous projector P of X for every closed U so that P (X ) = U . Consequently,
there does not always exist a direct decomposition X = U ⊕V to every closed
subspace U such that V is closed. This fact implies that V in (1.55) is not
always determined uniquely; c.f. (Taylor), Sect. 4.8.

(c) Implicit Functions For every two open subsets U ⊂ X , V ⊂ Y , a
mapping f : U → V is called Cr-diffeomorphsm (r ≥ 1) if it is bijective and
together with its inverse r-times continuously differentiable.
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Theorem 1.22. (Inverse Function Theorem) Let U ⊂ X and V ⊂ Y be open
and let a ∈ U be fixed. Moreover, let f ∈ Cr(U , V) , r ≥ 1 , and let the F-
derivative grad f(a) of f be bijective with bounded inverse in point a . Then
there exist open subsets a ∈ U0 ⊂ U and ∅ �= V0 ⊂ V such that the restriction
of f to U0 × V0 is a Cr-diffeomorphism.

Corollary 1.6. (Implicit Function Theorem) Let X , Y , Z be Banach spaces,
let f ∈ Cr(X ×Y ; Z) , r ≥ 1 , c = f(a, b) , gradb f(a, b) bijective with bounded
inverse. Then there exist open subsets U , W with a ∈ U ⊂ X , c ∈ W ⊂ Z
and a unique function Φ ∈ Cr(U × W , Y) such that

b = Φ(a, c), ∀ x ∈ U ∀ z ∈ W : z = f(x, Φ(x, z)) ,

and Φ is as smooth as f .

For c = 0 we obtain the well-known form:

Corollary 1.7. (Implicit Function Theorem) Let X , Y , Z be Banach spaces,
f ∈ Cr(X × Y ; Z) , r ≥ 1 , f(a, b) = 0 , gradb f(a, b) bijective with bounded
inverse. Then there exists an open subset U with a ∈ U ⊂ X and a unique
function Φ ∈ Cr(U , Y) such that

Φ(a) = b, ∀ x ∈ U : f(x, Φ(x)) = 0 ,

and Φ is as smooth as f .

Theorem 1.23. (Generalized Inverse Function Theorem) Let X , Y be Ba-

nach spaces and f : X → Y continuously F-differentiable. For some a ∈ X ,
let b = f(a) and grad f(a) be surjective (but not necessarily invertible). Then
there exists an open neighborhood U � b and a constant κ such that f(x) = y
has a solution x for every y ∈ U and ‖x − a‖ ≤ κ ‖y − b‖ , in particular x
depends continuously on y.

Proofs of subsection (c) in SUPPLEMENT\chap01b, see also (Craven78); Proof
of Theorem 1.23 (Luenberger).

1.10 Convex Sets and Functions

In dealing with finite- and infinite-dimensional extremal problems, a good
knowledge of convex sets and functions is indispensable but also the handling
of inequalities. Here, the order cone plays a crucial role because the concept
of duality is founded on it and every numerical approach uses some duality
aspects. Also, the Theorem of Farkas deserves the same attention in systems
of linear inequalities as the Range Theorem 1.2 in systems of linear equations;
nevertheless it leads a somewhat hidden life in literature. Because inequalities
are subject to entire different rules in comparison with equalities, some proofs
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are presented below for a better understanding of the problems occuring in
optimization, calculus of variations, and control theory.

(a) Convex Sets and Cones Let X be a real normed vector space and
let [x, y] := {z = x + λ(y − x), 0 ≤ λ ≤ 1} be the line segment joining two
elements x, y ∈ X .

Notations:

(1◦) A set C ⊂ X is convex if ∀ x, y ∈ C : [x, y] ⊂ C .
(2◦) A set K ⊂ X is a cone (“with vertex in 0”) if ∀ x ∈ K ∀ α ≥ 0 : αx ∈ K .
(3◦) A cone K is pointed if K∩−K = {0} ( ⇐⇒ x ∈ K∧−x ∈ K ⇐⇒ x = 0).

(4◦) A convex cone K defines a pre-order by y ≥ x ⇐⇒ x ≤ y : ⇐⇒ y−x ∈ K
with the properties

∀ x ∈ X =⇒ x ≤ x (reflexivity)
x ≤ y ∧ y ≤ z =⇒ y ≤ z (transitivity).

(5◦) A pointed convex cone K defines a partial order with the additional prop-
erty x ≤ y ∧ y ≤ x =⇒ y = x (symmetry).

(6◦) If a pre-order is defined by a convex cone K �= ∅ , this cone is called positive
cone or order cone.

(7◦) If M ⊂ X is an arbitrary subset , the set

Md := {y ∈ Xd, ∀ x ∈ M : y (x) ≥ 0}
is called dual cone or adjoint cone to M . If M is a positive cone, Md is
called dual positive cone.

Many applications manage with a pre-order only in which the order cone is
not pointed. A positive cone is never open but frequently closed, the dual
cone, however, is always closed. After canonical imbedding X ⊂ (Xd)d we
have K ⊂ (Kd)d . If X is a reflexive Banach space, i.e. (Xd)d = X , and
K ⊂ X is a closed cone, then K = (Kd)d . We write

x ≥ 0 ⇐⇒ x ∈ K, x > 0 ⇐⇒ x ∈ int(K)

where int(K) shall be the interior of K .

M

M

M

M
d

x
1

x
2

Figure 1.12. Dual cone of M
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Example 1.24.(1◦) A cone K ⊂ X is convex if and only if
K + K := {x+ y , x, y ∈ K} ⊂ K .

(2◦) Let K = R
n
+ ⊂ R

n . Then Kd = R
n
+ after canonical identification.

(3◦) The cone K = {x ∈ R
2 , x1 ≥ 0 , x2 < 0} ∪ {(0, 0)} is not closed.

(4◦) Let K ⊂ R
n be a positive cone and A ∈ R

m
n . Then

A(K) := {y ∈ R
m, ∃ x ∈ K : y = Ax} is the convex cone spanned by the

columns of A relative to the cone K .
(5◦) Let K = {f ∈ C(a, b) , f(x) ≥ 0} . Then Kd = {y ∈ Cd(a, b) , y(f) =∫ b

a
f(x) dv(x) , v ∈ BV(a, b) , weakly monotone increasing} ; cf. Sect. 12.5.

(6◦) The natural cone in Lp(a, b) , 1 ≤ p < ∞, cf. Sect. 12.5, is K := {x ∈
Lp(a, b) , x(t) ≥ 0 a.e.} with the dual cone Kd := {x ∈ Lq(a, b) , x(t) ≥
0 a.e.} where p−1 + q−1 = 1 .

Example 1.25. Let 0 �= a = [a1, a2]T ∈ R
2 . Then a and a⊥ := [−a2, a1]T

constitute a right oriented system. Let now a, b ∈ R
2 be arbitrary and c =

a⊥, d = −b⊥ . Then

K = {x = αa+ β b , α ≥ 0 , β ≥ 0} is a positive cone
Kd = {x = γ c+ δ d , γ ≥ 0 , δ ≥ 0} the dual cone,

and both coincide if a is perpendicular to b .

Example 1.26. (Ben-Israel) Let the closed cone K ⊂ R
3 consist of all vec-

tors x = [x, y, z]T which have an angle ≤ π/4 with the symmetry axis
a = [1, 0, 1]T . Then aTx ≥ ‖a‖ ‖x‖/

√
2 , hence

K = {x ∈ R
3 , x ≥ 0 , z ≥ 0 , 2xz ≥ y2} .

Let now P be the orthogonal projection of R
3 onto the (y, z)-plane then

P =
[

0 1 0
0 0 1

]
, P (K) = {[y, z]T , x ≥ 0 , z ≥ 0 , 2xz ≥ y2} .

But 2xz ≥ y2 has only the solution y = 0 for z = 0 hence

P (K) = {(y, z) , z > 0} ∪ (0, 0) = {r cosϕ, r sinϕ) , r ≥ 0 , 0 < ϕ < π} ,

and the image of K under the continuous linear mapping P is not closed.

Figure 1.13. Cone and dual cone in R
2
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(b) Separation Theorems In many problems of optimization and con-
trol, the Lagrange multipliers describe hyperplanes which separate certain
convex sets from each other. The subsequent separation theorem is of funda-
mental importance in the existence of such hyperplanes:

Theorem 1.24. Let X be a normed vector space and let C , D ⊂ X be convex
then there exists an α ∈ R and a 0 �= y ∈ Xd so that

supx∈D y(x) ≤ α ≤ infx∈C y(x) ,

if one of the following conditions is fulfilled:
(1◦) C is open and C ∩ D = ∅ ;
(2◦) C is closed, C ∩ D = ∅, and D = {b} is a point;
(3◦) int(C) �= ∅ and int(C) ∩ D = ∅ (Eidelheit’s separation theorem).

Proof see (Schaeffer), (Luenberger), (Werner).
If X is an infinite-dimensional vector space then the crucial condition

int(C) �= ∅ in (3◦) cannot be dropped even if C is compact; cf. (Marti). In
finite-dimensional vector spaces however, the result of Theorem 1.24(2◦) can
be proved simply in a direct way:

Lemma 1.18. Let ∅ �= C ⊂ R
n be closed and convex and let 0 /∈ C. Then there

exists a y ∈ R
n and α > 0 so that yTx > α > 0 holds for all x ∈ C . In other

words, the hyperplane H = {x ∈ R
n, yTx = α} separates C and {0} in strong

sense.

Proof. The compact set U := {x ∈ R
n , ‖x‖ ≤ β} ∩ C is not empty for

sufficiently large β hence the continuous function f : x �→ ‖x‖ on U takes its
minimum in a point y �= 0 . Then

‖y + λ(x− y)‖2 ≥ ‖y‖2 , λ ∈ [0, 1] ,

for all x ∈ C because C convex or

λ2(x− y)T (y − x) + 2λyT (x− y) ≥ 0 , λ ∈ [0, 1].

It follows that yT (x− y) ≥ 0 for λ → 0 , i.e., yTx ≥ yT y > yT y/4 =: α > 0 .
��

Lemma 1.19. Let K ⊂ R
n be a positive, closed cone and let b /∈ K then there

exists a y ∈ Kd with yT b < 0 (hence always Kd �= ∅).

Proof. Because K is closed and convex, there exists a y ∈ R
n that

yT b < α < inf x∈K yTx (1.56)

after a simple modification of Lemma 1.18. Because 0 ∈ K we have α ≤ 0 .
Let u ∈ K with yTu < 0 . Because of λu ∈ K for λ ≥ 0, there exists a w = λu
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that yTw = λyTu < α. This is a contradiction of (1.56). Thus yTu ≥ 0 for all
u ∈ K and y ∈ Kd by definition. ��

The generalization of this result to arbitrary normed vector spaces can
only be proved by using the Separation Theorem:

Lemma 1.20. If K ⊂ X is a convex closed cone and b /∈ K , there exists a
y ∈ Kd with y(b) < 0 .

Proof. By Theorem 1.24 there exists a y ∈ Xd such that

y(b) < α < inf x∈K y(x) . (1.57)

Because of 0 ∈ K it follows that α ≤ 0 . Let u ∈ K mit y(u) < 0 . Because
λu ∈ K, λ ≥ 0 then there exists a w = λu such that y(w) = λy(u) < α being
a contradiction of inequality (1.57). Thus y(u) ≥ 0 for all u ∈ K and y ∈ Kd

by definition. ��
(c) Cone Properties The so-called cone corollary is a simple inference

of Lemma 1.20:

Lemma 1.21. If K ⊂ X is a convex closed cone then

x ∈ K ⇐⇒ (∀ y ∈ Kd =⇒ y(x) ≥ 0) .

Proof. The left side implies the right side by definition. The negation of the
left side implies the negation of the right side by Lemma 1.20. ��

Lemma 1.22. (Cone Inclusion Theorem) Let K , L ⊂ X be convex cones and
L closed then

K ⊂ L ⇐⇒ Ld ⊂ Kd .

Proof. Obviously, the left side implies the right side. The negation of the left
side implies the existence of an element x ∈ K with x /∈ L . By the cone
corollary there exists a y ∈ Ld such that y(x) < 0 hence y /∈ Kd . This implies
the negation of the right side. ��

Lemma 1.23. (1◦) Let K ⊂ X be a cone, let y ∈ Xd , γ ∈ R , and y(x) ≥ γ
for all x ∈ K . Then y ∈ Kd and γ ≤ 0 .
(2◦) Let M ⊂ X be arbitrary and 0 �= y ∈ Md , then y(x) > 0 for all
x ∈ int(M) .

Proof. (1◦) At first, γ ≤ 0 follows from y(0) = 0 ≥ γ . Suppose that there
exists an x ∈ K with y(x) < 0 , then

y(λx) = λy(x) → −∞, λ → ∞ ,

which is a contradiction because y(λx) ≥ γ for all λ > 0 .
(2◦) Suppose there exists an x ∈ int(M) with y(x) = 0 . Then there exists for
every u ∈ X a τ > 0 so that x ± τu ∈ M . Then ±y(u) ≥ 0 for all u ∈ X
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hence y(u) = 0 for all u ∈ X . This implies y = 0 in contradiction of the
assumption. ��

The next result leads to a necessary and sufficient condition for sign
bounded solutions of linear systems of equations.

Lemma 1.24. (Farkas 1902) Let X , Y be normed vector spaces, let K ⊂ X
be a closed convex cone, A ∈ L(X ,Y) and b ∈ Y . Then

b ∈ A(K) ⇐⇒ (Adu ∈ Kd =⇒ u(b) ≥ 0) ,

if A(K) is closed.

Proof. “=⇒”. Let b = Ax for some x ∈ K . IfAdu ∈ Kd , then u(Ax) = u(b) ≥ 0
because Ad u = uA , hence u(Ax) = (Adu)x .
“⇐=”. We have

Ad u ∈ Kd ⇐⇒ ∀ x ∈ K : (Ad u)x = (uA)(x) ≥ 0
⇐⇒ ∀ x ∈ K : u(Ax) ≥ 0 ⇐⇒ u ∈ [A(K)]d .

In the same way u(b) ≥ 0 says that u ∈ Md for the cone defined by M =
{α b, α ≥ 0} . Thus the right side says that [A(K)]d ⊂ Md . Because A(K)
is closed, the Cone Inclusion Theorem can be applied: [A(K)]d ⊂ Md =⇒
M ⊂ A(K) . But M ⊂ A(K) says that b ∈ A(K) . ��

The following relations hold in the Lemma of Farkas:

left side ⇐⇒ {x ∈ X, Ax = b, x ≥ 0} �= ∅ ,
right side ⇐⇒ {u ∈ Y, Adu ≥ 0} ⊂ {u ∈ Y, u(b) ≥ 0} ,

¬ right side ⇐⇒ ∃ u ∈ Y : Adu ≥ 0 ∧ u(b) < 0
⇐⇒ {u ∈ Y : Adu ≥ 0 ∧ u(b) < 0} �= ∅ .

Therefore the Lemma of Farkas is equivalent to

{x ∈ X : Ax = b, x ≥ 0} �= ∅ ⇐⇒ {u ∈ Y : Adu ≥ 0, u(b) < 0} = ∅ .

Let now especially K = R
n
+ hence x ≥ 0 ⇐⇒ xi ≥ 0 ∀ i then K = Kd.

The basic Theorem 1.2 for linear systems of equations has an analogue for
sign-bounded solutions of linear systems by the Lemma of Farkas. In order
to point out the similarity of both results, we write Theorem 1.2 below in the
equivalent form (1◦) and the result of Farkas in the form (2◦):

Corollary 1.8.

(1◦) Ax = y ⇐⇒ (AT z = 0 =⇒ yT z = 0)
(2◦) Ax = y ∧ x ≥ 0 ⇐⇒ (AT z ≥ 0 =⇒ yT z ≥ 0)

.
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(d) Convex Functions Let C ⊂ X be convex. Then a function f : C → R

is convex if

∀ x, y ∈ C ∀ λ ∈ [0, 1] : f(x+ λ(y − x)) ≤ (1 − λ)f(x) + λf(y) .

f : C → R is called concave, if −f is convex. If X ,Y are vector spaces, C ⊂ X
is convex, and K ⊂ Y a positive cone, then f : C → Y is called K-convex if

∀ x, y ∈ C, ∀ λ ∈ [0, 1] : f(x+ λ(y − x)) ≤ (1 − λ)f(x) + λf(y).

(Recall that x ≥ 0 ⇐⇒ x ∈ K .) The convexity of f depends strongly on the
current definition of the order cone. If this cone is fixed during computation,
one writes “convex” instead of “K-convex”.

Example 1.27.(1◦) A norm is always a convex function.
(2◦) Precisely the affine linear functions are convex and concave at the same

time.
(3◦) Let f and g convex and α ∈ R . Then αf and f + g are also convex.
(4◦) For X = L2[0, 1] , the function

f : X � x �→
∫ 1

0

(x2 + |x|)dt ∈ R

is convex in X .
(5◦) Let f, g, h : C → R are convex. Then the set

{x ∈ C, f(x) ≤ a, g(x) ≤ b, h(x) ≤ c} is also convex.
(6◦) Let μ = infx∈C f(x) . Then {x ∈ C, f(x) = μ} is convex ( ∅ convex).
(7◦) Let X , Y be two vector spaces , C ⊂ X convex and g : C → Y convex.

Then {x ∈ C, g(x) ≤ y} is a convex set for all y ∈ Y .

Lemma 1.25. Let C ⊂ X convex and f : C → R convex.

(1◦) f is continuous in int(C) (!) if dim(X ) < ∞ .
(2◦) A point x∗ is a global minimum of f if x∗ is a local minimum of f .
(3◦) x∗ is the unique global minimum of f in C if f is strongly convex and x∗

is a local minimum of f .

Proof. (1◦) (Luenberger), S. 194.
(2◦) Let f(x∗) ≤ f(x) for all x ∈ U(x∗) ∩ C with U(x∗) being an open neigh-
borhood of x∗, and let y ∈ C arbitrary, then there exists an x ∈ U(x∗) so
that x = λx∗ + (1 − λ)y , 0 < λ < 1 . This implies that f(x∗) ≤ f(x) ≤
λf(x∗) + (1 − λ)f(y) or (1 − λ)f(x∗) ≤ (1 − λ)f(y) which is the assertion.
(3◦) Two local minimums x∗ , y∗ are global minimums by (2◦). Because
λx∗ + (1 − λ)y∗ ∈ C, 0 < λ < 1 , it follows that

f(λx∗ + (1 − λ)y∗) < λf(x∗) + (1 − λ)f(y∗) = f(y∗) .

This is a contradiction because x∗ and y∗ are both global minimum points.
��
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Lemma 1.26. Let X , Y be normed vector spaces, C ⊂ X convex, K ⊂ Y
positive cone, and f : C → Y F-differentiable in D ⊃ C open.
(1◦) f is K-convex if and only if

∀ x, y ∈ C : f(y) − f(x) − ∇f(x)(y − x) ≥ 0 , i.e., ∈ K . (1.58)

(2◦) Let X = R
n and f two-times F-differentiable and K-convex. Then

∀ y ∈ X : ∇∇f(x)[yy] ≥ 0, i.e., ∈ K . (1.59)

(3◦) Let X = R
n , Y = R, let f be two-times F-differentiable and let (1.59)

hold. Then f is K-convex.

Proofs in SUPPLEMENT\chap01b.

Lemma 1.27. Let C ⊂ X be convex, let f : C → R convex and f F-
differentiable in an open set D ⊃ C .
(1◦) x∗ = arg min x∈Cf(x) ⇐⇒ x∗ ∈ C , ∀ x ∈ C : ∇f(x∗)(x− x∗) ≥ 0 .
(2◦) If in addition C is a cone,

x∗ = arg min x∈Cf(x) ⇐⇒ x∗ ∈ C , ∇f(x∗)x∗ = 0 , ∀ x ∈ C : ∇f(x∗)x ≥ 0 .

Of course, ∇f(x∗)z ≥ 0 ∀ z ∈ C implies ∇f(x∗) = 0 if x∗ ∈ int(C) , but here
x∗ can be also a boundary point of C .
Proof. (1◦) “⇐=” by substituting x = x∗ in Lemma 1.26,

∀ y ∈ C : f(y) ≥ f(x∗) + ∇f(x∗)(y − x∗) ≥ f(x∗) .

“=⇒” We have for arbitrary y = x∗ + h ∈ U and λ ∈ [0, 1]

f(x∗ + λh) − f(x∗) = λ[∇f(x∗)h+ ε(λ)] , lim
λ→0

ε(λ) = 0 .

Thus λ∇f(x∗)h ≥ 0 because else f(x∗ +λh)− g(x∗) < 0 for sufficiently small
λ > 0 in contradiction to the minimum property of x∗.
(2◦) The left side follows from the right side by (1◦). Conversely, let the left
side be fulfilled. Then, again by (1◦), ∇f(x∗)(x−x∗) ≥ 0 . The points x = x∗/2
and x = 2x∗ are both contained in the cone C . Substitution yields

x = x∗/2 =⇒ ∇f(x∗)x∗ ≤ 0 , x = 2x∗ =⇒ ∇f(x∗)x∗ ≥ 0 .

This implies that ∇f(x∗)x∗ = 0 and therefore ∇f(x∗)x ≥ 0 . ��
As a direct inference we obtain a saddlepoint criterium for F-differentiable

functions.

Lemma 1.28. Let X , Y be normed vector spaces, let ∅ �= C ⊂ X , ∅ �= D ⊂ Y
be both convex and closed and let

f : C × D � (x, y) �→ f(x, y) ∈ R

∀ x ∈ C : D � y �→ f(x, y) concave, continuous, F-differentible
∀ y ∈ D : C � x �→ f(x, y) convex, continuous, F-differentiable .
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(1◦) (x∗, y∗) is a local saddlepoint of f , i.e.,

∀ (x, y) ∈ C × D : f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗) , (1.60)

if and only if, with partial F-derivatives,

∀ x ∈ C : ∇xf(x∗, y∗)(x− x∗) ≥ 0 , ∀ y ∈ D : ∇yf(x∗, y∗)(y − y∗) ≤ 0 .

(2◦) If, in addition, C, D are convex cones with adjoint cones
Cd , Dd , then (1.60) holds if and only if

∇xf(x∗, y∗) ∈ Cd , ∇xf(x∗, y∗)x∗ = 0 ,
−∇yf(x∗, y∗) ∈ Dd , ∇yf(x∗, y∗)y∗ = 0 .

If f : [a, b] → R is differentiable and attains a minimum in x∗ ∈ [a, b] , then
necessarily

lim
x→x∗,x∈[a,b]

f(x) − f(x∗)
|x− x∗| ≥ 0 .

Therefore (Craven78) introduces the following generalization.

Definition 1.3. Let X be a Banach space and U ⊂ X a subset. Then f :
U → R has the quasimin property (QM) in x ∈ U if

lim inf y→x,y∈U
f(y) − f(x)

‖y − x‖ ≥ 0 .

If f is F-differentiable, the quasimin property in x is equivalent to

∀ y ∈ U : ∇f(x)(y − x) ≥ 0 .

If f : U → R has a minimum in x , it has obviously the (QM) in x . Conversely,
we have

Lemma 1.29. Let U ⊂ X be convex and f : U → R convex. If f in x∗ has
the quasimin property, then x∗ is a minimum point of f in U .

Proof. Let x ∈ U and h = x− x∗ then also x∗ + λh ∈ U , 0 < λ < 1 , and we
have by assumption

lim inf λ→0
f(x∗ + λh) − f(x∗)

λ‖y − x‖ ≥ 0 .

But f(x∗ + λh) ≤ (1 − λ)f(x∗) + λf(x) hence

lim inf λ→0
(1 − λ)f(x∗) + λf(x) − f(x∗)

λ‖x− x∗‖ ≥ 0

and therefore, for all x ∈ U ,

f(x) − f(x∗)
‖x− x∗‖ ≥ 0 .

��
Note that no differentiability of f is required in this result but, of course,

the convexity of f cannot be omitted.

References: (Craven95), (Ekeland), (Luenberger), (Marti), (Schaeffer).
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1.11 Quadratic Functionals

The principle of complementary energy is studied in the context of Legendre

transformations, see Sect. 4.1(e4).
Let H be a Hilbert space with canonical scalar product (�, ◦).
(a) The Energy Functional Let there be given

a symmetric bilinear form a : H × H → R

a f ∈ Hd , i.e., a continuous linear functional f : H → R

a closed convex subset ∅ �= U ⊂ H
a quadratic functional J(v) = a(v, v) − 2 f(v)

.

In many stationary problems of continuum mechanics, a(v, v) is the (double)
interior energy (strain energy), −f(v) the outer potential energy, and J (v)
the (double) total energy of a system in state v, therefore the quadratic form
J(v) is frequently called energy form or energy functional. By the extremal
principle of mechanics, it takes a stationary value in equilibrium being usually
a minimum. Accordingly, the subject of the energy method consists of solving
theoretically and numerically the extremal problem

J(v) = min! , v ∈ U .

To this purpose the bilinear form a must define a norm ‖ ◦ ‖a = (◦, ◦)1/2 on
U and this energy norm has to be equivalent to the canonical norm ‖ ◦ ‖ =
(◦, ◦)1/2, i.e., the following assumption must be satisfied:

Definition 1.4. The bilinear form a is a U-elliptic functional with the follow-
ing properties:
(1◦) a(◦, ◦) is bounded in U ,

∃ β > 0 ∀ v ∈ U : a(v, v) ≤ β ‖v‖2.

(2◦) a is uniformly positive definite in U ,

∃ α > 0 ∀ v ∈ U : a(v, v) ≥ α ‖v‖2 .

x

y

y = x2

y = − 2x

y = x2 − 2x

Figure 1.14. A simple energy functional
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Then, by the Cauchy-Schwarz inequality,

|a(u, v)| ≤ a(u, u)1/2a(v, v)1/2 ≤ β ‖u‖‖v‖

and thus the bilinear form a is bounded hence continuous in H × H .

Theorem 1.25. (Unique Existence) Let U ⊂ H be convex and closed and let
a be U-elliptic then there exists a unique u ∈ U for every f ∈ Hd so that

u = arg minv∈U J(v) .

Proof. (1◦) d := Infv∈U J(v) exists since f ∈ Hd is bounded, hence J(v) is
bounded from below:

J(v) ≥ α ‖v‖2 − 2‖f‖ ‖v‖ = α−1 (α‖v‖ − ‖f‖)2 − (‖f‖2/α) ≥ −(‖f‖2/α) .

(2◦) Let {vm} be a sequence with limm→∞ J (vm) = d. Then it follows by the
parallelogram identity for the norm ‖ · ‖a that

α ‖vm − vn‖2
a ≤ a(vm − vn , vm − vn)

= 2a(vm , vm) + 2a(vn , vn) − a(vm + vn , vm + vn)
−4f(vm) − 4f(vn) + 4[f(vm) + f(vn)]

= 2J(vm) + 2J(vn) − 4J((vm + vn)/2)
≤ 2J(vm) + 2J(vn) − 4d → 0 ,

because (vm + vn)/2 in U . By definition of d, J(vm) and and J(vn) tend both
to d hence {vm} is a Cauchy sequence. Its limit u is contained in U because
U is closed.
(3◦) By the continuity of J we have limn→∞ J(vn) = J(u) = infv∈U J(v).
(4◦) If u and u∗ are two solutions then u , u∗ , u , u∗ , . . . is a minimum se-
quence, too. But every minimum sequence has a unique limit by (2◦) hence
u = u∗. ��

In particular, let U ⊂ H be a closed subspace and u0 ∈ H , then the affine
subspace u0 + U is closed and convex, and

u = arg minv∈u0+U J(v) (1.61)

does exist uniquely. For the reduction to a problem in vector space U , let
v = u0 + w , w ∈ U , then

J(v) = J(u0 + w) = a(w,w) − 2g(w) + J(u0)

with g(w) = f(w) − a(u0, w) . Hence (1.61) is equivalent to the computation
of

u = arg minv∈U (a(v, v) − 2g(v)) , (1.62)

where g is bounded: ∀ v ∈ U : |g (v)| ≤ (‖f‖ + β ‖u0‖) ‖v‖ . ��
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Theorem 1.26. (Characterization Theorem) Let H be a Hilbert space, then

u = arg minv∈U J(v) (1.63)

exists uniquely if and only if one of the following conditions is fulfilled:
(1◦) ∅ �= U ⊂ H is a closed convex set and

∃ u ∈ U ∀ v ∈ U : a(u , v − u) ≥ f(v − u) . (1.64)

(2◦) ∅ �= U ⊂ H is a closed subspace and

∃ u ∈ U ∀ v ∈ U : a(u, v) = f(v) . (1.65)

(3◦) ∅ �= U ⊂ H is a closed convex cone with vertex in origin and

∃ u ∈ U ∀ v ∈ U : a(u, v) ≥ f(v) , a(u, u) = f(u) . (1.66)

Proof. (1◦). Let v ∈ U arbitrary. Then w = (1−λ)u+λv = u+λ (v−u) ∈ U
for 0 ≤ λ ≤ 1 because U convex. Let ϕ (λ) = J (w) with

J(w) = J(u) + 2λ [a(u , v − u) − f(v − u)] + λ2a(v − u, v − u). (1.67)

By assumption, ϕ takes its minimum in λ = 0 hence ϕ′(0) ≥ 0 which implies
(1.64).
If conversely (1.64) is fulfilled then, by (1.67) for λ = 1 ,

∃ u ∈ U ∀ v ∈ U : J(v) ≥ J(u) + a(v − u, v − u) ≥ J(u) ,

and thus (1.63).
The proof of (2◦) is carried out in the same way.
(3◦) By (1.66) we obtain immediately (1.64) and thus (1.63) by (1◦). Con-
versely,

∃ u ∀ v ∈ U : a(u, v) ≥ f(v) and a(u, u) ≥ f(u)

follows by (1.64) for v := u + v resp. v := 2u . If U is a cone with vertex in
origin then 0 ∈ U and thus

−a(u, u) ≥ −f(u) =⇒ a(u, u) ≤ f(u) .

for v = 0 by (1.64). ��
The relations (1.64), (1.65) or (1.66) are called Euler equations of the

variational problem J (v) = min ! , v ∈ U . The Theorems 1.25 and 1.26 have
some interesting inferences:

Lemma 1.30. (Riesz’ Representation Theorem) Let H be a Hilbert space
and f ∈ Hd . Then there exists a unique uf ∈ H such that

∀ v ∈ H : f (v) = (uf , v) .
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Proof. The result follows immediately from the Existence Theorem and the
Charcterization Theorem for U = H and the canonical scalar product a(· , ◦) =
(· , ◦) . ��

The bijective relation of uf ∈ H and f ∈ Hd is called canonical isomor-
phism or Riesz mapping. We do no longer make a difference between these
both (different) elements but write f instead uf hence f(v) = (f, v) (one
symbol with two meanings); by this way Hd and H are canonically identified,
Hd = H .

(b) Operators in Hilbert Space Let X , Y be Hilbert spaces and
L : X → Y a bounded linear mapping, in short L ∈ L(X ,Y) , then, by
canonical identification, the adjoint operator Ld : Y → X is defined by

(x, Ldy)X = (y, Lx)Y .

If X = Y and Ld = L , then

∀ x, y ∈ X : (y, Lx) = (x, Ly) (1.68)

and the operator L is called selfadjoint or symmetric in this case. Of course,
every L ∈ L(X ,X ) defines a bilinear form a(u, v) := (u,Lv) but also the
converse is true by the following result.

Theorem 1.27. (Lax-Milgram) Let a : H × H → R be an elliptic but not
necessarily symmetric bilinear form. Then there exists a unique u ∈ H for
every f ∈ Hd (= H) such that

∀ v ∈ H : a(u, v) = (f, v) . (1.69)

By (1.69), a bijective and continuous operator L−1 : Hd → H is defined
satisfying

∀ u, v ∈ H : a(u, v) = (Lu, v) ,

then the linear operator L is symmetric if and only if the bilinear form a is
symmetric.

Example 1.28. Let X = Y = L2[0, 1] and let L ∈ L(X ,Y) be defined by

Lx =
∫ t

0

K(t, s)x(s) ds , t ∈ [0, 1] ,

with continuous kernel K(t, s) in unit square, and let (f, g) =
∫ 1

0
f(x)g(x) dx

be a scalar product. Interchange of integration yields

(y, Lx) =
∫ 1

0

y(t)
∫ t

0

K(t, s)x(s) dsdt =
∫ 1

0

∫ t

0

y(t)K(t, s)x(s) dsdt

=
∫ 1

0

∫ 1

s

y(t)K(t, s)x(s) dtds =
∫ 1

0

x(s)
(∫ 1

s

K(t, s)y(t) dt
)
ds

=
∫ 1

0

x(t)
(∫ 1

t

K(s, t)y(s) ds
)
dt = (x, Ld y) .
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Accordingly, the adjoint operator Ld has the form

Ld y =
∫ 1

t

K(s, t)y(s) ds .

Example 1.29. Let X = Y = H2
0 (Ω) , Ω ⊂ R

2 and let Lu = Δu = ux1x1 +
ux2x2 be the Laplace operator. Then an application of Green’s Theorem
(1.23) yields

∫

Ω

[ϕΔψ − ψΔϕ] dV =
∮

∂Ω

[
ϕ
∂ψ

∂n
+ ψ

∂ϕ

∂n

]
dO = 0 .

Accordingly, this operator is symmetric on H2
0 (Ω) .

(c) Projectors in Hilbert Space

Theorem 1.28. (Projection Theorem) Let H be a Hilbert space and let ∅ �=
U ⊂ H be a closed convex subset. Then

∀ w ∈ H ∃! u ∈ U : ‖w − u‖ = inf v∈U ‖w − v‖ . (1.70)

Proof. Consider the quadratic functional

J(v) = ‖w − v‖2 − ‖w‖2 = (v, v) − 2(w, v)

for fixed w ∈ H and apply the Existence Theorem 1.25 . ��
The element u of (1.70) is called projection of w onto U and one writes

u = Pw with the projection operator P . For J(v) = (v, v)−2(w, v) we obtain
directly by the Characterization Theorem :

Lemma 1.31. (Characterization of Projectors) Let H be a Hilbert space
and ∅ �= U ⊂ H a convex closed subset.
(1◦) u = Pw holds if and only if

∀ v ∈ U : (w − u , v − u) ≤ 0 . (1.71)

(2◦) If U is a closed linear subspace, u = Pw holds if and only if

∀ v ∈ U : (w − u , v) = 0 . (1.72)

Defining

cos ϕ :=
(u, v)

‖u‖ ‖v‖ , 0 ≤ ϕ ≤ π ,

for u, v ∈ H, (1.71) says that the angle ϕ between w− v and v− u is not less
than π/2 .
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Further properties of the projection operator:

Lemma 1.32. (1◦) (Contraction, Continuity) Under the assumption of The-
orem 1.28

∀ v, w ∈ H : ‖Pv − Pw‖ ≤ ‖v − w‖ .
(2◦) (Linearity) The projection operator P is a linear mapping P : H → U if
and only if U is a linear subspace.

Proofs in SUPPLEMENT\chap01b.
A projector P of H is called orthogonal if Ker(P ) = Range(P )⊥. Then

H = Range(P ) ⊕ [Range(P )]⊥ = [Ker(P )]⊥ ⊕ Ker(P )

in the decomposition H = Range(P ) ⊕ Ker(P ) .

u

v

w

φ ≥ π/2

Figure 1.15. To Lemma 1.31(1◦)

vw

PvPw

Figure 1.16. To Lemma 1.32(1◦)

Theorem 1.29.(1◦) A projector P of a Hilbert space is orthogonal if and
only if it is symmetric.

(2◦) An orthogonal projector is continuous.
(3◦) If U ⊂ H is a subset, then U⊥ is a closed subspace.
(4◦) If U ⊂ H is a closed subspace, then H = U ⊕ U⊥ and there exists an

orthogonal projector P with Range(P ) = U .

Proof see (Taylor).
(d) Properties of the Energy Functional

Lemma 1.33. Let u = arg minv∈U J(v) . Then
(1◦) J(u) = −a(u, u) (“total energy = negative strain energy”),
(2◦) ∀ v ∈ U : J(v) − J(u) = a(v − u, v − u) (“error of total energy = inner
energy of error”).

Proof. (1◦) The Characterization Theorem yields a(u, v) = f(v) ∀ v ∈ U . Then
a(u, u) = f(u) because u ∈ U hence J(u) = a(u, u) − 2a(u, u) = −a(u, u).
(2◦) Because w = v − u ∈ U and a(u,w) = f(w) we have

J(v) = J(u+ w) = a(u, u) + 2a(u,w) + a(w,w) − 2f(u) − 2f(w)
= J(u) + a(w,w) .
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��
(e) Ritz Approximation Let the assumptions of the Existence Theorem

be satisfied further on and let U ⊂ H be a linear subspace. The idea of Ritz

consists in solving the extremum problem

J(v) = a(v, v) − 2(f, v) = min! , v ∈ U ,

resp. the equivalent variational problem on a finite dimensional subspace R .
The following result is frequently called Main Theorem of Ritz Theory.

Theorem 1.30. Let R ⊂ U ⊂ H be closed linear subspaces and

u = arg minv∈U J(v) , uR = arg minv∈R J(v) .

Then the following statements are equivalent:

(1◦) “uR is Galerkin approximation”: ∀ v ∈ R : a(uR, v) = (f, v) .
(2◦) “u− uR is perpendicular to R” with respect to energy:

∀ v ∈ R : a(u− uR, v) = 0 .
(3◦) “uR minimizes energy of error”:

∀ w ∈ R : a(u− uR, u− uR) ≤ a(u− w, u− w) .

Proof. (1◦) =⇒ (2◦). We have a(u, v) = (f, v) ∀ v ∈ R ⊂ U ; hence

∀ v ∈ R : a(u, v) − a(uR, v) = (f, v) − (f, v) = 0 .

(2◦) =⇒ (1◦). We have

∀ v ∈ R ⊂ U : a(uR, v) = (f, v) = a(u, v) .

(2◦) ⇐⇒ (3◦) By the Characterization Theorem we have for

J(w) = a(w − u,w − u) − a(u, u) = a(w,w) − 2a(u,w) , w ∈ U = R ,

the inequality

J(w) ≥ J(uR) ⇐⇒ ∀ v ∈ R : a(uR, v) = a(u, v) .

��
Because (2◦) and Lemma 1.31, uR is the projection of u onto R w.r.t. the

energy product a( � , ◦) , therefore the Ritz method is also called projection
method.

Lemma 1.34. “Energy of error equals error of energy”:

a(u− uR, u− uR) = a(u, u) − a(uR, uR) ,

in particular, “Ritz approximation does never overestimate energy”:

a(uR, uR) ≤ a(u, u) .
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Proof. Using R instead of U we obtain J(uR) = −a(uR, uR) by Lemma
1.33(1◦). Substituting v = uR in Lemma 1.33(2◦), it follows

J(uR) = −a(uR, uR) = a(u− uR, u− uR) − a(u, u).

��
Let now R = span{ϕ1, . . . , ϕn} be finite-dimensional then uR = u0 +∑

j=1:myjϕj is called Ritz approximation of u. Substituting this basic ap-
proach and v = ϕj in a(v, ur) = (v, f) successively we obtain for y =
[y1, . . . , ym]T a linear system of equations,

Ay = b, A = [a(ϕi, ϕj)]mi,j=1, b = [(ϕj , f) − a(ϕj , u0)]mj=1 .

The leading matrix A is symmetric and positive semi-definite. If the functions
ϕj are linear independent (form a basis of R), A is positive definite and the
system has a unique solution.

The finite element method (FEM) starts from the extremal problem or
from the associated variational problem and uses only this formulation. The
classical formulation as boundary value problem is abandoned here. For nu-
merical approximation, the function space of (weak) solutions is replaced by
a finite-dimensional space R (usually a subspace of the basic space U but not
always). The finite difference method (FDM) starts from the classical formu-
lation of a problem as boundary value problem disregarding the formulation
as variational problem. For numerical approximation the domain on which
the solution lives is replaced by a mesh with a finite number of knots.

References: (Ciarlet79), (Strang), (Velte). For an interesting mechanical in-
terpretation of Figure 1.14 see (Hartmann).
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Numerical Methods

Before the computer (ordinateur in French) changed the world, numerical
mathematics — which mockers referred to as phenomenological — could
hardly be counted as one of the supreme disciplines of the mathematical sci-
ences. Whether that is the case today is beside the point, but combined with
modeling and simulation it has risen in the hierarchy, and the latter even
have to suffer to some extent to justify the existence of the other subjects. In
the 1960s the integrimeter, integraph and harmonic oscillator were treated as
instrumental mathematics in lectures. They have been long forgotten, as have
all numerical methods for the hand calculator such as, e.g., extracting roots
by subtracting odd numbers.

The turbulent evolution of the computer to the laptop allowed numerical
mathematics to successfully keep pace at some distance. Logarithmic Tables,
etc., have long been replaced by the pocket calculator, and linear systems
— a central problem — are solved today with three inconspicuous glyphs
A\b, without resulting in any inconsistencies in style. A multitude of mono-
graphs displays what has been achieved so far; only (Golub), (Hairer) and
(Rheinboldt70) are stated as examples. The curve of the number of publica-
tions with purely numerical themes also seems to be getting somewhat flatter,
while the number of problem-related applications is on the rise.

If numerical methods shall be described in a single chapter, it is necessary
to concentrate on the essential aspects. The author assumes that the reader
is interested primarily in applying existing codes, which is not possible with-
out a minimum of understanding and intuition. This is the premise for the
introduction to the mindsets of numerics provided here and the discussion of
challenging developments as the multiple shooting method and differential-
algebraic problems. The numerical part of this book is not limited to the
topics treated here; for those possessing the necessary background, further
issues are dealt with in later chapters.
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2.1 Interpolation and Approximation

In many applications, functions are given only by discrete data sets. Or, a
function cannot be integrated in closed form and must be replaced by a simpler
one to that end. Then it is approximated piecewise by polynomials of moderate
degree because polynomials of higher degree oscillate more or less strongly in
larger intervals. But also approximations by rational functions, exponential
functions, and, preferably in periodic problems, trigonometric interpolation
are in common use. Let

Πn the set of real polynomials pn of degree ≤ n .

With the usual addition and scalar multiplication, Πn is a vector space of
dimension n + 1 whose basis {q0(x), . . . , qn(x)} is chosen according to the
individual requirements.

(a) The General Interpolation Problem Let there be given

a sequence of support abszissas {xi}∞i=0 , xi ∈ R ,

a sequence of support ordinates {fi}∞i=0 , fi ∈ R ,

a sequence of functions {gi}∞i=0 , gi ∈ C[a, b] .

The support abszissas xi shall be mutually distinct; for the other case we refer
to (Hoellig) Sect. 3.1. Then, a sequence of functions

{hn}∞n=1 , hn(x) =
n−1∑
i=0

αigi(x) , (2.1)

is to be found with the interpolation property

hn(xj) = fj , j = 0 : n− 1 . (2.2)

Writing a = [α0, . . . , αn−1]T and f = [f0, . . . , fn−1]T , (2.1) is, for fixed n,
equivalent to the linear system of equations

Aa = f, A =
[
gi(xj)

]n−1

i,j=0
, (2.3)

and the interpolation problem (2.1), (2.2) has a unique solution for a regular
matrix A .

Theorem 2.1. (Existence, Haar Condition) Let all n support abscissas xj ,
j = 0 : n − 1 , be mutually distinct and let every not identical disappearing
linear combination of n functions gi , i = 0 : n− 1 , have no more than n− 1
zeros, then the matrix A is regular and the interpolation problem has a unique
solution.
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Proof. If the matrix A is singular, there exists a row vector c ∈ Rn with
cA = 0 ∈ Rn. Then the linear combination h(x) :=

∑
i=0:n−1cigi(x) has n

different zeros x0, . . . , xn−1 because

h(xj) =
∑

n−1
i=0 cigi(xj) = 0, j = 0 : n− 1 ,

in contradiction to the assumption. ��
In particular, the Haar condition is fulfilled for a sequence {pn}∞n=0 of

polynomials pn ∈ Πn because every not identically disappearing linear com-
bination h(x) :=

∑
i=0:n−1cipi(x) is a polynomial of degree ≤ n − 1 having

no more than n − 1 zeros. However, the matrix A in (2.3) is ill-conditioned
in general, hence this linear system of equations is not used commonly for
numerical computation of the coefficients αi .

(b) Interpolating Polynomials To find a linear recursion formula for
interpolating polynomials, let {j0, . . . , jm} ⊂ {0, . . . , n} be an index set with
different elements. Then the interpolating polynomial pj0,...,jm

(x) ∈ Πm is
uniquely determined by

pj(x) = f(xj) , m = 0 ,
pj0,...,jm

(xi) = f(xi) , i = j0, . . . , jm , m = 1 : n , (2.4)

following the Existence Theorem; thus, in particular, pj0,...,jm
(x) does not

depend on a permutation of indices.

Lemma 2.1. (Aitken) For j = 0 : n−m, m = 1 : n

pj,...,j+m(x) =
1

xj+m − xj

[
(x−xj)pj+1,...,j+m(x)−(x−xj+m)pj,...,j+m−1(x)

]
.

This formula is used in various applications for computation of interpolating
polynomials at a given point x .

Theorem 2.2. (Cauchy’s Error Representation) Let the function f be
(n+1)-times differentiable in [a, b] and let [u, v, . . . , w] be the smallest interval
I ⊂ R containing all u, v, . . . , w ∈ I . Then ∀ x ∈ [a, b] ∃ ξx ∈ [x0, . . . , xn, x]:

f(x) − pn(x; f) =
f (n+1)(ξx)
(n+ 1)!

ω(x) , ω(x) = (x− x0) · · · (x− xn) . (2.5)

Proof in SUPPLEMENT\chap02.
Note that the intermediate values ξx change with the value x.
(c) Interpolation after Lagrange We consider the approximation of a

function f by an interpolating polynomial in separated form

f(x) ≈ pn(x; f) =
n∑

i=0

f(xi)qi(x) , (2.6)
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with the basis {q0, . . . , qn} of Πn consisting of Lagrange polynomials

qi(x) =
n∏

j=0,j �=i

x− xj

xi − xj
, i = 0 : n . (2.7)

The interpolation property pn(xi; f) = f(xi) is guaranteed here by the specific
property qi(xj) = δi

j (Kronecker symbol).
Properties: (1◦) Interpolation of Lagrange is of high theoretical but

less practical use because all polynomials qi(x) have to be computed anew if
the set of support nodes is changed or augmented.
(2◦) By unique existence, the formula (2.6) is exact for all monomials f(x) =
xk, k = 0 : n ,

∑
i=0:n(xi)kqi(x) = xk , k = 0 : n ; in particular, we obtain a

partition of unity
∑

i=0:nqi(x) = 1 for k = 0 .
(3◦) For equidistant abszissas, h = 1/n , xi = x0 + ih , x = x0 + sh,
s ∈ [0, n] , we obtain

x− xj

xi − xj
=

(x0 + sh) − (x0 + jh)
(x0 + ih) − (x0 + jh)

=
s− j

i− j
;

hence formula (2.6) is simplified considerably by this translation and scaling
of the independent variable:

pn(x(s); f) =
n∑

i=0

f(xi)qi(x(s)) , qi(x(s)) =
n∏

j=0,j �=i

s− j

i− j
. (2.8)

This representation applies in constructing numerical quadrature formulas
as well as in constructing numerical devices for approximations of ordinary
differential equations and systems.

(d) Interpolation after Newton Let f [xj0 , . . . , xjm
] be the highest term

of pj0,...,jm
(x) then, by Lemma 2.1,

f [xj , . . . , xj+m] =
f [xj+1, . . . , xj+m] − f [xj , . . . , xj+m−1]

xj+m − xj
. (2.9)

These divided differences do not depend on the succession of indices because
the associated polynomials have this property. On choosing the Newton basis
for Πn , n0(x) ≡ 1 , nj(x) = (x− x0) · · · (x− xj−1) , j = 1 : n , we obtain

p0,...,n(x; f) =
n∑

j=0

ajnj(x) , aj = f [x0, . . . , xj ] ,

= (· · · (an(x− xn−1) + an−1)(x− xn−2) + an−2) · · · )(x− x0) + a0

(2.10)

because of the interpolation property and the recursion formula

p0,...,n(x) = p0,...,n−1(x) + anπ(x) , π(x) = (x− x0) · · · (x− xn−1) ∈ Πn



2.1 Interpolation and Approximation 83

being typical for this form of the interpolating polynomial.

The well-known Taylor polynomial pn(x; f) =
∑

i=0:n

f (i)(x0)
i!

(x − x0)i

may be said to stand on the opposite side of the scale of approximation by
polynomials since it uses only one “interpolation point” x0 . By using (2.9),
a natural relation may be found between Taylor coefficients and divided
differences being the coefficients of Newton’s polynomial:

Lemma 2.2.

f [xi, . . . , xi+k] =
f (k)(ξ)
k!

, ξ ∈ [xi, . . . , xi+k] .

Proof. Let pi,...,i+k(x) be the Newton interpolating polynomial of degree ≤ k
with nodes (xj , fj), j = i : i + k − 1 , and let (xi+k, fi+k) = (x, f(x)) where
all abszissas xj and x shall be mutually distinct. Then we have

f(x) = pi,...,i+k(x) = pi,...,i+k−1(x) + f [xi, . . . , xi+k](x− xi) · · · (x− xi+k−1)

at the point xi+k = x, and, on the other side, the error formula for pi,...,i+k(x) ,

f(x) = pi,...,i+k−1(x) +
f (k)(ξ)
k!

(x− xi) · · · (x− xi+k−1) .

��
(e) By additional Interpolation of the Derivatives of f at all abszissas

xi we obtain interpolating polynomials of Hermite type:

f(x) ≈ h2n+1(x, f) =
n∑

i=0

[f(xi)h0,i(x) + f ′(xi)h1,i(x)] ∈ Π2n+1

with Hermite polynomials

h0,i(x) =
[
1 − 2q′i(xi)(x− xi)

]
qi(x)2 =⇒ h0,i(xk) = δi

k , h
′
0,i(xk) = 0 ,

h1,i(x) = (x− xi)qi(x)2 =⇒ h1,i(xk) = 0 , h′1,i(xk) = δi
k ,

where qi(x) are the Lagrange polynomials again. The error has the same
form as in (2.5):

f(x) − h2n+1(x, f) =
f (2n+1)(ξx)

(n+ 1)!
ω(x) , ω(x) = (x− x0)2 · · · (x− xn)2.

Besides some few exceptions, enhancing the degree n of an interpolating
polynomial does not improve the approximation, instead a segmentwise inter-
polation with simple polynomials is to be preferred. By requiring some global
smoothness, the compound polynomials then lead to the interpolating spline
functions ; cf. (g).
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Figure 2.1. Interpolating polynomial of degree n = 4, 6 for f(x) = 1/(1 + x2)

(f) Approximation by Beziér Polynomials In a fixed, unpartitioned
interval, essential improvement of approximation is attained by abandoning
the strong interpolating condition pn(xi; f) = f(xi) in the interior of the
considered intervall. By the partition of unity,

1 = (x+ (1 − x))n =
n∑

i=0

(
n

i

)
xi(1 − x)n−i =:

n∑
i=0

Bn
i (x) ,

we obtain the basis of Bernstein polynomials Bn
i (x) of Πn and the general

representation of pn ∈ Πn as Beziér polynomial with the Beziér points bi ,

pn,bez(x) = b0B
n
0 (x) + . . .+ bnB

n
n(x) . (2.11)

The roots of all Bn
i (x) are placed at the boundary of the interval [0, 1], and

precisely one extremal point exists in the interior (maximum point). There-
fore Bernstein polynomials possess no turning point in this interval. As a
consequence, no spurious turning points are dragged in by approximating a
function f in this way. However, the approximation is restricted to the unit
interval [0, 1] here, otherwise a rescaling becomes necessary. Besides, piecewise
interpolation is to be preferred in the present case, too.

Properties: (1◦)
n∑

i=0

Bn
i (x) = 1 ,

n∑
i=0

(
i

n

)
Bn

i (x) = x .

(2◦) By applying forward differences Δbi = bi+1 − bi , Δ
kbi = Δ(Δk−1bi) , we

obtain for the derivatives

p
(k)
n,bez(x) =

n!
(n− k)!

n−k∑
i=0

(Δkbi)Bn−k
i (x) ,

from which the above mentioned important property follows, namely

∀ i : Δkbi ≥ 0 =⇒ ∀ x ∈ [0, 1] : p(k)(x) ≥ 0 .

Moreover, the k-th derivatives in x = 0 resp. x = 1 depend only on the Beziér

points b0, . . . , bk resp. bn−k, . . . , bn .
(3◦) Let there be given s− r+ 1 successive Beziér points {br, . . . , bs} for the
abszissas x = (i− r)/(s− r), i = r : s , then
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br,...,s(x) :=
s∑

i=r

biB
s−r
i−r (x)

is the corresponding Beziér polynomial of degree ≤ s − r (depending on
the succession of points!). By means of the addition theorem for binomial
coefficients, the linear recursion formula of De Casteljau can be derived,

br,...,s(x) = (1 − x)br,...,s−1(x) + xbr+1,...,s(x) ,

being applied for pointwise computation of pn,bez(x) in place of the algebraic
representation (2.11).
(4◦) The points (xi, bi) = (i/n, f(i/n)) ∈ R

2 , i = 0 : n , are also called
Beziér nodes or Beziér points. The Beziér polynomial is attached to the
corresponding Beziér polygon like a circus tent to its masts approaching
it more and more closely by enhancing the degree resp. the node number.
General curves in space are obtained by replacing the Beziér points bi in
(2.11) by vectors,

p
n,bez

(x; f) =
n∑

i=0

f

(
i

n

)
Bn

i (x) ∈ R
n , f(x) ∈ R

n .

(5◦) The approximation by Beziér polynomials provides a basic result of func-
tional analysis:

Theorem 2.3. (Weierstrass) Let f ∈ C[0, 1] and

Bnf : x �→
n∑

i=0

f

(
i

n

)
Bn

i (x)

with Bernstein polynomials Bn
i (x). Then

limn→∞ max0≤x≤1 |f(x) −Bnf(x)| = 0 .

The proof is a simple conclusion of a surprising result of Korovkin:

Theorem 2.4. Let Ln : C[a, b] �→ C[a, b] be a sequence of linear and positive
operators Ln , i.e.,

∀ f, g ∈ C[a, b] ∀ x ∈ [a, b] : f(x) ≤ g(x) =⇒ Ln(f) ≤ Ln(g) ,

and let f1(x) = 1 , f2(x) = x , f3(x) = x2 . If

lim
n→∞

‖Lnfi − fi‖∞ = 0 i = 1 : 3 ,

then
∀ f ∈ C[a, b] : limn→∞ ‖Lnf − f‖∞ = 0 .

Proof (Kosmol) Sect. 4.4.5.



86 2 Numerical Methods

Proof of Theorem 2.3. Apparently, the operators Bn are linear and positive,
and we have

Bn(f1, x) = 1 , Bn(f2, x) = x , Bn(f3, x) = x2 +
x− x2

n
,

hence the assumptions of Theorem 2.2 are satisfied. ��
A direct, likewise interesting proof of Theorem 2.3 is found in (Yosida)

Sect. 0.2.
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Figure 2.2. Lagrange polynomials,
n = 3
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Figure 2.3. Beziér polynomials, n =
3, with rescaling
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Figure 2.4. Hermite polynomials, n = 3

(g) Interpolating Splines A (continuous) Beziér curve consists piece-
wise of Beziér polynomials having the interpolation property at the ends of
their domain, respectively. We consider the special case of a Beziér curve
in interval I = [0, n · m] , m ∈ N . The curve shall consist of Beziér poly-
nomials of degree n with Beziér points bnk, . . . , bn(k+1) in the subintervals
Ik = [n(k − 1), nk] , k = 1 : m , and it shall attain the values f(nk) at the
points nk (n fixed) (Fig. 2.5).
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Figure 2.5. Beziér curve and spline, m = n = 3

Definition 2.1. (1◦) A segmented continuous curve of polynomial segments
of degree ≤ n is a (polynomial) spline if it is (n − 1)-times continuously
differentiable on the entire interval. For n = 3 , the spline is called cubic
spline.
(2◦) Let I = [a, b] and let a partition of Δm of I be defined by a = x0 < x1 <
. . . < xm = b then

S3(Δm) := {s ∈ C2(I), ∀ x ∈ [xi−1, xi) : s(3)(x) = const, i = 1 : m}

is the vector space of cubic splines.

The dimension of S3 is m + 3 = (m + 1) + 2 hence there are two conditions
free for further specification.

For k ∈ N0 let

pk(x) := xk,
qk(t, x) := (t− x)k

+ := max{(t− x)k, 0} (Föppl symbol).

The function qk(t, x) has k− 1 continuous derivatives in both arguments and
the k-th derivative makes a jump of height k! resp. (−1)kk!.

Theorem 2.5. The set Sn(Δm) is a linear space of dimension m + n. The
elements

p0, . . . , pn, qn( · , x1), . . . , qn( · , xm−1)

constitute a basis of Sd(Δn) .

Proof, e.g., (Haemmerlin), p. 246.
Now we consider the case n = 3 more exactly. Conceiving s ∈ S3 as Beziér

curve, we have for the Beziér points at distance xi+1 − xi = 1 :

s(xk) = b3k because s ∈ C[a, b]
2b3k = b3k−1 + b3k+1 because s ∈ C1[a, b]

2b3k−1 − b3k−2 = dk = 2b3k+1 − b3k+2 because s ∈ C2[a, b] .
(2.12)

By these relations we obtain

4b3k−1 − 2b3k−2 = 2dk , 4b3k+1 − 2b3k+2 = 2dk ,

2b3(k−1)+1 − b3(k−1)+2 = dk−1 , 2b3(k+1)−1 − b3(k+1)−2 = dk+1 ,
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and, by addition of the left and right sides separately,

3b3k−1 = dk−1 + 2dk, 3b3k+1 = 2dk + dk+1 . (2.13)

Accordingly, the numbers b3k+1 und b3(k+1)−1 = b3k+2 divide the line segment
between dk and dk+1 into three segments.

Furthermore, by (2.12) and (2.13),

6b3k = 3b3k−1 + 3b3k+1 = dk−1 + 4dk + dk+1 , (2.14)

for all interior points b3k, k = 1 : m − 1 . Together with (2.13) for b1 and
b3m−1 , i.e., for k = m and k = 0 ,

3b3m−1 = dm−1 + 2dm , 3b1 = 2d0 + d1 ,

we obtain the following linear system for the vector [d0, . . . , dm]T of unknown
coefficients (DeBoor points) in case where all data on the right side are given:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 1 0 0 0

1 4 1
. . . 0

0
. . . . . . . . . 0

0
. . . 1 4 1

0 0 0 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

d0

d1

...
dm−1

dm

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

3b1
6b3
...

6b3m−3

3b3m−1

⎤
⎥⎥⎥⎥⎥⎥⎦
. (2.15)

The matrix is regular and well-conditioned; thus there exists precisely one
spline s ∈ S3(Δ) to the data set {d0, . . . , dm, b0, b3m} by the above construc-
tion. It is called cubic interpolating spline because s(xk) = b3k = fk for k =
0 : m (Fig. 2.6).
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Figure 2.6. Interpolating spline, m = n = 3

Calculation Let fk = b3k for k = 0 : m be given and let the interpolating
spline s ∈ S3(Δm) in [a, b] = [0,m], xi+1 − xi = 1 to be found.
(1◦) Let f ′(a), f ′(b) be specified. Find b1, b3m−1 by solving

f ′(a) = s′(0) = 3(b1 − b0), f ′(b) = s′(m) = 3(b3m − b3m−1),
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compute d0, . . . , dm by (2.15), compute b3k+1, b3k+2 by (2.13),
compute s(x) in [xk, xk+1] as Beziér polynomial by De Casteljau,

s(xk + ξ) =
3∑

i=0

b3k+iB
3
i (ξ) ,

using local coordinates ξ ∈ [0, 1].
(2◦) Requiring s′′(a) = s′′(b) = 0 we obtain the natural splines, s ∈ N3(Δm) .
For their computation, d0 = b0 and dm = b3m are prescribed then, with n = 3 ,

s′′(0) = n(n− 1)(b2 − 2b1 + b0) = 6(−d0 + b0) = 0,
s′′(m) = n(n− 1)(b3m − 2b3m−1 + b3m−2) = 6(−dm + b3m) = 0 .

Compute (d1, . . . , dm−1)T by (2.15) without first and last row (because d0 and
dm fixed) ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

4 1 0 0 0

1 4 1
. . . 0

0
. . . . . . . . . 0

0
. . . 1 4 1

0 0 0 1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d1

...

...

...
dm−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

6b3 − b0

6b6
...

6b3m−6

6b3m−3 − b3m

⎤
⎥⎥⎥⎥⎥⎦
. (2.16)

Because s′′(xk) = 6(b3k − dk)/h2, k = 1 : m− 1 , h = xi+1 − xi constant, the
“moments” s′′(xk) satisfy a similar linear system as the values dk .

If the exact curvature κ(x) = f ′′(x)/(1 + f ′(x)2)3/2 of f : x �→ f(x)
is replaced by f ′′(x) approximatively, then the natural splines reveal to be
bending lines :

Theorem 2.6. Let Δm be an arbitrary partition and let s ∈ N3(Δm), i.e., a
natural spline, with s(xi) = fi, i = 0 : m . Then

|s|22 :=
∫ b

a

(s′′(x))2dx = min
{
|g|22, g ∈ C2[a, b], g(xi) = fi

}
.

Proof. Let g have the mentioned properties then, using g′′(x)2 = (s′′(x) +
g′′(x) − s′′(x))2 ,
∫ b

a

g′′(x)2dx =
∫ b

a

(s′′)2dx+ 2
∫ b

a

s′′(g′′ − s′′) dx+
∫ b

a

(g′′ − s′′)2dx . (2.17)

By partial integration we obtain for the mixed term
∫ b

a

s′′(g′′ − s′′) dx = s′′(g′ − s′)|ba −
m∑

i=1

∫ xi

xi−1

s′′′(g′ − s′) dx,

m∑
i=1

∫ xi

xi−1

s′′′(g′ − s′) dx =
m∑

i=1

∫ xi

xi−1

ci(g′ − s′) dx =
m∑

i=1

ci(g − s)
∣∣∣
xi

xi−1

= 0 ,
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because g(xi) = s(xi) = fi by assumption. Accordingly, the assertion follows
if the boundary terms disappear, i.e., if

s′′(g′ − s′)
∣∣∣
b

a
= 0 .

This condition is fulfilled for instance in the following commonly used cases:

(1◦) if s′′(a) = 0 = s′′(b) (natural spline),
(2◦) if g′(a) = s′(a) = f ′(a) fixed, g′(b) = s′(b) = f ′(b) fixed,
(3◦) if s , g periodic with period b− a .

��
If calculation shall be performed in an interval [a, b] instead [0,m] then

re-scaling becomes necessary; likewise, a change is necessary if the nodes are
no longer equidistant. But we do not pursue this matter here; cf. however
SUPPLEMENT\chap02.

2.2 Orthogonal Polynomials

Let Πn be the set of polynomial pn ∈ Πn of exact degree n and with
highest term one.

(a) Construction Let −∞ ≤ a < b ≤ ∞ and let ω : [a, b] → R+ be a
non-negative weight function with the following properties:

Assumption 2.1. The moments mk :=
∫ b

a

ω(x)xk dx , k ∈ N0 , exist finitely

(possibly being improper integrals), and m0 > 0 .

Then two polynomials p , q ∈ Πn are called orthogonal (w.r.t. the considered
interval of integration and the weight function ω) if

(p, q) :=
∫ b

a

ω(x)p(x)q(x) dx = 0 .

Theorem 2.7. (Existence and Construction) Adopt Assumption 2.1.
(1◦) ∀ i ∈ N0 ∃! pi ∈ Πi : i �= k =⇒ (pi, pk) = 0 .
(2◦) The orthogonal polynomials are uniquely determined by the three-term
recurrence relation (with xp : x �→ xp(x))

p−1(x) = 0 , p0(x) = 1 , pi+1(x) = (x− δi+1)pi(x) − γ2
i+1pi−1(x) , i ≥ 0,

δi+1 = (xpi, pi)/(pi, pi) , i ≥ 0 , γ2
i+1 =

{
0 , i = 0 ,
(pi, pi)/(pi−1, pi−1) , i ≥ 1 .

(2.18)



2.2 Orthogonal Polynomials 91

Proof by Gram-Schmidt orthogonalization (Stoer), see also
SUPPLEMENT\chap02.

Obviously, for pn ∈ Πn , it follows that (p, pn) = 0 for all p ∈ Πn−1 because
orthogonal polynomials are linearly independent and thus form a basis of Πn .
In the remaining part of this section we consider othogonal polynomials pn as
introduced by Theorem 2.7.

Theorem 2.8. The roots xi of pn are real and simple. They all lie in the open
interval (a, b) .

Proof. Let x1, . . . , xk be all roots of pn of odd multiplicity contained in (a, b)
then pn changes sign precisely at these points. Let

a < x1 < . . . < xk < b, q(x) :=
k∏

i=1

(x− xi), k ≤ n ,

then pn(x)q(x) does not change sign in (a, b) hence (pn, q) �= 0 . Therefore the
degree of q must be k = n otherwise we have a contradiction to the above
inference to Theorem 2.7. ��

(b) The Formulas of Rodriguez To compute orthogonal polynomials
pn ∈ Πn explicitely, we observe the general condition of orthogonality

∀ qn−1 ∈ Πn−1 :
∫ b

a

ω(x)pn(x)qn−1(x) dx = 0 , n = 0, 1, . . . (2.19)

and choose for approach in skilful way

ω(x)pn(x) =
dn

dxn
un(x) =⇒ pn(x) =

1
ω(x)

dn

dxn
un(x) ∈ Πn .

Since pn shall be a polynomial of degree not greater n, obviously

dn+1

dxn+1

[
1

ω(x)
dnun(x)
dxn

]
=
[
u

(n)
n (x)
ω(x)

](n+1)

= 0 . (2.20)

On the other side, a n-fold partial integration of
∫ b

a

u(n)
n (x)qn−1(x) dx = 0

yields

[
u(n−1)

n qn−1 − u(n−2)
n q′n−1 + − . . .+ (−1)n−1unq

(n−1)
]∣∣∣

b

a
= 0 .

This relation is certainly fulfilled for the boundary conditions

u(i)
n (a) = 0, u(i)

n (b) = 0, i = 0 : n− 1 . (2.21)
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The converse result does also hold and has been proved by (Szegoe):

Theorem 2.9. Let Assumption 2.1 be fulfilled. Then the boundary value prob-
lem (2.20), (2.21) has always a solution un and pn := un/ω is a polynomial
of degree n .

The above boundary value problem has 2n boundary conditions for a differ-
ential equation of order 2n + 1 hence one condition stands at disposition for
normalization.

Example 2.1. Legendre polynomials: Interval (a, b) = (−1, 1) , weight func-
tion ω(x) ≡ 1 , u(2n+1)

n = 0 , u(i)
n (±1) = 0 , i = 0 : n− 1 (Fig. reffig0202.1).

pn(x) = γn
dn

dxn
(x2 − 1)n.

The constants γn are specified in different ways.

Example 2.2. Jacobi polynomials: Interval (a, b) finite, weight function ω(x) =
(x− a)α(b− x)β , α > −1 , β > −1 .

pn(x) = γn
1

(x− a)α(b− x)β

dn

dxn
[(x− a)n+α(b− x)n+β ] .

In particular, shifted Legendre polynomials are obtained for (a, b) = (0, 1)
and (α, β) = (0, 0), (1, 0), (0, 1), (1, 1) being applied later on in numerical
integration:

p1,n(x) =
dn

dxn

(
xn(1 − x)n

)
, p2,n(x) =

1
x

dn

dxn

(
xn+1(1 − x)n

)

p3,n(x) =
1

1 − x

dn

dxn

(
xn(1 − x)n+1

)
, p4,n(x) =

1
x(1 − x)

dn

dxn
xn+1(1 − x)n+1 .

(2.22)

Example 2.3. Chebyshev polynomials Tn(x) with (a, b) = (−1, 1) , ω(x) =
(1 − x2)−1/2 are special Jacobi polynomials as well as the above Legendre

polynomials. In expanding a function by these polynomials, the values at the
boundaries of the interval are more strongly regarded because of the special
weight function (Fig. 2.8). By the original condition of orthogonality,

∀ qn−1(x) ∈ Πn−1 :
∫ 1

−1

Tn(x)qn−1(x)
(1 − x2)1/2

dx = 0 , (2.23)

a substitution of x = cosϕ yields the condition
∫ π

0

Tn(cosϕ)qn−1(cosϕ) dϕ = 0 .
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Because
cos(n+ 1)ϕ+ cos(n− 1)ϕ = 2 cosϕ cosnϕ (2.24)

for n ∈ N, the function cosnϕ is a polynomial in cosϕ, and (cosϕ)k is a linear
combination of cos jϕ, j = 0 : k , hence

qn−1(cosϕ) =
n−1∑
j=0

γj(cosϕ)j =
n−1∑
k=0

δk cos(kϕ) .

Thus (2.23) holds if and only if
∫ π

0

Tn(cosϕ) cos(jϕ) dϕ = 0, j = 0 : n− 1,

=⇒ Tn(cosϕ) = cos(nϕ) =⇒ Tn(x) = cos(n arccosx) , n = 0, 1, . . . .
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Figure 2.7. Legendre polynomials,
n = 2 : 6
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Figure 2.8. Chebyshev polynomials,
n = 2 : 5

(c) Minimum Property of Chebyshev Polynomials The recurrence
formula (2.24) shows that Tn(x) = cos(n arccos(x)) has the highest term 2n−1 .

Theorem 2.10. Let pn(x) be any polynomial of degree ≤ n with highest term
2n−1. Then there exists at least one x ∈ [−1, 1] such that |pn(x)| ≥ 1 .

Proof. Suppose that |pn(x)| < 1 for all x ∈ [−1, 1] . Tn(x) takes alternating
the values ±1 at its n + 1 extremal points xi = cos(iπ/n), i = 0 : n , in
[−1, 1] . Therefore, Tn(x) − pn(x) is alternating positive or negative at these
extremal points and thus Tn(x) − pn(x) has at least n zero points in (−1, 1) .
However, because of identical highest terms, Tn(x) − pn(x) is a polynomial
of degree ≤ n − 1 . Accordingly, Tn(x) − pn(x) ≡ 0 in contradiction to the
assumption. ��

Corollary 2.1. Let qn be a polynomial of degree n with highest term an then
there exists a value x ∈ [−1, 1] such that |qn(x)| ≥ an/2n−1 .
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Proof. Let an �= 0 and q∗n(x) = qn(x)2n−1/an . The polynomial q∗n has the
highest term 2n−1 hence |q∗n(x)| ≥ 1 by Theorem 2.10 for at least one x0 ∈
[−1, 1]. Then |qn(x0)| = |q∗n(x0)an/2n−1| ≥ an/2n−1 . ��

For an arbitrary polynomial qn(x) — especially also for a Taylor poly-
nomial — there exists a unique expansion by Chebyshev polynomials,

qn(x) =
n∑

i=0

ciTi(x) , x ∈ [−1, 1] , Ti(x) = cos(i arccos(x)) ,

because these polynomials are linearly independent by orthogonality.

Theorem 2.11. If Sn(x) =
∑n

i=0 ciTi(x) are the partial sums of an expansion
by Chebyshev polynomials then

max−1≤x≤1 |Sn+1(x) − Sn(x)| = infpn
max−1≤x≤1 |Sn+1(x) − pn(x)|

where pn is an arbitrary polynomial of degree ≤ n .

Proof. We have Sn(x) − Sn−1(x) = cnTn(x) hence |Sn(x) − Sn−1(x)| ≤
|cn| , −1 ≤ x ≤ 1 . For any arbitrary polynomial pn−1 of degree n − 1, the
difference Sn − pn−1 has the highest term cn2n−1 hence

|Sn(x) − pn−1(x)| ≥ cn2n−1/2n−1 = cn .

at least for one x ∈ [−1, 1] by Corollary 2.1. ��
Roughly spoken, the components of an expansion by Chebyshev polyno-

mials decrease in absolute value in the fastest way.

2.3 Numerical Integration

Integrating is an art and differentiating is a handicraft as everybody knows,
but from numerical point of view fortunately the situation behaves conversely
in some sense. Integration is a smoothing process which has advantageous
consequences in numerical approximation whereas a differential quotient has
to be replaced always by a difference quotient numerically. Then, in numerator
and denominator, subtraction of nearly equal numbers does occur entailing
the befeared extinction of leading numbers. However, it should be mentioned
at this place that an asymptotic expansion in the sense of Sect. 2.4(c) may
produce surprisingly exact results; cf. (Rutishauser).

As Matlab does not know the index zero and also for applications later
on, we work in this section throughout with n nodes instead of the usual n+1
nodes in interpolating problems.

(a) Integration Rules of Lagrange The computational effort of a nu-
merical integration formula depends on the number of function evaluations.
Note once more that we work with n nodes here to compare the individual
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rules with each other. Accordingly, we proceed from an interpolating poly-
nomial pn−1(x) of degree n − 1 of Lagrange type, i.e., by (2.6) in slightly
modified form,

f(x) ≈ pn−1(x; f) =
n∑

i=1

f(xi)qi(x) , qi(x) =
n∏

j=1,j �=i

x− xj

xi − xj
∈ Πn−1 ,

(2.25)
and obtain by integration over an interval (a , b)

I(f) :=
∫ b

a

f(x) dx ≈
n∑

i=1

f(xi)
∫ b

a

qi(x) dx =:
n∑

i=1

f(xi)αi =: In(f) . (2.26)

The n support abszissas xi shall be mutually distinct again, otherwise they
can be chosen arbitrarily, in particular, they may lie also in the exterior of
the interval of integration. But in this section we suppose always that

a ≤ x1 < . . . < xn−1 < xn ≤ b .

An integration rule has degree N if (at least) all polynomials of degree ≤ N are
integrated exactly. Apparently, a Lagrange formula (2.26) with n abszissas
has degree N = n − 1; the maximum degree N is not greater than 2n − 1,
because, inserting the polynomial f(x) = Πn

i=1(x − xi)2 ∈ Π2n , we have
In(f) = 0 for the rule and I(f) > 0 for the exact integral.

The integration formulas of Newton and Cotes are of separated type
(2.25), too, but with a uniform partition xi = a + (i − 1)h and step length
h = (b− a)/(n− 1) , n ≥ 2 . Inserting the translation x = a+ sh we obtain by
Sect. 2.1

qi(x) = qi(a+ sh) =: ϕi(s) =
n∏

j=1, j �=i

s− j

i− j
∈ Πn−1(s) , s ∈ [0, n− 1] ,

αi :=
∫ b

a

qi(x)dx =
∫ n−1

0

qi(a+ sh)
dx

ds
ds = h

∫ n−1

0

ϕi(s)ds = hβi ,

In(f) =
n∑

i=1

f(xi)αi = h
n∑

i=1

f(xi)βi .

The new weights βi are now rational numbers which depend only on the
number n and no longer on the boundaries a , b of the integral, therefore they
can be calculated once for all in tabular form; a substitution of f(x) ≡ 1 shows

that
n∑

i=1

βi = n− 1 , n ≥ 2 .

Example 2.4. Midpoint rule (1 node):

I(f) = (b− a)f
(
a+ b

2

)
+

1
24

(b− a)3f ′′(ξ) ,
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Trapezoidal rule (n = 2 nodes, h = b− a):

I(f) =
b− a

2
[f(a) + f(b)] − 1

12
(b− a)3f ′′(ξ) ,

Simpson’s rule (n = 3 nodes, h = (b− a)/2):

I(f) =
b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− (b− a)5

25 · 90
f (4)(ξ) .

Note that the intermediate values ξ ∈ (a, b) differ in the individual integration
rules.

One observes that the midpoint rule and Simpson’s also called Kepler’s
rule have degree n instead of the expected lower degree n−1 of the underlying
interpolating polynomial. It is however a general property of Newton-Cotes

rules that the degree is n instead n− 1 for n odd by reason of symmetry.
The general error term Rn(f) in

I(f) = In(f) +Rn(f) , (2.27)

is a linear operator satisfying Rn(αf + βg) = αRn(f) + βRn(g) . Introducing
the Föppl-Symbol (x− t)N

+ := max{(x− t)N , 0} again, the following classical
result of Peano displays Rn(f) in elegant integral form; cf. e.g. (Stoer).

Theorem 2.12. Let an integration rule (2.26) with n nodes have degree N
then, for all f ∈ CN+1[a, b] ,

Rn(f) =
∫ b

a

f (N+1)(t)Kn(t) dt , Kn(t) =
1
N !

Rn(ht), ht : x �→ (x− t)N
+ .

Proof see (Stoer) and SUPPLEMENT\chap02a.
Rn(ht) denotes here the error of the integration rule w.r.t the function

ht : x �→ (x − t)N
+ instead of f . Frequently the kernel Kn(t) does not change

sign in (a , b) as for instance in Newton-Cotes rules. Then the mean value
theorem of integration yields

Rn(f) = f (N+1)(ξ)
∫ b

a

Kn(t)dt , ξ ∈ (a, b) . (2.28)

Inserting here the special function ϕ : x �→ xN+1 for f we obtain

Rn(ϕ) = (N + 1)!
∫ b

a

Kn(t)dt =⇒
∫ b

a

Kn(t)dt = Rn(ϕ)/(N + 1)! . (2.29)

Fazit: If the integration rule (2.26) has degree N and Kn(t) does not change
sign in interval of integration then (2.28) and (2.29) yields the error represen-
tation
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Rn(f) =
f (N+1)(ξ)
(N + 1)!

Rn(ϕ) , ϕ : x �→ xN+1, ξ ∈ (a, b) (2.30)

(Peano’s error representation); but Rn(ϕ) can be always calculated exactly!
As already noted above, it can be shown for Newton-Cotes rules with

n mutually distinct support abszissas that

Rn(f) =

⎧
⎪⎪⎨
⎪⎪⎩

f (n)(ξ)
(n)!

Rn(xn) n even

f (n+1)(ξ)
(n+ 1)!

Rn(xn+1) n odd

where ξ ∈ (a, b) .
(b) Composite Integration Rules As already mentioned in Sect. 2.1,

the approximation of f by an interpolating polynomial pn ∈ Πn is not im-
proved by enhancing the degree n. Therefore one uses locally polynomials of
low degree on a collection of subintervals. The full integral is then approxi-
mated by the sum of the approximations of the subintegrals. The resulting
composite rules are arbitrarily exact in dependence of the node number even
for continuous integrand f . For instance, writing xi = a+ ih, i = 0 : m, h =
(b− a)/m, m ∈ N , (m + 1 support abszissas) we obtain the important com-
posite trapezoidal rule from the simple trapezoidal rule

T (h; f) =
h

2

[
f(x0) + 2

m−1∑
i=1

f(xi) + f(xm)

]
= I(f) − h2(b− a)

1
12
f ′′(ξ) ,

(2.31)
and the simple Simpson rule leads to the corresponding composite rule

I(f) =
h

6

[
f(x0) + 2

m−1∑
i=1

f(xi) + 4
m−1∑
i=0

f

(
xi + xi+1

2

)
+ f(xm)

]

+ h4(b− a)
1

2880
f (4)(ξ) .

By applying Euler-McLaurin’s summation formula (Stoer) it can be shown
that formula (2.31) has the following surprising property:

Lemma 2.3. Let f ∈ C∞(R) be an (b− a)-periodic function then

T (h; f) =
∫ b

a

f(x)dx+ O(hp) ∀ p ∈ N .

In other words, the composite trapezoidal rule is faster convergent than every
power of step length h for smooth periodic functions!

(c) Gauß Integration Using an interpolating polynomial of Hermite

form instead of Lagrange form for integration, cf. Sect. 2.1(e), we obtain a
further type of integration rules, namely,
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In(f) :=
n∑

i=1

[
f(xi)

∫ b

a

h0,i(x)dx+ f ′(xi)
∫ b

a

h1,i(x)dx

]
(2.32)

where

h0,i(x) =
[
1 − 2q′i(xi)(x− xi)

]
qi(x)2 , h1,i(x) = (x− xi)qi(x)2 , (2.33)

and qi(x) ∈ Πn−1 are the Lagrange polynomials. The formula has degree
N = 2n− 1 for n evaluations of f and n evaluations of the derivative of f .

Choosing now for abszissas the roots xi , i = 1 : n of orthogonal polyno-

mials pn(x) ∈ Πn w.r.t. the scalar product (f, g) =
∫ b

a

f(x)g(x) dx we obtain

by Sect. 2.2 ∫ b

a

h1,i(x) dx =
∫ b

a

(x− xi)qi(x)2 dx = 0

because (x − xi)qi(x) = pn(x) and qi(x) ∈ Πn−1 . As an inference we have

also
∫ b

a

h0,i(x) dx =
∫ b

a

qi(x)2 dx therefore, by (2.32) and (2.33), we obtain

the following integration rules

In(f) :=
n∑

i=1

f(xi)
∫ b

a

qi(x)2 dx (2.34)

which have maximum degree N = 2n− 1 for n nodes.
We summarize the result for a general weight function ω(x) with the prop-

erties of Sect. 2.2 in the following theorem:

Theorem 2.13. (Gauss Integration) Let pn ∈ Πn be orthogonal polynomials
w.r.t. the scalar product

(f, g) :=
∫ b

a

ω(x)f(x)g(x) dx ,

Let x1, . . . , xn be the roots of pn, and let

A = [pi(xj)]n−1
i=0

n
j=1, c = [(p0, p0), 0, . . . , 0]T .

(1◦) The matrix A is regular.
(2◦) Let b = A−1c and b = [β1, . . . , βn]T then

∀ p ∈ Π2n−1 :
∫ b

a

ω(x)p(x) dx =
n∑

i=1

βip(xi) , (2.35)

i.e., the integration rule
∫ b

a

ω(x)f(x) dx =
n∑

i=1

βif(xi) +Rn,ω(x; f) (2.36)
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has maximum degree N = 2n− 1 .
(3◦) For error representation in (2.36) we have

∀ f ∈ C2n[a, b] ∃ ξ ∈ (a, b) : Rn,ω(x; f) =
f (2n)(ξ)
(2n)!

(pn, pn) .

(4◦) Conversely, if (2.35) holds then the abszissas xi are the roots of the
orthogonal polynomials pn(x) and Ab = c is fulfilled with b = [β1, . . . , βn]T .
(5◦) If a rule (2.36) has degree N ≥ n− 2 then the weights βi are positive.

Proof see (Stoer).
(d) Suboptimal Integration Rules are an important tool in construct-

ing implicit Runge-Kutta methods of maximum order in the next section.
Let

b = [β1, . . . , βn]T , x = [x1, . . . , xn]T , F (x) = [f(x1), . . . , f(xn)]T .

Theorem 2.14. For δ, ε ∈ {0, 1} , there exists a unique integration rule
∫ 1

0

f(x) dx ≈ δβ0 f(0) + bTF (x) + ε βn+1f(1) (2.37)

of maximum degree Ñ = 2n+ δ + ε− 1 .

Choose Gauß weights and Gauß nodes b̃, x by Theorem 2.13 w.r.t. the
weight function ω∗(t) = tδ(1− t)ε in [0, 1] and insert b = [β̃i/ω

∗(xi)]ni=1. Then
the rule is optimal for (δ, ε) = (0, 0) . For (δ, ε) = (1, 0) or (δ, ε) = (0, 1) , the
remaining weight is found by 1 = δβ0f(0)+bT e+εβn+1f(1) . For (δ, ε) = (1, 1),
the remaining both weights are found by solving

1
2

= 0 + bTx+ βn+1 , 1 = β0 + bT e+ βn+1 .

A comparison with the shifted Legendre polynomials in (2.22) shows that
the node abszissas x1, . . . , xn of a rule (2.37) with together n nodes are the
roots of the following polynomials:

(δ, ε) = (0, 0) : p1,n(x) , (δ, ε) = (1, 0) : xp2,n−1(x)

(δ, ε) = (0, 1) : (1 − x)p3,n−1(x) , (δ, ε) = (1, 1) : x(1 − x)p4,n−2(x) .
(2.38)

Proof of Theorem 2.14 see SUPPLEMENT\chap02a. A program for the compu-
tation of nodes and weights in all four cases is found in
KAPITEL02\SECTION_1_2_3. For integration over an interval (a, b) rescale
nodes and weights by x̂i = a+ (b− a)xi , b̂i = (b− a)bi , i = 1 : n .

Example 2.5. Gauß integration with Legendre polynomials:
∫ 1

−1

f(x) dx ≈
n∑

i=1

βif(xi)
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Table 2.1. Gauß-Legendre formulas with n nodes

n xi βi

2 ±
√

3/3 1

3 0 8/9

±
√

15/5 5/9

4 ±
[
525 − 70

√
30
]1/2

/35 (18 +
√

30)/36

±
[
525 + 70

√
3
]1/2

/35 (18 −
√

30)/36

5 0 128/225

±
[
245 − 14

√
70
]1/2

/25 (322 + 13
√

70)/900

±
[
245 + 14

√
70
]1/2

/25 (322 − 13
√

70)900

These rules for integration over the interval [a, b] = [−1, 1] are exact for poly-
nomials of degree n . In a transformation to the interval [a′, b′] , the weights
and nodes have to be transformed:

w′
i =

b′ − a′

b− a
wi , x′i = a′ +

b′ − a′

b− a
(xi − a) .

For instance, in transformation to the unit interval [0, 1] , the weights must
be divided by two and the nodes x′i = (1 + xi)/2 are to be used.

(e) Barycentric Coordinates serve mainly to a lucid and concise rep-
resentation of interpolating polynomials which live on arbitrary triangles T
in the plane or, more general, on n-simplices in R

n . Also integration rules
for general polynomials on these domains can be simplified by this way. We
restrict ourselves to the plane and consider an arbitrary triangle T in carte-
sian (x, y)-coordinates with vertices Pi(xi, yi), i = 1, 2, 3 , being numerated
counterclockwise. Then the double surface area

2|T | = (x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1) = x21y31 − x31y21 , (2.39)

(x21 = x2 − x1 etc.) is positive as long as T is non-degenerated. Using the
notations of Figure 2.9, the (dimensionless) barycentric or area coordinates
are defined for 0 ≤ ζi ≤ 1 by

ζi =
area of Ti

area of T
, i = 1, 2, 3 .

Accordingly, we have P1 $ (1, 0, 0) , P2 $ (0, 1, 0) , P3 $ (0, 0, 1) and ζ1 +
ζ2 + ζ3 = 1 whence the barycentric coordinates are not linearly independent.
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Figure 2.9. Barycentric coordinates

The connection of cartesian and barycentric coordinates is provided by the
area rule:

2|T1| =

∣∣∣∣∣∣
1 x y
1 x2 y2

1 x3 y3

∣∣∣∣∣∣
, 2|T2| =

∣∣∣∣∣∣
1 x y
1 x3 y3

1 x1 y1

∣∣∣∣∣∣
, 2|T3| =

∣∣∣∣∣∣
1 x y
1 x1 y1

1 x2 y2

∣∣∣∣∣∣
.

Expanding w.r.t. the first row and dividing by 2|T |, we get the affin-linear
relations

ζ1 = [(x2y3 − x3y2) + y23x+ x32y] /(2|T |)
ζ2 = [(x3y1 − x1y3) + y31x+ x13y] /(2|T |)
ζ3 = [(x1y2 − x2y1) + y12x+ x21y] /(2|T |)

(2.40)

(note the cyclic permutation of indices modulo 3). These relations are valid for
an arbitrary cartesian coordinate system not necessarily having origin in the
center of the triangle. They are used in different applications, in particular for
the calculation of partial derivatives, e.g. ∂ζ1/∂x = y23/(2|T |) etc.. Resolution
of two equations in (2.40) w.r.t. x and y yields the relation

1 = ζ1 + ζ2 + ζ3 , x = x1ζ1 + x2ζ2 + x3ζ3 , y = y1ζ1 + y2ζ2 + y3ζ3 (2.41)

between arbitrary cartesian and barycentric coordinates. In unit triangle
S(ξ, η) with vertices Q1(0, 0) , Q2(1, 0) , Q3(0, 1) , we have the relation

ζ1 = 1 − ξ − η , ζ2 = ξ , ζ3 = η , (2.42)

and ∫

S

ξpηq dξdη =
∫ 1

0

∫ 1−η

0

ξpηq dξdη =
p!q!

(p+ q + 2)!
. (2.43)

The formula of Holand and Bell (1969) for general triangles T ,
∫

T

ζm
1 ζn

2 ζ
p
3 dxdy = 2|T | m!n!p!

(m+ n+ p+ 2)!
(2.44)

then follows by substitution (Bell). Its straightforward generalization to tetra-
hedrons T ⊂ R

3 with volume |T | reads
∫

T

ζm
1 ζn

2 ζ
p
3 ζ

q
4 dxdydz = 6|T | m!n!p!q!

(m+ n+ p+ q + 3)!
. (2.45)
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Example 2.6. (Ciarlet79) Let xi ∈ R
n , i = 1 : n + 1 , be the vertices of

an n-simplex in R
n, e.g., a triangle T in R

2 or a tetrahedron in R
3 . Let

xij = (xi +xj)/2 for i < j the midpoints of the edges, xijk = (xi +xj +xk)/3
for i < j < k , and xiij = (2xi + xj)/3 for i �= j . Denote again by Πm the
vector space of polynomials up to degree m with n variables in R

n. Then the
following identities are valid in R

n:

∀ p ∈ Π1 : p =
∑

i=1:n+1p(xi)ζi

∀ p ∈ Π2 : p =
∑

i=1:n+1p(xi)ζi(2ζi − 1) +
∑

i<jp(xij)4ζiζj

∀ p ∈ Π3 : p = 2−1
∑

i=1:n+1p(xi)ζi(3ζi − 1)(3ζi − 2)

+ 2−1
∑

i<jp(xij)9ζiζj(3ζi − 1)

+
∑

i<j<kp(xijk)27ζiζjζk

∀ p ∈ Π3 : p =
∑

i=1:n+1p(xi)
(
−2ζ3

i + 3ζ2
i − 7ζi

∑
j<k,j �=i,k �=iζjζk

)

+ 27
∑

i<j<kp(xijk)ζiζjζk

+
∑

i�=j∇p(xi)(xj − xi)ζiζj(2ζi + ζj − 1) .

Up to the first both, these identities are not trivial and they are not unique
w.r.t. the barycentric coordinates ζi because of the linear interdependence. A
corresponding formula for Morley’s second order polynomial and for Ar-

gyris’ fifth order polynomial is given in Sect. 12.5 (both in R
2 and using

normal derivatives in xij). See also SUPPLEMENT\chap09e\chap09f.
Integration of interpolating polynomials over triangles and more general

geometric configurations is a basic tool in the construction of finite elements;
see Chap. 9. For triangles we may use (2.42) or, in case of (x, y)-coordinates,
the affin-linear transformation

x = x1 + x21ξ + x31η , y = y1 + y21ξ + y31η , (2.46)

and then apply (2.43) to integrate over the unit triangle S . Or we integrate
directly over area coordinates and use Bell’s formula (2.44); for instance

∀ p ∈ Π1 :
∫

T

p(x, y) dxdy =
|T |
3

∑
i=1:3p(xi)

∀ p ∈ Π2 :
∫

T

p(x, y) dxdy =
|T |
3

∑
1≤i<j≤3p(xij) .

The use of area coordinates together with Bell’s formula is the natural choice
for triangular elements. It allows to obtain convenient expressions for various
integrals in finite element approach without time consuming numerical pro-
cedures.

(f) Domain Integrals
(f1) Gaußian rules apply also to integration over the unit square,

∫ 1

−1

∫ 1

−1

f(x, y)dx ≈
n∑

i=1

n∑
j=1

βi βj f(xi, xj) ;
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other squares have to be rescaled properly. With the data of Table 2.1 these
rules are exact for polynomials

p(x, y) =
N∑

i=0

N∑
k=0

aik x
iyk with N ≤ 2n− 1 , n = 2 : 5 .

(f2) Abszissas and weights of two commonly used Gaußian rules in unit
triangle S(ξ, η) with vertices Q(0, 0) , Q(1, 0) , Q(0, 1) ,

∫

S

f(ξ, η) dξdη ≈ |S|
m∑

i=1

γif(ξi, ηi) , |S| =
1
2
,

are given in Table 2.2. These rules are exact for polynomials p(ξ, η) =∑
0≤i+k≤naik ξ

iηk of total degree n = 2, 5. Integration rules for polynomi-
als on an arbitrary triangle T ,

∫

T

f(x, y)dxdy ≈ |T |
m∑

i=1

γi f(x̃i, ỹi) ,

follow then easily by substitution with the mapping (2.46) (Fig. 2.10).

1

2
3

ξ

η

1
23

45 6

7

ξ

η

Figure 2.10. Gauß abszissas in unit triangle, n = 2, 5
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Table 2.2.

n i ξi ηi γi

2 1 1/2 0 1/3
2 1/2 1/2 1/3
3 0 1/2 1/3

5 1 1/3 1/3 0.225
2 a a (155 +

√
15)/1200

3 b a (155 +
√

15)/1200
4 a b (155 +

√
15/1200

5 c c (155 −
√

15)/1200
6 d c (155 −

√
15)/1200

7 c d (155 −
√

15)/1200

a (6 +
√

15)/21
b (9 − 2

√
15)/21

c (6 −
√

15)/21
d (9 + 2

√
15)/21

(A rule for n = 3 using only four nodes is not recommended because of a
negative weight γ and that with positive weights has seven nodes as the rule
of order 5 .)

(f3) In direct integration over triangle T w.r.t. global (x, y)-coordinates
we lastly have to find integrals of monomials

Prs =
∫

T

xrys dxdy

= 2|T |
∫

S

(x1ζ1 + x2ζ2 + x3ζ3)r(y1ζ1 + y2ζ2 + y3ζ3)s dζ2dζ3

= 2|T |
∫

S

(x1 + x21ξ + x31η)r(x1 + y21ξ + y31η)s dξ dη

. (2.47)

By this way, the integrals Prs are reduced to sums of integrals of the form
(2.44) resp. (2.43). The last formula uses again the substitution rule (2.46) for
the mapping g : S → T of (9.20).

Some results are assembled in Table 2.3 for polynomials up to degree n = 5
(Bell) where the origin of the cartesian KOS is the center of the triangle for
simplicity. The concise representation in this table is however lost beyound
degree 5 and for a coordinate system with different position but nowadays a
program replaces large tables. KAPITEL02\SECTION_1_2_3\bell1.m supplies
values of the integral (2.47) for arbitrary r , s ∈ N in an KOS with arbitrary
origin by using Symbolic Mathematics.
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Table 2.3.

Order Prs(x, y) =
∫

T
xrys dxdy

n = r + s

1 Prs(x, y) = 0

2 Prs(x, y) = |T | (xr
1y

s
1 + xr

2y
s
2 + xr

3y
s
3) /12

3 Prs(x, y) = |T | (xr
1y

s
1 + xr

2y
s
2 + xr

3y
s
3) /30

4 Prs(x, y) = |T | (xr
1y

s
1 + xr

2y
s
2 + xr

3y
s
3) /30

5 Prs(x, y) = 2|T | (xr
1y

s
1 + xr

2y
s
2 + xr

3y
s
3) /105

References: (Kardestuncer), (Stoer).

2.4 Initial Value Problems

In this section, vectors are not underlined for simple representation. The letter
x denotes always the exact solution and y the numerical approximation.

(a) Euler’s Method We seek a solution x : [0, T ] → R
n of the initial

value or Cauchy problem

x′(t) = f(t, x(t)), 0 ≤ t ≤ T, x(0) = x0 . (2.48)

The problem is said to be autonomous if f does not depend explicitely on
the independent variable t , i.e. x′(t) = f(x(t)) .

For solving (2.48) numerically either we can replace x′(t) by a numerical
differentiation formula or we can transform the differential equation into an
integral equation

x(t+ τ) = x(t) +
∫ t+τ

t

f(s, x(s))ds , τ step length,

and then replace the integral by a numerical integration rule. The most simple

case
∫ t+τ

t

f(s, x(s) ds $ τf(t, x(t)) leads immediately to the explicit Euler

method,

y(t+ τ) = y(t) + τf(t, y(t)), t = jτ , j = 0, 1, . . . , y(0) = x(0) = x0 . (2.49)

A substitution of the (unknown) exact solution x into the approximation
formula (2.49) yields the defect or, after dividing by the step length τ , the
discretization error of this method:

d(t, x, τ) =
x(t+ τ) − x(t)

τ
− f(t, x(t)) .
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It measures the exactness with which the exact solution satisfies the approxi-
mation formula (2.49) and represents also the local error in explicit methods
as in the present case. If namely y(t) = x(t) is exact then we obtain for a
single step

x(t+ τ) − y(t+ τ) = x(t+ τ) − x(t) + τf(t, x(t)) = τd(t, x, τ) .

The discretization error is always calculated by using a Taylor expansion of
the solution, e.g., with integral error term,

x(t+ τ) = x(t) + τ f(t, x(t)) + τ2

∫ 1

0

(1 − σ)x′′(t+ σ τ) dσ ,

and thus, for the method (2.49),

‖d(t, x, τ)‖ ≤ τp

∫ 1

0

‖x′′(t+ σ τ)‖ dσ , p = 1 .

Accordingly we say that the method (2.49) has order p = 1 .
Furthermore, we obtain for the global error e(t) = x(t)−y(t) by subtraction

and application of Lipschitz boundedness, i.e., ‖f(t, u)−f(t, v)‖ ≤ L ‖u−v‖
in a suitable domain:

e(t+ τ) = e(t) + τ [f(t, x(t)) − f(t, y(t))] + τ d(t, x, τ) ,
‖e(t+ τ)‖ ≤ (1 + Lτ)‖e(t)‖ + τ ‖d(t, x, τ)‖ .

An induction then yields an estimation of the global error where the inequality
(1 + x)n ≤ enx , x ≥ −1 , is applied for optical reasons:

Lemma 2.4. (Error Estimation, Convergence) Let x ∈ C2[0, T ] be a solution
of (2.48) and let f be Lipschitz-bounded then

‖e(t)‖ ≤ eLt‖e(0)‖ +
eLt − 1
τ L

max0≤s≤t τ ‖d(s, x, τ)‖ , t = nτ , n = 1, 2, . . . .

The step length τ is canceled out once. Basically, one power of the step length
τ is lost by passing from the local to the global error. This a-priori error
bound contains the unknown solution x on the right side of the inequality.
Therefore it makes only sense in theoretical studies or in comparing different
methods with each other but not in practical applications. A-posteriori error
bounds estimating the error by calculated data are much more difficult to
find, therefore one contents himself here usually with assessed valuation. The
above error bound is sharp for x′ = Lx with L > 0, and the problem is badly
conditioned for large L ·T . For L < 0 this estimation does not make any sense
and thus further criteria are necessary to qualify numerical approximations.



2.4 Initial Value Problems 107

(b) General One-step Methods

Example 2.7. The computational device

y(t+ τ) = y(t) + τ
[
ωf(t+ τ, y(t+ τ)) + (1 − ω)f(t, y(t))

]
, (2.50)

0 ≤ ω ≤ 1 , yields the explicit Euler method for ω = 0 , the implicit Euler

method for ω = 1 , and the trapezoidal rule for ω = 1/2 . The method has
order p = 2 for ω = 1/2 and order p = 1 else.

A general one-step method can be written in the form

y(t+ τ) = y(t) + τ Φ(t, y(t), τ) , t = jτ , j = 0, 1, . . . , y(0) = x0 , (2.51)

or, if the step length τ is constant throughout iteration, as

yj+1 = yj + τ Φj(yj , τ) , j = 0, 1, . . . ,

where yj := y(jτ) . The device function Φmust satisfy some obvious conditions
which are not enumerated here and are fulfilled in normal case; cf. (Hairer).
The method is then said to be explicit if a finite number of evaluations of
the right side f (and derivatives of f) suffices for an exact computation of Φ,
otherwise the method is called implicit.

The discretization error is defined in the same way as in (b), and the
method is consistent (with the differential equation) if

Γ (x) := sup
0≤τ≤τ∗

sup
0≤t≤T−τ

1
τp

‖d(t, x, τ)‖ < ∞ (2.52)

for some p ≥ 1 and for all solutions x ∈ Cp+1[0, T ] . The maximum possible
number p ∈ N in (2.52) is the order of the method for the considered differ-
ential equation and called order in general if the method has order p for all
sufficiently smooth right sides f of (2.48). The content of Lemma 2.4 remains
unchanged by this convention.

(c) Asymptotic Expansion, Extrapolation

Lemma 2.5. Let the method (2.51) have order p ≥ 1 , let

Φ(t, x(t), 0) = f(t, x(t)) , gradx Φ(t, x(t), τ) = gradx f(t, x(t)) + O(τ) ,

and let ∂Φ/∂τ be continuous in τ near τ = 0 . Then there exists an error
function r being independent of the step length τ such that

y(t) = x(t) + r(t)τp + O(τp+1) , τ → 0 .

Proof see (Hairer), vol. I, Sect. 2.8.
This asymptotic representation of the numerical approximation y(t) has

two important consequences whenever we apply the method (2.51) once with
step length τ and then once more with the reduced step length qτ , 0 < q < 1 ,

y(t, τ) = x(t) + r(t)τp + O(τp+1) ,
y(t, qτ) = x(t) + r(t)(qτ)p + O(τp+1) .
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(1◦) The weighted difference

z(t) :=
q−py(t, qτ) − y(t, τ)

q−p − 1
= x(t) + O(τp+1) (2.53)

supplies an improved method of order p+ 1 instead of p with comparable
few computational effort.

Example 2.8. The model problem x′ = λx has the solution x(t) = κ eλ t.
We choose x(0) = 1 , λ = 1 , and apply the trapezoidal rule, once with
step length τ = 1 and, for comparison, twice with step length τ = 1/2 :

h = 1 : y(1) =
1 + 0.5
1 − 0.5

= 3

h = 0.5 : ỹ(1) =
1 + 0.25
1 − 0.25

· 1 + 0.25
1 − 0.25

=
25
9

= 2.7 .

An application of the averaging (2.53) with p = 2 and q = 1/2 yields the
improvement

z(1) =
1
3

(
4 · 25

9
− 3

)
=

100 − 27
27

= 2.703703 . . .

with error ε = 0.0145 . . . ; the additional amount of work is a neglecting
quantity in larger problems.

(2◦) The simple difference

y(t, τ) − y(t, qτ) = r(t)(qτ)p(q−p − 1) + O(τp+1) ,

r(t)(qτ)p $ y(t, τ) − y(t, qτ)
q−p − 1

,

supplies a good estimation of the error function r(t) . If, further, D is
a diagonal matrix containing suitable weights and C contains tolerances
and suitable security factors then, with additional safety bounds,

τnew = τold · C · ‖D[y(qτ) − y(t)]‖−1/p

provides an excellent step length control. Particular advantages are ob-
tained in the case of imbedded methods of order p supplying an approxi-
mation z(t) of order p− 1 at the same time,

y(t) = x(t) + r(t)τp + O(τp+1) ,
z(t) = x(t) + r̃(t)τp−1 + O(τp) .

The difference yields here directly an estimation of the error of z(t):

z(t) − y(t) = r̃(t)τp−1 + O(τp) $ z(t) − x(t) .
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(d) Runge-Kutta Methods

Example 2.9. The explicit method of Heun is obtained from the (implicit)
trapezoidal rule (2.50) by inserting

fj+1(yj+1) $ fj+1 (yj + τfj(yj)) .

Trapezoidal rule (p = 2) : yj+1 = yj +
τ

2

(
fj(yj) + fj+1(yj+1)

)

Method of Heun (p = 2) : yj+1 = yj +
τ

2

(
fj(yj) + fj(yj + τfj(yj))

) ;

the numerical computation is carried out by the scheme

k1 = fj(yj) , k2 = fj(yj + τ k1) , yj+1 = yj +
τ

2
(k1 + k2) .

A generalization of this concept leads to multistage methods or Runge-

Kutta methods.

Example 2.10. The classical Runge-Kutta method is a four-stage method of
order p = 4 in which the function f is four-times evaluated at intermediate
steps. Ensuing, a linear combination of these terms forms the forward step; this
last step originates mostly from a numerical integration rule, in the present
case being Simpson’s rule:

k1 = f(yj) , k2 = fj

(
yj +

τ

2
k1

)
, k3 = fj

(
yj +

τ

2
k2

)
,

k4 = fj(yj + τ k3) , yj+1 = yj + τ
1
6

(k1 + 2k2 + 2k3 + k4) .

The example shows that the order of a one-step method can be enhanced
in a skilful way if several intermediate steps are properly introduced. Even
methods of arbitrary high order can be constructed by this way (methods of
Gragg-Bulirsch-Stoer).

A general r-stage one-step method for x′ = f(t, x) ∈ R
n is a computational

device of the form

ki(t) = f

⎛
⎝t+ γiτ , y(t) + τ

r∑
j=1

αijkj(t)

⎞
⎠ , i = 1 : r

y(t+ τ) = y(t) + τ
r∑

i=1

βiki(t)

. (2.54)

with the function values ki(t) := f(t+γiτ, ui(t)) being the unknown quantities.
However the subsequent representation is to be preferred in the studies of
this method. Let I be the unit matrix, A = [αi

j ] ∈ R
r
r , and b = [βi] ,

c = [γj ] , e = [1] all together in R
r, and, moreover,
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A×B = [αijB]ri,j=1 Kronecker product ,
U(t) = [ui(t)]ri=1 auxiliary vectors , ui(t) ∈ R

n ,

F (t, U(t)) = [f(t+ γiτ, ui(t))]ri=1 ∈ R
r·n .

The computational device (2.54) is then equivalent to the form with interme-
diate values ui of the approximation

U(t) = e× y(t) + τ(A× I)F (t, U(t)) ∈ R
r·n

y(t+ τ) = y(t) + τ(b× I)TF (t, U(t)) ∈ R
n .

(2.55)

For instance, the method of Heun may now be written as

u1 = yj , u2 = yj + τfj(u1) , yj+1 = yj + τ (fj(u1) + fj(u2)) .

The auxiliary quantities ui(t) may be interpreted as approximations of the
exact values x(t+γiτ) which however is only of interest in derivation of order
conditions.

Properties and Further Notations:

(1◦) The method (2.55) is called explicit resp. semi-implicit if (possibly after
renumeration) the matrix A is a strongly lower resp. a lower triangular
matrix.

(2◦) In normal case, the points γiτ are contained in interval [0, τ ] , but they are
not always mutually distinct; cf. Example 2.10. The intermediate values
ui(t) are approximations of the exact solution at the intermediate points
t+γiτ as already mentioned. The system of intermediate stages is uniquely
solvable if f is Lipschitz bounded and if, but only in implicit methods,
the step length τ is sufficiently small.

(3◦) The method (2.55) is frequently described by using the Butcher matrix
[A|b|c] or a similar form. For instance, Example 2.10 can be displayed as

[
A c
b

]
=

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
1/2 0 0 0 1/2
0 1/2 0 0 1/2
0 0 1 0 1

1/6 1/3 1/3 1/6

⎤
⎥⎥⎥⎥⎦
.

(4◦) If W (t) is the solution of

W (t) = e× x(t) + τ(A× I)F (t,W (t)) ,

then

d(t, x, τ) =
x(t+ τ) − x(t)

τ
− (b× I)TF (t,W (t))

is the discretization error.

(5◦) The method (2.54) has at least order p = 1 if and only if bT e =
r∑

i=1

βi = 1 .
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(6◦) Table of attainable order p∗ of explicit Runge-Kutta methods in depen-
dence of the stage number r (Butcher):

Table 2.4.

r 1 2 3 4 5 6 7 8 9 r ≥ 10
p∗ 1 2 3 4 4 5 6 6 7 ≤ r − 2

therefore the Runge-Kutta method of order p = 4 plays a particular
role among all explicit methods.

(e) Multistep Methods A multiple evaluation of the right side f of the
underlying differential system can be rather cumbersome. But the order of a
method can be enhanced also if the formerly obtained values yj , yj−1 , . . . are
regarded in the sense of an extrapolation beyound the interval known at the
present state. For instance, the device

3yj+1 − 4yj + yj−1 = 2τ fj(yj+1) , j = 1, 2, . . . ,

is a well-known implicit method of order p = 2 with extraordinary stability
properties.

General multistep methods have the form

k∑
i=0

αiyj+i = τ

k∑
i=0

βifj+i(yj+i) , j = 0, 1, . . . , (2.56)

where αk �= 0 and |α0| + |β0| �= 0 ; the method is explicit for βk = 0 and
implicit else. The function f has to be evaluated here only once in every t-
step. But, on the other side, the starting values y1, . . . , yk−1 must be supplied
by some other method.

Properties and Notations:

(1◦) Using the polynomials

�(ζ) =
k∑

i=0

αiζ
i , σ(ζ) =

k∑
i=0

βiζ
i

and the translation operator E : y(t) �→ Ey(t) := y(t + τ) , the device
(2.56) can be written more simply as

�(E)yj = τσ(E)fj , j = 0, 1, . . . . (2.57)

(2◦) Application to the model equation x′ = λx yields the very simple device

π(E, η)yj := �(E)yj − ησ(E)yj = 0 , j = 0, 1, . . .
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where η = τλ with step length τ , and π(E, η) is the characteristic poly-
nomial of the multistep methods describing it completely as well. Fur-
thermore, the discretization error d of the method has the very simple
form

τd(t, x, τ) = �(E)x(t) − τσ(E)x′(t) .

(3◦) Order and consistence are defined in the same way as in (b). Whereas the
derivation of order conditions and the construction of individual Runge-

Kutta-methods and their relatives is a difficult matter and must be leaved
to experts, cf. (Hairer), it is much simpler in multistep methods. By rea-
sons of linearity the coefficients are to be adjusted here in a way that, for
a prescribed order p , all “differential equations” x′(t) = tk , k = 0 : p ,
are solved exactly. Further possibilities for constructing very special
methods arise by using other, especially chosen elementary functions as
eit, sin(jt), cos(kt) for the adjustment above.

Lemma 2.6. A multistep method (�, σ) has order p ≥ 1 if and only if

�(1) = 0 and
k∑

i=0

(
αi
im

m
− βi i

m−1

)
= 0 , m = 1 : p .

In particular, the method has at least order p = 1 if �(1) = 0 and � ′(1)−
σ(1) = 0 .

(4◦) The discretization error satisfies in simple way

‖τd(t, x, τ)‖ ≤ const τp

∫ t+kτ

t

‖x(p+1)(s)‖ ds ,

and, by induction, an error estimation is deduced in a similar way as
in Lemma 2.4 with the same qualitative properties. But, in the present
case, the polynomial � must satisfy the following root condition or stability
criterium:

Every root λ of � satisfies |λ| ≤ 1 and every root λ with
|λ| = 1 is a simple root.

(5◦) In order to prevent “spurious solutions”, a multistep method should also
be strongly stable which means that the polynomial � has precisely one
root of modulus one, namely the always appearing root ζ = 1 , and this
root must be a simple root according to the root condition.
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(f) Summary

multistage methods multistep methods
self-starting not self-starting
high computational effort low computational effort
simple step length control difficult step length control

.

(g) Stability
(g1) A differential equation x ′(t) = f(t, x(t)) is stable if the difference of any
two solutions remains bounded in absolute value for all t > 0 , it is asymptoti-
cally stable if the difference tends to zero in absolute value for t → ∞ ; cf. Sect.
1.5(c); analogeous notations hold for differential systems w.r.t. an arbitrary
submultiplicative norm. The instability of a differential equation is inherited
to the numerical approximation in any case, nevertheless, a good step control
may supply very acceptable results. If a differential equation is stable then
the exact solutions decrease in absolute value during a long t-interval or they
remain bounded at least. Of course, this property should be inherited to the
numerical approximations, too, but this is not always the case:

Example 2.11. x′ = Ax, x0 = [1, 0,−1]T , x(t) = [x(t), y(t), z(t)]T .

A =

⎡
⎣

−21 19 −20
19 −21 20
40 −40 −40

⎤
⎦ , eigenvalues : λ1 = −2, λ2,3 = −40 ± 40 i.

The solution

x(t) =
1
2
e−2t +

1
2
e−40t(cos 40t+ sin 40t),

y(t) =
1
2
e−2t − 1

2
e−40t(cos 40t+ sin 40t),

z(t) = −e−40t(cos 40t− sin 40t).

behaves like the solution of x′ = Bx for t > 0.1
where

B =

⎡
⎣

−2 0 0
0 −2 0
0 0 0

⎤
⎦ .
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Figure 2.11. Ex. 2.11, solution

The trapezoidal rule provides good approximations whereas the explicit
Euler method supplies entirely unacceptable results with the applied step
length. In the explicit method, a small step length τ (with high computational
effort) is unnecessary for large t whereas, on the other side, a large step length
magnifies the high-frequent but fast decreasing parts of the solution in an
explosive way.
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Figure 2.12. Ex. 2.11, EULER
explicit, τ = 0.1
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Figure 2.13. Ex. 2.11, Trape-
zoidal rule, τ = 0.1

(g2) For a more thorough investigation of this phenomenon, we apply
the multistage method (2.55) to the model equation x′(t) = λx(t) again and
obtain with step length τ and η = τλ

U(t) = ey(t) + τλAU(t)
y(t+ τ) = y(t) + τλbTU(t)

=⇒ U(t) = (I − ηA)−1ey(t)
y(t+ τ) =

[
1 + ηbT (I − ηA)−1e

]
y(t) .

Thereby the computational device

yj+1 = R(η)yj , R(η) = 1 + ηbT (I − ηA)−1e , R(∞) := 1 − bTA−1e (2.58)

is derived for the model equation. By using Cramer’s rule, the stability func-
tion R can be written after brief computation as

R(η) =
det

(
I − ηA+ ηebT

)
det(I − ηA)

=:
P (η)
Q(η)

, (2.59)

with polynomials P and Q, and Q(η) = 1 in explicit methods. Now the closed
set in complex η-plane

S := {η ∈ C ∪ {∞}, |R(η)| ≤ 1}

is called stability region of the specific one-step method. If we consider more
generally the system x′(t) = Ax(t) with diagonalizable MatrixA, A = UΛU−1,
(Λ diagonal matrix of eigenvalues λi of A), then the one-step methods obtain
the form

yj+1 = UR(τΛ)U−1yj = UR(τΛ)jU−1y0

with diagonal matrix

R(τΛ) = diag(R(τλ1), . . . , R(τλn)) .

As a consequence, all ηi := τλi must be contained in the stability region S
if every solution shall be at least bounded for all t > 0 . This is the well-
known Courant-Friedrichs-Levy condition for the step length τ , and this
condition must always be regarded in stable problems but also in various other
cases; see e.g. Sect. 9.7 (d).
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Example 2.12. Consider the model equation x′ = λx with η = τ λ . Then

(A) Euler method explicit (p = 1): yj+1 = (1 + η)yj ,

(B) Euler method implizit (p = 1): yj+1 = (1 − η)−1yj ,

(C) Trapezoidal rule (p = 2): yj+1 =
2 + η

2 − η
yj ,

(D) Method of Heun (p = 2): yj+1 =
(

1 + η +
1
2
η2

)
yj .
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Figure 2.14. Stability regions for example 2.12 without (D)

The discretization error d of a method of type (2.55) of order p ≥ 1 satisfies
τd(t, x, τ) = O(τp+1) and, on the other side, a substitution of the model
equation with λ = 1 und x(0) = 1 yields the device

y(τ) = R(τ)y(0) = R(τ) , x(τ) = eτ .

Subtraction yields

τd(τ, x, τ) = x(τ) − y(τ) = eτ −R(τ) = O(τp+1) .

Accordingly, we have

R(η) = 1 + η +
η2

2
+ . . .+

ηp

p!
+ O(ηp+1) ,

in every Runge-Kutta method of order p . On the other side R(η) = 1 +
η +

∑r
i=2 κiη

i in an explicit r-stage method by (2.59). As a consequence,
all explicit Runge-Kutta methods with same order p = r have the same

stability function R(η) =
p∑

i=0

ηi/i! (where however p∗ = r ≤ 4 for the optimum
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order p∗ by Table 2.4). By symmetry to the real axis, only the upper half of
the implicit curve |

∑p
i=0 η

i/i!| = 1 , p = 1 : 6 , is plotted in Figure 2.15.
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Figure 2.15. Stability regions of explicit RKM with p = r = 1 : 4

(g3) Let us apply a multistep method (2.56) to the model equation x′ =
λx then the result is

π(E, η)yj =
k∑

i=0

γi(η)Eiyj =
k∑

i=0

γi(η)yj+i = 0 , j = 0, 1, . . . ,

by (2.57) or, writing the device as one-step method by introducing the vector
Yj = [yj , yj+1, . . . , yj+k−1]T ∈ R

k ,

Yj+1 = Fπ(η)Yj , Fπ(η) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 1
. . . 0

0
. . . . . . . . . 0

0
. . . 0 0 1

−γ0(η)0/γk(η) . . . . . . . . . −γk−1(η)/γk(η)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.60)
The Frobenius matrix Fπ(η) has the characteristic polynomial
det (λI − Fπ(η)) = π(λ, η), hence it is called sometimes accompanying matrix
to the polynomial π . Every eigenvalue of this matrix possesses precisely one
eigenvector. On the other hand the matrix must be a M-matrix by Theorem
1.1; cf. Sect. 1.1 (c4), if all iterations (2.60) shall remain bounded in absolute
value (resp. in some norm). Therefore the concept of stability regions must be
adapted to multistep methods as follows:

Definition 2.2. Let (� , σ) be a multistep method with characteristic polyno-
mial π(ζ, η) = �(ζ) − ησ(ζ), and let π(ζ,∞) = σ(ζ). Then the stability region
S ∈ C ∪ {∞} is the set of all values η ∈ C with the following two properties:
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(1◦) All roots ζi(η) of π(ζ, η) satisfy |ζi(η)| ≤ 1.
(2◦) All roots ζi(η) of π(ζ, η) satisfying |ζi(η)| = 1 (unimodular roots) are
simple roots of π(ζ, η).

(h) Stiff Differential Systems A system x ′(t) = Ax(t) is said to be
stiff if the eigenvalues λi of A have the property

Reλi ≤ 0 and maxi |Reλi| % mini |Reλi| .

Such systems occur e.g. in the motion of mass points being connected with
each other by weak and stiff springs at the same time. Furthermore, they
appear necessarily in discretization of differential equations as the following
simple example shows impressively.

Example 2.13. The eigenvalue problem

y′′(x) = λ2 y , y(0) = y(1) = 0 , (2.61)

has the characteristic pairs

(λ2
j , yj(x)) = (−j2π2 , sin(jπx)) , j ∈ N .

If the second derivative is approximated by the central divided difference

y′′(jh) = h−2 [y((j + 1)h) − 2y(jh) + y(t, (j − 1)h)]+O(h2) , h = 1/(n+1) ,

then we obtain the discrete eigenvalue problem AY = λ̃2Y ∈ R
n,

AY = h−2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 1 0 . . . . . . 0 0
1 −2 1 . . . . . . . . . 0

0
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . . 0

0
. . . . . . . . . 1 −2 1

0 0 . . . . . . 0 1 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(h)
...
...
...
...
...

y(nh)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= λ̃2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(h)
...
...
...
...
...

y(nh)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.62)

with characteristic pairs

(λ̃2
j , Yj) =

(
−h−24 sin2

(
jhπ

2

)
,

[
sin

(
jkπ

n+ 1

)]n

k=1

)
, j = 1 : n .

Note here the very exceptional fact that the eigenvectors of the discretized
problem have the same values as the eigenfunctions of the analytic problem
(2.61) at corresponding points. The eigenvalues satisfy

λ̃2
j = −h−24 sin2

(
jhπ

2

)
= −j2π2 + O(j4h2) = λ2

j + O(j4h2) , j = 1 : n .
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Accordingly, λ̃2
j is a second-order approximation of the eigenvalue −j2π2 of

the differential equation for every fixed j and, in particular, the eigenvalues
of (2.62) increase beyond every bound in absolute value if the step length h
tends to zero.

Let us now consider the parabolic initial boundary value problem

ut(t, x) = uxx(t, x) , 0 ≤ x ≤ 1 , 0 ≤ t ,

u(t, 0) = a(t) , u(t, 1) = b(t) , u(0, x) = u0(x) , u0(0) = a(0) , u0(1) = b(0) ,
(2.63)

which can be solved exactly at least for a = 0 and b = 0 . A discretization
in the space variable x in the same way as in (2.61) leads to the initial value
problem

U ′(t) = AU(t) +B(t) ,
U(t) = [u(t, h), . . . , u(t, nh)]T , B(t) = h−2[a(t), 0, . . . , 0, b(t)]T ,

with the same matrix A as in (2.62). If this ordinary differential system shall
be solved by one of the above considered methods then, by the Courant-

Friedrichs-Levy condition, the step length τ > 0 must be chosen so small
that the value λ̃2

n $ −4τ/h2 still lies in the stability region S . But this re-
striction of step length can be dropped in the special implicit methods (B)
and (C) because here the entire negative semi-line belongs to S. By this rea-
son, further criteria on the shape of the stability region are introduced: A
multistage/multistep method is called

A-stable ⇐⇒ {η ∈ C ∪ {∞}, Re η < 0} ⊂ intS
A(α)-stable ⇐⇒ {η ∈ C ∪ {∞}, η �= 0 , |π − arg η| < α} =: Sα ⊂ intS
A(0)-stable ⇐⇒ ∃ α > 0 such that the method is A(α)-stable
A0-stable ⇐⇒ (−∞ , 0) ⊂ S
L-stable ⇐⇒ method A-stable and ∞ ⊂ intS

.

(2.64)

The stability function (2.59) shows that the stability region of an explicit
Runge-Kutta method can never have one of these properties; the same
can be verified easily for explicit multistep methods. One now recognizes the
dilemma in the model Example 2.13: In explicit methods, the step length τ in
t-direction must be chosen proportionally to the quadrat of the step length h
in x-direction whereas in implicit methods the computational amount of work
is considerably magnified.

By the way, not all implicit methods have one of the properties (2.64)
which is shown best by plotting the individual stability regions.

Rule for application:

Use only explicit methods with step control for solving unstable dif-
ferential systems.
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(i) Further Examples We consider briefly some methods of the Matlab

ODE suite.
(1◦) Matlab ode45.m Imbedded explicit Runge-Kutta method due to

Dormand & Prince; cf. (Dormand):
[

A
b

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
1/5 0 0 0 0 0 0
3/40 9/40 0 0 0 0 0
44/45 −56/15 32/9 0 0 0 0

19372/6561 −25360/2187 64448/6561 −212/729 0 0 0
9017/3168 −355/33 46732/5247 49/176 −5103/18656 0 0

35/384 0 500/1113 125/129 −2187/6784 11/84 0

35/384 0 500/1113 125/129 −2187/6784 11/84 0

5179/57600 0 7571/16695 393/640 −92097/339200 187/2100 1/40

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

c = [0, 1/5, 3/10, 4/5, 8/9, 1, 1]

If one takes the pen-ultimate row for weight vector b in the forward step,
then the result is a method of order p = 5 and with the last row instead a
method of order p = 4. The six-stage method has order p = 5, the seventh
stage being used only for error estimation in step length control. The stability
region is given by the curve for p = 6 in Figure 2.15.

(2◦) Rosenbrock methods are perhaps not the ultima ratio but the result
of a long investigation on the efficiency of methods for stiff systems. The
contradicting requirements on high order, low computational effort and best
stability properties as L-stability, cf. (2.64), have finally led to a compromise.
Starting point of the deliberations is a Runge-Kutta method of which the
matrix A is a (weakly) lower triangular matrix (diagonal implicit methods).
Confining ourselves to an autonomeous system x′(t) = f(x(t)), the method
has the form

ki(t) = f

⎛
⎝y(t) + τ

i−1∑
j=1

aijkj(t) + τaiiki(t)

⎞
⎠ , i = 1 : r ,

y(t+ τ) = y(t) + τ

r∑
i=1

βiki(t) .

These equations are now linearized, for instance the values ki(t) are replaced
by

ki(t) = f(gi(t)) + grad f(gi(t))aiiki(t) , gi(t) = y(t) + τ

i−1∑
j=1

aijkj(t) .

Furthermore, the r matrices grad f(gi(t)) are replaced by a single matrix J :=
grad f(y(t)) following a proposition of (Calahan) which once more reduces the
computational effort considerably. Then the combination
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ki(t) = f

⎛
⎝y(t) +

i−1∑
j=1

aijkj(t)

⎞
⎠+ J

i∑
j=1

dijkj(t)

y(t+ τ) = y(t) + τ

r∑
i=1

βiki(t)

is chosen in Rosenbrock methods to attain a higher degree of freedom
in the choice of suitable coefficients. The Matlab program ode23s.m of
(Shampine82) is of this type where the last evaluation of f in the preced-
ing step is used for first evaluation in the new step:

f0 = f(t, y(t))

Wk1 = f0 + τdT

f1 = f

(
t+

1
2
τ, y(t) +

1
2
τk1

)

Wk2 = f1 − k1 +Wk1

y(t+ τ) = y(t) + τk2

f2 = f(t+ τ, y(t+ τ))

Wk3 = f2 − e (k2 − f1) − 2 (k1 − f0)

ỹ(t+ τ) = y(t+ τ) +
τ

6
(k1 − 2k2 + k3)

d = 1/(2 +
√

2) , e = 6 +
√

2 ,

T =
∂

∂t
f(t, y(t)) , J = grad f(t, y(t)) , W = I − hdJ .

This two-stage method has order p = 2 , the value ỹ(t + τ) is only used for
error estimation. Substitution of the model equation x′(t) = λx(t) with η = τλ
again yields the device

yn+1 = R(η)yn , R(η) =
1 + (1 − 2d)η + (d2 − 2d+ 1/2)η2

1 − 2dη + d2η2
.
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Figure 2.16. Stability region of the Rosenbrock method

(3◦) Matlab ode113.m predictor-corrector method
Let the backward differences be defined by

∇0f(t) = f(t) , ∇f(t) = f(t) − f(t− τ) ,
∇2f(t) = ∇(∇f(t)) = f(t) − 2f(t− τ) + f(t− 2τ) , etc.,

and let pk(x; f) be an interpolating polynomial of degree k with interpolation
property

pk((j + i)τ) = f((j + i)τ) , i = 0 : k ,

where j ∈ N0 is fixed for the present. Then the polynomial may be written in
Newton-Gregory form:

pk((j + k + s)τ ; f) =
k∑

i=0

(
s+ i− 1

i

)
∇if((j + k)τ) ,

(
s− 1

0

)
= 1 . (2.65)

(3.1◦) By integration of (2.65) over the s-interval (−1, 0),

xj+k − xj+k−1 = τ

∫ 0

−1

f((j + k + s)τ, x(t)) ds $ τ

∫ 0

−1

pk((j + k + s)τ ; f) ds ,

the implicit Adams methods are generated with k steps and the order k+ 1 :

yj+k − yj+k−1 = τ

k∑
i=0

γi∇ifj+k(yj+k) , j = 0, 1, . . . ,

γi =
∫ 0

−1

(
ξ + i− 1

i

)
dξ .

(3.2◦) By integration over the s-Intervall (0, 1),

xj+k+1 −xj+k = τ

∫ 1

0

f((j+k+ s)τ, x(t)) ds $ τ

∫ 1

0

pk−1((j+k+ s)τ ; f) ds ,
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the explicit Adams methods are generated with k steps and order k :

yj+k − yj+k−1 = τ

k−1∑
i=0

γ∗i ∇ifj+k−1(yj+k−1) , j = 0, 1, . . . ,

γ∗i =
∫ 1

0

(
ξ + i− 1

i

)
dξ .

The coefficients γi and γ∗i do not depend on the step number k and can be
computed in advance by recurrence.
(3.3◦) Both methods together supply a predictor-corrector method for non-stiff
differential equations:
In the predictor step, the explicit method (3.2◦) of order k is applied once.
In the corrector step, the implicit method (3.1◦) of order k + 1 is repeat-

edly applied or only once since a single application suffices for order k in the
combined method (Fig. 2.17).

Table 2.5. Implicit Adams methods

k β0 β1 β2 β3 β4 β5

1 1
2

1
2

2 − 1
12

8
12

5
12

3 1
24 − 5

24
19
24

9
24

4 − 19
720

106
720 − 264

720
646
720

251
720

5 27
1440 − 173

1440
482
1440 − 798

1440
1427
1440

475
1440

Table 2.6. Explicit Adams methods

k β0 β1 β2 β3 β4 β5

1 1

2 − 1
2

3
2

3 5
12 − 16

12
23
12

4 − 9
24

37
24 − 59

24
55
24

5 251
720 − 1274

720
2616
720 − 2774

720
1901
720

6 − 475
1440

2877
1440 − 7298

1440
9982
1440 − 7923

1440
4277
1440
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Figure 2.17. Stability regions of explicit and implicit Adams methods

(4◦) Backward Differentiation Methods (similar methods are applied in
ode15s.m). Because

d

ds

(
s+ i− 1

i

)∣∣∣∣
s=0

=

⎧
⎨
⎩

0 for i = 0
1
i

for i ∈ N

we obtain from (2.65) by differentiating w.r.t. the variable s

f ′((j + k)τ) $ d

ds
p((j + k)τ ; f) =

1
τ

k∑
i=1

1
i
∇if((j + k)τ) .

In this equation the right side is known and the left side is unknown. We write
y(t) = F (t) instead f(t) and f(t) = F ′(t) instead f ′(t) for the inversion and
obtain

τfj+k(yj+k) =
k∑

i=1

1
i
∇iyj+k .

Thereby the implicit backward differentiation methods are generated with k
steps and order k :

k∑
i=0

αiyj+i = τβkfj+k(yj+k) , j = 0, 1, . . . ,

In Figure 2.18 the upper half of the stability regions consists of the exte-
rior domain of the plotted curves and of the curves themselves, therefore the
“point” ∞ is advantageously contained in the interior of S . For k > 6 these
methods do no longer fulfill the root criterium.
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Table 2.7. Backward differentiation methods

k βk α0 α1 α2 α3 α4 α5 α6

1 1 - 1 1

2 2 1 -4 3

3 6 -2 9 -18 11

4 12 3 -16 36 -48 25

5 60 -12 75 -200 300 -300 137

6 60 10 -72 225 -400 450 -360 147

−10 −5 0 5 10 15 20 25 30
−5
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p = 4
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p = 6

Figure 2.18. Stability regions of backward differentiation methods

(j) Full Implicit Runge-Kutta Methods have recently enjoyed new
interest in connection with solving differential-algebraic equations which ap-
pear in many technical applications. The results of this subsection are al-
ready known since the pioneering work of Butcher, but the subsequent al-
gebraized form of the order conditions is presumably due to (Crouzeix75) and
(Crouzeix80). For detailled proofs see SUPPLEMENT\chap02b. Only for adap-
tion to the notations in this subsection we make the following stipulation:

A numerical integration rule has order p if it has degree p − 1 ; cf.
Sect. 2.3(a), i.e., if it is exact for polynomials p ∈ Πp−1 .

Let a r-stage Runge-Kutta method (RKM) of order � with Butcher matrix
(A, b, c) apply to the trivial differential equation x ′(t) = f(t) then the exterior
equation or forward step, namely

x(t+ τ) − x(t) =
∫ t+τ

t

f(t) dt = τ
r∑

i=1

βif(t+ γiτ) + O(τ�+1) ,
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corresponds for t = 0 , τ = 1 to a numerical integration rule
∫ 1

0

f(t) dt ∼
r∑

i=1

βif(γi) .

Insertion of the monomials f(t) = tk−1 shows (by reasons of linearity) that it
has order � if and only if

r∑
i=1

βiγ
k−1
i =

1
k
, k = 1 : � . (2.66)

In the same way, the interior equations may be considered as integration rules,
∫ γi

0

f(t) dt ∼
r∑

i=1

αikf(γk) , i = 1 : r ,

and they have order � if and only if

r∑
j=1

αijγ
k−1
j =

1
k
γk

i , i = 1 : r , k = 1 : � . (2.67)

The exterior equation (integration rule) of a RKM of order � has necessarily
order �. The maximum common order of the formulas (2.67) is called interior
order of the underlying RKM. By this way, an explicit RKM has the interior
order � = 1 because the first equation has degree zero.

Following (Crouzeix75), the order conditions of implicit r-stage RKM may
be described in a surprisingly simple algebraic form, but to this end we have
to introduce a further condition: By partial integration we obtain the equation

∫ 1

0

xk−1

∫ x

0

f(s) ds dx =
1
k

∫ 1

0

(1 − xk)f(x) dx . (2.68)

Approximating the exterior integral on left side by the exterior equation and
the interior integrals by the interior equations of a r-stage RKM yields
∫ 1

0

xk−1

∫ x

0

f(s) ds dx ≈
r∑

i=1

βiγ
k−1
i

∫ γk

0

f(s) ds ≈
r∑

i=1

βiγ
k−1
i

r∑
j=1

αkjf(γj) .

On the other side, approximating the right side by the exterior equation yields

1
k

∫ 1

0

(1 − xk)f(x) dx ≈ 1
k

r∑
i=1

βi(1 − γk
i )f(γi) .

Equalizing both sides and substituting for f successively the Lagrange poly-
nomials qi ∈ Πr−1 with qi(γj) = δi

j , i = 1, . . . , r , yields finally the desired
additional condition
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r∑
i=1

βiγ
k−1
i aij =

1
k
βj(1 − γk

j ) , j = 1 : r , k = 1 : � . (2.69)

For simplicity we now introduce the following (nearly historical) abbreviations

A(�) : ⇐⇒ the RKM has (at least) order �

B(�) : ⇐⇒ the exterior equation has (at least) order �

C(�) : ⇐⇒ the RKM has (at least) interior order �

D(�) : ⇐⇒ (2.69) holds for k = 1, . . . , �

(2.70)

and the further notations

b = [β1, β2, . . . , βr]T ∈ R
r , c = [γ1, γ2, . . . , γr]T ∈ R

r , C = diag(c) ,

e = [1, . . . , 1]T ∈ R
r , z� = [1, 1/2, . . . , 1/�]T ∈ R

� .

(2.71)
Then, by (2.66), (2.67) and (2.68), the stipulations (2.70) are equivalent to

A(�) ⇐⇒ RKM has order �

B(�) ⇐⇒ bTCk−1e =
1
k
, k = 1 : �

C(�) ⇐⇒ ACk−1e =
1
k
Cke , k = 1 : �

D(�) ⇐⇒ bTCk−1A =
1
k

(bT − bTCk) , k = 1 : �

. (2.72)

Theorem 2.15. (Butcher, Crouzeix, Ehle) Let a r-stage RKM be given
and let all abszissas γi be mutually distinct. Then
(1◦) B(�) ∧ C(ξ) ∧ D(η) =⇒ A(min{�, 2ξ − 2, ξ + η + 1}) .
(2◦) B(�) ∧ C(r) =⇒ D(�− r) .
(3◦) B(�) ∧ D(r) =⇒ C(�− r) if all weights βi �= 0 .

Consequently, if all abszissas γi are mutually distinct and the RKM has prop-
erty B(�), then C(r) or D(r) determine the crucial property A(p) .

For a further algebraization of the order conditions let

V� = [γj−1
i ]ri=1

�
j=1 =

⎡
⎢⎢⎢⎣

1 γ1 γ
2
1 . . . γ�−1

1

...
...

...
...

1 γr γ
2
r . . . γ�−1

r

⎤
⎥⎥⎥⎦ ∈ R

r
�
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be the Vandermonde matrix. Then, using (2.71), we can write instead of
(2.72) in matrix form

B(�) ⇐⇒ V T
� b = z�

C(�) ⇐⇒ AV� = diag(c)V� diag(z�) =: W� ∈ R
r
�

D(�) ⇐⇒ V T
� diag(b)A = (z�e

T −WT
� ) diag(b)

. (2.73)

Therefore the matrix A of the RKM is uniquely determined by C(r) if all γi

are different, and is determined uniquely by D(r) if in addition all weigths βi

are non-zero.

Corollary 2.2. (Gauß Methods) The maximum order of the exterior equa-
tion, i.e., of the integration rule (2.66), is p = 2r for r stages by Sect. 2.3(c).
It is attained if one chooses the roots γi , i = 1 : n of p1,n(x) in (2.38). How-
ever, C(r) and D(r) are equivalent for � = 2r by Theorem 2.15(2◦) and (3◦) .
Under the above assumptions then, by (1◦),

B(2r) ∧
(
C(r) ∨ D(r)

)
=⇒ A(2r).

Corollary 2.3. (Butcher Methods) Let � ≥ r and let all γi be different
then, by Theorem 2.15(1◦) and (2◦) ,

B(�) ∧ C(r) =⇒ A(p) , p = min{�, 2r + 2, r + �− r + 1} = � .

For a fixed vector c of abszissas one obtains the Butcher methods of order
� ≥ r by (2.71) choosing

(
A, b, c

)
=
(
WrV

−1
r , V −1

r zr , c
)
.

Corollary 2.4. (Ehle Methods) Let � ≥ 2r − 2 , let all γi be different and
all βi non-zero, then by Theorem 2.15 (1◦) and (3◦)

B(�) ∧ D(r) =⇒ A(p) ,

p = min{�, 2(�− r) + 2, �− r + r + 1} = min{�, 2(�− r) + 2} = � .

For a fixed vector c of abszissas one obtains the Ehle methods of order
� ≥ 2r − 2 by (2.71) choosing

(
A, b, c

)
=
(
diag(b)−1V −T

r (zre
T −WT

r ) diag(b) , V −T
r zr , c

)
.

The roots of the polynomials p ∈ Πr of (2.38) are chosen for components of
the vector c:
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Gauß methods: � = 2r, p1,r(x) =
[
xr(1 − x)r

](r)

methods of type I: � = 2r − 1, xp2,r−1(x) =
[
xr(1 − x)r−1

](r−1)

methods of type II: � = 2r − 1, (1 − x)p3,r−1 =
[
xr−1(1 − x)r

](r−1)

methods of type III: � = 2r − 2, x(1 − x)p4,r−2 =
[
xr−1(1 − x)r−1

](r−2)
.

(2.74)
The results are summarized in the following table:

Table 2.8.

Type cond. for γi order Butcher Ehle Chipman

Gauß (2.72)(1◦) 2r ⊗A = ⊗A —

Radau I B/A (2.72)(2◦) 2r − 1 ⊗ ⊗A,L —

Radau II A/B (2.72)(3◦) 2r − 1 ⊗A,L ⊗ —

Lobatto III A/B/C (2.72)(4◦) 2r − 2 ⊗A ⊗A ⊗A,L

The Chipman methods have the properties C(r) and Ae1 = β1e1 , e1 =
[δ1

k]rk=1 which determine uniquely the matrix A . A-stable methods are
marked with ⊗A, L-stable methods with an additional index L.

Example 2.14. The methods of type Radau II A have γn = 1 hence the exte-
rior equation and the last row of A are identical. This property has advantages
in application to differential-algebraic problems. The 3-stage method of order
p = 5 is A-stable and L-stable, its data are given in the following Butcher

matrix:

⎡
⎣A c

b

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

88−7
√

6
360

296−169
√

6
1800

−2+3
√

6
225

4−
√

6
10

296+169
√

6
1800

88+7
√

6
360

−2−3
√

6
225

4+
√

6
10

16−
√

6
36

16+
√

6
36

1
9 1

16−
√

6
36

16+
√

6
36

1
9

⎤
⎥⎥⎥⎥⎥⎥⎦
.

References: (Hairer), (Shampine97).

2.5 Boundary Value Problems

We look for a solution x : [0, 1] → R
n of the boundary value problem

x′(t) = f(t, x(t)) , 0 ≤ t ≤ 1 , g(x(0) , x(1)) = 0 ∈ R
n , (2.75)
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confining ourselves to the unit interval by optical reasons and for simple
implementation later on. In the other case as, e.g., in periodic problems, a
rescaling becomes necessary again: For a problem

u′(s) = h(s, u(s)) , 0 ≤ s ≤ T , g(u(0) , u(T )) = 0 ∈ R
n ,

a substitution of s = T t yields

x′(t) = T h(T t, x(t)) , 0 ≤ t ≤ 1 , g(x(0) , x(1)) = 0 ∈ R
n

and the additional factor T has always to be regarded.
(a) The Linear Problem reads:

x′(t) = A(t)x(t) + c(t), 0 ≤ t ≤ 1 , R0x(0) +R1x(1) = d ∈ R
n . (2.76)

We choose a uniform partition of the basic t-interval for simplicity,

0 = t1 < t2 < . . . < tm < tm+1 = 1 , tj = (j − 1)τ , τ = 1/m ,

beginning with index j = 1 w.r.t. the compatibility with Matlab numeration.
Suppose that a numerical approach to the differential system on a individual
t-interval [tj , tj+1] has the form

Pjyj +Qjyj+1 = rj ,

then we obtain altogether a large linear system of equations

L(τ)Y :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1 Q1 0 . . . 0 0

0 P2 Q2
. . . . . . 0

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0

0
. . . . . . . . . Pm Qm

R0 0 · · · · · · 0 R1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

...

...

...

...
ym+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1
...
...
...
rm

d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=: R (2.77)

for the unknown values yj ; and the matrix L(τ) must be regular.

Example 2.15. (1◦) Trapezoidal rule

yj+1 − yj − τ

2
[Aj+1yj+1 +Ajyj ] =

τ

2
(cj+1 + cj) ,

Pj = −I − τ

2
Aj , Qj = I − τ

2
Aj+1 , rj =

τ

2
(cj + cj+1) .

(2◦) Box scheme

yj+1 − yj − τ

2
Aj+1/2 (yj+1 + yj) = τ cj+1/2 ,
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Pj = −I − τ

2
Aj+1/2 , Qj = I − τ

2
Aj+1/2 , rj = τ cj+1/2 , τ = 1/m .

(3◦) Multiple shooting method
(3.1◦) Solve, for j = 1, . . . ,m , the inhomogenous problem with homogenous

initial condition

x′(t) = A(t)x(t) + c(t) , tj ≤ t ≤ tj+1 , y(tj) = 0 ;

and denote the solution at point tj+1 by rj .
(3.2◦) Solve, for j = 1, . . . ,m , the n homogenous initial value problems with
inhomogenous initial condition

X ′(t) = A(t)X(t) , tj ≤ t ≤ tj+1 , X(tj) = I (unit matrix) ;

and let the solution at point tj+1 be the matrix Vj . Then

yj+1 = rj + Vjyj =⇒ yj+1 − Vjyj = rj , =⇒ Pj = −Vj , Qj = I .

(b) In nonlinear case a nonlinear system of equations is produced in the
same way and is solved by Newton’s method. We confine ourselves to the
multiple shooting method and apply the flux integral Φ(t; t0, x0) of Sect. 1.6.
The numerical solution is denoted by y again.

Multiple shooting method:

(1◦) Choose a moderate number m of shooting points in intervall [0, 1] ,

[(t1, y1), . . . , (tm, ym)] , yj ∈ R
n , t1 = 0 , tm+1 = 1 .

(2◦) Compute

Φ(tj+1; tj , yj) := yj +
∫ tj+1

tj

f(t, x(t)) dt , j = 1 : m,

by solving the initial value problems

x′(t) = f(t, x(t)) tj ≤ t ≤ tj+1 , x(tj) = yj . (2.78)

(3◦) Solve the system

yj+1 − Φ(tj+1; tj , yj) = 0 , j = 1 : m, g(y1, ym+1) = 0 , (2.79)

by Newton’s method. The nonlinear system of equations (2.79) has the
form

F(Y ) = 0 ∈ R
n(m+1) , with node vector Y = [y1, . . . , ym+1]T . (2.80)

By solving this system with Newton’s method, a computation of gradF(Y )
becomes necessary which needs the gradients of Φ at the points (tj , yj) ,

gradv Φ(tj+1; tj , v) = I +
∫ tj+1

tj

grad f(t, x(t)) gradv Φ(t; tj , v) dt . (2.81)
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The vector field of this matrix-valued flux integral reads:

W ′(t) = grad f(t, x(t)W (t) , W (t)) ∈ R
n

n ,

and the initial condition for (2.81) is W (tj) = I . Accordingly, in interval
[tj , tj+1] , we have to solve again n initial value problems of the form

w′
k(t) = gradx f(t, x(t))wk(t) ∈ R

n , tj ≤ t ≤ tj+1 , wk(tj) = ek , k = 1 : n ,
(2.82)

where x(t) plays the role of a parameter and ek ∈ R
n is k-th unit vector.

The simultaneous solution of all n + 1 initial value problems (2.78) and
(2.81) in every interval [tj , tj+1] is essential for success of the method. Then
the matrix gradF(Y ) has the same form as the matrix L(τ) in (2.77) where

Pj = − gradv Φ(tj+1; tj , yj) , Qj = I .

The method develops its full power only if the shooting points are chosen
properly adapted to the individual problem. Moreover, the Newton method
must be globalized by a suitable step control. Also, the starting values cannot
be chosen arbitrarily but, in simple cases, a linear function respecting the
boundary conditions may be sufficient for convergence.

Example 2.16. (Stoer)

x′1 = x2 , x′2 = 5 sinh(5x1) , x1(0) = 0 , x1(1) = 1 .

For starting trajectory we choose the straight line connecting the boundary
points (0, x1(0)) and (1, x1(1)). Observe however that limt→1.0326... x1(t) = ∞,
therefore the initially chosen uniform partition of the interval [0, 1] must be
adapted to the problem.
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Figure 2.19. Ex. 2.16
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Figure 2.20. Ex. 2.16, adaption

In KAPITEL04\CONTROL02 some benchmark problems of control theory are
solved by Newton’s method and box scheme.
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(c) Boundary Value Problems with Parameter We look for a solu-
tion x( · , α) : [0 , 1] → R

n of the boundary value problem

x′(t;α) = f(t, x(t;α);α) , 0 ≤ t ≤ 1 , g(x(0;α) , x(1;α);α) = 0 ∈ R
n ,
(2.83)

where the real parameter α may vary in some interval. Now, the problem has
no longer a unique solution but an additional degree of freedom and therefore
the numerical solution depends strongly on the chosen initial approximation
of x and α which must be given rather accurately.

To apply the multiple shooting method again, let

Φ(t; t0, x0, α) = x0 +
∫ t

t0

f(t, x(t;α);α) dt

Φ(tj+1; tj , yj(α), α) = yj(α) +
∫ tj+1

tj

f(t, x(t;α);α) dt

be the flux integral belonging to (2.83). Solving the system (2.80) being now
of the form

F(V ) = 0 ∈ R
n(m+1)+1, V = [y1, . . . , ym+1;α]T node vector , (2.84)

by Newton’s method, one needs the additional derivative

Hj :=
∂

∂α
Φ(tj+1; tj , yj(α), α) =

∂

∂α
yj(α) +

∫ tj+1

tj

∂

∂α
f(t, x(t;α);α) ds

+
∫ tj+1

tj

gradx f(t, x(t;α);α)
∂

∂α
x(t;α) dt .

Therefore the additional initial value problem

v′j(t) =
∂

∂α
f(t, x(t;α);α) + gradx f(t, x(t;α);α)vj(s) ,

vj(tj) =
∂

∂α
(yj)(α) ∈ R

n , v1(t1) = 0 ,
(2.85)

has to be solved in every interval [tj , tj+1] . Note that all n + 2 initial value
problems (2.78), (2.82) and (2.85) must be solved simultaneously again. Note
also that during the entire iteration not only the numerical approximations V
are to be calculated but als the partial derivatives yα,j , j = 1 : m + 1 w.r.t.
the parameter α else the method may fail.
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The Jacobi matrix gradF(V ) is now a (m · n,m · n+ 1)-matrix in block
form

L :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1 Q1 0 . . . 0 0 H1

0 P2 Q2
. . . . . . 0 H2

...
. . . . . . . . . . . .

...
...

...
. . . . . . . . . . . . 0 Hm−1

0
. . . . . . . . . Pm Qm Hm

gx0 0 · · · · · · 0 gx1 gα

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.86)

therefore the Moore-Penrose inverse [gradF(V )]+ must be used in the
Gauß-Newton method, cf. Sect. 1.1(g). An underdetermined linear system
of equations

[gradF(Vj)](Vj+1 − Vj) = −F(Vj)

is to be solved in every Newton step for which the algorithm in Sect. 1.1(h3)
can be applied. Also, as already mentioned, a good initial approximation V0

must be known to prevent a convergence to the trivial solution. In rather
simple methods also the box scheme may be modified in a suitable way.

2.6 Periodic Problems

(a) Problems with Known Period We seek a T -periodic solution
x : R → R

n of the boundary value problem

x′(t) = f(t, x(t)) , 0 ≤ t ≤ T , x(0) = x(T ) ∈ R
n . (2.87)

If x(t) is a solution, also x(t + α) is a T -periodic solution here for arbitrary
α ∈ R. Therefore an additional phase condition must be introduced to ensure
uniqueness, but the problem remains nevertheless numerically unstable.

Some possible phase conditions are
(1◦) p(x(0)) := xk − η = 0 , η �= 0;
(2◦) p(x(0)) := fk(x(0)) = 0 =⇒ x′k(0) = 0.
But then we have n + 1 boundary conditions for n unknown functions. If a
point on the unknown orbit is known then satisfying results may be obtained
also by a good solver for initial value problems.

(b) In problems with unknown period T , a transformation to a para-
meter-dependent problem with known period suggests itself. For instance, the
solution x̃ of

x̃ ′(s) = T f(Ts, x̃(s)) , x̃(0) = x̃(1) (2.88)

has period one in s and x(t) = x̃(t/T ) is a solution of (2.87) with period
T . The further treatment of the problem is carried out as in Sect. 2.5(c) for
parameter-dependent problems. The relatively simple box scheme however
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cannot be applied here because of the boundary condition (2.88) and the re-
sults of Sect. 2.5(a). In the subsequent examples the multiple shooting method
is used with fixed partition of the underlying t-interval and the solution of an
initial value problem with estimated initial value for starting trajectory. In
particular, this method may serve for final adjustment of periodic solutions.

Example 2.17. Nerve membrane model (Deuflhard84) (Fig. 2.21).

u̇1 = 3(u2 + u1 − 1
3
u3

1 + λ)

u̇2 = −1
3
(u1 − 0.7 + 0.8u2) .

Transformation to a parameter-dependent problem with period one:

x′1 = 3T (x2 + x1 − 1
3
x3

1 + λ)

x′2 = −T

3
(x1 − 0.7 + 0.8x2) .

The initial value problem (2.85) reads:

v′1 = 3(x2 + x1 − 1
3
x3

1 + λ) + 3T (1 − x2
1)v1 + 3Tv2

v′2 = −1
3
(x1 − 0.7 + 0.8x2) − T

3
v1 − 0.8T

3
v2 .

