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Preface

I have taught computer applications course for engineers in the mechanical 
and civil engineering departments at Florida Atlantic University (FAU), Boca 
Raton, Florida, for many years. I first started teaching the course using the 
Fortran language. Some years later, the department switched to the C/C++ 
language. More recently, the course has been taught using MATLAB®. The 
advantage of using MATLAB over many other programming languages is 
that MATLAB contains functions that enable the user to solve various math-
ematical problems, such as interpolation, roots of algebraic equations, the 
relative minimum and maximum of a function, a system of linear algebraic 
equations, curve-fitting problems, definite integrals, a system of ordinary 
differential equations, and many others, some of which require special tool 
boxes at an extra cost. There are also programming techniques available in 
MATLAB but not available in either Fortran or C/C++. Because not all engi-
neering firms use MATLAB, I decided, in writing this textbook, to first cover 
some very basic building blocks applicable to most, if not all, computer pro-
gramming languages used by engineers before getting into programming 
that is specific to MATLAB. The syntax of these basic building blocks may be 
different in different languages, but the concept is the same. The basic build-
ing blocks in programming covered in Chapters 2 through 4 are as follows: 

 1. Variable types, scalars, vectors, and matrices
 2. Assignments (which, in most cases in this book, are arithmetic 

statements)
 3. Input/output statements
 4. Loop statements
 5. Conditional operators
 6. Functions (built-in and self-written)

Before MATLAB, it was rare that I would write a computer program without 
using a for loop. With that in mind, in this textbook, I introduce for loops 
as early as is feasible. The authors of most other MATLAB textbooks intro-
duce for loops at a much later stage in their books.

Although students at FAU take the computer programming course in their 
sophomore year, having taken Calculus II, the textbook can also be used at 
the freshman level (the first eight chapters do not involve calculus). Although 
there are many engineering example applications, the governing equations 
are given without derivations. Therefore, students not only see variables x and 
y but also see variables of pressure (p), temperature (T), time (t), velocity (V), 
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voltage (v), current (i), and so on. The chapters include review sections, 
which may be used by the course instructor to ask the class questions on the 
material that has been recently covered.

The primary objectives of the textbook are as follows: 

 1. To teach the reader the basic concepts in writing a computer 
 program (script) on the MATLAB platform, although many of the 
concepts taught are also applicable to other computer programming 
languages.

 2. To familiarize the reader with many of MATLAB’s built-in functions, 
some of which can be used to solve several mathematical problems, 
such as interpolating for properties between table values, finding 
the roots of transcendental and polynomial equations, determin-
ing the relative minimum or maximum of a function, and solving a 
system of linear algebraic equations and curve fitting. The last two 
chapters involve calculus and thus would only be applicable for a 
course at the sophomore or higher level. These last two chapters 
cover MATLAB’s functions for determining the value of a definite 
integral and for solving a system of ordinary differential equations.

I have tried to organize the material so that the student gets to write a mean-
ingful program within several weeks of starting the course. The students 
are required to add a comment section to their programs describing what 
the program is about. Nearly all exercises and projects require the student to 
produce tables or graphs or both.

The text contains many complete sample MATLAB programs and their 
results, including tables, graphs, and comments what the program is about. 
These examples should provide guidance to the student on completing the 
exercises and projects that are listed in each chapter. Projects are at the end 
of the chapters and are usually more difficult than the exercises. Many of 
the projects are nontrivial. In recent times, I have used several exercise prob-
lems as in-class exams in which students submit their MATLAB programs 
and results to me on blackboard. Projects are given as take-home exams to 
be submitted to me within 1 or 2 weeks, depending on the difficulty of the 
project. The projects require the student to write a computer program in 
MATLAB to solve a mathematical or engineering-type problem.

The computer applications course that I teach is run as a lecture-laboratory 
course. The advantage of running the course in this manner is that the 
instructor is in the computer laboratory to help the student debug his or her 
program. This includes the example programs as well as the exercises and 
the projects. See the Table of Contents to get a more complete description of 
the material covered in this textbook.
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All example scripts in this book are available for download on the CRC 
Press Website at https://www.crcpress.com/MATLAB-Essentials-A-First-
Course-for-Engineers-and-Scientists/Bober/p/book/9781138032378 .

MATLAB® is a registered trademark of The MathWorks, Inc. For product 
information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

https://www.crcpress.com/MATLAB-Essentials-A-First-Course-for-Engineers-and-Scientists/Bober/p/book/9781138032378
https://www.crcpress.com/MATLAB-Essentials-A-First-Course-for-Engineers-and-Scientists/Bober/p/book/9781138032378
mailto:info@mathworks.com
http://www.mathworks.com
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1
Computer Programming with MATLAB® 
for Engineers

1.1 Introduction

Most, if not all, engineering companies use computers in one way or the 
other. Many employ computer programmers to solve company-specific 
problems. These companies may also purchase or license software pack-
ages such as C/C++ or MATLAB®, and install the programs on their 
computer systems to enable their programmers and engineers to efficiently 
solve company-specific problems. The field of engineering, in particular, 
lends itself to analytical and numerical solutions due to the highly math-
ematical nature of the field. Analytical and numerical methods invariably 
involve writing computer code to solve a problem of interest. Mathematical 
 methods for solving many types of engineering problems use concepts from 
linear algebra, root extraction of polynomial and transcendental equations, 
integration, curve fitting, differential equations, and so on. MATLAB, using 
a variety of analytical and numerical methods, has created built-in  functions 
that enable the user to readily employ these mathematical methods. 
However, the user needs to know some programming techniques to effec-
tively make use of these built-in functions. Many examples involving the 
use of these built-in functions are covered in this textbook.

1.2 Computer Usage in Engineering

Some of the ways that the computer is used in engineering are as follows:

 1. Solving mathematical models of physical phenomena
 2. Storing and reducing experimental data
 3. Controlling machine operations
 4. Communicating with other engineers and technicians on a particular 

project
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This textbook is mostly concerned with item 1, that is, solving mathematical 
models of physical phenomena.

The engineer’s interest lies in

 1. Designing new products or improving existing ones
 2. Improving manufacturing efficiency
 3. Minimizing cost and power consumption
 4. Maximizing yield and return on investment
 5. Minimizing time to market
 6. Research on developing new products

These can be accomplished by

 1. Full-scale experiments. May be prohibitively expensive.
 2. Small-scale model experiments. Still very expensive, and extrapola-

tion is frequently questionable.
 3. A mathematical model that is the least expensive and faster. It can 

provide more detailed answers and different cases under differ-
ent conditions and can be run quickly. If there is confidence in a 
 mathematical model, it will be used in preference to experiment.

1.3 Mathematical Model

Physical phenomena are described by a set of governing equations. Numerical 
methods are frequently used to solve the set of governing equations, since 
closed-form solutions for many types of problems are not available. Even 
when closed-form solutions are available, the solution may be sufficiently 
complicated that the computer is needed to calculate the desired answer. 
Numerical methods invariably involve the computer. The computer per-
forms arithmetic operations upon discrete numbers in a defined sequence 
of steps. The sequence of steps is defined in the program. A useful solution 
is obtained if

 1. The mathematical model accurately represents the physical phe-
nomena; that is, the model has the correct governing equations.

 2. The numerical method is accurate.
 Note: If the governing equations are not correct, the solution will be 

worthless regardless of the accuracy.
 3. The numerical method is programmed correctly.
 4. This book is mainly concerned with items (2) and (3).
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1.4 Computer Programming

The advantage of using the computer is that it can carry out many cal-
culations in a fraction of a second; at the time of this writing, computer 
speeds are measured in teraflops (trillions of floating-point operations per 
second). However, to leverage this power, we need to write a set of instruc-
tions, that is, a program or script. For the problems of interest in this book, 
the digital computer is only capable of performing arithmetic, logical, and 
graphical operations. Therefore, arithmetic procedures must be developed 
for evaluating integrals, determining roots of a transcendental equation, 
solving a system of linear equations, solving differential equations, and so 
on. The arithmetic procedure usually involves a set of algebraic equations. 
A computer solution for such problems involves developing a computer 
program that defines a step-by-step procedure for obtaining an answer 
to the problem of interest. The method of solution is called an algorithm. 
Depending on the particular problem, we might write our own algorithm, 
or, as we shall see, we can also use the algorithms built into a package like 
MATLAB in order to carry out well-known algorithms for solving many 
types of mathematical problems.

1.5 Components of a Typical Desktop/Laptop Computer System

 1. Input devices, typically includes a keyboard and mouse, but may 
also include a touch-screen, a microphone, or a similar device. 
Input devices provide a mechanism for humans to provide data and 
instructions to the computer.

 2. A Central Processing Unit (CPU) consisting of a Control Unit, 
an Arithmetic Logic Unit (ALU), and registers. The Control Unit 
fetches instructions from memory, executes the instructions, and 
then returns the results to memory. The ALU performs arithmetic 
and logical operations. Registers are high-speed local memory 
locations, and are used to provide operands and store results from 
the ALU.

 3. A Memory/Storage Unit in which data and instructions are stored. 
There are two types of memory: Main Memory and Secondary 
Memory. Main Memory is used for temporary storage of programs 
and data, and is commonly implemented with Dynamic Random 
Access Memory (DRAM) devices. Items in Main Memory are not 
saved when the computer is shut off.
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 4. Secondary Memory stores data permanently. The Secondary Memory 
commonly consists of 

 a. Hard drive: Provides semipermanent storage of programs and 
data. It is usually internal to the computer. It has a large storage 
capacity (terabytes).

 b. Optical drive (DVD): Stores programs, data, video onto a CD, or 
a DVD disk for permanent storage.

 c. Flash drive: Stores programs and data onto a removable flash 
memory stick, which can be used to transfer programs and data 
from one computer to another.

 5. Output devices, typically include a monitor or a printer, but may 
also include speakers, a projector, a VR headset, or a similar device. 
Output devices provide a mechanism for humans to receive data, 
sound, and images from the computer.

 6. Network interface allows the computer to send/receive data to other 
computers in the vicinity (a local area network, or LAN) or around 
the workplace (a wide area network, or WAN). Typical applications 
that utilize the network include file transfer, e-mail, World Wide 
Web, and streaming audio/video.

 7. The operating system (OS) provides a unified environment for soft-
ware to utilize and control the computer. The OS manages storage in 
order to enable the creation of files that are organized in folders and 
are stored to a C drive. The OS also controls booting the computer and 
instructs the display to show the desktop, and receives signals from 
the mouse in order to move the cursor. Common operating systems 
include Windows, MacOS, and Linux.

MATLAB utilizes all of the computer components described above. Users 
utilize a keyboard and mouse to write and execute scripts. The OS saves 
the scripts to storage and loads the MATLAB executable program into the 
memory. MATLAB specifies instructions for execution by the CPU, and 
subsequent display of results to the monitor or printer. The network allows 
download of documentation, access to remote MATLAB servers, and soft-
ware updates.

The memory of a computer is an ordered sequence of storage locations 
called memory cells. Each memory cell has an address indicating its relative 
position in memory. The memory cell is a collection of smaller units called 
bytes. A byte is the amount of storage required to store a single character 
(letter, number, or symbol). A byte is a collection of smaller units called 
bits. A bit takes on the value of 0 or 1, and is therefore suited for the binary 
system of numbers. Generally, there are eight bits to a byte. Each character 
or set of characters, or value, is represented by a particular pattern of zeros 
and ones. The computer can retrieve or store a value.
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1.6 Overview of Programming Languages

A program is a list of instructions to be carried out by the computer. There 
are two types of software:

 1. System Software: Performs tasks required for the operation of the 
computer, such as Windows 10, Windows 7, Unix, Linux, and so on.

 2. Application Software: Written to perform particular tasks for the per-
son using the computer. These would include programs such as 
Microsoft’s Office, AutoCAD, MATLAB, and so on. Programs writ-
ten by individuals would also be classified as Application Software.

There are different levels of computer languages. However, the computer 
can only execute programs in machine language, which is considered the 
lowest level. All higher level language instructions must be translated into 
machine language. A sequence of machine language consists of a collection 
of zeros and ones. Higher level languages include the following:

MATLAB, FORTAN, Basic, C/C++, Pascal, and so on. These higher level 
languages allow as to write programs in a more familiar and understandable 
manner than a program in machine language.

1.7 Why MATLAB?

MATLAB was originally written by Dr. Cleve Moler at the University of 
New Mexico, Albuquerque, NM in the 1970s and was commercialized by 
MathWorks, Natick, MA in the 1980s. It is a general purpose numerical 
package that allows complex equations to be solved efficiently, and sub-
sequently generate tabular or graphical output. Although there are many 
numerical packages available to engineers, many are very highly focused 
toward a particular application, for example, ANSYS for modeling struc-
tural problems using the finite element method. As of the time of this 
writing, MATLAB R2016b runs natively on Microsoft Windows, Apple 
Mac OS, and Linux. In this textbook, we will assume that you are running 
MATLAB on your local machine in a Microsoft Windows environment. It 
should be straightforward for non-Windows users to translate the usage 
descriptions to their preferred environment. In any case, these differences 
are largely limited to the cosmetics and presentation of the program, and 
not the MATLAB commands themselves. All versions of MATLAB (on any 
platform) use the same command set, and the Command Window on all 
platforms should behave identically.
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MATLAB is offered with accompanying toolboxes at additional cost to the 
user. A wide variety of toolboxes are available in fields such as statistics, 
optimization, control systems, and so on. However, in this textbook, we will 
concentrate on teaching basic elements in computer coding on the MATLAB 
platform and on fundamental numerical concepts without requiring the 
purchase of any additional toolboxes.

1.8 Programming Methodologies

There are many methodologies for computer programming, but the tasks at 
hand boil down to

 1. Studying the problem to be programmed including the geometry of 
the problem.

 2. Listing the algebraic equations specified in the problem statement. 
The equations will be based on the known physical phenomena.

 3. Selecting the most efficient computer code and numerical method 
for obtaining a solution to the problem of interest.

 4. Creating an outline or a flow chart for the program flow (today, not 
many textbooks on MATLAB recommend creating a flow chart).

 5. Writing the program using the list of algebraic equations and the 
outline or flow chart.

 6. Debugging the program by running it and fixing any syntax errors 
(programming language errors).

 7. Examining the solution to see if it makes sense.
 8. Refining and further debugging the algorithm and program flow.

Experienced programmers often omit some of these steps (or do them in 
their head), but the overall process resembles any engineering project: 
design, create a prototype, test, and iterate the process until a satisfactory 
product is achieved.

1.9 MATLAB Programming Language

MATLAB may be considered a programming or scripting language unto itself, 
but like every programming language, it has the following core components:

 1. Data types, that is, integers, floating-point numbers, strings, vectors, 
and matrices.
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 2. Operators and built-in functions (e.g., commands for addition, subtrac-
tion, multiplication, division, trigonometric functions, and log function).

 3. Control flow directives for making decisions and performing 
repeated operations (e.g., loops, alternate paths, and functions).

 4. Input/output (“I/O”) commands for receiving input from a user 
or a file and for generating output to a file or to the screen (e.g., read 
and print statements).

MATLAB borrows many constructs from other languages. For example, the 
for and while loops and the fprintf commands are from the C program-
ming language (or its descendents C++). However, the biggest difference is 
that the basic element in MATLAB is a matrix, thus providing the ability to 
manipulate large amounts of data with a terse syntax, and allowing for the 
solution of complicated problems in just a few lines of code. In addition, 
MATLAB is also very rich in presentation functions to display sophisticated 
plots and graphs.

1.10 Building Blocks in Writing a Computer Program

Most engineering computer programs will include some or all of the following 
building blocks in program development:

 1. Variable types, scalars, vectors, and matrices
 2. Assignments (which, in most cases in this book, is an arithmetic 

statement)
 3. Input/Output statements
 4. Loop statements
 5. Conditional Operators
 6. Functions (built-in and self-written)

Example programs containing these program building blocks are given 
throughout this book.

1.11 Example Programs

The example programs in this book may be downloaded from the publisher’s 
website at https://www.crcpress.com/MATLAB-Essentials-A-First-Course-
for-Engineers-and-Scientists/Bober/p/book/9781138032378. Students may 

https://www.crcpress.com/MATLAB-Essentials-A-First-Course-for-Engineers-and-Scientists/Bober/p/book/9781138032378
https://www.crcpress.com/MATLAB-Essentials-A-First-Course-for-Engineers-and-Scientists/Bober/p/book/9781138032378
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then run the example programs on their own computer and see the results. It 
may also be beneficial for students to type-in a few of the sample programs 
(along with some inevitable syntax and typographical errors), thereby giving 
the student the opportunity to see how MATLAB responds to program errors 
and subsequently learn what they need to do to fix the problem.

REVIEW 1.1

 1. List several ways engineers use the computer.
 2. List several areas of interest for engineers.
 3. List several methods that can be used in the design of new 

products.
 4. Which method mentioned in item 3 is the least expensive?
 5. List several components of a typical desktop/laptop computer 

system.
 6. Name several computer languages used today and in the past 

by Engineers.
 7. What is the lowest level computer language and what number-

ing system does it use?
 8. For engineers, what is the principle advantage of using MAT LAB 

over several of the other computer programming languages?
 9. List several recommendations in developing a computer 

 program for solving a particular problem.
 10. List several building blocks available in developing a program 

in MATLAB or in most other Engineering Software Platforms 
such as C or C++.
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2
MATLAB® Fundamentals

2.1 Introduction

MATLAB® is a software program for numeric computation, data analysis, 
and graphics. One advantage that MATLAB has for engineers over program-
ming languages such as C or C++ is that the MATLAB program includes 
functions that numerically solve 

 1. Large systems of linear algebraic equations.
 2. Roots of transcendental and polynomial equations.
 3. One- and two-dimensional definite Integrals.
 4. A system of first-order ordinary differential equations.
 5. Statistical problems.
 6. Optimization problems.
 7. Control systems problems.
 8. Many other types of problems encountered in engineering.

MATLAB also offers toolboxes (which must be purchased separately) that 
are designed to solve problems in specialized areas.

In this chapter, we first familiarize the reader with some of the basic ele-
ments of the MATLAB platform. This allows the reader to shortly learn to 
do computations in the Command Window and to write and run a script 
in MATLAB. This is followed by discussing the basic building blocks in 
constructing a computer program (script) for solving mathematical- and 
engineering-type problems on the MATLAB platform. These building blocks 
are applicable in any programming language, the syntax may be different, 
but the concept is the same. Recall at the end of Chapter 1, the building 
blocks that was mentioned and which are covered in this book are 

 1. Variable types, scalars, vectors, and matrices.
 2. Assignments (including arithmetic statements).
 3. Input/Output statements.
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 4. Loop statements.
 5. Conditional Operators (leading to alternate paths in the program).
 6. Functions (built-in and self-written).

Items (1)–(4) are covered in this chapter as well as some of the elementary 
built-in functions of item (6). Items (5) and (6) are covered in Chapter 3. 
Examples of MATLAB programs that solve various types of mathematical 
problems, many of which are related to engineering-type problems, are 
covered throughout this book.

2.2 MATLAB’s Desktop

Mathworks, the company that developed MATLAB, normally update their 
version of MATLAB every six months. In this textbook, Sections 2.2 and 2.3 
discusses the MATLAB desktop windows and how to construct a script in 
MATLAB based on MATLAB version R2016b.

Under Microsoft Windows, MATLAB may be started via the Start Menu 
or by clicking on the MATLAB icon on the desktop. Upon startup, a 
new window will open containing the MATLAB desktop (not to be con-
fused with the Windows desktop), and one or more MATLAB windows 
will open within the MATLAB desktop (see Figure 2.1 for the default 
configuration).

The main windows are the Command Window, Current Folder, and 
Workspace. You can customize the MATLAB windows that appear upon 
startup by clicking on Layout in the Toolstrip and checking (or unchecking) 
the windows that you wish to appear on the MATLAB desktop. Figure 2.1 
shows the Command Window (in the center), the Current Folder Window 
(on the left), the Workspace Window (on the right), and a Long Narrow box 
containing the Path to the Current Folder (just below the Toolstrip and just 
above the Command Window). MATLAB designates this Long Narrow 
box as the Current Folder Toolbar. These windows and the Current Folder 
Toolbar are summarized as follows:

• Command Window: In the Command Window, you can enter com-
mands and data, make calculations, and print results. You can 
write a script in the Command Window and execute the script. 
However, writing a script directly into the Command Window is 
discouraged because it will not be saved, and if an error is made, 
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the entire script must be retyped. By using the up arrow (↑) key 
on your keyboard, the previous command can be retrieved (and 
edited) for reexecution.

• Current folder toolbar: This Toolbar gives the path to the Current 
Folder. To run a MATLAB script, the script needs to be in the folder listed 
in this Toolbar.

• Current Folder Window (on the left): This window lists all the files in 
the Current Folder whose path is listed in the Current Folder Toolbar. 
By double clicking on a file in this window, the file will open within 
MATLAB.

• Workspace Window: This window will be on the right for a three-
column option (see Figure 2.1) or below the Current Folder Window 
for the two-column option (see Figure 2.2). The two- or three-column 
option can be selected from the layout options in the Toolstrip. 
The  Workspace Window contains all the commands entered into 
the Command Window.

• Editor Window: To open this window, click on the New Script icon 
in  the Toolstrip in MATLAB’s desktop (see Figure 2.1). This will 
open the Editor Window (see Figure 2.3). This window may be used 
to create, edit, and execute MATLAB scripts (also called programs). 
Figure 2.4 contains the script for Example 2.1.

FIGURE 2.1
MATLAB desktop windows for the three-column option.
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FIGURE 2.2
MATLAB desktop windows for two-column option.

FIGURE 2.3
Editor Window just above the Command Window.
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2.3 Constructing a Script (Program) in MATLAB

In the first few examples the reader is asked to type-in several commands in 
the Command Window. Subsequent examples involve creating scripts in the 
Editor Window. The following list summarizes the steps for writing a script 
in MATLAB: 

 1. If available, start the MATLAB program by double-clicking on the 
MATLAB icon on the Window’s desktop. If not available, go to 
the Window’s Start Menu, click on All Programs, find the MATLAB 
program among the list of available programs, and double-click 
on it. This will open up the MATLAB desktop.

 2. Click on the New Script icon in the Toolstrip in MATLAB’s desktop. This 
brings up a new Editor Window just above the Command Window (see 
Figure 2.3).

 3. Type your program into the Editor Window.

FIGURE 2.4
Script for Example 2.1.



14 MATLAB® Essentials

 4. When you are finished typing in the program, save the script by click-
ing on the Save icon in the Toolstrip (see Figure 2.3). A dialog box will 
open in which you are to select the folder (left column), and in which 
you are to  type-in the name of the script in the File Name Dialog 
Box (see Figure 2.5). By default, your program will be saved with the 
.m extension. It is best to use a folder that contains only your own 
MATLAB scripts.

 5. You may then run the script in the Editor Window by clicking on the  
arrow located just above the Run icon in the Toolstrip (see Figure 2.6). 
This icon is a Save and Run Command. Note: In the Editor Window, 
the arrow is green.

  Alternatively, you can run the script from the Command Window 
by typing the script name (without the .m extension) after the MATLAB 
prompt (>>). For example, if the program has been saved as heat.m, 
then type heat after the MATLAB prompt (>>), as shown below:

 >> heat

Select folder Type in name of  script

FIGURE 2.5
Select folder (left column) and type in the name of the script in the file name dialog box.



15MATLAB® Fundamentals

 6. If you try to run your script and your script is not in the Current 
Folder whose path is listed in the Current Folder Toolbar, a dialog 
box will appear giving you the option of changing the folder listed 
in the Current Folder Toolbar to the folder containing your script 
(see  Figure 2.7). If a path to the folder containing the script has 
already been established, click on the Change Folder button.

 7. If you need additional help on getting started, you can click on the 
Help icon  in the Toolstrip in MATLAB’s desktop (see Figure 2.2). 
If you are in the Editor Window, click on Home (upper left) to 
get back to MATLAB’s desktop. In the window that opens (see 
Figure 2.8) you can type-in an item of interest in the search box, or 
you can click on the MATLAB option that brings up the window 
shown in Figure 2.9.

 8. Whenever you write a script, it is good practice to add comment lines 
at the beginning of the script describing what the program is about. 
This is accomplished by placing a % sign in front of a statement in the 
script. Example:

% This program plots velocity vs. time.

FIGURE 2.6
Save and Run icon in the toolstrip.
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FIGURE 2.7
Dialog box for changing folder or path.

FIGURE 2.8
Help window.
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REVIEW 2.1

 1. What are the two alternative ways to start the MATLAB 
program?

 2. What are the windows in the MATLAB’s default desktop?
 3. It is best to write a MATLAB script (program) in the Editor 

Window. From MATLAB’s default desktop, how does one 
open the Editor Window?

 4. After you have completed writing a script in the appropriate 
window, what is the next step?

 5. Name two ways to execute a script.
 6. What happens if you try to run a script and the folder contain-

ing the script is not listed in the Current Folder Toolbar?
 7. In MATLAB, what is the file name extension for saved scripts?
 8. How does one establish a comment line in a script?

FIGURE 2.9
Topics in the MATLAB Help window.



18 MATLAB® Essentials

2.4 Variable Names and Types

• Variable names must start with a letter.
• Can contain letters, digits, and the underscore character (no spaces).
• Can be of any length, but must be unique within the first 19 characters.

NOT E:  Do not use a variable name that is same as a file name, a MATLAB function 
name or a self-written function name.

A variable can be a scalar (A = 3.5), a vector (A = [2 4 6 8]), or a matrix 

 A=
























1 3

6 5

A scalar has just one value in the computer memory, whereas a vector of n 
elements will have n values in the computer memory, and a matrix of n rows 
and m columns will have n m×  values in the computer memory.

To make it easier to follow ones program, it is best to use variable names that are 
similar to the variables used in a problem statement.

MATLAB command names and variable names are case sensitive.
Numerical variables can be either an integer (no decimal point) or a float-

ing point number (one with a decimal point). Integers can be stored in either 
8 bits (numbers less than 127 or greater than −127), 32 bits (numbers less 
than 32,767 or greater than −32,767) or 64 bits of memory. In MATLAB, the 
default for floating point numbers is double precision that requires 64 bits of 
memory. You can specify variables to be single precision that only requires 
32 bits of memory. Calculations carried out in single precision are faster than 
carrying out calculations in double precision. For all problems in this text-
book, time of execution is not a problem. Numbers larger than approximately 
3 4 10 3 4 1038 38. .× ×or less than −  requires double precision.

When defining a variable, either in the Command Window or in a script, 
you should place a semicolon after the variable definition when you do not 
want the command echoed to the screen. In the absence of a semicolon, 
the defined variable appears on the screen. For example, if you entered the 
following command in the Command Window:

>> A = [3 4 7 6]

In the Command Window, you would see

A =
 3 4 7 6
>>
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Alternatively, if you add the semicolon after the command statement, then 
your command is entered but there is nothing printed to the screen, and the 
prompt immediately appears for you to enter your next command:

>> A = [3 4 7 6];
>>

2.5 Assignment Operator

The assignment operator is of the form

 Variable name = an expression

In most cases in this book the expression will be an Arithmetic Statement 
involving constants, Arithmetic Operators, variables, MATLAB functions 
and self-written functions. The one exception would be when we are deal-
ing with characters and strings. Many MATLAB built-in functions that may 
be used in an arithmetic statement are discussed later. The way it works is 
that the Arithmetic Logic Unit in the computer will determine a value of 
the  expression on the right-hand side of the = sign and replace the value 
of the variable on the left-hand side of the = sign with the value determined 
by the expression on the right-hand side of the = sign. For example,

Suppose you had the following assignments:

x=10; y=20;
x=x+y;

What the computer does is to determines the value of x+y, which equals 
30, and replaces the original value of x, which is 10, with the new value 
of 30. Although, algebraically, the expression x=x+y does not make sense, 
since that would make y=0, it does make sense in programming language. 
Although, algebraically you can write x+y=20, you cannot do this in the 
programming language. There needs to be a single variable on the left-hand 
side of the = sign.

NOT E:  In an Arithmetic Statement, all variables on the right-hand side of the equal 
sign must be previously defined (given a numerical value) in the program.

You may have noticed that in the variable assignments above that we placed 
a semicolon at the end of the assignment. This avoided the variables from 
being echoed to the screen.
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2.5.1 Arithmetic Operators

The Arithmetic Operators used for addition, subtraction, multiplication, 
division, and exponentiation are listed below: 

+ Addition
− Subtraction
* Multiplication
/ Division
^ Exponentiation

For Arithmetic Statements that contain several Arithmetic Operators and 
parentheses, there is a specific order that is used in evaluating the arithmetic 
expression. First, the Arithmetic Logic Unit, going from left to right, searches 
for parentheses, if it finds them, it will carry out the operations inside all the 
parentheses in the following order: exponentiation, multiplication and divi-
sion, and addition and subtraction. It then returns to the beginning of the 
arithmetic statement and carries out the operations in the same order listed 
above.

Knowing this order may help you in deciding where parentheses are 
required when you write arithmetic statements. Suppose you had an expres-
sion y c m= 2 , you might be tempted to write the expression in the MATLAB 
Command Window (after defining c and m) as

clc;
c = 36.0; m = 3.0;
y = c/2*m 

This would give the wrong answer for y. MATLAB would divide c by 2 
and multiply the result by m. The correct ways to write the expression are

y = c/(2*m) or c/2/m

In the first expression, MATLAB will first carry out the expression within 
the parentheses, so that the 2*m becomes one number, and then c is divided 
by this one number. In the second expression, there are no parentheses, so 
MATLAB, proceeding from left to right, will calculate c/2, then divide the 
result by m. Try typing these expressions in the Command Window and 
observe the two different answers you get for y.

To display a variable value, just type the variable name without the 
semicolon, and the variable will appear on the screen.

Try typing these commands into the Command Window and verify the 
results:
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clc;
x = 5; y = 10; z = x + y <enter>
w = x – y <enter>
z = y/x <enter>
z = x*y <enter>
u = x^2 <enter>

2.6  Some MATLAB Features, Commands, 
Special Items, and Built-in Functions

2.6.1 Trigonometric and Other Useful Functions

Whenever you write a script, you should add comment lines to the script that 
describes what the script is about. You do this by entering the percent sign (%) 
at the beginning of the line. Example:

% This script determines the velocity of a free falling body …

You may also add a comment after a particular command.
Whenever you write a script, it is a good practice to clear out variables that 

are left in the workspace from previous programs, since there could be a conflict 
between the variables used in the present program with those used in a previ-
ous program. You may also wish to clear contents in the Command Window, so 
that only results from the present program appear in the Command Window. 
You may accomplish this by placing the following commands at the beginning 
of your script (after your comment lines describing what your script is about).

 clear;  removes all variables and data from the work space.
 clc; clears the Command Window.

If you wish to clear a graphics window, use

 clf; clears the Graphics Window.

If you find that your program is running in an infinite loop, you can halt the 
program by hitting the ctrl and C keys simultaneously, that is,

 ctrl-C  aborts a program that may be running in an infinite loop.

Commands are case sensitive. Use lowercase letters for commands.
The quit command or exit command terminates MATLAB.
The save command saves variables or data in the work space of the 

Current Folder. The data file name will have the .mat extension.
The basic data structure in MATLAB is a matrix.
A matrix is surrounded by brackets and may have an arbitrary number of 

rows and columns; for example, the matrix 

 
A =











1 3
6 5
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may be entered into MATLAB as

>> A = [ 1 3 <enter>
 6 5 ]; <enter>

or

>> A = [ 1 3 ; 6 5 ]; <enter>

where the semicolon within the brackets indicates the start of a new row 
within the matrix. In the above expression for matrix A, row 1 are the  elements 
1 and 3, row 2 are the elements 6 and 5, column 1 are the elements 1 and 6, and 
column 2 are the elements 3 and 5.

A matrix of 1 row and 1 column is a scalar. Example:

>> A = [ 3.5 ];

Alternatively, MATLAB also accepts A=3.5 (without brackets) as a scalar.
A matrix consisting of 1 row and several columns, or 1 column and several 

rows is considered a vector. Example:

>> A = [ 2 3 6 5 ] (row vector)
>> B = [ 2
 3
 6
 5 ] (column vector)

We can convert a column vector to a row vector by using the transpose 
 symbol. Suppose we enter B as a column vector in the Command Window 
then write B'. We would see the following in the Command Window:

>> B=[2
 3
 6
 5];
>> B'
ans =
 2 3 6 5
>>

A matrix can be defined by including a second matrix as one of the elements. 
Example:

>> B = [ 1.5 3.1 ];
>> C = [ 4.0 B ]; (thus C = [ 4.0 1.5 3.1] )

You can select a specific element of the vector c as follows:

If C = [ 4.0 1.5 3.1], then
>> b = C(2)
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gives b = 1 5. .

If A =






1 3
6 5

, then

>> b = A(2,2)
gives b = 5.

You can also define a vector by specifying each element in the vector, for 
example:

A(1)=1, A(2)=3, A(3)= 5, A(4)=7, then vector A=[1 3 5 7].

The element number must be an integer.
This concept is very important and is used in many examples that follow.

2.6.1.1 Special Values

One special value in MATLAB is ans, it is the last computed unassigned 
result to an expression typed in the Command Window. For example, if we 
typed in the following assignments in the Command Window, we can see 
MATLAB’s response.

>> x=5; y=10;
>> x+y
ans =
 15
>>

MATLAB has a built-in value for the variable π. Its symbol is pi, and it should 
be used in place of 3.14 whenever π appears in an arithmetic statement.

Typing pi in the Command Window gives

>> pi
ans =
 3.1416
>>

The display default is four places, but it is carried to many more places in 
memory.

If you had an expression in which you accidentally divided by zero, MATLAB 
would respond with the infinity value, ∞ , with the symbol, inf. Example:

>> x=10; y=0;
>> z=x/y
z =
 Inf
>>
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2.6.1.2 Trigonometric Functions

There are many engineering examples that involve the trigonometric func-
tions. Similar to other computer programs, MATLAB has functions that 
evaluate the trigonometric functions. The most frequently used are shown 
below.

MATLAB’s Function Trigonometric Function Name

sin( ) sine
cos( ) cosine
tan( ) tangent

The arguments of these trigonometric functions are in radians. However, the 
arguments can be made in degrees if a d is placed after the function name, 
such as sind(x). In all of the trigonometric functions, you may use simple 
arithmetic in the arguments of the function.

Try typing these statements in the Command Window and use your calcu-
lator to verify the results.

clc;
x = 50/180*pi; y = sin(x) <enter>
z = cos(pi/2) <enter>

The answer should be 0, but with round off error it gives 6.1232e-17.

w = tan(pi/4) <enter>
x = 45/180*pi; y2 = sin(x) <enter>
z2 = cos(x) <enter>
x1 = sind(50) <enter>
y1 = cosd(90) <enter>
w1 = tand(45) <enter>

2.6.1.3 Inverse Trigonometric Functions

MATLAB’s Function Trigonometric Function Name

asin( ) Inverse sine
acos( ) Inverse cosine
atan( ) Inverse tangent

Since the values of the sine and cosine functions vary from −1 to +1. The input 
arguments to the asin( ) and acos( ) functions should be from −1 to +1. 
The results will be in radians. The value of the tan function can be anywhere 
from ( )−∞ +∞to , so the input argument to the atan( ) function can be any 
number, but the result will be in radians.
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Try typing these statements into the Command Window and use your 
calculator to verify the results:

clc;
x = asin(0.5); xd = x*180/pi <enter> 
y = acosd(-1.0) <enter>
z = atand(1.732) <enter>
z = atan(1.0); zd = z*180/pi <enter>

2.6.1.4 Exponential, Square Root, and Error Functions

MATLAB’s Function Mathematics Function Name

exp( ) Exponential (e( ), e ≈  2.7183)
log( ) Natural logarithm
log10( ) Common (base 10) logarithm
sqrt( ) Square root
erf( ) Error function

Try typing these statements into the Command Window and use your 
calculator to verify the results:

clc;
x = 2.5; y = exp(x) <enter>
z = log(y) <enter>
w = sqrt(x) <enter>
u = log10(100) <enter>

Suppose we had a problem involving the following arithmetic statement that 
we needed to evaluate: 

 
y

k
m

c
m

t= −





















cos
2

2

 

To make it easier to write the MATLAB statement corresponding to the above 
arithmetic statement, we could break up the argument of the cos function as 
follows (type the following in the Command Window):

k = 200; c = 5; m = 25; t = 5;
arg = sqrt(k/m - (c/(2*m))^2);
y = cos(arg*t )



26 MATLAB® Essentials

2.6.1.5 Complex Numbers

Complex numbers may be written in two forms: Cartesian, for example:

z = x + yj;

The x part is considered the real part of the complex number and the y part 
is considered as the imaginary part of the complex number.

The complex number can also be expressed in polar form, for example:

z = r * exp(j*theta).

MATLAB allows the use of i and j for −1. Programmers who have expe-
rience with FORTRAN, the programming language that was commonly 
used in engineering many years ago, frequently used i and j as integer loop 
variables.

In this book we do not deal with complex numbers very often, but when 
we do, we will use j for −1. Also, there are many examples in this book 
where i is used as an integer loop variable.

2.6.2 Other Special Values

MATLAB’s Function Math Function Name

abs( ) Absolute value (magnitude)
conj( ) Complex conjugate
imag( ) Imaginary part of a complex number
real( ) The real part of a complex number

Try typing these statements into the Command Window and use your calcu-
lator to verify the results:

clc;
z1 = 1 + j; z2 = 2*exp(j*pi/6)=2*(cos(pi/6)+j sin(pi/6));
y = abs(z1) <enter>
w = real(z2) <enter>
v = imag(z2) <enter>

2.6.2.1 Other Useful MATLAB Functions

size(X) Gives the size (number of rows and the number of columns of 
matrix X).

x' Transposes a matrix or vector, rows become columns and 
columns become rows.

length(X) For vectors, length(X) gives the number of elements in X.

(Continued)
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linspace(X1,X2,N) Generates N points between X1 and X2.
sum(X) For vectors, sum(X) gives the sum of the elements in X. For 

matrices, sum(X) gives a row vector containing the sum of 
the elements in each column of the matrix.

max(X) For vectors, max(X) gives the maximum element in X. For 
matrices, max(X) gives a row vector containing the maximum 
in each column of the matrix. If X is a column vector, it gives 
the maximum absolute value of X.

min(X) Same as max(X) except it gives the minimum element in X.
mean(X) The mean of a vector, also known as the average, equals the 

sum of the vector elements divided by the number of elements 
in the vector. For vectors, mean(X) gives the mean value of 
the vector X. For matrices, mean(X) gives a row vector 
containing the mean value in each column of the matrix X.

sort(X) For vectors, sort(X) sorts the elements of X in ascending 
order. For matrices, sort(X) sorts each column in the matrix 
in ascending order.

factorial(n) n n! ...= × × × ×1 2 3

mod(x,y) Modulo operator gives the remainder resulting from the 
division of x by y. For example, mod(13,5) = 3, that is, 13 5÷   
gives 2 plus remainder of 3 (2 is discarded). Another example: 
mod(n,2) gives zero if n is an even integer and one if n is an 
odd integer.

Try typing these statements into the Command Window:

NOT E:  The repeat of A is not necessary, but it will make it easy to see the 
results of n, y, z, w, and u.

clc;
A = [ 2 15 6 18 ]; n = length(A) <enter>
A <enter> y = max(A) <enter>
A <enter> z = sum(A) <enter>
A <enter> w = mean(A) <enter>
A <enter> u = sort(A) <enter>
A = [ 2 15 6 18; 15 10 8 4; 10 6 2 3 ]; <enter>
A' <enter>
A <enter> x = max(A) <enter>
A <enter> y = sum(A) <enter>
A <enter> w = mean(A) <enter>
A <enter> u = sort(A) <enter>
A <enter> z = size(A) <enter>
w = mod(21,2) <enter>
u = mod(20,2) <enter>

A list of the complete set of elementary math functions can be obtained by 
typing help elfun in the Command Window.
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2.6.2.2 Colon Operator (:)

The colon operator may be used to

 1. Create a new matrix from an existing matrix; examples:

 if A =
















  5 7 10  
  2 5 2  
  1 3 1  

 then x = A(:,1) gives x =
















5
2
1

The colon in the expression A(:,1) implies all the rows in matrix A, 
and 1 implies column 1.

 x = A(:,2:3) gives x = 
  7 10  
  5 2  
  3 1  

















The first colon in the expression A(:,2:3) implies all the rows in A, 
and the 2:3 implies columns 2 and 3.
We can also write

 y = A(1,:) that gives y = [ ]5 7 10

The 1 implies the first row and the colon implies all the columns.
 2. Colon operator can also be used to generate a series of numbers 

(as  in a for loop, which is discussed later) or to create a vector. 
The format is
n = starting value: step size: final value.
If the step size is omitted, the default step size is one. Example:
n = 1:8 gives n =  1 2 3 4 5 6 7 8 .
To increment in steps of 2 use
n = 1:2:7 gives n =  1 3 5 7

Exercise

E2.1. Type the following matrix in the Command Window. Assume that the 
first, second, and third columns represent the vector variables of altitude, 
z, temperature, T, and density, rho respectively: (a) use the colon operator 
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to define the vector variables, (b) determine the mean values of altitude, 
temperature, and density, (c) determine the length of vector z, and (d) 
determine the size of matrix A. Print the results to the Command Window.

 

A =

0 288 15 1 2252

1000 281 65 1 1118

2000 275 15 1 0065

3000 268 65 0

. .

. .

. .

. ..

. .

. .

9091

4000 262 15 0 8191

5000 255 65 0 7360































2.6.2.3 Preallocation of a Matrix

Sometimes it is necessary to preallocate a matrix of a given size. This can be 
done by defining a matrix of all zeros or ones; Examples:

 A =



















zeros(3) =

0 0 0

0 0 0

0 0 0

 (3 rows, 3 columns)

 B =



















zeros(3:2) =

0 0

0 0

0 0

 (3 rows, 2 columns)

REVIEW 2.2

 1. List at least two conditions in selecting a name for a variable.
 2. Finish the following statement. An arithmetic statement may 

involve …
 3. What can be said about the variables that appear on the right 

side of an arithmetic statement?
 4. List the Arithmetic Operators in MATLAB.
 5. What is the order in which an arithmetic statement will be 

 carried out?
(Continued)
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2.7 MATLAB Output

To display a vector X, just type X without the semicolon, and vector X will be 
printed to the screen. For example, first define X,

>> X = [0 1 2 3 4 5];
>>

Now enter X without the semicolon.