Test problem : λ = −1, starting value (x0
1, x

0
2, T

0) = (3, 1.5, 12).

Example 2.18. Heated flow problem (Deuflhard84) (Fig. 2.22).

u̇1 = −σ(u1 − u2) , u̇2 = u1(r − u3) − u2 , u̇3 = u1u2 − bu3 .

Transformation to a parameter-dependent problem with period one:

x′1 = −σT (x1 − x2) , x′2 = T [x1(r − x3) − x2] , x′3 = T (x1x2 − b x3) .

The initial value problem (2.85) reads:

v′1 = −σ(x1 − x2) − σT (v1 + v2)

v′2 = x1(r − x3) − x2 + T [(r − x3)v1 − v2 − x1v3]
v′3 = x1x2 − b x3 + x2v1 + T (x1v2 − b v3) .

Test problem : σ = 16 , b = 4 , r = 153.083 , starting values (x0
1, x

0
2, x

0
3, T

0) =
(0,−28, 140, 0.95).

Example 2.19. Arenstorf orbits (Arenstorf). In the degenerated three-body
problem, three bodies (earth, moon, satellite) are given with masses m1, m2

und m3 = 0, and with the following simplifications (Fig. 2.23):
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(1◦) Earth, moon, satellite move in a plane.
(2◦) The distance earth-moon is constant and set to one.
(3◦) The influence of the remaining celestial bodies is neglected.

The straight line between earth and moon is chosen for x-axis with common
gravity center for origin. Furthermore, μ = m2/(m1 + m2) ∼ 1/81.45 is the
relative moon mass, μ′ = 1−μ. Then a system of two differential equations is
obtained for the motion of the mass-free body in the rotating frame; see Sect.
6.5 (b). For a transformation of the T -periodic problem into a problem with
unit period, it is referred to the appertaining Matlab program.

Example 2.20. Nonlinear oscillators occur in many technical applications.
Forced Duffing equations

ü+ αu̇+ βu+ γu3 = δ cos(ωt) .

are a standard model problem in investigation of period doubling, transition
to chaos, and bifurcation (in homogenous case); see e.g. (Seydel94). We look
here for harmonic solutions which have the same period T = 2π/ω as the exci-
tation (else we are led to strange attractors). Transformation to a parameter-
dependent system with period one by substitution of t = Ts , T = 2π/ω ,
yields as above with y1(s) = u(t)

y′1 = Ty2

y′2 = −T
(
αy2 + βy1 + γy3

1 − δ cos(2πs)
)
.

In Fig. 2.24 we have α = 0.2 , β = 0 , γ = 1 , and at beginning δ = 5 . At
first an initial value problem is solved to get a start trajectory, then a simple
continuation is chosen up to δ = 7 . Initial guess of period = 12, final period
= 10.2209 .
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2.7 Differential-Algebraic Problems

Extremal problems are solved in mechanics by their associated variational
problem (Euler equations), and frequently a formulation of the extremal
function or objective function itself is relinquished at all; cf. Sect. 4.1. Possi-
ble equality or inequality restrictions are taken into the objective function via
Lagrange multiplicators as far as possible; indeed the entire Lagrange the-
ory has originated in mechanics of mass points. But the side conditions have
nevertheless to be regarded and thus a more or less (rather more) complicated
system of differential equations, analytic equations (here apostrophized as
“algebraic”) and perhaps also inequalities is waiting for numerical approach.
Ultimately one is faced with a highly nonlinear boundary value problem or
a equally nonlinear initial value problem of which the solution must satisfy
additional restrictions; cf. Chap. 3. Numerical devices for solving such fam-
ilies of problems need a consistent start trajectory of which the calculation
is often more difficult than the remaining computation. If however the prob-
lem is transformed artificially into a control problem, then modern numerical
methods can be applied working with (rather) arbitrary initial trajectory; cf.
Sect. 4.4. If, on the other side, the differential-algebraic problem is a pure ini-
tial value problem then also special Runge-Kutta methods may be applied.
Some of these methods, having been developed in more recent time, shall be
considered in the present section. The problem of consistent initial values ap-
pears here, too, but is a nonlinear system of equations being solved by the
usual methods in the generic case. For some practical applications of these
methods we refer to Sect. 11.3 on multibody problems.

In this subsection let (x, y) be the theoretical solution and (u, v)
its numerical approximation.



2.7 Differential-Algebraic Problems 137

(a) Formulation of the Problem At first we consider a singular initial
value problem in separated form

x′(t) = f(t, x(t), y(t)) ∈ R
n , (x(0), y(0)) = (x0, y0) ,

ε y′(t) = g(t, x(t), y(t)) ∈ R
m , 0 ≤ ε � 1

(2.89)

depending on the parameter ε . Writing z(t) = [x(t), y(t)]T , the system is
equivalent to

Mz′(t) = F (t, z(t)) ∈ R
n+m , z(t) = [x(t), y(t)]T (2.90)

where the matrix M ∈ R
n+m

n+m is singular for ε = 0 . Problems of the form
M(x(t))x′(t) = F (t, x(t)) are transformed by preference in a system

x′ = y , M(x)y − F (x) = 0 . (2.91)

Assumption 2.2. (1◦) The problem (2.89) has a unique solution in [0, T ] ,
0 < T .
(2◦) The gradient ∇yg(x, y) is regular near the solution (x, y) for ε = 0 .

The problem is said to be a differential-algebraic problem (DA problem) in
the case where ε = 0 . In this case the initial values (x0, y0) must be con-
sistent, i.e., they must satisfy the side condition g(x0, y0) = 0 . Also in the
numerical solution such initial values must be known or calculated first, at
least approximatively. The DA-problem is said to have index 1 if assump-
tion 2.2 (2◦) does hold. Then the function g is invertible w.r.t. y near
the solution, y(t) = G(t, x(t)) , and one obtains by substitution at least
theoretically an ordinary initial value problem with the differential system
x′(t) = f(t, x(t), G(t, x(t))).

Example 2.21. Van der Pol’s equation.

The linear oscillator ẍ+αẋ+x = 0 is damped for
α > 0 and unstable for α < 0 . If the parameter
α is replaced by μ(x2 − 1) , μ > 0 , then large
|x(t)|-values lead to a damping and small |x(t)|
to an amplification. Transformation in a system
of first order yields

ẋ1 = x2 , ẋ2 = μ (1 − x2
1)x2 − x1 ;

If we now write x1 = y1 , y2 = μx2 , s = t/μ and
ensuing μ2 = 1/ε then we obtain after re-notation

ẋ = y , ε ẏ = (1 − x2)y − x .
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Figure 2.25. Van der

Pol’s equation

In Figure 2.25 the phase portrait is plotted for ε = 0.05 and the curve
(1 − x2)y − x = 0 is marked boldface.
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(b) DA-problems are mainly solved by special Runge-Kutta methods
but also multistep methods may be applied, in particular backward differen-
tiation methods as dealed with in Sect. 2.4(i)(4◦). If ε > 0 for the present
then, with the notations of Sect. 2.4(d), we obtain as common method for the
separated equations

U(t) = e× u(t) + τ(A× I)F (t, U(t), V (t)) ∈ R
r·n

ε V (t) = ε e× v(t) + τ(A× I)G(t, U(t), V (t)) ∈ R
r·m

u(t+ τ) = u(t) + τ(b× I)TF (t, U(t), V (t)) ∈ R
n

ε v(t+ τ) = ε v(t) + τ(b× I)TG(t, U(t), V (t)) ∈ R
m ;

(2.92)

where U(t) and V (t) are the vectors at the intermediate stages. If now the
matrix A is regular then the second equation can be written as

τ G(t, U(t), V (t)) = ε (A−1 × I)[V (t)) − (e× v(t))] ,

and, by substitution of the last equation, the parameter ε may be canceled. By
this way one obtains a direct approximation of the DA-problem by a Runge-

Kutta method:

U(t) = e× u(t) + τ(A× I)F (t, U(t), V (t)) ∈ R
r·n

0 = G(t, U(t), V (t)) ∈ R
r·m

u(t+ τ) = u(t) + τ(b× I)TF (t, U(t), V (t)) ∈ R
n

v(t+ τ) = (1 − bTA−1e)v(t) + (b× I)T (A−1 × I)V (t) ∈ R
m ,

(2.93)

and the stability function satisfies R(∞) = 1 − bTA−1e ; cf. (2.58). However,
the algebraic side condition g(u, v) = 0 is fulfilled only approximatively in
methods of this type (in normal case). This disadvantage is removed if the last
equation in (2.93) is replaced by requiring g(un+1, vn+1) = 0. The resulting
indirect type of methods constitutes an approximation of x′ = f(x,G(x)) in
systems of index 1. If however, besides the regularity of A , also the last row
of A is the same as the vector b of weights in the exterior equation (stiffly
accurate methods) then g(un+1, vn+1) = 0 is fulfilled automatically because
of the second equation in (2.93), and the last equation can be dropped. For
instance the Rung-Kutta methods of type Radau II A described in Sect.
2.4(j) have the just mentioned additional property and thus are suited in a
particular way for solving DA-problems.

Let us now apply a Runge-Kutta method to a differential system M x′ =
f(t, x) with regular matrix M , then we obtain the computational device

(I ×M)
(
U(t) − e× u(t)

)
= τ(A× I)F (t, U(t)) ∈ R

r·n

u(t+ τ) = (1 − bTA−1e)u(t) + (b× I)T (A−1 × I)U(t) ∈ R
m ,

(2.94)

in the same way as in the transition of (2.92) to (2.93) and this device works
also in a singular matrix M . But then the method depends on the condition
of the matrix I ×M − τ(A× I) hence in particular of the step length τ .
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(c) Regular Matrix Pencils Let (λ, u) be a characteristic pair of the
generalized eigenvalue problem

(A+ λB)u = 0 , A,B ∈ R
n

n .

Then x(t) = eλtu is a solution of the differential system

Bx′ +Ax = c(t) ∈ R
n (2.95)

for c(t) ≡ 0. If here, e.g., A = B and det(A) = 0 then A + λB is singular
for all λ ∈ R , therefore it is tacitly assumed in linear systems (2.95) that the
matrix pencil A+λB is regular such that the associated generalized eigenvalue
problem has a finite number of nonzero eigenvalues.

Theorem 2.16. (Weierstrass, Kronecker) Let A+λB be a regular ma-
trix pencil then there exist regular matrices P, Q such that

PAQ =
[
C 0
0 I

]
, PBQ =

[
I 0
0 T

]
. (2.96)

The matrix T = diag(T1, . . . , Tk) is a block diagonal matrix with blocks Ti ∈
R

ni
ni

of the form described in Sect. 1.1(c3), and n1 + . . .+ nk = n .

Proof see e.g. (Hairer), vol. II, Sect. 6.5.
Let us now multiply (2.95) by P and use the partition

[
y
z

]
= Q−1x ,

[
f
g

]
= Pc(t) ,

then we obtain two separated systems for for y and z, namely

y′ = Cy + f(t) , T z′ + z = g(t) . (2.97)

(d) Differential Index The second system in (2.97) has to be solved by
recurrence. If for instance k = 1 in Theorem 2.16 and T = T1 ∈ R

m
m then

one starts out from the last row zm = gm(t) ∈ R and then has to calculate
successively the components zi(t) , i = m− 1 : 1 , by zi(t) = gi(t) − z

(i+1)
i+1 (t)

for which one needs the derivatives g(m)
m , . . . , g

(1)
2 . Also, with these derivatives,

the system Tz′ + z = g(t) can be written as explicit system,

z
(i+1)
i+1 + z

(i)
i = g

(i)
i (t) , i = 1, . . . ,m− 1 , z(m)

m = g(m)
m (t) . (2.98)

In general, the differential index is the number of derivatives being necessary
to transform the implicit differential system F (t, x′(t), x(t)) = 0 analytically
into an explicit system. The explicit system x′(t) = f(t, x(t)) has index zero
by definition, and, e.g., the system (2.98) has index m because m derivatives
of g are necessary.
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System with index 1 . Let the matrix ∇yg(x, y) be regular near a solution
(x, y) of

x′(t) = f(t, x(t), y(t)) , g(t, x(t), y(t)) (2.99)

then we obtain by 0 = ∇xg(x, y)x′ +∇yg(x, y)y′ together with (2.99)(1◦) the
explicit system

x′ = f(x, y) , y′ = −∇yg(x, y)−1∇xg(x, y)f(x, y) .

In this case the system (2.99) has index 1 .
System with index 2 . Let ∇yg(x, y) be singular near a solution of (2.99).

Then h(x, y) := ∇xg(x, y)f(x, y) = 0 follows from g(x, y) = 0 and

∇xh(x, y) = ∇2
xxg(x, y)f(x, y) + ∇xg(x, y)∇xf(x, y)

∇yh(x, y) = ∇y∇xg(x, y)f(x, y) + ∇xg(x, y)∇yf(x, y) .

If ∇yh(x, y) is regular then x′ = f(x, y) , h(x, y) = 0 is a system with in-
dex 1. The system (2.99) has index 2 in this case. By solving ∇xh(x, y)x′ +
∇yh(x, y)y′ = 0 w.r.t. y′ one obtains again an explicit system of first order,

x′ = f(x, y) , y′ = −∇yh(x, y)−1∇xh(x, y)f(x, y) .

System with index 3. If ∇yg(x, y) and ∇yh(x, y) are both singular near the
solution of (2.99) then k(x, y) := ∇xh(x, y)f(x, y) = 0 follows from h(x, y) =
0. If now ∇yk(x, y) is regular then the system x′ = f(x, y) , k(x, y) = 0 has
index 1 . The system (2.99) has index 3 in this case.

(e) In more recent time also Semi-Explicit Runge-Kutta Methods

U(t) = e× u(t) + τ(A× I)F (U(t), V (t)) ∈ R
r·n

0 = G(U(t)) ∈ R
r·m

u(t+ τ) = u(t) + τ(b× I)TF (U(t), V (t)) ∈ R
n

0 = g(u(t+ τ)) ∈ R
m

(2.100)

have been proposed for solving DA-problems of the form

x′(t) = f(x(t), y(t)) , g(x(t)) = 0 . (2.101)

If the matrix A of coefficients is a triangular matrix with diag(A) = 0 then
we obtain the following device for a single t-step:

Set u1 = u and compute v1 with Newton’s method by
g
(
u+ τα21f(u1, v1)

)
= 0 for i = 2 : r .

Set ui = u+ τ
∑i−1

j=1 αijf(uj , vi)
and compute vi with Newton’s method by
g(ui) = 0 , i = 2 : r .
Set u(t+ τ) = u+ τ

∑r
i=1 βif(ui, vi)

and compute v(t+ τ) with Newton’s method by
g(u(t+ τ)) = 0 .

(2.102)
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Theorem 2.17. (1◦) Let the problem (2.101) have a unique solution in
[0, T ] , 0 < T .
(2◦) Let the initial values satisfy g(x0) = 0 , ∇g(x0)f(x0, y0) = 0 .
(3◦) Let ∇g(x)∇yf(x, y) be regular near the solution (system with index 2).
(4◦) In the matrix A and vector b of the method (2.100), let

αi,i−1 �= 0 , i = 2 : r , βi �= 0 , i = 1 : r .

Then the systems in (2.102) have a local unique solution for sufficiently small
τ .

Proof see (Brasey92), (Brasey93).

Example 2.22. HEM4, 5-stage method of order p = 4 by (Brasey92).

⎡
⎣A c

b

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− − − − − −
3
10 − − − − 3

10

1+
√

6
30

11−4
√

6
30 − − − 4−

√
6

10

−79−31
√

6
150

−1−4
√

6
30

24+11
√

6
25 − − 4+

√
6

10

14+5
√

6
6

−8+7
√

6
6

−9−7
√

6
4

9−
√

6
4 − 1

0 0 16−
√

6
36

16+
√

6
36

1
9 −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

2.8 Hints to the MATLAB programs

KAPITEL02/SECTION_1_2_3
Figures of Section 2.1 and 2.2
demo1.m Test of four Gauss rules in interval
demo2.m Test of Gauss and Bell rules in arbitrary triangle
bell.m Exact integration of polynomial

in arbitrary triangle
gauss_1.m: Gauss-Legendre integration
gauss_2/3/4.m: Gauss integration, suboptimal, three cases
gauss_t5.m: Gauss rule of order n = 5 in arbitrary triangle
divdif.m: Generalized divided differences
KAPITEL02/SECTION_4: Initial Value Problems
Figures of Section 2.4 and stability regions
demo1.m Arenstorf orbits by using dopri.m,
dopri.m MATLAB version of FORTRAN version of HAIRER I
dreik_a.m differential system of restricted

three-body problem
stab_region.m Program for plots of the stability regions

of one-step methods
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KAPITEL02/SECTION_5: Boundary Value Problems
adapt01.m Adaption of shooting points for example
box.m Box scheme for Newton method
bsp01.m Example Stoer-Bulirsch, Par. 7.3, Bsp. 1
demo1.m Masterfile for multiple shooting method
mehrziel.m Multiple shooting for Newton method
newton.m Quasi-global Newton method
Kapitel02/SECTION_6: Periodic Problems
bsp01.m Nerve membran model
bsp02.m Heat flow problem
bsp03.m Arenstorf orbit I
bsp04.m Duffing’s equation
demo1.m Masterfile for multiple shooting method
demo2.m Periodic solution of Duffing’s equation
demo1.m Some solutions of Duffing’s equation
mehrziel_p.m Multiple shooting scheme for Newton’s method

and problems with unknown period
newton_p.m Quasi-global Newton’s method for periodic problems
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Optimization

Leveraging a method by a suitable example applies in optimization more
than in any other area; one must often settle for improvements compared to
the nominal solution (start trajectory). The multitude of methods is hardly
manageable, and new ones are constantly being added. E.g. (Himmelblau),
(Spellucci) and (Polak) would have to be mentioned as standard works on non-
linear optimization; but also Monte-Carlo methods (based on random num-
bers) have made their entrance, see e.g. (Hajek), (VanLaarhoven). The basic
idea of all methods is for the most part a simple geometric or physical princi-
ple, the execution of which becomes complicated (especially if, as in Matlab,
you have make do without goto commands), and saveguarding against op-
eration errors knows no bound. This chapter should treat as examples the
projection method and a penalty method, both of which are well established
in the community. They basically differ in their nature and properties: In
the projection method, the gradient of the objective function is projected in
both the linear and nonlinear case onto the boundary of the feasible domain,
thus determining the new search direction. In the penalty method, violating
of the constraints are punished by an increasement of the objective function
(in minimum problems). Here penalty parameters, which no longer have any
physical importance, formally take the place of the Lagrange multipliers.
For the method to deliver good results, the penalty parameters have to be
adapted to the geometric situation in a suitable strategy over the iteration.
Like elsewhere in optimization, the development is far from being completed
here; see e.g. (Byrd). Nature took an infinitely long time to construct opti-
mal systems. In contrast, we must carefully consider the relationship of the
time required to the accuracy, and the evaluation of these contrary criteria
perpetually changes with technical advances in hardware components.



144 3 Optimization

Hint to this and the next chapter:

1. Vectors are not underlined!
2. Row vectors a ∈ Rn and column vectors b ∈ R

n

are used together such that, e.g., a b ∈ R and b a ∈ R
n

n.
Rule:

Primal problem/primal space .= column vectors
Dual problem/dual space .= row vectors.

3.1 Minimization of a Function

(a) Descend Methods On the search for a (possible local) minimum of
a sufficiently smooth, scalar function f , a stationary or critical point x is
determined commonly where ∇f(x) = 0 . Further investigations then have
to verify whether that point is actually is a minimum point. Thereby one
proceeds iteratively, in each step a descend direction d and a step length σ has
to be chosen properly. This way of proceeding may be written as a preliminary
computational device:

Choose start vector x , tolerance tol ; done = 0.
WHILE NOT done
Choose direction d and step length σ such that
ϕ(σ) := f(x− σ d) < f(x)
x := x− σ d
done = (‖σ d‖ < tol)
END

. (3.1)

By lack of better possibilities, a simple stopping criterium is commonly applied
here which is actually allowed only if convergence is warranted by some other
way. Otherwise the criterium may pretend convergence as e.g. is illustrated
by the well-known harmonical series. Therefore the results of iterations are
always to be examined critically.

(b) Negative Examples Caution is also called for in choosing descend
direction d and step length σ . Two simple examples due to (Dennis) demon-
strate the reason for this impressively:

f(x) = x2 , x ∈ R , x0 = 2 , x∗ = 0 .

(1◦) Choose di = (−1)i , σi = 2 + 3 · 2−i−1 for i = 0, 1, . . . , then
xi+1 = xi − σidi = (−1)i+1(1 + 2−i−1) .
(2◦) Choose di = 1 , σi = 2−i−1 , for i = 0, 1, . . . , then
xi+1 = xi − σidi = 1 + 2−i−1 .
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Figure 3.1. Example 1(a)
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Figure 3.2. Example 1(b)

In both cases f(xi) −→
i→∞

1 �= 0 ; decreasing of f relative to step length

is too slow in the first case, and step length becomes too small in the second
case.

(c) Convergence As well-known, the gradient ∇f(x) of f at point x
shows into that direction where f increases most strongly, hence the vector
−∇f(x) shows into direction of the falling line at point x. The angle between
ascend direction d(x) and ∇f(x) must always be (uniformly) less than π/2
(Fig. 3.3) . In other words, for all elements x of the below introduced niveau
set Lf (f(x0)) , we have to adopt the general rule

∃ ε > 0 ∀ x ∀ d(x) : 0 ≤ angle(∇f(x), d(x)) ≤ π

2
− ε . (3.2)

For step length strategy, the Goldstein-Armijo descend test (GA-test) is a
good choice. Besides some technical details, it reads:

Let ϕ(σ) = f(x− σd) and ϕ ′(0) = −∇f(x)d < 0 , cf. (3.1).
Choose 0 < δ < 1, e.g., δ = 1/100 , and in each step at first
first (e.g.) σ = 1 . Replace σ by σ/2 until (Fig. 3.4)
f(x− σ d) < f(x) + σ δϕ ′(0) =: g(σ)

. (3.3)

There are some further step-length strategies of higher order but their higher
computational effort yields seldom better results relative to total computa-
tional time. In Fig. 3.4 we have

ψ(σ) = ϕ(0) + ϕ ′(0)(1 − δ)σ + ‖d‖2Mσ2/2

where M = max{‖∇2f(ξ)‖ , ξ ∈ convLf (f(x0))} ; cf. the subsequent Theo-
rem 3.1. This line remains always above of ϕ(σ) and, by consequence, the step
length after the GA-test satisfies always σ ≥ �/2 which says that, under the
above assumptions, the step length cannot tend to zero!
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∇ f(x)

−∇ f(x)

tangent
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Figure 3.3. Feasible angular domain
for direction d

φ(σ)ψ(σ)

g(σ)

ρρ/2 σ

Figure 3.4. Goldstein-Armijo test

Theorem 3.1. (1◦) Let f ∈ C2(Rn; R) be bounded from below.
(2◦) Let the niveau set Lf (f(x0)) := {x ∈ R

n , f(x) ≤ f(x0)} relative to the
start value x0 be compact.
(3◦) Let the set Ω = {x∗ ∈ R

n , ∇f(x∗) = 0} of critical points be finite and
non-empty.
(4◦) Let the directions d in Lf (f(x0)) be feasible in sense of (3.2).
(5◦) Let the step lengths σ be chosen following (3.3).
Then the sequence (3.1) with start value x0 converges to a critical point x∗.

Proof see, e.g., (Spellucci), Sect. 3.1.2.2.
(d) Efficient Choice of Descend Direction Of course, the speed of the

descend method depends in a crucial way on a suitable choice of the direc-
tions d . But here we have to regard the total computational amount of work
and not only the number of iterations needed for the desired accuracy. In the
method of steepest descend the self-suggesting direction d = ∇f(x) is chosen
directly. This locally optimal choice leads however to the befeared “zigzag-
ging” whereby the procedure is slowed down considerably in most cases. On
the other side, “conjugate” directions may be applied which regard the lo-
cal/global constellations more properly. Nevertheless, in these methods as
well as in the below discussed Newton’s method, the time-consuming Hes-
sian A = ∇2f(x) as to be evaluated repeatedly. By these reasons the methods
of variable metric have been introduced of which the name stems from the fact
that every positive definite matrix defines a scalar product and thus a metric.
These methods are described most simply by considering first a linear system
of equations Ax−b = 0 with regular matrix A ∈ R

n
n . On choosing here the de-

scend direction −d = −B∇f(x) with some matrix B , the solution is obtained
trivially in a single step if B = A−1 , namely x1 = x0 −A−1(Ax0 −b) = A−1b .
But acceptable results are obtained also by this way if B is only a more or less
passable approximation of the inverse A−1 . The methods of variable metric
choose generally

di = A−1
i ∇f(xi)T , i = 1, 2, . . . ,
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for local descend direction implying that a system Aidi = ∇f(xi) has to be
solved in each step. The requirement now reads: Find a sequence of matrices
{Ai} by applying the ingredients xj , ∇f(xj), j = 0 : i − 1 , known hitherto
such that An = A does hold. After n iterations the procedure is re-started (of
course by using the most recent values). Such a method has been found indeed
by Broyden, Fletcher, Goldfarb and Shannon after several preliminary
investigations and is a mathematical icon today. The BFGS method leads
off his trumps less in a convex quadratic objective function but in general
uniformly convex function it beats even Newton’s method relative to total
computational time. (Note however that not necessarily Ai → ∇2f(x∗) in
BFGS methods.) For further discussion of this and related methods we have
to refer to (Spellucci).

function [W,errorcode] = bfgs(name,X,TOL);
% BFGS Method, cf. Spellucci, S. 135
% f(x) = x’Ax/2 + b’x + c, A symm. positive definite
% errorcode = 1: Descend direction unfeasible
% errorcode = 2: GA_test fails
% errorcode = 3: Max. step number in iteration

MAXITER = 10; errorcode = 0;
A = eye(length(X)); W = X; ITER = 0; DONE = 0;
GRAD = feval(name,X,2);
while ~DONE

ITER = ITER + 1; D = A\GRAD’;
[Y,errorcode] = ga_test(name,GRAD,X,D,1);
U = Y - X; V = A*U;
GRAD1 = feval(name,Y,2);
NORM = norm(GRAD1);
Z = GRAD1 - GRAD;
A = A - V*V’/(V’*U) + Z’*Z/(Z*U);
GRAD = GRAD1;
X = Y; W = [W,X];
DONE = norm(U) < TOL | ITER > MAXITER | NORM < TOL;

end
if ITER > MAXITER errorcode = 3; end

(e) Newton’s Method is the classical workhorse for solving nonlinear
systems of equations F (x) = 0 ∈ R

n . By introducing a variable step length
σ, the originally local convergent method becomes a (nearly) global method,
say, of the following form:
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Choose a suitable start value x , choose tolerance tol
done = 0
WHILE NOT done
Choose step length σ e.g. by GA strategy,
(beginning with σ = 1 because of local quadratic
convergence)

y = x− σ∇F (x)−1F (x)
x = y

done = (‖x− y‖ < tol)
END

As already mentioned, the stopping criterium is to be scrutinized critically.
In order to apply the Convergence Theorem 3.1, we consider Newton’s

method in the form of descending method for

f(x) =
1
2
F (x)TF (x) =

1
2
‖F (x)‖2 . (3.4)

The Newton descend direction −d(x) = −∇F (x)−1F (x) for the original sys-
tem F then satisfies condition (3.2) for feasible descend relative to the scalar
function f if the Jacobian ∇F remains regular in the compact niveau set
Lf (f(x0)) . Newton’s method should always be the first choice in solving
nonlinear systems of equations. It is rather insensitive w.r.t. inexact or approx-
imative Jacobian ∇F (x) whence this matrix must not to be updated in every
step of iteration. In case the method fails a systematical error is rather prob-
ably where the Jacobian is not evaluated correctly or becomes singular. The
version after (Hoellig) presented in KAPITEL03 attains σ = 1 automatically
near the solution and thus warrants local quadratic convergence.

The minimization method of Nelder and Mead is part of the Optimiza-

tion Toolbox of Matlab. It is a very ingenious procedure which gets along
without the costly derivatives but, on the other side, it is too slow (up to to-
day) for most applications because of its complicated local optimum search.
Equality and inequality constraints may be assigned, too, after (Himmelblau)
enhancing operational time once more considerably. If gradients of objective
function and side conditions are not accessible in large systems then this
method is employed on mainframe computers or in compound of computers.
For some examples see KAPITEL03\FLEXIPLEX.

Example 3.1.

f(x, y) = 1.1x2 + 1.2y2 − 2xy +
√

1 + x2 + y2 − 7x− 3y

(x∗, y∗) = (15.376, 13.786) .
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Figure 3.5. Method of steepest descend and BFGS method

Examples for Newton’ method are considered in context of control theory.

3.2 Extrema with Constraints

Let R
n
+ be the order cone in R

n hence x ≥ 0 if ∀ i : xi ≥ 0 and x > 0 if
∀ i : xi > 0 , and remember that x ≥ y if x− y ≥ 0 etc.; cf. Sect. 1.10.

(a) Formulation of the Problem Let f : R
n → R , g : R

n → R
m , h :

R
n → R

p be three continuous functions with components gi resp. hj . We look
for a solution x∗ of the minimum problem

{f(x) ; g(x) ≤ 0 , h(x) = 0} = min! (3.5)

where f is the objective function. The problem is called differentiable if f , g , h
are (F-)differentiable. It is called convex if all three functions f , g , h are
convex then the set of feasible points

S := {x ∈ R
n, g(x) ≤ 0 , h(x) = 0}

is convex; cf. Sect. 1.10. Letting L(f(x0)) = {x ∈ R
n; f(x) ≤ f(x0)} be

again the niveau set there exists a not necessarily unique solution if the set
S ∩ L(f(x0)) is compact and non-empty for some x0 ∈ R

n .
(b) Multiplier Rule By a likewise simple and ingenious idea of La-

grange (1736-1813), a function

L : R
n × Rm × Rp � (x, y, z) �→ L(x, y, z) := f(x) + yg(x) + zh(x) ∈ R

is associated to the problem (3.5) and the stationary points of this Lagrange

function L are investigated instead of those of the actual objective function
f . Originally this idea was developed for equations of motion where some
artificial additional forces shall compel the mass points to regard the side
conditions. The following result constitutes the basis of many approaches in
optimization and control in spite of its apparent simpleness.
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Theorem 3.2. Let the following assumptions be fulfilled:
(1◦) There exists a triple (x∗, y∗, z∗) where y∗ ≥ 0 such that

x∗ = arg minx{f(x) + y∗g(x) + z∗h(x)} , (3.6)

(2◦) x∗ ∈ S, i.e. x∗ is feasible,
(3◦) y∗ g(x∗) = 0 ( complement(ary slackness) condition ).
Then

x∗ = arg min{f(x) ; g(x) ≤ 0 , h(x) = 0},
i.e., x∗ is solution of the minimum problem (3.5).

As y∗ ≥ 0 by (1◦) , assumptions (2◦) and (3◦) together can be replaced for g
by
(4◦) y∗g(x∗) = 0 and y∗i = 0 ⇐⇒ gi(x∗) < 0 .

Most numerical procedures, as far as they work with Lagrange multipli-
ers at all, supply a multiplier with the last property automatically then y∗ ≥ 0
and y∗g(x∗) = 0 guarantee that g(x∗) ≤ 0 .

Proof. For all x ∈ S

f(x∗)
(2),(3)

= f(x∗) + y∗g(x∗) + z∗h(x∗)
(1)

≤ f(x) + y∗g(x) + z∗h(x)
x∈S
≤ f(x) .

��
Equality constraints h may play a more or less trivial role here but the

augmented formulation is justifed by the subsequent conclusion (3.7). Theo-
rem 3.2 holds just the same way for a maximum problem if the positive sign
of y g(x) is replaced by the negative sign in the Lagrange function L . Note
however that the existence of suitable Lagrange multipliers 0 ≤ y ∈ Rm

and z ∈ Rp is supposed here. The result of Theorem 3.2 may not be very con-
vincing at first glance since the original objective function f of the problem
is replaced by the more complicated Lagrange function L which contains
some unknown parameters namely the multipliers. But the assertion says that
an extremal of L is solution of the constrained problem under the enumerated
additional conditions therefore (3.6) is to be understood as preliminary de-
vice for further orientation. In a naive way one may compute the extremals of
the Lagrange function and then, in a second step, select the multipliers by
computation or by “intuition” such that conditions (2◦) and (3◦) are satisfied.

A scalar inequality constraint gi(x) ≤ 0 is called

active in x if gi(x) = 0
inactive in x if gi(x) < 0 .

Let now the problem (3.5) be differentiable then, by assumption (1◦), there
results a necessary condition for a minimum point (or more generally for a
stationary point)
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∇f(x∗) + y∗∇g(x∗) + z∗∇h(x∗) = 0 ∈ Rn , G(x∗) :=
[
∇g(x∗)
∇h(x∗)

]
. (3.7)

It says that the gradient of the objective function can be written in x∗ as a
linear combination of the gradients of all constraints or, in other words, that
∇f(x∗) is an element of the (row-wise) range of the matrix G(x∗) .

A point x∗ obeys the multiplier rule (MR) or also, x∗ is a Kuhn-
Tucker point, if condition (3.7) as well as the assumptions (2◦) and
(3◦) of Theorem 3.2 do hold in x∗ for some pair (y∗, z∗) ∈ Rm × Rp

and y∗ ≥ 0 .

(3.8)

If the minimum problem contains only equality constraints, the comple-
ment condition (3◦) is dropped of course. One the other side, if the problem
contains only inequality constraints, the system

∇xL(x, y) = 0 , y ≥ 0 , y g(x) = 0 , g(x) ≤ 0 ,

is to be solved for (x, y) ∈ R
n ×Rm . By attempting to find a solution directly,

all 2m possibilities yi > 0 , yi = 0 , i = 1 : m , have to be tested for feasible x
therefore this way of procedure is rejected in general. The minimum problem
(3.5) carries frequently the additional constraint that the state variable x is
not allowed to vary in the entire space R

n but is restricted to, say, a bounded
closed set C . Then the necessary condition (3.7) must be replaced by a weaker
inequality form because extrema may appear also at the boundary of C ; cf.
Sect. 3.6(f).

The multiplier rule reveals to be the basic criterium in solving the problem
(3.5) which also is manifested in the following Theorems 3.3 and 3.5.

Theorem 3.3. (MR sufficient in convex problems) Let the minimum problem
(3.5) be convex (hence h affine linear) and differentiable, then every Kuhn-

Tucker point is a global minimum point of f in S and thus a solution of the
minimum problem.

Proof see SUPPLEMENT\chap03a.
Following the proof, the assertion remains also true if MR is replaced by

[∇f(x∗) + y∗∇g(x∗)](x− x∗) ≥ 0

on convex subsets C ⊂ R
n and h = 0 .

Assume that the gradients of the active inequalities and the gradients of
all equalities together span the entire row space Rn , then there exist surely
Lagrange multipliers y and z such that (3.7) does hold where however y is
not necessarily sign-bounded. Feasible points are called singular if there do not
exist Lagrange multipliers y ≥ 0 and z such that (3.7) i.e. the multiplier rule
holds. All these special points have to be studied separately. As concerns the
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general existence of Lagrange multipliers there are about twenty different
constraint qualifications (regularity conditions) which unfortunately may only
partially be ordered in hierarchical way; cf. (Peterson). Let us specify one
of the most popular qualifications more exactly (being admittedly a rather
strong one). To this end let

A(x) = {i ∈ {1, . . . ,m}, gi(x) = 0}

be the index set of all active inequalities at point x ∈ S and let ∇gA(x) be
the matrix of gradients with rows gi(x) , i ∈ A(x) .

The feasible point x ∈ S satisfies the rank condition if the matrix
of gradients of all active constraints in x,

[
∇h(x)
∇gA(x)

]

has maximum row rank p+ |A(x)| , i.e., all rows of this matrix
are linearly independent; then necessarily p+ |A(x)| ≤ n.

(3.9)

Let now I be a closed interval with non-empty interior int(I) and let
x : I � t → x(t) ∈ R

n be a sufficiently smooth curve. Then by Lemma 1.27

t∗ ∈ int(I) and f(x(t∗)) = mint∈I f(x(t)) =⇒ ∇f(x(t∗))x′(t∗) = 0 ,

t∗ ∈ I and f(x(t∗)) = mint∈I f(x(t)) =⇒ ∇f(x(t∗))x′(t∗) ≥ 0 ,

h(x(t∗)) = 0 =⇒ ∇h(x(t∗))x′(t∗) = 0 .

For the inversion of these conclusions we define an illustrative property of
both functions g and h:

Definition 3.1. (1◦) Let h(x∗) = 0 , then h(x) = 0 is locally solvable in x∗ if

∀ v ∈ R
n ∃ ε > 0 ∃ ϕ : R → R

n, ϕ(α) = o(|α|) :
∇h(x∗)v = 0 , 0 < α ≤ ε =⇒ h(x∗ + αv + ϕ(α)) = 0 .

(2◦) Let g(x∗) ≤ 0 , then g(x) ≤ 0 is locally solvable in x∗ if

∀ v ∈ R
n ∃ ε > 0 ∃ ϕ : R → R

n, ϕ(α) = o(|α|) :
∇gA(x∗)v ≤ 0 , 0 < α ≤ ε =⇒ gA(x∗ + αv + ϕ(α)) ≤ 0 .

The inactive inequalities at x∗ do not play any role in this local property.

Theorem 3.4. (Ljusternik, Regularity Condition)
(1◦) Let h(x∗) = 0 and let ∇h(x∗) have maximum row rank p then h(x) = 0
is locally solvable in x∗.
(2◦) Let g(x∗) ≤ 0 and let ∇gA(x∗) have maximum row rank |A| then g(x) ≤ 0
is locally solvable in x∗.



3.2 Extrema with Constraints 153

Proof see e.g. (Craven95), Sect. 3.7.

Theorem 3.5. (MR local necessary) Let the minimum problem (3.5) be dif-
ferentiable, let x∗ be a local solution and let x∗ satisfy the rank condition (3.9),
then the multiplier rule does hold in x∗.

Proof. We carry the proof out separately for equalities h and inequalities g .
(1◦) For every v satisfying ∇h(x∗)v = 0 there exists locally a curve x(t) =
x∗ + tv + ϕ(t) by the local solvability assumption such that

h(x(t)) = h(x∗ + tv + ϕ(t)) = 0 , 0 ≤ t .

But then also −∇h(x∗)v = 0 and the same result does hold if v is replaced by
−v . Consequently, x∗ is an interior point of a curve being entirely contained
in the feasible domain. Therefore ∇f(x∗)x′(0) = ∇f(x∗)v = 0 hence

{
∀ v : ∇h(x∗)v = 0 =⇒ ∇f(x∗)v = 0

}

=⇒ ∇f(x∗) ∈ Ker(∇h(x∗))⊥ = Range(∇h(x∗)T ) .

Accordingly, there exists a z∗ ∈ R
p satisfying ∇f(x∗)T = −∇h(x∗)T z∗ by

the Range Theorem 1.2.
(2◦) For every v satisfying ∇gA(x∗)v ≤ 0 there exists local a curve x(t) =
x∗ + tv + ϕ(t) such that

g(x(t)) = g(x∗ + tv + ϕ(t)) ≤ 0 , 0 ≤ t .

Now x∗ is a local minimum by assumption therefore ∇f(x∗)x′(0) = ∇f(x∗)v ≥
0 . Consequently

−∇gA(x∗)v ≥ 0 =⇒ ∇f(x∗)v ≥ 0 .

By the Lemma 1.24 of Farkas there exists a 0 ≤ y∗A ∈ R
|A| such that

−∇gA(x∗)T y∗A = ∇f(x∗)T . This proves the assertion by setting y∗i = 0 for
i /∈ A. ��

Example 3.2. n = 2 , m = 3 , p = 0 (Fig. 3.6).

f(x1, x2) = x1 = min!
g1(x1, x2) = −x1 , g2(x1, x2) = −x2 ,
g3(x1, x2) = −(1 − x1)3 + x2 .

The point x∗ = (1 , 0) is a minimum point where g1 is inactive, and

∇f(x∗) = (1 , 0) , ∇g2(x∗) = (0 , −1) , ∇g3(x∗) = (0 , 1) .

We have y∗1 = 0 but y∗2 and y∗3 do not exist.
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The Theorems 3.3 and 3.5 display the connection between Kuhn-Tucker

points and the solution of extremal problems. The multiplier rule however is
only a local property whereas Theorem 3.2 makes a global statement with-
out any assumption of smoothness. It says that the extremum points of the
Lagrange-function L coincide with those of the objective function f in the
feasible domain in case where the Lagrange multiplier are chosen properly.
The inversion of this question namely the question for the existence of these
Lagrange multipliers requires considerably more auxiliaries and can be an-
swered only under relatively restrictive assumptions. But this latter question
is not of that importance in practice as the question for the existence of
Kuhn-Tucker points. Therefore we refer to Sect. 3.6 for further discussion.
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Figure 3.6. Example 3.2

3.3 Linear Programming

The famous simplex algorithm has been developed by Dantzig in the fifties
of the last century and since that time, where only mechanical calculating
machines have been in common use, linear optimization in finite-dimensional
spaces is handled under the name “linear programming”.

(a) Examples All problems of linear programming follow the same pat-
tern to some extent:

(a1) Somebody has n activities j = 1 : n (e.g. the production of n articles)
with profit αj per unit, ξj units of activity j yielding αjξ

j units of profit. To
this end there are m resources i = 1 : m at disposal (e.g. appliances and
manpower). One unit of activity j requires βi

j units of resource i (e.g. hours
per month). But there are at most γi units at disposal, βi

1ξ
1+. . .+βi

nξ
n ≤ γi .

How are the resources applied optimally? Let

a := [αi] ∈ Rn , B = [βi
j ] ∈ R

m
n , c = [γi] ∈ R

m , x = [ξj ] ∈ R
n ,
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then there results a maximum problem

max{ax ; Bx ≤ c , 0 ≤ x}

where the inequalities are to be understood componentwise.
(a2) Somebody has n resources j = 1 : n at disposal (e.g. manpower,

time, money) with costs αj per unit, ξj units of resource j hence cost αjξ
j

units. With these resources he has to satisfy m requirements i = 1 : m . One
unit of requirement i needs βi

j units of resource j, altogether at least γi units
of requirement i must be met, βi

1ξ
1 + . . . βi

nξ
n ≥ γi . How are the resources

applied optimally such that the costs are minimized? This problem may be
considered in some way as dual to (a1) and leads to the minimum problem

min{ax ; Bx ≥ c , x ≥ 0} .

(b) Formulation of the Problem We consider the linear optimization
problem

min{a x ; Bx ≤ c} , a ∈ Rn , c ∈ R
m (3.10)

where m % n in normal case. The feasible domain S = {x ∈ R
n; Bx ≤ c} of

(3.10) is a convex polytope.
In general, a point z of a convex set C is called extreme point if

∀ x, y ∈ C : z ∈ [x, y] =⇒ z = x ∨ z = y .

Geometrically an extreme point is a “corner” of the polytope S and sometimes
also called so. The extreme points of the feasible domain S allow a simple
characterization but, to this end, we have to modify slightly the index set A(x)
introduced in the preceding section. Note also that the gradient of gk(x) =
bkx − γk is now the k-th row bk of the matrix B in the present situation of
linear inequality constraints. Let

A∗(x) := {k ∈ {1, . . . ,m} , bkx = γk} ,
A(x) := {k ∈ A∗(x) , bk linearly independent},
N (x) := {1, . . . ,m}\A(x) .

A∗(x) denotes the (index-)set of active side conditions in x. The set N (x)
contains the indices of all inactive side conditions in x if and only if A(x)
coincides with A∗(x) . In the other case, neither A(x) nor N (x) are determined
uniquely.

Lemma 3.1. x ∈ S is extreme point if and only if there exists an index set
A(x) with |A(x)| = n .

Proof see SUPPLEMENT\chap03a.
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By consequence, the feasible domain S has extreme points only if
rank(B) = n maximum otherwise it consists of an unbounded “strip” if non-
empty. In order to exclude this pathological case we introduce a modified rank
condition:

The matrix B ∈ R
m

n in (3.10) has rank n . (3.11)

As an inference of Lemma 3.1, at least n side conditions bkx = γk are
active in an extreme point x ∈ S and exactly n gradients bk of these side
conditions are linearly independent. An extreme point is degenerated if more
than n side conditions are active, i.e., if |A∗(x)| > n . Let x be extreme point
and k ∈ A(x), then we say briefly that “bk is in the basis of x ” since the rows
bk of B with k ∈ A(x) form a basis of the row-space Rn . But note that this
basis of rows of B is not determined uniquely in a degenerated corner.

The following geometrically obvious result is also called fundamental the-
orem of linear programming or sometimes corner theorem.

Theorem 3.6. (Existence) Let the feasible domain S be non-empty and let
the objective function x �→ ax be bounded on S. Then the problem (3.10) has
a solution being extreme point of S .

The proof in SUPPLEMENT\chap03a supplies also a method to find an initial
extreme point.

(c) The Projection Method starts in an extreme point of the feasible
domain S which has to be determined first (phase 1). Let x be any extreme
point then the gradient a of the objective function is projected onto the hyper-
planes of active side conditions and it is investigated which of these projections
leads to the optimal improvement (descend in a mimium problem) without
leaving the feasible domain. Subsequently, it is proceeded along the selected
edge until the next extreme point is attained. The procedure is then repeated
until an optimal extreme point is found. Accordingly, the iteration moves
permanently on the boundary of the feasible domain (polytope) which may
be rather expensive. Therefore “interior-point methods” have been developed
in more recent time which move to optimum from the interior of the feasible
domain (but need an interior point for start value by consequence).

Now we need a proper criterium for the optimal search direction at a given
extreme point. It is provided by the following Duality Theorem or Equivalence
Theorem of Farkas being displayed here in a more general form for later
applications.

Theorem 3.7. x∗ is solution of

min{ax ; Bx ≤ c , Cx = d} , a ∈ Rn , c ∈ R
m , d ∈ R

p , (3.12)

if and only if there exists a triple (x∗, y∗, z∗) ∈ R
n×Rm×Rp with the following

three properties:

(1◦) Bx∗ ≤ c , Cx∗ = d , primal feasibility,
(2◦) y∗B + z∗C = −a , y∗ ≥ 0 , dual feasibility,
(3◦) y∗(Bx∗ − c) = 0 , complement(ary slackness) condition .
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Proof. The theorem is of crucial importance in linear optimization therefore
the proof is displayed in full length:

Let (1◦) – (3◦) hold and let x ∈ S be arbitrary then

ax− ax∗
(2)
= −(y∗B + z∗C)x+ (y∗B + z∗C)x∗

(1),(3)
= −y∗Bx− z∗Cx+ y∗c+ z∗d

(1)
= y∗(c−Bx)

(1),(2)

≥ 0 .

Conversely, let (3.12) be fulfilled then x∗ is feasible hence (1◦). Let

B̃ =

⎡
⎣

B
−C
C

⎤
⎦ , c̃ =

⎡
⎣

c
−d
d

⎤
⎦ , p = c̃− B̃x∗

then p ≥ 0 . Let (x, �) be given such that q := � p − B̃x ≥ 0 , then Cx = 0 ,
and, for sufficiently small σ ≥ 0 ,

0 ≤ (1−σ�)p+σq = p+σ(q−� p) = p+σ� p−σB̃x−σ� p = c−B̃(x∗+σx) ≥ 0 .

Accordingly, ⎡
⎣

c−B(x∗ + σx)
−d+ C(x∗ + σx)
d− C(x∗ + σx)

⎤
⎦ ≥ 0 .

By this way it is shown that x∗ + σx is feasible for sufficiently small σ > 0 ,
therefore

a(x∗ + σx) ≥ ax∗ =⇒ ax ≥ 0 ,

since x∗ is optimal by assumption. Together

{
q ≥ 0 =⇒ ax ≥ 0

}
⇐⇒

{
[−B̃, p]

[
x
�

]
≥ 0 =⇒ [a, 0]

[
x
�

]
≥ 0

}
.

But this inference constitutes the right side of the Lemma 1.24 of Farkas

therefore the left side holds also and guarantees the existence of a vector
w∗T ≥ 0 such that [

aT

0

]
=
[
−B̃T

pT

]
w∗T . (3.13)

Writing w∗ = (y∗, z∗1 , z
∗
2) und z∗ = z∗2 − z∗1 , we obtain first a = −w∗B̃ or

a = −y∗B − z∗C =⇒ y∗B + z∗C = −a , y∗ ≥ 0 ,

hence condition (2◦). Furthermore, w∗p = 0 follows from (3.13). Substitution
of p = (c−Bx∗, −d+ Cx∗, d− Cx∗) yields

y∗(c−Bx∗) + z∗T
1 (Cx∗ − d) − z∗T

2 (Cx∗ − d) = 0 ,

which implies, finally, the complement condition (3◦) since Cx∗ = d . ��
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The vectors y∗ ∈ Rm and z∗ ∈ Rp represent the Lagrange multipliers of
the problems (3.12) by Theorem 3.2.

Let now x ∈ R
n be any initial extreme point then without loss of generality

A := A(x) = {�1, . . . , �n} , N := N (x) = {σ1, . . . , σm−n} ,

BA :=

⎡
⎢⎣
b�1

...
b�n

⎤
⎥⎦ , A := [BA]−1 =: [a1, . . . , an] ∈ R

n
n .

Then BA is regular by assumption and BAA = I, i.e., bjak = δj
k (Kro-

necker symbol). By this way, every column ak of A reveals to be parallel to
some edge of the feasible domain S or, in other words, ak is contained in the
intersection of n− 1 hyperplanes bjx = 0 , j = 1 : n , j �= k which are parallel
to the corresponding boundary surfaces bjx = γj of S :

BA is the basis or gradient matrix of the extreme point x where
the rows are gradients of active side conditions in x .

A is the edge matrix of the extreme point x where
the columns are edges of S pointing into direction of x .

(c1) Optimality Condition Let us return to the original problem (3.10).
By Theorem 3.7

x optimal ⇐⇒ −a = wBA , w = −aA ≥ 0 .

If the extreme point x is not optimal, there exist some wi < 0 and we have
to proceed from x in direction of an edge −aj to a (hopefully) better extreme
point x̃ = x − τaj , τ > 0 , such that the objective function decreases most
strongly. Because ax̃ ≡ a(x− τaj) = ax− τaaj = ax+ τwj , the optimal edge
j is given by

wj = min{wk} (< 0, else x optimal )
j = min argk min{wk} ∈ N

(3.14)

(double “min” because of possible ambiguity).
(c2) The Optimal Step Length τ results form the requirement that we

have to proceed along the chosen edge as far as possible without leaving the
feasible domain, namely until the next extreme point is reached or, in other
words, until one of side conditions being inactive hitherto becomes active:
Choose τ maximal such that

BN (x− τaj) ≤ cN or rN := BNx− cN ≤ τBNaj .

If BNaj ≥ 0 then τ > 0 may be chosen arbitrarily and the problem has no
solution. Otherwise the index i of the new active side condition is found by
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τ = mink∈N {ϕ(j, k) , ϕ(j, k) ≥ 0} , ϕ(j, k) :=
bkx− γk

bkaj

i = min argk mink∈N {ϕ(j, k) , ϕ(j, k) ≥ 0} ∈ N

. (3.15)

(c3) Change of Basis (Gauß-Jordan step of exchange) Now a basis of
the new corner x̃ has to be found whereby the pair (i, j) of (3.15) and (3.14)
is called pivot point. Recall

Index sets for x: A := A(x) = {�1, . . . , �n} ,
N := N (x) = {σ1, . . . , σm−n} ,

Requirement: �j resp. b�j out of basis, σi resp. bσi into basis,

Index set for x̃: Ã = {�1, . . . , �j−1, σi, �j+1, . . . , �n},
Ñ {σ1, . . . , σi−1, �j , σi+1, . . . , σm−n} .

(3.16)

We consider the following situation without loss of generality: Let B = [bi]ni=1

be arbitrary regular and the row bi of B shall be replaced by the row vector
d ∈ Rn . The new matrix B̃ reads simply

B̃ = B + ej(d− bj) = (I + ej(d− bj)B−1)B =: TB ,

where ej denotes the j-th column unit vector. But bjB−1 = ej (row vector)
hence the transformation matrix T reads:

T = I + ej(dB−1) − eje
j .

In this matrix the j-th row of the unit matrix I is replaced by b = [β1, . . . , βn]
:= dB−1 . The actual job however is to compute Ã = B̃−1 by means of the
matrix A = B−1 . To this end observe that B̃−1 = B−1T−1 = AT−1 and that
the inverse of T may be obtained in a simple way ,

T−1 = I − 1
βj
ejb+

1
βj
eje

j

where the pivot element βj is fortunately non-zero by the above choice of pivot
point (i, j) . Because

[
A− 1

βj
ajb

]

j

= 0 , (column j)

the exchange method (Gauß-Jordan step) reads in matrix form:

d = bσi , b = dA ,

G = A− 1
βj
ajb , [G]j =

1
βj
aj , Ã = G

. (3.17)
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(d) The frequently appearing problem min{ax ; B̃x ≤ c̃ , x ≥ 0} is equiv-
alent to the problem

min{ax ; Bx ≤ c}, B =
[
−I
B̃

]
, c =

[
0
c̃

]
. (3.18)

The point x = 0 is here already an extreme point and can always be chosen
for initial point, then A(0) = {1, . . . , n} , N (0) = {n + 1, . . . ,m} . Therefore
BA = −I , A = −I at the beginning and the initial matrix inversion is
dropped. The complete algorithm for the problem (3.18) may be written as
follows (to give an example):

START: x = 0 , A = −I , w = −aA = −a , r = −c .
WHILE NOT w ≥ 0

(1◦) Find pivot point (i, j):

j = min argk min{wk} , (w ≥ 0 =⇒ x optimal)
i = min argk min{ϕ(j, k) , ϕ(j, k) ≥ 0}

(i = [ ] =⇒ solution does not exist)

(2◦) Exchange step: b�j ←→ bσi by (3.17)
(3◦) Update: A , N and matrix A, compute

x = AcA , r = BNx− cN , w = −aA

END

The third step is handled automatically by the exchange method. The La-

grange multipliers y are found by yA = w , yN = 0 .
(e) Degenerated Corners (having more than n active side consitions)

appear frequently. Then cycles may arise theoretically where bases of the same
corner are mutually exchanged whereas the step length τ in (3.15) remains
zero. Such cycles occur very seldom in practice and may also be prevented by
“Bland’s rule”: Choose (i, j) by the rule

j = argk min{�k ∈ A(x) ; w�k < 0}
i = argk min{σk ∈ N (x) ; ϕ(j, k) = minl{ϕ(j, l) ; ϕ(j, l) ≥ 0}} .

The projection method is however slowed down by this device and this cri-
terium should be only applied if necessary.

(f) Multiple Solutions arise in case of a non-degenerated solution x∗ if
and only if the non-trivial component y∗A of the Lagrange multiplier contains
zeros in optimum. Without loss of generality let y∗A = (u∗, v∗) where v∗ = 0 ,
and let

BA =
[
C
D

]
, A = [BA]−1 = [P, Q]
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be decomposed correspondingly. Then CP = I , DQ = I , CQ = 0 , DP = 0 ,
and u∗C + 0 ·D = −a . Because CQ = 0 in optimum,

−ax∗ = y∗AB
Ax∗ = u∗Cx∗ = u∗C(x∗ −Qd)

where d denotes an arbitrary vector at present.
(1◦) Insert x∗ −Qd into the active side conditions:

C(x∗ −Qd) = Cx∗ = cC conditions not violated,
D(x∗ −Qd) = Dx∗ − d ≤ cD =⇒ 0 ≤ d but elsewhere free.

(2◦) Insert x∗ −Qd into the inactive side conditions:

BN (x∗ −Qd) ≤ cN =⇒ rN := BNx∗ − cN ≤ BNQd ,

where rN ≤ 0 is the residuum. Consequently, the general solution set reads:

{x∗ −Qd , d ≥ 0 , rN ≤ BNQd} ⊂ R
n .

(g) Equality Constraints are assigned easily to the algorithm. They
are made active once at the beginning and then handled as inequalities which
never are inactivated again and of which the Lagrange multipliers obey
no sign restriction. But the row numbers of the equality restrictions (linear
equations) must always be part of the set A of active indices throughout the
iteration.

(h) Sensitivity In optimum a = −w∗BA , w∗ = y∗A hence also

a x∗ = −w∗BAx∗ = −w∗BA[BA]−1cA = −w∗cA = −y∗AcA . (3.19)

This relation does hold for varying c as long as the index set N of inactive
conditions does not change. Let

x∗(c) = arg min{ax ; Bx ≤ c} ,

be a unique non-degenerated solution depending on the right side c of side
conditions then, by (3.19),

∂

∂γk
a x∗

∣∣∣
c=c∗

= ± y∗k(c∗) , k = 1 : m

where the positive sign holds in maximum problems . Thus the Lagrange

multiplier y∗k is the rate of change of the maximum yield in optimum relative to
the employed resource k . By this result, the Lagrange multipliers y∗k reveal
to be the well-known shadow prices of operational research: The profit a x∗

increases by y∗k units if the k-th resource is modified by one unit. Accordingly,
buying of some additional units of resource k makes sense if the prize per unit
is less than y∗k .
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(i) The Dual Problem Recalling the notations of (3.12) we introduce a
row-wise problem

max{−yc− zd ; yB + zC = −a , y ≥ 0} , y ∈ Rm , z ∈ Rp , (3.20)

and write it in the same column form as (3.12),

min{ãx̃ ; B̃x̃ ≤ c̃ , C̃x̃ = d̃} , (3.21)

then

x̃ = (y , z)T ∈ R
m+p , ã = (c , d)T ∈ Rm+p , B̃ = [−I, O] ∈ R

m
m+p ,

c̃ = 0 ∈ R
m , C̃ = [BT , CT ] ∈ R

n
m+p , d̃ = −aT ∈ R

n .

Applying the Equivalence Theorem 3.7 to (3.21), conditions (2◦) and (3◦)
read:

ỹ∗[−I, O] + z̃∗[BT , CT ] = −[cT , dT ] ∈ Rm+p , ỹ∗ ≥ 0 , ỹ∗y∗T = 0 ,

where ỹ∗ ∈ Rm and z̃∗ ∈ Rn are now the associated Lagrange multipliers.
Then, by separation,

−ỹ∗ + z̃∗BT = −cT ⇐⇒ ỹ∗T = Bz̃∗T + c ≥ 0 ,
z̃∗CT = −dT ⇐⇒ Cz̃∗T = −d ,
y∗ỹ∗T = 0 ⇐⇒ y∗(Bz̃∗T + c) = 0 .

(3.22)

Insert now z̃∗ = −x∗ , then the equations on the right side constitute the
conditions (1◦) and (3◦) for the primal problem (3.12), and, besides,

ax∗ = −y∗Bx∗ − z∗Cx∗ = −y∗c− z∗d .

Thus the both problems (3.12) and (3.20) reveal to be dual to each other ; the
latter being the classical simplex problem. The primal problem (P), (3.12), has
a solution x∗ if and only if the dual problem (D), (3.20), has a solution (y∗, z∗) ,
and the values of the respective objective functions coincide in optimum.
Moreover, the solution of (D) is composed by the Lagrange multipliers of
(P) whereas the solution of (P) is the negative second Lagrange multiplier
of (D). Noting that Bx∗ + ỹ∗ = c the first multiplier in (D) consists of the
slack variables of the inequalities in (P).

(j) The Tableau At the times of manual computation all relevant data
of the method have been assembled into an appropriate tableau and then
updated in each step of iteration. This tableau reads for the minimum problem
min{ax ; Bx ≤ c}:

P(x) = [pk
l] :=

⎡
⎣
A x
BNA rN

yA f

⎤
⎦ (3.23)
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where

x = AcA , rN = BNx− cN , yA = −aA , f = aAcA = −yAcA .

The first block row may be dropped if the index set A is always updated since
the solution x has to be computed only once at the end of the procedure. After
having found the pivot elements, algorithm (3.17) (exchange after Gauß-

Jordan) may be applied to the entire tableau at once (!) whereby it is updated
in a simple way. The tableau Q(x̃) = [qk

l] of the new corner x̃ is derived from
the old tableau P(x) by the well-known Gauß-Jordan step:

qi
j = 1/pi

j (pivot element) , qk
j = pk

j/p
i
j , k �= i (pivot column) ,

qi
l = −pi

l/p
i
j , l �= j (pivot row) , qk

l = pk
l − pk

jp
i
l/p

i
j (others).

If x∗ denotes the unique non-degenerate solution of the primal problem
min{a x ; Bx ≤ c} then y∗ is the unique non-degenerate solution of the dual
problem

max{−yc ; yB = a , y ≥ 0} , y ∈ Rm ,

and conversely. The tableau P̃(y) of the dual method may be written in a way
that in optimum P(x∗) = P̃(y∗) . In particular, the edge matrix A has the
same dimension in both problems if it is written appropriately. Therefore one
may say that the computational amount of work is by and large the same in
both the primal and the associated dual problem.

If x is a non-optimal corner of (P) then y in tableau P(x) is non-feasible
w.r.t. (D) and conversely, if y is a non-optimal corner of (D) then the point
x associated by (3.22) is non-feasible for (P). Consequently the solution x∗ of
(P) is approximated from outside the feasible domain if the problem (D) is
solved instead of (P). Likewise the solution y∗ of (D) is approximated outside
the feasible domain if the primal problem (P) is solved instead of (D). Similar
results hold also for the more general problems dealed with in Theorem 3.7.

A more detailed discussion of the primal-dual interdependencies, described
here briefly, is found in directory SUPPLEMENT\chap03b.

Example 3.3. f(x, y) := x+ y = max ! , 0 ≤ x ≤ 6 , 0 ≤ y ≤ 5 ,
3x+ 2y ≤ 20 , x+ 2y ≤ 12 (Figs. 3.7, 3.8).
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Figure 3.7. Basis of corners
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corners
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The present approach of linear optimization goes back to Ritter & Best

(Best). An extensive documentation with associated Matlab suite is found
in KAPITEL03\LOP.

3.4 Linear-Quadratic Problems

(a) Primal Projection Method Let A ∈ R
n

n be a symmetric positive
definite matrix and let B ∈ R

m
n rank-maximal with m ≤ n . Then the linear-

quadratic optimization problem (LQP) with equality constraints reads:

f(x) =
1
2
xTAx− aTx = min!

h(x) = Bx+ b = 0
. (3.24)

The problem is convex and the multiplier rule of Sect. 3.2 provides therefore
a necessary and sufficient condition for a regular solution x :

x feasible and ∃ z : ∇f(x) + z∇h(x) = 0 ∈ Rn .

Theorem 3.8. (LQP primal) Let the assumption of Lemma 1.2 be fulfilled
and let [

A BT

B 0

][
x0 − x∗

z∗

]
=
[
∇f(x0)T

h(x0)

]
(3.25)

for some x0 ∈ R then x∗ is solution of (3.24).

Proof. The first row of (3.25) is equivalent to

A(x0 − x∗) +BT z∗ = Ax0 − a ≡ ∇f(x0)T

or
0 = (−Ax∗ + a) +BT z∗ ≡ −∇f(x∗)T + ∇h(x∗)T z∗

which is the multipier rule for −z∗ instead of z∗. The second row yields h(x∗) =
0 because h linear. Therefore x∗ is feasible and optimal by Theorem 3.3 since
the problem is convex. ��

The optimal solution is found here in a single descend step x∗ = x0 − σd
with optimal step length σ = 1 . In more general linear-quadratic problems
(3.25) is repeatedly applied to the current active restrictions in the same way
as in linear problems.

Equalities are again active constraints being never inactivated and of which
the Lagrange multipliers are not sign-restricted. Therefore it suffices again
to consider only inequality constraints in the sequel. Note however that the
primal method needs a feasible point x0 at the beginning.
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Consider now the linear-quadratic problem with inequality restrictions,

f(x) =
1
2
xTAx− aTx = min! , x ∈ R

n

g(x) = Bx+ b ≥ 0 ∈ R
m

(3.26)

and let again S = {x ∈ R
n, g(x) ≥ 0} be the set of feasible points. The slight

modifications of the inequality constraints has only optical reasons and we
write correspondingly

L(x, y) = f(x) − yg(x) , g(x) ≥ 0

for the Lagrange function in order that the Lagrange multipliers y become
non-negative again. The set of Kuhn-Tucker points, i.e., the set of all points
satisfying the multiplier rule, then reads:

Ω = {x ∈ S , ∃ y ≥ 0 : ∇xL(x, y) = 0 , y g(x) = 0} .

As customary in this context, degenerated extreme points shall be excluded
in advance and, by consequence, the rank condition in Sect. 3.3 has to be
modified slightly:

In each point x of the iteration, let A(x) be the index set of
all active constraints in x and let the matrix
BA := BA(x) := [bi]i∈A(x) ≡ [∇gi(x)]i∈A(x) ∈ R

n
n be regular.

(3.27)

Theorem 3.9. Let the rank condition hold in a point x ∈ R
n , let H ∈ R

n
n

be an arbitrary symmetric matrix such that ∀ 0 �= u ∈ Ker(BA) : uTHu > 0,
and let (d , yA) be a solution of the linear system (A := A(x))

[
H [BA]T

BA 0

][
d
yA

]
=
[
∇f(x)T

0

]
. (3.28)

Then x is Kuhn-Tucker point if and only if x feasible and d = 0 as well as
yA ≥ 0 .

Proof. The system (3.28) has a unique solution by Lemma 1.2. If x is a solution
of (3.26) hence Kuhn-Tucker point then the multiplier rule does hold and
(3.28) has a solution w with the named properties. On the other side, let x
be feasible and let the system (3.28) have a solution where d = 0 and yA ≥ 0
then the multiplier rule is fulfilled if the remaining components of y, namely
yN , are set equal to zero. Thus x is a Kuhn-Tucker point. ��

Theorem 3.9 represents the kernel of the algorithms plgp.m and dlqp.m
of quadratic programming which on their side constitute the kernel of the
nonlinear gradient projection method gp.m resp. of the penalty method sqp.m.
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All these methods work by using the gradient of active constraints which have
to be selected in each step by means of the Lagrange multipliers in a way
that a descend to the minimum takes place altogether. The speed of the
method is heavily influenced by a proper choice of the matrix H but here
we have to refer to the respective literature. In most simple case H = I is
chosen which corresponds to the simple method of steepest descend with all
its drawbacks. But, on the other side, different choices of H destroy normally
a possible sparsity of the system (3.28).

(b) The Algorithm plqp.m for (3.24):

START: Find a feasible x such that BA regular, let yA �≥ 0 arbitrary,
yN = 0 .
WHILE NOT yA ≥ 0
(1◦) Get (d, yA) by solving the linear system (3.28).
By Theorem 3.8, x̃ = x− d is global minimum of f on the set

M := {u ∈ R
n, gA(x)(u) = 0} .

(2◦) If d = 0 and yi := min{yk , k ∈ A} < 0 , inactivate gi:
set A(x) := A(x)\{i} . Repeat step 1.
(3◦) If d �= 0 then find optimal step length for descend direction −d :

σ := min
{
ϕ(k) > 0 , ϕ(k) =

gk(x)
bkd

> 0 , k /∈ A(x)
}
,

j := min argk min{ϕ(k) > 0 , k /∈ A(x)}

σ is the maximum feasible step length; if σ does not exist, set σ = 1 .
Set x := x− σd and A(x) := A(x) ∪ {j} .
END

Lemma 3.2. The direction d in (3.28) is non-zero after inactivation of an
active constraint hence actually f(x− σd) < f(x) .

Proof in SUPPLEMENT\chap03c.
Cycles cannot arise in this algorithm under the regularity condition that

BA is always rank-maximal. At least in every second step d �= 0 by Lemma 3.2
and a genuine descend takes place. Therefore also the index set A does change
in every step without repeating. Since there is only a finite number of subsets
of the total index set, the algorithm breaks off sometime. A feasible initial
point x0 may be found by the procedure described in the proof of Theorem
3.6.

(c) Dual Projection Method In the same way as above, equality con-
straints are handled here as active inequality constraints never being inac-
tivated if once activated, and the corresponding Lagrange multipliers are
not sign-restricted again. If the algorithm breaks off, all equality constraints
must be active otherwise the problem has no solution. The ingenious method
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of (Goldfarb) presented here plays a crucial role in sequential quadratic pro-
gramming discussed in next section. Mainly it allows to start from an arbitrary,
not necessarily feasible point. But, on the other side, the solution is approxi-
mated from outside the feasible domain in normal case such that the obtained
numerical result does not satisfy the constraints exactly.

We use the same notations as in (a). By Sect. 3.6(d) the minimum problem
is equivalent to the Lagrange problem

Find (x∗, y∗) ∈ R
n × R

m such that

L(x∗, y∗) = max y≥0 infx

{
1
2
xTAx− aTx− yT (Bx+ b)

} (3.29)

where we have only a simple sign restriction as inequality constraint. Of course
the problem is convex as before hence the multiplier rule is sufficient for a
solution. Starting from the absolute minimum x = A−1a of the objective
function in (3.24), f(x) is magnified until the multiplier rule is satisfied or, in
other words, until the iterated point x reaches the feasible domain (as far as
possible).

Notations and Conventions:

(1◦) gi(x) > 0 =⇒ yi = 0 .
(2◦) K := {1, . . . ,m} und J ⊂ K index sets; at beginning mostly
J = ∅ .
(3◦) The problem

{f(x) ; gj(x) := bjx+ βj ≥ 0 , j ∈ J } = min!

is briefly denoted by LQ(J ).
(4◦) (x,B) is called solution pair of LQ(J ) if x is solution of LQ(J )
and gj(x) = 0 for all j ∈ B ⊂ J as well as BB = [∇gj(x)]j∈B has
maximum row-rank.

Then always B ⊂ A(x) but not necessarily A(x) ⊂ J . Conversely, if (4◦)
holds for some (x,B) then there exists an index set J ⊃ B such that (x,B)
is solution pair of LQ(J ); the index set J however plays a minor role below.
Now we obtain at once the following intermediate result by (4◦) and Theorem
3.8:

Let (d, yB) be solution of
[
H [BB]T

BB O

][
d
yB

]
=
[

∇f(x)T

0 (≡ gB(x))

]
,

let yB ≥ 0 and gB(x) = 0. Then (x+d,B) is a solution pair of LQ(B)
and solution of LQ(J ) for all J such that B ⊂ J and gj(x) ≥ 0 , j ∈
J .
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(H = I in the Matlab suite.) Therefore S(J ) := {x ∈ R
n, gj(x) ≥ 0 ,

j ∈ J } is the set of feasible points for LQ(B).
After these preliminaries, the algorithm dlqp.m for (3.24) reads roughly:

START: x = A−1a = arg min f(x) . Let a solution pair (x,B)
(possibly B = ∅) be specified =⇒ ∃ J where B ⊂ J .
WHILE NOT g(x) ≥ 0
(1◦) Choose p such that gp(x) < 0 , i.e. p /∈ J .
(2◦) If LQ(B ∪ {p}) unsolvable then STOP,
((3.26) unsolvable, S = ∅) .
(3◦) Else: Find new solution pair (x̃ , B̃ ∪ {p}) such
that B̃ ⊂ B and f(x̃) > f(x) .
Set (x , B) := (x̃ , B̃ ∪ {p}) (also B = B̃ (!)).
END

However, in activation of a further restriction with index p /∈ B , some or even
all conditions of B may become infeasible! The latter case implies a complete
re-start of the procedure in practice with different initial value.

A more detailed description of the method dlqp.m is found in
SUPPLEMENT\chap03g.

Example 3.4.
f(x) = 6x1 + 2(x2

1 − x1x2 + x2
2) = min!

x1 ≥ 0 , x2 ≥ 0 , x1 + x2 ≥ 2 .

For solving with the dual method, the absolute minimum x0 = [−2, −1] is
taken for initial vector where all three side conditions are inactive. In the first
step, the most strongly violated condition is activated being the condition
with index

i = min argk min{gk(x0)} .
In Figure 3.9 however all conditions g1 , g2 , g3 are taken for first condition
one after the other. The different iterational sequences then are

Path 1: x0 −→ x1 −→ x2 −→ x3

Path 2: x0 −→ x4 −→ x5 −→ x3

Path 3: x0 −→ x3
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Figure 3.9. Example 3.4
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Example 3.5. Solve by the dual method {f(x) , g(x) ≥ 0} = min! where

f(x) =
1
2
(x2

1 + x2
2) + 10x1 + 2x2

g1(x) = x1 + x2

g2(x) = 3 − x2

g3(x) = −x1 − x2 + 5
g4(x) = x1 − x2 + 2
g5(x) = 5 − x1

g6(x) = x2 + 1
g7(x) = x1 + 2x2

g8(x) = x1 − 2x2 + 4
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Figure 3.10. Example 3.5

References: (Goldfarb), (Spellucci).

3.5 Nonlinear Optimization

We consider the general nonlinear optimization problem

{f(x) ; x ∈ R
n , g(x) ≥ 0 ∈ R

m , h(x) = 0 ∈ R
p} = min! (3.30)

and use the same notations and conventions as in the preceding section. In
particular, L(x, y, z) = f(x) − y g(x) + z h(x) is the Lagrange function,
A(x) is the index set of all active constraints, and the rank condition (3.27)
is supposed to hold in each point x during iteration.

(a) The Gradient Projection Method for (3.30) runs by and large as in
the linear-quadratic case but the gradients of objective function and side con-
ditions now depend on x which makes of course some modifications necessary.
Linear equations h(x) = 0 are handled without problems if one proceeds in
the same way as before. But nonlinear equations may lead to some difficulties
since the method works only with points of the feasible domain. Above all, a
feasible initial vector has to be found and afterwards equalities h(x) = 0 ∈ R

p

must always remain active during iteration. In the sequel, equalities are han-
dled again as inequalities never being inactivated and, by consequence, only
inequality restrictions are studied as in the preceding section.

(b) In a Typical Iteration Step the linear system (3.28),
[
H [BA]T

BA 0

][
d
yA

]
=
[
∇f(x)T

0

]
, (3.31)

has to be solved. The computational speed of the method is again controlled
by the choice of the symmetric, positive definite matrix H where the unit
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matrix is chosen for H in the most simple case. In convex problems, the
choice H = ∇2

xL(x, y, z) leads to asymptotic quadratic convergence since the
method then resembles Newton’s method. But the evaluation of this matrix,
namely the Hessian of L relative to the variable x in each step is rather
cumbersome. An acceptable compromise between the both extremals H = I
and H = ∇2

xL(x, y, z) may be an application of the BFGS-method of Sect. 2.1
for updating of H . Observe however that a possible sparsity of H is destroyed
in all cases where H �= I .

In Algorithm plqp.m, a condition gi(x), i ∈ A(x) , selected for inactivation
in (2◦) , is actually inactivated if d = 0. This rule does no longer hold in the
nonlinear case. A selected condition is also inactivated in case d �= 0 if this
action is successful. This means that the angle between the descend direction
d and the local optimal direction ∇f(x) is not too large or, more precisely,

∇f(x) d ≥ γ |yi| (3.32)

must be fulfilled with a suitable constant γ > 0 , say γ = 1/2 . The involved
Lagrange multipliers are taken from (3.31) numerically. In case condition
(3.32) is violated, the iteration is repeated with same d but without inactiva-
tion. Also a second modification is necessary to prevent permanent jamming
or zigzagging between different active side conditions. The inactivation of an
active side condition is prohibited as long as A(x̃) �⊂ A(x) until the first time
A(x̃) ⊂ A(x) or d = 0 . Earlier “proofs” of convergence did not regard this
necessary condition. See also algorithm gp.m in KAPITEL03\SECTION_5.

(c) Restoration Suppose that the (possibly local) absolute minimum of
the objective function f resp. the stationary point lies outside or on the bound-
ary of the feasible domain. If the initial point lies in interior then iteration
moves first to the boundary. In linear-quadratic problems, iteration remains
on the boundary of the polytope if once arrived there. In nonlinear problems
the situation is entirely different. Iteration may return into the interior by the
above two modifications. On the other side, the straight search direction d
leads to the exterior in curvilinear boundaries (in normal case). But all points
of iteration must be feasible in this method therefore the new point x̂ must
be moved back onto the boundary of the feasible domain by a suitable pro-
jection. Under unfavorable geometric constellations this pull back does not
succeed in a single step and the direction d has perhaps to shortened several
times until the projection meets the boundary really. This expensive opera-
tion called “restoration” may slow down the iteration considerably and may
even deteriorate exactness in some cases.
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Figure 3.11. Restoration

As mentioned repeatedly, the gradient method needs a feasible point at
beginning which is frequently difficult to find. Then restoration ensures in each
step that iteration moves back to the boundary of the feasible domain. This
is but the shortcoming of the method but warrants on the other side that the
approximative solution regards all restrictions. Penalty methods are able to
start with an arbitrary point (at least theoretically) but in normal case the
solution is approached from outside the feasible domain. Consequently such
methods are not applicable in a problem, say, with the objective function

f(x) =
10∑

i=1

xi

(
ci + ln

[
xi/

10∑
i=1

xi
])

and side condition x ≥ 0 , cf. (Himmelblau), p. 395.
(d) Penalty Methods In this iterative methods, a stationary point of

the Lagrange function is no longer the aim of desire but a penalty function
is introduced which prosecutes violations of feasibility. From a formal point of
view the penalty function resembles the lagrange-function to some degree
but the penalty costs play an entire different role (geometrically and physi-
cally) by contrast with the former Lagrange multipliers. Among the various
possibilities we choose here the penalty function after (Zangwill),

P (x, y, z) = f(x) − yg(x)− + z|h(x)| , [gi(x)]− = min{gi(x) , 0}
g(x)− =

[
[gi(x)]−

]m
i=1

, |h(x)| =
[
|hj(x)|

]p
j=1

.

This scalar function is but only one-sided differentiable at some points but
it is exact : P (x, y, z) = f(x) does hold for all feasible x. The first, negative
property may be got under control whereas the second, positive property
entails crucial advantages numerically because of sharper modelling near an
optimum point. Also it is essential in applying this method that the penalty
costs y and z, once specified, remain not constant during iteration but vary in
adaption to the local geometric situation in the individual step of iteration.

In the following two illustrations, Zangwill’ function is compared with
the likewise exact classical (differentiable) penalty function

Q(x, y, z) = f(x) +
m∑

i=1

yi max{0,−gi(x)}2 +
p∑

i=1

zihi(x)2 .
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Example 3.6. (Spellucci), p. 456.

f(x) = x(x− 1)(x− 3)(x− 5)/8 = min!
g(x) = x(4 − x) ≥ 0,

f

g

Figure 3.12. Example 3.6
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Figure 3.13. Example 3.6, scaled

Example 3.7. Same as Example 3.9 below.
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Figure 3.14. Example 3.7, β = 5,
Zangwill penalty function
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Figure 3.15. Example 3.7, β = 5,
classic penalty function

Notations: (1◦)

e = [1, . . . , 1]T ∈ R
m

A(x) = {i ∈ {1, . . . ,m} , gi(x) = 0}
B(x) = {i ∈ {1, . . . ,m} , gi(x) > 0}
V(x) = {i ∈ {1, . . . ,m} , gi(x) < 0} (violated constraints)
S(τ) = {x ∈ R

n , g(x) ≥ −τ e , |h(x)| ≤ τ e} , τ ≥ 0
hence S(0) = S , S(∞) = R

n.
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(2◦) The “augmented Mangasarian-Fromowitz (constraint) qualification”
(AMF) is used in this method for regularity condition:

∃ τ0 > 0 ∀ x ∈ S(τ0) ∃ v ∈ R
n :

∇h(x)v = 0 , ∀ i ∈ A(x) ∪ V(x) : ∇g(x)iv > 0 , ∇h(x) is row-regular.
(3.33)

(3◦) Let x be fixed and H ∈ R
n

n a symmetric, positive definite matrix. The
following linear-quadratic problem for u ∈ R

n is applied below and called
briefly QP(x,H):

f(u;x) := f(x) + ∇f(x)(u− x) +
1
2
(u− x)TH(u− x)

g(u;x) := g(x) + ∇g(x)(u− x) ≥ 0

h(u;x) := h(x) + ∇h(x)(u− x) .

(4◦) Slater Condition for QP(x,H):

∃ u ∈ R
n : g(x) + ∇g(x)(u− x) > 0 , h(x) + ∇h(x)(u− x) = 0 .

The essential properties of the penalty function are summarized in the fol-
lowing theorem:

Theorem 3.10. (1◦) Let AMF hold for some τ0 > 0 and let S(τ0) be com-
pact. Then the penalty function P (x, y, z) has no local minimum point in the
complementary set S(τ0)\S .
(2◦) Let AMF hold for some τ0 > 0 and let x∗ be a strong local minimum of
the objective function f then x∗ is a local minimum of P (x, y, z) if y and z
are sufficiently large.
(3◦) Let the Slater condition hold for QP(x,H) then there are penalty vectors
y > 0 and z > 0 such that

δ+P ((x; d), y, z) < 0 (3.34)

where u∗ is the unique solution of QP(x,H) , d = u∗ −x and δ+P ((x; d), y, z)
denotes the one-sided directional derivative of P w.r.t. x in direction of d .
(4◦) Let u∗ be solution of QP(x,H) and d = u∗ − x then, for 0 ≤ σ ≤ 1 ,

‖h(x+ σ d)‖1 = (1 − σ)‖h(x)‖1 + O(σ2)
‖g(x+ σ d)−‖1 = (1 − σ)‖g(x)−‖1 + O(σ2) .

Proof see e.g. (Spellucci).
The last assertion says that the infeasibility of the equality as well as the

inequality restrictions decreases for sufficiently small σ > 0 .
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(e) The Algorithm sqp.m for (3.30):

PARAMETER: ε > 0 , δ , α ∈ (0, 1) , e.g. δ = 0.1 , α = 0.5 ,
τ0 > 0 , d = e , tol .
START: Choose start vector x0 ∈ S(τ0) , y = 0 , z = 0 .
WHILE NOT |σ d| < tol
(1◦) Choose H symmetric positive definite, e.g. H = I ;
Solve QP(x,H) completely with solution, say, (u , ỹ , z̃) , set d =
u− x , ỹN = 0
(2◦) Set for all i

yi := ỹi + 2ε if ỹi + ε ≥ yi else unchanged
zi := |z̃i| + 2ε if |z̃i| + ε ≥ zi else unchanged.

(3◦) Find step length σ > 0 by repeated halving such that σ maximal
and

P (x, y, z)−P (x+σ d, y, z) ≥ σδ
[
dTHd+ ε‖g(x)−‖1 + ε‖h(x)‖1

]
=: η

as well as — if x ∈ S(τ0)\S(τ0/2) —

‖g(x)−‖1 − ‖g(x+ σd)−‖1 + ‖h(x)‖1 − ‖h(x+ σd)‖1

≥ σδ [‖g(x)−‖1 + ‖h(x)‖1]

(4◦) Set x := x+ σ d
END

(f) Supplements
(f1) In the algorithm of (e), the penalty parameters become unnecessar-
ily large near the solution with bad effect on numerical stability. Therefore
(Spellucci) has proposed a modification of (2◦) for calculation of these weights
where however the initial vector x0 is involved; see SUPPLEMENT\chap03c and
the algorithm sqp.m in KAPITEL03\SECTION_5. By this way the penalties y
and z may be reduced again during iteratin and altogether they are more
properly adapted to geometric constellation of the individual step of itera-
tion.

(f2) If the problem is non-convex but well-behaved, the feasible set of
the quadratic subproblem QP(x,H) may be empty. In this case the modified
problem QP(x,H, ξ)

∇f(x)d+
1
2
dTHd = min!

ξ g(x)A(x)∪V(x) + ∇g(x)A(x)∪V(x)d ≥ 0

g(x)B(x) + ∇g(x)B(x)d ≥ 0

ξ h(x) + ∇h(x)d = 0

(3.35)
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has to be solved instead. Hereby the parameter ξ ∈ (0, 1] has to be diminuished
repeatedly until the resulting problem (3.35) enjoys a non-empty feasible set
and thus a solution. Such a ξ exists always under assumption AMF. In less
well-behaved non-convex problems, this parameter ξ may become too small
during the repeated search for a feasible domain then the entire procedure is
overcharged and breaks off.

(f3) The speed of convergence may be improved by a proper choice of
the matrix H also in this method and, with some restrictions, also the at-
tainable exactness. The optimal choice of H = ∇2

xL(x, y, z) is however too
time-consuming hence the BFGS-method is preferred for updating. In non-
convex case some modification of the BFGS-method may be lead to a certain
improvement, too. Note however once more that both modifications destroy
the sparsity of the matrix H which entails again an increasement of compu-
tational effort especially in large systems.

(f4) If convergence becomes too slow near the solution, correctures of
second order x̃ = x + σd + σ2q may provide some improvement (Maratos

effect).
(g) Examples for gradient method (GPM) and penalty method (SQP).

Example 3.8. (Spellucci), p. 397, p. 457. a(x, y) = (x + y − 3.5)2 , b(x, y) =
4(y − x+ 0.5)2 .

f1(x, y) =
100

a(x, y) + b(x, y)
= min! , (x∗, y∗) = (−1, 0) ,

f2(x, y) = (x− y)2 + (y − 1)2 = min! , (x∗, y∗) = (0.546, 0.702) ,
1 − x2 + y ≥ 0 , 1 − x2 − y ≥ 0 .
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Figure 3.16. Ex. 3.8, f1 , SQP
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Figure 3.17. Ex. 3.8, f2 , GPM and SQP

Example 3.9.

f1(x, y) = (x− 8)2/4 + (y − 1)2 = min! , (x∗, y∗) = (3.45, 0.19) .
f2(x, y) = (x− 8)2/4 + (y − 3)2 = min! , (x∗, y∗) = (2.43, 1.27) .
25 − (x− 4)2 − y2 ≥ 0 , 30 − (x+ 1)2 − (y + 3)2 ≥ 0
30 − (x+ 1)2 − (y − 3)2 ≥ 0
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Figure 3.18. Ex. 3.9, f1 , GPM and SQP
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Figure 3.19. Ex. 3.9, f2 , SQP
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Figure 3.20. Ex. 3.9, f2 , GPM,
γ = 0.5
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Figure 3.21. Ex. 3.9, f2 , GPM,
γ = 0.1

γ denotes the parameter of inactivation in (3.32)

Up today the numerical approach of nonlinear optimization problems is not so
elaborated as e.g. that of linear-quadratic problems. In any case there remains
some imponderableness since the systems may be very large and the geomet-
ric constellations may be arbitrary complicated. An adaption to the specific
problem may provide some improvement or also the gradients are no longer
computed analytically but approximated by discretization (Matlab program
available). The SQP-method needs a careful adjusting of the various param-
eters for acceptable results and convergence is only verified for a minor class
of problems. In others one has to be content with a “good” result improving
the nominal solution whereas the optimal solution remains unreached. This
remark holds in particular for non-convex problems which appear frequently
in technical applications and may have several local solutions.

The algorithms gp.m and sqp.m presented in KAPITEL03 have admittedly
some model character. Especially the second procedure may still be improved
by applying some propositions dealed with in (Spellucci).
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3.6 A Brief on Lagrange Theory

Farkas theorem and the efficient dual method of quadratic programming
— being more genuinely a primal-dual method — show already that some
dual approach enters automatically into studies of optimization and control
problems. Saddlepoint problems appear not only in this context but also in
continuum theory. For instance the (weak) stationary Navier-Stokes equa-
tions have such a form, cf. Theorem 9.1, and in the treatment of solid bodies
they appear as so-called mixed methods which allow a higher flexibility in
numerical approach (Brezzi). Therefore we re-consider here once more the
features of Sect. 3.2 from a more general point of view.

(a) Formulation of the Problem Let X , Y , Z be real normed vector
spaces, let ∅ �= C ⊂ X be an arbitrary set being not necessarily open or a
subspace, and let ∅ �= K ⊂ Y be an order cone with dual cone Kd in dual
space Yd of Y, cf. Sect. 1.10. Further, let

f : C → R , g : C → Y , h : C → Z ,

be three mappings and consider the general minimum problem (MP)

{f(x) ; x ∈ C , −g(x) ∈ K , h(x) = 0} = min! (3.36)

with feasible set S = {x ∈ C , −g(x) ∈ K , h(x) = 0} and Lagrange function

L : C × Yd × Zd � (x, y, z) �→ L(x, y, z) = f(x) ± y ◦ g(x) + z ◦ h(x) ∈ R .

The sign of y is positive in the minimum problem and negative in the cor-
responding maximum problem; cf. Sect. 3.2(b). The problem (3.36) is called
convex again if C , f convex, g K-convex, and h affine linear. For −g(x) ∈ K
we write briefly g(x) ≤ 0 and observe that, in the present situation, the La-

grange multipliers y and z are elements of the dual spaces Yd and Zd , resp.
may be canonically identified with elements of these spaces. Altogether we are
faced with the following constellation:

mapping: f g h
range: R Y Z
order cone: R≥0 K L = {0}
dual elements: � ∈ R y ∈ Yd z ∈ Zd

.

The equality restrictions h(x) = 0 may not be replaced by double inequalities
because we have to suppose sometimes that the interior int(K) of K is not
empty. In slight generalization, the restrictions differ from each other by the
two order cones K and L according to

g(x)
K
≤ 0 , int(K) �= ∅ , h(x)

L
≤ 0 , int(L) = ∅ .
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The fundamental Theorem 3.2 now reads:

Theorem 3.11. Let (x∗, y∗, z∗) ∈ C × Kd × Zd be a triple such that

x∗ = arg
min
max

{f(x∗) ± y∗ ◦ g(x∗) + z∗ ◦ h(x∗) , x ∈ C} , (3.37)

and let x∗ ∈ S as well as y∗ ◦ g(x∗) = 0 . Then

x∗ = arg
min
max

{f(x) , x ∈ C , g(x) ≤ 0 , h(x) = 0} .

(b) Lagrange Problem Originally, Lagrange multipliers have been
introduced as proportionality constants of artificial constraint forces in the
equation of motion (Newton’s axiom) and nobody has had some reason to
doubt their existence. Later on problems became more difficult and applicants
were interested whether a solution exists at all when the computer supplies
only some nonsense. So the proof of existence of Lagrange multipliers be-
came more and more important and takes today a large place in mathematical
theory of optimization and control. The alternative notation “costate” (vari-
ables) demonstrates already their importance here. Different attempts have
been made to create a unified theory for both types of constraints, inequalities
and equalities, together but the latter cause some difficulties here because the
associated trival order cone L has no interior. The general impression remains
somewhat inlucid up today certainly also since regularity conditions can be
ordered just as little hierarchically in infinite-dimensional problems as in finite-
dimensional problems; cf. Sect. 3.2(b). For problems with equality constraints
only, (Luenberger) has proved the existence of Lagrange multipliers z in a
different way by a simple application of the generalized Range Theorem; see
Theorem 1.19. Separation theorems are not used in Luenberger’s proof but
the likewise deep result of Theorem 1.23 on generalized inverse functions.

Let us first summarize some properties of the Lagrange function:

Lemma 3.3. (1◦) x ∈ S =⇒ f(x) = L(x, 0, 0) = max(y,z)∈Kd×Zd
L(x, y, z) .

(2◦) Let the order cone K in Y be closed, let x ∈ C and suppose

∃ (y∗, z∗) ∈ Kd × Zd : L(x, y∗, z∗) = max(y,z)∈Kd×Zd
L(x, y, z) ,

then x ∈ S and y∗ ◦ g(x) = 0 .
(3◦) Let the cone K be closed and x ∈ C then
S = ∅ ⇐⇒ sup(y,z)∈Kd×Zd

L(x, y, z) = ∞ .

By these three results we obtain directly

Theorem 3.12. (Lagrange problem sufficient) Let the order cone K ⊂ Y
be closed and let
(x∗, y∗, z∗) ∈ C × Kd × Zd be a triple such that

(x∗, y∗, z∗) = arg minx∈C sup(y,z)∈Kd×Zd
L(x, y, z) , (3.38)

then x∗ is solution of the minimum problem (3.36).
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sup(y,z)∈Kd×Zd
L(x, y, z) is not necessarily attained for all x ∈ C but for x∗ ∈ C

by assumption.

Corollary 3.1. The minimum problem (MP) (3.36) and the Lagrange prob-
lem (LP) (3.38) are equivalent, i.e., if x∗ is a solution of (MP) and (x̃∗, y∗, z∗)
is a solution of (LP) then x∗ = x̃∗ .

The inversion of Theorem 3.12, namely the question for existence of La-

grange multipliers, is more difficult to answer as in all proofs of existence.

Definition 3.2. (Slater Condition) Let X , Y be real normed vector spaces,
let C ⊂ X convex,
K ⊂ Y a positive cone with non-empty interior, and g : C → Y K-convex.
Then g satisfies the Slater condition if

∃ x ∈ C : g(x) < 0 , h(x) = 0 ,

i.e. {x ∈ C , g(x) < 0} �= ∅ . in the case where h = 0 .

K

A
g(C)

g(C)

Figure 3.22. Slater condition: A �= ∅

Theorem 3.13. (F. John, Existence) (1◦) Let X , Y be normed vector spaces
and let K ⊂ Y be an order cone with non-empty interior, int(K) �= ∅.
(2◦) Let x∗ be a solution of the convex minimum problem {f(x) ; x ∈
C , g(x) ≤ 0} , i.e. C ⊂ X convex, f : C → R convex and g : C → Y K-
convex.
(3◦) ∃ x ∈ C ∀ 0 �= y ∈ Kd : y ◦ g(x) < 0 .
Then there exists a 0 �= y∗ ∈ Kd such that

x∗ = arg min{f(x) + y∗ ◦ g(x) , x ∈ C} .

Assumption (3◦) is a slightly weakened Slater condition. The proof uses the
Separation Theorem 1.24 as essential tool; see SUPPLEMENT\chap03d. Note
also that no assumptions at all occur concerning smoothness of the data.

F. John’s theorem can be generalized to mixed problem with additional
equality restrictions but observe that h(x) = 0 is convex if and only h is affine
linear. Also some additional regularity conditions are necessary if we maintain
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the requirement that the Lagrange multipliers are elements of the topological
dual spaces and not only elements of the algebraic dual spaces (Kirsch). We
present here two results of (Kosmol) which display the general situation rather
completely.

Definition 3.3. Let X be a normed vector space and C,D ⊂ X .
(1◦) aff(C) is the smallest affine subspace of X which contains C , C ⊂ aff(C) .
(2◦) Let x ∈ C ∩ D then x is interior point of C relative to D if there exists a
neighborhood of x in D which is entirely contained in C :

∃ ε > 0, ∀ u ∈ D : ‖u− x‖ ≤ ε =⇒ u ∈ C.

(3◦) relint(C) is the set of interior points of C relative to aff(C).

Let e.g. h : C → Z affine linear then relint(h(C)) �= ∅, if Z finite-dimensional
or relint(C) �= ∅ .

Theorem 3.14. (Existence) Let x∗ be solution of the convex minimum prob-
lem

{f(x) ; x ∈ C , g(x) ≤ 0 , h(x) = 0} = min!, (3.39)

(h affine linear), let G = {x ∈ C , g(x) ≤ 0}. Suppose that
(1◦) int(K) �= ∅ , (2◦) h : C → Z = R

m finite-dimensional,
(3◦)(i) ∃ x ∈ C : g(x) < 0 and 0 ∈ relint(h(G)) or
(3◦)(ii) 0 ∈ relint(h(C)) and ∃ x ∈ C : g(x) ≤ 0 , h(x) = 0 .
Then there exists a pair (y∗, z∗) ∈ Kd × Zd with y∗ �= 0 such that

x∗ = min{f(x) + y∗ ◦ g(x) + z∗ ◦ h(x), x ∈ C}

and y∗ ◦ g(x∗) = 0.

This result together with Lemma 3.3 provides an inversion of Theorem 3.12:

Corollary 3.2. (Lagrange problem necessary) Adopt the assumptions of
Theorem 3.14, and let x∗ be a solution of the minimum problem (3.39). Then
there exists

(x∗, y∗, z∗) = arg minx∈C sup
(y,z)∈Kd×Zd

L(x, y, z)

and y∗ ◦ g(x∗) = 0 .

The restriction that the image space Z of h is finite-dimensional can be can-
celled by involving some fundamental results of functional analysis but then
continuity comes into the play and C = X must be the full vector space.

Theorem 3.15. (Existence) Let X ,Z be Banach spaces and Y is normed
with order cone K ⊂ Y . Let x∗ be solution of the convex minimum problem

{f(x) ; x ∈ C , g(x) ≤ 0 , h(x) = 0 , r(x) = 0} = min!,
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where f : X → R is convex, g : X → Y is K-convex, h : X → R
m is affine

linear, r : X → Z is affine linear and continuous, and r(X ) closed. Suppose
also that int(K) �= ∅ and ∃ x ∈ X : g(x) < 0 , h(x) = 0 , r(x) = 0 .

Then there exists a triple (y∗, z∗, w∗) ∈ Kd × Rm × Zd with y∗ �= 0 such
that

x∗ = arg min{f(x) + y∗ ◦ g(x) + z∗ ◦ h(x) + w∗ ◦ r(x), x ∈ X}

and y∗ ◦ g(x∗) = 0 .

The proofs of both theorems 3.14 and 3.15 use F. John’s theorem and Ei-

delheit’s theorem again, see (Kosmol) and SUPPLEMENT\chap03d. Of course
an analogous result to Corollary 3.2 does holds also w.r.t. Theorem 3.15.

(c) Saddlepoint Problems In the following both results, A , B denote
arbitrary sets and Φ : A × B � (x, y) �→ Φ(x, y) ∈ R is an arbitrary function.

Lemma 3.4.

sup y∈B inf x∈AΦ(x, y) ≤ inf x∈A sup y∈BΦ(x, y) .

A pair (x∗, y∗) ∈ A × B is called saddlepoint of Φ if

∀ x ∈ A ∀ y ∈ B : Φ(x∗, y) ≤ Φ(x∗, y∗) ≤ Φ(x, y∗) . (3.40)

Theorem 3.16. The function Φ has a saddlepoint in A × B if and only if

max y∈B inf x∈AΦ(x, y) = min x∈A sup y∈BΦ(x, y) . (3.41)

Note that e.g. “max” instead “sup” says that the supremum is attained actu-
ally. Note also that a saddlepoint (x∗, y∗) satisfies

max y∈B inf x∈AΦ(x, y) = Φ(x∗, y∗) = min x∈A sup y∈BΦ(x, y) ,

but not every point with this property must be a saddlepoint as the simple
example Φ : R

2 � (x, y) �→ Φ(x, y) = x · y shows.
Now a saddlepoint problem (SPP) is associated to the minimum problem

by means of the Lagrange function L :
Find a saddlepoint (x∗, y∗, z∗) ∈ C × Kd × Zd such that

∀ (x, y, z) ∈ C × Kd × Zd : L(x∗, y, z) ≤ L(x∗, y∗, z∗) ≤ L(x, y∗, z∗) .

(3.42)

Theorem 3.17. ((SPP) sufficient) Let the order cone K be closed. If
(x∗, y∗, z∗) is a saddlepoint hence solution of (3.42) then x∗ is minimum point
hence solution of (3.36).
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Figure 3.23. Image of Φ(x, y) = x · y

Proof. (1◦) The left inequality of (3.42) shows for z = z∗

y ◦ g(x∗) ≤ y∗ ◦ g(x∗) . (3.43)

For all y ∈ Kd we have y + y∗ ∈ Kd because Kd convex. Substituting y + y∗

for y in (3.43) we obtain ∀ y ∈ Kd : y ◦ g(x∗) ≤ 0 . By the Cone Corollary 1.21
then g(x∗) ≤ 0 and also y∗ ◦ g(x∗) ≤ 0 . Setting y = 0 in (3.43), y∗ ◦ g(x∗) ≥ 0
hence together y∗ ◦ g(x∗) = 0 .
(2◦) Setting y = y∗ in the left inequality of (3.42), (z− z∗) ◦ h(x∗) ≤ 0 . Then
h(x∗) = 0 since z − z∗ ∈ Zd arbitrary. Therefore x∗ is feasible.
(3◦) Using (1◦) and (2◦) we obtain by the right inequality of (3.42) for feasible
x∗

f(x∗) + 0 ≤ f(x) + y∗ ◦ g(x) ≤ f(x)

since y∗ ∈ Kd hence x∗ is a minimum point. ��
Theorem 3.18. ((SPP) necessary in convex problems) Adopt the assump-
tions of Theorem 3.14, and let x∗ be a solution of the minimum problem
(3.39). Then there exists a pair (0, 0) �= (y∗, z∗) ∈ Kd × Zd such that the
Lagrange function L(x, y, z) = f(x) + y ◦ g(x) + z ◦ h(x) has a saddlepoint
(x∗, y∗, z∗),

∀ (x, y, z) ∈ C × Kd × Zd : L(x∗, y, z) ≤ L(x∗, y∗, z∗) ≤ L(x, y∗, z∗)

and y∗ ◦ g(x∗) = 0.

Proof. Because of Theorem 3.14, only the left inequality has to be verified.
But it is equivalent to y ◦ g(x∗) ≤ y∗ ◦ g(x∗) = 0 and is thus true because
y ≥ 0 and g(x∗) ≤ 0. ��
An analogous result does hold also w.r.t Theorem 3.15. A direct consequence
of Theorem 3.16 is now

Corollary 3.3.

max y∈Kd
inf x∈CL(x, y) = min x∈C sup y∈Kd

L(x, y)

does hold if and only if the minimum problem (MP) has a saddlepoint.
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(d) Primal and Dual Problems By the results shown hitherto in this
section, three problems stand in mutually relation to each other:

(1◦) Minimum problem (MP): Find x∗ ∈ X such that

x∗ = arg min{f(x) , x ∈ C ⊂ X , g(x) ≤ 0 , h(x) = 0} . (3.44)

(2◦) Primal Lagrange problem (LP): Find a triple (x∗, y∗, z∗) ∈
X × Kd × Zd such that

L(x∗, y∗, z∗) = min x∈C sup (y,z)∈Kd×Zd
L(x, y, z) . (3.45)

(3◦) Dual Lagrange problem (DLP): Find a triple (x∗, y∗, z∗) ∈
X × Kd × Zd such that

L(x∗, y∗, z∗) = max (y,z)∈Kd×Zd
inf x∈CL(x, y, z) . (3.46)

We introduce the primal functional ϕ and the dual functional ψ :

ϕ : X � x �→ ϕ(x) := sup(y,z)∈Kd×Zd
L(x, y, z) ∈ R ∪ {∞} ,

ψ : Yd × Zd � (y, z) �→ ψ(y, z) := infx∈C L(x, y, z) ∈ R ∪ {∞} .

ϕ is convex and ψ is concave if the minimum prroblem is convex. Then by
(3.45) and (3.46) directly

(LP) : {ϕ(x) , x ∈ S} = min! , S = {x ∈ C , ϕ(x) < ∞} ,
(DLP) : {ψ(y, z) , (y, z) ∈ T } = max! ,

T = {(y, z) ∈ Kd × Zd , ψ(y, z) > −∞} ,
(3.47)

Theorem 3.19. (Weak Duality)
(1◦) Let x ∈ S and (y, z) ∈ T then ψ(y, z) ≤ ϕ(x) .
(2◦) Let x∗ , y∗ be feasible and ψ(y∗, z∗) = ϕ(x∗) then x∗ is solution of (LP)
and (y∗, z∗) is solution of (DLP).

Proof. Because x ∈ S and y ∈ Kd we have

ψ(y, z) ≤ f(x) + y ◦ g(x) + z ◦ h(x) ≤ f(x) ≤ ϕ(x) .

The rest is clear. ��
By this way, the solution of the dual problem is a lower bound of the

solution of the primal problem and the solution of the primal problem is an
upper bound of the solution of the dual problem. If

ψ(y∗, z∗) < f(x∗) = ϕ(x∗) ,

for the respective solutions of (MP) and (DLP) then one speaks of a dual-
ity gap. Additional assumptions become necessary to avoid duality gaps. For
instance such gaps do not occur if (MP) is linear or if a saddlepoint does exist.
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Summary (LP := Lagrange problem)
Problem 1:

x∗ = arg minx∈C{f(x) ; g(x) ≤ 0 , h(x) = 0} (minimum problem)
L(x, y, z) = f(x) + y ◦ g(x) + z ◦ h(x) (Lagrange function)

(x∗, y∗, z∗) = arg minx∈C supy≥0,z L(x, y, z) (primal LP)
(x∗, y∗, z∗) = arg maxy≥0,z infx∈C L(x, y, z) (dual LP)

Problem 2:

x∗ = arg maxx∈C{f(x) ; g(x) ≤ 0 , h(x) = 0} (maximum problem)
L(x, y, z) = f(x) − y ◦ g(x) + z ◦ h(x) (Lagrange function)

(x∗, y∗, z∗) = arg maxx∈C infy≥0,z L(x, y, z) (primal LP)
(x∗, y∗, z∗) = arg miny≥0,z supx∈C L(x, y, z) (dual LP)

When the transformation of (LP) into (MP) resp. of (LP) in the dual problem
(DLP) is not sufficiently transparent, the following result may supply some
additional information.

Lemma 3.5. Let the order cone K ⊂ Y be closed.
(1◦) For (LP)

Problem 1: S = {x ∈ C , supy≥0,z L(x, y, z) < ∞} ,
Problem 2: S = {x ∈ C , infy≥0,z L(x, y, z) > −∞} .

(2◦) For (DLP)

Problem 1: T = {(y, z) ∈ Kd × Zd , infx∈C L(x, y, z) > −∞} ,
Problem 2: T = {(y, z) ∈ Kd × Zd , supx∈C L(x, y, z) < ∞} .

(e) Geometric Interpretation Beside the analytic interpretation of the
primal-dual interdependencies by means of saddlepoints there is also a geo-
metric version due to (F.John) where we confine ourselves to inequalities for
simplicity. Let Γ = {u ∈ Y , ∃ x ∈ C : g(x) ≤ u} ,

ω : Γ � u �→ ω(u) = inf{f(x) ; x ∈ C , g(x) ≤ u} ∈ R ∪ {∞}

and
Ax = {(u , �) ∈ Y × R , g(x) ≤ u , f(x) ≤ �}
A = {(u, �) ∈ Y × R , ∃ x ∈ C : g(x) ≤ u , f(x) ≤ �}

= {(g(x) + k, f(x) + σ) , x ∈ C , k ∈ K , σ ≥ 0} ,
B = {(u, σ) ∈ Y × R , u ≤ 0 , σ ≤ ω(0)} ,

Then in particular (g(x) , f(x)) ∈ Ax and moreover

A =
⋃
x∈C

Ax = {(u , �) ∈ Γ × R , ω(u) ≤ �} ,
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hence the perturbation function ω describes the boundary surface of the set
A . The set S of feasible points is non-empty if and only if there exists a � ∈ R

such that (0, �) ∈ A, and then

inf{f(x) ; x ∈ S} = inf{� ; (0, �) ∈ A} .

We summarize some properties of ω and A in the following auxiliary result:

Lemma 3.6. (1◦) ω is weakly monotone decreasing.
(2◦) The dual functional satisfies ψ(y) = infu∈Γ {ω(u) + y ◦ u} , y ∈ Kd .
Let the minimum problem be convex then
(3◦) Γ is convex,
(4◦) A is convex,
(5◦) int(A) ∩ B = ∅ ,
(6◦) ω is convex.

Note also that ψ(−y) is the Legendre transformation of ω(u) because
ψ(−y) = supu∈Y{y ◦ u− ω(u)} .

The computation of a solution of a convex minimum problem is now equiv-
alent to the computation of the scalar value ω(0) which is the smallest point of
intersection of A and the R-axis. The dual problem consists then in the com-
putation of a supporting hyperplane H to the set A which contains A in the
positive half-space on the one side hand has a maximum point of intersection
(0, σ) with the R-axis on the other side.

A

B

ρ

Γ
ω(u)

ω(0)

Figure 3.24. Duality, convex mini-
mum problem

A

B

ρ

Γ

Figure 3.25. Linear problem

A

B

ρ

Γ

Figure 3.26. Slater condition vio-
lated

A

B

ρ

Γ

Figure 3.27. Duality gap, nonconvex
problem
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Let H ⊂ Y × R denote a hyperplane not standing “perpendicular” on Y
which means here that it does not contain the set {(0 , �) ∈ Y × R} . Then in
general, by Lemma 1.12

H(y, σ) = {(u, �) ∈ Y × R , 1 · �+ y ◦ u = σ} ,
H(y, σ)+ = {(u, �) ∈ Y × R , 1 · �+ y ◦ u ≥ σ} (positive half-space)

where (y, σ) ∈ Yd × R . Consequently the dual problem reads:

(DP): {σ ∈ R ∪ {∞} , A ⊂ H(y, σ)+} = max!

Set σ = −∞ if none of these hyperplanes does exist. The following result
characterizes the hyperplanes H in a somewhat different way:

Theorem 3.20. (1◦)

A ⊂ H(y, σ)+ ⇐⇒ ∀ x ∈ C ∀ k ∈ K : f(x) + y ◦ (g(x) + k) ≥ σ ,

(2◦)

y ∈ Kd and σ ≤ ψ(y) ⇐⇒ ∀ x ∈ C ∀ k ∈ K : f(x) + y ◦ (g(x) + k) ≥ σ .

By this result we now obtain the geometric form of the dual Lagrange

problem: Find (y∗, σ∗) ∈ Kd × R such that

σ∗ = max{σ ; x ∈ C , k ∈ K , y ∈ Kd : f(x) + y ◦ (g(x) + k) ≥ σ} .

Note also that y∗ = −∇ω(0) in the case where the perturbation function ω is
differentiable at the point u = 0 ; cf. also Sect. 3.3(h) on the interpretation of
Lagrange multipliers as shadow prices.

The second part of Theorem 3.20 provides the equivalence with the dual
Lagrange problem σ∗ = maxy≥0 ψ(y) here; cf. (3.46). One sees that the
geometric form (DP) of the dual problem is much less transparent than the
analytic form (DLP) but it is undispensable for theoretical investigations.

The above equivalence relations can also be expressed by geometric prop-
erties of the set A :

Theorem 3.21. (Werner), Th. 4.3.2. Let the minimum problem (MP) be
convex, let Y be normed, and let int(A) ∩ {0} × R �= ∅ . Then the feasible
set S is not empty. Further
(1◦) If inf x∈Sf(x) > −∞ , the dual problem (DLP) has a solution y∗ and
max y∈T ψ(y) = inf x∈Sf(x) .
(2◦) If the minimum problem (MP) has a solution x∗ , y∗ ◦ g(x∗) = 0 .

Condition int(A) ∩ {0} × R �= ∅ is fulfilled e.g. if the Slater condition is
fulfilled, i.e., if int(K) �= ∅ and g(x0) < 0 for some x0 ∈ C . Namely, in this
case,
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{(g(x) + k, f(x) + �) ∈ Y × R , x ∈ C , k ∈ int(K) , � > 0} ⊂ int(A)

and thus in particular

(g(x0) + (−g(x0)), f(x0) + �) = (0, f(x0) + �) ∈ int(A) ∩ {0} ∩ R

for all � > 0 .
Finally, the following theorem supplies information on the equivalence of

(LP) and (DLP); cf. Lemma 3.5:

Theorem 3.22. (Werner), Th. 4.3.1. Let the minimum problem (MP) be
convex, Y normed, and A closed. Then
(1◦) S �= ∅ and inf x∈Sf(x) > −∞ ⇐⇒ T �= ∅ and sup y∈T ψ(y) < +∞ .
(MP) has a solution in both cases, moreover
−∞ < sup y∈T ψ(y) = min x∈Sf(x) < ∞ .
(2◦) S = ∅ and T �= ∅ =⇒ sup y∈T ψ(y) = +∞ .
(3◦) T = ∅ and S �= ∅ =⇒ inf x∈Sf(x) = −∞ .

(f) Local Lagrange Theory The problem (3.36),

{f(x) , x ∈ C , g(x) ≤ 0 , h(x) = 0} = min!

is again called differentiable if f , g , h are Fréchet-differentiable. Then
(3.37) provides necessary conditions for an optimum x∗:

∀ x ∈ C : ∇xL(x∗, y∗, z∗)(x− x∗) ≥ 0 (minimum problem),
∀ x ∈ C : ∇xL(x∗, y∗, z∗)(x− x∗) ≤ 0 (maximum problem),
∀ x ∈ C : ∇xL(x∗, y∗, z∗)(x− x∗) = 0 (if C in X open or subspace).

(3.48)

Theorem 3.23. (Multiplier rule (MR) sufficient in convex problems) Let the
minimum problem (MP) (3.36) be convex (h affine linear), differentiable, x∗ ∈
S, and let the MR be fulfilled:

∃ (y∗, z∗) ∈ Kd × Zd : ∇xL(x∗, y∗, z∗)(x− x∗) ≥ 0 and y∗ ◦ g(x∗) = 0 .

Then x∗ is solution of (MP).

Proof. Since f , g convex,

f(x) ≥ f(x∗) + ∇f(x∗)(x− x∗) ,
g(x) ≥ g(x∗) + ∇g(x∗)(x− x∗) ,
h(x) = h(x∗) + ∇h(x∗)(x− x∗) .

Therefore by (MR) for x ∈ C

f(x) ≥ f(x) + y∗ ◦ g(x) + z∗ ◦ h(x)
≥ f(x∗) + ∇f(x∗)(x− x∗) + y∗ ◦ [g(x∗) + ∇g(x∗)(x− x∗)]

+z∗ ◦ [h(x∗) + ∇h(x∗)(x− x∗)]
= f(x∗) + y∗ ◦ g(x∗) + z∗ ◦ h(x∗) + ∇xL(x∗, y∗, z∗)(x− x∗) ≥ f(x∗) .

��
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In place of Theorem 3.5 we now have

Theorem 3.24. (MR local necessary) Let the minimum problem (3.36) be
differentiable, and suppose further that:
(1◦)

x∗ = arg min{f(x), x ∈ C, g(x) ≤ 0, h(x) = 0} ,
(2◦) int(K) �= ∅ ,
(3◦) relint(∇h(x∗)(C)) �= ∅ ,
(4◦) h is locally solvable in x∗ w.r.t. C .
Then there exists a triple (0, 0, 0) �= (�∗, y∗, z∗) ∈ R≥0 × Kd × Zd such that
(1◦)

∀ x ∈ C : [�∗∇f(x∗) + y∗ ◦ ∇g(x∗) + z∗ ◦ ∇h(x∗)](x− x∗) ≥ 0 ,

(2◦) y∗ ◦ g(x∗) = 0 .
(3◦) If there exists a x ∈ C such that

g(x∗) + ∇g(x∗)(x− x∗) < 0, ∇h(x∗)(x− x∗) = 0 ,

and if x∗ ∈ int(∇h(x∗)(C)) then �∗ = 1 may be chosen, and y∗ �= 0 .

Condition (3◦) is a modified Slater condition. The somewhat intranspar-
ent assumption (4◦) may be concretized by using a more general result of
(Robinson) on local solvability.

Theorem 3.25. Let X be a Banach space, Y a normed space, K ⊂ Y closed
and g : X → Y continuously differentiable. Then g(x) ≤ 0 is locally solvable
in x∗ ∈ X if

0 ∈ int[g(x∗) + ∇g(x∗)(X ) + K] . (3.49)

Let now Z = ∇h(x∗)(X ) then relint(∇h(x∗)(X )) = int(Z) �= ∅ ,
0 ∈ int(∇h(x∗)(X ) and h in x∗ locally solvable by Robinson’s theorem if
h(x∗) = 0 . Then Theorem 3.24 may be modified as follows:

Corollary 3.4. Let the minimum problem (3.36) be continuously differen-
tiable. Suppose that:
(1◦) x∗ = arg min{f(x) ; x ∈ X , g(x) ≤ 0 , h(x) = 0} ,
(2◦) int(K) �= ∅ ,
(3◦) ∇h(x∗) : X → Z surjective,
(4◦) ∃ x ∈ X : g(x∗) + ∇g(x∗)x < 0 , ∇h(x∗)x = 0 .
Then there exists a pair (y∗, z∗) ∈ Kd × Zd with y∗ �= 0 such that
∇f(x∗) + y∗ ◦ ∇g(x∗) + z∗ ◦ ∇h(x∗) = 0 and y∗ ◦ g(x∗) = 0 .

The rank condition (3.9) implies the condition of (Robinson) in finite-dimen-
sional problems; cf. however (Craven78), Ex. 2.6.2.

(g) Everybody, concerned with optimization, knows the classic book of
(Luenberger) where this discipline is joined with functional analysis in a fe-
licitous way. This section would not be complete without refering a surpris-
ingly simple result on extremal problems with equality constraints in Banach

spaces. The result uses however the Generalized Inverse Function Theorem
1.23 being not at all trivial and also due to (Luenberger).
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Assumption 3.1. Let X , Z be Banach spaces, let C ⊂ X be open and
f : C → R , h : C → Z F-differentiable. Further suppose that x∗ =
arg minx∈C{f(x) , h(x) = 0} exists and is a regular point such that
Range ∇h(x∗) = Z .

Lemma 3.7. Adopt Assumption 3.1. Then

∀ v ∈ X : ∇h(x∗)v = 0 =⇒ ∇f(x∗)v = 0 , (3.50)

i.e., ∇f(x∗) ∈ [Ker(∇h(x∗))]⊥ ∈ Xd .

Proof. Consider the composed mapping T : X � x �→ (f(x), h(x)) ∈ R×Z and
suppose that there exists a v ∈ X such that ∇h(x∗)v = 0 and ∇f(x∗)v �= 0 .
Then necessarily ∇f(x∗) �= 0 and ∇T (x∗) = (∇f(x∗),∇h(x∗)) : X → R × Z
is surjective. Therefore x∗ is a regular point of T and, by Theorem 1.23, for
any ε > 0 there exists a x and δ > 0 such that T (x) = (f(x∗) − δ, h(x∗)) =
(f(x∗) − δ, 0) with ‖x − x∗‖ < ε. This is a contradiction to the assumption
that x∗ is a local minimum. ��

Theorem 3.26. (Multiplier rule necessary) Adopt Assumption 3.1. Then
there exists a z∗ ∈ Zd such that L(x) = f(x) + z∗ ◦ h(x) is stationary in
x∗ , ∇xL(x∗) = ∇f(x∗) + z∗ ◦ ∇h(x∗) = 0 .

Proof. Let first X = R
n and Z = R

p be finite-dimensional and write briefly
A = ∇h(x∗) ∈ R

p
m . Then the Range Theorem 1.2 says that Range(AT ) =

[KerA]⊥. Therefore, by Lemma 3.7, there is a z ∈ R
p such that

[∇f(x∗)]T = −AT z thus ∇f(x∗) + zTA = 0 , zT ∈ Rm = Zd. The general
proof follows in a similar way by using the Closed Range Theorem 1.19 (6◦)
and the fact that Range(∇h(x∗)) = Z is closed. ��

(h) Examples

Example 3.10. Consider first the linear problem

{ax ; Bx ≤ c , Cx = d} = max!

with Lagrange-Function

L(x, y, z) = ax− y(Bx− c) + z(Cx− d) .

The primal and dual Lagrange problems then read:

(x∗, y∗, z∗) = maxx infy≥0,z[ax− y(Bx− c) + z(Cx− d)] ,
(x∗, y∗, z∗) = miny≥0,z supx[x(a− yB + zC) − yc− zd] .

a− yB + zC must be equal to zero that sup . . . < ∞ hence the dual problem
reads:

{−yc− zd ; yB − zC = a , y ≥ 0} = min! .

So the dual problem contains only the simple sign constraint y ≥ 0 .
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Example 3.11. Consider the linear-quadratic problem (3.26)
{

1
2
xTAx− a x ; −(b+Bx) ≤ 0

}
= min!

where A ∈ R
n

n is a symmetric, positive definite matrix and B ∈ R
m

n . Then
the dual functional reads

ψ(y) = infx

{
1
2
xTAx− a x− y(b+Bx)

}
) .

Note that the argument is convex in x therefore we have by (3.48) the neces-
sary condition for x∗

(x∗)TA− yB − a = 0 ∈ Rn =⇒ x∗ = A−1
(
BT yT + aT

)
∈ R

n .

Substitution into y∗ = arg maxy≥0 ϕ(y) yields

y∗ = arg maxy≥0

[
−1

2
yBA−1BT yT − y b+

1
2
aA−1aT

]
.

The dual problem has only a simple sign restriction for constraint but, on
the other side, needs the inversion of the matrix A which can be a serious
drawback in large, sparse problems. Moreover the dimension is reduced in the
(less frequent) case m < n .

Example 3.12. Consider the control problem

J(u) =
1
2

∫ T

0

u(t)2dt = min!

ẋ = A(t)x+ b(t)u(t) ∈ R
n , x(0) = a , x(T ) ≥ c , u(t) ∈ R ,

and let X(t) be a fundamental matrix of the differential system such that
X(0) = I, cf. Sect. 1.5(d). Then by (1.31)

x(t) = X(t)a+
∫ t

0

X(t)X(s)−1b(s)u(s) ds =: X(t)a+ k(t, u) ∈ R
n .

Writing d = c−X(T )a , the control problem has now the form

min{J(u) , k(T, u) ≥ d} , u ∈ C[0, T ] .

This problem is convex and the Slater condition applies. The minimum
problem and the dual Lagrange-Problem

(u∗, y∗) = arg maxy ≥ 0 infu (J(u) + y(d− k(T, u))) , (3.51)

y ∈ Rn, are therefore equivalent. The control is unrestricted therefore differ-
entiation of J(u) + y(d− k(T, u)) w.r.t. u is allowed. Setting the result equal
to zero, we obtain the optimal control depending from y ,
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u∗(t) = y X(T )X(t)−1b(t) .

A substitution into (3.51) yields the finite-dimensional maximum problem

y∗ = arg maxy≥0

(
−yQyT + y d

)
, (3.52)

where Q is a symmetric positive semi-definite matrix,

Q =
1
2

∫ T

0

X(T )X(s)−1b(s)b(s)TX(s)−TX(T )T ds .

The problem (3.52) has at least one solution y∗ ∈ Rn and then an optimal
control reads: u∗(t) = y∗X(T )X(t)−1b(t) , 0 < t < T .

More detailed documentation in SUPPLEMENT\chap03d,chap03e,chap03f.

References: (Craven78), (Craven95), (Ekeland), (Gelfand), (Kirsch),
(Kosmol), (Krabs), (Luenberger), (Petrov), (Schaeffer), (Teo89), (Teo91),
(Werner).

3.7 Hints to the MATLAB Programs

KAPITEL03/SECTION_1_4, Linear-Quadratic Programming
bfgs.m BFGS method
demo1.m Example, bfgs.m and desc.m
demo2.m Test of dlqp.m
demo3.m Test of dlqp.m with random variables
desc.m Steepest descend
dlqp.m Linear-quadratic programming after Goldfarb-Idnani
dlqp_g.m as dlqp.m, but only inequalities
ga_test.m Goldstein-Armijo descend test

KAPITEL03/SECTION_5, Nonlinear Programming
bsp01.m--bsp16.m Examples
demo1.m Masterfile for gradient projection
demo2.m Masterfile for sequential quadratic programming
demo3.m Masterfile for flexiplex method after Himmelblau
flexiplex.m Flexible tolerance method after Himmelblau
gp.m Gradient projection method general
gp_g.m Gradient projection method, only inequalities
restor.m Restoration in gp.m
sigini.m Start vector for step length sigma in gp.m
sqp.m Sequential quadratic programming general
sqp_g.m Sequential quadratic programming, only inequalities
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KAPITEL03/FEXIPLEX, Method of Nelder and Mead
demo1.m Minimization of a function (3 Ex.)
demo2.m Minimization with constraints (4 Ex.)
simplex.m Minimization after Nelder and Mead
flexiplex Constraint Minimization after Himmelblau
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Figure 3.28. Example 3.8, f1
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Figure 3.30. Example 3.9, f1
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Figure 3.31. Example 3.9, f2

Flexiplex with three total steps
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Variation and Control

Calculus of variations is primarily concerned with functionals living on infinite-
dimensional spaces as the action integral of Hamilton’s principle and to a
much less degree with functionals over finite-dimensional spaces. (Note that
critical or stationary points are sometimes called “extreme points” without
being in fact extremal points.) To find a stationary point of a functional
f : V → R as a candidate for a maximum or minimum point, the first or
Gâteaux variation ∂(f ;h) is set equal to zero being simply the directional
derivative, and this is, by the way, the most simple form of a derivative at all;
see Sect. 1.8. For functionals on finite-dimensional spaces this process is the
same as setting the first derivative (gradient) equal to zero.

The variational increment h ∈ V is frequently called test function in par-
ticular in the context of finite element methods. In engineering sciences it is
called virtual displacement but mathematicians prefer other attributes per-
haps since their discipline is anyhow a virtual one. The result of this process,
namely the variational equations are obtained uniquely whereas the converse,
namely finding the assigned extremal function (frequently the total energy of
a mechanical system) cannot be performed in unique way as all integrals. Also,
it plays a minor role from the practical point of view so that one works often
without that appealing functional in applications and formulates directly the
variational problem with its boundary conditions.

Although Dido’s problem has been known long before, calculus of varia-
tions emerged with the well-known brachystochrone problem posed by Johann

Bernoulli in 1669, which is dealt with below. This fascinating new type of
problem, namely the matter of an unknown curve, was first fully perceived and
acted upon by his brother Jakob. Since that time, calculus of variations has
evolved into an indispensable part of applied mathematics. It plays an impor-
tant role in numerical realization in both continuum mechanics and control
theory; that is why the latter is treated as an application in this chapter.
But it supplies also the fundamentals of analytic mechanics and their basic
principles which have been developed more or less at the same time (which



194 4 Variation and Control

has caused some discrepancies in the mutual “estime” of the main actors, D.

Bernoulli and D’Alembert).
Control problems are extremal problems with at least one equality con-

straint in form of a dynamical system. For the computation of stationary
values, they are transformed into an differential-algebraic problem by vari-
ation and application of Lagrange’s multiplier method. In contrast with
D’Alembert’s principle, this method dispenses with the elimination of sur-
plus variables and takes the constraints into account without any modification.
Simple control problems without further constraints can also be transformed
into a pure boundary value problem — at least theoretically.

The boundary value problems of control and the Euler-Lagrange equa-
tions of variation can be highly nonlinear and defy sometimes simply numer-
ical realization. The main problem is to find a suitable start trajectory for
further treatment by multiple shooting methods or specially adapted numer-
ical devices as the Matlab code bvp4c. However, control problems can be
discretized directly to yield a discrete optimization problems for application
of the methods proposed in the previous chapter. In this way, one can of-
ten obtain, if not the solution itself, suitable “initial guesses” for subsequent
treatment as a boundary value problem.

If, in a variational problem, the derivative ẋ of the desired solution x
appears as an unknown variable which is more likely to be the rule than the
exception, then one can fall back to the underlying extremal problem and
introduces a control by virtue of u := ẋ . The result is then also a control
problem which can be treated in the same way by procedures for nonlinear
optimization.

Numerical examples are considered in the context of Control Theory; see
Sect. 4.4.

4.1 Variation

The conventions at the beginning of Chap. 3 apply also in the present chapter.
(a) Extremal Problem, Variational Problem and Boundary Value

Problem We seek a solution (curve) x : [0, T ] � t �→ x(t) ∈ R
n of the

extremal problem

J(x) =
∫ T

0

q
(
t, x(t), ẋ(t)

)
dt = extr! , x ∈ C1([0, T ]; Rn) (4.1)

where q is a sufficiently smooth scalar function. This extremal problem relates
directly to Hamilton’s principle which plays a crucial role in classical physics
as well as in quantum mechanics. In a similar way as in Sect. 3.2, conditions
for a stationary point of (4.1) are derived in this chapter which then form a
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necessary condition for a solution again. Thereafter more general problems
are considered with various types of equality and inequality constraints.

The null vector is the only vector standing perpendicular on all vectors in
R

n w.r.t. any scalar product. The generalization of this simple truth to vector
spaces of functions is the crucial auxiliary result in passing from an extremal
problem via variational problem to a boundary value problem for a system of
ordinary or partial differential equations.

Lemma 4.1. (Lagrange, Fundamentallemma of Calculus of Variations)
Let f, g ∈ C([0, T ]; Rn) and h ∈ C1

0([0, T ]; Rn) then

(1◦) ∀ h :
∫ T

0

f(t)Th(t) dt = 0 =⇒ f ≡ 0 ,

(2◦) ∀ h :
∫ T

0

f(t)T ḣ(t) dt = 0 =⇒ f = constant,

(3◦) ∀ h :
∫ T

0

[f(t)Th(t) + g(t)T ḣ(t)] dt = 0 =⇒ g ∈ C1([0 , T ]; Rn)

and f = ġ .

Proof (Amann), (Kosmol), SUPPLEMENT\chap04a.
The proof of (1◦) is of purely technical nature, (2◦) is also known as Lemma

of Dubois-Reymond and (3◦) is an inference from (2◦).

Theorem 4.1. Let the “terminal time” T be fixed, 0 < T < ∞ . Every solu-
tion x ∈ C2([0, T ]; Rn) of the extremal problem (4.1) satisfies the differential
system

gradx q(t, x, ẋ) − d

dt
gradẋ q(t, x, ẋ) = 0 ∈ Rn , 0 < t < T (4.2)

named after Euler and Lagrange.

Proof. Following 1.14 a necessary condition for an extremal value of J is
obtained by setting the first variation equal zero: ∀ v ∈ C1([0, T ]; Rn):

∂J(x; v) =
∫ T

0

[gradx q(x, ẋ)v + gradẋ q(x, ẋ)v̇] dt = 0 . (4.3)

Partial integration of the second term,
∫ T

0

gradẋ q v̇ dt = gradẋ q v
∣∣∣
t=T

t=0
−
∫ T

0

[
d

dt
gradẋ q

]
v dt ,

yields the variational problem ∀ v ∈ C1([0, T ]; Rn):

gradẋ qv
∣∣∣
t=T

t=0
+
∫ T

0

[
gradx q(x, ẋ) − d

dt
gradẋ q(x, ẋ)

]
v dt = 0 . (4.4)
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On choosing for v a test function where v(0) = v(T ) = 0 , the boundary term
disappears and an application of Lemma 4.1(1◦) yields the assertion. ��

The above partial integration requires continuous differentiability of the
argument t �→ ∇ẋq(t, x(t), ẋ(t)) but an application of Lemma 4.1(3◦) cancels
this requirement again, thus continuity of q suffices for the proof.

The second term on the left side of (4.2) is the total derivative w.r.t. t,

d

dt
[∇ẋq]T =

∂

∂t
[∇ẋq]T + [∇ẋ∇xq]ẋ+ [∇ẋ∇ẋq]ẍ ∈ R

n .

The (columnwise written) Euler-Lagrange equations — or briefly Euler

equations — constitute a system of ordinary differential equations of the form

A(t, x, ẋ)ẍ+ b(t, x, ẋ) = 0 ∈ R
n (4.5)

which is affine linear in the second derivative of x (semi-linear system).
For solving (4.5) uniquely, the mappings A and b have to be sufficiently

smooth and 2n appropriate boundary conditions have to be introduced. The
boundary term in (4.4) disappears exactly in four cases which leads to a
diversification of boundary conditions into two different classes being typically
for all variational problems.

x(0) = x0 , x(T ) = xT , both essential (geometrical)

x(0) = x0 , gradẋ q
∣∣∣
t=T

= 0 , essential/natural

gradẋ q
∣∣∣
t=0

= 0 , x(T ) = xT , natural/essential

gradẋ q
∣∣∣
t=0

= 0 , gradẋ q
∣∣∣
t=T

= 0 , both natural (dynamical) .

(4.6)

All functions of variation x + εv , ε ∈ R , in the variation (4.3) have to
regard the essential boundary conditions, therefore the test functions v have
to satisfy the corresponding homogeneous essential conditions but not the
natural boundary conditions in (4.6). In consequence, the following conditions
must hold:

v(0) = v(T ) = 0 in (4.6)(1◦) , v(0) = 0 in (4.6)(2◦) , v(T ) = 0 in (4.6)(3◦) .

By the above partial integration, the solution of the boundary value problem
(BVP) has to be by one degree smoother than the solution of (4.3); hence the
problem (4.3) is also called weak problem (weaker requirements on smooth-
ness). The way displayed here, namely

extremal problem variation−→ weak problem
partial integration

−→
fundamentallemma

BVP
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is typically for variational problems. Naturally it may be gone also the oppo-
site way but then the possible boundary conditions appear in a less evident
form and are not determined uniquely. Contrary to the boundary value prob-
lem (4.5) and (4.6), natural boundary conditions do not appear explicitely in
the weak problem (4.3) and this fact remains also true in numerical approxi-
mations: The numerical ansatz functions in the weak problem do not “know”
anything from the natural boundary conditions and satisfy them as well as
the differential equation (4.5) only in transition to the limit of infinitisimal
refinement. The numerical approximation becomes bad or even wrong if one
chooses natural instead of essential conditions or vice versa in the numerical
ansatz for the weak problem; cf. the instructive examples in (Collatz60), p.
241, and (Strang), Sect. 1.3.

Special Cases:

Type Euler Equation Remark

q(t, x, ẋ) = q1(t, x) [q1]x − [q2]t = 0 no differential equation

+ q2(t, x)ẋ

q(t, x, ẋ) = q(t, ẋ)
d

dt
gradẋ q = 0 gradẋ q(t, ẋ) = constant

q(t, x, ẋ) = q(t, x) gradx q = 0 implicit representation of x

q(t, x, ẋ) = q(x, ẋ)
d

dt
(q − gradẋ q ẋ) = 0 after multiplication by ẋ

q − gradẋ q ẋ = const. DuBois-Reymond-condition

See (f) for the interesting special case that a variable xi does not appear in q
whereas ẋi is present (cyclic variable).

(b) Modified Problems Instead of (4.1) we consider the augmented
problem

J(x) = p(x(0), x(T )) +
∫ T

0

q(t, x(t), ẋ(t)) dt = extr!

0 = r(x(0), x(T )) ∈ R
|r|

(4.7)

where again all data shall be sufficiently smooth. The function p is called
terminal payoff, and the boundary conditions are assembled in a possibly
nonlinear function r . For simplicity we also write

∇2q(t, x, ẋ) = gradx q(t, x, ẋ) , ∇3q(t, x, ẋ) = gradẋ q(t, x, ẋ)

for the gradients of q , etc.. The generalized boundary condition plays the
role of an equality constraint; therefore Lagrange multipliers z ∈ Rr (row
vector!) have to be introduced by Sect. 3.6 and a regularity condition: Let x∗

be the unique solution of the problem and let

∀ c ∈ R
r ∃ u, v ∈ R

n : ∇1r(x∗(0), x∗(T ))u+ ∇2r(x∗(0), x∗(T ))v = c . (4.8)
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Following Sect. 3.6, instead of the objective function J , now the first variation
of the Lagrange function L = J + z r is set equal to zero under application
of (4.4):

0 = ∂L(x; v)

=
[
∇3q(T, x(T ), ẋ(T )) + ∇2p(x(0), x(T )) + z∇2r(x(0), x(T ))

]
v(T )

+
[
− ∇3q(0, x(0), ẋ(0)) + ∇1p(x(0), x(T )) + z∇1r(x(0), x(T ))

]
v(0)

+
∫ T

0

[
∇2q(t, x, ẋ) − d

dt
∇3q(t, x, ẋ)

]
v dt .

Let v be an arbitrary test function without any restrictions then we obtain
the system

∇2q(t, x, ẋ) − d

dt
∇3q(t, x, ẋ) = 0 Euler eq.

r(x(0), x(T )) = 0 ess. BC
−∇3q(0, x(0), ẋ(0)) + ∇1p(x(0), x(T )) + z∇1r(x(0), x(T )) = 0 nat. BC

∇3q(T, x(T ), ẋ(T )) + ∇2p(x(0), x(T )) + z∇2r(x(0), x(T )) = 0 nat. BC
(4.9)

by applying the Fundamentallemma among others again. Up to now the pa-
rameters z are not subjected to any conditions. They rule the interplay be-
tween essential and natural boundary conditions:

(1◦) If no essential boundary conditions appear at all then r = 0 and thus the
gradients of r disappear. There remain only natural boundary conditions

−∇3q(0, x(0), ẋ(0)) + ∇1p(x(0), x(T )) = 0 ,
∇3q(T, x(T ), ẋ(T )) + ∇2p(x(0), x(T )) = 0 .

(2◦) If, e.g., x(0) = x0 is required being an essential condition then
z∇1r(x(0), x(T )) = z and the natural boundary condition (4.9)(3◦) are
free (→ drop it).

(3◦) If, e.g., n = 2 and x1(0) = α ∈ R is required (single essential boundary
condition) then z∇1r(x(0), x(T )) = (z1, 0) , and the first component of
(4.9)(3◦) is free whereas the second yields the natural boundary condition

−D5q(0, x(0), ẋ(0)) +D4p(x(0), x(T )) = 0

Di denoting the partial derivativion w.r.t. the i-th scalar argument.

(c) Variable Terminal Point As an instructive example for the efficiency
of variational calculus we consider the problem

J(T, x) = p(T, x(T )) +
∫ T

0

q(t, x, ẋ) dt = min!

x ∈ C1[0, T0] , x(0) = a ∈ R
n , g(T, x(T )) = 0 ∈ R

(4.10)



4.1 Variation 199

where the terminal time T , 0 < T < T0 , is an independent variable, the upper
bound T0 is sufficiently large and the data are again sufficiently smooth. As
simple example may serve the following function where n = 1

g(T, x(T )) = x(T ) − h(T ) ,
h(0) < a , h′(t) > 0 , 0 < t < T0 .

(4.11)

Here it is intuitively clear that we may vary in optimum (T ∗, x∗) only if the
trajectory x∗(t) and the constraint curve h(t) do intersect in optimum point
t = T ∗ and are not tangential to each other; hence necessarily ẋ∗(T ∗) −
ḣ(T ∗) �= 0 in optimum.

t

x

h(t)

φ(x*) = T* t = φ(x)

x*

x* + ε v

a

Figure 4.1. Transversality condition

The side condition g in problem (4.10) describes a hyper-surface which
depends also on t. In optimum the tangential vector

d

dt
(t, x∗(t))

∣∣∣
t=T∗

= [1 , ẋ∗(T ∗)]T ∈ R
n+1

is not allowed to be tangent to this hyper-surface i.e. it is not allowed to stand
perpendicular on the normal vector at this point.

Lemma 4.2. (Tranversality Condition) Let (T ∗, x∗) ∈ R+×C2([0, T ]; Rn) of
be a solution of the extremal problem (4.10) with free terminal time T and
suppose that

∇xg(t, x)ẋ+ gt(t, x) �= 0 (4.12)

at (T ∗, x∗(T ∗)) . Then necessarily

(∇xgẋ+ gt) [∇xp+ ∇ẋq] + (∇xpẋ+ pt + q)∇xg = 0 ∈ Rn (4.13)

at the point (t, x(t)) = (T ∗, x∗(T ∗)) in addition to the Euler equation.

Proof in SUPPLEMENT\chap04a. For instance, let n = 1 and g(t, x(t)) = x(t)−
h(t) ∈ R then (4.12) yields the above condition ẋ(T ) − ḣ(T ) �= 0 in optimum.
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(d) Legendre Transformation
(d1) (Analytic Interpretation) Let f ∈ C2(R; R) be strictly convex then
f ′′(x) > 0 and the derivative f ′ of f is invertible with inverse function h:
p = f ′(x) , x = h(p) . By this way the derivative (slope) p of f may be
introduced for new variable. How does now the antiderivative g of h look like?
By

g(p) := p h(p) − f(h(p)) = xf ′(x) − f(x) , x = h(p)

we obtain at once

g′(p) = p h′(p) + h(p) − f ′(h(p))h′(p) = p h′(p) + h(p) − p h′(p) = h(p) .

The Legendre transformation g of f is a new function with a new variable
p , e.g., now

Q(x, xy′ − y, y′) = 0 ⇐⇒ Q(g′(p), g(p), p) = 0 ,

but the dash means derivation w.r.t. x in the left equation and differentiatin
w.r.t. p in the right equation.

(d2) (Geometric Interpretation). Let f again be strictly convex. Choose
a “slope” p and form y = p x. Then choose the point x(p) on the x-axis such
that the distance between the straight line y = p x and the curve y = f(x)
becomes maximum,

x(p) = arg maxx{p x− f(x)} .

Then the function F (p, x) := px− f(x) has a unique maximum at point x(p).
Now the Legendre transformation g of f is geometrically defined by

g(p) = maxx F (p, x) = F (p, x(p)) = px(p) − f(x(p)) .

Then naturally
∂F

∂x
(p, x) = 0 at point x(p) hence p − f ′(x) = 0 , and

p = f ′(x) is the new variable by this way.
(d3) (Involution) Let f be strictly convex and let g be the Legendre

transformation of f then f is the Legendre transformation of g . The Leg-

endre transformation is thus involutoric (inverse to itself); this property does
hold also geometrically

g(p) = maxx{px− f(x)} , f(x) = maxp{xp− g(p)} .

The proof follows immediately by the analytic definition:

g(z) = xf ′(x) − f(x) , z = f ′(x) , x = g′(z)
=⇒ f(x) = xf ′(x) − g(z) = zg′(z) − g(z) .
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Example 4.1. (Fig. 4.2).

f(x) = x2

F (p, x) = px− x2

x(p) = p/2 , g(p) = p2/4

f(x) =
mx2

2
=⇒ g(p) =

p2

2m
.

x

y

y = px y = f(x)

x(p)

g(p)

Figure 4.2. Legendre transforma-
tion

Example 4.2. Let f(x) = xα/α then g(p) = pβ/β where (1/α) + (1/β) =
1 , α > 1 , β > 1 .

Example 4.3. Clairaut’s (implicit) differential equation, y = xy′−g(y′) , g ∈
C1(I) , has obviously all straight lines y = cx − g(c) , c ∈ R , for solutions.
Let y = f(x) be a further solution such that p := y′ = f ′(x) is invertible,
x = [f ′]−1(p) then ỹ(p) = y(x(p)) hence ỹ′(p) = px′(p) . But on the other
side, differentiating ỹ(p) = xp− g(p) w.r.t. p yields

ỹ′(p) = px′(p) + x(p) − g′(p) != px′(p).

Therefore the envelope of the above family of straight lines is a further (non-
linear) solution with parameter representation

ỹ(p) = pg′(p) − g(p) , x(p) = g′(p) .

(d4 ) To generalize the concept of Legendre transformations, let X be
a normed vector space with dual space Xd and write again 〈y, x〉 for x ∈ X
and y ∈ Xd to emphasize the dual pairing.

Definition 4.1. Let f be a convex functional on a convex set C ⊂ X .
(1◦) C∗ := {y ∈ Xd , supx∈C [〈y, x〉 − f(x)] < ∞} ⊂ Xd is the set conjugate to
C .
(2◦) f∗ : C∗ � y �→ supx∈C [〈y, x〉 − f(x)] = f∗(y) ∈ R is the functional
conjugate to f .

The conjugate set C∗ and the conjugate functional f∗ are convex. The conju-
gate functional f∗ is involutoric

f(x) = sup
y∈C∗

[〈y, x〉 − f∗(y)] (4.14)



202 4 Variation and Control

when the bidual [Xd]d can be identified with X as, e.g., in Hilbert spaces. If
C and f convex, the epigraph of f ,

[C, f ] := {(x, ξ) ∈ C × R , ξ ≥ f(x)} ⊂ X × R ,

is also convex; it contains obviously all points “above” f on C . Recall now
that, given an element x∗ ∈ Xd , the affine linear equation 〈x∗, x〉 = d ∈ R

represents a hyperplane in the vector space X , and 〈x∗, x〉 ≤ d is a family of
half-spaces increasing with d . If C ⊂ X convex and h(x∗) := supx∈C〈x∗, x〉 ∈ R

then
H := {x ∈ X , 〈x∗, x〉 = h(x∗)} ⊂ X

is obviously a supporting hyperplane to C . But we are faced here with spaces
X × R where

H̃ := {(x, ξ) ∈ X × R , 〈x∗, x〉 − η · ξ = d} ⊂ X × R

is a hyperplane. H̃ is non-vertical if η �= 0 and then η = 1 without loss of
generality. In that case H̃ intersect the vertical axis R at the point ξ = −d
(negative sign only chosen for compatibility with the functional f∗). This
hyperplane is a supporting hyperplane of the convex epigraph [C, f ] of f if
and only if d = f∗(x∗) , by definition. By this way, conjugate functionals and
supporting hyperplanes are strongly connected geometrically.

(d5) Conjugate functionals (resp. their inverses) are well-suited for trans-
forming minimum problems into saddlepoint problems. Consider for instance

x∗ = arg inf x∈X {f(x) + g(x)}

with convex f and some scalar function g . Inserting the conjugate functional,
we get

x∗ = arg inf x∈X sup y∈Xd
{〈y, x〉 − f∗(y) + g(x)}

which leads to the primal and the dual Lagrange problem

(x∗, y∗) = arg min x∈X sup y∈Xd
{〈y, x〉 − f∗(y) + g(x)}

= arg max y∈Xd
inf x∈X {〈y, x〉 + g(x) − f∗(y)} .

Apparently we have to know the conjugate function explicitely in practical
applications. This is most properly explained by giving two simple examples:

Example 4.4. (Principle of complementary energy) Reconsider the quadratic
minimum problem of Sect. 1.11 but with some linear operator L such that
a(u, u) = (Lu,Lu) = |Lu|2, i.e.,

u∗ = arg min u

{
(Lu,Lu) − 2f(u)

}
, u ∈ U . (4.15)

By using the conjugate function (or by solving the associated variational prob-
lem) we get immediately
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|Lu|2 = sup v∈U
{
2(v, Lu) − |v|2

}
,

and an insertion in (4.15) yields the associated primal and dual Lagrange

problem

u∗ = arg min u

{
sup v

{
2(v, Lu) − |v|2

}
− 2f(u)

}
, u, v ∈ U

(u∗, v∗) = arg min u sup v

{
2(v, Lu) − 2f(u) − |v|2

}
(u∗, v∗) = arg max v inf u

{
2(v, Lu) − 2f(u) − |v|2

}
.

Let (Ldv, u) = (v, Lu) and observe that the infimum over u must exist finitely
that a saddlepoint exists then the dual maximum problem reads:

v∗ = arg max v{−|v|2 ; Ldv − f = 0} .

One observes that the objective function has become more simple but its
domain more complicated (for numerical implementation).

Example 4.5. (Application of the complementary energy principle.) Consider
the simple Dirichlet problem: Find u∗ ∈ H1

0 (Ω) such that

u∗ = arg min
{

1
2

∫

Ω

[
| gradu|2 dx− f u

]
dx ; u ∈ H1

0 (Ω)
}

(4.16)

where u = 0 on the entire boundary of the domain Ω ; see Sects. 1.7, 9.1 for
notations. We insert the relation

1
2

∫

Ω

| gradu|2 dx = sup
v∈(L2(Ω))2

∫

Ω

[
v · gradu− 1

2
|v|2

]
dx

and recall that ∫

Ω

gradu · v dx = −
∫

Ω

u div v dx (4.17)

in the present case of homogeneous Dirichlet boundary conditions. Then we
get again the saddlepoint problem corresponding to (4.16) in two alternative
forms: Find (u∗, v∗) ∈ U × V such that

(u∗, v∗) = arg min u sup v

{∫

Ω

[
−1

2
|v|2 − f u+ gradu · v

]
dx , u ∈ U , v ∈ V

}

= arg max v inf u

{∫

Ω

[
−1

2
|v|2 − f u− u div v

]
dx , u ∈ U , v ∈ V

}
.

(4.18)
where U = H1

0(Ω) and V = L2(Ω) × L2(Ω) . Both representations are equiv-
alent in the case where a saddlepoint exists. Again the infimum over u must
exist finitely and the dual maximum problem is readily obtained from the
second form (written as minimum problem): Find v∗ ∈ W such that

v∗ = arg infv∈W

∫

Ω

|v|2 dx , W = {v ∈ V , div v + f = 0} . (4.19)
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The saddlepoint (u∗, v∗) is also characterized by the two variational equations
associated, e.g., to the first form in (4.18) where we use (4.17) once more

∫

Ω

[
v · w − gradu · w

]
dx = 0 , ∀ w ∈ V

∫

Ω

[
u div v dx+ f u

]
dx = 0 , ∀ u ∈ U .

Passing to the associated boundary value problem of this dual form of the
Dirichlet problem we get two separated first order equations

v = gradu , div v + f = 0 , u ∈ H1
0 (Ω) (4.20)

which of course are also found directly by decomposing −Δu = −div gradu =
f . The dual form is well-suited in cases where the gradient of the unknown
function u is more important than u as maybe in stationary heat distribution
of a disc etc., see for instance Example 9.2.)

(e) Lagrange Function and Hamilton Function For a brief introduc-
tion of generalized coordinates let us quote from (Lanczos):
Analytical problems of motion require a generalization of the original coordi-
nate concept of Descartes. Any set of parameters which can characterize the
position of a mechanical system may be chosen as a suitable set of coordinates.
They are called “generalized coordinates” of the mechanical system.

The generalized coordinates q can be considered as the rectangular coor-
dinates of a single point in a configuration space. This space is no longer the
ordinary physical space. It is an abstract space with as many dimensions as
the nature of the problem requires. (Lanczos).

The integrand of the objective function J in (4.1) is called Lagrange

function in this context and denoted by L(t, q, q̇) . Letting L = T − U
where T (q̇) and U(q) are the kinetic and potential energy of, say, a sys-
tem of n mass points, Hamilton’s principle (”principle of least action”) says
that motions q(t) ∈ R

N , N = 3n , of this system coincide with the sta-
tionary points (functions) of the action integral

∫ t1
t0
L(q, q̇) dt and are even

minimum points. (Unfortunately the word “extremal” is often used with
the meaning “stationary” in this context.) The Euler-Lagrange equations
∂[∇q̇L]/∂t − ∇qL = 0 ∈ R

N then are obviously the associated equations of
motion.

For a general lagrangian L(t, q, q̇), it suggests itself to introduce new time-
dependent coordinates p ∈ RN by defining p := ∇q̇L since the Euler equa-
tions (4.2) then read simply ṗ = ∇qL(t, q, q̇) (generalized forces) . In a Leg-

endre transformation of L w.r.t. q̇ , we replace that variable by p under the
assumption that L is strictly convex in q̇ . As the kinetic energy T is in gen-
eral a positive definite quadratic form in q̇ , this assumption is not an undue
requirement. Then the Euler equations p − ∇q̇L(t, q, q̇) = 0 can be solved
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for q̇, say, q̇ = K(t, p, q) . The result of this transformation is the (scalar)
Hamilton function or simply hamiltonian

H(t, p, q) := pq̇ − L(t, q, q̇) = pK(p, q) − L(t, q,K(p, q)) ∈ R .