>> X

The following will be displayed on the screen:

X =
 0 1 2 3 4 5
>>

REVIEW 2.2 (Continued)REVIEW 2.2 (Continued)

 6. What is MATLAB’s command for 
 a. π .
 b. e.
 c. ln.
 d. Sine function in radians.
 e. Sine function in degrees.
 f. sin−1 function.
 g. The number of elements in a vector.
 h. The size of a matrix (the number of rows and columns).
 i. The sum of the elements in a vector.
 j. The maximum element in a vector.
 k. Preallocating the size of a 3 × 3 matrix.
 7. What is the purpose of placing a semicolon at the end of a com-

mand statement or a variable assignment?
 8. What is the command that will clear the Command Window?
 9. What is the basic data structure in MATLAB?
 10. Name two functions of the colon operator.
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2.7.1 The disp Command

The disp command prints only the items that are enclosed within the paren-
theses, which can be a variable or alphanumeric information. Alphanumeric 
information must be enclosed by singe quotation marks. Example (assum-
ing that vector X above has already been entered in the Command Window) 
type in

disp(X); disp(' m/s');

The following will be displayed on the screen:

 0 1 2 3 4 5
m/s
>> 

2.7.2 The fprintf Command

The fprintf command prints formatted text to the screen or to a file.
Example:

>> V = 2.2; clc;
fprintf('The velocity is %f m/s \n', V);

The following will appear on the screen:

The velocity is 2.200000 m/s

The \n in the above command tells MATLAB to move the cursor to the 
next line.

MATLAB also has a tab command. It is \t; this command tells MATLAB 
to move the cursor several spaces along the same line.

The %f refers to a formatted floating point number that is assigned to vari-
able V, and the default is 6 decimal places. The command fprintf uses 
format strings based on the C programming language. You can specify the 
number of spaces allotted for the printed variable as well as the number of 
decimal places by using %8.2f. This will allow eight spaces for the variable 
to two decimal places. You can also just specify the number of decimal places 
for the variable and let MATLAB decide the number of spaces  allotted for the 
printed variable. For example, to specify three decimal places use %.3f. The 
variable will be printed out to three decimal places, but MATLAB will decide 
the number of spaces for the variable. However, to create neat looking tables, 
it is best to specify the number of spaces in the format statement that allows 
for several spaces between variables in adjacent columns, such as %10.3f.
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Other formats:

%i or %d Used for integers
%f Used for a floating point number (one with a decimal point)
%e Scientific notation (e.g., 6.02e23), default is 6 decimal places
%g Automatically uses the briefest of %f or %e format
%s Used for a string of characters
%c Used for a single character

Unlike C, the format string in MATLAB’s fprintf must be enclosed by 
single quotation marks (and not double quotes).

2.7.3 Printing to a File

It is often useful to print the results of a MATLAB program to a file, possibly 
for inclusion in a report. In addition, program output that is printed to a file 
can be subsequently edited within the file, such as aligning or editing column 
headings in a table. Before you can print to a file, you need to open a file for 
printing with the command, fopen. The syntax for fopen is

fo = fopen('filename','w')

Thus, fo is a pointer to the file named filename, and the w indicates that 
there will be writing to the file. The fo can be replaced by a name selected 
by the programmer. To print to filename use

fprintf(fo,'format',var1,var2,..);

where the format string contains the text format for var1, var2, and so on.
Try typing the following example script in the Editor Window, save the 

script in the folder that you have chosen for your MATLAB scripts (this 
becomes the current folder), then run the script (see Section 2.3). The output 
should go to the file named output.txt, which should be located in the same 
folder as the script that produced it. To see the results, open the output file, 
as described below. If you wish, you can edit the results and also print the 
results by clicking on the print command in the Toolstrip.

Example 2.1

% Example_2_1.m
% This program is an example for printing to a file.
clear; clc;
V=12; % velocity
F=50.2; % force
fo=fopen('output.txt','w');
fprintf(fo,'V=%4i m/s, F = %5.2f N \n',V, F);
fclose(fo);
------------------------------------------------------------------------
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Program Results:
V= 12 m/s, F = 50.20 N
---------------------------------------------------------------------

The extension on the output file should be .txt (otherwise when you try 
to open the file, MATLAB will start the import wizard). The resulting 
output file will be saved and listed in the Current Folder. You can open 
the file by double clicking on the output.txt file listed in the Current Folder 
column on the left (see Figure 2.10). Alternatively, you can open the file by 
clicking on the Open icon in the Toolstrip that brings up a screen listing 
all the .m files in the Current folder. In the box labeled File name, type 
in *.txt. This will bring up a screen listing of all the files with the exten-
sion .txt in the Current folder as shown in Figure 2.11. To open the file of 
interest, double click on the name of the output file (in this example, the 
file name is output.txt).

In earlier versions of MATLAB, you would not be able to open the output 
file without having included the fclose(fo) statement in the program. But 
it is still a good practice to include the fclose statement after all the output 
statements in the program, or at the end of the program itself.

FIGURE 2.10
Searching for the output.txt file in Current Folder Column.
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2.8 Simple Plot Commands

MATLAB provides many different types of plots. Clicking on the PLOTS tab 
in MATLAB’s desktop graphically lists the various types of plots that are 
available (see Figure 2.1). The commands for creating linear plots, semilog 
plots, and log-log plots are as follows:

Plot(x,y) Linear plot of y versus x
Semilogx(x,y) Semilog plot (log scale for x-axis, linear scale for y-axis)
Semilogy(x,y) Semilog plot (linear scale for x-axis, log scale for y-axis)
Loglog(x,y) Log-log plot (log scale for both x- and y-axes)

Unless you wish to plot a single point, the arguments in the plot command must 
be vectors. In addition, the vectors need to be of the same length. If the argu-
ments in the plot command are scalars, the plot commands will produce just 
a single point.

2.8.1 Linear Plot

Suppose we have a relationship of V = f (t) and we have created the following 
vectors (V(1) occurs at t(1), V(2) occurs at t(2), etc.).

 t =  0 0 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0. . . . . . . . . . .

 V = − − − − − 20 2 21 0 19 4 14 7 6 2 6 9 25 4 50 0 81 4 120 4 167 8. . . . . . . . . . .  

FIGURE 2.11
Opening all files with .txt extension.



35MATLAB® Fundamentals

In the following script we plot V versus t using the plot(t,V) command. We 
will assume that t is in seconds and V is in meters/second.

We can label the t-axis, v-axis, and add a title and a grid with the following 
commands:

xlabel('t(s)'),

 ylabel('V(m/s)'),

title('V vs. t'),

grid;

Example 2.2

% Example_2_2.m
% The vectors t and V are entered into the program.
% Then a plot of V vs. t is created.
% To plot V vs. t both variables need to be vectors
% of the same length.
clear; clc;
t = [0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0];
V = [−20.2 -21.0 -19.4 -14.7 -6.2 6.9 25.4 50.0 81.4 120.4...

167.8];
% Create the plot of V vs. t.
plot(t,V), xlabel('t(s)'), ylabel('V(m/s)'), title('V vs. t'), grid;
------------------------------------------------------------------------

Program Results:

See Figure 2.12.
------------------------------------------------------------------------

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
t(s)

−50

0

50

100

150

200

V(
m

/s
)

V vs. t

FIGURE 2.12
Plot of V versus t.
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If a program involves creating more than one plot, you need to include the 
statement figure after each plot command (except the last), otherwise only 
the last plot will appear.

You may have noticed that the script for Example 2.2, contained comment lines 
that described what the script is about. This is a good practice and should be imple-
mented every time you write a script.

2.9 Loops

2.9.1 The for Loop

The for loop command provides the means to repeat a series of statements 
with just a few lines of code. In MATLAB, in many cases, one can avoid the 
use of the for loop and achieve the same result. However, the method used 
in MATLAB to achieve this may not be available in many other computer 
platforms. Since we are emphasizing the computer programming building 
blocks that are applicable in most, if not all, programming languages, we will 
exclusively use the for loop method in the first few chapters of this book.

Syntax:

for loop variable = starting value: step size: final value

The step size may be omitted, and then MATLAB will take the step size to 
be 1. Although the loop variable need not be an integer, in most cases in 
this book, it will be an integer. That is because, we frequently use the loop 

REVIEW 2.3

 1. Name two commands that will result in printing to the screen.
 2. What is the command that will move the cursor to the next 

line?
 3. What is the format that will print a floating point variable to 10 

spaces and to three decimal points?
 4. What is the format that will print a floating point variable in 

scientific notation to 12 spaces and to four decimal points?
 5. What are the commands necessary to print to a file?
 6. What is the command to create a plot of y versus x and what 

type of variable must x and y be?
 7. What are the commands that will label the x- and y-axis and 

provide a title to a plot?
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variable to select or create an element of a vector or a matrix. Elements of 
a vector are identified by an index which must be an integer. In most other 
platforms, if you wish a variable to be an integer, you need to designate that 
variable as an integer. This is not the case in MATLALB. MATLAB looks 
at the context in which the variable is used and knows when to consider the 
variable as an integer.

As an example, we will take the index variable as m, the starting value as 
1, omit the step size and take the final value as 20, then our for loop will be

for m = 1:20
 statement;
 .
 .
 .
 statement;
end

MATLAB sets the index m to 1, carries out the statements between the for 
and end statements, then returns to the top of the loop, changes m to 2 and 
repeats the process. After the process has been carried out 20 times the pro-
gram exits the loop without further executing any of the statements within 
the loop.

NOT E:  There is no semicolon after the for and end statements.

All statements that are not to be repeated should not be within the for loop. For 
example, table headings that are not to be repeated should be outside the for loop. 
Also notice that statements within the for loop are indented. MATLAB does 
this to make it easier to read and debug a script containing for loops. You 
can have MATLAB to do final indenting by highlighting your entire script 
and then entering Ctl-I.

Example 2.3

% Example_2_3.m
% This program is an example of the use of a for loop in which
% the indices of the for loop select an element of a vector.
% The indices must be an integer. In the for loop expression,
% MATLAB will take i as an integer if there is no decimal point
% in the assignment of variable i. But you can also specify i
% by the assignment int8(i) or int32(i) before it is used.
% The assignment length(t) specifies the number of elements
% in the vector t.
% The program creates a table of y1 and y2 vs t.
% 0 <= t <= 10 in steps of 0.5.
clear; clc;
% Table headings:
fprintf(' t        y1         y2  \n');
fprintf('-------------------------------\n');
t=0:0.5:10;
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for i=1:length(t)
 y1=t(i)^2/10;
 y2=t(i)^3/100;
 fprintf('%5i     %10.3f      %10.3f \n',i,y1,y2);
end
-----------------------------------------------------------------------

Program Results:
 t y1 y2
-------------------------------
 0.0 0.000 0.000
 0.5 0.025 0.001
 1.0 0.100 0.010
 1.5 0.225 0.034
 2.0 0.400 0.080
 . . .
 . . .
 8.0 6.400 5.120
 8.5 7.225 6.141
 9.0 8.100 7.290
 9.5 9.025 8.574
10.0 10.000 10.000
>>
-----------------------------------------------------------------------

In the above example, we selected an element of vector t by the loop vari-
able i. But we did not make y1 and y2 as vectors. Thus, we would not be able 
to plot y1 and y2 versus t.

When there is a large output to the Command Window, you might wish to 
separate the Command Window from the Editor Window. You can do this 
by clicking on the down arrow within the little circle in the black section of 
the Command Window and selecting the undock option in the dropdown 
window (see Figure 2.13).

FIGURE 2.13
How to undock Command Window from Editor Window?
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In the next example the loop variable is not an integer, and thus we would 
not be able to use the loop variable to select an element of a vector.

Example 2.4

% Example_2_4.m
% In this example the loop variable is x which is not an integer.
% Thus, the loop variable x could not be used to select an element
% of a vector. The range of x is from -0.9 to +0.9 in steps of 0.1.
clear; clc;
% print the table headings outside of the 'for' loop:
fprintf(' x y1 y2  \n');
fprintf('--------------------------------\n');
for x = -0.9:0.1:0.9
 y1=x/(1-x);
 y2=y1^2;
 fprintf('%5.2f     %10.3f     %10.3f \n',x,y1,y2);
end
% fprintf('\n %5.2f \n',x)
----------------------------------------------------------------------------

Program Results:
 x y1 y2
--------------------------------
-0.90 -0.474 0.224
-0.80 -0.444 0.198
-0.70 -0.412 0.170
-0.60 -0.375 0.141
-0.50 -0.333 0.111
 . . .
 . . .
 0.50 1.000 1.000
 0.60 1.500 2.250
 0.70 2.333 5.444
 0.80 4.000 16.000
 0.90 9.000 81.000
>>
----------------------------------------------------------------------------

You might think that the statement for x = −0.9:0.1:0.9 would create a 
 vector x. However, that is not the case. The process starts by setting x = −0.9. 
As the program progresses back to the start of the for loop, old values of x 
are overwritten by the new value of x. Try adding the statement

fprintf(' %5.2f \n',x);

at the end of the for loop (by removing the % sign before the fprintf 
statement in the above program) and rerunning the program. See that 
you only get the last value of x, which is 0.9. Now type x =−0.9:0.1:0.9 in 
the Command Window without the semicolon. See that x is now a vector.
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Example 2.5

In this example we will calculate the position and velocity of a free falling body 
in a gravitational field (neglecting drag) as a function of time, t. See Figure 2.14. The 
governing equations are based on Newton’s second law and can be found in any 
university physics textbook.

The governing equations are 

 V V= −o g t (2.1)

 y t
g t

o= −V
2

2
 (2.2)

where:
V is the velocity
y is the position pointing upward
g is the acceleration of gravity
t is the time

The following MATLAB program calculates and plots V, and y versus t, for 0 2≤ ≤  t s 
in steps of 0.1 s. We have taken Vo g= =10 9 81 2m s and m s, . . We will print a table 
consisting of t, V, and y at every other time step. In addition, we will plot V versus t 
and y versus t. Finally, we will determine the approximate maximum height reached 
by the free falling body.

t = 0
O x

y

FIGURE 2.14
Ball in a gravitational field.
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% Example_2_5.m
% This program calculates the velocity and position of a free
% falling body vs. time.
% The velocity, V = Vo-gt
% The position, y = Vo*t-0.5*g*t^2
% The initial velocity, Vo=10 m/s, g=9.81 m/s^2
% The output goes to a file named output.txt.
% Plots of y vs. t and V vs. t are made.
% The approximate maximum height reached by the body is determined.
clear; clc;
Vo=10.0; g=9.81;
fo=fopen('output.txt','w');
t=0:0.1:2;
for i=1:length(t)
 V(i)=Vo-g*t(i);
 y(i)=Vo*t(i)-0.5*g*t(i)^2;
end
plot(t,V), xlabel('t(s)'), ylabel('V(m/s)'), title('V vs. t'), grid;
figure;
plot(t,y), xlabel('t(s)'), ylabel('y(m)'), title('y vs. t'), grid;
ymax=max(y);
fprintf(fo,'The approximate maximum height reached by the body =');
fprintf(fo,' %8.3f m \n',ymax);
% Table headings
fprintf(fo,'t(s) V(m/s) y(m)  \n');
fprintf(fo,'--------------------------\n');
for i=1:2:length(t)

fprintf(fo,'%6.2f %10.2f %10.2f \n',t(i),V(i),y(i));
end
---------------------------------------------------------------------------

Program Results:

The approximate maximum height reached by the body = 5.095 m
 t(s) V(m/s) y(m)
--------------------------
0.00 10.00 0.00
0.20 8.04 1.80
0.40 6.08 3.22
0.60 4.11 4.23
0.80 2.15 4.86
1.00 0.19 5.09
1.20 -1.77 4.94
1.40 -3.73 4.39
1.60 -5.70 3.44
1.80 -7.66 2.11
2.00 -9.62 0.38
---------------------------------------------------------------------------
See Figures 2.15 and 2.16.
---------------------------------------------------------------------------
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FIGURE 2.15
y versus t for ball in a gravitational field.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
t(s)

−10

−8

−6

−4

−2

0

2

4

6

8

10

V(
m

/s
)

V vs. t

FIGURE 2.16
V versus t for ball in a gravitational field.
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In running Example 2.5, you may have noticed a small orange line just to the 
right of the vertical ladder (see Figure 2.17). If you use your mouse to point 
on the orange line you would get the following message: “The variable ‘V’ 
appears to change size with every loop iteration (within a script). Consider 
preallocating for speed.” This would be very important when the number 
of repeats in the loop is very large; otherwise, it is not important. Although 
MATLAB recommends, but does not require, the preallocation of the size of 
the vector or matrix that is being generated, other programs such as C/C++ 
do require it. To preallocate the size of the vector that is being generated, use 
MATLAB’s zeros function. In the above example, 21 v values and 21 y values 
will be generated. So add the following statements before the for loop:

v=zeros(21,1) and y=zeros(21,1).

2.9.2 The While Loop

An alternative to the for loop is the while loop. If an index in the program 
is required, the use of the while loop statement (unlike the for loop state-
ment) requires that the program generate its own index, as shown in the 
following example:

n = 0;
while n < 10
 n = n+1;
 y = n^2;
end

In the while loop, MATLAB will carry out the statements between the 
while and end statements as long as the condition in the while statement is 
satisfied. In the above example, when n = 10, none of the commands within 

FIGURE 2.17
Preallocation message when running Example 2.5.
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the while loop will be executed and the program goes to the next command 
after the end statement. Note that the statement “n = n+1” above does not 
make sense algebraically, but does makes sense in the MATLAB language. 
The “=” operator in MATLAB (as in many computer languages) is the assignment 
operator that tells MATLAB to fetch the contents in the memory cell containing the 
variable n, put its value into the arithmetic unit of the CPU, increment the variable n 
by 1, and put the new value back into the memory cell designated for the variable n. 
Thus, the old value of n has been replaced by the new value for n.

In this example, we will use a simpler version of Example 2.5, but this time 
we will use the while loop instead of the for loop.

Example 2.6

% Example_2_6.m
% This program calculates the velocity and position of a free
% falling body vs. time.
% The program uses a while loop in place of the for loop.
% The velocity, V = Vo-gt
% The position y = Vo*t-0.5*g*t^2
% Vo=10 m/s, g=9.81 m/s^2
% The output goes to a file named output.txt.
clear; clc;
Vo=10.0; g=9.81;
fo=fopen('output.txt','w');
% Table headings
fprintf(fo,'t(s) V(m/s) y(m)  \n');
fprintf(fo,'-------------------------\n');
t=0; V=0; y=0;
while t<=2

fprintf(fo,'%6.2f %10.2f %10.2f \n',t,V,y);
t=t+0.2;
V=Vo-g*t;
y=Vo*t-0.5*g*t^2;

end
----------------------------------------------------------------------------

Program Results:
 t(s) V(m/s) y(m)
-------------------------
0.00 10.00 0.00
0.20 8.04 1.80
0.40 6.08 3.22
0.60 4.11 4.23
0.80 2.15 4.86
1.00 0.19 5.09
1.20 -1.77 4.94
1.40 -3.73 4.39
1.60 -5.70 3.44
1.80 -7.66 2.11
2.00 -9.62 0.38
----------------------------------------------------------------------------

Compare results obtained from Examples 2.7 and 2.8.
Are they the same?
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Exercises

E2.2. The motion of a piston in an internal combustion engine is shown in 
Figure 2.18a and b.

The piston’s position, s, as seen from the crankshaft center is determined to be

 s t r t b r t( ) cos( ) sin ( )= + −2 22 2 2πω πω  (2.3)

where:
b is the length of the piston rod
r is the radius of the crankshaft
ω is the rotational speed of the crankshaft in revolutions per second

REVIEW 2.4

 1. What is the objective in using a for loop?
 2. What is the syntax of a for loop?
 3. Should table headings that are not to be repeated be inside a 

for loop?
 4. If the index of a for loop is used to select an element of a vector 

or a matrix, what variable type should the for loop index be?
 5. What other statement type can be used to create a loop?
 6. What is the major difference between a for loop and a while 

loop?

Displacement
Piston

Piston rod

Rotation of crankshaft(a) (b)

Journal s

rθ

b

FIGURE 2.18
(a) Piston configuration and (b) piston position variables.
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Develop a MATLAB program that determines s versus t for 0 ≤ t ≤ 0.01 s. 
Use 20 subdivisions on the t domain. Take r = 9 cm, ω = 100 revolutions per 
second, and b = 14 cm.

 1. Create a table of s versus t and print the results to both the screen 
and to file.

 2. Create a plot of s versus t.

E2.3. The position, y, of a mass in a mass-spring-dashpot system (see 
Figure 2.19) is given by

 y
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Take
m = 25.0 kg
c is the damping factor = 5.0 N-s/m
k is the spring constant = 200.0 N/m
A = 5.0 m
B = 0.25 m

 1. Determine y(t) for 0 10≤ ≤t   seconds in steps of 0.1 seconds.
 2. Create a table of y versus t every 1 second and print the results to the 

screen.
 3. Create a plot of y versus t.

cy′ky
Static

Equilibrium
position

w

MM

w

y

w
y + y0 = y

k

Unstretch
Position

y–

–

– ––

y0

FIGURE 2.19
Mass-spring-dashpot system.
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E2.4. A basketball player shoots the ball when he is 6 m from the center of the 
hoop as shown in Figure 2.20. The ball is released at a velocity, Vo  , and makes 
angle ϑ °o = 40  with the horizontal. Using Newton’s second law and the initial 
conditions and neglecting the drag on the basketball, we can determine the 
following equations for the (x, y) position of the ball as a function of time, t.

 x to o= V cos( )ϑ  (2.5)

 y y t
g

to o o= + −V sin( )ϑ
2

2 (2.6)

Take the (x, y) position of the center of the hoop to be (xf , yf) = (6.0 m, 3.048 m), 
yo = 1.98 m, and ϑo = 40º.

 1. Determine the time, tf, which it takes for the ball to reach the center 
of the hoop. Time, t, equals zero when the ball leaves the player’s 
hands.

 2. Determine the velocity, Vo   , that will result in the ball reaching the 
center of the hoop at time tf .

 3. Create a table consisting of t, x, y for 0 ≤ ≤t tf  in steps of tf 10. Carry 
variables to 4 decimal places. Print the table to an output file, includ-
ing tf and Vo .

 4. Create a plot of y versus x.

Hint: Solve Equation 2.5 for Vo and substitute the expression for Vo into 
Equation 2.6, giving an expression involving t, x, and y. In that expression, 
set t = tf , x = x f , and y = yf . In the resulting equation, tf is the only unknown. 
Use this expression in your MATLAB program to solve for tf .

6 m

Center of hoop

Vo

ϑo

3.048 m

x

y1.98 m

Floor

FIGURE 2.20
Basketball player shooting the basketball.
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E2.5. A small sphere moving though a fluid at a slow velocity will have a 
drag force acting on it, which is described by Stokes’ Law. The sphere could 
be a dust particle or a raindrop moving in air, or a ball bearing moving in oil. 
The drag force described by Stokes’ Law is

 D R= 6π µV (2.7)

where:
D is the drag
R is the radius of the sphere
µ  is the viscosity of the fluid
V is the velocity of sphere

Let us consider a steel ball bearing dropped in oil (see Figure 2.21) with an 
initial velocity of zero. The ball bearing will drop with a varying velocity 
until it reaches a final velocity (terminal velocity, VT). The forces acting on 
the ball bearing are the gravitational force, W, buoyancy force, B, and the 
drag force, D. The buoyancy force is equal the weight of the fluid displaced. 
The equations for W and B are

 W g= ρ υsteel  (2.8)

 B g= ρ υoil  (2.9)

where:
ρsteel is the mass density of steel
ρoil is the mass density of oil
υ is the volume of sphere = 4 3 3πR  
g is the gravitational constant

W

B

D

y

FIGURE 2.21
Ball bearing in oil.
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The terminal velocity occurs when

 W B D− − = 0 (2.10)

By applying Newton’s second law to the sphere we can determine V and VT 
that are

 VT
W B

R
= −

6π µ
 (2.11)

 V V= −










−
T

R g
W

t
e1

6π µ

 (2.12)

Take µ . /( )= −3 85 2 N s m , R = 0 01. m, ρsteel kg m= /7910 3, ρoil kg/m= 899 3, 
g = 9 81 2. /m s

Create a MATLAB program that will 

 1. Determine the weight of the ball bearing, W.

 2. Determine the buoyancy force, B.
 3. Determine the terminal velocity, VT .
 4. Use a while loop to determine V as a function of time, for 0 0 3≤ ≤t . s  

in steps of 0.01 s.
 5. Create and print to a file values for W, B, and VT and a table contain-

ing t and V.
 6. Plot V versus t.

E2.6. The voltage in a parallel resistance, inductor, and capacitor (RLC) circuit 
(see Figure 2.22) is given by
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FIGURE 2.22
A parallel resistance, inductor, and capacitor (RLC) circuit.
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Take R = 10 ohm, L = 1.0e-2 henry, C = 1.0e-6 farad, A = 6.0 V, and B = −8.9 V.

 1. Determine v(t) for 0 5 0 10 4≤ ≤ × −t .  seconds. Use 100 subdivisions on 
the time domain.

 2. Print out a table of v versus t every fourth subdivision.
 3. Create a plot of v versus t.

2.10 Input

Engineers who carry out tests on a piece of equipment may need to enter 
data into an existing computer program for analysis. There are several com-
mands that may be used to enter data from a data file. These are the load, 
dlread, and fscanf commands. We will discuss them one at a time. The 
analysis program may also ask the user to input data from the keyboard. 
To enter data from the key board, use MATLAB’s input command, which 
makes the program interactive.

2.10.1 The Load Command

One of the commands that allow the user to enter data from a file is the load 
command. The data file is likely to only contain numbers and would have a 
specific name. The syntax for the command is

load filename.txt

The input file must have the same number of columns in each row and must be in 
the same folder as the program loading the data file. The data file should only have 
numbers. Suppose we had the following data file named atm_properties and 
we wish to enter the data into a program. Here, the first column is altitude 
in meters, the second column is temperature in degrees Kelvin (K), the third 
column is pressure in Pascal (Pa), and the fourth column is density in 
kilogram/meter3 (kg/m3).

0 288.15 1.0133e+005 1.2252
1000 281.65 8.9869e+004 1.1118
2000 275.15 7.9485e+004 1.0065
3000 268.65 7.0095e+004 0.9091
4000 262.15 6.1624e+004 0.8191
5000 255.65 5.4002e+004 0.7360
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NO T E :  Before you can run the following example (Example 2.9), you need to 
create the data file shown on the previous page. To do this, copy the data, 
then go to MATLAB and open up a new script window and paste the data 
into the new script window. Then click on the Save icon and save the file as 
atm_properties.txt. To save the file as a .txt file, click on the down arrow in 
the Save as type box and select All files (*.*).

Alternatively, you can open up a new script window and type in the data, 
and then follow the instructions described above. Try typing or copy-
ing the following program into the Editor Window in MATLAB and 
running it.

Example 2.7

% Example_2_7.m
% This program uses the load command to load the data in the file
% named atm_properties.txt into this program. Column 1 is the
% altitude, column 2 is the temperature, column 3 is the pressure
% and column 4 is the density. Altitude is in meters (m),
% temperature is in degrees Kelvin (K), pressure is in Pascal (Pa)
% and density is in (kg/m^3).
% The program also is an example of using the colon operator to
% create the vectors z,T,p and rho.
% The program also demonstrates the use of the fprintf command.
% The program prints out elements of the vectors z,T,p and rho.
clear; clc;
load('atm_properties.txt');
% establishing variable names to scanned file.
z=atm_properties(:,1);
T=atm_properties(:,2);
p=atm_properties(:,3);
rho=atm_properties(:,4);
fprintf('z(m) T(K) p(Pa) rho(m^3/kg)  \n');
fprintf('-------------------------------------------\n');
for j=1:length(z)
 fprintf('%5.0f %8.2f %10.3e %8.4f \n',z(j),T(j),p(j),rho(j));
end
------------------------------------------------------------------------

Program Results:
z(m) T(K) p(Pa) rho(m^3/kg)
-------------------------------------------
   0 288.15 1.013e+05 1.2252
1000 281.65 8.987e+04 1.1118
2000 275.15 7.949e+04 1.0065
3000 268.65 7.010e+04 0.9091
4000 262.15 6.162e+04 0.8191
5000 255.65 5.400e+04 0.7360
>>
---------------------------------------------------------------------------
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2.10.2 The dlmread Command

An alternative to the load command is the dlmread command. This com-
mand will read an ASCII delimited file. All data in the file must be numeric. 
In this example, the entire data file in atm_properties.txt is specified as a matrix 
Y consisting of six rows and four columns. Then the colon operator is used to 
create vectors z, T, p, and rho. To demonstrate the use of the dlmread com-
mand, we will modify Example 2.7 by replacing the lines starting with

load (atm_properties.txt);

and ending with

rho = atm_properties(:,4);

with

Y=dlmread('atm_properties.txt');
z=Y(:,1);
T=Y(:,2);
p=Y(:,3);
rho=Y(:,4);

The modification of Example 2.7 (omitting the comment lines) would be

clear; clc;
Y=dlmread('atm_properties.txt');
% establishing variable names to scanned file.
z=Y(:,1);
T=Y(:,2);
p=Y(:,3);
rho=Y(:,4);
fprintf('  z(m)   T(K)   p(Pa)   rho(m^3/kg)  \n');
fprintf('------------------------------------------------------\n’);
for j=1:length(z)
 fprintf('%5.0f %8.2f %10.3e %8.4f \n',z(j),T(j),p(j),rho(j));
end

2.10.3 fscanf Command

Students who have a background in C/C++ may use the fscanf com-
mand to enter data into a program. The commands necessary to this are 
shown below.

A = zeros(n, m);
fi = fopen('filename.txt','r');
[A] = fscanf(fi,'%f',[n,m]);
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where n m×  is the number of elements in the data file. The 'r' in the fopen 
statement tells MATLAB that this file is for reading in data. The n m×  
matrix is filled in column order. Thus, rows become columns and columns 
become rows.

The following example program enters the data in atm_properties.txt into 
the program.

NOTE: Before you can run program Example_2_8.m, the data file atm_properties.
txt had to be created.

Example 2.8

% Example_2_8.m
% This program uses fscanf command to load the data in the file
% named atm_propeties.txt into this program. Column 1 is the
% altitude, column 2 is the temperature, column 3 is the pressure
% and column 4 is the density. Altitude is in meters (m)
% temperature is in degrees Kelvin (K), pressure is in Pascal (Pa)
% and density is in (kg/m^3).
clear; clc;
fi = fopen('atm_properties.txt','r');
% Print A to the screen and see that columns of the data file
% became rows.
A = fscanf(fi,'%f',[4,6])
% establishing variable names to scanned file.
z=A(1,:);
T=A(2,:);
p=A(3,:);
rho=A(4,:);
fprintf('z(m) T(K) p(Pa) rho(m^3/kg)  \n');
fprintf('-------------------------------------------\n');
for j=1:length(z)
 fprintf('%5.0f %8.2f %10.3e %8.4f \n',z(j),T(j),p(j),rho(j));
end
------------------------------------------------------------------------

Program Results:

z(m) T(K) p(Pa) rho(m^3/kg)
-------------------------------------------
   0 288.15 1.013e+05 1.2252
1000 281.65 8.987e+04 1.1118
2000 275.15 7.949e+04 1.0065
3000 268.65 7.010e+04 0.9091
4000 262.15 6.162e+04 0.8191
5000 255.65 5.400e+04 0.7360
>>
--------------------------------------------------------------------------
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2.10.4 The input Command

The MATLAB command that the programmer can use to have the user 
enter data from the keyboard is the input command. The program should 
pause and move the cursor to the Command Window (without providing 
a prompt sign) waiting for the user to enter the data requested. However, 
in MATLAB version R2016A, the cursor stays in the Editor Window. This is 
a bug in this version of the MATLAB program. This bug was eliminated 
in MATLAB version R2016B. This was not a problem in earlier versions of 
MATLAB. The use of the input command makes the program interactive. 
Suppose that you are the programmer and you wish to have the user enter 
a matrix named z, from the keyboard, use

Z = input('Enter matrix Z enclosed by brackets \n')

The user will see the following on the screen:

Enter matrix Z enclosed by brackets

If you are using MATLAB version R2016A, you will need to click on the 
Command Window to enter the data. If you are not using MATLAB version 
R2016A, the user can type information in the Command Window without 
having to first click in the Command Window. The user should then type in 
something like

[ 5.1 6.3 2.5; 3.1 4.2 1.3 ]

Thus, Z =










5 1 6 3 2 5
3 1 4 2 1 3
. . .
. . .

.

Note that the argument to input command is a character string enclosed 
by the single quotation marks. The character string will be printed to the 
screen as shown above. If the response to the input statement is a charac-
ter or a string, you need to enclose the character or the string with single 
quotation marks. However, you can avoid this requirement by entering a 
second argument of 's' to the input command as shown in the following 
statement:

response = input('Print Z to a file? (y/n):\n', 's')

In this case, the user can respond with either a y or n (without single quotation 
marks). An example using this concept will be given in Chapter 3.
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E2.7. Write a MATLAB program that uses the input command to enter the 
following three vectors:

 Z = [ ]0 1000 2000 3000 4000 5000     

 T = [ ]288 1 281 6 275 1 268 6 262 1 255 6. . . . . .     

 rho      = [ ]1 2252 1 1118 1 0065 0 9091 0 8191 0 7360. . . . . .

Z is altitude in m, T is temperature in K, and rho is density in kg/m3.
Then plot T versus Z and rho versus Z.

2.11 More on MATLAB Graphics

2.11.1 The figure Command

As mentioned earlier, if a program involves creating more than one plot, you 
need to include the statement figure after each plot command (except the 
last), otherwise only the last plot will appear. The following example pro-
gram produces two separate plots.

Example 2.9

% Example_2_9.m
% This program creates two separate plots.
% First y1=t^2/10 is plotted with 0 <= t <= 10,
% then y2=t^3/100 is plotted over the same t range.
% To plot y1 and y2 vs. and t, they need to be made vectors.
clear; clc;
t=0:0.5:10;
for n=1:length(t)

y1(n)=t(n)^2/10;
y2(n)=t(n)^3/100;

end
plot(t,y1), xlabel('t'), ylabel('y1'), grid, title('y1 vs. t');
figure;
plot(t,y2), xlabel('t'), ylabel('y2'), grid, title('y2 vs. t');
------------------------------------------------------------------------

REVIEW 2.5

 1. Name four commands that can be used in a script to input data 
into the workspace.

 2. Which of the four commands makes the program interactive?
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Program Results:
See Figure 2.23a and b.
------------------------------------------------------------------------
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FIGURE 2.23
(a) Plot of y1 versus t and (b) plot of y2 versus t.
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2.11.2 Multiple Plots

Suppose in matrix A, shown below, we wished to plot column 2 versus 
column 1, column 3 versus column 1, and column 4 versus column 1.
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We could let T = A( : , 1 ), Y = A( : , 2 ), Z = A( : , 3 ), and W = A( : , 4 ), giving 
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Then to plot Y versus T, Z versus T and W versus T all on the same graph, 
we would write,

plot(T,Y,T,Z,T,W);

Of course, we could have avoided the additional steps by writing

plot(A(:,1),A(:,2),A(:,1),A(:,3),A(:,1),A(:,4))

To identify which curve goes with which variable, you can add text to the 
plot with the command,

text(x,y,'text statement');

where (x, y) are the coordinates on the graph where the text statement 
will start.

Multiple curves on the same graph can be distinguished by color coding 
the curves.

Available color types:

black 'k'

blue 'b'

green 'g'

red 'r'

cyan 'c'

yellow 'y'
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Multiple curves on the same graph can also be distinguished by using 
different types of lines.

Available line types:

solid (default)
dashed '--'

dashed-dot '-.'

dotted ':'

Alternatively, you can create a marker plot of discrete points (without a line) 
by using one of these marker styles:

point '.'

plus '+'

star '*'

circle 'o'

x-mark 'x'

diamond 'd'

The legend command may also be used in place of the text command to 
identify the curves. The format for the legend command is

legend('text1', 'text2')

The legend box may be moved by clicking on the box and dragging it to the 
desired position.

You can also change the axis limits in a plot by using the command

axis([xmin xmax ymin ymax])

(See Example 2.11)

Example 2.10

The following example illustrates a multiple plot program:

% Example_2_10.m
% This program creates a simple table and a multiple plot.
% First a table of y1=t^2/10 and y2=t^3/100 is created.
% To plot y1, y2 vs. and t, they need to be made vectors.
% y1 and y2 vs. t are plotted on the same graph.
clear; clc;
t=0:10;
for n=1:length(t)

y1(n)=t(n)^2/10;
y2(n)=t(n)^3/100;

end
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% By making t, y1 and y2 as vectors, their values can be printed
% outside the for loop that created them.
% Column headings
fprintf('  t y1 y2  \n');
fprintf('----------------------------------\n');
for n=1:length(t)

fprintf('%8.1f %10.2f %10.2f \n',t(n),y1(n),y2(n));
end
% Create the plot, y1 as a solid line, y2 as a dashed line.
% Note: the variables t, y1,y2 need to be vectors in the plot
% command.
plot(t,y1,t,y2,'--');
xlabel('t'), ylabel('y1,y2'), grid, title('y1 and y2 vs. t');
% Plot identification is also established by adding text to the plot.
text(6.5,2.5,'y2');
% In the above statement, 6.5 is the abscissa position and 2.5 is
% the ordinate position where the 'y1' label will be positioned.
text(4.2,2.4,'y1'),
% We can also use the legend command to identify the curves
legend('y1','y2');
-------------------------------------------------------------------------

Program Results:
  t y1 y2
-------------------------------------
 0.0 0.0000 0.0000
 1.0 0.1000 0.0100
 2.0 0.4000 0.0800
 3.0 0.9000 0.2700
 4.0 1.6000 0.6400
 5.0 2.5000 1.2500
 6.0 3.6000 2.1600
 7.0 4.9000 3.4300
 8.0 6.4000 5.1200
 9.0 8.1000 7.2900
10.0 10.0000 10.0000
>>

See Figure 2.24.
------------------------------------------------------------------------

2.11.3 The hold on Command

In the above example, we used a single plot command to plot both y1 and 
y2, that is, plot(t,y1,t,y2,'--'). However, we could also have plot-
ted both y1 and y2 on the same graph by plotting each separately with 
the command hold on between the plots. We would be superimposing 
the second plot onto the first plot. To do this, replace the plot command 
plot(t,y1,t,y2,'--')with

plot(t,y1);
hold on
plot(t,y2);
xlabel('t'), ylabel('y1,y2'), grid, title('y1 and y2 vs. t');
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Example 2.11

The following example illustrates the plotting of trigonometric functions. The exam-
ple also illustrates that simple arithmetic can be used in the arguments of the trig-
onometric functions. This is also true for other built-in MATLAB functions. If the 
resulting curves are not smooth than we would need to use more points to properly 
display the curves.

% Example_2_11.m
% This script calculates both sin(2x/3), sin(2x/3)^2
% and cos(2x/3+pi) for -pi <= x <= pi. The x domain is subdivided
% into 50 subdivisions. The script plots the 3 functions and
% determines the absolute maximum values of the vectors fsin, fsinsq
% and fcos and prints those values to the screen.
clear; clc;
x=-pi:2*pi/50:pi;
for i=1:length(x)
 fsin(i)=sin(2*x(i)/3);
 fsinsq(i)=sin(2*x(i)/3)^2;
 fcos(i)=cos(2*x(i)/3+pi);
end
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FIGURE 2.24
Plots of y1 and y2 on the same graph.
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fsin_max=max(abs(fsin)); fcos_max=max(abs(fcos));
fsinsq_max=max(fsinsq);
fprintf('fsin_max=%10.5f, fcos_max=%10.5f \n',fsin_max, fcos_max);
fprintf('fsinsq_max=%10.5f \n',fsinsq_max);
plot(x, fsin, x,fcos,'--',x, fsinsq,'-.'), xlabel('x'), 
ylabel('fsin, fcos, fsinsq'), grid,
title('fsin, fcos, fsinsq vs. x'), legend('fsin','fcos','fsi nsq');
-------------------------------------------------------------------------

Program Results:

From the Command Window:

fsin_max=   0.99978, fcos_max= 1.00000
fsinsq_max= 0.99956
>>

See Figure 2.25.
-------------------------------------------------------------------------
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FIGURE 2.25
Plot of fsin, fcos, and fsinsq versus x.
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2.11.4 Plotyy Command

Suppose we have two functions of the same variable but the numerical range 
of the two functions differ significantly and we would like to display the 
functions on the same plot. This can be done using the plotyy function. 
In the next example we plot position, y, and velocity, V of a free falling body 
vs. time on the same graph (see Example 2.6).

Example 2.12

% Example_2_12.m
% This script is a modification of Example 2.5. In this script
% both y and V axes are plotted on the same graph. The y axis
% is on the left side and the V axis is on the right side.
clear; clc;
Vo=10.0; g=9.81; t=0:0.1:2;
for i=1:length(t)
 V(i)=Vo-g*t(i); y(i)=Vo*t(i)-0.5*g*t(i)^2;
end
plotyy(t,y,t,V), xlabel('t(s)'), title('y vs. t and V vs. t'), grid,
yyaxis left, axis([0 2 0 10]), ylabel('y(m)'), text(0.32,2.5,'y');
yyaxis right; axis([0 2 -10 10]), ylabel(' V(m/s)'), text(0.6,5.0,'V');
------------------------------------------------------------------------

Program Results:

See Figure 2.26.
----------------------------------------------------------------------
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FIGURE 2.26
Plot of y versus t and V versus t on the same graph.
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2.11.5 The subplot Command

Suppose you want to plot each of several curves as a separate plot, but all 
on the same page. The subplot command provides the means to do so. The 
command subplot(m,n,p) breaks the page into an m by n matrix of small 
plots, and p selects the matrix position of the plot. The subplot command 
is a positioning command and not a plot command. The following example 
demonstrates the use of the subplot command.

Example 2.13

% Example_2_13.m
% This program is an example of the use of the subplot command.
% Values of y1, y2, y3 and y4 are constructed as
% vectors. Separate plots of y1 vs. t, y2 vs. t, y3 vs. t,
% and y4 vs. t are plotted on the same page.
clc; clear;
t=0:0.5:10;
for n=1:length(t)

y1(n)=t(n)^2/10;
y2(n)=sin(pi*t(n)/10);
y3(n)=exp(t(n)/2);
y4(n)=sqrt(t(n));

end
subplot(2,2,1),
plot(t,y1), grid, title('y1 vs. t'), xlabel('t''), ylabel('y1');
subplot(2,2,2),
plot(t,y2), grid, title('y2 vs. t'), xlabel('t'), ylabel('y2');
subplot(2,2,3),
plot(t,y3), grid, title('y3 vs. t'), xlabel('t'), ylabel('y3');
subplot(2,2,4),
plot(t,y4), grid, title('y4 vs. t'), xlabel('t'), ylabel('y4'); 
----------------------------------------------------------------------------

Program Results:

See Figure 2.27.
---------------------------------------------------------------------------

2.11.6 Bar Charts

I find that bar charts appear more often in business related topics than in 
engineering topics. For example, you might wish to compare several compa-
nies yearly profit percentages. A convenient way to do this is by the use of a 
bar chart. The syntax the bar charts are

bar(y)
bar(x,y)
bar(___, width)
bar(___, style)
bar(___, color)
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See MATLAB help for more examples on bar charts.