The reason for the introduction of this new function H is supplied by the
following result:

Theorem 4.2. Let p = ∇q̇L and let L(t, q, q̇) be strictly convex in q̇. Then
the differential system of N Euler equations

d

dt
∇q̇L(t, q, q̇) = ∇qL(t, q, q̇)

is equivalent to the differential system of 2N Hamilton equations

ṗ = −∇qH(p, q) , q̇ = ∇pH(p, q) , (4.21)

i.e., the sets of solutions q are the same in both cases.

The skew-symmetric system of first order Hamilton equations has various
advantages in theoretical studies compared with the system of second order
Euler equations and leads to an entire individual geometry (symplectic ge-
ometry). (Actually, both equations are written in row form since the gradient
of a scalar function shall always be a row vector. After proof however they
may be written in column form of course.)

Proof. Using p−∇q̇L = 0 and ṗ−∇qL = 0 we find immediately by partial
differentiation

∇qH = p∇qK − ∇qL− ∇q̇L∇qK = −∇qL = −ṗ
∇pH = K(p, q) + p∇pK − ∇q̇L∇pK = K ≡ q̇ .

On the other side, solving the second system in (4.21) for p yields p = ∇q̇L
again and a substitution into the first system leads to the original Euler

equations. ��

Corollary 4.1. Let t �→ (p(t), q(t)) be a solution of the Hamilton system
(4.21) then

dH

dt
(t, p(t), q(t)) =

∂H

∂t
(t, p(t), q(t))

Proof by substituting (4.21) into Ḣ = ∇pHṗ+ ∇qHq̇ +Ht . ��
In particular, ∂H/∂t = 0 if H does not depend explicitely on t then

H(p(t), q(t)) = const (law of conservation of the Hamilton function).
A coordinate qi is called cyclic, ignorable or kinostenic if it does not enter

into the lagrangian L although q̇i is present. Then ṗi = ∂L/∂qi = 0 and the
associated generalized moment pi reveals to be an invariant of the system,
pi(t) = ci = constant. Let, e.g., i = n and suppose that ∂L/∂q̇n = cn can be
solved analytically with respect to q̇n to yield
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q̇n = f(t, q1, . . . , qn−1; q̇1, . . . , q̇n−1, cn) . (4.22)

Then we can replace q̇n in the Euler-Lagrange equations by the right side
of (4.22) and the problem of integrating these equations is reduced by one
dependent variable because qn does no longer occur. After integration, the qi

and q̇i , now being functions of t , are inserted into (4.22) and the cyclic variable
qn is found by simple quadrature. The entire process is however much simpler
to manage in passing to Hamilton’s equations (Lanczos). For an application
see, e.g., the theory of top in Sect. 6.7.

Example 4.6. Cf. Sect. 6.2. By Newton’s law, the motion x(t) ∈ R
3 of a point

of mass m in a potential field satisfies

mẍ = f(x) = − gradU(x) U potential energy

T =
m

2
|ẋ|2 kinetic energy

E = T + U =
m

2
|ẋ|2 + U(x) total energy .

(4.23)

By DuBois-Reymond’s condition,

−mẍ− gradU(x) = −
(
mẍ+ gradU(x)

)
= 0

is obtained as Euler’s equation of the variational problem

J(x) =
∫ t2

t1

L(x, ẋ)dt =
∫ t2

t1

[m
2

|ẋ|2 − U(x)
]
dt = extr!

where L = T − U is the Lagrange function. This result is again the above
mentioned Hamilton’s principle of (least) action (dimension of J = energy
· time) and does hold in great generality. Introduction of y = mẋ = Lẋ ∈ R

3

as new time-dependent variable (the mass m being constant) leads to the
differential system

ẋ = grady H := y/m (definition),
ẏ = − gradx H := − gradU(x) Newton’s law.

It follows immediately that H = E is an invariant of the system:

const = E =
1
2
yT ẋ+ U(x) =

1
2m

yT y + U(x) = H(x, y)

= T + U = 2T − (T − U) = yT ẋ− L .

(f) A Classic Example We consider more exactly the following varia-
tional problem where x is the independent space variable (instead of t) and y
denotes the dependent variable; cf. e.g. (Clegg):

J(y) =
∫ β

α

y(x)n(1 + y′(x)2)1/2dx = min! , y ∈ C1([α, β]; R) .
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The DuBois-Reymond condition then reads

yn(x) = c[1 + y′(x)2]1/2 =⇒ yn(x)[1 + y′(x)2]−1/2 = c . (4.24)

Here we have to insert y′(x) = tanϕ in order that [1 + y′(x)2]−1/2 =
cosϕ which is of obvious advantage. Therefore the reparametrization ϕ �→
x(ϕ), ϕ �→ y(x(ϕ)) = ỹ(ϕ) is to be recommended by

dy

dx
=

dỹ

dϕ

dϕ

dx
= tanϕ(x) =⇒ dỹ

dϕ
≡ ỹ′(ϕ) = tan(ϕ)

dx

dϕ
= tan(ϕ)x′(ϕ) .

(4.25)
Ensuing we write again y instead ỹ and obtain by (4.24)

y(ϕ)n cosϕ = c . (4.26)

Derivation yields

ny(ϕ)n−1y′(ϕ) cosϕ− y(ϕ)n sinϕ = 0 =⇒ n
y′(ϕ)
y(ϕ)

− tanϕ = 0 .

Using the relation (4.26), a representation of the solution is found by (4.25)
in parameter form

y′(ϕ) = tan(ϕ)x′(ϕ), x′(ϕ) = y(ϕ)/n . (4.27)

Here the cases n = 1, 1/2, 0, −1/2, −1 , are of particular interest.
Case 1: n = 0 . The shortest curve x �→ (x, y(x)) ∈ R

2 from (0, 0) to
(x, h(x)) is solution of the variational problem

J(y) =
∫ a

0

(1 + y′(x)2)1/2 dx = min! , y(0) = 0 , y(a) = h(a) .

By (4.24) we obtain y′(x) = α constant hence y(x) = αx + β where β =
0 because of the initial condition. The transversality condition is here an
orthogonality condition for the tangents of (x, y(x)) and (x, h(x)):

0 = q + qy′(x)(h′(x) − y′(x))

=
[
(1 + y′(x)2)1/2 +

1
2

2y′(x)
(1 + y′(x)2)1/2

(h′(x) − y′(x))
]

x=a
.= (1 + y′(x)2) + y′(x)h′(x) − y′(x)2

∣∣∣
x=a

.

Accordingly, y′(a∗) = −1/h′(a∗) hence
[
1, − 1

h′(a∗)

][
1

h′(a∗)

]
= 0

for the both tangents.
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Case 2: n = 1 . Minimal surface of revolution between two coaxial annuli
of radius a resp. b and distance β − α:

J(y) = 2π
∫ β

α

y(1 + (y′)2)1/2dx = min! , y(α) = a , y(β) = b .

Euler’s equation (4.2) becomes 1+y′(x)2 = y y′′ and the Dubois-Reymond

condition (4.26) yields by derivation the differential equation of the catenary
curve

y(x) = c[1 + y′(x)2]1/2 =⇒ y′′(x) = c−1[1 + y′(x)2]1/2 .

Also, for n = 1 , we obtain directly from (4.24)

y′ =
(
y2 − c2

c2

)1/2

=⇒ dx =
cdy

(y2 − c2)1/2

and then, by consulting some formula collection,

f(x) :=
x+ d

c
= ln

[
y + (y2 − c2)1/2

c

]
=⇒ (c exp f(x) − y)2 = y2 − c2

or

c2e2f(x) − 2cyef(x) + y2 = y2 − c2 =⇒ cef(x) − 2y + ce−f(x) = 0

hence also the catenary y(x) = c cosh
(
(x+d)/c

)
. If especially α = −L, β = L

and a = b then d = 0 by symmetry and furthermore the right boundary
condition

a

c
=

a

L
· L
c

= cosh
(
L

c

)
=⇒ a

L
· ξ = cosh(ξ) .

is obtained. The straight line to the left and the curve to the right may have
zero, one, or two intersection points and the slope a/L must be sufficiently
small in order that they have at least one intersection point.

Case 3: n = −1/2 . Brachistochrone problem (Greek: shortest time). A
bead shall move on a wire from (0, 0) to (a, b) as fast as possible under gravity
g without friction. Let the y-axis point to “below” for simplicity. The law of
conservation of energy supplies

1
2
mv2 = mg y(x) =⇒ v(x) =

√
2gy(x) ,

for the velocity v(x) at point (x, y(x)). The length s(x) of the unknown tra-
jectory satisfies

ds(x)
dx

=
√

1 + y′(x)2 =⇒ v(x(t)) =
ds(x(t))

dt
=

ds

dx
· dx(t)

dt

where the parameter t denotes time. Together
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dx(t)
dt

=

√
2gy(x(t))

1 + y′(x(t))2
=⇒ dt(x)

dx
=

√
1 + y′(x)2√

2gy(x)
,

since x(t) increases strictly monotone. Now we obtain the extremal problem

J(y) =
∫ a

0

[
1 + y′(x)2

2gy(x)

]1/2

dx = min!

for operational time. However this integral has a singularity at the point x = 0
whence the existence of a solution can be proved in full accuracy only by using
results of Lebesgue Theory; cf. (Kosmol). Now, by (4.24) for n = −1/2

y = 2κ cos2 ϕ = κ(1 + cos(2ϕ)) = κ(1 + cos(ψ))

where 2ϕ = ψ and by (4.27)

x′(ϕ) = −2ỹ(ϕ) = −2κ(1 + cos(2ϕ))
x(ϕ) = γ − κ(2ϕ+ sin(2ϕ)) = γ − κ(ψ + sin(ψ)) .

Altogether, we obtain the solution in parameter form as

(x(ψ), y(ψ)) =
(
γ − κ(ψ + sin(ψ)), κ(1 + cos(ψ))

)
.

For κ = −� < 0 and ψ = ϕ + π this is the equation of an orthocycloid which
has a vertex in (x, y) = (0, 0) for ϕ = 0 and γ = −�π, and passes moreover
below the x-axis. Keeping � fixed and changing γ implies that the cycloid is
moved on the x-axis whereas a modification of � leads to an enlargement resp.
diminution of the original cycloid. In other words, a unique extremal exists
here for solution; cf. (Clegg), p. 49; (Kosmol), Sect. 4.2 (Fig. 4.3).

x

y

Figure 4.3. Orthocycloid in brachistochrone

Case 4: Motion in a homogeneous field. In an (x, y)-coordinate system let
a particle of unity mass have kinetic energy T , potential energy U = gy and
total energy E = T + U , hence T = E − U . By the principle of least action
in Jacobi’s form, see Sect. 6.9(f), the trajectory between two points is a
stationary value of the modified integral of action:

∫ s1

s0

√
(E − U) ds =

∫ s1

s0

√
(E − gy) ds .
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But E = const by Example 4.6, and the maximum reachable point on the
y-axis is obviuosly y0 = g/E . After a simple translation and re-notation we
may consider the problem

∫ s1

s0

√
y ds =

∫ b

a

√
y(1 + y′2) dx = min!

By (4.26) and (4.27) we obtain for n = −1/2 immediately

y(ϕ) =
c

cos2 ϕ
, x′(ϕ) =

2c
cos2 ϕ

.

Integration of the second equation and elimination of ϕ yields (x − d)2 =
4c (y − c) which are the well-known trajectory parabolas. Substitution of the
points P1 = (x1, y1) and P2 = (x2, y2) , x1 �= x2 , and ensuing substraction
yields

(x1 − d)2 = 4c (y1 − c)
(x2 − d)2 = 4c (y2 − c) =⇒ d =

1
2
(x1 + x2) − 2c(y1 − y2)

x1 − x2

Substitution in, say, (x1 −d)2 = 4c (y1 − c) yields a quadratic equation for the
parameter c which has two, one or zero solutions in dependence of the points
P1 and P2 . Therefore there exist in this case two, one or zero extremals
through two different points. In the fountain of Figure 4.4 however we solve
Newton’s equations ẍ = 0 , ÿ = −g directly with initial conditions x(0) =
0 , y(0) = 0 , ẋ(0) = cosϕ , ẏ(0) = sinϕ that the initial velocity vector has
unity length and, by this way, the total energy is constant as required above.
After elimination of time we obtain the family of curves as

f(x, y;ϕ) := y +
g x2

2 cos2 ϕ
− x tanϕ = 0 .

The envelope of the family is obtained up to an additive constant by elimina-
tion of the parameter ϕ from the equations

f(x, y;ϕ) = 0 ,
∂

∂ϕ
f(x, y;ϕ) = 0 .

Regarding the limited size of the present volume, we refer to (Clegg) for the
last case n = −1 .

Figure 4.4. Fountain with envelope
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4.2 Control Problems without Constraints

(a) Let 0 < T < ∞ be a fixed terminal time. We seek a state x : [0 , T ] � t �→
x(t) ∈ R

n and a control u : [0 , T ] � t �→ u(t) ∈ R
m such that the pair (x, u)

is a solution of the control problem

J(x, u) = p(x(0), x(T )) +
∫ T

0

q(t, x(t), u(t)) dt = max!

x(t) = x(0) +
∫ t

0

f(s, x(s), u(s)) ds , t ∈ [0 , T ]

0 = r(x(0), x(T )) ∈ R
|r|

(4.28)

where all data shall be continuously F-differentiable in an open neighborhood
of the solution. The differential equation is transformed here into an integral
equation (4.28)(2◦) because it is treated in this form later on. It plays the
role of an equality constraint as well as the boundary conditions (being pos-
sibly nonlinear). Therefore Lagrange multipliers have to be introduced. As
concerns the integral equation they are in fact Riemann-Stieltjes integrals
with an associated function y : [0, T ] � t �→ y(t) ∈ Rn (row vector!), cf. Sect.
12.5, whereas the multipliers belonging to the boundary condition are simple
row vectors z ∈ Rr . In the same way as in the preceding section we obtain a
boundary value problem for the Hamilton function

H(t, x(t), u(t), y(t)) = q(t, x(t), u(t)) + y(t)f(t, x(t), u(t)) , t ∈ [0 , T ] .

As already displayed in Section 3.6, the constraints have to be feasible in
some way. There, it was required for equality constraints that the gradient
is a surjective mapping in optimum. Let X and U be spaces of functions
to be specified later which describe the smoothness of the solution. Then the
above regularity condition corresponds in the present situation to the following
regularity condition:

Definition 4.2. A solution (x∗, u∗) ∈ X × U of the control problem (4.28) is
regular if

∀ (w, c) ∈ X × R
r ∃ (x, v) ∈ X × U :

x(t) − x(0) −
∫ t

0

[
∇xf(x∗, u∗)x+ ∇uf(x∗, u∗)v

]
ds = w , t ∈ (0, T ) ,

∇1r(x∗(0), x∗(T ))x(0) + ∇2r(x∗(0), x∗(T ))x(T ) = c .

The second condition is equivalent to

rank
[
∇1r(x∗(0), x∗(T )) , ∇2r(x∗(0), x∗(T ))

]
= |r| .

Consequently a solution (x∗, u∗) is regular if the linearized boundary problem
has a solution (x, v) in optimum for all right sides (w, c) or, in other words,
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the solution of the linearized problem is controllable. However we may choose
w = 0 without restriction; cf. (Luenberger), p. 256.

Theorem 4.3. Let X = C1([0, T ]; Rn) , U = C1([0, T ]; Rm) , and let
(x∗, u∗) ∈ X ×U be a regular solution of the problem (4.28). Then there exists
a pair (y∗, z∗) ∈ X × R|r| such that the quadruple (x∗, u∗, y∗, z∗) is solution
of the differential-algebraic boundary problem

ẋ(t) = [∇yH]T (t, x, u, y) ∈ R
n

ẏ(t) = − ∇xH(t, x, u, y) ∈ Rn

0 = ∇uH(t, x, u, y) ∈ Rm

0 = r(x(0), x(T )) ∈ R
|r|

y(0) = − ∇1(p+ z r)(x(0), x(T )) ∈ Rn

y(T−) = ∇2(p+ z r)(x(0), x(T )) ∈ Rn

. (4.29)

Obviously, one may also write the costate y(t) as column vector but the
present form is advantageous in later computation and in implementation.
If ∇u∇uH ∈ R

m
m is regular near the solution, the control u(t) ∈ R

m can be
eliminated by ∇uH = 0 at least theoretically and also in many practical cases
(also in the re-entry problem of Sect. 4.5). Then the resulting system is a pure
boundary value problem, and one may try to solve it by a suitable device as,
e.g., the multiple shooting method. The difficulty in this way of procedure
however consists in the computation of an appropriate initial trajectory for
both the state x and the costate y .

Hint to the proof. The proof of this theorem is developed completely in
SUPPLEMENT\chap04b because of its model character. In particular it is shown
that the costate y enjoys the same smoothness as the state x. The Lagrange

function of the problem with equality constraints reads by Sect. 3.6 and Sect.
12.5

L((x, u), y, z) = [p+ z r](x(0), x(T ))

+
∫ T

0

q(x, u) dt+
∫ T

0

dy(t)
[
x(t) − x(0) −

∫ t

0

f(x, u) ds
] (4.30)

where z ∈ R|r| and y ∈ NBV([0, T ]; Rn). The second integral is a Riemann-

Stieltjes integral counting jumps of y; cf. Sect. 12.5. The F-derivative of L
w.r.t. (x, u) and increment (ξ, η) has the form

∇(x,u)L((x, u), y, z)(ξ, η)

= ∇1[p+ z r](x(0), x(T ))ξ(0) + ∇2[p+ z r](x(0), x(T ))ξ(T )

+
∫ T

0

[∇xq ξ + ∇uq η]dt

+
∫ T

0

dy(t)
[
ξ(t) − ξ(0) −

∫ t

0

(∇xf ξ + ∇uf η) ds
]
.
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By Corollary 3.4 there exists a pair (y∗, z∗) ∈ NBV(0, T ) × R|r| such that in
optimum

∀ (ξ, ζ) ∈ X × U : ∇(x,u)L((x∗, u∗), y∗, z∗)(ξ, η) = 0 .

The remaining proof is carried out in four steps by applying partial inte-
gration and the Fundamentallemma 4.1:
1. Step: Choose η = 0; 2. Step: Choose η = 0 and ξ ∈ C1 arbitrary such
that ξ(0) = ξ(T ) = 0; 3. Step: Choose η = 0 and ξ arbitrary such that either
ξ(T ) = 0 or ξ(0) = 0; 4. Step: Choose ξ = 0 and η ∈ U arbitrary.

Corollary 4.2. Suppose that both functions q and f in (4.28) do not depend
explicitely on t then the Hamilton function H is an invariant (first integral)
of the system (4.29), i.e., H(x∗(t), u∗(t), y∗(t)) = constant .

Proof. Cf. Corollary 4.1. By assumption

H(x, u, y) = q(x(t), u(t)) + y(t)f(x(t), u(t))
d

dt
H(x, u, y) = Ht + ∇xHẋ+ ∇uHu̇+ ∇yHẏ = Ht + ∇uHu̇+ (∇xH + ẏ)f .

By assumption also Ht = 0 and, by Theorem 4.3, ∇uH = 0 and ∇xH+ ẏ = 0
at the solution. Therefore Ḣ = 0 and accordingly H = constant in (x∗, u∗, y∗).

��
(b) Free Terminal Time Let the terminal time 0 < T < ∞ be free,

i.e., an independent variable, then a triple (T, x, u) is sought for solution of
the control problem (4.28) where the payoff function p and the boundary
condition r may now depend on T .

Theorem 4.4. Let (T ∗, x∗, u∗) be a solution of the control problem (4.28) with
free terminal time T , and let the assumptions of Theorem 4.3 be fulfilled. Then
there exists a pair (y∗, z∗) ∈ X×R|r| such that the quintuple (T ∗, x∗, u∗, y∗, z∗)
is solution of the differential-algebraic boundary problem (4.29) with additional
transversality condition for T ∗

0 =
∂

∂T
[p+ z r](T, x(0), x(T )) +H(T, x(T ), u(T ), y(T )) ∈ R . (4.31)

Proof. The F-derivative of the Lagrange function L w.r.t. (T, x, u) and in-
crement (Θ, ξ, ζ) has now the form

∇(T,x,u)L((T, x, u), y, z)(Θ, ξ, ζ)

= ∇(x,u)L((T, x, u), y, z)(ξ, ζ) + LT ((T, x, u), y, z)Θ

= ∇(x,u)L((T, x, u), y, z)(ξ, ζ)

+
[
∇2(p+ z r)(x(0), x(T ), T )ẋ(T ) +

∂

∂T
(p+ z r)(x(0), x(T ), T )

]
Θ

+

[
q(T, x, u) +

(
y(T ) − y(T−)

)
[
x(T ) − x(0) −

∫ T

0

f(x, u)dt

]]
Θ .
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This term must disappear in optimum for all (Θ, ξ, ζ) as necessary condition
for the solution. Because x∗(T ) − x∗(0) −

∫ T∗

0
f(x, u)dt = 0 we obtain by this

way the following additional necessary condition where ẋ = f(x, u)

0 = ∇2[p+ z r](x(0), x(T ), T )f(T, x(T ), u(T ))

+
∂

∂T
[p+ z r](x(0), x(T ), T ) + q(T, x(T ), u(T )) .

Substitution of ∇2 . . . = y(T−) yields the assertion. ��
An independent terminal time T may also be introduced as a new de-

pendent variable T = x̃n+1(s) , ˙̃xn+1(s) = 0 , or as an independent control
parameter. In the latter case e.g. the substitution t = T s yields

x(t) = x̃(s) ,
d

dt
x(t) =

1
T

d

ds
x̃(s) .

If we now write x instead x̃ and u instead ũ again, we obtain by (4.28) a
modified problem with fixed terminal time 1 and independent variable s,

J(T, x, u) = p(T, x(0), x(1)) + T

∫ 1

0

q(Ts, x(s), u(s)) ds = max!

x(s) = x(0) + T

∫ s

0

f(Tσ, x(σ), u(σ)) dσ , s ∈ [0 , 1]

0 = r(T, x(0), x(1))

. (4.32)

In this modified problem, T is a control parameter which underlies no longer
any restriction.

(c) The Free Lagrange Multipliers z ∈ R|r| rule the distribution of
the boundary conditions onto the both combined boundary problems, namely
for the state x

ẋ(t) = [∇yH]T (t, x, u, y) ∈ R
n

0 = r(x(0), x(T )) ∈ R
|r| ,

(4.33)

and for the costate y

ẏ(t) = − ∇xH(t, x, u, y)] ∈ Rn

y(0) = − ∇1(p+ z r)(x(0), x(T )) ∈ Rn

y(T ) = ∇2(p+ z r)(x(0), x(T )) ∈ Rn .

(4.34)

Let (x∗, u∗) be a unique regular solution of the problem (4.28), then the matrix
[
∇1r(x(0), x(T )) , ∇2r(x(0), x(T ))

]

must have full rank |r| by the regularity condition in Definition 4.2. We con-
sider the following simple special cases where n = 2 and p = 0:
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Case 1: x1(0) = a1 , x2(0) = a2, i.e., x(0) fixed, x(T ) free,
then, where z = [z1, z2] ∈ R2 are free,

r(x(0), x(T )) :=
[
x1(0) − a1

x2(0) − a2

]
=
[

0
0

]
,

∇1r(x(0), x(T )) =
[

1 0
0 1

]
, ∇2r(x(0), x(T )) =

[
0 0
0 0

]
,

i.e., y(0) = z∇1r = [z1, z2] free, y(T ) = z∇2r = [0, 0] fixed.
Case 2: x1(0) = a1 , x2(T ) = b2 , x2(0) and x1(T ) free,

then in the same way

r(x(0), x(T )) :=
[
x1(0) − a1

x2(T ) − b2

]
=
[

0
0

]
,

∇1r(x(0), x(T )) =
[

1 0
0 0

]
, ∇2r(x(0), x(T )) =

[
0 0
0 1

]
,

y(0) = z∇1r = [z1, 0] , y(T ) = z∇2r = [0, z2] .

i.e., y1(0) , y2(T ) free, y2(0) = y1(T ) = 0 fixed.
Case 3: x1(T ) = b1 , x2(T ) = b2 , i.e., x(0) free.

r(x(0), x(T )) :=
[
x1(T ) − b1
x2(T ) − b2

]
=
[

0
0

]
,

∇1r(x(0), x(T )) =
[

0 0
0 0

]
, ∇2r(x(0), x(T )) =

[
1 0
0 1

]
,

y(0) = z∇1r = [0, 0] , y(T ) = z∇2r = [z1 , z2]

i.e., y(0) = 0 fixed, y(T ) free.
In each case we so obtain four boundary conditions for four differential

equations as a necessary condition for a unique solution. The boundary con-
ditions have to be filled up properly by zeros in the case where |r| < n ;
thereafter one may proceed in the same way as above.

(d) The Costate y ∈ Rn is also called shadow price ; cf. Sect. 3.3(h). We
consider a simple problem with fixed terminal time T to study its role in a
control problem more properly:

J(x, u) = p(x(T )) +
∫ T

0

q(t, x, u) dt = max!

ẋ = f(t, x, u) , x(0) = a ∈ R ,

(4.35)
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and make the following assumption:

Assumption 4.1. (1◦) Let (x∗, u∗) be a unique regular solution.
(2◦) For all τ ∈ (0 , T ) , let (4.35) be uniquely solvable in a neighborhood U of
x∗(τ) for t ∈ [τ, T ].
(3◦) For all solutions of (2◦) let the optimal control be a function of the optimal
state (feedback control).

Let (x, u) be solution of the partial problem in the segment [τ, T ],

J(x, u) = p(x(T )) +
∫ T

τ

q(t, x, u) dt = max!

ẋ = f(t, x, u) , τ ≤ t ≤ T , x(τ) = x∗(τ) .
(4.36)

Then (x, u) coincides with the optimal solution (x∗, u∗) on the interval [τ, T ]
(principle of optimality), and the profit function

V (τ, x(τ)) = p(x(T )) +
∫ T

τ

q(t, x, u(x)) dt

is a function of τ and x(τ) in U . Applying Leibniz’ rule

dV

dτ
(τ, x(τ)) = Vτ (τ, x(τ)) + ∇xV (τ, x(τ)) f(τ, x(τ), u(τ, x(τ)))

= −q(τ, x(τ), u(τ, x(τ))) ;

hence — writing again t instead τ

Vt(t, x(t))+∇xV (t, x(t)) f(t, x(t), u(t, x(t)))+q(t, x(t), u(t, x(t))) = 0 . (4.37)

Now we set
y(t) = ∇xV (t, x(t)) , (4.38)

then y(T ) = ∇p(x(T )) and by (4.37) and permutation of the derivatives w.r.t.
t and x

ẏ = fT ∇x∇xV +
∂

∂t
∇xV (t, x(t)) = fT ∇x∇xV + ∇x (−∇xV f − q)

= fT ∇x∇xV − fT ∇x∇xV − ∇xV∇xf − ∇xq = −y∇xf − ∇xq .

Then, applying the Hamilton function H = q + y f , y is solution of the
terminal value problem

ẏ = −∇xH(t, x(t), u(t), y(t)) , y(T ) = ∇xp(T, x(T )) ,

and the notation (4.38) is justified.
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(e) Maximum Principle The profit function V of the problem (4.35)
satisfies

Vt(t, x∗(t)) + ∇xV (x∗(t)) f(t, x∗(t), u∗(t)) + q(t, x∗(t), u∗(t)) = 0 (4.39)

under Assumption 4.1 by the above result. Moreover, the principle of optimal-
ity does hold, namely that an optimal solution is also optimal on subintervals,

p(x∗(T )) +
∫ T

t

q(s, x∗(s), u(s)) ds

≤ p(x∗(T )) +
∫ T

t

q(s, x∗(s), u∗(s)) ds = V (t, x∗(t)) ,
(4.40)

0 ≤ t ≤ T . The relation

Vt(t, x∗(t)) + ∇xV (x∗(t)) f(t, x∗(t), u(t)) + q(t, x∗(t), u(t)) ≤ 0 (4.41)

can be derived from this inequality by passing to the limit. Equation (4.39)
and (4.41) supply together — without argument t

Vt(x∗) + ∇xV (x∗) f(x∗, u) + q(t, x∗, u)
≤ Vt(x∗) + ∇xV (x∗) f(x∗, u∗) + q(x∗, u∗) .

As an inference to this relation we obtain on the one side the functional
equation

0 = V ∗
t (t, x(t)) + maxu

{
q(t, x(t), u) + ∇xV

∗(t, x(t)) f(t, x(t), u)
}

u∗(t) = arg maxu

{
q(t, x(t), u) + ∇xV

∗(t, x(t)) f(t, x(t), u)
}

named after Hamilton-Jacobi-Bellman and, on the other side the max-
imum principle of Pontrjagin by applying (4.38) and the Hamiltonian
H ,

H(t, x∗(t), u∗(t), y∗(t)) = maxu H(t, x∗(t), u, y∗(t)) , 0 ≤ t ≤ T . (4.42)

Example 4.7. To give an econometrical interpretation of the problem (4.35),
let

x(t) ∈ R capital of a company
u(t) ∈ R corporate policy
J(x, u) planned earnings, in period [0, T ]
q(t, x, u) growth rate of expected earnings
f(t, x, u) capital growth rate
y(t) shadow price
H = q + y f total growth rate, i.e., growth rate of total assets

(total assets = accumulated dividends + capital assets)
ẏ(t) inflation rate .
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The optimal political solution maximizes both earnings and total growth ac-
cording to Pontrjagin’s maximum principle. But for this occurrence the
shadow price must be known.

Example 4.8. The linear-quadratic control problem, also called state regulator
problem is one of the most popular examples, in a similar way as the corre-
sponding problem in finite-dimensional optimization, see Sect. 3.4. Here, it
can even be shown by solving the well-known Ricatti equation that the en-
tire problem is equivalent to a single linear differential system for the state
x :

J(x, u) = x(T )TPx(T ) +
1
2

∫ T

0

[
xTQ(t)x+ uTR(t)u

]
dt = min!

ẋ = A(t)x+B(t)u ∈ R
n , x(0) = a .

(4.43)

The matrices Q(t) , R(t) shall be symmetric and positive definite, and the
control u(t) ∈ R

m is commonly assumed to be unconstrained hence smooth.
Introducing time-dependent “Lagrange multiplier” y(t) ∈ R

n , two alterna-
tive problems may be formulated by means of the Lagrange function

L(x, u, y) = J(x, u) +
∫ T

0

y(t)T
[
− ẋ+A(t)x+B(t)u

]
dt (4.44)

and the associated Hamiltonian

H(x, u, y) =
1
2
[
xTQ(t)x+ uTR(t)u

]
+ yT

[
A(t)x+B(t)u

]
.

(1◦) Find a triple (x∗, u∗, y∗) such that x(0) = a and

L(x∗, u∗, y∗) = maxy minx,u L(x, u, y) . (4.45)

(2◦) Find (x∗, u∗, y∗) such that x(0) = a and

L(x∗, u∗, y∗) = maxy L(x, u, y)
∇xL(x∗, u∗, y∗) = 0 , ∇uL(x∗, u∗, y∗) = 0 .

(4.46)

For the solution, three different accesses are possible:
Case 1: Differential-algebraic problem using the costate equations,

ẋ = A(t)x+B(t)u , ẏ = −Q(t)x−AT (t)y ,
x(0) = a , y(T ) = Px(T ) , R(t)u+BT (t)y = 0 .

(4.47)

The boundary value problem follows by substituting u = −R(t)−1B(t)T y (no
feed-back control).
Case 2: Dynamic optimization approach. By using (4.38), i.e.,
y(t) = ∇xV (t, x(t)) , we obtain u = −R−1BTVx , and the Hamilton-Jacobi-

Bellman equation (4.37) reads
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Vt + Vx(Ax+Bu) +
1
2
(xTQx+ uTRu) = 0 .

Substitution for u yields

0 = Vt + VxAx− VxBR
−1BTVx +

1
2
[
xTQx+ VxBR

−1RR−1BTVx

]

= Vt + VxAx+
1
2
xTQx− 1

2
VxBR

−1BTVx .
(4.48)

This equation happens to have a product solution of the form V (t) =
xT (t)S(t)x(t)/2 where V (T ) = x(T )TS(T )x(T )/2 . The matrix S(t) ∈ R

n
n

is symmetric without loss of generality since always xTSx = xT (S + ST )x/2.
Substitution into (4.48) yields

0 =
1
2
xT [Ṡ + 2SA− SBR−1BTS +Q]x

and by consequence the matrix Riccati equation

Ṡ + 2SA− SBR−1BTS +Q = 0 , S(T ) = P

(the simple Riccati equation reads ẏ + ay + by2 = c). Let S be a solution
of this equation and insert Vx = Sx into u once more then u = −R−1BTSx
is a feedback control and the state x is a solution of the linear initial value
problem ẋ = [A−BR−1BTS]x , x(0) = a .
Case 3: Dual problem. By partial integration we obtain from (4.44)

L(x, u, y) = x(T )TPx(T ) +
1
2

∫ T

0

[
xTQx+ uTRu+ 2yT (Ax+Bu) + 2ẏTx

]

− y(t)x(t)
∣∣∣
T

0
,

y(T ) = Px(T ) . Regarding (4.45), a substitution of (4.47) into (4.44) yields
the dual problem L(x, u; y) = max! where

L(x, u, y)

= y(T )TP−1y(T ) +
1
2

∫ T

0

[
(ẏ +Ay)TQ−1(ẏ +Ay) + yTBR−1BT y

]
dt

+
∫ T

0

[y(t)T ẋ(t) + ẏTx(t)] dt− y(t)x(t)
∣∣∣
T

0

= y(T )TP−1y(T ) +
1
2

∫ T

0

[
(ẏ +Ay)TQ−1(ẏ +Ay) + yTBR−1BT y

]
dt

if P regular (Y (T ) = 0 if P = 0). This problem is solved in the best way by
introducing a new control u = ẏ without constraints.
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4.3 Control Problems with Constraints

(a) The control u is often a bounded resource in technical applications, i.e.,
it is allowed to vary only in a bounded domain. Let for instance a vehicle
drive on a straight line from a point a to a point b as fast as possible. Then
it moves at first with maximum positive acceleration and then with maxi-
mum negative acceleration, and only the calculation of the switching point is
of interest. This is a typical example of the frequently appearing bang-bang
control where the optimum u takes its values always on the boundary of the
feasible domain. This implies however normally that u has jumping points,
i.e., becomes discontinuous.

Let us first consider a control problem where, besides the boundary value
problem, no constraints on the state variables x appear at all, but the re-
strictions on the control u are rather general formulated. X and U are again
Banach spaces that are specified instantly as well as the set of possible con-
trols Ω .

J(x, u) = p(x(T )) +
∫ T

0

q(t, x(t), u(t), t)dt = max!

x(t) = x(0) +
∫ t

0

f(t, x(s), u(s), s)ds, t ∈ [0, T ],

0 = r(x(T )), r : R
n → R

|r|, x ∈ X , u ∈ U ,

∀ t ∈ [0, T ] : u(t) ∈ Ω ⊂ R
m.

(4.49)

Theorem 4.5. (Werner) For the problem (4.49) suppose that
(1◦) X = W1

∞([0, T ]; Rm) , U = L∞([0, T ]; Rn) , see Sect. 12.5,
(2◦) f : [0, T ] × R

n × R
m → R

m , p : R
n → R , q : [0, T ] × R

n × R
m → R ,

r : R
n → R

r are continuously Fréchet-differentiable,
(3◦) (x∗, u∗) is a local solution,
(4◦) Ω nonempty, convex and closed,
(5◦) rank∇r(x∗(T )) = |r|.
Then there exists a λ ≥ 0 , a y ∈ W 1,∞

n [0, T ] and z ∈ Rk with (λ, y) �= 0 and

ẏ(t) = λ∇xq(t, x∗(t), u∗(t)) − y(t)∇x(t, x∗(t), u∗(t)) a.e. on [0, T ]
y(T ) = −λ∇p(x∗(T )) − z∗∇r(x∗(T )) .

For almost all t ∈ [0, T ] one has the local Pontrjagin maximum principle

∀ u ∈ Ω : (y(t)∇uf(t, x∗(t), u∗(t)) − λ∇uq(t, x∗(t), u∗(t))(u− u∗(t)) ≥ 0 .

For practical applications the parameter λ must be prevented to become zero
by a suitable (further) regularity or controllability condition.

We now introduce two notions concerning the smoothness of dependent
variables which suffice in most applications to represent the underlying func-
tion spaces.
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Definition 4.3. Let [a, b] ⊂ R a finite interval and f : [a, b] → R
n.

(1◦) A function f is piecewise continuous, f ∈ Cpc([a, b]; R
n) or briefly

f ∈ Cpc,n[a, b], if f is continuous in [a, b] up to a finite number of points,
and the one-sided limit values exist at these points of exception; in addition f
shall everywhere be continuous from right.
(2◦) A piecewise continuous function f is piecewise continuously differen-

tiable, f ∈ C1
pc,n[a, b] , if the derivative is also piecewise continuous.

Accordingly, a function f ∈ C1
pc,n[a, b] is not necessarily continuous but the

derivative may be defined everywhere if the one-sided derivatives from right
are taken at the jumping points. Moreover, f may have a jumping point at the
right end of the interval of definition. Hence the space C1

pc,n[a, b] corresponds
to the space NBV[a, b] defined in Sect. 12.5 with the restriction that only
a finite number of jumping points is allowed. On the other side, chattering
controls, having an infinite number of jumping points with a cluster point, do
not belong to one of the just introduced function spaces.

Let now 0 < T < ∞ be a fixed terminal time and let

X = C1
pc,n[0, T ] ∩ C[0, T ] the function space of states x ,

U = Cpc,m[0, T ] the function space of controls u .

We seek for a pair (x, u) ∈ X × U of state x and control u being a solution of
the control problem

J(x, u) = p(x(0), x(T )) +
∫ T

0

q(t, x(t), u(t)) dt = max!

x(t) = x(0) +
∫ t

0

f(s, x(s), u(s)) ds , t ∈ [0 , T ]

0 = r(x(0), x(T )) ∈ R
|r|

0 ≤ g(t, x(t), u(t)) ∈ R
|g| , t ∈ [0, T ]

0 ≤ h(t, x(t)) ∈ R
|h| , t ∈ [0, T ]

(4.50)

where all data are continuously F-differentiable. Besides the differential equa-
tion (transformed into an integral equation) and the boundary conditions (be-
ing independent of u), no further equality constraints are commonly assigned
to the problem. The inequality constraints are separated into two different
types, one depending explicitely on the control and the other not but just
the latter causes some severe difficulties in proving the existence of solutions
(Hartl).
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When the terminal time T is free then t = Ts is substituted again and the
modified problem

J(x, u) = p(T, x(0), x(T )) + T

∫ 1

0

q(Ts, x(s), u(s)) ds = max!

x(s) = x(0) + T

∫ s

0

f(Tσ, x(σ), u(σ)) dσ , s ∈ [0 , 1]

0 = r(T, x(0), x(T )) ∈ R
|r|

0 ≤ g(Ts, x(s), u(s)) ∈ R
|g|, s ∈ [0 , 1]

0 ≤ h(Ts, x(s)) ∈ R
|h|, s ∈ [0 , 1]

(4.51)

is considered where the operation horizon T has now become an independent
variable.

(b) Necessary Conditions Reconsider once more the unconstrained
problem with regard to Definition 4.3.

Theorem 4.6. Let g = 0 and h = 0, and let (x∗, u∗) ∈ X × U be a reg-
ular solution of (4.50) then Theorem 4.3 does hold at all points where u is
continuous.

Proof. Let 0 < t1 < . . . < tN−1 be the jumping points of u∗ and let tN = T .
By the proof of Theorem 4.3, the costate y∗ may have jumping points at
ti, i = 1 : N whereas t = 0 is not a jumping point. Consider for the moment
a general function Φ, then partial integration yields

∫ T

0

dy∗(t)Φ(t) dt =
N∑

i=1

[ ∫ ti

ti−1

dy∗(t)Φ(t) dt+ [y∗(ti) − y∗(ti−)]Φ(ti)
]
dt

=
N∑

i=1

[
y∗(ti−)Φ(ti) − y∗(ti−1)Φ(ti−1) −

∫ ti

ti−1

y∗(t)Φ̇(t) dt

+[y∗(ti) − y∗(ti−)]Φ(ti)
]

=
N∑

i=1

[
−y∗(ti−1)Φ(ti−1) −

∫ ti−

ti−1

y∗(t)Φ̇(t) dt+ y∗(ti)Φ(ti)

]

= y∗(T )Φ(T )0 ≤ y(t) ∈ Rn , −
N∑

i=1

∫ ti

ti−1

y∗(t)Φ̇(t) dt .

As a consequence, the values of the costate y∗ at jumping points are canceled
out in the Riemann-Stieltjes integral if partial integration is applied as in
the proof of Theorem 4.3. The differential equations of this Theorem hold in
those partial intervals where u∗ is continuous. ��

Let H(t, x, u, y) = q(t, x, u) + y f(t, x, y) be again the Hamiltonian of the
problem (4.50) again. Let K = {f ∈ C[a, b] , f(x) ≥ 0} be the order cone in
C[a, b] , then
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Kd = {y ∈ Cd(a, b) , y(f) =
∫ b

a
f(x) dv(x) ,

v ∈ BV(a, b) weakly monotone increasing}

is the dual cone; cf. Example 1.24(3◦). Regarding Example 12.3(2◦) we intro-
duce two Lagrange functions L̃ and L to the problem (4.50):

L̃((x, u), y, z, v, w) = [p+ z r](x(0), x(T ))

+
∫ T

0

q(x, u) dt+
∫ T

0

[dv g(x, u) + dw h(x)]

+
∫ T

0

dy(t)
[
x(t) − x(0) −

∫ t

0

f(x, u) ds
]

L(t, x, u, y, v̇, ẇ) = H(t, x, u, y) + v̇ g(t, x, u) + ẇ h(t, x)

(4.52)

where y(t) ∈ Rn , 0 ≤ v(t) ∈ R|g| , 0 ≤ w(t) ∈ R|h| are row vectors and all
integrals over the operational interval [0, T ] are again Riemann-Stieltjes

integrals by Sect. 12.5. Then we obtain a simple analogue to Theorem 3.2:

Theorem 4.7. Let the following assumptions be fulfilled:

(1◦) There exists

(x∗, u∗, y∗, v∗, w∗, z∗) ∈ X×U×C1
pc,n[0, T ]×Cpc,|g|[0, T ]×Cpc,|h|[0, T ]×R|r|

where v∗ and w∗ are wakly monotone increasing and

(x∗, u∗) = arg max(x,u)∈X×U L̃((x, u), y∗, z∗, v∗, w∗) . (4.53)

(2◦) The pair (x∗, u∗) satisfies all constraints.

(3◦)
∫ T

0

v∗(t) g(t, x∗, u∗) dt = 0 ( complementarity condition ).

(4◦)
∫ T

0

w∗(t)h(t, x∗) dt = 0 ( complementarity condition ).

Then (x∗, u∗) is a solution of (4.50).

This result is to be understood as basic approach for further studies. The
proof of existence for the occuring Lagrange multipliers takes a large space
in control theory. Frequently the requirements on smoothnes have to weakened
considerably here; and, moreover, the system has to satisfy rather complicated
criteria of regularity. We will not pursue the theory of existence further, the
less so since many results are not yet proved in full detail; cf. (Hartl).

Lemma 4.3. Adopt the assumptions of Theorem 4.7 and suppose in addition
that v ∈ C1

pc,|g|[0, T ] , w ∈ C1
pc,|h|[0, T ] . Then (x∗, u∗, y∗, v̇∗, ẇ∗, z∗) is solution

of the following system at all points t where none of the components of this
six-tuple has a jump,
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ẋ(t) = [∇yH]T (t, x, u, y)
ẏ(t) = − ∇xL(t, x, u, y, v̇, ẇ)

0 = ∇uL(t, x, u, y, v̇, ẇ)
0 = r(x(0), x(T ))

y(0) = − ∇1(p+ z r)(x(0), x(T ))
y(T−) = ∇2(p+ z r)(x(0), x(T ))

0 = v̇(t) g(t, x, u)
0 = ẇ(t)h(t, x)
0 ≤ v̇(t) , 0 ≤ ẇ(t) .

(4.54)

Proof see SUPPLEMENT\chap04b.
The proof is carried out in the same way as the proof of Theorem 4.3 by a

two-fold partial integration. Observe that a solution of the system (4.54) is a
stationary point of which the feasibility as well the extremal property has to
be verified. However, many numerical procedures set Lagrange multipliers
automatically equal to zero if the corresponding inequality restriction becomes
inactive, for instance

gi(t, x(t), u(t)) > 0 =⇒ vi(t) = 0 .

In this case, a solution (x, u) of the system (4.54) is feasible w.r.t. the inequal-
ity constraints (at least at those discrete points of the interval [0, T ] which
are used by the algorithm); cf. also Assumption (4◦) of Theorem 3.2.

In the sequel, we write sometimes for brevity f∗[t] = f(t, x∗(t), u∗(t)) etc..
An interval ∅ �= [τ1, τ2] ⊂ [0, T ] is called boundary interval of the constraint
h if at least one component hi of h in [τ1, τ2] is active in optimum:

∃ 1 ≤ i ≤ |h| ∀ t ∈ [τ1, τ2] : h∗i [t] = hi(t, x∗(t)) = 0 .

A boundary interval may consist also of a single point only (contact time).
The costate y∗ has jumpings at the same points as the control u∗ , in normal
case where one condition gi(t, x, u) ≥ 0 becomes active or inactive. But, in
normal case, the costate y∗ has additional jumpings at those points where a
condition hi(t, x(t)) ≥ 0 becomes active or inactive:

Theorem 4.8. (Hartl), Theorem 4.2. For all t0 < t1 in [0, T ]

y∗(t+1 ) − y∗(t+0 )

= −
∫ t1

t0

[
∇xH

∗[t]dt+ v∗(t)∇xg
∗[t]

]
dt+

∫

(t0,t1]

dw∗(t)∇xh
∗[t],

H∗[t+1 ] −H∗[t+0 ] =
∫ t1

t0

[
H∗

t [t] + v∗(t)g∗t [t]
]
dt−

∫

(t0,t1]

dw∗(t)h∗t [t] .

In consequence, the costate y∗ may have a point of discontinuity at an arbi-
trary point τ of a boundary interval which then satisfies the following jump
condition: There exists a vector c(τ) such that
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y∗(τ−) = y∗(τ+) + c(τ)∇xh(τ, x∗(τ))

H∗[τ−] = H∗[τ+] − c(τ)
∂

∂t
h∗[τ ] ;

cf. (Hartl), Theorem 4.1. For the sake of completeness we give finally also a
sufficient condition for an optimum:

Theorem 4.9. (Hartl), Theorem 8.1. Let (x∗, u∗) be a feasible pair of (4.50).
Let there exist further a y ∈ C1

pc,n[0, T ] such that for all feasible pairs (x, u) :
(1◦) H(t, x∗(t), u∗(t), y(t)) − H(t, x(t), u(t), y(t)) ≥ ẏ(t)[x(t) − x∗(t)] a.e. in
[0, T ] ,
(2◦) [y(t−) − y(t+)][x(t) − x∗(t)] ≥ 0 at every jumping point of y ,
(3◦) the transversality condition does hold,

y(0)[x(0) − x∗(0)] ≥ p(x(0), x(T )) − p(x∗(0), x∗(T ))

y(T )[x(T ) − x∗(T )] ≥ p(x(0), x(T )) − p(x∗(0), x∗(T )) .

Then (x∗, u∗) is optimal.

Generically, the above problems are not considered with additional equality
restrictions h(t, x, u) = 0 .

(c) The Maximum Principle of Pontrjagin

u∗(t) = arg maxu∈Ω(t,x∗(t)) H(t, x∗(t), u, y∗(t)) , a.e. in [0, T ] ,

where Ω(t, x∗(t)) = {u ∈ R
m; g(t, x∗(t), u) ≥ 0} , is also not yet proved in

full strength for the above constellation but is generally adopted as correct;
cf. (Hartl). The following comment shall be understood only as consideration
of plausibility:

By the principle of optimality and under assumptions to be specified more

exactly, a general function Φ and J(u) =
∫ T

0

Φ(t, u(t)) dt may satisfy

J(u∗) = max

{∫ T

0

Φ(t, u(t)) dt , u(t) ∈ Ω(t)

}

=
∫ T

0

maxu(t)∈Ω(t) Φ(t, u(t)) dt ,

(4.55)

which constitutes in same way an inversion of the well-known majorant the-
orem for definite integrals. If now all components besides u are already in
optimum then (4.53) is equivalent to

L(x∗, u∗, y∗, z∗, v∗, w∗)

= max
{∫ T

0

q(x∗, u) dt+
∫ T

0

dy∗(t)
[
x∗(t) − x∗(0) −

∫ t

0

f(x∗, u) ds
]
,

u(t) ∈ Ω(t, x∗(t))
}

= max

{∫ T

0

q(x∗, u) dt−
∫ T

0

dy∗(t)
∫ t

0

f(x∗, u) ds , u(t) ∈ Ω(t, x∗(t))

}
,
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since the constant terms may be dropped. Partial integration yields in the
same way as above by applying (4.55)

L(x∗, u∗, y∗, z∗, v∗, w∗)

= max

{∫ T

0

q(x∗, u) dt+
∫ T

0

y∗(t) f(x∗, u) dt , u(t) ∈ Ω(t, x∗(t))

}

= max

{∫ T

0

H(x∗, u, y∗) dt , u(t) ∈ Ω(t, x∗(t))

}

=
∫ T

0

maxu∈Ω(t,x∗(t)) H(x∗, u, y∗) dt =
∫ T

0

H(x∗, u∗, y∗) dt .

References: (Hartl) and the references given therein.

4.4 Examples

(a) Numerical Approach The differential-algebraic boundary value prob-
lems (4.29) and (4.54) are in general difficult to solve.

Hint:

The simple control problem (4.29) contains no constraints of the con-
trol u which then is normally smooth. If the control u(t) ∈ R

m is un-
constrained and smooth, it (or m other dependent variables) can (at
least theoretically) be eliminated by means of the equation ∇uH = 0 .
This equation then disappears in the system (4.29) and the result
is a pure nonlinear boundary value problem. After having found a
suitable start trajectory, this problem can be solved by Newton’s
method and, e.g., the box scheme, cf. Sect. 2.5(a).

Experiments with the gradient method after (Dyer) are less encouraging. In
more general problems of the form (4.50), successes are perhaps reached in the
simplest way if the costate y is dropped entirely and the problem is discretized
in its original form:

Numerical Solution

(1◦) An introduction of the costate y is dispensed with entirely.
(2◦) A pair (x, u) of solution is computed where state x and control u are

equally ranked.
(3◦) The intervall [0, T ] is partitioned uniformly, x and u are replaced by step

functions; the integrals are replaced by the composite trapezoidal rule.
(4◦) The resulting finite-dimensional optimization problem is solved by the

method sqp.m of sequential quadratic programming; cf. Sect. 3.5. In this
method several parameter and weights appear which must adapted care-
fully to the individual problem.
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In the sequel all differential equations are transformed into integral equa-
tions. The interval [0, T ] is uniformly partitioned into n subintervals and the
composed trapezoidal rule is applied to discretize each integral. For instance,
the scalar differential equation x′ = f(t, x, u) is transposed into an integral,

x(t) = x(0) +
∫ t

0

f(t, x, u) dt ,

X − x(0) e− 1
T

EF (X,U) = 0 , e = [1] ∈ R
n+1 , X = [x1, . . . , xn+1]T etc..

If, e.g., n = 5 , the (6, 6)-matrix E has the form

E =
1
2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
1 1 0 0 0 0
1 2 1 0 0 0
1 2 2 1 0 0
1 2 2 2 1 0
1 2 2 2 2 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The first row of E must be canceled in the case where x(0) is not specified.
This simple approximation provides acceptable results in many cases and may
serve for computation of suitable starting values in others. For demonstration,
some well-known examples of the literature are solved below. If the terminal
time T is free then we proceed as proposed in (4.32) and transform the problem
into a problem with fixed terminal time in the interval [0, 1] and additional
free control parameter T .

(b) Examples Let H be always the Hamilton function.

Example 4.9. (Thrust problem) (Bryson), p. 59. A spacecraft of mass m with
thrust force ma(t) in direction of its body axis is accelerated in an inertial
(x1, x2)-coordinate system (Fig. 4.5).
Notations: (x1(t), x2(t)) position of the ship, x3(t) velocity in x1-direction,
x4(t) velocity in x2-direction, u(t) angle between the ships axis and x1-
direction (control).

The ship shall be transferred to a path parallel to the x1-axis at height h in
fixed time T such that the horizontal velocity x3(T ) becomes maximum. The
final x1-coordinate does not play any role. Obviously the attainable height
depends on the given operational time T .
Problem: (normalized)

J(x, u) = x3(T ) = max!, x(0) = 0 , x2(T ) = h , x4(T ) = 0 ,
ẋ1 = x3(t) , ẋ2 = x4(t) , ẋ3 = a(t) cos(u(t)) , ẋ4 = a(t) sin(u(t)) .

Hamilton function, costate equations and associated boundary conditions :

H(x, u, y) = y f = y1x3 + y2x4 + y3a(t) cos(u) + y4a(t) sin(u) ,
Hu(x, u, y) = − y3a sin(u) + y4a cosu ,

ẏ1 = 0 , ẏ2 = 0 , ẏ3 = −y1 , ẏ4 = −y2 ,

y1(T ) = 0 , y3(T ) = 1 .
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Special features: Using Hu = 0, sin(u) and cos(u) may expressed by y4. The
results reads, writing x4+i := yi ,

ẋ1 = x3 , ẋ2 = x4 , ẋ3 = a(t)/(1 + x2
8)

1/2 , ẋ4 = a(t)x8/(1 + x2
8)

1/2 ,

ẋ5 = 0 , ẋ6 = 0 , ẋ7 = −x5 , ẋ8 = −x6 .

The problem is solved in KAPITEL04\CONTROL01 by the above recommended
method for T = 2 and h = 0.8, 0.6, 0.4, 0.2 . In KAPITEL04\CONTROL02 the
control u is eliminated and the problem is solved as pure boundary value prob-
lem with the box-scheme and Newton’s method; in KAPITEL04\CONTROL03
the gradient method is used for solution.

Example 4.10. (Orbit problem) (Bryson), p. 66. A spaceship shall be trans-
ferred from a given initial circular orbit with radius r0 to the largest possible
circular orbit where the operational time T is fixed and the thrust is con-
stant. The influence of other celestial bodies is neglected and the ship moves
in mathematical positive angular direction (Fig. 4.6).
Notations: By using polar coordinates (r, ϕ) with (point-shaped) central body
for center, let r(t) radial distance of the ship, u = ṙ radial component of ve-
locity, v = rϕ̇ tangential component of velocity, m(t) mass of the ship, |ṁ(t)|
constant rate of fuel consumption, S = |ṁ(t)|σ thrust, σ a machine constant
[m/s], α(t) thrust angle, γ gravitational constant, M mass of central body,
G = γM , � = |ṁ(t)|/m(0) [1/s] constant, S = � σm(0) . The control α(t) is
the angle between the tangent to the current circular orbit at time t and the
ships axis into flight-direction (local coordinate system). Hence r , ṙ and the
velocity v = rϕ̇ are chosen for dependent variables; cf. Sect. 6.2(f).
Problem:

r(T ) = max! , r(0) = r0 , u(0) = 0 , v(0) =
√
G/r0 ,

u(T ) = 0 , v(T ) =
√
G/r(T ) .

ṙ = u(t) ,

u̇ =
v(t)2

r(t)
− G

r(t)2
+
S(t) sin(α(t))
m(0)(1 − � t)

=
v(t)2

r(t)
− G

r(t)2
+
� σ sin(α(t))

1 − � t
,

v̇ = −u(t) v(t)
r(t)

+
S(t) cos(α(t))
m(0)(1 − � t)

= −u(t) v(t)
r(t)

+
� σ cos(α(t))

1 − � t
.

Reduction to a dimensionless system: The radius r and time t are replaced by
quantities without dimension,

s =
G1/2

r
3/2
0

t , R(s) =
1
r0

r(t) ,

and the second and third equation of motion is multiplied by r20/G . Let κ =
� σ ·r20/G be a constant without dimension then, for U(s) = R′(s) and V (s) =
R(s)ϕ′(s),
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R′ = U , U ′ =
V 2

R
− 1
R2

+ κ
sin(α)
1 − � t

, V ′ = −UV

R
+ κ

cos(α)
1 − � t

.

we write again t instead s, T instead sf = TG1/2/r
3/2
0 , u instead α and

x = [x1, x2, x3]T = [R,U, V ]T .
Transformed problem:

J(x, u) = x1(T ) = max! , ẋ1 = x2(t) ,

ẋ2 =
x2

3(t)
x1(t)

− 1
x2

1(t)
+ κ

sin(u(t))
1 − � t

, ẋ3 = −x2(t)x3(t)
x1(t)

+ κ
cos(u(t))
1 − � t

,

x1(0) = 1 , x2(0) = 0 , x3(0) = 1 , x2(T ) = 0 , x3(T )2x1(T ) − 1 = 0 .

Hamilton function, costate equations and their boundary conditions:

H(x, y, u, t) = y1x2 + y2

[
x2

3

x1
− 1
x2

1

+ κ
sin(u)
1 − � t

]
+ y3

[
κ

cos(u)
1 − � t

− x2x3

x1

]

Hu = κ [y2 cos(u) − y3 sin(u)]
1

1 − � t

ẏ1 =
y2x

2
3

x2
1

− 2y2

x3
1

− y3x2x3

x2
1

, ẏ2 =
y3x3

2x1
− y1 , ẏ3 =

y3x2

x1
− 2y2x3

x1

y1(T ) = 1 + 0.5 y3(T )x1(T )−3/2 .

Special features: Using Hu = 0 , sin(u) and cos(u) may be expressed by y2 and
y3 . The result is, writing x3+i = yi ,

ẋ1 = x2 , ẋ2 =
x2

3

x1
− 1
x2

1

+ κ
x5

(x2
5 + x2

6)1/2(1 − � t)

ẋ3 = κ
x6

(x2
5 + x2

6)1/2(1 − � t)
− x2x3

x1
, ẋ4 =

x2
3x5

x2
1

− 2x5

x3
1

− x2x3x6

x2
1

ẋ5 =
x3x6

x1
− x4 , ẋ6 =

x2x6

x1
− 2x3x5

x1
.

Physical and technical data for a small spacecraft with ion-propulsion engine
after (Bryson) in KAPITEL04\Beispiele\bsp02.

The problem is solved in KAPITEL04\CONTROL01 by the method proposed
in (a); in KAPITEL04\CONTROL02 the control u is eliminated again and the
problem is solved as boundary problem; in KAPITEL04\CONTROL03 the gradient
method is applied.

Example 4.11. (Zermelo’s problem) (Bryson), p. 77. A ship shall travel in
minimum time from a point a = (a1, a2) to a point b = (b1, b2) in an inertial
(x1, x2)-coordinate system (x = (x1, x2)) where the velocity S relative to
water is constant; however there is a strong current flow (Fig. 4.7).
Notations: (x1(t), x2(t)) position of the ship, v1(x) velocity of the current flow
in x1-direction, v2(x) velocity of the current flow in x2-direction, u angle of
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the ship’s axis relative to x1-direction (control).
Problem:

J(T ) = T = min! , x(0) = a , x(T ) = b ,

ẋ1 = S cos(u(t)) + v1(x(t)) , ẋ2 = S sin(u(t)) + v2(x(t)) .

Hamilton function, costate equation (no boundary conditions for y):

H(x, u, y) = y1[S cos(u) + v1(x)] + y2[S sin(u) + v2(x)] + 1
Hu(x, u, y) = − y1 sin(u) + y2 cos(u)

ẏ1 = −y1(v1)x1 − y2(v2)x1 , ẏ2 = −y1(v1)x2 − y2(v2)x2 .

Special features I: H does not depend on t explicitely; hence it is an invariant
of the system (first integral), H = constant on the optimal trajectory, cf.
Corollary 4.2. But H(x(T ), u(T ), y(T )) = 0 follows from the transversality
condition (4.35) for the free terminal time T and thus H(x, u, y) = 0 . Now
by means of H = 0 or Hu = 0 the costate y may be expressed as function of
u. Substitution into one of the costate equations yields then

u̇ = sin2(u)(v2)x1 + sin(u) cos(u)[(v1)x1 − (v2)x2 ] − cos2(u)(v1)x2 .

Special features II: On choosing the substitution t = Ts the unknown terminal
time T is introduced as a new dependent variable;

X3(s) = T , X1(s) = x1(sT ) = x1(sX3(s)) ,
X2(s) = x2(sT ) = x2(sX3(s)) , U(s) = u(sX3(s)) ,

and we obtain a boundary value problem for four unknowns

X ′
3(s) = 0 , X ′

1(s) = ẋ1(sX3) ·X3(s) ,

X ′
2(s) = ẋ2(sX3) ·X3(s) , U ′(s) = u̇(sX3) ·X3(s) .

Writing for simplicity y(s) = [X1,X2,X3, U ] , this boundary problem reads

y′1 = [S cos(y4) + v1(y1, y2)]y3 , y′2 = [S sin(y4) + v2(y1, y2)]y3 , y′3 = 0 ,

y′4 = [sin2(y4)(v2)y1 + sin(y4) cos(y4)((v1)y1 − (v2)y2) − cos2(y4)(v1)y2 ]y3 ,

y1(0) = a1 , y2(0) = a2 , y1(1) = b1 , y2(1) = b1 .

Special features III: The unknown terminal time T can also be introduced
as free variable by the above transformation. Then the transformed problem
reads

J(T ) = T = min! , x(0) = a , x(1) = b ,

x′1(s) = [S cos(u(s)) + v1(x(s))]T , x′2(s) = [S sin(u(s)) + v2(x(s))]T ,

in which form it is solved in KAPITEL04\CONTROL01 by using the program
sqp.m. In KAPITEL04\CONTROL02 the costate variable y is eliminated and
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Newton’s method is applied again. In the considered example, S = 1 and
v = [−S∗x2, 0] is chosen for current velocity where S∗ = S/16 , S/8 , S/4 ,
S/2 , S , 2S ; the straight line-segment connecting the points a and b is chosen
for start trajectory.

Example 4.12. Servo-problem (Burges), p. 281.

T = min! , x(0) = a1 , x′(0) = a2 , x(T ) = x′(T ) = 0 , |u(t)| ≤ 1 ,

ẍ+ aẋ+ ω2x = u , 0 < t < T, a ≥ 0 .

For simplicity we consider the case ω2 = 1 and a = 0 (no damping). The
system is transformed into a system of first order where the unknown terminal
time T is a free control parameter. The resulting system reads

J(T ) = T = min!

X ′
1(s) = T ·X2(s) , X ′

2(s) = T · (U(s) −X1(s)) ,

X1(0) = a1 , X2(0) = a2 , X1(1) = 0 , X2(1) = 0 ,

1 − U(s) ≥ 0 , U(s) − 1 ≥ 0 ,

and is solved in this form.
Special features I: The optimal control is a bang-bang control where u∗(t) =
±1. A switching curve may be computed (shifted sinus functions) above of
which u∗(t) = −1 and below u∗(t) = 1 . By consequence, the trajectory con-
sists in this special case of segments of circles with center (1, 0) resp. (−1, 0),
the change happens at the points of intersection with the switching curve.
Special features II: In Sect. 3.4(a) and 3.5(b), several modifications have been
mentioned to accelerate the methods plqp.m, dlqp.m and sqp.m by suitable
adaption of the matrix H. However, these modifications do not yield here any
advantages in comparison with the choice H = I and, by the way, destroy
the sparsity of the fundamental linear system of equations. On the other side,
the Maratos effect is usually applied near the solution, i.e. if the difference
between old and new result of the iteration becomes sufficiently small. Also
this device does not work here, instead we took for Figure 4.8 twenty steps
without and then twenty steps with Maratos effect; cf. Sect. 3.5(f4).

Example 4.13. (Hartl), p. 204.

J(x, u) =
∫ 3

0

x dt = min! ẋ = u , x(0) = 1, x(3) = 1 , −1 ≤ u ≤ 1 , 0 ≤ x .

H = x+ y u , L = H + v1(1 + u) + v2(1 − u) + wx .

Special features: Using the necessary conditions

Lu = y + v1 − v2 = 0 ,

ẏ = −Lx = −1 − w , y(3) = z , z ∈ R ,

v1 ≥ 0 , v2 ≥ 0 , v1(1 + u) = v2(1 − u) = 0 , w ≥ 0 , w x = 0 ,
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the solution may be computed explicitely:

x∗ =

⎧
⎨
⎩

1 − t
0

t− 2
, u∗ =

⎧
⎨
⎩

−1
0
1

for t ∈

⎧
⎨
⎩

[0, 1)
[1, 2]
(2, 3]

.

Beginning with the interval (1, 2) we obtain the table of mulipliers:

Interval y v1 v2 w

[0, 1) t− 1 1 − t 0 0
[1, 2] 0 0 0 1
(2, 3] t− 2 0 t− 2 0

.

In Figure 4.9 it is averaged over the state x. The optimal control u∗ is a
bang-bang control; the jumps become continually sharper during iteration
but remain always smoothed in some sense which is a natural property of
discretization.

Example 4.14. (Hartl), p. 207.

J(x, u) =
∫ 3

0

e−rtu dt = min! , r ≥ 0 ,

ẋ = u , x(0) = 0 , 0 ≤ u ≤ 3 , x− 1 + (t− 2)2 ≥ 0 .

H = −e−rtu+ yu , L = H + v1u+ v2(3 − u) + w
[
x− 1 + (t− 2)2

]
.

Special features: Using the necessary conditions

ẏ = −Lx = −w , Lu = −e−rt + y + v1 − v2 = 0 ,

v1 ≥ 0 , v2 ≥ 0 , v1u = v2(3 − u) = 0 , w ≥ 0 , w
[
x− 1 + (t− 2)2

]
= 0 ,

y(3) = 0 , y(2−) = y(2+) − c , c ≥ 0 ,

the solution may be computed explicitely again:

x∗ =

⎧
⎨
⎩

0
1 − (t− 2)2

1
, u∗ =

⎧
⎨
⎩

0
2(2 − t)

0
, for t ∈

⎧
⎨
⎩

[0, 1)
[1, 2]
(2, 3]

.

Beginning with the interval (2, 3) we obtain the table of multipliers:

Interval y v1 v2 w
[0, 1) e−r e−rt − e−r 0 0
[1, 2] e−rt 0 0 re−rt

(2, 3] 0 e
−rt 0 0

.

The optimal control makes a sharp jump at t = 1 , hence 200 steps of iteration
are taken for Figure 4.10.
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Example 4.15. (Hartl), p. 208. x = (x1, x2) .

J(x, u) =
∫ 3

0

2x1 dt = min!

ẋ =
[
x2

u

]
, x(0) =

[
2
0

]
, −2 ≤ u ≤ 3 , x1 ≥ α , α ∈ R , α ≤ 0 .

Special features:
Case 1: α ≤ −7 . Solution:

x∗ =
{

2 − t2

−2t , u∗ = −2 , for 0 ≤ t ≤ 3 .

Case 2: −7 < α ≤ 2.5 . In this case there exists a switching time

σ = 3 − 1
4
(56 + 8α)1/2 .

Solution:

x∗1 =
{

2 − t2

2 + t2 + 2σ2 − 4σt , x∗2 =
{

−2t
2(t− 2σ) , u∗ =

{
−2
2 for t ∈

{
[0, σ)
[σ, 3] .

Case 3: −2.5 < α ≤ 0 . There exists a switching time σ and a junction time �
where 0 < σ < � < 3 . This point � is also an entry point into the boundary
curve with the relation

� = 2σ = (4 − 2α)1/2 .

Solution:

x∗1 =
{

2 − t2

2 + t2 + 2σ2 − 4σt , x∗2 =
{

−2t
2(t− 2σ) , u∗ =

{
−2
2 for t ∈

{
[0, σ)
[σ, �] .

In interval (�, 3) we have x1 = α , x2 = 0 , u = 0 .

Example 4.16. (Hartl), p. 210.

∫ 1

0

[
10x2 − u2

]
dt = max! ,

ẋ = x2 − u , x(0) = x(1) = 1 , x(t) ≤ 1.5 .

The state x increases monotonically at first, meets the boundary x = 1.5 at
time t1 = 0.345037 and leaves it again at time t2 = 1 − t1 . The control u is
continuous and “tangential” at the points t1 and t2 because the problem is
regular.
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Example 4.17. Brachistochrone problem, cf. Sect. 4.1(g). Let the x2-axis point
to below. On setting

ẋ1 = (2gx2(t))1/2 cosu(t) , ẋ2 = (2gx2(t))1/2 sinu(t) , (4.56)

the conservation law of energymv(t)2 = 2mgx2(t) is regarded and the problem
reads together with (4.56)

T = min! , x(0) = (0, 0) , x1(T ) = a , 0 < a ,

0 ≤ g(x1, x2) .

The control u is the angle between the tangent of the trajectory and the
x1-axis. Substitution of t = Ts yields the problem

T = min! , x(0) = (0, 0) , x1(1) = a ,

x′1 = T (2gx2(s))1/2 cosu(s) , x′2 = T (2gx2(s))1/2 sinu(s) ,
0 ≤ g(x1, x2) .

The exact solution of the unconstrained problem is computed in (Bryson) and
solved in KAPITEL04\CONTROL03 by the gradient method. In
KAPITEL04\CONTROL01 the constraints

g(x1, x2) = H + 0.5x1 − x2 ≥ 0 , H = 0.1 , 0.15 , 0.2 ,

are chosen as example.
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 4.6. Example 4.10
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Figure 4.13. Example 4.17

References: (Berkowitz), (Bryson), (Craven78), (Craven95), (Dyer),
(Ekeland), (Gelfand), (Gregory), (Hartl), (Kosmol), (Luenberger), (Petrov),
(Teo89), (Teo91).

4.5 On the Reentry Problem

When reentrying into the atmosphere of earth, a spaceship shall bear a thermal
charge as small as possible. We consider a space-ship of Apollo type which
flies from outer space into a circular earth-orbit and the spaceglider X-38

which descends from a circular orbit to a height of 25 km. Both optimization
problems are discretized in the same way as the other examples and solved by
the method sqp_h.m resp. by the method sqp.m in case of the sign restriction
on the flight-angle in X-38.
Simplifications : Ball-shaped earth, point mass model (no attitude dynamics),
symmetric flight (velocity vector in symmetry plane of the craft), no wind.
Notations : Γ gravitational constant [m3/kg], RE radius of earth [m], ME mass
of earth [kg], gE = ΓME/R

2
E gravitational acceleration [m/s2], ωE rotation

velocity of earth [rad/s], �0 air density at sea level [kg/m3], v velocity [m/s],
γ flight path angle [rad], r = RE + h distance to earth’s center [m], h height
above surface of earth [m], A lift [N ] (Newton), W drag [N ], cA lift coefficient
[ ], cW drag coefficient [ ], S wing reference area [m2], M mass of the craft [kg],
g(h) = γM2

E/(RE + h)2 height-dependent gravitational acceleration (earth)
[m/s2], G(h) = M g(h) weight [N ], �(h) height-dependent air density [kg/m3],
α angle of attack [rad], μA bank angle [rad], λ geographic latitude [rad], χ
heading angle [rad], τ geographic longitude [rad].
Transformations : Length: 1 [ft] = 0.3048 [m], weight: 1 [sl] = 14.59 [kg]
(slugs), force: 1[lbs] (pound) = 0.45359[kp].
Constants : Γ = 6.672 · 10−11 [m3/kg s2], RE = 6370320 [m], Γ · ME =
3.98603 · 1014 [m3/s2], gE = 9.806 [m/s2], ωE = 7.292115 · 10−5[rad/s], �0 =
1.225 [kg/m3]. For approximation at height beyond 50 km it is but chosen

�(h) = �1 e
−βh , �1 = 1.3932 [kg/m3] , β = 1.3976 · 10−4 [1/m] .
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The ratio S/m is chosen as follows:

Apollo: S/M = 3.3876 · 10−3 [m2/kg] ,
X-38: S = 21.31 [m2] , M = 9060 [kg] .

The following values are chosen for lift A and drag W :

Typ A W

Apollo S�(h)v2cA(α)/2 S�(h)v2cW (α)/2

X-38 S�(h)v2cA(v)/2 S�(h)v2cW (v)/2

.

For X-38, the values cA and cW are given in tabular form and then are
interpolated quadratically; for Apollo these values are chosen by

cA(α) = 0.6 sin(α) , cW (α) = 1.174 − 0.9 cos(α) .

The angles γ and χ describe the direction of the velocity vector, i.e., the
tangent of the trajectory; γ denotes the angle relative to the local horizontal
plane being positive if the velocity vector points to above. χ describes the
direction of the local horizontal plane of east to north. In Apollo the control
u = α represents the angle between the axis of the cone (pointing to the vertex
(!)) and the tangent of the trajectory. In X-38 the control u = μA is the angle
between lift vector and the vertical plane through the current tangent of the
trajectory.

In Apollo the total heating is minimized and in X-38 the total thermal
flux both at the stagnation point and per unit of area:

Apollo: J(v, h) = 10
∫ T

0

[�(h)]1/2v3 dt

X-38: J(v, h) = 10−4

∫ T

0

[�(h)]1/2v3.15 dt .

Equations of motion for Apollo:

v̇ = −W

M
− g sin γ

γ̇ =
A

M v
+
v cos γ
R

− g cos γ
v

ṙ = v sin γ
−10 −8 −6 −4 −2 0 2 4 6 8 10

−5

0

5

10

surface of earth
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altitude

v

γ

Figure 4.14. Reentry problem
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Equations of motion for X-38:

v̇ = −W

M
− g sin γ

γ̇ =
A cosμ
M v

+
v cos γ
R

− g cos γ
v

+ 2ωE sinχ cosλ

ṙ = v sin γ

χ̇ =
A sinμ
Mv cos γ

+
v cos γ sinχ tanλ

r
− 2ωE tan γ cosχ cosλ+ 2ωE sinλ

λ̇ =
v cos γ cosχ

r

τ̇ =
v cos γ sinχ
r cosλ

.

Operational time: Apollo: T = 225 [s] , X-38: T = 1150 [s] .
Boundary conditions: (γ(0) is especially critical, length in [km], angle in [rad]
(!))
Apollo (Fig. 4.17):

v(0) = 11 , γ(0) = −0.14137167 , h(0) = 121.92 , v(T ) = 8 , h(T ) = 76.2 .

X-38 (Figs. 4.15, 4.16):

v(0) = 7.669 , γ(0) = −0.0025656 , h(0) = 80 ,
χ(0) = 1.9199 , λ(0) = 1.22171 , τ(0) = −0.41888 ,
v(T ) = 1 , h(T ) = 25 , λ(T ) = 2.35584 , τ(T ) = −0.49292 .

Rescaling: v and r are to be rescaled for numerical solution and adapted by
this way to the comparatively small quantities of the appearing angles values:
v = 105ṽ , r = 105r̃E(1 + h̃) , RE = 105R̃E .
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Figure 4.15. Diagr. 1 for X-38 without constraints
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Figure 4.16. Diagr. 2 for X-38 without constraints

The characteristic swinging flight disappears under the sign restriction
γ ≤ 0 and the altitude decreases monotonically.
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Figure 4.17. Diagrams for Apollo, SI units
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In the diagram of the control in Figure 4.17 only the segment between
maximum and minimum value is of physical interest.

The flight path of a reentry problem is extremely sensitive versus ini-
tial conditions at time t = 0 . Also, small modifications of parameters and
constants do strongly affect the control but less strongly the path variables
velocity, height and path angle. The reason may be that the extremals are
very flat in the control for such problems (Grimm). Nevertheless, the control
is here a smooth unbounded variable therefore the problem can also be han-
dled as pure boundary value problem as mentioned at the beginning of Sect.
4.2. The difficult search for a suitable start trajectory is however avoided by
applying the penalty method sqp.m (and a rather coarse discretization); of
course the result of this calculation may be used as such a start trajectory in
alternative methods.

More detailed documentation in KAPITEL04\EXAMPLES\bsp10\bsp11.

References: (Stoer); GESOP Software User Manual. Institut für Flugmechanik
und Flugregelung, Universität Stuttgart, Febr. 2004.

4.6 Hints to the MATLAB programs

KAPITEL04/CONTROL01, Control Problems
Solution by the method sqp.m of KAPITEL03/SECTION_5
demo1.m Masterfile with sqp.m, examples 1--9
demo3.m Reentry problem, Stoer, p. 491, US units, SI units
demo4.m Space craft X-38 without constraints
demo5.m Space craft X-38 with constraints of sign of

attacking angle GAMMA
KAPITEL04/CONTROL02, Control Problem transformed into

Boundary value problem
box.m Box scheme for NEWTON’s method
bsp01.m Thrust problem, control eliminated
bsp02.m Orbit problem, control eliminated
bsp03.m Zermelo’s problem, costate eliminated
demo.m Masterfile for NEWTON’s method
newton.m Globalised NEWTON’s method
KAPITEL04/CONTROL03, Control Problem and Gradient Method
demo1.m Simple example after Dyer-McReynolds, p. 127
demo2.m Brachistochrone, Dyer-McReynolds, p. 128
demo3.m Orbit problem, Bryson-Ho, p.66, Dyer-McReynolds, p.73
demo4a.m Thrust problem Bryson-Ho, sect. 2.4, Start trajectory
demo4b.m Thrust problem Bryson-Ho, dect. 2.4, solution
grad01.m -- grad04.m Gradient method
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The Road as Goal

Everybody knows that the implicit function F (x, y) = y − x2 = 0 may be
written as a single explicit function if x is the path parameter but not if y is
the independent variable. Apparently there is a turning point in the second
case which disappears by re-parametrization. Numerical path following shall
not only pursue an (unknown) path correctly under moderate smoothness
but also pass through possible turning points without difficulties. To this end,
turning points have to be detected and ruled out by change of parameter.
Entirely different is the situation in an implicit curve, say F (x, y) = x y = 0 ,
where two solution branches x = 0 and y = 0 intersect in origin (here). In
pursuing one of the branches one should hunt up the branching point and
verify its topological character. As occasion demands, path following should
take an other direction if “nature” does so, i.e., if stability passes, e.g., from
the trivial branch to an non-trivial branch. So there are various problems
to be studied before a numerical approach may be formulated with hope for
success.

More precisely, let A ∈ R
n

n then the well-known system F (λ, x) := Ax−
λx = 0 has the trivial solution x = 0 ∈ R

n everywhere, i.e., for all λ ∈ R .
However, at certain isolated points on the λ-axis, namely at the eigenvalues
of A, there exist one or more non-trivial solutions in addition to the trivial
one, namely the eigenvectors appertaining to the eigenvalue λ. So not every
phenomenon appearing in nature is continuous as, e.g., the brakes of a bicycle
may demonstrate audibly. The investigation of corresponding situations in
nonlinear systems F (λ, x) = 0 is subject of branching or bifurcation theory.

Besides path following in a smaller second part, this chapter is dedicated
to the theoretical investigation of branching points and branching solutions
as well as their numerical approach. We confine ourselves to some exemplary
cases which are relevant in practice and at which the arising problems may be
studied in sufficient way. Branchings are considered first from a more geomet-
rical point of view and necessary conditions for the existence of singular points
are derived which are checked for sufficiency in the simplest way by numerical
experiments. Then a scaling is introduced being essentially due to (Keller72)
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which represents the key for numerical approach and allows to transform the
problems in a suitable form for application of the Implicit Function Theorem.

For instance, Hopf bifurcation in periodic problems demonstrates im-
pressively how bifurcation theory supplies new solutions which remain “terra
incognita” under the usual assumptions on existence and uniqueness; cf., e.g.,
(Kirchgaessner), (Gekeler89). In some other applications, the results are less
spectacular in comparison with the linearized problem, for instance, if the
solutions are forced to obey strongly restrictive boundary conditions.

The numerical approach departs likewise from the branching point and
must be persuaded frequently to leave the “attractive” trivial solution or not
to return to it during iteration. It shall supply a solution germ from which
a suitable path-following procedure then leads to solutions with acceptable
orders of magnitude.

As in all mathematical problems to be solved numerically, a thorough
investigation of the analytic problem is recommended before discretization
since numerical approximation may alter singularities here or even destroy
them entirely if one does not exercise proper care. To keep the application
open for differential systems, the studies below are made generally in Banach

spaces. Accordingly, in the entire chapter, X , Y and X̃ are Banach spaces and
Xd, Yd resp. X̃d are the associated dual spaces; also, in normal case, X ⊂ Y
hence Yd ⊂ Xd.

Not only for representation as well as for checking of formulas in R
n but

also for implementation (e.g., with Matlab) it reveals to be of advantage
to conceive all elements of any primal space consistently as formal column
vectors and all elements of a dual space as formal row vectors. Dual pairing
〈v, u〉, v ∈ Xd , u ∈ X , then may be written simply as v u in formal way.
If X denotes a Hilbert space, 〈u, v〉 is the canonical scalar product, and if
X is the coordinate space R

n of column vectors then the dual space Xd may
be adopted to be the coordinate space Rn of row vectors, and dual pairing
becomes a Matlab-correct scalar product namely a special matrix product.
Also, skew brackets are used here to some degree in order to emphasize the
application of a linear or multilinear operator to its arguments, then, e.g.,
A〈x〉 = Ax and A〈x, y〉 = xTAy for A ∈ R

n
n.

5.1 Bifurcation Problems

Notations not explained here are found in Sect. 1.9; see also §1.1(e).
(a) Fredholm Operators are the suitable generalizations of linear oper-

ators L : R
n → R

m to Banach spaces (mostly Hilbert spaces) because the
crucial eigenspaces remain finite-dimensional.

Let X , Y be Banach spaces with their dual spaces Xd , Yd . The dual
pairing is denoted by skew brackets: x ∈ X , xd ∈ Xd : 〈xd, x〉 := xd(x) as xd is
a functional (mapping). In a Hilbert space H , 〈y, x〉 denotes the canonical
scalar product after identification of H with Hd by Riesz’ representation
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theorem. Let L : X → Y be a linear bounded operator, briefly written L ∈
L(X ,Y) , and recall that the adjoint operator Ld : Yd → Xd is defined by
∀ u ∈ X ∀ v ∈ Yd : 〈Ldv, u〉X = 〈v, Lu〉Y .

Definition 5.1. (1◦) A linear bounded operator L : X → Y is a Fredholm

operator if

RangeL closed , dim KerL < ∞ , dim KerLd < ∞ .

(2◦) The number indL := dim KerL− dim KerLd ∈ Z is called index of L .

Additional Remarks (1◦) Consider a matrix L ∈ R
m

n of rank p and recall that
row rank equals column rank, then dim KerL = n − p , dim RangeL = p ,
dim KerLd = m− p , and indL = n−m .
(2◦) In case L is a Fredholm operator, the adjoint operator Ld : Yd → Xd of
Sect. 1.9(a) is also a Fredholm operator, and indLd = − indL by Theorem
1.19.
(3◦) A symmetric Fredholm operator — cf. Sect. 1.11 — has always index
zero.
(4◦) A Fredholm operator obeys by definition Fredholm’s alternative
RangeL = [KerLd]⊥ where the sign “⊥ ” is to be understood here in the
sense of dual pairing in Banach spaces (1.52).
(5◦) The assumption that RangeL is closed can be dropped in the above

definition because it follows from the other properties (Hirzebruch), Lemma
25.7.

Let now span{u1, . . . , uα} denote the vector space spanned by some inde-
pendent vectors u1, . . . , uα . In this chapter we use throughout the following
notations concerning Fredholm operators:

dim KerL = α , KerL = span{u1, . . . , uα} ⊂ X
dim KerLd = β , KerLd = span{v1, . . . , vβ} ⊂ Yd

. (5.1)

Of course ui are the right- and vj the left eigenvectors to the eigenvalue zero
in case L ∈ R

n
n is a square matrix but a right eigenvector u is here a column

vector, u ∈ R
n , and a left eigenvector is a row vector, v ∈ Rn . In appropriate

generalization we write all elements of a dual space as formal left vectors in
the sequel, e.g., vLd instead Ldv . For instance, let L := A ∈ R

m
n be a matrix

then, using the scalar product (u, v) = uT v,

Ld = AT , (AT v, u) = (v,Au) , Au : v �→ (v,Au) , vAT : u �→ (AT v, u)

but without scalar product, Ld is the same matrix A with left multiplication,
Ld : v �→ vA ∈ Rn . Regarding (5.1), we introduce also some matrices with
formal rows and formal columns:
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U := [u1, . . . , uα] , ui ∈ X matrix of formal column vectors
Ud := [ui]αi=1 , ui ∈ Xd a dual basis of U where UdU = I ∈ R

α
α

matrix of formal row vectors

V d := [vk]βk=1 , vk ∈ Yd matrix of formal row vectors
V := [v1, . . . , vβ ] , vk ∈ Y a dual basis of V d with V dV = I ∈ R

β
β

matrix of formal column vectors

(5.2)
(I unit matrix or identity operator). Note that vL : u �→ 〈v, Lu〉 and Ldu :
v �→ 〈vLd, u〉 are to be understood as mappings here and

∀ u ∈ X ∀ v ∈ KerLd : 0 = 〈vLd, u〉 = 〈v, Lu〉 =⇒ ∀ v ∈ KerLd : vL = 0

∀ v ∈ Yd ∀ u ∈ KerL : 0 = 〈v, Lu〉 = 〈vLd, u〉 =⇒ ∀ u ∈ KerL : Ldu = 0

V dLd = 0 =⇒ V dL = 0 , LU = 0 =⇒ LdU = 0 .

Further formal computational rules (realiter in coordinate space R
n):

ξ ∈ R
α =⇒ Uξ = u1ξ

1 + . . .+ uαξ
α ∈ X

ζ ∈ Rβ =⇒ ζV d = ζ1v
1 + . . .+ ζβv

β ∈ Yd

x ∈ Xd =⇒ xU = [〈x, u1〉, . . . , 〈x, uα〉] ∈ Rα

y ∈ Y =⇒ V dy = [〈v1, y〉, . . . , 〈vβ , y〉]T ∈ R
β

x ∈ X =⇒ UUdx = u1〈u1, x〉 + . . .+ uα〈uα, x〉 ∈ KerL ⊂ X
y ∈ Y =⇒ V V dy = v1〈v1, y〉 + . . .+ vβ〈xβ , y〉 ∈ Y .

The most important properties of a Fredholm operator are briefly summa-
rized in the following theorem:

Theorem 5.1. Let L ∈ L(X ,Y) be a Fredholm operator. (1◦)

codim RangeL = dim KerLd , codim RangeLd = dim KerL

(codim RangeL := dim(Y\RangeL)).
(2◦) The projectors P := UUd ∈ L(X ,X ) and Q =: V V d ∈ L(Y,Y) are
(linear,) continuous and

KerL = RangeP , RangeL = KerQ . (5.3)

Proof. (1◦) follows directly from the Range Theorem 1.19(5◦).
(2◦) It is obvious that P and Q are continuous operators because their ranges
are finite-dimensional, more exactly

Pw =
α∑

i=1

ui〈ui, w〉X ∈ X , Qw =
β∑

i=1

vi〈vi, w〉Y ∈ Y .

The first equation in (5.3) follows directly from the definition of P and the
second follows from the Range Theorem again. ��
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According to (5.3) and (1.54) we now introduce the fundamental decom-
positions

X = RangeP ⊕ KerP = KerL ⊕ KerP
Y = RangeQ ⊕ KerQ = RangeQ ⊕ RangeL

. (5.4)

Both are unique because all subspaces are closed ; the subspace RangeQ of
finite dimension β is sometimes also called corange of L .

For L ∈ L(X ,Y) with eigenvalue μ , each subspace Ker(L − μI)m is triv-
ially contained in the next for m = 1, 2, . . . , up to an order m = p called
Riesz index of μ . The dimension of Ker(L − μI)p is the multiplicity of the
eigenvalue. Obviously it is identical with the algebraic multiplicity whenever
L ∈ R

n
n is a matrix, and, in this case, p is the maximum length of all as-

sociated chains of principal vectors. If p = 1 , as for instance in symmetric
operators and diagonalizable matrices, the eigenvalue is called semi-simple.
Then the algebraic multiplicity of μ, namely dim Ker(L−μI) , coincides with
the geometric multiplicity, and no principal vectors exist in finite-dimensional
case.

Let us now return to Fredholm operators and recall the above introduced
notations.

Lemma 5.1. Let X ⊆ Y and let L ∈ L(X ,Y) be a Fredholm operator with
index zero and dim KerL > 0 .
(1◦) . The following statements are equivalent:
(i) Zero is a semi-simple eigenvalue of L .
(ii) V dU ∈ R

α
α is a regular matrix.

(iii) RangeL ∩ KerL = {0} .
(2◦) If zero is a semi-simple eigenvalue of L then P = Q in (5.4) without loss
of generality and Y = RangeL⊕ KerL .

Proof. (1◦)(a) Let L ∈ R
n

n be a quadratic matrix, let Lu = 0 and Lv = u
for some vectors u, v then the eigenvalue zero has Riesz index p > 1 because
L2v = 0 and Lv �= 0 . But V du = 0 by the Range Theorem hence V dU
singular. Conversely, let V dU regular then there is no such situation possible.
Therefore (i) and (ii) are equivalent.
(1◦)(b) RangeL ∩ KerL �= {0} ⇐⇒ ∃ u ∈ KerL ∃ w ∈ X : Lw = u ⇐⇒
V du = 0 .
(2◦) Let V dU = C regular then C−1V dU = I and the transition from V d to
C−1V d means only a change of the basis of KerLd . Therefore we can assume
without loss of generality that V dU = I . Then V d satisfies the assumptions
of Ud and U the assumptions of V by definition, therefore P = UV d and
Q = UV d without loss of generality. Then Y = RangeL⊕KerL by (5.4). ��

Note that the formal matrices Ud and V are not uniquely determined
relative to U and V d respectively. V d can play the role of Ud but Ud can
play the role of V d only in self-adjount operators L (also left eigenvectors are
transposed right eigenvectors only in symmetric matrices).
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(b) Formulation of the Problem The Implicit Function Theorem says
that a mapping F : R

n → R
n is locally invertible at a point x0 whenever

det gradF (x0) �= 0 . This may be considered as the normal case since an
equally distributed random variable takes almost never the value zero. There-
fore a point x0 with det gradF (x0) = 0 is correctly called singular in this con-
text. On the other side, most exciting things happen exactly at those points
following Sect. 1.6. On leaving the realm of unique existence, the situation
alters drastically, but a smaller problem can be distilled out from the original
problem by an ingenious method, commonly called Ljapunov-Schmidt re-
duction. The associated sub-problem reflects completely the behavior of the
solution near the singular point and is finite-dimensional.

Let F : R × X � (μ, x) �→ F (μ, x) ∈ Y be a smooth mapping. Up to
Theorem 5.2, we consider in this section only the case where F has always the
trivial solution, i.e., F (μ, 0) = 0 , and, without loss of generality, the origin
(μ, 0) = (0, 0) is the possible bifurcation point. We write henceforth briefly
F 0

x = ∇xF (0, 0) , F 0
μ = Fμ(0, 0) etc., then the system to be solved reads near

the origin:

F (μ, x) = Lx+ f(μ, x) = 0 , f(μ, x) = o(‖x‖) , L := F 0
x . (5.5)

The trivial solution is the unique solution by the Implicit Function Theo-
rem whenever L : x �→ RangeL is invertible. Let now L be singular, i.e.,
dim KerL > 0 , and suppose that μ �→ x(μ) is a nontrivial solution pass-
ing through the origin, F (μ, x(μ)) = 0 , then the origin is a bifurcation
point where this non-trivial solution branches off from x = 0 . Also we have
F 0

μ + Lx′(0) = 0 by differentiation but (∂kF/∂μk)(μ, 0) = 0 for all k ∈ N

hence x′(0) must be an eigenvector to the eigenvalue zero of the operator L .
Of course 0 = F 0

μ ∈ RangeL but 0 �= F 0
μ ∈ RangeL remains also a necessary

condition in branching off from a non-trivial solution with general bifurcation
point (μ0, x0) .

(c) Ljapunov-Schmidt Reduction We suppose always that L is a
Fredholm operator. Then, regarding (5.4), the mapping F and its argu-
ment, x can be decomposed into two partial functions using the projectors of
Theorem 5.1, x = Px+ (I − P )x and F = QF + (I −Q)F :

u := Px ∈ KerL , w := (I − P )x ∈ KerP
QF ( · , u+ w) ∈ RangeQ , (I −Q)F ( · , u+ w) ∈ RangeL

(5.6)

and of course F = 0 if and only if QF = 0 and (I − Q)F = 0 . Now the
operator equation

(I −Q)F (μ, u+ w) = Lw + (I −Q)f(μ, u+ w) = 0 (5.7)

has always a unique solution w∗ : (μ, u) �→ w∗(μ, u) in KerP for sufficiently
small |μ| because (I−Q)f(μ, u+w) ∈ RangeL and the restriction of L to L0 ∈
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L(KerP,RangeL) is trivially injective and trivially surjective. Furthermore,
w �→ L0

−1(I − Q)f(μ, u + w) satisfies the assumptions of the Contraction
Theorem near (μ, u) = (0, 0) , e.g., by (Stakgold), p. 310, and w∗ is as smooth
as F . A substitution of w∗ into the equation QF (μ, u + w) = 0 yields the
local branching equation near the origin,

G(μ, u) := QF (μ, u+ w∗(μ, u)) = Qf(μ, u+ w∗(μ, u)) = 0 . (5.8)

This equation for the remaining part u ∈ KerL of the argument x does
not necessarily have a non-trivial solution but every solution of F (μ, x) = 0
corresponds uniquely to a solution (μ, u) of (5.8) whether it is isolated or not.
This equivalence constitutes the basis of many results in bifurcation theory as
well as concerns existence of branching solutions as numerical approximations
in Sects. 5.4 – 5.6.

Note that Q = V V d , V dL = 0 , and u = Uζ , ζ ∈ R
α , for u ∈ KerL . The

matrices U and V d of (5.2) are supposed to be calculated in advance. From a
more practical aspect we then solve simultaneously

V df(μ,Uζ + w) = 0 ∈ R
β , Lw + f(μ,Uζ + w) = 0 ∈ Y , Udw = 0

for both ζ and w depending on μ . By the Range Theorem, the first equation is
the consistency condition for solving the second system. The slightly modified
branching equation is now finite-dimensional over the finite coordinate space
R

α+1 !
(d) The Branching Equation

(d1) Unfortunately, not much can be said about the function w∗. But consider
once more the operator equation

H(μ, u) := (I −Q)F (μ, u+ w∗(μ, u)) = 0 , u ∈ KerL , w∗ ∈ KerP

at a general bifurcation point (μ0, x0) . Then, for increment h ∈ KerL, we
have also w∗

u
0h ∈ KerP and, as L = F 0

x ,

∂H((μ0, x0); (0, h)) = (I −Q)L(h+ w∗
u
0h) = 0 .

But Lh = 0 and the operator (I−Q)L is bijective on KerP hence w∗
u
0 = 0 .

Derivation for μ yields

H0
μ = (I −Q)(F 0

μ + F 0
xw

∗
μ
0) = (I −Q)F 0

μ + Lw∗
μ
0

with the unique solution w∗
μ
0 ∈ KerP . In a general branching point we have

0 �= F 0
μ ∈ RangeL and thus w∗

μ
0 is not necessarily zero but it is zero if

F (μ, 0) = 0 hence F 0
μ = 0 and also, e.g., if F odd, −F (μ, x) = F (μ,−x) .

(d2) Returning to the case F (μ, 0) = 0 with branching point (0, 0) , we
find that

G0
u = Qf0

x +Qf0
xw

∗
u
0 = 0 , G0

μ = Qf0
μ +Qf0

xw
∗
μ
0 = 0 (5.9)
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because f0
x = 0 by (5.5) and the definition of L . Therefore the Implicit Func-

tion Theorem cannot be applied directly to solve the branching equation nei-
ther for μ as a function of ζ nor for ζ as function of μ . Thus frequently a
new path parameter ε is introduced to obtain non-trivial solution paths in
the form (μ(ε), ζ(ε)) ; see Sect. 5.2.

Because of (5.9), a Taylor expansion of G has the form

Gi(μ, ζ) =
1
2

[
μ
ζ

]T [
∇2

[μ,ζ]G
i(0, 0)

][
μ
ζ

]
+ O(|[μ, ζ]|3) , i = 1 : β . (5.10)

Using the results of (d1), the second partial derivatives of the bifurcation
equation are

Gi
ζ ζ

0 = viF 0
xx〈U + w∗0

u 〈U〉, U + w∗0
u 〈U〉〉 + viF 0

x 〈w∗0
uu〈U,U〉〉

= viF 0
xx〈U,U〉 + viF 0

x 〈w∗0
uu〈U,U〉〉

G0
μ μ = vi[F 0

μμ + 2F 0
xμw

∗0
μ + F 0

xxw
∗
μ
0w∗0

μ ] + viF 0
xw

∗0
μμ

G0
μ ζ = vi[F 0

μx〈U〉 + F 0
μx〈w∗0

u 〈U〉〉]
+ vi[F 0

xx〈U,w∗0
μ 〉 + F 0

xx〈w∗0
u 〈U〉, w∗0

μ 〉 + F 0
x 〈w∗0

μu〈U〉〉] ,

where Gi,0
ζ ζ〈ζ, ζ〉 = viF 0

xx〈Uζ, Uζ〉 ∈ R and Gi,0
μ ζ〈μ, ζ〉 = viF 0

μx〈μ,Uζ〉 ∈ R .
Under the assumption w∗

μ
0 = 0 we thus obtain

∇2
[μ,ζ]G

i,0 =

[
Gi,0

μμ Gi,0
μζ

Gi,0
ζμ Gi,0

ζζ

]
=
[

O viF 0
μxU

[viF 0
μxU ]T viF 0

xx〈U,U〉

]
, i = 1 : β . (5.11)

The representation (5.11) remains literally the same if μ is a higher-
dimensional parameter vector.

(d3) Let X ⊆ Y , let L be a Fredholm operator with eigenvalue zero and
index zero. We consider the system

F (μ, x) = Lx+ μBx+ C〈x, x〉 + h.o.t. = 0 (5.12)

where B = F 0
μx and C = F 0

xx .
Case 1: dim KerL = 1 , i.e. α = β = 1 . Choose ζ = ξμ . After division by

μ2 , (5.10) has the form

μ−2G1(μ, ζ) =
[
a ξ + b ξ2 + h.o.t. in μ and ξ

]
= 0 ,

a = v1F 0
μxu1 = v1Bu1 , b = v1F 0

xx〈u1, u1〉/2 = v1C〈u1, u1〉 .

For a and b both nonzero there exists a nontrivial isolated solution ξ0 = −a/b
of aξ + bξ2 = 0 hence a general solution ζ(μ) = μξ(μ) with path parameter
μ , and ζ(0) = 0 .

Case 2: dim KerL = 2 , i.e. α = β = 2 .
Choose ζ = ξμ ∈ R

2 . After division by μ2 , we have now two equations
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μ−2G(μ, ζ) =
[
Q(ξ) + h.o.t. in μ and ξ

]
= 0 ∈ R

2

Q(ξ) = V dB〈Uξ〉 + V dC〈Uξ, Uξ〉 , V d =
[
v1

v2

]
.

(5.13)

Lemma 5.2. (McLeod). Let the matrix V dBU ∈ R
2
2 be regular and let the

two quadratics given by V dC〈Uξ, Uξ〉 have no (real) common factor (in par-
ticular neither vanishes identically). Then every solution ξ0 of Q(ξ) = 0 ∈ R

2

with regular gradξ Q(ξ0) gives a non-trivial solution branch

x(μ) = μ(u1ξ1(μ)+u2ξ2(μ))+μ2w(μ) , ξ1(0) = ξ0
1 , ξ2(0) = ξ0

2 , U
dw(μ) = 0 .

Furthermore, every solutions of (5.12) near (μ, u) = (0, 0) lies on one of these
branches.

For solutions of the quadratic form Q we refer to Example 5.1 below.
Case 3: To find higher-dimensional solution manifolds is a difficult matter

(Keener74). Suppose that μ = (μ1, μ2) is a two-dimensional parameter vector.
To find at least one of the many possible solution paths choose, e.g., ζ0 ∈ R

2

arbitrary with |ζ0| = 1 and ζ = ζ0ε . After division by ε we have

ε−1G(μ, ζ) =
[
Aμ+ ε c+ h.o.t. in μ and ε

]
= 0 , (5.14)

A =
[
v1F 0

μ1x〈Uζ0〉 v1F 0
μ2x〈Uζ0〉

v2F 0
μ1x〈Uζ0〉 v2F 0

μ2x〈Uζ0〉

]
, c =

[
2−1v1F 0

xx〈Uζ0, Uζ0〉
2−1v2F 0

xx〈Uζ0, Uζ0〉

]
.

Let A be regular then there exists a non-trivial and locally unique solution
[μ1, μ2, ζ] depending on the new path parameter ε .

Example 5.1. (1◦) Solve the quadratic bifurcation problem

F (μ, x) = μx+ C〈x, x〉 = 0 ∈ R
2 , C〈x, x〉 =

[
xTPx
xTQx

]

at the origin (0, 0) . The non-zero matrices P,Q ∈ R
2
2 are symmetric with-

out loss of generality and shall have no common factor: ∀ α ∈ R : P �= αQ .
The branching equation is here also F (μ, x) = 0 since F 0

x = 0 ∈ R
2
2 . If

F (μ, x) = μBx + C〈x, x〉 and B ∈ R
2
2 regular, set x = B−1y or consider

μx + B−1C〈x, x〉 = 0 . Setting x = μζ and dividing by μ2 we have to find
the intersections of the two quadratic forms F (1, ζ) = 0 . After simple manip-
ulations we obtain a scalar equation P 〈ζ, ζ〉ζ2 − Q〈ζ, ζ〉ζ1 = 0 as necessary
condition. Suppose for instance that ζ1 �= 0 then

p22y
3
2 + (2p12 − q22)y2 + (p11 − 2q12)y − q11 = 0 .

for y = ζ2/ζ1 . For p22 �= 0 this polynomial of degree 3 has one or three real
roots αi and α1 = 0 for q11 = 0 ; further

ζ1 = −
(
p11 + 2p12α+ p22α

2
)−1

.
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Similar result for q22 �= 0 and x2 �= 0 . Allowing some degeneracy, the problem
F (1, ζ) = 0 can have N ∈ {0, . . . , 3} real non-zero solutions ζ ∈ R

2 (Fig. 5.1).
For instance, in Matlab notation,

P = [0, 1; 1, 0] , Q = [−1, 1; 1, 0] =⇒ N = 0
P = [1, 0; 0, 1] , Q = [−1, 1; 1, 0] =⇒ N = 1
P = [0,−1;−1, 0] , Q = [−1, 1; 1, 0] =⇒ N = 2
P = [3, 0; 0, 1] , Q = [1/2, 0; 0, 4] =⇒ N = 3 .
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Figure 5.1. Example 5.1, N = 1,2,3

All solutions of F (μ, x) = 0 reveal to be straight lines μ �→ (μζ1, μζ2) ; see also
KAPITEL05\BIFURKATION\demo_quad.m .
(2◦) Let B̃〈x1, . . . , xq〉 be a q-linear mapping and write Bq〈x〉 = B̃〈x, . . . , x〉
then Bq〈γx〉 = γqBq〈x〉 . Consider the problem

F (μ, x) = μx+ Cr〈x〉 = 0 ∈ R
α , |x| = 1 (5.15)

for α odd and r ≥ 2 . Suppose that Cr〈x〉 �= 0 for |x| = 1 . Then F (μ, x) = 0
has at least one solution with μ �= 0 by a famous result of topological degree
theory that “every continuously combed hedgehog has at least one bald point ”;
see (Birkhoff). In the other case there is of course a solution with |x| = 1
and μ = 0 . Also there is at least one further solution (μ,−x) for r odd and
(−μ,−x) for r even.

(e) Some Further Results The following result does not use the
Ljapunov-Schmidt reduction but applies the theory of topological degree
in an ingenious way.

Theorem 5.2. (Leray-Schauder). Let L ∈ L(X ,Y) be a Fredholm op-
erator with index zero and let μ0 �= 0 be a real eigenvalue of L with odd
multiplicity then the system

F (μ, x) = Lx− μx+ f(μ, x) , f(μ, x) = o(‖x‖) , ‖x‖ → 0

has at least one non-trivial branch emanates from (μ0, 0) .
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Proof (Krasnoselki). See also (Rabinowitz73) where it is shown that, in case of
an algebraic simple eigenvalue μ0 of L , the local non-trivial solution is unique
and has the form

(μ(ε), x(ε)) = (μ0 + εν(ε), ε(u1 + w(ε)) , |ε| � 1 ,

where ud
1w = 0 , ν(0) = 0 and w(0) = 0 .

The next result of (Crandall) & Rabinowitz concerns bifurcation from a
simple eigenvalue but supplies a very simple consistency condition (3◦) instead
of solving the branching equation.

Theorem 5.3. Let X ,Y be Banach spaces, let 0 ∈ I ⊂ R be an open interval
and let F ∈ C2(I × X ,Y) . Assumption:
(1◦) F (μ, 0) = 0 .
(2◦) F 0

x := ∇xF (0, 0) , dim KerF 0
x = 1 , codim RangeF 0

x = 1 .
(3◦) KerF 0

x = span{u1} and F 0
μxu1 /∈ RangeF 0

x .
Then there exists a solution

(μ(ε), x(ε)) = εu1 + εw(ε) , u1w(ε) = 0 , μ(0) = 0 , x(0) = 0 (5.16)

of F (μ, x) = 0 for sufficiently small |ε| depending continuously on ε .

Suppose that we have any function v ∈ Yd such that RangeF 0
x = {y ∈ Y :

v y = 0} then assumption (3◦) reads simply vF 0
μxu1 �= 0 . It is therefore not

necessary by this result to calculate the adjoint operator [F 0
x ]d explicitely and

its kernel. If X ⊂ Y and F 0
μx = I (identity in Y) then u1 /∈ RangeF 0

x means
simply that zero is an algebraic simple eigenvalue of F0

x .
For further existence theorems we refer to the literature relevant to this

subject.
(f) Preliminary Examples of Bifurcation Problems

Example 5.2. Of course the simplest system is a scalar equation with L = 0 ∈
R . Let, e.g.,

F (μ, x) := μx− cx2 = 0 , 0 �= c ∈ R ,

then μ = 0 is the branching point in which the non-trivial solution x(μ) = μ/c
(straight line) branches off from the trivial solution x = 0 . The same holds
for

F (μ, x) := μx− cx3 = 0 , c > 0 ,

but now the branching solution x(μ) = ±
√
μ/c) , μ ≥ 0 , is a parabola (“pitch-

fork” bifurcation). Fig. 5.2 shows also the flow of the associated Hamiltonian
vector field.
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x

μ

x

μ

Figure 5.2. Pitchfork bifurcation, c = 1 , c = −1

In this example we have for c = 1

F 0 = F 0
x = F 0

xx = F 0
μ = 0 , F 0

xxxF
0
μx < 0 . (5.17)

A well-known result of Singularity Theory says that every mapping F with
properties (5.17) has a pitchfork bifurcation at the origin. If F 0

xxxF
0
μx > 0 ,

the number of solutions jumps from three to one instead from one to three.

Bifurcation equations may be imbedded into augmented equations to study
their geometric and topological properties in a higher-dimensional frame.
This process is called (universal) unfolding. As concerns pitchfork bifurca-
tion F (μ, x) = x3 + μx = 0 ∈ R , one obtains the “cusp” catastrophe by this
way. Note in Figures 5.3, 5.4 that the derivative of the parameter κ of un-
folding for x must vanish along the “fold”. This condition yields μ = −3x2;
substitution yields κ = 2x3, thereafter x can be eliminated.

Figure 5.3. x3 + μx + κ = 0 Figure 5.4. [−μ/3]1/2 = [κ/2]1/3

Example 5.3. ((Golubitsky), vol. I, p. 30 mod.) Consider the problem

F (μ, x) :=
[

0 0
0 1

][
x1

x2

]
+
[
x1(μ− x2

1)/2
−x3

1/5

]
= 0 , =⇒ L =

[
0 0
0 1

]
. (5.18)

Then KerL = span{e1} where e1 = [1, 0]T is the first unit vector therefore
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P = Q = e1e
T
1 =

[
1 0
0 0

]
, I −Q =

[
0 0
0 1

]
(= L)

Figure 5.5. Example 5.3

Accordingly, bifurcation equation eT
1 F (μ, x) = 0 and operator equation

(I − Q)F (μ, x) = 0 are the first resp. second row of (5.18). The situation is
completely illustrated in Figure 5.5 and shows that we have a pitchfork bifur-
cation at the origin, also the picture shows that the operator equation is rather
insensitive against alterations. This example opens the way for designing var-
ious bifurcation problems with scalar branching equation. Note however that
the linear operator L has the most simple form where one element of the unit
matrix is replaced by zero.

Example 5.4. A less trivial example is due to (Crandall) & Rabinowitz and
reads (Fig. 5.6):

F (μ, x) =

[
x1 + μx1(x2

1 − 1 + x2
2)

10x2 − μx2(1 + 2x2
1 + x2

2)

]
= 0 .

Branching points:

μ x1 x2

1 0 0
5.5 0 ±3/

√
11

10 0 0
4 ±

√
3/2 0

Figure 5.6. Example of (Crandall)
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Solution:

x1 = ±((μ− 1)/μ)1/2 , x2 = 0 , for 1 ≤ μ ,

x1 = 0 , x2 = ±((10 − μ)/μ)1/2 , for 0 ≤ μ ≤ 10 ,

x1 = ±((11 − 2μ)/μ)1/2 , x2 = ±((3μ− 12)/μ)1/2 , for 4 ≤ μ ≤ 5.5 .

Example 5.5. (Stakgold) Let L ∈ R
2
2 and let

F (μ, x) = Lx− μx+ f(x) = 0 ∈ R
2 , f(x) = o(‖x‖)

then F (μ, 0) = 0 but not every eigenvalue of L is necessarily a branching
point!

(1◦) Let x− μx+ f(x) = 0 ∈ R
2 , f(x) = [x3

2, −x3
1]

T , then L = I is the unit
operator with double eigenvalue one. Multiply the first row by x2, the
second by x1 and subtract one from the other then (μ, x1, x2) = (1, 0, 0)
reveals to be no branching point (the branching equation has only the
trivial solution).

(2◦) Let x − μx + f(x) = 0 ∈ R
2 , f(x) = [2x1x2, x

2
1 + 2x2

2]
T where L = I

has has again the double eigenvalue one. Besides the trivial solution, the
system has the solution x = [0, (μ − 1)/2] ; by consequence one solution
branches off from the trivial one.

(3◦) Let

Lx− μx+ f(x) = 0 ∈ R
2 , L =

[
0 1
0 0

]
, f(x) = [x3

1, x
2
1x2 − x3

1]
T

then L has the double eigenvalue zero with only one eigenvector, but no
further solution exists besides the trivial one.

Example 5.6. Two examples with undiagonalizable matrix L , F (μ, 0) = 0 ,
and (μ0, x0) = (0, 0) (Landman).

(1◦) F (μ, x) =
[
x2 + μax1 + h.o.t.
μbx2 + μ2cx1 + dx2

1 + h.o.t.

]
= 0 (5.19)

for x ∈ R
2 and real a, b, c, d . We have

L =
[

0 1
0 0

]
, B =

[
a 0
0 b

]
, C2(x) =

[
0

d x2
1

]
, F 0

μ = 0 ,

vd = [0, 1] , u1 = [1, 0]T , vdBu1 = 0

and thus w2 = x2 , ζ = x1 in the above notation. The first row of F is the
operator equation and its solution for w2 into the second equation yields the
bifurcation equation −abμ2x1 + cμ2x1 + dx2

1 = 0 of the reduced system. The
general non-trivial solution of (5.19) is therefore

x1 = μ2(ab− c)/d+ O(μ3) , x2 = −μ3a(ab− c)/d+ O(μ4)

for ab− c �= 0 and d �= 0 .
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(2◦) F (μ, x) =
[
x2 + μax1 + gx2

1 + h.o.t.
μfx1 + dx2

1 + h.o.t.

]
= 0 .

We have

L =
[

0 1
0 0

]
, B =

[
a 0
f 0

]
, C2(x) =

[
gx2

1

dx2
1

]
, F 0

μ = 0

vd = [0, 1] , u1 = [1, 0] , vdBu1 = f ,

Again the first row of F is the operator equation and the second the bifurcation
equation. The reduced equations

fμx1 + dx2
1 = 0 , x2 + aμx1 + gx2

1 = 0

have the unique non-trivial solution x1 = −μf/d , x2 = μ2f(ad− gf)/d2 and
the general solution is

x1 = −μf/d+ O(μ2) , x2 = μ2f(ad− gf)/d2 + O(μ3) .

(g) Symmetry properties yield always additional information about a set
of solutions and their behavior. We ask for some linear operations C ∈ L(X ,X )
and C̃ ∈ L(Y,Y) which do not or only few “affect” the system (5.5). These
operations shall be invertible and composable. In other words, they shall form
a group Γ ⊂ L(X ,X ) resp. Γ̃ ⊂ L(Y,Y) , e.g. for Γ : ∀ C,D ∈ Γ : CD−1 ∈ Γ .
Both groups have to be compact in the infinite-dimensional case which means
that Γ is a compact (bounded and closed) subset of L(X ,X ) and Γ̃ is a
compact subset of L(Y,Y). Both groups however may (but must not) consist
of entirely different actions. Consider for instance the Hopf bifurcation then
Γ consists of amplitude translations and Γ̃ of rotations; cf. also Sect. 10.6.

Definition 5.2. (1◦) A subset S ⊂ Y is Γ -invariant, if it is closed w.r.t. Γ :
∀ C ∈ Γ : C(S) ⊂ S .
(2◦) The subset U ⊂ Y is a fixed-point subspace w.r.t. Γ or briefly a Γ -

symmetric subspace if U = Fix(Γ ) := {x ∈ Y, ∀ C ∈ Γ : Cx = x} (this set is
indeed a subspace).
(3◦) Let S ⊂ Y be a Γ -invariant subspace and let f be a mapping living on
S then f is Γ -invariant if ∀ x ∈ S ∀ C ∈ Γ : f(Cy) = f(y) .
(4◦) Let S ⊂ Y be a Γ -invariant subset then f : X → Y is Γ -equivariant

(oder Γ -symmetric or “commutes with Γ”) if there exists a symmetry group
Γ̃ ⊂ L(Y,Y) such that

∀ x ∈ S ∀ C ∈ Γ ∃! C̃ ∈ Γ̃ and ∀ C̃ ∈ Γ̃ ∃! C ∈ Γ : C̃f(x) = f(Cx) .

(5◦) Let μ0 ∈ M ⊂ R
k and let x0 ∈ U ∈ X be open then the mapping F of

(5.5) is Γ -equivarent in U if F (μ, ◦) is Γ -equivariant in U for all μ ∈ M .

In the next theorem we assemble some results for the system (5.5), F (μ, x) =
Lx+ f(μ, x) , following directly from the definition:
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Theorem 5.4. Let F be Γ -equivariant in U ⊂ X and let F (μ0, x0) = 0 .

(1◦) If (μ0, x0) is a solution of F (μ, x) = 0 , also (μ0, Cx0) is solution for all
C ∈ Γ .

(2◦) C̃F 0
x = F 0

xC holds for all C ∈ Γ , i.e. F 0
x is Γ -equivariant.

(3◦) ∀ C ∈ Γ : C(KerF 0
x ) = KerF 0

x , i.e. KerF 0
x is Γ -invariant.

(4◦) ∀ C̃ ∈ Γ̃ : C̃(RangeF 0
x ) = RangeF 0

x , i.e. RangeF 0
x is Γ̃ -invariant.

(5◦) ∀ (μ, x) ∈ M × (U ∩ Fix(Γ )) : F (μ, x) ∈ Fix(Γ̃ ) .
(6◦) Let F be Γ -equivariant and let F 0

x be a Fredholm operator. Then the
projectors P and Q of Theorem 5.1 can be chosen such that they commute
with Γ resp. with Γ̃ , i.e.,

∀ C ∈ Γ : CP = PC , ∀ C̃ ∈ Γ̃ : C̃Q = QC̃ .

Now the following results can be established by using the above auxiliaries:

Lemma 5.3. Let F be Γ -equivariant and let F 0
x be a Fredholm operator.

(1◦) The function w∗ of (c) is Γ -equivariant:
∀ C ∈ Γ : Cw∗(μ, u) = w∗(μ,Cu) .

(2◦) The mapping x∗ : (μ, u) �→ u+ w∗(μ, u) is Γ -equivariant:
∀ C ∈ Γ : Cx∗(μ, u) = x∗(μ,Cu) .

(3◦) The branching equation G : (μ, u) �→ G(μ, u) is Γ -equivariant:
∀ C ∈ Γ : C̃G(μ, u) = G(μ,Cu) .

As concerns the permutation of matrices, we know that with some few excep-
tions only diagonal matrices are commutative. Somewhat more generally, the
following result is found in (Householder), p. 30:

Lemma 5.4. Let A , B ∈ R
n

n be both normalizable, i.e. similar to a normal
matrix then AB = BA if and only if there is a regular matrix X such that
X−1AX and X−1BX are both diagonal matrices.

Apparently the columns of X are common eigenvectors of A and B .
(h) Examples with Symmetry cf. also Sect. 10.6 and in particular Sect.

5.6(c).
(h1) Z2-Symmetry: Γ = {−δ, δ} with unit operator δ in X and Y. If F odd,
−F (μ, x) = F (μ,−x) then, by Lemma 5.3, also the branching equation is odd,
−G(μ, u) = G(μ,−u).

(h2) The Lorentz equation — cf. Example 5.16 — is likewise Z2-
symmetric in R

3 but the action of the group is defined in a different way:

Γ = {identity , C} , C[x1, x2, x3]T := [−x1,−x2, x3] .

Accordingly, with one periodic solution x always Cx is a solution, too.
(h3) 2π-periodic functions with group Γ of phase translations:

x(◦) ∈ C2π , C̃ϕ ∈ Γ , C̃ϕx(◦) = x(◦ + ϕ) phase translation ,
F (μ, x)(t) = Dtx(t) +Ax(t) + f(μ, x(t)) ;
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cf. Sect. 5.5. The Γ -equivariance of F does hold in trivial way if F does not
depend explicitely on t :

C̃ϕF (μ, x)(t) = F (μ, x)(t+ ϕ) = F (μ, C̃ϕx)(t)
= Dtx(t+ ϕ) +Ax(t+ ϕ) + f(μ, x(t+ ϕ)) .

Let now A ∈ R
2
2 and Dt +A = L : C1

2π → C2π be a Fredholm operator with
index zero and dim KerL = 2 then A must have the eigenvalues ±i . Let c and
c be the associated eigenvectors and let u1(t) = Re(ceit) , u2(t) = Im(ceit) ,
U = [u1, u2] . Then KerL = {U(t)ζ , ζ ∈ R

2} . Furthermore, let

Cϕ =
[

cosϕ − sinϕ
sinϕ cosϕ

]

be the rotation matrix in R
2 then U(t + ϕ)ζ = U(t)CT ζ holds for the phase

translation. Consider now the normal form of Hopf bifurcation

F (μ, x) = xt +Ax+ f(μ, |x|)x = 0 ∈ R
2 , A =

[
0 −1
1 0

]

with a scalar function f and x ∈ R
2 . Then A has the eigenvalues ±i again

and CϕA = ACϕ therefore

CϕF (μ, x) = Cϕxt +ACϕx+ f(μ, |Cϕx|)Cϕx = F (μ,Cϕx)

because |Cϕx| = |x| . Hence F is equivariant w.r.t. the group Γ of rotations
in R

2 .
References: (Chow), (Golubitsky), (Kuznetsov), (Seydel94),

(VanderBauwhede).

5.2 Scaling

(a) Modified Ljapunov-Schmidt Reduction Frequently the situation
near a branching point (μ0, x0) can be displayed more properly if a new lo-
cal parameter, say ε , is introduced into the Ljapunov-Schmidt reduction
which does work like a magnifying glass, and this re-parametrization is also
commonly applied in constructing numerical methods. The variables μ and x
have to be written first as a suitable expansion w.r.t. that parameter ε. Then
branching equation and operator equation are divided by a properly chosen
power of ε; therafter a Taylor expansion is applied and a transition to the
limit ε → 0 is carried out. By this way the essential terms of the branching
equation are filtered out and the rest is called algebraic branching equation.
Besides preparation for numerical approach, it is the aim of the scaling pro-
cedure to eliminate as many higher order terms as possible in that equation.
Eventually, some of the free variables have still to be shut down in order that
the Implicit Function Theorem succeeds in the proof of one selected solution
branch.
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We consider again the nonlinear problem

F : R × X � (μ, x) �→ F (μ, x) := Lx+ f(μ, x) = 0 ∈ Y (5.20)

with sufficiently smooth function f . We study the system (5.20) at the origin
(μ, x) = (0, 0) under the assumption that f(μ, 0) = 0 and suppose throughout
this section that L = F 0

x is a Fredholm operator with index zero and α :=
dim KerL > 0 (mostly α = 1 or α = 2 ). According to the decomposition in
the Ljapunov-Schmidt reduction, we choose among the many possibilities
at first the following scaling

μ(ε) = εrξ(ε) ∈ R , 0 < r ∈ Q ,

x(ε) = ε(Uζ(ε) + εrw(ε)) ∈ X , ζ(ε) ∈ R
α , Udw(ε) = 0

(5.21)

The scalar parameter ε shall be always the path parameter in the sequel. The
system of branching equation and operator equation reads now in scaled form

Φ(ξ, ζ, w, ε) := ε−sV dF (μ, x) = 0 ∈ R
α

Ψ(ξ, ζ, w, ε) := ε−(r+1)(I −Q)F (μ, x) = 0 ∈ RangeL , Udw(ε) = 0
.

(5.22)

Our goal is to select one solution branch and to calculate it numerically
later. Recall that QL = 0 for the fixed projection operator Q = V V d satisfying
KerQ = RangeF 0

y . Therefore f instead F can be written in the branching
equation and the operator equation reads also

ε−(r+1)(I −Q)F (μ, x) = Lw(ε) + (I −Q)ψ(ξ(ε), ζ(ε), w(ε), ε) = 0 .

Assumption 5.1. Let ξ0 = ξ(0), ζ0 = ζ(0), w0 = w(0) . Φ and Ψ exist
smoothly in some neighborhood of ε = 0 with finite limit values

Φ(ξ0, ζ0, w0, 0) = limε→0 Φ(ξ(ε), ζ(ε), w(ε), ε)

Ψ(ξ0, ζ0, w0, 0) = Lw0 + (I −Q)ψ(ξ0, ζ0, 0) = limε→0 Ψ(ξ(ε), ζ(ε), w(ε), ε) .

The function ψ does not depend on w for ε = 0 by definition of L and because
F (μ, 0) = 0 hence this is mainly an assumption on the exponent s of the
branching equation.

The system

Φ(ξ0, ζ0, w0, 0) = 0 , Ψ(ξ0, ζ0, w0, 0) = 0 (5.23)

consists of α+1 equations for α+2 variables ξ0 , ζ0 ∈ R
α and w(0) ∈ KerUUd

which must be regarded in the solution. Recall that L0 is the invertible
restriction of the operator L to KerP and onto RangeL and that e.g.
Φw

0 = gradw Φ(ξ0, ζ0, w0, 0) . An application of the Implicit Function The-
orem then yields:
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Lemma 5.5. Let the system (5.23) have a solution (ξ0, ζ0, w0) with ξ0 and ζ0
both non-zero such that the linear operator

G :=
[
Φζ

0 Φw
0

ψζ
0 L0

]
(5.24)

has a bounded inverse. Then the system (5.20) has a non-trivial local solution
of the form (5.21) near (ε, ξ) = (0, ξ0) and μ = εrξ .

This simple result allows many modifications and generalizations. In particular
we can consider one component of ζ as free variable and ξ as dependent
variable instead.

Supplements: (1◦) The solution (5.21) depends in unique way on (ξ0, ζ0)
since w0 solves uniquely Lw = −(I −Q)ψ(ξ0, ζ0) , Udw = 0 .
(2◦) The assumption ζ0 �= 0 is necessary to avoid the trivial solution
(μ(ε), x(ε)) = (εrξ0, 0) which is also obvious from the geometrical point of
view.
(3◦) Frequently it is of advantage to augment the branching equation by the
additional normalizing condition ζ(ε)T ζ(ε) = 1 instead to require the sepa-
rated condition ζ0 �= 0 . In this case we have as many equations as variables
(ξ0, ζ0, w0) and the operator G must be augmented by one row and one col-
umn.
(4◦) Suppose for instance that Φw

0 = 0 then G is invertible if Φζ
0 enjoys this

property because ψζ
0 is bounded.

(b) Let B̃〈x1, . . . , xq〉 be a q-linear mapping and writeBq〈x〉 = B̃〈x, . . . , x〉
then Bq〈γx〉 = γqBq〈x〉 . More specifically, we consider the problem

F (μ, x) =
[
Lx+μpBq〈x〉+Cr〈x〉+ h.o.t. in μ and x

]
= 0 , p, q, r ∈ N , r > q .

(5.25)
L is again a Fredholm operator with index zero and dim KerL > 0 and both
mappings B and C are not identically zero. In the scaled ansatz

μ(ε) = εsξ , x(ε) = εUζ(ε) + εs+1w(ε) , (5.26)

let s = (r− q)/p be the solution of ps+ q = r then 0 < s ≤ r− 1 . The scaled
bifurcation equation is then

Φ(ξ, ζ, w, ε) ≡ V d
[
ξpBq〈Uζ〉 + Cr〈Uζ〉 + εγr(ξ, Uζ, w, ε)

]
= 0

r(ξ, ζ, w, ε) = O(1) , ε → 0 , γ ≥ min{s, 1} , (5.27)

where ζ and w depend on ε .

Corollary 5.1. Let the set

Z = {ζ ∈ R
α : V dBq〈Uζ〉 �= 0 and V dCr〈Uζ〉 �= 0}

be not empty. For all ζ0 ∈ Z the algebraic branching equation of the problem
(5.25) with ansatz (5.26) and s = (r − q)/p does not depend on w0 and has
the form
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Φ(ξ0, ζ0) := Φ(ξ0, ζ0, w0, 0) = ξp
0V

dBq〈Uζ0〉 + V dCr〈Uζ0〉 = 0 . (5.28)

For p = q = 1 and r = 2 we can refer to Example 5.1; see also Example
5.18. Note also that V dBU ∈ R

α
α regular for a regular linear operator B if

V dU regular since then V d = CUd with a regular matrix C . General results
concerning the existence of isolated solutions of (5.28) are found in (Keller72).

Example 5.7.

F (μ, x) =
[
μx2 + x3

1 + h.o.t.
x2 + μx2 + x2

1 + h.o.t.

]
= 0

L =
[

0 0
0 1

]
, B =

[
0 1
0 1

]
, C2〈x〉 =

[
0
x2

1

]
, C3〈x〉 =

[
x3

1

0

]
,

vd = [1, 0] , u1 = [1, 0]T , vdBu1 = 0 .

The first equation is the bifurcation equation and the second equation the
operator equation. The reduced equations have the solution

x̃1(μ) = μ/(1 + μ) = μ+ O(μ2) , x̃2(μ) = −μ2/(1 + μ)3 = −μ2 + O(μ3)

and the general solution has the form x1(μ) = x̃1(μ)+O(μ2) , x2(μ) = x̃2(μ)+
O(μ3) . Using the ansatz μ = εξ , x = εUζ+ε2w , the scaled reduced equations
ξw2 +ζ3 = 0 , w2 +ζ2 = 0 depend here on w0 �= 0 and have the solution ζ = ξ
and w0

2 = −ξ2 . The matrix G of (5.50),

G =
[

3ζ2 ξ
2ζ 1

]
=
[

3ξ2 ξ
2ξ 1

]

is regular for ξ �= 0 and the solution is isolated.

See also Example 5.6 for a system with non-diagonalizable matrix L .
The next result of (Keener74) concerns the system (5.25) in the more

commonly used form with p = q = 1 such that s = r− 1 in the ansatz (5.26).
The point (μ0, 0) , μ0 ∈ R , is the bifurcation point. The proof is managed by
applying a suitable modification of the Contraction Theorem to a sequence of
iterations and provides by this way a simple device for practical applications.

Let L again be Fredholm operator with index zero and α = dim KerL >
0 , zero not necessarily being a semi-simple eigenvalue. We consider the prob-
lem

F (μ, x) = Lx+ f(μ, x)

=
[
Lx+ (μ− μ0)Bx+ Cr〈x〉 + h.o.t. in μ− μ0 and x

]
= 0 , r ≥ 2 ,

(5.29)
L = gradx F (μ0, 0) , B = F 0

μx := gradx Fμ(μ0, 0) etc..

Lemma 5.6. Suppose that there exists a pair (ξ0, ζ0) with |ζ0| = 1 solving

ξV dB〈Uζ〉 + V dCr〈Uζ〉 = 0
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such that the matrix ξ0V
dBU + gradζ V

dCr〈Uζ0〉 ∈ R
α

α is regular.
(1◦) There exists locally a unique solution x(ε) = εUζ(ε) + εrw(ε) , μ(ε) =
μ0 + εr−1ξ0 of (5.29) with ζ(0) = ζ0 depending continuously on ε near ε = 0 .
(2◦) This solution is the limit of sequence {xk(ε)} defined by

xk(ε) = εUζk(ε) + εrwk(ε) ζk := ζ(wk(ε), ε) ,

w0(ε) = 0 , ζk(0, 0) = ζ0 , where ζk
j , j = 1 : ν , are the unique functions

which satisfy V df(μ0 + εr−1ξ0, εUζ
k + εrwk) = 0 and wk+1 is the unique

solution of

Lwk+1 = −ε−rf(μ0 + εr−1ξ0, x
k(ε)) , Udwk+1 = 0 .

(3◦) The errors in the iteration satisfy |xk(ε) − x(ε)| = O(|ε|(k+1)(r−1)+1) .

To avoid solving a system of nonlinear equations for the parameter vector
ζ ∈ R

α see a proposition of (Demoulin) in Sect. 5.6.
(c) The Nonlinear Eigenvalue Problem has the basic equation

F (λ, x) = Ax− λf(x) = 0 , f(0) = 0 , f0
x = ∇f(0) , (5.30)

and A ∈ L(X ,X ) is a Fredholm-Operator which is frequently symmetric
and positive definite. The scaling ansatz (5.26) fails whenever λ = 0 is an
eigenvalue of A . Let λ0 �= 0 be an eigenvalue of the generalized eigenvalue
problem Lx = 0 with L := A− λ0f

0
x being a Fredholm operator with index

zero. Then
F (λ, x) = Lx− λf(x) + λ0f

0
xx = 0 . (5.31)

Let now for instance

f(x) = Bx+ Cr(x) + O(‖x‖r+1) , (5.32)

so that B = f0
x then operator equation and bifurcation equation are

Lw = (λ− λ0)Bx+ λCr(x) + λ(h.o.t. in x)
0 = λ

[
(λ− λ0)λ−1V dBx+ V dCr(x) + h.o.t. in x] .

Using the scaling ansatz

λ(ε) = λ0(1 + εr−1ξ(ε)) , x(ε) = εUζ(ε) + εrw(ε) , (5.33)

the scaled bifurcation equation after division by εrλ and the operator equation
after division by εr read:

Φ(ξ, ζ, w, ε) = κV dBUζ + V dCr〈Uζ〉 + εr1(ξ, ζ, w, ε) = 0 , κ = ξ/(1 + εr−1ξ)
Ψ(ξ, ζ, w, ε) = Lw − (I −Q)

[
λ0ξBUζ + λ0Cr〈Uζ〉 + εr2(ξ, ζ, w, ε)

]
= 0 ,

Udw = 0 , ri(ξ, ζ, w, ε) = O(1) , ε → 0 , i = 1, 2 .
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As an application of Lemma 5.5 we then have:

Corollary 5.2. (1◦) Let λ0 �= 0 , let L = A − λ0B be a Fredholm operator
with index zero and α = dim KerL > 0 .
(2◦) Let the set Z defined in Corollary 5.1 be not empty.
(3◦) Let the algebraic bifurcation equation κV dBUζ + V dCr〈Uζ〉 = 0 , ζ ∈
Z , have a solution (κ0, ζ0) with κ0 �= 0 and regular matrix κ0V

dBU +
V d∇x[Cr〈Uζ0〉]〈U〉 ∈ R

α
α .

Then the problem (5.31), (5.32) has a unique solution (5.33) with ξ(0) = κ0

and ζ(0) = ζ0 depending continuously on ε near ε = 0 .

(d) Perturbated Eigenvalue Problem Let X ⊂ Y be complex Banach

spaces, let 0 ∈ I ⊂ R be an open interval and let L( · ) : I � μ �→ L(μ) ∈
L(X ,Y) an operator-valued function; in particular X = Y = C

n may be the
complex coordinate space. We consider the mapping

F : I × (C × X ) � (μ, (λ, x)) → L(μ)x− λx = 0 ∈ Y , (5.34)

where now (λ, x) plays the role of x in (c), i.e. (λ, x) is the dependent variable.
For a general overview on the perturbed eigenvalue problem it is referred to
[Chow], Chap. 14, and the references there. Here we suppose that L(μ) is a
non-selfadjoint Fredholm operator with index zero and derive a necessary
and sufficient condition for the smoothness of characteristic pairs emanating
from a semi-simple eigenvalue of L(0) thus examining the point μ = 0 for
possible branching. Concerning the finite-dimensional case, some hints are
also found in [Golub], p. 204, and [Wilkinson], chap. II.

Assumption 5.2. (1◦) L := L(0) is a Fredholm operator with index zero
and KerL = span{u1, . . . , uα} , U = [u1, . . . , uα] , α ≥ 1 .
(2◦) X ⊂ Y and KerL ∩ RangeL = {0} .
(3◦) L is continuously differentiable in I such that

L(μ) = L+ μB + o(|μ|) , |μ| → 0 ,

where B = L0
μ := Lμ(0) ∈ L(X ,Y) .

Assumption (2◦) excludes the existence of principal vectors w of L such that
Lw = ui; see Theorem 5.1, 3◦. It is necessary since principle vectors always
depend discontinuously on the data.

Theorem 5.5. Adopt Assumption 5.2 and V dU = I . There exist α differ-
ent, near μ = 0 continuously differentiable branches of characteristic pairs
(λi(μ), xi(μ)) such that (λi(0), xi(0)) = (0, ui) , i = 1 : α , if and only if the
matrix V dBU is diagonalizable.

For instance, let X be a Hilbert space and L(x) symmetric then B and thus
V dBU are likewise symmetric hence diagonalizable.
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Hint to the proof. Supposing existence, differentiation of Lx + μBx = λx
w.r.t. μ at μ = 0 yields for k = 1 : α

Lx′k(0) +Buk = λ′
k(0)uk + λk(0)x′k(0) = λ′

k(0)uk

because λk(0) = 0 . Then viBuk = λ′
k(0)viuk = λ′

k(0)δi
k by multiplication

from left with vi , and V dBU is even diagonal. The sufficient part of the proof
is managed by application of the above scaling methods to the matrix-valued
eigenvalue problem L(μ)U(μ) = λ(μ)U(μ) (Gekeler95).

(e) Consider finally a General Branching Point (μ0, x0) �= (0, 0) where
F (μ0, x0) = 0 . Scaling finds here only limited application. We proceed from
a Taylor expansion

F (μ0+μ, x0 +x) =
[
Lx+K1μ+K2μ

2+μBx+C2〈x〉+ h.o.t. in μ and x
]

= 0
(5.35)

where L = F 0
x = ∇xF (μ0, x0) , K1 = F 0

μ , etc., and α = dim KerL ≥ 1 as
necessary assumption for a genuine branching point. We use the scaled ansatz

μ = εξ , x = εUζ(ε) + εw(ε) , Udw(ε) = 0 , (5.36)

Suppose that there exists a local solution branch y(λ) with F (λ, y(λ)) = 0
and y(μ0) = x0 . Then Fλ

0 + Fx
0y′(x0) = 0 therefore K1 = F 0

μ is contained
in RangeL which means that V dK1 = 0 . Conversely, let V dK1 = 0 and ξ
arbitrary fixed then there exists always a solution (5.36) with ζ(ε) = 0 by the
Implicit Function Theorem since L can be replaced by the above introduced
operator L0 with bounded inverse. For further solutions, we consider again
the system of scaled bifurcation and operator equation:

Φ(ξ, ζ, w, ε) = ε−2V dF (μ0 + μ, x0 + x)
= V dK2ξ

2 + ξV dB〈Uζ + w〉 + V dC2〈Uζ + w〉 + εr1(ξ, ζ, w, ε)

Ψ(ξ, ζ, w, ε) = ε−1(I −Q)F (μ0 + μ, x0 + x)
= Lw + (I −Q)K1ξ + εr2(ξ, ζ, w, ε) = 0 , Udw = 0 ,

ri(ξ, ζ, w, ε) = O(1) , ε → 0 , i = 1, 2 .

For an isolated branch emanating from (μ0, x0) we can apply Lemma 5.5
again. Then we have to look for a solution (ξ0, ζ0, w0) of the reduced scaled
equations

Φ(ξ, ζ, w, 0) = V dK2ξ
2 + ξV dB〈Uζ + w〉 + V dC2〈Uζ + w〉 = 0 ∈ R

α

Ψ(ξ, ζ, w, 0) = L0w + (I −Q)K1ξ =: L0w + ψ(ξ, ζ) = 0 ∈ RangeL
(5.37)

with ξ0 �= 0 and ζ0 �= 0 .
Case 1: Fix ξ0 , say ξ0 = 1 . Then the linear operator

G :=
[
Φζ

0 Φw
0

ψζ
0 L0

]
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must have a bounded inverse by Lemma 5.5 . But ψζ = 0 thus only

Φζ
0 := Φζ(ξ0, ζ0, w0, 0) = ξ0V

dB〈U〉 + V d∇x[C2〈Uζ0 + w0〉]〈U〉 ∈ R
α

α

must be a regular matrix. The algebraic branching equation Φ = 0 in (5.37) is a
system of second order for ζ ∈ R

α after substitution of w0 and inhomogeneous
in case V dK2 �= 0 .
Case 2: Let α = dim KerL = 2. To find a branching solution emanating from,
say the first eigenvector u1 of L , set ζ2 = 0 . Then the algebraic branching
equation Φ = 0 ∈ R

2 has the independent variable w and z = (ξ, ζ1) of which
both components must be nonzero. Also the linear operator

G :=
[
Φ0

z Φw
0

ψ0
z L0

]

must have a bounded inverse where ψ0
z = [(I −Q)K1, 0] is no longer zero and

Φz
0 := V d[2K2ξ0 +B〈v〉, ξ0B〈u1〉+∇x

[
C2〈v〉]〈u1〉

]
∈ R

2
2 , v = u1ζ1,0 +w0 .

Because L0 has a bounded inverse, G has a bounded inverse by the bordering
lemma, Theorem 1.20 , if and only if Φz

0 − Φw
0L0

−1ψz
0 ∈ R

2
2 is a regular

matrix.
By a simple change of variables in Theorem 5.3, (Crandall) & Rabinowitz

have also proved the following result in which no component of the argument
of F is declared as specific bifurcation parameter such that F (y) = 0 instead
F (μ, x) = 0 is the basic system.

Lemma 5.7. Let X ,Y be Banach spaces, let Ω ⊂ X open and F ∈ C2(Ω,Y) .
Further, let I ⊂ R be an open interval such that 0 ∈ I, and let y ∈ C1(I, Ω)
denote a curve such that F (y(t)) = 0 .
Assumption: (1◦) ẏ(0) �= 0 .
(2◦) dim KerF 0

y = 2 , codim RangeF 0
y = 1 .

(3◦) KerF 0
y = span{ẏ(0), v} and

(4◦) F 0
yy〈ẏ(0), v〉 /∈ RangeF 0

y .
Then y(0) is a branching point of F (y) = 0 w.r.t. the curve I � t �→ y(t),
and, in some neighborhood of y(0) , there exist two different continuous curves
intersecting in y(0) .

Of course, in case y(0) = 0 , one of the both curves may be the trivial curve
y(0) ≡ 0 ∈ X .

5.3 Calculation of Singular Points

(a) A Classification Suppose that the nonlinear system F (μ, x) = 0 with
scalar parameter μ has a sufficiently smooth solution R ⊃ I � s → (μ(s), x(s))
passing through the point (μ0, x0) for s = 0 . Then a two-fold differentiation
for the path parameter s yields
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F 0
μμ

′(0) + F 0
xx

′(0) = 0 ,

F 0
μμ

′′(0) + F 0
xx

′′(0) + F 0
μμμ

′(0)2 + 2Fμxμ
′(0)x′(0) + F 0

xx〈x′(0), x′(0)〉 = 0 .
(5.38)

Let again F 0
x = ∇xF (μ0, x0) be a Fredholm operator with index zero then

we have four different cases:

(1◦) dim Ker[F 0
μ , F

0
x ] = 1 dim KerF 0

x = 0 and F 0
μ ∈ RangeF 0

x

(2◦) dim Ker[F 0
μ , F

0
x ] = 1 dim KerF 0

x = 1 and F 0
μ /∈ RangeF 0

x

(3◦) dim Ker[F 0
μ , F

0
x ] > 1 dim KerF 0

x ≥ 1 and F 0
μ ∈ RangeF 0

x

(4◦) dim Ker[F 0
μ , F

0
x ] > 1 dim KerF 0

x ≥ 2 and F 0
μ /∈ RangeF 0

x .

(5.39)

For instance, let u ∈ KerF 0
x then (0, u) ∈ Ker[F 0

μ , F
0
x ] and further elements

in Ker[F 0
μ , F

0
x ] exist only if F 0

μ ∈ RangeF 0
x . In case (1◦) the point (μ0, x0)

is regular and there exists a local unique solution by the Implicit Function
Theorem. In case (2◦) the point (μ0, x0) is a turning point or limit point with
respect to the path parameter μ in which a reparametrization is necessary. In
case (3◦) we have a (possible) bifurcation point. In the last case we have a
turning point which may at the same time be a bifurcation point; this case is
not further investigated here.

(b) In a Turning Point let KerF 0
x = span{u1} and F 0

μ �= 0 . Let P =
u1u

1 be the projector with RangeP = KerF 0
x and let

X = KerL⊕ KerP =⇒ R × X = W ⊕ RangeP , W = R × KerP

be the decomposition (5.4). Moreover, let F̃ 0
x be the restriction of F 0

x to KerP ,
then [F 0

μ , F̃
0
x ] : W → RangeF 0

μ × Range F̃ 0
x is bijective with bounded in-

verse. The Implicit Function Theorem then says that F (μ, x) = 0 is local
solvable for v ∈ W with argument s u1 ∈ KerF 0

x = RangeP . Therefore
we have a parameter representation R � I � s → (μ(s u1), x(s u1)) where
F (μ(s u1), x(s u1)) = 0 and (μ(0), x(0)) = (μ0, x0) . Together with the result
for regular points, there follows:

Lemma 5.8. For dim Ker[F 0
μ , F

0
x ] = 1 there exists exactly one solution path

of F (μ, x) = 0 passing through (μ0, x0) which is as smooth as F .

(b) Characterization of Turning Points Let us return to the original
path representation I � s → (μ(s), x(s)) considered in (a). Then the following
two results on the geometrical form at a turning point s = 0 are a simple
inference of (5.38) (recall that Ker[F 0

x ]d = span{v1} ).

Lemma 5.9. Let (μ0, x0) be a turning point with x′(0) �= 0 . Then μ′(0) = 0
and
(1◦) (μ0, x0) is a quadratic turning point with μ′′(0) �= 0 if and only if
v1F 0

xx〈u1, u1〉 �= 0 .
(3◦) (μ0, x0) is a cubic turning point with μ′′(0) = 0 and μ′′′(0) �= 0 if and
only if v1F 0

xx〈u1, u1〉 = 0 and v1F 0
xxx〈u1, u1, u1〉 �= 0 .
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Proof. Note that v1F 0
x = 0 and v1F 0

μ �= 0 hence μ′(0) = 0 , by mul-
tiplying (5.38),(1◦) by v1. We write x′(0) = u1 without loss of general-
ity and obtain v1F 0

μμ
′′(0) + v1F 0

xx〈u1, u1〉 = 0 by (5.40,(2◦)). Therefore
μ′′(0) = −v1F 0

xx〈u1, u1〉/v1F 0
μ �= 0 . The proof of (2◦) is carried out in much

the same way as (1◦) by three-fold differentiation of F (μ(s), x(s)) = 0 . ��
(c) For the Calculation of Turning Points, (Keener73) and (MooreB)

have proposed augmented accompanying systems. The first one reads:

Φ1(z) := Φ1(μ, x, u) :=

⎡
⎣
F (μ, x)
Fx(μ, x)u
au− 1

⎤
⎦ = 0 , z = (μ, x, u) , a ∈ Xd fixed .

(5.40)

Lemma 5.10. Let (μ0, x0) be a turning point and a u1 = 1. Then
Φ1(z0) = Φ1(μ0, x0, u1) = 0 and

gradΦ1(z0) : R × X × X → Y × Y × R

has a bounded inverse if and only if v1F 0
xx〈u1, u1〉 �= 0 .

Conversely, a regular solution of (5.40) is a quadratic turning point if in addi-
tion dim KerF 0

x = 1 and v1F 0
μ �= 0 which is fulfilled in normal case. Besides,

the inequality v1F 0
μ �= 0 is much more often fulfilled as the equality v1F 0

μ = 0 .
Accordingly, for a test on possible turning points, Newton’s method may be
applied to solve Φ1(z) = 0 . Note however that this result and the following
yields only a necessary condition and the defining properties of a turning point
have still to be verified after the calculation.

The second accompanying system is dual to the first system (5.40) in some
way:

Φ2(z) := Φ2(μ, x, v) :=

⎡
⎣
F (μ, x)
v Fx(μ, x)
v Fμ(μ, x) − 1

⎤
⎦ = 0 , z = (μ, x, v) , v ∈ Yd .

(5.41)

Lemma 5.11. Let (μ0, x0) be a turning point. Then Φ2(z0) = Φ2(μ0, x0, v
1) =

0 (after some scaling of v1) and

gradΦ2(z0) : R × X × Yd → Y × Xd × R

has a bounded inverse if and only if v1F 0
xx〈u1, u1〉 �= 0 .

Proofs of Lemmas 5.9 and 5.10 see (MooreB) and SUPPLEMENT\chap05b.
(d) Calculation of Simple Branching Points Here we have F 0

μ ∈
RangeL . Let KerF 0

x = span{u1} and F 0
x be again a Fredholm operator

with index zero then Ker[F 0
x ]d = span{v1} and v1F 0

μ = 0 by the Range
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Theorem. Let w be the unique solution of F 0
μ + F 0

xw = 0 with u1 w = 0 .
Every tangent x′(0) in (5.38) has the representation x′(0) = αu1 + βw where
β = μ′(0) . Insertion of (β, x′(0)) in (5.38) yields after multiplication by the
vector v1

v1F 0
μμβ

2 + 2v1F 0
μxβ(αu1 + βw) + v1F 0

xx〈αu1 + βw, αu1 + βw〉 = 0 .

or aTQ1(u1, w, v
1)a = 0 , aT = [α, β] where Q1 ∈ R

2
2 ,

Q1(u1, w, v
1) =

[
v1F 0

xx〈u1, u1〉 v1
[
F 0

μxu1 + F 0
xx〈u1, w〉

]
v1
[
F 0

μxu1 + F 0
xx〈u1, w〉

]
v1
[
F 0

μμ + 2F 0
μxw + F 0

xx〈w,w〉
]
]
.

(5.42)
This quadratic form has two different real solutions in case
det(Q1(u1, w, v

1)) < 0 . By this way we obtain a necessary condition for
(μ0, x0) to be a branching point. For F 0

μ = 0 we have w = 0 . The case
F 0

μ = 0 and F 0
μμ = 0 mirrors branching off from the trivial solution (μ, 0) and

yields the necessary condition

α2v1F 0
xx〈u1, u1〉 + 2αβv1F 0

μ,xu1 = 0

for the tangent of the non-trivial branch; see Sect. 5.1(d3), Case 1 and (5.28)
for U = u1 .

For the calculation of a branching point with the above constellation, we
need here a result on the accompanying system (5.41), in which by exception
F 0

x is a Fredhom operator with index one :

Lemma 5.12. Let F 0
x ∈ L(X ,Y) be a Fredhom operator with index one and

KerF 0
x = span{u1, u2} , Ker[F 0

x ]d = span{v1} ,

and let Φ2(z0) = 0 for z0 = (μ0, x0, v
1) in (5.41). Then gradΦ2(z0) has a

bounded inverse if and only if the matrix Q2(u1, u2, v
1) = [v1F 0

xx〈ui, uk〉]2i,k=1

is regular.

Proof in SUPPLEMENT\chap05b.
By a proposition of (MooreA), branching points are computed as regular

points of an augmented accompanying system in a similar way as in turning
points. We consider the perturbated system

Φ3(λ, (μ, x)) := Φ2(μ, x) + λr = 0 (5.43)

where λ now plays the role of the former parameter μ and (μ, x) the role of the
former x . In Lemma 5.11 it has been supposed that v1F 0

μ �= 0 since (μ0, x0)
shall be a turning point. To apply this lemma we therefore require that

∂

∂λ
Φ3(0, (μ0, x0)) = r /∈ Range(F̃(μ,x)(0, (μ0, x0))) = Range([F 0

μ , F
0
x ]) .
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The accompanying system with specified r and v ∈ Yd then reads:

Φ3(z) := Φ3(λ, (μ, x), v)

=

⎡
⎢⎣
F (μ, x) + λr

v [Fμ(μ, x), Fx(μ, x)]
v r − 1

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

F (μ, x) + λr

v Fx(μ, x)
v Fμ(μ, x)
v r − 1

⎤
⎥⎥⎥⎦ = 0 , z = (λ, (μ, x), v) .

(5.44)

Lemma 5.13. Let (μ0, x0) be a simple branching point with dim KerFx
0 = 1

(and F 0
μ ∈ RangeF 0

x ). Let z0 = (0, μ0, x0, v
1) then Φ3(z0) = 0 . Further, let

w denote the unique solution of F 0
μ + F 0

xw = 0 , v1 w = 0 , then

gradΦ3(z0) : R
2 × X × Yd → Y × Yd × R

2

has a bounded inverse if and only if the matrix Q1 in (5.42) is regular.

A similar result can be derived for branching points with dim KerF 0
x = 2 .

Note however that this result yields again a test on possible branching points
and is by no means sufficient.

Hint to the proof. Here Ker([F 0
μ , F

0
x ]) = span{(0, u1), (1, w)} , therefore

the matrix Q2(u1, u2, v
1) in Lemma 5.12 relative to the augmented system

has now the form of the matrix Q1(u1, w, v
1) relative to the system (5.44).

��
Consider now the finite-dimensional case X = Y = R

n then we may choose
r = vT ∈ R

n (because v ∈ Rn) and there follows the accompanying system
⎡
⎢⎢⎢⎣

F (μ, x) + λvT

v Fx(μ, x)
v Fμ(μ, x)
v vT − 1

⎤
⎥⎥⎥⎦ = 0 (5.45)

which is employed by (Deuflhard87) as accompanying system in continuation
methods for detecting branching points.

5.4 Ordinary Differential Systems

It may be surprising or not but ordinary differential systems are more difficult
to handle than the usual partial differential equations of second order. The
reason may be that the former do not enjoy similar symmetry properties. In
normal case, the system is transformed ad first into a system of first order
(Matlab knows only them). By the change of sign due to partial integration
there arises some skewness which entails negative effects on the primal-dual
way of consideration as is shown immediately.
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(a) Linear Boundary Value Problem; cf. Sect. 1.5. Let Dt = d/dt de-
note the simple differential operator. We consider the homogeneous boundary
problem (1.33),

Dt x(t) +A(t)x(t) = 0 ∈ R
n , Rax(a) +Rbx(b) = 0 ∈ R

m , m ≤ n , (5.46)

in interval I = [a, b] where Dt = ∂/∂t . Let the matrix A(t) be continuous
and let rank [Ra, Rb] = m .

Notations:

Y = {x ∈ C(I; Rn) , ‖x‖ = max |x(t)|} Banach space
X = {x ∈ C1(I; Rn} , ‖x‖1 = ‖x‖ + ‖Dt x‖} Banach space
Xb = {x ∈ X , Rax(a) +Rbx(b) = 0} ⊂ X Banach space
L = Dt +A( · ) operator L ∈ L(Xb,Y)
L∗ = −Dt +A( · )T formal adjoint

operator to L

(x, y) =
1

b− a

∫ b

a

x(t)T y(t) dt scalar product

.

More exactly

Lx(t) = ẋ(t) +A(t)x(t) , L∗x(t) = −ẋ(t) +A(t)Tx(t) .

Lemma 5.14. Let A and f be continuous. Then the Cauchy problem

Lx = ẋ+A(·)x = f(·) , x(t0) = x0 ,

has a unique solution x ∈ C1(I,Rn) for every initial point (t0, x0) ∈ I × R
n.

Proof see Sect. 1.5.
(b) Adjoint Boundary Value Problem The formal adjoint operator

L∗ is defined by the relation

(y, Lx) − (L∗y, x) =
1

b− a

∫ b

a

[
y(t)T ẋ(t) + ẏ(t)Tx(t]

]
dt

=
y(b)Tx(b) − y(a)Tx(a)

b− a
.

(5.47)

In order that L∗ becomes the adjoint operator Ld , the domain of definition
has to be specified such that the right side in (5.47) is zero:

y(a)Tx(a) − y(b)Tx(b) = [y(a)T ,−y(b)T ]
[
x(a)
x(b)

]
= 0 .

By this condition together with the boundary conditions for the primal prob-
lem, namely
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[Ra, Rb]
[
x(a)
x(b)

]
= 0 ∈ R

m,

we obtain the following condition

[y(a)T , −y(b)T ] = q[Ra, Rb] (5.48)

for some row vector q ∈ Rm . Since rank [Ra, Rb] = m ≤ n let Sa and Sb be
(n −m,n)-matrices such that the (n −m, 2n)-matrix [Sa, Sb] has maximum
rank n−m and that

Ra S
T
a −Rb S

T
b = 0 ∈ R

m
n−m , rank [Sa, Sb] = n−m. (5.49)

Then the rows of [Sa,−Sb] form a basis of Ker [Ra, Rb], and we have

[y(a)T , −y(b)T ]
[

ST
a

−ST
b

]
= qT [Ra, Rb]

[
ST

a

−ST
b

]
= 0.

Now the adjoint problem has the form

L∗y = 0 , Say(a) + Sby(b) = 0 , (5.50)

where the (n−m, 2n)-matrix [Sa, Sb] is determined uniquely up to multipli-
cation from right by a regular matrix. Conveniently we introduce the Banach

space
X ∗

b := {y ∈ C1(I,Rn) , Say(a) + Sby(b) = 0} ⊂ X ,

then the operator L and its adjoint operator L∗ satisfy

L ∈ L(Xb,Y) , L∗ ∈ L(X ∗
b ,Y) , (5.51)

which has always to be regarded in the sequel.
Summary and Recapitulation for L and L∗ (I ∈ R

n
n unit matrix)

the (principal) fundamental matrices X(t) and Y (t) satisfy:

Ẋ +A(t)X(t) = 0 , X(a) = I , −Ẏ +A(t)TY (t) = 0 , Y (b) = I .

Wronski matrices:

L : W (s, t) = X(s)X(t)−1 , L∗ : W ∗(s, t) = W (t, s)T .

Note that Y (a)T = Y (t)TX(t) = X(b) and thus, for the characteristic matri-
ces C and D ,

C = Ra+RbX(b) = Ra+RbY (a)T , D = SaY (a)+Sb = SaX(b)T +Sb (5.52)
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and, for the solutions,

x(t) = X(t)
{
x(a) +

∫ t

a

X(s)−1f(s) ds
}

= Y −T (t)
{
Y T (a)x(a) +

∫ t

a

Y (s)T f(s) ds
}

y(t) = Y (t)
{
y(a) +

∫ t

a

Y (s)−1f(s) ds
}

= X−T (t)
{
XT (a)y(a) +

∫ t

a

X(s)T f(s) ds
}

or more general

x(t; t0, x0) = W (t, t0)x0 +
∫ t

t0

W (t, s)f(s) ds

y(t; t0, y0) = W (t0, t)T y0 −
∫ t

t0

W (s, t)T f(s) ds .

Lemma 5.15. Let m = rank[Ra, Rb] and r = rankC . Then
(1◦) dim KerL = dim KerC = n− r .
(2◦) Let the columns of C̃ ∈ R

n
n−r form a basis of KerC then the columns

of U( · ) = X( · )C̃ form a basis of KerL .
(3◦) dim KerL∗ = dim KerCT = dim KerD = m− r , rankD = n−m− r .
(4◦) Let the columns of Ĉ ∈ R

m
m−r form a basis of KerCT then the columns

of D̃ := −RT
b Ĉ = Y −1(a)RT

a Ĉ form a basis of KerD and the columns of
V d( · ) = Y ( · )D̃ form a basis of KerL∗.

Lemma 5.16. (1◦) RangeL and RangeL∗ are closed.
Relative to the above scalar product
(2◦) RangeL = [KerL∗]⊥ , [RangeL]⊥ = KerL∗ .
(3◦) RangeL∗ = [KerL]⊥ , [RangeL∗]⊥ = KerL .

Corollary 5.3. (1◦) L is a Fredholm operator with index n−m .
(2◦) L∗ is a Fredholm operator with index m− n .

Accordingly, n = m must hold in order that L is a Fredholm operator with
index zero; the next-important case would be m = n− 1.

Example 5.8. (Linear Periodic Systems) Let Y = C2π = {x ∈ C(R; Rn) , x(t+
2π) = x(t)} and X = C1

2π = {x ∈ C1(R; Rn} , x(t+ 2π) = x(t)}. Then X ⊂ Y
and both are (non-reflexive) Banach spaces with norms ‖x‖ = max |x(t)|
and ‖x‖1 = ‖x‖+‖Dt x‖ respectively. The operators L, L∗ ∈ L(C1

2π; C2π) now
satisfy

(y, Lx) − (L∗y, x) = 0

hence the formal adjoint operator L∗ is already the adjoint operator and there
is no troublesome determination of adjoint boundary conditions in periodic
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problems. The boundary conditions x(0) − x(2π) = 0 yield Ra = −Rb = I
therefore rank[Ra, Rb] = n. The system Lx = ẋ + Ax = 0 has a 2π-periodic
solution x ∈ C1

2π if and only if there exists a 0 �= x0 ∈ R
n such that x0 =

W (2π, 0)x0 . Let the characteristic matrices C and D of (5.52) be written by
the regular monodromy matrix W (2π, 0) ,

C = (I −W (2π, 0))X(0) , D = (I −W (0, 2π)T )Y (0)

where W (0, 2π)T = W (2π, 0)−T . Then we obtain directly

Ker(L) = {x = W (·, 0)x0, x0 ∈ Ker(I −W (2π, 0))},
Ker(L∗) = {y = W (0, ·)T y0, y0 ∈ Ker(I −W (2π, 0)−T )} .

Because dim Ker(I −M) = dim Ker(I −M−T ) for every regular matrix M ,
it follows that

dim Ker(L) = dim Ker(L∗) = α < n

and thus L is now a Fredholm operator with index zero; again Range(L) =
[Ker(L∗)]⊥ as above .

(c) We consider the Nonlinear Boundary Value Problem

Dt x(t) +A(t)x+ f(t, μ, x(t)) = 0 ∈ R
n , f(t, μ, 0) = 0 , μ ∈ R ,

Rax(a) +Rbx(b) = 0 ∈ R
m ,

(5.53)

where all data shall be sufficiently smooth in interval I = [a, b] .

Assumption 5.3. (1◦) rank [Ra, Rb] = m ≥ n− 1 .
(2◦) Let the operators L ∈ L(Xb,Y) and L∗ ∈ L(X ∗

b ,Y) have the form

Lx := Dtx+A(t)x+ fx(t, μ0, 0)x , L∗y := −Dty + (A(t) + fx(t, μ0, 0)]T y

and

dim KerL = α ≥ 1 , KerL = span{u1, . . . , uα} , U = [u1, . . . , uα]
dim KerL∗ = β , KerL∗ = span{v1, . . . , vβ} , V d = [v1, . . . , vβ ] . ��

The asymptotic expansion

f(t, μ, x) = (μ− μ0)B(t)〈x〉 + C(t)〈x, x〉 + g(t, μ, x)
B(t) = fμ,x(t, μ0, 0) , C(t) = fxx(t, μ0, 0)
g(t, μ, x) = O(|μ|2) , |μ| → μ0 , g(t, μ, x) = O(‖x‖)3) , ‖x‖ → 0

holds near a possible branching point (μ0, x0) = (μ0, 0) . We use the scaled
ansatz

μ(ε) = μ0 + εξ(ε) , x(t, ε) = εU(t)ζ(ε) + ε2w(t, ε) , Udw = 0 (5.54)
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and adopt the assumptions of Corollary 5.1. Then the pair of scaled reduced
branching equation and operator equation reads after division by ε2 :

Φ(ξ0, ζ0) = V d
[
ξ0B〈Uζ0〉 + C2〈Uζ0, Uζ0〉

]
= 0

Ψ(ξ0, ζ0, w0) = Lw0 + (I −Q)
[
ξ0B〈Uζ0〉 + C2〈Uζ0, Uζ0〉

]
= 0

Udw0 = 0 , w0 ∈ L(Xb,Y) (!).

(5.55)

Let e.g. m = n , and α = dim KerL = 1 then β = dim KerL∗ = 1 , and
L as well as L∗ are Fredholm operators with index zero. Setting ξ0 := 1 ,
one then obtains a unique solution ζ0 and w0 under the classical assumption
v1Bu1 �= 0 , cf. Sect. 5.1(d3). (But also ζ0 = 1 may be set here without loss
of generality.)

Supposing further that m = n and α = 1, a substitution of the expansion
(5.54) into the differential system (5.53) yields directly an overdetermined
boundary problem for w,

Lw := Dtw +A(t)w + fx(t, μ0, 0)w = −ξB〈u1 + εw〉

− 1
ε2

[
C(t)〈(εu1 + ε2w, εu1 + ε2w〉 + g(t, μ0 + εξ, εu1 + ε2w)

] (5.56)

Raw(a) +Rbwb = 0 , (u1, w) = 0 .

The right side of (5.56) must be contained in RangeL that a solution exists
(since the projector I−Q does not apply). By the Range Theorem 1.2, a con-
sistency condition must therefore be fulfilled which is the branching equation
of course,

ξv1B(u1 + εw) + ε−2v1[C +R] = 0 . (5.57)

(If v1Bu1 �= 0 , also v1B(u1 + εw) = 0 for sufficiently small |ε| .) Instead of
v1 ∈ KerLd we can however choose any function v ∈ Yd such that y ∈ RangeL
if and only if (v, y) = 0 .

In a simple iterational device, the parameter ξ is calculated successively
by (5.57) and inserted into (5.56) thereafter w is found by solving this sys-
tem. The condition (u1, w) = 0 leads to an overdetermined system as already
mentioned but the complete system can nevertheless be solved by the box
scheme or a similar device; cf. Sect. 2.5(a). (Weber79) has proposed an inter-
esting modification to solve this overdetermined system by applying a result
of (Reid); see (Reid), problem III.10(3).

Example 5.9. A nonlinear Bernoulli beam; (Golubitsky), vol. I, p. 296. s
arc length, ϕ angle w.r.t. x-axis (neutral fibre in equilibrium), μ axial load,
π length of the beam (normalized). The terminal points of the beam are
constrained to lie on a line and to be fixed otherwise as in Sect. 7.2, Figure
7.3, Case 4. The displacement y(s) of a point of the neutral fibre of the beam
then reads:
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y1(s) =
∫ s

0

cosϕ(σ) dσ , y2(s) =
∫ s

0

sinϕ(σ) dσ .

In a similar way as in mathematical pendulum, the differential form of the
law of conservation of energy leads to a boundary value problem

ϕ′′(s) + μ sinϕ(s) = 0 , ϕ′(0) = ϕ′(π) = 0 .

Notations in context: x(s) := ϕ(s) , X = {f ∈ C2[0, π] , f(0) = f(π) = 0} ,
Y = C[0, π] .

F (μ, x) = x′′ + μ sinx , x′(0) = 0 , x′(π) = 0
Lv = F 0

xv := v′′ + μ v linearization
μk = (1 + k)2 , k = 0, . . . eigenvalues of F 0

x

uk(s) = cos((1 + k2)1/2s) , k = 0, . . . eigenfunctions of F 0
x

(u, v) =
∫ π

0

u(s)v(s) ds scalar product.

The operator L is self-adjoint (symmetric) hence P = Q does hold for the both
involved projection operators. We consider the situation at the first branching
point (eigenvalue) μ0 = 1 and list up the specified data of Sect. 5.1:

u1(s) : [0, π] � s �→ cos(s) single eigenvector of μ0

KerL = R cos : [0, π] � s �→ r cos(s) , r ∈ R arbitrary

P = Q : E � f → u1(u1, f) = (f, cos) cos(◦)
KerP = {f ∈ X , (u1, f) = 0} .

Of course, the problem has the trivial solution (μ, 0) ∈ R×X for all μ, and it
is apparent that the branching is a simple pitchfork bifurcation.

Example 5.10. ((Crandall) & Rabinowitz). Consider the sufficiently smooth
system

F (μ, x) = Ax+ f(x) + μ(Bx+ g(x)) = 0 , f(x), g(x) = o(‖x‖) , ‖x‖ → 0 ,

and let L := A−μ0B be a Fredholm operator with index zero and KerL =
span{u1} . Let v ∈ Yd be any function such that y ∈ RangeL if and only if
v y = 0 then, by Theorem 5.3, there exists a non-trivial solution of the form
(5.16) whenever vBu1 �= 0 .

Let X = Y = C([0, π]) under maximum norm and Lx = −(px′)′ + qx
where p is continuously differentiable, positive and q is continuous on [0, π] .
The dash denotes differentiation for the space variable s . As domain D of L
we take e.g. D(L) = {x ∈ C2([0, π]) : x(0) = x(π) = 0} . Consider now the
differential equation

F (μ, x)(s) = Lx+ f(s, x, x′, x′′) − μ(u+ g(s, x, x′, x′′)) , F (μ, 0) = 0
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and let μ0 be an eigenvalue of L . Then L satisfies the assumptions of Theorem
5.3, as is well known. In particular, μ0 is an algebraic simple eigenvalue and
that Theorem is applicable.

Even more specially, consider the scalar boundary value problem

−x′′ + h(x2 + x′2)x− μ(x+ k(x2 + x′2)x) = 0 , x(0) = x(π) = 0 (5.58)

where h and k are smooth with h(0) = 0 and k(0) = 0 . Then L = −x′′
has the eigenvalue μ0 = 1 and Ker(L − μ0I) = span{u1} . To find the
unique curve of solutions bifurcating from (μ0, 0) we try x = c sin s , c a
constant. This gives 1 + h(c2) − μ(1 + k(c2)) = 0 and therefore μ(c) =
(1 + h(c2))/(1 + k(c2)) . For testing numerical devices, we may choose k = 0 ,
h(c2) = exp(−1/c2) sin(1/c2) , c �= 0 , and h(0) = 0 following (Crandall).

It may be interesting to look for the above mentioned function v ∈ Yd .
Because RangeL = {−x′′ − x , x ∈ D(L)} we find by partial integration

∫ π

0

sin(s)
(
x′′(s) + x(s)

)
ds = 0 =⇒ v(s) = sin s .

References: (Langford77a), (Langford77b), (Langford78), (Weber79).

5.5 Hopf Bifurcation

Consider an autonomous differential system

ẋ(t) + g(μ, x(t)) = 0 ∈ R
n (5.59)

with real parameter μ and smooth vector field g . We look for periodic solutions
branching off from a steady state solution or critical point (μ0, x0) ∈ R

n+1

with g(μ0, x0) = 0 . This phenomenon is called Hopf bifurcation after (Hopf)
(1942) and is in the meanwhile one of the best investigated cases in bifurcation
theory.

Roughly spoken, Hopf bifurcation arises at a critical point whenever two
conjugate complex conjugate eigenvalues of ∇xg(μ, x) pass through the imag-
inary axis in dependence of the parameter μ . More exactly we have the fol-
lowing celebrated result which is, e.g., proved completely in (Golubitsky) vol.
I, chap. VIII; but see also (Marsden76) and many others.

Theorem 5.6. Let I = (μ0 − ε, μ0 + ε) be a non-empty parameter interval
and suppose for the system (5.59) that:
(1◦) There exists a smooth branch of steady state solutions x0(μ) for μ ∈ I ,
i.e., g(μ, x0(μ)) = 0 , and x0(μ0)) is an isolated solution of g(μ0, x) = 0 .
(2◦) The Fréchet derivative gradx g(μ, x0(μ)) with μ ∈ I has a pair of simple
complex conjugate eigenvalues λ1,2(μ) = σ(μ) ± iω(μ) with ω(μ0) = ω0 �= 0 ,
σ(μ0) = 0 and gradx g(μ0, x0) has no other eigenvalues lying on the imaginary
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axis also not the eigenvalue zero (simple eigenvalue condition).
(3◦) σ′(μ0) �= 0 (eigenvalue crossing condition).
Then there is a one-parametric family of periodic orbits bifurcating from the
critical point (μ0, x0) .

Note also that (1◦) follows from (3◦) by the Implicit Function Theorem
since gradx g(μ0, x0) is supposed to be regular.

Without loss of generality we do now shift the critical point into the origin
(0, 0) and suppose also that g(μ, 0) = 0 . Then the system (5.59) can be written
as

ẋ(t) +A(μ)x(t) + f(μ, x(t)) = 0 , f(μ, 0) = 0 ,

where f(μ, x) contains the higher order terms in μ and x .
(a) Simple Examples

Example A The system

ẋ = A(μ)x , A(μ) =
[
μ −1
1 μ

]
(5.60)

has the eigenvalues λ1,2 = μ± i and the phase portraits as in Fig. 5.7.

Figure 5.7. Example A

Exactly for μ �= 0 further solutions appear besides the trivial solution
x = 0 and all have the same time-period 2π . ��

The famous result of (Hopf) now says in essential that these fragile periodic
solutions do not all disappear again if a nonlinear term is added in equation
(5.60) but generically one solution is left over which however can (but must
not) change its period in dependence of the parameter μ (if not re-scaled).

In supercritical Hopf bifurcation the nontrivial periodic solution is stable
and the trivial solution unstable:
Example B The nonlinear system

ẋ−A(μ)x+ |x|x = 0 ∈ R
2 , A(μ) =

[
μ −1
1 μ

]
,
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has the phase portraits as in Fig. 5.8.

Figure 5.8. Example B

The figures show that a non-trivial periodic solution exists for μ > 0 and
all solutions besides the trivial one tend to that solution for t → ∞ , therefore
the periodic solution is stable. ��

In subcritical Hopf bifurcation the nontrivial periodic solution is unstable
and the trivial solution stable:
Example C The nonlinear system

ẋ−A(μ)x− |x|x = 0 ∈ R
2 , A(μ) =

[
μ −1
1 μ

]
,

has the phase portraits as in Fig. 5.9.

Figure 5.9. Example C

These figures show that a non-trivial periodic solution exists for μ < 0
and all solutions besides the trivial one tend to that solution for t → −∞ ,
therefore the periodic solution is unstable. ��

Both examples have the exact solution |μ|(cos t, sin t) and the period does
not change. The following theorem says that all two-dimensional Hopf bifur-
cations satisfying the assumption of Theorem 5.6 have more or less the same
shape.

Theorem 5.7. Adopt the assumptions of Theorem 5.6 and a second genericity
condition. Then all systems ẋ + A(μ)x + f(μ, x) = 0 ∈ R

2 are topologically
equivalent near the origin to one of the systems

ẋ−A(μ)x± |x|2x = 0 ∈ R
2 , A(μ) =

[
μ −1
1 μ

]
.
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Proof see (Kuznetsov), Sect. 3.5; in particular Theorem 3.3 . The word
“generic” is frequently encountered in bifurcation theory and means that some
non-specific cases shall be excluded. Genericity conditions are sufficient con-
ditions for the existence of a solution and thus a difficult matter as all state-
ments on existence. The second condition mentioned in Theorem 5.7 concerns
of course the nonlinear part f of the differential system. For an exact for-
mulation we however must replace that two-dimensional system equivalently
by a single complex differential equation and study its properties thoroughly.
Note also that f(x) = |x|2x is invariant under rotations as well as the function
f(x) = |x|x in the above examples; see also Sect. 5.1 (h3).

(b) Transformation to Uniform Period Functions with different pe-
riods do not form a vector space but the theory of Fredholm operators shall
apply in the sequel. Therefore, and for numerical implementation, the system
(5.59) must be transformed to a system with, say, period 2π . Let v(s) be a
T-periodic solution of the autonomous, homogenous differential system

v̇(s) + g(μ, v(s)) = 0 ∈ R
n , g(μ, 0) = 0 .

Let ω = 2π/T be the frequence, then the substitution s = t/ω yields

ẋ(t) = v̇(t/ω)/ω , G(μ, ω, x)(t) := ωẋ(t) + g(μ, x(t)) = 0 (5.61)

for the transformed function x(t) = v(t/ω) and x is now a 2π-periodic solution.
In the sequel we study therefore the re-scaled problem

F (μ, ω, x) := G(μ0 + μ, ω0 + ω, x) = 0

with two parameters for possible branching of 2π-periodic solution at the point
(μ0, ω0, 0) . Note that the trivial solution x0 = 0 having every period is here
always the steady solution.

(c) An Eigenvalue Problem Recall Example 5.8 and consider the lin-
early perturbed 2π-periodic eigenvalue problem

(ω0Dt +A+ μB)x(t, μ) = λ(μ)x(t, μ), λ(0) = 0 , x(·, μ) ∈ C1
2π (5.62)

(Dt = d/dt) under the following assumptions and notations:

Assumption 5.4. (1◦) iω0 �= 0 is an α-fold semi-simple eigenvalue of the
matrix A ∈ R

n
n , α ∈ N .

(2◦) Besides ±iω0 , the matrix A has no further purely imaginary eigenvalues
and also not the eigenvalue zero (A regular).

The operators L, L∗ ∈ L(C1
2π; C2π) , L = ω0Dt +A , L∗ = −ω0Dt +AT , have

the same properties as in Example 5.8. In particular, they are Fredholm

operators with index zero. Let

Ker(L) = {u1, . . . , uκ} , U = [u1, . . . , uκ] , ui formal columns
Ker(L∗) = {v1, . . . , vκ} , V d = [vk]κk=1 vk formal rows .

Then κ = 2α by the following Lemma 5.17 and RangeL∩KerL = {0} because
iω0 is a semi-simple eigenvalue, cf. Lemma 5.1.
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Lemma 5.17. Adopt Assumption 5.4.
(1◦) There exist linear independent vectors c1, . . . , cα ∈ C

n and d1, . . . dα ∈ Cn

such that

Ack = −iω0ck , c
H
j ck = 2δj

k ,

dkA = iω0d
k , d

j
ck = 2δj

k , djck = 0 , j, k = 1 : α
. (5.63)

(2◦) The eigensolutions of L resp. of L∗ for the eigenvalue zero have the real
form

uk : t �→ Re(cke
it) , k = 1 : α , uk : t �→ Im(ck−νe

it) , k = α+ 1 : 2α ,
vk : t �→ Re(dke

it) , k = 1 : α , vk : t �→ Im(dk−νe
it) , k = α+ 1 : 2α .

See also (Golubitsky), Sect. 8.2 for α = 1 and (Kielhoefer). (1◦) is a simple
conclusion from the fact that the left eigen- (and principal) vectors of a square
matrix are a reciprocal basis to the right eigen- (and principal) vectors also in
complex case. The second part follows by insertion. We assemble some prop-

erties where 〈u, v〉 =
1
2π

∫ 2π

0

u(t)T v(t) dt , u, v ∈ C2π , is the corresponding

scalar product.

Lemma 5.18. Adopt Assumption 5.4. (1◦)

u̇k = −uα+k , u̇α+k = uk , k = 1 : α ,
v̇k = −vα+k , v̇α+k = vk , k = 1 : α .

(2◦) u1, . . . , u2α form a real orthonormal basis of KerL .
(3◦) v1, . . . , v2α form a basis of KerL∗.
(4◦) v1, . . . , v2α form the dual basis of u1, . . . , u2α , 〈vj , uk〉 = δj

k , j, k = 1 :
2α .

(5◦) B1 := V dU̇ = [〈vj , u̇k〉]2α
j,k=1 =

[
0 I

−I 0

]
(symplectic normal form) .

(6◦) B2 := V dBU = [〈vj , Buk〉]2α
j,k=1 =

[
Re[Λ′(0)] Im[Λ′(0)]

− Im[Λ′(0)] Re[Λ′(0)]

]

where B is the matrix of (5.62) and Λ′(0) = diag[λ′
1(0), . . . , λ′ν(0)] is a complex

diagonal matrix.

All assertions except the last one follow straightforward by insertion; for (6◦)
see the remark after Theorem 5.5. Now we can apply this theorem directly
observing that B2 is a normal matrix hence diagonalizable.

Corollary 5.4. Let the system (5.62) satisfy Assumption 5.4. Then there ex-
ist α distinct smooth eigensolutions for sufficiently small |μ| .
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(d) Scaled Problem Consider a two-parametric autonomous and ho-
mogenous differential system

F (ω, μ, x)(t) := (ω0 + ω)ẋ(t) + g(μ, x(t)) = 0 , F (ω, μ, 0) = 0 ∈ R
n

where F : R
2 × C1

2π → C2π is sufficiently smooth. The origin (0, 0, 0) is a
possible branching point if the Fréchet derivative F 0

x = ∇xF (0, 0, 0) has a
nontrivial kernel. We suppose that the system has the form

F (ω, μ, x)(t) = Lx+ωẋ(t)+Ax(t)+μBx(t)+Cr(x)+ h.o.t. , Lx = ω0ẋ+Ax ,
(5.64)

where A = g0
x , B = g0

μx , Cr(αx) = αrCr(x) �= 0 . We use the notations of (c)
and adopt Assumption 5.4, then zero is a semi-simple eigenvalue of L therefore
Y = Range(L) ⊕ Ker(L) and we can assume without loss of generality that
V dU = [< vi, uk >]νi,k=1 = I . The projector Q : Y → Range(L) needed in the
operator equation is given by Q : u �→ Qu := UV d u .

For scaled ansatz we choose as above

(ω(ε), μ(ε)) = εr−1(κ(ε), η(ε)),
x(t, ε) = εU(t)ζ(ε) + εrw(t, ε), V (t)w(t, ε) = 0 .

(5.65)

Then Lemma 5.5 and Corollary 5.1 apply and yield:

Corollary 5.5. For all ζ with non-zero V dBUζ the algebraic bifurcation equa-
tion of the system (5.64) is

Φ(κ, η, ζ) := κV dU̇ζ + ηV dBUζ + V dCr(Uζ) = 0 . (5.66)

Let it have a solution (κ0, η0, ζ0) ∈ R
2ν+2 and let the Jacobian Φκ,η,ζ(κ0, η0, ζ0)

have maximum rank 2ν . Then the problem (5.64) has a nontrivial solution
(5.65) emanating from the bifurcation point (ω, μ, x) = (0, 0, 0) for sufficiently
small |ε| > 0 .

Example 5.11. Adopt the assumptions of Theorem 5.6 for the system (5.64)
in R

2 then by Lemma 5.18

B1 := V dU̇ =
[

0 1
−1 0

]
, B2 := V dBU =

[
σ′(0) ω′(0)

−ω′(0) σ′(0)

]
.

Now B1ζ0 and B2ζ0 are linear independent for each 0 �= ζ0 ∈ R
2 if and only

if σ′(0) �= 0 (eigenvalue crossing condition). In this case
[
κ0

η0

]
= [B1ζ0, B2ζ0]−1V Cr(Uζ0) (5.67)

yields a desired solution of (5.66). For α > 1 we can augment the bifurca-
tion equation (5.66) by the condition |ζ| = 1 and consider μ as independent
variable. Then the augmented system consists of α + 1 equations for α + 1
dependent variables (ω, ζ) ; see also (Kielhoefer).
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(e) Discretization Let (ω, μ, x) = (ω0, 0, 0) ∈ R × R × C1
2π be a simple

Hopf branching point of the homogeneous system

F (ω, μ, x) := ωẋ+Ax+ g(μ, x) = 0 ∈ R
n , g(μ, x) = μBx+ f(μ, x) ,

(5.68)
and let x(◦ , μ) : t �→ x(t, μ) ∈ R

n be a 2π-periodic solution for sufficiently
small μ > 0 .

(e1) Approximation by Differences Let

tk = kτ , 1 = 1 : 2m, τ = 2π/2m , (5.69)

be an uniform partition of the t-interval [τ, 2π] and let yk , k = 1 : 2m , be a
numerical approximation of x(tk) ∈ R

n . (Matlab does not know the index
zero.) Then we write

Y := [y1, . . . , y2m]T ∈ R
2m·n (global node vector) ,

G(μ, Y ) := [g(μ, y1), . . . , g(μ, y2m)]T ∈ R
2m·n.

In an approximation of (5.68) by differences, the derivative ẏ of y is replaced
by a numerical differentiation rule. For instance, choose the backward differ-
entiation rule of order p = 2 then

ẏ(t) =
1
2τ

[3y(t) − 4y(t− τ) + y(t− 2τ)] + O(|τ |2) , τ → 0 . (5.70)

Regarding the partition (5.69) and the required periodicity, a discrete system
for the node vector Y is found:

ω(C × In)Y + (I2m ×A)Y +G(μ, Y ) = 0 , (5.71)

where P ×Q = [pi
kQ] denotes the usual Kronecker product. Further, In ∈

R
n

n denotes the unit matrix and C ∈ R
2m

2m is a circulant matrix of the form

C =

⎡
⎢⎢⎢⎢⎢⎣

c1 c2 c3 · · · c2m

c2m c1 c2 · · · c2m−1

c2m−1 c2m−2 c1 · · · c2m−2

...
...

...
. . .

...
c2 c3 c4 · · · c1

⎤
⎥⎥⎥⎥⎥⎦
. (5.72)

For instance in the backward differentiation rule (5.70)

[c1, c2, c3 , . . . , c2m] =
1
2τ

[3, 0, . . . , 0, 1, −4] , τ = 2π/2m. (5.73)

Let � = e2πi/2m be a primitive unit root then the Jordan normal form
C = PΛPH of a circulant matrix C may be written explicitely:
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P = [pi
j ], pi

j = (2m)−1/2�(i−1)(j−1)
Fourier matrix

Λ = diag(λ1, λ2, . . . , λ2m) matrix of eigenvalues of C

λk =
∑2m

l=1 cl[�
k−1]l−1 , k = 1 : 2m eigenvalues ;

cf. (M.Chen). If C regular, the inverse C−1 = PΛ−1PH is likewise a cir-
culant matrix and, by consequence, the system Cx = b has the solution
x = PΛ−1PHb which can be found by the fast Fourier transformation in
particular time-saving way. (In example (5.73) and in (e2) the matrix C is
however singular.)

The eigenvectors u and v with the property Cu = cu and Av = av satisfy

a(C × In)(u× v) ± c(I2m ×A)(u× v) =
{

2ac(u× v) for “ + ”
0 for “ - ” .

Let now a = iω0 be a pure imaginary eigenvalue of A and c = iγ a pure
imaginary eigenvalue of C then ac is real and Im(u× v) is a real eigenvector
of the real matrix ω0(C×I)−γ(I×A) to the eigenvalue zero. Altogether, the
eigenvectors of the leading matrix in (5.71) can be found without difficulty
whenever a characteristic pair of A with imaginary eigenvalue is known; this is
however exactly the situation in Hopf bifurcation. Unfortunately the matrix
C of example (5.73) does not have an eigenvalue iγ with real γ �= 0 therefore
we use the discretization of the exact eigenvectors of Lemma 5.18(2◦) for
numerical implementation.

(e2) Periodic Approach Suppose that the solution x of (5.68) has a ab-
solutely continuous derivative, then the (unknown) solution x and the function
g in (5.68) can be expanded into a real-valued Fourier series with complex
components,

x(t) =
∑∞

j=−∞ x∗j e
ijt , x∗−j = x∗j ,

g(μ, x(t)) =
∑∞

j=−∞ g(μ, x)∗j e
ijt , g(μ, x)∗j = 1

2π

∫ 2π

0
g(μ, x(t)) e−ijtdt .

We insert the Fourier series of x and g into the system (5.68) and obtain an
equivalent system for the Fourier coefficients

F (ω, μ, x)(t) =
∞∑

j=−∞

[
iωjx∗j +Ax∗j + g(μ, x)∗j

]
eijt = 0

0 = iωjx∗j +Ax∗j + g(μ, x)∗j , j = −∞, . . . ,∞ ;
(5.74)

cf. also (Dellnitz).
Of course, it is summed up over a finite index set for numerical approach,

preferably over j = (1−m) : m in the present case. The resulting procedure is
then the well-known Ritz method w.r.t. an expansion relative to eigenvectors
of the differential operator d/dt in the present case of 2π-periodic functions.
We refer to Sect. 12.4 in particular to (12.8) and write
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y(t) =
m−1∑

j=1−m

y∗j e
ijt +

1
2
y∗m(eimt + e−imt) ∈ R

n

for the numerical equivalent of the exact solution x. Then, by (5.74), the
finite-dimensional system for the 2m unknown Fourier coefficients reads:

iωjy∗j +Ay∗j + g(μ, y)∗j = 0 , j = (1 −m) : (m− 1)

0 +Ay∗m + g(μ, y)∗m = 0 .
(5.75)

Remember that, by Lemma 2.1, the composed trapezoidal rule is first
choice in numerical integration of (smooth) periodic functions. Application
yields

g(μ, y)∗j ∼ 1
2m

2m−1∑
k=0

g(μ, yk) e−ijkτ , j = (1 −m) : m,

by regarding y(0) = y(t0) = y(t2m) = y(2π) . Let conveniently

Y ∗ := [y∗1−m, . . . , y
∗
m]T ∈ R

2m·n

G(μ, Y )∗ := [g(μ, y)∗1−m, . . . , g(μ, y)
∗
m]T

D := i diag[1 −m, . . . ,m− 1, 0] ,

then the rules (12.4) of discrete Fourier tranformation apply and yield

Y = (Q× In)Y ∗ , Y ∗ =
1

2m
(QH × In)Y . (5.76)

By this way, the finite-dimensional approach of (5.67) has eventually the form

0 = ω(D × I)Y ∗ + (I ×A)Y ∗ +G(μ, Y )∗

G(μ, Y )∗ =
1

2m
(QH × I)G(μ, Y ) .

(5.77)

In order to find a system for the global node vector Y itself, we use (5.76) and
multiply the first equation of (5.77) by Q× I:

ω(C̃ × I)Y + (I ×A)Y +G(μ, Y ) = 0 . (5.78)

Recall that (A × B)(C ×D) = AC × BD for compatible matrices, therefore
the matrix C̃ reads more detailed

C̃ = [cjk]2m−1
j,k=0 :=

1
2m

QDQH . (5.79)

This matrix stands now in the discrete system for the differential operator
d/dt . It is real, skew-symmetric as well as circulant, and it has 2m distinct
entries
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cjk = − 1
m

m−1∑
l=1

l sin(l(j − k)τ) , j, k = 0 : (2m− 1) .

Note that the elements of D are the eigenvalues of C̃ by (5.79) hence C̃
has the double eigenvalue zero and purely imaginary eigenvalues else. The
corresponding complex eigenvectors are the columns of Q . Accordingly this
circulant matrix satisfies now the assumptions of (e1).

(f) Numerical Solution We consider again a simple Hopf bifurcation
of the system (5.68)

F (ω, μ, x) := Lx+ ωẋ+ μBx+ f(μ, x) = 0 ∈ R
n , Lx = ω0ẋ+Ax ,

at the point (ω, μ, x) = (0, 0, 0) where the regular matrix A has exactly two
non-zero imaginary eigenvalues ± iω0 and the operator L has the double semi-
simple eigenvalue zero. The following algorithm supplies a non-trivial solution
germ by direct iteration. Updating of the parameters ω and μ follows in a
similar way as in (5.67) whereas the component vector ζ remains fixed. Con-
vergence follows for sufficiently small |ε| from the Contraction Theorem in a
similar way as in Lemma 5.6 by (Keener74). Ensuing a simple continuation
method is applied again w.r.t. the parameter μ where (ω, x) are dependent
variables with the aim that the solution leaves the solution germ and is trans-
ferred to some larger geometric orders of magnitude. Different initial vectors ζ
with same absolute value produce only a phase translation and one of the both
branching equations suffices for investigation of a possible stability transfer
from the trivial solution (Golubitsky).

START: Choose tolerance tol, set μ̃ = (ω, μ) = 0 , w = 0 ∈ R
n .

(1◦) Find the associated matrices U = [u1, u2] and V d = [v1, v2] of
eigensolutions.
(2◦) Choose a vector ζ ∈ R

2 with |ζ| = 1 and ε > 0 sufficiently small,
set u0 = εUζ and x = u0 .
WHILE NOT |F (μ̃, x)| ≤ tol
(1◦) Set H = [V dẋ, V dBx] ∈ R

2
2 . If H regular, solve

Hμ̃∗ = −V df(μ, x) , ω = μ̃∗
1 , μ = μ̃∗

2 .

If [V du̇0, V
dBu0] singular: STOP (algorithm fails), try a new ζ .

(2◦) Solve

L〈w〉 = −ωẋ− μBx− f(μ, x) , V d〈w〉 = 0 .

and set x = u0 + w .
END
In case of divergence try a smaller ε .
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Of course, the algorithm is applied to one of the above discretizations. Then,
for instance,

x = Y , L = ω0(C × In) + (I2m ×A) ∈ R
2m+n

2m+n

and the operator Dt of derivation for t is replaced by the operator C × In ;
see the procedures hopf_bdf.m and hopf_trig.m in the Matlab suite of this
chapter.

(g) Examples We present same well-known examples with simple Hopf

bifurcation at the point (ω, μ, x) = (ω0, 0, 0) having the homogenous form

ωẋ+ (A+ μB)x+ f(μ, x) = 0 , f(μ, 0) = 0 , (5.80)

where f(μ, x) = o (|μ|) , f(μ, x) = o (|x|) .

Example 5.12. Van der Pol’s equation (Hairer), vol. I, p. 107 (Fig. 5.10).

ωẋ1 − x2 = 0
ωẋ2 + x1 + μ(x2

1 − 1)x2 = 0 , μ > 0
.

We multiply both equations by
√
μ and write x :=

√
μx then

A =
[

0 −1
1 0

]
, B =

[
0 0
0 −1

]
, f(μ, x) =

[
0

x2
1x2

]
,

ω0 = 1 , c1 = d1 = [1, i]T .

Example 5.13. Feedback inhibition model (Glass), (Langford77a) (Fig. 5.11).

ωẋ+Ax+ h(μ, x) = 0 ,

A =

⎡
⎣

1 0 2
−2 1 0

0 −2 1

⎤
⎦ , h(μ, x) =

⎡
⎣

g(μ, x3)
−g(μ, x1)
−g(μ, x2)

⎤
⎦

g(μ, x) =
1
2

(1 + 2x)μ+4 − 1
(1 + 2x)μ+4 + 1

− 2x =
1
2
μx− 2x2 − 8x3 + · · · .

Consequently

B =
1
2

⎡
⎣

0 0 1
−1 0 0

0 −1 0

⎤
⎦ , f(μ, x) =

⎡
⎣

g(μ, x3) − μx3/2
−g(μ, x1) + μx1/2
−g(μ, x2) + μx2/2

⎤
⎦ .

The eigenvalues of A are 3 , ±i
√

3. Recalling the system (5.63), by conse-
quence, ω0 =

√
3 , c1 = d1 = [i

√
3 − 1,

√
3 + 1, 2]T /

√
6 .
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Example 5.14. Small brusselator (Hairer) vol. I, p. 112 (Fig. 5.12).

ωẋ1 + (b+ 1)x1 − x2
1x2 − a = 0 , a �= 0 ,

ωẋ2 − bx1 + x2
1x2 = 0

.

Singular points are (x1, x2) = (a, b/a) and Hopf bifurcation arises for b =
a2 + 1. We set b = a2 + 1 + μ and then obtain

ωẋ1 + (a2 + 2 + μ)x1 − x2
1x2 − a = 0

ωẋ2 − (a2 + 1 + μ)x1 + x2
1x2 = 0 .

The value ω = 0 leads to x1 = a and x2 = (a2 + 1 + μ)/a . A substitution of
x1 = a+ u and x2 = v + (a2 + 1 + μ)/a then yields a problem with agreeable
branching point (μ, x) = (0, 0):

ωu̇− (a2 + μ)u− a2v − (a+ μa−1 + a−1)u2 − 2auv − u2v = 0
ωv̇ + (a2 + 1 + μ)u+ a2v + (a+ μa−1 + a−1)u2 + 2auv + u2v = 0

.

The basic equation (5.80) thus has the entries:

A =
[

−a2 −a2

a2 + 1 a2

]
, B =

[
−1 0

1 0

]
,

f(μ, x) =
[
−(a+ μa−1 + a−1)x2

1 − 2ax1x2 − x2
1x2

(a+ μa−1 + a−1)x2
1 + 2ax1x2 + x2

1x2

]
.

One finds for the respective relations (5.63) that ω0 = a , c1 = γ [a/(i−a), 1]T ,
d1 = δ [(a2+1)/(a2+ia), 1]T where γ2 = 2(a2+1)/(2a2+1) und δ = (1−ia)/γ .

Example 5.15. Full brusselator (Hairer) vol. I, p. 114 (Fig. 5.13).

ωẋ1 − x2
1x2 + (x3 + 1)x1 − 1 = 0

ωẋ2 − x1x3 + x2
1x2 = 0

ωẋ3 + x1x3 − a = 0
.

The value ω = 0 yields x = [1, a, a]T for singular points. The substitution
x1 = 1 + u , x2 = a + v , x3 = a + w then leads to a system with trivial
solution x = 0 ,

ωẋ+A(a)x+ h(a, x) = 0 ,

where

A(a) =

⎡
⎣

1 − a −1 1
a 1 −1
a 0 1

⎤
⎦ , h(a, x) =

⎡
⎣

−ax2
1 − 2x1x2 − x2

1x2 + x1x3

ax2
1 + 2x1x2 + x2

1x2 − x1x3

x1x3

⎤
⎦ .

Hopf bifurcation occurs at a0 = (9 −
√

17)/4 = 1.21922 . . . . Therefore one
has to insert the translation a = a0 + μ in (5.61).
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Example 5.16. A Lorentz equation (Seydel94) (Fig. 5.14).
Notations:

Pr = Prandtl number (Pr = 16)
Ra = relative Rayleigh number (Ra,0 = 368/11)
b = constant (b = 4)
S = (bRa − b)1/2 (S = (bRa,0 − b)1/2 .

The differential system ωẋ+ h(Ra, x) = 0 ,

ωẋ1 + Pr(x1 − x2) = 0
ωẋ2 + x1x3 −Rax1 + x2 = 0
ωẋ3 − x1x2 + bx3 = 0

has the singular points x1 = [0, 0, 0] , x2 = [S, S, Ra−1] , x3 = [−S, −S, Ra−
1] . For instance, for the above specified data, the gradient gradx h(Ra, x2) has
a pair of imaginary eigenvalues ±iω0 , and Hopf bifurcation with parameter
Ra = Ra,0 + μ arises by consequence. The translation x = x2 + u yields the
system ωu̇+A(Ra)u+ h(u) + c = 0 where the constants are chosen such that
c = 0 :

A(μ) =

⎡
⎣

Pr −Pr 0
−1 − μ 1 S

−S −S b

⎤
⎦ , h(u) =

⎡
⎣

0
u1u3

−u1u2

⎤
⎦ , c =

⎡
⎣

0
S(Ra − 1) −RaS + S

−S2 + b(Ra − 1)

⎤
⎦
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Figure 5.10. Example 5.12
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Figure 5.14. Example 5.16

References: (Golubitsky), (Kuznetsov), (Seydel94).

5.6 Numerical Bifurcation

In this section bifurcating solutions are calculated near singular points in
coordinate space R

n therefore X = Y = R
n, Xd = Yd = Rn , Ud = UT ,

V d = V T , and 〈a, b〉 = a b where a ∈ Rn und b ∈ R
n.

(a) We look for solutions of a system

F (μ, x) = Ax+ f(μ, x) = 0 ∈ R
n (5.81)

with trivial solution, F (μ, 0) = 0 , at a point (μ0, 0) where the linearized
problem (A+∇xf(μ0, 0))x = 0 has non-trivial solutions. Write briefly B(μ) =
∇xf(μ, 0) then the matrix L = A+B(μ0) is a Fredholm operator with index
zero and α := dim KerL ≥ 1 . Of course B(μ) = μB whenever f(μ, x) = μBx
+ h.o.t. in μ and x . The nonlinear eigenvalue problem Ax + μg(x) = 0 is
prepared in Sect. 5.2 (c). For α = 1 it can be solved by direct iteration as in
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the preceding section. For α > 1 Keener’s procedure of Lemma 5.6 can be
applied where however the nonlinear bifurcation equation must be solved in
every step of iteration.

The following algorithm of Demoulin & Chen (Demoulin) concerns
systems (5.81) with f(μ, x) �= μg(x) but involves only linear equations in
each step of iteration. As above, let U = [u1, . . . , uα] ∈ R

n
α and V T =

[v1; . . . ; vα] ∈ R
α

n be the matrices of of right and left eigenvectors such that
LU = 0 ∈ R

n
α and V TL = 0 ∈ R

α
n ; of course V T = UT whenever L is

symmetric.
(a1) α = 1 . Following the pattern of the Ljapunov-Schmidt reduction

we consider the system Lx+f(μ, x)−B(μ0)x = 0 and v1(f(μ, x)−B(μ0)x)) =
0 but, as proposed by (Demoulin), we look for solutions x = εu1+w , u1w = 0
of the perturbed problem

Lw + f(μ, x) −B(μ0)Bx+ εBμ(μ0)u1(Δμ) = 0 .

Then εv1Bμ(μ0)u1(Δμ) = v1(B(μ0)x−f(μ, x) . Let v1Bμ(μ0)u1 =: a �= 0 and
μ0 = μ0 , w0 = 0 , x0 = εu1 +w0 . Choose |ε| not too small and not too large.
Repeat for n = 0, 1, . . .

Δμ = (εa)−1v1(B(μ0)xn − f(μn, xn))
Lwn+1 = −f(μn, xn) +B(μ0)xn − εBμ(μ0)u1Δμ , u1wn+1 = 0
μn+1 = μn +Δμ , xn+1 = εu1 + wn+1 .

(a2) For α > 1 let f(μ, x) = B(μ)x + Cr(μ)〈x〉+h.o.t. in x where Cr(μ) is a
r-linear mapping in x as previously introduced in this chapter. Let (μ∗, ζ∗) be
an (isolated) solution of the algebraic bifurcation equation

μV dBμ(μ0)〈Uζ〉 + V dCr(μ0)〈Uζ〉 = 0 , 〈Uζ, Uζ〉 = 1

such that the matrix

G :=
[
V dBμ(μ0)〈Uζ〉 V d[μBμ(μ0) + ∇x[Cr(μ0)〈Uζ〉]]U

0 2ζTUTU

]
∈ R

α+1
α+1

is regular. Let w0 be a solution of Lw = −μ∗Bμ(μ0)〈Uζ∗〉 − Cr(μ0)〈Uζ∗〉 ,
UTw = 0 , and let ζ0 = ζ∗ , μ0 = μ0 + εr−1μ∗ , w0 = εrw0 , x0 = εUζ0 + w0 .
Choose |ε| not too small and not too large. Repeat for n = 0, 1, . . .

[
εV dBμ(μ0)〈Uζ∗〉 εV d

[
(μ∗ − μ0)Bμ(μ0) + ∇x[Cr(μ0)〈εUζ∗〉]

]
U

0 ζ∗TUTU

][
Δμ
Δζ

]

=
[
μ0V

dB(μ0)xn − V df(μn, xn)
2−1(1 − ζnTUTUζn)

]
∈ R

α+1

Lwn+1 = −f(μn, xn) +B(μ0)xn

− ε(Δμ)Bμ(μ0)〈Uζ∗〉 − ε(μ∗ − μ0)B〈U(Δζ)〉
− ε∇x[Cr(μ0)〈εUζ∗〉]〈U(Δζ)〉 , UTwn+1 = 0

μn+1 = μn +Δμ , ζn+1 = ζn +Δζ , xn+1 = εUζn+1 + wn+1 .
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(b) The following simple algorithm for general branching point (μ0, x0) of
F (μ, x) = 0 does not obey fully the agreements of the Ljapunov-Schmidt

reduction but supplies non-trivial solution germs in many cases:

(1◦) Find the matrices U and V T of right and left eigenvectors to the
eigenvalue zero of the matrix L = ∇xF (μ0, x0) .
(2◦) Solve the algebraic branching equation, and let ξ0, ζ0 be an iso-
lated solution with non-zero ζ0 .
(2◦) Choose ε > 0 properly (neither too small nor too large) and
(λ,w) = (0, 0) for start value.
(3◦) Solve the system

H(λ,w) :=
[
F (μ0 + λ, x0 + εUζ0 + w)

UTw

]
= 0

for (λ,w) by the damped Newton method, set μ = μ0 + λ , x =
x0 + εUζ0 + w .

The system H(λ,w) = 0 is overdetermined in case α = dim KerL > 1 entail-
ing, however, no difficulties in Matlab implementation. Instead of solving
the bifurcation equation we may also try a specific eigenvector uk for start
tangent directly such that x = x0 + εuk + w . The procedure can be checked
by solving e.g. Example 5.4 of (Crandall) in Sect. 5.1 where also secondary
bifurcation occurs.

(c) A Classic Example Let x be the unknown exact solution further on
to preserve the context to the above introduced notations. Let Ω = {(ξ, η) ∈
R

2, 0 < ξ < a, 0 < η < b} be a rectangle in (ξ, η)-plane. We consider the
simple boundary value problem for Poisson’s equation

F (μ, x) = −Δx+ f(μ, x) = 0 , (ξ, η) ∈ Ω ; x = 0 , (ξ, η) ∈ ∂Ω , (5.82)

(c1) At first the solution of the linear eigenvalue problem

−Δx = λx , (ξ, η) ∈ Ω ; x = 0 , (ξ, η) ∈ ∂Ω , (5.83)

is determined. The Laplace operator Δ is a self-adjoint operator, −Δ is
positive definite under the above boundary conditins. A separation x(ξ, η) =
u(ξ)v(η) leads to the both ordinary boundary problems

−uξξ = λ1u , u(0) = u(a) = 0 , −vηη = λ2v , v(0) = v(b) = 0 , λ = λ1 + λ2 ,

of which the solutions have already been found in Sect. 2.4(h). Together there
result the characteristic pairs for (5.83)

[λpq, upq] =
[
π2

(
p2

a2
+
q2

b2

)
, sin

(
pπ

ξ

a

)
· sin

(
qπ

η

b

)]
, p, q ∈ N , (5.84)
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and it can be shown that all characteristic pairs of the problem are obtained
by this way.
(c2) Discretization of the two-dimensional problem (5.82) by the same way
as in the one-dimensional problem (2.61) yields the discrete problem CY =
ΛY with matrix

C =
1

Δξ2
[Im ×An] +

1
Δη2

[Am × In]

for the node vector

Y = (y1
1, . . . , y

1
n, . . . , y

m
1, . . . , y

m
n)T ,

yj
k = y(kΔξ, jΔη) , Δξ = a/(n+ 1) , Δη = b/(m+ 1) , m, n ∈ N .

Im ∈ R
m

m denotes the unit matrix again and Am ∈ R
m

m the matrix of (2.62)
without prefix 1/h2. (It would have been somewhat more problem related if
the vector Y were be written as matrix with rows [yi

1, . . . , y
i
n] , i = m,m −

1, . . . 1 , since then the position yi
k in the matrix would have corresponded to

the position in the domain Ω .) Also the zero-boundary conditions are still
assigned to complete the shape. Now, by Sect. 2.4(h), we obtain directly the
characteristic pairs of C:

C Upq = C(vq × up) = Δξ−2(vq ×Anup) +Δη−2(Amvq × up)

= σp(vq × up) + τq(vq × up) = Λpq(vq × up)

where

σp =
4

Δξ2
sin2

(
pπa

2(n+ 1)a

)
=

4
Δξ2

sin2
(pπ

2a
Δξ

)

τq =
4

Δη2
sin2

(
qπb

2(m+ 1)b

)
=

4
Δη2

sin2
(qπ

2b
Δη

)

up =
[
sin

(
kpπa

(n+ 1)a

)]n

k=1

=
[
sin

(pπ
a
kΔξ

)]n

k=1

vq =
[
sin

(
jqπb

(m+ 1)b

)]m

j=1

=
[
sin

(qπ
b
jΔη

)]m

j=1
.

Accordingly, in this particular model problem, the characteristic pairs of the
discretization can be found analytically. Moreover, the eigenvectors of the
discrete problem coincide by exception with the exact eigensolutions at the
node points — as already shown in Sect. 2.4. Multiple eigenvalues appear,
e.g., if a = b and und p2 + q2 = r2 , r ∈ N .
(c3) Consider further on the problem −Δx − μx = 0 in unit square with
homogenous zero Dirichlet boundary conditions. Then μ0 = λ11 = 2π2 is
the smallest eigenvalue of A = −Δ as well as u1(ξ, η) = sin(π ξ) sin(π η) and
v1 = u1 are the right and left eigenvector. In multiple eigenvalues the start
tangent depends normally on the nonlinear part f by Sect. 5.2 which then has
to be specified; this is however not the case here by reasons of symmetry. We
choose
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−Δx+ f(μ, x) = 0 , f(μ, x) = −μx+ x3 + o(‖x‖3) (5.85)

Then μ0 = λ12 = λ21 = 5π2 is a double eigenvalue. This problem enjoys
two symmetries in case higher order terms o(‖x‖3) neglected: The arguments
ξ and η may be permutated and on the other side F (μ,−x) = −F (μ, x).
Letting ξ0 = ξ and ζ0 = ζ = (ζ1, ζ2) , the algebraic branching equation of the
analytic problem reads:

Φ(ξ, ζ) =
[ (
u1,−ξζ1u1 + (ζ1u1 + ζ2u2)3

)
(
u2,−ξζ2u2 + (ζ2u1 + ζ2u2)3

)
]

= 0 (5.86)

where (u, v) =
∫

Ω
uv dV denotes the usual scalar product. However, in discrete

case

Φ(ξ, ζ) =

[
−ξζ1uT

1 u1 + uT
1 (ζ1u1 + ζ2u2)[3]

−ξζ2uT
2 u2 + uT

2 (ζ1u1 + ζ2u2)[3]

]
= 0 (5.87)

where v[2] shall denote the pointwise multiplication of a vector v by itself. The
second system has to be multiplied still by (ΔξΔη)−1 in order that the results
are comparable to the first system. In any case we obtain the system

−ai
1ξζi + ai

2ζ1
3 + ai

3ζ1
2ζ2 + ai

4ζ1ζ2
2 + ai

5ζ2
3 = 0 , i = 1, 2,

of which the components may be found explicitely in the present problem.
Multiplying by 64 , the result reads:

−16ξζ1 + 12ζ1ζ22 + 9ζ13 = 0
−16ξζ2 + 12ζ12ζ2 + 9ζ23 = 0 ;

(5.88)

cf. (Budden). It becomes apparent that the second equation follows from the
first equation by permutation of ζ1 and ζ2 which also can be predicted by the
underlying symmetry. Now, one finds for ξ = 1

ζ1 = ±4/3 , ζ2 = 0 , bzw. ζ2 = ±4/3 , ζ1 = 0 . (5.89)

whereby the possible start tangents needed in Algoritmus I are supplied.
On choosing f(μ, x) = −μx− x3 then ξ = −1 has to be inserted and then

μ < μ0.
(c4) Let for instance μ0 = λ55 = λ17 = λ71 = 50π2 be a triple eigenvalue
then the algebraic branching equation for (5.85) reads:

−ξuT
i uiζi + uT

i (ζ1u1 + ζ2u2 + ζ3u3)3 = 0 , i = 1, 2, 3 ,

resp. for i = 1, 2, 3

−ai
1ξζi + ai

2ζ1
3 + ai

3ζ1
2ζ2 + ai

4ζ1ζ2
2 + ai

5ζ2
3 + ai

6ζ1
2ζ3

+ai
7ζ2

2ζ3 + ai
8ζ1ζ3

2 + ai
9ζ2ζ3

2 + ai
10ζ1ζ2ζ3 + ai

11ζ3
3 = 0 .
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Then
−16ξζ1 + 9ζ13 + 27ζ1ζ22 + 27ζ1ζ32 = 0
−16ξζ2 + 9ζ23 + 27ζ2ζ32 + 27ζ2ζ12 = 0
−16ξζ3 + 9ζ33 + 27ζ3ζ12 + 27ζ3ζ22 = 0

.

Again it becomes apparent that the solution of the second and third equation
arises by permutation of the components ζi; the three different solutions are

ζ1 = ±4/3 , ζ2 = ζ3 = 0 ζ2 = ±4/3 , ζ3 = ζ1 = 0 ζ3 = ±4/3 , ζ1 = ζ2 = 0 .

In more general cases also some more components ζi may be different from
zero.

The example fascinates by the possibility to solve the algebraic branch-
ing equations analytically. From numerical point of view it remains however
less impressive since the solution is hardly impressed by modifications of the
“right side” f ; in essential the image remains always the same (in the tested
problems). The algorithm of (b) has been applied to the three functions

f(μ, x) = −μ(x± x3) , f(μ, x) = −μ sinx , f(μ, x) = −μx± x3 ,

and thereafter a simple continuation w.r.t. the parameter μ has been carried
out. In all three examples however the graphical output has been more or less
the same. The problem behaves also similarily by applying mixed boundary
conditions, e.g.,

x(0, η) = x(a, η) = 0 , xη(ξ, 0) = xη(ξ, b) = 0 .

Example 5.17. With the specification of (c) in unit square, let f(μ, x) =
μ(−x + x3) in system (5.82), further, let m = n = 24 and let u0 = εu1

be the start tangent. ũ1 is the unnormed eigenvector, the normed eigenvector
u1 is illustrated in the respective figure “below” the solution.
Case 1: u = 0 on ∂Ω.

(a) (b) (c)

μ0 2π2 ∼ 20 5π2 ∼ 49 50π2 ∼ 493

ũ1 sin(πξ) sin(πη) sin(πξ) sin(2πη) sin(πξ) sin(7πη)

μend ∼ 59 ∼ 142 ∼ 657

ε 15 15 10

Case 2: u = 0 for x = 0 and x = 1.

(a) (b) (c)

μ0 2π2 ∼ 20 5π2 ∼ 49 50π2 ∼ 493

ũ1 sin(πξ) cos(πη) sin(πξ) cos(2πη) sin(πξ) cos(7πη)

μend ∼ 84 ∼ 67 ∼ 538

ε 17 10 8
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Figure 5.15. Case 1, (a), (b)
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Figure 5.16. Case 1, (c), Case 2 (a)
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Figure 5.17. Case 2, (b), (c)

Example 5.18. See also (Keller72). Consider once more the problem Lx +
μBx + Cr〈x〉 = 0 where L is a selfadjoint operator such that V d = Ud

and B symmetric and regular. Then the algebraic bifuraction equation is
μUdB〈Uζ〉+UdCr〈Uζ〉 = 0 . Suppose that Cr〈y〉 = gradΦ(y) for some scalar
function Φ as in the above examples. Let y = Uζ then ζ = UT y . Because
Φ continuous, it attains its maximum and minimum at two distinct points
y∗ and y∗ on the set S = {y , yTBy = 1}, and μ is the Lagrange multi-
plier of the problem Φ(y) = extr!, yTBy/2 = 1 . If r even then Φ odd and
Φ(y) = −Φ(−y) so that y∗ = −y∗ and we have at least two distinct solutions
(μ∗, y∗) and (−μ∗,−y∗) . For r odd we have Φ(y) = Φ(−y) and so y∗ �= y∗
unless Φ(y) konstant on S and every point on S is a solution. If not, we obtain
at least four distinct solutions in this case.



5.7 Continuation 295

5.7 Continuation

(a) Formulation of the Problem Let F : R
n+1 → R

n be sufficiently smooth
and let x0 ∈ R

n+1 be a point satisfying F (x0) = 0 and dim KerF 0
x = 1 . By the

Implicit Function Theorem then there exists an open interval I with 0 ∈ I and
a uniquely determined curve x : I � s �→ x(s) ∈ R

n+1 such that x(0) = x0 .
The path x is as smooth as F as well as

∀ s ∈ I : F (x(s)) = 0 ∈ R
n , dim ker∇F (x(s)) = 1 , x′(s) �= 0 ∈ R

n+1 ;

without loss of generality let the path parameter s be the arc length. At the
terminal point of the interval I either the condition of smoothness or the rank
condition dim KerF 0

x = 1 is violated, the latter case suggests that there is a
bifurcation point. A continuation method then has, say, the following form:

START: Specify x such that F (x) = 0; choose N ∈ N.
FOR i = 1:N
Predictor step: Find a tangent t in x, choose suitable step length σ ;
set

x̃ = x+ σ t .

Corrector step: Find a new point y on the path such that F (y) = 0
near the predictor point x̃; set x = y .
END

The length of the continuation is specified by the number N if the pursued
curve is open. If the curve is closed, i.e., if initial point and terminal point
coincide, then of course an other stopping criterium may be selected. The
step length near the terminal point has to be modified suitably if overlapping
(overshooting) shall be avoided. The indispensable step length control in the
predictor step is managed normally by a local extrapolation but some addi-
tional security bounds must guarantee that pathfollowing works also in less
agreeable situations. At beginning of the procedure, step length is estimated
coarsely by lack of appropriate data. A more thorough discussion must be
renounced here, see however SUPPLEMENT\chap05e.

(b) Predictor Step The implicite representation F (x(s)) = 0 of the curve
yields immediately ∇F (x(s))x′(s) = 0 ∈ R

n which says that the tangent x′(s)
is perpendicular to the rows of ∇F (x(s)) hence independent of these vectors,
and they altogether span the entire R

n+1 . The augmented Jacobian

J(x(s)) :=
[
∇F (x(s))
x′(s)T

]
∈ R

n+1
n+1

is therefore regular in the basic interval I; we call the curve x positive oriented
if det(J(x(s)) > 0 . Let A ∈ R

n
n+1 be rank-maximal then there exists a unique

vector t(A) with the following properties:
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At(A) = 0 , |t(A)| = 1 , det
[

A
t(A)T

]
> 0 . (5.90)

This direction vector plays a crucial role in the sequel. Since F (x(s))x′(s) = 0 ,
the curve x is solution of the initial value problem

x′(s) = t(∇F (x(s))) , x(0) = x0 , s ∈ I .

Note, however, that t(A) is not given explicitly. By consequence, we may not
simply apply a numerical method of Sect. 2.2 for solving that initial value
problem.

Let us now consider the QR decomposition of AT ,

QR = AT , Q = [q, . . . , qn+1] , qi ∈ R
n+1 ,

then the vector qn+1 has the properties enumerated in (5.90). This device
for computing the tangent t(∇F (x)) is however less suited in large systems
of equations since the orthogonal matrix Q is fully occupied but employed
explicitly here. Therefore we choose simply an auxiliary vector d ∈ R

n+1 such
that dT t > 0 where t denotes the tangent hitherto being unknown. Then that
tangent follows uniquely by

[
∇F (x)

d

]
u = en+1 , t = u/‖u‖2 , (5.91)

where en+1 denotes the (n + 1)-th unit vector. The choice of d for t being
unknown is only a small disfigurement being of no drawback numerically since
dT t �= 0 does hold for almost all d �= 0 (change sign possibly). The vector d
is chosen arbitrarily in starting the procedure and is afterwards specified by
using the known tangent.

It would be advantageous for the condition of the matrix in (5.91) if the
vector d were as parallel as possible to the tangent vector t . On the other side,
the i-th component xi of x becomes directly the local curve parameter in the
case where d = ei . By this reason (Rheinboldt86) has proposed to choose
d = ei and

i = maxk{|eT
k t|} , j = maxk �=i{|eT

k t|} (5.92)

then ti is the largest and tj the second-largest component of t in absolute
value. In this choice of t however turning points are to be regarded especially
by the following device:

Choose γ > 0 (e.g. γ = 1.05 and at beginning γ = 2),
choose i as in (5.92). But if

|ti| < |toldi| , |tj | > |toldj | , |tj | ≥ μ|ti| ,

then choose i = j by (5.92)

.
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(c) Corrector Step For computation of a new path point xnew , after
(Rheinboldt86) the system

F̃ (xnew) =
[
F (xnew)
eT

i (xnew − x̃)

]
= 0 (5.93)

has to be solved by a damped Newton method but it suffices also to evaluate
the gradient of F̃ once at the beginning (modified method). Of course xi

new =
x̃i directly which may be used for a reduction of the system of equations in
each iteration. By (5.93) the correcture xnew − x̃ then is perpendicular to ei

in each step; cf. Fig. 5.18.
Also, in smaller problems, xnew is determined frequently by

|xnew − x̃| = arg miny{|y − x̃| ; F (y) = 0} (5.94)

instead of (5.93); cf. (Allgower90). The matrix ∇F (y) is rank-maximal by
assumption therefore, by Corollary 3.4, the multiplier rule

∇y

[
|y − x̃|2

]
− z∇F (y) = 0 ∈ Rn+1 , F (y) = 0

(z ∈ Rn) is a necessary condition. This equation implies 2(y− x̃)T = z∇F (y),
hence by the Range Theorem 1.2,

y − x̃ ∈ Range(∇F (y)T ) = Ker(∇F (y))⊥ ⇐⇒ t(∇F (y))T (y − x̃) = 0 .

By this way the system (5.94) can replaced by the system

F (xnew) = 0
t(∇F (xnew))T (xneu − x̃) = 0

which is solved by Newton’s method:

done = 0, x = x̃
WHILE NOT done
Solve the linear system w.r.t. y

F (x) + ∇F (x)(y − x) = 0
t(∇F (x))T (y − x) = 0 .

(5.95)

Set x = y.
done = convergence
END

Lemma 5.19. Let A ∈ R
n

n+1 be rank-maximal then the following statements
are equivalent:
(1◦) Ax = b , t(A)Tx = 0 ,
(2◦) x = A+b, A+ = AT (AAT )−1

Moore-Penrose inverse,
(3◦) x = arg min{|w| ; Aw = b} minimal solution.
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Proof. The equivalence of (2◦) and (3◦) follows directly from Lemma 1.4. For
the equivalence of (1◦) and (2◦) we observe that

[
A

t(A)T

]
[A+, t(A)] = I ,

hence

(1◦) ⇐⇒
[

A
t(A)

]
x =

[
b
0

]
⇐⇒ x = [A+, t(A)]

[
b
0

]
⇐⇒ x = A+b .

��
By (5.95) using Lemma 5.19, finally

y = x− [∇F (x)]+F (x) . (5.96)

So we are eventually faced with the problem to find the vector y = A+b where
A ∈ R

n
n+1 is a matrix of rank n. To this end the algorithm proposed in Sect.

1.1(h3) can be employed.
In practice the modified Newton method is applied where ∇F (x) =

∇F (x̃) remains fixed. Then the corrector xnew − x̃ as well as all intermediary
differences of the iteration stand perpendicular on the tangent of F (x(s)) in
x̃; see Fig. 5.19.
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Fig. 5.18. Corrector (Rheinboldt)
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Fig. 5.19. Corrector (Allgower)

(d) Examples

Example 5.19. In most cases the Matlab command contour suffices to il-
lustrate the niveau lines of a scalar function f : R

2 � x �→ f(x) ∈ R . The
exact computation however may be managed by a continuation method for
F (x) = f(x) − f(x0) = 0 . We consider the simple example (Fig. 5.20)

f(x1, x2) = −
[
x4

1 + x4
2 + 2x2

1x
2
2 − 2x2

1 + 2x2
2

]
.
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Example 5.20. Chemical reaction model (Kubicek), (Bank), (Deuflhard87)
(Fig. 5.21).

μ(1 − x3)E(x1) − x3 = 0
μα(1 − x3)E(x1) + γσ − 10(1 + γ)x1 = 0
x3 − x4 + μ(1 − x4)E(x1) = 0
10x1 − 10(1 + γ)x2 + μα(1 − x4)E(x1) + δ� = 0

exp(10x/(1 + βx)) = E(x)

where α = 22 , β = 1.0E−2 , γ = δ = 2 , σ = � = 0 , hence

μ(1 − x3)E(x1) − x3 = 0
μ22(1 − x3)E(x1) − 30x1 = 0
x3 − x4 + μ(1 − x4)E(x2) = 0
10x1 − 30x2 + μ22(1 − x4)E(x2) = 0

exp(10x/(1 + βx)) = E(x)

Initial point is (μ, x) = (0, 0) .

Example 5.21. Classical test problem (Rheinboldt86), p. 146 (Figs. 5.22, 5.23).

x1 − x3
2 + 5x2

2 − 2x2 + 34x3 − 47 = 0

x1 + x3
2 + x2

2 − 14x2 + 10x3 − 39 = 0

Initial point: x0 = [15, −2, 0]T . The solution passes through x = [5, 4, 1]T

(terminal point). Exact solution to compare with:

x1(t) = −11
6
t3 +

2
3
t2 + 19t+

107
3

, x2(t) = t , x3(t) =
1
12
t3 − 1

6
t2 − 1

2
t+

1
3
.
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Figure 5.20. Example 5.19
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Figure 5.21. Example 5.20
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Figure 5.23. Example 5.21 scaled

5.8 Hints to the MATLAB Programs

KAPITEL05/SECTION_5, Hopf Bifurcation
conjgrad.m Method of conjugate gradients after Stoer
cg_lq.m Method of conjugate gradients after Allgower/Georg
demo1.m Masterfile for HOPF bifurcation with backward

differentiation or with trig. collocation
demo2.m Masterfile for continuation in DEMO1.m only for

backward differentiation
hopf_bdf.m Hopf bifurcation with backward differentiation
hopf_trig.m Hopf bifurcation with trig. collocation
hopf_contin Simple continuation after HOPF.M
KAPITEL05/SECTION_6, Numerical Bifurcation
demo1.m Pitchfork bifurcation
demo2.m Example of Crandall (4 branching points)
demo3.m Poisson’s equation in unit square

Newton’s method (6 examples)
demo4.m Poisson’s equation in unit square

direct iteration (6 examples)
demo5.m Continuation by MU for Poisson’s equation
bif.m Direct iteration method
KAPITEL05/SECTION_7, Continuation Methods
demo1.m Masterfile for continuation after Allgower/Georg
demo2.m Masterfile for continuation after Rheinboldt
cont.m Continuation after Allgower/Georg
pitcon1.m -- pitcon5.m Continuation after Rheinboldt
newton.m Newton’s method for PITCON.M
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Mass Points and Rigid Bodies

The author — as befits his area of expertise — has placed the mathematical
part of this volume at the beginning in the conviction that a solid mathe-
matical foundation can be only beneficial in understanding mechanics and its
application to the computer. As mentioned in the preface, the following three
chapters evolved from texts accompanying various lecture series on higher
mathematics in calculus. They were meant to serve as motivation and pave
the way to advanced studies. However, they was also supposed to connect to
parallel lectures on mechanics, whose lecturers often took little note of what
the mathematicians were teaching their students.

To be able to distinguish the contributions of mechanics and those of
mathematics as such, all results which can be verified (on the classical
level) by experimentation only are referred to from now on as axioms,
while mathematical conclusions from them are formulated in the form
of theorems or the like. The scope of the latter is thus exactly defined
and changes naturally if the foundation of the axioms is replaced.

Hint: All vectors — also point vectors — are underlined in this chapter.

6.1 The Force and its Moment

Let a ∈ R
3 be any fixed point, preferably the origin or the gravity center of a

rigid body with geometrical configuration Ω ⊂ R
3.

Axiom 6.1. Let k be a force attacking at a point x in Ω .
(1◦) k can be moved arbitrarily in direction of its action line, i.e., the pair
(k, x) has the property ∀ τ ∈ R : (k, x) = (k, x+ τ k) .
(2◦) k generates the moment p

a
=

−→
a x × k at point a (moment of force).

Also, p
a

= (
−→
a x + τ k) × k =

−→
a x × k holds for all τ ∈ R because k × k = 0 ;

hence the force k is denoted as aligned vector in this context. The moment p
a
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depends on a (x fixed); hence it is to be understood as fixed vector at present.
If now an additional force −k attacks at point a then both pairs, (k, x) and
(−k, a) , generate the moment

(
−→
y x × k) + (

−→
y a × (−k)) = −(

−→
x y × k) − (

−→
y a × k)

= − −→
x a × k =

−→
a x × k = p

a
⊥ k

at an arbitrary point y and this moment is now indepent of y . After this
consideration, p

a
may be conceived as free moment which may be shifted

everywhere. Consequently, in adding the pairs (k, a) and (−k, a) to the pair
(k, x) , a new pair (k, p

a
) is generated in a consisting of force k and free moment

p
a

with the property k · p
a

= 0 (dyname in a) . In other words, a dyname is a
pair of force and moment acting perpendicular to each other.

If n forces ki attack at n points xi of the body then we proceed in the same
way with all of them and obtain for each pair (ki, xi) the dyname (ki, pa,i

) at
point a .

Axiom 6.2. (Superposition Principle) Let n forces ki attack at n points xi of
a rigid body. Then

kS =
n∑

i=1

ki and p
S

=
n∑

i=1

p
a,i

is the resulting force and the resulting moment at the point a .

But kS ·p
S

= 0 does not hold necessarily here; hence this pair is not a dyname
at a in general. However it may decomposed at once in a sum of two dynames,
e.g., into the unique decomposition

(kS , pS
) = (kS , 0) + (0 , p

S
) ,

where both terms are dynames in trivial way, or one chooses a vector l �= 0
satisfying l · p

S
= 0 and writes

(kS , pS
) = (l , p

S
) + (kS − l , 0) .

If a pair (k , p) acts at point y and the moment p points into the same direction
as the force k , i.e., p = γ k , one speaks of a vector screw with slope γ in y .
Obviously, this pair cannot be a dyname because p �= 0 cannot be parallel
and perpendicular to k at the same time. The question is now whether there
exists a point y such that the pair (kS , pS

) at point a acts as a vector screw
at that point y .

Lemma 6.1. The pair (kS , pS
) at point a where kS �= 0 acts as vector screw

at every point of the straight line

G =
{
y ∈ R

3 ,
−→
a y =

kS × p
S

kS · kS

+ τ kS , τ ∈ R

}

with slope γ = (kS · p
S
)/(kS · kS) .
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Proof. Using the projection of p
S

onto kS , cf. Example 1.2,

[p
S
]k :=

kS · p
S

kS · kS

kS , (6.1)

we obtain the decomposition

p
S

= [p
S
]k +

(
p

S
− [p

S
]k
)

= [p
S
]k + [p

S
]n , [p

S
]k · [p

S
]n = 0 .

The pair (kS , pS
) generates the moment

p
y

= p
S

+
−→
y a × kS = [p

S
]k +

(
[p

S
]n − −→

a y × kS

)
,

at an arbitrary point y because p
S

as sum of free moments is likewise a free
moment and thus may be shifted everywhere. Consequently p

y
= [p

S
]k and

hence parallel to kS if
−→
a y × kS = [p

S
]n .

Because of
(−→
a y + τ kS

)
× kS =

−→
a y × kS , τ ∈ R , this equation describes a

straight line G with direction kS . Obviously
−→
a y − −→

a s = τ kS does hold for
the foot point s of the lot of a onto G . But, by Example 1.2,

−→
a s =

1
kS · kS

kS ×
(−→
a y × kS

)
=

1
kS · kS

kS × [p
S
]n =

1
kS · kS

kS × p
S

because kS × [p
S
]n = kS × p

S
. The slope γ follows from (6.1). ��

6.2 Dynamics of a Mass Point

Let a cartesian coordinate system (COS) E = {O; e1, e2, e3} be chosen in an
Euklidian point space of dimension three; cf. Sect. 10.4(a). Let I ⊂ R be
an open interval and Ω ⊂ R

3 an open set. Further, let 0 < m be a scalar
called mass and f : I × Ω × Ω � (t, x, y) �→ f(t, x, y) ∈ R

3 a sufficiently
smooth vector field called force. We consider a solution x of the initial value
problem (IVP) (conservation law of momentum, Newton’s axiom, equation
of motion)

d

dt
mẋ(t) = mẍ(t) = f(t, x(t), ẋ(t))

(t0, x(t0), ẋ(t0)) = (t0, x0, v0) ∈ Df := I ×Ω ×Ω ∈ R × R
6

(6.2)

called trajectory of a point with mass m passing through (t0, x0, v0) (6 initial
conditions). By assuming that f is sufficiently smooth (e.g., continuously dif-
ferentiable), there exists a unique global solution of the IVP which cannot be
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continued further in Df , i.e., runs up to the boundary of Df for t > t0 and
for t < t0 (which however does not mean that the solution exists on the entire
interval I) .

In the sequel let x be always a solution of (6.2).

(a) To characterize the motion (6.2) in R
n by means of a single scalar function,

it suggests itself to multiply by a suitable vector. Velocity ẋ(t) is here the
correct choice and yields after integration from t0 to t a working integral or
better the potential energy on the right side:

1
2
mẋ(t) · ẋ(t) − 1

2
mẋ(t0) · ẋ(t0) =

∫ t

t0

f(τ, x(τ), ẋ(τ)) · ẋ(τ) dτ . (6.3)

The corresponding result on the left side is consistently called kinetic energy
and of course the difference must be the zero (but note the constants of inte-
gration in both the definite integrals).

Definition 6.1. (1◦) Relative to the basic COS,

Ekin(x(t)) :=
1
2
m |ẋ(t)|2 is the kinetic energy

Epot(x, t, t0) := −
∫ t

t0

f(τ, x(τ), ẋ(τ)) · ẋ(τ) dτ is the potential energy

E(x(t), t0) := Ekin(x(t)) + Epot(x, t, t0) is the total energy

of a mass point on its trajectory at time t .
(2◦) The vector field f is a central field if f(t, x, y) = f(x)x with a scalar
function f(x) > 0 .
(3◦) The vector field f is a gradient field or conservative, if f(t, x, y) = f(x)
and a potential U : x �→ U(x) ∈ R exists such that

gradU(x) = −f(x) .

Remarks and addenda:

(1◦) In many physical applications the proper choice of the basic COS is of
crucial importance and must be frequently adapted a-posteriori.

(2◦) The above introduction of the trajectory of a mass point shows that the
force f does not depend on the mass m , and that Newton’s axiom cannot
serve for definition of f .

(3◦) A central field is conservative if and only if

f(x) = F ′(|x|) x|x| =⇒ U(x) = −F (|x|) . (6.4)
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(4◦) Let E(t, x) and B(t, x) be two electromagnetic fields and let q > 0 be
the load of an electric particle with mass m, then the Lorentz force
f(t, x, ẋ) = q E(t, x)+q(ẋ×B(t, x)) is an example for a velocity-dependent
field of force. A further example is the damped oscillator of Sect. 1.4(d)

with damping energy κ

∫ t

t0

|ẋ(τ)|2 dτ and damping constant κ [kg/s] .

(5◦) The potential energy Epot(x, t, t0) describes the work being performed by
the force f along the path x(t) in time T = t−t0 . Its sign is chosen in a way
that f points into direction of the greatest descent of Epot . In general, this
integral of potential energy depends on the way of the particle. If it shall
be way-independent, i.e., if Epot(x, t, t0) = Ẽpot(x(t)) shall hold for fixed
(t0, x0) then f has to fulfill additional criteria. Letting f(t, x, v) = f(x)
then f has to satisfy rot f = 0 by the first and second main theorems
on line integrals in order that Ẽpot(x(t)) is locally well-defined, hence is
in fact a function of its argument x(t) ∈ R

n; this condition is fulfilled in
particular if f is a gradient field.

(6◦) The kinetic energy is invariant under rotations of the coordinate sys-
tem. The potential energy is invariant under rotations if Df(t, x, v)) =
f(t,Dx,Dv) for every orthogonal matrix D with positive determinant
(rotation matrix).

(7◦) From Definition 6.1 we obtain by using (6.3)

Ẽ(x, t, t0) := Ekin(x(t)) + Epot(x, t, t0);= Ekin(x(t0)) , (6.5)

therefore Ẽ(x, t, t0) is constant along the trajectory x through x(t0) . As
consequence we can write E(x(t), t0)) := Ẽ(x, t, t0) and have E(x(t), t0) =
E(x(t0), t0) . Obviously the equation of motion (6.2) is found by differen-
tiation of (6.5) w.r.t. t again . The total energy is therefore an invariant
of the equation of motion (one of the laws of conservation of energy).

(8◦) If the force f is a gradient field, then Epot(x(t)) = U(x(t)) , and every

solution of mẍ(t) = − gradU(x(t)) is given implicitely by

m
ẋ · ẋ

2
+ U(x) = m

ẋ0 · ẋ0

2
+ U(x0) . (6.6)

(b) By multiplication of (6.2) vectorially from left by x(t) one obtains

mx× ẍ = x× f(x, ẋ) . (6.7)

Definition 6.2. Let c be a fixed point in the basic COS. Then

d(t) = m(x(t) − c) × ẋ(t) is the angular momentum
p(t) = (x(t) − c) × f(t, x(t), ẋ(t), t) is the moment of force

w.r.t. c of the mass point on its path at time t .
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Remarks and addenda:

(1◦) Dd(t) = D(x(t) − c) ×Dẋ(t) by Lemma 1.5 for every rotation matrix D ,
and an analogous equation does hold for p(t) .

(2◦) It follows from (6.2) and Definition 6.2 directly that (without loss of gen-
erality c = 0)

d

dt
d(t) =

d

dt
(mx× ẋ) = m(ẋ× ẋ) +m(x× ẍ) = x× f(x, ẋ) = p(t) . (6.8)

(3◦) Let further c = 0 . Then p(t) ≡ 0 in a central field because f(x) = f(x)x
and thus d(t) = d(t0) constant (law of conservation of angular momen-
tum).

(4◦) We have det(A) = a1 ·(a2× a3) for A = [a1, a2, a3] ∈ R
3
3 , cf. Sect. 1.1(b),

hence always x(t) · d(t) = 0 . Then x(t) · d(t0) = 0 in a central field and all
trajectories are perpendicular to d(t0) .

(c) Let the force f be shifted to the side left of (6.2) and let the re-
sult be multiplied by itself. Then we obtain a functional J(x(t)) =

[
(mẍ(t) −

f(t, x(t), ẋ(t))
]2 which takes its absolute minimum for all solutions of the dif-

ferential system (6.2) in a trivial way. But, under additional side conditions
there results an extremal problem with constraints that may be treated fur-
ther. If it is supposed, e.g., that x = x∗ and ẋ = ẋ∗ are already in optimum
and it is only varied about acceleration then

∂J(x; ∂ẍ) = 2m
[
(mẍ− f(x∗, ẋ∗)

]
· ∂ẍ = 0

constitutes a necessary condition for a stationary point. In this Gauß’ prin-
ciple of least constraint one supposes that x∗ und ẋ∗ are determined already
by constraints which are not necessarily holonomic here.

(d) When the equation of motion (6.2) shall be Euler equation of a varia-
tional problem then necessarily f(t, x, ẋ) = f(x) (and f must be conservative)
hence in particular ∇f symmetric.

Lemma 6.2. (Hamilton’s principle, Lagrange principle of least action)
Let f be conservative and let V = {x ∈ C2[t0, t1] , x(t0) = a , x(t) = b} . Then
x ∈ V is solution of the equation of motion mẍ(t) = f(x(t)) if and only if x
is a stationary point of the action integral

A(x) := A[t0,t1](x) =
∫ t1

t0

[Ekin(x(t)) − U(x(t))] dt , x ∈ V .

Proof. Setting the first variation of A equal to zero and integrating partially
yields

0 = δA(x; v) :=
d

dε
A(x+ εv)

∣∣∣
ε=0

=
∫ t1

t0

[mẋ · v̇ − gradU(x) · v] dt = mẋ · v
∣∣∣
t1

t0
+
∫ t1

t0

v · [−mẍ+ f ] dt .
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For x + εv ∈ V necessarily v = 0 at the terminal points and the assertion
follows in both directions. ��

The proof is managed here by a simple sign change due to partial inte-
gration. Hamilton’s principle in its strong form is however much more than
that namely a fundamental extremal principle of physics; see Sect. 8.4.

The formula U(x(t)) − U(x(t0)) =
∫ t

t0

gradU(x(τ)) · ẋ(τ) dτ has for con-

sequence that f(x) = − gradU(x) must hold at least locally hence f must be
a local gradient field; then obviously δU(x; v) = gradU(x) · v . This formula
must also hold for the representation (6.3). For the proof we apply partial
integration and note that ∇f symmetric then

−δU(x; v)

:=
d

dε

∫ t

t0

f(x+ εv)(ẋ+ εv̇) dτ
∣∣∣
ε=0

=
∫ t

t0

[(∇f(x) v) · ẋ+ f(x) · v̇] dτ

=
∫ t

t0

(∇f(x) v) · ẋ dτ + f(x) · v
∣∣∣
t

t0
−
∫ t

t0

(∇f(x) ẋ) · v dτ = f(x(t)) · v(t)

where the test function has to satisfy v(t0) = 0 .

Example 6.1. In coordinate space R
n , we have for i = 1 : n

∂

∂xi

(
1
|x|

)
= − xi

|x|3 .

Let a point of mass M lie in origin and let a further point with mass m � M
be given. Then Newton’s law of gravitation yields for the gravitational force
f

U(x) = −γ mM

|x| , gradU(x) =
γ mM

|x|3 x = −f(x)

with gravitation constant γ = 6.67 · 10−11 [m3/(kg · s2)] (earth).

(e) In systems with one degree of freedom we consider the one-
dimensional motion I � t �→ x(t) ∈ R . Then, for x = (x, y) ∈ R

2 , Newton’s
equation is equivalent to the two-dimensional system

ẋ = v(x) =
[

y
f(x)/m

]
∈ R

2 , y = ẋ , (6.9)

and a solution t �→ (x(t), ẋ(t)) ∈ R
2 of (6.4) is called phase curve. Recall

that a phase curve is called separatrix if it tends to a singular point x with
v(x) = 0 for |t| → ∞ and that singular point is not a center. A separatrix is
called homoclinic orbit if it tends to the same singular point for |t| → ∞ and
heteroclinic orbit if it tends to two different singular points for t → ∞ and for
t → −∞ .
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Example 6.2. (Small oscillation of a pendulum) Mass m = 1 .

ẍ = −x , U(x) = x2/2 , E(x, y) = (y2 +x2)/2 =⇒ y2 +x2 =: c (constant) .

Example 6.3. Mass m = 1 (Fig. 6.1).

ẍ = x− 3x2/2, , U(x) = (x3 − x2)/2 , E(x, y) = y2/2 + (x3 − x2)/2 =: c .

Then y2 −x2 +x3 = d and the homoclinic orbit is given by y = ±(x2 −x3)1/2

= x(1 − x)1/2 .

Example 6.4. Mass m = 1 (Fig. 6.2).

ẍ = x− 2x3 , U(x) = −(x2 − x4)/2 , E(x, y) = y2/2 + (x4 − x2)/2 =: c .

Then y2−x2+x4 = d and the both homoclinic orbits are given by y2 = x2−x4

for x > 0 and x < 0 .

Example 6.5. (Mathematical pendulum) Mass m = 1 (Fig. 6.3).

ẍ = −ω2 sinx , U(x) = −ω2 cosx , E(x, y) = y2/2 − ω2 cosx =: c .

Then y = ±(2ω2 cosx+ c)1/2 and singular points are (x, y) = (kπ, 0) , k ∈ Z .
By substitution into E one obtains the corresponding constants c = ± 1 . An
heteroclinic orbit is given, e.g., by y = 2ω2 cosx− 1 , −π ≤ x ≤ π .

In Examples 6.3 – 6.5, the separatrices separate regions with positive and
negative total energy E .

Figure 6.1. Ex. 6.3, potential and phase portrait

Figure 6.2. Ex. 6.4, potential and phase portrait
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Figure 6.3. Ex. 6.5, potential and phase portrait

(f) Consider a rigid rotation in R
3 with fixed rotation axis a ∈ R

3 , |a| =
1 (point vector) and rotation matrix D(t) of (1.13) then x(t) = D(t)x(t0) .
Recall that

ϕ(t) = ϕ(t)a vector of rotation angle
ω(t) = ϕ̇(t)a angular velocity
ẋ(t) = ω(t) × x(t) velocity

.

by Sect. 1.1(i). By the Expansion Theorem (1.2) we obtain for the angular
moment

d = m[x× (ω × x)] = m[(xTx)ω − (xT ω)x]

= m[(xTx)ω − (xxT )ω] = m[xTxI − xxT ]ω =: T (x)ω
(6.10)

with inertia tensor T (x) ∈ R
3
3 . Rigid rotation has one constraint in R

2 and
two constraints in R

3: The projection xa of x onto the axis a — cf. Sect. 1.1(a)
— is a constant vector and the radius vector r := x− xa being perpendicular
to a , has a constant absolute value |r(t)| = r . Therefore ẋ = ṙ , and by
consequence

ẋ = ṙ = ω × x = ω × (r + xa) = ω × r , |ẋ| = r|ϕ̇(t)| . (6.11)

Accordingly the point vector x can be replaced by the radius vector r (both
are equal in R

2) which corresponds to the introduction of polar coordinates.
Then T (x) = mr2 I for the inertia tensor, mr2 is the moment of inertia and

Ekin =
mr2|ω|2

2
, Epot = −

∫ t

t0

ω · p dτ ,

because

|ẋ|2 = |ω × x|2 = |ω × r|2 = |ω|2|r|2 − (ω · r)2 = |ω|2r2
f · ẋ = f · (ω × x) = ω · (x× f) = ω · p .
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By (6.7) and using the Expansion Theorem 1.3, the central acceleration be-
comes

r̈ = ω̈ × r + ω × ṙ = ω × (ω × r) = (ω · r)ω − |ω|2r = −|ω|2r ,

to which every mass point on a circular path is subjected.

6.3 Mass Point in Central Field

(a) Equation of motion (Kepler 1571 – 1630, Newton 1642 – 1727).
(a1) Consider the trajectory x : t �→ x(t) ∈ R

3 of a particle with mass m
in a central gradient field with potential U(|x|):

mẍ = − gradx U(|x|) = −a(|x|)x , a(|x|) > 0 (6.12)

(Newton’s axiom). Then ẍ is antiparallel to x and

d

dt
d(t) =

d

dt
(mx× ẋ) = mx× ẍ+mẋ× ẋ = 0

yields immediately a law of conservation of angular momentum

d(t) := mx(t) × ẋ(t) ∈ R
3 constant . (6.13)

Consequently the trajectory remains always in a plane perpendicular to the
constant vector d and we may consider motion in a plane, x(t) ∈ R

2 , without
loss of generality. Then the orbit is conveniently written in polar coordinates
with radius vector r(t) =

(
r(t) cosϕ(t) , r(t) sinϕ(t)

)
, r(t) := |r(t)| > 0 is the

absolute value, and |d(t)| = mD1 constant where, by Sect. 6.2(f),

D1 := r(t)2ϕ̇(t) constant (angular moment for mass m = 1) (6.14)

instead of (6.13). For D1 = 0 straight motion is obtained with constant
angle ϕ(t) . If however D1 �= 0, then ϕ is monotone in t hence invertible,
r(t) = r̃(ϕ) =

(
r̃(ϕ) cosϕ , r̃(ϕ) sinϕ

)
.

(a2) Sectorial area swept out by the radius vector:

S(t) =
1
2

∫ ϕ(t)

ϕ(0)

r̃2(ϕ) dϕ =
1
2

∫ t

0

r2(t)ϕ̇(t) dt =
D1 t

2
. (6.15)

Since the sectorial velocity D1/2 = r(t)2ϕ̇(t)/2 is constant, we have:
Second Kepler’s law: The radius vector r(t) sweeps out equal areas in equal
times (Fig. 6.4).
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Figure 6.4. 2nd Kepler’s law

Note that this law is valid for every motion of a particle in plane central
gradient field. Let now T be the time of revolution then S(T ) = D1T/2 is
obviously the area of the ellipse in case of elliptic motion and we get :
Third Kepler’s law: Revolution time = surface divided by sectorial velocity
for an elliptic orbit.

(a3) Scalar equation of motion for r(t) = |r(t)| by a famous result of
Newton:

Theorem 6.1. Let D1 = r2ϕ̇ and r(t) = |r(t)| then

m r̈ = − d

dr
V (r) , V (r) = U(r) +

mD2
1

2r2
(6.16)

where V (r) is the effective potential energy (and D1 is a constant).

Proof. Let er(t) =
(
cosϕ(t), sinϕ(t)

)
, eϕ(t) =

(
−sinϕ(t), cosϕ(t)

)
be a nat-

ural coordinate system (moving frame) on the trajectory then x(t) = r(t)er(t) ,
ėr = eϕϕ̇ , ėϕ = −erϕ̇ hence

ẋ = ṙ er + rϕ̇ eϕ , ẍ = (r̈ − rϕ̇2)er + (2ṙϕ̇+ rϕ̈)eϕ , gradx U = Ur(r)er

(6.17)
(Huygen’s decomposition). Substitution into the original equation of motion
(6.12) yields

m(r̈ − rϕ̇2) = −Ur(r) , 2ṙϕ̇+ rϕ̈ = 0 . (6.18)

The second equation is equivalent to the condition D1 = r2ϕ̇ = constant.
Substitution of ϕ̇ = D1/r

2 in the first equation yields

m r̈ = mrϕ̇2 − Ur(r) = r
mD2

1

r4
− Ur(r) = − d

dr

(
mD2

1

2 r2
+ U(r)

)
. �
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(a4) Total energy of (6.12) resp. of (6.16):

E1 = m
ẋ · ẋ

2
+ U(|x|) resp. E2 = m

ṙ2

2
+ V (r) ,

and of course E1 = E2 but also by

m
|ẋ|2
2

= m
ṙ2 + r2ϕ̇2

2
= m

ṙ2

2
+
mD2

1

2 r2
,

hence the total energy is

E := E1 = E2 = m
ṙ2

2
+ V (r) = constant . (6.19)

This equation leads immediately to a nonlinear differential equation of first
order for r in dependence of time t and vice versa:

dr

dt
=
(

2
m

(
E − V (r)

))1/2

, t(r) − t(r0) =
∫ r

r0

m1/2

(
2(E − V (r))

)1/2
dr . (6.20)

The angle ϕ is introduced as independent variable by ϕ̇(t) = D1/r
2(t):

dr

dϕ
=

dr

dt
· dt
dϕ

=
r2

D1

(
2
m

(E − V (r))
)1/2

and conversely

dϕ

dr
=
(
dr

dϕ

)−1

=⇒ ϕ(r) − ϕ(r0) =
∫ r

r0

m1/2D1

r2
(
2(E − V (r))

)1/2
dr . (6.21)

(As usual in physics, the different functions r(t) and r̃(ϕ) are denoted by
the same letter r .) By (6.20) or (6.21), the total energy E and the angular
moment D1 are the invariants of motion (6.12) for constant mass m .

(a5) Shape of the orbit The orbits in a central field depend only on the
constants, D1 and E (besides the mass m). They lie in the region BD,E :=
{(r, ϕ) ∈ R

2 , V (r) ≤ E} and on the boundary we have ṙ = 0 ; hence V (r) =
E . By this result the region BD,E is composed of one or several annular
domains with some 0 ≤ rmin ≤ r ≤ rmax ≤ ∞ .
Case 1: The domain BD,E is a circular orbit for E−V (r0) = 0 and V ′(r0) = 0 .
Case 2: The orbit is bounded by (6.20) when the integral

r(∞) − r(t0) =
∫ ∞

t0

dr

dt
dt =

∫ ∞

t0

(
2
m

(
E − V (r(τ))

))1/2

dτ

is convergent else unbounded, rmax = ∞ . If lim r→∞U(r) =: U∞
(

=
lim r→∞V (r)

)
is finite and E − U∞ > 0 , the orbit is obviously unbounded
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— see the hyperbola curve in Example 6.6. If however E − U∞ = 0 , then
lim |t|→∞ṙ(t) = 0 , and the orbit may be unbounded — see the parabola curve
in Example 6.6.
Case 3: If rmin = 0 , then obviously lim r→0V (r) = E finite. By the energy
equation (6.19) then

m
ṙ2

2
= E − U(r) − mD2

2r2
≥ 0 ⇐⇒ r2U(r) +

mD2

2
≤ r2E .

Thus the condition

lim r→0r
2U(r) < −mD2

2
must be satisfied for r → 0 . The distance rmin = 0 can be reached in finite
time if U(r) behaves like −1/rn , n > 2 for r → 0 .

Let now r0 > 0 be a stationary point of the effective potential V (r) , i.e.,
V ′(r0) = 0 , let moreover E �= V (r0) and let V ′(r) increase monotonically.
Then BD,E is a single annulus where 0 < rmin ≤ r(t) ≤ rmax , rmin < rmax .
A point on the orbit with r(t) = rmin is called pericenter, and apocenter if
r(t) = rmax (resp. perihelion and apohelion if sun is the center, and perigee and
apogee if earth is the center). The orbit oscillates periodically between the
extremal points, and each ray from the origin to the apocenter is a symmetry
axis of the orbit. The angle

ΔΦ = 2
∫ rmax

rmin

m1/2D1

r2
(
2(E − V (r))

)1/2
dr (6.22)

between two successive apocenters follows immediately from (6.21). The orbit
is closed if ΔΦ is a rational multiple of 2π otherwise the orbit is dense in
annulus BD,E .

ΔΦ

Figure 6.5. Motion in central field
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Theorem 6.2. Let the orbit of a mass point in central field be bounded then
it is a closed curve exactly for two potentials, namely

U(r) = −k

r
or U(r) = k r2 , k > 0 .

In the first case U(r) is Newton’s gravitation potential and in the second
case we have an harmonic oscillator without damping. The original proof of
(Bertrand) (1873) is also found, e.g., in (Perelomov).

(b) Kepler’s Problem
(b1) Focal equation We remember D1 = r2ϕ̇ = constant and use the

effective potential V further on but with Newton’s gravitation potential
U(r) = −k/r where k = γ mM in a physical two-body problem with masses
M % m > 0 and gravitational constant γ . To get expressions for orbits in
central fields being simpler as in (a4), observe that

dr

dt
=

dr

dϕ

dϕ

dt
=

D1

r2
dr

dϕ
= − D1

d

dϕ

(
1
r

)
(6.23)

and therefore, by using (6.16),

d2r

dt2
=

dṙ

dϕ

dϕ

dt
= − D2

1

r2
d2

dϕ2

(
1
r

)
= − d

r
V (r) .

This relation suggests the transformation r = 1/u . Then

− d

dr
V (r) = − 1

r2
d

du
V

(
1
u

)
=⇒ m

d2u

dϕ2
= − 1

D2
1

d

du
V

(
1
u

)
. (6.24)

But

V (r) = − k

r
+
mD2

1

2r2
=⇒ V

(
1
u

)
= − k u+

mD2
1

2
u2 ,

and a substitution into (6.24) yields the simple linear differential equation

mu′′(ϕ) +mu(ϕ) =
k

D2
1

with well-known solution

u(ϕ) = A cos(ϕ− ϕ0) +
k

mD2
1

=
1
p

(
1 + ε cos(ϕ− ϕ0)

)
, p =

mD2
1

k
> 0 ,

(6.25)
defining ε := Ap > 0 as arbitrary constant of integration for the present.
Returning to r = 1/u again we obtain the so-called focal equation for a conic
section

r(ϕ) =
p

1 + ε cosϕ
(6.26)
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where one focus lies in the origin. For 0 < ε < 1 the conic section is an ellipse.
The number p is called parameter of the ellipse and ε (numerical) eccentricity.

Kepler’s first law says that planets describe ellipses with one focus in the
sun. He discovered this law empirically by observations of the planet Mars and
by applying measured data of the Danish astronomer Tycho Brahe (1546 –
1601). The above computations show that this law is a mathematical inference
of Newton’s axiom if Newton’s gravitational potential is inserted. On the
other side, if we adopt that planets move in a central field of gravity, Kepler’s
first law implies Newton’s law of gravity U = −k/r .

(b2) Recovery of eccentricity from the invariants D1 and E . By
substitution of (6.23) into (6.19), E = mṙ2/2 + V (r), we obtain E =
mD2

1

(
u′(ϕ)2 + u2(ϕ)

)
/2 − k u(ϕ) . Substitution of the solution (6.25) then

yields

0 ≤ ε =
(

2pE
k

+ 1
)1/2

⎧
⎨
⎩
> 1 ⇐⇒ E > 0
= 1 ⇐⇒ E = 0
< 1 ⇐⇒ E < 0 .

(6.27)

In the present case U(r) = −k/r , k > 0 , we have lim r→∞V (r) = 0 ; hence
limt→∞ ṙ(t) = (2E/m)1/2 by (6.20). It is shown below that E = 0 for a
parabola then the velocity of a mass point tends to zero for |t| → ∞ whereas
it remains positive in case of a hyperbola; cf. Example 6.6. A mass point must
have at least energy E = 0 to overcome the gravitational field of the center.
Recall that E = m|ẋ|2/2 − γ mM/|x| therefore |ẋ|E = (2γM/|x|)1/2 is the
escape velocity.

(b3) Interplanetary orbits are frequently described by the distance r(t)
to the center and the velocity v(t) = (u(t) , v(t)) with components u(t) := ṙ(t)
in direction to the center and the track velocity v(t) = r(t) ϕ̇(t) perpendicular
to that direction as in (6.17); see, e.g., Example 4.10 . Then v̇ = −u v/r by
(6.18) and the equations of motion become

ṙ = u , u̇ =
v2

r
− γM

r2
, v̇ = − u v

r
, v0 :=

(
γM

r

)1/2

. (6.28)

For ṙ = r̈ = 0 we get again the track velocity v0 on a circular orbit which
is also found by setting centripetal force equal to gravitational force, i.e.,
γmM/r2 = mv2/r .

(c) Geometry
(c1) Recovery of Axes a and b from p and ε . For an ellipse (Fig. 6.6) we
have

2a =
p

1 + ε
+

p

1 − ε
=⇒ a =

p

1 − ε2
. (6.29)

For the further investigation we replace the true anomaly ϕ by the the eccentric
anomaly ψ using the relation

r(ϕ) cosϕ = a cosψ − a ε

r(ψ) = a− a ε cosψ
; (6.30)
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see Fig. 6.7. The second equation is found by substituting cosϕ = (a cosψ −
aε)/r into the focal equation (6.26). Let ϕ = ϕ0 for ψ = π/2 then
r(ϕ0) cosϕ0 = −aε =: e is the focal distance (linear eccentricity) and r(ϕ0) =
a is found by inserting (6.29) into the polar equation (6.26) for ϕ = ϕ0.
Together

e = aε =
√
a2 − b2 =⇒ b = p(1 − ε2)−1/2 =⇒ p = b2/a .

a
b

a
e = ε a

p

F
2

F
1

Figure 6.6. Ellipse Figure 6.7. True and eccentric
anomaly

Summary:

Ellipse 0 ≤ ε < 1 , a = p(1 − ε2)−1, b = p(1 − ε2)−1/2

Parabola ε = 1 , r(0) = p/2
Hyperbola 1 < ε , a = p(ε2 − 1)−1, b = p(ε2 − 1)−1/2

. (6.31)

Call also parabel.m and hyperbel.m in KAPITEL06\SECTION_2_3_4 for de-
tailed illustration.

(c2) Recovery of space coordinates and time By using (6.27) and
(6.31) one computes

a =
k

2|E| , b = D1

(
m

2|E|

)1/2

, p =
D2

1m

k

for the semi-axes and the parameter of an elliptic orbit. Then, recalling that
S(T ) = D1 T/2 is the area of the ellipse (6.15) with revolution time T but
also S(T ) = πab, we obtain

T =
2π ab
D1

= 2π
k

2|E|
D1

√
m√

2|E|
1
D1

= πk

(
m

2|E|3
)1/2

= 2πa3/2
√
m/k .

On the other side, substitution of the focal equation (6.26) into the first equa-
tion of (6.30) yields after simple computation
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cosϕ =
cosψ − ε

1 − ε cosψ
, sinϕ =

(1 − ε2)1/2 sinψ
1 − ε cosψ

=: g(ψ)

using cos2 ϕ+ sin2 ϕ = 1 and then

d sinϕ(ψ)
dψ

=
dg(ψ)
dψ

=
d sinϕ
dϕ

dϕ

dψ
=⇒ dϕ

dψ
=

(1 − ε2)1/2

1 − ε cosψ
.

Now recall (6.15) and use once more (6.30) then

D1t =
∫ ϕ(t)

ϕ(0)

r2(ϕ) dϕ =
∫ ψ(t)

ψ(0)

a2(1 − ε cosψ)2
(1 − ε2)1/2

1 − ε cosψ
dψ

= C(ψ − ε sinψ)
∣∣∣
ψ

ψ0

C = a2
√

1 − ε2 = a
√
a2(1 − ε2) = a

√
ap =

(
a3D2

1m

k

)1/2

= D1
T

2π
;

therefore
ω t = ψ − ε sinψ

writing ω = 2π/T for the circular frequency and T for the time of revolution.
By applying the focal equation (6.26) in combination with (6.30) we obtain

also for cartesian coordinates x = r cosϕ , y = r sinϕ = (r2 − x2)1/2

ε x = p− r = a(1 − ε2) − a(1 − ε cosψ) = a ε(cosψ − ε) ;

hence together for ellipse and hyperbola (Landau) vol. I, Sect. 15,

r = a(1 − ε cosψ) , t =
√
ma3/k(ψ − ε sinψ)

x = a(cosψ − ε) , y = a
√

1 − ε2 sinψ , 0 ≤ ψ < 2π , 0 < ε < 1

r = a(ε coshψ − 1) , t =
√
ma3/k(ε sinhψ − ψ)

x = a(coshψ − ε) , y = a
√
ε2 − 1 sinhψ , −∞ < ψ < ∞ , 1 < ε .

(6.32)
(c3) Recovery of geometric data from physical data and vice

versa
Case 1: In an inertial cartesian coordinate system, let the focus be the origin
and let the initial position x0 relative to the focus and the initial velocity v0

be specified. Then the polar coordinates (r0, ϕ0) of x0 can be determined and
the initial values ṙ0 and ϕ̇0 follow from

v0 = ṙ0er0
+ r0ϕ̇0eϕ0

=⇒ ṙ0 = v0 · er0
, ϕ̇0 = v0 · eϕ0

/r0 . (6.33)

Then compute the invariants E and D1 and thereafter the axes a and b by
(c2); for their position use ϕ0 .
Case 2: Conversely, let the shape of the ellipse be fixed by the axes a and b
in an inertial system; then e =

√
a2 − b2 and, say, starting in the apocenter,
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r0 = a + e , ϕ0 = 0 , ṙ0 = 0 and thus ϕ̇0 = |v0|/r0 by (6.33) . Therefore
the initial velocity must be found. To this end we observe that |E| = k/2a
and |E| = m|v0|2/2 + U(r0) , U(r) = −k/r . For the time of revolution T =
2πab/D1 we need also D1 = b

√
2|E| , cf. (c1).

(d) Examples

Example 6.6. D2 = 1 , k = 1 , m = 1 , hence p = 1 , ε = (2E + 1)1/2 ;

V (r) = − 1
r

+
1

2r2
, V (rmin) = E ,

ε 1/2 1 3/2

E −3/8 0 5/8

rmin 2/3 1/2 2/5

ε = 0.5

ε = 1

ε = 1.5

Figure 6.8. Conic sections

E = 5/8

E = − 3/8

r

V(r)

r = 2/3

r = 2/5

r = 2

Figure 6.9. Effective potential

Example 6.7. An orbit passing through a point x0 is uniquely determined by
the velocity vector v0 at that point if orientation of the orbit is fixed. If the
conic sections are to be displayed in closed form then the symmetry axes must
be known. In Figure 6.10 v0 = 0.8(−3, 1)/

√
10 , x0 = α(1, 1)/

√
2 and α =

2 , 2.5 , 2.75 , 3 , 3.5 , 4 ; γ = m = M = 1 ; in Figure 6.11 x0 = (1, 1) , v0 =
β (−3, 1)/

√
10 and β = 0.4 , 0.6 , 0.8 , 1 , 1.1892 (parabola), 1.5 .

In numerical approach, the system (6.12) can be solved directly of course
but the system (6.18) illustrates the time proportions more properly. Letting
ϕ = x1 , r = x2 , ϕ̇ = x3 , ṙ = x4 we have

ẋ1 = x3 , ẋ2 = x4 , ẋ3 = −2x3x4/x2 , ẋ4 = x2x
2
3 − k/(mx2

2) .

Recall that k = γmM therefore these three values have to be specified together
with the four initial conditions.



6.4 Systems of Mass Points 319

Figure 6.10. Several values of |x0|, v0

fixed
Figure 6.11. Several values of |v0|, x0

fixed

References: (Arnold78), (Arnold90), (French), (Landau), (Perelomov),
(Schneider)

6.4 Systems of Mass Points

Newton’s mechanics deals with systems of mass points without constraints.

Under the same assumptions as in Sect. 6.2 let xi : I � t �→ xi(t) ∈
R

3 , i = 1 : n , be the trajectories of n points of mass mi , i.e., solutions of the
initial value problem with a differential system

miẍi = f
i
(t, x1, . . . , xn, ẋ1, . . . , ẋn) , i = 1 : n (6.34)

and 6n suitable initial conditions. For brevity we write

X(t) = [x1(t), . . . , xn(t)]T ∈ R
3n = R

3 × . . .× R
3

F (t,X(t), Ẋ(t)) = [f
1
(t,X(t), Ẋ(t)), . . . , f

n
(t,X(t), Ẋ(t))]T ∈ R

3n

and then obtain

miẍi = f
i
(t,X(t), Ẋ(t)) , i = 1 : n .

(a) If each equation is multiplied by ẋi, ensuing integrated from t0 to t,
and the results are all sumed up, we obtain

n∑
i=1

1
2
mi|ẋi(t)|2 −

n∑
i=1

1
2
mi|ẋi(t0)|2 −

∫ t

t0

F (τ,X(τ), Ẋ(τ)) · Ẋ(τ) dτ = 0 .

(6.35)
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Definition 6.3. Relative to the basic cartesian coordinate system (COS)

Ekin(X(t)) :=
1
2

n∑
i=1

mi |ẋi(t)|2 =
n∑

i=1

Ekin(xi(t)) is the kinetic energy

Epot(X, t, t0) := −
∫ t

t0

F (τ,X(τ), Ẋ(τ)) · Ẋ(τ) dτ is the potential energy

Ẽ(X, t, t0) := Ekin(X(t)) +Epot(X, t, t0) is the total energy

of the system of mass points on their orbits at time t .

Remarks and addenda of Sect. 6.2 hold likewise. Note that Epot(X, t, t0) =
n∑

i=1

Epot(xi, t, t0) and that the conservation law of energy does hold again,

Ẽ(X, t, t0) = E(X(t), t0) = Ekin(X(t0)) . (6.36)

In the sequel the fields f
i
of force have to be partitioned in a slightly restrict-

ing way:

Axiom 6.3. (1◦) The forces f
i
satisfy

f
i
(t,X(t), Ẋ(t)) = f

ii
(t, xi(t), ẋi(t)) + g

i
(t,X(t), Ẋ(t)) , i = 1 : n .

(2◦) Exactly the vector fields f
ii

depend only of the mass point xi .
(3◦) The generalized principle of actio equals reactio,

∀ t ∈ I :
n∑

i=1

g
i
(t,X(t), Ẋ(t)) = 0 (6.37)

does hold for all times t .
(4◦) The sum of interior angular momenta is zero,

∀ i ∈ I :
n∑

i=1

(xi(t) − c) × g
i
(t,X(t), Ẋ(t)) = 0 (6.38)

where c = 0 without loss of generality by (6.37).

Remarks and Addenda:

(1◦) The forces f
ii

are called external forces and the forces g
i
internal forces.

(2◦) In almost all cases

g
i
(t,X(t), Ẋ(t)) =

n∑
k=1,k �=i

f
ik

(t, xi(t), xk(t), ẋi(t), ẋk(t))

(two-particle forces) and f
ik

= −f
ki
, i �= k , (principle of actio = reactio).
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(3◦) Suppose that each mass point xi generates a central field with xi as origin
then

f
ik

(X(t)) = fik(|xi − xk|)
xi − xk

|xi − xk|
, i �= k (6.39)

(central two-particle forces of interaction).
(4◦) By definition of the gravity center,

xS(t) = M−1
n∑

i=1

mi xi(t) , M =
n∑

i=1

mi ,

we obtain the crucial decomposition

xi(t) = xS(t)+y
i
(t) =⇒

n∑
i=1

mi yi
(t) =

n∑
i=1

mi xi(t)−MxS(t) = 0 (6.40)

and thus directly

MẋS(t) = I(t) , MxS(t) × ẋS(t) = xS(t) × I(t) , (6.41)

and further, by (6.34) and Axiom 6.3(3◦) ,

M ẍS(t) =
d

dt
I(t) =

n∑
i=1

f
ii
(X(t)) . (6.42)

In particular, the gravity center of a closed system moves on a straight line
with constant velocity.

By the decomposition (6.40) one obtains also a decomposition in external
und internal kinetic energy

Ekin(X(t)) =
1
2
M |ẋS(t)|2 +

1
2

n∑
i=1

mi|ẏi
(t)|2 . (6.43)

(b) Vectorial multiplication of (6.34) from left by xi and summing up over
i yields

n∑
i=1

mixi(t) × ẍi(t) =
n∑

i=1

xi × f
i
(t,X(t), Ẋ(t)) . (6.44)

Definition 6.4. (1◦) Relative to a fixed point c of the basic COS

I(t) =
n∑

i=1

mi ẋi(t) is the total momentum

Dc(t) =
n∑

i=1

mi(xi(t) − c) × ẋi(t) is the total angular momentum

P c(t) =
n∑

i=1

(xi(t) − c) × f
i
(t,X(t), Ẋ(t)) is the total moment
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of the system of mass points on their trajectories at time t .
(2◦) The system is closed if no external forces appear.

Remarks and Addenda:

(1◦) Dc(t) = D0 − c× I(t) .
(2◦) By (6.34) and the definition we obtain again

d

dt
Dc(t) = P c(t) . (6.45)

(3◦) The rate of change of the total momentum and of the total angular mo-
mentum depends only on the external forces f

ii
under Axiom 6.3 (3◦) and

(4◦):

d

dt
I(t) =

n∑
i=1

f
ii
(t, xi(t), ẋi(t)) ,

d

dt
Dc(t) =

n∑
i=1

(xi(t)−c)×f ii
(t, xi(t), ẋi(t)) .

(6.46)
Consequently, the total momentum and the total angular momentum are
constant in a closed system (law of conservation of momentum resp. angu-
lar momentum). This law does hold also for the angular momentum if all
external forces are central forces relative to the origin of the basic COS.

(4◦) Likewise, by definition of the gravity center and decomposition (6.40) we
obtain a decomposition into external and internal angular momentum

D(t) = M xS(t) × ẋS(t) +
n∑

i=1

miyi
(t) × ẏ

i
(t) . (6.47)

By Axiom 6.3 (3◦), (4◦)

d

dt

n∑
i=1

miyi
× ẏi

(!)
=

n∑
i=1

miyi
× ẍi =

n∑
i=1

(xi − xS) × f
i
(X, Ẋ)

=
n∑

i=1

(xi − xS) × f
ii
(xi, ẋi) ;

hence the second term on the right side of (6.47 is constant in a closed system
and D(t) constant thus also, by (6.40) ,

MxS(t) × ẋS(t) = xS(t) × I(t) = constant . (6.48)

Example 6.8. The motion of N points xi = (x1
i , x

2
i , x

3
i ) ∈ R

3 , i = 1 : N , with
mass mi under mutual gravitational attraction is called “N-body problem”. By
Newton’s law of gravitation the total gravitational potential is the sum of
the individual potentials,

U(X(t)) = −
∑

i,k=1,i �=k

γ mi mk

|xi − xk|
,

∂U

∂xj
i

=
∑
i�=k

γ mi mk

|xi − xk|3
(xj

i − xj
k)
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where γ is the gravitational constant. Then Newton’s axiom yields immedi-
ately the equations of motion

miẍi = − gradxi
U(X(t)) = γ mi mk

∑
k �=i

xk − xi

|xk − xi|3
,

and the total energy E of the (closed) system is obviously

E(t) =
n∑

i=1

|ẋi(t)|2
2

+ U(X(t)) = const.

Note also the double negative sign on the right side of the equation of motion.

(c) Mass Points with Constraints Consider again a system of n mass
points xi ∈ R

3 and adopt the above notations. Suppose that the system is
momentarily subjected to some holonomic constraints.

Assumption 6.1. (1◦) Let hold the law of conservation of energy (6.36),

d

dt
E(X(t), t0) = 0 ∈ R . (6.49)

(2◦) There exist m < 3n sufficiently smooth holonomic-scleronomic side con-
ditions

g(X) = 0 ∈ R
m (6.50)

satisfying the regularity condition rank gradX g(X(t)) = m .

Note that the energy does not depend explicitely on t . By Definition 6.3 there
exists a vector field ĝradE(X(t)t0) in R3n such that

d

dt
E(X(t), t0) = ĝradE(X(t), t0) · Ẋ(t) = 0 ∈ R , (6.51)

and (6.50) yields likewise

grad g(X(t)) · Ẋ(t) = 0 ∈ R
m . (6.52)

The linear system (6.52) for Ẋ(t) has 3n −m linearly independent solutions
U i(t,X(t)) ∈ R

3n , i = 1 : 3n − m , by assumption. Substitution into (6.51)
leads to the D’Alembert-Lagrange system (system of virtual displace-
ments)

ĝradE(X(t), t0) · U i(t,X(t)) = 0 , i = 1 : 3n−m. (6.53)

The system (6.53) is linear in the highest derivative Ẍ(t) if the system (6.51)
has this property cf. also the Euler-Lagrange equations in Sect. 4.1.

In this formulation of the principle of D’Alembert-Lagrange, the “vir-
tual displacements” Ẋ(t) have become tangents at the hyper-surfaces repre-
sented by the implicit side conditions; see also (Arnold78). However, m de-
pendent variables in (6.53) have still to be eliminated for the final solution by
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applying once more the system of side conditions g(X) = 0 . This is a serious
drawback in nonlinear constraints and prohibits this device for large mechan-
ical problems. Rather one considers both systems (6.34) and (6.50) together
as differential algebraic system and applies the relating numerical approaches
for this type of problems. One the other side, the equations of motion can
be conceived by Hamilton’s principle as Euler-Lagrange equations i.e.
variational equations of an extremal problem. Then equality constraints can
be incorporated via local Lagrange theory see Sect. 3.6 but the result is
also an differential-algebraic system enhanced by the Lagrange multipli-
ers of which however no derivatives are involved. The latter system seems
to have some advantages because it contains the side conditions explicitely
whereas D’Alembert’s principle applies them first implicitely and then ex-
plicitely again. Also the author does not know an algorithmic implementa-
tion of D’Alembert’s principle but two involving Lagrange multipliers,
Brasey’s HEM5 and Murua’s PHEM56. For further investigation we refer to
Sect. 6.8, for some examples to § 11.3, and for additional remarks to Sect.
6.9.

(d) In the subsequent Examples in R
2 , discs with inertia moment ap-

pear also besides mass points; therefore additional rotation energy must be
regarded.

Example 6.9. (Szabo76). A cylinder W with radius R and a disc S with radius
r < R are concentric connected and have together the weight m2g where g
is the gravitaional acceleration. Two ropes (A) and (B) without weight are
spooled up on cylinder and disc. Rope (B) carries the weight m1g whereas the
entire system is suspended at rope (A) see Fig. 6.12. Compute the accelera-
tions!

By D’Alembert’s principle of virtual displacement and some intuition
we obtain

(m1g −m1q̈) ∂q + (m2g −m2s̈) ∂s−Θϕ̈ ∂ϕ = 0 .

Θ =
∫

�∈W−S
�2 dm is the geometrical moment of inertia and the last term

called D’Alembert’s force of inertia appears somewhat abruptly at first but
supplies the crucial contribution. Now

q + (r −R)ϕ = 0 , s+ rϕ = 0 (6.54)

are the side conditions; hence ∂s = −r∂ϕ und ∂q = (R − r)∂ϕ and a substi-
tution of s̈ = −rϕ̈ and q̈ = (R− r)ϕ̈ leads to

{[m1g −m1(R− r)ϕ̈] (R− r) − (m2g +m2rϕ̈) r −Θϕ̈} ∂ϕ = 0 . (6.55)

By this way we obtain

ϕ̈ = g
m1(R− r) −m2r

m1(R− r)2 +m2r2 +Θ
, s̈ = −rϕ̈ , q̈ = (R− r)ϕ̈ .
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This example shall now be considered in the above more geometrical con-
text. To this end we observe that the problem has three variables x(t) =
[q(t), s(t), ϕ(t)]T and two constraints (6.54). Following the concept of La-

grange mechanics two artificial constraint forces z1, z2 are introduced which
shall keep the “mass points” on the surfaces described by (6.54). The total
energy E is constant in a closed system,

E(x(t)) =
m1

2
q̇2 −m1g q +

m2

2
ṡ2 −m1g s+

Θ

2
ϕ̇2 = E(x(t0))

dE(x(t))
dt

=

⎡
⎣
m1q̈ −m1g
m2s̈−m2g

Θϕ̈

⎤
⎦
⎡
⎣
q̇
ṡ
ϕ̇

⎤
⎦ =: ĝradE(x(t)) · ẋ(t) = 0 .

By this way we obtain the augmented Newton’s equations of motion

ĝradE(x(t)) = z1 + z2 . (6.56)

The constraint forces are supposed to be perpendicular to the surfaces (6.54)
and thus point up to sign into the direction of the normals of the surfaces

z1 = λ1n1 , n1 = [1, 0, r −R]T , z2 = λ2n2 , n2 = [0, 1, r]T .

The tangent vector of both implicit constraints is the cross product of the
normals

T = n1 × n2 =

∣∣∣∣∣∣
e1 1 0
e2 0 1
e3 r −R r

∣∣∣∣∣∣
=

⎡
⎣
R− r
−r
1

⎤
⎦ .

Now the virtual constraint forces z1 and z2 in the system (6.56) disappear
again (“do not perform real work”) if we form the scalar product with the
vector T . Ensuing a substitution of s̈ = −rϕ̈ , q̈ = (R − r)ϕ̈ supplies also
equation (6.55).

Example 6.10. A simple pulley has four independent variables
x = [s1, s2, ϕ1, ϕ2]T and three constraints

s1 + rϕ1 = 0 , s2 + rϕ2 , ϕ1 + 2ϕ2 = 0 (6.57)

see Fig. 6.13. The total energy is constant in a closed system,

E(x(t)) =
1
2
[Θϕ̇2

1 +Θϕ̇2
2 +m1ṡ

2
1 + (m2 +m)ṡ22] +m1gs1 + (mg +m2g)s2

= E(x(t0))

dE(x(t))
dt

= [m1s̈1 +m1g, (m2 +m)s̈2 + (m2g +mg), Θϕ̈1, Θϕ̈2] · ẋ(t)

=: ĝradE(x(t)) · ẋ(t) = 0

where m, r,Θ are mass, radius and inertia moment of the discs. The normals
of the surface (6.57) are
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n1 = [1, 0, r, 0]T , n2 = [0, 1, 0, r]T , n3 = [0, 0, 1, 2]T ,

and a tangent T with property T ·ni = 0 , i = 1 : 3 is t = [2r,−r,−2, 1]T . By
the scalar product gradE · T = 0 we obtain

0 = 2r
[
m1s̈1 +m1g

]
− r

[
(m2 +m)s̈2 + (m2g +mg)

]
− 2Θϕ̈1 +Θϕ̈2

and, by substitution, see also (Szabo76),

[r2(4m1 +m2 +m) + 5Θ]ϕ̈1 = 2gr[2m1 −m2 −m] .

In the following examples with pendulum the x-axis points to right and the
y-axis to above (COS).

Example 6.11. The double physical pendulum has six independent variables
x = [x1, . . . , x4, ϕ1, ϕ2]T and four constraints, see Fig. 6.14,

x1 − �1 sinϕ1 = 0 , x2 + �1 cosϕ1 = 0 ,
x3 − � sinϕ1 − �2 sinϕ2 = 0 , x4 + � cosϕ1 + �2 cosϕ2 = 0 . (6.58)

(x1, y1) are the coordinates of the gravity center S1 and the inertia moment of
the first body relative to the rotational axis is Θ1, (x3, x4) are the coordinates
of the second gravity center S2 and Θ2 is the corresponding inertia moment
w.r.t. S2.(!) Kinetic energy T , potential energy U and total energy E = T +U
are

T (t) =
1
2
Θ1ϕ̇

2
1 +

1
2
Θ2ϕ̇

2
2 +

1
2
m2(ẋ2

3 + ẋ2
4)

U(t) = m1gx2 +m2gx4

E(t) =
1
2
Θ1ϕ̇

2
1 +

1
2
Θ2ϕ̇

2
2 +

1
2
m2(ẋ2

3 + ẋ2
4) +m1gx2 +m2gx4 = E(t0)

dE(t)
dt

= [0, m1g, m2ẍ3, m2ẍ4 +m2g, Θ1ϕ̈1, Θ2ϕ̈2] · ẋ

= ĝradE · ẋ = 0 .
(6.59)

Both the desired tangents t1, t2 are two linearly independent solutions of the
homogeneous linear system

⎡
⎢⎢⎣

1 0 0 0 −�1 cosϕ1 0
0 1 0 0 −�1 sinϕ1 0
0 0 1 0 −� cosϕ1 −�2 cosϕ2

0 0 0 1 −� sinϕ1 −�2 sinϕ2

⎤
⎥⎥⎦ t = 0 ;

hence [
tT1
tT2

]
=
[
�1 cosϕ1 �1 sinϕ1 � cosϕ1 � sinϕ1 1 0

0 0 �2 cosϕ2 �2 sinϕ2 0 1

]
.
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The both equations ĝradE · t1 = 0 and ĝradE · t2 = 0 lead to

m1�1g sinϕ1 +m2�ẍ3 cosϕ1 +m2� sinϕ1(ẍ4 + g) +Θ1ϕ̈1 = 0

m2�2ẍ3 cosϕ2 +m2�2 sinϕ2(ẍ4 + g) +Θ2ϕ̈2 = 0 .

In this way we obtain

[
Θ1 + �2m2 ��2m2 cos(ϕ1 − ϕ2)

��2m2 cos(ϕ1 − ϕ2) Θ2 + �22m2

][
ϕ̈1

ϕ̈2

]

+ ��2m2

[
sin(ϕ1 − ϕ2)(ϕ̇2)2

− sin(ϕ1 − ϕ2)(ϕ̇1)2

]

= −
[

(�1m1 + �m2)g sinϕ1

�2m2g sinϕ2

]

cf. SUPPLEMENT\chap06. The same result is obtained by applying Hamilton’s
principle and the corresponding Euler equations (Szabo77), p. 89.

Example 6.12. The double mathematical pendulum follows from the double
physical pendulum by setting �1 = � , Θ1 = m1�

2 , Θ2 = 0 ; hence

[
(m1 +m2)�2 ��2m2 cos(ϕ1 − ϕ2)

��2m2 cos(ϕ1 − ϕ2) �22m2

][
ϕ̈1

ϕ̈2

]

+ ��2m2

[
sin(ϕ1 − ϕ2)(ϕ̇2)2

− sin(ϕ1 − ϕ2)(ϕ̇1)2

]

= −
[

(m1 +m2)�g sinϕ1

�2m2g sinϕ2

]
.

Alternative derivation of double mathematical pendulum, cf. Sect. 11.3, Ex-
ample 11.1. The double mathematical pendulum has four independent vari-
ables x = [x1, x2, x3, x4] := [x1, y1, x2, y2] , see Fig. 6.14), and two constraints

x2
1 + x2

2 = �2 , (x3 − x1)2 + (x4 − x2)2 = �22 . (6.60)

The total energy is

E(t) =
m1

2
(ẋ2

1 + ẋ2
2) +

m2

2
(ẋ2

3 + ẋ2
4) +m1gx2 +m2gx4 = E(t0)

dE(t)
dt

= [m1ẍ1, m1ẍ2 +m1g, m2ẍ3, m2ẍ4 +m2g] · ẋ(t)

= ĝradE · ẋ(t) = 0

(6.61)

which coincides with (6.59) under Assumption (6.60) because Θ1(ϕ̇1)2 =
m1(ẋ2

1 + ẋ2
2) . The normals of the surfaces (6.60) are

n1 = [x1, x2, 0, 0]T , n2 = [x1 − x3, x2 − x4, x3 − x1, x4 − x2]T
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and two tangents perpendicular to the both normals are

t1 = [x2(x4 − x2), −x1(x4 − x2), 0, x2x3 − x1x4]T

t2 = [0, 0, x4 − x2, x1 − x3]T .

Multiplication of (6.61) by t1 resp. t2 leads to the system

mẍ1x2(x4 − x2) − (mẍ2 −mg)x1(x4 − x2)
+(mẍ4 −mg)(x2x3 − x1x4) = 0
mẍ3(x4 − x2) + (mẍ4 −mg)(x1 − x3) = 0 .

(6.62)

The rest follows in the same way as above to the same result.

An example with holonomic-rheonomic constraints is given in
SUPPLEMENT\chap06b.
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Figure 6.14. Pendulum

6.5 The Three-Body Problem

(a) Formulation of the Problem Let three points Pi with masses mi , i =
1, 2, 3 , move in a plane under mutual attraction, and let (xi, yi) be the co-
ordinates of Pi in a fixed global COS. Then Newton’s axiom and the law of
gravitation lead to a system of six differential equations

miẍi =
γ mimi+1

r3i,i+1

(xi+1 − xi) +
γ mimi+2

r3i,i+2

(xi+2 − xi)

miÿi =
γ mimi+1

r3i,i+1

(yi+1 − yi) +
γ mimi+2

r3i,i+2

(yi+2 − yi)
, i = 1 : 3 , (6.63)

(indices modulo 3, no summation) where

ri,k = rk,i =
(
(xi − xk)2 + (yi − yk)2

)1/2
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and the masses mi are canceled out, see also Example 6.8. The total energy

E =
3∑

i=1

1
2
mi

(
ẋi

2 + ẏi
2
)
− γ m1m2

r1,2
− γ m2m3

r2,3
− γ m3m1

r3,1

is again constant and hence an invariant of the system. We introduce a char-
acteristic unit of mass M and a characteristic unit of length L (both relative
to the given problem) then

m̃i =
mi

M
, x̃i =

xi

L
, t̃ = t

(
γM

L3

)1/2

, ṽ =
(

L

γM

)1/2

v (6.64)

are quantities without dimension (v velocity). The units of mass, length,
and time in dimensionless system are then M , L , (L3/γM)1/2 , and v0 =
(γM)/L)1/2 is the unit of velocity. By (6.28), this is exactly the velocity
which keeps a point of arbitrary mass m on a circular orbit with radius L .
Applying the transformation (6.64) the differential system (6.63) becomes

ẍi =
mi+1(xi+1 − xi)

r3i,i+1

+
mi+2(xi+2 − xi)

r3i,i+2

ÿi =
mi+1(yi+1 − yi)

r3i,i+1

+
mi+2(yi+2 − yi)

r3i,i+2

, i = 1 : 3 modulo 3 (6.65)

where a point denotes differentiation w.r.t. t̃ but afterwards we write again t
instead t̃ , mi instead m̃i etc.. In relative motion the orbits of the mass points
are displayed relative to the gravity center S of the system which has the
coordinates

xs =
m1x1 +m2x2 +m3x3

m1 +m2 +m3
, ys =

m1y1 +m2y2 +m3y3

m1 +m2 +m3
.

The gravity center moves on a straight line which is given by the initial con-
ditions because no external energy is pumped into the system.

(b) Of course, the differential system for the Two-Body Problem is
(6.63) for i = 1 : 2 . In general, there arise ellipses which are neither concentric
nor stationary. But suppose that the two mass points m1 and m2 rotate about
their common mass center with constant distance d which it also supposed in
(c). Conveniently we choose L = d in (6.64) and remember that centripetal
force equals gravitational force (v scalar velocity),

m1v
2
1

r1
=

γ m1m2

d2
=

m2v
2
2

r2
;
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then

r1 =
m2

M
d =⇒ v1 = m2

( γ

M d

)1/2

=
m2

M

(
γM

d

)1/2

=⇒ ṽ1 =
m2

M

r2 =
m1

M
d =⇒ v2 = m1

( γ

M d

)1/2

=
m1

M

(
γM

d

)1/2

=⇒ ṽ2 =
m1

M

v1

r1
= m2

( γ

M d

)1/2 M

m2d
=
(
γM

d3

)1/2

=
v2

r2
common angular velocity .

Summary: Two mass points m1 and m2 rotate in dimensionless system about
their common mass center in origin if

r1 = − m2

m1 +m2
, r2 =

m1

m1 +m2
, v1 = r1 , v2 = r2 .

(c) In the Restricted Three-Body Problem, the gravitational constant
is likewise normed to one and the partition of mass is chosen such that

m1 = 1 − μ =: μ′ , m2 = μ , m3 = 0 , 0 ≤ μ ≤ 1 . (6.66)

Then the motion of P1 and P2 does not depend on P3 , and one supposes that
both move on circular orbits with angular velocity one relative to their com-
mon gravity center. This simplification leads to a reduced differential system

ẍ = x+ 2ẏ − μ
x− μ′

[
(x− μ′)2 + y2

]3/2
− μ′ x+ μ[

(x+ μ)2 + y2
]3/2

ÿ = y − 2ẋ− μ
y

[(x− μ′)2 + y2]3/2
− μ′ y[

(x+ μ)2 + y2
]3/2

(6.67)

for the orbit of P3(x, y) ∈ R
2 .

For the sake of completeness we note Lagrange function L of the action
integral (of which these equations are the Euler equations), total energy E
and Hamiltonian H . For a unified representation we write q instead x and
p = gradq̇ L as usual; let also for brevity

�(q) =
[
(q1 − μ′)2 + q2

2

]1/2
, σ(q) =

[
(q1 + μ)2 + q2

2

]1/2
.

L(q, q̇) =
|q̇|2

2
+ q̇1q2 − q̇2q1 +

μ

�(q)
+

μ′

σ(q)

E(q, q̇) =
|q̇|2

2
−

|q|2

2
− μ

�(q)
− μ′

σ(q)

H(p, q) =
|p|2

2
+ q1p2 − q2p1 − μ

�(q)
− μ′

σ(q)
.

Recall that a differential system u̇ = f(u) has singular points u∗ where f(u∗) =
0. The first order system associated to (6.67) is
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ẋ = y

ẏ = 2
[

0 1
−1 0

]
y + x

(
1 − μ′ 1

�(x)3
− μ

1
σ(x)3

)
+ μμ′

[
�(x)−3 − σ(x)−3

0

]
.

(6.68)
But, for y = 0 , the second equation can be written as gradient of a scalar
function V where

V (x1, x2) =
1
2
[
x2

1 + x2
2

]
+

μ

�(x)
+

μ′

σ(x)
. (6.69)

Accordingly, the singular points of the first order system (6.68) are the points
satisfying

ẋ = 0 , gradx V (x) = 0 .

For x2 = 0 we find three collinear singular points and for x2 �= 0 the lower
second equation in (6.68) shows that further singular points occur when � = σ
and this equation is fulfilled for Lagrange’s equilateral triangle solutions
x1 = 1

2 − μ and x2 = ±31/2/2. For Earth and Moon (μ = 0.012277471) ,
V (x, 0) is sketched in Fig. 6.21 and a graph of the potential V (x1, x2) in
Figure 6.22.

(d) Periodic Solutions The trajectories of the general as well as the
restricted three-body problem develop chaotically in normal case; cf. e.g.,
(Acheson). Following (Arenstorf), the system (6.67) for the restricted prob-
lem is written as complex differential equation for the computation of special
periodic solutions,

ü+ 2i u̇− u = − μ

|u+ μ− 1|3 (u+ μ− 1) − 1 − μ

|u+ μ|3 (u+ μ) (6.70)

where i =
√

−1 and u = x+ i y . The solutions of this equation are well-known
for μ = 0 and may be written as u(t) = e−i tz(t) where z(t) ∈ C denotes the
Kepler motion, i.e., is the solution of z̈ = −z |z|−3 . Choosing, e.g., the initial
conditions

z(0) = a(1 + ε) , ż =
i c

z(0)
, c2 = a(1 − ε2) , 0 < a , 0 < ε < 1 ,

the orbit z is an ellipse with large semi-axis a , numerical eccentricity ε , one
focus in origin, apocenter in z(0) and time of circulation T0 = 2π|a3/2| ; hence
by (6.32)

u(t) = e−i tz(t) , z(t) = a(ε+ cosψ + i
√

1 − ε2 sinψ) , t = a3/2(ψ + ε sinψ) .

The orbit u(t) is periodic if T0 is a rational multiple of 2π resp. if a3/2 =
m/k with relatively prime k,m ∈ N (sign(k) = sign(c)). The function u then
decribes in C a rotating ellipse with total circulation time T = 2πm which
becomes a closed curve after k−m rotations about the origin. (Arenstorf) has
proved that this periodicity (with different circulation time) is preserved for
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small parameter μ > 0 which is an astonishing result in view of the fragility
of periodic solutions.

(m,k) = (1,2) (m,k) = (2,3) (m,k) = (3,4) (m,k)= (3,5)

Figure 6.15. Arenstorf orbits

(m,k) = (4,5) (m,k) = (5,4) (m,k) = (7,6) (m,k)= (7,8)

Figure 6.16. Arenstorf orbits cont.

Figures 6.17 and 6.18 show an Arenstorf orbit in absolute and relative
frame of reference; cf. Example 2.19. In Figures 6.19 and 6.20 m1 = m2 = 0.5 ,
both masses rotate with same velocity v = 0.5 about the origin; the mass point
P3 with m3 = 0 leaves here the system also if its velocity becomes too large. In
all cases the dimensionless differential system has been solved by ode45.m and
(6.65). Call also KAPITEL06\SECTION_5\demo2.m for some further interesting
examples.
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Figure 6.17. Absolute motion Figure 6.18. Relative motion

m
1
 = 0.5

m
3
 = 0

m
2
 = 0.5

Figure 6.19. Absolute motion Figure 6.20. Relative motion
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Figure 6.21. Potential V (x, 0)
for Earth and Moon
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Figure 6.22. Potential V for Earth and Moon
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6.6 Rotating Frames

All vectors are underlined in this section.
(a) Rotation of a Body Let {OE ; E} = {OE ; E1, E2, E3} and {OF ; F} =

{OF ; F1, F2, F3} be two different cartesian coordinate systems in an Euk-

lidian scalar product space E , cf. Sect. 10.4. We suppose that {OE ; E} is a
space-fixed or inertial system (reference system) and {OF (t); F(t)} is a body-
fixed COS of some body which moves relative to the inertial system. Since the
difference of two points in E is defined and is also a vector, we can describe a
rigid body motion per definitionem by

F = (OF (t) − OE) + ED(t) (6.71)

in formal notation where D(t) ∈ R
3
3 is an orthogonal matrix with positive de-

terminant. “Formal” means here again that we can operate with the elements
Ei of E and Fk of F in the same way as with column vectors in matrix-vector
computation although they are really column vectors only if E = R

3 . Of
course the vector OF (t) − OE can be expressed in both coordinate systems
with different components. However we suppose that both coordinate system
have the same origin, OF = OE , since we are only concerned with rotations
in this section. Remember also that the rotation axis is always eigenvector
of the associated rotation matrix; hence it is the one and only vector which
remains fixed under that rotation.

An arbitrary vector v in the Euclidian space E has the form

v = FxF = ExE = EDDTxE =⇒ xF = DTxE , xE = DxF ; (6.72)

see also Sect. 1.1(a6). (In technical sciences the transformation matrix D is
replaced frequently by DT according to the opinion that coordinate transfor-
mation is more important than basis transformation.)

Example 6.13. Let

D(e1, α) = D(e2, α) = D(e3, α) =
⎡
⎣

1 0 0
0 cosα − sinα
0 sinα cosα

⎤
⎦ ,

⎡
⎣

cosα 0 − sinα
0 1 0

sinα 0 cosα

⎤
⎦ ,

⎡
⎣

cosα − sinα 0
sinα cosα 0

0 0 1

⎤
⎦ .

(6.73)

be the fundamental rotation matrices where I = [e1, e2, e3] ∈ R
3
3 is the unit

matrix. Then, e.g., a new basis F = ED(ei, α) results from E by rotation
about the basis vector Ei with angle α in mathematically positive sense.

Example 6.14. Let a ∈ R
3 be a normed rotation axis, |a| = 1 , and let

D(a, ϕ) = cos(ϕ)I + (1 − cos(ϕ))a aT + sin(ϕ)C , Cx = a× x ,
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be the rotation matrix of Sect. 1.1(i). Then F = ED(a, ϕ) is rotated about
Ea with angle ϕ in positive direction; and as in (1.14)

Ḋ(a, ωt) = ωCD(a, ωt) = ωD(a, ωt)C . (6.74)

Example 6.15. In Kardan angles (G. Cardano, 1501-1576), at first E1 is
rotation axis with angle α then the image of E2 is rotation axis with angle β
and finally the image of E3 is rotation axis with angle γ , therefore

F =
[[

ED(e1, α)
]
D(e2, β)

]
D(e3, γ) = ED(e1, α)D(e2, β)D(e3, γ) ,

In order to prevent overlapping and singularities, the rotation angles have to
be sufficiently small or complementary rotation angles have to introduced; cf.,
e.g., (Schiehlen86).

Example 6.16. In Euler-angles (L. Euler, 1707-1783), at first E3 is rotation
axis with angle ϕ, then the image of E1 is rotation axis with angle ϑ and finally
the image F3 of E3 is axis with angle ψ,

F = ED(e3, ϕ)D(e1, ϑ)D(e3, ψ) ,
0 ≤ ϕ < 2π , 0 ≤ ϑ < π , 0 ≤ ψ < 2π .

In the theory of top there is a local COS F on the body and a global COS E in
space with common origin. F3 is then the symmetry axis of, say, a symmetric
heavy top, the angle ϕ describes the precession, i.e., the declination of the
top under influence of gravity force, the angle ϑ describes the nutation, i.e.,
the periodic change in inclination, and the angle ψ the rotation around the
top’s axis F3 , however the notations are not always the same. (In Euklidian
space R

3 the axes Ei = ei may be chosen conveniently.) We then obtain

D(ϕ, ϑ, ψ) :=⎡
⎢⎢⎢⎣

cosψ cosϕ− sinψ cosϑ sinϕ − sinψ cosϕ− cosψ cosϑ sinϕ sinϑ sinϕ

cosψ sinϕ+ sinψ cosϑ cosϕ − sinψ sinϕ+ cosψ cosϑ cosϕ − sinϑ cosϕ

sinψ sinϑ cosψ sinϑ cosϑ

⎤
⎥⎥⎥⎦

(6.75)
for the matrix of the resulting total rotation with unnormed rotation axis Ea
and

a = [sinϑ(sinϕ− sinψ) , sinϑ(cosϕ+ cosψ) , sin(ϕ+ ψ)(cosϑ+ 1)]T ∈ R
3 .

Example 6.17. Writing u = (r, ϕ, ϑ) , the spherical coordinates are defined by

f(u) =
[
r cosϕ cosϑ, r sinϕ cosϑ, r sinϑ

]T
,

0 ≤ r , 0 ≤ ϕ < 2π , −π/2 < ϑ < π/2 .
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(Sometimes the range of ϑ is translated by π/2 .) For instance on the surface
of earth, the basis vector E3 is the axis of the earth pointing to the North Pole
and E1 has the null-length of Greenwich. Then the angle ϕ is the geographic
length being positive in direction East, and ϑ the geographic latitude being
positive in direction North. After normalization by the metric tensor M(u)
the columns of the matrix

F (u) = grad f(u)M(u)−1/2 =

⎡
⎣

cosϕ cosϑ − sinϕ − cosϕ sinϑ
sinϕ cosϑ cosϕ − sinϕ sinϑ

sinϑ 0 cosϑ

⎤
⎦

= D(e3, ϕ)D(e2, ϑ)

(6.76)

form an orthogonal moving frame on the surface of earth, where the origin as
well as North and South pole are singularities to be excluded; cf. Sect. 10.5.

In the present notation F (u) = [F1,F2,F3], the vector F1 points to the
zenith, F2 in direction of increasing ϕ and F3 in direction of increasing ϑ. The
system moves on a circle of latitude in direction East if ϑ is kept fixed and ϕ
increases monotonically. The system moves on a meridian to North for fixed
ϕ and increasing ϑ . But it is of advantage to use instead of F the likewise
positive oriented system

G = {G1, G2, G3} = {F2, F3, F1} (6.77)

then G1 points in direction of increasing degree of longitude ϕ , G2 in direction
of increasing degree of altitude ϑ, and G3 points to the zenith.
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Figure 6.23. Euler angles
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Figure 6.24. Spherical coordinates

(b) Two Rotations in succession with angle velocities ω1a1 and ω2a3

give again a rotation with an angle velocity ω3a3(t) in E (|a|i = 1) ,

F = ED(a1, ω1t) , G = FD(a2, ω2t) ,
H = ED(a3(t), ω3t) = ED(a1, ω1t)D(a2, ω2t) .

The axis a1 shall be fixed in E and a2 fixed in F . For brevity let D1(t) =
D(a1, ω1t) , D2(t) = D(a2, ω2t) , D3(t) = D(a3(t), ω3t) then D3(t) =
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D1(t)D2(t) and ω1C1 = Ḋ1D
T
1 , ω2C2 = Ḋ2D

T
2 by (6.74), (1.15). We thus

obtain

Ḋ3D
T
3 = Ḋ1D2D

T
2 D

T
1 +D1Ḋ2D

T
2 D

T
1 = Ḋ1D

T
1 D1D2D

T
2 D

T
1 + ω2D1C2D

T
1

= ω1C1 + ω2D1C2D
T
1 =: ω3C3 .

The matrix C3 is likewise skew-symmetric and

ω3C3x = ω1C1x+ ω2D1C2D
T
1 x = ω1(a1 × x) + ω2D1(a2 ×DT

1 x)
= (ω1a1 + ω2D1(t)a2) × x =: ω3a3(t) × x ,

where D1(t)a2 is the axis pulled back from the system F into the system E ;
the rotation axis a3(t) is also called instantaneous rotation axis of the body
or instantaneous pole in R

2. Since aT
1 D1 = aT

1 we have altogether

ω3a3(t) = ω1a1 + ω2D1(t)a2 , |ω3|2 = ω2
1 + 2ω1ω2a

T
1 a2 + ω2

2 .

(c) Consider now a rotation F = ED(t)D0 where a fixed rotation is pre-
multiplied for later application. The angular velocity shall be constant with
normed rotation axis a , i.e., ωE = ωa , |a| = 1 then

ωF = DT
0 D(t)TωE = DT

0 ωE .

Furthermore, suppose that yF (t) = ϕF (t, xF ) is a motion in rotating system
F(t) then the image of yF (t) in system E satisfies

yE(t) = D(t)D0yF (t) = D(t)D0ϕF (t, xF ) . (6.78)

The product rule yields by using (6.74)

ẏE(t) = D(t)D0ẏF (t) + Ḋ(t)D0yF (t) = D(t)D0ẏF (t) + ωCD(t)D0yF (t)
(6.79)

where

ωCD(t)D0yF = ωD(t)CD0yF = D(t)(ωE ×D0yF )
= D(t)D0(DT

0 ωE × yF ) = D(t)D0(ωF × yF ) .
(6.80)

By this way we obtain

ẏE(t) = D(t)D0

[
ẏF (t) + ωF × yF (t)

]
:= D(t)D0

[
vF,r(t) + vF,�(t)

]
.