Example 2.14

In this example, we compare the profit percentage gained for year 2015 for Companies 
A, B, C, D, E, F, and G. These are given in Table 2.1

% Example_2_14.m
% This script is an example of creating a bar chart.
% The script lists and plots the percentage gains in profits for
% several companies for the year 2015.
clear; clc;
y = [2.51 -0.13 3.16 4.72 1.2 6.5 3.8];
bar(y,0.4);
ylabel('% profit, year 2015');
title('1=CO.A, 2=CO.B, 3=CO.C, 4=CO.D, 5=CO.E, 6=CO.F, 7=CO.G');
----------------------------------------------------------------------

Program Results:

See Figure 2.28.
-----------------------------------------------------------------------
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FIGURE 2.27
Plots of y1, y2, y3, and y4 versus t on the same page.
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2.11.7 Pie Charts

As with bar charts, pie charts appear more often in business and finances than 
in engineering. For example, you might wish to know what percentage of your 
investments are in U.S. stocks, foreign stocks, mutual funds, bonds, and cash.

The syntax for the pie chart for this example could be

X = 1:5;
labels = {'US stocks','foreign stocks','mutual funds',...
'bonds','cash'};
pie(X,labels)
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FIGURE 2.28
Bar chart. Percent profit gain for several companies for year 2015.

TABLE 2.1

Companies Profits Percentage Gain for 2015

Company % Profit Gain for Year 2015

A 2.51
B −0.13
C 3.16
D 4.72
E 1.60
F 6.50
G 3.80
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Example 2.15

Suppose we wished to plot the percentage of several different types of investments 
made by a particular investor. Table 2.2 gives the percentage of different types of 
investments for that individual.
The program follows:

% Example_2_15.m
% This program gives the percentage of various types of investments
% made by a particular individual. The percentages are displayed in
% a pie chart.
clear; clc;
x=[43 12 15 20 10];
labels = {'US stocks','foreign stocks','mutual funds',...
'bonds','cash'};
pie(x, labels);
-----------------------------------------------------------------------

Program Results:

See Figure 2.29.
-------------------------------------------------------------------------
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foreign stocks

mutual funds
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FIGURE 2.29
Pie chart for several different types of investments.

TABLE 2.2

Investment Percentages

Investments Percentage

US stocks 43
Foreign stocks 12
Mutual funds 15
Bonds 20
Money market 10
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Example 2.16

• The sprintf Command

The sprintf is the same as fprintf command except that it returns the print data 
as a MATLAB variable rather than writing to the Command Window or to a file. 
When plotting several different plots on the same page, you may wish to vary the 
titles of the plots depending on the specific variable defined in the program. This is 
demonstrated in the following example:

% Example_2_16.m
% This program is an example of the use of the subplot and
% the sprintf commands.
% Plots of y=sin(k*pi*t/L) for several values of k are created and
% plotted on the same page.
clc; clear;
t=0:0.1:10;
k=[2 4 6 8];
L=10;
for m=1:length(k)

for n=1:length(t)
y(n)=sin(k(m)*pi*t(n)/L);

end
subplot(2,2,m), plot(t,y), xlabel('t'), ylabel('y'), grid,
title(sprintf('y vs.t, k=%3i \n',m));

end
-------------------------------------------------------------------------

Program Results:

See Figure 2.30.
-----------------------------------------------------------------------
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FIGURE 2.30
Four plots of y versus t, all on one page. Each plot is for a different value of k.
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Exercises

E2.8. This exercise involves plotting the temperatures of a spherical object 
dropped into a fluid contained in a vertical circular cylinder. The tempera-
ture variation of both the sphere, T_sphere, and the fluid, T_  fluid, are given as 
a function of time, t, in the following three vectors:

t = 0 0 04 0 08 0 12 0 16 0 20 0 24 0 28 0 32 0 36 0 40 0 44           . . . . . . . . . . .      0 48 0 52 0 56 0 60. . . .[ ]

T sphere_ = 150 124 104 89 77 67 60 54 49 46 43 41 39 38 37 3               66[ ]

T fluid_ . . . . . . . . . .= 20 0 22 9 25 2 27 0 28 3 29 5 30 3 31 0 31 9 32 2          332 5 32 7 32 8 32 9. . . .   [ ]

In MATLAB, create a plot of both T_sphere and T_  fluid versus t on the same 
graph, t is in seconds and T_sphere and T_  fluid are in degrees C. 

E2.9. This exercise involves the x position and x component of the velocity, 
u, of a package dropped from an airplane as a function of time, t. These vari-
ables are specified in vectors x and u and t, respectively.

t = [ ]0 0 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0. . . . . . . . . . .          

x = 0 0 23 6 44 7 63 6 80 6 95 8 109 5 121 7 132 7 142 4 150. . . . . . . . . .          ..9[ ]

u = [ ]50 0 44 6 39 9 35 8 32 2 28 9 25 9 23 1 20 6 18 2 15 9. . . . . . . . . . .          

Create a MATLAB program that will plot x versus t and u versus t as two 
separate plots, but both on the same page.

2.11.8 Greek Letters and Mathematical Symbols

Greek letters and mathematical symbols can be used in xlabel, ylabel, 
title, and text by spelling out the Greek letter and preceding it with a ‘\’ 
(backslash character). Thus, to display ω, use \omega, and to display β, use 
\beta.

Example:

ylabel('\omega'), title('\omega vs. \beta'), text(10,5,'\omega');

For an additional list of Greek symbols and some special characters, see 
Appendix A. You may also occasionally need to print a “'” character in your label 
or title. In this case, use a double-quotation mark as shown here '' to escape the 
single-quote character in your string. Thus, to generate the plot title “Signal 'A' 
vs. Signal 'B'”, you would type

title('Signal ''A'' vs. Signal ''B''')
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2.11.9 Interactively Annotating Plots

As an alternative to adding the xlabel, ylabel, and title commands 
into your program, you can create the plot, then click on the Insert 
option in the menu bar in the plot window and choose X Label from 
the dropdown menu. This will highlight a box in which you can type in 
the abscissa variable name. You can repeat this process for the Y Label 
and the Title of the plot. Other options available in the Insert Menu 
are TextBox, Text Arrow, Arrow, and others. When you click any one 
of these options, a cross-hair will appear and you can then move the item 
to the location where you want it to appear, then left-click the mouse to 
fix the location. You can then type in the desired text. To remove the out-
lines of a TextBox, place the cursor in the TextBox and right-click the 
mouse. This will bring up a dropdown menu, then select Line Style, 
and then left-click on none. This will remove the lines from the TextBox.

2.11.10 Saving Plots

To save a plot, click on the File in the plot window and select the Save 
option from the dropdown menu. This produces a window where you can 
enter a file name. The disadvantage of this method is that if you decide to 
rerun the script, the items that you manually inserted will not be saved. If 
you wish to copy the figure into a report, you can click on Edit in the plot 
window, and then select Copy Figure from the dropdown menu. You can 
then paste the figure into your report. If you need a monochrome version 
of your plot (for best reproduction on a photocopier), you can make all of 
your curves black by choosing File from the task bar menu, then select-
ing Export Setup from the dropdown menu. This will open a window in 
which you need to click on Rendering, and change the Colorspace to 
black and white.

There are many more options available in the plot window, however we 
leave it to the student to explore it further.

REVIEW 2.6

 1. When there is more than one function plotted on a graph, what 
are the ways to identify which curve goes with which function?

 2. What is the name of the function that will allow you to plot 
several graphs on one page?

 3. How does one enter Greek symbols into a plot?
 4. What are the commands that will allow you to enter text onto 

a plot once the plot has been created?
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Projects

P2.1. A tennis player on serve wishes to place the tennis ball close to the 
outside line of the service box when the ball hits the ground (see Figure P2.1a 
and b). The horizontal distance from the point where the ball leaves the 
racket to where the ball hits the ground is 19.33 m. The vertical distance, yo , 
above the ground when the ball leaves the racket is 2.36 m. The angle that the 
ball makes with the horizontal on leaving the players racket is 5.7° pointing 
down. Neglecting drag, the governing equations describing the motion of 
the ball are

 x to= V cos( )ϑ  (P2.1a)

 y
g

t t yo o= − − +
2

2 V sin( )ϑ  (P2.1b)

In the above equations, x and y are in (m), t is in (s) and Vo is in (m/s).
Let (xf, yf) be the x and y positions where the ball hits the ground and tf the 

time when this occurs. 

 1. Determine the time, tf . Time, t, equals zero when the ball leaves the 
racket.

 2. Determine the velocity, Vo , that will result in the ball reaching the 
ground at time tf .

(a)

(b)

Ball leaves racket

12.569 m
19.33 m

0.914 m Net

y

yo

x

5.7°

Vo

Ball leaves
racket

Ball hits ground

Ball hits ground

Ball path

Net

FIGURE P2.1
Tennis player on serve: (a) plan view and (b) vertical view.
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 3. Create a table consisting of t, x, y for 0 ≤ ≤t tf  in steps of tf 10. 
Carry variables to 4 decimal places. Print the table to an output file, 
including tf and Vo  .

 4. Create a plot of y versus x.
 5. Determine the height of the tennis ball at the position of the net.

P2.2. A batter in a baseball game hits a ball to right center field. The ball leaves 
the bat at a 30° angle with the horizontal at a speed of Vo and at a height of 
1.5 m above the ground. The center fielder is 71 m from home plate and the 
angle that the horizontal line connecting the center fielder with home plate 
makes angle of 10° with the horizontal path of the ball, see  Figure P2.2a 
and b. The center fielder sees the direction of the fly ball and starts to run 
toward the path of the ball at an average speed, S and 0.5 s after the ball is 
hit. The center fielder catches the ball when it is just 1.8 m above the ground 
and 91 horizontal meters from the initial position of the ball as it leaves the bat. 
Neglecting drag, the governing equations describing the motion of the ball are

 x to= V cos( )ϑ  (P2.2a)

 y
g

t t yo o= − − +
2

2 V sin( )ϑ  (P2.2b)

 1. What is the time of flight, tf  , when the ball is caught?
 2. What is the initial velocity, Vo  , of the ball when it leaves the bat?

Ball is caught

Ball is caught

Ground

91 m

1.8 m1.5 m

Baseball leaves bat

y

x

Baseball
leaves bat

(a)

(b)

Position of
center �elder

at t = 0

71 m 91 m
10°

30°

Vo

FIGURE P2.2
Batter hitting baseball: (a) Plan view and (b) vertical view.
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 3. What is the average speed, S, of the center fielder as a runs to catch 
the ball.

 4. Create a table consisting of t, x, y for 0 ≤ ≤t tf  in steps of tf 10. Carry 
variables to 4 decimal places. Print the table to the Command 
Window, include tf , Vo , and S.

 5. Create a plot of y versus x.

P2.3. Although atmospheric conditions vary from day-to-day, it is convenient 
for design purposes, to have a model for atmospheric properties as a function 
of altitude. The U.S. Standard Atmosphere, modified in 1976, is such a model. 
For altitudes less than or equal to 11,000 m, the governing equations for the 
air temperature, pressure, and density are as follows:

 p p
z

T
o

o

g
R

= −







1

λ λ
 (P2.3a)

 T T zo= − λ  (P2.3b)

 ρ =
p

RT
 (P2.3c)

where:
z is the altitude
To = 288.15 K (the temperature at z = 0)
po = 1.01325 × 105 Pa (the pressure at z = 0)
R = 287 J/(kg-K) (the gas constant for air)
g = 9.81 m/s2 (the gravitational constant for air)
λ = 0.0065 K/m (the lapse rate)
ρ is the air density (kg/m3)

Calculate atmospheric properties of temperature, T, pressure, p, and density, ρ, 
every 1000 m from z = 0 (sea level) to z = 11,000 m and print the results to a 
file in a table format. Also plot T versus z, p versus Z, and ρ versus z as three 
separate plots, all on the same page.

P2.4. The properties of specific volume, v, and pressure, p, as a function of 
temperature, T, for carbon dioxide based on the Redlich–Kwong Equation 
of state are given in Table P2.1:
Plot v versus T and p versus T as two separate plots.
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P2.5. In this project, we consider two cars on a collision course (see 
Figure P2.3). Each car’s initial position and the angle its path makes with the 
x-axis is specified below. The speed of car1 is also specified.

Initial position of car1: x1 = 500 m, y1 = 100 m, and V1 = 40 m/s. Car1 moves 
in a straight line that makes an angle of 60° with the x-axis.

Initial position of car2: x2 = 2000 m, y2 = 200 m. Car2 moves in a straight line 
and makes an angle of 45° with the (−x) axis.

The collision coordinates are (xc  , yc). See Figure P2.3.

TABLE P2.1

Specific Volume and Pressure versus Temperature

T (K) v (m3/kmol) p (bar)

350 0.28 7.65
400 0.32 8.57
450 0.36 9.16
500 0.40 9.55
550 0.44 9.81
600 0.48 10.00
650 0.52 10.14
700 0.56 10.24
750 0.60 10.31
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FIGURE P2.3
Two cars on a collision path.
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We can determine the coordinates of the collision point by writing the 
equation for the tangent of each line, solving each equation for yc , equating 
the two yc expressions, then solving for xc, as shown below.

 
y y
x x

y y
x x

c

c

c

c

−
−

=
−
−

=1

1

2

2
60 45tan( ) , tan( )° °  (P2.5)

Solving each equation for yc gives

 y y x xc c= + − ×1 1 60( ) tan( )°  (P2.5)

 y y x xc c= + − ×2 2 45( ) tan( )°  (P2.5)

Equating the two yc values gives

 y x x y x xc c1 1 2 260 45+ − × = + − ×( ) tan( ) ( ) tan( )° °  (P2.5)

Solving for xc gives

 x
y y x x

c =
− + +

+
2 1 1 260 45

60 45
tan( ) tan( )

tan( ) tan( )
° °

° °
 (P2.5)

The distance travelled by each car from the initial state to the collision state is

 d x x y y tc c c1 1
2

1
2

1= − + − =( ) ( ) V  (P2.5)

 d x x y y tc c c2 2
2

2
2

2= − + − =( ) ( ) V  (P2.5)

where tc = time of collision. Equating the tc from both the above equations give

 
d d d

d
1

1

2

2
2 1

2

1V V
V V= → =  (P2.5)

On line 1:

 x t x t y t y t( ) cos( ) , ( ) sin( )= + = +1 1 1 160 60V V° °  (P2.5)

On line 2:

 x t x t y t y t( ) cos( ) , ( ) sin( )= − = +2 2 2 245 45V V° °  (P2.5)

Create a MATLAB program that will do the following.

 1. Create a plot of the intersecting lines of lengths d1 and d2.

NOT E:  You only need to specify two points on the line to plot the line.

 2. Determine V2 that will cause the collision to take place.



75MATLAB® Fundamentals

 3. Take t = 0: tc /5: tc and plot the two lines and the two car’s positions 
at ti  , shown as small circles, all on the same graph.

P2.6. A formula describing the fluid level, h(t), in a tank as the fluid dis-
charges through a small circular orifice (see Figure P2.4) is

 h h
C A

A
g to

d o

T
= −

2
2  (P2.6)

where:
Cd is the discharge coefficient
ho is the fluid level in the tank at time, t = 0
Ao is the circular area of the orifice having diameter d
AT is the circular cross-sectional area of the tank having diameter D

Create a MATLAB program that will 

 1. Determine vectors h versus t, for 0 80≤ ≤t  s.
 2. Create a table containing 20 values of t and h (every fourth time step) 

and print the table to a file and print the file.
 3. Create a plot of h versus t and print the plot.

Use the following parameters:
ho = 0.3 m, the tank diameter, D = 0.8 m, the orifice diameter, d = 0.05 m, 

g = 9.81 m/s2 and Cd = 0.7.

P2.7. When a fluid flows through a pipe there is a pressure drop that is pro-
portional to the pipes length (see Figure P2.5). For a pipe having a circular 
cross section, the pressure drop, p p1 2−  [1] is given by

Vo

h

FIGURE P2.4
Fluid discharging through a small orifice.
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 p p
L
D

f1 2

2

2
− = ρV  (P2.7)

where:
ρ is the fluid density ( / )kg m3

V is the average fluid velocity in the pipe ( / )m s
D is the pipe diameter (m)
L is the pipe length between points 1 and 2 (m)
f is the friction factor

The friction factor has been determined by experiment. For smooth pipes a 
formula that approximates the experimental data is [5]

 f = − −( . log . )1 82 1 6410
2Re  (P2.7)

where:

 Re
V= ρ
µ

D
 (Reynolds number) (P2.7)  

and µ = −Absolute fluid viscosity  N s m( )2 .

Develop a MATLAB program that will calculate 

 1. f versus Re.
 2. V versus Re.
 3. p p1 2− versus Re.
 4. Plot log(Re) on the x-axis and f on the y-axis (semilog plot). Take

Re = [5.0e3 7.5e3 1.0e4 2.5e4 5.0e4 7.5e4 1.0e5 2.5e5 5.0e5 7.5e5 1.0e6 
2.5e6 5.0e6 ].

Take ρ = = =1000 50 0 153/ , , .kg m m mL D , and µ = × −−1 52 10 3 2. N s m

P2.8. The positioning of a piston in an internal combustion engine is shown 
in Figure 2.18a and b. The piston’s position, s, as seen from the crank shaft 
center can be determined by the Law of cosines, that is,

 b s r s r2 2 2 2= + − cos θ (P2.8a)

1 2

V

FIGURE P2.5
Fluid flow through a pipe.
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or

 s r s r b2 2 22 0− + − =( cos ) ( )θ  (P2.8b)

where:
b is the length of the piston rod
r is the radius of the crankshaft

Equation P2.8b is a quadratic equation in s and therefore

 
s r r r b r r b= + − −( ) = + − +1

2
2 4 4 12 2 2 2 2 2 2cos cos ( ) cos (cos )θ θ θ θ

or

 s r b r= + −cos sinθ θ2 2 2  (P2.8c)

The piston is constrained to move in the vertical direction and its position, s, 
varies as the crankshaft rotates. The angle, θ, varies with time, t, and can be 
expressed in terms of the rotational speed, ω, of the crankshaft. The angle ν
is thus given by

 θ πω= 2 t (P2.8d)

where ω is in revolutions per second. Substituting Equation P2.8d into 
Equation P2.8c gives

 s t r t b r t( ) cos( ) sin ( )= + −2 22 2 2πω πω  (P2.8e)

The piston velocity, V, can be obtained by taking the derivative of Equation 
P2.8e with respect to time giving

 V( ) sin( )
sin( )cos( )

sin ( )
t r t

r t t

b r t
= − −

−
2 2

2 2 2

2

2

2 2 2
πω πω πω πω πω

πω
 (P2.8f)

 1. In MATLAB, create a matrix consisting of s versus t and V versus t, 
for 0 0 02≤ ≤t .  seconds. Use 50 subdivisions on the t domain. Take 
r = 9 cm, ω = 100 revolutions per second, and b = 14 cm. Plot s versus 
t and V versus t as two separate plots.

 2. Using MATLAB’s max function and the matrix obtained in part (1), 
determine the approximate maximum velocity and print out those 
values to the screen.

 3. Plot on a single page s versus t for ω = 50 100 150 200   [ ] revolutions 
per second.
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P2.9. This project involves plotting the oscillatory motion of a mass in a 
mass-spring-dashpot system (see Figure 2.19). The governing equation 
for the position, y, of the mass measured from the equilibrium position 
depends on the values of the spring constant, k, the damping factor, c, and 
the mass, m.

If, k m c m> ( )2 2, then the mass motion will be damped oscillations and 
the governing equation describing the motion is
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The coefficients A and B are determined by initial conditions, which is 
beyond the scope of this textbook. Given the following parameters:
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For a complete derivation of Equation P2.9 see Project P2.5 in [3,4].
Determine y(t) for 0 20≤ ≤t  seconds in steps of 0.1 seconds.
The envelope of the solution graph for this case is given by
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Plot y versus t and yenv  versus t on the same graph.

P2.10. In this project we consider the voltage, v, of a parallel RLC circuit when 
at t = 0, the switch is opened. See Figure 2.22. The governing equation for v, 
depends on the values of R, L, and C.

If ( ) ,1 2 12RC LC<  then the solutions are decaying sinusoids over time 
(underdamped) and the governing equation for v is
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For a complete derivation of Equation P2.10 see Project P2.7 in [3,5]. The 
coefficients A and B are to be determined by initial conditions, which are 
beyond the scope of this book.
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Create a MATLAB program that will calculate and plot v(t) for 
0 500≤ ≤t µsec  in steps of 5 μsec using the following parameters:

 R = 100 Ω, L = 1 mH, C = 1 μF, A = 6.0000 V, and B = −0.9608 V

P2.11. This project involves determining the rate that heat, q, which is trans-
ferred into a house per unit surface area from a section of the exterior walls 
shown in Figure P2.6. The wall consists of plaster board, insulation, wood 
sheathing, and brick.

The governing equation describing the rate that heat is transferred, q, into 
a house from the wall section [6] shown in Figure P2.6 is
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(P2.11)

where:
ho is the outside convective heat transfer coefficient
hi is the inside convective heat transfer coefficient
k1 is the thermal conductivity of brick
k2 is the thermal conductivity of wood sheathing
k3 is the thermal conductivity of insulation
k4 is the thermal conductivity of plaster board

Inside
Outside

Insulation

Plaster board

Wood sheathing

Outside brick

Temperature pro�le

TiL1 L2 L3 L4

To

FIGURE P2.6
Heat flow through exterior wall.
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Create a MATLAB program that determines the rate that heat flows into a 
house per unit surface area due to the section of the wall described above. 
Take To to vary from 25°C to 40°C in steps of 1.0°C and Ti = 20°C. Create 
a table containing To and q, include table headings with units. Also, plot q 
versus To .

The thickness, L, of each material follows:

 L L L L4 3 2 11 3 10 1 3 0 7= = = =. . .cm, cm, cm and cm

The thermal conductivity, k, of each of the materials follows:
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For the interior temperature to remain constant, an air-conditioning system 
must remove heat at the rate that heat enters the house from the outside as 
well as any heat that is generated in the interior.
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3
Conditional Operators, Built-in 
Functions with Vector Arguments, 
MATLAB®’s Interp1 Function, 
and Some Scalar and Vector Operations

3.1 Introduction

In this chapter, we cover the next building block in basic programming, 
one that exists in most programming languages and that is the Conditional 
Operators. The first conditional operator discussed is the if-else com-
mand. Next we cover the if-elseif-else ladder, followed by a description 
of the Switch Group. Also, in this chapter, we discuss working with built-
in functions with vector arguments, MATLAB®’s interp1 function and 
some scalar and vector operations, including element-by-element operations.

3.2 Conditional Operators and Alternate Paths

3.2.1 The if Command Provides Two Alternate Paths

Syntax:

if logical expression
 statement;
  

 statement;
else
 statement;
  

 statement;
end
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If the logical expression is true, then only the upper set of statements is 
 executed. If the logical expression is false, then only the bottom set of state-
ments is executed.

Logical expressions are of the form

a == b; a <= b;
a < b; a >= b;
a > b; a ~= b; (a not equal to b)

Logical expressions have only two values: true or false.
Compound logical expressions

a > b && a ~= c (a b>  and a c≠  )
a > b || a < c (a b>  or a c< )

The following example illustrates the use of both the if command and the 
input command.

NOT E 1 :  In Example 3.1, we use the fprintf command just before the input 
command, to provide the user with more directions than can be given by the 
input command itself.

NOT E 2 :  When the input command is executed, the Run icon in the Editor 
Window changes to a Pause icon (see Figure 3.1).

Example 3.1

% Example_3_1.m
% This program uses the input command and an if statement to
% determine if the output is to go to the screen or to a file. The
% variables y1 and y2 are made vectors so that these variables can
% be printed outside the for loop that created them. As vectors,
% they can also be plotted.
clear; clc;
t=0:0.5:5;

FIGURE 3.1
MATLAB’s menu push button figure.
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for j=1:length(t)
 y1(j)=t(j)^2/10;
 y2(j)=t(j)^3/100;
end
fprintf('Do you wish to print the output to \n');
fprintf('the screen or to a file? \n');
response=input('Enter s for screen or F for file \n','s');
% Note, since we entered 's' in the input statement, you do not
% need to enclose your answer in single quotation marks.
if response=='s'
% Table headings:
 fprintf(' t y1 y2  \n');
 fprintf('---------------------------\n');
 for j=1:length(t)
  fprintf('%3.1f    %10.3f    %10.3f \n', ... 
  t(j),y1(j),y2(j));
 end
end
if response=='F'
 fo=fopen('output.txt','w');
 % Table headings:
 fprintf(fo,' t y1 y2  \n');
 fprintf(fo,'---------------------------\n');
 for j=1:length(t)
  fprintf(fo,'%3.1f    %10.3f    %10.3f \n',... 
  t(j),y1(j),y2(j));
 end
end
--------------------------------------------------------------------------------------------------
Program Results (either from the screen or from the file “output.txt”):

 t y1 y2
---------------------------
0.0 0.000 0.000
0.5 0.025 0.001
1.0 0.100 0.010
1.5 0.225 0.034
2.0 0.400 0.080
2.5 0.625 0.156
3.0 0.900 0.270
3.5 1.225 0.429
4.0 1.600 0.640
4.5 2.025 0.911
5.0 2.500 1.250
-----------------------------------------------------------

3.2.2  The if-elseif-else Command Provides More than Two 
Alternate Paths

Syntax:

if logical expression 1
 statement(s);
elseif logical expression 2
 statement(s);
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elseif logical expression 3
 statement(s);
else
 statement(s);
end

The if-elseif-else ladder works from top down. If the top logical expres-
sion is true, the statements related to that logical expression are executed, 
and the program will leave the ladder. If the top logical expression is not 
true, the program moves to the next logical expression. If that logical expres-
sion is true, the program will execute the group of statements associated 
with that logical expression and leave the ladder. If that logical expression is 
not true, the program moves to the next logical expression and continues the 
process. If none of the logical expressions are true the program will execute 
the statements associated with the else statement. The else statement is 
not required. In that case, if none of the logical expressions are true, no state-
ments within the ladder will be executed.
--------------------------------------------------------------

Suppose in Example 3.1, we had more than two choices. For example, we had the 
choice of printing to the screen, printing to a file, exiting the program, or opening 
the edit window to create a new program. The following program uses the if-
elseif-else ladder and the input statement to decide which choice to select.

Example 3.2

% Example_3_2.m
% First the script determines y1 and y2 as functions of t. The
% script then uses the input command and the if-elseif ladder to
% determine if the program prints the results to the screen,
% prints the results to a file, exits the program or opens the edit
% window to create a new script.
clear; clc;
t=0:0.5:5;
for j=1:length(t)
 y1(j)=t(j)^2/10;
 y2(j)=t(j)^3/100;
end
fprintf('If you wish to print the output to the screen enter S \n');
fprintf('If you wish to print the output to a file enter F \n');
fprintf('if you wish to close the program enter C \n');
fprintf('If you wish to open the edit window enter E \n');
fprintf('Enter your response without single quotation marks \n');
response=input('Enter S, F, C or E \n','s');
if response=='S'
% Table headings:
 fprintf(' t y1 y2  \n');
 fprintf(' ------------------------------\n');
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 for j=1:length(t)
 fprintf('%5.1f    %10.3f    %10.3f \n',t(j),y1(j),y2(j));
 end
elseif response=='F'
 fo=fopen('output.txt','w');
 % Table headings:
 fprintf(fo,' t y1 y2  \n');
 fprintf(fo,'-------------------------------\n');
 for j=1:length(t)
  fprintf(fo,'%5.1f    %10.3f    %10.3f \n',t(j),y1(j),y2(j));
 end
 fclose(fo);
elseif response=='C'
 quit;
elseif response=='E'
 edit;
end
------------------------------------------------------------------------

3.2.3 The break Command

The break command may be used with an if statement to end a loop; 
Example:

for m = 1:20
 statement(s);
 if m > 10
  break;
 end

end

In the above example, when m becomes greater than 10, the program 
leaves  the for loop and moves on to the next statement outside the for 
loop.
----------------------------------------------------------------

Frequently when we deal with problems involving material properties, we 
will find that there exist tables that describe several material properties of 
several different substances. For example, in Thermodynamics, there are 
textbooks that contain tables of the thermodynamic properties of specific 
volume, internal energy, and entropy of saturated water, ammonia, refriger-
ant 22, and so on as a function of temperature. Suppose we have a problem 
involving a material property that lies between table values. The simplest 
way to determine the material property would be to interpolate between 
table values. If we assume that the properties vary linearly between table 
values, then we can use linear interpolation. Suppose we have a table of y 
as a function of x and we wish to determine the value of y at x, where x lies 
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between table values x x1 2and  , then the general linear interpolation  formula, 
based on similar triangles, in terms of y and x is 

 y y
y y x x

x x
= +

− × −
−

1
2 1 1

2 1

( ) ( )
 (3.1)

where y1 and y2 are the values of y at x1 and x2  , respectively.
Let us consider the Atmospheric problem described in Example 2.7. In that 

example, the atmospheric properties of temperature, pressure, and density 
as a function of altitude were specified in the file named atm_properties.txt, 
which is shown below. Here, the first column is altitude (m), the second col-
umn is temperature (K), the third column is pressure (Pa), and the fourth 
column is density (kg/m3).

0 288.15 1.0133e+005 1.2252
1000 281.65 8.9869e+004 1.1118
2000 275.15 7.9485e+004 1.0065
3000 268.65 7.0095e+004 0.9091
4000 262.15 6.1624e+004 0.8191
5000 255.65 5.4002e+004 0.7360

The next example is an interactive program, where the user is asked to enter 
an altitude at which he/she wishes to know the atmospheric properties. The 
program uses the if-elseif ladder to determine the closest surrounding 
altitude to the entered altitude. It then calculates the atmospheric properties 
of temperature, pressure, and density by linear interpolation. In MATLAB, 
the easiest and most efficient way to solve this interpolation problem is to use 
MATLAB’s interp1 function. However, if you do not have MATLAB avail-
able, but have availability a different computer programming platform used 
by engineers, then you would probably need to solve the interpolation prob-
lem by one of the two examples listed below. The second one, Example 3.4 is 
more efficient than Example 3.3 and should always be used in preference to 
Example 3.3. We give Example 3.3 as a demonstration of the use of the if-
elseif  ladder. Later we will use the MATLAB’s interp1 function to solve 
the problem.

Example 3.3

% Example_3_3.m
% This program loads data from a file named atm_properties.txt
% The program asks the user to enter an elevation at which atmospheric
% properties are to be determined by linear interpolation.
% The altitude range is from 0 to 5000 m.
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% Then the atmospheric properties are printed to the screen.
% The program uses the if-elseif ladder to select the closest interval
% to the entered altitude. The properties in this interval will be used
% in the interpolation formula.
% Temperature is in degrees Kelvin (K), pressure is in Pascal (Pa) and
% density is in kg/m^3.
clear; clc;
load atm_properties.txt
% establishing variable names to loaded data.
zt=atm_properties(:,1);
Tt=atm_properties(:,2);
pt=atm_properties(:,3);
rhot=atm_properties(:,4);
fprintf('Enter the altitude at which atmospheric properties \n');
z=input('are to be determined. Altitude range is from 0 to 5000 m \n');
if z>=zt(1)&& z<zt(2)
 z1=zt(1); z2=zt(2); T1=Tt(1); T2=Tt(2); p1=pt(1); p2=pt(2);
 rho1=rhot(1); rho2=rhot(2);
elseif z>=zt(2)&& z<zt(3)
 z1=zt(2); z2=zt(3); T1=Tt(2); T2=Tt(3); p1=pt(2); p2=pt(3);
 rho1=rhot(2); rho2=rhot(3);
elseif z>=zt(3)&& z<zt(4)
 z1=zt(3); z2=zt(4); T1=Tt(3); T2=Tt(4); p1=pt(3); p2=pt(4);
 rho1=rhot(3); rho2=rhot(4);
elseif z>=zt(4)&& z<zt(5)
 z1=zt(4); z2=zt(5); T1=Tt(4); T2=Tt(5); p1=pt(4); p2=pt(5);
 rho1=rhot(4); rho2=rhot(5);
elseif z>=zt(5)&& z<zt(6)
 z1=zt(5); z2=zt(6); T1=Tt(5); T2=Tt(6); p1=pt(5); p2=pt(6);
 rho1=rhot(5); rho2=rhot(6);
end
T=T1+(T2-T1)*(z-z1)/(z2-z1);
p=p1+(p2-p1)*(z-z1)/(z2-z1);
rho=rho1+(rho2-rho1)*(z-z1)/(z2-z1);
fprintf('T=%6.2f(K), p=%10.4e(Pa) rho=%6.4f(kg/m^3) \n',T,p,rho);
---------------------------------------------------------------------------

Program Results:

Enter the altitude at which atmospheric properties
are to be determined. Altitude range is from 0 to 5000 m
4380
T=259.68(K), p=5.8728e+04(Pa) rho=0.7875(kg/m^3)
>> 
------------------------------------------------------------------------------

Whenever one gets the results of a program, it is prudent to examine the 
results to see if they make sense. In this case, do the obtained properties lie 
within the proper interval?

An alternative to loading the data in the file atm_properties.txt into the above 
script is to enter the data directly into the program as vectors. To accomplish 
this, replace the following lines in Example 3.3
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load atm_properties.txt
% establishing variable names to loaded data.
zt=atm_properties(:,1);
Tt=atm_properties(:,2);
pt=atm_properties(:,3);
rhot=atm_properties(:,4);

with

zt=[0 1000 2000 3000 4000 5000];
Tt=[288.15 281.65 275.15 268.65 262.15 255.65];
pt=[10.133 8.9869 7.9485 7.0095 6.1624 5.4002]*1.0e+004;
rhot=[1.2252 1.1118 1.0065 0.9091 0.8191 0.7360];

A more efficient way to solve the problem with far fewer lines of code 
is to use a single for loop and an if statement to determine the closest 
interval to the entered altitude by the user, thus, reducing the number 
of lines in the program. This is demonstrated in the following example. 
This becomes important when the number of conditions in the program 
is large.

Example 3.4

% Example_3_4.m
% This program enters the data shown in atm_properties.txt directly
% into the program as vectors.
% The program then asks the user to enter an elevation at which the 
% atmospheric properties are to be determined by linear interpolation.
% The atmospheric properties are then printed to the screen.
% The program uses a for loop and a compound if statement to determine
% the closest interval to the entered altitude. The properties in
% this interval will be used in the interpolation formula.
% Temperature is in degrees Kelvin (K), pressure is in Pascal (Pa) and
% density is in kg/m^3.
clear; clc;
zt=[0 1000 2000 3000 4000 5000];
Tt=[288.15 281.65 275.15 268.65 262.15 255.65];
pt=[10.133 8.9869 7.9485 7.0095 6.1624 5.4002]*1.0e+004;
rhot=[1.2252 1.1118 1.0065 0.9091 0.8191 0.7360];
fprintf('Enter the altitude at which atmospheric properties \n');
z=input('are to be determined. Altitude range is from 0 to 5000 m \n');
for i=1:length(zt)-1
 if z>=zt(i)&& z<zt(i+1)
  z1=zt(i); z2=zt(i+1); T1=Tt(i); T2=Tt(i+1);
   p1=pt(i); p2=pt(i+1); rho1=rhot(i); rho2=rhot(i+1);
  break;
 end
end
T=T1+(T2-T1)*(z-z1)/(z2-z1);
p=p1+(p2-p1)*(z-z1)/(z2-z1);
rho=rho1+(rho2-rho1)*(z-z1)/(z2-z1);
fprintf('T=%6.2f(K), p=%10.4e(Pa) rho=%6.4f(kg/m^3) \n',T,p,rho);
-------------------------------------------------------------------------------
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Program Results:

Enter the altitude at which atmospheric properties
are to be determined. Altitude range is from 0 to 5000 m
1350
T=279.38(K), p=8.6235e+04(Pa) rho=1.0749(kg/m^3)
>>
--------------------------------------------------------------------------------------

3.2.4 The switch Command

In some cases, the Switch Group may be used as an alternative to the if-
elseif-else ladder.

Syntax:

switch(var)
 case var1
  statement(s);
 case var2
  statement(s);
 case var3
  statement(s);
 otherwise
  statement(s);
end

where var takes on the possible values var1, var2, var3, and so on.
If var equals var1, those statements associated with var1 are executed 

and the program leaves the Switch Group. If var does not equal var1, the 
program tests if var equals var2, and if yes, the program executes those 
statements associated with var2 and leaves the Switch Group. If var does 
not equal any of var1, var2, and so on, the program executes the state-
ments associated with the otherwise statement. If var1, var2, and so on 
are strings, they need to be enclosed by single quotation marks. It should 
be noted that var cannot be a logical expression, such as var1 > = 80.

The following example illustrates the use of the Switch Group in a 
MATLAB program.

Example 3.5

% Example_3_5.m
% This program is a test of the switch statement.
clear; clc;
var = 'a';
x = 5;
switch(var)
 case 'b'
  z = x^2;
 case 'a'
  z = x^3;
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 otherwise
  z=0;
end
fprintf(' z = %6.1f \n',z);
--------------------------------------------------------------------------

Program Results:
z = 125.0
>>
-----------------------------------------------------------------------

3.2.5 MATLAB’s menu Function

MATLAB’s menu function allows the user to select from several choices by 
the use of push buttons on a graphical display. Each item listed in the menu 
is given a number according to its position in the menu list. The top item 
in the menu display is given number 1, the second from the top is given 
number 2, and so on. In the following example, the user is prompted to click 
on one of the gases listed in the menu display (see Figure 3.2). The program 
then determines the density of the gas selected based on the ideal gas law. 
Pressure and temperature are specified.

Example 3.6

% Example_3_6.m
% This program uses MATLAB's menu function and the if-elseif ladder
% to determine the density of a gas by the ideal gas law.
% The gas is selected by the user by clicking on a push button in
% the menu display.
clear; clc;
p=2*1.013e+5; T=350.0;
Rt=[287 2077 4121 297 260];
k= menu('choose a gas','air','helium','hydrogen','nitrogen','oxygen');
if k==1
 R=Rt(1);
 fprintf('The gas is Air \n');
elseif k==2
 R=Rt(2);
 fprintf('The gas is Helium \n');
elseif k==3
 R=Rt(3);
 fprintf('The gas is hydrogen \n');
elseif k==4
 R=Rt(4);
 fprintf('The gas is Nitrogen \n');
elseif k==5
 R=Rt(5);
 fprintf('The gas is Oxygen \n');
end
rho=p/(R*T);
fprintf('The density, rho, is based on the ideal gas law \n');
fprintf('T=%5.1fK p=%10.4ePa rho=%7.4fkg/m^3 \n',T,p,rho);
----------------------------------------------------------------------------
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The menu display that pops up (upper left corner of the screen) is shown in Figure 3.2.
I clicked on the nitrogen button and got the following result:

Program Results:
The gas is Nitrogen
The density, rho, is based on the ideal gas law
T=350.0K p=2.0260e+05Pa rho=1.9490kg/m^3
>>
-------------------------------------------------------------------------------

REVIEW 3.1

 1. What statement is frequently used to establish two conditional 
paths?

 2. What series of statements is used to establish several condi-
tional paths?

 3. List the various types of logic statements that can be used with 
the if-else and if-elseif-else ladder.

 4. Is the else statement required with either the if-else or the 
if-elseif–else ladder?

 5. What statement group and a MATLAB’s function are alterna-
tives to the if-elseif-else ladder?

FIGURE 3.2
Menu display.
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Exercises

E3.1. The numerical grades on an exam are listed in the vector labeled scores.
Scores = [92 85 73 83 75 85 65 76 96 84 76 81 55 76 94 65 84 62 78 80 74 62 84 

76 70 88 74 82 70 86]. Each score will be assigned a letter grade as indicated 
in the Table 3.1.

Write a MATLAB program that will determine the number of grades in 
each letter grade category and plot the result as a bar chart (see Example 2.14).

E3.2. Repeat Example 3.6, but this time use the switch Statement instead of 
the if-elseif ladder.

3.3 Working with Built-in Functions with Vector Arguments

MATLAB allows the built-in functions such as sin( ), cos( ), exp( ), and 
so on as well as functions in general to have vectors as arguments. The result 
will also be a vector. This is demonstrated in the next example.

Example 3.7

% Example_3_7.m
% This program demonstrates that if the argument in a built in
% function, such as MATLAB's sine function, is a vector, the result
% will also be a vector.
clear; clc;
% Define vector x;
x=0:30:360;
% Let y1 be the sine of a vector x where x is in degrees.
% Running sind with vector x as an argument will return a vector:
y1 = sind(x);
% Thus, y1 is a vector.
% Let y2(n) be the sine of the nth element of x. We will use a for
% loop to calculate each value y2(n) and then compare y1 and y2.

TABLE 3.1

Score Range for Letter Grade

Letter Grade Score Range

A 100 to 90
B 89 to 80
C 79 to 70
D 69 to 60
F Less than 60
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for n=1:length(x)
 y2(n)=sind(x(n));
end
% Table headings
fprintf('   x y1 y2  \n');
fprintf('------------------------------------\n');
for n=1:length(x)
 fprintf('%5.1f %8.5f %8.5f \n',x(n),y1(n),y2(n))
end
-----------------------------------------------------------------------------

Program Results:
   x y1 y2
------------------------------------
  0.0 0.00000 0.00000
 30.0 0.50000 0.50000
 60.0 0.86603 0.86603
 90.0 1.00000 1.00000
120.0 0.86603 0.86603
150.0 0.50000 0.50000
180.0 0.00000 0.00000
   . .      .
   . .      .
-------------------------------------------------------------------------------

In the generated output, does y1 = y2?
We see that in some scripts, we could replace the use of a for loop by using 

a vector argument in many built-in or self-written functions, which produces 
a vector result, thus reducing the number of lines in the script. This concept 
was demonstrated in the above Example 3.7.

3.4 MATLAB’s interp1 Function

MATLAB has a function named interp1 that performs interpolation.
The syntax for interp1 is

Yi = interp1(X,Y,Xi)

where X and Y are a set of known (x, y) data points and Xi is the set of x 
values at which the set of y values, Yi, are to be determined by linear inter-
polation. Arrays X and Y must be of the same length. Note: If Xi is a vector, 
then Yi will also be a vector. The function interp1 can also be used for 
interpolation methods other than linear interpolation, and this is covered in 
Chapter 9 on Curve Fitting. In the next example, we modify Example 3.4 by 
using MATLAB’s interp1 function to interpolate for the atmospheric proper-
ties at an altitude entered from the keyboard.
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Example 3.8

% Example_3_8.m
% This program enters the data shown in atm_properties.txt directly
% into the program as vectors.
% The program then asks the user to enter an elevation at which the
% atmospheric properties are to be determined by linear interpolation.
% The atmospheric properties are then printed to the screen.
% The program uses MATLAB's interp1 function to do the interpolation.
% Temperature is in (K), pressure is in (Pa) and
% density is in (kg/m^3).
clear; clc;
zt=[0 1000 2000 3000 4000 5000];
Tt=[288.15 281.65 275.15 268.65 262.15 255.65];
pt=[10.133 8.9869 7.9485 7.0095 6.1624 5.4002]*1.0e+004;
rhot=[1.2252 1.1118 1.0065 0.9091 0.8191 0.7360];
fprintf('Enter the altitude at which atmospheric properties \n');
z=input('are to be determined. Altitude range is from 0 to 5000 m \n');
T=interp1(zt,Tt,z);
p=interp1(zt,pt,z);
rho=interp1(zt,rhot,z);
fprintf('T=%6.2f(K), p=%10.4e(Pa) rho=%6.4f(kg/m^3) \n',T,p,rho);
---------------------------------------------------------------------------

Program Results:
Enter the altitude at which atmospheric properties
are to be determined. Altitude range is from 0 to 5000 m.
1350
T=279.38(K), p=8.6235e+04(Pa) rho=1.0749(kg/m^3)
>>

Are the results the same as those obtained in Example 3.4?
---------------------------------------------------------------------------

The next example demonstrates the use of interp1 function for interpolat-
ing for internal energy of a refrigerant at temperatures specified in vector T2. 
The output from interp1 will also be a vector.