(6.81)
Fazit: The absolute velocity ẏE(t) in system E is composed of the “pulled
back” relative velocity vF,r(t) in system F(t) and the “pulled back” leading
velocity vF,�(t) of rotation in system F(t). (Component vectors of different
coordinate system shall never be mixed.) Further, we obtain for acceleration
in system E by (6.74), (6.79) und (6.80)
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ÿE(t) = Ḋ(t)D0ẏF (t) +D(t)D0ÿF (t) + ωC
[
D(t)D0ẏF (t) + Ḋ(t)D0yF (t)

]

= Ḋ(t)D0ẏF (t) +D(t)D0ÿF (t) + ωD(t)CD0ẏF (t) + ω2D(t)CCD0yF (t)

= D(t)D0

[
ÿF (t) + 2ωDT

0 CD0ẏF (t) + ω2DT
0 CCD0yF (t)

]

= D(t)D0

[
ÿF (t) + 2ωF × ẏF (t) + ωF × (ωF × yF (t))

]

and conversely

ÿF (t) = DT
0 D(t)T ÿE(t) − 2ωF × ẏF (t) − ωF × (ωF × yF (t))

=: DT
0 D(t)T ÿE(t) + bF,c(t) + bF,f (t) .

(6.82)

bF,c(t) = −2ωF × ẏF (t) and bF,f (t) = −ωF × (ωF × yF (t))

are the Coriolis-acceleration and the leading acceleration (centrifugal force)
(note the negative signs).

Fazit: The absolute acceleration ÿE in system E is composed of −bF,f ,
−bF,c and the relative acceleration ÿF (all in system F(t) and pulled back to
E). Conversely, let there be given a particle in system F with position vector
yF (t), unit mass, and velocity vF , and let kE be a global force acting in E
then the relative force DT

0 D(t)T kE acts on that particle in F .
For instance, the angle velocity of earth is a vector pointing from center to

the North Pole with length ωearth = 2π/(3600 ·24) ∼ 7.3 ·10−5 sec−1 (rotation
in mathematical positive direction) where all other influences are neglected.
The leading acceleration bF,f behaves proportionally to ω2 and is thus often
neglected in context with rotation of earth.

(d) Choose the basis {F1, F2, F3} of Example 6.17 for fixed system on
surface of earth and let (6.76) be the rotation matrix,
D(t)D0 = D(e3, ϕ(t))D(e2, ϑ) , ϕ(t) = ωeartht , then we obtain

ωF = DT (e2, ϑ)DT (e3, ωeartht)ωE

But ωE = ωearthe3 therefore DT (e3, ωeartht)ωE = ωearthe3 since Dx = x im-
plies x = DTx for orthogonal D. Accordingly

ωF = DT (e2, ϑ)ωE = ωearth[sinϑ, 0, cosϑ]T

for the rotational axis in F and in system
G = {G1, G2, G3} = {F2, F3, F1} we have

ωG = ωearth[0, cosϑ, sinϑ]T . (6.83)

(d1) Let ψ be the angle of East to North (North ψ = π/2) and v a velocity
vector in system G where

v = [ṽ, 0]T = v[cosψ, sinψ, 0]T , 0 < v ∈ R .

Then v is tangential to the surface of earth and we obtain the Coriolis

acceleration
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bC = −2ωG × v = −2 v ωearth

⎡
⎣

0
cosϑ
sinϑ

⎤
⎦×

⎡
⎣

cosψ
sinψ

0

⎤
⎦ = 2 v ωearth

⎡
⎣

sinϑ sinψ
− sinϑ cosψ

cosϑ cosψ

⎤
⎦

in system G . The projection of bC onto the surface of earth ({G1, G2}-system)
is

b := 2 v ωearth sinϑ [sinψ, − cosψ
]T

, b ⊥ ṽ ,

and det[b, ṽ] = 2 vωearth sinϑ > 0 for 0 < ϑ ≤ π/2 . Relative to v, the vector b
points always to right on the northern hemisphere and to left on the southern
hemisphere taking, in absolute value, the maximum at the poles and the
minimum at the equator.

(d2) Let v be a velocity vector in system G where

v = v[0, 0, −1]T , 0 < v ∈ R .

Then v is perpendicular to the surface of earth pointing to the center and we
obtain the Coriolis acceleration

bC = −2ωG × v = −2 v ωearth

⎡
⎣

0
cosϑ
sinϑ

⎤
⎦×

⎡
⎣

0
0

−1

⎤
⎦ = 2 v ωearth

⎡
⎣

cosϑ
0
0

⎤
⎦ .

in system G . The projection of bC onto the surface of earth ({G1, G2}-system)
is

b := 2 v ωearth[cosϑ, 0]T ≥ 0 , −π/2 < ϑ < π/2 .

Now the vector b points to East and attains its maximum at the equator.

6.7 Inertia Tensor and Top

In this section, coordinate vectors in the body-fixed coordinate system (COS)
are denoted by large and coordinate vectors in space-fixed COS by small
letters.

(a) Inertia Tensor We consider a body with local (body-own) cartesian
coordinate system F . Let K ⊂ R

3 be the geometic form of the body in F
and � the mass density then

T =
∫

K

�(X)[XTX δ −XXT ] dX ∈ R
3
3 (6.84)

(δ unit tensor) is the inertia tensor where points (point vectors) in F are
written again as capitals. The diagonal elements of the matrix T are the
moments of inertia relative to the body-fixed X1-, X2-, and X3-axis, and
the off-diagonal elements are the deviation moments. The inertia tensor is
symmetric hence orthogonally diagonalizable, and by Schwarz’s inequality
one verifies easily that it is at least positive semi-definite.
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The principle axes of a tensor are its eigenvectors U i , i = 1, 2, 3 . It is
well-known from the theory of quadratic forms that the moments of deviation
disappear if the principle axes are chosen for rotation axes. By normalization,
suitable ordering and orientation, they form a cartesian COS and the eigen-
values satisfy λ1 ≥ λ2 ≥ λ3 ≥ 0 . We denote the vector of angular velocity in
system F by Ω(t) = ϕ̇(t)A ∈ R

3 , |A| = 1 then

Erot(t) =
1
2
Ω(t)T TΩ(t) ∈ R

is the instantaneous rotation energy. Again by the theory of quadratic forms

Erot is maximum for A = U1 , Erot ist minimum for A = U3 .

Let K be a surface in (X1,X2)-plane of the system F then the components
T1,3 = T3,1 und T2,3 = T3,2 disappear and T3,3 is called polar moment of
inertia. Frequently T3,3 is dropped such that T becomes a (2, 2)-tensor where

T1,1 =
∫

K

X2
2 dX1dX2 , moment of inertia w.r.t. to X1-axis

T2,2 =
∫

K

X2
1 dX1dX2 , moment of inertia w.r.t. X2-axis

T1,2 =
∫

K

X1X2 dX1dX2 moment of deviation .

The change of the inertia tensor under translation of the body-own COS is
ruled by the parallel axes theorem of Steiner:

Theorem 6.3. Let the origin of the body-own COS F be the gravity center
S of a body with mass M . If F is translated by the vector D then the inertia
tensor T̃ relative to the shifted system is

T̃ = T +M(DTD δ −DDT ) .

The sign of D is cancelled out and the axial moments (diagonal elements of
T ) are minimal if the coordinate axes are gravity axes, i.e., pass through the
gravity center.

Let now the system F be rotated by the matrix D . Then Y = DTX
follows for the components in the new system G by Sect. 6.6(a). Substitution
into (6.84) yields

XTX δ −XXT = Y TDDTY δ −DTY Y TD = DT [Y TY δ − Y Y T ]D ,

hence
T(Y ) = DT(X)DT . (6.85)

The nonlinear inertia tensor behaves consequently like an ordinary matrix
under rotations of the COS!
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(b) Rigid Body with Stationary Point We consider a homogenous
body with constant mass density and mass m . The space-fixed COS E and
the body-fixed COS F shall have the common origin O for stationary point.
The body rotates with angular velocity ω > 0 about the axis EωE(t) :=
ωEa(t) , |a(t)| = 1 , and D(t) := D(a(t), ω(t)) is the corresponding rotation
matrix. Then, by Newton’s axiom,

d

dt
d(t) = p(t) ∈ R

3 (6.86)

does hold for the angular momentum d(t) and the moment p(t) in E .
A point x(t) of the body satisfies the equation of motion ẋ(t) = ω(t)a(t)×

x(t) and one computes the angular momentum relative to the stationary point
by the representation formula (1.3),

d(t) = mω

∫

K(t)=D(t)K

x× v(x) dx = mω

∫

K

D(t)x× (a×D(t)x) dx

= D(t)mω

∫

K

X × (D(t)T a×X) dX = D(t)mω

∫

K

X × (A×X) dX

= D(t)mω

∫

K

(
XTXA− (XTA)X

)
dX

= D(t)mω

∫

K

(
XTX δ −XXT

)
dXA = D(t)TωA =: D(t)TΩF (t) .

D(t) = TΩF (t) ∈ R
3 is called instantaneous angular momentum

P (t) =
d

dt
D(t) is called instantaneous moment

(6.87)

(both in COS F). Hence d(t) = D(t)D(t). Relation (6.81) thus follows for the
angular momentum by the formal similarity with (6.78),

ḋ(t) = D(t)
[
Ḋ(t) +ΩF (t) ×D(t)

]
= D(t)D(t)T p(t) = D(t)P (t) ,

or the dynamic Euler equations in body-fixed COS,

P (t) = T Ω̇F (t) +ΩF (t) × TΩF (t) . (6.88)

Note that P (t) = 0 and p(t) = 0 if no external moment exists. If Ḋ = 0 , i.e.,
if the rate of change of D in the body-fixed COS disappears,

ḋ = D(t)
(
ΩF ×D

)
= ωE ×D(t)D = ωE × d = p . (6.89)

Let especially the inertia tensor have diagonal form in COS F ,

T =

⎡
⎣
T1 0 0
0 T2 0
0 0 T3

⎤
⎦ ,
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where Ti are the eigenvalues of T. Then these equation have the more simple
form

T1Ω̇1 − (T2 − T3)Ω2Ω3 = P1

T2Ω̇2 − (T3 − T1)Ω3Ω1 = P2

T3Ω̇3 − (T1 − T2)Ω1Ω2 = P3

. (6.90)

(c) Rotors Suppose that Ω̇ = 0 , i.e., rotational axis and rotational ve-
locity are constant in body-fixed COS F . If then, e.g.,

T1 = T2 , Ω = [0 , ω sinα , ω cosα]T ,

the rotational axis lies in the (X2,X3)-plane and, by (6.90),

P1 = (T3 − T2)ω2 sinα cosα =
1
2
(T3 − T2)ω2 sin(2α)

P2 = T1ω̇ sinα = 0 , P3 = T3ω̇ cosα = 0 .

Only the external moment P1 about the X1-axis remains non-zero and we
obtain for the internal moment PK,X1 = −P1

PK,X1 = (T2 − T3)ω2 sin(2α)/2 ;

hence the force

K = |K|[0,− cosα, sinα]T , |K| =
(T2 − T3)ω2 sin(2α)

2d

applies to the rotational axis in distance d of the origin since d[0, sinα, cosα]×
K = PK . The triple {Ω, K, PK} forms a right-oriented system for T2 > T3

and K points away from Ω in distance d. This is the case in a long narrow
rotor with symmetry axis X3 . In the other case K points to Ω and tries to
draw the rotor into the direction of the rotational axis (flat rotor or disc). It
is to be regarded in the computation of support forces that the body-fixed
COS F rotates; hence K has to be projected on the fixed support. Then, for
the support forces,

KL = |K|(cos(ωt), sin(ωt))

in a plane perpendicular to the rotational axis at distance d from the origin.
(d) Top without External Forces A body in rotation with one sta-

tionary point is called top. Let the body-fixed COS F be chosen such that the
inertia tensor has normal form and the origin is the stationary point. More-
over, let no moment act on the top, i.e., P = 0 . This is the case, e.g., if the
gravity center lies in the origin or if no external forces act on the top. Then the
rotational energy Erot is constant, and the surface in implicit representation

Ω(t) ·D(t) = Ω(t)T TΩ(t) = Ω2
1T1 +Ω2

2T2 +Ω2
3T3 = 2Erot (6.91)
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resp.
X2

1

2Erot/T1
+

X2
2

2Erot/T2
+

X2
3

2Erot/T3
= 1

is called ellipsoid of energy EE in body-fixed COS F . The smallest axis of
EE corresponds to the largest moment of inertia whereby EE reflects roughly
the shape of the body. The point (point vector) Ω(t) moves on EE . The
tangent plane T (t) of EE at point Ω(t) has in space-fixed COS E the implicit
representation

xE · dE(t) = [D(t)XF ]TD(t)D(t) = XF ·D(t) = Ω(t) ·D(t) = 2Erot .

This plane is also constant in system E since dE(t) = dE is constant in E .
Consequently the ellipsoid EE rolls on this plane and the vertex of ΩF (t) is
the point of contact (Poinsot motion). The trajectory desribed by this point
in the plane EE is called polhode, and the trajectory desribed in the plane T
is called herpolhode.

The absolute value |D(t)|2 = D(t)TD(t) is constant in both systems and
D(t) = TΩ(t) . The surface with implicit form

(TΩ(t))T TΩ(t) = Ω2
1T

2
1 +Ω2

2T
2
2 +Ω2

3T
2
3 = |D|2 (6.92)

resp.
X2

1

(|D|/T1)2
+

X2
2

(|D|/T2)2
+

X2
3

(|D|/T3)2
= 1

is called ellipsoid of moment of momentum EI in COS F . The point Ω(t)
moves also on EI .
Fazit: If the tops is free of moments, the trajectory of intersection of EE

and EI describes the path of Ω(t) in body-fixed COS F , and the rolling of EE

onto T the path of Ω(t) in space-fixed COS E . Obviously both paths may
degenerate to a point.

(e) Symmetric Top without External Forces Let further no moment
act on the top. Then the top is called symmetric if two principal moments of
inertia coincide. If, e.g., T1 = T2 then the body-own X3-axis is called axis of
the top. Then we are faced with three axes through the origin of both COS,
the body-fixed axis of the top, the space-fixed vector of angular moment d and
the instantaneous rotary axis Ω(t) . The motion of these three axes relative
to each other is described by three cones

the X3-axis about d precession cone,
the instantaneous rotary axis Ω(t) about d space-fixed herpolhode cone
the instantaneous rotary axis Ω(t) about X3-axis body-fixed polhode cone.

Polhode cone and herpolhode cone touch each other at the instantaneous
rotary axis. In general there are three different cases of motion:

T3 < T1 = T2 polhode cone rolls with exterior side on herpolhode cone,
T3 = T1 = T2 Ω(t) and d parallel,
T3 > T1 = T2 polhode cone rolls with interior side on herpolhode cone.
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precession cone

herpolhode cone

dΩ

f
1

polhode cone

precession cone

Ω

herpolhode cone

d

f
1

polhode cone

Figure 6.25. Polhode and herpolhode cone

(Of course, the the angular moment may point into every other direction
and not necessarily into the direction of the x3-axis.)

(f) Leaded Symmetric Top Let the top be symmetric, T1 = T2 , and let
the top’s axis be rotary axis and X3-axis in both COS. If no moment applies
to the stationary point then d = D = [0, 0, D3]T = [0, 0, Ω3T3]T in both
COS. Let now an external angular moment attack on the top, e.g., without
restriction in direction of the x2-axis of the space-fixed COS with vector of
angular velocity ωE = [0, ω2, 0]T . Then

d = D = [0, D2, D3]T = [0, ω2T2, Ω3T3]T .

Since the relative rate of change Ḋ of D in body-fixed COS is now zero, we
obtain by (6.89)

p = ωE × d =

∣∣∣∣∣∣
e1 0 0
e2 ω2 ω2T2

e3 0 Ω3T3

∣∣∣∣∣∣
=

⎡
⎣
ω2Ω3T3

0
0

⎤
⎦

in space-fixed COS. Let κ > 0 be the distance to the stationary point then the
following pair of forces acts on the support axes a(0, 0, κ) and b(0, 0, −κ) in
space-fixed COS

kA = −1
2

[0, ω2Ω3T3/κ, 0]T , kB =
1
2

[0, ω2Ω3T3/κ, 0]T ,

which generates a moment in direction of the x1-axis. The opposite moment
of top −p has to be overcome in order that the rotation about the x2-axis in
space-fixed COS is maintained. If the top’s axis is suspended at one point only
then the top responses to the moment p by a lateral evasive movement.

(g) Kinematic Euler Equations Let u(t) = (ϕ(t), ϑ(t), ψ(t)) be the
vector of Euler angles and D(u) the rotation matrix (6.75). The kinematic
Euler equations supply a relation between u̇ and the vector of angular
velocity ωE(t) in space-fixed COS. The components may be computed by
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Ḋ(u) = ωC(u)D(u) ; hence ωC(u) = Ḋ(u)DT (u) using the representation
of Sect. 1.1(i), i.e.,

ωC(u) =

⎡
⎣

0 −ω3(u) ω2(u)
ω3(u) 0 −ω1(u)

−ω2(u) ω1(u) 0

⎤
⎦ ,

and the result is
⎡
⎣
ω1

ω2

ω3

⎤
⎦ =

⎡
⎣

0 cosϕ sinϑ sinϕ
0 sinϕ − sinϑ cosϕ
1 0 cosϑ

⎤
⎦
⎡
⎣
ϕ̇

ϑ̇

ψ̇

⎤
⎦ . (6.93)

Then the vector of angular velocity in system F follows by ΩF = D(u)TωE
and has the components

⎡
⎣
Ω1

Ω2

Ω3

⎤
⎦ =

⎡
⎣

sinϑ sinψ cosψ 0
sinϑ cosψ − sinψ 0

cosϑ 0 1

⎤
⎦
⎡
⎣
ϕ̇

ϑ̇

ψ̇

⎤
⎦ (6.94)

where, moreover,

Ω2
1 +Ω2

2 = ϕ̇2 sin2 ϑ+ ϑ̇2 , Ω2
3 = (ϕ̇ cosϑ+ ψ̇)2 . (6.95)

(h) Heavy Symmetric Top We consider a symmetric top with inertia
tensor in normal form and T1 = T2 , and suppose that the gravity centre lies
at distance l > 0 of the origin on the top’s axis.

Then the kinetic energy Erot, potential
energy Epot and Lagrange function L

Erot(u, u̇) =
1
2
[
T1(Ω2

1 +Ω2
2) + T3Ω

2
3

]
=

1
2
T1

(
ϑ̇2 + ϕ̇2 sin2 ϑ

)
+

1
2
T3

(
ψ̇ + ϕ̇ cosϑ

)2

Epot(u, u̇) = mgl cosϑ

L(u, u̇) = Erot(u, u̇) − Epot(u, u̇)
(6.96)

Figure 6.26. Potential energy

By Hamilton’s principle the top behaves in a way that the integral of

action,
∫ T

0

L(u(t), u̇(t)) dt , has a stationary value in u ; hence the Euler-

Lagrange equations hold; cf. Sect. 4.1,
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0 =
d

dt
gradu̇ L(u, u̇) − gradu L(u, u̇) =: A(u)ü+ b(u, u̇) (6.97)

where

A(u) =

⎡
⎣
T1 sin2 ϑ+ T3 cos2 ϑ 0 T3 cosϑ

0 T1 0
T3 cosϑ 0 T3

⎤
⎦ , det(A) = T 2

1 T3 sin2 ϑ ,

and

b(u, u̇) = sinϑ

⎡
⎢⎣

2ϕ̇ϑ̇(T1 − T3) cosϑ− ϑ̇ψ̇T3

ϕ̇2(T3 − T1) cosϑ+ ϕ̇ψ̇T3 −mgl

−ϕ̇ϑ̇T3

⎤
⎥⎦ .

These equations do not depend directly on the angles ϕ and ψ but only on
their derivatives. The matrix A is invertible as long as ϑ is non-zero; or the
system may be solved by the MATLAB program ode23t.m; the trajectory of
the top’s axis in space-fixed system is then given by the third column of the
matrix D(ϕ, ϑ, ψ) in (6.75) which is likewise independent of the Euler angle
ψ .

(i) Energy of Heavy Top We observe that the first and third component
of gradu L are zero therefore the first and third component of gradu̇ L must
be invariants of the system by (6.97) (cyclic variable; cf. Sect. 4.1(f)). Let
d3 := [d]3 be the third component of angular moment in space-fixed COS E
and D3 := [D]3 the third component of angular moment in body-fixed COS
F . Then by theory or by direct verification,

∂L/∂ϕ̇ = ϕ̇(T1 sin2 ϑ+ T3 cos2 ϑ) + ψ̇T3 cosϑ = d3

∂L/∂ψ̇ = T3(ψ̇ + ϕ̇ cosϑ) = D3 .

Resolution w.r.t. ϕ̇ and ψ̇ yields

ϕ̇ =
d3 −D3 cosϑ
T1 sin2 ϑ

, ψ̇ =
D3

T3
− d3 −D3 cosϑ

T1 sin2 ϑ
cosϑ , (6.98)

and substitution into the total energy E = Erot +Epot yields the third invari-
ant E of the system as a function of only the angle ϑ and its derivative,

E =
1
2
T1ϑ̇

2 + V (ϑ) , T1ϑ̇ϑ̈ = −dV

dϑ
(ϑ)ϑ̇ (6.99)

where the effective potential energy V (ϑ) ≤ E is

V (ϑ) =
(d3 −D3 cosϑ)2

2T1 sin2 ϑ
+mgl cosϑ+

D2
3

2T3
for d2

3 �= D2
3

=
D2

3(1 − cosϑ)
2T1(1 + cosϑ)

+mgl cosϑ+
D2

3

2T3
for d3 = D3

=
D2

3(1 + cosϑ)
2T1(1 − cosϑ)

+mgl cosϑ+
D2

3

2T3
for d3 = −D3 .
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Observe the formal similarity with Theorem 6.1 with the difference that 0 ≤
ϑ ≤ π must be satisfied. By cancelling out ϑ̇ one obtains from the second
equation in (6.99) together with the first equation in (6.98) a differential
system which describes the motion of the top’s axis completely since the angle
ψ in the third column of (6.75), being the top’s symmetry axis in space-fixed
COS, does not appear. The azimuthal motion of the top w.r.t. the Euler

angle ϕ is called precession and the periodic motion w.r.t. the angle ϑ is called
nutation; if the angle ϑ is constant, nutation disappears and the precession is
regular.

For the further investigation commonly the substitution cosϑ = u is used
in the theory of top. Then by (6.99)

u̇2 = f(u) = (α− βu)(1 − u2) − (a− bu)2 , (6.100)

a = d3/T1 , b = D3/T1 , α = 2E′/T1 , β = 2mgl/T1 > 0 , E′ = E−D2
3/2T3 .

After having specified the physical data of the top, the polynomial f(u)
of third degree has one double or two different real roots u1 = cosϑ1 and
u2 = cosϑ2 in interval −1 ≤ u ≤ 1 . V (ϑ) has exactly one minimum between
the poles ϑ = 0 and ϑ = π for d2

3 �= D2
3 and, in this case, the angle ϑ between

the top’s symmetry axis and the space-fixed e3-axis varies between the two
extremal ϑ1 and ϑ2 with property V (ϑi) = E . Otherwise the minimum of
V (ϑ) lies at the boundary of the intervall [0, π] , and ϑ varies between this
boundary point and the value ϑ0 with V (ϑ0) = E .
Case 1: d2

3 �= D2
3 and cosϑ1 < d3/D3 ; then ϕ̇ > 0 in (6.98) and ϕ increases

strictly monotonically.
Case 2: d2

3 �= D2
3 and d3/D3 < cosϑ2 ; then ϕ̇ < 0 in (6.98) and ϕ decreases

strictly monotonically.
Case 3: d2

3 �= D2
3 and cosϑ1 = d3/D3 ; then ϕ̇ = 0 for ϑ = ϑ1 .

Case 4: d2
3 �= D2

3 and cosϑ2 = d3/D3 ; then ϕ̇ = 0 for ϑ = ϑ2 .
Case 5: d2

3 �= D2
3 and cosϑ2 < d3/D3 < cosϑ1 ; then ϕ̇ changes sign in

(ϑ1, ϑ2) , and ϕ̇ has opposite signs in ϑ1 und ϑ2 .
Case 6: d2

3 �= D2
3 and E = minϑ V (ϑ) ; then ϑ1 = ϑ2 and ϕ̇ , ψ̇ are constant;

the result is again pure nutation (regular precession).
Case 7: d3 = −D3 �= 0. Then ϑ2 = π because d(t) = D(t)D(t) and (6.88).
V (ϑ) decreases monotonically in interval (0, π) therefore the top’s axis re-
mains stable in the negative e3-Achse (sleeping top) or oscillates between ϑ1

and π if ϑ(0) �= π .
Case 8: d3 = D3 �= 0 and D3 ≥ 2(T1mgl)1/2 . Again ϑ1 = 0 because
d(t) = D(t)D(t) and (6.88). V (ϑ) increases monotonically in interval (0, π) ,
therefore the top’s axis remains stable in the e3-Achse (sleeping top) or oscil-
lates between 0 and ϑ2 if ϑ(0) �= 0 .
Case 9: d3 = D3 �= 0 and D3 < 2(T1mgl)1/2 . V (ϑ) has a minimum in interval
(0, π) . The angle ϑ oscillates between ϑ1 = 0 and ϑ2 where V (ϑ2) = E . Be-
cause of D3 = T3Ω3 , Ω∗

3 = 2(T1mgl)1/2/T3 is the critical velocity of rotation,
below of which the sleeping top wakes up and begins to tumble under small
perturbations.
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(j) Examples T1 = 1 , T3 = 2 , m = 1 .
By having specified d3 und D3 > 0 one obtains α and β by setting (6.100)
equal to zero for u1 = cosϑ1 and u2 = cosϑ2 . Unphysical data are sorted out
by the condition β ≥ 0 . The both invariants d3 and D3 are connected with
the initial conditions for ϕ̇ and ψ̇ as displayed in (6.98).

Table 6.1. T1 = 1 , T3 = 2 , m = 1

Case ϑ1 ϑ2 d3 D3 α β $
1 π/6 π/2 3 2 9 2.9667
2 π/2 3π/4 -3 1 9 2.1421
3 π/6 π/2

√
3 2 3 3.4641

5 π/4 π/2 1 2 1 0.9289
6 π/4 π/4 1.2 1 ∼ 0.9 0.5973
7 π/2 π -1 1 1 2
8 0 π/2 3 3 9 1
9 0 π/2 1 1 1 1
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Figure 6.27. Effective potential energy V and dϕ/dt in a heavy top
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Figure 6.28. Effective potential energy V and dϕ/dt (contd)

Trace of top’s axis : initial values (ϑ(0), ϑ̇(0), ϕ(0)) = (ϑi, 0, 0) , i = 1 or
2; in Case 9 ϑ(0) = π/2 and ϑ(0) = π/4 :

Case 1 Case 2 Case 3 Case 5

Case 7 Case 8 Case 9a Case 9b

Figure 6.29. The relevant cases

Plot also from north pole by demo3.m in KAPITEL06\SECTION_6_7.

6.8 On Multibody Problems

The dynamic behavior of a system of rigid bodies under constraints is called
multibody problem or mechanical system in technical applications. Analytic
mechanics after Lagrange and Hamilton describes, e.g., the general motion
of mass points under equality constraints resp. on differentiable manifolds;
cf., e.g., (Heil) and (Arnold78). It provides a closed framework but is less
recommended for technical applications; cf., e.g., (Schiehlen86). One reason
may be that the way from the generalized coordinates p and q back to the state
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and velocity variables x and ẋ is difficult to manage numerically and the other
that lastly the independent variables have to be selected out which is likewise
problematic in implementation. Moreover, inequalities are not assigned in this
calculation. A similar situation is encountered in the nearly related control
theory. There, a nonlinear boundary value problem for the pair (x, y) of state
and costate is but established theoretically but the numerical approach fails
frequently because of the high complexity such that the original problems is
discretized directly in this volume; cf. Sects. 4.3, 4.4.

In mechanics, D’Alembert’s principle of virtual displacement is clearly
preferred. However each variational problem has an extremal problem, the (en-
ergy) functional of which is (at least) stationary at the position in question.
It is not explicitly set up in many cases; rather, the relevant variational equa-
tions are found directly. As previously mentioned in Sect. 4.1, one must strictly
differentiate between essential and natural boundary conditions to avoid in-
correct approximation results. The essential boundary conditions have to be
respected by the comparing functions (that is, the test functions or virtual
displacements), whereas homogenous natural boundary conditions do not ap-
pear explicitely in the variational problem (as their name already shows) and
by consequence cannot be gauged from that problem. In the finite element
method, they are not met exactly by numerical approximation; rather, they
are met only in transition to the limit of infinitisimal refinement. To counter
this, all boundary conditions must be taken into account and discretized when
directly solving the related boundary value problem. The exact derivation of
the variational problem with all its boundary conditions can only occur via
the extremal problem because its variation is necessary to determine the two
types of boundary conditions.

Hamilton’s principle takes the place of the extremal principle in the case
of dynamic problems, although it must be considered that the forces have
to be conservative and the Lagrange function must not explicitely depend
on time. The variational equations of the action integral are the dynamic
Euler-Lagrange equations from Theorem 4.1 with the boundary condi-
tions described therein. On the other side, the conservation equations can be
directly set up when evading the extremal principle and can depend on time
in any form. Because the desired state function of the dynamic system no
longer consists of space variables only but can also contain rotational angles,
for example, it is applied as a generalized state function q(t) with values in
the configuration space.

Notations; cf. Sects. 4.1 and 8.4:

t ∈ [0, T ] time interval
q(t) ∈ R

m generalized coordinates
q̇(t) ∈ R

m generalized velocity
Ekin(q̇(t)) = 1

2 q̇(t)
TAq̇(t) kinetic energy

Epot(q(t)) potential energy
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L(q(t), q̇(t)) = Ekin(q̇(t)) − Epot(q(t)) Lagrange function
G(t, q(t), q̇(t)) = 0 ∈ R

r constraints

Constraints G are distinguished according to the variables of which they de-
pend explicitely:

G(q) = 0 holonomic-skleronomic
G(t, q) = 0 holonomic-rheonomic
G(q, q̇) = 0 non-holonomic skleronomic
G(t, q, q̇) = 0 non-holonomic rheonomic

(skleronom: rigid, rheonom: flowing). Sometimes constraints G are also called
non-holonomic if they cannot be written as total t-derivative of a holonomic-
rheonomic constraint, i.e., if there does not exist a constraint H(t, q) = 0 such
that G(t, q, q̇) = dH(t, q)/dt .

Consider now the constrained extremal problem
∫ T

0

L(t, q(t), ˙q(t)) dt = extr! , q(0) = a , q(T ) = b , G(t, q(t), q̇(t)) = 0

(6.101)
for the state function [0, T ] � t �→ q(t) ∈ R

m where L ∈ C2[0, T ] and
G ∈ C2([0, T ]; Rm) . This problem becomes a control problem of the form
dealed with in Sect. 4.3 if u = q̇ is introduced as further dependent variable.
In this section however a direct method shall be discussed which leads to a
differential-algebraic problem.

Solution curves of Euler’s equations (4.2) are usually called extremals
although they are not necessarily extremas of the associated integral. In the
following theorem of (Gelfand), L is allowed to be an abitrary scalar function
(with the above smoothness). In particular, L may depend explicitely on the
independent time variable t .

Theorem 6.4. (Existence of Lagrange multiplier) (1◦) Let q∗ be an ex-
tremum of (6.101).
(2◦) For t ∈ [0, T ] let rank gradq̇ G(t, q∗, q̇∗) = m or rank gradq G(t, q∗) = m
when G does not depend on q̇ .
Then there exists a function y ∈ C2([0, T ]; Rm) such that q∗ is extremal of the
augmented Lagrange functional

∫
(L+ yTG) dt , i.e.,

gradq(L+ yTG) − d

dt
gradq̇(L+ yTG) = 0 .

Notations for numerical solution:

x, y := ẋ, z : generalized space coordinates, their derivatives,
Lagrange multipliers

(u, v, w) : numerical approximation of (x, y, z)
.
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We consider a mechanical system with constraints in the form

M(t, x(t))ẍ(t) = f(t, x(t), ẋ(t)) ∈ R
n , g(t, x(t)) = 0 ∈ R

m . (6.102)

The differential system is to be understood as variational equation of an ex-
tremal problem; see Sect. 4.1. Therefore the transformation into a system of
first order and an application of the multiplier rule of Sect. 3.2(b) leads to
the system

ẋ = y

M(t, x)ẏ = f(t, x, y) − ∇g(t, x)T z

0 = g(t, x)
. (6.103)

For transformation into a system of index 1 — cf. Sect. 2.7(d) — the con-
straint is differentiated w.r.t. t:

ẋ = y

M(t, x)ẏ + ∇g(t, x)T z = f(t, x, y)

∇g(t, x)ẋ = −
∂g

∂t
(t, x)

. (6.104)

The Lagrange matrix

L =
[
M [∇g]T

∇g O

]

of this system must be regular in a neighborhood of the solution in order that
a semi-explicit Runge-Kutta method can be applied; cf. Sect. 2.7(e). For
this condition it suffices however by Lemma 1.2, that the generalized mass
matrix M is regular on the kernel of ∇g .

Using the data (A, b, c) of a semi-explicit method let

ui(t) = u(t) + τ

i−1∑
j=1

αijvj , vi(t) = v(t) + τ

i−1∑
j=1

αij v̇j

Mi = M(t+ γiτ, ui) , f
i

= f(t+ γiτ, ui, vi)

Gi = ∇g(t+ γiτ, ui) , hi =
∂g

∂t
(t+ γiτ, ui)

for i = 1 : r where v̇ is to be understood as approximation of the derivative of
v. Then we obtain a system

u̇i = vi

Miv̇i + GT
i wi = f

i

Givi = −hi .

(6.105)

for the intermediate steps i = 1 : r by (6.104). Now, because of the triangular
form of the matrix A , the index i in the third row of this system may be
enhanced by one and
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vi+1 = v(t) + τ

i−1∑
j=1

αi+1,j v̇j + ταi+1,iv̇i , i = 1 : r − 1

v(t+ τ) = v(t) + τ

r−1∑
j=1

βj v̇j + τβrv̇r , i = r

can be inserted in (6.105). Then, by resolution w.r.t. v̇i , a linear system

[
Mi GT

i

Gi+1 0

][
v̇i

wi

]
=
[
f

i
ri

]
. (6.106)

is obtained for each step i = 1 : r . By this way, semi-explicit Runge-Kutta

methods reveal to be especially well-suited in solving mechanical systems be-
ing not stiff in general. The initial values however have to satisfy the condition
of consistence

g(t0, u0) = 0 , G0v0 + h0 = 0 .

Examples in Sect. 11.3.

6.9 On Some Principles of Mechanics

A mechanical principle can be an axiom in mathematical sense or a computa-
tional device as Lagrange’s multiplier method or D’Alembert’s principle;
the notation is not applied in unique way and sometimes handled generously.
The classical principles of mechanics concern mainly mass points or rigid bod-
ies in which thermal transport, i.e., the energy law remains disregarded and
solely the balance laws of momentum and of angular momentum in stationary
or instationary form are involved.

First rate principles are:
(a) The Balance Laws of Sect. 8.3.
(b) The Energy Principle says that the sum of kinetic and potential energy

is kept constant in a closed mechanical system (serves also for the definition
of a Closed System in mechanics). This law holds in general as long as the
kinetic energy is a quadratic form in ẋ and the potential energy does not
contain velocities (there are potentials which do contain velocities); moreover,
both must be scleronomic.

(c) The Extremal Principle of Energy says that a stationary mechanical
system is in equilibrium if the total potential energy takes a stationary value
(ordinarily a minimum). Its variational form is called Principle of Virtual
Work.

(d) D’Alembert and Lagrange. It is not the intention here to develop
a full theory of variational principles. Rather we consider a single particle
x ∈ R

n obeying Newton’s axiom (law of momentum)

Aẍ = f(x) (6.107)
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where A ∈ R
n

n is a symmetric, positive definite matrix , f = − gradU , and
U is a potential function. Then kinetic energy T and total energy E of the
orbit points x(t) are

T (ẋ(t)) =
1
2
ẋ(t)TAẋ(t) , E(x(t)) = T (ẋ(t)) + U(x(t)) (6.108)

and, by Sect. 6.2,

d

dt
E = [Aẍ− f(x)] · ẋ =: ĝradE(x) ẋ = 0 .

Therefore E(x(t)) is constant on the orbit x(t) if and only if (6.107) does hold.
D’Alembert’s Principle of Virtual Displacement says in this unconstrained
case simply that

(∀ u ∈ R
n : [Aẍ− f(x)] · u = 0) =⇒ Aẍ− f(x) = 0 .

But suppose now that there are m holonomic-scleronomic constraint condi-
tions

g(x) = 0 ∈ R
m , rank grad g = m.

Following Lagrange’s Multiplier Method, the rows of grad g(x) are considered
as constraint forces which are multiplied by some factor yi, the Lagrange

multipliers, and added to the impressed force f . The result is an augmented
differential-algebraic system

[grad g(x)]T y = [ĝradE(x)]T , g(x) = 0

which is solved for x and y . Following D’Alembert’s Principle, we cal-
culate Ker grad g(x) = span{u1(x), . . . , un−m(x)} and multiply ĝradE(x) =
yT grad g(x) from right by ui . The result is again a differential-algebraic sys-
tem

ĝradE(x) · ui(x) = 0 , i = 1 : n−m, g(x) = 0 , (6.109)

see Sect. 6.4(c), which is however not solved in this form. Rather the m surplus
variables are eliminated by means of g(x) = 0 to obtain a pure differential
system for n−m independent variables.

By the Range Theorem 1.5 and Corollary 1.8, both devices are equivalent,

[grad g]T y = [ĝradE]T ⇐⇒
(
grad g u = 0 =⇒ ĝradE u = 0

)
.

Accordingly, Lagrange’s multiplier method and D’Alembert’s principle re-
veal to be dual to each other from geometrical point of view.

In case the system is stationary, we have T = 0 and both devices lead to an
algebraic system for the unknown solution x ∈ R

n . D’Alembert’s principle
becomes the (generalized) principle of virtual work again from which it is was
obtained by introducing the inertia force mẍ as dynamic component (scalar
mass m instead A).
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In solving large constrained mechanical systems, Lagrange’s method is
always preferred today because appropriate codes are available and the alge-
braic solution of the implicit side conditions in D’Alembert’s method causes
some difficulties in case these constraints are nonlinear. The case of general
non-holonomic rheonomic side conditions g in Lagrange’s multiplier method
is ruled by Gelfand’s Theorem 6.4. D’Alembert’s principle can be gener-
alized to holonomic-rheonomic constraints g(t, x) = 0 , at least theoretically.
Then

d

dt
g(t, x) = g

t
(t, x) + grad g(t, x)u = 0 , u = ẋ .

Under the above rank condition for grad g , there are again n − m linear
independent solutions ui of that system to be substituted into (6.109).

(e) Hamilton’s Principle. Recall that the Euler equations

gradx L(t, x, ẋ) − d

dt
gradẋ L(t, x, ẋ) = 0

are a necessary and sufficient condition for a stationary orbit x of the extremal
problem

A(x) :=
∫ t1

t0

L(t, x, ẋ)dt = extr! , x(t0) = a , x(t1) = b .

Let now L = T − U be the Lagrange function. Then A(x) is called action
integral (action = work · time) and Hamilton’s Principle says that any orbit
x with kinetic energy T and potential energy U as in (6.108) is a stationary or-
bit of A(x); but note that L must not depend explicitly on time. Hamilton’s
principle is well established in physics even in his stronger form as minimum
principle. Then it suffices to consider the action integral for a single interval
because the minimum property holds for every subinterval by the principle of
optimality ; see Sect. 4.2(e). The Euler equations of this integral are (6.107)
and conversely, the equations of motion Aẍ = f(x) lead to Hamilton’s prin-
ciple in weak form by Sect. 6.2(e). Therefore the weak principle is equivalent
to Newton’s axiom (and thus also equivalent to D’Alembert’s principle).

Recall that L−gradẋ Lẋ is a first integral (invariant) of Euler’s equations
in case L does not depend explicitly on time t (DuBois-Reymond condition).
But gradẋ Lẋ = gradẋ T ẋ = 2T hence

L− 2T = const. ⇐⇒ E = T + U = const.

Now, as E constant, it can be added to the action integral without chang-
ing its stationary values. Therefore we obtain an alternative formulation of
Hamilton’s principle:

If x is a stationary point of the action integral A(x) then x is a
stationary point of the action integral Ã(x) := 2

∫ b

a
T dt .

Conversely, if x is a stationary point of Ã(x) and E constant then
x is stationary point of A(x) .
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(f) Jacobi’s Principle. Recall that ds = |ẋ(t)| dt holds for the arc length s.
If |ẋ| �= 0 on the orbit x then we can substitute s for t and obtain

T (ẋ(t)) = T (x̃′(s))
1

(t′(s))2
(6.110)

Ã(x) = 2
∫ s2

s1

T (ẋ(t(s))t′(s) ds = 2
∫ s2

s1

T (x̃′(s))
t′(s)

ds . (6.111)

Inserting (6.110) in E = T + U yields t′(s) =
(
2(E − U)

)−1/2 . Substituting
once more T = E − U in (6.111), we obtain

Â(x) =
∫ s2

s1

√
(2(E − U) ds =

∫ s2

s1

√
2T (x̃′(s)) ds

(of course, the factor
√

2 can be cancelled.) Jacobi’s principle of least action
says that the motion x̃(s) of a particle between x̃(s1) and x̃(s2) makes Â(x)
stationary (or more strongly a minimum). For A = I identity we have

√
2T (x̃′(s)) = |x̃′(s)| = 1

since velocity with respect to arc length is always one. Then Jacobi’s principle
says simply that an orbit x with kinetic and potential energy as above is always
the shortest path between two of its points under the auxiliary condition that
E constant. A general fixed matrix A leads only to an other metric.

Conversely, consider this problem as classical constrained extremal prob-
lem

Ã(x) = extr! , E =
T (x̃′(s))
t′(s)2

+ U(x̃(s)) = κ constant.

Then Lagrange’s multiplier method, Theorem 3.26, leads to the modified
action integral

˜̃A(x) =
∫ s2

s1

[
2
T (x̃′(s))
t′(s)

+ λ(s)
(
T (x̃′(s))
t′(s)2

+ U(x̃(s)
)]

ds

Since t′ is a dependent variable now, we obtain by minimizing with respect to
t′

−2
T (x̃′(s))
t′(s)2

− 2λT (x̃′(s))
t′(s)3

= 0

which gives λ(s) = −t′(s) . Inserting yields

˜̃A(x) =
∫ s2

s1

[
T (x̃′(s))
t′(s)2

− U(x̃(s))
]
t′(s) ds

The new variational problem is a free problem without auxiliary condition
therefore we can use t as independent variable again and recover Hamilton’s
action integral by this way,
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A(x) =
∫ t1

t0

(T − U) dt ,

which leads back to Hamilton’s principle.
The above results hold also when x(t) ∈ R

n is replaced by generalized
coordinates q in some configuration space, therefore they hold also under side
conditions of various types or, more generally, on manifolds. (The side con-
ditions are “solved” to find the independent (generalized) variables q.) So
canonical transformations take a large place in a more general discussion.
Also the generalized momentum p = gradq̇ L is introduced to obtain the sim-
ple form ṗ = gradq L(t, q, q̇) for the Euler equations; see Sect. 4.1(e). But
state x and velocity ẋ remain the primary quantities in technical applications
and it can be difficult to gain them back from the transformed system. There-
fore we do not pursue this matter here and refer to the respective literature
on analytical mechanics for further studies, e.g., (Lanczos).

6.10 Hints to the MATLAB Programs

KAPITEL06/SECTION_2_3_4, Central Fields
demo1.m Graphics for Kepler’s second law
demo2.m Motion in central field, different potentials
demo3.m Arbitrary conic sections under different

initial positions and velocities
kepler.m Computes conic section by intial data
ellipse.m Draws ellipse with data
parabel.m Draws parabola with data
hyperbel.m Draws hyperbola with data
KAPITEL06/SECTION_5, Three-Body Problem
arenstorf.m Different Arenstorf orbits
demo1.m Two-body problem, trajectories by differential system
demo2.m Three-body problem, trajectories by differential system
KAPITEL06/SECTION_6_7, Top
demo1.m Computes EULER angles for top and trajectory

of top’s axis directly by EULER-LAGRANGE equations
demo2.m Top demo, the 7 examples
demo3.m Computes EULER angles phi and theta by initial data of

DEMO2.M with differential system and trajectory of
top’s axis

demo4.m Draws curve of Euler angle theta and curve of
derivation of phi

demo5.m Movie for top
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Rods and Beams

7.1 Bending Beam

A beam or bar is a long narrow plate. In studying its deformation one confines
to the “neutral fibre” which shall be the x-axis in unloaded and the bending
line in loaded state. The approximation of a three-dimensional elastic body by
a one-dimensional curve has many benefits but entails also severe restrictions
such that many additional assumptions are tacitly introduced to overcome
the apparent inconsistencies. An imbedding into three-dimensional contin-
uum theory without contradictions is impossible. On the other side, many
phenomena are explained in satisfying way by this model, and the accuracy
suffices in most cases within the somewhat nebulous “engineering exactness”.
In order to circumvent the entire difficulties, bending and torsion are intro-
duced in this chapter more or less axiomatically. Moreover, the bending beam
is mainly studied in the plane. One-dimensional beam models in space suffer
from the lack of a sufficient number of independent variables and thus can be
handled only under restrictions of freedom in motion and loading.

Notations: ([N ] (Newton) unit of force, [L] unit of length)

� length A(x) (area) cross-section
V volume
F force M moment [N L]
E(x) > 0 elasticity modul [N/L2] ν ∈ (0 , 1/2) Poisson number
I(x) moment of inertia p(x) = E(x)I(x) flexural rigidity

[L4] [N L2]
ε = Δ�/� strain σ = F/A stress

κ = E A/� spring constant in tension rod

Additional notations for a beam with constant rectangular cross-section:

b width in y-direction , h height in z-direction ; b, h � � .
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Iz =
∫ h/2

−h/2

(∫ b/2

−b/2

y2 dy

)
dz =

1
12
bh3 moment of inertia w.r.t. z-axis

Ip =
∫

A

(y2 + z2) dydz =
1
12
bh(b2 + h2) polar moment of inertia

w.r.t. cross-section A .

Recall that stress σ is positive under tension.
Some stipulations:

(1◦) The neutral fibre passes through the barycenter of the area of cross-section
in unloaded and loaded state, and the gravity center coincides with the
origin of the local system of (y, z)-coordinates.

(2◦) Shear forces in direction of the beam axis appear only as moments, shear
forces in other directions are assembled into the torsion of the beam.

(3◦) Bending about x-axis is neglected because of small moment.
(4◦) In the Bernoulli beam or shear-rigid beam, the angle ϕ between bending

line and cross-section is constant, ϕ = π/2 , before and after bending,
whereas it is an additional independent variable in the Timoshenko beam
or shear-soft beam. Bernoulli’s beam returns the real situation with
sufficient accuracy hence we consider only this type in the sequel.

(a) In a Tension Rod, the scalar function u(x) describes the displacement
in x-direction and κ = AE/� is the spring constant.

Axiom 7.1. (1◦) Adopt the linear Hooke’s law,

σ(x) = E(x)ε(x) , ε(x) = u′(x) .

(2◦) The total energy = interior energy + exterior energy of the tension rod
is

ΠS =
1
2

∫ �

0

E(x)A(x)u′(x)2dx− F1u1 − F2u2 , u1 = u(0), u2 = u(�)

(7.1)
where F1, F2 ∈ R are the exterior forces in direction of the rod.

In compression of the rod and equilibrium, we have F1 > 0 and F2 = −F1 .
(b) In the plane Bending Beam, the x-axis is again the axis of the

beam and the y-axis shall point to “below” by clearness such that a positive
load (to below) produces a positive displacement. Bending about the z-axis
in mathematical positive sense then leads to a positive displacement in the
(x, y)-plane. Let y = u(x) be the bending line again, then a shortening of the
beam in x-direction is given by u1(x, y) = yu′(x) in first order approximation
(linearization such that tan(β) = u′(x)/1). The linearization thus yields the
displacements
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u1(x, y) = yu′(x) in x-direction
u2(x) = u(x) in y-direction
u3(x) = 0 in z-direction

x

y = u(x)

β

β
normal

y tan(β)

Figure 7.1. Displacement by Kirchhoff

Now a stress can be related again to the displacement by bending:

Axiom 7.2. (1◦) Hooke’s law

σ(x, y) = E(x)ε(x, y) , ε(x, y) = yu′′(x) .

(2◦) In bending about the z-axis, the bending energy of the beam is

ΠB =
1
2

∫

V

σ(x, y) ε(x, y) dv =
1
2

∫

V

E(x)y2u′′(x)2 dxdydz

=
1
2

∫ �

0

E(x)Iz(x)u′′(x)2 dx
.

(3◦) Exterior energy, interior energy by bending, and interior energy by ten-
sion/compression are summed up to total energy.

(c) Energy In bending about the z-axis, volume forces and surface forces
are combined to a stress r(x) [force/(cross-section-)area] to establish the total
energy in a way that the length force density r(x)u(x) operates in negative
y-direction for r(x) > 0 (e.g., elastic support), and in positive y-direction for
r(x) < 0 (e.g., self-weight).

As is seen for instance in the first case of Figure 7.3, an axially acting force
may lead to a stress in direction of the beam axis and to a crosswise displace-
ment; cf. Example 7.2. This situation shall be regarded by an additional term
q(x)u′(x) with force q(x) > 0 . Then

− p(x)u′′(x) bending moment
(flexural rigidity · approximated curvature) [N L]

q(x)u′(x) axial force [N ]
− r(x)u(x) length-force density [N/L]
f(x) > 0 continuously distributed load density [N/L] .
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Figure 7.2. Bending beam

In equilibrium, the total interior energy of the beam is

ΠB =
1
2

∫ l

0

(
p(x)u′′(x)2 − q(x)u′(x)2 + r(x)u(x)2

)
dx .

by Axiom 7.2. Besides, pointwise loads Fi and pointwise bending moments Mk

are now to be added, and the total energy is sumed up to

E(u) =
1
2

∫ �

0

(
p(x)u′′(x)2 − q(x)u′(x)2 + r(x)u(x)2

)
dx−

∫ �

0

f(x)u(x) dx

−
I∑

i=1

Fiu(xi) −
K∑

k=1

Mkϕ(xk) ;

u is the displacement, and the positive y-direction points to “below”. Because
tanϕ(x) = u′(x) and the small displacements supposed here, we may write
also approximatively ϕ(xk) = u′(xk) in the sum of moments.

(d) Variational Problem and Boundary Value Problem In order to
derive conditions for the existence of a stationary solution u in equilibrium, we
form again the directional derivative (first variation) relative to a test function
(virtual displacement) v and set the result equal zero:

G(ε) := E(u+ εv) =⇒ G′(0) =
d

dε
E(u+ εv)

∣∣∣
ε=0

=: δE(u; v) != 0 ,

then we obtain the Euler or variational equations of the extremal problem

E(u) = min! , u ∈ U . (7.2)

The vector space U has now to be specified more exactly for the proof of
existence of a solution, on the one side because of the attained smoothness of
the desired solution and on the other side because the test functions v ∈ U have
to regard the essential boundary conditions which depend on the individual
problem formulation. In the present case we obtain
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δE(u; v) :=
∫ �

0

p(x)u′′(x)v′′(x) dx−
∫ �

0

q(x)u′(x)v′(x) dx

+
∫ �

0

(
r(x)u(x) − f(x)

)
v(x) dx−

I∑
i=1

F (xi)v(xi) −
K∑

k=1

M(xk)v′(xk) = 0 .

(7.3)
Twofold partial integration yields under sufficient smoothness of the solution
u
∫ �

0

p(x)u′′(x)v′′(x) dx =
[
p(x)u′′(x)v′(x)

]�

0
−
∫ �

0

(
p(x)u′′(x)

)′
v′(x) dx

=
[
p(x)u′′(x)v′(x)

]�

0
−
[(
p(x)u′′(x)

)′
v(x)

]�

0
+
∫ �

0

(
p(x)u′′(x)

)′′
v(x) dx .

In disregarding pointwise loads and moments, (7.2) reveals to be equivalent
to the relation
[
p(x)u′′(x)v′(x) −

(
(p(x)u′′(x))′ + q(x)u′(x)

)
v(x)

]�

0

+
∫ �

0

[(
p(x)u′′(x)

)′′ +
(
q(x)u′(x)

)′ + r(x)u(x) − f(x)
]
v(x) dx = 0 ,

(7.4)

where the solution u is supposed to be fourtimes continuously differentiable.
Choosing at first an arbitrary test function v with v(0) = v(�) = 0 , we obtain
by this way a differential equation of order four,

(
p(x)u′′(x)

)′′ +
(
q(x)u′(x)

)′ + r(x)u(x) = f(x) , 0 < x < � . (7.5)

Choosing now either v(0) = 0 and v(�) free, or v(0) free and v(�) = 0 , we
obtain the boundary conditions for ξ = 0 and ξ = � :

v(ξ) free =⇒
[
(p(x)u′′(x))′ + q(x)u′(x)

]
x=ξ

= 0

v(ξ) = 0 =⇒
[
(p(x)u′′(x))′ + q(x)u′(x)

]
x=ξ

free

v′(ξ) free =⇒ p(x)u′′(x)
∣∣
x=ξ

= 0

v′(ξ) = 0 =⇒ p(x)u′′(x)
∣∣
x=ξ

free.

(7.6)

If boundary conditions u(ξ) = a and/or u′(ξ) = b are given, then all test
functions have to regard the boundary conditions as follows:

u(ξ) = a =⇒ u(ξ) + εv(ξ) = a =⇒ v(ξ) = 0
u′(ξ) = b =⇒ u′(ξ) + εv′(ξ) = b =⇒ v′(ξ) = 0 ξ ∈ {0, �} ,

therefore boundary conditions of this type are called essential or geometric.
The remaining (homogenous) boundary conditions

u(ξ) free =⇒
[
(p(x)u′′(x))′ + q(x)u′(x)

]
x=ξ

= 0
u′(ξ) free =⇒ p(x)u′′(x)

∣∣
x=ξ

= 0 ξ ∈ {0, �}
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are satisfied by the exact solution of the variational problem (7.4) because
the corresponding values v(ξ) resp. v′(ξ) of the test functions are free; hence
they are called natural or dynamic boundary conditions. However, in solv-
ing the boundary value problem with equation (7.5), all boundary conditions
— together four — are to be regarded explicitly; for instance the following
possibilities do exist ((e) essential,(n) natural):

simple supported end: u(ξ) = 0 (e) , pu′′(ξ) = 0 (n)
clamped fixed end: u(ξ) = 0 (e) , u′(ξ) = 0 (e)
clamped movable end: u′(ξ) = 0 (e) , [(pu′′)′ + qu′](ξ) = 0 (n)
free end, q = 0 pu′′(ξ) = 0 (n) , (pu′′)′(ξ) = 0 (n)

.

It is seen in most bending problems directly which combination of boundary
conditions allows an equilibrium position of the beam and which combination
has no physical meaning.

(e) The differential equation (7.5) may be derived also by a Balance
of Moments. To this end let Q be a constant axial force having the same
direction before and after bending (dead force or load) then the following
relation does hold at point x in equilibrium for the bending moment and the
moment belonging to Q,

−p(x)u′′(x) = Qu(x) = Q

∫ �

0

u′(ξ) dξ ;

cf. Fig. 7.3, Case 1. If the pointwise axial forces are replaced by a uniformly
distributed force density as in (c), this balance equation has the form

−p(x)u′′(x) =
∫ x

0

q(ξ)u′(ξ) dξ .

The length-force density −r(x)u(x) as well as the load density f(x) entail
further moments and the addition of all moments at point x leads to

p(x)u′′(x) +
∫ x

0

q(ξ)u′(ξ) dξ+
∫ x

0

r(ξ)u(ξ)(x− ξ) dξ−
∫ x

0

f(ξ)(x− ξ) dξ = 0 .

Twofold differentiation and an application of Leibniz’ rule then yields (7.5)
again. But the definiteness of the quadratic form in the extremal problem (7.2)
remains always the crucial criterium for suitable boundary conditions.

(f) Further Boundary Conditions We neglect pointwise loads and
moments as before and write for brevity, cf. also Sect. 7.3,

b(u, v) :=
∫ �

0

p(x)u′′(x)v′′(x) dx , c(u, v) :=
∫ �

0

q(x)u′(x)v′(x) dx

d(u, v) :=
∫ �

0

r(x)u(x)v(x) dx , f(u) :=
∫ �

0

f(x)u(x) dx

a(u, v) := b(u, v) − c(u, v) + d(u, v)

.
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The bilinear form a has to be equipped with a suitable additional boundary
term for the consideration of further dynamic boundary conditions but, for
brevity, we confine ourselves to the homogenous case here. Let

R(ξ, u) = αξp(ξ)u′(ξ)2 + βξp(ξ)u(ξ)2 + γξq(ξ)u(ξ)2, ξ ∈ {0, �} ,

hence either ξ = 0 or ξ = � . Then

δR(ξ, u; v) = 2αξp(ξ)u′(ξ)v′(ξ) + 2βξp(ξ)u(ξ)v(ξ) + 2γξq(ξ)u(ξ)v(ξ) ,

and the modified minimum problem (7.2) has the form

2 Ẽ(u) =
[
b(u, u) + d(u, u) − c(u, u) +R(ξ, u)

∣∣∣
�

ξ=0

]
− 2f(u) = min! u ∈ U .

(7.7)
By setting the first variation equal to zero, one obtains the differential equation
(7.4) in the same way as above, but the boundary terms now have a different
form, namely,

[
p(x)u′′(x) + αxp(x)u′(x)

]
v′(x)

∣∣∣
�

0

−
[
(p(x)u′′(x))′ + q(x)u′(x) − βxp(x)u(x) + γxq(x)u(x)

]
v(x)

∣∣∣
�

0
= 0 .

(7.8)

Besides others, the following combinations are possible:
(1◦) Combination of fixed support and elastic clamping left/right with spring
constant α > 0:

u(0) = 0 (e) , pu′′(0) − αpu′(0) = 0 (n)
u(�) = 0 (e) , pu′′(�) + αpu′(�) = 0 (n) ;

boundary term R(ξ, u) = ±αp(u′)2(0) , (“− ” for ξ = 0).
(2◦) Combination of movable support and elastic clamping left/right with
spring constant β > 0:

u′(0) = 0 (e) , (pu′′)′(0) + qu′(0) − βpu(0) + γqu(0) = 0 (n)
u′(�) = 0 (w) , (pu′′)′(�) + qu′(�) + βpu(�) − γqu(�) = 0 (n) ;

boundary term R(ξ, u) = ± [β pu2(ξ) + γ qu2(ξ)] , (“− ” for ξ = 0).
(3◦) Elastic supported end left/right with spring constant β > 0:

pu′′(0) = 0 (n) , (pu′′)′(0) − βpu(0) + γqu2(0) = 0 (n)
pu′′(�) = 0 (n) , (pu′′)′(�) + βpu(�) − γqu2(�) = 0 (n) ;

boundary term R(ξ, u) = ±β pu2(ξ) , (“− ” for ξ = 0).
(4◦) Combination of elastic support and elastic clamping left/right with spring
constants α > 0 and β > 0:
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pu′′(0) − αpu′(0) = 0 (n) , (pu′′)′(0) + qu′(0) − βpu(0) + γqu(0) = 0 (n)
pu′′(�) + αpu′(�) = 0 (n) , (pu′′)′(�) + qu′(�) + βpu(�) − γqu(�) = 0 (n) ;

boundary term R(ξ, u) = ± [α p(u′)2(0) + β pu2(ξ) + γ qu2(ξ)] , (“ − ” for
ξ = 0). It remains to be verified in this case whether a nonzero parameter γ
has any physical meaning.

(g) To prove the Existence of solutions, we introduce a vector space H
with scalar product and norm,

(u, v) =
∫ �

0

u(x)v(x) dx , ‖u‖2 =
∫ �

0

u(x)2 dx .

Further, let H be closed w.r.t. ‖ · ‖ hence a Hilbert space, and let U ⊂ H
be a closed subspace. A direct application of Theorem 1.25 then yields

Theorem 7.1. (Existence and Uniqueness) Let the bilinear form a be sym-
metric, a(u, v) = a(v, u), and let

∀ u ∈ U : κ‖u‖ ≤ a(u, u) ≤ ‖a‖‖u‖2 (7.9)

where ‖a‖ is finite and κ > 0 . Then the minimum problem (7.7),

2 Ẽ(u) = ã(u, u) − 2f(u) = min! , u ∈ U ,

has a unique solution.

This theorem warrants only the existence of a weak solution in Hilbert space
H, its smoothness has to be verified by other means; if the functions p , q , r
together with their derivatives are continuous then the bilinear form a is
uniformly bounded and the right side of the inequality (7.9) is fulfilled. The left
inequality has to be verified for each boundary term R(ξ, u). Among others, it
constitutes a condition for an appropriate choice of the parameters α , β and
γ .

Lemma 7.1. (Elementary Rayleigh-Ritz Inequality) ‖u‖2 ≤ �2

2
‖u′‖2 if

u(0) = 0 .

Proof. We have u(x) =
∫ �

0

u′(x) dx =
∫ �

0

1 · u′(x) dx by assumption. By

Cauchy-Schwarz’ inequality, (u, v)2 ≤ (u, u) · (v, v) , we obtain u(x)2 ≤

x

∫ �

0

u′(x)2 dx . Integration of both sides yields the assertion. ��
For instance, let 0 ≤ q(x) ≤ q0 and let u(0) = 0 be boundary condition

then, by Lemma 7.1,

−c(u, u) ≥ −2q0
�2

‖u‖2 ,

which may be used for the proof of definiteness.
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If e.g. p(x) ≥ p0 > 0 and u(0) = u′(0) = 0 (beam clamped at left end), a
twofold application of Lemma 7.1 yields
∫ �

0

p(x)(u′′(x))2 dx ≥ p0

∫ �

0

(u′′(x))2 dx ≥ κ

∫ �

0

u2(x) dx = κ‖u‖2 , κ > 0 .

If now e.g. α = β = γ = 0 , q = 0 and r(x) > 0 (elastic support), then
Theorem 7.1 guarantees the existence of a weak solution.

7.2 Eigenvalue Problems

(a) The Minimum Problem

2 E(u) = a(u, u) − 2f(u) = min! , u ∈ U

has a unique solution under the assumptions discussed in the preceding sec-
tion. Let now two continuous and symmetric bilinear forms b and c be given
and let both be uniformly positive definite on a closed subspace U ⊂ H :

∃ 0 < β ≤ ‖b‖ ∀ u ∈ U : β‖u‖2 ≤ b(u, u) ≤ ‖b‖‖u‖2

∃ 0 < γ ≤ ‖c‖ ∀ u ∈ U : γ‖u‖2 ≤ c(u, u) ≤ ‖c‖‖u‖2 . (7.10)

Then a bilinear form a being defined on U by

a(u, u;λ) := b(u, u) − λ c(u, u) , λ ∈ R ,

is certainly positive definite if

β − λ ‖c‖ > 0 .

Accordingly, the minimum problem a(u, u;λ) = min! , u ∈ U , has only the
trivial (but not less important) solution u = 0 for these values of λ which
corresponds to zero displacement in a problem of bending beam. If however
the bilinear form a is only positive semidefinite, there exists a 0 �= u ∈ U
such that a(u, u;λ) = 0 . In this case also κu is a solution for κ ∈ R , which
corresponds to an indifferent solution in bending beam. The smallest value of
the parameter λ satisfying

b(u, u) − λ c(u, u) = 0 , 0 �= u ∈ U , (7.11)

is the smallest eigenvalue with appertaining eigensolution u of the eigenvalue
problem (7.11). It is the global minimum point of the Rayleigh quotient

Q(u) = b(u, u)/c(u, u) , u ∈ U ;

the further eigenvalues are local minimum points of Q(u) .
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Theorem 7.2. (Characterization Theorem) Let U ⊂ H be a closed subspace.
The function u ∈ U is a stationary point of the Rayleigh quotient if and
only if

∀ v ∈ U : b(u, v) = λ c(u, v) . (7.12)

In particular, we have λ = b(u, u)/c(u, u) for v = u .
Proof. An expansion shows that

Q(u+ εv) =
b(u, u) + 2εb(u, v) + ε2b(v, v)
c(u, u) + 2εc(u, v) + ε2c(v, v)

.

As condition for a stationary value we set the first variation of the Rayleigh

quotient equal to zero and obtain

0 =
d

dε
Q(u+ εv)

∣∣∣
ε=0

= 2
c(u, u)b(u, v) − b(u, u)c(u, v)

c(u, u)2
. (7.13)

Substitution of b(u, u) = λ c(u, u) and cancelling of c(u, u) �= 0 yields the
necessary condition (7.12). On the other side, (7.13) follows from (7.12) in
simple way by substituting (7.12) and then substituting b(u, u) = λ c(u, u)
once more. ��

The system (7.12) is called generalized eigenvalue problem and constitutes
the basis for many numerical methods of approximation (Ritz-Galerkin

method). In particular, an eigenvalue problem must be a homogenous problem,
i.e., all the exterior loads must be zero. For λ , e.g., the volume force density is
substituted in applications, r(x) = −λ , or the axially acting force, q(x) = λ .
When the above introduced boundary term R appears, it has to be partitioned
into a part belonging to b and a part belonging to c. The modified bilinear
forms have to satisfy again Assumption (7.10) on a suitable subspace.

Example 7.1. Bending oscillations without axial loads. Cf. (Collatz63), 2. ed.
p. 24. We choose q = 0 in (7.13) and r(x) = −λs(x) , s(x) = �(x)A(x) (� mass
density, A area of cross-section). Then (7.11) reads:

[∫ �

0

p(x)u′′(x)2 dx+Rb(ξ, u)
∣∣∣
�

ξ=0

]
− λ

∫ �

0

s(x)u(x)2 dx = 0

Rb(ξ, u) = αξp(ξ)u′(ξ)2 + βξp(ξ)u(ξ)2 .

The associated differential equation reads:

(p(x)u′′)′′ − λs(x)u = 0 .

Suitable boundary conditions are for instance:
(1.) Left end clamped, right end free:

u(0) = u′(0) = 0 , u′′(�) = (pu′′)′(�) = 0 .
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(2.) Both ends hinged:

u(0) = u′′(0) = 0 , u(�) = u′′(�) = 0 .

(3.) Both ends elastically supported :

u′′(0) = (pu′′)′(0) + γu(0) = 0 , u′′(�) = (pu′′)′(�) − γu(�) = 0 .

γ spring constant. The eigenvalues are negative for γ < 0 and the problem
becomes unstable in this case.
(4.) Left end hinged, right end elastically supported:

u(0) = u′′(0) = 0 , u′′(�) = (pu′′)′(�) − γu(�) = 0 .

Example 7.2. Oscillation of a bar with self-weight. (Gravitational force acts in
direction of the negative x-axis.) We choose

q(x) = g

∫ x

0

s(ξ) dξ , r(x) = −λs(x) , s(x) = �(x)A(x)

where g is the gravitational acceleration. Equation (7.11) then reads:
[∫ �

0

[p(x)u′′(x)2 + q(x)u′(x)2] dx+Rb(ξ, u)
∣∣∣
�

ξ=0

]
− λ

∫ �

0

s(x)u(x)2 dx = 0 ,

Rb(ξ, u) = αξp(ξ)u′(ξ)2 + βξp(ξ)u(ξ)2 + γξq(ξ)u(ξ)2 .

The associated differential equation reads:

[p(x)u′′]′′ + [q(x)u′]′ − λs(x)u = 0 .

Suitable boundary conditions are, e.g., left end clamped, right end free:

u(0) = u′(0) = 0 , u′′(�) = (pu′′)′(�) = 0 .

(b) Buckling of a Beam Cf. (Collatz63), pp. 46–66, and 2. ed. p. 9, 435
ff. Here q(x) = λ̃ = F with force F . (7.11) has the form

[∫ �

0

[
p(x)u′′(x)2 + r(x)u(x)2

]
dx+Rb(ξ, u)

∣∣∣
�

ξ=0

]

−λ̃
[∫ �

0

u′(x)2 dx+Rc(ξ, u)
∣∣∣
�

ξ=0

]
= 0 ,

Rb(ξ, u) = αξp(ξ)u′(ξ)2 + βξp(ξ)u(ξ)2, Rc(ξ, u) = γξu(ξ)2, ξ ∈ {0, �} ,
(means ξ = 0 or ξ = �). The associated differential equation reads:

(p(x)u′′(x))′′ + r(x)u+ λ̃ u′′(x) = 0 . (7.14)
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The smallest eigenvalue is called Euler’s buckling load. We consider more
exactly the simplest case where p(x) = E I constant and r(x) ≡ 0 . By writing
u′′ = v , one then obtains the differential equation

v′′ + λ v = 0 , λ = λ̃/E I

with general solution (a, b, c, d ∈ R)

v(x) = u′′(x) = a sin(
√
λx) + b cos(

√
λx)

u′(x) = − a√
λ

cos(
√
λx) +

b√
λ

sin(
√
λx) + d

u(x) = −a

λ
sin(

√
λx) − b

λ
cos(

√
λx) + c+ d x

.

Case 1: left end clamped, right end free. Boundary conditions are

u(0) = 0 (e) , u′(0) = 0 (e) , u(�) = 0 (n) , u′′′(�) + λu′(�) = 0 (n) .

By using the left boundary conditions we obtain

u(x) =
a

λ
[
√
λx− sin(

√
λx)] +

b

λ
[1 − cos(

√
λx)],

u′(x) =
a√
λ

[1 − cos(
√
λx)] +

b√
λ

sin(
√
λx) .

The right boundary condition u′′′(�) + λu′(�) = 0 yields

a
√
λ cos(

√
λ�) − b

√
λ sin(

√
λ�) + λ

[
a√
λ

[1 − cos(
√
λ�)] +

b√
λ

sin(
√
λ�)

]
= 0 ,

hence a = 0 . Because b �= 0 , the right condition u′′(�) = v(�) = 0 yields
cos(

√
λ�) = 0, and then

√
λ� =

π

2
+ 2kπ, k ∈ Z ,

hence

Solution: u(x) = c(1 − cos(
√
λx)) , c ∈ R

Euler’s buckling load: λ1 =
π2

4�2
=⇒ F =

π2

4
E I

�2

.

Case 2: Both ends hinged. The boundary conditions are

u(0) = 0 (e) , u′′(0) = 0 (n) , u(�) = 0 (e) , u′′(�) = 0 (n) .

One obtains easily
√
λ� = kπ , k ∈ Z .
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Solution: u(x) = c sin(
√
λx) , c ∈ R

Euler’s buckling load: λ1 =
π2

�2
=⇒ F = π2 E I

�2

.

Case 3: Left end clamped, right end hinged. The boundary conditions are

u(0) = 0 (w) , u′(0) = 0 (w) , u(�) = 0 (w) , u′′(�) = 0 (n) .

At first, the left condition yield as in Case 1

u(x) =
a

λ
[
√
λx− sin(

√
λx)] +

b

λ
[1 − cos(

√
λx)] .

Substitution of x = � and the condition u′′(�) = v(�) = 0 yield the system

a sin(
√
λ�) + b cos(

√
λ�) = 0

a[
√
λ�− sin(

√
λ�)] + b[1 − cos(

√
λ�)] = 0 .

The determinant of the associated matrix must be zero in order that a non-
zero solution [a, b]T exists: sin(

√
λ�) −

√
λ� cos(

√
λ�) = 0 .

For approximation of the first eigenvalue one chooses here frequently√
λ� =

√
2 · π . Solution and Euler’s buckling load:

u(x) = c
[√

λx− sin(
√
λx) + tan(

√
λ�)(cos(

√
λx) − 1)

]

λ1 $ 2π2

�2
=⇒ F $ 2π2 E I

�2

.

Case 4: Both ends clamped (one movable in x-direction). The boundary con-
ditions are

u(0) = 0 (e) , u′(0) = 0 (e) , u(�) = 0 (e) , u′(�) = 0 (e) .

At first, the condition at the left end yields as in case 1

u(x) =
a

λ
[
√
λx− sin(

√
λx)] +

b

λ
[1 − cos(

√
λx)] .

Substitution of the right terminal conditions yields the system

a[
√
λ�− sin(

√
λ�)] + b[1 − cos(

√
λ�)] = 0

a[1 − cos(
√
λ�)] + b sin(

√
λ�) = 0

of which the determinant must be zero again in order that a non-zero solution
[a, b]T exists:

√
λ� sin(

√
λ�) + 2 cos(

√
λ�) − 2 = 0 and consequently

√
λ� =

2kπ , k ∈ Z .
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Solution: u(x) = c(1 − cos(
√
λx)) , c ∈ R

Euler’s buckling load: λ1 =
4π2

�2
=⇒ F = 4π2 E I

�2

.

F

l

Case 1, κ = 1

F

Case 2, κ = 1

F

Case 3, κ = −1/4

F

Case 4, κ = 1/2

Figure 7.3. Euler’s buckling loads

(c) The equations of motion of an Oscillating Beam can be found by
the local balance theorem of momentum or by Hamilton’s principle (8.31),

W(u; t1, t2) :=
∫ t2

t1

[Ek(u) − Ep(u)] dt = stationary in u

where Ek(u) is the kinetic energy and Ep(u) is the potential energy of the
beam. Ep(u) may be one of the above considered bilinear forms but we choose
here simply the bending energy then

Ek(u) =
1
2

∫ �

0

r(x)u̇2(t, x) dx , Ep(u) =
1
2

∫ �

0

p(x)u′′2(t, x) dx , (7.15)

r(x) = �(x)A(x) , p(x) = E(x)I(x) . Other forms of the potential energy are
treated in a similar way. We set the variation equal to zero, ∂W(u; v) = 0,
integrate ∂Ek partially over t and ∂Ep two-times partially over x, the result
reads:

∫ t2

t1

[∫ �

0

[rü+ (pu′′)′′]v dx− (pu′′)′v
∣∣∣
�

0
+ pu′′v′

∣∣∣
�

0

]
dt = 0 . (7.16)

The square-bracketed term must disappear since t1 and t2 are arbitrary. By
the usual argumentation of variational calculus we obtain

r(x)ü(t, x) + [p(x)u′′(t, x)]′′ = 0

[p(x)u′′(t, x)]′v(x)
∣∣∣
�

0
− p(x)u′′(t, x)v′(x)

∣∣∣
�

0
= 0 .

(7.17)
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The diversification of boundary conditions is the same as in (7.6) for q = 0 .
The solution of the resulting hyperbolic boundary value problem follows by
separation of variables leading to an eigenvalue problem of the above form:
Inserting u(t, x) = v(t)w(x) into (7.17) we obtain for a constant λ ∈ R

v̈

v
= λ =

1
r

(pw′′)′′

w
=⇒ v̈ = λ v , (p(x)w′′)′′ − λ r(x)w = 0 .

So the associated eigenvalue problem reveals to be the dominant part of an
oscillation problem.

7.3 Numerical Approximation

(a) The Tension Rod is first rescaled here to unit intervall [0 , 1] because of
later application in the method of finite elements, see Chap. 9,

x = ξ � , u(x) = v(ξ) , u′(x) = v′(ξ)(dξ/dx) , 0 ≤ ξ ≤ 1 .

Then we obtain ∫ �

0

u′(x)2dx =
1
l

∫ 1

0

v′(ξ)2dξ .

By supposing constant stress σ = Eε(x) = Eu′(x) , the linear ansatz

v(ξ) = α1 + α2ξ

is exact. The relation between coefficients with and without physical meaning,
namely u1 = v(0) = α1 , u2 = v(1) = α1 + α2 , follows from the relation
u(x(ξ)) = v(ξ) ; or in matrix-vector notation

[
α1

α2

]
=
[

1 0
−1 1

][
u1

u2

]
=: Bu .

Inserting yields
∫ �

0

u′(x)2dx $ uT S̃u, S̃ =
1
�

[
1 −1

−1 1

]
,

and, by this way,

Π̂ =
κ

2
uT S̃u− fTu , f =

[
f1

f2

]
(7.18)

is a suitable approximation of interior energy in (7.1) where κ = E A/� denotes
the spring constant.

(b) Bending Beam Using the notations of Sect. 7.1, we consider a beam
element with constant rectangular cross-section and constant flexural rigidity
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E I dropping the axial tension q(x)u′(x) . Further, we suppose that pointwise
loads appear only at the ends of the beam element. Then the total energy of
the beam element is

E(u) =
E I

2

∫ �

0

u′′(x)2 dx−
∫ �

0

f(x)u(x) dx−
2∑

i=1

Fiui −
2∑

k=1

Mku
′
k (7.19)

where u(0) = u1 , u(�) = u2 , etc.. The numerical approximation is here prop-
erly managed by a Hermitian interpolating polynomial of degree three, cf.
Sect. 2.1, (e) whose coefficients are uniquely determined by the values of the
node vector U = [u1, u

′
1, u2, u

′
2]

T ,

p(x,U) = a+ b(x− x1) + c(x− x1)2 + d(x− x1)3

p(x1;U) = u1 , p′(x1;U) = u′1 , p(x2;U) = u2 , p′(x2;U) = u′2 .

By � = x2 − x1 , x1 = 0 we obtain a = u1 , b = u′1 , and

c =
3(u2 − u1) − �(2u′1 + u′2)

�2
, d =

2(u1 − u2) + �(u′1 + u′2)
�3

.

Now the unknown function u is replaced approximatively by the polynomial
p( ◦ ;U) , then an integration w.r.t. x leads to

E I

2

∫ �

0

u′′(x)2 dx ∼ E I

2

∫ �

0

p′′(x;U)2 dx =
1
2
UTKU

where the stiffness matrix of the beam element is

K =
2E I

�3

⎡
⎢⎢⎣

6 3� −6 3�
3� 2�2 −3� �2

−6 −3� 6 −3�
3� �2 −3� 2�2

⎤
⎥⎥⎦ . (7.20)

For the second integral in (7.19) it is advantageous to approximate f(x)
likewise by a polynomial p(x;F ) of degree three with node vector F =
[f1, f

′
1, f2, f

′
2]

T . Then we obtain in the same way

∫ �

0

f(x)u(x) dx ∼ FTMU

where the mass matrix of the beam element has the form

M =
�

420

⎡
⎢⎢⎣

156 22� 54 −13�
22� 4�2 13� −3�2

54 13� 156 −22�
−13� −3�2 −22� 4�2

⎤
⎥⎥⎦ . (7.21)
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Now the approximation of potential energy of the beam element reads:

P (U) =
1
2
UTKU − FTMU −RTU (7.22)

where R = [F1,M1, F2,M2]T is the vector of pointwise loads at the ends.
Let us now suppose that the beam consists of several beam elements. Then

the individual equations (7.22) are summed up to a global quadratic form,

P([U ]) :=
1
2
[U ]T [K][U ] − [F ]T [M ][U ] − [R]T [U ] , (7.23)

where [U ] is the global node vector of unknowns.
The total energy of a beam takes a minimum in equilibrium, but the com-

putation of min{P([U ])} does not lead to a proper result without additional
support conditions which are written here in the form of linear side conditions
[B][U ] = [C] . The solution of the linear system

[
[K] [B]T

[B] [O]

][
[U ]
[V ]

]
=
[

[M ][F ] + [R]
[C]

]
(7.24)

then supplies an approximation of the bending line u and the accuracy in-
creases with the number of beam elements proportionally to 1/�3 (� maximum
length of all elements).

Example 7.3. For constant axial load q(x) = q , Timoshenko and Goodier

(1951) have found the exact bending line of a simply supported bending beam
with rectangular cross-section,

u(x) = d− q�4

64EI

[
1 +

(
8
5

+ ν

)
λ2 − 1

6
ξ2

]
ξ2, d =

5q�4

384EI

[
1 +

6
5
λ2

(
8
5

+ ν

)]

Here λ = h/� , ξ = 2x/� , and ν denotes again Poisson’s ratio.

Example 7.4. (Schwarz80), p. 38. Input data: (length in [cm]),
E = 2 · 107 [N/cm2] , I = 16 [cm4] , F = 100 [N ] , f = 2 [N/cm] .
Nodes: [P1, P2, P3, P4] = [0, 150, 200, 300] ,
constant load densities in the three subintervals: f = [0, 0, 2] , supports in
nodes Pi: [

ui

u′i

]
=
[

0 − 0 0
0 − − −

]

Supports more detailed: u(0) = u(200) = u(300) = 0 , u′(0) = 0 .
Loads and moments in nodes Pi:

[
Fi

Mi

]
=
[

0 100 0 0
0 0 0 0

]
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Figure 7.4. Example 7.4 scaled

7.4 Frameworks of Rods

(a) Tension Rod in General Position Let Pi = Pi(x, y, z), i = 1, 2, be
initial and terminal point of a rod of length � in general position. Further, let

ũi ∈ R displacement of Pi in direction of the rod,
ui = (ui, vi, wi) displacement of Pi in general position.

Introducing the cosinus values of direction

c1 =
x2 − x1

�
, c2 =

y2 − y1

�
, c3 =

z2 − z1
�

,

the projection of ũi onto the axes of the coordinate system yields

ui = c1ũi , vi = c2ũi , wi = c3ũi .

Conversely, because c21 + c22 + c23 = 1 ,

ũi = c1ui + c2vi + c3wi , i = 1, 2, =⇒ ũ = Cu

where

ũ = [ũ1, ũ2]T , C =
[
c1 c2 c3 0 0 0
0 0 0 c1 c2 c3

]
, u = [u1, v1, w1, u2, v2, w2]T .

Substitution into the stiffness matrix S̃ of (7.18) supplies a (6, 6)-Matrix

S =
1
�
EACT

[
1 −1

−1 1

]
C . (7.25)

The external forces do no longer point into direction of the rod therefore the
potential of external forces has to be replaced by a scalar product fTu where

f = [f11, f12, f13, f21, f22, f23]T , u = [u1, v1, w1, u2, v2, w2]T ∈ R
6.
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(b) Framework of Rods Summing up the modified equations (7.18) for
approximation of the total energy supplies a minimum problem for the energy
of the framework in equilibrium by the extremal principle,

Q([U ]) :=
1
2

[U ]T [S][U ] − [F ]T [U ] = min! (7.26)

where Q([U ]) is the quadratic form for the global node vector
[U ] = [(ui, vi, wi)]Ni=1 . Derivation w.r.t. [U ] leads to a linear system again,

[S][U ] = [F ] (7.27)

which constitutes a necessary and here also sufficient condition for the exis-
tence of a solution of (7.26). Note that the displacements (not the positions) of
the node points are computed in equilibrium if that exists. The individual dis-
placements shall be “small” however by the linearizing assumption in Axiom
7.1(1◦). The internal forces are cancelled in normal case by the principle of
actio = reactio such that only external forces come into question for possible
loads.

(c) Support Conditions The global stiffness matrix [S] is symmetric
and positive semi-definite but never definite whence the extremal problem
does not have a unique solution. Boundary conditions (supports) are to be
chosen in a way that the solution exists uniquely (and the problem has a so-
lution at all). In a spatial framework, a support point can have null, one, or
two degrees of freedom. Thus, recalling that we always suppose small displace-
ments, it can be either fixed, or move on a straight line, or move in a plane; the
latter possibility drops naturally in plane frameworks. Altogether, the support
conditions constitute a linear (underdetermined) system of equations for the
global node vector [U ] ,

[P ][U ] = [H] .

By applying Lemma 1.2 and Theorem 3.8 we obtain the following result.

Lemma 7.2. Assumption: (1◦) [P ] is a (m,n)-matrix with m < n .
(2◦) [P ] has maximum rank, i.e. rank[P ] = m .
(3◦) [S] is positive definite on the kernel of [P ] , i.e.,

[X] �= [0] und [P ][X] = [0] =⇒ [X]T [S][X] > 0 .

Then the linear system
[

[S] [P ]T

[P ] [O]

][
[V ]
[Z]

]
=
[

[S][U ]0 − [F ]
[P ][U ]0 − [H]

]

has a unique solution ([V ], [Z]) for arbitrary [U ]0, and [U ]∗ = [V ] − [U ]0 is a
solution of the problem

Q([U ]) = min! , [P ][U ] = [H] . (7.28)
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The first and second condition says that no “superfluous” boundary conditions
are allowed. The third condition selects the admissible conditions but cannot
be easily verified in advance. The condition of the matrix is a measure for
the stability of the entire system and is supplied by Matlab on demand. It
indicates the accuracy with which condition (3◦) is satisfied.

Obviously the solution [U ]∗ in (7.28) depends among others from the right
side [H] of the side conditions. In a general linear-quadratic optimization prob-
lem, the i-th component Hi of H represent the amount of the i-th available
resource. The Lagrange multiplier [Z] supplies the sensitivity of the solution
w.r.t the resources applied (shadow price); more exactly, we have

∂Q([U ]∗([H]))
∂Hi

= −Zi ,

where Zi has the negative sign because a minimum problem is under consid-
eration.

(d) Support Loads If a framework is in equilibrium, the forces acting on
an individual node balance each other. This condition yields two equations for
each node in plane and three equations in spatial frameworks. The direction
of force k in a tension rod is obviously given up to sign by the initial and
terminal point of the rod itself. Thus we have to work either with normed
rods or the calculated absolute value |k| has to be multiplied ensuing by the
length of the rod. The support forces must be perpendicular to the (linear) side
conditions in equilibrium. More exactly, let P (u) = P (u1, u2, u3) be a support
point and let k = [k1, k2, k3]T be an appertaining unknown supporting force,
then Table 7.1 gives the different possibilities:

Table 7.1.

Degr. of freedom of u Cond. for u Cond. for k Degr. of freedom of k

plane framework

0 u = 0 k free 2

1 a · u = 0 k = αa , α free 1

spatial framework

0 u = 0 k free 3

1 a · u = 0 k = αa+ β b 2

b · u = 0 α , β free

2 a · u = 0 k = αa , α free 1
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The resulting linear system of equations is called

statically determined, if the solution exists uniquely,
statically undetermined, if several solutions exist,
kinematically undetermined, if no solution exists.

Example 7.5. Plane framework. As pattern model for later implementation
by finite element methods, input data and their arrangement are described in
detail here (z-coordinates being dropped naturally in plane frameworks).

Figure 7.5. Ex. 7.5, plane framework

(1◦) The i-th column of the node matrix P contains the coordinates of the
i-th node point in arbitrary succession of nodes. The i-th column of the load
matrix F contains the coordinates of the load vector attacking at the i-th
node.
(2◦) The k-th column of the element matrix S contains the numbers of the

nodes of the k-th rod in arbitrary succession of rods whereby the direction of
the k-th rod is fixed and has to be regarded later. Accordingly, in the present
plane example:

P =
[

3 2 1 0 0
1 0 1 0 2

]
, F =

[
0 0 0 0 0
f 0 0 0 0

]
, S =

[
2 3 3 4 4 5 4
1 1 2 2 3 3 5

]
.
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(3◦) A support condition for the displacement u has the form a · u = 0 , |a| =
1 , a = [α1, α2, α3]T . The support matrix L contains in the first row the number
of node points in which support conditions are specified and in the remaining
rows the components αi of the corresponding support vector. Thus we have
0 , 1 , 2 or 3 conditions for each node in spatial frameworks. In the present
(plane) example:

L = [�ik] =

⎡
⎣

4 4 5
1 0 − sinϕ
0 −1 cosϕ

⎤
⎦

(in a fixed point, only two resp. three linearly independent vectors have to be
supporting forces hence the sign of �32 does not play any role). Unnormed rod
directions, support force and load directions with corresponding lengths read
in the present example:

[S1, S2, S3, S4, S5, S6, S7|L4, L5|F 1] =
[

1 2 1 2 1 1 0 L1 − sinϕ 0
1 0 −1 0 1 −1 2 L2 cosϕ −1

]

[s1, s2, s3, s4, s5, s6, s7 | l4, l5 | f ]
=
[√

2, 2,
√

2, 2,
√

2,
√

2, 2 | (L2
1 + L2

2)
1/2, 1 | 1

]

Relations for the forces attacking in nodes 1 : 5:

k̃1S1 +k̃2S2 = F 1

k̃1S1 −k̃3S3 −k̃4S4 = 0
−k̃2S2 +k̃3S3 −k̃5S5 −k̃6S6 = 0

k̃4S4 +k̃5S5 +k̃7S7 −L4 = 0
k̃6S6 −k̃7S7 −l5L5(ϕ) = 0

.

This system consists of ten equations for ten unknowns k̃1, . . . , k̃7, l5 , and
the both components of L4 . The resulting linear system is uniquely solvable
hence statically determined for 0 < ϕ < 2π and unsolvable hence dynamically
undetermined fore ϕ = 0 . Absolute values of forces in direction of the rods
are ki = k̃i · si , i = 1 : 7 .

Example for ϕ = π/12 , E = 0.2e9 , A = 0.5e−3 , f = 10 :

rod 1 2 3 4 5 6 7

force -1.1412 1.0000 1.4142 -2.0000 0.7071 2.1213 4.0981

stress ×1.0e4 2.8284 -2.0000 -2.8284 4.0000 -1.4142 -4.2426 -8.1962
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Example 7.6. Plane truss, left support fixed, right support hinged.

Nodes: P =
[

0 2 4 6 4 2
0 0 0 0 1 2

]
, Rods: S =

[
1 2 3 4 5 6 6 5 6
2 3 4 5 6 1 2 3 3

]

Supports: L =

⎡
⎣

1 1 4
−1 0 0

0 −1 −1

⎤
⎦ , Loads: F =

[
0 0 0 0 f 0
0 −2f 0 0 0 0

]
.

Figure 7.6. Ex. 7.6, plane truss

Further examples with frameworks shown in Figures 7.7 and 7.8
(Schwarz91), (Schwarz80) are studied in directory KAPITEL07\SECTION_4.
The displacements are scaled with factor κ for better visibility.

Figure 7.7. Cantilever, κ = 50
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κ = 0 κ = 1000

Figure 7.8. Radar dome

7.5 Frameworks of Beams

(a) Torsion We suppose that the cross-section of a beam or bar rotates in
(y, z)-plane with angle ϕ(x) , then displacements arise only in y, z-direction
and we have [

ỹ
z̃

]
=
[[

cosϕ − sinϕ
sinϕ cosϕ

]
− I

][
y
z

]

(I unit matrix) hence

u1(x, y, z, ϕ) = 0
u2(x, y, z, ϕ) = y(cosϕ− 1) − z sinϕ
u3(x, y, z, ϕ) = y sinϕ+ z(cosϕ− 1) .

Supposing small amounts of |ϕ| , linearization yields cosϕ ∼ 1 , sinϕ ∼ ϕ ,
hence

u1(x, y, z, ϕ) = 0 , u2(x, y, z, ϕ) = −zϕ(x) , u3(x, y, z, ϕ) = yϕ(x) .

Thus the strain vector ε = [ux, vy, wz, uy +vx, vz +wy, wx +uz]T has the form

ε = [0, 0 , 0,−zϕ′(x), 0, yϕ′(x)]T .

We suppose also that the shear modulus G = E/(2(1 + ν)) is constant then
σ = Gε is the stress vector. The stress energy of a circular torsion bar is then
given by the volume integral

ΠS =
1
2

∫

V

σ · ε dv =
1
2
G

∫

V

(y2 + z2)ϕ′(x)2 dxdydz ,

and the total energy of a circular torsion bar is

Π =
1
2
GIp

∫ l

0

ϕ′(x)2 dx−M1ϕ1 −M2ϕ2 .
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In torsion bars with non-circular cross-section warpings of the cross-section
area do appear which cannot be neglected in computation, and the polar
moment of inertia Ip must be replaced by the torsion moment of inertia It

whose values are mostly given in tabular form. For instance, let the bar have
rectangular area of cross-section A = h · b and h > b then

It $ η2h b
3 , η2 =

2.370592 q2 − 2.486211 q + 0.826518
7.111777 q2 − 3.057824 q + 1

, q =
h

b
> 1 ;

cf. (Holzmann), vol. 3, Sect. 7.1.4; (Szabo77).
(b) Total Energy We suppose in the sequel that no shear forces act on

the beam and that no bending occurs about the x-axis in the (y, z)-plane
because h and b are small relative to the length l of the beam. Then the total
energy is composed of bending about the z-axis, bending about the y-axis,
elongation/shortening in direction of the x-axis and the torsion energy. In the
most simple model of beam we then have

ΠB =
1
2
E

{
bh3

12

∫ l

0

w′′(x)2dx+
b3h

12

∫ l

0

v′′(x)2dx

+bh
∫ l

0

u′(x)2dx+
It

2(1 + ν)

∫ l

0

ϕ′(x)2dx
} (7.29)

where the beam shall be rectangular with x-axis for symmetry axis.
(c) Beam with Bending and Torsion in (nearly) general position

(Schwarz80). The local values of the beam are denoted by capitals and the
values in the global coordinate system by small letters, i.e., big letters before
bending/rotation and small letters thereafter. Moreover, we consider again
“small” bendings and rotations such that tanϕ ∼ ϕ can be written for the
rotation angle.

Remember: The slope angle ϕ of the tangent of a function y = f(x) at
point x satisfies tanϕ = f ′(x) hence approximatively ϕ ∼ tanϕ = f ′(x) if ϕ
is small.

Let P1 and P2 be initial and terminal point of the beam then

V ′
i slope of bending line in Pi, (X,Y )-plane ∼ rotary angle about Z-axis

W ′
i slope of bending line in Pi, (X,Z)-plane ∼ rotary angle about Y -axis

cf. (7.31). Succession by (7.29)

Ue = [W1,W
′
1,W2,W

′
2;V1, V

′
1 , V2, V

′
2 ;U1, U2;Φ1, Φ2]T . (7.30)

However, it is more advantageous for the subsequent operations to assemble
displacements pointwise:

Ũe =
[
[U1, V1,W1, Φ1,W

′
1, V

′
1 ] , [U2, V2,W2, Φ2,W

′
2, V

′
2 ]
]T

.
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The spatial position of the beam is determined by three cosinus values of
direction in the same way as in the rod:

cXx =
x2 − x1

l
, cXy =

y2 − y1

l
, cXz =

z2 − z1
l

;

these are the cosinus values for rotation about the X-axis. Likewise one has
3 cosinus values cY x, cY y, cY z for rotation about the Y -axis,
3 cosinus values cZx, cZy, cZz for rotation about the Z-axis.

Because of the presentation of the beam as one-dimensional system,
one of the 6 cosinus values for the rotation of the local Y -axis and the
local Z-axis must be specified in advance: We suppose here that the
Y -axis corresponding to the width b of the beam shall remain always
perpendicular to the global z-axis. More precisely, if the X-axis is
not parallel to the z-axis then the Y -axis shall remain parallel to the
global (x, y)-plane otherwise the Y -axis shall remain parallel to the
x-axis. The direction of the “width-side” of the beam does not change
by this way and cY z = 0 does hold in advance.

By this way, the Y -axis is orthogonal to the projection of the X-axis onto the
(x, y)-plane and

L = (c2Xx + c2Xy)1/2

is the length of the projection of the unit vector in X-direction onto the
(x, y)-plane. Because (−v, u) ⊥ (u, v) we obtain

cY x = −cXy

L
, cY y =

cXx

L
, cY z = 0 , L �= 0

cY x = 0 , cY y = 0 , cY z = 0 , L = 0
.

The cosinus values of the Z-axis are given by the cross product
⎡
⎣
cZx

cZy

cZz

⎤
⎦ =

⎡
⎣
cXx

cXy

cXz

⎤
⎦×

⎡
⎣
cY x

cY y

cY z

⎤
⎦ , cY z = 0 .

Remember that Ui = cXxui + cXyvi + cXzwi , for i = 1, 2 in a rod element.
Now in the same way

Ui = cXxui + cXyvi + cXzwi

Vi = cY xui + cY yvi + cY zwi

Wi = cZxui + cZyvi + cZzwi .
(7.31)

Likewise, for the rotation angle by linearization

Φi = cXxϕi + cXyw
′
i + cXzv

′
i , rotation about X-axis

W ′
i = cY xϕi + cY yw

′
i + cY zv

′
i , rotation about Y -axis

V ′
i = cZxϕi + cZyw

′
i + cZzv

′
i , rotation about Z-axis .
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The result reads now in matrix-vector notation:

C =

⎡
⎣
cXx cXy cXz

cY x cY y cY z

cZx cZy cZz

⎤
⎦ , D =

⎡
⎢⎢⎣
C 0 0 0
0 C 0 0
0 0 C 0
0 0 0 C

⎤
⎥⎥⎦ , (7.32)

Ũe =
[
[U1, V1,W1, Φ1,W

′
1, V

′
1 ] , [U2, V2,W2, Φ2,W

′
2, V

′
2 ]
]T

ũe =
[
[u1, v1, w1, ϕ1, w

′
1, v

′
1] , [u2, v2, w2, ϕ2, w

′
2, v

′
2]
]T

Ũe = Dũe .

(d) In Numerical Approximation, the linear ansatz of Sect. 7.3(a) is
chosen for u and ϕ , and the cubic basic approach of Sect. 7.3(b) for v und
w ; cf. (Schwarz80), (Schwarz91). Writing again the local node vector as in
(7.30), the stiffness matrix of a beam element is a block diagonal matrix of
dimension 4+4+2+2 = 12 . The individual stiffness matrices in the diagonal
are the matrices S of (7.25) and K of (7.20) with different pre-factors where, in
addition, K is subjected to the orthogonal transformation with (permutation)
matrix D of (7.32).

Example 7.7. (Schwarz91) in KAPITEL07\SECTION_5. The displacements in
Figure 7.9 are multiplied by the factor two for better illustration.
Input data:

NODES = [...

1 0.0 0.0 0.0; 2 0.0 0.0 4.0; 3 1.0 1.0 5.0;

4 1.0 4.0 5.0; 5 0.0 5.0 4.0; 6 0.0 5.0 0.0;

7 5.0 0.0 0.0; 8 5.0 0.0 4.0; 9 5.0 1.0 5.0;

10 5.0 4.0 5.0; 11 5.0 5.0 4.0; 12 5.0 5.0 0.0;

13 10.0 0.0 0.0; 14 10.0 0.0 4.0; 15 9.0 1.0 5.0;

16 9.0 4.0 5.0; 17 10.0 5.0 4.0; 18 10.0 5.0 0.0];

% LOADS: column(i) = [FX; FY; FZ; MX; MY; MZ]; i node nr.

LOADSF = zeros(3,size(p,2));

LOADSF(:,3) = [0.0;0.0;-20.0]; LOADSF(:,4) = [0.0;0.0;-20.0];

LOADSF(:,9) = [0.0;0.0;-25.0]; LOADSF(:,10) = [0.0;0.0;-25.0];

LOADSF(:,15) = [0.0;0.0;-30.0]; LOADSF(:,16) = [0.0;0.0;-30.0];

LOADSG = zeros(3,size(p,2)); LOADS = [LOADSF;LOADSG];

% SUPPORT: column(i) = [NODE Nr.; U; V; W; Th; WS; VS];

% U = 1/0 : U fixed/free, etc.

SUPPORTF = [...

1, 1, 1, 6, 6, 6, 7, 7, 7, 12, 12, 12, 13, 13, 13, 18, 18, 18;

1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0;

0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0;

0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1];

SUPPORTG = zeros(3,size(SUPPORTF,2)); SUPPORT = [SUPPORTF;SUPPORTG];
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Figure 7.9. Example 7.7, spatial framework (scaled)

7.6 Hints to the MATLAB Programs

KAPITEL07/SECTION_3 Beam in Special Position
demo4.m Masterfile, bending beam
balkelement1.m Beam element
balken1.m Beam in special position
balken2.m Beam in general plane position
KAPITEL07/SECTION_4, Frameworks of Rods
demo1.m Masterfile, forces in plane framework
demo2.m Masterfile, displacements in plane framework

with image sequence
demo3.m Masterfile, displacements in spatial framework
stabelement1.m Tension rod in plane position
stabelement2.m Tension rod in spatial position
stabwerk1.m Forces in plane framework
stabwerk2.m Displacements in plane framework
stabwerk3.m Displacements in spatial framework
KAPITEL07/SECTION_5, Spatial Frameworks
demo1.m Masterfile for spatial frameworks
balken2.m Beam element, nearly general position
rahmen2.m Displacements in spatial frameworks



8

Continuum Theory

8.1 Deformations

(a) Deformation In a fixed cartesian coordinate system, let ∅ �= Ω ⊂ R
3 be

an open bounded domain with sufficiently smooth boundary ∂Ω =: Γ , and let
I ⊂ R be an open interval with 0 ∈ I ; Ω shall describe the geometric shape
of a liquid or solid “body”. We consider a mapping

Φ : I ×Ω � (t,X) �→ Φ(t,X) =: x(t) ∈ R
3

with the following properties:

(1◦) Φ is two times continuously differentiable;
(2◦) Φ(0,X) = X ;
(3◦) det GradX Φ(t,X) > 0 .

By the last assumption no volume element can degenerate. Together with
the first assumption it implies local reversibility of Φ for fixed t. In dependence
of the individual problem the mapping Φ is called deformation, motion, or
flux and Υ (t,X) := Φ(t,X)−X =: u is the corresponding displacement; their
computation resp. approximation is the goal of many problems in physics and
engineering sciences. If a system is in static equilibrium, time t is omitted. The
points (point vectors) X ∈ Ω are called material points and their components
material coordinates or Lagrange coordinates. The points x ∈ Φ(t, Ω)
are called space points and their components space coordinates or Euler

coordinates. The material point X is transferred to the space point x by
the motion Φ or in other words: the material point X is located at position
x after time t. In the view of Lagrange, X is the present position of the
material point X and x its future position. In other words, the observer is
placed at the point X and considers the “world” from this point. In the today
preferred view of Euler, x is the present position of the fictive particle and
X the former position; hence the observer sees the world passing by from this
point. In this approach all x-coordinates share a physical meaning whereas the
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corresponding “pulled back” equations in X-coordinates are necessary for the
mathematical inferences. The material points X are commonly understood
as fixed points in a fixed Euclidian space (reference space) being identified
with its coordinate space R

3 . So we do not discuss the problematic nature of
choice of a “observer standpoint” but take this for given in the one or other
way. The rule

from large to small

has always to be regarded in the sequel. All functions and operators with
material points as arguments are written as capital letters, and all functions
and operators with space points for arguments are written as small letters.
This notation after (Marsden) leads however to some difficulties if several
deformations are considered in composed form, therefore all terms are written
sometimes as small letters but elements and operators in the image domain
are indicated by Φ after (Ciarlet93). Differential operators as “divergence”
and “gradient” relate always to space variables only and not to time t ; tensor
fields are written boldface.

Point vectors X, x and the both basic vector fields Φ and Υ are
not underlined.

Let v be the velocity and b the acceleration of a material point X being at
position x at time t , i.e.,

ẋ(t) :=
D

Dt
x(t) :=

∂Φ

∂t
(t,X) =: V (t,X) =: v(t, x) , x = Φ(t,X) , (8.1)

then by the chain rule, cf. (Marsden), p. 3,

ẍ(t) :=
D2

Dt2
x(t) =

∂2Φ

∂t2
(t,X) =: B(t,X) ≡ ∂

∂t
V (t,X) =

d

dt
v(t, Φ(t,X))

=
∂v

∂t
(t, x) + [grad v(t, x)]v(t, x) =:

D

Dt
v(t, x) =: v̇(t, x) ,

(8.2)
and accordingly

v̇(t, x) =
D

Dt
v(t, x) =

∂

∂t
V (t,X) .

The absolute acceleration B is additively composed of the relative acceleration
∂v/∂t and the convective acceleration (grad v)v !

Example 8.1. Let Q(t) be an orthogonal matrix, Q(0) = I , and
Φ(t,X) = Q(t)X = x(t) then

V (t,X) = Q̇X = Q̇QTx = v(t, x)
B(t,X) = Q̈X = Q̈QTx = b(t, x) .
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On the other side, QQ̇T = −Q̇QT by QQT = I and the product rule, hence
Q̇QT Q̇QT = −Q̇Q̇T and then

D

Dt
v(t, x) = vt(t, x) + grad v(t, x)v(t, x)

= Q̈QTx+ Q̇Q̇Tx+ Q̇QT Q̇QTx = Q̈QTx = Q̈X .

The trajectory or path Φ( · ,X) : t �→ Φ(t,X) of a particle X is the unique
solution of the initial value problem

ẋ(t) =
∂Φ

∂t
(t,X) = v(t, x(t)) = v(t, Φ(t,X)) , Φ(0,X) = X . (8.3)

If v is a stationary velocity field being independent of time t then

Φ(s+ t, · ) = Φ(s, · ) ◦ Φ(t, · ) = Φ(s, Φ(t, · )) = Φ(t, Φ(s, · )) .

The fundamental mapping Φ is called flux in this context, cf. § 1.7, and it is
an one-parametric group of transformations in the present case of stationary
velocity field.

(b) Derivation of the Gradient w.r.t. the variable t yields

∂

∂t
[GradΦ(t,X)] = Grad

[
∂

∂t
Φ(t,X)

]
= GradV (t,X)

= Grad v(t, Φ(t,X)) = grad v(t, x) GradΦ(t,X) ;

hence
∂

∂t
[GradΦ(t,X)] = grad v(t, x) GradΦ(t,X) . (8.4)

Derivation of
[GradΦ(t,X)][GradΦ(t,X)]−1 = I

w.r.t. time t then yields by using the product rule

grad v(t, x) = −[GradΦ(t,X)]
∂

∂t
[(GradΦ(t,X))−1]

or
∂

∂t
[(GradΦ(t,X))−1] = −[GradΦ(t,X)]−1 grad v(t, x) . (8.5)

Since gradΦ−1(t,X) = [GradΦ(t,X)]−1 we obtain by this result also

∂

∂t
[gradΦ−1(t, x)]T = −[grad v(t, x)]T [GradΦ(t,X)]−T . (8.6)
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(c) Material Derivatives (Substantial Derivatives) The material
derivation is the total derivation w.r.t. t where thereafter frequently Φ(t,X) =
x is written again as argument. Let more generally w be a vector field in space
coordinates x and let

W (t,X) = w(t, x) = w(t, Φ(t,X)) , x = Φ(t,X) ,

be the same vector field as function of the material points X . Then
(∂w/∂t)(t, x) is the rate of change of w for fixed x , i.e., the change of w seen
from x, and

ẇ :=
D

Dt
w(t, x) :=

d

dt
w(t, Φ(t,X))

is the change of w for fixed X , i.e. the change of w seen form the material
point X. Using x = Φ(t,X) and the chain rule we obtain

d

dt
w(t, Φ(t,X)) =

∂w

∂t
(t, x) + gradw(t, x)v(t, x) =:

[
∂

∂t
+ v · ∇x

]
w(t, x) .

Definition 8.1. The operator (or the operation)

D

Dt
:=

∂

∂t
+ v · ∇x

is the material derivative (w.r.t. t).

Normally the material derivative is different from zero also if w does not
depend on t explicitely:

D

Dt
w(x) = 0 + gradw(x)v(t, x) , x = Φ(t,X) .

In particular, we obtain for the velocity vector

D

Dt
v(t, x) =

∂

∂t
v(t, x) + ∇v(t, x)v(t, x) .

For the identity w(t, x) = x we obtain again ẋ(t) = (D/Dt)x(t) = v(t, x) ,
and for a scalar function ϕ

D

Dt
ϕ(t, x) =

∂

∂t
ϕ(t, x) + gradϕ(t, x)v(t, x) .

The convective derivative is zero here if gradϕ(t, x) stands perpendicularly
on the velocity v(t, x) .

In material derivatives it is always to be regarded that the point vector
x depends normally on t and X although this fact is not always expressed
explicitly. One goes back to the material coordinates, forms the derivative
w.r.t. t and passes again to the space coordinates.
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(d) Piola Transformation In continuum mechanics one works frequently
with normals of infinitesimal surfaces consisting of a point and the normal
vector only. Therefore the behavior of a normal vector of a surface under the
mapping Φ is of interest.

Let D ⊂ R
2 be open, F := {X(u) , u = (u1, u2) ∈ D} ⊂ R

3 a surface
in reference space (material coordinates) and Φ(F ) = {x = (Φ ◦ X)(u), u ∈
D} ⊂ R

3 the transformed (transported) surface in space coordinates which
shall not depend here on t for simplicity. Remember the scalar and vectorial
surface elements in detailed representation:

dO =
∣∣∣∣
(
∂X

∂u1
× ∂X

∂u2

)
(u1, u2)

∣∣∣∣ du1 du2 material coordinates,

dO = NdO =
(
∂X

∂u1
× ∂X

∂u2

)
(u1, u2) du1 du2 material coordinates,

do =
∣∣∣∣
(
∂x

∂u1
× ∂x

∂u2

)
(u1, u2)

∣∣∣∣ du1 du2 , x = Φ(u) space coordinates,

do = ndo =
(
∂x

∂u1
× ∂x

∂u2

)
(u1, u2) du1 du2 space coordinates

cf. §1.2(c1); remember also that cof A = det(A)A−T . In the sequel let w
be a vector field in space coordinates x and W = w ◦ Φ the same (pulled
back) vector field as function of material coordinates X . Then, by using the
normalized normal vectors n and N ,

∫

Φ(F )

w · ndo =
∫

F

(AW ) ·N dO =
∫

F

WT ATN dO , (8.7)

where A ∈ R
3
3 is to be specified , because W has to be rotated in the same

way as N arises from n .

Lemma 8.1.

A(X) = [Cof ∇Φ(X)]T ≡ det(∇Φ(t,X))[∇Φ(t,X)]−1 .

Proof. Let a , b , c ∈ R
3 , let det(a, b, c) =< a, b, c >= aT (b × c) be the spat

product and let C ∈ R
3
3 . Then

det(a,Cb, Cc) = det(CC−1a,Cb, Cc) = det(C) det(C−1a, b, c)

=< det(C)C−1a, b, c >=< (cof CT )a, b, c >= aT (cof C)(b× c) .

Note that xu1 = ∇Φ(X)Xu1 , xu2 = ∇Φ(X)Xu2 and take C = ∇Φ , then the
assertion follows from

∫

Φ(F )

w · ndo =
∫

D

(w ◦ Φ ◦X(u)) · (xu1 × xu2)(u) du1 du2

=
∫

D

(W ◦X)(u)) · (Cof ∇Φ(X(u)))(Xu1 ×Xu2)(u) du1 du2 .
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��
Since relation (8.7) does hold for an arbitrary vector field w , Lemma 8.1

leads to the substitution rules for normal vector and surface area |F |:

n(x) =
Cof ∇Φ(X)N(X)
|Cof ∇Φ(X)N(X)|

|Φ(F )| =
∫

Φ(F )

do =
∫

F

|Cof ∇Φ(X)N(X)| dO
,

or, in detailed parameter representation of F ,

|Φ(F )| =
∫

D

∣∣∣∣Cof ∇Φ(X(u))
(
∂X

∂u1
× ∂X

∂u2

)
(u)

∣∣∣∣ du1 du2 .

So we have altogether the general transformation rule

do = |Cof ∇ΦN |dO, do = Cof ∇ΦdO ,

or in differential form⎡
⎣
dx2 ∧ dx3

dx3 ∧ dx1

dx1 ∧ dx2

⎤
⎦ = Cof ∇Φ(X)

⎡
⎣
dX2 ∧ dX3

dX3 ∧ dX1

dX1 ∧ dX2

⎤
⎦ , x = Φ(X) .

By these results it becomes evident that the matrix Cof ∇Φ(X) plays a crucial
role whenever normal vectors come into play.

(e) Pull Back of Divergence Theorem Let U ⊂ Ω be an arbitray
subvolume with sufficiently smooth surface ∂U . Further, let t : x �→ t(x) be
a tensor field in space points x . Then there follows from Lemma 8.1 and the
divergence theorem of § 1.1.2(c2) by row-wise application

∫

Φ(U)

div t dv =
∫

∂Φ(U)

tndo =
∫

∂U

(t ◦ Φ)(Cof ∇Φ)N dO

=
∫

U

Div[(t ◦ Φ)Cof ∇Φ)] dV .

Definition 8.2. The tensor

T(X) := t(Φ(X))Cof ∇Φ(X)

is the Piola transformation of t(x) .

If now t(x) is the stress tensor then T(X) is called Piola-Kirchhoff stress
tensor. Since U ⊂ Ω is an arbitrary subvolume in the above equation we
obtain as goal of the entire action

tndo = TN dO , x = Φ(X) , X ∈ Ω
∫

Φ(U)

div t dv =
∫

U

Div T dV (column vector)
. (8.8)
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Lemma 8.2. (Piola Identity) Div Cof ∇Φ(t,X) = 0 ∈ R
3 .

Since U ⊂ Ω arbitrary, this follows immediately from (8.8) for t(x) = I using
Definition 8.2. ��

Lemma 8.3. Div T(X) = det[∇Φ(X)] div t(x) , x = Φ(X).

This is likewise an inference to (8.8) because dv = det[∇Φ(X)] dV . ��
Let now ẋ = v(t, x) be the velocity vector again.

Lemma 8.4. Let J(t,X) := det[∇Φ(t,X)] then

∂

∂t
J(t,X) = J(t,X) div v(t, x) , x = Φ(t,X) .

Proof. Remember ∇V (t,X) = ∇Φt(t,X) = [∇Φ(t,X)]t then

det[∇Φ(t,X)] div v(t, x) = det[∇Φ(t,X)] div v(t, x)T

= Div[v(t, Φ(t,X))T Cof ∇Φ(t,X)] (Lemma 8.3)

= Φt(t,X)T Div Cof ∇Φ(t,X) + GradΦt(t,X) : Cof ∇Φ(t,X) (product rule)

= GradΦt(t,X) : Cof ∇Φ(t,X) (Lemma 8.2)

=
[
∂

∂t
∇Φ(t,X)

]
: Cof ∇Φ(t,X) =

∂

∂t
J(t,X) (determinant rule).

��
Lemma 8.4 describes the infinitesimal change of volume w.r.t. time t.

Lemma 8.5. (Helmholtz Identity)

∂

∂t
Cof ∇Φ(t,X) = [div v(t, x)I−grad v(t, x)]T [Cof ∇Φ(t,X)] , x = Φ(t,X) .

Proof. Note that

[Cof ∇Φ]t = [det(∇Φ)]t(∇Φ)−T + det(∇Φ)[(∇Φ)−T ]t .

Then, by Lemma 8.4 and (8.6),

[Cof ∇Φ]t = det(∇Φ) (div v)(∇Φ)−T − det(∇Φ)(grad v)T (∇Φ)−T

= [div v(t,X)I − grad v(t,X)]T [Cof ∇Φ(t,X)] .

��

8.2 The Three Transport Theorems

Let again Φ : R × Ω � (t,X) �→ Φ(t,X) = x ∈ R
3 be a deformation,

v the velocity field and w an arbitrary vector field in space coordinates,
w(t, x) = w(t, Φ(t,X)) = W (t,X) . Further, let U ⊂ Ω be an open subset
with sufficiently smooth boundary.



394 8 Continuum Theory

Theorem 8.1. (Transport Theorem for Volume Integrals)

D

Dt

∫

Φ(t,U)

w(t, x) dv =
∫

Φ(t,U)

[
D

Dt
w(t, x) + w(t, x) div v(t, x)

]
dv .

Proof. Recalling dv = J(t,X)dV , J(t,X) = det[∇Φ(t,X)] , we obtain by
application of Lemma 8.4

D

Dt

∫

Φ(t,U)

w(t, x) dv =
∫

U

d

dt
[w(t, Φ(t,X))J(t,X)] dV

=
∫

U

[
J(t,X)

d

dt
w(t, Φ(t,X)) + w(t, Φ(t,X))J(t,X) div v(t, Φ(t,X))

]
dV

=
∫

Φ(t,U)

[
D

Dt
w(t, x) + w(t, x) div v(t, x)

]
dv .

��
In this result, named after Reynolds, the domain of integration Φ(t, U)

depends on t as before but the material derivative is passed under the integral
sign.

Let now a = a(t, x) be any scalar function (e.g., mass density) then

div(a v) = (grad a)v + a div v

and

D

Dt
(aw)+aw div v =

Da

Dt
w+

Dw

Dt
a+aw div v = w

(
Da

Dt
+ a div v

)
+a

Dw

Dt
.

Therefore Theorem 8.1 has two important special cases:

D

Dt

∫

Φ(t,U)

a dv =
∫

Φ(t,U)

[
∂a

∂t
+ div(a v)

]
dv

D

Dt

∫

Φ(t,U)

aw dv =
∫

Φ(t,U)

[
w(

∂a

∂t
+ div(a v)) + a

Dw

Dt

]
dv

. (8.9)

In the sequel the arguments (t, x) resp. (t,X) of the integrands are omitted
partly for simplicity. Let D ⊂ R

2 be open, F := {X(u), u = (u1, u2) ∈ D} ⊂
R

3 a surface in reference space (material coordinates) and Φ(t, F ) = {x =
(Φ(t,X(u)), u ∈ D} ⊂ R

3 the transformed (transported) surface in space
coordinates.

Theorem 8.2. (Transport Theorem for Surface Integrals)

D

Dt

∫

Φ(t,F )

w · ndo =
∫

Φ(t,F )

[
Dw

Dt
+ (div v I − grad v)w

]
· ndo .
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Proof. At first, substitution and product rule yield

D

Dt

∫

Φ(t,F )

w(t, x) · n(t, x) do =
∫

F

d

dt
w(t, Φ(t,X)) · Cof ∇Φ(t,X)N(X) dO

=
∫

Φ(t,F )

Dw(t, x)
Dt

· n(t, x) do+
∫

F

W (t,X) · d
dt

[Cof ∇Φ(t,X)]N(X) dO .

By means of the Helmholtz identity,

d

dt
Cof ∇Φ = [(div v)I − grad v]T Cof ∇Φ ,

we obtain ∫

F

W (t,X) · d
dt

[Cof ∇Φ(t,X)]N(X) dO

=
∫

Φ(t,F )

w(t, x) · [Cof ∇Φ(t,X)]t[Cof ∇Φ(t,X)]−1ndo

=
∫

Φ(t,F )

[div v I − grad v]w · ndo .

��
Finally let I ⊂ R be an open interval, C := {X(u) , u ∈ I} ⊂ R

3 a
line segment in reference space (material coordinates) and Φ(t, C) = {x =
(Φ(t,X(u)), u ∈ I} ⊂ R

3 the transformed (transported) line in space coordi-
nates.

Theorem 8.3. (Transport Theorem for Line integrals)

D

Dt

∫

Φ(t,C)

w(t, x) · dx =
∫

Φ(t,C)

[
Dw(t, x)

Dt
· dx+ w(t, x) · dv

]
.

The proof of this theorem follows directly from the rule for derivations of
products observing that dx = (Φ ◦X)u du and

∂

∂t

∂

∂u
Φ(t,X(u)) =

∂

∂u

∂

∂t
Φ(t,X(u))

=
∂

∂u
V (t,X(u)) =

∂

∂u
v(t, Φ(t,X(u))) =: dv .

��
If w = v is the velocity field, then

∫

Φ(t,C)

w · dv = [v(t, B) · v(t, B) − v(t, A) · v(t, A)]/2

where A is the initial point and B the terminal point of the line C ; therefore
a closed curve C satisfies

D

Dt

∮

Φ(t,C)

v · dx =
∮

Φ(t,C)

Dv

Dt
· dx .
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8.3 Conservation Laws

Conservation laws are also called balance theorems. The conservation theorems
of physics have to be conceived as axioms in mathematical sense. On the level
of the present volume they cannot be derived from other results by pure
mathematical conclusions but verified only in an experimental way. They are
defined here at first relative to space coordinates where altogether the following
space-related physical quantities are involved (specific quantities relate to mass
unit):

ε(x, t) spec. energy density [energy/mass]
ϑ(t, x) abs. temperature (> 0) [Kelvin]
�(t, x) mass denisty [masse/volume]
h(t, x;n(t, x)) thermal flux density [energy/(area· time)]
p(t, x) pressure [force/area]
r(x, t) spez. thermal source density [heat/(time· mass)]
s(x, t) spez. entropy [heat/(temperature·mass)]
f(x, t) spez. volume-force density [force/mass]
g(t, x;n(t, x)) surface-force density [force/area]
k(t, x) volume-force density [force/volume]
q(t, x) thermal flux vector [energy/(area·time)]
v(t, x) velocity field [space/time]
ψ = ε− ϑ s free energy density
e := ε+ v · v/2 abbreviation.

(Frequently ε = c ϑ with specific heat c .) Further, let

δ unit tensor,
t(t, x) ∈ R

3
3 stress tensor after Cauchy

depending on material [force/area],

ε(u) =
1
2
[
gradu+ (gradu)T

]
linearized strain tensor without dimension

for displacement field.

Commonly the pressure p is neglected in mechanics of solid media. In mechan-
ics of fluids, the pressure p is separated from the stress tensor t by t = σ−p δ ,
and the tensor σ depends on velocity v instead of displacement.

Let {Ω, �, t, . . .} be a body and Φ a deformation; the transformed body is
briefly denoted by Φ(t, Ω) . The mechanical and thermodynamical properties
are defined by a specification of the above quantities and thus play here again
the role of axioms in mathematical sense. All quantities shall be two times
continuously differentiable henceforth, and the boundaries of all considered
domains shall be continuous and piecewise continuously differentiable. One
then says also that the body and the motion Φ are simple. Further, U ⊂ Ω shall
be an arbitrary subset with likewise continuous and piecewise continuously
differentiable boundary.
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(a) Conservation Law of Mass Let

M(t, U) :=
∫

Φ(t,U)

�(t, x)dv

be the mass of the “moving” volume Φ(t, U) .

Axiom 8.1. (Conservation Law of Mass) M(t, U) is constant or, in other
words,

∀ U ⊂ Ω :
D

Dt
M(t, U) = 0 .

(b) Conservation Law of Momentum Let

I(t, U) =
∫

Φ(t,U)

�(t, x) v(t, x)dv ∈ R
3

be the total momentum of volume Φ(t, U) . The remaining moments in interior
of Φ(t, U) cancel out each other (also axiom).

Axiom 8.2. (Conservation Law of Momentum) ∀ U ⊂ Ω :

D

Dt
I(t, U) =

∫

Φ(t,U)

�(t, x) f(t, x) dv +
∫

∂Φ(t,U)

g(t, x;n(t, x)) do .

The stress vector g is not a vector field, but the following fundamental theorem
of Cauchy does hold in case of sufficient smoothness:

Theorem 8.4. Under Axiom 8.2 there exists a tensor field (stress tensor)

t : (t, x) �→ t(t, x) ∈ R
3
3 ,

such that
g(t, x;n(t, x)) = t(t, x)n(t, x) .

Proof see e.g. (Ciarlet93).
(c) Conservation Law of Angular Momentum For arbitrary x0 let

L(t, U) =
∫

Φ(t,U)

�(t, x)[(x− x0) × v(t, x)] dv

be the total angular momentum of the subvolume Φ(t, U) relative to x0 . The
other angular momentums cancel out each other (axiom); without loss of
generality let also x0 = 0 below.

Axiom 8.3. (Conservation Law of Angular Momentum) ∀ U ⊂ Ω :

D

Dt
L(t, U)

=
∫

Φ(t,U)

�(t, x)[x× f(t, x)] dv +
∫

∂Φ(t,U)

[x× g(t, x;n(t, x))] do
.
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Theorem 8.5. Adopt Axiom 8.1 and 8.2. Then Axiom 8.3 does hold if and
only if the stress tensor t(t, x) is symmetric.

Proof SUPPLEMENT\chap08a.
Suppose Axiom 8.1 and 8.2. Then Axiom 8.3 yields ∀ U ⊂ Ω :

D

Dt
L(t, U) =

∫

Φ(t,U)

�(t, x)[x× f(t, x)] dv +
∫

∂Φ(t,U)

[x× t(t, x)n(t, x)] do .

(8.10)
Since all axioms are supposed to hold in the sequel, the balance theorem

of angular momentum is no longer mentioned but equated with the symmetry
of Cauchy’s stress tensor t by Theorem 8.5.

(d) Conservation Law of Energy Let h(t, x;n(t, x)) be the flux of
energy from interior to exterior through the surface of each considered sub-
volume where n denotes the normal vector (mostly thermal flux). The sum of
interior and kinetic energy in subvolume Φ(t, U) without potential energy is

E(t, U) =
∫

Φ(t,U)

�
[
ε+

v · v
2

]
dv .

Axiom 8.4. (Conservation Law of Energy) ∀ U ⊂ Ω :

D

Dt
E(t, U) =

∫

Φ(t,U)

�(f · v + r) dv +
∫

∂Φ(t,U)

[
g(t, x;n(t, x)) · v − h(t, x;n(t, x))

]
do

.

Theorem 8.6. Suppose Axiom 8.1 to 8.4, then there exists an energy-flux
vector (thermal-flux vector) q(t, x) such that

∀ n : h(t, x;n(t, x)) = q(t, x) · n(t, x) .

Motions of rigid bodies have the form Ψ(t,X) = c(t)+Q(t)X where c(t) is
an arbitrary translation vector and Q(t) is an arbitrary rotation matrix. The
set of these motions forms a group S , i.e., for each motion there exists the
inverse, and two successive motions of S are again a rigid motion (belonging
to S). The conservation law of energy is called invariant under (transforma-
tions of) the group S if it does hold for arbitrary Ψ ◦ Φ yielding always the
same result. This invariance is a simple and evident condition for this balance
theorem excluding some pathological cases.

Theorem 8.7. (1◦) If Axiom 8.4 holds and is invariant under S then Axioms
8.1, 8.2 and 8.3 do hold.
(2◦) If all four axioms do hold then Axiom 8.4 is invariant under S .

Cf. (Marsden), Theorem 3.8. By this result, the balance theorem of energy
plays an exceptional role under all four balance theorems.
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(e) Conservation Laws in Differential Form We suppose that all four
axioms apply. If Axiom 8.2 is considered componentwise then all axioms have
the form

D

Dt

∫

Φ(t,U)

a(t, x) dv =
∫

Φ(t,U)

b(t, x) dv +
∫

∂Φ(t,U)

w(t, x) · n(t, x) do

(8.11)
where a , b are scalar functions and w is a vector field.

Theorem 8.8. (Localization) The scalar fields a , b and the vector field w
obey the law of conservation (8.11) for arbitrary subsets U ⊂ Ω if and only if

∂a

∂t
+ div(a v) = b+ divw

where v is the velocity field of Φ .

Proof. It follows by (8.9) and the Divergence Theorem directly that (8.11) is
equivalent to

∫

Φ(t,U)

(
∂a

∂t
+ div(a v)

)
dv =

∫

Φ(t,U)

b dv +
∫

Φ(t,U)

divw dv ,

by Reynolds’ Transport Theorem 8.1 and the Divergence Theorem. Thus
divergence theorem and the differential form imply the integral form. Con-
versely, the integral form implies the differential form because U ⊂ Ω is an
arbitrary subset. ��

Note however that the differential form demands higher smoothness of the
employed functions than the integral form.

At first, this result or (8.9) leads to the law of conservation of mass in
differential form (equation of continuity)

∂�

∂t
+ div(� v) = 0 . (8.12)

Then, by integration and application of the divergence theorem,
∫

Φ(t,U)

∂�

∂t
dv = −

∫

Φ(t,U)

div(�v) dv = −
∫

∂Φ(t,U)

� v · ndo .

The number −
∫

∂Φ(t,U)

� v · ndo describes the flux of mass in direction from

interior to exterior (decreasing).
Next, equation (8.12) is applied to a general vector field w and yields

D

Dt

∫

Φ(U,t)

�w dv =
∫

Φ(U,t)

[
w(

∂�

∂t
+ div(� v)) + �

Dw

Dt

]
dv =

∫

Φ(U,t)

�
Dw

Dt
dv .

(8.13)
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Then the balance law of momentum together with Theorem 8.4 and the Di-
vergence Theorem supply the law in differential form

�
Dv

Dt
− div t = � f . (8.14)

Finally (8.13), with scalar w = e , and the Divergence Theorem are applied to
the law of energy. Together we have the conservation laws in differential form
writing the material derivative explicitely:

∂�

∂t
+ div(� v) = 0

�
∂v

∂t
+ �(grad v)v − div t = � f

t = tT

�
∂e

∂t
+ � grad e · v − div tv + div q = � f · v + � r , e = ε+

v · v
2

.

(8.15)
This representation of the balance theorems is called non-conservative form.
For the conservative form we add the continuity equation (8.12), multiplied

by v and e respectively, to the second and fourth equation. Then, after some
simple transformations,

∂(� v)
∂t

+ div(� v vT ) − div t = � f

∂(� e)
∂t

+ div(� e v) − div tv + div q = � f · v + � r

. (8.16)

The conservative form is strongly recommended for solving compressible flow
problems (Zienkiewicz); note that v vT is a dyadic product (matrix).

The balance theorem of energy in (8.15) can be transformed further by
using the above strain tensor ε(v) where the volume-force density is cancelled
out:

Lemma 8.6.

�
∂ε

∂t
+ � (grad ε) · v − ε(v) : t + div q = � r .

Proof. Note that e is replaced here by the intrinsic energy ε . By (1.2) and
§1.2 (b)

div(tv) = v · div t + grad v : t = div t · v + t : ε(v)

because of the symmetry of t. On the other side, multiplying the equation of
momentum by v,

v · div t = � v · Dv
Dt

− � f · v .
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Substitution into the non-conservative equation of energy yields the assertion
because

D

Dt

v · v
2

= v · Dv
Dt

.

��
Axiom 8.4 is also called first law of thermodynamics in the above general

form. Remember the general notations in integral form

K =
1
2

∫

Φ(t,U)

� v · v dv kinetic energy

Eint =
∫

Φ(t,U)

� ε dv interior energy

DW
Dt

=
∫

Φ(t,U)

� f · v dv +
∫

∂Φ(t,U)

v · t(t, x)ndo mechanical power

DQ
Dt

=
∫

Φ(t,U)

� r dv −
∫

∂Φ(t,U)

q · ndo non-mechanical
power .

By these notations this first main theorem obtains the more stringent form

D

Dt

(
K + Eint − W − Q

)
= 0

where W denotes the mechanical energy and Q the non-mechanical energy.
Thus Axiom 8.4 says also that the individual energies may be added together
with the properly chosen sign and that the sum is constant. Cf. (Marsden), p.
144. (Of course total energy must be constant in a closed system.)

(f) Second Law of Thermodynamics Let

S(t, U) =
∫

Φ(t,U)

�(t, x) s(t, x) dv

be the entropy of the subvolume Φ(t, U) .

Axiom 8.5. (Second Law of Thermodynamics, Entropy Inequality) ∀ U ⊂ Ω :

D

Dt

∫

Φ(t,U)

�(t, x) s(t, x) dv

≥
∫

Φ(t,U)

�(t, x) r(t, x)
ϑ(t, x)

dv −
∫

∂Φ(t,U)

q(t, x) · n(t, x)
ϑ(t, x)

do
. (8.17)

If thermal source density r and energy-flux vector q are both zero then Axiom
8.5 has the more simple and well-known form

D

Dt

∫

Φ(t,U)

�(t, x)s(t, x) dv ≥ 0 .
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This inequality says that the entropy of a subvolume Φ(t, U) increases weakly
monotone with time t under the above assumptions.

Let us transform the left term of the inequality (8.17) by (8.13),

D

Dt

∫

Φ(t,U)

�(t, x)s(t, x) dv =
∫

Φ(t,U)

�(t, x)
D

Dt
s(t, x) ,

apply the divergence theorem to the second term on the right side of (8.17)
and remember

div(ϕw) = ϕ divw + gradϕ · w .

Then, because U arbitrary again, we obtain the second law in differential form

�
Ds

Dt
≥ � r

ϑ
− div

(
1
ϑ
q

)
=

� r

ϑ
− 1
ϑ

div q +
1
ϑ2

gradϑ · q ,

resp., after multiplication by ϑ > 0 ,

�ϑ
Ds

Dt
≥ � r − div q +

1
ϑ

gradϑ · q . (8.18)

Theorem 8.9. Let ψ = ε− ϑ s be the free specific energy then

�
(
s ϑ̇+ ψ̇

)
− div(tv) + div t · v +

1
ϑ

gradϑ · q ≤ 0 .

Proof. Observe

ψ̇ = ε̇− ϑ ṡ− ϑ̇ s =⇒ ϑ ṡ = ε̇− ϑ̇ s− ψ̇ .

Substitution into (8.18) yields

�
(
ε̇− ϑ̇ s− ψ̇

)
≥ � r − div q +

1
ϑ

gradϑ · q .

Substitution of the differential form of the energy law,

� ε̇ = � r − div q + ε(v) : t = � r − div q + div(tv) − div t · v ,

by Lemma 8.6, then yields the assertion. ��
Remember: A thermodynamic process is called

(1◦) adiabatic if q = 0 , (2◦) isentropic if ṡ = 0 ,
(3◦) homentropic if GradS = 0 , (4◦) isothermic if ϑ = const .

Finally it should be remarked that the initial quantities M(0, Ω) , L(0, Ω) ,
I(0, Ω) and E(0, Ω) — being constants of integration — may be chosen arbi-
trarily in all Axioms 8.1 to 8.4.

References: Mainly (Marsden).
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8.4 Material Forms

The conservation laws have to be pulled back, i.e., be transformed into mate-
rial form for further considerations and for computing solutions. In particular
the domain Φ(t, Ω) is unknown and one has to integrate over the known do-
main Ω at last. Also in Material Theory the response functions characterizing
the elastic material are developed at first relative to material coordinates.
They describe the stress of a material as response to the strain and are indis-
pensable for the construction of the stress tensor. Thereafter it is the question
whether and which terms of higher order may be neglected in further com-
putation since, finally, a linear relation between strain and stress tensor is
aimed at (Altenbach), (Ciarlet93). One supposes in linear elasticity that the
considered body changes its form in a negligible way under deformation (!).
As a consequence, the external forces retain their direction before and after
deformation (“dead loads”) and are thus independent of displacement. By
this way the difference between material and space coordinates is vanished to
some degree and is then no longer accentuated in notation.

The distinction between conservative and non-conservative representation
disappears obviously in material forms. Let

A(t,X) := a(t, Φ(t,X)) , B(t,X) := b(t, Φ(t,X))
E(t,X) := e(t, Φ(t,X)) , F (t,X) := f(t, Φ(t,X))
R(t,X) := r(t, Φ(t,X))

where the quantities on left side are to be understood as abbreviations. They
have no explicit physical meaning as functions of their arguments; only e.g.
A(0,X) = a(0,X) for t = 0 because Φ(0,X) = X . Further, let

J(t,X) := det∇Φ(t,X) , �ref(X) = mass density in Ω .

Moreover, it is frequently operated in elastic bodies with dead masses and
dead loads as mentioned above, i.e. the same values

�(t, x) = �ref(X) , f(t, x) := f(t,X) (= F (t,X)) , x = Φ(t,X) ,

are taken before and after displacement.
(a) We need the Piola transformations of the vectors q and w , and of

the tensor t,

Q(t,X) = [Cof ∇Φ(t,X)]T q(t, x) , x = Φ(t,X)

W (t,X) = [Cof ∇Φ(t,X)]T w(t, x)
T(t,X) = t(t, x)Cof ∇Φ(t,X) .

The first Piola-Kirchhoff stress tensor T is not symmetric hence the sec-
ond Piola-Kirchhoff stress tensor S(t,X) = ∇Φ(t,X)−1T(t,X) is intro-
duced. If the Cauchy stress tensor t is symmetric then also S is symmetric
because
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S(t,X) = J(t,X)∇Φ(t,X)−1t(t, Φ(t,X)[∇Φ(t,X)]−T . (8.19)

(b) The continuity equations now reads simply

M(t, U) =
∫

Φ(t,U)

�(t, x) dv =
∫

U

�(t, Φ(t,X))J(t,X) dV

=
∫

U

�ref(X) dV = constant,

hence in material form

�ref(X) = �(t, Φ(t,X))J(t,X) .

(c) Applying the results of the preceding section, in place of the general
rule (8.11) now the representation in material form

d

dt

∫

U

A(t,X)J(t,X) dV =
∫

U

B(t, x)J(t,X) dV +
∫

∂U

W (t,X) ·N(t,X) dO ,

is obtained by substitution, resp. the differential form

∂

∂t
(AJ) = B J + DivW . (8.20)

Then the conservation law of momentum reads in material form

d

dt

∫

U

�(t, Φ(t,X))V (t,X)J(t,X) dV =
∫

U

�ref
∂

∂t
V (t,X) dV

=
∫

U

�refF (t,X) dV +
∫

∂U

T(t,X) ·N(t,X) dO ,

(8.21)

and, after application of the divergence theorem, in local form

�ref(X)
∂

∂t
V (t,X) − Div T(t,X) = �ref(X)F (t,X) . (8.22)

(d) The conservation law of angular momentum is the same in material
form and in space-related form, namely t = tT , resp.

S(t,X) = ST (t,X) .

(e) Regarding Lemma 8.6, the conservation law of energy reads in material
form

�ref

(
∂E

∂t
+ (gradE) · V

)
− GradV : T − DivQ = �ref R . (8.23)
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But observe

GradV : T = GradV : [∇ΦS] = trace
(
[GradV ]T ∇ΦS

)
= (∇Φ)T GradV : S ,

hence because of the symmetry of S

GradV : T =
1
2
[
(∇Φ)T GradV + (GradV )T ∇Φ

]
: S =: Ẽ(V ) : S

therefore (8.22) yields

�ref

(
∂E

∂t
+ (gradE) · V

)
− Ẽ(V ) : S − DivQ = �ref R (8.24)

where S and Ẽ are symmetric tensors.
(f) Also the second law of thermodynamics is transformed by applying

Theorem 8.9 and reads in material form

�ref

(
S
∂Θ

∂t
+
∂Ψ

∂t

)
− Ẽ : S +

1
Θ

GradΘ ·Q ≤ 0 . (8.25)

(g) Let us now write x = X + u where u is a (small) displacement then

∇Φ(t,X) = I + ∇u(t,X) , det∇Φ(t,X) = 1 + trace∇u(t,X) + h.o.t. ,

and
[Cof ∇Φ(t,X)]T = det(∇Φ(t,X))[∇Φ(t,X)]−1

= 1 + trace∇u(t,X) + ∇u(t,X) + h.o.t. .

In linear theory of elasticity terms of higher order in u are neglected and

T(t,X) = ∇Φ(t,X)S(t,X) $ S(t,X)

E(V ) =
1
2
[
GradV + (GradV )T

]
$ Ẽ(V )

S(t,X;u) = C(t,X)E(u(t,X)) , C = CT ,

(8.26)

are taken approximatively where the last equation is called linear law of ma-
terial with the elasticity matrix C. Then we obtain the linearized equations

�ref(X) = �(t, Φ(t,X))J(t,X)

�ref(X)
∂

∂t
V (t,X) − Div S(t,X;u(t,X)) = �ref(X)F (t,X)

�ref(X)
(
∂E

∂t
(t,X) + (GradE(t,X)) · V (t,X)

)

−E(V (t,X)) : S(t,X;u(t,X)) − DivQ(t,X) = �ref(X)R(t,X)

.

(8.27)
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The corresponding equations in fluids are linearized in a similar way, but the
stress tensor S then depends on the velocity V .

It is customary to use the stress tensor (8.19) resp. its linearization in
literature but otherwise to start out from the conservation equations (8.15) in
space-related form; if necessary, it is integrated over the domain Ω in material
space (reference space).

(h) Variational Problem We multiply the second equation of (8.27) by
a test function W (t,X) =: ∂Φ(t,X) and integrate the result over the domain
Ω. Then, in a trivial way,

∫

Ω

W (t,X) ·
[
�ref(X)

∂

∂t
V (t,X) − Div S(t,X;u(t,X))

−�ref(X)F (t,X)
]
dV = 0 .

(8.28)
An application of formula (1.21),

∫

V

[
v · div T + grad v : T

]
dV =

∮

∂V

v · T ndO ,

writing V t = ü yields
∫

Ω

[�ref W · ü+ E(W ) : S(u)] dV −
∫

∂Ω

W · S(u)N dO =
∫

Ω

�ref W · F dV

(8.29)
in no longer entirely trivial way. This Galerkin form constitutes the basis
for numerical treatment; see also § 1.11(e). But, as mentioned repeatedly, the
test functions may not be chosen arbitrarily but have to regard the essential
boundary conditions of u in the concrete problem. Note also that the require-
ments on smoothness are weakened in passing from (8.28) to (8.29), resp. have
to be required additionally in the other direction.

(i) Extremal Principle If (8.29) is stationary, i.e., independent of time t ,
then this equation is variational equation of the extremal problem ∀ u ∈ u0+V

E(u) :=
∫

Ω

1
2
E(u) : S(u) dV −

∫

Ω

u ·K dV −
∫

∂Ω

u ·GdO = extr! .

(8.30)
K and G denote here the pulled back non-specific volume-force and surface-
force densities. The function u0 and the vector space V are problem-related
and are to be specified more precisely in the individual case.

(j) Hamilton’s Principle comes into play here by integration of (8.29)
w.r.t. time and ensuing simple partial integration; but stress tensor S and
volume-force density F must not depend explicitely on time (conservative
system). Permutation of integration in (8.29) yields at first
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∫

Ω

∫ τ

0

[−�ref W · ü− E(W ) : S(u) + �ref W · F ] dt dV

+
∫

∂Ω

∫ τ

0

W · S(u)N dt dO = 0 .

(8.31)
If the test functions W satisfy the boundary condition
W (0,X) = W (τ,X) = 0 , partial integration leads to

∫ τ

0

� Ẇ · u̇ dt = �W · u̇
∣∣∣
τ

0
−
∫ τ

0

�W · ü dt = −
∫ τ

0

�W · ü dt ,

hence, by (8.31),

0 = ∂A(u ;W ) :=
∫ τ

0

[ ∫

Ω

[
�ref Ẇ · u̇− E(W ) : S(u) + �refW · F

]
dV

+
∫

∂Ω

W · S(u)N dO
]
dt .

(8.32)
Let now

L(u) =
1
2

∫

Ω

[�ref u̇ · u̇− E(u) : S(u)] dV +
∫

Ω

�ref W ·F dV +
∫

∂Ω

u·S(u)N dO

be the Lagrange function and observe that E(W ) : S(u) = E(u) : S(W ) by
(8.26) then (8.32) is variational equation of the integral of action

A(u, [0, τ ]) =
∫ τ

0

L(u) dt . (8.33)

Theorem 8.10. (Hamilton’s principle) Let the system be conservative then
the solution u of

�ref ü− Div S(u) = �ref F

runs between two fixed points (t0, u0) and (t1, u1) such that the integral of
action A(v, [t0, t1]) has a stationary point v = u .

Hamilton’s principle is well established in physics even in its stronger form as
minimum principle but a stringent quantum-mechanical proof of this strong
form is still lacking (Denninger).

By using the interpretation

Ek(u) :=
1
2

∫

Ω

�ref u̇ · u̇ dV kinetic energy

Ed(u) :=
1
2

∫

Ω

E(u) : S(u) dV deformation energy

Ev(u) := −
∫

Ω

�ref F · u dV potential energy of volume forces

Es(u) :=
∫

∂Ω

u · S(u)N dO potential energy of surface forces
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the Lagrange function obtains the form

L = Ek − Ed − Ev − Es .

cf. (Marsden). Essentially, Hamilton’s principle is equivalent here to the
balance law of momentum by which the goal of the operation, namely finding
a proper boundary or initial value problem is faster attained in most cases.
On the other side, note that exactly the solutions of the Euler equations
(4.2) with q = L̃ are stationary point of the integral of action.

8.5 Linear Elasticity Theory

Hint: 1. All scalar products v · w below may be understood also as
matrix product v w where v on the left is a row vector v and w on
the right is a column vector.
2. By optical reasons and to take care of the reader, some concessions
to the classical notation are made in this chapter.

Applied constants:

ν =
λ

2(λ+ μ)
, 0 < ν < 1/2 Poisson’s ratio

E =
μ(3λ+ 2μ)

λ+ μ
> 0 elasticity modul

h thickness of plate

λ =
Eν

(1 + ν)(1 − 2ν)
Lamé constant

μ =
E

2(1 + ν)
Lamé constant

λ̃ =
λμ

λ+ 2μ
=

Eν

2(1 − ν2)
λ̃+ μ =

E

2(1 − ν2)

κ =
Eh3

12(1 − ν2)
=

h3

4
2
3
(λ̃+ 2μ) plate rigidity

χ =
3

3λ+ 2μ
compressibility

(a) Strain- and Stress Tensor Let Ω ⊂ R
3 be a “body” with sufficiently

smooth boundary ∂Ω = Γ , let X = (x, y, z) be a point of Ω and u = (u, v, w) :
Ω → R

3 a sufficiently smooth function (displacement).
The strain tensor is defined in linear elasticity theory by

ε := ε(u) := E(u) =
1
2
[
gradu+ (gradu)T

]

=

⎡
⎣

ux (uy + vx)/2 (uz + wx)/2
(vx + uy)/2 vy (vz + wy)/2
(wx + uz)/2 (wy + vz)/2 wz

⎤
⎦ =:

⎡
⎣

εx γxy/2 γxz/2
γxy/2 εy γyz/2
γxz/2 γyz/2 εz

⎤
⎦
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where εx , εy , εz are the stretches and γxy , γxz , γyz are the shifts . The stress
tensor has to be defined by a law of material being an axiom in mathematical
sense. We write

σ := σ(u) := S(t,X;u) =:

⎡
⎣
σx τxy τxz

τxy σy τyz

τxz τyz σz

⎤
⎦

where σx , σy , σz are the normal stresses and τxy , τxz , τyz the shear stresses .
Shifts and shear stresses differ formally by the factor two because of Voigt’s
representation in (e).

(b) Extremal Problem and Variational Problem The displacement
u of a solid body (Ω, �,σ) is solution of a extremal problem regarding the total
potential energy

∀ v ∈ u0 + U :
∫

Ω

1
2
ε(v) : σ(v) dΩ −

∫

Ω

v · k dΩ −
∫

Γ

v · g dΓ = min!

(8.34)
where k is the volume-force density and g the surface-force density. The
function space U is to be specified more precisely. By §§ 1.11, 4.1, a variational
problem (Euler equation) is associated to the extremal problem (8.34) which
is called weak problem in the sequel,

∃ u ∈ u0 + U ∀ v ∈ U :∫

Ω

ε(v) : σ(u) dΩ =
∫

Ω

v · k dΩ +
∫

Γ

v · g dΓ
. (8.35)

This problem constitutes the weak form of the law of conservation of momen-
tum and is the basis of numerical approach by the finite element method.

(c) Again an application of the divergence theorem leads to corresponding
boundary value problem. By (1.2) and (1.21), and because σ(u) is symmetric

∫

Ω

ε(v) : σ(u) dΩ =
∫

Ω

1
2
(
grad v + (grad v)T

)
: σ(u) dΩ

=
∫

Ω

grad v : σ(u) dΩ = −
∫

Ω

v · div σ(u) dΩ +
∮

Γ

v · σ(u)ndΓ

if u satisfies the required smoothness. By this way one obtains the weak form
∫

Ω

v · [−div σ(u) − k] dΩ =
∮

Γ

v · [g − σ(u)n] dΓ , u ∈ u0 + U , (8.36)

where v ∈ U is at present an arbitrary test function. We suppose that the
boundary Γ of Ω is partitioned into Dirichlet boundary and Cauchy

boundary following (9.1) and that u is specified at the boundary ΓD by u = h.
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The function u0 in V then has to satisfy u0 = h on ΓD and consequently v = 0
on ΓD in order that every variation u + εv is an element of the affine space
u0 +V for sufficiently small |ε| ; cf. §§ 1.11, 9.1. On choosing first v arbitrary
with v = 0 on the entire boundary it follows that the square-bracketed part
on the left side must be zero. Thereafter, on choosing v on ΓC arbitrary the
square-bracketed term on the right side must be zero. Together we obtain by
this way the boundary value problem

−div σ(u) = k in Ω
u = h on ΓD

σ(u)n = g on ΓC

(8.37)

where the first equation represents the local law of conservation of momentum.
Fazit: The solution of the weak problem (8.35) fulfils the dynamic boundary
condition σ(u)n = g on boundary ΓC . Contrary to the Dirichlet conditions,
this boundary condition is regarded by finite element solutions only in passing
to the limit of infinitesimal approximation.

Further combinations of boundary conditions are deduced if the boundary
term of the waek form is partitioned in the same way as in 8.10(b).

(d) St Venant-Kirchhoff Material of linear elasticity has by definition
the stress tensor

σ(u) := S(u) = 2μ ε(u) + λ trace(ε(u))δ (8.38)

(Hooke’s law) where μ and λ are the Lamé constants; cf. (Ciarlet93), p. 130.
We also may write instead

σ =
E

1 + ν

(
ε +

ν

1 − 2ν
trace(ε) δ

)
(8.39)

which allows the inversion

ε =
1 + ν

E
σ − ν

E
trace(σ) δ (8.40)

by trace δ = 3 . Recalling

ε : σ = 2μ ε : ε + λ(trace ε) ε : δ , ε : δ = trace(ε) = div u ,

the associated extremal problem (8.34) obtains the form

∫

Ω

1
2
[
2μ ε(v) : ε(v) + λ (div v)2

]
dΩ −

∫

Ω

v · k dΩ −
∫

ΓC

v · g dΓ = min!

∀ v ∈ U such that v = h on ΓD

(8.41)
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Further, recall

div(div(u)δ) = [grad div u]T (column vector)
div([gradu]T ) = [grad div u]T (column vector) ,

hence, writing gradϕ as column vector,

div σ(u) = μ
[
div gradu+ div[gradu]T

]
+ λ [grad div u]T

= μΔu+ (λ+ μ) grad div u .
(8.42)

Substitution into (8.37) yields the boundary value problem

−μΔu− (λ+ μ) grad div u = k in Ω

u = h on ΓD

[2μ ε(u) + λ(div u)δ]n = g on ΓC

. (8.43)

(e) Notation after (Voigt). Stress tensor and strain tensor are both deter-
mined by six components respectively because of symmetry, therefore a strain
vector ε ∈ R

6 and a stress vector σ ∈ R
6 may be associated to the tensor ε

resp. to the tensor σ ,

ε = [εx, εy, εz, γxy, γxz, γyz]T

σ = [σx, σy, σz, τxy, τxz, τyz]T

such that ε : σ = ε · σ . By this way the uncomfortable scalar product of
tensors may be replaced by a simple scalar product of vectors. Furthermore,
a operator matrix D is introduced conveniently and a symmetric elasticity
matrix C by

σ = Cε , ε = Du , D =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂x 0 0
0 ∂y 0
0 0 ∂z

∂y ∂x 0
∂z 0 ∂x

0 ∂z ∂y

⎤
⎥⎥⎥⎥⎥⎥⎦
. (8.44)

These notions allow a more lucid representation

ε(v) : σ(u) = ε(v) · σ(u) = vTDTCDu , (8.45)

which is most suitable for numerical approach.
By (8.35) and (8.41) we now obtain the representation

∫

Ω

vTDTCDudΩ =
∫

Ω

v · k dΩ+
∫

ΓC

v · g dΓ ∀ v ∈ V such that v = 0 on ΓD
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where C is the elasticity matrix and its inverse C−1 the compliance matrix,

C =
E

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1

2 (1 − 2ν) 0 0
0 0 0 0 1

2 (1 − 2ν) 0
0 0 0 0 0 1

2 (1 − 2ν)

⎤
⎥⎥⎥⎥⎥⎥⎦
,

C−1 =
1
E

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The boundary problem (8.37) may also be derived via (8.45) for checking.
Using the matrices

D1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, D2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
, D3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 1
0 0 0
1 0 0
0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

we have
ε = D1[gradu]T + C D2[grad v]T + C D3[gradw]T ,

hence
ε · σ =

[
(gradu)DT

1 + (grad v)DT
2 + (gradw)TDT

3

]
σ

=
[
(gradu)σ1 + (grad v)σ2 + (gradw)σ3

]

σ1 = [σx , τxy , τxz]T , σ2 = [τxy , σy , τyz]T , σ3 = [τxz , τyz , σz]T .