Example 3.9

% Example_3_9.m
% This program uses MATLAB's function interp1 to interpolate for
% the internal energy, u, as a function of temperature, T, of
% an unspecified refrigerant.
% Measured values of u in (kJ/kg) vs. T in degrees (C)
% are specified in vectors ut and Tt respectively.
% The temperatures at which the internal energy is to be determined
% are specified in vector T2.
% The program also creates a plot of u vs. T and includes points of
% u at temperature T2.
clear; clc;
Tt=-20:10:90;
ut=[217.86 224.97 232.24 239.69 247.32 255.12 263.10 271.25 ...
 279.58 288.08 296.75 305.58];
fprintf('This program interpolates for the internal energy, u at \n');
fprintf('a specified temperature T. \n');
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fprintf('The allowable temperature range is -20 to +90 C. \n\n');
T2=[-12 6 24 32 64 82];
u=interp1(Tt,ut,T2);
fprintf(' T2(C) u(kJ/kg)  \n');
fprintf('--------------------------\n');
for i=1:length(T2)
    fprintf(' %6.1f %8.3f \n',T2(i),u(i));
end
plot(Tt,ut,T2,u,'o' );
xlabel('T(C)'), ylabel('u(kJ/kg)'), title('u vs. T'), grid;
-----------------------------------------------------------------------------------------

Program Results:
This program interpolates for the internal energy, u at
a specified temperature T.
The allowable temperature range is -20 to +90 C.

 T2(C) u(kJ/kg)
--------------------------
 -12.0 223.548
  6.0 236.710
 24.0 250.440
 32.0 256.716
 64.0 282.980
 82.0 298.516 
>>

See Figure 3.3
--------------------------------------------------------------------------
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FIGURE 3.3
Internal energy, u, as a function of temperature, T, of an unspecified refrigerant.



96 MATLAB® Essentials

3.5 Some Scalar and Vector Operations

3.5.1 Addition of a Scalar and a Vector

The result of a scalar added to a vector is that the scalar is added to each ele-
ment of the vector. Example: 

 Z = + =5 2 4 6 8 7 9 11 13[ ] [ ] 

3.5.2 Multiplication of a Scalar Times a Vector

The result of a scalar multiplied by a vector is that each element of the vector 
is multiplied by the scalar. Example: 

 Z = ∗ =5 2 4 6 8 10 20 30 40[ ] [ ] 

3.5.3 Addition and Subtraction of Two Vectors of the Same Length

Given A = [ ]a a a1 2 3  and B = [ ]b b b1 2 3 , then 

 C = A + B gives C [( ) ( ) ( )]= + + +a b a b a b1 1 2 2 3 3  

 D = A − B gives D [( ) ( ) ( )]= − − −a b a b a b1 1 2 2 3 3

The addition or subtraction of two vectors of different lengths is not 
defined.

3.5.4 Element-by-Element Operations

Given two vectors of the same length, we can perform element-by-element 
multiplication, division, and exponentiation in MATLAB with the .*, and 
./, and . ^ operators.

Given A = [ ]a a a1 2 3  and B = [ ]b b b1 2 3  , then

 C A B= = [ ].∗ a b a b a b1 1 2 2 3 3  ,

 D A B= . = 





/
a
b

a
b

a
b

1

1

2

2

3

3

 ,

 E A B= = =. [ ] ( )^ a a a powerb b b
1 2 3

1 2 3 A,B

We see that the element-by-element operation results in a vector that is the 
same length as the vectors that are involved in the operation.
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Example 3.10

To demonstrate the above relations, copy the following script and run the program 
and observe the result.

% Example_3_10.m
% This program demonstrates some scalar and vector operations.
clear; clc;
s=5; a=[1 5 9]; b=[2 6 12]; c=s+a; d=s*b; e=a+b; f=a-b; g=a.*b; 
h=a./b;
fprintf('s=%3i \n',s);
fprintf('a= %3i %3i %3i \n',a);
fprintf('\n');
fprintf('c=s+a\n');
fprintf('c= %3i %3i %3i \n',c);
fprintf('\n');
fprintf('s=%4i \n',s);
fprintf('b= %3i %3i %3i \n',b);
fprintf('d=s*b \n');
fprintf('d= %3i %3i %3i \n',d);
fprintf('\n');
fprintf('a= %3i %3i %3i \n',a);
fprintf('b= %3i %3i %3i \n',b);
fprintf('e=a+b \n');
fprintf('e= %3i %3i %3i \n',e);
fprintf('\n');
fprintf('a= %3i %3i %3i \n',a);
fprintf('b= %3i %3i %3i \n',b);
fprintf('f=a-b \n');
fprintf('f= %3i %3i %3i \n',f);
fprintf('\n');
fprintf('a= %3i %3i %3i \n',a);
fprintf('b= %3i %3i %3i \n',b);
fprintf('g=a.*b \n');
fprintf('g= %3i %3i %3i \n',g);
fprintf('\n');
fprintf('a= %3i %3i %3i \n',a);
fprintf('b= %4i %4i %4i \n',b);
fprintf('h=a./b \n');
fprintf('h= %8.4f %8.4f %8.4f \n',h);
fprintf('\n');
a=[2 3 4]; b=[2 2 2];
k=a.^b;
fprintf('a= %3i %3i %3i \n',a);
fprintf('b= %4i %4i %4i \n',b);
fprintf('k=a.^b \n');
fprintf('k= %4.1f %4.1f %4.1f \n',k(1),k(2),k(3));
--------------------------------------------------------------------------

Program Results:
s=   5
a=   1   5   9
c=s+a
c=   6  10  14
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s=   5
b=   2   6  12
d=s*b
d=  10  30  60

a=   1   5   9
b=   2   6  12
e=a+b
e=   3  11  21

a=   1   5   9
b=   2   6  12
f=a-b
f=  -1  -1  -3

a=   1   5   9
b=   2   6  12
g=a.*b
g=   2  30 108

a=   1   5   9
b=   2   6  12
h=a./b
h=   0.5000   0.8333   0.7500

A=   2   3   4
B=   2   2   2
k=A.^B
k=   4.0  9.0  16.0
>>
--------------------------------------------------------------------------------

3.5.5 Operation of Two Vector Functions

If a script involves a mathematical operation of two vector functions (such 
as a product of two vector functions), then the operation will require an 
element-by-element operation. In Example 3.9, we compute the product of 
two vector functions, both directly and indirectly by using a for loop and 
multiplying the elements of each vector. We then compare the results.

Example 3.11

% Example_3_11.m
% This example illustrates element-by element operation
% of two vector functions
clear; clc;
x = 0:30:180;
% y1 is the product of two vector functions
y1 = sind(x).* cosd(x);
fprintf(' x y1 y2  \n');
fprintf('---------------------------------------\n');
for n=1:length(x)
 %  y2(n) is the product of the elements of the two functions.
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 y2(n) = sind(x(n)) * cosd(x(n));
 fprintf('%5.1f %8.5f %8.5f \n',x(n),y1(n),y2(n));
end
--------------------------------------------------------------------------------

Program Results:
   x y1 y2
-----------------------------------
  0.0 0.00000 0.00000
 30.0 0.43301 0.43301
 60.0 0.43301 0.43301
 90.0 0.00000 0.00000
120.0 -0.43301 -0.43301
150.0 -0.43301 -0.43301
180.0 -0.00000 -0.00000
>>
--------------------------------------------------------------------------------

We see that the two different methods for computing y1 and y2 give the 
same answer.

Projects

P3.1. Though atmospheric conditions vary from day-to-day, it is convenient 
for design purposes, to have a model for atmospheric properties with alti-
tude. The U.S. Standard Atmosphere, modified in 1976, is such a model. The 
model consists of two types of regions, one in which the temperature varies 
linearly with altitude, and the other is a region where the temperature is a 
constant (see Figure P3.1).

REVIEW 3.2

 1. If y = 3.0 * A and A is a vector, what can you say about y?
 2. If y = 3.0 * sin(x) and x is a vector, what can you say about y?
 3. If vector C = A + B, what must be true about vectors A and B.
 4. What is the result of the multiplication of two vectors of the 

same length, say A and B, and how must it be programmed?
 5. What is the name of MATLAB’s function that does interpolation?
 6. What are the inputs to MATLAB’s interpolation function?
 7. What are the outputs from MATLAB’s interpolation function?



100 MATLAB® Essentials

The temperature and approximate pressure relations are as follows: 

 1. For a region where the temperature varies linearly

 p p
z z
T

i
i i i

i

g
R
i

i
= −

−









+1 1λ λ( )
 (P3.1)

 T T z zi i i i= − −+λ ( )1  (P3.2)

 where:
 zi is the altitude at the beginning of region i, i = 1, 2, …, 7

zi+1 is the altitude at the end of region i and at the beginning of 
region i+1

 (pi  , Ti) is the pressure and temperature at the beginning of region i
 λi is the lapse rate in region i
 R is the air gas constant = 286 9. N m kg− −K

gi is the gravitational constant in region i. Although g varies 
slightly with altitude we take g to be a constant in the region 
evaluated at zi , otherwise the above expression for p would 
be a lot more complicated than the one shown above
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FIGURE P3.1
Temperature versus altitude of U.S. Standard Model Atmosphere.
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 2. For a region where the temperature is constant ( )λ = 0

 T Ti=  (P3.3)

 p p
g z z

RT
i

i i

i
= −

−







exp

( )
 (P3.4)

 For each region, the governing equation for g is

 g g
z

R
o

o
= −







1

2
 (P3.5)

 where:
 go = 9.810 m/s2

 Ro = 6.3714e+6 m
 z is the altitude at the beginning of the region

Create a MATLAB program that will

 1. Determine the values of Ti , pi , and gi , i = 1, 2, …, 8
 2. Construct a table filling in the unknown values listed in Table P3.1.

TABLE P3.1

U.S. Standard Atmosphere Property Table

Regional Properties of U.S. Standard Atmosphere

Region zi (km) Ti (K) pi (Pa) λλi (K/m) gi (m/s2)

0 288.15 101325 — 9.810
1 — — — 0.0065 —

11.0 — — — —
2 — — — 0.0000

20.0 — — — —
3 — — — −0.001 —

32.0 — — — —
4 — — — −0.0028 —

47.0 — — — —
5 — — — 0.0000 —

51.0 — — — —
6 — — — 0.0028 —

71.0 — — — —
7 — — — 0.0020 —

84.9 — — — —
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P3.2. This project is a modification of Example 3.8. Instead of making the 
program interactive, enter the following altitudes, z2, at which the atmo-
spheric properties of T, p, ρ are to be determined by linear interpolation using 
MATLAB’s interp1 function.

 z2 = [ ]680  1250  2360   3685  4320  4865

Print the results to a file in a table format.

P3.3. The properties of specific volume, v, and pressure, p, as a function of 
temperature, T, for carbon dioxide based on the Redlich–Kwong Equation of 
state are given in the tables below:

NOT E:  1 bar = 105 N/m2

Write a MATLAB program that will do the following:

 1. Construct three separate vectors containing the carbon dioxide vari-
ables of T, v, and p.

 2. Print Table P3.2 to the screen (with table headings).
 3. Determine v and p at temperatures T2 using MATLAB’s interp1 

function. Take 

 T2 = [ ]367 634 420 587 742

 4. Print to the screen in a table format (with table headings) values of v 
and p at temperatures T2.

TABLE P3.2

Properties of Carbon Dioxide Based on 
the Redlich–Kwong Equation of State

T (K) v (m3/kmol) p (bar)

350 0.28 7.65
400 0.32 8.57
450 0.36 9.16
500 0.40 9.55
550 0.44 9.81
600 0.48 10.00
650 0.52 10.14
700 0.56 10.24
750 0.60 10.31
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P3.4. The measured properties of a refrigerant are shown in Table P3.3. Create 
a MATLAB program that will repeatedly ask the user if he/she wishes to 
determine the refrigerant properties. If the answer is Y for yes, then ask 
the user to enter a temperature at which the refrigerant properties are to 
be determined. Use MATLAB’s interp1 function to evaluate the refrigerant 
properties, and then print the result to the screen.

P3.5. This project involves the mass-spring-dashpot system (see Figure 2.19). 
If the mass is displaced from its equilibrium position and released, the sub-
sequent motion of the mass will depend on the values of m, k, and c. To sim-
plify the writing of the governing equations, we will define

 arg = − 







k
m

c
m2

2

If arg > 0, then the displacement, y, as a function of time, t, will be

 
y

ct
m

A t B t= −








× ( )+ ( )( )exp cos arg sin arg

2

If arg < 0, then the displacement, y, as a function of time, t, will be

 
y

c t
m

A t B t= −








× −( )+ − −( )( )exp exp arg exp arg

2

TABLE P3.3

Refrigerant Properties

T (°C) v (m3/kg) u (kJ/kg)

−35 0.34235 244.33
−30 0.35369 217.58
−20 0.36513 222.43
−10 0.37649 227.37
−5 0.35778 232.42

0 0.39901 237.57
10 0.41019 242.82
20 0.42133 248.16
25 0.43243 253.61
30 0.44348 259.16
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where exp( )x ex=
We wish to consider four cases. 

 a. m = 75 kg, k = 85 N/m, c = 200 N-s/m.
 b. m = 75 kg, k = 150 N/m, c = 40 N-s/m.
 c. m = 75 kg, k = 50 N/m, c = 150 N-s/m.
 d. m = 75 kg, k = 200 N/m, c = 20 N-s/m.

Create a MATLAB program that will plot the motion of y as a function of t for 
0 20≤ ≤  t s in steps of 0.1 s. To make the initial displacement equal to 0.5 m 
and initial velocity equal to zero, use the following values for A and B.

For the case arg > 0, take

 
A = 0 5.  m,

 
B

Ac
m

=
2 arg

For the case arg < 0, take
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4
Self-Written Functions and MATLAB®’s 
fminbnd Function

4.1 Introduction

In this chapter, we cover the self-written function, which is the last of the 
building blocks that we mentioned earlier. Self-written functions are useful 
if you have a complicated program and wish to break it down into smaller 
segments. Also, if a series of statements is to be used many times, it is con-
venient to place them in a function. Many MATLAB® functions (such as 
fminbnd, fzero, quad, and ode45) require a self-written function to define 
the problem of interest. Self-written functions are equivalent to subroutines 
in most programming languages, but in MATLAB they are usually stored in 
separate files instead of the main program (though small functions can be 
defined in the same file as your main script, as described in the section on 
anonymous functions). The function file name must be saved as a .m file.

MATLAB has a function that determines the relative minimum or relative 
maximum of a single variable function. The function is fminbnd and is 
covered in this chapter. This MATLAB function requires the user to write a 
self-written function, either as a separate .m file or as an anonymous func-
tion within the main script.

4.2 Self-Written Function

MATLAB has a template for writing a function (see Figure 4.1), which can be 
accessed by clicking on the down arrow under new in the toolstrip in the Editor 
Window and selecting function from the dropdown menu. To create your 
function, you would need to edit the function template and make the desired 
changes. However, it is just as easy to open a new script window and type in 
your desired function and save it with the function name and as a .m file. The 
function template is of the form

function [output arguments] = function_name (input arguments)
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The first executable statement in the function file must start with the word function. 
Some example function definitions are shown in Table 4.1.

If the function has more than one output value, then the output variables 
must be in brackets. If there is only one output value, then no brackets are 
necessary. If there are no output values, use empty brackets. 

 1. Input and Output Arguments: 
 Input and output arguments in the function may be either scalars, vectors, 

or matrices. The input arguments defined in the calling program passes 
information to the function, where it is most often used in one or more 
arithmetic statements. The input arguments in the calling program need to 
be defined before the function is called. The output arguments determined 
in the function passes information to the calling program.

FIGURE 4.1
MATLAB’s function template.

TABLE 4.1

Example Function Definitions

Function Definition Line Function File Name

function [p,T] = atm(z,rho) atm.m
function ex = exf (x) efx.m
function[] = output(x,y) output.m



107Self-Written Functions and MATLAB®’s fminbnd Function

 2. Variables Defined and Manipulated inside the Function: 
 Variables defined and manipulated inside the function are local to the 

function. This means that the only communication between the calling 
program and the function is through the input and output arguments 
of the function. The exception to this is when a global statement is 
contained in both the calling program and in the function.

In the next example, the input command is again used to ask the user 
to enter an altitude from the keyboard. Earlier, it was mentioned that 
MATLAB version R2016a has a bug. When the input command is exe-
cuted, the cursor remains in the Editor Window instead of moving to the 
Command Window. So the user needs to click in the Command Window 
before entering an altitude. This bug will be fixed in the next version of 
MATLAB.

Example 4.1, Part A

% Example_4_1_parta.m
% The program asks the user to enter an elevation at which the
%  atmospheric properties are to be determined by linear interpolation.
% The function atm_fun contains atmospheric properties every
% thousand meters and does the interpolation by MATLAB's
% interp1 function. The properties at the entered elevation is
% passed on to the calling program where it is printed to the
% Command window.
% In this example input and out variables are scalars.
%  Temperature is in degrees Kelvin (K), pressure is in Pascal (Pa) and
% density is in kg/m^3.
clear; clc;
fprintf('Enter the altitude at which atmospheric properties are \n');
z=input('to be determined. Altitude range is from 0 to 5000 m \n');
[T,p,rho]=atm_fun(z);
fprintf('z=%6.1f(m) T=%6.2f(K) ',z,T);
fprintf('p=%10.4e(Pa) rho=%6.4f(kg/m^3) \n',p,rho);
--------------------------------------------------------------------

Example 4.1, Part B

% atm_fun.m
% This function works with Example 4.1, part A
function [T,p,rho]=atm_fun(z)
zt=[0 1000 2000 3000 4000 5000];
Tt=[288.15 281.65 275.15 268.65 262.15 255.65];
pt=[10.133 8.9869 7.9485 7.0095 6.1624 5.4002]*1.0e+004;
rhot=[1.2252 1.1118 1.0065 0.9091 0.8191 0.7360];
T=interp1(zt,Tt,z);
p=interp1(zt,pt,z);
rho=interp1(zt,rhot,z);
--------------------------------------------------------------------
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Program Results:

Enter the altitude at which atmospheric properties
are to be determined. Altitude range is from 0 to 5000 m
3400
z=3400.0(m), T=266.05(K), p=6.6707e+04(Pa), rho=0.8731(kg/m^3)
>>
-----------------------------------------------------------------------------------------------

We now want to modify Example 4.1, so that the input and output variables 
to the function are vectors. We only need to modify Example 4.1, Part A. We 
do not need to modify the function atm_fun.

Example 4.2, Part A

% Example_4_2_parta.m
%  This program specifies vector z as an input to function atm_fun.
% The function atm_fun contains atmospheric properties every
% thousand meters and does the interpolation by MATLAB's
% interp1 function at each element of vector z.
%  The output variable of T, p and rho from atm_fun will be vectors.
%  These vectors are passed on to the calling program where it is
% printed to the screen in table format.
%  Temperature is in degrees Kelvin (K), pressure is in Pascal (Pa) and
% density is in kg/m^3.
clear; clc;
z=[1250 2560 3480 4360];
[T,p,rho]=atm_fun(z);
fprintf(' z(m) T(K) p(Pa) rho(kg/m^3)  \n');
fprintf('---------------------------------------------------\n');
for i=1:length(z)
 fprintf('%6.1f %6.2f %10.4e %6.4f \n',...
 z(i),T(i),p(i),rho(i));
end
----------------------------------------------------------------------

Example 4.2, Part B is the same as Example 4.1, Part B

-------------------------------------------------------------------------------
Program Results:

 z(m) T(K) p(Pa) rho(kg/m^3)
---------------------------------------------------
1250.0 280.02 8.7273e+04 1.0855
2560.0 271.51 7.4227e+04 0.9520
3480.0 265.53 6.6029e+04 0.8659
4360.0 259.81 5.8880e+04 0.7892
>>
---------------------------------------------------------------------------------

The following example demonstrates that the names of the arguments in the 
calling program need not be the same as those in the function. It is only 
the order of the argument list in the calling program that needs to be in the 
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same order as the argument list defined in the function. This feature is use-
ful when a function is to be used with several different scripts, each script 
having different variable names, but each of the variables names correspond 
to variables in the function. This concept is used in all of MATLAB’s built-in 
functions.

Let us modify Example 4.2, Part A, and name it Example 4.3, Part A.

Example 4.3, Part A

% Example_4_3_parta.m
clear; clc;
z=[1250 2560 3480 4360];
[T,p,rho]=atm_fun2(z);
fprintf('\n This output is from Example 4.3, Part A \n');
fprintf(' z(m) T(K) p(Pa) rho(kg/m^3)  \n');
fprintf('-------------------------------------------------\n');
for i=1:length(z)
    fprintf('%6.1f %6.2f %10.4e %6.4f \n',...
 z(i),T(i),p(i),rho(i));
end
-----------------------------------------------------------------------

Now we will modify function atm_fun and name it atm_fun2.

% atm_fun2.m
% This function works with Example 4.3, part A
function [A,B,C]=atm_fun2(x)
alt=[0 1000 2000 3000 4000 5000];
Temp=[288.15 281.65 275.15 268.65 262.15 255.65];
pres=[10.133 8.9869 7.9485 7.0095 6.1624 5.4002]*1.0e+004;
dens=[1.2252 1.1118 1.0065 0.9091 0.8191 0.7360];
A=interp1(alt,Temp,x);
B=interp1(alt,pres,x);
C=interp1(alt,dens,x);
fprintf('This output is from atm_fun2 \n');
fprintf(' x(m) A(K) B(Pa) C(kg/m^3)  \n');
fprintf('------------------------------------------------\n');
for i=1:length(x)
    fprintf('%6.1f %6.2f %10.4e %6.4f \n',...
 x(i),A(i),B(i),C(i));
end
---------------------------------------------------------------------------

Program Results:

This output is from atm_fun2
 x(m)      A(K)       B(Pa)      C(kg/m^3)
------------------------------------------------
1250.0    280.02    8.7273e+04    1.0855
2560.0    271.51    7.4227e+04    0.9520
3480.0    265.53    6.6029e+04    0.8659
4360.0    259.81    5.8880e+04    0.7892
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This output is from Example 4.3, Part A
 z(m)      T(K)       p(Pa)     rho(kg/m^3)
-------------------------------------------------
1250.0    280.02    8.7273e+04    1.0855
2560.0    271.51    7.4227e+04    0.9520
3480.0    265.53    6.6029e+04    0.8659
4360.0    259.81    5.8880e+04    0.7892
>>
------------------------------------------------------------------------------

Comparing results, we see that the names of the arguments in the calling program 
need not be the same as those in the function. In the calling program, the names of the 
input and output arguments are z, T, p, and rho. In the function, atm_fun2, the names 
of the input and output arguments are x, A, B, and C. Looking at the results, we see 
that x = z, A = T, B = p, and C = rho. It is only the order of the argument list in the 
function that needs to be in the same order as the argument list in the calling program.
-------------------------------------------------------------------------------

4.3 Anonymous Functions

Sometimes it is more convenient to define a function inside your script rather 
than in a separate file. For example, if a function is brief (perhaps a single 
line) and unlikely to be used in other scripts, then the anonymous form of a 
function can be used. This will save you from having to create another .m file. 
The syntax for an anonymous function is 

funhandle = @(arg_list) (function expression)

A function handle is a MATLAB value that provides a means of calling a 
function indirectly. An example of an anonymous function is 

fh = @(x,y)(y*sin(x)+x*cos(y));

In the above expression, MATLAB lists the @ sign as a function handle cre-
ation, fh is the function handle, the (x,y) defines the input arguments to 
the function, and (y*sin(x)+x*(cos(y)) is the function. Anonymous 
functions may be used in a script or in the Command Window.

Example: In the Command Window, type-in the following two lines:

>> fh = @(x,y)(y*sin(x)+x*cos(y));
>> w = fh(pi,2*pi)
 w =
  3.1416
-----------------------------------------------------------------------

Additional information on anonymous functions can be obtained by typing 
help function_handle in the Command Window.
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Example 4.4

The following example uses an anonymous function that employs the interpola-
tion formula described in Equation 3.1. The script is a modification of Example 3.4 
that contains atmospheric data of temperature, pressure, and density every 
1000 meters. The script, interactively, asks the user to enter an altitude from the 
keyboard.

% Example_4_4.m
% This program interpolates for atmospheric properties T, p and rho at
% an altitude entered from the keyboard.
% Atmospheric properties of temperature, pressure and density
% are specified every 1000 meters. The atmospheric properties at an
% altitude entered from the key board are determined by
% the interpolation formula described in Equation 3.1 and printed to
% the screen. An anonymous function, which avoids creating an extra .m
% file, is used to do the interpolation:
clear; clc;
% anonymous function
yf = @(z,z1,z2,y1,y2) (y1+(z-z1)*(y2-y1)/(z2-z1));
zt=[0 1000 2000 3000 4000 5000];
Tt=[288.15 281.65 275.15 268.65 262.15 255.65];
pt=[10.133 8.9869 7.9485 7.0095 6.1624 5.4002]*1.0e+004;
rhot=[1.2252 1.1118 1.0065 0.9091 0.8191 0.7360];
fprintf('Do you wish to have the atmospheric properties \n');
fprintf('at a specific altitude determined \n');
char=input('enter Y for yes or N for no \n','s');
if char=='N'
 fprintf('Good Bye \n');
 exit;
end
while char=='Y'
 fprintf('Enter the altitude at which atmospheric properties \n');
 fprintf('are to be determined. \n');
 z=input('Altitude range is from 0 to 5000 m \n');
 for i=1:length(zt)-1
 if z >= zt(i) && z < zt(i+1)
  z1=zt(i); z2=zt(i+1);
  T1=Tt(i); T2=Tt(i+1);
  T=yf(z,z1,z2,T1,T2);
  p1=pt(i); p2=pt(i+1);
  p=yf(z,z1,z2,p1,p2);
  rho1=rhot(i); rho2=rhot(i+1);
  rho=yf(z,z1,z2,rho1,rho2);
  fprintf('z=%6.1f(m)  T=%7.2f(C)',z,T);
  fprintf('p=%12.5e(Pa) rho=%8.5f(kg/m^3) \n',p,rho);
 end
 end
 fprintf('\n');
 fprintf('Do you wish to enter another altitude ');
 char=input('enter Y for yes or N for no \n','s');
 if char=='N'
 fprintf('Good Bye \n');
 end
end
----------------------------------------------------------------------------
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Program Results:

Do you wish to determine atmospheric properties
at a specific altitude,
enter Y for yes or N for no
Y
Enter the altitude at which atmospheric properties
are to be determined.
Altitude range is from 0 to 5000 m

1480
z=1480.0(m) T= 278.53(C) p= 8.48847e+04(Pa) rho= 1.06126(kg/m^3)

Do you wish to enter another altitude enter Y for yes or N for no
Y
Enter the altitude at which atmospheric properties
are to be determined.
Altitude range is from 0 to 5000 m
3620
z=3620.0(m) T= 264.62(C) p= 6.48430e+04(Pa) rho= 0.85330(kg/m^3)

Do you wish to enter another altitude enter Y for yes or N for no
N
Good Bye
>>
------------------------------------------------------------------------------

REVIEW 4.1

 1. When does it seem appropriate to write a self-written function?
 2. In writing a self-written function what must be the first word 

in the first executable statement?
 3. A self-written function usually has both an input and an output. 

Where does the input come from? Where does the output go to?
 4. If a self-written function has more than one output, how must 

the output be presented?
 5. How does a self-written function communicate with the calling 

program?
 6. What can be said about variables in the self-written function 

that are not in the input or output arguments of the function 
and there are no global statements?

 7. Do the variable names in the input and output arguments between 
the calling program and the function have to be the same?

 8. If a programmer wishes to write a self-written function, but 
does not wish to create an additional .m file, what can the pro-
grammer do and what is the constraint?
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4.4 MATLAB’s fminbnd

There are times when we might be interested in determining a relative mini-
mum of a single variable function. MATLAB has a built-in function that will 
do this for us. The syntax for the function is

[x,FVAL] = fminbnd(FUN,x1,x2)

The function fminbnd determines the relative minimum of a single variable 
function in the interval x1<x<x2. The FUN argument is a function handle to 
the function that describes the function whose relative minimum we wish 
to determine. The arguments x1,x2 give the interval in which the relative 
minimum may lie and the output x is the x value at the relative minimum. 
FVAL gives the functional value at x. FUN can be a function defined in a 
separate .m file or may be defined by an anonymous function or within 
the fminbnd function itself with the use of the function handle creator, 
@, as shown in Example 4.5. Note that MATLAB does not have a separate 
function to find a relative maximum. In order to find a relative maximum, 
redefine FUN to return the negative value of the function of interest, and 
then use fminbnd to find the relative minimum (see Example 4.5). This is 
also an example in which the user needs to write a self-written function in 
order to use a MATLAB built-in function.

Example 4.5

Given: y x x x x( ) . . .= + − +3 25 7 35 1 85 176.
Determine the relative minima and maxima.

% Example_4_5.m
% Find the minima and maxima of y = x^3 + 5.7x^2 – 35.1x + 85.176
clc; clear;
% First, plot the function so that we can determine the x range to use
% in fminbnd. Let us assume that the relative minimum lies between
% x1=-10, x2=6.
xf=-10:0.1:6;
y=xf.^3 + 5.7*xf.^2 − 135*xf + 85.176
plot(xf,y), xlabel('x'),ylabel('y'), grid, title('y vs x');
% Next, find the minimum and maximum using MATLAB's anonymous
% function method directly in the fminbnd function.
[xmin,ymin] = fminbnd( @(x) (x^3+5.7*x^2-35.1*x+85.176),-10,6 );
fprintf('xmin=%7.3f  ymin=%9.3f \n',xmin,ymin)
% Note: To find a maximum, instead find the minimum of the
% negative of the function.
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[xmax,ymax] = fminbnd( @(x) -(x^3+5.7*x^2-35.1*x+85.176),-10,6);
Ymax=-ymax;
% Print results
fprintf('xmax=%7.3f Ymax=%9.3f \n',xmax,Ymax);
-----------------------------------------------------------------------

Program Results:

xmin= 2.013 ymin= 45.774
xmax= -5.813 Ymax= 285.394
>>

See Figure 4.2.
-----------------------------------------------------------------------
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FIGURE 4.2
Relative maximum and minimum of y versus x.



115Self-Written Functions and MATLAB®’s fminbnd Function

Projects

P4.1. Before scientific calculators and computers existed, numerical values 
for functions such as ln x, ex, cos x, and so on were given in tables. The table 
values were determined by power series, such as a Maclaurin or a Taylor 
series. For example, the cosine function can be represented by the following 
series:

 cos
! ! !

.......
!
..... [ ]x

x x x x
n

x
n

= − + − + < ∞1
2 4 6

2 4 6
2valid for  (P4.1)

where n is an even number and x is in radians. The project involves creat-
ing a MATLAB program that contains both a calling program and a func-
tion. The calling program is to continuously ask the user if he/she wishes 
to know the value of the cosine at a specific angle ranging from 0 to 360 
degrees. If the answer  is N for no, exit the program. If the answer is Y 
for yes, the calling program is to ask the user to enter an angle from the 
keyboard. The calling program is to convert the entered angle to radians, 
which is the x value to be used in Equation P4.1. The calling program then 
is to call the function using the x value as an input to the function. The out-
put from the function should be the value of the cosine function evaluated 
at x by Equation P4.1. The calling program is then to print the angle, the x 
value, and the cosine value to the screen. The calling program is to repeat the 
process until the user responds with a N.

P4.2. Repeat Project 4.1, but this time use the series expansion for the sine 
function, which is

 sin
! ! !
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!

.... [ ]x
x x x x

n
x

n
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1 3 5

3 5
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where n is an odd number.

P4.3. In this project we consider the fluid level, h, in a tank, as it discharges 
through a small circular hole (orifice) of diameter, d, near the bottom of the 
tank (see Figure P2.4, page 75).

The tank has a circular cross section of diameter D. A formula describing 
the fluid level, h, in the tank is
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where:
Cd is the discharge coefficient
ho is the fluid level in the tank at time, t = 0
Ao is the area of the orifice
AT is the cross-sectional area of the tank

The discharge coefficient, Cd , for a particular tank and orifice is determined 
by experiment. Create a MATLAB program that consists of the following:

 1. A calling program that calls a self-written function with input 
arguments of Ao , AT , ho , and Cd . Take d = 0.0055 m, D = 0.146 m, 
ho = 0.288 m, g = 9.81 m/s2 and Cd = 0.6, where d and D are the diam-
eters of the  orifice and tank, respectively.

 2. A self-written function as a .m file with output argument vectors h and t.

Take t = 0 to 200 seconds in steps of 4 seconds and g = 9.81 m/s2.
In the calling program print to a file a table consisting of h versus t, with 

table headings and units. Also plot a graph of h versus t.

P4.4. This project is a variation of Project P4.3.
Create a MATLAB program that determines h(t) by the use of an anony-

mous function for Equation P4.3a. Take Cd = [0.5 0.6 0.7] and t = 0 to 
200 seconds in steps of 4 seconds. For each Cd create a table of h versus t, 
with table headings. For each Cd create a plot of h versus t, all on the same 
page.

Use the same parameters that was used in Project P4.3, that is, take 
d = 0.0055 m, D = 0.146 m, ho = 0.288 m, and g = 9.81 m/s2.

P4.5. Several properties of a refrigerant as a function of temperature are 
shown below in Table P4.1:

TABLE P4.1

Refrigerant Properties

T(°C) v (m3/kg) u(kJ/kg)

−20 0.31003 206.12
−10 0.34992 224.97

0 0.36433 232.24
10 0.37861 239.69
20 0.39279 247.32
30 0.40688 255.12
40 0.42091 263.10
50 0.43487 271.25
60 0.44879 279.58
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We want to determine the properties of the refrigerant at the following 
temperatures (−12, 18, 32, 57):

 1. Create a data file of the above data.
 2. Create a MATLAB program that consists of a calling program and a 

self-written function.

Calling program should do the following:

 1. Load the data file and create vectors Tt, vt, ut. Also create a vector, 
T, that includes the temperatures at which the properties are to be 
determined.

 2. Call the self-written function using input variables of Tt, vt, ut, and 
T and output variables T, v, and u.

 3. Print to the Command Window a table consisting of T, v, and u with 
table headings and units.

 4. Plot vt versus Tt and on the same graph, plot v versus T as small x’s.
 5. Plot ut versus Tt and on the same graph, plot u versus T as small x’s.

Self-written function should do the following:
Using the input variables and MATLAB’s interp1 function, interpolate for the 
properties of the refrigerant at the temperatures, T, and return those values to 
the calling program.

P4.6. This project is a variation of Project P2.5. In that project, we discussed 
the pressure drop, p p1 2− , in a circular pipe having a flow rate, Q [1]. We will 
repeat the governing equations involved in the process.

 p p
L
D

f1 2

2

2
− =

ρV
 (P4.6a)

where:
ρ̀ is the fluid density ( / )kg m3

V is the average fluid velocity in the pipe ( / )m s
Q A= V is the volume flow rate in the pipe ( / )m s3

D is the pipe diameter (m)
A is the pipe cross-sectional area = (πD2/4) (m2)
L is the pipe length between points 1 and 2 (m)
f is friction factor



118 MATLAB® Essentials

The friction factor has been determined by experiment. For smooth pipes a 
formula that approximates the experimental data is [2]

 f = −( )−
1 82 1 6410

2
. log Re .  (P4.6b)

where:

 Re ( )=
V D
υ

Reynolds number  (P4.6c)

 υ µ
ρ

is the fluid viscosity
m
s
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Develop a MATLAB program that contains both a calling program and a 
function that determines the pressure drop, p p1 2−  versus the flow rate, Q. Q 
is to vary from 0.001 to 0.02 m3/s in steps of 0.001 m3/s. Properties of D, L, 
ρ υ,  and Q are to be defined in the calling program. These values should be 
made as an input argument to the function. The output from the function is to 
be the pressure drop, p p1 2− , in the pipe and returned to the calling program. 
In the calling program, a table of p p1 2−  versus Q is to be printed out to the 
Command Window, including table headings and units. Use the following 
values: ρ = 1000 kg m3, D = 0.16 m, L = 5 m and υ = × −1 2 10 6 2. / .m s  

P4.7. This project is a modification of Project P3.5. That project involved the 
mass motion in a mass-spring-dashpot system. A sketch of such a system is 
shown in Figure 2.19. Disturbing the mass position, y, from its equilibrium 
position and releasing it with zero velocity, will result in the y position vary-
ing with time, t.

As discussed in Project P3.5, the type of motion that the mass will have 
depends on the values of the system properties of m, k, and c, where m is the 
mass, k is the spring constant, and c is the damping factor [3].

If, ( / ) ( / )k m c m> 2 2, then the mass motion will be damped oscillations and 
the governing equation describing the motion is
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The coefficients A and B are determined by initial conditions. Suppose we 
take the initial displacement to be 0.5 m. Then

 A = 0.5 m,  B
Ac

m
=

2 arg

where arg / /= − ( )k m c m2 2
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If, k m c m/ ( / )< 2 2, then the mass motion will be damped exponential 
motion and the governing equation will be
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where exp( )x ex= . For this case,
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If ( / ) /c m k m2 2 = , then the system is critically damped. For this case, the 
 solution is
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For this case,

A = 0.5 m, B A
c
m

=
2

Construct a MATLAB program that consists of two parts: a calling program 
and a function. The calling program is to create four different vectors con-
taining values of m, k, and c. The calling program is to use these vectors as an 
input to the function. The function is to determine which of the three equa-
tions to use in calculating vector y as a function of vector t. Have the function 
return vectors y and t to the calling program where it is to create plots of 
y versus t. Take t = 0 to 20 s, in steps of 0.1 s. Values of m, k, and c for the four 
cases are listed below:

Case 1

 
m k c= = =

−
75 85 200kg

N
m

N s
m

, ,

Case 2

 
m k c= = =

−
80 150 40kg

N
m

N s
m

, ,



120 MATLAB® Essentials

Case 3

 
m k c= = =

−
50 50 100kg

N
m

N s
m

, ,

Case 4

 
m k c= = =

−
100 200 20kg

N
m

N s
m

, ,

P4.8. Mathematician Joseph Fourier is credited with the theorem that any 
periodic waveform may be expressed as a summation of pure sines and 
cosines [4]. For example, the square wave of Figure P4.1a can be written as a 
sum of sine terms:

t

v
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(a)

−1

T = 1 ms

t

v

2nd term

1st term

3rd term

Sum of 1st, 2nd,
and 3rd terms1

(b)

−1

FIGURE P4.1
(a) Square wave and (b) using 1st, 2nd, and 3rd terms in the series and their sum.
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Figure P4.1b shows the first three terms of the series and their summation.

 1. Write a MATLAB script that utilizes the self-written function 
sqwave(n,T,i) that takes the following input arguments:
n is the number of terms of the Fourier series.
T is the period of the square wave in seconds.
i is the number samples points per period.

 2. The function should return two arrays, t and v, each containing i 
elements, where:
t is an array of i time points.
v is an array of i computed values of the nth degree approximated 

square wave.
 3. Run your sqwave(n,T,i) function and plot the results for the 

 following arguments:
T = 1 ms, i = 1001, n = 3, 10, 100

 4. For n = 100, create a plot of v versus t.

P4.9. This project is a modification of Project P4.7. That project involved the 
mass motion in a mass-spring-dashpot system. A sketch of such a system is 
shown in Figure 2.19. Disturbing the mass position, y, from its equilibrium 
position and releasing it with zero velocity, will result in the y position varying 
with time, t. In this project we will consider the case k m c m/ /> ( )2 2, result-
ing in the mass motion being damped oscillations. The governing equation 
describing the motion is

 y
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t  (P4.7a)

The coefficients A and B are determined by initial conditions. We will take 
the initial displacement to be 0.5 m and the initial velocity equal to zero. Then

 A = 0.5 m, B
Ac

m
=

2 arg
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where:

 
arg = −











k
m

c
m2

2

 1. Plot y versus t for t = 0 to 20 s, in steps of 0.1 s.
 2. Use MATLAB’s fminbnd function to determine the minimum y 

position for t = 0 to 5 s.

Take m k c= = = −50 100 20kg N m N s m, ( / ), ( / ).

P4.10. This Project is a variation of Exercise E2.4. A basketball player shoots 
the ball when he is 8 m from the center of the hoop, instead of the 6 m shown 
in Figure 2.20. The ball is released at a velocity, Vo , and makes angle ϑo = 45° 
with the horizontal. Using Newton’s second law and the initial conditions 
and neglecting the drag on the basketball, we can determine the following 
equations for the (x, y) position of the ball as a function of time, t:

 x to o= V cos( )ϑ  (2.5)

 y t
g

to o= +V sin( )ϑ
2

2 (2.6)

Take the (x, y) position of the center of the hoop to be (xf  , yf) = (8.0 m, 3.048 m), 
ϑo = 45°, Vo = 9.5169 m, and time of flight, tf = 1.1888 s.

 1. Create a plot of y versus t using 0 ≤ t ≤ tf in steps of ( / )tf 10 .

 2. Using MATLAB’s fminbnd function determines the maximum 
height reached by the basketball in its flight to the basketball hoop.

-----------------------------------------------------------------------
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5
Working with Characters and Strings

5.1 Introduction

There may be a time that you might wish to create a matrix consisting of a 
string of characters and to print it out in a report. This chapter shows you 
how to do that. In MATLAB®, characters and strings usually need to be 
enclosed by single quotation marks.

Example 5.1

% Example_5_1.m
% This program demonstrates how to print out rows of character
% strings. This can be done by declaring a column vector where each
% element in the vector is a character string.
% Note that all row character strings must have the same number
% of columns and be enclosed by single quotation marks.
clear; clc;
% Assign a string column vector.
% Each row in the column vector must have the same number of columns.
parts=['Internal modem '
 'Graphics adapter '
 'CD drive '
 'DVD drive '
 'Floppy drive '
 'Hard disk drive '];
for i=1:6
 fprintf('%16s \n',parts(i,1:16));
end
----------------------------------------------------------------------------------------

Program Results:
Internal modem 
Graphics adapter
CD drive 
DVD drive 
Floppy drive 
Hard disk drive 
>>
-----------------------------------------------------------------------
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Example 5.2

This example is an interactive program. The user has to input whether to print the 
string matrix to the screen or to a file.

% Example_5_2.m
% This example is a modification of Example 5.1.
% The program asks the user if he/she wishes to have the
% output go to the screen or to a file.
% This example also illustrates the use of the switch statement.
clear; clc;
parts=['Internal modem '
 'External modem '
 'Graphics circuit board '
 'CD drive '
 'Hard disk drive '];
fprintf('Choose whether to send the output to the\n');
fprintf('screen or to a file named output.txt. \n\n');
var=input('Enter S for screen or F for file (without quotes)\n','s');
switch(var)
 case 'S'
  for i=1:5
   fprintf('%22s \n',parts(i,1:22));
  end
 case 'F'
  fo=fopen('output.txt','w');
  for i=1:5
   fprintf(fo,'%22s \n',parts(i,1:22));
  end
  fclose(fo);
 otherwise
  fprintf('you did not enter an S or a F, try again \n');
  exit;
end
---------------------------------------------------------------------------------

Program Results:
Choose whether to send the output to the
screen or to a file named 'output.txt'.
Enter S for screen or F for file (without single quotes)
S
Internal modem 
External modem 
Graphics circuit board
CD drive 
Hard disk drive
>> 
--------------------------------------------------------------------------------
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Example 5.3

In this interactive example, we illustrate the use of the if-elseif ladder to establish 
a letter grade when the user enters a numerical score.

% Example_5_3.m
% This example uses the if-elseif ladder.
% The program determines a letter grade depending on the score the user
% enters from the keyboard.
clear; clc;
gradearray=['A'; 'B'; 'C'; 'D'; 'F'];
score=input('Enter your test score: \n');
fprintf('score is: %i \n',score);
 if score > 100
  fprintf('error: score is out of range. Rerun program \n');
  break; 
 elseif score >= 90 && score <= 100 
  grade=gradearray(1); 
 elseif score >= 80 && score < 90
  grade=gradearray(2);
 elseif score >= 70 && score < 80
  grade=gradearray(3); 
 elseif score >= 60 && score < 70
  grade=gradearray(4); 
 elseif score < 60
  grade=gradearray(5);
 end
fprintf('grade is: %c \n',grade);
---------------------------------------------------------------------------------

Program Results:
Enter your test score: 76
score is: 76 
grade is: C
>>
--------------------------------------------------------------------------------

Example 5.4

This example is a modification of Example 5.3. In this interactive example a for loop 
is used to establish the interval containing the grade.

% Example_5_4.m
% The program determines a letter grade depending on the score the user
% enters from the keyboard.
% This version uses a loop to determine the correct interval of
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% interest. For a large number of intervals, this method is more
% efficient (fewer statements) than the method in Example 5.3 
clear; clc;
gradearray=['A'; 'B'; 'C'; 'D'; 'F'];
sarray=[100 90 80 70 60 0];
score=input('Enter your test score: \n');
fprintf('score is: %i \n',score);
% The following 3 statements are needed for the case when score = 100.
if score == 100
 grade=gradearray(1);
else
 for i=1:5
  if score >= sarray(i+1) && score < sarray(i)
   grade=gradearray(i);
   break; 
  end
 end 
end 
fprintf('grade is: %c \n',grade);
---------------------------------------------------------------------------

Program Results:
Enter your test score: 82
score is: 82 
grade is: B
>>
---------------------------------------------------------------------------

Example 5.5

This example combines the use of a string matrix and the establishment of a grade.

% Example_5_5.m
% This program determines the letter grades of several students.
% Student's names and their test scores are entered in the program.
% Student names are not connected to real people.
% This example uses nested 'for' loops and an 'if' statement
% to determine the correct letter grade for each student.
clear; clc;
gradearray=['A'; 'B'; 'C'; 'D'; 'F'];
sarray=[100 90 80 70 60 0];
Lname=['Smith '
 'Lambert '
 'Kurtz '
 'Jones '
 'Hutchinson '
 'Blake '];
Fname=['Joe '
 'Jane '
 'Howard '
 'Mary '
 'Peter '
 'Henry '];
score=[84; 86; 67; 92; 81; 75];
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avg_score=mean(score);
fprintf('The group average numerical grade is:%4.1f \n',avg_score);
% Index j selects the student and index i selects the letter grade.
% The score = 100 is treated separately.
for j=1:6
 if score(j) == 100
  grade(j)=gradearray(1);
 else
  for i=1:5
    if score(j) >= sarray(i+1) && score(j) < sarray(i)
    grade(j)=gradearray(i); 
   end
  end 
 end
end
fprintf('Last name First name grade  \n');
fprintf('--------------------------------------\n');
for j=1:6
  fprintf('%12s %10s %c \n',
  Lname(j,1:12), Fname(j,1:10), grade(j));
end
--------------------------------------------------------------------------

Program Results:
The group average numerical grade is:80.8
Last name    First name   grade
--------------------------------------
Smith Joe B
Lambert Jane B
Kurtz Howard D
Jones Mary A
Hutchinson Peter B
Blake Henry C
>>
---------------------------------------------------------------------------

5.2 MATLAB’s textscan Function

There may be occasions when you wish to enter information into a pro-
gram from a data file that contains both numerical and text data. MATLAB’s 
textscan function is best suited for this operation.

Syntax:

C = textscan(fo, format)

The function will read data from an open text file identified by fo into a cell 
array C. The format is of the form %f, %d, %c, %s, and so on. The number of 
format specifiers determines the number of cells in the cell array C. Each cell 
will contain the number of lines contained in the data file and be of the type 
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specified by the format statement. String specifiers also include %q, which 
is a string enclosed by double quotation marks. In the textscan statement, 
the format for a string of n characters is %nc, but in the print statement, the 
format for a string of n characters is %ns.

NOTE: To reference the contents of a cell, enclose the cell number with {}. See 
the following example:

If you wish to read in N lines from the open data file, use

C = textscan('fo', format,N)

Example 5.6

Loads mixed text and numerical data from a file

% Example_5_6.m
% Load the product data from inv4.txt into the arrays 'cat_nu', 'desc',
% 'cost', and print the results to the screen.
clear; clc;
fo=fopen('inv4.txt'); % Note: inv4.txt is defined below.
C = textscan(fo,'%d %14c %f',5);
% Contents of cell block C contains 5 rows and 3 columns
cat_nu = C{1};
desc = C{2};
cost = C{3};
fclose(fo);
fprintf('catalog # description  \t\t cost  \n');
fprintf('---------------------------------------\n');
for i=1:5
 fprintf('%5i \t %14s \t %6.2f \n\n',... 
 cat_nu(i),desc(i,1:14),cost(i));
end
-----------------------------------------------------------------------
% inv4.txt file (do not include this line in your data file)
1001 hammer 2.58
1002 plier 1.20
1003 screwdriver 1.56
1004 soldering iron 3.70
1005 wrench 2.60
---------------------------------------------------------------------------------

Program Results:

catalog # description cost
---------------------------------------
1001 hammer 2.58
1002 plier 1.20
1003 screwdriver 1.56
1004 soldering iron 3.70
1005 wrench 2.60
>>
---------------------------------------------------------------------------------
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Projects

P5.1. Create a MATLAB program that

 1. Contains a string array that lists the names of five courses that you 
have taken recently.

 2. Contains a vector of the numerical grades received in each of the five 
courses.

 3. Prints to the screen the names of the five courses and their grades.
 4. Prints to the screen the average grade received in the five courses.

P5.2. You are a student adviser and you wish to have the user  (student) 
tell you the grades that he/she received on several courses. You are to use 
MATLAB’s input command to ask the student to enter the grade that he 
received in the course.

Create a MATLAB program that 

 1. Creates a string matrix of five courses.
 2. Use a for loop and MATLAB’s input command asking the student 

to enter the grade that he/she received in the course listed on the 
screen. List the courses one at a time.

 3. Print to the screen a summary of the results.

NOT E:  Allowable grades are only letters (A, B, C, D, F, I).

P5.3. Create a MATLAB program that creates a vector listing all the days of 
the week, that is, Monday, Tuesday, and so on. Create a second vector that 
describes two activities that you wish to do on each day of the week, such as 

REVIEW 5.1

 1. Suppose you wish to assign a column vector consisting of 
string  elements, what are the conditions that need to be fol-
lowed in setting up this column vector?

 2. Suppose that you had a data file that contains both numerical 
and text data, what command would you use to read in the data 
into your program.

 3. When the command used in reading in the data type described 
in item 2, what object type does the data go into? 

 4. To assign variable names to items in the object which of the 
following three symbols would you use: (), [], {}?
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Attend calculus class and have dinner with girl or boy friend, and so on. Do this 
for each day of the week. Use an input statement to have the user enter the 
day of the week. Based on that entry and using a Switch Statement print out 
the activities of that day listed in the second vector.

P5.4. Bob’s Hardware Store wishes to create an online program to sell inven-
tory items in its store. You are to create an interactive MATLAB program for 
this purpose. The program is to contain a data file, a main program and a 
billing function. 

Data file:
 The data file is to contain a catalog number and a description of the 

inventory items for sale, their costs, and the quantity available for 
sale. The list should contain at least 10 items. The data file is to be 
loaded into the main script.

Main script:
 1. The script is to print to the screen the items for sale, including their 

catalog numbers and descriptions, their cost, and the quantity 
 available for purchase.

 2. The script is to ask the user if he/she wishes to make a purchase. If 
no, exit the program. If yes, the script is to ask the user for his/her 
first and last name. It should then ask the user the catalog number of 
the item he/she wishes to purchase and the quantity.

 3. The script is to continue asking the user if he/she wishes to make 
another purchase. If the response is no, call the billing function and 
exit the program. If the response is yes, print to the screen the list 
of items, their cost, and the updated items available for purchase. 
Then, the script is to ask the user the catalog number of the item 
he/she wishes to purchase and the quantity.

 4. Billing function: 
  Input arguments: 

 First and last names of the purchaser, the number of items purchased, 
the catalog numbers, their costs, the quantities of the items purchased.

  Output arguments: 
 None, use open and closed brackets.
 Use a global statement for the description of the items purchased 

(both in the calling program and in the billing function). The bill 
should contain the name and address of the store, the customer’s 
first and last names, bill headings, the catalog numbers of all the 
items purchased, their unit prices, the total price for each item pur-
chased, and finally the total price of all the items purchased.

 Clear the screen, then print the bill to the screen.
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6
Roots of Algebraic and 
Transcendental Equations

6.1 Introduction

In the analysis of various engineering problems, we are often faced with a 
need to find roots of equations whose solution is not easily found analyti-
cally. Given a function f(x), the roots of the function are the values of x that 
makes f(x) = 0. For example, the equation 

 f x ax bx c( ) = + + =2 0 (6.1) 

where a, b, and c are constants, is an equation that we are all familiar with. 
The values of x that satisfy the equation are the roots of f(x). We even have a 
formula for the roots, which are 

 x
b b a c

a
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− ± −2 4
2

 (6.2)

We see that there are two roots, x1 and x2, where 
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,  (6.3)

More complicated examples include nth degree polynomials and tran-
scendental equations containing trigonometric, exponential, or logarithm 
 functions. In this chapter, we discuss the search method for obtaining a 
small interval in which a root lies. We then discuss MATLAB®’s fzero and 
roots functions, which may be used to obtain a more accurate value for the 
roots of type of equations just stated.
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6.2 Search Method

In the search method, we seek a small interval that contains a real root. This 
only gives an approximate value for the real root. Once an interval in which 
a real root lies has been established, several different methods, including 
the Bisection method, Newton–Raphson method, and MATLAB’s fzero and 
roots functions, can be used to obtain a more accurate value for the real 
root. In this book, we will give a brief discussion of the Bisection method, but 
emphasize MATLAB’s fzero and roots functions.

The search method is especially useful if there is more than one real 
root. The equation whose roots are to be determined should be put into the 
 following standard form: 

 f x( ) = 0 (6.4)

We proceed as follows: first we subdivide the x domain into N equal subdivi-
sions of width ∆x , giving 

 x x x xN1 2 3 1, , , +  with x x xi i+ = +1 ∆

Then, determine where f x( ) changes sign (see Figure 6.1).
This occurs when the signs of two consecutive values of f x( ) are different, 

that is, 

 f x f xi i( ) ( )+ <1 0 

The sign change usually indicates that a real root has been passed. However, 
it may also indicate a discontinuity in the function. (Example: tan x is 
discontinuous at x = π 2.)

A brief description of the Bisection method follows:

f (x)

f (x3) f (x4)

f (x2)

f (x1)

x
x1 x2

x3 xN+1xNx4 . . .

FIGURE 6.1
The root of f(x) lies between x2 and x3.
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6.3 Bisection Method

Suppose it has been established by the search method, that a root lies between 
xi and xi+1. The concept in the bisection method is to cut the interval contain-
ing the root in half, determine which half contains the root, cut that interval 
in half, determine which half contains the root, and continue the process 
until the interval containing the root is sufficiently small, so that any point 
within the last interval is a very good approximation for the root. A more 
detailed description follows: Let xi+ 1

2
 be the midpoint position of the first cut, 

then x x xi i+ = +1
2

2( )∆  (see Figure 6.2). Now compute f x f xi i( ) ( )+ 1
2

: 

Case 1: If f x f xi i( ) ( )+ <1
2

0, then the root lies between xi and xi+ 1
2

Case 2: If f x f xi i( ) ( )+ >1
2

0, then the root lies between xi+ 1
2
 and xi+1

Case 3: If f x f xi i( ) ( )+ =1
2

0, then xi or xi+ 1
2
 is a real root

For cases 1 and 2, select the interval containing the root and repeat the pro-
cess. Continue repeating the process, say r times, then ( )∆ ∆x xf

r= 2 , where 
∆x  is the initial size of the interval containing the root before the start of the 
bisection process ( )∆x x xi i= −+1  and ( )∆x f   is the size of the interval contain-
ing the root after r bisections. If ( )∆ x f   is sufficiently small, then a very good 
approximation for the root is anywhere within the last bisected interval, say 
the midpoint of the interval. For example, in 20 bisections, 

 
( ) .∆ ∆ ∆x

x
xf = ≈ × × −

2
1 0 1020

6

 

---------------------------------------------------------------

MATLAB has built-in functions to determine the roots of a function of one 
variable, such as a transcendental equation or an nth degree polynomial. 
The fzero function is used for transcendental equations and will determine 
the real roots of the equations. The roots function is used for polynomial 
equations and will return both the real and imaginary roots. First we will 
discuss the fzero function.

f (x)

x
xi xi+½ xi+1

FIGURE 6.2
Bisecting the interval containing the root.
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6.4 MATLAB’s fzero Function

The fzero function is for a single variable nonlinear function whose root we 
wish to determine. The syntax for the fzero function is

 X = fzero(FUN,X0) (6.5)

where FUN is a function handle to the function whose root is to be deter-
mined, X0 is a scalar and represents an initial guess for the root, and X is 
the root determined by the fzero function. FUN may be a separate .m file 
or an anonymous function. You may also enter the function directly into the 
fzero function using the function creator, @, as shown in Example 6.2. To 
get a good value for X0, consider plotting the function and noting where 
the function crosses the x-axis.

Example 6.1

Given the equation 

 f( )
.
.

.
( . )

v =
−

−
+

−
3 3
0 03

0 325
0 03

2
v v v

 (6.6)

Determine the root of f(v).

% Example_6_1.m
% Simple use of fzero function
% Find the root of f(v)=3.3/(v-0.03)-0.325/(v(v+0.03))-2
% Guess that the root lies between 1 and 2.
% Function name is fv and the function is a .m file.
clear; clc;
v=1.0:0.1:2.0;
for j=1:length(v)

f(j)=fv(v(j));
end
plot(v,f), xlabel('v'), ylabel('f'), title('f vs. v'), grid;
root=fzero('fv',1.6);
% Note: we could also have used root=fzero(@fv,1.6)
fprintf('root=%6.4f \n',root);
froot=fv(root);
fprintf('froot=%12.4e \n',froot);
----------------------------------------------------------------------------
% This function works with Example 6.1
function f=fv(v)
f=3.3/(v-0.03)-0.325/(v*(v+0.03))-2;
------------------------------------------------------------------------------

Program Results:
root= 1.5810
froot= 0.0000e+00
>>
See Figure 6.3.
-----------------------------------------------------------------------
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Example 6.2

In the next two examples, we will determine the root of Equation 6.5 by placing 
an anonymous function directly into the fzero function and also as by placing 
an anonymous function in the main script. In both cases no separate .m file is 
used.

% Example_6_2.m
% Anonymous function applied directly into the fzero function
% Find the root of f(v)=3.3/(v-0.03)-0.325/(v(v+0.03))-2
% Guess that the root lies between 1 and 2.
clear; clc;
root=fzero(@(v) (3.3/(v-0.03)-0.325/(v*(v+0.03))-2),1.6);
fprintf('root=%6.4f \n',root);
froot=fv(root);
fprintf('froot=%12.4e \n',froot);
-------------------------------------------------------------------------

Program Results:
root= 1.5810
froot= 0.0000e+00
>>
------------------------------------------------------------------------

% Example_6_3.m
% Anonymous function used with the fzero function.
% Find the root of f(v)=3.3/(v-0.03)-0.325/(v(v+0.03))-2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
v

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
f

f vs. v

FIGURE 6.3
Plot of f versus v.
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% Guess that the root lies between 1 and 2.
clear; clc;
fv=@(v) (3.3/(v-0.03)-0.325/(v*(v+0.03))-2);
v=1.0:0.1:2.0;
for j=1:length(v)

f(j)=fv(v(j));
end
plot(v,f), xlabel('v'), ylabel('f'), title('f vs. v'), grid;
% Note: When using an anonymous function for FUN do not use
% either the @ sign or enclose the name of the anonymous function
% with single quotation marks.
root=fzero(fv,1.6);
fprintf('root=%6.4f \n',root);
froot=fv(root);
fprintf('froot=%12.4e \n',froot);
-------------------------------------------------------------------------

Program Results:

The results are exactly the same that was obtained in Example 6.1.
------------------------------------------------------------------------

In some instances, we would like to find the zero of a function of two argu-
ments, say X and P, where P is a parameter and is fixed. In order to solve 
with fzero, P must be defined in the calling program. For example, suppose 
myfun is defined in a .m file as a function of two arguments:

function f = myfun(X,P)
f = cos(P*X);

The fzero statement would need to be invoked as follows:

P = 1000;
root = fzero(@(X) myfun(X,P),X0)

where root is the zero of function myfun when P=1000. Note that P needs 
to be defined before the fzero function is called.

An alternative to adding parameter P as an argument in myfun is to use 
MATLAB’s global statement. The parameter P should be defined in the call-
ing program and be listed as a variable in the global statement. The global 
statement needs to be used in both the calling program and in the function 
myfun and be exactly the same in both scripts. See the following example.

Example

Calling program:

global P;
P=1000;
Xo=10.0;
root = fzero(@myfun,Xo);
-------------------------------------------------------------------------
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% The file myfun.m:
function f = myfun(x)
global P;
f = cos(P*x);
--------------------------------------------------------------------------------

Now, let us consider the case when there is more than one root in the function 
under consideration. First, it is best to use the search method to obtain small 
intervals in which the roots lie. For each obtained interval define the argu-
ment X0 in the fzero command (see Equation 6.5) as a vector of length two; 
that is, X0(1) is the X position at the beginning of one of the found intervals 
and X0(2) is the X position at the end of that interval. This should result in 
the sign of FUN(X0(1)) to differ from the sign of FUN(X0(2)). If that is 
not the case, MATLAB will return an error message. The following example 
illustrates this concept:

Example 6.4

The position, y, of a mass in a mass-spring-dashpot system (see Figure 2.19) that is 
underdamped is given by
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2

t  (6.7)

Determine the number of roots, their values and y values at the obtained roots for 
0 10≤ ≤t   s. Take

m = 25.0 kg, c = 5.0 N-s/m, k = 200.0 N/m, A = 0.2 m, and 

 
B

c
m

A

k m c m
= ×

−2 2 2/ ( / )  

% Example_6_4.m
% This program determines the number of roots and their values
% in the mass-spring-dashpot system in the time span 0<=t<=10 s.
% The governing equation for the displacement, y(t), of the
% under-damped vibration problem is:
% y(t)=exp(-c*t/2/m)(A*cos(arg1*t)+B*sin(arg1*t)), where
% arg1=sqrt(k/m-(c/2/m)^2)
% k=200 N/m, m=25kg, c=5 N-s/m
% A=0.2m, B=c/(2*m)*A/arg1.
% The values for constants A and B represent an initial
% displacement of the mass from its equilibrium position
% at zero velocity.
% A global statement in used to bring the constants, k, m, c,
% A, B and arg1 into the function fun_spring.
clear; clc;
global m k c A B arg1;
m=25; k=200; c=5; A=0.2;
arg1=sqrt(k/m-(c/2/m)^2);
B=c/2/m*A/arg1;
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% ir is the root number
ir=0;
t=0:0.1:10;
for i=1:length(t)

y(i)=fun_spring(t(i));
end
plot(t,y), xlabel('t(s)'), ylabel('y(m)'),
title('mass displacement, y, vs. t'), grid;
for i=1:length(t)-1

if y(i)*y(i+1) <= 0.0
ir=ir+1;
tr(1)=t(i);
tr(2)=t(i+1);
root(ir)=fzero('fun_spring',tr);
y(ir)=fun_spring(root(ir));

end
end
if ir ~= 0

fprintf('root # root(s) y(root) (m)  \n');
fprintf('-----------------------------------------\n');
for j=1:ir

fprintf('%3i %10.6f %12.4e \n',j,root(j),y(j));
end

else
fprintf('\n\n No roots lie within 0 <= t <= 20 s');

end
-------------------------------------------------------------------------
% fun_spring.m
% This function is used in Example 6.4
% The function determines the spring position, y(t), as a
% function of time
function y=fun_spring(t)
global m k c A B arg1;
y=exp(-c*t/2/m)*(A*cos(arg1*t)+B*sin(arg1*t));
-------------------------------------------------------------------------

NOT E:  We could have avoided the use of the global statement by defining the values 
of m, k, c, A, B, and arg1 in the function instead of the main program. We chose to use 
the global statement to illustrate its use.

Program Results:
root # root(s) y(root)(m)
-----------------------------------------
 1 0.568218 -1.3111e-17
 2 1.679634 -1.2099e-16
 3 2.791049 -7.2174e-18
 4 3.902465 1.0979e-16
 5 5.013881 -2.9893e-16
 6 6.125296 6.1582e-17
 7 7.236712 -4.2906e-17
 8 8.348127 2.8230e-17
 9 9.459543 -1.5493e-17
>>
See Figure 6.4.
---------------------------------------------------------------------------
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6.5 MATLAB’s roots Function

MATLAB has a function named roots that obtains the roots of a polyno-
mial. The function determines both real and imaginary roots of the specified 
polynomial.

The syntax for the function is
V = roots(C) where C is a vector specifying the coefficients of the polyno-

mial and V is the roots. If C has n + 1 components, the polynomial is 

 C x C x C n x C nn n( ) ( ) ... ( ) ( )1 2 1 01+ + + + =−
 

Thus, to find the roots of the polynomial ax bx cx dx e4 3 2 0+ + + + = , run 
roots([a b c d e]). The roots function will give both real and imagi-
nary roots of the polynomial.

Some additional useful MATLAB functions are 

poly(V) finds the coefficients of the polynomial whose roots are V.

real(V) gives the real part of V.
imag(V) gives the imaginary part of V.

0 1 2 3 4 5 6 7 8 9 10
t(s)

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
y(

m
)

mass displacement, y, vs. t

FIGURE 6.4
Plot of mass motion in a mass-spring-dashpot system.
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Example 6.5

In this example, MATLAB’s roots function is used to find the roots of a polynomial.

% Example_6_5.m
% This program determines the roots of two different polynomials
% using MATLAB’s 'roots' function.
clear; clc;
% The first polynomial is: f=x^3-5.7*x^2-35.1*x+85.176. The
% roots of this polynomial are all real.
% Define coefficients of first polynomial (real roots)
fprintf('The coefficients of the first polynomial are: \n');
C=[1.0 -5.7 -35.1 85.176]
fprintf('The roots are: \n');
V=roots(C)
fprintf('Polynomial coefficients determined from poly(V) are:\n');
C_recalc=poly(V)
fprintf('----------------------------------------\n');
% The second polynomial is: f=x^3-9*x^2+23*x-65. The roots of
% this polynomial are both real and complex. Complex roots must
% be complex conjugates.
% Define the coefficients of second polynomial
fprintf('The coefficients of the second polynomial are \n');
D=[1.0 -9.0 23.0 -65.0]
fprintf('The roots are: \n');
W=roots(D)
fprintf('The real and imaginary parts of the roots are:\n');
re=real(W)
im=imag(W)
fprintf('Polynomial coefficients determined from poly(W) are:\n');
W_recalc = poly(W)
----------------------------------------------------------------------

Program Results:
The coefficients of the first polynomial are:
C =

1.0000 -5.7000 -35.1000 85.1760
The roots are:
V =

8.6247
-4.9285
2.0038

Polynomial coefficients determined from poly(V) are:
C_recalc =

1.0000 -5.7000 -35.1000 85.1760
-------------------------------------------------------------------------
The coefficients of the second polynomial are
D =

1  -9  23  -65
The roots are:
W =

7.0449 + 0.0000i
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0.9775 + 2.8759i
0.9775 - 2.8759i

The real and imaginary parts of the roots are:
re =

7.0449
0.9775
0.9775

im =
0

2.8759
-2.8759

Polynomial coefficients determined from poly(W) are:
W_recalc =

1.0000 -9.0000 23.0000 -65.0000
>>

------------------------------------------------------------------------------

REVIEW 6.1

 1. What is meant by the term root of function f(x) = 0?
 2. What is the objective in the search method for determining a 

root of the equation f(x) = 0?
 3. What is the name of the MATLAB function for determining the 

roots of a transcendental equation of the form f(x) = 0?
 4. In MATLAB’s function for determining the roots of a transcen-

dental equation, how does one define the function whose roots 
are to be determined?

 5. If you suspect that there is more than one real root, what 
method should be used in combination with the MATLAB’s 
fzero function to obtain the roots?

 6. If you are using the search method in combination with the 
fzero function, what can you say about the second argument 
in the fzero function?

 7. What is the purpose of the global statement?
 8. If the function f(x) is a polynomial, what MATLAB function 

should you use to obtain its roots?
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Projects

P6.1. This project is a variation of Project P2.1. In that project a tennis 
player on serve places the tennis ball close to the outside line of the service 
box when the ball hits the ground (see Figure P6.1a and b). The horizon-
tal distance from the point where the ball leaves the racket to where the 
ball hits the ground is 18.925 m. The horizontal distance from the point 
where the ball leaves the racket to where the net is located is 12.509 m. 
The vertical distance above the ground when the ball leaves the racket 
is yo = 2.438 m. The speed of the ball as it leaves the racket is 58.0 m/s. 
Determine the angle, ϑo, that the ball makes with the horizontal on leav-
ing the players racket that would result in the ball hitting the ground at 
the position stated. Neglecting drag, the governing equations describing 
the motion are

 x to o= V cos( )ϑ  (P6.1a)

 y
g

t t yo o o= − − +
2

2 V sin( )ϑ  (P6.1b)

Hint: Let ( , )x yf f be the position and tf  be the time when the ball hits 
the ground. Substitute these values in Equations P6.1a and P6.2a, then 
solve for tf  in the  modified Equation P6.1a and substitute the obtained 
expression into the modified Equation P6.1b. This gives a transcendental 

(a)

(b)

Ball leaves racket

2.438 m

12.509 m
18.925 m

0.914 m Net

y

x

ϑoVo

Ball leaves
racket

Ball hits ground

Ball hits ground

Ball path

Net

FIGURE P6.1
(a) Tennis court layout. (b) Path of tennis ball after it leaves the racket.
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equation for ϑo where ϑo is the only unknown. Note yf = 0. Write a pro-
gram in MATLAB that

 1. Plots f ( )ϑo  versus ϑo.
 2. Uses MATLAB’s fzero function to determine ϑo.
 3. Determine whether the obtained value for ϑo will result in the ball 

clearing the net.
 4. Find the time, tf  , it takes for the ball to hit the ground after it leaves 

the racket.
 5. Using circles, plot the x-y position of the ball for 0 ≤ ≤t tf   in steps of tf/10.
 6. Determine the height of the tennis ball when it reaches the x position 

of the net. Does the tennis ball clear the net?

Assume that ϑo can range anywhere from 0° to 8° in steps of 0.1°.

P6.2. This Project is a variation of Exercise E2.4. A basketball player shoots 
the ball when he is 6 m from the center of the hoop as shown Figure 2.20. The 
ball is released at a velocity, Vo = 8.71 m/s, and at an angle ϑo with the hori-
zontal. Using Newton’s second law and the initial conditions and neglecting 
the drag on the basketball, we can determine the following equations for the 
(x, y) position of the ball as a function of time, t:

 x to o= V cos( )ϑ  (P6.2a)

 y
g

t t yo o o= + +
2

2 V sin( )ϑ  (P6.2b)

Take the (x, y) position of the center of the hoop to be (xf , y f) = (6.0 m, 3.048 m) 
and yo = 1.98 m.

 1. Determine the angle ϑo that will result in the ball reaching the center 
of the hoop at time tf .

 2. Determine the time, tf , that it takes for the ball to reach the center 
of the hoop. Time, t, equals zero when the ball leaves the player’s 
hands.

 3. Create a table consisting of t, x, y for 0 ≤ ≤t tf   in steps of tf 10. Carry 
variables to four decimal places. Print the table to an output file, 
including t f and ϑo.

 4. Create a plot of y versus x.

P6.3. The equation of state for a substance is a relationship between pres-
sure, p, temperature, T, and specific volume, v. Many gases at low pressures 
and moderate temperatures behave approximately as an ideal gas. The ideal 
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gas equation of state with p in N/m2, v in m3/kmol, T in K, and R in (N-m)/
(K-kmol) is

 p
R T

=
v

 (P6.3a)

where R  is the universal gas constant and is the same for all gasses. As tem-
perature decreases and pressure increases, gas behavior deviates from ideal 
gas behavior. The Redlich–Kwong’s equation of state is often used to approxi-
mate non-ideal gas behavior. Redlich–Kwong’s equation of state is [1]

 p
RT

b
a
b T

= −
+v v v− ( ) /1 2  (P6.3b)

or

 f
RT

b
a
b T

p( )
( ) /v

v v v
=

−
−

+
− =1 2 0 (P6.3c)

The values for R, a, and b for carbon dioxide is tabulated in Table P6.1.
We wish to determine the % error in the specific volume by using the 

ideal gas relationship while assuming that Redlich–Kwong’s equation of 
state is the correct equation of state for carbon dioxide. Vary the tempera-
ture from 350–700 K in steps of 50 K, while holding the pressure constant 
at 1.0132 × 107 N/m2 (100 atm). Using the specified temperatures and pres-
sure determine the specific volumes, v, by both the ideal gas equation and 
the Redlich–Kwong’s equation and determine the % error in the specific 
volume resulting from the use of the ideal gas equation. Take the % error in 
the specific volume to be

 % error = 
v v

v
idealgas Redlich Kwong

Redlich Kwong

−
×

−

−
100 (P6.3d)

Write a MATLAB program utilizing the fzero function to calculate the spe-
cific volume by Redlich–Kwong’s equation. Use the value of v obtained from 
the ideal gas law as your guess for the root in MATLAB’s fzero function. 
Construct a table as shown in Table P6.2.

TABLE P6.1

Values of a, b and, R for Carbon Dioxide in Redlich–Kwong’s Equation of State 

Gas
a

N- m - K
kmol

4 1/2

2









 b

m
kmol

3







 R

N m
K-kmol











Carbon dioxide 65.43 × 105 0.02963 8314

Source: Moran, M. J. and Shapiro, H. N., Fundamentals of Thermodynamics, John Wiley & Sons, 
Hoboken, NJ, 2004.



145Roots of Algebraic and Transcendental Equations

P6.4. Determine the first root of the voltage, v(t), of the underdamped parallel 
RLC circuit described in Project P2.7. The governing equation for v(t) is

v( ) exp cos sint
RC

t A
LC RC

t B
LC

= −





 − 






















+ −1
2

1 1
2

1 12

22

2

RC
t

































 (P6.4)

Use MATLAB’s fzero function to find the first root. Print this value to the 
screen. Also plot v versus t. Assume the following parameters:

 R L C A B= = = = = −− −100 10 10 6 0 9 03 6Ω, , . , .H F, V V

 0 5 0 10 4≤ ≤ × −t .  s in steps of 1 0 10 5. × −  s.

P6.5. Repeat Project 6.3, but replace the Redlich–Kwong’s Equation with Van 
der Waals’ Equation [1]. In addition, do the Project for all three gasses listed 
in Table P6.3 by the use of a for loop. In your program, use an if-elseif 
ladder within the for loop to select the proper constants for the gas. Van der 
Waals’ equation of state is

 p
RT

b
a=

−
−

v v 2  (P6.5)

The constants a and b are tabulated in Table P6.3.

TABLE P6.2

v Determined by Redlich–Kwong Equation and by Ideal Gas Law for Carbon Dioxide

Ideal Gas Redlich–Kwong Equation

% Error in vT(K) v (m3/kmol) v (m3/kmol)

350 --------- ---------- ---------
400 --------- ---------- ---------
----- --------- ---------- ---------
----- --------- ---------- ---------
700 --------- ---------- ---------

TABLE P6.3

Van der Waals’ Constants

Gas # Gas
a

N m
kmol

4

2









 b

m
kmol

3







 R

N m
K kmol











1 Air 1.368 × 105 0.0367 8314
2 Oxygen 1.369 × 105 0.0317 8314
3 Carbon dioxide 3.647 × 105 0.0428 8314

Source: Moran, M. J. and Shapiro, H. N., Fundamentals of Thermodynamics, John Wiley & Sons, 
Hoboken, NJ, 2004.
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P6.6. The temperature distribution of a thick flat plate, initially at a uniform 
temperature, T0 , and which is suddenly immersed in a huge bath at a tem-
perature T∞ , is given by (see Figure P6.2a on the next page)

 T x t T T T

x
L

en n
a t L

n

n

( , ) ( )
sin( )cos

cos( )sin

/

= + −









∞ ∞

−

2 0

2 2
δ δ

δ

δ

(( )δ δn nn
+

=

∞

∑
1

 (P6.6a)

where:
L = 1/2 of the plate thickness
a is the the thermal diffusivity of the plate material
δn are the roots of the equation:

 F
hL
k

( ) tanδ δ
δ

= − = 0 (P6.6b)

where:
h is the convective heat transfer coefficient for the bath
k is the thermal conductivity of the plate material

There are an infinite number of roots to Equation P6.5b. This can be seen in 
Figure P6.2b. The roots being δ1  , δ2  , δ3  , …, δn. Note that δ1 lies between 0 and π/2, 
δ2 lies between π and 3π/2, δ3 lies between 2π and 5π/2, and so on. Subtracting 
T∞  from Equation P6.6a and dividing by T T0 − ∞  , we obtain Equation P6.6c:

 TRATIO
T

x
L

t T

T T

x
L

en n
a t Ln

=







 −

−
=




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∞
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0
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=

∞

∑
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 (P6.6c)

A plot of TRATIO versus time, for several different values of x/L should 
appear as shown in Figure P6.2c.

Finally, the heat transfer ratio, Qratio, from the plate to the bath in time t is 
given by

 QRATIO
Q t
Q

hL
k

en n

n n n n

at n L= =
+[ ]

− −( ) sin cos
sin cos

/

0
2

2 22
1

δ δ
δ δ δ δ

δ



=

∞

∑
n 1

 (P6.6d)

where:
Q(t) is the amount of heat transferred from the plate to the bath in time t.
Q0 is the amount of heat transferred from the plate to the bath in infinite time,
which equals the change in internal energy in infinite time.

 1. Write a computer program that will solve for the roots, δ1 , δ2 , . . . . , δ50 
using MATLAB’s fzero function. Print out the δ values in 10 rows and 
5 columns. Also print out the functional values at the roots, that is, f(δn ).

NOT E:  Only 50 δ values were asked to be computed.
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 2. Solve Equation P6.6c for TRATIO for x/L = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 
and t = 0, 10, 20, … 200 s. Print out results in table form as shown 
in Table  P6.4. Also use MATLAB to produce a plot similar to 
Figure P6.2c.

x

L

Plate

L

Bath at
temperature T∞

Bath at
temperature T∞

Heat �ow
from plate

to bath

Heat �ow
from plate

to bath

tan δ, hL/kδ

δ1 δ2 δ3 δ4

kδ

δ

3π2π

3π/2

hL

5π/2π/20

π

tanδ

TRATIO

t

x/L = 0.0

x/L = 0.2
x/L = 0.4

x/L = 0.6
x/L = 1.0

1.0

0

(a)

(b)

(c)

FIGURE P6.2

(a) Plate cooling in a bath. (b) Plot of tan δ
δ

δand versus
hL
k

 . (c) Plot of TRATIO versus t.
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 3. Construct a table for QRATIO versus t for times 0, 10, 20, 30, . . . . , 200 s.
 4. Use MATLAB to produce a plot of QRATIO versus t.

Use the following values for the parameters of the problem:

T0 = 300°C, T∞ = 30°C, h = 45 W/m2-°C,

k = 10.0 W/m-°C, L = 0.03 m, a = 0.279 × 10−5 m2/s

P6.7. In this project we consider a semiinfinite slab (such as thick layer 
of ice) having a uniform temperature, Ti , that is suddenly subjected to a 
change in air temperature caused by a warm front moving in over the 
region of interest (see Figure P6.3). The surface temperature, Ts , of the 
slab will be a function time, t. It will also depend on the parameters: 
h, Ti , T ∞ , k, and α, where h is the convective heat transfer coefficient, Ti 
is the initial temperature of the slab and T∞ is the air temperature, k 
and α are the thermal conductivity and diffusivity of the slab material 
respectively. The governing equation describing the surface tempera-
ture, Ts , as a function of time [2] is:

 1 1 0

2

2− −


















 − −

−
=

∞
e erf

h t
k

T T
T T

h t

k s i

i

α
α  (P6.7)

x

Air at temperature T∞

Ice initially at temperature  Ti

Heat transfer
from air to ice

FIGURE P6.3
Ice slab subjected to warm front.

TABLE P6.4

Temperature Ratio, TRATIO

Time(s)

X/L

0.0 0.2 0.4 0.6 0.8 1.0

0 1.0 1.0 1.0 1.0 1.0 1.0
10 --- --- --- --- --- ---
20 --- --- --- --- --- ---
---
200

---
---

---
---

---
---

---
---

---
---

---
---
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Given: Ti = −20°C, T∞ = 20˚C, k = 2.22 W/m-C, α = 12.6 × 10−7 m2/s, and h = 100 
W/m2-C. We wish to determine the time, t, when the surface temperature of 
the slab reaches the following temperatures:

 T = [−10 −5 0]°C

Use the search method to find an interval in which the root of Equation P6.7 
lies. Then use MATLAB’s fzero function to solve for the time, t, for each 
condition and print the results in a table with table headings. Assume that 
0 1000≤ ≤  t s with a step size of 10 s.

P6.8. A wood circular cylinder, having a specific gravity, S, floats in water 
as shown in Figure P6.4. For a floating body, the weight of the floating body 
equals the weight of fluid displaced. An equation that describes the depth, d, 
of the submerged part of the floating cylinder is given by

 f x x x x x S( ) ( ) sin ( ) ( . )= − − + − − − =−1 2 1 0 5 02 1 π  (P6.8)

where x d R=  and S is the specific gravity of the wood.
For a complete derivation of Equation P6.8, see Project P5.3 in Reference 2.
Use the following parameters: R = 0.5 m and 0 3 0 5. .≤ ≤S   in steps of 0.05.
Create a MATLAB program that 

 1. Selects a proper range for x by observing Figure P6.4.
 2. Uses the search method to find a small interval containing the root, 

use step sizes of 0.05 m.

d

y

R

dy

x

2x(y)

x(y) = ±√R2 − y2

FIGURE P6.4
Floating wood circular cylinder.
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 3. Uses MATLAB’s fzero function to obtain a better value for the root.
 4. Create a table consisting of S and d (include table headings) and a 

plot of d versus S.

P6.9. The velocity of the piston described in Project 2.8 is

 V( ) sin( )
sin( )cos( )

sin ( )
t r t

r t t

b r t
= − −

−
2 2

2 2 2

2

2

2 2 2
πω πω πω πω πω

πω
 (P6.9)

Take r = 9 cm, ω = 100 revolutions per second, b = 14 cm.
Create a MATLAB program that will determine the time when the velocity 

of the piston, described in that project, reaches 4000 cm/s during the time 
span 0 0 01≤ ≤t . .s   Use 50 subdivisions in the t domain. Print the values to 
the screen.

P6.10. In the time span 0 0 5≤ ≤t . ms,  determine the number of roots and 
their values of the voltage, v(t), of the underdamped parallel RLC circuit 
described in Project 2.8. The governing equation for v(t) is

v t
RC

t A
LC RC

t B
LC

( ) exp cos sin= −





 − 






















+ −
1

2
1 1

2
1 12

22

2
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t





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

















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



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 (P6.10)

 1. Use the search method to find a small interval in which each root lies.
 2. In each found interval, use MATLAB’s fzero function to find the 

root value.
 3. Print out to the screen, the root number and the root value.

Assume the following parameters:

R L C A B= = = = = −− −100 10 10 6 0 9 03 6Ω, , . , .H F, V V

0 5 0 10 4≤ ≤ × −t .  s in steps of 1 0 10 5. × −  s.

P6.11. The current–voltage relationship of a semiconductor PN diode can be 
written as follows [3]:

 V I e R vin S

q
kT

v
D D

D

− −








 − =1 0 (P6.11a)

where vD is the diode voltage as defined in Figure P6.5, IS is a constant (with 
units of amperes), which is determined by the semiconductor doping con-
centrations and the device geometry, q = × −1 6 10 19.  coulomb is the unit elec-
tric charge, k = × −1 38 10 23.  J/K is the Boltzmann constant, and T is absolute 
temperature (in K). We seek the value of vD that satisfies Equation P6.11a.
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Let

 f v V I e R vD in S

q
kT

v
D

D

( ) = − −








 − =1 0 (P6.11b)

 1. Create a MATLAB function for f vD( ) and plot for the interval 
0 0 8≤ ≤vD .   V for 10 mV steps (80 subdivisions on the vD domain).

 2. Use the search method to obtain a small interval within which the 
root of Equation P6.11b lies.

 3. Use MATLAB’s fzero function to obtain a more accurate value for 
the root. Use the following parameters:

 T V= = = = Ω−300 10 5 100014K, A, V, I Rs in . 

 4. Print the root value to the screen.

P6.12. We wish to determine the DC transfer characteristic for the diode cir-
cuit of Figure P6.5. We will consider Vin as a parameter, where 5 12≤ ≤Vin   in 
steps of 1 V. We wish to find the value of vD for all values of Vin.

Write a MATLAB program that will find the roots of f vD( ) = 0, where

 f v V e R vD in S

qv
kT

D

D

( ) = − −








 − =I 1 0 (P6.12)

Your program should

 1. Take 0 2 0 8. .≤ ≤vD   V with 60 subdivisions on the vD domain.
 2. Use the search method to find a small interval in which the root of 

f vD( ) = 0 lies.
 3. Use the MATLAB’s fzero function to obtain a more accurate value 

for the root.

−

+

vR

iR

R

vD

+

−

iD

Vin

+

−

FIGURE P6.5
Semiconductor for PN diode.
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 4. Construct a table consisting of all values of Vin and the corresponding 
roots of f vD( ) = 0.