Consequently

ε · σ = [gradu · σ1 + grad v · σ2 + gradw · σ3] .

Finally, the relation
∫

Ω

gradϕ · w dΩ = −
∫

Ω

ϕ divw dΩ +
∮

Γ

ϕw · dΓ , dΓ := ndΓ ,

yields after suming up

∫

Ω

ε(v) · σ(u) dΩ = −
∫

Ω

v · div σ(u) dΩ +
∮

Γ

v · σ(u)ndΓ .
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8.6 Discs

Let Ω̃(x, y, z) = Ω(x, y) × [−h/2 , h/2] be the geometric shape of a disc (flat
body with constant thickness h) where the boundary is partitioned again by
Γ = ΓD ⊕ ΓC as proposed in (9.1); let the thickness h of the disc be small
against the diameter.

(a) Plane Stress A deformation in z-direction is allowed, but external
forces k and g act only in (x, y)-plane hence have no z-component. Here we
suppose that

u = u(x, y) , v = v(x, y) , w(x, y, z) = zε33(x, y)
σ3i = σi3 = 0 , i = 1, 2, 3

does hold for the vector of displacement u = (u, v, w) and the stress tensor σ .
Then the general linear law of material (8.40) becomes the law of material for
plane stress. Note first that εi3 = ε3i = 0 , i = 1, 2 , is a direct consequence
and that σ33 = 0 yields by resolution

ε33 = − ν

1 − ν
(ε11 + ε22) .

Now ε33 may be cancelled out and we obtain a law of material in R
2 for the

vector u = (u, v)

σ =
E

1 + ν

[
ε +

ν

1 − ν
(ε11 + ε22)δ

]
= 2μ ε + 2λ̃ trace(ε)δ

ε =
1 + ν

E

[
σ − ν

1 + ν
(σ11 + σ22)δ

]
.

(8.46)

The space variable z does no longer occur therefore this equation and (8.38)
leads to a boundary problem for u = (u, v) in the same way as in (8.43)

−μΔu− (2λ̃+ μ) grad div u = k in Ω

u = h on ΓD

[2μ ε(u) + 2λ̃(div u)δ]n = g on ΓC

. (8.47)

Further combinations of boundary conditions are possible here, too. By intro-
ducing the vectors

ε = [εx, εy, γxy]T , σ = [σx, σy, τxy]T ,

we have again ε : σ = ε · σ , and obtain by (8.46)

σ =
E

1 − ν2

⎡
⎣

1 ν 0
ν 1 0
0 0 (1 − ν)/2

⎤
⎦ ε =: CSε . (8.48)
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The matrix CS is the elasticity matrix of plane stress. Thereby the conserva-
tion law of momentum leads to the total energy of a disc in plane stress after
integration over the space variable z ,

E(u) = h

∫

Ω

[
1
2

ε(u) : σ(u) − k · u
]
dΩ − h

∫

ΓC

g · u dΓ −
∑

i

F i · u (8.49)

where still some pointwise external forces F i are added. More detailed, for
u = (u, v) ,

ε(u) : σ(u) = ε · σ = [εx, εy, γxy]
E

1 − ν2

⎡
⎣

1 ν 0
ν 1 0
0 0 (1 − ν)/2

⎤
⎦
⎡
⎣
εx

εy

γxy

⎤
⎦

=
E

1 − ν2

[
ε2x + 2νεxεy + ε2y +

1
2
(1 − ν)γ2

xy

]

=
E

1 − ν2

[
u2

x + 2νuxvy + v2
y +

1
2
(1 − ν)(uy + vx)2

]

= uTDTCSDu
(8.50)

where CS is the elasticity matrix of (8.48) and D is the operator matrix,

D =

⎡
⎣
∂x 0
0 ∂y

∂y ∂x

⎤
⎦ .

(b) Plane Strain A deformation in z-direction is not possible here. It is
supposed that external forces on the disc do prevent this. Also we suppose
here

u = u(x, y) , v = v(x, y) , w(x, y) = 0
ε3i = εi3 = 0 , i = 1, 2, 3

.

Then the general law of material (8.39) leads to the law of material for plane
strain as well. Note that σ33 = ν(σ11 + σ22) because ε33 = 0 . Therefore σ33

may be eliminated and we obtain for u = (u, v) :

σ =
E

1 + ν

[
ε +

ν

1 − 2ν
(ε11 + ε22)δ

]
= 2με + λ trace(ε)δ

ε =
1 + ν

E
[σ − ν(σ11 + σ22)δ] .

(8.51)

The associated boundary problem reads:

−μΔu− (λ+ μ) grad div u = k in Ω

u = h on ΓD

[2με(u) + λ(div u)δ]n = g on ΓC

, (8.52)
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and the law of material for stress and strain vector is by (8.51)

σ =
E

(1 + ν)(1 − 2ν)

⎡
⎣

1 − ν ν 0
ν 1 − ν 0
0 0 (1 − 2ν)/2

⎤
⎦ ε =: CV ε .

Again the total energy of a disc under plane strain is found after integration
over z and has the same form as (8.49) with elasticity matrix CS replaced
by the matrix CV . Let u = (u, v) and let D be the operator matrix of 8.50)
again. Then

ε : σ = ε · σ = [εx, εy, γxy]
E

(1 + ν)(1 − 2ν)

⎡
⎣

1 − ν ν 0
ν 1 − ν 0
0 0 (1 − 2ν)/2

⎤
⎦
⎡
⎣
εx

εy

γxy

⎤
⎦

=
E

(1 + ν)(1 − 2ν

[
(1 − ν)ε2x + 2νεxεy + (1 − ν)ε2y +

1
2
(1 − 2ν))γ2

xy

]

=
E

(1 + ν)(1 − 2ν)

[
(1 − ν)u2

x + 2νuxvy + (1 − ν)v2
y +

1 − 2ν
2

(uy + vx)2
]

= uTDTCV Du .
(8.53)

8.7 Kirchhoff’s Plate

(a) Extremal Problem and Variational Problem Let again
Ω̃(x, y, z) = Ω(x, y) × [−h/2, h/2] and let h be small against the diameter of
Ω. In a point (x, y) of the middle plane z = 0 , let Nx be the image of the
cross-section perpendicular to the x-axis and Ny the image of the cross-section
perpendicular to the y-axis. Then the intersection of Nx and the (x, z)-plane
has an angle ϕ1(x, y) relative to the z-axis and the intersection of Ny and the
(y, z)-plane has an angle ϕ2(x, y) relative to the z-axis, where we suppose that
Nx and Ny are planes again. Let u = (u1 , u2 , u3) denote the displacement.
Then we have by this assumption

u1 = −z ϕ1(x, y) , u2 = −z ϕ2(x, y) , u3 = w(x, y) ; (8.54)

cf. the considerations in § 7.1. It is now supposed in Kirchhoff’s plate or
shear-rigid plate that Nx and Ny remain perpendicular to the middle plane
before and after deformation. Moreover, it is supposed that

σ33 ≡ σz = 0 und ki = 0 , i = 1, 2 , k3 =: f , (8.55)

for the volume-force densities k since h is small, where the last condition says
that no bending forces appear in (x, y)-direction. Recalling that
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tanϕ1 = wx =⇒ ϕ1 = arctanwx = wx + h.o.t. ,

we may write wx = ϕ1 and wy = ϕ2 in first order approximation and obtain

u1 = −z wx(x, y) , u2 = −z xy(x, y) , u3 = w(x, y) (8.56)

by (8.54). Thereby σ13 = τxz = 0 , σ23 = τyz = 0 by (8.44), and altogether

εx = u1,x = −z wxx, εy = u2,y = −z wyy, εz = 0,
γxy = u1,y + u2,x = −2zwxy, γyz = u2,z + u3,y = 0, γzx = u3,x + u1,z = 0 .

So we may write with slight modification

zε(w) = −z
[
wxx 2wxy

2wxy wyy

]
, zε(w) = −z[wxx , wyy , wxy]T .

The general law of material (8.38) applied to this strain tensor yields formally
the same law of material as in plane stress

zσ(w) =
zE

1 + ν

[
ε(w) +

ν

1 − ν
trace(ε(w))δ

]
= z

[
2με(w)+2λ̃ trace(ε(w))δ

]
,

(8.57)
hence

σ(w) = zCSε(w) = −zCSDw , D = [∂xx , ∂yy , ∂xy]T

by (8.48), resp.

z2ε(v) : σ(w) = z2ε(v) · σ(w) = z2vDTCSDw .

By integration w.r.t. z from −h/2 to h/2
∫

Ω̃

z2ε(v) : σ(w) dΩ̃ =
h3

12

∫

Ω

ε(v) : σ(w) dΩ ≡ h3

12

∫

Ω

ε(v) · σ(w) dΩ .

The general extremal problem for Kirchhoff’s plate now reads

E(w) =
∫

Ω

[
1
2
h3

12
ε(w) : σ(w) − hw f

]
dΩ

+ h

∮

Γ

(
1
2
αw2 + βw

)
dΓ + h

∮

Γ

(
1
2
γ w2

n + δwn

)
dΓ

= min!

(8.58)

where α , β , γ , δ : Γ � s → R , α(s) ≥ 0 , γ(s) ≥ 0 . The associated varia-
tional problem reads for present

h3

12

∫

Ω

ε(v) : σ(w) dΩ ≡ h3

12

∫

Ω

ε(v) : σ(w) dΩ

= h

∫

Ω

v f dΩ − h

∮

Γ

v(αw + β) dΓ − h

∮

Γ

vn(γwn + δ) dΓ ,
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where v = v(x, y) ∈ R is a test function (virtual displacement), and suitable
boundary conditions are to be specified.

(b) Transformation In detail

σx =
E

1 + ν

[
−zwxx +

ν

1 − ν
(−z(wxx + wyy))

]
= − Ez

1 − ν2
[wxx + νwyy] ,

σy = − Ez

1 − ν2
[νwxx + wyy], τxy = − Ez

1 − ν2
wxy ,

hence
∫

Ω̃

σ(w) · ε(w) dΩ̃

=
E

1 − ν2

∫

Ω̃

z2
[
(wxx + νwyy)wxx + (νwxx + wyy)wyy + 2(1 − ν)w2

xy

]
dΩ

=
h3

12

∫

Ω

E

1 − ν2

[
w2

xx + 2νwxxwyy + w2
yy + 2(1 − ν)w2

xy

]
dΩ

or

h3

12

∫

Ω

σ(w) · ε(w) dΩ = κ

∫

Ω

[
Δ2w + 2(1 − ν)(w2

xy − wxxwyy)
]
dΩ

(8.59)
where

κ =
Eh3

12(1 − ν2)

is the plate rigidity. Then, after simple computation,

ε(v) ·σ(w) =
E

1 − ν2

[
ΔvΔw+(1−ν)

[
(vywxy −vxwyy)x +(vxwxy −vywxx)y

]]
.

(8.60)
On using the common abbreviations vn = ∇v · n , vnn = ∇∇v[n, n] =
nT [∇∇v]n , etc., remember that

ΔvΔw = div(Δw grad v) − grad v gradΔw ,
∫

Ω

div(Δw grad v) dΩ =
∮

Γ

Δw(grad v · n) dΓ =
∮

Γ

Δwvn dΓ ,
∫

Ω

grad v gradΔwdΩ =
∫

Ω

div(v gradΔw) dΩ −
∫

vΔ2w dΩ

=
∮

Γ

v(Δw)n dΓ −
∫

Ω

vΔ2w dΩ .

So, altogether, we obtain
∫

Ω

ΔvΔw dΩ =
∫

Ω

vΔ2w dΩ −
∮

Γ

v(Δw)n dΓ +
∮

Γ

Δwvn dΓ .
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for the first term in (8.59). As concerns the second term, observe the repre-
sentations

dn = n1dx+ n2dy, dx = n1dn− n2dt ,

dt = −n2dx+ n1dy, dy = n2dn+ n1dt ,

where n denotes the normal and t the tangent on the boundary. Application
of the divergence theorem yields

∫

Ω

[(vywxy − vxwyy)x + (vxwxy − vywxx)y] dΩ

=
∮

Γ

[n1(vywxy − vxwyy) + n2(vxwxy − vywxx)] dΓ

=
∮

Γ

vn

[
2n1n2wxy − n2

2wxx − n2
1wyy

]
dΓ

+
∮

Γ

vt

[
n1n2(wyy − wxx) + (n2

1 − n2
2)wyy

]
dΓ

= −
∮

Γ

vnwtt dΓ +
∮

Γ

vtwnt dΓ .

After substitution into (8.59), the weak problems now reads as follows,

h3

12

∫

Ω

ε(v) · σ(w) dΩ

= κ

[∫

Ω

vΔ2w dΩ −
∮

Γ

v[Δw − (1 − ν)wtt]n dΓ
]

+κ
∮

Γ

vn[Δw − (1 − ν)wtt] dΓ

= h

∫

Ω

v f dΩ − h

∮

Γ

v(αw + β) dΓ .− h

∮

Γ

vn(γwn + δ) dΓ .

(8.61)

(c) By the usual argumentation, this problem leads to a Boundary Value
Problem of order four,

κΔ2w = h f in Ω

v
[
κ[Δw − (1 − ν)wtt]n − h(αw + β)

]
= 0 on Γ

vn

[
κ[Δw − (1 − ν)wtt] − h(γwn + δ)

]
= 0 on Γ

(8.62)

When w resp. wn are given on some part of the boundary, the test function
v resp. vn must vanish on that part. This leads altogether to a diversification
of the boundary conditions into four different types:

w fixed, κ[Δw − (1 − ν)wtt]n − h(αw + β) free
w free, κ[Δw − (1 − ν)wtt]n − h(αw + β) zero
wn fixed, κ[Δw − (1 − ν)wtt] − h(γwn + δ) free
wn free, κ[Δw − (1 − ν)wtt] − h(γwn + δ) zero .
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More exactly, let Γ1 , Γ2 , ΓA , ΓB , ΓC , ΓD be open subsets of Γ , and let

Γ = Γ1 ∪ Γ2, Γ1 ∩ Γ2 arbitrary,

Γ1 = ΓA ∪ ΓB , ΓA ∩ ΓB = ∅ , Γ2 = ΓC ∪ ΓD , ΓC ∩ ΓD = ∅.
Then the inhomogenous boundary problem (8.62) has the form

κΔ2w = h f in Ω,

w = p on ΓA essential BC
κ[Δw − (1 − ν)wtt]n = h(αw + β) on ΓB natural BC
wn = q on ΓC essential BC
κ[Δw − (1 − ν)wtt] = h(γwn + δ) on ΓD natural BC .

(8.63)

Thus, in case α = β = γ = δ = 0 , the boundary conditions w = p and wn = q
are essential and [Δw − (1 − ν)wtt]n = 0 , Δw − (1 − ν)wtt = 0 are natural
boundary conditions.

Consider, e.g., the clamped plate then Γ = ΓA = ΓC , ΓB = ΓD = ∅ and

κΔ2w = h f in Ω,

w = p on Γ, essential BC
wn = q on Γ, essential BC

.

On the other side, Γ = ΓA = ΓD , ΓB = ΓC = ∅ in the simply supported
plate, and

κΔ2w = h f in Ω,

w = p on Γ, essential BC
κ[Δw − (1 − ν)wtt] = h(γwn + δ) on Γ, natural BC

.

(d) Let the Boundary Γ is parametrized w.r.t. arc length s �→ x(s) . The
normal n pointing to the exterior of the plate and the tangent t in x(s) form
a cartesian coordinate system. Then, noting that Δw remains invariant under
rotations,

Δw = wxx + wyy = wtt + wnn , Δw − (1 − ν)wtt = wnn + νwtt .

Twofold differentiation w.r.t. the arc length yields

w(x(s)) = p(s) , ∇w(x)x′ = p′ , ∇w(x)x′′ + ∇∇w(x)[x′, x′] = p′′.

Now x′′(s) = −χ(s)n(s) where χ(s) is the curvature by Frenet’s formulas of
§ 1.3 hence

∇∇w(x(s))[x′(s), x′(s)] = wtt(x(s)) = χ(s)wn(x(s)) + p′′(s) .
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By consequence on ΓA ∩ ΓD

wnn + νwtt = 0 , Δw = (1 − ν)(χwn + p′′)

whereby the curvature is introduced explicitely into the boundary conditions.
The clamped plate has only essential boundary conditions and enjoys

therefore a preferential treatment; in contrast, w = p is essential and wnn +
ν(χwn + p′′) = 0 in the simply supported plate. If now a curvilinear bound-
ary is replaced by a polygon then obviously all terms with nonzero curvature
disappear. Therefore a convergent approximation is impossible in this case
(Babuska paradoxon; cf., e.g., (Babuska63), (Babuska90)).

(e) Example To show the influence of curvature in the simply supported
plate we introduce −Δw = v and replace the boundary value problem (8.63)
of order four by two boundary problems of order two,

−κΔv = f in Ω

v = (ν − 1)wtt = (ν − 1)(χwn + p′′) on Γ

−Δw = v in Ω

w = p on Γ .

Both systems are solved alternating in several iteration steps, the exact solu-
tion is introduced via the right side f , and wn is approximated numerically.
For starting value we choose v = 0 on Γ . In the following three examples,
the unit circle is the basic domain Ω where the curvature on the boundary is
χ = 1 . We set κ = 1 and Poisson’s ratio ν is fixed on the boundary by the
relation v = (ν − 1)[χwn + p′′] . The triangulation is generated by

[p,e,t] = initmesh(’circleg’,’Hmax’,0.2);
p = jigglemesh(p,e,t);.

The solution is computed by the program assempde.m of the Matlab PDE-

Toolbox i.e. with simple linear triangular elements.

Example 8.2. w(r, ϕ) = (1 − r2)(5 − r2) , w(1, ϕ) = 0 , ν = 0 , Δ2w = 64 .

Example 8.3. w(r, ϕ) = (1 − 2r2)(5 − r2) , w(1, ϕ) = −4 , ν = 1/7 ,
Δ2w = 128 .

Example 8.4. w(r, ϕ) = (r6 −2r4 +16r2) cos(2ϕ)/10 , w(1, ϕ) = − cos(2ϕ)/2 ,
ν = 1/5 , Δ2w = 384r2 cos(2ϕ)/10 (Figs. 8.1 and 8.2).

Example 8.5. w(r, ϕ) = (2r6 − 5r4) cos(2ϕ)/12 , w(1, ϕ) = − cos(2ϕ)/4 ,
ν = 0 , Δ2w = 64r2 cos(2ϕ) .
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Table 8.1. Maximum Error:

χ = 0 χ = 1, 5 steps χ = 1, 10 steps

Ex. 8.2 2.0534 0.1692 0.0812

Ex. 8.3 3.1077 0.1865 0.1133

Ex. 8.4 0.0190 0.0061 0.0061

Ex. 8.5 0.0188 0.0076 0.0076
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Figure 8.1. Example 8.4, solution
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Figure 8.2. Example 8.4, error scaled
(×10−3)

8.8 Von Karman’s Plate and the Membrane

We proceed at first as in Kirchhoff’s plate. Let the thickness h be small
again and let volume force density k act only in z-direction. Then k =
[0, 0, f ]T is the external force and

u1 = −z wx(x, y), u2 = −z wy(x, y), u3 = w(x, y), ũ = (u1, u2), u = (ũ, w)

where u ∈ Ω̃ = Ω× [−h/2 , h/2] ⊂ R
3 . But in addition to the bending energy

now a strain energy is introduced with the nonlinear strain tensor

ε̃ := ε(u) =
1
2
[
grad ũ+ (grad ũ)T + (gradw)T gradw

]

=
[

u1,x + w2
x/2 (u1,x + u2,y + wxwy)/2

(u1,x + u2,y + wxwy)/2 u2,y + w2
y/2

]



422 8 Continuum Theory

where gradw shall be a row vector hence (gradw)T gradw is a dyadic product.
Therefore

ε = [εx, εy, γxy]T = [u1,x + w2
x/2 , u2,y + w2

y/2 , u1,x + u2,y + wxwy]T .

Also, in the same way as in Kirchhoff’s plate

σ = C ε , σ̃ = C ε̃ ,

where C is the elasticity matrix of (8.48) and C−1 the compliance matrix,

C =
E

1 − ν2

⎡
⎣

1 ν 0
ν 1 0
0 0 (1 − ν)/2

⎤
⎦ , C−1 =

1
E

⎡
⎣

1 −ν 0
−ν 1 0
0 0 2(1 + ν)

⎤
⎦ .

The total energy is linearly composed of the bending energy and the strain
energy and leads to extremal problem

E(u) =
∫

Ω̃

[
1
2
[ε(u) : σ(u) + ε̃(u) : σ̃(u)] − f u3

]
dΩ̃ = min! (8.64)

in the case where surface forces are disregarded; cf. (Landau). For a justi-
fication of this choice we refer to (Ciarlet97). We consider further only the
boundary condition w = 0 , wn = 0 on Γ such that boundary integrals dis-
appear. Because of the nonlinearity of ε̃, the variational problem reads now
under observation of symmetry

∫

Ω̃

[ε(v) : σ(u) + δε̃(u; v) : σ̃(u) − fv3] dΩ̃ = 0

where v is a test function and

δε̃(u; v) =
1
2
[grad ṽ + (grad ṽ)T ] + (gradw)T grad v3 , ṽ = [v1, v2]T

is the first variation of ε̃ . The first part stems form pure bending and yields
in the same way as in the clamped Kirchhoff plate

∫

Ω̃

ε(v) : σ(u) dΩ̃ $
∫

Ω

ε(v3) : σ(w) dΩ = κ

∫

Ω

v3Δ
2w dΩ .

Regarding the symmetry of σ̃ we obtain for the second part after integrating
over z ∫

Ω̃

δε̃(u; v) : σ̃(u) dΩ̃ =
h

2

∫

Ω

[
grad(ṽ) + (grad(ṽ))T

+(gradw)T grad v3 + (grad v3)T gradw
]

: σ̃(u) dΩ

= h

∫

Ω

[
(grad(ṽ))T + (grad v3)T gradw

]
: σ̃(u) dΩ .
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Partial integration yields because of the zero boundary conditions
∫

Ω

δε̃(u; v) : σ̃(u) dΩ = −h
∫

Ω

[
ṽ · div σ̃(u) + v3 div{σ̃(u)(gradw)T }

]
dΩ .

Together the variational equation of the extremal problem (8.64) has the form
∫

Ω

[
v3

(
κΔ2w − hdiv{σ̃(u)(gradw)T } − h f

)
− h ṽ · div σ̃(u)

]
dΩ = 0 .

Accordingly, the boundary value problem

κΔ2w − hdiv(σ̃(u)(gradw)T ) = h f , div σ̃ = 0 , κ =
Eh3

12(1 − ν)2
(8.65)

is associated to the extremal problem (8.64) and the above boundary condi-
tions remain the same. Recall from § 1.2(c2) that

div(Sv) = v · divS + grad v : S for S = ST ∈ R
3
3 .

Now one introduces the scalar Airy stress function q by

σ̃x =
∂2q

∂y2
, σ̃y =

∂2q

∂x2
, τ̃xy = − ∂2q

∂x∂y

(note that ∇2q �= σ) and the symmetric product

[u, v] = uxxvyy + uyyvxx − 2uxyvxy

then grad(gradw)T : σ̃(u) = [q, w] and (8.65) reads simply

κΔ2w − h [q, w] = h f . (8.66)

Conversely the relations

ε̃x =
1
E

(σ̃x − νσ̃y) , ε̃y =
1
E

(σ̃y − νσ̃x) , γ̃xy = 2
1 + ν

E
τ̃xy

follow from ε̃ = C−1σ̃ hence with Airy’s stress function q

u1,x +
w2

x

2
=

1
E

(qyy − νqxx) , u2,y +
w2

y

2
=

1
E

(qxx − νqyy) ,

u1,y + u2,x + wx wy = −2
1 + ν

E
qxy .

The first equation is differentiated two-times w.r.t. y, the second two-times
w.r.t. x and the third w.r.t. x and y. Thereafter the first and second equa-
tion are added and then the third is subtracted. Together we obtain Von

Karman’s equations of nonlinear plate theory,
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κΔ2w − h [q, w] = h f

Δ2q +
E

2
[w,w] = 0

. (8.67)

A membrane is to be understood as a thin plate which is strongly stretched
by plane forces attacking at boundary. Moreover one supposes that the com-
ponents of the stress tensor are constant throughout. Then the first term in
(8.65) may be neglected and one obtains the condition for equilibrium

hdiv(σ̃ gradw) + hf = 0 . (8.68)

Note that hf has the dimension of pressure. If now the hσ̃ = μδ holds
for the stress tensor with unity tensor δ and the boundary-force density μ
[force/length] is constant then we get eventually the Laplace equation

μΔw + hf = 0 . (8.69)

8.9 On Fluids and Gases

Here the velocity field u is the unknown vector field to be computed and no
longer the displacements. Let therefore v or δu be the associated test function
(virtual displacement of u).

The tension in a fluid depends only on the velocity

u(t, x) :=
∂Φ

∂t
(t,X) , x = Φ(t,X) ,

(besides t) and the stress tensor has per definitionem the form

t(t, x) = σ(t, u(x, t)) − p(t, x)δ , or briefly t = σ(u) − pδ (8.70)

where the scalar function p denotes the initial hydrostatic pressure indepen-
dent of the strain rate and σ(t, 0) = 0 .

(a) Conservation Laws Recalling div(p(t, x)δ) = grad p(t, x) , the dif-
ferential (local) laws of conservation read now in non-conservative form

∂�

∂t
+ div(� u) = 0

�
∂u

∂t
+ �(gradu)u − div σ + grad p = �f

�
∂e

∂t
+ � grad e · u − div(σ u) + div(p u) + div q = �f · u + � r

(8.71)
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where e = ε+ u · u/2 is to be inserted and sometimes also

(gradu)u =
1
2

grad(u · u) − u× rotu .

(b) Notations (also to remember):

(1◦) A perfect fluid (inviscid fluid) is defined by σ = 0 , then there exist no
shear forces at the surface of the body hence also no vorticities.

(2◦) A fluid is called incompressible if the deformation Φ satisfies

Φ(t, U) ≡
∫

Φ(t,U)

dv =
∫

U

det[gradΦ(t,X)] dU = constant

for all subvolumes U and all times t . By Lemma 8.4

d

dt
Φ(t, U) =

∫

U

det[gradΦ(t,X)] div u(t, Φ(t,X)) dU = 0 ,

hence a fluid is incompressible if and only if div u(t, x) = 0 , i.e., if the
velocity field has no sources. By the so-called equation of continuity,

D�

Dt
+ �div u = 0 , (8.72)

this is the case if and only if D�/Dt = 0 .
(3◦) A fluid is homogenous if � does not depend on the space variable x, then

D�/Dt = d�/dt . By (8.72) a fluid is homogenous and incompressible if
and only if the mass density � is constant.

(4◦) A compressible fluid is a gas.
(5◦) A fluid is isentropic if its entropy is constant. This means that thermal

source density and thermal flux vector in the balance law of energy vanish.
Then interior energy depends only on � and u besides time and space.

(6◦) Recall that a body or fluid is said to isotropic if its material properties are
the same in all directions. A (viscous) fluid or gas is called (linear isotropic)
Newtonian fluid if Green-Lagrange strain tensor and stress tensor
have per definitionem the form

ε(u) =
1
2
[
gradu+ (gradu)T

]

σ(u) = 2μ1ε(u) + μ2 trace ε(u)δ

= 2μ1ε(u) − 2
3
μ1(div u)δ +

(
2
3
μ1 + μ2

)
div uδ

= 2μ1

[
ε(u) − 1

3
(div u)δ

]
+ μ3 (div u)δ , μ3 := (2μ1 + 3μ2)/3

(8.73)
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μ1 first coeff. of viscosity, shear viscosity or simply viscosity
μ2 second coeff. of viscosity, volume viscosity
μ3 volumetric viscosity, bulk viscosity, bulk modulus

ν = μ1/� kinematic viscosity

.

(8.74)
The trace of [....] in σ in the last equation of (8.73) is zero hence the first
term represents the infinitisimal rate of change of shape and the second the
infinitisimal rate of change of volume. Therefore p̃ = −μ3 div u+ p is the
strain-dependent pressure but frequently the term μ3 div u is neglected.

(7◦) In a non-Newtonian fluid, the stress tensor σ depends in non-linear way
of the strain tensor ε , e.g. μ1 is a function of ε. Then the scalar p may
lose its physical interpretation as a normal stress and plays the role of a
Lagrange multiplier.

(c) Conservation Laws of Viscous Fluids We suppose that the con-
stants of material μ1 and μ2 are constant in time and space, and grad p shall
be a column vector below as is also seen from the context. By (8.42)

div σ(u) = μ1Δu+ (μ1 + μ2) grad div u

= μ1

[
Δu− 1

3
grad div u

]
+ μ3 grad div u .

Substitution into the local conservation law of momentum (8.71), an applica-
tion of Lemma 8.6 onto the local conservation law of energy and the continuity
equation then yield together the conservation laws for viscous fluids in non-
conservative form

D�

Dt
+ �div u = 0

�
Du

Dt
− μ1Δu− (μ1 + μ2) grad div u+ grad p = � f

�
De

Dt
− ε(u) : σ(u) + div(p u) + div q = �f · u+ � r

. (8.75)

By Fourier’s law, the conductive heat flux for an isotropic material is q =
−κ gradϑ where κ is the thermal conductivity and ϑ the absolute temperature.

(d) As an example we consider a homogenous fluid, grad � = 0 .
(1◦) The fluid is perfect, compressible and isentropic. Then the law of energy
in (8.71) yields, because q = 0 and r = 0 (recall e = ε+ u · u/2) ,

�
De

Dt
+ div(p u) = 0 . (8.76)

But

De

Dt
=

d

dt
e (�(t, Φ(t,X))) =

∂e

∂t
+
∂e

∂�

(
D�

Dt

)
=

∂e

∂t
− e� � div u
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by application of the so-called continuity equation, i.e. D�/Dt+ � div u = 0 .
Substitution into (8.76) yields

�
∂e

∂t
− ∂e

∂�
�2 div u+ (grad p)u+ p div u = 0 .

If the interior energy e does not depend on time t and grad p = 0 , this equa-
tion yields p−�2(∂e/∂�) = 0 after cancelling of div u . That equation however
can be integrated separately if the function p = p(�) is known. Gases satisfy
frequently the isentropic equation p(�) = A�γ , A ≥ 0 , where γ ≥ 1 is the
exponent of adiabatics.
(2◦) The fluid is homogenous and incompressible, div u = 0 , and the inte-

rior energy is constant (temperature constant, thermal flux vector q = 0 , r
dropped). Then the second and third equation of (8.75) are equivalent for
div u = 0 and the balance equations read in non-conservative form

∂�/∂t+ (grad �)u+ �div u = 0 (mass)
�∂u/∂t+ �(gradu)u− μ1Δu+ grad p = �f (momentum)

div u = 0 (energy)
. (8.77)

(The term μ3 grad div u is omitted here and below such that only the hy-
drostatic pressure is involved.) Because ∂�/∂t = 0 by assumption on ho-
mogenous incompressible fluid, the first equation can be cancelled. Then this
“differential-algebraic” system of two equations is called Navier-Stokes

equations. (Gresho), p. 451: “The combination of the non-linear convective
term and the pressure-velocity coupling makes the NS equations difficult to
solve. If either is absent, the equations are much simpler and are known to have
solutions — the limiting cases being Stokes flow and the so-called Burger’s
equations �(∂u/∂t+ (gradu)u− μ1Δu = 0 respectively”.

8.10 Navier-Stokes Equations

Notation and Assumptions: See also (8.74).

� mass density � = constant
u solution (column vector) velocity field
v test function velocity field
ν = μ/� kinematic viscosity [area/time]

for simplicity ν = constant
pspec = p/� specific pressure
f specific volume-force density

.
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(a) Velocity Pressure Form (Direct form) We reconsider the system
(8.77) under these assumptions and notations then after division by �

∂u

∂t
+ (gradu)u− νΔu+ grad pspez = f , div u = 0 . (8.78)

Scalar products are written again such that v · u = vTu for possible Matlab

implementations. Remember and write
∫

Ω

v · grad p dΩ = −
∫

Ω

p div v dΩ +
∫

Γ

p v · ndΩ ,
∫

Ω

v ·ΔudΩ = −
∫

Ω

grad v : gradu dΩ +
∫

Γ

v(gradu)ndΩ

a(v, u) = ν

∫

Ω

grad v : gradu dΩ , b(v, q) =
∫

Ω

div v q dΩ ,

c(v, u, w) =
∫

Ω

v · (gradu)w dΩ ,

(v, u) =
∫

Ω

v · u dΩ , (v, u)Γ =
∫

Γ

v · u dΓ .

(8.79)

Then, multiplying the two equations (8.78) by test functions v and q respec-
tively, we obtain the weak non-linear velocity-pressure form

(v, ∂u/∂t)
+a(v, u) + c(v, u, w) − (div v, pspec) = (v, f) + (v, σn(u, pspec))Γ , v ∈ V

− (div v, q) = 0 , q ∈ Q
σn(u, pspec) = (ν gradu− pspec)n

(8.80)
where V, Q are appropriate function spaces to be specified later. This weak
form of the Navier-Stokes equations requires the lowest smoothness of the
solution compared with subsequent forms.

(b) Boundary Value Problem for Velocity Pressure Form We sub-
divide the boundary Γ of the basic domain Ω into four different parts,

Γ = ∂Ω = ΓD ⊕ ΓG ⊕ ΓH ⊕ ΓN

where however some may be empty; cf. (9.1). Let {t1(x), t2(x)} be an or-
thogonal system in each point x on smooth parts of boundary; in particular
but not only we may choose {t1, t2} = {n, t} or {t1, t2} = {t,−n} . Now
I = t1 t

T
1 + t2 t

T
2 in R

2 by assumption (I identity) and for the inhomogeneous
boundary condition (v, σn(u, p))Γ = (v, g)Γ follows the decomposition

∫

Γ

v · σn(u, p) dΓ =
∫

Γ

v · (t1 tT1 + t2 t
T
2 )σn(u, p) dΓ .
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The general Dirichlet boundary condition

u = g on ΓD , u · t1 = g1 on ΓG

requires that
v = 0 on ΓD , v · t1 = 0 on ΓG

for the test function and thus
∫

Γ

v · σn(u, p) dΓ =
∫

ΓH

g2 v · t2 dΓ +
∫

ΓN

v · g dΓ .

Therefore the general boundary value problem for the stationary Navier-

Stokes equations reads:

−νΔu+ (gradu)u+ grad pspec = f in Ω
−div u = 0 in Ω

u = g on ΓD (essential BC)
t1 · u = g on ΓG (essential BC)

t2 · σn(u, pspec) = g on ΓH (natural BC)
σn(u, pspec) = g on ΓN (natural BC)

. (8.81)

The essential boundary condition t · u = g leads to the boundary condition
t · v = 0 for the test functins which is difficult to realize by the finite element
method.

In order that a unique solution of the problem exists, some conditions on
the smoothness of the involved data are to be required but also some regularity
conditions for the right sides f in Ω and g on Γ . Cf. e.g. (Gresho).

Example 8.6. (Orlt) Let t(x) be the tangential vector on the boundary Γ , let

C0,1 = set of Lipschitz-continuous functions in Ω,

W =
{
v ∈ C0,1(Ω)2, ∀ x ∈ Γ : v(x) · t(x) = 0 , v(x) = a+ b

[
−x2

x1

]}
,

Γ0 = ΓN ∪ (ΓG\{x ∈ ΓG , t1(x) = ±n(x)}) .

The space W consists of all rigid motions in R
2 (translation and rotation)

which are not prevented by homogeneous essential boundary conditions, and
Γ0 is that subset of boundary on which the normal component of u is not
specified. Then a solution of the boundary value problem exists in weak sense
if the right sides satisfy the following equilibrium conditions:

(f, v)Γ + (g, v)ΓN
= 0 for v ∈ W

(n, g)ΓD
= 0 if Γ0 = ∅

one value of p fixed or
∫

Ω

p dΩ = 0
;
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for Γ0 �= ∅ the second condition is dropped. The third condition on the pres-
sure p is easily implemented but leads to serious instabilities in numerical
solution because the approximation depends on one single value of p whereas
the total numbers of unknown (discrete) values of p may be very large.

Further results are found, e.g., in (Gresho) or in the comprehensive work of
(Orlt).

(c) Non-dimensional System Reconsider the original momentum equa-
tion of (8.77) with constant mass density � and pspec = p/� ,

∂u/∂t+ (gradu)u− νΔu+ grad pspec = f . (8.82)

It is customary and advisable to transpose this equation into non-dimensional
form before numerical approach. To this end the user has to specify a char-
acteristic length L and a characteristic velocity U which depend both on the
individual physical model. Then the Reynolds number Re is introduced as
ratio of advective to diffusive momentum transport such that

x = L x̃ , u = U ũ , Re =
UL

ν
. (8.83)

Regard also that the current flow must be laminar which means that the
Reynolds number remains below some critical value.
Case 1: We introduce a characteristic time L2/ν (sometimes called Fourier

time) and a characteristic pressure μU/L ,

t =
L2

ν
t̃ , p =

�νU

L
p̃ . (8.84)

Multiplying (8.82) by L2/νU then leads to the non-dimensional form

∂ũ

∂t̃
+Re(grad ũ)ũ−Δũ+ grad p̃ = f̃ where f̃ =

L2

νU
f . (8.85)

As the tangential vector is non-dimensional, both natural boundary conditions
in (8.81) must be multiplied by L/νU such that

σn(ũ, p̃)n = (grad ũ− p̃)n =
L

νU
g =: g̃ .

Case 2: We introduce a characteristic time L/U and a characteristic pressure
�U2 ,

t =
L

U
t̃ , p = �U2 p̃ . (8.86)

Multiplication of (8.82) by L/U2 then leads to the alternative non-dimensional
form

∂ũ

∂t̃
+ (grad ũ)ũ− 1

Re
Δũ+ grad p̃ = f̃ where f̃ =

L

U2
f . (8.87)
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The natural boundary conditions in (8.81) must now be divided by U2 such
that

σn(ũ, p̃)n =
(

1
Re

grad ũ− p̃

)
n =

1
U2

g =: g̃ .

In both cases, the essential boundary conditions in (8.81) must be divided by
U such that e.g. ũ = g̃ , g̃ = g/U .

In consequence, The non-dimensional system (8.85) is more appropriate
for low Reynolds numbers, and linear Stokes flow is recovered for Re = 0 ,
whereas (8.87) is to be preferred in the advection-dominated domain of high
Re .

(d) Stream-Function Vorticity Form Let in R
2

z(x, y) = c , c ∈ R ,

be an invariant of the differential system ẋ = v(x) where x = [x , y]T and
v = (u, v), i.e., a solution in implicit form, then z is called stream function
of v . If now x(t) = (x(t), y(t)) is a stream-line, i.e., an individual solution of
ẋ = v(x) then

dz

dt
= zxẋ+ zy ẏ = 0 .

After having fixed the sign we obtain

zy = u , zx = −v , v =: curl z . (8.88)

The vorticity w [1/time] of the velocity field v is defined in R
2 by

w = vx − uy , (8.89)

again and, by (8.89), we have the direct connection

Δz = −w . (8.90)

The vorticity w of an ideal fluid vanishes hence Δz = 0 in this case. Also,
because w = 0 , the velocity field v is a gradient field in this case with potential
Ψ and gradΨ = v .

Now consider the Navier-Stokes equation in R
2 again,

ut + (gradu)u− νΔu+ grad p = f ∈ R
2 .

The second equation is differentiated w.r.t. x , the first w.r.t. y and thereafter
the first equation is subtracted from the second. The result of this manipu-
lation represents together with the above equation Δz = −w the Navier-

Stokes equations in stream-function vorticity form

wt − νΔw + curl z · gradw = f2,x − f1,y ≡ rot f
−Δz − w = 0 (8.91)
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where curl z · gradw = zywx − zxwy is the convective nonlinear term and
the proper goal of the operation namely the elimination of the pressure p is
attained. The stationary equations (8.91) constitute a nonlinear elliptic system

−Δz − w = 0
−Δw + ν−1 zywx − ν−1 zxwy = g , g = ν−1 rot f

hence [
div(C11 grad z + C12 gradw)
div(C21 grad z + C22 gradw)

]
+
[

0 1
0 0

][
z
w

]
=
[

0
g

]
,

C11 =
[

1 0
0 1

]
, C12 =

[
0 0
0 0

]
, C21 =

[
0 ν−1 w

−ν−1 w 0

]
, C22 =

[
1 0
0 1

]
.

The stream-function vorticity form requires higher smoothness of the data
which in particular becomes apparent at possible corners of the domain Ω. On
the other side, it allows the application of simple finite elements with linear
triangular elements.

(e) Connection with the Plate Equation We consider the linear
Stokes equation in R

2 with Dirichlet boundary condition

−Δu+ grad p = f in Ω
div u = 0 in Ω

u = g on Γ = ∂Ω
. (8.92)

(1◦) Helmholtz’ decomposition theorem 1.7 supplies u = grad ϕ+ rot v for
every (smooth) vector field u . Since grad ϕ is cancelled out later, we write u
as solenoidal field u = rot v such that div u = 0 ,

−Δ rot v + grad p = f , div rot v = 0 , (8.93)

where the latter equation is always fulfilled for smooth fields.
(2◦) Recall that rot rot u = grad div u−Δu in R

3, apply it to (8.93) and
insert the result into (8.92) then

−Δ rot v = rot3 v − grad div rot v = f
rot3 v + grad p = f .

(8.94)

(3◦) Apply “ rot ” to (8.94), rot4 v + rot grad p = rot f, then the pressure
is cancelled out because a gradient field has no vorticities,

rot4 v = rot f in Ω
rot v = u0 on Γ

. (8.95)

(4◦) Let now u3 = 0 , i.e. u is a plane vector field in R
2 . Then, because

u = rot v , u3 = v2,x − v1,y = 0 . Since u is a plane field, we also may set
v1 = v2 = 0 then
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rot v = [v3,y − v2,z, v1,z − v3,x, v2,x − v1,y]T = [v3,y,−v3,x, 0]T

rot2 v = [0, 0,−v3,xx − v3,yy]T

rot3 v = [−v3,xxy − v3,yyy, v3,xxx + v3,yyx, 0]T

rot4 v = [0, 0, v3,xxxx + v3,yyxx + v3,xxyy + v3,yyyy]T .

Now v3 =: z is the stream-function because u = rot v and v1 = v2 = 0 , and
moreover u1 = v3,y = zy , u2 = −v3,x = −zx , as well as Δ2z = (rot4 v)3 =
zxxxx + 2zxxyy + zyyyy . In plane no forces act in z-direction, f3 = 0 , thus
finally the following form of the Stokes equation is obtained from (8.95) for
z :

Δ2z = (rot f)3 = f2,x − f1,y .

(5◦) We write t = (dx, dy) on the boundary Γ for the tangent vector and
n = (dy, −dx) for the normal vector. Note that zy = u0,1 and zx = −u0,2 on Γ
because rot v = u0 and u0,3 = 0 . Further, zn = zxn1 + zyn2 = zxdy − zydx =
−u0,2dy − u0,1dx = −u0 · t on Γ and

z(x(s)) =
∫ s

s0

(zxdx+ zydy) + c =
∫ s

s0

(−u0,2dx+ u0,1dy) + c

=
∫ s

s0

u0 · nds+ c ,

hence on Γ together zn = −u0 · t and z = 0 for u0 ·n = 0 . Altogether a linear
boundary value problem of order four is derived by this way for z:

Δ2z = f2,x − f1,y in Ω

z(x) =
∫

C(x)⊂ΓD

g · ndΓ + κ on Γ

zn = g · t on Γ

,

where C(x) ⊂ Γ is a line segment from x0 to x and κ is an arbitrary constant
(e.g. κ = 0).

(f) Pressure Poisson equation In solving Navier-Stokes equations,
the results for pressure p are frequently not very convincing. Rather it is cal-
culated by a separate Poisson problem which however has only Neumann

boundary conditions such that a reference value of p must be specified some-

where in the domain Ω or
∫

Ω

p dV = 0 must be required for normalization

but nevertheless the problem is and remains unstable.
(f1) For the computation of p by the flow field u , remember that

Δv = div(grad v)T = [grad div v]T .

and apply divergence to the linear Stokes equation, −Δu + grad p = f ,
yielding

−divΔu+ div grad p = div f .
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But
divΔu = div div gradu = div grad div u = Δdiv u = 0 ,

because div u = 0 by assumption hence

Δp = div f .

On the other side, multiplying the Stokes equation on the boundary Γ by the
normal vector n, yields the condition Δu ·n+∂p/∂n = f ·n . On summarizing
we obtain a Neumann problem for the pressure p ,

Δp = div f in Ω
∂p

∂n
= Δu · n+ f · n on ∂Ω

.

(f2) (Sohn). Reconsider the homogeneous non-dimensional Navier-Sto-

kes equation (8.87),

∂u

∂t
+ (∇u)u− 1

Re
Δu+ ∇p = 0 , div u = 0 . (8.96)

An alternative pressure Poisson equation is obtained by differentiating the
first momentum equation in (8.96) with respect to x and the second with
respect to y , and adding them. The result can be written as

Δp = −∇[(∇u)u] +R−1
e [(Δu)x + (Δv)y] . (8.97)

Let q be an arbitrary test function for p and apply Green’s theorem then we
obtain the weak form where n is the unit vector normal to boundary Γ = ∂Ω
pointing outward from Ω ,∫

Ω

∇q · ∇p dΩ = −
∫

Ω

∇q · (∇u)u dΩ +R−1
e

∫

Ω

∇q ·ΔudΩ

+
∫

Γ

qn · [(∇u)u+ ∇p−R−1
e Δu] dΓ .

(8.98)

Substituting once more the momentum equation (8.96) into the line integral
yields∫

Ω

∇q · ∇p dΩ = −
∫

Ω

∇q · (∇u)u dΩ +R−1
e

∫

Ω

∇q ·ΔudΩ −
∫

Γ

q
∂u

∂t
· ndΓ .

(8.99)
The line integral involving the time rate of change of the velocities will vanish
at all solid boundaries or when steady-state solutions are sought. It is non-
zero only along open boundaries in time-dependent flows, or if the flow is
excited by the time-varying motion of a wall (Sohn). On the other side, the
evaluation of the right side of (8.99) requires the second derivatives of the
velocity components (which, by the way, are known globally only as continuous
functions). To overcome this difficulty at least locally, (Sohn) proposes a least
squares approximation of the first derivatives on the ansatz functions in case
they are linear or bilinear and gets appealing results for the latter case.
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Finite Elements

9.1 Elliptic Boundary Value Problems

Usually, an elliptic problem has three different “faces” namely extremal prob-
lem, variational or weak problem, and boundary value problem for a differ-
ential system, and either face illuminates the problem from a different point
of view. Since ancient times the classical potential equation i.e., Poisson’s
problem with Laplace equation, has served as that basic model to consider
the different aspects and to develop appropriate numerical approaches. One
encounters it in many physical applications as for instance in bending of an
elastic membrane, stationary heat distribution of a plate, or in the compu-
tation of minimal surfaces, nothing to say of the representation of electric
potential fields.

Let Ω ⊂ R
3 be an open connected set (domain) with piecewise smooth

boundary Γ := ∂Ω . The boundary has to obey certain regularity conditions
which shall not be discussed here in detail; cf. e.g., (Braess), (Velte). All
involved functions shall be defined on the closure Ω and shall be sufficiently
smooth. Because of the two different types of boundary conditions (BC) let
the boundary be decomposed into Dirichlet boundary ΓD and Cauchy

boundary ΓC :

∅ �= ΓD ⊂ Γ, ΓC ⊂ Γ, ΓD , ΓC open in Γ ,

ΓD ∩ ΓC = ∅ , Γ = ΓD ∪ ΓC
(9.1)

which we write for brevity as Γ = ΓD ⊕ ΓC . Moreover, a normal vector n
of unit length shall exist in every point of ΓC pointing to the exterior of the
domain Ω .

(a) Extremal Problem Point of departure here and later on is the ex-
tremal problem for energy of the closed system as it has already been consid-
ered to some extent in Sect. 1.11. The “energy functional” of a scalar linear
elliptic problem has the general form

J(u) =
∫

Ω

[
1
2
∇u ·A(x)∇u+ �(x)u2 − f(x)u

]
dΩ +

∫

ΓC

[
β(x)u2 − γ(x)u

]
dΓ

(9.2)
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where A : Ω → R
3
3 , �, f : Ω → R and β, γ, δ : Γ → R shall be continu-

ous functions. The matrix A is symmetric and positive definite and � ≥ 0;
corresponding modifications for two-dimensional problems are evident. Some
physical or technical applications are presented later. The domain of defini-
tion of J(u), called also objective function, is an affine subspace u0 + U ⊂ V
with a function space V. In detail

V vector space of all functions u for which
J(u) exists, J(u) “lives” on V,

U = {v ∈ V , v = 0 on ΓD} subspace of all functions satisfying the
specified homogeneous Dirichlet

boundary conditions
u0 + U ⊂ V , u0 = δ on ΓD affine subspace of all functions satisfying

the inhomogeneous Dirichlet

boundary conditions .

(9.3)

Note that u0 = 0 in case where no inhomogen ous Dirichlet conditions
are given, elsewhere the function u0 ∈ V is arbitrary up to the mentioned
boundary values on ΓD .

(b) Weak Form By the Characterization Theorem 1.21 a variational
problem (with Euler equations) is associated to the extremal problem (9.2)
called weak form of the problem in the sequel,

∃ u ∈ u0 + U ∀ v ∈ U :
∫

Ω

[
∇v ·A(x)∇u+ � v u

]
dΩ +

∫

ΓC

β v u dΓ =
∫

ΓC

v γ dΓ +
∫

Ω

v f dΩ
.

(9.4)
(c) Boundary Value Problem An application of Green’s formula to

(9.4) yields
∫

Ω

v [−divA(x) gradu+� u−f ] dΩ+
∫

ΓC

v [gradu·n+β u−γ] dΓ = 0 . (9.5)

The test functions v have to vanish on ΓD in order that the variations u+ εv
are contained in u0+V as well for |ε| � 1 . On choosing first v such that v = 0
on the entire boundary, the first square bracket reveals to be zero. Choosing
thereafter v on ΓC arbitrary the second square bracket is also zero. By this
common argumentation we obtain the boundary problem

−div(A(x) gradu) + � u = f , x ∈ Ω

u = δ , x ∈ ΓD Dirichlet BC
gradu · n+ β u = γ , x ∈ ΓC Cauchy BC

. (9.6)

The Cauchy condition (also called third boundary condition) is called Neu-

mann condition in case β = 0 .
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Obviously every solution of the boundary value problem (9.6) is also so-
lution of the weak problem but the converse does hold only if the solution
of (9.5) is sufficiently smooth. All variational functions u + εv in the weak
problem (9.4) have to satisfy the Dirichlet boundary conditions, whereas
the Cauchy boundary condition does not occur explicitely in the weak prob-
lem resp. only via the functions β and γ . Therefore Dirichlet conditions
are essential or geometrical boundary conditions and Cauchy conditions are
natural or dynamic conditions; cf. Sect. 4.1(a).

(d) To prove the Existence of Solutions, the problem (9.2) has to be
stated in the context of quadratic functionals for application of the Existence
Theorem 1.25. To this end the components, namely the vector space U , the
bilinear form a and the function u0 : Ω → R satisfying u0 = δ on ΓD ,
are to be specified properly. We suppose that Ω is a bounded domain with
the above mentioned but not more detailed regularity conditions, and that
the above function u0 does exist at all. If continuity of the bilinear form is
guaranteed and only Dirichlet boundary conditions appear then we may
restrict ourselves to the homogeneous case following (1.62). Finally, let the
matrix A(x) be uniformly positive definite on Ω,

∃ α > 0 ∀ x ∈ Ω ∀ 0 �= y ∈ R
3 : yTA(x)y ≥ α yT y .

(d1) The problem with Dirichlet boundary conditions,

−div(A gradu) + � u = f , x ∈ Ω ; u = 0 , x ∈ Γ , (9.7)

� , f ∈ C(Ω) , u ∈ C2(Ω) , has the weak form ∀ v ∈ H1
0(Ω) :

a(v, u) :=
∫

Ω

(∇v ·A∇u+ � v · u) dΩ =
∫

Ω

v · f dΩ =: (v, f) , (9.8)

� , f ∈ L2(Ω) , u ∈ H1
0(Ω) . The ellipticity of the bilinear form a on

Hilbert space U = H1
0(Ω) follows for � ≥ 0 immediately by the Poincaré-

Friedrichs inequality, Lemma 1.13. Therefore the weak problem has a unique
solution u ∈ H1

0 by the Existence Theorem 1.25 for quadratic functionals.
(d2) The problem with mixed boundary conditions,

−div(A gradu) + � u = f , x ∈ Ω ; u = 0 , x ∈ ΓD ,

gradu · n+ β u = γ , x ∈ ΓC , β, γ ∈ C(ΓC) ,
(9.9)

has the weak form ∀ v ∈ U :

a∗(v, u) := a(v, u) +
∫

ΓC
β vu dΓ = (v, f) +

∫
ΓC

γ v dΓ =: f∗(v)

�, f ∈ L2(Ω) , β, γ ∈ L2(ΓC) , u ∈ U ,
(9.10)

on Hilbert space U , H1
0(Ω) ⊂ U := {v ∈ H1(Ω), v = 0 on ΓD} ⊂ H1(Ω) . If∫

ΓD
dΓ > 0 then U ∈ H1(Ω) is a closed subspace by Corollary 1.5. Again the
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U-ellipticity of the bilinear form a∗ has to be verified for the proof of unique
existence of a solution of the weak problem (9.10). For � ≥ 0 and β ≥ 0

∀ v ∈ U :
∫

Ω

� v2 dΩ ≥ 0 ,
∫

ΓC

β v2 dΓ ≥ 0 ,

hence by Sect. 1.7, Example 1.15(2◦)

a∗(v, v) ≥ |v|2 ≥ m(Ω) ‖v‖2
1 , m(Ω) > 0 .

The estimation a∗(v, v) ≤ M(Ω) ‖v‖2
1 needs

∫

ΓC

β v2 dΓ ≤ βmax

∫

Γ

v2 dΓ ≤ const ‖v‖1,Ω ,

by the Trace Theorem 1.15 and likewise for f∗

∫

ΓC

γ v dΓ ≤
[∫

ΓC

γ2 dΓ

]1/2 [∫

Γ

v2 dΓ

]1/2

≤ const ‖v‖0 ≤ const ‖v‖1 .

Consequently a unique solution u ∈ U of (9.10) exists again by the Existence
Theorem 1.25.

(d3) The problem with Cauchy condition on the entire boundary,

−div(A gradu) + � u = f ,

gradu · n+ β u = γ , x ∈ Γ ; β, γ ∈ C(Γ ) ,
(9.11)

has the weak form

∀ v ∈ U : a∗(v, u) := a(v, u) +
∫

Γ

β vu dΓ = (v, f) +
∫

Γ

γ v dΓ =: f∗(v) .

(9.12)
where U = H1(Ω) is the associated Hilbert space.
Case 1: If � is uniformly positive in Ω , �(x) ≥ �0 > 0 , and β ≥ 0 then, by
Example 1.15(1◦),

a∗(v, v) ≥ min(1, �0)
[
|v|20 + |v|21

]
≥ m(Ω)‖v‖2

1 , m(Ω) > 0 ,

which proves the ellipticity of a∗ on H1(Ω) .
Case 2: Let � ≥ 0 and β ≥ 0 then the bilinear form a∗ is elliptic on Hilbert

space U in Corollary 1.5 (3◦) by Example 1.15(3◦). But the right side f∗ has
to be an element of the dual space Ud for an application of the Existence The-
orem. By Riesz’ Representation Theorem, a Hilbert space may be identified
canonically with its dual space. Therefore the elements f ∈ Ud have to satisfy
likewise a condition of the form

∫
Ω
v dΩ = 0 . This leads to the condition

∫

Ω

f dΩ +
∫

Γ

γ dΓ = 0
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for the above f∗ ∈ Ud . The same condition is also obtained by the variational
equation a∗(v, u) = f∗(v) , if � ≡ 0 and β ≡ 0 and an arbitrary constant is
chosen for test function v .

The solution of the weak problem does not necessarily satisfy the smooth-
ness required in the differential equation of the associated boundary value
problem. This regularity may be proved by application of Sobolev’s Imbed-
ding Theorem together with further estimations. Furthermore, it is also to
be shown that the solution u depends continuously on the right side f , the
problem is then said to be “well-defined”. However, for this deeper results of
functional analysis we have to refer to the respective monographs.

See also Sect. 4.1(e4) for the dual Dirichlet problem.

References: (Braess), (Ciarlet79), (Michlin), (Velte).

9.2 From Formula to Figure, Example

Two ways lead to numerical approach of boundary value problems: Either the
domain of definition of the solution is replaced by a finite-dimensional mesh
or the space of functions on which the differential equation lives, is replaced
by a finite-dimensional subspace where the latter device is rather generously
handled sometimes (non-conforming finite elements). Difference methods are
obtained in the first case as dealed with in Section 2.2 to some part. In the
second case numerical devices are the result being named today after Ritz

and Galerkin; cf. also Section 1.11.
Difference methods are used always in initial value problems and for dis-

cretization of initial boundary value problems in “time” direction. The ex-
ample in Sect. 2.2(h) shows that they may be used also for discretization of
boundary problems and provide acceptable results but their application re-
mains limited to simple boundaries and boundary conditions. The formula of
differences reaches beyond the boundary in more complicated cases or approx-
imations of higher order and, by consequence, artificial boundary layers are to
be introduced. However if the differential equation contains higher derivatives
of the space variables then difference methods may become attractive again
(X.Chen) since finite elements are forced to use very expending approxima-
tions here.

The method of Ritz being briefly described in Sect. 1.11 is not applied
normally to solve initial value problems but is the first choice today in solving
boundary value problems or to discretize initial boundary value problems in
space direction. In its original form, the unknown solution has been replaced
by a polynomial which leads to astonishing exact results if these polynomials
are of comparatively low degree. It however leads to systems being difficult to
handle if polynomials of higher degree are used hoping to reach better approx-
imation. Therefore piecewise polynomial approximations have been proposed
here since more accurate numerical approaches became at all possible. Also
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the resulting systems of equations have the property of sparse occupancy which
can be exploited fully by using sparse computation algorithms.

By their way of construction, finite element approximations are no longer
as smooth as the solution of the basic partial differential equation, say (9.6),
but, in the conforming case, still as smooth as the solution of the weak problem
a(v, u) = (v, f) , v ∈ V of (9.8). In other words, conforming approximations
are contained in a finite subspace of that vector space V on which the weak
problem lives. Therefore we say briefly that a (piecewise polynomial) finite
element approximation is conforming with respect to second order problems
if it forms an overall continuous function, i.e., it passes continuously over the
element boundaries in all directions. Likewise a finite element approximation is
conforming with respect to fourth order problems as, e.g., plate problems if it
represents a overall continuously differentiable function. Conforming elements
facilitate considerably the proof of convergence (to the analytic solution for
mesh width tending to zero) nevertheless more recently proposed elements
for elastic bodies and fluids are mostly non-conforming by various reasons.
So, e.g., the smallest conforming triangular element for plate problems has 18
DOFs (degrees of freedom), see Bell’s triangle in (c).

(a) Problem In this subsection the individual steps leading to the nu-
merical solution of a boundary value problem shall be presented completely
for a simple example that may serve for pattern later on in more complicated
applications. To this end we consider the boundary value problem (9.6) in
weak form (9.4) and assume that the boundary Γ of the domain Ω ∈ R

2 is
a polygon. Further, the domain Ω is partitionend into triangles Ti without
“pending” nodes and the edges at the boundary are denoted by Rj briefly
for the present. We suppose also for simplicity that A is the unit matrix in
(9.4), that � is constant on the triangles Ti and that β, γ are constant on the
boundary segments Rj . Then the partitioned representation

∑
i

∫

Ti

[grad v · gradu+ �i v u− v f ] dxdy +
∑

j

∫

Rj

v [βj u− γj ] ds = 0 .

(9.13)
follows from (9.4). Note however that discontinuities between elements are
completely ignored in (9.13). Therefore non-conforming elements must pass
Irons’ patch test for correct application (Ciarlet79), Sect. 4.2; see also Sect.
9.4(f).

The triangulation is commonly specified in Matlab by three matrices,
the node or point matrix “ p ”, the edge matrix “ e ” and the triangle matrix
“ t ”. The point matrix contains the (x, y)-coordinates of the nodes in arbi-
trary but strongly fixed succession. The edge matrix contains the numbers of
the terminal points of each boundary edge in counterclockwise order for outer
boundary segments and clockwise order for interior boundary segments; ad-
ditional rows may contain further attributes of each edge as, e.g., parameter
intervals and the segment number. The columns of the triangle matrix contain
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the numbers of the vertex points of every triangle in counterclockwise order;
the succession of the columns of “ t ” may be changed. For further details see
the Matlab suite of this volume.

Example 9.1. Simple triangulation of a square, cf. Fig. 9.2. The three matrices
p , e , t associated to the triangulation read

p =
[

0 1 1 0 0.5
0 0 1 1 0.5

]
, e =

[
1 2 3 4
2 3 4 1

]
, t =

⎡
⎣

1 2 3 4
2 3 4 1
5 5 5 5

⎤
⎦ .

Overlapping of entries in the global stiffness matrix [K] and likewise in the
global mass matrix [M ] of (9.17):

1 2 3 4 5

1 A A A

2 A A A

3

4

5 A A A

1 2 3 4 5

1

2 B B B

3 B B B

4

5 B B B

1 2 3 4 5

1

2

3 C C C

4 C C C

5 C C C

1 2 3 4 5

1 D D D

2

3

4 D D D

5 D D D

Figure 9.1. A pending node

1 2

34

5

A

B

C

D

Figure 9.2. Example 9.1

(b) Approximation The exact solution and its numerical approximation
are denoted below by the same letter u again!

Let T ⊂ R
2 be an arbitrary element of the triangulation then the following

integrals have to be evaluated by (9.13):

K(v, u) =
∫

T

(vx ux + vy uy) dxdy , M(v, u) =
∫

T

v u dxdy area integrals,

P (v, u) =
∫

R

v u ds , Q(v) =
∫

R

v ds line integrals on boundary.

(9.14)
Choose now (at this first stage) a set of mutually distinct node points
P (xi, yi) , i = 1 : n , on T and a two-dimensional interpolating polynomial
in Lagrange form

u(x, y) = u1ϕ1(x, y) + . . .+ unϕn(x, y) , u = [u1, . . . , un]T ,

9.2 From Formula to Figure, Example
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vanishing outside of T , where the basis polynomials ϕi are shape functions
with the interpolation property ϕi(xk, yk) = δi

k . Then substitution into the
integrals (9.14) provides quadratic rsp. linear forms for numerical approxima-
tion, e.g., with same representation for v ,

M(v, u) ≈ vTMu , M = [mi
j ]ni,j=1 , m

i
j =

∫

T

ϕiϕj dxdy ,

K(v, u) ≈ vTKu , K = [ki
j ]ni,j=1 , ki

j =
∫

T

[ϕi,xϕj,x + ϕi,yϕj,y] dxdy .

(9.15)
The right side f of the differential equation is appropriately replaced in the
same way as u by

f(x, y) ≈ f1ϕ1(x, y) + . . .+ fnϕn(x, y) , f = [f1, . . . , fn]T ,

as far as f is not constant. For a fixed triangle in the sum (9.13) we then
obtain in case β = γ = 0

∫

T

[grad v · gradu+ �i v u− v f ] dxdy ≈ vT
[
(K + �i M)u−Mf

]
.

Let, e.g., � be constant in Ω then the summation of all these equations yields
an approximation of (9.13),

[V ]T
[[

[K] + � [M ]
]
[U ] − [M ][F ]

]
= 0 . (9.16)

Since [V ] is an arbitrary vector up to now, (9.16) leads immediately to the
linear system of equations

[A][U ] = [R] , [A] = [K] + � [M ] , [R] = [M ][F ] (or the like) (9.17)

for the (unknown) global node vector [U ] .
(c) Linear Triangular Elements (Courant’s element). In the most

simple case a linear ansatz

u(x, y) = u1ϕ1(x, y) + u2ϕ2(x, y) + u3ϕ3(x, y)

is chosen in triangle T where ϕi = αi + βix + γiy are again three linearly
independent functions vanishing outside of T . The components are chosen in
a way that these functions are shape functions relative to the three vertices
Pk(xk, yk) , k = 1 : 3 , of T numerated counterclockwise. Write briefly xik =
xi − xk , yik = yi − yk then |T | = [x21y31 − x31y21] /2 is the area of triangle of
T . The desired result for the above area integrals (9.15) resp. the associated
stiffness matrix K and mass matrix M then reads:

1
4|T |

⎡
⎣
x2

32 + y2
32 y23y31 + x23x31 x32x21 + y32y21

x2
31 + y2

31 y13y21 + x13x21

symm. x2
21 + y2

21

⎤
⎦ , |T |

12

⎡
⎣

2 1 1
1 2 1
1 1 2

⎤
⎦ . (9.18)
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The resulting global mass matrix [M ] of (9.17) is symmetric, positive defi-
nite and well-conditioned, the resulting global stiffness matrix [K] however is
symmetric and positive semi-definite but ill-conditioned as already has been
shown in the similar situated example of Sect. 2.2(h) where the matrix [A] in
(9.16) is ill-conditioned as well and is even singular for � = 0 .

(d) Implementation of Dirichlet Boundary Conditions
(d1) Direct Method. The system (9.17) is modified by means of the boundary
conditions such that the resulting system enjoys a positive definite matrix
[A] also in case � = 0 . Then a Cholesky decomposition may be applied for
solution being advantageous from numerical point of view. Let there be, e.g.,
the boundary condition U i = di ∈ R for the value U i of the node vector [U ]
at boundary and let [A] = [ai

k] = [a1, . . . , aN ] with columns ak , then one has
to proceed as follows:
(1◦) Form [G] = [R] − di ai ,
(2◦) Replace the component gi of [G] by di ,
(3◦) Replace row i and column i von [A] by the zero vector,
(4◦) Set ai

i = 1 .
This operation has to be carried out for each corner point on the Dirich-

let boundary (polygon). The result is a modified system [Ã][Ũ ] = [G̃] with
the mentioned properties of which the solution takes the desired boundary
values.

(d2) Direct Method with Reduction The succession of nodes in the node
matrix p is not allowed to be permuted since each position is used in the
element matrix t for identification of the vertices of the triangularization. But
obviously the points in the system (9.17) may be separated by permutation
into interior points and boundary points without Dirichlet condition I on
the one side, and boundary points R with Dirichlet condition on the other
side by using numbers of boundary nodes specified in the edge matrix e ; cf.
Sect. 9.7. After permutation of rows and corresponding columns the following
system is obtained in place of (9.17)

[
[A]I,I [A]I,R
[A]R,I [A]R,R

][
[U ]I
[U ]R

]
=
[

[R]I
[R]R

]
.

After having inserted the Dirichlet boundary conditions [U ]R = [D]R , the
lower block row may be cancelled and the first row leads to the reduced system

[A]I,I [U ]I = [R]I − [A]I,R[D]R

for the values of displacement u at the node points with index in the index
set I . The reduced matrix [A]I,I is positive definite in a properly posed
elliptic problem but continues to be ill-conditioned as well. After solution, the
node vector [U ]I has to be completed again by [U ]R regarding the former
permutation. Especially, this method of implementing Dirichlet boundary
conditions is applied in eigenvalue problems (oscillation problems) where the
boundary conditions are homogeneous, [D]R = 0 .

9.2 From Formula to Figure, Example
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(d3) Indirect Method after Lagrange. The system (9.17) is augmented
to a system with Lagrange matrix, cf. Sect. 1.1(e), which is still symmetric
and regular but no longer definite (in normal case). To this end, let the Diri-

chlet conditions be written as [C][U ] = [D] where [C] is a (P,N)-matrix of
maximum rank P < N , and let [U ]0 be an arbitrary vector, e.g., the null-
vector. By Theorem 3.8 a vector [U ] = [U ]0 − [X] with solution [X] of

[
[A] [C]T

[C] [O]

][
[X]
[Y ]

]
=
[

[A][U ]0 − [R]
[C][U0] − [D]

]

is a solution of the original system (9.17) and satisfies the boundary conditions
[C][U ] = [D] . The matrix Matrix [A] must however be positive definite on the
kernel of the matrix [C] in order that the Lagrange matrix is regular. This
condition represents the discrete analogon to the possible choice of suitable
boundary conditions in Sect. 9.1. This method is more flexible than the direct
method and allows incorporating of more complicated boundary conditions
as, e.g., u · n = 0 in a flow problem where u is the velocity and n the normal
of the boundary, or

∫
Ω
p dΩ = 0 where p is the pressure.

(e) Implementation of Cauchy Boundary Conditions The boundary
integrals in (9.13) have to be approximated numerically only in the case where
the coefficients βi and/or γi are non-zero. In the most simple case a linear
ansatz supplies the same result as in a linear rod element, cf. Sect. 7.1,

P (v, u) ≈ vTPR u , Q(v) ≈ QT
R v , PR =

L

6

[
2 1
1 2

]
, QT

R =
L

2
[1 , 1] .

The shape of the specific boundary segment R is involved here only by its
length L . Summarizing of the matrices βi PRi

and the vectors γi QRi
in (9.13)

yields, in place of (9.17), the linear system

[
[K] + � [M ] + [Mβ ]R

]
[U ] = [R] + [Bγ ]R .

ATTENTION: This system has to be formed before the implementation of
Dirichlet boundary conditions.

Example 9.2. By Section 9.7(a), the stationary heat distribution u in a disc
Ω satisfies the elliptic differential equation −div(λ gradu) = f . In Figure
9.4 we have chosen λ = 1 and f = 10 and four different types of boundary
conditions.
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Figure 9.4. Ex. 9.2, isothermes

9.3 Constructing Finite Elements

(a) Problem Consider an elliptic boundary problem of type (9.13) and let
the triangle T be an element of a triangular decomposition of the basic domain
Ω (with polygonal boundary). The unknown solution u is replaced on T by
an interpolating polynomial being denoted by the same letter u for simplicity.

Notations for triangle T ⊂ R
2 in general position and global (x, y)-coordi-

nates:

(1◦) Pi(xi, yi) , i = 1, 2, 3 , counterclockwise vertices of T .
(2◦) U vector space of polynomials on T with n degrees of freedom.
(3◦) Θ(x, y) = [1, x, y, . . .]T column vector of algebraic basis of U ,

c = [γ1, . . . , γn]T column vector of coefficients,
u(x, y) = Θ(x, y)T c ∈ U polynomial ansatz on T .

(4◦) Kj(xj , yj) , j = 1 : n , support nodes in T (mutually distinct for the
present).

(5◦) uj = u(Kj) = u(xj , yj) , i = 1 : n , support values of u at points Kj ,
u = [u1, . . . , un]T column vector of support ordinates.

(6◦) x21 = x2 − x1 etc. short-cuts for coordinate differences in vertices, J :=
x21y31 − x31y21 > 0 double area of T .

Hint. We suppose first that the elements of Θ(x, y) form a complete ba-
sis of the vector space Πn(x, y) of polynomials for some degree n but there
are many interesting exceptions. For instance, the complete cubic polynomial
has ten degrees of freedom (DOF) but in solving plate problems diverse non-
conforming modifications with nine DOFs are generally preferred. Also the
vertices of the triangle (quadrangle) are not always support points of the in-
terpolating polynomial, for instance in some elements for the Navier-Stokes

equation; cf. (Turek) and KAPITEL09\FEM_1.
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(b) Beginning with the simple elliptic boundary problem of the previous
section we have to develop integration rules for the integrals of (9.14), namely

K(v, u) =
∫

T

(vx ux + vy uy) dxdy , M(v, u) =
∫

T

v u dxdy ; (9.19)

higher partial derivatives are later involved in the approximation of plate
problems. These integrals are replaced numerically by quadratic forms uTAiu
where u ∈ R

n is the local node vector on triangle T . In a first step, the
unknown function u is replaced on triangle T by a linear combination of the
monoms contained in the vector Θ(x, y) ,

u(x, y) = Θ(x, y)T a = α1ϑ1(x, y) + . . .+ αnϑn(x, y) ,

e.g., u(x, y) = α1 + α2x + α3y (same letter u in approximation). Then we
have to change that basis into u = Φ(x, y)Tu to obtain the today commonly
used representation by shape functions shape functions Φ = (ϕ1, . . . ϕn) which
are the straightforward generalization of the well-known Lagrange basis
functions (2.7) to the present two-dimensional case. To this end we use the
otherwise less popular direct interpolation ui = Θ(xi, yi)a , i = 1 : n , of §
2.1(a) because the dimension of that system remains moderate in the present
context.

To express the algebraic vector a by the node vector u we need the inverse
B−1

T of the matrix BT = [Θ(xi, yi)]ni=1 which therefore must be regular.

This inverse matrix, depending here on the individual triangle T , is frequently
called design matrix of the element. There are however elements violating the
regularity condition for some triangle constellations (e.g., Toucher’s ele-
ment) so that they require some specific regularity from the triangular do-
main decomposition. Also the inversion of [Θ(xi, yi)]ni=1 limits the present
direct way of construction in some applications. (But for checking it is always
advantageous to have an alternative way of calculation.)

Now we obtain the basis Φ of general shape functions from the algebraic
basis Θ by a simple transformation,

Φ(x, y)Tu = Θ(x, y)Ta = Θ(x, y)TB−1
T u , ϕk(x, y) = Θ(x, y)T b̃k , i = 1 : n ,

where b̃k are the columns of the design matrix B−1
T .

Example 9.3. (Courant’s triangle) Consider the linear approximation,
u = ΘTa = α1+xα2+yα3 , and suppose that the vertices Pi(xi, yi) , i = 1 : 3 ,
are node points with node values ui. Then ui = α1 + α2xi + α3yi , i = 1 : 3 ,

u =

⎡
⎣

1 x1 y1

1 x2 y2

1 x3 y3

⎤
⎦ a , a =

1
J

⎡
⎣
x2y3 − x3y2 x3y1 − x1y3 x1y2 − x2y1

y23 y31 y12

x32 x13 x21

⎤
⎦ u =: B−1

T u .
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Then Φ(x, y)T = Θ(x, y)TB−1
T and, e.g., ϕ1(x, y) = J−1(x2y3 −x3y2 + y23x+

x32y) whereas ϕ2 , ϕ3 follow by cyclic permutation of indices i = 1 : 3 .

P
3

P
2

P
1

ϕ1

P
3

P
2

P
1

ϕ2

P
3

P
2

P
1

ϕ3

Figure 9.5. Shape functions of Courant’s triangle

If once the shape functions Φ are found, we insert u(x, y) = ΦTu into (9.19)
as second step of construction,

K(v, u) =
∫

T

(
vTΦx Φ

T
x u+ vTΦy Φ

T
y u

)
dxdy , M(v, u) =

∫

T

vTΦΦTu dxdy ;

(9.20)
where ΦΦT ∈ R

n
n , etc., denotes a dyadic product. Regarding once more

the important relation ΦT = ΘTB−1
T between the algebraic basis Θ and the

Lagrange basis Φ of shape functions, we obtain, e.g.,

K1(v, u) = vTB−T
T

[∫

T

Θx Θ
T
x dxdy

]
B−1

T u ,

K2(v, u) = vTB−T
T

[∫

T

Θy Θ
T
y dxdy

]
B−1

T u ,

(9.21)

and a similar result for M(v, u) . In a third step we then have to calculate the
matrix-valued domain integrals

∫

T

Θx Θ
T
x dxdy ,

∫

T

Θy Θ
T
y dxdy ,

∫

T

ΘΘT dxdy ∈ R
n

n

by going back to a reference configuration (e.g., a unit triangle in triangular
decompositions) or by evaluating the integrals

∫
T
xrys dxdy directly, see §

2.3(f3).
All three steps together constitute a “road map” for making finite el-

ements from a pure computational point of view. Requirements on physical
and mechanical properties or even on convergence and stability are completely
neglected at this first glance but must be regarded later.

Example 9.4. In the most simple case of Courant’s triangle Θ(x, y) =
(1, x, y) ,
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∫

T

Θx Θ
T
x dxdy =

∫

T

⎡
⎣

0 0 0
0 1 0
0 0 0

⎤
⎦ dxdy =

⎡
⎣

0 0 0
0 |T | 0
0 0 0

⎤
⎦

∫

T

Θy Θ
T
y dxdy =

∫

T

⎡
⎣

0 0 0
0 0 0
0 0 1

⎤
⎦ dxdy =

⎡
⎣

0 0 0
0 0 0
0 0 |T |

⎤
⎦

∫

T

ΘΘT dxdy =
∫

T

⎡
⎣

1 x y
x x2 xy
y xy y2

⎤
⎦ dxdy .

(9.22)

The first two matrices in (9.20) are of course exceptionally simple. The third
matrix may be obtained directly by Table 2.3 but observe that first the local
coordinate system has to be moved into the center of T . So we obtain, e.g.,
∫

T

xy dxdy =
|T |
24

[2x1y1+x1y2+x2y1+2x2y2+2x3y3+x3y1+x3y2+x1y3+x2y3]

(9.23)
but the complete result of this example is more simple again and already given
in (9.18).

(c) Reduction to Unit Triangle Theoretically we may always manage
step three of the above computational device by using Symbolic Mathemat-

ics and “copy and paste” but Example 9.4 shows that the resulting formulas
blow up extraordinarily although the final result is of moderate complexity.
Therefore the reference configuration is commonly introduced already at the
beginning and not only in the last step. Of course all above considerations
remain true in this case and we have only to study the transformation. In the
sequel we restrict ourselves again to triangles in the plane.

Notations for the unit triangle S in local (ξ, η)-coordinates:

(7◦) Q1(0, 0) , Q2(1, 0) , Q3(0, 1) vertices of triangle S .
(8◦) V vector space of polynomials with n degrees of freedom on S .
(9◦) Θ(ξ, η) = [1, ξ, η, . . .]T column vector of algebraic basis of V ,

a = [α1, . . . , αn]T column vector of coefficients,
v(ξ, η) = Θ(ξ, η)T a ∈ V polynomial ansatz in S .

(10◦) Affine linear mapping transfering S into T :
[
x
y

]
= g(ξ, η) :=

[
x1

y1

]
+
[
x21 x31

y21 y31

][
ξ
η

]

[
ξ
η

]
= g−1(x, y) =

1
J

[
y31 −x31

−y21 x21

][
x− x1

y − y1

] (9.24)

with partial derivatives — J = det grad g(ξ, η) , cf. (6◦) ,

ξx = y31/J, ξy = x13/J, ηx = y12/J, ηy = x21/J . (9.25)

(11◦) Li = Li(ξi, ηi) = g−1(Ki) , i = 1 : n , support points in S .
(12◦) Simple but crucial relation: u(x, y) = v(ξ, η) , (x, y) = g(ξ, η).
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The support points Li in S are given in applications by the type of element;
moreover, the formal vectors Θ(x, y) and Θ(ξ, η) shall have the same compo-
nents as the notation indicates, however x, y are global coordinates and ξ, η
local coordinates.

Of course the design matrix B−1
S relative to the unit triangle S does not

contain data of the varying triangle T and becomes much simpler by this
way. This remains also true if (later on) partial derivatives of the unknown
function u are chosen for interpolation but no longer in the case of normal
derivatives; see Morley’s triangle below. Now remember the crucial relation
Ψ(ξ, η)T = Θ(ξ, η)TB−1

S between the Lagrange basis Ψ and the algebraic
basis Θ in the same way as in (b):

v(ξ, η) = Θ(ξ, η)T a = Θ(ξ, η)TB−1
S u =: Ψ(ξ, η)Tu ≡

n∑
k=1

ukψk(ξ, η) .

Let b̃k be the columns of the design matrix B−1
S again, i.e. B−1

S = [̃b1, . . . , b̃n] ,
then

ukψk(ξ, η) = Θ(ξ, η)T b̃ku
k , ψk(ξ, η) = Θ(ξ, η)T b̃k , k = 1 : n .

Then, by the rules of substitution (12◦) for arbitrary u ∈ R
n , e.g.

∫

T

uTΦ(x, y)ΦT (x, y)u dxdy = uT

[∫

S

Ψ(ξ, η)Ψ(ξ, η)TJ dξdη

]
u

∫

T

uTΦx Φ
T
y u dxdy = uT

[∫

S

(
Ψξξx + Ψηηx

)(
Ψξξy + Ψηηy

)T
J dξdη

]
u

(9.26)

where all geometric data of the varying triangle T are condensed in the num-
bers ξx , ηx , ξy , ηy and J ; cf. Notations (10◦). So we have to evaluate once
for all the much simpler matrices

∫

S

Ψ ΨT dξdη ,

∫

S

Ψξ Ψ
T
ξ dξdη ,

∫

S

Ψξ Ψ
T
η dξdη ,

∫

S

Ψη Ψ
T
η dξdη (9.27)

The fundamental or basic matrices (9.27) are first calculated for a specific finite
element and stored up. On demand they are called up and equipped with the
geometric data of the individual triangle T . The result is particularly simple
representation in which analytic and geometric data are strictly separated.

As long as we deal with affine-equivalent Lagrange elements where a
single transformation g suffices for reduction to reference configuration and no
derivatives are interpolated, we may also recover the general shape functions
Φ on triangle T from the shape functions Ψ on unit triangle S by simple
insertion Φ = Ψ ◦ g−1 , i.e.

u(x, y) = Φ(x, y)Tu = Ψ(g−1(x, y))u ≡
n∑

k=1

ϕk(x, y)uk .
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Example 9.5. (Courant’s triangle) as in Example 9.3 but w.r.t. to unit trian-
gle S . Define the vector Θ(ξ, η)T = [1 , ξ , η] then the interpolation condition
on the vertices of S reads

u1 = α1 + 0 · α2 + 0 · α3

u2 = α1 + 1 · α2 + 0 · α3

u3 = α1 + 0 · α2 + 1 · α3 ,
=⇒ BS =

⎡
⎣

1 0 0
1 1 0
1 0 1

⎤
⎦ , B−1

S =

⎡
⎣

1 0 0
−1 1 0
−1 0 1

⎤
⎦ .

Ψ(ξ, η)T = Θ(ξ, η)TB−1
S = [1 , ξ , η]

⎡
⎣

1 0 0
−1 1 0
−1 0 1

⎤
⎦ = [1 − ξ − η , ξ , η]

Then, for instance,

A :=
∫

S

ΘΘT dξdη =
∫ 1

η=0

∫ 1−η

ξ=0

⎡
⎣

1 ξ η
ξ ξ2 ξη
η ξη η2

⎤
⎦ dξdη =

1
24

⎡
⎣

12 4 4
4 2 1
4 1 2

⎤
⎦

and the mass matrix M = JB−T
S AB−1 is again that of (9.18).

Example 9.6. In the mini element for Navier-Stokes equations, pressure is
approximated by a constant in triange T whereas both the components of
the flow velocity vector are linear interpolated as in Example 9.3 augmented
by the cubic “bubble” function which vanishes at the edges and has value
one at the center of T (Fig. 9.8). So we have together a basis Ψ̃(ξ, η) =
[1−ξ−η, ξ, η, 27ξη(1−ξ−η)]T for the interpolation space of a flow component
in unit triangle. But this basis is not a basis of shape functions since the first
three functions do not vanish in center (1/3, 1/3) being now an additional
support point. Therefore a renewed transformation Ψ(ξ, η)T = Ψ̃(ξ, η)TB−1

S

becomes necessary,

Ψ(ξ, η)T = [1 − ξ − η, ξ, η, 27ξη(1 − ξ − η)]

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0

−1/3 −1/3 −1/3 1

⎤
⎥⎥⎦ .

Figure 9.6. Quadratic
Lagrange element

Figure 9.7. Cubic La-

grange element
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Figure 9.8. “Bubble”
function



9.3 Constructing Finite Elements 451

Barycentric coordinates are nearly always the natural choice in triangles
(and higher-dimensional simplices). They allow a very concise and appealing
representation which can reduce the computational amount of integration to
some extent by its symmetry.

Example 9.7. Consider the quadratic ansatz Θ = (1, ξ, η, ξ2, ξη, η2) in unit
triangle then ΨT = ΘTB−1

S is found again in the same way as above,

ψ1 = (1 − ξ − η)(1 − 2ξ − 2η) = ζ1(2ζ1 − 1) , ψ2 = ξ(2ξ − 1) = ζ2(2ζ2 − 1)
ψ3 = η(2η − 1) = ζ3(2ζ3 − 1) , ψ4 = 4ξ(1 − ξ − η) = 4ζ1ζ2
ψ5 = 4ξη = 4ζ2ζ3 , ψ6 = 4η(1 − ξ − η) = 4ζ1ζ3

(ψk , k = 4, 5, 6 , for mid-points of edges). Writing u4 = u12 , u5 = u23 ,
u6 = u13 , we obtain for interpolating polynomial, using again the transfor-
mation (x, y) = g(ξ, η) ,

u(x, y) = Φ(x, y)Tu = Ψ(ξ, η)Tu = Z(ζ1, ζ2, ζ3)Tu

=
3∑

i=1

uiζi(2ζi − 1) +
∑

1≤i<j≤3

uij4ζiζj ;

see also Example 2.6. Now mass matrix, stiffness matrix and other components
can be calculated in schematic form by applying the integration rule (2.44),

∫

T

ζm
1 ζn

2 ζ
p
3 dζ1dζ2 = 2|T | m!n!p!

(m+ n+ p+ 2)!
,

holding for arbitrary triangles T . This way of proceeding is of special advan-
tage in elements having many degrees of freedom. For instance, the general
rule
∫

T

u dxdy ≈
[∫

T

Φ(x, y)T dxdy

]
u = 2|T |

[∫

S

Φ(ζ1, ζ2, ζ3)T dζ1dζ2

]
u = rTu

does hold where rk = 2|T |
∫

S

ϕk(ζ1, ζ2, ζ3) dζ1dζ2 . For instance, the above

quadratic ansatz yields

r1 = r2 = r3 = 2|T |
∫

S

ζ1(2ζ1 − 1) dζ1dζ2 = 2|T |
[
2
2!
4!

− 1
3!

]
= 0 ,

r4 = r5 = r6 = 2|T |
∫

S

4ζ1ζ2 dζ1dζ2 = 2|T | 41!1!
4!

=
2|T |
6

,

hence rT = 2|T |[0 , 0 , 0 , 1 , 1 , 1]/6 .

Further Examples will hardly be necessary at the present time.
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9.4 Further Topics

The discretization error of finite element approximations depends strongly on
the ratio of longest and shortest triangular edge in a triangulation. Therefore
“flat” triangles with small angles should be avoided as far as possible. To im-
prove an initial triangulation, long common edges may be replaced by smaller
common edges which infers a renumeration of the element matrix. Also interior
points may be moved into the center of the surrounding polygon. Both modi-
fications are applied repeatedly in ascending and descending order (relative to
the sequence of elements in the element matrix). But a domain decomposition
regards in normal case only this geometric characteristic and not possible prin-
cipal stress directions, wave fronts, characteristic directions or stream lines.
Such an adaption to the analytic structure of a continuum problem would,
however, be of great advantage under various aspects. Therefore parallelogram
elements or even general quadrilateral elements are employed also, or, beside
other procedures, the decomposition regards “characteristic directions” iter-
atively during computation. General quadrilateral elements allow no longer
a transformation to unit square by an affine linear mapping similar to the
mapping g in (9.20). Therefore they belong to the class of isoparametric el-
ements of which we describe one example below; see also for instance the
Rannacher-Turek element of the Matlab suite. In contrast, the mapping
(9.20) may be used directly in parallelogram elements because one corner of
the parallelogram depends linearly on the other three corners. The corners of
the parallelogram are numbered by 1 − 2 − 3 − 4 counterclockwise and the
affine linear mapping g applies to the corners 1 − 2 − 4 . The remaining mod-
ifications versus a triangle are of purely technical nature; hence it is referred
to the respective programs of the Matlab suite for details.

The elements considered hitherto are elements of Lagrange type where
only values of the function u are interpolated and no derivatives are employed
for approximation. The number of degrees of freedom — strongly connected
with the number of support points — may be enhanced arbitrarily with limited
numerical improvement, however. One the one side, stiffness and mass matrix
become fuller and fuller occupied and, on the other side, global smoothness
on Ω cannot be improved by this way. Therefore small elements and fine
decompositions are preferred today.

(a) Hermitian Elements As an example for a finite element with deriva-
tives, we consider the complete cubic triangular element with 10 degrees of
freedom. It is especially well-suited for disc problems dealed with in Sect. 8.6
since stresses in vertices of the triangle are composed in simple way of the par-
tial derivatives at those points. But derivatives need some additional transfor-
mations in passing from local (ξ, η)-coordinates to global (x, y)-coordinates.
(The complete cubic element does however not pass (Irons)’ patch test for
plate problems; see below.)

(a1) Support values of the cubic polynomial in unit triangle S are the
three values and the six partial derivatives of the unknown function u at the
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vertices of the triangle. In addition the function value is prescribed at the
center Q10 = (ξ10, η10) = (1/3, 1/3) of the unit triangle. We follow strictly the
patterns of the previous section, choose the suitable algebraic basis

Θ(ξ, η) = [1, ξ, η, ξ2, ξη, η2, ξ3, ξ2η, ξη2, η3]T

but choose an intermediate node vector

ũ = [ũ1, ũ2, ũ3, u4]T , ũi = [ui, vi
ξ, v

i
η] ,

in (ξ, η)-coordinates, where the local partial ξ, η-derivatives are not yet ex-
pressed by global x, y-derivatives. Then the design matrix B−1

S of the trans-
formation ũ(ξ, η) = Ψ(ξ, η)T ũ = Θ(ξ, η)TB−1

S ũ is calculated as in Sect. 9.3 by
direct interpolation,

ui = Θ(ξi, ηi)a , vi
ξ = Θξ(ξi, ηi)a , vi

η = Θη(ξi, ηi)a , i = 1 : 3
ũ(ξ10, η10) = Θ(1/3, 1/3)a

(10 equations) where simply (ξ1, η1) = (0, 0) , (ξ2, η2) = (1, 0) , (ξ3, η3) =
(0, 1) . Recall that ψk = ΘT b̃k , k = 1 : 10 , where b̃k is the k-th column of
B−1

S so for instance — see Sect. 12.1(c)

ψ1 = (1 − ξ − η)[(1 − ξ + 2η)(1 + 2ξ − η) − 16ξη] = ζ2
1 (3 − 2ζ1) − 7ζ1ζ2ζ3 .

The shape function of the center is again the bubble function of Example 9.6,
ψ10 = 27ξη(1−ξ−η) = 27ζ1ζ2ζ3 which disappears at the edges of the triangle
S .

(a2) The partial derivatives of v w.r.t. ξ, η have now to be expressed by
partial derivatives of u w.r.t. x, y in a second step. Using the transformation
(9.24) we have gradξ v = gradx u gradξ g where C̃T := gradξ g contains the
geometric data of the varying triangle T , i.e.

vξ = uxxξ + uyyξ = uxx21 + uyy21

vη = uxxη + uyyη = uxx31 + uyy31
=: C̃T

[
ux

uy

]
. (9.28)

This transformation provides the transition from the preliminary node vector
ũ to the final local node vector

u = [u1, . . . , u10]T := [u1, u
(1)
x , u(1)

y , u2, u
(2)
x , u(2)

y , u3, u
(3)
x , u(3)

y , u4]T

by means of a further matrix: Let ĈT :=
[

1 0
0 C̃T

]
and let

CT = diag[ĈT , ĈT , ĈT , 1] be a block diagonal matrix then ũ = CTu . Let
for instance Ãi be the preliminary fundamental matrices for a simple elliptic
problem,
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Ã1 =
∫

S

Θξ Θ
T
ξ dξdη , Ã2 =

∫

S

Θξ Θ
T
η dξdη

Ã3 =
∫

S

Θη Θ
T
η dξdη , Ã4 =

∫

S

ΘΘT dξdη ,

then the final fundamental matrices Ai = B−T
S ÃiB

−1
S , i = 1 : 4 do not depend

on the data of the varying triangle T and can be calculated once for all in
advance. Now, e.g.,

uT

[∫

S

Ψξ Ψ
T
ξ dξdη

]
u = ũTB−T

S Ã1B
−1
S ũ = uTCT

T B
−T
S Ã1B

−1
S CTu , (9.29)

and the matrices
∫

T
ΦxΦ

T
x dxdy ,

∫
T
ΦyΦ

T
y dxdy are found in exactly the same

way as in (9.26). However, because of the matrix CT , these calculations do
no longer separate strictly analytic data of the element and geometric data of
triangle T . The geometry-independent matrices B−T

S ÃiB
−1
S are listed up in

program fem_drksch.m of the Matlab suite. For an alternative representa-
tion of the cubic interpolating polynomial in barycentric coordinates see Sect.
2.3(e).

By contrast with the vertices, the center node is only once occupied in this
element. Also an element corresponds with his neighbors only by the boundary
nodes. Therefore various attempts have been made to cancel this tenth degree
of freedom. One way is to reduce the associated final matrix by condensation as
in fem_drksch.m of the Matlab suite, see also Sect. 1.1(e3). But an element
derived on this basis does not converge in plate problems (Zienkiewicz), vol.
I, p. 28.

(b) Normal Derivatives Finite elements are called conforming if they
enjoy the same global smoothness as the solution of the basic weak problem.
For instance, solutions of the weak elliptic problem in Sect. 9.2 and of disc
problems in Sect. 8.6 are generically continuous therefore elements for those
problems are conforming if the are continuous everywhere on the domain Ω.
Solutions of plate problems in Sect. 8.7 are generically continuously differen-
tiable hence finite elements are conforming in this case if they are continuously
differentiable (“C1 elements”). See also the remarks at the beginning of Sect.
9.2. However the requirement of conformity is too strong for tractable ele-
ments in plate problems therefore many attempts have been made to develop
alternative convergent approaches without this property.

A very simple non-conforming element — originally for plates — was first
proposed by (Morley). It is a quadratic triangular element with node values
at the vertices P (xi, yi) , i = 1 : 3 , and normal derivatives at the mid-points
P (xi, yi) , i = 4 : 6 , of the edges; cf. Fig. 9.13. Accordingly,

Θ(ξ, η)T a = a1 + a2ξ + a3η + a4ξ
2 + a5ξη + a6η

2 , a ∈ R
6 ,

and u = [u1, u2, u3, un,4, un,5, un,6]
T ∈ R

6 is the local node vector on triangle
T . Let ni = (ci, si) , i = 4 : 6 , be the (normed) normals at the midpoints
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xi , i = 4 : 6 of the edges pointing outwards and let �i , i = 1 : 3 , be the
lengths of the edges then

c4 = y21/�1 , s4 = −x21/�1 , c5 = y32/�2 , s5 = −x32/�2 ,
c6 = y13/�3 , s6 = −x13/�3 ,

un,i =
(
∂u

∂ni

)

i

= ci

(
∂u

∂x

)

i

+ si

(
∂u

∂y

)

i

, i = 4 : 6 . (9.30)

Substitution of ux = vξξx + vηηx and uy = vξξx + vηηx yields together with
the relations (9.25)for ξx etc.

un,i = αivξ(ξi
) + βivη(ξ

i
) (9.31)

αi = (ciy31 + six13)/2|T | , βi = (ciy12 + six21)/2|T | , i = 4 : 6 .

Because of these coefficients, the design matrix relative to unit triangle S does
now contain already geometric data of the triangle T and must therefore be
found for each triangle T by inversion of

BT =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
1 1 0 1 0 0
1 0 1 0 0 1
0 α4 β4 α4 0.5β4 0
0 α5 β5 α5 0.5(α5 + β5) β5

0 α6 β6 0 0.5α6 β6

⎤
⎥⎥⎥⎥⎥⎥⎦
. (9.32)

For instance, the fourth row is α4Θξ(1/2, 0)T + β4Θη(1/2, 0)T . An inversion
by means of Symbolic Mathematics is not recommended. By this way we
obtain the familiar relation Ψ(ξ, η)Tu = Θ(ξ, η)T a = Θ(ξ, η)TB−1

T u for a
representation of the shape functions in local ξ, η-coordinates. The result is
inserted again into the integrals

∫
S
ΨΨT dξdη etc. of (9.27) and it is proceeded

in the same way for the higher partial derivatives involved in plate problems.
We calculate the design matrix B of (9.32) but using the normals of the

unit triangle S , n4 = (0, −1) in ξ
4

= (1/2, 0) , n5 = (1, 1)/
√

2 in ξ
5

=
(1/2, 1/2) and n6 = (−1, 0) in ξ

6
= (0, 1/2) . Then the shape functions Ψ are

obtained via Ψ(ξ, η)T = Θ(ξ, η)TB (row vector) and expressed in barycentric
coordinates by substituting 1 − ξ − η = ζ1 , ξ = ζ2 and η = ζ3 . The shape
functions relative to the normal derivatives at the midpoints of the edges,

ψ4 = η − η2 = ζ3(ζ3 − 1)
ψ5 = (−ξ − η + ξ2 + 2ξη + η2)/

√
2 = ζ1(ζ1 − 1)/

√
2

ψ6 = ξ2 − ξ = ζ2(ζ2 − 1)
(9.33)

are correct for all six node points and must only be multiplied by a con-
stant 2|T |/�1 , 2

√
2|T |/�2 , 2|T |�3 for ψ4 , ψ5 , ψ6 respectively. But the first

three shape functions ψi , i = 1 : 3 , must be modified by adding a linear
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combination of (9.33) because they are not adjusted to normal derivatives in
x, y-coordinates. It is convenient to choose

ψ̃i = ζi + ζi(ζi − 1) + aiζi+1(ζi+1 − 1) + biζi+2(ζi+2 − 1) , i = 1 : 3 modulo 3 .

Then there are nine conditions for six coefficients ai, bi , i = 1 : 3 ,

∂ψ̃i

∂nk

(ξ
k
) = 0 , i = 1 : 3 , k = 4 : 6 ,

but three of them reveal to be trivial (0 + 0 = 0) . The final result is a
representation of quadratic polynomials in Morley’s form:

∀ p ∈ Π2 : p(x) =
3∑

i=1

p(xi)ϕi(x) +
6∑

i=4

∂p

∂ni

(xi)ϕi(x)

ϕ1 = ζ1 + ζ1(ζ1 − 1) + a1ζ2(ζ2 − 1) + b1ζ3(ζ3 − 1)
a1 = (y31y23 + x31x23)/�23 , b1 = (y12y23 + x12x23)/�21

ϕ4 = 2|T | ζ3(ζ3 − 1)/�1

.

The remaining shape functions ϕ2 and ϕ3 are obtained by cyclic permutation
of indices. Note that the barycentric coordinates ζi are to be comprehended
as functions of x = (x, y) ∈ R

2 by (2.40) and partial derivatives w.r.t. x and
y are also calculated by means of (2.40). See also SUPPLEMENT\chap09e.

Figure 9.9. Hermitean
cubic element
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Figure 9.10. Morley’s
quadratic element
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Figure 9.11. Argyris’
quintic element

(c) Argyris’ Triangle As already mentioned, the number of degrees of
freedom has to be considerably enhanced for a C1 element, i.e., an element
yielding continuously differentiable approximation on the entire basic domain
Ω . The complete quintic element with 21 degrees of freedom due to (Argyris)
et al. enjoying this property is uniquely determined by the values as well as
all partial derivatives of first and second order at the vertices (18 degrees of
freedom) and in addition the normal derviatives at the midpoints of the edges.
So we may rely on the above results on cubic elements and Morley’s triangle
and have only to incorporate the now occuring second partial derivatives.
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The algebraic basis of the polynomial vector space over the unit triangle
S is

Θ(ξ, η) =
[
1, ξ, η|, ξ2, ξη, η2|, ξ3, ξ2η, ξη2, η3|, ξ4, ξ3η, ξ2η2, ξη3, η4|,

ξ5, ξ4η, ξ3η2, ξ2η3, ξη4, η5
]T

.

The first derivatives are handled as in (a2), and the second derivatives handled
in a straight-forward generalization. They are transformed global-local by the
chain rule and the affine linear mapping (9.20), ∇ξ

2v = [gradξ g]T ∇x
2u gradξ g

or explicitely
⎡
⎣
vξξ

vξη

vηη

⎤
⎦ =

⎡
⎣

x2
21 2x21y21 y2

21

x21x31 x21y31 + x31y21 y21y31

x2
31 2x31y31 y2

31

⎤
⎦
⎡
⎣
uxx

uxy

uyy

⎤
⎦ =: D̃T

⎡
⎣
uxx

uxy

uyy

⎤
⎦ .

The integrals (9.27) as, e.g.,
∫

S
Ψξ Ψ

T
ξ dξdη are evaluated at first as in the

cubic element by using the auxiliary vector

ũ = [ũ1, ũ2, ũ3]T ∈ R
21 , ũi = [ui, vi

ξ, v
i
η, v

i
ξξ, v

i
ξη, v

i
ηη, u

i
n] (9.34)

regarding the additional matrix D̃ . The normal derivatives ui
n , i = 1 : 3 , at

the edges of triangle T can be handled as in (b) of course. This means that
the global-local transformation

ui
n = (gradu)i · ni = (grad v)i

[
(grad g)i

]−1
ni =: (grad v)i · ñi

is already regarded in the construction of the design matrix B−1 ∈ R
21

21

relative to unit triangle S which then depends on the data of varying triangle
T . A computation of this parameter-dependent matrix as an inverse can but
be performed theoretically by Symbolic Mathematics but the result is a
tremendous data mismatch. So it remains to compute this matrix numerically
for each triangle T as inverse of the matrix B of the (modified) interpolation
conditions relative S . The auxiliary vector ũ is thereafter expressed by the
node vector

u = [u1, u2, u3]T , ui = [ui, ui
x, u

i
y, u

i
xx, u

i
xy, u

i
yy, u

i
n] .

again by means of a matrix-vector multiplication: Let

D̂T :=

⎡
⎢⎢⎣

1 0 0 0
0 C̃T 0 0
0 0 D̃T 0
0 0 0 1

⎤
⎥⎥⎦ , C̃T =

[
x21 x31

y21 y31

]
,

C̃T being the matrix of (9.28), and let DT = diag[D̂T , D̂T , D̂T ] be a block
diagonal matrix, then ũ = DTu . Now, e.g., instead of (9.29),
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uT

[∫

S

Ψξ Ψ
T
ξ dξdη

]
u = uTDT

TB
−T
T Ã1B

−1
T DTu , Ã1 =

∫

S

Θξ Θ
T
ξ dξdη

(9.35)
where u ∈ R

21 is the local node vector relative to global x, y-coordinates. The
matrices of the other integrals have the same form with different basic matrix
Ã1 however.

In spite of its magnitude, Aryris’ element fascinates in many aspects.
It may be applied in problems where higher than second derivatives can no
longer be neglected as in the theory of surface waves (X.Chen), and it is
also proposed for application in shell theory. The expensive calculation of the
matrix inversions can be circumvented theoretically by using a representation
of the basic polynomial in barycentric coordinates in a similar way as in
Morley’s triangle. See Sect. 12.1(d) and SUPPLEMENT\chap09f.

Following a proposition of (Bell), the number of degrees of freedom of the
quintic element may be reduced to 18 without loss of smoothness (but with
loss of accuracy) by the requirement that

the normal derivative of u is a cubic polynomial on each edge of T .

This condition allows to eliminate the values of the normal derivative at the
mid-points of the edges in a similar way as in (b). Bell’s requirement implies
that un(s) = a + bs + cs2 + ds3 on each edge after reparametrization. The
coefficients of un(s) are expressed by four boundary conditions at the terminal
points of the individual edge involving mixed derivatives un,s however but
those can be expressed by available first and second partial derivatives of u .
For details see KAPITEL02\SECTION_1_2_3\bell.m and also Sect. 7.3(b).

(d) A Triangular Element with Curvilinear Edges Obviously the
mapping g : S → T of (9.20) must not necessarily be linear as long as
it remains invertible on every triangle T . In choosing polynomials of higher
degree for that mapping we obtain a further class of elements, in particular el-
ements with curved boundary. However, for computational reasons, the edges
shall be here polynomials of the same degree as the two-dimensional poly-
nomial g, e.g., quadratic if g is quadratic; therefore such elements are called
isoparametric. The integration of the quadratic forms in (9.24) then has to be
managed by a numerical integration rule, normally by a Gaussian rule, since
the weights ξx , ξy , ηx , ηy in (9.26) are no longer constants. The same holds
also for the direct representation via shape functions and, besides, elements
with derivatives are more difficult to be implemented here. Because of higher
effort in construction and evaluation, this type is receded somewhat into the
background due to computational speeds of today.

(d1) For example, we reconsider the quadratic triangular element of Ex-
ample 9.7, and recall that every triangle T is specified here by six support
nodes Pi(xi, yi) , i = 1 : 6 , including midpoints of edges such that every edge
can be quadratically interpolated. Also recall that Θ = (1, ξ, η, ξ2, ξη, η2) is
the algebraic basis in unit triangle and ΨT = ΘTB−1

S etc. where B−1
S is the

design matrix of that element relative to unit triangle. As the element shall
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be isoparametric, the mapping g : S → T is supposed to be also quadratic,
therefore the requirement P (xi, yi) = g(ξi, ηi) , i = 1 : 6 , for the specified sup-
port points of the curved triangle T on the one side and the support points
of unit triangle S on the other side implies that g consists of two quadratic
polynomials

[
x
y

]
=
[
γ1 + γ2ξ + γ3η + γ4ξ

2 + γ5ξη + γ6η
2

δ1 + δ2ξ + δ3η + δ4ξ
2 + δ5ξη + δ6η

2

]
=: g(ξ, η) .

of which the coefficients γi and δi are to be determined by

(x, y) (ξ, η)
x1 = γ1 (0, 0)
x2 = γ1 + γ2 + γ4 (1, 0)
x3 = γ1 + γ3 + γ6 (0, 1)
x4 = γ1 + 1

2γ2 + 1
4γ4 ( 1

2 , 0)
x5 = γ1 + 1

2γ2 + 1
2γ3 + 1

4γ4 + 1
4γ5 + 1

4γ6 ( 1
2 ,

1
2 )

x6 = γ1 + 1
2γ3 + 1

4γ6 (0, 1
2 )

y1 = δ1 (0, 0)
y2 = δ1 + δ2 + δ4 (1,0)
. . . likewise

.

Letting x = [x1, . . . , x6]T and y = [y1, . . . , y6]T we see that the interpolation
conditions have again the familiar form x = BSγ and y = BSδ and the
global-local relation between x, y- and ξ, η-coordinates reads, e.g., x = ΘT γ =
ΘTB−1

S x = ΨTx for x . Therefore we may use the same shape functions as in
the straight quadratic triangular element for x , y and the unknown function
u :

u(x, y) = v(ξ, η) = Ψ(ξ, η)Tu , x = Ψ(ξ, η)Tx , y = Ψ(ξ, η)T y .

However the gradient of g is no longer a constant matrix (relative to triangle
T ) but varies now with ξ, η . The Jacobi determinant J(ξ, η) must be non-
zero on S in order that g is bijective on S which is apparently true because the
elements of the algebraic basis Θ are linearly independent. More explicitely,

J(ξ, η) =
∣∣∣∣
∂(x, y)
∂(ξ, η)

∣∣∣∣ =
∣∣∣∣
xξ xη

yξ yη

∣∣∣∣ =
∣∣∣∣
Ψξ(ξ, η)Tx Ψη(ξ, η)Tx
Ψξ(ξ, η)T y Ψη(ξ, η)T y

∣∣∣∣ .

The partial derivatives of the inverse function g−1 are easily found by
Cramer’s rule,

∂(ξ, η)
∂(x, y)

=
[
ξx ξy

ηx ηy

]
=
[
xξ xη

yξ yη

]−1

=
1
J

[
yη −xη

−yξ xξ

]

but are now likewise rational functions in ξ, η . Consider, e.g., the stiff part
of the model problem in Sect. 9.2 then
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∫

T

(u2
x + u2

y) dxdy =
∫

S

(vξξx + vηηx)2 + (vξξy + vηηy)2 J dξdη

= uT
{∫

S

[
(Ψξξx + Ψηηx)(Ψξξx + Ψηηx)T

+ (Ψξξy + Ψηηy)(Ψξξy + Ψηηy)T
]
J dξdη

}
u = uTKu .

The integrals
∫

S
Ψξ Ψ

T
ξ dξdη etc. can no longer be calculated once for all in

advance but the composed integrals
∫

S
Ψξ Ψ

T
ξ ξ

2
x dξdη etc. must be calculated

for each triangle T by a numerical integration rule, usually a two-dimensional
Gaußian rule. See also fem_isodrqell.m in the Matlab suite.

(d2) Evaluation of Boundary Integrals
∫

Γ∩T

u2(s) ds ,
∫

Γ∩T

u(s) ds .

The quadratic shape functions in unit interval [0, 1] are

ψ1 = (1 − σ)(1 − 2σ), ψ2 = 4σ(1 − σ), ψ3 = −σ(1 − 2σ) .

On a boundary edge R = Γ ∩ T we have as above but one-dimensinal

u(s) = v(σ) = Ψ(σ)Tu , x(σ) = Ψ(σ)Tx, y(σ) = Ψ(σ)T y , x = [x1, x2, x3]T .

Substitution yields
∫

Γ∩T

u2(s) ds =
∫ 1

0

v2(σ)(x′2(σ) + y′2(σ))1/2dσ

=
∫ 1

0

[Ψ(σ)Tu]2
(
(Ψ ′(σ)Tx)2 + (Ψ ′(σ)T y)2

)1/2

dσ

= uT
{∫ 1

0

Ψ(σ)Ψ(σ)T
(
. . .

)1/2
dσ
}
u = uTMRu

∫
Γ∩T

u(s) ds =
{∫ 1

0

Ψ(σ)T
(
. . .

)1/2
dσ
}
u = rTu .

The line integrals are commonly evaluated by application of one-dimensional
Gaußian rules again.

(e) Finite Elements for Discs Consider plane stress for discs. Then
u = (u, v) denotes the displacement and, by (8.49) and (8.50),

ET (u) =
h

2

∫

T

ε(u) · σ(u) dxdy ,

ε(u) · σ(u) = uTDTCSDu

=
E

1 − ν2

[
u2

x + 2νuxvy + v2
y +

1
2
(1 − ν)(uy + vx)2

]

(9.36)
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is the stress energy in an arbitrary triangle T where

CS =

⎡
⎣

1 ν 0
ν 1 0
0 0 (1 − ν)/2

⎤
⎦ , D =

⎡
⎣
∂x 0
0 ∂y

∂y ∂x

⎤
⎦ (9.37)

is the elasticity resp. the operator matrix. In direct computation with shape
functions we write

u = Φ(x, y)TU , U = [u1, . . . , un]T ; v = Φ(x, y)TV , V = [v1, . . . , vn]T

again. Substitution into (9.36) then yields

hE

1 − ν2
[UT , V T ]

∫

T

K̃ dF

[
U
V

]

where U and V denote the local vector in global node variables. The stiffness
matrix is now

K̃ =⎡
⎣
⎡
⎣
∂x 0
0 ∂y

∂y ∂x

⎤
⎦
[
Φ(x, y)T Nulln
Nulln Φ(x, y)T

]⎤
⎦

T⎡
⎣

1 ν 0
ν 1 0
0 0 (1 − ν)/2

⎤
⎦
⎡
⎣
∂x 0
0 ∂y

∂y ∂x

⎤
⎦
[
Φ(x, y)T Nulln
Nulln Φ(x, y)T

]

The shape functions are expressed by barycentric coordinates, cf. Sect. 2.3(f),
(g), and the derivatives Φx and Φy are calculated. The derivative of a single
barycentric coordinate is a real number by (2.40) which depends only on the
geometry of the triangle. The integration of the individual components may
be managed ensuing by application of formula (2.44) without difficulties and,
by the way, may be standardized to a large extent. For instance we obtain a
matrix K̃ of dimension twenty for cubic elements by this way. Integration over
the general triangle T is reduced to integration over the unit triangle again
as repeatedly done in this section,

ε(u) · σ(u) =
E

1 − ν2

[
(uξξx + uηηx)2 + 2ν(uξξx + uηηx)(vξξy + vηηy)

+ (vξξy + vηηy)2 +
1
2
(1 − ν)(uξξy + uηηy + vξξx + vηηx)2

]

=
E

1 − ν2

[
a1u

2
ξ + 2b1uξuη + c1u

2
η + a2v

2
ξ + 2b2vξvη + c2v

2
η

+ 2a3uξvξ + 2b3uξvη + 2c3uηvξ + 2d3uηvη

]
.

(9.38)
The coefficients ai , bj , ck depend again on the geometry of the triangle T
and are listed in the appertaining programs of the Matlab suite. Let

Ã1 =
∫

S

Θξ Θ
T
ξ dξdη , Ã2 =

∫

S

Θξ Θ
T
η dξdη , Ã3 =

∫

S

Θη Θ
T
η dξdη (9.39)
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be the fundamental matrices , let B−1
S be the design matrix and Âi =

B−T
S ÃiB

−1
S then

h

∫

T

ε(u) · σ(u) = [Ũ , Ṽ ]

[
K̂11 K̂12

K̂21 K̂22

][
Ũ

Ṽ

]
,

Ũ
T
K̂11Ũ =

hE

1 − ν2

∫

S

[
a1u

2
ξ + 2b1uξuη + c1u

2
η

]
dξdη

Ṽ
T
K̂22Ṽ =

hE

1 − ν2

∫

S

[
a2v

2
ξ + 2b2vξvη + c2v

2
η

]
dξdη

Ũ
T
K̂12Ṽ =

hE

1 − ν2

∫

S

[
a3uξvξ + b3uξvη + c3uηvξ + d3uηvη

]
dξdη

K̂11 =
hE

1 − ν2

[
a1Â1 + b1(Â2 + ÂT

2 ) + c1Â3

]

K̂22 =
hE

1 − ν2

[
a2Â1 + b2(Â2 + ÂT

2 ) + c2Â3

]

K̂12 =
hE

1 − ν2

[
a3Â1 + b3Â2 + c3Â

T
2 + d3Â3

]
(9.40)

and K̂21 = K̂T
12. Thereby we get along with three fundamental matrices (9.39)

where A2 is unsymmetric; the computational amount in (9.40) my be still
reduced further.

We have U = Ũ and V = Ṽ for the final global node vectors in elements of
Lagrange type (without derivatives) whereas the additional transformation
Ũ = CTU , Ṽ = CTV has to be regarded in elements of Hermite type as, e.g.,
in the above cubic element. The corresponding modifications in parallelogram
elements are of pure technical nature.

(f) On the Patch Test Reconsider the homogeneous Dirichlet problem
(9.4): Find u ∈ U such that

∀ v ∈ U :
∫

Ω

[
grad v · gradu− v f

]
dΩ = 0 , v = 0 on Γ = ∂Ω (9.41)

and u = 0 on Γ = ∂Ω . Recall also the decomposed form (9.13)

∑
i

∫

Ti

[grad v · gradu− v f ] dxdy = 0 , Ω =
⋃
i

Ti , (9.42)

being the basic formula for finite element approach. To recover the Laplace

equation −Δu−f = 0 from (9.42) we apply Green’s formula to every triangle
Ti and obtain

0 =
∑

i

∫

Ti

[−vΔu− v f ] dxdy +
∑

i

∮

∂Ti

v gradu · nds or

0 = −
∫

Ω

v(Δu+ f) dxdy +
∑

i

∮

∂Ti

v gradu · nds .
(9.43)
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Obviously the line integrals run over all edges of all triangles Ti not being part
of the boundary because v = 0 on Γ . The boundary ∂Ti of every triangle Ti is
positively oriented such that the interior of Ti lies on the left of the boundary.
Thus every interior edge Ej of the decomposition is run twice in opposite
direction. But gradu · n may be discontinuous on interelement boundaries
and thus may have a jump Δ̃ gradu ·n (Δ̃ shall denote the jump here and not
a Laplace operator). Summing over the edges we can therefore write instead
of (9.43)

0 = −
∫

Ω

v(Δu+ f) dxdy +
∑

j

∫

Ej

vΔ̃ gradu · nds . (9.44)

Let us quote (Strang), p. 178: An essential feature of finite elements is their
success on a coarse mesh; even some elements which fail the patch test and are
nonconvergent give very satisfactory results for realistic mesh width. But these
jumps cannot be neglected in proving any form of consistence, convergence
or even “robustness” of the approximation (9.42) for mesh width tending to
zero.

Patch Test (Sufficient condition following (Zienkiewicz)). Let the decom-
position of the basic domain have only straight edges, and let E denote an
arbitrary interior edge. Let n and t denote the unit normal and tangent of
each E, and let ϕ be an arbitrary shape function of the element under con-
sideration. Then the element passes the patch test if

∀ E ∀ ϕ :
∫

E

Δ̃
∂ϕ

∂t
ds = 0 ,

∫

E

Δ̃
∂ϕ

∂n
ds = 0 . (9.45)

Following (Specht), the first condition can be replaced by
∫

E

Δ̃ϕ ds = 0 di-

rectly and is not the troublemaker. The patch test is explained very well in
(Strang) SEct. 4.2 and p. 300 ff. But see also the polynomial invariance criteria
of (Ciarlet79), Sect. 4.2, and (Taylor) where a counterexample is “countered”
revealing that there are some ambiguities in the test being not removed up
today. The test applies to triangular as well as quatrilateral decompositions
and to problems of any order but concerns mainly non-conforming elements
for plates. Besides some regularity conditions on the mesh refinement it (prob-
ably) suffices for consistence.

The complete cubic triangle of (a) with 10 degrees of freedom fails the
patch test for plates and does not converge ((Irons), (Specht), (Zienkiewicz),
p. 23) mainly because of the “bubble” function ζ1ζ2ζ3 being the shape function
associated to the center of the triangle. The crucial second jump integral in
(9.45) disappears of course for conforming elements in plates. But it disappears
also if gradϕ ·n is constant on the edge with one value fixed as in Example 9.8
or if it is linear with two values specified at the vertices as in Batoz’ element
below. Moreover it vanishes if gradϕ · n is skew-symmetric with respect to
the midpoint of the edge. Therefore (Specht) requires that the higher order
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shape functions of a modified cubic triangle have the property that ϕn(s) =
α1 · 1 + α2s+ α3s

3 on the edge which is fulfilled in case
∫ 0.5

−0.5

(12s2 − 1)ϕn ds = 0 because
∫ 0.5

−0.5

(12s2 − 1)sk ds = 0 , k = 0, 1, 3 .

By this way he was able to develop an element with 9 DOFs passing the test.
Let �i , i = 1 : 3 , be the lengths of the edges and

μ1 = (�23 − �22)/�
2
1 , μ2 = (�21 − �23)/�

2
2 , μ3 = (�22 − �21)/�

2
3 .

Then the shape functions of Specht are the components of Ψ̃1 , Ψ̃2 , Ψ̃3 where

Ψ̃1 =
[
ζ1 , ζ1ζ2 , ζ

2
1ζ2 +

1
2
ζ1ζ2ζ3

[
3(1 − μ3)ζ1 − (1 + 3μ3)ζ2 + (1 + 3μ3)ζ3

]]

(with fourth order term). Ψ̃2 , Ψ̃3 follow from Ψ̃1 by cyclic permutation of
indices mod 3 .

Example 9.8. Among many others, a non-conforming linear triangular element
for second order problems has been proposed by Crouzeix and Raviart in
(Crouzeix73). It has the midpoints of the edges for node points and the shape
functions ψi = 1 − 2ζi , i = 1 : 3 . Interelement continuity is lost by this way
(except at the midpoints) but the element passes the patch test even for irregu-
lar meshes as, e.g., shown very directly in (Strang), p. 178. Rannacher and
Turek propose a corresponding quatrilateral element in (Rannacher) with
local basis 1 , ξ , η , ξ2 − η2 , cf. Figure 9.13; see also SUPPLEMENT\chap09e.
This isoparametric element passes the test for irregular (quadrilateral) mesh
decompositions by the same reasons; it is rigorously examined and compared
with other elements in (Turek). Both elements apply in particular to Stokes

equations by properties being not discussed here whereby the first one is rather
of theoretical interest. Today there exist valuable “meshers” for quadrilateral
meshs with partial refinement following an idea of (Schneiders).

Figure 9.12. Simple CR element

ξ

η

Figure 9.13. RT element
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(g) A Cubic Triangular Element for Plates with nine degrees of
freedom passing the patch test. In Kirchhoff’s plate by Sect. 8.7(b),

ET (w) =
h3

12

∫

T

σ(w) · ε(w) dxdy ,

σ(w) · ε(w) =
E

1 − ν2

[
w2

xx + 2ν wxxwyy + w2
yy +

1
2
(1 − ν)(wxy + wyx)2

]

(9.46)
is the stress energy in an arbitrary triangle T . Let u = (u, v) = gradw then
by slight modification of the notation

σ(u) · ε(u) = uTDTCSDu

where the matrices are the same as in (9.37). Following (Batoz) we choose the
quadratic element of Example 9.7 for u and v and the reduced cubic element
without “bubble” function for the bending w but, again following (Batoz)
with the additional requirement that

the derivative of w in normal direction of each edge is linear . (9.47)

By this additional condition the values of u and v at the mid-points of the
edges can be expressed by values of w , wx , wy at the vertices of the triangle
T :

We consider an edge κ12 of length �12 between the points P1(x1, y1) and
P2(x2, y2) which shall be parametrized by the arc length s . The “bubble”
function in the complete cubic ansatz for w vanishes on each edge therefore w
must be a cubic polynomial on each edge also in the reduced cubic element.
This implies that w(s) = a+ bs+ cs2 +ds3 after reparametrization. The coef-
ficients of this one-dimensional polynomial are determined by four boundary
conditions

w1 := w(0) , ws,1 :=
dw

ds
(0) , w2 := w(�ij) , ws,2 :=

dw

ds
(�ij) (9.48)

at the ends of the considered edge: a = w1 , b = ws,1 ,

c =
3
�212

[w2 − w1] −
1
�12

[2ws,1 + ws,2] , d =
2
�312

[w1 − w2] +
1
�212

[ws,1 + ws,2] .

At the mid-point of the edge

w(1/2) = a+ b
1
2

+ c
1
4

+ d
1
8

=
1
2
[w1 + w2] +

�12
8

[ws,1 − ws,2]

w′(1/2) =
3

2�12
[w2 − w1] −

1
4
[ws,1 + ws,2]

and by (9.47)

wn

∣∣
s=1/2

:= gradw · n
∣∣
s=1/2

=
1
2
[
gradw · n

∣∣
s=0

+ gradw · n
∣∣
s=l12

]
.
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Let now ϕ be the angle between the edge κ12 and the x-axis and let x21 =
x2 − x1 , y21 = y2 − y1 , �212 = x2

21 + y2
21 ,

c21 := cosϕ =
x21

�21
, s21 := sinϕ =

y21

�21
, t = [c21 , s21]T , n = [s21 , −c21]T ,

then gradw · t = c21 wx + s21 wy , gradw · n = s21 wx − c21 wy , hence at the
mid-point of the edge

[
u4

v4

]
=
[
wx

wy

]
= A21

[
wt

wn

]
, A21 = A−1

21 =
[
c21 s21
s21 −c21

]
;

likewise we obtain

ws,1 = c21wx,1 + s21wy,1 = c21u1 + s21v1

ws,2 = c21wx,2 + s21wy,2 = c21u2 + s21v2

wn,1 = s21wx,1 − c21wy,1 = s21u1 − c21v1

wn,2 = s21wx,2 − c21wy,2 = s21u2 − c21v2 .

By this way the unknown values at the mid-point can be expressed by the
local node vector U in global (x, y)-coordinates at the vertices,

u4 = P 4U , v4 = Q
4
U , U = [w1, v1, u1, w2, u2, v2, w3, u3, v3]T (9.49)

where P4 = [p , 0 , 0 , 0] , Q4 = [q , 0 , 0 , 0] and

p =
[
−3c21

2�12
,

[
s221 − 1

4
c221

]
, −5

4
c21s21 ,

3c21
2

�12 ,

[
s221 − 1

4
c221

]
, −5

4
c21s21

]

q =
[
−3s21

2�12
, −5

4
c21s21 ,

[
c221 − 1

4
s221

]
,

3s21
2

�12 , −5
4
c21s21 ,

[
c221 − 1

4
s221

]]
.

The other two edges of the triangle are handled in the same way and finally
one obtains a transformation

Ũ = [u1, . . . , u6]T = P (x, y)U , Ṽ = [v1, . . . , v6]T = Q(x, y)U

where P, Q ∈ R
6
9 and, e.g.,

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
P41 P42 P43 P44 P45 P46 P47 P48 P49

0 0 0 P54 P55 P56 P57 P58 P59

P61 P62 P63 0 0 0 P67 P68 P69

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Now the unknown values at the mid-points of the edges are eliminated com-
pletely and we obtain in modification of (9.40)

ET (w) =
h3

12

∫

T

ε(u) · σ(u) dxdy =
h3

12
[PU,QV ]

[
K̂11 K̂12

K̂21 K̂22

][
PU
QV

]
(9.50)

where K̂ij are the same matrices as in (9.40); cf. the program fem_batoz.m.
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9.5 On Singular Elements

All numerical devices require some smoothness of the unknown solution in de-
pendence of the order (accuracy) of the individual method. But this smooth-
ness is reduced or even lost in corners of the basic domain of definition, in
particular when we are faced with re-entrant corners. The phenomenon may
be observed directly in membranes, but also discs and plates crack most likely
at these points. In order to attain an overall uniform quality of approxima-
tion, the exact solution has to be modelled with special care at “singular”
points of the basic domain, or one accepts simply that loss of exactness. In
this section we study the behavior of solutions at corners more thoroughly in
the comparatively simple example of Laplace equation.

(a) Transition to polar coordinates. Remember:

x = r cosϕ , y = r sinϕ , r = (x2 + y2)1/2 , −π ≤ ϕ < π
ϕ = arccos(x/r) for y ≥ 0 , ϕ = − arccos(x/r) for y < 0
resp. ϕ = 2π − arccos(x/r) for y < 0 , if 0 ≤ ϕ < 2π

.

The angle ϕ is undetermined for r = 0 . Further, remember the partial deriva-
tives

rx =
x

r
, ry =

y

r
, rxx =

y2

r3
, rxy = −xy

r3
, ryy =

x2

r3
;

dϕ

dx
= − y

r2
,
dϕ

dy
=

x

r2
for y ≥ 0 ,

dϕ

dx
=

y

r2
,
dϕ

dy
= − x

r2
for y < 0 .

By F (r, ϕ) := f(r cosϕ, r sinϕ) we have Fr = fx cosϕ + fy sinϕ , Fϕ =
−fxr sinϕ+ fyr cosϕ and resolution yields

fx = Fr cosϕ− 1
r
Fϕ sinϕ , fy = Fr sinϕ+

1
r
Fϕ cosϕ .

The normal vector n reads on the ray ϕ = const as n = (− sinϕ, cosϕ) and
therefore

fn = −fx sinϕ+ fy cosϕ

=
(
r−1Fϕ sinϕ− Fr cosϕ

)
sinϕ+

(
Fr sinϕ+ r−1Fϕ cosϕ

)
cosϕ ,

fn = r−1Fϕ.

(b) We solve the boundary value problem with Laplace equation in polar
coordinates

Δu = urr +
1
r
ur +

1
r2
uϕϕ = 0 (9.51)

on the pie-shaped domain Ω = {(r, ϕ) , 0 < r ≤ R , α < ϕ ≤ β} , 0 < β−α <
2π . By substitution of u(r, ϕ) = rsF (ϕ) into (9.51) we obtain
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s(s− 1)rs−2F (ϕ) + srs−2F (ϕ) + rs−2F ′′(ϕ) = 0 ,

which leads to the ordinary differential equation

F ′′(ϕ) + s2F (ϕ) = 0 . (9.52)

The general solution of (9.51) is a linear combination of fundamental solutions

us(r, ϕ) = rs
(
a cos(sϕ) + b sin(sϕ)

)

of (9.52) where the possible exponents s > 0 are still to be specified. Suppose
now that there are u(r, α) , u(r, β) , 0 < r ≤ R for possible homogeneous
Dirichlet boundary conditions (D) and that there are further homogeneous
Neumann conditions (N).
Case D-D u(r, α) = u(r, β) = 0 .

u(r, α) = ars cos(sα) + brs sin(sα) = 0
u(r, β) = ars cos(sβ) + brs sin(sβ) = 0 .

A non-trivial solution exists if the determinant of the homogeneous system
vanishes,

cos(sα) sin(sβ) − cos(sβ) sin(sα) = sin(s(β − α)) = 0 ,

which leads to the condition

sn =
nπ

β − α
, n ∈ N0 .

In that case a/b = − sin(sα)/ cos(sα) and, recalling
sin(ϕ) cos(α) − cos(ϕ) sin(α) = sin(ϕ− α) , we obtain

un(r, ϕ) = rsn sin
(
sn(ϕ− α)

)
. (9.53)

The general solution reads therefore

u(r, ϕ) =
∞∑

n=1

cnr
sn sin

(
sn(ϕ− α)

)
. (9.54)

But consider a re-entrant corner where β − α > π hence 0 < s1 < 1 . Then

lim r→0
∂u

∂r
(r, ϕ) = lim r→0s1

1
r1−s1

sin
(
s1(ϕ− α)

)
= ∞ ,

whereby the notion singularity is justified.
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Case N-N un(r, α) = un(r, β) = 0 . Substitution of un = uϕ/r leads to the
system

−a sin(sα) + b cos(sα) = 0 , a sin(sβ) + b cos(sβ) = 0 .

We thus obtain the same condition sin
(
s(β−α)

)
= 0 as in Case D-D and by

consequence the same general solution.
Case D-N u(r, α) = un(r, β) = 0 . The boundary condition

a cos(sα) + b sin(sα) = 0 , a sin(sβ) − b cos(sβ) = 0

yields here cos
(
s(β − α)

)
= 0 hence

sn =
(2n+ 1)π
2(β − α)

, n ∈ N0 .

Case N-D Same as Case D-N.
(c) Example D-D Consider an approximation by finite elements and

let TS be a triangle containing the D-D singularity at a vertex. The singular
corner shall have the local coordinates (r, ϕ) = (0, 0) in this approach. Then,
in most simplest case, the first basis solution

w(r, ϕ) :=

{
rs1 sin

(
s1(ϕ− α)

)
, 0 < r ≤ r0 ,

g(r) sin(s1(ϕ− α)) , r0 ≤ r ≤ r1

is taken for additional basis function to the basis of polynomials in TS . (Further
basis functions (9.53) may be added in case of higher order approximations.)
The scalar function g(r) shall be a cubic polynomial with the properties

g(r0) = rs1
0 , g′(r0) = s1r

s1−1 , g(r1) = g′(r1) = 0 ,

where r1 is sufficiently small such that v vanishes outside of TS ; cf. Sect.
2.1(e). Then

g(r) = g(r0) + g′(r0)(r − r0) −
(
3g(r0) + 2g′(r0)(r1 − r0)

) (r − r0)2

(r1 − r0)2

+
(
2g(r0) + g′(r0)(r1 − r0)

) (r − r0)3

(r1 − r0)3

and the additional basis function w reads more explicitely

w(r, ϕ) = rs sin(s(ϕ− α)) , 0 < r ≤ r0 > 0 , w(0, ϕ) = 0
wr(r, ϕ) = srs−1 sin(s(ϕ− α))
wϕ(r, ϕ) = srs cos(s(ϕ− α))

and shall be continued smoothly for r0 < r ≤ r1 .
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For instance, consider linear elements in unit triangle with center
S(1/3, 1/3) . The singular point shall be the origin for simplicity; for r0 we
choose the distance of S to the origin hence r0 =

√
2/3 . Now the augmented

representation in S has the form

v(ξ, η) = α1 + α2ξ + α3η + α4w̃(ξ, η), w̃(ξ, η) = w(r(ξ, η), ϕ(ξ, η))

where, for the inverse of the design matrix,

Q1(0, 0) : u1 = α1 + α4w̃(0, 0)
Q2(1, 0) : u2 = α1 + α2 + α4w̃(1, 0)

Q3(0, 1) : u3 = α1 + α3 + α4w̃(0, 1)

S(1/3, 1/3) : u4 = α1 +
1
3
α2 +

1
3
α3 + α4w̃(1/3, 1/3) .

w̃(0, 0) = 0 , w̃(1, 0) = 0 , w̃(0, 1) = 0 ,

w̃(1/3, 1/3) =

(√
2

3

)s

sin((sπ − 4β)/4) =: a .

The design matrix is then found as usual

B−1 =

⎡
⎢⎢⎣

1 0 0 0
1 1 0 0
1 0 1 0
1 1/3 1/3 a

⎤
⎥⎥⎦ , B =

1
3a

⎡
⎢⎢⎣

3a 0 0 0
−3a 3a 0 0
−3a 0 −3a 0
−1 −1 −1 3

⎤
⎥⎥⎦

Also, partial derivatives w.r.t. local (ξ, η)-coordinates are needed in applica-
tions. For 0 < r ≤ r0

w̃ = w(r(ξ, η), ϕ(ξ, η))
w̃ξ = wrrξ + wϕϕξ

= s rs−1 sin(s(ϕ− β))
ξ

r
+ s rs cos(s(ϕ− β))

(
−|η|
r2

)

= s rs−2[sin(s(ϕ− β))ξ − cos(s(ϕ− β))|η|]
w̃η = wrrη + wϕϕη

= s rs−1 sin(s(ϕ− β))
η

r
+ s rs cos(s(ϕ− β))

(
e
ξ

r2

)

= s rs−2[sin(s(ϕ− β))η + e cos(s(ϕ− β))ξ]

where e = 1 for y ≥ 0 and e = −1 for y < 0 . Equivalently, for r0 < r ≤ r1 =
1/

√
2 :

w̃ξ = s g′(r) sin(s(ϕ− β))
ξ

r
+ s g(r) cos(s(ϕ− β))

(
−|η|
r2

)

w̃η = s g′(r) sin(s(ϕ− β))
η

r
+ e s g(r) cos(s(ϕ− β))

ξ

r2
.
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Recall that our intention was to solve Poisson’s equation by linear triangular
elements. Then

Ψ = [ψ1, ψ2, ψ3]T = [1 − ξ − η, ξ, η]T

is the vector of shape functions in unit triangle and the following additional
integrals appear at singularities by the above device

∫

S

w̃2
ξ ,

∫

S

w̃2
η,

∫

S

w̃2,

∫

S

w̃,

∫

S

ψiw̃,

∫

S

ψi,ξw̃ξ,

∫

S

ψi,ηw̃η .

These integrals are evaluated numerically by using a Gaußian integration
rule in unit triangle.
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φ−α = π/2
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r
0

r
1

(a)

(b) (c)

Figure 9.14. Example

(a) w(r, π/2) = rs sin(s π/2) , (b) w(r, ϕ) = rs sin(sϕ) ,
(c) wr(r, ϕ) = s rs−1 sin(sϕ) , s = 2/3 .

9.6 Navier-Stokes Equations

At the beginning of the computer age, modeling fluid motions was a great
challenge which later shifted to problems involving a lack of smoothness such
as turbulences, shocks, cracks, compound materials, approximating the solu-
tion in the corners of the domain, etc. Nowadays anyone can simulate fluids,
convection and related problems on his or her home computer and achieve
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perfectly respectable results for simple problems when all data exhibit ade-
quate smoothness. Many methods are in noble rivalry over the visualization
of problems with high Reynolds numbers whereby also difference methods
play a substantial role, cf., e.g., (X.Chen), (Spotz), (Tanahashi).

There exists a large offer of finite elements for solving Navier-Stokes

equations in their various different representations. In particular different non-
conforming triangular and quadrilaterel elements are frequently proposed and
very successful because they allow more regular domain decomposition; see,
e.g, (Gresho), (Turek) and many others. By and large we restrict ourselves,
however, in this section to the versatile stream-function vorticity form (where
pressure is eliminated) and to Courant’s triangle as the most simple trian-
gular element; some further methods are implemented in the Matlab suite.

Whether velocity-pressure or stream-function vorticity form, the station-
ary versions sustain only limited values of Reynolds resp. Rayleigh num-
bers. Beyond, say, Re = 103 the condition of the leading matrix becomes too
bad for the otherwise powerful solution of linear systems in Matlab by di-
rect methods. Alternative iterative methods like GMRES or the like are also
offered by Matlab but have not been tested in the Matlab suite, also no
stabilization effects. Higher Reynolds number are commonly handled by the
time-dependent form and comparatively simple devices for time discretiza-
tion as Crank-Nicholson method (ω = 1/2 in (2.50)) and fractional-step-ϑ
schemes. But then some stabilization effects become necessary for convergence
in time direction which can be realized in the most simple way by introducing
an artificial viscosity ; see (9.67).

(a) The incompressible, stationary Navier-Stokes equations in weak
velocity-pressure form constitute a saddlepoint problem by (8.80): Find a
pair (u, p) ∈ V × Q such that

∀ v ∈ V : a(v, u) + c(v, u, u) − b(v, p) = (v, f) + (v, σn(u, p))Γ − a(v, u0)

∀ q ∈ Q : −b(v, q) = 0
,

(9.55)

a(v, u) = ν

∫

Ω

grad v : gradu dΩ , b(v, q) =
∫

Ω

div v q dΩ ,

σn = (2νε(u) − p)n , c(v, u, w) =
∫

Ω

(v · (gradu)w) dΩ .
(9.56)

For normalization either
∫

Ω

p dΩ = 0 has to be required or a value of pressure

p has to be specified at a single point with the already mentioned numerical
difficulties arising thereby. One speaks also of a mixed problem here since V
and Q are vector spaces of different smoothness. Essential boundary condi-
tions have to be regarded again in the choice of the vector space V but the
abundance of possibilities shall not be discussed here once more; cf. however
(f). For instance, let the solution u be specified on the entire boundary, u = g

on Γ , and u0 ∈ H1(Ω; Rn) , n = 2 or 3 , where u0 = g on Γ . In this case we
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have V = H1
0(Ω; Rn) and, say, Q = {q ∈ L2(Ω) ,

∫
Ω
q dΩ = 0} . Accordingly,

the test functions v vanish on the boundary and the boundary integral (9.55)
vanishes, too.

The following result provides an infinite-dimensional analogon to Lemma
1.2 in the present context of general linear-quadratic saddlepoint problems.

Theorem 9.1. (Unique Existence) Let V, Q be Hilbert spaces, let f ∈ V
and g ∈ Q . The saddlepoint problem

∀ v ∈ V : a(v, u) − b(v, p) = (v, f)
∀ q ∈ Q : −b(v, q) = (g, q)

(9.57)

has a unique solution (u, p) ∈ V×Q if and only if the following four conditions
are fulfilled:
(1◦) The symmetric bilinear form a : V × V → R is bounded,

∃ β > 0 ∀ v ∈ V : a(v, v) ≤ β‖v‖2 .

(2◦) The bilinear form b : V × Q → R is bounded,

∃ κ > 0 ∀ v ∈ V ∀ q ∈ Q : b(v, q) ≤ κ‖v‖‖q‖ .

(3◦) Let W := {v ∈ V ; ∀ q ∈ Q : b(v, q) = 0} be the “kernel” of b. The
bilinear form a is elliptic on W ,

∃ α > 0 ∀ v ∈ W : a(v, v) ≥ α‖v‖2 .

(4◦) The bilinear form b obeys the Babuska-Brezzi condition (inf-sup con-
dition)

∃ γ > 0 : infq∈Q sup
v∈V

b(v, q)
‖v‖‖q‖ ≥ γ .

Proof see, e.g., (Braess), (Brenner).
The inf-sup condition replaces together with (3◦) the assumption of

Lemma 1.2 that the matrix A there is positive definite on the kernel of B
and that B is rank-maximal. The celebrated result (4◦) is also of crucial
significance in finite-element methods where V and Q are finite-dimensional
vector spaces. Among others it has for consequence that the flow vector u
needs a higher-order approximation than pressure p for convergence; cf., e.g.,
(Braess).

(b) The general Navier-Stokes equation is augmented by the convec-
tive quadratic term (gradu)u resp. in the weak form by the trilinear form
c(v, u, w) = (v, (gradu)w) which infers that the proof of unique existence is
rendered more difficult; cf., e.g., (Orlt). Adopt the notations of § 9.2 and let
for the moment capitals denote local node vectors on triangle T , for instance
ui = Φ(x, y)TU i then in numerical approximation

(gradu)w $
[
ΦT

xU1Φ
TW 1 + ΦT

y U1Φ
TW 2

ΦT
xU2Φ

TW 1 + ΦT
y U2Φ

TW 2

]
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where Φ is a column vector, therefore on triangle T

c(v, u, w) =
∫

T

(v · (gradu)w) dxdy

$
∫

T

[
ΦTV 1

(
ΦT

xU1Φ
TW 1 + ΦT

y U1Φ
TW 2

)

+ΦTV 2

(
ΦT

xU2Φ
TW 1 + ΦT

y U2Φ
TW 2

)]
dxdy .

But for instance ΦTV 1Φ
T
xU1Φ

TW 1 = V T
1 (ΦT

xU1)ΦΦ
TW 1 therefore

c(v, u, w) $ V T
1 C(U1)W 1 + V T

1 D(U1)W 1 + V T
2 C(U2)W 1 + V T

2 D(U2)W 1 ,

C(U) =
∫

T

(ΦT
xU)ΦΦT dxdy =

n∑
i=1

U iCi , Ci :=
∫

T

ϕi,xΦΦ
T dxdy ∈ R

n
n

D(U) =
∫

T

(ΦT
y U)ΦΦT dxdy =

n∑
i=1

U iDi , Di =
∫

T

ϕi,yΦΦ
T dxdy ∈ R

n
n .

Example 9.9. For Courant’s triangle of § 9.3 we have by Example 9.3

Jϕ1(x, y) = J + y23(x− x1) + x32(y − y1) , ϕ1,x = y23/J , ϕ1,y = x32/J

and the corresponding results for ϕ2 and ϕ3 are obtained by cyclic permuta-
tion of indices i = 1 : 3 . Therefore, in this most simple case,

JC(U) = M(y23U
1 + y31U

2 + y12U
3) , JD(U) = M(x32U

1 + x13U
2 + x21U

3)

where U = [U1 , U2 , U3]T , J = 2|T | and M denotes the mass matrix of
(9.18).

(c) For discretization of the velocity-pressure form, Taylor-Hood ele-
ments are a good choice, cf., e.g., (Gresho), in particular the illustrative table
in (Gresho), p. 552 ff.. Both components of the velocity vector are approxi-
mated here quadratically as displayed in § 9.3, Example 9.7, and pressure p
is approximated linearly as in § 9.2, Example 9.3. In linear Stokes equation
the viscosity is frequently scaled to one. Also, for improvement of the approx-
imating qualities, the “bubble” function is added for basis function in velocity
components and/or the above finite element basis is augmented by an addi-
tional constant in pressure (Gervais). Thereafter the dimension of the both
velocity elements may be reduced from seven to six again by static condensa-
tion and in pressure from four to three (works however only in linear Stokes

equation). Static condensation is for instance realized in the complete cubic
element fem_drksch.m where the “bubble” functions plays a similar isolated
role.

(d) The Stream-Function Vorticity Form in R
2 is treated by a small

part of the community as secret ideal way but justifiably viewed with skepti-
cism by the majority; see however (Cheng), (Liao). By elimination of pressure
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the related numerical difficulties are entirely avoided and the computational
amount is reduced by one third. Also the inf-sup condition must not be re-
garded and simple linear triangular elements can be used throughout. One the
other side, no boundary conditions exist for vorticity w whereas the stream
function z is double equipped with Dirichlet and Neumann conditions.
By consequence, artificial boundary conditions must be calculated for w in a
susceptible process employing the Neumann conditions of z . The following
Example 9.16 from the folder KAPITEL09\FEM_3 exhibits however acceptable
results like some other benchmark problems in § 9.8, although only the simple
semi-implicit method (9.64) is applied for time discretization. One the other
side, the test Example 9.18 shows (slow) convergence only under application of
ode23.m (with step length control) in time direction so that (Spotz) proposes
higher order approximations of w at the boundary.

Figure 9.15. Flow velocity Figure 9.16. Streamlines

Example with linear Stokes equation, Taylor-Hood element and mesh
generation without Matlab-PDE-TOOLBOX

Following (Stevens), the stream-function vorticity form leads to a cou-
pled system in stationary case which tolerates the unbalanced distribution
of boundary conditions between w and z without trouble; cf. (e). Inciden-
tally, both forms of the method, stationary and non-stationary, can be easily
generalized to problems of convection currents and mass transport (of mod-
erate complexity) and yield optically appealing results which provide a good
overview at least with regard to quality.
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Notations: L characteristic length, U characteristic velocity,

u = (u, v) velocity field
z stream function, grad z = (−v, u)
w vorticity, w = vx − uy , Δz = −w
δz , δw test functions for z and w
ν kinematic viscosity [m2/s]
Re = LU/ν Reynolds number

.

Figure 9.17. Boundary layer
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Figure 9.18. Velocity field

Example 9.16, stream function-vorticity method with boundary layer, linear
triangular elements

Using the notations of § 1.7, let

Γ = ∂Ω = ΓD ∪ ΓN , int(ΓD) ∩ int(ΓN ) = ∅ , H1
0 = {v ∈ H1 , v = 0 on ΓD}

as in § 9.1. Recall the differential system (8.91) in non-dimensional form,

−Δz − w = 0
wt −R−1

e Δw + zywx − zxwy = f2,x − f1,y ≡ rot f ,

and write ν = 1/Re instead ν = LU/Re . We multiply the first equation by
the test function ∂z for z , the second by ∂w for w and apply Green’s formula
to both, then we obtain the weak form

∀ ∂z ∈ H1 :
∫

Ω

∇δz · ∇z dΩ −
∫

Ω

δz w dΩ =
∫

ΓD

δz zn dΓ +
∫

ΓN

δz zn dΓ

∀ ∂w ∈ H1
0 :

∫

Ω

δwwt dΩ +
∫

Ω

δw(zy wx − zx wy) dΩ

+ν
∫

Ω

∇δw · ∇w dΩ =
∫

Ω

δw rot f dΩ + ν

∫

ΓN

δwwn dΓ

(9.58)
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The boundary conditions of the (direct or) velocity pressure form (8.78) are
to be regarded also and lead to the specifications

z = z0 and zn :=
∂z

∂n
= t · u0 on ΓD , δw = 0 on ΓD ;

∂z

∂n
and

∂w

∂n
on ΓN .

(9.59)

The double condition for z and the empty condition for w on ΓD constitutes
the main drawback of the method and must be removed by an artificial adjust-
ment. The further discussion of appropriate boundary conditions is however
postponed to (f).

The quadratic forms of (9.15) with stiffness matrix K and mass matrix M
remain the same as before. For the additional terms we use representation by
shape functions z = ΦT z , w = ΦTw as in § 9.3(b). Then

C = [cij ] =
∫

T

ΦΦT
x dxdy , D = [di

j ] =
∫

T

ΦΦT
y dxdy ∈ R

n
n , (9.60)

and the boundary integral gets the numerical equivalent

S(z) = [si(z)] =
∫

Γ ∩T

Φzn ds ∈ R
n .

Also the trilinear form in (9.58) is written conveniently by using shape func-
tions,

p(v, z, w) =
∫

T

v(zywx − zxwy) dxdy $
∫

T

ΦT v
(
ΦT

y zΦ
T
xw − ΦT

x zΦ
T
y w

)
dxdy

= vT

[∫

T

[
(ΦT

y z)ΦΦ
T
x − (ΦT

x z)ΦΦ
T
y

]
dxdy

]
w =: vTP (z)w

(9.61)

P (z) = [pi
k(z)]ni,k=1 =

∫

T

[
(ΦT

y z)ΦΦ
T
x − (ΦT

x z)ΦΦ
T
y

]
dxdy =

n∑
i=1

ziPi

Pi =
∫

T

[
ϕi,yΦΦ

T
x − ϕi,xΦΦ

T
y

]
dxdy ∈ R

n
n .

(9.62)

Using Einstein’s convention, the equations for are single triangle T in
local numbering read by (9.58)

ki
jz

j −mi
jw

j = si(z)

mi
j
dwj

dt
+ pi

j(z)wj + νki
jw

j = νsi(w) + cij(f2)j − di
j(f1)j

and summation over all triangles then leads to a differential-algebraic system
of equations for the global node vectors [Z] and [W ] ,

[K][[Z] − [M ][W ] = [S][Z]Γ
[M ][W ]t + [P ([Z])][W ] + ν[K][W ] = ν[S][W ]Γ + [C][F2] − [D][F1]

.

(9.63)
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This time-dependent system may be solved, e.g., by the semi-implicit itera-
tional device

[K][[Z]n+1 = [M ][W ]n + [S][Z]nΓ(
1
Δt

[M ] + ν[K]
)

[W ]n+1 =
1
Δt

[M ][W ]n − [P ([Z]n+1)][W ]n

+ν[S][W ]nΓ + [C][F2] − [D][F1]

(9.64)

where [Z]n = [Z](nΔt) and Δt is the step length in time direction.