 5. If you did Project 6.11, confirm that the root value obtained in this 
project when Vin = 5 V is the same as that obtained in Project 6.11.
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7
System of Algebraic, Linear Equations

7.1 Introduction

In engineering we are frequently confronted with dealing with a problem 
involving a set of algebraic, linear equations. In this chapter we discuss the 
use of MATLAB® ’s inv and Gauss-Elimination functions for solving a 
system of algebraic, linear equations.

Before the use of computers, the method of determinants was used to 
obtain a solution to a system of algebraic, linear equations. Computationally, 
it is only practical for a system involving just a few equations [1]. Since it is 
much easier to solve such a system by MATLAB’s inv function or MATLAB’s 
Gauss-Elimination function, we will skip the method of determinants.

7.2 System of Algebraic, Linear Equations

Given the set of equations 

 

a x a x a x a x c

a x a x a x a

n n1 1 1 1 2 2 1 3 3 1 1

2 1 1 2 2 2 2 3 3 2

, , , ,

, , , ,

+ + + + =

+ + + +

�

� nn n

n n n n n n n

x c

a x a x a x a x c

=

+ + + + =

2

1 1 2 2 3 3

�

�, , , ,

 (7.1)

where the a’s and the c’s are known and the x’s are the unknowns.
In matrix algebra we can write the set of Equations 7.1 as follows:

 AX C==
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where:
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(7.2)

The unknown vector X has n rows and 1 column. Similarly, the known vector 
C has n rows and 1 column. The known coefficient matrix A has n rows and 
n columns.

NOTE: In matrix algebra, the number of columns in A must equal the number 
of rows in X.

7.2.1 MATLAB’s inv Function

The solution of the set of Equations 7.1 can be obtained by the use of 
MATLAB’s inv function as follows: 

 X=inv(A)*C (7.3)

where:
X is the solution to the set of Equations 7.1
A is the coefficient matrix shown in Equation 7.2
C is the vector shown in Equation 7.2

The method of solving a system of linear equations by use of MATLAB’s inv 
function is more computationally complicated than a method called Gauss 
elimination. MATLAB’s method for solving the system of Equations 7.1 by 
the Gauss-Elimination method is shown below.

7.2.2 Gauss-Elimination Method

To solve the system of Equations 7.1 by MATLAB’s Gauss-Elimination 
method use

 X = A\C (7.4)

where X, A, and C have the same meaning as in Equation 7.3.
Note the use of MATLAB’s backslash operator to solve for X by Gauss 
Elimination.

You can obtain the size of matrix A by the command size(A). This com-
mand is useful when you run a script and you get an error message like 
“Index exceeds matrix dimensions.” Entering the size() command in the 
script will help you determine the problem.
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Example 7.1

The following example solves the third-order system of linear equations shown 
below, and writes the results to the screen: 

 

3 2 10

3 2 5

1

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

+ − =

− + + =

− − = −  

% Example_7_1.m
% This program solves a third order linear system of equations by
% MATLAB's inv function and by MATLAB's Gauss elimination method.
clc; clear;
A=[3 2 -1; -1 3 2; 1 -1 -1];
C=[10 5 -1]'; % Transposing a row vector to a column vector.
% check solution:
X1=inv(A)*C % X1 is the solution using MATLAB’s inv function.
X2=A\C % X2 is the solution using MATLAB’s Gauss elimination method.
% Does X2=X1?
% Use the size() command to determine the number of rows and columns.
% Print size of A.
[A_rows A_cols] = size(A);
% Print matrix A.

A
% Print vector C.

C
% Print A*X1, does it give C2=C? \n');
  C2=A*X1
end
------------------------------------------------------------------------------

Program Results:
X1 =

 -2.0000
 5.0000
 -6.0000

X2 =

 -2.0000
 5.0000
 -6.0000

A =

  3  2 -1
 -1  3  2
  1 -1 -1
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C =

 10
  5
 -1

C2 =

 10.0000
 5.0000
 -1.0000
>>
--------------------------------------------------------------------------

We see that the use of MATLAB’s Gauss-Elimination method produces the same 
answer as the use of MATLAB’s inv function.

Exercises

E7.1. Solve the following set of linear equations by MATLAB’s inv function:

 a. 2x1 – x2 = 12
  4x1 + 3x2 = –8

 b. 2x1 + 3x2 – x3 = 20
  4x1 – x2 + 3x3 = −14
  x1 + 5x2 + x3 = 21

 c. 4x1 + 8x2 + x3 = 8
  −2x1 – 3x2 + 2x3 = 14
  x1 + 3x2 + 4x3 = 30

7.3 Treatment of Large Systems of Algebraic, Linear Equations

When there is a large system of algebraic, linear equations, it may not be 
obvious how to determine the appropriate matrices. There is a system-
atic approach that can be used. This is demonstrated in the following 
example:
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Example 7.2

Suppose we have the following system of equations (this system of equations was 
determined by the analysis of a truss consisting of 13 structural members sub-
jected to external forces). In the following set of equations, F F F F1 2 3 13, , ,...  represent 
the unknown internal forces in the structural members and the right-hand side 
of the equations represent external forces, P P P P1 2 3 13, , ,...  applied to the truss mem-
bers at the joints. (For more details on the process see Section 4.4 in Reference 2). 
Since there are 13 unknown forces, there will be 13 equations and each equation 
will have 13 a’s, most of which will be zero. The equations need to be numbered as 
shown below. In the following set of equations, the coefficient matrix A is be made 
up of elements ai j,  where the first index is  the  equation number and the second 
index is the same number, j, of the index of unknown force, Fj.
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  (1) We see that only a a1 1 1 2, ,and  are non-zero.

  (2) We see that only a2 1, is non-zero.

  (3) We see that only a a3 1 3 5, ,and  are non-zero.

  (4) We see that only a a4 1 4 3, ,and  are non-zero.

  (5) We see that only a a a5 2 5 6 5 4, , ,, and  are non-zero.

  (6) We see that only a a6 3 6 4, ,and  are non-zero.

  (7) We see that only a a a a7 4 7 5 7 8 7 10, , , ,, , and  are non-zero.

  (8) We see that only a a a8 4 8 7 8 10, , ,, and  are non-zero.

  (9) We see that only a a9 6 9 9, ,and  are non-zero.

(10) We see that only a10 7,  are non-zero.

(11)  We see that only a a a11 9 11 10 11 11, , ,, and  are non-zero.

(12)  We see that only a a12 10 12 12, ,and  are non-zero.

(13)  We see that only a a13 12 13 13, ,and  are non-zero.

Since the coefficient matrix is sparse, it is best to initially set all ai j, =0, and then over-
write the non-zero ai j,  terms as specified in the set of equations. In matrix algebra, the 
set of equations is of the form AF = P. The program follows:

% Example_7_2.m
% This program solves a system of algebraic, linear equations.
% The system of equations stems from a truss problem in statics.
% The A matrix elements are initially set to zero. The non-zero
% A elements then override the initial values. The first index in the A
% matrix elements represent the equation number. The second index in
% the A matrix element correspond to the index of the force associated with
% that matrix element.
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% There are 13 equations for 13 unknown internal forces, F(1)-F(13).
clear; clc;
ie=13; je=13;
a=zeros(13);
p=zeros(13,1);
fo=fopen('output.txt','w');
fprintf(fo,'Example 7.2 \n');
fprintf(fo,'Program solves for the internal forces of a truss');
fprintf(fo,'Forces in kN \n');
% Overwrite the non-zero elements of matrix a and matrix p.
a(1,1)=0.6; a(1,2)= 1; p(1)=0; % From Equation 1.
a(2,1)=0.8; p(2)=-62.5;        % From Equation 2, etc.
a(3,1)=-0.6; a(3,5)=1; p(3)=0;
a(4,1)=-0.8; a(4,3)=-1; p(4)=0;
a(5,2)=-1.0; a(5,6)=1; a(5,4)=0.6; p(5)=0;
a(6,3)=1.0; a(6,4)=0.8; p(6)=50.0;
a(7,4)=-0.6; a(7,5)=-1.0; a(7,8)=1.0; a(7,10)=0.6; p(7)=0;
a(8,4)=-0.8; a(8,10)=-0.8; a(8,7)=-1; P(8)=0;
a(9,6)=-1; a(9,9)=1.0; p(9)=0;
a(10,7)=1.0; p(10)=30;
a(11,9)=-1.0; a(11,10)=-0.6; a(11,11)=1.0; p(11)=0;
a(12,12)=1.0; a(12,10)=0.8; p(12)=40;
a(13,12)=-1.0; a(13,13)=-0.8; p(13)=0;
fprintf(fo,' A matrix \n\n');
jindex=1:je;
fprintf(fo,' ');
for i=1:ie

fprintf(fo,'%5i',jindex(i));
end
fprintf(fo,'\n');
fprintf(fo,'--------------------------------------------');
fprintf(fo,'----------------\n'); 
for i=1:ie

fprintf(fo, '%4i' ,i);
for j=1:je

fprintf(fo,'%5.1f',a(i,j));
end
fprintf(fo,'\n');

end
F=a\p;
fprintf(fo,'\n\n');
fprintf(fo,'Internal forces, F(1)-F(13)& external forces p(i) \n\n');
fprintf(fo,'Member No. F(kN) Equation No p(kN)  \n');
fprintf(fo,'====================================================\n');
for i=1:ie

fprintf(fo,'   %3.0f %9.2f \t %3.0f \t\t %5.1f \n',...
i,F(i),i,p(i));

end
----------------------------------------------------------------------------------
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Program Results:
Example 7.2
Program solves for the internal forces of a truss. Forces in kN.
A matrix
     1    2    3    4    5    6    7    8    9   10   11   12   13
-------------------------------------------------------------------
 1  0.6  1.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
 2  0.8  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
 3 -0.6  0.0  0.0  0.0  1.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
 4 -0.8  0.0 -1.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
 5  0.0 -1.0  0.0  0.6  0.0  1.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
 6  0.0  0.0  1.0  0.8  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0
 7  0.0  0.0  0.0 -0.6 -1.0  0.0  0.0  1.0  0.0  0.6  0.0  0.0  0.0
 8  0.0  0.0  0.0 -0.8  0.0  0.0 -1.0  0.0  0.0 -0.8  0.0  0.0  0.0
 9  0.0  0.0  0.0  0.0  0.0 -1.0  0.0  0.0  1.0  0.0  0.0  0.0  0.0
10  0.0  0.0  0.0  0.0  0.0  0.0  1.0  0.0  0.0  0.0  0.0  0.0  0.0
11  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0 -1.0 -0.6  1.0  0.0  0.0
12  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.0  0.8  0.0  1.0  0.0
13  0.0  0.0  0.0  0.0  0.0  0.0  0.0 -1.0  0.0  0.0  0.0 -1.0  0.6

Internal forces, F(1)-F(13)& external forces p(i)

Member No. F(kN) Equation No p(kN)
==================================================
 1 -78.13 1 0.0
 2 46.88 2 -62.5
 3 62.50 3 0.0
 4 -15.63 4 0.0
 5 -46.88 5 0.0
 6 56.25 6 50.0
 7 30.00 7 0.0
 8 -43.13 8 0.0
 9 56.25 9 0.0
 10 -21.88 10 30.0
 11 43.13 11 0.0
 12 57.50 12 40.0
 13 -71.88 13 0.0
-------------------------------------------------------------------------

7.4 A Resistive Circuit Problem

Another example involving a system of linear equations can be found in 
problems involving resistive circuits (see Figure 7.1). For more information 
on the subject see Section 4.5 in Reference 2. The goal is to solve for the 
node voltages v1  , v2 , and v3 as functions of the input voltages V1 and V2 and 
the input current  I1. The equations involve the conductances, G G G1 2 5, ,...,  , 
where G Ri i= 1  and Ri are the resistant members in the circuit.
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The governing equations for this example are 

 ( )G G G v G v G v V G1 2 3 1 2 2 3 3 1 1+ + − − =  (7.5)

 − + + − =G v G G v G v I2 1 2 4 2 4 3 1( )  (7.6)

 − − + + + =G v G v G G G v V G3 1 4 2 3 4 5 3 2 5( )  (7.7)

The right-hand side of Equations 7.5 through 7.7 will be represented as 
vector C.

This system of equations may be solved by the use of MATLAB’s inv func-
tion or by MATLAB’s Gauss-Elimination method as shown in the following 
Example 7.3.

The following script solves for the node voltages, v1, v2, and v3 for the fol-
lowing circuit values: 

 

R R R R R

V V

1 2 3 4 5

1 2

2200 10 6900 9100 3300

12 3 3

= = = = =

= =

Ω Ω Ω Ω Ω, , , ,

, . ,

k

V V II1 2= mA  

% Example_7_3.m
% Resistive Circuit Problem
% This program solves for the internal node voltages for the circuit
% shown in Figure 7.1.
% The conductances G are in units of Siemens.
% The node voltage V are in units of volts.

+
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R4

R5
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i2
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i4

i5

V1 V2I1

v1
v2 v3
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FIGURE 7.1
A resistive circuit for Example 7.3.
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% The currents I are in units of amps.
clear; clc;
A=zeros(3);
C=zeros(3,1);
V=zeros(3,1);
g1 = 1/2200; g2 = 1/10000; g3 = 1/6900; g4 = 1/9100; g5 = 1/3300;
V1 = 12; V2 = 3.3; I1 = .002;
% Overwrite the non-zero elements of matrix A and vector C.
A(1,1)=g1+g2+g3; A(1,2)=-g2; A(1,3)=-g3; C(1)=V1*g1;
A(2,1)=-g2; A(2,2)=g2+g4; A(2,3)=-g4; C(2)=I1;
A(3,1)=-g3; A(3,2)=-g4; A(3,3)=g3+g4+g5; C(3)=V2*g5;
v = A \ C ;
% print the results
fprintf('V1=%5.1f V  V2=%5.1f V  I1=%5.1e A \n',V1,V2,I1);
fprintf('g1=%8.5f S  g2=%8.5f S  g3=%8.5f S \n',g1,g2,g3);
fprintf('g4=%8.5f S  g5=%8.5f S\n',g4,g5);
fprintf('\n\n');
fprintf('Node # v (volts)  \n');
fprintf('----------------------------\n');
for n=1:length(C)

fprintf(' %3i %9.1f \n', n,v(n));
end
--------------------------------------------------------------------------------

Program Results:
V1= 12.0 V      V2= 3.3 V       I1= 2.0e-03 A
g1= 0.00045 S   g2= 0.00010 S   g3= 0.00014 S
g4= 0.00011 S   g5= 0.00030 S

Node # v (volts)
----------------------------
 1 12.6
 2 20.3
 3 9.0
>>
--------------------------------------------------------------------------------

7.5 Gauss Elimination

As previously discussed, the Gauss-Elimination method in solving a alge-
braic, linear set of equations is computationally more efficient than the use of 
MATLAB’s inv function. In the Gauss-Elimination method, the original sys-
tem is reduced to an equivalent triangular set that can readily be solved by 
back substitution (for a complete description of the method see Section 4.6 
in Reference 2). The reduced equivalent set would appear like the following 
set of equations:
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where the tilde (~) variables are a new set of coefficients (to be determined), 
and where the new coefficient matrix A is diagonal (i.e., all of the coefficients 
left of the main diagonal are zero). Then by back substitution, 
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etc.  

7.6 Number of Solutions

Suppose a Gauss-Elimination program is carried out and the following 
results are obtained: 
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where r n<  and a a arr11 22, ,....,  are not zero. There are two possible cases: 

 1. No solution exists if any one of the cr+1 through cn is not zero.
 2. Infinitely many solutions exits if cr+1 through cn are all zero.

NOTE: If you attempt to solve a system of algebraic, linear equations using 
MATLAB’s Gauss-Elimination method, and MATLAB arrives at a set of equa-
tions as shown in Equation 7.9, MATLAB will give you a warning as follows:

“Warning: Matrix is close to singular or badly scaled. Results may be 
inaccurate.”

If, in the above set, r n=  and a a ann11 22, ,....,  are not zero, then the system 
would appear as follows: 
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 (7.10)

For this case there is only one solution.

Exercise

E7.2. Use MATLAB’s inv function to solve the following set of linear 
equations. Note the warning that MATLAB gives with its solution.
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--------------------------------------------------------

REVIEW 7.1

 1. Given a set of algebraic, linear equations in the form AX = C, 
where A is the coefficient matrix and X and C are column vec-
tors, what are the two ways for solving for X in MATLAB?

 2. Given a large system of algebraic, linear equations of the form 
AX = C, describe the recommended approach to solving the 
system of linear equations.
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Projects

P7.1. The following set of linear equations came from a problem in Statics. 
Use the method described in Example 7.2 to solve the following set of linear 
equations. The Fi value represents the internal force in structural member 
i in kN.

Take Ax = −9 kN,  Ay = 7 kN, cos 0.6, sin 0.8ϑ ϑ= =
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P7.2. The following set of linear equations came from a problem in Statics. 
Use the method described in Example 7.2 to solve the following set of linear 
equations. The Fi value represents the internal force in structural member 
i in kN.
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P7.3. Figure P7.1 shows a resistive circuit known as a ladder network.
Using Ohm’s law and Kirchoff’s current law, we can determine a set of 

linear equations for the voltages v v v v1 2 3 4, , , and  (For a complete derivation 
of the set of equations, see Project P4.5 in Reference 2). The equations are 
written in terms of the conductances, Gnm , instead of the resistances, Rnm , 
where Gnm = 1/Rnm.
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The governing equations for this system are
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Create a MATLAB program to solve for all circuit voltages. Take V1 = 5V and 
the following resistor values:
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P7.4. Suppose a manufacturer wishes to purchase a piece of equipment that 
costs $40,000. He plans to borrow the money from a bank and pay off the 
loan in 10 years in 120 equal payments. The annual interest rate is 6%. Each 
monthly payment, M, consists of two parts: one part goes toward paying 
off the principal, P, and the other part is the interest charged based on the 
unpaid balance of the loan. He wishes to determine what his monthly pay-
ment will be. This problem can be solved by a system of linear equations. Let 
xj is the amount in the jth payment that goes toward paying off the principal. 
Then the equation describing the jth payment is

 
jthpayment M x P x Ij n

n

n j

= = + −












=

= −

∑
1

1

 
(P7.4a)

where:
M is the monthly payment
P is the amount borrowed
I is the monthly interest rate = annual interest rate/12

+
−

R11 R21 R31

R32

R41

R12 R22 R42

v4v3v1 v2

V1

FIGURE P7.1
Fourth-order ladder network.
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The total number of unknowns is 121 (120x values and M).
Applying Equation P7.4a to each month gives 120 equations. One additional 

equation is 

 
P xn

n

n

=
=

=

∑
1

120

 
(P7.4b)

Develop a MATLAB program that will
 1. Ask the user to enter from the keyboard the amount of the loan (P), 

the annual interest rate, I, and the time period, Y, in years.
 2. Set up the system of linear equations, using An,m as the coefficient 

matrix of the system of linear equations. The n represents the equa-
tion number and m represents the coefficient of xm in that equation. 
Set x121 = M.

 3. Solve the system of linear equations in MATLAB.
 4. Print out a table consisting of four columns. The first column should 

be the month number, the second column the monthly payment, the 
third column the amount of the monthly payment that goes toward 
paying off the principal, and the fourth column the interest payment 
for that month.
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8
Curve Fitting

8.1  Introduction

There are many occasions in engineering that require an experiment to 
determine the behavior of a particular phenomenon. The experiment may 
produce a set of data points that represents a relationship between the 
variables involved in the phenomenon. We may then wish to express this 
relationship analytically for further analysis. A mathematical expression 
that describes the data is called an approximating function. There are two 
approaches to determining an approximating function:

	 1.	The approximating function graphs as a smooth curve. The approxi-
mating curve will generally not pass through all the data points, but 
we seek to minimize the resulting error in order to get the best fit. 
A plot of the data on linear, semilog or log-log graphic paper can 
often suggest an appropriate form for the approximating function.

	 2.	The approximating function passes through all data points (as 
described in Section 8.4). However, if there is some scatter in the data 
points, this approximating function may not be satisfactory.

8.2  MATLAB’s Curve-Fitting Functions

MATLAB® calls curve fitting with a polynomial by the name Polynomial 
Regression. The function polyfit(x, y, m) returns a vector of (m + 1) coef-
ficients, ai  , that represent the best-fit polynomial of degree m for the (xi  , yi) 
set of n data points. The coefficient order corresponds to decreasing powers 
of x, that is, 

	 y a x a x a x a x ac
m m m

m m= + + + +− −
+1 2

1
3

2
1 	 (8.1)
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To obtain yc at the data points ( , , ..., )x x x xn1 2 2  use the MATLAB function 
polyval(a, x), where x = [ .... ]x x xn1 2 . MATLAB’s polyval(a, x) function 
returns a vector of length n giving yc,i where

 y a x a x a x a x ac i i
m

i
m

i
m

m i m, = + + + +− −
+1 2

1
3

2
1  (8.2)

MATLAB measures the precision of the fit with a function named mse, which 
is defined as follows: 

 mse = ∑ −
=

1
1

2

n
y y

i

n

i c i( ),  (8.3)

where yi are the data point y values and yc,i are the approximating curve y 
values at the data points xi  , and n is the number of data points.

You may also use polyval(a, x), where x is any set of x values, preferably 
between x1 and xn.

Example 8.1

% Example_8_1.m
% This program determines the best fit polynomial approximating
% functions of orders 2 thru 5 for the data set listed below.
% MATLAB’s polyfit and polyval functions are used in the program.
% The sprintf command is used in this program to write formatted data
% in the plot title. The sprintf command is the same as the
% fprintf command except that it returns the data in a MATLAB
% string rather than writing to the screen or to a file.
clear; clc;
% Enter data.
x=-10:2:10;
y=[-980 -620 -70 80 100 90 0 -80 -90 10 220];
mse=zeros(4);
% Determine best fit 2-5 degree polynomials to fit the data.
for m=2:5
 fprintf('m= %i \n',m);
 coef=zeros(m+1);
 coef=polyfit(x,y,m);
 % Approximating function at x 
 yc=polyval(coef,x);
 % yc is a vector since x is a vector.
 mse(m)=sum((y-yc).^2)/length(x);
 % y-yc=[y(1)-yc(1) y(2)-yc(2) ..... y(n)-yc(n)].
 fprintf(' x y yc  \n');
 fprintf('------------------------------\n');
 for i=1:length(x)
  fprintf('%5.1f %5.1f %8.2f \n',x(i),y(i),yc(i));
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 end
 fprintf('\n\n');
 x2=-10:0.5:10;
 % Approximating function at x2 
 yc2=polyval(coef,x2);
  subplot(2,2,m-1),plot(x2,yc2,x,y,'o'), xlabel('x'), ylabel('y'), 

grid, axis([ -10 10 -1500 500]),
 legend('approx curve','data points');
 title(sprintf('Degree %d polynomial fit',m));
end
fprintf(' m mse  \n')
fprintf('------------------\n');
for m=2:5
 fprintf('%d %8.1f \n',m,mse(m))
end
-------------------------------------------------------------------------------

Program Results:

Output for m = 5 is only displayed here.
m = 5
 x y yc
------------------------------
 -10.0 -980.0 -999.09
 -8.0 -620.0 -545.31
 -6.0 -70.0 -156.76
 -4.0 80.0 78.39
 -2.0 100.0 148.18
 0.0 90.0 93.80
 2.0 0.0 -13.50
 4.0 -80.0 -95.45
 6.0 -90.0 -89.91
 8.0 10.0 26.15
 10.0 220.0 213.50

 m mse
------------------
 2 32842.4
 3 2660.0
 4 2342.1
 5 1502.9
>>

As expected, the mse decreases as the order of the fitted polynomial is increased.
See Figure 8.1.

--------------------------------------------------------------------------
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Example 8.2

This example involves the sampling with respect to time of an audio  signal that is 
converted to a voltage by a microphone and an amplifier. The data are in volts (V) 
versus time in microseconds ( µs).

% Example_8_2.m
% This program determines the best fit polynomial approximating
% functions of orders 2 thru 5 for the data set listed below.
% MATLAB's polyfit and polyval functions are used in the program.
% The data involves the sampling in time, t, of an audio signal
% converted to a voltage, V, by a microphone and an amplifier.
% V is in volts and t is in microseconds.
clear; clc;
% Define original data points for V(t)
t = [ 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 ];
V = [.7 .9 .9 .7 .3 0 -.3 -.7 -.7 -.3 0 .3 .7 .7 .3 ];
% Determine best fit 2-5 degree polynomials to fit the data.
for m=2:5
 fprintf('m= %i \n',m);
 coef=zeros(m+1);
 coef=polyfit(t,V,m);
 % Approximating function at t
 Vc=polyval(coef,t);
 mse(m)=sum((V-Vc).^2)/length(t);
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FIGURE 8.1
Approximating curves with data points.
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 fprintf(' t V Vc  \n');
 fprintf('(micro-sec) (volt) (volt) \n');
 fprintf('------------------------------------------\n');
 for i=1:length(t)

 fprintf(' %5.1f %8.4f %8.4f \n',...
  t(i),V(i),Vc(i));

 end
 fprintf('\n\n');
 t2 = 0:60;
 % Approximating function at t2
 Vc2=polyval(coef,t2);
 subplot(2,2,m-1),plot(t2,Vc2,t,V,'o'), xlabel('t(\mus)'),
 ylabel('V(V)'), grid, legend('approx curve','data points'),
 title(sprintf('Degree %d polynomial fit',m));
end
fprintf('m mse  \n')
fprintf('---------------------\n');
for m=2:5
 fprintf('%d %8.5f \n',m,mse(m))
end
---------------------------------------------------------------------------------

Program Results:

Only results for m = 5 are displayed.
m = 5

 t V Vc
 (micro-sec) (volt) (volt)
------------------------------------------
 0.0 0.7000 0.6791
 4.0 0.9000 0.9377
 8.0 0.9000 0.9102
 12.0 0.7000 0.6748
 16.0 0.3000 0.3211
 20.0 0.0000 -0.0588
 24.0 -0.3000 -0.3790
 28.0 -0.7000 -0.5691
 32.0 -0.7000 -0.5833
 36.0 -0.3000 -0.4088
 40.0 0.0000 -0.0754
 44.0 0.3000 0.3361
 48.0 0.7000 0.6845
 52.0 0.7000 0.7592
 56.0 0.3000 0.2717

m mse
---------------------
2       0.10789
3       0.10583
4       0.00803
5       0.00446
>>

See Figure 8.2.
----------------------------------------------------------------------
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8.3 Curve Fitting with the Exponential Function

Many physical systems can be modeled as exponential functions. If your 
experimental data appears to fall into this category, it can be fitted with a 
function of the form 

 y ec
x= −β β

2
1  (8.4)

where β1 and β2 are real constants.
Let us assume that a set of n measured data points ( , ), ( , ), , ( , )x y x y x yn n1 1 2 2   

exists. Then, let z yi i= ln  and z y xc c= = −ln lnβ β2 1 , and also let a1 1= −β  and 
a2 2= lnβ . Then taking the log of both sides of Equation 8.4 and making the 
above substitutions, we obtain the linear equation 

 z a x ac = +1 2 (8.5)

For the data points ( , ), ( , ), , ( , )x y x y x yn n1 1 2 2  , the new set of data points 
becomes ( , ), ( , ), , ( , )x z x z x zn n1 1 2 2  .
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FIGURE 8.2
Approximating function and data points for audio signal versus time.
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We can then use MATLAB’s polyfit function to determine a1 and a2.
Then, β2

2= ea  and β1 1= −a .

Example 8.3

Suppose we took an oscilloscope picture of the position, y, of the mass in a mass-
spring-dashpot system as shown in Figure 8.3 and measured the (t, ye) positions of 
the envelope. Table 8.1 gives the measured position, ye  , as a function of time, t. The 
governing equation of the envelope is 

 y ye

c

m
t

=
−

0
2e  (8.6)

where:
c is the damping constant
m is the mass
ye is the ordinate position of the envelope of the plot of the mass displacement from 

the equilibrium position

Comparing Equation 8.6 with Equation 8.4 we see that 
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FIGURE 8.3
Position of a mass in a mass-spring-dashpot system with its envelope.
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β β2 0 1

2
= y

c
m

t xand with replacing =
 

Thus, the damping factor, c, for the system is given by 

 c m= 2 1β  

Table 8.1 gives the measured values ye versus t.
As a check that the equation of the envelope is truly an exponential we can plot the 

data on semilog paper. It should plot as a straight line on semilog paper. This is done 
in the following program.

The mass, m, in the system is 25 kg.

The Program Follows:
% Example_8_3.m
% This program determines the best exponential fit for the envelope
% of the motion of a mass-spring-dashpot system.
clear; clc;
t=[0.00 2.17 4.31 6.72 8.96 11.21 13.28 15.52 17.93];
ye=[2.00 1.58 1.32 1.04 0.89 0.68 0.55 0.41 0.36];
z=[log(2.0) log(1.58) log(1.32) log(1.04) log(0.89) log(0.68) ...

log(0.55) log(0.41) log(0.36)];
% If the relationship is exponential, ye should plot as a
% straight line on semi-log paper.
semilogy(t,ye,'x'), xlabel('t(s)'), ylabel('log(ye)'), grid,
title('log(ye) vs. t');
figure;
a=polyfit(t,z,1);
zc=a(1)*t+a(2);

TABLE 8.1

ye versus t

t (s) ye (cm)

0.00 2.00
2.17 1.58
4.31 1.32
6.72 1.04
8.96 0.89

11.21 0.68
13.28 0.55
15.52 0.41
17.93 0.36
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fprintf(' a(1)=%7.3f a(2)=%6.3f \n',a(1),a(2));
beta(1)=-a(1);
beta(2)=exp(a(2));
fprintf('beta(1)=%7.3f, beta(2)=%6.3f \n',beta(1),beta(2));
for i=1:9

yc(i)=beta(2)*exp(-beta(1)*t(i));
end
plot(t,yc,t,ye,'o'), xlabel('t(s)'), ylabel('yc(cm)'),
title('yc vs. t'), grid, legend('yc','ye');
m=25.0;
c=2*m*beta(1);
fprintf('m=%5.1f(kg), The damping constant=%7.4f(N-s/cm) \n',m,c);
-----------------------------------------------------------------------------

Program Results:
a(1)= -0.097, a(2)= 0.695
beta(1)= 0.097, beta(2)= 2.005
m= 25.0(kg), The damping constant= 4.8718(N-s/cm)
>>

See Figures 8.4 and 8.5.
-----------------------------------------------------------------------------
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FIGURE 8.4
Plot of log(ye) versus t.
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8.4 Cubic Splines

Suppose that we are given a set of n data points and that we select an mth 
degree polynomial-approximating curve that produces curve values that are 
not allowed. For example, suppose it is known that a particular property 
represented by the approximating curve (such as absolute pressure or abso-
lute temperature) must be positive and the approximating function produces 
values that are negative. In this case the approximating curve would not be 
satisfactory. The method of cubic splines eliminates this problem.

REVIEW 8.1

 1. Suppose an experiment produced a set of data and we wished 
to  create an approximating curve, yc  , that is a polynomial 
expression that best fits the data. What is the name of the 
MATLAB function that will do this?

 2. After executing MATLAB’s polyfit function you may wish 
to obtain values on the approximating curve, yc at positions 
(x x x xn1 2 3, , , ... , ). If so, what MATLAB function would you use?
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FIGURE 8.5
Plot of yc and ye versus t.
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Given a set of (n + 1) data points (xi  , yi), i = 1, 2,…, (n + 1), the method of 
cubic splines develops a set of n cubic functions, such that y(x) is represented 
by a different cubic in each of the n intervals and the set of cubics passes 
through all (n + 1) data points.

8.4.1 MATLAB’s Cubic Spline Curve-Fitting Function

The syntax for MATLAB’s cubic spline function is 

 yy x y xxi i= spline( , , ) 

where (xi  , yi) is a given set of data points and yy is the value of y at xx. 
The spline function determines the four cubic coefficients for each sec-
tion in the given data and will evaluate yy by the cubic-spline method. The 
same result can be obtained by using MATLAB’s interp1 function and 
specifying the use of the spline method of interpolation. The syntax for 
interpolating by the spline method is 

 y x y xi i= interp spline1( , , , )' '  

Example 8.4

The following example involves a measured increase in air pressure at distances 
from a blast. The data specifies the pressure above normal atmospheric pressure and 
is designated as overpressure. The program demonstrates the use of the MATLAB’s 
spline function as well as MATLAB’s interp1 function with the spline option 
to determine the pressure at distances not in the data. We see that the two meth-
ods produce the same results. The program follows:

% Example_8_4.m
% This program uses both MATLAB's spline function and MATLAB's
% interp1 function with the cubic spline option to determine the
% over-pressure resulting from a blast. The program calculates the
% over-pressure at locations between data points. The over-pressure
% is in kPa and the distance from the blast in km.
clear; clc;
dist=0.52:0.3:4.12;
press=[165.5 96.5 69.0 52.4 37.2 27.6 21.4 17.2 13.8 11.7 ...

10.3 9.0 7.2];
d=0.52:0.1:4.12;
p1=spline(dist,press,d);
p2=interp1(dist,press,d,'spline');
fo=fopen('output.txt','w');
fprintf(fo,'Peak over-pressure vs. distance from the blast, \n');
fprintf(fo,'Cubic spline fit \n');
fprintf(fo,'dist(km) over-press(kPa) over-press(kPa)  \n');
fprintf(fo,' by spline function by interp1  \n');
fprintf(fo,'------------------------------------------------\n');
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for n=1:length(d)
fprintf(fo,'%5.2f %10.2f %10.2f \n',d(n),p1(n),p2(n));

end
plot(d,p1,d,p2,'o'), xlabel('km from ground zero'),
ylabel('overpressure(kPa)'), grid,
title('Peak over-pressure vs. distance from blast')
fclose(fo);
----------------------------------------------------------------------

Program Results:
Peak over-pressure vs. distance from blast, cubic spline fit
dist(km) over-press(kPa) over-press(kPa)

 by spline function by interp1
------------------------------------------------
0.52 165.50 165.50
0.62 135.72 135.72
0.72 113.15 113.15
0.82 96.50 96.50
0.92 84.46 84.46
1.02 75.72 75.72
1.12 69.00 69.00
1.22 63.15 63.15
1.32 57.71 57.71
1.42 52.40 52.40
1.52 47.02 47.02
. . .
. . .
3.12 12.28 12.28
3.22 11.70 11.70
3.32 11.19 11.19
3.42 10.73 10.73
3.52 10.30 10.30
3.62 9.88 9.88
3.72 9.46 9.46
3.82 9.00 9.00
3.92 8.49 8.49
4.02 7.89 7.89
4.12 7.20 7.20

See Figure 8.6.
----------------------------------------------------------------------

Example 8.5

Example 8.2 can also be used as an example for the use of MATLAB’s interp1 func-
tion with the spline option. That example involved the sampling with respect to time 
of an audio signal that is converted to a voltage by a microphone and an amplifier. 
The data is in volts (V) versus time in microseconds (µs ). Variable names in this pro-
gram differ from those in Example 8.2. The program follows:
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% Example_8_5.m
% This program uses interpolation by cubic splines to upsample
% an audio signal V(t) vs. time in microsec.
clear; clc;
% Define original data points for V(t) (time is in microsec)
orig_t = [ 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 ];
orig_V = [.7 .9 .9 .7 .3 0 -.3 -.7 -.7 -.3 0 .3 .7 .7 .3 ];
% Define upsampled time points
upsample_t = 0:60;
% Calculate interpolated data points using cubic splines
upsample_V = interp1(orig_t,orig_V,upsample_t,'spline');
% Print output to screen
fprintf('Upsampling via cubic spline fit \n');
fprintf('time (microsec) upsample_V \n');
for i=1:length(upsample_t)
 fprintf('%8.2f %10.3f \n',upsample_t(i),upsample_V(i));
end
plot(orig_t,orig_V,'o',upsample_t,upsample_V);
xlabel('t(microsec)'); ylabel('V(volt)'); grid;
title('Upsampling with Cubic Spline Interpolation');
legend('original','upsampled');
----------------------------------------------------------------------

Program Results:

Only the plot (Figure 8.7) is shown here.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
km from ground zero

0

20

40

60

80

100

120

140

160

180
ov

er
pr

es
su

re
(k

Pa
)

Peak over-pressure vs. distance from blast

spline curve
data

FIGURE 8.6
Blast overpressure versus distance from blast.
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Projects

P8.1. A formula describing the fluid level, h, in a tank as a function of time as 
the fluid discharges through a small circular orifice (see Figure P8.1) is

 h h g h
C A

A
t

C A
A

gto o
d o

T

d o

T
= − × +









 ×2

2
2

2

2 (P8.1)

where:
Cd is the discharge coefficient
ho is the fluid level in the tank at time, t = 0
Ao is the area of the orifice
AT is the cross-sectional area of the tank

An experiment consisting of a cylindrical tank with a small circular ori-
fice was used to determine Cd for that particular orifice and cylinder. The 
tank walls were transparent and a ruler was pasted to the wall allowing 
for the determination of the fluid level in the tank. The procedure was to 
fill the tank with water while the orifice was plugged. The plug was then 
removed and the water was allowed to flow through the orifice. The water 
level in the tank, hexp in m, was recorded as a function of time, t, in s. The 
experimental data is shown below:
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t(microsec)

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
V(

vo
lt)

original
upsampled

Upsampling with Cubic Spline Interpolation

FIGURE 8.7
Upsampling of audio signal.
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hexp   = [ . . . . . . . . . .0 288 0 258 0 234 0 215 0 196 0 178 0 160 0 142 0 125 0 110 ……

. . . . . . . . . .0 095 0 080 0 065 0 053 0 041 0 031 0 022 0 013 0 006 0 0022

0 000

 …

. ]

 

t = [0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 16                00 170

180 190 200

  

  

…

]

Diameter of the orifice, do  =  0.0055  m and the diameter of the tank, 
DT = 0.146 m. The free surface elevation, ho  , at t = 0 is 0.288 m. The gravita-
tional constant, g = 9.81 m/s2.

Use the mse as defined by Equation P8.2 to determine the value for Cd that 
best fits the data. Vary Cd from 0.3 to 0.9 in steps of 0.01 and evaluate the mse 
for each Cd selected, where

 mse = −
=

∑1

1

2

N
h t h ti i

i

N

[ ( ) ( )]exp  (P8.2)

where:
N is the number of data points
h(ti) is the water level in the tank at ti as determined by Equation P8.1
hexp(ti) is the water level in the tank at ti as determined by experiment

For the Cd with the lowest mse, create a plot of h versus t (solid line) and 
superimpose hexp versus t as little x’s onto the plot of h versus t. Also print out 
the value of Cd that gives the lowest mse.

P8.2. This project involves determining the best-fit polynomial approximat-
ing curve to the (H vs. Q) data obtained experimentally. The experimental 
(H vs. Q) data are shown in Table P8.1.

Water level

Ruler h(t)

R

FIGURE P8.1
Water in a tank discharging through an orifice.
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Try degree polynomials of two through four to determine which 
degree polynomial will give the smallest mse. Use MATLAB’s function 
polyfit that returns the coefficients for each of the three polynomials. 
Then use the following MATLAB’s function polyval to create for each 
polynomial: 

 1. A table containing Q, H, and Hc  , where Hc are values from the 
approximating curve for H versus Q.

 2. A plot containing both Hc versus Q (solid line) and H versus Q (small 
circles).

P8.3. Figure P8.2 shows a resistor-diode circuit using a type 1N914 silicon 
diode (D1) and a 10  kΩ resistor (R1). Table P8.2 shows a list of laboratory 
measurements of v2 for various applied voltage levels of v1 at room tempera-
ture (300 K). An equation that describes the behavior of the diode is given in 
Equation P8.3.

 1. Use the technique described in Section 8.3 to find the best-fit values 
for IS and vT.

v1

+

−
D1

R1

v2

+

−

FIGURE P8.2
Diode-resistor circuit for laboratory measurement of diode I-v curve.

TABLE P8.1

Experimental H versus Q Data

Q H Q H

(m3/h) (m) (m3/h) (m)

3.3 43.3 61.6 40.8
6.9 43.4 68.5 39.6

13.7 43.6 75.3 38.7
20.5 43.6 82.2 37.2
27.4 43.3 89 36.3
34.2 43.0 95.8 34.4
41.1 42.7 102.7 32.6
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





exp  (P8.3)

 Plot both the lab data and your fitted curve on the same axes.

 NOT E :  The diode current, iD = 
v v

R
1 2

1

−
.

 2. v kT qT =  is known as the thermal voltage (where k is the Boltzmann 
constant and q is the unit electric charge). For your best-fit value for 
vT, what is the corresponding temperature value T (in Kelvin)? Take 
k = 1.38e–23, q = 1.6e–19.

TABLE P8.2

Laboratory Measurements of 
Resistor-Diode Circuit

v1 (volts) v2 (volts)

0.333 0.317
0.393 0.356
0.819 0.464
1.067 0.487
1.289 0.501
1.656 0.518
1.808 0.522
2.442 0.541
3.949 0.566
4.971 0.579
6.005 0.588
6.933 0.595
7.934 0.602
9.014 0.607

10.040 0.613
11.009 0.619
15.045 0.634
19.865 0.647
24.64 0.657
29.79 0.666
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9
Numerical Integration

9.1 Introduction

In this chapter, we cover Simpson’s rule for approximating the value of defi-
nite integrals as well as MATLAB®’s integral function. Understanding the 
concept in Simpson’s rule will help you implement MATLAB’s integral 
function for evaluating definite integrals. A discussion of MATLAB’s 
integral2 function is also included. Finally, examples demonstrating the 
usage of these three methods are given.

9.2 Numerical Integration and Simpson’s Rule

We can evaluate a definite integral of a single variable using Simpson’s rule. 
In applying Simpson’s rule for evaluating f x dx

A

B ( )∫  , the first thing one does is sub-
dividing the x domain into N intervals, where N is an even number, giving 
x x x xN N1 2 1, ,..., , + . We then determine the functional values at the xn positions 
giving f f f fN N1 2 1, ,....... , + . We then connect three points on the curve f x( ) with 
second-degree polynomials (parabolas) and sum the areas under the parabo-
las to obtain the approximate area under the curve (see Figures 9.1 and 9.2). 
For a complete derivation see Article 6.3 in Reference 1. The final formula for 
the integral by Simpson’s rule is 

 I f x dx
x

f f f f f f f
x

x

N N

N

= = + + + + + + +[ ]
+

∫ +( )

1

1

3
4 2 4 2 41 2 3 4 5 1

∆
  (9.1)



188 MATLAB® Essentials

Example 9.1

Solve by Simpson’s rule: 

 I x x x dx= + − +∫ ( . . . )3 2

0

10

3 2 3 4 20 2  (9.2)

% Example_9_1.m
% This program calculates an integral given in Equation 9.2 by
% Simpson's Rule.
% The integrand is: x^3+3.2*x^2-3.4*x+20.2
% The limits of integration are from 0-10.
clear; clc;
A=0; B=10;
N=100; dx=(B-A)/N;
% Compute values of x and f at each point:
% An arithmetic expression involving vector x produces a vector f.
% Need to use element by element multiplication.
x = A:dx:B;

x1 xN + 1xi + 1xi − 1 xi

f1
fN + 1

fi + 1
fi − 1 fi

x

. . . . . .

. . .

. . .. . .

. . .

A2 strips

f (x)

ΔxΔx

FIGURE 9.1
Area under two adjacent strips.

f2f1
f3

x2x1 x3

A2A1 A3

An/2

xn + 1

fn + 1

fn − 1
fn

f

x

FIGURE 9.2
Summing all two-strip areas in Simpson’s rule.
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f = x.^3+3.2*x.^2-3.4*x+20.2;
% Use two separate loops to sum up the even and odd terms
% of Simpson's Rule. Also, exclude endpoints in the loop, that is
% f(1) and f(N+1).
sum_even=0.0;
for i=2:2:N
    sum_even=sum_even+f(i);
end
sum_odd=0.0;
for i=3:2:N-1
    sum_odd=sum_odd+f(i);
end
% Calculate integral as per Equation 9.2.
I = dx/3 * (f(1) + 4*sum_even + 2*sum_odd + f(N+1));
% Display results
fprintf('Integrand: x^3+3.2*x^2-3.4*x+20.2 \n');
fprintf('Integration limits: %.1f to %.1f \n',A,B);
fprintf('Simpson rule solution, I = %9.4f \n',I);
% Compare with analytic solution.
% Analytic solution:
I2 = 0.25*10^4+3.2/3*10^3-3.4/2*10^2+20.2*10;
fprintf('Analytic solution, I2 = %9.4f \n',I2);
-----------------------------------------------------------------------------

Program Results:
Integrand: x^3+3.2*x^2-3.4*x+20.2
Integration limits: 0.0 to 10.0
Simpson rule solution, I = 3598.6667
Analytical solution, I2 = 3598.6667
>>
-------------------------------------------------------------------------------

We see that solving the integral of Example 6.1 by Simpson’s rule gives the 
same answer as the analytical method up to four decimal places.

Exercises

E9.1. Evaluate the following definite integrals by Simpson’s rule:

 1. I
dx

e ex x=
+ −∫ 5 23 3

0

3

 2. I
x dx

x
=

−
−
∫ sin

sin
/

/

1 4 2
2

2

π

π

 3. I x x dx= −∫(sinh cos )
0

π
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9.3 Improper Integrals

An integral is improper if the integrand approaches infinity at some point 
within the limits of integration, including the end points. In many cases, the 
integration will still result in a finite solution. An example of an improper 
integral follows: 

 I
x

x
dx=

+∫ log( )1

0

1

 (9.3)

The above integral is improper since both the numerator and denominator 
are zero at the lower limit (x = 0). The exact value of I can be obtained by resi-
due theory in complex variables and in this case the integral, I, evaluates to 
( / ) .π2 12 0 822467= . MATLAB’s integral function, which is discussed next, 
is able to evaluate some improper integrals, but may give you a warning that 
the answer may be inaccurate.

9.4 MATLAB’s integral Function

The MATLAB function for evaluating integrals is the function integral. It 
is a replacement for MALAB’s quad function. A description of the function 
can be obtained by typing help integral in the Command Window. The 
syntax for MATLAB’s integral function is

Q = integral(FUN,A,B)

where FUN is a function handle for the self-written function that describes 
the integrand. A and B are the limits of integration and Q is the integral 
result. The integral function approximates the integral using global adap-
tive quadrature and default error tolerances. Although the integral func-
tion can treat integrand variables that are complex, we are only interested for 
cases where the integrand involves only scalar value functions. The function 
will accept limits of integration A or B as inf or –inf. The function Y=FUN(X) 
should accept a vector argument X and return a vector result Y. The inte-
grand is evaluated at each element of X. The function FUN can be either as a 
separate .m file or as an anonymous function. You may use the latter method 
if the integrand can be expressed in a single line.

The integral function is also able to evaluate certain improper integrals. 
It does this by selecting limits of integration that are very close to the singular 
points, but not on them, thus, removing the singularity.
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Example 9.2

We will now repeat Example 9.1, but this time we will use MATLAB’s integral 
function to do the integration. The integral I in Example 9.1 is 

 I x x x dx= + − +∫ ( . . . )3 2

0

10

3 2 3 4 20 2  

The program follows:

% Example_9_2.m
% This program evaluates the integral of the function 'f1'
% between A and B by MATLAB's integral function. Since the function 'f1'
% is just a single line, we can use the anonymous form of the function.
clear; clc;
f1=@(x) (x.^3+3.2*x.^2-3.4*x+20.2);
A=0.0; B=10.0;
I = integral(f1,A,B);
% Note f1 is not enclosed by single quotation marks.
fprintf('Integration of f1 over [%.0f,%.0f] ',A,B);
fprintf('by MATLAB''s integral function:\n');
fprintf('f1 = x^3+3.2*x^2-3.4*x+20.2 \n');
fprintf('integral = %10.4f \n',I);
--------------------------------------------------------------------------

Program Results:
Integration of f1 over [0,10] by MATLAB's integral function:
f1 = x^3+3.2*x^2-3.4*x+20.2
integral = 3598.6667
>>
--------------------------------------------------------------------------

We see that the results are the same as those obtained in Example 9.1.

Example 9.3

 EVALUATE: I2  = 
t

t t
dt3

0

1

1+ +∫
% Example_9_3.m
% This program evaluates the integral of Example 9.3 by MATLAB's
% integral function. A separate .m file describes the integrand
% to be integrated.
% The integrand is t/(t^3+t+1.0)
clear; clc;
A=0.0; B=1.0;
I2 = integral(@f2_func,A,B);
fprintf('Integration of integrand over [%.0f,%.0f] ',A,B);
fprintf('by MATLAB''s integral function:\n');
fprintf('Integrand = t/(t^3+t+1) \n');
fprintf('integral=%f \n',I2);
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-------------------------------------------------------------------------
% This function works with Example_9_3.m
function f=f2_func(t)
f = t./(t.^3+t+1.0);
-------------------------------------------------------------------------

Program Results:
Integration of integrand over [0,1] by MATLAB’s integral function:
Integrand = t/(t^3+t+1)
integral=0.260069
>>
--------------------------------------------------------------------------

Let us evaluate the improper integral described by Equation 9.3 by 
MATLAB’s integral function with limits from 0 to 1. Recall that the func-
tion log( )/1+ x x is undefined at x = 0.

Again, we will use an anonymous function to describe the integrand.

Example 9.4

% Example_9_4.m
% This program evaluates the improper integral log(1+x)/x with
% limits from 0 to 1 using MATLAB's integral function.
clear; clc;
I3=@(x) log(1+x)./x;
A=0; B=1;
fprintf('This program uses MATLAB's integral function to \n');
fprintf('evaluate the improper integral of log(1+x)/x \n');
fprintf('from %2.0f to %2.0f. \n',A,B);
I = integral(I3,A,B);
fprintf('I = %10.6f \n',I);
--------------------------------------------------------------------------------

Program Results:
This program uses MATLAB's integral function to evaluate
the improper integral of log(1+x)/x from 0 to 1.
I = 0.822467
>>
------------------------------------------------------------------------------------

We see that the answer by MATLAB’s integral function is the same as 
shown in Section 9.3.
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Exercises

E9.2. Use MATLAB’s integral function to evaluate the following integrals. 
Note that integral exercises 4, 5, and 6 are improper integrals.

 1. I
dx

e ex x=
+ −∫ 5 23 3

0

3

 2. I
x dx

x
=

−
−
∫ sin

sin
/

/

1 4 2
2

2

π

π

 3. I x x dx= −∫(sinh cos )
0

π

 4. I
e dx

x

x

=
−∫ 3

1 2
0

1

 5. I
x dx

x
=

+
−∫ log( )

( )
1
1

0

1

 6. I
x dx

x
=

+
−∫ log( )

( )
1

1 2

0

1

REVIEW 9.1

 1. What is the formula for evaluating the integral, I f x dxA
B= ∫ ( )  by 

the Simpson’s rule?
 2. What is the name of MATLAB’s function for integrating a 

 single variable function?
 3. In MATLAB’s function for integrating a single variable function 

how does one define the function to be integrated?
 4. If the integrand contains nonlinear terms, how must they be 

treated?
 5. Will MATLAB’s integral function treat improper integrals?
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9.5 MATLAB’s integral2 Function

The MATLAB’s function for numerically evaluating a double integral is 
integral2. This function replaces MATLAB’s dblquad function. A descrip-
tion of the function follows:

Q = integral2(FUN, XMIN, XMAX, YMIN, YMAX)

where Q is the result of the double integration, FUN(X,Y) is a function handle 
for the two-dimensional self-written integrand function. The  limits of inte-
gration are XMIN, XMAX, YMIN(X), YMAX(X), where XMIN <= X <= XMAX 
and YMIN(X) <= Y <= YMAX(X). YMIN and YMAX may be either a scalar value 
or a function handle.

The self-written function FUN(X,Y) should accept vectors X and Y and 
return a vector Z of values of the integrand. The X and Y input variables to 
function FUN comes from MATLAB’s integral2 function and the output 
vector Z from function FUN goes to MATLAB’s integral2 function. The 
output, Q, from the integral2 function goes to the program that calls the 
integral2 function.

Example 9.5

Calculate the volume of a hemisphere of radius, R, by MATLAB’s integral2 
function.

To find the volume, we define a differential volume element, dV, as follows:

dV R x y dxdy= − −2 2 2  (as shown in Figure 9.3) and double-integrate over the inter-
vals x R R= −[ , ] and y R x R x= − − −[ ( ), ( )]sqrt sqrt2 2 2 2 .

% Example_9_5.m
% This program calculates the volume of a hemisphere (with R=1)
% using MATLAB's integral2 function. The solution is compared with the
% known exact solution for the volume of a hemisphere.
clear; clc;
R = 1;
ymin=@(x) -sqrt(R^2-x.^2);
ymax=@(x) sqrt(R^2-x.^2);
funz=@(x,y) sqrt(R^2-x.^2-y.^2);
V = integral2(funz,-R,R,ymin,ymax);
V_exact = 2/3*pi*R^3;
% print results
fprintf('Volume V of a hemisphere of radius %.1f m \n',R);
fprintf('V by intgral2 = %.4f m^3\n',V);
fprintf('V exact = %.4f m^3\n',V_exact);
---------------------------------------------------------------------------
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Program Results
Volume V of a hemisphere of radius 1.0 m
V by intgral2 = 2.0944 m^3
V exact = 2.0944 m^3
>>
---------------------------------------------------------------------------

Example 9.6

The object shown in Figure 9.4 is enclosed by two curves, one of which is a straight 
line and the other is a parabola. The object thickness, ∆z , is 5 cm. Take the object mate-
rial to be steel with a mass density, ρ = 8000 kg/m3. The dimensions in the figure are 
also in cm.

 1. Use MATLAB’s integral2 function to estimate the mass of the object.

 NOT E:  m z dx dy
A

= ∫∫ρ∆

 Print out m, include units.
 2. Using 60 subdivisions on the x domain, determine ymin and ymax for the 

region, where ymin and ymax are the minimum and maximum y positions 
respectively in the region of interest. For every other x position, print out a 
table of x, ymin  , and ymax , include table headings and units.

x

y

z

R

Differential volume element
dV =   R2 − x2 − y2 dxdy

dx
dy

R2 − x2 − y2

FIGURE 9.3
Infinitesimal volume inside a hemisphere.
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% Example_9_6.m
% This example determines the mass of an object that is enclosed
% by 2 curves. The lower curve is a parabola, y=x^2, and the upper
% curve is a straight line,y=x+2
% x range is from -1 to 2.
% y range is from 0 to 4.
% m=dz*Integration of (rho dx dy) from ymin to ymax.
% The input variables to FUN of MATLAB's integral2 function is (x,y).
% Since the integrand is 1, we needed to express the integrand as x./x
clear; clc;
rho=8e-3;
fun_9_6= @(x,y) x./x;
ymin=@(x) x.^2;
ymax=@(x) x+2;
dz=5.0;
m=dz*rho*integral2(fun_9_6,-1,2,ymin,ymax);
fprintf('m = %8.4f (kg) \n',m)
fprintf('\n');
x=-1:3/60:2;
ymin=x.^2;
ymax=x+2;
fprintf(' j x(cm) ymin(cm) ymax(cm)  \n');
fprintf('-------------------------------------------\n');
for j=1:2:length(x)
    fprintf('%2i %8.2f %8.4f %8.4f \n',...
            j,x(j),ymin(j),ymax(j));
end

−1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

x

yc
1 

&
 yc

2
integration region

FIGURE 9.4
Object enclosed by two curves.
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plot(x,ymin,x,ymax), xlabel('x(cm)'),ylabel('ymin(cm)& ymax(cm)'),
grid, title('ymin & ymax vs. x');
------------------------------------------------------------------------

Program Results:
m = 0.1800 (kg)

 j x(cm) ymin(cm) ymax(cm)
-------------------------------------------
 1 -1.00 1.0000 1.0000
 3 -0.90 0.8100 1.1000
 5 -0.80 0.6400 1.2000
 7 -0.70 0.4900 1.3000
 9 -0.60 0.3600 1.4000
11 -0.50 0.2500 1.5000
13 -0.40 0.1600 1.6000
15 -0.30 0.0900 1.7000
17 -0.20 0.0400 1.8000
19 -0.10 0.0100 1.9000
21  0.00 0.0000 2.0000
 . . . .
 . . . .
51 1.50 2.2500 3.5000
53 1.60 2.5600 3.6000
55 1.70 2.8900 3.7000
57 1.80 3.2400 3.8000
59 1.90 3.6100 3.9000
61 2.00 4.0000 4.0000
>>
-----------------------------------------------------------------

Projects

P9.1. This exercise is from Thermodynamics. The entropy change of an ideal 
gas from state (T1  , p1) to state (T2  , p2) is given by

 s T p s T p c T
dT
T

R
p
p

p

T

T

( , ) ( , ) ( ) ln2 2 1 1
2

1
1

2

− = −∫  (P9.1)

where:
s is the entropy (kJ/kg-K)
cp is the specific heat at constant pressure (kJ/kg-K)

REVIEW 9.2

 1. What is the name of MATLAB’s function for integrating a two-
dimensional function?

 2. List the arguments that go into MATLAB’s function for inte-
grating a two-dimensional function.
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p is the pressure (kPa)
T is the absolute temperatue (K)
R is the gas constant (kJ/kg-K)

The specific heat, cp(T), can be approximated by a fourth-degree polynomial 
[2], that is,

 c T R a a T a T a T a Tp( ) ( )= + + + +1 2 3
2

4
3

5
4  (P9.2)

 R
R=
M

where:
R is the Universal gas constant kJ kmol-K= 8 314. ( / )
M is the Molal mass (kg/kmol)

For carbon dioxide [2],

 a a a a a1 2
3

3
6

4
9

52 401 8 735 10 6 607 10 2 002 10 0 0= = × = − × = × =− − −. , . , . , . , .

 M kg/kmol= 44 01.

Use MATLAB’s integral function to calculate the change in entropy, 
s T p s T p( , ) ( , )2 2 1 1−  for (T1  , p1) = (400 K, 1.0 atm), (T2  , p2) = (900 K, 10.0 atm). Print 
the results to the screen.

NOT E:  1 atm = 1.0132 ×105 2N m/

P9.2. An ice slab, initially at temperature, Ti = − °20 C is suddenly subjected to 
a change in air temperature, T∞ = °10 C. This results in a heat transfer, q, per 
unit surface area from the air to the ice slab. An approximate formula for 
q (J/m2) follows:

 q h T T
h t

k
i

h t

k= − × −


































∞













( ) e

2

2

1

α
α

erf 

∫

0

tf

dt (P9.3)

where:
k is the thermal conductivity of the slab material
h is the convective heat transfer coefficient
α is the thermal diffusivity of the slab material
T∞  is the air temperature
Ti is the initial slab temperature

NOT E 1 :  The error function, erf(x) is written in MATLAB as erf(x).

NOT E 2 :  If y = erf(x) and x is a vector, then y will also be a vector.

Assume: k = 2.2 W/m-C, α = 12.6 × 10−7 m2/s, h = 100 W/m2-C, and tf = 792 s.
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Develop a MATLAB program using MATLAB’s integral function to evalu-
ate q. Use a separate .m file to describe the integrand. Print the constants, k, h, 
α, T Ti , ∞  and the result, q to the screen. Use e format for q. Include dimensions.

P9.3. We wish to determine the x-component of the Electric field at posi-
tion ( , , )x y zo o o  due to a line of point charges extending along the z-axis from 
z = −0 01. m to z = +0 01. m (see Figure P9.1). For the derivation of the governing 
equations for the electric field see Project P6.3 in [1]. Assume that dQ dzp= λ  
with λ = × −2 10 9 C/m. Here dQ is the strength of the point charge distribu-
tion. The x-component of the electric field at position ( , , )x y zo o o  is given by

 E x y z
dz x x

x x y y z z
x o o o

p

o

o p

o p o p o p

( , , )
( ) ( ) ( )

=
−

− + − + −( )−

λ
πε4 2 2 2

3
2

0..

.

01

0 01

∫  (P9.4)
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locationLine charge of density

λ coul/m along ±z axis

Differential line
charge element λdz
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 +

 +
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 +

 +
 +

 +
 +

 +
 +

 …

r

dEro

rp

y

x

z

+
r

Point charge Q
located at rp
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location ro

E
ro

rp

(a)

(b)

FIGURE P9.1
(a) Electric field at (xo  , yo  , zo) due to point charge at (xp  , yp  , zp). (b) Electric field at (xo  , yo  , zo) due 
to line charge element λdz located along the z-axis.
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where ( , , )x y zp p p  is the coordinates of the point charge. Use MATLAB’s 
integral function to determine Ex( . , , ).0 005 0 0  The units of Ex is V/m. Take 
εo = 8 85 10 12. × −  farad/m.

P9.4. The solution for the displacement, Y x t( , ), from the horizontal of a 
vibrating string (see Figure P9.2) is given by

 Y x t a
n x

L
n ct

L
n

n

( , ) sin cos=
=

∞

∑
1

π π
 (P9.5)

where

 a
L

f x
n x

L
dxn

L

= ∫2
0

( )sin
π

 (P9.6)

and

 f x Y x( ) ( , )= 0  (P9.7)

For a compete derivation of the governing equation see Section 13.2 in 
Reference 1.

Use MATLAB’s integral function to determine an  , for n = 1, 2, …, 10. 
Create a table and a plot of an versus n. Take L = 1.0 m and

 f x
x x L

x L x L
( )

. , .

. . , .
=

≤ ≤

− ≤ ≤







0 4 0 0 75

1 2 1 2 0 75
 (P9.8)

P9.5. The components of the electric field E E Ex y z, , and  resulting from a line 
of point charges with a linear charge density, λ, with units Coulomb/meter, 
which is evenly distributed along the z-axis from z = −0.01 m to z = +0.01 m 
(see Figure P9.1) is given by

 E x y z
dz x x

x x y y z z
x o o o

p

o

o p

o p o p o p

( , , )
( ) ( ) ( )

=
−

− + − + −( )−
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3
2

0..

.
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0 01

∫  (P9.9)

 E x y z
dz y y

x x y y z z
y o o o
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o

o p

o p o p o p

( , , )
( ) ( ) ( )

=
−

− + − + −( )−

λ
πε4 2 2 2

3
2

0..

.
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0 01

∫  (P9.10)
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FIGURE P9.2
Vibrating string.
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 E x y z
dz z z

x x y y z z
z o o o

p

o

o p

o p o p o p

( , , )
( ) ( ) ( )

=
−

− + − + −( )−
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πε4 2 2 2

3
2
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.

01

0 01

∫  (P9.11)

where:
( , , )x y zp p p  represents the position of the point charges
( , , )x y zo o o  represents a point of interest in the vicinity of the point charges

The units of E E Ex y z, , and  are Newton/Coulomb (N/C) or Volt/m (V/m).
Take εo = 8 85 10 12. × −  farad/m.
Create a MATLAB program that will determine the electric field com-

ponent, Ex and Ey  in the (x, y) plane for the interval − ≤ ≤50 50x  mm and 
− ≤ ≤50 50y  mm with a step size of 10 mm. Omit the point (x, y) = (0,0). Due to 
symmetry, assume that Ez = 0. Print Ex and Ey in separate tables using a table 
format as shown in Table P9.1. Print Ex and Ey to one decimal place.

P9.6. This project involves determining the surface area of a hemisphere of 
radius one meter.

A differential surface area on the hemisphere is dA R d Rd=( sin )φ θ φ 
as shown in Figure P9.3. Create a MATLAB program using MATLAB’s 
integral2 function to find the surface area. Take φ π θ π= =[ , / ] [ , ]0 2 0 2and . 
Compare your answer with the known exact expression for the surface area 
of a hemisphere, which is 2 2πR  .

P9.7. An object is enclosed by two curves, one of which is a straight line 
and the other is a parabola. The x range of the object is from –2 cm to +4 cm. 
The equation of the parabola is

 y x= −6 1 5 2.

TABLE P9.1

Table Format for Presenting Ex Values

Ex Values

x y

−0.05 −0.03 −0.01 0.01 0.03 0.05

−0.05 — — — — — —
−0.04 — — — — — —
−0.03 — — — — — —

.

.
0.03 — — — — — —
0.04 — — — — — —
0.05 — — — — — —
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The equation of the straight line is

 y x= − −3 6

The object thickness, ∆z , is 5 cm. Take the object material to be steel with a 
mass density, ρ = 8000 kg/m3.

 a. Using 60 subdivisions on the x domain, determine ymin and ymax for 
the region, where ymin and ymax are the minimum and maximum 
y positions respectively in the region of interest. For every other x 
position, print out a table of x, ymin and ymax  , include table headings 
and units.

 b. Create a two dimensional plot of the object.
 c. Use MATLAB’s integral2 function to estimate the mass of the object.

Print out to the Command Window the mass, m, include units.

NOT E:  m z dxdy
A

= ∫∫∆ ρ .

θ

R

R sinϕ

x

y

z

R

dA = (R sinϕ dθ)(Rdϕ)

dθ

dϕ

ϕ

FIGURE P9.3
A differential surface area on the hemisphere.
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P9.8. The (xc , yc) position of the center of mass of the object described in 
Project P9.7 is given by

 mx z x dxdy my z y dxdyc

A

c

A

= =∫∫ ∫∫∆ ∆ρ ρ  (P9.12)

where:
ρ is the mass density of the material
m is the mass of the object
∆z is the thickness of the object

Create a MATLAB program that will evaluate (xc  , yc) using MATLAB’s 
integral2 function. Print the results to the screen to four decimal places.

P9.9. Using the infinitesimal volume shown in Figure 9.3 and MATLAB’s 
integral2 function, determine the centroid position, zc  , of the hemisphere 
described in Example 9.5. By symmetry, we can assume that xc = 0 and yc = 0. 
Noting that zc for the infinitesimal volume is at the center position, that is,

 z dV R x y R x y dxdyc = − − × − −1
2

2 2 2 2 2 2

 z V R x y dxdyc

A

= − −( )∫∫ 1
2

2 2 2  (P9.13)

where:
x R R= −[ , ] and y R x R x= − − −[ ( ), ( )]sqrt sqrt2 2 2 2

V is the volume of the hemisphere = 2 3 3/ πR  

We can also determine the centroid position analytically by taking an infini-
tesimal volume shown in Figure P9.4, then

 dV r dz= π 2  (P9.14)

where:

 r R z= −( )2 2  (P9.15)

Thus,

 z
V

R z z dz
R

R
z z

Rc

R R

= − = × −








 =∫π π

π
( )2

0

3

3

2
2 4

0
2
3

2 4
3
8

 (P9.16)
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Compare zc obtained by the use of MATLAB’s integral2 function with the 
exact solution. Take R = 1.

Reference

 1. Bober, W., Introduction to Numerical and Analytical Methods with MATLAB for 
Engineers and Scientists, CRC Press, Boca Raton, FL, 2014.

z

rdz

R
z

FIGURE P9.4
Infinitesimal region used to determine the centroid position zc analytically.
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10
Numerical Integration of Ordinary 
Differential Equations

10.1 Introduction

Many ordinary differential equations (ODE) result from a particular physi-
cal law. The physical law is a mathematical model of some particular physi-
cal phenomenon. Many of the equations that have been used in this book 
are based on Newton’s second law of motion. For example, the equations 
used to describe the motion of a free falling ball in a gravitational field 
(Example 2.7) or the motion of the mass in a mass-spring-dashpot system 
(Exercise E2.3-for a complete derivation of the governing equations, see 
Project P2.5 in Reference 1), or the velocity and position of the basketball 
(Exercise E2.4) are differential equations based on Newton’s second law. 
The voltage in a parallel RLC circuit (Exercise E2.6) resulted from several 
electrical laws, including Kirchhoff’s current law, which resulted in an ordi-
nary differential equation whose solution is given in Equation 2.13 (for a 
complete derivation of the governing equations, see P2.7 in Reference 1). 
Ordinary differential equations can be broken up into two categories: 

 1. Initial value problems are those in which the initial conditions of the 
variables are known. All of the examples and exercises mentioned 
above fall into this category. Additional examples include launch-
ing a rocket with a known initial position and velocity or the value 
of a circuit node voltage (or its slope) at t = 0. In this chapter, we 
only cover the initial value problem along with MATLAB®’s built-in 
ode45 function to solve these types of problems.

 2. Boundary value problems in which we know variable conditions at 
 specific coordinates in the problem geometry. For example, deter-
mining the temperature at various positions along a bar when the 
end temperatures at the bar ends are known. Other examples include 
determining the deflection of a beam along its length when the deflec-
tion at its ends is known, or determining the electric potential along 
the length of a conductor when the  electric potential at both ends of a 
conductor are known. This topic is covered in Chapter 11.



206 MATLAB® Essentials

10.2  Initial Value Problem and MATLAB’s Ordinary 
Differential Equations Function

MATLAB has several built-in ODE functions that solve a system of first-
order ordinary differential equations, including ode23 and ode45. In this 
chapter, we will demonstrate MATLAB’s ode45 function, which is based on 
fourth- and fifth-order Runge–Kutta methods. A description of the ode45 
function follows (MATLAB’s description of ode45 can be obtained by typing 
help ode45 in the Command Window):

The ode45 function solves a system of first-order ordinary differential 
equations of the form ′ =y f t y y yn n( , , ,..., )1 2  from time T0 to TFINAL with 
initial conditions Y0. Here we have assumed that the independent variable is 
time, t, and the dependent variables are y y yn1 2 ...  .

The syntax for MATLAB’s ode45 function is

[TOUT, YOUT] = ODE45(ODEFUN, TSPAN, Y0)

The ODEFUN argument is a function handle to the function describing 
the system of differential equations. TSPAN = [T0 Tfinal] is vector 
describing a time interval covered by the system of differential equations. 
Y0 is a vector describing the initial conditions. The function ODEFUN must 
take two input arguments: a scalar for the independent variable, t, and a 
vector for the dependent variables, Y = [y y yn1 2 ... ]. The output of function 
ODEFUN must be the system of differential equations as a column vector 
of the form

 y f y y y n′( ) ( ( ), ( ),..., ( )),1 1 21=

 y f y y y n′( ) ( ( ), ( ), .... ( )),2 1 22=

 

.

.

( ) ( ( ), ( ), .... ( ))y n f y y y n′ = 2 1 2  

The time interval TSPAN is typically a two-element vector containing a 
start and end time; ode45 will automatically choose an appropriate time 
step (and might even vary the time step within the interval). ode45 will 
return two vectors: a list of time points TOUT and the solution YOUT at each 
time point. If you want to force ode45 to solve the system at specific time 
points, then you can explicitly specify the time points in TSPAN = [T0 T1.. 
TFINAL]. The output variable TOUT is a column vector equal in size to 
tspan and YOUT are column vectors of y(1), y(2),….y(n).
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Example 10.1

Let us consider the ball-bearing problem of Example E2.5. Applying Newton’s 
 second law to the ball bearing gives the following first-order differential equation: 

 
W

g

d

dt
R T

V
V V= −6π µ( )  (10.1)

where:
V is the ball-bearing velocity
VT terminal velocity of the ball bearing = ( )W B R− 6π µ
W is the weight of the ball bearing = ρ υsteel g
B is the buoyancy acting on the ball bearing = ρ υfluid g
R is the radius of the ball bearing
υ is the volume of the sphere = ( )4 3 3πR  
ρ is the mass density
µ  is the viscosity of the fluid
g is the gravitational constant = 9.81 m/s2

To see the full derivation of Equation 10.1 see Exercise E2.5 in Reference 1.
In the notation of ode45, ( / )d dtV V= ′
Take µ  = 3.85 (N-s)/m2, R = 0.01 m, ρsteel = 7910 kg/m3, ρoil = 899 kg/m3.
We will take V(0) = 0.

The program follows.

% Example_10_1.m
% This program determines the velocity of a ball bearing
% dropped in a vat of fluid. The ball bearing reaches a
% terminal velocity when the unbalanced force acting
% on the object is zero.
% The program compares the velocity determined by the
% by both an analytical solution and MATLAB's ode45 function.
clear; clc;
global R mu g VT W VT 
R=0.01; rho_steel=7910; rho_fluid=899; mu=3.85; g=9.81;
vol=4/3*R^3;
W=rho_steel*g*vol;
B=rho_fluid*g*vol;
VT=(W-B)/(6*pi*R*mu);
Vo=0;
tspan=0:0.01:0.2;
[t,V]=ode45('dVdt',tspan,Vo);
% Closed form solution is V2
arg=6*pi*R*mu*g/W;
V2=VT*(1-exp(-arg*t));
fprintf('t(s) V(m/s) V2(m/s)  \n');
fprintf('---------------------------------\n');
for i=1:length(t)
 fprintf('%4.2f %6.4f %6.4f \n',t(i),V(i),V2(i));
end
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fprintf('Terminal Velocity, VT= %6.4f(m/s) \n', VT);
plot(t,V,t,V2,'x'), xlabel('t(s)'), ylabel('V(m/s)'), grid,
title('V vs. t');
----------------------------------------------------------------------
% dVdt.m
% This function works with Example_10_1.m
function Vprime=dVdt(t,V)
global R mu g VT W VT 
Vprime= 6*pi*R*mu*g/W*(VT-V);
----------------------------------------------------------------------

Program Results:

See Figure 10.1.

t(s) V(m/s) V2(m/s)
---------------------------------
0.00 0.0000 0.0000
0.01 0.0629 0.0629
0.02 0.0945 0.0945
0.03 0.1103 0.1103
0.04 0.1183 0.1183
0.05 0.1223 0.1223
0.06 0.1243 0.1243
0.07 0.1253 0.1253
0.08 0.1259 0.1259
0.09 0.1261 0.1261
0.10 0.1262 0.1262
 . . .
 . . .

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
t(s)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

V(
m

/s
)

V vs. t

FIGURE 10.1
Velocity of ball bearing versus time.
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0.15 0.1264 0.1264
0.16 0.1264 0.1264
0.17 0.1264 0.1264
0.18 0.1264 0.1264
0.19 0.1264 0.1264
0.20 0.1264 0.1264
Terminal Velocity, VT= 0.1264(m/s)
>>
-----------------------------------------------------------------------

Example 10.2

Whenever we deal with a second-order differential equation, we need to reduce the 
second-order differential equation to two first-order  differential equations. Suppose 
we consider the mass motion in a mass-spring-dashpot system of Exercise E2.2. The gov-
erning differential equation is 

 y
c

m
y

k

m
y′′ ′+ + = 0 (10.2)

To see the full derivation of Equation 10.2 see Project P2.5 in Reference 1.
To reduce Equation 10.2 to two first-order differential equations, let y′= V , then 

 
V V

V

′

′

= − −

=

c

m

k

m
y

y

 (10.3)

We will take y(0) = 0.5 and y’(0) = 0.
We can now use MATLAB’s ode45 to solve the system.
The program follows:

% Example_10_2.m
% This program determines the position and velocity
% of a mass in a mass-spring-dashpot system using
% MATLAB's ode45 function.
% m=25 kg; c=5 N-s/m; k=100 N/m;
% Y(1)=y
% Y(2)=V
% Y(1)_prime=Y(2)
% Y(2)_prime= -c/m*Y(2)-k/m*Y(1)
clear; clc;
initial=[0.5 0.0];
tspan=0.0:0.1:10.0;
[t,Y]=ode45(@dYdt,tspan,initial);
y=Y(:,1);
V=Y(:,2);
fprintf(' t(s) y(s) V(m/s)  \n');
fprintf('----------------------------------\n');
for i=1:2:101
 fprintf('%5.2f %10.4f %10.4f \n',t(i),y(i),V(i))
end 
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plot(t,y), xlabel('t(s)'), ylabel('y(m)'), grid,
title('y vs. t');
figure;
plot(t,V), xlabel('t(s)'), ylabel('V(m/s)'), grid,
title('V vs. t');
----------------------------------------------------------------------
% dYdt.m
% This function works with Example_10_2.m
function Yprime=dYdt(t,Y)
m=25; c=5; k=100;
% Y(1)= y; Y(2)=V
Yprime=zeros(2,1);
Yprime(1)=Y(2);
Yprime(2)=-c/m*Y(2)-k/m*Y(1);
----------------------------------------------------------------------

Program Results:

See Figure 10.2a and b.

 t(s) y(m) V(m/s) 
----------------------------------
 0.00 0.5000 0.0000
 0.20 0.4611 -0.3818
 0.40 0.3523 -0.6894
 0.60 0.1932 -0.8785
 0.80 0.0105 -0.9239
 1.00 -0.1668 -0.8248
 1.20 -0.3111 -0.6016
 1.40 -0.4017 -0.2942
 1.60 -0.4265 0.0466
 1.80 -0.3845 0.3670
 2.00 -0.2844 0.6178
 . . .
 . . .
 9.00 0.1231 0.3109
 9.20 0.1729 0.1808
 9.40 0.1939 0.0278
 9.60 0.1841 -0.1235
 9.80 0.1462 -0.2497
10.00 0.0871 -0.3323
>>
----------------------------------------------------------------------
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FIGURE 10.2
(a) Plot of mass displacement versus time and (b) plot of mass velocity versus time.
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Example 10.3

In this example, we consider the voltage in a parallel RLC circuit described in Project 
P2.10 (see Figure 2.22). For a complete derivation of the governing equation, see 
Project 2.7 in Reference 1. The governing differential equation for the circuit voltage is 

 
d v

dt RC

dv

dt LC
v

2

2

1 1
0+ + =  (10.4)

To reduce Equation 10.4 to two first-order differential equations, let v u′= , then 

 
u

RC
u

LC
v

v u

′

′

= − −

=

1 1

 (10.5)

We will take v(0) 6 and= =d
d RC
v
t

( )0 6

The program follows:

% Example_10_3.m
% This program determines the voltage in a parallel RLC circuit using
% MATLAB's ode45 function.
% R=100 ohm; L=1 mHc; C=1 microfarad;
% v(0)=6 volt; dvdt=v(0)/(R*C)
% Y(1)=v
% Y(2)=dv/dt=u
% Yprime(1)=Y(2)
% Yprime(2)= -1/(R*C)*Y(2)-1/(L*C)*Y(1)
clear; clc;
global R L C;
R=100; L=1e-3; C=1e-6;
initial=[6 6/(R*C)];
tspan=0:5e-6:5e-4;
[t,Y]=ode45(@dvoltdt,tspan,initial);
v=Y(:,1);
u=Y(:,2);
t2=t*1.0e+6;
fprintf(' t v dv/dt  \n');
fprintf('(micro-sec) (volt) (volt/sec)  \n');
fprintf('----------------------------------------\n');
for i=1:length(t2)
 fprintf(' %5.0f %10.2f %10.0f \n',t2(i),v(i),u(i))
end 
plot(t,v), xlabel('t(s)'), ylabel('v(volt)'), grid,
title('v vs. t');
figure;
plot(t,u), xlabel('t(s)'), ylabel('dv/dt(volt/s)'), grid,
title('dv/dt vs. t');
----------------------------------------------------------------------
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% This function works with Example_10_3.m
function Yprime=dvoltdt(t,Y)
global R L C;
% Y(1)=v
% Y(2)=dv/dt=u
Yprime=zeros(2,1);
Yprime(1)=Y(2);
Yprime(2)= -1/(R*C)*Y(2)-1/(L*C)*Y(1);
----------------------------------------------------------------------

Program Results:

See Figure 10.3a and b.

 t v dv/dt 
(micro-sec) (volt) (volt/sec)
----------------------------------------
 0  6.00    60000
 5   6.22    27209
 10   6.27    -4644
 15   6.17   -34837
 20   5.93   -62711
 25   5.55   -87688
 30   5.06  -109310
 35   4.46  -127231
 40   3.79  -141188
 45   3.06  -151018
 50   2.29  -156678
 .    .     .
 .    .     .
 450   0.36  -20617
 455   0.25  -21094
 460   0.15  -21033
 465   0.04  -20461
 470  -0.06  -19418
 475  -0.15   -17955
 480  -0.24   -16127
 485  -0.31   -13996
 490  -0.38   -11629
 495  -0.43    -9094
 500  -0.47    -6462
>>
----------------------------------------------------------------------
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FIGURE 10.3
(a) Plot of voltage versus time. (b) Plot of dv/dt versus time.
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Exercises

E10.1. The governing equation for the mass displacement in a mass-spring-
dashpot system subjected to an oscillatory driving force is

 y
c
m

y
k
m

y
F
m

to′′ ′+ + = sin ω  (10.6)

Create a MATLAB program, using MATLAB’s ode45 function to solve 
for y and ′y  as a function of time, t. The natural frequency of the system, 
ωn = k m/ . Let us consider two cases:

 1. ω ω= 1 5. n

 2. ω ω= n

Take m = 25 kg, c = 5 N-s/m; k = 100 N/m; Fo = 50 N, y(0) = 0.5 m, ′y (0) = 0.
Create a MATLAB program that uses MATLAB’s ode45 function to solve 

for y(t) for cases (1) and (2). Notice that when ω ω= 1.5 n the amplitude of 
the oscillation grows with time and is much larger than the amplitude for 
the case when ω ω= n. This is the effect of resonance.

E10.2. Solve the following system of three first-order differential equations 
using MATLAB’s ode45 function:

 

′ =

′ = −

′ = −

y y y t

y y y

y y y

1 2 3

2 1 3

3 1 20 51.

Initial conditions: y1 0 0( ) = , y2 0 1 0( ) .= , and y3 0 1 0( ) .= .

E10.3. Solve the parallel RLC circuit of Example 10.3 for voltage, v, and the 
inductor current, iL , by using MATLAB’s ode45 function. The governing 
equations are

 
dv
dt RC

v
C

iL= − −1 1

 
di
dt L

vL = 1

Assume R L C v iL= = = = =50 1 10 0 3 3 0 0Ω, ( ) . ( )µH,  nF,  V,  A.
Plot v on iL on two separate graphs. Take 0 4≤ ≤  t µsec in steps of 0.01e-6 sec.
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Projects

P10.1. This project involves determining the temperature of a small solid 
aluminum sphere dropped into a fluid contained in a vertical  circular  cylinder 
of radius R. The sphere radius is r and the fluid depth is L. Neglecting heat 
transfer to the container walls, the governing equations for this problem are

 mc
dT
dt

h A T T
al

s f al






 = −( ) (P10.1a)

 mc
dT
dt

h A T T
f

s al f






 = −( ) (P10.1b)

Use the following parameters for the problem:

 ρ ρal f al fc c= = = =2707 880 1880kg/m , kg/m 896 J/kg- C, J/kg- C,3 3 o o,

 T T r R L hal f( ) , ( ) , . , . . /0 80 0 20 0 2 0 3 0 5 2= = = = = =o o oC C m m, m, 890 W m - C

 0 300≤ ≤  t .s in steps of 0.5 s

Create a MATLAB program using MATLAB’s ode45 function to determine 
the temperatures of the aluminum sphere and the fluid. Plot Tal and Tf on the 
same graph.

P10.2. An airplane flying horizontally at 50 m/s and at an altitude of 300 m 
is to drop a food package weighing 2000 N to a group of people stranded 
in an inaccessible area resulting from an earthquake. A drag force, 



D, acts 
on the package in the direction of the free stream, 



V, as seen from the 
package (see Figure P10.1). We wish to determine the position of the pack-
age as a function of time and when the package hits the ground. Take

Ground

V

y

x

θ

Vairp

FIGURE P10.1
Path of a food package dropped from an airplane.
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( , )x y  to be the position of the package at time t as seen from the posi-
tion of the airplane at the time of release and

( )V ,Vx y  to be the horizontal and vertical components of the package 
velocity respectively.

Governing equations:

 
d
dt

C V A
M

x dV =−
ρ 2

2
cosϑ

 
(P10.2a)

 
d
dt

g
C V A

M
y dV

= −
ρ 2

2
sinϑ

 
(P10.2b)

 

d x
dt

x= V
 

(P10.2c)

 

d y
dt

y= V
 

(P10.2d)

 
cos , sinϑ ϑ= =V

and
Vx y

V V  
(P10.2e)

 V = +V Vx y
2 2

 (P10.2f)

where:
Cd is the drag coefficient
ρ is the air density
M is the mass of package
A is the frontal area of package

Initial conditions:

 x y x y( ) , ( ) , ( ) , ( ) .0 0 0 0 0 50 0 0= = = =V m/s V

Use the following parameters:

 C Ad = = =0 8 1 225 1 03 2. , . , .ρ kg/m m

Use MATLAB’s ode45 function to solve for ( , , , , )t x y x yV V  at intervals of 
0.10 seconds for 0 ≤ t ≤ 10.0 seconds.

 1. Create plots of x y tand versus  both on the same graph.
 2. Create plots of V and Vx y versus t both on the same graph.
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 3. Create a table containing ( , , , , )t x y x yV V  at intervals of 0.10 seconds. 
Stop printing table the first time y > 300m.

 4. Use MATLAB’s function interp1 to interpolate for the ( , , , )t x x yV V  
 values when the package hits the ground. Print out these values.

P10.3. Figure P10.2 shows a third-order RLCC circuit. In order to run a time-
domain transient analysis, we transform the circuit into three first-order 
 differential equations which are

 
dv
dt RC

v v Ri vC
C C L S

1

1
1 2

1= − + + +( ) (P10.3a)

 
dv
dt RC

v v vC
C C S

2

2
1 2

1= − −( ) (P10.3b)

 
di
dt L

v vL
C S= − +1

1( ) (P10.3c)

RL

iL iC2iC1

1

+

+ +

+

− −

−

C2C1

vS vL
−

+

−

vR

iR

2

vC1 vC2
1 2

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

vS(t)

5 V

t (μsec)

(b)

FIGURE P10.2
(a) A third-order RLCC circuit configuration and (b) pulse input.
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We have chosen the three voltages and currents with derivative terms 
(vC1, vC2 , and iL) as the state variables for this problem.

Construct a MATLAB program using MATLAB’s ode45 function to solve 
for the variables v v iC C L1 2, , and . Take C1 = 1 μF, C2 = 0.001 μF, R = 100 kΩ, 
L = 0.01 mH. Use a time interval of 0 5≤ ≤t µs and a step size of 0.01 μs. 
Assume v tS( ) is a 5V pulse starting at time t = 0 with rise time of 0.1 μs, an on 
time of 0.8 μs, and fall time of 0.1 μs (as shown in Figure P10.2). Initial condi-
tions: vC1 0 0( ) = , vC2 0 0( ) = , and iL( )0 0= .