Example 9.10. Consider again the linear ansatz of § 9.3 Example 9.3 then

z(x, y) = Φ(x, y)T z , w(x, y) = Φ(x, y)Tw , Φ = [ϕ1 , ϕ2 , ϕ3]T , w, z ∈ R
3 ,

are the numerical approaches of z and w in a single triangle T carrying again
the same notion as the unknown exact analogues. The matrix P (z) of (9.62)
then reads explicitely

P (z) =
1
6

⎡
⎣
z23 z31 z12
z23 z31 z12
z23 z31 z12

⎤
⎦ , gradz P (z)w =

1
6

⎡
⎣
w32 w13 w21

w32 w13 w21

w32 w13 w21

⎤
⎦ , (9.65)

and, for i = 1 : 3,

[ci1, ci2, ci3] =
1
6
[y23, y31, y12] , [di

1, d
i
2, d

i
3] =

1
6
[x32, x13, x21] .

The numerical approximations zn and wn are constant on each triangular edge
of length � therefore, letting v = z or v = w ,

S(v) ∈
{vn

2�
[1 , 1 , 0]T ,

vn

2�
[1 , 0 , 1]T ,

vn

2�
[0 , 1 , 1]T

}

in dependence of the edge of the triangle.

Components of the flow velocity u = (u, v) can be gained back by the compo-
nents of z as constant in each triangle

u = ϕi,yz
i

(
=

1
2|T |

[
x32z1 − x31z2 + x21z3

])
,

v = −ϕi,xz
i

(
=

1
2|T |

[
y32z1 − y31z2 + y21z3

])
.

(9.66)

It is commonly recommended to introduce an artificial viscosity in in-
stationary Navier-Stokes equations of the form studied here. The positive
effect on stability and numerical reliability may be verified theoretically but
we omit such a discussion here and write simply

νx = ν +
1
2
u2Δt , νy = ν +

1
2
v2Δt . (9.67)
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Then the viscosity-dependent term νΔu has to be modified by

Δ̃(ν,Δt)u =
[
νxuxx + νyuyy

νxvxx + νyvyy

]
. (9.68)

Example 9.11. The stiffness matrix (9.18) of linear triangular elements has to
be modified in the corresponding way,

K =
1

4|T |

⎡
⎣
x2

32νy + y2
32νx −x32x31νy − y32y31νx x32x21νy + y32y21νx

x2
31νy + y2

31νx −x31x21νy − y31y21νx

symm. x2
21νy + y2

21νx

⎤
⎦

and is used in this form by the programs of the Matlab suite associated to
this volume.

(e) Coupled System Reconsider the system (9.63) in the non-dimensio-
nal stationary form

[M ][W ] − [K][Z] = −[S][Z]Γ
([K][W ] +Re[P ([Z])])[W ] = [S][W ]Γ +Re[C][F2] −Re[D][F1]

(9.69)

where Re is again the Reynolds number. Suppose that the components zi

of Z = [z1, . . . , zn]T and likewise of W are ordered such that
M = {1, . . . ,m} is the index set of all node points without Dirichlet bound-
ary condition for z .
R = {m + 1, . . . , n} is the index set of all boundary points with Dirichlet

boundary condition for z .
N = {M, R} = {1, . . . , n} is the index set of all node points .
Then the last n − m equations of the second row in (9.69) can be cancelled
because the corresponding components of [Z] are known boundary values. The
result is a system of n+m equations for n+m unknowns
[

MN ,N −KN ,M

[K +ReP (ZN )]M,N +εMM,M

][
WN

ZM

]
−
[

KN ,RZR − SNZR

ReMM,NGN + SMWN

]
= 0

(9.70)
in a somewhat shrinked form not allowing the transient case. The additional
term εMM,M with small ε > 0 is sometimes proposed for improving stabil-
ity in high Reynolds numbers (low viscosity ν). M and K are the above
mass and stiffness matrix whereas SNZN and SMWN contain the boundary
integrals,

SNZN =
[∫

Γ

ϕizn dΓ

]n

i=1

, SMWN =
[∫

Γ

ϕiwn dΓ

]m

i=1

.

(The shape functions ϕi originally defined on their respective triangle are
here tacitly continued by zero to the domain Ω .) All interior shape functions
vanish on boundary therefore all interior node points satisfy
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∫

Γ

ϕizn dΓ = 0 ,
∫

Γ

ϕiwn dΓ = 0 , i = 1 : m,

hence by consequence SNZN = [0 , SRZR] und SMWN = 0 . The mass ma-
trix is regular and well-conditioned, and the matrix KN ,M has maximum rank
because the matrix KM,M enjoys this property. By consequence the total ma-
trix of the linear system is regular, and the linear system (9.70) has a unique
solution (WN , ZM) for every right side. Note also that vorticity is computed
everywhere in solving (9.70). Therefore the coupled system does not suffer from
the discrepancies in the boundary conditions being described in (f). The non-
linear system (9.70) becomes unstable when the matrix KM,N+ReP (ZN )M,N
looses its rank-maximality by high values of Reynolds numbers; The nonlin-
ear system of equations Φ(WN , ZM) = 0 is solved by the globalized Newton

method in normal case. The gradient of the system then reads

∇Φ(WN , ZM)

=

[
MN ,N −KN ,M

[K +ReP (ZN )]M,N Re gradZ [P (ZN )M,NWN ]M,M + εMM,M

]
.

(9.71)
This matrix may be computed in simple way by use of (9.65) in present case
where discretization is chosen following Example 9.10. For high Reynolds

numbers however a continuation becomes necessary into direction of increasing
values of that parameter until some value where the iteration breaks down in
any case. This way to high Reynolds numbers is necessary because else
the starting values for the otherwise “global” Newton method become to
inexact. The nonlinear term may also be shifted to right side and thereafter a
simple iteration method may be applied with step-wise updating. This method
however breaks down earlier in higher Reynolds numbers.

(f) Boundary Conditions for Stream-Function Vorticity Form Let
n = (n1, n2) be the unit normal vector and t = (−n2, n1) the unit tangential
vector on the boundary Γ = ∂Ω of the basic domain Ω . Both vectors together
form a cartesian coordinate system {n, t} and by consequence

u = (u · t)t+ (u · n)n , Δz = uxx + uyy = utt + unn . (9.72)

Because u = (u, v) , u = zy , v = −zx also

zn :=
∂z

∂n
= −u · t , zt :=

∂z

∂t
= u · n .

One speaks of a slip condition if u · t �= 0 , e.g., on a free surface and of no-
slip condition if u · t = 0 , e.g., on a solid boundary. We difer three types of
boundary conditions:
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(1◦) Inflow boundary. Here u is specified on boundary hence also u · t and
u · n . But then also

zn = −u · t , w =
∂u · t
∂n

− ∂u · n
∂t

is specified and z may be computed as primitive function of grad z = (−v, u)
at least theoretically.
(2◦) Outflow boundary. Here zn = 0 and wn = 0 are specified on boundary in
normal case (or supposed). This type corresponds to ΓN in the partition of
(9.59).
(3◦) Slip and No-slip boundary. Here z and zn = −u · t have to be specified
because the boundary shall be a streamline. In no-slip case zn = 0 is supposed
and sometimes also w = 0 .

One states that zn is specified on the entire boundary in all cases. In
normal case, the different boundary conditions entail no difficulties in coupled
systems (for stationary problems) also not the double occupancy in (3◦). In
instationary separated systems (9.63) however there are too many boundary
conditions for stream function z and too few for vorticity w . The solution of
Δz = −w has overdetermined boundary conditions if z and zn are given at
same time. On the other side, the solution of the second equation in (9.63)
has underdetermined boundary conditions on that part of boundary where
neither w nor wn are specified. If w is given here only then wn acts as natural
boundary condition being approximated in the limit by wn = 0 . Therefore,
in case (3◦) , boundary values zn are only allowed to be used for providing
artificial boundary values for w. In that construction however the relation
Δz = zt t + zn n = −w is involved on boundary whence this method falls
under the rubric “variational crimes”.

In order to make notations simple, we consider an impermeable piece
of boundary parallel to y-axis where by consequence the component u1

vanishes hence also the flow velocity perpendicular to boundary vanishes
(in x-direction). Because w = −zxx − zyy , zx = −u2 , zy = u1 let
f : x �→ f(x) , g : x �→ g(x) be two scalar functions and let f = gxx;
therefore, up to sign, f corresponds to vorticity w and g to stream function z
in this situation. Noting that

g′′′(x) = f ′(x) ≈ f(x+ h) − f(x)
h

,

a Taylor expansion yields

g(x+ h) = g(x) + hg′(x) +
h2

2
g′′(x) +

h3

6
g′′′(x) + h.o.t.

≈ g(x) + hg′(x) +
h2

2
f(x) +

h2

6
(
f(x+ h) − f(x)

)

= g(x) + hg′(x) +
h2

6
f(x+ h) +

2h2

6
f(x) .
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By this way we obtain the approximations

1
3
h2f(x) ≈ g(x+ h) − g(x) − hg′(x) − h2

6
f(x+ h)

f(x) ≈ 3
h2

(
g(x+ h) − g(x) − hg′(x)

)
− 1

2
f(x+ h) .

This result is transposed to an arbitrary point x ∈ Γ of the original boundary
and then reads, applied to w and z,

w(x) =
3
h2

(
z(x+ hn) − z(x) − h

∂z

∂n
(x)

)
− 1

2
w(x+ hn) . (9.73)

This formula supplies a first-order approximation in space-step h of the un-
known value of w on boundary. However it needs the neighboring points
z(x + hn) and w(x + hn) for practical computation which have to be sup-
plied by interpolation of the basic triangulation. The corresponding value of
∂z/∂n is either zero or specified; a Taylor espansion of ∂z/∂n provides no
improvement. Artificial boundary approximation of higher order for w has
been studied by (Spotz).

For further details we refer to the respective programs in the Matlab

suite and to the subsequent examples.

9.7 Mixed Applications

Recall that N = kg ·m/s2 (Newton), J = N ·m (Joule), Pa = N/m (Pascal),
K = 273.15 + 0C (Kelvin), g = 9.81(m/s2) gravity acceleration; a/b · c :=
a/(b · c) .

Physical constants for water and air at 20 0C , viscosity and density of air
at 0 0C and 101, 3 k Pa :

Material constants Water Air
� (kg/m3) mass density 998.2 1.292
μ (Pa · s) dynamic viscosity 1.002 · 10−3 1.72 · 10−5

ν (m2/s) kinematic viscosity 1.004 · 10−6 1.33 · 10−5

c (J/K · kg) specific heat capacity 4.182 · 103 1.005 · 103

� c (J/m3 ·K) heat capacity 4.174 · 105 1.298 · 103

κ (J/m · s ·K) thermal conductivity 0.598 0.0026
λ (m2/s) heat conduction coefficient 1.40 · 10−7 2.00 · 10−6

β (1/K) thermal expansion coefficient 2.07 · 10−4 3.66 · 10−3

(ν = μ/� , λ = κ/� · c and always a/b · c := a/(b · c) ).
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(a) Heat Conduction Physical quantities:

ϑ , ϑext (K) temperature, neighboring temperature
r (J/s · kg) spezific thermal source density
h (J/m2 · s ·K) thermal transmission coefficient
q (J/m2 · s) thermal flux vector

The thermal flux vector q of the law of conservation of energy in Sect. 8.3(d)
satisfies Fourier’s law of heat conduction q = −κ gradϑ, and the law of
energy provides for v = 0 the relation � c ϑt + div q = � r or

� c
∂ϑ

∂t
− div(κ gradϑ) = � r [J/(m3 · s)] . (9.74)

Again a characteristic length L and a characteristic difference of temperature
Δϑ are introduced:

x = Lx̃ , y = Lỹ , ϑ̃ = (ϑ− ϑ0)/Δϑ .

Then we obtain instead of (9.74) for constant κ the non-dimensional system

∂ϑ̃

∂t̃
=
(
∂2

∂x̃2
+

∂2

∂ỹ2

)
ϑ̃

where t̃ is the non-dimensional Fourier time,

t =
L2

ν
t̃ =⇒ u =

ν

L
ũ , v =

ν

L
ṽ ,

so that ν/L is the characteristic velocity.
Initial and boundary conditions are ϑ(t0, x, y) = ϑ0(x, y) and (n being the

non-dimensional normal vector), e.g.,:

(1◦) specified temperature: ϑ = ϑD on ΓD

(2◦) specified heat flux: q · n = −κϑn on ΓC

(3◦) specified heat radiation: q · n = h(ϑ− ϑext) on ΓS .

(9.75)

In two-dimensional problems the domain Ω is supposed to be a cross-section
area of a medium parallel to (x, y)-plane and temperature ϑ shall be constant
in z-direction. Cf. Example 9.2.

(b) Convection We consider a plane fluid of temperature ϑ (or the cross-
plane of a fluid in R

3). The buoyancy (volume-force density) depends only on
ϑ by the linearizing assumption after Boussinesq. The laws of conservation
of momentum and energy supply the basic equations

ut + (gradu)u− νΔu+
1
�

grad p = f(ϑ) , div u = 0

ϑt + gradϑ · u− λΔϑ = 0
(9.76)

with same boundary conditions for ϑ as in (9.75). The transition of kinetic
into thermal energy due to viscosity is neglected.
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Example 9.12. � = �0[1 − β(ϑ − ϑ0)] , f1(ϑ) = 0 , f2(T ) = (�0 − �)g/�0 =
βg(ϑ− ϑ0) .

In this section we choose again the stream-function vorticity form for dis-
cretization of (9.76) but, of course, there are many other devices possible for
numerical approach.

−Δz = w
wt + zywx − zxwy − νΔw = rot f ≡ f2,x − f1,y

ϑt + zyϑx − zxϑy − λΔϑ = 0
rot f = βgϑx after Example 9.12 .

(9.77)

Raleigh number Ra , Prandtl number Pr and Grashoff number Gr (all
non-dimensional) are

Table 9.1.

Constant Ra = gβΔϑL3/νλ Pr = ν/λ Gr = Ra/Pr

Water 1.444 · 108 ·Δϑ · L3 0.717 · 101 2.014 · 107 ·Δϑ · L3

Air 1.35 · 109 ·Δϑ · L3 0.665 · 101 2.03 · 108 ·Δϑ · L3

.

Writing again u instead ũ etc., (9.77) leads to the non-dimensional system

−Δz = w
wt + zywx − zxwy −Δw = Gr ϑx

ϑt + zyϑx − zxϑy − P−1
r Δϑ = 0 .

(9.78)

A discretization via Sect. 9.6(d) yields in place of (9.63) the system

[K][[Z] − [M ][W ] = [S][Z]Γ
[M ][W ]t + [P ([Z])][W ] + [K][W ] = [S][W ]Γ +Gr[C][Θ]
[M ][Θ]t + [P ([Z])][Θ] + P−1

r [K][Θ] = P−1
r [S][Θ]Γ

, (9.79)

with the same matrices. The system is solved iteratively by a semi-implicite
method of type (9.64) in the same way as (9.63). In stationary case the coupled
nonlinear system (9.70) has to be modified likewise and reads now

[M ]N ,N [W ]N − [K]N ,M[Z]M = [K]N ,R[Z]R − [S]N [Z]Γ

[K + P (ZN )]M,N [W ]N = Gr[C]M,N [Θ]N + [S]M[W ]Γ

[K + PrP (ZN )]N ,N [Θ]N = [S]N [Θ]Γ

. (9.80)
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Possible boundary conditions of Dirichlet type for the stream function have
to be inserted into the first and third row; in normal case there are no bound-
ary conditions for vorticity. Possible inhomogeneous Cauchy conditions have
to be regarded in the boundary integrals

[S]N [Z]Γ =
[∫

Γ
ϕizn

]n
i=1

, [S]M[W ]Γ =
[∫

Γ
ϕiwn

]m
i=1

= 0 ,

[S]N [Θ]Γ =
[∫

Γ
ϕiϑn

]n
i=1

;

both types are already displayed in Sect. 9.6. Frequently, conditions of z and
zn are specified simultaneously on the entire boundary whereas specifications
of ϑ and ϑn are not allowed to overlap.

(c) Mass Transport Additional physical quantities:

η diffusivity coefficient m2/s
σ proportionality constant
S intensity of mass source kg/(m3 · s)
C concentration of mass of medium P kg/m3

f(C) specific volume-force density m/s2

J mass flux density of medium P kg/(m2 · s)
We consider a substance P , e.g., a pollution in a plane fluid. Let the substance
have concentration C and let intensity of discharge at world point (t, x) be S
units per second. The law of conservation of momentum has to be augmented
here by an equation for concentration C. Conservation of mass for P is known
here as Fick’s law

Ct + div J = S (9.81)

and the mass flow density of P consists of a diffusive and a convective term
J = −η gradC + uC . Recalling that div u = 0 , we have

div J = −ηΔC + gradC · u

and subtitution into (9.81) yields

Ct + gradC · u− ηΔC = S .

We suppose again that only volume-force density depends on C by the lin-
earizing assumption after Boussinesq and then obtain the basis equations
by joining with the Navier-Stokes equations

ut + (gradu)u− νΔu+
1
�

grad p = f(C) , div u = 0

Ct + gradC · u− ηΔC = S .
(9.82)

Example 9.13. � = �0[1 + σ(C − C0)] , f1(C) = 0 , f2(C) = (�0 − �)g/�0 =
−σg(C − C0) .



486 9 Finite Elements

In the same way as in (b), we choose for approximation

−Δz = w
wt + zywx − zxwy − νΔw = rot f ≡ f2,x − f1,y

Ct + zyCx − zxCy − ηΔC = S
rot f = −σg Cx by Example 9.13 .

Boundary conditions for C are, e.g.,

C = C1 on ΓDC , −η ∂C
∂n

= q
C

· n on ΓNC ,

where q
C

· n = 0 on a non-absorbing or reflecting boundary. From a formal
point of view, the system (9.80) for convection flow (9.76) remains the same
for mass transport (9.82) with corresponding modifications of coefficients:

Sc =
ν

η
, Ra =

gσΔCL3

νη
, Gr =

Ra

Sc

(Prandtl number is called Schmidt number in mass transport).
(d) Shallow Water Problems Physical and other quantities in (x, y, z)-

coordinate system:
h mean water depth, w = h+z total water depth, ũ velocity to east, ṽ velocity
to north, u = w−1

∫ z

−h
ũ dζ mean velocity to east, v = w−1

∫ z

−h
ṽ dζ mean

velocity to north, ϑ [m/s] wind speed 10m over water surface, κ dimension-
less coefficient of surface force due to wind, ϕ [rad] latitude, ψ angle of wind
direction from east, ω = 7.292 × 10−5 [rad/s] angular velocity of terrestrial
rotation, f = 2ω sinϕ [rad/s] Coriolis factor, g = 9.81 [m/s2] gravity accel-
eration, μe [kg/s] eddy viscosity, γ [m1/2/s] Chezy coefficient of friction on
the sea bed, n Manning coefficient of roughness of sea bed.

In computational examples we use for instance

γ = n−1h1/6 , n = 0.025 or γ = 1.486n−1h1/6 , n = 0.0402 (Peraire) .

The coefficient κ depends on wind speed, e.g.,

κ =

⎧
⎨
⎩

1.0 × 10−3 (ϑ ≤ 5)
1.5 × 10−3 (5 < ϑ ≤ 15)
2.0 × 10−3 (15 < ϑ ≤ 20) .

The law of conservation of mass (continuity equation) yields

zt + (wu)x + (wv)y = 0 , (9.83)

and the conservation of momentum yields approximatively for constant μe

ut + uux + v uy − fv + gzx

=
μe

�w

[
(wux)x + (wuy)y

]
+
κϑ2

w
cosψ − gu(u2 + v2)1/2

w γ2
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vt + u vx + v vy + fu+ gzy

=
μe

�w

[
(wvx)x + (wvy)y

]
+
κϑ2

w
sinψ − gv(u2 + v2)1/2

w γ2
.

When shear forces, surface wind and frictional forces are neglected, the equa-
tions of motion become

zt + (wu)x + (wv)y = 0
ut + uux + v uy − f v + g zx = 0
vt + u vx + v vy + f u+ g zy = 0

(9.84)

being called shallow water equations. As usual in transition to the weak prob-
lem, the first equation is multiplied by a test function δz for z, the second by
a test function δu for u, and the third by a test function δv for v. Thereafter
all equations are integrated over the basis domain Ω ; also the first equation
is modified by writing

∫

Ω

δz
[
(wu)x + (wv)y

]
=
∫

Ω

δz
[
wxu+ wyv

]
+
∫

Ω

δz
[
ux + vy

]
w .

Altogether we obtain the weak problem
∫

Ω

δz zt = −
∫

Ω

δz
[
uwx + vwy

]
−
∫

Ω

δzw
[
ux + vy

]
∫

Ω

δu ut = −
∫

Ω

δu
(
uux + vuy) +

∫

Ω

δu
(
fv − g zx

)
∫

Ω

δv vt = −
∫

Ω

δv
(
uvx + vvy

)
−
∫

Ω

δv
(
fu+ g zy

)
(9.85)

By consequence, the following tensors of second and third order are needed
now in triangle T

M = [mi
j ] , mi

j =
∫

T
ϕiϕj dxdy , C = [cij ] , cij =

∫
T
ϕiϕj,x dxdy

D = [di
j ] , di

j =
∫

T
ϕiϕj,y dxdy , P = [pi

jk] , pi
jk =

∫
T
ϕiϕjϕk dxdy

Q = [qi
jk] , qi

jk =
∫

T
ϕiϕjϕk,x dxdy , R = [ri

jk] , ri
jk =

∫
T
ϕiϕjϕk,y dxdy .

Having assembled all ingredients for a discretization, the system (9.84) leads
to the following result relative to a single triangle T (recalling Einstein’s
conventions)

mi
jz

j
t = −(qj

kiw
juk + rj

kiw
jvk)

mi
ju

j
t = −(qi

jku
juk + ri

jkv
juk) + pi

jkf
jvk − g cijz

j

mi
jv

j
t = −(qi

jku
jvk + ri

jkv
jvk) − pi

jkf
juk − g di

jz
j .

(9.86)

Using local numbering in triangle T , the matrices

A(U, V ) = [ai
k] , ai

k = qi
jku

j + ri
jkv

j

B(U, V ) = [bik] , bik = qi
kju

j + ri
kjv

j

G(F ) = [gi
k] , gi

k = pi
jkf

j
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are introduced, then equations (9.86) are assembled to a system for the global
node vectors [Z] , [U ] , [V ] , [W ] ,

[M ][Z]t = −[A(U, V )][W ] − [B(U, V )][W ]
[M ][U ]t = −[A(U, V )][U ] + [G(F )][V ] − g [C][Z]
[M ][V ]t = −[A(U, V )][V ] − [G(F )][U ] − g [D][Z]

(9.87)

(global numbering).
The corresponding pure initial value problem may be solved simply by

using a semi-implicit modification of Heun’s method; cf. Sect. 2.4 Example
2.9 (try also more sophisticated methods!) Thereby each of the three equations
is solved separately with time step Δt and afterwards updated in the following
way

[M ][X]n+(1/2) = [M ][X]n +
1
2
Δt [M ][X]nt

[M ][X]n+1 = [M ][X]n +Δt [M ][X]n+(1/2)
t ;

(9.88)

altogether, iteration runs for n = 0, 1, . . . . The variables [U ] , [V ] , [Z] are
to be inserted for X one after other in that succession, and for [M ][X]t the
corresponding right side of (9.87) is to be chosen. The present method however
suffers from spurious numerical damping therefore (Kawahara) proposes a
decomposition of the mass matrix M = [mi

k] ∈ R
n

n in (9.88) (selective
lumping). To this end, let a lumped mass matrix M̃ and a weighted matrix M̂
be defined by

M̃ = diag

(
n∑

k=1

m1
k , . . . ,

∑
k=1

mn
k

)
∈ R

n
n , M̂ = εM̃ + (1 − ε)M ,

then, instead of (9.88), iterations runs by the rule

[M̃ ][X]n+(1/2) = [M̂ ][X]n +
1
2
Δt [M ][X]nt

[M̃ ][X]n+1) = [M̂ ][X]n +Δt [M ][X]n+(1/2)
t .

(9.89)

(Kawahara) also proposes the value ε = 0.9 for weighting and takes the
Courant-Friedrichs-Levy condition

Δt

Δx
≤ 2 − ε

3
√

2
· 1
(gH)1/2

for computation of time-step Δt relative to space-step Δx ; Sect. 2.4(g2).
We refer e.g. to (Ninomiya) for more comprehensive studies concerning the

four examples for possible iteration presented here. The application of cou-
pled stream-function vorticity equations to stationary problems of convection
has been proposed by (Stevens). Finally, it should be remarked that solv-
ing shallow water problems by the system (9.84) and numerical device (9.88)
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resp. (9.89) remains unstable to some degree also if heuristical modifications
as mass lumping are taken for improvement. The choice of time-step Δt as
large as possible under observation of the Courant-Friedrichs-Levy con-
dition of Sect. 2.4(g) seems to provide the “best” results. Also, it has to be
noted that the devices (9.88) and (9.89) are rather simple discretizations into
direction of time.

9.8 Examples

In this section more or less well-known examples to the preceding section
are considered, either in time-dependent dynamical form as in Sect. 9.6(d)
or in time-independent stationary form as coupled system, cf. Sect. 9.6(e).
Discretization is performed by linear straight triangular elements as in Sect.
9.2(c) with the matrices described there; artificial boundary conditions for
vorticity after (9.73) are denoted by w∗ .

(a) Navier-Stokes Equations

Example 9.14. Lid Driven Cavity (Benchmark problem, cf., e.g., (Gresho)).
(1◦) Transient problem, linear triangle elements, 2213 nodes; similar result
also with bilinear quatrilateral elements, 289 nodes. (A): slip boundary with
u = 1 [m/s] , (A) – (D): z = 0 , w = w∗. ν = 10−3 , 500 time steps with
Δt = 0.05 . Cold start with w0 = 0 . Pressure p by Sohn’s method; see Sect.
8.10, (f2);

∫
Ω
p dΩ = 0 (Fig. 9.19).

(2◦) Same result for stationary problem with coupled system, linear triangle
or bilinear parallelogram elements, 1089 nodes. No boundary conditions for
w. Cold start for ν = 10−1, five steps of continuation to ν = 10−3 .

Example 9.15. Flow Past Half Cylinder (Benchmark problem)
(A): z = 4.0 , w = 0 , (C): z = 0 , w = w∗ , (D): outflow boundary free,
(B): inflow boundary with

u = −0.048 y2 + 0.48 y , v = 0 , z =
∫ y

0

u(y) dy , w = −du

dy
.

(a) (Ninomiya). 969 node points. ν = 0.01 , 200 time steps with Δt = 0.1 .
(b) (Gresho). Modified geometry with 1647 node points. ν = 0.001 , 400 time
steps with Δt = 0.01 . (Figs. 9.20 and 9.21).

Example 9.16. Flow Past Cylinder (Benchmark problem (Ninomiya)). ν =
0.01 , 100 time steps with Δt = 0.1 , start with w0 = 0 . (A): z = 20 , w = 0 ,
(C): z = −20 , w = 0 , (E): z = 0 , w = w∗ , (D): outflow boundary free,
(B): inflow boundary with z = y , w = 0 (Fig. 9.22).

Example 9.17. Back Facing Step (Benchmark problem, cf., e.g., (Ninomiya),
(Barton)). ν = 1.338 · 10−5 , Δt = 7.5 · 10−5 , Cold start with w0 = 0 (Figs.
9.23 and 9.24). (A): z = 0.36 , w = 0 , (C): z = 0 , w = w∗ , v = 0 ,
(D): outflow boundary free ,
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(B): inflow boundary with

u = 10 , v = 0 , z(y) =
∫ y

0.02

u dy = 10(y − 0.02) , z(0.056) = 0.36 , w = 0 .

In Figure 9.24 the problem is scaled choosing the step height L = 0.02 for char-
acteristic length and U = 10 for characteristic velocity such that Re = 14950
and ũ = 500 corresponds to the velocity u = 10 at the inlet. For illustration
however ũ = 1500 has been choosed at the entrance corresponding to u = 30 .
Several meshes have been tested with the same data. The results agree near
the step but differ to some extent in the far field. This effect is possibly due
to the simple time iteration and the lack of better stabilizing procedures.
The illustrations show also that the flow does not tend to a steady state but
develops a periodic behavior in the present geometrical configuration.

Example 9.18. Exact Example for stream-function vorticity form (Fig. 9.25).

z = −8(x− x2)2(y − y2)2 , w = 16((6x2 − 6x+ 1)(y − y2)2

+(x− x2)2(6y2 − 6y + 1))
u = −16(x− x2)2(y − y2)(1 − 2y) , v = 16(y − y2)2(x− x2)(1 − 2x) .

on unit square; zn = 0 on the entire boundary Γ , ν = 0.01 , Δx = Δy = 1/16
(545 nodes). Numerical solution by time-dependent problem with ode23.m
and 10 time steps of time length 1.
(a) Vorticity for artificial and exact boundary values of w , (b) error of stream
function ×102 with w = w∗ on Γ , (c) error of stream function ×102 with
exact values of w on Γ .
This example shows even worse approximation for exact boundary values of
w . Very similar result for ν = 0.001 and 100 time steps of length 1.

(b) Convection

Example 9.19. Convection in a Cup (Benchmark problem (Ninomiya)). ν =
0.005 , 150 time steps with Δt = 0.2 , start with w0 = 0 , ϑ0 = 15 0C . (A):
z = 0 , w = 0 , q

n
= h(ϑ− ϑu) , ϑu = 15 0C , (B): z = 0 , w = w∗ , ∂ϑ/∂n = 0

or ϑ = ϑu = 15 , (C): z = 0 , w = w∗ , ϑ = 60 0C (Figs. 9.26 and 9.27).

Example 9.20. Convection in Unit Square (Benchmark problem). Ra = 105 ,
Pr = 1 , 800 time steps with Δt = 10−4. Cold start with w0 = 0 , ϑ0 = 0.5 0C ;
(A), (C): z = 0 , ∂ϑ/∂n = 0 , (B): z = 0 , ϑ = 0 , (D): z = 0 , ϑ = 1 0C .
Pressure calculation by Sohn’s method (Figs. 9.28, 9.29, 9.30, 9.31)

Example 9.21. Bénard Cell. Natural convection of water in a closed vessel
with length L = 0.12 [m] and height h = 0.01 [m] , temperature ϑ = 334 [K]
at bottom and ϑ = 333 [K] at top. Scaled problem with Δϑ = 1 and ΔL = h,
Ra = 1.444 · 104 (Figs. 9.32 and 9.33).
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(c) Shallow Water Problems

Example 9.22. Tidal Current in a Bay with Island (Ninomiya)). Time periode
T = 12 [hours] , boundary conditions

un = un1 + vn2 = 0 in ΓK (coast),

ζ(t) = A sin
(

2π
T
t

)
in ΓS (open sea). (9.90)

A = 1 [m] amplitude, n = (n1, n2) normed normal vector. Initial conditions
(cold start) for t = 0 in Ω are ζ = 0 , u = 0 , v = 0 (Figs. 9.34 and 9.35).

Example 9.23. Travelling Waves in a Shallow Channel ; cf. (Ninomiya). Length
1000 [m] , width 1600 [m] , depth h = 20 [m]. At left end a wave is generated
as in (9.90),

ζ = A sin(2π t/T ) , A [m] amplitude, T [sec] period .

(wave velocity c = (g h)1/2 [m/s] and wave length λ = c T [m] are not used.)
Initial values (U, V, ζ) = (0, 0, 0) and A = 1 . Water level is monitored at
left and right end of the basin for the period of one hour. Regular triangular
decomposition with 5-fold partitioning of x-axis and two-fold partitioning of
y-axis; solving by ode23.m (image sequence) (Figs. 9.36, 9.37, 9.38, 9.39).

Example 9.24. Wave in a Channel; cf. (Petera). In a shallow basin of length
3000 [m], width 200 [m] , water depth h = 10 [m] , a wave is generated at left
end as in (9.90),

ζ = A sin(2π t/T ) , A = 0.3 [m] amplitude, T = 300 [sec] period .

As special feature the wave velocity u = ζ(g/(h+ζ))1/2 is specified at right end
to simulate an infinitely long channel (Petera). Using initial values (U, V, ζ) =
(0, 0, 0) , water level is monitored at right end of the channel after T seconds
for a period of T seconds. The result is compared to the exact solution

ζ(t, x) = A sin
(
t− x

(g(h+ ζ))1/2

)
, x = 3000 [m]

(Petera). The channel is decomposed into uniform squares of edge length
100 [m] and the latter are decomposed into two triangles; solving by modified
Euler method without lumping (image sequence) (Fig. 9.40).

Example 9.25. Solitary Wave on a Beach; cf. (Petera). A solitary wave is gen-
erated at the right end of a channel of length 40 [m], width 2 [m] and water
depth h = −x/30 [m] (Figs. 9.41 and 9.42):

ζ = a0

[
cosh

(
1
2
(3a0)1/2(x− α−1)

)]−2

,

u = −
(

1 +
1
2
a0

)
ζ

αx+ ζ
, a0 = 0.1 , α = 1/30 .

The shape of the wave is calculated each second over a period of 25 seconds.
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(d) Discs and Plates

Example 9.26. Spanner. Length in [cm], E = 0.2 · 108 [N/cm2] , ν = 0.3 ,
height = 0.7 [cm] , (A) support, (B) load ∼ 27 [N/cm] , total external force
∼ 218 [N ]. σ1 > σ2 are the eigenvalues of the stress tensor σ at the nodes
points; σ1 is mainly positive and σ2 mainly negative (Figs. 9.43, 9.44, 9.45,
and 9.46).

Example 9.27. Kirchhoff’s plate after (Batoz). Length 30.48 [cm] , width
21.5526 [cm], height 0.3175 [cm] , E = 0.35153606 · 107 [kp/cm2] , ν = 0.3 ,
uniform load density q = 1.83262778799 · 10−2 [kp/cm2]; the plate is clamped
at left end (Fig. 9.47).

Test values in cm:

Nr. 1 2 3 4 5 6

numerical 0.7540 0.5180 0.3070 0.3280 0.1420 0.0560

experimental 0.75438 0.51816 0.30734 0.32766 0.14224 0.05588

.
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Figure 9.19. Ex. 9.14, stream lines, vorticity, pressure (×102)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

(A)

(C)

(B) (D)

3
2

1
0.5−

0.5
−0

.3

Figure 9.20. Ex. 9.15(a), stream lines, t = 20 [s]
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Figure 9.23. Ex. 9.17, unscaled geometry, mesh

Figure 9.24. Ex. 9.17, scaled t = k · 9.375 [ms] , k = 1 : 4
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Figure 9.28. Ex. 9.20, isotherms
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Figure 9.29. Ex. 9.20, streamlines
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Figure 9.30. Ex. 9.20, vorticity
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Figure 9.34. Ex. 9.22, 1fst hour
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Figure 9.39. Ex. 9.23, T = 720
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Figure 9.41. Ex. 9.25, boundary con-
ditions
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Figure 9.45. Ex. 9.26, contours of σ1 Figure 9.46. Ex. 9.26, contours of σ2
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Figure 9.47. Ex. 9.27, geometry

9.9 Hints to MATLAB Programs

KAPITEL09/FEM_1, Elliptic boundary value problems
demo1.m Example, linear triangular elements
demo2.m Example, lineare parallelogram elements
demo3.m Example, quadratic triangular elements
demo4.m Example, quadratic triangular and parallelogram

elements
demo5.m Example, cubic triangular and parallelogram

elements
demo6.m Example, isopar. quadratic triangular and

quadrilateral elements
ellipt1.m Linear triangular element
ellipt2a.m Linear parallelogram element
ellipt2b.m Isopar. quadrilateral element
ellipt3.m Quadratic triangular and parallelogram element
ellipt4.m Cubic triangular and parallelogram element
ellipt5.m Isopar. triangular and quadrilateral element
fem_bilin.m Bilinear parallelogram element
fem_drlell.m Linear triangular element
fem_drkell.m Cubic triangular element after Zienkiewicz
fem_drqell.m Quadratic triangular element
fem_isobil.m Isopar. bilinear quadrilateral element
fem_isodrq.m Isopar. quadratic triangular element
fem_isopaq.m Isopar. quadratic quadrilateral element,

Serendipity class
fem_isoraq.m Isopar. quadratic boundary element
fem_pakell.m Cubic parallogram element, Serendipity class
fem_rakell.m Cubic hermitean Boundary element
fem_raqell.m Quadratic boundary element
fem_ralell.m Linear boundary element
fem_ffqdre.m Shape functions for FEM_ISODRQ.M
fem_ffqbil.m Shape functions for FEM_ISOBIL.M
fem_ffqpas.m Shape functions for FEM_ISOPAQ.M
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fem_ffquad.m Shape functions for FEM_ISORAQ.M
myadapt.m Simple adaptive mesh refinement
KAPITEL09/FEM_2, Discs and plates
bsp021g.m Spanner, geometry data
bsp021h.m Spanner, boundary data, loads
bsp022.m Nine examples for plates
fem_batoz.m Non-conforming quadratic triangular element
fem_batoz1.m Auxiliary file for FEM_BATOZ.M
fem_drkpla.m Non-conforming cubic triangular element

after ZIENKIEWICZ
fem_drksch.m Cubic disc element with condensation

in triangle
fem_elstif.m Non-conforming quadratic triangular element,

other version
fem_pakpla.m Non-conforming quadratic parallelogram element

Serendipity class
fem_ripla.m Conforming bicubic rectangular element
demo1.m Masterfile for disc problems
demo2.m Masterfile for plate problems after H.R.SCHWARZ
demo3.m Masterfile for plate problems after BATOZ
scheibe3.m Disc problem, cubic triangular element
spaqua1.m Stress computation for cubic triangular element
KAPITEL03/FEM_3, Navier-Stokes Equations
Stream-function vorticity form
Time-dependent form after H.Ninomiya/K.Onishi; artificial
boundary conditions for vorticity automatically generated .
Time-independent form as elliptic system after Barragy-Carey.
demo1.m lid driven cavity, time-dependent
demo2.m flow past half cylinder, time-dependent,
demo3.m flow past cylinder, time-dependent,
demo4.m backfacing step, time-dependent
demo5.m NS-part for transport problem, time-dependent
demo6.m Example with exact solution, time-dependent
demo7.m lid driven cavity, time-independent,

Simple iteration
demo8.m Example with exact solution, time-independent,

Simple iteration
demo9.m Example with exact solution, time-independent,

Newton’s method
demo10.m Example with exact solution, time-dependent,

with ode23.m
demo11.m Coupled system, linear triangular elements

simple Newton method, Example: lid driven cavity
demo12.m Coupled system, linear parallelogram elements

simple Newton method, Example: lid driven cavity
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ellipt1.m: Computes stream function by Poisson’s equation
prepar.m Mesh generation (with PDE TOOLBOX)
rside10.m Right side for differential equation in ode23.m
velocity.m Computes flow by stream function
vorticity.m Computes vorticity
wbound.m Computation of artificial boundary conditions

for vorticity
KAPITEL09/FEM_4, Convection, Stream-function vorticity form
Time-dependent form after H.Ninomiya/K.Onishi; artificial
boundary conditions for vorticity automatically generated.
Time-independent form as elliptic system after W.N. Stevens
demo1.m Thermal flow in a cup, time-dependent
demo2.m Convection in a closed compartment, time-dependent
demo3.m Convection in a square box, time-dependent
demo4.m Thermal flow in a cup, time-independent
demo5.m Convection in a unit square, time-independent
demo6.m Example with exact solution, time-independent
convection.m Computes temperature
vorticity_k.m Computes vorticity for convection
lanscape.m Neumann’s boundary condition
matrizen.m Matrices for coupled system
rightsides.m Right sides for coupled system
KAPITEL09/STOKES, Navier-Stokes Problems in (u_1,u_2,p)-form
Fix one value of pressure p!
demo1.m: lid driven cavity with Taylor-Hood elements

linear: without convection term
demo2.m: lid driven cavity with Mini elements

linear: without convection term
demo3.m: lid driven cavity with Taylor-Hood elements

nonlinear: with convection term, simple iteration
demo4.m: unit square with Taylor-Hood elements, example with

exact solution, linear: without convection term
demo5.m: lid driven cavity with Taylor-Hood elements

nonlinear: with convection term, NEWTON iteration
simple continuation possible until NU = 0.002106
Sequel for NU: [0.1,0.05,...,0.01,0.009,...0.003,

0.0029,..0.0022,0.00219,...0.002106]
demo6.m.M: Letters F E M with Taylor-Hood elements

linear: without convection term
KAPITEL09/TIDAL, Shallow Water Equations
This directory contains MATLAB versions of BASIC programs
of H.Ninomiya/K.Onishi and further applications
demo1a.m Island in a bay
demo1b.m Island in a bay, different boundary computation
demo2.m Finite channel with ode23.m
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demo3.m Long channel
demo4.m Long wave on beach
flow_1.m Velocity and water depth with lumped mass matrix
flow_2.m As flow_1.m but with selective lumping
flow_3.m As flow_1.m but with full mass matrix
lanscape.m Island in a bay (geometry data, coast)
rside1.m Right side of differential system
vnomal.m Velocity at boundary (coast)
vnomal_n.m Velocity at boundary (coast) (different way)

The representation of data in finite element methods follow to a large part
as in Matlab PDE Toolbox. For instance:
[X,Y,P] = bspxxxf(segnr) boundary segments (often subfunction)
[x,y] = bspxxxg(bs,s) geometry data
[RD,RC,LOADS] = bspxxxh(p,e,t) boundary data
The external boundary has to be ordered counterclockwise, a possible internal
boundary (cavity) clockwise.
Nodes: (Succession arbitrary fixed, never change during computation)
p(1 , : ) x-components, p(2 , : ) y-components.
Boundary: (ordered counterclockwise in simply connected domain)
e(1 , : ) nr. of initial points of edges,
e(2 , : ) nr. of end points of edges,
e(3 , : ) initial values of line parameters,
e(4 , : ) terminal values of line parameters,
e(5 , : ) segment nrs.;
e(6 , : ) etc., possibly additional characteristics
Linear triangular elements: (Succession arbitrary, may be changed during
computation)
t(1 : 3 , : ) Nrs. of vertices, possibly additional characteristics.
Quadratic triangular elements: (Succession arbitrary)
t(1 : 3 , : ) Nrs. of vertices, t(4 : 6 , : ) Nrs. of mid-points of edges, possibly
additional characteristics in subsequent rows.
Parallelogram elements: (Succession arbitrary)
t(1 : 4 , : ) Nrs. of vertices.

ATTENTION: Make Matlab path to AAMESH permanent!

Frequently also the basic mesh of a problem is not built by using means of
the Matlab Toolbox but given directly and refined by programs of the folder
AAMESH.

Example 9.28. Somewhat simplified mesh of Example 9.2:
Hint: the third and fourth row of the edge file e can be set equal to zero if not
used in very simple examples.
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Figure 9.48. Ex. 9.28, mesh geometry

Geometry file for mesh of Figure 9.48:

function [p,e,t] = bsp01
% Nodes
p1 = [0 1 0 1 2 0 1 2.17157 1.8 0 1 2.6 0 2 1 0;

0 0 1 1 0 2 2 1 2 3 3 1.8 4 3 4 5];
p2 = [1 3.2 2 2 3 4 3 3 5 4 4 5 5;

5 2.4 4 5 3.2 2.82843 4 5 3 4 5 4 5];
p = [p1,p2];
% Triangles
t1 = [2 4 4 4 8 7 9 9 12 14 14 18 19 21 21 22 25 1;

5 5 8 9 12 9 14 12 18 18 21 22 21 22 26 25 28 2;
4 8 9 7 9 11 11 14 14 21 19 21 23 26 23 26 26 4];

t2 = [4 3 7 6 11 10 15 11 19 13 17 15 20 19 24 23 27 26 29;
3 4 6 7 10 11 13 14 15 15 16 19 17 23 20 26 24 28 27;
1 7 3 11 6 15 10 19 11 17 13 20 15 24 19 27 23 29 26];

t = [t1,t2];
% boundary
e = [1 2 5 8 12 18 22 25 28 29 27 24 20 17 16 13 10 6 3;

2 5 8 12 18 22 25 28 29 27 24 20 17 16 13 10 6 3 1;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
1 1 2 2 2 2 2 3 3 4 4 4 4 4 5 5 5 5 5];



10

A Survey on Tensor Calculus

10.1 Tensor Algebra

As long as we work with a fixed coordinate system and with data fields of
dimension not higher than two, the previously introduced formulas of matrix
calculation and vector analysis are completely sufficient and result in a clear,
concise picture. However, the Taylor expansion of a function f : R

m → R
n

shows already the limits of this representation. Let x0 = 0 be the expansion
point then the Taylor polynomial of order two reads:

f(x) ≈ f(0) + ∇f(0)x+
1
2
∇∇f(0)(x, x)

fi(x) ≈ fi(0) +
n∑

j=1

∂fi

∂xj
(0)xj +

1
2

n∑
j=1

n∑
k=1

∂2fi

∂xj ∂xk
(0)xjxk , i = 1 : n .

Already the next term of the expansion does no longer consist of a matrix in
classical meaning but rather a tensor of third order. In differential geometry
the defects become even more evident if we try to formulate, e.g., Gauß’ di-
vergence theorem or Stokes’ rotation theorem on a spherical surface or, to be
more general, on a differentiable manifold. Tensor Algebra and its infinitisimal
sister, Tensor Analysis, provide the calculus to overcome these deficiencies;
however, the higher information content is at the cost of considerably more
writing.

For a full development of this calculus, we have to work with pairs of
vector spaces, namely with a basic (real) vector space V and its dual space Vd

whose elements are called covectors. A covector vd ∈ Vd is understood first
of all as a linear bounded mapping vd : V � v �→ vd(v) ∈ R according to
Sect. 1.7(e). However, since the sample space V is always finite-dimensional
in tensor calculus, all these linear functionals are automatically bounded, and
the second requirement is omitted, along with it the question of the underlying
topology.

The dual pairing of V and Vd is emphasized in a special way by means of
angle brackets vd(v) = 〈vd, v〉 . On the other side, v ∈ V can also be interpreted
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as a mapping v : Vd � vd �→ v(vd) = 〈v, vd〉 := 〈vd, v〉 ∈ R . This identification
of V with its bidual space [Vd]d is called canonical isomorphism, and the
fundamental relationship 〈v, vd〉 = 〈vd, v〉 will be permanently used in this
chapter; see also (c).

Generically, a tensor is a multilinear mapping with arguments in V or
Vd and with scalar values in R hence a multilinear functional (exact defini-
tion later). Tensor algrebra investigates the behavior of this mapping under
transformations of the coordinate system. After having developed the trans-
formation rules, the basis elements of V and Vd are frequently cancelled and
one considers only the associated data fields of real numbers.

Data of an n-dimensional data field are fixed by a set of n indices. In an
arbitrary field without symmetry, these indices cannot to be permutated or, in
other words, their horizontal position is fixed. However, their vertical position,
below or above, is free and remains at our disposal for further information.

As previously emphasized several times, it makes sense to interpret the
elements of the primal space V as formal column vectors and the elements
of the dual space Vd as formal row vectors. Then the coordinate space R

n

of column vectors and the coordinate space Rn of row vectors are always
illustrative examples of the vector spaces V and Vd .

Rule for real and formal vectors:
Index below (columns): vi ∈ R

n , vi ∈ V
Index above (rows): vi ∈ Rn , vi ∈ Vd

.

The elements of a column vector x ∈ R
n

1 =: R
n are rows with a single element

hence their index is written above etc.; cf. Sect. 1.1(a1).
Then, for instance, “lowering of indices” means transformation of rows into

columns and “raising” has the converse meaning (two fundamental operations
in Matlab). Also, the correctness of large formulas can be checked easily by
applying them to the model spaces R

n and Rn. As a consequence, it makes
sense to start by using the rules of matrix computation and to introduce the
scalar product later.

Remember also Einstein’s convention which is used througout this chap-
ter:

• If an index appears once, then the equation applies to all the values of this
index.

• If an index appears twice, then it is to be sumed up over that index.
In this case one index should stand left below and the other right above if
possible to indicate row-column multiplication in application.

Exceptions to the summation rule cannot be avoided and must be marked in
a special way.

Example 10.1. (1◦) (Tensors in Component Form) (i) Let a ∈ R
m be a column

vector then a 1-tensor with data field a is T : Rm � x �→ x a ∈ R .
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(ii) Let A ∈ R
m

n be a matrix then a 2-tensor with data field A is T : Rm×R
n �

(x, y) �→ xAy ∈ R ; see (e).
(2◦) For a matrix A = [ai

k] ∈ R
m

n the upper index i is the row index and
the lower index k is the column index. The transposed matrix AT = [ai

k]
originates from A by lowering of the first index and raising of the second
index (permutation of the two index letters i and k does not make any sense).
(3◦) Multiplication of matrices is non-commutative. Consider two compatible
matrices A = [ai

k] and B = [bik] then AB �= BA but according to Einstein

we can also write

C = [cik] := AB = ai
jb

j
k = bjka

i
j

CT = [cik] := BTAT = bj
kai

j = ai
jbj

k (10.1)

since scalar multiplication is commutative. Therefore the position of the com-
ponents in the product does not play any role rather the position of the indices.
(4◦) For x ∈ R

n and y ∈ Rn of course yAT = (AyT )T . Moreover, by Ein-

stein’s rules,

Ax = a1x
1 + . . .+ anx

n = ai
kx

k (= xkai
k) = [bi]mi=1 ∈ R

m

yA = y1a
1 + . . .+ yma

m = yia
i
k (= ai

kyi) = [bk]nk=1 ∈ Rn

ATx (= ai
kx

i = xiai
k) = ai

kxi = [bk]nk=1 ∈ R
n

yAT (= yka
i
k = ai

kyk) = ykai
k = [bi]mi=1 ∈ Rm .

(a) Transformation of Basis and Components Let δ be the unit
tensor with components δi

k (Kronecker symbol), i.e., δi
i = 1 (without

summation) and δi
k = 0 for i �= k , and let

E = {e1, . . . , en}, F = {f
1
, . . . , f

n
} two bases in V,

Ed = {e1, . . . , en}, Fd = {f1, . . . , fn} the dual bases in Vd ,

such that

〈ei, ek〉 := ei(ek) = δi
k , 〈f i, f

k
〉 := f i(f

k
) = δi

k ; (10.2)

for instance, the functional ei is evaluated here at the point ek . The unique
existence of the dual basis is warranted by the requirement (10.2) . The basis
{e1, . . . , en} shall be called reference basis or canonical basis henceforth (for
instance the unit vectors in R

n). The elements of the basis F can be written
as linear combination of the elements of E , and the elements of the dual basis
Fd as linear combination of the elements of Ed , f

k
= ei a

i
k , f i = bike

k , hence
in formal writing

F = EA , Fd = BEd , EdE = δ , FdF = δ (10.3)

with regular matrices A = [ai
k] and B = [bik] where “formal” means that

we may handle the elements of E , F as column vectors and the elements of
Ed , Fd as row vectors. Note that
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δ = FdF = BEdEA = BA =⇒ B = A−1

by (10.3). Scalar products in V and Vd may be different, by the way, but they
are denoted here both with the same point “ · ”. If, after introduction of a
scalar product in V , the basis E is a cartesian or orthogonal basis (actually
orthonormal basis) with the property ei · ek = δi

k , then F is also cartesian if
and only if A orthogonal, and B = AT .

For two vectors,

v = e1x
1 + . . . enx

n =: eix
i ∈ V , w = y1e

1 + . . . yne
n =: yie

i ∈ Vd ,

we obtain immediately by formal writing

v = F x̃ = Ex = EAA−1x = FA−1x =⇒ x̃ = A−1x ≡ Bx ∈ R
n

w = ỹFd = yEd = yB−1BEd = yB−1Fd =⇒ ỹ = yA ∈ Rn .
(10.4)

(Note that we make a strong difference between a vector v ∈ V and its com-
ponent vector x ∈ R

n).
Infinite-dimensional vector spaces are generically defined by properties

of their elements (“the continuous function on [a , b] form the vector space
C[a, b]”) whereas finite-dimensional vector spaces are defined commonly by a
basis of linearly independent elements, and components cannot exist with-
out having declared a basis before. By this reason the following fundamental
notations are primarily oriented by the basis of a vector space:

• A transformation is called covariant (with the transformation of a basis of
V) if it has the same form as F = EA .

• A transformation is called contravariant (to the transformation of a basis
of V) if it has the same form x̃ = A−1x as the transformation of the
component vectors x ∈ R

n of V .
• Consequently, by (10.3), the basis of Vd is transformed contravariant, Fd =

A−1Ed , and the component vector y ∈ Rn of w ∈ Vd is transformed
covariant, ỹ = yA.

• Regarding the customs in engineering sciences, the elements v of V are
called contravariant elements and the vector space V is called contravariant
vector space (since the behavior of the components is more important than
that of the basis in applications) . Accordingly, the elements of Vd and the
vector space Vd are called covariant.

• Contravariant components are written with index above (as the scalar ele-
ments of a column vector in R

n). Covariant components are written with
index below (as the scalar elements of a row vector in Rn).

• Relative to the transformation of components in V , the transformation
matrix AT plays the major role and not the matrix A; it is then frequently
A replaced by AT and AT by A but not in this volume.

Let us return to the above introduced notations. The transformation matrix
A is orthogonal in transforming cartesian coordinate systems and thus A−1 =



10.1 Tensor Algebra 507

AT ; then x̃ = A−1x = ATx holds in the first case of (10.4), and in the second
case we have ỹT = AT yT . If now the component vectors are considered as
column vectors in both cases (yielding an error message in Matlab), then we
find

no different transformational behavior in cartesian coordinate systems ,

and the distinction between covariant and contravariant tensors can be ne-
glected. It is however maintained by theoretical and computational reasons.

Example 10.2. (1◦) The space Πn of polynomials of degree ≤ n is a vector
space of dimension n + 1 . Choose n + 1 mutually distinct numbers xj , j =
1 : n+ 1 , then the basis qi ∈ Πn of Lagrange polynomials has the property
qi(xj) = δi

j ; see Sect. 2.1(c). The dual basis of this basis consists of the
mappings πj : Πn � p �→ p(xj) ∈ R because πj(qi) = qi(xj) = δi

j .
(2◦) The polynomials of degree ≤ 2 on an arbitrary, non-degenerated triangle
T (x, y) form a vector space Q of dimension 6 . Let xj , j = 1 : 3 be the vertices
, xj , j = 4 : 6 the mid-points of the edges and ϕi(x, y) , i = 1 : 6 the shape
functions from Sect. 11.3(c) having the unit value in precisely one of these
points and zero else. Then the dual basis of this basis consists also of the
mappings πj : Q � p �→ p(xj) ∈ R , j = 1 : 6 .

(b) Scalar Product Spaces Let V be a vector space with basis
{e1, . . . , en} and let Me = [eik] be an arbitrary (real)-symmetric, positive
definite matrix then a scalar product p is defined on V by p(ei, ek) := eik

for all basis vectors ej of the basis and thus also for all elements of V. If
conversely a scalar product p( · , ◦ ) is given, then the matrix Me = [eik]
with eik := p(ei, ek) is positive definite. This matrix resp. the corresponding
bilinear mapping is called covariant metric tensor of the basis {e1, . . . , en}.
In consequence there exists always an arbitrary number of scalar products
on V and we say that V is a scalar product space or inner product space if
one of these scalar products is declared for canonical (natural) in a particular
way. As customary, we write for the canonical scalar product v ·w := p(v, w) .
Then a linear measure or metric is defined on V by [v · v]1/2 and the length
of v = eiv

i ∈ V can be declared by means of the metric tensor:

|v|2 = v · v = (eiv
i) · (eiv

i) = xTMex , x = [v1, . . . , vn]T ∈ R
n .

Henceforth let V always be ascalar product
space .

A basis {e1, . . . , en} of V is orthonormal, i.e., a normed orthogonal system (in
short NOS) if

ei · ek = δi
k (Kronecker symbol).

A basis {r1, . . . , rn} of V is called reciprocal relative to a basis {e1, . . . , en}
of V if

ri · ek = δi
k .
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The reciprocal basis relative to a given basis exists uniquely (and is actually
a basis). A NOS has always the metric tensor Me = I (unit matrix) w.r.t. the
canonical basis. If {ri} is reciprocal relative to {ek} then obviously {ek} is
reciprocal relative to {ri} . In a scalar product space, the dual basis may be
identified canonically with the reciprocal basis therefore the reciprocal bases
is written with upper index by exception although it is not contained in Vd .
Orthonormal bases are reciprocal relative to themselves. They may be derived
from an arbitrary basis by the Gram-Schmidt method and thus we may work
in scalar product spaces always with orthonormal bases.

Example 10.3. Let A ∈ R
n

n be regular then the column of A are a basis of R
n

and the columns of [A−1]T , i.e., the transposed rows of A−1 , are reciprocal
to that basis because A−1A = I .

For a basis {ei} and the reciprocal basis {ri} , we write

eik = ei · ek , eik = ri · rk , v = eiv
i = rkvk ∈ V . (10.5)

The components vi are called contravariant components by the above conven-
tion and the components vk are called covariant components of v. They are
obtained by multiplying v with rk resp. with ek,

v · rk = (eiv
i) · rk = viei · rk = vk , v · ek = (rivi) · ek = vk ; (10.6)

the matrix Md
e := [eik] is called contravariant metric tensor. Using Me and

Md
e we have the relation

vi = v · ri = (rjvj) · ri = eijvj , vj = v · ei = (ejv
j) · ei = eijv

j (10.7)

between the components vi and vk .
(c) Identifying V and Vd . Let V be a scalar product space then V and Vd

may be identified with each other which is customary in engineering sciences.
This procedure is performed by using the metric tensors therefore we consider
them more exactly and introduce to this end the Riesz mapping R : V → Vd

being uniquely declared by pointwise definition for all v , w ∈ V :

(Rv)(w) ≡ 〈R(v), w〉 := v · w = w · v =: 〈R(w), v〉 ≡ (Rw)(v) .

This mapping is linear and bijective hence an isomorphism, frequently called
likewise canonical isomorphism. Obviously it is the finite-dimensional ana-
logue to the Riesz mapping introduced in Sect. 1.11(a). Since reciprocal
basis and dual basis {ek} are uniquely determined relative to a given basis
and ri · ek = δi

k , we obtain directly

〈R(ri), ek〉 ≡ ri · ek = δi
k =⇒ ei = R(ri) (10.8)

from the definition. In other words, reciprocal basis in V and dual basis in
Vd can be identified canonically by the isomorphism R . But this property of
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bases holds also for the appertaining vector spaces, hence also V and Vd can
be identified by means of the mapping R . To emphasize this close relation,
we write likewise 〈v, w〉 = v · w ∀ v , w ∈ V . An identification infers always
that one symbol has two meanings, namely here v ∈ V and v ∈ Vd .

Example 10.4. Let V = R
n and let A be an arbitrary symmetric and positive

definite matrix, then a scalar product is defined by p(x, y) := xTAy , ∀ x , y ∈
R

n , and we have R(x) : y �→ xTAy ∈ R as mapping and R(x) = xT after
identifying this mapping with an element xT ∈ Vd = Rn (the canonical scalar
product being naturally defined by the identity A = I).

The elements R(ei) in Vd may be written as linear combination of the dual
basis, R(ei) = cije

j , which implies that

eik = ei · ek =: (R(ei))(ek) = cij〈ej , ek〉 = cijδ
j
k = cik =⇒ R(ei) = eije

j .

In other words, the images of the basis elements ei w.r.t. R are written by
using the components of the metric tensor Me !

If V is a scalar product space, there exists precisely one scalar product
[ · , ◦ ] in Vd such that the canonical isomorphism R becomes an isometry, i.e.,

∀ v ∈ V : [R(v),R(v)] = v · v .

This scalar product is defined also by the metric tensor as

[ei, ej ] = eij , M−1
e = [eij ] .

Then we have on the one side

v · v = (eiv
i) · (ejv

j) = vieijv
j = xTMex , x = [v1, · · · , vn]T

and on the other side, using R(ei) = eije
j ,

∀ x ∈ R
n : [R(v),R(v)] = [eije

jvi, ekle
lvk] = xTMeM

−1
e Mex = xTMex ,

hence an isometry.
Finally, to establish a relation between the covariant and the contravariant

metric tensor, we apply the last equation to v = ri and regard (10.5), ri ·rk =
[R(ri),R(rk)] = [ei, ek] . Then, by Definition (10.5), Md

e = M−1
e .

If V is a scalar product space with metric tensor Me , then Vd shall be always
a vector space with canonical scalar product defined by the metric tensor
Md

e and this product is likewise denoted by a point “ · ”.

Of course, there exists also a reciprocal basis {r1, . . . , rn} relative to the dual
basis in Vd with the property ri ·ek = δi

k , of which the indices are consistently
written below although this basis is contained in dual space. Then R(ei) = ri
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because of the isomorphism property of R and since {ei} is reciprocal to {rk} .
By (10.7), we obtain

ri = R(ei) = eik e
k , ri = R−1(ei) = eke

ik . (10.9)

These two formulas play a role in the operations “raising” and “lowering” of
indices dealed with in subsection (l).

(d) General Tensors Let Vq be the vector space of q-tuples consisting
of elements v ∈ V and let (Vd)p be the vector space of p-tuples consisting of
elements w ∈ Vd. A (p+ q)-linear form Tp

q is a mapping

Tp
q ∈ T p

q(V) := L((Vd)p × Vq; R)
Tp

q : (Vd)p × Vq � (w1, . . . , wp, v1, . . . , vq) �→ Tp
q(w1, . . . , wp, v1, . . . , vq) ∈ R

which is linear in each argument.

Tp
q is called a p-fold contravariant and q-fold covariant tensor or briefly

(p, q)-tensor.

This notation reflects the behavior in transforming the components of the
tensor which is the crucial operation in computations!

Remember that V is called contravariant vector space and Vd covariant
vector space because of the corresponding transformational behavior of the
respective components. By consequence, relative to the transformational be-
havior of the respective components somewhat uncomfortably but correct:

A p-fold contravariant tensor Tp has p covariant arguments in Vd.
A q-fold covariant tensor Tq has q contravariant arguments in V .

In particular, a contravariant vector v ∈ V defines a contravariant 1-tensor
(mapping) with elements of the covariant vector space Vd for arguments and a
covariant vector vd ∈ Vd defines a covariant 1-tensor (mapping) with elements
of the contravariant vector space v for arguments,

T 1(V) = L(Vd; R) = (Vd)d ∼ V
T1(V) = L(V; R) = Vd .

(The sign “∼ ” shall point to canonical identification.) See also (f).
The succession of the p covariant and q contravariant arguments is arbi-

trary but fixed, e.g., as used here for simplicity. A (0, 0)-form is a scalar, a
(p, 0)-form is a contravariant tensor of order p , a (0, q)-form is a covariant
tensor of order q . The number p + q is the total order of the tensor T p

q.
After having specified a basis, also the np+q components in R of the tensor
are called (p, q)-tensor.

Example 10.5. A simple matrix T ∈ R
n

n defines (the field of numbers of) a
tensor T ∈ T 1

1(V) where V = R
n , R

n × Rn � (u, v) �→ T(u, v) = vTTu ∈
R . The transformational device for the matrix T in changing the system of
coordinates is well-known and reads T �→ A−1TA .



10.1 Tensor Algebra 511

Let now M is an arbitrary set, then the mapping

M � x �→ Tp
q(x) ∈ L((Vd)p × Vq; R)

is called tensor field, the components depending on the variable x. For instance,

M � x �→ T0
0(x) ∈ R is a scalar field

M � x �→ T1(x) ∈ L(V; R) is a covariant vector field (linear mapping
“waiting” for arguments v ∈ V)

M � x �→ T1(x) ∈ L(Vd; R) is a contravariant vector field (linear mapping
“waiting” for arguments w ∈ Vd)

Of course, T p
q(V) , being a space of multilinear mappings, is a vector space.

Addition und scalar multiplication are inherited from the image space R:
For S,T ∈ T p

q(V) , we have

(S + T)(v1, . . . , vp, v1, . . . , vq) := S(v1, . . . , vp, v1, . . . , vq)

+T(v1, . . . , vp, v1, . . . , vq)

(αS)(v1, . . . , vp, v1, . . . , vq) := αS(v1, . . . , vp, v1, . . . , vq)

0(v1, . . . , vp, v1, . . . , vq) := 0 ∈ R .

(e) Representation and Transformation of Tensors
(e1) Tensors of Order One T ∈ L(U ; R) .
Case 1: U = V , p = 0 , q = 1 , T ≡ T1 ∈ L(V; R) ; v = eiv

i = f
j
ṽj ∈ V .

Case 2: U = Vd , p = 1 , q = 0 , T ≡ T1 ∈ L(Vd; R) ; v = vie
i = ṽjf

j ∈ Vd .

T1(v) = T1(f i
ṽi) = T1(f i

)ṽi = : t(f)iṽ
i

= T1(eja
j
i)ṽi = T1(ej)a

j
iṽ

i =: t(e)jaj
iṽ

i

T1(v) = T1(ṽif
i) = ṽiT

1(f i) =: ṽit(f)
i

= ṽiT
1(bijej) = ṽib

i
jT

1(ej) =: ṽib
i
jt(e)

j

.

Result for the components with matrix T :

t(f)i = t(e)ja
j
i =⇒ T(f)1 = T(e)1A ,

t(f)
i = bijt(e)

j =⇒ T(f)
1 = A−1T(e)

1 .

The components ti of the covariant tensor T1 are transformed covariant, hence
the index is written below. The components ti of the contravariant tensor T1

are transformed contravariant hence they are written with upper index.
(e2) Tensors of Order Two T ∈ L(U × W; R) .

Case 1: Twofold covariant tensor, U = W = V , p = 0 , q = 2 ,
T = T2 ∈ L(V × V; R) ; v = eiv

i = f
j
ṽj , w = eiw

i = f
j
w̃j .
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T2(v, w) = T2(f i
ṽi, f

j
w̃j) = T2(f i

, f
j
)ṽiw̃j =: t(f)ij ṽ

iw̃j

t(f)ij ṽ
iṽj = T2(eka

k
i, ela

l
j)ṽiw̃j = T2(ek, el)a

k
ia

l
j ṽ

iw̃j

t(f)ij ṽ
iw̃j = t(e)kla

k
ia

l
j ṽ

iw̃j = t(e)kla
k

iṽ
ial

jw̃
j

t(f)ij = t(e)kla
k

ia
l
j .

or
t(e)klv

kwl = t(e)kla
k

ia
l
j ṽ

iw̃j = t(f)ij ṽ
iw̃j

t(f)klṽ
kw̃l = t(f)klb

k
ib

l
jv

iwj = t(e)ijv
iwj .

The covariant tensor T2 is transformed double covariant; T2(f) is created
from T2(e) by replacing the component vectors of the arguments x by Ax̃
and y by Aỹ (double contravariant (!) transformation of the components of
the arguments); x = [v1, . . . , vn]T etc.
Case 2: U = V , W = Vd , v ∈ V , w ∈ Vd , T1

1 ∈ L(V × Vd; R) .

T1
1(v, w) = T1

1(f
i
ṽi, w̃jf

j) = T1
1(f

i
, f j)ṽiw̃j

t(f)i
j := T1

1(eka
k

i, b
j
le

l) = t(e)k
lak

ib
j
l

.

Case 3: U = Vd , W = V , T1
1 ∈ L(Vd × V; R) .

t(f)
i
j := T1

1(f i, f
j
) = T1

1(bikek, ela
l
j) = t(e)

k
lb

i
ka

l
j ,

Case 4: U = W = Vd , T2 ∈ L(Vd × Vd; R) .

t(f)
ij := T2(f i, f j) = T2(bikek, bj le

l) = t(e)
klbikb

j
l .

(Compare with (10.1)). The transformation of tensors of order two can be
written in matrix form when both component vectors are strictly written in
column form, x = [v1, . . . , vn]T ∈ R

n and y = [w1, . . . , wn]T ∈ R
n :

T(f)2 = ATT(e)2A , T(f)1
1 = ATT(e)1

1A−T ,

T(f)
1
1 = A−1T 1

(e)1A , T(f)
2 = A−1T(e)

2eA−T ,
(10.10)

Then, e.g., T(f)2(x̃, ỹ) = x̃TATT(e)2Aỹ = xTT(e)2y where x = Ax̃ and y = Aỹ.
Rule for tensors of order two with component vectors in column form:

If a contravariant vector v ∈ V for argument is replaced by a covariant
vector w ∈ Vd , then A is to be replaced by the “contragredient” A−T in the
corresponding place. Accordingly, if A orthogonal, i.e. A = A−T , then both
transformations are identical.
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(f) Tensor Product As well known, there is a symmetric scalar product
and a skew-symmetric vector product in coordinate space R

3. The same holds
in tensor spaces but the alternating product is postponed to the next section.

Cum grano salis we may state the following:
If an element vd ∈ Vd applies to an element v ∈ V , then the result is a number
〈vd, v〉 ∈ R, and the entire operation is called contraction . If conversely an
element v ∈ V applies to an element vd ∈ Vd , then one obtains again a number
〈v, vd〉 as contraction , also called rejunevation sometimes. By the canonical
isomorphism, we have 〈vd, v〉 = 〈v, vd〉 , and it doesn’t matter which applies to
which.

In other words, a vector v ∈ V may be considered as contravariant tensor
of order one (mapping) because its argument is an element from Vd, and a
vector vd ∈ Vd as covariant tensor of order one because its argument is an
element v ∈ V ; cf. (e1). How does this matching now work in two and more
vectors?

(f1) The Tensor Product of Two Vectors is defined by one of the
following mappings

u⊗ vd : Vd × V � (ud, v) �→ ud(u) · vd(v)

u⊗ v : Vd × Vd � (ud, vd) �→ ud(u) · vd(v)

ud ⊗ vd : V × V � (u, v) �→ ud(u) · vd(v)

⎫
⎪⎬
⎪⎭

= 〈ud, u〉〈vd, v〉 ∈ R .

On the right side, we have always the product of two real numbers. The
meaning is explained most suitable in coordinate space writing by exception
vT ∈ Rn for row vectors to make the notation more apparent. Then, using
temporarily a point for multiplication in R ,

< ud, u >< vd, v >= uT
d u · vT

d v = vT
d v · uT

d u = vT
d [v ⊗ uT

d ]u

with dyadic product v ⊗ uT
d ∈ R

n
n and, e.g., u and v are the independent

variables in the third definition.
The general tensor product of vectors is a mapping

⊗
: V × · · ·︸︷︷︸

p−times

×V × Vd × · · ·︸︷︷︸
q−times

×Vd → T p
q(V) ,

being pointwise defined by
⊗

: (v1, . . . , vp, v
1, . . . , vq) �→ v1 ⊗ · · · ⊗ vp ⊗ v1 ⊗ · · · ⊗ vq .

Of course, the spaces V and Vd may appear in every other succession. This
mapping is likewise a multilinear mapping but the representation is not unique
as in all multiplications; e.g., v⊗vd =

(
2−1 v

)
⊗(2 vd) . A tensor is called simple

if it can be written as tensor product of vectors. Let ui, vi ∈ V, uk, vk ∈ Vd

be arbitrary then
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Tp
q = v1 ⊗ · · · ⊗ vp ⊗ v1 ⊗ · · · ⊗ vq

is defined pointwise by

(v1 ⊗ · · · ⊗ vp ⊗ v1 ⊗ · · · ⊗ vq) (u1, . . . , up, u1, . . . , uq)

:= 〈u1, v1〉 · · · 〈up, vp〉〈v1, u1〉 · · · 〈vq, uq〉 ∈ R .

(f2) Tensor Product of Tensors For S ∈ T p
q(V) , T ∈ T r

s(V) , we have

(S ⊗ T)(v1, . . . , vp+r, v1, . . . , vq+s)

:= S(v1, . . . , vp, v1, . . . , vq) · T(vp+1 , . . . , vp+r, vq+1, . . . , vq+s)

(again the point shall denote temporarily the multiplication of two real num-
bers). Accordingly, the tensor product of a (p, q)-tensor and a (r, s)-tensor is
a (p+ r, q + s)-tensor. The tensor product is not commutative, e.g., in R

n ,

xTAy · uTBv = uTBv · xTAy �= xTBy · uTAv .

(By the way, we have also (g⊗f)(x, y) := g(x)f(y) �= f(x)g(y) = (f⊗g)(x, y)
for f, g : R �→ R and x �= y .)

(g) Vector Space of Tensors Let V be a vector space of dimension n
then T p

q(V) is a vector space of dimension np+q. If {e1, . . . , en} denotes a
basis of V and {e1, . . . , en} the dual basis of Vd then the tensors

Tp
q := ei1

⊗ · · · ⊗ eip
⊗ ej1 ⊗ · · · ⊗ ejq ,

constitute for i1, . . . , ip, j1, . . . , jq = 1 : n a basis of T p
q(V) by simple tensors.

(h) Representation of General Tensors By using a basis, we can now
write a tensor as a mapping in formal correct way. Let vj = eiv

i
j ∈ V , wi =

wi
je

j ∈ Vd and let T ∈ T p
q(V) then

T(w1, . . . , wp, v1, . . . , vq)

:= ti1...ip
j1...jq

ei1
⊗ · · · ⊗ eip

⊗ ej1 ⊗ · · · ⊗ ejq (w1, . . . , wp, v1, . . . , vq)

= ti1...ip
j1...jq

w1
i1 · · ·wp

ip
vj1

1 · · · vjq
q

.

The components of a tensor are obtained by applying the tensor to the basis,

T(ek1 , . . . , ekp , el1
, . . . , elq

)

:= ti1...ip
j1...jq

ei1
⊗ · · · ⊗ eip

⊗ ej1 ⊗ · · · ⊗ ejq (ek1 , . . . , ekp , el1
, . . . , elq

)

= ti1...ip
j1...jq

〈ek1 , ei1〉 · · · 〈ekp , eip
〉〈ej1 , el1〉 · · · 〈ejq , elq 〉

= tk1...kp
l1...lq .
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Likewise, the components of a tensor product are computed by using a product
basis,

(S ⊗ T)i1...ip+r
j1...jq+s

= Si1...ip
j1...iq

T ip+1...ip+r
jq+1...jq+s

.

(i) Transformation of General Tensors If the transformation of a basis
is given by f

j
= eia

i
j , f j = bjke

k , or formal F = EA , Fd = BEd , then we
obtain for the elements of a basis of T p

q(V)

f
i1

⊗ · · · ⊗ f
ip

⊗ f j1 ⊗ · · · ⊗ f jq

= ak1
i1 · · · akp

ip
bj1 l1 · · · bjq

lqek1
⊗ · · · ⊗ ekp

⊗ el1 ⊗ · · · ⊗ elq .

For the components of a tensor T ∈ T p
q(V) we obtain by direct computation

using the linearity w.r.t. each argument

(tf )i1...ip
j1...jq

= bi1k1 . . . b
ip

kp
al1

j1 · · · alq
jq

(te)k1···kp
l1...lq . (10.11)

The upper index indicates contravariant transformation and the lower
index covariant transformation.

The converse is also correct: If two sets of respective np+q real numbers are
given, {

(tf )i1...ip
j1...jq

}
,
{
(te)k1...kp

l1...lq

}
, (10.12)

satisfying (10.11), then there exists a tensor T ∈ T p
q(V) having the compo-

nents (10.12) w.r.t. the bases {ej}, {f j
} and the corresponding dual bases. For

instance, let u = eiu
i ∈ V etc. then a threefold covariant tensor is specified by

T := tijke
i ⊗ ej ⊗ ek : V × V × V → R

T(u, v, w) = tijk〈ei, u〉〈ej , v〉〈ek, w〉 = tijku
ivjwk ,

and a twofold covariant and onefold contravariant tensor reads, e.g.:

T := ti
j
ke

i ⊗ ej ⊗ ek : V × Vd × V → R

T(u, vd, w) = ti
j
k〈ei, u〉〈vd, ej〉〈ek, w〉 = ti

j
ku

ivjw
k , vd = vle

l .

(j) Contraction (or Rejuvenation) If a contravariant index (above) and a
covariant index (below) are denoted by the same letter and it is summed over
this index (following Einstein’s convention), then we speak of a contraction
or (translated from german) rejuvenation of a (p, q)-tensor. Of course, this op-
eration may be applied repeatedly. If p = q then the result after p contractions
is a scalar. If S ∈ T p

q(V) and and T ∈ T q
p(V) then S ⊗ T is a (p+ q, p + q)-

tensor and a p+q-fold contraction yields a number called scalar product of the
tensors S and T. This product is commutative after identification of Vd with
V (where of course V must be a scalar product space). For instance, consider
the simple tensor
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T := v1 ⊗ · · · ⊗ vp ⊗ v1 ⊗ · · · ⊗ vq ∈ T p
q(V) ,

then a single contraction is a linear mapping Ci
j : T p

q(V) → T p−1
q−1(V)

with the properties

Ci
jT = 〈vj , vi〉v1 ⊗ · · · ⊗ v̂i ⊗ vi+1 ⊗ · · · ⊗ vp⊗

v1 ⊗ · · · ⊗ vj−1 ⊗ v̂j ⊗ vj+1 ⊗ · · · ⊗ vq .

The symbol ̂ means here ”dropping” (the both vectors must take their hat).
Especially we have < w, u > = wiu

i for u = eiu
i ∈ V and w = wie

i ∈ Vd . For
the components of an arbitrary tensor T ∈ T p

q(V) we obtain likewise

(Ci
jT)k1...kp

l1...lq = T k1...ki−1σki+1...kp
l1...lj−1σlj+1...lq

with summation over the index σ .
Examples (1◦) If T ∈ T 1

1(V) = L(Vd,V; R) , then C1
1T = T i

i is the
trace operator.
(2◦) If V = R

n then the divergence of v is the contraction of grad v .
(3◦) The ordinary matrix-vector multiplication may be understood as con-
traction of a tensor of order two with a tensor of order one to a tensor of
order one.

(k) Scalar Product of Tensors Let S ∈ T p
q(V) be a (p, q)-tensor and

T ∈ T q
p(V) a (q, p)-tensor then S ⊗ T ∈ T p+q

p+q(V) is a (p+ q, p+ q)-tensor
of which the (p + q)-fold contraction yields a number as already mentioned.
Defining the operator C by

C := C1
1 ◦ · · ·︸︷︷︸

q−times

◦C1
1 ◦ C1

q+1 ◦ · · ·︸︷︷︸
p−times

◦C1
q+1,

< S,T > := C(S ⊗ T) ∈ R

is called scalar product of the tensors S and T . In the case where the bases
are fixed and omitted, we obtain for the scalar product

< S,T > = si1...ip
j1...jq

tj1...jq
i1...ip

.

(l) Raising and Lowering of Indices Let first T ∈ T p(V) be a simple
tensor, i.e.,

T(u1, . . . , up) = (v1 ⊗ · · · ⊗ vp)(u
1, . . . , up) = 〈u1, v1〉 · · · 〈up, vp〉

with arguments vi ∈ V . Then R(vi) is an element of the dual space Vd hence
an application of the Riesz mapping R to all arguments leads to an operation
Rp of the form

Rp : T �→ RpT := Rv1︸︷︷︸
∈Vd

⊗ · · · ⊗ Rvp︸︷︷︸
∈Vd

∈ Tp(V) ,

and the application of the tensor RpT to the arguments ui ∈ V yields

RpT (u1, . . . , up) = 〈Rv1, u1〉 · · · 〈Rvp, up〉 = (v1 · u1) · · · (vp · up) .
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By a suitable generalization to arbitrary T ∈ T p(V), the operation

Rp : T p(V) → Tp(V)

is defined uniquely, linear and bijective hence an isomorphism. But, as the
tensor product is not an injective mapping, it has to be shown for the proof
of the mentioned properties that the mapping Rp does not depend on the
individual representation of T . In other words, it has to be shown that Rp

does not depend of the individual basis of V ; cf. (Bowen), vol. I. Now the
operator Rp “draws down” all indices and thus has the desired property (but
Rp is not the same as R ◦ · · · ◦ R (p-times).) By this way, T p(V) and Tp(V)
are isomorph, but also the converse mapping exists,

(Rp)−1 : Tp(V) � v1 ⊗ · · · ⊗ vp �→ R−1v1 ⊗ · · · ⊗ R−1vp ∈ T p(V)

as well as their generalization to arbitrary tensors T ∈ Tp(V). The general-
ization of the “lowering” operation to mixed tensors is now obvious. Let us
consider first a simple mixed tensor

T = v1 ⊗ · · · ⊗ vp ⊗ u1 ⊗ · · · ⊗ uq ∈ T p
q(V) ,

then the operator Rp
q is defined by

Rp
qT := Rv1 ⊗ · · · ⊗ Rvp ⊗ u1 ⊗ · · · ⊗ uq ∈ Tp+q(V) .

The generalization to arbitrary tensors T ∈ T p
q(V) , Rp

q : T p
q(V) →

Tp+q(V) , is then likewise an isomorphism with the inversion

(Rp
q)−1(v1 ⊗· · ·⊗ vp ⊗u1 ⊗· · ·⊗uq) = R−1v1 ⊗· · ·⊗R−1vp ⊗u1 ⊗· · ·⊗uq .

The composition of two compatible isomorphisms is again an isomorphism
hence also the mapping (Rp1

q1)
−1 ◦Rp

q is an isomorphism in the case where
p1 + q1 = p+ q ,

T p
q(V)

Rp
q−→ Tp+q(V) = Tp1+q1(V)

(Rp1
q1)

−1

−→ T p1
q1(V) .

Fazit:

All tensor space of the same total order are isomorph in the case
where the basis vector space V is a scalar product space.

Of course, all indices can also be drawn up instead down. This operation reads
for simple tensors as follows:

(Rp
q)−1(v1⊗· · ·⊗vp⊗u1⊗· · ·⊗uq) = R−1v1

︸ ︷︷ ︸
∈V

⊗ · · ·⊗R−1vp

︸ ︷︷ ︸
∈V

⊗ u1

︸︷︷︸
∈V

⊗ · · ·⊗ uq

︸︷︷︸
∈V

.

Then, by using the inverse mapping R−1, a general tensor can be written in
purely contravariant form,

T p
q(V )

Rp
q−→ Tp+q(V)

(Rp+q)−1

−→ T p+q(V) .
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The representation of the tensor Rp
q T w.r.t. the reference basis {e1, . . . , en}

and the dual basis {e1, . . . , en} may be verified easily by using (10.14). Recall
that the components of the metric tensors satisfy

ei · ek =: (Rei) · ek = 〈eije
j , ek〉 = eij〈ej , ek〉 = eik

ei · ek =: ei · (R−1ek) = 〈ei, ele
lk〉 = elk〈ei, el〉 = eik .

Let T ∈ T p
q(V) have the representation

Te = T i1...ip
j1...jq

ei1
⊗ · · · ⊗ eip

⊗ ej1 ⊗ · · · ⊗ ejq ,

then lowering of the first p indices yields

Rp
qTe = T i1...ip

j1...jq
Rei1

⊗ · · · ⊗ Reip
⊗ ej1 ⊗ · · · ⊗ ejq

= T i1...ip
j1...jq

ei1k1
⊗ · · · ⊗ eipkp

⊗ ek1 ⊗ · · · ⊗ ekp ⊗ ej1 ⊗ · · · ⊗ ejq

= Tk1,...,kpj1,...,jq
ei1k1 ⊗ · · · ⊗ eipkp

ek1 ⊗ · · · ⊗ ekp ⊗ ej1 ⊗ · · · ⊗ ejq .
(10.13)

The raising of the last q indices by using (Rp
q)−1 is carried out in the same

way applying R−1 instead of R.
Let now finally {e1, . . . , en} be an normed orthogonal system, then the

metric tensors are the unit tensors δ,

eij = eij = δi
j (Kronecker symbol),

hence also

Rej · ek = eije
j · ek = δi

k , R−1ej · ek = eijej · egk = δi
k ,

i.e., Rej := rj ∈ Vd is reciprocal basis to {ej} in Vd , and R−1ek := rk ∈ V is
reciprocal basis to {ek} in V. Accordingly, we choose

in T p
q(V) the reference basis ei1 ⊗ · · · ⊗ eip ⊗ ej1

⊗ · · · ⊗ ejq

in Tp+q(V) the reference basis ri1
⊗ · · · ⊗ rip

⊗ ej1
⊗ · · · ⊗ ejq

.

Then the tensors T ∈ T p
q(V) and Rp

qT ∈ Tp+q(V) have the same components
by the transformation rule (10.11) for tensors and the representation (10.13)!
In the other cases, the behavior is readily described by (10.11).

(m) Examples

Example 10.6. in R
2 . Let ε = [εi

j ] be the strain tensor and σ = [σi
j ] the

stress tensor of Sect. 8.5(d) (both symmetric) then the componentwise rep-
resentation instead of (8.38)

σi
j = uim

jlε
l
m double contraction, uim

jl = λδi
jδ

l
m + μ(δi

lδ
m

j + δm
iδ

j
l) .

On the other side,

δl
mε

l
m = trace(ε) , δi

lδ
m

jε
l
m = δi

lε
l
j = εi

j , δm
iδ

j
lε

l
mδ

m
iε

j
m = εj

i,

hence, using the unit tensor δ , we obtain (8.38) again

σ = μ(ε + εT ) + λ trace(ε)δ .
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Examples with cartesian coordinates in R
n. Let V = R

n be again the
coordinate space of column vectors equipped with canonical scalar product,
and let E = {e1, . . . , en} be a cartesian reference basis. Then E constitutes a
real and orthogonal (n, n)-matrix with columns ei . The dual basis Ed consists
of the rows ek ∈ Rn of E , and the reciprocal basis is produced by transposing
these rows into columns. All these basis vectors have length one. Hence the
Riesz mapping R transforms in this case each row vector into a column vector
and thus identifies the row space with the column space. As a consequence, we
may restrict ourselves to the vector space V = R

n with its reference basis and
the distinction between contravariant and covariant tensors may be dropped.

Example 10.7.

0-tensor: scalar,
1-tensor: v = viei , vi = 〈v, ei〉 ,
2-tensor: T = tijei ⊗ ej , tij = T(ei, ej) ,

3-tensor: T = tijkei ⊗ ej ⊗ ek , tijk = T(ei, ej , ek) .

Evaluation in the arguments u = xiei , v = yiei , w = ziei yields

(tijei ⊗ ej)(xlel) = tijxlei〈ej , el〉 = tijxjei

(tijei ⊗ ej)(xlel, ymem) = tijxlym〈ei, el〉〈ej , em〉 = tijxiyj

(tijkei ⊗ ej ⊗ ek)(xlel, ymem, znen) = tijkxlymzn〈ei, el〉〈ej , em〉〈ek, en〉
= tijkxiyjzk

(10.14)
since 〈ei, ej〉 = ei · ej = δij . In somewhat modified form, e.g., for a 3-tensor

Tu v w := T(u, v, w) = Tijkei ⊗ ej ⊗ ek(u, v, w)

= Tijk〈ei, u〉〈ej , v〉〈ek, w〉 = tijkxiyjzk .

Example 10.8. Of course, the scalar product of, e.g., two 3-tensors S and T
yields as above S : T = T : S = tijksijk ∈ R , and for the tensor product we
obtain

(tijkei ⊗ ej ⊗ ek) ⊗ (sijkei ⊗ ej ⊗ ek) = tijkslmnei ⊗ ej ⊗ ek ⊗ el ⊗ em ⊗ en .

It is customary in technical applications to drop the basis entirely as in (10.14)
quite right. One considers only the component vectors x , y , z and writes
T (x1, . . . , xn) instead T(v1, . . . , vn) . However, this form is somewhat mislead-
ing. For instance, we obtain for the tensor product

S = [si1 · · · sip
] , T = [ti1 · · · tip

]

S ⊗ T = [wi1···ip j1···jq
] = [ti1···ip

sj1···jq
]
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(especially, e.g., [tik][spqr] = [tik spqr]), which does weakly display that the
tensor product is not commutative; cf. also the introduction to this chapter.

Finally, arbitrary vectors e, f , g, u, v, w generate, e.g., simple tensors

(e⊗ f)(v) := e〈f, v〉 , (e⊗ f)(u, v) = 〈e, u〉〈f, v〉
(e⊗ f ⊗ g)(w) = e⊗ f〈g, w〉 , (e⊗ f ⊗ g)(v, w) = e〈f, v〉〈g, w〉

(e⊗ f ⊗ g)(u, v, w) = 〈e, u〉〈f, v〉〈g, w〉

where again 〈e, u〉 = e · u etc..

References: (Bowen).

10.2 Algebra of Alternating Tensors

An algebra is a vector space V equipped with a bilinear mapping V × V → V
as multiplication; the mapping must have an unit element in V but is not
necessarily commutative. Note that the result of this multiplication is again
an element of the vector space. For instance the vector space of (n, n)-matrices
is an algebra with the usual matrix multiplication, but also the vector space
of mappings f, g : [0 , 1] �→ [0 , 1] with the composition f ◦g for multiplication
constitutes an algebra.

We consider purely covariant tensors T ∈ Tp(V) over the n-dimensional
scalar product space V since this type plays the major role in theory of differ-
ential forms.

(a) Alternating Tensors A tensor T ∈ Tp(V) is called skew-symmetric,
antisymmetric or alternating, exterior p-form if, for all vi ∈ V ,

T(v1, . . . , vp) = εi1...ip
T(vi1

, . . . , vip
) where

εi1...ip
= 1 if (i1, . . . , ip) is an even permutation of (1, . . . , p),

εi1...ip
= −1 if (i1, . . . , ip) is an odd permutation of (1, . . . , p),

ε = 0 else, i.e. if two indices are equal;

the tensor with components εi1,...,ip
is called ε-tensor.

Remember: A permutation is even if it consists of an even number of
pairwise inversions, and it is odd if that number is odd. (The property “even”
or “odd” is unique but there may be different ways to attain the resulting
permutation.) The permutation of two elements always needs an odd number
of inversions:

An alternating tensor changes its sign if two arguments are permutated.

Example 10.9. {1 2 3 4 5} has no inversion, {5 1 3 4 2} has six inversions.

{1 2 3} 0 inversions, {3 2 1} 3 inversions
{2 3 1} 2 inversions, {2 1 3} 1 inversions
{3 1 2} 2 inversions, {1 3 2} 1 inversions.
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The set of alternating tensors Ap(V) := {T ∈ Tp(V) , T alternating} is a
subspace of Tp(V) (of course with the scalar multiplication and the addition

defined in Tp(V)) with dimension
(
n

p

)
. Let Pp : Tp(V) → Ap(V ) be the

projector of Tp(V) onto the linear subspace Ap(V) then Ker(Pp) = {T ∈
Tp(V) , PpT = 0} is the kernel (null space) of Pp , and
(1◦) Ker(Pp) = span{v1 ⊗ · · · ⊗ vp , vi ∈ Vd, at least two elements equal} ,
(2◦) Tp(V) = Ap(V) ⊕ Ker(Pp) (direct sum).

Accordingly, a tensor T ∈ Ap(V) assumes the value zero, T(v1, . . . , vp) =
0 , if two arguments vi , vk coincide, or if the arguments v1, . . . , vp are linearly
dependent, or if p > dim(V) = n holds for the order of the tensor.

(b) Alternating Part of Tensors The alternating part

Alt(T) := Pp T ∈ Ap(V)

of a tensor T ∈ Tp(V) is determined uniquely; for p = 0 we write Alt(T) = T
and for p = 1 we have Alt(T) = T because the definition is empty.

Definition 10.1. For p ≥ 2 , the generalized Kronecker symbols are de-
fined by (1◦)

δ(i, j) =

⎧
⎨
⎩

1 i < j
0 i = j

−1 i > j
, δ(i1, . . . , ip) =

p∏
μ,ν=1, μ<ν

δ(iμ, jν) .

(2◦)

δi1...ip
j1...jp

= det

⎡
⎣
δi1

j1 . . . δi1
jp

. . .
δip

jp
. . . δip

jp

⎤
⎦ , (δi

j usual Kronecker symbol).

Rules:
δ(i1, . . . , iκ, iκ+1, . . . , ip) = −δ(i1, . . . , iκ+1, iκ, . . . , ip)
δ(i1, . . . , ip) = εi1...ip

= εi1...ip

εi1...ip
= δ1...p

j1...jp
= εi1...ip = δi1...ip

1...p

εi1...ip
j1...jp

= δi1...ip
j1...jp

;

For instance, δ12
12 = 1 , δ12

21 = −1 , δ13
12 = 0 , δ13

21 = 0 , δ11
12 = 0 , and

ε123 = ε312 = ε231 = 1 , ε132 = ε321 = ε213 = −1 , ε112 = ε222 = ε233 = 0 .

By using this notation, the alternating part Alt(T) of T ∈ Tp(V) can be written
explicitely (insignicant in later computation)

Alt(T) =
1
p!
δ(i1, . . . , ip)T(vi1 , . . . , vip

)

(summation over all double occuring indices). If for instance T ∈ T2(V) then
Alt(T)(v, u) = [T(u, v) − T(v, u)]/2 .
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(c) Exterior Product of Tensors
(c1) Example (Determinants). For V = R

n , the mapping “det” (determi-
nant), det : (v1, . . . , vn) �→ det(v1, . . . , vn) =: v1 ∧ · · · ∧ vn ∈ R is uniquely
defined by
(1◦) det ∈ Ap(V) , i.e., “det” is multilinear and alternating,
(2◦) det(e1, . . . , en) = e1 ∧ · · · ∧ en = 1 holds for the canonical basis
ei = [δi

k] , i = 1 : n .
For a matrix A = [a1, . . . , an] with columns ai we have as well-known

det(A) = det(a1, . . . , an) =: a1 ∧ · · · ∧ an

and, for the “volume” of the parallelepiped with edges a1, . . . , an ,

Vol(a1, . . . , an) = |det(a1, . . . , an)| . (10.15)

The computational rule det(A ·B) = det(A) ·det(B) for (n, n)-matrices A and
B = [b1, . . . , bn] is equivalent to Ab1 ∧ · · · ∧Abn = det(A)(b1 ∧ · · · ∧ bn) .

(c2) Definition By and large, the exterior product is defined by the
determinant. The following definition generalizes this product to arbitrary
alternating tensors; cf. Sect. 10.1(f).

Definition 10.2. (Exterior product of tensors, wedge product) For S ∈ Tp(V)
and T ∈ Tq(V) ,

S ∧ T :=
(p+ q)!
p!q!

Alt(S ⊗ T) ∈ Ap+q(V)

is the exterior product of the tensors S and T.

Of course, this product is compatible with the product “determinant” (nev-
ertheless to be shown).

Some Computational Rules follow directly from the definition. Let S ∈
Tp(V) , T ∈ Tq(V) , R ∈ Tr(V) then

(S + T) ∧ R = S ∧ R + T ∧ R
S ∧ (T + R) = S ∧ T + S ∧ R

αS ∧ T = S ∧ αT = α(S ∧ T)
S ∧ T = (−1)p·qT ∧ S

,

(S ∧ T) ∧ R = S ∧ (T ∧ R) = S ∧ T ∧ R =
(p+ q + r)!

p!q!r!
Alt(S ⊗ T ⊗ R) .

In particular, for T ∈ Tp(V) and odd p , T ∧ T = (−1)p·pT ∧ T = −T ∧ T ,
hence T ∧ T = 0 , and, for all p ,

(v1 ∧ · · · ∧ vp) ∧ (vp+1 ∧ · · · ∧ vp+r) = v1 ∧ · · · ∧ vp+r .
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(c3) Componentwise Representation

S = Si1...ip
ei1 ⊗ · · · ⊗ eip , T = Tj1...jq

ej1 ⊗ · · · ⊗ ejq

S ∧ T =
1
p!q!

δi1...ip+q
j1...jp+q

Si1...ip
Tip+1...ip+q

ej1 ⊗ · · · ⊗ ejp+q .

(d) Basis For simple alternating tensors T = v1 ∧ · · · ∧ vp ∈ Ap(V) ,
vi ∈ Vd , we have T(v1, . . . , vp) = det(C) , with (p, p)-matrix C = [〈vi, vk〉] . If
{e1, . . . , en} is a basis of V , then {ei1 ∧ · · · ∧ eip , 1 ≤ i1 < . . . < ip ≤ n} is a
basis of Ap(V) .

(e) Representation of Alternating Tensors Let T = Ti1...ip
ei1 ⊗· · ·⊗

eip ∈ Ap(V) and let Pp be again the projection onto the alternating part then
obviously PpT = T therefore

T = PpT = Ti1...ip
Pp(ei1 ⊗ · · · ⊗ eip)

=
1
p!
Ti1...ip

ei1 ∧ · · · ∧ eip =
∑

i1<...<ip
Ti1...ip

ei1 ∧ · · · ∧ eip .

The last form is called tensor representation in strict components, the others
being zero. Let S ∈ Ap(V) and T ∈ Aq(V) such that

S =
∑

i1<...<ip

Si1...ip
ei1 ∧ · · · ∧ eip , T =

∑
i1<...<iq

Ti1...iq
ei1 ∧ · · · ∧ eiq =⇒

S ∧ T =
∑

1 ≤ i1 < . . . < ip ≤ n,
1 ≤ j1 < . . . < jp ≤ n

Si1...ip
Tj1...jq

ei1 ∧ · · · ∧ eip ∧ ej1 ∧ · · · ∧ ejq .

Evaluating T with arguments vi = ejv
j
i yields

T(v1, . . . , vq) =
∑

1≤i1<...<iq≤n

Ti1...iq
det

⎡
⎣

〈ei1 , v1〉 . . . 〈ei1 , vq〉
. . .

〈eiq , v1〉 . . . 〈eiq , vq〉

⎤
⎦ .

This form leads eventually to

T(v1, . . . , vp) =
∑

1≤i1<...<ip≤n

Ti1...ip
det

⎡
⎣
vi1

1 . . . v
i1

p

. . .
vip

1 . . . v
ip

p

⎤
⎦

where 〈ek, vi〉 = 〈ek, ejv
j
i〉 = vk

i hence 〈eik , vl〉 = vik
l .

(f) Basis Transformation Let f i = bije
j be the rule for the dual basis

then we obtain for simple tensors apparently

f1 ∧ · · · ∧ fp = b1j1 . . . b
p
jp
ej1 ∧ · · · ∧ ejp .

Here, some components are zero again hence the representation by strict
components can be chosen,

f1 ∧ · · · ∧ fp =
∑

1≤i1<...<ip≤n

b1j1 · · · bpjp
δj1...jp

k1...kp
ek1 ∧ · · · ∧ ekp .
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In general, only strict components are nonzero hence we have for an arbitrary
tensor T ∈ Ap(V )

T = T(f) i1...ip
f i1 ∧ · · · ∧ f ip , T(f) i1...ip

= T(f)(f i1
, . . . , f

ip
) ,

the strict representation by (e),

T(f)(f i1
, . . . , f

ip
) =

∑
j1<...<jp

T(e) j1...jp
ej1 ∧ · · · ∧ ejp(f

i1
, . . . , f

ip
)

=
∑

i1<...<ip

T(e) j1...ip
det

⎡
⎢⎣

〈ej1 , f
i1
〉 . . . 〈ej1 , f

ip
〉

. . .
〈ejp , f

i1
〉 . . . 〈ejp , f

ip
〉

⎤
⎥⎦ .

Because 〈ei, f
j
〉 = 〈ei , ela

l
j〉 = ai

j , then also

T(f)(f i1
, . . . , f

ip
) =

∑
j1<...<jp

T(e) j1...jp
det

⎡
⎣
aj1

i1 . . . a
j1

ip

. . .
ajp

i1 . . . a
jp

ip

⎤
⎦ .

Suming up, the transformation of the components of an alternating tensor
reads:

T(f) i1...ip
=

∑
j1<...<jp

T(e) j1...jp
det

[
aj1

i1 . . . a
j1

ip

ajp
i1 . . . a

jp
ip

]
(covariant tensor)

T
i1...ip

(f) =
∑

j1<...<jp

T
j1...jp

(e) det
[
bj1 i1 . . . b

j1
ip

bjp
i1 . . . b

jp
ip

]
(contravariant tensor)

where B = [bik] = A−1 .
(g) Scalar Product of Alternating Tensors Let V and thus also Vd be

a scalar product space then a scalar product may be introduced for alternating
tensors S , T ∈ Ap(V) by

〈S,T〉 =
1
p!

< S,T > ,

where the product on the right side is the usual scalar product of tensors; cf.
Sect. 10.1(k).

Computational Rules:

〈v1 ∧ · · · ∧ vp, u1 ∧ · · · ∧ up〉 = det([vi · uj ]pi,j=1)

where the right side is to be evaluated using the canonical product in dual
space.

Letting
S =

∑
i1<...<ip

Si1...ip
ei1 ∧ · · · ∧ eip ∈ Ap(V),

T =
∑

i1<...<ip
Ti1...ip

ei1 ∧ · · · ∧ eip ∈ Ap(V)
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we have further

〈S,T〉 =
∑

i1<...<ip,j1<...<jp

det

⎡
⎣
ei1j1 . . . ei1jp

. . .
eipj1 . . . eipjp

⎤
⎦Si1...ip

Tj1...jp

where eij = ei · ej are the components of the contravariant metric Md
e . In

particular, if the basis {e1, . . . , en} is an orthonormal system,

〈S,T〉 =
∑

i1<...<ip

Si1...ip
Ti1...ip

. (10.16)

(h) Hodge-Star-Operator Because
(
n

p

)
=
(

n

n− p

)
we have

dimAp(V) = dimAn−p(V) , hence the spaces Ap(V) and An−p(V) are iso-
morph. Accordingly, there exists an isomorphism Hp : Ap(V) → An−p(V) .
This isomorphism may be chosen such that it becomes an isometry, i.e.,

〈S,T〉 = 〈HpS,HpT〉 , S,T ∈ Ap(V) .

Then Hp is uniquely defined and is called Hodge-star-operator frequently
denoted by “ ∗ ” only. It will be described more thorougly in connection dif-
ferential forms. For simple tensors and hence also for the basis and general
tensors T, we obtain

T = vi1 ∧ · · · ∧ vip , ∗T = εi1...ip j1...jn−p
vj1 ∧ · · · ∧ vjn−p

with the components of the ε-tensor. If we suppose here that i1 < . . . < ip
and j1 < . . . < jn−p then zero components are dropped again.

References: (Bowen), (Grauert).

10.3 Differential Forms in R
n

(a) Abstract Tangential Space and Pfaffian Forms In this section, we
reconsider the well-known directional derivative ∂f(x;h) of Sect. 1.7(a) from
an abstract point of view, namely as operator acting on a function space
with elements f . More exactly, let ∅ �= M ⊂ R

n be an open set and let
f, g etc. be sufficiently smooth scalar-valued functions on M , writing briefly
f, g ∈ F (M) . The abstract tangential space at the point x ∈ M is defined
straightforward by means of the directional derivative. Consider the family of
mappings

Φa : F (M) � f �→ Φa(f) :=
d

dτ
f(x+ τa)|τ=0 = (grad f(x))a ∈ R
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for a fixed x ∈ M and arbitrary a ∈ R
n recalling that grad f(x) is a row vector.

For each a , these mappings are linear and Leibniz’ product rule Φa(f · g) =
Φa(f)g(x) + Φa(g)f(x) does hold for f · g : x �→ f(x) · g(x) . Writing briefly

Di|x : F (M) � f �→ ∂f

∂xi
(x) ∈ R , D|x = [D1|x, . . . Dn|x] (10.17)

for the operators of partial derivation at the point x , we obtain Φa = ai Di|x =
a ·D|x (sometimes ∂x is written for D and/or the evaluation point x is omit-
ted). The operators Di|x are linearly independent, if namely πk : x �→ xk is
the projection onto the k-th component of x ∈ R

n then

∀ k : aiDi|x = 0 =⇒ 0 = (aiDi|x)(πk) = aiDiπk(x) = ak .

Therefore the operators Di|x of partial differentiation define a vector space
of operators Tx := {Φa, a ∈ R

n} called (abstract) contravariant tangential
space at the point x ∈ M and the elements of this space are called abstract
tangential vectors or also (abstract) vector fields in case a is a classical vector
field. This vector space plays the role of the former sample space V in this
section. The dual space Vd = [Tx]d = L(V; R) is called covariant tangential
space at the point x .

Remark 1. More genuinely, we should write Φa = D|x a , a ∈ R
n , since the

elements of the basic vector space V have been considered as formal column
vectors up to now. This notation leads however to misinterpretations later on,
therefore we prefer the above introduced form as scalar product.

Remark 2. Let a composition “ ◦ ” be defined for some compatible functions
or operators F and G then either F ◦ G = G ◦ F , i.e., both commute with
each other, or a new function/operator F ∗ is created by F ∗ ◦G := G ◦ F .

Accordingly, there exists for all scalar functions f ∈ F (M) an element
df(x) ∈ [Tx]d defined by

∀ Φa ∈ Tx : df(x) ◦ Φa = Φa ◦ f (= Φa(f) = grad f(x) · a) . (10.18)

In particular, we obtain for the above projection f = πi

dπi(x) ◦Dj |x := Dj(πi)(x) = δi
j , (10.19)

thus the linear functionals dxi := dπi(x) , i = 1 : n , constitute the dual basis
in [Tx]d relative to the basis {Di|x} ∈ Tx . Especially we have for arbitrary
ajDj |x ∈ Tx that dxi ◦ (ajDj |x) = ajDj(πi)(x) = ajδi

j = ai . Therefore, the
functional dxi can be identified with the projection πi : a �→ ai for the vector
of components a = [aj ] in Tx by dxi ◦ ajDj |x ∼ πi(a) = ai .

The elements of Tx are now briefly denoted by ξ , ξ ∈ Tx .

Theorem 10.1. (Pfaffian Forms) The element df(x) ∈ [Tx]d defined by
(10.18) satisfies

df(x) = Di|x(f)dxi ≡
n∑

i=1

∂f

∂xi
(x)dxi .
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Proof. We have df(x) = aidxi ∈ [Tx]d because the functionals dxi form the
dual basis, hence ∀ ξ ∈ Tx : df(x) ◦ ξ = ai(ξ ◦ πi) . Choosing in particular
ξ = Dj |x yields df(x) ◦Dj |x = ai(Dj |x ◦ πi) = aj · 1 . But, on the other side,
df(x) ◦Dj |x = Df |x(f) = (∂f/∂xj)(x) , which proves the assertion. ��

(b) Differential Forms Alternating tensor fields on the tangential space
V = Tx are called p-differential forms (here over the euclidean R

n); they are
customarily denoted by Ωp(M) today. Frequently one speaks also simply of p-
forms in a somewhat confusing way. An element ω ∈ Ωp(M) is thus a mapping

ω : M � x �→ ω(x) =
∑

i1<···<ip

ai1···ip
(x) dxi1 ∧ · · · ∧ dxip

∈ Ap(Tx) .

(10.20)
The computational rules are carried over directly from Sect. 10.2(c).

Example 10.10. (1◦), n = 3.
0-Form: x �→ a(x)
1-Form: x �→ a1(x) dx1 + a2(x) dx2 + a3(x) dx3

2-Form: x �→ a12(x) dx1 ∧ dx2 + a23(x) dx2 ∧ dx3 + a13(x) dx1 ∧ dx3

3-Form: x �→ a123(x) dx1 ∧ dx2 ∧ dx3 .
(2◦) Vector product, n = 3:

(a dx+ b dy + c dz) ∧ (e dx+ f dy + g dz)
= (bg − cf) dy ∧ dz + (ce− ag) dz ∧ dx+ (af − be) dx ∧ dy .

(3◦) Inner product, n = 3 , e.g.:

(a dx+ b dy + c dz) ∧ (p dy ∧ dz + q dz ∧ dx+ rdx ∧ dy)
= (ap+ bq + cr) dx ∧ dy ∧ dz .

(4◦) Let more generally ξj = ai
jDi|x ∈ Tx then

dx1 ∧ · · · ∧ dxp(ξ1, · · · , ξp) = det [dxi(ξj)] = det [ai
j ] .

For ω1, ω2 ∈ Ωp(M), i.e., more exactly for

ω1(x) =
∑

i1<···<ip

ai1···ip
(x)dxi1 ∧ · · · ∧ dxip

ω2(x) =
∑

j1<···<jp

bj1···jp
(x)dxj1 ∧ · · · ∧ dxjp

,

the scalar product of tensors has the form

ω1(x) · ω2(x) =
∑

i1<...<ip

ai1...ip
(x) bi1...ip

(x)

and |ω(x)| := (ω(x) · ω(x))1/2 is the norm of ω(x).
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(c) Exterior Derivatives If ω is a 0-form, then the Pfaffian form
dω (x) := Di|x ω(x) dxi is called exterior derivative of ω at the point x ∈ M .
If ω is a p-form (10.20) and p ≥ 1 , then

dω (x) :=
∑

i1<···<ip

dai1...ip
(x) ∧ dxi1 ∧ · · · ∧ dxip

(10.21)

is the exterior derivative of ω at the point x ∈ M where dai1···ip
is the

Pfaffian form of the scalar function ai1...ip
(x) . Accordingly, if ω is a p-form ,

then dω is a (p+ 1)-form.

Example 10.11. For n = 3.

p = 0 : da = Dia dxi , component vector: grad a.
p = 1 : d(a1 dx1 + a2 dx2 + a3 dx3)

= Dia1 dxi ∧ dx1 +Dia2 dxi ∧ dx2 +Dia3 dxi ∧ dx3

= −D2a1 dx1 ∧ dx2 −D3a1dx1 ∧ dx3 +D1a2 dx1 ∧ dx3

−D3a2dx2 ∧ dx3 +D1a3 dx1 ∧ dx3 +D2a3dx2 ∧ dx3

= (D1a2 −D2a1) dx1 ∧ dx2 + (D1a3 −D3a1) dx1 ∧ dx3

+(D2a3 −D3a2) dx2 ∧ dx3

component vector: rot a ;

p = 2 : d(a12 dx1 ∧ dx2 + a23 dx2 ∧ dx3 + a13 dx1 ∧ dx3)
= · · · = (D1a23 −D2a13 +D3a12) dx1 ∧ dx2 ∧ dx3 .

different notation for a 2-form:
ω = b1 dx2 ∧ dx3 + b2 dx3 ∧ dx1 + b3 dx1 ∧ dx2 , then
dω = (D1b1 +D2b2 +D3b3) dx1 ∧ dx2 ∧ dx3 ,
component vector is a scalar div b .

Theorem 10.2. Let ω1, ω̃1 be p-forms, ω2 a q-form and f a 0-form (all suf-
ficiently smooth) then
(1◦) d(ω1 + ω̃1) = dω1 + dω̃1 .
(2◦) d(f ω1) = df ∧ ω1 + f dω1 .
(3◦) d(ω1 ∧ ω2) = dω1 ∧ ω2 + (−1)pω1 ∧ dω2 .
(4◦) d(dω) = 0 .

The last rule constitutes the most important difference to the classical differ-
ential calculus.

Proof. (1◦) Clear! Because (1◦), the remaining part is proved only for
simple tensors, ω1 = a(x) dx1 ∧ · · · ∧ dxp .
(2◦) Because d(fa) = a df + f da and by the definition of the wedge product,

d(fω1) = d(fa) ∧ dx1 ∧ · · · ∧ dxp

= (a df + f da) ∧ dx1 ∧ · · · ∧ dxp

= df ∧ (a dx1 ∧ · · · ∧ dxp) + f(da ∧ dx1 ∧ · · · ∧ dxp)
= df ∧ ω1 + f dω1 .
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(3◦) Let ω2 = b dxp+1 ∧ · · · ∧ dxp+q then

ω1 ∧ ω2 = (ab) dx1 ∧ · · · ∧ dxp+q

d(ω1 ∧ ω2) = (b da+ a db) ∧ dx1 ∧ · · · ∧ dxp+q (shifting of db)
= da ∧ dx1 ∧ · · · ∧ dxp ∧ b dxp+1 ∧ · · · ∧ dxp+q

+ a dx1 ∧ · · · ∧ dxp ∧ db ∧ dxp+1 ∧ · · · ∧ dxp+q · (−1)p

= dω1 ∧ ω2 + (−1)pω1 ∧ dω2 .

(4◦) Case 1: If a is a 0-form , then, because of the symmetry of the Jacobi

matrix,

d(da) = d(Dia dxi) + d(Dia) ∧ dxi = DjDia dxj ∧ dxi = 0 .

Case 2: If ω = a dx1 ∧ · · · ∧ dxp is a monom , then, because (3◦) ,

d(dω) = d(da ∧ dx1 ∧ · · · ∧ dxp)
= d(da) ∧ (dx1 ∧ · · · ∧ dxp) − da ∧ d(dx1 ∧ · · · ∧ dxp) = 0 + 0 ,

since dx1 ∧ · · · ∧ dxp = 1 dx1 ∧ · · · ∧ dxp hence d(dx1 ∧ · · · ∧ dxp) = 0 by the
definition of the exterior derivative (10.21). ��

(The proof of (4◦) follows also in direct way by using the definition (10.21).

Example 10.12. Let f be a 0-form and ω = ai dxi be a 1-form then

d(df) = 0 =⇒ rot(grad f) = 0
d(dω) = 0 =⇒ div(rot a) = 0 .

In functions of a single variable the interdependence of derivation and inte-
gration is managed via the primitive function as well-known. This interde-
pendence can be carried over to functions of several variables by means of
the rule d(dω) = 0 . However, what are the conditions for the existence of a
(p− 1)-form π relative to a p-form ω with the property dπ = ω ? By Theorem
10.2(4◦) we obtain immediately that d(dπ) = dω = 0 hence dω = 0 is a neces-
sary condition. But, as well-known, the domain of definition must still suffice
some requirements for sufficiency.

(d) Closed and Exact Forms If ω is a continuously differentiable p-
form on M ⊂ R

n and dω = 0 then ω is said to be closed. On the other side, if
ω is a continuous p-form on M ⊂ R

n and there exists a (p− 1)-form π on M
such that dπ = ω then ω is called exact. If ω ∈ Ωp(M) is sufficiently smooth
then

ω exact =⇒ ω closed .

by Example 10.12. But the conversion is not true in general:

Theorem 10.3. (Lemma of Poincaré) Let M ⊂ R
n be star-shaped and let

ω ∈ Ωp(M) closed then ω is exact.
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Recall that a set M ⊂ R
n is star-shaped if ∃ p ∈ M ∀ x ∈ M =⇒ [p, x] ⊂ M ,

( [p, x] straight line connecting p and x); cf. Sect. 1.2(e).
The computation of a primitive function π with dπ = ω is equivalent to

the solution of a system of partial differential equations of first order:

Example 10.13. For n = 3, p = 2 . Let

ω = b1 dx2 ∧ dx3 + b2 dx3 ∧ dx1 + b3dx1 ∧ dx2 ,

π = v1 dx1 + v2 dx2 + v3dx3 ,

then the relation dπ = ω leads to the equations D2v3 − D3v2 = 0 , etc. and
the condition for integrability dω = 0 yields D1b1 + D2b2 + D3b3 = 0 , hence
together

dπ = ω ⇐⇒ rot v = b , dω = 0 ⇐⇒ div b = 0 .

Example 10.14.

ω(x) =
x1 dx2 − x2 dx1

(x1)2 + (x2)2
, M = R

2 \ {0} .

M is not star-shaped in a neighborhood of zero!

dω = d
( 1

(x1)2 + (x2)2
)

∧ (x1 dx2 − x2 dx1)

+
1

(x1)2 + (x2)2
d(x1 dx2 − x2 dx1)

=
−2x1 dx1 − 2x2 dx2

((x1)2 + (x2)2)2
∧ (x1 dx2 − x2 dx1)

+
1

(x1)2 + (x2)2
(dx1 ∧ dx2 − dx2 ∧ dx1)

=
−2((x1)2 + (x2)2) dx1 ∧ dx2

((x1)2 + (x2)2)2
+

2
(x1)2 + (x2)2

dx1 ∧ dx2 = 0 .

Accordingly, ω is closed. Let now f : R −→ R
2 \ {0} be a function such that

df = ω then ω would be exact and

g :=
∂f

∂x1
= − x2

(x1)2 + (x2)2
, h :=

∂f

∂x2
=

x1

(x1)2 + (x2)2
,

and also gx2 = hx1 . But, consider the function x : R � t �→ (x1, x2) =
(cos t, sin t) ∈ R

2 \ {0} , then the composed mapping g := f ◦ x : R −→ R

is continuous, periodic and smooth hence it has a maximum in some t0 with
gt(t0) = 0 . On the other side, we have but

g′(t) = dg(t) =
∂f

∂x1
(x(t))

dx1

dt
(t) +

∂f

∂x2
(x(t))

dx2

dt
(t) =

sin2 t+ cos2 t
sin2 t+ cos2 t

= 1 .

This is a contradiction hence ω cannot be exact. The assumption of star shape
of the domain of definition M in Poincaré’s Lemma cannot be dropped.
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The constant of integration is now replaced by a more general differential
form:

Theorem 10.4. Let the assumption of Theorem 10.3 hold and let dπ1 =
dπ2 = ω then π1 − π2 is a (p− 1)-form.

Definition 10.3. (Operator of Integration) (1◦) Let M ⊂ R
n be a star-shaped

set relative to the origin and let ω(x) = a(x)dxi1 ∧· · ·∧dxip
, p ≥ 1 be a simple

p-form on M.

(2◦) Let σi1...ip
=

p∑
k=1

(−1)k−1xik
dxi1 ∧ · · · ∧ d̂xik

∧ · · · ∧ dip
.

(The symbol ̂ means again “dropping”.)

(3◦) Let the operator J be defined by J (ω) =
(∫ 1

0

tp−1a(t x) dt
)
σi1...ip

.

This integration operator J is linear hence it can be generalized immediately
to arbitrary p-forms, moreover, it is a uniquely defined p − 1-form. By and
large, it describes the converse of the exterior derivation as the following
theorem shows.

Theorem 10.5. Adopting the assumption of Definition 10.3, let ω ∈ Ωp(M)
be a continuously differentiable p-form, p ≥ 1 , then
(1◦) J (dω) + d(Jω) = ω ;
(2◦) if p ≥ 2 and π is a primitive form of ω, i.e., ω is closed, then π = Jω+dη
where η ∈ Ωp−2(M) .

Example 10.15. In R
3 , the 0-form Jω originates from the 1-form ω, and the

1-form J ω̃ from the 2-form ω̃ :

ω = a1dx+ a2dy + a3dz

Jω = x1

∫ 1

0

a1(tx) dt+ x2

∫ 1

0

a2(tx) dt+ x3

∫ 1

0

a3(tx) dt ,

ω̃ = a1dx2 ∧ dx3 + a2dx3 ∧ dx1 ∧ a3dx1 ∧ dx2

J ω̃ = b1dx1 + b2dx2 + b3dx3

bi(x) = x2+i

∫ 1

0

ta1+i(tx) dt− x1+i

∫ 1

0

ta2+i(tx) dt mod i .

(e) Hodge-Star-Operator and Integral Theorems
(e1) The following Computational Rules hold for the (linear) Hodge-
operator “ ∗ ” defined in Sect. 10.2(h):
(1◦) ∗(fω) = f(∗ω) (f 0-form) ,
(2◦) ∗(ω1 + ω2) =∗ ω1 +∗ ω2 ,
(3◦) (ω1 · ω2) dx1 ∧ · · · ∧ dxn = ω1 ∧∗ ω2 ,
(4◦) ∗∗ω = (−1)p(n−p)ω ,
(5◦) ω1 ∧∗ ω2 = ω2 ∧∗ ω1 ,
(6◦) |ω| = |∗ω| .
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For instance, let x = [x, y, z]T ∈ R
3 then

∗1 = dx ∧ dy ∧ dz (volume element),
∗dx = dy ∧ dz , ∗dy = −(dx ∧ dz) , ∗dz = dx ∧ dy ,

∗(dx ∧ dy) = dz , ∗(dx ∧ dz) = −dy , ∗(dy ∧ dz) = dx ,
∗(dx ∧ dy ∧ dz) = 1 .

(e2) For the 1-form ω(x) = vi(x) dxi we obtain

∗ω(x) =
n∑

i=1

(−1)i−1 vi(x) dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn .

In particular, for x = [x, y, z]T ∈ R
3 ,

∗ω(x) = v1(x) dy ∧ dz + v2(x) dz ∧ dx+ v3(x) dx ∧ dy .

Thus, with the notation introduced in Sect. 1.2, ∗ω(x) = v(x) · ndF (flux of
v through the surface ∂F with normal vector n).

(e3) The Theorem of Gauß,
∫

∂G

v · ndF =
∫

G

div v dV , can now be

written in R
3 as

∫

∂G

∗ω(x) =
∫

G

div v(x) dx ∧ dy ∧ dz , ω(x) = vi(x) dxi .

For the Theorems of Stokes and Green’s formulas, let D ⊂ R
n be a domain

(bounded open set) and u, v ∈ C∞(D; R) scalar-valued functions. Then du is
a 1-form and one verifies that

d(∗du) =

(
n∑

i=1

∂2u

(∂xi)2

)
dx1 ∧ · · · ∧ dxn = Δudx1 ∧ · · · ∧ dxn .

Let now G ⊂ R
n be compact and let D[u, v] be the Dirichlet integral,

D[u, v] :=
∫

G

du ∧∗ dv =
∫

G

dv ∧∗ du =
∫

G

∑
i

( ∂u

∂xi

∂v

∂xi

)
dx1 ∧ · · · ∧ dxn .

The Theorem of Stokes,
∫

∂G

ω =
∫

G

dω leads to
∫

∂G

u∗dv =
∫

G

d(u∗dv) .

Furthermore, we have

d(∗dv) = du ∧∗ dv + u d(∗dv) = du ∧∗ dv + uΔv dx1 ∧ · · · ∧ dxn ,

therefore Green’s formula in R
n reads in the present context:

∫

∂G

u(∗dv) = D[u, v] +
∫

G

uΔv dx1 ∧ · · · ∧ dxn .
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Permutation of u and v and subtraction yield Green’s formula in symmetric
form: ∫

∂G

(u∗dv − v∗du) =
∫

G

(uΔv − vΔu) dx1 ∧ · · · ∧ dxn .

Here one writes customarily dx1 · · · dxn := dx1 ∧ · · · ∧ dxn for the volume
element.

(f) Transformations We now consider abstract tangential vectors under
“transformations”, i.e., the images under a mapping F which is denoted by a
capital letter by exception to distinguish it from the arguments f, g etc. of the
abstract tangential vectors ξ ∈ Tx . More exactly, let again M ⊂ R

n be open
and let F : R

n(x) ⊃ M � x �→ F (x) = y ∈ N ⊂ R
m(y) be a continuously

differentiable. Furthermore, let

Tx = span{D1|x, · · · ,Dn|x} the contravariant tangential space in x ∈ M
T ∗

x = span{dx1, · · · , dxn} the covariant tangential space in x ∈ M
Ty = span{D1|y, · · · ,Dm|y} the contravariant tangential space in y ∈ N
T ∗

y = span{dy1, · · · , dym} the covariant tangential space in y ∈ N .

(One writes T ∗
x instead [Tx]d etc. for the dual space in this context.) Then

f ◦ F ∈ F (M) holds for a scalar function f ∈ F (N ) = C∞(N ; R) and a
mapping F∗ : Tx → Ty is defined between the both tangential spaces by

∀ f ∈ F (N ) ∀ ξ ∈ Tx : F∗ ◦ ξ ◦ f := ξ ◦ f ◦ F ,

R
n(x) ⊃ M −→ F −→ N ⊂ R

m(y)�⏐⏐
�⏐⏐

Tx −→ F∗ −→ Ty

. (10.22)

Theorem 10.6. (1◦) F∗ ∈ L(Tx, Ty) , i.e., F∗ is linear and ∀ ξ ∈ Tx : F∗ ξ :=
F∗(ξ) = ζ ∈ Ty .

(2◦) If F : M → N and G : N → Q are continuously differentiable then
(G ◦ F )∗ = G∗ ◦ F∗ .
(3◦) Ty � F∗Dk|x = ai

k(x)Di|y, y = F (x) , where

ai
k(x) =

∂F i

∂xk
(x) ( [ai

k(x)] = gradF (x) Jacobi matrix).

Observe that it is sumed up over the row index i of the Jacobi matrix in (3◦)
on the right side.

For the proof of (3◦) note that the functionals Di|y constitute a basis of
Ty whence at first F∗Dk|x = ai

k(x)Di|y for some ai
k which depend obviously

on the point x . Applying the projection πj : y �→ yj on both sides, we obtain
on the one side for F = [F 1, . . . , Fm]T
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F∗Dk|x(πj) = Dk|x(πj ◦ F ) = Dk(F j)(x) =
∂F j

∂xk
(x)

and on the other side ai
k(x)Di|y(πj) = ai

k(x)δij = aj
k(x) . ��

In the case where m = n and F is a C1 diffeomorphism we can also insert
x = F−1(y) to obtain an image of F∗ entirely in y-coordinates.

Remember: For A ∈ L(X ,Y) , the adjoint operator Ad ∈ L(Yd,Xd) is
defined by Ad◦y

d
:= y

d
◦A , y

d
∈ Yd (dual space), i.e., by pointwise definition,

∀ x ∈ X ∀ y
d
∈ Yd : (Ad ◦ y

d
)(x) := (y

d
◦A)(x) ∈ R .

The dual operator F ∗ relative to the operator F∗ is also pointwise defined by
this general device (again one writes F ∗ instead [F∗]d in this context) :

∀ ξ ∈ Tx ∀ dy ∈ T ∗
y : (F ∗ ◦ dy)(ξ) = (dy ◦ F∗)(ξ) .

Theorem 10.7. (1◦) F ∗ ∈ L(T ∗
y , T ∗

x ) , i.e., F ∗ is linear and
∀ dy ∈ T ∗

y : F ∗ dy := F ∗ ◦ dy ∈ T ∗
x .

(2◦) If F : M → N und G : N → Q are continuously differentiable then
(G ◦ F )∗ = F ∗ ◦G∗ .

(3◦) F ∗ dyi = ai
k(x) dxk where ai

k(x) =
∂F i

∂xk
(x) such that [ai

k(x)] =

gradF (x) is again the Jacobi matrix.

Note that it is sumed up over the column index k of the Jacobi matrix in
(3◦) .

For the proof of (3◦) observe first that the operators dxk constitute a basis
of T ∗

x hence F ∗ dyi = bik(x) dxk with some bik . Applying both sides to the
basis element Dj |x ∈ Tx yields, by definition of F ∗ and Theorem 10.6,

F ∗ dyi(Dj |x) = dyi(F∗Dj |x) = dyi(al
j(x)Dl|y) = al

j(x) dyi Dl|y = ai
j(x) ,

because {dyi} is the dual basis relative to {Dk|y} . On the other hand,

bik(x) dxk Dj |x = bij(x) =⇒ bij(x) = ai
j(x) =

∂F i

∂xj
(x) . ��

Example 10.16. Let F : R
n(x) ⊃ M → N ⊂ R

m(y) be smooth and x : R ⊃
I → M ⊂ R

n(x) be a smooth curve with x(t0) = x0 . Then

x∗(t0)Dt|t0 =
n∑

i=1

(xi)′(t0)Di|x0

does hold for the tangential space Tt0 = {aDt|t0 , a ∈ R} . This is the (un-
normed) tangential vector at the point t0 and (F ◦x)∗Dt|t0 = F∗(x∗(t0)Dt|t0)
is its image in y-space.
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Example 10.17. (1.) Let F : R � t �→ (x1, x2) = (t2, t3) ∈ R
2 and ω(x) =

x1 dx2 , then (F ∗ω)(t) = t2
∂x2

∂t
(t) dt = 3t4 dt .

(2.) Let F : R
2 � (x1, x2) �→ t = x1 − x2 ∈ R and ω(t) = dt , then F ∗ dt =

dx1 − dx2 .

Example 10.18. Let ω ∈ T ∗
y be a 1-form, i.e., ω(y) = ai(y) di(y) , then

(F ∗ω)(x) = (ω ◦ F∗)(x) = ai(F (x))
∂F i

∂xk
(x) dk(x) =: bk(x)dk(x) .

Accordingly, the component vector [ai(y)] satisfies the transformation rules

bk(x) = ai(y)
∂F i

∂xk
(x) =⇒ b(x) = a(y) gradF (x) , y = F (x) .

Summary. Recall that D|x = [D1|x, . . . Dn|x] by (10.17) where the operators
Di|x of partial differentation are formal column vectors (as elements of the
sample space V) and suppose consistently that the elementary differentials dxi

are formal row vectors (as elements of the dual space Vd). Then the assertions
(3◦) of Theorems 10.6 and 10.7 say that the homomorphisms F∗ and F ∗ can
be defined by

F∗D|x = D|y gradF (x) , F ∗

⎡
⎢⎣
dy1

...
dym

⎤
⎥⎦ = gradF (x)

⎡
⎢⎣
dx1

...
dxn

⎤
⎥⎦ .

In case F is a diffeomorphism, we can write x = F−1(y) in the first equation.
Also, verify, e.g., Theorem 10.6(2◦) by direct computation,

(G ◦F )∗D|x = D|z grad(G ◦F ) = D|z gradG(F (x)) gradF (x)
(!)
= G∗ ◦F∗D|x .

(g) “Push Forward” of (abstract) vector fields is readily explained by
Theorem 10.6 and proof; cf. also (10.22). To deal with “Pull Back” of differ-
ential forms, Theorem 10.7 and the last example suggest to write ω◦F = F ∗ω ;
see also (Abraham), p. 265. In other words, by the linear mapping F ∗, a dif-
ferential form

ω ◦ F := F ∗ω = ω ◦ F∗

on the set M (x-coordinates) is associated to the differential form ω on the
set N (y-coordinates) (“pull back“),

M −→ F −→ N�⏐⏐
�⏐⏐

Ωp(M) ←− F ∗ ←− Ωp(N )
.
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In general, let ω(y) =
∑

i1<···<ip

ai1...ip
(y) dyi1 ∧ · · · ∧ dyip

then

(ω ◦ F )(x) := [F ∗(x)ω(y)](x) =
∑

1≤i1<···<ip≤n

ai1...ip
(F (x)) dFi1 ∧ · · · ∧ dFip

,

where dFj = dFj(x) = DkF
j(x) dxk . Even more general,

(T ◦ F )(ξ1, . . . , ξp) = T(F∗ξ1, . . . , F∗ξp) , ξi ∈ Tx .

does hold for an arbitrary tensor field T ∈ Tp(M) .
Computational Rules for ω ◦ F := F ∗ω ∈ Ωp(M) :

(1◦) (αω1 + βω2) ◦ F = α(ω1 ◦ F ) + β(ω2 ◦ F ) .
(2◦) (ω1 ∧ ω2) ◦ F = (ω1 ◦ F ) ∧ (ω2 ◦ F ) .
(3◦) If p > n then ω ◦ F ≡ 0 , if p > m then ω ≡ 0 .

Example 10.19.

F ∗ (dy1 ∧ dy2) = F ∗ dy1 ∧ F ∗ dy2 =
(
∂y1

∂xi
dxi

)
∧
(
∂y2

∂xj
dxj

)

=
n∑

i=1

n∑
j=1

∂y1

∂xi

∂y2

∂xj
dxi ∧ dxj (all components)

=
∑

1≤i<j≤n

[
∂y1

∂xi

∂y2

∂xj
− ∂y1

∂xj

∂y2

∂xi

]
dxi ∧ dxj (strict components)

=
∑

1≤i<j≤n

∂(y1, y2)
∂(xi, xj)

dxi ∧ dxj (determinants).

Theorem 10.8. With the above notations ,

d(ω ◦ F ) ≡ d(F ∗ω) = F ∗dω ≡ dω ◦ F .

Proof. (1◦) Let ϕ be a 0-form on N then dϕ =
∂ϕ

∂yi
dyi hence

F ∗ dϕ
“pull back′′

=
∂ϕ

∂yi

∂F i

∂xk
dxk =

(∂ϕ ◦ F )
∂xk

dxk = d(ϕ ◦ F ) .

(2◦) Let p > 0 and ω(y) =
∑

[i] ai1...ip
(y) dyi1 ∧ · · · ∧ dyip

(index [i] denoting
summation over all strict components) then

d(ω ◦ F )(x) = d

⎛
⎝∑

[i]

(ai1...ip
◦ F )(x) dFi1 ∧ · · · ∧ dFip

⎞
⎠

=
∑
[i]

d(ai1...ip
◦ F )(x) ∧ dFi1 ∧ · · · ∧ dFip

+
∑
[i]

(ai1...ip
◦ F )(x) d(dFi1 ∧ · · · ∧ dFip

) .
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Because ddω = 0 , we obtain by induction that the second sum disappears,
moreover, d(a··· ◦ F ) = da ◦ F, by the first part of the proof, therefore

d(ω◦F )(x) =
∑
[i]

dai1...ip
(F (x)) dFi1∧· · ·∧dFip

= dω(F (x)) ≡ (dω◦F )(x) . ��

References: (Bowen), (Flanders), (Grauert).

10.4 Tensor Analysis

(a) Euklidian Manifolds The Euclidian space (also Euclidian point
space) consists of points and vectors; more exactly, it is composed of three
components (M,V, ϕ) with the following properties:

(1◦) ∅ �= M is a set consisting of “points” x ∈ M .
(2◦) V is a n-dimensional vector space (of translations) with canonical scalar

product “ · ” and dual vector space Vd of which the scalar product is
defined in canonical way by the scalar product in V; cf. § 10.1(c).

(3◦) There exists a mapping ϕ : M×M � (x, y) → ϕ(x, y) =: x−y ∈ V called
difference such that

∀ x, y, z ∈ M : ϕ(x, y) = ϕ(x, z) + ϕ(z, y)
∀ x ∈ M ∀ v ∈ V ∃! y ∈ M : ϕ(x, y) = v .

The rules x− x = 0 , y − x = −(x− y) , x− y = x′ − y′ =⇒ x− x′ = y − y′

follow directly from the definition, and the set M is a metric space (not vector
space) with the (Euclidian) metric d(x, y) = [(x− y) · (x− y)]1/2 =: |x− y| .
The set M is also called Euklidian space of dimension n for brevity. But
there is no addition defined on M but only the difference of two elements of
M which is contained in the vector space V. Also, the elements x ∈ M are
denoted as point vectors and the elements v ∈ V as free vectors. However, the
different notation, namely x ∈ M and v ∈ V cannot be keeped up throughout;
besides, every vector space V with scalar product is made an Euclidian space
by defining ϕ(u, v) = u− v .

Definition 10.4. Let (M,V, ϕ) (in short M) be an Euklidian space.

(1◦) A pair (U , Ψ) is a chart in x ∈ M if U is open in M with x ∈ U and Ψ :
U → Ψ(U) ⊂ R

n is a diffeomorphism. The mapping (!) Ψ is a coordinate
system in U .

(2◦) If two charts (U1, Ψ1) , (U2, Ψ2) are given and W := U1 ∩ U2 �= ∅ then

Ψ2 ◦ Ψ−1
1 : R

n ⊃ Ψ1(W) → Ψ2(W) ⊂ R
n

is a coordinate transformation.
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(3◦) Let I be an index set (not necessarily countable) and let A = {(Ui, Ψi) ,
i ∈ I} be a family of charts such that M =

⋃
i∈I

Ui , then A is an atlas

on M . In this atlas, for every chart there must exist at least one other,
overlapping chart such that the intersection, say W , has an open, non-
empty interior, intW �= ∅ .

(4◦) If (M,V, ϕ) is an Euclidian space and A an atlas on M , then the quin-
tuple (M,V, ϕ,A) is a differentiable Euclidian manifold (MF).

Henceforth the set M of a MF (M,V, ϕ,A) is also called MF for brevity.

U
1

U
2

Ψ
1

Φ
1

Φ
2

Ψ
2

Ψ
1
−1 ° Ψ

2Rn(ξ) Rn(ζ)

Ψ
2
−1 ° Ψ

1

Figure 10.1. Two charts of a manifold

(b) Natural Coordinate Systems Let M be a MF and let (U , Ψ) be a
chart on M with inverse mapping Φ = Ψ−1 , i.e.,

Ψ = [ψ1, . . . , ψn]T : M ⊃ U � x �→ Ψ(x) = ξ ∈ R
n

Φ : R
n � Ψ(U) � ξ �→ Φ(ξ) = x ∈ U ⊂ M

where ψi : U → R are scalar fields. As the parameter representation Φ of a
chart is commonly used for computation, all relations are to be “pulled back”
into parameter space. Recall that

gradΨ(x) ◦ gradΦ(ξ) = gradΦ(ξ) ◦ gradΨ(x) = I ,

because the inverse is determined uniquely.
We introduce two natural coordinate systems at the point x = Φ(ξ) ∈ M :

(1◦) Let

g̃i(x) := gradψi(x) ∈ L(V; R) = Vd , gi(ξ) := g̃i(Φ(ξ)) , i = 1 : n ,

then g̃i(x0) = gi(ξ0) ∈ Vd is the normal vector at the point x0 on the i-th
coordinate surface ψi(x) = ψi(x0) .
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(2◦) Let

g
i
(ξ) = DiΦ(ξ) :=

d

dt
Φ(ξ + tei)|t=0 , g̃

i
(x) = g

i
(Ψ(x)) ∈ V , i = 1 : n

(10.23)
be the directional derivative w.r.t. to the i-th unit vector ei = [δk

i]nk=1 ∈ R
n .

The vector g
i
(ξ) = gradΦ(ξ) ei is an element of the vector space V because

gradΦ(ξ) ∈ L(Rn;V) . Moreover, g
i
(ξ0) is tangential vector at point x0 =

Φ(ξ0) on the i-th coordinate curve in U , i.e., of the curve

R � ζ �→ Φ(ξ1
0 , . . . , ξ

i−1
0 , ζ, ξi+1

0 , . . . , ξn
0 ) , x = Φ(ξ) .

Because ξ = Ψ ◦ Φ(ξ) , ξi = ψi ◦ Φ(ξ) , we have in general

∂

∂ξj
ξi = δi

j = gradψi(x)
∂Φ

∂ξj
(ξ) = 〈g̃i(x), g

j
(ξ)〉 , x = Φ(ξ) ,

hence 〈gi(ξ), g
j
(ξ)〉 = δi

j . (In numerical computations, we have to differ
strongly between g

i
and g̃

i
but in theoretical considerations both vectors are

mostly identified with each other.) The vectors g
j
(ξ) ∈ V and the vectors

gi(ξ) ∈ Vd are linearly independent, respectively, since Ψ shall be a diffeo-
morphism. Because (10.24), {gi(ξ)} constitutes the dual basis in Vd relative
to the basis {g

i
(ξ)} in V. But, as V is a scalar product space, the dual basis

can be identified canonically with the reciprocal basis {ri(ξ)} ⊂ V relative to
{g

i
(ξ)} ⊂ V, i.e., gi(ξ) $ ri(ξ) by writing 〈v, w〉 := v · w again.
Then we obtain

〈gi(ξ), g
j
(ξ)〉 = gi(ξ) · g

j
(ξ) = δi

j (10.24)

on the (fixed) chart (U , Ψ) and the vectors gi(ξ) are uniquely defined by
this relation, being important for applications. These vectors gi(ξ) are the
rows of the (temporarily) formal matrix [∇Φ(ξ)]−1 written as columns. The
upper index and the position in the scalar product are however keeped up to
remember their origin which is also of advantage in Matlab implementations.
Mostly, the computation of the inverse mapping Ψ by Φ is not necessary
in applications and [∇Φ(ξ)]−1 is computed directly by using Cramer’s rule
yielding acceptable results in R

3 .
Notations relative to an individual chart:

(1◦) The basis {g
1
(ξ), . . . , g

n
(ξ)} is called covariant basis of V in U ⊂ M .

(2◦) The basis {g1(ξ), . . . , gn(ξ)} is called contravariant basis of V in U ⊂ M .
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(3◦) The real matrix Mg(ξ) := [gij(ξ)] := [g
i
(ξ) · g

j
(ξ)] with scalar product in

V resp. the tensor (mapping)

Mg(ξ) = gij(ξ) gi(ξ) ⊗ gj(ξ)

are called covariant metric tensor in x ∈ U ⊂ M ; and Mg(u, v) = giju
ivj

holds for u = g
i
ui , v = g

i
vi .

(4◦) The real matrix Mg
d(ξ) = [gij(ξ)] = [gi(ξ) · gj(ξ)] with canonical scalar

product in Vd resp. the tensor (mapping)

Mg
d(ξ) = gij(ξ) g

i
(ξ) ⊗ g

j
(ξ)

are called contravariant metric tensor in x ∈ U ⊂ M . Of course
Mg(ξ)Md

g (ξ) = I ∈ R
n

n for all ξ ∈ Ψ(U) since the scalar product is just
chosen in that way.

(5◦) Contrary to the usual notation g(ξ) = det(Mg(ξ)) let

g(ξ) := det(Mg(ξ))1/2 = det([gij(ξ)])1/2 .

(6◦) For brevity, let

∂i =
∂

∂ξi
, ∂̂i =

∂

∂xi
, if M = V and x = eix

i .

(7◦) Let v̂ : M � x �→ v̂(x) ∈ V be a vector field living on M . In the se-
quel, always the global-local transformation v̂ → v resp. the local-global
transformation v → v̂ shall apply as follows

v̂(x) = v̂(Φ(ξ)) = v(ξ) = v(Ψ(x)) ; (10.25)

v is also said to be the coordinate representation of v̂ .

Often x is written instead of ξ in literature if the notation is not related
specifically to an individual chart.

The vectors

ĝ
i
(ξ) = g

i
(ξ)gii(ξ)−1/2 , ĝi(ξ) = gi(ξ)gii(ξ)1/2 , i = 1 : n ,

(no summation) have unit length in orthogonal natural coordinate systems.
The components vi of the representation v = ĝ

i
(ξ)vi ∈ V are then called

anholonomic or physical (contravariant) components of v relative to the co-
variant basis {g

i
(ξ)} . The physical components relate to a normed orthogonal

basis which however is no longer a genuine “natural” basis.
Simplification. For model of the physical situation in technical applications,

M = V is chosen frequently, i.e., the distinction between points and vectors
is dropped. Then a cartesian coordinate system (NOS) {O; e1, . . . , en} with
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origin O is chosen for canonical basis such that ei · ej = δi
j . Mostly also ei

and ei are identified, ei = ei , but the different position of the indices is keeped
up. Let E = {e1, . . . , en} be the matrix of formal column vectors again then
Φ : R

n � ξ �→ eiϕ̃
i(ξ) = x ∈ V on a chart (U , Φ−1) or, formally written with

components Φ̃(ξ) ∈ R
n and Ψ̃(x) ∈ Rn ,

Φ(ξ) = EΦ̃(ξ) , ∇Φ(ξ) = E∇Φ̃(ξ) , ∇Φ̃(ξ) =
[
∂ϕ̃i

∂ξj
(ξ)

]

Ψ(x) = Ψ̃(x)ET , ∇̂Ψ(x) = ∇̂Ψ̃(x)ET , ∇̂Ψ̃(x) =

[
∂ψ̃i

∂xj
(x)

]

(i row index). Then

g
i
(ξ) = ek ∂iϕ̃

k(ξ) covariant basis with contravariant components
components are columns of ∇Φ̃(ξ)

gi(ξ) = ∂̂kψ̃
i(x))ek contravariant basis with covariant components

components are rows of ∇̂Ψ̃(x)

and, according to the above definition,

Mg(ξ) = ∇Φ(ξ)T ∇Φ(ξ) , Mg
d(ξ) = ∇̂Ψ(x)∇̂Ψ(x)T , g(ξ) = |det gradΦ(ξ)|

The remaining notations do not change. The reciprocal basis relative to {g
i
(ξ)}

consists here of the column vectors gi(ξ)T .

Example 10.20. Shells consist frequently of a single chart of a three-dimen-
sional MF in coordinate space R

3. If first ω ⊂ R
2(ξ1, ξ2) is a domain and

ϕ : ω → R
3 is the parameter representation of a surface, then the mapping Φ

is declared by

Ω = ω × (−h, h) � ξ �→ Φ(ξ) = ϕ(ξ1, ξ2) + ξ3 n(ξ1, ξ2) ∈ R
3 , h > 0 ,

where n = g
1
× g

2
is the normal vector of the surface. One chooses

{g
1
(ξ1, ξ2), g2

(ξ1, ξ2), g3
(ξ1, ξ2) = n(ξ1, ξ2)} for covariant basis, and the con-

travariant basis follows from the relation gi(ξ) · g
j
(ξ) = δi

j .

Example 10.21. In a vector space V with cartesian coordinate system
{O; e1, e2, e3} , the components of the (linear) elasticity tensor and the (linear)
strain tensor have the form

Aijkl(x) = λ δijδkl + μ [δikδjl + δilδjk]

eij(u(x)) =
1
2

(
∂̂ju

i + ∂̂iu
j
)

(x) ,

λ > 0 and μ > 0 being the Lamé constants. On a chart (U , Ψ) of a three-
dimensional MF, the same components have the form, pulled back into pa-
rameter space,
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Aijkl(ξ) = λ gij(ξ)gkl(ξ) + μ [gik(ξ)gjl(ξ) + gil(ξ)gjk(ξ)]

ei‖j(u(Φ(ξ))) =
[
1
2
(
∂j(ui ◦ Φ) + ∂i(uj ◦ Φ)

)
− Γ k

ij(uk ◦ Φ)
]

(ξ)

where Γ k
ij are the Christoffel symbols dealed with below.

(c) Representation and Transformation
(c1) Basis Transformation Let (U1, Ψ1) and (U2, Ψ2) be two (overlapping)
charts with non-empty intersection W := U1 ∩ U2 �= ∅ , i.e.,

Ψ1 : U1 � x �→ Ψ1(x) = ξ ∈ R
n, Φ1 = Ψ−1

1

Ψ2 : U2 � x �→ Ψ2(x) = ζ ∈ R
n, Φ2 = Ψ−1

2 ,

and thus ξ = (Ψ1 ◦ Φ2)(ζ) , ζ = (Ψ2 ◦ Φ1)(ξ) . Let {g
i
(ξ)} , {gj(ξ)} be the

natural bases of the chart (U1, Ψ1) and {hi(ζ)} , {hj(ζ)} the natural bases of
the chart (U2, Ψ2) , as well as

A(ζ) = [ai
k(ζ)] := ∇Ψ1(x)∇Φ2(ζ) , B(ξ) = [bik(ξ)] := ∇Ψ2(x)∇Φ1(ξ) ,

then B(ξ) = A(ζ)−1 ∈ R
n

n . On W we have Φ2(ζ) = (Φ1 ◦ Ψ1 ◦ Φ2)(ζ) ,
Ψ2(x) = (Ψ2 ◦ Φ1 ◦ Ψ1)(x) , hence we obtain

hi(ζ) = g
j
(ξ)aj

i(ζ) , hi(ζ) = bij(ξ)gj(ξ) , i = 1 : n , (10.26)

or formally by § 10.1(b)

H(ζ) = G(ξ)A(ζ) , H(ζ) = B(ξ)G(ξ) = A(ζ)−1G(ξ)

where G(ζ) = [g
1
(ζ), . . . , g

n
(ζ)] etc.. Accordingly, A(ζ) is the transforma-

tion matrix in transforming the covariant basis {g
i
} of V, and A(ξ)−1 is the

transformation matrix in transforming the contravariant basis {gi} of V . In
orthogonal, natural coordinate systems, we have H(ξ) = H(ζ(ξ))T as well as
A(ξ)−1 = A(ξ)T , and both transformations are equal.

(c2) Component Transformation Every vector field v : M � x �→
v(x) ∈ V has two representations on a chart (U , Ψ) , v(x) = g

i
(ξ)vi(x) =

vj(x)gj(ξ) , with covariant basis {g
i
} and contravariant components vi , or

with contravariant basis {gi} and covariant components vj . Following (10.9)
and (10.13), the indices may be lowered or raised using the components of the
metric tensors,

vk(x) = vi(x)gik(ξ) , vk(x) = vi(x)gik(ξ) .

Frequently, the vector field v is given or sought in a global coordinate system
E = {e1, . . . , en} , i.e., v(x) = eiv̂

i(x) = v̂j(x)ej because ei = ei . Then

v(x) = eiv̂
i(x) = g

i
(ξ)vi(ξ) , x = Φ(ξ) , (10.27)
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on a fixed chart (U , Ψ) and the components vi(ξ) are to be found:

vi(ξ) = gi(ξ) · g
j
(ξ)vj(ξ) = gi(ξ) · ej v̂

j(x)

v̂i(x) = ei · ej v̂
j(x) = ei · g

j
(ξ)vj(ξ) .

On the intersection W � x = Φ1(ξ) = Φ2(ζ) of two charts, the vector field has
four representations

v : U1 � x �→ v(x) = g
i
(ξ)vi(x) = vi(x)gi(ξ) ∈ V ,

v : U2 � x �→ v(x) = hi(ζ)w
i(x) = wi(x)hi(ζ) ∈ V .

Changing the chart yields, by (c1) and § 10.1(a),

wi(x) = bij(ξ)vj(x) , wi(x) = vj(x)aj
j(ζ) or

[w ](x) = B(ξ) [ v ](x) , [w ](x) = [ v ](x)A(ζ)

for the

contravariant components [ v ] = [v1, . . . , vn]T , [w ] = [w1, . . . , wn]T

covariant components [ v] = [v1, . . . , vn] , [w ] = [w1, . . . , wn] .

Often one writes e.g. v(ξ) := v(Φ(ξ)) instead e.g. ṽ(ξ) := v(Φ(ξ)) for the
coordinate representation which has to be regarded in computation.

(c3) Transformation of Tensor Fields A covariant tensor field T̂ of
order p on a MF M is a mapping T̂ : M � x �→ T̂(x) ∈ Tp(V) with local
representation (on a fixed chart)

T̂(x) = Ti1...ip
(ξ) gi1(ξ) ⊗ · · · ⊗ gip(ξ)

T̂(x)(v1, . . . , vp) = Ti1...ip
(ξ) 〈gi1(ξ), v1〉 · · · 〈gip(ξ), vp〉 , vi ∈ V

Ti1...ip
(ξ) = T̂ (x) (g

i1
(ξ), . . . , g

ip
(ξ)) , x = Φ(ξ)

and covariant components Ti1...ip
(ξ) ; mostly both attributes are dropped. On

the intersection of two charts, we have with the above notations

T̂(x) =
(
Ti1...ip

gi1 ⊗ · · · ⊗ gip
)
(ξ) =

(
T̃i1...ip

hi1 ⊗ · · · ⊗ hip)(ζ) .