Plot on separate graphs: v t v t i t v tC C L S1 2( ), ( ), ( ), ( )and  versus time.

P10.4. A small rocket with an initial mass of 350 kg, including a mass of 
100 kg of fuel, is fired from a rocket launcher (see Figure P10.3). The rocket 
leaves the launcher at velocity Vo and at an angle of θo with the horizontal. 
Neglect the fuel consumed inside the rocket launcher. The rocket burns fuel 
at the rate of 10 kg/s, and develops a thrust T = 6000 N. The thrust acts axi-
ally along the rocket and lasts for 10 s. Assume that the drag force also acts 
axially and is proportional to the square of the rocket velocity. The govern-
ing differential equations describing the position and velocity components 
of the rocket are as follows:

 
d
dt

T

m

K

m
x x

x y

x x yV V

V V

V V V
2 2

2 2

=
+

−
+

 (P10.4a)

 d
dt

T

m

K

m
gy y

x y

y x yV V

V V

V V V
2 2

2 2

=
+

−
+

−  (P10.4b)

 
dx
dt

x= V  (P10.4c)

Ground 

θo

θ (t)

Vo 

V
y

x

x

y
3,000 m

15 m

FIGURE P10.3
Rocket trajectory.
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dy
dt

y= V  (P10.4d)

 V2 2 2V V= +x y  (P10.4e)

where:
m is the mass of the rocket (varies with time)
Vx, Vy are the x and y components of the rocket’s velocity relative to the 

ground
K is the drag coefficient
g is the gravitational constant
(x, y) are the position of the rocket relative to the ground
t is the time of rocket flight

The target lies on ground, which has a slope of 5%. The ground elevation 
relative to the origin of the coordinate system of the rocket is given by

 y xg = + −15 0 05 3000. ( ) (P10.4f)

Using Equations P10.4a through P10.4d, write a computer program in 
MATLAB using the MATLAB’s ode45 function that solves for x, y, Vx, and 
Vy for 0 ≤ t ≤ 60 seconds in steps of 0.01 s. Use Equation P10.4f to solve for yg . 
Take x(0) = 0, y(0) = 0, Vx(0) = Vocos θo, Vy(0) = Vosin θo, Vo = 150 m/s, θo= 60°, 
K = 0.045 N–s2/m2, and g = 9.81 m/s2.

 1. Print out a table for x, y, yg , Vx , Vy every 1.0 second.
 2. Use MATLAB to plot x, y, and ygversus t on the same graph and Vx , 

Vy, versus t on the same graph.
 3. Assume a linear trajectory between the closest two data points where 

the rocket hits the ground. The intersection of the two straight lines 
gives the (x, y) position of where the rocket hits the ground.

P10.5. We wish to examine the time temperature variation of a fluid, Tf  , 
enclosed in a container with a heating element and a thermostat. The walls of 
the container are pure copper. The fluid is engine oil, which has a temperature 
Tf that varies with time. The thermostat is set to cut-off power from the heat-
ing element when the Tf reaches 65°C and to resume supplying power when 
Tf reaches 55°C. The outside room temperature, T∞  , remains constant at 15°  C.
Wall properties:

 k c= = =386 0 0 3831 8954. , . ,w/m-C kJ/kg-C kg/m3ρ

Engine oil properties:

 k c= = =0 137 2 219 840. . ,w/m-C, kJ/kg-C kg/m3ρ

The inside size of the container is (0.5 m × 0.5 m × 0.5 m)
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The wall thickness is 0.01 m. Thus, the 

Inside surface area, As,i = 1.5 m2

Outside surface area, As,o = 1.5606 m2

Engine oil volume, Voil = 0.125 m3

Wall volume, Vwall = 0.0153 m3

The power, Q, of the heating element = 
20000 55

0 65

W when C

when C

t

t

f

f

<

>







°

°

The inside convective heat transfer coefficient, hi = 560 W/m2-C
The outside convective heat transfer coefficient, ho = 110 W/m2-C

Using a lump parameter analysis (assuming that the engine oil is well mixed) 
in heat transfer, the governing equations describing the time temperature 
variation of both materials are as follows:

 
d
dt

a af
f w

θ
θ θ= − − +1 5( )  (P10.5a)

 
d
dt

a a a a aw
f w w f w

θ θ θ θ θ θ= − − = − +2 3 2 2 3( ) ( )  (P10.5b)

where:

 θ f fT T= − ∞ (P10.5c)

 θw wT T= − ∞ (P10.5d)

 a
h A
m c

a
h A
m c

a
h A
m c

a a a a
Q

m c
i s i

f f

i s i

w w

o s o

w w f
1 2 3 4 2 3 5= = = = + =, , ,, , , ,

ff
 (P10.5e)

Initial conditions:

 T Twf ( ) ( )0 0 15= = °C

 T∞ = °15 C

Using MATLAB’s ode45 function to construct a simulation of this system. 
Run the time for 3600 seconds. Print out values of Tf and Tw versus t at every 
100 seconds. Construct plots of Tf and Tw versus t. Use tspan = 0:1:3600.

P10.6. We wish to determine the altitude and velocity of a helium filled spher-
ically shaped balloon as it lifts off from its mooring. We will assume that 
atmospheric conditions can be described by the U.S. Standard Atmosphere. 
We will assume that there is no change in the balloon’s volume. For a com-
plete derivation of the equations given below, see Project P7.9 in Reference 1. 
The governing equations describing the motion of the balloon are
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dz
dt

= V (P10.6a)

 
d
dt M

B W D
V = − −1

( sgn* )  (P10.6b)

where:
z is the altitude of the centroid of the balloon
V is the vertical velocity of the balloon
t is the time
B is the buoyancy force acting on the balloon (varies with altitude)
M is the total mass of the balloon material, ballast, and the gas
W is the total weight of the balloon material, ballast, and the gas = Mg
D is the drag on the balloon
sgn = +1, if ( )dz dt ≥0 and sgn = −1, if ( )dz dt <0

The U.S. Standard atmosphere as applied to this balloon problem consists of 
the following governing equations:

 
dp
dt

p
RT

g= − V  (P10.6c)

 T T z= −i λ  (P10.6d)

 ρ=
p

RT
 (P10.6e)

where:
p is the outside air pressure at the centroid of the balloon
ρ is the outside air density at the centroid of the balloon
g is the gravitational constant that varies with altitude
R is the gas constant for air
T is the outside air temperature at the centroid of the balloon
Ti is the temperature at the earth’s surface = 288.15 (K).
λ is the lapse rate
The buoyancy force, B, is given by

 B g= ρ υ (P10.6f)

and

 g g
r

z r
e

e
=

+








0  (P10.6g)

where:
υ is the volume of the balloon = ( / )4 3 3rb

rb is the radius of the balloon
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re is the radius of the earth
g0 is the gravitational constant near the earth’s surface
g is the gravitational constant at an elevation of the centroid of the balloon

For low Reynolds Number, Re, less than 0.1, the drag force, D, is given by 
Stokes formula, which is

 D rb= 6πµV  (P10.6h)

For flow speeds with Re > 0.1, use

 
D C Ad= ρ

2
2V

 
(P10.6i)

where:
Cd is the drag coefficient
A is the frontal area of the balloon = πrb

2 

The drag coefficient, Cd, is given by

 Cd = +
+

+24 6
1 0

0 4
Re . Re

.  (P10.6j)

where

 Re =
V2ρ
µ

rb  (P10.6k)

and µ  is the fluid viscosity
The fluid viscosity, µ , can be determined by the Sutherland formula, 

which is

 µ µ= 









+
+









0

0

1 5
0T

T
T S
T S

.

 (P10.6l)

For air, S = 110.4 K, µ0  = 1.71e-5 N-s/m2, T0 = 273 K.
Write a computer program, using MATLAB’s ode45 function that will 

determine the balloon’s altitude as a function of time.

NOT E:  Equations P10.6a through P10.6c represent a system of three first-
order ordinary differential equations that can be solved by MATLAB’s 
ode45 function.

Create plots of z versus t, v versus T, and p versus t. Use the following values:

 

M R Tr rb b i= = = ==2200 7 816 287 288 154 3 3 3kg m, m J/(kg-K) K, . , , . ,/υ π

λ == = = +0 0065 9 81 6371 30. ( ), . ,K/m m/s and e m2g re
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Use a tspan = 0.0:0.1:1000 and the following initial conditions:

 z prb( ) , ( ) , ( ) .0 0 0 0 1 0132 5= = = + eV

P10.7. The Sallen–Key circuit (Figure P10.4) is commonly used to  implement 
second-order (or higher) filters. The following equations model the circuit 
using ordinary differential equations. It is assumed that the op amp is ideal 
resulting in v v2 = out and i5 0= . Applying Kirchhoff’s Current Law at the 
nodes labeled v1 and v2, and the constituent relations for resistors ( )v i RR R=  
and capacitors ( ( ))i C dv dtC C= , the following equations are obtained:

 
dv

dt R C
v

R C
vout

out= −







 + 









1 1

2 2 2 2
1 (P10.7a)

 
dv
dt R C R C

v
R C R C R C

v
R C

1

2 1 2 2 2 2 1 1 2 1
1

1

1 1 1 1 1 1= −







 + − −







 +out

11









vin (P10.7b)

 1. Solve for vout and v1 using MATLAB’s ode45 function. Assume that 
the input to the circuit vin  is a step voltage that changes from 0 V to 
1 V at time t = +0 . Assume the following values for the circuit ele-
ments: R1 5000= Ω, R2 5000= Ω, C1 2200= pF, C2 1100= pF. Use a 
time  interval of t = [ , ]0 100 µs  s and assume v vout( ) ( )0 0 01= = .

 2. Find the impulse response of the circuit by first creating a MATLAB 
function pulse(t) that returns the following values:

 pulse(t) = 
10 0 10
0

6 6for
otherwise

< <





−t
 

  Then, solve for vout and v1 using MATLAB’s ode45 function where 
vi = pulse(t). Use the same component values, time interval, and 
initial conditions as in part 1.

 3. Plot the step response (from part 1) and the impulse response 
(from part 2) on the same set of axes. What relationship can you see 
between the two?

+

−i4

i3

i2i1

C1

vin vouti5

v2

1v

C2

R1 R2

FIGURE P10.4
Sallen–key circuit.
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P10.8. Exercise E2.4 involved a basketball player shooting a basketball toward 
the hoop. The basketball was released 6 m from the center of the hoop with a 
velocity, Vo, and making an angle of 40° with the horizontal (see Figure 2.20). 
Equations describing the motion of the basketball based on Newton’s second 
law and neglecting drag were given. The solution obtained in Exercise E2.4 
was that if Vo = 8.7098 m/s the basketball would reach the center of the hoop 
in 0.8993 s. We now want to include drag in determining the motion of the 
basketball. We have assumed that the drag is in the opposite direction of the 
ball’s motion. The governing equations become

 d
dt

AC

m
x d x x yV V V V

= −
+ρ 2 2

2
 (P10.8a)

 d
dt

AC

m
gy d y x yV

sgn
V V V

= − ×
+

−
ρ 2 2

2
 (P10.8b)

 
dx
dt

x= V
 

(P10.8c)

 
dy
dt

y= V
 

(P10.8d)

 
V = +V Vx y

2 2

 
(P10.8e)

where:
ρ is the density of the air
A is the frontal area of the basketball
Cd is the drag coefficient
m is he mass of the basketball
g is the gravitational constant
(Vx  , Vy) are the x and y components of the velocity and (x, y) are the hori-

zontal and vertical positions of the basketball
sgn = −1.0 if Vy < 0 and sgn = 1.0 if Vy > 0

Using MATLAB’s ode45 function, determine the x-position of the basketball 
when it reaches the height of the hoop. Use the following parameters:

 

m A C gd= = = =0 623445 225 0 04476 0 25 9 812 2. , . , . , . , . ,kg kg/m m  m/s= 1 3ρ

00 1 0 01≤ ≤t s in steps of s, and the coordinates of the cente. rr of the hoop

  m m and( ) ( ) . ( ) ., ( , . ) ,x y y xh h = = =6 3 048 0 1 98 0 0

Hint: MATLAB’s ode45 function should give you x(i), y(i), Vx(i), Vy(i), for 
i = 1:length(t). Determine the first i value when y(i) < 3.048 and Vy(i) < 0. Use 
that value of i and the one before it to interpolate the x-position when y = 3.048. 
Would the basketball hit the rim of the hoop? The rim radius is 0.2286 m.
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11
Boundary Value Problems of 
Ordinary Differential Equations

11.1 Introduction

When an ordinary differential equation involves boundary conditions 
instead of initial conditions, then a numerical approach is most often used 
to solve the problem. In a boundary value problem, we essentially need to fit 
a solution into the known boundary conditions as opposed to simply inte-
grating from the initial conditions. An example of this type of problem is 
the temperature of a bar subjected to known different temperatures at the 
ends as it looses heat along the bar by natural convection. Another example 
would be the deflection of a beam due to an applied load along the beam 
and where the boundary conditions at both ends of the beam are specified. 
Another example of this type of problem is the determination of the electric 
field between the plates of a capacitor with a known charge density between 
the plates and a fixed voltage across the plates. In these three examples, a 
solution is found by numerically solving a second-order, nonhomogeneous 
ordinary differential equation using finite difference methods.

11.2 Difference Formulas

To numerically solve a boundary value problem involving an ordinary, lin-
ear, and differential equation, we will need the difference formulas obtained 
by Taylor series expansion using just a few terms. The finite difference 
method first involves subdividing the independent variable domain into N 
subdivisions. The finite difference formulas that will be used are tabulated 
in Table 11.1.

In the following table, yi is the value of y at position xi and ∆x x xi i= −+1 .
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Example 11.1

In this example we consider a bar having a circular cross section that is subjected to 
known temperatures at the two ends and which looses heat along the bar by natural 
convection to its surroundings (see Figure 11.1). The governing equations describing 
the temperature along the bar is given by the following formula: 

 
d T
dx

hP
Ak

T T
2

2 = − ∞( ) (11.1)

where:
T is the temperature of the bar at position x
h is the convective heat transfer coefficient
k is the thermal conductivity of the bar material
P is the bar perimeter
A is the bar cross-sectional area
T∞  is the temperature of the surrounding air

Applying the finite difference formulas to the problem gives the following set of 
equations: 

 T T T

x

hP

kA
T Ti i i

i
+ −

∞

+ −
= −1 1

2

2

∆
( ) (11.2)

TABLE 11.1

Summary of Finite Difference Formulas for Boundary Value Problems

′ =
−+y

y y

x
i

i i1

∆
First-order forward difference formula. Usually used for a y ’ boundary 
condition at the beginning of domain.

′ =
− −y

y y

x
i

i i 1

∆
First-order backward difference formula. Usually used for a y ’ boundary 
condition at end of the domain.

′′ =
+ −+ −y

y y y

x
i

i i i1 1

2

2

∆

Second-order central difference formula for the second derivative in the 
interior of the domain.

h,T∞

h,T∞

xT1 = 200°C Tn+1 = 20°C

FIGURE 11.1
Bar subjected to different end temperatures and losing heat to the surroundings.
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We will assume that the x domain is divided into N subdivisions and that T1 = 200°C 
and TN+1 = 20°C. Then the set of equations become 

 T1 200=  (1)

 T T T
hP x

kA
T

hP x

kA
T1 3 2

2

2

2

2+ − − = ∞
∆ ∆

 (2)

 T T T
hP x

kA
T

hP x

kA
T2 4 3

2

3

2

2+ − − = ∞
∆ ∆

 (3)

 T T T
hP x

kA
T

hP x

kA
T3 5 4

2

4

2

2+ − − = ∞
∆ ∆

 (4)

 .

 .

 T T T
hP x

kA
T

hP x

kA
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The above set of algebraic, linear equations can be solved by using MATLAB®’s inv 
function or MATLAB’s Gauss-Elimination function. In Example 7.3, we discussed 
a systematic method for solving this type of problem. The set of equations can be 
expressed as the matrix equation AT = C, where 
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In the above set of equations, the coefficient matrix A is made up of  elements ai j,  
where the first index is the equation number and the second index is the same as 
the index of the unknown temperature, Tj that the ai j,  element is associated with. For 
example, in Equation 2, 
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. 

In this expression, A is the cross-sectional area of the bar and not the coefficient 
matrix, A. From the pattern of the equation set, we can assign all the ai j,  terms 
within one for loop. This is done in the following program:
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We will use the following parameters: 

 k h L N D= = = = =386 60 0 5 50 0 2W/m- , W/m - m cmC C2 , . , , .  

The following program creates a table and plot of T versus x.

% Example_11_1.m
% This program determines the temperature in a bar having
% different end temperatures and subjected to convective
% heat transfer.
% Units for k are W/m-C, units for h are W/m^2-C
% units for T are C, units for L are m, units for D are cm.
clear; clc;
k=386; h=60; L=0.5; D=0.2e-2;
P=pi*D; A=pi/4*D^2; N=50; dx=L/N;
T(1)=200; T(N+1)=20; Tinf=20;
C1=h/k*P/A^dx^2;
a(1,1)=1; C(1)=200;
a(N+1,N+1)=1; C(N+1)=Tinf;
x=0:dx:L;
for i=2:N

a(i,i-1)=1; a(i,i+1)=1; a(i,i)=-(2+C1); C(i)=C1*Tinf;
end
T=inv(a)*C';
plot(x,T), xlabel('x(m)'), ylabel('T(C)'), grid, title('T vs. x');
fprintf('x(m) T(C)  \n')
fprintf('---------------------\n');
for i=1:2:N+1

fprintf('%4.2f %7.2f \n',x(i),T(i));
end
----------------------------------------------------------------------

Program Results:

 x(m) T(C)
---------------------
0.00 200.00
0.02 185.00
0.04 171.03
0.06 158.02
0.08 145.91
0.10 134.64
 . .
 . .
0.40 35.05
0.42 31.55
0.44 28.31
0.46 25.32
0.48 22.55
0.50 20.00
>>

See Figure 11.2.
----------------------------------------------------------------------
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Exercises

E11.1. Repeat Example 11.1, but this time replace the boundary condition at 
x = L, with
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E11.2. In this exercise, we consider the deflection of a beam subjected 
to a  uniform load, of weight, w/m (for more details on this subject, see 
Example 8.1 in Reference 1. Consider the beam shown in Figure 11.3. The 
governing equation for the deflection of a beam is

 
d y
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M x
EI x

2

2 = ( )
( )

 (11.4)

where:
y is the deflection of beam
M is the internal bending moment
E is the modulus of elasticity of beam material
I is the moment of inertia of an area
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FIGURE 11.2
Plot of temperature, T versus position x.
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To obtain the finite difference form of the governing equation, subdivide the 
x-axis into N subdivisions, giving x1, x2, x3, …, xN+1.

Let the deflections at these points be: y1, y2, y3, …, yN+1.
The finite difference formula for d y dx2 2/ , as shown in Table 11.1 is
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Thus, the governing differential equation becomes
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The boundary conditions are

 y1 0=  (11.7)

 yN+ =1 0 (11.8)

The bending moment Mn for this problem is
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wL

x
w x

n n
n= −

2 2

2

 (11.9)

Determine the deflection, yi for i = 1:N + 1. Create a plot y versus x and print a 
table consisting of yi and xi. Also print out the obtained maximum deflection. 
Use the following parameters:

 L w EI N= = = =×3 40 1 5 30m N-mkN/m 10 k3 2, , . ,

x
y

L

w (N/m)

FIGURE 11.3
Deflection of a uniformly loaded beam.
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E11.3. Figure 11.4 shows a parallel plate capacitor with constant applied voltage 
vo and a fixed charge density ρ between the plates. For cases with planar sym-
metry such as the parallel plate capacitor where the charge density only changes 
in the x-direction (i.e., there is no y or z dependency), then Poisson’s equation 
describing the electric potential Φ reduces to an ordinary differential equation:

 d x
dx

x2

2

Φ( ) ( )= − ρ
ε

 (11.10)

where:
Φ( )x  is the electric potential (in volts)
ρ( )x  is the x-dependent charge density (in coul/m3)
ε is the dielectric constant for the material between the plates

We wish to solve for Φ( )x  between the plates of the capacitor shown in 
Figure 11.4 with a plate separation of D meters, ρ ρ( ) ( )x x Do= − 2 and bound-
ary conditions Φ( )0 0=  and Φ( )D vo= .

Substituting the expression for ρ( )x  into Equation 11.10, we obtain
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Equation 11.11 can readily be solved analytically and the solution [2] is
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Solve Equation 11.11 numerically and compare the numerical solution with 
the exact solution. Create a plot of Φ versus x and a table consisting of x, Φ 

Conducting plates

Material between
plates with dielectric ε
and charge density ρ(x)

Vo

+

−
Dx

FIGURE 11.4
Parallel plate capacitor with constant applied voltage.



234 MATLAB® Essentials

obtained numerically, and Φ obtained by Equation 11.12. Use the following 
parameters:
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Projects

P11.1. For the beam shown in Figure P11.1, determine the beam deflection, 
y(x), by the finite difference method utilizing MATLAB’s inverse matrix 
function or the MATLAB’s Gauss-Elimination Method. Print the results in a 
table format. Also determine the approximate maximum deflection. Use the 
following parameters:

 

P EI L a
x

= = + = =
≤ ≤
10 1 5 3 10 6

0 10 10 0

2kN e kN-m m m
m in steps of m

, . , , ,
..

For this configuration:

M

P L a
L

x x a

P L a
L

x P x a a x L
i

i i

i i i

=

−
≤ ≤

−
− − < ≤











( )

( )
( )

for

for

0

P11.2. For the beam shown in Figure P11.2, determine the beam deflection, 
y(x), by the finite difference method utilizing MATLAB’s inverse matrix 
function or the MATLAB’s Gauss-Elimination method. Print the results in a 

a
P
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x

y

FIGURE P11.1
Deflection of a beam subjected to a concentrated load.
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table format. Also determine the approximate maximum deflection. Use the 
following parameters:

 w1 = 10 kN/m, w2 = 20 kN/m, EI = 1.5e + 3 kN-m2, L = 10 m,
 0 10 0≤ ≤x .   m in steps of 0.1 m.

Hint: The load can be considered as the sum of a uniform load and a trian-
gular load. For the triangular load, the resultant force equals ( ) /w w L2 1 2−  
located 2L/3 from the apex of the triangle. This results in the following 
equation for M(x):
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Appendix: Greek Letters and Special 
Characters in MATLAB® Plots

MATLAB® allows the use of Greek and special characters in its plot 
headings and labels. The method for doing this is based on the TeX format-
ting language [1] and is summarized in this appendix.

MATLAB provides the functions title, xlabel, ylabel, and text for 
adding labels to plots. These labels can include Greek and special characters 
by applying the character sequences as shown in Table A.1. These sequences 
all begin with the backslash character (\) and can be embedded in any 
text string argument to title, xlabel, ylabel, and text. Subscripts 
and superscripts may also be applied by using the _ and ^ operators. For 
example, the sequence Vo is written as V_o and 106 is written as 10^6. If 
the subscripts or superscripts are multiple characters, then use curly braces 
to delimit the string to be subscripted, for example, Vout is generated with 
V_{out}.

Example A.1

The following MATLAB script shows how to use special characters in a plot:

% Example_A_1.m
% This script shows example usage of special characters in MATLAB plots.
% Plot a 1MHz sine wave over the interval 0<t<2 microsec
t = 0:2e-8:2e-6;
fo = 1e6;
xout = sin(2*pi*fo*t);
plot(t*1e6,xout);
title('Plot of sin(2\pif_{o}t) for f_{o}=10^6 Hz');
xlabel('time (\museconds)');
ylabel('x_{out}(t)');
text(1.5,0.3,'\omega = 2\pi \times f_{o}');
----------------------------------------------------------------------------------------------

The resulting plot is shown in Figure A.1.
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TABLE A.1

Greek Letters

Greek Letter Greek Symbol

\alpha α
\beta β
\gamma γ
\delta δ
\epsilon ε
\zeta ζ
\eta η
\theta θ
\vartheta ϑ
\lambda λ
\mu μ
\nu ν
\rho ρ
\sigma σ
\tau τ
\phi ϕ
\omega ω
\Gamma Γ
\Delta Δ
\Phi Φ
\Omega Ω
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MATLAB plot.
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Review Answers

Review 1.1

 1. List several ways engineers use the computer. 
 a. To solve mathematical models of physical phenomenon.
 b. Storing and reducing experimental data.
 c. Controlling machines.
 d. Communicating with other engineers on a particular project.
 2. List several areas of interest for engineers. 
 a. Designing new products.
 b. Improve performance of existing products.
 c. Improving manufacturing efficiency.
 d. Minimizing costs of production.
 e. Minimizing power consumption.
 f. Research on developing new products.
 3. List several methods that can be used in the design of new products. 
 a. Full-scale experiments.
 b. Small-scale model experiments.
 c. A mathematical model describing the phenomenon of interest.
 4. Which method mentioned in item 3 is the least expensive?

 The mathematical model is the least expensive.
 5. List several components of a typical desktop/laptop computer system.
 a. Input devices: keyboard, mouse, microphone.
 b. Central processing unit consisting of a control unit, an arithmetic 

logic unit and registers.
 c. Memory and storage unit consisting of main memory which is 

used for temporary storage of programs and data.
 d. Secondary memory consisting of a hard drive, an optical drive 

(a CD or a DVD), and a flash drive.
 e. Output devices: monitor, printer, speakers.
 f. Operating systems: Windows 10, MacOS, Linux.
 6. Name several computer languages used today and in the past by 

Engineers.
 Fortran, C/C++, MATLAB, Pascal.
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 7. What is the lowest level computer language and what numbering 
system does it use?

 Machine language. It uses the binary system of numbers.
 8. For engineers what is the principle advantage of MATLAB® over 

some of the other computer programming platforms?
 MATLAB has built-in functions that solve many different types of 

mathematical problems that other computer platforms do not have.
 9. List several items that are recommended in developing a computer 

program. 
 a. List the algebraic equations involved in the project.
 b. Create a flow chart or a program outline.
 c. Write the program using the list of algebraic equations and the 

program outline or flow chart.
 d. Run the program and correct any syntax errors.
 10. List several items that can be considered building blocks available 

in developing a computer program in MATLAB.
 a. Assignments (Arithmetic statements).
 b. Input/output statements.
 c. Loop statements (for loop and while loop).
 d. Conditional operatives/alternative path statements (if-else, 

if-elseif-else statements).
 e. Functions (built-in and self-written).

Review 2.1

 1. What are the two alternative ways to start the MATLAB program?
 If available, start the MATLAB program by double-clicking on the 

MATLAB icon on the Window’s desktop. If not available, 
 a. For Windows versions earlier than Windows 10, go to the 

Window’s Start menu, click on All Programs, find the MATLAB 
program among the list of available programs and click on it. 
This will open up the MATLAB desktop.

 b. For Windows version 10, click on the Windows icon on the left 
bottom of the screen and search for the MATLAB program and 
click on it. This will open the MATLAB desktop.

 2. What are the windows in the MATLAB’s default desktop?
 The main windows are the Command Window, Current Folder, and 

Workspace.
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 3. It is best to write a MATLAB script (program) in the Editor Window. 
From MATLAB’s default desktop how does one open the script window?

 To Open the Editor Window, click on the New Script icon in the 
Toolstrip in MATLAB’s desktop.

 4. After you have completed writing a script in the appropriate win-
dow, what is the next step?

 Click on the save icon in the Toolstrip. In the window that opens, 
select the folder in which the script is to be saved and in the File Name 
box type in the name of the script with the .m extension.

 5. Name two ways to execute a script. 
 a. In the Editor Window, click on arrow located just above the Run 

icon in the Toolstrip. In the Editor Window the arrow is green.
 b. In the Command Window after the MATLAB prompt (>>) sign, 

type in the script name (without the .m extension).
 6. What happens if you attempted to execute a script and the script is 

not in the folder listed in the current folder Toolbar?
 A dialog box will open giving you the choice of changing the folder 

listed in the path box or adding the folder containing your script to 
the MATLAB path.

 7. In MATLAB, what is the file name extension for saved scripts?
 The file name extension is .m.

 8. How does one establish a comment line in a script?
 By placing a % sign in front of a statement makes it a comment line.

Review 2.2

 1. List at least two conditions in selecting a name for a variable. 
 a. Variable name must start with a letter.
 b. Variable names can only contain letters, numbers, and the under-

score character.
 2. Finish the following statement. An arithmetic statement may 

involve … constants, variables, arithmetic operators, and elementary 
MATLAB functions and self-written functions.

 3. What can be said about the variables that appear on the right side of 
an arithmetic statement?

 All variables on the right side of an arithmetic statement must be 
previously defined (given a value) in the program.
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 4. List the arithmetic operators in MATLAB.
 The arithmetic operators in MATLAB are 

+ addition
− subtraction
* multiplication
/ division
^ exponentiation

 5. What is the order in which an arithmetic statement will be carried out?
 First all operations enclosed within parentheses will be carried out 

in the following order: exponentiation, multiplication, and divi-
sion, then addition and subtraction. Then proceeding from left to 
right, the operations will be carried out in the same order as listed 
above.

 6. What is MATLAB’s command for 
 a. π . pi

 b. e. exp

 c. ln. log

 d. sine function in radians. sin()

 e. sine function in degrees. sind()

 f. sin−1 function. asin()

 g. The number of elements in a vector. lenth()

 h. The size of a matrix (the number of rows and columns). size()

 i. The sum of the elements in a vector. sum()

 j. The maximum element in a vector. max()

 k. Preallocating the size of a 3 × 3 matrix. zeros(3)

 7. What is the purpose of placing a semicolon at the end of a variable 
assignment?

 Placing a semicolon at the end of a variable assignment avoids the 
variable assignment to be echoed to the screen.

 8. What is the command that will clear the Command Window?
 The command clc clears the Command Window.

 9. What is the basic data structure in MATLAB?
 The basic data structure in MATLAB is a matrix.

 10. Name two functions of the colon operator.
 a. The colon operator may be used to create a new matrix from an 

existing matrix.
 b. The colon operator can also be used to generate a series of numbers.
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Review 2.3

 1. Name two commands that will result in printing to the screen. 
 a. fprintf()

 b. display()

 2. What is the command that will move the cursor to the next line?
 \n.

 3. What is the format that will print a floating point variable to 10 
spaces and to three decimal points?

 % 10.3f

 4. What is the format that will print a floating point variable in scien-
tific notation to 12 spaces and to four decimal points?

 % 12.4e

 5. What are the commands necessary to print to a file? 
 a. fo=fopen('file_name','w');

 b. fprintf(fo,'format \n',variables);

 6. What is the command to create a linear plot of y versus x and what 
type of variable must x and y be?

 The command is plot(x,y);
 Variables x and y must be vectors.

 7. What are the commands that will label the x- and y-axis and provide 
a title to a plot?

 xlabel('x'), ylabel('y'), title('y vs. x')

Review 2.4

 1. What is the objective in using a for loop?
 The objective of a for loop is to repeat a series of statements with 

just a few lines of code.
 2. What is the syntax of a for loop?

 for index variable = starting value: step size: 
final value

 3. Should table headings that are not to be repeated be inside a for 
loop?

 No.
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 4. If the index of a for loop is used to select an element of a vector or 
a matrix, what variable type should the for loop index be?

 It should be an integer.
 5. What other statement type can be used to create a loop?

 The while loop.
 6. What is the major difference between a for loop and a while loop?

 The syntax of the for loop generates its own index. If a program 
requires an index, the program containing the while loop must gen-
erate an index.

Review 2.5

 1. Name four commands that can be used in a script to input data into 
the workspace. Also list where the data are located.

 The commands that can be used to enter data into the work space are
 load, fscanf, dlmread, and input. In the load, fscanf, and 

dlmread commands, the data are located in a separate file, usually 
a .txt file. For the input command, the data are entered from the 
keyboard by the user.

 2. Which of the four commands makes the program interactive?
 The program becomes interactive with the input command. 

The user is asked to enter values from the keyboard.

Review 2.6

 1. When there is more than one function plotted on a graph, what are 
the ways to identify which curve goes with which function?

 Each curve can be given a different color, or a different line type. 
In  each case you can use the legend command to identify which 
curve goes with which function. You can also use the text command 
to label each of the curves.

 2. What is the name of the function that will allow you to plot several 
graphs on one page?

 The name of the function that will allow you to plot several graphs on 
one page is the subplot command. The subplot command is not a plot 
command. It is used to position the several different plots on the page.
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 3. How does one enter Greek symbols into a plot?
 The Greek symbol is entered with \name of symbol.

 4. What are the commands that will allow you to enter text onto a plot 
once the plot has been created?

 In the plot window, click on the Insert option in the menu bar.
 A dropdown menu will appear that contains the following options:
 X Label, Y Label, Title, TextBox, and others. Click on the item 

that you wish to enter on the plot. If you select the TextBox option, 
a crosshair will appear and you can drag it to the location where you 
wish to start the text, then type in the text that you want to enter into 
your plot.

Review 3.1

 1. What statement is frequently used to establish two conditional paths?
 The if-else statements.

 2. What series of statements is used to establish several conditional paths?
 The if-elseif-else statements.

 3. List the various types of logic statements that can be used with the 
if–else and the if-elseif-else ladder.

 a < b, a > b, a ≤ b, a ≥ b, a == b, a ~= b.
 4. Is the else statement required with the if-else and with the 

 if-elseif-else ladder?
 No.

 5. What statement group and a MATLAB’s function are alternatives to 
the if-elseif-else ladder?

 The switch statement and MATLAB’s menu function.

Review 3.2

 1. If y = 3.0 * A and A is a vector, what can you say about y?
 If A = [ .... ]a a a an1 2 3 , then y a a a an= × × × ×[ .... ]3 3 3 31 2 3 .

 2. If y = 3.0*sin(x) and x is a vector, what can you say about y.
 If x = [ ..., ]x x x xn1 2 3 , then
 y = [ sin( ) sin( ) sin( ) ..., sin( )]3 3 3 31 2 3× × × ×x x x xn
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 3. If vector C = A + B, what must be true about vectors A and B.
 Vectors A and B must be of the same length.
  Each element of C will be the addition of the corresponding elements 

of A and B.
 4. What is the result of the multiplication of two vectors of the same 

length, say A and B, and how it should be programmed?
 If A = [ .... ]a a a an1 2 3  and B b b b bn= [ ... ]1 2 3 , then the multiplication of 

A and B is [ ... ]a b a b a b a bn n1 1 2 2 3 3× × × ×
 In MATLAB, the multiplication has to be programmed as A.* B.

 5. What is the name of MATLAB’s function that does interpolation?
 The function name is interp1.

 6. What are the inputs to MATLAB’s interpolation function?
 MATLAB’s interp1 function has three arguments, say (X,Y,Xi), 

where (X,Y) are a set of known (x, y) data points and Xi is the set 
of x values at which the set of y values, Yi, are to be determined by 
interpolation. Arrays X and Y must be of the same length. If Xi is a 
vector, than Yi will be a vector.

 7. What are the outputs from MATLAB’s interpolation function?
 In the variables described above the output from MATLAB’s interp1 

function are the interpolated values Yi.

Review 4.1

 1. When does it seem appropriate to write a self-written function?
 If you have a complicated program and you wish to break it down into 

smaller sections, it is appropriate to write a self-written function. Also, 
if you have a program that requires a series of statements to be repeated 
several time, it is convenient to place the series of statements in a self-
written function. Finally, many MATLAB functions require the user to 
write a self-written function to describe the problem of interest.

 2. In writing a self-written function what must be the first word in the 
first executable statement?

 The first word in the first executable statement in the function must 
be function.

 3. A self-written function usually has both an input and an output. 
Where does the input come from? Where does the output go to?

 The input comes from the calling program.
 The output from the function goes to the calling program.
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 4. If a self-written function has more than one output, how must the 
output be presented?

 If a function has more than one output, the output must be in brackets.
 5. How does a self-written function communicate with the calling 

program?
 The self-written function only communicates with the calling pro-

gram through the input and output variables. The exception is when 
a global statement is contained in both the calling program and the 
function.

 6. What can be said about variables in the self-written function that are 
not in the input or output arguments of the function and there are no 
global statements?

 If a variable in the function is not in the input or output arguments 
of the function, then that variable is completely independent of vari-
ables in the calling program.

 7. Do the variable names in the input and output arguments between 
the calling program and the function have to be the same?

 No, they only need to be in the same order.
 8. If a programmer wishes to write a self-written function, but does 

not wish to create an additional .m file, what can the programmer do 
and what is the constraint?

 The programmer can write an anonymous function, which is included 
in the main program and not as a separate .m file. The constraint is 
that it needs to be a single statement.

Review 5.1

 1. Suppose you wish to assign a column vector consisting of string ele-
ments, what are the conditions that need to be followed in setting up 
this column vector?

 The conditions are (a) each string row needs to be enclosed by 
single quotation marks, (b) each string row must have the same 
number of columns, and (c) the entire matrix must be enclosed by 
brackets.

 2. Suppose that you had a data file that contains both numerical and 
text data, what command would you use to read in the data into 
your main program?

 The command used to read in the data is the textscan command.
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 3. When the command used in reading in the data type described in 
item 2, what object type does the data go into? 

 The data goes into a cell array.
 4. To assign variable names to items in the object, which of the follow-

ing three symbols would you use: (), [], {}.
 You should use {} symbol.

Review 6.1

 1. What is meant by the term root of function f(x)?
 The root of a function is the value of x that makes f(x) = 0

 2. What is the objective in the search method for determining a root of 
the equation f(x) = 0?

 The objective of the search method is to find small intervals contain-
ing the roots.

 3. What is the name of the MATLAB function for determining the roots 
of a transcendental equation of the form f(x) = 0?

 The name of MATLAB’s function to obtain the roots of a transcen-
dental equation is fzero.

 4. In MATLAB’s function for determining the roots of a transcendental 
equation, how does one define the function whose roots are to be 
determined?

 A self-written function should describe the function whose roots 
are to be obtained. The name of this self-written function should be 
entered as the first argument in MATLAB’s fzero function.

 5. If you suspect that there is more than one real root, what method should 
be used in combination with the MATLAB’s function to obtain the roots?

 If you suspect that there is more than one root, you should use the 
search method, in combination with MATLAB’s fzero function. The 
search method is used to obtain a small interval in which a root lies and 
MATLAB’s fzero function determines the root that lies in that interval. 

 6. If you are using the search method in combination with the fzero 
function, what can you say about the second argument in the fzero 
function?

 The second argument to be entered in the fzero function should 
be a vector of length 2 specifying the endpoints of the intervals that 
contain the roots.

 The functional values at the beginning and end of this interval 
should differ in sign.
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 7. What is the purpose of the global statement?
 Variables listed in the global statement will be common to both the 

calling program and the called function. Therefore, variables defined in 
the calling program will be available in the called function, despite the 
fact that these variables are not input or output arguments in the called 
function. Of course, the reverse is also true. An item determined in the 
called function would also become available in the calling program.

 8. If the function f(x) is a polynomial, what MATLAB function should 
you use to obtain its roots?

 You should use MATLAB’s roots function. If the polynomial has 
complex roots, MATLAB’s roots function will give the complex roots, 
whereas MATLAB’s fzero function will only give the real roots.

Review 7.1

 1. Given a set of algebraic, linear equations in the form AX = C, where 
A is the coefficient matrix and X and C are column vectors, what are 
the two ways for solving for X in MATLAB?

 a. X = inv(A)*C.
 b. X = A\C.
 2. Given a large system of algebraic, linear equations of the form 

AX = C, describe the recommended approach to solving the system 
of linear equations.

 First we need to number each equation in the system. We then need 
to determine the coefficients, ai j, , in each equation and the ci, where 
the i represents the equation number and the j represents the num-
ber of the x variable associated with the coefficient.

 Example:
 Suppose we had a system of 10 equations requiring a coefficient 

matrix, a c( , ) ( )10 10 10 and a matrix to solve the problem. Suppose the 
7th equation was as follows:

 − − + + =0 6 0 6 04 5 8 10. .x x x x  (7)

 
a a a a a a

a

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) .

7 1 7 2 7 3 7 6 7 7 7 9 0

7 4 0 6

= = = = = =

= −and ,, ( , ) , ( , ) , ( , ) . , ( )a a a c7 5 1 7 8 1 7 10 0 6 7 0= − = = =and
 

 After establishing all a c( , )10 10 and (10) values use MATLAB’s inv 
or MATLAB’s Gauss-Elimination function to solve the problem, that 
is, X = inv(A)*C or X = A\C.
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Review 8.1

 1. Suppose an experiment produced a set of data and we wished to 
create an approximating curve, yc  , that is a polynomial expression 
that best fits the data. What is the name of the MATLAB function 
that will do this?

 The name of MATLAB’s function that will do this is polyfit(x, y, m), 
where (x, y) is the experimental data set and m is the degree of the 
polynomial. The polyfit function returns the coefficients of the 
polynomial, a a am1 2 1, ,..., +  where

 y a x a x a x ac
m m

m m= + + +−
+1 2

1
1...  

 2. After executing MATLAB’s polyfit function, and you wish 
to obtain values on the approximating curve, yc , at positions 
( , , ,... )x x x xn1 2 3  what MATLAB function would you use?

 You would use MATLAB’s polyval(a,X) function, where vector a 
is the coefficients of the approximating function and X is the vector 
of the x position values.

Review 9.1

 1. What is the formula for evaluating the integral, I f x dx
A

B= ∫ ( )  by the 
Simpson’s rule?

 First sub-divide the x domain into N equal intervals, where N is an 
even number giving x1  , x2  , x3  ,....., xN+1. Then determine the functional 
values at the x positions giving f1  , f2  , f3  ,......., fN+1. The formula for the 
integral by Simpson's rule is:

 
I f x dx

x
f f f f f f f

x

x

N N

N

= ≈ + + + + + + +[ ]
+

∫ +( )
1

1

3
4 2 4 2 41 2 3 4 5 1

∆


 

 2. What is the name of MATLAB’s function for integrating a single 
variable function?

 MATLAB’s function for integrating a single variable function is 
integral.

 3. In MATLAB’s function for integrating a single variable function how 
does one define the function to be integrated?

 One needs to write a self-written function that describes the integrand.
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 The name of this function should be entered as the first argument in 
the integral function.

 4. If the integrand contains nonlinear terms, how must they be treated?
 Nonlinear terms need to be entered as element-by-element multipli-

cation or division. Terms involving exponents also need to be treated 
as an element-by-element operation.

 5. Will MATLAB’s integral function treat improper integrals?
 Yes.

Review 9.2

 1. What is the name of MATLAB’s function for integrating a two-
dimensional function?

 MATLAB’s function for integrating a two-dimensional function is 
integral2.

 2. List the arguments that go into MATLAB’s function for integrating a 
two-dimensional function.

 The arguments that go into MATLAB’s function for integrating a 
two-dimensional function are 

 a. FUN(X,Y) which is a function handle for the function that 
describes the two-dimensional function to be integrated.

 b. XMIN, XMAX, YMIN, YMAX, where
 XMIN X XMAX YMIN Y YMAX≤ ≤ ≤ ≤   and 

 XMIN and XMAX are scalars and YMIN and YMAX may be scalars 
or function handles.
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