In coordinate transformation (change of chart), we obtain the transformation
rule

T̃ i1...ip(ξ) = bi1k1(ξ) . . . b
ip

kp
(ξ)T k1...kp(ξ)

for contravariant components, and

T̃i1...ip
(ζ) = ai1

k1(ζ) . . . a
ip

kp
(ζ)Tk1...kp

(ζ) , x = Φ1(ξ) = Φ2(ζ) (10.28)

for covariant components.
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Example 10.22. On a chart (U , Ψ) , we have for the metric tensor

Mg(ξ) = gij(ξ) gi(ξ) ⊗ gj(ξ) = g
j
(ξ) ⊗ gj(ξ) = gj(ξ) ⊗ g

j
(ξ)

= gij(ξ) g
i
(ξ) ⊗ g

j
(ξ) = δi

jgi
(ξ) ⊗ gj(ξ) = δ

(unit tensor on the chart (U , Ψ)), although the components are not constants
in normal case! For instance, for v ∈ V ,

Mgv = g
j
〈gj , v〉 = g

j
(gj · v) = g

j
vj = v , Mg(u, v) = u · v .

Example 10.23. If e1, . . . , en is a NOS in V , then the following representation
holds for the tensors Ê of volume unit of § 10.2(a)

Ê(x) = e1 ∧ · · · ∧ en = εi1...in
ei1 ⊗ · · · ⊗ ein

.

The appertaining tensor field M � x �→ Ê(x) = Ê is obviously constant. It
follows by the theory of determinants that this tensor has, on a chart (U , Ψ) ,
the form

Ê = Ei1...in
(ξ) gi1(ξ) ⊗ · · · ⊗ gin(ξ) = Ei1...in(ξ) g

i1
(ξ) ⊗ · · · ⊗ g

in
(ξ)

(det(A ·B) = det(A) · det(B)) where

Ei1...in
(ξ) = e · g(ξ)1/2εi1...in

, Ei1...in(ξ) = e · g(ξ)−1/2εi1...in .

Here, e = 1 in positive orientation of g
i

relative to {ei} , and e = −1 else,
and g(ξ) = det([gij(ξ)]) . For conversion of the components into contravariant
components, as always, Ei1...in(ξ) = gi1j1(ξ) · · · ginjn(ξ)Ej1...jn

(ξ).

(c4) Tangents of a Curve on the MF M Let I = [a, b] be an interval
and Ξ a curve in M, Ξ : I � t �→ z(t) ∈ M . Let t0 ∈ (a, b) and (U , Ψ) be a
chart on M with Φ = Ψ−1 and z0 = z(t0) ∈ U . Then

d

dt
z(t0) = lim

τ→0

z(t0 + τ) − z(t0)
τ

∈ V (10.29)

is the tangential vector in z0 (if x, y ∈ M then y−x ∈ V). We have Ψ(z(t)) =:
ζ(t) ∈ R

n , z(t) = Φ(ζ(t)) ∈ U ⊂ M , and I � t �→ ζ(t) is the curve in R
n

being “pulled back into parameter space”,

d

dt
z(t) = ∂iΦ(ζ(t))

d ζi

d t
(t) = g

i
(ζ(t))vi(t) , vi(t) =

d

dt
ζi(t) ∈ R , i = 1 : n .

(10.30)

The components of the tangential vector relative to the covariant basis
are the components of the tangential vector of the curve pulled back into
parameter space.
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As a direct conclusion from (10.29) we obtain

Ψ(z(t+Δt)) = (ζ1(t) + v1Δt+ o(Δt), . . . , ζn(t) + vnΔt+ o(Δt))

where vi = dζi(t)/dt .
(c5) Gradient of a Scalar Function The gradient of a scalar function

f̂ is defined by

〈ĝradf̂(x), v〉 = ĝradf̂(x) · v =
d

dτ
f(x+ τv)

∣∣
τ=0

.

On a chart (U , Ψ), it follows by the Chain Rule, using v = g
i
(ξ)vi ,

d

dτ
f̂(x+ τv)|τ=0 =

d

dτ
(f̂ ◦ Φ ◦ Ψ)(x+ τv)

∣∣
τ=0

= ∂i(f̂ ◦ Φ)(Ψ(x)) ĝradψi(x) · v

= ∂i(f̂ ◦ Φ)(Ψ(x)) gi(ξ) · g
j
(ξ)vj = ∂if(ξ)vi ,

or

ĝradf̂(x) = ∂if(ξ) gi(ξ) = ∂if(ξ) gik(ξ) g
k
(ξ) . (10.31)

(d) Christoffel Symbols Let (U , Ψ) be a chart on the MF M and Φ =
Ψ−1 again. One writes for brevity

Γ k
ij(ξ) := gk(ξ)∂jgi

(ξ) = gk(ξ)
∂2Φ

∂ξi∂ξj
(ξ) ∈ R . (10.32)

The mappings Γ k
ij : ξ �→ Γ k

ij(ξ) ∈ R are called Christoffel symbols (of
second order). One finds by partial derivation of gk · g

i
= 0 that

∂jg
k · g

i
+ gk · ∂jgi

= ∂jg
k · g

i
+ Γ k

ij = 0 .

By multiplication from left by gi(ξ), resp. in (10.31) from right by g
k
(ξ), we

obtain

∂jgi
(ξ) = g

k
(ξ)Γ k

ij(ξ) , ∂jg
k(ξ) = −Γ k

ij(ξ)g
i(ξ) (10.33)

where permutation of the components is allowed as already mentioned. The
Christoffel symbols relate always to an individual chart. They are sym-
metric in indices i and j but they are not tensors but scalar functions. We
obtain by partial derivation of gij = g

i
· g

j
w.r.t. ξk that

∂kgij = ∂kgi
· g

j
+ g

i
· ∂kgj

= Γ l
ikgl

· g
j
+ g

i
· Γ l

jkgl
= Γ l

ikglj + Γ l
jkgil .

By utilizing the symmetry properties of the Christoffel symbols, we derive
from this relations the formula
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Γ k
ij =

1
2
gkl(∂jgil + ∂igjl + ∂lgij) ,

which allows to compute the Christoffel symbols by means of the metric
tensor.

The metric tensor is a diagonal matrix in orthogonal coordinate systems
by (10.9), and MgMg

d = I implies gii = (gii)−1 (no summation). In this
situation we thus obtain by (10.31) (without summation)

Γ k
ij = 0 , i �= j , i �= k , j �= k , Γ j

ii = −∂jgii

2gjj
, i �= j ,

Γ i
ij = Γ i

ji = −∂jgii

2gii
, i �= j , Γ i

ii =
∂igii

2gii
.

(10.34)
In a orthogonal and normed i.e. cartesian coordinate system, the metric tensor
is the unit matrix and all Christoffel symbols are zero by consequence. A
Matlab program for the computation of Christoffel symbols in spherical
coordinates is offered in KAPITEL10.

(e) Divergence of Gradient of a Scalar Field By (c5), we have
ĝrad f̂(x) = ∂if(ξ)gi(ξ) and hence

ĝrad ĝrad f̂(x) = ∂j(∂if(ξ)gi(ξ)) ⊗ gj = [∂i∂jfg
i + ∂if∂jg

i] ⊗ gj

= [∂i∂jfg
i − ∂ifΓ

i
kjg

k] ⊗ gj = [∂i∂jf − ∂kfΓ
k
ij ]g

i ⊗ gj

= [∂i∂jf − ∂kfΓ
k
ij ]g

ijg
i
⊗ g

j
.

Consequently,

d̂iv ĝrad f̂(x) = C1,2ĝrad ĝrad f̂(x) = [∂i∂jf − ∂kfΓ
k
ij ](ξ)g

ij(ξ)

where C1,2 is the contraction operator . On the other side, partial derivation
of gij = gi · gj w.r.t. ξk yields

∂kg
ij = ∂kg

i · gj + ∂kg
j · gi = −Γ i

lkg
l · gj − Γ j

lkg
l · gi = −Γ i

lkg
lj − Γ j

lkg
li .

Using this result and g = det[gij ]1/2 , one computes

g−1∂i(g gij∂jf) = g−1gij∂jf∂ig + ∂jf∂ig
ij + gij∂i∂jf

= gij∂i∂jf + gij∂jfΓ
k
ik − ∂jf [Γ i

lig
lj + Γ j

lig
li]

= gij∂i∂jf + gij∂jfΓ
k
ik − ∂jf [Γ k

ikg
ij + Γ j

lig
li]

= gij∂i∂jf − gliΓ j
li∂jf .

Therefore we obtain the relation

Δ̂ f̂(x) =
(

1
g
∂i

(
g gij∂jf

))
(ξ) .
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In the same way, one obtains for vector fields, using (10.25),

Δ̂ v̂(x) =
(

1
g
∂i

(
g gij∂jv

))
(ξ) .

(f) The Gradient of a Tensor is computed in the same way as in (c5).
For example, let M � x �→ T̂(x) ∈ Tp(V) be a covariant tensor field (with
covariant components). The gradient of T̂ at the point x ∈ M is the derivation
of the tensor T̂(x) as multilinear mapping,

T̂(x+ v) = T̂(x) + (ĝradT̂(x))v + r(x, |v|) , v ∈ V , lim
v→0

r(x, |v|)
|v| = 0 .

Because T̂(x) ∈ L(Vp; R) also (ĝradT̂(x))v ∈ L(Vp; R) hence

ĝradT̂(x) ∈ L(V;L(Vp; R)) = L(Vp+1; R) . (10.35)

(More genuinely one should write (ĝradT̂)(x) instead ĝradT̂(x) .) By definition

(ĝradT̂(x))v =
d

dτ
T̂(x+ τv)

∣∣
τ=0

.

On an individual chart (U , Ψ) there follows by (10.25)

d

dτ
T̂(x+ τv)

∣∣
τ=0

=
d

dτ
(T̂ ◦ Φ ◦ Ψ)(x+ τv)|τ=0 = ∂jT(ξ) ĝradψj(x) · v ,

and

ĝradT̂(x) = ∂jT(ξ) ⊗ gj(ξ) , x = Φ(ξ) (10.36)

must hold because (10.35). Customarily, one chooses here the contravariant
representation of T̂ (x) . Then we have on a chart (U , Ψ)

T(ξ) = T i1...ip(ξ) g
i1

(ξ) ⊗ · · · ⊗ g
ip

(ξ) . (10.37)

Note that ξ �→ T(ξ) is a mapping R
n ⊃ Ψ(U) → R for which the partial

derivatives are defined in classical sense. Using (10.36) and (10.37) we then
obtain the following representation for the tensor ĝrad T̂(x) ∈ Tp+1(V) ,

ĝradT̂(x) = A(ξ)i1...ip |j gi1
(ξ) ⊗ · · · ⊗ g

ip
(ξ) ⊗ gj(ξ) , x = Φ(ξ) , (10.38)

where A(ξ)i1...ip |j shall be at first simply the components of ĝrad T̂ (x) in sense
of (10.25), i.e. ∂jT(ξ) = A(ξ)i1...ip |j gi1

(ξ) ⊗ · · · ⊗ g
ip

(ξ) . Let now T̂(x) be a

tensor in contravariant representation, T̂(x) = T i1...ip(ξ) g
i1

(ξ) ⊗ · · · ⊗ g
ip

(ξ)
then, by the product rule,
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∂jT(ξ) = ∂jT
i1...ip(ξ) g

i1
(ξ) ⊗ · · · ⊗ g

ip
(ξ)

+ T i1...ip(ξ)
[
∂jgi1

(ξ) ⊗ · · · ⊗ g
ip

(ξ) + . . .+ g
i1

(ξ) ⊗ · · · ⊗ ∂jgip
(ξ)

]

(10.39)
and, because ∂jgi

(ξ) = Γ k
ij(ξ) gk

(ξ) , we obtain, e.g., with argument ξ ,

T i1...ip∂jgi1
⊗ g

i2
⊗ · · · ⊗ g

ip
= T i1...ipΓ k

i1j gk
⊗ g

i2
⊗ · · · ⊗ g

ip

= T k i2...ipΓ i1
kj gi1

⊗ g
i2

⊗ · · · ⊗ g
ip
.

Altogether, it follows by (10.39)

A(ξ)i1...ip |j = ∂jT
i1...ip + T k i2...ipΓ i1

kj + . . .+ T i1...ip−1kΓ
ip

kj (10.40)

for the components of ĝrad T̂ (x) where the argument is dropped.

Example 10.24. A vector field v̂ : M � x �→ v̂(x) ∈ V has the contravariant
representation v̂(x) = g

i
(ξ)vi(ξ) on a chart (U , Ψ) by (10.25). One obtains by

(10.39) for the gradient

ĝrad v̂(x) =
[
∂jv

i(ξ)g
i
(ξ) + vi(ξ)∂jgi

(ξ)
]
⊗ gj(ξ)

=
[
∂jv

i(ξ)g
i
(ξ) + vi(ξ)Γ k

ij(ξ)gk
(ξ)

]
⊗ gj(ξ)

= vi
‖j(ξ) gi

(ξ) ⊗ gj(ξ)

vi
‖j(ξ) := ∂jv

i(ξ) + vk(ξ)Γ i
kj(ξ) ,

in the same way, for v̂(x) = vi(ξ)gi(ξ) in covariant representation,

ĝrad v̂(x) = vi‖j(ξ) gi(ξ) ⊗ g
j
(ξ)

vi‖j(ξ) := ∂jvi(ξ) − vk(ξ)Γ k
ij(ξ) .

Example 10.25. The gradient of a 2-tensor T̂(x) = T rs(ξ)g
r
(ξ) ⊗ g

s
(ξ), is the

3-tensor

ĝrad T̂(x) =
(
∂jA

rsg
r
⊗ g

s
⊗ gj

)
(ξ)

=
(
[∂jT

rs + T ksΓ r
kj + T rkΓ s

kj ]gr
⊗ g

s
⊗ gj

)
(ξ) .

Example 10.26. The metric tensor Mg
d = gijg

i
⊗g

j
is as well as Mg in Example

10.22 a constant tensor, Mg
d v = v because, e.g. for v = gkvk ,

Mg
dv = gijg

i
〈gkvk, gj

〉 = gijg
i
vj = vig

i
= v .

Thus grad Mg
d = O-tensor must hold by definition of the gradient, i.e., gij

|k =
0 . On the other side, one computes by (10.39) for the gradient of the metric
tensor
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grad Mg
d = (gradMg

d)i1i2
jgi1

⊗ g
i2

⊗ gj

the components

(grad Mg
d)i1i2

j = ∂jg
i1i2 + gki2Γ i1

kj + gi1kΓ i2
kj

= ∂jg
i1gi2 + ∂jg

i2gi1 + gki2Γ i1
kj + gi1kΓ i2

kj = 0 .

Of course, we have likewise (grad Mg)ij,k = 0 for the components of the tensor
grad Mg(x) .

Example 10.27. The tensor Ê of volume unit, cf. Example 10.23,
g = det[gij ]1/2 ,

Ê(x) = Ei1...in
(ξ) gi1(ξ) ⊗ · · · ⊗ gin(ξ) = Ei1...in(ξ) g

i1
(ξ) ⊗ · · · ⊗ g

in
(ξ)

Ei1...in
(ξ) = e · g(ξ)εi1...in

, Ei1...in(ξ) = e · g(ξ)−1εi1...in

Ei1...in(ξ) = gi1j1(ξ) . . . ginjn(ξ)Ej1...jn
(ξ)

is likewise a constant tensor. We have

O = eEi1...in
j = εi1...in∂jg − g εki2...inΓ i1

kj − g εi1...in−1kΓ in

kj .

If for instance εi1...in = 1 then εki2...in = 0 for k �= i1 by definition because
two indices appear double. Thus ∂jg = g Γ i1

i1j +. . .+g Γ in
inj without summation

over the indices ik or

∂jg

g
= Γ k

jk , g = det[gij ]1/2 (10.41)

with summation over k .

(g) Divergence of a Tensor Field The divergence of a tensor field
T̂ : M � x �→ T̂(x) ∈ Tp(V) is the contraction of the gradient w.r.t. the last
component, cf. § 10.1(j), d̂iv T̂(x) = Cp,p+1(ĝrad T̂) , hence

d̂iv T̂(x) =: Ai1...ip−1l
|l(ξ)gi1

(ξ) ⊗ · · · ⊗ g
ip−1

(ξ)

Ai1...ip−1l
|l = ∂lT

i1...ip−1l

+ T k i2...ip−1lΓ i1
kl + . . .+ T i1...ip−2klΓ

ip−1
kl

+ T i1...ip−1kΓ l
kl

. (10.42)

Example 10.28. We have < gj(ξ), vi(ξ)Γ k
ij(ξ)gk(ξ) > = vi(ξ)Γ j

ij(ξ) , hence it
follows in particular for the divergence of a vector field v̂ that

d̂iv v̂(x) = ∂iv
i(ξ) + vi(ξ)Γ j

ij(ξ) , x = Φ(ξ) .
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Using (10.41), we obtain from this relation that

d̂iv v̂(x) =
(

1
g
∂i(g vi)

)
(ξ) .

Example 10.29. The Laplace operator of a tensor field is the divergence of
the gradient,

Δ̂T̂(x) := d̂iv ĝrad T̂(x) = Cp+1,p+2(ĝrad ĝrad T̂)(x)

where Cp+1,p+2 is the contraction operator of a tensor
T̂(x) = T i1...ip(ξ) gi1(ξ) ⊗ · · · ⊗ gip

(ξ) of order p . We obtain as above

Δ̂T̂(x) =
(
gkl T i1...ip |kl gi1 ⊗ · · · ⊗ gip

)
(ξ) contravariant tensor

Δ̂T̂(x) =
(
gkl Ti1...ip |kl g

i1 ⊗ · · · ⊗ gip
)
(ξ) covariant tensor .

Observe however that the formula for the Laplace operator is frequently
displayed for physical components and not as here for natural components.

(h) Rotation of a Vector Field In accordance with the formula in R
3 ,

rotw(x) × (y − x) = [∇w(x) − ∇w(x)T ](y − x) , (10.43)

the rotation of v̂ may be defined as skew-symmetric part of the gradient hence,
with the projection operator Pp : Tp(V) → Ap(V) onto the alterating part,
r̂ot v̂(x) = P2(ĝrad v̂)(x) or

r̂ot v̂(x) =
(

1
2
(vi‖j − vj‖i)gi

⊗ gj

)
(ξ) . (10.44)

On an oriented three-dimensional MF we then obtain

r̂ot v̂(x) = −Eijk(ξ)vj‖k(ξ)g
i
(ξ)

with identification by (10.43); cf. Example 10.27. This relation (10.44) can be
generalized to arbitrary alternating tensors by means of differential forms; cf.
(Bowen).

References: (Barner), (Bowen), (Ciarlet00), (Flanders), (Grauert).

10.5 Examples

Without demand for completeness, this section contains a collection of curvi-
linear orthogonal coordinate systems in a Euclidian vector space E3 with
fixed cartesian coordinate system {O; e1, e2, e3} .
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(a) Brief Recapitulation We identify the elements of this space with
their coordinate vectors E3 � x = eix

i $ [x1, x2, x3]T = x ∈ R
3 . If again x =

Φ(ξ) , ξ = [ξ1, ξ2, ξ3]T , then the columns of gradΦ(ξ) = [g
1
(ξ), g

2
(ξ), g

3
(ξ)]

form the natural covariant basis at point x = Φ(ξ) ∈ R
3 resp. E3 . We consider

manifolds of which the metric tensor M(ξ) = [gij(ξ)] = [gradΦ(ξ)]T gradΦ(ξ)
is a diagonal matrix. If now Ψ = Φ−1 is the inversion then, by the chain rule,
gradΨ(x) gradΦ(ξ) = I , x = Φ(ξ) . In case we make no difference between
row and column vectors, the columns of gradΦ(ξ) form a basis and the rows
of gradΨ(x), [g1(ξ), g2(ξ), g3(ξ)] := [gradΨ(x)]T , ξ = Ψ(x) , form a basis of
R

3 at the point x as well and

gi(x) · g
j
(ξ) = δi

j (Kronecker symbol) .

Therefore {gi} is called dual basis relative to {g
j
} ; reciprocal and dual basis

coincide by canonical identification of rows and columns in R
n.

Let again

gi(ξ) := mii(ξ)1/2 = [g
i
(ξ) · g

i
(ξ)]1/2 , i = 1 : 3 ,

g(ξ) = det(M(ξ))1/2 = g1(ξ) · g2(ξ) · g3(ξ) .

The columns

[g̃
1
(ξ), g̃

2
(ξ), g̃

3
(ξ)] := [gradΦ(ξ)]M(ξ)−1/2

[g̃1(ξ), g̃2(ξ), g̃3(ξ)] := [gradΨ(x)]TM(ξ)1/2
(10.45)

form respectively a normed orthogonal basis in R
3 resp. E3 .

The representation v = g
i
(ξ)vi = vjg

j(ξ) , holds for a vector v ∈ R
3 where

it is to be summed up over double appearing indices. If the basis vectors are
normed to Euclidian length one as in (10.45) then the components of v are
called physical components. Any of these bases defines a particular metric
(length) in point x, e.g.,

|v|2 = (g
i
(ξ)vi) · (g

j
(ξ)vj) = [v1, v2, v3]∇Φ(ξ)T ∇Φ(ξ)

⎡
⎣
v1

v2

v3

⎤
⎦ ,

and the matrix (resp. tensor field) M(ξ) = [gij(ξ)] = [gradΦ(ξ)]T gradΦ(ξ) is
called metric tensor in x = Φ(ξ) rightly .

(b) Orthogonal Natural Coordinate Systems appear if gradΦ(ξ) is
an orthogonal but not necessarily orthonormal matrix (there is mostly no
difference made between these two notations). Then primal and dual basis co-
incide up to normalization. If in addition the columns of gradΦ(ξ) are normed
to Euclidian ubit length then the metric tensor becomes the unit matrix ob-
viously and the components are again the physical components.

In the subsequent examples only the diagonal of the metric tensor M is
specified because the other elements are zero. It shows how the natural basis
has to be normed if necessary.



552 10 A Survey on Tensor Calculus

Example 10.30. Cylinder coordinates. ξ = (r, ϕ, ζ) .
Transformation: x =

[
r cosϕ, r sinϕ, ζ

]T , 0 < r , 0 ≤ ϕ < 2π , ζ ∈ R .

gradΦ(ξ) =

⎡
⎣

cosϕ −r sinϕ 0
sinϕ r cosϕ 0

0 0 1

⎤
⎦ , diag(M(ξ)) = [1, r2, 1] .

Example 10.31. Spherical Coordinates; cf. also the geographic version in Ex-
ample 6.17. ξ = (r, ϑ, ϕ) (!).
Transformation : x = [r sinϑ cosϕ, r sinϑ sinϕ, r cosϑ]T , 0 < r , 0 ≤ ϕ <
2π , 0 < ϑ < π .

gradΦ(ξ) =

⎡
⎣

sinϑ cosϕ r cosϑ cosϕ −r sinϑ sinϕ
sinϑ sinϕ r cosϑ sinϕ r sinϑ cosϕ

cosϑ −r sinϑ 0

⎤
⎦ ,

diag(M(ξ)) = [1, r2, (r sinϑ)2] .

Origin as well as north- and south pole (ϑ = 0 , ϑ = π) are to be excluded.

Example 10.32. Paraboloid coordinates. ξ = (u, v, w) , (u, v) �= (0, 0) , ≤ u ,
0 ≤ v , 0 ≤ w < 2π .
Transformation: x =

[
u v cosw, u v sinw, (u2 − v2)/2

]T ,

gradΦ(ξ) =

⎡
⎣
v cosw u cosw −u v sinw
v sinw u sinw uv cosw
u −v 0

⎤
⎦ ,

diag(M(ξ)) = [u2 + v2, u2 + v2, u2v2] .

Example 10.33. Elliptic cylinder coordinates, a > 0 , ξ = (u, v, w) .
Transformation: x =

[
a coshu cos v , a sinhu sin v , w

]T
, 0 < u , 0 ≤ v < 2π .

gradΦ(ξ) =

⎡
⎣
a sinhu cos v −a coshu sin v 0
a coshu sin v a sinhu cos v 0

0 0 1

⎤
⎦ ,

diag(M(ξ)) = [a2(sinh2 u+ sin2 v), a2(sinh2 u+ sin2 v), 1] .

Example 10.34. Ellipsoid coordinates. a > 0 , ξ = (u, v, w) , 0 ≤ u, 0 < v ≤
π , 0 ≤ w < 2π .
Transformation: x = a

[
coshu sin v cosw, coshu sin v sinw, sinhu cos v

]T
,

gradΦ(ξ) = a

⎡
⎣

sinhu sin v cosw coshu cos v cosw − coshu sin v sinw
sinhu sin v sinw coshu cos v sinw coshu sin v cosw

coshu cos v − sinhu sin v 0

⎤
⎦ ,

diag(M(ξ)) = a2[cosh2 u cos2 v + sinh2 u sin2 v,

cosh2 u cos2 v + sinh2 u sin2 v, cosh2 u sin2 v] .
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Example 10.35. Torus coordinates, a > 0 , ξ = (u, v, w) .

x = a

[
sinhu cosw

coshu− cos v
,

sinhu sinw
coshu− cos v

,
sin v

coshu− cos v

]T

,

G(ξ) :=⎡
⎣

(1 − coshu cos v) cosw − sinhu sin v cosw − sinhu(coshu− cos v) sinw
(1 − coshu cos v) sinw − sinhu sin v sinw sinhu(coshu− cos v) cosw

− sinhu sin v coshu cos v − 1 0

⎤
⎦ ,

gradΦ(ξ) =
a

(coshu− cos v)2
G(ξ) ,

diag(M(ξ)) =
a2

(coshu− cos v)2
[1, 1, sinh2 u] .

Example 10.36. Bispherical coordinates, a > 0 , ξ = (u, v, w) .

x = a

[
sin v cosw

coshu− cos v
,

sin v sinw
coshu− cos v

,
sinhu

coshu− cos v

]T

,

G(ξ) :=⎡
⎣

− sinhu sin v cosw (coshu cos v − 1) cosw −(coshu− cos v) ∗ sin v sinw
− sinhu sin v sinw (coshu cos v − 1) sinw coshu− cos v) sin v cosw
1 − coshu cos v − sinhu sin v 0

⎤
⎦

gradΦ(ξ) =
a

(coshu− cos v)2
G(ξ) ,

diag(M(ξ)) =
a2

(coshu− cos v)2
[1, 1, sin2 v] .

(c) In the subsequent relations it is always summed up once over the index
i following Einstein’s convention, and the indices are to be computed modulo
3, e.g., i+ 3 is to be replaced by i . In this context, remember once more the
notation f̂(x) = f(ξ) , ∂i = ∂ξi , ∂̂i = ∂xi etc..

(c1) Using (10.45), we have

ĝrad f̂(x) = ∂̂if̂(x)ei = ∂if(ξ)gi(ξ) =
1

gi(ξ)
∂if(ξ)g̃i(ξ)

for a scalar function f̂ : E3 � x �→ f̂(x) ∈ R .
In the remaining examples, let v : E3 � x �→ v(x) ∈ E3 be a vector field

with representation

v̂(x) = g
i
(ξ)vi(ξ) = g̃

i
(ξ)gi(ξ)vi(ξ) ≡ g̃

i
(ξ)ṽi(ξ) , x = Φ(ξ)

in contravariant components vi(ξ) resp. in physical components ṽi(ξ) .
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(c2)

d̂iv v̂(x) =
1

g(ξ)
∂

∂ξi
[g(ξ)vi(ξ)] :=

1
g(ξ)

∂

∂ξi

[
g(ξ)
gi(ξ)

ṽ(ξ)
]
.

(c3) By formal expansion w.r.t. the first row, we have

r̂ot v̂(x) =
1

g(ξ)

∣∣∣∣∣∣∣

g1(ξ)g̃1
(ξ) g2(ξ)g̃2

(ξ) g3(ξ)g̃3
(ξ)

∂/∂ξ1 ∂/∂ξ2 ∂/∂ξ3

g1(ξ)ṽ1(ξ) g2(ξ)ṽ2(ξ) g3(ξ)ṽ3(ξ)

∣∣∣∣∣∣∣

r̂ot v̂(x) =
gi(ξ)
g(ξ)

[
∂(gi+2(ξ)ṽi+2(ξ))

∂ξi+1
− ∂(gi+1(ξ)ṽi+1(ξ))

∂ξi+2

]
g̃

i
(ξ)

with simple summation over i mod 3 .

(c4) Δ̂ f̂(x) = d̂iv ĝrad f̂(x) =
1

g(ξ)

[
∂

∂ξi

(
g(ξ)
gi(ξ)2

∂f(ξ)
∂ξi

)]
.

(c5) Δ̂ v̂(x) = ĝrad d̂iv v̂(x) − r̂ot r̂ot v̂(x)

=
(

1
gi(ξ)

∂Γ (ξ)
∂ξi

+
gi(ξ)
g(ξ)

[
∂Γi+1(ξ)
∂ξi+2

− ∂Γi+2(ξ)
∂ξi+1

])
g̃

i
(ξ) ;

where

Γi =
gi(ξ)
g(ξ)

∣∣∣∣
∂/∂ξi+1 ∂/∂ξi+2

gi+1(ξ)vi+1(ξ) gi+2(ξ)vi+2(ξ)

∣∣∣∣

Γ =
1

g(ξ)

3∑
i=1

∂

∂ξi

[
g(ξ)vi(ξ)
gi(ξ)

]

with simple summation and expansion w.r.t. the first row.

x

z

(a)

x

z

(b)

x

z

(c)

x

z

(d)

Figure 10.2. Examples of natural coordinates

for a = 1 , w = 0 ,
(a) paraboloid coordinates, (b) ellipsoid coordinates, (c) torus coordinates,
(d) bispherical coordinates.
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10.6 Transformation Groups

(a) Notations and Definitions Let X and Y be Banach spaces. A set G
with composition G × G � (a, b) �→ ab ∈ G is called group if ∀ a, b, c ∈ G :
(ab)c = a(bc) ; ∃ e ∈ G ∀ a ∈ G : ea = a ; ∀ a ∈ G ∃ a−1 ∈ G : aa−1 = e .

Notations:

(1◦) Let M be an arbitrary set and G an arbitrary group then

τ(M) := {f : M → M , f bijective, f · g := f ◦ g , 1 = identity}

is called transformation group of M and f ∈ τ(M) transformation.
(2◦) Let π : G → τ(M) be an arbitrary group homomorphism then π is called

representation of G on τ(M) . The image (subgroup) π(G) ⊂ τ(M) is
called likewise representation of G as transformation group on τ(M) ; the
representation is exact if π is an isomorphism.

(3◦) The mapping Φ : G × M � (g, x) �→ π(g)(x) ∈ M defined by π is called
action of the group G on M ; it is not determined uniquely like π .

(4◦) If G = {R , + } and M = X is a Banach space then the representation
π : R → τ(X ) is called locally exact if ∃ ε > 0 ∀ t ∈ (−ε, ε) : π(t) =
idX ⇐⇒ t = 0 .

(5◦) The mapping π : R → τ(x) (or π(R)) is called one-parametric transfor-
mation group of X if π is a locally exact representation of R .

(6◦) In analogeous way, π : R
r → τ(X ) (or π(Rr)) is called r-parametric

transformation group of X .

The representation theory has for subject the construction of representa-
tions π(G) ⊂ L(Rn,Rn) for a group G .

Addendum:

(1◦) Note that ∀ g1, g2 ∈ G : π(g1) ◦π(g2) = π(g1 · g2)
(

= π(g1 ◦ g2)
)

because
π is an homomorphism.

(2◦) π exact ⇐⇒ (π(g) = idM ⇐⇒ g = 1) .
(3◦) If π : R → M is a local exact representation of R then the actions

Φ(t, x) = π(t)(x) (10.46)

satisfy

(1◦) ∀ x ∈ X : Φ(0, x) = x
(2◦) ∀ s, t ∈ R ∀ x ∈ X : Φ(t, Φ(s, x)) = Φ(s+ t, x)
(3◦) ∃ ε > 0

(
∀ x ∈ X : t ∈ (−ε, ε) ∧ Φ(t, x) = x

)
=⇒ t = 0 .

(4◦) Conversely, every mapping (action) Φ with the properties (1◦) – (3◦) sup-
plies by (10.46) a one-parametric transformation group G(Φ) := Φ(R, ◦) ⊂
τ(X) ; one writes G(Φ) ∈ Ck , 0 ≤ k ≤ ∞ if Φ : X × R → X is k-times
continuously diffentiable; cf. Sect. 1.7.



556 10 A Survey on Tensor Calculus

(b) Examples Many groups G(Φ) carry an own name:

Example 10.37. Translation group, notation G(Φ) = Tt .

x̃ = Φ(t, x) := x+ t x0 , x ∈ X , t ∈ R 0 �= x0 ∈ X fixed.

Example 10.38. Let GL(m) = {A ∈ R
m

m , det(A) �= 0} be the group of
invertible (m,m)-matrices (general linear) and G(Φ) = GL(m) .

x̃ = Φ(A, x) := Ax , x ∈ R
m , A ∈ GL(m) .

This m2-parametric group is not connected because it contains reflections.

Example 10.39. Let O(m) = {A ∈ GL(m) , ATA = I} be the group of or-
thogonal (m,m)-matrices (rotations and reflections; dimension m(m − 1)/2)
and G(Φ) = O(m) .

x̃ = Φ(A, x) := Ax , x ∈ R
m , A ∈ O(m) .

Example 10.40. Let SO(m) = {A ∈ O(m) , det(A) = +1} (special ortho-
gonal) and G(Φ) = SO(m), x̃ = Ax . This m(m − 1)/2-parametric group is
connecting. For instance,

SO(2) =
{[

cosϕ − sinϕ
sinϕ cosϕ

]
, 0 ≤ ϕ < 2π

}
.

The action is a linear mapping in the groups of Examples 10.37 – 10.40 hence
these groups are called also linear groups.

Example 10.41. The Euclidian group in R
3 of dimension 3 + 3 consists of

arbitrary translations and arbitrary rotations without reflections:

x̃ = Φ(P, a, x) := Px+ a , x ∈ R
3 , P ∈ SO(3) , a ∈ R

3 .

Example 10.42. The Galileian group of dimension 3 + 4 + 3 = 10 in space
R

4 = {(t, x) , x ∈ R
3} of “world points” consist of the following individual

actions:
(1◦) Uniform motion with velocity v :

(t̃, x̃) = Φ1(t, x) := (t, x+ v t) (3 free parameter)

(2◦) Separated translation in time and space:

(t̃, x̃) = Φ2(t, x) := (t+ s, x+ s) (4 free parameter)

(3◦) Rotation in R
3 :

(t̃, x̃) = Φ3(t, x) := Ax , A ∈ SO(3) (3 free parameter) .
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Example 10.43. Scaling in R
2. There are several possibilites here, e.g.,

(x̃1, x̃2) = Φ(x1, x1, a) = (�ax1, σ
ax2) , �, σ fixed.

Example 10.44. G(Φ) := {A : R � a �→ A(a) ∈ SO(m)} , x ∈ R
m .

x̃ = Φ(x,A(a)) := A(a)x , x ∈ X , a ∈ R .

We have A(0) = idX and A(a) ◦A(b) = A(a+ b) by the group properties.
If now A is differentiable and B = A′(0) then

∂

∂b

∣∣∣
b=0

A(a+ b) =
∂

∂b
A(b) ◦A(a)

∣∣∣
b=0

=⇒ ∂A(a) = BA(a) =⇒ A(a) = exp(aB) .

Therefore B is called generator of A : a �→ A(a) . If B = −BT is skew-
symmetric then

A(a)T = [exp(aB)]T = exp(−aB)

=⇒ A(a)A(a)T = I =⇒ (A(a) orthogonal) .

If in particular A(ϕ) ∈ SO(2) then

d

dϕ

∣∣∣
ϕ=0

[
cosϕ − sinϕ
sinϕ cosϕ

]
=
[

0 −1
1 0

]
= B ,

hence A(ϕ) = exp(Bϕ) .
(c) In the remaining part we confine ourselves to One-Parametric

Transformation Groups and remember

Definition 10.5. Let ∅ �= U ⊂ X open, ε > 0 , Δ := (−ε, ε) , Φ : Δ×U → X
and Φ(t, ◦) : U → Φ(t,U) bijective for all t ∈ Δ . Then G(Φ) is called local
one-parametric transformation group (of local transformations of the space
X ) (Lie group, briefly LTG) if (1◦) ∀ x ∈ X : Φ(0, x) = x ,
(2◦) ∀ s, t ∈ Δ ∀ x ∈ X : Φ(t, Φ(s, x)) = Φ(s+ t, x) ,
(3◦) ∀ x ∈ X ∀ t ∈ Δ : Φ(t, x) = x =⇒ t = 0 ,
(4◦) Φ ∈ C∞(Δ× U ;X ) .

Example 10.45. Projective transformation group: Δ = (−1, 1) , U = {(x, y) ∈
R

2 , |x| < 1 , y ∈ R}, x̃ = x/(1 − ax) , ỹ = y/(1 − ay) , a ∈ Δ ; the properties
of Definition 10.5 are violated for larger Δ, U .

Definition 10.6. Let Φ1 : Δ1 × U1 → X action of a LTG G(Φ1),
Φ2 : Δ2 × U2 → X action of a LTG G(Φ2) and
P = {p : U1 → U2 , p diffeomorphism} . Then Φ1 and Φ2 are similar, Φ1 ∼ Φ2 ,
if

∃ p ∈ P ∃ Δ ⊂ Δ1 ∩Δ2 ∀ t ∈ Δ : Φ2(t, ◦) = p ◦ Φ1(t, ◦) ◦ p−1 .

The groups G(Φ1) and G(Φ2) are similar, if Φ1 and Φ2 are similar.
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Example 10.46. Dilatation in R
n , U = {x ∈ R

n, xi > 0} , x̃i = Φi
1(t, x) =

xi exp(tλi) , i = 1 : m , λ ∈ R
n fixed. For the diffeomorphism p : U → X :

pi(x) = lnxi , p−1
i(x) = exp(xi) one computes

x̃ = Φ2(t, x) = p ◦ Φ1(t, ·) ◦ p−1(x) = p(Φ1(t, p−1(x)))
x̃i = ln(Φ1(t, p−1

i(x))) = ln(Φi
1(p

−1(x)))
= ln(p−1

i(x) exp(tλi)) = ln(exp(xi) exp(tλi)) = xi + tλi .

(10.47)

Therefore the dilatation group (in above notation) and the translation group
in X are similar!

(d) Generator of a Group

Definition 10.7. Let Φ : Δ× U → X be the action of a LTG G .
(1◦) For fixed x ∈ U , Φ(Δ,x) = {Φ(t, x) , t ∈ Δ} is the orbit of x ∈ X .
(2◦) The mapping

v : U � x �→ d

dt
Φ(0, x) =: v(x) ∈ X

is called tangential vector of Φ in x ∈ X ; then v(x) is tangent of the orbit of
x in t = 0 .

If we differentiate Φ(t, Φ(s, x)) = Φ(s + t, x) w.r.t. t then, with Φ(0, x) = x ,
we obtain directly the initial value problem for Φ

d

dt
Φ(t, x) = v(Φ(t, x)) , Φ(0, x) = x , (10.48)

which is called Lie equation in this context.

Theorem 10.9. (Lie) Let v : U → X be a vector field with v ∈ C∞(U ;X ) ,
U open and v(x) �= 0 for x ∈ U . Then the solution Φ of (10.47) is action of
a LTG G(Φ) with tangential vector v ; notation G(Φ) = G(v) .

Of course, the relation between G(Φ) and v is unique up to a multiplicative
factor only, the groups G(v) and G(λv) , 0 �= λ ∈ R are not discernible.

One computes v(x) = x0 in Ex. 10.37, v(x) = Bx in Example 10.44,
v(x) = (x2, xy) in Example 10.45, v(x) = (λ1x

1, . . . , λmx
m) in Example 10.46.

If Φ1 and Φ2 are similar — cf. (10.47) — and y = p(x) then

v2(y)
∂

∂t

∣∣∣
t=0

Φ2(t, y)

= ∇p(Φ1(t, p−1(y)DtΦ1(t, p−1(y))
∣∣∣
t=0

= ∇p(p−1(y))v1(p−1(y))

hence, using x = p−1(y) , we obtain

v2(y) = ∇p(x)v1(x) , y = p(x) . (10.49)
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Example 10.47. In Example 10.46, it follows by using pi(x) = lnxi that

∇p(x) = diag
(

1
x1
, . . . ,

1
xm

)
and (10.49) yields

v2(x) = ∇p(x)v1(x) = ∇p(x)(λ1x
1, . . . , λmx

m)T = (λ1, . . . , λm)T = λ .

Let now Φ : Δ × U → X be action of a LTG, Y a Banach space, F ∈
C1(X ;Y) and x ∈ X fixed, then v(x) is tangent of the orbit of Φ in x and
t = 0 . How does the image of this tangent look like in Y under the mapping
F ? One computes directly with Φ(0, x) = x

Dt(F ◦ Φ(t, x))
∣∣∣
t=0

= ∇F (Φ(t, x))DtΦ(t, x)
∣∣∣
t=0

= ∇F (x)v(x) =: (v · ∂F )(x) ;

(10.50)
the last notation has historical reasons.

Example 10.48. If X = R
m and Y = R then

(v · ∂)F = ∇Fv =
m∑

i=1

vi(◦) ∂F
∂xi

(◦)

therefore ∂ = (∂1, . . . , ∂m) =
(

∂

∂x1
, . . . ,

∂

∂xm

)
.

Definition 10.8. The operator v·∂ : F �→ ∇Fv is the (infinitisimal) generator
of the group G(v) .

We obtain v · ∂ = x0 · ∂ for the translation x̃ = x + ax0 ∈ R
n; further

(v · ∂)F (x) = ∇F (x)Bx for Example 10.44, and for Example 10.46

(v · ∂)F (x) = ∇F (x) diag(λ)x =
m∑

i=1

λixi ∂F

∂xi
(x) .

For pure rotations in R
2 — cf. Ex. 10.40 — we have

(v · ∂)F (x) = −y ∂F
∂x

(x) + x
∂F

∂y
(x) =⇒ v · ∂ = −y∂x + x∂y .

In the Galileian group we obtain three generators t∂x , t∂y , t∂z for Φ1 , four
generators ∂t , ∂x , ∂y , ∂z for Φ2 , and three generators z∂y −y∂z , −z∂x +x∂z ,
y∂x − x∂y for Φ3 . In general, a r-parametric group has r generators.

If G(v) and G(w) are similar, i.e., w(y) = ∇F (x)v(x) , y = F (x) , then the
generators remain invariant: v ·∂x = w ·∂y . Of course, v ·∂ is nothing else than
the abstract tangential vector introduced in Sect. 10.4 with the properties

(1◦) v · ∂(αf + βg) = αv · ∂f + βv · ∂g linearity
(2◦) v · ∂(f · g) = g · (v · ∂f) + f · (v · ∂g) Leibniz rule .

(10.51)

Here, α , β ∈ R and f , g are scalar functions with the composition (f ·g)(x) =
f(x)g(x) .

Further references to chapter 10: (Abraham), (Berger), (Bishop), (Lippmann),
(Ovsiannikov) and many others.
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Case Studies

11.1 An Example of Gas Dynamics

Consider an infinitely long tube with cross-section 1 [L2] being filled with
an ideal gas (where p V = const following Boyle-Mariotte). The change
of temperature is neglected. Let � be the density, T the temperature, c the
specific heat capacity, ε = c T the specific interior energy, and v the scalar
velocity. Moreover, let

p(t, x) pressure, m(t, x) = �(t, x)v(t, x) momentum

e(t, x) = ε(t, x) +
v(t, x)2

2
specific interior plus kinetic energy .

Then, writing a = Φ(A, t) and b = Φ(B, t) ,

M(t) =
∫ b

a

�(t, x)dx total mass, I(t) =
∫ b

a

m(t, x)dx total momentum

E(t) =
∫ b

a

�(t, x)e(t, x)dx total energy

in the section (Φ(A, t), Φ(B, t)) of the tube at time t . At time t = 0 let
Ω = (A,B) be the reference section. The laws of physics yield directly the
local balance theorems:

İ(t) =
D

Dt
I(t) = −p(Φ(B, t), t) + p(Φ(A, t), t)

Ė(t) =
D

Dt
E(t) = −p(Φ(B, t), t)v(Φ(B, t), t) + p(Φ(A, t), t)v(Φ(A, t), t) .

For instance, in the notation of Axiom 8.2 in Chap. 8, t = −pδ = −p ,
U = [A,B] and ∫

∂Φ(t,U)

tndo = −p
∣∣∣
b

a
.
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The integral form of the balance theorems has here the general form

D

Dt

∫ b

a

f(x, t)dx+ g(x, t)
∣∣∣
b

a
= 0 .

Applying Reynolds’ transport theorem and divx f = fx, we obtain the inte-
gral form ∫ b

a

[
∂

∂t
f(x, t) + (vf + g)x(x, t)

]
dx = 0

and the local form
ft + (vf + g)x = 0 . (11.1)

The integral form follows here also directly from Leibniz’ rule for parameter-
dependent integrals. The balance theorem of mass supplies

∂�

∂t
+ div(� v) = �t + (� v)x = 0 , (11.2)

which corresponds to the choice of f = � and g = 0 in (11.1). Because m = � v ,
(11.2) is equivalent to

�t +mx = 0 . (11.3)

The choice f = m and g = p leads to vf + g = vm + p . Because � v = m
hence v = m/� , the local balance theorem of moments follows by (11.1),

mt + (vm+ p)x = mt +
[
m2

�
+ p

]

x

= 0 . (11.4)

The choice f = � e , g = p v and v = m/� yields

vf + g = v� e+ p v =
m

�
(� e+ p)

and thus, by (11.1),

(� e)t +
[
(� e+ p)

m

�

]

x

= 0 . (11.5)

Altogether, (11.3), (11.4) and (11.5) yields the system

Ut + F (U)x = 0 (11.6)

where

U =

⎡
⎣
�
m
� e

⎤
⎦ , F (U) =

1
�

⎡
⎣

�m
m2 + � p

(� e+ p)m

⎤
⎦ .

The Jacobi matrix of F has real eigenvalues hence (11.6) is a nonlinear
hyperbolic system of first order. It consists of three equations for four unknowns
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� , m , e , and p . The laws of thermodynamics supply the state equation p =
ψ(ε, �) . If, e.g., p = (γ − 1) � ε then, writing v = m/� ,

� e = � ε+m2/2� , ε = (� e−m2/2�)/� , p = (γ − 1)(� e−m2/2�) . (11.7)

Accordingly, (11.6) reads now

�t + mx = 0

mt + [m2/�+ (γ − 1)(� e−m2/2�)]x = 0

(� e)t + [m{� e+ (γ − 1)(� e−m2/2�)}/�]x = 0 .

If ε is constant then the last equation may be replaced directly by � e =
� ε+m2/2� following (11.7). Cf. (Richtmyer).

In problems of this form, frequently compression shocks appear, then the
system is now longer simple (i.e. smooth) and the balance theorems must be
modified.

11.2 The Reissner-Mindlin Plate

The conditions (8.55) and (8.56) imposed on the shear-rigid Kirchhoff plate
are dropped in the Reissner-Mindlin plate or shear-soft plate. But σ33 = 0 is
still maintained because a plate of moderate thickness is supposed; moreover,
some components of the stress tensor are equipped with a shear-correction
factor k. We begin again with (8.54) and the first assumption of (8.55), i.e.,
we suppose that

u1 = −z ϕ1(x, y) , u2 = −z ϕ2(x, y) , u3 = w(x, y)
σz := σ33 = 0

(11.8)

and obtain then with angles ϕ1 and ϕ2 as independent variables

εx = u1,x = −z ϕ1,x(x, y) , εy = u2,y = −z ϕ2,y(x, y) ,
γxy = u1,y + u2,x = −zϕ1,y − zϕ2,x , γyz = u2,z + u3,y = −ϕ2 + wy ,

γzx = u3,x + u1,z = wx − ϕ1 .

For simplicity, we define in formal the same way as in plane stress of discs

ε(ϕ) =
[

ϕ1,x (ϕ1,y + ϕ2,x)/2
(ϕ1,y + ϕ2,x)/2 ϕ2,y

]
,

σ(ϕ) = 2με(ϕ) + 2λ̃ trace(ε(ϕ))δ

where ϕ = (ϕ1 , ϕ2) .

The Reissner-Mindlin Plate



564 11 Case Studies

After having integrated over the z-variable , the extremal problem of the
Reissner-Mindlin plate reads:

h3

12

∫

Ω

1
2
ε(ϕ) : σ(ϕ) dF + hμk

∫

Ω

(gradw − ϕ) · (gradw − ϕ) dF

−h
∫

Ω

ϕ · k dF − h

∮

ΓC

ϕ · g ds = min ! .
(11.9)

The corresponding Euler equation, being derived in the usual way, reads:

h3

12

∫

Ω

ε(ψ) : σ(ϕ) dF + 2hμk
∫

Ω

(gradw − ψ) · (grad v − ϕ) dF

= h

∫

Ω

ψ · k dF − h

∮

ΓC

g · ψ ds
(11.10)

and has to be transformed again by means of Green’s formula for a formu-
lation of the problem as boundary value problem. We obtain

∫

Ω

(gradw − ψ)(grad v − ϕ) dF = −
∫

Ω

ψ · (gradw − ϕ) dF

−
∫

Ω

v (Δw − divϕ) dF +
∮

Γ

v (gradw − ϕ) · nds .

Applying (11.9) it then follows that

−h3

12

∫

Ω

ψ ·
(
μΔϕ+ (2λ̃+ μ) grad divϕ

)
dF +

h3

12

∮

Γ

ψ · σ(ϕ)nds

−2hμk
∫

Ω

v
[
(gradw − ϕ) + (Δw − divϕ)

]
dF

+2hμk
∮

Γ

v
(
gradw − ϕ

)
· nds = h

∫

Ω

ψ · k dF − h

∮

ΓC

ψ · g ds

(11.11)

where v is a test function relative to u and ψ is a test function relative to
the vector field ϕ . Now, an application of the fundamentallemma of varia-
tional calculus yields the desired system of elliptic equations for the Reissner-

Mindlin plate

−h3

12

(
μΔϕ+ (2λ̃+ μ) grad divϕ

)
− 2hμk gradw + 2hμkϕ = hk in Ω

divϕ − Δw = 0 in Ω

(11.12)
with (weak) boundary conditions

ψ ·
[
h3

12
σ(ϕ)n− hg

]
= 0 and v(gradw − ϕ) · n = 0 on Γ . (11.13)

These boundary conditions allow again four different combinations in the same
way as in Kirchhhoff’s plate; cf. § 8.7 (c).
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11.3 Examples of Multibody Problems

Every moving vehicle and, cum grano salis also human beings with its ex-
tremities, constitute a multibody problem. The overwhelming abundance of
possibilities hardly allows a classification, cf., e.g., (Schiehlen90), and would
be far beyound the scope of this volume. In this section, we consider three
classical examples in the plane where each body Ki is a rigid disc Ωi ⊂ R

2.
Every disc is equipped with a local coordinate system (COS) (ξi, ηi) with
gravity center Si in origin and rotational angle ϕi(t) relative to the global
coordinate system. Moreover, the i-th disc has mass Mi and polar moment
of inertia Ti relative to the origin of the local COS. In spatial systems the
tensor of inertia takes the place of the scalar moment of inertia and three
angles describe the position. The gravity center (origin) is given by the point
vector (xi(t), yi(t)) ∈ R

2 in global coordinates. Thus, altogether, the i-th disc
is described by

Ki $ {xi(t), yi(t), ϕi(t);Ωi, Mi, Ti} , i = 1 : I ,

and the generalized state vector q(t) is a 3I-dimensional vector

q(t) = [x1(t), . . . , xI(t), y1(t), . . . , yI(t), ϕ1(t), . . . , ϕI(t)]T

im “configuration space”. At least the kinetic energy of a multibody system
in plane may now be displayed more precisely as

Ekin(q̇(t)) =
1
2

[
I∑

i=1

Mi

(
ẋi(t)2 + ẏi(t)2

)
+

I∑
i=1

Ti ϕ̇i(t)2
]

(11.14)

whereas potential energy and possible friction or other damping depend
strongly on the individual problem.

Example 11.1. Double pendulum without moments of inertia as mechanical
system; cf. (Hairer), II, p. 484. Let O be the origin of the COS, let P1(x1, x2)

und P2(x3, x4) be points with masses m1 , m2 , and let l1 = |
−→

O P1| and

l2 = |
−→
P1 P2 | . In this example, the Lagrange multipliers zi constitute

stresses in rod i of length li which keep the mass points on their path.
Energy, constraints, and Lagrange function:

E =
m

2
(
ẋ2

1 + ẋ2
2

)
+
m

2
(
ẋ2

3 + ẋ2
4

)
+mg x2 +mg x4 ,

0 = x2
1 + x2

2 − l21 , 0 = (x3 − x1)2 + (x4 − x2)2 − l22 ,

L =
m

2
(
ẋ2

1 + ẋ2
2

)
+
m

2
(
ẋ2

3 + ẋ2
4

)
−mg x2 −mg x4

−z1
(
x2

1 + x2
2 − l21

)
− z1

(
(x3 − x1)2 + (x4 − x2)2 − l22

)
.
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Euler equations:

m1ẍ1 = −2x1z1
m1ẍ2 = −2x2z1 −m1 g
0 = x2

1 + x2
2 − l21 ,

m2ẍ3 = −2x3z2
m2ẍ4 = −2x4z2 −m2 g
0 = (x3 − x1)2 + (x4 − x2)2 − l22 .

Example 11.2. Andrew’s Squeezer (seven-body problem) is a well-known test
problem. The complete numerical data of (Schiehlen90) are found also in
(Hairer) II somewhat more easily attainable.
Data, computation and image sequence in KAPITEL11\SECTION_3.

Example 11.3. Roboter following (Schiehlen89); for the notations see Figure
11.4. Geometrical parameter:

C = 0.05 [m] , L = 0.50 [m] , T = 2 [s] runtime .

The gravity center Si of each body Ki , i = 1 : 3 , lies in the origin of the
body-fixed coordinate system. Force and turning moment have to be defined
for every connection between two bodies. Generalized coordinates:

q = [Z1 , GA1 , Y 2 , BE2 , AL3]T .

Equations of motion:

M(q)q̈ +K(t, q, q̇) = Q(t, q, q̇) .

Masses and moments of inertia:

Body

1 2 3

Mass [kg] 250 150 100

Moment of inertia [kg ·m2]

Tx (90) 13 4

Ty (10) 0.75 1

Tz 90 13 4.3

Initial conditions:

Z1 = 2.25 [m] , GA1 = −0.5236 [rad] , Y 2 = 0.75 [m] , BE2 = 0 , AL3 = 0 .

F1Z Force in direction Z1 F2Y Force in direction Y2

L1Z Torque in direction Z1 L3X Torque in direction X3

The turning moment in direction Y2 disappears.
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Time t Data

[s] [N ], [Nm]

0 to 0.5 F1Z = 6348 , F2Y = 36 · t+ 986

L1Z = 673 · t− 508 , L3X = 64.5

0.5 to 1.5 F1Z = 4905 , F2Y = - 2

L1Z 148 exp(−5.5 · (t− 0.5)) + 8 , L3X = 49,05

1.5 to 2 F1Z = 3462 , F2Y = - 1019

L1T = 240 , L3X = 34.6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−3.5

−3

−2.5

−2

−1.5

−1

t = 0

t = T/4

t = T/2

t = 3T/4

t = T

Figure 11.1. Double pendulum

KAPITEL11/SECTION_3, Multibody Problems
demo1.m Masterfile for the multibody problems
demo2.m Movie for Andrew’s Squeezer
demo3.m Andrew’s Squeezer, fixed angle beta
demo4.m Roboter following Schiehlen, with ode23t.m
hem4.m Masterfile for semi-implicit Runge-Kutta methods
hem3_kern.m Semi-implicit RKV of order 3 by Brasey
hem4_kern.m Semi-implicit RKV of order 4 by Brasey
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Figure 11.2. Seven-body problem

0 0.005 0.01 0.015 0.02 0.025 0.03
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

β β β

Θ Θ Θ

γΦ

δ

Ω

ε

Figure 11.3. Angles mod 2π

Figure 11.4. Roboter (Schiehlen89)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2.5

3

3.5

4 Z1 [m]

t [s]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.7

−0.65

−0.6

−0.55
GA1 [rad]

t [s]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

1

2

3 Y2 [m]

t [s]

Figure 11.5. Curves of motion

11.4 Dancing Discs

Besides top and multibody systems, rotating cogwheels are a rather simple
but not less striking example for working with different coordinate systems.

(a) General Discs as, e.g., cogwheels are designed as closed polygons for
illustration. Four different cases are implemented in directory
KAPITEL11\SECTION_4:

(1◦) Disc A rolls on (or in) a fixed disc B ; cf. Figure 11.10, 1–4 .
(2◦) Disc B rolls backward with properly chosen velocity such that disc A

moves only back and forth (optional).
(3◦) The centers of both discs are fixed; cf. Figure 11.10 , 5–7 .
(4◦) Centers and rotational velocity of both discs are fixed; cf. Figure 11.10 ,

8.
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In the first two cases, the instantaneous center of rotation on the boundary of
the fixed disc and the corresponding local rotation angle have to be calculated
in each step of rotation. Both discs are not necessarily convex. Therefore “the
range of sight” of the moving disc has to be fixed in advance. In other words,
the number of polygonal points involved in the computation of a single step
of rotation has to be adapted to the individual problem and must be given by
the user perhaps after some preliminary trials. In the third case, disc A drives
disc B whose unknown rotation angle is calculated in each step of motion by
the method of bisection and applying the Matlab command inpolygon.m. In
every case the instantaneous point of rotation P must lie on both discs because
they shall touch each other at that point. Thus P is either a polygonal point
on both discs or it is a polygonal point of one disc (which?) and lies between
two polygonal points of the other disc. Besides, the local process of rolling,
e.g., on a single tooth flank may be visualized easily by the zoom function
offered in the Matlab suite.

(b) Cogwheels Cf., e.g., (Decker), (Wentzell). Let a large gear A and a
smaller gear B be given in a global COS with centers M and m and the pitch
circles W and w . Both pitch circles shall touch each other permanently at
the pitch point C .

All data of the large gear are written as capitals and all data of the
smaller gear (or pinion) as small letters.

Notations:

RW , rw radii of pitch circles
M = (−RW , 0) center of gear A in global COS
m = (rw, 0) center of gear B in global COS
N, n number of revolutions
Z, z number of thooths
Ω, ω angular velocities
B(t), b(t) points of contact of tooth flanks in global COS
T (t), t(t) tangents of tooth flanks in B, b
N(t), n(t) normals of tooth flanks in B, b
RB(t), rb(t) radii of points of contact B, b
V (t), v(t) absolute velocity of B, b , Ḃ(t) = V (t)

(perpendicular to radius vectors R(t), r(t))
V T (t), vt(t) projection of V , v onto T , t
V N (t), vn(t) projection of V , v onto N, n
|VW | = |vw| = 2π RW N = 2π rw n circumferential velocity

of pitch circles

Translation:
1 ≤ u =

n

N
=

RW

rw
=

ω

Ω
=

Z

z
. (11.15)
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Remark on Geometry: Without loss of generality, let the pitch point C be the
origin of the global COS and let both centers of the gears lie on the x-axis,
M = (−M, 0) , M > 0 , m = (m, 0) , m > 0 . The larger gear A rotates
counterclockwise.

Requirement 1: Both angular velocities Ω and ω are constant.
Then, for boundary curves of both gears,

X(ϕ) = [X(ϕ), Y (ϕ)]T , x(ϕ) = [x(ϕ), y(ϕ)]T , 0 ≤ ϕ ≤ 2π ,

it follows that

absolute motion of point X(ϕ) : Y (t, ϕ) = M +D(Ω t)X(ϕ)
absolute motion of point x(ϕ) : y(t, ϕ) = m+D(π − ω t)x(ϕ)

with rotation matrix

D(α) =
[

cos(α) − sin(α)
sin(α) cos(α)

]
, C =

[
0 −1
1 0

]
.

Requirement 2: Both gears touch each other permanently:

B(t) = Y (t, Ωt) = M +D(Ω t)X(Ωt)
= b(t) = y(t, π − ωt) = m+D(π − ω t)x(π − ωt) ,

Ḃ(t) = Ω
[
CD(Ωt)X(Ωt) + D(Ωt)X ′(Ωt)

]

= ḃ(t) = −ω
[
CD(π − ωt)x(π − ωt) + D(π − ωt)x′(π − ωt)

]
.

Of course, the requirement B(t) = b(t) implies that N(t) = αn(t) und T (t) =
β t(t) and the law of touching

V N (t) = vn(t) , (11.16)

for both velocity vectors, but not V T (t) = vt(t) .
Both velocity vectors in (11.16) may be considered as tangential vectors of

some circles, namely in point PA of the base circle AG about M with radius
RG and in point PB of the base circle BG about m with radius rG. The straight
line connecting Pa and Pb intersects the straight line connecting M and m at
a point C ′ with distance R′ of M and r′ of m. Because

|V N (t)| = RG(t)Ω , |vn(t)| = rG(t)ω ,

(11.15) and ω/Ω = u = constant , also RG/rG = u must be constant. It then
follows that R′/r′ = u hence C ′ = C and thus the law of gearing, namely that
the individual normals in a touching point pass through the (constant) pitch
point C :

[B(t), C] ≡ [b(t), C] = γ N(t) = δ n(t)

([B, C] straight line for B �= C) .



11.4 Dancing Discs 571

Example 11.4. If both “gears” are pure circle discs then
B(t) = C and in present COS T (t) = [0, Ω]T , N(t) = [1, 0]T ,
t(t) = [0, −ω]T , n(t) = [−1, 0]T .

In general, the touching point B(t) = b(t) (action point) describes locally

a curve in global COS (action line)
a relative curve on moving gear A (tooth flank A)
a relative curve on gear B (tooth flank B) .

All three curves have to pass through the pitch point, and the different types
of gears are classified by their action line in global COS.

Requirement 3: Let the action line be (locally) a straight line. Then this
line has an angle α to the tangent of the pitch circles in pitch point which is
prescribed by DIN to α = π/9 .

This condition leads to an involute gear. In an alternative case, the action
line consists of two circle segments with equal radii but opposite curvature on
both sides of the pitch point. This case, being not further prosecuted here,
leads to a cycloid gear .

The angle α of the action line fixes base circle and outside circle on both
gears.

Gear A base circle AB with radius RB ,
outside circle AO with radius R0 > RB

Gear B base circle Bb with radius rb ,
outside circle BO with radius rO > rb .

External circle AO intersects base circle Bb in initial point PB

of the action line ,
External circle BO intersects base circle AB in terminal point PA

of the action line .

Then, by Requirement 3, α is the angle between
−→
M C and

−→
M PA and likewise

between
−→
mC and

−→
mPB and moreover

radius of AG : RG = RW cosα , radius of BG : rg = rw cosα

radius of AO : RO =
(
(RW + rw)2 −RW (RW + 2rW ) cos2 α

)1/2

radius of BO : rO =
(
(RW + rw)2 − rw(rw + 2RW ) cos2 α

)1/2

.

The outside circles do not play a role in the sequel, and the above defined
action lines contains segments being not involved. The modul m is a reference
measure to which the other data refer. Modul values in mm by DIN 780:

0.05 0.80 0.10 0.12 0.16 0.20 0.25 0.3 0.4 0.6 0.8 1 1.25
1.5 2 2.5 3 4 5 6 8 10 12 16 20 60
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(c) In a gear with Zero-Gearing the pitch circle is circle of partition to
which the uniform circle partition refers. Aside from the clearance c, the pitch
circle intersects the tooth flank in the mid-point.

Further data for gear A (likewise for gear B with same modul):

reference circle diameter radius RW = Z ·m/2
(pitch circle radius)
Head circle radius RK = RW + hK , (z.B. hK = m)
≤ (outside circle radius)
root circle radius RF = RW − hF (hF = hK + c > 0)
partition p = m · π
Circular pitch pe = p · cosα = m · π · cosα
Zero-axes distance ad = RW + rw =

m

2
(Z + z) .

The modul m resp. the radius of the pitch circle is specified by the relation
RW = Z ·m/2 ; the data of wheel B then follow by the gear transmission ratio.
The radius of the base circle RG is larger than the radius of the foot circle
RF in normal case. Theoretically, the tooth flanks may be shaped arbitrarily
out of base circle and head circle as far as they keep out of their way.

Example 11.5. (Decker) Z = 81 , z = 17 , m = 4 , RW = 162 [mm] ,
rw = 34 [mm] .

By the law of gearing, the normals of the curves in instantaneous touching
point as well as the action line pass through the pitch point. Thus, for straight
action line, the current normals are parallel and the tangents perpendicular to
the action line. Then we obtain for both gear boundaries (discs) in touching
point

0 = (B(t) − C)T Ḃ(t) = B(t)T Ḃ(t) =[
M +D(Ω t)X(π +Ωt)

]T [
ΩCD(Ωt)X(π −Ωt) +D(Ωt)X ′(π −Ωt)(−Ω)

]

0 = (b(t) − C)T ḃ(t) = b(t)T ḃ(t)

=
[
m+D(ω t)Tx(ωt)

]T [
ωCTD(ωt)Tx(ωt) +D(ωt)Tx′(ωt)ω

]
.

Evolvent for gear A , invϕ := tan(ϕ) − ϕ :

Z(ξ) = M +RG

[
cos ξ
sin ξ

]
+RG ξ

[
sin ξ

− cos ξ

]
, 0 ≤ ξ ≤ ξ1 ,

Z ′(ξ) = RG

[
− sin ξ

cos ξ

]
+RG

[
sin ξ

− cos ξ

]
+RG ξ

[
cos ξ
sin ξ

]
= RG ξ

[
cos ξ
sin ξ

]
.

By this result, n = [sin ξ , − cos ξ]T is the normal vector at curve point Z(ξ) .
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r

rξ

inv φ

ξ
φ

Figure 11.6. Evolvent

α = π/4

Figure 11.7. Rotated evolvents

In the following figure, α = π/4 is chosen for more suitable visualizing.

pitch circles
base circle A

Figure 11.8. Pitch circles

Figure 11.9. Lake Constance

Figure 11.10. Examples 1–4 of discs (image sequences)
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Figure 11.11. Examples 5–8 of discs (image sequences)

KAPITEL11/SECTION_4, Dancing Discs
At first both discs are to be constructed by
SCHEIBE01.M -- SCHEIBE24.M.
Both discs must touch each other at beginning.
demo1.m Draws disc by manual input
demo2.m Rolling of disc A onto or in disc B

with DISC_ROTATE.M
demo3.m Rolling of disc A onto or in disc B

with BISECTION.M
demo4.m Movie for discs
bisection.m Method of bisection for computation

of rotational angle
disc_aendern.m Geometry for DEMO1.M
disc-rotate.m Geometry for DEMO2.M

11.5 Buckling of a Circular Plate

Consider a thin, circular, elastic plate of thickness h and radius R , subjected
to a uniform lateral pressure p . Let w(r) be the deflection of the plate normal
to the unconstrained middle surface and q(r) be the Airy stress function with
dimension of a force. Then Von Karman’s equations (8.67) for rotationally
symmetric deformation in polar coordinates are

κΔ2w(r) = p+
h

r

d

dr

(
dq(r)
dr

dw(r)
dr

)

Δ2q(r) = −E

2r
d

dr

(
dw(r)
dr

)2

.

(11.17)

Here E is Young’s modulus, ν is Poisson’s ratio and

κ =
Eh3

12(1 − ν2)
, Δw =

1
r

d

dr
[rwr]r .

The problem (11.17) is a nonlinear bending problem but spontane plate buck-
ling is modelled by an eigenvalue problem as buckling of a beam in Sect. 7.2,



11.5 Buckling of a Circular Plate 575

where deflection jumps from zero in the new state and zero equilibrium ex-
ists further on but becomes unstable. Approximatively, we use the membrane
equation (8.69), −μΔw = p , to replace the pressure p , and the bifurcation
parameter μ becomes a boundary-force density [N/L] ; see, e.g., (Machinek).

Then each of the equations (11.17) can be integrated once and the con-
stants of integration can be evaluated by the condition of symmetry at the
center, r = 0 :

κ r

[
1
r
[rwr]r

]

r

= −μrwr + wrqr , r

[
1
r
[rqr]r

]

r

= −E

2
(wr)2 .

These equations can be transformed into dimensionless form

Lu(x) = −u(x)v(x) − λxu(x) , Lv(x) =
1
2
u2(x) (11.18)

where we have introduced the dimensionless quantities

x =
r

R
, v(x) =

−(12(1 − ν2))
ER

(
R

h

)2
dq(r)
dr

u(x) = −(12(1 − ν2))1/2R

h

dw(r)
dr

, λ =
(12(1 − ν2))

ER2

(
R

h

)2

μ

(11.19)

and the linear differential operator

L(x) : ϕ �→ L(x)ϕ = x
[
x−1(xϕ)x

]
x

= xϕxx + ϕx − x−1ϕ

with fundamental system ϕ1(x) = x and ϕ2(x) = x−1 . Boundary conditions
at the center, x = 0 , and edge of the plate, x = 1 , must be specified to
complete the formulation. From the assumed symmetry and regularity at the
center we have u(0) = v(0) = 0 . At the edge a variety of conditions may be
imposed. Mainly, there are three conditions:
Case 1: Clamped with zero radial displacement, u(1) = 0 , vx(1) = νv(1) .
Case 2: Simply supported with zero radial displacement, ux(1) = −νu(1) ,
vx(1) = νv(1) .
Case 3: Simply supported with zero radial membrane stress, ux(1) = −νu(1) ,
v(1) = 0 .

A direct computation shows that

(L(x)ϕ,ψ) − (ϕ,L(x)ψ) = ϕ′(1)ψ(1) −ϕ(1)ψ′(1) , 〈ϕ,ψ〉 =
∫ 1

0

ϕ(x)ψ(x) dx ;

cf. (5.60). Therefore L is selfadjoint with the same adjoint boundary conditions
for u and likewise for v as above. Now

F (u, v, λ) =
[
L(x)u+ λxu+ uv

L(x)v − u2

]
= 0

F(u,v)(0, 0, λ)
[
ϕ
ψ

]
=
[
L(x) + λx 0

0 L(x)

][
ϕ
ψ

]
= 0 .

(11.20)
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Let u1(x) := J1(x) be the Bessel function of order 1 and degree 1, i.e., a
solution of x2y′′ + xy′ + (x2 −m)y = 0 for m = 1 then J1(

√
λx) is a solution

of x2y′′ +xy′ +(λx2 −1)y = 0 . Therefore (λ0, ϕ0, ψ0) = (λ0, J1(
√
λ0x), 0) is a

solution of the eigenvalue problem (11.20) where λ0 follows from the boundary
condition for u(1) , e.g.,

u(1) = 0 =⇒ J1(
√
λ0 · 1) = 0 , λ0 = 14.682 . . .

u′(1) = −νu(1) =⇒ J ′
1(

√
λ0x)

∣∣
x=1

= −νJ1(
√
λ0 · 1) , λ0 = 4.198 . . . .

To find the bifurcating solution let

u(ε, x) = εu1(x) + ε2U(ε, x) , v(ε, x) = εV (ε, x) , λ(ε) = λ0 + εξ(ε) .

Both differential equations in (11.20) are divided by x for adaption to the
box scheme. Let L̃(x) = x−1L(x) then solve iteratively the following system
for fixed ε > 0 as large as possible that the iteration still converges (BC =
boundary conditions):

[L̃(x) + λ0]U = −ξ(u1 + εU) − x−1(u1 + εU)V , 〈u1, U〉 = 0 with BC for u
L̃(x)V = 0.5ε x−1(u1 + εU)2 with BC for v

0 = 〈u1, ξx(u1 + εU) + (u1 + εU)V 〉 〈u1, xu1〉 �= 0 .

The last equation is the branching equation. The optimal ε depends on the
mesh width because the condition of the system varies with this parameter.
Eventually, w and q must be recovered from u and v by means of (11.19).
See also (Keller58), (Keener72). Figure 11.12 illustrates the non-dimensional
results for ν = 0.3 after some continuation w.r.t. λ . w(x) =

∫ x

0
u(s)ds−w(1)

is the non-dimensional deflection and z(x) = −q(x)/x the non-dimensional
radial membrane stress.

0 1

0.1

0.2

v

w

u

z

Case 1, λ = 30

0 1

0.1

0.2

v

w

u

z

Case 2, λ = 8

0 1

0.1

0.2

v

w

u

z

Case 3, λ = 6

Figure 11.12. Buckling of circular plate
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Appendix

12.1 Notations and Tables

Kepler, Johannes (1571−1630)

Newton, Isaac (1642−1727)

Leibniz, Gottfried W. (1646−1716)

Bernoulli, Jakob (1642−1727)

Bernoulli, Johann (1667−1748)

Euler, Leonhard (1707−1783)

D‘Alembert, Jean B. (1717−1783)

Lagrange, Joseph L. (1736−1813)

Gauss, Carl F. (1777−1855)

Hamilton, William R. (1805−1865)

Figure 12.1. Timetable

Remembering: (1◦) Let A and B two sets. A“device” (mathematically relation)
f : A → B is a mapping if ∀ : x, y ∈ A : f(x) �= f(y) =⇒ x �= y . A is
the domain and f(A) ⊂ B the range of f . The mapping f is injective if
x �= y =⇒ f(x) �= f(y) , surjective if f(A) = B , and bijective if it is both
injective and surjective (hence invertible).

(2◦) Let U and V be two vector spaces over R or C (where addition and
scalar multiplication are denoted U and V wizh the same signs). Let f : U → V
be a linear mapping, i.e.,

∀ u, v ∈ U ∀ α, β ∈ R : f(αu+ βv) = αf(u) + βf(v) .
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Then f is a homomorphism (endomorphism if V = U), f is a isomorphism
(automorphism if V = U) if f bijective in addition.

(a) Notations All variable quantities have to be sufficiently smooth!
Elementary Notations:

X ∈ Ω material point , x = Φ(t,X) space point
v(t, x) velocity of material point X at time t
b(t, x) acceleration
n(t, x) normed normal vector at point x of the curve
t(t, x) tangential vector at point x
ϑ(t, x) temperature (> 0)

Spezific quantities (relative to mass unit):
ε(t, x) ∈ R spezific energy density [energy/mass]
c(t, x) ∈ R spezific heat capacity [heat/(mass · temperature)]
f(t, x) ∈ R

3 spezific volume force density [force/mass]
r(t, x) ∈ R spezific thermal source density [heat/(mass · time)]
s(t, x) ∈ R spezific entropy [heat/(temperature · mass)]
ψ = ε− ϑs free energy [energy/mass]

Further quantities:
�(t, x) ∈ R mass density [mass/volume]
ε(t, x) ∈ R

3
3 strain tensor [ ]

σ(t, x) ∈ R
3
3 stress tensor [force/area]

g(t, x;n(t, x)) ∈ R
3 surface force density [force/area]

k(t, x) = �(t, x)f(t, x) volume force density [force/volume]
p(t, x) ∈ R pressure [force/area]
q(t, x) ∈ R

3 energy source vector [energy/(area · time)]
resp. thermal source vector [heat/(area · time)]

e = ε+ |v|2/2

(b) Measure Units and Physical Quantities

Table 12.1. Simple SI-Units (System International):

Quantity SI-Unit Definition Quantity SI-Unit Definition
length meter m mass kilogram kg
time second s temperature Kelvin K
angle arc length rad
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Table 12.2. Further SI-Units:

Physical Quantity SI-Unit Definition
force Newton (N) N = kg ·m/s2

pressure Pascal (Pa) N/m2 = kg/(m · s2)
energy Joule (J) N ·m = kg ·m2/s2

power Watt (W) J/s = kg ·m2/s3

pressure stand. atmospere (atm) 1 atm = 101325 Pa
temperature degree Celsius oC = K − 273.15
energy calorie (cal) 1 cal (15oC) = 4.1855 J

Table 12.3. Physical Constants:

Notation Physical Quantity Definition
g = 9.81 gravity acceleration (earth) m/s2

μ viscosity Pa · s = kg/(m · s)
ν = μ/� spezific or kinematic viscosity m2/s
η mech. diffusion coefficient m2/s
κ thermal conductivity J/(m · s ·K)
λ = κ/(� · c) heat conduction coefficient m2/s
� · c heat capacity J/(m3 ·K)
h thermal transmission coefficent J/(m2 · s ·K)
β thermal expansion coefficient 1/K

Table 12.4. Non-Dimensional Quantities:

Quantity Definition Quantity Definition
Froude number Fr = (Re)2/Gr Grashoff number Gr = g β ·Δϑ · L3/ν2

Peclet number Pe = U · L/λ Prandl number Pr = ν/λ
Rayleigh number Ra = Gr · Pr Reynolds number Re = U · L/ν
Schmidt number Sc = ν/η

(L , U characteristic length and velocity, Δϑ characteristic temperature
difference)
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Table 12.5. Material Constants of Elastic Bodies and Fluids:

E =
μ(3λ+ 2μ)

λ+ μ
> 0 Young’s modulus (modulus of elasticity)

G =
E

2(1 + μ)
shear modulus
(modulus of rigidity, torsion modulus)

K =
E

3(1 − 2μ)
bulk modulus of elasticity (modulus of
compression), bulk viscosity in fluids

ν =
λ

2(λ+ μ)
Poisson number

λ =
Eν

(1 + ν)(1 − 2ν)
> 0 Lamé constant, first coeff. of viscosity in fluids

μ =
E

2(1 + ν)
> 0 Lamé constant (also shear modulus)

second coefficient of viscosity in fluids

K =
3λ+ 2ν

3
volumetric viscosity, bulk modulus

κ = 1/K compressibility

λ > 0 and μ > 0 ⇐⇒ 0 < ν <
1
2

and E > 0

(c) Shape Functions for Complete Cubic Triangular Elements

ψ1 = (1 − ξ − η)[(1 − ξ + 2η)(1 + 2ξ − η) − 16ξη] = ζ2
1 (3 − 2ζ1) − 7ζ1ζ2ζ3

ψ2 = ξ(1 − ξ − 2η)(1 − ξ − η) = ζ1ζ2(ζ1 − ζ3)
ψ3 = η(1 − 2ξ − η)(1 − ξ − η) = ζ1ζ3(ζ1 − ζ2)
ψ4 = ξ2(3 − 2ξ) − 7ξη(1 − ξ − η) = ζ2

2 (3 − 2ζ2) − 7ζ1ζ2ζ3
ψ5 = ξ2(ξ − 1) + 2ξη(1 − ξ − η) = ζ2

2 (ζ2 − 1) + 2ζ1ζ2ζ3
ψ6 = −ξη(1 − 2x− η) = −ζ2ζ3(ζ1 − ζ2)
ψ7 = η2(3 − 2η) − 7ξη(1 − ξ − η) = ζ2

3 (3 − 2ζ3) − 7ζ1ζ2ζ3
ψ8 = −ξη(1 − ξ − 2η) = −ζ2ζ3(ζ1 − ζ3)
ψ9 = η2(η − 1) + 2ξη(1 − ξ − η) = ζ2

3 (ζ3 − 1) + 2ζ1ζ2ζ3
ψ10 = 27ξη(1 − ξ − η) = 27ζ1ζ2ζ3 .

Succession of points in unit triangle and gravity center:

Q1(0, 0) : ψ1 , ψ2 , ψ3 , Q2(1, 0) : ψ4 , ψ5 , ψ6 ,
Q3(0, 1) : ψ7 , ψ8 , ψ9 , Q4(1/3, 1/3) : ψ10.

Note that the representation of the complete cubic polynomial in Example
2.6 uses partly some combinations of shape functions; see also
SUPPLEMENT\chap09c.

(d) Argyris’ Triangle Element See Sect. 9.4(c). Let xi , i = 1 : 3 , be
the vertices of the triangle T and x12 , x23 , x31 the midpoints of the edges of
which the lengths are denoted by �i . Let Ci = (xi, yi, μi, ζi) , i = 1 : 3 , where
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μ1 = (�23 − �22)/�
2
1 , μ2 = (�21 − �23)/�

2
2 , μ3 = (�22 − �21)/�

2
3 ,

are coefficients relating to the normal derivatives. Let also in barycentric co-
ordiates ζi

Ψ(C1, C2, C3; p(x1),∇p(x1),∇2p(x1), pn(x12))
= p(x1)

{
ζ1
[
1 + ζ2(1 + 3ζ1ζ2)(ζ1 − ζ2) + ζ3(1 + 3ζ1ζ3)(ζ1 − ζ3)

+2ζ2ζ3(3ζ1 − 1)
]
− 15μ1ζ

2
1ζ

2
2ζ3 + 15μ3ζ

2
1ζ2ζ

2
3

}

+ 2−1∇p(x1)(x3 − x1)·[
ζ1ζ3

[
1 + ζ1 − ζ3 + ζ1(3ζ2 + ζ3) − ζ2(ζ2 + ζ3) + 3ζ1ζ3(ζ1 − ζ3)

]

+(8 + 7μ3)ζ2
1ζ2ζ

2
3 − 16ζ2

1ζ
2
2ζ3

]

+ 2−1∇p(x1)(x2 − x1)·[
ζ1ζ2

[
1 + ζ1 − ζ2 + ζ1(3ζ3 + ζ2) − ζ3(ζ2 + ζ3) + 3ζ1ζ2(ζ1 − ζ2)

]

+(8 − 7μ1)ζ2
1ζ

2
2ζ3 − 16ζ2

1ζ2ζ
2
3

]

+ 4−1(x3 − x1)
T ∇2p(x1)(x3 − x1)

[
ζ2
3ζ

2
1 (1 + ζ1 − ζ3) + (4 + μ3)ζ2

1ζ2ζ
2
3

]

+ 4−1(x3 − x1)
T ∇2p(x1)(x2 − x1)

[
4ζ2

1ζ2ζ3 − 8ζ2
1ζ

2
2ζ3 − 8ζ2

1ζ2ζ
2
3

]

+ 4−1(x2 − x1)
T ∇2p(x1)(x2 − x1)

[
ζ2
1ζ

2
2 (1 + ζ1 − ζ2) + (4 − μ1)ζ2

1ζ
2
2ζ3

]

+ 2|T |16pn((x1 + x2)/2)ζ2
1ζ

2
2ζ3/�1 .

Then Argyris’ interpolating polynomial can be written in cyclic form and
reads:

ΦT (ζ1, ζ2, ζ3; p) = Ψ(C1, C2, C3; p(x1),∇p(x1),∇2p(x1), pn(x12))
+ Ψ(C2, C3, C1; p(x2),∇p(x2),∇2p(x2), pn(x23))
+ Ψ(C3, C1, C2; p(x3),∇p(x3),∇2p(x3), pn(x31)) .

The shape functions of the element can be found immediately by this represen-
tation in cyclic form; see also SUPPLEMENT\chap09f. Matlab implementation
in KAPITEL02\TRIANGLES.

12.2 Matrix Zoo

Let A ∈ K
n

n be a real or complex matrix, K ∈ {R,C} . AT denotes the
transposed matrix and AH = A

T
the transposed conjugate matrix. Every

vector norm ‖x‖ defines a matrix norm (operator norm) by

‖A‖ = max‖x‖=1 ‖Ax‖
(

= sup
‖x‖<1

‖Ax‖ = sup
x�=0

‖Ax‖
‖x‖

)
. (12.1)
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Three frequently used operator norms:

‖A‖∞ = max1≤i≤n

∑
n
k=1|ai

k| row sum norm,

‖A‖1 = max1≤k≤n

∑
n
i=1|ai

k| column sum norm,

‖A‖2 = (�(AHA))1/2 spectral norm or Euklid norm.

Properties of general matrix norms:
(1◦) ‖A‖ ≥ 0 ; ‖A‖ = 0 ⇐⇒ A = 0 (positivity, else “semi-norm”),
(2◦) ∀ α ∈ R : ‖αA‖ = |α|‖A‖ (homogenity),
(3◦) A,B ∈ R

m
n : ‖A+B‖ ≤ ‖A‖ + ‖B‖ (triangle inequality).

Moreover, operator norms have the crucial property
(4◦) ∀ A , B ∈ C

n
n : ‖A ·B‖ ≤ ‖A‖‖B‖ (submultiplicativity) .

Operator norms are called also lub-norms (“least upper bound norm”)
because of the following property where |‖A‖| denotes an arbitrary matrix
norm:

∀ x : ‖Ax‖ ≤ |‖A‖| ‖x‖ =⇒ ‖A‖ ≤ |‖A‖| , ‖A‖ = max‖x‖=1 ‖Ax‖ .

A similar toB ⇐⇒ ∃ X ∈ K
n

n : B = XAX−1

A diagonally dominant ⇐⇒ ∀ k : |ak
k| >

∑
i�=k |ai

k|
or ∀ i : |ai

i| >
∑

k �=i |ai
k|

A diagonalizable ⇐⇒ A similar to diagonal matrix
A Hermitian ⇐⇒ A = AH = A

T

A idempotent ⇐⇒ A2 = A
A involutoric ⇐⇒ A2 = I (identity)
A non-negative ⇐⇒ ∀ i, k : ai

k ≥ 0
A nilpotent ⇐⇒ ∃ k ∈ N : Ak = 0

A normal ⇐⇒ AHA = AAH

A normalizable ⇐⇒ A similar to normal matrix
A orthogonal ⇐⇒ A real and AT = A−1

A positive definite ⇐⇒ A Hermitian and
∀ 0 �= x ∈ C

n : xHAx > 0
A permutation matrix ⇐⇒ in every row and column precisely

one element is one and all other zero
A reducibel ⇐⇒ there exists a permutation matrix P

and matrices B ,C such that

PAPT =
[
B D
0 C

]

A real symmetric ⇐⇒ A real and A = AT

A stochastic ⇐⇒ A non-negative and ∀ k :
∑n

i=1 a
i
k = 1

A unitary ⇐⇒ A−1 = AH

A upper triangular matrix ⇐⇒ ∀ i > k : ai
k = 0

A lower triangular matrix ⇐⇒ ∀ i < k : ai
k = 0

A projector ⇐⇒ A Hermitian and idempotent
A reflector ⇐⇒ A Hermitian and involutoric.
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Some of these notations remain valid also for non-quadratic matrices.

σ(A) := {λ ∈ C , λ eigenvalue of A} spectrum of A (quadratic),
�(A) = maxλ∈ Sp(A) |λ| spectral radius of A (quadratic).

12.3 Translation and Rotation

It is easily shown by passing to polar or sperical coordinates that rigid motion
consists locally of a translation and a rotation. We consider the rotation of a
point of mass m about the fixed axis a of length one with radius vector r(t)
of constant length r := |r(t)| .

Linear Motion Rotation
path x(t) angle of rotation ϕ(t) = ϕ(t)a (vector)
velocity v(t) := ẋ(t) angular velocity ω(t) = ϕ̇(t)a

ṙ(t) = ω(t) × r(t)
(linear) momentum angular momentum [ML2T−1]
�(t) = mv(t) �(t) = mr(t) × ṙ(t) =: Tω(t)

T = mr2 moment of inertia
force k(t) = mẍ(t) k(t) = m r̈(t) [N ]
moment (of force) torque [NL]
p(t) = x(t) × k(t) p(t) = mr(t) × r̈(t)

kinetic energy [ML2T−2] rotational energy [ML2T−2]
m|v|2

2
T |ω|2

2
work [ML2T−2]

k · x p · ϕ
power [ML2T−3]

k · v p · ω

Rule:

angular velocity replaces velocity

moment of inertia replaces mass

torque replaces force

.

For instance, Newton’s axiom reads:

Force Momentum Torque Angular Momentum

k =
d

dt
mv(t) p(t) =

d

dt
Tω(t)
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Moment of Inertia: We have ṙ = ω × r hence, by the representation formula
with constant r = |r|

� = m[r × ṙ] = m[r × (ω × r)] = m[r2ω − (r · ω)r] = mr2ω = Tω

because r · ω = 0 .
Rotational Energy: We have ṙ = ω×r hence ṙ = ωr . Newton’s axiom k = mr̈
yields for the work (A)

A =
∫ t

0

k · ṙ dt = m

∫ t

0

r̈(t) · ṙ(t) dt =
1
2
m|ṙ(t)|2 − 1

2
m|ṙ(0)|2

hence, by ṙ(0) = 0 ,

A =
1
2
mr2|ω|2 =

1
2
T |ω|2 .

Newton’s Equation: We have

d

dt
m(r × ṙ) = m(ṙ × ṙ) +m(r × r̈) = r × (m · r̈) = r × k = p .

The radius vector r of the mass point may be replaced by its point vector,
but then x · ω �= 0 in the representation formula. Namely, by projection xa of
x onto a ,

r = x− xa = x− x · ω
ω · ωω

ṙ = ω × r = ω × (x− x · ω
ω · ωω) = ω × x .

The projection xa of x onto the axis of rotation is a constant vector. By
x = xa + r we then obtain ẋ = ṙ = ω × x .
Tensor of Inertia: By the representation formula we obtain for the angular
momentum

� = m[r × ṙ] = m[(x− κω) × (ω × x)] = m[x× (ω × x)]

= m[(xTx)ω − (xT ω)x] = m[(xTx)ω − (xxT )ω]

= m[xTx δ − xxT ]ω =: T (x)ω .

Accordingly, the moment of inertia T has now become a matrix T (x) .
Let there n mass points P (xi) be given with mass mi then the tensor of

inertia of the system of mass points is obtained by suming up all matrices
T (xi) to

T =
n∑

i=1

mi[xT
i xiδ − xi x

T
i ] ∈ R

3
3 .

ATTENTION: The point vectors xi and the axis of rotation a on which the
tensor applies relate to a body fixed (cartesian) coordinate system. In par-
ticular, the axis of rotation must pass through the origin of this coordinate
system.
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If the system is a rigid body with the geometric shape Ω ⊂ R
3 and mass

desity � , the sum is replaced by the integral and we obtain

T =
∫

Ω

�(x)[xTx δ − xxT ] dV ∈ R
3
3 .

12.4 Trigonometric Interpolation

In this section the letter i denotes always the imaginary unit.
(a) Fourier Series To begin with, we recall the main properties of

Fourier series.

Definition 12.1. A function f : [a, b] → C is piecewise continuous resp.
piecewise continuously differentible if it is continuous resp. continuously dif-
ferentiable in [a, b] up to a finite number of points, and all possible one-sided
limit values of f resp. of f and df/dx exist overall in [a, b] .

Let f : [0, 2π] → C be piecewise continuous.

(1◦) Complex Fourier coefficients of f :

cj :=
1
2π

∫ 2π

0

f(x)e−ijxdx , j ∈ Z .

(2◦) Fourier coefficients of f in sinus-cosinus form:

an :=
1
π

∫ 2π

0

f(x) cos(nx)dx , n ∈ N0 ; bn :=
1
π

∫ 2π

0

f(x) sin(nx)dx , n ∈ N .

(3◦) (Formal) Fourier series of f :

S(x; f) :=
∞∑

j=−∞
cje

ijx =
a0

2
+

∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
.

(4◦) Transformation rules:

c0 =
1
2
a0, cn =

1
2
(an − ibn) , c−n =

1
2
(an + ibn) ,

a0 = 2c0, an = cn + c−n, bn = i(cn − c−n) , n ∈ N .

If f is real-valued, c−n = cn and the coefficients an and bn of the Fourier

series are likewise real. Using the notation f(x±) = limh→0,h>0f(x ± h) the
following Representation Theorem collects the essential properties of Fourier

series S( · ; f) being necessary for technical applications.
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Theorem 12.1. Let the 2π-periodic function f : R → C be piecewise contin-
uously differentiable in [0, 2π] . Then

(1◦) S( · ; f) is uniformly convergent to f on [a, b] if f is continuous on the
finite intervall [a, b] ⊂ R .

(2◦) S(x; f) = [f(x+) + f(x−)]/2 for all x ∈ R .
(3◦) Gibbs’ phenomenon occurs in every jumping point of f (overshooting of

∼ 18 % in the limit).

Proof, e.g., (Meyberg). Obviously we may choose also the interval [−π, π] for
integration then

an = 0 if f real and odd, bn = 0 if f real and even.

Let now SN be the N -th partial sum of the Fourier series and TN an arbi-
trary trigonometric polynomial of degree N ,

SN (x; f) =
N∑

j=−N

cje
ijx , cj =

1
2π

∫ 2π

0

f(x)e−ijxdx , TN (x) =
N∑

j=−N

dje
ijx .

With the mean energy of the signal f for measure of distance,

||f ||22 =
1
2π

∫ 2π

0

f(x)2dx ,

the extremal property of Fourier series may be stated:

Theorem 12.2. Let f be piecewise continuous in [0, 2π] then
(1◦) lim N→∞||f − SN ||2 = 0 , (2◦) ||f − SN ||2 ≤ ||f − TN ||2 .

The next theorem provides details on the growing up of Fourier coefficients;
c.f., e.g., (Stoer):

Theorem 12.3. Let the derivatives f (i) , i = 1, . . . ,m − 1 , be continuous in
R and let f (m) in [0, 2π] be continuously differentiable. Then there exists a
number M > 0 such that |cn| ≤ M/|n|m+1 , n ∈ Z\{0} .
Hence there exists a pointwise convergent majorant to the Fourier series in
case m ≥ 1 .

Example 12.1. (1◦) (Gibbs’ phenomenon.) Consider the square-wave oscilla-
tion with 2π-periodic function f(x) = 1 for 0 ≤ x < π and f(x) = −1 for
π ≤ x < 2π . Direct computation yields the Fourier coefficients

an = 0 , bn =
{

4/nπ, for n odd
0 for n even .

Accordingly, the Fourier series reads:

S(x; f) =
4
π

(
sinx

1
+

sin 3x
3

+
sin 5x

5
+ . . .

)
∼

⎧
⎨
⎩

1 0 < x < π
−1 π < x < 2π
0 else .
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In Figure 12.2 the Fourier partial sums SN (x; f) are shown for N = 1, 5, 11.
(2◦) (Fundamental example of Fourier analysis.) The trigonometric series∑∞

n=1(sinnx)/n represents a 2π-periodic sawtooth oscillation,

S(x; f) =
sinx

1
+

sin 3x
3

+
sin 5x

5
+ . . . =

{
0 x = 0
(π − x)/2 0 < x < 2 ∗ π .

In Figure 12.3 the Fourier partial sum SN (x; f) of the sawthooth oscillation
is shown for N = 7.

1

−1

2π

1.18

−1.18

Figure 12.2. Example 12.1 (1◦)

2π

π/2

Figure 12.3. Example 12.1 (2◦)

(b) Discrete Fourier Transformation The composite trapezoidal rule
has a kind of super-convergence property in integration of smooth periodic
functions by Lemma 2.3 therefore it is commonly used in integration of
trigonometric series:

cj =
1
2π

∫ 2π

0

f(x)eijxdx $ 1
2π

2π
n

n−1∑
k=0

f(xk)e−ijxk , xk = 2πk/n . (12.2)

In general,

y∗j =
1
n

n−1∑
k=0

yke
−ijk2π/n , j = 0 : n− 1 , (12.3)

is called discrete Fourier transformation (DFT) of the sequence {yj}∞j=0 .
((IDFT) inverse discrete Fourier transformation).

Let ω = e2πi/n be the n-th complex root of unity then ωk = ωk = ω−k =
e−2kπi/n and

y∗j =
1
n

n−1∑
k=0

ykω
−jk , j = 0 : n− 1 , Fn := [ωjk]n−1

j,k=0 Fourier matrix.

The Fourier matrix is complex but symmetric, Fn = FT
n (not Hermitian) .
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Lemma 12.1. FnFn = nIn .

By this result Fn is always invertible: F−1
n =

1
n
Fn . For y = [y0, . . . , yn−1]T ,

y∗ = [y∗0 , . . . , y
∗
n−1]

T , we obtain

DFT y∗ =
1
n
Fny ⇐⇒ y∗j =

1
n

n−1∑
k=0

ykω
−jk ,

IDFT y = Fny
∗ ⇐⇒ yk =

n−1∑
j=0

y∗jω
jk .

(12.4)

Comparison with Fourier series where � = 2π/n :

finite infinite

yj =
n−1∑
k=0

y∗ke
ijk� f(t) =

∞∑
k=−∞

cke
ikt,

y∗k =
1
n

n−1∑
j=0

yje
−ijk� ck =

1
2π

∫ 2π

0

f(t)e−iktdt .

Computational rules by n-periodic continuation (yj+n = yj) :

(1◦) linearity: αy + βz
DFT−→ αy∗ + βz∗ ,

(2◦) translation: r ∈ N0 [yk+r]k
DFT−→ [ωkry∗k]k

(3◦) periodic convolution: y ∗ z :=
1
n

⎡
⎣

n−1∑
j=0

yjzk−j

⎤
⎦

k

DFT−→ [y∗k · z∗k]k ,

(4◦) Parseval’s equation:
n−1∑
j=0

|yj |2 =
1
n

n−1∑
k=0

|y∗k|2 .

Interpretation of (3◦) : n scalar products in time domain correspond to n
multiplications in frequency domain.

(c) Trigonometric Interpolation (c1) Let

n = 2m ∈ N , � = 2π/n , ωn = ei� , xj = j� , j = 0 : n− 1 .

Lemma 12.2. There exists a unique complex trigonometric polynomial

p(x; y) =
m−1∑

j=−m

y∗j e
ijx

with the interpolation property
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yk = p(xk; y) =
m−1∑

j=−m

y∗j e
ijxk =

m−1∑
j=−m

y∗j e
ijk� , k = 0 : 2m− 1 . (12.5)

The coefficients of this polynomial are

y∗j =
1

2m

2m−1∑
k=0

yke
−ikxj =

1
2m

2m−1∑
k=0

yke
−ijk� , j = −m : m− 1 . (12.6)

Proof. Existence and Uniqueness follow from the corresponding result on com-
plex interpolation polynomials. A simple computation shows that

2m−1∑
k=0

ei(l−j)k� = y∗j =
{

1 for l = j
0 for l �= j

,

hence there follows for the representation of y∗j

1
2m

2m−1∑
k=0

yke
−ijk� =

1
2m

2m−1∑
k=0

m−1∑
l=−m

y∗l e
ilxke−ikxj

=
m−1∑

l=−m

y∗l
1

2m

2m−1∑
k=0

ei(l−j)k� = y∗j .

(c2) Let � = 2π/n then

e−i(j−n)k� = e−ijk�+ik2π = e−i(−jk�) ,

therefore we have y∗j−n = y∗j , j = m : n− 1 hence

y∗−(m−k) = y∗k−m = y∗k+m−2m = y∗k+m−n = y∗m+k , k = 0 : m− 1 .

Instead of (12.5) and (12.6) we may thus use the pair

y∗j =
1

2m

2m−1∑
k=0

ykω
−jk
n , j = 0 : 2m− 1 ,

yk =
2m−1∑
j=0

y∗jω
jk
n , k = 0 : 2m− 1 ,

(12.7)

where y∗ = [y∗0 , y
∗
1 , . . . , y

∗
m−1, y

∗
−m, . . . , y

∗
−1]

T , y = [y0, y1, . . . , y2m−1]T . By
this equivalence, the fast Fourier transformation, being usually implemented
for the system (12.7), may be applied directly to the interpolation polynomial
of Lemma 12.2.
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(c3) Let now all ordinate values yk be real then we obtain by (12.6)
directly that y∗j = y∗−j , j = −m : m ; and y∗m is real because

y∗−m =
1

2m

2m−1∑
k=0

yke
−ik(−m)2π/2m =

1
2m

2m−1∑
k=0

yke
ikπ

=
1

2m

2m−1∑
k=0

yk(−1)k =
1
n

2m−1∑
k=0

yke
−ikπ = y∗m .

Therefore, and by reasons of symmetry it is of advantage to apply the trigono-
metric interpolation polynomial in the following, slightly modified form,

p(x; y) =
m−1∑

j=−m+1

y∗j e
ijx +

1
2
y∗m(eimx + e−imx) (12.8)

where the interpolation property of Lemma 12.2 is still fulfilled because

eimxk = eimk2π/2m = e−imk2π/2m = e−imxk , k = 0 : 2m− 1 .

For real ordinate values yk , the interpolation polynomial (12.8) is real with
complex-valued coefficients but it can be written also in entire real form for
real yk:

p(x; y) = y∗0 +
m−1∑
j=1

(y∗j e
ijx + y∗−je

−ijx) +
1
2
y∗m(eimx + e−imx)

= y∗0 + 2
m−1∑
j=1

[
(Re y∗j ) cos(jx) − (Im y∗j ) sin(jx)

]
+ y∗m cos(mx)

y∗0 = (2m)−1
2m−1∑
k=0

yk , and for |j| ≤ m :

Re y∗j = (2m)−1
2m−1∑
k=0

yk cos(jk�) , Im y∗j = −(2m)−1
2m−1∑
k=0

yk sin(jk�) .

Note that the trigonometric interpolation polynomial

p̃(x; y) =
2m−1∑
j=0

y∗j e
ijx , y∗j =

1
2m

2m−1∑
k=0

yke
−ijk� , j = 0 : 2m− 1 , (12.9)

has the interpolation property, too, but it is not real for real values yk in
general. Instead, the real part has to be chosen for real interpolation in this
case. Besides, this polynomial has worse stability properties because the sum
is twice as large.
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Example 12.2. m = 1 :

m = 1 : y∗0 =
1
2
(y0 + y1) , y∗1 =

1
2
(y0 + y1e

−iπ) =
1
2
(y0 − y1)

p(x; y) =
1
2
(y0 + y1) +

1
2
(y0 − y1) cosx

p̃(x; y) =
1
2
(y0 + y1) +

1
2
(y0 − y1)(cosx+ i sinx)

m = 2 : p(x; y) =
1
4
(y0 + y1 + y2 + y3) +

1
2
(y0 − y2) cosx+

1
2
(y1 − y3) sinx

+
1
4
(y0 − y1 + y2 − y3) cos 2x .

12.5 Further Properties of Vector Spaces

(a) Let Ik ⊂ R , k ∈ N , be a countable set of open (or closed) intervals. A set
S ⊂ R is called set of (Lebesgue) measure zero or briefly null set if

∀ ε > 0 ∃ Ik , k ∈ N : S =
⋃
k∈N

Ik and
∞∑

k=1

|Ik| ≤ ε .

A function f : R ⊃ I → R has a property almost everywhere (a.e.) in I if it
has that property in I up to a set of measure zero.

Let Δm = {(x0, x1, . . . , xm) , a = x0 < x1 < . . . < xm = b} be a partition
of the interval [a, b] then a function f : [a, b] → R is called absolutely continu-
ous if ∀ ε > 0 ∃ δ > 0 ∀ m ∈ N ∀ Δm :

m∑
j=1

|xj − xj−1| < δ =⇒
m∑

j=1

|f(xj) − f(xj−1)| < ε .

In particular, absolutely continuous functions are continuous. They allow a
generalization of the main theorem of differential and integral calculus to
Lebesgue-integrable functions:

Theorem 12.4. Let f : [a, b] → R be absolutely continuous then f is a.e. dif-
ferentiable, the derivative is L-integrable and, by application of the Lebesgue-
Integral,

f(x) = f(a) +
∫ x

a

f ′(t) dt .

Proof see e.g. (Heuser80), Theorem 131.3.
(b) The number

κf :=
∫ b

a

|df(x)| := sup
m∈N

sup
Δm

m∑
i=1

|f(xi) − f(xi−1)|
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is called variation of f . If e.g. f(x) = c is constant then κf = c , and if a
function increases monotonically then κf = f(b) − f(a) . We now introduce
two normed vector spaces namely the space of functions of bounded variation
and the subspace of normed functions of bounded variation below:

BV[a, b] = {f : [a, b] → R , κf < ∞} , ‖f‖ = ‖f(a)‖ + κf

NBV[a, b] = {f ∈ BV[a, b] , f(b) = 0 , f right-continuous in [a, b]} .

Some further Properties of functions f : [a, b] → R :

(1◦) f ∈ BV[a, b] if and only if it is the difference f = g−h of two monotonically
increasing functions g and h ; (Heuser80), I, Sect. 91.

(2◦) A continuous function f is of bounded variation if and only if it is the dif-
ference f = g−h of two continuous and monotonically increasing functions
g and h ; (Heuser80), I, Sect. 91.

(3◦) f absolutely continuous then f ∈ BV[a, b], (Heuser80), II, Sect. 131, but
the converse is not true.

(4◦) The functions of BV[a, b] are continuous up to a countable set of points in
which the one-sided limit values do exist, they are a.e. differentiable and
R-integrable on [a, b] ; (Heuser80), I, Sect. 91, II, SEct. 131.

Now we arrive at the main subject of this section and define the Riemann-

Stieltjes integral as limiting value of Riemann sums for f ∈ C[a, b] and
g ∈ BV[a, b] :

∫ b

a

f(x)dg(x) = lim
m→∞

m∑
j=1

f(x̃j)
[
g(xj) − g(xj−1)

]
, x̃j ∈ [xj−1 , xj ]

where f is the integrand and g the integrator. This integral counts the jumpings
of the derivatives of g multiplying them by the value of f at that points.

Example 12.3.(1◦) If f scalar and g(x) = |x| then

∫ 1

−1

f(x)dg(x) = −
∫ 0

−1

f(x) dx+
∫ 1

0

f(x) dx+ 2 f(0) .

(2◦) (Heuser80) I, Sect. 92. Let f and the derivative g′ of g be R-integrable on

[a, b] then
∫ b

a

f(x)dg(x) exists and and is equal to
∫ b

a

f(x)g′(x) dx .

(3◦) (Heuser80) I, Sect. 92. Let f ∈ C[a, b] and let g be a step function having
exactly jumps of height g1, . . . , gm at the points x1, . . . , xm , then

∫ b

a

f(x)dg(x) =
m∑

i=1

f(xi)gi .
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Conversely, if f ∈ BV[a, b] and g is continuous then the RS-integral∫ b

a
f(x)dg(x) exists always; (Heuser80). The following result shows that the

vector space BV[a, b] is the dual space (C[a, b])d relative to the vector space
C[a, b] after canonical identification.

Lemma 12.3. For y ∈ (C[a, b])d there exists an integrator g ∈ BV[a, b] such

that y(f) =
∫ b

a

f(x)dg(x) , ‖y‖ = κg .

If we now require in addition that g ∈ NBV[a, b] then g is uniquely deter-
mined for every y ∈ (C[a, b])d and vice versa, and BV[a, b] can be replaced by
NBV[a, b] in Lemma 12.3; cf. (Taylor), pp. 198–200.

(c) A normed vector space X is separable if there exists a finite or countable
set S such that S = X holds for the closure of S of S, i.e. S is dense in X .

Example 12.4. Let I = [a, b] be a comnpact interval with non-empty interior.

(1◦) The vector space B(I) of bounded functions with maximum norm ‖f‖∞ =
maxx∈I |f(x)| is not separable but closed hence a Banach space; (Taylor),
pp. 89, 102.

(2◦) The vector space C(I) of continuous functions with maximum norm
‖f‖∞ = maxx∈I |f(t)| is separable since Weierstrass’ theorem 2.3 holds
also for polynomials with rational numbers for coefficients, and it is closed
hence a Banach space because C(I) is closed in B(I) ; (Taylor), p. 103.

(3◦) The space C1(I) of continuously differentiable functions with the norm
‖f‖ = ‖f‖∞ + ‖f ′‖∞ is separable and closed as well (Amann).

(4◦) Ignoring the distinction between L̃ and L , cf. Sect. 1.7(f), the vector space
Lp(I) , 1 ≤ p < ∞ consists of all measurable functions defined a.e. in I
where |f(x)|p is L-integrable; (Taylor), pp. 16, 90, 372. Equipped with the
norm [

∫
I |f(x)|p dx]1/p (L-integral), these spaces are separable and closed

hence Banach spaces; (Taylor), p. 90.
(5◦) The vector space L∞(I) consists of all measurable functions defined a.e.

on I with the supremum norm ‖f‖∞ = inf{γ , |f(t)| ≤ γ , a.e. in I}. This
space is not separable but closed; (Taylor), pp. 91, 104. A function f ∈
L∞(I) is L-integrable by Lebesgue’s theorem on dominated convergence.

(6◦) The vector space W1
∞[a, b] consists of all continuous functions x where

x(t) = x(a) +
∫ t

a
y(τ) dτ in L-sense with y ∈ L∞[a, b] .

12.6 Cycloids

(a) Orthocycloids Suppose that a disc with center M and radius r rolls on
a straight line without friction in positive direction, then any fixed point P
on the rolling disc describes an orthocycloid (Fig. 12.4). Choosing the angle ϕ
between the straight line MP and the negative y-axis for independent variable
such that ϕ = 0 at beginning, one obtains the representation
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x = r ϕ− c sin(ϕ+ α) , y = r − c cosϕ

where c denotes the distance between M and P , and α is the initial angle
between the line MP and the negative y-axis.

(b) Epicycloids Suppose that a disc with center M and radius r rolls
without friction on a fixed disc with center O and radius R then a fixed point
P on the rolling disc describes an epicycloid (Figs. 12.5 and 12.6). Choosing
the angle ϕ between the line OM and the x-axis for independent variable one
obtains the representation

x = (R + r) cosϕ+ c cos
(
R + r

r
ϕ+ α

)
,

y = (R + r) sinϕ+ c sin
(
R + r

r
ϕ+ α

)
, ϕ ≥ 0 ,

where c is the distance between M and P again, and α is the initial angle
between MP and the x-axis. The epizycloid is a closed curve for R/r ∈ N .

(c) Hypocycloids Suppose that a disc with center M and radius r rolls
without friction in a fixed disc with center O and radius R then a fixed
point P on the rolling disc describes a hypocycloid (Fig. 12.7). Choosing the
angle ϕ between OM and the x-axis for independent variable, one obtains the
representation

x = (R− r) cosϕ+ c cos
(
R− r

r
ϕ+ α

)
,

y = (R− r) sinϕ− c sin
(
R− r

r
ϕ+ α

)
,

where c is the distance between M and P , and α is the initial angle between
MP and the x-axis. The hypocycloid is a closed curve for R/r ∈ N again.

x

y

MM
φ

P
P

r = 2, c = 1

x

y

MM
φ

P

P

r = 2, c = 2

x

y

MM
φ

P

P
r = 2, c = 3

Figure 12.4. Orthocycloids, α = 0
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r = 3, c = 1 r = 3, c = 3 r = 3, c = 4

Figure 12.5. Epicycloids, α = 0 , R = 6

r = 2, c = 1 r = 2, c = 2 r = 2, c = 4

Figure 12.6. Epicycloids, α = 0 , R = 6

r = 3, c = 1 r = 3, c = 3 r = 3, c = 4

r = 2, c = 1 r = 2, c = 2 r = 2, c = 4

Figure 12.7. Hypozycloids, α = 0 , R = 6
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12.7 Quaternions and Rotations

(a) Complex Numbers The real coordinate space R
2 with canonical basis

{e1 , e2} generates the Gaußian field of complex numbers C by introducing
an exterior commutative multiplication “ ∗ ” according to

e1 ∗ e1 = e1 , e1 ∗ e2 = e2 ∗ e1 = e2 , e2 ∗ e2 = −e1 . (12.10)

Then
(ae1 + be2) ∗ (ce1 + de2) = (ac− bd)e1 + (ad+ bc)e2

and we write simply e1 = (1 , 0) , e2 = (0 , i) or also a+ b i instead a(1 , 0) +
b(0 , i) in unambiguous way. Mathematically spoken, the real R

2 has become
a two-dimensional commutative field by establishing an exterior product w =
u ∗ v ∈ R

2 for u , v ∈ R
2 which has an identity and an inverse. On the other

side, we can identify complex numbers with (2, 2)-matrices by

z = a+ b i ∼ Z =
[

a b
−b a

]
(12.11)

and then use the (perhaps more) familiar matrix multiplication instead of
(12.10) which is also commutative for matrices of type (12.11).

(b) Quaternions Also the coordinate space R
4 can be equipped with a

suitable exterior product by an ingenious idea of Hamilton, yielding how-
ever a non-commutative field of numbers (skew field). Consider two complex
numbers u = a+ i b , v = c+ i d and associate to that pair a matrix similarly
built as in (12.11),

(u , v) ∼ Q(u, v) =
[

u v
−v u

]
,

where the corresponding matrices (12.11) are inserted and overbar denotes
the conjugate complex number. The matrix Q then reads explicitely

Q(a, b, c, d) =

⎡
⎢⎢⎣

a b c d
−b a −d c
−c d a −b
−d −c b a

⎤
⎥⎥⎦ (12.12)

and the product of two such matrices yields again a matrix of the same form.
For the definition of quaternions relative to multiplication of basis elements
we write briefly as in complex numbers

q = q0 + q1 i+ q2 j + q3 k then
i2 = j2 = k2 = −1 , ij = −ji = k , ki = −ik = j .
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The elements q of the skew field Q of quaternions are usually not
considered as vectors but as “numbers” like the elements of complex
field C; therefore they are written as ordinary small letters not being
underlined but with non-commutative multiplication. If we consider
the quaternion as vector in R

4 , we write q instead q.

Note that the data of the quaternion are contained in the first row of the ma-
trix Q in (12.12) thus the first row of the matrix productQ(a, b, c, d)Q(e, f, g, h)
contains the components of the vector r of the quaternion product r = p q .
Using KAPITEL12\quaternion.m we obtain explicitely

p =

⎡
⎢⎢⎣
a
b
c
d

⎤
⎥⎥⎦ , q =

⎡
⎢⎢⎣
e
f
g
h

⎤
⎥⎥⎦ , r =

⎡
⎢⎢⎣
a e− b f − c g − d h
a f + b e+ c h− d g
a g − b h+ c e+ d f
a h+ b g − c f + d e

⎤
⎥⎥⎦ . (12.13)

Further notations and properties:

Conjugate q = q0 − q1i− q2j − q3k

Norm |q| =
(
q2
0 + q2

1 + q2
2 + q2

3

)1/2

Inverse q−1 = q/|q|2 .

s(q) := q0 is the scalar of the quaternion q and vec(q) := q1e1 + q2e2 + q3e3 is
the vector of q therefore q = q0 + vec(q) .

Let vec(p) and vec(q) be two vector quaternions then s(vec(p) vec(q)) =
− vec(p) · vec(q) and vec(p q) = vec(p) × vec(q) hence

vec(p) vec(q) = − vec(p) · vec(q) + vec(p) × vec(q) . (12.14)

Of course a quaternion q can also be written with normed vector component
v̂ec(q)

q = |q|
(
q0
|q| +

| vec(q)|
|q|

vec(q)
| vec(q)|

)
=: |q|

(
cosϕ+ sinϕ v̂ec(q)

)

where the angle ϕ is defined by

cos
ϕ

2
:=

q0
|q| , sin

ϕ

2
:=

|vec(q)|
|q| =⇒ cos2

ϕ

2
+ sin2 ϕ

2
= 1 (12.15)

(ϕ/2 is here chosen instead of ϕ because ϕ represents the rotation angle be-
low).

(c) Composed Rotations Recall formula (1.11) for rotation about the
axis a ∈ R

3 , |a| = 1 , with angle ϕ,

y = xa + cos(ϕ)(x− xa) + sin(ϕ)(a× x)
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where xa = (x ·a)a is the projection of the position vector x onto the rotation
axis a . Recall also the representation (1.3),

a× (b× x) = (a · x)b− (a · b)x =
(
b aT − aT b I

)
x ,

(I identity) therefore

y = x+ (1 − cos(ϕ))a× (a× x) + sin(ϕ)(a× x) .

Remember 1 − cosϕ = 2 sin2(ϕ/2) and sinϕ = 2 sin(ϕ/2) cos(ϕ/2) , assign a
quaternion q of unit length to this rotation by

q = q0 + vec(q) = cos
(ϕ

2

)
+ sin

(ϕ
2

)
a , (12.16)

and let Cq be the skew-symmetric matrix defined by Cqx = vec(q) × x as in
Sect. 1.1(i). Then

y = x+ 2vec(q) × (vec(q) × x) + 2q0 vec(q) × x

=
[
I + 2

(
vec(q) vec(q)T − vec(q)T vec(q)I

)
+ 2q0Cq

]
x .

Suppose now that we have two rotations with rotation matrices D(a, ϕ) ,
D(b, ψ) , assign the corresponding quaternions p and q by (12.16) and form
the product r = p q then the rotation matrix is

D(c, ϑ) := D(b, ψ)D(a, ϕ) = I +2
(
vec(r) vec(r)T − vec(r)T vec(r)I

)
+2r0Cr .

The scalar r0 and vector vec(r) of r are found by (12.14), and the associated
rotation angle ϑ and the new axis by normalization and (12.15).

Example 12.5. First rotation with axis a = e2 and angle ϕ = π/2 , second
rotation with axis b = e1 and angle ψ = π/2 . Rotation matrix D(c, ϑ) =
D(e1, ψ)D(e2, ϕ). Assigned quaternions are p for the first rotation and q for
the second rotation,

p = cos(ϕ/2) + sin(ϕ/2) a = cos(π/4) + sin(π/4) e2 =
√

2
2

(1 + j)

q = cos(ψ/2) + sin(ψ/2) b = cos(π/4) + sin(π/4) e1 =
√

2
2

(1 + i) .

Let r = q p be the quaternion of the composed rotation then we obtain r =
0.5 [1 , 1 , 1 , 1] by applying (12.13). Therefore the new normed rotation axis is
c = [1 , 1 , 1]/

√
3 and by r0 = cos(ϑ/2) = 1/2 we find also the rotation angle

ϑ = 2π/3 .
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Basel (1992)

Gekeler95. Gekeler, E.W.: On the perturbed eigenvalue problem. J. Math. Anal.
Appl. 191, 540–546 (1995)

Gelfand. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Prentice–Hall, Engle-
wood Cliffs, N.J. (1963)

Gervais. Gervais, J.J, et al.: Some experiments with stability analysis of discrete
incompressible flows in the lid-driven cavity. Int. J. Num. Meth. Fluids 24,
477–492 (1997)

Girault. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes
Equations. Springer, Berlin Heidelberg New York (1986)

Glass. Glass, L.: Combinatorial and topological methods in nonlinear chemical ki-
netics. J. Chem. Phys. 63, 1325–1335 (1975)

Goldfarb. Goldfarb, D., Idnani, A.: A numerically stable dual method for solving
strictly convex quadratic programs. Math. Programming 27, 1–33 (1983)

Golub. Golub, G.H., VanLoan, Ch. F.: Matrix Computations. John Hopkins Uni-
versity Press, Baltimore London (1989)

Golubitsky. Golubitsky, M., Schaeffer, D.G.: Singularities and Groups in Bifurcation
Theory, I, II. Springer, Berlin Heidelberg New York (1985) (1987)

Grauert. Grauert, H., Lieb, I.: Differential- und Integralrechnung III. Springer,
Berlin Heidelberg New York (1968)

Gregory. Gregory, J., Lin, C.: Constrained Optimization in the Calculus of Varia-
tions and Optimal Control Theory. Van Nostrand, New York (1992)

Gresho. Gresho, P.M., Sani, R.L.: Incompressible Flow and the Finite Element
Method, I,II. Wiley, New York (2000)

Grimm. Grimm, W.: Private Mitteilung. Univ. Stuttgart, Inst. of Flight Mechanics
and Control (2004)

Gross A. Gross, D., et al.: Technische Mechanik I-III. Springer, Berlin Heidelberg
New York (1998) (1999)

Gross B. Gross, D., et al.: Formeln und Aufgaben zur Technischen Mechanik I-III.
Springer, Berlin Heidelberg New York (1998) (1999)

Gummert. Gummert, P., Reckling, K.-A.: Mechanik. Vieweg, Braunschweig (1987)
Haemmerlin. Hämmerlin, G., Hoffmann, K.H.: Numerische Mathematik. Springer,

Berlin Heidelberg New York (1994).
Hairer. Hairer, E., et al.: Solving Ordinary Differential Equations I,II. Springer,

Berlin Heidelberg New York (1987)
Hajek. Hajek, B.: Cooling schedules for optimal annealing. Mathematics of Opera-

tion Research, 13, 311–329 (1988)
Hale. ale J.K.: Ordinary differential Equations. Wiley, New York (1969)
Halmos. Halmos, P.R.: Measure Theory. Van Nostrand, New York (1950)



604 References

Hamel. Hamel,G.: Theoretische Mechanik. Springer, Berlin Heidelberg New York
(1978)

Hartl. Hartl,R.F., et al.: A survey of the maximum principle for optimal control
problems with state constraints. SIAM Review 37, 181–218 (1995)

Hartmann. Hartmann, F., Katz, C.: Structural Analysis with Finite Elements.
Springer, Berlin London (2004)

Hassard. Hassard, B., et al.: Theory and Applications of Hopf Bifurcation. Cam-
bridge University Press, Cambridge 1981.

Heil. Heil, M., Kitzka, F.: Grundkurs Theoretische Mechanik. Teubner, Stuttgart
(1984)

Heuser80. Heuser, H.: Lehrbuch der Analysis I,II. Teubner, Stuttgart (1980) (1981)
Heuser86. Heuser, H.: Funktionalanalysis. Teubner, Stuttgart (1986)
Himmelblau. Himmelblau, D.M.: Applied Nonlinear Programming. McGraw–Hill,

New York (1972)
C.Hirsch. Hirsch, C.: Numerical Computation of Internal and External Flows, I,II.

Wiley, New York (1988)
M.Hirsch. Hirsch, M.W.: Differential Topology. Springer, Berlin Heidelberg New

York (1976)
Hirzebruch. Hirzebruch, F., Scharlau, W.: Einführung in die Funktionalanalysis.
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zur Lösung von Differential- und Integralgleichungen. Teubner, Leipzig (1969)

Mindlin. Mindlin, R.D.: Influence of rotary inertia and shear on flexural motion of
elastic plates. Trans. ASME Ser. E, J. Appl. Mech. 18, 31–38 (1951)

Mittelmann. Mittelmann, H.D., Weber, H.: Multigrid Solution of Bifurcation Prob-
lems. SIAM J. Sci. Stat. Comput. 6, 49–60 (1985)

MooreA. Moore, G.: The numerical treatment of non-trivial bifurcation points. Nu-
mer. Funct. Anal. Optim. 2, 441–472 (1980)

MooreB. Moore, G., Spence, A.: The calculation of turning points of nonlinear
equations. SIAM J. Numer. Anal. 17, 567–576 (1980)

Morley. Morley, L.S.: On the constant moment plate bending element. J. Strain
Anal. 6, 20–24 (1971).

Ninomiya. Ninomiya, H., Onishi, K.: Flow Analysis Using a
PC. Southampton-Boston: Computational Mechanics Publications, Southamp-
ton Boston (1991)
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Z = N ∪ −N ∪ {0}, 36

a.e., see almost everywhere
acceleration

absolute, 388
central, 310
convective, 388
leading, 338
relative, 338, 388

accompanying matrix, see Frobenius
matrix

accompanying system, 266, 267
accompanying trihedron, 25
action integral, 306, 355
adiabatic thermodynamic process, 402
adjoint cone, see dual cone
Airy, 423
Aitken, 81
algebra, 520
algebraic multiplicity, 7
almost everywhere, 591
AMF, see Mangasarian-Fromowitz

qualification
Andrew’s Squeezer, 566
angular momentum, 306, 310, 320, 322,

583
anomaly, 315
apocenter, 313
apogee, 313, 331
apohelion, 313
arc length, 25
area coordinates, see barycentric

coordinates
Arenstorf, 134, 331

Argyris’ polynomial, 102
atlas of a manifold, 538
automorphism, 578

Babuska paradoxon, 420
Babuska-Brezzi condition, 473
balance theorem, see conservation law
Banach space, 57
bang-bang control, 220
barycentric coordinates, 100
basis

canonical, 3, 505
cartesian, 506, 507
contravariant, 539, 541
covariant, 539, 541, 551
dual, 47, 505, 551
reciprocal, 507, 539, 541, 551

BC = boundary condition, 435
beam

Bernoulli, 273, 360
Timoshenko, 360

Bell, 101
Ben-Israel, 63
bending beam, 373
bending line, 359
bending moment, 362
Bernstein, 84
Beziér, 84
Beziér curve, 86
Beziér point, 84, 85
bifurcation

pitchfork, 251
bifurcation point, 40, 265
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bilinear form, 47, 367
Bland, 160
bordering lemma, 59
boundary

Cauchy, 409, 435
Dirichlet, 409, 435

boundary condition
Cauchy, 436, 444
Dirichlet, 436, 443
essential, geometric, 196, 350, 363,

437
natural, dynamic, 196, 350, 364, 437
Neumann, 436
third, 436

boundary interval, 224
boundary value problem, 35, 129, 410,

411, 414, 418, 428, 436
adjoint, 270
controllable, 212
homogeneous, 269
periodic, 133
semi-homogenous, 36
with parameter, 132

Boussinesq, 483, 485
box scheme, 129
Boyle-Mariotte, 561
brachistochrone, 193, 208, 234
branching equation, 247, 258, 273

algebraic, 259
brusselator

full, 286
small, 286

bubble function, 450, 474
buckling, 369
bulk modulus, 425, 580
Burger’s equation, 427
Butcher, 110, 111
BV, see space of functions of bounded

variation
BVP = boundary value problem, 196

catenary, 208
Cauchy, 45, 81
Cauchy problem, 105
Cauchy sequence, 45
Cauchy-Schwarz inequality, 47
centrifugal force, 338
characteristic difference of temperature,

483

characteristic length, 430, 483
characteristic pair, 5, 31
characteristic polynomial, 6, 28, 112
characteristic time, 430
characteristic velocity, 430, 483
chart of a manifold, 537
Chezy coefficient, 486
Christoffel symbol, 545
Clairaut, 201
closed graph theorem, 59
closed range theorem, 59
closure of a set, 45
codimension, 58
cofactor, 5
complement condition, see complemen-

tary slackness condition
complementary slackness condition, 157
complex numbers, 596
component

anholonomic, see component, physical
contravariant, 508, 541–543
covariant, 508, 541–543
physical, 540
strict, 523

compressibility, 408, 580
condensation, 11
condition

regularity, 152
cone, 62

dual, 62
herpolhode, 343
pointed, 62
polhode, 343
positive, 62
precession, 343

cone corollary, 65
cone inclusion theorem, 65
configuration space, 204, 350
conforming method, 440
conic sections, 315
conjugate function, 201
conservation law, 426

angular momentum, 306, 310, 322,
398

conservative form, 400
energy, 305, 320, 398, 405
mass, 397, 485, 562
momentum, 303, 397, 400, 404, 409,

562
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non-conservative form, 400
of Hamilton function, 205

conservative vector field, see potential
field

constraint
holonomic, 323, 351
non-holonomic, 351
rheonomic, 351
scleronomic, 351

constraint qualification, 152
continuation

corrector, 297
predictor, 295

continuity equation, 404
contragredient, 512
control problem, 211, 221
convection, 483
coordinate representation, 540
coordinate surface, 538
coordinate system, 537

cartesian, 3
natural, 538
natural orthogonal, 551

coordinate transformation, 537
coordinates

barycentric, 100
bispherical, 553
cyclic, 205
cylinder, 552
ellipsoid, 552
elliptic cylinder, 552
Euler, 387
generalized, 204, 205
Lagrange, 387
material, 387
paraboloid, 552
space, 387
spherical, 336, 552
torus, 553

corange, 245
Coriolis acceleration, 338
Coriolis factor, 486
corner, see extreme point

degenerated, 160
COS = cartesian coordinate system, 3,

303
cosinus of direction, 376
costate, 212
coupled system, 479

Courant’s triangle, 447
Courant-Friedrichs-Levy condition, 114,

118, 489
CR element = Crouzeix-Raviart

element, 464
Cramer’s rule, 5
critical point, see singular point
cross product, 3
curl, see vorticity
curvature, 26

circle of, 26
curve

coordinate, 539
regular, 25

cusp catastrophe, 252
cyclic variable, 197, 346

D’Alembert’s principle, 194, 324
DA-problem, see differential-algebraic

problem
De Boor, 88
De Casteljau, 85
dead load, 403
decomposition

orthogonal, 4
defect, see discretization error
deformation, 387
degree of an integration rule, 95
density

energy, 396
surface-force, 396, 409
thermal source, 396
volume-force, 396, 409

derivative
convective, 390
exterior, 528
Fréchet, 54
Gâteaux, 54
material, 390
weak, 50

descend direction, 144
determinant, 5, 522
diffeomorphism, 39, 60
difference

backward, 121
forward, 84

differential equation
asymptotically stable, 113
homogenous, 28
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stable, 113
differential form, 527

closed, 529
exact, 529

differential operator, 29
differential system, 31

asymptotically stable, 33
autonomous, 31
homogenous, 31
inhomogenous, 34, 35
periodic, 36, 37
stable, 33
stiff, 117

differential-algebraic problem, 137
diffusivity, 579

coefficient, 485
DIN = Deutsche Industrienorm, 571
direct decomposition, see direct sum
direct sum, 57
direction

Newton, 148
Dirichlet, 532
Dirichlet function, 48
Dirichlet problem, 203

dual, 204
disc

plain stress, 413
plane strain, 414

discretization error, 105, 110
displacement, 387, 408

virtual, 362
divergence, 18, 546, 554

tensor, 18
tensor field, 549

divergence theorem, see theorem of
Gauß, 418

divided difference, 82
DLP, see dual Lagrange problem
DOF = degree of freedom, 440, 445
domain, 23

regular, 48
simply connected, 23
star-shaped, 23

dual pairing, 504
dual problem, 155
duality

weak, 183
duality gap, 183
DuBois-Reymond, 195, 197, 206

DuBois-Reymond condition, 355
Duffing equations, 135
dyade, see dyadic product
dyadic product, 447
dyname, 302

eccentricity, 331
linear, 316
numerical, 315

effective potential energy, 311
Eidelheit, 64
eigenfunction, 117, 367
eigenvalue, 5, 367

semi-simple, 8, 243, 245
eigenvalue problem, 117, 367

generalized, 139, 368
nonlinear, 261
periodic, 278
perturbated, 262

eigenvector, 5
left-, 6
orthogonal, 6
right-, 6

Einstein, 504
elasticity modulus, 359, 408, 580
element

affine-equivalent, 449
Argyris, 456, 580
Bell’s, 458
conforming, 454
Crouzeix-Raviart, 464
cubic, for plates, 465
Hermite type, 462
Hermitian, 452
isoparametric, 458
Lagrange, 449
Lagrange type, 452
mini, 450
Taylor-Hood, 474
triangle, 420
triangle, curved boundary, 458
triangle, quadratic, 458

elementary differentials, 21
ellipse, 316
ellipsoid

of energy, 343
of moment of momentum, 343

endomorphism, 578
energy
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bending, 361
damping, 305
free, 578
kinetic, 304, 320, 321, 583
potential, 304, 320
potential, effective, 346, 348
rotation, 340
rotational, 583
strain, 422
total, 304, 312, 320, 329

energy density, 578
energy form, 70
energy functional, 70, 436
energy method, 70
energy norm, 70
energy source vector, 578
entropy, 396, 401, 578
envelope, 201, 210
epicycloid, 594
epigraph of a function, 202
equation of continuity, 399
equations of motion, 319
error estimation, 106
escape velocity, 315
Euler angles, 335
Euler equations, 72, 195, 306, 345, 350,

355, 362, 409, 436, 564
augmented, 351
dynamic, 341
kinematic, 344

Euler’s buckling load, 370
expansion theorem, see Grassmann

identity
exponent of adiabatics, 427
exterior product, 522
extrapolation, 111
extremal, 351
extremal problem, 362, 409, 410, 416,

436, 564
extreme point, 155

degenerated, 156

F-derivative, see derivative, Fréchet
Föppl, 87, 96
falling line, 145
Farkas, 66
feasibility

dual, 157
primal, 157

feedback control, 216
feedback inhibition model, 285
Fick’s law, 485
field, 596

central, 304
conservative, 304
gradient, 304

Finger, 10
first integral, see invariant
flexural rigidity, 359
Floquet muliplier, 38
fluid

compressible, gas, 425
homogenous, 425
incompressible, 425
isentropic, 425
Newtonian, 425
perfect, 425
viscous, 425

flux, 34, 39, 387
flux integral, 39
force

external, 320
internal, 320
Lorentz, 305
two-particle, 320

form
primitive, 530

fountain, 210
Fourier coefficients, 282, 585
Fourier matrix, 587
Fourier series, 282, 585
Fourier time, 430, 483
Fourier transformation, 283, 587
Fourier’s law, 426, 483
Fredholm operator, 242
Fredholm’s alternative, 11, 243
Frenet, 27, 419
Frobenius matrix, 116
Froude number, 579
function

Γ -equivariant, 255
Γ -invariant, 255
Γ -symmetric, 255
absolutely continuous, 591
almost everwhere identical, 48
concave, 67
conjugate, 201
convex, 67
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functionally independent, 41
Hamilton, 205
K-convex, 67
Lagrange-, 149
objective, 149
of bounded variation, 592
perturbation, 185
piecewise continuous, 221
stress, 423
test, 196
variation, 196, 592
weight, 90

functional, 46
dual, 183
elliptic, 70
energy, 70
primal, 183
quadratic, 70

fundamental system, 32
fundamentallemma, 195

G-derivative, see derivative, Gâteaux
Gâteaux variation, 193
GA-test, see Goldstein-Armijo descend

test
Galerkin, 76
Gauß, 97
Gauß-Jordan step, 159, 163
Gauß-Legendre, 100
Gaussian number field, 596
gear

cycloid, 571
involute, 571

Gelfand, 351
geometric multiplicity, 7
Gibbs’ phenomenon, 586
Goldstein-Armijo descend test, 145
GPM, see gradient projection method
gradient, 545, 547, 548, 553

tensor, 548
gradient field, 18
gradient projection method, 156
Gram-Schmidt, 508
Grashoff number, 484, 579
Grassmann identity, 4
gravity center, 321
Green, 23, 74, 436, 476, 532, 564
group, 555

action, 555

dilatation, 558
Euclidian, 556
exact representation, 555
Galilei, 556, 559
generator, 557
infinitisimal generator, 559
Lie, 557
linear, 556
projective transformation, 557
representation, 555
scaling, 557
similar, 558
symmetry, 255
transformation, 555
translations, 556

Haar, 80
Hamilton, 43
Hamilton equations, 205
Hamilton function, 205, 211
Hamilton’s principle, 193, 204, 372
Hamilton-Jacobi-Bellman equation,

217, 219
heat capacity, 482, 578
heat conduction, 483
heat conduction coefficient, 482
heat flux, 426
Helmholtz, 24, 393
herpolhode, 343
Heun, 110
HJB, see Hamilton-Jacobi-Bellman

equation
Hodge-star-operator, 525
Holand, 101
homentropic thermodynamic process,

402
homorphism, 578
Hooke’s law, 360, 410
Huygens, 4, 311
hyperbola, 316
hyperplane, 46, 202

non-vertical, 202
supporting, 202

hypocycloid, 594

implicit function theorem, 61
index

differential, 139
of a Fredhom operator, 243
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of a problem, 137
inequality

active, 150
inactive, 150

inertia tensor, 339
inf-sup condition, see Babuska-Brezzi

condition
initial value problem, 38, 105, 118, 137,

303
autonomous, 105
parabolic, 118
singular, 137

instantaneous pole, 337
integral error term, 106
integral of action, 345, 407
integration

unit square, 102
unit triangle, 103

integration rule
composite, 97
composite Simpson, 97
composite trapezoidal, 97
suboptimal, 99

interpolating polynomial, 445, 590
interpolation

Hermite, 374
segmentwise, 83
spline, 86

interpolation property, 80, 588
invariant, 41, 205

of a vector field, 41
invariant of motion, 312
inverse mapping theorem, 61
inverse operator theorem, 59
involution, 200
isentropic equation, 427
isentropic thermodynamic process, 402
isometry, 509
isomorphism, 517, 578

canonical, 508
isothermic thermodynamic process, 402
isotropic material, 425
IVP, see initial value problem

Jacobi matrix, 54
Jordan block, 7
Jordan decomposition, 6, 7, 34
jump condition, 224

Kardan angles, 335
Kepler’s law, 206

first, 315
second, 311
third, 311

Kepler’s problem, 314
kernel of a matrix, 10
kernel of an integral, 73
Kirchhoff’s plate, 416, 465, 492
Korovkin, 85
Kronecker symbol, 505

generalized, 521
Kuhn-Tucker, 151

L-Integral, see Lebesgue integral
Lagrange, 81, 95, 195

fundamentallemma, 564
Lagrange function, 149, 169, 177, 204,

355
Lagrange multipliers, 150, 158, 352
Lagrange problem, 179

dual, 183
Lagrange’s multiplier method, 194, 354
Lamé constant, 408, 410, 580
laminar flow, 430
Laplace equation, 424, 467
law of gearing, 570
law of material, 415, 416
law of momentum, 354
law of thermodynamics

first, 401
second, 401

law of touching, 570
Lax-Milgram, 73
Lebesgue integral, 48
Legendre transformation, 200
Lie equation, 558
limit point, 265
Liouville, 33
Lipschitz, 106
Ljapunov-Schmidt reduction, 257

scaling, 258
Ljusternik, 152
locally solvable, 152, 188
Lorentz equation, 256, 287
LP, see Lagrange problem
LQP, see linear-quadratic oprimization

problem
lumping, 489
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Mangasarian-Fromowitz qualification,
173

manifold, 538
Manning coefficient, 486
mapping, 577

bijective, 577
injective, 577
surjective, 577

Maratos effect, 175, 231
mass matrix, 374
material theory, 403
matrix

characteristic, 35
circulant, 281
cofactor, 5, 392
compliance, 412
condition, 9
design, 446, 462
diagonalizable, 583
diagonally dominant, 583
edge, 158
elasticity, 411, 412
element, 379
Fourier, 282
fundamental, 33, 449, 454
gradient, 158
Hermitian, 583
Hesse, 146
idempotent, 583
involutoric, 583
Jacobi, 19, 133, 148
Lagrange, 11, 444
M-, 8
mass, 374, 443
nilpotent, 583
node, 379
non-negative, 583
norm, 582
normal, 6, 583
normalizable, 583
operator, 411, 414, 415
orthogonal, 583
permutation, 583
positive definite, 583
properties, 581
real symmetric, 583
reducibel, 583
reflection, 12
regular, 3

rotation, 15
rotation, fundamental, 334
similar, 583
singular, 3
stiffness, 374, 443
stochastic, 583
support, 379, 380
unitary, 583
Vandermonde, 127

matrix pencil, 139
matrix product, 2
membrane, 424, 575
meridian, 336
method

A0-stable, 118
A(α)-stable, 118
A(0)-stable, 118
A-stable, 118
Adams, explicit, 122
Adams, implicit, 121
backward differentiation, 123, 281
BFGS, 147
consistent, 107
Crank-Nicholson, 472
diagonal implicit, 119
Dormand-Prince, 119
Euler, explicit, 105
Euler, implicit, 107
explicit, 107, 110
extrapolation, 107
fractional step, 472
gradient projection, 156
Heun, 109
imbedded, 108
implicit, 107, 109, 110
L-stable, 118
multiple shooting, 130
multistep, 111
Newton, 130, 132, 147
one-step, 107
one-step, r-stage, 109
penalty, 171
predictor-corrector, 121, 122
Ritz, 76, 282
Rosenbrock, 119
Runge-Kutta, 109
Runge-Kutta, semi-explicit, 140
Runge-Kutta-, full implicit, 124
Runge-Kutta-Butcher, 127
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Runge-Kutta-Chipman, 128
Runge-Kutta-Ehle, 127
Runge-Kutta-Gauß, 127
semi-implicit, 110
steepest descend, 146
stiffly accurate, 138
strongly stable, 112
variable metric, 146

metric, 507, 551
metric tensor, 544, 551

contravariant, 508, 540
covariant, 507, 540

MF, see manifold
midpoint rule, 95
minimum norm property, 14
minimum problem, 149, 177, 179, 365
mixed problem, 472
modul, 571
moment, 364

deviation, 339
inertia, 309, 339, 360, 583
inertia, polar, 360
of force, 4, 301, 306, 583
total, 322

moment of inertia
polar, 340
torsion, 383

moments, 90
momentum, 583

generalized, 357
monodromy matrix, 38, 272
monomial, 82
Moore-Penrose inverse, 13
Morley’s polynomial, 102
Morley’s triangle, 449, 454
motion

relative, 329
rigid body, 398
simple, 396

moving frame, 40, 336
MP, see minimum problem, see

minimum problem
MR, see multiplier rule
multiplicity

algebraic, 7, 245
geometric, 7, 245

multiplier rule, 151, 297
multistep method

order, 112

N-body problem, 322
Navier-Stokes equations, 427, 429, 472
NBV, see space of functions of bounded

variation
Nelder & Mead, 148, 192
Newton, 319
Newton’s axiom, 303, 319, 354
Newton’s law, see Newton’s axiom
Newton-Cotes, 95
niveau set, 146
no-slip condition, 480
node

pending, 441
node vector, 446
non-conforming method, 440
non-Newtonian fluid, 426
norm

operator, 8
normal stress, 409
NOS, see orthogonal system
null set, 591
null space, see kernel of a matrix

open mapping theorem, 59
operator

adjoint, 57, 73, 243, 269
Fredholm, 242
integration, 531
Laplace, 19, 547, 550, 554
linear, 57
nabla, 19
self-adjoint, 290
symmetric, 73

operator equation, 246, 258
operator norm, 46
optimality condition, 158
optimization

linear, 155
optimization problem, 169

convex, 149
differentiable, 149
dual, 162
linear-quadratic, 164
primal, 162
simplex, 162

orbit, 39, 558
heteroclinic, 307
homoclinic, 307

orbit problem, 228
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order cone, see positive cone
order of a method, 106, 107, 110, 124
orthocycloid, 209, 593
orthogonal complement, 10
orthogonal system, 507
orthonormal system, see orthogonal

system
oscillation

beam, 372
bending, 368
rod, 369

oscillator, 30, 137
harmonic, 314

osculating plane, 26

p-form
exterior, 520

parallel axes theorem, 340
parallelepiped, 5
parallelogramm identity, 47
parameter of an ellipse, 315
Parseval’s equation, 588
partial order, 62
partition of unity, 82
patch test, 440, 452, 462
Peano, 96
Peclet number, 579
penalty costs, 171
penalty method, 171
pendulum, 308

double, 565
pericenter, 313
perigee, 313, 331
perihelion, 313
permutation, 520
Pfaff, 526
phase condition, 133
phase curve, 39, 307
Piola identity, 393
Piola transformation, 392, 403
pitch circle, 569
pitch point, 569
pivot point, 159
pivot row, pivot column, 163
plate

clamped, 419
Kirchhoff, 415, 422
Reissner-Mindlin, 563
shear-rigid, 415

simply supported, 419
plate rigidity, 408, 417
Poincaré, 529
Poincaré-Friedrichs inequality, 51, 437
Poinsot motion, 343
point

critical, 144
interior, 52
Kuhn-Tucker, 151
material, 387
radial, 52
regular, 39, 40, 265
singular, 39, 151, 246
space, 387

Poisson number, see Poisson’s ratio
Poisson’s equation, 290
Poisson’s ratio, 375, 408
polar coordinates, 309
polar equation, 315
polar factorization, 10
polhode, 343
polynomial

Hermite, 83
Chebyshev, 92
Jacobi, 92
Lagrange, 82, 442
Legendre, 92
Newton, 83
Newton-Gregory, 121
orthogonal, 90
Taylor, 83

polynomial ansatz, 445
Pontrjagin, maximum principle, 217,

225
potential, 24, 304

gravitation, 314
potential criterium, 24
potential field, 24
Prandtl number, 484, 486, 579
pre-conditionisher, 9
pre-order, 62
pressure

specific, 427
pressure Poisson equation, 434
principal invariants, 6
principle

complementary energy, 204
D’Alembert’s, 350, 354, 355
energy, 353
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extremal, 353, 377, 406
Gauss, 306
Hamilton’s, 206, 306, 345, 350, 355,

406
Jacobi’s, 356
Lagrange’s, 306
of complementary energy, 202
optimality, 216

principle of least action, see Hamilton’s
principle

principle of virtual work, 353
problem

extremal, 194
heated flow, 134
multibody, 136, 349
of index 1, 137
saddlepoint, 181
variational, 196
weak form, 436

product
dyadic, 2
exterior, 522
Kronecker, 110
tensor, 513

profit function, 216
projection, 4, 74
projection method

dual, 166
gradient, 169
primal, 164

projector, 12, 60, 244, 583
orthogonal, 75

pseudo inverse, see Moore-Penrose
inverse

QR decomposition, 13
quadratic form, 364, 377
quasimin property, 69
quaternions, 16, 596
quotient space, 58

R-Integral, see Riemann integral
radius vector, 310
Raleigh number, 484
range of a matrix, 10
range theorem, 10, 59
rank condition, 152, 165, 169

modified, 156
Rannacher, 452

Rayleigh quotient, 367
Rayleigh-Ritz inequality, 366
reentry problem, 236
reflector, see reflection matrix, 583
regular solution, 211
regularity condition, 60, 197, 211
relative interior, 180
Rellich, 50
resonance, 34, 35
response function, 403
restoration, 170
Reynolds number, 430, 476, 579
Reynolds’ transport theorem, 562
Riccati equation, 219
Riemann integral, 48
Riemann-Stieltjes integral, 592
Riesz, 72
Riesz index, 245
Riesz mapping, 58, 73, 508, 519
rigid motion, 334
RKM, see Runge-Kutta method
Robinson, 188
roboter, 566
Rodriguez, 91
root condition, 112
rotation, 15, 550, 554, 583

rigid, 309
rotation axis

instantaneous, 337
rotation field, see vorticity
rotation theorem, see theorem of Stokes
rotor, 342
RT element = Rannacher-Turek

element, 464
Runge-Kutta method, 352

saddlepoint, 69, 181
saddlepoint criterium, 69
saddlepoint problem, 203, 472
sawtooth oscillation, 587
scalar product, 2, 3, 47, 411, 507, 537

canonical, 509
of alternating tensors, 524
of tensors, 516

Schmidt number, 486, 579
Schur complement, 60
sectorial area, 310
sensitivity, 161, 378
separation of variables, 373



622 Index

separation theorem, 64
separatrix, 40, 307
servo-problem, 231
set

Γ -invariant, 255
closed, 45
complete, see set, closed
convex, 62
dense, 47, 593
of feasible points, 149
star-shaped, 530

set of measure zero, see null set
seven-body problem, 566
shadow price, 161, 215
shallow water equations, 487
shape function, 442
shear modulus, 382, 580
shear stress, 409
shear-correcture factor, 563
shell, 541
shift, 409
Simpson, 96
singular point, 246
singular values, 13
singularity, 468
slack variable, 162
Slater condition, 173, 179
slip condition, 480
Sobolev, 50
Sobolev norm, 49
Sobolev, imbedding theorem, 439
solution pair, 167
space, see vector space

affine, 46
Banach, 45, 46, 57
configuration, 565
dual, 47
Euclidian, 537
Hilbert, 47, 72
of coordinates, 3
of functions of bounded variation, 592
quotient, 58
reflexive Banach, 47
scalar product, 47, 507
separable, 593
Sobolev, 49

spanner, 492
spectral radius, 8, 583
spectrum, 8, 36, 583

neutral, 36
stable, 37
unstable, 37

spline
cubic, 87
cubic interpolation, 88
natural, 89, 90

SPP, see saddlepoint problem
spring constant, 359, 365
SQP, see sequential quadratic

programming
square-wave oscillation, 586
St Venant-Kirchhoff material, 410
stability criterium, see root condition
stability function, 114
stability region, 114, 116
stabilization effects, 472
state regulator problem, 218
static condensation, 474
Steiner, 340
step length, 144
step length control, 108
stiffness matrix, 374, 376, 377
strain tensor, 409
stream function, 431
stream-function vorticity form, 484
stress tensor, 409

Piola-Kirchhoff, 392
Piola-Kirchhoff, first, 404
Piola-Kirchhoff, second, 404

stretch, 409
subspace

fixed-point, 255
support condition, 375
surface of revolution, 208
symplectic normal form, 279
system

dynamically undetermined, 379
fundamental, 7
Hamilton, 41
hyperbolic, 562
statically determined, 379
statically undetermined, 379

tangential space
abstract, 525
contravariant, 526
covariant, 526

tangential vector, 544, 558
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abstract, 526
tension rod, 373, 376
tensor

ε, 520
(p,q)-, 510
alternating, 520
contravariant, 510
covariant, 510
elasticity, 405, 541
inertia, 309, 584
metric, 548, 551
rejuvenation, see tensor, contraction
simple, 513
skew-symmetric, see tensor, alternat-

ing
strain, 396, 518, 541
stress, 396, 397, 518
unit, 505
volume unit, 544, 549

tensor field, 18, 511
tensor product, see scalar product
term

convective, 473
terminal payoff, 197
terminal time, 213
test function, 198, 417
tetrahedron, 102
theorem of Gauß, 22, 532
theorem of Stokes, 22, 532
thermal conductivity, 426, 482, 579
thermal distribution, 444
thermal expansion coefficient, 482
thermal flux vector, 483
thermal permeability, 483, 579
thermal source density, 483, 578
three-body problem

restricted, 330
thrust problem, 227
top, 342

nutation, 335, 347
precession, 335, 347
symmetric, 343
symmetric, heavy, 345
symmetric, leaded, 344

torque, 583
torsion, 26, 382
torsion bar, 382
torsion modulus, see shear modulus
trace of a matrix, 3

trace operator
for tensors, 516

track velocity, 315
trajectory, 389
transformation, 555

contravariant, 506
covariant, 506
similarity, 6

transformation group, 39, 389
translation operator, 111
transport theorem

line integrals, 395
Reynolds, 394
surface integrals, 394
volume integrals, 394

transversality condition, 199, 213
trapezoidal rule, 96, 107, 129, 283
trilinear form, 473
Turek, 452
turning point, 265

quadratic/cubic, 266

unfolding, 252

Van der Pol’s equation, 137, 285
variation, first, Gâteaux, 53
variational problem, 306
vector

aligned, 4, 302
binormal, 25
chain of principal, 7
curvature, 25
energie-flux, 398
free, 537
normal, 25, 538
normal, of area, 21
point, 537
principal, 6
screw, 302
strain, 382, 411
stress, 382, 411
tangential, 25, 539, 545
thermal-flux, 398
torsion, 25

vector field, 17, 542
abstract, 526
contravariant, 511
covariant, 511
local similar, 40
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solenoidal, 24
stationary, 39

vector potential, 23
vector product, see cross product
velocity

sectorial, 311
virtual displacement, 193
viscosity, 476, 482, 485, 579

artificial, 472, 478
eddy, 486
kinematic, 425
shear, 425
volume, 425
volumetric, 425, 580

Voigt, 411

volume force density, 368, 578
Von Karman, 423, 574
vorticity, 18, 23, 431

wave
solitary, 491

wedge product, see exterior product
Weierstrass, 85
well-defined problem, 439
Wronski matrix, 34, 37

Young’s modulus, see elasticity modulus

Zermelo’s problem, 229
zero-gearing, 572
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